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Summary of Thesis

A Xenopus borealis genomic library was screened with the 5'-end of 

the Xenopus laevis N-Cadherin cDNA (DETRICK et a/., 1990). Four 

groups of clones were isolated that differed in restriction-enzyme 

digestion patterns.

The sequencing of one of these clones, 3-9/4.8BS/pBS, has identified 

regions of DNA highly homologous to the X.laevis N-Cadherin gene. 

Accordingly, it is believed that the clone 3-9/4.8BS/pBS contains the 

5'-end and promoter region of the X.boreal is N-Cadherin gene.

A sequence analysis of this region has shown it to be GC-rich and has 

revealed consensus TATA-box, CCAAT-box and Spl binding sites. 

Other possible transcription-factor binding-sites have also been 

identified, as well as the first exon/intron boundary.

A series of promoter-deletions were fused to the bacterial 3- 

galactosidase gene and micro-injected into X.laevis embryos. The 3- 

galactosidase staining patterns of whole embryos has visually shown 

that 1.3Kb of genomic DNA upstream of the translational start-site is 

sufficient to direct neural-specific transcription of this reporter gene.



Abbreviations
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nt(s) nucleotide(s)
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Prologue

Imagine that 1930's man is transported into the future and is 

presented with a microcomputer. With the aid of a cathode ray tube 

and probes, he may read the voltage and frequencies between defined 

places on the circuit board; he may even discover regular patterns of 

results. Through his analysis of the computer's components, he may 

discover some of the materials that they are constructed from. From 

his knowledge of electronics, he may make some inferences as to the 

possible routes of construction and mechanics of the workings of some 

parts of this device. But he would be totally ignorant of the ways that 

the components of the silicon chips perform their functions and of the 

code used in the interactions between the silicon chips.

1990's man has a similar problem. Although he has mastered the 

complexities of micro- and super-computers, he is faced with a 

biological "black-box", comprising up to 1012 components. He has 

used similar electrical probes and made various measurements. He has 

defined different areas of the "black-box" that perform different 

functions; he can even stimulate defined responses from set areas. He 

has made some inroads into its construction. But he still has a lot to 

learn about the code used and the interactions between the areas of the 

"black-box". The "black-box" is, of course, the vertebrate brain.

The knowledge currently gained only underlines the enormity of the 

task in hand. These 1012 neurons may differ, inter alia, in the
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connections they make and receive, their signalling capacities and 

their responsiveness to signals, and the neurotransmitters used; and to 

cap it all. these characteristics are not fixed!

Faced with a problem of this magnitude, a logical place to start is 

where things are at their simplest - at the beginning.

The mechanics of early neural development are now well defined in a 

number of organisms, although knowledge of the underlying 

biochemical processes lags somewhat behind. The formation of the 

nervous system in particular has been intensely studied due to the 

importance of this event in the life of any organism.

Of equal importance to the proteins that mediate these processes are 

the control mechanisms that direct and coordinate their actions.

The aim of this thesis, therefore, is to contribute to the increasing 

body of knowledge on neural gene regulation, and in particular to the 

study of the regulation of the X.borealis N-Cadherin gene, taking 

advantage of the opportunities that the Xenopus system affords to 

follow gene expression directly.
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1.1 Xenopus - an experimental system for studying vertebrate

development

Drosophila researchers have over half-a-century's knowledge of 

genetics to draw upon. In mouse, researchers have a close mammalian 

model of human development to study. Why do we need to study the 

South African long-clawed toad, Xenopus laevisl 

The main advantages of Xenopus centre around its eggs and 

embryos. These are over 2000 times larger than human eggs (making 

them readily manipulate) and, due to their external development, 

they can be observed directly through all stages of development. This 

latter point has facilitated the production of an accurate stage series 

(NIEUWKOOP and FABER. 1956) and enables any artificial 

perturbation of the development of the embryo to be easily analysed. 

(All stages referred to herein are as defined by NIEUWKOOP and 

FABER, 1956; and are illustrated in Appendix A).

Xenopus are easy to maintain in the laboratory and can readily be 

induced (through the use of hormone injections) to produce thousands 

of eggs at any time of the year. These may be fertilised through 

natural means or artificially, through in vitro fertilisation, to produce 

synchronously developing embryos. Individual tissues are easily 

isolated by micro-dissection.

The large size of both eggs and oocytes facilitates the micro-injection 

of exogenous DNA and RNA; Xenopus eggs have also been used as 

an artificial in vitro translation system (HAMES and HIGGINS.
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1.2(i) Introduction

It is impossible to summarise 70 years of "classical" experiments and 

the results from "modem" molecular biological techniques in one 

short chapter. Given below, therefore, is an outline of the types of 

techniques that have been used to study the mechanisms of amphibian 

development and also a summary of the current models that have been 

proposed to explain these events.

Traditionally, early amphibian development has been studied by 

following the fates of embryonic tissues that have been stained with 

vital dyes (VOGT. 1929). More recently, injectable lineage tracers 

have been used to produce fate maps of a higher resolution (DALE 

and SLACK. 1987). The resolution of both of these methods is 

inherently limited, however, due to the mixing of cells during the 

complex morphological changes associated with gastrulation (defined 

below).

The advent of modem molecular biological tools such as antibodies 

and gene markers now allows the identification of tissues and the 

differentiation-state of cells with far great accuracy than previously
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achievable with general histological stains.

Extensive use is also made of micro- surgical transplantation 

techniques; these are discussed below.

1.2(ii) Embryonic induction

A major theme underlying early amphibian development is the 

interaction between one (inducing) tissue and one (responding) tissue 

which results in the responding tissue changing its direction of 

differentiation (GURDON, 1987).

The origin of this concept of embryonic induction is often attributed 

to Spemann (1901) and Lewis (1904) who established that in certain 

species oiRana the formation of the lens from ectoderm was induced 

by the underlying optic lobe of the brain. Classical embryonic 

induction, however, was first demonstrated in the famous experiments 

of Spemann and Mangold (1924). In these experiments, the dorsal lip 

of the blastopore (the "Organiser") of the unpigmented newt Triturus 

cristatus was transplanted to the ventral region of a pigmented 

Triturus taeniatus, where it dorsalised surrounding ventral mesoderm. 

This dorsalised mesoderm then induced the pigmented host cells to 

form a secondary axis complete with secondary nervous system. Even 

now, nearly 70 years later, the molecular mechanisms of this 

dorsalising effect and neural induction are incompletely understood.

The newly-laid frog egg is already polarised by the pigmented and 

unpigmented animal and vegetal poles (respectively) and also 

internally with respect to the yolk granules and maternal RNAs. The
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dorso-ventral axis is defined by the sperm-entry point (defining 

ventral; Figure 1.1). Thus before cleavage starts, this primary axis is 

established.

l.2(iii) Mesoderm  induction

Mesoderm induction in Xenopus occurs at the 32 cell stage (stage 6). 

As shown in Figure 1.1(a), some animal pole cells at the animal/ 

vegetal interface are induced by vegetal pole cells to form a third cell 

type, mesoderm.

Mesoderm induction may be followed by the identification of 

mesodermal derivatives such as muscle, kidney and notochord 

through the use of histological stains or gene markers. Due to the lack 

of discrete regional mesodermal markers, the anterior-posterior 

polarity of the mesoderm has largely been assayed through indirect 

means, i.e. through transplantation and observable markers in the 

nervous system (reviewed SLACK and TANNAHILL. 1992). 

Although many issues remain to be resolved, the induction and 

specification of mesodermal tissues appears to be dependent upon the 

coordinated action of at least three signals (Figure 1.2). Separate 

signals from the ventro-vegetal and dorso-vegetal regions specify two 

areas of mesoderm, termed M3 and Organiser. (The dorso-vegetal 

signalling region is also known as the "Nieuwkoop Centre", after its 

discoverer). A third signal, from the Organiser, then specifies the fate 

of the mesoderm (M3) still further: mesodermal cells on the dorsal 

side of the embryo are induced to become notochord and muscle;
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Figure I.l
Mesodennsl and neural mduçtjpn in Xenopus

External view from side Transverse sections

a) Mid blastula Mesoderm
induction

dorsal

animal pole

O
sperm entry 

ventral

vegetal pole

responsive O 
animal cells

b) Mid gastrula Neural
induction
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Figure 12
Three-signal model of mesoderm induction

1. Two signals are released from the 
vegetal hemisphere: a ventral-vegetal 
(VV) signal (7); and a dorso-vegetal 
(DV) signal (2).

2. The ventro-vegetal signal (1) converts 
the equatorial region above it to ventral 
mesoderm (M3). The dorso-vegetal 
signal induces the organiser (O).

3. The organiser then sends out a third 
signal (5) which converts the ventral 
mesoderm to different types of lateral 
mesoderm.

(Adapted from KIMELMAN et al., 1992)
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The actions of putative signalling molecules have been tested by 

either incubating embryonic fragments in their presence or micro- 

injecting mRNAs coding for such molecules into individual 

blastomeres. The current candidates for signals 1. and 2. (the vegetal 

pole signals) are FGF (fibroblast growth factor) and activin (a member 

of the TGF0 family). It appears that these two molecules alone are 

sufficient to generate all mesodermal tissues (reviewed 

WOODLAND, 1993). Candidates for signal 3., which specifies the 

dorso-ventral patterning within the mesoderm, have also been 

identified by micro-injecting synthetic RNA into eggs or embryos: 

these include Xwnt-8 (SMITH and HARLAND, 1991), noggin 

(SMITH and HARLAND, 1992) and Bone Morphogenetic Protein 

(BMP, a member of the TGF0 family, DALE et al., 1992).

After approximately 9 hours of development following the formation 

of mesoderm, the Xenopus embryo undergoes complex morphogenetic 

movements, termed gastrulation. During this process the embryo 

involutes through the blastopore, converting an essentially simple 

embryo into a complex tri-layered structure with ectoderm covering 

the involuted mesoderm and endoderm. One result of this is that the 

newly-induced mesoderm underlies the ectoderm. This rearrangement 

is essential for correct development and allows the next important 

steps to occur.

mesodermal cells on the ventral side become blood and mesenchyme.
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1.3 Formation of the nervous system 

1.3(i) Introduction

As stated above, gastrulation results in mesodermal tissue underlying 

the external ectoderm. The mesodermal tissues that underlie the dorsal 

ectoderm are the notochord and the precursors to the somites (muscle- 

blocks).

The notochord is a stiff rod of vacuolated mesodermal cells that 

underlies the most dorsal region of the ectoderm. It provides support 

for the embryo prior to the formation of a skeleton. The somites flank 

the notochord on both left and right sides of the embryo (Figure

1.3(1)).

Neural induction is believed to commence at the mid-gastrula stage 

(stage 10). An undefined neuralising signal passes to responsive 

ectoderm resulting in the responsive ectoderm undertaking a neural 

pathway of development (Figure 1.1(b)).

Upon receipt of the neuralising signal, ectodermal cells undergo 

gross morphological changes that result in the formation and raising of 

the neural folds, dropping of the neural plate, and ultimately the 

pinching off and closing of the neural tube as a separate tissue 

between the ectoderm and mesodermal derivatives, as shown in Figure

1.3 (HAUSEN and RIEBESELL. 1991).

Two-dimensional computer models have shown that the apical 

restriction of cells (for example by rings of actin microfilaments, at

-9-



Figure 1.3a

The diagram shows how, after neural induction, the ectoderm folds 
up to form the neural tube and neural crest cells (black). This process 
occurs along the length of the dorsal side of the embryo.

1. At stage 10 the neural signal first passes from the dorsal mesoderm 
(which includes the notochord, nt) to the overlying ectoderm. (For 
clarity, these mesodermal tissues are only shown in 1).

2. The extent of induced neural tissue is delineated by the neural folds 
(shown in black), which ultimately will become the neural crest cells 
(precursors to the peripheral nervous system).

3. Cell intrinsic and cell-extrinsic events conspire to bring the neural 
folds together.

4. The neural folds eventually meet and the epidermis fuses over the 
neural tube.

5. The neural tube closes and the neural crest cells migrate to their 
designated positions in the embryo.
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Figure 1.3b
Diagrammatic representation of neural-tube formation 

in amphibians

2.

dorsal ectoderm

Neural plate v  Neural fold
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constant volume) can result in wedge-shaped cells, the alignment of 

which could form tubes i.e. the neural tube (Figure 1.4). Firm evidence 

has been provided for the involvement of actin microfilaments and 

microtubules in cell constriction and elongation respectively 

(SCHOENWOLF and POWERS. 1987; SCHOENWOLF et al.,

1988). In three dimensions, however, such apical restriction would 

result in cone-shaped cells, whose alignment would lead to the 

formation of vesicles. Whilst the simplicity of such models certainly 

has appeal, they cannot yet fully explain all the morphological events; 

in addition, their predictions do not fully parallel histological 

observations.

In chick, electron micrograph pictures have shown that the cell 

morphology and the cell movements that accompany neurulation are 

variable and dependent upon the position of the cells along the length 

of the neural tube. In contrast to the simple tube-formation model 

mentioned above, the closure of the neural tube appears to be brought 

about by bending of the neural plate at median and dorso-lateral 

hinge-points. The movement of neurepithelial cell nuclei (which are 

positioned at the widest point of the cells) also may play some role in 

neural plate bending. (For a comprehensive review see 

SCHOENWOLF and SMITH. 1990).

Whilst the morphological movements that accompany neural 

induction are now well documented, knowledge of the biochemical 

processes responsible for these events is still far from complete.
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Figure 1.4
formation

This computer model is based on simple changes in cell morphology 
i.e. from cuboidal to wedge-like. It can be seen that such transitions, in 
selected cells, can readily transform a sheet of cells into an enclosed 
tube.
Whilst this model holds fast in two dimensions, these simple changes 

are not sufficient to explain the three-dimensional cell movements. 
Histological observations also show more complex patterns of cell 
morphology.
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1.3(iii) Experimental assaysjor neural competence and signalling 

capacity

Molecular studies on neural induction have revolved around two 

central issues. The first is the competence o f the ectoderm, i.e. its 

ability to respond to a neural-inducing signal. The second is the nature 

of this neural-inducing signal and its effect on competent tissues. 

These issues have largely been studied through the use of micro- 

surgical techniques which are used to transplant dissected tissues to 

ectopic sites (PHILLIPS. 1991).

In the "einsteck" method, a tissue is transplanted into the ventral 

blastocoel cavity of a host embryo. The production of a second dorsal 

axis is used as an assay to show that the transplanted tissue has the 

ability to induce overlying ectoderm to differentiate into neural tissue 

(MANGOLD. 1933).

Sandwich cultures of ectoderm wrapped around another tissue may 

also be used to assay for neural competence and the presence of neural 

inducers emanating from the wrapped tissue.

If pre-gastrula embryos are cultured in high salt conditions, the 

normal involution of the mesoderm into the ventral cavity is inhibited. 

The resulting exo-gastrulated embryo (exogastrula) therefore provides 

a situation in which the mesoderm is only connected to the ectoderm 

via a thin isthmus of tissue. This system is particularly suited to the 

study of the effects of potential inducing signals propagating through 

the plane of the tissue from mesoderm to ectoderm.



Tissues may also be labelled with fluorescent dyes or artificially 

aged (i.e. cultured independently) prior to incorporation into host 

embryos.

The above "classical" techniques (many of which date back to the 

1920's) have now been supplemented by the use of gene markers. A 

number of such markers are known in Xenopus including mAbs 

(NCAM - JACOBSON and RUT1SHAUSER, 1986: 2G9 - JONES 

and WOODLAND. 1989) and cDNA probes (NCAM - KINTNER 

and MELTON, 1987). The identification of homeobox genes in 

Xenopus has lead to the discovery of a multitude of additional gene 

markers (reviewed SLACK and TANNAHILL, 1992). In common 

with the Drosophila and mouse homeobox (HOX) gene complexes, 

the Xenopus HOX genes appear to share a correlation between gene 

order on the chromosome and expression patterns along the neural 

tube (i.e. 5’-posterior, 3’-anterior). The genes that comprise these 

complexes therefore provide valuable markers for discrete areas of the 

brain and spinal cord.

1.3(iv) Neural competence

Results from experiments such as those described above indicate that 

ectoderm loses its competence to form neural tissue by mid-gastrula.

It has also been found that the timing of this loss of competence varies 

with respect to the region of the embryo: competence is lost first in the 

posterior ventral regions and then subsequently in the dorsal anterior 

regions. Many of the known neural inducing tissues (e.g. involuted
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dorsal mesoderm, blastopore lip), however, maintain their inductive 

power long after the ectoderm has lost its competence.

It is also accepted that heterogeneity in the neural competence of the 

Xenopus ectoderm is generated at least in part by cell autonomous 

differences between cleavage stage blastomeres (GALLAGHER et al., 

1991).

1.3(v) Neural inducing signals and current models of neural induction 

Discussions on the subject of neural induction are dominated by a 

debate over whether the inductive signal is sent from the dorsal lip of 

the blastopore a) anteriorly in a "cis" fashion through the plane of 

ectodermal cells; or b) in "trans" fashion from the dorsal mesoderm up 

to the overlying ectoderm (reviewed GILBERT and SAXEN. 1993). 

Evidence for both mechanisms has been provided; both pathways 

probably play some role in neural induction.

In favour of the "trans" pathway. Gerhart et al. (1989) have shown 

that when mesodermal invagination is inhibited, no dorsal axis is 

formed. Hemmati-Brivanlou et al. (1990) have also demonstrated that 

anterior notochord (a mesoderm derivative) is needed for the 

induction of the anterior-most neural markers.

The list of molecules known to possess these neuralising qualities 

includes: oleic, linoleic and nucleic acids; ether extracts of adult newt; 

natural and artificial steroid hormones; and dead embryonic intestine 

and epidermis! The lack of any unifying characteristics within this 

group suggests that a more general effect, such as a distinct change in

-16-



pH. may be responsible for the neuralising signal. Variations in the 

dorsal and ventral expression of two isoforms of protein kinase C have 

been reported (OTTE et a l 1991); these may be responsible for 

differentially regulating the cAMP-pathway in these two regions.

In favour of the "cis" pathway, experiments by Dixon and Kintner 

(1989) have shown that neural specific gene markers are expressed in 

Xenopus exogastrulae (where the dorsal mesoderm has not involuted 

to lie under the ectoderm). Other neural-specific gene markers have 

been shown to be expressed in the ectoderm of sandwich assays in 

which dorsal mesoderm is prevented from contacting ectoderm 

(DONIACH et al., 1992).

Neural induction, therefore, appears to be a multi-stage process 

involving cell autonomous events, cis-active signals from the dorsal 

lip of the blastopore and trans-active signals from the dorsal 

mesoderm.

Candidate genes that possess potential characteristics of the 

Organiser signal (i.e correct spatial and temporal localisation) include 

goosecoid (a homeobox-containing gene that resembles Drosophila 

bicoid and gooseberry. CHO et al., 1991), Xenopus forkhead

(DIRKSEN and JAMRICH. 1992). Xlim-1 (TAIRA et al., 1992) and 

Pintallaris (RUIZ I ALTABA and JESSELL, 1992). It is most likely 

that no single gene product specifies the Organiser signal.

In the absence of further inductive signals, neural tissue adopts an
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anterior specification. Transplantation experiments of the type 

described above, however, have provided some evidence for a further 

signal that arises from the posterior mesoderm. The gradient of this 

signal along the anterior-posterior axis provides positional information 

for the receptive neural tissues that facilitates the régionalisation of the 

neural tissue into forebrain, hindbrain and spinal cord.

From parallels in the Drosophila system, it has been suggested that 

this anterior-posterior axis is achieved by the expression not of a 

single signal but by a combinatorial code homeo-box-containing 

genes.

The role of retinoic acid in the establishment of anterior-posterior 

polarity has also been much investigated: although the effects of its 

misexpression are legion, its precise role in normal embryos, if any, 

remains unclear.

Classical and contemporary models appear to be converging on a 

two-gradient model in which an initial induction step establishes 

anterior neural structures in the dorsal ectoderm, followed by the 

imposition of a gradient from the posterior mesoderm that facilitates 

regional patterning of the neural tissues along the anterior-posterior 

axis.

1.4 Expression of endogenous and exogenous DNA and RNA in

Xenopus

1.4(i) Expression of endogenous RNA

The ease with which Xenopus eggs/embryos may be micro-injected

-18-



with exogenous RNA (together with the other attributes of this system 

mentioned in Section 1.1) has meant that many workers have studied 

the expression patterns of endogenous RNAs in this vertebrate (VIZE 

et al., 1991). The fate of exogenously introduced DNA/RNA, 

however, is less well understood.

Transcription of the endogenous Xenopus genome is known to 

commence only after 12 rounds of cell division at the so-called Mid- 

Blastula Transition (MBT, stage 8.5). Before this stage, it was widely 

held that no transcription occurred; and that translation of stored 

maternal RNAs and stable proteins supplied the embryos 

requirements. Isotopic labelling experiments, amongst others, have 

now demonstrated that some synthesis of heterogeneous mRNA-like 

RNA does occur from the early cleavage stages (SHIOKAWA, 1991). 

It has now been proposed that RNA synthesis in Xenopus follows at 

least three phases, defined by the RNA polymerases involved (Figure 

1.5).

1.4(h) Expression of exogenous (micro-injected) PNA

There remains much debate in the literature over the degree of 

expression to be expected from different forms of micro-injected 

DNA (i.e. linear, circular, or concatenated), and also the degree of 

tissue-specificity achievable.

There is some consensus that circular-injected DNA is not well 

replicated and is rapidly lost by dilution; and that during cell division 

linear-injected DNA concatamerises to form complexes that are

-19-



Figure 1.5»
Changes in approximate rates of RNA synthesis per cell 

in Xenopus embryos

The graph shows the change in relative RNA synthesis rates in the 

phases pre-MBT. MBT and post-MBT (MBT, mid-blastula transition, 

stage 8.5).

These three phases are characterised by predominant activities of 

RNA polymerases II, III and I respectively.

The Y-scale units are approximate rate of synthesis (pg/cell/hour) 

and are based upon radioactivity incorporated into the different RNA 

species.

"mRNA" represents heterogeneous mRNA-like RNA 

"tRNA" represents 4S RNA 

"rRNA" represents ribosomal RNA
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Figure I.5b

Embryo stage

(Based on SHIOKAWA, 1991)
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extensively replicated by the blastula stage (FU et al., 1989, WILSON 

et al., 1986). These concatamerised complexes gradually disappear by 

the tadpole stage, leaving a residual level of expression from DNA 

transcripts that are believed to have stably integrated into the Xenopus 

genome (estimated to be 5-10%, ETKIN and PEARMAN. 1987).

A number of anomalous results have been reported that highlight the 

unpredictability of these experiments. Shiokawa et al. (1990) report 

the micro-injection of an actin-chloramphenicol acetyl transferase 

(CAT) clone which was expressed before MBT in linear form, but 

only (correctly) after neurula stage when in circular form. Fu et al. 

(1989) have reported that a linearised CAT gene was expressed in 

early embryos irrespective of whether a (viral) promoter sequence was 

attached or not.

Given the long history of experiments on amphibia, it is surprising 

that it was only relatively recently that examples of the correct 

developmental regulation of exogenous DNA have been reported. 

Krieg has shown correct temporal expression of injected GS17, a gene 

expressed between the mid-blastula transition and the mid-gastrula 

stage (KRIEG and MELTON, 1985). The correct localization of a 

X.borealis cardiac actin gene product has also been reported 

(WILSON et al., 1986). In general, however, tissue-specific gene 

expression of micro-injected DNA/RNA appears to be rare.

In conclusion therefore, although the expression of some exogenous

DNA prior to MBT has been shown, the patterns and fate of circular
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and linear DNAs largely defined, and correct regulation of some 

exogenous DNAs demonstrated, some doubts still remain about the 

fate of these exogenously introduced DNAs. It appears that such 

experiments should therefore be approached with careful controls and 

interpreted with caution.

1.5 Conclusions

The Xenopus system and its close amphibian relatives have now been 

the subject of research for the best part of a century. Over that time, 

the morphological changes that occur during early development have 

been accurately documented using staining histological techniques. 

Molecular biological techniques are now available to confirm, 

contradict or extend the previous hypotheses. The sheer complexity of 

these developmental mechanisms, however, makes unravelling the 

underlying biochemical processes a slow and difficult endeavour.

One group of molecules that are thought to play a major role in tissue 

and organ formation are members of the cell adhesion molecule 

(CAM) families. These proteins are discussed in Chapter 11 and III; 

their regulation is discussed in Chapter IV.
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2.1 Introduction

2.1(0 History of cell adhesion molecules

One of the striking characteristics of multi-cellular organisms is the 

high degree of order shown by the organism's constituent cells. After 

the initial rapid cell divisions following fertilisation, the differentiation 

of embryonic cells produces a wide variety of cell types. A high 

degree of organization is therefore involved to ensure that this 

initially-heterogeneous group of cells come together in the well 

defined and ordered manner that goes to make a functional organism.

But in spite of the high level of cellular complexity exhibited by the 

multi-cellular organisms, it would not be necessarily true to assume 

that equally complex processes are necessary to achieve this end. 

2.1(ii) Early experiments

In the early years of this century Wilson (1907) uncovered the ability 

of spongi to autoassemble themselves. He described how separate 

species of spongi would reconstitute the individual species if the cells 

were artificially dissociated and then remixed. Despite this early start, 

and extensive study since, the biochemical nature of this ability is not 

yet fully understood.

In the middle of this century Holtfreter (1939) pioneered the study of 

self-assembling cells, through his work on amphibia. He found that 

dissociated cells from embryonic amphibia had the ability to 

differentially segregate and form tissue-like structures.

He reasoned that in a dissociated mass, cells would collide through
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random motion but only cells of the same type would form productive 

and lasting bonds. He (correctly) attributed this ability of like-cells to 

adhere to one another to a selective adhesive property of the outer 

surface of cells.

It has taken until the end of this century for scientists to be within 

reach of understanding this mechanism of selective cell adhesion.

The current model of selective cell adhesion utilises the (relatively 

recent) concepts of differential gene expression, protein modification 

and protein targeting to that results in a defined array of glycoproteins 

in the outer cell membrane. It is through these glycoproteins that a 

cell 'advertises' its cellular phenotype and hence its readiness to form 

productive inter-cellular contacts.

2.l(iii) Cell adhesion molecule classes

A number of cell adhesion molecules (CAMs) have now been 

identified that fall into two main classes, the classes being defined by 

their mechanisms of action: a calcium-dependent mechanism; and a 

calcium- independent mechanism.

The calcium-independent class consists of the Immunoglobulin (Ig) 

superfamily and the Integrins; the calcium-dependent class is 

characterised by the Cadherins.

The Neural Cell Adhesion Molecule. NCAM, is a well-studied 

example of a calcium-independent CAM. The discovery of this 

molecule has provided a testing-ground for many of the speculative 

theories that have risen since the discovery of CAMs. It remains the
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ground mark with which other CAMs are compared. This protein and 

the corresponding DNA sequence is discussed in Chapter II.

The Cadherins are a rapidly expanding group of calcium-dependent 

transmembrane CAMs that share particularly high homologies in their 

cytoplasmic domains. The Cadherin family is discussed in Chapter III, 

with particular emphasis on the neural cadherin, N-Cadherin.

2.2 Isolation of NCAM protein

The first discovered, and currently best-characterized, cell adhesion 

molecule is the Neural Cell-Adhesion Molecule, NCAM. NCAM 

expression is mainly restricted to neural and muscle tissues, where it 

may play a part in neurogenesis and myogenesis. The single NCAM 

gene comprises 19 exons (in chick) and spans 120kb (in mouse), and 

is differentially spliced to produce a variety of different sizes and 

forms of the protein including secretory and trans-membrane isoforms. 

The extra-cellular domain of the protein is characterized by vast sugar 

complexes that appear to play some role in regulating cell-cell 

binding.

The NCAM protein is a good example of the way gene-regulation 

and post-translational modification are efficiently used to produce a 

variety of different molecules from a single linear sequence of DNA. 

The results obtained from the study of NCAM have set an important 

precedent for what we can expect from studies of other cell-adhesion 

molecules.
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NCAM was initially isolated from chick neural tissue (THIERY et 

al„ 1977), hence its name. Antibodies to chick brain NCAM were 

originally produced using an antibody neutralization assay, a 

technique first applied to the study of slime mould adhesion 

(GERISCH and MALCHOW, 1976). The basic technique is outlined 

below in Figure II. 1.

NCAM specific monoclonal antibodies (mAbs) were produced from 

the small amount of antigen identified in the binding assay; the mAbs 

were then used to isolate larger amounts of NCAM antigen using 

immuno-affinity columns. Since NCAM protein accounts for 

approximately 1% of total chick brain cell-surface protein such 

affinity column procedures have been able to produce large amounts 

of the protein. This has enabled NCAMs properties to be studied in 

many ligand-binding assays and has also facilitated the biochemical 

analysis of the protein itself.

2.3 Structure of the NCAM protein

Western blots using monoclonal and polyclonal antibodies reveal a 

complex array of species- and tissue-specific bands that reflect the 

protein's numerous forms and glycosylation states. Removal of sugar 

residues from brain-derived proteins, with endoglycosidases or 

neuraminidases, clarifies the situation to reveal three main protein 

isoforms of approximately 180, 140 and 120KDa, as illustrated in 

Figure II.2. A similar pattern of isoforms is produced from muscle.
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Figure II.la

Identification of anti-NCAM antibodies by 

Antibody-NeutralizatiQn assay

(1) Antisera were raised, in rabbits, against chick retinal cells; (2) the 

chick retinal proteins were also fractionated on polyacrylamide gels.

(3) Addition of the antisera to cultures of chick retinal cells resulted in 

the disaggregation of these cells due to blocking of the binding sites 

by antibodies.

(4) If the correct protein fractions from the chick retinal cells were 

added (i.e. the fraction containing the cell-adhesion molecule that the 

antisera was against), these bound to the antisera thus allowing the 

cell-bound adhesion molecules to initiate cell aggregation once more.

Once the gel fraction containing the cell-adhesion molecule had been 

defined, this fraction was first used to produce a polyclonal sera of 

greater specificity and subsequently to produce monoclonal 

antibodies.

In this way, the chick NCAM protein was identified.
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The complete DNA coding sequence and amino-acid sequence of 

NCAM are now known (Table II. 1). A combination of biochemical 

studies and amino-acid predictions based on DNA sequence produces 

the following picture:

As described below, one level of diversity in NCAM protein is 

achieved by differential splicing of exons to form the 3 main isoforms. 

The mechanisms underlying the choice of isoform are not understood. 

The next level of diversity, that of the degree of glycosylation. has 

attracted much research and some basic principles do appear to be 

emerging.

All NCAM proteins are characterised by large sugar complexes 

based on a-2,8-linked neuraminic acid units (polysialic acid or PSA). 

These negatively-charged sugar complexes vary from less than 10% 

(wt/wt) to up to 30% and are attached to asparagine-linked 

oligosaccharides in the extra-cellular domain. There appears to be a 

general trend with respect to the amount of PSA present on NCAM: 

embryonic cells have more PSA than adult cells, the so called "E-A 

conversion". But it is the volume that these complexes take up that is 

possibly the most important factor: HPLC gel filtration experiments 

have produced values for the excluded volume at greater than 670kDa! 

These sugar complexes are not thought to be involved in binding but it 

can readily be appreciated that the presence of such large 

macromolecules on the surfaces of cells may have a profound steric
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Table H.l

Comparison ofprQtejn and

Protein (KDaVcDNA (kbp)

Human Xenopus

(brain) (muscle)

Transmembrane 180/7.0 180/7.4 180 145 180

Transmembrane 140/6.2 140/6.7 180 140

GPl-linked 120/6.0 120/5.2 120 155 120

120/4.2 120/2.9 125

No. of exons 19 7

Chromosome no. 9 11 11

Protein sizes are de-sialylated forms; GPI=glyco-phosphotidyl inositol

References: Chick - MURRAY et al., (1986), HEMPERLY et al.,

1986); Mouse - SMALL et al., (1987). BARBAS et al., (1988), 

D’EUSTACHIO et al., (1985); Human - (brain) NGUYEN et al.,

(1986). GOWER et al., (1988). (muscle) COVAULT and SANES, (1986) 

BARTON et a i, (1988); Xenopus - KINTNER (1987)
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inhibitory effect on the ability of cell-adhesion molecules to initiate 

adhesion.

Experiments using membrane vesicles displaying NCAM on their 

surface showed that such vesicles aggregated together to a greater 

extent if the PSA was removed (SADOUL et al„ 1983). Such 

experiments provoked simple theories in which differential expression 

of low-PSA NCAM or removal of PSA from NCAM would promote 

binding.

Subsequent experiments have complicated the issue by showing that 

NCAM is only one of the molecules that plays a part in cell-cell and 

cell-substratum adhesion, but its influence via its PSA moiety may be 

significant.

FI 1 rat sensory ganglion/mouse neuroblastoma hybrid cells 

expressing NCAM and LI were used in cell-substrate attachment and 

cell-aggregation assays (ACHESON et al., 1991). These cells bind to 

laminin substrates and aggregate together weakly. Removal of PSA 

with endo-N results in an increased rate of cell attachment to a laminin 

substrate and cell aggregation.

In a cell aggregation assay, the addition of anti-NCAM antibodies to 

FI 1 cells prevented the previously weak cell aggregation; after PSA 

was removed from the cells, the aggregation rate was much higher. 

Aggregation could be substantially reduced, however, by the addition 

of anti-Ll antibodies. These experiments demonstrate that it is 

NCAM-PSA that is inhibiting the mainly LI-mediated cell adhesion.
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They also illuminate a possible regulatory mechanism whereby 

changes in NCAM PSA content can have a profound effect on the 

ability of other ligands to successfully initiate cell-cell or cell- 

substratum adhesion. In in vivo terms, small changes in the relative 

adhesiveness of the neurite bundles with respect to the substratum 

could be reflected in nerve cells changing from a fasciculated pattern 

of growth to growth away from the neurite bundle.

A "threshold effect", in which small increases in the amount of 

NCAM expressed can produce disproportionately large increases in 

cell-cell adhesion has been reported (DOHERTY et al., 1990, 1991). 

2.3(iii) Post-translational modification of the NCAM protein 

In addition to the glycosylation described above, NCAM is also 

known to be phosphorylated in the carboxy-terminus and to possess 

asparagine-linked carbohydrates (SORKIN et al., 1984).

2.4 Expression of the NCAM protein

The importance of Xenopus as a biological tool for the elucidation of 

inductive and morphogenetic processes in vertebrates has already been 

mentioned in Chapter I. The vast body of knowledge accumulated on 

mesoderm and neural induction, gastrulation, myogenesis and 

neurulation alone make Xenopus the organism of choice for the 

studying of a potentially important morphogenetic orchestrator such 

as NCAM.

This chapter continues with a brief analysis of the major experiments 

on the expression of NCAM (with particular relevance to Xenopus),
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trends that appear to be emerging with respect to NCAM function and 

how the initial theories are standing up in the light of an ever- 

increasing body of experimental data. Discussion of the promoter 

sequence and regulation of NCAM is included in Chapter IV. The 

reader is referred to the papers cited below for more specific details. 

As mentioned above. NCAM was initially isolated and studied in 

chick (THIERY et al., 1977). In early immuno-histological studies 

NCAM was first found at the blastoderm stage before becoming 

restricted to the neuroectoderm with a brief expression on mesodermal 

derivatives (THIERY et al., 1982). Subsequent studies placed NCAM 

on all three primary germ layers at one time or another (CROSSIN et 

al., 1985). The transient appearance and disappearance of NCAM 

from premigratory neural crest cells lead various groups to postulate 

theories regarding the possible major role for NCAM in coordinating 

neural development. These theories are discussed below.

In Xenopus, immuno-histological studies have placed the first 

appearance of the NCAM protein at neural plate stages (14/15) on the 

neuroectoderm, underlying chordamesoderm and adjacent somitic 

mesoderm (BALAK et al., 1987). Expression persists on all 

neuroectoderm cells throughout neurulation, subsequently becoming 

concentrated on the dorso- and ventro-lateral margins of the spinal 

cord.

The notocord expresses NCAM between stages 14 and 18 during 

which time the neural groove forms. NCAM expression ceases before
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the notocord cells reorientate and become vacuolar (stage 20-24).

At the neural plate stage the somitic mesoderm weakly expresses 

NCAM as do the developing somites. The somites cease expressing 

NCAM after formation except where they are innervated at 

neuromuscular junctions; these junctions subsequently become 

strongly NCAM expressing.

As in chick, neural crest cells follow a sequence of positive/negative/ 

positive expression, the negative stage being the migratory stage in 

between lying adjacent to the neural tube and forming cranial/spinal 

ganglia.

NCAM expression has also been investigated in a number of 

"classical" molecular/neurophysiological systems: agar spikes doped 

with NCAM and inserted into X.laevis embryo optic tectum have been 

shown to disrupt the pattern and precision of the retino-tectal 

projection (FRASER et al., 1984, FRASER et al., 1988); in the 

developing chick hindlimb. NCAM expression patterns on nerve- and 

muscle-tissue has been reported (TOSNEY et al., 1986); NCAM 

antibodies have been shown to inhibit neurite outgrowth from chick 

retinal ganglion cells (DRAZBA and LEMMON. 1990); a number of 

unique NCAM isoforms have been isolated from the frog, R. 

catesbeiana, in a study of its olfactory pathways (KEY and 

AKESON, 1991); NCAM appears to be only one of the several cell 

adhesion molecules that are required to mediate neuron-myotube 

adhesion (BIXBY et al., 1987); and unusual NCAM isoforms have
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been reported to be present in the mouse neural tube-defective Splotch 

mutant (MOASE and TRASLER, 1991).

As described in Chapter I, the process of nervous system formation is 

initiated by an inductive interaction between mesoderm and ectoderm. 

The classical neural induction protocol of Spemann and Mangold in 

which the dorsal lip of a blastopore is excised and combined with 

excised animal cap tissue was also described. In this procedure the 

dorsal lip of the blastopore exerts its neuralising influence directly on 

the animal cap tissue producing tissues that have been identified as 

neural by histological means.

A number of groups have attempted to define the part, if any, that 

NCAM plays in this inductive process (JACOBSON and 

RUTISHAUSER. 1986. KINTNER and MELTON. 1987).

In order to be able to visualize an inductive process, it is necessary to 

have knowledge of a marker that distinguishes the induced cells from 

the rest of the population. Previous to NCAM. only markers that 

disappeared from ectoderm cell upon neural induction were known 

(AKERS et al., 1986; JONAS, 1989)); no positive markers had been 

identified.

In a study using polyclonal antibodies against purified X.laevis 

NCAM, Jacobson showed that combining stage 10 animal caps and 

dorsal blastopore lips for more than 18 hours resulted in strong NCAM 

expression in the animal cap tissue; culturing either tissue

- 3 9 -



alone produced a consistently negative result. By isolating animal caps 

at progressively later stages he determined the stage at which animal 

cap was committed to becoming NCAM-positive; this was between 

stages 10.5 and 10.75.

Jacobson combined the facts that NCAM expression only occurred as 

a result of the inductive process and that the inductive process was 

known to produce neural tissue; his (not unreasonable) conclusion was 

that NCAM expression was a relatively early indicator of neural 

induction.

It must be remembered that Balak did not detect NCAM in X.laevis 

embryos until stage 14 and Jacobson's tissue combinations did not 

express NCAM until 18 hours after stage 10; by this time neural 

induction has already occurred. This rules out the possibility that 

NCAM is involved in the mechanism of neural induction.

Kintner. having isolated the cDNA for X.laevis NCAM. has used 

RNA probes to analyse the distribution of NCAM RNA quantitatively 

(using an RNAse protection assay) and histologically (by in situ 

hybridization). His conclusions are consistent with those of Balak: he 

first detected NCAM mRNA at stage 10-12, a few hours before the 

protein. One surprising result was his failure to detect NCAM 

expression in the myotomes; in birds and mammals NCAM i§ 

expressed in embryonic muscle (KINTNER and MELTON. 1987. and 

references therein).

Kintner also described the expression of NCAM in exogastrulae
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(embryos which have been stripped of their vitelline membranes and 

cultured in high salt, see Chapter I). These aberrant embryos, a result 

of incorrect gastrulation, consist of an ectodermal sack connected 

through a stalk of tissue to mesoderm and endoderm. Since the 

ectoderm does not underlie the mesoderm, it is not induced into neural 

tissue. In accordance with the above experiments, NCAM was only 

found to be expressed in the immediate vicinity of the mesoderm/ 

ectoderm junction.

Given that NCAM gene expression follows very closely after neural 

induction and may be a direct consequence of it, the obvious next 

question is this: are the morphogenetic movements of the neural 

tissues regulated by NCAM expression?

This question was addressed by Kintner (KINTNER. 1988). In vitro 

transcribed NCAM RNA was microinjected into Xenopus embryos, 

resulting in high expression of NCAM on both induced and non- 

induced ectodermal cells. If correct NCAM expression is necessary for 

correct neural tube formation then aberrant NCAM expression would 

be predicted to produce abnormal nervous systems. Alternatively, if 

NCAM is not playing a regulatory role in neural development then 

aberrant expression of NCAM should not significantly affect 

neurogenesis. The latter scenario was found to be true: although some 

defects in the epidermis and somitic mesoderm were reported, neural 

tube development was essentially normal.

2.6 Expression sequences of NCAM
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Edelman has been the main protagonist of theories relating to the 

combinatorial expression of CAMs and the major effects that they 

mediate. His group have painstakingly analysed and catalogued the 

expression of both NCAM and LCAM in chick (CROSSIN et al., 

1985) and subsequently in Xenopus (LEVI et al., 1987) by 

immunological means. Their conclusions may (but see below) have 

profound effects on our understanding of how morphogenetic 

movements of tissues are effected.

His main finding was that boundaries between different tissues 

(particularly just after differentiation) were marked by expression of 

different combinations of CAMs.

The principle is illustrated here with reference to the otic and optic 

vesicles. These structures are formed by an inductive mechanism not 

dissimilar to that of neural induction: ectoderm is induced by the 

underlying tissue to thicken and then invaginate to produce the 

respective vesicles. Edelman found that whereas initially the ectoderm 

expresses both N- and LCAM, upon induction NCAM is lost from the 

invaginating ectoderm and becomes wholly localized to the ganglia 

that innervate the nascent vesicle. LCAM expression remains on the 

epithelia only.

In another example, the neural crest cells, that initially lie adjacent to 

the developing neural tube, lose their NCAM before migrating to 

various locations to form part of the PNS. Once at their final 

destination, NCAM is again expressed.
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Edelman postulated a set of rules that seem to be followed by a 

number primary and secondary inductive processes regarding the 

expression of CAMs on the inducing, induced and subsequently- 

differentiated tissues. These rules fitted in with his Morphoregulator 

Hypothesis - a grand scheme, in which CAM interactions would lead 

to the production of morphogens that acted on adjacent cell 

complexes, altering the expression of their CAMs and tissue-specific 

proteins. Thus CAMs would have a direct role both in initiating and 

propagating a cascade of inductive processes.

A couple of points need to be made here:

1) Whilst great care was taken to use antibodies that bound to 

all of the (known) three main NCAM isoforms, great care 

must be taken in the interpretation of any negative result 

in such an antibody assay (or indeed any antibody-based 

experiment). A small variation in any part of the protein 

molecule (e.g. the extra-cellular sugar content) could 

easily remove/alter the antibody's epitope rendering 

antibody binding impossible; large variations in the sugar 

content are known. The use of polyclonal antibodies helps 

to reduce this problem but sialic acid residues are known 

to be highly immunogenic and produce a restricted range 

of immuno-dominant epitopes. These experiments 

therefore need to be followed up with rigorous RNA 

assays. These would provide a firmer basis to any claim



that the protein sequentially appears/disappears as 

opposed to just alters its form somewhat.

Therefore, the data as yet only shows that modulation of the 

form of the CAM proteins occurs, but this in itself is 

significant.

2) As discussed above, experiments by Kintner appear to rule 

out a direct role for NCAM in the primary mechanism of 

neural induction. No comment can be made as to whether 

other CAMs could not play the regulatory roles proposed 

by Edelman.

2.7 Structural organisation of NCAM isoforms 

2.7(i) Splicing of the NCAM message 

In mouse, human and chick, the only species to have genomic 

sequence published so far (Krieg has Xenopus. pers. comm.), all of the 

NCAM isoforms are derived from a single gene. This gene is known 

to be consist of at least 19 exons in chick (OWENS et al.. 1987) and 

spans over 120kb in mouse (GENNARINI et al.. 1986). Table II. 1 

illustrates the current state of knowledge regarding the protein and 

corresponding cDNA sizes.

2.7(h) Use of different exons

The four main NCAM isoforms are all derived from one gene.

Figure II.3 illustrates the way in which the different exons are spliced 

in order to produce these different isoforms.
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2.7(111) Conservation of intron/exon sites 

Comparisons between the available mouse (only 3' six exons 

published) and chick genomic DNAs show that the positions of the 

splice sites are highly conserved (BARBAS et al., 1988). Although the 

sequence homology varies between exons, this is also overall very 

high.

2.7(iv) Notch homology in the cytoplasmic region 

A number of short (5-7 amino acids) peptide sequences that are 

present in the cytoplasmic domain of mouse NCAM have high 

homology to sequences in the cytoplasmic domain of the Drosophila 

Notch protein (WHARTON et al., 1985); no homologies were found 

in the extra-cellular domain. Notch is involved in cell fate 

determination, but the significance of these peptides is unclear. The 

role, in general, of the cytoplasmic domain is also unclear.

2.7(v) The muscle-specific exon. MSD1 

The first case of alternative splicing in the human NCAM extra­

cellular domain has been reported by Walsh's group (DICKSON et al., 

1987). An additional 105bp was found in mRNA expressed 

preferentially in differentiated skeletal muscle myotubes; this results 

in an extra 35 amino-acids in the membrane proximal region of the 

GPI-linked proteins. Due to its tissue-specific expression it was given 

the name muscle-specific domain 1 (MSD1). This short block is 

known to comprise at least three exons MSDla, b. and c comprising 

15.48 and 42bp respectively. MSDla is known to be more than one
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The role of MSD1 is as yet unresolved but it is known to have 

structural characteristics similar to the hinge region of immunoglobin 

(WALSH, 1988). It has been postulated that the presence of the MSD1 

domain near the attachment site of NCAM to the plasma membrane 

may modulate the flexibility or conformation of this region of the 

protein. MSD1 is one of the sites in NCAM for O-linked glycosylation 

(WALSH et al., 1989); this may affect the adhesive properties of the 

cell through steric hindrance, in a similar way to sialic acid variation 

(see below).

Walsh's group have also discovered another unusual human NCAM 

exon, NCAM-SEC, the expression of which results in the production 

of a secreted form of NCAM (GOWER et al., 1988). This secreted 

NCAM isoform (115kDa) appears to be a variant of the GPI-linked 

NCAM isoform ( 125kDa) that lacks the 3' amino-acids for GP1- 

attachment to the plasma-membrane.

The NCAM-SEC exon lies between exons 12 and 13 (with respect to 

the chick exons) and immediately 3' to MSD1. Unlike MSD1 it is not 

restricted to muscle tissue; it is found in both muscle and neural 

tissues. NCAM-SEC contains an in-frame stop codon after the extra­

cellular domain coding sequences and thus prevents expression of any 

3' transmembrane/cytoplasmic domains. Transfection of this cDNA

exon but finding this 15bp in >12kb is proving surprisingly difficult.
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into tissue culture cells results in the accumulation of vesicular 

cytoplasmically-localized products and secretion of a 115kDa NCAM 

product into the media.

A number of groups had previously reported the presence of NCAM 

in the extra-cellular medium of tissue-culture cells (RUTISHAUSER 

et al., 1976, COLE and GLASER, 1986). Previously it had been 

unresolved whether this soluble form of NCAM was produced by 

enzymatic release of the GPI-linked isoform or whether it was a 

genuinely secreted molecule. Although Walsh's group appear to have 

settled this point, the role of this soluble form of NCAM is still

The evidence, upon which to postulate a role for soluble NCAM, is 

as yet fragmentary. (It has been found at later stuges of myogenesis 

(DICKSON et al., 1987) and in denervated muscles (COVAULT and 

SANES. 1986)). It can easily be envisaged how soluble NCAM could 

act in competition against cell-bound NCAM for adhesive sites: 

therefore, in this role it would act as an adhesion modulator.

The mechanisms that control differential splicing and transcriptional 

termination in eukaryotes are not very well understood to say the least. 

But it is through these two mechanisms that eukaryotes manage to 

conjure up a diverse range of proteins from just one stretch of DNA. 

As shown above, NCAM is just one example of how these 

mechanisms are utilized to produce range of proteins at different times 

and places during cellular differentiation.

unclear.

2.7(vii)
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Members of Goridis' group (BARBAS et al., 1988), in common with 

all others who have looked, failed to find any convincing evidence to 

explain the differential selection of mouse NCAM exons. Inverted 

repeats were found to span one exon that could form hair-pin loops 

and hence stabilize excision products, but the stabilization energy was 

not considered significant enough to influence exon choice.

The availability of mouse clonal cell lines that demonstrate a switch 

from one NCAM isoform to another may provide an ideal system in 

which to study this problem.

2.7(viii) Transcriptional termination 

The factors determining the choice of transcriptional termination sites 

is also poorly defined. It has been shown that transcription can 

continue for kilobases after the end of the mRNA (BIRNSTIEL et al., 

1985). An analysis of the DNA surrounding the two poly A sites in the 

mouse 2.9/5.2kb mRNAs (described above) again found no clues as to 

the nature of this selection process.

In most vertebrates, the process of myogenesis involves the fusion of 

mononuclear myoblasts to form polynuclear myotubes, these 

subsequently forming muscle fibres. A change in expression of 

NCAM isoforms during this process has been reported (COVAULT 

and SANES, 1986; KNUDSEN et al., 1990) and also quantitated 

(MOORE et al., 1987).

Figure II.4 summarizes the above references. This figure also

2.8
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Figure II.4

Mvoblast - myoblast fiision-> Mvotube

mRNA/protein sizes:

6.7kb mRNA (145kDa) 5.2kb mRNA ( 155kDa)

Isoform:

2.9Kb mRNA (125kDa)

Transmembrane 

Mouse muscle cell lines;

GPI-linked (includes MSD1)

G8-1 4x increase in NCAM staining

C2 15x increase in NCAM staining

(even staining over entire cell;

expression precedes fusion)

The above figure summarizes the predominant NCAM mRNA, 

protein-size and isoform changes that occur during the transition from 

myoblast to myotube. These changes in NCAM protein expression 

have been quantified using mouse muscle cell lines.

(COVAULT and SANES. 1986; KNUDSEN et al., 1990; MOORE et al., 

1987).
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illustrates the NCAM isoform transition during in vitro myogenesis. It 

has been suggested that rapid cell-cell release could be effected by the 

cleavage of this GPI-linked NCAM isoform (HE et a!., 1986). There is 

no evidence, however, that this "escape-mechanism" is actually used. 

As stated above, the rapid rise in NCAM expression precedes 

myoblast hision but fusion is not dependent on NCAM expression. 

Knudsen et al. (above) have showed that anti-NCAM antibodies 

significantly reduced the rate of myoblast fusion but did not affect the 

final extent of fusion. They postulated that other cell adhesion 

molecules (in particular calcium-dependent ones) also have a role to 

play in this process. The co-localization of NCAM and N-Cadherin (a 

calcium-dependent CAM) has since been demonstrated in avian 

skeletal myoblasts (SOLER and KNUDSEN, 1991).

As development proceeds in vivo, NCAM expression on muscle cells 

is gradually lost but remains at neuromuscular junctions, highlighting 

a possible role for NCAM in innervation. NCAM expression is also 

induced at the sarcolemma when the tissue is subjected to 

experimental abuse (e.g. crushing) or certain pathological diseases 

(COVAULT and SANES, 1986).

Muscle development in X.laevis proceeds by more than one route: 

muscles surviving through metamorphosis (e.g. intermandibular 

muscle) develop as described above; embryonic muscles such as the 

myotomes are produced from large mononuclear myocytes which
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become fully functional in the absence of cell fusion. Later in 

development these myocytes do fuse with satellite cells; ultimately 

they are reabsorbed at metamorphosis. Expression of NCAM in these 

two different muscle-types has been reported (KAY et al.. 1988).

As described above X.laevis somites are unusual amongst vertebrates 

in that they do not appear to express NCAM. Kay et al. examined the 

intermandibular muscle for NCAM expression to determine if the 

developmental origin of the muscle tissue affected NCAM expression 

or whether X.laevis embryonic muscle was uniformly NCAM- 

negative. They found the latter to be true: both myotome and 

intermandibular muscle were negative in the embryo.

However, post-embryonic skeletal muscle does show similar patterns 

of NCAM expression to other mammalian and avian systems.

Therefore, in the X.laevis embryo at least. NCAM does not play a 

role in muscle development; other cell adhesion molecules must 

therefore be involved.

2.10 Conclusions

The above chapter has contained a concise description of the NCAM 

protein and corresponding DNA sequences. It is clear that much still 

remains to be discovered about the differing roles of the three main 

isoforms and the mechanisms that govern their distribution. The role 

of PSA in NCAM-mediated binding does appear to be important but, 

again, this role is not completely resolved.

Whilst speculative theories are abundant, the hard evidence only
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points to NCAM playing a contributory role in neural and muscle 

development, not so much playing second fiddle, but as one of a group 

of molecules whose actions and interactions result in the desired tissue 

development. In retrospect, given NCAM’s abundance and the fact 

that it was the first well-characterised cell-adhesion molecule, it would 

have been extremely fortuitous to discover the secret of neural and 

muscle development from the study of one molecule. It is now 

obvious that in order to achieve this goal, it is necessary to study the 

expression of further CAMs. the regulation of these molecules and 

how they interact with one another.
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The Cadherin gene family
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3.8 Role of Cadherins in tumorigenesis
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3.1 Introduction

The historical aspects of the study of cell-adhesion and the division of CAMs 

into two main classes of cell-adhesion molecules (calcium-independent and 

calcium-dependent) has been discussed above in Chapter I. The role of NCAM. 

as an example of the former class of molecules, has been reviewed in Chapter 

II. This chapter therefore comprises a review of the rapidly-expanding class of 

calcium-dependent cell adhesion molecules - the Cadherins.

These transmembrane CAMs have now been found on a wide variety of 

tissues and hence have evoked much speculation about the possible role that 

they might play in the morphogenesis of the tissues in which they are found. 

The roles of the extra-cellular domains, in ligand binding, and the possible role 

of the conserved intra-cellular domain, in cell-signalling and/or cytoskeleton 

binding, are yet to be completely determined.

The main protagonist in this area of study is Masatoshi Takeichi and his group 

at Kyoto University in Japan. The reader is referred to his many papers and 

reviews for additional information (TAKEICHI 1987, 1988, 1990. 1991).

The fact that Ca2+ ions give a degree of protection against degradation by 

proteases to Ca2+-dependent CAMs has been used as a way of distinguishing 

the two main CAM classes. Ca2+-dependent and Ca2+-independent cell-cell 

adhesion systems may be selected for by the differential use of Ca2+ and trypsin 

according to the following cell treatment regimes:
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Treatment:

High trypsin + Ca2+ 

Low trypsin - Ca2+ 

High trypsin - Ca2+

Selects for:

Ca2+-de pendent CAMs 

Ca2+-independent CAMs 

no CAMs

3.2 (ii) Isolation of the first Cadhenn protein

The actual procedure used to identify the cadherin proteins was similar to that 

described above for NCAM, (i.e. the use of antibody neutralisation assays or 

"Fab strategy") and is illustrated in Figure III. 1. Antisera to F9 teratocarcinoma 

cells raised in rabbits was shown to inhibit F9 cell aggregation. This 

aggregation was then shown to be specific to Ca2+-dependent CAMs by use of 

the above regimes. Trypsin digestion in the absence of calcium was shown to 

release a soluble factor into the medium which was subsequently shown to be 

part of a 124KDa glycoprotein (YOSHIDA and TAKEICHI, 1982)

A monoclonal antibody, ECCD-1, was later employed to demonstrate similar 

cell-aggregation inhibiting effects (YOSHIDA et al., 1984); this mAb also 

recognizes a 124KDa protein confirming this protein's role in cell-adhesion. 

This protein was subsequently called "Cadherin".

Similar proteins have now been identified in other organisms: uvomorulin 

(mouse, PEYRIERAS et al., 1983), Cell-Cam 120/80 (human. DAMSKY et 

al., 1983), Arc-1 (dog, BEHRENS et al., 1985) and L-CAM (chick, GALLIN 

et al., 1983). These molecules all share similar molecular masses. Ca2+- 

sensitivities and tissue distributions (epithelial cells in a variety of embryonic 

and adult tissues), which strongly suggested that they are identical or inter­

species homologues.

3.2 (iii) Isolation of N-Cadherin and P-Cadfrerin

Takeichi’s group then went on to identify mAbs to Ca2+-dependent CAMs in

mouse and chicken brains (NCD-1, HATTA et al., 1985; NCD-2. HATTA and 
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Identification of Ca^i-dependent cell-adhesion molecules

1. Fab fragments were prepared from sera obtained by injecting 

teratocarcinoma F9 cells into rabbits. Such sera would be expected to contain 

antibodies to cell-adhesion molecules (CAMs).

2. Since F9 cells express CAMs, these cells normally aggregate into clumps.

3. The addition of Fab fragments prevents the aggregation of the F9 cells, due 

to inhibition of the CAMs.

4. Cells that have been treated with trypsin/Ca2+ will fully absorb the 

aggregation-inhibiting activity of the Fab fragments. Since this treatment 

leaves Ca2+-dependent CAMs unaffected, it assumed that the Fab fragment is 

specific to Ca2+-dependent CAMs.

5. Treatment of the F9 cells with trypsin in the absence of Ca2+ releases a 

soluble factor from the CAMs into the supernatant.

6. This soluble factor can compete with the Fab fragment to prevent the 

inhibitory effect of the Fab fragment on aggregation of F9 cells.

7. Concentration of this soluble factor has shown it to be a 34KDa protein by 

immuno blotting.

8. A 124KDa cell-surface glycoprotein can compete with this 34KDa protein 

in immunoprécipitation; these proteins therefore share an epitope recognised 

by the Fab fragment.

It was therefore concluded that this 124KDa glycoprotein is a component of 

the Ca2+-dependent cell-adhesion system of the teratocarcinoma cells.

Figure III.la
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Figure III.lb
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TAKEICHI. 1986) and mouse placenta (PCD-1. NOSE and TAKEICHI. 1986). 

The antigens recognised by these mAbs also have similar molecular masses and 

Ca2+-sensitivities to those listed above but have distinct tissue distributions. 

Therefore, whilst these molecules are immunologically distinct, they clearly 

form a part of the Cadherin family. The subsequent cloning of the cDNAs of 

these molecules has verified this fact.

3.3 Structure of Cadherin proteins

A sequence comparison of E-, N- and P-cadherin and L-CAM (chick E- 

Cadherin) has shown that all have a primary structure of 723-748 amino-acids 

comprising a putative signal polypeptide, putative precursor region, and a 

highly hydrophobic region that is likely to be a membrane-spanning domain. 

This putative primary structure is shown in Figure III.2; an inter-species 

assessment of the amino-acid homologies is shown in Figure III.3.

Amino-acid sequence conservation is highest in the cytoplasmic domain and 

in the N-terminal region of the extra-cellular domain, indicating the functional 

importance of these regions.

3.4 Cadherin multigene family

DNA sequencing of the cadherin cDNAs has now clarified the relationship 

between the multitude of proteins that were previously classified solely by mAb 

epitopes. The current Cadherin family of published cDNAs is given in Figure 

III.4, together with recent genomic DNA data.

The reader is referred to the individual references for further, more detailed, 

information. The expression of N-Cadherin is, however, of obvious relevance 

this work; the expression of this molecule will be therefore now be discussed, 

followed by the results of ectopic N-Cadherin expression experiments.



Figure 111.2



M

N C
: • i : :

64% 50% 39% 80%
•

67% 56% 47% 89%

: 1 ; ; __□ L-CAM

55% 48% 28% 63%
• ] N-Cadhcrin

Key:

N= putative amino-terminus; C= putative carboxy-terminus;

M= putative membrane spanning region.

The primary structures of the mouse P- and E-Cadherin and chick LCAM (E- 

Cadherin) and N-Cadherin are shown. Percentage amino-acid similarities are 

given between adjacent proteins for three regions of the extra-cellular domain 

and for the cytoplasmic domain.

The putative precursor regions are shown in dotted lines at the N-terminus.

The figure illustrates the high degree of sequence conservation in the 

cytoplasmic domain and, to a lesser extent, in the N-terminal region of the 

extra-cellular domain.

(Based on TAKEICHI, 1988)
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F ig u r c J I M
Published Cadherin Sequences

cDNA Species: Derivative
tissue:

Reference:

N-Cadherin Chick
Xenopus
Xenopus
Mouse

Neural HATTA el al., (1988) 
GINSBERG et al., (1991) 
DETRICK et al.. (1990) 
MIYATANI et al., (1989)

E-Cadherin Chick (LCAM) 
Mouse (uvomorulin) 
Mouse (E-Cadherin)

Epidermis GALLIN et al., (1987) 
RINGWALD eta!., (1987) 
NAGAFUCHI et al., (1987)

P-Cadherin Mouse Placenta NOSE and TAKEICHI, (1986)

R-Cadherin Chick Retina INUZUKA et al., (1991)

EP-Cadherin Xenopus Egg/kidney GINSBERG et al., (1991)

PVA Human 
(Pemphigus 
vulgaris antigen)

Squamous
epithelia

AMAGAI et al., (1991)

XB-Cadherin Xenopus Blastomere HERZBERG et al., (1991)

M-Cadherin Mouse Muscle DONALIES et al., (1991)

T-Cadherin Chick Truncated RANSCHT et al., (1991)

U-Cadherin Xenopus Ubiquitous ANGRES et al., (1991)

Desmocollin Cow 

Genomic sequences

Epidermis MECHANIC et al.,( 1991)

N-Cadherin Mouse
Human

MIYATANI et al., (1992) 
WALLIS and WALSH. (1992)

P-Cadherin Mouse HATTA elal., (1991)
L-CAM/ Chick SORKIN et al., (1991)
B-Cadherin
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Expression patterns of N-Cadherin in early X.laevis embryos have been 

described by at least four groups (DETRICK et al., 1990; FUJIMORI et al., 

1990; GINSBERG et al., 1991; and SIMONNEAU et al., 1992). (Due to the 

close genetic relationship between X.laevis and X.borealis, the expression 

patterns in X.borealis would be assumed to be very similar if not identical to 

those as published above). Expression of N-Cadherin in chick has been 

extensively published by members of Takeichi's group (see TAKEICHI, 1988, 

for a review).

Experiments by members of Kintner's group (DETRICK et al., 1990) show 

that the N-Cadherin mRNA is approximately 4.2Kb, is not detectable by 

Northern blot in egg or early gastrulae (stage 10), but can be detected in early 

neurulae (stage 14) and early tadpoles (stage 20) by Northern blot. RNAse 

protection assays (RPAs) have been used to determine expression patterns at a 

greater resolution. Kintner's group first detected mRNA transcripts at stage 10- 

12 using RPAs; expression increased thereafter up to at least stage 20.

The probe used for the RPAs was taken from the least-conserved "pre" region 

of the N-Cadherin cDNA to minimise cross-Cadherin hybridisation. No N- 

Cadherin expression was detected in early endoderm or ectoderm (late blastula) 

in the absence of any mesoderm/neural induction. However, the dorsal 

blastopore lip region (the "organiser"), when isolated and cultured to early 

neurula stage, expressed significant levels of N-Cadherin.

During the early stages of neural development (see Section 1.3), N-Cadherin 

expression is high in the neural plate; expression also continues into the 

derivative tissues, i.e. neural tube and tadpole brain (although Ginsberg et al., 

surprisingly, failed to detect N-Cadherin in tadpole brain by Northern blot). 

Some mesoderm tissues also express significant levels of N-Cadherin. The

notocord and pronephros strongly express N-Cadherin; most other mesodermal 
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derivatives express low amounts; but the somites are said to be virtually 

negative (in situ hybridisation, SIMMONEAU et al., 1992).

Isolated ectoderm was also assayed for N-Cadherin expression before and 

after contact with a neural-inducing agent. Kintner's group used the Hensen's 

node from chick as the inducing agent since the endogenous neural inducer, 

dorsal mesoderm, expresses N-Cadherin itself. Ectodermal cap/Hensen's node 

combinations were cultured together for various times; after 2 hours (stage 10.5 

equivalent) no N-Cadherin mRNA was detectable; but there was expression of 

N-Cadherin after 4 hours (stage 13 equivalent). Ectodermal caps cultured alone 

showed no such expression. These experiments showed that ectoderm is 

capable of being induced by a neuralising agent to produce N-Cadherin mRNA 

and that such expression is co-ordinate with the morphogenetic movements 

associated with neurulation.

3.4(iii) Ectopic expression of N-Cadherin in Xenopus embryos 

The misexpression of N-Cadherin has been reported to produce gross 

morphological defects in X.laevis embryos (DETRICK et al.. 1990; FUJIMORI 

et al., 1990). Synthetic N-Cadherin RNA was injected into early stage 

embryos; the embryos were then scored for physiological defects at various 

stages thereafter. Thickening, clumping and fusion of cell layers were reported 

as well as a striking rift in the ectoderm (exposing the underlying tissues) that 

was often observed during gastrulation.

As the authors themselves acknowledge, such experiments must be interpreted 

with extreme caution since the conditions imposed upon the embryos may be 

far removed from those normally experienced. This places a severe restriction 

upon the usefulness of such experiments. (After all, if you pour glue into a 

clock, the clock will stop; but this tells you nothing about how the clock

works!. It must be noted, however, that many RNAs can  be injected 
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at similar concentrations and have no detrimental effect on development).

3.5 Binding activity of extracellular domain 

3.5(i) Theoretical binding mechanisms 

Theoretically, binding of cells expressing Cadherins could be achieved by a) 

the interaction of one Cadherin molecule with another Cadherin molecule; b) 

the interaction of one Cadherin molecule with another species of molecule (e.g. 

an integrin); or c) a combination of the above. The current thinking is that 

Cadherin binding is through homophilic interactions (i.e. choice (a)) with other 

Cadherin molecules of the same class, e.g. N-Cadherin with N-Cadherin. All 

the experimental evidence points in this direction.

The classical differential cell aggregation experiments performed with sponges 

(Section 2.1(ii)) have now been reproduced using L-cells transfected with E-, P- 

and N-Cadherin (TAKEICHI et al., 1981). Takeichi's group have shown that 

cells expressing one particular Cadherin preferentially aggregate with cells 

expressing similar adhesion molecules. It was therefore, not surprisingly, 

concluded that it was the extra-cellular domain of the protein that defines the 

particular binding specificity of that particular Cadherin.

3.5(iii) L-cell transfection experiments 

Homophilic binding activity of Cadherins has been demonstrated by 

transfecting L-cells with E-Cadherin (NAGAFUCHI et al., 1987). L-cells have 

very low endogenous levels of E-Cadherin and hence do not naturally form 

tight intercellular connections in monolayer cultures. Upon transfection with E- 

Cadherin, however, the transfectants expressing E-Cadherin acquired Ca2+- 

dependent aggregation activity that could be quantitatively correlated with the 

amount of E-Cadherin expressed. Subsequent experiments with N- and P-

Cadherin have provided similar results (HATTA et al., 1988).
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Control experiments combining transfected L-cells with untranstected L-cells 

do not show this aggregating activity. It therefore can be concluded that 

homophilic binding must be occurring between Cadherin proteins, and that the 

expression of a single class of Cadherin is sufficient to induce cell-cell 

aggregation.

A series of different experimental approaches have successively defined with 

greater resolution the regions of the protein that are involved both in protein- 

protein binding and those regions that confer specificity upon that binding. 

These experiments include the production of chimeric cadherin molecules, the 

use of monoclonal antibodies with defined epitopes and site-directed 

mutagenesis.

3.5(iv) E/P-Cadherin chimeras

Transfection of L-cells with E-/P-Cadherin chimeric DNA constructs has 

shown that the replacement of the amino-terminal 113 amino-acids of the 

Cadherin protein is sufficient to alter the binding specificity of the expressed 

protein. In the published experiments, specificity was changed from that 

characteristic of E-Cadherin to that characteristic of P-Cadherin iNOSE et al.. 

1990).

3.5(v) Monoclonal antibodies to amino-terminal end of the protein 

The mAbs PCD-1 and NCD-2 (ibid.) inhibit P- and N-Cadherin mediated 

aggregation respectively. They are also known to bind near the amino-terminus 

of the extracellular domain of the Cadherin protein; more specifically, both 

mAbs bind to the 31st amino-acid from the amino-terminal end (TAKEICHI, 

1990).

3.5(vi) Site directed mutagenesis of possible binding region 

The amino-terminal 113 amino-acids is 65% conserved between E- and P-

Cadherin, but in a non-random manner, i.e. stretches of conserved amino-acids 
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are interrupted by stretches of non-conserved amino-acids. It may be assumed 

that the non-conserved amino-acids are the ones that define that particular 

binding specificity of that molecule.

The amino-acid sequence HAV (initially identified by sequence comparison 

with influenza strain A haemagglutinin) has been termed a "Cell Adhesion 

Recognition" (CAR) sequence, due to the ability of synthetic peptides 

containing this sequence to inhibit the Cadherin-mediated compaction of mouse 

embryos (BLASCHUK et a!.. 1990). Site-directed mutagenesis was used to 

investigate adjacent amino-acids whose substitution might lead to altered 

binding specificity. Substitution of the E-Cadherin amino-acids with those 

found in P-Cadherin lead to an alteration of the binding specificity of the 

expressed protein from that characteristic of E-Cadherin to a molecule that 

bound both E- and P-Cadherin. This region is therefore important in 

determining binding specificity but obviously other regions are also involved.

The above experiments therefore have started to define the regions/sites 

involved both in Cadherin-Cadherin binding and those that confer specificity 

upon this binding. It is obvious that full details of this cell-aggregation 

mechanism will be available in the near future.

3.5(vii) Glvcosvlation of extracellular domain

The role of sugar side-chains in the regulation of NCAM binding was 

discussed above (Section 2.3). In this molecule, the developmental regulation 

of polysialic acid (PSA) has been shown to have profound effects on the 

adhesiveness of cell expressing NCAM. No such effect has been shown for any 

Cadherins.

A number of possible glycosylation sites have been identified by amino-acid 

sequence analysis and Cadherins are known to be glycosylated to some degree.

Inhibition of glycosylation by tunicamycin, however, has been shown to have 
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no effect on E-Cadherin binding activity (SHIRAYOSHI et al., 1986).

By definition. Cadherins require the presence of Ca2+ ions for cell-cell 

aggregation. Furthermore. Ca2+ ions protects Cadherins from protease 

digestion. The experiments given below have shone some light on the possible 

role of these Ca2+ ions in Cadherin regulation.

The E-Cadherin 84KDa (intermediate extra-cellular) trypsin digestion product 

was found to bind 4:,Ca2+ when immobilised on nitrocellulose paper, 

demonstrating that it is this extracellular domain of the Cadherin protein that 

binds the Ca2+ ions.

Some mAbs that bind to Cadherin proteins have been identified that only bind 

to their epitopes in the presence of Ca2+ ions. This suggests that the presence of 

Ca2+ ions induces a conformational change in the Cadherin protein.

The amino-acid analysis discussed above reveals a number of repeated motifs 

and conserved regions, such as the DXNDN motif. None of these sequences are 

recognized to be Ca2+ ion binding motifs, however, the presence of such 

repeated sequences obviously makes them prime candidates tor such binding.

The current view of the Cadherin protein is illustrated in Figure 111.5.

3.6 lntra-cellular domain

3.6(1) Function of cytoplasmic domain

The intra-cellular domains of the Cadherin proteins are well conserved 

between the different classes and species; Cadherins are also known to be 

bound to the cytoskeleton. Deletion experiments have attempted to determine 

the important regions within this domain that dictate protein function.

A series of stepped DNA-deletions of this cytoplasmic domain were 

constructed which left unaffected both the transmembrane and extra-cellular

domains (NAOAFUCHI and TAKEICHI. 1988). These deletion constructs 
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Figure III.5

Proposed structure of Cadherin proteins

Extra-cellular matrix

The diagram illustrates the proposed transmembrane structure of the Cadherin 

proteins and the possible interactions that they make with the cortical actin 

bundles via catenin proteins.

Cadherins possess up to five putative Ca2+-binding domains in the extra­

cellular ( EC) portion of the protein. The 5'-amino-terminal region of the 

protein is believed to be responsible for specificity of ligand binding.
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were then transfected into L-cells and their Cadherin-mediated cell-cell 

aggregation ability assayed. It was found that deletion of the COOH-terminal 

region eliminated both attachment to the cytoskeleton and external binding 

activity. From these experiments it appears that the COOH-terminal region is 

not only necessary for some sort of anchorage to the cytoskeleton but that such 

anchorage is also necessary for the binding activity of the extra-cellular 

domain. This result may be interpreted as follows: an individual Cadherin 

molecule does not in itself have the ’strength' to mediate cell-cell binding: it 

needs to be attached to an underlying framework, i.e. the cytoskeleton 

(although no such attachment is necessary for NCAM). Alternative theories in 

which the attachment of the cytoplasmic domain to the cytoskeleton sends a 

signal to the extra-cellular domain (to be "receptive to binding") have also been 

postulated.

Evidence for such binding to the cytoskeleton comes from two main sources. 

Firstly, double-staining of antibodies to Cadherins and cortical actin bundles 

shows that both are co-localized at cell-cell junctions. Secondly, extraction of 

cells with non-ionic detergents appears to show some form of structural 

association between Cadherins and cortical actin bundles. (Not all Cadherins 

are attached to the cytoskeleton as a fraction of Cadherin proteins are soluble in 

non-ionic detergents).

3.6(ii) Association of Cadherins with catenins

Wild-type Cadherins are known to be localised at cell-cell junctions and also 

at zonula adherens - an intercellular junctional complex that contains cortical 

actin fibres, and also other intra-cellular proteins such as vinculin, radixin and 

o-actinin. E-Cadherin is known to immunoprecipitate with specific intra­

cellular proteins - oc. (3. and y-catenin proteins (NELSON el al.. 1990). The

Cadhenn's catemn-binding sites are the same as those sites important tor actin-
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binding and full cell-cell binding activity. This suggests that catenin proteins 

act as links between Cadherins and the cytoskeleton. and that such association 

is necessary for full Cadherin function.

3.7(i) Examples of dynamic regulation of Cadherins

Cadherins are not cell-specific molecules. The expression of Cadherins on the 

surface of cells of a particular tissue is dynamically regulated, in that Cadherin 

expression patterns change as the cells differentiate. A number of examples of 

such dynamic expression are known; some are given in Figure III.6.

3.7(ii) General theories of CAM-regulated morphogenesis 

The examples in Figure III.6 of temporal variations in Cadherin expression 

provide illustrations as to how the separation of two cell populations from one 

precursor cell population may be achieved. It can readily be seen how the loss 

or variation of Cadherin expression from an initially Cadherin-homogeneous 

tissue, and the subsequent expression of different Cadherins in subpopulations 

of that tissue, may lead to the division of that tissue into two distinct tissues. 

Obviously this type of mechanism would not be necessarily unique to the 

Cadherin family.

Since most tissues express more than one CAM. a specific degree of cell-cell

binding may also be regulated by quantitatively controlling the number and

type of CAMs expressed. A low degree of adhesiveness may be appropriate for

a neuron following a set path defined by a CAM-expressing substrate (so that

the neuron is not irreversibly bound to the substrate), whereas the terminal

differentiation of a tissue may require the irreversible binding together of its

constituent cells, i.e. high CAM expression.

Thus by relatively simple mechanisms, both the specificity and the degree of

cell-cell binding may be effectively controlled.
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Figure 111.6

Examples of dynamic Cadherin expression 

in the morphogenesis of tissues

System 'Pre' expression Change 'Post' expression

1. Chick embryo Epiblast cells Gastrulation Mesodermal cells

(blastula stage) LCAM+ LCAM

N-Cadherin N-Cadherin+

2. Neural tube Neural plate cells Neurulation Neural tube

formation LCAM+ LCAM-

N-Cadherin N-Cadherin+

3. PNS formation Neural crest cells Migration Neural crest cells

LCAM+ LCAM

The examples referred to above have now been established as "classical" 

examples of differential Cadherin expression (TAKEICHI. 1990). The "+" and 

H refer to whether the protein is expressed or not.

The disappearance or appearance of the above CAMs, at these important times 

during tissue-morphogenesis, has evoked much speculation about the role these 

proteins may play in these developmental events.

Note:

LCAM is also known as E-Cadherin.
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3.8 Role of Cadherins in tumorigenesis 

3.8(i) Role of CAMs as tumour suppressors

The malignant phenotype is often associated with a loss of cell-cell or cell- 

basement membrane contact, resulting in metastasis and the establishment of 

ectopic malignant tissues. It is not difficult to appreciate how the disruption of 

CAMs could play a major role in this process.

The role of tumour-suppressor genes is now as well recognised in the 

prevention of neoplasias as the role of oncogenes in their initiation. A number 

of tumour-suppressor genes have now been identified that, once sequenced, 

have revealed significant homology to CAMs, in particular NCAM and the 

Cadherin gene family.

The recent Cadherin literature has been overwhelmed with references to the 

potential involvement of Cadherins in tumorigenesis (e.g. genital cancers. 

INOUE et al.. 1992: prostate cancer. ISAACS et al.. 1992: lung cancer. 

RYGAARD et al.. 1992).

The majority of the literature refers to the loss or reduction in expression of E 

Cadherin in various cancers, leading to loss of epithelial differentiation and 

gain of invasiveness: phosphorylation of the Cadherin-3-catenin complex may 

also play a part in this process (BEHRENS et al.. 1993). Transfection of 

transformed tissue culture cell lines with Cadherin cDNAs has been shown to 

reduce the invasiveness of those cells, often resulting in partially differentiated 

tumours instead of the previous fully undifferentiated tumours (VLEMINCKX 

etal.. 1991: FRIXEN et al. 1991).

A number of newly-identified genes have been show to have homology to 

known CAMs. including DCC and fat (see below).

3.8(ii) Human rectal carcinoma gene - DCC

Deletions in human chromosome 18q are found in more than 70% of colorectal
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cancers, implying the presence of a possible tumour-suppressor gene in this 

region. The gene DCC (Deleted in Colorectal Carcinoma) has been located in 

this region and has significant homology to NCAM. in particular to the Ig 

domains; it also has fibronectin-type repeats (FEARON et al., 1990).

3.8(iii) Drosophila tumour suppressor gene - fat

The cDNA coding for a giant 5000 amino-acid protein has been identified in 

Drosophila by screening a Drosophila genomic library with PCR probes 

homologous to the Cadherin extra-cellular domain and then using the genomic 

clones obtained to screen a Drosophila cDNA library (MAHONEY et al., 

1991). The protein, called fat, comprises 34 repeats of a 100 amino-acid 

Cadherin-like domain, four EGF-type repeats, a transmembrane domain and a 

cytoplasmic domain (that has no homology to the corresponding Cadherin 

cytoplasmic domain).

This is the first Cadherin-like protein that has been identified in a non- 

vertebrate and is considerably larger than any known Cadherin protein 

identified to date (most are approximately 730 amino-acids). Recessive (loss of 

function) mutations in this gene leads to excessive cell proliferation in the 

imaginal discs; this gene has therefore been termed a tumour suppressor.

3.9 Importance of the study of Cadherins

"What genes control Cadherin expression? The differential expression of 

multiple Cadherins in development must be under strict control of regulatory 

genes. It is most important to identify such genes to understand the genetic 

mechanisms of morphogenesis." (TAKEICHI, 1988)

3.10 Conclusions

This chapter has described a class of transmembrane proteins that initially had

three members: Epidermal-, Placental- and Neural-Cadherin. These proteins

were known to mediate the Ca2+-dependent aggregation of cells. It is now 
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known that these proteins are far from tissue specific and that differential 

expression, both temporally and spatially, of combinations of these proteins 

may have major roles to play in the very 'construction' of the animal form.

This group of proteins has recently expanded to encompass at least eleven 

close relatives and many other proteins having significant homology to 

Cadherin protein domains.

The recent interest in CAMs, Cadherins in particular, as tumour suppressors 

will ensure that this group of proteins will continue to be the subject of intense 

study.
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4.1 Introduction

The ability of the cell to manufacture a wide variety of proteins having 

numerous specific functions is of little use without effective control over the 

temporal and spatial expression patterns of those proteins. As was seen in 

Section 3.4(iii), the misexpression of just one protein (N-Cadherin) during 

neurulation can have a profound detrimental effect on the development of that 

organism. Control mechanisms therefore must exist to finely coordinate the 

expression of a protein with the time and place where it is required.

This chapter will therefore look into the organisation of eukaryotic genes with 

specific reference to the promoter and genomic DNA structures of NCAM and 

the known Cadherins.

4.2 Eukaryotic gene regulation

The steps involved in the expression of a protein in a eukaryotic cell are now 

known in some detail: these include, inter alia, the binding of transcription 

factors to DNA control sequences, transcription of the DNA by RNA 

polymerases, splicing of the hnRNA, export of the mRNA to the cytoplasm, 

translation of the mRNA into protein and post-translation modifications. 

Theoretically, any one of these steps could be the subject of a control 

mechanism (and most are, in one organism or another. LATCHMAN. 1990).

It is now generally accepted that, whilst regulation at other levels are known, 

the fundamental level at which control of protein expression is exercised is that 

of gene transcription. The remainder of this chapter will therefore concentrate 

on transcriptional control mechanisms. However, one additional mechanism is 

worthy of comment at this stage and that is post-translational modification.

It is well known that in eukaryotic organisms chemical modifications are 

often made to the amino-acids. Examples of such chemical modifications are

the phosphorylation, acylation and sulphation of amino-acids; the purpose of
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these are the subject of much study. NCAM is a paradigm of a protein to which 

sugar side chains are added (see Section 2.3). Through alterations of the 

proteins such as these, the function/configuration of the protein may be altered 

and the protein may therefore be regulated on a continuous and ongoing basis.

4.3 Transcriptipnai control 

4.3(i) Promoter structure

The standard elements of a eukaryotic promoter (e.g. TATA box, CCAAT 

box, enhancer sequences) are now well accepted although it must be noted that 

not all eukaryotic promoters include a TATA box (e.g. 'house-keeping' genes 

lack TATA boxes and are transcribed at a basal rate in most cells).

The TATA or Hogness-Goldberg box is usually embedded in a region of 

relatively low AT content (NUSSINOV et al.. 1986); a plot of the distribution 

of ATA + TAT triplets normally shows a peak around the TATA box and often 

a secondary peak around -275bp. The CCAAT box is less well defined. It has 

been found that even the presence of both of these elements is insufficient to 

categorically define the transcriptional initiation site of a eukaryotic gene. This 

underlines the importance of gene-specific transcription factors in aiding the 

initiation of transcription by RNA polymerases.

The position of enhancer sequences is variable. Enhancers have been reported 

to have activating effects upstream (often at kilobase distances), downstream or 

in the spliced introns of the gene. Enhancers often appear to act as 'magnets' for 

DNA-binding transcription factors that, once attached to the DNA in question, 

'migrate' along the DNA helix until a suitable binding site is found. It must be 

remembered that the binding of transcription factors is under control of 

stochastic processes and so any process that attracts these factors and direct 

them to the desired sites will increase the likelihood of transcriptional

initiation. Other possible mechanisms of enhancer action include the "looping-
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out" hypothesis: transcription factors remain bound to the enhancer elements 

but interact directly with the transcription complex through the "looping out" of 

the intervening DNA.

In addition to these relatively common DNA sequence motifs, a number of 

other motifs are known (see Section 4.3(iii>). These motifs are often 

characterised by homo-purine or homo-pyrimidine sequences (or combinations 

of these) that have the potential of forming H-DNA or Z-DNA helices; or 

palindromic sequences that may bind dimeric transcription factors.

As stated above, TATA-boxes are not always found in eukaryotic promoters. 

Such promoters are often found involved in "house-keeping" genes, i.e. genes 

that are active in most cells and that perform non tissue-specific functions (e.g. 

glucose metabolism).

It has been reported that the 5'-ends of vertebrate genes are often associated 

with an increase in (G+C) content, in particular with an increase in the 

frequency of the dinucleotide CpG (BIRD. 1986). Such regions can be 

identified experimentally by the presence of "HTF islands", i.e. a multiplicity 

of CCGG sequences that act as substrates for the restriction enzyme Hpall, 

producing a number of small DNA fragments (tipall Tiny fragments). 

According to Bird (ibid.), there is no relationship between the presence or 

absence of TATA boxes and CpG-rich 5’-DNA regions.

It has been widely hoped that promoter-DNA sequence comparisons would 

readily illuminate common sequence motifs that could be implicated as 

transcription factor binding sites. While a number of such DNA-motifs have 

come to light (see FAISST and MEYER. 1992. for a compilation of vertebrate- 

encoded transcription factors and their binding sites), neural-specific DNA 

sequences are still relatively elusive.
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A number of neural promoters have been studied, including those of neuron- 

specific enolase (SAKIMURA et al., 1987), SCG10 (WUENSCHELL et al., 

1990), dystrophin (BOYCE et al., 1991), nerve growth factor (ZHENG and 

HEINRICH, 1988), myelin basic protein (TAMURA et al., 1990) and brain 

creatine kinase (HOBSON et al., 1990). In the majority of published papers, 

however, the only identified transcription-factor binding-sites are TATA, 

CCAAT and GC-rich regions harbouring potential Spl-binding sites.

A neural-specific "identifier sequence" was reported to be present in a number 

of neural genes (SUTCLIFFE et al., 1984); this was later correctly identified as 

being a small mRNA for rat brain myelin proteolipid protein (MILNER et al., 

1985).

The comparison of rat GAP-43, type II Na+-channel, peripherin and SCG10 

gene promoters (all neural-specific genes) has, however, lead to the 

identification of a 7bp element common to all of these promoters 

(CCAGGAG), with additional high homology in some of the flanking 

sequences (NEDIVI et al., 1992). It can only be hoped that such neural-specific 

motifs can be elaborated upon and extended to other species.

In an analysis of the promoter regions of neural genes in vertebrates and 

invertebrates (BATLEY, 1992), at least one of a small number of transcription 

factor binding sites were found to be present in most of these genes: E2F, a 

vertebrate factor that complexes with the retinoblastoma gene product 

(BAGCHI et al., 1990); GATA factor, thought to play a regulatory role in 

chick brain and T-cell specific expression (YAMAMOTO et al., 1990); MyoD, 

found in proliferating myoblasts and differentiated myotubules (MURRE et al., 

1989); and NF-kB, a relative of the re/-oncogene (MAJELLO et al., 1990). 

Some of these transcription factors and others are mentioned below in the

discussion of the N-Cadherin promoter DNA sequence (Section 7.5).
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4.3(iii) Transcription factors

As mentioned above, the presence of suitable DNA elements (e.g. TATA/ 

CCAAT boxes) and RNA polymerases is not sufficient to initiate the 

transcription of most eukaryotic genes. The binding of tissue- and temporal- 

specific factors is necessary in order to activate the transcription complexes. It 

has been found that some factors are capable of binding to more than one 

DNA-binding site; additionally, DNA-binding sites are known that can be 

bound by more than one factor. Thus there will exist competition between 

factors for DNA-binding sites that will add an extra tier of complexity to the 

regulatory mechanisms.

Included in the definition of transcription factors are not only proteins, but 

also other protein complexes that may bind (directly or indirectly) to the 

promoter elements. Often the status of intra-cellular metabolites or the presence 

of extra-cellular hormones is communicated to the transcriptional machinery by 

the binding of the metabolite/hormone to a protein receptor, thus activating the 

receptor and allowing the receptor-complex to bind to the appropriate DNA 

element.

Whilst sequence comparisons of eukaryotic promoters have lead to the 

identification of the common DNA sequence elements described above, the 

transcription factors that bind to and regulate the transcription of these 

promoters require more complex experimental procedures for their 

identification.

As a first step (after the identification of a putative promoter sequence), gel 

retardation and DNA-footprinting studies can be used to define the DNA 

sequences that are bound by the activating proteins. The attachment of various 

lengths of the putative promoter to readily assay able reporter genes (such as

chloramphenicol acetyl transferase or CAT, (3-galactosidase and luciferase) is 
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also used to identify important parts of the promoter that confer tissue- 

specificity, temporal specificity or high/low levels of promoter activity.

The study of oncogenes has lead to the identification of a number of 

transcription factors and contributed to the unification of the studies of cancer 

and gene regulation (BRADSHAW and PRENTIS, 1987).

Many transcription factors have now been sufficiently purified to enable 

identification and assignment to families based on DNA-sequence binding 

similarities. Such transcription factors are extensively reviewed elsewhere, for 

eukaryotes (JOHNSON and MCKNIGHT, 1989), mammals (MITCHELL and 

TJIAN. 1989), in the brain (HE and ROSENFELD. 1991) in Xenopus 

(WOLFFE, 1991). A list of the main transcription-factor DNA-binding motifs 

is given in Table IV. 1.

Transcriptional regulation is described further below by reference to the 

NCAM and E-Cadherin promoters.

4.4 NCAM promoter 

4.4(i) Introduction

As discussed in Chapter II, the expression of NCAM is tightly defined in 

terms of both the protein's tissue distribution and the developmental stages 

during which it is expressed. During embryonic development, NCAM is 

expressed on tissue derivatives of all three germ layers. In tissues involved in 

embryonic induction, however, NCAM is often seen transiently, such 

expression having sharply defined borders. This has prompted speculation that 

NCAM may be an initiator or major participant in such induction processes.

The NCAM protein is known to be encoded by a single gene, the multiple 

protein isoforms being produced by the use of alternative exon combinations 

and of different polyA+ addition sites.

4.4(ii) NCAM promoter clones
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Takte IV, 1

Classification of PNA-binding proteins based on 

prgiein motifs

Motif: Reference:

1. Homeodomain SCOTT e< a/.. (1989)

2. POU domain ROSENFELD. (1991)

3. Paired box KESSEL and GRUSS. (1990)

4. Nuclear-receptor-type zinc finger BEATO, (1989)

5. TFIIIA-type zinc finger KLUG and RHODES. (1987)

6. Leucine zipper LANDSCHULZ a  a!., (1988)

7. Helix-loop-helix MURRE et al.. (1989)

8. "ets" homology KARIM el al.. (1990)

9. "rel-NF-tcB-dorsal" homology KIERAN et al., (1990)

10. "SRF-MCM" homology PASSMORE el a!.. (1988)

11. "Fork head-NF3cx homology LAI « a / . .  (1991)

12. "HMG" homology GUBBAYera/.. (1990)

The above classes of DNA-binding proteins are based on conserved amino-acid 

motifs found within each member of the class. The three-dimensional structures 

of some of these motifs are known or predicted (e.g. helix-loop-helix).

Some DNA-binding proteins do not conform to one of these classes; further 

classes are therefore likely to be discovered in due course.
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In order to study the transcriptional regulation of this gene, the NCAM 

genomic DNA sequences have been cloned in mouse (HIRSCH et al.. 1990), 

rat (CHEN et al., 1990) and human (BARTON et a!., 1990).

All three cloned promoters can be characterised by the following features: no 

functional TATA- or CCAAT-boxes; presence of potential Spl-binding sites: 

multiple transcriptional initiation sites; a (G+A)-rich region: and an (A+T)-rich 

region. To avoid undue repetition, only the mouse NCAM promoter will be 

discussed in detail here.

4.4(iii) Mouse NCAM promoter

The mouse NCAM genomic DNA sequences were obtained by screening a 

mouse genomic DNA library with a 5' fragment of the mouse cDNA (ibid.). 

Transcriptional initiation sites were defined by primer extension and Si- 

nuclease protection assays. Regions containing promoter activity were 

identified initially by promoter-CAT constructs; gel-retardation and DNA- 

footprinting were subsequently used to define the transcription-factor binding 

sites with higher resolution. The results of these experiments are summarised in 

Figure IV. 1.

As is often the case in genes lacking TATA-boxes, more than one 

transcription-initiation site was identified. Two sites were seen, at -193bp and - 

336bp (numbering relative to translational start site). Use of these two sites was 

not tissue-dependent as the same results were obtained using embryonic or 

adult brain, C2-muscle and N2A-neuroblastoma cell lines. The only TATA-like 

box in the first 1Kb upstream of the translational start site lies at -994bp and 

hence is regarded as being too great a distance away from the above-defined 

transcriptional start-sites to act as a usual promoter element.

4.4(iiib) Poly hetero-nucleotide regions
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Figure IV.la

NCAM promoter organisation and deletion constructs

Eight footprints were mapped within the first 1Kb upstream of the 

translational start site (+1). Two main transcriptional start sites were mapped 

to -336 and -193. The (A+T)-rich and (GGA)„-domains are also shown.

Deletion constructs fused to the CAT -gene were transfected into N2A- 

neuroblastoma cells and L-cells (as a negative control). The average Si- 

promoter activities are shown on the right, relative to a composite SV40- 

HTLV-I promoter (SRoc-CAT) which was used as a positive control.

From this data it can be seen that the strongest promoter activity is provided 

by elements between -645 and -245 but these elements lack the capacity to 

provide tissue specificity. DNA regions upstream of these elements act to 

reduce this activity and impose tissue-specific constraints, so that expression 

in (non-specific) L-cells is reduced relative to N2A cells.

(Data from HIRSCH el al„ 1990)
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In between the two transcriptional start-sites, spanning -299bp to -274bp, lies 

a GC-rich region having putative Spl binding site homology. Three other 

regions of this promoter are also dominated by specific nucleotide pairs: - 

1004bp to -970bp by A/T; -813bp to -671 bp by A/G (including a (GGA),, 

stretch); and -591 bp to -519bp by A/T. Such poly-heteronucleotide domains are 

known to affect the conformation of the DNA helix, although the significance 

of this fact (with respect to the effect that it has on transcription factor binding) 

has not yet been resolved. It can readily be appreciated, however, that an 

alteration of DNA helix conformation could provide a protein-recognisable 

domain and/or bring together two previously-distant protein-DNA complexes 

whose interaction could trigger a transcription-initiation event.

4.4(iiic) Deletion constructs

A series of promoter-CAT deletion constructs were made and transfected into 

both neuroblastoma-N2A cells (which express NCAM) and L-cells (which do 

not). Variations in CAT-plasmid transfection efficiencies were corrected for by 

co-transfection with the pCHl 10 (3-galactosidase) plasmid and normalising 

CAT expression against 3-galactosidase expression.

These experiments illuminated the presence of DNA regions that provided 

positive and negative contributions to protein specificity and overall promoter 

activity. The results are illustrated and discussed in Figure IV. 1.

4.4(iiid) Protein footprints

Eight protein-complex footprints have been defined for this promoter region

by gel-retardation assays and DNAse 1 footprinting; most of these map to these

repeated-nucleotide regions (see Figure IV.I).

"Footprint g", which maps to the (GGA)n region, contains a silencer or

repressor element. Loss of this domain results in the loss of tissue-specificity as

seen in the promoter-CAT experiments.
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"Footprint b" contains an (A+T)-rich element (ATTATTA) that possesses 

sequence homology to the central core of most of the Antennapedia 

homeodomain protein binding sites. Certain Drosophila homeodomain proteins 

(Antp, zen but not en) have been shown to bind, in vitro, to this mouse NCAM 

element (HIRSCH et al., 1991) suggesting that the NCAM gene may be subject 

to the control by homeodomain proteins.

It is hoped that, before too long, the factors responsible for the other footprints 

will also be identified, providing a valuable picture of the mechanisms 

controlling this gene.

4.5(i)t

The intron/exon structure and chromosomal localization of the mouse N- 

Cadherin gene has recently been reported by Takeichi's group (MIYATANI et 

al., 1992). This gene comprises 16 exons that span >200kb.

A comparison of the intron/exon boundaries of this gene with other known 

Cadherins (see below) has shown that these boundaries are remarkably 

conserved in all the Cadherin genes published to date (the one exception being 

P-Cadherin, whose first exon comprises the first+second exon of the others). 

The 5'-ends of these genes are compared in Figure IV.2. From a comparison of 

these boundaries and the protein domains, it can be stated that the exons do not 

correspond to the division of the protein into recognisable domains.

During the cloning of the N-Cadherin genomic DNA, two clones were found

that corresponded to exon 16 but had different restriction-enzyme digest

patterns. One clone overlapped with exon 15; the other also had 100%

homology to the coding sequence and 99% homology in the 3'-untranslated

region, but could not be mapped relative to the rest of the N-Cadherin genomic

DNA. It would appear therefore the second exon 16 is a duplication of the first, 
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and a very recent one at that. This second exon 16 may provide an explanation 

for the fact that three bands are normally seen on a N-Cadherin Northern blot - 

5.3,4.3 and 3.5Kb, the middle band being the major one. Further experimental 

evidence is required to confirm this speculation.

4.5(ii) Mouse P-Cadherin gene organisation

Takeichi's group have also published the genomic organisation of the mouse 

P-Cadherin gene (HATTA et al., 1991). This paper parallels the N-Cadherin 

paper (ibid.) in that the intron/exon boundaries and chromosomal localization 

of P-Cadherin are reported.

In contrast to the N-Cadherin gene (which is on chromosome 18), P-Cadherin 

is tightly linked to E-Cadherin on chromosome 8. The linkage of Cadherin 

genes is a point that is returned to below.

As stated above, the intron/exon boundaries of P-Cadherin are highly 

conserved except for the first P-Cadherin exon comprising the first two exons 

of the other Cadherins. The authors also make the interesting comment that the 

First intron of the P-Cadherin gene (23Kb) appeared to possess enhancer 

activity.

4.5(iii) Mouse L-CAM and K-CAM gene structures

The genomic structure of the mouse L-CAM gene has been reported 

(SORKIN et al., 1991). Surprisingly, an analysis of the region 5' to exon 1 of 

the L-CAM gene has revealed the presence of a second Cadherin, termed K- 

Cadherin (believed to correspond to B-Cadherin). Only 700bp separate the 

polyA-addition site of the K-CAM gene and the translational start-site of the L- 

CAM gene. Although these two genes have distinct specificities and significant 

DNA sequence changes, the physical closeness and high degree of intron/exon 

boundary conservation between these two genes makes it very likely that they 

arose by gene duplication.
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The intervening 700bp between these two genes contains no TATA- or 

CCAAT-boxes which could act as possible promoter elements for the L-CAM 

gene. CAT and 3-galactosidase constructs attached to this 700bp also failed to 

show any sign of promoter activity when transfected into the appropriate 

tissue-culture cells. Based on this, and inconclusive primer extension assays, 

the authors stated that they believed the promoter of the L-CAM gene to be 

further upstream than the 3'-end of the K-CAM gene. (It is interesting to note 

that the authors reported that primer extension experiments failed to produce 

any viable result. They attributed this possibly to a high GC content in the 

region of interest.)

4.5(iv) E-Cadherin promoter

The epithelial CAM, E-Cadherin is one of the most intensely studied of the 

Cadherins due to its possible role in determining the invasiveness of 

carcinomas. In order to study the regulation of this molecule, Behrens et al., 

have cloned the mouse E-Cadherin promoter (BEHRENS et al., 1991).

Through the use of deletion/CAT constructs, DNAse 1 footprinting and gel 

retardation assays two regions of the promoter have been identified as being 

involved in the regulation of this gene (see Figure IV.3).

The single transcriptional start site was defined by primer extension as being 

127nts upstream of the translational start site. No consensus TATA box was 

identified, although the sequence spanning the transcriptional start site was 

noted as having homology to other "initiator sequences" described in other 

TATA-less promoters. A CAAT box was present at -65bp; (quoted base pairs 

are relative to the transcriptional start site). The promoter region also comprises 

a GC-rich region at -58 to -25bp, harbouring a putative Spl binding site; and a 

12bp palindromic sequence bounded by 4bp inverted repeats at -86 to -75,

termed "E-pal". This latter sequence has homology to keratin gene promoter 
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Figure IV,3a

E-Cadherin promoter

and the activities of promoter-deletion/CAT constructs

The structure of the mouse E-Cadhenn promoter is shown illustrating the 

positions of the E-pal and GC-boxes.

The Figure also shows the construction of six promoter-deletion constructs 

that were fused to the CAT reporter gene and transfected into epithelial cells. 

CAT activity was normalised relative to an SV40-promoter/enhancer-CAT 

construct.

These results show the repressive effects of elements 5' to -178bp and the 

positive effects of the E-pal and GC-boxes. Experiments illustrating the 

tissue-specific properties of the E-pal element are referred to in the main text.

(Data from BEHRENS et al., 1991)
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sequences in Xenopus and human.

Deletion constructs were used to determine the roles played by these elements 

in the transcription of a cloned CAT gene. Relative to the expression of a SV40 

promoter/enhancer construct (arbitrarily defined as 100%), the 3Kb of DNA 5’ 

to the transcriptional start site had only 10-15% activity (see Figure IV.3). A 

set of deletion constructs, all having the same 3'-end (at +92bp), illuminated the 

presence of a negative silencer region 5' to -178bp; and that the E-pal element 

(and to a lesser extent the GC-box) both had positive promoter activity. Gel 

retardation and DNA footprinting assays both confirmed the presence of 

protein complexes covering both (independently) E-pal and GC-box elements. 

Cloning variable numbers of E-pal elements upstream of an SV40 promoter 

conferred epithelial-cell specific activity in a dose-dependent manner: 

transfection of this construct into epithelial cells lead to a 2-20 fold stimulation: 

transfection into fibroblasts and smooth muscle cells lead to a 2-5 fold decrease 

(relative to the SV40 promoter alone).

The E-Cadherin promoter therefore conforms with the currently accepted 

modular view of promoters, in that the promoter comprises a number of 

positive and negative regulatory sequences which combine to confer correct 

temporal and spatial expression on the gene.

4.6 Conclusions

The eukaryotic promoter has shown itself to be a complex region of DNA 

where multi-factor complexes jostle for key regulatory sites. The result is the 

suppression or activation of the cell's transcriptional machinery, depending on 

the factors present or absent.

Characterization of the NCAM promoter (which regulates the transcription of 

a molecule having a similar specificity to N-Cadherin) is at an advanced stage,

with the identification of eight protein-binding sites, one of which possibly 
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being the site of binding of a homeobox protein. The further identification of 

the transcription factors involved in the regulation of this gene can only serve 

to enhance our knowledge of the control mechanisms underlying neural 

transcription in general. Armed with such knowledge, defects in neural 

regulatory processes may be better understood and as well as hopefully 

illuminating the ways that such defects may be corrected.

E-Cadherin is the only Cadherin whose promoter sequence has been 

published to date. Like the NCAM promoter, the E-Cadherin promoter also 

lacks a TATA-box. A number of DNA elements that may be involved in the 

regulation of the gene have been identified.

Although the Cadherins as a family show remarkable coding sequence 

conservation, which even extends to the intron/exon boundaries, this 

conservation would not be expected to continue in the promoter regions given 

the diverse expression patterns of the Cadherin proteins.

The study of proteins that form part of a family or that have restricted tissue 

distributions can provide information, the usefulness of which extends far 

beyond that specific protein. Through a comparison with the other members of 

the Cadherin family, the study of N-Cadherin may provide additional 

information regarding the history and divergence of this family. By a 

comparison with molecules such as NCAM, the study of the N-Cadherin may 

also be useful to further add to the general body of knowledge on neural 

regulatory mechanisms.

By using a system such as Xenopus. which is highly amenable to the 

developmental biologist, such regulatory processes may be followed both 

quantitatively and qualitatively i.e. promoter activity may be measured

numerically and followed visually. The following study therefore has aimed to 
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take full advantage of the Xenopus system in starting to elucidate the processes 

involved in the regulation of the X.borealis N-Cadherin gene.
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5.1 General Remarks.

The "standard methods" referred to below are obtainable from 

SAMBROOK et al. (1989). PERBAL.(1988) or other similar readily - 

available laboratory manuals. Suppliers of reagents used are not given 

unless one particular manufacturer was preferred, using the quantities 

of enzyme recommended by the manufacturers. Centrifuging of 

Eppendorf tubes was always done at 12,000rpm on a standard 

Eppendorf bench centrifuge.

Unless otherwise stated, for plasmid work the bacteria used was BB4

(supF58, supE44, hsdR514 (rk_, mk_), galK2, galT22, trpR55. metB 1.

tonA, lambda-, D(arg-lac)U169 [F. proAB, laclQZDM15, TnlO(tetR)], 
Stratagene. 1987) which was always grown in the presence of

tetracycline ( lOpg/ml); ampicillin was also added ( lOOjJg/ml) when

the bacteria was transformed with pBluescript. For EMBL3 library

screening the E.Coli strain K803 (hsdR- hsdM k gab mer supE) was

used.

For RNA, work all laboratory-made RNA solutions were either 

treated with diethyl-pyrocarbonate (DEPC) or made with DEPC- 

distilled water; glassware was baked at 250°C overnight and all 

reagents isolated from main laboratory stocks.

Extensive precautions were always taken when dealing with any 

radionucleotides.

Restriction-enzymes were used as per manufacturers' instructions.
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using the buffers supplied. Complete digestion was always verified on 

an agarose-TBE gel (see below) by ensuring the complete absence of 

starting plasmid bands (run in an adjacent lane). In the case of double­

digests, unless both enzymes worked with 100% efficiency in the 

same buffer, the digests were carried out consecutively with a phenol/ 

chloroform-extraction/EtOH-precipitation step (see below) in between 

each digestion. For the second digest, digestion of the original plasmid 

(with the second enzyme) was included as a control, to monitor the 

extent of the second digestion.

5.3 Phenol/chloroform-extraction and ethanol-precipitation 

Phenol/chloroform-extraction was carried out as per standard

methods. Ethanol (EtOH) precipitation was carried out using 1/10 vol. 

3M sodium acetate pH 6.5 for DNA precipitations and 3M sodium 

acetate pH 5.2 for RNA precipitations unless otherwise stated. After 

centrifugation, pellets were washed with 80% EtOH and desiccated 

briefly.

5.4 Dcphosphorylatiop pf PNA ends

Calf intestinal alkaline-phosphatase (CIAP) was used to remove 

terminal phosphates from restriction-enzyme digested DNA ends. The 

Zn/Mg/Tris buffer and reaction conditions were used as in 

SAMBROOK et al. (1987).

5.5 Blunting of restriction-enzvme digested DNA ends with Klenow 1 

Restriction-enzyme digests were performed as above. The DNA was

then phenol/chloroform-extracted and EtOH-precipitated; the DNA
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was resuspended in 20.5m1 distilled water. To this was added 2.5pl 

Nick Translation Buffer (see below), lpl dNTP mix (dA, dC, dG, 

dTTP at 2mM each, in distilled water), and lpl Klenow I (6U/M1, 

BRL). The reaction was allowed to proceed for 30 minutes at room 

temperature and then lpl EDTA pH 8.0 and 74pl TE pH 7.5 were 

added to stop the reaction. (TE used in all cases was lOmM Tris/HCl, 

ImM EDTA pH 7.6). The solution was then phenol/chloroform- 

extracted and EtOH-precipitated with 0.5 vol. 7.5M ammonium 

acetate pH 7.5.

Restriction-enzyme digested DNA was fractionated on 0.5-2% 

agarose-TBE gels using standard methods. Two main gel-sizes were 

used: minigels (10 x 8cm, Pharmacia) were used for routine 

monitoring of restriction-enzyme digest progress; Maxigeis (14.5 x 

19.5cm, Pharmacia) were used for high-resolution band-size 

determination and for Southern blots. Restriction-enzyme digested 

lambda-phage markers were used on all gels.

5.7 LMP-agarose gels and isolation of DNA bands

Low melting point (LMP)-agarose gels were prepared and run using 

standard methods but the current was always limited to 50mA to avoid 

melting the gel. Bands were visualized for the minimum period 

possible on a UV-light box (to avoid damage to the DNA) and the 

smallest slice of gel that incorporated the DNA band of interest was 

taken into an Eppendorf tube. The tube was weighed and the volume
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of gel (1 vol.) estimated (based on lg=lml). 4 vols. distilled water 

were added and the tube was incubated at 65°C for 5 minutes to melt 

the gel. An equal volume of phenol was then added, the tube was 

vortexed for 1/2 minute and then incubated on ice for 10 minutes. The 

tube was then centrifuged, and phenol/chloroform-extracted twice 

before EtOH precipitation, usually with 10pg tRNA carrier.

5.8 Ligations of DNA fragments using T4 PNA Ligase

DNA and vector (50-100ng each) were combined in 6.5m1 distilled 

water and heated for 5 minutes at 45°C, and then 5 minutes at 0°C (to 

dissociate any sticky ends). 1 Ml 10mM rATP, 2pl 5x T4 DNA Ligase 

Buffer (5x = 250mM Tris/HCl pH 7.6, 50mM MgCl2, 5mM DTT,

25% PEG-8000) and 0.5pl T4 DNA Ligase (BRL, 2 Weiss U/pl) were 

then added. Inter-molecular ligations were incubated at 4°C for 20 

hours; intra-molecular ligations were incubated at 37°C for 6 hours 

without any PEG-8000 in the Ligase Buffer.

5.9 Preparation of competent bacterial cells

Overnight cultures were seeded from 15% glycerol stocks or single 

bacterial colonies into 10ml LB (SAMBROOK et a l 1989) + 

antibiotics. These were shaken overnight at 200rpm, 37°C, in a rotary 

incubator. Next morning, 100^1 of overnight culture was added to 

10ml fresh LB + antibiotics and shaken at 300rpm for 120 minutes. At 

the end of this time the O D ^  was approx. 0.3 (as previously 

determined by O D ^  v cell number titration experiments for BB4 

bacterium). Bacterial cultures were then chilled on ice for 10 minutes.
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and centrifuged at 200rpm for 5 minutes before the supernatant was 

decanted. Pellets were resuspended in 5ml ice-cold lOOmM CaCl2 and 

incubated on ice for a further 30 minutes. Cultures were then 

centrifuged as before and resuspended in 1ml lOOmM CaCl2and 

stored at 4°C until use (invariably the same day).

5.10 Transformation of competent bacterial cells with PNA plasmids 

Competent cells were prepared as above. 1/2 ligation mix or 50ng

plasmid were diluted into 25pl sterile distilled water (Tube A). 3pl of 

this was diluted into 27pl sterile distilled water into a second tube (B). 

Likewise, 3pl of Tube B was diluted into 27pl sterile distilled water 

for Tube C. (In this way, 1/10 and 1/100 dilutions of the original DNA 

solution were made). To each tube was added 200pl competent 

bacteria. Each tube was incubated on ice for 40 minutes before heat- 

shocking at 43°C for 2 minutes, incubating on ice for 5 minutes and 

then spreading out on LB-agar-antibiotic plates. Controls included cut 

vector minus insert, circular plasmid and untransformed-bacteria on 

antibiotic-resistance selecting plates. The ratio of [cut vector +plus 

insert]:[cut vector minus insert] determined the number of DNA preps 

subsequently made, which was usually between 4 and 12 for each 

clone.

5.11 Small-scale plasmid minipisps 

Transformed-bacterial cultures were seeded from glycerol stocks or

from single colonies into 10ml 2xYT (SAMBROOK et al., 1989) + 

antibiotics and shaken overnight at 200rpm. The following morning
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15% glycerol stocks were taken from any new cultures (850pl culture 

+ 150m1 glycerol, mixed and stored -70°C). 1.5ml fractions were taken 

into 1.5ml Eppendorf tubes and centrifuged; the supernatant was 

discarded. The pellet was resuspended in 200pl ice-cold STET (8% 

sucrose, 0.5% Triton X-100, 50mM EDTA, lOmM Tris/HCl pH 8.0) 

before 10pl lOmg/ml lysozyme/distilled water was gently mixed in by 

inversion. This was incubated at 4°C for 10 minutes, boiled at 100°C 

for 40 seconds and then centrifuged for 10 minutes. The bacterial 

DNA/cell-debris 'blob' was removed with a toothpick before 

precipitation with 200m1 isopropanol + 20pl 3M Na acetate pH 6.5. 

After centrifugation, the DNA was resuspended in 200pl TE, phenol/ 

chloroform-extracted twice and then EtOH-precipitated with 100pl 

7.5M ammonium acetate + 500pl EtOH. Routinely, 2x 1.5ml cultures 

produced approximately 2pg plasmid DNA.

5.12 Large-scale DNA preparations 

Large-scale DNA preparations were made using the lysozyme/SDS/ 

NaCl method followed by centrifugation through CsCl gradients and 

subsequent dialysis into TE (SAMBROOK et al., 1989). This 'gentle' 

method was used because it could produce high-molecular weight 

plasmids possessing the minimum of nicks and loss of supercoiling.

dNTPs
This method was used to label recessed 3'-termini of restriction- 

enzyme digested DNA fragments; it was also used for labelling DNA

- 105 -



markers. A restriction-enzyme digest was carried out as above in a 

30m1 reaction mix. 2pl oc-32P-dGTP or a -32P-dCTP (together with the 

remaining cold dNTPs at 100pM final concentration, as necessary) 

and lpl Klenow I (6U/iil, BRL) were added. The reaction was 

incubated at room temperature for 20 minutes before separation of 

unincorporated counts by Sephadex-column chromatography. The %- 

labelled dN I P incorporation of each 0.5ml fraction was determined as 

below.

5.14 Isolation and cleaning of Qligomicleotjdes

Synthetic oligonucleotides were made on a Applied Biosystems- 

oligonucleotide synthesizer using standard methods and supplied in a 

dessicated form. Oligonucleotides were cleaned by butanol extraction 

before being isolated by UV-shadowing from 15% denaturing 

polyacrylamide gels (SAMBRROK et al.. 1989).

5.15 End-labelling of oligonucleotides with T4 Polynucleotide Kinase

The following were combined in a 0.5ml Eppendorf: 1 Ml oligo (10

pmoles/pl), 2m1 10x T4 Kinase Buffer (lOx = 0.5M Tris/HCl pH 7.6, 

0.1M MgCl2, 50mM DTT, ImM spermidine.HC1, ImM EDTA), 2\aI 

Y-32P-rATP (40pCi), 14m1 distilled water and 1 Ml T4 DNA 

Polynucleotide Kinase (6U/M1, BRL). The reaction was incubated at 

37°C for 45 minutes. 65°C for 10 minutes and then lpl 0.5M EDTA 

pH 8.0 and was added. The terminated reaction was run down a 

Sephadex-G-50-150 column (see below) and eluted with TE. 0.5ml 

fractions were taken, each being assessed for %-incorporation by the
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method below. 1/10 vol. sodium acetate pH 6.5 and 10pg tRNA were 

added to the selected fractions before each was individually phenol/ 

chloroform-extracted and EtOH-precipitated.

5.16 Primer extension of labelled oligonucleotides 

Oligonucleotides were prepared and labelled as above. Labelled 

oligonucleotide (50,000cpm) and RNA were combined in an 

Eppendorf tube and EtOH-precipitated together. After centrifugation, 

washing in 80% EtOH. recentrifugation and brief dessication, the 

oligo/RNA mix was resuspended in 10pl Aqueous Hybridisation 

Buffer (0.4M NaCl. lOmM PIPES pH 6.4,0.5mM EDTA) and sealed 

into a glass-capillary tube. After dénaturation at 85°C for 10 minutes, 

the reaction mix was incubated in a water-bath at the desired 

temperature overnight (usually 40-65°C). In the morning, the 

capillary-tube contents were expelled into 42.5m1 Aqueous 

Hybridisation Buffer and 110pl EtOH added; this was stored at -20°C 

for 30 minutes. After centrifugation and 80% EtOH wash, the pellet 

was resuspended in 20pl RTase Buffer (50mM Tris/HCl pH 8.3, 

60mM KC1, lOmM MgCl2, ImM dA, dC, dG, dTTP, ImM DTT, 

50Mg/ml actinomycin D, 1 Ml human placental RNAse inhibitor (10U/ 

Ml). 0.5pl AMV reverse transcriptase (Life Sciences Inc, 17.4U/M1). 

The reaction was incubated at 42°C for 2 hours. 1 Ml 0.5M EDTA pH 

8.0 and lpl 200pg/ml RNAse A were then added and the reaction 

incubated at room temperature for 15 minutes. 80pl TE was added 

followed by phenol/chloroform-extraction and EtOH-precipitation
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with 5pg tRNA. Pellets were resuspended in 3pl Formamide Loading 

Buffer (formamide, 0.1% xylene cyanol, 0.1% bromophenol blue, 

lOmM EDTA pH 8.0), and run on 5-8% acrylamide, 7M urea, 0.5x 

TBE gels after denaturation of the DNA by boiling at 95°C for 5 

minutes.

Labelled oligonucleotide + synthetic sense-strand RNA/embryo RNA 

was run as a positive control.

5.17 Polyacrylamide gel electrophoresis 

Polyacrylamide-gels were run as per standard methods. Gel reagent

stocks were filtered prior to use; gels were routinely pre-run for 15-30 

minutes prior to use. After running, gels were fixed in 10% acetic 

acid/10% EtOH/distilled water and then dried-down prior to exposure 

at -70°C with X-ray film (Fuji Medical X-ray Film RX). Labelled 

DNA markers were always run: either 32P-labelled-pBR322/HpaII or 

35S-labelled DNA sequence were used.

5.18 RNA extraction from Xenopus embryos

20 healthy embryos (of a distinct stage, but always below stage 30) 

were selected and washed with fresh 1/10 BarthX (lx = 88mM NaCl, 

24mM NaHCOj, 15mM Tris/HCl pH7.5,0.33mM Ca(N03)2, 0.4ImM 

CaCl2,0.8mM MgS04) in a 1.5ml Eppendorf tube. The supernatant 

was decanted and 0.8ml Buffer A (50mM Tris/HCl pH 7.6, 50mM 

NaCl, lOmM EDTA, 0.5% SDS) at 37°C was added and then lOpl 

Proteinase K (20mg/ml, freshly made). Embryos were homogenised 

by rapid pipetting with a 1.5ml Gilson pipette-tip. The homogenate
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was incubated for 60 minutes at 37°C, split into 2 tubes, phenol/ 

chloroform-extracted and then EtOH-precipitated with 0.3M sodium 

acetate pH 5.2. After centrifugation and an 80% EtOH-wash, each 

pellet was resuspended in 400pl TE. 400pl ice-cold 8M LiCl (RNAse- 

free) was then immediately added. After a 3-12 hour precipitation at - 

20°C, the pellet was centrifuged as before, washed, and resuspended in 

400nl TE. A 15m1 fraction was taken for gel-electrophoresis and RNA 

concentration determination. 1ml EtOH was added to the remainder 

and then it was stored -70°C until required.

The LiCl treatment removed a large amount of contaminating DNA 

and glycoprotein. The RNA, when run on agarose-TBE gels, routinely 

produced discrete strong rRNA and weaker tRNA/5SRNA bands.

For embryos more advanced than stage 30 and for Xenopus brain, the 

RNA extraction procedure of Conn (1989) was used. This 

guanidine.HCl-method is incompatible with the yolky, early-stage 

embryos.

5.19 In vitro transcription of oi-̂ P-labelled RNA

The protocol used was a revised version (Paul Krieg, pers. comm.) of 

Krieg and Melton (1989). Plasmid DNA was always derived from 

CsCl-gradient purified DNA preparations. Particular attention was 

paid to the requirement for the complete linearization of the DNA 

template and the avoidance of leaving 3'-overhanging DNA ends. In 

vitro transcriptions were performed with a -32P-UTP (60nCi/reaction), 

no ’cold’ UTP, and T3 f H  RNA polymerase (50U/m1, BRL). Prior to
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the addition of the polymerase, the reaction was cooled to 4°C for 5 

minutes; polymerase was then added and the reaction continued at 4°C 

for 90 minutes. The reaction was DNAsed, an aliquot was taken for 

%-incorporation-determination and then the full-length probe was 

isolated from a 5% acrylamide, 8.3M urea, lx TBE gel. Elution of 

probe from the gel was into 0.3M sodium acetate pH 5.2, ImM 

EDTA, 0.1% SDS; sufficient elution of probe from the isolated gel- 

slice took place in just 45 minutes.

Sense-RNA in vitro transcriptions were made using similar protocols 

but with unlabelled UTP. These reactions were DNAsed, but no 

attempt was made to purify the full-length transcript.

This protocol was also taken from Krieg and Melton (1989). Gel- 

isolated labelled-RNA probe was added to target/control RNA and 

were EtOH-precipitated together. After centrifugation/wash, they were 

resuspended in 30pl Hybridisation Buffer (80% formamide, 0.4M 

NaCl, 40mM PIPES pH 6.4, ImM EDTA) in 1.5ml Eppendorfs. After 

heating to 85°C for 10 minutes, the RNA/probe were allowed to 

hybridise overnight in a 45°C water bath. Following hybridisation, 

300pl RNAse Digestion Buffer [300mM NaCl, lOmM Tris/HCl pH 

7.5, 5mM EDTA, lOpg/ml RNAse A, 200U/ml RNAse T1 

(Boehringer Mannheim)] was added; digestion was carried out for 30 

minutes at 37°C. 15pl 10% SDS and 2.5pl 20mg/ml Proteinase K 

were added and the reaction was incubated for a further 15 minutes at
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37°C. The reaction was then phenol/chloroform-extracted and EtOH- 

precipitated. After centrifugation, the pellet was resuspended in 5pl 

Formamide Loading Buffer (see above) and run on an 8.3M urea, lx 

TBE, 5-8% polyacrylamide-gel.

In most experiments the corresponding sense-RNA (+probe) was 

added as an extra control to mark the length of the completely- 

protected cDNA fragment; (the probe-alone also contains transcribed 

vector sequences and so is larger than the cDNA). This sense-RNA 

was usually added against a background of embryo RNA to control for 

adverse substances in the RNA prep that might have prevented the 

assay from working correctly.

5.21 Determination of %-label-incorporated into DNA/RNA probes

The disodium hydrogen phosphate (Na2HP04) precipitation method

was used (SAMBROOK et al., 1989). A sample of the labelling 

reaction was diluted 1/100 in TE and four lpl fractions spotted onto 

squares of Whatman DE-81 (DEAE) paper. Two squares were kept as 

unwashed controls; the other two were washed consecutively for 2 

minutes each in: 0.15M Na2HP04 (5x), distilled water (lx). 50% 

acetone/50% EtOH (lx). The filters were then counted on a standard 

liquid-phase scintillation counter. The %-incorporation was 

determined from the formula [counts after washes]/!counts before 

washes] x 100. Typical incorporation values of radionucleotides into 

RNA probes were 70 - 80%.

5.22 Sgphadgji column chromatography
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Sephadex G-50-150 (Sigma) was used in some cases for the 

separation of unlabelled radionucleotides from those incorporated into 

DNA. Columns were run in a 10ml glass pipette and eluted with TE. 

3m1 xylene cyanol (XC) was added to ’hot' samples prior to loading; 

(XC comigrates with the unincorporated radionucleotides and 

therefore marked their position). 0.5ml fractions were taken; all were 

analysed for %-incorporation as above.

5.23 Nick-translation of PNA fragments

The following were combined in a 1.5ml Eppendorf tube: 2pl 10x 

Nick Translation Buffer (lOx ■ 0.5M Tris/HCl pH 7.8. 50mM 3- 

mercaptoethanol, 50mM MgCl2, 0.5mg/ml BSA (#5, Sigma)). dNTP 

Mix (dA, dC. dTTP at ImM each), 3m1 a -32P-dGTP, 1 Ml DNA 

Polymerase I (2U/pl, BRL), lpl DNAse I (20ng/ml), 50-100ng DNA, 

and distilled water to 20pl. The reaction was incubated at 14-16°C for 

2-3 hours prior to phenol/chloroform-extraction and fractionation 

down a Sephadex G-50-150 column.

5.24 Hybridisation of PNA probes to nitrocellulose filters 

Nitrocellulose filters (Hybond C, Sigma) were rehydrated in 6x SSC.

Filters were incubated in Prehybridisation Buffer (0.1% Ficoll. 0.1% 

polyvinylpyrrollidone, 0.1% BSA (#5, Sigma). 6x SSC, 0.5% SDS, 

50% deionised formamide. lOOpg/ml salmon sperm DNA, in distilled 

water) for 2-4 hours at 42°C. Filters were then incubated in 

Hybridisation Buffer (same as Prehybridisation Buffer except with the 

addition of lOmM EDTA and labelled probe) overnight at 42°C. In the
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morning, the solution was decanted and the filters washed in Prewash 

Solution (2x SSC, 0.5% SDS at room temperature, 2x 5 minutes each) 

prior to the main higher-stringency washes as detailed in the Results 

chapters.

5.25 Preparation of plating bacteria

A culture was seeded from a single bacterial colony or glycerol-stock 

of E.Coli strain K803 into LB + lOmM M gS04. This was grown at 

37°C, 200rpm overnight. It was then centrifuged at 2000rpm for 5 

minutes and the pellet resuspended in 4ml lOmM MgS04 and stored at 

4°C until required, invariably the same day.

5.26 EMBL3 genomic library screening

1.5% agar/LB + lOmM MgS04 9.5x9.5cm plates were made and 

stored at 37°C immediately before use. lOOpl library dilution (EMBL3 

phage in SM) and lOOpl plating bacteria (E.Coli strain K803, see 

above) were combined and incubated at 37°C for 20 minutes. They 

were then added to 4.5ml molten (45°C) 0.7% agarose/LB, mixed and 

poured out onto the 1.5% plates prepared above. Plates were 

incubated, inverted, at 37°C overnight. The following morning, 

duplicate 9x9cm nitrocellulose filters (Sigma, Hybond C) were laid 

onto the above plates for 1 minute; orientation marks were made on 

the filter and plate with a sterile syringe needle. The filters were then 

removed and laid (plate-contact side up) onto Whatman 3MM filter 

paper soaked successively in a) Denaturation Buffer (1.5M NaCl, 

0.5M NaOH) for 1.5 minutes, b) Neutralisation Buffer (0.5M Tris/HCl

-1 1 3 -



pH 7.4, 1.5M NaCl) for 6 minutes and then c) 2x SSC (0.3M NaCl, 

30mM sodium citrate pH 7.0) for 6 minutes. Filters were then air-dried 

and baked at 80°C for 2 hours in a vacuum dessicator.

Filters were probed with nick-translated DNA and hybridised as 

above; details of washing conditions are given in the Results.

Following autoradiography of the filters, the positive clones were 

identified and plugs taken from the agar plates and stored in 1ml SM + 

0.1% chloroform at 4°C.

5.271

This method was used for both R408 helper-phage production (for 

DNA sequencing) and as an intermediate step in the library-screening 

process. Phage were plated out to confluence (20,000 p.f.u./9cm round 

plate) on bacterial lawns of E.Coli K803 bacteria on LB/agarose plates 

and grown overnight. 5ml SM was added to each plate and the plate 

was gently shaken for 1-2 hours at 4°C. The SM was then collected 

and a further 1ml SM added; this extra SM was then added to the first 

5ml. 100pl chloroform was added, the solution vortexed briefly, 

centrifuged for 10 minutes at 4°C and then the supernatant was 

collected and stored at 4°C. It was subsequently titrated by serial 

dilution.

5.28 1

Lambda-phage plate lysate was produced as above. RNAse and 

DNAse (lpg/ml each) were added to the supernatant; it was then 

incubated for 30 minutes at 37°C. An equal volume of 2M NaCl/20%
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PEG-6000/SM was added and incubated at 4°C for 1 hour. The 

solution was centrifuged and the supernatant discarded. The pellet was 

resuspended in 0.5ml SM; 5m1 10% SDS and 5m1 0.5M EDTA pH8.0 

were then added. The solution was incubated at 68°C for 15 minutes, 

after which time it was phenol-extracted, phenol/chloroform-extracted 

and the DNA precipitated with an equal volume of isopropanol.

5.29 Single-stranded PNA (ssPNA) preps

ssDNA preps were produced using the protocol of Stratagene 

(1989a). This method uses R408 helper-phage to aid the packaging- 

deficient pBluescript to produce single-stranded DNA. The DNA 

pellet from a 4ml culture was resuspended in 5pl TE; 1 Ml was used per 

sequencing reaction.

5.30 Single-stranded DNA sequencing

ssDNA sequencing was performed by the Sanger method of dideoxy 

sequencing according to the protocol of Amersham (1984). M l3 

primers or synthetic oligonucleotides were used on pBS clone 

templates. 35S-dATP was incorporated into the sequencing reactions; 

these were electrophoresed on 7.3M urea, lx  TBE, 5% 

polyacrylamide-gels.

5.31 Southern blots

Agarose "Maxigels" were run as above. After photographing the gel, 

it was treated as follows: a) 20 minutes 0.25M HC1, b) 3x 15 minutes 

Denaturation Buffer, and c) 3x 15 minutes Neutralisation Buffer 

(buffer details are given under EMBL3 library screening above). In
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between each of these steps the gel was rinsed twice in distilled water. 

The gel was then blotted using standard procedures: a nitrocellulose 

filter was used (Hybond C, Amersham); the eluant was 20x SSC; and 

elution was overnight. After blotting the filter was rinsed in 6x SSC, 

air-dried and baked at 80°C for 2 hours in a vacuum oven.

5.32 Production of promoter deietion/3-galactosidase clones 

The vector used in the 3-galactosidase expression studies was

pCaSpeR-AUG-0gal (THUMMEL et al., 1988). All clones were 

excised from pBluescript (pBS) clones described in Chapter IX and 

inserted into the EcoRI-BamHI-Kpnl polylinker site of pCaSpeR- 

AUG-3gal. using some of the pBS poly linker if necessary.

Precise details of the cloning steps are given in Chapter IX. After 

ligation into pCaSpeR-AUG-3gal the clones were transformed into the 

bacterium BB4 and large-scale DNA preparations performed as above.

5.33 Linearization of templates for micro-iniectlon

10pg of plasmid was digested with the appropriate enzyme/buffer; 

complete digestion was verified by the total absence of circular- 

plasmid bands on agarose-gel electrophoresis. The DNA was then 

phenol/chloroform-extracted, chloroform-extracted and then ethanol- 

precipitated twice with sodium acetate. After precipitation the pellet 

was washed with 80% ethanol and resuspended in TE at 40Mg/ml.

5.34 Hormone-stimulated production n tX fnopus eggs and in. vim  

fertilisation

The hormone-stimulated production of Xenopus laevis and borealis
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eggs was performed as per standard procedures. A combination of 

natural' and artificial’ (i.e. by removal of testes, followed by in vitro 

fertilisation) matings were used.

5.35 Injection of DNA clones into Xenopus laevis embryos 

Xenopus laevis embryos were produced as described above and

dejellied with 2% cysteine-HCl pH 8.0 (NaOH). Two-cell embryos 

were then transferred into 5% Ficoll in 1/10 BarthX (see above) to 

remove liquid from the egg-cell membrane space thus facilitating 

microinjection. 20nl of DNA at 40pg/ml was injected into one cell of 

each two-cell Xenopus laevis embryo. Embryos were incubated until 

cleavage had proceeded and then transferred back to 1/10 BarthX to 

allow normal gastrulation. Incubated was subsequently performed at 

14-20°C up to the desired stage of development.

5.36 Staining of Xenopus embryos for B-galactosidase expression 

The method used was recommended by Richard Harland. University

of California at Berkley (SANES et at., 1986) that had been used 

on transgenic mice. All staining steps were performed in 1x3cm glass 

bottles. Embryos of the desired stage were washed in ice-cold-PBS 

and then fixed in Fix (2% formaldehyde, 0.2% glutaraldehyde, 0.02% 

NP40, 0.01% sodium deoxycholate, PBS) for 40 minutes on ice.

After rinsing twice in ice-cold PBS, Xgal Stain (5mM K4Fe(CN)6, 

5mM K3Fe(CN)6, lmg/ml X-gal, 2mM MgCl2, PBS, made fresh) 

was added and the embryos gently shaken for 48 hours at room 

temperature in foil-covered bottles. They were then
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rinsed twice in PBS and fixed in MEMFA (0.1M MOPS pH 7.4, 2mM 

EGTA, ImM MgS04, 3.7% formaldehyde, distilled water) for 2 hours 

at room temperature, before being bleached (70% MeOH/30% H20 2) 

for 5-12 hours, and then fixed in 100% MeOH for 2x 5 minutes. 

Embryos were then cleared in Murray's (2 benzyl benzoate: 1 benzyl 

alcohol) and photographed. If storage of the embiyos was necessary, 

they were kept in 100% MeOH in the dark.
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Chapter VI

Preliminary tests and library screen

6.1 Introduction to results chapters 

6.2. Origin of N-Cadherin cDNA

6.3 Southern blot of X.borealis genomic DNA with X.laevis

N-Cadherin cDNA

6.4 RNAse protection assays

(i) Confirmation of lack of heterogeneity at 5’-end 

of cDNA

(ii) Use of elongation factor E F -la  as a positive control

(iii) X.laevis N-Cadherin cDNA BamHI-PvuII fragment

(iv) X.laevis N-Cadherin cDNA EcoRI-BamHI fragment

6.5 Genomic screen of X.borealis genomic DNA library with X.laevis

N-Cadherin cDNA

(i) Choice of library

(ii) Library construction

(iii) Library screen

6.6 Mapping of putative positive clones

(i) Southern blot of putative positives

(ii) Mapping of positive clones 3- 6, 9, 12, 

and 21/EMBL3

6.7 Conclusions
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6.1

The case for the exploration of the N-Cadherin promoter region has 

been made in the previous introductory chapters. It has been justified 

on the basis of contributing to our knowledge of neural promoters and 

the regulation of Ca2+-dependent cell adhesion molecules in general, 

and also to the study of the regulation of the N-Cadherin molecule in 

particular. Chapters VI-IX therefore contain the results of this study.

Chapter VI contains the details of the initial tests performed on the 

X.laevis N-Cadherin cDNA prior to its use in the screening of a 

X.borealis genomic DNA library. The isolation of the genomic clones 

and the cloning of the DNA fragments that hybridised to the X.laevis 

N-Cadherin cDNA are also described.

In Chapter VII, the sequence data from the genomic clones is 

presented and then analysed from a theoretical aspect.

Chapter VIII provides experimental data to support the predictions 

made in Chapter VII.

In Chapter IX. the construction of promoter/deletion-0-galactosidase 

clones is described together with the results of the micro-injection of 

these clones into Xenopus embryos. Photographs of these injected 

embryos are presented and also an interpretation of the 0- 

galactosidase expression patterns obtained.

Unless otherwise stated, all experimental procedures were carried out 

as detailed in Chapter V.
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6.2 Origin of X.laevis N-Cadhenn cPNA

The Xenopus laevis N-Cadherin cDNA was originally obtained by 

members of Kintner’s group (DETRICK et al., 1990) as described in 

Chapter III. Briefly, the chick N-Cadherin cDNA was identified as a 

result of antibody-neutralisation assays. This was then used to screen a 

X.laevis stage 17 (early neurula) XgtlO library, the resulting clones 

being identified as the X. laevis homologues of chick N-Cadherin by 

DNA sequence comparison.

The complete X.laevis N-Cadherin cDNA (approx 4.0kb) was very 

kindly provided by Chris Kintner (Salk Institute, San Diego), ready- 

cloned into the EcoRI site of the vector SP72 (Promega). On receipt, 

this plasmid was transformed into the bacteria MC1061 and a large- 

scale DNA preparation carried out. An extensive restriction-enzyme 

fragment analysis of the plasmid was then performed to confirm the 

identity of the plasmid against the published sequence. A restriction- 

enzyme map of the X.laevis N-Cadherin cDNA is given in Figure 

VI. 1. This figure also illustrates the main cDNA restriction-enzyme 

fragments used in this study.

6.3 Southern blot of X.borealis genomic DNA with X.laevis N-

Cadherin cPNA

In order to confirm the presence of the N-Cadherin gene in the 

genome of X.borealis, the X.laevis cDNA was used to probe 

X.borealis genomic DNA in a Southern blot.

8pg X.borealis DNA was digested to completion with EcoRI and
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Figure V).l

Restriction-enzyme digest map of X.laevis N-Cadherin cDNA

SP72
EcoRI--------  Bain HI (-190 to 93bp)
EcoRI---------------- Pvull (-190 to 657bp)

B aniH l-------  Pvull (93 to 657bp)

SacI _______________________________________
B g l ll  I__________________________________I

EcoRI I______________________________________
PstI ■____________________________.
Bam  HI _________________ ,_________ ,________

Pvull __________ I___________________________l.
Xbal _________________________I_____________
Hindi II_______________________________________
EcoRVl_______________________________________

This clone was kindly donated by Chris Kintner (Salk Institute, San 

Diego). Upon receipt, the above restriction-enzyme digests were 

performed and the results verified against the published DNA 

sequence data (DETRICK et al., 1990).

The vector is SP72 (Promega); the insert is cloned into the EcoRI 

site. The scale is in kilobases. The fragments used in this study are 

illustrated in bold and numbered relative to the translational start-site 

(+1).
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PvuII. The digested DNA was run on a 1% agarose-TBE Maxigel 

together with lambda markers and N-Cadherin cDNA digested with 

Pstl+EcoRI to act as a positive control. 8xlO*3ug and 8xl0*7ug 

digested cDNA were run; the former was a positive control for the 

hybridization reaction, the latter being representative of the amount of 

DNA expected from a single copy gene in 8pg total DNA. The gel 

was run, in triplicate, at 40mA for 16 hours.

The Southern blot and subsequent hybridisation with 32P-dGTP 

labelled nick-translated X.laevis N-Cadherin cDNA (total, gel- 

isolated) were carried out as described in Chapter V. Filters were 

washed for 3x30 minutes at a) 55°C, 2xSSC, 0.5%SDS, b) 55°C, 

O.lxSSC, 0.5%SDS. and c) 60°C, O.lxSSC, 0.5%SDS and 

autoradiographed for 2.5 days at -70°C. The gel and corresponding 

autoradiograph are shown in Figures VI.2 and VI.3.

The highest stringency wash (c) was a compromise between 

preventing cross-reaction of the probe with other Cadherins in the 

X.borealis genome, whilst still preserving hybridisation using the 

inter-species probe. The result shows several genomic bands 

particularly in the EcoRI track (Lane 10), thus confirming the 

presence of at least one copy of the N-Cadherin gene in the pseudo- 

tetraploid X.borealis genome.

6.4(i) i

Differential splicing is known to be common within other neural/
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restriction-enzyme digested with Pvull Mid EcoRI

Lanes 1, 5 and 9: 8 tig X.borealis genomic DNA cut with Pvull

Lanes 2 ,6 and 10: 8 tig X.borealis genomic DNA cut with EcoRI

Lanes 3.7 and 11: lO3 tig N-Cadherin cDNA cut Pstl+EcoRI

Lanes 4, 8 and 12: 10-7tig N-Cadherin cDNA cut Pstl+EcoRI

L^ne 13: 10-2 Mg N-Cadherin cDNA cut Hindlll

Markers (M): Lambda plasmid cut EcoRI+Hindlll

Gel: 1%-agarose TBE Maxigel

The N-Cadherin cDNA is that of Detrick el al. (1990) as described in 

Figure VLL
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M
(Kb)

A
1 2  3 4

B
5 6 7 8

C
9 10 11 12 13
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Figure VI,3a

Southern blot of agarose £el of X.borealis genomic PNA 

restriction-enzvme digested with PvuII and EcoRL 

probed with X.laevis N-Cadherin cDNA

Lanes 1, 5 and 9: 8 Mg X.borealis genomic DNA cut with PvuII

Lanes 2, 6 and 10: 8 Mg X.borealis genomic DNA cut with EcoRI

Lanes 3. 7 and 11: 10 3 Mg X.laevis N-Cadherin cDNA cut 

Pstl-f EcoRI

Lanes 4. 8 and 12: 10-7Mg X.laevis N-Cadherin cDNA cut 

Pstl+EcoRI

Lane 13: 

Markers (M): 

Probe:

10’2 Mg X.laevis N-Cadherin cDNA cut Hindlll 

Lambda plasmid cut EcoRI+Hindlll 

X.laevis N-Cadherin cDNA (approx. 4kb)

A 55°C, 2x SSC, 0.5% SDS 

B 55°C, 0.1 x SSC, 0.5% SDS

C 60°C, 0.1 x SSC, 0.5% SDS

3 washes each for 30 minutes

The Southern blot was autoradiographed for 2.5 days at -70°C, with 

one screen.
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Figure V1.3b

4-21.23

. 5 . 1 5  
1=4.27 
♦“  3.53

4- 2.03 
4- 1.58 

4-0.95 

4-0.56

5.45 -4

1.05-

The Southern blot shows several genomic bands particularly in the 

EcoRI lane (10), thus confirming the presence of at least one copy of 

the N-Cadherin gene in the X.borealis pseudo-tetraploid genome.
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muscle genes, as discussed in the introductory chapters. An RNAse 

Protection Assay (RPA) was therefore performed on X.laevis embryo 

RNA to verify that there was no heterogeneity in the 5'-end of the N- 

Cadherin mRNA, at least in the part that corresponded to the cDNA. It 

must be remembered that there was no guarantee that the cDNA 

would extend to the transcriptional start-site. Effects such as GC-rich 

regions producing hairpins, or repeats of one particular dNTP 

producing a local shortage of that dNTP, can produce stalling and fall- 

off of the reverse-transcriptase molecule. Therefore, although the 

cDNA contains 182bp upstream of the translational start site, it can 

not be assumed that the start of the cDNA coincides exactly with the 

transcriptional start site.

The cDNA could have been used to screen a cDNA-library in order 

to isolate more-5' DNA sequence. There was, however, no indication 

that this was necessary or any guarantee of success.

6.4(ii) Use of elongation factor EF-la as a positive control 

The elongation factor, E F -la  (KR1EG et al., 1989), was used 

initially as a positive control to establish the in vitro transcription / 

RPA procedure; as an 'abundant' message, it was readily detectable. It 

also was used initially to verify the integrity of the RNA extracted 

from Xenopus embryos.

The E F-la  clone used (G1EF) was obtained from Paul Krieg 

(University of Texas at Austin. USA) and contains a 378bp PslI-SacI

fragment of the X.laevis cDNA clone in pGEMl. For RPAs, the clone 
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was linearised with HindHI and transcribed with T7 RNA polymerase. 

As can be seen in Figure V1.4, one main strong band is seen with 

X.laevis’, two lower-size bands are seen with X.borealis.

6.4(iii) X.laevis N-Cadherin cPNA BamHl-PvuII fragment 

The fragment used by Kintner in his RNAse protection assays (to 

analyse tissue and temporal expression) was a 564bp BamHI-PvulI 

fragment (93 to 657 nts, illustrated in Figure VI. 1) that encodes 

primarily the "pre" region of the N-Cadherin protein (DETRICK et 

al., 1990). Therefore, this fragment was used as a known positive 

control to establish the RPA reaction conditions for N-Cadherin 

probes on X.laevis RNA.

The BamHl-PvuII fragment was gel-isolated from the N-Cadherin 

cDNA/SP72 clone. pBS KS+ was cut with SacI, blunted, cut with 

BamHI and then CIAPed, the vector being phenol extracted and 

EtOH-precipitated between each step. (The Sacl/blunting procedure 

produced a blunt end to ligate the PvuII end to - PvuII being a blunt- 

end producing enzyme and there being no PvuII site in the pBS 

poly linker). The BamHI-PvulI fragment was then cloned into the 

above-prepared pBS vector, transformed into BB4 and miniprepped.

Positive clones were verified by restriction-enzyme digests and then 

large-scale DNA preparations carried out. ssDNA preps were made 

from the large-scale DNA clone and sequenced from pBS into the 

PvuII end of the insert to double-check the cloning procedure.

Labelled anti-sense RNA probe was made by linearizing the BamHI- 
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Figure VI,4a

EF-ig Probe on X.laevis brain RNA and X.borealis embryo RNA

BNAse Protection Assay:

Lane 1: X.laevis adult brain RNA, 1 brain (lOpg)

Lane 2: X.borealis embryo RNA (stage 19-27) - 25pg

Lane 3: " - 2.5pg

Lane 4: " - 0.25ng

Lane 5: Control - lOpg tRNA with RNAse A

Lane 6: Control - 10pg tRNA without RNAse A

To each of the above was added 500cpm E F -la  probe. Hybridisation 

and digestion conditons were as described in Chapter V.
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Figure V1.4b

M 6 5 4 3 2 1

(DNA)

404 -----

309 __ »

242 __ »

217 __ »

201 ___ »

190 — * 
180 -----

160 __ »

147 ----»

124 ----►

(Adjusted RNA)

257

153

The autoradiograph shows that the EF-la probe readily detects 

homologous RNA in X.laevis brain (Lane 1) and X.borealis embryo 

(Lanes 3 and 4) preparations.
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PvuII/pBS clone with BamHI and transcribing with T7 RNA 

polymerase; control sense-RNA was made by linearizing with PvuII 

(which cuts down-stream of the pBS polylinker) and transcribing with 

T3 RNA polymerase.

This experiment also compared two different RNA extraction 

procedures: the first involved homogenizing embryos directly into 

phenol, phenol/chloroform extracting and EtOH-precipitating (the 

"Phenol" method); the second method was the Proteinase K method 

detailed in Chapter V (the "Proteinase K" method). The results are 

shown in Figure VI.5.

In addition to confirming that the cDNA fragment is completely 

protected (compare lanes 4 and 10, although a smaller band of 348bp 

is seen), the experiment demonstrated the superior RNA extraction 

properties of the "Proteinase K" method over the "Phenol" method. 

The "Proteinase K" method was therefore used in all subsequent 

experiments, and reliably produced clean, un-degraded RNA (as 

judged by RNA-agarose gel electrophoresis).

6.4(iv) X.laevis N-Cadherin cDNA EcoRI-BamHI fragment

The EcoRI-BamHI fragment at the extreme 5' end of the X.laevis N- 

Cadherin cDNA (-190 to +93nts. Figure VI. 1) was ligated directly 

into pBS KS+, transformed into the bacterium TG2 and subsequently 

minipreps were made. After restriction-enzyme analysis to verify the 

correct insert, a large-scale DNA preparation was carried out, ssDNA

preps were made and the insert confirmed again by DNA sequencing.
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Figure V1.5a

X.laevis N-Cadherin BamHl-PvulI fragment on X.laevis embryo_s

RNAse Protection Assay:

Lane 1: Control tRNA - RNAse (+ overnight hybridisation)

Lane 2: Control tRN A - RNAse (- overnight hybridisation)

Lane 3: Control tRNA + RNAse

Lane 4: Control tRNA + sense RNA + RNAse

Lane 5: 

Lane 6: 

Lane 7: 

Lane 8: 

Lane 9: 

Lane 10:

X.laevis embryo RNA (stage 17-22) 3pg (Phenol)

" 9pg

" 15pg "

3pg (Proteinase K) 

" 9pg

" 15pg "

To each of the above was added 50, OOOcpm X.laevis N-Cadherin 

BamHI-PvuII in vitro transcribed RNA probe (fragment as shown in 

Figure VI. 1); hybridisation and digestion conditons were as described 

in Chapter V.

"Phenol" and "Proteinase K" refer to the method of extracting the 

embryo RNA; full details are given in the text.
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Figure VI.5b

Marker DNA size Predicted RNA size
(bp) (nts)

1 2 3 4 5 6 7 8 9 10

The above gel shows the complete protection of the X.laevis N- 
Cadherin BamHI-PvuIl fragment when used to probe X.laevis stage 
17-22 embryo RNA.

It also illustrates the superior RNA extraction properties of the 
"Proteinase K" method (Lanes 8-10) over the "Phenol" method (Lanes 
5-7).
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To make the anti-sense probe, the EcoRI-BamHI/pBS clone was 

linearised with EcoRl and transcribed with T7 RNA polymerase. The 

sense-RNA was made by linearizing with BamHI and transcribing 

with T3 RNA polymerase. The experiment compared X.laevis 

unfertilised egg, stage 8 and stage 18 RNA. The results are shown in 

Figure VI.6.

This experiment confirmed a number of points:

1. The same temporal expression pattern is seen with this EcoRI- 

BamHI fragment as the published (DETRICK et al„ 1990) more 3' 

BamHI-PvuII fragment: prior to MBT (stage 10.5) no expression is 

detectable; expression is strong in mid-neurula (stage 18). These 

results are consistent with a molecule supposedly involved in neural 

development.

2. An amount of RNA between 3 and 15pg (1-5 embryos) would give 

a readily detectable signal using the X.laevis cDNA probe on X.laevis 

embryo RNA.

3. No heterogeneity is seen in the length of the protected transcript. 

Differential splicing at the 5'-end does therefore not appear to occur 

within the regions tested.

This X.laevis probe was not used on X.borealis RNA for the 

following reason: RNAse A will cut ssRNA 3’ to pyrimidine residues; 

RNAse T1 will cut 3' to guanine residues. Therefore, the mismatch of 

any one RNA base will result in the cutting of the probe at that point.

As can be seen from the subsequently-derived X.borealis DNA clone 
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Figure VI.6a

X.laevis N-Cadherin EcoRl-BamHI fragment on X.laevis embryos

RNAse Protection Assay:

Lane 1: Control tRNA - RNAse

Lane 2: Control tRNA + RNAse

Lane 3: Control tRNA with sense synthetic RNA

Lane 4: X.laevis embryo RNA egg. 3pg

Lane 5: " " 15Mg

Lane 6: " suge g. 3pg

Lane 7: - " 15Mg

Lane 8: - suge 18, 3pg

Lane 9: H 15pg

Markers: DNA sequence

Probe: 50,000cpm X.laevis N-Cadherin EcoRl-BamHI fragment (as 

shown in Figure VI. 1) was added to all reactions.

Hybridisation and digestion conditions were as described in 

Chapter V.
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Figure VI.6b

1 2 3 4 5 6 7 8 9

The above gel shows that a full-length protected band (282nts) is only 

seen with stage 18 embryos and not in the egg or at stage 8.

Only background (undigested probe, 331nts) is present in the egg and 

stage 8 lanes.
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sequence, the sequence conservation between X.laevis and X.borealis 

is high but far from 100% (Figure VII.6); hence the omission of this 

experiment is justified.

6.5 Genomic screen of X.borealis genomic DNA library with X laexis 

N-Cadherin cDNA 

6.5(i) Choice of library

A X.borealis genomic library was obtained from Clive Wilson 

(WILSON et al., 1986). The choice of Xenopus library was primarily 

dictated by availability. In retrospect it would have probably been 

better to have used a X.laevis genomic library but only due to the far 

greater availability of X.laevis embryos within our laboratory. It must 

be said that a clone obtained from a X.laevis genomic library would 

probably have a higher sequence homology with the X.laevis cDNA 

probe, but it would not necessarily be the identical sequence because 

of the pseudo-tetraploid nature of the Xenopus genome. Even if the 

genomic homologue of the cDNA was obtained, as stated above, it 

could not be assumed that the cDNA extended all the way to the 

transcriptional start site; the 5' 'uncharted' DNA would still have to be 

mapped in the same way that a X. borealis clone would be.

On the plus side, the use of a X.borealis clone has allowed promoter 

constructs, micro-injected into the larger X.laevis embryos, to be 

differentiated from the endogenous (X. laevis) message.

6.5(ii) Library CQnstrvctipn

Genomic DNA had been extracted from an adult X.borealis by 
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cardiac puncture after injection with heparin. This DNA had been 

partially digested with Sau3A and 15kb fragments (average) selected 

and cloned into the BamHI site o f EMBL3; greater than 98% of 

recombinants were said to have inserts. The library had been used 

previously to obtain clones for actin gene sequences (WILSON et al., 

1986).

The library had been stored as a phage lysate at 4°C. Serial dilutions 

of the library were first plated out onto a bacterial lawn of K803 to 

establish the current titre.

6.5(iii) Library screen

The above-mentioned X.borealis library was screened with 

fragments of the X. laevis N-Cadherin cDNA according to the 

following regime. To avoid losing any putative-positives from any 

stage of the screening, all positive colonies, and adjacent colonies in 

ambiguous cases, were taken at each stage. Included in each stage of 

the library screening was a Southern-blot filter of restriction-enzyme 

digested X.laevis N-Cadherin cDNA to act as a positive control for 

each hybridization reaction.
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Conditions for screening of X.horealis genomic library

1st screen:

Probe: N-Cadherin 854bp EcoRI-PvuII fragment

(-197 to 657nts)

24 x 2 (duplicate) plates

15,000 p.f.u. per plate (i.e. 3.6 x 105 p.f.u.total)

Washes: 55°C, 2x SSC,0.1% SDS

26 putative positives taken

Probe: N-Cadherin 300bp EcoRI-BamHI fragment

(-197 to 93nts)

26 x 2 plates

500 p.f.u. per plate

Washes: 55°C, 2x SSC, 0.1% SDS

27 putative positives taken

3rd screen:

Probe: N-Cadherin 300bp EcoRI-BamHI fragment

(-197 to 93nts)

27 x 2 plates

100 p.f.u. per plate

Washes: 60°C, 2x SSC, 0.1% SDS

32 putative positives taken
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6.6 Mapping of putative positive clones 

6.6(i) Southern blot of putative positives 

Phage preps were performed on each of the 32 plaque-pure plugs 

taken from the 3rd-round screen. Each was subjected to an 

EcoRI+BamHI restriction-enzyme digest and run out on an 0.6% 

agarose-TBE Maxigel. The gel was Southern-blotted and the filter 

hybridised with a 32P-labelled nick-translated X.laevis N-Cadherin 

300bp EcoRI-BamHI fragment (Figure VI. 1). The filter was washed 

consecutively at a) 60°C, 2x SSC, 0.1% SDS, b) 65°C, 2x SSC, 0.1% 

SDS and then c) 65°C, O.lx SSC. 0.1% SDS. the Filter being exposed 

at -70°C for 36 hours in between each wash (data not shown).

The resulting gel and autoradiograph revealed four distinct 

restriction-enzyme digest patterns; clones 3- 6, 9, 12 and 21/EMBL3 

were chosen as representative of each of these four patterns (3- refers 

to the third-round screen).

6.6(ii) Mapping of positive clones 3- 6. 9. 12. and 21/EMBL3 

The production of the X.borealis genomic EMBL3 library had 

involved the ligation of Sau3A fragments o f genomic DNA into the 

BamHI site of EMBL3 (Section 6.5(ii)). The resultant DNA therefore 

reads: (EMBL3) SalI-BamHI/Sau3A-genomic DNA insert-Sau3A/ 

BamHI-Sall (EMBL3). Hence Sail is the only unique site in EMBL3 

that spans the insert, except for the 1/4 occasions that the BamHI site 

is reconstituted after Sau3A ligation. Given the average insert size of

>20kb, it could not be assumed that the insert would be liberated 
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cleanly by Sail or BamHI, and this was indeed the case: restriction- 

enzyme digest with Sail and/or BamHI produced a variety of 

fragments, from which the insert size was determined.

Each of the above clones was then restriction-enzyme digested with 

BamHI+Sall, run on a 0.5% agarose-TBE gel and Southern blotted/ 

probed as before. Equal amounts of each insert (given its size) were 

used to ensure the resulting autoradiograph would be comparably- 

quantitative with respect to the strength of signal produced by each 

band (the strength of the signal being a combined measure of the 

degree and extent of homology between probe and insert). The 

agarose-gel and Southern blot are shown in Figures VI.7 and VI.8. 

The resultant Filters were washed at 65°C, 2x SSC, 0.1% SDS for 3x 

30 minutes.

It was found that 3- 9/EMBL3 and 3- 21/EMBL3 clones gave the 

strongest signal when probed with 32P-labelled X.laevis N-Cadherin 

EcoRI-BamHI cDNA fragment and so restriction-enzyme maps of 

these two clones were compiled (Figures VI.9 and VI. 10).

The fragments within 3-9/EMBL3 and 3-21/EMBL3 that hybridised 

to the X.laevis N-Cadherin cDNA were subcloned into pBluescript 

KS+ and restriction-enzyme mapped further. Again the clones were 

Southern blotted to determine, on a finer scale, the position of the 

fragment that hybridised to the 5'-end of the X.laevis N-Cadherin 

cDNA. Once these fragments were identified, they were isolated and

recloned for sequencing. The sequence data and analysis is given in 
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Figure VI.7a

Agarose gel of restriction-enzyme digested EMBL3 clones.

Lane 1: Control N-Cadherin cDNA/SP72 Xhol digested

Lane 2: Lambda markers (EcoRI+Hindlll)

Lane 3: Sail digest of 3-21/EMBL3

Lane 4: " 3-12/EMBL3

Lane 5: " 3-9/EMBL3

Lane 6: " 3-6/EMBL3

Lane 7: Lambda markers (Hindlll)

Lane 8: BamHI+Sall digest of 3-21/EMBL3

Lane 9: " 3-12/EMBL3

Lane 10: ” 3-9/EMBL3

Lane 11 : " 3-6/EMBL3

Lane 12: Lambda markers (BamHI)

Lane 13: BamHI digest of 3-21/EMBL3

Lane 14: " 3-12/EMBL3

Lane 15: " 3-9/EMBL3

Lane 16: " 3-6/EMBL3

M: Compilation of the lambda markers, shown in Kbs.
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Figure VI.7b

The genomic clones isolated from the library screen all fell into one 

of four restriction-enzyme digestion patterns, as exemplified by clones 

3-6,9, 12 and 21/EMBL3.

Figure VI.8 shows a Southern blot of the above gel, probed with a 

fragment from the X.laevis N-Cadherin cDNA (DETRICK et al 

1990).
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Figure V|.8a

Southern-blot o f restriction-enzyme digested EMBL3 clones

Lane 1: Control N-Cadherin cDNA/SP72 (Xhol digested)

Lane 2: Lambda markers (EcoRI+Hindlll)

Lane 3: Sail digest of 3-21/EMBL

Lane 4: " 3-12/EMBL3

Lane 5: " 3-9/EMBL3

Lane 6: " 3-6/EMBL3

Lane 7: Lambda markers (Hindlll)

Lane 8: BamHI+Sall digest of 3-21/EMBL3

Lane 9: " 3-12/EMBL3

Lane 10: " 3-9/EMBL3

Lane 11: " 3-6/EMBL3

Lane 12: Lambda markers (BamHI)

Lane 13: 

Lane 14: 

Lane 15: 

Lane 16:

BamHI digest of 3-21/EMBL3 

" 3-12/EMBL3

" 3-9/EMBL3

" 3-6/EMBL3

Markers: Compilation of above lambda markers, shown in Kbp
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Figure VI.8b

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Southern blot of Figure VI.7 agarose gel. The four restriction- 

enzyme digested genomic clones were probed with the 5'-end of the 

X.laevis N-Cadherin cDNA (EcoRI-BamHI fragment) in order to map 

the regions of homology. The filter was washed at 65°C, O.lxSSC, 

0.1% SDS and exposed at -70°C for 36 hours.

Restriction-enzyme maps for 3-9/EMBL3 and 3-21/EMBL3, based 

on this data, are shown in Figures VI.9 and 10.
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Figure VI.9

Restriction-enzyme map o f 3-9/EM.BL3 genomic clone

5'

d

Sail

0.5

BamHI

1-------------------

3.2
1 1

10.9

------------------------------- L

9.3
1 1

0 .4  14  1.6 5.1 14.1
1 1 1 1 1 ____I

3'

EMBL3

The bold 4.8Kb BamHl-Sall fragment was found to hybridise to the 
5'-end of the X.laevis N-Cadherin cDNA. It was therefore gel-isolated 
and cloned into pBluescript to become clone 3-9/4.8BS/pBS.
(See "Note” on page 216a.)

Figure VI. 10

Restriction-enzvme map of 3-21/EMBL3 genomic clone

5'

Sail

BamHI

j-------------

1___ 13.8 1
9.3

—1______ i
EMBL3

1

6.3
j ________

15.8 |

The bold 6.8Kb BamHI-Sall fragment was found to hybridise to the 
5'-end of the X.laevis N-Cadherin cDNA. It was therefore gel-isolated 
and cloned into pBluescript to become clone 3-21/6.8BS/pBS.
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6.7 Conclusions

This chapter has described how the 5'-end of the X.laevis N-Cadherin 

cDNA was used to screen a X.borealis genomic library in order to 

isolate the corresponding X.borealis genomic clones.

The clones isolated from the genomic library fell into one of four 

groups defined by restriction-enzyme digest patterns.

After Southern blotting with the X.laevis N-Cadherin cDNA, two of 

these clones showed strong signals after high-stringency washes.

These clones, 3-9/EMBL3 and 3-21/EMBL3, were mapped and the 

DNA regions of homology with the X.laevis N-Cadherin cDNA 

subcloned into pBluescript to form 3-9/4.8BS/pBS and 3-21/6.8BS/ 

pBS respectively.

Chapter VII.
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Analysis of isolated X.borealis genomic PNA sequences

Chapter VII

7.1 Introduction

7.2 Sequencing of genomic clones

(i)  3-21/6.8BS/pBS (6.8Kb BamHI-Sall fragment)

(ii) 3-9/4.8BS/pBS (4.8Kb BamHI-Sall fragment)

7.3 Alignment of X.laevis N-Cadherin cDNA and 3-9/4.8BS/pBS

X.borealis genomic DNA sequences

7.4 Inter-species comparison of N-Cadherin amino-acid sequences

7.5 DNA-binding protein motifs present in genomic DNA

7.6 Frequency of occurrence of TAT and ATA triplets in the

3-9/4.8BS/pBS X.borealis N-Cadherin promoter region

7.7 Analysis of CG/GC ratio in X.borealis promoter region

7.8 Analysis of translational start-site

7.9 Potential secondary structure upstream of the

translational start-site

7.10 lntron/exon structure of X.borealis genomic DNA sequence

7.11 Conclusions
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7.1 Introduction

This chapter provides a theoretical analysis of the sequence data 

derived from the genomic clones isolated in Chapter VI (Figures VI.9 

and VI. 10). Clone 3-21/6.8BS/pBS was found to contain only a small 

region of homology to the X.laevis N-Cadherin genomic DNA 

sequence. Longer regions of homology to the X.laevis N-Cadherin 

cDNA, and also 1.3Kb DNA upstream of this, were found in clone 3- 

9/4.8BS/pBS. The work therefore centred around the clone 3-9/4.8BS/ 

pBS. in the hope of finding the X.borealis transcriptional start-site and 

part of the promoter within this 1.3Kb.

Unless otherwise stated, the X.laevis N-Cadherin cDNA referred to 

below is that of Detrick et al. (1990).

7.2 Sequencing of genomic DNA clones

7.2(i) 3-21/6.8BS/PBS (6.8Kb BamHI-Sall fragment)

The restriction-enzyme map of this clone is given in Figure VII. 1. 

The X.laevis N-Cadherin cDNA probe was found to hybridise to the 

0.2Kb KpnI-BamHI fragment but not to the 6.6Kb KpnI-Kpnl 

fragment. Therefore this clone was sequenced directly from the pBS 

M13 primer, at the BamHI end. The sequence is given in Figure VII.2, 

aligned (manually) against the sequence of the X.laevis N-Cadherin 

cDNA probe.

Comparison of this sequence with the X.laevis cDNA probe 

sequence showed that this clone had significant homology to regions 

within the untranslated leader region of the cDNA, but sequences 5' to
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Figure VII.2
Comparison between X.laevis N-Cadherin cDNA 
and X.borealis N-Cadherin genomic sequences 

(Clone 3-21/6.8BS/PBS)

U pper se q u en ce  : X.laevis N-Cadherin cDNA 
Lower se q u en ce  : X.borealis N-Cadherin genomic DNA

•1 8 3
GCGGAGCACAGGATTCCTCTGGAAATCAGCCCT GCCTTGTG TTTG

X.laevis
CTC

CCT GGGAAATCAGCCGGAGCCTGGTGCTTTGGTGGATTCTC
X.borealis

• 1 3 4  X.laevis
CGTACGTGCCCATGCCCCG CT CCC CGGCACCTGCCACTGCTGCTGCTGAGTGT

A TGCCCCGTTCCCGACTACCCTACTGCTACTG GCTGCTACAGC GT TCT 
• 14 1  X.borealis

-8 2  X.laevis
GTAAGGCACGACTGTATGTGCTGCTGCTGCTCGTCATTGTTCATCTCCAGTCCAAGC

GTAA CCAGGACAG ATGAGC CGGCGGCTCGTCATTGTTCATCTCCAGTACAAGC 
-9 3  X.borealis

-2 3
CTC CGCCGACCCCAC

X.laevis
AGCATCACCAIQTGCCGGAAACAGC

CAGTCGCTCCCCCCACTCCTCACAGCAGCAGCAGCAGCACCATGTGCCGGAG 
- 4 0 X.borealis

These sequences were aligned and spaces were introduced manually so 
as to achieve maximum homology. The numbering is relative to the 
translational start site (underlined) of X.laevis N-Cadherin cDNA 
(DETRICK eta!., 1990).

The high degree of homology shows that the genomic clone 3-21/ 
6.8BS/pBS contains DNA from one allele of the X.borealis N-Cadherin 
gene.
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this (i.e. putative promoter) were not present in this clone. Promoter 

sequences would therefore be expected to be present in the more-5' 

6.3Kb BamHI-Sall fragment (Figure VI. 10). No further experimental 

work was performed on this clone.

This clone has been extensively restriction-enzyme mapped (Figure 

VII.3), particularly at the 5’-end which has been found to correspond to 

the 5’-end of the X.laevis N-Cadherin cDNA.

All of the individual restriction-enzyme fragments within the 5’

1.6Kb of this clone have been gel isolated and subcloned directly, in 

both orientations, into pBS. They have all been sequenced at least 

twice in both orientations. Many other clones that span restriction- 

enzyme sites have also been made and sequenced to verify both the 

contiguity of adjacent clones and that no small restriction-enzyme 

fragments have been lost. The sequencing strategy is outlined in 

Figure VII.4.

It was also necessary to break the 383bp BamHl-Smal fragment (- 

1281 to -888, Figure VII.4) into smaller overlapping Sau3A and Hpall 

fragments in order to obtain more accurate sequence of this region. 

This was done by gel-isolating this 383bp fragment, digesting with 

Sau3A and Hpall (individually), and cloning the resulting DNA 

fragments into BamHI-digested or Smal-digested pBS respectively (in 

the case of the Hpall fragments, these were blunted first with Klenow 

I). The sequence of this 383bp BamHI-Smal region has not yet been
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Figure Vil.  3a

X.bore al is N-Cadherin genomic clone: 3-9/4.8BS/pBS 

Restriction-enzvme map of 5'-end

The restriction-enzyme map of the extreme 5’-end of the X.borealis 

genomic clone 3-9/4.8BS/pBS is shown with distances marked in 

base-pairs relative to the translational start site (defined by homology 

with the X.laevis N-Cadherin cDNA (DETRICK et al., 1990)).

This region was found to contain the putative promoter of the 

X.borealis N-Cadherin gene; it therefore formed the basis of the 

herein-described study.
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verified to the same high degree of accuracy as the rest of this clone; 

further work is still in progress. With this caveat, the full sequence is 

given in Figure VII.5. The numbering of the sequence is based on the 

translational start-site (1 = ATG), as defined by DNA sequence 

alignment with the X.laevis N-Cadherin cDNA (DETRICK et al., 

1990).

7.3 Alignment of X.laevis N-Cadherin cDNA and

3-9/4.8BS/pBS X.borealis genomic PNA sequences 

The DNA sequences of the X.laevis N-Cadherin cDNA and 

X.borealis 3-9/4.8BS/pBS are aligned in Figure VII.6. In the first 

260bp the degree of homology is 68% (matches/[mismatches + 

spaces]); it is obviously much higher over shorter stretches.

The degree of homology changes abruptly after the AGGT motif at 

+70; the possibility of this being the site of an exon/intron junction is 

discussed below. However, it is interesting to speculate why. if this is 

an exon/intron junction, a reasonable degree of homology still exists 

after this point between the cDNA and genomic DNA sequences.

7.4 Inter-species comparison of N-Cadherin amino-acid sequences 

In Figure VII.7, the amino-acid sequences of all the currently

published N-Cadherin genes are aligned with 3-9/4.8BS/pBS 

X.borealis genomic DNA sequence. In addition to the X.laevis cDNA 

used above as the probe to obtain the genomic sequence (DETRICK et 

al., 1990), a further X.laevis cDNA sequence has been published by an 

Israeli group (GINSBERG et al., 1991). It can be seen that the
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X. boreal is N-Cadherin genomic sequence 
Clone 3-9/4.8BS/PBS (5’-end)

BamHI • 1 2 7 0 • 1 2 6 0
GGAT CCTCTAAGAC ATGCTTTTGA

- 1 2 5 0 • 1 2 4 0 • 1 2 3 0 • 1 2 2 0 • 1 2 1 0 - 1 2 0 0
GGCCTCCCAG ACAGTTAGGG GGTCAGCAGA GGTTGCATTC TCCAACCAGT ATTGCTCCTG

- 1 1 9 0 -1 1 8 0 - 1 1 7 0 - 1 1 6 0 - 1 1 5 0 - 1 1 4 0
TTCTTGTGTT ACCCTATCAG ACACTTCAGG TACAGTAAGC CATTTAGTGT TAAGGCGCCA

- 1 1 3 0 • 1 1 2 0 -1 1 1 0 - 1 1 0 0 • 1 0 9 0 - 1 0 8 0
CATAGGGGTA GTACAGTCTT GATCTGACCT GATGGATAAG GAAAGTGGGG CATGATCTGA

- 1 0 7 0 - 1 0 6 0 - 1 0 5 0 • 1 0 4 0 - 1 0 3 0 - 1 0 2 0
CGCANTGGCC CCCGGAAGCC TGTTTCAGAG ATACCGGGAT CGGCCAACTC AAACTTGCCA

- 1 0 1 0 -1 0 0 0 - 9 9 0 - 9 8 0 - 9 7 0 - 9 6 0
GCTNTGCGAC CGGCGTGCCN GTCNTTGTGA GTGGCTGAAT AGCAAGAGTA CGCTCGTCCA

- 9 5 0 - 9 4 0 • 9 3 0 - 9 2 0 - 9 1 0 - 9 0 0
CCTGGGTGGG CTTGCCTCCA GATGTCAATA AAGTTATAAG C GTGAC ACCA CTTAAGCAAG

- 8 9 0 smai -8 8 0 - 8 7 0 - 8 6 0 - 8 5 0 - 8 4 0
GGGGTCGGGC CCGGGTTACC TGGGGGGCAA CGGTCTATCT CCGGTTTCAG AACCATATTA

- 8 3 0 • 8 2 0 - 8 1 0 - 8 0 0 - 7 9 0 - 7 8 0
AGGATCACCC ATTAGCAGCG TGGGGGCTGG GTCCATATTC NATATTTTCC CCATGACTTC

- 7 7 0 • 7 6 0 - 7 5 0 - 7 4 0 - 7 3 0 - 7 2 0
CTCAAGTATG GCNATGTCAG CCGGTGGGGG NAAATATACA CAAACCAGGT TAATTAACTG

- 7 1 0 - 7 0 0 - 6 9 0 - 6 8 0 - 6 7 0 - 6 6 0
TTGTTGGATG GAACATTGCA TAACAATATA TCTACCAAGT CGATCAGTAT GTATCTCCAC

- 6 5 0 - 6 4 0 -6 3 0 • 6 2 0 Xba 1 - 6 1 0 - 6 0 0
TATGTTGAGA TTTATTTTTT TACTCACTAG GATTGCCACT CCTCTAGAGT AGTTTGAGAG

- 5 9 0 - 5 8 0 -5 7 0 - 5 6 0 - 5 5 0 - 5 4 0
CTCCGCATGA TACACTCTTG CAACCCACGC TTTTTTCAAA GCTAGTATGC GGCCACCTGT

- 5 3 0 - 5 2 0 - 5 1 0 - 5 0 0 - 4 9 0 - 4 8 0
AAGGTGTGTT TCCTGAAGGA GAACCAAGTG TGGGCGGTAT TTTTTGAGAT ATTGGAATAC

- 4 7 0 • 4 6 0 • 4 5 0 - 4 4 0 xhoi * 4 3 0  TATA box- 4 2 0
CAGGCCTCTT TTGTGCTGAA AAGGTTTACC TTGGCTTATA CTCGAGTCAG TATAAACCAG

• 4 1 0 -4 0 0 - 3 9 0 • 3 8 0 - 3 7 0 - 3 6 0
GCATGTCCAA AGTGTGGTTT GCGGGGCCGC ATGCCTGCGT GTGACAGTAT CTAAACTGAC

- 3 5 0 -3 4 0 - 3 3 0 - 3 2 0 - 3 1 0 - 3 0 0
TGGGGTGTTC CGCATCCTGT GGCTCTACTT CCTGTCTACT GGACCAAAGA ATGTACTTGC

- 2 9 0 -2 8 0 • 2 7 0 - 2 6 0 - 2 5 0 - 2 4 0
GCAAGTAGGT GTGCACGGGA TTGTGAGGGC ATGAACAAGC ACAGCACAGC AGTGGGAAGG

• 2 3 0 p . t i  - 2 2 0 - 2 1 0 - 2 0 0 - 1 9 0 - 1 8 0
CCCTGATACT GCAGCCCTAG TCCGACCTTG TTGATACCGA TCGGTGCCGG TGNAGCATTG

- 1 7 0 • 1 6 0 -1 5 0 • 1 4 0 H i n d l l l  -  1 3 0 - 1 2 0
AGGGACTCCT CCCGTTAGCT GGGGGCAAAC AGGTCTATCA CCTGAAGCTT TGTGTTTGGT

- 1 1 0 -1 0 0 - 9 0 - 8 0 - 7 0 - 6 0
GAAGTCCCAT TGCCCATGCC CCGCTCCCTG GGCAGTGGGC ACCCTGCTGC TGCCTCTGTT

P . t i  -5 0 -4 0 - 3 0 - 2 0 - 1 0 0
ATATCTGCAG CTCACCATTG TTCATCTACA GTCCAAGCCC CCCGACACTC ACAGCAGCAC
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Figure VU,5b

s t a r t  1 0  2 0  3 0  4 0  5 0  6 0
ATGTGTCTGA AAGAGCCCTT CCTACTACAA ACTGCCCTCA GCATTATAGT GGCCCTGATG

7 0  6 0  9 0  1 0 0  1 1 0  1 2 0
ATGCACCAGG TAATGTCCGG AGAGGCCCCG GGGCTTGGCT CAGGCTACAT GGCATTTTAG

1 3 0  H in d in  K O  1 5 0  1 6 0  1 7 0  1 8 0
CTAAAACTAA AGCTTATTGT GGTGTATAAT GTAAAATTGT AACTAAAATA GTATTTGCAT

1 9 0  2 0 0  2 1 0  2 2 0  2 3 0  2 4 0
ACTGTATATA TAGGAAAGTA TTTAATAACA TGCTATAGTC TTGACTTGTA GATTAAAACA

2 5 0  2 6 0  2 7 0  2 8 0  2 9 0  3 0 0
CTGAAACAAG AAACCATTTT ACGGTATATG GGTTTTACAG CATGTAGCTG CTGTATTTCT

3 1 0  xhoi 3 2 0  3 3 0 H indIII
CACCCTAGGC TTATGCTCGA GTCAATAAGC TT

DNA sequencing was performed according to the strategy on Figure VII.4 and 
by the single-stranded dideoxy method. Numbering is relative to the 
translational start site (s ta r t)  defined by DNA sequence comparison with the 
X.laevis N-Cadherin cDNA (DETRICK et al., 1990).
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Figure VII.6a
Comparison between X.laevis N-Cadherin cPNA 
and X.borealis N-Cadherin genomic sequences 

(Clone 3-9/4.8P$/pPS)

Upper sequence: X.laevis N-Cadherin cDNA 
Lower sequence: X.borealis N-Cadherin genomic DNA

•1 8 3
GCGGAGCACAGGATTCCTCTGGAAATCAGCCCT GCCTTGTGTTTG

X .la e v is
CTCCGT

GGGC AA ACAGG 
-1 5 6

ATCA CCTGAAGCTTTGTGTTTGGTGAAGTCC C 
X .b o r e a lis

-1 3 1  X .la e v is
ACGTGCCCATGCCCCGCTCCC CGGCACCTGCCACTGCTGCTGCTGAGTGTGTAAGGCAC

AT TGCCCATGCCCCGCTCCCTGGGCAGTGGGCAC CCTGCTGCTGCCTCTGT- 1 1 1  X.borealis

• 73 X .la e v is
GACTGTATGTGCTGCTGCTGCTCGTCATTGTTCATCTCCAGTCCAAGCCTCCGCCGAC C

TATAT CTGCAGCTCACCATTGTTCATCTACAGTCCAAGC CCCCCGACAC
• 60 X .b o r e a lis

• 12 X .la e v is
CCACAGCATCACCATGTGCCGGAAACAGCCCTTCCTGCTACCGACTCTACTCGGCATCCT

TCACAGCAGCAC ATGTGTCTGAAAGAGCCCTTCCTACTACAAACTGCCCTCAGCATTAT 
-1 1  X .b o r e a lis

4 8 X .la e v is
AGCGGCCCTGATGCTGCAGCAGGGACCAGTT GAAGCATT CGGGGGATCCAGATTATG

AGTGGCCCTGATGATGCACCAGGTAA TGTCCGGAG AGGCCCCGGGGCTTG GCTCA G 
48 « x o n / i n t r o n  X .b o r e a lis
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Figure VH.6b

105 X .la e v is
CAAGACA GG A TTTCTTG  AGGA T  GTTTATCACGCCAGTGTCTACAG AAG TG

GCT ACATGGCATTTTAGCTAAAACTAAAGCTTATTGTG GTGTATAATGTAAAATTG
104 X .b o r e a lis

155 X .la e v is
TACATGAA GGGCAGCCGCTT C TAAATGT GA TGTTTACTGACTGTGGTACTG

TAACTAAAATAGTATTTGCATACTGTATATATAGGAAAGTATTTAATAACA TGCTA TA 
159 X .b o r e a lis

2 06  X .la e v is
ATAGACGGATACAGTATGAAACCAGT AACCCAACAGA T T T T  CGGATTGATGGTGA

GTCTTGACTTGTAGATTAAAAC ACTGAAAC AAGAAACCATTTTACGG TATATGGGTT
2 18  X .b o r e a l i s

261 X .la e v is
317

TGGAATTGTGTTTGCCTCAAGAACTTTTGACATTT CTCCA GAGC AGGCAG AATTTT

TTACAGCATGT AGCTGCTGTA TTTCTCACCCTAGGCTT ATGCTCGAGTCAATAAGCTT 
27 5 X .b o r e a lis

332

Sequences are aligned and spaces introduced manually so as to provide 
maximum homology. Numbering is relative to the translational start site 
(underlined) of X.laevis N-Cadherin cDNA (DETRICK et al., 1990). 
The proposed exon/first intron junction is also marked (+70).

Total homology between 5’-ends and proposed exon/intron junction is 
68%; obviously, over shorter stretches it is considerably higher.
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X.borealis genomic amino-acid sequence has a higher degree of 

homology to this latter Israeli sequence than to the original probe. It is 

also interesting to note that the amino-acid differences detailed 

between the X.borealis and X.laevis sequences fall into two groups: 

the three 5'-changes alter the charge/polarity of the amino-acid: the 

larger 3'-group of changes do not. This appears to indicate that a 

greater selective pressure is put upon the more-3' amino-acids not to 

alter their charge/polarity.

Given that the degree of homology between members of the Cadherin 

family (as a whole) is low at the 5'-end of the published cDNAs, and 

taking into account the above DNA and amino-acid evidence, it can be 

stated with reasonable confidence that the 3-9/4.8BS/pBS clone 

contains genomic DNA sequence from the X.borealis N-Cadherin 

gene.

of translational start

The most obvious sequence motif in the putative promoter region of 

the 3-9/4.8BS/pBS clone is the TATAAA element at -429bp. This 

element conforms exactly with the consensus TATA A/T A A/T. and 

is ideally placed to act as the site of transcriptional initiation. This 

would place the start of the mRNA at between -404bp and -396bp, 

according to presently accepted models. Further possible DNA- 

binding sites are given in Figure VII.8; obviously, these sites require 

confirmation by, at the very least, DNA-footprinting studies and gel-
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shift analyses.

7.6 Frequency of occurrence of TAT and ATA triplets

in the 3

As discussed in Chapter IV, TATA-boxes are known to be placed in 

regions of relatively low AT content. Therefore, to provide further 

contextual evidence that the TATA-box is the site of transcriptional 

initiation, the frequency of the DNA triplets TAT+ATA was plotted 

for the putative promoter region (Figure VII.9). The graph obtained 

exactly mimics that of Nussinov (NUSSINOV et a!., 1986) in the 

positions of both of the main peaks: one peak lies approximately 

275bp 5' to the transcriptional start site (-675 on Figure VII.9); the 

second peak coincides with the TATA-box.

Therefore, as both the TATA-box sequence and context conform 

exactly with generally-accepted models, it is reasonable to assume that 

transcriptional start occurs between 22 and 28bp 3' to the end of the 

TATA-box, that is between -404bp and -396bp relative to the 

translational start site. The RNA-based assays detailed in Chapter VIII 

provide some evidence to confirm this statement.

7.7 Analysis of CG/GC value in X.borealis 'promoter' region

As discussed in Chapter IV, eukaryotic promoter regions have often 

been found to have an abnormal ratio of the dinucleotides CG and GC. 

In the majority of eukaryotic DNA the value of CG/GC is 

approximately 0.2 (BIRD. 1986). In the NCAM promoter this ratio 

rises to an average of 0.63 in the 1.4Kb upstream of the translational
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start-site. An analysis of the CG/GC value in the putative N-Cadherin 

promoter region (clone 3-9/4.8BS/pBS) was undertaken. The results 

are shown in tabular form in Figure VII. 10 and plotted graphically in 

Figure VII. 11. These figures show that the N-Cadherin 'promoter' also 

has a increased CG/GC value: the average over the 1.3Kb upstream of 

the translational start-site is 0.60.

7.8 Analysis of translational start-sites 

The translational start-site of the published X.laevis N-Cadherin 

sequences was defined by inter-species sequence alignment in a 

similar manner to that given in Figure VII.7. In the absence of any 

corroborating experimental evidence, this does not define the start 

unambiguously particularly since both X.borealis genomic clones and 

the X.laevis cDNA of DETRICK et al. (1990) contain AUGs upstream 

of the proposed translational start-site. Further details are given in 

Figure VII. 12.

In the case of the X.borealis clone 3-9/4.8BS/pBS there are four 

upstream AUGs. the first three of which terminate at in-frame stop 

codons relatively shortly after translational initiation. The fourth, at - 

104. is in frame with the proposed translational start-site and. if 

anything, is in a slightly better context than the AUG at +lbp. Out of 

the three AUGs detailed for the X.laevis cDNA (DETRICK et al.. 

1990) the proposed AUG at +lbp appears to be in the best context. 

Upstream AUGs are known to be negative regulators of translation: 

after translating these short peptides, the ribosome complex has
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Figure VII. 10

Analysis of CQ/QC content Qf X, to r fai is N-Cadhenn promoter region 
(Clone 3-9/4.8BS/pBS)

%(Q+C) CG/GC (CG/GO-0.2

1 . -1259 -1200 57 0/4
2. -1199 -1140 43 1/3 0.33 0.13
3. -1139 -1080 47 0/1 . _

4. -1079 -1020 58 4/5 0.80 0.60
5. -1019 -960 57 5/7 0.71 0.51
5. -959 -900 48 1/4 0.25 0.05
6. -899 -840 60 4/2 2.00 1.80
7. -839 -780 50 1/3 0.33 0.13
8. -779 -720 43 1/2 0.50 0.30
9. -719 -660 37 1/1 1.00 0.80
10. -659 -600 35 0/2 - _

11. -599 -540 50 3/6 0.50 0.30
12. -539 -480 42 1/1 1.00 0.80
13. -479 -420 43 1/3 0.33 0.13
14. -419 -360 55 3/6 0.50 0.30
15. -359 -300 52 2/3 0.67 0.47
16. -299 -240 57 1/7 0.14 -0.06
17. -239 -180 57 4/4 1.00 0.80
18. -179 -120 53 1/3 0.33 0.13
19. -119 -60 67 1/8 0.13 -0.07
20. -59 0 53 1/5 0.20 0.00
21. 1 60 48 0/4 - -

22. 61 120 58 2/7 0.29 0.09
23. 121 180 23 0/2 - _

24. 181 240 25 0/1 . .

25. 241 300 37 1/3 0.33 0.13

The above data shows the %(G+C) content (average is 40% for 
normal DNA) and the deviation from the normal ratio of CG/GC (i.e.
0.2) for 60bp windows in the genomic clone 3-9/4.8BS/pBS. This data 
is also plotted graphically in Figure VII.11.
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Figure VII. 12a

Analysis of translational start-sites in X.laevis N-Cadherin cPN A 

and X.borealis genomic clones

The adjacent figure illustrates the variation in translational start-site 

sequences in two of the X.borealis genomic clones and two published 

X.laevis cDNAs. These are compared against the consensus 

translational start-site as defined by Kozak (1986).

The X.laevis cDNA translational start site was defined purely by 

inter-species DNA sequence alignment with other N-Cadherin 

homologues.

Three short open reading frames (ORFs) are present in the X.borealis 

3-9/4.8BS/pBS genomic clone, upstream of two possible initiation 

sites. Without firm transcriptional start data, it is not possible to 

determine whether these ORFs are transcribed. (It is not impossible 

that the region containing these ORFs is contained within an intron).
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difficulty reinitiating, and hence the main protein does not get 

produced (e.g. Ick oncogene, MARTH et al.. 1988: yeast GCN4. 

FINK. 1986). In the absence of any experimental data, it is not 

possible to speculate further on the effect that these upstream AUGs 

have on translation of the protein.

7.9 Potential secondary structure upstream of the translational 

start-site

The difficulty experienced in mapping the region upstream of the 

proposed translational start-site by RNA-based assays (see Chapter 

VIII and also the similar problems reported by SORKIN et al.. 1991 

and NEDIVI et al.. 1992). lead to speculation about whether the 

transcription of this region might produce RNA that is rich in 

secondary structure. The formation of any hairpin loops would affect 

any laboratory assay that utilised ssRNA as part of its procedure and 

also would have an effect on translation (by making the ssRNA less 

available to the ribosome). On examination, it was found that this 

region is rich in repeated bases, particularly triplets of rC and rG. 

Computer-generated matrix plots ("Diagon" plots) have revealed a 

number of possible hairpin loop structures in the region between the 

putative translational and transcriptional start-sites; an example is 

given in Figure VII. 13. It can easily be seen how different 

combinations of the rCn and rGn groups circled in Figure VII. 13 could 

base-pair to form a number of different loop structures. It is shown in 

Chapter VIII that control RNAse protection assays are possible using
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an excess of synthetic RNA: but the assay conditions (hybridisation in 

80% formamide) are obviously not representative of those conditions 

found in vivo. Therefore, whether the length of the loops and the 

plurality of possible structures would have any relevance under in vivo 

conditions is uncertain.

7.10 Intron/exon structure of X.borealis genomic sequence

As mentioned above, the degree of DNA sequence homology 

between the X.borealis genomic clone and X.laevis cDNA is nearly 

absolute between the translational start-site and an AGGT sequence at 

+70bp. This AGGT sequence, and the immediately adjacent bases, 

conform well to the known consensus donor splice site of an exon/ 

intron junction. Also, as shown in Figure VII. 14. stop codons appear in 

all three reading frames within 78bp of this junction and the sequence 

3’ to the AGGT is characterised by simple repeating motifs and single­

nucleotide stretches. It would be reasonable to assume therefore that 

this AGGT sequence marks the boundary of the first intron. There is a 

possible consensus acceptor splice site at +293bp but the sequence 3' 

to this does not appear to be homologous with the cDNA to anywhere 

near the same extent as the base-pairs between + lbp and +70bp.

The position of this first intron is confirmed by sequence comparison 

with other published Cadherin intron/exon boundaries (see Figure 

IV.2). This boundary occurs in mouse N-Cadherin at Gln-20. in chick 

L-CAM at Gln-23. and in the herein defined X.borealis N-Cadherin 

sequence at Gln-23.
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Figure VII. 14
Analysis of stop codons downstream of translational start 

(Clone 3-9/4.8BS/pBS)

Start
A TS TGT CTG A A A GAG CCC TTC CTA CTA CAA ACT GCC CTC AGC

( 2 )

E X O N / i n t r o n
ATT ATA GTG GCC CTG ATG ATG CAC CAG g t a a t g t c c g g a g a g

( 2 ) ( 2 ) ( 2 ) 2

g c c c c g 9 9 9 c t t g g c t e a g g c t a c a t g g c a t t t t a g e t a a a a

1 2

e t a a a g C t t a t t g t g g t g t a t a a t g t a a a a t t g t a a e t a a a a
2 3 2 1 2

t a g t a t t t g c a t a c t g t a t a t a t a g g a a a g t a t t t a a t a a c a
1 2 2 2

t g c t a t a g t c t t g a c t t g t a g a t t a a a a c a c t g a a a c a a g a a
3 3 1 3 2

a c c a t t t t a e g g t a t a t g g g t t t t a c a g c a t g t
3

a g e t g c t g t

a t t t e t c a c c c t « 9 9 c t t a t g e t c g a g t e a a t a a g e t t
3 2

The above listing details the positions of stop codons ( t a a , t g a , and 
T A G )  down-stream of the translational start-site of the X.borealis N- 
Cadherin genomic DNA sequence (clone 3-9/4.8BS/pBS). The 
numbers below the DNA triplets refer to the reading frame of the stop 
codon, i.e. 1 means it is in the correct reading frame; 2 and 3 are both 
out of frame with respect to the translational start-site.

It can be seen that, within 50 bases of the putative exon/intron 
junction, an in-frame stop codon exists (tag); stop codons in all three 
reading frames lie within 78 bases of this junction.
The splice site conforms well to the standard consensus sequence:

exon intron
C /A  A G - G T  A /G  A G T 
C A G - G T A  A T G

Consensus:
Actual:

(MOUNT. 1982)



It has been shown in this chapter, by DNA and amino-acid sequence 

alignment, that the 3-9/4.8BS/pBS clone appears to contain DNA 

sequence that is the X.borealis homologue of the N-Cadherin gene. 

Theoretical analyses of this sequence also appear to define a number 

of possible protein-DNA binding sites, the transcriptional and 

translational start-sites and the position of the first exon/intron 

boundary.

7.11 Conclusion s
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Chapter VIII

8.1 Introduction

8.2 RNAse protection assays

(i) Introduction

(ii) X.borealis histone H4 clone

(Hi) X.boreal is genomic clone: Hindlll-HindlU

(iv) X.borealis genomic clone: Pstl-PstI

(v) X.borealis genomic clone: Xbal-Pst

(vi) X.borealis genomic clone: Xbal-Hindlll

(vii) RNAse protection assay conclusions

8.3 Primer extensions

(i) Introduction

(ii) X.borealis histone HI oligo

(iii) X.laevis N-Cadherin oligo: NCAD5

(iv) X.borealis genomic oligo: NCADJ1 oligo

(v) X.borealis genomic oligos: NCADB2 and NCADZ5

(vi) Primer extension conclusions

8.4 A PCR-based method for the determination of transcriptional start-site

8.5 Conclusions
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In this chapter experimental evidence is provided in an attempt to confirm 

that the TATA-box described in Chapter VII is in fact used in the initiation of 

transcription of the X.borealis N-Cadherin mRNA. Two RNA-based 

procedures are described: an RNAse Protection Assay (RPA) that utilises a 

labelled anti-sense RNA probe to hybridise to the mRNA: and a Primer 

Extension assay that utilises a labelled anti-sense DNA oligonucleotide that 

binds to the mRNA and then is extended to the 5'-end of the mRNA by avian 

reverse transcriptase. Reference is also made to a PCR technique whose 

component steps were established but whose procedure was not completed.

Whilst the control experiments used to establish these procedures provided 

no problems, obtaining reproducible data from the Xenopus borealis RNA 

proved a lot more difficult.

8.2(i) Introduction

The use of these procedures and necessary controls has been discussed 

already in Chapter VI.

The rationale for using a RNAse protection assay to determine the 

transcriptional start site is as follows:

1. From DNA sequence comparison of the X.laevis cDNA and X.borealis 

genomic clones, a region of X.borealis genomic DNA could be 

unambiguously classified as corresponding to mRNA (see Figure VII.6), be it 

protein-coding or untranslated leader sequence.

2. From this known site, overlapping, increasingly 5\ RNA probes could be 

made from this genomic DNA and used to determine the extent of continuous

8.1 introdvctiQn
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transcription (i.e. mRNA) 5’ to this site. Transcription would be interrupted 

only by the transcriptional start-site or by a 3’ intron splice site; it was hoped 

that the former of these would be found.

There is a limit to the resolution attainable with this method as shorter probes 

may bind non-specifically to mRNAs of other related genes, if sufficient 

homology is present, giving false results; results obtained from longer probes 

are therefore more significant.

A further point, that is often overlooked but that needs to be recognised, is 

with regard to the use of RNA probes on denaturing-PAGE gels using DNA 

markers. It is reported (SAMBROOK et a!., 1989) that the mobility of RNA 

and DNA on denaturing-PAGE may differ by up to 10%; this difference is 

reduced when running the gels at higher voltage/power. Care must therefore 

be taken when sizing the protected RNA bands against DNA markers. In the 

experiments detailed below, adjustment for this difference was made by 

comparing the known sizes of the RNA probe and sense-RNA/probe control 

with the DNA markers and then working out the necessary adjustment 

coefficient. Protected RNA bands could then be sized from a graph of log 

(DNA nucleotides) v distance-moved of the DNA markers. At the conditions 

used, this value was found to be in the range of 0 - 6%. RNA markers can be 

made, but the greater ease with which DNA markers are made and the greater 

stability of DNA markers has meant that DNA markers are routinely used.

The DNA markers used were Haelll-digested pBR322. Hpall-digested 

pBR322 or DNA sequence; often a combination of these was used for greater 

accuracy. The experimental details, with regard to the performance of the 

assays, are given in Chapter V.
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The clones used for the X.borealis RPAs and the construction of each are 

detailed below and in Figure VIII. 1. The nucleotide sequence numbers refer to 

the DNA sequence as given in Figure VII.5.

8.2(h) X.borealis histone H4 clone

This clone was used as a positive control for the RNA extraction procedure to 

ensure the integrity of the extracted X.borealis embryonic RNA; details of the 

clone and the gel are given in Figure VIII.2. The clone comprises a 430bp 

X.borealis histone H4 cDNA and T3 RNA polymerase promoter site that have 

been inserted into the EcoRI-Hindlll site of pBluescript SK+. RNA probe was 

made by linearising the clone with EcoRI and transcribing with T7 RNA 

polymerase. Two control sense-RNAs were made by linearising with Hindlll 

and transcribing with T3 RNA polymerase; two protected bands are thus seen 

in the control-sense-RNA track. The gel illustrates that the RNA extraction 

procedure used is entirely adequate to provide full-length mRNA.

8.2(iii) X.borealis genomic clone: Hindlll-HindlH

As shown in Chapter VI, this RNAse protection procedure was shown to 

work effectively using the X.laevis N-Cadherin cDNAJX.laevis RNA and the 

following reaction conditions: 15Mg total RNA, 50,000cpm of labelled probe 

and a 2 day exposure of the resultant gel. These conditions were therefore the 

obvious initial ones to use with the X.borealis RNA probes/X.borealis 

embryonic RNA.

An attempt was made to establish the RPA reaction conditions with 

X.borealis embryonic RNA using the Hindlll-Hindlll fragment, this being one 

that, theoretically (based on the data in Chapter VII), should be completely 

protected. The Hindlll-Hindlll fragment (-133bp to +132bp) was cloned
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Figure V|I1.2a

RNAse Protection Assay gel

E c o R I Hind 111
X.borealis  histone H4 cDNA pB S  S K +

T 3  T 3 T7

Track no:

1. Stage 10

2. Stage 12

3. Stage 18

4. Stage 8

5. Stage 20

6. Control: synthetic RNA/tRNA

7. Control: Probe + RNAse

8. Control: Probe - RNAse

9. Markers: Hpall digested pBR322

10. Markers: Haelll digested pBR322

All above embryonic RNAs refer to 5pg X.borealis total RNA 

Amount of probe used = 20,000cpm
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1 2 3 4 5 6 7 10

— 527

— 404

— 309

—  622

— 242

The above gel demonstrates that both the X.borealis RNA extraction 

procedure and the RNAse protection assay procedures were working 

sufficiently to detect the X.horealis histone H4 RNA.
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directly into pBluescript SK+ and, after DNA sequencing to check the correct 

insert, it was linearised with EcoRI and then transcribed with T7 RNA 

polymerase to make the labelled probe. The control sense-RNA was made by 

linearising with EcoRI and transcribing with T3 RNA polymerase.

The X.laevis reaction conditions described above produced no result when 

using the Hindlll-HindHI probe with X.borealis stage 22 total RNA. The range 

of variables was therefore expanded using an array of conditions: 50Mg. 25pg. 

10pg (stage 22, total RNA) v 50,000cpm, 25,OOOcpm, lO.OOOcpm (labelled 

probe) was tried (Figure VIII.3). This gave a high background of probe 

degradation products in all embryo-RNA tracks, decreasing in strength as the 

amount of labelled probe was reduced. A further array of variables produced a 

similar result of high background in all tracks (stage 10 (20pg and 40pg), 

stage 22 (20Mg and 40pg), stage 22 (0.2Mg and 2pg polyA+) RNA v 

lO.OOOcpm, 50,000cpm, and 100,000cpm probe, data not shown).

The failure of this clone to produce a result could be due to one or more of a 

number of factors. The range of experiments performed and controls used rule 

out the majority of them however.

a) Degradation.of the RNA- The integrity of the RNA was verified by using 

the histone H4 clone as a positive control for each new RNA preparation 

(although the abundance of histone H4 is greater than that of N-Cadherin).

b) Presence Qf factors within the .RNA preparation that prevent the assay from 

working. Both the use of the histone H4 clone and the use of synthetic RNA/ 

embryo RNA control rule out this possibility.

c) The probe forming an internal hairpin loop. As shown in Figure VII.9, this 

region of DNA can form a number of hair-pin loop structures. The synthetic
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Figure V ili.3a

RfMA^ Protection Assay gel 

y  hnr,nlix HindlH-Hindlll Clone (3-9/4.8gS/pBSj

-133bp 
H indili
= z L

T3

Track no:
Total RNA (Ugl Probe (com)

1. 10 10

2.25 10

3.50 10

4. 10 25

5.25 25

6. 50 25

7. 10 50

8. 25 50

9. 50 50

10. Control: Probe + RNAse A

11. Control: Probe - RNAse A

12. Control: Probe + RNAse T1

13. Markers: Hpall digested pBR322

+132bp
-53bp +lbp Hindlll
PstI ATG i—--------

_J---------------------- -----1--------------- 1--------------
T7

All embryonic RNA used was X.bortalis stage 22.

pBS SK+
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The above gel illustrates the failure of the Hindlll-HindlH probe from 

the 3-9/4.8BS/pBS X.borealis clone to detect homologous RNA from 

X.borealis embryo RNA, despite the fact that a wide variety of probe and 

RNA concentrations were tested.



RNA control shows, however, that some binding of probe and RNA may 

occur under the RPA conditions used. The control does not show whether any, 

or a significant proportion, of the probe is unavailable for binding to the 

mRNA; it only shows that some probe is still available in single-stranded form 

to bind to the synthetic message. The synthetic message may be present (in 

this control) in excess over the endogenous N-Cadherin mRNA.

Another alternative which cannot be controlled for is the possibility that the 

majority of the mRNA itself is in the form a hair-pin loop and so is not 

available for the probe to bind to.

d) Binding to non-specific RNAs. If regions of the HindHI-Hindlll clone show 

sufficient homology to other RNAs (in particular to other Cadherin RNAs). 

non-specific binding may occur and so 'soak-up' a significant proportion of the 

available probe, depleting the pool of probe available to bind to the desired 

sense homologue.

e) The assay is not sensitive enough to detect the desired mRNA. The RPA is 

a very sensitive technique as it involves the use of a continuously-labelled, 

high-specific activity probe and is considered to be more than twenty times 

more sensitive than Northern blots. As shown above, the RPA was found to 

work adequately in X.laevis with 3-15pg total RNA, and SO.OOOcpm probe. If 

conditions were found that differed markedly from the X.laevis conditions this 

would imply a widely different abundance of the X.borealis message. This 

would be highly unlikely if the herein identified DNA sequence is indeed the 

true homologue of the X.laevis N-Cadherin gene.

0  Activity of DNAse and RNAse. Incomplete digestion of the in vitro 

transcribed DNA template may result in the RNA probe hybridising to this



template thus giving high backgrounds. Lack of RNAse activity of the RNAse 

A and/or RNAse T1 would also produce high backgrounds. Both of these 

effects are controlled for in the "Probe + RNAse A" control, 

g) The Hindlll-HindlH clone does not form part of the mRNA. This must 

remain an option given the lack of any viable result.

8.2(iv) X.borealis genomic clone: Pstl-Pst I

This clone was produced by cloning the Pstl-PstI fragment (-229bp to -53bp) 

directly into pBluescript KS+. Probe was made, after the relevant checks on 

the insert, by linearising the clone with EcoRI and transcribing with T7 RNA 

polymerase. The control sense-RNA was made by cloning the Xhol-Xhol 

fragment (-437bp to +318bp) into pBluescript SK+, linearising with EcoRI 

and transcribing with T7 RNA polymerase.

Similar experiments were performed with this clone as with the above 

Hindlll-Hindlll clone in order to try to find reaction conditions that would 

produce an interpretable result. Variations in the amount of RNA, amount of 

probe and embryo stage produced negative results except for a fully-protected 

band seen in the egg (Figure VIII.4).

As opposed to other experimental systems such as Northern or Southern 

blotting, the presence of a protected band in RNAse protection assays means 

that the homology between probe RNA and mRNA is almost absolute. As 

discussed above (Section 6.4(iv)), the presence of just one mismatched RNA 

base may result in the endonucleolytic action of one of the RNAses used at 

that point in the RNA. The presence of this band in egg is therefore highly 

significant in terms of DNA homology. The egg RNA was initially added as a 

(supposedly) negative control; (this RNA being readily available following the
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Fi£ure VlH.4a

RNAse Protection Assay gel 

XJtQrealis N-Cadherin genomic clone: Pstl-PstI

-229bp
Pstl

T3

-133bp 
Hindi 11

-53bp
Psll
[ i pBS KS+
T7

Track no:

1. Markers: DNA sequence

2. X.borealis stage 37

3. X.borealis stage 23

4. X.borealis stage 20

5. X.borealis stage 15

6. X.borealis egg

7. Control: Probe + RNAse A

8. Control: Probe - RNAse A

9. Control: Probe + synthetic RNA (Xhol-Xhol fragment)

Probe amount: 2.7 x 105 cpm 

RNA amount: 20Mg total
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(Predicted RNA sizes)

1 2 3 4  5 6 7 8  9

The probe used in this gel was the X.horealis N-Cadhcrin genomic 

clone Pstl-PstI (-229 to -53, from 3-9/4.8BS/pBS); a range of 

embryonic tissues were assayed.

Although the probe consistently detected a signal from egg, no other 

tissues produced signals. A range of other RNA and probe amounts 

were also tested, the results of each being the same as above.
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failure of a Xenopus natural-mating). No nervous-system-specific RNA would 

be expected to be seen in the egg and so the question remains as to whether the 

bands are truly due to N-Cadherin or some other highly homologous (at least 

at the extreme 5' end) gene. It is interesting to note that in a comparison of 

other Cadherins published to date, the 5'-end of the mRNA contains sequences 

that are amongst the least conserved between Cadherins. Obviously further 

investigation, in the form of a stage series/distribution analysis and the use of 

more-3' RNA probes, is necessary to evaluate the significance of this result.

The failure to find any bands in any other embryonic stages may be due to 

one of the options discussed above in Section 8.4.

8.2(v) X.borealis genomic clone: Xbal-PstI

This clone spans the putative TATA site. The Pstl-BamHI fragment (-229bp 

to -1281bp) was cloned directly into pBluescript SK+. The clone was 

linearised with Xbal and transcribed with T7 RNA polymerase. The sense 

RNA was made from the same clone but linearised with EcoRI and transcribed 

with T3 RNA polymerase.

According to the published expression sequence of the X.laevis N-Cadherin 

gene (DETRICK et al., 1990), expression of N-Cadherin is first seen (in 

RPAs) at stage 12, increases up to stage 20 and is specific to neural and 

muscle tissues. In Figure VIII.5, expression is just seen weakly at stage 8 

(which had been included as a negative control, based on Detrick's results), 

strongly at stage 12 and at stage 25; expression of the same size band is also 

seen in a stage 32 tadpole brain. A band of this size maps to approximately the 

TATA box. but only on the assumption that the 3'-end of the protected band 

extends to the Pst site (-53bp); this proviso cannot be proven from this gel
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Figure VIII.5a

P.NA«*» Protection Assay gei 

V hnrralis Xbal-P« l clone (3-9/4.8PS/pPS)

-1281bp 
Bamhü

T3

Smal XbaI Xhol

-229bp
PstI

T7

Track no:

1. Control: Probe + RNAse A

2. Control: Probe - RNAse A

3. Control: Probe + synthetic RNA

4. X .b o re a lis  stage 8

5 . X.borealis stage 12

6. X .b o re a lis  stage 25

7 X .b o r e a lis  stage 32 tadpole brain 

8. Markers: Hpall digested pBR322

D pBS SK+
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7 8

Figure VIII.5b 

1 2 3 4 5 6

The Xbal-PstI probe protects a 202nt band (corrected RNA size) in 

stages 8, 12 and 25 X.borealis embryos and more significantly, in 

tadpole brain. If the 3'-end of this protected band maps to the PstI site, 

then the other end of the band would map just 3' to the TATA-box.
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alone (but see below).

8.2(vi) Kitborealis genomic clone; Xbal-Hindlll

This clone was made as above but then linearised with Pstl. The Pstl-PstI (- 

229bp to -53bp) fragment was then ligated into the clone and the necessary 

checks performed. The clone was then linearised with Hindlll, liberating the 

Hindlll fragment (between -133bp and the pBS polylinker site) and then 

religated. To make the probe, the clone was linearised with Xbal and 

transcribed with T7 RNA polymerase. The results are given in Figure VIII.6. 

Bands of 216nts are seen in the stage 8 and 12 tracks; the bands in the stage 

18, 20 and 25 tracks are believed to be probe degradation products as similar 

length bands are seen in the control tracks.

The result that this gel produces is very useful when used in conjunction with 

the Xbal-PstI gel result. As both the above two clones have a common 5'-end, 

any longer bands seen on the latter gel must be extended at the 3'-end. The fact 

that a longer band is seen on the Xbal-Hindlll gel indicates that the 3’-end of 

the protected RNA from the Xbal-PstI clone must be Pstl site, thus confirming 

the 5'-end of protection near the TATA box.

The failure of the Pstl-Hindlll region to be completely protected ties in with 

the failure of the Pstl-PstI clone to produce a viable result (in tissues other 

than egg). It may imply the presence of the start of an intron (at approx - 

210bp) or may be due to one of the factors discussed above in Section 8.2(iii).

It has been found not possible to follow the rationale laid out at the start of 

this chapter for the RPAs due to the failure of the Pstl-PstI and Hindlll- 

Hindlll fragments to produce viable results. The results from the Xbal-Pst and

- 194-



X borealis genomic clone: Xbal-Hindlll

-1281bp
BamHI

j Smal Xbal Xhol PstI 
T3

-133bp
Hindlll

1....... .... I pBS SK+
T7

Track no:

1. Control: synthetic RNAk/X.laevis egg

2. X. boreal is stage 8

3. X.borealis stage 12

4. X.borealis stage 18

5. X.borealis stage 20

6. X.borealis stage 25

7. Markers: Hpall digested pBR322

The additional controls (Probe - RNAse A and Probe + RNAse A) were run 

on a separate gel (not shown); the bands produced were entirely as expected.
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Figure VIH.ób

Predicted DNA
RNA sizes 1 2 3 4 5 6 7 Markers

mm *—  527

The above gel shows that the Xbal-Hindlll probe protects a band of 

approximately 216nts in stage 12 X.borealis embryo RNA and also weakly in 

stage 8. In the stage 18, 20 and 25 X.borealis embryo RNA tracks, the only 

bands seen appear to correspond to probe degradation products (as seen in the 

synthetic-control track, 1.)
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Xbal-Hindlll fragments, when combined, point to the approximate region of 

the TATA box as either the site of an intron/exon junction or the start of 

transcription. The inaccuracies inherent in sizing these relatively large probes 

prevent any fine-scale dissection of the results based on this data alone.

The results presented above represent only the results that were consistently 

reproducible. RPAs were attempted using a number of other clones (see Figure 

VIII. 1) in an attempt to supplement the above results in terms of resolution 

and, in particular, to carry out further stage series and controls. Further 

experimental data is certainly required if any conclusions are to be put on a 

firmer scientific footing.

8.3 Primer extension assays 

8.3(i) Introduction

Four oligos were made for this study: one X.laevis oligo was made from the 

published X.laevis N-Cadherin cDNA sequence and three X.borealis oligos 

were made from the X.borealis genomic DNA region that had high homology 

to the X.laevis N-Cadherin cDNA (and was therefore assumed to be mRNA- 

coding).

The rationale for synthesizing three X.borealis oligos was that the results 

obtained with one oligo could be confirmed by the results from the other 

oligos if the obtained extended bands were at the same distance apart as the 

positions of the oligos themselves in the genomic DNA. The extended bands 

could then be said to be specific to the DNA sequences of all three oligos.

The oligos were carefully chosen so as to avoid excessive G+C content, the 

presence of simple repetitive motifs, hair-pin loops or of similar sequences to 

those found in other parts of the gene (as far as the sequence data was
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available). High G+C content oligos can bind non-specifically and relatively 

strongly to RNA regions that also have high G+C contents. It can also easily 

be seen how the presence of simple repetitive sequences or potential hair-pin 

loop structures would be undesirable. The probes used are given in Figure 

VIII.7, and highlighted where they occur in the relevant DNA sequence.

Since the primer extensions were carried out in low salt aqueous buffer, the 

melting temperature of the oligos (Tm) could be approximated from the 

Wallace Rule: Tm = 4(G+C) + 2(A+T) °C. This value was not relied upon, 

however, but was verified by actual binding studies at various temperatures 

between oligo and synthetic RNA/embryo RNA background (Figure VIII.8). 

These experiments gave a value for Tm at which specific binding of the oligo 

would be expected to decrease; it therefore gave an additional control with 

which to judge whether the binding of the oligo was specific or not.

The experimental procedure used for the primer extension assays is described 

in Chapter V. The integrity of the RNA was established by the RPA procedure 

using the histone H4 clone described in Section 8.2(ii).

It must be remembered that the end product of the primer extension assay is 

a labelled single-stranded piece of DNA; this may be sized directly against 

labelled DNA markers on a denaturing-PAGE gel.

A X.borealis histone HI oligo was used in establishing the primer extension 

protocol (BAGENAL, 1990). It served to confirm the correct operation of the 

protocol and also as further verification of the integrity of the RNA.

The oligo used was a 17mer that spans the translational start site and 

produces an extension product of 44nts. The details of the oligo and the
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X.laevis N-Cadherin and genomic PNA oligos 
used in primer extension assays

&/gmr.N-Cadhgrin oligo

-180 -170 -160 -150 -140
GCG GAGCACAGGA TTCCTCTGGA AATCAGCCCT G CCTTGTG TT 

NCAD5

The numbering is based on DETRICK et al. (1990), relative to the 
translational start-site.

X.borealis genomic oligos

-110 -100 -90 -80
GAAGTCCCAT TGCCCATGCC CCGCTCCCTG GGCAGTGGGC

ACCCTGCTGC T G C CTCTG TT ATATCTGCAG CTCACCATTG

TTCATCTACA GTCCAAGCCC CCCGACACTC ACAGCAGCAC
NC A D J1

The numbering is relative to the translational start-site, as given in Figure 
VII.5.

-70 -60 -40

NCADB2

-30 -20 -10 0

AAGAGCCCTT CCTACTACAA ACTGCCCTCA 
NCAD Z5

20 30 40
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Figure VIII.8a

P r i m e r  e x te n s io n  a s s a y s

The melting temperature (Tm) was determined experimentally for 

each of the oligonucleotides used in the primer extension assays 

(except the histone HI control, for which the Tm had already been 

established).

The hybridisation step of the primer extension assay was performed 

at various temperatures using synthetic RNA to establish the 

temperature above which binding was significantly reduced. The 

results obtained with these controls could then be used to establish the 

binding characteristics of each oligonucleotide to homologous RNA.

The results obtained with corresponding assays using embryonic 

RNA could then be compared with these control results to determine 

whether the binding seen was indeed specific. The temperatures given 

are in °C.
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Figure VIII.8b

X.laevis NCadherin olipo: NCAD5 

60 70 75 80 85

X borealis genomic oligo: NCADJ1

45 50 55 60

m

X.borealis genomic oligo: NCADB2

45 50 55 60 65

X.borealis genomic oligo: NCADZ5 

60 65 65 70
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8.3(iii) X.laevis N-Cadherin oligo: NCAD5

As with the above RPA experiments, the initial embryonic experiments using 

this assay were performed using a system that, it was hoped, would act as a 

positive control for the assay. An oligo was therefore made at the extreme 5’- 

end of the X.laevis N-Cadherin cDNA, as described in Figure VIII.7, for use 

on X.laevis embryo RNA.

The X.laevis N-Cadherin cDNA obtained from Chris Kintner (see Chapter 

VI; DETRICK et al., 1990) was 4.0Kb long, whereas published Northern blot 

data put the full length mRNA at 4.3kb. It was therefore initially assumed that 

the cDNA was missing 0.3kb at the 5' end (due to possible premature 

termination of the reverse transcriptase); upon reflection, this was not a valid 

assumption. Since the initial transcription of the cDNA (from mRNA) was 

primed by an oligo dT primer, there is no guarantee that this primer would 

hybridise to the very end of the mRNA. as such 3' ends of mRNA are known 

to be poly-A rich over a length of RNA that possibly extends for hundreds of 

nucleotides. Consequently, the missing 0.3kb could easily reside at the 3'-end 

of the cDNA.

It is entirely possible therefore that the 5'-end of the cDNA is coincident with 

the 5’-end of the mRNA; an oligo made to this 5'-end would therefore have no 

extending' to do. An oligo to sequences, say, -lOObp from the 5'-end should 

have been made as an initial step; this would have confirmed, or otherwise, the 

position of the 5'-end. If the 5'-end of the mRNA did reside further upstream 

from the known sequence, then the oligo made (to the extreme 5'-end of the 

cDNA) would have been a logical second step.

resultant gel are given in Figure VIII.9.
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Fi pure VIH.9a

P r im e r  e x t e n s io n  a s s a y  t e l :

X  bo rea lis  h i s to n e  H I  o l ig o n u c le o t id e

g « | . . r n r f  o f  X  b o rea lis  h i s to n e  H I  o l ig o n u c le o t id e :

T T C A G C G A T T A G C A A A T C T C T G T C G T T T T A A C A A A G A C A A A C A C

5 ' XbHla 3 '

T h e  u n d e r l i n e d  s e q u e n c e  c o r r e s p o n d s  t o  th e  o l ig o n u c le o t id e  t e r m e d  
X b H l a  ( B A G E N A L ,  1 9 9 0 );  i t  s p a n s  th e  

t r a n s l a t i o n a l  s ta r t  s i te  (o v e r l in e d ) .

T r a c k  n o :

1. M a r k e r s :  D N A  s e q u e n c e

2 . X .b o re a lis  e g g ,  1 0 p g

3 .  X .b o re a lis  s t a g e  3 7 , 1 0 p g

4 .  X.b o rea lis  s t a g e  2 2 ,  10M g

A l l  h y b r id i s a t io n s  a t  3 7 ° C  o v e r n ig h t .
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Figure V ili.9b

1 2  3 4

The detection of a 44nt band in all embryo RNA tracks shows that 

both the primer extension assay and RNA extraction procedure were 

working to a degree necessary to detect this semi-abundant mRNA.
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The results obtained using the NCAD5 oligo, not surprisingly, were negative 

(data not given).

Figure VIII. 10 show the results obtained with this oligo. A single band of 

351nts is seen in stage 8,18 and 23; it has also been shown to be present at 

stages 20 and 25 (data not shown). If there are no intervening introns, this 

would place transcriptional start at -349bp (based on Figure VII.5 numbering). 

8.3(v) X.borealis genomic oligos: NCAPB2 and NCADZ5 

These oligos consistently failed to produce any results when used under the 

same conditions as the NCADJ1 oligo.

8.3(vi) Primer extension assays: conclusions 

As with the RPA experiments, these experiments also fall short of being 

conclusive and therefore need supplementing, at the minimum, with additional 

stage controls before any firm inferences can be drawn. Ideally, the assays 

using either NCADB2 or NCADZ5 would have produced a band at the 

appropriate distance (shorter or longer in relation to NCADJ 1) which would 

have confirmed that the binding of NCADJ 1 was indeed specific.

Many of the reasons discussed in Section 8.4 are relevant here as to the 

question of why a negative result was obtained with these two oligos. In 

particular, should either oligo have a high homology to a non-specific RNA, 

then this RNA could ’soak-up’ a significant proportion of oligo, thus reducing 

the pool of oligo available to bind to the N-Cadherin mRNA; situations such 

as this cannot be foreseen.

8.4 A PCR-based method for the determination of transcriptional start-site 

An attempt was initiated to combine the primer extension assay with PCR in
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Figure VIIMOa

Primer extension assay gel:

ILborealis genomic oligonucleotides NCADJi and NCADR2 

Track no:

1. Markers: Hpall digested pBR322 

NCADJI

2. Control: synthetic sense RNA

3. X.borealis stage 25, 50pg, 60°C

4. X.borealis stage 25, 10ug, 60°C

5. X.borealis stage 20, 50pg, 60°C

6. X.borealis stage 20, 10pg, 60°C 

NCADB2

7. Control: synthetic sense RNA

8. X.borealis stage 25, 50pg, 50°C

9. X.borealis stage 25, 10pg, 50°C

10. X.borealis stage 20, 50pg, 50°C

11. X.borealis stage 20, lOpg, 50°C

The control sense RNA used was the Xhol-Xhol (-437bp to +318) 

cloned into pBluescript; the temperature referred to is the temperature 

of hybridisation of probe to tem ple  RNA.



Figure V ili. 10b

622— • 
527— •

404— >

309-

1 2 3 4 5  6 7 8  9 10 11

The bands seen in the NCADJ1 lanes are approximately 341nts in 

length. In the absence of any introns in the genomic DNA in the region 

between the translational and transcriptional start-sites, this would map 

the transcriptional start-site to approximately 70bp downstream of the 

TATA-box.

Additional oligonucleotides have now been made to confirm the 

specificity of this result and at a greater resolution.
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order to produce sufficient primer extension product to be able to sequence. 

Each individual step of this novel assay was adapted from known procedures 

and then fully worked out using control reagents, but insufficient time 

prevented performance of the complete procedure.

The rationale is given below, whereas a more complete experimental method 

is given in Appendix B and illustrated in Figure B.l.

a) Hybridisation of oligo to mRNA and extension with reverse transcriptase;

b) Separation o f  unused oligo from extended product on PAGE;

c) Poly-dG tailing of the extended product using terminal transferase and 

dGTP;

d) PCR using a second oligo and oligo-dC as primers;

e) Isolation and sequencing of product using third oligo.

The advantage of using this technique is that sequence data is obtained 

directly that, by a comparison with the genomic DNA, would illuminate 

transcriptional start and the presence of any introns in one step (assuming that 

the genomic DNA sequence extended beyond any introns found).

It was envisaged that the primer extension would be done with the 3'-most 

oligo. PCR would be done with the second oligo. and the sequencing would be 

done with the 5'-most oligo. The sequenced product would therefore be 

specific for all three oligos ensuring a high degree of specificity. The 

constraints of time, however, intervened to defeat this goal.

8.5 Conclusions

Although the preliminary results obtained with the RNAse protection and 

primer extension assays are encouraging, the objectives discussed in the 

preambles to both RPA and primer extension assays have not yet been
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translated into conclusive results capable of answering the main question 

posed by this chapter.

By combining the results from the Xbal-PstI and Xbal-Hindlll RNAse 

protection assays, it has been shown that the region of DNA from 

approximately -200bp (relative to the translational start-site) to the TATA box 

forms part of the mRNA population. The NCADJ1 oligo has also been shown 

to extend by 351nts from -20bp which, in the absence of any introns, would 

map transcriptional start just downstream of the TATA box.

The appearance of a protected band in the RPAs in the X.borealis egg 

remains an anomaly that requires further investigation. The appearance of 

bands in stage 8 embryos tracks may be due to inaccuracies in staging pre- 

gastrula embryos as neural induction commences shortly afterwards (and 

indeed, many people believe that neural induction starts prior to gastrulation).

In conclusion, the above results clearly give positive pointers towards the fact 

that the region of the TATA box is likely to be where transcriptional initiation 

occurs but further data is required to confirm this absolutely and with greater 

resolution. In this regard, additional primer extension experiments are 

underway using oligos at distances 100-200bp 3' to the TATA box. It is hoped 

that these experiments or the PCR assay will resolve this issue.
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Chapter IX

Expression of X,borealis N-Cadherin 

promoter/B-galactosidase constructs in Xenopus embryos

9.1 Introduction

(i) Promoter assays

(i) (3-galactosidase expression vectors used

(ii) Micro-injection of pCaSpeR-AUG-3gal constructs 

into Xenopus embryos

9.2 Construction of pCaSpeR-AUG-3gal promoter constructs

(i) BPP/pgal

(ii) BbPP/3gal

(iii) ocPB/Pgal

(iv) BPH/3gal

(v) BPP(Eco-)/pBS

(vi) XbaPP/3gal

(vii) XhoPP/pgal

(viii) PP/3gal

(ix) BP/Bgal

(x) SmaPP/3gal

(xi) pCaSpeR-AUG and pCaSpeR-3gal

9.3 Controls for the expression of micro-injected plasmids into 

Xenopus embryos

(i) Form of micro-injected DNA
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(ii) Quantity of micro-injected DNA

(iii) Localization of micro-injected DNA

9.4 Expression patterns of promoter deletion/3-galactosidase 

constructs in Xenopus laevis

9.5 Explant and inductive sandwich experiments

9.6 Transcriptional start-site used by promoter-deletion/Pgal constructs

9.7 Conclusions
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9.1 Introduction 

9.1(i) Promoter assays

The fusion of promoter deletions to the CAT gene is a well 

established and popular procedure for the analysis of promoter DNA 

sequences. The CAT assay is a simple chromatographic process that 

results in easily-quantifiable data. The disadvantage of this method is 

that the resolution of the areas of CAT protein expression are limited 

by the extent to which the expressing tissues can be dissected or 

isolated. In Xenopus. dissections can be made at the level of some 

single organs or tissues, but these can be very time-consuming to 

perform; smaller divisions rapidly become impractical.

An alternative, or rather a complement, to such assays are those in 

which reporter gene expression patterns are visualised directly. Whilst 

this approach does not result in quantitative data, it does provide a 

wealth of information on the fine-scale expression patterns of the 

reporter gene.

The advantages of utilising the Xenopus system in such studies are

legion and have been discussed in Chapter I.

The (3-galactosidase staining procedure was recommended by Richard 

Harland (pers. comm.) and had previously been successful in mice 

(Sanes et al., 1986).

The vector used in the (3-gal. expression studies was pCaSpeR-AUG- 

3gal (THUMMEL et al., 1988). This vector contains coding sequences
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from the E.Coli {3-galactosidase and Drosophila white genes, and part 

of the pUC vector bounded by P-elements; their relative orientations 

are shown on Figure IX. 1.

The 3-galactosidase gene in this vector is bounded at the 5'-end by a 

short poly linker (EcoRI, BamHI, Kpnl) and Drosophila alcohol 

dehydrogenase (Adh) AUG translational start site; the 3'-end has a 

SV40 polyA-tail, giving enhanced mRNA stability. The presence of 

the Adh AUG obviates the need for in-frame splicing of promoter 

sequences into the polylinker site.

This vector has been used extensively for enhancer-trapping 

(O'KANE and GEHRING, 1987) in Drosophila. P-element-mediated 

integration of the vector into the Drosophila genome results in the 

white-eye phenotype and 3-galactosidase expression only if the 

integration site is adjacent to enhancer/promoter sequences. The 

resulting 3-galactosidase expression pattern is taken to be analogous to 

that of the gene controlled by the adjacent enhancer/promoter 

sequences.

All constructs were cloned into the EcoRI-BamHI-Kpnl poly linker 

(as detailed below), transformed into the E.Coli bacterium strain BB4, 

and then a large-scale DNA preparation was performed using the 

CsCl-gradient method. Most vectors were injected into embryos in the 

linearised form, these vectors having been cut 5' to the inserted N- 

Cadherin sequences.

In retrospect, the choice of vector was fortuitous. It has since been
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Figure LX.l

vector)

Adh
White AUG lac Z

The pCaSpeR-AUG-Pgal vector comprises the Drosophila white and 

E.Coli lacZ genes, together with the Drosophila alcohol 

dehydrogenase (Adh) gene translational start-site, AUG (THUMMEL 

et al., 1988). The Adh AUG is in frame with, and directs transcription 

into, the E.Coli lacZ gene. These DNA sequences are bounded by P- 

element ends (P) and inserted into the pUC vector.

The sense orientation of the white and lacZ genes are indicated above 

by the arrows.

The majority of X.borealis N-Cadherin genomic DNA constructs 

were inserted into the BamHI-Kpnl sites of the poly linker and 

linearised with EcoRI.
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learned that the choice of vector in particular plays an important role 

in the level of non-specific expression: pUC and pBR322 vectors are 

said to give acceptable backgrounds but pGEM vectors do not (T.J. 

Mohun, NIMR Mill Hill, pers. comm.).

9.1(iii) Microinjection of pCaSpeR-AUG-Bgal into Xenopus embryos.

Initial microinjection trials with this vector alone (i.e. minus any 

insert) in X. laevis embryos gave negligible (3-galactosidase 

background expression. This indicated that there was no undirected 

expression from the Adh AUG from any source within the embryos. 

Promising results were seen with N-Cadherin promoter sequences 

inserted into the polylinker; a deletion series of the N-Cadherin 

promoter was therefore constructed in this vector (Figure IX.2).

All micro-injection experiments were performed into X.laevis 

embryos as these embryos are larger than those of X. boreal is', they 

were also more readily available in this laboratory. Similar results (and 

possibly more specific) would be expected from micro-injection into 

X.borealis embryos.

After the analysis of a number of necessary controls, a range of 

promoter deletion constructs were made as described below. These 

were inserted into a pUC-based vector upstream of a 3-galactosidase 

reporter gene and micro-injected into X.laevis embryos. I gratefully 

acknowledge the assistance of Dr. E.A. Jones in performing the micro- 

injections of the DNA constructs.

9.2 Construction of pCaSpeR-AUO-Qgal promoter clones
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N o t e :

T h e  5 .1 K b  B am H I—B am H I f r a g m e n t  i s  n o t  s h o w n  j o i n e d  

d i r e c t l y  t o  t h e  B am H I ( - 1 2 8 1 )  -  H i n d l l l  ( + 1 3 2 )  f r a g m e n t  
f o r  t h e  f o l l o w i n g  r e a s o n :

T h e  0 . 5 ,  0 . 4 ,  1 . 4  a n d  1 .6 K b  f r a g m e n t s  s h o w n  a t  t h e  5 ' -  

e n d  o f  t h e  Bam H I m ap  i n  F i g u r e  V I . 9  ( p a g e  1 4 7 )  c o u l d  n o t  

b e  u n a m b i g u o u s l y  a s s i g n e d  t h e  p o s i t i o n s  s h o w n  d u e  t o  t h e  
s m a l l  s i z e  o f  t h e s e  f r a g m e n t s .

I t  i s  t h e r e f o r e  p o s s i b l e  t h a t  t h e  5 . 1 K b  B am H I-B a m H I 
f r a g m e n t  i s  n o t  c o n t i g u o u s  w i t h  t h e  B a m H I - H i n d l l l  

f r a g m e n t ,  i . e .  t h e s e  l a t t e r  f r a g m e n t s  m a y  b e  s e p a r a t e d  
b y  o n e  o f  t h e  s m a l l  f r a g m e n t s  m e n t i o n e d  a b o v e .
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In all the cases mentioned below "3gal" refers to the pCaSpeR-AUG- 

3gal vector as defined by Thummel et al. (ibid.). The genomic 

fragments referred to below (by base pair numbers) are detailed in 

Chapter VII (Figure VII.3).

All 3gal clones were both single and double-digested to check for the 

presence of only one copy of the correct insert before large-scale DNA 

preparations were made by the CsCl gradient method.

9.2(i) BPP/Bgal

BamHI-PstI (-1281 bp to -229bp) and Pstl-PstI (-229bp to -53bp) 

fragments were gel-isolated from the 3-9/4.8BS/pBS clone. The 

BamHI-PstI fragment was cloned directly into pBS SK+ and then 

linearised with Pstl. The Pstl-PstI fragment was then ligated into this 

clone. The correct orientation of the Pstl-PstI fragment in the resulting 

minipreps (termed BPP/pBS) was checked by DNA sequencing from 

the pBS M13 primer site into the Pstl-PstI fragment.

The resulting BamHI-Pstl-PstI genomic sequence (-1281 bp to -53bp) 

was removed from pBS by digestion with BamHI+Kpnl, gel-isolated, 

and cloned into the BamHI-Kpnl site of the 3-gal vector. This vector 

could be linearised with BamHl.

The 5.1Kb BamHI-BamHI fragment was gel isolated from the 3-9/ 

EMBL3 clone (Figure VI.9) and ligated into the BamHl site of the 

above BPP/3-gal clone. The orientation of the BamHI-BamHI 

fragment was determined by restriction digests using EcoRI. Clones
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with both orientations were used (BbPP/0gal and bBPP/Pgal). These 

clones could not be linearised at the extreme 5'-end of the BamHI- 

BamHI fragment as this fragment contains an EcoRI site.

Linearization with EcoRI produces a clone with either 1.3 or 3.8Kb of 

genomic DNA. depending on the orientation of the 5.1Kb clone. 

9.2(iii) cxPB/Bgal

BPP/pBS (Section 9.4(i)) was cut with BamHI+EcoRI, the liberated 

genomic sequence (-1281 bp to -53bp) gel-isolated and cloned into the 

EcoRI-BamHI site of the 0gal vector. This clone could be linearised 

with EcoRI.

This manipulation places the genomic sequence 3-5' (i.e. in reverse 

orientation) with respect to the 0-galactosidase gene. It was therefore 

used as a negative control (in addition to vector without insert).

9.2(iv) BPH/Bgal

BPP/pBS (Section 9.4(i)) was digested with Hindlll and the resulting 

bands resolved on a low-melting point agarose gel. The larger (main 

plasmid plus BamHI-Pstl-Hindlll fragment) band was gel purified, 

religated, transformed into BB4 and miniprepped. In this way the 

genomic sequences between the Hindlll site (at -133bp) and the 3' pBS 

Hindlll site were removed.

Restriction digests were performed on a number of minipreps to 

verify the loss of the Hindlll fragment. Positive clones were also DNA 

sequenced from the pBS M13 primer across the Hindlll site into the 

genomic sequence to double-check.
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The genomic sequence (-1281bp to -133bp) was then removed from 

pBS by digestion with BamHI+Kpnl, gel-isolated, and cloned into the 

BamHI-Kpnl site of (3-gal- This clone could be linearised with EcoRI. 

9.2(v) BPP(Eco-)/pBS

BPP/pBS (Section 9.4(i)) was cut EcoRI. blunted with Klenow I, and 

religated to remove the EcoRI site form the 3' pBS polylinker. This 

clone (termed BPP(Eco-)/pBS) was then sequenced from the pBS M13 

primer site to verify that the EcoRI site was removed. This clone was 

the basis for subsequent clones that needed to be linearised at the 5’ 

end by EcoRI.

9.2(vi) XbaPP/Bgal

BPP(Eco-)/pBS was cut with Xbal. blunted with Klenow I and then 

cut with Kpnl; the genomic DNA was then gel-isolated. pCaSpeR- 

AUG-3gal was cut BamHI. blunted with Klenow I and then cut with 

Kpnl; the main plasmid was then gel-isolated. The Xbal (blunted)- 

Kpnl fragment genomic DNA fragment (-615 to -53) was then ligated 

into the pre-prepared 3gal vector. This clone could be linearised with 

EcoRI.

9.2(vii) XhoPP/Bgal

BPP(Eco-)/pBS was cut with Xhol and the liberated genomic 

fragment cloned directly into pBS KS+. The orientation of the Xhol 

fragment was determined by DNA sequencing. This clone was then 

digested with BamHI+KpnI. the genomic DNA fragment (-437 to -53) 

was gel isolated and cloned into [BamHI+KpnIJ-cut 3gal. The
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orientation of the genomic DNA was such that it read 5’ to 3' into the 

3gal coding sequence. This clone could be linearised with EcoRI. 

9.2(viii) PP/Bgal

Genomic DNA fragment Pstl-PstI (-229 to -53) was cloned directly 

into pBS; its orientation was determined by DNA sequencing. This 

clone was digested EcoRI+BamHI to liberate the genomic DNA. The 

genomic fragment (-229 to -53) was gel-isolated and then cloned into 

[BamHI+EcoRI]-cut 3gal vector. This clone could be linearised with 

EcoRI. The orientation of the genomic DNA was such that it read 5' to 

3' into the 3-galactosidase coding sequence.

I thank S.A. Burbidge for his assistance in cloning the Pstl-PstI 

genomic fragment into the 3gal vector.

9.2(ix) BP/Bgal

BPP(Eco-)/pBS was cut with PstI to liberate the Pstl-PstI (-229 to - 

53) fragment: the main plasmid band was gel-isolated, and religated. 

This clone was then cut BamHI+Kpnl to release the genomic DNA. 

the genomic fragment (-1281 to -229) was gel-isolated and then cloned 

into [BamHI+EcoRI]-cut 3gal vector. This clone could be linearised 

with EcoRI.

9.2(x) SmaPP/Bgal

BPP(Eco-)/pBS was cut with Smal+Kpnl; the genomic band was gel- 

isolated. 3gal was cut with BamHI. blunted and then cut with KpnI. 

The genomic fragment (-888 to -53) was then cloned into the pre­

prepared 3gal vector. This clone could be linearised with EcoRI.
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9.2<xi) pCaSpeR-AUG-Bgal and pCaSpeR-Byal 

These vectors (with no genomic clone inserts) were also injected to 

act as controls. pCaSpeR-3gal is similar to pCaSpeR-AUG-J3gal but 

has no AUG translational start-site (THUMMEL et al., 1988). Both 

could be linearised with EcoRl.

9.3 Controls for the expression of micro-injected plasmids into 

Xenopus embryos.

9.3(i) Form of micro-mjcctgd PNA 

Micro-injection experiments performed by other groups have failed 

to show conclusively the form of DNA (i.e. linear or circular) that 

yields the best expression of the plasmid (see Chapter I). The 

ambiguous results in the literature indicate that micro-injection 

experiments should be preceded by controls to investigate this point. 

The preliminary experiments therefore involved injecting a number of 

constructs independently in both linear and circular forms.

Four clones were used: ocPB/J3gal (reverse orientation promoter 

fragment) and pCaSpeR-AUG-3gal, as controls; and BPP/J3gal and 

XbaPP/Pgal, as promoter deletions. Micro-injections were performed 

into one cell of a two-cell embryo and analysed at stages 10-10.5 and 

16. The results are shown in Figures IX.3 -IX.6 and tabulated in Table 

IX. 1. Uninjected controls are shown in Figure IX. 10.

Both of the control clones produced very low levels of 3- 

galactosidase expression demonstrating:

(1) that there was very low levels of endogenous 3-
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Figure LX.3a
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Comparison between (3-galactosidase expression patterns obtained 
from circular and linearised micro-injected DNAs

Figure 1X4

Stage 16

aPB/Bgal - circular DNA

(See Figure IX. 11 for linearised clones)
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Figure IX.5b
BPP/Bg»l - linearised DNA

■
I



Figure IX.6a
Comparison between B-galactosidase expression patterns obtained 

from circular and linearised micro-iniecied DNAs







galactosidase expression in Xenopus; and 

(2) that there was negligible internally-initiated expression 

from the pCaSpeR-AUG-3gal vector.

Since the reverse-orientation promoter fragment clone (aPB/0gal) 

was negative, the expression patterns seen with the BPP/3gal and 

XbaPP/3gal can be said to be specific to those fragments of promoter 

DNA used.

A qualitative analysis of the results obtained with the BPP/3gal (and 

others, not shown) showed that circular DNAs produced stronger 

expression signals but in less defined patterns; linear DNAs produced 

more restricted and tissue-specific expression patterns.

In the light of this experiment, most of the subsequent micro- 

injection experiments were performed with linearised DNAs (if a 

suitable restriction site allowed the linearization of the DNA).

9.3(ii) Quantity of micro-injected DNA.

A large amount of micro-injected DNA is known to be toxic to the 

developing embryo. An excess of DNA could also possibly result in 

non-specific expression patterns being obtained. A dilution series was 

therefore performed using three clones to establish the non-toxic range 

of DNA concentrations and whether specificity was enhanced by using 

lower DNA concentrations.

20nl of 40pg/ml DNA was chosen as the standard upper 

concentration. This value had been used successfully in many previous 

micro-injection experiments in this laboratory and had been found to
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produce consistently reproducible results. DNA amounts higher than 

2n01 40Mg/ml are known to be toxic. (Other laboratories have found 

that a concentration 10-fold less than this amount yields acceptable 

results with some DNAs; Paul Krieg, globin gene, pers. comm.). 

Dilutions of this 40Mg/ml solution were made in TE, keeping a 

constant micro-injection volume of 20nl. The results are shown in 

Figures IX.7 to IX.9 and tabulated in Table IX.2.

It can be seen that by diluting the DNA concentration below 40pg/ 

ml, expression is quickly lost with no effect on 3-galactosidase 

specificity. Negligible expression is seen with 4pg/ml. All subsequent 

experiments therefore were performed with 20nl 40ng/ml DNA. 

9.3(iii) Localization of micro-iniected DNAs 

Expression patterns of exogenous DNAs in Xenopus are usually 

mosaic (i.e. not all cells express the plasmid) as invariably not all cells 

will receive the plasmid due to the uneven partitioning of the plasmid 

between cells during cell division. The micro-injections themselves 

were also only into one cell of a two-cell embryo. Experiments such as 

these are therefore always open to the criticism that the expression 

patterns seen only reflect the spatial distribution of the micro-injected 

plasmid. In many previous micro-injection experiments this suggestion 

has been refuted by the demonstration that the plasmid is present in the 

majority of tissues. Southern blots have now been performed with the 

clones used in this study. These have shown that the plasmids are 

represented approximately equally in all tissues tested (S.A. Burbidge,
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Figure IX.8b
XbaPP/Bgal - stag? 20

40ug/ml

8ug/ml

4ug/ml





Figure IX.9b

XhoPP/Bgal - stage 20
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Table IX.2

Summary of effect of variation in micro-injected PNA concentration 
on B-galactosidase expression patterns in X.laevis embryos

Construct Dilution Stage Number Number a
(Mg/ml) tested of embrvos ppsitiyç positive

BbPP/ßgal 40 11 5 5 100
BbPP/ßgal 40 20 1 1 100
BbPP/ßgal 8 11 5 1 20
BbPP/ßgal 8 20 5 1 20
BbPP/ßgal 4 11 5 0 0
BbPP/ßgal 4 20 5 1 20

XbaPP/ßgal 40 11 5 5 100
XbaPP/ßgal 40 20 9 9 100
XbaPP/ßgal 8 11 5 3 60
XbaPP/ßgal 8 20 5 0 0
XbaPP/ßgal 4 11 7 0 0
XbaPP/ßgal 4 20 5 0 0

XhoPP/ßgal 40 11 6 6 100
XhoPP/ßgal 40 20 1 1 100
XhoPP/ßgal 8 11 6 2 33
XhoPP/ßgal 8 20 3 1“ 33
XhoPP/ßgal 4 11 6 2» 33
XhoPP/ßgal 4 20 5 0 0

a injected DNA "blebbed" out 
b very small number of staining cells

Although the numbers in each individual experiment are small, an 
overall trend can clearly be seen. Dilution of the DNA concentration 
quickly titres out the activity of the micro-injected DNA. There was 
also no indication that specificity changed as the DNA concentration 
was alterred.
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pers. comm.).

9.4 Q-galactosidase expression patterns in whole embryos.

9.4(i) Introduction

A wide range of promoter/Pgal constructs were micro-injected into 

X.laevis embryos. These constructs are shown in Figure IX.2. 

Embryos were fixed at various stages of development and stained for 

3-galactosidase expression (as described in Chapter V). Little 

expression was seen in most embryos prior to MBT (stage 8.5). This 

could be due either to control elements within the promoter sequences 

suppressing transcription before this time or to the fact that RNA 

polymerases become most active after this time (Figure 1.5).

The stained embryos are shown in Figures IX. 10 - IX. 18.

These photographs are representative of the expression patterns 

obtained from a large number of experiments; it is obviously 

impracticable to include vast numbers of each construct at each stage 

in a study such as this. Table IX.3, therefore, tabulates the data 

obtained from a greater number of embryos. The data is, by necessity, 

qualitative but valuable results may be obtained by the comparison of 

clones that differ in defined amounts of promoter DNA.

Although the expression patterns seen, even with the longer lengths 

of promoter DNA present, are not always entirely restricted to one or a 

small number of tissues, the tissue-specificities achieved are 

significantly better than those achieved by other groups (Paul Krieg, 

pers. comm.). Contamination from using the same micro-injection
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Figure IX. 12a
Expression patterns of promoter/B-galactosidase construct 

in Xenoous ìaevis embryos 
SbPP/Bgal (circular)

BaniH l BainHI Bam H l Sm al X b a l X hol PstI H in d i»  Pstl H indU l

5 .1K b

Bam H l BainHI

T r a i -----------------

Bam H l

-888 -615  -4 Ì7  -229 -133  ^  
T A T A A  A U G  

Pstl BbBP/(3gal

S ta g e  10

Suge 15 (magnified)

Suge 16
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Sage 32 (magnified)



Figure IX. 13
Expression patterns of promoter/B-galactosidase constructs 

in Xenopus laevis embryos 
bBPP/Pgal (circular)

B am H l BamHI

5 .1 K b

BamH l

' ( mi

B am H l BamHl

S m a l X b al X hol Pall H in d lll Pail H in d lil

" 3 8 5  - 4 Ì 7  -2 2 9  - Ì 3 3  + Ì 3 2
T A T A A  A U G

__________________________________________ lP " 1 b B B P /0 -g a l

Stage 35
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Expression patterns of promoter/B-galactosidase constructs 
m Xew pus laevi! embryos 

BPP/Bgal (linearised)

B am H I B .m H I X b a l X ho l Pall H ind lll Pall

-SlS -lit ¿M-ls!----i f -
A U G

PstI
B P P /0g» l

Stage 10

Stage 35



Figure IX.15a
Expression patterns of promoter/B-galactosidase constructs 

in Xenoous laevis embryos 
BP/Bgal (linearised)

BainHI BainH l
—̂ -h
5.1K b

B am H I

B am H I

S m al X bal X hol PstI H in d III  Pstl

“ 8̂88------ Ì l i  J i?  Ì29-Ì33-----
T A T A A  A U G

P s ll

H ind III
__ I

♦  132

B P /0 g a l

Stage 10

Stage 20 

Stage 26
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needle in all experiments may account for a small amount of 

background. It must also be remembered that the clones used were 

derived from X.borealis genomic DNA and the host embryos were 

X.laevis.

9.4(ii) Analysis o fexpression patterns

As stated above, both uninjected and aPB/3gal clones (Figures IX. 10 

and IX. 11) produced negligible backgrounds of 3-galactosidase 

expression.

Clone BbPP/3gal (Figure IX.12. having 5.1+1.3kb of promoter 

sequence) produced the most spatially and temporally restricted 

patterns of 3-galactosidase expression. At stage 10, relatively weak 

expression may be seen in a few clumps of cells. At stage 15, discrete 

staining is seen along the neural folds and presumptive neural tissues. 

Staining persists into the spinal cord, notochord and somites in later 

stage embryos. This pattern of expression is in full agreement with that 

seen by in situ analysis (although 3-galactosidase staining in the 

somites does appear to be earlier and stronger than that reported; 

SIMMONEAU et al., 1992) and is consistent with the RNAse 

protection assays (DETRICK et al., 1990). At early stages. bBPP/3gal 

produces less-specific expression than BbPP/3gal. At later stages, 

staining is clearly more specific to the brain and spinal cord areas, 

although expression is more 'spotted' than BbPP/3gal.

It must be noted that clones BbPP/3gal and bBPP/3gal were two 

clones that were micro-injected in circular form due to the lack of
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suitable restriction-enzyme sites for linearisation: (the 5' BamHI- 

BamHI fragment contains an EcoRI site). In Section 9.3(i). it was 

shown that micro-injected circular DNAs produced stronger, but less 

specific 3-galactosidase expression patterns than the corresponding 

linearised DNAs. Therefore if it was possible to linearise the above- 

mentioned clones, weaker, but even more specific expression patterns 

would be expected.

Clone BPP/|3gal produces very similar staining patterns to bBPP/ 

3gal which may indicate that this latter clone contains the 5.1Kb 

BamHI-BamHI fragment in the reverse (antisense) orientation and that 

this 5.1Kb fragment contains orientation-specific promoter elements.

A comparison between BPP/Pgal and BP/Pgal (Figures IX. 14 and 

IX. 15, respectively) shows the effect of deleting 176bp of 5'- 

untranslated RNA. This deletion results in less staining in the nervous 

tissues and somites, and a distinctly more 'speckled' expression pattern 

overall which extends to gut and ventral tissues. This appears to 

indicate that DNA sequence elements 3’ to the (proposed) 

transcriptional start site play a role in the regulation of protein 

expression.

The expression patterns obtained from clone SmaPP/3gal also have a 

'speckled' appearance. This pattern is still nervous system and somite 

based although there is distinct staining in the gut and intestine 

regions.

Clone XbaPP/3gal contains only 120bp upstream of the TATA box.
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Expression is more variable in these embryos than seen with the above 

clones: some embryos are negative for nervous system tissues and 

somites; others have distinct staining in these tissues. Prior to stage 30. 

however, the majority of embryos have large amounts of non-specific 

staining in addition to that mentioned above. Greater staining is also 

seen at stage 11.

Clone XhoPP/pgal contains lObp upstream of the TATA box. 

Although there is limited expression prior to stage 10.5, expression 

subsequent to this is strong but non-specific: there is possibly a bias 

against nervous system and somite tissues. Whilst a lack of specificity 

would be expected (if the TATA box does indeed define the 

transcriptional start site), the level of expression is surprising. This 

clone, in effect, contains only the TATA box. the region immediately 

downstream and approximately 360bp of 5'-untranslated sequence.

This result provides further evidence for the presence of regulatory 

sequences downstream of the TATA box.

These results clearly show varying degrees of temporal and. more 

particularly, spatial patterns of expression. Table IX.3 catalogues the 

changes in specificity from BbPP/3gal having expression in nervous 

system/notochord/epidermis (with later expression in somites), 

through to the complete lack of specificity seen in XhoPP/3gal.

The primary conclusion from these above results is that a reduction 

of specificity correlates well with a reduction in the length of the 

promoter DNA present.
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9.5 Explant and inductive sandwich experiments 

9.5(i) Explants experiments

Explant experiments were performed in which micro-injected 

embryos were dissected with mounted eyebrow-hairs at stage 9 

(blastula) into animal (A), vegetal (V) and equatorial (E) regions and 

then cultured in isolation until the equivalent of stage 30. These 

experiments were designed to show whether animal, vegetal or 

equatorial regions have the capacity, in isolation, to differentiate into 

tissues that express the promoter/$gal constructs. In such dissections, 

animal pole region explants will form ciliated epidermis; equatorial 

tissue explants will form mesoderm, nervous system and some 

epidermis; and the vegetal pole region explants will form endoderm. 

The experimental procedure is outlined in Figure IX. 19.

9.5(ii) Induction experiments

These experiments are designed to show whether induced ectoderm 

expresses the promoter-deletion/Pgal constructs. A comparison of the 

animal pole explants (above) with these inductive 'sandwiches' 

illustrates the effect that the neuralising influence has on the 

developing embryo. The procedure is shown in Figure IX. 19.

The dorsal lip of a blastopore (the "Organiser") from an (uninjected) 

stage 10 embryo is sandwiched between two epidermal caps from 

(injected) stage 9 embryos. Within 30 minutes the inductive 

"sandwich" heals to form a "hamburger" shape; and within 60 minutes 

rounds-up to form a ball.
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Figure IX. 19
Dissection of Xenopus embryos for expiants

Stage 9 gmbryo
Animal pole - ciliated epidermis

Equatorial region - mesoderm
- nervous system
- epidermis

> Vegetal pole - endoderm 

Inductive sandwich dissections

Stage 9 embryos
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If the ectodermal host cells are induced to form neural tissues (by the 

neuralising influence of the dorsal lip of the blastopore), the embryo 

will form a smooth round shape extended in one direction by the 

developing notochord. If no induction occurs, the embryos will 

undertake a wrinkled, crunulated appearance.

9.5(iii) Results of explant and inductive sandwich experiments

The results of these experiments are shown in Figures IX.20 to IX.23; 

these experiments and others are tabulated in Table IX.4.

From Figures IX.20 (uninjected controls) and IX.21 (PP/3gal. 5’- 

untranslaled leader sequence), it can be seen that there is negligible 

background of (3-galactosidase expression in the control explants.

Clone BbPP/0gal (Figure IX.22, having 5.1+1.3kb of promoter 

sequence) shows high levels of 3-galactosidase expression in both 

equatorial and inductive sandwich explanls (i.e. mesodemi/nervous 

system/some epidermis). This correlates well with the expression 

patterns seen in whole embryos. Little expression is seen in either 

animal or vegetal explanls.

Clone XbaPP/3gal (Figure IX.23) contains only 120bp DNA 

upstream of the TATA box. Strong expression is still remarkably 

specific to mesoderm, nervous system and some epidermal tissues as 

shown by expression mainly in the equatorial and inductive sandwich 

explants.

Table IX.4 documents further controls, in particular, results obtained 

with a melallolhionine/thymidine kinase promoter/lacZ construct
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("Minimal TK" (Herpes Simplex Virus) promoter: PCR product 

corresponding to a 225bp region upstream of the translation start-site 

of the TK gene; Clive Mason, pers. comm.). These results show that 

the injected DNAs are not spatially excluded from any of the 

embryonic tissues.

9 .6  T r a n s c r ip t i o n a l  s u n - s i t e  u s e d  b y  p r o m o le r - d e le l io n /S g a l  

c o n s tru c ts .

9.6(i) Introduction

It is recognised that reporter-gene experiments such as these can be 

criticised on the grounds that the transcriptional start site(s) used in 

these artificial constructs may not be the same as that (those) used in 

the endogenous transcripts; the results seen may therefore not be a true 

representation of endogenous embryos.

In this regard, the following points must be noted:

a) Both circular and linear forms of the pCaSpeR-AUG-3gal plasmids 

gave negligible expression patterns when micro-injected into Xenopus 

embryos. This would indicate that there was very little undirected 

initiation of transcription from within this plasmid.

b) The majority of promoter-deletion/3gal constructs were linearised 

immediately 5' to the X.borealis N-Cadherin genomic DNA. Once 

micro-injected into the embryos, however, the extent of 

concatamerisation (resulting in head to tail multimers) of these 

constructs is unclear. The effect that such contiguous vector/genomic 

DNA combinations may have on altering the transcriptional start-sites
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is uncertain.

c) It may be the case that DNA sequences more-5' to those provided in 

these promoter/3gal constructs are required to correctly direct 

initiation of transcription.

A number of attempts were therefore made to try to establish the 

transcriptional start sites being used in these promoter-deletion/3gal 

constructs. These suffered, inevitably, from the same difficulties 

experienced in trying to establish the endogenous transcriptional start- 

site (Chapter VIII).

An oligonucleotide that spanned the Adh AUG was synthesised (5'- 

CAAAGTAAACGACATGGTGAC-3', -6nts to +15nts, BENYAJATI 

et al„ 1981). The precise choice of oligo was influenced by factors 

discussed in Section 8.9. Primer extension experiments were 

performed on RNA extracted from micro-injected embryos but no 

conclusive results were obtained (data not given).

9.7 Conclusions

The expression patterns seen from this series of X.borealis N- 

Cadherin promoter-deletion/(3gal constructs have graphically 

illustrated the utility of the Xenopus system in the analysis of a 

vertebrate promoter.

Although the majority of results given above are of a qualitative 

nature, the following conclusions can be drawn for the clones used:

a) circular micro-injected DNAs provide stronger but less-specific
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expression patterns with the 0gal constructs used than the 

corresponding linearised constructs;

b) 20nl of 40pg/ml construct was the optimum amount of DNA to be 

micro-injected;

c) the pCaSpeR-AUG-3gal and 0(PB/3gal (reverse-orientation N- 

Cadherin promoter) gives negligible backgrounds of 3-galactosidase 

expression;

c) the upstream 5.1Kb BamHI-BamHI X.borealis N-Cadherin genomic 

DNA fragment provides control elements that act in an orientation- 

specific manner and that mimic the expression patterns of N-Cadherin 

seen previously by antibody staining and RNAse protection assays;

d) the region of DNA between (the proposed) transcriptional and 

translational start-sites contains sequences important for the regulation 

of the N-Cadherin gene;

e) clone XbaPP/3gal (containing approx. 200bp upstream of the 

TATA-box) directs the majority of transcription to nervous system and 

somites in some early tadpole stage embryos (stage 30);

0  clone XhoPP/3gal, having only lObp 5’ to the TATA-box (but 

including 380bp 3' to it) produces strong but non-specific 3- 

galactosidase expression throughout the micro-injected embryos; and 

that

g) explant experiments demonstrate that the micro-injected DNA is not 

preferentially localised to any specific tissue and that reduction of the 

amount of DNA contained within the 3gal constructs produces
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gradually less nervous systetn/mesoderm-specific expression.

Tlie results obtained are consistent with the established model of the 

eukaryotic promoter having a number of defined DNA control 

elements (not necessarily all 5' to the transcriptional start-site) that 

combine to provide correct regulation of the downstream gene.
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Discussion and conclusions
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10.2 X.borealis N-Cadherin promoter region

10.3 N-Cadherin and other CAMs
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10.

Interest in the Cadherin family of proteins has increased markedly in 

the last few years. This is due in part to the increase in number of 

members of this family (Figure IV.4) but more particularly to the 

recognition of the importance of the study of these molecules to a 

wide range of molecular biological Fields. Studies of the Cadherins 

may have profound bearing on our understanding of early 

development and tissue morphogenesis, metastatic transformation and 

on the role of the cytoskeleton in the binding of transmembrane 

proteins; each of these has been discussed in Chapter III.

A further area of interest, on which the study of the Cadherins may 

provide illumination, is the way that tissue-specificity of gene 

expression is achieved. Little appears to be known about the the 

divergence of promoters of members of the same gene family. 

Although all Cadherin family members presumably stem from the 

same ancestral gene and selective pressure has maintained high levels 

of homology in some regions of the protein, the promoters of the 

different Cadherin genes can be expected to be markedly divergent, 

reflecting the varied tissue-specificities and expression patterns of 

each.

10.2 X.boreal is N-Cadherin promoter region 

The X.borealis N-Cadherin promoter appears to fall neatly into the 

classically-accepted mould of eukaryotic promoters, having a 

conserved TATA-box, CCAAT-box and Spl binding site. A number
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of other potential transcription-factor binding sites, including a 

homeodomain and MyoD binding site, have also been identified on the 

basis of sequence similarity to known motifs. The promoter region is 

GC-rich and has an above-average CpG content. The first exon-intron 

junction has been identified and comparisons with other Cadherins 

show that this boundary is well conserved in all published Cadherins 

(except P-Cadherin which lacks the first intron).

The TATA-box is placed 425bp 5' to the translational start-site and, 

contextually, is well placed to direct the initiation of transcription 

(Figure VII.5). This is supported by experimental data provided by 

RNAse protection assays and primer extension experiments (Chapter 

VIII). The unambiguous definition, by experimental means, of the 

transcriptional start-staid has been hindered (it is believed) by the GC- 

richness of region of DNA between TATA-box and translational 

start-site.

A recent paper by Simmoneau et al. (1992) has added weight to the

assertion that the herein identified TATA box defines the start of

transcription. Two X.iaevis N-Cadherin cDNA clones were isolated

that appear to correspond to those previously isolated by Detrick et al.

(1990) and Ginsberg et al. (1991). Both of these Simmoneau et al.

clones extend approximately 370nts 5' from the translational start-site.

A comparison of one of these clones and the genomic DNA sequence

from 3-9/4.8BS/pBS is given in Figure X.l. The genomic sequence

shows significant homology to these cDNAs; the 5’-end of the cDNAs 
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Figure X i

C o m p a r i s o n  b e tw e e n  X .b o r e a l is  N - C a d h e r in  
g e n o m ic  c lo n e  ( 3 - 9 /4 .8 B S /p B S )  a n d  

X .la e v is  N - C a d h e r in  c D N A  ( S I M O N N E A U  e t a l. .  1 992 )

U p p e r  s e q u e n c e  : X .b o re a lis  g e n o m ic  c l o n e  ( 3 - 9 /4 .8 B S /p B S )  
L o w e r  s e q u e n c e  : X .la e v is  N - C a d h e r in  c D N A  

( S I M O N N E A U  e t a l . .  1 9 9 2 )

- 4 2 0  - 4 1 0
T A T A A A CCA G  G C A T G T C C A A

- 4 0 0
A G T G T G G T T T

- 3 9 0
G C G G G G C C G C

- 3 8 0  - 3 7 0
A T G C C T G C G T  G T G A C A G T A T

- 3 6 0  
C T A A A C T G A C  
* * * *  * *

G  C T A A T A  GAG

- 3 5 3  
T G  G G G TG  
*  *  *  *  *

T T C C
***

- 3 4 5  - 3 3 7  - 3 2 7
G C A T  C C T G  T  G G C  T C T A C T T C C T  

* *  * *  *  * * *  *  * * *  *  *
A C T G A G G G C T  C T C C A T T C A A  T C T C C T C G G C T T T A C C T G C A

- 3 1 9  - 3 1 1  - 3 0 2  - 2 9 2
G T C T A C T G  G A C C  AA A G  A A T G T A C T  T  G C G C A A G T A G  
*  * * *  * * * * *  *  *  * *  *  *  *  *  * 
G C A T C T G C C G  C A G C G A C T C T  C A C  T C C T G T  G G A T T

- 2 8 2  - 2 7 3  - 2 6 3  - 2 5 3
G T G T G C A C G G  G A T T G T G A G  G G C A T G A A C A  A G C A C A G C A C  

* * *  * *  *  *  * * *  * * *  * *  *  * 
T G T C T C C T G  C T A C T C  G CG  G T G T T T T A C C  G T T A C C C C C C

- 2 4 3  - 2 3 3  - 2 2 3  - 2 1 3
A G C A G T G G G A  A G G C C C T G A T  A C T G C A G C C C  T A G T C C G A C C  

* *  * * *  *  *  *  * *  *  * *
G C C T T G G  A  A T  A T  A  AG

- 2 0 3
T T G T T G A T A C  CGA 
* * *  * * *  * *
T T G G  GAGAG G A A A G G C TG  C G A G T G C C A A  C C C T G A T A G C

- 1 9 9  - 1 9 0
T  C G  G T G C C G G  
*  * *  * * * * *

- 1 8 5  
T G  NAG

- 1 7 5  - 1 6 6  - 1 5 8
C A T T G A G G G A  C T C C T C C  CG  T T A G C T G G  GG
********** ****** ** * **** *

- 1 5 1
GCA A A
*****

C A T T G A G G G A  C T T G T C T G C G  G G G T G A C T G C G A A CTG CA A A
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U pper s e q u e n c e : X borealis genomic clone (3-9/4.8BS/pBS) 
Lower s e q u e n c e : X.laevis N-Cadherin cDNA 

(SIMONNEAU el al.. 1992)

■144 -139 -129 -119
CAGG TC T ATCAC CTGAAGCTTT GTGTTTGGTG

*** ** * **** * ** * *********  
GAGGATCCCT GGGAAATCAG CCAGAGGCTC GTGTTTGCTT

•109 -99 -89  -79
AAGTCCCATT GCCCATGCCC CGCTCCCTGG GCAGTGGGCA 

*** ** * *** ****** * ***** ** ** ** 
CAGTGCCGCT GCCTATGCCC CTCTCCCCGG ACACCCTGCC

-71 -62 -60  -57
CC C TGCTG CTGCCTCT G TT ATA
* * *** * * * * *  * ** ***

GCTCGTGCCG CCGC TAGAG CTTGTGTAAC CGGGACAATA

-47 -37 -27 -18
TCTGCAGCTC ACCATTGTTC ATCTACAGTC CAAGCC CCC 
** ** **** ******** ******* * ** * *** 
TCAGCGGCTC CTCATTGTTC ATCT CAAGC CATCGCTCCC

-9 *1
C GACACTCA CAGCAGCACA TG
* ** ** **** **
CCGATCCT CACA TG

Simonneau et al. (1992) have isolated two X.laevis N-Cadherin cDNA 
clones from a cDNA library. These clones are said to show high homology 
to the Detrick et al. (1990) sequence and the Ginsberg et al. (1991) 
sequence respectively, but extend further in a 5'-direction. The two isolated 
clones are highly homologous to one another and both have the same 5'- 
end as shown above.
This Figure compares the herein isolated genomic DNA with one of the 

Simonneau et al. cDNA sequences ("Clone 8"). The extent of homology 
continues up to 52bp downstream from the TAT AAA box.
The numbering is relative to the translational start-site of the X.borealis 

genomic sequence.
This provides additional support for the proposition that the X.borealis 

TATA box at -424 is directly involved in transcriptional initiation.
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lies approximately 50bp 3’ to the TATA box in the genomic DNA. 

This evidence adds yet further weight to the proposed utility of the 

TATA box.

Whereas mouse E-Cadherin and X.laevis N-Cadherin share 

approximately 60% homology in the cytoplasmic region of the 

protein, a comparison between the promoter regions of the mouse E- 

Cadherin and X.borealis N-Cadherin genes shows little sequence 

conservation. (A recent paper by Shimamura and Takeichi (1992) 

shows that E-Cadherin is actually expressed in mouse brain, although 

only transiently during early brain development). This divergence 

extends to the fact that one promoter possesses a TATA box. the other 

does not. It is interesting to note that the NCAM promoter also lacks a 

functional TATA-box. All three promoters, however, lie in GC-rich 

regions.

Potential transcription-factor binding sites have been identified in 

each of these promoters, on the basis of known sequence motifs. 

DNAse 1-footprinting, gel-retardation or a combination of these. 

Despite the fact that a number of promoters active in neural tissues 

have been isolated, the DNA sequence motifs to which neural 

transcription-factors bind have remained largely elusive. This may be 

a testament to the large number of such transcription-factors involved 

in neural gene regulation.
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10.4 Promoter-deletion/B-galactosidase constructs

It is so often the case in the field of molecular biology that inferences 

must be made about sub-cellular processes on the basis of a number 

obtained from a machine or a "blob" on an autoradiograph. Whilst any 

doubts about the utility of such data are clearly unfounded, such 

results cannot be a substitute for the direct observation of these sub- 

cellular processes at the level of a single cell or group of cells. 

Qualitative information and quantitative data must not be viewed, 

however, as opposite sides of the same coin: they are complementary 

to one another and the possession of both may lead to synergistic 

results.

In this study, the construction of a series of X.borealis N-Cadherin 

promoter deletions have been described, together with the the cloning 

of these deletions into the pUC-based Drosophila pCaSpeR-AUG- 

3gal plasmid (THUMMEL et al.. 1988). Control experiments have 

shown that this plasmid produces a negligible background of 3- 

galactosidase expression in X.borealis embryos. A number of further 

controls were performed in order to establish the most appropriate 

form and concentration of DNA to be micro-injected.

The expression pattern of the BbPP/3gal clone (containing 5.1+1.3kb 

of DNA 5’ to the translational start-site) has been shown to be largely 

restricted to the developing nervous system and mesodermal tissues 

and corresponds well with the previously published expression 

patterns of the N-Cadherin protein and RNA (SIMONNEAU et al.%
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1992; DETRICK etal., 1990).

Reduction of the amount of 5’-promoter DNA attached to the 

pCaSpeR-AUG-0gal plasmid results in less spatially restricted 

expression. Clone XhoPP/Pgal (comprising lObp 5' and 120bp 3' to 

the TATA box) surprisingly shows strong but non-specific expression 

throughout the embryo.

From a comparison of the expression patterns between these 

constructs, it can be inferred that the distal 5.1 kb BamHl-BamHI 

fragment contains important regulatory elements that act in an 

orientation-specific manner; and that the region of DNA immediately 

3' to the TATA-box also plays a regulatory role.

Explants of dissected X.laevis embryos that have been micro-injected 

with the 3gal constructs have confirmed that lkb of N-Cadherin 

promoter DNA (5' to the TATA-box) is sufficient to direct the 

majority of (3-galactosidase expression 

to neural and mesodermal tissues; and that expression of these 

constructs is also seen in ectoderm that has experienced the inductive 

influence of late gastrula dorsal mesoderm.

10.5 Future areas of research 

10.5(i) Introduction

There will always be a limit to the amount that one researcher can be 

achieve in a three-year period. In an open ended project such as this, 

each new avenue of research readily branches into many smaller ones, 

but it is not possible to explore all paths or even to do full justice to
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more than a few. Thus there always exists much scope for further 

study.

It is gratifying to see that Glaxo Group Research have recognised 

the value of this research and are providing sponsorship for its 

continuation. With their financial backing (and the use of their 

facilities) it is hoped that progress will be rapid.

Detailed below, therefore, are some of the immediate aims to be 

recommended to those wishing to further this work (many of which 

have already been initiated).

10.5(ii) ]

The greatest frustration of this study has been the failure to 

unambiguously identify the transcriptional start site(s). In common 

with other groups (Sorkin et al., 1991; Nedivi et al., 1992), primer- 

extension and RNAse protection assays have failed to provide 

conclusive results, probably due to the formation of secondary 

structures in the RNA in the high GC-content regions immediately 5' 

to the translational start-site. These problems were overcome in 

Nedivi et al. (ibid.) by the use of PCR to amplify the small number of 

full-length primer extension cDNA products. A similar procedure has 

been initiated here (Appendix C) but not yet completed. 

Oligonucleotides nearer to the TATA-box than those described here 

have also now been made and are being used in an attempt to define, 

with greater resolution, the site or sites of transcriptional initiation. 

Should similar problems be experienced as herein described, it is
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recommended that the PCR protocol be followed in order to amplify 

low frequency full-length mRNA transcripts (see Appendix B and 

NEDIVI et al. (ibid.)). The advantage of such a PCR approach is that 

the products may be sequenced directly using the PCR oligos.

Further scope also exists for resolving the anomalous results 

obtained with the RPA assay (in detecting RNA transcripts in 

X.borealis egg).

Only the first exon of the X.borealis N-Cadherin gene has currently 

been identified. Within the isolated genomic clone 3-9/EMBL3,

12.5Kb of DNA is as yet unmapped with regard to protein-coding 

regions and the intron/exon organisation.

10.5(iv) B-galactosidase assays of dissected tissues 

An analysis of the (3-galactosidase expression in injected X.laevis 

embryos through the use of a colorimetric assay of dissected tissues is 

already well advanced. Although less aesthetically appealing than the 

stained-embryo photographs, this data will contribute a valuable 

quantitative aspect to the expression studies.

10.5(v) Identification of transcription-factor binding sites 

Gel-retardation and DNA-footprinting studies can be used to identify 

promoter DNA regions bound by transcription factors. A number of 

potential sites have been identified by DNA sequence inspection and it 

will be interesting to see how many of these will be supported by 

experimental data.
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10.5 Concluding remarks

The ultimate goal of this research has always been the identification 

of neural transcription factors and to gain an insight into the 

mechanisms of neural gene regulation. With the identification of this 

N-Cadherin promoter, it is hoped that this goal may be one step 

nearer.
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Appendix A

Stage series of  X cngpus teen s embryos

The Xenopus iaevis and Xenopus borealis embryo stages referred to 

herein are defined according to the widely accepted classification of 

Nieuwkoop and Faber (1967). The diagrams reproduced here, showing 

embryo stages 1-45. are taken from this work.

Note

The embryos illustrated below are X.laevis; X.horealis embryos are 

smaller.

All the photographs shown in Chapter IX are of X.laevis embryos.
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Appendix B

PÇR-t>ased protocol to determine transcriptional start-site

B.l Introduction

B.2 Separation of oligonucleotides from primer extension products

(i) Test procedures

(ii) Experimental conditions used

B.3 Poly-dG tailing of extended products with terminal transferase

(i) Use of terminal deoxynucléotidyl transferase (TdT)

(ii) Experimental conditions 

B.4 PCR of TdT-tailed products

B.5 Conclusions
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B.l Introduction

An attempt was initiated to combine the primer extension procedure 

with PCR in order to amplify the small number of full-length 

extension products that (it was hoped) would be present after a primer 

extension reaction. The rationale for this procedure is illustrated in 

Figure B.l.

This procedure involves the use of terminal deoxynucleotidyl 

transferase (TdT) to add an oligo-dG tail onto the 3'-end of the cDNA 

resulting from a primer extension reaction and then PCR-amplifying 

the product using the primer extension oligo and an oligo-dC primer. 

If successful, this technique would overcome the deficiencies of both 

primer extension and RNAse protection assay in that it would provide 

not only a figure for the distance between the known oligo and 

transcriptional start, but also, by sequencing the PCR-product, the 

actual DNA sequence. A simple comparison could then be made with 

the genomic DNA sequence which would highlight the presence of 

any introns and illuminate the transcriptional start-site to within a few 

nucleotides.

B.2 Separation of oligonucleotides from primer extension products 

B.2(i) Test procedures

The largest single obstacle to overcome in using this technique is the 

removal of unextended oligo after the primer extension step. After the 

primer-extension step, oligo will be present in excess over the 

extended product and, if not removed, will compete with the extended
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product in the tailing reaction, resulting in few tailed extension 

products. The method of Belyavsky et al. (1989) uses an agarose gel 

to resolve oligo from extended product. The oligo/extended product 

mix is run out on the agarose gel, the low molecular weight end 

(including oligo) is run off, the polarity of the electrodes are then 

reversed and the DNA products are then condensed into a small gel 

slice near the original wells.

For the situation herein described, where the expected extension 

product was less than 0.5kb, an acrylamide gel was considered more 

appropriate to resolve oligo from extension products. The gel 

conditions and elution procedure were established using 35S-labelled 

DNA sequence reactions. DNA sequence was run out on various (4- 

12) %-acrylamide gels and exposed overnight. It was found that a 5% 

acrylamide gel gave the best resolution of oligo (20mers) and ssDNA 

products larger than 50nts. while still retaining the DNA extension 

products in a relatively small area. Orange G (lOnts), bromophenol 

blue (35nts) and xylene cyanol (130nts) markers were used to clearly 

define the tracks and as molecular weight markers (numbers refer to 

the 5% acrylamide gel used).

This acrylamide-gel based procedure has the advantage over the 

procedure of Belyavsky et al. (ibid.) in that no reverse-running of the 

gel is required; the DNA products are also eluted from a much thinner 

gel slice (1mm as opposed to 4.5mm).

After elution and EtOH-precipitation, the excised test DNAs were
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run on a further acrylamide gel to confirm that all DNA molecular 

weights were eluted with equal efficiency and to verify that the DNA 

was not degraded by this procedure. The recovery of DNA from such 

acrylamide slices was also determined, by scintillation counter, to be 

in the region of 60-70%.

The primer extension and RNA hydrolysis procedures are described 

in the Methods (Chapter V). The reaction products were run on a pre­

warmed 5% acrylamide, lxTBE, 7M urea gel until the bromophenol 

blue marker was at the bottom of the gel. The area above the xylene 

cyanol marker (130nts) was excised and extended products eluted 

from this gel slice into 200pl 0.3M sodium acetate pH6.5. 2mM 

EDTA in a 0.5ml siliconised Eppendorf tube for 1-3 hours on a rotary 

shaker at 37°C. After this time the buffer was replaced with a further 

200pl and the elution repeated. 2 vols EtOH was then added to the 

combined eluted fractions and the DNA precipitated overnight with 

glycogen.

B-3 EolyidQ tailing of extended products with terminal transferase. 

B.3(i) I

Terminal deoxynucléotidyl transferase (TdT, Gibco BRL. 10-20U/pl) 

will add supplied dNTPs to the 3'-end of a ssDNA template or 

overhanging 3’-ends of dsDNAs (NELSON and BRUTLAG, 1979; 

ROYCHOUDHURY and WU, 1980). Therefore, the addition of TdT 

+ one dNTP to a ssDNA primer-extension product will result in the 3'-
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end of the primer-extension product acquiring an oligo-dNTP tail; the 

length of the tail is dependent on the buffer conditions and time of 

reaction.

It was decided to tail with poly-dG or poly-dC to avoid any problems 

with the endogenous poly-A tails on the ends of the mRNAs. An poly- 

dC primer was available in the laboratory and so this dictated that the 

cDNA would be tailed with poly-dG.

The manganese-based TdT buffer of Deng and Wu (1983) was 

compared with the cobalt-based buffer of Belyavsky et al. (1989). Test 

tailing reactions were carried out using CX-32P-dGTP and then 

subsequently determining the %-counts incorporated using the DEAE- 

sodium phosphate method. Using this labelled dGTP reaction. 18% 

labelling occurred with the manganese buffer whilst only 1% occurred 

with the cobalt buffer.

The activity of the TdT was verified by tailing a y-32P-dGTP labelled 

oligo and resolving the products on a 5%-acrylamide gel.

B.3(ii) Experimental conditions

A 10pl reaction mix was performed using the buffer of Deng and Wu 

(1983) i.e. lOOmM sodium cacodylate pH7.1, 2mM MnCl2.0.lmM 

DTT. Incubation was for 60 minutes at 37°C. The reaction mix was 

then phenol/chloroform-extracted. chloroform-extracted and EtOH- 

precipitated.

The X.borealis N-Cadherin genomic DNA oligos used in the PCR
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reactions are described in Chapter VIII (Figure VIII.7). The poly-dC 

oligo was termed TRT5 and had the sequence CTGCAGATT(C17). 

The poly-dC stretch is preceded in this oligonucleotide by PstI and 

EcoRI sites to facilitate cloning of the PCR products.

PCR was performed using standard protocols (Taq polymerase 1, 

Promega) according to the following regime: 94°C 1.5 minutes, 60°C 

1 minute, 72°C 1.5 minutes: 25 cycles.

The PCR protocol was established using 3-9/4.8BS/pBS restriction- 

enzyme digested with BamHI and poly-dG tailed as above. PCR was 

performed with TRT5 and NCADJ1 oligonucleotides and resulted in a 

DNA band of the correct size.

B.5 Conclusions

Whilst the individual steps for this PCR-based amplification of the 

5’-end of the cDNA have been established, the constraints of time 

prevented the completion of the full procedure. Theoretically this 

approach should yield the desired result.

The variable amount of full-length cDNA produced after the primer 

extension step (if any) produces difficulties in controlling the tailing 

reaction. The tailing reaction would need to be allowed to proceed for 

a number of different times

(followed by PCR of each) in order to ensure that the optimum length 

poly-dG tail for the subsequent PCR step was obtained.

Other PCR-based procedures for determining the 5'-end sequences of 

cDNAs are available including the head-to-head ligation method of
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