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Abstract

In this thesis we construct a boundary 0G for an arbitrary CAT(0) group G.
This boundary is compact and invariant under group isomorphisms. It carries
a canonical (possibly trivial) G-action by homeomorphisms. For each geometric
action of G on a CAT(0) space X there exists a canonical G-equivariant contin-
uous map 7 : G — 9X. If G is a word-hyperbolic CAT(0) group, its boundary
0@ coincides with the usual Gromov boundary. If G is free abelian of rank k,
its boundary is homeomorphic to the sphere S*=!. For product groups of the
types G x Z* and G x H, where G and H are non-elementary word-hyperbolic
CAT(0) groups, the boundary is worked out explicitly. Finally, we prove that
the marked length spectrum associated to a geometric action of a torsion-free
word-hyperbolic group on a CAT(0) space determines the isometry type of the
CAT(0) space up to an additive constant.



Introduction

Finding the (Gromov) boundary of a word-hyperbolic CAT(0) group G is fairly
easy. It is canonically homeomorphic to the visual boundary of any CAT(0)
space that carries a geometric action by G, because the homeomorphism type of
the visual boundary of any é-hyperbolic CAT(0) space is invariant under quasi-
isometries (see e.g. [BH99], [CDP90] or [GH90] for details). For word-hyperbolic
groups many interesting features are connected to this boundary. (See the survey
paper [KBe02] by Kapovich and Benakli for a good overview.) So, can one find a
similar boundary with similarly interesting features for groups which are in some
sense only “semi-hyperbolic” - say for groups that act geometrically on CAT(0)
spaces (see [Gro87] and [Gro93] for inspiration)? At first sight the answer is “no”!
In [CK00] Croke and Kleiner show that the above result for word-hyperbolic
groups does not hold for arbitrary CAT(0) groups: In fact, they give an example
of two compact, non-positively curved euclidean 2-complexes X; and X, which
are homeomorphic, yet, their universal covers X; and X; have non-homeomorphic
visual boundaries. But perhaps one can find another notion of “boundary” for
arbitrary CAT(0) groups... and still retain some of the features which make the

Gromov boundary interesting.

Several notions of boundary for a larger class of groups have been studied in
the past for various purposes (see again [KBe02]). We recall a few of them, which
are based on geometric, rather than analytic or stochastic ideas. The construction
given by Floyd in [Flo80] applies to all finitely generated groups, and for word-
hyperbolic ones it coincides with the usual boundary. However, it just yields a
point as the boundary of a free abelian group. In [Ban95] Bandmann defines a
boundary also for arbitrary finitely generated groups. His construction is based

on ideas similar to those used to construct the Tits metric on the boundary of



a CAT(0) space. Consequently, for a word-hyperbolic group this boundary is
a discrete space. In [Bes96] Bestvina gives a set of axioms for the boundary
of a group, and studies the relation between the group and its boundary on a
(co-)homological level. Every CAT(0) group has a boundary that satisfies these
axioms. But only the shape of this boundary is well-defined by these axioms,
not the homeomorphism type. (Note that errors in [Bes96] have been found and
corrected by Swenson in [Swe99].) In [KS96] Kapovich and Short introduce an
elementary version of a boundary for finitely generated groups. This boundary
is just a point set without topology. Nevertheless, in the case of a CAT(0)
group there is a canonical bijection between this boundary and the set of rational
points in the boundary presented in this thesis. In [[Hru02] Hruska showed that
the construction of a boundary for word-hyperbolic groups can be extended to
groups that act geometrically on CAT(0) spaces which satisfy both the “Isolated
Flats Property” and the “Relative Fellow Traveller Property” (see [Hru02] for
exact definitions). This larger class of groups contains e.g. all geometrically finite

subgroups of Isom (H"*), but neither the group in the Croke-Kleiner example nor
F: 2 X Z.

To overcome the difficulties posed by the Croke-Kleiner example we introduce
the boundary of a CAT(0) group G as a “universal initial object” in the following
sense. Let G be a “suitable” class of geometric actions by groups on CAT(0)
spaces. Let G be a group, and let I' be the set of all G-actions that belong to
the class G. For any G-action p € I on a CAT(0) space X we obtain a canonical
map 7, from the set G* of infinite order elements in G into the visual boundary
08X, by mapping each g € G* to the positive endpoint of one of its axes. Taking
the preimage of the canonical uniform structure on 9.X under this map 7, gives
rise to a canonical uniform structure U, on G*® associated to each p. We define
the boundary uniformity US on G™ to be the least upper bound of the family
US := {U,|p € T} of uniformities. In other words, U is the coarsest uniform
structure on the set G* such that the canonical map 7, is uniformly continuous
for each p € I'. Note that the boundary uniformity on G* is in general neither
Hausdorff nor complete. So, the boundary 0°G of G is defined as the Hausdorff
completion of the set G with respect to the boundary uniformity Ug, which

makes it well-defined up to isomorphism. Extending 7, by continuity yields a
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canonical uniformly continuous map 7, : 0G — 90X for each G-action p € 'on a
CAT(0) space X; and the uniform structure on 89G is the coarsest one for which

all the maps 7, are uniformly continuous.

Some of the typical features of the boundary of a word-hyperbolic group are
still present in this more general context. For example, the boundary 89G of
an arbitrary CAT(0) group G is compact, it carries a canonical (possibly trivial)
G-action by homeomorphisms, and it is invariant under group isomorphisms. On
the other hand, it is not clear whether the boundary of an arbitrary CAT(0) group
necessarily coincides with the boundary of any subgroup of finite index (and the
suspicion is that it does not). One of the most significant differences arises when
one compares the boundary §9G of a CAT(0) group G to the visual boundary of a
CAT(0) space carrying a geometric G-action. For word-hyperbolic groups these
two boundaries are the same up to homeomorphism. But for product groups
of the form H x Z for example, where H is a non-elementary word-hyperbolic
CAT(0) group, 89(H x Z) has (up to some detail) an additional direct factor
C(H) when compared to the visual boundary of any CAT(0) space that carries
an H x Z-action. This factor C(H) can be described (up to homeomorphism)
as a compact, convex subspace of an infinite dimensional real vector space in the
following way: Let © be the set of all H-actions that belong to the class G, and
let p € O be fixed. Then C(H) is given as the closure in R® of the image im«,,
where the map k, : H*® — R® sends each infinite order element A to the vector
(%‘3)56@. Thus, the space C(H) reflects in some way the multitude of different
marked length spectra that can occur for H-actions in the class G. This is one

aspect we want to discuss further in [Ini], especially in the context of work by
Bonahon in [Bon88] and [Bon91].

We indicated above that the boundary of G depends on G, the chosen “suit-
able” class of geometric actions of groups on CAT(0) spaces. For the remaining
part of this thesis we will take G to be the class of all geometric actions of groups
on CAT(0) spaces, and suppress any further usage of the superscript G. However,
it is worth noting that one could base the boundary construction equally well on,
say, the class of all free and geometric actions by groups on simply-connected,

non-positively curved symmetric spaces. This is another aspect we plan to discuss



further in [Ini].

The involvement of marked length spectra in the boundaries of CAT(0) groups
raises a question which is also interesting in its own right: What does it mean
for two CAT(0) spaces X; and X, if they both carry geometric actions by the
same word-hyperbolic group G such that the associated marked length spectra
coincide? Are they necessarily isometric? This question may seem far fetched
at first sight, but it is the analogue of the following conjecture for Riemannian
manifolds, which was stated by Burns and Katok in the problem session report
[BuK85): Suppose a compact manifold M carries two Riemannian metrics of
negative curvature such that the associated marked length spectra coincide; then
there exists a diffeomorphism of M that takes one metric to the other. For closed
negatively curved surfaces it was proved by Otal in [Ota90], and independently
by Croke in [Cro90], that the marked length spectrum indeed determines the
isometry type of the metric (see also the paper by Croke, Fathi and Feldman
[CFF92] for further results on surfaces). But so far in dimension greater than 2
the conjecture is proved only in special cases, which require for example that one
of the manifolds in question is a locally symmetric space (see [Ham90] or [Bour95],
[Bour96]). So, what is the answer to the above question in the context of CAT(0)
spaces? We prove that in the case of CAT(0) spaces that carry a geometric action
by a torsion-free word-hyperbolic group the marked length spectrum determines
the isometry type up to an additive constant & > 0; and examples show that one

cannot expect this constant to be equal to 0 in general.

This thesis is organized as follows: In the first section of Chapter 1 some
well-known facts like the Svaré-Milnor Lemma and the Flat Torus Theorem are
recorded for further reference. In Section 2 we prove a version of the Splitting
Theorem for actions of product groups on CAT(0) spaces that is suitable for the
purposes of Chapter 3 to 5. In the third section of Chapter 1 we show that the
translation lengths associated to a geometric action of a word-hyperbolic group
on a CAT(0) space are additive up to a constant, which will be used in Chapter
3 to prove the convexity of the space C, mentioned above. In Chapter 2 we
define the boundary of a CAT(0) group G (up to homeomorphism) and work out

some of its basic properties. We show in particular that this boundary coincides



with the usual Gromov boundary if G is word-hyperbolic, and with the sphere
S5-1 if G is free abelian of rank k. In these two special cases the family Ug of
uniformities on G* contains one uniform structure only. However, this is not true
in general. In the first section of Chapter 3 we build on an example by Bowers and
Ruane (see [BR96a]) to show that the family Up,z contains uncountably many
different uniform structures. There are basically two ways in which these different
uniformities arise, and we examine them separately in Sections 2 and 3. Then,
in the last section of Chapter 3, we work out the boundary of product groups
G x Z, where G is a word-hyperbolic CAT(0) group. This result is generalized
in Chapter 4 to product groups of the type G x Z*, where k € N is arbitrary.
In Chapter 5 we work out the boundary of product groups G x H, where both
G and H are word-hyperbolic CAT(0) groups. Finally, in Chapter 6 we prove
that the marked length spectrum associated to a geometric action of a word-
hyperbolic group G on a CAT(0) space X determines the isometry type of X up

to an additive constant.

In this thesis we will use some standard facts about uniform spaces, about
CAT(0) spaces and group actions upon them, and about word-hyperbolic groups.
Since well-written textbooks are available in all three areas, we do not include
proofs of these facts, but rather give suitable references. For background infor-
mation on uniform spaces we refer to [Bou89a] and [Bou89b]. Material about
CAT(0) spaces can be found in [BH99}, [Bal95] or [BGS85]; and word-hyperbolic
groups are discussed, for example, in [CDP90] or [GH90].



Chapter 1
Preliminaries

This chapter is divided into three sections. In the first section we recall some well-
known facts about CAT(0) spaces. In the second section we prove a version of the
Splitting Theorem for geometric actions by product groups on CAT(0) spaces,
which we will need later on. In Section 3 we give our own proof of the fact that
the translation lengths for a geometric action of a word-hyperbolic group on a
CAT(0) space are approximately additive. This fact may be known to experts,
but apparently a proof has not been published.

1.1 Some Preliminary Facts

The aim of this section is to recall some facts, which have become common
knowledge in the area of CAT(0) spaces. Proofs of these facts can be found in
[BH99).

Proposition 1.1.1 (Svarc-Milnor Lemma) Let G be a group that acts geo-
metrically on a geodesic space X. Then G is finitely generated. Moreover, if A
is a finite system of generators for G and d4 the associated word-metric on G,

then the map g — g.zo is a quasi-isometry for any choice of basepoint o € X.

Let X be a CAT(0) space. Recall that the displacement functiond, : X — R
of an isometry g of X is defined by dy(z) := d(z,g.z). The infimum of the
displacement function d; on X is called the translation length of g. An isometry

g of X is called semi-simple, if its displacement function d, attains its infimum



at some z € X. The set of points in X, where d, attains this infimum, is called
the minimal set Min(g) of g. An isometry g of X is called parabolic if its minimal
set Min(g) is empty. An isometry g of X is called elliptic if it has a fixed point
in X, or equivalently, if it is semi-simple and |g| = 0. Finally, an isometry g of

X is called hyperbolic if it is semi-simple and |g| is strictly positive.

Theorem 1.1.2 (Flat Torus Theorem, [BH99]) Let A be a free abelian group

of rank n acting properly by semi-simple isometries on a CAT(0) space X. Then
the following is true:

(i) Min(A) := (1,4 Min(g) s non-empty and splits as a product Y x E".

(ii) Every g € A leaves Min(A) invariant and respects the product decomposi-
tion; g acts as the identity on the first factor Y and as a translation on the

second factor E".

(iii) The quotient of each n-flat {y} x E* by the action of A is an n-torus.

(iv) If an isometry of X normalizes A, then it leaves Min(A) invariant and

preserves the product decomposition.

Recall that an isometry g of a metric space X is called a Clifford translation

if its displacement function d, is a constant function on X.

Theorem 1.1.3 ([BH99], 11.6.15) Let X be a CAT(0) space. If g is a non-
trivial Clifford translation of X, then X splits as a product X =Y x R, and
g(y,t) = (y,t +|g|) for all y € Y and all t € R. Moreover, if X splits as a
product X' x X", every Clifford translation of X preserves this splitting and is
the product of a Clifford translation of X' and a Clifford translation of X".

Recall that two geodesic linesc: R — X and ¢ : R — X in a CAT(0) space X
are called asymptotic, if there exists a constant T' > 0 such that d(c(t),c'(t)) < T
for all t € R.

Proposition 1.1.4 (Flat Strip Theorem, [BH99]) Let X be a CAT(0) space,
and let c: R = X and ¢ : R = X be geodesic lines. If ¢ and ' are asymptotic,
then the convex hull of ¢(R)U ¢/(R) is isometric to a flat strip R x [0, w] C E2.



1.2 A Splitting Theorem

In this section we prove a variation of a well-known Splitting Theorem for CAT(0)
groups. For Riemannian manifolds of non-positive curvature similar theorems
were proved by Gromoll and Wolf [GW71], and Lawson and Yau [LY72]. For
CAT(0) spaces a Splitting Theorem was proved by Baribaud in [Bar93]. The
version presented here is also motivated by the special cases discussed in [BR96a)
and [Rua99]. Since we do not make any assumptions about geodesic extension
properties of the underlying CAT(0) space, our statement is more general, but
also slighly weaker than the usual statement. We need this version in the following

chapters to study the boundary of various products of CAT(0) groups:

Theorem 1.2.1 Let G = G, x G, be a group that acts geometrically on some
CAT(0) space X, and suppose that the centre of G is finite. Then there exists a
non-empty, closed, convez, G-invariant subspace X' C X that splits as a product
Xi x X3 such that G, acts geometrically on X, and trivially on X3, and G, acts
geometrically on X, and by Clifford translations on X,.

In order to prove this theorem we need three lemmas. The first one — together
with its proof — follows what Lemma 11.6.24 in [BH99] should state and prove.
However, what Lemma I1.6.24 does state, is not correct, as the following remark

explains:

Remark 1.2.2 Here is the statement of Lemma 11.6.24: “Let X be a proper
CAT(0) space. Let I' =T'; x I'; be a group acting properly on X by isometries,
and suppose that the centre of I'; is finite. Let C C X be a closed, convex, [';-
invariant subspace and suppose that there exists a compact subset K C X such
that C C I'.K. Then there exists a compact subset K’ C C such that C = ;. K".”
The following is a counter-example for this statement: Take I'y := Z and I'; := F,
where F; is the free group of rank 2. Let A := (a,b) be the standard system of
generators for F, and T := C4(F3) the associated Cayley graph. Then T is a 4-
valent tree. Hence, the Euclidean product R x T is a proper CAT(0) space. Take
X := R x T, and consider the Z x Fy-action p given by (z,g)*(r,t) := (r+z,g.t).
Note that p is geometric. Take C := X. Then C is a closed, convex, I';-invariant

subspace of X. Since p is geometric, there exists a compact subset K’ C X, whose
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I'-translates cover C. However, I'y. K’ is a proper subspace of C for any compact
subset K’ C C. Note also that one can construct similar counter-examples, where

C is a proper subspace of X.

Lemma 1.2.3 Let G = G, x Gz be a group that acts geometrically on some
CAT(0) space X, and suppose that the centre of Gy is finite. Then for each
z € X the action of G, restricted to the closed convez hull C(G,.z) of the orbit

G,.x is cocompact.

Proof: We assume that the action of G, restricted to C(G;.z) is not cocompact,
and deduce a contradiction. By hypothesis there exists a compact subset K’ C X
such that C(Gy1.x) C G.K. If the action of G restricted to C(G,.z) is not cocom-
pact, we can find a sequence of points z, in C(G).z) such that d(z,,G;.K) = oo
as n — 00. Note that there exist 3, € G, so that 8B,.z, € G,.K for eachn € N
— say Bn.Tn € v2.K with v, € G).

Claim 1: After passing to a subsequence, we may assume that all the 8, are

distinct.

Proof of Claim 1: Note that 4.z, lies in 8;!.K. Therefore, we get

d(ﬁ;l'l\’, A’) 2 d('Y;l-xn, I\’) et diam(I\") =...
oo = d(2a,n.-K) ~ diam (K) > d(zn,G1.K) — diam (K) = oo

This proves Claim 1.

Claim 2: For each 8 € G; the sequence dj ;5-1 of displacement functions is

uniformly bounded on K as n varies.

Proof of Claim 2: Note that the displacement function ds is a convex, con-
tinuous function that is constant on G;.z. Hence it is bounded from above on

C(G1.z) by some constant r. This implies for each z € K:

d(B.88;" .z, )
< d(BnBB7 -2, BaB87 177 BreTn) + d(BaBry Ty ¥y Bron) + d(7; Br-n, )
< diam (K) + d (77" BuB-Tny ¥ Bn.2 ) + diam (K)
< diam (K) + r + diam (K),



which proves Claim 2.

Consider an element 3’ € G;. By Claim 2 the displacement functions dj_g.5-1
are uniformly bounded on K as n varies. Since G acts properly on X, we conclude
that the set {5,.0'0; }nen is finite. So, passing to a subsequence, we can assume
that 8;,8'67! = B;B'B8; ! for all ¢, € N. We apply this argument successively to a
finite set of generators of G, and get a subsequence of distinct elements 3, such
that 3,88 = ,Bj,B,Bj_l for all B € G, and all ¢,j € N. Thus, we have found an
infinite sequence of distinct elements B3, that lie in the centre of G;. But the

centre of G is finite by hypothesis. 0O

The following technical lemma is quoted from [BH99], 11.2.15, where a proof

can be found.

Lemma 1.2.4 Consider three geodesic lines ¢; : R =& X for it = 1,2,3 in a
CAT(0) space X. Suppose that the union of each pair of these lines is isometric
to the union of two parallel lines in E?. Let p; ; be the projection of ci(R) to ¢;(R).
Then the map pl",é 0 P23 0 P12 is the identity on ¢;(R).

A proof of the following lemma is left to the reader as an exercise.

Lemma 1.2.5 (Sandwich Lemma) Let X be a CAT(0) space. For a closed
subspace C C X and a point ¢ € X let do(z) := inf {d(z, c) I ¢ € C} denote the
distance from x to C. Suppose that C; and C, are complete, conver subspaces
of X such that the restriction of d¢, to C; is constant — equal to w say - and
the restriction of do, to C, is also constant. Then the convex hull of Cy U C; is

isometric to Cy x [0,w].

Now, we prove Theorem 1.2.1. To do so, we adapt the proof of the Splitting
Theorem given in [BH99)], 11.6.21, to fit our hypotheses.

Proof of Thm. 1.2.1: The proof is divided into several steps. Firstly, let S
be the set of non-empty, closed, convex, G,-invariant subspaces of X. Let M be
the subset of § that contains precisely those subspaces which are minimal with
respect to inclusion. Note that each C € M is necessarily the closed, convex hull
of the G-orbit of some r € X,

10



Claim 1: The set M is non-empty.

Proof of Claim 1: Let C(G,.z) be the closed convex hull of some orbit Gy.z’
in X, and let C be the set of non-empty, closed, convex, G;-invariant subspaces
of C(Gh.2'). C is partially ordered with respect to inclusion. We consider an
ordered chain {C»}rer of elements in C which is decreasing. By Lemma 1.2.3
there is a compact subset A C X, whose G)-translates cover C(G;.z’). Since
each C) is Gy-invariant, C\ N K is non-empty for each A € A. Hence, we get
(Myea Cr) N K # 0, which implies that (¢, Cx € C is a lower bound for the
chain {Cx}sea. It follows from Zorn’s Lemma that C contains a minimal element

C. Thus, M is non-empty.

Secondly, we consider two elements Cy,C; of M. Fori=1,21let p; : X = C;
denote the projection of X onto C;, and let d = d(Cy,Cs) := inf{d(z;,22) |z, €
Cl,$2 € 02}

Claim 2: There exists a unique isometry ¢ of C; x [0,d] onto the convex hull
of C1 U C; such that ¢(x,0) = z and ¢(z,d) = p2(z).

Proof of Claim 2: The function d¢, : * — d(z,pi(z)) is convex and G-
invariant on C,. If there are points z,y € C; such that d¢,(z) < de,(y), then
{z € Ca2|dc,(z) £ de,(z) is a proper, non-empty, closed, convex, Gy-invariant
subspace of C3. This contradicts the minimality of C,. Hence, d¢, is constant on
C;. Analogously, we see that d¢, is constant on Cy. Therefore, we can apply the

Sandwich Lemma 1.2.5. This proves Claim 2.

Thirdly, we consider three elements C,,C2,C3 of M. Let p;; : Ci = Cj
denote the projection of C; onto C;. Note that each p;; is Gi-equivariant, i.e. we

have p; j(g.z) = g.p; ;(z) for all g € G, and all z € C;.
Claim 3: The maps p; 3 and pa3 0 py 2 from C; to C; are the same.

Proof of Claim 3: By Claim 2, each p; ; is an isometry from C; onto C;. Hence
g:= pié 0 P23 0 Py 2 is an isometry of C) onto itself. Its displacement function
z > dy(z) := d(g.z,z) is convex and G-invariant. As in the proof of Claim 2,
we conclude that d, is constant. Hence g is a Clifford translation of C;. Suppose
g is non-trivial. Then C; splits as a product X =Y x R, because of Prop. 1.1.3.
Let y € Y, and consider the geodesic line ¢ : R — C}, where ¢(r) := (y,r), and

11



its projections p; ¢ to Cz and p; 3¢ to Cs. Because of Claim 2, we can apply
Lemma 1.2.4, which implies that p;}, o p23opi2(y,0) = (y,0). It follows that ¢

is trivial, since dg is constant on C;. This completes the proof of Claim 3.

Fourthly, we fix X; € M, and let p : X — X be the projection. Note that
p(g.x) = g.p(z) for all g € G, and all ¢ € X;. Note also that all the G;-translates
of X, are again in M. The G;-action on X induces a map ¥ : G2 X X; — X; by
(B,z) — B xz:=p(B.x).

Claim 4: v is a group action of G on X; by Clifford translations.

Proof of Claim 4: Let 8 € G2 be given. Claim 2 implies that the map
z — [ * c is an isometry of X;. The associated displacement function z —
ds(z) := d(B * z,z) is convex and G;-invariant. As before, this implies that dg is
constant. Hence z — [ * z is a Clifford translation of X;. We check that ¢ is a
group action: Let a,8 € G; and = € X; be given. Let p’ be the projection from
the translate (@f8).X) to the translate @.X;. Then Claim 3 implies

(@B) x = = plaf.s) = (pop)aBa) = plap(Ba)) = ax(Bxa).

This completes the proof of Claim 4.
Fifthly, we consider the subspace X' := [ J{C|C € M} of X. Note that any

two distinct elements of M are disjoint. Thus, for each z € X’ there exists a
unique C; € M such that = € C,

Claim 5: X' is a non-empty, closed, convex, G-invariant subspace of X.

Proof of Claim 5: As seen above, X’ is non-empty, convex and G-invariant. It
remains to check that X' is closed. Let z, be a sequence of points in X’ converging
to z € X. Passing to a subsequence, we can assume that d(zn, Tn41) < 2%, Let
C, be the unique element in M that contains z,, and let p, : X = C, be the
projection. Denote the restriction to C; of the composition p, 0 -+ 0 p; by P,.

Then for each z € C, the sequence (P,(z)), is a Cauchy sequence, because

nt+k-1 n+k-1 1
d(Pn(z)aPn+k(z)) < Z d(Ci,Ca'+1) < Z d(xi, -75:'+1) < on-1°
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Therefore, the sequence P, : Cy — X of maps converges uniformly on Cj to a
limit map P : Cy — X. Since each P, is a Gj-equivariant isometry, the limit
map P is a Gj-equivariant isometry, too. Hence, P(C;) lies in M. To show that
z € P(C}), consider the sequence 2, € C; defined by P,(2,) = z,. We have

d(P(zn)vx) < d(P(zn),20) + d(xmm)
= d(P(zn), Pa(2n)) + d(xs,z) <

= + d(zn, ).

Since P(C)) is closed, it follows that z € P(C}), which completes the proof of
Claim 5.

Finally, we consider on M the distance function d(Cy, C;) as defined in Claim
2. Using Claim 2 and 3, it is straightforward to show that d is in fact a metric.
Let X3 be the metric space (M, d).

Claim 6: There is a G-action by isometries on X; X X, such that G, acts
geometrically on X; and trivially on X,; and G, acts geometrically on X, and
by Clifford translations on X;. Moreover, the map ¢ : X’ = X x X; given by
z — (p(z), C:) is a G-equivariant isometry.

Proof of Claim 6: We get the desired G-action on X; x X, as follows: The
Gi-action on X, is the restriction of the action on X. The G;-action on X is
the trivial action. The Ga-action on X is 3. The Gj-action on X, is given by
72.Cr := Cy,z. If we endow X; x Xz with this action, the map ¢ is obviously
G-equivariant by construction. To see that it is an isometry, consider z,z’ € X',

and let p’ : X = Cy be the projection. We have

d(x, :1;')2 = d(p,(.’l,'), 1:’)2 + d(Cz, Cz')2
= d(pp'(x), p(2"))* + d(C:, Cr)?
= d(p(l‘),p(.’t’))z + d(Czy C.’L")27

where Claim 2 implies the first and second equality, and Claim 3 the third one.
Because ¢ is a G-equivariant isometry, the G-action on X; x X, is geometric. In
particular, it follows that G, acts geometrically on X3. This completes the proof

of Claim 6, as well as the proof of the Splitting Theorem. 0
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1.3 Additivity of Translation Lengths

The aim of this section is to prove the following theorem:

Theorem 1.3.1 (Additivity of Translation Lengths) Let G be a word-hy-
perbolic group, and let p be a geometric G-action on a CAT(0) space X. Let
g,h € G be such that the points g* and h™ in OG are not the same. Then there
erists a constant C > 0 such that for all sufficiently large 1,7 € N we have:

'], + |F’], = C < |g'h|, < g'], + IF], + C.

We need to prepare the proof of Theorem 1.3.1. The following lemma was

noted by Swenson in [Swe93].

Lemma 1.3.2 Let G be a CAT(0) group. If for some g,h € G the points g*
and h* in OG are the same, then there exist n,m € N such that g"* = h™.

Proof: Let p be a geometric action of G on some CAT(0) space X. Let ¢, :
R — X and ¢, : R = X be axes for g and h respectively. Fix z := ¢,(0), and
y := ¢;(0). By hypothesis, the geodesic rays ¢,(Rt) and ¢;(R*) are asymptotic.
Therefore, there exists an i(n) € N for each n € N such that

d(g~"™h"y,y) <d(g7™Mh"y,z) +d(z,y),
<d(h".y,g'™.z) + d(z,y),
<2d(z,y) + 9],

Because p is a proper action, there is an infinite sequence (n, ), of natural numbers
such that
g—i(ny)hny — g-i(n“)hn“

holds for all v, p € N. In particular, we can find a v € N such that

g =im) = prw—m

where both exponents are positive. 0
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We recall Gromov’s “approximation by trees” for a §-hyperbolic space, a proof
of which can be found in [CDP90] or [Bow91}, for example.

Theorem 1.3.3 (Approximation by Trees) Let X be a §-hyperbolic space with
a basepoint 5. For ¢ = 1,...,n let z; be a point in X U 0X, and ¢; the
geodesic segment or geodesic ray joining xo to z;. Set Z = ¢y U -+ U cp.
Then there ezists a simplicial tree T with basepoint to, and a continuous mapping

f:(Z,z0) = (T,to0), such that the following holds:
(i) Fori=1,...,n the restriction of f to ¢; is an isometry.

(ii) There exists a constant C = C(8,n) such that for all 2,2' € Z

dx(2,2') = C < dr(f(2), f(2')) < dx(2,2).

As an immediate consequence of Theorem 1.3.3 we get in particular:

Lemma 1.3.4 For all z,2' € Z the Gromov product satisfies
(2,2')zy £ (f(2), f(2))e < (2,2")20 +C.

Using the above facts, we can prove the following slightly modified version of
Theorem 1.3.1. Clearly, this modified version implies Theorem 1.3.1, because for
each € X and each g € G the sequence  d(z,g".z) converges to |g|, as n

goes to infinity.

Proposition 1.3.5 Let G be a word-hyperbolic group, and let p be a geometric
G-action on a CAT(0) space X. Let g,h € G*® be such that the points g* and
h= in G are distinct. Then there ezists a constant C > 0 such that for some

r € X, for all sufficiently large 1,5 € N, and for all n € N we have:
i j 1 iriym i j
() g+ Wl = C < Ld(e,(gW)2) < Il + I, +C.

Proof: Since X carries a geometric action of the word-hyperbolic group G, X

is &-hyperbolic for some § > 0. Let 2o be a point on an axis ¢; : R = X of h.
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We fix 1,5 € N, and set z, := (g‘hj)".:co for each n € Ny. We want to prove

inequality (*) for ¢ = zo by induction on n. Note that we have by definition
(20, Znt1) = d(20,Zn) + d(Tn, Tnt1) — 2(T0s Tnt1)zn-

Therefore suitable estimates for d(zn,zn41) and (2, Zn41)z, are needed. These

will be given in Claim 3 and Claim 4 respectively.

Claim 1: Both Cy := (g*,h™),, and Cy := (g~, h*),, are finite,

Proof of Claim 1: If C| is infinite, then the boundary points g* and h~ are
the same, which contradicts the hypothesis. If C; is infinite, then the points g~
and A* in OG are the same. By Lemma 1.3.2, this implies that ¢~ = A™ for
some n,m € N. Thus, g~! and h have parallel axes. Hence the points gt and A~

are the same, which again contradicts the hypothesis. This proves Claim 1.

For n € Ny define y, := (¢'h?)"g'.zo. Let ¢, : R = X be an axis of g.

g‘.h'*
ht
T1 n
i = | T T —
h.g \ hi.gt

Ch

Yo
Zp Cg

- ‘T' \\“g*'
g'.h-
h-

Figure 1.1: Set-up for the proof of Prop. 1.3.5

Take a constant C3 > d(xq,c,(R)). Note that we have for all n € N,

i]glp = 2C3 < d(2a,¥a) < ilgl, +2Cs.
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Claim 2: Suppose that ¢ and j are sufficiently large. Then there exists a
constant Cy > 0, which depends on C; and é only, such that for each n € No

(zn, wn+1)yn S C4-

Proof of Claim 2: Obviously, it is enough to prove Claim 2 for n = 0. Consider
the geodesics ¢; := [yo,20], €2 := [y0,97] and ¢z := [yo, ¢'.h*] issuing from yo.
Define Z :=¢; U+-+Ucs. Let the tree T, the constant C(4,3), and the mapping
f:(2Z,y0) = (T, f(y0)), be given according to Gromov’s Approximation Theorem
1.3.3. Let w' € ¢;(R) be such that d(zq,w’') < Cs. Since X is CAT(0), there
exists a point w on ¢, such that d(w,w') < d(yo, ¢*.w') < C3. Therefore, we have
d(z0,w) < 2C3, and hence dr(f(xo), f(w)) £ 2C3 by Theorem 1.3.3. Thus, we
get

(f(g—)v f(xo))f(yo) 2 (f(w)’ f(xo))f(yo)

dr(f(z0), f(y0)) — dz(f(z0), f(w))
> d(2o,y0) —2Cs 2> i |g| , —4Cs.

v

Recall that (f(g7), f(¢*.h*)) (50) < C2+ C(6,3) by Lemma 1.3.4. So, if i is large
enough such that ¢ |g | ,—4C3>Cr + C(4,3), then

(f(g7), F(@0)) 1wy = (F(g7), F(g"-1H)) £00)-

Moreover, note that z; lies on ¢5 with d(yo, 1) = j |k|,. So, if 7 is large enough
such that j | h | , > C2+C(4,3), then

(f(g"-h"), £(21)) 160) 2 (F(97), F(G" 1)) 140)-

Since T is a tree, these two inequalities imply that

(f(wo), f(xl))f(yo) = (f(g_)a f(gi'h+))f(yo)°
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Applying Lemma 1.3.4, we can conclude that

('750’ zl)yo < (f(xo), f(xl)).f(yo)
(F(g™), F(&' 2 )) 1 wo)
<(97,9 k") + C(6,3) = C2+C(4,3) =: Ca.

Claim 3: Suppose that ¢ and j are sufficiently large. Then there exists a
constant Cs > 0, which depends on C3, C3 and § only, such that for all n € Np

we have
Igi|p+ |hj|p_05 S d(xnawn-i-l) S |gi|p+ lhj|p+C5.

Proof of Claim 3: Obviously, it is enough to prove the statement for n = 0.
By definition, we have d(zo,z1) = d(z0,%0) + d(Yo, Z1) = 2(T0, T1)y,- Suppose i
and j are large enough. Then Claim 2 and the triangle inequality imply

d(zo,71) <i|g|,+2Cs+] |R],,
d(zo, 1) 2i |g|,—2Cs+7 ||, ~2C,.

Thus, we can take Cs := 2C3 + 2 C,.

Claim 4: Suppose that : and j are sufficiently large. Then there exists a
constant C¢ > 0, which depends on C) and ¢ only, such that we have for all
n€e€N

(**) (1'0, $n+1)x,. < Ce.

Proof of Claim 4: For any given n € N consider the geodesics ¢; := [zn, (),
¢z = [TnyTn-1], €3 = [Tn, (¢RI A7), €4 = [TnyTus1], €5 1= [Tn,Yn] and
6 := [Tn, (g'h?)".g*] in X issuing from z,. Define Z, := ¢ U+--Ucs. Let
the tree T, the constant C(4,6), and the mapping f. : (Zn,zn) = (Tn, fa(zn)),
be given according to Gromov’s Approximation Theorem 1.3.3. We want to prove

inequality (#*) for Cg := C; + C(6,6) by induction on n. To do so we will check
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inductively that

(fa(20), f(@nt1)) futem) = (fa((g'H)"-27), fal(g°H)".9%)) fu(zn)s

provided that ¢ and j are sufficiently large. Then inequality (**) follows imme-
diately because of Lemma 1.3.4. We begin by recording three inequalities (a) to

(c), which hold for any given n € N, and all sufficiently large ¢ and j: Firstly,
Lemma 1.3.4 and Claim 2 imply that

(fn(yn—l)’ fﬂ(‘rn"l))fn(l'n) > (yN-lvxn—l)z‘n = e
= d(wm yn—l) - (xn-laxn)y,.-l > 7 | h | o Cs.

Note that y,_; lies on ¢3 with d(yn—1,zs) = 7 |h|,. Thus, if j satisfies j Ih | )=
Cs > C1 + C(4,6), Lemma 1.3.4 yields inequality (a):

(Fal(§"B)*B7), fa(@ne1)) faizm) = (fa(Une1)s Fa(@nm1)) fuizn) = -+
22 C14+C(6,6) = (fa((g' )" -h7), Fal(g*hT)*.%)) fu(en)-

Secondly, Lemma 1.3.4 and Claim 2 imply that

(fn(xn‘i'l)’f"(yn))fn(l'n) 2 (xn-}-l,yn)x,. =
R d(wn)yn) - ($n,$n+1)y" Z ) Ig I p - 203 - C4.

Thus, if 7 satisfies ¢ | g I ,—2 C3—Cs 2 C1+C(4,6), Lemma 1.3.4 yields inequality
(b):

(fa(at1)s Fa(¥n)) faizn) = Cr+C(8,6) > (fa((g'h)*.k7), f2((6'87)".9")) fu(en)-

Thirdly, since X is CAT(0), there is a point w, on ¢g such that d(w,,y,) < 2Cs.
This implies that

(fn((gihj)n-g-’-)’fn(yn))fn(zn) > (fn(wn),fn(yn))f,.(x,.) 2.
-+ 2 dr,(fa(2a), falyn)) —2C5 > i |g| , — 4Ca.
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So, if i satisfies i |g| ,—4Cs > Oy + C(6,6), Lemma 1.3.4 yields inequality (c):

(Fa((dB)".g*), fa(¥n)) faew) = C1+ C(5,6) > ...
e 2 (fﬂ((gihj)n‘g+)’ fn((g‘hj)n'h_))fn(zn)-

Now, we can prove Claim 4 with the following induction argument: Let n = 1.
Suppose that i and j are large enough for Claims 2 and 3, and inequalities (a) to
(c), to hold. Then the inequalities (a) to (c) imply that

(fi(zo), filz2)) puten) = (F1(g'h.g%), Filg'P B )) fiien)s

which yields the desired inequality (**) for n = 1 because of Lemma 1.3.4. Now,
suppose that inequality (%) holds for some n > 1. Using Lemma 1.3.4, Claim 3
and the induction hypothesis, we get

(fat1(20)sfn41(Tn)) fus1 (zat1)
2 d1, ., (far1(2n); fat1(Zns1)) = (far1(20), Far1(Zn41)) fuss (2n)
> d(z‘n,an) - (x0s$n+1)zn - 0(576)
>i|g|,+7|h|,—Cs—Cs—C(46).

Thus, if 7 and j satisfy ¢ Ig | ,,+j l h I p—Cs—Ce—C(J,G) > 0, +C(4,6), Lemma
1.3.4 yields inequality (d):

(fa41(20)s frt1(Tn)) fasir(znpr) = C1+C(4,6) > ...
e (fn+1((9ihj)n+l-g+),fn+1((gihj)"“-h-))f,,“(x,.,,,)-

Together the inequalities (a) to (d) imply for all sufficiently large ¢ and j that

(fn+l (xO)a fn+1 (‘Tn+2))fn+1 (zn+1)
= (forr((g'h )" .g%), farr (G R)H BT s szman)-

Hence, by Lemma 1.3.4, the desired inequality (**) holds for n + 1, too. This
completes the proof of Claim 4.
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Now, we complete the proof of Prop. 1.3.5. We verify inequality (x) for
C := Cs + 2Cg by induction on n, provided that ¢ and j are sufficiently large:
Let n = 1. Then inequality (*) follows immediately from Claim 3. Suppose that
inequality (x) holds for some n > 1. By definition, we have

d(z0, Tns1) = d(20,Zn) + d(Tn, Tnt1) — 2(To, Tnt1)zp-
Applying the induction hypothesis and Claims 3 and 4, we can deduce

d(zo,zas1) Sn(|g'|, + |W |, +C)+ (||, + | W], +Cs)
<(+1(g|,+ [¥],)+(+1)C,

and

davzais) 2n(lg], + W], ~ )+ (| 6], + | W], - O ~2C
2(n+1)(|g'|p+ |hj|p)—nC—Cs—2CG.

Therefore, inequality (*) holds for n +1, too. This completes the proof of Propo-
sition 1.3.5. o
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Chapter 2

The Boundary of a CAT(0)
Group

This chapter is divided into two sections. In the first section we define the
boundary of an arbitrary CAT(0) group. In the second section we prove some
basic properties of this boundary. In particular, we check that for word-hyperbolic
CAT(0) groups the boundary as defined in Section 1 is the same as the well-
known Gromov boundary; and that the boundary of the free abelian group Z" is

homeomorphic to the sphere $™~1.

2.1 The Boundary Construction

Let G be a CAT(0) group. The construction of a boundary for G can be outlined
as follows: Each geometric action p of G on a CAT(0) space canonically induces a
uniform structure U, on the set G* of infinite order elementsin G. By considering
all geometric actions of G on CAT(0) spaces, we obtain a family {U,,}sea of
uniform structures on G*°. This family of uniformities has a least upper bound:
a uniform structure U on G*, which we shall call the boundary uniformity. The
boundary G will be defined as the Hausdorff completion of G* with respect to
the boundary uniformity U.

Firstly, we consider a fixed geometric action p of G on a CAT(0) space X.

Since X carries a geometric group action, it is proper and complete. So, its visual
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boundary 8X is a compact topological space (see e.g. [BH99], Chap. IL8, for de-
tails). Since each compact topological space carries a canonical uniform structure

that is compatible with its topology (see e.g. [Bou89a], 11.4.1, for details), we get

Proposition 2.1.1 There is eractly one uniformity Usx compatible with the
topology of 0X. The entourages of Usx are precisely all the neighbourhoods of
the diagonal A in 0X x 0X. Furthermore, 0X endowed with Usx is a complete

uniform space.

Let G® denote the set of infinite order elements in GG. Recall that each
v € G* acts on X via p as a hyperbolic isometry (see e.g. [BH99], Chap. I1.6,
for details). Thus, we can define a canonical map 7, : G* — 90X, by mapping
each v € G* to the positive endpoint 4* € X of one of its axes. Note that this
map is well-defined, since all the axes of a hyperbolic isometry of a CAT(0) space
are parallel. Thus, taking the inverse image of the uniformity Usx on 0X under
T,, e can assign to p a canonical uniform structure U, on G*. In other words,

U, is the coarsest uniformity on the set G such that the map 7, is uniformly

continuous.

Secondly, consider the set I' of all geometric G-actions on CAT(0) spaces. By
the previous paragraph there exists a family Ug := {U,},er of uniform structures
on G*®. For some types of CAT(0) groups all these uniformities coincide (see
Sec. 3), but in general this is far from being true (see Example 3.1.1). Neverthe-
less, as a direct application of Prop. 4 in [Bou89a], 11.2, we get:

Proposition 2.1.2 The family Ug = {U,},er of uniformities on G*® has a least
upper bound Ug in the partially ordered set of all uniformities on G*. A funda-

mental system of entourages of Ug is given by the set of all finite intersections
‘/Pl n vt n ‘/Prn

where V), is an entourage of U,,.

We call the least upper bound Ug of the family Ug of uniform structures on
G> the boundary uniformity of G. Note that according to Prop. 4 in [Bou$9a),

I1.2., the boundary uniformity can be characterized as follows:
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Proposition 2.1.3 The boundary uniformity Ug is the coarsest uniform struc-
ture on the set G such that the map 7, : G* — 0X is uniformly continuous for
each geometric G-action p on a CAT(0) space X. Moreover, if h is a mapping
from a uniform space Z into the set G*°, then h is uniformly continuous as a
map into the uniform space (G*,Ug), if and only if the map 7, o h is uniformly

continuous for each p € T'.

It is easy to see that in general G* is neither Hausdorfl nor complete with
respect to Ug. Nevertheless, each uniform space has a Hausdorfl completion (see

[Bou89a), I1.3, for details), which is well-defined up to isomorphism:

Proposition 2.1.4 There erists a complete Hausdorff uniform space G and a
uniformly continuvous map ¢ : (G*°,Ug) — G having the following property (P):

(P): Given any uniformly continuous map f of (G*,Ug) into a complete Haus-
dorff uniform space Z, there is a unique uniformly continuous map g : G- Z
such that f =gou.

If (j,Y) is another pair consisting of a complete Hausdor[f uniform space Y and
a uniformly continuous map j : (G*,Ug) = Y having property (P), then there
is a unique isomorphism ¢ : G = Y such that j = ¢ou.

The map ¢ : (G*,Ug) — G is called the canonical map of (G*,Ug) into its
Hausdorff completion G'; and the image ((G*™) is called the Hausdorff uniform

space associated to (G, Ug). Now, we can define the boundary of G as follows:

Definition 2.1.5 (Boundary) The boundary G of the CAT(0) group G is de-
fined as the Hausdorff completion G of G*® with respect to the boundary unifor-
mity Ug.

Finally, we record some facts about dG, which are immediate consequences
of the construction (see [Bou89a), 1.3, for details):

Proposition 2.1.6 (i) The subspace (G™) is dense in 0G.

(it) The graph of the equivalence relation «(g) = 1(g’) is the intersection of all
the entourages of (G*,Ug).
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(iii) The boundary uniformity Ug on G* is the inverse image under ¢ of the
uniform structure of 0G (or that of (G*)).

(iv) The entourages of «(G™) are the images under ¢ X ¢ of the entourages of
(G*°,Ug); and the closures in 0G x OG of the entourages of ig(G*™) form

a fundamental system of entourages of 0G.

(v) For each geometric G-action p on a CAT(0) space X the map 7, : G* —
0X extends to a canonical uniformly continuous map 7, : 0G — 90X such

that r, = T,01t.

(vi) The uniformity of OG is the coarsest for which all the canonical maps 7, :
0G — 0X associated to a geometric G-action p on a CAT(0) space X are

uniformly continuous.

(vii) We can identify «(G*) with the image in [ . 0X, of G* under the prod-
uct map (7,)er, where X, is the CAT(0) space carrying the G-action p.

(viii) We can identify OG with the closure in [I,cr 09X, of the image of G* under

(7p)per-

2.2 Basic Properties of 0G

The aim of this section is to prove some basic properties for the boundary we have
defined in the previous section. We prove that it is compact, that it is invariant
under isomorphisms, and that it carries a canonical G-action. We show also that
for word-hyperbolic CAT(0) groups the boundary as defined in Section 1 is the
same as the usual Gromov-boundary; and that the boundary of the free abelian

group Z" is homeomorphic to the sphere S™~1.

Proposition 2.2.1 The boundary OG of a CAT(0) group G is compact.

Proof: Recall that a uniform space is said to be precompact if its Hausdorff
completion is compact. In order to prove the proposition it is enough to show
that G endowed with the boundary uniformity Ug is a precompact uniform

space. By Prop. 2.1.3, Ug is the coarsest uniformity on G* such that the map
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7, + G* — 90X is uniformly continuous for each geometric G-action p on a
CAT(0) space X. Thus, we can apply Prop. 3 of [Bou89a], 11.4.3: The uniform
space (G*,Ug) is precompact if and only if 7,(G*) is a precompact subset of
0X for each p. Obviously, the latter holds, since each d.X is compact. m]

Proposition 2.2.2 Let ¢ : H — G be a monomorphism of a group I into a
CAT(0) group G such that ¢(H) is a subgroup of finite index in G. Then H is a
CAT(0) group, and there is a unique map ¢ : OI — OG such that

(H®,Uy) —2— (G=,Uq)

SR
oH — oG

is a commauting diagram of uniformly continous maps.

Proof: Suppose that X be a CAT(0) space that carries a geometric G-action p.
Since ¢(H) is of finite index in G, the restriction of p to the subgroup ¢(H) is a
geometric ¢(H)-action on X. Set ¢.p(h, ) := p(¢(h)).z. Since ¢ is a monomor-
phism, @.p is a geometric action by H on X. Hence, H is a CAT(0) group. Note
that for each geometric G-action p on a CAT(0) space X the maps 74,, and 7,0¢
from (H*,Uy) into 8X coincide. Since 7y,, is uniformly continuous, Prop. 2.1.3
implies that the map ¢ : (H*,Uy) — (G*,Ug) is uniformly continuous, too.
According to Prop. 15 in [Bou89a], I11.3.7, ¢ has a unique uniformly continuous

extension ¢ such that the above diagram commutes. o

We get the statements (i) to (iv) of the following corollary as an immediate

consequence of Prop. 2.2.2. The proof of statement (v) is straightforward.
Corollary 2.2.3 Let G be a CAT(0) group.

(i) The inclusion of a finite index subgroup H into a CAT(0) group G induces

a canonical uniformly continuous map from OH to 0G.

(ii) Each group isomorphism ¢ : G — H induces a canonical isomorphism

d¢:0G — OH.
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(iii) The action of the automorphism group Aut(G) on G induces a canonical

Aut (G)-action on 0G by isomorphisms.

(iv) The action of G on itself by conjugation induces a canonical G-action on

OG by isomorphisms.

(v) Let p be a geometric G-action on a CAT(0) space X. With respect to the
canonical G-action on 0G, and the G-action on 0X that is induced by p,
the canonical map 7, : 0G — 80X is G-equivariant.

Finally, we look at two special types of CAT(0) groups for which the boundary
construction given in Section 1 is particularly easy to understand, namely word-
hyperbolic CAT(0) groups and free abelian groups of finite rank. We will see that

in the case of these two types the family Us contains just one uniform structure.

Proposition 2.2.4 Let G be a word-hyperbolic CAT(0) group. Then the bound-

ary OG as defined above is G-equivariantly isomorphic to the usual Gromov bound-

| ary aGrG OfG

Proof: We will use several standard results in the theory of word-hyperbolic
groups. Details of these results can be found in [CDP90], [GH90], or [BH99],
for example. Let A be a finite set of generators for G, and let C4(G) be the
associated Cayley graph endowed with the word-metric d4. We can identify the
Gromov boundary 0g.G with 0C4(G). Let g € G* be given. It follows from
Chap. 9, Thms. 3.3 and 3.4, in [CDP90], for example, that g acts as a hyperbolic
isometry on C4(G). By definition this means that the map g* : Z — C4(G)
defined by ¢g*(n) := g™.e is a quasi-isometry. Since C4(G) is §-hyperbolic, there
exists a biinfinite geodesic line ¢; : R = C4(G) in a uniformly bounded distance
from img*. We define a map 7 : G® — 0g,G by 7(g) := ¢,(+00). Let p be a
geometric G-action on a CAT(0) space X, and let £ € X be a basepoint. By
the Svarc-Milnor Lemma the map g — g.z gives rise to a G-equivariant quasi-
isometry ¥ : C4(G) = X, which induces an isomorphism % : dg, — 0X. For each

g € G* the quasi-isometry ¢ maps ¢, into a uniformly bounded neighbourhood
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of an axis a4 of g in X. Hence, the following diagram commutes:

G idg y G

96:G —— 0X.

Thus, if Up is the inverse image of the uniform structure on dg,G under 7, the two
uniformities Up and U, on G*° are the same. Therefore, the family Ug consists
of just one uniform structure, namely Us. Since the image 7(G™) is dense in
0crG (see e.g. [BRI6b] for details), G is isomorphic to dg-G. Obviously, this

isomorphism is G-equivariant. 0

Proposition 2.2.5 The boundary of the free abelian group Z™ of rank n is iso-

morphic to the sphere S"~1. The canonical Z™-action on OZ" is trivial.

Proof: Throughout this proof we identify the euclidean space E* with R". Let
Z1,...y2%n be a basis for Z". Then each g € Z™ can be uniquely written as product
| zf‘(g), where (;(g) € Zfor i = 1,...,n. We define a map ¢ : Z™ — E* by
assigning the point (g) := (¢1(9),.-.;¢x(g)) in E* to each g € Z™.

Firstly, we consider the standard Z™-action po on the euclidean space E*,
where each z; acts by translation along the i-th canonical basis vector e; of E".
If the visual boundary OE" is identified with the space of geodesic rays issuing
from the origin, the canonical map 7,, from (Z")* = Z"\ {e} into OE* can be
described as follows: Each g € (Z™)* is mapped to the unique geodesic ray that
issues from the origin and passes through ¢((g). Therefore, the image 7,,((Z")>)
is the dense subspace of JE" that consists of all the geodesic rays issuing from
the origin with rational direction. Note that the Hausdorfl completion of (Z™)*®
with respect to the uniformity U,, is isomorphic to JE", i.e. the sphere S™~1,
Note also that the intersection of all the entourages of U,, contains precisely
those pairs (g,h) € (Z™)*° x (Z™)*°, for which there is a rational ¢ > 0 such that
((9) = a¢(h).

Secondly, we consider an arbitrary geometric action p of Z™ on a CAT(0) space
X. The Flat Torus Theorem 1.1.2 implies that the minimal set Min(Z") C X is
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non-empty. Hence, we can choose a basepoint x € Min(Z"). Let C, be the closed
convex hull of the Z™orbit of z in X. The Flat Torus Theorem states that C; is
isometric to E*. We identify C, with E* such that z is identified with the origin,
and regard JE" as a subspace of 0X. The Flat Torus Theorem states furthermore
that each z; acts as a translation on E* = C, say along a vector v;, such that
the quotient of E* by the Z™action is an n-torus. Thus, the vectors vy,...,v,
are linearly independent; and the canonical map 7, : (Z")* — OE* C 0X can
be described as follows: 7, maps each g € (Z™)* to the unique geodesic ray in
E" that issues from the origin and passes through 3" | (i(g)vi. Since vy,...,v,
are linearly independent, the induced uniformity U, on (Z")® is the same as the
uniformity U,,. Hence, the least upper bound of the family Uz~ is the uniformity
U,, itself; and consequently, the boundary 0Z" is isomorphic to the sphere S™~1,

Since the action of Z™ on itself by conjugation is trivial, the canonical Z"-

action on 0Z" is trivial, too. o
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Chapter 3

The Boundary of G x Z

The aim of this chapter is to study the boundary of product groups of the form
G x Z, where G is a non-elementary word-hyperbolic CAT(0) group.

3.1 Distinct Uniformities in Up,«z: Examples

In the previous chapter we only considered the boundary construction for CAT(0)
groups G where the family U/ consists of just one uniform structure. In the
examples of this section we will look at various geometric actions of F; x Z on

CAT(0) spaces, which all give rise to distinct uniformities on (F; x Z)>.

It was first proved by Bowers and Ruane in [BR96a] that - in the language of
the present thesis — the family Up,«xz contains at least two distinct uniformities.

Essentially we recall their argument in the next example:

Example 3.1.1 Let A := (a,b) be the standard set of generators for F3, and
T := T'4(F2) the associated Cayley graph. T is a 4-valent tree. Hence both T
and the Euclidean product T x R are CAT(0) spaces. Each pair (p,q) € R?
uniquely determines a homomorphism ¢, ;) in Hom (F3,R) via ¢, 4)(a) := p and
@(pa)(b) 1= ¢, and vice versa. Therefore, we can define for each pair (p,q) € R?

(or alternatively for each homomorphism in Hom (F3,R)) a geometric action p(, 4
of F xZonT xR by

(a,0)*(z,7) := (a.x,r+p), (b,0)x(z,r):=(b.x,r+q), (e,1)x(z,r):=(z,7+1),
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where the action p := (g,z) = g.z is the standard action of F; on T. We
call p the F-factor action and the pair (p, q) the shift parameters associated to
the action p(, ). We define U, q) to be the uniformity on (F; x Z)* induced
by p(pg)- Note that for any pair (p,q) of shift parameters Uyy,q) is a metrizable
uniformity. We can identify the visual boundary (T x R) with the suspension
2 (0F;) = ([—o0, +o0] X 0F3;)/ ~ such that for each action p(,q) the associated
canonical map 7, ) from (F; x Z)® to (T x R) is given by

z+ ¢(p.9)(9) +]
— e .

(g,z) = T(p.g) (g,z) = [
lg|p

For example, the following figure illustrates that 79 (ab,1) = [2,(ad)*]. Note
that tan(a) = 3.

(ab)"'“
(ab, 1)+
(abv 0) e e - - —-—-————-
1(ab, 1).(e,0)
:
t
(a,0) ¢
' (a,1).(e,0)
a '
'
- . : : : : i -
-0 -3 -2 -1 (67 0) 1 2 3 +oo
1670
(ab,1)72 (e, 0) T ("'a™',0)
(ab, 1)~
L
(ab)~

Figure 3.1: Illustrating 7(2,0) : (F2 X Z)® — E(0F,)

We check that U, q) coincides with U ), if and only if (p, q) = (p, §): Obvi-
ously, Ulp,q) coincides with Uy;4) if (p,q) = (§,§). So, suppose that the uniformi-
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ties Ulp,q) and Uz 4) coincide. Let v; € N and p; € Z be such that ('—;j—)] converges
to 1 (1 —p+ g). Consider the sequences (c;); := (a’¥/, j); and (d;); := (%, u;);
in (Fy X Z)*. The images of (¢;); and (d;); under the canonical maps 7, 4) and

T(5.3) have the following limits:

lim (75,9 (¢;))i = [ (1 + P + g), 7],
lim (7(,0) (d)); = [3 (1 +p + g),a*],
lim (73, (¢;))i = [3 (1 + 5+ §),a*],
lim (75,5 (d;)); = [3(1+2p —p+4q),a*].

Thus, the alternating sequence (s;); formed of (¢;); and (d;); is a Cauchy sequence
with respect to Up,q). Since Upq) and U4 coincide, (s;); is also a Cauchy
sequence with respect to Uz 5. This implies (1 +p+4) = 3(1+2p—p+q),

or equivalently,

~

Gg—p = q—p.

An analogous argument based on the sequence (c}); := (a’ b%,3); and a sequence

(df); = (a"ll',u;-)j, where (‘—':4-)] converges to 3 (1 — p+ 2q), yields
2
2§—p=2q-p.

Hence, if the uniformities Uy, 4) and Uiz 4) on (F2 X Z)* coincide, the corresponding

pairs (p,q) and (p, §) of shift parameters must be the same. m!

Note that in the above example we did not need to change the F,-factor
action at all to create uncountably many distinct uniformities on (F; x Z)*®. It
was enough to vary the shift parameters (p,q). However, there is another way
in which more uniformities in U, xz can arise — even if we consider actions with
trivial shift parameters only: We can vary the marked length spectrum of the

F,-factor action.

Example 3.1.2 For each ¢ with 1 > ¢ > 0 we construct a CAT(0) space T,
by modifying T as follows: Let A (ABC) be the convex hull in E? of a triangle
with side lengths (AC) = (CB) = ﬁ;e and (AB) = 24_%55. Let V be a
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vertex in T'. Suppose Ay is the point on the incoming a-edge at V such that
dr(Av,V) = E_IWEJ; and By is the point on the outgoing b-edge at V' such that
dr(Bv,V) = 5=7¢. Then we can glue A (ABC) to T such that the side (AC) is
glued isometrically onto [Ay, V], and the side (BC') onto [By, V]. Gluing a copy
of A(ABC) to T in that manner at each vertex V, we obtain a space T, that is
CAT(0) with respect to the induced path metric.

b—l

Figure 3.2: Constructing 7.

Clearly, the geometric Fj-action on 7' induces a geometric Fy-action on 7.
Note that the marked length spectrum of this Fj-action on 7. is different for
each ¢. For example, the translation length of ab equals 2 — €. For each ¢ with

1 > & > 0 we define a geometric action p. of F, x Z on T, x R by
(a,0) * (z,r) := (a.z,7), (b,0)*(z,r):=(ba,r), (e1)x*(z,r):=(x,r+1).
Note that each action p. has trivial shift parameters. Let U, denote the uniformity
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on (F, x Z)® that is induced by p..

Firstly, we want to see that two uniformities U, and U on (F; X Z)* coincide,
if and only if € = &: Suppose that U, and U; are the same. Let v;, u; € N be such
that (%JL), converges to 31—, and consider the sequences (¢;); := (a(ab)’a™, j);
and (d;); := (a*, pj); in (Fz X Z)*. If the visual boundary 9(T, X R) is identified
with ¥ (0F3) in the same manner as before, the images of the sequences (¢;); and

(d;); under the canonical maps 7. and 7; have the following limits:

lim (7 (¢;)); = [7%,a%),
lim (7. (d;)); = [, a%],
lim (7: (¢;)); = [, a%),

lim (7 (d;)); = (325, a™].

Therefore, the alternating sequence (s;); formed of (¢;); and (d;); is a Cauchy
sequence with respect to U,. By assumption this implies that (s;); is Cauchy

with respect to Uz, too. It follows that ,‘,1: = -1. and hence ¢ = ¢.

pre)

Secondly, we check that for non-trivial € none of the uniformities U, con-
structed in this example coincides with any of the uniformities U, 4y constructed
in Example 3.1.1: We consider the sequences (c;); := (a’(ab)¥a~, j); and (d;); :=
(a?(a®b?)ia™d,§); in (F; x Z)*. Now, the images of the sequences (c;); and (d;);

under the canonical maps 7. and T(p,q) have the following limits:

lim (7. (¢;)); = [&Z5a*),
lim (7, (d;)); = [i%5,a%],

lim (75,0 (¢;)); = [ (1 + 2p + 2q),a"],
lim (7(p,0) (dj)); = [3(1 +2p + 2g),a?].

Thus, for any pair of shift parameters (p, ¢) the alternating sequence formed of
(¢c;); and (d;); is a Cauchy sequence with respect to Uy, ). However, it is not a

Cauchy sequence with respect to Uy, unless ¢ = 0. 0

In this section we saw that distinct uniformities on (F; X Z)® can arise in
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two particular ways: One can fix an Fj-factor action and vary shift parameters
as done in Example 3.1.1; or one can vary the marked length spectrum of the F,-
factor action and consider trivial shift parameters only, as done in Example 3.1.2.
In order to understand the boundary construction for G x Z in full generality,
it is helpful to look at these two ways separately first. We will do so in the two

following sections.

3.2 Fixing a G-Factor Action

In Example 3.1.1 we saw that the family ¢r,«xz contains more than one uniform
structure, because despite a fixed Fp-factor action we could vary shift parameters.

In this section we want to study this effect more generally.

Throughout this section we consider a fixed non-elementary word-hyperbolic
CAT(0) group G, and a fixed geometric action p of G on a CAT(0) space X. Also,
we fix a basis (wi,...,ws) of Hom (G,R). (By convention this basis is empty if
Hom (G, R)is trivial.) For each g € G we abbreviatew(g) := (w1(g),...,wa(g)) €
R™. For each p € R™ we get a geometric G X Z-action p, on X x R by

(9,2) * (=,7) == (g.3,7 + 2 + (1, w(9))),

where (-, ) is the standard scalar product on R™. As in the previous section, we
call u the vector of shift parameters of p,. By 7, : (G x Z)*® — 9(X x R) we
denote the canonical map associated to p,, and by U, the uniform structure that
is induced on (G X Z)* via 7,. Varying shift parameters gives rise to a family
Ub7 = {Us}uern of uniform structures on (G x Z)®. Note that in general Ug, 5
is a proper subfamily of the family Ugyz which is based on all G x Z-actions. We
denote the least upper bound of the family Y, , by UZ, 7, and call the Hausdorff
completion of (G x Z)* with respect to U§, 5 the p-boundary 0,(G x Z) of G x Z.
As in the case of the general construction, d,(G x Z) is a compact space; and
there exists a canonical uniformly continuous map 7, from d,(G x Z) to (X xR)

for each vector p € R™ of shift parameters.

We can identify 9(X x R) with the suspension ¥ (0G) such that the canonical
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map 7, from (G x Z)* to 9 (X x R) associated to p, is given by

[Z+<|:uaw(g)>,g+]’ ingGoo,

9l

(9:2) = 7u(9,2) = | [~00, £], if g G* and z < 0,
[4+o0, &], if g G and z > 0,

where £ € O0G is arbitrary (see Fig. 3.1). Moreover, we can identify the p-
boundary 9, (G x Z) with the closure in [] ,cgn Z (9G) of the image of (G x Z)*
under the product map (7,),ern. Thus, (7,).ern is precisely the canonical map ¢
from (G x Z)* into its Hausdorff completion 8, (G x Z).

Let the map ¢, : G* — R” be given by

wi(g) wn(g) )

9 6ul9) = (5o g1

Define the space S, as the closure of im ¢, in R". We set M} := ([—o0, +00] X
G x 8,)] ~, where (t,&,s) ~ (t',€,s) if and only if [t = 400 and t' = +00], or
[t = —oco and t' = —oo], or [t = t' and £ = ¢’ and s = s']. (Ilere the superscript
s stands for shift.) In the remainder of this section we want to show that M} is
canonically isomorphic to the p-boundary J,(G x Z). Note that this implies in
particular that 9,(G x Z) depends only on the marked length spectrum of p.

Theorem 3.2.1 Let G be a non-elementary word-hyperbolic CAT(0) group, and
let p be a geometric action by G on a CAT(0) space X. Let M) be defined as

above. Then the following is true:
(i) The p-boundary 3,(G x Z) is canonically isomorphic to M.

(ii) The canonical G X Z-action on 0,(G X Z) is given by
(9:2) % [t,€,8] = [t, 9.6, 9].

(iii) For each vector p € R™ of shift parameters the canonical map 7, from
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3,(G x Z) to (X x R) = X (9G) is given by:

2 (16, ]) = [W,el.

In order to prove this theorem we need some lemmas.

Lemma 3.2.2 The image im ¢, is bounded in R™.

Proof: We show that there exists a constant C > 0 such that I ﬁ?' < C for
all g € G and all 1 < i < n. Let A be a finite system of generators for G, and
let | - |4 the corresponding word metric on G. If we set ¢ := max { jwi(a)] | a €
A;1<i<n} then |wi(g)] < c|gla holds forall g€ G and all 1 <¢ < n. Let X
be the CAT(0) space underlying the action p, and let x € X be a basepoint. By
the Svarc-Milnor-Lemma 1.1.1 there exist constants A > 1 and € > 0 such that
3lgla—e < dx(z,g.z) for all ¢ € G. Since p is cocompact, there is a constant
d > 0 such that for each g € G* one can find a conjugate § for which the distance

between some axis a; of § and z is less than d. It follows for each k € N and each
1 <t <nthat

|wi(3)] < ||, < eA(dx(z, 3" x)+e) Ser(| ¥, +2d+e),

and hence

. . 1
|w,~(g)| < cA |g|p+—’;c)\(2d+6).

Thus, we can take C := ¢\, and conclude that

|wilg)| = |wi@| < C14],=Clg],

Lemma 3.2.3 The space S, is a compact, convex subspace of R".

Proof: By Lemma 3.2.2 im ¢, is a bounded subspace of R™. Hence, its closure S,

in R™ is compact. In order to prove that S, is convex, we consider the uniformly
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continuous map H :[0,1] x S, x S, = R™ given by
(9, z,y) > HW,z,y):=dz+ (1 —-93)y.

It is enough to show that H maps the dense subspace ([0,1])NQ) X im ¢, X im ¢,
of [0,1] X S, x S, into S,. Let 4 € [0,1]NQ and z,y € im @, be given. For each
g € G* we abbreviate ¢,(g) by §. Take g,h € G such that g = z and h=y.
We distinguish between two cases. Case 1: Suppose gt # h~. Set n := {-’%’i.
Take p;,¢;,s € Nand r € Ny such that (g;); goes to infinity, (5-17-)J converges to
n, and £ = 9. For each j € N set g; := g4"hPs(=r), Since g* # h~, we can
apply Theorem 1.3.1 about the additivity of translation lengths. It follows that
the translation length |g;|, is non-trivial for all sufficiently large j. Moreover, it

follows for all ¢ = 1,...,n and all sufficiently large j that

wi(gquhpj(s—r)) < wi(g;) < w; (g hPs(e=r))
lg%™|, + Ihp’(s-r)lp +C" = gl, ng’rlp + Ihpj(’_r)lp -C”

where C’ > 0 is some constant. Thus, we get

‘wz(g) + _Lw'(h) < w,-(gj) < (g) + 5 e (h')
L |glp v qJ |h|p + 3 ¢ - |gj|ﬂ - ;Iglp + 5* |h'p - £

L) 89

which implies

wi(gi) _ Ywi(g)+ (1 =F)nwi(h) _ owilg) +(1 —o)nwi(h)

lim

oo lgil, — Olglo+(L=B)nlnl, 91,
= ﬂw’(g)+(1—0) wilh) _ 9§+ (1—9)h.
l9l, |kl

Hence, (g;); is a Cauchy sequence in S,, whose limit is H'(¢d,z,y). Since S,
is compact, H'(J,z,y) lies in S, for Case 1. Case 2: Suppose that g* = h~.
(Warning: In this case it may happen that A = g™}, which means h = —§ in
S,. If so, (gPh9) equals either g or 0 or —3 for all p,q € Np.) Since G is non-
elementary, there exists a conjugate hy € G* of h such that hy # h~. Thus,
we can apply the argument from Case 1 to g and h;. Note that h; = k. Hence,
H'(9,z,y) lies in S, for Case 2, too. 0
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Example 3.2.4 Let A = (a,b) be the standard set of generators for F, and let p
be the standard action of F, on the 4-valent tree 7. Let w; be the homomorphism
from F, to R that is given by wy(a) = 1 and w(b) = 0, and let w, be the
homomorphism from F; to R that is given by wy(a) = 0 and w,(b) = 1. Note
that (w;,ws) is a basis for Hom (F3,R). S, is looks like: m]

/

¢p(b) = (0,1)

QSP(G—I) = (_1’0)

lim; ¢p(biab_2ia) == (0, _%)

$p(b~1) = (0,-1)

Figure 3.3: The space S, for p: Fo x T = T

Lemma 3.2.5 Let X be a compact space, and U its canonical uniform structure.
Suppose that {Vi}aea is a fundamental system of entourages for U. Then the
suspension ¥ X of X is compact. For each ¢ with 1 > ¢ > 0 and each A € A
let Wy consist precisely of those pairs ([t,z],[t',2"]) in EX x ¥ X, for which
[t>Landt' > 1], or[t < —Landt' < =1}, or[|t —¥| <€ and (z,2") € V)]

holds. Then the system {W(, .} is a fundamental system of entourages for the

canonical uniformity on ¥ X.

Proof: It is a standard fact that the suspension of a compact space is compact,

too. In particular, this implies that ¥ X carries a unique uniform structure that is
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compatible with the given topology. It is straightforward to check that the system
{W(r.)} satisfies the axioms of a fundamental system of entourages. Moreover, it
is obvious that the topology induced by {W(s.)} coincides with the topology on
¥ X. Therefore, {W(y)} is a fundamental system of entourages for the canonical

uniformity on ¥ X. |

In order to compare 9, (G x Z) to M} we define a map I : (G x Z)* — M, by

[l—f—,g+,¢p(g)], if g € G,

N glp

(9,2) = i(g,2) := [—0, &, s3], ifgd G* and 2 <0,
[+00, &, s], ifgd G*® and 2z > 0,

where £ € G and s € S, are arbitrary.

Lemma 3.2.6 The image I ((G x Z)*) is dense in M.

Proof: It is enough to check that each open subset in M) of the form (I x
B(&,€) x U)/ ~ contains an element of {((G' x Z)*), where I is an open interval
in [—00,+00], B(£,¢€) is an open ball of radius € around some point ¢ in G with
respect to some fixed visual metric d, and U is an open set in S,. First of all, we
find a g € G such that ¢,(g9) € U and g* € B(£,¢): By construction ¢, (G>)
is dense in S,. Therefore there exists a § € G* such that ¢,(g) € U. Recall
that the set of rational boundary points is dense in G (see e.g. [BR96b] for a
proof). Hence, there exists an h € G* such that d(£,h*) < §. Without loss
of generality we can assume that §* # h~. For otherwise Lemma 1.3.2 implies
that h* is the only rational point in B(, %), which contradicts G being non-
elementary. It follows from this assumption and the dynamics of the action of A
on G (see e.g. [CDP90], Ch. 11, Prop. 2.4) that there exists an m € N such that
d(h*t,h™.g*) < §. Note that ¢,(3) = #,(h™gh™™) and h™.g* = (hmgh—™)*.
We take g := h™gh™™. Obviously, there exist z € Z and q € N such that
= € 1. Since (¢97)* = g* and ¢,(9?) = #,(g), we conclude that i(z,g?) lies in
(I x B(&,e) x U)[ ~. a

Proof of Thm. 3.2.1: Throughout this proof we will identify (X x R)
with £ (0G), and regard 9, (G X Z) as a closed subspace in [ ,cgn & (9G). Thus,
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the product map (7,),ern is the canonical map ¢ from ((G x Z)®, Ug, ) into its
Hausdorff completion 8, (G X Z). For each y € R" we define a map 7, from M,
to £ (9G) by

[t,€,s) = 7 ([t,€,8]) := [t +{p,s), €]

It is easy to check that

GxZ)>> —» M

= (Tu)u l l‘;»

9,(G x Z) 2% £(dG)

is a commuting diagram of set maps. Let 3 := (¥,), be the product map from M,
to [I,ern Z (0G). It is straightforward to check that ¢ is uniformly continuous.
Let 3’ be the restriction of ¢ to the subspace I ((G x Z)*).

Claim 1: ¢’ is a bijection from i ((G x Z)>) onto ¢ ((G x Z)>).

Proof of Claim 1: We show that ¥ has an inverse. Define a map ¢ from
¢ ((G x Z)™®) to I ((G x Z)>) by

"(g’z) — J("(gv z)) = Z(g,z).

We check that 1 is well-defined: Let (¢',2') € (G x Z)* be such that «(g,2z) =
(g, 2'), i-e. Tu(9,2) = 7u(g',2') for all 4 € R". This means in particular that
Te.(g,2) = Te;(g',2') for all § = 1,...,n, where ¢; is the i-th unit vector in R";
and that 7o(g, 2) = 7o(g’, 2'). We distinguish between two cases. Case 1: Suppose

that g € G*. Since —oo < ﬁ < +00, it follows that ¢’ € G*, too. We conclude
that 2 = [ 0% = o'+ and S = Sl - oo = S - op <
for each ¢ = 1,...,n. Thus, ¥ is well-defined in Case 1. Case 2: Suppose that
g & G®. Then z < 0 (resp. z > 0) implies ¢ ¢ G* and 2’ < 0 (resp. z' > 0).
Therefore, ¥ is well-defined in Case 2, too. Finally, it is straightforward to check
that ¢ is the inverse of ¢/,

Claim 2: ¥ is uniformly continuous.

Proof of Claim 2: Let d be a fixed visual metric on 0G throughout this proof

of Claim 2. We consider the following fundamental systems of entourages on
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t((G X Z)*®) and i ((G x Z)*): For any € with 1 > ¢ > 0 let W, consist precisely
of those pairs ([t,£],[t/,¢']) in Z(0G) x L (9G), that satisfy [|t — t'| < € and
d(£,&) <elyor [t >2and ¢ > 1], or [t < ~! and t' < —1]. 1t is straight-
forward to check that the system {W.} is a fundamental system of entourages
for £ (0G). For any € with 1 > € > 0 and any finite number vy,..., vy of vec-
tors in R™ let W{,,,...um.c) consist precisely of those pairs (([tu,&u])us ([t)s€LD0)
in ([T,ern Z(9G)) x (ILern Z(0G)) for which ([t.;, &1, (81, €,) lies in W, for
each j = 1,...,m. Then, by construction, the trace of the system {W,, ...me)}
is a fundamental system of entourages for the subspace ¢((G x Z)*). For any €
with 1 > & > 0 let V, consist precisely of those pairs ([¢,¢, s], [t'¢', s']) in M} x M
that satisfy [t > L and ' > 1], or [t < =2 and ¢’ < —1], or [|t - ¥/| < € and
d(¢,¢') < € and |s — s'|c < €], where | - | is the £-norm on R”. According
to Lemma 3.2.5, the system {V,} is a fundamental system of entourages for M;.
Let € with 1 > & > 0 be given. In order to prove that ¢ is uniformly continuous
it is enough to check that there exists an & > 0 such that 9 x ¢ maps the trace
of Wg,ei,....ens) Into Ve: Let C >0 be the constant given in the proof of Lemma
3.2.2, i.e. we have |s| < C for all s € S,. Take 1 > £ > 0 such that & < £ and
E < m Suppose (¢(g, z),4(g',2")) in Wiq,,,...en.s)- We distinguish between

three cases:

Case 1: Suppose_l—;r; > 1 a{ld ]gz'_,|,, > 1. Then o> 1
(i(g,2),i(d’, 2")) = (¥(u(g,2)),¥(e(d',2))) lies in V, in Case 1.

Z

Case 2: Suppose e < TF and ’| i Then l_l— < —; and o
Hence, (zZ)(L(g,z)),th(L(g', z'))) lies in V; in Case 2.

Case 3: Suppose | l—;—l; - Ig_z"I; | < &€ and d(g*,¢'*) < €. Then we can assume
without loss of generality that I]gz_|,,| < -:- — C. For otherwise we have either
1_C - A, | 2 1 .

R d >:-C l,or|g|p< E+Cand|g’|p< :+C+1;
and (¥(u(g, 2)),¥(t(g’, 2'))) lies in V¢ analogously to Case 1 or Case 2 above. The

assumption implies for each ¢ = 1,...,n that

> % Hence,

< -

LN

|Z+wa g)l

Wy g)
o, R R

|<——C+C-
91,

M| =t

| Iglp

Hence, |z+|;’|‘:ﬂ - z'ﬁ;iig—'ll < & holds for each i = 1,...,n, from which it follows
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that

Iw;(g) w.g)l |2+wi(g)_2'+wt g)l

<2€&<e.
o, 19l ol 7l |

I |g]p lg Ip

Thus, (¥((g, 2)), ¥(¢(g’, 2'))) lies in V; in Case 3; and ¢ is uniformly continuous.

Now, we prove the theorem. The subset ¢((G x Z)*) is dense in 9, (G x Z)
by construction, and the subset i((G x Z)*) is dense in M) by Lemma 3.2.6.
Because 1 is uniformly continuous, so is ¢’. It follows from Claim 1 and Claim 2
that ¢ extends to an isomorphism from M} onto J, (G X Z). Since this extension
is unique, it must coincide with 1. Hence, % is an isomorphism. Finally, the two

remaining statements (ii) and (iii) of the theorem are obvious. o.

3.3 Actions with Trivial Shift Parameters

In this section we continue to study the boundary of groups G x Z, where G is
a non-elementary word-hyperbolic CAT(0) group. But contrary to the previous
section, in which we fixed a G-factor action to understand the effect of non-trivial
shift parameters, the aim of this section is to consider all possible G-factor actions

in conjunction with trivial shift parameters.

Again we begin with some notation. Throughout this section let G be a fixed
non-elementary word-hyperbolic CAT(0) group. By I' we denote the set of all
geometric G-actions on CAT(0) spaces. For each G-action p € T on a CAT(0)
space X, we let p;, be the product action (g,2) * (z,r) := (g.z,7 +2) by G x Z
on X x R. (The subscript ts stands for trivial shift.) We define U}® to be the
uniform structure that is induced on the set (G x Z)* by p,s. Varying the G-factor
action gives rise to a family UE, z := {U},er of uniform structures on (G'x Z)*.
We denote the least upper bound of this family by Ug, 2, and call the Hausdorff
completion of (G x Z)*° with respect to UZ, 5 the trivial-shift-boundary 8,,(G x Z)
of G x Z. Note that, once again, 0;5(G X Z) is a compact space; and that for
each G-factor action p on a CAT(0) space X there exists a canonical uniformly
continuous map 7;° from 8,,(G X Z) into d(X x R). If we identify (X x R) with
S (OG) as before, the canonical map 7,° from (G x Z)® into (X x R) is given
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2, g*], ifgeG

| [Iglp’g ), ifg ;
(9,2) » 7,°(9,2) = [-00,€], ifggG™and 2<0,
[+00,€], ifggG®andz>0,

where £ € 9G is arbitrary.

Remark 3.3.1 In general, the family Ug, ; is a proper subfamily of the family
Ucxz of uniform structures on (G X Z)®, on which the proper boundary con-
struction is based. (See F; x Z in Example 3.1.2.) However, we will see in the
next section that, if G is a CAT(0) group whose abelianization is finite, then the
families U, 5 and Ugxz coincide. In this case 9;,(G x Z) is canonically isomorphic
to (G x Z). An easy example for a word-hyperbolic CAT(0) group with a finite
abelianization is the (2,3, 7)-triangle group.

Before we examine 0:s(G x Z), we clarify the relation between the uniform
structure U;’ associated to a G' x Z-action p;s and the marked length spectrum
MLS, associated to the corresponding G-factor action p. Example 3.1.2 shows
that the uniformities U}® and U}’ associated to p and j in I" are generally distinct.

We can generalize the idea of this example to the following proposition:

Proposition 3.3.2 Let G be a word-hyperbolic group, and let p and p be two
geometric G-actions on CAT(0) spaces. Then the following are equivalent:

(i) The marked length spectra MLS, and M LS; associated to p and p are the

same up to a positive scaling factor.
(ii) The uniformities U}* and US* on the set (G x Z)> coincide.

Proof: On the one hand, it is an immediate consequence of Lemma 3.2.5, and
the above characterization of the maps 7,° and 7§* from (G x Z)* to L (dG),
that U* and U}’ coincide, provided that M LS, and M LS; are the same up to a

positive scaling factor.

On the other hand, suppose that the marked length spectra M LS, and MLS;

are not the same up to a positive scaling factor. We want to deduce that the
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uniformities U!* and Uj® are distinct. To do so, we construct a sequence in
(G x Z)* that is Cauchy with respect to U}, but not with respect to U3*. Fix an
infinite order element g € G, and set ¢ := %Z—!g. Let ¢p be the geometric G-action
on the rescaled CAT(0) space c- X, where X is the CAT(0) space underlying the
action p. Note that by the first paragraph the uniformities U3’ and U; coincide.
By construction we have |g|, = |g|.;. But by hypothesis MLS, and MLS,;
cannot be the same. Therefore, there exists an infinite order element A € G such

that |hl, # |hlcs-
Claim 1: The points gt and A~ in G are not the same.

Proof of Claim 1: If g* and h™ are the same points in G, then by Lemma 1.3.2
there exist n,m € N such that g" = h™™. This implies |h|, = Z|g|, = Z|g|; =

|k|c5, which is a contradiction.

We set o := %}f and 8 := ‘%ﬁ = llthlcf’ and define sequences (a;); and (b;); in

(G x Z)> as follows:
a; ;= (g2i,2i), and bi = (g'h',i + o),
where o; is the integer part of the real number ia. To complete the proof of the

proposition it is enough to show:

Claim 2: The alternating sequence formed of (a;); and (b;); is a Cauchy se-

quence with respect to U}*, but not with respect to U%.

Proof of Claim 2: By construction, we have

2 1 . 2t 1 1
—_— = and lim ~—— = = .
ivoo |g%|cs gl gle

However, according to Claim 1 we can apply Theorem 1.3.1, and conclude that

lim ___i+a,- = lim —————H-ai = lim it o -1

i-+00 Igihi|p =00 |g£|p+ |hi’p i—+o0 i(l +a) |g|p |g|p’
.it o . 1+ o ) 1+ o l1+a
Iim = lim ———— =1

— ) - : Iim - = .
i |ghiles  imeo |giles + R le; e i(1+B) g, (1 +B) gl

Thus, both the sequence (73°(a;)); and the sequence (7;°(b;)); converge to [I-glI;’ gt

However, the sequence (73(a;)); converges to [Ty—ll? g%}, and the sequence (23(b;));
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converges to [m-%ﬁTlp’ g*], where a # 3 by definition. o

Now, we begin with the study of the trivial-shift-boundary 0, (G % Z). For
the remainder of this section let p € I" be a fixed G-action. We define a map
K, : G = R by

lols

g — np(g) = (Iglp )ﬁEP'

We denote the closure of im x, in RF by C,’. For j € T let pr; be the projection
of RT onto the p-component. For any ¢ € C}* we abbreviate pr;(c) by c;. We
define M?* := ([—00,+00] X 9G x C}°)[ ~, where (t,£,¢c) ~ (', ') if and only
if [t = co and t' = 00], or [t = —c0 and t' = —oc0], or [t = 0 and t' = 0 and
¢=¢),or [t =1 and £ = £ and ¢ = ). In the remainder of this section we will

prove the following theorem:

Theorem 3.3.3 Let G be a non-elementary word-hyperbolic CAT(0) group, and
let p be a geometric action by G on a CAT(0) space. Let M}’ be defined as above.
Then the following is true:

(i) The trivial-shift-boundary 0.,(G' x Z) is canonically isomorphic to M}°.

(ii) The canonical G x Z-action on 0,,(G X Z) is given by
(9:2) * [t,¢,¢] = [t,9.6,¢].

(iii) For each G-factor action § on a CAT(0) space X the canonical map 75 from
01s(G X Z) to (X x R) = X(0G) is given by:

[t E,C]) [_ ]

In order to prove this theorem we need some lemmas:

Lemma 3.3.4 Let p and p’ be two geometric actions of a group G on CAT(0)
spaces X, and X' respectively. Then there exists a constant k > 1 such that for
each g € G*

1
;Iglp < gl < Elgls
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Proof: Let d4 be a word-metricon G, and let ¢ € X and 2’ € X’ be basepoints.
The Svarc-Milnor-Lemma implies that there are constants A > 1 and € > 0 such

that for each n € N we get the following two inequalities:

1
_A- dx(a:,g".a:) - < dA(evgn) < AdX(:l"’ gnx) + ¢,
§dx,(x', "2)—¢ < dale,g") < My (2, 9".7) +e.
Combining these inequalities we get

dx: (z',g".2') < Ada(e,g")+ e < ANdy (z,g".7) + 2)e,

and therefore

n-+o00

o1 i o1
lglr = nlgg ;z—dxl (z',g".2") < A lim ;l-dx (z,9".7) = \|g|,.

The other inequality of the statement follows analogously. Thus, we can take
k=A% i

Lemma 3.3.5 The space C%* is a compact, convez subspace of RT.

Proof: By Lemma 3.3.4, there exists a constant k(g) > 1 for each p € I" such
that 7%;) < k,(9)5; < Kk(p) for all g € G™. Therefore, Tychonoff’s Theorem
implies that the image x,(G™) lies in a compact subset of RT. Hence, its closure
C! is compact. In order to prove that C}’ is convex, we consider the map
H :[0,1] x C%* x C%* — RT given by

(0, z,y) = HWY,z,y):=dz+ (1 -9)y.

It is straightforward to show that H is uniformly continuous. Therefore, it is
enough to show that H maps the dense subspace ([0,1]N Q) X im &, X im &, of
[0,1] x Cf,’ X Cf,’ into C,’,’. This can be done as in the proof of Lemma 3.2.3. O

In order to compare 8;,5(G % Z) with }llf,’ we defineamap i : (GXZ)® — AI;’
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z .
[r"'ag+1'€p(g)], lfgeroo’
3 dls
(9,2) ¥ 1(9,2) := { [~00, ¢, ¢], if g G> and z < 0,
[+o0, €, c], ifgg G*® and z > 0,

where £ € 0G and c € C}® are arbitrary.

Lemma 3.3.6 The image i((G x Z)*) is dense in M}*.

Proof: The proof is analogous to that of Lemma 3.2.6. 0

Proof of Thm. 3.3.3: Throughout this proof we will regard 9, (G x Z)
as a closed subspace of [[;cr X (0G), so that the product map (75°)ser is the
canonical map ¢ from ((G x Z)®, U§, 2) into its Hausdorff completion 9, (G X Z).
For each g € T' we define a map 7§* from M}* to £ (9G) by

~ta t
el o 7 ([ 6vel) = [, 8]
. 5
It is easy to check that

(Gx2Z)» — MY

L= (T;”)bl ‘[i}.ﬁ‘

0is(G x Z) 224 £(8G)

is a commuting diagram of set maps. Let ¢ := (7§°); be the product map from
M to [];er £ (0G), and let ¢’ be the restriction of ¢ to I((G x Z)*) in M;*.

Claim 1: 1 is uniformly continuous.

Proof of Claim 1: It is enough to show that 7;* is uniformly continuous for
each p € I'. Throughout this proof of Claim 1, let d be a fixed visual metric
on 0G. We consider the following fundamental systems of entourages for the
uniform structure on £ (0G) and on M}*: For any € with 1 > ¢ > 0 let W, consist
precisely of those pairs ([t,£],[t,€']) in E(0G) x £ (0G) that satisfy [|t —t'| < ¢
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and d(§,¢') < €l,or [t > T and ¢’ > 1], or [t < =% and ' < —1]. Then,
by Lemma 3.2.5, the system {W,} is a fundamental system of entourages for
¥ (0G). For any € with 1 > € > 0 and any finite number py,...p,, of actions in
[ let Vip,,...om,e) consist precisely of those pairs ([t,¢,¢], [t ¢, ¢]) in M x M!*
that satisfy [t > Land ¢/ > 1],or [t < —land ¢/ < =1, or [|t| <c and |t'| <€
and d(£,€') < ¢], or [|t —¢'| < € and d(§,{') < € and |¢,; — €, | < € for all
j = 1,...,m]. Analogously to the proof of Lemma 3.2.5 it is straightforward
to show that the system {V{,, . o)} is a fundamental system of entourages for
M. Let p € I' and € with 1 > £ > 0 be given. In order to prove that 73° is
uniformly continuous, it is enough to check that there exists an £ > 0 such that

74 x 73° maps V{3 into W,. Set K := k(p), where k(p) is defined as in the proof
ofLemma3 3.5. Thus, K > 1,and < ¢; < K for each c € C¥*. Take1> &> 0
small enough such that & < mln{m, 15z} Suppose that ([t,&,c],[t',¢’,¢]) lies

in V{5,5). Then there are four cases to consider.

Case 1: Suppose t > 1 and ¢’ > 1. Then we get = ' > 4>t +» and analogously
£ > 1. Therefore, (ff’([t,f,c]),%f’([t’, &, c])) lies in ‘V

Case 2: Suppose t < —; and ¢’ < —1. Then we get £ - < — —Land ! —,— < -1
hence (72°([t, €, <)), 73([t/, §' c])) lies in W

Case 3: Suppose |t| < € and |t'| < € and d(£,€') < é. Then d(£,¢') < € and

é——4_|—|+|—|<2he<s

Hence, (73°([t, €, ¢)), 75°([t', €', €])) lies in W.

Case 4: Suppose |t —t'| < & and d(£,¢') < € and |c; ~ ¢5| < €2, Then we have
d(£,€') < . Moreover, we can assume without loss of generality that [t| < %
For otherwise the triangle inequality implies that either ¢ > } and ' > 1 — 1, or
t<-landt < —1 41, from which it follows analogously to Case 1 or 2 above
that (Tt’([t &), ~”‘([t’ ¢',¢])) lies in We. Assuming |t] < }, we get

t t L — ¢ 1 ,
———W-I;—g+7—g|—hll |+Z“—”

¢ g

11’2 2+I\6<€

49



Thus, (F°([t, €, c]), 72([t', €', ¢])) lies in W,. This completes the proof of Claim 1.

Claim 2: ¥’ is a bijection from I ((G X Z)*) onto ¢ ((G x Z)*).

Proof of Claim 2: We show that ¢’ has an inverse. Define a map ¢ from

t((G x Z)®) to i ((G x Z)>) by

g, 2) = P(ulg,2)) = i(g,2).

We need to check that ¥ is well-defined: Let (¢,z") € (G x Z)* be such that
ug,2) = Ug',2'), i.e. T§°(g,2) = 75°(¢, ') for all j € . We distinguish between
two cases. Case 1: Suppose that g € G™. Since —o0 < g’p < 400, it follows
that g’ € G™, too. We conclude that tt- = |QL',|;’ gt=¢'*and 22 = = lds -

S , - lsle — lglo =
I—;"T;iz’lé = {%{f for each p € I'. Thus, ¢ is well-defined in Case 1. Case 2: Suppose
that g € G®. Then z < 0 (resp. z > 0) implies ¢’ € G*™ and 2z’ < 0 (resp. 2’ > 0).
Therefore, ¥ is well-defined in Case 2, too. It is straightforward to check that 3

is the inverse of .

Claim 3: ¢ is uniformly continuous.

Proof of Claim 3: Throughout this proof of Claim 3, let d be a fixed visual
metric on dG. We consider the following fundamental systems of entourages
+((G x Z)®) and i((G x Z)*): For any € > 0 with 1 > & > 0 let W, consist
precisely of those pairs ([t, €], [',£]) in £ (9G) x £ (0G) that satisfy [|t —t'] < €*
and d(£,¢&) <el,or [t> 2 and ' > 1], or [t < —! and ¢/ < —1]. Then the
system {W,} is a fundamental system of entourages for £ (9G). For any € > 0
with 1 > € > 0 and any finite number py,...,p, of actions in T let W(px,-..,pm,e)
consist precisely of those pairs ((z5)5,(2})5) in [[;ep £(9G) x [[;¢r £(0G) for
which (z,,j,:c;j) lies in W, for each j = 1,...,m. It is straightforward to check
that the trace of the system {W(,,h_,,,,,m,s)} is a fundamental system of entourages
for the subspace ¢((G x Z)*®). For any ¢ > 0 with 1 > ¢ > 0 and any finite
number py,...pm of actions in T’ let \7(,,1",_,,,"”5) consist precisely of those pairs
(It, & c), [t €, ¢]) in M} x M,? that satisfy [¢ > L and ¢' > 1], or [t < —! and
"< -1l or[|t| <eand |t'| <eand d(§,¢') <el,or [|t—t'| <eand d(£,€) <€
and |c,; — ¢, | < € forall j = 1,...,m]. It is straightforward to check that

the trace of the system {f/(,,l ome)} 18 & fundamental system of entourages for
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the subspace i ((G x Z)*®). Let a finite number py,...,pm of actions in I' and
1 > ¢ > 0 be given. In order to prove that ¢ is uniformly continuous, it is enough
to check that there exists an & > 0 such that ¢ x 1 maps each (i(g, ), ¢(¢', 2'))
in Wipp1,pmsé) 10O Viornoome)- Set K := max{k(p;) |7 =1,...,m}, where
each k(p;) is defined as in the proof of Lemma 3.3.5. Thus, we have K" > 1; and
L < ¢, < K for each ¢ € C;° and each j = 1,...,m. Take 1 > & > 0 small
enough such that & + &* < € and € < 755 and K(€ + &%) < e. We distinguish

between three cases:

Case 1: Suppose {f- > ! and ]L > 1. Then we have o >+ aend ]fl]—p > L
Hence (i(g, 2), (¢, %)) = ($(i(g,2)), $(u(d, 2'))) lies in Vip,.....om.e)-

Case 2: Suppose = < -1 and I < —%. Then we get oo < —1 and

< —L. Hence, ($(u(g,2)), ¥(u(g', 2))) lies in Vipy,...om,e)-

Case 3: Suppose |]gz_|p - ];r;h,l < & and d(g*,¢'t) < & Then we have II!ILI; -

Igl

I_ng,I;| < € and d(g*,9'T) < e. We can assume without loss of generality that

||—’f’—| < . For otherwise the triangle inequality implies either oo 2 -L and

glp Ké glp — K¢
[,:T"; > gz—l,or oE S R: and - z < —75+1, from which it follows analogously

to Case 1 or 2 above that (¢(c(g, z)), (g, 7)) lies in f/(,,l,m,pm',). Note that this‘
assumption implies | nyp,- T |,, pl <€

for each j = 1,...,m by hypothesis. There are two subcases to con51der Case

yeeeyM. S0, we get ||g|

3.1: Suppose h;Tpl <é€or |ﬁ| < €. Then the triangle inequality implies that
lgsl <&é+& <eand IZr! < &+ & <e. Hence, ($(u(g, 2)), $((d', 2'))) lies in
V(o1 ,wrpomee)- Case 3.2: Suppose |ﬁ;| > & and |lgi’,|;' > €. Then we conclude for

each j = 1,...,m that

' Iglo, _ I_!ﬂgil I 'glpJ z lg,lp,‘ Z 'gl|p,‘ _ 2! |9,|p,' I
lgl, 19'l, lgl, = Ig'p 2! lgl, 2’ lg'l 2!
|g|p' lg |p g |o;s

< i 3 19 lp;.
SR g 1
[ N .
- ly_lp—,' m— lgl, !g|p |9 lo
< 52_ 1 WK
=gz 5 'AT: + 5 ? < E.
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Thus, (¥(c(g, z)),z/—)(L(g’, z'))) lies in ‘7(,,1,",,,,,"',,); and % is uniformly continuous.
This completes the proof of Claim 3.

Finally, we can prove the theorem: The subset ¢ ((G x Z)*) is dense in 0;,(G %
Z) by construction, and the subset I ((G x Z)*) is dense in M;* by Lemma 3.3.6.
Therefore, the Claims 1 to 3 imply that ¢’ extends to an isomorphism from M ;’
onto 8;5(G X Z). Since this extension is unique, it must coincide with . Ilence,
3 is an isomorphism. The statements (ii) and (iii) are an obvious consequence of

the above. ]

3.4 The Boundary of G x Z

The aim of this section is to work out the boundary of groups G x Z, where G
is a non-elementary word-hyperbolic CAT(0) group. Moreover, we show that for
each geometric action of G x Z the associated canonical map from 9(G x Z) into

the visual boundary of the underlying CAT(0) space is a homotopy equivalence.

We need some notation: Throughout this section we consider a fixed non-
elementary word-hyperbolic CAT(0) group G. We fix a basis (wi,...,w,) of
Hom (G,R). (By convention this basis is empty if Hom (G,R) is trivial.) So,
throughout this section n denotes the rank of Hom (G,R). For each g € G*™ we

abbreviate w(g) := (wi(g),...,wn(g)) € R™ Let I' be the set of all geometric
actions by G on CAT(0) spaces. For each 4 € R™ and each action p € ' on a
CAT(0) space X we define a geometric G X Z-action p, on X x R by

(9,2) * (z,7) := (p(g,2), m + 2 + (1, (9))),

where (-, -) is the standard scalar product on R™. By 7,, we denote the canonical
map from (G x Z)*® to (X x R) associated to p,; and by U,, the uniform
structure that is induced on (G x Z)* via 7,,. We identify 9(X x R) with the
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suspension X (0G) as before, so that 7,, is given by

(ZHe9) ey g e g,

lglo
(9,2) = 7o, (9,2) 1= [—o0, €], ifgg G*® and z <0,
[+o0, £, if g G* and 2 >0,

where £ € 0G is arbitrary.

The following proposition shows that in order to study the boundary of G x Z
it is enough to consider G x Z-actions of the above type. It is motivated by a
special case of a result by Bowers and Ruane in [BR96a], namely, that the visual

boundary of a CAT(0) space carrying a geometric G x Z-action is homeomorphic

to X (9G).

Proposition 3.4.1 Let p be a geometric action of GX Z on a CAT(0) space X.
Then 80X can be identified with ¥ (0G). Moreover, there exists an action p € T
on a CAT(0) space X, and a vector p € R", such that

id(gxz

(G x Z)>,U5) (G x Z)>~,U,,)>®

{02 | (@) e (@xT)} 2% ((g,2)* ] (g,2) € (Gx Z)™)
| &
oX = % (9G) 0o, (X xR)=2(9G)

is a commutative diagram of uniformly continuous maps. In particular, the uni-
formities Uz and Uy, on (G x Z)™ coincide.

For the proof of this proposition we need the following lemma:

Lemma 3.4.2 The centre C(G) of G is finite.

Proof: It is a consequence of [GH90], Cor. 36, for example, that if each element
in C(G) has finite order, then C(G) is finite. So, let us assume that C(QG)

contains an element g of infinite order, and deduce a contradiction. Since G is
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non-elementary there exists an element h € G*® such that neither A* = gt nor
h* = g~. If the elements g and A do not generate a free abelian subgroup of rank
2 in G, then there exist p,q € Z \ {0} such that g?h? = e. The latter implies that
the axes of g and h are parallel (up to orientation), and hence either A+ = g*
or h+ = g~. Therefore, g and h must generate a ZZisomorphic subgroup of G.

But G cannot have a Z%isomorphic subgroup, since it is word-hyperbolic (see
e.g. [CDP90], Chap. 10, Cor. 7.3). Thus, C(G) is finite. 0

Proof of Prop. 3.4.1: The previous lemma allows us to apply the Splitting
Theorem 1.2.1: There exists a non-empty, closed, convex, G X Z-invariant sub-
space X1 x Xz of X such that G acts geometrically on X, and by (possibly trivial)
Clifford translations on X3, and Z acts geometrically on X; and trivially on X;.
We denote the G-action on X; by p;. Let Min(Z) := [,z Min(z) C X, where
Min(z) is the set of points in X; at which the displacement function df(:, 2.-)
for z € Z attains its minimum. By the Flat Torus Theorem 1.1.2, Min(Z) is
non-empty and splits as a product Y x R. The Z-action on X; leaves Min(Z)
invariant. Each z € Z acts as the identity on Y-factor and as a non-trivial trans-
lation on the R-factor. We denote the translation distance for the action of 1 € Z
on R by 5. Each g € G centralizes Z. Therefore, the Flat Torus Theorem implies
that the action of each g € G on X, leaves Min(Z) invariant, and respects the
product decomposition Y x R. Recall that g acts as a Clifford translation on
Min(Z); and that diam(Y’) is finite, because the Z-action on X, is cocompact.
Hence, by Thm. 1.1.3, g acts trivially on the Y-factor, and as a translation on the
R-factor. It follows that the G-action on the R-factor induces a homomorphism
¥ € Hom (G, R). Let y € Y, and consider the subspace Z := X; x {y} x Rin X.
By the above, Z is a non-empty, closed, convex, G X Z-invariant subspace of X.
This implies in particular that any infinite geodesic ray that issues from a base-
point in Z towards infinity lies entirely in Z. We conclude that §Z = 0X, which
allows us to identify 8X with £ (0G). Let 5’ denote the induced G x Z-action on
Z. Note that p’ can be described expicitely by

(9,2) * (z,y,7) :== (p1(9,2), y, r + 0z +9(g)),
for any z € Xi and any r € R. Hence, the canonical map 7, from (G x Z)* into
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0X = 8Z = X (0G) is given by

[————nz+¢(g),g+],

if g € G,
9l I
(9:2) = 75(9,2) = | [~00, €], if g G and z < 0,
[+o00, €], ifgZG® and 2z > 0,

where ¢ € OG is arbitrary. Thus, we can obtain the desired (G x Z)-action p, on
a CAT(0) space X x R as follows: Let % - X; be the CAT(0) space X; with the
metric rescaled by the scalar factor %, and let i + p1 the geometric G-action on
% . X; that is induced by the G-action p; on X;. Set X := ;1’- Xy and p := % » 1.
Take ¢ € R™ such that >0 piw; = -:'-1/), ie. )N piwi(g) = %1,[)(g) for each
g € G. Then it is straightforward to check that the canonical map 7,, from
(G x Z)> into (X x R) = X (9G) associated to p, coincides with 5. o

A geometric G-action p as given by Prop. 3.4.1 is said to be a G-factor

action, and a vector g € R™ a vector of shift parameters, associated to the G x Z-
action p. Note that a G-factor action associated to a geometric G x Z-action
'is in general not unique: Indeed, according to Example 6.0.17 there exist two
distinct geometric Fy-actions p and o on CAT(-1) spaces X and Y such that
MLS, = MLS,. Hence, both p and o are F)-factor actions associated to the
Fy %X Z-action pg on X x R.

For the remainder of this section let p € T be a fixed action. Recall that the
maps ¢, : G® — R and &, : G — RT are given by

wi(g)  walg) ),

913,
|glp g, g

g — ¢p(g) :=( ET;

and g > Ky(g) = (
We define a map 0, : G* — Rl x R™ by

g ep(g) = (’{p(g)v ¢p(g))s

and denote the closure of the image im 0, in RT x R" by C,. Let prgns be the
projection of RT x R™ onto R”. For each j € T let pr; be the projection of
RT x R™ onto the p-component of RT. For any ¢ € C, we abbreviate prg.(c) by
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¢* = (cl,...,c}), where the superscript s stands for shift, and pr;(c) by c;.

Definition 3.4.3 The p-model M, of the boundary 0(G x Z) is defined by M, :=
([—o0, +00]} X 3G x C,)/ ~, where (t,€,¢c) ~ (t',¢,c) if and only if [t =’ =
—o0],or [t =t' =40}, 0or [t =t =0andc®* = ¢/ = 0and £ = €], or
[t=tandé=¢ andc="]

Note that if rk (Hom (G,R)) = 0 then prgo(C,) is just a trivial vector space.
Obviously, in this case C, coincides with C?*, and the p-model M, is the same as

the space M}* considered in the previous section.

Theorem 3.4.4 Let G be a non-elementary word-hyperbolic CAT(0) group, and

let p be a geometric action by G on a CAT(0) space. Let M, be defined as above.
Then the following is true:

(i) The boundary (G X Z) is canonically isomorphic to M,.

(i) The canonical G X Z-action on (G X Z) is given by
(9,2) % [t,&,c] = [t,9.6,¢]

(iii) Let p be a geometric G X Z-action on a CAT(0) space X. Let p be a G-
factor action and p € R™ a vector of shift parameters associated to p. Then
the canonical map 75 from d(G x Z) to 0X = £ (0G) is given by:

fp([t,f,c]) = [’t—i%ﬂsf]a

p

where (-,+) is the standard scalar product on R™.

(iv) For any geometric G X Z-action p on a CAT(0) space X the canonical map
#; from 8(G x Z) to dX is a homotopy equivalence.

Note that for the case rk (Hom (G, R)) = 0 the statements (i) to (iii) of this
theorem have already been proved in the previous section. In order to prove the

theorem in full generality we need some preparatory lemmas:
Lemma 3.4.5 The space C, is a compact, convez subspace of RT x R".
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Proof: By Lemma 3.3.4, there exists a constant k(5) > 1 for each g € T such that
F(!E)' < k,(g); < k(p)for all g € G®. By Lemma 3.2.2, there exists a constant
C > 0 such that |¢,(g9)|ec < C for all g € G*°. Therefore, Tychonofl’s Theorem
implies that the image 6,(G™) lies in a compact subset of R x R". Hence, its
closure C, is compact. In order to prove that C}* is convex, we consider the map

H:[0,1] x C, x C, = RT x R™ given by
(9, z,y) > HW,z,y) =9z + (1 —9J)y.

It is straightforward to show that H is uniformly continuous. Therefore, it is
enough to show that H maps the dense subspace ([0,1]N Q) x im 0, x im 6§, of
[0,1] x C, x C, into C,. This can be done as in the proof of Lemma 3.2.3. O

In order to compare O(G x Z) with M, we define a map i: (G x Z)>® = M,
by

z .
[!——ag+7op(g)]s if ge G,
) gls
(9,2) = i(g,2) = [—o0, €, ], if g G* and z <0,
[+00, £, c], ifgg G® and 2 > 0,

where £ € OG and ¢ € C, are arbitrary.

Lemma 3.4.6 The image i((G x Z)*) is dense in M,.

Proof: The proof is analogous to that of Lemma 3.2.6. 0

Proof of Theorem 3.4.4: According to Prop. 3.4.1 it is enough to prove
the statements (iii) and (iv) of Theorem 3.4.4 for G x Z-actions of the type 5,,
where p € ' and p € R". Furthermore, we can regard 9(G x Z) as the closure of
the image im ((75,)(5.4)) in 15 ,erxrn Z (9G) throughout this proof, since the
boundary uniformity Ugxz on (G X Z)> is the same as the least upper bound
of the family {U;, | 5 € T, p € R*}. Thus, the product map (75,), is the
canonical map ¢ from ((G x Z)*, Ugxz) into its Hausdorfl completion (G x Z).
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For each § € T and each p € R we define a map 7;, from M, to £(0G) by

6,c] = 75, (1,6 ) o= [N g,

¢
It is easy to check that

(GXxZ)® —— M,

¢=(72,) (5. l l*bn

9(G x Z) Z& 5(5G)

is a commuting diagram of set maps. Let 9 := (75,)(5,4) be the product map from
M, to [15,,erxrn 2(9G), and let ¥’ be the restriction of ¥ to I ((G X Z)*).

Claim 1: 1 is uniformly continuous.

Proof of Claim 1: It is enough to show that 7;, is uniformly continuous for
each (5,1) € I' x R™. Throughout this proof of Claim 1, let d be a fixed visual
metric on 0G. We consider the following fundamental systems of entourages for
the uniform structure on ¥ (0G) and on M,: For any ¢ with 1 > ¢ > 0 let
W, consist precisely of those pairs ([t,€],[t,£']) in £ (0G) x £ (9G) that satisfy
(|t —#| < eand d(¢,€) <e,or[t>2and t'> 1], 0r [t < —landt' < 1]
Then, by Lemma 3.2.5, the system {W.} is a fundamental system of entourages
for £ (0G). For any ¢ with 1 > £ > 0 and any finite number py,..., pm of actions
in T let V{p,....ome) consist precisely of those pairs ([t,,c],[t',€',¢]) in M, x M,
that satisfy [t > 2and ¢'> 1], or [t < —land ' < —L],or [|{| <eand |t'|<e
and |¢’|e < € and |¢°]oe < € and d(,€') < €], or [|t —¢'| <€ and d(¢,¢') <€
and |¢! — ¢ *|oo < € and |c,; —¢), | < € for each j =1,...,m]. Analogously to the
proof of Lemma 3.2.5 it is straightforward to show that the system {V(,, ..ome)}
is a fundamental system of entourages for M,. Let (5,1) € I' x R"™ and ¢ with
1 > € > 0 be given. In order to prove that 7;, is uniformly continuous, it is
enough to check that there exists an 1 > & > 0 such that 7;, x 7, maps V{;4
into W,. Set K := k(p), where k(p) is defined as in the proof of Lemma 3.3.5.
Thus, K > 1, and £ < ¢; < K for each ¢ € C,. Set M := |p|eo. Let C > 0
be given as in the proof of Lemma 3.2.2, i.e. |c*|ooc < C for all ¢ € C,. Take
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1 > & > 0 small enough such that

£ £ € £
K +nMCe’ 2K(1+nM)’ 1+¢’ K2+ K +nM(CK?+ K) b

E < min{

Suppose that ([¢, €, c], [t', €, ¢]) lies in V{5 ). Then there are four cases to consider.

Case 1: Suppose t > 1 and t' > 1. Then we get
t ;
_+_<’i._°_.>_ (~ nM C) - l
c; 5 K~ ¢

and analogously "_+(5_;_°:2 > 1. Therefore, (7;,([t,,c]), 75,([t, €', ¢])) lies in W,

for Case 1.

Case 2: Suppose t < —% and t' < —%. Then we get

t
trlme) o +nMC)— < -1
c; £’
and analogously —+Q‘—°—l < —t. Therefore, (75,([t,&,c]), 7, ([t', &, ])) lies in W,
for Case 2.

Case 3: Suppose [t| < & and |t/| < & and |¢']oe < € and |¢'*|oe < & and
d(£,€') < €. Then we get d(£,£') < € and

,cs ! ,C“ ,C’ ! ,C”
|t+(ﬂ ) '+ {u >|S|t+(# >|+|t+<ﬂ )I

- - /
¢ c s c;

<2K(E+nMé) <e.

Hence, (7,([t, €, c]), 75,([t, €', ¢'])) lies in W, for Case 3.

Case 4: Suppose |t —t'] < £ and d(£,{') < € and [’ —¢'*| < € and |5 — ¢} <
2. Then we have d(§,¢’) < €. Moreover, we can assume without loss of generality
that |t| < 3. For otherwise the triangle inequality implies that either ¢ > } and
> % —1l,ort < -—% and t' < —-:.- + 1, from which it follows analogously to Case
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1 or 2 above that (75,([t, &, c]), 75,([t', €', ¢])) lies in W,. Assuming |t] < 1, we get

|t+(u,6’) _ t'+(#ac")| < |_t_ l I(#»C) </1ac")|
> -

¢ < G o ’

t t t t , , ,c '
SI———+———,|+|<“C) ( C)+(u )_(u6)|

C; c:; c% ¢ s c;, c% ;

c—c; 1 ! e 1
< It| | p_ p|+—|t—t'|+|<u,c‘)| Ic_pc.:.?c_pl_*_c_,l(#’ca_cu)l
5% 5

< K2~2 + KE+nMCK?*& + KnM¢ < e.

Therefore, (75,([t, &, c]), 75,([t', €', '])) lies in W, for Case 4, too. This completes
the proof of Claim 1.

Claim 2: v is a bijection from i ((G X Z)>) onto ¢ ((G x Z)™).

Proof of Claim 2: We show that ¢’ has an inverse. Define a map ¢ from
t((G x Z)®) to i ((G x Z)*™) by

t(g,2) = P((g,2)) = i(g, 2).

We need to check that ¢ is well-defined: Let (¢',z") € (G x Z)™ be such that
ug,2) = g, 2"), i.e. 75,(9,2) = 75,(¢", 2') for all (5, u) € T x R™. We distinguish
between two cases. Case 1: Suppose that ¢ € G*°. Since —00 < r—"l— < +oo0, it
(" Iyzlb
and ”LIZIJJ = “l';‘fl 2 for all p € T and all ¢ = 1,...,n. Therefore, we get

o= ]—— and ¢,(g9) = ¢,(¢'). If both o =0and ¢,,(g) = 0, then we already
have [-—-l—,g ,0,(9)] = []——,g"*‘ 0,(g")]. Otherwise, if & # 0, then w70
and]——#OforallpEI‘ andhence%?—’lgﬁ:"ﬂé {—TB And if

lo Wz sz'

E’IL@ # 0 for some i, then ﬂﬂ # 0 and %"—1 # 0 for all p € T'; and hence
lolp _ wilg) lolo _ wil’) lols {g—"’ Thus, 9 is well-defined in Case 1. Case 2:

lolo lole wils) = ld'le wilg") —
Suppose that g € G*®. Then z < 0 (resp. z > 0) implies ¢’ € G* and 2’ < 0
(resp. z' > 0). Therefore, ¥ is well-defined in Case 2, too. It is straightforward

to check that 1 is the inverse of ¢/, This proves Claim 2.

follows that ¢ € G*®, too. We conclude that g* = ¢’'*, as well as ]——

Claim 3: ¥ is uniformly continuous.
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Proof of Claim 3: Throughout this proof of Claim 3, let d be a fixed visual
metric on 0G. We consider the following fundamental systems of entourages for
t((G x Z)>) and for 7 ((G x Z)>): For any € > 0 with 1 > ¢ > 0 let W, consist
precisely of those pairs ([t, €], [t',€']) in X(8G) x L(9G) that satisfy [|t —t'| < !
and d(€,6") < el,or [t > landt' > 1), 0r [t < = and t' < ~1]. Then
the system {W.} is a fundamental system of entourages for £(dG). For any
e > 0 with 1 > ¢ > 0 and any finite number (p1,1),...,(Pm, tm) of actions in
T'xR™let Wiy, u1,.oomumie) COnsist precisely of those pairs ((z () (5.4)» (T(5.0))(5.1))
in ([T(5.erxrn 2(0G)) x (I (5 merxrn E(9G)) for which (x(p, u,),2(,, ,,)) lies in
W, for each j = 1,...,m. Then, by construction, the trace of the system
{W o181 serpmuimi) } 18 @ fundamental system of entourages for the subspace ¢((G X
Z)®). For any € with 1 > ¢ > 0 and any finite number py,...pn of actions in T’
let V(p;,...,pm,e) consist precisely of those pairs ([¢,¢&,c], [t/, €', ]) in M, x M, that
satisfy [t > L and t'> 1], or [t < -1 and t' < —1], or [|t| < € and |¢'| < € and
|c®loo < € and |¢*| < € and d(£,§’) < €], or [|t —¥'| < & and d(§,¢') < € and
le* —¢'?|lo < €and |c,;—¢, | <eforall j=1,...,m]. Then it is straightforward
to check that the trace of the system {V/,,

tourages for the subspace Z((G x Z)>). Let a finite number p,, ..., pn of actions

,,,,, pmie) } 18 @ fundamental system of en-
in T and 1 > € > 0 be given. In order to prove that 9 is uniformly continuous,
it is enough to check that there exists an 1 > & > 0 such that ¥ X 3 maps each
(«(g,2),¢(d2") € Ni=o Ni=o W(pj,c‘,g), with po := p, €0 1= 0 € R™, and ¢; being
the i-th unit vector in R", into \7(,,1,,,_,,,,"_,). Set K := max { k(p;) | j=1,...,m},
where each k(p;) is defined as in the proof of Lemma 3.3.5. Thus, we have K > 1;
and % < ¢,; < K for eachc € C, and each 3 =1,...,m. Let C > 0 be given as
in the proof of Lemma 3.2.2, i.e. |¢’|oo < C for all ¢ € C,. Take 1 > & > 0 small
enough such that &+ 2é% < € and I%c- -(C+1)> % and Ké — K?2C&*+ Ké® < ¢
and 2K2Cé? + 2K& < e. We distinguish between three cases:

Case 1: Suppose ﬁ H ! and ]——— > 1 7. Then ]—— > < and ]——— > 5 1 Hence
(Z(g,z) Z(g,’z’)) = ('Z(L(g’ ))7 ':b(L(g 12 I))) lies in V(ph,,,,pm,e) for Case 1.

Case 2: Suppose = < —1 and -— < =1 Then % < — and < L
1sTo | é l9le I <

Hence (¥(«(g, 2)), ¥((g,2'))) hes m V(p,, .omie) for Case 2.

Case 3: Suppose IEZT,, - ﬁ' < & and d(g%,9'*) < & Then we have
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d(g*,g't) < e. Moreover, we can assume without loss of generality that lﬁfﬁl <
-]-\—.—C For otherw1se the triangle inequality implies that either %= o -é—C > %
and - —(C +1) > ;, or analogously - < —; and - < —¢, from which
it follows as in Case 1 or 2 above that (¥(e(g, 2)), '(/J(L(g ,2'))) lles in V(,,l o)

Assuming || < 75 —C, weget foreachi =1,...,n and each j = 1,...,m that

1
K --C) < =,
||g|P1| < (I’ ) €
2+wzg) < 1
+ < i —C'+C -,
. lgl, l‘||g|| IIg | \ é
z+w:g) wi(g) l
=, '-||gll+||gr | < Klgz-0)+KC =7

. « . . 2 2! ~ 24w 2 +wi(g’ ~ z4w;

By hypothesis, this implies |Tg—|;j-——m| <& |9|;Eg) ﬁg’l;(»g )| < & and I—*méﬂ—
E'—l'*;—‘j’liﬂ| < & foreachi =1,...,n and each j = 1,...,m. It follows from the
pJ ! !
. . . Wi [ x4 wilg wilg =4
triangle inequality that Iﬁ? - '\f'gl_p)l < 2¢* and |ﬁ;} - ng’lzjll < 2é* for each
4=1,...,nand each j = 1,...,m. There are two subcases to consider. Case 3.1:
Suppose[l | < eorlI T |<e]and[|“i—ig|%1| Se"or|‘%(,7—p)-| <élforalli=1,...,n
Then we conclude with the triangle inequality that both ||—;|—p| <é+é'<eand
|2 < E+¢€* <& as well as both |%ig-l| <é+2%<e andJ%l <é+2<e
for all i = 1,...,n. Hence, (¥(c (9,2)) P(u(g,2'))) lies in Vip,....om¢) in subcase
3.1. Case 3.2: Suppose []ﬁl > & and ll?’l—p| %é] or [I“’—l'g%l > €& and Hﬁ—ﬁ” > £]
for some i = 1,...,n. If ||—g5|-p[ > € and Il_.qi’ﬂl > & holds, we deduce for each
j = 1,...,m that

I |g|p,‘ _ Igllp,' I I Ig'p; Z Igllp,' z |g’|p, _ 2! |g,|Pj l
lgl, 19l |g|p z lg‘p 2! lgl, 2 Ig'|p z!
Ilglp,_lglpJI l | I | Ilglﬂ,|
9], lgl, |g lo
I 7 17
F4 P 914 gle
<| = g+ gl 1
Iylp, lo’ Ip, ? ?
K
—=C gt .
(A ;O tE G <e
Analogously, if | l;(li > £ and IWT;%ZI > £ holds for some ¢, we deduce for each

62



j=1,...,m that

|g|p,' lgllp,‘ K? K
=2« 280 428 — < e
| lgl,  1g'ls | &2 é

Thus, (tﬁ(t(g, 2))#5(0(9’, 2'))) lies in ‘7(,,,,.,,,,,,,,,,,) in subcase 3.2, too. This com-
pletes the proof of Claim 3.

We prove the statements (i) to (iii) of Theorem 3.4.4: The subset ¢ ((G x Z)*)
is dense in (G X Z) by construction, and the subset i ((G x Z)>) is dense in
M, by Lemma 3.2.6. Therefore, the Claims 1 to 3 imply that ¥’ extends to an
isomorphism from M, onto 9(G x Z). Since this extension is unique, it must
coincide with . Hence, ¥ is an isomorphism. The statements (ii) and (iii) are

an obvious consequence of the above.

It remains to prove statement (iv) for G x Z-actions of the type j,, where
pelisa G-factor action and p € R” a vector of shift parameters. Let j € I and
- 4 € R™ be given. We want to show that the canonical map 7;, from 9(G x Z)
to (0G) is a homotopy equivalence. According to Lemma 3.4.5, there exists a
homotopy H : [0,1] x C, = C, that contracts C, to a basepoint ¢ € C,. We
" define a map f : £(0G) = (G x Z) by

[t,ﬂ = f([t’ﬂ) = [tafvé]'

Obviously, f is continuous. We show that f is a homotopy inverse for 7;,. Firstly,
we check that 7;, o f is homotopic to idg(sg). Define Fj : [0,1] x £(0G) — Z(0G)
by

O, 166) = B0, 168 = (-0 49 D ¢

&
Clearly, F is continuous. Moreover, we have Fi(0,[t,£]) = [t,£], as well as
F(L[t,€) = [H22,¢] = (75, 0 f)([t,¢]). Secondly, we check that [ o f, is
homotopic to ids(gxz)- Define F; : [0,1] x 9(G x Z) = 0(G x Z) by

@, [t,6 ) = Fa(,[t,6,¢]) := [(1=0)t+9 t—”c“—fl £, H(9,0).

p

Note that there exists a constant K > 1 such that % < ¢; < Kforall c € C,.
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Hence, F3 is continuous. Moreover, we have F5(0,[t,€,c]) = [t,&,c], as well as
—_ t+ ’cs = ]
(L[t E ) = [—(c‘—:_)-—l,{, ¢l = (f o 75,)([t,€ c]). This completes the proof of

statement (iv). 0
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Chapter 4

The Boundary of G X 7k

In this chapter we will generalize the results of Section 4 of the last chapter to
product groups of the form G x Z*, where G is a non-elementary word-hyperbolic
CAT(0) group, and k € N.

We begin with some notation: As before, we consider a fixed non-elementary
word-hyperbolic CAT(0) group G. We fix a basis (wy,...,w,) of Hlom(G,R).
So, n denotes again the rank of Hom(G,R). For each g € G* we abbreviate
w(g) := (wi(g),---,wn(g)) € R Let T’ be the set of all geometric actions by G
on CAT(0) spaces. For each matrix 1 € R¥*" and each action p € Ton a CAT(0)
space X we define a geometric G x Z*-action p, on X x R¥ by

(972) * (:t,’l") = (p(g,:c), r+z4+p 'w(g)),

where p-w(g) € R¥ is the product of the matrix u € R¥*™ with the vector w(g) €
R" and z:= (21,...,2) € Z* and r := (ry,...,7:) € R By 7,, we denote the
canonical map from (G x Z¥)> to (X x RF) associated to p,; and by U,, the
uniform structure that is induced on (Gx Z¥)* via 7,,. We can identify 9(X xR¥)
with the join G * S¥1 = ([0,00] x dG x §*¥~1)/ ~, where (8,£,¢) ~ (¢, &,¢")
ifand only if f =0and ¢’ =0and § = '] or [t = 0o and t' = 00 and ¢ = ('] or
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[t =t and £ = ¢ and { = ('], so that 7,, is given by

[Iz + - w(g)]
(9,2) » T, (9,2) = lgl,
[°°a£1z+]7 ifg¢G°°.

v 9, (z+p-w(g)t], ifgeG™,

Here | - | is the euclidean norm in R¥, and ¢ € 9G is arbitrary. Furthermore, for
z € R¥\ {0} we denote by z* the point in S¥~! = JR* that is determined by the
geodesic ray in RF issuing from the origin and passing through z (for 0 € R¥ we
denote by 0* an arbitrary point in $¥-1). Note that we have tan(a) = [zl

dlp
in the following figure.

g+
[ )
ol 17 (9,2)*
}
[}
]
]
[}
)
a [}
]
: -+
A ' €3
\\ )
\\ 1
N 12+ pewig)
e+ SN A
! 2 o —-——
\\
. (z4p1-w(g)*

Figure 4.1: Illustrating 7,, : (G x Z*)* — 9G * S*-!

The following proposition shows that it is enough to consider G x Z*-actions
of the above type. It is motivated by a result by Bowers and Ruane in [BR96a],
namely, that the visual boundary of a CAT(0) space carrying a gcometric G x Z*-

action is homeomorphic to G * S¥-1,
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Proposition 4.0.7 Let p be a geometric action of G X Z* on a CAT(0) space
X. Then X can be identified with 8G » S*~1, Moreover, there exists an action
p € T on a CAT(0) space X, a matriz p € R**™*, and a homeomorphism ¢ :
9G * S¥1 = 9G * S*~! such that

id Gy zky00
(G x Z¥)®,U;) T, (G x Z¥)»,U,,)>

g -
)

{(g:2)* | (92) € (GxZH*} ——= {(9,2)* | (9,2) € (G x Z¥)~}

3| |

X = 0G * S*1 — (X x R¥) = 0G * §*-1

is a commutative diagram of uniformly continuous maps. In particular, the uni-
formities U and U, on (G x Z*)™® coincide.

Proof: By Lemma 3.4.2 the centre of G is finite. Therefore, we can apply
the Splitting Theorem 1.2.1: There exists a non-empty, closed, convex, G x Z*-
invariant subspace X; x X; of X such that G acts geometrically on X, and by
(possibly trivial) Clifford translations on X,, and ZF acts geometrically on X
and trivially on Xi. We denote the G-action on X, by p1. Let Min(Z*) :=
N,ezx Min(z) C X2, where Min(z) is the set of points in X, at which the dis-
placement function d(,z.:) for z € Z* attains its minimum. By the Flat Torus
Theorem 1.1.2, Min(Z*) is non-empty and splits as a product Y x R*. The
Zk-action on Xz leaves Min(Z*) invariant. Each z € Z* acts as the identity on
Y-factor and as a non-trivial translation on the R*-factor. Say, each basis element
¢; € ZF acts as a translation by a vector v; on R*. Note that B := (vy,...,vt) is
a basis for R¥, because according to the Flat Torus Theorem 1.1.2 the quotient
of each k-flat {y} x R* by the Z*-action is a k-torus. Let V be the matrix in
R**k whose i-th column equals v;. Each g € G centralizes Z*. Therefore, the
Flat Torus Theorem implies that the action of each g € G on X; leaves Min(Z*)
invariant, and respects the product decomposition Y x R*. Recall that g acts
as a Clifford translation on Min(Z*); and that diam(Y) is finite, because the
Z*-action on X; is cocompact. Hence, by Thm. 1.1.3, g acts trivially on the Y-

factor, and as a translation on the R*-factor. It follows that the G-action on the
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R*-factor induces a homomorphism ¥ € Hom (G, R¥). Let y € Y, and consider
the subspace Z := X; x {y} x RF in X. By the above, Z is a non-empty, closed,
convex, G X Z*-invariant subspace of X. This implies in particular that any infi-
nite geodesic ray that issues from a basepoint in Z towards infinity lies entirely in
7. We conclude that 8Z = 80X, which allows us to identify X with OG % S*-1.
Let 5’ denote the induced G x Z*-action on Z. Then p' can be described expicitely
by
(9,2) * (2,9,7) = (P1(9,2), ¥y, 7+ V- 24+ 9(9)),

for any z € X; and any r € R*. Hence, the canonical map 7; from (G x Z*)*

into 8X = 0Z = 8G x §¥! is given by

[ [V -z +9(g)|
T5 (g’ z) (= |g'51
[00, &, (V- 2+ ¢(g))*], - ifg ¢G>,

97, (V24 9(9)*], ifge G,

where £ € OG is arbitrary. Thus, we can obtain the desired (G x Z*)-action p,
on a CAT(0) space X x RF as follows: Set X := X, and p := p;. Take u € RF*"
such that V=1 -4(g) = p-w(g) for each g € G. Then the canonical map 7,, from
(G x Z¥)® into (X x R¥) = 0G x S*-1 associated to p, is given by

-1,
VRO e v gt ifge G
Tou (9 z) = lgls

[00,6,(2+V_1"¢’(g))+]a ifg¢G°°a

where £ € OG is arbitrary. It is straightforward to show that the map ¢’ : im7; —
im7,, given by

Tp(g,Z) — TPu(g7 Z)

is a homeomorphism. Since im 75 is dense in d.X, and im7,, is dense in (X ka),

¢ extends to a homeomorphism from 0X onto 9(X x RF). o

For a G x ZF-action p let p, p and ¢ as given by Prop. 4.0.7. Then p is
said to be a G-factor action, p a matriz of shift parameters and ¢ a normalizing
homeomorphism associated to p. Note that, contrary to the case k = 1 of the

last chapter, the normalizing homeomorphism ¢ is in general not the identity.
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For the remainder of this section let p € " be a fixed action. Recall from the

previous chapter that the maps ¢, : G® — R" and «, : G* — RT are given by

(wl(g) ‘:_‘J_g(_g)_)’

|gl5
and g — & =
ol Talo A9) = (g )5

g ¢p |g'
p

As in the last chapter, we define a map 0, : G® — Rl x R™ by

g+ 0,(9) = (k,(9), ¢o(9)),

and denote the closure of the image im 6, in Rl x R" by C,. Let prgn be the
projection of RT' x R” onto R”. For each g € T let pr; be the projection of
RF x R" onto the p-component of RF. For any ¢ € C, we abbreviate prga(c) by
¢® = (c},...,¢}), where the superscript s stands for shift, and pr;(c) by c;.

Definition 4.0.8 Let R* be R¥ compactified by its visual boundary 9R* = §*-1,
The p-model M, of the boundary 8(GxZ*) is defined by M, := (RFxIGxC,)/ ~,
where (v,£,¢) ~ (v, €', ¢') if and only if [|[v] = [v'| = c0o and v = v'],or [v = ' =
Dandc* =c*=0andé=¢),or [v=2"and £ =¢ and c = ¢].

Theorem 4.0.9 Let G be a non-elementary word-hyperbolic CAT(0) group, and
let p be a geometric action by G on a CAT(0) space. Let M, be defined as above.
Then the following is true:

(i) The boundary O(G x ZF) is canonically isomorphic to M,.

(ii) The canonical G X ZF-action on (G x ZF) is given by
(9,2) % [v,6,¢] = [v,9.6,c].

(iii) Let p be a geometric G x Z*-action on a CAT(0) space X. Let p be a G-
factor action, p € R¥*™ a matriz of shift parameters and ¢ a normalizing

homeomorphism associated to p. Then the canonical map 7; from 9(G x Z*)
to X = 0G * SF-! is given by:

#5([0,6,d) = go"(['ﬁ%c—'—', & (wtp-e)t)).

P
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(iv) For any geometric G x Z*-action p on a CAT(0) space X the canonical map
#, from 3(G x Z*) to 8X is a homotopy equivalence.

We need to prepare the proof of this theorem. In order to compare 8(G x Z*)
with M, we define a map  : (G x Z*)® — M, by
1, .
[—'—Z,g ,0p(g)], lfg€G°°,
g1,

[2+,E,C], ifggGoo,

(9,2) = U(g,2) =

where ¢ € G and c € C, are arbitrary.

Lemma 4.0.10 The image i((G x Z*)>) is dense in M,.

Proof: The proof is analogous to that of Lemma 3.2.6. u]

Proof of Theorem 4.0.9: According to Prop. 4.0.7 it is enough to prove the
statements (iii) and (iv) of Theorem 4.0.9 for G x Z*-actions of the type j,,, where
perland p € R**", Furthermore, we can regard 9(G x Z*) as the closure of
the image im ((75,)(5,1)) in H(ﬁ,u)EFXR""" OG * S*¥=! throughout this proof, since
the boundary uniformity Ugyzs on (G X Z¥)* is the same as the least upper
bound of the family {U;, | p €T, p € R**"}, Thus, the product map (75, )54
is the canonical map ¢ from ((G x ZF)*®,Ugyz+) into its ITausdorff completion
&(G x Z*). For each p € T and each p € R¥*" we define a map 7;, from M, to
G x 51 by

ptp-e

0,626 = T (0s6oc]) = [FE 6 (04 a0 )P

It is easy to check that

(GxZF)> — M,

e= (T8} l liﬁu

8(G x ZF) ZE2, 9@ x §k-1

is a commuting diagram of set maps. Let ¢ := (75,)5,,) be the product map from

M, to T] (5 myerxrinn G * S*=1, and let ¢ be the restriction of ¥ to  ((G x Z*)).
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Claim 1: 9 is uniformly continuous.

Proof of Claim 1: It is enough to show that 75, is uniformly continuous for
each (5, ) € I' x R¥™, Throughout this proof of Claim 1, let d be a fixed visual
metric on 0G. Let the metric dsk-1 be the metric on the unit sphere S*-! that
is induced by the euclidean metric on R¥. We will regard dgk-1 as a metric on
OR* = S¥-'. We consider the following fundamental systems of entourages for
the uniform structure on &G * S*~! and on M,: For any € with 1 > & > 0 let W,
consist precisely of those pairs ([t, ¢, (], [t,¢,("])) in G * §*~1 x OG * S¥-! that
satisfy [|t—#/| < € and d(£,£’) < e and dgx-1((,(") <€) or [t > L and ' > ! and
dsr-1(¢,¢') < €],or [t <eand ' < e and d(§,€') < €]. Then it is straightforward
to check that the system {W,} is a fundamental system of entourages for G *
Gk-1_ For any € with 1 > ¢ > 0 and any finite number py,...,pn of actions in I'
let Vipy,...ome) consist precisely of those pairs ([v, ¢, c], [v/, €', ¢]) in M, x M, that
satisfy [|v] > ¥ and [v'| > 1 and dge-1 (vF,0'F) <], or {|v| < € and |v'] < € and
|c’]oo < € and |¢*|o < € and d(£,€') < €], or [Jv —v'| < €? and d(£,€') < € and
le* — ¢ *|o < €% and |¢,; — ¢, | < €? for each j = 1,...,m]. Analogously to the
proof of Lemma 3.2.5 one can show that the system {V{,, ... om.¢)} is a fundamental
system of entourages for M,. Let (3,p) € T’ x R**"™ and € with 1 > ¢ > 0 be
given. In order to prove that 7;, is uniformly continuous, it is enough to check
that there exists an 1 > & > 0 such that 75, x 75, maps V{;z into W,. Set
K := k(p), where k(p) is defined as in the proof of Lemma 3.3.5. Thus, &’ > 1,
and % < ¢; < K for each c € C,. Set M := sup |p - z|, where the supremum is
taken over all z € R™ with |z| = 1. Note that |z| < n|z|, for all z € R". Let
C > 0 be given as in the proof of Lemma 3.2.2, i.e. |c’|°c> < Cforall c € C,. Take

1 > & > 0 small enough such that nACé¢ < 1 and _Tc"" < ¢ and 1'%»%; < 5

and € < 3¢ and K(1+nM)é <e¢ and m— <eand Ké(K+é+nMé)<e
hold. Suppose that ([v,,¢}, [v',€,¢]) lies in V{; ). Then there are three cases to

consider.

Case 1: Suppose |v| > 1 and |v'] > 1 and dgi-1(vt,v'*) < & Then we get

btucl > (i—nMC)-IL > l,

C5 £ A &€
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P al 8
and analogously X5 > L. Moreover, we have
P

dei-r(vH,(v+p-c)t) < |p - ) nMCE 1
st A ) S TS S Tonaroz <3

€,

and analogously dgk-1 (v +, (v/+p-¢ *)*) < 1e. So, the triangle inequality implies
that dgx—1 ((v +ue cs)+’ (U’ tTu- C“)+) < €. Thus, ('Fﬁp([v’ £, C])7 %ﬁp([v,’ ¢, C’])) lies
in W, for Case 1.

Case 2: Suppose |v] < & and |v'| < & and ¢’ < € and |¢/*|o < & and
d(¢, &'y < é. Then we get d(£,{') < e. Moreover, we deduce

[v+p-c|

S K(E+nMEé) <e,
]

and analogously I—’i—tgf—l < €. Hence, (75,([v,§,d]), 75,([v, €, ])) lies in W, for
Case 2.

Case 3: Suppose |v — v'| < €% and d(£,¢') < € and [¢® — ¢/*|o < é? and
lc; — 5| < &%. Then we have d(¢,¢') < e. We can assume without loss of
generality that both |[v+u-c’| > € and |[v'+p - ¢'*| > €. For otherwise, suppose
that |v + g - ¢!| < €, say. Then we deduce that both :—ﬁlv +u-c’l < e and
L'+ p - d?] <¢, because of
5

1 L1 3
SIS el ol e (= )
SKE+E+nME) < ¢

and conclude that (75,([v,¢,¢]),75,([v),€,¢])) lies in W, as in Case 2. The as-

sumption implies that

. 1
dova (04 -V, 0 4 1) < 1 (o= v+ - (= @)
1
< E(éz+nM€2) < e.
We can assume furthermore without loss of generality that |v 4+ p-¢'| < 1. For
- &
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. 1
otherwise we get that both ;;Iv +p-c|>1and ;’,;Iv’ +p-c?| > L, because

1 oo 1
Sl +pe ] 2 S (ol = vl = a0 = )
P €5
1,1 1
> — (= —¢% = 52 hl
"I’(é 3 nM€)>€,

and therefore (75,([v, €, ¢]), 75, ([v', €', ¢])) lies in W, as in Case 1. This assumption

allows us to conclude that

|v+u ¢l htu-d
| z I
c;|+||v+u e =o'+ p- c"ll—;
< lotne el 22 4 (o= o]+ - (¢ = )
Pp C,—,

A\
("ul —

K?&* 4+ (2 +nMEH)K <L e.

Therefore, (75,([v, &, ¢]), 75,([v", €', ¢])) lies in W, for Case 3. This completes the
proof of Claim 1.

Claim 2: ¢ is a bijection from I ((G x Z¥)®) onto ¢ ((G x Z*)>).

Proof of Claim 2: We show that %' has an inverse. Define a map ¢ from

L((G X Z¥™) to T((G x Z¥)) by
u(g,2) = ¥(u(g,2)) := i(g,2).

We need to check that 9 is well-defined: Let (¢',2') € (G x Z¥)® be such that
g, z) = g '), i.e. 75,(9,2) = 75,(¢',2') for all (p,p) € T x R**", There are
two cases to consider. Case 1: Suppose that g € G*®. We distinguish between
two subcases. Subcase 1.1: Suppose that z = 0. Then 2’ = 0 and g* = ¢'t
because for 4 = 0 we get Tlgﬂl; = JZTL and gt = g'*. Moreover, let Ej;i(}) €

lg'le
R**"® be such that all its components are 0, except for the one in the j-th row

and i-th column, which is A. It follows for all i = 1,...,n and all p € T that
IW.‘MI [E1i(1): W(Q)I 'Eli(l)-ng’)l _ wile")] ] .
lsls lols o'ls Iy’?;, . So, if lwi(g)l =0foralli=1,...,n

then i(g,2) = i(d, z'). Otherwise, if |wi(g)| # 0 for some i, then lwilg)] # 0 and

lola
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lwilg')! lols _ Jwila)l lols_ _ lwila)] Jo'ls_ _ lo'ls
it # 0 for all 5 € . Hence, we get [2 = 5= iy = "0 gt = I

Furthermore, for each ¢ with |wi(g)] # 0 we get (wi(9),0,...,0)* = (Eyn(1) -
w@))* = (Bu(1) - w@))* = (wi(9),0,...,0)*; and therefore ﬁ—l TiTl for all

i = 1,...,n. Thus, we have proved L(g, ) = i(d,2') in Subcase 1.1. Subcase

1.2: Suppose that z # 0. For 4 = 0 we conclude that L i | ]J—L forall p €T,
that gt = ¢'* and that 2t = 2'*. It follows that m;z = m;z and that
:Z:p = Iy'l Let j = 1,...,k be such that z; # 0. For each i = 1,...,n there
exists an ¢; > 0 such that lz + Eii(ei) - w(g)| # 0. This implies 2tEsledwloll —

L"—"’E—"I‘i,ili)ﬂ(g—'n and (z + Ex(&:) - w(9))* = (2 + Exi(&:) - w(d))*. Thelilepfore, we
have I-—I-(z + Exi(e) - w(g)) = Tl—(z’ + Fri(e:i) - w(g')), from which we conclude
that %ﬂ = “%%—l for each i = 1,...,n. Thus, we have proved i(g,2) = i(¢', 2')
in Subcase 1.2; and % is well-defined in Case 1. Case 2: Suppose that g & G*.
Then ¢’ € G, and 2+ = z'*. Therefore, v is well-defined in Case 2, too. It is

straightforward to check that ¥ is the inverse of 4. This proves Claim 2.

Claim 3: 9 is uniformly continuous.

Proof of Claim 3: Throughout this proof of Claim 3, let d be a fixed visual
metric on G. Let the metric dsx-1 be the metric on the unit sphere S*=! that
is induced by the euclidean metric on R*. We will regard dgx-1 as a metric on
ORF = S*¥-1. We consider the following fundamental systems of entourages for
¢ ((G x Z¥)) and for £ ((G x Z*)™): For any € > 0 with 1 > ¢ > 0 let W, consist
precisely of those pairs ([¢t,£, (], [t', €', {']) in (0G * S¥=1) x (OG* S¥-1) that satisfy
[|t = t'| < €® and d(£,€') < € and dsr-1((,¢') < €], 0r [t > Land ' > ! and
dsi-1(¢,¢") < €], or [t < €® and t' < €® and d(¢,£') < €]. Then the system
{W.} is a fundamental system of entourages for dG * §*=1, For any € > 0 with
1 > £ > 0 and any finite number (p1,41),...,(Pm,im) of actions in ' x Rkx»
let W(,,hm,,,,,pm,,,m,e) consist precisely of those pairs ((m(;,_u))(,;,,,),(:ciﬁ'u))(,;'u)) in
(H(ﬁ,u)el‘xR"""aG * Sk_l) X (H(ﬁ,u)eFxR"""aG* Sk-l) for which (x(”iv“:)’wzppu,))
lies in W, for each j = 1,...,m. Then, by construction, the trace of the system
{ W (o1,81,mpmmme) } 18 @ fundamental system of entourages for the subspace +((G x
Z*)*). For any ¢ with 1 > ¢ > 0 and any finite number p,...pn, of actions in I’
let Vipy,...ome) consist precisely of those pairs ([v, ¢, ¢], [v/, €, ¢]) in M, x M, that
satisfy [|v] > ! and |v'| > ! and dge-1(v*,0'+) < €], or [Jv] < € and |v'| < € and
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|c*loo < € and |¢'*|s < € and d(£,¢') < €], or [[v—v'| < € and d(¢,€') < € and
|® —¢ *le < €and |c,;~ ¢, | <eforall j=1,...,m]. Then it is straightforward
to check that the trace of the system {V(,,,..ome)} is a fundamental system of
entourages for the subspace I ((G x Z)*). Let a finite number py,...,pm of
actions in ' and 1 > &£ > 0 be given. In order to prove that % is uniformly
continuous, it is enough to check that there exists an 1 > & > 0 such that ¢ x ¥
maps each (¢(g, 2),¢(g',2")) € M=o (MNizy PV(,,J._E“(I),;) n W(,,J,[O]j)), where pg 1= p,
[0] is the matrix in R¥*™ with all entries 0, and Ej;(1) is as defined above, into
‘7(;)1, om)- Set K := max{k(p;) I 7 =1,...,m}, where each k(p;) is defined
as in the proof of Lemma 3.3.5. Thus, we have K > 1; and + < ¢p; < K for
each ¢ € C, and each j = 1,...,m. Let C > 0 be given as in the proof of
Lemma 3.2.2, i.e. |¢’|oc < C for all ¢ € C,. Take 1 > ¢ > 0 small enough such
that KC& < 1 and 2(1 + K)é < ¢ and K(C +4)&° < e and K(C +4)é* < 14X
and (4C +2)’(‘—1(_‘—_C%)4}'3 <eand E+4&* <ecand 2K((1 - KCé)E+ &%) < ¢ and
4]\"(1\’052 + &%) <e. We dlstlngulsh between two cases:

Case 1: Suppose 7z Candl—[L>7F-C Then‘l.[l.>..andll_r|.>-
We also get dsk-l(z+ '+) < &% < &. Hence (i(g, 2),i(g", 2")) lies in V(,,l enpmse) TOT

Case 1.
Case 2: Suppose TIQ_IL -Il;—llL is less than 7z — C. Without loss of generality we
assume that TLIL <#-C.(If —'i’—ll- < 7z — C, the argument goes analogously.)

We abbreviate w; := Ey;(1) - w(g) and w] := Ey;(1) + w(g’) for each i = 1,...,n.
Also we set wp = w) := 0 € R*. The assumption implies for all i = 0,...,n and
allj=0,...,m (recall: po:=pand wyp=0€ R") that

ol el thal g L

o =T, —C0+0) =

("nl'—‘

It follows by hypothesis that at least one of the following conditions (a) and (3)
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is satisfied for each ¢ =0,...,n and each j =0,...,m

. ' I
@ Fph<e wa RS wma dotgt <o
gpj Py
z+ w; 2+ wi . 3
o (el el oo dgt gty <e ana
lglﬁj |g|p,-

codge-1((z + w) (2 + wi)t) < &,

We distinguish between two subcases. Case 2.1: Suppose that ljg‘z]"; < € and
-I—L < & and d(g*,¢'t) < é&. We distinguish once more between two subcases.
Case 2.1.a: Suppose that []ﬂ@—ll < (1+K)é and Mg—'ﬂ < (1+K)é ] holds forall i =
1,...,n. Then clearly L—'Q)-l < € and l_(_ll <e for all t =1,...,n. Furthermore,
we have I—l—' < € and TL—L < € and d(g ,9't) < e. Thus, ( i(g,2),i(g',2")) lies
in V(pl,...,pm,e) for Case 2.1.a. Case 2.1.b: Suppose that [lﬂill > (14 K)E or
L“i—;%)-[ > (1 + K)Z] holds for some ¢ = 1,...,n. Then those i, for which this
condition is true, satisfy together with any j = 0,...,m condition (3), because

condition (&) implies

(o) _ o+ i
Iglpj |g|Pj

< &+ Ké°,

and analogously 148l < & 4 K. So, condition (8) holds. Note that il <

K(&+ C) Therefore, condition () implies that I—r—(z +w;) — ]_l—(z +w! )l <
K(&+C)E -+-€,andhence|—'§(%l %7—1|<(1”5+I\C+1) +2K& <e. We
can use the latter to conclude that both Jﬁ’—'@-l and L_i__ll are greater than K¢

since we have chosen & such that (Ké° + Ix (C +2) + 1) < —%——6. We can use
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it furthermore to conclude for at least one 1 < ¢ < n and any j =0,...,m that

| |g|Pj _ _Ig_I|P_J|
gl 1g'le
iy Iglp, lwi(@)] 19l (@) | 19'ls; lwi(g)l _ 1g'ls, Iw.'(g')ll
[ |9|p |w,-(g')| lgl» Iwi(g'” g1, lwi(g")l 19l

_ Jwig)l
|wt(g)l | |g "’J |glp] | Ig |PJ | |w' |wi(g,)| I
= gl %QML%(I—M |wi (g")] ‘glp, |g'|p,'
4C(K&+ K(C+2)+1) 5 4 2(Ke+ K(C+2)+1) <
(1 + k)22 (1+ R)E '

Obviously, we have ||;| |g ” 2| < 28% < ¢; as well as d(gt,d't) < e; as well as
l%(ﬁ} - 3&—73] < 2(1 + K)é < ¢ for all those ~z, for which the above condition is
not true. Therefore, (Z(g, z),i(g’,2')) lies in V(,, . pme) for Case 2.1.b. Case 2.2:
Suppose that I I_Ig_zlj; |g,| I < & and d(g*,g't) < € and dgr-1 (2%, 2'*) < &5, Then
we have d(g*,g' ) < €. Moreover, for each i = 0,...,n and each j = 0,...,m

we get |T_;,|LPJ‘.(2 + wi) — 19—,1|—p7(z' + w})| < 2% if condition () holds for ¢ and 7,
respectively Il-g_ll;;(z + w;) — Tnglpj(zl + wl)| < (% +1)& if condition (3) holds for
i and j. Thus, it follows for each ¢ = 0,...,n and each j = 0,...,m from the

triangle inequality that

|w.g) wag)l

2|
‘gll’; |g I

1 ’ / 1 )
24| + | =2 - =2
|g’|,,,-( ) l l 91,

(z+ w;) —
Iglp,'

- || IPJ
< 2014 D8,

We consider two subcases. Case 2.2.a: Suppose that [ijill; < £€or T.%l; < &) and
[L‘ﬂiélll <éor ]ﬁ‘—(ﬂ < &lforalli =1,...,n. Then the triangle inequality implies
that both Tlg_IJ_ and -|7|L are less than &€ + (l + 1)&® < &; and both ]‘-ﬁiﬁ and 9

are less than £+ 2(5 +1)8° < ¢. Therefore, (i(g, z),i(g',2')) lies in V(m,....pm.e) for
Case 2.2.a. Case 2.2.b: Suppose that [TET]; > & and IJ;TIIIZ > & or [%%1 S Z and
jﬁl‘g—(,f—;n > £] for some i =1,...,n. If | F-| > & and ||—;,-'|;| > € holds, we deduce for
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each j =1,...,m that

I Mﬂ!. _ 1.2'_|ﬁ_ | I |g|pJ z Ig’lpj Z Ig’|p,' _ 4 Ig'lp,'
I el e v e W ¥ |
< I lglp,' _ lg 'p, I l | I | I Ig |pJ
B r |g| |
< Wl |g|p, [EA | K g’ Ip, |
rg—[; ]g—,g g1, 91, Ig |
LS (M—C) + (1+§)55% <e

Analogously, if Hﬁ?‘l > € and I%%,ll > € holds for some 7, we deduce for each
j=1,...,m that

!glpj lg,lpj I\,2 K
2o 28| < =214+ 3)EC 1y 25 8
| lal, ~ 19 I 22 ( ,)6 +2(1+ 5)5 - < e.

Thus, (¥((g, 2)), ¥((g',2"))) lies in f/(,,h._.,pm'p) in Case 2.2.b, too. This completes
the proof of Claim 3.

We prove the statements (i) to (iii) of Theorem 4.0.9: The subset ¢ ((G x Z¥)*)
is dense in 0(G x ZF) by construction, and the subset  ((G x Z¥)®) is dense in
M, by Lemma 4.0.10. Therefore, the Claims 1 to 3 imply that ¢ extends to an
isomorphism from M, onto d(G x Z*). Since this extension is unique, it must
coincide with 1. Hence, 9 is an isomorphism. The statements (ii) and (iii) are

an obvious consequence.

It remains to prove statement (iv) for G x Z*-actions of the type j,, where
p € T is a G-factor action and p € RFX" is a matrix of shift parameters. Let
peETlandp€ R**" be given. We want to show that the canonical map #;, from
8(G x Z*) to OG » §¥~! is a homotopy equivalence. According to Lemma 3.4.5,
there exists a homotopy H : [0,1] x C, = C, that contracts C, to a basepoint
¢ € C,. We define a map f : G * S*~' — (G x Z*) by

[t,€,¢] = F([t,6,€]) = [(t:(),4, 4],
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where v(t,¢) € R¥ is defined by |v(t,{)| = t and v(t,{)* = ¢. Obviously, f is
continuous. We show that f is a homotopy inverse for 7;,. Firstly, we check that
75, o f is homotopic to idsg.sx-1. Define F} : [0,1] x OG * Sk~ — 9G * S*~! by

6,C)+p- e
R 160 = 1= 0t MR ¢ e g saueeyr)
5
Clearly, F; is continuous. Moreover, we have Fy(0,[t,&,(]) = [t,£,(], as well as
F(1L,[56<) = [Mﬁ%ﬂl,&(v(ti) + p- &) = (75, 0 f)([t,€]). Secondly, we
check that f o #;, is homotopic to idggxz+. Define F; : [0,1] x 0(G x Z* —
d(G x Z¥) by

F(9,[v,6¢]) = [v((1=9) o[ +9

LEESl oyop-e), e, 0l

5
Note that there exists a constant A" > 1 such that -,1\— <c¢; < KforallceC,.
Hence, F is continuous. Moreover, we have F3(0,[v,§,c]) = [v,£,c], as well as

F(1,[v,& ) = [”(]ut_‘;'c’l, (v+u-e)r), € e =(fofs)([v,€¢c]). This completes
the proof of statement (iv). 0
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Chapter 5

The Boundary of G x H

The aim of this chapter is to work out the boundary of groups G x I, where both
G and H are non-elementary word-hyperbolic CAT(0) groups. Furthermore, we
will show that for each geometric action of G x II the associated canonical map
from 8(G x H) into the visual boundary of the underlying CAT(0) space is a

homotopy equivalence.

The argumentation in this chapter is very similar to that in the previous two
chapters. We begin with some notation: Throughout this section we consider two
fixed non-elementary word-hyperbolic CAT(0) groups G and Il. Let I' denote
the set of all geometric actions by G on CAT(0) spaces, and O the set of all
geometric actions by H on CAT(0) spaces. For any action p € I on a CAT(0)
space X, and any action 0 € © on a CAT(0) space Y, we define a gcometric
G x H-action px o on X x Y by

(g, h) * (z,y) = (p(9,2), o(h,y)).

We can identify (X x Y) with the join 0G * OH = ([0,00] X G x 9Il)] ~,
where (t,£,¢) ~ (¢,€,(") if and only if (t=t'=0andé=¢,or[t=1t =00
and ¢ = ('], or [t =1 and £ = €' and { = (’]; such that with respect to this
identification the canonical map T,x, : (GX ) — 9(X xY') associated to px o
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is given by

hls )
[llg: ygt,ht], ifg€G®andhe ™,
p
(9,h) = Toxo (9:h) := { [0, g*, €], ifge G and h & I,
[0, &, ht], ifgg G* and h € I,

where ¢ € OG and ¢ € OH are arbitrary. Let U,x, denote the uniform structure
on (G x H)* that is the inverse image of the canonical uniformity on 9(X x Y)

under T,x,-

The following proposition shows that in order to study the boundary of G x If
it is enough to consider G x H-actions of the above type. It is motivated by the
result by Ruane in [Rua99], namely that the visual boundary of a CAT(0) space

carrying a geometric G X H-action is homeomorphic to 0G * 911.

Proposition 5.0.11 Let 5 be a geometric action of G x Il on a CAT(0) space
X. Then 0X can be identified with OG * OH. Moreover, there erists a G-action
p €T on a CAT(0) space X, and an H-action o € © on a CAT(0) space Y, such
that

id(GxH)oo
—_—

((G X H)oo’Uﬁ) ((G X II)OO’ pra)

Tﬁl Toxe

(g )" | (9,h) € (G x H)®} 228 {(g,h)* | (g,h) € (G x H)™)

| |e

0X = 0G % 0H iogon, X xY)=0G*all

is a commutative diagram of uniformly continuous maps. In particular, the uni-
formities Us and Upxe on (G X H)™ coincide.

To prove this proposition we need the following lemma.

Lemma 5.0.12 Let X be a §-hyperbolic CAT(0) space. Then the Hausdor[f
distance between any two asymptotic geodesic linesc: R — X andc :R — X is
less than § + 1.
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Proof: By the Flat Strip Theorem 1.1.4 the convex hull of ¢(R)Uc/(R) is isometric
to a euclidean strip R x [0, w] of width w. Obviously, if w > § + 1 we can find
a geodesic triangle in this strip such that the S-neighbourhood of two of its
sides does not cover the third one. This contradicts the hypothesis that X is

-hyperbolic. o,

Proof of Prop. 5.0.11: According to Lemma 3.4.2 the centre of G is finite.
Therefore, we can apply the Splitting Theorem 1.2.1: There exists a non-empty,
closed, convex, G x H-invariant subspace X1 x X; of X such that G acts ge-
ometrically on X; and by (possibly trivial) Clifford translations on X3, and If
acts geometrically on X; and trivially on Xi. Let Z be a basepoint in X; x .X;.
Firstly, note that any infinite geodesic ray issuing from Z lies entirely in X; x .X5.
Therefore, the visual boundary X coincides with (X x X;), which allows us
to identify 80X with G * OH. Secondly, we check that the action of G on X;
is indeed trivial. Suppose there exists a ¢ € G that acts as a non-trivial Clif-
ford translation on X;. Then, according to Thm. 1.1.3, X; splits as a product
X, =Y, x R. If Y, has finite diameter, the visual boundary 0X, consists of two
points. Since 0X,; = 0H, this implies that I1 is elementary, which contradicts our
hypothesis. If the diameter of Y; is infinite, then X; contains arbitrarily broad
Euclidean strips. But this contradicts Lemma 5.0.12, because X is §’-hyperbolic
for some &’ > 0. Thus, the action of G on X, is trivial. Thirdly, set X := X,
and let p be the induced geometric G-action on X. Set Y := X2, and let ¢ be the
induced geometric H-action on Y. Then it follows immediately from the above
that the canonical map T,x, from (G x H)*® into (X x Y) = 0X = 0G * dII

associated to the product action p x o coincides with 7;. 0

We will call a pair (p, o) of actions as given by Prop. 5.0.11 a pair of factor
actions associated to the G x H-action p. Note that similarly to the proof of
Prop. 3.3.2 one can show the following: Let p and 5 be two G-actions in T}
and let o and & be two H-actions in ©. Then the uniformities U,x, and Ujxs
on (G x H)™ coincide if and only if there are constants ¢;,¢; > 0 such that
MLS, =c1-MLS; and MLS, = c;- MLS;. However: Let ¢, - p be the geometric
G-action obtained by rescaling the CAT(0) space that carries p, and let ¢; - o be
the geometric H-action obtained by rescaling the CAT(0) space that carrics o.
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Then according to the above definition the pair (c;  p, €2+ ) is not a pair of factor

actions associated to the G x H-action p X o unless ¢; = ¢;. '

For the remainder of this section we fix a G-action p € I' and an I-action
o € O. Recall from Chapter 3 that the maps x, : G® = Rl and k, : II* — R®
are given by

|/l|5
lhla)&'

l_gié)ﬁ, and h — k.(h) :=(

g+ relg) = (Iglp

As before, we denote the closure of the image im«, in RF by C!*, and the closure
of the image imk, in R® by C. For each j € T (resp. for each ¢ € O) let
pr; (resp. pr;) be the projection of RT (resp. R®) onto the j-component of RF
(resp. onto the -component of R®). For each b € C%* (resp. for each ¢ € C!*) we

abbreviate pr;(b) by b; (resp. prs(c) by cz).

Definition 5.0.13 The p X o-model M,x, of the boundary O(G x H) is defined
by Myxo := ([O,w]xanalGCf,’xC,ﬁ’)/ ~, where (t,&,(,b,¢) ~ (¢, &, (0, )
ifandonlyif[t=t'=0and { =¢'),or [t =t' =00 and ( = ('], or [t =¢' and
g=¢and(=Candb="Vandc="]

In the remainder of this chapter we will prove the following theorem:

Theorem 5.0.14 Let G and H be non-elementary word-hyperbolic CAT(0) groups.
Suppose that p is a geometric G-action on a CAT(0) space, and o a geometric

H-action on a CAT(0) space. Let Moy, be defined as above. Then the following

is true:
(i) The boundary 8(G x H) is canonically isomorphic to M,y,.

(i) The canonical G x H-action on 8(G x H) is given by
(9,h) *[t,€,¢,b,c] = [t,9.6,h.C,b,c].

(iii) Let p be a geometric G x H-action on a CAT(0) space X. Let p € T and

& € © such that (p,5) is a pair of factor actions associated to p. Then the
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canonical map 75 from 8(G x H) to 0X = 0G * OIl is given by:

+ﬁ([t1§7Cab’c]) = [%t,f,C]-

(iv) For any geometric G x H-action p on a CAT(0) space X the canonical map
#5 from 0(G x H) to 0X is a homotopy equivalence.

We need to prepare the proof of this theorem: In order to compare 9(G x II)
with M,x, we define a map £ : (G x H)® — M,y, by

hl, .
[llg: y gt bty k,(9), ko.(R)]), ifgeG™and he lI®,
P
(9:h) = T(9,h) = { [0, g*, ¢, b, ], if g€ G™ and h ¢ 1%,
[OO,f,h+,b,C], lfg¢G°° and ’I,EII(”,

where ¢ € 8G, ( € 0H, b€ C¥ and ¢ € C}* are arbitrary.

Lemma 5.0.15 The image i((G x H)*) is dense in M,yx,.

Proof: In order to check that i((G x H)>) is dense in M,x,, it is enough to
check that each open subset of the form (I X Bag(€,€) X Bop(¢,e)x U xV)/ ~ in
M,xs = ([0,00] x 0G x OH x C}* x C;*)/ ~ contains an element of {((G x Z)*);
where I is an open interval in [0, 00}, Bag(é,€) is an open ball of radius € > 0
around a point ¢ in G with respect to some fixed visual metric dag, Boy (¢, €) is
an open ball of radius &€ > 0 around a point ¢ in I with respect to some fixed
visual metric dsg, U is an open set in C}’, and V is an open set in C!*. Firstly, we
find a g € G such that x,(g) € U and g* € Byg(¢,¢): By construction x, (G*)
is dense in C}’. Therefore, there exists a § € G* such that x,(§) € U. According
to [BR96b], for example, the set of rational boundary points is dense in 9G.
Hence, there exists a gy € G such that d(¢,g}) < £. Without loss of generality
we can assume that gt # gr. For otherwise Lemma 1.3.2 implies that g} is
the only rational point in Bag(¢, §), which contradicts G being non-elementary.
According to [CDP90], Ch. 11, Prop. 2.4, for example, §* # g; implies that
there exists an m € N such that d(g;, g7.9%) < £. Clearly, k,(3) = &,(g]"Gg;™)
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and gr.§* = (g"Ggr™)*. Therefore, we can take g := ¢gi*gg;™. Analogously,
we find an h € H* such that x,(h) € V and h* € Bsu({,e). Obviously,
there exist p,q € N such that ‘Z—%{f lies in I. Since we have (g%)* = g* and
ko(97) = Ko(g), as well as (hP)* = h¥ and k. (h?) = K,(h), 7(g? hP) lies in
(I x Bsg(¢,¢€) X Bon(¢,€) x U x V)] ~. o

Proof of Theorem 5.0.14: According to Prop. 5.0.11 it is enough to prove
the statements (iii) and (iv) of Theorem 5.0.14 for G x Il-actions of the type
p X &, where p € I' and & € ©. Furthermore, we can regard (G x II) as the
closure of the image im ((75x5)5xs) in [15x5erxe 0G * OII throughout this proof,
since the boundary uniformity Ugxy on (G x ) is the same as the least upper
bound of the family { Usxs I p €T, & € ©}. Thus, the product map (75xs)sxs is
the canonical map ¢ from ((G x H)®,Ugx#) into its Hausdor{f completion. For

each p € T and each & € © we define a map 7545 from M,x, to OG x II by
1,65 el = Foxa ([6,6,C,bye]) 1= [52¢, €, €.
5

It is easy to check that

(G X H)oo _‘-') A[pxa

v= ("'bxb)ﬁxal li;,,,

8(G x H) 222 8G « 0H

is a commuting diagram of set maps. Let ¥ := (75x5)sxs be the product map from
M,xo t0 [;xserxe 9G * OH, and let 9’ be the restriction of 9 to I ((G x I)*)

in Myxo-

Claim 1: % is uniformly continuous.

Proof of Claim 1: It is enough to show that ;x5 is uniformly continuous for
each G x H-action p x & € ' x ©. Throughout this proof of Claim 1, let dyg be
a fixed visual metric on 0G, and dsy a fixed visual metric on 0If. We consider
the following fundamental systems of entourages for the uniform structure on
9G % OH and on M,y,: For any €, with 1 > ¢ > 0, let W, consist precisely of
those pairs ([t, ¢, ¢],[t',&,¢) in (OG * OH) x (0G + OH) that satisfy [|t — t'| <e
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and dag(£,¢') < € and dan(¢,¢') < €], or [t <€ and t' < € and dsg(£,€') < €],
or [t > Landt > L and dsu(¢,¢") < €]. Then it is straightforward to check
that the system {W.} is a fundamental system of entourages for G * 91I. For
any €, with 1 > € > 0, any finite number py,..., pn of G-actions in I, and any
finite number o7y, ...,0n of H-actions in © let V(,,....on01,.ome) CONSist precisely
of those pairs ([t,&,¢,b, ¢}, [t',€,{',¥,¢]) in Myxs X My, that satisfy [t < € and
' < eand dag(é,€') <elyor [t>Landt'> Land dyy((,¢') <el,or[Jt—t|<e
and dapg(€,€') < € and don((,¢’') < € and |b,, — b, | < e foralli=1,...,n and
|eo; — ;J| <e?forall § =1,...,m]. Analogously to the proof of Lemma 3.2.5 it
is straightforward to check that the system {V(s,,...on,01,.0mie)} i8 2 fundamental
system of entourages for the uniformity on M,x,. Let g x & in ' x © and ¢
with 1 > ¢ > 0 be given. In order to prove that ;x5 is uniformly continuous it
is enough to check that there exists an 1 > & > 0 such that ;x5 X 3xs maps
V(55.2) into We. Let K > 1 be such that ;1\— <b; < K and -}\- < ¢; < K for any
be Cp, for any c € C!. Take 1 > £ > 0 small enough such that 3K3¢ < € and
£ < gir;- Suppose that ([¢,€,¢,b,¢], [t', €, ¢, ¥, c]) lies in V(5 5,). Then there are
three cases to consider:

Case 1: Suppose t < € and t' < & and dag(€,€') < €& Then we have Eb%t <
K% < ¢, and analogously %';’;t’ < €. Moreover, we have dyg(&,€') < €. Therefore,
(Fsx ([t €, €, b, d), Faxa ([t', €, ¢, V', ¢])) lies in W, for Case 1.

Case 2: Suppose t > 1, and ¢’ > 1 and dyn({,¢') < & Then we have
2t > o > 1 and analogously %%t > 1. Moreover, we have day((, (') < e.

Therefore, (75xs([t, &, ¢, by €]), Taxa ([t', €', ¢, ¥, €])) lies in W, for Case 2.

Case 3: Suppose |¢ = ] < & and dao(£,€) < & and don(¢,¢") < & and
b5 — bj| < &2 and |5 — c;| < €2. Then we have dag(£,¢') < € and dor(¢, (') < e.
We can assume without loss of generality that ¢ < % For otherwise the triangle

inequality implies that both ¢ and t' are greater than % — 1, from which we
conclude analogously to Case 2 that (75xs([t,&,¢, b, ¢]), Faxa([t, €', ¢/, V', ¢'])) lies
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in W,. Assuming ¢ < 1, we get

Cs c-
-] = [52e- 2ur ey
1
S tca IF I + Itca tC +tc ,C:’|
P
bl b- 1
< tes pbb,pl+b_%(t|65—cgl+cg|t—t'|)

< — 1’2"2+I\( E+Ké) <

Hence, (%ﬁxé([t,&gabv C]),%,sxa([t', 6,, C,a bly Cl])) HCS in PV, fOI‘ Case 3, too. T]]is

completes the proof of Claim 1.

Claim 2: ¢’ is a bijection from I ((G x H)>) onto ¢ ((G x I[)®).

Proof of Claim 2: We show that ¢’ has an inverse. Define a map ¢ from
¢ ((G x H)®) to i((G x H)®) as follows: Let «(g,h) € ¢ ((G x II)™) be given,
and set

(g, k) — ¥(e(g,h)) = i(g,h).

We check that 9 is well-defined: Let (g, ') € (G x II)* be such that ¢(g,h) =
g, h'), i.e. Tsxs(g, h) = Tixs(g', h') for any § € I and any & € ©. We distinguish
between three cases. Case 1: Suppose that ¢ € G*® and h € II*®. Then we have
0 < L"_lz < oo for all p and 6. We deduce that ¢’ € G and k' € II*°; as

well as g+ = g%, ht =K't and Fji llﬂﬁ"- for all 5 and ¢. This means in
particular H— = %llf’- Moreover, we obtain {—ZL:E I'—f"—}f Zl: llpﬁ—lug';{-; l—e for
each p € T; and analogously {-—'2 IFL for each & € ©. Thus, i(g,h) = i(d', 1)
holds in Case 1. Case 2: Suppose that g € G and h € II*°. Then 7;45(g,h) =
5x5(g'y B') implies that ¢’ € G with g* = ¢'* and &' ¢ H*. Thus, we get
i(g,h) = i(¢', ') in Case 2. Case 3: Suppose that ¢ € G*® and h € I[*. Then
5x5(9,h) = Toxs(9's k') implies that ¢’ € G, and A’ € I with h* = p'+,
Thus, i(g,h) = i(g’, k') holds in Case 3, too. Hence, ¥ is well-defined. Finally, it
is straightforward to check that 3 is the inverse of Y.

Claim 3: ¢ is uniformly continuous.

Proof of Claim 3: Throughout this proof of Claim 3, let dsg be a fixed vi-
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sual metric on 0G, and dsy a fixed visual metric on 0If. We consider the fol-
lowing fundamental systems of entourages for the uniformity on ¢ ((G x H)>),
and on I((G x H)>) respectively: For any ¢, with 1 > ¢ > 0, let W, con-
sist precisely of those pairs ([t,&,¢],[t',¢,¢"]) in (OG » OI) x (OG = OII) that
satisfy [|t — '] < €* and dsc(§,€') < € and dan((,(') < €], or [t < € and
t' < e and dag(£,¢) < €], or [t > L and t' > ; and don((,¢') < €]. Then
the system {W,} is a fundamental system of entourages for G x dIl. For any
g, with 1 > € > 0, and any finite number p; X 01,...,pm X 0n of actions in
I'x O let W(,,lx,,h,_,,pmx,m‘,) consist precisely of those pairs ((z;xs)5xs, (zfaxa)ﬁxé)
in (JT;xserxe 9G * 0H) x (II5xserxe OG * OH) for which (z,,x0,, ), x0,) lics
in W, for each j = 1,...,m. Then, by construction, the trace of the sys-
tem {PV(,,lx,h,__,,,mx,m,,)} is a fundamental system of entourages for the subspace
(G x H)®). For any ¢, with 1 > € > 0, any finite number py,...p, of ac-
tions in T, and any finite number oy,..., 0y, of actions in © lct V(,,,___.,pm,,h___',m,)
consist precisely of those pairs ([t,£,(,b, ¢, [t',&,(',b',¢']) in Mpxe X M,y, that
satisfy [t < € and ¢’ < € and dyg(§,¢')], or [t > L and ¢/ > L and dan((, (")),
or [[t —t| < €and dag(&,¢') < € and dop (¢, (') < € and |b,, — ¥, | < € for all
i=1,...,nand|c,;—c, | <eforallj=1,... ,m]. Then it is straightforward to
check that the system {‘7(,,“__,,,,",,',,_,,,,"5)} is a fundamental system of entourages
for M,x,. Hence, the trace of {Vio11espn1rmome)} i8 @ fundamental system of
entourages for the subspace I((G x H)>). Let a finite number py,...,p, of G-
actions in I, a finite number o4, . .., 0, of H-actions in ©, and e with1 > £ > 0 be
given. In order to prove that 9 is uniformly continuous it is enough to check that
there exists a & > 0 such that ¢ x ¢ maps W(,,,w,p,x,,,_,'pnx,'g) n W(,,x,h__"px‘,mi)
00 Vipy,romotsnome) St K 1= max {k(p;), k(o) | i=1,...,n;j = 1,...,m},
where each k(p;), resp. each k(o;), is defined as in the proof of Lemma 3.4.5.
Thus, K > 1; and we have # < by, < K for any b € C!* and any i = 1,...,n;
respectively + < ¢;; < K for any c € Ctandany j=1,...,m. Take 1 > >0
such that € < T\TIE:-E—) and Ké+é&* < ¢ and 7\"5- + €% < ¢. Suppose (t(g, h),t(g", 1"))
lies in W(pxa,plxa,...,pnxa,é) N Vif(px,l,_,,,px,m,g). We distinguish between three cases:

Case 1: Suppose Jﬁf < € and %;}f < € and dpg(g*,¢'*) < & Then l[%!f <e,
%,ll‘:; < ¢ and dag(g%,9'F) < e. So, (i(g,h),i(g',h")) = (P(e(g,h)),P(e(d, 1))
lies in Vip,....0n,01.n0m )"
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Case 2: Suppose II%IIf > 1 and % > 1 and dyp(h*,h'*) < & Then

Mo o L e 5 1 and day(ht,h'+) < e. Hence (%(u(g,h)), ¥(c(g", 1)) lies

lalo e’ lg'le
m ‘/(ph...,p,,,al,...,am,c)'

Case 3: Suppose Iﬁ:—t:—tl < & and dag(g*,g'*) < £and dpy(ht,h't) < é.

lgl
Then |%‘1 - ll%ijlfl < e, dac(gt,g't) < € and dapu(h*,h'*) < e. Furthermore, we
P

can make two assumptions without loss of generality: Firstly, we can assume

that ilf'Jll < 7z and lly—'lf— < 7z. For otherwise the triangle inequality implics

that both lhla and I Ia are greater than 7\1—5 -1> %; and ('Z'(L(g,h)),d-’(t(g', 1))
lies in V(m, PrsO1 seenm e) analogously to Case 2. Secondly, we can assume that

Jl_hgjlz > K& and JI_’II_ > Ké. For otherwise the triangle inequality implics that both
P
e and lﬂ‘l are smaller than K& + &% < ¢; and (¥(¢(g, h)), ¥(e(g', 1)) lies in

lole
V(pl. o1 rmome) @n2logously to Case 1. These two assumptions imply for each

i=1,...,nthat £ < '||£Il1 <3 ! and é < g',,. < : (resp. for each j = 1,...,m
Wloy '

that§<L|!7|rL<—.and€< o'le

< }). Therefore we have by hypothesis that

N {hlo; |h o
iy! %ﬁf' < & and |t - H1 Tt | < &' for each i = 1,...,n and each
Pi

j =1,...,m. Thus, we get foreachi=1,...,n:

3 lglo _ 19'le: | = L3 e P L P U P Lo = e P L Py P |
|91, lg’ |p l9lo 1kle 19l [Rle ~ 1g'lo [Rle  19lo [R']o
Wle _ |Hle
gl (Al ey, Wl | W B
! hie |h'le
|hs lgl, 19, lg lp H;;H;
<l"4 + — L lac,
Ké &2 !
and foreach g =1,...,m
I lhla, Ih la, I | |9|p Ihlaj _ |g’|p Ihla,- ‘g’lp |h'65 _ !g’|p |h'|o, |
|hl |h’ Ihla lglp |h’la Iglp Ih’la |g|p |h'|a |!]'|p
_ Ihls, ot — b L 1o | Al Wl
Ig|p &J(l—l- lh'la |g!p |g’|p
< = 1 1 & + & < ..
£ K2&2 I\’~

Hence, (z/—;(L(g, h)), P(e(g', h'))) lies in Wp,,,_,,p”',,,_,,,,m,,). This completes the proof
of Claim 3.
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Using the above claims, we prove the statements (i) to (iii) of Theorem 5.0.14:
The subset ¢ ((G x H)™) is dense in (G x H) by construction, and the subset
i((G x H)®) is dense in M,x, by Lemma 5.0.15. Therefore, the Claims 1 to 3
imply that ¢’ extends to an isomorphism from M,x, onto d(G x II). Since this
extension is unique, it must coincide with . Hence, 9 is an isomorphism. Now,

the statements (ii) and (iii) are an obvious.

It remains to prove statement (iv) for product actions p x & , where g € T
and # € ©. Let p € I and & € © be given. We want to show that the canonical
map 7sxs from 8(G x H) to 0G x OH is a homotopy equivalence. According to
Lemma 3.4.5, there exists a homotopy H, : [0,1] x C;’ —= C}° that contracts C;’
to a basepoint b € C%, and a homotopy H, : [0,1] x C;* — C}* that contracts
C?* to a basepoint € € C!s. We define a map f: G xOH — 9(G x II) by

[t)§7C] > f([t,faC]) = [taé.vc’l_)’é]’

Obviously, f is continuous. We show that f is a homotopy inverse for 7;y4:
Firstly, we check that #5x5 o f is homotopic to idsguan. Define Fy : [0,1] x 9G *
OH — 0G = 0H by
Cs
(ﬂ,[t,f,(]) = Fl (19’ [t,{, C]) = [(1 + '9('5—_ - 1))t, fa C]
5
Clearly, Fy is continuous. Moreover, we have Fi(0,[t,&,(]) = [t,&,(], as well as

(1, [56¢)) = [%%t,ﬁ,(] = (sxs © f)([t:€,¢])- Secondly, we check that f o #;x5
is homotopic to idsgxH). Define Fy: [0,1) x (G x H) — &(G x H) by

(0’[t’£’C’b’c]) = Fz(ﬂa[t’é.’Cab,c]) e
---[(1+l’(%;-—1))t, £, ¢, H,(9,b), 1,(9,c)).

Recall that there is a constant K > 1 such that < b; < K for each b € C*,
Hence, F is continuous. Moreover, we have F5(0,[t,6,¢,b,c]) = [t,€,(,b,¢], as
well as F3(1,[t,€,(,b,¢c]) = [E&;t, £,¢,5,¢] = (fotsxa)([t, €, ¢, b, ¢]). This completes
the proof of statement (iv) of Theorem 5.0.14. 0
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Chapter 6

Marked Length Spectrum and
k-Isometry Type

In the previous chapters we have seen that the marked length spectra of factor
actions play an important role for the boundaries of certain CAT(0) product
groups. The aim of this chapter is to prove the following result, which is also

interesting in its own right.

Let G be a group, and K > 0 a constant. A (not necessarily continuous) G-
equivariant map f from a metric space (X, dx) to a metric space (Y, dy) is said to
be a G-equivariant K-isometry if there-exists-aconstant i suchthatl f(X)
is K-dense in Y, i.e. for each y € Y there is an ¢ € X with dy(y, f(z)) < K, and
the inequality -

dX(.'t,:L") -K S dy(f(:l‘), f(x,)) S dx(x,:c') + K

holds for all z,z’' € X. If there exists such a map f, the spaces X and Y are

called G-equivariantly K-isometric.

Theorem 6.0.16 Let G be a torsion-free non-elementary word-hyperbolic group.
Let p and p' be geometric actions by G on CAT(0) spaces X and X'. Then the
marked length spectra MLS, and MLS, associated to p and p' are the same, if
and only if for some constant K > 0 the spaces X and X' are G-equivariantly

K -isometric.
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Before we prove this theorem, we look at the following example. It shows that
in general we have to admit a constant K strictly greater than 0. Note that a

similar example was already given by Hersonsky and Paulin in [HP97].

Example 6.0.17 Let A := (a,b) be the standard set of generators for £, and
let T := C4(F>) be the associated Cayley graph. Then 7'is a 4-valent tree. Using
T, we construct CAT(-1) spaces Ty and T3, which carry geometric Fy-actions p,
and p; such that the associated marked length spectra M LS, and MLS, are
the same. However, T} and T are not isometric. We construct 7} as follows:
Let A (ABC) be the convex hull in Hf of a geodesic triangle with side lengths
(AB) = (AC) = (BC) = % Let V' be a vertex in 7. Suppose Ay is the point on
the incoming a-edge at V' such that dp(Ay, V) = %; and By is the point on the
outgoing b-edge at V such that dz(Bv, V= % Then we can glue A (ABC) to T
such that the side (AC) is isometrically glued onto [Ay, V] and the side (BC) is
isometrically glued onto [By, V]. Gluing a copy of A (ABC) to T' at each vertex
V in that manner, we obtain T}. T} is CAT(-1) with respect to the induced path

metric. Clearly, the geometric Fy-action on 7' induces a geometric Fy-action p,

on 7.

b—l

Figure 6.1: Constructing 7



The space T3 is constructed as follows: For each vertex V of T let A}, be
the point on the incoming a-edge at V' such that dr(A},V) = %; and I3}, the
point on the outgoing b-edge at V such that dr(By,V) = 1. We obtain T; by
gluing [A},, V] isometrically onto [By, V] at each vertex V. Tj is CAT(-1) with
respect to the induced path metric; and the geometric Fz-action on T induces a

geometric Fy-action p; on Ty. Obviously, Tj and T are not isometric. However,

b
~*1 By
| i |
-1
| a Ay v a |
b1

Figure 6.2: Constructing T,

it is straightforward to check that the marked length spectra associated to p; and

p are the same. 0
We begin proving the above theorem. The “if”-direction can be proved easily:

Lemma 6.0.18 Let G be a word-hyperbolic group. Let p and p' be geometric G-
actions on CAT(0) spaces X and X'. Suppose that X and X' are G-equivariantly
K -isometric for some constant K > 0. Then the associated marked length spectra

MLS, and MLSy are the same.

Proof: Let £ € X be a basepoint, and let f : X — X' be G-equivariant K-
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isometry. Then we get for each g € G™ and each n € N

d(g".z,2) — K < d(f(g".2), f(z)) = d(g".f(2), f(2)) < d(g".7,2) + K,

which implies

. 1 n . 1 1l n
9], = lim ~d(g"z,2) = lim ~d(g"f(2), (=) = |g],,.

n—+o0 N
(|

In the remainder of this chapter we will prove the “only if”-direction. We
introduce some notation: Throughout the following we will assume that G is a
torsion-free, non-elementary word-hyperbolic group. Let A be a finite system of
generators for G. We denote the induced word-metric on the associated Cay-
ley graph C4(G) by da. For each g € G we abbreviate |g|a := da(g,€). By
(9,92 = 3(da(g,h) + dalg’,h) — da(g,g')) we denote the Gromov product
for each g,¢',h € G. For each r € N we set S(r) := {g € G| |gla = r} and
B(r) ={g€G | lgla < r}. Since G is word-hyperbolic, the geodesic space
Ca(G) is §-hyperbolic for some constant § > 0. This allows to use Gromov’s

“approximation by trees”:

Theorem 6.0.19 (Approximation by Trees) Let zo be a basepoint in C4(G).
Fori=1,...,n let z; be a point in C4(G) U OCA(G), and s; a geodesic segment
or geodesic ray joining ro to z;. Set Z :=s,U---Us,. Then there exists a sim-
plicial tree T with basepoint o, and a continuous mapping f : (Z,z0) — (T, 1to),
such that the following holds:

(i) Fori=1,...,n the restriction of f to s; is an isometry.

(ii) There ezists a constant C(é,n), which depends on § and n only, such that
forall z,2' € Z

da(z,2') = C(§,n) < dr(f(2), f(¢')) < da(z,2).

Throughout the following we let the constant C' denote max { C(4,3), C(é,4) }.
We assume without loss of generality that C lies in N. Since C4(G) is §-
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hyperbolic, there is a constant é’ > 0, which depends on § only, such that the
insize of each geodesic triangle in C4(G) is less than §’. Without loss of general-
ity we assume that &’ lies in N, too. Recall that the critical exponent eg of G is

defined by
log #B(r)

eg = limsup ———=.
r—oco r

Definition 6.0.20 (k-Separator) Let ¢ € G be given. We call an element
h € S(2k +2C)U S(2k + 2C + 1) a k-separator for g with respect to d4, if both
(g,h™1)2 < kand (g7, h)¢ < k hold.

The above definition may seem rather technical at this stage. Its meaning

will become clear later.

Proposition 6.0.21 There erists a constant k € N such that each g € G with
lgla > 2k +2C +1 has a k-separator b in G.

In order to prove this proposition, we need three lemmas. The proofs of the

first and the second one are trivial.

Lemma 6.0.22 Letr € N be given, and let g € G be such that |g|4 > r. Suppose

¢; : [0,1gla] = CA(G) be a geodesic segment joining e to g. Then there exists a
unique verter Py of Ca(G) that lies in ¢c4([0, |gla)) N S(r).

Lemma 6.0.23 Let r € N be given. Then the map i : S(r) — S(r) given by
g+ g1 is a bijection.

Lemma 6.0.24 Let R,r > 0 with R > r, and let g € G with |g|4 > R. Set
Mt :={heSR)| (9,h)2 >r} and M~ :={h € S(R) | (9,h"")2 > r}. Then
we have

#M~ = #Mt < (R—r+1) - #B(R—r + 8 +1).

Proof: Firstly, we show that #M* < (R—r+1)-#B(R—r+48+1). Let ¢;:
[0, 19]4] = C(G) be a geodesic segment joining e to g. Suppose h € S(R) is such
that & := (g,h~1)2 > r. Let c4-1 : [0, R] = C4(G) be a geodesic segment joining
e to h~1. By hypothesis, we have d4(c4(k), cp-1(k)) < &', because &' is a bound for
the insize of geodesic triangles in C4(G). Also, we have d4(cp-1(x),h™') < R—r.
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Note that c,() is at most a distance of 1 away from a vertex on ¢,([r, R]). Hence,

there exists a vertex V on ¢,([r, R]) such that
da(V;EF"'YY) < R—r+48+1.

Thus, each h € M* is contained in at least one ball of radius R—r+¢’+1 around
a vertex on ¢,([r, R]). Since there are exactly R —r + 1 vertices on ¢,({r, R}), we

obtain
#FM*T < (R—r+1) - #B(R—r+6 +1).

Secondly, we check that #M* = #M~. Clearly, we have h € M~, if and only if
h~' € M*. Therefore, Lemma 6.0.23 implies #M* = #M~. O

Proof of Prop. 6.0.21: G is non-elementary word-hyperbolic. As shown
by Coornaert (see Cor. 5.5 in [Co093]), this implies that eg is strictly positive.
We assume that Prop. 6.0.21 is false and deduce a contradiction. Suppose for
all k € N there exists a ¢ € G with |g|4 > 2k + 2C + 1 such that we have
(g, k)2 > kor (g7, k)& > k for all h € S(2k +2C)U S(2k +2C +1). Consider
a fixed kK € N, and let g € G be according to our assumption. We define the
following subsets of S(2k + 2C'), respectively of 'S(2k + 2C + 1):

M}, = {heS(2k+2C) | (g7, R)A > k},

My = {h€ S(2k+2C) | (g,h7")2 > k},
M, = {heSCk+2C+1)| (¢, R)A >k},
My, ={heS@k+2C0+1)| (9,h™ )2 >k}

According to our assumption every element h € S(2k +2C)US(2k+2C + 1) lies

in at least one of these subsets. Therefore, we get

#S(2k+2C) + #SQ2k+2C +1) < #MP +#My + #M | +#M;, .,
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It follows from Lemma 6.0.24 that

#MS +#M; < 2(k+2C+1) - #B(k+2C + 6 +1),
#Mp o+ H#M L, < 2(k+2042) - #B(k+2C + 6 +2).

Hence, we get for each k € N that

#S(2k +2C) +#S(2k+2C+1) < 4(k+2C+2) - #B(k+2C + 8 +2),

which implies for each n € N

n

#B2n+2C+1) = ) (#S5(2k+20) + #5(2k +2C +1)) + #B(2C + 1)

k=1
n

<(D) 4(k+2C+2) - #B(k+2C+8 +2)) + #B(2C +1)
k=1

<4n-(n+2C+3) - #B(n+2C +48+2).

We can apply another result by Coornaert (see [Co093], Thm. 7.2), and conclude
that there exists constant ¢ > 1 such that for each r € N

clexp(eg-r) < #B(r) < cexp(eg-r).
Thus, it follows for all n € N that
ctexp(eg:(2n+2C +1)) < 4en(n+2C +3) exp(eg(n +2C + &' + 2)),

which implies eg = 0. This is a contradiction. m!

Proposition 6.0.25 Let g € G with |g|la > 2k + 2C. Suppose that h € G is a
k-separator for g. Then gh has infinite order. Furthermore, for each n € N let
cn 2 [0,1(gh)* 4] = Ca(G) be a geodesic segment joining e to (gh)". Then there
erists a constant H > 0, which depends on k and § only, such that for eachn € N
and each i € N with 0 < i < n the point (gh)' lies in the H-neighbourhood of c;.

We need to prepare the proof of this proposition with some lemmas:
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Lemma 6.0.26 Let zo be a basepoint in C4(G). Let m € {3,4}. For j =
1,...,m let z; be a point in Ca(G) U 9CA(G), and s; a geodesic segment or
geodesic ray joining To to z;. Set Z :=s;U-+-Usy,. Let the tree T and the map
f:Z — T be given according to the “Approzimation by Trees”-Theorem 6.0.19.
Then we have for all z,2' € 7

(2225 < (F(2), f(2)fe) < (2,27 + C.

Proof: For all z,2' € Z we have by hypothesis d4(xo,2) = dr(f(z0), f(2)), as
well as d4(2,2') —C < dr(f(2), f(2')) < da(z,2'). Therefore, we get on the one

side

, 1
(F2)s SV = 5 (dr(f(20), J(2)) + dr(f(0), F(2')) = dr(f(2), ("))
> % (da(zo,2) + da(zo,2") — da(z, "))
= (Z, z .:’

and on the other side

(SN = 5 (d2(7(z0), J()) + (S (w0), S()) = da(F(2), 1)
L 2 (dal@0,2) + da20,2) = da(z, #) + C)
< (z,2)2 +C.

I/\

Lemma 6.0.27 Let g € G with |gla > 2k + 2C, and let h € G be a k-separator
for g. For each n € Ny set 2, := (gh)" and y, 1= (gh)"g. Then we have for all
neN

(IBn, yO):"o 2 k + C.
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Proof: By hypothesis we have for each n € Ng

da(Tn,yn) = lgla > 2k +2C (Tny Tnp1)ih =
da(Yn Tns1) = R4 2 2642C  (Yn,Yni)d,, =

gL mA
ht g)2

e

IN
a-

(
(

IA
kn

We prove the lemma by induction on n. Obviously, we have
(z1, yo)é‘o = da(zo,Y0) — (xo,fvl);,t >2k+2C -k > k+C.

Hence, the desired inequality holds for n = 1. So, let us assume that for some n >
1 we have (z,, yo);‘0 > k+C. We want to conclude that (2,41, yg);“o >k+C. We
will proceed as follows: The assumption gives us a lower bound for (z,41, y;);‘l.
This lower bound is used to obtain an upper bound for (:vn+1,yo)fl, which in
turn yields a lower bound for (2,41, 1’1);40- The latter gives us an upper bound for
(Zn+1,T0)jy, Which we use to get the desired lower bound for (2,41, yo)o . To get
the upper bound for (zn4+1,%0)2, we consider Z := [zy,2n41] U [z1,11] U [21, 30).
Let T be an approximating tree for Z, and f the associated map, as given by
Thm. 6.0.19. Then Lemma 6.0.26 implies together with our induction assumption
that

(f($n+1),f(y1))?(x,) 2> (:tn+1,y1);41 > k+C,

and together with our hypothesis that

(f@1), f(Wo)) ey € (Wi %0)z, +C < k+C.

Hence, we get the following upper bound

(Tnt1, yO)fl < (f(@nt1), f(yo))?(zl) = (f(y), f(yo))?(zl) <k+C.

This upper bound gives us a lower bound
(Znt1, 1) = da(Y0,21) = (Tns1,¥0)5, = 26 +2C —(k+C) = k+C.

Now, consider Z' := [yo, Tn+1]U [y0, 1]U[yo, zo]. Let T’ be an approximating tree
for Z', and f’ the associated map, as given by Thm. 6.0.19. Then Lemma 6.0.26 -
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implies together with the last lower bound that

(f($n+1),f(m1))}‘(yo) 2 ($n+1,$1)$, > k+C,

and together with our hypothesis that

(f(ml),f(xo)):fr(yo) < (i'?l,ﬂ?o)ﬁ, +C <k+C.

Hence, we get the following upper bound

(Zns1,70)ze < (f(@ns1), F(20))F 4y = (F(21), f(20))F(4) < B+ C.

Finally, this last upper bound yields the desired lower bound:

($n+l, yO)':o = dA(y07$0) - (xn+1’ IO);:) Z 2k + 20 - (k + C) = k + C.

Lemma 6.0.28 Let g € G with |g|la > 2k + 2C, and let h € G be a k-separator
for g. For each n € Ny set z, := (gh)" and y, := (gh)"g. Then we have for all
n€N

(mo,yn-—l)fn > k+C.

Proof: The proof is done by induction on n — similarly to that of Lemma 6.0.27.

Clearly, we have
(zo,v0)2 = dalyo,z1) — (zo,71)fs > 2k +2C —k > k+C.

Hence, the desired inequality holds for n = 1. So, let us assume that for some

n > 1 we have (zo,yn-1)2 > k+ C. We want to conclude that (o, y,)A

Tnyl —
k + C. We will proceed in a manner similar to Lemma 6.0.27: The assumption

gives us a lower bound for (zo,yn-1)Z . This lower bound is used to obtain an
upper bound for (o, yn);‘”, which in turn yields a lower bound for (o, xn);‘n. The

latter gives us an upper bound for (g, zn41)7 , which we use to get the desired

Yn?
A

lower bound for (zo, yn).‘cn+l .

To get the upper bound for (zo,y.)Z , we consider
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Z := [zn,20] U [Zn, Yn-1] U [Tn,yn]. Let T be an approximating tree for Z, and
f the associated map, as given by Thm. 6.0.19. Then Lemma 6.0.26 implies

together with our induction assumption that
(f(zo), f(yn-l))?(z") 2 (anyn—l)?,. =2 k+C,
and together with our hypothesis that
(fWn=1), W) ey € Wn-1,¥n)2 +C < k+C.
Hence, we get the following upper bound
(zosYn f,, < (f(l'o)af(yn))?(x,.) = (f(Yn-1)s f(yn));(zn) <k+C.
This upper bound gives us a lower bound
(20, Za)it = du(Tn,yn) — (T0,yn)e = 2k+2C — (k+C) = k +C.
Now, consider Z' := [yn, %0} U [yn, Zn] U [Yn, Tnt1]. Let T’ be an approximating

tree for Z', and f’ the associated map, as given by Thm. 6.0.19. Then Lemma
6.0.26 implies together with the last lower bound that

(f(f”o)a f(zn))}‘(yn) 2 (wo’w")‘:ﬂ Z k + 07

and together with our hypothesis that

(f(zn)’f(zﬂ“‘l))}n(yn) < (mmmn+1);‘" +C L k+C.

Hence, we get the following upper bound

($0,1n+1)£, < (f(zo),f($n+1))f(y") = (f(wn)af(xn+l))}‘(y") <k+C.

Finally, this last upper bound yields the desired lower bound:

(€0 Yn) gy = du(¥n, Tnt1) = (20, Tnpr)y, 2 26420 = (k+C) = k +C.
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Proof of Prop. 6.0.25: Let g € G with |g|4 > 2k + 2C be given. Suppose
that h € G is a k-separator for g. Then we get

dale,gh) = dale,g) +da(g,gh) —2(e,gh)} > 4k +4C — 2k > 0.

It follows that gh has infinite order in G, because G is torsion-free. Next, let
n € N and i € N with ¢ < n be given. We abbreviate z¢ := ¢, z; := (gh)‘,
zn 1= (gh)", yi-1 := (gh)'"'g and y; := (gh)’g as in the two previous lemmas.
Firstly, we find a suitable upper bound for (zo,z,)A. To do so, we consider
Z := [zi,70] U [24, ¥i-1] U [24, 4] U [2i, 2a]. Let T be an approximating tree for Z,
and f the associated map, as given by Thm. 6.0.19. Then Lemma 6.0.26 implies
together with Lemma 6.0.27 that

(f(xn)vf(yt))}‘(z.) > (znvyi)ﬁ,- = (xn—hyO)ﬁ, 2 k+C’

and together with Lemma 6.0.28 that

(f(=o), f(yi—l))?(xi) 2 (f'?o,yi-l)f,- > k+C.

Lemma 6.0.26 also implies that

(FWi1), F) ey € Wi, w)A+C < E+C.

Hence, we get the following upper bound

(0, 2a)7 < (f(20)s F(Za))f(z) = (F(¥ic1), F(¥:)) ]y < k+C.

Secondly, set & := (z0,2;)2 . Let ¢ : [0,|2.]4] = Ca(G) be a geodesic segment
joining T, to Zo, and ¢ : [0,da(zi,zn)] & Ca(G) a geodesic segment joining z,
to z;, i.e. we have ¢(0) = ¢(0) = z,, ¢(|zn|4) = 2o and (da(zi,2,)) = z;. Note
that da(c(k),c'(k)) < &, because ¢’ is a bound for the insize. Note furthermore
that

da(zi,€(k)) = da(zi,Tn) = (20, 2:)5 = (z0,20)5 < k+C.
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Therefore, we get da(zi,c(x)) < k+ C + §'. Recall that both C and §’ depend
on § only. Thus, we can take H :=k +C + ¢ + 1. 0

Finally, we prove the following theorem.

Theorem 6.0.29 Let G be a torsion-free non-elementary word-hyperbolic group.
Let p and p’' be two geometric actions by G on CAT(0) spaces X and X'. Let
r € X and 2’ € X' be basepoints. Suppose that the marked length spectra MLS,
and MLS, associated to p and p’ are the same. Then there exists a constant
K > 0 such that the map g.x — g.2' from the orbit G.xz to the orbit G.z' is a

bijective G-equivariant K-isometry.

Note that this theorem implies the missing “only if”-direction of Theorem
6.0.16, because both G-actions, p and p’, are cocompact. We prepare the proof

of Theorem 6.0.29 with some lemmas:

Lemma 6.0.30 Let G be a torsion-free group that acts geometrically on two
CAT(0) spaces Xy and X,. Let 21 € X; and o € X, be basepoints. Then
the map g.x1 — g.z3 from the orbit G.xy to the orbit G.z2 is a G-equivariant

bijection.

Proof: Suppose there are g1,9: € G such that g,.z; = g;.z;. Then z; is a
fixpoint for (g2)7'g:1. Since the G-action on X, is proper, (g2)~'g; is of finite
order in G. Because G is torsion-free, this implies that (g2)~1g; = e. Thus, the
map g.z; — ¢.22 is well-defined. The same argument for g,.z2 = g5.2 shows that

it is injective. Obviously, the map g.x; + g.z; is surjective and G-equivariant.0

Lemma 6.0.31 Let X be a &-hyperbolic CAT(0) space. Then the Hausdorff
distance between any two asymptotic geodesic linesc:R — X and :R—= X is
less than § + 1.

Proof: By the Flat Strip Theorem 1.1.4 the convex hull of ¢(R)U¢/(R) is isometric
to a euclidean strip R x [0, w] of width w. Obviously, if w > § + 1 we can find

a geodesic triangle in this strip such that the é-neighbourhood of two of its
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sides does not cover the third one. This contradicts the hypothesis that X is
§-hyperbolic. a.

Lemma 6.0.32 Let g € G with |g|a > 2k + 2C, and let h € G be a k-separator
for g. Let p be a geometric G-action on a CAT(0) space X, and let ¢ € X
be a basepoint. Let X > 1 and € > 0 be given according to the Svarc-Milnor
Lemma 1.1.1 such that the map g — g.x is a (), €)-quasi-isometry from Cy4(G)
to X. Then X is 8-hyperbolic for some constant § > 0. Moreover, there exists
a constant L > 0, which depends on k, §, \, € and § only, and a geodesic line
coh 2 R = X such that (gh)*.z lies in the L-neighbourhood of cyn(R) for each
2z €Z.

Proof: It is well-known that Gromov-hyperbolicity is invariant under quasi-
isometries (see e.g. [CDP90] or [GH90]). Hence, there exists a constant § > 0 such
that X is 6-hyperbolic. Let n € N. Let ¢, : [0,d4((gh)™™,(gh)™)] = C4(G) be a
geodesic segment joining (gh)™" to (gh)", and ¢}, : [0,d4((gh)™",(gh)")] = X the
image of ¢, under the (A, €)-quasi-isometry g — g.x. Thus, ¢, is a (), €)-quasi-
geodesic segment joining (gh)™".z to (gh)".z. Let s, : [0,d((gh) .2, (gh)".z)] —
X be the geodesic segment that joins (gh)™".z to (gh)".z in X. Suppose z € Z is
such that —n < z < n. Then it follows from Prop. 6.0.25 that (gh)?.z lies in the
(AH + ¢)-neighbourhood of c., where H > 0 depends on k and é only. Since X is
5-hyperbolic, there exists a constant H' > 0, which depends on ), € and § only,
such that ¢}, lies in the H'-neighbourhood of s,,. Hence, for each n and each z with
—n < z < n the point (gh)?.z lies in the (AH + € + H')-neighbourhood of s, say
tz € [0,d((gh)~".z,(gh)".z)] is such that d(s.(t}),(gh)*.z) < AH +e+ H'. Since
X is proper, there exists a sequence (n,), such that s,,(t3 ) converges to a point
y € X. Since the metric on X is convex, we can use a standard Arzela-Ascoli
type argument to show that for some subsequence (n} ), the geodesic segments
[sng (872 )5 smy (E0s )] converge uniformly on compact subsets to a geodesic line ¢y, :
R — .X: as v — oo. Clearly, (gh)?. lies in the (AH + ¢ + H' + 1)-neighbourhood
of ¢y for each z € Z. 0

Lemma 6.0.83 Let the hypotheses be the same as in Lemma 6.0.32. Then there

erists a constant M > 0, which depends on k, &, A, €, § only, and an azxis
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agh : R = X of gh such that (gh)*.z lies in the M-neighbourhood of azu(R) for
each z € Z.

Proof: Let ¢; : R = X be given according to the previous Lemma 6.0.32. Since
gh is a hyperbolic isometry of X, it has an axis ags : R — X. It is straightforward
to check that the Hausdorfl distance between ¢za(R) and agn(R) is bounded.
Therefore, either c;n : R = X or ¢, : R — X, where ¢, (t) 1= cga(-t), is
asymptotic to agn : R = X. This implies by Lemma 6.0.31 that the ITausdorff
distance between c,5(R) and a,x(R) is bounded by §+1. Since each (gh)?.z lies in
an L-neighbourhood of ¢;n(R), it lies in an (L + & + 1)-neighbourhood of a4 (R).
Thus, we can take M := L +§ + 1. 0

Corollary 6.0.34 Let G be a torsion-free non-elementary word-hyperbolic group.
Let p be a geometric G-action on a CAT(0) space X. Then there exists a constant
K' > 0 such that any two points z,y € X lie in the K'-neighbourhood of an axis
ay : R = X of some hyperbolic isometry g € G.

Proof: Let k € N be given according to Prop. 6.0.21. Let xo € X be a basepoint.
Let A > 1 and € > 0 be given according to the Svarc-Milnor Lemma 1.1.1 such
that the map g — g.xo is a (X, €)-quasi-isometry from Ca(G) to X. Let M >0
be given according to Lemma 6.0.33. Since p is cocompact, there exists an r > 0
such that the G-translates of B, cover X, where B, is the ball of radius r around
ro. Suppose that x,y are two points in X. Firstly, let us assume that ¢ € B,,
and that y € ¢.B, for some g € G. We distinguish between two cases. Case 1:
Suppose |gla > 2k 4+ 2C + 1. Then we get |gla > 2k 4+ 2C + 1; and it follows
from Prop. 6.0.21 that g has a k-separator h. According to Lemma 6.0.33, both
7o and gh.zo lie in the M-neighbourhood of an axis ag : R = X of gh. Note
that we have dx(z, o) < 2r, and

dx (y, gh.z0) < dx(y,9.70) + dx (9.0, gh.z0) < ...
e L 2r AR, +e < 2r+ A2k +2C + 1) t .

Hence, both z in y lie in the (M + 2r + A(2k + 2C + 1) + €)-neighbourhood of
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agn. Case 2: Suppose |gla < 2k + 2C + 1. Then we get
dx(z,y) < dx(z,%0) + dx(20,9.20) + dx(g9.20,y) < 4r + A(2k +2C + 1) + €.

Since p is cocompact, = lies in the 2r-neighbourhood of an axis a; of some hy-
perbolic isometry § € G. It follows that y lies in the (6r + A(2k + 2C + 1) + ¢€)-
neighbourhood of a3. Thus, in either of the two cases both z and y lie in the K-
neighbourhood of an axis a; of some g € G, when K’ ;= M +6r+\ (2k+2C+1)+e.
Secondly, assume that = € ¢,.B, and y € g..B, for some g1,g9, € G. Then both
g7'.z and g;'.y lie in the K"-neighbourhood of an axis a; of some g € G by the
above argument. Hence, both z and y lie in the K’-neighbourhood of g;.a3, and

the latter is an axis of g;gg;"- )

Proof of Thm. 6.0.29: Let k£ € N be given according to Prop. 6.0.21. Let
r € X and 2’ € X’ be basepoints. Let A > 1 and ¢ > 0 be given according to
the Svarc-Milnor Lemma 1.1.1 such that the maps g — g.z and g — g.z’ are
(A, €)-quasi-isometries from C4(G) to X, respectively to X’. Let M, M’ > 0 be
given for p, respectively for p', according to Lemma 6.0.33. By Lemma 6.0.30
the map g.x — g.¢' from G.z to G.z' is a G-equivariant bijection. In order to
prove the theorem it is therefore enough to show that there exists a constant
K > 0 such that d(z,9.2) - K < d'(2,9.2") < d(z.gz) + K for each g € G. We
distinguish between two cases. Case 1: Suppose that |g|4 > 2k + 2C + 1. Then,
by Prop. 6.0.21, g has a k-separator h in GG. Because of Lemma 6.0.33, z lies
in the M-neighbourhood of an axis agn : R — X of gh in X; and 2’ lies in the
M'-neighbourhood of an axis aj;, : R = X’ of gh in X'. Hence, there are ¢,#' € R
such that d(z,a,n(t)) < M and d'(2',a],(t")) < M'. It follows on the one hand

that

d(z,9.z) < d(z,agn(t)) + d(agn(t), gh.agn(t)) + d(gh.agn(t), gh.z) + d(gh.z, g.7)
< |gh|,+2M +X(2k+2C +1) +e¢,
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and on the other hand that

|gh|, = d(agn(t), gh-agn(t))
d(agn(t),z) + d(z,9.z) + d(g.z, gh.z) + d(gh.z, gh.an(t))

< d(z,gx)+2M+ A2k +2C +1) +e.

IA

Analogous inequalities are obtained for d(z’,g.z') and |gh| g Setting B :=
QM +A(2k+2C +1)+€ and R :=2M' + X (2k +2C + 1) + ¢, we get

|gh|,~ R <d(z,9.z) < |gh|,+R
|gh|p,—R' <d(z',9.2) < |gh|p,+R’.

Since the marked length spectra for p and p’ coincide, it follows that
d(r,g.2)— (R+ R') < d'(2',9.2") < d(z,9.2) + (R+ R)).

Case 2: Suppose that |gl4 < 2k+2C+1. Then we get d(z,g9.2) < A(2k+2C+1)+¢
and d'(z',9.2") < A(2k + 2C + 1) + €. Hence,

d(z,g9.z)— (R+ R') < d(2',9.2') £ d(z,9.2) + (R+ R))

holds also in Case 2; and we can take K := R+ R'. 0
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