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Asymptotic Variance Approximations for Invariant
Estimators in Uncertain Asset-Pricing Models

Abstract

This paper derives explicit expressions for the asymptotic variances of the maximum likelihood

and continuously-updated GMM estimators in models that may not satisfy the fundamental asset-

pricing restrictions in population. The proposed misspecification-robust variance estimators allow

the researcher to conduct valid inference on the model parameters even when the model is rejected

by the data. While the results for the maximum likelihood estimator are only applicable to linear

asset-pricing models, the asymptotic distribution of the continuously-updated GMM estimator is

derived for general, possibly nonlinear, models. The large corrections in the asymptotic variances,

that arise from explicitly incorporating model misspecification in the analysis, are illustrated using

simulations and an empirical application.

Keywords: Asset pricing; Model misspecification; Continuously-updated GMM; Maximum likeli-

hood; Asymptotic approximation; Misspecification-robust tests.
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1 Introduction

Given the complexity of the economic and financial systems, it seems natural to view all economic

models only as approximations to the true data generating process (Watson, 1993; White, 1994;

Canova, 1994; among others). As argued by Maasoumi (1990), “Misspecification of these models is

therefore endemic and inevitable. Omission of relevant variables, inclusion of ‘irrelevant variables’,

incorrect functional forms, incompleteness of systems of relations, and incorrect distributional as-

sumptions are both common and present simultaneously.”

Models for which the likelihood function is available are now routinely estimated in a quasi-

maximum likelihood framework and the statistical inference is performed using misspecification-

robust standard errors (White, 1982, 1994). In contrast, misspecification-robust inference for mo-

ment condition models, estimated by the generalized method of moments (GMM), is much less

widespread among applied researchers. It is still common practice to use the asymptotic standard

errors of Hansen (1982), derived under the assumption of correct model specification, even when

the model is rejected by the data. This is unfortunate since most economic models are defined by a

set of conditional or unconditional moment restrictions and not allowing for possible (global) mis-

specification of these moment restrictions would render the GMM inference asymptotically invalid.

Maasoumi and Phillips (1982) and Gallant and White (1988) provide an early analysis of in-

ference in globally misspecified models estimated by instrumental variables and GMM with a fixed

weighting matrix, respectively. Hall and Inoue (2003) extended the asymptotic analysis in these

studies to the two-step and iterated GMM estimators. They derived the limiting variance of these es-

timators in the presence of model misspecification and showed that the misspecification adjustment

depends on the weighting matrix used in estimation. The consequences of model misspecification

for GMM estimation and inference are summarized in Hall (2005). Despite these recent advances

in the literature, the use of misspecification-robust standard errors in empirical work with GMM

estimators is largely absent.

Misspecification-robust inference proves to be particularly important in evaluating linear asset-

pricing models that are often found to be rejected by the data (see Kan and Robotti, 2009, Kan,

Robotti, and Shanken, 2013, and Gospodinov, Kan, and Robotti, 2013, 2014, among others). While

invariant estimators are believed to possess a number of appealing properties, misspecification-

robust inference for these estimators is not yet available in the literature. In this paper, we derive
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explicit expressions for the asymptotic variances of the ML and the continuously-updated GMM

(CU-GMM) estimators (Hansen, 1982; Hansen, Heaton, and Yaron, 1996) in potentially misspeci-

fied asset-pricing models.

We focus on the ML and CU-GMM estimators for several reasons. First, the invariance of these

estimators to normalizations and transformations of the data is particularly desirable in asset-

pricing models (Peñaranda and Sentana, 2015) that could be written in both beta-pricing and

stochastic discount factor (SDF) form. Second, the CU-GMM estimator is a member of the class

of generalized empirical likelihood (GEL) estimators (Newey and Smith, 2004), which provides an

alternative look into the first- and higher-order asymptotic properties of the CU-GMM estimator.

In fact, we use the GEL framework to parameterize the degree of model misspecification as the

distance of the pseudo-true value of the vector of Lagrange multipliers, associated with the mo-

ment conditions, from zero and cast the CU-GMM estimator as a solution to a quasi-likelihood

problem. This allows us to work directly with the score function and to sidestep some explicit

joint normality assumptions in the approach of Hall and Inoue (2003). Due to the quasi-likelihood

interpretation of the estimated augmented parameter vector (the parameters of interest and the

Lagrange multipliers), the asymptotic variance of the CU-GMM estimator takes the usual sandwich

form as in White (1982, 1994). In this respect, we complement the results in Kitamura (1998) and

Schennach (2007), and provide an explicit expression for the asymptotic variance of the CU-GMM

estimator in potentially misspecified models. Our results for CU-GMM are derived for linear as

well as nonlinear moment condition models.

On the other hand, the maximum likelihood (ML) estimator is developed only for linear beta-

pricing models. The usefulness of this estimator is that it can be obtained in a closed form, which

facilitates its practical implementation and theoretical analysis. One possibility in deriving the

asymptotic distribution of the ML estimator under potentially misspecified models is to extend the

two-stage Gaussian quasi-maximum likelihood setting of White (1994), which is robust to distri-

butional assumptions and model misspecification. Instead, we maintain the normality assumption,

which is often imposed in the ML estimation of the beta-pricing model, to obtain a more explicit

expression for the asymptotic variance of the estimator. The proposed asymptotic standard er-

rors help us quantify the importance of the model misspecification adjustment when conducting

statistical inference. Furthermore, our setup allows us to express the ML estimator as an optimal

minimum distance estimator and approximate its limiting behavior under misspecified models using
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analytical tools for moment condition models as in Hall and Inoue (2003).

Overall, our theoretical and simulation results suggest that the impact of model misspecification

on the asymptotic variance of the ML and CU-GMM estimators can be very large and of practical

economic significance. It turns out that the size distortions arising from wrongly assuming correct

model specification are much larger for these invariant estimators than for the non-invariant esti-

mators studied by Kan and Robotti (2009), Kan, Robotti, and Shanken (2013), and Gospodinov,

Kan, and Robotti (2013). For example, the rejection rate of the centered t-test that does not

account for model misspecification could be as large as 49% for CU-GMM at the 10% significance

level with 3600 observations and a degree of model misspecification calibrated to actual data. The

proposed misspecification-robust standard errors correct these size distortions and, interestingly,

provide substantial improvements even when the model is correctly specified.

The rest of the paper is structured as follows. Sections 2 and 3 derive the limiting distributions

of the ML and CU-GMM estimators in misspecified linear asset-pricing models. The asymptotic

results for the CU-GMM estimator are also extended to general nonlinear moment condition mod-

els. Section 4 provides simulation results on the empirical size and power of t-tests computed

with standard errors under correct model specification and misspecification-robust standard errors.

Section 5 illustrates the economic significance of the proposed misspecification adjustment using

actual data for several popular asset-pricing models. Section 6 concludes.

2 ML Estimation and Misspecification-Robust Inference in the
Beta-Pricing Representation

In this section, we discuss the maximum likelihood approach to estimation and statistical inference

in unconditional beta-pricing models. Suppose that Rt, the gross returns on N test assets at time

t (t = 1, . . . , T ), can be described by the following data generating process:

Rt = α+ βft + εt, (1)

where ft denotes the realizations of K systematic factors at time t and εt are the model innovations

at time t with E[εt] = 0N and E[ftε
′
t] = 0K×N . Taking expectations on both sides yields

µR = α+ βµf , (2)
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where µf = E[ft] and µR = E[Rt]. Under the K-factor asset-pricing model, we have

µR = 1Nγ0 + βγ1, (3)

where 1N is an N × 1 vector of ones, γ0 is the zero-beta rate, and γ1 is the vector of risk premia

associated with the K risk factors ft. Let γ = [γ0, γ
′
1]′ ∈ Γ denote the parameter vector of interest.

Comparing (2) with (3), we have the following restrictions on α:

α = 1Nγ0 + βφ, (4)

where φ = γ1 − µf . The multi-factor model can be written in matrix form as

Y = XB + E , (5)

where B = [α, β]′, and the typical rows of X, Y , and E are x′t = [1, f ′t ], R
′
t, and ε′t, respectively.

Assumption MLE.A. Assume that (a) (ft, εt) are i.i.d. normally distributed with Vf = Var[ft]

and Σ = Var[εt]; (b) the matrix H = [1N , β] is of full column rank; and (c) the parameter space Γ

is a compact subset of RK+1.

The ML estimators of µf and Vf are

µ̂f =
1

T

T∑
t=1

ft, (6)

V̂f =
1

T

T∑
t=1

(ft − µ̂f )(ft − µ̂f )′. (7)

We partition the parameter vector δ = [vec(B′)′, vech(Σ)′, γ0, φ
′]′ into δ = [δ′1, δ

′
2]′, where

δ1 = [vec(B′)′, vech(Σ)′]′ and δ2 = [γ0, φ
′]′. Under Assumption MLE.A(a), the log-likelihood

function of the unrestricted model (5) is given by

LT (δ1) = −NT
2

log(2π)− T

2
log |Σ| − 1

2

T∑
t=1

(Rt −B′xt)′Σ−1(Rt −B′xt). (8)

Then, the unrestricted ML estimators of B and Σ are

B̂ ≡ [ α̂, β̂ ]′ = (X ′X)−1(X ′Y ), (9)

Σ̂ =
1

T
(Y −XB̂)′(Y −XB̂), (10)

and

LT (δ̂1) = −T
2

log |Σ̂| − NT

2
[log(2π) + 1]. (11)
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The concentrated likelihood function is

LT (δ̃1|δ2) = −T
2

log |Σ̃| − NT

2
[log(2π) + 1], (12)

where Σ̃ denotes the estimated variance of the residuals under the constraint (4) that the asset-

pricing model holds. Note also that the constraint (4) can be expressed as ω′(Q1B + Q2) = 0′N ,

where ω = [1, −φ′, −γ0]′, Q1 =

[
IK+1

0′K+1

]
, and Q2 =

[
0(K+1)×N

1′N

]
. Then, the likelihood ratio

statistic of H0 : α = 1Nγ0 + βφ is given by

LRT (δ2|δ̂1) = −T log

(
1 +

ω′(Q1B̂ +Q2)Σ̂−1(Q1B̂ +Q2)′ω

Tω′Q1(X ′X)−1Q′1ω

)
, (13)

using that

LRT = 2
[
LT (δ̃1|δ2)− LT (δ̂1)

]
= −T log

(
|Σ̃|
|Σ̂|

)
(14)

and (Seber, 1984, p. 410)

Σ̃ = Σ̂ + (ω′(Q1B̂ +Q2))′[Tω′Q1(X ′X)−1Q′1ω]−1ω′(Q1B̂ +Q2). (15)

Therefore, the ML estimator of δ2 = [γ0, φ
′]′ can be defined as

δ̂2 = argminδ2 − LRT (δ2|δ̂1). (16)

Since the second term in the parentheses of (13) is a ratio of quadratic forms in ω, the minimum is

attained when ω is proportional to the eigenvector associated with the largest eigenvalue of

[(Q1B̂ +Q2)Σ̂−1(Q1B̂ +Q2)′]−1[TQ1(X ′X)−1Q′1]. (17)

Let p = [p1, . . . , pK+2]′ be the eigenvector associated with the largest eigenvalue of (17). Then, we

have

φ̂i = −pi+1/p1, i = 1, . . . ,K, (18)

γ̂0 = −pK+2/p1, (19)

and the ML estimator of γ1 is simply γ̂1 = φ̂+ µ̂f .1

White (1994, Theorem 6.11) provides the asymptotic distribution of δ̂2 under potential model

misspecification and non-normality of εt. To obtain explicit expressions for the asymptotic variance

1Note that p1, the first element of p, is nonzero with probability one. This is a direct consequence of the fact that
when the factors and returns are continuously distributed, the eigenvector p is also continuously distributed and none
of the elements of this eigenvector will have a probability mass at zero.
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of γ̂ = [γ̂0, γ̂
′
1]′ in globally misspecified models, in the following we deviate from White (1994) and

maintain the joint normality assumption in MLE.A. This allows us to isolate and quantify the

impact of model misspecification on the asymptotic variance of γ̂.

Note that the ML estimator of γ can also be expressed as

γ̂ = argminγ
(µ̂R − Ĥγ)′Σ̂−1(µ̂R − Ĥγ)

1 + γ′1V̂
−1
f γ1

, (20)

where µ̂R = 1
T

∑T
t=1Rt and Ĥ = [1N , β̂]. Define the pseudo-true values of γ as

γ∗ ≡
[
γ∗0
γ∗1

]
= argminγ

(µR −Hγ)′Σ−1(µR −Hγ)

1 + γ′1V
−1
f γ1

, (21)

and let M =

[
1N , β +

(µR−Hγ∗)γ∗1 ′V
−1
f

1+γ∗1
′V −1

f γ∗1

]
, s∗ = (µR − Hγ∗)′Σ−1(µR − Hγ∗), c∗ = 1 + γ∗1

′V −1
f γ∗1,

C1 = 2M ′Σ−1M −H ′Σ−1H, C = H ′Σ−1H − s∗

c∗ Ṽ
−1
f ,

Ṽf =

[
0 0′K

0K Vf

]
(22)

and

Ṽ −1
f =

[
0 0′K

0K V −1
f

]
. (23)

Theorem 1 below derives the asymptotic distribution of γ̂ for globally misspecified models.

Theorem 1. Suppose that Assumption MLE.A is satisfied and µR 6= Hγ, that is, the model is

misspecified. Then, we have
√
T (γ̂ − γ∗) d→ N (0K+1,Ωm) , (24)

where Ωm = C−1
{
c∗C1 + C1ṼfC1 + s∗

[(
1− 1

c∗2

)
C1 +

(
1 + s∗(c∗−1)

c∗2

)
Ṽ −1
f + 1

c∗2H
′Σ−1H

]}
C−1.

Proof. See Appendix.

Note that when the model is correctly specified, we have s∗ = 0, M = H, and C1 = C =

H ′Σ−1H. In this case,
√
T (γ̂ − γ∗) d→ N (0K+1,Ωc) , (25)

where Ωc = c∗(H ′Σ−1H)−1 + Ṽf .
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3 CU-GMM Estimation and Misspecification-Robust Inference in
the SDF Representation

Instead of writing the K-factor asset-pricing model in beta-pricing form as in (3), we can also

express the K-factor asset-pricing model using a linear SDF x′tλ, where λ = [λ0, λ
′
1]′ ∈ Λ is a

(K + 1)× 1 parameter vector. For a given value of λ, the pricing errors of the N assets are defined

as

e(λ) ≡ E[et(λ)] = E[Rtx
′
tλ− 1N ] = Gλ− 1N , (26)

where G = E[Rtx
′
t]. We say the asset-pricing model is globally misspecified if for all values of λ we

have e(λ) 6= 0N .

Let V (λ) = lim T→∞Var
(
T−1/2

∑T
t=1(et(λ)− e(λ))

)
be a positive definite matrix and λ∗ denote

the pseudo-true value of λ, which is defined as

λ∗ ≡
[
λ∗0
λ∗1

]
= argminλe(λ)′V (λ)−1e(λ). (27)

In the case of correctly specified models, e(λ∗) = 0N and λ∗ is the true value of λ.

Assumption GMM.A. Assume that (a) Yt ≡ [f ′t , R
′
t]
′ is a jointly stationary and ergodic process;

(b) et(λ
∗)−e(λ∗) forms a martingale difference sequence with variance matrix V (λ∗); (c) E[(et(λ)−

e(λ))(et(λ)− e(λ))′] is non-singular in some neighborhood of λ∗; and (d) the parameter space Λ is

a compact subset of RK+1.

Assumption GMM.A imposes some restrictions on the dynamic behavior of the data and the

moment conditions. The martingale difference sequence assumption in GMM.A(b) can be relaxed

by modifying the structure of the estimation problem along the lines suggested by Smith (2011).

Let gt = Rtx
′
t, GT = 1

T

∑T
t=1 gt, and ēT (λ) = 1

T

∑T
t=1 et(λ) = GTλ − 1N is an N × 1 vector of

sample pricing errors with a sample variance (given Assumption GMM.A(b))

VT (λ) =
1

T

T∑
t=1

[et(λ)− ēT (λ)][et(λ)− ēT (λ)]′. (28)

Then, the CU-GMM estimator of λ is defined as2

λ̂ = [λ̂0, λ̂
′
1]′ = argminλēT (λ)′VT (λ)−1ēT (λ). (29)

2Newey and Smith (2004, footnote 2) establish the equality of this CU-GMM estimator and the CU-GMM esti-
mator based on VT (λ) = 1

T

∑T
t=1 et(λ)et(λ)′.
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In deriving the asymptotic variance of the CU-GMM estimator in (29) under model misspecifica-

tion, we follow an approach that allows us to write the estimator of an augmented parameter vector

as a solution to the score function of a just-identified problem. The point of departure is the obser-

vation that the CU-GMM estimator can be defined equivalently as a solution to a nonparametric

likelihood problem that minimizes the Euclidean distance between a probability measure PT that

satisfies exactly the moment conditions, that is, E [e(λ)|PT ] =
∫
e(λ)dPT = 0N , and the empirical

probability measure (see Antoine, Bonnal, and Renault, 2007, and Newey and Smith, 2004, among

others). This primal problem can be recast conveniently as a dual (saddle-point) problem, where

the duality parameter ρ(λ) is an N × 1 vector of Lagrange multipliers associated with the moment

conditions e(λ) = 0N . Let ρ∗ ≡ ρ∗(λ) denote the pseudo-true value of ρ and θ = [ρ′, λ′]′ ∈ Θ be

an augmented N +K + 1 parameter vector with a pseudo-true value θ∗ = [ρ∗′, λ∗′]′. For correctly

specified models, we have ρ∗ = 0N while for misspecified models, ‖ρ∗(λ)‖ > 0 for all λ ∈ Λ.

Let θ̂ = [ρ̂′, λ̂
′
]′. The first-order conditions of this nonparametric likelihood problem are given

by (Antoine, Bonnal, and Renault, 2007)

s̄T (θ̂) ≡ 1

T

T∑
t=1

st(θ)

∣∣∣∣∣
θ=θ̂

= 0N+K+1, (30)

where

st(θ) = −
[

[1 + ρ′ (et(λ)− e(λ))] et(λ)
[1 + ρ′ (et(λ)− e(λ))] g′tρ

]
. (31)

The N +K + 1 vector st(θ) can be interpreted as the score function of a quasi-likelihood problem.

As argued above, we augment the first-order conditions for the parameter vector of interest λ with

the parameter vector of Lagrange multipliers ρ in order to make the model misspecification, which

is reflected in ρ, explicit in deriving the limiting distribution. Note also that from the first N

equations in (30), we have ρ̂ = −VT (λ̂)−1ēT (λ̂).

Let wt(θ
∗) = [1 + ρ∗′ (et(λ

∗)− e(λ∗))], B = E[wt(θ
∗)gt] + E[(et(λ

∗)− e(λ∗)) ρ∗′(gt − G)], C =

E[(gt−G)′ρ∗ρ∗′(gt−G)], and V = V (λ∗). Next, we state the limiting distribution of the CU-GMM

estimator in misspecified models.

Theorem 2. Suppose that Assumption GMM.A holds, G is of full column rank, and Yt has finite

eighth moments. Then, it follows that

√
T (θ̂ − θ∗) d→ N(0N+K+1,Ξ), (32)
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where Ξ ≡ E[ltl
′
t], lt ≡ [l′1t, l

′
2t]
′, and

l1t = V −1 [wt(θ
∗)et(λ

∗)−Bl2t] , (33)

l2t = (C −B′V −1B)−1wt(θ
∗)
[
g′tρ
∗ −B′V −1et(λ

∗)
]
. (34)

Proof. See Appendix.

The variance matrix Ξ in Theorem 2 can be consistently estimated using the sample analogs of

(33) and (34). Importantly, the result in Theorem 2 can be easily extended to nonlinear moment

condition models. Let g
(2)
t (λ) = (∂/∂λ′)vec(gt(λ)), where gt(λ) = ∂et(λ)/∂λ′ is now a function

of λ, and C̃ = (IK+1 ⊗ ρ∗′)E[g
(2)
t (λ∗)] + E[(gt(λ

∗) − G(λ∗))′ρ∗ρ∗′(gt(λ
∗) − G(λ∗))]. The following

theorem states the result for possibly misspecified nonlinear models.

Theorem 3. In addition to Assumption GMM.A, assume that (a) the pseudo-true values λ∗ and

ρ∗ are unique and λ∗ is in the interior of Λ; (b) et(λ) is twice continuously differentiable in λ

and E [supλ∈Λ |et(λ)|] < ∞; (c) E
[
supθ∈N (θ∗)

∥∥ ∂
∂θ′
st(θ)

∥∥] < ∞ in some neighborhood N of θ∗;

(d) E ‖st(θ∗)st(θ∗)′‖ exists and is finite; (e) E
[
∂
∂θ′
st(θ

∗)
]

is of full rank. Then, it follows that

√
T (θ̂ − θ∗) d→ N(0N+K+1, Ξ̃), (35)

where Ξ̃ ≡ E[l̃t l̃
′
t], l̃t ≡ [l̃′1t, l̃

′
2t] and

l̃1t = V −1
[
wt(θ

∗)et(λ
∗)−Bl̃2t

]
, (36)

l̃2t = (C̃ −B′V −1B)−1wt(θ
∗)
[
gt(λ

∗)′ρ∗ −B′V −1et(λ
∗)
]
. (37)

Proof. See Appendix.

Note that for linear models, g
(2)
t (λ∗) is a zero matrix and C̃ = C = E[(gt − G)′ρ∗ρ∗′(gt − G)].

Thus, the result in Theorem 3 reduces to the asymptotic distribution in Theorem 2. Furthermore,

for correctly specified models, the limiting distribution in Theorem 3 specializes to the result in

Theorem 3.2 of Newey and Smith (2004). More specifically, for correctly specified models, we have

ρ∗ = 0N , wt(θ
∗) = 1, B = G, C = 0(K+1)×(K+1), (C −B′V −1B)−1 = −(G′V −1G)−1, and

l1t = V −1 [et(λ
∗)−Gl2t] , (38)

l2t = (G′V −1G)−1G′V −1et(λ
∗). (39)
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Peñaranda and Sentana (2015) show the equivalence between the CU-GMM estimation of the

linear SDF and beta-pricing frameworks. Let3

wt(λ̂) =
1− (et(λ̂)− ēT (λ̂))′VT (λ̂)−1ēT (λ̂)

T
. (40)

Then, the CU-GMM estimates of µf , Vf , and β can be obtained (in a computationally very efficient

way) as µ̃f =
∑T

t=1wt(λ̂)ft, Ṽf =
∑T

t=1wt(λ̂)ft(ft − µ̃f )′, and β̃ =
∑T

t=1wt(λ̂)Rt(ft − µ̃f )′Ṽ −1
f .4

These estimates are subsequently used to construct estimates of the zero-beta rate and risk premium

parameters, γ̂0 = 1
λ̂0+µ̃′f λ̂1

and γ̂1 = − Ṽf λ̂1

λ̂0+µ̃′f λ̂1
, respectively. The asymptotic variances of γ̂0 and

γ̂1 can then be obtained by the delta method.

4 Monte Carlo Simulations

In this section, we evaluate the performance of the proposed variance estimators by reporting

the empirical size and power of t-tests that are constructed using standard errors under correct

model specification and misspecification-robust standard errors. To facilitate the power com-

parisons, we report size-adjusted power in all tables. In our simulations, we consider the pop-

ular linear model of Fama and French (FF3, 1993) with a constant term and three risk factors

(xt = [1, mktt, smbt, hmlt]
′), where mkt denotes the excess return (in excess of the one-month

T-bill rate) on the value-weighted stock market index (NYSE-AMEX-NASDAQ), smb is the return

difference between portfolios of stocks with small and large market capitalizations, and hml is the

return difference between portfolios of stocks with high and low book-to-market ratios (“value”

and “growth” stocks, respectively). The asset-pricing model can either be correctly specified or

misspecified.

In our baseline simulations, the returns on the test assets and the risk factors are drawn from

a multivariate normal distribution. In addition, we analyze the impact of non-normality and finite

moment requirements on our variance approximations by drawing the returns and the factors from a

multivariate t-distribution with eight degrees of freedom.5 The variance matrix of the simulated risk

factors and test asset returns is set equal to the estimated variance matrix of the three Fama-French

factors and the test asset returns on the 25 Fama-French size and book-to-market ranked portfolios

3Newey and Smith (2004) and Antoine, Bonnal, and Renault (2007) show that wt(λ̂), t = 1, . . . , T, in (40) represent
the implied probability weights associated with the CU-GMM estimator.

4We refer the readers to an online appendix for the CU-GMM estimation of the beta-pricing model.
5In our empirical application, the degree-of-freedom parameter of the multivariate t-distribution is estimated to

be 8.1.
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augmented with 10 industry portfolios over the 1963:7–2015:7 sample period.6 For misspecified

models, the means of the simulated returns are set equal to the means of the actual returns. Then,

for example, one can use the Hansen and Jagannathan distance (HJD, 1997) to quantify the degree

of model misspecification. The resulting HJD for FF3 is 0.3996, which is in line with the HJD

values commonly reported in empirical applications with monthly data. For correctly specified

models, the means of the simulated returns are set such that the asset-pricing model restrictions

are satisfied (that is, the pricing errors are zero). The time-series sample sizes are T = 300, 600,

1200, and 3600. The number of Monte Carlo replications is set equal to 100,000.

For the beta-pricing model, the vector of risk premium parameters γ is estimated by the ML

estimator γ̂. The estimator γ̂ is used to construct a consistent estimate of the variance matrix

Ω̂c = ĉ(Ĥ ′Σ̂−1Ĥ)−1 + ˆ̃Vf , (41)

under the assumption of a correctly specified model, and the variance matrix

Ω̂m = Ĉ−1

{
ĉĈ1 + Ĉ1

̂̃V f Ĉ1 + ŝ

[(
1− 1

ĉ2

)
Ĉ1 +

(
1 +

ŝ(ĉ− 1)

ĉ2

) ̂̃V −1

f +
1

ĉ2
Ĥ ′Σ̂−1Ĥ

]}
Ĉ−1, (42)

under the assumption of a misspecified model, where ĉ = 1+γ̂′1V̂
−1
f γ̂1, ŝ = (µ̂R−Ĥγ̂)′Σ̂−1(µ̂R−Ĥγ̂),

M̂ =

[
1N , β̂ +

(µ̂R−Ĥγ̂)γ̂′1V̂
−1
f

1+γ̂′1V̂
−1
f γ̂1

]
, Ĉ1 = 2M̂ ′Σ̂−1M̂ − Ĥ ′Σ̂−1Ĥ, Ĉ = Ĥ ′Σ̂−1Ĥ − ŝ

ĉ
̂̃V −1

f ,

̂̃V f =

[
0 0′K

0K V̂f

]
, (43)

and ̂̃V −1

f =

[
0 0′K

0K V̂ −1
f

]
. (44)

The square roots of the diagonal elements of Ω̂c and Ω̂m are then used to obtain the t-tests under

correct model specification, denoted by tc(γ̂), and the misspecification-robust t-tests, denoted by

tm(γ̂).

Tables I and II report the actual probabilities of rejection for the MLE t-tests (tc(γ̂) and tm(γ̂))

of H0 : γ1,i = γ∗1,i and H0 : γ1,i = 0 (i = 1, . . . ,K) using standard normal critical values. For

correctly specified models, the true values γ∗ are set equal to their ordinary least squares cross-

sectional regression (CSR) estimates (Ĥ ′Ĥ)−1Ĥ ′µ̂R from the actual data, while for misspecified

models the pseudo-true values γ∗ are set equal to their ML estimates from the actual data.

6The test asset return and the factor data are obtained from Kenneth French’s website.
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Tables I and II about here

Table I presents the results for the FF3 specification when the model is correctly specified.

Table II is for the misspecified model. Although the model is correctly specified, the centered t-test

under correct specification, tc, tends to slightly overreject in small samples. Interestingly, the cen-

tered misspecification-robust t-test, tm, corrects these size distortions and provides improvements

despite the fact that the true misspecification adjustment is zero in this case. When the model is

misspecified, the t-tests tc are no longer valid, and this is reflected in the fairly significant overrejec-

tions. In contrast, the centered misspecification-robust t-tests tm are almost perfectly sized even in

small samples. For example, for T = 600 and a 10% significance level, the centered tc statistic for

mkt rejects the null hypothesis 21.9% of the time under model misspecification (tc(γ̂1,1) in Panel A

of Table II). In contrast, the centered misspecification-robust tm statistic rejects the null hypothesis

9.8% of the time under model misspecification (tm(γ̂1,1) in Panel B of Table II). As for power, both

tests behave very similarly. It should be noted that power can be low at times. This depends on,

among other things, how far from zero the pseudo-true parameters are.

We explore departures from the normality assumption in Tables III and IV. In these tables, the

returns and the factors are multivariate t-distributed with eight degrees of freedom. Note that this

distribution (i) generates fat tails and conditional heteroskedasticity in returns, and (ii) makes the

MLE inference invalid since the normality assumption is violated.

Tables III and IV about here

When the model is correctly specified (Table III), the impact of non-normality on tc and tm is

negligible, and the size and power properties of the two tests are very similar to the ones under

normality in Table I. When the model is misspecified, the centered misspecification-robust t-test

tends to slightly overreject the null in very large samples but is almost perfectly sized in small

samples. For example, for T = 3600 and a 10% significance level, the centered tm statistic for mkt

rejects the null hypothesis 11.2% of the time (tm(γ̂1,1) in Panel B of Table IV). The centered tc

statistic continues to be theoretically invalid since the model is misspecified, and it exhibits slightly

bigger overrejections compared to the normal case. As for power, both tests behave similarly,

with power being about the same as under normality. Overall, tm enjoys very nice size and power

properties and seems to be little affected by the presence of heavy tails in financial data.
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For the SDF representation of the asset-pricing model, the parameter vector θ = [ρ′, λ′]′ is

estimated using the CU-GMM estimator θ̂ = [ρ̂′, λ̂
′
]′. Let wt(θ̂) = 1 + ρ̂′[et(λ̂) − ēT (λ̂)], B̂ =

1
T

∑T
t=1wt(θ̂)gt + 1

T

∑T
t=1[et(λ̂)− ēT (λ̂)]ρ̂′(gt−GT ), and Ĉ = 1

T

∑T
t=1(gt−GT )′ρ̂ρ̂′(gt−GT ). Then,

l̂1t = VT (λ̂)−1
[
wt(θ̂)et(λ̂)− B̂l̂2t

]
(45)

and

l̂2t = (Ĉ − B̂′VT (λ̂)−1B̂)−1wt(θ̂)
[
g′tρ̂− B̂′VT (λ̂)−1et(λ̂)

]
(46)

are used to construct a consistent estimator Ξ̂ of the asymptotic variance matrix of θ̂ in Theorem 2.

The square roots of the last K+1 diagonal elements of Ξ̂ are used to construct the misspecification-

robust t-tests, denoted by tm(λ̂). The variance estimator of θ̂ under correct model specification is

obtained from

l̂1t = VT (λ̂)−1
[
et(λ̂)−GT l̂2t

]
, (47)

l̂2t = (G′TVT (λ̂)−1GT )−1G′TVT (λ̂)−1et(λ̂), (48)

and the square roots of the last K + 1 diagonal elements are used to construct the t-tests under

correct model specification, denoted by tc(λ̂).

Tables V and VI report the actual probabilities of rejection for the CU-GMM t-tests (tc(λ̂) and

tm(λ̂)) of H0 : λ1,i = λ∗1,i and H0 : λ1,i = 0 (i = 1, . . . ,K) using standard normal critical values. For

correctly specified models, the true values λ∗ are set equal to λ̂ = [(1 + µ̂′f V̂
−1
f γ̂1)/γ̂0, −γ̂′1V̂ −1

f /γ̂0]′

(with γ̂ = (Ĥ ′Ĥ)−1Ĥ ′µ̂R) from the actual data. In order to compute the pseudo-true values λ∗

when the model is misspecified, we partition

Var

[
ft

Rt

]
=

[
Vf VfR

VRf VR

]
. (49)

It is easy to show that under the i.i.d. multivariate elliptical distributional assumption on the factors

and the returns, the optimal weighting matrix (the variance matrix of the moment conditions) is

given by

V (λ) = [(λ0 + µ′fλ1)2 + (1 + κ)λ′1Vfλ1]VR + (λ0 + µ′fλ1)(µRλ
′
1VfR + VRfλ1µ

′
R)

+ (λ′1Vfλ1)µRµ
′
R + (1 + 2κ)VRfλ1λ

′
1VfR, (50)

where κ is the multivariate excess kurtosis of the factors and the returns. The weighting matrix

is obtained by setting κ = 0 for the multivariate normality case, and by setting κ = 2/(ν − 4) for
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the multivariate t-distribution case with ν degrees of freedom. Then, for misspecified models, the

pseudo-true values λ∗ are set equal to their CU-GMM estimates from the actual data using this

form of the weighting matrix.

Tables V and VI about here

While the pattern of results is somewhat similar to that of the MLE, the CU-GMM estimator

appears to be much more sensitive to model misspecification. This is partly due to the numerical

instability of the CU-GMM estimator, especially when N is large, which leads to poorer asymptotic

approximations and more pronounced size distortions. For example, in the correctly specified FF3

model with T = 600, the centered tc test rejects the null for the market factor 17.1% of the time

at the 10% significance level while the centered tm test rejects the null 9.0% of the time (Panels A

and B of Table V). For the misspecified FF3 model with T = 600, the corresponding rejection rates

for the centered tc and tm tests are 60.1% and 12.7% (Panels A and B of Table VI), respectively.

In fact, the rejection rates for the centered tc test can be as large as 27.6% (Panel A of Table V)

for correctly specified models and 68.3% (Panel A of Table VI) for misspecified models at the 10%

significance level.

This should serve as a warning signal to applied researchers who routinely use standard errors

constructed under the assumption of a correctly specified model in evaluating the statistical sig-

nificance of the SDF parameters. It suggests that the researcher will conclude erroneously (with

very high probability) that the risk factor is important for the pricing of the test assets. While the

centered misspecification-robust t-tests also exhibit some slight size distortions for small sample

sizes,7 their empirical size approaches quickly the nominal level when T increases. Importantly, the

misspecification-robust t-tests provide large size corrections not only for the case of misspecified

models but also for correctly specified models where the tc tests are theoretically valid. Moreover,

as Tables V and VI illustrate, the effective size correction that the misspecification-robust t-tests

perform does not reflect negatively on the power of the tests neither in correctly specified nor in

misspecified models.

Finally, in Tables VII and VIII, we conducted simulations with data drawn from a multivariate

t-distribution with eight degrees of freedom. In this case, the variance approximation used in tm is,

7These size distortions are somewhat expected for a small T and a relatively large N given the small number of
time-series observations per moment condition.
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strictly speaking, invalid since the condition of finite eighth moments of the data is not satisfied.

Tables VII and VIII about here

Overall, the simulations suggest that our proposed method continues to work well under this

more extreme scenario. While there are some overrejections for the centered tm test for small

sample sizes in misspecified models, they appear to be due primarily to the large number of test

assets (moment restrictions) used in our analysis. In simulations that are not reported to conserve

space (N = 10 and N = 25), these size distortions largely disappear. As in the previous tables, the

size-adjusted power is similar for tc and tm.

5 Empirical Application

We use our methodology to estimate the parameters γ and λ of three asset-pricing models. The

first model is the simple static CAPM with xt = [1, mktt]
′, where mkt is the excess return on the

value-weighted stock market index that was defined in the previous section. The CAPM performed

well in early tests, but has fared poorly since. The second model is the three-factor specification of

Fama and French (FF3, 1993) with xt = [1, mktt, smbt, hmlt]
′ that is described in the simulation

part of the paper. Finally, we consider the five-factor model of Fama and French (FF5, 2015), an

empirical specification that is becoming increasingly popular in the asset-pricing literature. For

this model, xt = [1, mktt, smbt, hmlt, rmwt, cmat]
′, where rmw (profitability factor) is the

average return on two robust operating profitability portfolios minus the average return on two

weak operating profitability portfolios, and cma (investment factor) is the average return on two

conservative investment portfolios minus the average return on two aggressive investment portfolios.

The test asset returns Rt are (as in the simulation section of the paper) the monthly returns on

the value-weighted 25 Fama-French size and book-to-market ranked portfolios and the 10 industry

portfolios (N = 35) for the period July 1963 – July 2015. As argued in Lewellen, Nagel, and Shanken

(2010), the 25 Fama-French portfolios appear to be characterized by a strong factor structure, and

the inclusion of the industry portfolios presents a greater challenge to the various asset-pricing

models.

Kan and Zhou (2006) argue that the monthly portfolio returns on the 25 Fama-French bench-

mark portfolios and the three factor portfolios of Fama and French (1993) are well described by
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a multivariate t distribution with eight degrees of freedom. When we apply the ML methods de-

scribed in Section 2.1 of Kan and Zhou (2006) to our dataset of 40 financial time series (that is,

35 benchmark portfolios and five factors), we obtain 8.1 as an estimate of the degrees of freedom

parameter of the multivariate t-distribution. Additional tests based on Mardia’s (1970) measures

of multivariate skewness and kurtosis (see Section 1.2 of Kan and Zhou, 2006) also indicate that

the number of degrees of freedom of the multivariate t distribution is at least eight in our dataset.

Given the outcome of these tests, our regularity assumption of finite eighth moments for CU-GMM

does not appear to be at odds with the financial data used in our empirical analysis.

In addition to the invariant ML and CU-GMM estimators, we also present results for the non-

invariant generalized least squares (GLS) CSR and HJD estimators in the beta-pricing and SDF

representations, respectively.8 While inefficient compared to the invariant estimators, CSR and

HJD provide useful benchmarks given their numerical stability and popularity in empirical work.

To quantify the degree of misspecification of these models, we performed a model specification

test using each of the four estimators. For all models and estimators, the null of correct model

specification is strongly rejected with p-values equal to 0.000. To determine whether the models

are well identified, we also applied the Cragg and Donald (1997) rank test to the beta-pricing and

SDF representations of the models. The results from the rank test suggest that the models are well

identified as the test rejects the null of a reduced rank with p-values of 0.000. In summary, these

pre-tests provide convincing evidence that the models are misspecified but properly identified.

Hence, to ensure valid statistical inference, the standard errors for the estimated parameters

need to be adjusted to account for the additional uncertainty arising from model misspecification.

However, it is common practice in empirical work to employ the traditional standard errors derived

under the assumption of correct model specification, even when the null of correct model speci-

fication is rejected by the data. For this reason, in Table IX, we report t-statistics constructed

under the assumption of a correctly specified model (tc) in addition to the misspecification-robust

t-statistics (tm).

Table IX about here

For the beta-pricing model, the ML and CSR estimators (Panel A of Table IX) deliver similar

8For the GLS CSR estimator and related misspecification-robust t-tests, we refer the readers to Kan, Robotti, and
Shanken (2013). For the HJD estimator and related misspecification-robust t-tests, we refer the readers to Kan and
Robotti (2009) and Gospodinov, Kan, and Robotti (2013).
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results. In addition, the differences between the tc and tm tests are generally small and rarely lead

to different conclusions regarding the statistical significance of the individual parameters (the only

noticeable exception is the investment factor in FF5 estimated by ML). This is likely due to the

fact that all factors are traded and the model misspecification adjustment is typically not large

in this scenario (see Kan, Robotti, and Shanken, 2013). It also appears that the misspecification

adjustment for the ML standard errors is larger than the corresponding adjustment for the CSR

estimator.

The model misspecification adjustment is much more pronounced for the CU-GMM estimator

in the SDF representation of the model (Panel B of Table IX). For example, consider FF5. When

using standard errors constructed under correct model specification, one would conclude that,

except for mkt, all factors are priced at the 5% significance level. In contrast, incorporating

model misspecification in the analysis produces standard errors that are much larger than those

constructed under correct model specification. In particular, the new profitability and investment

factors of Fama and French (2015) do not appear to be priced at the 5% significance level. The

inference based on misspecification-robust standard errors suggests that only smb is priced (albeit

with much smaller t-statistics) at the 5% significance level. The SDF parameter estimates on all the

other risk factors are statistically insignificant. The evidence of pricing in CAPM and FF3 is also

much weaker once the uncertainty associated with potential model misspecification is incorporated

in the inference procedure. As for the beta-pricing representation, the non-invariant estimator

(HJD) in the SDF setup exhibits less sensitivity to model misspecification (see Gospodinov, Kan,

and Robotti, 2013), although the evidence of pricing for mkt, hml, rmw, and cma in FF5 is even

weaker than for CU-GMM.

To summarize, accounting for model misspecification often makes a qualitative difference in

determining whether estimates of the risk premia or the SDF parameters are statistically significant.

Applied researchers should be cautious in interpreting high t-ratios constructed under correct model

specification as evidence that the underlying factors are important in explaining the cross-sectional

differences in asset expected returns.
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6 Conclusions

This paper derives the asymptotic variance of the ML and CU-GMM estimators in potentially

misspecified models, represented either in beta-pricing or SDF form. This fills an important gap in

the literature given the increasing popularity of invariant estimators and the widespread belief that

economic models are inherently misspecified. The new expressions for the asymptotic variances of

the ML and CU-GMM estimators are explicit and easy-to-use in practice.

We illustrate the importance of using misspecification-robust standard errors of the param-

eter estimates in the context of various linear asset-pricing models. While, as expected, the

misspecification-robust tests deliver impressive improvements when the true model is misspecified,

these tests also tend to provide substantial small-sample corrections when the model is correctly

specified, especially for CU-GMM. All these size corrections are achieved at no apparent cost asso-

ciated with loss of power. As a result, the main recommendation that emerges from our analysis

is that the proposed misspecification-robust standard errors should always be used in applied work

regardless of whether the model is believed (based, for example, on the outcome of a pre-test of

overidentifying restrictions) to be correctly specified or misspecified.
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Appendix

Preliminary Lemma 1

Lemma 1. The matrix C = H ′Σ−1H − s∗

c∗ Ṽ
−1
f is a positive definite matrix.

Proof

Let η be a K + 2 vector, Ã = [µR, H]′Σ−1[µR, H] and B̃ =

 1 0 0′K
0 0 0′K

0K 0K V −1
f

. Then, we can

write the minimization problem in (21) as

min
η

η′Ãη

η′B̃η
. (A.1)

By restricting η = [0, γ′]′, it is easy to see that

min
η

η′Ãη

η′B̃η
< min

η:η=[0, γ′]′

η′Ãη

η′B̃η
= min

γ

γ′H ′Σ−1Hγ

γ′Ṽ −1
f γ

. (A.2)

Note that it is a strict inequality because when the model is identified, the optimal η on the left

hand side is chosen such that the first element is normalized to one (that is, nonzero). Since the left

hand side is equal to s∗/c∗, the largest eigenvalue of (H ′Σ−1H)−1Ṽ −1
f is less than c∗/s∗, which in

turn implies that H ′Σ−1H − (s∗/c∗)Ṽ −1
f is a positive definite matrix. This completes the proof.�

Proof of Theorem 1

Let

M̂ =

[
1N , β̂ +

m̂(γ̂)γ̂′1V̂
−1
f

1 + γ̂′1V̂
−1
f γ̂1

]
, (A.3)

where m̂(γ) = µ̂R − Ĥγ. The first order conditions of (20) and (21) are given by

M̂ ′Σ̂−1m̂(γ̂) = 0K+1, (A.4)

M ′Σ−1m∗ = 0K+1, (A.5)

where m∗ ≡ m(γ∗) = µR −Hγ∗. Using a Taylor series expansion, we can write

√
T [m̂(γ̂)− m̂(γ∗)] = −

√
TH(γ̂ − γ∗) +Op(T

− 1
2 ), (A.6)
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and in addition, using the fact that Σ̂
p→ Σ, M̂

p→M , and m̂(γ∗)
p→ m∗, we have

√
TM ′Σ−1[m̂(γ∗)−m∗]

=
√
TM ′Σ−1m̂(γ∗)

= −
√
T (M̂ −M)′Σ−1m̂(γ∗)−

√
TM̂ ′(Σ̂−1 − Σ−1)m̂(γ∗)−

√
TM̂ ′Σ̂−1[m̂(γ̂)− m̂(γ∗)]

= −
√
T (M̂ −M)′Σ−1m∗ −

√
TM ′(Σ̂−1 − Σ−1)m∗ −

√
TM ′Σ−1[m̂(γ̂)− m̂(γ∗)] +Op(T

− 1
2 ).

(A.7)

Under the normality assumption,

√
Tvec(Σ̂−1 − Σ−1)

d→ N
(
0N2 , (Σ−1 ⊗ Σ−1)(IN2 +KN )

)
, (A.8)

where KN is an N2 ×N2 commutation matrix. Then, defining s∗ = m∗′Σ−1m∗ and using the fact

that M ′Σ−1m∗ = 0K+1, we can obtain the limiting distribution of the second term in (A.7) as

√
TM ′(Σ̂−1 − Σ−1)m∗

d→ N(0K+1, s
∗M ′Σ−1M), (A.9)

and it is asymptotically independent of m̂(γ∗).

For the third term in (A.7), we have

−
√
TM ′Σ−1[m̂(γ̂)− m̂(γ∗)] =

√
TM ′Σ−1H(γ̂−γ∗)+Op(T

− 1
2 ) =

√
TM ′Σ−1M(γ̂−γ∗)+Op(T

− 1
2 ),

(A.10)

where the last equality follows from the fact that M ′Σ−1M = M ′Σ−1H because of (A.5).

It remains to expand the first term in (A.7). Writing

√
T (M̂ −M)′Σ−1m∗

=

 0
√
T (β̂ − β)′Σ−1m∗ +

[√
T V̂ −1

f γ̂1m̂(γ̂)′

1+γ̂′1V̂
−1
f γ̂1

−
√
TV −1

f γ∗1m
∗′

1+γ∗1
′V −1

f γ∗1

]
Σ−1m∗


=
√
T (Ĥ −H)′Σ−1m∗ +

 0[√
T V̂ −1

f γ̂1m̂(γ̂)′

1+γ̂′1V̂
−1
f γ̂1

−
√
TV −1

f γ∗1m
∗′

1+γ∗1
′V −1

f γ∗1

]
Σ−1m∗

 . (A.11)

The second term in (A.11) has three sources of randomness. Using the delta method and letting
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c∗ = 1 + γ∗1
′V −1
f γ∗1, we can approximate the second term in (A.11) as[√

T V̂ −1
f γ̂1m̂(γ̂)′

1 + γ̂′1V̂
−1
f γ̂1

−
√
TV −1

f γ∗1m
∗′

1 + γ∗1
′V −1
f γ∗1

]
Σ−1m∗

=

√
TV −1

f γ∗1[m̂(γ̂)− m̂(γ∗) + m̂(γ∗)−m∗]′Σ−1m∗

c∗

+

√
T (V̂ −1

f − V −1
f )γ∗1s

∗

c∗
−
V −1
f γ∗1s

∗

c∗2

√
Tγ∗1

′(V̂ −1
f − V −1

f )γ∗1

+

√
TV −1

f (γ̂1 − γ∗1)s∗

c∗
−
V −1
f γ∗1s

∗

c∗2
2γ∗1
′V −1
f

√
T (γ̂1 − γ∗1) +Op(T

− 1
2 ). (A.12)

Combining the second and the third terms in (A.12), we have

√
T (V̂ −1

f − V −1
f )γ∗1s

∗

c∗
−
V −1
f γ∗1s

∗

c∗2

√
Tγ∗1

′(V̂ −1
f − V −1

f )γ∗1 =
s∗

c∗
A
√
T (V̂ −1

f − V −1
f )γ∗1, (A.13)

where

A = IK −
V −1
f γ∗1γ

∗
1
′

c∗
. (A.14)

It can be readily shown that

s∗

c∗
A
√
T (V̂ −1

f − V −1
f )γ∗1

d→ N

(
0K ,

s∗2

c∗2

[
(c∗ − 1)V −1

f +

(
2

c∗2
− 1

)
V −1
f γ∗1γ

∗
1
′V −1
f

])
, (A.15)

and this random variable is independent of Σ̂, µ̂R, and β̂. Combining the last two terms in (A.12),

we have  0
√
TV −1

f (γ̂1−γ∗1)s∗

c∗ − V −1
f γ∗1s

∗

c∗2 2γ∗1
′V −1
f

√
T (γ̂1 − γ∗1)

 =
s∗

c∗
B
√
T (γ̂ − γ∗), (A.16)

where

B =

[
0 0′K

0K V −1
f − 2V −1

f γ∗1γ
∗
1
′V −1

f

c∗

]
. (A.17)

Collecting all these terms, we obtain

√
TM ′Σ−1[m̂(γ∗)−m∗] +

√
T (Ĥ −H)′Σ−1m∗ +

√
T (M −H)′Σ−1[m̂(γ∗)−m∗]

+

[
0√

TA(V̂ −1
f −V −1

f )γ∗1s
∗

c∗

]
+
√
TM ′(Σ̂−1 − Σ−1)m∗

= −
√
T (M −H)′Σ−1[m̂(γ̂)− m̂(γ∗)]−

√
TB(γ̂ − γ∗)s∗

c∗
−
√
TM ′Σ−1[m̂(γ̂)− m̂(γ∗)]

⇒
√
T (2M −H)′Σ−1[m̂(γ∗)−m∗] +

√
T (Ĥ −H)′Σ−1m∗

+

[
0√

TA(V̂ −1
f −V −1

f )γ∗1s
∗

c∗

]
+
√
TM ′(Σ̂−1 − Σ−1)m∗

=

[
(2M −H)′Σ−1H − s∗

c∗
B

]√
T (γ̂ − γ∗). (A.18)
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Using the fact that

C = (2M −H)′Σ−1H − s∗

c∗
B = 2M ′Σ−1M −H ′Σ−1H − s∗

c∗
B, (A.19)

we can then write

√
T (γ̂ − γ∗) d→ C−1(2M −H)′Σ−1

√
T [m̂(γ∗)−m∗] +

√
TC−1(Ĥ −H)′Σ−1m∗

+ C−1

[
0√

TA(V̂ −1
f −V −1

f )γ1∗s
∗

c∗

]
+ C−1M ′

√
T (Σ̂−1 − Σ−1)m∗. (A.20)

The last two terms in (A.20) are independent of each other and also independent of the first two

terms, and their variances are given by

s∗2

c∗2
C−1

[
0 0′K

0K (γ∗1
′V −1
f γ∗1)V −1

f +
(

2
c∗2 − 1

)
V −1
f γ∗1γ

∗
1
′V −1
f

]
C−1 + s∗C−1M ′Σ−1MC−1. (A.21)

Since

H ′Σ−1H −M ′Σ−1M =
s∗

c∗2

[
0 0′K

0K V −1
f γ∗1γ

∗
1
′V −1
f

]
, (A.22)

we can write

C = H ′Σ−1H − s∗

c∗
Ṽ −1
f . (A.23)

Given that

m̂(γ∗)−m∗ = α̂− α− (β̂ − β)φ∗ + β̂(µ̂f − µf ), (A.24)

where φ∗ = γ∗1 − µf , we obtain

√
T [m̂(γ∗)−m∗] d→ N

(
0N , (1 + γ∗1

′V −1
f γ∗1)Σ +HṼfH

′
)
. (A.25)

Hence, the asymptotic variance of the first term in (A.20) is

c∗C−1(2M −H)′Σ−1(2M −H)C−1 + C−1(2M −H)′Σ−1HṼfH
′Σ−1(2M −H)C−1

= c∗C−1H ′Σ−1HC−1 + C−1(2M −H)′Σ−1HṼfH
′Σ−1(2M −H)C−1, (A.26)

where the invertibility of C follows from Lemma 1. Using that under Assumption MLE.A,

√
Tvec(β̂ − β)

d→ N
(

0NK , V
−1
f ⊗ Σ

)
, (A.27)

we obtain the asymptotic variance of the second term in (A.20) as

s∗C−1Ṽ −1
f C−1. (A.28)
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Let B̃ =
√
T [α̂− α, β̂ − β] and b̃ = vec(B̃). We have

b̃
d→ N

(
0N(K+1),

[
1 + µ′fV

−1
f µf −µ′fV

−1
f

−V −1
f µf V −1

f

]
⊗ Σ

)
. (A.29)

Then, using

E[
√
T [m̂(γ∗)−m∗]m∗′Σ−1

√
T (β̂ − β)] = E[

√
T [α̂− α− (β̂ − β)φ∗]m∗′Σ−1

√
T (β̂ − β)]

= E

[
B̃

[
1
−φ∗

]
m∗′Σ−1B̃

[
0′K
IK

]]
= E

[
([1, −φ∗′]⊗ IN )b̃b̃′

([
0′K
IK

]
⊗ Σ−1m∗

)]
= −γ∗1′V −1

f ⊗m∗

= −m∗γ∗1′V −1
f , (A.30)

we obtain the asymptotic variance between the first and second terms in (A.20) as

C−1(2M −H)′Σ−1m∗[0, −γ∗1′V −1
f ]C−1 = C−1H ′Σ−1m∗[0, γ∗1

′V −1
f ]C−1

= c∗C−1H ′Σ−1(M −H)C−1. (A.31)

Combining all the results, we obtain

√
T (γ̂ − γ∗) d→ N(0K+1,Ωm), (A.32)

where

Ωm = c∗C−1H ′Σ−1HC−1

+ C−1(2M −H)′Σ−1HṼfH
′Σ−1(2M −H)C−1

+ s∗C−1Ṽ −1
f C−1 + c∗C−1H ′Σ−1(M −H)C−1

+ c∗C−1(M −H)′Σ−1HC−1

+
s∗2

c∗2
C−1

[
0 0′K

0K (γ∗1
′V −1
f γ∗1)V −1

f +
(

2
c∗2 − 1

)
V −1
f γ∗1γ

∗
1
′V −1
f

]
C−1

+ s∗C−1M ′Σ−1MC−1. (A.33)

Let C1 = 2M ′Σ−1M −H ′Σ−1H. Then, we can write

Ωm = c∗C−1C1C
−1 + C−1C1ṼfC1C

−1 + s∗C−1Ṽ −1
f C−1 + s∗C−1M ′Σ−1MC−1

+
s∗2

c∗2
C−1

[
0 0′K

0K (γ∗1
′V −1
f γ∗1)V −1

f +
(

2
c∗2 − 1

)
V −1
f γ∗1γ

∗
1
′V −1
f

]
C−1. (A.34)
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Using the identities

M ′Σ−1M = C1 +
s∗

c∗2

[
0 0′K

0K V −1
f γ∗1γ

∗
1
′V −1
f

]
, (A.35)

H ′Σ−1H − C1 =
2s∗

c∗2

[
0 0′K

0K V −1
f γ∗1γ

∗
1
′V −1
f

]
, (A.36)

we can write Ωm as

Ωm = C−1

{
c∗C1 + C1ṼfC1 + s∗

[(
1− 1

c∗2

)
C1 +

(
1 +

s∗(c∗ − 1)

c∗2

)
Ṽ −1
f +

1

c∗2
H ′Σ−1H

]}
C−1.

(A.37)

This completes the proof.�

Proof of Theorem 2

A mean value expansion of s̄T (θ̂) about θ∗ yields

0N+K+1 = s̄T (θ∗) +HT (θ̃)(θ̂ − θ∗) (A.38)

or
√
T (θ̂ − θ∗) = −[HT (θ̃)]−1

√
T s̄T (θ∗) , (A.39)

where HT (θ) = 1
T

∑T
t=1 ht(θ) with ht(θ) = (∂/∂θ′)st(θ), and θ̃ is an intermediate point on the line

segment joining θ̂ and θ∗. More specifically,

ht(θ) = −
[

(et(λ)− e(λ))(et(λ)− e(λ))′ wt(θ)gt + (et(λ)− e(λ))ρ′(gt −G)
wt(θ)g

′
t + (gt −G)′ρ(et(λ)− e(λ))′ (gt −G)′ρρ′(gt −G)

]
, (A.40)

where wt(θ) = [1 + ρ′(et(λ)− e(λ))]. Our regularity conditions ensure that

√
T s̄T (θ∗)

d→ N(0N+K+1, S), (A.41)

and
√
T (θ̂ − θ∗) d→ N(0N+K+1, H

−1S(H ′)−1), (A.42)

where S = E[st(θ
∗)st(θ

∗)′],

H ≡ E[HT (θ∗)] =

[
V B
B′ C

]
, (A.43)

and V , B, and C are defined in the text.

To derive the explicit expression for the asymptotic variance matrix of θ̂ in Theorem 2, we write

H−1S(H ′)−1 = E[ltl
′
t], (A.44)
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where

lt ≡

[
l1t

l2t

]
= H−1st(θ

∗). (A.45)

From the definition of H in (A.43), we can use the formula for the inverse of a partitioned matrix

to obtain

H−1 =

[
V −1(IN +BH̃B′V −1) −V −1BH̃

−H̃ ′B′V −1 H̃

]
, (A.46)

where H̃ = (C−B′V −1B)−1. Observe that C−B′V −1B is the Schur complement of V in H and its

invertibility follows from our assumptions and the properties of Schur complements. Using (A.46)

and (31), we can express l1t and l2t as

l1t = V −1 [wt(θ
∗)et(λ

∗)−Bl2t] , (A.47)

l2t = H̃wt(θ
∗)
[
g′tρ
∗ −B′V −1et(λ

∗)
]
. (A.48)

This delivers the desired result.�

Proof of Theorem 3

Note that in the case of nonlinear moment conditions, the upper-left, upper-right, lower-left, and

lower-right blocks of the ht(θ) matrix are given by

−(et(λ)− e(λ))(et(λ)− e(λ))′, (A.49)

−
[
wt(θ)gt(λ) + (et(λ)− e(λ))ρ′(gt(λ)−G(λ))

]
, (A.50)

−
[
wt(θ)gt(λ)′ + (gt(λ)−G(λ))ρ(et(λ)− e(λ))′

]
, (A.51)

−
[
wt(θ)(IK+1 ⊗ ρ′)g(2)

t (λ) + (gt(λ)−G(λ))′ρρ′(gt(λ)−G(λ))
]
, (A.52)

respectively. The rest of the proof follows similar arguments as those in the proof of Theorem 2.�
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Table I
Size and power properties of MLE t-tests under normality:

Correctly specified model

The table presents the actual probabilities of rejection for the t-tests of H0 : γ1,i = γ∗1,i and H0 : γ1,i = 0
(i = 1, . . . ,K) for different levels of significance. The model includes a constant term and three risk factors
(FF3 specification). The true values of the risk premium parameters are γ∗1,1 = −0.0028, γ∗1,2 = 0.0022, and
γ∗1,3 = 0.0028. Panel A presents the empirical size and power for t-tests that are constructed assuming that
the model is correctly specified (tc). Panel B reports the empirical size and power for misspecification-robust
t-tests (tm). The factors and the returns are multivariate normally distributed.

Size Power

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(γ̂1,1) 300 0.140 0.079 0.021 0.198 0.117 0.034

600 0.119 0.063 0.014 0.301 0.198 0.074
1200 0.109 0.057 0.012 0.479 0.354 0.164
3600 0.103 0.052 0.010 0.875 0.797 0.598

tc(γ̂1,2) 300 0.102 0.051 0.011 0.344 0.233 0.086

600 0.102 0.052 0.011 0.537 0.410 0.199
1200 0.099 0.049 0.010 0.794 0.697 0.455
3600 0.100 0.050 0.010 0.995 0.990 0.955

tc(γ̂1,3) 300 0.102 0.051 0.010 0.509 0.388 0.182

600 0.101 0.051 0.010 0.764 0.654 0.407
1200 0.101 0.051 0.010 0.956 0.918 0.784
3600 0.100 0.050 0.010 1.000 1.000 0.999

Panel B: tm

tm(γ̂1,1) 300 0.092 0.044 0.008 0.199 0.118 0.035

600 0.094 0.046 0.009 0.300 0.198 0.074
1200 0.097 0.049 0.009 0.480 0.354 0.164
3600 0.099 0.049 0.009 0.875 0.797 0.599

tm(γ̂1,2) 300 0.101 0.051 0.011 0.344 0.233 0.086

600 0.101 0.052 0.011 0.537 0.410 0.199
1200 0.099 0.049 0.010 0.794 0.696 0.455
3600 0.100 0.050 0.010 0.995 0.990 0.955

tm(γ̂1,3) 300 0.101 0.050 0.010 0.509 0.388 0.182

600 0.100 0.050 0.010 0.764 0.654 0.408
1200 0.100 0.050 0.010 0.956 0.918 0.784
3600 0.100 0.050 0.010 1.000 1.000 0.999
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Table II
Size and power properties of MLE t-tests under normality:

Misspecified model

The table presents the actual probabilities of rejection for the t-tests of H0 : γ1,i = γ∗1,i and H0 : γ1,i = 0 (i =
1, . . . ,K) for different levels of significance. The model includes a constant term and three risk factors (FF3
specification). The pseudo-true values of the risk premium parameters are γ∗1,1 = −0.0075, γ∗1,2 = 0.0025, and
γ∗1,3 = 0.0033. Panel A presents the empirical size and power for t-tests that are constructed assuming that
the model is correctly specified (tc). Panel B reports the empirical size and power for misspecification-robust
t-tests (tm). The factors and the returns are multivariate normally distributed.

Size Power

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(γ̂1,1) 300 0.244 0.166 0.069 0.478 0.353 0.154

600 0.219 0.142 0.053 0.749 0.643 0.399
1200 0.204 0.130 0.047 0.953 0.913 0.772
3600 0.194 0.121 0.041 1.000 1.000 0.999

tc(γ̂1,2) 300 0.103 0.052 0.011 0.411 0.292 0.118

600 0.103 0.053 0.011 0.635 0.509 0.279
1200 0.100 0.050 0.010 0.882 0.808 0.594
3600 0.101 0.051 0.010 0.999 0.998 0.990

tc(γ̂1,3) 300 0.104 0.052 0.011 0.624 0.501 0.267

600 0.103 0.053 0.011 0.871 0.790 0.570
1200 0.102 0.052 0.010 0.989 0.975 0.914
3600 0.103 0.052 0.010 1.000 1.000 1.000

Panel B: tm

tm(γ̂1,1) 300 0.096 0.048 0.010 0.475 0.353 0.160

600 0.098 0.049 0.010 0.746 0.634 0.397
1200 0.099 0.050 0.010 0.952 0.910 0.763
3600 0.099 0.049 0.010 1.000 1.000 0.999

tm(γ̂1,2) 300 0.101 0.051 0.011 0.411 0.292 0.118

600 0.101 0.052 0.011 0.635 0.509 0.279
1200 0.099 0.049 0.010 0.882 0.808 0.594
3600 0.100 0.050 0.010 0.999 0.998 0.990

tm(γ̂1,3) 300 0.100 0.050 0.010 0.624 0.501 0.266

600 0.100 0.051 0.010 0.871 0.790 0.569
1200 0.100 0.050 0.010 0.989 0.975 0.914
3600 0.101 0.050 0.010 1.000 1.000 1.000
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Table III
Size and power properties of MLE t-tests under non-normality:

Correctly specified model

The table presents the actual probabilities of rejection for the t-tests of H0 : γ1,i = γ∗1,i and H0 : γ1,i = 0
(i = 1, . . . ,K) for different levels of significance. The model includes a constant term and three risk factors
(FF3 specification). The true values of the risk premium parameters are γ∗1,1 = −0.0028, γ∗1,2 = 0.0022, and
γ∗1,3 = 0.0028. Panel A presents the empirical size and power for t-tests that are constructed assuming that
the model is correctly specified (tc). Panel B reports the empirical size and power for misspecification-robust
t-tests (tm). The factors and the returns are multivariate t-distributed. The number of degrees of freedom
of the t-distribution is set equal to eight.

Size Power

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(γ̂1,1) 300 0.137 0.076 0.019 0.201 0.122 0.037

600 0.117 0.063 0.014 0.307 0.205 0.071
1200 0.108 0.055 0.012 0.485 0.363 0.166
3600 0.105 0.053 0.010 0.871 0.797 0.592

tc(γ̂1,2) 300 0.102 0.052 0.010 0.342 0.233 0.091

600 0.100 0.049 0.010 0.537 0.415 0.202
1200 0.100 0.050 0.010 0.794 0.693 0.446
3600 0.100 0.050 0.009 0.996 0.990 0.955

tc(γ̂1,3) 300 0.102 0.052 0.011 0.515 0.388 0.185

600 0.101 0.051 0.010 0.764 0.657 0.417
1200 0.100 0.050 0.010 0.957 0.917 0.779
3600 0.100 0.048 0.010 1.000 1.000 0.999

Panel B: tm

tm(γ̂1,1) 300 0.092 0.044 0.008 0.200 0.122 0.037

600 0.094 0.046 0.009 0.307 0.203 0.072
1200 0.096 0.047 0.009 0.484 0.363 0.166
3600 0.101 0.050 0.009 0.871 0.797 0.592

tm(γ̂1,2) 300 0.101 0.051 0.010 0.342 0.233 0.091

600 0.100 0.049 0.010 0.537 0.415 0.202
1200 0.100 0.050 0.010 0.794 0.693 0.446
3600 0.100 0.050 0.009 0.996 0.990 0.955

tm(γ̂1,3) 300 0.101 0.051 0.011 0.515 0.388 0.184

600 0.101 0.050 0.010 0.764 0.656 0.417
1200 0.099 0.050 0.010 0.957 0.917 0.779
3600 0.099 0.048 0.010 1.000 1.000 0.999
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Table IV
Size and power properties of MLE t-tests under non-normality:

Misspecified model

The table presents the actual probabilities of rejection for the t-tests of H0 : γ1,i = γ∗1,i and H0 : γ1,i = 0 (i =
1, . . . ,K) for different levels of significance. The model includes a constant term and three risk factors (FF3
specification). The pseudo-true values of the risk premium parameters are γ∗1,1 = −0.0075, γ∗1,2 = 0.0025,
and γ∗1,3 = 0.0033. Panel A presents the empirical size and power for t-tests that are constructed assuming
that the model is correctly specified (tc). Panel B reports the empirical size and power for misspecification-
robust t-tests (tm). The factors and the returns are multivariate t-distributed. The number of degrees of
freedom of the t-distribution is set equal to eight.

Size Power

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(γ̂1,1) 300 0.247 0.168 0.071 0.480 0.354 0.161

600 0.226 0.150 0.058 0.746 0.637 0.399
1200 0.214 0.139 0.052 0.948 0.907 0.763
3600 0.212 0.135 0.050 1.000 1.000 0.999

tc(γ̂1,2) 300 0.104 0.053 0.010 0.408 0.291 0.125

600 0.101 0.050 0.011 0.637 0.516 0.279
1200 0.102 0.051 0.010 0.880 0.804 0.594
3600 0.101 0.051 0.010 0.999 0.999 0.990

tc(γ̂1,3) 300 0.105 0.054 0.011 0.628 0.502 0.274

600 0.103 0.052 0.011 0.869 0.790 0.577
1200 0.102 0.052 0.011 0.989 0.975 0.908
3600 0.102 0.050 0.010 1.000 1.000 1.000

Panel B: tm

tm(γ̂1,1) 300 0.104 0.053 0.011 0.479 0.356 0.166

600 0.107 0.054 0.011 0.743 0.631 0.396
1200 0.108 0.055 0.012 0.947 0.904 0.753
3600 0.112 0.058 0.013 1.000 1.000 0.999

tm(γ̂1,2) 300 0.102 0.052 0.010 0.408 0.291 0.125

600 0.100 0.049 0.010 0.637 0.516 0.279
1200 0.100 0.050 0.010 0.880 0.804 0.594
3600 0.100 0.050 0.009 0.999 0.999 0.990

tm(γ̂1,3) 300 0.101 0.052 0.011 0.628 0.502 0.274

600 0.101 0.051 0.010 0.869 0.790 0.578
1200 0.100 0.050 0.010 0.989 0.975 0.909
3600 0.099 0.048 0.010 1.000 1.000 1.000
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Table V
Size and power properties of CU-GMM t-tests under normality:

Correctly specified model

The table presents the actual probabilities of rejection for the t-tests of H0 : λ1,i = λ∗1,i and H0 : λ1,i = 0
(i = 1, . . . ,K) for different levels of significance. The model includes a constant term and three risk factors
(FF3 specification). The true values of the SDF parameters are λ∗1,1 = 1.4497, λ∗1,2 = −3.2283, and λ∗1,3 =
−3.1090. Panel A presents the empirical size and power for t-tests that are constructed assuming that the
model is correctly specified (tc). Panel B reports the empirical size and power for misspecification-robust
t-tests (tm). The factors and the returns are multivariate normally distributed.

Size Power

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(λ̂1,1) 300 0.276 0.195 0.089 0.142 0.076 0.019
600 0.171 0.102 0.031 0.227 0.140 0.045
1200 0.132 0.072 0.018 0.384 0.273 0.113
3600 0.109 0.056 0.012 0.795 0.695 0.470

tc(λ̂1,2) 300 0.240 0.162 0.066 0.312 0.206 0.074
600 0.158 0.094 0.028 0.624 0.500 0.264
1200 0.126 0.067 0.016 0.914 0.853 0.667
3600 0.110 0.056 0.012 1.000 1.000 0.997

tc(λ̂1,3) 300 0.238 0.160 0.065 0.264 0.167 0.052
600 0.155 0.090 0.026 0.539 0.409 0.191
1200 0.125 0.068 0.016 0.840 0.751 0.517
3600 0.108 0.055 0.012 0.999 0.998 0.986

Panel B: tm

tm(λ̂1,1) 300 0.079 0.036 0.006 0.145 0.082 0.021
600 0.090 0.043 0.007 0.230 0.146 0.048
1200 0.096 0.047 0.009 0.387 0.274 0.114
3600 0.097 0.049 0.009 0.795 0.695 0.470

tm(λ̂1,2) 300 0.091 0.043 0.008 0.331 0.225 0.086
600 0.104 0.052 0.010 0.633 0.511 0.283
1200 0.102 0.051 0.010 0.915 0.854 0.673
3600 0.103 0.051 0.011 1.000 1.000 0.997

tm(λ̂1,3) 300 0.089 0.042 0.007 0.278 0.183 0.067
600 0.099 0.049 0.009 0.546 0.416 0.199
1200 0.101 0.051 0.010 0.841 0.754 0.526
3600 0.101 0.050 0.010 0.999 0.998 0.986
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Table VI
Size and power properties of CU-GMM t-tests under normality:

Misspecified model

The table presents the actual probabilities of rejection for the t-tests of H0 : λ1,i = λ∗1,i and H0 : λ1,i = 0
(i = 1, . . . ,K) for different levels of significance. The model includes a constant term and three risk factors
(FF3 specification). The pseudo-true values of the SDF parameters are λ∗1,1 = 7.3018, λ∗1,2 = −7.3403, and
λ∗1,3 = −3.5069. Panel A presents the empirical size and power for t-tests that are constructed assuming that
the model is correctly specified (tc). Panel B reports the empirical size and power for misspecification-robust
t-tests (tm). The factors and the returns are multivariate normally distributed.

Size Power

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(λ̂1,1) 300 0.683 0.623 0.509 0.352 0.239 0.071
600 0.601 0.531 0.406 0.578 0.458 0.232
1200 0.537 0.461 0.332 0.873 0.797 0.579
3600 0.490 0.411 0.280 1.000 0.999 0.995

tc(λ̂1,2) 300 0.531 0.454 0.321 0.391 0.274 0.109
600 0.442 0.360 0.228 0.755 0.637 0.368
1200 0.387 0.303 0.174 0.981 0.960 0.855
3600 0.345 0.261 0.140 1.000 1.000 1.000

tc(λ̂1,3) 300 0.549 0.477 0.351 0.139 0.079 0.022
600 0.456 0.375 0.247 0.208 0.119 0.029
1200 0.396 0.311 0.185 0.414 0.288 0.108
3600 0.356 0.271 0.147 0.869 0.791 0.567

Panel B: tm

tm(λ̂1,1) 300 0.178 0.104 0.029 0.320 0.230 0.108
600 0.127 0.068 0.015 0.537 0.433 0.249
1200 0.105 0.053 0.011 0.835 0.763 0.581
3600 0.100 0.049 0.010 0.999 0.998 0.991

tm(λ̂1,2) 300 0.119 0.062 0.013 0.391 0.287 0.137
600 0.100 0.048 0.008 0.755 0.662 0.445
1200 0.097 0.046 0.008 0.979 0.961 0.889
3600 0.099 0.048 0.009 1.000 1.000 1.000

tm(λ̂1,3) 300 0.134 0.075 0.020 0.143 0.081 0.024
600 0.100 0.050 0.010 0.235 0.153 0.053
1200 0.092 0.045 0.008 0.432 0.320 0.150
3600 0.094 0.046 0.009 0.867 0.794 0.588
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Table VII
Size and power properties of CU-GMM t-tests under non-normality:

Correctly specified model

The table presents the actual probabilities of rejection for the t-tests of H0 : λ1,i = λ∗1,i and H0 : λ1,i = 0
(i = 1, . . . ,K) for different levels of significance. The model includes a constant term and three risk factors
(FF3 specification). The true values of the SDF parameters are λ∗1,1 = 1.4497, λ∗1,2 = −3.2283, and λ∗1,3 =
−3.1090. Panel A presents the empirical size and power for t-tests that are constructed assuming that the
model is correctly specified (tc). Panel B reports the empirical size and power for misspecification-robust
t-tests (tm). The factors and the returns are multivariate t-distributed. The number of degrees of freedom
of the t-distribution is set equal to eight.

Size Power

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(λ̂1,1) 300 0.349 0.265 0.144 0.133 0.073 0.018
600 0.207 0.132 0.048 0.213 0.130 0.038
1200 0.148 0.084 0.023 0.369 0.257 0.101
3600 0.116 0.061 0.013 0.780 0.677 0.448

tc(λ̂1,2) 300 0.312 0.229 0.114 0.274 0.178 0.058
600 0.197 0.124 0.043 0.580 0.454 0.230
1200 0.146 0.082 0.022 0.895 0.824 0.610
3600 0.115 0.060 0.014 1.000 1.000 0.997

tc(λ̂1,3) 300 0.313 0.230 0.114 0.235 0.147 0.045
600 0.193 0.122 0.042 0.488 0.363 0.164
1200 0.144 0.080 0.021 0.818 0.723 0.497
3600 0.112 0.059 0.013 0.999 0.997 0.983

Panel B: tm

tm(λ̂1,1) 300 0.099 0.052 0.012 0.134 0.073 0.019
600 0.088 0.043 0.008 0.217 0.135 0.040
1200 0.095 0.045 0.008 0.370 0.261 0.105
3600 0.100 0.050 0.009 0.780 0.678 0.450

tm(λ̂1,2) 300 0.110 0.057 0.013 0.278 0.184 0.064
600 0.108 0.055 0.011 0.591 0.468 0.244
1200 0.108 0.054 0.011 0.897 0.829 0.622
3600 0.104 0.053 0.011 1.000 1.000 0.997

tm(λ̂1,3) 300 0.108 0.057 0.013 0.235 0.151 0.052
600 0.105 0.053 0.011 0.496 0.372 0.177
1200 0.105 0.053 0.010 0.822 0.732 0.501
3600 0.102 0.052 0.010 0.999 0.997 0.983
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Table VIII
Size and power properties of CU-GMM t-tests under non-normality:

Misspecified model

The table presents the actual probabilities of rejection for the t-tests of H0 : λ1,i = λ∗1,i and H0 : λ1,i = 0
(i = 1, . . . ,K) for different levels of significance. The model includes a constant term and three risk factors
(FF3 specification). The pseudo-true values of the SDF parameters are λ∗1,1 = 10.5708, λ∗1,2 = −9.2721, and
λ∗1,3 = −3.1034. Panel A presents the empirical size and power for t-tests that are constructed assuming that
the model is correctly specified (tc). Panel B reports the empirical size and power for misspecification-robust
t-tests (tm). The factors and the returns are multivariate t-distributed. The number of degrees of freedom
of the t-distribution is set equal to eight.

Size Power

Level of Significance Level of Significance

T 10% 5% 1% 10% 5% 1%

Panel A: tc

tc(λ̂1,1) 300 0.713 0.661 0.558 0.374 0.243 0.057
600 0.675 0.617 0.508 0.576 0.424 0.135
1200 0.661 0.601 0.492 0.808 0.685 0.330
3600 0.676 0.620 0.516 0.995 0.985 0.867

tc(λ̂1,2) 300 0.592 0.520 0.394 0.376 0.256 0.091
600 0.528 0.454 0.325 0.670 0.519 0.223
1200 0.501 0.423 0.295 0.940 0.873 0.586
3600 0.516 0.439 0.311 1.000 0.999 0.994

tc(λ̂1,3) 300 0.625 0.560 0.443 0.130 0.072 0.017
600 0.566 0.496 0.377 0.146 0.081 0.021
1200 0.533 0.459 0.333 0.211 0.117 0.027
3600 0.519 0.445 0.321 0.464 0.323 0.098

Panel B: tm

tm(λ̂1,1) 300 0.225 0.151 0.069 0.381 0.292 0.153
600 0.173 0.112 0.047 0.565 0.468 0.297
1200 0.154 0.097 0.038 0.786 0.703 0.510
3600 0.148 0.093 0.035 0.983 0.969 0.905

tm(λ̂1,2) 300 0.155 0.091 0.028 0.392 0.294 0.143
600 0.119 0.067 0.018 0.689 0.583 0.362
1200 0.113 0.063 0.017 0.930 0.886 0.756
3600 0.123 0.070 0.022 0.997 0.996 0.988

tm(λ̂1,3) 300 0.200 0.128 0.046 0.126 0.069 0.019
600 0.153 0.092 0.029 0.160 0.092 0.025
1200 0.129 0.072 0.020 0.242 0.156 0.053
3600 0.117 0.062 0.015 0.481 0.377 0.190
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Table IX
Test statistics for various asset-pricing models

The table reports test statistics for the three asset-pricing models (CAPM, FF3, and FF5) described in
Section 5. CSR and HJD denote the GLS cross-sectional regression and Hansen-Jagannathan distance
estimators, respectively. t(x) denotes the t-test of statistical significance for the parameter associated with
factor x, with standard errors computed under the assumption of correct model specification (tc) and model
misspecification (tm).

tc tm

CAPM FF3 FF5 CAPM FF3 FF5

Panel A: Beta-Pricing Representation

MLE

t(mkt) −2.92 −3.05 −1.34 −2.38 −2.43 −0.75
t(smb) 2.04 1.93 2.04 1.90
t(hml) 2.85 2.54 2.84 2.45
t(rmw) −0.85 −0.44
t(cma) 5.09 1.63

CSR

t(mkt) −2.53 −2.61 −1.99 −2.37 −2.39 −1.74
t(smb) 2.04 2.02 2.04 2.03
t(hml) 2.86 2.72 2.86 2.70
t(rmw) 0.08 0.06
t(cma) 3.05 2.39

Panel B: SDF Representation

CU-GMM

t(mkt) 4.00 4.84 −1.74 2.07 1.68 −0.84
t(smb) −4.97 −4.92 −1.53 −2.10
t(hml) −3.51 5.14 −1.25 1.62
t(rmw) −5.68 −1.46
t(cma) −7.15 −1.86

HJD

t(mkt) 2.72 2.57 0.87 2.49 2.33 0.71
t(smb) −3.03 −2.90 −2.98 −2.70
t(hml) −1.85 0.78 −1.86 0.58
t(rmw) −1.15 −1.02
t(cma) −1.80 −1.30
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