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ABSTRACT 34 

The use of cell factories for the production of bulk and value-added compounds is 35 

nowadays an advantageous alternative to the traditional petrochemical methods. 36 

Nevertheless, the efficiency and productivity of several of these processes can improve 37 

with the implementation of micro-oxic or anoxic conditions. In the industrial setting, 38 

laccases are appealing catalysts able to oxidize a wide range of substrates and reduce O2 to 39 

H2O. In this work, several laccase-based devices were designed and constructed foreseeing 40 

the modulation of intracellular oxygen concentration in bacterial chassis. These Oxygen 41 

Consuming Devices (OCDs) included Escherichia coli’s native laccase (CueO) and three 42 

variants of this protein obtained by directed evolution. The OCDs were initially 43 

characterized in vitro using E. coli DH5α protein extracts, and subsequently using extracts 44 

obtained from other E. coli strains and in vivo. Upon induction of the OCDs no major effect 45 

on growth was observed in four of the strains tested, and the analysis of the cell extracts 46 

protein profiles revealed increased levels of laccase. Moreover, oxygen consumption 47 

associated to the OCDs occurred in all conditions tested but the performance of the device 48 

was shown to be strain-dependent, highlighting the importance of the genetic background 49 

even in closely related strains. One of the laccase variants showed a 13- and 5-fold increase 50 

in oxidase activity and O2 consumption rate, respectively. Furthermore, it was also possible 51 

to demonstrate O2 consumption in vivo using L-DOPA as substrate, which represents the 52 

proof of concept that these OCDs generate an intracellular oxygen sink thereby 53 

manipulating the redox status of the cells. In addition, the modularity and orthogonality 54 

principles used for the development of these devices allow an easy reassembly and fine-55 

tuning foreseeing their introduction into other chassis/systems. 56 
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INTRODUCTION 59 

Micro-oxic and anoxic environments are fundamental to numerous processes with 60 

significance to clinical, environmental, and industrial fields. It is generally accepted that 61 

hypoxia is established during infectious processes1-3 and that hypoxia inducible factors are 62 

central regulators of tumor phenotype contributing to malignancy.4 Likewise, micro-oxic 63 

and anoxic processes are critical for maintenance of carbon, nitrogen and sulfur global 64 

cycles, the degradation of recalcitrant organic compounds or transformation of metals and 65 

metalloids to less toxic forms.5,6 In industrial biotechnology, the applications in oxygen 66 

limited conditions have been largely overlooked compared to their counterparts in oxic 67 

conditions. Although ethanol, butanol, malate or polyhydroxybutyrate can be produced 68 

under micro-oxic or anoxic conditions,7-10 the shift from fossil-based to biobased economy 69 

will benefit from an increased implementation of processes for biomass valorization or the 70 

synthesis of energy carriers, biofuels, bulk chemicals, probiotics, or bioactive compounds 71 

under O2-limited conditions.6 Currently, the production of many chemicals/compounds by 72 

aerobic processes has low productivity since cell metabolism favors biomass formation.10,11 73 

The presence of O2 can also negatively affect processes by enzyme inhibition, for e.g., the 74 

photobiological production of H2 is severely compromised by the presence of oxygen due 75 

to the sensitivity of the H2-evolving enzymes: hydrogenases and nitrogenases.12,13 76 

Therefore, the development of micro-oxic/anoxic processes is highly desirable to achieve 77 

high efficiencies and near theoretical yields.11 In this context, several strategies were 78 

successfully implemented to increase the production of propanol, butanol, or ethanol in 79 

Escherichia coli 14-20 and synthetic biology has played a significant role in the development 80 

of these metabolic engineering approaches with the redesign of existing pathways or the de 81 

novo design.21,22 82 
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In an industrial setting, laccases are considered green catalysts due to the wide range 83 

of substrates catalyzed without the need for co-factors or production of toxic peroxide 84 

intermediates.23,24 Laccases belong to the multicopper oxidase protein superfamily that is 85 

characterized by the highly conserved copper binding motifs: the T1 mononuclear copper 86 

center (where the one-electron substrate oxidation occurs), and the T2/T3 trinuclear copper 87 

center that catalyzes the four-electron reduction of oxygen to water.25,26 The applications 88 

based on these enzymes are broad, ranging from paper, food and textile industries to 89 

bioremediation, biosensors, cosmetics, and organic synthesis.23,27,28 Fungal laccases are 90 

often used for these purposes, but recently the interest in proteins from bacterial origin is 91 

increasing due to their higher thermal and pH stability. Moreover, the latter are more prone 92 

to activity and specificity improvements through protein engineering.23 E. coli’s native 93 

multicopper oxidase (CueO) is a monomeric periplasmic protein involved in copper 94 

homeostasis.29 Besides the characteristic copper binding motifs, CueO displays a 95 

methionine rich insert which provides extra copper binding sites that are essential for the 96 

cuprous oxidase activity related to copper detoxification, the physiological function 97 

recently attributed to the protein.26,30 In addition, CueO also exhibits significant laccase 98 

(phenol oxidase) activity with broad substrate specificity. Taking advantage of this feature, 99 

several OCDs - Oxygen Consuming Devices based on the CueO laccase were assembled 100 

following the standardization and modularity principles and envisaging the modulation of 101 

the intracellular oxygen concentration in bacterial chassis. These OCDs were tested in vitro 102 

in different conditions and in different E. coli genetic backgrounds, and the proof of 103 

concept for the in vivo modulation of intracellular oxygen using these OCDs is also 104 

provided. Moreover, the approach followed here will allow extending the use of OCDs to 105 

other organisms/chassis, enabling the development of bioprocesses such as bioremediation 106 
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or production of biofuels and the elucidation of fundamental aspects of adaptation to 107 

oxygen limited/deprived conditions. 108 

 109 

RESULTS AND DISCUSSION 110 

Selection of Targets, Design and Assembly of the Lac OCD. Aiming at modulating the 111 

intracellular O2 concentration in bacterial chassis commonly used in industrial processes, a 112 

bioinformatics tool (DESHARKY)31 was used to identify metabolic routes involving the 113 

oxidation of natural compounds (metabolites) and consequent O2 consumption. The search 114 

was based on a Monte Carlo heuristic algorithm, considering E. coli and Synechocystis sp. 115 

PCC 6803 as hosts, and O2 as reactant source. From the tool outputs, the pathways 116 

comprising enzymes without information available in KEGG were eliminated and it was 117 

also imposed that the substrates for these reactions should be present in the hosts. 118 

Moreover, among pathways containing cycles of oxygen production-degradation, it was 119 

checked that the pathway effective stoichiometry involved the consumption of oxygen. 120 

Based on this search, several oxygen consuming devices were designed and tested (e.g. A-121 

type flavoproteins, glucose oxidase) however, based on preliminary results and various 122 

technical difficulties that have arisen only the characterization of the OCDs based on E. 123 

coli’s K-12 native laccase (CueO) is presented here. 124 

Envisaging the introduction of the OCDs in different bacteria, the 1551 bp sequence 125 

of cueO ORF was codon-optimized considering the codon usage of E. coli K-12, 126 

Synechocystis sp. PCC 6803 and Nostoc sp. PCC 7120 to obtain a single sequence that 127 

could be expressed in the three organisms – cueO*. Comparison of the codon adaptiveness 128 

of the codon optimized and original cueO ORFs (Figure S1) revealed significant codon 129 

usage differences, with 27% of the codons showing codon usage differences above 50%. 130 
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For an approximate indication of the likely success of the codon optimized sequence 131 

expression in E. coli, the codon adaptation index (CAI) was calculated; since this index is a 132 

measurement of the relative adaptiveness of the codon usage of a gene towards the codon 133 

usage of highly expressed genes.32 The original and codon-optimized cueO sequences 134 

showed similar CAI values, (0.816 and 0.782, respectively) indicating that the synthetic 135 

sequence would most likely be expressed in E. coli, despite the codon alterations made. 136 

Successful expression is also expected in Synechocystis sp. PCC 6803 and Nostoc sp. PCC 137 

7120 since the CAI indexes obtained were 0.767 and 0.785, respectively. In addition to the 138 

codon-optimized cueO ORF (cueO*), the synthetic DNA sequence includes the RBS 139 

BBa_B0034, double stop codons (TAATAA), and the prefix and suffix sequences of the 140 

BioBrick RFC[10] standard.33 Subsequently, this sequence was cloned downstream the 141 

F2620 BioBrick originating the laccase-based OCD – Lac OCD (Figure 1). The F2620 142 

BioBrick is a regulatory element that enables the device induction upon addition of 143 

signaling molecules of the acyl-homoserine lactone family (AHLs). 144 

 145 

146 
Figure 1. Schematic representation of the laccase based Oxygen Consuming Device (Lac OCD). The 147 

device includes the RBS B0034, the codon optimized cueO ORF (cueO*) with double stop codons 148 

(TAATAA) followed by the double terminator B0015 and is regulated by the F2620 BioBrick. This 149 

regulatory element enables OCD regulation by the PluxR promoter that is activated by the complex formed 150 
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between signaling molecules of the acyl-homoserine lactone class (AHLs) and the LuxR protein. The luxR 151 

ORF is preceded by the RBS B0034 and the constitutive promoter PtetR. The Lac OCD is flanked by the 152 

BioBrick (BB) prefix (with the EcoRI (E) and the XbaI (X) restriction sites) and the BB suffix (with SpeI (S) 153 

and PstI (P) restriction sites) and is in a BioBrick backbone, the pSB1A3 that harbors the gene conferring 154 

resistance to Ampicillin. 155 

 156 

Effect of Laccase OCD Activation on Growth and Protein Profiles of Five E. coli 157 

Strains. It is widely recognized that the performance of synthetic parts is dependent on the 158 

genomic and metabolic context.34,35 Therefore the Lac OCD was introduced and 159 

characterized in different E. coli strains routinely used in laboratory: DH5α, BL21(DE3), 160 

MG1655, SURE and Top10. In addition to the strains containing the Lac OCD, control 161 

strains harboring the plasmid with the F2620 BioBrick (F2620) only were also generated. 162 

The growth of the E. coli strains (DH5α, BL21(DE3), MG1655, SURE and 163 

Top10) containing the F2620 only or the F2620 plus the Lac OCD (Lac OCD) was 164 

compared to the respective wild-type, in absence/presence of the inducer AHL (N-(β-165 

ketocaproyl)-L-homoserine lactone, 3OC6HSL). No significant differences in growth were 166 

observed, except for the SURE and DH5α strains (Figure 2a and S2). In the E. coli SURE 167 

strain, a premature onset of the stationary phase was observed in the wild-type and cells 168 

harboring the Lac OCD while for cells harboring the F2620 the growth was unstable 169 

(Figure S2). This reduced fitness may be due to the strain’s impaired DNA repair, 170 

recombination and restriction systems. For E. coli DH5α, the cells containing the Lac OCD 171 

showed hindered growth in the 6 hours that followed the addition of AHL (Figure 2a), with 172 

a decrease in growth rate to 36% (0.12 h-1) of the wild-type rate (0.35 h-1). However, after 173 

this period, the growth behavior was similar to the wild-type. Previous studies report that 174 
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metabolic burden leads to growth alterations that can be related to the reallocation of cell’s 175 

resources to maintain the plasmid used to transform cells,36 which is not the case here since 176 

no differences in growth were observed between the wild-type and the cells harboring the 177 

F2620. 178 

 179 

180 
Figure 2. Effect of the Lac OCD activation on E. coli DH5α growth (a) and protein profiles (b). For the 181 

growth experiment (a) the wild-type (wt), the cells containing the F2620 only or the F2620 plus the Lac OCD 182 

(Lac OCD) were grown in absence (C) or presence of the inducer (AHL). Growth was monitored measuring 183 

the OD600 every 2 hours for a 24 hour period. Error bars represent the standard deviation of biological 184 

replicates (n = 3). Protein extracts obtained from E. coli DH5α cultures harboring the F2620 and the F2620 185 

plus the Lac OCD (Lac OCD), in presence (+) or absence (-) of AHL and collected at different time-points 186 

after OCD induction (6, 12 and 24 h) were separated by electrophoresis on SDS-PAGE and stained with 187 

Coomassie Blue (b). The protein band corresponding to the laccase (CueO*) is highlighted by the black 188 

arrow. MW – low molecular weight protein marker (GE Healthcare). 189 

 190 

Increased protein expression can also lead to metabolic burden due to the depletion 191 

of aminoacyl-tRNAs or amino acid pools that are known to be dependent on the growth 192 

rate.36,37 Therefore, DH5α cells containing the Lac OCD and grown in presence or absence 193 

of AHL were collected 6, 12, and 24 hours after induction and the protein profiles were 194 
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visualized on Coomassie blue stained SDS polyacrylamide gels (Figure 2b). In contrast 195 

with the F2620 transformants, a substantial amount of laccase was readily observed in 196 

extracts obtained from cultures harboring the device, particularly in the presence of the 197 

AHL inducer. The highest levels of laccase were observed 6 hours after induction. In the 198 

subsequent points, although the protein levels decrease, laccase was still easily observed. 199 

Therefore, our results suggest that the overexpression of laccase leads to a growth delay in 200 

DH5α cells. The subsequent reduction in protein levels may alleviate the metabolic burden 201 

allowing the recovery of the growth rate after 6 hours, being the culture final OD similar to 202 

the wild-type. 203 

Additionally, the protein profiles of the other E. coli strains (BL21, MG1655, SURE 204 

and Top10) were also analyzed (Figure 3). Similarly to DH5α, a marked difference 205 

between the protein profiles of the cells harboring F2620 or the F2620 plus the Lac OCD 206 

was observed, with increased laccase levels in extracts obtained from cells harboring the 207 

device and grown in presence of the inducer (Figure 3, arrowheads). In the protein profiles 208 

of cells containing the OCD but in absence of AHL, increased levels of laccase could also 209 

be observed compared to the extracts of cells with F2620, suggesting read through from 210 

PtetR or leakiness of the PluxR promoter. This leaky behavior was previously reported to be 211 

dependent both on abiotic and genetic factors such as temperature, media, chassis’ genetic 212 

background or the embedded sequence context.38 For the E. coli strain MG1655 an 213 

inconsistent behavior was registered, as frequently no induction of laccase expression was 214 

observed. 215 

 216 
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 217 

Figure 3. Coomassie stained SDS-PAGE of the protein profiles of different E. coli strains. Protein extracts 218 

were obtained from E. coli BL21, MG1655, SURE and Top10 cultures harboring the F2620 or the F2620 plus 219 

the Lac OCD (Lac OCD), in presence (+) or absence (-) of AHL, collected 6 hours after induction. The 220 

protein band corresponding to the laccase (CueO*) is highlighted by the black arrow, and for each strain the 221 

induced protein expression is highlighted by the black arrowheads. MW – low molecular weight protein 222 

marker (GE Healthcare). 223 

 224 

In sum, the Lac OCD was consistently expressed in four of the five E. coli strains 225 

tested and its activation had only a transient impact on the growth of one of the strains. 226 

Moreover, the device was shown to be robust since increased levels of laccase could still be 227 

detected 24 hours after the induction, in agreement with previous reports on CueO’s high 228 

stability.39 229 

 230 

In Vitro Performance of the Laccase OCD in E. coli DH5α. An extensive 231 

characterization of the Lac OCD was carried out in E.coli DH5α to determine the dynamic 232 

range of the device performance. For this purpose, phenol oxidase activity and O2 233 

consumption rates were determined using protein extracts obtained from cells induced in 234 

exponential or stationary phase, and grown in M9 minimal medium or M9 supplemented 235 

with copper. In addition, cells were collected at different time-points: 6, 12 or 24 hours 236 

after AHL induction. The influence of the different parameters on the OCD performance 237 

was statistically determined performing a four-way ANOVA, where a model with all the 238 
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effects and interactions up to the third order was tested. The statistical analysis revealed 239 

that the medium used for cell growth does not influence the device performance in terms of 240 

laccase activity or O2 consumption (p-value = 2.20x10-02 and 6.78x10-02, respectively). For 241 

this reason, the results obtained using M9 medium supplemented with copper (Figure 4) 242 

were shown separately from those obtained with M9 medium (Figure S3). Although the 243 

time of induction was shown to have an influence in the Lac OCD, with a significant p-244 

value of 2.36x10-05, the impact of this parameter is modest (with a partial Eta squared value 245 

of 0.062). The growth phase in which the device was induced showed to have an impact on 246 

the performance (p-value = 1.97x10-19), with cells grown in M9 medium and induced in 247 

stationary phase showing higher O2 consumption rates than cells induced in exponential 248 

phase (Figure S3b and d). Even though the Lac OCD was partly active in absence of AHL, 249 

as expected the statistical analysis revealed that the presence of the inducer has the most 250 

influence in performance, with significant p-values of 2.13x10-30 for laccase activity and 251 

2.29x10-23 for O2 consumption. In fact, compared to the other factors (growth phase or time 252 

of induction), a clear on-off switching effect of the inducer can be easily observed for most 253 

conditions tested (Figure 4 and Figure S3). 254 

 255 
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 256 

Figure 4. Characterization of the Lac OCD in E. coli DH5α cells grown in M9 medium supplemented with 257 

Cu2+. Specific laccase activity (a and c) and O2 consumption rate measurements (b and d) were performed 258 

using protein extracts obtained from cultures harboring the F2620 or the F2620 plus the Lac OCD (Lac 259 

OCD). Cultures were induced in exponential (top panel) or stationary phase (lower panel) and collected 6, 12 260 

and 24 hours after induction. Cells were grown in the absence of inducer (control) or with 10 µM AHL 261 

(induced). The fold increase in O2 consumption (induced Lac OCD vs. induced F2620) at 6, 12 or 24 hours 262 

after induction is shown in b and d. Results were normalized per µg of protein. Error bars represent the 263 

standard deviation of biological replicates (n = 3). 264 

 265 

This in vitro characterization of the Lac OCD revealed that this is a robust device 266 

able to consume O2 in all the conditions tested. Furthermore, O2 consumption rates were 267 

found to increase 10- to 58-fold in cells harboring the Lac OCD compared to cells 268 

harboring the F2620 only (Figure 4 and Figure S3). 269 
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In Vitro Performance of the Laccase OCD in Other Genetic Backgrounds. The in vitro 270 

characterization of the Lac OCD was also carried out in other E. coli strains to evaluate the 271 

performance of the device in different genetic backgrounds. For this purpose, protein 272 

extracts obtained from cells grown in M9 Cu2+, induced in exponential phase and harvested 273 

6 hours after induction were used. For E. coli DH5α, BL21, SURE, and Top10, the addition 274 

of AHL led to the consistent activation of the OCD; while for the MG1655 strain, the 275 

device behavior was erratic, with most protein extracts showing no laccase activity. This is 276 

in agreement with our previous experiments, and yet unexpected since the F2620 BioBrick 277 

was reported to be functional in E. coli MG1655 using AHL as inducer.33 The functionality 278 

of the F2620 BioBrick was assessed, replacing the cueO* ORF in the OCD by the gfp ORF 279 

(BBa_E0040). This device was introduced into MG1655 and, for all the biological 280 

replicates tested, the expression of Gfp was detected after the addition of the AHL inducer 281 

(Figure S4), confirming the functionality of the regulatory element in this E. coli strain. In 282 

addition, the OCD was reassembled with the Ptrc1O promoter34, reintroduced and tested in 283 

MG1655, showing consistent laccase activity (Figure S5). However, we were not able to 284 

obtain consistent laccase activity when cueO* is under the regulation of the F2620. This 285 

may be due to the device secondary structure that may interfere with transcription or, since 286 

CueO is a native protein from E. coli, the high expression levels achieved with the F2620 287 

Biobrick in MG1655 may trigger a regulatory mechanism (e.g. degradation). Therefore, the 288 

behavior of the Lac OCD regulated by the F2620 BioBrick was compared only in the other 289 

four strains (Figure 5). 290 

 291 
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 292 

Figure 5. Characterization of the Lac OCD in different E. coli strains. (a) Specific laccase activity 293 

measurements. (b) O2 consumption rate measurements using a Clark-type O2 electrode. Protein extracts were 294 

obtained from cells harboring the F2620 plus the Lac OCD (Lac OCD) and grown in M9 minimal medium 295 

supplemented with Cu2+. Cultures were induced in exponential phase and harvested 6 hours after induction 296 

with 10 µM AHL. Results were normalized per µg of protein. Error bars represent the standard deviation of 297 

biological replicates (n = 3), *** represents p-value <0.001. 298 

 299 

Basal levels of O2 consumption were detected for all strains even in the absence of 300 

inducer. The highest leakage was registered for the BL21 strain. This behavior was 301 

previously reported in the characterization of genetic logic gates38. The absence of the Lon 302 

protease, in the BL21 strain, results in reduced proteolysis and protein accumulation that 303 

may lead to crosstalk activation of the Plux promoter. Nevertheless, the on-off switching 304 

characteristics of the Lac OCD were maintained and, a significant increase in laccase 305 

activity and O2 consumption was observed for all strains. The highest fold increase 306 

(induced/control) was observed for Top10 and SURE, with 7-fold increase in laccase 307 

activity and 8- and 4-fold increase in O2 consumption, respectively. Since abiotic factors 308 

(such as medium and temperature) and also the component embedded sequence were 309 
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maintained, differences registered in the device performance are attributed to the strain 310 

specific genetic context. The DH5α, SURE, and Top10 strains display mutations that were 311 

introduced for molecular biology purposes and resulted in similar phenotypes. However, E. 312 

coli Top10 does not harbor the glnV44 and relA1 mutations, present in the SURE and 313 

DH5α strains, that enable RNA synthesis in absence of translation. Interestingly, this 314 

characterization demonstrates that the device performance is dependent on the genetic 315 

background, even in closely related strains. 316 

In vitro Performance of OCDs Based on Laccase-Variants. Additional OCDs, based on 317 

three laccase variants with improved activity and obtained through directed evolution C7 318 

(Leu170→Ser, Gly363→Glu, Glu476→Lys), E11 (Asp356→Glu, Asp380→Tyr), and H7 319 

(Met385→Ile, Gly436→Ser) (provided by Prof. Dan Tawfik, Weizmann Institute of 320 

Science, Israel), were assembled maintaining the context embedded sequence of the Lac 321 

OCD, using the F2620 BioBrick as regulatory element and the RBS BBa_B0034. These 322 

OCDs were characterized in vitro using protein extracts obtained from cells collected 6 323 

hours after the addition of the inducer AHL (Figure 6). Moreover, to gain insights on the 324 

location of the mutations in a 3D context, the protein structure of the variants was predicted 325 

by homology modelling with the CueO structure, using the online tool suite Phyre2.40 As 326 

previously mentioned, the CueO protein displays the MCOs typical T1 and T2/T3 copper 327 

centers, associated with substrate oxidation and oxygen reduction. This protein also has the 328 

unusual methionine-rich sequence with a helix that blocks the access of organic substrates 329 

to the T1 copper center and three additional copper binding sites essential for cuprous 330 

oxidase activity.30,39,41 331 

The characterization showed that the E11 variant does not have a significant 332 

improvement in performance (Figure 6). The two residues mutated in this variant, 333 
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Asp356→Glu, Asp380→Tyr, are part of CueO’s methionine- histidine-rich helical domain 334 

(Pro357-His406). The analysis of the mutational sensitivity, using the SuSPect tool,42 335 

revealed that mutations on residues 356 and 380 are unlikely to lead to alterations in protein 336 

performance as it was observed the in vitro assays performed in this work. The 3 mutations 337 

in the C7 variant (Leu170→Ser, Gly363→Glu, Glu476→Lys) resulted in a 2-fold increase 338 

in laccase activity but no significant improvement in terms of O2 consumption (Figure 6). 339 

The SuSPect analysis revealed that mutations of the 170 and 476 residues are likely to have 340 

a phenotypic effect and, from the protein structure it is possible to discern that these two 341 

residues are in the vicinity of the CueO domain interfaces, where the T1 Cu and the T2/T3 342 

trinuclear Cu centers are located. The third mutation in the 363 residue, located in the 343 

helical domain that covers the T1 Cu site, similarly to the mutations detected in the E11 344 

variant, has a low mutational sensitivity. Notably, the H7 variant exhibited a significant 345 

increase in performance with a 13-fold increase in laccase activity and 5-fold increase in O2 346 

consumption (Figure 6). Two mutations were detected in this protein, the 385 residue that 347 

is one of the methionines located in the methionine-histidine-rich helical domain, and the 348 

436 residue that it is in the vicinity of the Cu5, the T1 Cu ligands, and the hydrogen bond 349 

that connects them.26 Therefore, the increased performance displayed by this variant 350 

implies that the mutations are interfering with electron transfer route and/or with substrate 351 

access to the oxidation sites. 352 

 353 
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354 
Figure 6. Characterization of the OCD devices based on laccase variants in E. coli DH5α. (a) Specific laccase 355 

activity measurements. (b) O2 consumption rate measurements using a Clark-type O2 electrode. Protein 356 

extracts were obtained from cells harboring F2620 plus the Lac OCD (Lac OCD) and grown in M9 minimal 357 

medium supplemented with Cu2+. Cultures were induced with 10 µM AHL in exponential phase, and 358 

harvested 6 hours after induction. Results were normalized per µg of protein. Error bars represent the standard 359 

deviation of biological replicates (n = 3), *** represents p-value <0.001. 360 

 361 

In Vivo Performance of OCDs. To demonstrate the functionality of the OCDs in vivo, we 362 

started by performing a substrate screening since the substrate used for the in vitro assays – 363 

ABTS – can only be oxidized in acidic conditions. Different substrates known to be 364 

oxidized by laccase-like MCOs in neutral pH conditions were tested: syringaldazine, 2,6-365 

dimethoxyphenol (DMP), L-dihydroxyphenylalanine (L-DOPA), and tyrosine. In vitro, 366 

oxygen consumption was detected using syringaldazine, DMP, and L-DOPA. However, in 367 

vivo O2 consumption was observed only in presence of L-DOPA, probably because 368 

syringaldazine and DMP do not enter the cells. Therefore, L-DOPA was used as substrate 369 

to test the performance of the Lac and the H7 OCDs in vivo, using E. coli DH5α and Top10 370 

cells (Figure 7). A significant increase in O2 consumption associated to L-DOPA oxidation 371 

was detected in cells harboring the Lac OCD compared to the control (F2620), with a 100-372 
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fold increase registered for DH5α and 300-fold for Top10. However, this characterization 373 

revealed that the H7 variant does not show improved performance in vivo with L-DOPA 374 

(Figure 7). A similar result was obtained in vitro using the same substrate (Figure S6). 375 

These results are not surprising, since the improvement of the laccase by directed evolution 376 

was performed using ABTS as substrate. If indeed the H7 variant mutations facilitate 377 

substrate accessibility to the Type 1 Cu when higher molecular weight molecules (such as 378 

ABTS) are used, they have no effect when smaller molecules (like L-DOPA) are provided. 379 

The on-off switching characteristics of the device were not verified in vivo (Figure 7). This 380 

issue can be overcome by changing the regulatory element or abiotic factors such as 381 

temperature. Previous reports demonstrated that Plux promoter is leakier at 30 ºC than at 37 382 

ºC, suggesting that temperature can have an impact in the binding affinity between the 383 

operator sequence and the LuxR protein.38 384 

 385 

 386 

Figure 7. In vivo characterization of the Lac and H7 OCDs in E. coli DH5α and Top10. O2 consumption rates 387 

were measured using DH5α (left) or Top10 (right) cell suspensions grown in M9 medium supplemented with 388 

Cu2+ in control or induced conditions (presence or absence of AHL, respectively), and using L-DOPA as 389 
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substrate. Results were normalized per µg of protein. Error bars represent the standard deviation of biological 390 

replicates (n = 3). 391 

 392 

For further validation of the OCD functionality in vivo, E. coli Top10 cell 393 

suspensions were incubated in presence or absence of L-DOPA using sealed flasks and the 394 

dissolved O2 concentration was measured at different time-points (Figure S7). In cell 395 

suspensions incubated in the presence of L-DOPA the dissolved O2 is significantly reduced, 396 

representing 20-30% of the dissolved O2 in absence of the substrate (O2-saturated 397 

conditions). After 90 minutes of incubation, a similar concentration of dissolved oxygen in 398 

presence of L-DOPA or glucose (O2 consumed by respiration) was observed. These results 399 

demonstrate that O2 consumption by the synthetic OCD device is effectively able to 400 

modulate the dissolved oxygen concentration in cell suspensions. 401 

 402 

Conclusions. In this work, we were able to successfully demonstrate that OCDs based on 403 

E. coli’s native laccase CueO can be used to modulate intracellular O2 concentration. The 404 

assessment of devices based on CueO’s protein variants confirms the advantages of using a 405 

bacterial laccase, namely the possibility to improve its activity through protein engineering. 406 

In addition, and since laccases are broad range catalysts, the choice of substrate can be 407 

adapted to the chassis (genetic background) and the specific application envisaged. 408 

Furthermore, the OCDs robustness was attested by the hosts O2 consumption registered in 409 

all conditions tested. Interestingly, the devices were consistently functional in four of the 410 

five E. coli strains investigated but the performances were different, even in closely related 411 

strains. This work represents the proof of concept/stepping stone for the use of OCDs to 412 

elucidate or improve processes in micro-oxic/anoxic conditions and can be extended to 413 
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other bacterial chassis and specific applications. For example, coupling the OCD to a 414 

hydrogen producing device and an oxygen sensor, the latter already developed for the 415 

model cyanobacterium Synechocystis sp. PCC 6803,43 could establish a circuit for an 416 

efficient hydrogen production by this photoautotrophic chassis. The use of OCDs can also 417 

be applied to improve the production of alcohols (butanol, ethanol or propanol), glutamate, 418 

itaconate or 3-Hydroxybutyric acid by heterotrophic chassis, namely E. coli. The use of 419 

scaffolds may also be considered in applications that involve enzymes requiring a tight 420 

control of oxygen concentration. 421 

 422 

 423 

MATERIALS AND METHODS 424 

Chemicals. The M9 medium components, casamino acids and thiamine hydrochloride were 425 

obtained from BD Biosciences (SanJose, CA, USA) and VWR (Radnor, PA, USA), 426 

respectively. N-(β-ketocaproyl)-L-Homoserine lactone (3OC6HSL, AHL) was purchased 427 

from Santa Cruz Biotechnology (Dallas, TX, USA) and all other reagents from Sigma 428 

Aldrich (St. Louis, MO, USA) or Merck (Darmstadt, Germany). All DNA-modifying 429 

enzymes and polymerases were purchased from Thermo Fisher Scientific (Waltham, MA, 430 

USA). 431 

Strains and Media. For cloning purposes, Escherichia coli strain DH5α (Agilent, Santa 432 

Clara, CA, USA) was used and the transformants were cultivated at 37 ºC in lysogeny broth 433 

(LB)44, supplemented with 100 µg/mL ampicillin. 434 

The E. coli strains BL21(DE3) (Agilent), DH5α, MG1655 (E. coli genetic stock center, 435 

New Haven, CT, USA), SURE and Top10 (Invitrogen, Waltham, MA, USA) were used for 436 

the characterization of the laccase-based OCDs. Cell cultures were grown in M9 minimal 437 
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medium supplemented with 1 mM thiamine hydrochloride, 0.4% (vol/vol) glycerol, 0.2% 438 

(wt/vol) casamino acids, 2 mM MgSO4, 0.1 mM CaCl2 (M9),44 or in M9 supplemented 439 

with 20 µM CuSO4 (M9 Cu2+). Single colonies were inoculated into 5 mL M9 ampicillin 440 

(100 µg/mL) and grown overnight at 37 ºC with rotary shaking (120 rpm). Cultures were 441 

renewed and after overnight growth were used as inocula for the experiments. The cell 442 

cultures were grown in Erlenmeyer flasks maintaining a medium to headspace proportion 443 

of 1:4, the inocula were diluted to an initial OD600 of 0.05 and grown to the desired optical 444 

density. 445 

Selection of Protein Targets, Device Design and DNA Synthesis. The DESHARKY tool 446 

was used for the identification of pathways involving O2 consumption in Escherichia coli 447 

and Synechocystis sp. PCC 6803.31 The devices were designed based on the bioinformatics 448 

search outputs, in the BioBrick (BB) format (with Bb prefix and suffix), including the 449 

ribosome binding site (RBS) BBa_B0034 and the double terminator BBa_B0015 450 

(http://parts.igem.org).33 The Open Reading Frame (ORF) sequence from E. coli laccase 451 

(cueO) was codon optimized for E. coli K-12, Synechocystis sp. PCC 6803, and Nostoc sp. 452 

PCC 7120 using the software Gene Designer 2.0 (DNA 2.0, Menlo Park, CA, USA) to 453 

obtain a single sequence that could be potentially expressed in the three organisms. The 454 

DNA sequence comprising the BioBrick prefix, RBS, ORF, double terminator, and 455 

BioBrick suffix was synthesized by Epoch Life Science (Sugar Land, TX, USA). 456 

OCDs Assembly. For the generation of the Lac OCD, the composite Biobrick BBa_F2620 457 

(PtetR – luxR – PluxR) was assembled with the previously synthesized DNA sequence using 458 

the standard assembly protocol.33 Briefly, the vectors containing the codon optimized cueO 459 

ORF and the BBa_F2620 were digested with XbaI/PstI and SpeI/PstI, respectively. The 460 

DNA fragments were isolated from agarose gel or purified directly using the NZYGelpure 461 
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kit (NZYTech, Lisbon, Portugal), according to manufacturer’s instructions. Subsequently, 462 

the purified DNA fragments were ligated using the T4 DNA ligase. The Lac OCD construct 463 

was confirmed by restriction analysis and DNA sequencing (STAB VIDA, Lisbon, 464 

Portugal) using primers VF2 and VR (Table S1).45 465 

To obtain laccase protein variants a direct evolution approach was used (work 466 

carried out at Professor Dan Tawfik’s laboratory, Department of Biomolecular Sciences, 467 

Weizmann Institute of Science, Israel). For this purpose, a library of proteins was generated 468 

using the Megawhop method46 and subsequently screened using the phenoloxidase activity 469 

assay and ABTS as substrate (see In Vitro Assays below). For the assembly of the OCDs 470 

based on these laccase variants, the ORFs of the protein variants C7, E11, and H7 were 471 

amplified from the pGem®-T Easy (Promega, Madison, WI, USA), using the primers 472 

Bblac_F2 and Bblac_R2 that include the BioBrick™ prefix and suffix, respectively (Table 473 

S1). Each PCR mixture (20 µL) contained: 0.5 U of GoTaq Flexi DNA Polymerase 474 

(Promega), 1x GoTaq Flexi buffer, 200 µM of each deoxyribonucleotide triphosphate 475 

(dNTP), 1 µM of each primer, and 5 ng of template DNA. The PCR reaction profile was: 2 476 

min at 95 ºC followed by 25 cycles of 30 s at 95 ºC, 30 s at 50 ºC and 3 min at 72 ºC, and a 477 

final extension at 72 ºC for 7 min. The amplicons were purified, digested with XbaI/PstI 478 

and stepwise assembled with the BioBrick RBS part BBa_B0034 and then with the 479 

BBa_F2620 BioBrick, both digested with SpeI/PstI. The sequence of the three OCDs based 480 

on laccase protein variants were confirmed by DNA sequencing (STAB VIDA) using 481 

primers: VF2, VR, Ec_cueO_F and Ec_cueO_R (Table S1). 482 

Effect of the Lac OCD Induction on E. coli Growth. Cell cultures were grown until the 483 

early exponential phase (OD600 = 0.2-0.3) and, at this point, split into “control” and 484 
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“induced”. The latter received AHL (3OC6HSL) to a final concentration of 10 µM. The 485 

growth was monitored by measuring the OD600 every 2 hours for a 24 hours period. 486 

Sample Collection and Cell Extracts Preparation. For the collection of samples, cell 487 

cultures were grown in M9 or M9 Cu2+ media until the early exponential (OD600 = 0.2-0.3) 488 

or stationary (OD600 ≈ 2) phase. At these stages, the cultures were divided in two: one was 489 

induced by the addition of AHL (final concentration 10 µM) while the other served as 490 

control. Samples were collected at different time-points after induction (6, 12 or 24 hours) 491 

by centrifuging 20 mL of culture for 8 min at 4 500g, 4 ºC. The cell pellets were washed 492 

once using cold 50 mM phosphate buffer, pH 7.0 (KPi) and stored at -80 ºC until further 493 

use. 494 

For the preparation of cell extracts, the pellets were resuspended in 250 µL KPi 495 

containing protease inhibitors (Complete™ Mini EDTA-free Protease Inhibitor, Roche, 496 

Basel, Switzerland), that were added according to manufacturer’s instructions. Cells were 497 

then disrupted by sonication on ice with a Branson Sonifier 250 using 2 cycles of 15 s (50% 498 

dutty cycle, output 3) intercalated with 1 min off duty and then centrifuged for 8 min at 16 499 

000g, 4 ºC. The protein concentration of the extracts was measured using the BCA Protein 500 

Assay Kit (Thermo Scientific) according to the instructions. 501 

Confirmation of Protein Expression. Protein samples were separated by electrophoresis 502 

on SDS (sodium dodecyl sulfate)-polyacrylamide gels: in brief, electrophoresis was 503 

performed on a vertical mighty tall system (Hoefer, Holliston, MA, USA) according to the 504 

method of Laemmli.47 A 10% gel was prepared and samples, that were mixed with 505 

Laemmli sample buffer and heated at 95 ºC for 5 min, were loaded on the gel. Protein 506 

separation was carried out at 12 mA. After protein separation, proteins were visualized 507 

using Coomassie Brilliant Blue G250 (BIO-RAD, Hercules, CA, USA). 508 
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OCDs Characterization. 509 

In Vitro Assays. The phenol oxidase activity of the CueO multicopper oxidase (MCO) was 510 

measured using 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt 511 

(ABTS) as electron donor.48 Prior to the assay, the protein extracts were incubated with 1 512 

mM CuSO4 for 1 min and the appropriate volume of sample was added to the assay mixture 513 

in order to obtain linear oxidation kinetics. The assay mixture (500 µL) contained 50 mM 514 

sodium acetate buffer pH 5.0, protein extract (1-20 µL) and the reaction was started by the 515 

addition of ABTS to a final concentration of 3 mM. Substrate oxidation was monitored 516 

measuring the increase in A420 for 1 min at 30 ºC (ε420 = 36 000 L/mol.cm). The specific 517 

laccase activity was expressed as units of activity per µg of protein, where one activity unit 518 

represents one µmol of ABTS oxidized per min. 519 

The oxygen consumption rates were determined polarographically using a Clark-520 

type O2-electrode (Hansatech Instruments, Norfolk, UK). The assay previously described 521 

for phenol oxidase activity was performed using 1 mL working volume and a final 522 

concentration of 30 mM ABTS; oxygen uptake was expressed as nmol O2 consumed per 523 

min and normalized per µg of protein. 524 

For the screening of additional CueO substrates, the oxidation activities of 525 

syringaldazine, 2,6-dimethoxyphenol (DMP); L-dihydroxyphenylalanine (L-DOPA) and 526 

tyrosine were spectrophotometrically determined as described previously.49-51 The oxygen 527 

consumption measurements were performed using the same setup described for ABTS and 528 

10 mM syringaldazine, 20 mM L-DOPA and 20 mM DMP were used in the assays. 529 

In Vivo Assays. Cultures grown in absence or presence of AHL (inducer) and 12-24 h after 530 

induction were used. Cells were centrifuged for 8 min at 4 500g, 4 ºC and washed twice 531 

using cold 40 mM 3-(N-morpholino) propanesulfonic acid (MOPS) buffer pH 7.0. Finally, 532 
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cells were resuspended in MOPS buffer to a final OD600 ≈ 10 and kept on ice until 30 min 533 

before the assays, when cells were transferred to a water bath at 30 ºC. The assays were 534 

performed in 1 mL working volume containing 50 mM sodium phosphate buffer pH 6.0, 20 535 

mM L-DOPA and cells to a final OD600 = 1.0, 2.0 or 4.0. For the control of cell fitness an 536 

assay was performed using 20 mM glucose as substrate. The oxygen consumption rates 537 

were determined polarographically as described above, and expressed as nmol O2 538 

consumed per min and normalized per µg of protein. 539 

Online Tools and Statistical Analyses. To determine the likely success of sequence 540 

expression, the codon adaptation index (CAI) of the original and codon-optimized cueO 541 

sequences was calculated using the online tool CAICal.32 The E. coli K-12, Synechocystis 542 

sp. PCC 6803 and Nostoc sp. PCC 7120 codon usage tables used in the CAI calculations 543 

were retrieved from the Codon Usage Database (www.kazusa.or.jp/codon/). 544 

The relative codon adaptiveness values for the original and the codon optimized 545 

cueO sequences were obtained by the “each triplet position vs. usage table” method using 546 

the online graphical codon user analyzer and the E. coli K-12 codon usage table provided 547 

therein.52 548 

The online tool suite Phyre2 was used to predict the structure of the laccase protein 549 

variants by homology modelling with the CueO structure.40 The mutational sensitivity of 550 

protein residues was determined using the SuSPect tool42 also available in the Phyre2 551 

online tool suite. 552 

Data were expressed as mean values ± SD of at least three independent experiments. 553 

Values were compared by Student’s t-test and the 0.05 probability level was chosen as the 554 

point of statistical significance throughout. For the analysis of the factors affecting the 555 
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OCDs performance in vitro, a multi-way ANOVA was performed using the IBM SPSS 556 

software (Armonk, NY, USA). 557 
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Supporting Materials and Methods 

 

Table S1. Oligonucleotide used in this work. 

Primer name Sequence 5’ → 3’ Reference 

VF2 TGCCACCTGACGTCTAAGAA 
1 

VR ATTACCGCCTTTGAGTGAGC 

Bblac_F2* ACCATCGAATTCGCGGCCGCTTCTAGAGGATGCAACGTCGTG 

This work 
Bblac_R2* TCTTTACTAGTAGCGGCCGCTGCAGGGTTATACCGTAAACC 

Ec_cueO_F ATCAACCTGCCGCTACCTGC 

Ec_cueO_R TGTTGGCATGGTGGAAATCG 
*BioBrick prefix and suffix sequences are underlined and restriction sites highlighted in blue. 
(1) Shetty, R. P., Endy, D., and Knight Jr., T. F. (2008) Engineering BioBrick vectors from BioBrick 

parts. J Biol Eng 2, 5. 
 

  



4 
 

Supporting Figures 

 

 

Figure S1. Comparison of the codon adaptiveness of the codon optimized (blue line) and the original (red 

dashed line) cueO ORFs. Codon adaptiveness along the codon position in gene sequence is plotted. 
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Figure S2. Effect of the Lac OCD activation on E. coli BL21, MG1655, SURE and Top10 growth. The wild-

type (wt), the cells containing only the F2620 or F2620 plus the Lac OCD (Lac OCD) were grown in absence 

(C) or presence of the inducer (AHL). Growth was monitored measuring the OD600 every 2 hours for a 24 

hours period. Error bars represent the standard deviation of biological replicates (n = 3). 
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Figure S3. Characterization of the Lac OCD in E. coli DH5α cells grown in M9 medium. Specific laccase 

activity (a and c) and O2 consumption rate measurements (b and d) were performed using protein extracts 

obtained from cultures harboring the F2620 or the F2620 plus the Lac OCD (Lac OCD). Cultures were 

induced in exponential (top panel) or stationary phase (lower panel) and collected 6, 12 and 24 hours after 

induction. Cells were grown in the absence of inducer (control) or with 10 µM AHL (induced). The fold 

increase in O2 consumption (induced Lac OCD vs. induced F2620) at 6, 12 or 24 hours after induction is 

shown in b and d. Results were normalized per µg of protein. Error bars represent the standard deviation of 

biological replicates (n = 3). 
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Figure S4. Normalized GFP fluorescence of E. coli DH5α and MG1655 cultures harboring the F2620 

BioBrick + gfp. 96-well plates were setup using DH5α and MG1655 cultures (OD600 = 0.1) that were grown 

in the absence of inducer (control) or presence of 10 µM AHL (induced). Measurements were performed 0, 2, 

4, and 6 hours after plate setup and the fluorescence was normalized to Abs620. The results are representative 

of three biological replicates (with exception of MG1655 induced cultures, n = 10), with technical duplicates 

(measured in duplicate), error bars show ±S.D. 
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Figure S5. Characterization of the Lac OCD reassembled with the Ptrc1O promoter in E. coli DH5α and 

MG1655. Specific laccase activity was measured using protein extracts obtained from cells harboring the 

Ptrc1O or Ptrc1O plus the Lac OCD (Ptrc1O::cueO*) and grown in M9 minimal medium supplemented with Cu2+. 

Cultures were harvested 18 - 24 hours after inoculation. Results were normalized per µg of protein. Error bars 

represent the standard deviation of biological replicates (n = 4), *** represents p-value <0.001. 
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Figure S6. In vitro characterization of the Lac OCD in E. coli DH5α cells using L-DOPA as substrate. 

Specific laccase activity was measured using protein extracts obtained from the cultures used in the in vivo 

characterization. Cells harboring the F2620, the F2620 plus the Lac OCD (Lac OCD) or the F2620 plus the 

Lac H7 variant (H7 OCD) were grown in M9 medium supplemented with Cu2+ in control and induced 

conditions (presence or absence of AHL, respectively). Results were normalized per µg of protein. Error bars 

represent the standard deviation of biological replicates (n = 3), *** represents p-value <0.001. 
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Figure S7. Dissolved O2 measurements using E. coli Top10 suspensions incubated in sealed flasks. The cell 

suspensions were incubated with 30 mM L-DOPA (laccase substrate), 20 mM glucose (control for O2 

consumption) and 100 mM sodium bisulfite (Na bisulfite, control for O2-deprived conditions) at 37 °C with 

shaking. One mL samples were removed at different time points (0, 30, 45 and 90 min) using sterile syringes 

and needles; and the dissolved O2 concentration was measured using a Clark-type O2 electrode. Results were 

normalized to the dissolved O2 in saturated conditions (corresponding to 100% dissolved O2). Error bars 

represent the standard deviation of biological replicates (n = 2). 
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Supporting Methods 

GFP Fluorescence Analysis. For the evaluation of GFP expression, cultures of E. coli DH5α and 

MG1655 harboring the F2620 BioBrick or the F2620::gfp were grown overnight (final OD600 ≈ 3) in 

50 mL flasks at 37 °C with shaking (120 rpm). The cultures were diluted to a final OD600 ≈ 0.2 and 

100 µL aliquots were distributed in Nunc™ MicroWell™ 96-Well Optical-Bottom Plates (Thermo 

Fisher Scientific) containing 100 µL of M9 medium or M9 with 20 µM of AHL (to obtain a final 

concentration of 10 µM AHL in 200 µL). The 96-wells plates were incubated at 37 ºC with shaking 

(120 rpm), and measurements were carried out in duplicate 0, 2, 4 and 6 hours after plate setup. 

GFP fluorescence and Abs620 were detected using the Synergy 2 Multi-Mode Microplate Reader 

and the Gen5™ software (BioTek Instruments, Winooski, VT, USA). For fluorescence detection, an 

excitation filter of 485/20 nm and an emission filter of 528/20 nm were used (sensibility set for 

110). The experiments included 3 biological replicates, with the exception of MG1655 harboring 

the F2620::gfp for which 10 biological replicates were analyzed and technical duplicates were 

included for all samples. For data analysis, the background fluorescence and absorbance of the M9 

medium was subtracted from the values obtained for the samples and, the fluorescence values were 

normalized by optical density. 

Dissolved O2 Concentration Measurements Using Sealed Cultures. Cultures of E. coli Top10 

harboring the OCD (grown overnight) were washed and resuspended in 50 mM phosphate buffer, 

pH 7.0 (KPi) to a final OD600 ≈ 1.0. This cell suspension was distributed by different 4 Erlenmeyers 

(100 mL): the oxygen-saturated medium control (containing only cells), the oxygen-deprived 

medium control (cells + 100 mM sodium bisulfite) and the other two contained 20 mM L-DOPA 

(laccase substrate) or 20 mM glucose (used as O2 consumption control). The Erlenmeyer’s were 

sealed using Suba Seal rubber stoppers (Sigma), and were incubated at 37 °C with shaking. At 

different time points (0, 30, 45 and 90 min), 1 mL samples were removed through the stopper septa 

using a sterile syringes and needles and, the dissolved O2 concentration was measured using a 
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Clark-type O2-electrode (Hansatech Instruments). Results were normalized to the dissolved O2 in 

saturated conditions (corresponding to 100% dissolved O2). 


