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Novel approaches for culturing primary human cells in vitro are increasingly needed to study cell 

and tissue physiology and to grow replacement tissue for regenerative medicine. Conventional 2D 

monolayer cultures of endometrial epithelial and stromal cells fail to replicate the complex 3D 

architecture of tissue. A fully synthetic scaffold that mimics the microenvironment of the human 

endometrium can ultimately provide a robust platform for investigating tissue physiology and, 

hence, take significant steps towards tackling female infertility and IVF failure. In this work, 

emulsion-templated porous polymers (known as polyHIPEs) were investigated as scaffolds for the 

culture of primary human endometrial epithelial and stromal cells (HEECs and HESCs). 

Infiltration of HEECs and HESCs into cell-seeded polyHIPE scaffolds was assessed by 

histological studies, and phenotype was confirmed by immunostaining. Confocal microscopy 

revealed that the morphology of HEECs and HESCs is representative of that found in vivo. RNA 

sequencing was used to investigate transcriptome differences between cells grown on polyHIPE 

scaffolds and in monolayer cultures. The differentiation status of HEECs and HESCs grown in 

polyHIPE scaffolds and in monolayer cultures was further evaluated by monitoring the expression 

of endometrial marker genes. Our observations suggest that a 3D cell culture model that could 

approximate native human endometrial architecture and function can be developed using tailored 

polyHIPE scaffolds. 

 

INTRODUCTION 

Impaired interaction between the endometrium and embryo leads to implantation failure, 

infertility, miscarriage, fetal growth restriction and preterm birth. These disorders are the leading 

cause of fetal loss and neonatal morbidity and mortality. Early embryo implantation events are 
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highly species-specific.1 Studies in murine models have revealed that implantation is a step-wise 

process involving apposition of the embryo to the luminal endometrial epithelium, followed by 

adhesion and then invasion into the underlying stroma. Human embryo implantation is a complex 

process comprising a highly co-ordinated crosstalk between the embryo and the uterus, as well as 

communication amongst the different cellular constituents of the endometrium, including local 

immune cell populations. Due to ethical restrictions, implantation events cannot be studied directly 

in humans. In vitro culture of human endometrial cells would allow the study of endometrial 

function. Typically, endometrial stromal and epithelial cell functions are studied in vitro using 

standard two dimensional (2D) monolayer cultures, which fail to recapitulate the complex 3D 

architecture of the endometrium in vivo. For instance, it has been a challenge to maintain long-

term functional human endometrial epithelial cells (HEECs) that mimic the in vivo responses to 

differentiation and proliferation signals.2 Once in monolayer culture, HEECs rapidly undergo 

proliferation arrest and become senescent.3 Furthermore, they lose their specialised properties, a 

process known as dedifferentiation, and become unresponsive to ovarian steroid hormones.4 

Therefore, there is an unmet need in reproductive medicine for technologies that support 3D 

endometrial cell growth in vitro and hence allow development of fully functional 3D endometrial 

construct that is more representative of in vivo human tissue.  

Due to their high porosity, high permeability and tuneable mechanical properties, emulsion-

templated porous polymer scaffolds are attractive materials for 3D cell culture and tissue 

engineering. The droplets of a polymerizable high internal phase emulsion (HIPE) become 

interconnected upon curing, producing a fully interconnected porous polymer known as a 

polyHIPE. The pore diameter and properties of these materials can be tailored to a high extent, 

making them suitable for 3D cell culture, tissue engineering and regenerative medicine.5, 6 An 



 4 

interesting approach has been reported recently that involves combining hard sphere and high 

internal phase emulsion templating to produce multi-level hierarchically porous materials with an 

interconnected porous topology. The suitability of this material to support the growth and 

proliferation of human osteoblast cells has been also shown.7 

Recently, degradable polyHIPE materials have been prepared by photochemical thiol-ene 

polymerisation employing commercially available monomers.8 The resulting scaffolds are 

chemically similar to common biomaterials, such as polylactide and polycaprolactone, and degrade 

by similar mechanisms (ester hydrolysis).9, 10 Importantly, the degradation products are non-toxic 

(L929 fibroblast cell culture assay), easily excreted small molecules.10 The compression Young’s 

modulus of these polyHIPE materials ranges from highly elastic (0.2 kPa) to highly rigid (84.3 

kPa).11 The scaffolds have been shown to support 3D growth of a wide range of cell types.9, 12, 13 

Establishment of a 3D model of human endometrium to study normal and pathological embryo-

maternal interactions has the potential to accelerate the development of novel treatment strategies 

for female infertility and miscarriage prevention. Our work therefore aims to establish 3D 

endometrial cell growth in polyHIPE scaffolds. We show that these scaffolds support the growth 

of primary human stromal and epithelial endometrial cells, HESCs and HEECs, respectively. Cell 

infiltration was investigated by Hematoxylin and Eosin (H&E) staining and phenotype confirmed 

by immunostaining. Cell morphology was studied by confocal microscopy and impact on cell 

function was assessed by expression of marker genes and genome-wide expression profiling using 

RNA-sequencing. All experiments were carried out in comparison to conventional 2D monolayer 

cultures. 
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EXPERIMENTAL SECTION 

 

Materials 

All reagents and solvents used in polyHIPE synthesis were obtained at the highest purity available 

from Sigma-Aldrich and used without further purification, apart from the surfactant Hypermer 

B246 (a block copolymer of polyhydroxystearic acid and polyethylene glycol), which was 

obtained from Croda International. 

 

PolyHIPE Preparation and Characterisation 

The preparation of polyHIPE materials by emulsion templating and photopolymerisation has 

already been reported.11 Briefly, in a 250 mL two-necked round-bottomed flask, an oil phase 

consisting of the monomers trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) (4.84 g) 

and dipentaerythritol penta-/hexa-acrylate (DPEHA) (3.47 g) plus 1,2-dicholorethane (DCE) (7 

mL), surfactant Hypermer B246 (0.47 g) and a photoinitiator (a blend of diphenyl(2,4,6-

trimethylbenzoyl)phosphine oxide and 2-hydroxy-2-methylpropiophenone) (0.7 mL) was stirred 

continuously at ambient temperature using a D-shaped polytetrafluoroethylene (PTFE) paddle 

attached to an overhead stirrer at 350 rpm. An aqueous phase of deionised water (70 mL) was 

added dropwise to the oil phase, with stirring, to form a HIPE with an internal (aqueous) phase 

volume fraction of 80%. Once all the aqueous phase was added, the HIPE was transferred 

immediately into a cylindrical PTFE mould (diameter 15 mm, depth 30 mm). The mould was 

secured between two glass plates and passed under a UV irradiator (Fusion UV Systems Inc. Light 

Hammer® 6 variable power UV curing system with LC6E benchtop conveyor) ten to fifteen times 
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on each side, at a belt speed of 5.0 m/min., to ensure complete curing. The cured polyHIPE material 

was washed by immersion in acetone and then soxhlet extraction with dichloromethane for 24 h 

to ensure complete removal of any residual thiol or acrylate monomers. The polyHIPE was then 

dried under reduced pressure at ambient temperature for 24 h. 

A Philips/FEI XL30 ESEM operating at 25 kV was used to investigate the polyHIPE morphology. 

Fractured polyHIPE pieces were sputter-coated with gold using a Bio-Rad E5400 sputter coating 

system and mounted on carbon fibre pads adhered to aluminium stubs. Average void diameters 

were then calculated using Image J Version 1.50i. One hundred voids were randomly chosen from 

an SEM image of the sample and the diameters measured. Void diameters measured in this way 

underestimate the true value as the voids are unlikely to be exactly bisected. Therefore a statistical 

correction factor was used to account for this underestimate.14 

 

Sample Collection and Processing 

Endometrial biopsies were obtained from patients attending the Implantation Clinic, a dedicated 

research clinic at University Hospitals Coventry and Warwickshire (UHCW) NHS Trust, 

Coventry, UK. All research was undertaken with NHS National Research Ethics Committee 

approval (1997/5065). All biopsies were retrieved from the Arden Tissue Bank at UHCW. All 

participants provided written informed consent in accordance with the guidelines of the 

Declaration of Helsinki, 2000. Separation and purification of HEECs and HESCs were performed 

as described previously in detail.15 
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2D and 3D Primary Cultures 

PolyHIPE discs (15 mm diameter and 400 µm thickness) were placed in 24-well plates, disinfected 

with 100 % ethanol, rendered hydrophilic with 70 % ethanol, and washed twice with sterile 

phosphate buffered saline (PBS). The polyHIPE scaffolds were then coated with fibronectin (300 

μL; 0.33 mg/mL in PBS solution was used for each scaffold) to improve cell adherence. The 

scaffolds were left in the fibronectin solution for 1 h at ambient temperature and then used without 

further washing. A suspension of 2.5  105 HEECs in 50 μL conditioned reprogramming of 

epithelial cell (CRC) medium was carefully added onto the centre of each scaffold disc and 

incubated for 1 h at 37 °C. A 2 mL CRC medium was then added to each well and the plate was 

maintained at 37°C in a 5% CO2 humidified environment. Media were changed every other day. 

The CRC medium was made up of the following reagents: 500 mL DMEM/F12 with phenol red 

(Thermo Fisher Scientific, GibcoTM, catalog number: 31330-038), 50 mL DCC (dextran-coated 

charcoal-treated fetal bovine serum), 2 mM L-glutamine, 5 μg/mL Insulin, 5 mL Antibiotic-

Antimycotic solution (100 X) 5 mL, 8.4 ng/mL cholera toxin, 10 ng/mL EGF, 0.4 μg/mL 

hydrocortisone, 24 μg/mL adenine, 10 μM/L Y-27632 (Merck Millipore). Primary HESCs in 2D 

and 3D cultures were grown in DMEM/F12 medium with phenol red (Gibco, Fisher Scientific, 

Loughborough, UK), supplemented 10% dextran-coated charcoal-treated fetal bovine serum 

(DCC-FBS), 10 µM L-glutamine (Gibco), 1  Antibiotic Antimycotic (Gibco), 1 nM β-estradiol 

and 2 μg/ml recombinant human insulin (Sigma-Aldrich, Poole, UK). The cultures were 

maintained in 37°C in a 5% CO2 humidified environment and the culture medium was refreshed 

every 48 h. For differentiation experiments, cells, grown either as a monolayer or in 3D scaffolds, 

were exposed to DMEM/F-12 containing 2% DCC-FBS with 0.5 mM 8-bromo-cAMP (Sigma-

Aldrich) and 10-6 M medroxyprogesterone acetate (MPA; Sigma-Aldrich) for either 3 or 7 days.  
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Haematoxylin-Eosin (H&E) Staining 

Media were aspirated from the wells. PolyHIPE scaffolds were washed twice with 2 mL PBS and 

transferred to a 5 mL plastic vial containing 4 % formaldehyde. Formaldehyde fixed discs were 

processed and embedded in paraffin. Sections (5 μm) were obtained using a microtome, mounted 

on a glass slide and left to dry at 60 °C overnight. Slides were re-hydrated by a sequence of 3 baths 

of xylene for 5 minutes each, followed by 2 baths of 100 % isopropanol for 2 minutes each. Slides 

were then dipped in 70 % isopropanol for 2 minutes and rinsed in distilled water for 2 minutes. 

Slides were incubated with filtered haematoxylin for 1 minute and rinsed with warm running tap 

water for 15 minutes. They were placed in distilled water for 30 seconds and in 95% ethanol for 

30 seconds. Cells were counterstained with eosin-Y for 1 minute. To dehydrate and clear the 

sections, slides were immersed in a sequence of 2 baths of 95% ethanol, 2 bath of 100% ethanol 

and 2 baths of xylene (2 minutes each). Coverslips were applied to the slides using 

distyrene/plasticizer/xylene (DPX) mounting medium. 

 

Immunostaining 

Formaldehyde-fixed scaffolds were processed and embedded in paraffin and 5 μm sections were 

obtained using a microtome. Sections were mounted onto glass slides and left to dry at 60 °C 

overnight. Slides were re-hydrated by a sequence of 3 baths of xylene for 5 minutes each, followed 

by 2 baths of 100 % isopropanol for 2 minutes each. Slides were then dipped in 70 % isopropanol 

for 2 minutes, rinsed in distilled water for 2 minutes, dipped in 10 mM citrate buffer pH 6.0, and 
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placed in an epitope retriever unit for 2 hours. For immunostaining, Novolink Polymer Detection 

System (Leica) was used. Peroxidase Block was added for 5 minutes, and 0.05 % polysorbate 20 

(Tween 20) in tris buffered saline (TBS-T) was used twice for washing. Sections were incubated 

overnight at 4 °C in primary antibodies diluted in 0.05 % TBS-T. The slides were again rinsed 

twice with TBS-T and incubated with Post Primary Block for 30 minutes. Two more 0.05 % TBS-

T washes were carried out and the slides were incubated for 30 minutes with Novolink Polymer 

Solution. Slides were rinsed with 0.05 % TBS-T, incubated for 5 minutes with diaminobenzidine 

chromogen and rinsed with water for 5 minutes. Slides were counterstained with haematoxylin. 

The primary antibodies, cytokeratin 18 (Abcam; AB668) and vimentin (Cell Signalling, 3390) 

were diluted 1:1000.  

 

Immunofluorescence and Confocal Microscopy 

Cell monolayers were grown in glass-bottom Petri-dishes until 80-90 % confluent. Cells in 

scaffolds were cultured for 7 days. Culture media were aspirated and cells were washed in PBS 

and fixed in 4 % formaldehyde. Formaldehyde was aspirated and cells were washed with PBS for 

5 minutes. Cells were permeabilized with 0.1 % Triton X-100 for 1 h at room temperature, washed 

with PBS for 5 minutes and incubated in 1% BSA / PBS (v/v) for 1 h to block nonspecific binding 

of antibodies. Cells were incubated overnight with primary antibodies diluted 1/100 in 1% (w/v) 

BSA/PBS at 4 °C, washed with 1% BSA/PBS and incubated with secondary antibodies diluted 

1/200 in 1 % BSA/PBS at 4 °C for 2 h in the dark. A new 1% BSA / PBS wash was carried out, 

and cells were coverslipped with mounting medium containing DAPI for nuclear counterstaining. 

The cells were imaged using a confocal microscope (Zeiss LSM 710). Confocal images were 
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captured with a 488 nm wavelength scanning laser and emitted light recorded through a band-pass 

filter (505–530 nm). 

 

RNA Isolation from Cells in Culture 

Cells in culture were washed twice with PBS.  After the addition of phenol-guanidinum 

thiocyanate monophasic solution (Stat-60) (AMS Biotechnology), cells were harvested by 

scraping. A 20 % volume of ice-cold chloroform was added to RNAse-free Eppendorf tubes 

containing homogenates and vigorously vortexed for 15 seconds. Tubes were centrifuged at 4 °C 

at 16,000 g for 30 minutes. The aqueous phase that contains the RNA remains was separated from 

the organic phase (at the bottom) that contains DNA and proteins and transferred to RNAse-free 

Eppendorf tubes containing half of the original STAT-60 volume of ice-cold isopropanol and 20 

μg glycogen. After being thoroughly vortexed, tubes were stored at -80 °C for at least 30 min 

(maximum 24 h) to precipitate the RNA. Tubes were thawed on ice and centrifuged at 4 °C at 

16,000 g for 15 minutes. RNA pellets were washed twice with 500 μL of 75 % (v/v) ethanol in 

RNAse free-water, and allowed to dry for 2 minutes, before resuspension in TE buffer pH 8.0. 

RNA concentration and purity were measured using a spectrophotometer. RNA purity was 

considered satisfactory when the absorbance ratio at 260/280 ≥ 1.8. 

 

Complementary DNA (cDNA) Synthesis from mRNA 

A reverse transcription kit (Qiagen) was used for cDNA synthesis. 1 μg of template RNA, 2 μL of 

7 x gDNA Wipeout buffer and nuclease-free water to complete 14 μL were mixed in pre-chilled 
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RNAse-free Eppendorf tubes. Tubes were vortexed, centrifuged briefly and incubated at 42 °C for 

2 min to remove the genomic DNA. 4 μL RT buffer (5), 1 μL RT Primer Mix and 1 μL 

Quantiscript Reverse Transcriptase were added to each tube, vortexed, and briefly centrifuged. 

Control sample without the reverse transcriptase was prepared, using 1 μl of water instead of the 

enzyme. Tubes were incubated at 42 °C for 30 minutes. In order to inactivate the reverse 

transcriptase, tubes were incubated at 95 °C for 3 minutes. Final cDNA was diluted 1/5 by adding 

80 μL nuclease free-water. Samples were assayed immediately or stored at – 20 °C. 

 

Real-Time Quantitative PCR (RT-qPCR) 

Total RNA was extracted from 2D and 3D cultures using RNA STAT-60 (AMS Biotechnology). 

Equal amounts of total RNA were treated with DNase and reverse transcribed using the QuantiTect 

Reverse Transcription Kit (QIAGEN) and the resulting cDNA used as template in RT-qPCR 

analysis. Detection of gene expression was performed with Power SYBR® Green Master Mix and 

the 7500 Real Time PCR System. The expression levels of the samples were calculated using the 

dCt method, incorporating the efficiencies of each primer pair. The variances of input cDNA were 

normalised against the levels of the L19 housekeeping gene. All measurements were performed in 

triplicate. Melting curve analysis confirmed product specificity. Primer sequences used were as 

follows: L19 forward 5’-GCG GAA GGG TAC AGC CAA-3’, L19 reverse 5’-GCA GCC GGG 

CGC AAA-3’; PRL forward 5′-AAG CTG TAG AGA TTG AGG AGC AAA C-3′, PRL reverse 

5′-TCA GGA TGA ACC TGG CTG ACT A-3′; PAEP forward 5’-GAG CAT GAT GTG CCA 

GTA CC-3’, PAEP reverse 5’-tga tga atc cct gca tga tctc-3’; DPP4 forward 5’-CCA AAG ACT 

GTA CGG GTT CC-3’, DPP4 reverse 5’-ACA AAG AAC TTT ACA GTT GGA TTC AC-3’. 
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RNA Sequencing and Data Analysis 

Total RNA was extracted using RNA-STAT-60 from primary cultures. Four biological repeat 

experiments were performed to allow for inter-biopsy variability. RNA quality was analysed on 

an Agilent 2100 Bioanalyzer. RNA integrity number score for all samples was ≥8.0. Library 

preparations were performed by Warwick Genomics Facility. Ovation RNASeq System V2® 

(Nugen Technologies) was used for cDNA synthesis and amplification. First strand cDNA was 

prepared using a DNA/RNA chimeric primer mix and reverse transcriptase. This resulted in 

cDNA/mRNA hybrid molecules containing a RNA sequence at the 5’ end of the cDNA strand. 

Priming sites for DNA polymerase were created by fragmenting the mRNA within the 

cDNA/mRNA complex, in order to synthesise a second DNA strand. Next the cDNA was 

amplified using DNA/RNA chimeric SPIA primers and DNA polymerase. RNA in the 5’ end of 

the cDNA strand was removed from the hybrid molecule by RNAse H. The libraries were sent to 

Wellcome Trust Centre for Human Genomics (Oxford, UK) for pair-end next generation 

sequencing using Illumina HiSeq and with a reading length of 100 base pairs, producing 150 

million pair reads. Transcriptomic maps of paired-end reads were generated using Bowtie-2.2.6,16 

SAMtools 1.2,17 and TopHat 2.1.0 against the hg19 reference transcriptome (2014) using the fr-

firststrand setting. Transcript counts were assessed by HTSeq-0.6.1 18 and transcripts per million 

(TPMs) were calculated as recently described.19 Differential gene expression analysis was 

performed using DEseq2-1.14.1.20 Significance was defined as an adjusted P value (q value) of 

<0.05 after Bonferroni multiple testing correction. Gene Ontology (GO) analyses were carried out 

using DAVID Bioinformatics Resources 6.8.21  
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Statistical Analysis 

Data were analysed with the statistical package Graphpad Prism v6 (Graphpad software Inc, La 

Jolla, CA, USA). Student’s t-test was used when appropriate. Statistical significance was assumed 

at P < 0.05. 

 

RESULTS AND DISCUSSION 

Well-defined polyHIPE materials derived from trimethylolpropane tris(3-mercaptopropionate) 

(TMPTMP) and dipentaerythritol penta-/hexa-acrylate (DPEHA) were prepared using emulsion 

templating and thiol-acrylate photopolymerization, as reported previously.9 The typical 

interconnected open-cell morphology of polyHIPE materials was confirmed by scanning electron 

microscopy (SEM), Figure 1A. Highly interconnected porous materials have great potential as 

scaffolds for 3D cell culture and in tissue engineering applications as they allow effective nutrient 

and waste transport to and from the cells. This is an attractive advantage of polyHIPE scaffolds 

over other 3D cell culture systems, such as hydrogels where poor media diffusion may restrict 

nutrient supply to cells. Void diameter distribution of the material was determined by analysis of 

SEM images, Figure 1B. The average void diameter of the polyHIPE material was found to be ca. 

25 µm, which is likely sufficient for most cell types to infiltrate the scaffold. PolyHIPE scaffolds 

have been previously used to support the growth of a wide range of cell types including 

chondrocytes,22 osteoblasts,23 keratinocytes,24 hepatocytes,25 and neurons;26 nevertheless, to the 
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best of our knowledge this is the first report of primary human endometrial cells grown on 

polyHIPE scaffolds. 

 

 

Figure 1. Synthesis of polyHIPEs from TMPTMP and DPEHA. A) SEM micrograph of a 

polyHIPE material and B) Void diameter distribution determined by analysis of SEM image. Scale 

bar = 50 µm. 

 

We hypothesized that polyHIPE scaffolds would create a more physiologically relevant 3D 

environment for the growth of endometrial cells compared to conventional 2D monolayer culture, 

consistent with a preliminary study that reported on an electrospun polymer scaffold for primary 
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bovine endometrial cell culture.27 However, electrospun scaffolds possess disadvantages, limiting 

their applications for routine use. In electrospun scaffolds, 3D growth is restricted to the nodes 

where fibres overlap which can prevent extensive organisation. More importantly, electrospun 

scaffolds suffer from poor mechanical properties, unlike polyHIPE scaffolds that are more 

mechanically robust.11 

The produced cylindrical polyHIPE monoliths were sectioned using a vibrating-blade microtome 

into membranes of about 400 µm, 15 mm in diameter, allowing membranes to be placed in 24-

well plates, Figure 2. Transwell® inserts were applied (after removing the polycarbonate 

membrane) to prevent scaffolds from floating when media is added. Fully submerged scaffolds 

were expected to offer cells maximum nutrient supply as media could access the cells from above 

and below. It has been reported that the use of extracellular matrix (ECM) glycoproteins enables 

cell attachment to synthetic substrates such as polystyrene.28 We therefore investigated the effect 

of coating of polyHIPE scaffolds with fibronectin (one of the most abundant ECM proteins) on 

the endometrial cell adhesion onto the polyHIPE material.  
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Figure 2. Photographs of polyHIPE A) monoliths, B) discs of 400 µm thickness and C) inserted 

in cell culture well-plate. D) Presentation of a fully submerged polyHIPE scaffold in culture media 

using a Transwell® insert.  

 

Adhesion and growth of HEECs and HESCs was assessed at days 2, 7 and 15. After 2 days in 

culture, more cells were adhered onto the surface of the fibronectin-coated scaffolds when 

compared to uncoated scaffolds, Figure 3 and 4. Consequently, fibronectin coating of scaffolds 

was performed routinely in all subsequent experiments. As the culture period progresses to 7 and 

15 days, cells remained healthy with no overt signs of cell loss or apoptosis. Although further 

migration into the scaffold was modest, the cells retained their phenotype (Figure 5), suggesting 

that the polyHIPE material provides a suitable environment for maintaining cells in prolonged 

cultures. Unlike primary cells, polyHIPE scaffolds were readily colonised when seeded with 

Ishikawa cells, an endometrial adenocarcinoma cell line widely used as a cell model that 

recapitulates endometrial receptivity for embryo implantation,29 Figure 6. Therefore, further 

optimisation of scaffold architecture and/or culture conditions is necessary to improve primary cell 

penetration and proliferation. 
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Figure 3. H & E staining of HEEC growth in polyHIPE scaffolds using 24-well plate format. 

(A,D) Day 2. (B,E) Day 7. (C,F) Day 15. Scaffolds were either left uncoated (A,B,C) or coated 

with fibronectin (D,E,F). Cell seeding density = 2.5  105. Fibronectin coating modestly promotes 

cell adhesion and migration into the material. Scale bars = 50 m 
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Figure 4. H & E staining of HESC growth in polyHIPE scaffolds using 24-well plate format. 

(A,D) Day 2. (B,E) Day 7. (C,F) Day 15. Scaffolds were either left uncoated (A,B,C) or coated 

with fibronectin (D,E,F). Cell seeding density = 2.5  105. Fibronectin seems to help cell adhesion 

and encourages penetration into the material. Scale bars = 50 m 
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Figure 5. A) HEECs stained with an epithelial marker, CK18 and B) HESCs stained with a stromal 

marker, Vimentin, grown in polyHIPE scaffolds for 15 days. Scale bars = 50 m. 

 

 

Figure 6. H & E stained Ishikawa cells grown in a polyHIPE scaffold for 15 days. Cell seeding 

density = 2.5  105. Scale bar = 100 m  

 

In a monolayer culture (2D), HEECs and HESCs exhibited a flattened and often distorted 

morphology with limited evidence of cell-cell contact. It is recognised that limited cell-cell and 

cell-ECM interaction would lead to rapid loss of phenotype and native function.30 Importantly, 

HEECs and HESCs cultured in scaffolds were more rounded, displaying a distinct 3D 
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configuration akin to the native cell morphology found in vivo, Figure 7. The topology of the 

scaffold is expected to keep cells in their native 3D morphology and hence increase cell-cell 

contact.  

 

 

Figure 7. Laser scanning confocal micrographs of cultured HEECs A) in 2D; B) in polyHIPE 

scaffold and HESCs C) in 2D; D) in polyHIPE scaffold. Immunofluorescence staining of HEECs 

by anti-CK18 antibody/DAPI and HESCs by anti-vimentin antibody/DAPI. Scale bars = 5 m. 

 

To characterize the transcriptome differences between cells grown in polyHIPE scaffolds and in 

monolayer cultures, we performed RNA sequencing. HEECs isolated from 4 different biopsies 
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were cultured in parallel on polyHIPE scaffolds and as a monolayer until 80-90 % confluent. Total 

RNA was extracted and subjected to RNA sequencing with approximately 33-47 million paired-

end reads sequenced per sample. Although variation in gene expression was observed between 

cultures from different biopsies, Principal components 1 and 2 accounted for 47% and 22% of 

variance in gene expression, respectively, clearly distinguishing the impact of the different culture 

conditions, Figure 8 A. After accounting for variation between primary cultures, the impact of 2D 

versus 3D culture conditions was highly significant. Based on q < 0.05, 495 genes were found to 

be differentially expressed between the culture systems, (Figure 8 B) with 289 and 206 genes 

significantly enriched in monolayer and polyHIPE scaffold cultures, respectively (Table S1, 

Supporting Information). 

To identify the biological processes impacted by the culture conditions, Gene Ontology (GO) 

analysis was performed. Genes upregulated in polyHIPE scaffold cultures were highly enriched 

for functional categories related to extra-cellular matrix deposition (GO:0031012, P < 2.58E-12) 

and cell adhesion (GO:0007155, P < 2.39E-4) (Table S2, Supporting Information). Notably, gene 

ontology categories related to positive regulation of cell division (GO:0051781, P < 0.028) were 

also enriched in polyHIPE cultures, suggesting an advantage of HEECs grown in polyHIPE 

scaffolds over 2D cultures. By contrast, downregulated genes in polyHIPE scaffold cultures 

included multiple l interferon-responding genes (IRGs), resulting in enriched for functional 

categories related to defence response to virus (GO:0051607 < 2.19E-17) (Table S3, Supporting 

Information).  
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Figure 8. Identification of genes differentially expressed in scaffold vs 2D cultures samples. A) 

Principal component analysis segregates paired HEESCs grown on polyHIPE scaffold (n=4; red 

dots) and in standard 2D cultures (n=4; blue dots). Principal components 1 and 2 account for >68% 

of variation in gene expression. B) Scatterplot of log transformed gene expression in representative 

polyHIPE scaffold and monolayer RNA sequencing libraries. Red dots indicate significant 

differentially expressed genes. 

 

Embryo attachment to and invasion into the endometrium is dependent on differentiation of both 

epithelial and stromal cell populations and expression of evolutionarily conserved receptivity 

genes. In humans, transformation of the stroma into a decidual matrix that governs trophoblast 

invasion and placenta formation is initiated in response to the postovulatory surge in progesterone 

and rising cellular cyclic adenosine monophosphate (cAMP) levels.31 The induction of a receptive 

phenotype in primary endometrial cells in response to culturing conditions was assessed in two 

ways. First, expression of PAEP, which encodes progestagen-associated endometrial protein, was 

compared between 2D and 3D cultures of HEECs cultured for either 3 or 7 days. PAEP is highly 

expressed in the endometrium during the window of implantation. When compared to a 2D 
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monolayer, HEECs grown on scaffolds expressed higher transcript levels for PAEP, Figure 9A. 

Furthermore, the ability of HESCs to differentiate into specialized decidual cells in response to 8-

bromo-cAMP and MPA signalling was also enhanced in 3D, as exemplified by higher induction 

on day 7 of culture of PRL, a cardinal decidual marker gene, Figure 9B. 

 

 

Figure 9.  Expression of  endometrial differentiation markers in primary endometrial cells grown 

in 3D versus 2D cultures : A) PAEP mRNA levels in HEECs, cultured either as  a monolayer (2D) 

or in scaffolds, were measured after 3 or 7 days of culture by RTQ-PCR. PAEP mRNA levels were 

normalization to the housekeeping gene L19 and expressed as arbitrary units (a.u.). The data show 

expression in two primary HEEC cultures established from different biopsies. B) Induction of 

decidual PRL expression in HESCs cultures as monolayers or in scaffolds. Parallel cultures either 

remained untreated (D0, control) or were decidualized using 8-bromo-cAMP and MPA for 3 or 7 

days. Total mRNA was harvested and subjected to RTQ-PCR. PRL mRNA levels were 

normalization to the housekeeping gene L19. The data show induction of PRL in two independent 

primary cultures.  
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CONCLUSIONS 

A well-defined polyHIPE material was prepared by emulsion templating and thiol-ene 

photopolymerization techniques. The morphology of this material was found to be fully 

interconnected, highly porous and supports the in vitro 3D growth of primary human endometrial 

cells. Preliminary cell culture experiments showed that both HEECs and HESCs adhere on the 

polyHIPE scaffold and that the material is sufficiently open to allow cell infiltration, although 

further optimisation is needed to allow full cell population of the scaffold. Differentiation 

experiments and morphological transcriptomic analyses demonstrated that polyHIPE scaffolds can 

offer a more physiologically relevant growth environment for endometrial cells in vitro compared 

to monolayer cultures. Cells grown in scaffolds displayed higher expression levels of PAEP, a 

gene involved in conferring endometrial receptivity to implantation, and a much enhanced ability 

to differentiate into specialised decidual cells in response to 8-bromo-cAMP and MPA. We 

therefore believe that polyHIPE materials could form the foundation for development of a 

functional, representative 3D model of human endometrium that will be advantageous for the study 

of miscarriage or implantation failure; and aid the development of novel therapeutic strategies. 

Furthermore, because of the ability to allow cell expansion in 3D culture, we envisage that 

degradable polyHIPE materials may be useful in medical applications, such as autologous organ 

reconstruction.  
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Supporting Information. The following files are available free of charge. 

Table S1. Differential expressed genes between 2D and Scaffold cultures. Genes sorted 

according to p-value and enrichment in Scaffold over 2D; Table S2. Gene ontology analysis for 

genes enriched in Scaffold over 2D (Bonferroni adjusted p-value < 0.05); Table S3. Gene 

ontology analysis for genes enriched in 2D over Scaffold (Bonferroni adjusted p-value < 0.05) 

(Microsoft Excel Worksheet (.xlsx)) 
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