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Relay When Blocked: A Hop-by-Hop mmWave Cooperative
Transmission Protocol

Haiyang Ding,Member, IEEE, Daniel Benevides da Costa,Senior Member, IEEE, Justin Coon,Senior Member,
IEEE, and Yunfei Chen,Senior Member, IEEE

Abstract—Obstacles are generally treated as harmful objects
for millimeter wave (mmWave) networks due to the directional
transmission of mmWave signals and the blockage effects of
the obstacles. In this letter, smart antennas are deployed at
each blockage to exploit the directivity of the mmWave signal
such that the blocked signal at each obstacle can be picked
up and forwarded to the destination. Assuming a random
Boolean model for the spatially distributed blocking obstacles,
the joint distribution of the ordered blockage distances isfirst
characterized, which is then used to develop the exact as well as
the asymptotic outage probability conditioned on a given number
of blockages. Both theoretical analysis and numerical results show
that the proposed protocol achieves full diversity order and can
eliminate the error floor caused by the blocking effects, achieving
thus superior performance to previous solutions.

Index Terms—Blockage, Boolean model, mmWave, relay.

I. I NTRODUCTION

To meet the ever growing demand for wireless traffic, the
millimeter wave (mmWave) bands with significant amount
of unused bandwidth (20-300GHz) appear to be of great
potential for next generation mobile networks. Nonetheless,
the propagation characteristics in the mmWave bands are quite
different from those of the spectrum below 5 GHz because
their diffraction capability is limited and thus, they cannot
penetrate through obstacles like buildings, concrete walls,
vehicles, and human bodies [1]–[3].

To characterize the effects of obstacles on mmWave propa-
gation, the authors of [4] proposed to use a random Boolean
model for the spatially distributed blocking obstacles. Making
use of this random Boolean model, Linet. al. investigated
the fundamental performance of the connectivity of mmWave
networks with multi-hop relaying, where intermediate relays
are used to route the mmWave signals to turn around obstacles
[1]. In [2], the relay nodes were distributed uniformly as a
homogeneous Poisson point process (PPP) in order to assist
the source node to transmit in the presence of blockages. Very
recently, mmWave band was used for wireless power transfer
in a tactical network, where network nodes were treated as
potential blockages to mmWave signals [3]. It is noteworthy
that, in the previous literature, the blockages were treated
as harmful objects while relay nodes were pre-scheduled to
circumvent these blockages. Different from these previous
solutions, in this work we propose to deploy smart antennas
at each blockage such that the direction of arrival (DOA) of
the incident mmWave signal can be estimated at the blocking
obstacle. Then, the “blocked” signal can be picked up and
retransmitted toward destination based on the DOA. In this
case, a “relay when blocked” mechanism can be implemented
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by the obstacles between source and destination. Due to the
randomness of the blockages between source and destination,
in this work we aim to characterize the effect of blockage
(relay) on the transmission performance of mmWave networks.
To this end, we first analyze the joint distribution of the
ordered blockage distances from the source, and then use
it to derive the end-to-end outage probability. Based on the
asymptotic outage behavior, the system diversity and array
gains are developed, which shows the potential of our proposal
to eliminate the error floor phenomenon caused by blocking.

II. SYSTEM MODEL AND PROTOCOL DESCRIPTION

Consider a source node S that transmits information to a
destination D, where we adopt the classical sectored antenna
model to capture the use of directional antenna arrays [3],
[5]. Specifically, we assume perfect beam alignment between
source and destination with the aid of low-rate control network
[6] and the directivity gain is thus given bya1 = MtMr, where
Mt and Mr denote the main lobe gains of the transmitting
and receiving antennas, respectively [5]. In addition, as in
[3], we adopt Nakagami-m fading to depict the line-of-sight
path such that the probability density function (PDF) of the
channel power gain (Hl) conforms to the normalized Gamma
distribution as below

fHl
(x) =

mm0
0 xm0−1

Γ(m0)
e−m0x, (1)

wherem0 denotes the Nakagami-m fading parameter which
is generally set to be greater than 2 to denote the line of sight
(LOS) [3], andx ≥ 0.

Due to the directional transmission characteristics of
mmWave channels, obstacles between source and destination
will act as blockages, which are modeled as a simplified
Boolean model with fixed shape parameter [3], [4]. In partic-
ular, as in [3], we consider a two-dimensional scenario and
assume that the blockages between source and destination
have a circular cross-section whose diameter is supposed to
be β. In addition, the positions of the blockages follow a
homogeneous PPP with a density ofλ. As a result, the number
of blockages between source and destination conforms to a
Poisson distribution with meanδ = λd0β, whered0 denotes
the distance between source and destination.

To avoid the blockage, we deploy smart transmitting and
receiving antennas at each blockage node. When the mmWave
signal is blocked by blockage nodes, we assume that the
blockage node is capable of estimating the DOA of the
incident mmWave signal and then uses the DOA to aim its
beam toward the destination. Since the antenna arrays are
deployed in a uniform and circular manner at each blockage,
the receiving antenna gain will be the same in all directions
(e.g.,Mr) [7] such that the receiving node of each hop does not
need to perform any beam alignment operations. For example,
we may deploy multiple pairs of mmWave transmit/receive
antenna arrays on each blockage. The two antenna arrays in
one pair are respectively deployed on the opposite sides of
each blockage node. Then, if one antenna array in the pair
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Pr
(

x1 ≤ d(1) < x1 +∆x1, x2 ≤ d(2) < x2 +∆x2, . . . , xk ≤ d(k) < xk +∆xk|k blockages
)

=

e−λβx1(λβ∆x1e
−λβ∆x1)e−λβ(x2−x1−∆x1)(λβ∆x2e

−λβ∆x2) . . . (λβ∆xke
−λβ∆xk)e−λβ(d0−xk−∆xk)

(λβd0)k

k! e−λβd0

=
k!

dk0
∆x1∆x2 . . .∆xk.

(5)

detects an incident mmWave signal, the other antenna array in
the pair will retransmit1 the blocked signal toward the desti-
nation. In addition, we assume an orthogonal channel access
mode such that co-channel interference can be avoided in the
considered systems. In this way, if no blockage exists between
source and destination, direct transmission is performed and
the instantaneous information rate can be expressed as

ID = log2

(

1 +
Pta1H0g(d0)

σ2

)

, (2)

where Pt is the transmit power at the source,σ2 denotes
the noise variance at the receiving terminal,H0 represents
the channel power gain as defined before and,g(d0) ,

C0 min[1, d−α
0 ] represents the path loss withC0 andα being

the path loss intercept and path loss exponent, respectively.
When one or multiple blockages exist between source and

destination, the information can be relayed by the blockages in
a hop-by-hop manner such that the end-to-end instantaneous
information rate can be written as

I(k+1)-hop=
1

k + 1
log2

(

1 +
Pta1
σ2

min
[

HSR1g(d(1)),

HR1R2g(d(2) − d(1)), . . . , HRk−1Rk
g(d(k) − d(k−1)),

HRkDg(d0 − d(k))
])

, (3)

where k ≥ 1 is the number of blockages,HRk−1Rk
is the

channel power gain between the(k − 1)-th blockage and the
k-th one,d(k) denotes the distance between the source and the
k-th blockage, satisfying to0 ≤ d(1) ≤ . . . ≤ d(k) ≤ d0.

III. O UTAGE ANALYSIS

In this section, we investigate the outage performance of the
considered mmWave system. The outage event happens when
the instantaneous information rate falls below a pre-defined
rate thresholdΩ0 bit/s/Hz. To proceed, we first determine the
joint distribution of {d(1), d(2), . . . , d(k)}, which is summa-
rized below.

Lemma 1: The joint PDF of the ordered distance variables
{d(1), d(2), . . . , d(k)|d(1) ≤ d(2) ≤ . . . ≤ d(k)}, conditioned
on the event that there arek blockages between source and
destination, is given by

fd(1),d(2),...,d(k)
(x1, x2, . . . , xk|k blockages) =

k!

dk0
, (4)

in which 0 ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ d0.
Proof : Suppose that then-th blockage is located within

the interval xn ≤ d(n) < xn + ∆xn and the intervals
∆xn (n = 1, 2, . . . , k) are sufficiently small such that there
is no superposition among different intervals, then we have
(5), shown at the top of this page. Now, by letting∆xn

(n = 1, . . . , k) approach to0, we can arrive at (4), which
completes the proof. �

Next, we first focus on the case of no blockage.

1In this work, we adopt decode-and-forward relaying mode at the blockages,
which can eliminate noise accumulation and is more appropriate for multi-hop
relaying in comparison with amplify-and-forward mode [8].

A. No blockage: Direct transmission

The outage probability for direct transmission can be for-
mulated as

P LOS
out = e−δ Pr

(

H0 <
τ0σ

2

a1Ptg(d0)

)

=
e−δ

Γ(m0)
γ

(

m0,
m0τ0σ

2

a1Ptg(d0)

)

, (6)

whereτ0 , 2Ω0 − 1 is the signal-to-noise ratio (SNR) thresh-
old, γ(·, ·) is the lower incomplete Gamma function [9, Eq.
(8.350.1)] and the last step is owing to [9, Eq. (3.381.1)]. When
the transmit SNRPt/σ

2 is large, we haveγ(α, x) ≃ xα/α [9,
Eq. (8.354.1)] such that (6) can be asymptotically expressed
as

P LOS
out ≃

e−δ
(

m0τ0σ
2

a1Ptg(d0)

)m0

Γ(m0 + 1)
, (7)

from which it can be observed that the system diversity gain
is m0 for the case of direct transmission.

B. Multiple blockages: Multi-hop relaying

For the scenarios where there is one or multiple blockages
lying between source and destination, multi-hop relaying is
carried out by blockages in a hop-by-hop manner from source
to destination. The following proposition presents a general
outage expression for the case of multiple blockages.

Proposition 1: When there arek blockages between source
and destination, the system outage probability can be ex-
pressed as

P k−blockage
out =

(λβd0)
k

k!
e−λβd0 ×

[

1−

∫ d0

0

∫ d0

d(1)

∫ d0

d(2)

. . .

∫ d0

d(k−1)

k!

dk0

∏k+1
l=1 Γ

(

m0,
m0τ̂k

g(d(l)−d(l−1))

)

[Γ(m0)]k+1
dd(1) . . .dd(k)



 ,

(8)

where τ̂k , σ2τk
a1Pt

, τk = 2(k+1)Ω0 − 1, Γ(·, ·) denotes the
upper incomplete Gamma function [9, Eq. (8.350.2)],d(0) = 0
and d(k+1) = d0. In the high SNR regime2, the asymptotic
expression is obtained from (8) as

P k−blockage
out ≃ (λβ)ke−λβd0

mm0−1
0 (τ̂k)

m0

Γ(m0)

∫ d0

0

∫ d0

d(1)

∫ d0

d(2)

. . .

∫ d0

d(k−1)

(

k+1
∑

l=1

1

[g(d(l) − d(l−1))]m0

)

dd(1) . . .dd(k). (9)

2According to [3], [10], [11], the typical transmit power is 30 ∼ 33 dBm,
and the typical noise power is -71 dBm for a bandwidth of 2 GHz and a noise
figure of 10. As a result, the transmit SNR will be larger than 100 dB for
typical mmWave systems.
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Proof : Knowing that outage will not occur only when
none of the hops between source and destination is in out-
age status, (8) can be developed with the aid of Lemma
1, whereas (9) is achieved by utilizingΓ(m0,m0x) ≃

Γ(m0)

[

1−
m

m0−1
0

Γ(m0)
xm0

]

for x → 0. �

Corollary 1: When there arek blockages between source
and destination, the achievable diversity order ism0, and the
array gain can be written as

Gk−blockage
a =

a1(λβ)
− k

m0 e
λβd0
m0 m

−
m0−1
m0

0 θ
− 1

m0

k

τk[Γ(m0)]
− 1

m0

, (10)

whereθk is given by

θk =

k+1
∑

l=1

∫ d0

0

∫ d0

d(1)

∫ d0

d(2)

. . .

∫ d0

d(k−1)

1

[g(d(l) − d(l−1))]m0

dd(1)dd(2) . . .dd(k). (11)

Proof : According to the definition of diversity and array
gain [12], one can arrive at (10) based on (9). �

Corollary 2: As λ → ∞, a closed-form expression of (10)
can be expressed as

Gk−blockage
a ≃

C0a1(λβd0)
− k

m0 e
λβd0
m0 m

−
m0−1
m0

0 (k + 1)−
1

m0

τk[Γ(k + 1)Γ(m0)]
− 1

m0

.

(12)

Proof : As λ goes to infinity,g(d(l)−d(l−1)) tends to beC0

such that one can attainθk = (k+1)C−m0
0 dk0/k! by induction.

Then, by substitutingθk into (10) and after some algebraic
manipulations, we can attain (12). �

For the special cases of one blockage or two blockages,
we can arrive at the following simplified expressions without
multifold integrals. Fork = 1, by averaging over the PDF of
the ordered blockage distances and invoking [9, Eqs. (8.352.4)
and (3.381.1)], one can attain

P 1−blockage
out = δe−δ −

δe−δ

d0[Γ(m0)]2
ξ, (13)

whereξ is given by

ξ|d0≥2 =
2Γ
(

m0,
m0τ̂1
C0

)

Γ(m0)

α

(

m0τ̂1
C0

)− 1
α

m0−1
∑

k=0

1

k!

×

[

γ

(

k +
1

α
,
dα0m0τ̂1

C0

)

− γ

(

k +
1

α
,
(d0 − 1)αm0τ̂1

C0

)]

+ [Γ(m0)]
2
m0−1
∑

k1=0

m0−1
∑

k2=0

(

m0 τ̂1
C0

)k1+k2

k1!k2!

×

∫ d0−1

1

rαk1(d0 − r)αk2e−
m0 τ̂1
C0

rα−
m0τ̂1
C0

(d0−r)αdr, (14a)

ξ|1≤d0<2 =
2Γ
(

m0,
m0τ̂1
C0

)

Γ(m0)

α

(

m0τ̂1
C0

)− 1
α

×

m0−1
∑

k=0

1

k!

[

γ

(

k +
1

α
,
dα0m0τ̂1

C0

)

− γ

(

k +
1

α
,
m0τ̂1
C0

)]

+ (2− d0)

[

Γ

(

m0,
m0τ̂1
C0

)]2

, (14b)

ξ|0≤d0<1 = d0

[

Γ

(

m0,
m0τ̂1
C0

)]2

. (14c)

In the high transmit SNR regime, by utilizingΓ(m0,m0x) ≃

Γ(m0)

[

1−
m

m0−1
0

Γ(m0)
xm0

]

, γ(α, x) ≃ xα

α
for x → 0, and after

some algebraic arrangements, the system outage probability
can be asymptotically expressed as

P
1−blockage
out ≃























2δe−δm
m0−1
0

Γ(m0)

(

τ̂1
C0

)m0

×

[

1
d0

(

αm0+d
αm0+1
0

αm0+1

)]

, if d0 ≥ 1,

2δe−δm
m0−1
0

Γ(m0)

(

τ̂1
C0

)m0

, if 0 ≤ d0 < 1.

(15)

It can be readily checked that ford0 ≥ 1, the multiplicative

factor 1
d0

(

αm0+d
αm0+1
0

αm0+1

)

is an increasing function and no less

than 1. This means that on the basis of the benchmark form
2δe−δm

m0−1
0

Γ(m0)

(

τ̂1
C0

)m0

, a penalty factor1
d0

(

αm0+d
αm0+1
0

αm0+1

)

≥

1 will affect the asymptotic outage performance for the dis-
tance ranged0 ≥ 1. For the casek = 2, we can arrive at a
closed-form asymptotic expression for (9) as below

P
2-blockage
out ≃







3d2
0(τ̂2)

m0m
m0−1
0 (λβ)2

2C
m0
0 Γ(m0)

e−λβd0 , if 0 < d0 ≤ 1,

(τ̂2)
m0m

m0−1
0 (λβ)2

Γ(m0)
e−λβd0χ, if d0 > 1,

(16)

whereχ is given by

χ =
d0 + 0.5

Cm0
0

+
1

Cm0
0

[

d0(d
αm0+1
0 − 1)

αm0 + 1
−

dαm0+2
0 − 1

αm0 + 2
+

+
2αm0(d0 − 1)

αm0 + 1
+

2(dαm0+2
0 − 1)

(αm0 + 1)(αm0 + 2)

]

. (17)

Similar to (15), the penalty factor for (16) becomes2C
m0
0 χ

3d2
0

≥ 1

for d0 ≥ 1.

C. Overall outage probability

Proposition 2: The overall outage probability of the pro-
posed relay-when-blocked protocol can be expressed as

Pout = P LOS
out +

∞
∑

k=1

P k−blockage
out , (18)

where the exact outage probability can be attained by replacing
P LOS

out andP
k−blockage
out with (6) and (8), respectively, whereas

the asymptotic one can be achieved by using (7) and (9).
Corollary 3: The achievable diversity order of the proposed

“relay when blocked” protocol ism0, whereas the overall array
gain is related to the individual one for each possible blockage
case in a harmonic form as

Ga =

[

lim
N→∞

1

N
H
(

(GLOS
a )m0 ,

(

G1−blockage
a

)m0
, . . . ,

(

G(N−1)−blockage
a

)m0
)]

1
m0

, (19)

whereH(·) denotes the harmonic mean function, andGLOS
a =

a1g(d0)
m0τ0

e
δ

m0 [Γ(m0 + 1)]
1

m0 , as shown by (7).
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Fig. 1: Comparison of different protocols in terms of outage
probability (λ = 0.05).

IV. N UMERICAL RESULTS AND DISCUSSION

In this section, without loss of generality, the path loss

interceptC0 is set to
(

4πfc
v

)2

, where v = 3 × 108 ms−1

and fc = 28 GHz. In addition, the main lobe antenna gain
is set toMt = Mr = 15 dB. Similar to [3], we consider
circular blockages with diameterβ = 0.9 m. Unless otherwise
specified, we assumed0 = 10 m,α = 3, m0 = 3, andΩ0 = 1.

Fig. 1 compares the outage performance of the proposed
“relay when blocked” protocol along with three other bench-
mark protocols. The first one is direct transmission which
permits information transmission only when no blockage ex-
ists between source and destination. The second one is the
direct transmission plus dual-hop relaying protocol, which
allows information transmission when no blockage or at most
one blockage exists between source and destination. The
third one assumes that each blockage merely incurs a severe
path attenuation [13]. Assuming that each blockage incurs an
additionalAL dB attenuation relative to LOS path between
source and destination, it follows from (6) that the outage
probability of the third benchmark protocol is given by

PAL loss per blockage
out =

∞
∑

k=0

δke−δ

k!

γ

(

m0,
m0τ0σ

210
kAL
10

a1Ptg(d0)

)

Γ(m0)
.

(20)

From the figure, it is clear that all of the three benchmark
protocols have error floors, which can be readily determined
to be 1 − e−δ and 1 − e−δ − δe−δ for the first two ones.
Accordingly, theq-th (q ≥ 1) error floor can be determined
as
∑∞

k=q
δke−δ

k! γ
(

m0,
m0τ0σ

210kAL/10

a1Ptg(d0)

)

/Γ(m0), because with

an increase in the transmit SNRPt/σ
2, the terms withk =

0, 1, . . . , q−1 become infinitesimal and thus can be neglected
in evaluating (20). As thus, a “going downstairs” behavior
with multiple error floors is observed for the penetration loss
model. In contrast, by exploiting the blockages as relay nodes,
the proposed protocol eliminates the error floor such that the
outage performance improves with the transmit SNR. Besides,
it can be seen that the outage curve with 100% LOS link is
very close to the counterpart of the proposed “relay when
blocked” scheme. Whenλ decreases, their performance gap
will reduce further since the probability of LOS link, i.e.,
e−λd0β , will approach 1. From Figure 2, it is observed that
with an increase in the blockage density and/or the size of
blockage, the outage probability increases monotonically.
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10-1 100 101

O
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e 
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100

β=1.5, 1.2, 0.9, 0.6, 0.3, 0.1

Fig. 2: Effects of blockage density and size on outage proba-
bility (Pt/σ

2 = 25 dB).

V. CONCLUDING REMARKS

In this letter, making use of the directivity of the incident
mmWave signal, we have presented a “relay when blocked”
mechanism to tackle the blocking effects in mmWave trans-
missions. The proposed scheme has eliminated the error floor
caused by the blocking effects. In addition, it has been shown
that the overall array gain of the proposed scheme is a
function of the harmonic mean of the individual array gain for
each possible blockage case. Under non-homogeneous fading
scenarios, it follows from Proposition 1 and Corollary 1 that
the diversity order for the case ofk blockages (k ≥ 1) is

Ĝ
k−blockage
d = min[m1,m2, . . . ,mk+1] , m∗

(k), (21)

whereml denotes the fading parameter of thel-th hop. By its
turn, the overall diversity order can be achieved as

Ĝd = lim
k→∞

min
[

m0,m
∗
(1),m

∗
(2), . . . ,m

∗
(k)

]

, (22)

in which m∗
(k) is defined as in (21).
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