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ABSTRACT 

We conduct a large-scale genetic association analysis of educational attainment in a sample of 

~1.1 million individuals and identify 1,271 independent genome-wide-significant SNPs. For the 

SNPs taken together, we found evidence of heterogeneous effects across environments. The SNPs 

implicate genes involved in brain-development processes and neuron-to-neuron communication. 

In a separate analysis of the X chromosome, we identify 10 independent genome-wide-significant 

SNPs and estimate a SNP heritability of ~0.3% in both men and women, consistent with partial 

dosage compensation. A joint (multi-phenotype) analysis of educational attainment and three 

related cognitive phenotypes generates polygenic scores that explain 11-13% of the variance in 

educational attainment and 7-10% of the variance in cognitive performance. This prediction 

accuracy substantially increases the utility of polygenic scores as tools in research. 
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INTRODUCTION 

Educational attainment (EA) is moderately heritable1 and an important correlate of many 

social, economic, and health outcomes2,3. Because of its relationship with many health outcomes, 

measures of EA are available in most medical data sets. Partly for this reason, EA was the focus 

of the first large-scale genome-wide association study (GWAS) of a social-science phenotype4 and 

has continued to serve as a “model phenotype” for behavioral traits (analogous to height for 

medical traits). Genetic associations with EA identified via GWAS have been used in follow-up 

work examining biologizcal5 and behavioral mechanisms6,7 and genetic overlap with health 

outcomes8,9. 

The largest (N = 293,723) GWAS of EA to date identified 74 approximately independent 

SNPs at genome-wide significance (hereafter, lead SNPs) and reported that a 10-million-SNP 

linear predictor (hereafter, polygenic score) had an out-of-sample predictive power of 3.2%10. 

Here, we expand the sample size to over a million individuals (N = 1,131,881). We identify 1,271 

lead SNPs. In a subsample (N = 694,894), we also conduct genome-wide association analyses of 

variants on the X chromosome, identifying ten lead SNPs. 

The dramatic increase in our GWAS sample size enables us to conduct a number of 

informative additional analyses. For example, we show that the lead SNPs have heterogeneous 

effects, and we perform within-family association analyses that probe the robustness of our results. 

Our biological annotation analyses, which focus on the results from the autosomal GWAS, 

reinforce the main findings from earlier GWAS in smaller samples, such as the role of many of 

the prioritized genes in brain development. However, the newly identified SNPs also lead to 

several new findings. For example, they strongly implicate genes involved in almost all aspects of 

neuron-to-neuron communication. 

We found that a polygenic score derived from our results explains around 11% of EA 

variance. We also report additional GWAS of three phenotypes that are highly genetically 

correlated with EA: cognitive (test) performance (N = 257,841), self-reported math ability (N = 

564,698), and hardest math class completed (N = 430,445). We identify 225, 618, and 365 lead 

SNPs, respectively. When we jointly analyze all four phenotypes using a recently developed 

method11, we found that the explanatory power of polygenic scores based on the resulting summary 

statistics increases, to 12% for EA and 7-10% for cognitive performance. 

 

RESULTS 

Primary GWAS of EduYears 

In our primary GWAS, we study EA, which is measured as number of years of schooling 

completed (EduYears). All association analyses were performed at the cohort level in samples 



restricted to European-descent individuals. We applied a uniform set of quality-control procedures 

to all cohort-level results. Our final sample-size-weighted meta-analysis produced association 

statistics for ~10 million SNPs from phase 3 of the 1000 Genomes Project12. 

The quantile-quantile plot of the meta-analysis (Supplementary Figure 1) exhibits 

substantial inflation (λGC = 2.04). According to our LD Score regression13 estimates, only a small 

share (~5%) of this inflation is attributable to bias (Supplementary Figure 2, Supplementary 

Table 1). We used the estimated LD Score intercept (1.11) to generate inflation-adjusted test 

statistics. 

Fig. 1 shows the Manhattan plot of the resulting P values. We identified 1,271 approximately 

independent (pairwise r2 < 0.1) SNPs at genome-wide significance (P < 510-8), 995 of which 

remain if we adopt the stricter significance threshold (P < 110-8) proposed in a recent study 

(Supplementary Table 2, see Online Methods for a description of the clumping algorithm). The 

Supplementary Note and Supplementary Table 3 reports the results from a conditional-joint 

analysis14. 

We used a Bayesian statistical framework to calculate winner’s-curse-adjusted posterior 

distributions of the effect sizes of the lead SNPs (Online Methods). We found that the median 

effect size of the lead SNPs corresponds to 1.7 weeks of schooling per allele; at the 5th and 95th 

percentiles, 1.1 and 2.6 weeks, respectively. We also examined the replicability of the 162 single-

SNP associations (P < 510-8) reported from the combined discovery and replication sample (N = 

405,073) of the largest previous study10. In the subsample of our data (N = 726,808) that did not 

contribute to the earlier study’s analyses, the SNPs replicate at a rate that closely matches 

theoretical projections derived from our Bayesian framework (Supplementary Figure 3). 

 

Within-Family Association Analyses 

We conducted within-family association analyses in four sibling cohorts (22,135 sibling 

pairs) and compared the resulting estimates to those from a meta-analysis that excluded the siblings 

(N = 1,070,751). The latter association statistics were adjusted for stratification bias using the LD 

Score intercept. Fig. 2 shows the observed sign concordance for three sets of approximately 

independent SNPs, selected using P value cutoffs of 5×10−3, 5×10−5, and 5×10−8. The concordance 

is substantially greater than expected by chance but weaker than predicted by our Bayesian 

framework, even after we extend the framework to account for inflation in GWAS coefficients due 

to assortative mating. In a second analysis based on all SNPs, we estimate that within-family effect 

sizes are roughly 40% smaller than GWAS effect sizes and that our assortative-mating adjustment 

explains at most one third of this deflation. (For comparison, when we apply the same method to 



height, we found that the assortative-mating adjustment fully explains the deflation of the within-

family effects.)  

Supplementary Note contains analyses and discussion of the possible causes of the 

remaining deflation we observe for EduYears. While the evidence is not conclusive, it suggests 

that the GWAS effect-size estimates may be biased upward by correlation between EA and a 

rearing environment conducive to EA. Consistent with this hypothesis, a recent paper15 reports 

that a polygenic score for EduYears based entirely on parents’ non-transmitted alleles is 

approximately 30% as predictive as a polygenic score based on transmitted alleles. (For height, 

the analogous estimate is only 6%.) The non-transmitted alleles affect parents’ EA but can only 

influence the child’s EA indirectly. If greater parental EA positively influences the rearing 

environment, then GWAS that control imperfectly for rearing environment will yield inflated 

estimates. The LD Score regression intercept does not capture this bias because the bias scales 

with the LD Score in the same way as a direct genetic effect. 

 

Heterogeneous Effect Sizes 

Because educational institutions vary across places and time, the effects of specific SNPs may 

vary across environments. Consistent with such heterogeneity, for the lead SNPs, we reject the 

joint null hypothesis of homogeneous cohort-level effects (P value = 9.710-12; Supplementary 

Figure 4). Moreover, we found that the inverse-variance-weighted mean genetic correlation of 

EduYears across pairs of cohorts in our sample is 0.72 (SE = 0.14), which is statistically 

distinguishable from one (P value = 0.03).  

Our finding of an imperfect genetic correlation replicates earlier results from smaller 

samples16,17. This imperfect genetic correlation is an important factor to consider in power 

calculations and study design. In the Supplementary Note, we report exploratory analyses that 

aim to identify specific sources of measurement heterogeneity or gene-environment interaction 

that may explain the imperfect genetic correlation. Unfortunately, the estimates are noisy, and the 

only strong finding was that SNP heritability was smaller in cohorts whose measure of EduYears 

is derived from questions with fewer response categories. 

 

X-Chromosome GWAS Results 

We supplemented our autosomal analyses with association analyses of SNPs on the X 

chromosome. We first conducted separate association analyses of males (N = 152,608) and females 

(N = 176,750) in the UK Biobank. We found a male-female genetic correlation close to unity. We 

also found nearly identical SNP heritability estimates for men and women, which is consistent 

with partial dosage compensation (i.e., on average the per-allele effect sizes are smaller in women) 



and implies that any contribution of common variants on the X chromosome to sex differences in 

the normal-range variance of cognitive phenotypes18 is quantitatively negligible. 

Next, we conducted a large (N = 694,894) meta-analysis of summary statistics from mixed-

sex analyses (Supplementary Figure 5). We identified 10 lead SNPs and estimated a SNP 

heritability due to the X chromosome of ~0.3% (Supplementary Table 4). This heritability is 

lower than that expected for an autosome of similar length (Supplementary Figure 6, 

Supplementary Table 5). We cannot distinguish whether the lower heritability is due to smaller 

per-allele effect sizes for SNPs on the X chromosome or to the combination of haploidy in males 

and (partial) X-inactivation in females. 

 

Biological Annotation 

For biological annotation, we focus on the results from the autosomal meta-analysis of 

EduYears. Across an extensive set of analyses (see Supplementary Figure 7 for a flowchart), all 

major conclusions from the largest previous GWAS of EduYears10 continue to hold but are 

statistically stronger. For example, we applied the bioinformatics tool DEPICT19 and found that, 

relative to other genes, genes near our lead SNPs are overwhelmingly enriched for expression in 

the central nervous system (Fig. 3A, Supplementary Table 6).  

There are also many novel findings associated with the large number of genes newly  

implicated by our analyses: At the standard false discovery rate (FDR) threshold of 5%, the 

bioinformatics tool DEPICT19 prioritizes 1,838 genes (Supplementary Table 7), a tenfold 

increase relative to the DEPICT results from an earlier GWAS of EduYears10. In what follows, we 

distinguish between the 1,703 “newly prioritized” genes and the 135 “previously prioritized” 

genes. 

The Supplementary Note contains an extensive analysis of many of the newly prioritized 

genes and their brain-related functions. Here we highlight two especially noteworthy regularities. 

First, whereas previously prioritized genes exhibited especially high expression in the brain 

prenatally, newly prioritized genes show elevated levels of expression both pre- and postnatally 

(Fig. 3B). Many of the newly prioritized genes encode proteins that carry out online brain functions 

such as neurotransmitter secretion, the activation of ion channels and metabotropic pathways, and 

synaptic plasticity (Supplementary Figure 8).  

Second, even though glial cells are at least as numerous as neurons in the human brain20, gene 

sets related to glial cells (astrocytes, myelination, and positive regulation of gliogenesis) are absent 

from those identified as positively enriched (Supplementary Table 8). Furthermore, using 

stratified LD Score regression21, we estimated relatively weak enrichment of genes highly 

expressed in glial cells (Supplementary Table 9): 1.08-fold for astrocytes (P = 0.07) and 1.09-



fold for oligodendrocytes (P = 0.06) versus 1.33-fold for neurons (P = 2.8910-11). Because 

myelination increases the speed with which signals are transmitted along axons22, the absence of 

enrichment of genes related to glial cells may weigh against the hypothesis that differences across 

people in cognition are driven by differences in transmission speed. 

The results also raise a number of possible targets for functional studies. Among SNPs within 

50 kb of lead SNPs, 127 of them are identified by the fine-mapping tool CAVIARBF23 as likely 

causal SNPs (posterior probability > 0.9) (Supplementary Table 10). Eight of these are non-

synonymous, and one of these (rs61734410) is located in CACNA1H (Supplementary Figure 9), 

which encodes the pore-forming subunit of a voltage-gated calcium channel that has been 

implicated in the trafficking of NMDA-type glutamate receptors24. 

 

Polygenic Prediction 

Polygenic predictors derived from earlier GWAS of EduYears have proven to be a valuable 

tool for researchers, especially in the social sciences6,7. We constructed polygenic scores for 

European-ancestry individuals in two prediction cohorts: the National Longitudinal Study of 

Adolescent to Adult Health (Add Health, N = 4,775), a representative sample of American 

adolescents; and the Health and Retirement Study (HRS, N = 8,609), a representative sample of 

Americans over age 50. We measure prediction accuracy by the “incremental R2”: the gain in 

coefficient of determination (R2) when the score is added as a covariate to a regression of the 

phenotype on a set of baseline controls (sex, birth year, their interaction, and 10 principal 

components of the genetic relatedness matrix).  

All scores are based on results from a meta-analysis that excluded the prediction cohorts. Our 

first four scores were constructed from sets of LD-pruned SNPs associated with EduYears at 

various P-value thresholds: 510-8, 510-5, 510-3, and 1 (i.e., all SNPs). In both cohorts, the 

predictive power is greater for scores constructed with less stringent thresholds (Supplementary 

Figure 10). The sample-size-weighted mean incremental R2 increases from 3.2% at P < 510-8 to 

9.4% at P ≤ 1. Our fifth score was generated from HapMap3 SNPs using the software LDpred25. 

Rather than dropping SNPs in LD with each other, LDpred is a Bayesian method which weights 

each SNP by (an approximation to) the posterior mean of its conditional effect, given other SNPs. 

This score was the most predictive in both cohorts, with an incremental R2 of 12.7% in AddHealth 

and 10.6% in HRS (and a sample-size weighted average of 11.4%).  

To put the predictive power of this score in perspective, Fig. 4A shows the mean college 

completion rate by polygenic-score quintile. The difference between the bottom and top quintiles 

in Add Health and HRS is, respectively, 45 and 36 percentage points (see Supplementary Figure 

11 for analogous analyses of high school completion and grade retention). Fig. 4B compares the 



incremental R2 of the score to that of standard demographic variables. The score is a better 

predictor of EduYears than household income and a worse predictor than mother’s or father’s 

education. Controlling for all the demographic variables jointly, the score’s incremental R2 is 4.6% 

(Supplementary Figure 12). 

We also found that the score has substantial predictive power for a variety of other cognitive 

phenotypes measured in the prediction cohorts (Supplementary Figure 13). For example, it 

explains 9.2% of the variance in overall grade point average in Add Health. 

Because the discovery sample used to construct the score consisted of individuals of European 

ancestry, we would not expect the predictive power of our score to be as high in other ancestry 

groups7,26,27. Indeed, when our score is used to predict EduYears in a sample of African-Americans 

from the HRS (N = 1,519), the score only has an incremental R2 of 1.6%, implying an attenuation 

of 85%. The Supplementary Note shows that this amount of attenuation is typical of what has 

been reported in previous studies. 

Related Cognitive Phenotypes and MTAG 

We performed genome-wide association analyses of three complementary phenotypes: 

cognitive performance (N = 257,841), self-reported math ability (Math Ability, N = 564,698), and 

highest math class taken (Highest Math, N = 430,445). For cognitive performance, we meta-

analyzed published results from the COGENT Consortium28 with results based on new analyses 

of the UKB, as did Davies et al.29. For the two math phenotypes, we studied new genome-wide 

analyses in samples of research participants from 23andMe. We identified 225, 618, and 365 

genome-wide significant SNPs for Cognitive Performance, Math Ability, and Highest Math, 

respectively (Supplementary Figures 14-16, Supplementary Tables 11-13). 

We conducted a multi-trait analysis of EduYears and our supplementary phenotypes to 

improve polygenic prediction accuracy. These phenotypes are well suited to joint analysis because 

their pairwise genetic correlations are high, in all cases exceeding 0.5 (Supplementary Table 14). 

We applied a recently developed method, Multi-Trait Analysis of GWAS, or MTAG11, to 

summary statistics for the four phenotypes from meta-analyses that exclude the prediction cohorts. 

For all four phenotypes, MTAG increases the number of lead SNPs identified at genome-wide 

significance (Supplementary Figures 17-20, Supplementary Table 15). Fig. 4C shows the 

incremental R2 for the polygenic scores based on GWAS and MTAG association statistics (but 

otherwise constructed using identical methods) when the target phenotype is either EduYears (left 

panel) or Cognitive Performance (right panel). 

In Add Health, where our measure of cognitive performance is the respondent’s score on a 

test of verbal cognition, the incremental R2s of the GWAS and MTAG scores are 5.1% and 6.9%, 

respectively. To obtain a better measure prediction accuracy for cognitive performance, we used 

an additional validation cohort, the Wisconsin Longitudinal Study (WLS), which administered a 



cognitive test with excellent retest reliability and psychometric properties similar to those used in 

our discovery GWAS of cognitive performance. In the WLS, the MTAG score predicts 9.7% of 

the variance in Cognitive Performance, a substantial improvement over the 7.0% predicted by the 

GWAS score and approximately double the prediction accuracy reported in three recent GWASs 

of cognitive performance29–31.  

 

DISCUSSION 

The results of this study illustrate what the advocates of GWAS anticipated: as sample sizes 

get large, thousands of lead SNPs will be identified, and polygenic predictors will attain non-trivial 

levels of predictive power. However, theoretical projections that failed to consider heterogeneity 

of effect sizes were optimistic4. Our and others’ findings16,17 suggest that imperfect genetic 

correlation across cohorts will be the norm for phenotypes that, like EA, are environmentally 

contingent. 

For research at the intersection of genetics and neuroscience, the set of 1,271 lead SNPs we 

identify is a treasure trove for future analyses. For research in social science and epidemiology, 

the polygenic scores we construct—which explain 11-13% and 7-10% of the variance of EA and 

cognitive performance, respectively—will prove useful across at least three types of applications.  

First, by examining associations between the scores and high-quality measures of 

endophenotypes, researchers may be able to disentangle the mechanisms by which genetic factors 

affect EA and cognitive phenotypes. Such studies are already being conducted with polygenic 

scores from earlier GWAS of EA6,7, but they can now be well powered in samples as small as 

those from laboratory experiments. For example, if our polygenic score explains 10% of the 

variance in an endophenotype, then its effect can be detected at a 5% significance threshold with 

80% power in a sample of only 75 individuals. Second, the polygenic scores can be used as control 

variables in randomized controlled trials (RCTs) of interventions that aim to improve academic 

and cognitive outcomes. Given the scores’ current levels of predictive power, such use can now 

generate non-trivial gains in statistical power for the RCT. For example, if adding the polygenic 

score to the set of control variables in an RCT increases their joint explanatory power from 10% 

to 20%, then the gain in power from including the polygenic score is equivalent to increasing the 

RCT’s sample size by 11% (for such calculations, see the SOM of Rietveld et al.4). Third, the 

polygenic scores can be used as a tool for exploring gene-environment interactions32, which are 

known to be important for genetic effects on educational attainment and cognitive performance1,33. 

Our results also highlight two caveats to the use of the polygenic scores in research. First, our 

within-family analyses suggest that GWAS estimates may overstate the causal effect sizes: if EA-

increasing genotypes are associated with parental EA-increasing genotypes, which are in turn 

associated with rearing environments that promote EA, then failure to control for rearing 



environment will bias GWAS estimates. If this hypothesis is correct, some of the predictive power 

of the polygenic score reflects environmental amplification of the genetic effects. Without controls 

for this bias, it is therefore inappropriate to interpret the polygenic score for EA as a measure of 

genetic endowment. 

Second, we found that our score for EA has much lower predictive power in an African-

American sample than in a European-ancestry sample, and we anticipate that the score would also 

have reduced predictive power in other non-European-ancestry samples. Therefore, until 

polygenic scores are available that have as much predictive power in other ancestry groups, the 

score will be most useful in research that is focused on European-ancestry samples. 
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Fig. 1. Manhattan Plot for GWAS of EduYears (N = 1,131,881). P values and the mean 𝜒2 

shown in figure are based on inflation-adjusted test statistics. The x-axis is chromosomal position, 

and the y-axis is the significance on a –log10 scale. The dashed line marks the threshold for 

genome-wide significance (P = 5×10-8). 

 

Fig 2. Sign Concordance in Within-Family Association Analyses. The set of LD-pruned SNPs 

is limited to SNPs with (a) P < 5×10−3, (b) P < 5×10−5, or (c) P < 5×10−8. Each panel compares 

the observed sign concordance between within-family and GWAS estimates to the distributions 

expected (i) by chance alone (pink); (ii) according to a Bayesian framework that adjusts the GWAS 

estimates for bias due to winner’s curse (green); and (iii) according to the same framework with 

an additional adjustment for bias due to assortative mating (blue). These results are based on a 

GWAS sample size of 1,070,751 individuals and a within-family sample of 22,135 sibling pairs 

(44,270 individuals). 

 

Fig. 3. Tissue-specific expression of genes in DEPICT-defined loci. (a) We took microarray 

measurements from the Gene Expression Omnibus19 and determined whether the genes 

overlapping EduYears-associated loci (as defined by DEPICT) are significantly overexpressed 

(relative to genes in random sets of loci) in each of 180 tissues/cell types. These types are grouped 

in the figure by Medical Subject Headings (MeSH) first-level term. The y-axis is the one-sided P 

value from DEPICT on a –log10 scale. The 28 dark bars correspond to tissues/cell types in which 

the genes are significantly overexpressed (FDR < 0.01), including all 22 classified as part of the 

central nervous system (see Supplementary Table 6 for identifiers of all tissues/cell types). (b) 

Whereas genes prioritized by DEPICT in a previous analysis based on a smaller sample10 tend to 

be more strongly expressed in the brain prenatally (red curve), the 1,703 newly prioritized genes 

show a flat trajectory of expression across development (blue curve). Both groups of DEPICT-

prioritized genes show elevated levels of expression relative to protein-coding genes that are not 

prioritized (gray curve). Analyses were based on RNA-seq data from the BrainSpan 

Developmental Transcriptome34. These results are based on the full GWAS sample of 1,131,881 

individuals. Error bars represents 95% confidence intervals. 

 

Fig. 4. Prediction Accuracy. (a) Mean prevalence of college completion by EduYears PGS 

quintile. Error bars show the 95% confidence interval for the mean. (b) Incremental R2 of the 

EduYears PGS compared to that of other variables. (c) Incremental R2 of the PGS for EduYears 

and Cognitive Performance constructed from the respective GWAS or MTAG summary statistics. 

Error bars for the R2 values show bootstrapped 95% confidence intervals with 1000 iterations each. 

Sample sizes are N = 4,775 for Add Health and N = 8,609 for HRS.



 

 

ONLINE METHODS 

This article is accompanied by a Supplementary Note with further details. 

 

Genome-wide association study meta-analyses. Our primary analysis extends the (combined 

discovery and replication) sample of a previous genome-wide association study (GWAS) of 

educational attainment10 from N = 405,072 to N = 1,131,881 individuals. We performed a sample-

size-weighted meta-analysis of 71 quality-controlled cohort-level results files using the METAL 

software35. The meta-analysis combines 59 cohort-level results files from the previous study with 

12 new results files: 8 from cohorts that were not included in the previous study10 and 4 from 

cohorts that updated their results in larger samples. 

All cohort-level analyses were restricted to European-ancestry individuals that passed the cohort’s 

quality control and whose EduYears was measured at an age of at least 30. The EduYears 

phenotype was constructed by mapping each major educational qualification that can be identified 

from the cohort’s survey measure to an International Standard Classification of Education 

(ISCED) category and imputing a years-of-education equivalent for each ISCED category. Details 

on cohort-level phenotype measures, genotyping, imputation, association analyses, and quality-

control filters are described in Supplementary Tables 16-19. 

We used the estimated intercept from LD Score regression13 to inflation-adjust the test statistics. 

We then used the clumping algorithm described below to determine the number of approximately 

independent SNPs identified at any given P value threshold. 

 

Clumping algorithm. Our clumping algorithm is iterative and has been used previously10. We 

describe it here for the case of identifying lead SNPs among the set of SNPs reaching P < 510-8; 

the algorithm is the same when determining sets of approximately independent SNPs for other P 

value thresholds. 

First, the SNP with the smallest P value in the pooled meta-analysis results is identified as the lead 

SNP of the first clump. Next, all SNPs in LD with the lead SNP are also assigned to this clump. 

SNPs are defined to be in LD with each other if they are on the same chromosome and the squared 

correlation of their genotypes is r2 > 0.1. To determine the second lead SNP and second clump, 

the first clump is removed, and the same steps are applied to the remaining SNPs. The process is 

repeated until no SNPs with P value below 5×10−8 remain. Each locus is defined by a lead SNP 

and the SNPs assigned to its clump. Hence, each lead SNP maps to exactly one locus, and each 

locus maps to exactly one lead SNP. 

We perform the clumping in Plink36. Note that we measure the LD between every pair of SNPs on 

each chromosome without regard to the physical distance between them. Therefore, if two SNPs 

on the same chromosome have pairwise r2 above 0.1, then they cannot both be lead SNPs. On the 

other hand, it is possible for two SNPs in close physical proximity both to be lead SNPs, provided 

their pairwise r2 is below 0.1. The Supplementary Note reports analyses of the sensitivity of the 

number of lead SNPs and loci to alternative definitions and to the choice of the reference file used 

to estimate LD. 

 

Conditional and joint multiple-SNP analysis (COJO). Given a P value threshold specified by 

the user, COJO14 is a method that identifies a set of SNPs such that, in a multivariate regression of 

the phenotype on all the SNPs in the set, every SNP has a P value below threshold. COJO uses the 



 

 

meta-analysis summary statistics together with LD estimates from a reference simple. Our COJO 

analysis was conducted using a reference sample of approximately unrelated individuals of 

European ancestry from UK Biobank. We specified the P value threshold 5 × 10-8.  The analyses 

were restricted to SNPs satisfying recommended quality-control filters. The Supplementary Note 

contains additional details. 

 

Bayesian framework for calculating winner’s-curse-adjusted posterior effect-size 

distributions. We assume that the marginal effect size of each SNP is drawn from the following 

mixture distribution: 

 
𝛽𝑗  ~ {

𝑁(0, 𝜏2) with probability 𝜋
0 otherwise,

  

where 𝜏2 is the effect-size variance for non-null SNPs and 𝜋 is the fraction of non-null SNPs in 

our data. We estimate the parameters 𝜏2 and 𝜋 by maximum likelihood. Given their values, the 

posterior distribution of SNP 𝑗 can be calculated from Bayes’ Rule. Relative to the GWAS effect 

estimate, the mean of the posterior distribution is shrunken toward zero (because zero is the mean 

of the prior distribution) and is not biased by the winner’s curse. Further details and a derivation 

of the likelihood function used in the maximum-likelihood estimation are provided on p. 59 in the 

Supplementary Note of a previous SSGAC study37. 

To calculate the 5th, 50th, and 95th percentile of the effect-size distribution of our lead SNPs, we 

simulated effect sizes from each lead SNP’s posterior distribution and identified the 5th, 50th, and 

95th percentiles of the complete set of simulated effect sizes. 

As described below, we also use this Bayesian framework in our GWAS and MTAG replication 

analyses and in our within-family analyses. 

 

Replication of lead SNPs from Okbay et al.’s combined-stage analysis. We conducted a 

replication analysis of the 162 lead SNPs identified at genome-wide significance in Okbay et al.’s10 

pooled (discovery and replication) meta-analysis (N = 405,073). Of the 162 SNPs, 158 pass 

quality-control filters in our updated meta-analysis. To examine their out-of-sample replicability, 

we calculated Z-statistics from the subsample of our data (N = 726,808) that was not included in 

Okbay et al. Let the Z-statistics of association from, respectively, Okbay et al., the new data, and 

our final EA3 meta-analysis, be denoted by Z1, Z2 and Z. Since our meta-analysis used sample-size 

weighting35, Z2 is implicitly defined by: 

𝑍 = √
𝑁1

𝑁
𝑍1 + √

𝑁2

𝑁
𝑍2, 

where SNP subscripts have been dropped and N’s are sample sizes. Because this formula holds 

when Z1 and Z2 are independent, the implicitly-defined Z2 is interpreted as the additional 

information contained in the new data. 

Of the 158 SNPs, we found that 154 have matching signs in the new data (for the remaining four 

SNPs, the estimated effect is never statistically distinguishable from zero at P < 0.10). Of the 154 

SNPs with matching signs, 143 are significant at P < 0.01, 119 are significant at P < 10-5, and 97 

are significant at P < 5×10-8. The replication results are shown graphically in Supplementary 

Figure 3. To help interpret these results, we used the Bayesian framework described above to 

calculate the expected replication record under the hypothesis that all 158 SNPs are true 



 

 

associations. The posterior distributions of the SNPs’ effect sizes are calculated using parameters 

estimated from Okbay et al.’s summary statistics: (�̂�2, �̂�) = (5.02 × 10−6, 0.33). 

 

Within-family analyses. We conducted within-family association analyses on a sample of 22,135 

sibling pairs from STR-Twingene, STR-SALTY, UKB, and WLS. For each cohort, we standardized 

EduYears within the cohort and then residualized this variable using the same controls as in the 

GWAS. We then regressed the sibling difference in the residuals on the sibling difference in 

genotype. We restricted analyses to SNPs with minor allele frequency above 5% in each of the 

sibling cohorts and meta-analyzed the cohort-level results using inverse-variance weighting. 

We followed Okbay et al.37 to compare the signs of the within-family estimates to the signs of the 

estimates from a GWAS meta-analysis that we re-ran after removing the sibling samples (N = 

1,070,751). We benchmarked our observed fraction of concordant signs against the three 

theoretical benchmarks shown in Fig. 2. The theoretical benchmarks are calculated using posterior 

distributions for the GWAS effect sizes obtained from our Bayesian statistical framework. Treating 

each benchmark as a null hypothesis, we conducted one-sided binomial tests where the alternative 

hypothesis is that the observed sign concordance falls short of the benchmark. We conducted this 

test for sets of approximately independent SNPs selected at the P value thresholds 5×10−8, 5×10−5, 

and 5×10−3 (Supplementary Table 20 and Fig. 2).  

We also performed regression-based comparisons of the within-family estimates and the GWAS 

estimates (Supplementary Table 21 and Supplementary Figure 21). Further details, including a 

derivation of our assortative-mating adjustment, can be found in the Supplementary Note. 

 

Joint F-test of heterogeneity. When the SNPs are considered individually, for all but one of the 

1,271 lead SNPs, we fail to reject a null hypothesis of homogenous effects across cohorts at the 

Bonferroni-adjusted P value threshold of 0.05/1,271. We generated an omnibus test statistic for 

heterogeneity by summing the Cochran Q-statistics for heterogeneity across all 1,271 lead SNPs38. 

Because the software used for meta-analysis does not report Q-statistics, we inferred these values 

based on the reported heterogeneity P values. To do so, we treated each lead SNP as if it were 

available for each of the 71 cohorts in the meta-analysis, which implies that the Q-statistic for each 

lead SNP has a 𝜒2 distribution with 70 degrees of freedom. The sum of these Q-statistics is 

therefore (approximately) 𝜒2-distributed with 70 ×  1,271 = 88,970 degrees of freedom. This 

gave us an omnibus Q-statistic of 91,830, with corresponding P value equal to 9.68 × 10−12. 

 

Cross-cohort genetic correlation. We estimated the genetic correlation of EduYears across all 

pairs of cohorts with non-negative heritability estimates (Supplementary Table 22). We used 

bivariate LD Score regression39 implemented by the LDSC software with a European reference 

population, filtered to HapMap3 SNPs. The estimated genetic correlations of EduYears between 

each of our 933 pairs of cohorts is shown in Supplementary Table 23.  

We calculated the inverse-variance-weighted mean of the genetic-correlation estimates. The 

genetic correlation across pairs of cohorts will be correlated across all observations that share one 

of their cohorts in common. Therefore, to obtain correct standard errors, we used the node-

jackknife variance estimator described by Cameron and Miller40. As detailed in Supplementary 

Note, we also estimated the variance of SNP heritability of EduYears across cohorts, and we 

conducted analyses to assess the extent to which we can predict variation in SNP heritability and 



 

 

genetic correlation of EduYears based on several observable cohort characteristics 

(Supplementary Tables 24 and 25). 

 

X chromosome. We performed association analyses of SNPs on the X chromosome in our two 

largest cohorts, UKB (N = 329,358) and 23andMe (N = 365,536). The UKB analyses were 

conducted in a sample of conventionally unrelated European-ancestry individuals, yielding a 

smaller sample size than the autosomal UKB analyses (Supplementary Table 26). Imputed 

genotypes for the X chromosome were not included in the data officially released by UKB. We 

therefore imputed the data ourselves using the 1000 Genomes Project41 as our reference panel.   

In both cohorts, the association analyses were performed on a pooled male-female sample with 

male genotypes coded 0/2. Except for this allele coding in males, all major aspects of the 23andMe 

analysis were identical to those described for the autosomal analyses; see Supplementary Tables 

17-19 for details. 

Both sets of association results underwent the same set of quality-control filters as the autosomal 

analyses prior to meta-analysis. Additionally, we dropped a small number of SNPs with male-

female allele frequency differences above 0.005 in UKB. The meta-analysis was conducted in 

METAL35, using sample-size weighting. Only SNPs that were present in both cohorts’ results files 

were used. To adjust the test statistics for bias, we inflated the standard errors using the LD Score 

regression intercept estimated from our main autosomal analysis (√1.113). 

 

Heritability of the X chromosome and dosage compensation. To estimate SNP heritability for 

males and females, we use the equation 

E[𝜒𝑖
2] = 1 +  

𝑁𝑖ℎ𝑖
2

𝑀eff
, 

where 𝑖 ∈ {𝑚, 𝑓} indicates males or females, E[𝜒𝑖
2] is the expected 𝜒2 statistic, ℎ𝑖

2 is the SNP 

heritability for the X chromosome, Ni is the GWAS sample size, and Meff is the effective number 

of SNPs (which is assumed to be the same in males and females). We replaced E[𝜒𝑖
2] with its 

sample analog and Meff with its estimated value, and then we solved for ℎ𝑖
2. 

Let 𝛾 = ℎ𝑚
2 /ℎ𝑓

2 denote the dosage compensation ratio. The ratio takes on a value between 0.5 (zero 

dosage compensation) and 2 (full dosage compensation). Based on the above equation, we 

estimated it as 

𝛾 =  
(�̂�𝑚

2 − 1)𝑁𝑓

(�̂�𝑓
2 − 1)𝑁𝑚

, 

where �̂�𝑖
2 is the mean 𝜒2 statistic. (Equivalently, our 𝛾 estimate is equal to the ratio of our SNP 

heritability estimates.) 

 

Biological annotation.  We used DEPICT19 (downloaded February 2016 from 

https://github.com/perslab/depict) to identify the tissues/cell types where the causal genes are 

strongly expressed, detect enrichment of gene sets, and prioritize likely causal genes. We ran 

DEPICT as described previously10 with the following exceptions: we used 37,427 human 

Affymetrix HGU133a2.0 platform microarrays19, discarded gene sets that were not well 

reconstituted42, and relaxed the significance threshold for defining a matching SNP in the 

https://github.com/perslab/depict


 

 

simulated null GWAS from 5×10−4 to 5×10−3. “Previously prioritized” genes were prioritized by 

DEPICT (in the sense of achieving FDR < 0.05) both in Okbay et al.10 and in the current work; 

“newly prioritized genes,” on the other hand, were not prioritized in Okbay et al.10. We used 

expression data from the BrainSpan Developmental Transcriptome34 and calculated the average 

expression in the brain of all DEPICT-prioritized EduYears genes (Supplementary Table 7) as a 

function of developmental stage (Supplementary Table 8, Supplementary Figure 22). 

In addition to the analyses presented in the main text, we determined which functional systems are 

least implicated by DEPICT (Supplementary Table 27) and how enrichment of gene sets differs 

across phenotypes (Supplementary Table 28). 

We tested the robustness of our DEPICT results using the bioinformatics tools MAGMA43 and 

PANTHER44,45. For MAGMA, we used the “multi=snp-wise” option, mapping a SNP to a gene if 

it resides within the gene boundaries or 5kb of either endpoint. We estimated LD using a reference 

panel of Europeans in 1000 Genomes phase 3, and we defined a gene as significant if its joint P 

value falls below the threshold corresponding to FDR < 0.05 (Supplementary Table 29). For 

PANTHER, we used the binomial overrepresentation test with the DEPICT-prioritized genes as 

input (Supplementary Table 30).  

We also used stratified LD Score regression21 to partition the heritability of the trait between SNPs 

of different types. In addition to the baseline SNP-level annotations (Supplementary Table 31), 

we tested a number of novel annotation types, described more fully in the Supplementary Note. 

We tested the heritability enrichment of neural cell types (Supplementary Table 9), various SNP-

level annotations assembled by Pickrell46 (Supplementary Figure 23, Supplementary Table 32), 

developmental stages (Supplementary Table 33), and genes that are broadly expressed or 

specifically expressed in a particular tissue (Supplementary Figure 24, Supplementary Table 

34). We also applied LD Score regression to DEPICT-reconstituted gene sets (Supplementary 

Table 35) and binary gene sets (Supplementary Table 36 and Supplementary Figure 25). 

We used the tool CAVIARBF23,47 in a fine-mapping exercise to identify candidate causal SNPs. 

We used the 74 baseline annotations employed by stratified LD Score regression as well as 451 

annotations from from Pickrell46. We applied a MAF filter of 0.01 and a sample-size filter of 

400,000 and only considered SNPs within a 50-kb radius of a lead SNP. We computed exact Bayes 

factors by averaging over prior variances of 0.01, 0.1, and 0.5; we set the sample size to the mean 

sample size of our considered SNPs; and we added 0.2 to the main diagonal of the LD matrix 

because we used a reference panel for LD estimation. To incorporate annotations, we used the 

elastic net setting with parameters selected via 5-fold cross-validation. The resulting annotation 

effect sizes and list of candidate causal SNPs are given in Supplementary Tables 37 and 10. 

Regional association plots of four noteworthy candidates are shown in Supplementary Figure 9. 

 

Polygenic prediction. Prediction analyses were performed using the National Longitudinal Study 

of Adolescent to Adult Health (Add Health), the Health and Retirement Study (HRS), and the 

Wisconsin Longitudinal Study (WLS). Polygenic scores were constructed using HapMap3 SNPs 

that meet the following conditions: (i) the variant has a call rate greater than 98% in the prediction 

cohort; (ii) the variant has a minor allele frequency (MAF) greater than 1% in the prediction cohort; 

and (iii) the allele frequency discrepancy between the meta-analysis and the prediction cohort does 

not exceed 0.15. To calculate the SNP weights we use the software package LDpred25, assuming 

a fraction of causal variants equal to 1, and then we construct the scores in PLINK.  

All prediction exercises were performed with an OLS or probit regression of a phenotype on our 

score and a set of controls consisting of a full set of dummy variables for year of birth, an indicator 



 

 

variable for sex, a full set of interactions between sex and year of birth, and the first 10 principal 

components of the variance-covariance matrix of the genetic relatedness matrix. 

Our measure of prediction accuracy is the incremental R2. To calculate this value, we first regress 

a phenotype on our set of controls without the polygenic score. Next, we re-run the same regression 

but with the score included as a regressor. For quantitative phenotypes, our measure of predictive 

power is the change in R2. For binary outcomes, we calculated the incremental pseudo-R2 from a 

Probit regression. To obtain 95% confidence intervals, we bootstrapped the incremental R2’s with 

1000 repetitions (Supplementary Table 38 and Supplementary Figures 13, 26, 27 and 28. 

 

Prediction of other phenotypes. In addition to EduYears, we also used our polygenic score to 

predict a number of other phenotypes. In the HRS and Add Health, we analyzed three binary 

variables related to educational attainment: (i) High School Completion, (ii) College Completion, 

and (iii) Grade Retention (i.e., retaking a grade). 

In additional analyses in Add Health, we predicted an augmented version of the Peabody Picture 

Vocabulary test, measured when participants were 12–20 years old. Peabody scores were age-

standardized. We also predicted a number of Grade Point Average variables (range: 0.0 to 4.0) 

from the third wave of Add Health, when transcripts were collected from respondents’ high 

schools. We analyzed Overall GPA, Math GPA, Science GPA, and Verbal GPA, controlling for 

high school fixed effects. 

In additional analyses in the HRS, we predicted several cognitive phenotypes. Total Cognition is 

the sum of four cognitive measures measured in waves 3 through 10: an immediate word recall 

task, a delayed word recall task, a naming task, and a counting task. Verbal Cognition measures 

the subject’s ability to define five words. To evaluate changes over time, we also studied wave-to-

wave changes in Total Cognition and Verbal Cognition. Our next cognitive outcome, Alzheimer’s, 

is an indicator variable equal to 1 for subjects who report having been diagnosed with Alzheimer’s 

disease, and 0 otherwise. Since the HRS data are longitudinal, the unit of analysis for our 4 

cognitive outcomes is a person-year. For these analyses, because an individual took the cognitive 

tests at different ages, in our set of controls we replaced our person-specific age variable with age 

at assessment (which differs for an individual across the cognitive outcomes); we also clustered 

all standard errors at the person level.  

In the WLS, we measured cognitive performance using a respondent’s raw score on a Henmon-

Nelson test of mental ability48. 

For all of these additional prediction exercises, results are shown in Supplementary Table 38 and 

depicted in Figure 4A and Supplementary Figures 13 and 11. 

 

Benchmarking the Predictive Power of the EduYears Polygenic Score. To benchmark our 

score’s predictive power, we compared its predictive power to the predictive power of other 

common variables: mother’s education, father’s education, both mother’s and father’s education, 

verbal cognition, household income, and a binary indicator for marital status. For each variable, 

we calculated the variable’s incremental R2 using the same procedures as those described above, 

with the same set of control variables. (For “mother’s and father’s education,” we calculated the 

incremental R2 from adding both variables as regressors.) The results of this analysis are shown in 

Supplementary Table 39A and depicted in Figure 4B and Supplementary Figure 12.  

We also evaluated the attenuation in the incremental R2 of the polygenic score in predicting 

EduYears when we control for available demographic variables one at a time: marital status, 



 

 

household income, mother’s education, and father’s education. We next controlled for both 

mother’s and father’s education, and finally, we controlled for the full set of demographic controls. 

The results of this analysis are shown in Supplementary Table 39B and Supplementary Figure 

12. 

 

GWAS of Cognitive Performance, Math Ability and Highest Math. The GWAS of Math Ability 

(N = 564,698) and Highest Math (N = 430,445) phenotypes were conducted exclusively among 

research participants of the personal genomics company 23andMe who answered survey questions 

about their mathematical background. In our analyses of Cognitive Performance, we combined a 

published study of general cognitive ability (N = 35,298) conducted by the COGENT consortium28 

with new genome-wide association analyses of cognitive performance in the UK Biobank (N = 

222,543). The phenotype measures are described in detail in Supplementary Table 40. Our new 

genome-wide analyses of Cognitive Performance in UKB, and Math Ability and Highest Math in 

23andMe, were conducted using methods identical to those for EduYears in UKB and 23andMe, 

respectively (Supplementary Table 19). 

For Cognitive Performance, we conducted a sample-size-weighted meta-analysis (N = 257,841), 

imposing a minimum-sample-size filter of 100,000. We similarly applied minimum-sample-size 

filters to the Math Ability (N > 500,000) and Highest Math (N > 350,000) results. We adjusted the 

test statistics using the estimated intercepts from LD Score regressions (1.073 for Math Ability, 

1.105 for Highest Math, and 1.046 for Cognitive Performance). The summary statistics underwent 

quality control using the same procedures applied to the EduYears results files. 

The lists of lead SNPs were obtained by applying the same clumping algorithm used in the 

EduYears analyses (Supplementary Tables 11-13). Manhattan plots from the analyses are shown 

in Supplementary Figures 14-16. 

 

MTAG of Cognitive Performance, Math Ability and Highest Math. We performed a joint 

analysis of our GWAS results on EduYears, Cognitive Performance, Math Ability, and High Math 

using MTAG11. Supplementary Table 14 shows moderately high pairwise genetic correlations, 

ranging from 0.51 to 0.85, which motivate the multivariate analysis. The MTAG analyses were 

restricted to SNPs that passed MTAG-recommended filters in all files with summary statistics. We 

dropped (i) SNPs with minor allele frequency below 1% or (ii) SNPs with sample sizes below a 

cutoff (66.6% of the 90th percentile), leaving approximately 7.1 million SNPs found in all four 

results files. Supplementary Table 41 reports the increases in effective sample size from using 

MTAG for each set of GWAS results. 

Supplementary Table 15 lists all the lead SNPs in the MTAG analysis. Supplementary Figures 

17-20 show inverted Manhattan plots that compare the MTAG and GWAS results, restricted to 

the set of SNPs that pass MTAG filters. 

Polygenic scores were constructed from MTAG results using the same procedures as for the 

GWAS results. Supplementary Figure 29 and Supplementary Tables 42 and 43 compare the 

predictive power of scores constructed from MTAG results in the Add Health and WLS cohorts 

(see Supplementary Note for details).    

To examine the credibility of the MTAG-identified lead SNPs of our lowest-powered GWAS, 

Cognitive Performance, we conducted a replication analysis. We re-ran MTAG with GWAS 

results that exclude COGENT cohorts, and we used the COGENT meta-analysis as our replication 

sample. In addition to applying the MTAG filters above, we limited the analysis to SNPs for which 



 

 

the COGENT results file contains summary statistics based on analyses of at least 25,000 

individuals. The MTAG-identified lead SNPs for Cognitive Performance from our restricted 

sampled are reported in Supplementary Table 44. We used our Bayesian framework to calculate 

the expected replication record of the MTAG results under the hypothesis that the MTAG-

identified lead SNPs are true positives, given sampling variation and adjusted for winner’s curse 

and differences in SNP heritability across the samples. 

 

DATA AVAILABILITY AND ACCESSION CODES 

Summary statistics can be downloaded from www.thessgac.org/data. We provide association 

results for all SNPs that passed quality-control filters in a GWAS meta-analysis of EduYears that 

excludes the research participants from 23andMe. SNP-level summary statistics from analyses 

based entirely or in part on 23andMe data can only be reported for up to 10,000 SNPs. We provide 

summary statistics for all lead SNPs identified in our GWAS analyses of Cognitive Performance, 

Math Ability, and Highest Math and the MTAG analyses of our four phenotypes. For the complete 

EduYears GWAS, which includes 23andMe, clumped results for the 3,575 SNPs with P < 10-5 are 

provided; this P-value threshold was chosen such that the total number of SNPs across the analyses 

that include data from 23andMe does not exceed 10,000. Contact information for each of the 

cohorts included in this paper can be found in the Supplementary Note. 

 

CODE AVAILABILITY: 

All software used to perform these analyses are available online. 

 

URLs: 

Social Science Genetic Association Consortium (SSGAC) website: 

http://www.thessgac.org/#!data/kuzq8. 

Minimac2: https://genome.sph.umich.edu/wiki/Minimac2 

BEAGLE v2.1.2: http://faculty.washington.edu/browning/beagle/b3.html 

IMPUTE2 v2.3.1: http://mathgen.stats.ox.ac.uk/impute/impute_v2.html 

PBWT: https://github.com/richarddurbin/pbwt 

IMPUTE4: https://jmarchini.org/impute-4/ 

ShapeIT v2.r790: http://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html 

BOLT-LMM: https://data.broadinstitute.org/alkesgroup/BOLT-LMM/ 

SNPTEST v2.4.1: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html 

REGSCAN v0.2.0: https://www.geenivaramu.ee/en/tools/regscan 

METAL, release 2011-03-25: http://csg.sph.umich.edu/abecasis/metal/ 

EasyQC v9.0: http://www.uni-regensburg.de/medizin/epidemiologie-

praeventivmedizin/genetische-epidemiologie/software/  

ldsc v1.0.0: https://github.com/bulik/ldsc 

Plink, 1.90b3p: http://zzz.bwh.harvard.edu/plink/plink2.shtml 

http://www.thessgac.org/%23!data/kuzq8


 

 

LDpred v0.9.09: https://bitbucket.org/bjarni_vilhjalmsson/ldpred 

Stata v14.2: https://www.stata.com/install-guide/windows/download/ 

DEPICT (downloaded Feb 2015): https://data.broadinstitute.org/mpg/depict/ 

MAGMA v1.06b: https://ctg.cncr.nl/software/magma 

PANTHER release 20170403: http://www.geneontology.org 

CAVIARBF v0.2.1: https://bitbucket.org/Wenan/caviarbf 

MTAG software v1.0.1: https://github.com/omeed-maghzian/mtag 
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