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Summary

This PhD thesis is concerned with buyers’ strategies in sequential and concurrent auc-

tions. It deals with both the theoretical viewpoint and data analysis of online consumer

auctions. The first chapter contains a newly developed model of sequential auctions with

overlapping generations of bidders. The emphasis is on the existence of learning from

observed past prices. With the addition of overlapping generations the learning happens

through two channels: updating on valuations and expectation of composition of bid-

ders with different horizons lengths. The model shows how this happens on the micro

level, where expected distributions of bids are updated. In the following chapter, the

predictions of theoretical models of sequential auctions together with learning are tested

empirically. It is shown that bidders adjust their bids as a consequence of learning as

predicted by the model. Bid discounting is also observed in the data.

The following empirical chapter uses the bids data from online auctions to perform

multinomial logit estimations. Individual choice model allows to analyze the aspects that

attract bidders to particular auctions out of many very similar ones available. A unique

dataset that contains data from many auctions for the same product is used in this new

way. Dynamic aspects of auctions such as the number of bidders and bids are shown to

play a role in auction choice.

Overall, there are three approaches to the empirical analysis of bidders strategies,

based on the same dataset. It is shown that with appropriate adjustments the data col-

lected from online auctions can be used in different formats to answer various questions.

15
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Introduction

Auctions are used as a selling mechanism across wide range of industries and applica-

tions. They can be often found online for selling consumer goods on various websites

accessible to everyone. Other applications range from procurement auctions, through

treasury securities auctions, to charity and art. Online auctions are advantageous for

analysis of bidder behavior due to a large number of participants and the presence of

multiple auctions for identical products. It is of interest, from the point of view of both

bidders, as well as auctioneers to know more about the relevance of theoretical frame-

works, which often contain predictions for behavior of bidders, in the real world auctions.

Knowing more about the bidder behavior allows, in turn, to develop theory for improved

relevance. This thesis offers various approaches to the investigation of online auctions

data. Based on one dataset analysis of the sequential auctions aspect, the choice between

concurrent auctions and time until the next bid is made. The literature search revealed

that even though the data is rich in information the researchers are very often limited to

the analysis that is implied by the format of data determined at the collection phase. It is

demonstrated in this thesis, that the initial format of data does not need to be restrictive.

In fact one can perform appropriate formating to show, for example, analysis of auction

choice, even though the choice sets were not initially available, and they do not need to

be generated at the time of data collection. Various datasets can therefore be reused with

appropriate formatting in order to answer different questions that may arise.

The data analyzed contains bids on all auctions for the same product across almost two

month period. The fact that the products sold in auctions are almost completely homo-
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geneous is explored in order to identify the impact of variables of interest on bidders’

behavior.

One aspect of behavior that is analyzed is learning by bidders. The theory invoked pre-

dicts that the bidders will adjust their bids in the auction following that follows the

reference auction with price was first observed. The first chapter presents a new model

of sequential auctions, with the addition of overlapping generations of bidders, which

shows why learning by bidders is expected to take place. This model extends the scope

of learning from past prices, in relation to the basic sequential auctions model. In the

new model the condition that the same bidders follow from the reference auction, which

price is observed, to the future auction, which is relevant for bid discounting, is no longer

a necessary condition for learning. There is a different channel through which learning

happens, not related to the revealed information about valuations of bidders in the ref-

erence auction. The mixture distributions of bidders with different horizon lengths are

also relevant for learning, and the future composition of old and young bidders can be

partially revealed by price of finished auctions. The second chapter contains empirical

investigation of learning. Crucially, learning from past auctions is identified to take place,

although after dividing the data into the subsets it is shown that learning persists only

for bidders who bid on the more expensive version of the object. Our intuition is that

the bidders with higher valuation, who bid on the more expensive product version, have

more room to adjust their bids, and therefore they are more prone to displaying learning

in their bids.

Another aspect that is analyzed is the impact of current price, number of bids and bidders

on auction choice. For that purpose the choice model is estimated, where the alternatives

are homogeneous in their characteristics. Dynamic aspects of auctions are identified to

be an important determinant for the choice of the auction in which ultimately bidders

decide to place their first bid. Bidders are deterred by high current price in the auction,

and number of bids, but are attracted to auctions with larger number of current bidders.

The analysis of the behavior through choice model is advantageous because it gets rid of
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the possible biases relating to the timing of the bid - the effect of the variables of interest

are estimated within the choice sets not across the choice sets, which means alternative

times of the bid placement are not influencing the results.
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Chapter 1

Overlapping generations in

sequential auctions - theoretical

model
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Abstract

This paper adds overlapping generations of bidders to the model of sequential auctions.

It is capturing situations where each bidder can enter the market starting at a different

auction. This stylized model shows micro-foundation behind learning from past prices.

The important implications resulting from this extension are that impact of past prices

is on learning not only about bidders’ valuations but also about the distribution of bids

that is a consequence of composition of bidders with different horizon lengths. Although

learning that relates to valuations of other bidders lasts only until the bidders present in

the information acquiry period exit, learning relating to composition of bidders of different

generations (with different horizon lengths) persist further into the future, affecting the

beliefs about all future periods.

1.1 Introduction

In the past years there has been an increasing popularity in the use of auctions across

many fields. It is common for many similar products to be sold in a sequence, and it

seems that it is possible for the price in past auctions to have an effect on the bidding and

outcomes of future auctions. According to existing models in auction theory past prices

should not have an effect on bidding strategies in sequential auctions, both first, and

second price. The achieved price is an indication about the second highest bid though,

and it could be indicative of what is going to be the distribution faced in the following

auction. Sequential auctions are characterized by a symmetric equilibrium including the

bid shading in earlier auctions. Bidders with future opportunities to bid reduce their

bid by their expected surplus from winning in the future. This means that when they

learn something about the future distribution of valuations or number of bidders, they

have space to change their bid upwards (or downwards) in order to adjust to the new

information. Auction theory, to date, has ignored the fact that in the same auction

bidders may be in different periods, which affects their discounting. For example, one
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bidder could be willing to bid in seven auctions, while another one is short of time and will

bid in two auctions. The fact that bidders vary in how many auctions they may participate

in, means that they have different strategies (levels of discounting), even though they

participate in the same auction. The bids are therefore best represented as arriving

from a mixture distribution of different ’age’ bidders. There can be different states,

which are defined by the composition of bidders of different ages. This has implication

for updating: without abandoning the assumption that the distribution of valuations is

public knowledge, there is a new unknown in the model: which state we’re in, and what

is the most likely future state. The price from past auctions provides some information

about what was the ’age’ of the winning bidder, and, as an implication : what was

the most likely state, and what is going to be the next most likely state in the future.

Therefore, the winning bid gives an information about how many old versus young bidders

there were in the last period, as well as what was the most likely age of the winner. The

implications of the overlapping generation model outlined below are that a high winning

bid leads to less discounting in the following period, and, therefore, to an expected higher

price paid in the next period.

1.2 Literature

It is an established result that in sequential auctions, both for the first and second price,

bid-shading in the earlier periods is optimal in a symmetric equilibrium. Furthermore,

price announcements in a sequential first price auction have no effects on the strategies

of bidders. The strategy of bidding in sequential auctions is to discount the bid in a

period by the option value of winning in the next period. For identically-valued objects,

in the first price auction the last period bid will be the expected second highest bid,

while in the second price auction the final period bid will be the valuation for the object.

Milgrom and Weber (2000)[27] prove that the price sequence will be a martingale when

bidders have independent private values. There are two effects in opposite directions, that
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exactly offset each other: On the one hand the symmetric equilibrium strategy of bidding

is increasing for subsequent auctions (since there are less goods left with each auction

completed. On the other hand, since the bidding strategy at each period is increasing in

private valuation, the bidders with highest values win earlier auctions, while those with

lower values stay until the following auctions. The two effects offset each other, and the

price sequence is a martingale.

The revenue equivalence result between simultaneous and sequential auctions can also

be used to show the martingale property of prices (a summary of literature can be found

in Klemperer, 1999 [23]). When bidders have affiliated values[27], the price sequence

is a sub-martingale, since the signal revealed after each auction reduce the winner’s

curse, and bidding is more aggressive in subsequent periods. As authors point out, the

price sequence is never a decreasing sequence, which stands in contrast to the decreasing

prices found in empirical research (for example Ashenfelter, 1989 [3]). The sequence of

expected prices in both first and second price auctions are the same in the case of private

values. The different explanations in literature related to declining prices can be found in

Trifunović (2014)[34]. One of the first models to explain the declining prices is based on

bidders’ risk aversion. McAfee and Vincent (1993)[25] provide a model where in the case

of bidders’ non-decreasing risk aversion prices are falling in equilibrium. Bernhardt and

Scoones (1994)[10] consider sequential auctions of two objects, where the bidders learn

their valuation of the second object after the first auction is completed. Therefore the

expected surplus from the second auction is the same for all bidders. The bid discounting

in the first round for individuals with higher values is therefore relatively lower than that

of those with lower values, and as a result the price sequence is declining.

Price announcement have no effect in the case of sequential first price auction and

single-unit demand, as they do not reveal any information about the remaining bidders.

Only for second price auctions do price announcements reveal the bid of one of the re-

maining bidders, which created information asymmetry ([27]). Kittsteiner et al (2004)[22]

prove that bidding strategies for both first and second price sequential auctions are not
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dependent on price announcements. They also analyze a case where the valuations for

the objects are decreasing for later periods (due to time preference) and show that the

resulting price sequence will be a super-martingale for both first and second price auc-

tions.

This paper adds overlapping generations of bidders to the literature on sequential

auctions outlined above. The focus of the paper is bidders’ strategies, where sellers are

taken as exogenous to the model. A related model introducing a degenerate case of

overlapping generation is Zeithammer (2007)[38], where only two types of valuation L or

H are considered, and the low-valuation bidders do not shade their bid in the first period.

The author’s focus in that paper is on the seller’s strategy dependent on the observed

prices, where he seller uses their strategic auctioning to reduce bid-shading by the high

valuation bidders. On the other hand, the current paper is trying to answer the question

related to bidders’ learning from past prices, given continuous support of valuations for

the object.

1.3 Preliminaries

1.3.1 Equilibrium

Bayesian Nash Equilibrium

The Bayesian Nash Equilibrium, as introduced by Harsanyi(1967) treats a game of in-

complete information as the one with imperfect information. If a buyer does not have

complete information about other buyers’ valuations, it is taken as if he has uncertainty

about their types. That uncertainty is expressed through probability distribution over

types of buyers. Nature, as an additional player, chooses the types for players before

the game starts. Each player observes their type, but not the types of other players.

The initial distribution from which the types are drawn is known to all the players, and

the strategies chosen are taking this information into account. The standard notation
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needed to describe this equilibrium formally is as follows. The set of players is denoted

as I = {1, 2, ..., n}. The set of possible types of each player i ∈ I is denoted by Xi, this

set can be an interval, [v, v], as in later sections. f(·) is the probability distribution over

X = X1 × X2 × ... × Xn, reflecting the probabilities attached to each combination of

types occurring. The set of strategies for player i ∈ I is denoted as Si and si : Xi → Si

is the decision function for player i. It is a mapping from the set of possible types to

the set of possible strategies (in particular, if all players’ types are derived from the same

distribution over types, then Xi = Xj, for all i, j). The probability distribution of types

x−i of the players j 6= i given that i knows his type is xi, is denoted by f̂i(x−i|xi). Player i

updates his prior information about the distribution of other types after learning his own

type xi. Let’s denote Wi(si, s−i, xi, x−i) i’s profit given that his type is xi, that he chooses

si and that other players follow strategies s−i(x−i) = (sj(xj))j 6=i, where sj : Xj → Sj is

j’s decision function, and their types are x−i.

Definition 1. A Bayesian Game is defined as a five-tuple

G = [I, {Si}i∈I , {Wi(·)}i∈I , X1 ×X2 × · · · ×Xn, f(·)] (1.3.1)

Definition 2. A Bayesian Nash equilibrium is a list of decision functions (s∗1(·), · · · , s∗n(·))

such that ∀i ∈ I,∀xi ∈ Xi and ∀si ∈ Si:

∫
x−i∈X−i

Wi(s
∗
i , s
∗
−i, xi, x−i)df̂i(x−i|xi) ≥

∫
x−i∈X−i

Wi(si, s
∗
−i, xi, x−i)df̂i(x−i|xi) (1.3.2)

Definition 3. A symmetric Bayesian Nash equilibrium is such that all players choose

the same decision function.
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Dominant Strategy

Definition 4. A strategy si is a dominant strategy for player i if

Wi(xi, si, s−i) ≥ Wi(xi, ŝi, s−i) (1.3.3)

for all ŝi ∈ S and for all s−i ∈ Sn−1

The dominant strategy for player i is therefore a strategy which maximizes i’s payoff

for any possible strategies of other players. An equilibrium in dominant strategies occurs

if every player plays their dominant strategy.

Definition 5. An outcome (s∗1, ..., s
∗
n) is an equilibrium in dominant strategies if s∗i is a

dominant strategy for each player i, i = 1, ..., n.

An equilibrium in dominant strategies is always also a Bayesian Nash equilibrium,

but the opposite is not always true.

1.3.1.1 Extensive Form Games

Games in which players’ moves happen in specified order, are a particular type of games

called Extensive form games. In this case the game lasts for a number of periods and at

each period certain moves of players take place. Nash and Bayesian Nash equilibrium are

defined for the Normal-form games, which do not have a time sequence of moves. For

the extensive form games the most relevant equilibrium concept is Perfect Bayesian

Equilibrium. In extensive form games there is history of the game, which relates to all

the past periods as well as a continuation game which refers to the periods (information

set and nodes) that follow. The player has beliefs about the current node and all the

nodes that have been reached before, as well as all the future nodes. The belief relates

to the probability of a particular node in the game tree. A sequence of nodes is the

history path, and each history path has an attached probability according to the beliefs.

Beliefs about the probability of continuation game paths allow the players to calculate
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the expected payoff from continuation games. Before the move, the conditional beliefs

from each strategy can be calculated which allows for calculation of conditional expected

payoffs and strategy choice. Beliefs are derived through Bayes rule wherever possible.

Remark. At each information set a player who gets to move must have a belief about

which node in the information set has been reached by the game

It is required that at the equilibrium a player’s strategies must be sequentially

rational. That is, at each information set the actions by the players must form a Nash

equilibrium of the continuation game.

Remark. A strategy is sequentially rational for player i at the information set h if player

i would want to choose the action prescribed by the strategy if h is reached.

The beliefs that players have must be consistent. Consistent beliefs are such that

for i, j ∈ I, where I is a set of players, player i’s updated beliefs are consistent with

the probability distribution induced by any chance events and player j’s strategy. PBE

requires weak consistency of beliefs:

Remark. Beliefs must be weakly consistent with strategies. That is, they are obtained

from strategies and observed actions via Bayes rule whenever possible.

Weak consistency and sequential rationality are linked through the following theorem:

Theorem 1. Suppose σ is an equilibrium in behavior strategies in an extensive form game

with perfect recall. Let h ∈ H be an information set that occurs with positive probability

under σ, and let d be a vector of beliefs that is weakly consistent with σ. Then σ is

sequentially rational for player i at information set h with beliefs d.

Perfect Bayesian Equilibrium

Sequential rationality and weak consistency are all the necessary components that allow

for the definition of PBE. Perfect Bayesian Equilibrium is a solution concept that is

stronger than Nash Equilibrium, eliminating the strategies that fail under additional
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requirements The equilibrium is defined by the pair of strategy profile and a belief vector,

an assessment (σ,d).

Definition 6. An assesment (σ∗,d∗) is a perfect Bayesian equilibrium (PBE) if the strate-

gies specified by the profile σ∗ are sequentially rational given beliefs d∗, and the beliefs d∗

are weakly consistent with σ∗.

This equilibrium concept requires not only reasonable strategies, but also reasonable

beliefs. The equilibrium consists of both, the beliefs, and the strategies. The equilibrium

is somewhat circular in the sense that strategies must be optimal given beliefs and beliefs

are derived from strategies. It is also certain that for any finite game with perfect recall

a Perfect Bayesian Equilibrium exists.

Theorem 2. If (σ, d) is a perfect Bayesian equilibrium of an extensive-form game with

perfect recall, then σ is a mixed-strategy Nash equilibrium. For any finite extensive-form

game, a perfect Bayesian equilibrium exists.

For games of imperfect information, there is an additional move by Nature at the

beginning of the game. Given that it is assumed that the distribution from which the

Nature randomly chooses is known to the players, the perfect Bayesian equilibrium beliefs

are also consistent with strategies of other players, but they are in a form of a probability

distribution function that may be continuous distribution over all the possible types of

other players in the game.

1.3.2 Sequential auctions equilibrium

Auctions can be defined in a similar way as any game of imperfect information, above. Let

i ∈ I, where I = {1, 2, 3, ...} be the numbering for individuals. Each individual has their

type. The set of possible types is V , and elements in this set, v ∈ [v, v] , which defines

the upper and lower bounds of the set of valuations. Of course the set of valuations could

be unbounded, but this is the case I want to focus on for simplicity. I am considering
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the case of independent and identically distributed valuations, and therefore each vi is a

random draw from a probability distribution with CDF Fv(v), and PDF fv(v). The types

for each player are drawn before the game starts, and each player learns their type. The

term vi is player i’s valuation for the object (and also their type). Let Wi,n(vi) be the

expected surplus of player type vi in nth auction, in which the player participates in. n

belongs to a bounded set of Natural numbers. Suppose the final period for each player is

period j = max{n}. Wi,n(vi) is the expected surplus for player type vi in period n. Since

for player’s strategy it is only important what is the period they are in, I will call period

n the player’s nth period. The symmetric Perfect Bayesian Equilibrium is such that each

player has a sequentially rational strategy defined by a period-specific function bn(vi),

and beliefs used for calculation of continuation game surplus are consistent. Standard

sequential auctions model considers the case where all players are in the same period. In

this case, the game to consider is a finite game with the number of periods equal to the

lifespan of bidders.

Suppose that the distribution of bids that player i faces in period j is Fj(.). The

PBE strategy for player i is such that he has no intention to deviate no matter what are

the strategies of other players in the given period. This condition can be reiterated as:

player ith chosen strategy is independent of the distribution of bids he faces, Fj(.) in the

current node.

Remark. The equilibrium bidding strategy of player i in period n is characterized by the

fact that it is independent of the distribution of bids in period n: Fn(.)

The strategy is calculated using the expected payoff of the continuation game, which

is based on the Nature’s distribution of types of other bidders.Therefore, given distri-

bution of valuations Fv(v), the optimal bidding strategy can be found by maximization

at each period and backward induction. Subsequently, checking that the nth period

strategy,bn(v), is independent of Fn(.) and solving by backwards induction will be neces-

sary and sufficient for the strategies to be sequentially rational, and to confirm that this

is the PBE strategy. The equilibrium strategy as a function of valuations - bn(v), is the
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equilibrium strategy in the symmetric equilibrium.

Theorem 3. The necessary and sufficient conditions for finding equilibrium strategy bn(v)

in the sequential auctions game:

1. bn(v) is the solution to maximization

2. bn(v) is derived through backward induction, using consistent beliefs for the bids in

continuation game

2. bn(v) is independent of Fn(v).

First, the optimization problem needs to be solved. Let’s consider the second price

auction. The model solved below is the equilibrium strategy of bidder i with valuation

vi, where the distribution of the second highest bid is defined by a CDF of F2,n(.) and

pdf of f2,n(.). The solutions are derived for the last period, j, and the previous period,

j − 1 through backward induction. The notation is that bi,j = bj(vi) is the bid of bidder

i in period j, and Wi,j = Wj(vi) is the surplus of bidder i in period j. The star marks

the optimal solution (arrived at through maximization), where W ∗
i,j is the expected sur-

plus(profit) of bidder i in period j and b∗i,j is the optimal bid of bidder i in period j.

Analogically, W ∗
i,j−1 is the expected surplus of bidder i in period j − 1 and b∗i,j−1 is the

optimal bid of bidder i in period j − 1.

Starting from the below formula for expected profit, the optimal solution, which is

bi,j = vi can be arrived at through differentiation (to satisfy the First Order Condition),

as it is done in any standard maximization problem:

maxbiWi,j =

∫ bi,j

0

(vi − b2)f2,j(b2)db2 (1.3.4)

∂Wi,j

∂bi,j
= (vi − bi,j)f2,j(bi,j) = 0
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bi,j = vi

In the case that the surplus functions is continuous and differentiable in the whole domain,

it is enough to check for the second order condition for the maximum, since the first order

condition has shown only single stationary point.

Remark. If W ∗
i,j(bi,j) is continuous and differentiable, then the maximum is found by

solving the is the First Order Condition
∂Wi,j(bi,j)

∂bi,j
= 0 and Second Order Condition

∂2Wi,j

∂2bi,j
< 0 .

In order to find out if this is the maximum, the Second order condition needs to be

satisfied, and therefore:

∂2Wi,j

∂2bi,j
< 0 (1.3.5)

And this is satisfied.

So, the optimal bidding strategy is a function of valuation, b∗j(vi) = vi. The strategy

is independent of f2,j(.), and therefore it is the symmetric equilibrium strategy:

Theorem 4. The Symmetric Equilibrium Bidding strategy for the last period second price

auction is b∗j(vi) = vi

Now, substituting that back to get the last period expected profit, when bidder i bids

according to their equilibrium strategy:

W ∗
i,j =

∫ vi

0

(vi − b2)f2,j(b2)db2 (1.3.6)

This can be re-arranged in order to arrive at an expression in terms of ”probability of

winning × Surplus in the case of winning”:

W ∗
i,j = vi

∫ vi

0

f2,j(b2)db2 −
∫ vi

0

b2f2,j(b2)db2 = (1.3.7)
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= viF2,j(vi)− [viF2,j(vi)−
∫ vi

0

F2,j(b2)db2] = (1.3.8)

= F2,j(vi)vi − F2,j(vi)(vi −
∫ vi

0

F2,j(b2)

F2,j(vi)
db2) (1.3.9)

= F2,j(vi)[vi −
∫ vi

0

(1− F2,j(b2)

F2,j(vi)
)db2] = (1.3.10)

= Pr(b2 ≤ vi)[vi − E[b2|b2 ≤ vi]] (1.3.11)

1

Now, the steps need to be repeated for period j − 1. We already know what is the

expected jth period surplus, and the surplus in j − 1 is expected surplus in j − 1 plus

the expected surplus in j, but of course only in the case of losing.

The surplus in period j − 1 :

Wi,j−1 =

∫ bi,j−1

0

(vi − b2)f2,j−1(b2) +

∫ ∞
bi,j−1

W ∗
i,jf2,j−1(b2)db2

Period j − 1 maximization problem is therefore:

maxbi,j−1
Wi,j−1 =

∫ bi,j−1

0

(vi − b2)f2,j−1(b2) +

∫ ∞
bi,j−1

W ∗
i,jf2,j−1(b2)db2

First Order Condition:

(vi − bi,j−1 −W ∗
i,j)f2,j−1(bi,j−1) = 0

On the condition that f2,j−1 is positive in the whole domain, there is only one sta-

1The second term from line (3) is expanded by integration by parts to line (4) and then gets the
form as in line (5) - there F2(vi) = Pr(b2|b2 ≤ vi) as it is the cumulative of the second highest bid (the

highest of N-1 bidders), and the integral of the survival function is equal to E[b2|b2 ≤ vi], as F2(b2)
F2(vi)

is

the cumulative function of the second highest bid divided by the probability that the second highest bid
is below vi.
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tionary point:

bi,j−1 = vi −W ∗
i,j

The bid is discounted by the expected profit in period j. Since there is only one

stationary point, and the function Wi,j−1(bi,j) is continuous and differentiable in the

whole domain,in order to confirm that the solution is a maximum, it is sufficient to show

that the second derivative at this point is negative. The Second Order Condition:

∂2Wi,j−1

∂2bi,j−1

< 0 (1.3.12)

,at bi,j−1 = vi −W ∗
i,j. And this is satisfied.

This shows that the solution bj−1(vi) = vi−W ∗
i,j is the optimal bidding strategy in period

j − 1 for bidder with valuation vi. It is easy to see that this expression is independent

of the distribution of other bids in period j − 1, and as a result it is independent from

strategies of other bidders in j− 1, and uses consistent beliefs for calculation of expected

surplus in j. Above proves that bi,j−1 = vi −W ∗
i,j is the PBE strategy for period j − 1,

and the same is true for every i, which means that we have found the equilibrium bidding

function for a symmetric perfect Bayesian equilibrium:

Theorem 5. The bidding function b∗j−1(vi) = vi −W ∗
j (vi) is the equilibrium strategy for

symmetric Perfect Bayesian equilibrium of period j − 1 second price auction.

As it has just been pointed out, b∗j−1(vi) is independent from distribution of other bids

in j − 1. It is, though, dependent on distribution of other bids in period j, since W ∗
i,j is

dependent on f2,j(). No deviation from equilibrium bidding strategy is ever profitable, and

therefore as long as bidders are rational, all bidders will bid according to b∗j(v) (sequential

rationality). The only possible f2,j(v) is therefore calculated under the assumption that

all bidders bid according to b∗j(v). This distribution is marked with asterisk, since in the

same way as W ∗
j (v), it is the result derived from equilibrium bidding.
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Remark. f ∗2,j(v) is the distribution of the second highest bid in period j calculated under

assumption that all bidders bid according to their equilibrium strategy in period j.

Remark. The equilibrium strategy in period j−1 is independent of other bidders strategies

in period j − 1 (bj−1(v) indep. f2,j−1()), but it is calculated with the assumption that

all bidders bid according to their equilibrium strategies in period j. The distribution

f2,j() = f ∗2,j(), which allows, in period j−1, to treat W ∗
j (vi) as a known constant for each

type vi.

The solution can be further extended to earlier periods, and the expected surplus from

j − 1 is going to be used in strategy calculation for period j − 2. This expected surplus

is calculated below.

By substituting the equilibrium strategy in the expected surplus, the formula for

expected surplus in PBE is arrived at below:

W ∗
i,j−1 =

∫ vi−W ∗i,j

0

(vi − b2)f2,j−1(b2)db2 +

∫ ∞
vi−W ∗i,j

W ∗
i,jf2,j−1(b2)db2

This can be rearranged, in the same way as with jth period profit in the case other forms

are easier to interpret:

= vi

∫ vi−W ∗i,j

0

f2(b2)db2 −
∫ vi−W ∗i,j

0

b2f2(b2)db2 +W ∗
i,j −W ∗

i,jF2(vi −W ∗
i,j) =

= F2(vi −W ∗
i,j)v − F2(vi −W ∗

i,j)

∫ vi−W ∗i,j

0

(1− F2(b2)

F2(v)
)db2 +W ∗

i,j −W ∗
i,jF2(vi −W ∗

i,j) =

= F2(vi −W ∗
i,j)(v −W ∗

i,j)− F2(v −W ∗
i,j)

∫ vi−W ∗i,j

0

(1− F2(b2)

F2(vi −W ∗
i,j)

)db2 +W ∗
i,j =
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= F2(v −W ∗
i,j)[(vi −W ∗

i,j)−
∫ vi−W ∗i,j

0

(1− F2(b2)

F2(vi −W ∗
i,j)

)db2] +W ∗
i,j = (1.3.13)

= Pr(b2 ≤ vi −W ∗
i,j)(vi −W ∗

i,j − E[b2|b2 ≤ vi −W ∗
i,j]) +W ∗

i,j

In the equation above we can see how the current valuation is discounted by the

expected profit from future auction.

Alternatively, re-writing differently line numbered (8) above:

= F2(vi−W ∗
i,j)[vi−

∫ vi−W ∗i,j

0

(1− F2(b2)

F2(vi −W ∗
i,j)

)db2] + (1−F2(vi−W ∗
i,j))W

∗
i,j = (1.3.14)

= Pr(b2 ≤ vi −W ∗
i,j)(vi − E[b2|b2 ≤ vi −W ∗

i,j]) + (1− Pr(b2 ≤ vi −W ∗
i,j))W

∗
i,j

A general take-away is that in the case of sequential auctions, in period j − 1 bidders

discount their bid by the expected surplus from period j. This discounting is lower for

bidders with low valuations - since their expectation of possibility of winning in the final

period is lower. Discounting increases with valuation, and high-valuation bidders are

discounting their bids by the highest amount. The discounting depends on the expected

distribution of the second highest bid in the next period which is calculated using consis-

tent beliefs. Rationality implies that the distribution of the second highest bid has to be

calculated under the assumption of equilibrium strategies (consistent beliefs), and that

can be used for calculations of discounting in earlier periods.

In order to make the definitions more clear I will introduce some basic notation from set

theory to distinguish between the sets of valuations and bids. The set of valuations has

been defined at the beginning of this section, it is the set V s.t. each element of the set
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vi ∈ [v, v]. Now, let’s introduce the sets of bids, which are important for the definitions

of bidding functions:

The set of expected bids in period n is defined as Bn, and it has upper and lower bound

so that the elements in set Bn are zi,n ∈ [zn, zn]

Function b∗n is a mapping from the set of valuations V to the set of expected bids in

period n, Bn.

Theorem 6. The symmetric perfect Bayesian equilibrium of sequential second price auc-

tion game gives as solution:

- A vector of bidding functions for each age bidder B∗(v) = {b∗j(v), b∗j−1(v), b∗j−2(v), ..., b∗1(v)}

-A vector of beliefs about the distributions of bids in each period {f ∗j (zj), f
∗
j−1(zj−1), ..., f ∗1 (z1)}

Where:

For each n, the equilibrium bidding function takes the form b∗n(vi) = vi −W ∗
n+1(vi), and

it is a mapping from set of valuations to the set of period n bids.

The next period surplus, W ∗
n+1(vi) is calculated under rationality assumption.

Rationality implies that in expectation:

1.Bidders bid according to b∗n(vi), which implies that

2.The distribution of bids is f ∗n(zn), and is calculated with the assumption that bidders

bid according to b∗n(v)

3.The expected surplus is W ∗
n(vi) and is calculated using both above points 1. and 2.

Since the equilibrium bidding strategy implies discounting of valuations, as mentioned

before, it can be easily seen that the upper bound of the set of bids in each period has

to be lower or equal to the upper bound of the set of valuations, and that with earlier

periods the upper bound of the set of bids has to be decreasing.

Remark. The discounting of bidding for earlier periods implies that

v ≥ zj ≥ zj−1 ≥ zj−2 ≥ ... (1.3.15)
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The distributions of bids, mentioned before are defined on the sets of equilibrium bids

in each period.

Remark. The support of distribution f ∗n(), and all distributions of order statistics based

on it, such as f ∗2,n(), is the set Bn, with bounds [zn, zn].

1.3.3 Mixture Distributions

Distributions of mixtures of random variables are called mixture distributions. Mixture

distributions are used the following model, which is why current section introduces this

concept to the reader. Mixture distributions relate to cases where multiple random

variables with given weights are combined together, and the issue is to know the overall

distribution. The easiest way to show what mixture distributions are is to use a very

general example. Suppose there are two different types of random number generators.

Suppose further that these random number generators are some type of objects, for

example red cubes, which only have one button and a display on top. After pressing the

button a random number appears on the display. Both types of the device look exactly

the same, but they differ in the probability distributions from which the random numbers

are drawn. The first type, T1, uses a probability density fT1(.), while the second type,

T2 uses a probability density fT2(). There are 5 of these generators on the table, and

it is common knowledge that 2 of them are of type T1, while 3 of them are of type T2.

A person chooses one generator at random. In expectation the probability distribution

from which the generated number will be derived is the mixture between fT1(.) and fT2()

with weights 2
5

and 3
5
. Algebraically, the mixture distribution called fM,T1,T2() is equal

to: fM,T1,T2() = 2
5
fT1() + 3

5
fT2(). This closely relates to the use of basic rules for union of

conditional probabilities. The density function fM,T1,T2() shows the probability densities

attached to each number x ∈ <. Let’s denote the probability density by small letter p,

while discrete probability by a large letter P . Then,

p(x) = (P (T1) ∩ p(x|T1)) ∪ (P (T2) ∩ p(x|T2))

37



, which exactly implies the formula for mixture distribution:

fM,T1,T2() =
2

5
fT1() +

3

5
fT2()

, since P (T1) = 2
5
, P (T2) = 3

5
, p(x|T1) = fT1(x), p(x|T2) = fT2(x), and P (T1) indep.

p(x|T1), P (T2) indep. p(x|T2), as well as (P (T1) ∩ p(x|T1)) ∩ (P (T2) ∩ p(x|T2)) = ∅.

For the following chapter it is also valuable to note, that mixture distributions are very

often multiple-peaked. Combining two single-peaked distributions in a mixture, will most

likely result in a two-peaked mixture distribution, unless the peaks of both elementary

distributions are in exactly the same place.

1.3.4 Distributions of Order Statistics

In the following sections distributions of first and second highest order statistic are often

referred to. Due to the fact that in literature there are different conventions, the current

introduction provides the definitions and naming used throughout the document. The

highest order statistic out of Z draws from a distribution with probability density function

fA(x), and cumulative density function FA(x), is denoted f1A(x), where A refers to the

original distribution, and 1 to the number of the order statistic, counting from the top.

As it can be noticed the number of draws are not used in the notation for order statistic

distributions used throughout the chapter. It is assumed that the number of draws used

for calculations can be easily found from definitions, and that these do not have to be

reminded in the notation used for order statistic distributions. For Z draws the formula

for the highest order statistic is:

f1A(x) = ZFA(x)Z−1fA(x)
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For the second highest order statistic of Z draws from distribution fA() the formula is:

f2A(x) =
Z2 −Z

2
FA(x)Z−2(1− FA(x))fA(x)

Probability density functions are most commonly used throughout the chapter, but anal-

ogous naming convention is used for the cumulative distribution functions. The CDF

of the highest order statistic of Z draws from distribution with cumulative distribution

function FA(x) is F1A(x), and of the second highest order statistic: F2A(x).

The general definition for the density function of the Kth highest order statistic from Z

draws from fA(x) is:

fKA(x) =
Z!

(Z −K)!(K − 1)!
(FA(x))Z−K(1− FA(x))K−1fA(x) (1.3.16)

1.4 Model of Sequential Auctions with Overlapping

Generations of Bidders

The model of sequential auctions relates to the case of auctioning several items in a

sequence of periods. I will keep to the notation that each period one auction is taking

place. The attention in the previous section has been purposefully drawn to several

aspects of this model. In particular, in order to calculate the amount of discounting,

the expectation of the distribution of bids in the following period need to be known. As

mentioned above, this distribution is calculated under the assumption of rationality of

other bidders. In most of the literature, the expected surplus, used for discounting is

calculated with either the assumption of exogenous, constant distribution of other bids,

or with the assumption that all bidders enter the bidding in the same auction, bid in a

sequence, and later all leave together after the final auction in the sequence. In short,

that second assumption could be equivalently phrased as: all bidders are assumed to

be in the same period, or the same ”age”- expected to leave after the same sequence of
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auctions. According to y knowledge it has never been studied what impact on bidding

could an introduction of bidders entering at different time periods in the sequence of

auctions have. Clearly, bidders entering at different auctions would imply coexistence of

bidders with different lengths of horizons, and as a result with different period-specific

strategies in the same auction. There is no reason to take for granted that this would not

have any impact on the equilibrium strategies, which is why this paper extends the model

of sequential auctions by this crucial element. The current paper proposes a model, where

bidders enter the sequence of auctions at different periods. The model has been named

”overlapping generations model”, because the groups of bidders entering the sequence

of auctions at the same period are called generations, and the numbering of auctions in

which each bidder participate is the age of the bidder. The total number of auctions the

bidder participates in is called the life-span of bidder. The model I am proposing is a

cyclical model, in the sense that bidder’s lifespan is defined a priori, and new generations

of bidders enter in each period until the infinite future. In most cases, bidders who enter

the game have an unknown, infinite number of auctions behind them, as well as in front

of them, and therefore the equilibrium for such case is considered. It is not as common

that the bidder enters, for example, in the first auction or at an auction of a known

order. The arrival at equilibrium happens in an evolutionary way beginning with the

first auction, and if the beginning of a sequence of auctions were analyzed, no stationary

equilibrium could be found. The model focuses on some middle auction in the infinite

sequence, where the rational assumption is that all bidders are in the stable equilibrium.

Analyzing the beginning of the sequence o auctions is also interesting, but it does not

give the possibility of finding a symmetric equilibrium, and does not, therefore, allow to

get as much insight into the model. The following sections of this paper are detailing

the model. In the first place, the Stationary Perfect Bayesian Equilibrium of the game is

considered. Later, price announcements are introduced, and as a result the impact of the

revealed information on learning is analyzed. Simulation results for the 2-period model

are presented in the following section. Furthermore possible extensions to the model, and
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their limitations, are discussed, and the last section contains conclusions containing the

most important implications to be derived from the model.

1.4.1 Rules Of The Game

The game considered is a sequential auction game, where players are bidders in the auc-

tions. The players choose their optimal strategies based on the assumption of rationality

of other players. The basic rules of the game are as follows:

A1 Seller is taken as exogenous to the model, and an infinite series of identical objects

are sold in a sequence of auctions. Each period one auction takes place, and periods

are numbered t ∈ {1, 2, 3, ....,∞}

A2 N new single-unit demand buyers enter in each period t. Each individual bidder is

uniquely identified with their index i ∈ I, where the set of index is a set of Natural

numbers I = N .

A3 Bidders life-span determines how many periods they participate in. 2-period-lived

buyers take part in two auctions in a sequence, while 3-period-lived buyers take part

in 3 auctions in a sequence. Bidder i’s age is τi, and for two period lifespan bidders

τ ∈ y, o, while for 3-period lifespan bidders τ ∈ y,m, o. The letters y,m, o are used

in order to refer to the age as ”young, medium or old”, instead of numbering, since

the numbers are reserved for time periods t. With longer lifespans more medium

ages would be distinguished, so that τ ∈ y,m1, ...,mN , o.

A4 Possible valuations for the object, v’s, belong to the set V ≡ {v ∈ <|v ≤ v ≤

v}. v and v are the lower and upper bounds of the set V and in the simplest

case it is assumed that v ≡ 0 and v ≡ 1. The distribution over these valuations

has a cumulative distribution function (CDF) Fv(v) with continuous and strictly

positive probability density function fv(v). The support of the distribution Fv(v)

is the set V . Before the game starts each buyer gets their valuation vi, which is
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sometimes called their type. The valuations, vi, are drawn independently from fv(v)

(independent private values).

A5 All auctions follow immediately after each other, and there is no time discounting

between periods

A6 Bidder i learns their valuation before the game starts, and knows that all other

bidders’ valuations are drawn independently from Fv(v).

A7 Bidders are rational.

The simplest version of the model, where bidders have 2-period life span, is the main

focus of the paper. The model is solved for the Symmetric Perfect Bayesian Equilib-

rium (PBE). The impact of price announcements is analyzed through introduction of an

external observer and one bidder with a 3-period lifespan in the following sections.

1.4.2 Two Period Lifespan

Time periods are numbering auctions taking place in an infinite sequence. The number-

ing of periods is defined as t ∈ {1, 2, 3, ...,∞}. Each period t, N new buyers arrive. First

I will consider the case of some period t, where the number of auctions before and after

t is an unknown λ− and λ+, and λ{−,+} → ∞. Current period will be often related to

as period t, and therefore previous period as t − 1, and the future period as t + 1. Due

to the cyclical nature of the model, any period where λ{−,+} → ∞ could be period t as

it is exactly the same in terms of bidders equilibrium strategies, this is why t, t− 1 and

t + 1 are just used to distinguish the sequence of periods in relative not absolute terms.

The buyers, who take part in the auctions, live two periods each, and therefore, from

their point of view there are only two periods, which are defined as their age τ ∈ {y, o}.

Period y is the first auction when the buyer arrives at the auctioning place, while period

o is the second (and last) auction in which the buyer participates. The letters y and o

relate to the bidder’s young and old age. There is no information revealed about the
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price achieved in the previous auctions, and therefore the information available to bidder

i is their own valuation vi, the distribution from which valuations are drawn fv(), as well

as the rules of the game consisting of the number of bidders entering each period, the

bidders’ lifespan, time period t at which they enter the sequence, as well as λ{−,+}, and

the fact that the objects are being sold in a sequence of second-price auctions. For all the

auctions far from the start of the auctioning, where λ{−,+} →∞ there exists a symmetric

equilibrium strategy S∗(vi) = {b∗y(vi), b∗o(vi)} which consists of decision bidding functions

for age y and o of bidders as a function of the bidder’s type. The equilibrium bidding

strategies will be defined for the two periods τ for the buyer.

Since there are N new buyers with age τ = y at each time period t, the system can

be in one of the two possible states S ∈ {A,B}, where the states are defined by the

number of bidders in their period y, and o. Transition between states depends on the τ

of the winning bidder in the previous auction, in t − 1, which makes the state diagram

a closed graph. Equilibrium needs to be solved for the strategies of the buyers, but, due

to the game’s cyclicality, other elements such as probabilities of states A and B , and

distributions of bids in state A and B, will be part of the solution as well. What will

become clear later, the equilibrium to this game is a fixed point, which consists of buyers

strategies S∗(vi) = {b∗y(vi), b∗o(vi)}, probabilities of each of the states {P ∗(A), P ∗(B)} as

well as the probability densities of bids for each generation {f ∗y (), f ∗o ()} and probabil-

ity densities of bids in each of the states {f ∗A(), f ∗B()}. Other elements which are part

of the equilibrium solution are probabilities of each age winning in each of the states

{Pr∗S(τ)}{S∈{A,B};τ∈{y,o}}.

Definition 7. S(ny, no)is state S with ny bidders with τ = y and no bidders with τ = o.

The system can be in one of two states at each point in time. These states are defined

as A(N,N − 1) and B(N,N). Figure 1 shows the transition diagram between the two

states.

Definition 8. PrS(τ) is the probability that a bidder with age τ wins in state S
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Figure 1.1: Two-period-lived Bidders Model, State Diagram

Given no price announcements, the bidders cannot infer in which state the system is.

Therefore the young and old bidder’s strategy has to be found without this information.

Young bidder (at τ = y) will have an intention to reduce their bid by the expected surplus

from his τ = o.

Definition 9. Pr(S) is the probability that the system is in state S.

A general definition for order statistics from distributions, used throughout:

Definition 10. fi,D(.)- PDF of the i-th highest bid from distribution D. For example

f2,A is the PDF of the second highest bid in state A.

Definition 11. All individual valuations are elements of the set of valuations V , between

[v, v]

Definition 12. The set of young bids is Y , between [v, z], where z < v, as z = b∗y(v)

Definition 13. The bidding function for old bidders f ∗o (v) : V → V , and the bidding

function for young bidders f ∗y (v) : V → Y

Bidder in their period τ = y will bid according to by(v), while in period τ = o

according to bo(v). These functions are the symmetric Bayes Nash equilibrium strategies
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for the buyer’s maximization problem. The densities of the distributions of old and young

bidders’ bids combined together as a mixture distribution form the distribution of bid in

states A and B. The weights for mixture distribution in each of the states depend on the

proportion of period τ = y and τ = o bidders.

Definition 14. fv(v) - PDF of bidders valuations, for which support is the set V

Young bidders have a symmetric strategy in equilibrium to shade their bid.

Definition 15. fy(z) - PDF of young bidder’s bids, for which support is the set Y .

Distributions of old bidders’ bids are different in each of the two states. In state B,

with N old bidders, all of the bidders participating in the first period as young go on to

the second period as old, and this transition is conditional on young not winning in t− 1

in any of the states. In state A, there are N-1 old bidders, and that is due to the fact

that in any of the states in t − 1 one of the young bidders have won, so conditional on

a young winning, the remaining bidders are present as old in state A. I will define these

distributions below, but first a general definition for the remaining bidders:

Definition 16. fR,(D) =
∑N−1

n=1
1

N−1
fn,(D) = 1

N−1
(NfD− f1,D). Distribution of all but the

highest order statistic from the original distribution D with N draws. That is also equal

to 1
N−1

(NfD − f1,D).

In the definitions of old bidders distributions some terms, which more detailed defini-

tion will follow later need to be used, so for now I will just briefly introduce them: b(v) -

is the bidding function of young bidders, and it maps valuations to young bidders’ bids;

fA(s) - is the distribution of bids in state A; fB(s) - is the distribution of bids in state

B; P (A) - the probability of state A; P (B) - the probability of state B.

In order to find the distribution of old bidders in state A and B, first the distribution

of bidders who continued to the next state needs to be found. In expectation slightly

different distribution of young bidders continue to state A than to state B. First, let’s
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look at state B. Only young bidders who haven’t won continue as old to state B, but

additionally, it is the case that in states before state B an old bidder has won. Both these

information together mean that the valuations of young bidders who continue to state B

are on average higher than the valuations of bidders who continue to state A.

Definition 17. The young bidders who continue to state B are distributed with probability

density :fyt−1,B(z) = P (A)(fR,A(z)fy(z) ∗ C1) + P (B)(fR,Bfy(z) ∗ C2)

Definition 18. fo,B(v) = fyt−1,B(b−1
y (z)) . The distribution of old bidders’ bids in state

B is not exactly the distribution of valuations, there is additional information that is now

revealed, the old bidders in state B have not won as young bidders, so as young, they are

the remaining bidders (all but the highest bidder from the state distribution), but they are

also all the young bidders (so their distribution is conditional on young not winning). To

recover this distribution for the old bidders, the inverse of the bidding function needs to

be applied.

In state A there are N-1 old bidders, due to the fact that state A follows after a young

person has won in the previous period. Below I will define the distribution of old bidders

in state A - the state after a young bidder has won. It is not the distribution of all but the

highest order statistic from distribution fv. The additional information that is known,

is that the old bidder not present any more in state A must have won in t − 1 either in

state A or in state B as a young bidder. The bidder who was a winning bidder was from

the highest order statistic distribution (was the highest bidder). The remaining young

bidders in t − 1 are the remaining of the N young bidders (so N-1 young bidders), but

are also among the remaining bidders in the given state (as the winner is not present),

so they are remaining young bidders conditional that the young bidder who left was also

the winning bidder in the state.

In order to recover the distributions of valuations of old bidders in state A, first

the distribution of young bidders in period before who continue to state A needs to be

revealed.
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Definition 19. The distributions of young bidders in period t− 1 who continue to state

A is: fyt−1,A(z) = P (A)(fR,A(z)fR,y,A(z) ∗ C) + P (B)(fR,B(z)fR,y,B(z) ∗ C4)

Definition 20. fo,A(v) = fyt−1,A(b−1
y (z)) - the distribution of old bidders in state A is

the inverse of a bidding function of the distribution of young bidders who have not won

in t − 1. Young bidders who have not won in t − 1 consist of those from state A and

those from state B with mixture probabilities being the equilibrium probabilities of state

A and B. In each of the states the winning young bidder as a young must have been the

highest order statistic from the young bidders distribution (with N young bidders)- that

is f1,(A,y) and f1,(B,y) . These are not the same as just the highest expected bidder from

the Young distribution in both states, because the winning bidder won in the particular

known circumstances (that is one of the states). Therefore instead of just subtracting the

highest order statistic, the subtracted bid density is different, and that is:

fR,y,A(z) =
1

N − 1
(Nfy(z)− (f1,y(z)f1,A(z) ∗ C5)) ∗ C6

fR,y,B(z) =
1

N − 1
(Nfy(z)− (f1,y(z)f1,B(z) ∗ C7)) ∗ C8,

and these are derived using the identity from definition 7. The highest order statistic

subtracted from fy is updated as it is known that the winning bidder has won given the

distribution in state A or B. Bayesian updating requires normalizing constant.

The young winning bidder must have been the highest bidder of all the bids in the

given state, therefore at the same time the winning bidder was from the distribution f1,A

or f1,B. The loosing young bidders conditional on the fact that a young bidder has won are

from the distribution of the reminding order statistics from the young bidders as well as

overall in each state, so that is the intersection of these: fR,y∩fR,S, and the intersection of

these probabilities is their multiplication. Because of the fact that everything is expressed

in terms of probability density, the expressions need to be multiplied by a normalizing
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constant, so that the resulting formula is a probability density function as well (Ci above).

As state A follows after a young bidder has won, we get new information about the

distribution of old bidders in this state. There could be different reasons why a young

bidder has won: either the distribution of old bidders was unusually low, or that young

bidder’s bid was very high (it was a bidder in the very top section of valuations). The

young bidder won despite the fact that he has faced some old bidders in their period -

bids were either from mixture distribution of state A or state B at the time. This means

that the highest order statistic (representing the person who has won) was even more

skewed to the right in comparison to the standard highest order statistic distribution.

The winning bidder was the highest of young bidders, but also the highest of all bidders,

and this is why the formula for fR,y,A and fR,y,B is different than what would be the

formula for fR,y = 1
N−1

(Nfy − f1,y). There is updating on the highest bidder who left

the distribution. This doesn’t happen for state B, after an old bidder has won. There,

all the previously young bidders follow through to the next period. In both cases there is

updating on those who follow through, as we know they were not the highest bidders in

t− 1. The main driver for the differences in the distributions of state A and B, though,

is the young bidder who has won, and left the competition in state A.

The distributions from which the bids arise in each of the states are mixture distri-

butions. In state A (the state after a young bidder has won) there are N young and N-1

old bidders, so the mixture weights are N−1
2N−1

for fo,A and N
2N−1

for fy. In state B (the

state after an old bidder has won) there are N young and N old bidders, so the mixture

weights are 1
2

for each fτ,B.

Definition 21. FA = N−1
2N−1

Fo,A + N
2N−1

Fy is the CDF and fA = N−1
2N−1

fo,A + N
2N−1

fy is the

PDF of bids in state A.

The distributions from which the bids arise in each of the states are mixture distri-

butions. In state A (the state after a young bidder has won) there are N young and N-1

old bidders, so the mixture weights are N−1
2N−1

for fo,A and N
2N−1

for fy. In state B (the
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state after an old bidder has won) there are N young and N old bidders, so the mixture

weights are 1
2

for each fτ,B.

Definition 22. FA = N−1
2N−1

Fo,A + N
2N−1

Fy is the and fA = N−1
2N−1

fo,A + N
2N−1

fy is the PDF

of bids in state A.

Then the CDF of the highest bid in state A is F1,A = F 2N−1
A = ( N−1

2N−1
Fo,A+ N

2N−1
Fy)

2N−1

and the CDF of the highest bid in state B is F1,B = F 2N
B = (1

2
Fo,B + 1

2
Fy)

2N . Accordingly,

the respective PDFs of the highest bids are f1,A and f1,B.

Given the mixture probabilities distributions of bids in state A, and state B as above,

the probability that a given bid comes from a young bidder in state A is

PrA(b = young) =
N

2N−1
fy(b)

N−1
2N−1

fo,A(b) + N
2N−1

fy(b)
(1.4.17)

, and the probability that it is from an old bidder is

PrA(b = old) =
N−1
2N−1

fo,A(b)
N−1
2N−1

fo,A(b) + N
2N−1

fy(b)
(1.4.18)

. These two probabilities sum to 1, as they should, and the probability that a given bid

is a winning bid is the sum of the probabilities that this bid is a young winning bid and

an old winning bid:

PrA(b = b1) = f1,A(b) = PrA(b = b1 ∩ b = young) + PrA(b = b1 ∩ b = old) =

= f1,A(b)PrA(b = young) + f1,A(b)PrA(b = old)

The winning bid in state A can be divided between a young person’s winning bid and

an old person’s winning bid. Somebody always wins, so the sum of these two is 1 (the

CDF F1,A(v) = 1).
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1 =

∫ v

0

PrA(b = b1)db =

∫ v

0

f1,A(b)db =

=

∫ v

0

f1A(b)PrA(b = young)db+

∫ v

0

f1A(b)PrA(b = old)db =

= PrA(y) + PrA(o)

So the probability that in state A a young one has won is

PrA(y) =

∫ VH

0

f1,A(b)PrA(b = young)db (1.4.19)

, while the probability that an old person has won in state A is

PrA(o) =

∫ VH

0

f1,A(b)PrA(b = old)db (1.4.20)

In state B

PrB(b = young) =
1
2
fy(b)

1
2
fo,B(b) + 1

2
fy(b)

(1.4.21)

,and

PrB(b = old) =
1
2
fo,B(b)

1
2
fo,B(b) + 1

2
fy(b)

(1.4.22)

. Analogically,

PrB(y) =

∫ VH

0

f1B(b)PrB(b = young)db (1.4.23)

and

PrB(o) =

∫ VH

0

f1B(b)PrB(b = old)db (1.4.24)

.

In order to calculate probability of state A, let us notice that:

P (A) = P (A)PrA(y) + P (B)PrB(y)
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Also, P (A) + P (B) = 1, so

P (A) = P (A)PrA(y) + (1− P (A))PrB(y)

And solving for A:

P (A) =
PrB(y)

1− PrA(y) + PrB(y)

In the same way from

P (B) = P (A)PrA(o) + P (B)PrB(o)

We can solve for B:

P (B) =
PrA(o)

1− PrB(o) + PrA(o)

2

The above equations determine how different parts of the model are interrelated: the

probabilities of states, distributions of bids, and bidding function. The last element is to

derive the bidding function in equilibrium. In the same way, as in the previous section,

which derived the basic model without overlapping generations, the PBE equilibrium

strategies are going to be derived sequentially from the last auction, and it is going

to be defined according to Theorem 1 - the equilibrium bidding function for bidder of

age τj needs to be the solution to maximization of bidder’s surplus at the age τ . If

the maximization provides a solution that is independent of the distribution of bids in

the same period, then that is the equilibrium bidding strategy for bidder i. Beliefs are

consistent and are used for calculation of expected surplus from the continuation game.

2A check that P (A) and P (B) sum to 1:

P (A) + P (B) =
PrB(y)

1− PrA(y) + PrB(y)
+

PrA(o)

1− PrB(o) + PrA(o)
=

=
1− PrB(o)

1− (1− PrA(o)) + (1− PrB(o))
+

PrA(o)

1− PrB(o) + PrA(o)
=

=
1− PrB(o) + PrA(o)

1− PrB(o) + PrA(o)
= 1
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The equilibrium bidding as a function of type v, along with the consistent beliefs, is the

symmetric equilibrium.

In the case of two-period-lived buyers their equilibrium bidding strategy has to be

defined for two ages of the bidder, the last period in which the bidder takes part, age o

for him (when the bidder is ’old’), and the first period in which the bidder participates:

age y for the bidder (when the bidder is ’young’).

Theorem 7. The symmetric equilibrium bidding strategy for a type v-bidder in period o

and y of a sequential second-price auction with overlapping generations of two-period-lived

bidders is given by b∗o and b∗y defined as:

bo(vi) = vi

by(vi) = vi −W ∗
o (vi)

= vi − (P (A)

∫ vi

0

(vi − b2)f2,A(b2)db2 + P (B)

∫ vi

0

(vi − b2)f2,B(b2)db2)

Proof. All young bidders will have a symmetric optimal bidding strategy as a function

of their valuations. The optimal bid for a young bidder i, by(vi), is the solution to first

period maximization problem of the young bidder with valuation vi.

Wo(vi) - Expected surplus of bidder of type vi and age τ = o. Below, notation Wvi,o is

used :

Wvi,o = P (A)

∫ bvi,o

0

(vi − b2)f2,A(b2)db2 + P (B)

∫ bvi,o

0

(vi − b2)f2,B(b2)db2

For a continuous and differentiable function Wo(vi) if it enough now to find the first and

second order condition. If function Wo(v) is not continuous, then in addition to stationary

points, the limits at discontinuity need to be analyzed. In the first case, let us assume

that the solution to maximization is enough. The First order condition. Differentiating
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w.r.t. bvi,o to find the maximum:

∂Wv,o

∂bv,o
= P (A)(v − bv,o)f2A(bv,o) + P (B)(v − bv,o)f2B(bv,o) = 0

(v − bv,o)[P (A)f2A(bv,o) + P (B)f2B(bv,o)] = 0

bv,o = v

Substituting the solution back in the surplus in period o gives the expected surplus in

τ = o:

W ∗
v,o = P (A)

∫ v

0

(v − b2)f2,A(b2)db2 + P (B)

∫ v

0

(v − b2)f2,B(b2)db2

= P (A)Pr(b2A ≤ v)(v − E[b2A|b2A ≤ v])

+ P (B)Pr(b2B ≤ v)(vi − E[b2B|b2B ≤ v])

bv,y = by(v) - bid of type v when they are young.

Surplus in τ = y:

Wv,y = P (A)(
∫ bv,y

0
(v − b2)f2,A(b2)db2 +

∫∞
bv,y

W ∗
v,of2,A(b2)db2) +

+P (B)(
∫ bv,y

0
(v − b2)f2,B(b2)db2 +

∫∞
bv,y

W ∗
v,of2,B(b2)db2)

Differentiating w.r.t. by to find the maximum:

∂Wv,y

∂bv,y
= P (A)(v − bv,y −W ∗

v,o)f2A(bv,y) + P (B)(v − bv,y −W ∗
v,o)f2B(bv,y) = 0

(v − bv,y −W ∗
v,o)(P (A)f2A(bv,y) + P (B)f2B(bv,y)) = 0

bv,y = v −W ∗
v,o
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The bidding strategy of young bidder is a function of the bidder’s type, vi, and the

bidder’s expected surplus in t+ 1, which is W ∗
o (vi). As we know, the equilibrium bidding

function for old bidders has been found, and it is independent of the distribution of

other bids in the same period, bo(vi) = vi. The proposed solution for optimal bid of

young bidder is b∗y(vi) = vi −W ∗
o (vi). All young bidders will find the same function as

a solution to their maximization problem, independently of what the others decide to

do in the same period. The expected surplus from τ = 0 is calculated using the beliefs

about distributions of bids in continuation game which are consistent with the equilibrium

strategies. The equilibrium strategies are sequentially rational and use consistent beliefs.

Remark. The young bidders bidding function b∗y(vi) = vi − W ∗
o (vi) is the solution to

maximization, and is independent of distribution of other bids in the same period t.

In the next period t + 1, when the bidder i is old, the expected distribution of other

bids needs to be calculated under the assumption that everyone bids according to their

equilibrium strategy. That is, for all bidders b∗o(vi), and b∗y(vi). The game is cyclical, and

therefore the solution to equilibrium bidding function does not change with t. The same

function determines the solution to equilibrium strategy for each bidder i in every period

t considered.

Remark. Due to the game’s cyclicality, for all periods t, where λ+,− →∞, the solution to

symmetric equilibrium bidding function of young and old bidders is the same independently

of period t.

We can also find out what is the expected surplus of each bidder i. Substituting

equilibrium strategies back to the surplus equation to get the total expected surplus for
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the young bidder::

W ∗
v,y = P (A)(

∫ v−W ∗v,o

0

(v − b2)f2,A(b2)db2 +

∫ ∞
v−W ∗v,o

W ∗
v,of2,A(b2)db2) +

+P (B)(

∫ v−W ∗v,o

0

(v − b2)f2,B(b2)db2 +

∫ ∞
v−W ∗o

W ∗
v,of2,B(b2)db2)

Given this bidding strategy as a function of vi no bidder has any intention to deviate

as it would reduce their expected surplus. Buyers do not know which state they are

in, and they are using rational expectations of probabilities for each of the states, and

the distribution of bids in each of the states to infer their optimal strategy. All those

elements together form the equilibrium bidding. In order to solve for the equilibrium,

all the equations describing the relations between probabilities, density functions of bids,

and equilibrium strategies need to be solved simultaneously to find a fixed point. The

fixed point for all the equations describing the model in equilibrium is going to be the

solution to the symmetric PBE.

Definition 23. The symmetric stationary Perfect Bayesian Equilibrium of an

infinite horizon overlapping generations auction game is the PBE for the case where the

horizon of past and future auctions is infinite, λ+,− →∞, and, as a result each generation

has the same equilibrium strategy, independently of time period t. Such a game is cyclic,

and the strategies need to be solved for each τ only. The beliefs need to be consistent with

the strategies, and the strategies sequentially rational.

Remark. The stationary equilibrium bidding function for the cyclical auction game de-

scribed above is a fixed point for the system of equations describing equilibrium strategies

b∗o(vi), b∗y(vi), probabilities of states P ∗(A), P ∗(B), and probability densities f ∗o,A(), f ∗o,B(),

f ∗y (), f ∗A(), f ∗B().

The last element of the puzzle is to prove that the surplus function Wy,v(by,v) as well

as Wo,v(bo,v) are continuous and differentiable in the whole domain, and therefore the way
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the optimization is solved is justified.

Remark. The surplus functions Wy,v(by,v) and Wo,v(bo,v) need to be continuous and dif-

ferentiable in the whole domain.

Theorem 8. The surplus function Wo,vi(bo,vi) = P (A)
∫ bo,vi

0
(vi−b2)f2,A(b2)db2+P (B)

∫ bo,vi
0

(vi−

b2)f2,B(b2)db2 is continuous and differentiable in the whole domain.

Proof. The domain for the surplus function is bo,vi ∈ [v; v]. P (A) and P (B) are prob-

abilities of states A and B, and are constants. Since the sum of two continuous and

differentiable functions is also continuous, it is enough to show that each of the com-

ponents P (A)
∫ bo,vi

0
(vi − b2)f2,A(b2)db2 and P (B)

∫ bo,vi
0

(vi − b2)f2,B(b2)db2 are continuous

and differentiable functions of bo,vi . Differentiability implies continuity, and the first and

second derivative of this functions exist, which proves that Wo,vi(bo,vi) is continuous and

differentiable.

Theorem 9. The surplus function Wy,vi(by,vi) = P (A)(
∫ by,vi

0
(vi−b2)f2,A(b2)db2+

∫∞
by,vi

W ∗
vi,o
f2,A(b2)db2)+

P (B)(
∫ by,vi

0
(vi− b2)f2,B(b2)db2 +

∫∞
by,vi

W ∗
vi,o
f2,B(b2)db2) is continuous and differentiable in

the whole domain.

Proof. Analogically to the proof above. Wy,vi(by,vi) is a sum of continuous and differ-

entiable functions of by,vi , which proves that Wy,vi(by,vi) is also continuous and differen-

tiable.

Continuity and differentiability are the necessary conditions for finding the optimum

bidding function through maximization, and these are satisfied. As a conclusion the

PBE equilibrium strategies for young and old bidders has been found in this section. The

conclusion for this section is the theorem below:

Theorem 10. For a sequential second price auction game described as above, there exist

a stationary Perfect Bayesian Equilibrium, and it is described by strategies for each age

of the bidders b∗o(vi), b∗y(vi), probabilities of states P ∗(A), P ∗(B), and probability densities
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f ∗o,A(z), f ∗o,B(z), f ∗y (z), and f ∗A(z), f ∗B(z). The equilibrium is a fixed point where all the

equations are satisfied simultaneously.

This means that for any distribution fv(), and number N of new bidders entering

each period t, the equilibrium can be found for b∗o(vi), b
∗
y(vi), P

∗(A), P ∗(B), f ∗A(), f ∗B(),

f ∗o,A(),f ∗o,B(), and f ∗y . The equilibrium is also where the expected outcome of the game

can be calculated.

The fixed point for any combination of inputs can be calculated through my Mathematica

program olg2 fixed point. The program, and it’s outputs are described in the section

called ”Numerical Approach”.

1.5 Price announcements

Price announcements considered here are seen only by an external observer, not by the

bidders taking part in the auctions. Of interest here is to demonstrate what information

price announcements carry, without disruption of the cyclic equilibrium of the game. An

external observer is aware of the periods in the game and this section aims at showing how

the observer’s expectations about distributions of bids in the future periods are affected

by price observation. The case where bidders could update their strategies as young

bidders based on price announcements would have heavy implications for their bidding

strategies and it would not be possible to arrive at an equilibrium. On the other hand, an

introduction of an external observer to the environment where the 2-period model is in

equilibrium allows to investigate the impact of price announcements, including the depth

of the impact for future periods.

Links between States on the state diagram are important for learning. Some gener-

alizations and vocabulary related to links between states are given below, and after that

the analysis of price announcements continues.
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1.5.1 Links Between States

Remark. All the states and links between them can be represented using a directed graph.

States of the world are the nodes in the graph, and links between states are edges. Each

edge, ei,j,a ∈ E is directed from origin node, i to destination node, j. There are N

outgoing edges from each of the nodes in the graph of states. Each edge has also another

attribute, which is the age of the winning bidder, a ∈ τ , as well as weight, which is the

probability of this edge being used conditional on the origin state.

Definition 24. The weight of the directed link with origin at state S1 and an end at state

S2, so the edge eS1,S2,a, is denoted g(eS1,S2,a). The weight is the probability of this edge

conditional on the origin state: g(eS1,S2,a) = PS1(a).

All the possible combinations of origin state, end state, and winning generation gives

the set of all the possible edges.

Definition 25. The set of all possible edges contains eS1,S2,a with all the combinations of

origin state S1 ∈ S, end state S2 ∈ S, and winning generation a ∈ τ .

As it is clear, some of the edges have zero probability, and therefore these are not

drawn on the graph diagram and have no effect on calculations. In order to generalize

the definition it is convenient to introduce the definition for the non-existent edges:

Definition 26. The non-existent edges are the edges eS1,S2,a, s.t. g(eS1,S2,a) = 0.

The probability of a given state x in time t, Sx,t is the sum of the probabilities of all

the incoming edges to this state, multiplied by the probability of the origin states in t−1.

This is a very general definition, and extends towards models with more generations, and

larger state diagrams. Due to the fact that at the equilibrium the model is the same each

period, including all the probabilities, the time notation does not need to be included,

if nothing in the game conditions change. The time notation becomes useful if there is

price observation after the bid in t − 1 has been placed. The probability of any state

conditional on another state in t− 1 is defined as follows:
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Definition 27. The relation between the probability of state Sx1,t conditional on state

Sx2,t−1 is:

P (Sx1 , t|Sx2,t−1) =
M∑
m=1

(g(eSx2 ,Sx1 ,am)) (1.5.25)

Where, it is clear that only one such edge has a non-zero probability (as there can be at

most one directed link from state x2 to x1). All other edges from x2 to x1 are non-existent.

Definition 28. The relation between the probability of state Sx1,t and the probabilities of

states in t− 1 is:

P (Sx1,t|t− 1) =

Q∑
i=1

P (Sxi,t−1)
M∑
m=1

(g(eSxi ,Sx1 ,am)) (1.5.26)

And here we know that there is at most one directed edge from state xi to x1 with non-zero

probability, but in some cases there may be zero such edges between some xi and x1, and

then the whole sum
∑M

m=1(g(eSxi ,Sx1 ,am)) is equal to zero for this i.

The above definitions are very general and allow for extending the model to more

generations, and states. Since only the two-generations model is considered here, it is

clear from the state diagram which edges exist with non-zero probability.

The probabilities of the two states in t conditional on state B in t− 1 are the weights of

the edges with origin at state B:

P (At|Bt−1) = g(eB,A,y) = PrB(y)

P (Bt|Bt−1) = g(eB,B,o) = PrB(o)

The probabilities of the two states in t conditional on state A in t− 1 are the weights

of the edges with origin at state A:
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P (At|At−1) = PrA(y)

P (Bt|At−1) = PrA(o)

1.5.2 Learning By An External Observer

Two of the most important differences of this model to the standard sequential auctions

model is that there are two groups with different equilibrium strategies in each auction:

young and old bidders, and that there are two possible states of the world, with different

number of young and old bidders in the auction. This changes the way learning happens

based on price observation: the price level can be used as an indication of the age of

the winning bidder. This, in turn, provides information on the more likely state - since

the distributions of bids in the two states are different. Because there are links between

the state in t− 1 and the state in t, acquiring information about the price in t− 1 does

not only give information about the state in t− 1, but, through relative probabilities of

links to different states from t− 1 to t, leads also to updating of probabilities of the state

in t, and further to the future about the probabilities of states in t + 1 and the periods

that follow. The effect of price observation in t− 1 on learning can be divided into four

main categories. First one is a direct effect that is updating of the belief about the

probability of State A and State B in t-1. Based on price observation one state can

become more likely than other. The second one is a direct effect on the belief about

probability of a young or old bidder winning in t-1. Based on price observation

the probability that a bidder of a given generation won can become more likely. The first

two effects result in an update on the expected probabilities of State A and State B

in t, which can be called a secondary effect. The fourth effect is indirect, through

links to both states and relates to probability of State A and State B in t+1, t+2,

etc. The price observation is made by an external observer and therefore the equilibrium

strategies of bidders are not affected. Links between t and t+ 1, t+ 2 etc. are the sum of
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Figure 1.2: Learning By an External Observer Who Can Observe Price In t-1

probabilities of young and old winning in each of the states multiplied by a probability of

each given state. Through direct effect, the probabilities of State A and State B in t are

updated based on the observed price in t− 1. This new probabilities are then multiplied

by the weight of edges between states to get the probability of State A and State B

in t+1. Based on that the new probabilities of states in t+1 are used, and multiplied by

the weight of edges between states give the probabilities of State A and State B in t+ 2.

This continues further. The learning effect of price pt−1 observation is highest in

t, and diminishes with time.

The notation used is that the acquisition of information happens in t − 1: after the

t− 1 auction is finished, a resulting price is observed. Based on that, the observer is able

to learn about the distribution of bids in t − 1, and therefore also a little bit about the

valuations of bidders. More importantly learning relates additionally to the composition

of the young and old bidders - the probabilities of states A and B. Learning about the

distribution in t is possible, as implied by the conclusions from the updating of beliefs

about what was the state and who won in t−1. Consequently, the updated beliefs about

distribution and composition of bidders in t leads to updating of beliefs about the ex-

pected distribution of bids in t+ 1 and further into the future.
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1.5.2.1 Direct Effects on Probabilities of States in in t-1

After observing the winning price, the belief about the state of the world of t− 1 (A or

B) can be rationally updated by bidders. Bidders know the probability densities of bids

in state A and B under equilibrium, and they also know the expected probability of each

of the states. Using Bayes’ rule for conditional probabilities, the posterior probability

after price observation can be derived. The winning price is the second highest bid, and

therefore the probability of state A in t−1 after observing the price pt−1 is derived below:

P (At−1|pt−1 = x) =
P (At−1 ∩ qt−1 = x)

P (qt−1 = x)

=
P (b1 > x|A)P (A)

P (b1 > x|A)P (A) + P (b1 > x|AB)P (B)

=
(1− FA,1(x))P (A)

(1− FA,1(x))P (A) + (1− FB,1(x))P (B)
(1.5.27)

It is worth noting that A and B are the only possible states, and therefore P (pt−1 =

x) = P (pt−1 = x ∩ At−1) ∪ P (pt−1 = x ∩ Bt−1). Moreover, there is no possibility that

both states happen simultaneously, so P (pt−1 = x∩At−1)∩P (pt−1 = x∩Bt−1) = ∅. The

observed price means that the highest bid must be above, this is why a reminder of the

cumulative distribution of first bid in each of the states best represents this situation,

where: FS,1(.) - the cumulative distribution function of the highest bids in state S.

The above formula uses Bayesian updating, taking into account the prior probabilities

expected to be true in equilibrium : P (A) and P (B). In the same way, the formula for

probability of state B in t− 1 given the price pt−1 = x is given below:

P (Bt−1|pt−1 = x) =
P (Bt−1 ∩ pt−1 = x)

P (pt−1 = x)

=
P (b1 > x|B)P (A)

P (b1 > x|A)P (A) + P (b1 > x|AB)P (B)

=
(1− FB,1(x))P (A)

(1− FA,1(x))P (A) + (1− FB,1(x))P (B)
(1.5.28)
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After price observation, the probabilities of both states, A and B in t−1 are updated

as shown above. The updating will be in favor of one of the states which dominates the

other one in terms of the First Order Stochastic Dominance.

Since F1B dominates F1A in terms of First Order Stochastic Dominance, the higher the

price the more likely that the winning bid was from State B.

The next step is shows how does an increase in observed price in t − 1 relate to the

update on the probability of state B versus A in t− 1).

Let us consider how the probabilities of state At−1 and Bt−1 change once a price observed

in t− 1 is known to be x. In the notation below, the price in t− 1 is denoted x or pt−1.

Theorem 11. Observed price pt−1 leads to an updating of the belief about the probabilities

of states A and B in t− 1. The relation is monotonous: a higher observed price in t− 1

leads to an upward updating of probability of state B in t − 1 and a downward updating

of probability of state A in t− 1.

Proof. Distribution of bids in State B dominates distribution of bids in State A by

First Order Stochastic Dominance. This implies that the probability of State B in t− 1

increases with the higher observed price in t− 1.

1.5.2.2 Direct Effects On Probabilities of Old And Young Win in t-1

Another direct effect is on probabilities of Old and Young winning in each of the states

in t− 1 based on pt−1. This effect, though is not monotonous For some middle values the

increment of probability that a Young bidder won will take place (based on an increase

in pt−1), since the young bidders’ bids distribution has a different range than distribution

of Old bids. First order Stochastic dominance may not, therefore hold. Another aspect

is that above a certain point the probability of old bidder’s win is increasing with pt−1

up to the threshold of Young bidders’ bids. Above that threshold the probability that a

Young bidder has won is 0 and the probability that an Old bidder won is 1.
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Theorem 12. In State A and B, an observation of the second highest bid (observed

price) above the threshold of young bids means that there probability that an old bidder

won is equal to 1.

Suppose a price is observed in t− 1. Conditional on this price observation the prob-

abilities of old and young winning can be updated.

Some definitions that are needed:

The distribution density function of the highest bid coming from young bidder in state

A:

f1∩y,A(.) = f1,A(.) ∗ fy,A(.) ∗ Cn1

The distribution function of the highest bid coming from old bidder in state A:

f1∩o,A(.) = f1,A(.) ∗ fo,A(.) ∗ Cn2

The distribution function of the highest bid coming from young bidder in state B:

f1∩y,B(.) = f1,B(.) ∗ fy,B(.) ∗ Cn3

The distribution function of the highest bid coming from old bidder in state B:

f1∩o,B(.) = f1,B(.) ∗ fo,B(.) ∗ Cn4

, where Cn41, Cn2, Cn3, Cn4 are normalizing constants. Each of the above density func-

tions have, of course their corresponding cumulative distribution functions: F1∩y,A(.),

F1∩o,A(.), F1∩y,B(.), F1∩o,B(.). It is worth noting that the distribution of young bids has a

threshold which is the bid of the highest valuation b(VH). This means above that thresh-

old, fy,A(.) as well as fy,B(.) is equal to 0.
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The probability of young winning in state A is the probability that the highest bid b1

is from a young bidder and that it is above the observed price. The probability of young

winning in state A is updated as below:

PrA(y|pt−1 = x) = P (b1 ∈ y|A, pt−1) =

N
2N−1

(1− F1∩y,A(x))
N

2N−1
(1− F1∩y,A(x)) + N−1

2N−1
(1− F1∩o,A(x))

(1.5.29)

Above the threshold, of the maximum young bid F1∩y,A(x)) is equal to 0, and therefore

the probability that the highest bid comes from a young bidder is also 0 above the thresh-

old.

The probability of old winning in state A is the probability that the highest bid b1 is

from an old bidder and that it is above the observed price. The probability of old winning

in state A is updated as below:

PrA(o|pt−1 = x) = P (b1 ∈ o|A, pt−1) =

N−1
2N−1

(1− F1∩o,A(x))
N

2N−1
(1− F1∩y,A(x)) + N−1

2N−1
(1− F1∩o,A(x))

(1.5.30)

Above the threshold, of the maximum young bid F1∩y,A(x)) is equal to 0, and therefore

the probability that the highest bid comes from an old bidder is 1 above the threshold.

The probability of young winning in state B is the probability that the highest bid b1

is from a young bidder and that it is above the observed price. The probability of young

winning in state B is updated as below:

PrB(y|pt−1 = x) = P (b1 ∈ y|B, pt−1) =

N
2N

(1− F1∩y,B(x))
N
2N

(1− F1∩y,B(x)) + N
2N

(1− F1∩o,B(x))
(1.5.31)

65



Above the threshold of the maximum young bid F1∩y,B(x)) is equal to 0, and therefore

the probability that the highest bid comes from a young bidder is also 0.

The probability of old winning in state B is the probability that the highest bid b1 is

from an old bidder and that it is above the observed price. The probability of old winning

in state B is updated as below:

PrB(o|pt−1 = x) = P (b1 ∈ o|B, pt−1) =

N
2N

(1− F1∩o,B(x))
N
2N

(1− F1∩y,B(x)) + N
2N

(1− F1∩o,B(x))
(1.5.32)

Above the threshold of the maximum young bid F1∩y,A(x) is equal to 0, and therefore the

probability that the highest bid comes from an old bidder is 1 above the threshold.

Both cumulative functions have the same weights in State B and the distribution of

bids from old bidders dominates the distribution of bids from young bidders, but the

two distributions have a different support. The distribution of Young bidders bids has a

sharp increase not far from the cutoff where it ends. The distribution of old bidders bids

is naturally more spread-out and more equally distributed in the middle section. This

means that the First-Order Stochastic dominance will most likely not hold. It is not clear

that with an increase in pt−1 there will be an increasing probability that the bid was from

an old bidder. The distribution of Young Bids is increasing faster than the distribution

of Old Bids, but the sharp increase starts later.

This means that it is likely that for some values an increase in x is not equivalent with

an increase in PrA(o|pt−1 = x) or PrB(o|pt−1 = x) . Above the threshold, though the

probability that a young bidder won decreases to 0. Just before the threshold of Young

bids the Similarly to the Likelihood Ratio Dominance is likely to be satisfied, which is

represented in the theorem below:

Theorem 13. Probability of old bidder winning in any period t is monotonous with the
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price observation in that period for prices in some upper-α range until the threshold. After

the threshold of young bidders’ bids, the probability that an old bidder won is 1.

This is just a guess, and of course exact distributions of young and old bidders bids

will have an impact on that. The certain fact is what happens above the threshold.

1.5.2.3 Secondary Effect of Update on The Probability of State A and B in

t

After price observation the overall probability that an old bidder won is the weighted

sum with the updated probabilities:

Pt(B) = Pr(o|pt−1 = x)t−1 =

PrB(o|pt−1 = x)P (B|pt−1 = x) + PrA(o|pt−1 = x)P (A|pt−1 = x) (1.5.33)

And the overall probability that a young bidder won is analogically:

Pt(A) = Pr(y|pt−1 = x)t−1 =

PrB(y|pt−1 = x)P (B|pt−1 = x) + PrA(y|pt−1 = x)P (A|pt−1 = x) (1.5.34)

This secondary effect of course depends on what are the direct effects of price increase

on probability of old winning as well as the probability of each of the states. The effect

on the probability of each of the states in t − 1 is monotonous, and unambiguous, but

the probability that an old or young bidder won in t − 1 may be a function of pt−1 of a

different shape.

Based on the fact that there is a threshold to young bidders’ bids, one definite con-

clusion is :

Theorem 14. Prices observed above the threshold of young bidders’ bids in t− 1 lead to

an update in probability of State B in t to 1 and of State A in t to 0.
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It can also be concluded that:

Theorem 15. Depending on whether the observed price increases or decreases the prob-

ability that an old bidder won, the probability of State B in t + 1 will follow the same

direction.

Proof. This is directly implied by 1.5.33

1.5.2.4 Indirect Effects Through Links Between States

The probabilities of states in t− 1 can change in one direction or another, and this fur-

ther triggers updating of probabilities for states in t. The expectation of future State

probabilities in t and t+ 1 are affected through links between states (edges on the state

diagram). We can measure the strength of the link between states through the expected

probability of that link conditional on state of the origin node.

All of the periods that follow after t will have updated probabilities of states A and

B. In addition this updating will be in the same direction as in state t:

Theorem 16. If the probability of State B in t is increased following a price observation

in t− 1, then the probability of State B will also increase for all the following periods:

∀i∈N+

dP (Bt|pt−1)

dpt−1

> 0 =⇒ dP (Bt+i|pt−1)

dpt−1

> 0 (1.5.35)

The change in probabilities of the two States has the same direction for all future periods.

Proof. Implied by theorem 17.

In state B there are more old bidders than in state A. Looking at the ratio of

probabilities of state B following state A, and probability of state B following state B

allows to see what impact would an increase in probability of one of the states in t − 1

(and decrease in the other) have. If the weight of the edge pointing to State B from
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state B is higher than the weight of the edge pointing to State B from State A, then the

following is true:

Theorem 17. Increased probability of state B in any time period t leads to an increased

probability of state B in the following period t+ 1.

This is proved below:

Proof. The probability of state B in t conditional on state B in t − 1 or A in t − 1 is

shown as below:

P (Bt|Bt−1) = PrB(o) =

∫ VH

0

f1B(b)PrB(b = old)db =

∫ VH

0

f1B(b)
1
2
fo,B(b)

1
2
fo,B(b) + 1

2
fy(b)

db

P (Bt|At−1) = PrA(o) =

∫ VH

0

f1,A(b)PrA(b = old)db =

∫ VH

0

f1,A(b)
N−1
2N−1

fo,A(b)
N−1
2N−1

fo,A(b) + N
2N−1

fy(b)
db

The proof will follow stepwise argumentation. In the first step it needs to be determined

which of the states A or B imply higher probability of old vs young winning. The second

step is the fact that an increase in probability of old winning in t leads to an increase

in the probability of state B, while an increase of the probability of young winning in

t− 1 implies an increase in the probability of state A in t. Old bidders in both states, A

and B bid higher than young bidders (who discount bids). State B has one more of old

bidders than state A. The number of young bidders is exactly the same in both states.

In addition to the reduced number of old bidders remaining in state A, their distribution

is also changed - they are the remaining bidders who in their young period did not win,

even though one young bidder won in t − 1. In state B, the remaining bidders have

not won as young, but in the case where an old age bidder has won. Comparison of

these two distributions of old bidders (or young in t − 1, but after the winner has been

removed) gives information about which distribution is dominating the other one. As old

bidders, their distribution is transformed by a monotonous function, and therefore the

same relation is sustained. If distribution of bidders during their young period dominates

another distribution of bidders in their young period, then the first distribution of bidders
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will also be dominating the second one in the old period. A distribution that dominates

is the one that gives a higher probability of old winning. The distributions to compare

are below:

The distribution of State A old bidders when they’re young (in t− 1):

fyt−1,A(z) = P (A)(fR,A(z)fR,y,A(z) ∗ C) + P (B)(fR,B(z)fR,y,B(z) ∗ C4) (1.5.36)

The distribution of State B old bidders when they’re young (in t− 1):

fyt−1,B(z) = P (A)(fR,A(z)fy(z) ∗ C1) + P (B)(fR,Bfy(z) ∗ C2) (1.5.37)

We can compare the pairs of fR,y,A(z) and fy(z) as well as fR,y,B(z) and fy(z) in terms

of likelihood ratio dominance, since this is where the two equations differ. First of all:

fy(z) (1.5.38)

is the same in each state, A or B, since there are the same number of young bidders

entering each period, and the valuations are drawn randomly. Next, for the first pair, we

need to compare it to:

fR,y,A(z) =
1

N − 1
(Nfy(z)− (f1,y(z)f1,A(z) ∗ C5)) ∗ C6

Both, f1,y(z) and f1,A(z), are dominating fy(z) in terms of likelihood ratio dominance.

This implies that the distribution after subtraction and rescaling will be lower in terms

of likelihood ratio dominance. In summary, this means that fy(z) dominates fR,y,A(z) in

terms of likelihood ratio dominance.

The distribution used in the second pair:

fR,y,B(z) =
1

N − 1
(Nfy(z)− (f1,y(z)f1,B(z) ∗ C7)) ∗ C8,
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Analogically, it is also dominated by fy(z) in terms of likelihood ratio dominance.

Remark. Both, fR,y,B(z) and fR,y,A(z) are dominated by fy(z) in terms of likelihood ratio

dominance.

The remark above implies that fyt−1,B(z) dominates fyt−1,A(z) since a mixture of two

dominating distributions has to be dominating the mixture of two dominated distribu-

tions. Since the old bidders bids are just a transformation (by b−1()) of young bidders

bids, the fact that the distribution of young bidders bids in t−1 of those old bidders who

are in state B is dominating the distribution of young bidders who follow to be old in

state A implies that the old bidders distribution in state B is dominating the old bidders

distribution in state A.

The distribution of young bidders is the same in both cases, so the fact that in state B

the distribution of old bidders is dominating in terms of likelihood ratio dominance the

distribution of old bidders in state A implies that the probability of old winning in state

B is higher than in state A.

All two of the edges pointing to state B have weights associated with the probability

of old winning. If state B became more likely, then, out of the two edges, the one with

origin at state B will become more important. The fact that this edge has a higher weight

than the other one (with origin at state A) means that it would result in an increase in

expected probability of state B occurring in period t, following t − 1. State A, on the

other hand will become less likely in t if the probability of state B increases in t− 1.

The above explains that if observed price leads to an update towards an increase in

probability of state B in any state t, then in expectation the probability of state B in-

creases in t+ 1 as well (and the probability of state A in t+ 1 decreases). If the opposite

happens, so state A becomes more likely in t, then in period t+ 1 the probability of state

B decreases, while the probability of state A increases.

Another observation that can be made is in the two theorems below:
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Theorem 18. The update in probabilities of future states based on pt−1 is diminishing

with time.

∀i∈N+,i>1
d

di

∣∣∣∣dP (Bi|pt−1)

dpt−1

∣∣∣∣ < 0 (1.5.39)

Theorem 19. The effect of update of future probabilities is decaying at a diminishing

rate:

∀i∈N+,i>1
d

dt

∣∣∣∣dP (Bi|pt−1)

dpt−1

− dP (Bi+1|pt−1)

dpt−1

∣∣∣∣ < 0 (1.5.40)

The convergence continues towards the equilibrium of no additional information:

Theorem 20.

limi→∞P (Bi) = P ∗(B) (1.5.41)

,where i > t

Of course the above theorems about P (Bt) relate also to P (At), but it follows directly,

since P (A) = 1− P (B)

The prevailing assumption here is that the observations are made only by an external

observer, not by the bidders who take part in the auctions. In the case whereby young

bidders could observe price in previous period, after updating their probability of states

A and B, they would update their strategies accordingly. In the end the expected price

path could not be increasing. The young bidders, by reducing their bids would most

probably lead to correction of the price path. The strategies become very complicated,

and include infinite dependencies to all the future and past periods.

From the point of view of the hypothetical external observer, the expected price path

follow a proportional path to the probability of State B. The expected highest bid

in State B is higher than in State A and the expected price is the weighted sum of

probabilities and prices in both states.

Theorem 21. An observation of price gives information about expected price path in the

following period. The effect of learning about future prices is proportional to the effect on
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probabilities of states. The expected price path will follow proportionally and monotonously

the same path as the expected probability of State B: initially the change will be the highest

in t and after that it will start converging to equilibrium at a diminishing rate with time.

1.5.2.5 Parallel Revealing Effect On Valuations Of Bidders

Additionally to the main effects discussed above, in parallel there is an effect of par-

tially revealing the valuations of bidders present. The price observation in t leads to the

conclusion that the remaining bidder’s bids are up to the revealed price. That reveals

some additional information about the valuations of the young bidders who have not

won in that period and continue to the next period as the old generation bidders. Price

observation leads to revealing a cutoff to valuations of bidders who lost. This is always

a deduction in comparison to the equilibrium with no information. The deduction may

be lower or higher. The deduction is lower with higher price observed. So the effect on

t+ 1 is monotonous with the observed price: the higher the observed price, the higher is

the cutoff to the valuations of remaining bidders who continue to t+ 1.

This has a further effect on the probability of old versus young bidder winning in t + 1,

and the direction of the effect is the same: the higher the price was in t−1 the higher the

additional increase in probability of an old winning in t. The effect of learning about the

valuations of bidders persists into the future periods, diminishing with time. The effect

is monotonous with the observed price.

Theorem 22. The effect of learning about the valuations of bidders from price at t −

1 is monotonous to the observed price. The effect strengthens the effects of learning

about the States described before if these are also monotonous with price. The effect of

learning about the valuations is the highest in the following period t (largest deduction)

and diminishes with time (towards the case of no limits to valuations).

Following price observation the range of valuations of bidders who were young in t−1

needs to be updated. These bidders are in the old period in t. This leads to repercussions
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for the probabilities of young and old winning, and the adjustments due to this fact are

monotonous with the observed price. This means that the valuations of young bidders

who do not win in t are also monotonously updated due to this effect and the same

continues further to future periods. This effect is unambiguously monotonous in relation

to observed price - the ranges of all valuations of bidders in future periods are increased

upwards with higher pt−1. The absolute value of the effect is diminishing with time and

converging to 0 - the expectation about valuations converges to the case with no limits.

1.5.3 Summary

The above discussion has the aimed at showing that revealed price in one auction is

a source of information about the distribution of bids in all future periods. The price

revealed in t − 1 carries information about both the distribution of bids in t − 1, and

the probabilities of states in t − 1. The secondary effect if that the period t States are

partially revealed. The effect of learning continues into all future periods, decaying with

time at a diminishing rate. The convergence leads back to equilibrium from before the

price observation.

If price in t−1 was higher then it was more likely that an old bidder won the auction,

so the state with more old bidders was more likely. That, in turn, means that in the

following period the state with more old bidders will be again more likely, so again the

expected price is higher. That leads to the expectation that in the future period, t + 1

again the state with more old bidders will be more likely, and the expected price will be

higher. The effects are present in all future periods, long after all the bidders from the

reference period (t− 1) are gone.
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1.6 Introduction of One Bidder with Longer Lifespan

to the 2-period Model

In order to picture what the 2-period model implies in terms of learning, an introduction of

one additional bidder, otherwise external to the model, with longer lifespan is proposed.

This hypothetical situation allows to see the 2-period model through the eyes of an

introduced external observer, who considers bidding in the same auctions as the other

bidders present in the model. The added bidder is able to observe the price after he

bids in their first period. The periods can be numbered t− 1 - for the first period when

the additional bidder enters, t as the second period for the 3-period lifespan bidder, and

t+ 1 as the last period for that bidder, where the dominant strategy in the second price

auction is to bid their valuation. For simplicity, let us assume that the existence of this

bidder is not known to the other bidders who behave according to their cyclic equilibrium

strategies defined earlier. Two period bidders do not have possibility to update their bids

in their last period, even if they could observe prices after the first period they bid in.

Allowing for price observation after the first period of activity for each bidder would not

affect the behavior of 2-period bidders, who would remain in the cyclic equilibrium. In

order to keep simplicity, let us assume that these bidders do not observe the outcomes

from previous auctions. The bidder with longer lifespan, on the other hand, does benefit

from price announcements and their effects on this bidder’s strategy is analyzed below.

Considering just the 2-period horizon bidders for now, and their equilibrium strategies,

the following observations can be made:

Theorem 23. The distribution of bids and the probability of State B in any period t is

updated based on the observed price in period t− 1.

The updating of the probabilities of States in period t − 1 and t following price

observation in t − 1 is described on the example of an external observer above. Other

periods after t are updated monotonously to the update in t.
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Theorem 24. Probability of State B in any period t+ 1 is higher conditional on State

B in t than conditional on State A in t.

For the 3-period bidder the probabilities of States in t + 1 are important for their

updating of bid in t. The bidder prefers higher probability of State A. In the case the

probability of State B is increased due to updating the expected surplus in that period

is reduced.

Theorem 25. Distribution of bids in State B in any period t dominates the distribution

of bids in State A in t in terms of Absolute Ratio Dominance .

Theorem 26. For each bidder with valuation in V the probability of wining, conditional

on State B in any period t, is lower than the probability of winning, conditional on State

A in t.

Additionally, an observation can be made that:

Theorem 27. For each bidder with valuation in V the expected surplus, conditional on

State B in their last period, is lower than the expected surplus conditional on State A

in their last period.

This is due to the fact that the distribution of bids in State B dominates the distri-

bution of bids in State A in terms of Absolute Ratio Dominance. The 3-period bidder

will expect lower surplus if the probability of State B is increased. As a result the bidder

will reduce their discounting of bids in that case.

Considering the one bidder with 3-period lifespan that is introduced, the following is

true:

Theorem 28. If, after updating beliefs, the expected distribution of bids in t + 1 is

dominating the distribution of bids in t + 1 before updating, the 3-period lived bidder

who enters their middle period in t updates their bid in period t upwards.

If a higher observed price in t−1 leads to an upward updating of probability of State

B in t + 1, the 3-period lived bidder will update their bid in the middle period t in a

monotonous relation to the observed price in t− 1.
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Figure 1.3: Learning By a 3-period Bidder Who Can Observe Price In t-1

Theorem 29. Overlapping generations model with 2-period lived bidders and one 3-period

lived bidder, where bidders can only acquire information about the price after their first

period of activity, implies that the bidder with 3-period lifespan will update their middle

period bid as a result of observed price in t− 1.

And another important statement to be made is the following:

Theorem 30. In the overlapping generations model with bidders of different lifespan, the

condition that the same bidders are present at the information acquisition period and the

period about which learning occurs is not a necessary condition for learning.

In this example it is shown to be true for OLG model with 2-period lived bidders and

one 3-period lived bidder.

1.7 Simulation Results

In order to get a better feel of the impact that the observation of prices has in the OLG

model, a simulations of the model particular numerical examples for some distributions
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were run. A program for generating the simulations was written in Mathematica. All the

equations of the equilibrium were inputted to the program, and in order to simplify com-

putations the inverse of the bidding function was approximated based on Monte Carlo

simulation.

For the underlying valuations I am considering Beta distributions with different pa-

rameters - the choice of Beta distribution is due to the fact that it has a bounded support,

as well as different parameters allow for almost any possible shape of the distribution.

In order to numerically find fixed point for the examples, as well as generate graphs, I

have written a Mathematica script which finds a fixed point for a Beta distribution with

any parameter. The number of bidders in each period can also be altered, although I

am going to focus on the results for the case of three new bidders in each period. In

addition to facilitating estimations of magnitudes for particular underlying distributions,

the numerical solution also has the benefit of being expendable to larger number of states,

and I have also written a version for the three-period lived bidders model, with 5 states.

It is clear, especially if one wants to consider larger number of states, that the numerical

approach is the only feasible way to find solution, and gain insight into the model. In

order to see that OLG of bidders has an effect on updating once the price (second or first

highest bid) is revealed, the two period model is sufficient, and therefore I will focus here

on this version for now.

First of all, in order to understand why revealing price from previous period would

have an impact on updating beliefs and bidding strategy of young bidders, it is impor-

tant to take a note of the differences between the two states, A and B. Understanding

the differences in the distributions of bids in the two states makes it clear why a better

idea which state will follow is important for bidding strategy. The second step is un-

derstanding the differences in distributions between old and young bidders, as well as

the transitions between states, which depend on whether a young or an old bidder has

won. Transitions between states are the arrows on the state diagrams above, and they
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Figure 1.4: Different distributions of Old bidders in State A and State B

(a) Valuations from Beta(3,2) (b) Valuations from Beta(1,1)

are showing the only possible states in t + 1 following after each of the states in t. In

the two-period lived bidders the situation is very simple because after each states, the

next period there can also be one of the only two states. In the three period model,

though, the arrows point to only three states from each one in t, and therefore they are

constraining the possible states following to a 3-element subset from the 5-element set of

all states. Transitions are therefore important, but what triggers transitions, is the age

of the winning bidder, and therefore the probability that a given age bidder wins (and

how this probability changes upon observing a given level of the winning bid) is the third

important component of the dynamics in the model.

Therefore, in conclusion, the three main elements of the model which have an influence

on the outcomes are:

1. The mixture distributions in each of the states, and the differences between these

distributions.

2. The probability of old versus young (versus middle in the 3-period model) winning

in each of the states as a function of observed highest bid, and also the overall

probability of each age winning as a whole in the system.

3. The transitions between the states.

Again, even though I have included the middle age bidder in the above list, I would

like to resort now to the two-period model with two states. I will present two examples
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that illustrate how the above factors result in an increased importance of past prices for

expectations about the future state, and learning. The two examples are Beta(3,2) and

Beta(1,1) distributions of valuations. These are mainly arbitrary choices, just to show

that for different distributions of valuations, there there is a clear pattern in the results.

Beta(1,1) is the most often used distribution in examples, as it is the uniform distribution,

while Beta(3,2) is not a central, but a little bit skewed to the right distribution, which is

my best guess of what could the distribution of valuation for an object for sale (for exam-

ple on eBay) look like. The fixed point for equilibrium without price announcements has

been derived through my FixedPoint program in Mathematica. The approximated fixed

point solution includes the probabilities for each of the states, maximum of discounted

(Young) bids, and beta parameters for the distribution of Young bids. A more detailed

description of the program used for finding the fixed point can be found in Appendix.

The example solutions found using the program can be found in Table 1. In all cases,

the probabilities of states A and B are approximately 0.3 and 0.7, where state B is the

more likely state, as expected (it is the state with a higher proportion of Old bidders and

a dominating distribution).

Figure 3 shows the different distributions of Old bidders in states A and B for the

two examples. The fact that the bidder with the highest valuation is not present as

the Old bidder in state A any more, means that the state A Old bidders distribution

has less density in the upper section than in state B. The distributions in both states

consist of Old as well as Young bids, and these mixture distributions can be found in

Figure 4. These graphs show on examples, that the distributions of Bids in both states

will be different, which is the reason why knowing a future state a bit more precisely

would make a difference for the discounting function of Young bidders. The difference

in the distributions is definitely non-negligible, and when considering the order statistic

distribution of highest or second highest bid (which is what matters for the discounting

function), these difference are amplified. Figure 5 shows the distribution of the highest

bid in both states, clearly the higher density in the upper section in state B makes even

80



Table 1.1: Fixed Point Simulation Examples

Inputs:

Beta distribution
parameters (3,2) (1,1)

for valuations
Number of

young bidders 3 3
each period

Results of Simulation:

maximum of Young bids 0.66 0.59

Beta param. of Young bids (2.26, 0.52) (0.92, 0.41)

Probabilities of state A and state B (0.305, 0.695) (0.33, 0.67)

more of a difference when highest order statistic distributions are considered. It can be

seen that these distributions are two-peaked, as was expected in the theoretical section

above. It is clear that state B distribution is dominating state A distribution in terms of

α, β Ratio Dominance (it is not clear whether there is First Order Stochastic Dominance,

because, especially when looking at the full picture, it seems to be possible that the

distributions cross twice). In any case, for the highest order statistic, the upper-αcovers

around 30%, where PDF in state B is higher than in state A.

The above considerations explain point 1 on the list, which is the differences of dis-

tributions in both of the states. Distribution in state B is dominating the distribution in

state A. That clearly means that the expected outcome from the distribution in state B

will be higher than that in state A. The second point is concerning the probability of each

age winning in each of the state as a function of the observed highest bid. The relative

probabilities that the observed highest bid is from old or young bidder can be seen on
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Figure 1.5: Distributions of bids in state A and B

(a) Valuations from Beta(3,2) (b) Valuations from Beta(1,1)

Figure 1.6: Distributions of highest bids in state A and B

(a) Valuations from Beta(3,2) (b) Valuations from Beta(1,1)

Figure 6, and the relative probabilities that the observed highest bid comes from state A

or B in Figure 7. Figure 6 is especially important, because it is the fact that an Old or a

Young one has won that makes a difference for the transition between the states going to

the next period. As can be seen the probability that the winning bid is from the Young

one is increasing until the cut-off of the Young PDF, after which the probability that the

Old one has won goes to 1 (and Young to 0). This is due to the fact that there is a very

high density of Young bids near the cut-off value. Point 3, which is transitions between

states is very simple in the two-period model, where an Old winning bid always points to

state B, while a Young winning bid always points to state A (this is not the case in the

3-period model, where the origin state plays a role as well). In the two-period model the

transition story is only reliant on the relative probability that the winning bid is Old or

Young, and this is what Figure 6 is showing.

If the observed winning bid is above the cut-off point, it is without doubt coming from
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Figure 1.7: Probability that the observed highest bid is from Old or Young bidder

(a) Valuations from Beta(3,2) (b) Valuations from Beta(1,1)

Figure 1.8: Probability that the observed highest bid is from state A or B

(a) Valuations from Beta(3,2) (b) Valuations from Beta(1,1)

an Old bidder, and therefore the probability of state in the next period is 1 for state B

and 0 for state A. The dominance of the distribution of bids in state B means that this

also implies that the next period expected winning bid will be higher. In the no price

announcements Equilibrium the bid is seen as coming from the Mixture distribution of

State A and State B bids, with mixture weights being the equilibrium probabilities of

state A and B. The Expected highest bid in t+1 is the expectation from that distribution.

Observing a highest bid directly, means that the probabilities of the states in the next

period change, and therefore the Expected highest bid in t + 1 is changing with the

observed bid in t. This can be seen on Figure 8. If the highest bid in t is above the

threshold (maximum of Young bids), the expected highest bid in t + 1 increases to the

expected bid in State B. The difference after observing a high winning bid in t and

updating of the expected highest price is 5.6% in the Beta(1,1) model, and 2.7% in the

Beta(3,2) model.

Suppose that the observed price is in the high section (above the threshold of Young
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Figure 1.9: Expected Highest Bid in next period

(a) Valuations from Beta(3,2) (b) Valuations from Beta(1,1)

Table 1.2: Expected Highest Bid in Simulated Equilibrium. Division By States.

model
fv = Beta(3, 2), N = 3 fv =Beta(1, 1), N = 3

Expected
highest 0.68 0.62

bid in state A
Expected
highest 0.77 0.76

bid in state B
Exp. highest

bid in Equilibrium 0.75 0.72
(mixture of states)

bidders). On the example of the Beta(1,1) model the effects of updating can be observed

in Figure 9. The largest effect is for the highest bidders, but percentage-wise a decrease

in discounting is larger for the low valuation bidders, since their already low chances

of winning in the next period are even more decreased after learning. The minimum

decrease in discounting is 7%. The increase in bid function goes up to 0.03, which is

5% of the Young bidder’s bid before updating. The effect depends on the underlying

distribution of valuations, and it is higher for more dispersed distributions.

1.7.1 Summary

In summary this section presented a model of auctions with overlapping generations

of buyers, where past prices are informative to the bidders, and are influencing Young

bidder’s discounting function. This result is derived from the fact that ’younger’ bidders
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Figure 1.10: Effect of updating on discounting and Young bidders bidding function

(a) Effect on bid discounting (b) Effect on bidding function

(of earlier period) discount their bids, while ’old’ bidders (in their last period) bid the full

valuation. Young and Old bidders are present in the same auction, and the composition

of bidders with different age is defining the current state of the world. This has an effect

on Young bidders’ strategy. Different composition of young and old bidders leads to a

different expectation of the composition in the following period. Winning price is also an

indication of the valuation of the winning bidder, and, indirectly, of the possible range of

valuations of the remaining bidders. As last period’s price is a signal of the composition

of bidders ages and valuations, it is also an indication for the expected future period

composition. Due to the overlapping generations, new Young bidders, who are able to

observe last period’s winning price will use that information for updating their strategy

(the amount they shade their bid).

This model implies that observing a winning bid in the top section is an indication that

the next period bids will be coming from a higher distribution. As a general conclusion for

empirical research, the model implies that past prices are not indifferent for the bidding

strategy of bidders, and it is expected that prices in the top section should have a clearly

positive effect on future bids (and expected prices in the following period).

As a stylized model, the conclusions that need to be drawn are more general. Of

course it is unlikely that it would be possible to identify exactly whether a bidder has

an intention to bid in the future (a Young bidder) or not (an Old bidder). The model

shows that once the bid is high enough, it can be inferred that the person does not want

to bid any more (it is the Old bidder) which leads to updating of the beliefs about next
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period distribution of bids upwards. The same implications extend towards models with

more period-lived bidders, although there additionally medium bidders are present. This

is the first attempt at identifying the implications of overlapping generations on bidding

and auction outcomes.

1.8 Extensions

1.8.1 Price announcements known before each auction

In this version of the model, the bidder in period t learns what was the price for the last

period t − 1, before placing his bid in period t. Unlike in sequential auctions without

overlapping generations, the price announcements are informative to the bidder, who can

now better predict which state the system was in the last period. In the case of price

announcements before each auction, the young generation bidder can use this information

to update their beliefs about the following state and change their discounting strategy.

Nevertheless, in this situation, the price announcements in the period t − 2 had also an

effect on young bidders strategy in that period, while the price announcements in t − 3

had an effect on bidders in that period. Given that all the bidders adjusted their strategy,

the equilibrium is impossible to solve for, as there will be infinite dependencies for all

previous periods.

1.8.2 Comparison with sequential auctions basic model

The question which can arise is whether the seller, who has two items for sale, is better

off in the case the buyers are in overlapping generations, or whether the seller is better

off selling the two items in sequential auctions to 2N bidders, where all bidders are τ = y

in the first period and τ = o in the second period.

As Krishna (2010)[24] points out, the revenue equivalence in sequential auctions (with

independent private values) holds not only for the overall expected revenue to the seller
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but also for each auction in the sequence. The expected revenue from each auction is the

same in the case of first-price and second price rules. In sequential auctions the second

price auction equilibrium bid in the k-th auction is the same as the equilibrium bid in

the (k + 1)-st first price auction:

b
(II)
K (v) = v

b
(I)
K (v) = E(v2|v2 ≤ v)

For all k < K,

In second price auction the the solution to the maximization for the first period bid is

b
(II)
T−1(v) = v − E[W ∗

T (v)] = v −
∫ v
v
F2(b2)db2 = E[v2|v2 ≤ v], and this is also the solution

to the first price auction maximization.

On the other hand, in the overlapping generations model, the distribution of the bids

is a mixture between the distribution of discounted bids (young generation) and the non-

discounted bids (old generation). As a result the young person’s bid is b
(II)
y (v) = v −

W ∗
o (v) = v−

∫ v
v

(P (A)F2,A(b2)+P (B)F2,B(b2))db2. The mixture distribution between F2,A

and F2,B with defined by probabilities of states A and B is the distribution of the second

highest bid in the system. Let’s call this distribution F2,S(.) = P (A)F2,A(.)+P (B)F2,B(.).

The optimal bid of the young bidder is the expected second highest bid, conditional that

it’s lower than v, where the distribution of that second highest bid is F2,s.

b(II)
y (v) = v −W ∗

o (v) = v −
∫ v

v

(P (A)F2,A(b2) + P (B)F2,B(b2))db2

=

∫ v

v

(1− F2,S(b2))db2 = E[b2|b2 ≤ v]

It is clear that this bid is not the same as in the case of standard sequential auctions

87



model.

Lemma 1. The mixture distribution FS is stochastically dominated by the distribution

of valuations Fv (First Order Stochastic Dominance). For all z ∈ [0, v]: FS(z) ≥ Fv(z).

The order statistic distribution F2,S is stochastically dominated by the order statistic dis-

tribution of valuations F2,v. For all z ∈ [0, v]: F2,S(z) ≥ F2,v(z)

Lemma 1 is implied by the fact that some bidders in F2,S are discounting their bid.

As for all v ∈ [0, v]: by(v) ≤ v, F2,S will have higher relative probabilities for lower values

in comparison to F2,v.

Theorem 31. The optimal bid in symmetric equilibrium strategy for young bidder in

overlapping generations model is ≤ than the optimal bid in the first auction in a sequence

of two sequential auctions. (this comes from Lemma 1).

Proof. The bidder’s strategy in the first out of two sequential auctions is to discount

their bid by their expected payoff in the second auction. The discounting factor is W ∗
T =∫ v

v
F2(b2)db2 In the case of two sequential auctions the F2(b) = F2,v(b) here, while in the

case of sequential auctions with overlapping generations F2(b) = F2,S(b), and therefore,

by Lemma 1, the discounting in the case of overlapping generations is higher or equal to

the sequential auctions case.

What is the expected seller’s revenue from two auctions in the case of overlapping

generations of bidders, and in the case of sequential auctions without overlapping gener-

ations?

Theorem 32. The second period pay-off is higher for the seller in the case of sequential

auctions without overlapping generations with 2N bidders. (Proof by Lemma 1)

1.8.3 Extending beyond two-period lifespan

An extension to the above model is the case of bidders living for more than two periods.

Once the bidders are allowed to live for more than 2 periods, more possible states of
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the world arise in the model. For a three-period model N new bidders arrive each

period, but this time the bidders leave the auction sequence after three periods,not two.

This means that there are buyers of three different ages, and it increases the number

of possible combinations of numbers of bidders of each age. The number of different

possible combinations increases with the lifespan of bidders i the model, and it results

from the fact that the bidder who wins leaves the system and all the bidders become

older with each time period. In the case of three-period-lived buyers there are 5 possible

states of the world in the model. The complexity of the state diagram is increased with

every additional generation. Knowing the possible states of the model is important for

calculating the equilibrium strategies. It becomes difficult to derive with other than

computational methods though. In order to find the state diagram for each lifespan of

bidders, I have written a script in Java, which is included in the attachments. Object-

oriented programming has been of great help in this case, as it has allowed to make the

problem easily solvable. In the table below, the number of states for each life-span length

up to 10 periods is shown.

Length of Lifespan Number of States Number of Links
2 2 4
3 5 15
4 14 56
5 42 210
6 132 729
7 429 3003
8 1430 11440
9 4862 43758
10 16796 167960

Table 1.3: Number of States and Links for lifespans of lengths 2-10 in the model.

It can be seen that an increase in the number of states with lifespan is faster than

exponential, and after trying to derive a formula, it has become clear that there is no

easy formula for number of states. Number of links in the system is the number of states

multiplied by the lifespan (which is also the number of coexisting generations). The
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state diagram for a three-period lifespan is shown on the figure below. With 5 states,

and 15 links the diagram looks much more complex from the 2-period lifespan case. An

increase to 4-period lifespan results in 14 states and 56 links, while the next increase

leads to 42 states and 210 links. This shows that graphical representation becomes very

complex with increments in lifespan. The diagram for a 4-period lifespan is already very

complicated, but a further increase towards 5 periods leads to a very large graph which

would definitely not fit on one A4 page.

Figure 1.11: Three-period-lived Bidders Model, State Diagram

Such fast increase in complexity means that analyzing the state diagram visually is

not of much help once the lifespan increases beyond 3 generations. The equilibrium

formulas derived for the two-period lifespan, though, can be easily extended towards the

more complicated cases. In the case of no revealed information about prices, the stable
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equilibrium exists in the case of any lifespan length. Analogically to the two-period case,

the equilibrium describes the stable point in the strategies of bidders.

Theorem 33. There exists a symmetric Bayes-Nash equilibrium for any lifespan length

(and number of τ periods) in the model without price announcements.

In the case of three-period lived bidders the number of different periods τ is equal to

3, and in equilibrium each generation will have single strategy.

With more ages in the model, using letters such as y and o for distinguishing the age

is no longer sufficient. The ages τ will be numbered τ ∈ 1, 2, 3, 4, ... where the generation

with the age τ = 1 is the youngest, and the age increases with τ . The maximum age is

the total number of generations in the model, and this can be denoted as T = max{τ}.

For the model with T generations the solution to the maximization is:

bT (v) = v

bT−1(v) = v −W ∗
T (v)

...

b1(v) = v −W ∗
2 (v)

The 3-period model created much more states and links. As we can see from the

diagram the distribution of old bidders (N − 1 old bidders) in state D and old bidders

in state B (also N − 1) are different, because the old bidder who is not present in state

D has won in state A as a young bidder, while the old bidder not present in state B

could have also been a young bidder winning in state A two periods earlier, or a medium

bidder winning in A, B, or E. The system of equations becomes so complicated and large

in the case of 3-periods, that it makes no sense in writing it down here, as it can only

be solved using computer program in any case. There are more equations to write down,

but essentially the numerical solution for the case of no price announcements is just an

extension to the solution of the 2-period model. In the further section I will discus the
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numerical solution to the two period model, and I have also written a program to solve

the 3-period model. The key point is to see the pattern in the solution, which can be

projected to a model with any number of periods, and the universal conclusions which

the overlapping generations model implies.

1.8.3.1 3-period model with price announcements

In the three period model both versions of price announcements considered above will have

an effect on updating bidders’ strategies. The winning price from t−1 is informative about

the relative likelihood of states and winning bidder’s age, just like the in the two-period

model. Also, like in the two-period model that gives insight into future distribution.

Learning about the future period distributions will be reflected in the bidding of young

and medium bidders. In the case of price announcements before each auction the effect

will be on both young and medium bidders, while in the case of price announcements

after each auction seen only to the participating bidders, the effect will be on bidding of

medium bidders, while the young bidders will not change their bid. In both cases, the

price in t− 1 influences bidding in t, but the price in t− 1 is a result of bidding in t− 1,

which was influenced by the price in t − 2. In this way, the dependencies will follow all

periods back, and therefore it is impossible to solve for the equilibrium.

1.8.4 Evolution towards stable equilibrium

The case considered here is an infinite sequence of auctions. Nevertheless this sequence

had to start somewhere and the equilibrium considered here is arrived at as a stable

point once enough auctions have finished already. If, instead one wants to consider the

beginning of the sequence of auctions, then it has to be noted that such a stable , cyclic

equilibrium does not exist there. At the beginning of the sequence, at t = 1 there are

only N bidders, and all of them are of the same generation (young). In the second period,

t = 2, there are N young and N − 1 old bidders. Since then onwards the cycle from the

first State Diagram in terms of number of bidders of each generation begins to apply. The
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bidding strategies, and the distributions of bids are not, though, exactly the same as in

equilibrium, but they are evolving towards this stable point. Each young bidder consider

the future probability of winning, and since the distributions of bids are evolving, there

will be an infinite sequence of small changes in future distributions that the young bidder

would have to consider in their strategy choice. This makes the derivation of the strategy

for the young bidder very difficult, although this could be a topic for future research in

this area. The stable equilibrium considered is interesting because it has a closed form

and can be more easily analyzed as opposed to the cases of evolution towards equilibrium,

which is left for future research.

1.9 Conclusion

In conclusion, this chapter presents a new model of sequential auctions, where bidders

enter bidding at different auctions, and their lifespans overlap. The model is used to

show that such a case has implications for learning by the bidders. Previous prices are

a source of information about the expected distribution of bidders valuations, as in the

standard sequential auctions model, and additionally they carry information about the

expected composition of bidders with different horizon lengths in future periods. It is

shown that from the point of view of an external observer, the informativeness relating

to bidders valuations lasts only until the last bidders present in the period of information

acquisition exit. On the other hand, learning relating to the composition of young and

old bidders extends over all the future periods. An introduction of one bidder with a

3-period lifespan, who is able to observe a price after their first bid, into the equilibrium

environment of overlapping generations model with 2-period bidders makes the bidder

update their expectation of composition of young and old bidders in t+1 (the last period

of the 3-period bidder), even though none of the other bidders from t − 1 (the period

of price observation) are present in t + 1. Based on that, the 3-period bidder updates

their bid in their middle period, expecting a different composition of young and old 2-
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period lived bidders in t+ 1. This is a novel result, in comparison to the standard model

of sequential auctions, where the only channel for learning is through updating on the

expected valuations of bidders in future periods. Unlike in the standard model, it is not a

necessary condition that the same bidders should be present in the period of information

acquisition and the period for which learning is applied.
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Chapter 2

Empirical investigation based on

sequential auctions theory
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2.1 Introduction

The current chapter is the analysis of auction data with respect to the sequential auc-

tions theory outlined previously. Two main hypotheses are tested. First of all the data

is analyzed with respect to the expectation of bid discounting by bidders of younger gen-

erations. The theory predicts that bidders should be increasing their bid in sequential

auctions, by reducing discounting of their valuation of the product. Forward-looking bid-

ders that plan to bid in future auctions should take that into account in their bidding

strategy. Secondly, the overlapping generations model predicts correlation between price

in previous auction on bidding in the following auction. Higher prices in previous auc-

tions have an effect on beliefs about the competition present in the following auctions

one step further to the future, which induce bidders to increase their bids. Literature

search revealed no existing studies testing those predictions. Previous empirical tests of

sequential auctions usually focused on a dissonance between theoretical prediction about

increasing prices and empirical observations. The empirical analyses found in literature

were focused mostly on price patterns in sequential auctions, while the current chapter

is trying to answer questions about bidding strategies and its links to previous prices.

The model of sequential auctions considered predicts linkage between observation of past

prices and bidding strategy. It is expected that an effect of prices on bidding in the

following auctions is monotonous. Online auction marketplaces for consumer goods are

a good place to test the predictions of the OLG model because of participation of many

bidders and a tendency among them to take part in more than one auction for the same

product. On the other hand, bidders sometimes place bids in parallel auctions, and there-

fore, in order to identify the impact of learning from past prices, one has to ensure that

sequentiality is satisfied.
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2.2 Literature

The most influential empirical paper discussing the theory of sequential auctions was the

investigation of wine auctions in Ashenfelter(1983)[3].The authors found that the price

in sequential auctions was declining, in contrast to predictions of the earlier theory -

increasing price. The declining price was explained by risk-aversion in McAfee and Vin-

cent (1993) [25], and by the deviation from Perfect Equilibrium strategy, as discussed

in Milgrom and Weber (2000)[27], but also by the fact that high-valuation bidders win

at the beginning, which creates a declining distribution of bidders left in later auctions.

Until the boom in popularity of online auctions the availability of data on sequential

auctions of identical objects was limited. Empirical investigation of price in sequences

of auctions has given the researchers the grounds to add modifications to the theory of

Common Values component and risk-aversion, as well as deviations from the PBE strat-

egy. Interestingly, the empirical studies have focused on investigation of only the price

in the auctions, while the most fundamental prediction of sequential auctions theory -

that bidders increase their bid in following auctions has not been tested, possibly due to

the lack of availability of data for individual bidders. In my investigation I am looking

at strategies of individuals in the sequence of second price auctions. The main predic-

tion of the theory presented herein is the increase of bids in sequential auctions. The

empirical results confirming that are obtained using the advantage of individual-bidder

data. The increases of bids is a common component in all versions of private values

sequential auctions models - not depending on the horizon, number of future auctions or

risk-aversion. The fundamental question addressed is whether Game Theory provides us

with good predictions for the individual strategies in sequential auctions. The addition

of overlapping generations of buyers to the model does not change the prediction about

bid increases. Another prediction of the model tested is the influence of past prices on

bidding in the next auction, which, if found to be present, would confirm the hypothesis

that bidders learn by observation of results of previous auctions.
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eBay auctions have been studied before, whereby most of the literature about buyer’s

behavior is focused on the investigation of features which deviate from basic theoretical

model, such as bidding multiple times during one auction or last minute bidding. A

summary of literature dealing with eBay can be found in the review paper by Hasker

and Sickles (2010)[18]. As authors summarize, there are several main tactics of buyers,

which include: Sniping (Last Second Bidding), Incremental Bidding, and Squatting (large

early bids) or Jumping. The availability of proxy bidding enables the bidder to enter the

highest price they are willing to pay for the item, allowing them to save time incurred

to increase their bid later.However, this strategy is not always used and in many cases

multiple bidding occurs.

Despite these additional aspects of behavior at online auctions, the theory about sequen-

tial auctions is still relevant when looking at final bids of bidders in each auction. Put

aside multiple bidding and the timing of the bid placement, the final bids should be

representative of bidder’s valuation for the auctioned item. Ability to observe how indi-

vidual bidders bid in a sequence of online auctions and availability of such data provides

an opportunity to test the fundamental theory of sequential auctions. The addition of

overlapping generations, as introduced in this thesis, is relevant to this data, since the

generations of bidders are seen to clearly overlap in the studied auction setting.

Online auctions data typically contain anonymized user names. Literature search have

not shown previous attempts at dealing with this problem, and the method presented

herein could be shown to be of benefit in future research in this field.

2.3 Theoretical Predictions

The two main theoretical predictions from sequential auctions theory are the following:

1. Bidders increase their bids in subsequent auctions - this is because the amount

that they discount their bids is decreasing. The discounting by which the valuation is
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reduced is the expected value of the option to bid in the future. The more auctions that

the bidder is still looking forward to bid in, the larger the amount of discounting.

2. Past prices influence bidding because they make the bidders better informed about

the distribution of valuations of future competing bidders in the following auction - in

turn it gives indication about the distribution of bids that they can expect in the following

auction. In the case of the simplest model, where all bidders have the same horizon of

future auctions at the same point in time, the distribution of valuation is transformed by

a monotonously increasing bidding function to create a distribution of bids. In the case

the model with overlapping generations, the bids distribution is a mixture distribution

of bids belonging to bidders with different horizon. The operation that needs to be made

on distribution of valuation to get the the distribution of bids is more complicated. Yet,

what is common in these two cases, is that the general prediction of a higher observed

price leads to the expectation of higher competition in the future, and therefore also leads

bidders to adjust their bids upwards.

More generally, let us assume that valuations of bidders are v ∈ V and are randomly

distributied with distribution function: g(v) and CDF G(v), and bids are denoted b ∈ B,

where the transformation that maps valuation to bids is a function f : R→ R, and then

also B := f(V ). The distribution of bids with PDF ψ(b) and CDF Ψ(b) can be derived

from the distribution of valuation and it is R→ R mapping:

ψ(b) =
∑

v,f(v)=b

g(v)

|g′(v)|

Generalising still further, let us define an operator ξ that creates the distribution of bids

from the distribution of valuations:

ψ(b) = ξ(g(v))
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The β(v) is the bidding function before any price is observed, and this function is

defined for each period τ ∈ [1, 2, 3, ..Υ], where Υ is the final period for the bidder. There-

fore, βτ (v) is the bidding function for period τ . At each period other than the first,

the bidder can observe the price at which the auction had closed in the previous period.

Observing the price pτ−1 leads to an update on the information about the other bidders

that took part in auction at τ−1 available to the bidder. This can lead to three outcomes:

1. An update on the set of valuations present in τ−1 so that the resulting distribution

of bids is updated:

ψ|pτ−1(b) = ξ(gv|pτ−1(v|pτ−1))

2. An update on the function f(v) that maps valuations to bids. As a result there is an

update on the operator which transforms the distribution of valuations to the distribution

of bids:

ψ|pτ−1(b) = ξ|pτ−1(g(v))

3. An update on both the operator ξ and the valuations of bidders present:

ψ|pτ−1(b) = ξ|pτ−1(gv|pτ−1(v|pτ−1))

Example 1

For example, in the simplest model, where all bidders have the same horizon, the function

that maps valuations to bids is exactly the bidding function, i.e. f(v) == β(v). The

observed price in τ , which is the second highest bid, reveals directly the valuation of

the bidder issuing the second highest bid. It is easy to find the valuation of the second

highest bidder as it is

v2 = β−1(pτ−1).

The distribution of valuations of remaining bidders is updated, such that all remaining

bidders have valuation lower or equal to v2. Now the set of remaining bidders have
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valuations:

v|pτ−1 ∈ V |pτ−1

and the updated distribution of valuations is

gv|pτ−1(v|pτ−1).

Despite that, the shape of the bidding function remains the same and it is still β : R→ R,

although now we know their underlying set of valuations was modified and it is applied

to the new set β(v|pt−1).

The bidding function remains the same as do the function f and operator ξ. Therefore,

this example shows that the simplest model of sequential second price auctions with price

announcements results in updating of the distribution of bids based on the updated set

of valuations of the remaining bidders, which was outcome number 1.

Example 2

The second example is the overlapping generations model. Here, the function that maps

the valuations to bids is different from the bidding function of each individual bidder.

Therefore we deal with the case such that f(v) 6= β(v). Price from period τ − 1 does not

directly reveal the bidder with the second highest valuation who will be present in τ , as

was the case in Example 1. The price in τ − 1 results in updating of both, the expected

set of bidders’ valuations and the composition of bidders from different generations. The

density of valuations is updated based on pτ−1:

gv|pτ−1(v|pτ−1).

Moreover, as there is more information revealed about the expected composition of bid-
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ders from different generations, the function that maps valuations to bids is also updated:

f|pτ−1(v|pτ−1).

This means that the operator that translates valuations into bids is itself also updated:

ξ|pτ−1().

The overlapping generations are therefore an example of outcome number 3 for the impact

of price pτ−1 on the expected distribution of bids:

ψ|pτ−1(b) = ξ|pτ−1(gv|pτ−1(v|pτ−1)).

The formula for the bidding function is not changed, although it still depends on the

expected distribution of bids in future periods.

end of Example 2

The bid of the bidder i in the period τ in sequential auctions is defined by the follow-

ing equation:

bi,τ = vi − (

∫ b∗i,τ+1

0

(vi − x)ψ2,τ+1(x)dx+

∫ ∞
b∗i,τ+1

(vi−

(

∫ b∗i,τ+2

0

(vi − z)ψ2,τ+2(z)dz +

∫ ∞
bi,τ+2

(...)ψ2,τ+2(z)dz))ψ2,τ+1(x)dx) (2.3.1)

The meaning of the above equation is that the bid in period τ is the valuation dis-
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counted by the expectation the option value to bid in the future periods. It is dependent

on the distributions of bids in period τ+1 and further future. After the price from period

τ − 1 is observed the distributions of bids in all future periods are updated through one

of the three channels outlined above, and the bidding for each of the future periods is

updated:

bi,τ |pτ−1 = vi − (

∫ b∗
i,τ+1|pτ−1

0

(vi − x)ψ2,τ+1|pτ−1(x)dx+

∫ ∞
b∗
i,τ+1|pτ−1

(vi−

(

∫ b∗
i,τ+2|pτ−1

0

(vi − z)ψ2,τ+2|pτ−1(z)dz +

∫ ∞
bi,τ+2|pτ−1

(...)ψ2,τ+2|pτ−1(z)dz))ψ2,τ+1|pτ−1(x)dx).

(2.3.2)

The higher the expected distribution in each period, ψ2,τ |pτ−1(), the lower the expected

surplus possible to gain due to future options to bid. Subscript 2 indicates the distribution

of the second order statistic from ψτ |pτ−1().

Depending on how the observed price influences updating of the distribution ψτ |pτ−1(),

the bids will be updated either upwards or downwards.

Definition 29. Price pτ−1 is directly representative of competition in τ + 1 ⇐⇒

an increase in price pτ−1 leads to an update of distribution function of bids in τ + 1:

ψτ+1|pτ−1 such that ψτ+1|pτ−1 dominates ψτ+1 in terms of First Order Stochastic Domi-

nance.

In this case the higher expected price will lead to an upward update on the distribution

and as a result the expectation of the other bids and the auction in τ + 1. The case of

Example 1 of the simpleast model is clearly an example where price pτ−1 is directly

representative of competition in τ + 1 as defined above. It has been shown on in

2-period overlapping generations model example that once the price τ − 1 is observed,
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the distribution in τ + 1 will be updated.

Theorem 34. In every model, where the price in τ − 1 is directly representative

of competition in τ + 1, bidders will update their bids in τ in monotonous relation

to observed prices in pτ−1. Therefore, higher observed price in τ − 1 would lead to an

increase in bids in τ .

The proof of the theorem above is trivial, as it is implied by Definition 29.

The empirical investigation below aims at testing whether learning from past prices is

present in online auctions. If so, then is updating of bids in monotonous or opposite

relation to prices. The finding learning from past prices would suggest that bidders think

of the prices in τ − 1 as directly representative of competition in τ + 1 according

to definition and the theorem above. Additional question tackled here is what can be

defined as period τ − 1 for bidders in real life setting? Do bidders learn more from the

auctions they have participated in actively, or from observation of past prices from most

recently closed auctions?

2.4 Questions

The empirical investigation below aims at analyzing of the impact of the sequential aspect

of online auctions on bidding. The questions of interest are:

1. Do bidders discount their bids in anticipation of future periods?

2. Do bidders update their bids based on observed past prices?

3. Is the updating of bids in monotonous relation to past prices?

4. What can be defined as period τ − 1 in online auctions? Is the most recent auction

in which the bidder participated the most important for learning? Do bidders learn

from observing other auctions, in which they did not take part, as much as from

the auctions in which they have actively participated?
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5. If learning occurs, than is it rational? - are there other bidders who take part in

both τ − 1, which is used for learning, and the future periods?

2.5 Empirical Approach

Above questions are answered using a linear model estimated using OLS as well as the

t-test for bid discounting with the use of smaller sample size, with selected bidders who

bid only sequentially (allowing each time for the previous auction to finish before placing

a bid in the new auction). In short, the ways the above list of questions is answered are

listed below:

1. Do bidders discount their bids in anticipation of future periods?

This question is answered with the use of small, pre-filtered subset of data. Users

who bid sequentially are defined as those that wait until the end of the previous

auction, in which they took part, before placing their final bid in a new auction.

Only such bidders who satisfy this definition in each period, so each time they

bid in a new auction, are selected. The bidders are then grouped by the total

number of periods. The groups are also divided between bidders who win in the

final period and those who do not win any object. The t-tests (matched pairs)

are performed on the differences between bids in periods in a sequence. Matched

pair t-tests ensure that the unobservable bidder characteristics do not influence the

results. High degree of selection means that there is a small number of observations

in each group, and the tests have to be limited to small number of periods. It also

means this type of selected dataset could not be used for the regression with more

controls.

Regression analysis is preformed on a different type of dataset, and user fixed effects

could not be included in the regression analysis. Too many bidders have bid on a

small number of auctions, or have bid concurrently. In order to minimize the impact

of unobservable bidder’s characteristics, bidder’s valuation is accounted for using
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their final bid in the last auction they have participated in. The question of bid

discounting, is partly confirmed in the regression results, which shows a positive

coefficient next to bidder’s auction number in the regressions on bid amount.

2. Do bidders update their bids based on observed past prices?

The approach to answer this question is to use regression analysis and identify

the impact that the price of previous bid has on the bid amount. The analysis

is limited to final bids by bidders in each auction. Period τ − 1 is defined as the

last auction in which the bidder participated, that has already finished before the

bid in τ . Bidder could, therefore, already see the price of the finished auction. As

mentioned above, bidder’s valuation is treated as the most important unobservable

that influence bidding. It is accounted for by the inclusion of the final bid by

each bidder as a control in the regression. All the controls relating to the time of

the bid and the dynamic aspects of the auction at the time of the bid as well as

interaction terms between them are included. The fact that the coefficient next

to previous period price is not significantly affected by the inclusion of all the

interaction terms, strengthens the conviction that all important unobservables are

appropriately accounted for and the impact of learning from past prices is identified.

The same regressions are performed on different subsets of the data, selected based

on auction characteristics. The strict rules used for the selection means that subsets

contain almost identical auctions, allowing, therefore, for the identification of the

effect of past prices on bidding.

3. Is the updating of bids in monotonous relation to past prices?

See above point 2.

4. What can be defined as period τ − 1 in online auctions? Is the most recent auction

in which the bidder participated the most important for learning? Do bidders learn

from observing other auctions, in which they did not take part, as much as from

the auctions in which they have actively participated?
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The impact of differently defined period τ − 1 on bids is tested. Alternative defini-

tions include:

(a) The most recently finished auction in which the bidder participated.

(b) The most recently finished auction before the bid (without the necessity that

the bidder placing the bid participated in that auction).

(c) The average price from the most recently finished auctions. The alternatives

include 5, 10, 15 and 20 most recently finished auctions.

The past prices from period τ − 1, as defined above, are included as alternatives in

the regressions. The coefficients are compared which allows for building conclusions.

5. If learning occurs, then is it rational? - are there other bidders who take part in

both τ − 1, which is used for learning, and the future periods?

The analysis of common bidders between auction at τ and the auction at τ − 1,

as defined by alternative definitions above, is performed. Percentages of common

bidders (with exclusion of the bidder placing the bid in τ) are calculated.

Before the above analyses were performed, the data needed to be prepared. The dataset

used contained only a small number of variables, namely the standard information on

bids that can be collected from the eBay website. Some aspects of the auctions, such as

live prices, current number of bidders and bids, were not readily available, and needed

to be generated. One aspect of the dataset that was limiting for the analysis, was the

fact that the usernames of the bidders were partially encoded, which is done for the

anonymization purposes. Fortunately, the anonymization is done in a universal way in

the whole dataset, and part of the username information, such as first and last letter as

well as their total number of eBay wins is kept. The identification of users was made with

the use of the remaining information, and it is shown, that this information, together with

bid timing provides enough data to get a high certainty of the correct user identification.
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This means that there was no need to acquire and process sensitive information, such as

real usernames.

2.6 Data

The data includes iPhone 4 sales on eBay between 17th June 2010 and 7th August 2010.

It is a unique source for the analysis of bidder behavior in auctions for a number of reasons.

Most importantly it contains data on almost 2000 auctions of the same product. Secondly,

it contains not only the highest bid but also all other bids in each auction, which means

the analysis does not have to be limited to final auction prices. Thirdly, the data was

collected at the time of the shortage of iPhone 4, shortly after its first introduction to the

market. There is a lot of interest in these organic auctions, which also separates it from

the low participation in auctions purposefully set up for experimental research papers.

Due to the fact that there was an uncertainty about fast availability of the smartphone

in physical retailers, the prices achieved were very often higher than the later fixed price

after the supply shortage was resolved, reflecting high valuation for the object among

bidders. The temporary supply shortage is also one of the reasons for the exceptionally

high interest in the online auctions for this device at the time. eBay data can be collected

through different methods, but most common are either paid data sourced directly from

the provider or free collection through API or manually by observation of auctions. The

data used here has been collected through two different methods, API, as well as manual

collection from the eBay website. The data was originally used in Waterson and Doyle,

2009[37]. The proportions were such that about 1/3 of data was collected manually, while

2/3 has was collected by a web crawler. The data constitutes a large and unique dataset.

The usernames of bidders collected from the website are partially encoded for privacy

reasons, so the full usernames cannot be unambiguously identified. This issue has been

addressed in order to identify the same bidders taking part in more than one auction.

The fact that the usernames were matched for the first time makes the dataset unique
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source for analyzing individual behavior in sequences of auctions over time. It is possible

to match the usernames, since the first and last letters as well as number of current wins

are available, and details of the methods is discussed in the following section.

2.6.1 Usernames

The dataset contains partially encoded usernames of buyers. The format of buyers’

usernames is a String containing the first letter of the username followed by number of

stars (*), which cover the middle part, and followed by the last letter, then the number

of current wins in brackets. As an example user entry “a***s(19)” means that the first

letter of the username was ”a”, the last ”s” and that the person has a total of 19 wins on

eBay to date. In the case that the users do not buy any new product over the duration of

data collection, this encoding would give in fact almost 100% certainty that each distinct

entry related to a different person. The data collection took place over 44 days, so it is

possible that additional purchases were made over that period. Moreover, some buyers

can win more than one product over the dataset duration, or continue bidding in other

auctions after winning a product, therefore reasonable increases in the number of won

auctions are possible. This information is used in the algorithm to identify unique users.

The choice of usernames on eBay allows using any letter, capital letters, numbers, as

well as special characters, which include: full stops, asterisks, underscores, or dashes 1.

Usernames need to have a length of at least 6 characters. A username is a unique identifier

of a person and one unique username is assigned automatically once a person registers on

1Additional restrictions include (citation from eBay website): “ User IDs can’t contain: Any characters
except letters, numbers, full stops, asterisks, underscores or dashes Elements that imply an email address
or web address - including but not limited to .com, .net, .org, .edu or any variation (for example, com or
-com). However, your user ID can contain an element of an email address or web address that identifies
you or your brand. For example, if your web address is xyz.co.uk you can use xyz as an element of your
user ID Consecutive underscores An underscore, hyphen or full stop at the beginning or end of a user
ID (for example, -cardcollector) The word ’eBay’ The letter ’e’ followed by numbers Obscene or profane
words that breach our profanity policy The same user ID as another member A user ID that is similar
to the name of an eBay Shop A term that could be confused with someone else’s trademark or brand
(for example, ’CocaColaSeller’) A term that may reasonably mislead another user into thinking that
the account is held by a law enforcement agency or other regulatory authority (for example, Trading
Standards UK)”
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the website. It is later possible to change it to a preferred one. Given that most of buyers

stay with their randomly assigned username, which typically includes a mixture of letters,

special characters and numbers, the first and last letter of the usernames are likely to be a

unique combination. The calculation of the upper bound on the number of combinations

is with the assumption that the characters forming a username are assigned at random.

No matter what the total length of the username, just by knowing the first and last letter

gives the number of permutation with repetition: 662 = 4356 (66 is the total number

of possible characters used), which means that the probability of randomly picking two

identical pairs of characters is 1/662 = 2.296 ∗ 10−4. In the dataset there are multiple

observations for each person (multiple bids). Additionally, it is possible that a person

buys as many objects as they wish on eBay. Taking into account that the probability that

any other person’s username is the same as the previous one is very low, of magnitude

10−4 and the existence of multiple bids by the same user, the probability that any two

entries with the same first and last letter of the username is the same person is high

(upper bound being 1 − 2.296 ∗ 10−4). The first and last letters might not be random,

but nevertheless 2.296 ∗ 10−4 shows the lower bound on the magnitude of finding two

identical usernames, which, even if in fact it is higher, is a very small number, close to

zero. This shows that it is very unlikely that there will be two people with the same first

and last character of the username in the dataset.

The additional information that is given is the number of total wins on eBay. This

gives additional way to distinguish the users, in cases of more than one username with the

same first and last character. Two extreme cases are: 1) treating the users as the same

whenever the first and last letters are the same, or 2) only when both first and last letter

as well as the number of wins is the same. Alternative approach is accepting the same

user when first and last letters are the same, and with some restrictions on reasonable

change in the number of total wins: for example if the total wins are decreasing with

time, or increase too fast to not be possible.

In order to compare these different approaches I have split the variable user to user1
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Figure 2.1: Two methods of distinguishing increases in number of wins.

(containing only the username part) and numbEbayWins (containing the number of total

eBay wins). The total number of users identified through different methods are shown in

table 2.1. In the table, the description of the method, the variable which corresponds to it,

and the number of resulting distinct usernames can be found. user is the default variable

containing both the encoded username and the number of total wins, user1 is the variable

created by splitting the user variable, containing only the username part of it. The other

variables are created by imposing additional constraints on the increases/decreases of

number of total wins in time. It was done by first sorting the users in a way to create an

increasing ranking in the number of wins over time for each pair of first and last letter.

There are two ways to approach this ranking, and the results are slightly different (Figure

??). The observations for each user can be first sorted by time and then by number of

wins, or first by number of wins and then by time. I have decided on the second approach

reflecting the belief that smaller number of win increases are more likely to refer to the

same person. The difference between two methods is presented on an example in Figure

??.

I am using Method 2 , so sorting the users by the total number of wins first, and then

by time. Then, variable user1NonD is created by requiring that for each username, if the

number of wins increase, but the time decreases, then the following entry starts a new

user - that is applying Method 2 from figure ?? without any additional restrictions on

the increases in number of wins. Variable userCoded1 is created such that the number

of wins difference is at most 10 if time difference is below 24 hours and that the number
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Table 2.1: Number of users when different rules of user identification applied

Total users

username

username username username username username
+number + number +n. of wins +n. of wins +≤1 win
of wins of wins not decreasing not decreasing in the first 1.2 min
match not decreasing +≤10 w/h +≤5 w/h +≤ 5 w/h

user1 user user1NonD userCoded1 user15 user1M

1156 6123 3994 4075 3995 3997

of wins is at most 10 wins per hour for time difference grater than 24 hours, in addition

to what is required for user1NonD. Next example of an identifying variable is user15,

which allows for an increase of no more than 10 wins for any time difference less than

5 hours, and and increase of no more than 5 per hour for a time difference larger than

5 hours. The restrictions on the increases used are arbitrary. Nevertheless it is more

often the case that the wins for the same user might be close to each other (for example

within 5 or 10 hour period), which is the reason for an initial period allowing for faster

increases, set up to be a given number of hours. Otherwise, if just a simple ration per

hour was used, an increase of 1 in one minute difference would not be allowed, and this

can easily be the case if someone wins and then immediately places another bid which

wins again. The last method, with variable user1M, is created by restricting that there

is an increase no larger than one in the first 1.2 minute, and the other conditions remain

the same as for user15. The difficulty is in choosing the best way for user identification,

and as we can see the very upper bound on the number of users is 6123, while the lower

bound is 1156, when allowing any increases in number of winning bids. Different ways of

restricting these increases lead to a different number of resulting users in the dataset.

It is not clear which method should be used, although identification by user can be ruled

out since some increases in the number of total wins should be allowed. The decreases in

number of total wins cannot take place, so conditional on no mistakes in recording the

data, user1NonD is the lower bound on the number of bidders in the dataset. Given that

some of the data were inserted manually by research assistants, there can be some small
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typos, which could slightly influence the decreasing number of wins in time, but this is

certainly a marginal problem. As can be seen, applying some restrictions on increases in

bids, as in user15 or user1M does not influence the number of bidders by much (only

+1 or +3 difference from user1NonD ), so using this variable seems to be reasonable

and practically equivalent to the other two methods. The user1NonD method has been

chosen, and the variable which distinguished between bidders has been named user .

This is the one mentioned in table 4.1 under this name. This variable has been used for

creating all other variables statistics and data analysis based on user identification.

2.6.2 Live Bids, Live Prices and Bids

The data contains bids made by users. The bid data, that can be collected from the

website does not reflect, though, what information is available to the bidders at the time

of auction participation, because it is only available to inspect after the auction has

closed. This means that in order to retrieve the information available to the bidders at

the time they decide to place their bids, the live prices need to be retrieved. During the

auction, when the bidder places their bid, the bid itself is not visible to other users, only

so called ”live bid”, which is the second highest bid plus an increment. The magnitude of

the increment, which changes depending on bid amount, is publicly known and available

to be found on auctioneer website. It is, therefore, possible to retrieve live bids from

bids data, and it has been done for example in Jank, 2010 [20]. The R script used in

Jank, 2010 [20] is available on the book’s website, and it has been utilized here in order

to retrieve the live bids (with necessary adjustments to the dataset). Auction bids and

live bids can be quite different. Most importantly, while it is possible that a lower bid

is placed after a higher one by another user, live bids are always monotone increasing.

Live bids show, in fact, what the highest bidder would pay if the auction ended at the

given time, but do not reveal what is the current highest bid. It has to be also noted that

while the code provided by Jank [20] recreates the live bids, information available to the

bidder at the time of bidding is the current live price - which is the live bid just before
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the new bid is placed - precisely the live bid of previous bid.

In eBay terminology the ability to place high bids in advance is called ”proxy bids”,

and live bids are related to as ”bids” - even though these ”bids” are automatically made

by the system on behalf of the bidder. Interestingly at the time the bidder places their bid

they are not able to know what their live bid will be or whether they will even become the

highest bidder.If we use the terminology conventionally used in auction theory, the proxy

bids should be called bids, while eBay - a type of second price auction, where the highest

bidder pays the second highest bid with an added fixed increment specified by the rules.

Over the auction duration eBay keeps track of the second highest bid (+ the increment)

and gives this information to auction participants and observers. This information may

be partially revealing about the valuation of some of the bidders in the auction, and it

can influence the bidding strategy. Due to the possibility of multiple bidding, as well as

the fact the auctions are quite long (one or more days), the actual information about the

valuations revealed by these live bids is very limited. It does, though, have a significant

impact on the bids placed. Jank and Shmueli (2010) in fact show, that the information

on live prices and time alone can be used for prediction of final price in an auction, since

there are patterns of how these prices evolve over the auction duration.

The variablesbLiveBid and bLivePrice have been generated from the bid data to

represent live bids and live prices. The prefix ”b” in front of variable names means

that they are specific to each bid, not for example auction variables, or bidder - specific

variable. Before changes made the dataset contained ”MaxBid”, which referred to the

highest live bid in the auction, and at the same time auction price. This variable has

been renamed to aPrice, since it relates to an auction, and represents the final price.

2.6.3 Other variables

In addition to live bids, and live prices, some other informative variables have been gen-

erated from the data. In particular, these were variables relating to the position of bids in

auction, the numbering of bid sequences for each user, as well as all user-related variables.
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After differentiating between distinct users as described in the previous sections, it was

possible to recover new information about number and sequencing of auctions joined by

the bidders, or number of bids placed by bidders in each auction. All the variable names

with corresponding definitions can be found in the Appendix table 4.1. The naming of

variables have been unified so that it is clear, by looking at the prefix, at which level the

variable changes (or is constant). Variables that change at each bid start with prefix ”b”:

these are bLiveBids, bLivePrice, but also bAmount - which represents the bid amount.

bAuctionBid tells which bid it is in a sequence of bids starting from the beginning of

the auction. There are several variables relating to the timing of the bid: bT ime is a

date-time variable which tells both the date and time of the bid; bPercWithin takes

auction duration as 100% and specify for each auction bid at which percentage of auction

time the bid has been placed; bT imeT illEnd is a time variable that tells the amount

of time left to the end of an auction; bDayOfWeek, bHourOfDay are other variables

relating to time of the bid - day of week and hour of the day at which the bid has been

placed. The various time variables have been created at the beginning of data cleaning

process in order to have more flexibility in choosing relevant variables to control for the

time of the bid in later analysis. Some indicative 0-1 variables have been created as well:

bF irstAuctionBid, bLastAuctionBid, bIsWinning, bLastMaxBid. bBIN is another

categorical variable, set to ”Yes” if the bid was placed using ”Buy it now” option to

purchase the object at a fixed price, not using auction mechanism. User-level variables

have ”u” as a prefix, and all of those variables needed to be generated after users were

identified. Some user level variables are also auction level, but these have prefix ”u”

as well. Some variables which relate to the current bid by the user are uAuctionBid -

which tells which user’s bid it is in that particular auction; uBid - tells which user’s bid

it is counting from the first bid made by this bidder in the dataset; uWinsSoFar tells

how many items the bidder has won already, while uTotalWins tells how many wins

the bidder has won in total; uAuctionNumber tells which auction it is in the sequence,

counting from the first auction the bidder has joined, while uReverseAuctionN counts
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the auctions from the last one, and it has been generated in order to have uniform num-

bering counting from the last auction for bidders with different number of total auctions

joined (the reverse counting is based on how bidder’s strategies are solved from using

backward induction); uTotalAuctions gives the total number of auctions joined by the

bidder; uLastBid is the amount of user’s last bid placed in the final auction before leav-

ing the auction marketplace - according to theory the bid placed in the final auction is

expected to be the highest bid, and also equivalent to bidder’s valuation for the object,

which is why this variable is very important for further analysis; in addition uMaxBid

represents user’s maximum bid; uTotalAuctionBids tells how many bids the bidder has

placed in the particular auction; uTotalBids tells the total number of bids (including

all auctions joined) by the bidder; There are also some boolean (indicative) 0-1 variables

include uNewAuction which is 1 for a first user’s bid in an auction, uLastAuctionBid

which indicates the last bid by the user in each auction (useful for selecting a subset in-

cluding only final bids by users in auctions), uNLR, which indicates the users that were

marked as unregistered from eBay at the time of data collection; and other user-level

aggregate variables such as uAvAmount which takes an average amount bid by the user,

uAvAuctionBids which is the average number of bids per auction for each user. Another

user-level variable is the uNumbEbayWins which has been used for user identification as

described before and contains the total number of eBay wins by the user, including the

wins outside the collected dataset (includes the whole history of the bidder since their

registration).

All the auction-level information in the dataset was present in the collected data, and

the variables relating to auctions were renamed to start with prefix ”a”. The auction level

variables are: auction - categorical variable representing auction number; aCondition -

is a categorical variable containing information about condition of the phone such as

”New” or ”Used”; aDuration equal number of days the auction has lasted, and there are

auctions lasting 1, 3, 5 or 10 days in the dataset; aEnded which is a date-time format
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variable representing the date and time of the when the auction has ended;aStartDate

is another date-time variable for the start date of the auction; aExtras a categorical

variable which states whether there are any extras included with the phone, and this

is none for almost all of the dataset, so this variable is not of much use; aMaxBid is

the maximum bid in the auction; aPrice is the price of the auction; aMaxLiveBid is

the maximum live bid (also equal to the price of the auction but generated from live

bids); aMaxLivePrice equal to the last live price which the final bidder could see before

placing their bid; aModel is a categorical variable, which tells the different models from

the point of view of data storage space - most common categories are ”16” and ”32”;

aNetwork - a categorical variable stating the network to which the phone is locked or

whether the phone is unlocked (possible to use with any network);aTotalPhotos tells the

number of photos in the auction; aNonStock is a categorical variable telling whether

there are some non-stock photos (so real photos taken by the seller, not from stock pho-

tos of the phone available on the Internet); aNonStockPhotos tells the number of these

”non stock photos”; aPositiveFeed, which tells the number representing the positive feed

score given by customers of the seller (certain levels of positive feed mean certain levels

of stars given by eBay for the sellers to represent their reputation levels); aStarLevel

which is a categorical variable has been generated from the aPositiveFeed variable so

that it can be recorder which star levels were the sellers given (it is important because

the stars of different color are visible next to the seller’s name); aStarL represents star

levels as before, where 0 is no star, 1 is the lowest star level possible, 2 - second level,

3 - third level, etc.; aPostage represents the amount to be paid for the postage or 0 is

postage is free of charge; aPostto shows how the ”post to” field has been filled by the

seller - these are all auctions on UK eBay and therefore most auctions have ”UK” in this

field although there are also other options present such as ”Worldwide” here; aReturns

is a categorical variable, which can be ”Yes” if returns are accepted and ”No” if returns

are not accepted; aSeller gives the seller name (categorical variable); aStartPrice is a

variable representing the start price for the auction set by the seller; aTotalBidders,
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aTotalBids are the variables telling the total number of bidders and bids in the auc-

tion; Some additional variables generated from the data are aAvPercWithin, which tells

the average time (in therms of percentage of auction duration) at which bids have been

placed in that auction, and aAvUserAuctionBids which is the average number of bids

the users have placed in that auction. Of course not all of these variables are necessary

for the following analysis, but the variables needed to be generated before the data was

further refined, and the aim was to generate the most possibly relevant information for

flexibility later. The descriptive table for most numerical variables can be seen in table

4.2: the full dataset contains 27648 bid, and the maximum number of user auctions is 99.

The statistics related to the main variables in the dataset can be found in the Appendix

in table 4.2. Some bids had no recorded corresponding username - that field was ”.” in

the data, and therefore these bids are not included in the user-related variables (which

is why the total number of bids for these variables is 21377). Of course the bids without

recorded users have been removed from further analysis, as distinguishing between users

is key for sequential auctions analysis.

For the analysis of bidding in sequential auctions only the final bid of each bidder in each

auction is relevant. Multiple bidding can be seen as irrelevant from the theory’s point of

view, since only the last bid by each bidder in an auction represents the full amount that

one is willing to pay for the item. The dataset was limited to final bids by each bider in

auctions. After multiple bids were removed, the dataset contained 12063 bids in total.

2.7 Bid discounting in sequential auctions

Theory of sequential auctions predicts that a bidder with positive horizon of auctions

to bid in the future will be discounting their bid, taking into account the present value

of future option to bid. The theory predicts that bid discounting does not depend on

total number of auctions joined, if we count the auctions from the last one downwards.
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This a consequence of the fact that the strategies in periods are normally solved for by

backward induction. I am checking the hypothesis of bid discounting for bidders bidding

in different number of periods (number of auctions joined) until their first auction won (or

until they stop bidding in the case they do not win any auction). The bidding behavior

of bidders is analyzed separately for groups of bidders bidding in different number of

periods. Those who never win, are also isolated and analyzed separately. The findings

confirm the hypothesis of bid discounting for those who do win an item in the final period.

On the other hand, bid discounting is not found to take place for bidders who do not win

any item in the final auction. Another prediction that is confirmed is that bid discounting

is higher for higher valuation bidders. A positive relationship is found between the final

bid (valuation according to theory) and bid discounting in earlier periods.

2.7.1 Data used for analysis

For the analysis of bid discounting there is no interest in bidders winning multiple times.

There are two ways of addressing this issue. First one is to take into account. If we used

such a conservative approach only those bidders who won once and in their final period

would be considered. There are many cases where bidders continue to bid after the final

win, which suggests that they could be interested in an additional item. It is not possible

to fully distinguish those who have intention of buying only one item from those who have

an intention to buy more than one item, therefore it is futile to try isolating single-demand

bidders for the analysis. There is also no grounds to think that multiple demand bidders

bidding until their first win is any different than single demand bidders, or that it would

not follow bid discounting strategy. Another approach is therefore proposed, and that is

keeping the bids of bidders who won at least once until (and including) their first win,

and all the bids of bidders who have not won at all. The periods are counted in reverse

order starting from the last period ( that is the winning period for those who have won,

and the final period for those who have not won at all) downwards until the first period

joined. This reverse counting is stored in the data as uReverseAuctN variable. Total
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number of periods is the total number of auctions joined until the first win or until the

end of bidding if no win registered at all. Another restriction that is needed to consider

sequential auctions bidding is that the previous auction should be finished before the

bid in following auction is placed. Only those bidders whose full sequences of bidding

contain sequential bidding (each following period bid is placed after the previous auction

has finished) are considered. This restriction is very important, because otherwise the

bids of bidders who bid in multiple auctions simultaneously, not knowing how many they

would win, would be included, which results in a completely different strategy of bidding

than this described by a model of sequential auctions.

The data contains variations of the phone - different models of the phone and different

networks assigned (also unlocked phones), but all those variations are included in the

analysis, since the focus is on sequences of bids on the same item by each bidder. It

needs to be kept in mind that if a bidder bids on different variations of the phone in

a sequence, then that could affect the amount they bid in the particular period. On

the other hand, there are more aspects that would affect their bid such as the current

live price of the auction, the time until the end of the auction, number of other bidders

bidding in the auction and possibly more. By restricting the bids considered in analysis of

sequences of bids further - for example by network and memory of the phone, the number

of bidders who bid always on the same variation of the phone would be very limited, and

the statistical analysis could only be performed on bidders who bid in two auctions (since

this is the largest group). The interest is in comparing strategies across more than two

periods of bidding, and this can be achieved when all variations are included. It is

expected that bid increases can be recognized despite variations in the circumstances and

auction characteristics at the time of each bid. Essentially, all auctions are for the same

item, and bidders are believed to have valuations for that particular item. Variations can

affect bid amounts up to certain degree only. The results show that despite the differences

across auctions, the main prediction of sequential auctions theory is confirmed in this real-

world data.
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The data used for analysis contains sequences of bids of bidders until their first win (or

no win at all), with the restriction that a previous auction need to be finished before

the next bid is placed at each period. The result is dataset containing 765 bidders with

two auctions joined out of which 244 have won in the final period, 230 bidders with 3

auctions joined out of which 71 have won their last auction, 65 bidders with sequence of

4 auctions joined out of which 23 have won in their last period, and 21 bidders with a

sequence of 5 auctions out of which 4 have won in their last period. The restriction that

only bidders who each time before joining new auction have waited until the previous one

has finished is very limiting which is the reason for relatively small number of resulting

bidders included.

2.7.2 Results

The first prediction tested is bid discounting. The following hypothesis is stated:

Theorem 35. Hypothesis 1: Bids are increasing with auction number in sequential auc-

tions.

The sequences of bids for the same bidders were used, which is why a matched pairs

t-tests can be performed. The t-tests are performed between each pair of consecutive

periods with division between bidders joining different number of auctions as well as for

bidders who have won and those who have not won any item. Groups with 2,3, 4 and 5

periods are considered. The tests are a one-sided matched pair t-tests as shown below:

H0 : bt,i − bt−1,i ≤ 0

H1 : bt,i − bt−1,i > 0

The test results are presented in table 2.2.

There is a clear increasing trend between consecutive periods in all groups of bidders

who won at least once. All, but one mean of difference between t and t-1 are positive.

it has to be noted that the negative difference between the first and second period for

5-auction bidders with 1 win is driven by an outlier - one bidder have placed a very low
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bid (50 pounds) at the beginning of an auction in their second period (that’s 4th with

reverse numbering). In addition to that, 5-period group with only 4 bidders does not

give enough statistical power to make any conclusions about differences between means,

especially that in the first period all bidders bid on the more expensive variant (model

32), while in the later periods almost all bids are in auctions for model 16. If we look at

the 2 - to 4-period bidders it is clear that bids in sequence of auctions are increasing. H0

is rejected for the differences between almost all periods at 1% or 5% significance level.

The differences between period 2-3 and 3-4 for the 4-period group is not significant at

10% level, but the mean difference is positive and t-statistic is above 1.07.

On the other hand, if we look at bidders who have not won in any of the auctions, there

is no increasing trend in their bidding. It gives an impression that those bidders for not

follow the same bidding strategy across sequence of auctions. Bid discounting for groups

of bidders who won in the final period are also presented in figure 2.2. Mean amounts for

each period are marked by red dashed lines.

Given the results above, it can be concluded that indeed there are bid increases ob-

served in sequences of auctions, but only for bidders who bought at least one item.

Theorem 36. Hypothesis 2: Bidders with higher valuation discount their bids by more

than bidders with lower valuation.

The second hypothesis to check whether bidders who have higher valuation discount

their bid by more.Figure 2.4 in the Appendix show scatter plot between discounting

amount and the final bid and the fitted line. As can be seen there is a positive correlation

between these two. Bid discounting is increasing with the final bid, and therefore with

valuation - as predicted by the theory. The results are of course relying on the assumption

that the final bid is a good representation of bidder’s valuation.
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Figure 2.2: Bid amounts, groupped by periods
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2.7.3 Conclusion

In conclusion, the analysis of sequences of final bids in auctions for bidders who bid

in different number of auctions confirms the hypothesis that there is bid discounting

present. Despite different versions of the item and time and auction related circumstances

of each bid, the t-tests show significant results for increases in bidding through most of

the periods tested. Additionally, the discounting amount is positively correlated with

valuation. Theory is matched with these non-experimental real life data. The results

confirm relevance of theoretical predictions to online auctions.
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2.8 Learning from past prices - Regression Analysis

The Overlapping Generations Model shows that learning about prices in previous auctions

influences the implemented bidding strategy, whenever there are overlapping generations

of bidders in sequences of auctions. In reality, the auctions which we can observe in online

auctions marketplaces provide a much more complicated environment than the stylized

model can. The addition of overlapping generations of bidders to the model creates a

feedback loop between prices of finished auctions and strategies of bidders without the

necessary condition that the same bidders are present in the information acquisition

period and the period about which learning happens that may influence the strategies of

forward-looking bidders. In the stylized auctions model each period t describes a single

auction, and the auctions end before the next ones start. In real online auctions there

can be a situation where a few auctions can be taking place simultaneously. How can we

recognize that we are dealing with overlapping generations? It is necessary that some of

the bidders from period t− 1 continue to bid in period t, while there are also some new

bidders at t. Some bidders do not continue to period t, and in the model these bidders

leave the auctions altogether.The winning prices from t − 1 are a source of information

about the age and distribution of the other bidders. As such one can see that we are

dealing with a highly self-consistent model when prices are observable. Observed prices

in the higher end of the price distribution mean that the competition in t− 1 was fiercer

and also that competition will be fiercer during the period t as well since more older and

higher distribution bidders are expected. Additionally, the fact that more old bidders

are expected in period t implies an increase in the probability of the state with fircer

competition for period t+ 1.This, in turn makes the bidders who observe the prices move

their bids upwards (bidders that are not in their final period). Considering only bidders

who are not in their final period should show that the bidding strategy is adjusted. The

first step is therefore to determine the periods. In the model the period t− 1 is the most

recent period in which the bidder took part before t. Due to the complex nature of data
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another restriction was applied on period t− 1: the auction of period t− 1 was required

to be finished before the bid is placed in period t. This way the bidder was able to see

the result of that auction before bidding.

On the other hand, I am also analyzing the impact of prices in the most recently

finished auctions on the bidding strategy. The summary statistics of 20, 15, 10 and 5

most recently finished auctions (mainly the average prices in these auctions) can also

have an influence on bidding. If the impact of results of most recently finished auctions

on bidding is stronger than the impact of the last auction in which the particular bidder

took part, it could mean that bidders are able learn more from looking at recent auctions

results than from the results of auctions in which they have actively participated.

Let us consider how a bidder learns about the period t − 1 auction results in practice.

When the auction has finished, the bidders get a notification sent to their phone or e-mail

that lets them see the auction result. Another way in which a bidder learns about results

from past auctions is to look at a list of recently finished auctions, which is displayed just

below the product search. Typically up to 20 finished auctions are displayed together

with their prices. Without any further action anyone searching for a product on eBay is

able to see the finished auctions list, which is sorted by auction end time, starting with

the most recent on top of the list. In order to justify that the bidders indeed derive any

information from past auctions in which they took part, it should be the case that some

proportion of bidders in period t have also been present in t − 1. As a first element of

the analysis I will check, therefore, what proportion of bidders from period t− 1 and of

recently finished auctions are also participating in period t, and the second element will

be to check the influence of auction t− 1 result or prices or recently finished auctions on

bidding strategy in t.

2.8.1 Data used for analysis

The dataset contains final bids in each auction by bidders, and to some auction cate-

gories, which are most populated in the data (this is described below).
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The dataset contains 12063 final bids, which are divided between 2536 auctions and

made by 3779 bidders. There are many auction characteristics present in the dataset.

Categorical variables are shown in the table 2.3 . In order to reduce variability between

auction characteristics, which could influence and bias the results relating to bids, less

populated categories are removed from the analysis. In particular, auctions included

in the analysis have duration of 1 or 3 days; model (which relates to GB in storage)

is ”16” or ”32”; network (relating to the network on which the phone can be used or

if on any - unlocked) is either ”Unlocked” or ”O2”; StarL relates to the rating of the

auctioneer - level 0 means too little seller rating points for any star level, level 1 is the

lowest recognized level called ”Yellow Star”, level 2 is ”Blue Star”, level 3 -”Turquoise

Star” etc. - all levels are represented by stars of a given color present on auctioneers

profile and are found next to their displayed name. The variations kept are levels 1,2 and

3. 0 (no level) is excluded because auctioneers which do not have enough rating points to

have given a star level are likely to be treated differently by bidders : for example with

too much uncertainty about quality of product or postage, which could bias the results.

Auctions with no photos, or free postage are also excluded. As a result analysis is based

on a chosen subset of the dataset that contains the most populated group of auctions,

with most similarity, so that on the the results are derived from data on very similar

auctions.This is important because it is undesirable to distort the results by analyzing

outliers or auctions where there is increased uncertainty about seller’s reputation.

The main differences between bidders, besides their valuation of the object, are the

number of auctions they have joined and number of objects bought throughout the period

of data collection. uTotalWins variable shows that a significant part of data contains

bids of bidders who have won more than one auction - that is 2773 bids, while 9290 bids

belong to bidders who have bought at most 1 item. Bidders who bid in only one auction

are not interesting from the point of view of analysis of sequential auctions, and therefore

the data for bidders with uTotalAuctions equal to 1 is naturally excluded. There are
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different number of auctions in which multiple auction bidders take part, ranging from

2 to as much as 76. The most populated group is 2 auctions, but bidders with 3, 4,

or 5 auctions joined constitute a large part of dataset as well. This variable is key in

the investigation of sequential auctions bidding, and it is used in the following analysis.

uReverseAuctN variable - the so called reverse auction number, is another key variable

here - it counts the auctions joined by one bidder in reverse order : 1 is the final auction the

bidder has joined, 2 is the second last auction, 3 the one before etc. The theory generally

predicts that, if all bidders come from the same distribution of valuations, the discounting

of bids for earlier auctions depends on reverse counting, rather than numbering starting

from the first auction joined by the bidder. Some bidders were recognized as ”no longer

registered” at the time of data collection - the uNLR variable, and these are also excluded

from the data used for the analysis. In some cases the ”Buy it now” option was used,

which is the option to buy the object at a fixed price, this however sno longer complies

with the auction rules, therefore these data were also excluded (with bBIN as ”Yes”).

2.8.2 Bidders moving between auctions - Common bidders with

period τ − 1

The focus of this chapter is on analysis of learning from past prices. According to the-

oretical predictions learning may happen if bidders bid sequentially and have a positive

horizon length of number of future auctions they expect or plan to bid in. Additionally,

a crucial element in every model with learning from past prices is that a proportion of

bidders present in τ − 1 have to be also present in τ , and a proportion of bidders in τ

have to be present also in τ + 1, but these do not need to be the same bidders in the

OLG model. If learning happens, then price in period τ − 1 affect bidding in period

τ . Empirically, period τ − 1, that is relevant from the point of view of learning, is not

pre-defined, and different approaches are used in the current paper, and their discussion

can be found below.
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There are several different ways in which period τ−1 can be defined. One way is to define

period τ−1 as the most recently finished auction in which the bidder participated. Then,

the focus is on the sequences of auctions in which the bidder has actively participated,

not on the observation of other auctions. Analysis of the number of common bidders

between auction in τ − 1 and τ defined in this way shows how relevant is the informa-

tion derived from auction in which the bidder participated for the prediction about the

following period. The expectation about the future period bidders , τ + 1 will be derived

by taking the same prediction one step further, from τ to τ + 1. If the percentage of

bidders that are in common between τ − 1 and τ is found to be γ, then the percentage

of bidders in common between τ and τ + 1 is, in expectation, also γ. Bidders who bid

sequentially can even expect that a certain number of other bidders will be present in the

same sequence of auctions in which they expect to participate, as these sets may overlap

Another way to define period τ − 1 is the average price from a number of most recently

finished auctions. Since for learning to exist, a crucial element is whether some proportion

of bidders can be found in both periods τ − 1 and τ + 1, maybe observation of prices in

the most recently finished auctions potentially carry more information than bidder’s own

experience in previous auction. If we consider learning from prices of recently finished

auctions, then it is not as easy to take the expectations one step further from τ − 1 to τ

and then from τ to τ + 1. Auction in period τ + 1 will be further away from the learning

point: τ − 1, but it is not clear how much further away, as well as how one more step is

added. If τ − 1 is defined as an average of prices of N most recently finished auctions,

and the number of bidders in common between period τ and τ − 1 is ζ, then these may

also in part overlap with bidders that are in common between period τ and τ + 1. Al-

ternatively, the number of common bidders with previous auctions that are further away

can be considered for learning, not directly before the bid.

Although the standard sequential auctions model requires that the same bidders present

in τ − 1 and τ + 1 is necessary condition, the OLG model relaxes this requirement and

makes learning from past prices more plausible in real-life auctions.
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2.8.2.1 Common bidders with 20, 15, 10 and 5 most recently finished auc-

tions

In this analysis a number of most recently finished auctions before each bid are treated

as period t − 1. These auctions can be observed and learned from by the bidder who is

about to place their bid. This is not the same as period T − 1 in the model, because

there is no requirement that the bidder from t took part in t−1 defined in this way. First

question to answer is what proportion of bidders continue from the most recent finished

auctions to period t. Each bid is considered as period t, and, relative to that period, t−1

encompasses a number of 5,10,15 or 20 most recently finished auctions.For each bid, the

bidder who have placed the bid is removed from the set of bidders. The set of bidders in

period t is compared to that in 5,10,15 or 20 most recently finished auctions. Statistics

on that are shown in table 2.4. The percentage that is the common part out of the set

of bidders in auction at t and the set of bidders in N most recent auctions is different

because the sizes of these sets differ. It can be seen, that for 5 most recent auctions, the

percentage of bidders who participate in auction t consisting of common bidders with

the set of bidders in 5 most recently finished auctions is very high - 7.96%, on the other

hand only 1.95% of bidders in the 5 most recent auctions are the common bidders who

are also taking part in auction at t. The percentages of bidders in an auction who have

also participated in at least one of N most recent auctions increases with the number of

auctions considered, so that if 20 most recent auctions are considered this statistic rises to

above 16% On the other hand, the percentage of common bidders out of the total number

of bidders participating in N previously finished auction is decreasing with number of

past auctions considered to 1.33% when N = 20.

On average, the bidders who continued from recently finished auctions are a very large

proportion of all bidders in any auction. There are, on average, about 8.7 bidders in an

auction, out of which the percentage of bidders continuing from t − 1 is between 7.96%

and 16.25%. Because t-1 consists of many auctions (5- 20), the continuing bidder(s) make

only between 1.33%-1.95% of the total number of bidders in N auctions. To conclude,
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we get a large proportion of bidders in t who have also been present in t− 1, but out of

t − 1 bidders the proportion of continuing bidders is between 1.33% - 1.95%. Still, this

shows that a person taking part in an auction can expect as much as over 16% of other

bidders in that auction to be coming from 20 most recently finished auctions. Therefore,

most recent auctions results are a potential source of information about competition the

bidder is likely to face, but this information may not be easy to recover since it is in a

way diluted between many auctions.

This means that on the one hand, many bidders take part in auctions that are close

to each other. On the other hand, if most recent auctions are considered as an indication

of the level of competition the bidder is likely to face, then the relevance of information

contained in the averages or any other summary statistics of these past auctions prices

is low. The percentage of relevant bidders who took part in previous auctions is below

2%.The fact that bidders take part in auctions that are close to each other can also be

observed in table 2.18. This table shows the percentage of common bidders with auctions

that finished earlier - first interval contains 11th to 20th most recent auctions, second

21st to 30th, then 31st to 40th and 41st to 50th. The data shows that the longer the time

that separates the auctions the less likely it is that there will be many common bidders

between these auctions.

2.8.2.2 Common bidders with the most recently finished auction

Instead of averages of prices from N most recently finished auctions, the last finished

auction could potentially carry more, and less ”diluted”, information about the competi-

tion. Table 2.20 shows the statistics on common bidders between auction of each bid and

the most recently finished auction. Similarly, the bidder who have placed the bid is each

time removed from the set of bidders, and the statistics relate to other bidders that are in

common between auction at t and the most recently finished auction. As expected, the

percentage of common bidders in t who also participated in the most recently finished
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Figure 2.3: Graphical representation of common bidders between T and T-1

Explanation for terms used in table 2.4, 2.5:

Percentage bidders in T who also participated in T − 1 :
AT∩AT−1

AT

Percentage of bidders in T − 1 who also participated in T :
AT∩AT−1

AT−1

Percentage bidders in T who also participated in N most recent auctions :
AT∩AN

AT

Percentage of bidders in N most recent auctions who also participated in T :
AT∩AN

AN

auction is much lower than in the case of larger number of auctions considered - on av-

erage 2.18%. On the other hand, the percentage of bidders in the most recently finished

auction who also participated in the auction of the bid (period t) is higher - 2.3%. The

two percentages are much closer to each other than in the case of N auctions, where

N ∈ 5, 10, 15, 20. 2.3% is higher than a number of bidders in common between any two

randomly selected auctions from the data. This shows that the price of the most recently

finished auction can potentially carry useful information about competition which the

bidder is likely to face.

2.8.2.3 Common bidders with previous most recently finished auction in

which the bidder participated

Previous period auction, T − 1 can be defined as the most recently finished auction in

which the bidder has placed their bid. The OLG model suggests that the price from that

previous auction would affect bidding strategy. A bidder, who takes part in more than

one auction in a sequence, benefit from the full information about the past auction, in

which they have participated. It is rational choice for the bidder to change their strategy

after observing the final price in the previous auction, if there are other bidders who also
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participate in both of these auctions. Table 2.5 shows statistics on other bidders (other

than the bidder who placed a given bid) participating in both periods T and T−1 specified

in this way. It can be seen that the average percentage of other bidders continuing from

T − 1 is 2.62% of bidders in auction at T . The percentage of other bidders at T − 1

who also participate in T is 2.44%. These percentages are higher than the percentage of

bidders from five most recent auction who bid in T .

In table 2.19 I have also included statistics derived from partial data containing either

32GB model or the 16GB model of iPhone 4- which were the most common variants in

the data. For these partial datasets, the percentage of bidders continuing from previous

auction is even higher - around 3%.

On the other hand, these datasets do not include the same information about the

most recent auction in which the bidder participated. If a bidder took part in several

auctions in a sequence of which some were for model 32 and others for model 16, then

the information about the price of the most recent auction is not the same if only partial

datasets are considered.

For comparison, table 2.20 shows the statistics on common bidders with the most

recently finished auction. It shows that in fact, the percentages of bidders in common

with the most recently finished auction are lower than the percentages of common bidders

with the auction in T − 1 as defined above (t = 1.9486, df = 13200, p-value = 0.02568).

2.8.2.4 Conclusion about bidders moving between auctions

In conclusion, bidders move between auctions close to each other in time. There is also a

higher probability that bidders who meet in the past will also meet in the future. In other

words, different bidders choose auctions in a correlated manner - that is given bidder A

bids in auction X and later Z, it is more probable that in auction Z there will be another

bidder who has also bid in auction X than in an auction R chosen at random. It is shown

by the fact, that a higher proportion of bidders in an auction consists of bidders who have

been together with a given bidder in previous auction than of bidders who have been in
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the most recently finished auction.

A very large proportion of bidders in a current auction consists of bidders who have bid

in the most recent 20 finished auctions (that is about 16%).

In the estimations, firstly, the period T − 1 is defined as the most recent finished auction

in which the bidder took part. The impact of price at T − 1 defined in this way on bid

amount is tested. The impact of averages of N most recently finished auctions, as well

as the last most recently finished auction on the bids amounts is also analyzed in further

regressions.

2.8.3 Estimation of the effect the price in T-1 has on bids in T

The proposed estimation is a linear regression, where the predicted variable is the bid,

while the treatment variable is the price in period T − 1. The hypothesis posed is that

the amount of the bid is not independent from the results of previous auction in which

the bidder participated. The model is as follows:

Yiat = Ca + Ct + Vi + Pt−1 + εiat (2.8.3)

where the dependent variable, Yiat is the final bid of bidder i in auction a, and time t.

The independent variables include controls relating to the particular auction in which the

bid was placed, Ca, - for example the seller rating, model etc. Also the controls relating

to the time at which the bid has been placed, Ct ,for example current number of bids or

bidders in the auction, the time in the auction - is the bid close to beginning or end of the

auction. Of course the bid depends largely on the valuation of the bidder, and ,therefore,

the proxy for valuation needs to be included - Vi. The valuation should be equal to

the final bid by the bidders in the last auction they have participated in. The treatment

variable, effect of which is going to be estimated, is the price of an auction in t−1, denoted

Pt−1 in the above equation. It is expected that such specification will allow to identify

the impact of learning from past prices on bids. The inclusion of valuation proxy is to
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ensure that the unobservable that could affect the results is controlled for. Additionally,

the regressions are performed on highly selected samples of not only the same product,

but also the same model and almost identical auction characteristics. These are further

discussed below.

There is a lot of variability in the dataset relating to auction characteristics, such as

seller rating, photos and postage price. Because these variables could bias the results of

the regression, due to unobservables such as the quality of photos or seller information,

the data chosen for the regression need to have a limited variability of auction and seller

characteristics. The way the data has been selected was described in the section ”Data

used for analysis In addition to these restrictions, the data used contains only the bidders

who took part in at least 3 auctions. By necessity, the final auction bid is the valuation

in the regression, and therefore the final bid itself cannot be included as the dependent

variable either. The data used contains only the bids, where the period T −1 auction was

also recorded - that is a finished most recent auction in which the bidder has participated.

The bids from the first auction for each bidder cannot be, therefore, included in the

regression either.

For example, if the bidder participated in 3 auctions, and the first auction in which he

took part had finished before the second one has started, then only the middle bid amount

is in the data as the dependent variable Y , while the price of the first auction is included

as the treatment variable Pt−1, and the final bid in the third auction is included as the

control for valuation Vi. Therefore the data used in the regressions is limited to bids in

the middle periods, whenever t− 1 can be determined. All of the steps of data collation

taken are summarized as a flow chart in Figure 4.8 in the Appendix. EBay rules and

short description of iPhone 4 can be found in Appendix section 4.1.

The results of the regressions can be seen in the tables 2.6 and 2.7. The naming of the

variables is the same as in the dataset. Pt−1 is the dataset variable called nLastAuctPrice,

Vi is uLastBid, and other variable names were described before. uAuctionNumber is the

auction number, in which the bidder participated, and it is positively correlated with the
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dependent variable bAmount. This confirms that the bids are higher for later auctions

in a sequence. The most fitting relation found was logarithmic curve, based on adjusted

R-squared, which shows that the impact is diminishing. The auction characteristics

that showed to be significant is the phone memory (the two models considered are 32gb

and 16gb), with 32Gb model bids being higher by about 33 pounds, unlocked phones

having higher bids by about 30 pounds compared to O2 network phones. Star-rating

of the sellers considered are 1st, 2nd, and 3rd level, where they do not show to have a

significant impact on the bid amount. All auctions included have at least one photo and

the number of photos above 1 do not have any significant effect on bid amount. Other

characteristics, such as the starting price of the auction, or the postage fare (while all

auctions have postage price above 0) are also insignificant. User’s bid number in the

auction (uAuctionBid) has a negative impact on the bid amount, which means that the

more times the bidder was bidding in the auction the lower was their bid. There are two

functional forms to fit the shape of the relation of user’s bid number to bid amount -

a logarithmic curve or a second degree polynomial. The second degree polynomial is a

slightly better fit based on adjusted R squared. On the other had, the overall bid number

in the auction (bAuctionBid) has a positive impact on the bid amount - the more bids were

placed before, the higher the bid amount. The auction bid number is highly correlated

with time at which the bid has been placed, so in fact it can be treated as a different time

measure. All auctions included lasted one day, and the variable bT imeWithinA measures

the time from the start of the auction until the end - it is a percentage measure, as the

total auction length is set to 100, while any other time during the auction is represented

relative to the total auction length. This measure was chosen, since in case different

auctions lengths were considered, they could all be easily compared. It can be seen in the

table 2.6 that time at which the bid was placed is positively related to bid amount (with

logarithmic shape), and once it is included in the regression the impact of bAuctionBid

loses it’s significance. That is because both of these measures relate to the time counted

from the beginning of the auction until it’s end. Therefore, there are two alternative ways
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to include a measure time within the auction. f there was a trend in bids amounts over

time, then bT ime would be expected to be significant. The absolute measure of time

(as a date - time format) does not show to have a significant coefficient. Of course an

important aspect that has an influence on the bid amount, in addition to time at which

the bid was placed is the current price. There is a direct relationship between bLivePrice

and bid amount, such that an increase 1 pound in live price results in an increase in the

bid amount by 0.68 pounds.

The impact of the auction number of the bidder is such that an increase in auction

number by 1 results in an increase in bid amount by 11.7 pounds. Besides that, the

most important variable influencing the bid amount is of course bidder’s valuation of

the object. That is represented by the last bid of the user - uLastBid variable in the

regressions. Best fit was achieved using the logarithmic curve, which suggests diminishing

returns. An increase in logarithm of valuation measure by 1 has an impact of increase in

bid amount by 20.2 pounds. Finally, the price of previous, most recent, auction in which

the bidder took part (nLastAuctPrice) also has a significant impact on bid amount. An

increase in price of previous auction by 1 pound results in an increase in bid amount by

0.07 pounds - that is a 7% impact of previous auction price. Regression results conducted

based on the data including just one of the models with respect to memory size show

very similar results, although for the cheaper 16gb model, the impact of previous auction

price is not significant (table 2.12). This can be explained by the fact that those bidding

on the cheaper version have lower valuation, and their discounting is overall lower than

the discounting of higher valuation bidders - therefore the impact of past prices is also

much lower, because there is not much room for adjusting the bid upwards in the case of

low discounting in general.

On the other hand, there could be a concern that, since the effect of T − 1 auction price

is not significant for the subset of cheaper model auctions.

There might be a bias relating to the fact that people who have bid on a more expensive

model are more likely to bid more in the following auction. In table 2.15 , 2.14 and 2.13
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the results include a variable nLastAuctPriceModelNetw. This long-named variable is

a different definition for price T − 1, particularly prices of T − 1 auction are included

in the regression only if at T − 1 the bidder has bid in an auction of the same model

and the same network. On the full dataset the effect of past prices is significant. On the

subset of 32Gb model the effect of past prices is again positive and significant, while on

the subset of 16Gb model auctions the effect is not significant as before. This suggests

that there is a persistent difference between the effect of past prices on bidders bidding

on 16Gb model (cheaper) and 32Gb model (more expensive).

Other regression analysis included the averages of most recently finished auctions. The

results show that the average price of 5 most recently finished auctions has a larger effect

than the average of prices from 10, 15 or 20 most recent auctions. When the T − 1

auction prices are included as well the effect becomes not significant, which suggests that

the effect of price T − 1 is the main driver when it comes to recent auctions. Tables 2.8

and 2.9 show that the effects of the price of most recently finished auction is higher than

the averages of a number of recent auctions. The effects of the price of the last most

recent auction, as well as effects of the average prices of 5 and 10 auctions are significant

when included in the regression. On the other hand, the results in tables 2.10 and 2.11

show that once the price at T − 1 is included as well, these effects become insignificant.

The price of the auction in which the bidder actively participated has more impact on

their bidding than the prices of a most recently finished auctions. It could be explained

by a stylized overlapping generations model presented in previous chapter. It is, though

possible that there are more possible explanations for this fact, and different possibilities

need to be carefully examined. Nevertheless the results of this empirical investigations

show that learning from past prices has an impact on bidding strategies.

2.8.4 Conclusion

The above empirical results show that the price of the most recently finished T−1 auction

has a positive effect on bidding strategy. The results are supported by examining the
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subset of the more expensive model of the phone, but not on the subset of the cheaper

model. The most recently finished auction prices have lower effect than the most recently

finished auction in which the bidder has actively participated (T − 1). The regressions

include a measure of valuation (final bid in the last auction the bidder participated),

which is also significant. The belief that the impact of learning is correctly identified is

strengthened by the fact that the coefficients are not much affected with the inclusion of

fixed effects and interaction terms. The estimated effect of price at T − 1 on bid in T is

positive and of approximately 5% to 7%.

The analysis of how bidders move between auction shown that they participate in auction

in a correlated manner, and bidders who have met in one auction are more likely to meet

each other again, than bidders who separately participated in the most recently finished

auction.This also shows that it is reasonable to think of T−1 as the most recently finished

auction in which the bidder has participated, and that it has the main characteristics of

the overlapping generations model whereby a fraction of bidders who participate in both

T and T − 1.

Table 2.7: Regressions With Interaction Terms And Fixed Effects including the price of
auction at T-1

Dependent variable:
bAmount

Auction Duration: 1 & 3 1

(1) (2) (3) (4)

aModel32 37.591∗∗∗ 37.482∗∗∗ 38.354∗∗∗ 35.085∗∗∗

(3.802) (4.678) (4.495) (4.695)

aNetworkUnlocked 32.510∗∗∗ 31.319∗∗∗ 28.606∗∗∗ 16.719∗∗∗

(4.015) (5.034) (4.800) (4.927)

log(aPositiveFeed) -24.013 -6.603
(45.015) (51.937)

aDurationLevels3 -27.900
(20.556)
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Table 2.7: Regressions With Interaction Terms And Fixed Effects including the price of
auction at T-1 -cont.

(1) (2) (3) (4)

log(bPercWithin) −11.422∗ -9.159 −4.970∗ 0.100
(6.616) (6.798) (2.773) (2.871)

log(bAuctionBid) 16.172∗∗ 17.564∗∗∗ 44.551∗∗∗ 11.639∗∗∗

(6.304) (6.496) (3.615) (2.668)

nOtherBiddersInAuct −11.317∗∗∗ −11.909∗∗∗ −10.313∗∗∗

(2.016) (2.126) (0.803)

bLivePrice 0.656∗∗∗ 0.644∗∗∗ 0.653∗∗∗ 0.729∗∗∗

(0.013) (0.016) (0.014) (0.014)

log(uAuctionBid) −43.760∗∗∗ −43.680∗∗∗ −46.396∗∗∗ −35.578∗∗∗

(3.544) (4.494) (4.323) (4.436)

log(uLastBid) 17.435∗∗∗ 17.633∗∗∗ 23.370∗∗∗ 25.610∗∗∗

(1.707) (2.108) (1.802) (1.876)

log(uAuctionNumber) -15.823 -19.678 14.234∗∗∗ 15.528∗∗∗

(42.929) (44.207) (2.243) (2.344)

nLastAuctPrice 0.040∗∗ 0.051∗∗∗ 0.058∗∗∗ 0.049∗∗

(0.016) (0.019) (0.019) (0.020)

log(bPercWithin) x −18.385∗∗∗ −17.490∗∗∗

log(bAuctionBid) (5.571) (5.707)

aDurationLevels3 x 3.517
nOtherBiddersInAuct (3.339)

log(bPercWithin) x 1.218 1.062
nOtherBiddersInAuct (0.768) (0.784)

log(bAuctionBid) x 2.296∗∗∗ 2.398∗∗∗

nOtherBiddersInAuct (0.739) (0.766)

aDurationLevels3 x 28.084∗∗

log(bPercWithin) x (11.553)
log(bAuctionBid)
aDurationLevels3 x 0.923
log(bPercWithin) x (1.335)
nOtherBiddersInAuct
aDurationLevels3 x -2.037
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Table 2.7: Regressions With Interaction Terms And Fixed Effects including the price of
auction at T-1 -cont.

(1) (2) (3) (4)

log(bAuctionBid) x (1.300)
nOtherBiddersInAuct
log(bPercWithin) x 1.538∗∗∗ 1.542∗∗∗

log(bAuctionBid) x (0.535) (0.547)
nOtherBiddersInAuct
aDurationLevels3 x −2.271∗∗

log(bPercWithin) x (1.094)
log(bAuctionBid) x
nOtherBiddersInAuct
Fixed effects:
aStarL YES YES YES YES
uTotalAuctions YES YES
aStarL x YES YES
aPositiveFeed
ADurationL x YES
log(bPercWithin)
ADurationL x YES
log(bAuctionBid)
log(uAuctionNumber) x YES YES
uTotalAuctionL
Constant 207.746 125.853 12.040 −47.915∗∗

(209.623) (241.396) (18.790) (19.039)

Observations 2,515 1,753 1,753 1,753
R2 0.871 0.871 0.851 0.837
Adjusted R2 0.865 0.862 0.850 0.835
Residual Std. Error 81.649 82.756 86.544 90.529

(df = 2400) (df = 1646) (df = 1739) (df = 1740)
F Statistic 142.606∗∗∗ 104.647∗∗∗ 762.230∗∗∗ 742.083∗∗∗

(df = 114; 2400) (df = 106; 1646) (df = 13; 1739) (df = 12; 1740)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.8: Regressions Results Including most recently finished auction prices. Auction
duration 1 and 3 days

Dependent variable:
bAmount

Auction Duration: 1 & 3

(1) (2) (3) (4)

aModel32 33.857∗∗∗ 33.826∗∗∗ 33.796∗∗∗ 33.877∗∗∗
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Table 2.8: Regressions Results Including most recently finished auction prices. Auction
duration 1 and 3 days - cont.

(1) (2) (3) (4)
(3.094) (3.091) (3.093) (3.098)

aNetworkUnlocked 27.041∗∗∗ 27.023∗∗∗ 27.043∗∗∗ 27.039∗∗∗

(3.218) (3.216) (3.219) (3.220)

bLivePrice 0.710∗∗∗ 0.711∗∗∗ 0.711∗∗∗ 0.711∗∗∗

(0.010) (0.010) (0.010) (0.010)

log(uAuctionBid) −41.093∗∗∗ −41.028∗∗∗ −41.189∗∗∗ −41.232∗∗∗

(2.778) (2.777) (2.778) (2.778)

log(uLastBid) 14.171∗∗∗ 14.152∗∗∗ 14.165∗∗∗ 14.181∗∗∗

(1.361) (1.360) (1.361) (1.361)

nMean 1 0.025∗∗

(0.012)

nMean 5 0.075∗∗∗

(0.026)

nMean 10 0.069∗

(0.036)

nMean 15 0.050
(0.043)

Constant 52.051 17.105 16.181 26.401
(149.854) (150.412) (151.445) (152.347)

Interaction Terms and Fixed Effects like in specification (1) in Table 2.7:
aStarL*log(aPositiveFeed)
aDurationLevels*log(bPercWithin)*log(bAuctionBid)*nOtherBiddersInAuct
log(uAuctionNumber)*uTotalAuctionsLevels)

log(bPercWithin) −22.303∗∗∗ −22.146∗∗∗ −22.635∗∗∗ −22.831∗∗∗

(5.587) (5.581) (5.580) (5.581)

log(bAuctionBid) 14.087∗∗∗ 13.849∗∗ 14.219∗∗∗ 14.382∗∗∗

(5.448) (5.446) (5.447) (5.448)

nOtherBiddersInAuct −11.432∗∗∗ −11.479∗∗∗ −11.301∗∗∗ −11.348∗∗∗

(1.679) (1.678) (1.678) (1.679)
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Table 2.8: Regressions Results Including most recently finished auction prices. Auction
duration 1 and 3 days - cont.

(1) (2) (3) (4)
Observations 3,867 3,867 3,867 3,867
R2 0.874 0.874 0.874 0.874
Adjusted R2 0.870 0.870 0.870 0.870
Residual Std. Error (df = 3750) 84.185 84.137 84.191 84.216
F Statistic (df = 116; 3750) 224.606∗∗∗ 224.898∗∗∗ 224.573∗∗∗ 224.417∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

2.9 Tables
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Table 2.2: Results of t-tests

H1: bAmountt,i - bAmountt−1,i > 0

matched pairs one-sided t-test

Total periods mean of conf. interval t statistic p value number of
auctions t,t-1 difference lower bound individuals
joined (reverse numbering)

Bidders with a win in the final period

2 1,2 157.44 130.29 9.58∗∗∗ 0.00 244
3 1,2 126.79 75.61 4.13∗∗∗ 0.00 71
3 2,3 72.58 13.41 2.04∗∗ 0.02 71
4 1,2 78.66 13.68 2.08∗∗ 0.02 23
4 2,3 64.25 -35.76 1.10 0.14 23
4 3,4 39.47 -23.95 1.07 0.15 23
5 1,2 33.75 -69.45 0.77 0.25 4
5 2,3 26.50 1.44 2.49 ∗∗ 0.04 4
5 3,4 124.00 -197.01 0.91 0.22 4
5 4,5 -248.75 -547.45 -1.96 0.93 4

Bidders without any wins

2 1,2 1.31 -20.33 0.10 0.46 521
3 1,2 -22.92 -54.78 -1.19 0.88 159
3 2,3 6.10 -29.12 0.29 0.39 159
4 1,2 21.04 -54.19 0.47 0.32 42
4 2,3 -2.08 -64.11 -0.06 0.52 42
4 3,4 0.75 -64.61 0.02 0.49 42
5 1,2 17.56 -86.79 0.29 0.39 17
5 2,3 -68.41 -185.44 -1.02 0.84 17
5 3,4 107.71 14.65 2.02∗∗ 0.03 17
5 4,5 38.65 -76.69 0.59 0.28 17
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.3: Key Differencing Auction Characteristics in The Dataset Of Final Bids

aDuration 1 :7176 3 :3556 5 : 835 7 : 368 10: 128
aModel 16 :7030 32 :4908 (Other): 125
aNetwork Unlocked:6279 O2 :3298 Vodafone:1050 Orange : 859 (Other) : 577
aStarL 0 :1308 1 :2979 2 :2288 3 :4450 (Other): 1038
aStarLevel NoStar :1308 Yellow :2979 Blue :2288 Turquoise:4450 (Other) : 1038
aReturns No :10750 Yes: 1276 NA’s : 37
aPostageFree No:10292 Yes: 1599 NA’s : 172
aPhotosPresent Yes :11890 No: 173
uTotalAuctions 1 :1255 2 :1817 3 :1430 4 :1215 (More):6346
uReverseAuctN 1 :3508 2 :2304 3 :1457 4 : 950 (Other): 3844
uTotalWins 0 :6621 1 :2669 2 :1132 3 : 514 (More): 1127
uNLR No :11388 Yes: 675
bBIN No :11755 Yes: 308

Table 2.4: Statistics on bidders moving from most recent auctions

mean median sd min max n. obs.

Number of bidders in auction

8.71 9.00 3.90 1.00 21.00 10798.00

Common bidders with N most recently finished auctions

N = 5 0.62 0.00 0.95 0.00 8.00 10798.00
N = 10 0.95 1.00 1.18 0.00 9.00 10798.00
N = 15 1.18 1.00 1.32 0.00 9.00 10798.00
N = 20 1.31 1.00 1.44 0.00 10.00 10798.00

Total number of other bidders in N most recently finished auctions

N = 5 32.57 32.00 9.72 0.00 59.00 10798.00
N = 10 61.42 62.00 15.01 0.00 99.00 10798.00
N = 15 88.06 89.00 20.57 0.00 137.00 10798.00
N = 20 100.01 101.00 19.47 35.00 151.00 10798.00

Percentage of bidders in N most recently finished auctions who also participate in auction that follows

N = 5 1.95 0.00 3.09 0.00 27.27 10798.00
N = 10 1.61 1.25 2.07 0.00 16.67 10798.00
N = 15 1.41 1.05 1.64 0.00 16.67 10798.00
N = 20 1.33 0.99 1.47 0.00 10.53 10798.00

Percentage of bidders in an auction who also participated in N most recently finished auctions

N = 5 7.96 0.00 13.63 0.00 100.00 10798.00
N = 10 12.07 7.69 16.37 0.00 100.00 10798.00
N = 15 14.99 10.00 18.05 0.00 100.00 10798.00
N = 20 16.25 11.11 18.72 0.00 100.00 10798.00
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Table 2.5: Statistics on bidders participating in T and T − 1

mean median sd min max n

Dataset including all auctions

Number of other bidders in auction
8.54 9.00 3.92 1.00 21.00 6641.00

Common bidders with auction in T − 1
0.21 0.00 0.55 0.00 5.00 6641.00

Number of other bidders in T − 1
8.81 9.00 3.92 1.00 21.00 6641.00

Percentage of bidders in T − 1 who also participated in T
2.44 0.00 7.21 0.00 100.00 6641.00

Percentage of bidders in T who also participated in T − 1
2.62 0.00 8.08 0.00 100.00 6641.00

Price in auction at T − 1
703.84 700.00 113.51 130.00 999.00 6641.00
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Table 2.6: Regression Results Without Fixed Effects and Interaction Terms Including
The Price Of Auction a T-1

Dependent variable:
bAmount

(1) (2) (3) (4)
aModel32 33.039∗∗∗ 32.957∗∗∗ 30.379∗∗∗ 28.964∗∗∗

(4.876) (4.894) (5.124) (5.144)

aNetworkUnlocked 29.311∗∗∗ 29.424∗∗∗ 20.813∗∗∗ 22.929∗∗∗

(5.179) (5.210) (5.347) (5.358)

aStarL2 4.512 4.545 5.472 5.544
(6.237) (6.241) (6.435) (6.477)

aStarL3 −0.841 −0.842 −1.163 0.566
(5.229) (5.230) (5.386) (5.419)

aTotalPhotos 2.602
(2.386)

bMsTimeWithin 2.490 6.827∗∗

(3.145) (2.978)

log(uAuctionBid) −34.553∗∗∗ −29.892∗∗∗

(4.537) (4.405)

bLivePrice 0.678∗∗∗ 0.678∗∗∗ 0.749∗∗∗ 0.746∗∗∗

(0.014) (0.014) (0.015) (0.015)

log(bAuctionBid) 37.086∗∗∗ 37.057∗∗∗ 10.783∗∗∗

(3.673) (3.677) (2.814)

nOtherBiddersInAuct −8.690∗∗∗ −8.687∗∗∗

(0.875) (0.875)

poly(uAuctionBid, 2)1 −688.622∗∗∗ −688.154∗∗∗

(88.984) (89.043)

poly(uAuctionBid, 2)2 438.611∗∗∗ 439.017∗∗∗

(85.658) (85.710)

log(uLastBid) 20.208∗∗∗ 20.145∗∗∗ 21.478∗∗∗ 21.669∗∗∗

(1.878) (1.904) (1.979) (1.989)

uTotalAuctions −0.032 −0.064 −0.083
(0.155) (0.160) (0.161)

log(uAuctionNumber) 11.660∗∗∗ 12.242∗∗∗ 13.653∗∗∗ 13.358∗∗∗

(2.487) (3.761) (3.874) (3.892)

nLastAuctPrice 0.070∗∗∗ 0.070∗∗∗ 0.061∗∗∗ 0.062∗∗∗

(0.022) (0.022) (0.023) (0.023)

Constant 4.031 3.888 −82.164 −143.017∗∗∗

(20.396) (20.414) (54.143) (53.131)

Observations 1,420 1,420 1,420 1,420
R2 0.857 0.857 0.848 0.846
Adjusted R2 0.856 0.856 0.846 0.845
Residual Std. Error 84.689 84.718 87.361 87.779

(df = 1407) (df = 1406) (df = 1407) (df = 1407)
F Statistic 701.756∗∗∗ 647.337∗∗∗ 652.416∗∗∗ 645.113∗∗∗

(df = 12; 1407) (df = 13; 1406) (df = 12; 1407) (df = 12; 1407)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.9: Regression Results Including Most Recently Finished Auction Prices

Dependent variable:
bAmount

Auction Duration: 1

(1) (2) (3) (4)

aModel32 33.781∗∗∗ 33.884∗∗∗ 34.065∗∗∗ 33.939∗∗∗

(3.772) (3.772) (3.774) (3.783)

aNetworkUnlocked 25.370∗∗∗ 25.173∗∗∗ 25.232∗∗∗ 25.305∗∗∗

(3.962) (3.962) (3.960) (3.964)

bLivePrice 0.705∗∗∗ 0.706∗∗∗ 0.706∗∗∗ 0.705∗∗∗

(0.013) (0.013) (0.013) (0.013)

log(uAuctionBid) −40.443∗∗∗ −40.402∗∗∗ −40.577∗∗∗ −40.601∗∗∗

(3.459) (3.458) (3.456) (3.459)

log(uLastBid) 14.300∗∗∗ 14.303∗∗∗ 14.363∗∗∗ 14.327∗∗∗

(1.677) (1.676) (1.676) (1.677)

nMean 1 0.024
(0.015)

nMean 5 0.065∗∗

(0.032)

nMean 10 0.103∗∗

(0.045)

nMean 15 0.064
(0.053)

Constant 22.255 -8.449 -39.830 -13.887
(169.783) (170.676) (172.288) (173.493)

Interaction Terms and Fixed Effects like in specification (2) in Table 2.7:
aStarL*log(aPositiveFeed)
log(bPercWithin)*log(bAuctionBid)*nOtherBiddersInAuct
log(uAuctionNumber)*uTotalAuctionsLevels)

Observations 2,709 2,709 2,709 2,709
R2 0.874 0.874 0.874 0.874
Adjusted R2 0.869 0.869 0.869 0.869
Residual Std. Error (df = 2600) 84.960 84.933 84.915 84.978
F Statistic (df = 108; 2600) 166.901∗∗∗ 167.021∗∗∗ 167.101∗∗∗ 166.820∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.10: Regression Results Including Most Recently Finished Auction Prices and
Price of T-1. Auction Duration 1 and 3 Days.

Dependent variable:
bAmount

Auction Duration: 1 & 3

(1) (2) (3) (4)

aModel32 37.721∗∗∗ 37.789∗∗∗ 37.683∗∗∗ 37.674∗∗∗

(3.806) (3.808) (3.808) (3.814)

aNetworkUnlocked 32.449∗∗∗ 32.494∗∗∗ 32.457∗∗∗ 32.439∗∗∗

(4.021) (4.021) (4.022) (4.023)

bLivePrice 0.656∗∗∗ 0.657∗∗∗ 0.657∗∗∗ 0.656∗∗∗

(0.013) (0.013) (0.013) (0.013)

log(uAuctionBid) −43.785∗∗∗ −43.689∗∗∗ −43.769∗∗∗ −43.771∗∗∗

(3.546) (3.547) (3.547) (3.548)

log(uLastBid) 17.435∗∗∗ 17.479∗∗∗ 17.458∗∗∗ 17.449∗∗∗

(1.707) (1.707) (1.708) (1.708)

nMean 1 0.021
(0.015)

nMean 5 0.043
(0.031)

nMean 10 0.034
(0.042)

nMean 15 0.022
(0.051)

nLastAuctPrice 0.039∗∗ 0.038∗∗ 0.039∗∗ 0.039∗∗

(0.016) (0.016) (0.016) (0.016)

Constant 204.670 184.625 186.724 192.732
(209.685) (210.435) (211.582) (213.022)

Interaction Terms and Fixed Effects like in specification (1) in Table 2.7:
aStarL*log(aPositiveFeed)
laDurationLevels*og(bPercWithin)*log(bAuctionBid)*nOtherBiddersInAuct
log(uAuctionNumber)*uTotalAuctionsLevels)

Observations 2,512 2,512 2,512 2,512
R2 0.871 0.871 0.871 0.871
Adjusted R2 0.865 0.865 0.865 0.865
Residual Std. Error (df = 2396) 81.660 81.663 81.684 81.692
F Statistic (df = 115; 2396) 141.288∗∗∗ 141.276∗∗∗ 141.193∗∗∗ 141.162∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

148



Table 2.11: Regression Results Including Most Recently Finished Auction Prices and
Price of T-1. Auction Duration 1 Day.

Dependent variable:
bAmount

Auction Duration: 1

(1) (2) (3) (4)

aModel32 37.612∗∗∗ 37.538∗∗∗ 37.728∗∗∗ 37.459∗∗∗

(4.686) (4.696) (4.698) (4.706)

aNetworkUnlocked 31.293∗∗∗ 31.275∗∗∗ 31.236∗∗∗ 31.325∗∗∗

(5.047) (5.052) (5.049) (5.051)

bLivePrice 0.644∗∗∗ 0.644∗∗∗ 0.644∗∗∗ 0.644∗∗∗

(0.016) (0.016) (0.017) (0.017)

log(uAuctionBid) −43.635∗∗∗ −43.630∗∗∗ −43.718∗∗∗ −43.632∗∗∗

(4.500) (4.501) (4.502) (4.502)

log(uLastBid) 17.682∗∗∗ 17.663∗∗∗ 17.707∗∗∗ 17.646∗∗∗

(2.110) (2.111) (2.111) (2.111)

nMean 1 0.018
(0.018)

nMean 5 0.009
(0.039)

nMean 10 0.038
(0.053)

nMean 15 -0.001
(0.063)

nLastAuctPrice 0.050∗∗ 0.051∗∗∗ 0.050∗∗ 0.051∗∗∗

(0.019) (0.019) (0.019) (0.020)

Constant 124.426 122.117 97.883 128.373
(241.558) (242.775) (245.034) (246.482)

Interaction Terms and Fixed Effects like in specification (2) in Table 2.7:
aStarL*log(aPositiveFeed)
log(bPercWithin)*log(bAuctionBid)*nOtherBiddersInAuct
log(uAuctionNumber)*uTotalAuctionsLevels)

Observations 1,750 1,750 1,750 1,750
R2 0.871 0.871 0.871 0.871
Adjusted R2 0.862 0.862 0.862 0.862
Residual Std. Error (df = 1642) 82.802 82.827 82.815 82.828
F Statistic (df = 107; 1642) 103.506∗∗∗ 103.436∗∗∗ 103.470∗∗∗ 103.432∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.12: Regression Results - Effects of Price at T-1 On Model 32 and 16 separately

Dependent variable:
bAmount

Model: 32 Gb 32 Gb 16 Gb 16 Gb
Auction Duration: 1 & 3 1 1 & 3 1

(1) (2) (3) (4)

aNetworkUnlocked 37.764∗∗∗ 33.661∗∗∗ 31.294∗∗∗ 34.849∗∗∗

(6.984) (8.570) (5.022) (6.485)

bLivePrice 0.672∗∗∗ 0.654∗∗∗ 0.629∗∗∗ 0.600∗∗∗

(0.021) (0.026) (0.018) (0.023)

log(uAuctionBid) −52.613∗∗∗ −52.782∗∗∗ −39.837∗∗∗ −40.208∗∗∗

(6.256) (7.973) (4.176) (5.335)

log(uLastBid) 17.563∗∗∗ 16.822∗∗∗ 18.828∗∗∗ 21.685∗∗∗

(2.834) (3.384) (2.150) (2.723)

nMean 5 0.021 -0.009 0.055 0.007
(0.050) (0.061) (0.040) (0.052)

nLastAuctPrice 0.090∗∗∗ 0.106∗∗∗ -0.019 -0.009
(0.025) (0.032) (0.020) (0.025)

Constant -81.504 -101.590 362.562 444.698
(356.663) (366.487) (255.205) (327.311)

Interaction Terms and Fixed Effects like in Table 2.7 in specification:
(1) (2) (1) (2)

Observations 1,123 798 1,389 952
R2 0.868 0.868 0.879 0.884
Adjusted R2 0.854 0.850 0.869 0.870
Residual Std. Error 89.297 90.050 73.047 73.716

(df = 1014) (df = 699) (df = 1279) (df = 850)
F Statistic 61.622∗∗∗ 46.990∗∗∗ 85.402∗∗∗ 63.902∗∗∗

(df = 108; 1014) (df = 98; 699) (df = 109; 1279) (df = 101; 850)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.13: Regression Results with T-1 Auction Price Included Only For The Same
Model and Network Auctions in T and T-1

Dependent variable:

bAmount

Restricted to:
model: 32 16 Both
network: Unlocked Unlocked Unlocked & O2
duration: 1 &3 1 &3 1 &3

(1) (2) (3)
bLivePrice 0.494∗∗∗ 0.604∗∗∗ 0.522∗∗∗

(0.034) (0.028) (0.018)

log(uAuctionBid) −57.911∗∗∗ −37.739∗∗∗ −44.528∗∗∗

(13.027) (6.474) (5.159)

log(uLastBid) 16.620∗∗∗ 12.849∗∗∗ 15.142∗∗∗

(5.161) (3.416) (2.489)

nLastAuctPriceModelNetw 0.151∗∗∗ 0.030 0.034
(0.050) (0.048) (0.028)

aModel32 65.886∗∗∗

(6.509)

aNetworkUnlocked 43.625∗∗∗

(7.029)

Constant -628.652 630.094∗∗ 367.653
(748.298) (296.206) (270.801)

Interaction terms and fixed effects:
aStarL*log(aPositiveFeed)
laDurationLevels*og(bPercWithin)*log(bAuctionBid)*nOtherBiddersInAuct
log(uAuctionNumber)*uTotalAuctionsLevels)

Observations 368 581 1,255
R2 0.860 0.881 0.860
Adjusted R2 0.813 0.858 0.847
Residual Std. Error 86.626 66.954 77.741
Residual Std. Error (df = 274) (df = 483) (df = 1141)
F Statistic 18.152∗∗∗ 37.009∗∗∗ 62.264∗∗∗

F Statistic (df = 93; 274) (df = 97; 483) (df = 113; 1141)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.14: Regression Results with T-1 Auction Price Included Only For The Same
Model and Network Auctions in T and T-1

Dependent variable:

bAmount

Restricted to:
model: 32 16 Both
network: Unlocked Unlocked Unlocked & O2
duration: 1 &3 1 &3 1 &3

(1) (2) (3)
bLivePrice 0.532∗∗∗ 0.637∗∗∗ 0.616∗∗∗

(0.030) (0.022) (0.016)

log(uAuctionBid) −61.662∗∗∗ −34.672∗∗∗ −43.463∗∗∗

(11.933) (5.771) (5.091)

log(uLastBid) 22.674∗∗∗ 21.666∗∗∗ 22.604∗∗∗

(4.801) (2.684) (2.242)

nLastAuctPriceModelNetw 0.124∗∗∗ 0.039 0.171∗∗∗

(0.048) (0.042) (0.023)

log(bPercWithin) 17.396∗∗ -2.208 4.792
(7.847) (4.278) (3.509)

nOtherBiddersInAuct −11.738∗∗∗ −7.656∗∗∗ −9.048∗∗∗

(1.904) (1.178) (0.945)

log(bAuctionBid) 40.622∗∗∗ 36.298∗∗∗ 32.428∗∗∗

(8.985) (5.326) (4.197)

log(uAuctionNumber) 17.270∗∗∗ 14.240∗∗∗ 12.861∗∗∗

(5.504) (3.309) (2.669)

aDurationLevels3 3.043 -6.184 -5.098
(11.893) (7.013) (5.515)

aStarL2 2.575 1.602 8.001
(14.315) (8.416) (6.740)

aStarL3 4.871 2.515 7.408
(13.725) (7.346) (5.920)

aStarL4 3.108 10.631 18.529∗

(22.864) (12.092) (10.553)

Constant 140.092∗∗∗ 63.723∗ 13.307
(52.635) (33.643) (21.753)

Observations 368 581 1,256
R2 0.780 0.845 0.819
Adjusted R2 0.772 0.841 0.817
Residual Std. Error 95.564 70.645 84.834

(df = 355) (df = 568) (df = 1243)
F Statistic 104.772∗∗∗ 257.528∗∗∗ 468.641∗∗∗

(df = 12; 355) (df = 12; 568) (df = 12; 1243)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.15: Regression Results with T-1 Auction Price Included Only For The Same
Model and Network Auctions in T and T-1

Dependent variable:

bAmount

Restricted to:
model: 32 16 Both
network: Unlocked Unlocked Unlocked & O2
duration: 1 1 1

(1) (2) (3)
bLivePrice 0.607∗∗∗ 0.597∗∗∗ 0.625∗∗∗

(0.031) (0.022) (0.016)

log(uAuctionBid) −59.127∗∗∗ −35.290∗∗∗ −39.024∗∗∗

(13.965) (6.683) (5.810)

log(uLastBid) 20.540∗∗∗ 22.918∗∗∗ 21.095∗∗∗

(5.041) (3.014) (2.477)

nLastAuctPriceModelNetw 0.206∗∗∗ 0.020 0.183∗∗∗

(0.061) (0.047) (0.025)

nOtherBiddersInAuct −11.694∗∗∗ −8.533∗∗∗ −9.196∗∗∗

(2.030) (1.362) (1.042)

log(bAuctionBid) 46.286∗∗∗ 40.422∗∗∗ 34.304∗∗∗

(9.412) (6.068) (4.527)

log(uAuctionNumber) 22.641∗∗∗ 13.725∗∗∗ 13.969∗∗∗

(6.415) (3.891) (3.031)

aStarL2 14.254 2.404 8.921
(15.822) (9.628) (7.565)

aStarL3 16.977 6.306 8.383
(15.529) (8.300) (6.618)

aStarL4 8.348 10.777 14.127
(25.085) (14.179) (11.623)

Constant -2.436 89.400∗∗ 0.561
(62.716) (37.501) (23.560)

Observations 274 437 919
R2 0.818 0.843 0.828
Adjusted R2 0.810 0.840 0.827
Residual Std. Error 93.737 70.977 82.393

(df = 262) (df = 426) (df = 908)
F Statistic 106.925∗∗∗ 229.165∗∗∗ 438.450∗∗∗

F Statistic (df = 11; 262) (df = 10; 426) (df = 10; 908)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.16: Regression Results for Dataset of Model 32Gb. Effects of Price at T-1.

Dependent variable:
bAmount

(1) (2) (3) (4)
aNetworkUnlocked 26.753∗∗∗ 29.993∗∗∗ 13.252 13.760

(10.261) (10.380) (10.256) (10.222)

aStarL2 20.482∗ 20.846∗ 21.335∗ 21.129∗

(11.711) (11.707) (12.055) (12.050)

aStarL3 3.955 2.830 4.623 4.509
(10.150) (10.157) (10.436) (10.430)

aTotalPhotos 4.264
(4.061)

log(bTimeWithinA) 3.391 10.503∗ 12.411∗∗

(5.633) (5.606) (5.205)

log(bTime) 3, 109.365
(7,802.944)

log(uAuctionBid) −53.468∗∗∗ −51.454∗∗∗

(9.982) (9.694)

bLivePrice 0.647∗∗∗ 0.638∗∗∗ 0.697∗∗∗ 0.693∗∗∗

(0.024) (0.028) (0.026) (0.026)

log(bAuctionBid) 36.226∗∗∗ 33.646∗∗∗ 3.793
(6.928) (7.669) (5.327)

nOtherBiddersInAuct −9.957∗∗∗ −9.680∗∗∗

(1.775) (1.827)

poly(uAuctionBid, 2)1 −623.355∗∗∗ −612.479∗∗∗

(101.404) (103.015)

poly(uAuctionBid, 2)2 350.331∗∗∗ 360.084∗∗∗

(95.799) (96.260)

log(uLastBid) 20.417∗∗∗ 19.462∗∗∗ 20.676∗∗∗ 20.755∗∗∗

(3.613) (3.645) (3.736) (3.729)

log(uAuctionNumber) 11.356∗∗ 22.705∗∗∗ 23.565∗∗∗ 23.933∗∗∗

(5.025) (8.430) (8.315) (8.310)

uTotalAuctions −0.641∗ −0.649∗ −0.661∗

(0.372) (0.369) (0.368)

nLastAuctPrice 0.160∗∗∗ 0.161∗∗∗ 0.176∗∗∗ 0.172∗∗∗

(0.049) (0.050) (0.051) (0.051)

Constant −4.428 −65, 262.760 −235.046∗∗ −264.613∗∗∗

(46.218) (163,621.600) (101.247) (97.529)

Observations 499 499 499 499
R2 0.825 0.826 0.814 0.814
Adjusted R2 0.821 0.821 0.810 0.810
Residual Std. Error 94.399 94.304 97.126 97.067

(df = 487) (df = 484) (df = 487) (df = 487)
F Statistic 208.012∗∗∗ 164.049∗∗∗ 194.042∗∗∗ 194.333∗∗∗

(df = 11; 487) (df = 14; 484) (df = 11; 487) (df = 11; 487)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.17: Regression Results dataset of model 16Gb. Effects of Price at T-1.

Dependent variable:
bAmount

(1) (2) (3) (4)
aNetworkUnlocked 37.058∗∗∗ 36.170∗∗∗ 30.773∗∗∗ 34.237∗∗∗

(6.765) (6.791) (7.140) (7.176)

aStarL2 3.565 3.077 5.446 5.736
(8.094) (8.096) (8.395) (8.515)

aStarL3 9.222 9.224 9.999 13.001∗

(6.593) (6.589) (6.846) (6.902)

aTotalPhotos 3.319
(3.407)

log(bMsTimeWithin) 0.118 5.160
(4.142) (3.900)

log(uAuctionBid) −34.794∗∗∗ −29.985∗∗∗

(5.771) (5.632)

bLivePrice 0.633∗∗∗ 0.634∗∗∗ 0.710∗∗∗ 0.706∗∗∗

(0.018) (0.018) (0.020) (0.020)

log(bAuctionBid) 37.418∗∗∗ 37.637∗∗∗ 11.365∗∗∗

(4.731) (4.731) (3.640)

nOtherBiddersInAuct −8.679∗∗∗ −8.708∗∗∗

(1.100) (1.100)

poly(uAuctionBid, 2)1 −470.699∗∗∗ −471.000∗∗∗

(81.545) (81.493)

poly(uAuctionBid, 2)2 325.458∗∗∗ 319.741∗∗∗

(78.986) (79.043)

log(uLastBid) 26.924∗∗∗ 27.652∗∗∗ 30.659∗∗∗ 30.822∗∗∗

(2.399) (2.455) (2.569) (2.588)

uTotalAuctions 0.258 0.218 0.232
(0.187) (0.194) (0.196)

log(uAuctionNumber) 7.957∗∗ 2.957 5.220 3.896
(3.154) (4.797) (4.975) (5.002)

nLastAuctPrice 0.007 0.008 -0.014 -0.001
(0.038) (0.038) (0.040) (0.040)

Constant 24.332 23.398 -30.154 -110.244
(28.729) (28.718) (72.529) (71.138)

Observations 721 721 721 721
R2 0.854 0.855 0.843 0.841
Adjusted R2 0.852 0.852 0.841 0.839
Residual Std. Error 77.957 77.907 80.851 81.350

(df = 709) (df = 708) (df = 709) (df = 709)
F Statistic 377.397∗∗∗ 346.552∗∗∗ 346.330∗∗∗ 341.300∗∗∗

F Statistic (df = 11; 709) (df = 12; 708) (df = 11; 709) (df = 11; 709)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2.18: Percentage of Common Bidders With Earlier Than 10th Recently Finished
Auction

mean median sd min max n. obs.

Percentage of bidders in I = (NT , NB) most recently finished auctions who also participate in auction that follows

I = (11, 20) 1.31 0.00 1.81 0.00 16.67 10718.00
I = (21, 30) 1.12 0.00 1.64 0.00 12.50 10672.00
I = (31, 40) 1.03 0.00 1.53 0.00 13.33 10621.00
I = (41, 50) 0.93 0.00 1.48 0.00 25.00 10566.00

Percentage of bidders in an auction who also participated in I = (NT , NB) most recently finished auctions

I = (11, 20) 9.73 0.00 14.40 0.00 100.00 10788.00
I = (21, 30) 8.35 0.00 12.85 0.00 100.00 10788.00
I = (31, 40) 7.59 0.00 12.22 0.00 100.00 10788.00
I = (41, 50) 6.57 0.00 11.51 0.00 100.00 10788.00
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Table 2.19: Statistics on Bidders Participating in T and T−1. Division To Subsets Based
On Model.

mean median sd min max n

Dataset including M32 only

Number of other bidders in auction
8.32 8.00 3.88 1.00 19.00 2023.00

Common bidders with auction in T − 1
0.23 0.00 0.57 0.00 4.00 2023.00

Number of other bidders in T − 1
8.49 9.00 3.82 1.00 18.00 2023.00

Percentage of bidders in T − 1 who also participated in T
3.03 0.00 8.32 0.00 100.00 2023.00

Percentage of bidders in T who also participated in T − 1
3.24 0.00 9.11 0.00 100.00 2023.00

Price in auction at T − 1
789.19 775.00 99.38 480.00 999.00 2023.00

Dataset including M16 only

Number of other bidders in auction
8.62 9.00 3.93 1.00 21.00 3309.00

Common bidders with auction in T − 1
0.26 0.00 0.63 0.00 5.00 3309.00

Number of other bidders in T − 1
8.91 9.00 3.98 1.00 21.00 3309.00

Percentage of bidders in T − 1 who also participated in T
2.90 0.00 7.56 0.00 80.00 3309.00

Percentage of bidders in T who also participated in T − 1
3.10 0.00 8.47 0.00 100.00 3309.00

Price in auction at T − 1
649.74 640.00 83.93 130.00 999.00 3309.00
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Table 2.20: Statistics On Common Bidders Participating In T And Most Recently Fin-
ished Auction

mean median sd min max n

Common bidders with the most recently finished auction

Number bidders in most recently finished auction
6.95 6.00 3.76 0.00 20.00 10798.00

Number common bidders with most recently finished auction
0.16 0.00 0.48 0.00 6.00 10798.00

Percentage of bidders in most recently finished auction who also participated in T
2.30 0.00 7.49 0.00 100.00 10777.00

Percentage of bidders in T who also participated in most recently finished auction
2.18 0.00 7.49 0.00 100.00 10798.00

Price of most recently finished auction
702.68 700.00 118.06 367.00 999.00 10777.00
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Figure 2.4: Scatterplot Between Bid Discounting And Final Bid Amount
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(a) Bidders with 2 auctions joined
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(b) Bidders with 3 auctions joined
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(c) Bidders with 3 auctions joined
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(d) Bidders with4 auctions joined
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(e) Bidders with 4 auctions joined
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(f) Bidders with 4 auctions joined
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Chapter 3

Multinomial Logit: Application to

choice between identical products
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3.1 Introduction

The purpose of this paper is to use multinomial logit estimation, which is commonly

used in demand estimations, in the context of online concurrent auctions for identical

products. The choice between auctions for identical products can be modeled in a similar

way to choice between goods. The difference is that the essential variability between

available options are not constant characteristics of a product, but rather the time-specific

dynamic auction variables: these are current price, current number of bids and bidders

in the auction. Estimation of choice model in this context allows to determine how these

aspects influence decisions of bidders. The bidder at a given time t faces a choice between

a number of auctions for the same product. The main aspects that enter the choice model

are the time until the auction end, current price, current number of bids and bidders. The

results show that some of the aspects are interdependent on each other, in particular price

and time as well as number of bidders with time and number of bids. The identification

of the effects of interest is ensured by choosing the most homogeneous subsets based on

product, auction and seller characteristics. Various versions of the model are estimated.

The models are tested on two subsets and the ones that are a good fit in both subsets

are selected for interpretation. Additionally the choice model is estimated only on the

first bid of each bidder to eliminate the effects that the bidding history could have. The

dataset used is a good source for this analysis since the auctions recorded are for a new

product, not sold anywhere before. There are many concurrent auctions which allows to

limit seller and auction characteristics in the subsets.

3.2 Literature

Despite the fact that concurrent auctions for similar items are already very common, es-

pecially in the growing online auctions marketplace, the literature relating to the analysis

of competing auctions is very modest [17]. Haruvy, Popkowski Leszczyc et al (2008)[17]

outline different types of competition present in the online environment of consumer auc-
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tions, and related literature. They divide the competition present into three categories:

competition between items and between sellers, competition between formats, and com-

petition between auction hosts. They conclude that “ ... The most important dependent

variable in our opinion is auction choice by consumers given the choice set, and very

little is known about the determinants of such choice...”. Exactly this choice between the

auctions is the subject of this paper. Until the 1990s, consumer auctions were mainly

isolated events, which is why the earlier auction literature has not given much attention

to competition between auctions. Since the sudden increase in popularity of auctions

with the opening of eBay, Amazon and other online platforms, still most of the empirical

as well as theoretical analysis of auctions tried to apply the theory relating to isolated

auctions, to this environment with high degree of concurrency. The first model of second

price auctions was introduced by Vickrey (1961) [36] and it is still used as the basis for

analysis of auctions in all type of environments. Despite that, many of the predictions

from the simple early models, such as bidding own valuation once, do not prove to be

useful in this case.

Literature search revealed three papers in economic literature, that are most closely

related to concurrent auctions and the topic of this chapter. These are Haruvy and Pop-

kowski Leszczyc (2010) [16], Anwar, McMillan and Zheng (2006)[1], and the theory paper

by Peters and Severinov (2006) [30]. The latter one is the first paper to incorporate the

existence of competing auctions on bidding behavior in a theoretical framework. Peters

and Severinov show that in a multi-unit environment, cross-bidding, and incremental

bidding are optimal in equilibrium. In the case of many concurrent auctions bidding own

valuation in one bid is not advantageous any more, because of an opportunity to bid in

a different auction with possibly lower second highest bidder. According to Peters and

Severinov (2006), the bidder should choose the auction with the lowest standing bid and

bid by an increment only. There shouldn’t be cross-bidding during the time the bidder is

the highest bidder in any auction (which is implied by single-unit demand), but in other

case, cross-bidding should be observed. The environment that they analyze is a multi-
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unit, second price auction environment, which is very similar to eBay, as they also point

out. They focus on a single-unit-demand bidder’s behavior, who is facing multiple si-

multaneous auctions with homogeneous items on sale. In conclusion they have expressed

hope that empirical researchers will turn to the analysis of competing auctions.

Since that publication only two economics papers so far have turned into analysis of

competing auctions. Anwar et al (2006)[2] are testing the cross-bidding theory implied by

Peters and Severinov model, by analyzing groups of eBay auctions for CPUs with similar

items and close ending times. They are examining groups of auctions of the same seller

and almost identical items (which, despite the ending times, are indistinguishable for the

buyers), and calculate the percentage of cross bidders in such groups. Their estimate

of the extent of cross-bidding is likely to be understated, as they do not include other

similar items that the bidders might consider as substitutes. Each group consists 2 or

more auctions, and they analyze the extent of cross-bidding with different variation of

inclusion in the competing auctions groups, with the ending times as close as within a

minute apart, within an hour apart, and within a day apart. The respective samples of

groups are of size 328, 1021, and 1943. and the average number of competing auction in

each group varies from 2.55 in the minute sample to 2.77 in the daily sample. They find

that there is more cross-bidding across closer substitutes (where the closer substitutes are

those with closer ending times). The proportion of cross bidders in the minute sample is

0.20, excluding the multi-unit bidders, and 0.32 not excluding the multi-unit bidders. In

the daily sample they find this proportion to be 0.14 and 0.19 respectively. The multi-

unit demand bidders are here defined as those who either are winner of more than one

auction, or are observed to be the highest bidder in more than one auction at a time

during the last day of the auction. The hypothesis of no cross-bidding is rejected with

very high t-values, and it is clear that there is a significant proportion of cross-bidders.

Another theory implication they test is that bidders tend to bid on the auction where

that standing bid is the lowest. They calculate the proportion of bids submitted on an

auction with the lowest standing bid, during the times when more than one auction was
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in progress. They find this proportion to be very high varying from 62 percent in the

daily sample to 76 percent in the minute sample. They test these against the null of

random bidding, where the proportion would be 50 percent, and find that this can be

rejected. The observed modest monotonic increase in groups with closer ending time

may simply be due to the fact that these groups contain smaller number of competing

auctions. They note that this lack of apparent monotonicity (increasing proportion for

auctions which compete more closely) is a surprising finding. The last question that they

tackle is whether cross-bidders pay lower prices, by testing the hypothesis that the ratio

between the price paid by average cross-bidders and non-cross bidders in each group is

1. They find this ratio to be from 0.91 with standard deviation of 0.7 for the minute

sample to 0.94 with a standard deviation of 0.18 in the daily sample. The sample sizes

are reduced in each case, since now only groups containing both cross bidders and non

cross bidders are considered. The hypothesis tests show that in each sample the ratio

is significantly different from 1. As a conclusion, the paper provides evidence for cross-

bidding behavior as well as for the fact that cross-bidders pay lower prices, both implied

by the model in Peters and Severinov (2006).

Another related paper is Haruvy and Popkowski Leszczyc (2010)[16], which is based

on a field experiment on eBay. In this paper, the authors, through analyzing concurrent

auctions, measure the impact of consumer search on price dispersion. They estimate a

choice model of bidding between competing auctions. They consider pairs of simulta-

neous auctions in their estimations. The assumption that a bidder chooses to bid on

an auction which gives them a higher expected utility, taking into account the current

highest bid in that auction, is implied by Peters and Severinov model. As they note,

estimating a choice model allows to ignore the specifics of strategies taken by the bidder,

by focusing on estimating the impact that different variables have on expected utility of

choosing that auction as opposed to the other one. In their model they focus on the effect

of Inertia, which is the tendency to choose an auction one has chosen in the past. Inertia

is measured in a similar way, as in the context of brand choice in Dube, Hitchi and Rossi
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(2010)[15] who estimate a multinomial logit model on brand choices in repeated super-

market visits. Haruvy and Popkowski Leszczyc (2010) use two specifications of inertia:

one through a dummy variable indicating whether a bidder has placed his previous bid

in that particular auctions - which they call state dependence, and another one through

a percentage measure of bids by this bidder placed in that auction (out of all bids by the

bidder) - which they call loyalty. Time left in the auction reduces search costs relative to

it’s benefits - they therefore investigate the coefficient at the interaction between time left

and loyalty measure - which is predicted to have a different sign with endowment effect

explanation, and search costs explanation. In order to vary the search costs, and see

how this influences search, the authors influence it directly in their experimental design.

The incentive to search is increased by running two identical auctions offering the winner

to waive shipping costs in the case that the auction ended with lower final price, than

another concurrent auction for identical item. In their analysis the authors focus on the

pairs of experimental auctions, and in order to control for other competing auctions they

use a covariate indicating the number of other concurrent auctions for similar items. The

findings show that there is a price dispersion among the identical concurrent auctions.

They find a significant average price difference of 15.25% of the average price ($2.87).

They find that search incentive does have an effect on reduction of price dispersion. They

also find that 19% of bidders ever switch between auctions, which is a similar figure to

Anwar et al (2006) findings discussed earlier. 78.8% of all switches were to the auction

with lower price, while 21.2% were switches to the auction with higher current price.

Price dispersion is also found to vary over time of the auction, being lower at the begin-

ning, suggesting initial search, and higher later on in the auctions to decrease again at

the end. Despite that, as much as 26.8% of first bids are placed on a higher-priced auc-

tion. They estimate a random coefficients logit regressions to account for heterogeneity

between individuals. Loyalty and state dependence are significant in their estimations,

what is more intensity (which they measure as the total number of bids in the auction

divided but the auction length) is also significant, which is interpreted as indicating some
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type of bidder frenzy. Remaining time is found to moderate stickiness of bidders (to the

auction). In summary, their findings are that despite the seemingly easy search, still a

large proportion of buyers failed to choose the lower priced option between two identical

items, and tended to stay with the auction they have already entered. It also appeared to

be a costly decision, since those who did switch between auctions (and therefore demon-

strated more search activity) have paid lower prices, by on average $1.22. Bidders in the

higher priced auction have paid an average premium of 15.25%, which was reduced by the

search incentives provided in the experiment design, by 33%. As the authors summarize,

their pair-auction design may not be representative of a setting with more alternatives -

so often encountered in the digital world.

Other related, statistical studies focus mainly on resulting price, or price formation

and it’s dynamics. In chapter 4.3 of Modeling Online Auctions (2010) [20] Junk and

Shmueli discuss a statistical technique of accounting for competition from other auctions

in a regression, where the dependent variable is auction price (the related paper is [19]).

They implement a semiparametric model, including three different aspects : auction

component, spacial component and temporal component, which they show that fits the

data better than the linear model. This suggests that there are some nonlinearities in the

relationship of item features (spacial component in their estimations) and auction prices,

which can be difficult to model with only linear regression. Their auction component

includes transaction details (e.g. buy-it-now option, starting price, or reserve price)

and is a parametric part; their spacial component is non-parametric mixed model, which

measures the distances between item features (in competing auctions) in a non-parametric

way; they suggest that information from past auctions should be used in an aggregated

manner - which they do in their temporal component. As they argue, eBay participants

are exposed to the data on past auctions in bulk, rather than at the time each auctions

finishes, and therefore the difficult, irregularly spaced data can be included in a summary

statistic from a given period (for example last day). Their model still doesn’t address

the influence of current competition on price formation (which is influenced by single
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bids) before the auctions ends. In Chapter 4.4., of the same book, the authors model

bidder arrival process, and they show that it is a self-similar process (which has the same

shape when considering smaller and smaller intervals towards the auctions end), which

is an interesting feature. Bapna, Jank, and Shmueli (2008) [6] introduce functional data

analysis to model price dynamics. They recover a functional object of price path (with the

use of smoothing splines), and their first (velocity) and second derivative (acceleration).

The speed of price change, as well as acceleration, are new factors which they use as

dependent variables in their analysis. Explanatory variables they use include, in addition

to all the static auction and bidder characteristics, the dynamic features such as current

number of bidders, and the average rating of participating bidders. Some of their findings

are that number of bidders is (as expected) positively correlated with current price,

and also that, towards the end of the auction, higher price is correlated with faster

price increase (velocity), and faster rate of increase (acceleration). This is in some way

puzzling, since the heterogeneity of products is accounted for - it could be an indication

that auctions with higher price (and therefore more bids already) attract more bidders,

which again points to frenzy, or competitive arousal explanation.

3.3 Data

The dataset contains 2,384 eBay auctions for iPhone 4 during a two month period in June-

July 2010. At any given time there were on average 234.85 concurrent auctions for the

same product. The main differences between these items are their memory size - variable

aModel, with two main categories: 16Gb and 32Gb capacity, nework (aNetwork), and

condition (aCondition). All the variety of product and auction categorical variables can

be found in table 3.1. The explanations of the variable names for the whole dataset can

be found in table 4.1 and the statistics in table 4.2. Due to the fact that the time period

of data collection was immidiately after the introduction of the iPhone 4 in the UK, there

couldn’t be much variability in terms of the used phones (by the fact that none of the
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phones could not have been used for a long time before the sale), and most of the phones

have been described as ”New”. Some phones were locked to a given network, while others

were unlocked, and available to be used with any cellular network.

Given high homogeneity of these products, the expectation is that the bid will be

placed on the item with the lowest current price, in accordance with Peters and Severinov

model [30]. The purpose of the paper is to empirically estimate the influences on the

choice made by bidders between the concurrent auctions. Individual choice model allows

to abstract from the bidders’ sequential strategies, while focusing on the aspects that

influence the choice of auction at the time of each bid.

Table 3.1: Auction categorical variables in the whole dataset of bids for iPhone 4

aDurationLevels 1 :16031 3 : 8394 5 : 1685 7,10 or 6 : 1538
aModel 16 :16237 32 :11085 . : 310 (Other): 16
aNetwork Unlocked:14244 O2 : 7521 Vodafone: 2559 Orange : 2047 (Other) : 1227
aCondition New :26674 Used : 510 (Other) : 464
aStarL 3 :11136 1 : 6378 2 : 5265 0 : 2557 (Other): 2312
aStarLevel Turquoise:11136 Yellow : 6378 Blue : 5265 NoStar : 2557 (Other) : 2312
aReturns No : 24740 Yes : 2834 (Other) : 74
aPostageFree No: : 23268 Yes : 3939 (Other) : 441
aPhotosPresent No : 349 Yes : 27299
aTotalPhotosLevels 1 :18913 2 : 4219 3 : 2273 4 : 1320 (Other): 923
aNonStock No : 9666 Yes : 17982
aPostto UK :21108 Worldwide: 5247 EU : 522 UK,US : 24 (Other) : 747
aExtras No : 27604 Yes : 44

Number of Auctions: 2393
Number of Sellers: 1704
Number of bidders: 3730
Total number of bids: 27648

After generation of choice sets for for each bid

Total number of generated alternatives added to the dataset: 6465401
Total number of rows: 6493049
Average number of choices available at each bid : 234.85
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3.4 Generating not-chosen alternatives

For the purpose of choice model estimation, the alternatives available for the bidders

at the time they make a choice to bid needed to be known. These are not in the data

collected from the eBay website. In order to find the choice sets that are present at the

time of each bid, the not-chosen alternatives need to be recreated from the available data.

This was possible, because all the information relating to auctions for the same product

were collected : all the bids made are recorded in the dataset. The recreation of the

not-chosen alternatives was made using a program written in R, which loops through all

the 27648 observations in the dataset, and finds the choice set for each of these from the

set of currently open auctions (after the start date but before the end date) at the time

the bid was placed. Then, these not-chosen alternatives were added to the new dataset.

The original dataset contained 27648 observations of just the chosen alternatives.

After running the code and generating the not-chosen alternatives for each bid, the final

dataset contained 6 493 049 observations. The summary of the resulting dataset can be

found at the bottom of Table 3.1. If a person opened the eBay website at some point in

time during the dataset collection, and entered iPhone 4 into the search, they would see

all the present open auctions sorted from the soonest to end to the last to end. These

options were recreated for each bid placed in order to represent the situation described

above. The variable bClosingSequence is a record of the order in which the auctions are

sorted at the time of each choice set. The soonest to end auction has bClosingSequence

equal to 1, and the number is increasing for auctions that have more time left to end. This

variable relates to ordering among all auctions for iPhone 4 open at the time (including

all memory sizes, networks and other variability). Each choice set has an assigned unique

number, which is needed for distinction between the sets.

The dataset including all choices is not, though, the best for the estimation of multinomial

logit, and the data needed to be limited. All the data collation steps can be found in

Figure 4.9 in the Appendix, and are further explained below. EBay rules and information
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visible to bidders are described in Appendix section 4.1.

3.5 Empirical Strategy

The dataset is rich in similar auctions and there are many concurrent alternatives at

each point in time (on average 234.85). The data represented in this way allows to focus

on aspects that influence choice of auction made by the bidders. First, though, the

data needed to be further filtered so that the estimation was to be made on the most

homogeneous sample to achieve robustness. There are several obvious aspects that may

determine the choice of an auction by the individual : these are the characteristics of the

object or auction - the heterogeneity between them. Real life data obviously contains

heterogeneity in auction characteristics -as seen in table 3.1, even if all the auctions refer

to the same product sold. All the remaining controls relating to these characteristics have

to be included in the regression. Reduction of heterogeneity between auction by selecting

only those with the same product and limited auction characteristics reduces the possible

biases relating to unobservables, such as for example uncertainty about seller reputation

and the actual quality of the product. In order to ensure identification of the variables of

interest auctions chosen need to be as similar as possible.Table 3.1 shows the differences

in characteristics across auctions in the whole dataset. For estimation of choice between

auctions, the irrelevant alternatives should not make a difference. Number of auctions

should also be reduced in order to run a multinomial logit estimation. The auctions and

object characteristics are limited to create groups with almost identical products.

The variables of interest are not the constant differences between auctions, but the

dynamic aspects such as time until the end of the auctions, and those that are an effect

of choices made by others: current number of bidders and current number of bids in the

auction, as well as live price.

The main question which the current analysis tries to answer are:

1. Which dynamic variabels affect choice and how?
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The more specific questions are:

1. How does current price affect bids? Do bidders take into account both the current

price and time remaining when making a bid?

2. Can we observe herding? Are auctions with larger number of current bidders pref-

fered ober those with less current bidders?

3. Are auctions with more or with less active bidders preferred?

The multinomial logit model is used to estimate which aspects of alternatives present

influence choice between them.

The probability of choosing x over other available alternatives z ∈ Z is Pt(x):

Pt(x) =
exp(Uxt)∑
z exp(Uzt)

(3.5.1)

A possible equation defining utility Uxt is below:

Uxt = β1Ax + β2bLivePricext+

β3bT imeWithinAxt + β4bCurrentAuBiddersxt+

β5bAuctionBidxt + ...+ εxt (3.5.2)

where xt relate in this case to auction x and time t, and:

Ax - auction x characteristics

bLivePricext - live price of auction x at time t

bT imeWithinAxt - time within auction x at time t counted from start to the end of the

auction

bCurrentAuBiddersxt - number of current bidder at auction x and time t

bAuctionBidxt - number of current bids in auction x at time t1.

Possibly more explanatory variables enter the estimation, especially interaction terms

1Note: names of the explanatory variables have the same format as variable names in the dataset to
make understanding easier. Variable names explanation can be found in Table 4.1
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between the dynamic variables, which is why the ”...” is included.

Multinomial logit model assumes independence of irrelevant alternatives - that means

that if some alternatives are removed, the relative probabilities of choosing between the

remaining alternatives is the same. This means we can limit the number of alternatives

considered.

The above choice model allows to find the utility associated with each alternative

auction A. This type of specification does not, though, reflect the situation which the

bidders are facing.The problem with estimating a choice model with utility as stated in

equation 3.5.2 is that each alternative is a unique auction and the same alternatives should

be included in each choice set for estimation. The alternative-specific characteristics,

Ax, are defined for each auction x. In the online auctions environment there are many

auctions, and the choice sets with respect to alternative auctions differ widely in both:

size of the choice sets and, most importantly, the composition of alternatives in each of the

choice sets. An estimation, where each alternative is a different auction is not possible.

The problems are the large number of alternatives and extremely high variety in choice

sets. A small number of alternatives and repeated alternatives available at each choice

set are desirable from the technical point of view. A different definition of alternatives is

also better representing the situation the bidders are in. Especially, once homogeneous

auctions are considered. A person is facing a choice between several auctions that are

close to identical in Ax (auction characteristics). Each person is also facing a similar

choice set.

The impact of constant auction characteristics is minimal once appropriate subset of

almost identical auctions is selected, which is used for the re-definition of alternatives,

and make it possible to estimate a choice model in this situation.

Auctions included all contain the same constant characteristics, so that the term Ax is

removed completely, and the utility derived from each alternative does not depend on

it’s characteristics that globally differ it from other alternatives. All the terms that enter
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the choice model relate to variables with subscript xt - variables that differ at each time-

alternative level and therefore are in fact never exactly the same for two choices (given

that two bids can not be made in the same auction at exactly the same time). Constant,

independent of choice situation, characteristics Ax disappear completely from the model.

The identical auctions can be sorted with respect to end time, and this is in fact a way they

are sorted and displayed on eBay website - the top alternative being the soonest to end

(besides paid advertisements). Once the auction-specific factors are at large eliminated,

the alternatives can be defined in different way, making use of the display order existing

on the website. The alternatives are defined as different places on the list of auctions

sorted by end time. Soonest to end auction is alternative number 1, second to end -

alternative number 2, third to end - alternative number 3, and fourth to end - alternative

number 4. The number of alternatives included is chosen to be 4, but this is an arbitrary

number that could be different. Given the assumption that irrelevant alternatives do not

influence the ratios of the estimated coefficients for existing alternatives (Independence

of Irrelevant Alternatives), including only up to alternative 4 is not affecting the results.

It is expected that soonest to end auction has a higher probability of bid, and therefore

there is an alternative-specific constant included in the estimation, which does not refer

to the specific product characteristic, but rather to the place on the list that is displayed

on the website. All other variables are alternative-time specific, and it’s effect is not

impacted by the way the alternatives are defined.

The utility gained from bidding on alternative xt is therefore2:

Uxt = Cx + β2bLivePricext+

β3bT imeWithinAxt + β4bCurrentAuBiddersxt+

β5bAuctionBidxt + ...+ εxt (3.5.3)

2The names of the covariates reflect the naming used in the dataset and the description of variable
names canbe found in table 4.1 in hte Appendix. ”...” is used to show that possibly more covariates will
be used.
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, where Cx ist he position-specific constant (alternative -specific), and all other variables

are defined as in equation 3.5.1. The probability of choosing auction at position x overall

is defined in equation 3.5.1.

The multinomial logit estimations are made using mlogit package in R developed

by Yves Croissant [13], by maximum likelihood. The multinomial logit model was first

introduced by McFadden, 1974 [26]. The assumptions of the model are as follows:

1. Independence of Irrelevant Alternatives

2. Independence of Error Terms

3. Error Terms are identically Distributed

4. Error terms have Gumbel distribution

The estimation strategy is to make the above multinomial logit estimations on a homo-

geneous sample of auctions. The chosen nuber of alternatives is 4 alternatives in each

choice set.

3.6 Estimation Without Interaction Terms

The first subsets considered are separate subsets of Model 32Gb and 16Gb New, Unlocked

phones with the restriction that the sellers rating level can be 1st, 2nd or 3rd only, Returns

not accepted, paid postage, photos present, no Extras and postage to UK only. The

description of these subsets can be found in tables 3.7 and 3.10. These are large subsets

with 713 and 732 choice sets. The final estimation specification for the Uxt was found

based on the factors that were important, including the remaining auction variability-

which is auction duration, amount paid for postage and number of photos. The equation
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estimated is:

Uxt = Cx + β1bHourT imeT ilEnd+ β2aDuration+

β3aTotalPhotos+ β4aNonStock + β5aPostage+

β6bAuctionBid+ β7bLivePrice+ β8bCurrentAuBidders+

β9bClosingSequence+ β10aTotalBids+ β11aTotalBidders+ εxt (3.6.4)

The bT imeWithinA was exchanged for bT imeT ilEnd and aDuration. It is the case, as

suspected, that time until the end of the auction is important for the decision to bid.

The negative coefficient β1 shows that the auctions that have less time left until the end

are more likely to be chosen by bidders. In addition to that the intercepts for 2nd, 3rd,

and 4th choice are negative and generally increasing (more negative with higher choice

number), which additionally shows that division into the alternatives by sorting the auc-

tions with respect to time till end is well grounded. The later positions on the list are

less likely to be chosen by bidders. Another variable that is a result of sorting by time till

end is bClosigSequence - and that is the number on the list of closing auctions among all

iPhone 4 auctions, not only in the selected subset. The coefficient next to this variable

is also negative and significant which suggests that bidders often choose among wider

range of alternatives, not restricted to the most identical version of the phone. Again,

the further the auction is on the list, the less likely that it is chosen. In addition to the

more subtle bHourT imeT ilEnd, which counts the time until the end of the auction in a

continuous manner, the coarse division into positions on the list of closing auctions show

to be an important factor in choice. The other variables of interest are bAuctionBid,

bLivePrice and bCurrentAuBidders. The coefficients next to these variables are: nega-

tive for current number of bids in the auction bAuctionBid, negative for current live price

in the auction: bLivePrice, and positive for current number of bidders in the auction:

bCurrentAuBidders. Current price and higher number of bids are deterring from enter-

ing the auction, but a higher number of bidders is in fact an encouraging factor. This is an

175



interesting result, that suggests there may be a type of herding, where other bidders are

encouraging. The controls that relate to the remaining auction variety: aTotalPhotos,

aNonStock and aDuration and aPostage are not significant in most of the regressions,

which confirms that the remaining variety is not important for the attractiveness of each

auction. The main effects that are of interest in the regressions are the effects of the

time-varying variable in auctions, and these are: bLivePrice, bCurrentAuBidders and

bAuctionBid.

Other controls included in specification (1) and (2) are aTotalBiders and aTotalBids

which to the fact that there is a remaining variety between auctions with respect to the

total number of bids and bidders present - it is likely that the more bids in the auction

the more likely that the auction is going to be listed as a chosen auction in the dataset,

additionally there is a concern that total number of bids, although endogenous, could be

a reflection of some unobserved characteristics of an auction, and therefore this control

is included in regression (1) and (2). As can be seen including these variables do not in-

fluence the sign of the bAuctionBid and bCurrentAuBidders, but the inclusion of these

strengthen the coefficients next to these variables, and also increase the R-squared score,

which suggests that they do indeed capture unobserved effects which should be controlled

for.
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Table 3.2: Description of data: Model 16Gb New Unlocked 3rd Star, first bid

A. Auction-level description

aDurationLevels 1 :227 3 : 97 5 : 7 7 or 10 : 33
aModel 16 :364 (Other): 0
aNetwork Unlocked:364 (Other): 0
aCondition New :364 (Other): 0
aStarL 3 :364 (Other): 0
aStarLevel Turquoise:364 (Other): 0
aReturns No :364 (Other): 0
aPostageFree No :364 (Other): 0
aPhotosPresent Yes :364 (Other): 0
aTotalPhotosLevels 1:257 2: 58 3: 20 4 or 7 : 29
aNonStock No : 74 Yes :290 (Other): 0
aPostto UK :364 (Other): 0
aExtras No :364 (Other): 0

Number of choice sets: 91
Number of auctions: 95
Number of sellers: 77
Number of bidders: 91
Auctions per choice set: 4

B. Non-categorical variables

mean median sd min max n

bAmount 536.35 601.11 198.07 0.99 760.00 364.00
bClosingSequence 14.48 9.00 14.98 1.00 82.00 364.00
bLivePrice 440.58 549.00 236.45 0.01 723.00 364.00
bCurrentAuBidders 2.87 0.00 4.07 0.00 16.00 364.00
bMinTimeTilEnd 675.04 143.48 1389.95 0.02 13170.92 364.00
bHourTimeTilEnd 11.25 2.39 23.17 0.00 219.52 364.00
bAuctionBid 7.95 3.00 9.03 1.00 36.00 364.00

C. User variability

uBidL 1:364
uTotalAuctionsL 1 :100 2 : 88 3 : 44 4 : 44 5 : 16 10 : 16 (Other): 56
uTotalBidsL 1 : 68 3 : 60 2 : 44 5 : 32 4 : 28 6 : 16 (Other):116
uTotalWinsL 0:196 1: 92 2: 44 3: 16 4: 8 5: 4 7: 4
uWinsSoFarL 0:364
uNumbEbayWinsL 0 : 32 1 : 16 2 : 16 7 : 16 4 : 12 6 : 12 (Other):260

D. Auction bids and bidders

aTotalBidsLevels 5 : 47 3 : 27 22 : 18 17 : 17 16 : 16 (Other):239
aTotalBiddersLevels 5 : 42 4 : 36 3 : 34 12 : 34 9 : 23 (Other):195
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The subsets discussed above had some shortcomings, which led to narrowing the

spectrum of selected data further. The main concern was that, in the case of no restriction

on which user’s bid is included, there can be unobservable effects on the choice. For

example, considering first bid by a given user, it is clear that the other considerations

in respect to auction loyalty or in general influences of bidding history do not influence

the choice the bidder is making. On the other hand, in the case of a 2nd, 3rd or a later

bid, the previous bidding history may influence the choice the bidder is making, which

could be biasing the results. For that reason, the next subsets selected are subsets of first

users’ bids with the same restrictions on auction characteristics as before. The model

16Gb dataset description can be found in table 3.12, and the 32Gb model dataset can be

found in table 3.11. Furthermore, the seller rating levels are allowed to be 1st, 2nd or 3rd

Star rating, and this allows for a range of seller heterogeneity. In order to further limit

the heterogeneity among sellers, the datasets were reduced further to contain only New

Unlocked auctions with 3rd start seller rating, divided into two groups: model 16Gb and

model 32Gb. The description of these datasets can be found in table 3.2 for the 16Gb

phone and table 3.13 for the 32Gb phone. As can be seen these two further limitations

ensure that there is very little auction heterogeneity left, and the effects of users’ history

are eliminated. The 16Gb subset contains 91 choice sets, while the 32Gb subset contains

68 choice sets.

In the 16Gb subset there are 91 bids, and 4 alternatives in each choice set. The

subset contains highly homogeneous group of auctions which is confirmed by the fact

that there are only 95 auctions in total and 77 sellers. The auctions are on average

repeated in more than one choice set and there is even less sellers with several sellers

offering multiple auctions. Of course, there is still some heterogeneity left in the con-

stant auction-level characteristics, and that is number of photos (aTotalPhotos), and

”non stock photos” (aNonStock). Additionally there are different auction duration lev-

els (aDuration). The sub-setting was based on auction characteristics, not on bidder

characteristics, and therefore there is variety among bidders, as seen in table 3.2. User
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Table 3.3: Multinomial Logit Results: M16 Unlocked 3rd Star, 1st bid , 4 choices

Dependent variable:
choice

(1) (2) (3)
2:(intercept) 0.980 1.023 0.693

(0.712) (0.705) (0.621)

3:(intercept) 0.320 0.348 -0.070
(0.800) (0.797) (0.691)

4:(intercept) -0.296 -0.349 -0.492
(0.901) (0.900) (0.800)

log(bHourTimeTilEnd) −0.428∗∗ −0.449∗∗ −0.037
(0.197) (0.195) (0.142)

bCurrentAuBidders 0.602∗∗∗ 0.543∗∗∗ 0.538∗∗∗

(0.163) (0.120) (0.106)

bAuctionBid −0.408∗∗∗ −0.393∗∗∗ −0.151∗∗∗

(0.089) (0.082) (0.045)

bLivePrice -0.001 -0.0004 −0.005∗∗∗

(0.002) (0.002) (0.001)

aDuration 0.215 0.241 0.104
(0.189) (0.186) (0.162)

aTotalPhotos 0.331 0.352 0.232
(0.265) (0.261) (0.223)

aNonStock -0.591 -0.594 −0.836∗

(0.559) (0.558) (0.471)

aPostage 0.918∗ 0.981∗∗ 0.411
(0.493) (0.485) (0.416)

bClosingSequence −0.124∗∗∗ −0.119∗∗∗ −0.097∗∗∗

(0.037) (0.036) (0.030)

aTotalBids 0.268∗∗∗ 0.246∗∗∗

(0.074) (0.058)

aTotalBidders -0.086
(0.153)

Observations 91 91 91
R2 0.664 0.662 0.555
Log Likelihood -41.587 -41.750 -55.074
LR Test 164.213∗∗∗ (df = 14) 163.887∗∗∗ (df = 13) 137.238∗∗∗ (df = 12)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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characteristics are not expected to influence the choice the bidder makes between 1,2,3,

and 4th auction. On the other hand, despite the fact that the selected auctions are very

similar, there is a large variety among them with respect to total number of bids and

bidders in these auctions. Final number of total bids and bidders is endogenous, and is a

result of the choices of bidders made rather than an exogenous variable on which auctions

can be selected.

The numbers of observations are substantially diminished, but the aim was to achieve

situation where choice is made between almost identical auctions. The fact that 4 alter-

natives are considered meant that only those choice sets were included which contained

4 or more products in the category selected.

As a first step the regression from equation 3.6.4 is repeated on these datasets.

The results are almost identical. The change introduced is that logarithmic function

of bT imeT illEnd is considered, and it shows to improve fit in some cases, but not neces-

sarily in others (32Gb version - see comparison between results in tables 3.15 and 3.14).

The logarithmic function of time variable bT imeT illEnd is selected as the chosen form,

due to the conviction that the function of time is more likely to be non-linear. Other vari-

ables reveal to have the best fit with the linear function. The equation that determines

the regression (1) in table 3.3 is as below3:

Uxt = Cx + β1log(bHourT imeT ilEnd) + β2bCurrentAuBidders+

β3bAuctionBid+ β4bLivePrice+ β5aDuration+

β6aTotalPhotos+ β7aNonStock + β8aPostage+

β9bClosingSequence+ β10aTotalBids+ β11aTotalBidders+ εxt (3.6.5)

The results of above estimation can be found in column (1) in table 3.3 for 16Gb subset,

and in column (1) in table 3.14 for 32Gb subset. As before, current bids, bidders and

3the ordering is changed to match the regressions in tables 3.3, and 3.14
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price show to have a significant influence with the same sign as in the previous regres-

sions. The best subset to discuss is the 16Gb New Unlocked with 3rd Star seller rating

and 1st bid by the bidders, because it contains 91 choice sets, while the alternative sub-

set with 32Gb phones contain only 61 choice sets, which may mean that with the larger

number of covariates the significance in all the important factors may be difficult to reach.

3.6.1 Marginal Effects

The marginal effects on probability of choosing a given alternative are not directly inter-

pretable from the results of the regressions, due to the fact that multinomial logit has is a

non-linear estimation. Nevertheless, the signs of the coefficients are interpretable, because

the estimated coefficients are not alternative-specific. Therefore, the positive coefficient

next to covariate x1 means that the effect on probability of choice is positive, while a

negative coefficients means that the effect on probability of choosing given alternative is

negative. The marginal effects, on the other hand hive an interpretation relating to the

magnitude of the effects. The marginal effects are the derivatives of the probabilities with

respect to the explanatory variables, and in the case the these variables are alternative

specific with constant coefficients the formula to calculate the marginal effects is reduced

to the following:

dPij
dxij

= βxPij(1− Pij) (3.6.6)

So the marginal effect on probability is the coefficient β times multiplication of two prob-

abilities, which is at most 0.25. In order to have an upper bound on the effect, the

coefficient needs to be divided by 4.

The marginal effects are calculated based on the estimation in column (1) in table 3.3

specified by equation 3.6.5. The upper bound marginal effects for β1, β2, β3, β4, and β5
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are as follows:

• The marginal effect of an increase in log(bHourT imeT ilEnd) by 1 on probability

of choosing a given alternative is a reduction in probability by 0.107. Logarithm

is a monotonous transformation, but it is non-linear, and therefore an increase

in time until the end of an auction by 1 hour will have a larger negative effect

for small values of bHourUntilEnd and a smaller negative effect for larger val-

ues of bHourUntilEnd. It has to be also kept in mind that a 1 hour increase

in bHourT imeT ilEnd is not possible in the case when there is less than 1 hour

left. Logarithmic transformation used for bLogHourUntilEnd scales the effect on

small numbers so that it is better represented. For example an increase by 1 of

log(bHourT imeT ilEnd) is equivalent to an increase by 41 minutes from 15 min-

utes of time remaining, or an increase by 82 minutes from 30 minutes of time

remaining, or an increase by 5 hours and 24 minutes from 2 hours of time remain-

ing. Equivalently, that is equal to an increase by about 2 minutes from 1 minute of

time remaining.

• The marginal effect of an increase in bCurrentAuBidders by 1 on probability of

choosing a given alternative is an increase in probability by 0.15

• The marginal effect of an increase in bAuctionBid by 1 on probability of choosing

a given alternative is a reduction in probability by 0.102

• bLivePrice is not significant in this regression Using estimation from column(3):

The marginal effect of an increase in bLivePrice by 1 on probability of choosing a

given alternative is a reduction in probability by 0.00125

• The marginal effect of an increase in bClosingSequence by 1 on probability of

choosing a given alternative is a reduction in probability by 0.031
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3.6.2 Marginal Rates of Substitution

Coefficients are marginal utilities, and are not interpretable since utility is ordinal. Nev-

ertheless, ratios of coefficients are marginal rates of substitution. For example, if the

observable part of utility is :U = β0 + β1x1 + β2x2 + β3x3, joint variations of x1 and x2

which ensure the same level of utility are such that : dU = β1dx1 + β2dx2 = 0 so that :

MRSxy = −dx2

dx1

|dU=0 =
β1

β2

=
Mx

My

(3.6.7)

The marginal rates of substitution calculated based on the estimation in column (1) in

table 3.3 specified by equation 3.6.5 are:

• The marginal rate of substitution of the number of bids in an auction in terms of

the number of bidders:

MRSbCAuBi,bAuctBid =
0.15

−0.102
= −1.47 (3.6.8)

Addition of one current bidder is equivalent to a reduction of bids by 1.47. The

user’s utility would be unchanged if there was 1 more bidder and 1.47 more bids in

the auction.

• The marginal rate of substitution of the position number on the list of auctions in

terms of the number of bidders:

MRSbCAuBi,bClosingSeq =
0.15

−0.031
= −4.83 (3.6.9)

Addition of one bidder is equivalent to an auction moving 4.83 places up the list

of auctions sorted by closing time. The bidder’s utility would be unchanged if at

the same time the auction moved 4.83 places down the list and one more bidder

was present in the auction (with other parameters such as number of bids and price

unchanged).
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• The marginal rate of substitution of the time until the end of an auction in terms

of the number of bidders:

MRSbCAuBi,log(bHT ) =
0.15

−0.107
= −1.4 (3.6.10)

The bidder is indifferent between a decrease of log(bHourT imeT illEnd) by 1.4 and

an increase in number of bidders in an auction by 1.

• The marginal rate of substitution of the time until the end of an auction in terms

of the number of bids:

MRSbAuctBid,log(bHT ) =
−0.102

−0.107
= 0.95 (3.6.11)

An increase in number of bids in an auction by 1 is equally bad to an increase

of log(bHourT imeT illEnd) by 0.95. In order to keep the same utility level, an

increase in number of bids in an auction by 1 would have to be accompanied by a

reduction in log(bHourT imeT illEnd) by 0.95.

• The marginal rate of substitution of the time until the end of an auction in terms

of the position on the list of all auctions sorted by time until the end:

MRSbClosingSeq,log(bHT ) =
−0.031

−0.107
= 0.29 (3.6.12)

A bidder is indifferent between a drop by 1 place on the list of auctions sorted by

the time untill the end and an increase in log(bHourT imeT illEnd) by 0.29 - both

are equally bad. To stay on the same indifference curve, if the position on the list

was increased by 1 (a reduction in bClosingSequence by 1), it would have to be

accompanied by an increase in log(bHourT imeT illEnd) by 0.29.
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Table 3.4: Multinomial Logit Results: M16 New Unlocked 3rd Star,first bid, 4choices;
Results of bottom-up approach

Dependent variable:
choice

(1) (2) (3)
2:(intercept) 1.816∗∗ 2.078∗∗ 2.071∗∗

(0.907) (0.956) (0.949)

3:(intercept) 1.263 1.519 1.516
(0.925) (1.036) (1.034)

4:(intercept) 0.110 0.116 0.118
(1.043) (1.133) (1.130)

bCurrentAuBidders 1.095∗∗∗ 1.361∗∗∗ 1.351∗∗∗

(0.298) (0.375) (0.345)

bLivePrice -0.002 -0.001 -0.001
(0.003) (0.003) (0.003)

bAuctionBid −0.466∗∗∗ −0.322∗∗ −0.314∗∗∗

(0.141) (0.156) (0.117)

log(bHourTimeTilEnd) 0.216 0.205 0.209
(0.347) (0.390) (0.387)

aDuration 0.421∗ 0.341 0.339
(0.223) (0.237) (0.236)

aNonStock 0.045 0.372 0.391
(0.724) (0.760) (0.714)

aPostage 1.639∗∗ 2.059∗∗ 2.052∗∗

(0.708) (0.856) (0.848)

bClosingSequence −0.092∗∗ −0.067∗ −0.067∗

(0.044) (0.040) (0.038)

aTotalBids 0.266∗∗∗ 0.261∗∗∗ 0.259∗∗∗

(0.089) (0.091) (0.087)

aTotalBidders −0.290∗ -0.291 -0.288
(0.175) (0.189) (0.185)

bLivePrice:log(bHourTimeTilEnd) −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) -0.103 -0.112 −0.107∗

(0.085) (0.090) (0.056)

bAuctionBid:log(bHourTimeTilEnd) 0.014 0.002
(0.032) (0.033)

bCurrentAuBidders:bAuctionBid −0.023∗ −0.023∗

(0.013) (0.013)

Observations 91 91 91
R2 0.748 0.762 0.762
Log Likelihood -31.195 -29.433 -29.435
LR Test 184.997∗∗∗ (df = 16) 188.521∗∗∗ (df = 17) 188.516∗∗∗ (df = 16)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.7 Estimation With Interaction Terms

Furthermore, the regression specification was extended by interaction terms between

the dynamic variables. The two-way interactions were added to the regressions using

bottom-up approach, and those that were found to have a significant, and prevailing

effect were found to be bLivePrice : log(bHourT imeT ilEnd), bCurrentAuBidders :

log(bHourT imeT ilEnd), and bCurrentAuBidders : bAuctionbid. At the first step all

two-way interactions with log of the time variable were considered, and later other two-

way interactions were tested and the insignificant ones were dropped along the way. Other

two-way and the three-way interaction terms were added later, in the further section. The

results of the bottom-up approach on model 16Gb subset can be found in table 3.4, and

on the 32Gb subset in table 3.17. The last column, (3), contains the specification that

was considered a best fit. This extended regression with interaction terms is defined by

the equation 3.7.13 below:

Uxt = Cx + β1log(bHourT imeT ilEnd) + β2bCurrentAuBidders+

β3bAuctionBid+ β4bLivePrice+ β5aDuration+

β6aTotalPhotos+ β7aNonStock + β8aPostage+

β9bClosingSequence+ β10aTotalBids+ β11aTotalBidders+

β12(bLivePrice ∗ log(bHourT imeT ilEnd))+

β13(bCurrentAuBidders ∗ log(bHourT imeT ilEnd))+

β14(bCurrentAuBidders ∗ bAuctionBid) + εxt (3.7.13)

The interpretation of these two-way interaction terms are important. The first one,

bLivePrice : log(bHourT imeT ilEnd), shows that the live price and time until the end

of the auction are very intertwined together. In these specifications bLivePrice and

log(bHourT imeT ilEnd) is becoming insignificant, while the interaction term is signifi-
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cant at the 0.01 level. While, it has been discussed earlier that both time remaining in

the auction and price have a negative effect on choice, the two variables are connected

and the same price at different times in auction is interpreted differently. More specif-

ically, the price of 60 with 30 minutes remaining is higher than the price of 60 with 5

minutes remaining. The bidders are expecting the price to rise more in the case more

time is remaining, and are less likely to choose such an auction. An increase in one of

these variables: time until the end of the auction, or price, leads to a different interpre-

tation of the other one. The coefficient at the bLivePrice : log(bHourT imeT ilEnd) is

found to be −0.002. The next interaction term found to be negative and significant is

bCurrentAuBidders : log(bHourT imeT ilEnd). The interpretation is the same as be-

fore, 4 bidders in the auction with 30 minutes remaining is worse than 4 bidders in the

auction with 5 minutes remaining. The coefficient is −0.107 with 0.1 significance level.

The last interaction term is bCurrentAuBidders : log(bAuctionBid), and there is also a

negative coefficient next to this variable. This shows that in general, auctions preferred

are those with bidders that are less active. Number of bids is a measure of how engaged

the bidders are in an auction. The more the other bidders are engaged in competitive

bidding, the worse prospects for wining an auction for a potential new bidder. The auc-

tion with 5 bidders who placed 1 bid each is better than an auction with 4 bidders and

10 bids placed. The coefficient next to this variable varies between -0.023 in (3) in table

3.4 to -0.022 in (1) in table 3.16. In table 3.16 specification (1) additionally, a control

of the exact seller rating (number of positive votes, which later result in division to Star

levels) is included. Even though the subset contains only auctions with 3rd Star rating

of sellers, this control is added. The result is that the overall R-squared is increased,

but the aStar variable is not significant at the 0.1 level. Other extension to regression

(3) in table 3.4 is the addition of maxCountFromTop as an alternative-specific factor.

maxCountFromTop is the total number of auctions of the same type - so in this case

model 16Gb New Unlocked with Seller rating 3 star - at the time the choice is made.

This is a way to control for the size of auction competition. It is a constant factor in
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each choice set, but can be included as random effect to see whether the total number

of alternatives impacts the choice between 1st, 2nd, 3rd, or 4th auction differently. This

inclusion can be found in specification (2) and (3) in table 3.16, and it shows that, while

the overall R-squares is increased, none of the factors are significant. The same extension

can be found in table 3.18 for model 32Gb subset. There, the total number of alterna-

tives is consistently negative and significant for the 4th choice. This suggests that is has

a higher impact on the smaller group of 32Gb phones, and that with an increase of avail-

able alternatives, the 4th option was less likely to be chosen (coefficient -0.497 at the 0.1

significance level). In the regressions, where interaction terms are added the auction-level

variable, aTotalBidders, which was suspected to catch some unobservables, stops being

significant. The aTotalBids is significant in all the regressions, which is catching the fact

that the auctions with more total bids are more often recorded as the chosen ones in the

data. It is therefore important to control of this linear effect.

3.7.1 Marginal Effects

The marginal effects were calculated based on estimation with interaction terms of equa-

tion 3.7.13 in column (3) of Table 3.4. The regressions extended by interaction terms

mean that the marginal effects of one variable will vary with another one, if their inter-

action term is present. In the case the utility is such that U = β0 + β1x1 + β12(x1 ∗ x2),

the marginal effect of an increase in x1 on probability of choosing alternative ij is:

dPij
dxij

= (β1 + β2x2)Pij(1− Pij) (3.7.14)

The ranges of the variables can be found in the data description in table 3.2. The range

of bHourT imeT ilEnd is between 0.00028 which is 10 seconds, and 219.52 which is 9 days

and 3.5 hours 4, with an average of 11.25. The range of bAuctionBid is between 1 and

4The minimum of time until the end in hours reported in table 3.2 is 0 due to the fact that up to 2
decimal places are reported.
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36, with an average of 7.95. The range of bLivePrice is between 0.01 and 723 with an

average of 440.58, and the range of bCurrentAuBidders is between 0 and 16 with an

average of 2.87. The upper bounds of the size of marginal effects are calculated, where

Pij(1−Pij) = 0.25. The marginal effects are estimated based on results from column (3)

in table 3.4, which is the estimation of equation 3.7.13 on the 16Gb subset.

• The marginal effect of bLivePrice on probability of choosing an alternative is :

MbLivePrice = β12 ∗ log(bHourT imeT ilEnd) ∗ 0.25 (3.7.15)

β12 = −0.002, and therefore the marginal effect of price on the probability is de-

creasing with more time remaining. The range of the marginal effect is between

0.0021 for 10 seconds of time remaining to −0.0047 for 9 days and 3.5 hours of time

remaining. The longer the time until auction end, the worse the increase in price is.

For time remaining lower than 1 hour the effect of price increase is positive, while

for the time remaining above 1 hour, the effect of price increase is negative. It is

worth noting that an average time remaining in the dataset is 11.25 hours, at which

a 1 pound increase in live price lead to 0.00122 decrease in probability of choosing

that auction. A price increase by 10 pounds meant that the auction was less likely

to be chosen by 1.2%.

• The marginal effect of bAuctionBid on probability of choosing an alternative is :

MbAuctionBid = (β3 + β14 ∗ bCurrentAuBidders) ∗ 0.25 (3.7.16)

β3 = −0.314 and β14 = −0.023, and the current number of bidders is a positive

number, which means that the negative effect of the number of bids is further

strengthened with more bidders in the auction.The number of bidders vary between

0 and 16. The marginal effect of additional bid makes sense only in the case there

is at least 1 bidder, since with 0 bidders there can only be 0 bids in an auction.
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The effect ranges from −0.084 in the case of 1 bidder in the auction to −0.17 in

the case of 16 bidders. On average, the number of current bidders is 2.87, where

the effect is that an increase in 1 bid results in a decrease in probability of choosing

the auction by 0.095, so almost 10%.

• The marginal effect of bCurrentAuBidders on probability of choosing an alterna-

tive is :

MbCAuBi = (β1 +β13 ∗ log(bHourT imeT ilEnd)+β14 ∗bAuctionBid)∗0.25 (3.7.17)

β1 = 1.351, β13 = −0.107, and β14 = −0.023, so the marginal effect of an additional

bidder is decreased with more time remaining as well as with more bids in the

auction. bHourT imeT ilEnd is between 0.00028 which is 10 seconds, and 219.52

which is 9 days and 3.5 hours with an average of 11.25, while bAuctionBid is between

1 and 36, with an average of 7.95. The effect of current bidders depends on two

other dimensions and the maximum effect is with the lowest number of bids and

time remaining, while the minimum effect is in the case of the highest number of

bids an time remaining. The base effect of current bidders is positive, the fact that

there are bids in the auction is reducing the effect and the reduction is higher with

higher number of bids. The time remaining has a positive sign in the case of time

below 1 hour, and a negative sign in the case of time above 1 hour. An increase in

time remaining is reducing the effect of an additional bidder, and the reduction is

the fastest for small numbers of bHourT imeT ilEnd (due to a logarithmic function).

The range of the marginal effect of bCurrentAuBidders on probability of choosing

an auction is from 0.55 in the case of 1 bid and 10 seconds time remaining to −0.013

for 36 bids and 219.52 hours remaining. On average, in the case of 7.95 bids and

11.25 hours remaining, the marginal effect of one additional bidder is an increase

in the probability of auction choice by 0.23, so 23%.

• The marginal effect of log(bHourT imeT ilEnd) on probability of choosing an alter-
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native is :

Mlog(bHT ) = (β12 ∗ bLivePrice+ β13 ∗ bCurrentAuBidders) ∗ 0.25 (3.7.18)

β12 = −0.002, and the live price bLivePrice is positive and varies from 0.01 to

723 with an average of 440.58. β13 = −0.107 and the current number of bidders

bCurrentAuBidders is positive with range between 0 and 16 and average 2.87. The

marginal effect of an increase by 1 in log(bHourT imeT ilEnd) starts with almost 0

for the live price close to 0 and 0 current bidders. For 1 bidder and price of 10 the

marginal effect is −0.112. At maximum: 16 bidders and price of 723, the auction

would never be chosen - and it is only a hypothetical situation . An increase in

price level and number of bidders leads to higher negative effect in choice with an

increase in time remaining in the auction. With the average price level of 440.58

and 2.87 bidders an increase in log(bHourT imeT ilEnd) by 1 results in a decrease

in probability of choosing that alternative by almost 0.53. In terms of percentage

reduction 53%. The increase in log(bHourT imeT ilEnd) by 1 is equivalent to an

increase in minutes, hours, or even days of time remaining depending on whether

it is evaluated close or far from the auction end. Smaller time differences matter

closer to the auction end.

• The marginal effect of bClosingSequence on probability of choosing an alternative

is β9 ∗ 0.25 which is −0.017. A drop by 1 place on the list of all auctions for iPhone

4 sorted by time until the end resulted in an average decrease in probability of

choosing that auction by 1.7%.

3.7.2 Marginal Rates of Substitution

The Marginal Rates of Substitution based on the model that includes interaction terms

are not constant, but dependent on the interacted variables, like in the case of Marginal

Effects. In order to have an approximations to the Marginal Rates of Substitution the
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marginal rates of substitution can be evaluated at the averages of the variables on which

they depend. In the case the utility is such that U = β0 +β1x1 +β12(x1∗x2), the marginal

effect of an increase in x1 on probability of choosing alternative ij is:

MRSx,y =
Mx

My

=
β1 + β12x2

β12x1

(3.7.19)

• The marginal rate of substitution of the number of bids in an auction in terms of

the number of bidders:

MRSbCAuBi,bAuctBid =
MbCAuBi

MbAuctionBid

=

(β1 + β13log(bHourT imeT ilEnd) + β14bAuctionBid)

(β3 + β14bCurrentAuBidders)
=

1.351− 0.107(log(bHourT imeT ilEnd))− 0.023(bAuctionBid)

−0.314− 0.023(bCurrentAuBidders)
(3.7.20)

Evaluated at the averages for each of the variables, that is equal to -2.39. In the

case there are 2.87 bidders and 7.95 an addition of one more bidder is equivalent

to a reduction of bids by 2.39. So if in an auction there was one more bidder

added and less than 2.39 bids (so for example 2 bid) then that would result in an

increase of utility for that auction, and it would be proffered now. On the other

hand an addition of one more bidder and 3 or more bids would make this auction

less preferred.

• The marginal rate of substitution of the position number on the list of auctions in
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terms of the number of bidders:

MRSbCAuBi,bClosingSeq =
MbCAuBi

MbClosingSeq

=

(β1 + β13log(bHourT imeT ilEnd) + β14bAuctionBid)

β9

=

1.351− 0.107(log(bHourT imeT ilEnd))− 0.023(bAuctionBid)

−0.067
(3.7.21)

Evaluated at the averages for each of the variables, that is equal to -13.569. In this

case an addition of one more bidder is equivalent to a rise by 12.57 places up the

list of auctions.

• The marginal rate of substitution of the time until the end of an auction in terms

of the number of bidders:

MRSbCAuBi,log(bHT ) =
MbCAuBi

Mlog(bHT )

=

(β1 + β13log(bHourT imeT ilEnd) + β14bAuctionBid)

(β12bLivePrice+ β13bCurrentAuBidders)
=

1.351− 0.107(log(bHourT imeT ilEnd))− 0.023(bAuctionBid)

−0.002(bLivePrice)− 0.107(bCurrentAuBidders)
(3.7.22)

Evaluated at the averages for each of the variables, that is equal to -0.765. In this

case an increase by one more bidder is equally good as a decrease in log(bHourT imeT ilEnd)

by 0.765.

• The marginal rate of substitution of current pricen in terms of the number of bid-
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ders:

MRSbCAuBi,bLivePrice =
MbCAuBi

MbLivePrice

=

(β1 + β13log(bHourT imeT ilEnd) + β14bAuctionBid)

β12log(bHourT imeT ilEnd)
=

1.351− 0.107(log(bHourT imeT ilEnd))− 0.023(bAuctionBid)

−0.002(log(bHourT imeT ilEnd)
(3.7.23)

Evaluated at the averages for each of the variables, that is equal to -40.41. A

decrease by one bidder could be compensated by simultaneous drop in price by

40.41 pounds.

• The marginal rate of substitution of the time until the end of an auction in terms

of the live price:

MRSbLivePrice,log(bHT ) =
MbLivePrice

Mlog(bHT )

=

β12log(bHourT imeT ilEnd)

(β12bLivePrice+ β13bCurrentAuBidders)
=

−0.002(log(bHourT imeT ilEnd))

−0.002(bLivePrice)− 0.107(bCurrentAuBidders)
(3.7.24)

Evaluated at the averages for each of the variables, that is equal to 0.0189. An in-

crease in price by one pound is equivalent to an increase in log(bHourT imeT ilEnd)

by 0.0189.

• The marginal rate of substitution of live price in terms of the the position on the
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list of auctions :

MRSbClosingSeq,bLivePrice =
MbClosingSeq

MbLivePrice

=

β9

β12log(bHourT imeT ilEnd)
=

−0.067

−0.002(log(bHourT imeT ilEnd))
(3.7.25)

Evaluated at the averages for each of the variables, that is equal to 13.84. A rise

up the display list by 1 is equivalent to a decrease in current price by almost 14

pounds.

• The marginal rate of substitution of the live price in terms of the current number

of bids in an auction:

MRSbAuctBid,bLivePrice =
MbAuctBid

MbLivePrice

=

(β3 + β14bCurrentAuBidders)

β12log(bHourT imeT ilEnd)
=

−0.314− 0.023(bCurrentAuBidders)

−0.002(log(bHourT imeT ilEnd))
(3.7.26)

Evaluated at the averages for each of the variables, that is equal to 78.50. An

increase by one bid is equivalently bad as an increase in price by 78 pounds.

• The marginal rate of substitution of the time until the end of an auction in terms
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of the number of bids:

MRSbAuctBid,log(bHT ) =
MbAuctionBid

Mlog(bHT )

=

(β3 + β14bCurrentAuBidders)

(β12bLivePrice+ β13bCurrentAuBidders)
=

−0.314− 0.023(bCurrentAuBidders)

−0.002(bLivePrice)− 0.107(bCurrentAuBidders)
(3.7.27)

Evaluated at the averages for each of the variables, that is equal to 0.319. An

increase by one bid is similarly bas as an increase in log(bHourT imeT ilEnd) by

0.319.

• The marginal rate of substitution of the time until the end of an auction in terms

of the position on the list of all auctions sorted by time until the end:

MRSbClosingSeq,log(bHT ) =
MbClosingSeq

Mlog(bHT )

=

β9

(β12bLivePrice+ β13bCurrentAuBidders)
=

−0.067

−0.002(bLivePrice)− 0.107(bCurrentAuBidders)
(3.7.28)

Evaluated at the averages for each of the variables, that is equal to 0.056. A drop by

one on the list of displayed auctions is as bad as an increase in log(bHourT imeT ilEnd)

by 0.056.
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3.8 Extending The Model By More Interaction Terms

Although the model with interaction terms described above is already a good fit to the

data, there was still a possibility that not all the meaningful interaction terms are in-

cluded. Another possibility is that price in interaction with number of bidders could be

an important addition - since higher price with given number of bidders could be a signal

that the bidders present have higher valuation for the product and deter newcomers. The

previous section has already shown that number of bids in interaction with the number

of bidders is an important factor - newcomers are deterred by auctions with more active

bidders. The previous model had an R-squared measure of fit of 0.762 in the subset of

16Gb model and 0.634 in the subset of 32Gb model. Most importantly, in addition to a

good R-squared measure the significant effects of variables and their interactions were in

the same direction and with similar magnitude in both subsets. Extension of the model

by one term - bCurrentAuBidders : bLivePrice increases that R-squared measure in the

32Gb subset to 0.658, and the new term is significant at the 0.05 level without harming the

significance of the other terms discussed earlier. This can be seen in table 3.5 column(2).

The same done on the 16Gb subset has an effect of an increase of the R-squared measure

to 0.765,but the new term is not significant at the 0.1 level and reduces the significance of

bCurrentAuBidders : bAuctionBid. On this subset a better effect is achieved by adding

a 3-way interaction term bCurrentAuBidders : bLivePrice : bAuctionBid instead of two

terms bCurrentAuBidders : bAuctionBid and bCurrentAuBidders : bLivePrice. In

this case the R-squared measure is increased to 0.767 and the new term as well as the

previous ones are significant as before - on at least 0.05 level, which can be seen in table

3.6 column (3). This shows that there are slight differences as to a model with better fit in

the two subsets, but the interaction of price and number of bidders is an important one.

Of course the sign of the coefficient is negative, the fact that the current price is higher

means that the positive effect of number of bidders is reduced. The effect presented is

that auctions with more bidders but less active and preferably with lower valuation or
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just placing lower bids are preferred. On the one hand some more bidders present in the

auction give a positive signal, on the other hand from the point of view of a bidder who

wants to win it is a better situation if those other bidders are either not very active or

are not willing to place very high bids.
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Table 3.5: Multinomial Logit Results: M32 New Unlocked 3rd Star, 4 choices; Interaction
terms II

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −1.937∗∗ −2.273∗∗ −2.403∗∗∗

(0.908) (1.003) (0.932)

3:(intercept) −1.918∗ −2.287∗∗ −2.617∗∗

(1.031) (1.128) (1.083)

4:(intercept) -1.500 -1.573 −1.887∗

(1.001) (1.021) (0.991)

bCurrentAuBidders 1.689∗∗∗ 2.263∗∗∗ 1.550∗∗∗

(0.419) (0.570) (0.380)

bLivePrice -0.001 0.0002 0.0002
(0.003) (0.003) (0.003)

bAuctionBid −0.272∗∗∗ −0.339∗∗∗ −0.340∗∗∗

(0.099) (0.110) (0.097)

log(bHourTimeTilEnd) -0.658 -0.943 -0.667
(0.571) (0.608) (0.572)

aDuration 0.572∗∗ 0.755∗∗ 0.764∗∗

(0.289) (0.323) (0.297)

aNonStock1 0.685 0.598 0.548
(0.933) (0.904) (0.809)

aPostage 0.776 0.674 0.606
(0.854) (0.788) (0.760)

bClosingSequence -0.057 -0.051 -0.053
(0.052) (0.053) (0.051)

aTotalBids 0.339∗∗∗ 0.383∗∗∗ 0.317∗∗∗

(0.103) (0.106) (0.090)

aTotalBidders -0.117 -0.154 -0.092
(0.175) (0.179) (0.168)

bLivePrice:log(bHourTimeTilEnd) 0.0005 0.001 0.001
(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.160∗∗ −0.196∗∗∗ −0.163∗∗∗

(0.065) (0.072) (0.060)

bCurrentAuBidders:bAuctionBid −0.050∗∗∗ −0.049∗∗∗

(0.014) (0.014)

bCurrentAuBidders:bLivePrice −0.001∗

(0.0005)

bCurrentAuBidders:bLivePrice:bAuctionBid −0.0001∗∗∗

(0.00002)

Observations 68 68 68
R2 0.634 0.658 0.628
Log Likelihood -28.837 -26.880 -29.286
LR Test 99.691∗∗∗ (df = 16) 103.604∗∗∗ (df = 17) 98.792∗∗∗ (df = 16)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.6: Multinomial Logit Results: M16 New Unlocked 3rd Star, 4 choices; Interaction
terms II

Dependent variable:
choice

(1) (2) (3)
2:(intercept) 2.071∗∗ 1.935∗∗ 1.937∗∗

(0.949) (0.946) (0.941)

3:(intercept) 1.516 1.377 1.444
(1.034) (1.057) (1.049)

4:(intercept) 0.118 -0.024 0.024
(1.130) (1.145) (1.152)

bCurrentAuBidders 1.351∗∗∗ 1.514∗∗∗ 1.319∗∗∗

(0.345) (0.409) (0.333)

bLivePrice -0.001 -0.0003 -0.0004
(0.003) (0.004) (0.004)

bAuctionBid −0.314∗∗∗ −0.346∗∗∗ −0.383∗∗∗

(0.117) (0.128) (0.112)

log(bHourTimeTilEnd) 0.209 0.281 0.335
(0.387) (0.519) (0.550)

aDuration 0.339 0.379 0.395
(0.236) (0.244) (0.241)

aNonStock 0.391 0.483 0.401
(0.714) (0.734) (0.726)

aPostage 2.052∗∗ 1.979∗∗ 2.056∗∗

(0.848) (0.856) (0.849)

bClosingSequence −0.067∗ −0.071∗ −0.078∗

(0.038) (0.040) (0.041)

aTotalBids 0.259∗∗∗ 0.253∗∗∗ 0.265∗∗∗

(0.087) (0.090) (0.090)

aTotalBidders -0.288 -0.262 -0.299
(0.185) (0.192) (0.192)

bLivePrice:log(bHourTimeTilEnd) −0.002∗∗∗ −0.002∗∗ −0.002∗∗

(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.107∗ −0.106∗∗ −0.103∗∗

(0.056) (0.053) (0.052)

bCurrentAuBidders:bAuctionBid −0.023∗ -0.018
(0.013) (0.014)

bCurrentAuBidders:bLivePrice -0.0005
(0.001)

bCurrentAuBidders:bLivePrice:bAuctionBid −0.00003∗

(0.00002)

Observations 91 91 91
R2 0.762 0.765 0.767
Log Likelihood -29.435 -29.019 -28.851
LR Test 188.516∗∗∗ (df = 16) 189.349∗∗∗ (df = 17) 189.685∗∗∗ (df = 16)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Other additions include an interaction term between auction duration and the loga-

rithm of time until the end of the auction. This extension can be seen in table 3.19 for the

16Gb model and table 3.20 for the 32Gb model. This addition increases the R-squared

measures, although the added term is not significant at the 0.1 level. Further extension

include additions of more interaction terms, and column (3) in table 3.21 seems like a

good fit - the R-squared measure is increased to 0.799 and almost all of the terms are

significant at at least 0.05 level. The advantage is that there is a second dataset to check

the model and it turned out that the same estimation on the 32Gb subset lead to a de-

crease in R-squared measure to 0.652, and only 4 terms remained significant, which can

be seen in table 3.22. The risk is that by adding combinations of terms to the regression

there is always a possibility to arrive at a better fit to the particular dataset, but it can

lead to over-fitting, so that the model is not good at representing universal relationships

that can also be observed in another dataset. The best model should be versatile and be

a good fit to both subsets.

In order to find the best fit a top-down approach was performed on both subsets. This

can be seen in tables 3.23 and 3.24 for M16 (Model 16Gb) and in table 3.27 for M32

(Model 32Gb). At the beginning all the interaction terms between the dynamic variables

were added, and later the terms with the lowest t-score were removed one-by one. As a

result the R-squared measure in M16 subset was increased to 0.815 with 16 significant

terms (as seen in clumn (3) of table 3.24) and in the M32 subset to 0.770 with 11 sig-

nificant terms (column (3) of table 3.27). Additionally, all the possible interaction terms

with aDuration that have resulted in an increase of the overall fit of the model were

added, or exchanged with other terms. The resulting best-fit regression for M16 subset

can be found in column (3) of table 3.26. The R-squared of the regression was 0.890

with 15 significant terms (and one almost significant). The resulting best-fit regression

for the M32 subset can be found in column (3) of table 3.28. The R-squared for that

regression was 0.878 with 15 significant terms. The problem is that the models found in

the two cases are completely different, and they include a range of different terms, with

201



only 5 having the same coefficient sign in both cases. This clearly shows the problem is

over-fitting and these models are not useful to understand real effects taking place.

The above exercise, that shows the over-fitted models, increases the confidence that the

models presented before: with interaction terms in tables 3.6, 3.5, 3.4 and 3.17, represent

the real effects that influence choice between auctions. Even the basic model, without the

interaction terms in table 3.2 and 3.14 capture the main average effects of the dynamic

aspects of auctions on choice. In addition, even in the over-fitted models, that contained

a lot of spurious correlations, the number of current bidders in an auction remained with

positive and significant coefficient, which additionally confirms that it has an important

effect.

Summing up the results show that the bidders who face a choice between concurrent

auctions in on-line marketplaces base their decision, in large part, based on the observed

activity of other bidders. First of all, auctions with more bidders are generally preferred,

but the presence of more active bidders or high current price is discouraging. Generally,

bidders prefer to place their bid close to the end of the auction when more information

about other participants is revealed. Close to the end of the auction, even an increase

in price is not deterring bidders. The response to an increased number of other bidders

in the auction is also time-varying, and close to the beginning of an auction the effect of

more bidders is negative.

3.9 Conclusion

In conclusion, the paper applies multinomial logit regression to a new setting: choice

between identical products. Unlike in standard demand models, where the main variabil-

ity between alternatives comes from characteristics of each object, here the objects are

homogeneous, and the variability comes from the dynamic aspects of each auction, at the

time the choice is made. Multinomial logit allows to identify the factors which influence

the probability of choosing to bid on an auction in an online marketplace, where many
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identical products are available. The sorting of the products by the time until the end of

the auction is a way to divide auctions into available alternatives : alternative number 1

being the soonest to end, number 2 second soonest to end and others accordingly. The

estimations made include 4 alternatives for each choice set. In addition to current price,

other dynamic aspects, such current number of bids and bidders is also found to have a

significant effect. The effects found show that auction choice is based in a large part on

activity of other bidders in an on-line auctions marketplace.

At the time the bidder decides to place the bid they are facing a choice between

almost identical auctions that differ by the time they have started, time until the end of

the auction, live price, number od bids and bidders in the auction, as well as position

on the list of auctions that is displayed as a result of search. This situation is mirrored

in the choice model estimated. The auctions are chosen based on utilities for available

alternatives. Utility for each of the available auctions depends on the same aspects. The

utility function found to be the best fit contains the dynamic auction aspects and some

interaction terms between them. In particular it is found that the time until the end of

the auction is best fitted with a logarithmic curve and the effect of an increase in time

until the end is connected to live price - the live price and logarithm of time until the

auction end are significant as an interaction term, but not independently. More time

left in the auction means that an increase in price has a higher negative effect - and

this negative effect is decreasing with time, while close to auction end the increase in

price is no longer acting as a deterrent, but can even be encouraging. Perhaps the most

important impact has the number of current bidders as well as their displayed activity in

the auction. The base effect of the number of bidders on auction choice is positive, so on

average more bidders are a good thing. On the other hand, further away from auction

end the more bidders are not encouraging to enter the auction. If bidders display large

activity by placing multiple bids, that is also a deterrent for a new bidder to enter. If the

bidders are perceived as high valuation due to high current price, that is also increasing

203



the deterrent effect. With an increase in the number of bids as well as price the positive

effect of number of bidders is decreased and can be turned to negative. The current

number of bids has an overall negative effect on auction choice. The way the auctions are

sorted on the list of the auctions on the website also influences auction choice. Auctions

that are higher on the list are preferred to those further down.

3.10 Tables
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Table 3.7: Description of data: Model 16Gb and 32Gb New Unlocked auctions

Model 32Gb Unlocked auctions only

aDurationLevels 1 :1665 3 : 929 5 : 162 6,7 or 10 : 90
aModel 32 :2852 (Other): 0
aNetwork Unlocked:2852 (Other) : 0
aCondition New :2852 (Other): 0
aStarL 3 :1577 1 : 699 2 : 576 (Other): 0
aStarLevel Turquoise:1577 Yellow : 699 Blue : 576 (Other) : 0
aReturns No :2852 (Other): 0
aPostageFree Yes :2852 (Other): 0
aPhotosPresent Yes :2852 (Other): 0
aTotalPhotosLevels 1:1864 2: 445 3: 237 4,5 or 6 : 306
aNonStock No : 948 Yes :1904
aPostto UK :2852 (Other): 0
aExtras No :2852 (Other): 0

Number of choice sets: 713
Number of auctions: 160
Number of sellers: 130
Number of bidders: 345
Auctions per choice set 4

Model 16Gb Unlocked auctions only

aDurationLevels 1 : 1227 3 : 685 5 : 258 7 or 10 : 758
aModel 16 : 2928 (Other): 0
aNetwork Unlocked : 2928 (Other) : 0
aCondition New : 2928 (Other): 0
aStarL 3 : 1344 1 : 931 2 : 653 (Other): 0
aStarLevel Turquoise : 1344 Yellow : 931 Blue : 653 (Other) : 0
aReturns No : 2928 (Other): 0
aPostageFree No : 2928 (Other): 0
aPhotosPresent Yes : 2928 (Other): 0
aTotalPhotosLevels 1 : 2228 2 : 341 3 : 207 4 or 7 : 152
aNonStock No : 824 Yes : 2104
aPostto UK : 2928 (Other): 0
aExtras No : 2928 (Other): 0

Number of choice sets: 732
Number of auctions: 201
Number of sellers: 168
Number of bidders: 341
Auctions per choice set 4
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Table 3.8: Multinomial Logit Results: Model 32Gb New Unlocked

Dependent variable:
choice

(1) (2) (3)
2:(intercept) -0.034 -0.151 -0.192

(0.128) (0.125) (0.122)

3:(intercept) −0.733∗∗∗ −0.895∗∗∗ −0.892∗∗∗

(0.161) (0.159) (0.154)

4:(intercept) −0.415∗∗ −0.706∗∗∗ −0.672∗∗∗

(0.183) (0.177) (0.170)

bHourTimeTilEnd -0.009 0.001 0.006
(0.007) (0.007) (0.006)

aDuration −0.125∗∗∗ −0.108∗∗ −0.185∗∗∗

(0.045) (0.043) (0.042)

aTotalPhotos -0.079 0.002 0.001
(0.054) (0.053) (0.052)

aNonStock1 0.174 -0.191 −0.285∗∗

(0.141) (0.130) (0.126)

aPostage -0.026 -0.123 0.105
(0.133) (0.127) (0.120)

bAuctionBid −0.284∗∗∗ −0.204∗∗∗ −0.098∗∗∗

(0.027) (0.021) (0.015)

bLivePrice −0.002∗∗∗ −0.0002 −0.002∗∗∗

(0.0004) (0.0004) (0.0003)

bCurrentAuBidders 0.663∗∗∗ 0.354∗∗∗ 0.361∗∗∗

(0.058) (0.032) (0.031)

bClosingSequence −0.110∗∗∗ −0.107∗∗∗ −0.103∗∗∗

(0.015) (0.015) (0.014)

aTotalBids 0.224∗∗∗ 0.122∗∗∗

(0.022) (0.015)

aTotalBidders −0.352∗∗∗

(0.047)

Observations 713 713 713
R2 0.351 0.317 0.281
Log Likelihood -612.293 -644.742 -678.820
LR Test 663.162∗∗∗ (df = 14) 598.264∗∗∗ (df = 13) 530.108∗∗∗ (df = 12)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.9: Multinomial Logit Results: Model 16GbNew Unlocked

Dependent variable:
choice

(1) (2) (3)
2:(intercept) -0.241 −0.407∗∗∗ -0.234

(0.164) (0.157) (0.148)

3:(intercept) −0.356∗∗ −0.586∗∗∗ −0.519∗∗∗

(0.172) (0.165) (0.154)

4:(intercept) -0.318 −0.581∗∗∗ −0.666∗∗∗

(0.198) (0.188) (0.177)

bHourTimeTilEnd −0.015∗∗∗ −0.011∗∗∗ 0.003
(0.004) (0.004) (0.004)

aDuration −0.092∗∗∗ −0.059∗ −0.092∗∗∗

(0.033) (0.033) (0.032)

aTotalPhotos 0.165∗∗ 0.149∗∗ 0.125∗

(0.067) (0.067) (0.065)

aNonStock1 −0.361∗∗ −0.244∗ −0.239∗

(0.148) (0.142) (0.134)

aPostage 0.086 0.156∗∗ 0.092
(0.073) (0.069) (0.067)

bAuctionBid −0.314∗∗∗ −0.243∗∗∗ −0.084∗∗∗

(0.028) (0.022) (0.011)

bLivePrice −0.001∗∗∗ −0.0002 −0.002∗∗∗

(0.0005) (0.0005) (0.0003)

bCurrentAuBidders 0.640∗∗∗ 0.404∗∗∗ 0.395∗∗∗

(0.057) (0.036) (0.033)

bClosingSequence −0.151∗∗∗ −0.123∗∗∗ −0.118∗∗∗

(0.017) (0.015) (0.013)

aTotalBids 0.258∗∗∗ 0.159∗∗∗

(0.025) (0.017)

aTotalBidders −0.331∗∗∗

(0.051)

Observations 732 732 732
R2 0.532 0.507 0.456
Log Likelihood -468.589 -493.524 -545.316
LR Test 1,066.299∗∗∗ (df = 14) 1,016.429∗∗∗ (df = 13) 912.845∗∗∗ (df = 12)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.10: Description of data: Model 16Gb and 32Gb New Unlocked auctions

A. Description of user vairety in the dataset of similar auctions

Model 16Gb Unlocked auctions only, 4 choices dataset

uBidL 1 : 384 2 : 336 3 : 296 4 : 256 5 : 228 6 : 196 (Other):1232
uTotalAuctionsL 2 : 448 3 : 352 1 : 300 4 : 268 5 : 212 8 : 208 (Other):1140
uTotalBidsL 8 : 188 5 : 176 9 : 176 3 : 172 12 : 172 11 : 164 (Other):1880
uTotalWinsL 0 :1076 1 : 716 2 : 440 3 : 244 8 : 120 4 : 92 (Other): 240
uWinsSoFarL 0 :1588 1 : 736 2 : 300 3 : 96 4 : 80 5 : 28 (Other): 100
uNumbEbayWinsL 0 : 320 6 : 104 1 : 100 2 : 100 9 : 84 (Other):2212 NA’s : 8

Model 32Gb Unlocked auctions only

uBidL 1 : 480 2 : 356 3 : 300 5 : 216 4 : 208 6 : 160 (Other):1132
uTotalAuctionsL 3 : 396 2 : 360 4 : 356 1 : 292 6 : 164 5 : 128 (Other):1156
uTotalBidsL 4 : 248 3 : 164 5 : 164 2 : 156 9 : 152 12 : 152 (Other):1816
uTotalWinsL 0 :1268 1 : 740 2 : 232 3 : 204 4 : 80 5 : 72 (Other): 256
uWinsSoFarL 0 :1796 1 : 552 2 : 248 3 : 64 4 : 44 6 : 36 (Other): 112
uNumbEbayWinsL 0 : 148 2 : 92 13 : 88 6 : 80 19 : 80 (Other):2340 NA’s : 24

B. Vairety in total bids and bidders in the dataset of similar auctions

Model 16Gb Unlocked auctions only

aTotalBidsLevels 1 : 594 16 : 219 5 : 208 6 : 206 34 : 189 20 : 135 (Other):1377
aTotalBiddersLevels 1 :597 9 :356 3 :333 13 :251 11 :218 8 :212 (Other):961

Model 32Gb Unlocked auctions only

aTotalBidsLevels 14 : 257 1 : 217 8 : 208 2 : 183 4 : 169 11 : 152 (Other):1666
aTotalBiddersLevels 10 : 358 6 : 305 1 : 280 7 : 253 8 : 219 2 : 204 (Other):1233

C. Non-categorical variables

Model 16 Unlocked auctions, 4 choices dataset

mean median sd min max n
bAmount 584.36 620.00 176.85 0.99 999.00 2928.00
bClosingSequence 13.38 6.00 16.71 1.00 89.00 2928.00
bLivePrice 474.14 560.00 222.07 0.01 960.00 2928.00
bCurrentAuBidders 2.75 0.00 3.80 0.00 17.00 2928.00
bMinTimeTilEnd 660.46 134.00 1457.16 0.02 11413.77 2928.00
bHourTimeTilEnd 11.01 2.23 24.29 0.00 190.23 2928.00
bAuctionBid 8.84 4.00 9.89 1.00 48.00 2928.00

Model 32 Unlocked auctions, 4 choices dataset

bAmount 677.70 740.00 208.67 0.01 999.00 2852.00
bClosingSequence 7.78 5.00 7.91 1.00 52.00 2852.00
bLivePrice 569.67 650.00 246.24 0.01 933.00 2852.00
bCurrentAuBidders 2.91 1.00 3.62 0.00 17.00 2852.00
bMinTimeTilEnd 656.76 253.15 957.50 0.02 7120.33 2852.00
bHourTimeTilEnd 10.95 4.22 15.96 0.00 118.67 2852.00
bAuctionBid 8.07 6.00 7.19 1.00 35.00 2852.00
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Table 3.11: Description of data: Model 32Gb New Unlocked, first bid

A. Auction-level variables

aDurationLevels 1 :264 3 :180 5 : 19 6,7 or 10 : 17
aModel 32 : 480 (Other): 0
aNetwork Unlocked : 480 (Other) : 0
aCondition New : 480 (Other): 0
aStarL 3 :278 2 :108 1 : 94 (Other): 0
aStarLevel Turquoise:278 Blue :108 Yellow : 94 (Other) : 0
aReturns No : 480 (Other): 0
aPostageFree No : 480 (Other): 0
aPhotosPresent Yes : 480 (Other): 0
aTotalPhotosLevels 1 : 324 2: 63 3: 41 4, 5 or 6 : 52
aNonStock No : 155 Yes : 325
aPostto UK : 480 (Other): 0
aExtras No : 480 (Other): 0

Number of choice sets: 120
Number of auctions: 129
Number of sellers: 111
Number of bidders: 120
Auctions per choice set 4

B. Non-categorical variables

mean median sd min max n
bAmount 673.49 730.03 202.41 0.01 999.00 480.00
bClosingSequence 8.47 5.00 9.43 1.00 50.00 480.00
bLivePrice 567.05 660.00 244.69 0.01 931.00 480.00
bCurrentAuBidders 2.77 0.50 3.68 0.00 15.00 480.00
bMinTimeTilEnd 594.92 108.45 968.93 0.02 5699.15 480.00
bHourTimeTilEnd 9.92 1.81 16.15 0.00 94.99 480.00
bAuctionBid 8.05 6.00 7.45 1.00 31.00 480.00

C. User variability

uAuctionBidL 1 :119 2 : 1 NA’s:360
uAuctionNumberL 1 :120 NA’s:360
uBidL 1:480
uTotalAuctionsL 1 :184 2 :140 3 : 64 4 : 24 6 : 20 5 : 8 (Other): 40
uTotalBidsL 1 :124 2 : 92 3 : 60 4 : 52 5 : 28 9 : 28 (Other): 96
uTotalWinsL 0 :276 1 :160 3 : 12 2 : 8 4 : 8 5 : 4 (Other): 12
uWinsSoFarL 0:400 1: 80
uNLR 0:472 1: 8
uNumbEbayWinsL 0 : 28 1 : 24 38 : 20 2 : 12 6 : 12 19 : 12 (Other):372

D. Total bids and bidders in auctions

aTotalBidsLevels 14 : 51 2 : 41 1 : 38 8 : 38 4 : 29 5 : 29 (Other):254
aTotalBiddersLevels 10 : 71 2 : 50 4 : 41 1 : 40 7 : 39 8 : 37 (Other):202
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Table 3.12: Description of data: Model 16Gb New Unlocked, first bid

A. Auction-level variables

aDurationLevels 1 :163 3 : 73 5 : 33 7 or 9 : 118
aModel 16 :384 (Other): 0
aNetwork Unlocked:384 (Other): 0
aCondition New :384 (Other): 0
aStarL 3 :167 1 :148 2 : 69 (Other): 0
aStarLevel Turquoise:167 Yellow :148 Blue : 69 (Other) : 0
aReturns No :384 (Other): 0
aPostageFree FALSE:384 (Other): 0
aPhotosPresent TRUE:384 (Other): 0
aTotalPhotosLevels 1:289 2: 43 3: 32 4 or 7 : 20
aNonStock 0:104 1:280
aPostto UK :384 (Other): 0
aExtras 0:384 (Other): 0

Number of choice sets: 96
Number of auctions: 120
Number of sellers: 107
Number of bidders: 96
Auctions per choice set 4

B. Non-categorical variables

mean median sd min max n
bAmount 603.53 640.01 180.44 2.00 850.00 384.00
bClosingSequence 16.17 6.00 20.28 1.00 89.00 384.00
bLivePrice 491.74 599.00 223.59 0.01 750.02 384.00
bCurrentAuBidders 2.60 0.00 3.83 0.00 16.00 384.00
bMinTimeTilEnd 620.19 24.06 1635.00 0.02 11413.77 384.00
bHourTimeTilEnd 10.34 0.40 27.25 0.00 190.23 384.00
bAuctionBid 7.72 1.50 9.71 1.00 48.00 384.00

C. User variability

uAuctionBidL 1 : 96 NA’s:288
uAuctionNumberL 1 : 96 NA’s:288
uBidL 1:384
uTotalAuctionsL 1 :152 2 :104 3 : 52 4 : 24 8 : 12 10 : 12 (Other): 28
uTotalBidsL 1 :108 2 : 88 3 : 52 5 : 28 4 : 20 7 : 12 (Other): 76
uTotalWinsL 0:148 1:156 2: 48 3: 16 4: 8 7: 8
uWinsSoFarL 0:276 1:108
uNLR 0:376 1: 8
uNumbEbayWinsL 0 : 36 2 : 20 32 : 16 1 : 12 8 : 12 17 : 12 (Other):276

D. Total bids and bidders in auctions

aTotalBidsLevels 1 :114 5 : 33 16 : 25 20 : 19 22 : 18 6 : 17 (Other):158
aTotalBiddersLevels 1 :116 9 : 48 3 : 41 13 : 34 8 : 27 2 : 26 (Other): 92
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Table 3.13: Description of data: Model 32Gb New Unlocked 3rd Star, first bid

A. Auction-level variables

aDurationLevels 1 :128 3 : 118 5 : 13 6,7 or 10 : 13
aModel 32 :272 (Other): 0
aNetwork Unlocked : 272 O2 :126 (Other): 0
aCondition New : 272 (Other): 0
aStarL 3 : 272 (Other): 0
aStarLevel Turquoise : 272 (Other): 0
aReturns No : 272 (Other): 0
aPostageFree No : 272 (Other): 0
aPhotosPresent Yes : 272 (Other): 0
aTotalPhotosLevels 1 : 188 2 : 30 3: 19 4,5 or 6 : 35
aNonStock No : 89 Yes : 183 (Other): 0
aPostto UK : 272 (Other): 0
aExtras No : 272 (Other): 0

Number of choice sets: 68
Number of auctions: 58
Number of sellers: 51
Number of bidders: 68
Auctions per choice set 4

B. Non-categorical variables

mean median sd min max n
bAmount 630.93 700.00 210.32 2.00 966.22 272.00
bClosingSequence 11.70 9.00 9.72 1.00 44.00 272.00
bLivePrice 520.75 615.00 249.48 0.99 930.00 272.00
bCurrentAuBidders 2.93 2.00 3.53 0.00 15.00 272.00
bMinTimeTilEnd 841.59 429.39 971.01 0.02 4330.52 272.00
bHourTimeTilEnd 14.03 7.16 16.18 0.00 72.18 272.00
bAuctionBid 9.21 8.50 7.51 1.00 29.00 272.00

C. User variability

uBidL 1:272
uTotalAuctionsL 1 :108 2 : 64 3 : 56 4 : 16 6 : 12 9 : 4 (Other): 12
uTotalBidsL 1 :80 2 :44 4 :40 3 :28 5 :16 6 :16 (Other):48
uTotalWinsL 0:192 1: 64 2: 8 3: 8
uWinsSoFarL 0:272
uNumbEbayWinsL 0 : 20 1 : 12 6 : 12 2 : 8 15 : 8 20 : 8 (Other):204

D. Total bids and bidders in auctions

aTotalBidsLevels 14 : 29 8 : 23 15 : 21 23 : 17 4 : 15 6 : 15 (Other):152
aTotalBiddersLevels 5 :49 10 :49 11 :35 8 :16 3 :15 6 :15 (Other):93
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Table 3.14: Multinomial Logit Results: M32 Unlocked 3rd Star, 1stbid

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −1.683∗∗ −1.677∗∗ −1.848∗∗∗

(0.717) (0.720) (0.698)

3:(intercept) −2.430∗∗∗ −2.432∗∗∗ −2.989∗∗∗

(0.855) (0.861) (0.857)

4:(intercept) −1.570∗ −1.538∗ −1.838∗∗

(0.850) (0.839) (0.826)

log(bHourTimeTilEnd) -0.176 -0.161 -0.016
(0.168) (0.155) (0.141)

bCurrentAuBidders 0.467∗∗ 0.497∗∗∗ 0.552∗∗∗

(0.183) (0.146) (0.146)

bAuctionBid −0.310∗∗∗ −0.307∗∗∗ −0.209∗∗∗

(0.083) (0.082) (0.068)

bLivePrice -0.001 -0.001 −0.003∗∗∗

(0.002) (0.001) (0.001)

aDuration 0.216 0.202 0.105
(0.210) (0.203) (0.204)

aTotalPhotos -0.020 -0.031 0.043
(0.205) (0.200) (0.188)

aNonStock1 -0.111 -0.053 -0.492
(0.619) (0.574) (0.520)

aPostage 0.554 0.521 0.702
(0.628) (0.614) (0.629)

bClosingSequence −0.102∗∗ −0.102∗∗ −0.100∗∗

(0.046) (0.046) (0.040)

aTotalBids 0.166∗∗ 0.167∗∗

(0.066) (0.066)

aTotalBidders 0.040
(0.156)

Observations 68 68 68
R2 0.479 0.478 0.429
Log Likelihood -41.019 -41.052 -44.892
LR Test 75.326∗∗∗ (df = 14) 75.261∗∗∗ (df = 13) 67.581∗∗∗ (df = 12)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.15: Multinomial Logit Results: Model 32Gb New Unlocked auctions 3rd Star,
first bid

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −2.460∗∗∗ −2.414∗∗∗ −2.236∗∗∗

(0.746) (0.698) (0.643)

3:(intercept) −3.332∗∗∗ −3.282∗∗∗ −3.487∗∗∗

(0.888) (0.841) (0.855)

4:(intercept) −2.681∗∗∗ −2.594∗∗∗ −2.570∗∗∗

(0.975) (0.839) (0.829)

bHourTimeTilEnd 0.042 0.040 0.047∗

(0.029) (0.028) (0.026)

aDuration 0.076 0.070 -0.007
(0.224) (0.222) (0.220)

aTotalPhotos -0.020 -0.029 -0.013
(0.209) (0.204) (0.197)

aNonStock1 -0.147 -0.103 -0.514
(0.623) (0.573) (0.516)

aPostage 0.232 0.225 0.505
(0.506) (0.508) (0.532)

bAuctionBid −0.314∗∗∗ −0.312∗∗∗ −0.222∗∗∗

(0.085) (0.084) (0.069)

bLivePrice -0.001 -0.001 −0.003∗∗∗

(0.002) (0.002) (0.001)

bCurrentAuBidders 0.563∗∗∗ 0.580∗∗∗ 0.609∗∗∗

(0.181) (0.156) (0.158)

bClosingSequence −0.131∗∗ −0.131∗∗ −0.132∗∗∗

(0.052) (0.053) (0.048)

aTotalBids 0.130∗∗ 0.133∗∗

(0.064) (0.061)

aTotalBidders 0.029
(0.158)

Observations 68 68 68
R2 0.484 0.484 0.450
Log Likelihood -40.581 -40.598 -43.301
LR Test 76.202∗∗∗ (df = 14) 76.169∗∗∗ (df = 13) 70.763∗∗∗ (df = 12)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.16: Multinomial Logit Results: M16 New Unlocked 3rd Star, fisrt bid, 4 choices;
Extensions

Dependent variable:
choice

(1) (2) (3)
2:(intercept) 2.088∗∗ 1.000 1.135

(0.944) (1.440) (1.452)

3:(intercept) 1.468 0.506 0.410
(1.040) (1.749) (1.766)

4:(intercept) 0.143 -1.927 -2.053
(1.138) (1.847) (1.897)

bCurrentAuBidders 1.301∗∗∗ 1.427∗∗∗ 1.346∗∗∗

(0.362) (0.369) (0.386)

bLivePrice -0.001 -0.001 -0.001
(0.003) (0.003) (0.003)

bAuctionBid −0.306∗∗ −0.361∗∗∗ −0.355∗∗∗

(0.120) (0.135) (0.137)

log(bHourTimeTilEnd) 0.223 0.249 0.270
(0.382) (0.400) (0.394)

aDuration 0.327 0.419 0.412
(0.239) (0.267) (0.268)

aNonStock 0.332 0.779 0.672
(0.725) (0.803) (0.811)

aPostage 1.982∗∗ 2.594∗∗ 2.477∗∗

(0.845) (1.060) (1.053)

aStar 0.002 0.002
(0.004) (0.004)

bClosingSequence −0.064∗ −0.084∗∗ −0.080∗

(0.038) (0.041) (0.041)

aTotalBids 0.251∗∗∗ 0.290∗∗∗ 0.277∗∗∗

(0.089) (0.093) (0.095)

aTotalBidders -0.255 −0.371∗ -0.321
(0.200) (0.206) (0.223)

bLivePrice:log(bHourTimeTilEnd) −0.002∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.108∗ −0.096∗ −0.093∗

(0.057) (0.054) (0.055)

bCurrentAuBidders:bAuctionBid −0.022∗ -0.023 -0.021
(0.013) (0.014) (0.014)

2:maxCountFromTop 0.086 0.080
(0.084) (0.086)

3:maxCountFromTop 0.084 0.090
(0.119) (0.122)

4:maxCountFromTop 0.178 0.193
(0.122) (0.129)

Observations 91 91 91
R2 0.763 0.771 0.773
Log Likelihood -29.351 -28.264 -28.119
LR Test 188.685∗∗∗ (df = 17) 190.858∗∗∗ (df = 19) 191.150∗∗∗ (df = 20)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.17: Multinomial Logit Results: M32 New Unlocked 3rd Star,first bid, 4 choices;
Results of bottom-up approach

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −1.479∗ −2.013∗∗ −1.937∗∗

(0.770) (0.948) (0.908)

3:(intercept) −1.850∗∗ -1.751 −1.918∗

(0.897) (1.066) (1.031)

4:(intercept) -1.387 -1.479 -1.500
(0.960) (1.035) (1.001)

bCurrentAuBidders 0.541∗∗∗ 1.538∗∗∗ 1.689∗∗∗

(0.181) (0.423) (0.419)

bLivePrice 0.001 -0.0002 -0.001
(0.003) (0.003) (0.003)

bAuctionBid −0.184∗ −0.216∗∗ −0.272∗∗∗

(0.094) (0.107) (0.099)

log(bHourTimeTilEnd) 0.449 -0.321 -0.658
(0.591) (0.638) (0.571)

aDuration 0.322 0.570∗ 0.572∗∗

(0.265) (0.314) (0.289)

aNonStock1 0.452 0.830 0.685
(0.905) (0.970) (0.933)

aPostage 0.872 0.762 0.776
(0.780) (0.841) (0.854)

aStar 0.003
(0.004)

bClosingSequence −0.083∗ -0.069 -0.057
(0.049) (0.054) (0.052)

aTotalBids 0.229∗∗ 0.369∗∗∗ 0.339∗∗∗

(0.093) (0.113) (0.103)

aTotalBidders -0.087 -0.174 -0.117
(0.161) (0.182) (0.175)

bLivePrice:log(bHourTimeTilEnd) -0.001 0.0001 0.0005
(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) 0.124 -0.031 −0.160∗∗

(0.099) (0.121) (0.065)

bAuctionBid:log(bHourTimeTilEnd) −0.129∗∗ -0.065
(0.055) (0.052)

bCurrentAuBidders:bAuctionBid −0.047∗∗∗ −0.050∗∗∗

(0.014) (0.014)

Observations 68 68 68
R2 0.553 0.645 0.634
Log Likelihood -35.140 -27.964 -28.837
LR Test 87.084∗∗∗ (df = 17) 101.436∗∗∗ (df = 17) 99.691∗∗∗ (df = 16)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.18: Multinomial Logit Results: M32 New Unlocked 3rd Star, first bid, 4 choices;
Extensions

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −1.967∗∗ −5.965∗∗ −5.944∗∗

(0.961) (2.751) (2.891)

3:(intercept) −1.937∗ 1.005 1.017
(1.053) (2.432) (2.485)

4:(intercept) -1.538 2.777 2.793
(1.075) (2.754) (2.838)

bCurrentAuBidders 1.699∗∗∗ 2.427∗∗∗ 2.425∗∗∗

(0.435) (0.644) (0.647)

bLivePrice -0.001 -0.0002 -0.0002
(0.003) (0.004) (0.004)

bAuctionBid −0.272∗∗∗ −0.327∗∗∗ −0.327∗∗∗

(0.099) (0.115) (0.115)

log(bHourTimeTilEnd) -0.665 -1.063 -1.060
(0.575) (0.694) (0.706)

aDuration 0.567∗ 0.724∗ 0.727∗

(0.295) (0.407) (0.424)

aNonStock1 0.734 -0.403 -0.417
(1.066) (1.191) (1.346)

aPostage 0.757 1.207 1.216
(0.867) (1.263) (1.322)

aStar -0.0004 0.0001
(0.004) (0.005)

bClosingSequence -0.057 -0.052 -0.052
(0.052) (0.063) (0.063)

aTotalBids 0.340∗∗∗ 0.413∗∗∗ 0.413∗∗∗

(0.104) (0.122) (0.122)

aTotalBidders -0.120 -0.019 -0.018
(0.179) (0.199) (0.206)

bLivePrice:log(bHourTimeTilEnd) 0.0005 0.001 0.001
(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.161∗∗ −0.202∗ −0.202∗

(0.066) (0.110) (0.110)

bCurrentAuBidders:bAuctionBid −0.051∗∗∗ −0.070∗∗∗ −0.070∗∗∗

(0.015) (0.021) (0.021)

2:maxCountFromTop 0.395∗ 0.394
(0.237) (0.243)

3:maxCountFromTop -0.395 -0.395
(0.284) (0.286)

4:maxCountFromTop −0.497∗ −0.497∗

(0.291) (0.291)

Observations 68 68 68
R2 0.634 0.709 0.709
Log Likelihood -28.832 -22.858 -22.858
LR Test 99.701∗∗∗ (df = 17) 111.648∗∗∗ (df = 19) 111.648∗∗∗ (df = 20)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.19: Multinomial Logit Results: M16 New Unlocked 3rd Star, 4 choices; Interac-
tion terms III

Dependent variable:
choice

(1) (2) (3)
2:(intercept) 1.936∗∗ 1.787∗∗ 1.826∗∗

(0.907) (0.903) (0.901)

3:(intercept) 1.415 1.273 1.405
(1.025) (1.054) (1.049)

4:(intercept) 0.066 -0.039 0.057
(1.117) (1.132) (1.153)

bCurrentAuBidders 1.374∗∗∗ 1.572∗∗∗ 1.408∗∗∗

(0.344) (0.421) (0.352)

bLivePrice 0.001 0.002 0.003
(0.004) (0.004) (0.004)

bAuctionBid −0.305∗∗ −0.340∗∗ −0.367∗∗∗

(0.123) (0.135) (0.114)

log(bHourTimeTilEnd) 1.154 1.270 1.438
(0.831) (0.889) (0.916)

aDuration 0.583∗ 0.636∗ 0.676∗

(0.335) (0.348) (0.356)

aNonStock 0.460 0.598 0.563
(0.748) (0.780) (0.778)

aPostage 1.936∗∗ 1.835∗∗ 1.949∗∗

(0.839) (0.850) (0.855)

bClosingSequence -0.058 −0.062∗ −0.064∗

(0.036) (0.037) (0.037)

aTotalBids 0.237∗∗∗ 0.233∗∗ 0.245∗∗∗

(0.088) (0.092) (0.093)

aTotalBidders -0.283 -0.262 -0.305
(0.191) (0.200) (0.204)

log(bHourTimeTilEnd):aDuration -0.141 -0.150 -0.169
(0.117) (0.122) (0.127)

bLivePrice:log(bHourTimeTilEnd) −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.102∗ −0.103∗ −0.103∗

(0.056) (0.054) (0.053)

bCurrentAuBidders:bAuctionBid -0.022 -0.017
(0.013) (0.015)

bCurrentAuBidders:bLivePrice -0.001
(0.001)

bCurrentAuBidders:bLivePrice:bAuctionBid −0.00003∗

(0.00002)

Observations 91 91 91
R2 0.771 0.775 0.779
Log Likelihood -28.296 -27.780 -27.311
LR Test 190.795∗∗∗ (df = 17) 191.827∗∗∗ (df = 18) 192.766∗∗∗ (df = 17)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.20: Multinomial Logit Results: M32 New Unlocked 3rd Star, 4 choices; Interac-
tion terms III

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −1.927∗∗ −2.273∗∗ −2.376∗∗

(0.911) (1.012) (0.944)

3:(intercept) −1.874∗ −2.237∗∗ −2.499∗∗

(1.040) (1.132) (1.088)

4:(intercept) -1.483 -1.545 −1.816∗

(1.008) (1.039) (1.022)

bCurrentAuBidders 1.686∗∗∗ 2.278∗∗∗ 1.563∗∗∗

(0.421) (0.573) (0.382)

bLivePrice -0.001 0.0004 0.0005
(0.003) (0.003) (0.003)

bAuctionBid −0.277∗∗∗ −0.350∗∗∗ −0.349∗∗∗

(0.102) (0.114) (0.100)

log(bHourTimeTilEnd) -0.619 -0.874 -0.547
(0.592) (0.633) (0.611)

aDuration 0.647 0.895∗∗ 0.949∗∗

(0.400) (0.431) (0.401)

aNonStock1 0.742 0.669 0.644
(0.961) (0.917) (0.824)

aPostage 0.810 0.750 0.708
(0.889) (0.838) (0.825)

bClosingSequence -0.052 -0.041 -0.039
(0.055) (0.056) (0.053)

aTotalBids 0.342∗∗∗ 0.387∗∗∗ 0.320∗∗∗

(0.104) (0.107) (0.091)

aTotalBidders -0.126 -0.168 -0.112
(0.177) (0.180) (0.170)

log(bHourTimeTilEnd):aDuration -0.031 -0.054 -0.076
(0.112) (0.110) (0.107)

bLivePrice:log(bHourTimeTilEnd) 0.0004 0.001 0.001
(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.158∗∗ −0.196∗∗∗ −0.162∗∗∗

(0.067) (0.074) (0.063)

bCurrentAuBidders:bAuctionBid −0.050∗∗∗ −0.048∗∗∗

(0.014) (0.014)

bCurrentAuBidders:bLivePrice −0.001∗

(0.0005)

bCurrentAuBidders:bLivePrice:bAuctionBid −0.0001∗∗∗

(0.00002)

Observations 68 68 68
R2 0.634 0.660 0.631
Log Likelihood -28.798 -26.755 -29.011
LR Test 99.769∗∗∗ (df = 17) 103.854∗∗∗ (df = 18) 99.342∗∗∗ (df = 17)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.21: Multinomial Logit Results: M16 New Unlocked 3rd Star, 4 choices; Interac-
tion terms IV

Dependent variable:
choice

(1) (2) (3)
2:(intercept) 1.712∗ 1.733∗ 2.004∗∗

(0.958) (0.984) (0.990)

3:(intercept) 0.704 0.789 1.376
(1.218) (1.262) (1.168)

4:(intercept) -0.658 -0.594 -0.283
(1.318) (1.342) (1.361)

bCurrentAuBidders 3.167∗∗∗ 2.941∗∗∗ 2.289∗∗∗

(0.961) (0.953) (0.655)

bLivePrice 0.009 0.008 0.005
(0.006) (0.007) (0.005)

bAuctionBid −1.061∗∗∗ −1.055∗∗∗ −0.813∗∗∗

(0.393) (0.376) (0.270)

log(bHourTimeTilEnd) 2.937∗∗ 2.875∗∗ 2.414∗∗

(1.396) (1.408) (1.203)

aDuration 1.336∗∗ 1.268∗∗ 1.048∗∗

(0.587) (0.592) (0.487)

aNonStock -0.099 -0.027 -0.021
(0.927) (0.931) (0.896)

aPostage 1.651∗ 1.815∗∗ 2.103∗∗

(0.862) (0.899) (0.915)

bClosingSequence −0.087∗ −0.081∗ −0.070∗

(0.050) (0.048) (0.041)

aTotalBids 0.298∗∗ 0.296∗∗ 0.300∗∗∗

(0.125) (0.120) (0.109)

aTotalBidders −0.388∗ −0.415∗ −0.452∗∗

(0.225) (0.229) (0.225)

bLivePrice:bAuctionBid 0.0005 0.001 0.0004
(0.0005) (0.001) (0.0004)

bAuctionBid:log(bHourTimeTilEnd) 0.190∗∗ 0.176∗∗ 0.131∗

(0.085) (0.083) (0.067)

bCurrentAuBidders:bLivePrice −0.002∗ -0.001
(0.001) (0.001)

log(bHourTimeTilEnd):aDuration −0.433∗∗ −0.417∗ −0.341∗

(0.216) (0.220) (0.184)

bLivePrice:log(bHourTimeTilEnd) −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.002) (0.002) (0.002)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.522∗∗ −0.497∗∗ −0.411∗∗

(0.206) (0.202) (0.180)

bCurrentAuBidders:bAuctionBid -0.013
(0.019)

bCurrentAuBidders:bLivePrice:bAuctionBid -0.00004 −0.0001∗

(0.00004) (0.00004)

Observations 91 91 91
R2 0.801 0.804 0.799
Log Likelihood -24.599 -24.219 -24.890
LR Test 198.189∗∗∗ (df = 20) 198.949∗∗∗ (df = 20) 197.607∗∗∗ (df = 19)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.22: Multinomial Logit Results: M32 New Unlocked 3rd Star, 4 choices; Interac-
tion terms IV

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −2.329∗∗ −2.373∗∗ −2.373∗∗

(1.051) (1.010) (1.009)

3:(intercept) −2.153∗ −2.250∗ −2.245∗

(1.184) (1.180) (1.171)

4:(intercept) -1.483 -1.702 -1.702
(1.053) (1.048) (1.047)

bCurrentAuBidders 2.160∗∗∗ 1.546∗∗ 1.533∗∗∗

(0.766) (0.645) (0.469)

bLivePrice 0.001 -0.0003 -0.0003
(0.005) (0.005) (0.004)

bAuctionBid -0.285 -0.329 -0.323
(0.301) (0.288) (0.222)

log(bHourTimeTilEnd) -0.599 -0.397 -0.385
(0.884) (0.841) (0.745)

aDuration 0.799 0.825∗ 0.820∗

(0.488) (0.474) (0.453)

aNonStock1 0.824 0.833 0.835
(0.950) (0.886) (0.885)

aPostage 0.729 0.628 0.631
(0.818) (0.805) (0.799)

bClosingSequence -0.061 -0.061 -0.061
(0.061) (0.058) (0.058)

aTotalBids 0.419∗∗∗ 0.364∗∗∗ 0.363∗∗∗

(0.120) (0.107) (0.104)

aTotalBidders -0.238 -0.220 -0.219
(0.194) (0.190) (0.188)

bLivePrice:bAuctionBid -0.00000 0.0001 0.0001
(0.0004) (0.0003) (0.0003)

bAuctionBid:log(bHourTimeTilEnd) -0.074 -0.081 -0.081
(0.064) (0.064) (0.064)

bCurrentAuBidders:bLivePrice -0.001 -0.00002
(0.001) (0.001)

log(bHourTimeTilEnd):aDuration -0.003 -0.013 -0.012
(0.117) (0.115) (0.113)

bLivePrice:log(bHourTimeTilEnd) 0.001 0.0004 0.0004
(0.001) (0.001) (0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) -0.063 -0.013 -0.012
(0.139) (0.135) (0.132)

bCurrentAuBidders:bAuctionBid −0.044∗∗∗

(0.015)

bCurrentAuBidders:bLivePrice:bAuctionBid −0.0001∗∗∗ −0.0001∗∗∗

(0.00003) (0.00002)

Observations 68 68 68
R2 0.672 0.652 0.652
Log Likelihood -25.803 -27.354 -27.354
LR Test 105.759∗∗∗ (df = 20) 102.657∗∗∗ (df = 20) 102.656∗∗∗ (df = 19)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.23: Multinomial Logit Results: M16 New Unlocked 3rd Star, 4 choices; Interac-
tion terms top-down approach I

Dependent variable:
choice

(1) (2) (3)
2:(intercept) 1.769∗ 1.844∗ 1.841∗

(1.022) (1.008) (1.007)

3:(intercept) 0.902 1.073 1.057
(1.313) (1.188) (1.183)

4:(intercept) -0.421 -0.303 -0.296
(1.357) (1.304) (1.300)

bCurrentAuBidders 2.594∗∗ 2.351∗∗∗ 2.345∗∗∗

(1.071) (0.661) (0.660)

bLivePrice 0.008 0.008 0.007
(0.007) (0.007) (0.006)

bAuctionBid −1.135∗∗∗ −1.104∗∗∗ −1.093∗∗∗

(0.404) (0.380) (0.366)

log(bHourTimeTilEnd) 3.198∗∗ 3.183∗∗ 3.124∗∗

(1.573) (1.560) (1.480)

aDuration 1.375∗∗ 1.355∗∗ 1.325∗∗

(0.658) (0.650) (0.592)

aNonStock -0.102 -0.118
(0.957) (0.958)

aPostage 2.058∗∗ 2.193∗∗ 2.198∗∗

(0.981) (0.887) (0.889)

bClosingSequence −0.088∗ −0.087∗ −0.086∗

(0.053) (0.053) (0.051)

aTotalBids 0.309∗∗ 0.313∗∗∗ 0.312∗∗∗

(0.124) (0.121) (0.120)

aTotalBidders −0.467∗ −0.488∗∗ −0.488∗∗

(0.248) (0.238) (0.240)

bCurrentAuBidders:bLivePrice -0.001
(0.002)

bCurrentAuBidders:bAuctionBid 0.033 0.042 0.042
(0.046) (0.034) (0.033)

bLivePrice:bAuctionBid 0.001 0.001 0.001
(0.001) (0.001) (0.001)

bAuctionBid:log(bHourTimeTilEnd) 0.172∗∗ 0.162∗∗ 0.157∗∗

(0.085) (0.075) (0.067)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.482∗∗ −0.458∗∗ −0.450∗∗∗

(0.205) (0.186) (0.174)

log(bHourTimeTilEnd):aDuration −0.458∗ −0.452∗ −0.442∗

(0.244) (0.242) (0.228)

bLivePrice:log(bHourTimeTilEnd) −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.002) (0.002) (0.002)

bCurrentAuBidders:bLivePrice:bAuctionBid -0.0001 −0.0001∗ −0.0001∗

(0.0001) (0.0001) (0.0001)

Observations 91 91 91
R2 0.806 0.806 0.806
Log Likelihood -23.954 -23.998 -24.006
LR Test 199.478∗∗∗ (df = 21) 199.390∗∗∗ (df = 20) 199.375∗∗∗ (df = 19)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.24: Multinomial Logit Results: M16 New Unlocked 3rd Star, 4 choices; Interac-
tion terms top-down approach II

Dependent variable:

choice

(1) (2) (3)

2:(intercept) 1.963∗ 1.896∗ 1.799∗

(1.136) (1.056) (1.043)

3:(intercept) 0.630 0.692 1.076
(1.433) (1.378) (1.215)

4:(intercept) -0.871 -0.876 -0.379
(1.502) (1.481) (1.301)

bCurrentAuBidders 5.126 4.436∗∗ 2.400∗∗∗

(3.560) (2.067) (0.686)

bLivePrice 0.0001
(0.008)

bAuctionBid −3.045∗∗ −3.035∗∗ −2.152∗∗∗

(1.304) (1.227) (0.825)

log(bHourTimeTilEnd) 2.233 2.176∗∗ 2.093∗∗

(1.460) (0.988) (0.934)

aDuration 0.981 0.940∗∗ 0.923∗∗

(0.751) (0.475) (0.412)

aNonStock 0.240
(1.126)

aPostage 2.103∗ 2.071∗ 1.692∗

(1.084) (1.074) (0.867)

bClosingSequence -0.078 -0.079 −0.077∗

(0.050) (0.050) (0.047)

aTotalBids 0.304∗ 0.310∗∗ 0.233∗∗

(0.162) (0.149) (0.108)

aTotalBidders -0.506 −0.513∗ −0.433∗

(0.316) (0.293) (0.250)

bCurrentAuBidders:bLivePrice -0.004 -0.003
(0.006) (0.003)

bAuctionBid:log(bHourTimeTilEnd):bLivePrice -0.001 −0.0004∗

(0.001) (0.0003)

bCurrentAuBidders:log(bHourTimeTilEnd):bLivePrice 0.001
(0.001)

bCurrentAuBidders:bAuctionBid:bLivePrice −0.0003∗ −0.0003∗∗

(0.0001) (0.0001)

bCurrentAuBidders:bAuctionBid:log(bHourTimeTilEnd):bLivePrice -0.00001
(0.00002)

bCurrentAuBidders:bAuctionBid 0.097 0.125∗ 0.121∗

(0.153) (0.075) (0.064)

bLivePrice:bAuctionBid 0.004∗

(0.002)

bCurrentAuBidders:log(bHourTimeTilEnd) -1.281 −1.096∗ −0.436∗∗∗

(1.019) (0.601) (0.168)

bLivePrice:log(bHourTimeTilEnd) −0.004∗∗

(0.002)

bAuctionBid:bLivePrice 0.004∗∗ 0.002∗∗

(0.002) (0.001)

bAuctionBid:log(bHourTimeTilEnd) 0.642∗∗ 0.647∗∗ 0.407∗∗

(0.306) (0.295) (0.177)

log(bHourTimeTilEnd):bLivePrice −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001)

log(bHourTimeTilEnd):aDuration -0.360 −0.359∗∗ −0.311∗∗

(0.220) (0.156) (0.135)

bCurrentAuBidders:bLivePrice:bAuctionBid -0.0002
(0.0003)

bCurrentAuBidders:bLivePrice:log(bHourTimeTilEnd) 0.001
(0.002)

bCurrentAuBidders:bAuctionBid:log(bHourTimeTilEnd) 0.009
(0.045)

bLivePrice:bAuctionBid:log(bHourTimeTilEnd) -0.001
(0.001)

bCurrentAuBidders:bLivePrice:bAuctionBid:log(bHourTimeTilEnd) -0.00002
(0.0001)

Observations 91 91 91
R2 0.821 0.821 0.815
Log Likelihood -22.106 -22.150 -22.935
LR Test 203.175∗∗∗ (df = 25) 203.087∗∗∗ (df = 22) 201.517∗∗∗ (df = 19)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

222



Table 3.25: Multinomial Logit Results: M16 New Unlocked 3rd Star, 4 choices; Interac-
tion terms. Current Bidders and Duration

Dependent variable:

choice

(1) (2) (3)

2:(intercept) 1.543 2.800∗∗ 2.936∗∗

(1.066) (1.353) (1.366)

3:(intercept) 0.486 1.174 1.118
(1.331) (1.359) (1.375)

4:(intercept) -0.085 -0.286 -0.302
(1.385) (1.605) (1.652)

bCurrentAuBidders 2.538∗∗∗ 3.165∗∗∗ 3.252∗∗∗

(0.800) (1.082) (1.070)

bAuctionBid −1.980∗∗ −2.499∗∗ −2.188∗∗∗

(0.903) (1.120) (0.847)

log(bHourTimeTilEnd) 1.667 1.162 1.138
(1.055) (0.834) (0.841)

aDuration -0.076
(0.848)

aPostage 2.153∗∗ 2.947∗∗ 3.221∗∗∗

(1.027) (1.316) (1.242)

bClosingSequence -0.059 −0.077∗ −0.078∗

(0.044) (0.046) (0.047)

aTotalBids 0.429∗∗ 0.462∗∗ 0.481∗∗

(0.215) (0.205) (0.202)

aTotalBidders −0.786∗ −0.582∗ −0.628∗∗

(0.419) (0.311) (0.290)

log(bHourTimeTilEnd):aDuration −0.296∗

(0.167)

bAuctionBid:log(bHourTimeTilEnd) 0.366∗ 0.426∗∗ 0.362∗∗

(0.196) (0.208) (0.152)

log(bHourTimeTilEnd):bLivePrice −0.003∗∗ −0.004∗∗ −0.004∗∗

(0.001) (0.002) (0.002)

bCurrentAuBidders:log(bHourTimeTilEnd) −0.528∗∗∗ −0.602∗∗ −0.643∗∗

(0.204) (0.268) (0.260)

bAuctionBid:bLivePrice 0.002 0.002 0.001
(0.001) (0.001) (0.001)

bCurrentAuBidders:bAuctionBid 0.086 0.102 0.073
(0.075) (0.084) (0.056)

bCurrentAuBidders:aDuration 0.218 0.346∗∗ 0.376∗∗

(0.162) (0.171) (0.162)

bAuctionBid:log(bHourTimeTilEnd):bLivePrice -0.0003 -0.0001
(0.0003) (0.0003)

bCurrentAuBidders:bAuctionBid:bLivePrice -0.0002 -0.0002 −0.0002∗

(0.0001) (0.0001) (0.0001)

bCurrentAuBidders:log(bHourTimeTilEnd):aDuration −0.134∗∗ −0.141∗∗

(0.063) (0.061)

Observations 91 91 91
R2 0.824 0.836 0.835
Log Likelihood -21.771 -20.229 -20.354
LR Test 203.845∗∗∗ (df = 20) 206.929∗∗∗ (df = 19) 206.679∗∗∗ (df = 18)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.26: Multinomial Logit Results: M16 New Unlocked 3rd Star, 4 choices; Interac-
tion terms. Duration Interaction Terms.

Dependent variable:

choice

(1) (2) (3)

2:(intercept) 3.437∗∗ 3.493∗∗ 3.251∗∗

(1.657) (1.629) (1.628)

3:(intercept) 2.355 2.432 1.851
(1.787) (1.713) (1.726)

4:(intercept) 0.959 1.153 0.189
(2.075) (1.705) (1.843)

bCurrentAuBidders 4.713∗∗∗ 4.766∗∗∗ 4.714∗∗∗

(1.513) (1.496) (1.558)

bAuctionBid −2.645∗∗∗ −2.681∗∗∗ −2.727∗∗∗

(0.930) (0.804) (0.847)

log(bHourTimeTilEnd) 0.134
(0.840)

aPostage 3.100∗ 3.207∗∗ 3.028∗

(1.587) (1.464) (1.652)

bClosingSequence −0.113∗ −0.114∗ −0.113∗

(0.063) (0.063) (0.065)

aTotalBids 0.729∗∗ 0.768∗∗∗ 0.813∗∗

(0.365) (0.290) (0.331)

aTotalBidders −1.051∗ −1.108∗∗ −1.113∗

(0.635) (0.552) (0.617)

bAuctionBid:log(bHourTimeTilEnd) 0.576∗∗∗ 0.579∗∗∗ 0.511∗∗∗

(0.183) (0.179) (0.175)

log(bHourTimeTilEnd):bLivePrice 0.015∗∗ 0.015∗∗ 0.018∗∗

(0.007) (0.006) (0.008)

bCurrentAuBidders:log(bHourTimeTilEnd) −2.085∗∗∗ −2.098∗∗∗ −2.091∗∗∗

(0.659) (0.660) (0.679)

bAuctionBid:bLivePrice 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.001) (0.001) (0.001)

bCurrentAuBidders:bAuctionBid 0.002
(0.059)

bCurrentAuBidders:aDuration 0.940∗∗ 0.967∗∗∗ 1.087∗∗∗

(0.378) (0.334) (0.392)

bCurrentAuBidders:bAuctionBid:bLivePrice −0.0002∗ −0.0002∗∗ −0.0002∗∗

(0.0001) (0.0001) (0.0001)

bCurrentAuBidders:log(bHourTimeTilEnd):aDuration 0.741∗∗ 0.743∗∗ 0.794∗∗

(0.328) (0.324) (0.355)

log(bHourTimeTilEnd):bLivePrice:aDuration −0.017∗∗ −0.017∗∗∗ −0.020∗∗

(0.007) (0.007) (0.008)

bAuctionBid:log(bHourTimeTilEnd):aDuration 0.036
(0.030)

Observations 91 91 91
R2 0.886 0.886 0.890
Log Likelihood -14.081 -14.094 -13.603
LR Test 219.225∗∗∗ (df = 19) 219.199∗∗∗ (df = 17) 220.181∗∗∗ (df = 18)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.27: Multinomial Logit Results: M32 New Unlocked 3rd Star, 4 choices; Interac-
tion terms. Top-down approach.

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −3.413∗∗ −3.580∗∗ −3.618∗∗

(1.660) (1.596) (1.576)

3:(intercept) -2.193 -2.304 -2.330
(1.692) (1.471) (1.465)

4:(intercept) -1.493 -2.256 -2.328
(1.739) (1.476) (1.454)

bCurrentAuBidders 1.602 2.762 2.152∗∗∗

(3.386) (2.130) (0.778)

bLivePrice 0.032∗ 0.035∗∗ 0.034∗∗

(0.019) (0.016) (0.016)

bAuctionBid 0.458 0.581 0.617
(0.690) (0.663) (0.655)

log(bHourTimeTilEnd) 2.388 3.361 3.510
(3.259) (2.949) (2.902)

aDuration 0.652 0.593 0.511
(0.753) (0.713) (0.670)

aNonStock1 -0.079
(1.242)

aPostage 3.057 3.372∗ 3.337
(1.912) (2.017) (2.048)

bClosingSequence -0.090 -0.077 -0.088
(0.095) (0.085) (0.078)

aTotalBids 1.056∗∗∗ 0.956∗∗∗ 0.928∗∗∗

(0.369) (0.296) (0.276)

aTotalBidders -0.221
(0.332)

bCurrentAuBidders:bLivePrice 0.001 -0.001
(0.005) (0.003)

bAuctionBid:log(bHourTimeTilEnd):bLivePrice 0.001∗∗ 0.001∗∗

(0.0004) (0.0004)

bCurrentAuBidders:log(bHourTimeTilEnd):bLivePrice −0.003∗∗ −0.003∗∗∗

(0.001) (0.001)

bCurrentAuBidders:bAuctionBid:bLivePrice 0.0002 0.0001
(0.0001) (0.0001)

bCurrentAuBidders:bAuctionBid:log(bHourTimeTilEnd):bLivePrice 0.0001∗∗ 0.0001∗∗

(0.00002) (0.00002)

bCurrentAuBidders:bAuctionBid -0.123 −0.184∗∗ −0.164∗∗

(0.140) (0.093) (0.069)

bLivePrice:bAuctionBid -0.002
(0.001)

bCurrentAuBidders:log(bHourTimeTilEnd) 1.815 1.115∗ 1.256∗∗

(1.266) (0.662) (0.503)

bLivePrice:log(bHourTimeTilEnd) -0.003
(0.004)

bAuctionBid:bLivePrice −0.002∗ −0.002∗

(0.001) (0.001)

bAuctionBid:log(bHourTimeTilEnd) −0.762∗∗ −0.793∗∗ −0.816∗∗∗

(0.347) (0.320) (0.313)

log(bHourTimeTilEnd):bLivePrice -0.005 -0.005
(0.004) (0.004)

log(bHourTimeTilEnd):aDuration 0.176 0.188 0.208
(0.211) (0.190) (0.182)

bCurrentAuBidders:bLivePrice:bAuctionBid 0.0001
(0.0002)

bCurrentAuBidders:bLivePrice:log(bHourTimeTilEnd) −0.004∗

(0.002)

bCurrentAuBidders:bAuctionBid:log(bHourTimeTilEnd) -0.035
(0.047)

bLivePrice:bAuctionBid:log(bHourTimeTilEnd) 0.001∗

(0.0004)

bCurrentAuBidders:bLivePrice:bAuctionBid:log(bHourTimeTilEnd) 0.0001
(0.0001)

Observations 68 68 68
R2 0.777 0.770 0.770
Log Likelihood -17.555 -18.077 -18.127
LR Test 122.255∗∗∗ (df = 25) 121.210∗∗∗ (df = 22) 121.111∗∗∗ (df = 21)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.28: Multinomial Logit Results: M32 New Unlocked 3rd Star, 4 choices; Interac-
tion terms. Duration Interaction Terms.

Dependent variable:
choice

(1) (2) (3)
2:(intercept) −8.004∗∗ −10.322∗∗ −10.302∗∗

(3.710) (4.916) (4.858)

3:(intercept) -1.084 -0.710 -0.819
(1.587) (1.844) (1.828)

4:(intercept) -2.160 -2.965 -3.228
(2.165) (2.205) (2.203)

bCurrentAuBidders 6.173∗∗ 7.605∗∗ 7.514∗∗

(2.928) (3.494) (3.412)

bAuctionBid 1.674 1.371 1.153
(1.548) (1.189) (1.074)

log(bHourTimeTilEnd) 12.668 14.305∗ 12.846∗

(8.893) (8.253) (7.328)

bLivePrice 0.094∗ 0.109∗∗ 0.103∗∗

(0.051) (0.052) (0.048)

aDuration 1.920 2.672 2.308
(1.951) (1.910) (1.744)

aPostage 15.851∗ 18.431∗ 17.446∗∗

(8.955) (9.441) (8.875)

bClosingSequence -0.110 -0.184 -0.190
(0.126) (0.155) (0.148)

aTotalBids 2.220∗∗ 2.930∗∗ 2.916∗∗

(0.919) (1.341) (1.310)

log(bHourTimeTilEnd):aDuration -0.785 -0.279
(0.769) (0.646)

bAuctionBid:log(bHourTimeTilEnd) −2.154∗∗ −2.598∗∗ −2.522∗∗

(1.026) (1.323) (1.267)

log(bHourTimeTilEnd):bLivePrice -0.018 −0.022∗ −0.021∗

(0.012) (0.012) (0.011)

bCurrentAuBidders:log(bHourTimeTilEnd) 1.874∗∗ 2.469∗ 2.482∗

(0.859) (1.344) (1.310)

bAuctionBid:bLivePrice −0.005∗ −0.005∗∗ −0.004∗∗

(0.003) (0.002) (0.002)

bCurrentAuBidders:bAuctionBid −0.267∗∗ −0.297∗∗ −0.290∗∗

(0.119) (0.132) (0.127)

bAuctionBid:log(bHourTimeTilEnd):bLivePrice 0.003∗∗ 0.004∗ 0.004∗

(0.001) (0.002) (0.002)

bCurrentAuBidders:log(bHourTimeTilEnd):bLivePrice −0.007∗∗ −0.009∗∗ −0.009∗∗

(0.003) (0.004) (0.004)

bCurrentAuBidders:bAuctionBid:bLivePrice 0.00003
(0.0001)

bCurrentAuBidders:log(bHourTimeTilEnd):aDuration 0.315∗∗ 0.529∗∗ 0.514∗∗

(0.152) (0.251) (0.244)

bAuctionBid:log(bHourTimeTilEnd):aDuration -0.120 -0.125
(0.086) (0.086)

bCurrentAuBidders:bAuctionBid:log(bHourTimeTilEnd):bLivePrice 0.0001∗ 0.0001∗∗ 0.0001∗∗

(0.00004) (0.00005) (0.00004)

Observations 68 68 68
R2 0.862 0.880 0.878
Log Likelihood -10.872 -9.467 -9.563
LR Test 135.620∗∗∗ (df = 22) 138.430∗∗∗ (df = 22) 138.238∗∗∗ (df = 21)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.11 Herding in Concurrent Auctions - Discussion

The analysis of choice between concurrent auctions shows that the auctions with more

bidders present are more likely to be chosen by new bidders. This means that either

the bidders facing the choice think that there is additional information revealed about

the product based on number of other bidders in the auction, or that there are other,

non-rational reasons that lead to this result. Herding is a topic known in economic and

psychological literature for a long time. It has been observed in many situations, from

finance to buyer’s decision. In auction setting herding is additionally discouraged, since

more bidders in an auction can lead to a higher auction outcome. The revealed signal

about the product needs to, therefore out weight the negative effects associated with more

crowded auctions. This topic it not yet closed in view of current theoretical literature.

The section below aims at an overview of the literature related to herding behavior more

generally, as well as in auctions in particular.

3.11.1 Literature Overview

There is a large literature relating to the phenomena of herding, or following the crowd, in

economic situations. The area where it is most often observed is financial markets, where

observed spikes in interest in buys of a given asset drive the prices up, sometimes leading to

pricing bubbles. There have been numerous attempts in explaining these phenomenon in

the economic literature, which, while assuming rationality, has been trying to explain such

behavior through asymmetric information and uncertainty combined with the assumption

of common values, which is undoubtedly appropriate in the context of financial goods such

as shares or bonds. One of the first, and most general models of herding behavior, which

doesn’t invoke the assumption of strong complementarity (choosing one asset is better

when more people choose it) (Banerjee, 1992[5]), relates to a sequential decision in the

context of common value and value uncertainty, where agents can observe actions taken

by their predecessors. The fact that the decisions made by others are influencing followers
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information set leads in this model to herding behavior after several identical decisions

observed in a row. Starting at some moment in the sequence, all subsequent individuals

will make the same decision, regardless of their private signal. The notion of informational

cascade is closely related, as defined by Bikhchandani, Hirshleifer and Welch, 1992[11]

“An informational cascade occurs if an individual’s action does not depend on his private

information signal.” Both of these models are closely related, and, as well as most others

in subsequent literature, assume two types of individuals, informed and uninformed, while

the individuals themselves do not know which type they are. In [11] the authors give also

several different areas, where herding can be observed, from politics, to finance. They

also invoke the notion of conformity, which is very often seen as an easy option, when

faced with uncertainty. In the context of doctors, who are not well informed with the

cutting edge research, they suggest that the chosen strategy is to imitate other doctor’s

treatment practices, whenever in doubt. Application of their model, which assumes that

individuals do not know their type, is not perfectly well fit to this particular example,

because, while doctors may differ in their knowledge about newest research, those who

are knowledgeable, will know their type and therefore should not choose to follow the

crowd in the wrong treatment. This example, therefore can actually be used to show that

the theory relying on the agents not knowing their type, cannot be used in every context.

Better informed doctors will be immune to informational cascades, and therefore the

decision to herd is more closely related to the level of uncertainty, or level of knowledge.

Those with lower level of knowledge will be more likely to choose conformity as opposed

to their own signal.

Another approach, for explanation of herding behavior in certain situations, is pro-

vided in Scharfstein and Stein, 2001 [33]. There, in the context of manager’s investment

decision, the concern about reputation leads to mimicking behavior. Here also, the man-

agers can be of two types, smart or dumb, and the assumption that they do not know

their own type is necessary for such results. This model, while can explain certain behav-

iors, is only applicable in situations where the reputational concerns are likely to play a
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role in the decision-making. Earlier Becker, 1991[8] have reported a situation were out of

two virtually identical restaurants, one has an excess demand and a queue of customers,

while other is empty. Despite that, the more popular restaurant does not increase prices

in order to take advantage of the possible rents they can earn, while reducing demand.

Becker attributes that to the fact that the demand function for some goods is higher when

more people are also consuming it, and this can be applied to restaurants or concerts,

where there is higher utility derived from the good in the presence of others. Other,

more numerous in papers, strand of literature relates to herding in financial markets.

In addition to neoclassical utility theory, there is a separate literature, which attributes

herding in financial markets to behavioral factors.

In financial markets, when faced with a choice of different assets, following the herd

leads to an increase the price of the chosen asset. Avery and Zemsky, 1998 [4], as first

have shown that a simple model based on Bikhchandani, Hirshleifer and Welch, 1992 [11],

with an addition of asset prices, leads to elimination of herding. They introduce other

levels of uncertainty (in addition to value uncertainty), which are event uncertainty, and

uncertainty of the composition of the market, which in some low probability situations

can generate herding (or contrarian behavior). Park and Sabourian, 2011 [29] , on the

other hand, prove that U-shaped (hill shaped) private signals are an enough condition

to generate herding (contrarianism) in financial markets, without the introduction of

different levels of uncertainty. Existing empirical and experimental evidence on this topic,

gives mixed conclusions. In an empirical study Bernhardt, Campello and Kutsoati, 2006

[9] show that, on the contrary to most of the empirical literature, there is evidence that

contrarian behaviour, in the direction of private information, is more prevalent in financial

markets. On the other hand, Derhmann, Oechssler and Roider, 2005 [14] conduct an

internet experiment, in which they test the level of rationality of the decision makers, as

well as the predictions of Avery and Zemsky, 1998 [4] model. While in Avery and Zemsky,

1998 theoretical set-up, rational agents should follow their signal exactly, and disregard

the history, Derhman, Oechssler and Roider, 2005, have observed that in the experiment
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not all the participants have followed their signal, which they have attributed to bounded

rationality. While they have not found evidence of herding, they concluded that there

was some contrarian behavior present. They found, as well, that different groups of

respondents had different levels of rationality, where rational behavior was defined as

following the best strategy according to theoretical predictions. On two extremes, those

with Physics degree had higher level of rationality, while those with Psychology degree

had significantly lower level of rationality. Surprisingly, psychologists had performed

better in the game, implying that prediction of possibly irrational behavior of others

have given better results than a high ability of correctly applying Bayes’ rule in forming

expectations.

The other side of literature does not try to explain herding behavior through neoclas-

sical economics lens. Kirman, 1993 [21] argues that a Markov chain model may be better

suited at explaining dynamic behavior of multiple individuals and group as a whole, in

situations where herding or mimicking occurs. The model, based on behavior of ants

can be applied to financial markets, or Becker’s restaurant example (Becker, 1991). The

model of ants in Kirman, 1993 is argued to have an advantage over other contemporane-

ous models of financial bubbles, because it does not assume the existence of a steady state

as a solution to an optimization, but rather endogenously incorporates switching between

different steady states, without the need of an introduction of an external shock. While

it is a simple and appealing model due to it’s flexibility to be readily transferred to any

situation, it is not clearly explained in the paper why such behavior would occur in the

first place. Kirman’s view is that such observed behavior may be due to maximization,

but may also be a result of not fully rational behavior. In the meantime, developments

in scientific literature have given grounds to to the opinion that decisions under un-

certainty are not made in the same conscious way, as those between certain outcomes.

Tversky and Kahneman, 1974 [35] expose the existence of biases in judgments, which

include violation of Bayes’ rule, ignoring prior probability when faced with additional

useless information, and ignorance of fundamental rules of statistics revealed in exper-
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iments. Bechara, Damasio, Tranel and Damasio, 1997 [7], on the other hand, conduct

an experiment, which shows that different parts of the brain, responsible for conscious

and non-conscious responses play a role in the decision-making. The unconscious bias

directing the behavior towards the advantageous strategy is a faster response than the

one following explicit reasoning. Prechter Jr. and Parker , 2007 [32]argue that finan-

cial markets are fundamentally different from markets for utilitarian consumption goods.

Firstly, because all the objects available in financial markets are perfect substitutes, and

only differ by the unknown future valuation. Secondly, the realized valuation is charac-

terized by high degree of uncertainty and therefore the unconscious impulses play a role

in the decision-making. Prechter Jr. and Parker , 2007 [32], as well as Prechter Jr, 2001

[31] recognize herding as the main force driving transactions in financial markets, and

attribute it to the instinctual human behavior, which was developed through evolution, as

an advantageous strategy for many life-threatening situations that could be faced in real

life by homo sapiens. As Prechter Jr argues, this unconscious impulse is not advantageous

in the context of financial markets, it is though one of the cognitive biases stemming from

reliance on judgmental heuristics which cannot be explained through rational choice the-

ory. Simultaneous auctions for identical goods, although are different form financial in

that they relate to consumption goods, with single-unit demands, are in numerous ways

also similar to financial markets. One of the aspects is the almost absolute homogeneity

of the products available, as well as high degree of uncertainty about the resulting price

and any future auctions that may be available later (the value of the outside option).

One model, which directly relates to herding in auctions, and more generally in mar-

kets with sequential bids characterized by the winner’s curse is the one by Neeman and

Orosel, 1999 [28]. Their model of herding does not relate to the choice of a particular

object, but rather to herding in the context of a single auction. It is also a specific model,

where individuals are addressed sequentially by the auctioneer to place their bids. In the

presence of common values, the fact that previous bids (or choices of not bidding up)

are observed by the individuals approached later in the sequence leads to herding of no
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bidding up the price despite a positive private signal, due to the existence of winner’s

curse. Bulow and Klemperer, 1994 [12]show that in the case of sequential sales of more

than one unit, rational frenzies and crashes, which can look similarly to herding, can

occur because the willingness to pay (dependent on the number of remaining bidders and

items) is different from the valuation. In their model of ascending auction, they show

that willingness to pay is a very flat function and sensitive to a sell of even single unit.

As a result, after even a single sale, the willingness to pay curve moves upwards, and

a large range of buyer’s valuations suddenly have WTP above the current price. Many

more sales will follow at the same price, which will look like a sudden buyer frenzy.

3.11.2 Conclusion

In conclusion, there are two main reasons that herding can occur in auction choice. One

is information Asymmetry or Common Values element. If an object’s value is a function

of number of other bidders choosing the object, then clearly this could lead to herding

behavior. Another way to view this is that the bidders have uncertainty about some

features of the objects and belief that valuations of others are correlated, and therefore

the fact that one object is more often chosen creates a possibility that some features

are not perfectly observed by the decision maker who would not have chosen this object

relying only on their own information set.

The second explanation for herding behavior stems from psychology studies. Herding is

treated as a very basic part of human nature, often referred to as one of so called ’animal

instincts’, or limited rationality. Existing literature linked to psychology suggests that

some simplifying behaviors have been developed through evolution in order to be able

to make faster decisions [35, 7]. Advantageous decision can be made in shorter time

through brain short-cuts, inducing behavior such as following the herd, instead of trying

to analyze the correct solution with limited information available.

Herding is not a new phenomenon, although it has not been observed in auction choice

to date with respect to my best knowledge. Current chapter therefore shows yet another
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example where this type of behavior plays a role.
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3.12 Survival Analysis

3.12.1 Introduction

The previous section analyses choices of bidders by estimating an individual choice model.

On the other hand, at the auction level the question asked can be: what are the aspects

that decrease waiting time for bids in auctions? We have seen that the dynamic aspects

of auctions, such as number of bids and bidders influence choice between auctions by

bidders. Do the same factors have a significant impact on waiting time for a new bids?

Is such relationship observable in the data? The topic of this chapter is survival analysis

and therefore the time until the next bid is the central point of focus here.

3.12.2 Survival Analysis Using Bids Data

In order to analyze the impact on waiting time, auctions of the same length are selected

- in this case 1 day auctions, since these are most common. The auctions are cut at an

arbitrary time - and there are two chosen times: 12th hour (the middle of the auction)

and 23rd hour (close to the end of an auction). The data is divided into subsets of similar

auctions by the auction characteristics. The subsets are described in tables 3.30, 3.29,

3.32, and 3.31.

The datasets contain 1 observation per each auction. The hazard function relates to

the time until the next bid counting from the cutting point - so either from 12th or 23rd

auction hour. After the 23rd hour some auctions had no more bids, and these cases were

also included appropriately in the analysis.

The explanatory variables for the hazard model include overall density of bids recorded

in the data at the cutting time, any auction characteristics that may influence the density

of bids in the particular auction, as well as live bid of the most recent bid and number of

bids and bidders before the cutting point.
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3.12.3 Model

The regression to estimate is Cox Proportional Hazards Model expressed by the hazard

function h(t):

h(t) = h0(t) ∗ exp(β1BidsDensityt + β2Ax+

β3LiveBidxt+

β5CurrentBiddersxt + β6CurrentBidsxt) (3.12.29)

The coefficients, β’s, measure the impact of covariates on hazard function. If βx > 0,

this means that the covariate x has a positive impact on hazard, and therefore on de-

crease of time until the next bid. On the other hand, if βx < 0 the covariate x reduces

the hazard function, and therefore has a positive impact on time until the next bid.

In order to get an appropriate format of the data, several functions in R were written.

The variables which relate to the most recent bid, before the time of the cut, are prefixed

with ”p ”, while the variables relating to the future, soonest, bid are prefixed with ”f ”

(although these were not used in the estimations).

timeBidsDensityF was generated from the whole dataset, before the sub-setting was

done. There is a substantial variability in bids density on iPhone 4 auctions over the

time of data collection. The plot of bid density can be found in figure 3.1. In the variable

timeBidsDensityF the density, as seen on the y-axis, is scaled through multiplying by

1000000, so that the numbers included in the regressions are of a higher magnitude.

Bid density was the highest in the first days since the beginning of data collection,

which suggests that the interest in iPhone 4 was extremely high at the point when the

supply shortage in physical shops occurred first. The red line shows the fitted density

function, which after multiplying by 1000000 is used in the timeBidsDensityF variable.

In the regressions, timeBidsDensityF is the density at the time of the cut-off - so wither
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Figure 3.1: Bid Density Over the Time of Data Collection
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at the 12th or the 23rd hour of each auction.

The variable timeHourUntilNext, was constructed by subtracting the cut-off time,

which is 12 hours or 23 hours, from time of the soonest future bid in the auction. Given

that each auction is cut in the same place the expected time to the next bid is the same

for identical auctions. Conditional on the small differences between the auctions, and the

overall bid density, which are controlled for, the influence of dynamic variables on time

until the next bid is being tested.

3.12.4 Estimation

The hazard function is constructed from timeHourUntilNext, the time until the next

bid. And for calculating Cox Proportional Hazards Model R package ”survival” is used.

Controls include live bid at the time of the most recent bid, as well as number of current

bids and bidders.

The results from estimations on the subset of 16Gb Unlocked Phones in table 3.36

show that the dynamic variables such as current number of bidders and bids have a posi-
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tive impact on the hazard function - and therefore decrease the waiting time until the next

bid in auctions. In other subsets - tables 3.35, 3.33, and 3.34, the impact of current bid-

ders, although positive, is not significant. Results in all subsets show the negative impact

od current price on the hazard function. Inclusion of variables like number of concurrent

auctions, cNumberOfConcAll, cNumberOfConcM32, cNumberOfConcM16 and the

umber in the sequence of auctions, closingSeqAll, closingSeqM32, closingSeqM16, show

that the concurrent auctions influence bidding. In tables 3.37 different models including

interaction terms are used. Number of current bidders has a positive impact on hazard,

while current price has a negative impact. There are no prevailing effects repeated in all

the subsets in spite of the negative impact of price level found.

The results found show that in this case there are shortcomings of the survival anal-

ysis. Inclusion of the start date in the auction had a positive impact which suggests

that time trend could be important. Additionally, in survival analysis it is not possible

to distinguish between the effect of loyalty to the auction as well as other effects stem-

ming from bid history from the effect of auction dynamic characteristics to new bidders.

Everything works together and therefore no particular pattern can be found.

3.12.5 Conclusion

In conclusion, the survival analysis does not give clear answers as to the impact of dynamic

variables on bidding. The discrete choice model is more appropriate in the case the

interest is in the impact of dynamic auction aspects on decisions of new bidders. The

results from the survival analysis, though, show that concurrent auctions influence bids

in a given auction, and that the most important variable predicting the time until the

next bid is current price. Current number of bidders are found to have a significantly

positive impact on reduction of time until the next bid only in the subset of Unlocked 16

Gb Phones.
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Table 3.29: Survival Analysis Data: 1 day Auctions for 16Gb Phones

p aModel 16:299 32: 0
p aNetwork O2 :114 Unlocked:185
p aCondition New :299
p aStarL 1: 99 2: 57 3:143
p aStarLevel Turquoise:143 Yellow : 99 Blue : 57
p aReturns No :299
p aPostageFree No :299

p aPhotosPresent Yes :299
p aTotalPhotosLevels 1:227 2: 36 3: 20 , 4: 13 , 5: 2 , 6: 1
p aNonStock No : 77 Yes :222
p aPostto UK :299
p aExtras No :299

At 12th hour :

p bCurrentAuBidderLevels 0 :62 1 :27 5 :23 , 2 :22 , 3 :22 , (Other):71 , NA’s :72
p bAuctionBidLevels 1 : 29 3 : 18 4 : 18 , 5 : 17 , 6 : 16 , (Other):123 , NA’s : 78

mean median sd min max n
p bLiveBids 406.18 465.00 191.79 0.99 770.00 299.00
timeBidsDensityF 0.52 0.52 0.22 0.02 0.83 299.00
timeHourUntilNext 4.98 4.21 3.87 0.04 12.00 298.00
p bHourTimeWithin 7.68 8.92 3.74 0.15 12.00 221.00
p bMinTimeWithin 461.04 534.95 224.41 9.30 719.82 221.00
f bHourTimeWithin 16.98 16.21 3.87 12.04 24.00 298.00
f bMinTimeWithin 1018.81 972.34 232.38 722.10 1440.00 298.00
p bCurrentAuBidder 3.24 3.00 3.12 0.00 12.00 227.00
p bAuctionBid 8.43 6.00 7.07 1.00 42.00 221.00

At 23rd hour :

p bCurrentAuBidderLevels 3 : 25 2 : 21 0 : 20 , 5 : 18 , 8 : 18 , (Other):125 , NA’s : 72
p bAuctionBidLevels 2 : 21 3 : 17 4 : 17 , 5 : 14 , 8 : 13 , (Other):188 , NA’s : 29

mean median sd min max n
p bLiveBids 569.30 575.01 104.92 0.99 770.00 299.00
timeBidsDensityF 0.52 0.50 0.23 0.02 0.83 299.00
timeHourUntilNext 0.56 0.60 0.34 0.01 1.00 252.00
p bHourTimeWithin 20.48 21.76 3.40 1.73 23.00 270.00
p bMinTimeWithin 1228.54 1305.51 203.84 103.80 1379.93 270.00
f bHourTimeWithin 23.56 23.60 0.34 23.01 24.00 252.00
f bMinTimeWithin 1413.64 1415.84 20.17 1380.43 1440.00 252.00
p bCurrentAuBidder 6.01 6.00 4.16 0.00 18.00 227.00
p bAuctionBid 12.19 11.00 8.67 1.00 47.00 270.00

Number of auctions: 299
Number of Sellers: 239

Number of auctions with no more bids after 12H 1
Number of auctions with no more bids after 23H 47
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Table 3.30: Survival Analysis Data: 1 day auctions for 32Gb Phones

p aModel 16: 0 32:202
p aNetwork O2 : 88 Unlocked:114
p aCondition New :202
p aStarL 1:53 2:54 3:95
p aStarLevel Turquoise:95 Blue :54 Yellow :53
p aReturns No :202
p aPostageFree No :202
p aPhotosPresent Yes :202
p aTotalPhotosLevels 1:121 2: 38 3: 27 , 4: 13 , 5: 2 , 6: 1
p aNonStock No : 54 Yes :148
p aPostto UK :202
p aExtras No :202 Yes : 0

At 12th hour :

p bCurrentAuBidderLevels 0 :47 1 :21 4 :21 , 3 :15 , 2 :14 , (Other):41 , NA’s :43
p bAuctionBidLevels 1 :22 2 :15 3 :15 , 8 :13 , 7 :12 , (Other):71 , NA’s :54

mean median sd min max n
p bLiveBids 513.23 599.00 210.19 0.99 900.00 202.00
timeBidsDensityF 0.49 0.50 0.21 0.01 0.83 202.00
timeHourUntilNext 5.11 4.37 3.83 0.00 12.00 198.00
p bHourTimeWithin 7.62 8.52 3.48 0.07 11.98 148.00
p bMinTimeWithin 456.90 510.92 208.87 4.05 719.02 148.00
f bHourTimeWithin 17.11 16.37 3.83 12.00 24.00 198.00
f bMinTimeWithin 1026.62 982.24 229.60 720.18 1440.00 198.00
p bCurrentAuBidder 2.96 2.00 2.98 0.00 13.00 159.00
p bAuctionBid 7.21 6.00 6.05 1.00 29.00 148.00

At 23rd hour :

p bCurrentAuBidderLevels 6 :22 2 :20 3 :16 , 1 :15 , 8 :13 , (Other):73 , NA’s :43
p bAuctionBidLevels 1 : 17 3 : 16 9 : 15 , 5 : 13 , 7 : 13 , (Other):118 , NA’s : 10

mean median sd min max n
p bLiveBids 680.19 690.00 111.97 91.00 983.99 202.00
timeBidsDensityF 0.49 0.49 0.23 0.01 0.83 202.00
timeHourUntilNext 0.56 0.58 0.33 0.02 1.00 163.00
p bHourTimeWithin 20.14 21.62 4.14 1.52 23.00 192.00
p bMinTimeWithin 1208.29 1297.41 248.37 91.20 1379.73 192.00
f bHourTimeWithin 23.56 23.58 0.33 23.02 24.00 163.00
f bMinTimeWithin 1413.64 1414.80 20.09 1381.33 1440.00 163.00
p bCurrentAuBidder 5.56 5.00 3.80 0.00 16.00 159.00
p bAuctionBid 9.81 8.00 7.39 1.00 34.00 192.00

Number of auctions: 202
Number of Sellers: 150

Number of auctions with no more bids after 12H 4
Number of auctions with no more bids after 23H 39
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Table 3.31: Survival Analysis Data: 1 day Unlocked 16 Gb Phones auctions

p aModel 16:185 32: 0
p aNetwork O2 : 0 Unlocked:185
p aCondition New :185
p aStarL 1:58 2:38 3:89
p aStarLevel Turquoise:89 Yellow :58 Blue :38
p aReturns No :185
p aPostageFree No :185
p aPhotosPresent Yes :185
p aTotalPhotosLevels 1:140 2: 26 3: 13 , 4: 5 , 6: 1
p aNonStock No : 45 Yes :140
p aPostto UK :185 (Other): 0
p aExtras No :185

At 12th hour :

p bCurrentAuBidderLevels 0 :31 2 :17 5 :17 , 1 :15 , 4 :15 , (Other):46 , NA’s :44
p bAuctionBidLevels 1 :17 3 :13 6 :13 , 7 :12 , 4 :11 , (Other):78 NA’s :41

mean median sd min max n
p bLiveBids 423.20 499.00 203.43 0.99 725.00 185.00
timeBidsDensityF 0.59 0.64 0.22 0.02 0.83 185.00
timeHourUntilNext 4.68 3.49 3.77 0.04 12.00 185.00
p bHourTimeWithin 7.73 8.89 3.65 0.15 12.00 144.00
p bMinTimeWithin 463.72 533.50 219.17 9.30 719.82 144.00
f bHourTimeWithin 16.68 15.49 3.77 12.04 24.00 185.00
f bMinTimeWithin 1001.00 929.27 226.24 722.10 1439.80 185.00
p bCurrentAuBidder 3.58 3.00 3.19 0.00 12.00 141.00
p bAuctionBid 8.87 7.00 7.55 1.00 42.00 144.00

At 23rd hour :

p bCurrentAuBidderLevels 3 :17 2 :13 6 :12 , 1 :11 , 9 :11 , (Other):77 , NA’s :44
p bAuctionBidLevels 2 : 14 3 : 14 4 : 11 , 13 : 10 , 1 : 9 , (Other):117 , NA’s : 10

mean median sd min max n
p bLiveBids 594.07 603.00 112.33 0.99 770.00 185.00
timeBidsDensityF 0.60 0.64 0.22 0.02 0.83 185.00
timeHourUntilNext 0.52 0.53 0.33 0.01 1.00 153.00
p bHourTimeWithin 20.25 21.56 3.74 1.73 23.00 175.00
p bMinTimeWithin 1215.29 1293.80 224.60 103.80 1379.93 175.00
f bHourTimeWithin 23.52 23.53 0.33 23.01 24.00 153.00
f bMinTimeWithin 1411.47 1411.77 20.00 1380.75 1439.97 153.00
p bCurrentAuBidder 6.40 6.00 4.15 0.00 18.00 141.00
p bAuctionBid 12.50 11.00 9.22 1.00 47.00 175.00

Number of auctions: 185
Number of Sellers: 146

Number of auctions with no more bids after 12H 0
Number of auctions with no more bids after 23H 32
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Table 3.32: Survival Analysis Data: 1 day Unlocked 32 Gb Phones auctions

p aModel 16: 0 32:114
p aNetwork O2 : 0 Unlocked:114
p aCondition New :114 (Other): 0
p aStarL 1:22 2:36 3:56
p aStarLevel Turquoise:56 Blue :36 Yellow :22
p aReturns No :114
p aPostageFree No : 114
p aPhotosPresent Yes : 114
p aTotalPhotosLevels 1:68 2:24 3,4,5 or 6 : 22
p aNonStock No : 28 Yes : 86
p aPostto UK :114 (Other): 0
p aExtras No : 114

At 12th hour :

p bCurrentAuBidderLevels 0 :29 1 :13 3 :10 , 4 : 8 , 5 : 7 , (Other):20 , NA’s :27
p bAuctionBidLevels 1 :14 3 :10 7 : 8 , 2 : 7 , 4 : 7 , (Other):36 , NA’s :32

mean median sd min max n
p bLiveBids 531.70 600.00 222.92 0.99 900.00 114.00
timeBidsDensityF 0.54 0.62 0.22 0.01 0.83 114.00
timeHourUntilNext 4.76 3.50 3.72 0.06 12.00 114.00
p bHourTimeWithin 7.93 8.57 3.11 0.07 11.98 82.00
p bMinTimeWithin 475.85 514.16 186.86 4.05 719.02 82.00
f bHourTimeWithin 16.76 15.50 3.72 12.06 24.00 114.00
f bMinTimeWithin 1005.61 929.94 223.32 723.37 1439.93 114.00
p bCurrentAuBidder 2.70 2.00 2.93 0.00 11.00 87.00
p bAuctionBid 6.90 5.00 5.65 1.00 22.00 82.00

At 23rd hour :

p bCurrentAuBidderLevels 6 :14 2 :12 3 :12 , 1 : 8 ,5 : 6 , (Other):35 , NA’s :27
p bAuctionBidLevels 3 :11 1 : 9 5 : 8 , 9 : 8 , 2 : 7 , (Other):67 , NA’s : 4

mean median sd min max n
p bLiveBids 711.12 710.00 127.36 91.00 983.99 114.00
timeBidsDensityF 0.55 0.63 0.24 0.01 0.83 114.00
timeHourUntilNext 0.58 0.58 0.34 0.04 1.00 97.00
p bHourTimeWithin 20.75 22.03 3.41 2.27 22.99 110.00
p bMinTimeWithin 1245.03 1321.51 204.38 136.50 1379.43 110.00
f bHourTimeWithin 23.58 23.58 0.34 23.04 24.00 97.00
f bMinTimeWithin 1414.69 1415.05 20.15 1382.45 1439.93 97.00
p bCurrentAuBidder 5.62 5.00 3.98 0.00 16.00 87.00
p bAuctionBid 9.65 8.00 7.22 1.00 33.00 110.00

Number of auctions: 114
Number of Sellers: 87

Number of auctions with no more bids after 12H 0
Number of auctions with no more bids after 23H 17
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Appendix

Table 4.1: List of Variables

variable name short description

aCondition Condition of the auctioned object: e.g. ”New”, ”Used”

aDuration Duration of the auction

aEnded Date and time the auction has ended

aExtras Indicator variable: 1 = extras included with the auc-

tioned object, 0 otherwise

aMaxBid The amount of the highest bid in the auction

aModel Model of iPhone 4 in the auction: e.g. ”16”, ”32”

aMsDuration Auction duration in milliseconds

aNetwork Network of the auctioned phone: e.g. ”Unlocked”, ”O2”

aNonStock Indicator variable : 1 = there are non-stock photos in

the auction, 0 otherwise

aNonstockPhotos Number of non-stock photos

aPositiveFeed The number of points resulting from the feed that the

buyers have given to the given seller

aPostage Price of postage

aPostto Where to is the postage possible for the item: e.g. ”Uk”,

”EU”

aReturns Indicator variable: 1 = returns are accepted, 0 otherwise
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Table 4.1: List of Variables - cont.

variable name short description

aSeller Seller identifier

aStar The seller rating level, which is defined for positive feed

points, e.g. ”Blue”, ”Yellow”

aStarL The seller rating level, represented numerically, where 0

= lowest possible rating, 1 = first rating level, etc.

aStarLevel The seller rating level (factor variable), which is defined

for positive feed points, e.g. ”Blue”, ”Yellow”

aStartDate The date and time the auction has started

aStartPrice The starting price for the auction

aTotalBidders Total number of bidders in the auction

aTotalBids Total number of bids in the auction

aTotalPhotos Total number of photos in the auction

auction Auction identifier

aAvPercWithin Average percentage time of bids within the auction

aAvT imeT ilEnd Average time until the end of an auction of bids in the

auction

aAvUserAuctionBids Average number of bids per user in the auction

aTotalPhotosLevels Total number of photos in an auction (factor variable)

aTotalBiddersLevels Total number of bidders in an auction (factor variable)

aTotalBidsLevels Total number of bid in an auction (factor variable)

aDurationLevels Auction duration (factor variable)

aPostageFree Indicator variable: 1 = postage is free, 0 otherwise

aPhotosPresent Indicator variable : 1 = there are photos present for the

auction, 0 otherwise
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Table 4.1: List of Variables - cont.

variable name short description

aPrice The highest bLiveBid in an auction

bAmount Bid amount in pounds

bAuctionBid Bid number in an auction (counting of bids)

bBIN Identifier variable : 1 = the bid was placed with the

used of ”Buy it Now” option which results in auction

termination, 0 otherwise

bDayOW Day of week

bDayOfWeek Day of week

bF irstAuctionBid Indicator variable: 1 = the bid is the first bid in the

auction, 0 otherwise

bHourOfDay Hour of day

bIsMaxBid Indicator variable : 1 = the bid is a maximum bid in

the auction, 0 otherwise

bIsWinning Indicator variable : 1 = the bid is the winning bid, 0

otherwise

bLastAuctionBid Indicator variable: 1 = the bid is the last bid in the

auction, 0 otherwise

bMsTimeWithin Time within the auction counted in milliseconds

bPercWithin Percentage of time of the auction that has passed al-

ready

bT ime Date and time of the bid

bT imeT ilEnd Time left until the end of the auction (in milliseconds)

bLiveBids Live Bids

bLivePrice Live Price (previous most recent live bid in the auction)
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Table 4.1: List of Variables - cont.

variable name short description

bSecT imeWithin Time in seconds counted from the start of the auction

bMinT imeWithin Time in minutes counted from the start of the auction

bHourT imeWithin Time in hours counted from the start of the auction

bCurrentAuBidders Number of bidders currently in an auction

uAuctionBid User’s bid in an auction count

uAuctionNumber User’s auction number - count of auctions joined by the

user sorted increasingly by time

uAvAmount Average bid amount by user

uAvAuctionBids User’s average number of bids in an auction

uAvT imeT ilEnd Average time until the end of the auction of bids made

by the user

uBid User’s bid number, count of user’s bids sorted increas-

ingly by time

uLastAuctionBid Indicator variable: 1 = last bid in an auction by user

uNLR Indicator variable: 1 = the user was later found to be

unregistered on eBay, after the end of data collecting

period - this was found during the data collection pro-

cess

uNewAuction Indicator variable: 1 = first bid in an auction by a user

uNumbEbayWins Total number of eBay wins of the user

uTotalAuctionBids Total number of bids by the user in the auction

uTotalAuctions Total auctions joined by the user

uTotalBids Total bids recorded by the user

uTotalWins Total auction wins in the dataset by the user
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Table 4.1: List of Variables - cont.

variable name short description

uWinsSoFar Number of wins so far for a user: win count variable

user User (bidder) identifier

uMaxBid User’s maximum bid amount recorded

uLastBid Amount of user’s last bid recorded

uReverseAuctNumber Reverse auction count variable (counting starting from

the last auction joined by the user)

uNewAuctionBid Indicator variable: 1 = the bid is made by the user in a

new auction, 0 otherwise

timeBidsDensityF Variable representing density of bids made on all iPhone

4 auctions

nLastAuctPrice The price of the most recently finished auction, before

the bid placement, in which the same bidder partici-

pated

nLastAuctPriceModelNetw The price of the most recently finished auction, before

the bid placement, in which the same bidder partici-

pated conditional on that it was an auction for the same

model and network of the phone

nMean 1 The price of the most recently finished auction before

the bid placement

nMean 5 The average price of 5 most recently finished auctions

before the bid placement

nMean 10 The average price of 10 most recently finished auctions

before the bid placement
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Table 4.1: List of Variables - cont.

variable name short description

nMean 15 The average price of 15 most recently finished auctions

before the bid placement

Table 4.2: Full Dataset Statistics

mean sd min max n

aAvPercWithin 0.57 0.28 0 1.04 27648.00

aAvTimeTilEnd 90.42 99.58 0 865.84 27648.00

aAvUserAuctionBids 1.99 0.78 1.00 6.90 21377.00

aDuration 2.25 1.89 1.00 10.00 27648.00

aMaxBid 705.36 117.77 130.00 999.99 27648.00

aNonStock 0.65 0.48 0.00 1.00 27648.00

aNonstockPhotos 1.16 1.24 0.00 12.00 27108.00

aPositiveFeed 99.36 23.31 7.00 1650.00 27097.00

aPostage 5.77 2.46 0.00 9.00 27207.00

aStar 526.31 7027.80 0.00 155274.00 27648.00

aStarL 3.19 1.23 1.00 9.00 27648.00

aStartPrice 131.57 225.96 0.01 900.00 27648.00

aTotalBidders 9.99 4.00 1.00 28.00 27648.00

aTotalBids 19.82 10.01 1.00 69.00 27648.00

aTotalPhotos 1.55 1.06 0.00 12.00 27648.00

bAmount 435.01 254.73 0.01 999.99 27648.00

bLiveBids 395.05 257.90 0.01 999.99 27648.00
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Table 4.2: Full Dataset Statistics - cont.

mean sd min max n

bLivePrice 363.50 254.49 0.01 962.00 27648.00

bAuctionBid 10.31 8.09 1.00 69.00 27648.00

bLastMaxBid 0.09 0.28 0.00 1.00 27648.00

bPercWithin 0.57 0.43 0 1.04 27648.00

uAuctionBid 2.30 3.13 1.00 59.00 21377.00

uAuctionNumber 5.33 9.63 0.00 99.00 21377.00

uAvAmount 436.67 209.15 0.60 999.00 21377.00

uAvAuctionBids 2.58 2.54 1.00 30.50 21377.00

uAvTimeTilEnd 85.80 86.43 0.00 908.17 21377.00

uBid 11.20 26.81 1.00 346.00 21377.00

uNumbEbayWins 162.44 685.25 0 32311.00 21202.00

uTotalAuctionBids 3.61 5.15 1.00 59.00 21377.00

uTotalAuctions 10.11 16.22 1.00 100.00 21377.00

uTotalBids 22.21 46.09 1.00 354.00 21377.00

uTotalWins 1.26 3.39 0.00 38.00 21377.00

uWinsSoFar 0.56 1.78 0.00 28.00 21377.00

uMaxBid 704.49 251.44 0.99 999.99 27648.00

uLastBid 514.15 223.39 0.99 999.00 27648.00

uReverseAuctNumber 5.78 10.00 1.00 100.00 21377.00
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Figure 4.1: Bid placement.

4.1 Description of Ebay

The following section is aimed at explaining eBay rules for how the bids are placed as

well as how the information about current bids is displayed to those looking at open and

finished auctions or searching for an item.

4.1.1 Display of Bids during And After the Auction

EBay requires users to enter their bid, although the bidding is done on behalf of the

bidders in an automatic way. Only in the case the bidder places a small increment above

the current highest bid, eBay is not placing automatic bids before showing the real bid.

Bidders place the maximum they wish their bid to be increased to. The way the bids

are entered can be seen on Figure 4.1. On behalf of them, eBay makes automatic bids,

which can reach up to the maximum specified. Only once a bidder is outbid by someone

else, their real bid is displayed. After that, their bid plus a minimum increment on behalf

of the highest bidder is added. The highest bidder’s real bid is not displayed until they

are outbid (or their bid is not above the minimum increment).

The minimum increment amounts are fixed amounts by which the highest bidder’s

bid is increased from the second highest bidder’s bid. These amounts differ for certain

intervals, and are given on the eBay’s website.

After the auction is finished all the real bids together with their time of placement are
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Figure 4.2: Display of bids in a finished auction.
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Figure 4.3: Display of bids in a finished auction. Automatic bids included.
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displayed. An example auction bids as seen after the auction has finished can be seen

on Figure 4.2. The only bid that is not fully revealed is the highest bidder’s bid amount

but it can be certain that it is above their final bid displayed. The highest bidder’s bid

is displayed as the second highest bidder’s bid plus the increment, which is the amount

the winner needs to pay.

The times next to the bids displayed are the actual times when the bid was placed, not

when the automatic bid is placed on behalf of the bidder, which is why the bid times are

not sorted increasingly.

It is also possible to see the automatic bids made by eBay together with the real bids,

by pressing ”Show automatic bids” option. The automatic bids for the same example

auction can be seen on Figure 4.3.

The dataset included only the real bids (only the highest bid was not be fully revealed)

for iPhone 4 between 17th June 2010 and 7th August 2010.

During the auction, the bids are displayed in the same way as after the finished

auction. After clicking on an active auction all the bids are shown, and there is an option

to display automatic bids as well. Such information as current number of bids and bidders

is visible and displayed above the bids history. Current price is also an automatic bid on

behalf of the current highest bidder. An example of how this information is visible can

be seen on Figure 4.4. By default, bids are not sorted by the time of their placement, but

increasingly by amount - this is the result of auction rules, since the bid becomes visible

not at the time it is placed but at the time it becomes outbid by someone else.

4.1.2 Display of auctions

EBay website is a very popular in the UK place for buying new and used products which

can be sold by anyone - professionals and complete amateurs. Ebay was already very

popular in 2010, and the number of listings increased year by year since it’s introduction.

There are numerous categories of items on sale.

In order to buy a specific item the buyers may enter the item name in the search, or they
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Figure 4.4: Bids as displayed in an open auction.
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Figure 4.5: List of auctions as displayed on eBay.
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may look for the item by selecting categories and subcategories until finding the partic-

ular object. In the case the search is narrowed to one particular item, auctions for that

item are displayed in a form of a list together with basic information about each of the

auctions, as seen on Figure 4.5. It needs to be noted that thtere is a possibility to sponsor

an auction so that it appears on top of the search list in a form of an advertisement. All

the non-sponsored auctions are listed either by ”Best Match” key which is mainly based

on time remaining, or by one of the categories which can be ”Ending soonest”, ”Low-

est Price”, ”Highest Price”, ”Fewest bids”, ”Most bids”(Figure 4.6). The ”Best Match”

sorting was introduced in 2008, in order to create different default sorting for auctioned

objects as well as fixed price objects. For auctioned objects ”Best Match” is very similar

to ”Ending soonest”, although in some cases it may result in slightly different ordering

since some other aspects, in addition to time remaining, are added with lower weights to

this ordering key.

Each auction on the list is shortly summarized in a form of miniature page with a photo.

The information visible directly on this summary are current auction price, current num-

ber of bids, time left and postage amount as well as whether the item is marked as ”New”

or ”Pre-owned”. Other information such as seller name and rating level as well as current

number of bidders are displayed after clicking on a listing. It is possible to customize this

thumbnail to show seller information here as well (as seen on Figure 4.7)

4.1.3 iPhone 4

iPhone 4 was a long awaited release of an upgraded version of iPhone 3. It’s release date

was June 24th 2010 1. This version was only available in Black color, but there were two

possible memory sizes available: 16 and 32 Gb. There were many new features to this

smartphone in relation to the previous version, such as an additional camera facing to the

front, which allowed for the new introduced FaceTime video calls. Other improvements

1The dataset used in chapters 2 and 3 contained 8 auctions which started before the introduction
date of 24th June 2010, but all of them ended after that date (between 26th and 29th June 2010). There
were in total 22 bids placed before 24th June in these auctions.
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Figure 4.6: Options for sorting on the list of auctions.

Figure 4.7: Options for Information displayed on item thumbnail.
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were higher screen resolution that improved how all graphics were displayed. The release

was preceded with many pre-orders, which resulted in a temporary supply shortage in

the UK as well as in some other countries. In April 2011 a white version as well as other

memory sizes of iPhone 4 were introduced.

4.2 Table with main Theorems in Chapter 1

Table 4.3: Main Theorems in Chapter 1

Theorem, Summary

page

7, p. 52 The symmetric equilibrium bidding strategy for a type v-bidder in

period o and y of a sequential second-price auction with overlapping

generations of two-period-lived bidders

10, p. 56 For a sequential second price auction game described as above, there

exist a stationary Perfect Bayesian Equilibrium, and it is described

by strategies for each age of the bidders

11, p.63 Observed price pt−1 leads to an updating of the belief about the

probabilities of states A and B in t−1. The relation is monotonous

12, p. 63 n State A and B, an observation of the second highest bid (ob-

served price) above the threshold of young bids means that there

probability that an old bidder won is equal to 1.

15, p. 68 Depending on whether the observed price increases or decreases the

probability that an old bidder won, the probability of State B in

t+ 1 will follow the same direction.
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Table 4.3: Main Theorems in Chapter 1 - cont.

Theorem, Summary

page

16, p. 68 If the probability of State B in t is increased following a price

observation in t−1, then the probability of State B will also increase

for all the following periods

17, p. 69 Increased probability of state B in any time period t leads to an

increased probability of state B in the following period t+ 1.

18, p. 72 The update in probabilities of future states based on pt−1 is dimin-

ishing with time.

19, p. 72 The effect of update of future probabilities is decaying at a dimin-

ishing rate

21, p. 72 The effect of learning about future prices is proportional to the ef-

fect on probabilities of states. The expected price path will follow

proportionally and monotonously the same path as the expected

probability of State B: initially the change will be the highest in t

and after that it will start converging to equilibrium at a diminish-

ing rate with time.

29, p. 77 Overlapping generations model with 2-period lived bidders and one

3-period lived bidder, where bidders can only acquire information

about the price after their first period of activity, implies that the

bidder with 3-period lifespan will update their middle period bid

as a result of observed price in t− 1.
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Table 4.3: Main Theorems in Chapter 1 - cont.

Theorem, Summary

page

30, p. 77 In the overlapping generations model with bidders of different lifes-

pan, the condition that the same bidders are present at the informa-

tion acquisition period and the period about which learning occurs

is not a necessary condition for learning.

4.3 Diagrams showing data transformations
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Figure 4.8: Data Transformations for Estimations in Chapter II.

Initial Data

Usernames Identification

Generation of user and auction
dynamic variables : bLiveBids,

bLivePrice, bAuctionBid,bPercWithin,
uAuctionNumber,

uTotalAuctions, uTotalWins,
uReverseAuctNumber, uLastBid, etc.

Limit data to final bid of
each bidder in each auction

Generation of: nLastAuctPrice,
nLastAuctPriceModelNetw, nMean 1,

nMean 5, nMean 10, nMean 15

Limit data so that the final auction of
each bidder where the bid is uLastBid
is removed. Limit to those bids, where
nLastAuctPrice could be determined

(Alternatively nLastAuctPriceModelNetw
for more strict definition of previous period.)

Limit data to subsets: auction length 3
or 1, M16 and M32, Unlocked and O2
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Figure 4.9: Data Transformations for Estimations in Chapter III.

Initial Data

Usernames Identification

Generation of user and auction dynamic vari-
ables : bLiveBids, bLivePrice, bAuctionBid,

bHourT imeT ilEnd, uTotalAuctions,
uTotalWins, uReverseAuctNumber,

bCurrentAuBidders, etc.

Generation of unchosen concurrent
alternatives and bClosingSequence

Limit data to first bid of each bidder
and subsets: auction length 1, seller

rating level 1 to 3 or only 3rd, M16 or
M32, Unlocked or Unlocked and O2

Numbering of alternatives ac-
cording to time until the end

(soonest - alternative number 1)

Limit to choice sets with at least 4 al-
ternatives available and limit to 4
first alternatives in each choice set

272




