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Abstract 

The c-myc oncogene is over-expressed or deregulated in many human cancers. c-

myc encodes a transcription factor, the oncoprotein c-Myc (Myc), which acts as a 

master regulator of genes involved in such diverse cellular processes as replication 

and growth, loss of differentiation, invasion, and angiogenesis. Myc can also act 

as its own tumour suppressor by promoting cell death in the form of apoptosis. 

Thus, for putative cancer cells to arise, apoptosis must be blocked. Conditional 

MycER
TAM

 transgenic mice allow regulated activation of Myc in distinct cell 

populations (skin suprabasal keratinocytes and pancreatic islet β-cells) and have 

highlighted contrasting behaviour between these two adult tissues in vivo: 

proliferation in the skin, and apoptosis in the pancreas. 

Given the crucial dependence on tissue location in vivo, we still do not know 

enough about the key divergence in Myc-regulated genes and proteins under 

conditions favouring opposing outcomes. To address this, we performed high-

throughput transcriptome analysis using oligonucleotide microarrays. The in vivo 

transcriptional response to deregulated Myc was analysed for skin keratinocytes 

and laser-captured pancreatic islets following a time-course of MycER
TAM

 

activation. Due to the multi-factorial nature of the experimental design, novel 

statistical tools were developed allowing the use of linear models for inference of 

changes in gene-expression based on multiple experimental variables.  

Comparison of the transcriptional response between the two tissues identified 

potential signalling pathways which may promote apoptosis of β-cells or survival 

of skin keratinocytes: the DNA damage response pathway, and the Insulin-like 

growth factor 1 (Igf1) signalling pathway respectively. In addition, a marked 

change in expression was detected in members of the steroid hormone-regulated 

Kallikrein serine protease family in suprabasal keratinocytes but not for β-cells. 

These have been found to play an important role in regulating Igf1/Igf1-receptor 

ligation through proteolysis of the Igf1 binding proteins, are previously 

categorised markers for several human cancers, and may indicate a tissue-specific 

regulatory mechanism for determining ultimate Myc function in vivo. 
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Chapter 1 Introduction 

1.1 The c-myc oncogene 

Strain 29 of the avian myelocytomatosis retrovirus (MC29), a replication-

defective acute leukaemia transforming virus, was found to induce a number of 

diseases in chickens, particularly cancers such as carcinomas, leukemias and 

sarcomas (Mladenov et al., 1980). This oncogenic potential is due to a single 

gene, the v-myc oncogene, centrally located in the 5.5-kilobase (kb) viral genome 

of MC29 and the related retroviruses MH2, CMII and OK10 (Duesberg and Vogt, 

1979; Roussel et al., 1979). The myc (myelocytomatosis) family of genes, 

comprising c-myc (cellular), n-myc (neuronal) and l-myc (lung), were 

subsequently identified due to their homology to the transforming gene v-myc, and 

are amongst the earliest examples of oncogenes – transforming genes with the 

potential to cause cancer – to be identified. The cellular homolog of the viral 

oncogene, c-myc, was first discovered due to its homology to a 1,500 nucleotide 

region of v-myc, with an additional 1,100 base pair (bp) intron-like region 

(Vennstrom et al., 1982). Further members n-myc and l-myc were later discovered 

in the amplified sequences of neuroblastoma cells (Schwab et al., 1983) and small 

cell lung tumours (Nau et al., 1985; Ryan and Birnie, 1996) respectively. 

1.1.1 Myc protein function 

The protein product of c-myc – Myc – is a transcription factor localised in the cell 

nucleus that is conserved throughout vertebrate evolution (Persson and Leder, 

1984). Myc has been found to regulate the expression of a wide range of cellular 
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targets involved in a variety of diverse functions including cell growth, 

proliferation, loss of cell-cell contact, and angiogenesis (Amati et al., 1998; Dang, 

1999; Coller et al., 2000; de Alboran et al., 2001; Eisenman, 2001; Trumpp et al., 

2001; Pelengaris et al., 2002a; Pelengaris and Khan, 2003).  

During normal embryonic development of mouse and humans, Myc is expressed 

ubiquitously in growing tissues (Schmid et al., 1989; Hirvonen et al., 1990). It has 

been shown to be crucial for normal embryonic development, as deletion of both 

alleles results in embryonic lethality in mice (Davis et al., 1993). In adult mice, it 

is found highly expressed in tissue compartments possessing high cellular 

turnover (e.g. skin epidermis and gut), whilst it is undetectable in cells that have 

exited the cell cycle. 

The predominant role of Myc under normal physiological conditions is promotion 

of proliferation (Persson et al., 1984; Henriksson and Luscher, 1996; Amati et al., 

1998) and inhibition of terminal differentiation (Freytag, 1988; Hoffman-

Liebermann and Liebermann, 1991; Selvakumaran et al., 1993). Expression of c-

myc is kept under tight control by the presence of growth and survival factors. 

Disruption of these normally tightly regulated processes, such as through 

mutations in the c-myc gene, can lead to unchecked proliferation. In fact, 

deregulated or up-regulated expression of c-myc is a frequent feature of human 

cancers (Hueber et al., 1997; Amati et al., 1998; Nesbit et al., 1999; Schlagbauer-

Wadl et al., 1999), which will be discussed in more detail in Section 1.1.3. The c-

myc gene is therefore termed a proto-oncogene, indicating that it has oncogenic 

potential but is kept under tight control by mitogenic stimuli. 

Deregulated expression of Myc leads to unchecked proliferation, but has also been 

shown to sensitise cells to apoptotic stimuli in several cell types under conditions 

of depleted growth and survival factors (Askew et al., 1991; Evan et al., 1992; Shi 

et al., 1992). A role for oncogenic Myc in sensitising cells to external apoptotic 

stimuli through the tumour necrosis factor (TNF) death receptor CD95/Fas has 

also been suggested (Janicke et al., 1994; Klefstrom et al., 1994; Hueber et al., 

1997). 
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This tight linkage between growth and death pathways creates a defence 

mechanism for the body against progressive diseases such as cancer; upon 

aberrant induction of cell cycle progression by deregulated Myc, cells become 

sensitised to a wide range of stimuli (such as DNA damage and hypoxia) which 

promote apoptosis and provide an in-built tumour suppressor mechanism both in 

vitro (Wagner et al., 1994; Tanaka et al., 2002; Vafa et al., 2002) and in vivo 

(Alarcon et al., 1996). The link between these two seemingly opposing functions 

– proliferation and apoptosis – is not limited to c-myc. Several other cell cycle-

associated genes, such as e2f, e1a and c-fos, are also found to show apoptotic 

functionality under certain conditions (Harrington et al., 1994b).  

The exact mechanisms by which Myc elicits the vast host of biological responses 

for which it appears to be responsible are not yet fully understood. Observations 

of changing gene-expression following over-expression of Myc in primary rat 

fibroblasts (Coller et al., 2000), conditional c-myc expression in human cell 

cultures (Schuhmacher et al., 2001; Fernandez et al., 2003) and comparison of c-

myc-null rat cell lines with normal cells (Guo et al., 2000; Watson et al., 2002; 

O'Connell et al., 2003) have identified a wide range of potential transcriptional 

targets for deregulated Myc. Currently, around 1,700 genes have been classified 

as putative Myc targets (Zeller et al., 2003) using methods such as serial analysis 

of gene-expression (SAGE) (Menssen and Hermeking, 2002), DNA microarrays 

(Coller et al., 2000) and subtractive hybridisation (Lewis et al., 1997). It has been 

hypothesised that Myc may have the potential to regulate up to 15 % of the entire 

genome (Patel et al., 2004), leading to it being described as a „master regulator‟ of 

gene-expression.   

It is still not clear if this regulatory role is due to direct transcription, or if there is 

in fact a smaller subset of direct Myc targets responsible for activation of other 

genes downstream. Experiments using chromatin immunoprecipitation (ChIP) 

have confirmed several putative genes as direct Myc targets by identifying the 

association of Myc with promoter regions (Fernandez et al., 2003; Li et al., 2003). 

Further studies have shown Myc to be a relatively weak transcription factor, 

promoting changes in expression in the order of only 2- to 5-fold (Grandori and 
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Eisenman, 1997; Cole and McMahon, 1999), and this weak transcriptional 

activity can make identification of putative target genes difficult.  

Recent studies suggest an additional non-transcriptional role for Myc in gene 

regulation. In the work of Dominguez-Sola et al. (2007), Myc over-expression in 

human and mouse cells with no RNA transcriptional activity showed that Myc 

interacts directly with the pre-replicative complex, playing a significant non-

transcriptional role in DNA replication. Also, Cowling and Cole (2007) showed 

that Myc mutants, modified to have no DNA binding affinity, were able to 

promote cell growth in c-myc (-/-) mice through binding of the Myc 

transactivation domain to the transcriptional initiation sites of target genes, 

increasing mRNA cap methylation and increasing the rate of translation. It has 

been noted that a number of previously characterised Myc-target genes may be 

regulated by this Myc-induced translational mechanism, suggesting a further level 

of complexity to the Myc-regulatory web. It is important to note that such effects 

are not identifiable through transcription-focused analysis methods, such as SAGE 

and microarrays. 

Many of the studies into oncogenic Myc function thus far have involved a 

combination of in vitro and in silico work. Whilst such studies have undoubtedly 

provided an understanding of the functional role of this enigmatic transcription 

factor, it is not clear which of the many potential Myc-targets are in fact 

responsible for the ultimate development of specific phenotypes. Importantly, 

such studies fail to identify the divergence in Myc-induced gene-expression in 

vivo under circumstances where Myc may promote opposing outcomes, such as 

proliferation and apoptosis. It is clear that tissue context plays a major part in 

determining the ultimate role of Myc (Section 1.2.4), so it is of great interest for 

therapeutic intervention to understand the complex interactions involved in Myc-

regulated tumourigenesis in vivo.  
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1.1.2 Myc protein structure and transcriptional control 

The Myc protein contains several distinct regions (Figure 1.1.1). The carboxy-

terminal domain (CTD) contains a basic-helix-loop-helix-leucine-zipper (bHLH-

LZ) which associates with a similar domain in another nuclear protein, Max, to 

form a heterodimeric complex. This Myc-Max heterodimer binds to canonical 

(CACGTG) and non-canonical E-box sequences within the promoter region of 

target genes to initiate transcription (Blackwell et al., 1990; Amati et al., 1992; 

Kretzner et al., 1992; Blackwell et al., 1993; Prochownik and VanAntwerp, 

1993). The amino-terminal domain (NTD) of the Myc protein contains the 

prominent evolutionarily conserved domains; the Myc homology boxes (MBs). 

Once bound to the target gene DNA, the conserved transactivation regions MBI 

and MBII recruit the highly conserved co-activating protein Trrap 

(transformation/transcription domain associated protein) (McMahon et al., 1998), 

a common feature in many complexes including histone acetyltransferases 

(HATs), kinases, basal factors and ubiquitin ligases. Association of further 

cofactors, such as the F-box protein Skp2 (Kim et al., 2003; von der Lehr et al., 

2003) and the cAMP-response-element-binding protein Cbp (Vervoorts et al., 

2003), stabilises the complex and allows recruitment of the HAT Gcn5 (general 

control of amino-acid synthesis 5) to the E-box site. This acetylates nucleosomal 

histones H4 and, to a lesser extent, H3 in adjacent regions (Bouchard et al., 2001; 

Frank et al., 2001) and allows binding of ribonucleic acid (RNA) polymerases I 

and III to initiate transcription of the target gene (White, 2005). A further 

conserved element within the central region of Myc, MBIII, has also been 

identified (Herbst et al., 2004) which is important in stability of the Myc protein 

and Myc-mediated transcriptional repression. Disruption of MBIII increases the 

apoptotic potential of Myc both in vitro and in mouse models, indicating an anti-

apoptotic role for the MBIII domain (Herbst et al., 2005). A final Myc-box 

element – MBIV – has been identified, which shows both mild transactivational 

activity, and a role in Myc-induced apoptosis (Cowling et al., 2006). 
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Figure 1.1.1: Structure of the Myc transcription factor and hetero-dimerisation with Max 

The Myc protein interacts with its partner protein Max at the carboxy-terminal basic-helix-loop-

helix leucine zipper (bHLH-LZ) to form a heterodimeric complex that regulates transcription of 

target genes. Myc-Max heterodimers bind to E-box sequences in the promoter regions of target 

genes and recruit various cofactors (such as Trrap, Skp2 and Cbp) to the highly conserved Myc 

Box regions, MBI and MBII. These associate with histone acetyltransferases such as Gcn5, which 

acetylate nucleosomal histones and allow binding of RNA polymerases I and III and initiation of 

transcription of the target gene. Further conserved regions, MBIII and MBIV, have been shown to 

be involved in protein stability and Myc-induced apoptosis. Adapted from Pelengaris et al. 

(2002a). 
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Transcriptional regulation of target genes by Myc is entirely dependent on 

dimerisation to its partner protein Max (Amati et al., 1993a; Amati et al., 1993b). 

However Max is also found to bind with other members of the Mad and Mnt 

protein families, including binding with itself in homodimeric complexes 

(Grandori et al., 2000). Mad-Max heterodimeric complexes also bind to E-box 

promoter sequences, and associate with the co-repressor Sin3 at the NTD of Max. 

This complex recruits class T histone deacetylases (HDACs) Hdac1 and Hdac2 

which deacetylate histones H3 and H4, promoting transcriptional repression 

(Sommer et al., 1997). Thus Max also acts as an antagonist to Myc transcriptional 

activity in partnership with Mad, and transcription rates are dependent on 

interactions between the Myc, Mad and Max proteins (Ayer et al., 1993).  

As well as its ability to promote transcription of target genes, Myc is also able to 

repress the expression of target genes. Since the Myc-Max complex does not 

appear to associate directly with repressors or co-repressors, it has been suggested 

that Myc represses gene-expression not by direct binding to target gene DNA, but 

in an indirect manner through antagonistic associations with other positively 

acting transcription factors (Orian and Eisenman, 2001). Miz1 (Myc-interacting 

zinc finger protein-1) is a transcription factor that binds directly to the promoter 

region of target genes, such as the cyclin-dependent kinase inhibitor (CDKI) 

p15
Ink4b 

(cdkn2b). Miz1-induced expression of cdkn2b inhibits the cyclin-

dependent kinase (CDK) Cdk4 and promotes cell cycle arrest (Section 1.1.4). The 

initiator region of Miz1 also associates directly with the bHLH-LZ region of Myc 

when in partnership with Max, preventing association with the co-activator p300 

and inhibiting transcription (Peukert et al., 1997; Staller et al., 2001; Herold et al., 

2002). The specific role of Miz1 in apoptosis was found when it was shown that 

inhibition of transcription through association of Myc with Miz1 is essential for 

Myc-mediated apoptosis (Patel and McMahon, 2006). Co-immunoprecipitation 

analyses identified direct interactions between Myc and Sp1/Sp3, and glutathione 

S-transferase/Sp1 fusion protein experiments identified direct association between 

the central region of the Myc protein and the c-terminal DNA binding zinc finger 

of Sp1. Sequestration of these factors prevents transcription of target genes 

involved in promoting cell cycle arrest, such as cdkn1a which encodes the CDKI 
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p21
Waf1/Cip1

 (Gartel et al., 2001). Thus association of Myc with factors involved in 

the expression of inhibitors of cell cycle progression, leading to indirect 

downregulation, may further contribute to cell proliferation (Section 1.1.4). 

1.1.3 Myc and cancer 

The term cancer can be applied to over 100 diseases and can affect any part of the 

body. It is currently one of the leading causes of death in humans, and accounts 

for around 13 % of all deaths worldwide.
1
 Cancer occurs when genomic insults 

result in the bypass of normal proliferative controls and cells are allowed to 

propagate without the requirement of exogenous mitogenic stimulation from the 

micro-environment. Tumourigenesis is a multistage procedure that begins with 

some genetic lesion that confers a growth advantage over other cells and inhibits 

regulatory control of proliferation. In comparison to normal cells, cancer cells no 

longer require exogenous mitogenic stimulation from their tissue micro-

environment in order to proliferate. These cells begin to grow uncontrollably, 

whilst simultaneously losing their differentiated state and losing contact with each 

other and the surrounding environment. Expansion of cancer cells leads to the 

formation of tumours, which recruit vasculature to the site to provide oxygen and 

nutrients required for growth. Often, cancer cells are able to break away from the 

primary tumour site into the lymphatic or vascular system, where they travel to 

secondary sites in the body and may form further tumours in a process termed 

metastasis.  

The cell replicating machinery utilises a number of defensive mechanisms to 

prevent aberrant proliferative activity, which work to avoid the development of 

cancers that would otherwise develop over time. During normal cell cycle control, 

oncogenic factors cooperate with one another to protect against uncontrolled 

                                                 

1
 World Health Organisation, February 2006 – www.who.int 
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growth. Due to this tight control of proliferative activity, mutations must occur in 

several cooperating oncogenes and tumour suppressor genes in order to provide 

the circumstances necessary for neogenesis. The complex web of genetic events 

involved in cancer formation means that inactivation of a single genetic product 

involved in tumourigenesis may often be insufficient to reverse cancer formation. 

This can make identification of putative targets for cancer therapy difficult. 

Current treatments consist of removal of primary tumours through surgery and 

destruction of metastatic cancer cells using „shotgun‟ approaches such as 

radiotherapy and chemotherapy. These treatments are non-specific in their action, 

leading to the destruction of both healthy and malignant cells. 

The c-myc oncogene was first implicated in human cancer in the 1980‟s when it 

was shown to be found on a small region of chromosome 8 (q24 – qter) that is 

translocated to chromosome 2, 14 or 22 in Burkitt‟s lymphoma (Dalla-Favera et 

al., 1982). These regions contain antibody-encoding genes and lead to deregulated 

expression of c-myc. Constitutive over-expression of Myc was shown to 

immortalise rat fibroblasts and to prevent cell cycle withdrawal (Land et al., 1983; 

Mougneau et al., 1984), whilst cellular transformation in vitro was found to 

require additional lesions (Land et al., 1986; Lugo and Witte, 1989; Reed et al., 

1990; Fanidi et al., 1992; Morgenbesser and DePinho, 1994; Pelengaris et al., 

2002a). 

Deregulation of Myc can occur due to numerous mechanisms, both directly via 

stabilisation of Myc messenger RNA (mRNA) transcripts or increased initiation 

of transcription (up-regulation) due to mutations in the internal ribosome entry 

site (Bernasconi et al., 2000; Chappell et al., 2000), or indirectly via activation of 

upstream mitogenic signalling cascades (Barone and Courtneidge, 1995; Kolligs 

et al., 2000; Bowman et al., 2001; Chiariello et al., 2001). Genomic alterations in 

the c-myc locus, such as that seen in Burkitt‟s lymphoma, can also play a part in 

deregulated Myc activity, as can stabilisation of the Myc protein through 

mutations resulting in inefficient ubiquitination-mediated protein degradation 

(Salghetti et al., 1999; Gregory and Hann, 2000). It has been shown that 

deregulated expression of c-myc, specifically up-regulation, is a common feature 
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of a large number of human cancers (Ryan and Birnie, 1996; Amati et al., 1998; 

Nesbit et al., 1999; Schlagbauer-Wadl et al., 1999) and is often associated with 

aggressive poorly differentiated tumours.  

However, given that many human tumours are advanced at the time of detection 

and may contain many genetic alterations, it is difficult to ascertain the point at 

which c-myc deregulation occurred. Conventional Myc transgenic models allow 

constitutive expression of the oncogene in target tissues using specific promoters, 

and have supported the view that deregulated Myc is important to the formation of 

certain cancers (Adams et al., 1985; Blyth et al., 1995). However, since 

expression of the oncoprotein occurs throughout development, such models 

preclude the observation of the proposed apoptotic tumour suppressive function of 

Myc. 

Regulatable transgenic mice, such as the MycER
TAM

 model described in Section 

1.2, allow controlled activation and deactivation within target tissues. This 

provides a model for deregulated expression of proteins such as Myc within the 

adult organism, allowing observation of subsequent downstream effects. Whilst 

such models of widespread activation within all cells of the target tissue do not 

precisely represent the process of sporadic mutations seen during tumour 

formation, the ability to switch oncogenes on and off at will has vastly improved 

physiological cancer models by offering the experimenter exquisite control of the 

„time 0‟ of genetic alteration. Such models also allow analysis of tumour reversal 

following deactivation of the transgenic oncogene, allowing testing of the 

therapeutic benefits of targeting specific oncogenes (Felsher, 2003; Giuriato et al., 

2004).  

Inactivation of the single initiating oncogene in many cancer models is sufficient 

not only for reversal of the primary tumour, but also for reversal of invasive and 

metastatic lesions (Pelengaris et al., 1999; Moody et al., 2002; Pelengaris et al., 

2002b; Karlsson et al., 2003; Felsher, 2004; Marinkovic et al., 2004). Given that 

such lesions may contain a number of further genetic mutations subsequent to 

oncogene activation, this is an exciting prospect for oncogene-targeted cancer 

therapies. Jain et al. (2002) showed that brief inactivation (10 days) of Myc was 
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sufficient for regression of Myc-induced osteogenic sarcomas in transgenic mice, 

and that subsequent reactivation of Myc led not to restoration of the neoplastic 

phenotype, but to extensive apoptosis.  

However, in contrast to this, brief inactivation of Myc in tumour onset is not 

sufficient to maintain tumour regression in suprabasal keratinocytes and 

pancreatic β-cells, and reactivation of Myc leads to restoration of the oncogenic 

properties of Myc (Pelengaris et al., 2004). A similar study by Shachaf et al. 

(2004) used a lineage-tracking approach to demonstrate that inactivation of Myc 

in Myc-induced hepatocellular carcinomas resulted in regression, but that some 

tumour cells remained dormant (often for prolonged periods of time) until Myc 

expression was reinitiated, after which these dormant cells contributed to cancer 

progression. It is therefore clear that further study into the environmental context 

and genetic basis of particular tumours is required to determine the possibility of 

using oncogene-targeted therapies. 

The role of Myc in tumour progression is clearly complex, and its presence in a 

broad range of human cancers, particularly those with a poor prognosis, suggests 

that Myc deregulation may be used as a diagnostic marker for cancer in certain 

tumour types. Furthermore, inactivation of Myc or downstream targets of Myc 

may provide important therapeutic strategies in the fight against cancer, and 

several such strategies are currently under investigation (Robson et al., 2006). 

1.1.4 Myc and proliferation 

As previously described, one of the key biological functions of Myc is its ability 

to promote cell cycle progression (Amati et al., 1998; Dang, 1999; Eilers, 1999; 

Amati, 2001). Myc expression is virtually undetectable in quiescent cells in vitro. 

However, upon mitogenic or serum stimulation, Myc levels are rapidly induced at 

both the mRNA and protein levels, and cells begin the proliferative procedure 

(Persson et al., 1984; Hann et al., 1985). The levels of c-myc mRNA in 
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proliferating cells subsequently decline to low but detectable steady-state levels. 

Removal of mitogenic signalling, by reducing serum or growth factor levels, 

results in a decline in Myc protein levels to undetectable levels and arrest of the 

cell cycle (Davis et al., 1993). Myc expression is well correlated with active 

proliferation during development, and down-regulation accompanies mitotic arrest 

and onset of differentiation. Myc is essential for embryonic development, as 

shown by embryonic lethality at day 9.5-10.5 following targeted gene disruption 

of both Myc alleles in embryonic stem cells (Schmid et al., 1989; Hirvonen et al., 

1990). 

Myc was first associated with cell cycle control after correlations were seen 

between Myc and the expression of the rate-limiting eukaryotic translation 

initiation factors Eif4e and Eif2 (Rosenwald et al., 1993) now known to be 

direct Myc targets (Jones et al., 1996; Coller et al., 2000). Further studies 

identified a direct role for Myc in the growth of invertebrate (Johnston et al., 

1999) and mammalian cells (Iritani and Eisenman, 1999; Schuhmacher et al., 

1999; Beier et al., 2000).  

The cell cycle of eukaryotic organisms consists of two main phases – the 

interphase and mitosis. The interphase is the stage during which the cell prepares 

itself for proliferation by synthesising proteins required for DNA replication (G1 

growth phase), duplicating their DNA (synthesis, or S-phase), and finally by 

producing the proteins required for mitosis (G2 growth phase). When the cell is 

prepared, it undergoes mitosis (M-phase) and splits to form two identical daughter 

cells. Non-proliferating or post-mitotic cells enter a third resting phase, G0, and 

remain quiescent until acted upon by mitotic stimuli. Myc-mediated promotion of 

cell proliferation is a result of activation and repression of key cell cycle 

regulatory genes, particularly those involved in G1/S-phase progression (Figure 

1.1.2). 

Progression through the cell cycle is largely controlled by the interactions of a 

group of proteins – the cyclins – and their respective kinases. G1/S-phase 

progression of eukaryotic cells is controlled by the activities of the CDK 

complexes, Cyclin D-Cdk4/6 and Cyclin E-Cdk2, which together promote hyper-
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phosphorylation of the Rb tumour suppressor protein. This results in the release of 

E2f family transcription factors from the phosphorylated Rb protein, which 

activate expression of genes required for S-phase.  

Myc induces Cyclin E-Cdk2 activity early in the G1 phase of the cell cycle, which 

is regarded as an essential event in Myc-induced G1/S-phase progression (Steiner 

et al., 1995; Berns et al., 1997). This occurs via direct activation of the Myc target 

genes ccnd2 (Cyclin D2) (Bouchard et al., 2001) and cdk4 (Hermeking et al., 

2000). Increased expression of the Cyclin D2 and Cdk4 proteins leads to 

sequestration of the CDKI p27
Kip1

 by the Cyclin D2-Cdk4 complex (Bouchard et 

al., 1999; Perez-Roger et al., 1999). This association leads to the subsequent 

proteosomal degradation of p27
Kip1

 by the products of two further Myc target 

genes, cul1 and cks (O'Hagan et al., 2000). By preventing the binding of the 

CDKI p27
Kip1

 with Cyclin E-Cdk2 complexes, they are free to become 

phosphorylated by cyclin activating kinase (Cak), a further Myc target (Muller et 

al., 1997; Perez-Roger et al., 1999). This allows Rb hyper-phosphorylation, 

subsequent release of E2f, and G1/S-phase cell cycle progression.  

Although Cyclin D2 is known to be an essential downstream effector of Myc in 

promoting cell proliferation (Bouchard et al., 1999; O'Hagan et al., 2000), the D 

cyclins do not appear to be required for Myc-induced apoptosis in vitro (Berns et 

al., 1997). This indicates that the two major functions of Myc – proliferation and 

apoptosis – may involve distinct sets of downstream mediators. 

Myc has also been found to promote cell cycle progression by repressing 

transcription of inhibitors of cell cycle progression, such as p15
Ink4b 

(cdkn2b) 

(Staller et al., 2001) and p21
Cip1

 (cdkn1a) (Gartel et al., 2001; Herold et al., 2002), 

both of which are involved in cell cycle arrest. Association of the Myc-Max 

heterodimeric complex with Miz1 blocks association of Miz1 with its co-activator 

p300, preventing Miz1-mediated expression of cdkn2b (p15
Ink4b

), and direct 

association of Myc with the Sp1 and Sp3 transcription factors prevents expression 

of the Sp1/Sp3 target cdkn1a (p21
Cip1

). 
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Figure 1.1.2: Activation and repression of target genes by Myc results in cell cycle 

progression  

a) Myc-Max heterodimers promote transcription of target genes for Cyclin D2 (ccnd2) and Cyclin-

dependent kinase 4 (cdk4). Cyclin D2-Cdk4 complexes sequester the CDK inhibitor p27
Kip1

, which 

is subsequently ubiquitinated by products of two further Myc-target genes, cul1 and cks, leading to 

proteosomal degradation. p27
Kip1

 is thus prevented from binding to and inhibiting Cyclin E-Cdk2 

complexes, allowing phosphorylation by cyclin activating kinase (Cak), a further Myc-target. 

Activated Cyclin E-Cdk2 complexes hyperphosphorylate the Rb tumour suppressor protein, 

allowing release of the E2f transcription factor and G1/S-phase cell cycle progression. b) Myc can 

also indirectly repress activation of the CDK inhibitors, p15
Ink4B

 and p21
Cip1

, which are involved in 

cell cycle arrest. By association of Myc-Max heterodimers with the transcription factor Miz1, or 

by direct interactions with transcription factors Sp1 or Sp3, Myc prevents transactivation of 

p15
Ink4b

 (cdkn2b) and p21
Cip1

 (cdkn1a), preventing cell cycle arrest and allowing proliferation to 

continue. Adapted from (Robson et al., 2006). 
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1.1.5 Myc and apoptosis 

1.1.5.1 Apoptosis 

Apoptosis is a form of programmed cell death that generally confers advantages to 

the organism, such as through the destruction of damaged cells (Kerr et al., 1972). 

Putative cancer cells are no longer subject to mitotic control from external signals, 

and must avoid apoptosis in order for tumours to arise. The net expansion of a 

clone of transformed cells following oncogenic deregulation comes about through 

a combination of increased proliferation of cells and decreased apoptosis. The 

signal for a cell to become apoptotic may come from external signals (extrinsic 

apoptotic pathway) or internally due to stress responses through the mitochondria 

(intrinsic apoptotic pathway) (Figure 1.1.3).  

The effectors of apoptosis are a family of cysteine proteases known as caspases 

(Yuan et al., 1993; Alnemri et al., 1996). Initiator caspases, such as Caspase 9, are 

sequentially activated through proteolytic cleavage in a cascade of caspase 

activation, until so-called executioner/effector caspases, such as Caspase 3, are 

activated. These lead to proteolytic degradation of cellular components and further 

morphological changes, such as chromatin condensation, fragmentation of DNA, 

nucleus fragmentation and formation of nucleosomal units, blebbing of the cell 

membrane, and separation of the cell into apoptotic bodies which are removed by 

phagocytes to avoid inflammation (Wyllie et al., 1980). 

The intrinsic pathway is governed through signalling from the mitochondria, a 

cellular organelle responsible for aerobic respiration. Internal stresses such as 

hypoxia, DNA damage, viral infection, nutrient deprivation or radiation result in 

association of the pro-apoptotic Bcl2 (Beta-Cell Leukaemia/Lymphoma) family 

members to the mitochondrial outer membrane (Wolter et al., 1997; Luo et al., 

1998). This results in an increase in mitochondrial outer-membrane permeability 

(MOMP) (Kluck et al., 1999) and release of Cytochrome c (Cyto c) through the 

mitochondrial apoptosis-induced channel (MAC) into the cytosol (Pavlov et al., 
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2001). Release of Cytochrome c through this channel is governed by Bcl2 family 

members residing in the mitochondrial outer membrane, and is a key process in 

the onset of apoptosis. The Bcl2 protein family all share one or more of the Bcl2 

homology (BH) domains, BH1, BH2, BH3, and BH4 (Yin et al., 1994; Chittenden 

et al., 1995; Gibson et al., 1996; Zha et al., 1996a). Many also contain a 

transmembrane domain, allowing functional control over the release of apoptotic 

factors from the mitochondria (see below).  

Broadly, Bcl2 protein family members can be split into three main groups: pro-

apoptotic members such as Bax and Bak which contain BH regions BH1-BH3, 

anti-apoptotic members such as Bcl2, BclXL and BclW which contain BH1-BH4 

regions, and pro-apoptotic members such as tBid, Bim, Bad, Puma and Noxa 

which contain only the BH3 region. Bcl2 members act competitively to control 

MOMP. BH3-only proteins have been shown to assist in the activation of Bax via 

oligomerisation of the proteins, leading to migration from the cytoplasm to the 

outer mitochondrial membrane (Gross et al., 1998; Khaled et al., 1999; Eskes et 

al., 2000). Once localised to the membrane, Bax forms the MAC and induces 

release of Cytochrome c (Dejean et al., 2005; Dejean et al., 2006). Anti-apoptotic 

members Bcl2 and BclXL prevent formation of the MAC by competitively forming 

heterodimers with Bax (Dejean et al., 2006). A further role of BH3-only Bcl2 

members in promoting apoptosis is via association with anti-apoptotic Bcl2 

members, neutralising their ability to bind and inhibit Bax (O'Connor et al., 1998; 

Strasser et al., 2000; Adams and Cory, 2007). 

Once released, cytosolic Cytochrome c binds to apoptotic protease activating 

factor 1 (Apaf1) in a cyclic structure with 7-fold symmetry known as the 

apoptosome, or “wheel of death” (Acehan et al., 2002). Binding of adenosine 

triphosphate (ATP) results in a conformational change in the apoptosome, 

allowing binding of Pro-Caspase 9 (Li et al., 1997). Once bound to this complex, 

intrinsic autocatalytic cleavage of Pro-Caspase 9 at Asp-315 produces large and 

small subunits, including an active Caspase 9 subunit molecule with proteolytic 

ability (Srinivasula et al., 1998). Active Caspase 9 in turn activates the 

executioner Caspase 3 in a caspase cascade, leading to cellular degradation and 
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initiation of apoptosis.  MOMP and formation of the MAC also result in the 

release of pro-apoptotic factors into the cytosol. Such factors include apoptosis-

inducing factors (AIFs) and Endonuclease G (Endog), which act to induce 

apoptotic changes such as chromatin condensation and DNA fragmentation (Susin 

et al., 1996; Susin et al., 1997), and second mitochondria-derived activator of 

caspases (Smac), which binds to and inhibits the inhibitors of apoptosis proteins 

(IAP) allowing apoptosis to proceed (Du et al., 2000). 

The extrinsic pathway occurs predominantly through the signalling of the TNF 

and Fas receptors. Tnf is a cytokine produced by active macrophages that binds to 

the TNF receptors Tnfr1 and Tnfr2 (Carswell et al., 1975). Association with Tnfr1 

results in association with the TNF receptor-associated death domain (Tradd) and 

the Fas-associated death domain protein (Fadd), which recruits several Pro-

Caspase 8 molecules in close proximity, facilitating autocatalytic cleavage and 

formation of proteolytically active large Caspase 8 subunits (reviewed in Chen 

and Goeddel, 2002; Wajant et al., 2003). The Fas transmembrane receptor (also 

known as CD95 or Apo1), aggregates to form transmembrane Fas trimers upon 

binding of the trimeric Fas ligand (Schneider et al., 1997). This aggregation 

results in internalization of the complex, association of the intracellular Fas death 

domain with Fadd and formation of the death-inducing signalling complex (DISC) 

(Kischkel et al., 1995). The DISC binds to and activates Pro-Caspase 8 via self-

proteolytic cleavage (Medema et al., 1997).  

In both cases, active Caspase 8 (also known as Fadd-like interleukin-1 beta-

converting enzyme, or Flice) instigates a cascade of caspase activation, resulting 

in initiation of apoptosis. Alternatively, active Caspase 8 can cleave the pro-

apoptotic Bcl2 member BH3-interacting domain death agonist (Bid), resulting in a 

truncated molecule (tBid) that translocates from the cytosol to the mitochondria 

(Li et al., 1998b). This BH3-only Bcl2 protein family member can trigger Bax-

mediated permeabilisation of the outer mitochondrial membrane and instigation of 

the intrinsic apoptotic pathway (Wang et al., 1996; Eskes et al., 2000; Korsmeyer 

et al., 2000; Wei et al., 2000). This represents one of the ways in which the 

intrinsic and extrinsic pathways can interact with one another. 



22 

 

1.1.5.2 Apoptosis and Myc 

Intriguingly, it was found that oncogenes such as c-myc, whose cellular function 

largely involves cell cycle regulation, also have apoptotic properties (Askew et 

al., 1991; Evan et al., 1992; Shi et al., 1992). In the study of Evan et al. (1992), 

ectopic expression of the Myc protein in Rat-1 fibroblasts cultured under 

conditions of depleted survival factors induced apoptosis and the eventual loss of 

the entire population. A widely held view of oncoprotein-induced apoptosis is that 

the induction of cell cycle entry „sensitises‟ the cell to apoptotic stimuli, indicating 

a coupling between the two processes of cell proliferation and apoptosis. 

However, the relative availability of appropriate survival factors providing anti-

apoptotic signals suppresses the apoptotic pathway. The predominant outcome of 

these contradictory processes is therefore dependent on the availability pro- and 

anti- apoptotic factors.  

This indicates that cells acquiring growth-deregulating mutations in vivo possess 

an „in-built‟ tumour suppressor function, which prevents expansion of potentially 

malignant cells. This in-built defensive mechanism must therefore be evaded for 

such a cell population to outgrow its environment. The synergy between 

oncoproteins and apoptosis-suppressing mechanisms (such as over-expression of 

anti-apoptotic proteins Bcl2 or BclXL, or loss of p19
Arf

 or p53 tumour suppressors 

– see below), suggests the importance of cooperation between oncogenic stress 

and evasion of tumour suppressor mechanisms in tumour expansion (Adams et 

al., 1985; Strasser et al., 1990; Blyth et al., 1995; Elson et al., 1995; Eischen et 

al., 1999; Jacobs et al., 1999). 

Stimulation of apoptosis can arise not only through direct links with the cell cycle, 

but also through indirect actions that may culminate in DNA damage. Myc has 

been linked to the accumulation of reactive oxygen species (ROS) via E2f1-

mediated inhibition of Nf-κb in vitro (Tanaka et al., 2002; Vafa et al., 2002) 

(Figure 1.1.3f). The consequence of this, either apoptosis or growth arrest, may be 

critically dependent on cell type.  
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Deregulated expression of Myc sensitises cells to a wide range of pro-apoptotic 

stimuli such as hypoxia, DNA damage and depleted survival factors (Strasser et 

al., 1990; Askew et al., 1991; Evan et al., 1992; Debbas and White, 1993; Qin et 

al., 1994). Myc has also been found to enhance sensitivity to external signalling 

through the Fas/CD95 (Hueber et al., 1997), Tnf (Klefstrom et al., 1994) and Trail 

(TNF-related apoptosis inducing ligand) (Lutz et al., 1998) death receptors 

(Figure 1.1.3d), and has been shown to result in down-regulation of the inhibitor 

of caspase activation Flice inhibitory protein (Flip) (Ricci et al., 2004) (Figure 

1.1.3e). Flip inhibits the extrinsic pathway of apoptosis by competing with Pro-

Caspase 8 for binding to the DISC, so Myc-induced sensitisation to death receptor 

stimuli may be explained in part by this down-regulation. 

Early studies indicating the role of Myc in apoptosis showed that it could induce 

the release of Cytochrome c from the mitochondria, and ectopic addition of 

Cytochrome c sensitised cells to apoptosis (Juin et al., 1999). Myc can also 

promote apoptosis through more direct effects on the expression of members of 

the Bcl2 protein family, such as by repressing expression of bcl2 and bclXL (Figure 

1.1.3h), both of which have anti-apoptotic protein products, or by inducing 

expression of pro-apoptotic members, such as bim (Figure 1.1.3g) and bax (Figure 

1.1.3a) (Gross et al., 1998; Khaled et al., 1999; Eskes et al., 2000; Martinou and 

Green, 2001; Soucie et al., 2001; Juin et al., 2002; Morrish et al., 2003).  

The survival factor Igf1 has been shown to inhibit Myc-induced apoptosis in vitro 

by blocking Cytochrome c release (Lowe et al., 2004). Survival signals mediated 

via the Igf1 receptor or activated Ras can lead to activation of the Akt1 (thymoma 

viral proto-oncogene) serine/threonine kinase pathway (Kauffmann-Zeh et al., 

1997). Activated Akt1 phosphorylates the pro-apoptotic BH3-only Bcl2 family 

protein Bad resulting in its sequestration and inactivation by the cytosolic 14-3-3 

proteins (Zha et al., 1996b) (Figure 1.1.3j). This prevents Bad-mediated inhibition 

of the anti-apoptotic Bcl2 family member BclXL, leading to prevention of Bax-

mediated release of Cytochrome c from the mitochondria (Zha et al., 1996b; del 

Peso et al., 1997; Schurmann et al., 2000). Elevated signalling through the Igf1 
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pathway is found in many tumours, and genetic mutations involved in activation 

of the Pi3k pathway collaborate with Myc during tumour progression. 

One key process in which Myc has been associated is through the indirect 

activation of the p53 tumour suppressor via p19
Arf 

(Zindy et al., 1998). The p19
Arf

 

tumour suppressor protein acts in a checkpoint that guards against unscheduled 

cellular proliferation in response to oncogenic signalling. p19
Arf

 also prevents 

hyper-proliferation and transformation caused by Myc and enhances Myc-induced 

apoptosis independently of p53 (Qi et al., 2004). p53, sometimes referred to as the 

“Guardian Angel” of the cell, is a transcription factor whose targets are key 

factors in promoting apoptosis and cell cycle arrest (Vogelstein et al., 2000; Zhao 

et al., 2000). Key p53 target genes include the cell cycle arrest promoting p21
Cip1

, 

and pro-apoptotic members of the Bcl2 superfamily Bax, Puma (bbc3), Noxa, Bid 

and Bim. However, it has also been shown that p53 has a more direct role in 

promoting MOMP, via direct activation of Bax or inhibition of BclXL and Bcl2 in 

the cytosol (Mihara et al., 2003; Chipuk et al., 2004; Erster and Moll, 2005).  

Levels of p53 are kept low in normal cells due to the p53 regulator Mdm2, which 

inhibits transactivation (Momand et al., 1992; Chen et al., 1995) and facilitates 

translocation of the protein to the cytosol for proteosomal degradation (Maki et 

al., 1996; Haupt et al., 1997). In this way, Mdm2 acts as a suppressor of p53-

mediated apoptosis and cell cycle arrest (Chen et al., 1996). p19
Arf 

regulates p53 

activity by binding to and inhibiting Mdm2, allowing p53 stabilisation and 

accumulation (Stott et al., 1998; Zhang et al., 1998). It can also act as a tumour 

suppressor independently of p53 (Weber et al., 2000), e.g. through Bax-mediated 

release of Cytochrome c from the mitochondria (Suzuki et al., 2003). p19
Arf

 has 

also been found to bind to and inhibit the Myc protein itself, resulting in a 

feedback loop (Datta et al., 2004; Qi et al., 2004). 

p53 is often associated with DNA damage sensing pathways, which may be 

activated due to the effects of ROS, spontaneous mutations, cytochemicals, 

mutagenic chemicals and radiation on DNA structure. Upon sensing of DNA 

damage, Rad1, Rad9 and Hus1 form the 9-1-1 complex (Burtelow et al., 2001; 

Lindsey-Boltz et al., 2001) which binds to chromatin in a Rad17-dependent 
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manner (Zou et al., 2002). This leads to initiation of cell cycle checkpoint 

pathways that promote cell cycle arrest to allow DNA repair. These checkpoints 

are primarily regulated by the serine/threonine-specific protein kinases ataxia 

telangiectasia mutated (Atm) and ataxia telangiectasia and Rad3-related kinase 

(Atr), which phosphorylate and modify cell cycle and checkpoint proteins leading 

to cell cycle arrest, DNA repair, and induction of apoptosis if DNA cannot be 

suitably repaired. Atm is primarily activated early in the cell cycle in response to 

double strand DNA breaks, whilst Atr is activated later due to UV radiation-

induced DNA damage and blocks in transcription (Shiloh, 2001).  

Both Atm and Atr are able to phosphorylate p53 directly at serine-15 at the N-

terminus, preventing association with the p53-suppressor Mdm2, accumulation of 

stable p53 protein, and subsequent induction of p53-mediated pro-apoptotic 

factors (Banin et al., 1998; Canman et al., 1998; Tibbetts et al., 1999). Atm is able 

to activate p53 indirectly by phosphorylating and activating the p53-activating 

checkpoint kinases Chk1 (Shieh et al., 2000; Gatei et al., 2003) and Chk2 

(Chaturvedi et al., 1999; Ahn et al., 2000; Chehab et al., 2000; Hirao et al., 2000), 

and the polo-like kinase 3 (Plk3) (Xie et al., 2001), and also phosphorylates and 

activates further tumour suppressors, such as Brca1 (Cortez et al., 1999), Smc1 

(Kim et al., 2002; Yazdi et al., 2002) and E2f1 (Lin et al., 2001). The main role of 

Atr is in activating Chk1 (Liu et al., 2000; Zhao and Piwnica-Worms, 2001), 

which leads to cell cycle arrest by phosphorylating the cell division cycle protein 

Cdc25a, resulting in binding to 14-3-3 proteins and prevention of Cdc2 activation, 

which promotes cell cycle arrest (Zeng et al., 1998; Lopez-Girona et al., 1999). 

The process of Myc-induced apoptosis is complex, and may occur through a 

variety of pathways. It is widely believed that apoptosis is the key function for 

limiting oncogenic Myc-mediated tumourigenesis, and the favoured mechanism 

for Myc-induced apoptosis may be ultimately dictated by cell type and tissue 

location. In vivo studies by Pusapati et al. (2006) showed that over-expression of 

Myc in mouse squamous epithelial cells resulted in p53-induced apoptosis in 

order to inhibit tumour formation. However, this was dependent on the presence 

of functional Atm, indicating that Myc-induced apoptosis involves DNA damage 
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pathways in vivo. Studies by Dansen et al. (2006) using the pins-mycER
TAM

 

transgenic mouse model for Myc over-expression in pancreatic β-cells (described 

in Section 1.2.3) identified Bax as an essential factor in Myc-mediated apoptosis 

in vivo, with deletion of bax allowing Myc to drive the formation of angiogenic 

and invasive β-cell tumours. This suggests that Myc-related apoptosis occurs 

through Bax-mediated release of Cytochrome c from the mitochondria. This is 

further evidenced given the ability of Bcl2 and BclXL to prevent Myc-induced 

apoptosis, allowing the tumourigenic potential of Myc to be observed 

(Bissonnette et al., 1992; Fanidi et al., 1992; Pelengaris et al., 2002b; Finch et al., 

2006; Lawlor et al., 2006).  

Other methods for circumventing Myc-induced apoptotic activity in vivo, such as 

over-expression of BclXL, or loss of p19
Arf

 and p53, were found to operate through 

distinct mechanisms (Finch et al., 2006). While BclXL over-expression results in a 

reduction in Myc-induced apoptosis, loss of p19
Arf

 results in an increase in both 

apoptosis and proliferation, resulting in balanced cell mass with a greatly 

increased cell turnover. This suggests that the role for p19
Arf 

in Myc-induced 

apoptosis may be related to its proliferative activity, such as through cell cycle 

arrest. Loss of p53 resulted in a similar increase in proliferation together with a 

loss in apoptosis, leading to formation of highly aggressive tumours. This 

suggests that oncogenic cooperation of Myc may take many forms, and these 

mechanisms may themselves cooperate to further augment the lesion. 

  



27 

 

 

Figure 1.1.3: Pathways involving Myc and apoptosis 

Myc sensitises cells to a wide range of pro-apoptotic stimuli, such as hypoxia, DNA damage, 

depleted survival factors, and signalling through Fas, Tnf and Trail death receptors. Shown here is 

a schematic representation of factors involved in Myc-mediated control of apoptosis. Pro-apoptotic 

factors are shown in red, anti-apoptotic factors in blue, caspases in orange, and receptors in brown. 

Transcription factors are indicated by rectangles. a) One of the key events in intrinsic apoptosis 

pathways is alteration of mitochondrial membrane pores via activation of pro-apoptotic Bcl2 

members such as Bax and Bak. This results in activation of MOMP and release of Cytochrome c 

into the cytosol. Cytochrome c associates with Apaf1 and Pro-Caspase 9 to form the apoptosome 

(„wheel of death‟). Caspase 9 is auto-catalytically activated, resulting in proteolytic cleavage of 

downstream effector caspases, including Caspase 3, leading to degradation of cell components. 

Further pro-apoptotic factors are also released, including Smac and Htra2 which inhibit IAPs, and 
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Endog and AIFs which assist in fragmentation of DNA. b) Myc also affects the release of 

Cytochrome c through indirect activation of the p53 tumour suppressor by stimulating expression 

of p19
Arf

, which associates with and inhibits the p53 inhibitory protein Mdm2. This leads to 

stabilisation of p53, which transcribes cell cycle arrest factors such as p21
Cip1

, and BH3-only Bcl2 

members involved in Bax activation at the mitochondrial membrane. P19
Arf

 blocks Myc-induced 

transcription of genes involved in growth, whilst exerting no effect on Myc-mediated gene 

repression, creating a feedback mechanism that results in increased apoptosis. c) p53 is also 

activated through the DNA damage pathways in response to activated Atr/Atm, and the checkpoint 

kinases Chk1 and Chk2. d) The extrinsic pathway for apoptosis involves ligation of death 

receptors such as Fas with their respective cytokines, resulting in association with the intracellular 

adaptor protein Fadd to form the DISC. Fadd recruits Pro-Caspase 8 resulting in autocatalytic 

activation of the pro-caspase, which begins a caspase cascade leading to activation of downstream 

executioner caspases and apoptosis. e) Myc inhibits Flip, which competes for binding to the DISC, 

preventing activation and leading to sensitisation of the cell to extrinsic apoptosis signals. Caspase 

8 may also activate the pro-apoptotic protein, Bid, which promotes MOMP by association with 

Bax at the mitochondria, thereby linking the extrinsic and intrinsic pathways of apoptosis. f) 

Recently Myc has been reported to mediate apoptosis through suppression of Nfκb, leading to 

accumulation of ROS. g, h) Myc can also induce expression of the BH3-only pro-apoptotic protein 

Bim and suppress expression of the anti-apoptotic proteins Bcl2 and BclXL. i) Expression of p19
Arf

 

is not usually detected during normal cell replication, so p19
Arf

 may occur through inhibition of the 

p19
Arf

 inhibitor Bmi1. j) Cell survival occurs through survival signals such as Igf1, which blocks 

Myc-induced apoptosis by association with the Igf1 receptor and activation of the Akt signalling 

pathway. Activation of Akt1 through Pi3k leads to phosphorylation of the pro-apoptotic protein 

Bad which is sequestrated and inactivated by cytosolic 14-3-3 proteins. k) Anti-apoptotic proteins, 

such as Bcl2 and BclXL, reside in the outer mitochondrial membrane and block Cytochrome c 

release through sequestration of Bax. Adapted from Robson et al (2006).  
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1.2 MycER
TAM

 – Switchable transgenic model 

1.2.1 The MycER
TAM

 switchable protein 

In vitro experiments can only reveal so much about molecular interactions in 

cellular biology. Whilst we can observe the effects of a particular drug on a cell 

population, we fail to take into account the complex interactions between different 

cell species that can occur within tissues as a whole. Factors such as cell type, 

differentiation state and tissue location can play a significant role in determining 

cellular response to Myc deregulation. Lipinski and Hopkins point out that “the 

nature and properties of a chemical tool cannot be considered independently of the 

system it is to be tested in” (Lipinski and Hopkins, 2004). For this reason, in vivo 

studies using living organisms are vitally important to ensure that the complex 

cellular interactions that occur during everyday life are taken into account. In vitro 

studies show results given a very specific set of conditions that can be greatly 

affected by the experimenter (e.g. by changing the levels of growth and survival 

factors in the serum) – in vivo studies allow the greater role of local tissue 

environment and context to be considered.  

Animal models are often used to observe the effects of scientific intervention on 

an organism as a whole, whilst allowing experimenters to control the environment 

in which samples are studied and reduce sample-to-sample variation. Experiments 

using mice in which target genes have been knocked out (altered at the genetic 

level such that the protein product is no longer produced) can answer important 

questions regarding the role of particular genes in cellular function. The 

development of genetically altered mice in which the expression or activation of a 

given gene or protein can be switched on or off in vivo has provided a means to 

assess the physiological roles of genes and proteins in tumourigenesis within the 

context of the adult organism as a whole (reviewed in Maddison and Clarke, 

2005). These conditional transgenic mouse models allow direct control of the 



30 

 

„time 0‟ of the genetic mutation under study, allowing dissection of the pathways 

involved in the early stages of tumourigenesis. 

One such conditional transgenic model utilises a modified estrogen receptor to 

provide a switch for the regulation of heterologous proteins. A human 

complementary DNA (cDNA) transgene is constructed encoding for a chimeric 

Myc protein fused at the CTD to the hormone-binding domain of a 4-

hydroxytamoxifen (4OHT)-responsive murine mutant estrogen receptor (ER
TAM

) 

(Littlewood et al., 1995). The transgenic construct is introduced to the genome of 

a fertilised mouse oocyte by microinjection, such that expression is placed under 

the control of a tissue-specific promoter (see below). The resulting fusion protein 

is constitutively synthesised within target cells, but remains inactive by steric 

hindrance due to binding of heat shock protein 90 (Hsp90) to the ligand binding 

domain. Administration of the ligand 4OHT to the animal leads to preferential 

binding of 4OHT to the ligand binding domain, allowing association of the 

chimeric MycER
TAM

 protein to its partner protein Max (Figure 1.2.1). The 

MycER
TAM

-Max heterodimer is then able to carry out its transcriptional role, 

which has shown similar (if not identical) functions to that of the native Myc 

protein (Remondini et al., 2005).  

Expression of the MycER
TAM

 protein can be targeted to cells of interest in vivo by 

placing transcription under the control of a cell-specific promoter. Two well 

categorised tissues for targeted MycER
TAM

 expression are the suprabasal 

keratinocytes of the epidermis and pancreatic β-cells, which are discussed in the 

following sections. 
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Figure 1.2.1: Activation of the MycER
TAM

 fusion protein by 4OHT 

Activation of the MycER
TAM

 fusion protein by administration of 4OHT leads to transcriptional 

activation of target genes. a) The chimeric MycER
TAM

 protein is synthesised within target cells, 

but remains inactive due to binding of heat shock protein 90 (Hsp90) to the modified murine 

estrogen receptor ligand binding domain (ER
TAM

). b) Administration of 4OHT molecules to target 

cells results in preferential binding to the ER
TAM

 domain, displacing the bound Hsp90. c) This 

allows association of the bHLH-LZ regions of the Myc and Max molecules and formation of the 

active Myc-Max heterodimeric complex. d) Myc-Max heterodimers bind to specific DNA 

sequences in target genes, such as the E-box sequence; CACGTG. e) Myc homology boxes I and 

II (MBI/II) recruit co-activators such as Trrap to the target gene promoter site. f) Trrap binds a 

histone acetyl transferase (HAT) which promotes chromatin remodelling and access of RNA 

polymerase to the activation site, leading to initiation of transcription. 
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1.2.2 Activation of MycER
TAM

 in skin suprabasal keratinocytes 

The skin is the largest organ in the human body, and is comprised of two main 

layers: the epidermis, a stratified layer of epithelial cells (predominantly 

keratinocytes) that provides a protective barrier from the surrounding 

environment, and the thicker dermis, made up predominantly of collagen and 

other connective tissues that provides a protective cushion surrounding the 

delicate muscles beneath. Basal epidermal cells are anchored to a basement 

membrane that segregates the two layers. 

The outermost epidermal layer maintains dynamic homeostasis throughout adult 

life through continuous proliferation of pluripotent stem cells in the basal 

epidermal cell compartment (Watt, 1998; Taylor et al., 2000; Watt and Hogan, 

2000; Oshima et al., 2001) (Figure 1.2.2). The predominant model for epidermal 

cell replenishment is the idea that basal stem cells divide infrequently to form 

daughter cells with limited proliferative capacity, known as transit-amplifying 

(TA) cells (Mackenzie, 1970; Potten, 1974). TA cells remain within the basal 

layer and undergo a small number of divisions before withdrawing from the cell 

cycle, breaking away from the basement membrane, migrating  into the suprabasal 

epidermis and committing to a program of terminal differentiation (Lajtha, 1979; 

Alonso and Fuchs, 2003). However, the role of TA cells in skin homeostasis has 

recently been called into question, with recent studies suggesting that proliferation 

of epidermal keratinocytes is attributable to a single progenitor cell (Clayton et 

al., 2007; Jones et al., 2007).  

Terminal differentiation involves migration towards the skin surface in 

conjunction with accumulation of tough keratin filaments, which provide 

resilience to mechanical stress. Keratinocytes within the top layer of the 

suprabasal layer produce small basophilic granules, such as membrane-coated 

lamellar granules and keratohyalin granules, in their cytoplasm. These assist in 

strengthening the cell. Throughout migration, keratinocytes gradually begin to die 

due to a lack of nutrients and oxygen, and by the time they reach the outer level of 

the epidermis, they become dead, flattened, denucleated, hyperkeratinised 
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squames, which provide a waterproof barrier from the environment. Squamous 

cells are continuously sloughed off from the skin surface to be replaced by new 

differentiating suprabasal keratinocytes.   
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Figure 1.2.2: Homeostasis in skin epidermis is maintained by continuous proliferation of 

pluripotent stem cells in the basal layer 

Homeostasis in the skin epidermis is maintained by dynamic equilibrium between keratinocyte 

proliferation and cell loss. In this way, the skin is kept in a constant state of renewal, which is 

particularly important for rapid wound healing response. The epidermis is a stratified epithelial 

tissue, made up of several distinct layers. Cells in the basal layer (red) are attached to the basement 

membrane, which separates the epidermis from the protective dermis beneath. Keratinocyte stem 

cells (or TA cells) in the basal layer replicate to form daughter cells (green), which detach from the 

basement membrane and migrate into the suprabasal layer, (blue) where they become committed 

to a program of terminal differentiation. Cells accumulate tough structural keratin proteins, which 

protect the cell from mechanical stress. Further accumulation of keratin and formation of 

membrane-coated lamellar granules and keratohyalin granules accompanies further migration, 

until cells become denucleated hyperkeratinised squames. These provide a protective waterproof 

barrier, and are continuously shed from the epidermis surface to be replenished by further 

differentiating keratinocytes. 
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In vivo models that target Myc activation to epidermal cell compartments allow 

more accurate studies of the effects of Myc deregulation, whilst taking the all-

important context of the specific tissue into account. In particular, the MycER
TAM

 

switchable transgenic model allows controlled activation (and deactivation) of 

deregulated Myc in suprabasal keratinocytes using the suprabasal keratinocyte 

specific Involucrin promoter (inv-mycER
TAM

). Activation of MycER
TAM

 through 

daily topical administration of 4OHT results in loss of differentiation and 

induction of proliferation in suprabasal keratinocytes that are committed to a 

program of terminal differentiation. Continued activation of MycER
TAM

 leads to 

the formation of benign tumours resembling papillomas, or pre-malignant lesions 

that resemble actinic keratosis (Pelengaris et al., 1999) (Figure 1.2.3).  

This also leads to a loss in cell-cell contact and increased angiogenic growth 

(Pelengaris et al., 1999; Knies-Bamforth et al., 2004). Interestingly, the resulting 

phenotype is entirely dependent on continued administration of 4OHT, and is 

fully reversed upon cessation of 4OHT administration (Pelengaris et al., 1999). 

However, despite showing many of the hallmarks of cancerous growth, over-

representation of the Myc protein alone is insufficient to result in malignancy. 

This may be due to the fact that the keratinocyte population is self-limiting, since 

completion of terminal differentiation results in the ultimate loss of affected cells 

(Flores et al., 2004). 
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Figure 1.2.3: Activation of MycER
TAM

 in suprabasal keratinocytes results in increased 

proliferation and formation of benign papilloma-like tumours 

The MycER
TAM 

transgenic construct can be targeted to suprabasal keratinocytes via the Involucrin 

promoter. In wild type (WT) and vehicle-treated (VT) transgenic animals, proliferation is confined 

to the basal compartment. Post-mitotic cells enter a program of terminal differentiation and 

migrate towards the tissue surface. Activation of the MycER
TAM

 protein in terminally 

differentiating suprabasal cells results in disruption of differentiation and induction of 

proliferation, leading to formation of benign papilloma-like growths. a) Cartoon representation of 

induction of proliferation in suprabasal keratinocytes. b) H&E staining for skin tissue from a 

transgenic untreated mouse, and a mouse treated with 4OHT for 7 days (taken with permission 

from Pelengaris, Littlewood et al., 1999). hf, hair follicle; gr, granular cell; pa, parakeratosis. 
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1.2.3 Activation of MycER
TAM

 in pancreatic β-cells 

The pancreas is a gland organ within the abdomen with roles in the digestive and 

endocrine systems of vertebrates. The β-cells of the pancreas are the sole source 

of the Glucose regulatory hormone Insulin which is released upon the sensing of 

high Glucose levels within the blood. The hormone is released into the blood via 

pancreatic ducts and associates with Insulin receptors on the cellular surface to 

stimulate uptake of Glucose for metabolism. Insulin also informs cells in the liver 

and the muscles to convert Glucose into glycogen for storage. β-cells are isolated 

within self-contained groupings of endocrine cells in the pancreas known as „Islets 

of Langerhans‟, and make up the majority of the islet mass (Langerhans, 1869). 

Islets are evenly spaced throughout the pancreas and make up only a small amount 

(roughly 2 %) of the total pancreas mass (Elayat et al., 1995), with exocrine tissue 

such as connective tissue, enzyme producing cells, and ducts for transportation 

making up the remainder. Other cells contained within the islets include: 

glucagon-producing α-cells, responsible for turning stored glycogen back into 

Glucose in times of low blood Glucose (Gaede et al., 1950; Ferner, 1951); 

somatostatin-producing δ-cells, which inhibit Insulin and glucagon production 

(Alberti et al., 1973; Iversen, 1974; Koerker et al., 1974); and pancreatic 

polypeptide (PP) producing cells, which are thought to be involved in the 

regulation of gastrointestinal secretions (Lin and Chance, 1974; Larsson et al., 

1975).  

In contrast to the skin epidermis which maintains a high rate of cellular turnover, 

β-cell turnover is much slower with an estimated life span of around 58 days for 

rats (Finegood et al., 1995), and a far lower replication rate detected for humans 

(Bouwens et al., 1997). This demonstrates the need for a stable supply of Insulin 

within the body due to the delicate control of Glucose levels required to prevent 

excess Glucose from accumulating in the blood (hyperglycaemia). Insulin 

production and release is closely linked to Glucose levels, as well as effects on β-

cell replication, size and apoptosis. Failure of β-cells to regulate blood Glucose 

levels can lead to a condition known as diabetes mellitus. The two most common 
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forms of diabetes are Type I and Type II; Type I diabetes results from auto-

immune destruction of β-cells, whilst Type II diabetes can occur due to resistance 

of cells to the action of Insulin in the blood, or due to β-cell Insulin production 

being insufficient (or a combination of the two).   

Expression of MycER
TAM 

has been specifically targeted to pancreatic β-cells using 

the β-cell specific Insulin promoter (Pelengaris et al., 2002b). Activation of the 

transgene (pins-mycER
TAM

) through intraperitoneal (IP) administration of 4OHT 

leads to G0/G1 cell cycle entry of target cells, as seen in the suprabasal 

keratinocytes. However, in stark contrast to the skin, this response is soon 

overshadowed by a significant apoptotic response (Pelengaris et al., 2002b) 

(Figure 1.2.4). This leads to reduction in islet mass, and the onset of diabetes 

within 3 days. Deactivation of MycER
TAM 

by halting 4OHT administration results 

in return to normal β-cell function and mass as remaining β-cells re-differentiate 

and β-cell numbers are replenished (Pelengaris et al., 2002b).  
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Figure 1.2.4: Activation of MycER
TAM

 in pancreatic β-cells results in apoptosis and 

involution of islet mass 

The mycER
TAM 

transgenic construct can be targeted to the pancreatic β-cells via the Insulin 

promoter. In WT and VT animals, β-cell turnover is slow. Upon activation of MycER
TAM

, 

proliferation of β-cells is induced across all islets. However, before β-cells become fully mitotic, 

they are driven to apoptosis resulting in involution of islet mass and induction of diabetes. a) 

Cartoon representation of MycER
TAM

 activation in pancreatic β-cells. Upon activation of the 

chimeric protein, proliferation and apoptosis are detected in β-cells. The apoptotic response soon 

overshadows proliferation, leading to loss of islet mass. b) H&E staining for mouse pancreas tissue 

from transgenic untreated sample and a mouse treated with 4OHT for 6 days, identifying severe 

loss in islet mass after 6 days of MycER
TAM

 activation (taken with permission from Pelengaris and 

Khan, 2002). 
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This mouse model shows the ability of Myc to act as its own tumour suppressor, 

which may be dependent on cell type (β-cells) and/or tissue. The β-cells appear to 

be only mildly buffered against cell death in vivo by survival signals and intrinsic 

anti-apoptotic mechanisms. The Myc-induced apoptotic phenotype can be 

suppressed by introduction of a second transgene, the anti-apoptotic protein β-cell 

lymphoma, extra large (BclXL) (Zhou et al., 2000; Pelengaris et al., 2002b). Mice 

expressing the pins-mycER
TAM

 transgene are crossed with those expressing 

transgenic bclXL under the control of the rat Insulin promoter (RIP7), producing 

double transgenic RIP7-BclXL/pins-mycER
TAM

 (RM) mice. Activation of 

MycER
TAM

 in double transgenic RM mice results in the rapid entry of nearly all 

β-cells into the cell-cycle with no discernable Myc-induced apoptosis (Pelengaris 

et al., 2002b). Sustained MycER
TAM 

activation through continuous 4OHT 

administration results in grossly hyperplastic islets. 

1.2.4 Comparison of the transcriptional response to MycER
TAM

 

activation in the pancreas and skin 

The two in vivo models for Myc activation previously described indicate a vital 

role for tissue context in determining the ultimate fate of the cell. Deregulation of 

a single oncogenic factor, the transcription factor Myc, is sufficient to elicit 

several of the hallmarks of cancer (Robson et al., 2006) in the subrabasal 

keratinocytes, leading to the production of pre-cancerous papillomas and 

induction of angiogenic growth. However, deregulation of the same oncogenic 

factor in a distinct tissue, the β-cells of the islets of Langerhans, results in a vastly 

different outcome as β-cells ultimately follow an apoptotic pathway. This 

indicates a crucial role for tissue context and the surrounding micro-environment 

in determining cell fate. In this instance, it would appear that the suprabasal 

keratinocytes are largely buffered against the pro-apoptotic functions of oncogenic 

Myc.  
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The reasons for this are unclear, though it has been suggested that terminal 

differentiation in skin epidermis may in itself act as a tumour suppressive 

function, ultimately leading to the loss of cells showing irregular growth (Flores et 

al., 2004). The divergence of Myc potentiality between the two tissues highlights 

the need for a real understanding of the pathways involved in these two functions. 

Developing further understanding of the processes by which cells are able to 

circumvent dangerous proliferative activity, and the conditions under which these 

in-built tumour suppressor functions may be avoided, will allow the identification 

of possible functional targets for therapeutic intervention in diseases such as 

cancer.  
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1.3 Microarrays: High-throughput transcriptomics 

The completion of the human genome project in 2003 (International Human 

Genome Sequencing Consortium, 2004) ushered in a new age of research 

allowing analysis of cellular function at a previously unforeseen molecular level. 

Tools are now available allowing researchers to analyse the many complex 

changes at the cellular level in a single experiment. Of these tools, perhaps the 

most familiar is the microarray – a single chip, about the size of a microscope 

slide, which allows analysis of thousands of mRNA transcripts in a single 

experiment. In this way, researchers can compare the transcriptional fingerprint of 

cells between conditions of interest to find key genes whose transcriptional 

activation or repression may be involved in the divergence in physiology between 

the conditions. Using this technology, researchers are able to find possible genetic 

targets for drug treatment against diseases, or genetic markers – gene signatures 

that may be used to identify specific genotypes and improve the early diagnosis of 

diseases such as cancer. In this section, the development of the microarray and its 

roles in the advancement of molecular biology are discussed. 

1.3.1 The microarray 

Whilst it is the proteins themselves that determine ultimate cellular function, the 

levels of mRNA – the intermediary molecule in the protein synthesis pathway – 

provide unique information regarding the levels of protein synthesis within a cell 

at a given time. Microarrays utilise the unique association of base pairs (adenine 

(A) with thymine (T) or uracil (U), and cytosine (C) with guanine (G)) to measure 

the abundance of mRNA transcripts within a specific sample, often across many 

thousands of genes in parallel. This gives a quantifiable measurement of the level 

of transcription of particular genes within cells of interest at a given time – the 

transcriptome. The knowledge of levels of gene-expression can be used to make 
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inferences regarding the ultimate levels of the protein products of those genes, 

under the assumption that an increase in mRNA production correlates with an 

increase in protein synthesis.  

Unlike other methods for determining gene-expression levels, such as quantitative 

real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) (Heid et al., 

1996), northern blot (Alwine et al., 1977) and in situ hybridisation (Jin and Lloyd, 

1997), the microarray allows analysis of the expression levels of a large number 

of genes simultaneously with only a fraction of the starting material. Microarray 

analysis has the additional bonus of not requiring prior knowledge of the 

transcript sequence under study, allowing for a more exploratory discovery-based 

approach to transcriptomic analysis. Microarrays are also relatively cheap in 

comparison to other methods of high-throughput gene-expression analysis, such 

as serial analysis of gene-expression (SAGE) (Velculescu et al., 1995) which 

incurs a relatively high cost in sequencing of mRNA. 

It must be noted that the transcriptome does not give a full account of the state of 

the cellular machinery. Not all mRNA transcripts are necessarily translated into 

proteins, and one transcript may produce a variety of proteins, each with diverse 

functions (Pandey and Mann, 2000). Also, further modification of mRNA 

transcripts, such as degradation by microRNAs (untranslated short single stranded 

RNA molecules that target mRNA molecules for degradation) (Lee et al., 1993; 

Ruvkun, 2001), and other epigenetic events (heritable modifications to DNA and 

chromatin structure that affect gene-expression, but which do not affect DNA 

sequence) may occur prior to translation. In addition, post-translational 

modifications, such as activation of proteins by phosphorylation or degradation of 

proteins by proteolytic enzymes (proteases), cannot be identified using 

transcription-level analyses. However, given the central role of RNA in the 

cellular machinery of the cell, transcriptional profiling remains a powerful 

approach for functional analysis of cellular function. 

A microarray is essentially a small array of DNA probes, each designed to 

recognise a specific sequence of nucleotides (mRNA or DNA). The unique 

pairing of nucleotide bases that provides the mechanism for DNA and RNA 
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replication is utilised; each probe is made up of a large number of nucleotide 

sequences complementary to the target sequence. Starting mRNA or DNA 

molecules are processed and labelled with a fluorescent molecule. After 

hybridisation to the array, fluorescence scanning determines the relative 

abundance of molecules bound to their respective probes. The first such 

experiment was performed by Schena et al. (1995), looking at the expression 

levels of 45 Arabidopsis genes. Realising the potential of this approach, many 

more studies soon followed, each increasing the number of genes queried  (DeRisi 

et al., 1996; Schena et al., 1996; Shalon et al., 1996). In just a few short years, the 

microarray has developed far beyond the relatively small-scale production of 

these pioneering experiments to a stage whereby the expression of tens of 

thousands of genes can now be analysed simultaneously.  

Microarrays for gene-expression analysis can be largely separated into two 

classes; those designed for 2-colour hybridisations and those designed for 1-

colour hybridisations (Figure 1.3.1). 
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Figure 1.3.1: Schematic representation of 1-colour and 2-colour hybridisation assays 

A) In 1-colour experiments, transcript abundance of each sample is represented by a single array. 

mRNA is extracted and used to generate double stranded cDNA with a transcriptional start site for 

T7 DNA polymerase. This is used to initiate reverse transcription, incorporating biotin labelled 

nucleotides. The resulting biotin labelled complementary RNA (cRNA) is fragmented, hybridised 

to a microarray, washed and stained with a streptavidin-coupled fluorescent dye. Scanning 

produces a fluorescence signal relating to the abundance of corresponding mRNA transcripts. 

Comparison of probe signal intensities across arrays is used to measure relative mRNA abundance. 

B) In 2-colour experiments, transcript abundance of each sample is measured relative to a single 

control sample of mRNA on a single array. Single stranded cDNA is synthesised from sample 

mRNA, incorporating nucleotides labelled with one of two different fluorescent molecules, often 

Cy3 (green) and Cy5 (red). Both differentially labelled samples are combined and hybridised to a 

single array, and confocal fluorescence scanning provides ratio values of relative abundance of 

mRNA transcripts between samples. Adapted from Trevino et al. (2007). 
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1.3.1.1 Spotted 2-colour microarrays 

2-colour microarrays are designed to determine comparative levels of 

hybridisation of transcripts from two unique sources on a single array (Figure 

1.3.1B). The first type of arrays to be developed, known as cDNA microarrays, 

were designed in this way with probes pre-fabricated from known DNA sequences 

and spotted onto a glass support platform (Schena et al., 1995; DeRisi et al., 1996; 

Schena et al., 1996; Shalon et al., 1996). These probes are usually PCR products 

amplified from cDNA clones, and are spotted onto specific regions of the array 

using robotic printing techniques.  

Often, a test sample is compared directly to a control sample (e.g. treated vs. 

untreated). mRNA is collected from each of the two samples of interest, reverse 

transcribed to give cDNA, and each is labelled with a different dye (often Cy3, 

which fluoresces in the red part of the spectrum, and Cy5, which fluoresces in the 

far-red part of the spectrum). Typically these dyes are assigned false colours of 

green and red for visualisation (e.g. Cy3 – green, Cy5 – red). These labelled 

cDNA molecules, designated the target, are hybridised directly to the array, where 

they hybridise to their specific probes. Laser scanning of the array at the specific 

frequencies for the fluorophores produces two values for each probe; one 

representing the intensity of fluorescence for Cy3-labelled targets, and one for 

fluorescence of Cy5 targets. Combining these values into a pseudo-image shows 

relative signals of the two fluorophores for each probe, with probes containing a 

higher abundance of Cy3-labelled target appearing green, a higher abundance of 

Cy5-labelled target appearing red, and an equal abundance of Cy3- and Cy5-

labelled target appearing yellow. Thus, relative change in target abundance 

between the two samples can be identified by calculating the ratio of Cy3 signal to 

Cy5 signal for each probe. 

Since cDNA arrays can be easily produced by experimenters „in-house‟, they are 

often chosen due to the relatively low costs involved, and the level of 

specification afforded in the array design. They are of particular use when 

performing experiments in which the change in expression of only a small number 
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of genes is of interest. However, the use of long PCR products in cDNA arrays, 

often 500-1000 bp, means that the levels of cross-hybridisation of targets with 

similar sequences may be high, making analysis of changes in similar or 

overlapping genes and splice variants difficult. Also, probes on cDNA arrays are 

sometimes of varying lengths and with highly varying GC contents within the 

bases. Since base pair interactions between guanine and cytosine (3 hydrogen 

bonds) are stronger than those between adenine and thymine (2 hydrogen bonds), 

this results in high variation in the individual probe-target affinities, causing 

variations in signal strength not related to transcript abundance.  

1.3.1.2 Oligonucleotide 1-colour microarrays 

Some microarrays combat the problem of varying probe-affinity by using much 

shorter oligonucleotide probes – sequences of nucleotides synthesised directly to 

the microarray support (Lockhart et al., 1996). By using smaller probes for target 

sequences, probe-specific variation is minimised and cross-hybridisation is 

reduced, increasing probe specificity. This process also allows analysis of splice 

variants and similar or overlapping genes, since smaller, more specific 

subsequences can be queried. To ensure that specificity is not lost by looking at 

only a small region of the target transcript, a number of oligonucleotide probes are 

designed to represent a single transcript. The process of producing these arrays 

lends itself well to automated procedures, and this type of array is readily 

available „off the shelf‟ from a variety of vendors. One of the most well known 

commercial vendors of microarrays is Affymetrix (Santa Clara, CA), whose range 

of GeneChip gene-expression arrays is one of the largest (Section 1.4).  

The Affymetrix GeneChip is a 1-colour microarray system, whereby the gene-

expression of a single sample is represented on a single array (Figure 1.3.1A). In 

many instances, this may be preferable to the 2-colour approach, as signal values 

represent estimations of absolute gene-expression levels rather than relative 

values. This means that information is known individually for all samples, and a 

single outlying sample cannot affect the raw expression values of any other 
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sample. Also, since the commercial „production-line‟ manufacturing process is 

more reproducible as compared to the production of cDNA arrays, between-array 

variation is greatly reduced even across different experiments. The main downside 

of commercial products over home-made is the comparatively greater cost 

involved, since a greater number of arrays must be used and manufacturing costs 

are often higher. However, due to improvements in the technology, the cost-

benefit gap for using commercial arrays is quickly closing, and more 

experimenters are moving towards off-the shelf products. Many commercially 

available technologies, such as the Agilent Dual Mode gene-expression arrays 

(Agilent Technologies, Santa Clara, CA) also allow both 1-colour and 2-colour 

hybridisation approaches. The relative merits of each type of microarray are 

discussed further in Section 1.5.1.2. 

1.3.1.3 Microarray applications 

The ability to analyse changes in gene transcription across the entire genome 

simultaneously provides researchers with a powerful tool for identifying cellular 

event that may be linked to physiological status. Microarray gene-expression 

studies can largely be identified as class comparison, class discovery or class 

prediction analyses (Miller et al., 2002; Olson, 2006):  

 Class comparison 

In class comparison studies, the aim is to identify genes that are 

differentially expressed between samples that fall into 2 or more groups. 

These groups could be treated samples versus untreated samples, diseased 

samples versus healthy samples, etc., or they could be samples at various 

time points of a time course experiment (for example, see Spellman et al., 

1998; Brachat et al., 2000; Coller et al., 2000; Guo et al., 2000; De Leon 

et al., 2006; Lawlor et al., 2006).  

 Class discovery 

Class discovery experiments aim to find possible groupings that exist 

within the data, either between samples or between genes. This can be 
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used to identify gene signatures, also known as biomarkers, able to 

distinguish between healthy and diseased samples. Biomarkers have been 

identified for a number of diseases, such as acute lymphoblast leukemia 

(Golub et al., 1999), breast cancer (Perou et al., 2000; van 't Veer et al., 

2002), prostate cancer (Singh et al., 2002), lung squamous cell carcinoma 

(Wang et al., 2000), colon cancer (Alon et al., 1999), Alzheimer‟s disease 

(Ginsberg et al., 2000), schizophrenia (Mirnics et al., 2000), and HIV 

infection (Geiss et al., 2000). 

 Class prediction 

Class prediction aims to use biomarkers and specific gene signatures to 

accurately predict the membership of samples to specific groups. This is 

often used to test the efficacy of using biomarkers to diagnose illnesses 

and disease (for example, see Golub et al., 1999; Ramaswamy et al., 2001; 

Tibshirani et al., 2002; van't Veer et al., 2002). 

Whilst gene-expression studies are by far the most common use of microarray 

technology, this technique can also be used in many different ways for high-

throughput measurements of changes in the genome. Some examples of studies 

that can be performed using microarrays include: 

1. Array based comparative genome hybridisation 

High-density DNA microarrays with probes spanning the entire human 

genome can be used to observe gains, losses and amplifications in copy 

number of genomic DNA as compared to that of a reference genome 

(Pollack et al., 1999). For comparative genome hybridisation (CGH), test 

and reference genomic DNA are labelled with different fluorescent 

molecules in a similar fashion to 2-colour gene-expression analyses, and 

labelled DNA samples are hybridised to the array. Fluorescence signals for 

the two dyes are taken sequentially along the length of the chromosome, 

and ratios corresponding to variation in copy number between healthy and 

diseased cells are taken. Detection of copy number variants – regions of 

DNA > 1 𝑘𝑏 in length that are present at variable copy numbers within a 

population (Feuk et al., 2006) – can be used to identify genetic loci that 
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differ between healthy and diseased cell samples (Natrajan et al., 2006; 

Pierga et al., 2007; Suela et al., 2007). 

2. Single nucleotide polymorphisms 

As well as copy number variations, the human genome contains over 10 

million single nucleotide polymorphisms (SNPs) – regions of the genome 

varying by a single nucleotide in at least 1 % of the population (Li and 

Grauer, 1991; Piotrowski et al., 2006). High-density arrays with probes to 

measure SNPs along the whole genome are used to genotype thousands of 

SNPs simultaneously (Kennedy et al., 2003), allowing the development of 

ultra-high-density SNP maps (International HapMap Consortium, 2005; 

Frazer et al., 2007). SNP arrays can also be used, as with CGH, to measure 

gains and losses in copy number, and also to detect loss of heterozygocity 

– a measure of allelic imbalance due to the loss of or gain in copy number 

of one allele in comparison to the other (Yamamoto et al., 2007). This is 

often used to detect disease loci within the genome, particularly for 

diseases such as cancer (Gorringe et al., 2007; Heinrichs and Look, 2007; 

Hunter et al., 2007; Lips et al., 2007). One advantage of SNP arrays over 

CGH is the ability to detect copy-neutral losses of heterozygocity, such as 

detection of uniparental disomy, whereby both chromosomal copies are 

received from a single parent (reviewed in Walker and Morgan, 2006). 

3. Methylation studies 

DNA methylation is one of the major sources of epigenetic modification 

(changes to gene-expression that do not alter the DNA sequence), and acts 

to silence gene-expression through addition of a methyl group to genomic 

DNA. Typically, around 80 % of all CpG-dinucleotides (cytosine 

nucleotide linked to a guanine nucleotide through a phosphate) are 

methylated at the fifth position of the cytosine pyrimidine ring (Braude et 

al., 2006). Methylation of cytosine nucleotides in promoter regions can 

result in inactivation of genes, even in the presence of transcription factors 

(Bird, 1986). The methylation state of genomic DNA is therefore of great 

importance in the understanding of the cellular machinery. In array-based 

methylation analyses, genomic DNA is cleaved using methylation-
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sensitive restriction enzymes to form methylated CpG fragments. These 

can be hybridised to whole-genome microarrays, and a comparison of the 

signal between two conditions can be used to identify regions of 

increased/decreased methylation (Schumacher et al., 2006). Methylation 

state has been particularly linked to cancer, and imbalances in methylation 

state may serve as a prognostic tool for detecting neoplastic growth 

(Lodygin et al., 2005; Gebhard et al., 2006; Schumacher et al., 2006; Wei 

et al., 2006; Zhang et al., 2006; Shi et al., 2007a). 

4. ChIP-on-chip 

Mutations and alterations in transcription factor expression have been 

identified in several diseases (reviewed in Moreno Rocha et al., 1999). 

ChIP-on-chip combines the analysis technique of chromatin 

immunoprecipitation (ChIP) with the high-density genomic coverage of 

analysis of microarrays. ChIP is used to investigate interactions between 

proteins and DNA, and is typically used to identify transcription factor 

binding sites. The protein of interest is cross-linked to DNA, which is 

sheared to produce short fragments. DNA fragments bound to the protein 

are isolated using antibodies bound to a solid surface (e.g. magnetic 

beads). After filtering, cross-linking of protein-bound DNA fragments is 

reversed, and the fragments are amplified and denatured. Single stranded 

DNA is fluorescently labelled and hybridised to a genome-spanning high-

density microarray and scanned. Fluorescence levels correspond to levels 

of transcript abundance, with greater abundance implying greater binding 

with the protein of interest. In this way, protein binding sites across the 

genome can be found in a single experiment (Ren et al., 2000; Iyer et al., 

2001; Lieb et al., 2001; Lee et al., 2002; Sandmann et al., 2006).  



58 

 

1.4 Affymetrix oligonucleotide GeneChips 

The oligonucleotide GeneChips® developed by Affymetrix (Santa Clara, CA) 

(Lockhart et al., 1996; Lipshutz et al., 1999) are amongst the most widely used 

commercially available microarrays. Each array is split up into unique spatial 

regions known as cells, each corresponding to a single transcript. Each cell 

contains a large number of identical 25-mer oligonucleotide probes made up of 25 

nucleotides. These are bound to the array using a photolithographic procedure, 

whereby ultraviolet light is used to allow binding of nucleotides to only selected 

cells on the array. This process is repeated for each oligonucleotide species in an 

automated cyclic procedure (Affymetrix, 2004). 

This process is highly reproducible, resulting in less array-to-array variability as 

compared to „home-made‟ 2-colour cDNA arrays. The use of shorter probes on 

the array as compared to cDNA arrays also means that specific regions of the 

target transcript can be queried allowing detection of splice variants, and also that 

transcripts with highly similar sequences can be distinguished. Each 

oligonucleotide sequence on the array is designed to be identical to a short 

sequence located towards the 3‟ end of a specific mRNA transcript (Affymetrix, 

2003). The 3‟-bias of these arrays compensates for degradation that may occur in 

mRNA molecules, which occurs primarily at the 5‟-end of the molecule.  

Thousands of these 25-mer oligonucleotides are localised on a single cell on the 

array, which are termed probes for the target sequence. To ensure suitable 

coverage of the target sequence, a number of probes (typically 11-20) are 

designed to span the transcript of interest (Figure 1.4.1). Together, these probes 

make up the probe set for the transcript. The terms „probe set‟ and „gene‟ may 

often be used interchangeably, however a single gene may be represented by 

several probe sets on an array. Each probe in the probe set is spatially separated 

from the others on the array to ensure that, if a problem with hybridisation is seen 

in a particular area of the chip, entire probe sets are not compromised. Probes are 

randomly distributed throughout the array. Target preparation for hybridisation is 

based on the Eberwine procedure (Van Gelder et al., 1990), whereby cDNA is 
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synthesised from sample RNA from polyadenylation (polyA) tails using an 

oligo(dT) primer. An in vitro transcription reaction (IVT), utilising incorporated 

T7 promoter sequences and biotin-labelled ribonucleotides, generates amplified 

biotin-labelled cRNA targets for hybridisation. The IVT procedure has an inherent 

3‟ bias, so probes on the array are designed to preferentially cover the 3‟ region of 

the transcript of interest.  

Biotinylated cRNA molecules are fragmented and hybridised to the array, where 

they bind specifically to their corresponding 25-mer sequence. A streptavidin-

phycoerythin (SAPE) fluorescent dye is washed over the chip where it binds to 

the biotin label. A scan of the levels of fluorescence for each probe of the array is 

recorded, and gene-expression changes are analysed under the assumption that 

higher fluorescence signal for a particular probe indicates a higher abundance of 

the corresponding mRNA molecule in the sample.  

Whilst the specificity of probes on the array is high, it is entirely possible for 

target transcripts to bind to probes with similar sequences (though with lower 

affinity). This process is termed non-specific binding (NSB), and may result in 

noisy data. In an effort to reduce background noise due to NSB, Affymetrix use a 

method to directly detect levels of background binding. Each probe, made of 

thousands of 25-mers that match the target sequence of interest exactly (the 

Perfect Match probe – PM) has another partner probe associated with it which is 

identical except for a modified nucleotide, replaced by its Watson-Crick 

complement, in the central (13
th

) position of the 25-mer oligonucleotide sequence 

(the Mismatch probe – MM). Each probe set contains 11-20 pairs of PM and MM 

probes which are spatially separated in a random fashion on the array (Figure 

1.4.1). By removing the signal shown on the MM probes, which represents 

hybridisation of nucleotide sequences not specific for the probe, from the signal 

shown on the PM probes, the true signal can be seen. However, as will be 

discussed in the following section, the use of MM probes as measures of 

background hybridisation is widely criticised. 

Before data from Affymetrix GeneChip arrays can be successfully analysed for 

changes in gene-expression, a number of low level analyses must be performed to 
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combine the probe level signal information to give a single value for expression of 

each transcript on the array. These include extraction of fluorescence intensity 

values for each probe on the array, summary of transcript intensity values across 

the probe set to obtain a single intensity value for each target, and normalisation 

of data to allow comparison between targets and across individual arrays (Schadt 

et al., 2000; Irizarry et al., 2003a). The wealth of information available from a 

single GeneChip hybridisation also provides the experimenter with a number of 

metrics for assessing hybridisation quality and noise. Standard methods for low-

level analyses and data quality control are discussed in the following sections.   
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Figure 1.4.1: Probe design for Affymetrix GeneChip Microarrays 

Affymetrix GeneChip microarrays are designed such that each mRNA target sequence is 

represented by 11 pairs of probes on the array, each only 25-nucleotides in length. The perfect 

match (PM; blue) probe matches the target sequence exactly and binds cRNA molecules created 

from the target mRNA exactly. The mis-match (MM; red) probe is identical to the PM probe 

except for a single nucleotide at the 13
th
 position. This probe measures signal due to NSB. Probe 

pairs are designed to recognise sequences at the 3‟-end of mRNA targets to avoid 5‟-bias RNA 

degradation, and the 11 probe pairs span this region, occasionally with some cross-over. MM 

probes act as direct measures of noise due to NSB for PM probes which can be subtracted before 

analysis. However, MM probes often detect real signal as well as NSB, and can show higher signal 

(brighter fluorescence) than PM probes, resulting in problems with NSB subtraction. In cases such 

as this, where the signal of the MM probe is greater than the signal from the PM probe, a modified 

MM probe intensity is used (the ideal mismatch; IM) that is never greater than the respective PM 

probe intensity (see Equation 1-4). Adapted from Affymetrix Data Analysis Fundamentals 

(Affymetrix, 2002b). 
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1.4.1 Image pre-processing 

After hybridisation of biotin-labelled cRNA target molecules, a fluorescent 

molecule is washed onto the array and a fluorescent scan taken. The assumption 

here is that fluorescence is in direct proportion to the abundance of cRNA 

molecules bound to the probes on the array. The first step in analysing for 

transcript abundance is therefore to convert the fluorescence levels of this scanned 

image into numerical values that can be compared to assess relative abundance 

between samples.   

Each pixel of the raw fluorescence image is assigned a 2-byte unsigned little-

endian integer value between 0 and 65,535 based on the level of fluorescence 

from the scanner. At this stage, it is not known which pixel values apply to each 

probe. Each array contains a number of control B2 oligonucleotide probes 

(Section 1.4.3.6) which mark the boundaries of the hybridisation area. These 

features allow automatic alignment of the scanned image with a grid used to 

segment the image into cells, each corresponding to individual probe features on 

the array. Each probe on the array is represented by a cell on the grid. A single 

intensity value is calculated for each cell by removing the outer-most pixels (to 

ensure there are no problems due to mis-alignment of the grid), and the 75
th

-

percentile of the remaining pixels is calculated (Figure 1.4.2) as an estimate for 

the probe cell intensity (Affymetrix, 2004). This information, together with 

information regarding the standard deviation of measurements, is reported in an 

Affymetrix-specific data format with file extension .CEL. This file contains the 

pre-processed probe-level data. 
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Figure 1.4.2: Image processing of scanned Affymetrix GeneChip images 

The scanned fluorescence image of each array is processed to convert pixel intensity values into a 

single probe signal value for each probe on the array. The image is segmented by a grid that 

separates pixels into cells corresponding to individual probes. The outer pixels for each cell are 

ignored to prevent problems due to cell alignment, and a single intensity value is calculated for the 

cell by calculating the 75
th
 percentile. This produces a matrix of probe-level intensity values for 

further processing. 
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1.4.2 Background subtraction, normalisation and summary 

The image processing described in the previous section results in a file containing 

information on the signal strength for each probe on the array. Further low-level 

data manipulation is required to organise the data into a structure whereby each 

probe set on the array is represented by a single value relating to the relative 

abundance of the corresponding mRNA transcript such that comparisons can be 

made between different arrays (i.e. comparing abundance of a particular transcript 

between conditions) and between probe sets (e.g. looking for similarly expressed 

transcripts).  

The first step in this procedure is to remove the NSB signal to ensure that 

background signal bias is removed and that measured signal values relate 

specifically to the transcript of interest. Probe-level signal values are then 

summarised across the probe set to give a single value. Finally, to ensure that 

comparisons can be made both across arrays and across probe sets, a 

normalisation procedure is used to remove systematic variation in the data by 

scaling signal values across samples and probe sets such that they are comparable 

on the same scale. This is often done such that all probe sets have mean 1 across 

the samples. A number of methods are available for performing these 

transformations, and several of the most common algorithms are discussed in this 

section. 

1.4.2.1 MAS 4.0 

Early results suggested that the subtraction of MM signal from PM signal was 

linear with RNA concentration (Lockhart et al., 1996). The earliest editions of 

Microarray Suite (MAS 4.0), the Affymetrix supplied software for analysis of 

GeneChip microarray data, used a simple average difference method to remove 

signal information from the MM probes from the „real‟ signal of the PM probes 

and summarise set (Affymetrix, 1999). For a given probe set 𝑛 = 1, … ,𝑁 on array 

𝑖 = 1, … 𝐼, the „Average Difference‟ is defined as: 
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𝐴𝑣𝐷𝑖𝑓𝑓𝑖𝑛 =

1

 𝐴𝑖𝑛  
   𝑃𝑀𝑖𝑗𝑛 −  𝑀𝑀𝑖𝑗𝑛  

𝑗 ∈𝐴𝑖𝑛

 
1-1 

Where 𝑗 = 1,… , 𝐽 is the physical position of the probe pair within the probe set, 

and 𝐴𝑖𝑛  is the subset of probes for which 𝑑𝑖𝑗𝑛 = (𝑃𝑀𝑖𝑗𝑛 −𝑀𝑀𝑖𝑗𝑛 ) is within 3 

standard deviations of the average of 𝑑𝑖2𝑛 , … , 𝑑𝑖 𝐽−1 𝑛 . This calculation is based 

on the underlying model for probe level correction: 

 𝑃𝑀𝑖𝑗𝑛 −𝑀𝑀𝑖𝑗𝑛 =  𝜃𝑖𝑛 + 𝜀𝑖𝑗𝑛  
1-2 

𝜃𝑖𝑛  represents the mean expression of the target transcript 𝑛 on array 𝑖, and  𝜀𝑖𝑗𝑛  

represents the probe-level error. The summary described in Equation 1-1 assumes 

that the error terms 𝜀𝑖𝑗𝑛  have equal variance for all probes in the probe set. 

However, it has been shown that this assumption does not hold for GeneChip data 

since probes with a higher mean-intensity also have a larger variance in their 

errors (Irizarry et al., 2003b). Another problem that arises with this method for 

background subtraction is that often (1/3 of all probes in some cases) the signal 

for the MM probes is higher than that of the PM probes, indicating that the MM 

probes are sensitive to targets of the PM probes (Affymetrix, 2002a; Irizarry et al., 

2003b). This may result in the loss of real signal and not just background. More 

worryingly, the correction 𝑃𝑀 −𝑀𝑀 produces negative values for these probe 

pairs, precluding the use of a log transformation to account for the multiplicative 

errors, and producing negative expression values for roughly 5 % of probe sets 

(Wu et al., 2004). The loss of signal by subtracting MM probe signal can also 

result in a large amount of noise, particularly at lower intensity levels, reducing 

accuracy and making prediction of differential expression difficult.  

1.4.2.2 MAS 5.0 

To avoid the problems of noise seen at lower intensity levels using the MAS 4.0 

algorithm, a log transformation was used to reduce the dependence of the variance 
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of the error terms on the mean (Hubbell et al., 2002), and a robust estimator – the 

Tukey biweight (Hoaglin et al., 2000) – was introduced to down-weight the 

effects of outlying probes on the summary signal over the probe set. For some 

cutoff value c chosen in advance, the Tukey biweight function is defined as: 

 
𝜓 𝑥 =  

𝑥  1 −
𝑥2

𝑐2
 

2

𝑓𝑜𝑟  𝑥 < 𝑐

0                      𝑓𝑜𝑟  𝑥 > 𝑐

  
1-3 

To minimise the introduction of noise due to removal of MM signal, the concept 

of the ideal mismatch (IM) was introduced. If the MM probe signal is lower than 

the PM signal for a particular probe, the MM signal is assumed to be informative 

for NSB with no cross hybridisation, and the MM value is taken as the ideal 

mismatch value. If MM probe values are generally lower than PM values across 

the probe set, except for a small number of probes, then the IM for these 

uninformative probes is imputed from the biweight mean of the PM and MM 

ratio. If however the MM probe signals are generally higher than the PM probe 

signals across the probe set, the IM value is taken as a value slightly below that of 

the corresponding PM signal (Affymetrix, 2002b). Therefore, for probe pair 𝑗 of 

probe set 𝑛 on array 𝑖, the MAS5.0 signal is computed as: 

 
𝑀𝐴𝑆 5.0 𝑠𝑖𝑔𝑛𝑎𝑙𝑖𝑛 = 𝜓(log2 𝑃𝑀𝑖𝑗𝑛 − 𝐼𝑀𝑖𝑗𝑛  ) 

1-4 

This summary method is currently employed in the GeneChip Operating System 

(GCOS) supplied by Affymetrix. However, despite the addition of the robust 

Tukey biweight estimator, data calculated using the MAS 5.0 algorithm are still 

noisy, particularly at lower intensity levels (for instance, see Figure 1.4.3) 

(Irizarry et al., 2003b). A strong probe effect, additive on the log scale, is detected 

even after removal of MM signal (Li and Wong, 2001; Irizarry et al., 2003b). This 

indicates that subtraction of MM signal alone is insufficient to remove probe-

specific effects.  
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1.4.2.3 Model based expression index 

Due to the reproducibility of arrays produced using photolithographic and inkjet 

techniques, individual probe affinities can be modelled well. Li and Wong (2001) 

suggested a multiplicative model-based approach to estimate expression for each 

probe set using probe-specific affinities. This approach is termed the model based 

expression index (MBEI), and is implemented in the analysis package DNA-Chip 

Analyser (dChip) (Li and Wong, 2001): 

 
𝑃𝑀𝑖𝑗 −𝑀𝑀𝑖𝑗 = 𝜃𝑖𝜙𝑗 + 𝜀𝑖𝑗  

1-5 

Where PMij and MMij represent the detected PM and MM signal for the probe in 

the j
th

 (𝑗 = 1, . . , 𝐽) position of the probe sets for array 𝑖 = 1,… , 𝐼, 𝜙𝑗  represents 

the probe specific affinities for the j
th

 probe in each probe set which can be 

estimated from the multiple arrays in the analysis, 𝜃𝑖  are the estimates of the 

expression for each probe set on array i, and the 𝜀𝑖𝑗  are error terms assumed to be 

independent and identically distributed (IID) across the arrays. Estimates for 𝜃𝑖 

are calculated by iteratively fitting the model with variable 𝜙𝑗 , aiming to minimise 

the sum of the squared residuals. 

This process corrects expression estimates for the effects of individual probe 

affinities improving precision. However, since this procedure still removes MM 

signal for NSB correction, the problems of noise are still present, albeit reduced. 

Also, it was found that this procedure results in underestimates of the predicted 

values for higher concentrations of RNA in spike-in studies (Irizarry et al., 

2003b).  

1.4.2.4 Robust multi-chip averaging 

By performing extensive statistical analyses on a spike in study using known 

concentrations of 16 probe sets on the Affymetrix HGU95A GeneChip 

(Affymetrix, 2002c), Irizarry et al. (2003b) concluded that the probe signal 
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strength increases linearly on the normal scale, but not on the log scale. This 

indicates that NSB is additive and not multiplicative as suggested by Li and Wong 

(Li and Wong, 2001). Given that probe effects appear to be additive on the log 

scale, this led several researchers to suggest the need for a method that modelled 

background in an additive fashion, and the error in a multiplicative fashion 

(additive on the log scale) (Durbin et al., 2002; Huber et al., 2002; Cui et al., 

2003). Given the problems seen with removing MM signal in NSB correction, an 

improved method for probe-level normalisation was suggested based on multi-

variate linear models estimated using only PM signal (Irizarry et al., 2003a). This 

measure was termed the Robust Multi-chip Averaging (RMA). 

Model based estimates of the NSB probability density function negates the need 

for including the MM signal in the NSB estimation. Assuming the additive 

background model 𝑃𝑀𝑖𝑗𝑛 = 𝑠𝑖𝑗𝑛 + 𝑏𝑔𝑖𝑗𝑛 , background corrected signal is defined 

as: 

 
𝐵(𝑃𝑀𝑖𝑗𝑛 ) ≡ 𝐸(𝑠𝑖𝑗𝑛 |𝑃𝑀𝑖𝑗𝑛 ) 

1-6 

Computation of the background adjusted signal is performed by using a kernel 

density estimate over the detected PM signals to produce a smooth probability 

density curve, allowing estimation of the expected signal given that the PM signal 

PMijn is detected. Background adjusted values are log transformed (typically base 

2) and are normalised using quantile normalisation (Bolstad et al., 2003) to 

remove systematic differences between arrays and ensure that the distribution of 

the log-transformed values more closely approximates a normal distribution 

( ~𝑁(0, 𝛿2) ). A linear additive model is fitted to the background adjusted, 

normalised and log transformed PM signal, 𝑌𝑖𝑗𝑛 , for array 𝑖 = 1, … 𝐼 , probe 

𝑗 = 1,… , 𝐽, and probe set 𝑛 = 1, …𝑁: 

 
𝑌𝑖𝑗𝑛 = 𝜇𝑖𝑛 + 𝛼𝑗𝑛 + 𝜀𝑖𝑗𝑛  

1-7 
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Where 𝛼𝑗𝑛  represents the individual probe affinity effect, 𝜇𝑖𝑛  represents the real 

log scale expression for array 𝑖, and 𝜀𝑖𝑗𝑛  represents the error term, assumed to be 

IID with normal distribution ~𝑁(0, 𝜎2). It is also assumed that the probes on the 

array were designed such that the probe intensities are on average representative 

of the corresponding gene-expression, such that  𝛼𝑗 = 0𝑗 . Finally, median 

polishing (Holder et al., 2001) is applied to the estimates 𝜇𝑖  of log scale 

expression levels for each array 𝑖 to protect against the effect of outlying probes. 

The main benefits of using RMA stem from the fact that background correction is 

not reliant on removal of MM data, which may measure actual signal as well as 

NSB. Figure 1.4.3 shows a comparison of the GC-RMA summary method with 

the Affymetrix standard MAS 5.0 method. This figure shows a clear reduction in 

variance using GC-RMA as compared to MAS 5.0, particularly at lower 

expression levels, indicating increased precision in the expression estimates. GC-

RMA also results in improved sensitivity and specificity for fold change 

estimation, reducing the number of false positives (Irizarry et al., 2003a). It is also 

interesting to note that this figure indicates that the signal intensity of each probe 

appears to be higher when using GC-RMA than when using MAS 5.0. This may 

be due to lower levels of background signal detected for all probes using GC-

RMA than MAS 5.0. 

One problem with the RMA probe-level normalisation procedure is that the use of 

only a global background adjustment does not adjust well for NSB. Although 

RMA reduces the number of false positives, robust estimation of the expression of 

some genes can result in an increase in the number of false negatives during 

analysis for differential expression, particularly for lower abundance targets (Wu 

et al., 2004), indicating that accuracy of fold change estimates is sacrificed for 

precision.  

The GeneChip Robust Multi-chip Averaging (GC-RMA) method of probe level 

normalisation proposed by Wu et al. (2004) improves upon the background 

correction portion of the RMA algorithm by using a probe-specific weighting of 

the MM probe signal that is dependent on the content and position of higher 
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affinity guanine and cytosine nucleotides within the oligonucleotide sequence 

(Naef and Magnasco, 2003). This prevents losing 50 % of the data by using a 

more sophisticated MM subtraction method that is dependent on MM probe 

sequence. The probe affinity is modelled as the sum of the individual effects of 

the bases in the probe sequence: 

 𝛼 =   𝜇𝑗 ,𝑘1𝑏𝑘=𝑗  
𝑗∈ 𝐺,𝐶,𝐴,𝑇 

25

𝑘=1

 1-8 

 𝜇𝑗 ,𝑘 =  𝛽𝑗 ,𝑙𝑘
𝑙

3

𝑙=0

 1-9 

 
1𝑏𝑘=𝑗 =  

1 𝑖𝑓 𝑏𝑘 = 𝑗
0 𝑖𝑓 𝑏𝑘 ≠ 𝑗

  
1-10 

Where 𝑘 = 1,… ,25 is the position along the 25-mer oligonucleotide probe, 𝑏𝑘  is 

the base content at the k
th

 nucleotide position, and 𝜇𝑗 ,𝑘  is the contribution that 

base j has on the overall affinity when in position k. This estimate is used to 

correct the MM values for their individual affinities to estimate NSB. These 

estimates were found to model NSB almost as well as the MM signal, with the 

advantage that computed estimates do not detect real signal. This process retains 

the benefits in the precision of the results as compared to MAS 5, but does not 

suffer from the loss in accuracy that is seen in RMA. 
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Figure 1.4.3: Comparison of MAS 5.0 and GC-RMA probe-level summary methods 

Summary and normalisation of probe-level data is required to provide a single intensity signal for 

each probe-set. Two widely used algorithms are MAS 5.0 and GC-RMA. These procedures 

improve concordance between replicate samples, as can be seen by the scatterplots shown here. 

The signal for each probe set for two replicate samples from the main experiment (Panc T 4hr (1) 

and (2)) were plotted against each other on a simple Cartesian plot. Perfect similarity between the 

two replicates would be identified by points lying along the 45° identity line. a) While application 

of the MAS 5.0 algorithm to the data resulted in relatively high similarity between the two 

replicates, a large amount of variability was detected for probe-sets with lower signals. This may 

result in a large number of probe sets called as false positives. b) This region of high variability 

was not present after application of the GC-RMA algorithm, resulting in a tighter fit along the 

identity line. This „squashing‟ of the highly variable region greatly reduces the number of false 

positive calls, but may also inadvertently reduce the fold change of real low abundance biological 

variation, resulting in an increase in the false negative rate. 
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1.4.3 Quality control procedures for Affymetrix oligonucleotide 

microarrays 

Microarray data can suffer from large amounts of noise, and it can be extremely 

difficult to draw conclusions that represent true biological events. Also, 

systematic bias in the data due to technical procedures may confound results. This 

may be due to the effects of unavoidable nuisance variables, or due to limits on 

sample size, often as a result of cost implications limiting the number of replicate 

samples that can be analysed. The Affymetrix GeneChip platform was chosen for 

the analyses described in this body of work due to the reduced chip-to-chip 

variation seen as compared to homemade cDNA microarrays (Rogojina et al., 

2003; Jarvinen et al., 2004; Yauk et al., 2004). However, despite the improved 

reproducibility in microarray production provided by off-the-shelf manufactured 

arrays, it is still of great importance to ensure that the quality of starting materials 

is suitable and that hybridisation of cRNA prepared from sample RNA is efficient. 

GCOS provides a number of quality control checks to ensure hybridisation of 

cRNA to the arrays has been efficient. These range from analysis of control 

probes on the array, to the calculation of statistical measures designed to test the 

efficiency of hybridisation across the individual probes in the probe sets on the 

arrays. These measures, and their use for determining data quality, are discussed 

in the following sections. 

1.4.3.1 Percent present calls 

As part of the scanning and summary process performed by the MAS 5.0 

algorithm in GCOS (Section 1.4.2.2), a detection p-value is calculated for each 

probe set 𝑛 ∈ (1,… ,𝑁)  and for each array 𝑖 ∈ (1, … , 𝐼)  by comparing the 

discrimination scores 𝑅 (Equation 1-11) of all probe sets against a user-definable 

detection threshold value 𝜏 (𝑑𝑒𝑓𝑎𝑢𝑙𝑡 =  0.015).  
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𝑅𝑖𝑛 =

 𝑃𝑀𝑖𝑛 −𝑀𝑀𝑖𝑛  

 𝑃𝑀𝑖𝑛 + 𝑀𝑀𝑖𝑛  
 

1-11 

The discrimination score provides a measure of the background corrected target-

specific intensity of the probe pair relative to the total hybridisation intensity. 

Higher values of 𝑅  imply confidence in the detection rate of the probe pair, 

resulting in a lower p-value assignment. Probe sets containing more probe pairs 

with 𝑅 > 𝜏 are thus more reliable than those containing probe pairs with 𝑅 < 𝜏. 

Probe sets are assigned flag values dependent on the p-values of their 

discrimination scores; Present (P; p-value < 0.04), Marginal (M; 0.04 < p-value < 

0.06), Absent (A; p-value > 0.06) or Unknown (U).  

The percentage of probe sets on an array with a Present flag relative to the total 

number of probe sets (%P) can give an indication as to the quality of 

hybridisation. The expected %P for any hybridisation can be dependent on a 

variety of factors, such as tissue type, biological and environmental stimuli, array 

type and quality of starting material. However, replicate samples would be 

expected to show a similar %P. 

1.4.3.2 Background hybridisation 

The probe-pair design of the Affymetrix GeneChips allows analysis of the levels 

of background hybridisation on the array. Whilst the efficiency of the MM probes 

in identifying background binding signal is questionable (Section 1.4.2), the levels 

of signal in the MM probes can be used to identify arrays with significantly high 

background signal. 100 % efficiency of hybridisation, with zero cross 

hybridisation, would result in an observed average background signal of zero. 

High average background signal intensity over the MM probes for a particular 

array can indicate that these probes may detect real signal, and not just non-

specific background signal. An average MM probe signal intensity of between 20 

and 100 is considered within normal bounds (Data Analysis Fundamentals, 
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Affymetrix, 2002b), whilst arrays with higher levels of overall background may 

indicate problems with the efficiency of microarray hybridisation procedures. 

1.4.3.3 Raw Q noise 

Scanning an Affymetrix GeneChip produces a raw fluorescence image indicating 

the abundance of biotin-labelled target levels across the array. This image is 

processed to obtain a single fluorescence value for each probe on the array by 

taking the 75
th

 percentile as a summary measure of pixels corresponding to a 

single feature (Section 1.4.1). The raw Q noise value for each probe is a measure 

of the pixel-to-pixel variation for each probe. The two main sources of noise on 

scanned GeneChips are electrical noise (often due to problems with the scanner 

itself) and sample quality (particularly the amount of cRNA hybridised to the 

array). Due to the sensitivity of the scanning step, electrical noise is often the 

major contributor to noise in the data, with scans taken using different scanners 

often showing high variability (Bammler et al., 2005; Dobbin et al., 2005; Irizarry 

et al., 2005). However, samples scanned with a single scanner should display 

comparable levels of noise, with variation likely being attributable to sample 

quality. 

1.4.3.4 Scale factor 

In a well designed microarray experiment it is expected that only a relatively 

small number of transcripts will change across the conditions. Therefore, the 

majority of transcripts will remain constant across the samples, with a roughly 

comparable average signal across all microarrays. A simple normalisation 

technique employed by the GCOS MAS 5.0 software is to scale the average signal 

values for each array to a single target intensity such that all arrays have the same 

mean across all probes. If all samples show roughly identical average signal, then 

this scale factor should be low (~1) for all arrays. Outlying samples with 

particularly low average signal intensity as compared to the other arrays will be 

identified by a large scale factor. Many core facilities consider that the absolute 
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value of the scale factors are not important, but that they should lie within 3-fold 

of each other between the samples of an experiment (Helen Brown, personal 

communication). 

1.4.3.5 Raw probe images (.DAT files) 

Fluorescence scanning of the microarray produces a raw fluorescence image 

(.DAT files), which represents the abundance of fluorescently tagged cRNA 

species that have hybridised to the array. This file shows microarray data in its 

most raw form, and analysis of the images can ensure that: 

1. Hybridisation has occurred correctly across the entire array 

2. Fluorescence intensity is of a suitable strength 

3. There are no obvious regions of poor/increased hybridisation compared to 

the rest of the array 

4. Artefacts (such as dust, grit, scratches or air bubbles) have not interfered 

with hybridisation in some way  

Since the probes in a probe set are not arranged contiguously on the array, 

Affymetrix recommends that up to 10 % of the features on the array can show 

compromised (erroneously high or low due to the presence of some obscuring 

feature such as those described above) signal intensities before data analysis will 

be significantly affected  (Affymetrix, 2002b; Affymetrix, 2004). Such features 

can be identified and somewhat corrected by fitting a probe-level model to the 

data with a term for the individual probe-affinities, allowing identification of 

regions of the array showing consistently high or low intensities. Use of the RMA 

probe-level summary methods therefore correct for such artefacts to some degree. 

1.4.3.6 Hybridisation control probes 

Affymetrix GeneChips are designed with a number of control probes used to 

ensure the efficiency of hybridisation. The signal of these probes can be used to 

identify outlying samples. 
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1) B2 oligonucleotides 

Biotinylated B2 oligonucleotides are included in the hybridisation cocktail to 

bind to a series of high-affinity control features on the array that are readily 

identifiable in the .DAT images (Figure 1.4.4). These features are: 

1. A dotted line of probes around the edge of the area that should show as 

alternating black and white on the image  

2. A 2x2 checker-board motif of probes at each corner of the array  

3. The trade name of the microarray (MOE430 PLUS2.0) spelled out in the 

upper left portion of the array  

 

2) Hybridisation controls 

The first set of hybridisation control probes represent prokaryotic RNA transcripts 

that should not be present in eukaryotic RNA samples hybridised to the array. 

These genes are bioB, bioC and bioD, which are involved in the biotin synthesis 

pathway of Escherichia coli, and cre, the recombinase gene from bacteriophage 

P1. Biotin-labelled cRNA transcripts specific for these control probes are added to 

the hybridisation cocktail at known concentrations of 1.5 pM, 5 pM, 25 pM and 

100 pM for bioB, bioC, bioD and cre respectively. The signal for each spike-in 

control probe should therefore by consistent across all arrays in the experiment, 

and all control probes should show P calls across all samples with increasing 

signal depending on spike-in concentration. 

3) House-keeping controls 

Genes encoding proteins involved in basic cellular functions that are highly 

conserved, such as glyceraldehyde 3-phosphate dehydrogenase (gapdh), involved 

in glycolysis, and β-Actin (actb), one of the major components of the 

cytoskeleton, are often used in gene-expression analysis as so-called „house-

keeping‟ controls. These genes are constitutively expressed within all cells and 

thus provide a positive control for any gene-expression analysis. Affymetrix 

GeneChips contain probes for measuring expression of the genes for Gapdh and 

β-Actin, with probes spanning 3‟, midpoint and 5‟ sequences. By looking at the 
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3‟/5‟ or 3‟/midpoint ratios for these internal control genes, RNA integrity can be 

assessed. Due to the inherent 3‟ bias of probes on the array, the 3‟/5‟ ratio will 

typically be > 1. The Tumour Analysis Best Practices working group (2004) 

suggests that the 3‟/5‟ ratio for gapdh should be no greater than 6. By comparing 

the ratio across all samples in the experiment, samples with particularly high 

ratios (indicating poor RNA integrity) can be found.   

4) Unlabeled poly-A controls 

Further control probes on the array are designed to analyze the efficiency of 

sample preparation from the RNA level. Bacillus subtilis gene transcripts dap, lys, 

phe, thr and trp, which are modified by the addition of poly-A tails, are cloned 

into pBluescript vectors containing both T3 and T7 promoter sequences, and 

amplified with T3 RNA polymerase to give polyadenylated sense RNAs. These 

are spiked into the total RNA samples and carried through the sample preparation 

process to act in a similar fashion to internal control genes. Low abundance 

signals for any of these genes may indicate inefficiency in the in vitro 

transcription or 2-round amplification stages of the protocol. 
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Figure 1.4.4: B2 Oligonucleotide GeneChip control probes 

B2 oligonucleotide control features on Affymetrix GeneChips allow confirmation of hybridisation 

efficacy. Scanned intensity images (.DAT files) of hybridised microarrays identify three features 

common to all arrays; a checkerboard pattern of high and low intensity probes at the four corners, 

alternating high and low intensity probes around the edge of the array, and the product name of the 

GeneChip array highlighted in high intensity probes. If these features are not readily identifiable, 

this indicates either a problem with the hybridisation of the targets to the array, or a problem with 

the fluorescence scanning of the array. 

  



84 

 

 

  



85 

 

1.4.3.7 Probe-level models 

Fitting a model to the probe-level data is the approach taken by a number of 

normalisation algorithms (such as dChip, RMA, GC-RMA) and allows correction 

for individual probe effects. A probe-level model (PLM) for the background 

adjusted, normalised probe-level data 𝑌𝑔𝑖𝑗  may be of the form: 

 log 𝑦𝑔𝑖𝑗  = 𝜃𝑔𝑖 +  𝜙𝑔𝑖 +  𝜖𝑔𝑖𝑗  1-12 

Where 𝜃𝑔𝑖 is the log-scale expression value for gene 𝑔 on array 𝑖  (the value of 

interest), 𝜙𝑔𝑖  is the probe-specific effect of probe 𝑗  for gene 𝑔 , and 𝜖𝑔𝑖𝑗 is the 

measurement error. The probe-effect 𝜙 has a large effect on the variability of 

probe intensities, making it more difficult to judge regions of high or low intensity 

when observing the raw probe intensity image of the .DAT file. The PLM in 

Equation 1-12 corrects for these probe-effects, and viewing pseudo-images of 

various model parameters such as the residual (the difference between the 

measured value and the fitted value) can often show up regions of high or low 

intensity that may otherwise be masked by the probe effects in the .DAT images.  

1.4.3.8 Probe-level data distribution 

Comparing the distribution of the probe-level intensities across all samples can be 

a very effective method for identifying outlying samples. Given that the majority 

of transcripts would be expected to be unchanging across the arrays, replicate 

samples would be expected to show roughly similar distributions of probe 

intensities, which are roughly normal on the log scale (Li and Wong, 2001; Giles 

and Kipling, 2003; Irizarry et al., 2003b; Wu et al., 2004). Therefore, samples that 

show dissimilar distributions compared to their replicates may represent poor 

quality samples. 

One method of viewing the distribution of the probe intensities for each sample is 

to use a box plot. For each sample, five summary statistics are calculated: 
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minimum value, lower quartile (25
th

 percentile), median (50
th

 percentile), upper 

quartile (75
th

 percentile) and maximum value. The lower quartile and upper 

quartile are plotted as the borders of a box which is bisected by the median value, 

providing a visual representation of the interquartile-range of the data. The 

maximum and minimum values are plotted as „whiskers‟ extending from either 

side of the box, indicating the range of the data. In this way, an overall view of the 

distribution of the data can be seen. Replicate samples should have comparable 

boxplots, particularly when comparing the medians. Hence boxplots provide a 

graphical means by which poor quality arrays can be easily identified. 

Another way of viewing the distribution of the data is to plot the density of the 

intensity values on a density plot. A density plot is produced for each sample by 

plotting the density (number of probes with a given intensity) against all possible 

intensity values to form a continuous graph. As with the boxplots, this graphical 

representation of the distribution of the probe intensities can be used to compare 

replicate samples and identify poor quality samples.  

1.4.3.9 Probe-level analysis of RNA degradation 

One of the largest sources of error in any microarray experiment is due to 

deterioration of RNA molecules by ribonuclease (RNase) enzymes. Great care 

must be taken throughout the experimental procedure to ensure that this 

detrimental effect is reduced. However in most experiments it would be 

impossible to completely prevent RNase activity and this is particularly true when 

using RNA isolated from the enzyme-producing pancreas. It is therefore useful to 

know to what extent RNA degradation has affected the final microarray data.  

Degradation by RNases occurs from the 5‟- to the 3‟-end of the RNA transcript. 

By comparing the 3‟/5‟ ratio of each sample, we can identify samples whose RNA 

has become substantially degraded at the 5‟-end compared to the 3‟-end. A 

degraded RNA sample will produce data with a greater 3‟/5‟ ratio than that of an 

intact sample. The probes making up the probe sets for each gene transcript on 

Affymetrix GeneChips are ordered sequentially from the 3‟- to the 5‟-end of the 
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sequence. As described in Section 1.4, probes are biased towards the 3‟-end of the 

RNA molecule to limit the effect of RNase degradation on downstream data 

analysis. An RNA degradation plot can be made by sequentially ordering the 11 

probes in each probe set from the 5‟- to the 3‟-end, then finding the average across 

all probe sets (i.e. label each probe „1‟-„11‟ from the 5‟- to the 3‟-end, then take 

the average over probes labelled „1‟, then „2‟, etc.) to obtain 11 sequentially 

ordered average probe intensities. Plotting these values gives a graph showing a 

visual representation of the change in average intensity from the 5‟- to the 3‟-end 

over all transcripts. By comparing replicate samples against one another, those 

whose RNA appears to have undergone significant degradation can be found.  
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1.5 Microarray data analysis 

1.5.1 Experimental design and statistical considerations 

As with any experiment, great care must be taken throughout the procedure to 

ensure that the data obtained from a microarray experiment are valid and 

accurately represents the biology of the system under study. Experiments using 

RNA molecules, particularly microarrays, are prone to errors due to the delicate 

nature of the RNA species. However, with careful planning and implementation, 

these problems can be overcome. Nevertheless, a great deal of thought must be 

put into the design of the experiment to ensure that the resulting data are suitably 

set up to address the identified hypotheses. While microarrays can be used to give 

a general overview of the changes in transcriptional activity under varying 

conditions, they are at their most powerful when directed towards a specific 

question: e.g. “Are there any genes whose expression can be used to accurately 

predict cancer early in patients?”, “Does treatment with drug X have a positive 

regulatory effect on the function of β-cells in diabetes sufferers?”, etc. However, 

if the samples used for the analysis are of a poor quality, the resulting data will not 

accurately represent the biology of the system: garbage in → garbage out. In this 

section, considerations for experimental design and statistical issues which may 

affect the overall conclusions of the study are discussed. 

1.5.1.1 Sources of error 

Typical experiments are designed to analyse for differences between independent 

populations of individuals, such as a population of patients treated with some drug 

versus a population of untreated patients. However even with the best designed 

experiments, it is impossible to limit the sources of variation to only those of 

primary interest to the experimenter. Obscuring variation can be introduced into 

the data during sample preparation, array manufacture and sample processing 
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(Hartemink et al., 2001; Bolstad et al., 2003), along with sample-to-sample 

variation that cannot be avoided (Jin et al., 2001). It is therefore important to be 

aware of the number of variables that may affect the experiment outcome, and the 

design of the experiment must address these and aim to minimise them as much as 

is feasibly possible. Sometimes, the effects of these unavoidable sources of error 

are negligible, but often not taking care to prevent such errors can have disastrous 

effects on the outcome of the experiment. In general, the sources of error in any 

experiment fall into two categories:  

1. Random errors  

Random errors occur when some factor results in random fluctuation in the 

measurement of a random variable. This adds variability to the distribution 

of measurements for a population of samples, increasing the variance but 

leaving the overall mean unaffected. This is often termed noise and can 

occur due to technical limitations, such as limits in the resolution of the 

scanner used to capture the raw intensity image after microarray 

hybridisations. The effects of noise can be reduced by increasing replicate 

numbers, which reduce the effects of noise associated with each individual 

observation on the population mean leading to more stable estimates. 

2. Systematic errors  

Systematic errors occur when some factor results in a consistent 

fluctuation (up or down) in the measurement of a variable for a population 

of samples. This has no effect on the variability of the measurement, but 

will result in an increase or decrease of the mean value for the sample 

population. This is often termed bias and can occur as a result of 

environmental or physiological differences between sample groups (for 

instance between males and females, or due to differences in sample 

preparation between groups), or due to differences in sample preparation 

between sample cohorts. It can be difficult to detect systematic errors, but 

careful experimental design, such as randomisation of samples for 

processing (Kerr and Churchill, 2001a; Yang and Speed, 2002; Kerr, 

2003), can reduce their effects by spreading the errors amongst the whole 

population rather than a subset that represent a single condition.  
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Despite the constant refinement and improvement of the technology, microarray 

experiments are still seen to be highly prone to errors. Parmigiani et al. (2003) 

classify sources of error based on the five phases of microarray data acquisition: 

1. Microarray manufacturing – Manufacturing errors are specific to the 

technology. Mass produced oligonucleotide arrays minimise 

manufacturing errors by using a high-throughput standardised process for 

all arrays. 

2. Isolation of mRNA from target cells – Variability during sample 

preparation can be dependent on the protocols and platform being used. 

Sources of error include labelling procedures (particularly in 2-colour 

systems where individual dye effects can play a part) and RNA 

degradation (discussed in more detail in Section 1.5.1.5). 

3. Hybridisation – Errors in the hybridisation procedure can include physical 

artefacts on the array (dust, air bubbles, scratches, etc.), variability in 

environmental conditions (such as humidity and temperature) and „edge 

effects‟ whereby preferential hybridisation is seen at the edges of the 

array. Also, hybridisation of non-specific target sequences to probes on the 

array can result in variable background staining (NSB). 

4. Scanning – Due to limits in resolution, scanning of hybridised arrays can 

be noisy, with rescanned images or images scanned using two different 

scanners giving differing intensity values. This noise may be particularly 

detrimental for low fluorescence signals. 

5. Imaging and pre-processing – Imaging procedures for converting scanned 

intensity signal to gene-expression values, such as those described for 

Affymetrix arrays in Section 1.4.1, often require user defined parameters 

which can drastically affect the outcome.  

These sources of error are often termed technical variation and refer to limitations 

in the current technology. Since we are dealing with biologically active species, 

we must also be aware of the effect that biological variation between samples can 

play on the response in gene-expression. The cells under study may be undergoing 

a variety of complex processes at any time, all of which interact with each other in 
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extremely complex ways. Gene-expression signatures can be very different 

between individuals, and even between different cells of a single individual 

(Bengtsson et al., 2005). Between-sample variation can occur due to 

environmental factors (temperature, humidity, local environment, etc.) and 

physiological differences between samples (age, height, gender, etc.). 

Given the sheer amount of obscuring variation that can be introduced throughout a 

microarray experiment, it is important to minimise errors as much as possible 

throughout the experiment. This will ensure the validity of the data and hence the 

conclusions drawn from the resulting analyses. 

1.5.1.2 Type of assay 

A question that must first be addressed by the experimenter is whether to use a 1-

colour or 2-colour approach to microarray hybridisation. A previous analysis by 

the Microarray Quality Control project determined that the results of 1- and 2-

colour analyses were largely identical (Patterson et al., 2006). Thus, typically, the 

choice between the two approaches is largely dependent on the aims of the 

experiment, and on the questions to be addressed in the study.  

Another early decision that must be made is whether to produce microarrays for 

the study in-house (e.g. cDNA microarrays), or whether to opt for a commercially 

available chip (typically consisting of oligonucleotide probes). cDNA microarrays 

have the advantage of being made specifically for the experiment in question. If 

the experiment is focused on analyzing the changes in expression of only a subset 

of genes in the genome, using a cDNA microarray would allow the array to be 

optimally designed for this purpose. Also, cDNA microarrays have much lower 

running costs when compared to commercially available chips, meaning that for 

an experiment considering a large number of samples, it would be far cheaper to 

run these on cDNA microarrays than on commercially purchased arrays. 

However, the production techniques of companies such as Agilent, Affymetrix 

and Illumina mean that between-array variation is greatly reduced when compared 

to home-made arrays, where slight variations in feature production can affect 
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overall data quality (Rogojina et al., 2003; Jarvinen et al., 2004; Yauk et al., 

2004), reducing the need for replicates. This may be particularly important when 

starting material is limited. 

1.5.1.3 Sample replication 

The decision as to which type of array to use in an experiment may ultimately 

depend on the budget available. One important aspect to be aware of is replication 

of observations, since running replicate samples is an essential aspect of any 

experiment for which random variation between samples may be expected. When 

observing the results for a single sample, the experimenter assumes that the results 

hold for the global population of all possible samples. For instance, in an 

experiment looking for biomarkers in disease, if a particular gene is found to be 

differentially expressed in the disease sample as compared to the healthy sample, 

the experimenter may conclude that this gene is differentially expressed in all 

diseased patients. However, to make such a claim from a single sample would be 

foolish, as the experimenter has no way of knowing for sure if the sample under 

scrutiny is representative of the global population.  

Instead, gene-expression measures from a number of diseased patients is 

compared to those of a number of healthy patients to ensure that obscuring 

variation can be identified. Standard analysis techniques such as the t-test and 

analysis of variance (ANOVA; see Section 1.5.3.2) compare the means of 

different treatment populations to assess whether the variation between means is 

large compared to the pooled within-treatment variation. By using replicate 

samples, more realistic estimates of the within-treatment variation of the global 

population can be used to assess the significance of the difference in population 

means. 

The decision as to how many replicates are necessary to ensure accuracy is non-

trivial. It is a generally accepted rule that microarray experiments should be run 

using at least triplicate samples to ensure accuracy of the data (Lee et al., 2000; 

Kerr and Churchill, 2001b; Kerr and Churchill, 2001a; Nadon and Shoemaker, 
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2002; Kerr, 2003), although others have suggested that a minimum number of 4 or 

5 replicate samples should be used (Pavlidis, 2003). The number of replicates 

required to identify significant differences in population means at some pre-

determined level (e.g. 5 %) may also be calculated by using a power analysis. 

Given some estimate of the expected size of the differences between population 

means and some estimate of the variability between replicate observations, the 

number of samples required to successfully reject the null hypothesis if it is 

indeed false can be estimated. 

However, such considerations are often largely dependent on the budget for the 

experiment, and on the type of experiment being conducted. Between-sample 

variation may be expected to be high for clinical patients under different care 

around the country, so many replicates may be required to isolate interesting 

changes in gene-expression. However the signal-to-noise level is much lower for 

inbred transgenic animals housed under environmentally controlled conditions, 

and so fewer replicates may reasonably be used.  

It is important to be aware of the difference between technical replication and 

biological replication when designing a microarray experiment. A technical 

replicate is used to gain information as to the precision of the technology 

independent of the samples hybridised. This may be done by having several 

different probes for a single gene on each array, which can be compared to ensure 

correct hybridisation has occurred at each probe, or by hybridising a single RNA 

sample to several arrays to confirm that all show the same result. A biological 

replicate is used to gain information about the differences between individual 

sources of biological material. This requires hybridisation of a single RNA sample 

to a single array. Ideally, both types of replication should be performed to allow 

for separation of biological and technical variablity, although budgetary limits 

often prevent the use of additional arrays as technical replicates. In such a case, 

the decision must be made of whether to run biological replicates (hybridising 

each RNA sample to a single array) or technical replicates (pooling the 

biologically replicated RNA samples together and running the pooled RNA on 

several arrays). Given the efficiency and reproducibility of modern microarray 
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production, it may be assumed that biological errors are greater than technical 

errors, and biological replicates are generally preferred to technical replicates (Lee 

et al., 2000; Kerr and Churchill, 2001b; Yang and Speed, 2002; Simon and 

Dobbin, 2003).  

1.5.1.4 In vitro vs. in vivo 

The question of replication is also difficult to address since between-sample 

variation can vary significantly from experiment to experiment. In an in vitro 

experiment on cultured Escherichia coli (E. coli), biological variation between 

samples may be very small providing that standard laboratory procedures are 

adhered to throughout. However, in a clinical study analyzing the effects of a drug 

on human patients, samples may be collected from a wide range of locations, from 

patients with highly varying backgrounds. Even with great care in matching 

patients to reduce such variation, the variance between replicate samples may be 

much higher than in the in vitro experiment. The number of replicates would 

clearly need to be much higher to account for this increased variation. Once again, 

careful planning of the experiment, such as matching replicate samples (same 

gender same age, same weight, etc.), using inbred lines in animal experiments and 

keeping environmental conditions constant, can minimise these biological errors. 

An important source of biological error to be aware of is the effect of circadian 

rhythms on the transcriptome. For instance, rodents are far more active at night 

than during the day. The transcriptome will vary between these times. It is 

therefore important to ensure that all RNA species represent the same time period 

during the day for each individual sample.  

1.5.1.5 RNA degradation 

One major limiting factor for microarray experiments is the stability of the initial 

RNA molecules, particularly for clinical studies where RNA extraction may 

involve collaborative efforts between surgeons, pathologists, nurses and 

researchers. Degradation of RNA molecules plays a large factor in the regulation 
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of gene-expression (Liebhaber, 1997; Mitchell and Tollervey, 2000; Guhaniyogi 

and Brewer, 2001). RNases are enzymes inherent in cells that catalytically 

degrade RNA molecules, and many classes of RNase molecule exist (Mian, 

1997). RNase II in particular is a ubiquitous exoribonuclease involved in turnover 

and quality control of RNA molecules as a component of the exosome RNA 

degrading complex (Mitchell et al., 1997) or in independent complexes (Frazao et 

al., 2006). Degradation occurs in the 5‟ to 3‟ direction, sequentially hydrolysing 

RNA and releasing 5‟ monophosphates (Mian, 1997).  

It is important that great care is taken when collecting and processing RNA to 

minimise RNA degradation. RNase enzymes may continue to act even after RNA 

has been extracted unless samples are protected by fixing, freezing at -80 °C, or 

by using an RNA-stabilising agent such as RNAlater (Ambion, Foster City, CA). 

Due to the 3‟-bias of GeneChip probes (Section 1.4), the Affymetrix microarray 

design is somewhat tolerant to degradation by RNases, and also the 5‟-truncation 

that occurs during the IVT reaction (Luzzi et al., 2003; Schoor et al., 2003; Cope 

et al., 2006). However, it has been shown that samples that show significant loss 

in RNA integrity, yet still pass quality thresholds, show a significant reduction in 

sensitivity and an increase in false positives (Thompson et al., 2007). It is 

therefore important to ensure that RNA quality is maximised for all samples by 

minimising thawing of RNA samples, ensuring that procedures are carried out 

quickly, keeping all instruments and work surfaces clean from RNases using 

RNase-degrading agents such as diethylpyrocarbonate- (DEPC) treated water and 

RNaseZap (Ambion, Foster City, CA), and by following good laboratory 

practices. 

mRNA makes up only 1-3 % of total RNA samples, so assessment of mRNA 

quantity and quality can be difficult (Palmer and Prediger, 2004). Instead, the 

quality of ribosomal RNA (rRNA) – which makes up over 80 % of the total RNA 

volume – is used to assess the level of degradation that has occurred throughout 

sample processing. The Agilent Bioanalyzer 2100 (Agilent, Santa Cruz, CA), 

which uses a combination of microfluidics, capillary electrophoresis, and 

fluorescent staining of nucleic acids, is often used for this purpose as it is able to 
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assess both RNA quality and quantity from only a small quantity of starting 

material (Agilent Technologies, 2007).  

The highest abundance rRNA species in mammalian cells are the 18S and 28S 

rRNA species. Typically these are around 2 kb and 5 kb in size respectively. A 

28S:18S ratio of approximately 2.7:1 is expected when RNA is intact, although a 

ratio of 2:1 is often used as a benchmark due to the unstable nature of 28S rRNA 

in vivo. The software accompanying the Agilent Bioanalyzer provides software 

for calculating an objective measure of RNA quality based on factors such as the 

state of the 18S and 28S rRNA peaks, termed the RNA integrity number (RIN) 

(Schroeder et al., 2006). This is a value between 1 and 10, with a RIN of 1 

representing degraded RNA and a RIN of 10 representing completely intact RNA. 

This measure is often used by researchers as a measure determining mRNA 

quality, under the assumption that the level of degradation of the rRNA is 

indicative of the level of degradation of mRNA species. The Bioanalyzer software 

also provides an electropherogram of fluorescence against time (equivalent to 

prevalence of individual RNA species against their size) that can be used to 

subjectively determine RNA quality (Figure 1.5.1). Typically, sharp 18S and 28S 

peaks indicate good quality RNA, while unclear 18S and 28S peaks, together with 

an abundance of RNA species detected towards the lower end of the time/size 

scale (cleaved RNA species) indicates poor quality RNA. The use of the RIN has 

been demonstrated to give good prediction of poor quality RNA, which can be 

used to assess the likelihood of developing poor quality data (Copois et al., 2007). 
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Figure 1.5.1: Quantification of RNA integrity with the Agilent Bioanalyzer 

spectrophotometer 

Shown here are two output graphs from the Agilent Bioanalyzer spectrophotometer, representing 

good quality RNA (a) and poor quality RNA (b). The traces shown here represent the relative 

frequency of RNA species against the size of the species (measured in relation to the time taken to 

pass through the micro-capillary). The 18S and 28S rRNA species are typically highly abundant in 

total RNA samples, and are identified by peaks at around 38 secs and 44 secs respectively. Good 

quality RNA is identified by predominant peaks for the 18S and 28S rRNA species, with few 

peaks observed elsewhere. Degraded RNA samples are identified by a large number of smaller 

RNA species, identified by a large number of peaks at the lower end of the scale (b). 

Measurements made by the Bioanalyzer include the RNA area (the area under the graph) and the 

RNA concentration which can be used to quantify RNA levels, and the ratio of the rRNA peaks 

(28S/18S) and the RNA integrity number which provide a measurement of RNA integrity. 
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1.5.1.6 Standards in microarray experiments 

The potential for using microarray technologies in drug development, disease 

diagnostics and discovery are clear, however there is often concern regarding the 

reliability and consistency of microarray results. Tan et al. (2003) compared 

biological and technical replicates across 3 commercially available microarray 

platforms and found little overlap in the resulting lists of differentially expressed 

genes between the three. Bammler et al. (2005) studied the variance between 

microarray results conducted independently across seven laboratories and found 

that, while reproducibility was generally high within each laboratory, 

reproducibility of data across different laboratories was poor. However, when 

protocols for sample processing, hybridisation, data acquisition and data 

normalisation were standardised across all laboratories, reproducibility was 

markedly improved indicating a lack of consistency between available platforms, 

protocols and analysis techniques. Perhaps more worrying are the studies of 

Mecham et al. (2004) which found that a large number (> 19 %) of the probes on 

Affymetrix mammalian arrays failed to match up to their intended mRNA 

reference sequence. 

Given the poor reproducibility seen in these studies, the reliability of microarray 

analysis is frequently questioned (Marshall, 2004; Miklos and Maleszka, 2004; 

Frantz, 2005). However, similar meta-analyses indicate high reproducibility 

between different platforms and laboratories (Barnes et al., 2005; Dobbin et al., 

2005; Irizarry et al., 2005; Larkin et al., 2005; Petersen et al., 2005; Shi et al., 

2006), indicating the effect that non-standardised procedures can have on the 

consistency of microarray results. To allow collaborative work between groups, a 

process of key importance to allow use of the technology in clinical practice, such 

problems with consistency must be resolved (Shi et al., 2005; Frueh, 2006; 

Fuscoe et al., 2007). 

To this end, standards have been set up by groups such as the MicroArray Quality 

Control group (Shi et al., 2007b) describing standardised protocols and analysis 

techniques for microarray studies. By standardising the procedure across different 
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sites of operation, collaboration between groups becomes achievable. In the case 

of clinical studies, where tissue samples are collected from many independent 

sites, consistent handling and preparation of samples is essential. 

To allow comparison of data sets between groups, it is also important to 

standardise analysis techniques. The Minimum Information About a Microarray 

Experiment (MIAME), put forward by the microarray gene-expression database 

(MGED) group (Brazma et al., 2001) dictates the minimum amount of 

information that should be presented with any publicly available data set to allow 

other investigators to repeat the analysis and understand the biological context. 

The MGED have also developed the XML-based MicroArray Gene-expression 

markup language data exchange format (MAGE-ML) and object model (MAGE-

OM) which provide a consistent framework for describing microarray 

experiments that is portable between databases (Spellman et al., 2002). More 

recently, a spreadsheet based version of this microarray data format was 

developed and is now the currently recommended format (Rayner et al., 2006).  

A standardised list of terms for defining gene function, the gene ontology (GO), is 

also in wide use (Schulze-Kremer, 1997; Schulze-Kremer, 1998; Ashburner et al., 

2000). This provides a consistent vocabulary for biological terms throughout the 

gene-expression community, which allows consistent annotation across the wide 

range of species for which microarrays are commonly used and aids in cross-

laboratory comparisons. GO classification terms are defined for biological 

process, cellular component and molecular function. This process is widely used 

for functional analysis of microarray data. In particular, data mining for GO terms 

within significant differentially expressed genes can identify GO classifications 

that are over-represented, or enriched, suggesting biological significance.  

Hypothesis testing (Section 1.5.3.1) can be used to identify the significance of 

enrichment, providing a statistical measure of the number of genes from a given 

GO class that would be expected to appear in any given gene list purely through 

chance. Many statistical tests are used to calculate such statistics, and available 

tools for analysis of GO enrichment, such as DAVID (Dennis et al., 2003), 

BiNGO (Maere et al., 2005) and GOstat (Beissbarth and Speed, 2004), utilise 
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different statistical tests to determine GO significance. However, it is not entirely 

clear which test is most suitable for determining biological significance (Rivals et 

al., 2007).  

Consistent annotation is essential for database management of microarray 

datasets. These practices are in use amongst many of the largest microarray 

databases, such as the ArrayExpress (Brazma et al., 2003) database of the 

European Bioinformatics Institute (EBI), the Gene-expression Omnibus (GEO) of 

the National Centre for Biotechnology Information (NCBI) (Edgar et al., 2002), 

and the Microarray Mining Resource (MiMiR) of the Clinical Sciences Centre and 

Imperial College (CRC-IC) Microarray Centre (Navarange et al., 2005). Together, 

these standard practices provide guidelines allowing researchers to be assured of 

the consistency of their data, a process that is necessary to enable larger scale 

analyses across multiple data sets that may have been developed at different sites.  

1.5.2 Background correction, summary and normalisation of 

probe level microarray data 

1.5.2.1 Probe level summary 

The multi-probe design of Affymetrix GeneChips requires that individual probe-

level signals are combined to give a single intensity value for each transcript. 

Typical probe level summary methods for Affymetrix GeneChip microarrays were 

discussed in Section 1.4.2. The choice of summary method has been found to play 

a significant role in determining the comparability of the results of data analysis, 

and was found to be the largest source of error in meta-analyses between data sets 

produced by different laboratories (Bammler et al., 2005; Irizarry et al., 2005). A 

lot of thought must therefore be given to the choice of algorithm to use to 

summarise and normalise the probe-level data. It is necessary to be aware of the 

negative effects of using each of the available methods.  
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For instance, while RMA is more precise, specific and sensitive than MAS 5.0, 

resulting in reduced noise at the lower expression level values and fewer false 

positives (Figure 1.4.3), it also suffers from a reduction in accuracy and an 

increase in false negatives (Irizarry et al., 2003a; Wu et al., 2004). This results in 

fewer transcripts identified as differentially expressed when using RMA as 

compared to MAS 5.0. The information lost by using RMA can never be 

recovered; false positives can be confirmed or rejected with validation studies, 

whilst false negative results are gone forever. GC-RMA maintains the 

improvements seen with RMA, but uses a weighting based on the probe affinity to 

estimate NSB, which increases accuracy to levels comparable to MAS 5.0. 

GC-RMA is typically considered to be one of the best probe level normalisation 

techniques, with other model-based probe-level normalisation methods such as 

dChip from Li and Wong (2001) performing well also. Due to the reliance on MM 

signal estimates for NSB, MAS 5.0 is often considered the least suitable of the 

techniques, however studies by Choe et al. (2005) have found that MAS 5.0 

outperformed GC-RMA in determining differential expression for their spike in 

data set (although the data set and experimental design leading to these 

conclusions have been criticised (Dabney and Storey, 2006; Irizarry et al., 2006)). 

Also, Pepper et al. (2007) found that false positives in MAS 5.0 can be greatly 

minimised when used alongside the detection calls described in Section 1.4.3.1. 

Interestingly, it has recently been discovered that GC-RMA can result in severe 

artefacts in the data, leading to overestimation of pairwise correlation and 

inaccuracies in the calculation of network structures (Lim et al., 2007). Thus, in 

this context, MAS 5.0 may prove to be more reliable. 

The choice of algorithm can depend largely on the data being analysed. Typically, 

if differential expression is suspected to be low, MAS 5.0 may be preferred in 

order to avoid the loss of interesting changes. However, if differential expression 

is suspected to be mainly of a high level, or if inter-replicate variation is high, GC-

RMA is generally preferred in order to reduce false positives. 



103 

 

1.5.2.2 Normalisation 

To allow analysis of relative expression of genes across arrays, it is important to 

perform normalisation to remove systematic errors from the data and ensure that 

data distributions are comparable. Often, this is achieved by scaling such that the 

distribution of each gene is centred with a mean of 0 and a standard deviation of 1. 

In a gene-expression context, it is the log gene-expression that is scaled, as 

microarray data is thought to follow a roughly log-normal distribution (Giles and 

Kipling, 2003). This process removes bias and noise from the data that may be 

present due to technical variation that may obscure the interesting biological 

variation under study. The method used by Affymetrix is to simply scale the 

expression values such that all arrays have the same mean. Another often used 

method is to normalise to a reference array, which can be constructed by taking 

the median gene-expression across all arrays (Parmigiani et al., 2002).  

In a comparison test of 5 commonly used normalisation procedures, Bolstad et al. 

(2003), quantile normalisation was found to perform preferably in terms of speed, 

minimising variance and reducing bias. The process of quantile normalisation 

transforms the data such that the distribution of gene abundance is roughly equal 

across all arrays. Typically, the pooled distribution across all arrays is used as the 

reference distribution (𝐹𝑟𝑒𝑓 ) to which each individual array‟s signal distribution 

(𝐹𝑖  for arrays 𝑖 = 1,… 𝐼) should be scaled. Thus for each array i, points are taken 

regularly at intervals along the cumulative distribution function (quantiles), and 

for each quantile x the transformation 𝑥𝑛𝑜𝑟𝑚 = Fi
−1 Fref  x   is applied. The 

resulting set of normalised quantiles is used to build up the normalised signal 

distribution for array i. That is to say that the intensity values across the arrays are 

scaled in such a way as to be equal at specified intervals on the cumulative 

frequency plots. In a graphical sense, this can be thought of as adjusting the 

distribution of the probe intensities such that the I-dimensional quantile-quantile 

plot (a plot of the discretised cumulative distributions of 2 or more data 

distributions for comparison) approaches the identity as closely as possible. 

Model based normalisation techniques such as RMA, GC-RMA and dChip 
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incorporate the quantile normalisation procedure into their algorithms to allow 

calculation of summarised, normalised and background corrected expression data 

from probe-level intensity values.  

1.5.3 Testing for significant differential expression 

The goal of many microarray experiments is to find genes whose expression is 

altered, or differentially expressed, as a result of some experimental factor, such as 

disease state, drug treatment, or time. The dynamics of these changes can also be 

observed by measuring changes in gene-expression at different time points, 

making up a time course of gene-expression. In the earliest microarray analyses, 

so-called differential expression was calculated by looking at the average change 

in expression of genes between experimental conditions, often termed the fold 

change (Schena et al., 1995; DeRisi et al., 1996; Schena et al., 1996; Eisen et al., 

1998). However, this approach fails to take into account the variability seen 

between the replicates and so may be unreliable (Chen et al., 1997). The average 

expression value for a gene may appear to be higher for one subset of samples as 

compared to another, but if the samples used to estimate this average show high 

variability amongst themselves, this difference in expression may be unreliable. 

1.5.3.1 Hypothesis testing 

The statistical significance of a test statistic is usually expressed in terms of the p-

value – the probability under the null hypothesis of observing a test statistic value 

equal to or greater than that observed. A statistically significant difference is said 

to exist between two groups if the p-value is below some significance level 𝛼, 

often taken as 0.05. In this case, we define the amount of evidence required to 

reject the null hypothesis in advance. The significance level 𝛼  can also be 

regarded as the probability of rejecting the null hypothesis when it is actually true, 

or observing an effect when in fact there is none. This is known as a Type I error, 
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or false positive. Thus, if 𝛼 = 0.05, we expect to see false positive results 5 % of 

the times. On the other hand, if the null hypothesis is not rejected on the evidence 

of the samples, but is in fact false, this is known as a Type II error, or false 

negative. Again, this can be described as not observing an effect when there is 

one. The probability of this type of error is denoted 𝛽. Typically, the reliability of 

such tests is measured on three criteria: 

1. Specificity – The ability of a statistical test to correctly determine true 

negative outcomes (1 − 𝛼). Can be increased by reducing the significance 

level 𝛼, although this may result in an increase in false negatives. 

2. Sensitivity/Power – A measure of a test‟s ability to accurately reject the 

null hypothesis when it is false (1 − 𝛽). Can be increased by increasing the 

sample size. 

1.5.3.2 ANOVA and the t-test 

Statistical hypothesis testing can be used to quantify the significance of observed 

differential expression to determine whether observed changes in expression 

across groups is likely related to a biological effect, or purely due to chance. 

Hypothesis tests can be parametric or non-parametric. For parametric tests, the 

distribution of the data is assumed a priori, whilst for non-parametric tests no 

such assumptions are made. An assumption often made of log-transformed 

microarray data, and for many parametric tests, is that errors follow a normal 

distribution. Whilst this has yet to be conclusively tested, evidence suggests that 

in some instances it may be a valid assumption (Giles and Kipling, 2003), 

particularly for in vitro and transgenic studies whereby within-group variation 

would be expected to be small (Olson, 2006).  

Replicate microarray data are collected for each condition of interest and the 

variance in the signal between replicates for a particular gene is compared with 

the variance between the conditions to give some idea of the reliability of 

differentially expressed genes (Lee et al., 2000; Kerr and Churchill, 2001a; Kerr 

and Churchill, 2001b; Nadon and Shoemaker, 2002; Kerr, 2003). Many studies 
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focus on the conditions of a single experimental variable, such as drug treatment, 

disease state, treatment time, etc. For such experimental designs, significance 

analysis is routinely performed by calculating a t-test statistic (two classes) or 

one-way ANOVA F-statistic (multiple classes) (Wolfinger et al., 2001; Cui and 

Churchill, 2003; Pavlidis, 2003; Churchill, 2004). The role of these test statistics 

is to identify significant differences between the means of the different sample 

groups – that is, differences in the means that would not be expected by chance 

alone. These tests therefore consider the variance between group means relative to 

the pooled variance of observations within each group.  

ANOVA can be extended to analyse for significant changes in gene-expression in 

response to more than one experimental variable. Experiments comparing the 

effects of two or more variables on gene-expression will often be designed with a 

factorial treatment structure, such that all combinations of experimental conditions 

are represented (e.g. male & treated; female & treated; male & untreated; female 

& untreated) (Fisher, 1926). Such analyses consider not just the main effects of 

the experiment variables, but also their interactions; modifications of the 

combined main effects caused by interdependencies between the variables. For 

instance we may see that a drug under study imposes a stronger effect on males 

than on females. 

Whilst t-test statistics can be calculated for cases when the variance in the two 

groups is not equal, the ANOVA F-test statistic assumes equal variance across the 

groups and relies on the parametric assumption of a normal distribution of error 

terms. As previously discussed, such an assumption may not hold for gene-

expression data, so resulting p-values should be treated cautiously. Also, this 

procedure performs tens-of-thousands of hypothesis tests simultaneously across 

the genes on the arrays. Each test is assumed to be independent, however given 

the complex interactions between genes within the cell due to co-expression 

(simultaneous expression due to related function), this assumption is likely false.  

However, the ANOVA F-test is often used as a starting point for analyses in order 

to gain an understanding of data structure and dependencies before progressing to 

more sophisticated techniques that consider the relatedness of the individual 
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genes, such as empirical Bayes approaches (Baldi and Long, 2001; Efron and 

Tibshirani, 2002), or to reduce the dimensionality prior to higher order analyses 

such as hierarchical clustering (Section 1.5.4). 

1.5.3.3 Analysis of gene-expression using linear models 

Linear model analysis is used to fit a relevant model that can be used to identify 

statistically significant effects. The variable of interest, or response variable, is 

related to the predictor variables through a linear model. For some transcript 

𝑔 ∈  1,… , 𝐺  with gene-expression 𝑌𝑔 =  𝑦𝑔1 , … , 𝑦𝑔𝑛   over 𝑛  samples, a linear 

model can be applied to 𝑦𝑔𝑖  with experiment variables𝑥1 =  𝑥11 , … , 𝑥1𝑛 , 𝑥2 =

 𝑥21 , … , 𝑥2𝑛 , 𝑒𝑡𝑐. as predictor variables: 

 
𝑦𝑔𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + …+  𝛽𝑝𝑥𝑝𝑖 +  𝜖𝑔𝑖  1-13 

Where 𝛽0  is the intercept term for transcript g across all samples 𝑖 ∈ (1,… , 𝑛), 

 𝛽 =  𝛽1, … , 𝛽𝑝  are the regression coefficients (see below) for the predictor 

variables 𝑥1, … , 𝑥𝑝 , 𝑋 =  𝑥1
𝑇 , … , 𝑥𝑝

𝑇  is the design matrix of observed values for 

the predictor variables 𝑥1 , … , 𝑥𝑝  for each observation i, and 𝜖𝑔𝑖  is some error term 

assumed to be IID ~𝑁 0, 𝜎2 .  

It is assumed that the response variable 𝑌𝑔 =  𝑦𝑔1, … , 𝑦𝑔𝑛   for transcript 𝑔  is 

made up of 𝑛 independently observed values, and that each value of the response 

variable is observed for some designed value of the predictor variables. These are 

typically considered as valid assumptions for microarray analyses. The 

relationship of the response variable 𝑦𝑔𝑖  to the predictor variables can also be 

written using the R-specific notation  𝑦𝑔𝑖  ~ 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑝 , where the ~ 

symbol implies that “𝑦𝑔𝑖  is modelled by the additive main effects of 𝑥1,  𝑥2 , 𝑒𝑡𝑐”. 

If interaction terms are of interest (for instance, we may suspect that the effect of 

drug treatment depends on age), these terms can be included in the model also: 
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𝑦𝑔𝑖  ~ 𝑥1 + 𝑥2 + ⋯+ 𝑥𝑝 + 𝑥1: 𝑥2 + ⋯+ 𝑥 𝑝−1 : 𝑥𝑝  

1-14 

Where 𝑥𝑛 : 𝑥𝑚  indicates the 1
st
 order interaction between terms 𝑥𝑛  and 𝑥𝑚  for 

𝑛,𝑚 ∈  1,… , 𝑝 . Here we consider only 1
st
 order interaction terms, although 

higher order interactions may also be of interest. For 2-colour microarray 

experiments, the gene-expression data 𝑦𝑔𝑖  are typically normalised log-ratios, and 

for 1-colour experiments are typically normalised log-signals.  

The explanatory variables 𝑥𝑘  for 𝑘 ∈  1,… , 𝑝  can take many forms, including 

both categorical variables which take one of a finite number of levels, and 

numerical variables which take any value within a continuous range. These 

variables can represent a wide range of experimental conditions. The ANOVA 

model is a special case of the linear model in which all model terms are taken 

from a restricted set of designed factor levels. Analysis of covariance (ANCOVA) 

is an extension of ANOVA including both factors and continuous explanatory 

variables showing a linear relationship to the response variable (covariates). Such 

covariates may influence the response of the factor terms on the response variable, 

and ANCOVA models allow the removal of such nuisance covariate effects. 

The error terms, or residuals, 𝜖𝑔𝑖  are assumed to be IID such that 𝜖𝑔𝑖 ∈ 𝑁(0, 𝜎2). 

Whilst the assumption of normality in microarray data is contentious, it is 

generally accepted to hold after transformation of the data to the log scale, and it 

has been suggested that such a transformation may in fact be unnecessary to 

ensure normality (Giles and Kipling, 2003). 

For numerical variables 𝑥1, … , 𝑥𝑝 , the coefficients 𝛽 =  𝛽1, … , 𝛽𝑝  can be 

calculated using regression analysis, or curve fitting. One such method is ordinary 

least squares fitting, whereby the residual sum of squares (RSS),  𝜖𝑖
2𝑛

𝑖=1 , is 

minimised. The linear model described in Equation 1-13 can be considered the 

equation of a curve within a 𝑝 + 1 dimensional space. Thus regression analysis 

aims to fit a 𝑝-dimensional surface such that the residuals are minimised. For 

instance, consider the simplest case of 𝑝 = 1 – e.g. analysing the effect of the 
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numerical variable age on the expression of a single gene (the subscript 𝑔  is 

removed for convenience). This would be modelled by the equation: 

 
𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖  

1-15 

All values 𝑦𝑖  and 𝑥1𝑖 (𝑖 ∈ (1, … , 𝑛)) can be plotted on Cartesian co-ordinates, with 

the response variable 𝑦 on the vertical-axis and the explanatory variable 𝑥 on the 

horizontal-axis. By assuming a linear relationship between x and y, one such 

model is to fit a straight line with y-intercept 𝛽 0 and slope 𝛽 1, such that the RSS is 

minimised. Note however that “linear model” does not imply a linear relationship. 

A linear model is defined as a model where the explanatory variables are related 

to the response variable through a linear combination of terms (for instance 

𝑦 ~ 3.1 + 2.7𝑥 + 1.4𝑥2  is a linear model despite the second order term x
2
, with 

explanatory variables x and x
2
). The solution to this simple linear relation 

regression is given by: 

 

𝛽 1 =
  𝑥𝑖 − 𝑥  𝑛
𝑖=1  𝑦𝑖 − 𝑦  

 (𝑥𝑖 − 𝑥 𝑛
𝑖=1 ) 2

 

𝛽 0 = 𝑦 −  𝛽 1𝑥  
1-16 

Where 𝑥  and 𝑦  are the means of the x and y variables respectively. Fitting this 

model to a random sample of the global population results in estimates of the 

model parameters 𝛽 . The residual error 𝜀𝑖  for each observation i is defined as the 

difference between the fitted value (µ) and the observed value (yi), and the 

residuals are assumed to be IID and ~𝑁(0, 𝜎2). However, this imposes constraints 

on the number of measured values that are free to vary. That is, if 100 

measurements are randomly sampled from the population with residuals 

𝜖1, … , 𝜖100, the final measurement will necessarily be defined as 𝜖100 = − 𝜖𝑖
99
𝑖=1 . 

In this case, we say that estimation of this statistic has 99 degrees of freedom 

(DF). 

For factorial variables (such as with ANOVA), regression coefficients can be 

calculated for each level of the factor by assigning dummy variables to each 
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factor. If the resulting coefficient estimate 𝛽 1 is high, this suggests an effect on the 

response variable. For a higher number of explanatory variables, the procedure is 

the same over a higher dimensional space, with the size of the regression 

coefficients relating to the size of the effect.  

An F-test statistic can be used to test for significant differences between nested 

models to judge for improvements in model fit, by giving a measure of the 

significance of the difference in the resulting change in RSS. For nested models 

𝑌1 ~ 𝑡1 + ⋯+ 𝑡𝑝1  and 𝑌2 ~ 𝑠1 + ⋯+ 𝑠𝑝2 , where 𝑝2 < 𝑝1  and the terms 𝑡𝑖 ∈

 𝑥1, … , 𝑥𝑝 ,  𝑥1: 𝑥2 , … , 𝑥𝑝−1: 𝑥𝑝  for 𝑖 ∈ (1,… , 𝑝1), and terms 𝑠𝑗 ∈  𝑡1, … , 𝑡𝑝1  for 

𝑗 ∈ (1, … , 𝑝2), the F-test statitic is given by: 

 
𝐹 =

(𝑅𝑆𝑆2 − 𝑅𝑆𝑆1) (𝑝1 − 𝑝2) 

𝑅𝑆𝑆1 (𝑛 − 𝑝1) 
 

1-17 

The F-statistic is used to test the null hypothesis that the p1-p2 term(s) that differ 

between Y1 and Y2 have no effect on the response variable. This approach can be 

used in an iterative manner to test the significance of each coefficient term in the 

model by comparing the model fit with and without each term. Thus for two 

models U and R with n observations, where model U has k unrestricted 

coefficients and model R restricts m of the coefficients to zero, the F-test statistic 

is defined as: 

 
𝐹 =

 𝑛 − 𝑘 (𝑅𝑆𝑆𝑅 − 𝑅𝑆𝑆𝑈)

𝑚. 𝑅𝑆𝑆𝑈
 1-18 

The fraction of the total SS explained by each of the terms in the model is 

calculated sequentially to account for the inclusion of previous terms in the model. 

Traditionally, one of three methods can be used to determine the explained SS for 

each model term (Yates, 1934; Speed et al., 1978; Herr, 1986; Langsrud, 2003). 

In a Type I sum of squares (SS) method, the significance of each term in the 

model is calculated by sequentially adding a term, recalculating the SS, and 

comparing the models before and after (Overall and Spiegel, 1969). This is 
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repeated until the model becomes saturated. If the design of the experiment is not 

orthogonal or is unbalanced, the resulting SS can be greatly influenced by the 

order in which terms appear in the model, and different permutations can give 

vastly different results (Langsrud, 2003). In contrast, Type II and Type III SS are 

not reliant on the order of the terms, and are therefore better suited for unbalanced 

designs. In a Type II SS method, each term under consideration is adjusted for the 

terms in the model that do not contain the term of interest. In a Type III SS, each 

term is adjusted for all other terms in the model. Many statistical packages offer 

the Type III SS as a default, although this has been criticised due to the fact that 

this this can lead to inclusion of interaction terms without the inclusion of 

corresponding main effect terms, and Type II SS has been found to have higher 

power when analysing unbalanced designs (Langsrud, 2003).  

Often, a common approach in significance analysis of gene-expression changes 

across multiple variables is to fit a saturated model for each gene incorporating all 

variables and their interactions. However, it is preferable and more relevant to fit a 

single model for each gene to account for per-gene variability (Jin et al., 2001; 

Wolfinger et al., 2001; Smyth, 2004). Several approaches to significance analysis 

of gene-expression data using linear models have been previously described (Kerr 

et al., 2000; Jin et al., 2001; Wolfinger et al., 2001; Chu et al., 2002; Smyth, 

2004), and one of the most widely used is the limma (linear models for microarray 

data) package in R (Smyth, 2004; Smyth, 2005).  

1.5.3.4 Multiple testing 

The use of hypothesis testing for gene-expression analysis is popular due to 

simplicity, and the large number of pre-existing methods available. However, 

problems may arise due to the large number of tests performed at any one time. 

The cutoff for significance in many experimental procedures is 𝛼 = 0.05, which 

indicates that we can expect to see a false positive for 1 out of every 20 tests. Thus 

the simultaneous testing of tens-of-thousands of genes may result in hundreds, or 

even thousands, of false positive results. The multiplicative nature of probabilities 
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indicates that the p-values cannot be calculated in isolation for multiple tests. This 

is termed the multiple testing problem. To account for the multiplicative nature 

when testing multiple hypotheses, multiple testing corrections (MTC) must be 

applied to correct the p-values for the number of concurrent tests performed 

(Dudoit et al., 2003; Reiner et al., 2003). 

One class of MTC are the family-wise error rate (FWER) corrections, which gives 

the probability of making one or more false discoveries across a family of tests. p-

values for each gene are adjusted based on the number of individual tests 

performed, which accounts for the multiplicity of hypothesis testing. One of the 

best known FWER MTCs is the Bonferroni procedure (Bonferroni, 1936), which 

is often found to be very conservative in its p-value estimates. A second class of 

MTCs are the false discovery rate (FDR) procedures which control the proportion 

of incorrectly rejected null hypotheses, and are generally considered to be less 

conservative than FWER procedures. The modified p-value gives the expected 

proportion of false positives that can be expected in a set of tests at a given 

confidence level.  

FDR and FWER MTCs reduce the number of false positive results, but also 

reduce the power of the statistical test for individual genes. The FDR also gives 

fewer false negatives than the FWER, but increases power at the cost of the 

specificity and is often seen to be less stringent (Reiner et al., 2003). One of the 

most widely used FDR corrections is that of Benjamini and Hochberg (Benjamini 

and Hochberg, 1995). An improvement on this correction, the q value of Storey et 

al. (Storey, 2002; Storey and Tibshirani, 2003) improves the power of the test and 

eliminates the need to set the error rate before-hand. Since FDR corrections such 

as these require test statistics for each gene to be independent, or at most weakly 

dependent, there remains criticism as to the relevance of their application to the 

field of microarrays where dependence exists between many genes (Jung and 

Jang, 2006; Gordon et al., 2007), although further MTCs that account for positive 

regression dependency between hypothesis test statistics are available (Benjamini 

and Yekutieli, 2001). Regardless, given the huge number of tests performed 

simultaneously when observing differential expression using hypothesis testing, 



113 

 

the use of some form of correction is required to account for and minimise false 

positive results. 

1.5.4 Clustering for co-regulation of gene-expression 

Gene-expression in cells is not independent, and many genes may be involved in 

similar cellular functions. Genes that are involved in the complex pathways 

altered by treatment in the microarray experiment may therefore be expected to 

show similar traits in their change in expression. For instance, two or more genes 

may be activated by the same transcription factor resulting in concomitant, or co-

expression. Alternatively, activation of one gene may result in simultaneous 

repression of another, resulting in a negative correlation between the two profiles. 

Thus observing gene-expression profiles can allow identification of genes relating 

to similar functions, which can provide information for determining the complex 

pathways involved.  

One method for seeking co-expression in microarray data is to use clustering 

methods to find genes showing similar profiles in their gene-expression response. 

Clustering uses some algorithm to divide objects up in such a way that the 

similarity between the objects within the groups is greater than that between the 

groups themselves. There are two main types of clustering algorithm: 

1. Hierarchical clustering 

Hierarchical clustering produces a nested tree, or dendogram, with more 

similar objects connected by shorter branches. Clustering can be either 

agglomerative (bottom up) or divisive (top down). In an agglomerative 

clustering procedure, each object is first assigned to an individual cluster. 

A distance or similarity metric is used to combine the two most similar 

clusters into a single cluster, and this process is repeated until a single 

cluster is produced containing all objects. In a divisive clustering 

procedure, the algorithm begins with all objects assigned to a single 
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cluster. At the first stage, the cluster is divided into two clusters based on a 

similarity or distance metric. This is repeated until each object has been 

assigned to an individual cluster. The choice of agglomerative or divisive, 

and the similarity metric used, can greatly affect the resulting dendogram. 

2. Non-hierarchical (partitional) clustering  

Non-hierarchical clustering techniques partition objects into a number of 

exclusive groups. Unlike hierarchical clustering, this produces independent 

groups that are not nested. Typically used methods include self organising 

maps (SOMs) (Kohonen, 1982; Kohonen, 1995; Tamayo et al., 1999), k-

means clustering (Hartigan and Wong, 1979), and quality threshold (QT) 

clustering (Heyer et al., 1999). SOMs are a form of artificial neural 

network that use machine learning algorithms to reduce the dimensionality 

of the input data. This reduction in dimensionality highlights similarity 

between objects allowing similar objects to be grouped. In k-means 

clustering, objects are randomly assigned to each of the specified clusters, 

and an iterative procedure aims to reduce the within-cluster variance, but 

increase the between-cluster variance. In both cases, the user must specify 

the number of clusters required a priori, which can affect the clustering 

outcome. QT clustering improves on k-means for gene-expression analysis 

by allowing users instead to specify the minimum size of clusters, and the 

level of relatedness between genes. 

Many measures of similarity can be used to identify similarity between gene-

expression signatures, and the resulting dendogram formed by applying this 

clustering method to the data can be greatly affected by the choice of similarity 

metric. One often used method is the Pearson cross-correlation, or product-

moment correlation. For two vectors 𝑋 = (𝑥1, … , 𝑥𝑛)  and 𝑌 = (𝑦1, … , 𝑦𝑛)  with 

means 𝑋  and 𝑌  respectively, the Pearson coefficient is: 

 
𝑟 =  

  𝑥𝑖 − 𝑋   𝑦𝑖 − 𝑌  𝑛
𝑖=1

   𝑥𝑖 − 𝑋  2   𝑦𝑖 − 𝑌  2𝑛
𝑖=1

𝑛
𝑖=1

 
1-19 
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Such clustering procedures are often used to identify genes showing similar 

expression profiles over time (co-expression), or to identify groups of individuals 

showing similar expression over all genes (subgroup classification). Heatmaps 

combine hierarchical clustering of genes and samples in a single image, typically 

with genes as rows and samples as columns. By assigning a colour representing 

gene-expression levels to each element of the resulting array, clusters can be 

identified as blocks of similar colour (Figure 1.5.2). This provides an informative 

visual representation of the association between samples and genes (Eisen et al., 

1998). 
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Figure 1.5.2: Visualising the association between genes and samples using a heatmap 

Hierarchical clustering can be used to rank genes based on their similarity across the sample set. 

Some similarity measure (such as the Pearson correlation coefficient) is used to identify genes 

showing similar expression profiles across the experiment conditions. Genes are coloured based on 

their expression for a particular condition (green; high expression, red; low expression) producing 

a heatmap of the data, and allowing visual inspection of relatedness between genes and samples. A 

hierarchical tree, shown to the left of the above heatmap, can be used to identify clusters within the 

data. Blocks of colour within the heatmap may represent interesting clusters of genes whose 

expression is strongly correlated, perhaps indicating co-regulation and biological similarities. 
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1.5.5 Validation of results 

Before making conclusions regarding microarray results, investigators must be 

certain that the results provide an accurate representation of the biological system 

under study. Validation of results can largely fall into three categories – quality 

control of data, independent confirmation of results and comparison of results 

with the biological system under study (reviewed in Chuaqui et al., 2002). Quality 

control of Affymetrix data has been previously described (Section 1.4.3). 

Independent confirmation of the results can include laboratory based confirmation 

of mRNA levels using more sensitive gene-expression analysis methods, and in 

silico analysis comparing results with previous studies to confirm certain trends in 

the data. Finally, these results must be tied in to the biology of the system to 

confirm that they make sense within the context of the biological system under 

study. 

The method of statistical hypothesis testing used to test for differential expression 

often produces false positive results. Microarray experiments typically produce a 

large number of potentially interesting results. To confirm that these results are in 

fact an accurate representation of the biology of the system, more sensitive 

methods of gene-expression analysis are often used to validate the results. It is 

thus important to minimise errors (particularly Type I errors) in the initial analysis 

to minimise the costs of validation. 

One method typically used in microarray validation is qRT-PCR (Rajeevan et al., 

2001), which allows real time quantification of the change in PCR product 

throughout the PCR amplification. In the TaqMan qRT-PCR assay (Heid et al., 

1996), a non-extendible oligonucleotide probe is engineered for the transcript of 

interest, and is labelled at the 5‟ end with a fluorescent reporter dye (e.g. 6-

carboxyfluorescein (FAM) or 2′-chloro-7′-phenyl-1,4-dichloro-6-

carboxyfluorescein (VIC)). A non-fluorescent minor-groove binding (MGB) 

quencher molecule is also attached to the probe at the 3‟ end, and serves to quench 

the emission spectra of the reporter through fluorescence resonance energy 

transfer (FRET) (Forster, 1948; Applied Biosystems, 2005). The close proximity 

http://en.wikipedia.org/wiki/Fluorescein
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of the fluorophore to the quenching molecule ensures that no fluorescence is 

detectable. During the PCR reaction, the probe binds to the transcript of interest, 

resulting in cleavage of the reporter dye by the 5‟ nuclease activity of the Taq 

polymerase during the extension phase. This allows the reporter to escape the 

quenching activity, resulting in an increase in fluorescence. This cleavage also 

removes the probe from the target strand, allowing PCR to continue unabated. 

Thus fluorescence levels increase following each PCR cycle in proportion to the 

amount of amplicon produced in the PCR reaction.  

Assuming complete efficiency of the PCR reaction, amplicon abundance is 

doubled every cycle. However, the observed changes in fluorescence during the 

early cycles of the PCR reaction are low and not detectable by the scanner. A 

threshold value for signal detection is set, and the (fractional) cycle number at 

which fluorescence levels first exceed this value is termed the threshold cycle 

(CT). This value is used to estimate transcript abundance, since a higher copy 

number in the starting sample will require fewer cycles (and hence a lower CT) for 

amplicon abundance to reach suitable levels for detection. The threshold for 

detection is set such that, at the point of detection, amplification is in the 

exponential stage, which is limited by reagent availability within the assay. This 

ensures that the CT value can be used to quantify transcript abundance, either 

absolutely by extrapolating from a previously produced standard curve of known 

transcript concentrations, or comparatively by comparing directly between two 

samples. qRT-PCR is sensitive over a larger dynamic range than microarrays, is 

able to accurately identify lower fold changes, and requires only a small quantity 

of starting material making it ideal for validation of microarray results.  
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1.6 Thesis overview 

The first section of this introductory chapter (Section 1.1) has given an overview 

of the current state of knowledge about the c-myc oncogene, its role in normal 

cellular function, and also its role in diseases such as cancer. It is clear that, whilst 

much is known about the myriad cellular functions of Myc, there is still much to 

be learnt about the role played by tissue context in vivo. Section 1.2 discusses a 

well characterised in vivo model for deregulated Myc, and in particular the 

difference in the phenotypic outcomes in two diverse tissues; skin and pancreas. 

The divergence of Myc potentiality between the two tissues, leading to 

suppression of tissue expansion via apoptosis in one but not the other, highlights 

the need for a real understanding of the pathways involved in these two functions. 

In Section 1.3, a method for high-throughput analysis of transcriptional response – 

the microarray – is discussed, which provides a method for analysing the key 

divergences in Myc-regulated processes at the transcriptional level between the 

skin and the pancreas. In Section 1.4, the Affymetrix system of GeneChip 

microarrays is discussed, and Section 1.5 describes methods and considerations 

for experimental design, data analysis and identification of significantly changing 

genes. Lastly, the aims for this project are formally expressed in Section 1.7. 

Chapter 2 discusses materials and methods used throughout this project, including 

many of the careful experimental techniques that were employed to ensure 

validity of the results.  

High-throughput analyses such as microarrays produce large amounts of data and 

successful hypothesis testing requires suitably designed statistical methods. 

Chapter 3 discusses the motivation behind the creation of a new package for the 

Bioconductor project (Gentleman et al., 2004), a collection of libraries for 

analysis of gene-expression data in the statistical programming language R. This 

package, Envisage (Enables Numerous Variables In Significant Analysis of Gene-

expression), was specifically designed for the present analysis, but is also widely 

applicable to a wide range of data.  
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Chapter 4 is the main chapter of the thesis and discusses the results of a 

microarray-based transcriptional comparison between Myc activation in the skin 

and Myc activation in the pancreas using the MycER
TAM

 transgenic model.  

Finally, Chapter 5 gives a final discussion of the results seen throughout the 

project and how they relate to the initial aims and hypotheses. 
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1.7 Project aims and hypotheses 

The project described within this thesis has been separated into two main 

chapters: Chapter 3: Envisage: Significance Analysis of Microarray Data and 

Chapter 4: Comparison of Transcriptional Response to MycERTAM Activation in 

Suprabasal Keratinocytes and Pancreatic β-Cells. The aims and hypotheses for 

each of these are described here.  

1.7.1 Envisage: Significance Analysis of Microarray Data Using 

Linear Models 

Many sources of variation exist within microarray experiments, and sample-to-

sample variation in phenotype and sample preparation can elicit a significant 

effect on gene-expression. Analysis of differential expression may therefore 

identify genes whose expression varies in response to variables that are not of 

primary interest to the investigator. The aim of this chapter was to develop 

statistical methods, based around linear models, allowing analysis of significant 

differential expression across a large number of experimental variables, in order to 

allow biological context to be factored into the analysis. Given the large size of 

microarray-derived data sets and the problems implicit in their analysis, this was 

designed to be automated and simple to use in order to limit user-errors. To ensure 

standards were maintained throughout, this procedure was designed to integrate 

with standard analysis packages: GeneSpring GX 7.3.1 (GS-GX; Agilent 

Technologies, Santa Clara, CA) and the Bioconductor library packages in R 

(Gentleman et al., 2004). 
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1.7.2 Comparison of Transcriptional Response to MycERTAM 

Activation in Suprabasal Keratinocytes and Pancreatic β-

Cells  

It is clear from Section 1.2.4 that tissue context plays a large role in determining 

the ultimate role of deregulated Myc. The divergence of Myc potentiality between 

conditions that favour opposing outcomes – proliferation and apoptosis – is of key 

importance to understand the role of oncogenic Myc in circumventing normal cell 

function. The aim of this chapter was to analyse gene-expression changes 

following a time-course of Myc activation in the skin and pancreas to identify 

downstream targets of deregulated Myc that promote cell replication/survival and 

apoptotic cell death. Comparative analysis of these results, utilising novel multi-

variable statistical analysis techniques based on linear models for identification of 

significant changes in gene-expression in complex experimental design, identified 

key genes whose expression profiles between the tissues may delineate the 

seemingly contradictory phenotypes. 
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Chapter 2 Materials and Methods 

2.1 Treatment of transgenic animals 

This study utilised the switchable mycER
TAM

 transgenic mouse model, described 

in Section 1.2, to allow direct control of aberrant Myc activity in vivo. The inv-

mycER
TAM 

(Pelengaris et al., 1999) and pins-mycER
TAM

 (Pelengaris et al., 2002b) 

transgenic mouse models were used, whereby the mycER
TAM

 transgene is targeted 

specifically to the suprabasal keratinocytes and pancreatic beta cells respectively. 

This model allowed exquisite control of the time 0 of ectopic Myc activity, 

allowing analysis of downstream events at the molecular level. 

2.1.1 Genotyping of mycER
TAM 

transgenics 

For both inv-mycER
TAM 

(Pelengaris et al., 1999) and pins-mycER
TAM

 (Pelengaris et 

al., 2002b) transgenic mice, tissue was collected for genotyping using an ear-

punch technique. DNA was extracted by lysing tissue in 75 μl „Hotshot‟ reagent 

(25 mM NaOH, 0.2 mM disodium ethylenediaminetetra acetic acid (EDTA) and 

pH 12) for 30 mins. Samples were neutralised by adding equal volumes of 

neutralising reagent (40 mM Tris-HCl, pH 5) and cooling to 4 °C overnight. DNA 

samples were stored at -20 °C for long-term storage. For each DNA sample, a 

PCR cocktail was made up containing 3 μl DNA, 17.25 μl sterile H2O, 2.5 μl x10 

PCR buffer (Invitrogen, Carlsbad, CA), 0.75 μl 50 mM MgCl2 (Invitrogen, 

Carlsbad, CA), 0.5 μl MYC5 3‟-primer (10 pm/μl; 5‟-

AGGGTCAAGTTGGACAGTGTCAGAGTC-3‟), 0.5 μl MERTM 5‟-primer (10 

pm/μl; 5‟-CCAAAGGTTGGCAGCCCTCATGTC-3‟), 0.25 μl Taq polymerase (5 

U/μl; Invitrogen, Carlsbad, CA) and 0.25 μl deoxynucleotide triphosphate 

(dNTPs; 10 mM; Invitrogen, Carlsbad, CA). PCR cocktails were run using a PTC-

http://en.wikipedia.org/wiki/Deoxynucleotide_triphosphate
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100 Programmable Thermal Controller (MJ Research, Inc., Waltham, MA) using 

the following program: 

1. 2 mins at 94 °C  

2. 30 cycles of: 1 min at 94 °C, 1 min at 57 °C, 2 mins at 72 °C 

3. 10 mins at 72 °C  

PCR products, positive and negative control samples (mycER
TAM

-positive DNA 

and water respectively) and a 1 kb DNA ladder were loaded on a 1 % agarose gel 

with Tris/borate/EDTA buffer (TBE; 0.89 M Tris base, 0.02 M EDTA-Na2-salt, 

0.89 M boric acid). with a 6x loading buffer (0.25 % bromophenol blue, 0.25 % 

xylene cyanol FF and 30 % glycerol in water at 4 °C). The gel was run for 2 hours 

at 90 V and migration was captured using the Gene Genius Bio Imaging System 

with the GeneSnap Image Capture Suite (Syngene, Frederick, MD). 

2.1.2 Administration of 4-hydroxytamoxifen (4OHT) 

Activation of the MycER
TAM

 protein in adult transgenic mice was achieved 

through daily administration of 4OHT (Sigma-Aldrich, St. Louis, MO). For inv-

mycER
TAM

 mice expressing MycER
TAM

 in suprabasal keratinocytes, 4OHT was 

dissolved in ethanol (1 mg/0.2 ml) and 200 μl was applied topically to a shaved 

area of dorsal skin daily. For pins-mycER
TAM

 mice expressing MycER
TAM

 in 

pancreatic β-cells, 4OHT was sonicated in peanut oil (1 mg/0.1 ml) and 100 μl 

was administered through daily IP injection. Control VT mice received equal 

volumes of their respective vehicle (ethanol or peanut oil respectively) without 

4OHT daily. 
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2.1.3 Tissue excision and preparation 

8-12 week old male inv-mycER
TAM

 and pins-mycER
TAM

 mice were sacrificed by 

cervical dislocation 4, 8, 16 or 32 hours after initial 4OHT/vehicle dose (time 0). 

Pancreata and dorsal skin were immediately dissected subsequent to sacrifice. 

Isolated tissue was bisected; one tissue sample was immediately embedded in 

optimum cutting temperature (OCT) medium on dry ice at an orientation to ensure 

optimum size for tissue sections. A second sample was snap frozen in liquid 

nitrogen for future functional validation studies. Tissue samples were stored at -80 

°C. 

2.1.4 Sample labelling 

This study consisted of 16 individual experimental conditions; 4 conditions over 4 

time points. Each condition was represented by 3 independent replicates for a total 

of 48 independent samples. Labelling of samples consisted of an identifier for 

each of the 4 main conditions followed by the time point in hours and a number 

used to identify independent replicate samples; skin with MycER
TAM 

active (Skin 

T), skin with MycER
TAM 

inactive (Skin U), pancreas with MycER
TAM

 active (Panc 

T) and pancreas with MycER
TAM

 inactive (Panc U) across the four time points.. 

For example, „Panc T 16hr (3)‟ represents the third replicate of pancreas samples 

treated with 4OHT (MycER
TAM

 active) for 16 hours, and „Skin U 32hr (1)‟ 

represents the first replicate of skin samples treated with vehicle only (MycER
TAM

 

inactive) for 32 hours. 
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2.2 Laser capture microdissection 

The pins-mycER
TAM

 transgene is expressed only in the Insulin-producing β-cells 

which exist within islets; homogenous clusters of endocrine cells making up 

roughly 2 % of the total mass of the mouse pancreas (Elayat et al., 1995). β-cells 

are by far the most abundant of the islet cells, yet make up only a small proportion 

of the total pancreas cell mass. Therefore, activation of MycER
TAM

 results in 

changes in expression in only a minority of cells within the pancreas. It is 

therefore important to remove non-MycER
TAM

-producing cells to ensure that 

changes in gene-expression following MycER
TAM

 activation in the β-cells are not 

overshadowed by intrinsic changes in gene-expression within non-β-cells due to 

normal cellular homeostasis over the time course. Laser capture microdissection 

(LCM) is a microscopic technique allowing isolation of pure cell populations 

from heterogenous tissue sections whilst leaving morphology intact (Figure 2.2.1). 

Tissue sections are cut and mounted on a special membrane slide consisting of a 

metal support frame with a transparent transfer film. Sections are fixed, stained 

and dehydrated, before being placed on a microscope platform for morphological 

identification. Cells of interest are selected, and a low powered infra-red laser is 

used to isolate selected cells from the surrounding tissue. This process results in 

minimal damage to cell morphology and leaves DNA and RNA molecules intact, 

making this procedure excellent for isolation of RNA molecules for gene-

expression analysis. 

This method was employed to isolate homogenous populations of endocrine islet 

cells from the surrounding exocrine tissue in pancreas. This ensured that the 

majority of RNA species originated from MycER
TAM

-encoding β-cells and 

reduced contamination by non-MycER
TAM

-encoding exocrine cells. 

Standard protocols for LCM, such as the Arcturus Histogene LCM staining 

protocol (Arcturus, Mountain View, CA) and the P.A.L.M. Microlaser Systems 

protocol (Zeiss, Bernried, Germany) use similar methods for sample preparation 

prior to LCM. Sections are cut and allowed to air dry at room temperature before 

fixing in ethanol (usually 70 %). Several staining protocols are suggested, such as 
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a haematoxylin and eosin stain (as described in Materials and Methods, Section 

2.8.1), and sections are dehydrated prior to laser cutting using a series of graded 

ethanol washes (50 % – 100 %) followed by a final wash using xylene. 

Evaporation dries the tissue sections allowing the laser to accurately cut the tissue.  

However, due to the high number of RNase species within the pancreas (Chirgwin 

et al., 1979; Gill et al., 1996; Mullin et al., 2006), these protocols produced RNA 

of a low quality, unsuitable for microarray hybridisation. Optimisation of the 

protocol, as described in Section 4.2.2.1, produced a procedure allowing isolation 

of RNA from pancreatic islets of a suitable quality for hybridisation to Affymetrix 

GeneChips (Materials and Methods, Section 2.2.1). However, similar attempts to 

optimise the protocol for isolation of RNA from skin keratinocytes proved 

impractical (Section 4.2.2.2). Given that the level of contamination from non-

MycER
TAM

-encoding cells was more favourable for the skin than the pancreas, 

RNA was isolated from whole skin tissue prior to microarray hybridisation 

(Materials and Methods, Section 2.2.2). 
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Figure 2.2.1: Laser capture microdissection allows isolation of pure cell populations while 

maintaining tissue morphology 

Tissue sections are bound to the thermal membrane of an LCM slide and mounted on a glass slide 

for support (A). Slides are transported to the platform of an LCM microscope (B) and the cap of an 

LCM eppendorf tube is lowered onto the membrane. A low powered infra-red laser is used to cut 

around cell populations of interest (C) and lifted away with the sticky eppendorf cap (D). The 

isolated tissue (E) can be used for downstream processing, such as RNA extraction. 
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2.2.1 Optimised laser capture microdissection and RNA isolation 

from pancreatic islets 

Fresh frozen pancreas sections were cut to a thickness of 15 µm using a Bright 

5040 cryostat (Jencons Scientific, Bridgeville, PA), bound to a MMI 

MembraneSlide (Molecular Machines and Industries, Rockledge, FL) and fixed in 

ice-cold 100 % ethanol for 2 minutes. Sections were stained briefly (10 secs) with 

a 1 % Toluidine Blue dye in 100 % ethanol to allow identification of islet 

morphology whilst preserving RNA quality. Stained sections were dehydrated in 

2 changes of 100 % ethanol and 2 changes of xylene for 1 minute each, airdried 

for 2 minutes and finally left in a vacuum dessicator for 5 minutes before 

transportation to the laser capture platform.  

The SL µCut laser capture microdissection system (Molecular Machines and 

Industries, Rockledge, FL) was used to isolate islets of Langerhans from 

surrounding exocrine tissue. Isolated islets were collected on the lid of a MMI 

IsolationCap (Molecular Machines and Industries, Rockledge, FL) and RNA was 

homogenised in a solution of buffer RLT (Qiagen, Valencia, CA), a guanidine-

isothiocyanate-containing lysis buffer, with β-mercaptoethanol (100:1) as 

described in the RNA Microkit protocol. The laser capture procedure was 

repeated on freshly cut pancreas sections to collect a total area of islet cells equal 

to roughly 1.5 x 10
6
 µm

2 
for each sample. Time on the microscope platform was 

strictly limited to 15 minutes to minimise RNA degradation. Lysed cell samples 

collected from a single tissue source were pooled and stored at -80 ºC prior to 

RNA extraction. 

2.2.2 RNA isolation from skin keratinocytes 

Five fresh frozen skin sections (20 µm) were collected across several levels of 

OCT-embedded tissue using a Bright 5040 cryostat (Jencons Scientific, 
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Bridgeville, PA) and lysed directly in a solution of buffer RLT (Qiagen, Valencia, 

CA) and β-mercaptoethanol (100:1). Samples were vortexed to homogenise and 

stored at -80 ºC prior to RNA extraction. 
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2.3 RNA extraction 

Total RNA was isolated from homogenised pancreata and skin lysates using the 

Qiagen RNeasy Micro Kit (Qiagen, Valencia, CA) for small sample RNA 

preparation, incorporating a deoxyribonuclease (DNase) I treatment step to 

remove DNA molecules that may copurify with the silica-gel columns. RNA 

integrity was protected by cleaning work areas and instruments with RNaseZap® 

(Ambion, Austin, TX) and DEPC-treated water to inactivate RNases. Nuclease-

free water was used throughout to ensure that no RNases were introduced, and 

good laboratory practices were observed at all times. RNA was isolated from the 

forty-eight tissue samples described here, as well as a further thirty-six pancreatic 

tissue samples as part of a parallel study not discussed within this thesis, resulting 

in a total of eighty-four individual RNA samples. Samples were randomly 

assigned into seven batches of twelve for RNA extraction, in a batching scheme 

chosen such that each batch filled a single plate for RNA quantification as 

described below (see below). It is noted however that, if RNA was extracted 

solely from tissue samples described for the current experiment, a more natural 

scheme may have been to divide samples into eight batches to allow sensible 

allocation of treatment sets to blocks of treatment and time point. 

Lysed cell samples were made up to 350 μl in buffer RLT with β-mercaptoethanol 

(100:1) and vortexed for 30 secs. 1 volume (350 μl) 70 % ethanol was added to 

the homogenised lysate and mixed thoroughly by pipetting. The mixture was 

added to an RNeasy MinElute silica-gel column (Qiagen, Valencia, CA) in a 2 ml 

collection tube and centrifuged at ≥ 8000 × 𝑔 for 15 secs. The flow-through was 

discarded, and 350 μl buffer RW1 (a guanidinium thiocyanate-containing buffer; 

Qiagen, Valencia, CA) was added to the spin column before centrifuging at 

≥ 8000 × 𝑔 for 15 secs to wash the column. The flow-through was discarded, 

and a DNase I incubation mix (10 μl DNase I stock solution, 70 μl buffer RDD 

(Qiagen, Valencia, CA)) was applied directly to the MinElute silica-gel membrane 

for 15 mins at RT to remove genomic DNA. The column was washed by adding 

350 μl buffer RW1 and centrifuging for 15 secs at ≥ 8000 × 𝑔. The MinElute 
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column was transferred into a new 2 ml collection tube, 500 μl buffer RPE 

(Qiagen, Valencia, CA), diluted from fresh in 4 volumes 80 % ethanol, was added 

to the column and centrifuged for 2 mins at ≥ 8000 × 𝑔  to dry the silica-gel 

membrane. The MinElute column was transferred to a new 2 ml collection tube 

and centrifuged with an open cap at full speed for 5 mins to further dry the 

membrane. RNA was eluted by applying 14 μl nuclease-free water directly onto 

the silica-gel membrane and centrifuging at maximum speed for 1 min.  

RNA integrity was analysed by the Molecular Biology Service (University of 

Warwick) using an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA) and 

RNA was quantified using a Nanodrop ND-1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, DE). RNA quality and yield is discussed further in 

Section 4.2.2.3. All samples were included in the microarray hybridisation 

procedures as it was decided that the introduction of systematic errors by 

repeating poor quality samples in isolation would be more detrimental to the 

resulting data than using degraded starting material.  
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2.4 Affymetrix GeneChip protocols 

2.4.1 Optimised in vitro transcription (IVT) protocol 

Sample preparation for microarray hybridisation was conducted using the 

GeneChip Two-Cycle Target Labelling and Control Reagents kit (Affymetrix, 

Santa Clara, CA) by Lesley Ward at the Molecular Biology Service at the 

University of Warwick. The two-cycle target labelling reaction was used instead 

of the standard one-cycle reaction due to the increased amplification that this 

protocol offers. This technique is recommended for RNA isolated from cells 

collected using LCM, due to the low yields of RNA often produced when using 

this technique. As described in Section 4.2.3, use of standard protocols produced a 

low yield of biotin-labelled cRNA. Personal communication with Giorgia Riboldi-

Tunnicliffe from Affymetrix allowed the development of a modified protocol, 

producing yields of labelled cRNA suitable for microarray hybridisation. 

Briefly, in the first cycle, poly-A controls were added to 10 ng sample RNA in 6 

μl nuclease-free water (twice the recommended volume) and used as a template 

for synthesis of 1
st
 strand antisense cDNA. T7-oligo-deoxythymidine (T7-

oligo(dT)) primers were bound to the poly-A tail of mRNA species and DNA 

reverse transcription was initiated using Superscript II reverse transcriptase 

(Affymetrix, Santa Clara, CA) to produce an antisense cDNA strand. Sense RNA 

was degraded using RNase H leaving the antisense cDNA template, and 2
nd

 strand 

sense cDNA was synthesised using E. coli DNA polymerase I. In order to 

improve first round cRNA yield, double volumes of polyA control probes and 

first cycle reagents were used. In vitro transcription was performed using the 

MEGAscript T7 kit (Ambion, Austin, TX) to produce cRNA from the T7-

promoter-containing antisense cDNA strand. First round cRNA clean up was 

performed using the Affymetrix GeneChip sample cleanup module (Qiagen, 

Valencia, CA).  
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In the second cycle, polyadenylated random primers were used in 1
st
 strand cDNA 

synthesis to produce short polyadenylated sense cDNA. cRNA was degraded 

using RNase H, and 2
nd

 strand cDNA synthesis, incorporating T7-oligo(dT) 

primers, was performed using E. coli DNA polymerase I to produce a second T7-

primed antisense cDNA strand. Double stranded cDNA cleanup was performed 

using the Affymetrix GeneChip sample cleanup module (Qiagen, Valencia, CA). 

In vitro transcription was performed using the Affymetrix GeneChip IVT 

labelling kit (Affymetrix, Santa Clara, CA) incorporating biotin labelled 

ribonucleotides. This produced double-amplified biotin labelled RNA from the 

T7-promoter-containing antisense cDNA strand complementary to the starting 

mRNA (double-amplified biotin-labelled cRNA; 2a-cRNA). 2a-cRNA cleanup 

was performed using the Affymetrix GeneChip sample cleanup module (Qiagen, 

Valencia, CA), and samples were fragmented prior to hybridisation to the array 

(Affymetrix, 2004).  

The resulting yields of 2a-cRNA are described in Section 4.2.3.2. Five samples 

were found to produce a yield less than the 10 μg recommended for microarray 

hybridisation. Given that the effects of confounding variation (such as changes in 

gene-expression relating to circadian rhythms and those relating to environmental 

effects) were avoided by running treated and untreated time courses in parallel, it 

was decided to hybridise these sub-optimal samples regardless to avoid 

introducing confounding variation relating to temporal batch effects by processing 

samples at a later date (although such effects could be minimised by ensuring that 

treatments occurred at times comparable to those used for the original samples). 

The choice between the introduction of bias due to low signal levels inherent with 

the hybridisation of low levels of 2a-cRNA, and the introduction of temporal 

batch effects, was also influenced by the appreciable time and resources required 

to run additional samples. This would also allow observation of the quality of data 

obtainable when pushing the boundaries beyond those suggested by Affymetrix. 
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2.4.2 Microarray hybridisation and scanning 

Forty-eight 2a-cRNA samples were randomly and independently hybridised to 

Affymetrix MOE430 Plus 2.0 GeneChip microarrays, which have been previously 

shown to give accurate reproducible results (Affymetrix, 2003). Hybridisation was 

performed by Lesley Ward at the Molecular Biology Service facility at the 

University of Warwick following standard protocols (Affymetrix, 2004).  

2.4.2.1 Hybridisation 

A hybridisation cocktail was made up for each 2a-cRNA sample, containing 10 μg 

fragmented 2a-cRNA, 5 μl control B2 oligonucleotides (3nM), 15 μl 20x 

eukaryotic hybridisation controls (heated to 65 °C for 5 mins before making 

aliquots), 3 μl herring sperm DNA (10 mg/ml), 3 μl acetylated bovine serum 

albumin (BSA; 50 mg/ml), 150 μl 2x hybridisation buffer and 109 μl nuclease-

free water. 200 μl of this cocktail was heated to 99 °C for 5 mins, followed by 45 

°C for 5 mins in a 0.5 ml RNase-free tube. Hybridisation cocktail was centrifuged 

at maximum speed for 5 mins to remove insoluble material. 200 μl 1x 

hybridisation buffer was incubated on the array for 10 mins at 45 °C with rotation 

at 60 revolutions per minute (rpm). Hybridisation buffer was removed, and 200 μl 

clarified hybridisation cocktail was incubated on the wet array at 45 °C with 

rotation for 16 hours at 60 rpm.  

2.4.2.2 Washing 

Arrays were washed with non-stringent wash buffer (300 ml 20x Saline-Sodium 

Phosphate-EDTA (SSPE) buffer (0.75 M NaCl, 50 mM NaH2PO4, 5 mM EDTA, 

made up to pH 7.0 with NaOH), 1 ml Tween-20 (10 %) and 699 ml nuclease-free 

water for 1 L stock solution) and stringent wash buffer (83.3 ml 12x 2-(N-

morpholino) Ethanesulfonic buffer (MES) stock, 5.2 ml NaCl, 1 ml Tween-20, 
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910.5 ml nuclease-free water for 1 L stock solution) using the Affymetrix Fluidics 

Station 450 (Affymetrix, Santa Clara, CA).  

2.4.2.3 Staining 

Arrays were stained using the Affymetrix Fluidics Station 450 (Affymetrix, Santa 

Clara, CA), loaded with 2x stain buffer (41.7 ml 12x MES stock, 92.5 ml NaCl (5 

M), 2.5 ml 10 % Tween-20 and 113.5 ml nuclease free water for a 1 L stock 

solution), SAPE solution (600 μl 2x MES stain buffer, 48 μl acetylated BSA (50 

mg/ml), 12 μl SAPE (1 mg/ml), 540 μl nuclease-free water per sample), and 

antibody solution (300 μl 2x MES stain buffer, 24 μl acetylated BSA (50 mg/ml), 

6 μl normal goat Immunoglobulin G (IgG; 10 mg/ml), 3.6 μl biotinylated antibody 

(0.5 mg/ml), 266.4 μl nuclease-free water per sample). 

2.4.2.4 Scanning 

Arrays were scanned using the Affymetrix GeneChip Scanner 3000 7G 

(Affymetrix, Santa Clara, CA), and samples were analysed using GCOS. Pre-

processing of .DAT raw fluorescent images was performed as described in 

Section 1.4.1 to produce a series of .CEL data files, which were used in further 

analyses. Data quality control metrics were calculated and analysed as described 

in Section 1.4.3.  
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2.5 Experimental design 

The need for careful experimental design in microarray experiments was 

discussed in Section 1.5.1, and these considerations were taken into account when 

planning and implementing this experiment. To ensure that gene-expression 

values accurately represented those of the global population, all conditions were 

represented by three independent hybridisations, resulting in a total of 48 

independent hybridisations. Whilst three replicates represents the minimum 

number that should be used in a microarray experiment (Section 1.5.1.3), this 

allowed the maximum number of time points to be analysed given the limited 

budget for the experiment. Also, many sources of variation were limited through 

design: between-sample variation was reduced by using inbred transgenic lines to 

limit animal-to-animal genetic variation, mice were housed under environmentally 

controlled conditions to limit environmental effects on gene-expression, and to 

limit further effects all animals chosen for this study were of the same gender 

(male) and aged between 8-12 weeks. A great deal of care was also taken to limit 

variation in sample preparation, such as by following standardised protocols at all 

times and by ensuring all replicates were treated concomitantly to limit circadian-

based variation in gene-expression response. 

A further important experimental design feature was the randomisation of samples 

during processing to limit the effects of systematic errors on the resulting data. 

The typical approach to experimental design to avoid the effects of confounding 

covariates is to create groups (or blocks) of samples with similar covariate values. 

In this way, such covariate effects become orthogonal to the treatment effects, 

allowing them to be more easily accounted for in the analysis. Further covariate 

effects can then be minimised by randomising sample treatments within these 

blocks. However, given the limited availability of transgenic animals from similar 

litters, and given that the most significant covariates (e.g. gender, age, 

temperature, humidity, and experimenter) were largely controlled by the 

laboratory settings, blocking was not performed in this experiment. To account for 

covariate effects, samples were re-randomised during key stages of processing 
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(LCM, RNA extraction, and microarray hybridisation). The thinking behind this 

process was to ensure that, when logistics required separation of samples into 

batches for processing, this elicited no significant systematic effect on the 

response of the gene-expression („batch effects‟). However, it is noted that such 

continuous re-randomisation may actually introduce error variability rather than 

reduce it. 

To analyse the differences in transcriptional response to deregulated Myc function 

in the two tissues of interest (skin and pancreas), time courses were set up 

following activation of MycER
TAM

 via 4OHT administration using the pins-

mycER
TAM

 and inv-mycER
TAM

 transgenic models described in Section 1.2. Time 

points considered were 4, 8, 16 and 32 hours following initial activation of the 

MycER
TAM

 protein, with each time point and condition represented by unique 

transgenic animals. These were chosen to allow analysis of early gene-expression 

changes when Myc transactivation is maximal (Wu et al., 1999), and also to allow 

analysis of the gene-expression signature of the two phenotypes at later times 

when transcriptional response had diverged to elicit the ultimate phenotypic 

outcome (unchecked proliferation in the skin, apoptosis in the pancreas).  

To ensure that observed changes in gene-expression were related to Myc-function, 

and not due to a response to stress factors, circadian rhythms, natural cellular 

function, etc., control time courses were set up in parallel, with animals treated 

with their respective vehicle (peanut oil for pancreas, ethanol for skin) as with 

their 4OHT counterparts (Materials and Methods, Section 2.1.3). Vehicle-treated 

(VT) samples acted as direct inactive MycER
TAM

 controls to their active 

MycER
TAM

 counterparts. Direct comparison between the two produced relative 

gene-expression values relating to changes induced by activation of the 

MycER
TAM

 chimeric protein. 

This experimental design represented a complete factorial design across the three 

main experimental factors of: tissue type (skin or pancreas), 4OHT treatment 

(treated or untreated) and time point following initial 4OHT dose (4, 8, 16 or 32 

hours) as illustrated in Figure 2.5.1. This experiment represented 16 unique 

conditions; skin with MycER
TAM 

active (Skin T), skin with MycER
TAM 

inactive 
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(Skin U), pancreas with MycER
TAM

 active (Panc T) and pancreas with MycER
TAM

 

inactive (Panc U), all across four time points.  
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Figure 2.5.1: Experimental design for skin vs. pancreas study 

Cartoon representation of the experimental design for the skin vs. pancreas microarray experiment, 

comparing the transcriptomic response to activation of the MycER
TAM

 chimeric protein of the skin 

and pancreas. 4OHT untreated samples (MycER
TAM

 inactive) acted as direct controls to their 

4OHT treated (MycER
TAM 

active) counterparts. The gene-expression profile represented here is 

merely for illustration, and should not be taken as representative of the data for each condition. 
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2.6 Microarray Data Analysis 

Analysis of microarray data was performed using a combination  of the GS-GX 

gene-expression analysis suite, version 7.3.1 (Agilent Technologies, Santa Clara, 

CA) and the Bioconductor library packages (Version 2.1) in Version 2.6.2 of R 

(Gentleman et al., 2004). 

2.6.1 Normalisation of data 

Sample data were background corrected, normalised and summarised using the 

GC-RMA probe-level normalisation procedure (Section 1.4.2.4Error! Reference 

source not found.). This was chosen due to the increased sensitivity afforded as 

compared to MAS 5.0 (see Figure 1.4.3). To ensure that no tissue bias was 

introduced, pancreas and skin samples were GC-RMA normalised as separate 

experiments, then combined prior to data analysis. The decision to normalise the 

data separately was based on discussions on the Bioconductor discussion forums. 

Summarised replicate data were further processed in GS-GX by normalising each 

of the 4OHT treated samples to the median of their respective controls (e.g. the 

median of the log-signals for the pancreas VT 4 hour samples was subtracted from 

the log-signal of each of the pancreas samples treated for 4 hours with 4OHT; 

Materials and Methods, Section 2.5). Data were further normalised by subtracting 

the normalised data for each probe for each sample by the median across samples.  

Normalised values for each probe set therefore represented the fold change of the 

relevant transcript upon MycER
TAM

-activation. This process served to both 

remove changes in gene-expression that were unrelated to Myc activity (normal 

cellular function, circadian rhythms, stress response to IP injection, etc.), and also 

to assign a specific meaning to the normalised expression values that could be 

instantly understood; namely, the fold-change in response to MycER
TAM

 

activation. 
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2.6.2 Gene curation 

The MOE430 PLUS 2.0 GeneChip contains probe sets measuring the expression 

of a total of 45,101 transcripts (representing ~34,000 genes) from the mouse 

transcriptome. However, it is unlikely that all of these probe sets will show 

significant changes across the experimental conditions since the majority of the 

transcripts will be similarly expressed in all samples. Since the main goal of this 

microarray experiment was to identify genes showing significant differential 

expression between the experimental conditions, gene curation was performed to 

remove probe sets that did not measure interesting changes in gene-expression. 

Curation of the probe set list consisted of the removal of the following probe sets: 

1. Control probe sets 

Affymetrix GeneChips contain a number of control probes (Section 1.4.3.6) 

designed to measure expression changes in housekeeping genes and spike-in 

control transcripts. These should show identical results across samples, and 

were removed from future analyses. Analysis of the signal intensity data for 

these probes was incorporated into the QC analysis (described in Section 

4.2.4), with poor-quality hybridisation resulting in non-comparable signal 

intensity for these probes as compared to other samples within the study. 

2. Absent probe sets 

MAS 5.0 software assigns diagnostic flags to each probe set identifying the 

confidence in the detected signal (Section 1.4.3.1). Probe sets representing 

gene transcripts whose expression was not detected (Absent) in all samples 

were removed from further analyses (based on a comparison of the 

discrimination score 𝑅  against the default detection threshold value of  𝜏 

=  0.015). 
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3. Non-changing probe sets 

Normalised expression values for each condition represent fold-change 

subsequent to treatment. Probe sets representing genes whose expression was 

altered less than 2-fold across all conditions were deemed uninteresting and 

were removed from further analyses. The choice of 2-fold as a threshold was 

arbitrary and was chosen due to convention. 

4. Highly variable probe sets 

To ensure that only significant changes in gene-expression were considered 

(i.e. changes that would not be expected purely due to chance given the 

sample set), probe sets showing high variability across replicates (SD > 1 for 

all but 2 conditions) were removed. 

Curation of the gene lists produced a list of 12,349 probe sets (representing 8,946 

genes) for the experiment which were used in all subsequent analyses. It is noted 

that the removal of genes showing less than 2-fold change may result in the loss 

of potentially interesting genes, particularly since the transcriptional response to 

Myc is typically low (of the order of 2-3-fold change). This filter was included 

due to convention and to ensure that the number of genes to be analysed was kept 

to a managable number, although the use of statistical methods such as Envisage 

may have provided a more objective analysis. Also, the removal of highly variable 

probes may result in removal of probes whose mean signal change is also large, 

and hence may still show significant effects. However, it is noted that the number 

of genes removed due to high variation was low, so this loss of potentially 

interesting genes would have been low. 

2.6.3 Identification of significant differential expression 

The multi-factor nature of this experimental design inspired the creation of the 

gene-expression analysis package Envisage in R (Chapter 3). This package allows 
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analysis for significant differential expression across a number of experimentally-

controlled variables and other sources of variation that may influence the response 

of the gene-expression to the main experimental variables (covariates). This 

allows identification of probe sets representing genes whose transcripts show 

significant response to the three main factors: 

1. 4OHT treatment (Treated or Untreated) 

2. Time after initial 4OHT treatment (4, 8, 16 and 32 hours) 

3. Tissue type (Skin or Pancreas) 

Since the present study was conducted on inbred transgenic mouse lines, between-

sample phenotypic variability was minimal. Animals were housed under 

controlled conditions, limiting environmental effects on gene-expression. Also, a 

great deal of effort was spent ensuring that all possible sources of variation in 

sample processing were reduced or removed (Materials and Methods, Section 

2.5). However, given the wide range in the quality of starting material within this 

study (Section 4.2.2), it was of great interest to observe the effect that the RNA 

quality played on differential gene-expression. Also, given the necessity for 

randomised batching of samples to prevent introducing systematic bias into the 

data set, the severity of the role played by batching variables in determining the 

response in gene-expression was of interest. 

Envisage was used to assess for the effects of the three main factors, whilst 

allowing for the impact of additional covariates for the RNA integrity (RIN), yield 

of 2a-cRNA from the IVT reaction, and RNA extraction batch identifier number 

(batch). It is noted that since sample batching followed a continuous re-

randomisation scheme rather than a blocking scheme (randomising within 

treatment blocks), the impact of the batch on gene-expression response may be 

more difficult to deconvoluted. 

The results for this analysis are presented in Section 3.4.2. Significant lists of 

genes found using Envisage were used in subsequent stages of the analysis. 
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2.6.4 Clustering of gene-expression data 

Genes showing significant differential expression in response to variables of 

interest were clustered to identify possible co-regulation, indicative of functional 

relationships. Quality threshold (QT) clustering (Section 1.5.4) was performed in 

GS-GX, with a minimum cluster size of 14 and minimum correlation 0.9. 

Correlation between expression profiles was calculated using the Pearson cross-

correlation coefficient.  

2.6.5 Gene ontology (GO) classification of gene-expression data 

Standard GO classifications were used to define the role of genes of interest in 

biological processes, cellular components, and molecular function (Schulze-

Kremer, 1997; Schulze-Kremer, 1998; Ashburner et al., 2000). Enrichment of GO 

terms in lists of significantly changing genes was tested using the GO browser in 

GS-GX, and the annaffy (Smith, 2007), mouse4302 and mouse4302cdf (Ting-

Yuan, ChenWei, et al., 2007), annotate (Gentleman, 2007), GOstats (Gentleman 

and Falcon, 2007) and GO (Ting-Yuan, ChenWei, et al., 2007) packages in 

Bioconductor. This allowed identification of interesting biological processes that 

were over-represented within the data set.  
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2.7 Quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR) 

TaqMan qRT-PCR (Section 2.7.4) was performed on original total RNA samples 

to validate gene-expression results for genes of interest. qRT-PCR for skin and 

pancreas 4OHT- and vehicle-treated samples was performed over the three 

replicates for early time-points 4 hrs and 8 hrs, and for the later 32 hrs time-point. 

Given constraints on resources towards the end of the project, the 16 hour time 

point was chosen as the least informative of the four time points and was left out 

of the qRT-PCR validation to allow analysis of a larger number of genes. Due to 

the limited nature of the samples, an amplification step was included to increase 

the abundance of transcripts for the genes of interest. This pre-amplification was 

carried out in a multiplexed reaction to minimise between-assay variability in 

amplification rates (see below). As with the microarray analysis, relative 

quantitative measures of gene-expression upon Myc-activation were calculated by 

comparing 4OHT- and vehicle-treated samples directly for each condition 

(Materials and Methods, Section 2.5). Assays were normalised using the 

endogenous 18s rRNA control probe (Applied Biosystems, Foster City, CA) to 

correct for differences in starting RNA concentrations. 

2.7.1 Reverse transcription of RNA 

20 ng total RNA was reverse transcribed to cDNA using a high-capacity cDNA 

reverse transcription kit (Applied Biosystems, Foster City, CA) specifically 

designed for use with small volumes of RNA such as those collected from laser 

captured tissue. Briefly, 10 μl dilute total RNA (2 ng/μl) was made up in a PCR 

reaction mix with 2 μl 10x RT  (reverse transcription) buffer, 0.8 μl 25x dNTPs 

(100 mM), 2 μl 10x RT random oligo(dT) primers, 1 μl MultiScribe reverse 

transcriptase and 4.2 μl nuclease-free water. PCR cocktails were run on a PTC-
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100 Programmable Thermal Controller (MJ Research, Inc., Waltham, MA) using 

the following program:  

1. 25 °C for 10 mins  

2. 37 °C for 120 mins 

3. 85 °C for 5 secs.  

cDNA was stored at 4 °C for short term storage (up to 24 hours) or at -20 °C for 

long term storage. 

2.7.2 Pooling gene-expression assays 

The 22 TaqMan qRT-PCR gene-expression assays (20x; Applied Biosystems, 

Foster City, CA; Table 2.7.1) were pooled for use in the pre-amplification 

multiplex reactions. The 22 assays were pooled in 1x TE buffer (10 mM Tris-HCl, 

1 mM EDTA, pH 7.5) such that each individual assay in the pool was at a final 

concentration of 0.2x. e.g. 5 μl of each 20x assay were pooled and made up with 

390 μl TE buffer to a final volume of 500 μl).  

2.7.3 Pre-amplification of cDNA 

cDNA transcripts were pre-amplified prior to the qRT-PCR reaction by preparing 

multiplexed amplification cocktails for each sample consisting of 25 μl 2x 

TaqMan preAmp mastermix (Applied Biosystems, Foster City, CA), 12.5 μl 

pooled TaqMan qRT-PCR gene-expression assays (see above), 7.5 μl nuclease-

free water, and 5 μl cDNA sample. Pre-amplification cocktail was run on a 

thermal cycler using the following program: 
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1. Hold at 95 °C for 10 mins 

2. 14 cycles of 95 °C for 15 secs (denature) and 60 °C for 4 mins 

(anneal/extension) 

Pre-amplified cDNA samples were diluted 1:20 in 1x TE buffer and stored at -20 

°C prior to use.  

2.7.4 qRT-PCR 

A PCR reaction was set up on a 96-well PCR plate. For each well, the PCR master 

mix consisted of 25 μl TaqMan 2x gene-expression Master Mix, 12.5 μl diluted 

pre-amplified cDNA sample, 10 μl nuclease-free water, and 2.5 μl TaqMan qRT-

PCR gene-expression assay or 18S rRNA control. Individual gene-expression 

assays, 18s rRNA endogenous positive control probe (Applied Biosystems, Foster 

City, CA) and water negative control were run in triplicate wells. qRT-PCR was 

performed using an ABI Prism 7000 scanner (Applied Biosystems, Foster City, 

CA), using the following program: 

1. Hold for 2 mins at 50 °C for activation of Uracil-DNA glycosylase  

2. Hold for 10 mins at 95 °C for activation of AmpliTaq Gold enzyme 

3. 40 cycles of 95 °C for 15 secs (denature) and 60 °C for 1 min 

(anneal/extension) 
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Table 2.7.1: Gene-expression assays for quantitative real-time qRT-PCR. 

Gene Assay Catalogue Number Product Code Amplicon Length 

18s rRNA 4319413E NA 187 

akt1 4331182 Mm00437443_m1 76 

atr 4351372 Mm01223637_m1 132 

ccna2 4331182 Mm00438064_m1 90 

ccnb1 4331182 Mm00838401_g1 122 

ccnd1 4331182 Mm00432359_m1 58 

ccnd2 4331182 Mm00438071_m1 70 

ccne1 4331182 Mm00432367_m1 63 

ccne2 4331182 Mm00438077_m1 88 

cdc2a 4331182 Mm00772471_m1 75 

cdk4 4331182 Mm00726334_s1 54 

cdkn1a 4331182 Mm00432448_m1 96 

cdkn1b 4331182 Mm00438168_m1 81 

cdkn2a 4331182 Mm00494449_m1 55 

cdkn2b 4331182 Mm00483241_m1 112 

cdkn2c 4331182 Mm00483243_m1 85 

chk1 4331182 Mm00432485_m1 130 

chk2 4331182 Mm00443844_m1 74 

cycs 4351372 Mm01621044_g1 144 

endog 4331182 Mm00468248_m1 104 

fas 4331182 Mm00433237_m1 107 

igf1 4331182 Mm00439561_m1 69 

igf1r 4331182 Mm00802831_m1 106 
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2.7.5 Analysis of qRT-PCR data 

As described in Section 1.5.5, the threshold cycle CT is the (fractional) cycle at 

which a significant exponential amplification is detected above background 

signal. A smaller CT value indicates higher transcript abundance in the original 

RNA sample. The CT value can be used to compute an absolute quantitative value 

for transcript abundance using a previously calculated standard curve of known 

concentrations, or can be compared between samples to calculate relative 

abundance between two samples. Given the design of the experiment, relative 

quantitation was used to determine the change in gene-expression following 

MycER
TAM

 activation for both tissues across the time points. The CT value for 

each transcript (averaged over all replicate wells) was compared to the CT value of 

the endogenous control 18S rRNA (which should be equally expressed in all cells) 

to normalise all values to a common reference: 

 
∆𝐶𝑇 (𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 ) =   𝑚𝑒𝑎𝑛(𝐶𝑇  𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡  ) − 𝑚𝑒𝑎𝑛(𝐶𝑇  18𝑠 𝑟𝑅𝑁𝐴 ) 

2-1 

The change in expression of a particular transcript at each time point and for each 

tissue type was calculated by comparing the Δ𝐶𝑇 values across the experimental 

conditions: 

 ∆Δ𝐶𝑇 =   Δ𝐶𝑇  𝑀𝑦𝑐𝐸𝑅𝑇𝐴𝑀  𝐴𝑐𝑡𝑖𝑣𝑒  −  Δ𝐶𝑇  𝑀𝑦𝑐𝐸𝑅𝑇𝐴𝑀  𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒   2-2 

2.7.6 Confirmation of uniformity for qRT-PCR pre-amplification 

To ensure the efficacy of the pre-amplification reaction, and to confirm uniform 

amplification across all multiplexed gene-expression assays, qRT-PCR of non-

limited high quality pancreas RNA (𝑅𝐼𝑁 ≅ 8; kindly supplied by Luxian Zhou) 

was compared to qRT-PCR of dilute non-limited high quality RNA (1:500) 
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incorporating a pre-amplification step as described for all target genes considered. 

Δ𝐶𝑇 values were calculated for each transcript for the two conditions (each run in 

triplicate), and ΔΔ𝐶𝑇 values for each transcript were calculated as: 

 
∆∆𝐶𝑇 =  ∆𝐶𝑇  𝑃𝑟𝑒−𝑎𝑚𝑝  − ∆𝐶𝑇  𝑁𝑜 𝑝𝑟𝑒 −𝑎𝑚𝑝   2-3 

The results of these calculations are shown in Table 2.7.2. Assays showing 

|ΔΔCT|  >  1.5  (highlighted in red) were considered to show non-uniform 

amplification and were not used in the multiplexed gene-expression assay pool. 

Gene-expression assays for ccne1 (ΔΔ𝐶𝑇 = −2.921), cdkn2b (p15
Ink4b

; ΔΔ𝐶𝑇 =

2.144) and chk1 (ΔΔ𝐶𝑇 = −7.799 ) were found to amplify in a non-uniform 

manner and were thus not included in the multiplexed pre-qRT-PCR amplification 

reaction. The gene-expression assay for ccnd2 (ΔΔ𝐶𝑇 = 1.556) was borderline 

with a threshold value of ΔΔ𝐶𝑇 = ±1.5, so it was decided to include this in the 

assay pool. Amplification uniformity was not confirmed for skin RNA due to 

budgetary constraints. Uniformity was assumed to be similar for both pancreas- 

and skin-derived RNA. 
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Table 2.7.2: Confirmation of uniformity for multiplexed pre-amplification qRT-PCR assay 

 

Non-Preamplified RNA Preamplified RNA 

 Gene assay Average 𝑪𝑻 𝚫𝑪𝑻  Average 𝑪𝑻 𝚫𝑪𝑻 𝚫𝚫𝑪𝑻  

18S rRNA 27.920 NA 21.019 NA NA 

akt1 34.892 6.972 27.493 6.474 0.498 

atr 37.873 9.953 32.221 11.202 -1.249 

ccna2 38.426 10.506 31.432 10.413 0.093 

ccnb1 37.139 9.219 31.378 10.359 -1.140 

ccnd1 35.773 7.853 28.366 7.347 0.506 

ccnd2 35.661 7.741 27.204 6.185 1.556 

ccne1 37.492 9.572 33.512 12.493 -2.921 

ccne2 37.394 9.474 30.869 9.850 -0.376 

cdc2a 38.294 10.374 30.414 9.395 0.979 

cdk4 34.113 6.193 25.929 4.910 1.283 

cdkn1a 35.153 7.233 27.236 6.217 1.016 

cdkn1b 35.994 8.074 27.817 6.798 1.276 

cdkn2a 40.000 12.080 34.217 13.198 -1.118 

cdkn2b 38.083 10.163 29.038 8.019 2.144 

cdkn2c 35.744 7.824 27.759 6.740 1.084 

chk1 39.102 11.182 40.000 18.981 -7.799 

chk2 35.736 7.816 28.676 7.657 0.159 

cycs 35.697 7.777 28.122 7.103 0.674 

endog 36.948 9.028 29.011 7.992 1.036 

fas 35.858 7.938 30.174 9.155 -1.217 

igf1 34.804 6.884 28.218 7.199 -0.315 

igf1r 38.454 10.534 31.053 10.034 0.500 
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2.8 Immunohistochemical staining of tissue 

2.8.1 Haematoxylin & Eosin staining 

Frozen OCT-embedded tissue sections were cut to 10 μm using a Bright 5040 

cryostat (Jencons Scientific, Bridgeville, PA) and sequentially washed in 

Haematoxylin solution (Surgipath, Richmond, IL) for 135 secs, tap water for 45 

secs, acid alcohol solution (70 % ethanol, 0.5 % HCl) for 45 secs, tap water for 45 

secs, Scott‟s solution (40 g MgSO4, 7 g NaHCO3 and Thymol crystals in 2 L tap 

water), 1 % aqueous Eosin solution (VWR International Ltd., Leicestershire, 

England) for 135 secs and tap water for 45 secs. Sections were dried by sequential 

washing in 5 ethanol solutions graded from 50 % to 100 % for 1 min each, and 

finally washed in two changes of xylene for 1 min each. Sections were mounted 

immediately in p-xylene-bis-pyridinium bromide (DPX) mounting medium (Agar 

Scientific Ltd., Essex, England) and viewed using an Axiostar Plus light 

microscope (Zeis, Oberkochen, Germany). Images were captured using a 

Powershot G5 digital camera (Canon, Tokyo, Japan). 

2.8.2 Immunohistological staining 

Tissue sections were stained for proliferating cells using antibodies for the cell 

cycle marker Ki67 (rabbit; Novocastra, UK), apoptotic cells using antibodies for 

the executioner Caspase 3 (rabbit; Cell Signalling Technology, Inc., Boston, MA), 

β-cells using antibodies for the β-cell-specific Insulin hormone (guinea pig; 

DAKO, Glostrup, Denmark), and suprabasal keratinocytes using antibodies for 

the suprabasal-specific Keratin 1 (rabbit; BabCo, Berkeley, CA). Fluorescently 

labelled secondary antibodies were chosen to match the species in which primary 

antibodies were raised (Fluorescein Isothiocyanate (FITC) anti-rabbit, Vektor Co., 

http://en.wikipedia.org/wiki/Oberkochen
http://en.wikipedia.org/wiki/Germany
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Germany; ALEXA 633 anti-guinea pig, Invitrogen, Carlsbad, CA; ALEXA 633 

anti-rabbit, Invitrogen, Carlsbad, CA). 

Frozen OCT-embedded tissue sections were cut to 10 μm with 3 sections per glass 

slide using a Bright 5040 cryostat (Jencons Scientific, Bridgeville, PA). Frozen 

sections were fixed with 4 % paraformaldehyde (PFA) at RT for 10 mins, washed 

in PBS for 5 mins, and incubated at RT in a humidifying temperature for 30 mins 

in 10 % BSA. Antibody staining was then performed as described below.  

2.8.2.1 Pancreas tissue 

Pancreas tissue sections were double stained for Ki67 and Insulin, or Caspase 3 

and Insulin. Sections were incubated at 4 °C overnight in primary antibodies 

diluted in 1 % BSA (Insulin, 1:100; Ki67, 1:200; Caspase 3, 1:200). One section 

on each slide was treated as a negative control and was incubated with 1 % BSA 

only (no primary antibody). Sections were washed twice in PBS with 0.1 % tween 

(PBSt) for 5 mins each and incubated for 30 mins at RT in a humidifying chamber 

with secondary antibodies diluted in 1 % BSA (1:200). Finally, samples were 

washed in two changes of PBSt for 5 mins each. Slides were mounted in 

Vectashield (Vector Labs, Burlingame, CA) mounting medium containing 4',6-

diamidino-2-phenylindole (DAPI) and viewed using a Leica Sp2 confocal 

microscope (Leica, Wetzlar, Germany).  

2.8.2.2 Skin tissue 

Skin tissue sections were sequentially stained for Keratin 1 and Ki67, or Keratin 1 

and Caspase 3. Sections were incubated for 1 hour in Ki67 or Caspase 3 primary 

antibodies diluted in 1 % BSA (1:200). One section on each slide was treated as a 

negative control and was incubated with 1 % BSA only (no primary antibody). 

Sections were washed twice with PBSt for 5 mins each and incubated for 30 mins 

at RT in a humidifying chamber with FITC anti-rabbit secondary antibodies 

diluted in 1 % BSA (1:200). Finally, samples were washed in two changes of 
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PBSt for 5 mins each. This cycle was repeated using Keratin 1 primary antibodies 

diluted in 1 % BSA (1:100) and ALEXA633 anti-rabbit secondary antibodies 

diluted in 1 % BSA (1:200). Slides were mounted in Vectashield (Vector Labs, 

Burlingame, CA) mounting medium containing 4',6-diamidino-2-phenylindole 

(DAPI) and viewed using a Leica Sp2 confocal microscope (Leica, Wetzlar, 

Germany).  
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Chapter 3 Envisage: Significance Analysis of 

Microarray Data Using Linear Models 

3.1 Introduction 

Standard procedures for the analysis of microarray data, along with considerations 

for experimental design, were previously discussed in Section 1.5. Microarray 

analysis is often used to identify candidate genes showing significant differential 

expression between two or more biological conditions. There are two types of 

variation that may elicit a response in gene-expression that must be considered; 

variation fixed by the experimenter (typically known as explanatory variables or 

factors, but henceforth termed parameters to follow the conventions of GS-GX) 

and further sources of variation that may influence the relationship between the 

gene-expression and experiment parameters (which may be expressed as blocking 

factors or as continuous covariates).  

Described in this chapter is an analysis package designed to allow researchers to 

identify the effects (if any) that such covariates may elicit on the expression of 

genes in a microarray experiment, allowing biological context to be taken into 

account. Whilst methods such as ANOVA, ANCOVA and regression analysis are 

available in many existing Bioconductor packages for the analysis of microarray 

data, Envisage provides a simple approach (particularly for non-statisticians) to 

the analysis of experiments where covariate effects are not well controlled. This 

method is particularly important in clinical experiments, where many such sources 

of variation between samples exist (e.g. differences in phenotype, environmental 

factors, and technical variation in sample processing). In this way, researchers can 

ensure that changes in gene-expression found in the analysis are a product of the 

effects of the parameter variable under consideration 
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3.2 Envisage 

Envisage (Robson, S., Turner, H., Brown, H., Hunter, E., paper in preparation) 

was developed as a package in R (Ihaka and Gentleman, 1996), utilising the 

extensive bioinformatics packages of Bioconductor (Gentleman et al., 2004), 

allowing significance analysis of gene-expression data across a broad range of 

experimental variables. These can include experimental parameters (e.g. drug 

treatment, disease state, time, etc.), phenotypic covariates (e.g. gender, age, 

weight, etc.), environmental covariates (e.g. temperature, humidity, light levels, 

etc.) and nuisance covariates (such as batch effects). Typically, such covariate 

terms are controlled by designing them into the experimental design through the 

use of block designs, ensuring that treatments are applied to blocks of samples 

with similar covariate effects. In this way, the effects of nuisance variables are 

made to be orthogonal to the effects of treatments, allowing these to be separated. 

The development of Envisage was largely influenced by the need to account for 

covariate terms that cannot easily be designed into the experiment structure. In 

particular, Envisage is well suited for the analysis of clinical studies, where 

between-sample variation is largely high due to differences in age, gender, weight, 

methods of sample processing, geographical location, etc., which cannot easily be 

designed into the experiment.  

Such unwarranted variation must be accounted for to draw accurate biological 

conclusions from the analysis of gene-expression data. The most important aspect 

of the technique employed by Envisage is its ability to mine genes that show 

significant differential expression across the conditions of experimentally varied 

parameters, whilst also taking into account and correcting for effects on the gene-

expression that are attributable to further sources of variation within the 

experiment. In this way, the biological context of the samples can be taken into 

account. By considering all variables in the analysis and not just those fixed by 

the experimenter, significant effects on gene-expression may be found for 

unexpected variables.  
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As well as offering a further level of insight into the biological context of the 

system of interest, this method also provides a way of ensuring that superfluous 

variables do not convey any undue significance to the observed changes in gene-

expression. For instance, in Section 1.5.1.1, the need for randomisation of samples 

to avoid the introduction of systematic errors in sample processing was discussed. 

By recording some batch identifier number for each sample during sample 

processing, this information can be included as a categorical covariate in the linear 

model to allow observation of the effect (if any) that batching samples has on the 

overall data. For instance, one batch of samples may accidentally be treated with 

twice the volume of reagents, resulting in those samples appearing to be more 

correlated with one another than with samples from other batches. 

This technique can thus be used in several ways: 

1. As an exploratory tool to find experimental parameters and covariates that 

elicit a significant effect on the expression of genes 

2. As a quality control tool to ensure that batch effects and other such 

nuisance covariates have no detrimental effect on gene-expression data 

3. As a tool for the detection of significantly changing gene-expression 

across variables of interest  

Linear models have been utilised previously in microarray data analysis 

algorithms, most notably within the limma Bioconductor package (Smyth, 2004; 

Smyth, 2005). Envisage differs from this method by focusing on identifying and 

correcting for unwanted variation in the data set, which may have been introduced 

due to the experimental design. Matsui et al. (2007) describe a similar multi-

variable linear modelling algorithm, designed to allow the inclusion of between-

sample phenotypic characteristics as factors into the analysis for clinical studies. 

However, this method requires variables to be categorical factors, which fails to 

consider many sources of variation within clinical studies that may be numerical 

in nature. Envisage allows users to include both numerical and factorial 

explanatory variables into the model, ensuring that variables relating to 

environment, phenotype, and technical aspects of the experiment are included in 

the analysis. Superfluous sources of error can thus be detected and corrected for, 
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allowing users to draw their conclusions within the context of the biological 

system under analysis. 
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3.3 The Envisage package 

3.3.1 Introduction 

Envisage is a package written in R version 2.6.2 (Robson et al., manuscript in 

preparation). It is available from the author‟s website 
2
 and is soon to be submitted 

to version 2.2 of Bioconductor. A Tcl/Tk front-end GUI interface, produced using 

the widgets available through the tcltk Bioconductor package in R (Dalgaard, 

2001), was implemented to ensure ease of use, particularly for non-statisticians 

(Figure 3.3.1). This allows users to specify which of the variables defined within 

their data set are required for analysis, and what type of data they contain 

(categorical or numerical). Further arguments, such as the p-value cutoff for 

significance (default 𝑝 = 0.05), the MTC to be used (default = Benjamini & 

Hochberg; Section 1.5.3.4) and whether or not to include interaction terms in the 

analysis, can also be specified. Currently Envisage supports the analysis of only 

first-order interaction terms, although it is hoped that higher order interaction 

terms will be supported in the future. Envisage also allows users to specify a 

minimal model to be used when fitting a candidate model to the genes. This 

allows the specification of terms that the user may consider to be of practical 

importance – for instance, one may wish to ensure that the term for the drug 

treatment is always included, since that is the most interesting of the variables 

under consideration. In particular, for designed experiments this allows the 

inclusion into the model selection process of treatment and block terms that were 

included in the experimental design. Arguments can also be defined by using the 

command line interface of R, although care must be taken to ensure that variable 

information (particularly class definition) is expressed correctly. 

                                                 

2 http://www2.warwick.ac.uk/fac/sci/moac/currentstudents/2003/sam_robson/linear_models/downloads/ 
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Envisage was developed in close collaboration with Agilent Technologies, and 

was designed to integrate with the GS-GX gene-expression analysis suite. 

Envisage is best suited for 1-colour microarray data, although can also be used to 

analyse 2-colour microarray data with a reference-based design. While the present 

discussion focuses primarily on gene-expression analysis, this technique can be 

equally well applied to other high-throughput sources of biological data (such as 

mass spectroscopic results and data from methylation-based analyses and 

comparative genomic hybridisation studies).  

Input data for gene-expression analyses consist of normalised, curated, log-

transformed gene-expression data from either 1-colour (log-intensity values) or 2-

colour (log-ratio values) microarray experiments. Such data are stored, together 

with information on experimental variables and other important experiment data 

(e.g. MIAME-compliant information; Section 1.5.1.6), in the form of an object of 

class ExpressionSet in R. This object can be created by the user directly by using 

the packages available from Bioconductor, or can be created automatically from 

the user‟s experiment interpretation in the gene-expression analysis suite GS-GX 

by using the GeneSpring Bioconductor package and external program interface 

(de Boer, 2007).  

Results are output as tab delimited text files containing gene lists of significantly 

changing genes for each variable and interaction in the analysis. Output lists can 

be annotated and analysed further using a variety of Bioconductor packages, or 

can be imported into any suitable software suite, such as GS-GX. The modelling 

procedure utilised by Envisage is based on the linear model described in Section 

1.5.3.3, and is outlined in the following section.   
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Figure 3.3.1: The Envisage graphical user interface. 

Arguments for the Envisage package can be specified through a simple to use graphical user 

interface to avoid errors in data entry. This widget allows users to specify; A) the variables to use 

in the modelling procedure and their respective classes (categorical or numerical), B) the file 

location for the output gene lists to be saved to, C) the multiple testing correction to use, D) 

whether to include interactions or just model main effect terms, E) a minimum model to force 

terms into the overall model, F) the threshold value for the significance p-value. 
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3.3.2 Model selection 

Linear models and their use in gene-expression analysis are discussed in Section 

1.5.3.3. For analysis using Envisage, a candidate linear model is selected for each 

gene by first considering the saturated model, defined in Equation 1-14, which 

contains all available variable terms and their first order interactions as model 

terms. A candidate model is then selected by removing terms that are not found to 

provide a notable increase in the explanatory power of the model. An automated 

stepwise process is used to compare the explanatory power of the model with and 

without a particular term – if the term confers no additional explanatory power, it 

is deemed unnecessary and is removed. This is performed by sequential use of the 

functions add1() and drop1(), which compute the model terms that can be added 

to or subtracted from the model (ensuring that model hierarchy is respected such 

that interactions are only included for main effect terms already included in the 

model, and main effect terms contained within an interaction term are not 

removed). Removed terms are then considered for addition back into the model. 

This process is iterated until a candidate model containing only those terms of 

practical importance is found.  

The criterion used for keeping or removing a term from the model is the Akaike 

information criterion (AIC) (Akaike, 1974). In the case of least squares estimation 

with normally distributed errors, the AIC can be described as: 

 𝐴𝐼𝐶 = 𝑛 ln  
𝑅𝑆𝑆

𝑛
 + 2𝑘 

3-1 

where 𝑘 represents the number of variables in the fitted model, n is the number of 

observations and RSS is the residual sum of squares for the model as previously 

described. The first term in this equation gives an estimate of the goodness of fit 

of the model, with a lower value indicating a model with improved explanatory 

power. As additional terms are added to the model, the additional information 

available will inevitably improve the fit to some extent. However, if the 
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improvement in fit brought about by the addition of a term is only small, we may 

prefer to leave the term out for the sake of parsimony. Thus the second term acts 

to penalise models with higher numbers of free variables. A model with a lower 

AIC is preferred to a model with a higher AIC, and any change to the model must 

reduce the deviance by at least 2 in order for the AIC to decrease. This limits the 

number of terms in the model, and ensures that only terms of practical importance 

are considered for addition. The AIC was chosen since it is a well established 

criterion for model selection, and allows automation of the model selection 

procedure, which is essential given the large number of genes considered. 

3.3.3 Significance analysis 

For each gene, a candidate model is fitted to the data containing only those terms 

found to confer some improvement to the model fit. This model selection 

procedure was chosen, as opposed to fitting all model terms to each gene in a 

saturated model (as with ANOVA), to account for per-gene variability in the 

effects of the treatment and covariate terms (Jin et al., 2001; Wolfinger et al., 

2001; Smyth, 2004).  

Fitted model terms may be main effects or interaction terms up to the first order 

(the inclusion of higher order interaction terms may be included at a later date to 

account for joint effects for multiple experimental variables). To analyse the 

statistical significance of the role that each of these terms plays on the expression 

of the gene of interest, an F-test statistic (Equation 1-18) is calculated to compare 

the fit of the selected model to the fit of the model with the term of interest 

removed. This is repeated for all model terms in the selected model for each gene 

to calculate a series of significance p-values, which can be used to identify terms 

that play a significant role in the final model. Since the model-selection process 

may result in only a subset of the overall model terms being selected for inclusion 

in the model for each gene, some genes will have no associated p-value for these 
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excluded terms, and the matrix of p-values will contain a number of NA values. 

This can make it more difficult to screen or order the genes against the treatment 

effects.  

These values are compared to some user defined threshold value to discern 

variables that elicit a significant response in the expression of the gene. By 

performing this analysis over all genes, lists of genes whose expression is 

significantly affected by each of the model terms is produced. These lists can be 

used to identify candidate genes whose expression varies in response to particular 

experiment variables. 

Envisage utilises a Type II SS in its model fitting procedure, which is more 

powerful when looking at unbalanced experiment designs since it is not reliant on 

constraints on the parameters (Langsrud, 2003). Use of a Type II SS prevents 

significance analyses from being dependent on the order of the terms within the 

model, which allows for automation of the process. The SS calculation is 

implemented through the package car in R (Fox, 2002). 

3.3.4 Multiple testing correction 

The problem of multiple hypothesis testing is described in Section 1.5.3.4. FWER 

and FDR multiple testing corrections are implemented in Envisage through the 

multtest package in R (Pollard et al.). However, since the matrix of p-values 

contains missing values due to the model fitting procedure, there may be some 

bias in the multiple testing procedures due to the variable number of non-missing 

p-values for each model term. This means that p-values for model terms found to 

have a significant effect for only a small number of genes may be overly down-

weighted by the applied MTC.  
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3.3.5 Model aliasing 

The structure of the gene-expression data set used to fit the model may cause 

adverse effects on the modelling procedure. If the experiment is not designed 

carefully, aliasing may occur between variables such that they become 

indistinguishable. Aliasing may occur for one of two reasons: 

1. Extrinsic aliasing is due to the structure of the data such that there is no 

relevant data for a particular interaction group (e.g. there are no diseased 

patients in a particular age group, so the effects for the interaction 

diseased:age cannot be estimated). 

2. Intrinsic aliasing is due to the relationship between model terms such that 

particular effects cannot be separated adequately (e.g. all diseased 

individuals in a particular age group also have the same blood group. In 

this case we cannot separate the effects of the interactions diseased:age 

and diseased:blood). 

Extrinsic aliasing will generally occur due to the use of an unbalanced data set, 

but will not cause a problem with the significance calculations. Intrinsic aliasing is 

indicative of correlation between explanatory variables, so the model will fit one 

variable and then try to fit the same information again with the second variable. 

This may then pose a problem since the significance results will depend on the 

order in which the terms are fitted. 

If the data used for model fitting is not adequate to fit the required effects, aliasing 

will be detected and output is provided to the user in the form of a list of aliased 

terms for affected genes. This allows the user to identify variables that may be 

showing high correlation. This may require that the user reformulate the data set 

to remove inter-dependencies between the variables, or may require that fewer 

terms are included in the model fitting procedure.  
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3.4 Results 

Envisage was run on curated gene lists, as described in Materials and Methods, 

Section 2.6.2. Samples were normalised using GC-RMA (Section 1.4.2.4) and 

experiment interpretations were set up as described in Materials and Methods, 

Section 2.5, using GS-GX. Envisage was run using the GS-GX/R external 

program interface to transfer experiment interpretations into R 2.6.2 in the form of 

an object of class ExpressionSet. Analyses were first performed using main 

experiment parameters only for comparison with standard ANOVA analyses 

(Section 3.4.1), followed by a complete analysis considering experiment 

parameters together with further covariates. This allowed observation of the 

effects (if any) of variables such as RNA quality and batching on the resulting 

change in gene-expression (Section 3.4.2). All analyses were corrected for 

multiple testing using the Benjamini and Hochberg FDR correction (Benjamini 

and Hochberg, 1995), and significance was determined using a p-value threshold 

of 𝑝 = 0.05. All analyses were performed using a Toshiba Satellite S2450-201 

laptop under Windows XP (Microsoft, Redmond, WA) with a Pentium 4 (Intel, 

Santa Clara, CA) 2.40 GHz CPU and 2 GB RAM. 

3.4.1 Comparison with ANOVA 

As described in Section 1.5.3.2, ANOVA is often used to identify genes whose 

expression shows significant change based on variables of interest using a Type I 

SS F-test. Whilst ANOVA is by no means the best method for determining 

significance of gene-expression, it is a well established method implemented 

within GS-GX that provides a simple comparison for establishing the validity of 

the Envisage modelling procedure. In particular, ANOVA is well suited for the 

analysis of balanced factorial designed experiments where the effects of 

treatments are independent and orthogonal. 
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As a first test for Envisage, results were compared to those seen using standard 

ANOVA Type I SS. As described in Materials and Methods, Section 2.5, the 

experiment design was a balanced factorial design across the 3 main parameters; 

4OHT-treatment („4OHT‟), tissue type („Tissue‟), and time following MycER
TAM

 

activation („Time‟). A 3-way ANOVA model, consisting of the 3 main effect 

variable terms and their interactions, was fitted to the data and an F-test statistic, 

utilising a Type I SS, was used to identify significantly changing genes for each 

term. These results were compared to a similar analysis, fitting the main effect and 

interaction terms using the Envisage modelling procedure. Note that for this 

comparison, the Envisage package was modified specifically to allow inclusion of 

the higher order 3-way interaction term, 4OHT:Tissue:Time. However, as 

described in Section 4.2.5, quality control analysis of the microarray data 

identified seven samples with poor hybridisation which were removed from the 

final data set. For this reason, the data set considered for this comparison was not 

balanced, and hence we would expect the choice of the SS method (Type I for 

ANOVA, Type II for Envisage) to have an effect on the resulting F-ratio estimates 

for the model terms, resulting in potentially different results between the two 

analyses. 

The sizes of the gene lists resulting from the Envisage analysis for each model 

term (main effect and interaction terms) are shown in Table 3.4.1. Also shown are 

the comparative results for the 3-way ANOVA analysis on the three main 

parameters and their interactions. It was clear from this comparison that, whilst 

not identical, there was a high level of concordance of the results of the Envisage 

analysis with those from ANOVA, with almost all genes deemed to be significant 

at a given confidence level by Envisage also deemed significant by ANOVA (> 

90 % at 𝑝 = 0.05).   
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Table 3.4.1: Comparison of significance analysis using Envisage and ANOVA. 

 No. Genes 

ANOVA 

No. Genes 

Envisage 

Intersect of Envisage 

and ANOVA 

Main Effect Terms    

4OHT Treatment 5346 5296 5111 

Tissue 3850 3851 3458 

Time 4830 4883 4664 

Interaction Terms    

4OHT:Tissue 4013 4088 3736 

4OHT:Time 5063 4984 4809 

Tissue:Time 5666 5666 5666 

4OHT:Tissue:Time 5788 5788 5788 
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In general, the discrepancy between the two methods resulted in genes that fell 

just within the p-value threshold for one method, but which were assigned a p-

value just above the threshold for the other. Genes found significant by Envisage 

but not by ANOVA showed average p-values of 𝑝 = 0.07 ± 0.03  for the 

ANOVA analysis, whilst genes found significant by ANOVA but not by Envisage 

showed average p-values of 𝑝 = 0.08 ± 0.03  for the Envisage analysis. This 

indicated that many of these outlying genes showed p-values very close to the 

threshold value of 𝑝 = 0.05. 

It was also possible that the process of selecting an individual model for each gene 

may have resulted in removal of terms from the model at the selection stage that 

may have, nevertheless, been statistically significant. The model fitting procedure 

results in the selection of practically significant terms, and significant terms that 

offered no additional benefit to the selected model given the terms already 

included may not have been included. On the other hand, ANOVA included all 

terms in a saturated model for all genes. Envisage allows users to specify a 

minimal model for analysis, allowing terms to be „forced‟ into the selected model. 

It was therefore decided to observe the effects of specifying a saturated model as 

the minimal model, forcing the saturated model to be fitted for all genes, making 

the procedure more comparable with ANOVA.  

The results of this analysis are shown in Table 3.4.2. It appeared that fitting a 

saturated model to all genes using the Envisage modelling procedure did little to 

improve comparability with the ANOVA results, and in fact in some instances the 

number of significant genes was actually reduced. This was likely due to the fact 

that the presence of the additional terms of the saturated model, as compared to 

the model selected by the stepwise regression, reduced the significance of those 

terms added in the model fitting procedure. For many genes, the inclusion of 

additional terms in the fitted model may have affected the calculated SS, resulting 

in slightly modified p-values for each term. In fact, genes that differed between 

Envisage when a saturated model was fitted, and Envisage when no model was 

specified, showed an average p-value of 𝑝 = 0.06 ± 0.01, indicating that these 

genes showed p-values very close to the threshold value of 0.05. For these genes, 
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fitting a saturated model resulted in an increase in the p-value for some terms 

above the threshold value, resulting in it being excluded from the resulting gene 

list.   
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Table 3.4.2: Comparison of significance analysis using ANOVA and using Envisage with a 

saturated minimal model. 

 No. Genes ANOVA No. Genes Envisage Intersect of Envisage 

and ANOVA 

Main Effect Terms    

4OHT Treatment 5346 5249 5089 

Tissue 3850 3804 3436 

Time 4830 4811 4652 

Interaction Terms    

4OHT:Tissue 4013 4040 3721 

4OHT:Time 5063 4897 4784 

Tissue:Time 5666 5666 5666 

4OHT:Tissue:Time 5788 5788 5788 



184 

 

  



185 

 

Figure 3.4.1 shows a comparison of the p-value assignments for each gene 

between ANOVA and Envisage for each of the 3-way model terms. To ensure that 

p-value estimates were obtained for all genes and for all terms to allow direct 

comparison, ANOVA results were compared to those of fitting Envisage with a 

saturated model as described above. In general, p-value assignments were 

comparable between the two procedures, as can be seen by the close 

approximation to the identity line and the high Pearson correlation coefficient 

between the two (r > 0.863 for all terms).  

It is interesting to note the close similarity between the two methods for all terms 

including the „Time‟ variable, in particular for the interaction terms 

„4OHT:Tissue:Time‟ and „Tissue:Time‟. However, it is worth noting that 

treatment of Time as a categorical variable may not be an accurate representation 

of the data set as it fails to take into account the dependent nature of the variable.  

Points on the graphs are coloured dependent on the p-value for each method (see 

figure caption). This allows the discrimination of genes whose significance is 

determined differentially between the two procedures. It appears from these 

images that the number of genes shown to be significant using ANOVA but not 

with Envisage (blue) is larger than those shown to be significant using Envisage 

but not with ANOVA (red). It is unclear as to the precise reason behind this, but it 

may indicate a higher number of false positive calls for ANOVA than for 

Envisage due to the use of a saturated model for all genes.  
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Figure 3.4.1: Comparison of p-values for significance analysis of gene-expression using 

ANOVA and Envisage 

A 3-way analysis was performed across the 3 main experimental parameters of 4OHT treatment 

(„4OHT‟), tissue type („Tissue‟), and time following MycER
TAM

 activation („Time‟), using 

ANOVA and Envisage with a saturated model specified. In general, the concordance between the 

two procedures was high, with Pearson correlations > 0.8 for all main effect and interaction terms. 

Yellow points indicate genes showing a p-value < 0.05 for both Envisage and ANOVA, blue 

points indicate genes showing a p-value < 0.05 for ANOVA but not for Envisage, red points 

indicate genes showing a p-value < 0.05 for Envisage but not for ANOVA, and black points 

indicate genes showing a p-value > 0.05 for both ANOVA and Envisage. 
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3.4.2 Analysis with inclusion of covariates 

The previous section shows that the modelling procedure used by Envisage 

produces results comparable to those using a simple ANOVA-based Type I SS 

analysis. However, the inclusion of covariate information into the analysis, such 

as by using an ANCOVA model structure, is necessary to encompass additional 

sources of variation which may illicit some effect on the main variables of the 

study. This is particularly true of poorly-designed experiments and clinical studies 

where confounding variation is difficult to avoid. One of the key features of 

Envisage is the ability to include numerical variables into the modelling procedure 

using a step-wise approach, allowing analysis of experiments were such variables 

have not been designed into the structure of the experimental design. By including 

all observed sources of variation into the test for significance, a more accurate 

model of the biology of the system can be estimated. 

Much of the variation typically seen in microarray experiments was minimised in 

these studies, as described in Materials and Methods, Section 2.5. One of the main 

points is that, since gene-expression studies were carried out on age- and gender-

controlled inbred transgenic mice housed under environmentally controlled 

conditions, animal-to-animal genetic variation was greatly reduced. Thus 

physiological and environmental variables were generally highly comparable 

across samples. However, there were two main sources of variation in sample 

processing that should be accounted for during analyses; the quality of the starting 

RNA material, and batching effects. 

As described in Sections 4.2.2.3 and 4.2.3.2, RNA integrity and resulting yield of 

2a-cRNA (respectively) were variable across the experiment. RNA integrity is a 

measure of the level of degradation of RNA species prior to processing which, as 

described in Section 1.5.1.5, can have a detrimental effect on resulting data. Also, 

whilst the concentration of 2a-cRNA was adjusted to a constant level across all 

samples prior to hybridisation, the yield of 2a-cRNA after the IVT reaction 

provides a good measure of initial RNA quality, since low yields may be 
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indicative of highly degraded or contaminated RNA samples preventing correct 

amplification.  

The two variables, „2a-cRNA‟ and „RIN‟ were used as additional covariates in the 

Envisage analysis to account for RNA quality within the analysis. Both measures 

are numerical in nature. Also, due to the large sample size, samples were 

separated into 7 randomised batches for sample processing. To ensure that no 

batch effects existed within the data, the batch identifier number (arbitrarily 

labelled 1-7) was used as a further categorical variable („Batch number‟) in the 

Envisage analysis. Due to the number of DF required to fit the interactions of this 

7-level factor compared to the number of free DF (dependent on sample size), 

batch interactions were not included in the model fitting procedure to avoid 

overfitting of the data. Given the extensive measures taken to ensure that 

covariates elicit minimal effects on the gene-expression, it was hoped that they 

would show only minimal effects. 

The number of genes found to be significant for the experiment variables and their 

interactions are shown in Table 3.4.3. It is clear from these figures that more 

genes were found to be significantly affected by parameter terms than by 

covariate terms, indicating that the parameter terms were responsible for the 

majority of the variation in the gene-expression data (although there may still be 

genes for which the covariate effects were more significant than the effects of the 

design factors). This indicated that the effects of the covariates were minimised by 

the experimental design such that, generally speaking, changes in gene-expression 

were attributable to the variables of interest and their interactions. This was good 

news for the analysis, and suggested that the experimental design and 

implementation was good. Also, by including these terms in the analysis using 

Envisage, the effects of the covariates (small though they may be) were corrected 

for, improving the relationship of the results to the biology of the system.  

Of the covariate main effects, the RNA quality measures („RIN‟ and „2a-cRNA 

yield‟) showed significant effects for the smallest number of genes, with only 291 

(2.36 %) and 9 (0.07 %) of the tested genes showing a significant response 

respectively. This was an interesting result as it indicated that the quality of the 
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starting RNA may have had a negligible effect on gene-expression. Given the 

wide range of RNA quality within this experiment (Sections 4.2.2.3 and 4.2.3.2), 

this was an important result as it indicated that RNA quality may not be an 

adequate predictor of ultimate microarray data quality. This point was also 

discussed in more detail in Section 4.2.3.2.  

Covariate interactions with the experimental factors were also fitted in this model 

up to the first order only (due to the limitations of the Envisage package). Within 

the ANCOVA framework, covariate terms are assumed to show a linear 

relationship to the dependent variable, and the slopes of the regression lines of the 

covariates are assumed to be homogeneous between treatment factor levels. 

Linearity of the covariates „2a-cRNA‟ and „RIN‟ was varied, with the median p-

value of a fitted linear regression, 𝑌𝑔~ 𝑋𝑔  (where Yg is the log-normalised 

expression and Xg is the value of the covariate term across all samples 𝑖 ∈ 1, … ,41 

for gene 𝑔 ∈ 1,… ,12,349), equal to 0.23 ± 0.298 for „RIN‟ and 0.38 ± 0.304 for 

„cRNA‟. Also, Table 3.4.3 shows that the number of genes showing significant 

effects for the covariate interaction terms relating to „Tissue‟ and „4OHT‟ was 

low, suggesting that the assumption of homogeneity holds for these treatment 

factors. On the other hand, the covariate interaction terms in the model relating to 

„Time‟ („2a-cRNA:Time and RIN:Time) appeared to show a significant effect for 

a larger number of genes, indicating that there may be some confounding effect 

between RNA quality (particularly 2a-cRNA yield) and time. However, the 

number of genes showing such interactions was typically small in comparison to 

the number of genes showing significant effects for the main experiment variables 

(877 (7.1 %) genes for 2a-cRNA:Time and 196 (1.6 %) genes for RIN:Time). 

This confounding effect of the covariate terms with the treatment terms can be 

seen in Figure 3.4.2, and was further suggested by the change in the number of 

significantly changing genes for the main treatment variables following inclusion 

of covariate terms into the model fitting process. In particular, inclusion of 

covariate terms in the model resulted in an increase in the number of significant 

genes for treatment main effect terms, but a decrease in the number of significant 

genes for treatment interaction terms. These confounding effects were particularly 
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noticeable for „Tissue‟ and „Time‟ variables, as examplified by the ~4-fold 

reduction in the number of genes classed as significant for the interaction between 

the two („Tissue:Time‟).  
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Figure 3.4.2: Relation of covariate terms to treatment terms 

To check for confounding effects of the covariate terms with the treatment effects, covariate values 

were plotted against the corresponding treatment factors for each sample. To ensure efficiency of 

covariates, covariate terms should be homogeneous between treatment factor levels. A clear 

confounding effect was detected between RNA quality covariates (2a-cRNA and RIN) and the 

Tissue treatment factor. This effect likely relates to the clear difference in the quality of RNA 

isolated from the pancreas as compared to the skin due to the presence of RNases (Section 4.2.2.3 

and Section 4.2.3.2). A smaller confounding effect was also detected with the Time treatment 

factor, but no such confoundment was detected for the 4OHT factor. Also, non-homogeneity of 

batch number between time points suggests that there may also be some confoundment between 

the two variables, suggesting the introduction of some batche effect during processing. 

  



194 

 

  



195 

 

The number of genes showing significant effects relating to the batching of 

samples was greater than the number detected relating to the RNA quality, with 

626 (5.07 %) of the genes showing significant change in expression. Interaction 

terms were not fit for the batch variable due to the large number of batch classes 

that would need to be assessed. Given the randomised approach to the selection of 

samples for particular treatment schemes, interaction effects between batch and 

treatment variables were reduced. However, a preferable approach to experimental 

design would have been to design batches for processing into the experiment 

structure in a block design, such that each batch contained an equal number of 

individuals with roughly similar covariate effects for each treatment condition. In 

this way, covariate and batch effects would be orthogonal to the treatment effects, 

reducing confounding effects between covariates and treatment variables. It is 

worth noting that if such a design were implemented, the need for inclusion of 

covariate interactions in the model fitting would be reduced. However, due to 

limits on the number of available mice for this experiment, together with the fact 

that these samples were but a subset of a larger experiment (as previously 

described), such blocking was not performed.  

These results suggest that there are a small number of genes in the study for which 

the considered covariates showed a significant effect. This could be seen by 

observing the difference in the resulting gene lists between using models 

containing parameter and covariate terms, and those containing only terms of the 

main parameters (Table 3.4.3). One important change of note was the relatively 

small number of genes showing significant effects based on the „Tissue‟ variable 

between the model with covariate terms included, and the main effects-only 

model. This further indicated a counfounding effect between the covariate terms 

and the „Tissue‟ term. Given the difference in RNA quality seen between the two 

tissues (Section 4.2.2.3 and Section 4.2.3.2), this suggests that these variables are 

perhaps not well suited for inclusion in the model, as it may be difficult to 

distinguish „Tissue‟ effects from covariate effects.  

These data suggest that inclusion of these covariate terms may lead to difficult to 

analyse effects, where it is difficult to discern significant changes over time from 
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nuisance effects relating to RNA quality. In particular, there seems to be some 

confounding effect between the covariate terms and the „Tissue‟ and „Time‟ 

treatment variables. These effects may relate to the difference in RNA quality 

detected between the two tissues, and the cumulative effects of treatment over 

time (e.g. stress responses) which may be more evident for mice treated for longer 

time points in comparison to those culled after only a short time of treatment. 

However, on a more positive note, these data also suggested that the majority of 

genes appeared to show changes in expression due primarily to the more 

interesting variables of the experiment. Despite the potential confounding effects, 

these covariate terms were nevertheless included in the model fitting procedure.  
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Table 3.4.3: Significantly changing genes found by running Envisage using parameters and 

covariates as model terms 

 No. Of Genes for 

Multi-variable 

Envisage 

No. Of Genes for 

3-variable 

Envisage 

Intersect of multi-

variable and 3-variable 

Envisage 

Parameter Main Effect 

Terms 

   

4OHT treatment 5841 5296 4524 

Tissue 4387 3851 2076 

Time 6012 4883 3867 

Covariate Main Effect 

Terms 

   

Batch number 626 NA NA 

2a-cRNA yield 9 NA NA 

RIN 291 NA NA 

    

Parameter Interaction 

terms 

   

4OHT:Tissue 2939 4088 1335 

4OHT:Time 4941 4984 3160 

Tissue:Time 1449 5666 957 

Covariate Interaction 

Terms 

   

2a-cRNA:4OHT 86 NA NA 

2a-cRNA:Tissue 24 NA NA 

2a-cRNA:Time 877 NA NA 

RIN:4OHT 6 NA NA 

RIN:Tissue 13 NA NA 

RIN:Time 196 NA NA 

RIN:2a-cRNA 154 NA NA 
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3.4.3 Comparison of ‘Time’ variable as numerical and categorical 

In Section 3.4.1, the results of significance analysis of gene-expression based on 

the „Time‟ variable were found to be highly similar between ANOVA and 

Envisage. However, given the non-independent nature of this temporal variable, it 

was not clear how best to treat it. Whilst each time-point replicate corresponded to 

RNA derived from tissue extracted from a unique animal (and hence time points 

were independent, as opposed to if RNA had been extracted repeatedly from a 

single animal), the ordered nature of the variable implies relatedness between 

signals at subsequent time points. To observe the effects of treating „Time‟ in an 

ordered way, Envisage was rerun with „Time‟ classified as numerical. The number 

of genes found to be statistically significant (p < 0.05) for variables in the model 

fitting procedure, along with comparisons to gene lists produced treating „Time‟ 

as a factor, are shown in Table 3.4.4. 

The most striking thing to notice in this comparison is the large reduction in genes 

found to be significant for model terms related to „Time‟, with only 1,241 genes 

(10 %) found to change significantly for the main effect „Time‟ term as compared 

to 6,012 genes (49 %) previously. However, this is most likely a result of the 

difference in model assumptions between the two methods. Treating „Time‟ as a 

numerical variable in this model assumes a linear response with 1 DF (straight 

line), whilst treating „Time‟ as a categorical variable allows for differences 

between the four time points in a 3 DF model (curve). It is therefore likely that the 

loss in the number of genes detected as significant under the assumption of a 

linear relationship of „Time‟ relates to the loss of genes whose expression, whilst 

not changing significantly across the time course as a whole, may change 

significantly between individual time points. However, another striking feature is 

the dramatic increase in the number of genes related to covariates „Batch number‟ 

(3,447 genes (28 %) as compared to 626 genes (5 %)) and „2a-cRNA‟ (1,044 

genes (8 %) as compared to 9 genes (0.07 %)). However, whilst the gene lists for 

„Time‟ and the covariates changes, the gene lists of interest („4OHT‟ and 

„4OHT:Tissue‟) remain relatively invariant. These data suggest that there may be 
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some confounding effect between the time-point to time-point effects (detected in 

the “categorical” model but not in the “numerical” model) and these covariates. In 

particular, the batch covariate appears to show a high level of counfoundment 

with „Time‟, suggesting that the batching approach used here introduced some 

systematic bias between time points for some genes. The fact that there is no such 

change detected for the „4OHT‟ and „4OHT:Tissue‟ terms suggests that these 

variables are orthogonal to time effects.    

In the study of Fischer et al. (2007), a variety of methods for differential 

expression were applied to a time-series experiment to identify the best test able to 

identify significant changes in expression across a temporal dimension. It was 

found that the use of ANOVA (in particular, employing a type II SS test) 

performed the best out of the tests considered, particularly on background-

corrected data. Also, Park et al. (2003) developed a statistical test for time-series 

gene-expression data based upon the ANOVA model, although this model was 

able to account for the ordered nature of the variable. This suggests that treatment 

of time as a factor in a model-based statistical test for differential expression is 

statistically sound, particularly when using Envisage where a type II SS is used to 

calculate significance.  

Given the larger number of genes found to be significant due to the less 

constrained model assumptions when treating „Time‟ as a factor, and given the 

apparent orthogonality of the main variables „4OHT‟ and „4OHT:Tissue‟, it was 

decided to proceed with the analysis treating „Time‟ in a factorial way. One 

possible alternative approach, which was not examined further, would be to 

include Time as an explanatory variate with a non-linear relationship to the level 

of gene-expression to account for between-time effects not considered with a 

linear-relationship for time. The decision to treat time as a factor was made to 

maximise the number of genes of primary interest („4OHT‟- and „4OHT:Tissue‟- 

related).  
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Table 3.4.4: Significantly changing genes found by running Envisage with ‘Time’ as a 

numerical variable compared to running Envisage with ‘Time’ as a categorical factor. 

 ‘Time’ as Numeric ‘Time’ as Factor Intersect  

Parameter Main Effect 

Terms 

   

4OHT treatment 4041 5841 3692 

Tissue 1479 4387 1347 

Time 1241 6012 1096 

Covariate Main Effect 

Terms 

   

Batch number 3447 626 407 

2a-cRNA yield 1044 9 3 

RIN 57 291 20 

    

Parameter Interaction 

terms 

   

4OHT:Tissue 3112 2939 1437 

4OHT:Time 585 4941 394 

Tissue:Time 817 1449 193 

Covariate Interaction 

Terms 

   

2a-cRNA:4OHT 481 86 7 

2a-cRNA:Tissue 539 24 5 

2a-cRNA:Time 118 877 14 

RIN:4OHT 118 6 0 

RIN:Tissue 54 13 2 

RIN:Time 0 196 0 

RIN:2a-cRNA 2169 154 57 
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3.5 Summary 

In this chapter, the new analysis package Envisage, designed and written by the 

author, was described. This procedure allows the inclusion of data relating to a 

wide range of experimental variation into analysis for significant changes of gene-

expression. Whilst an experiment may be focused on identifying key genes whose 

expression varies due to some condition altered by the experimenter, it is naive to 

believe that this will be the only source of variation within an experimental 

setting. Between-sample differences in phenotype, environmental factors and 

technical processing add noise to expression data that must be accounted for to 

ensure that any conclusions drawn are representative of the biological system 

under study.  

Standard experimental design methods account for such covariation by applying 

treatments within blocks of samples with similar covariate effects, ensuring that 

the effects of covariation can be separated from treatment affects during analysis. 

However, it is not always possible to design nuisance variation into the 

experiment structure, making it difficult to discern real variation relating to 

variables of interest from variation due to nuisance effects. This is particularly 

true for clinical studies, where such between-sample variation cannot be easily 

controlled, and sample preparation is often performed at different sites, using 

different methods, by different people. The utility of Envisage lies predominately 

with such experiments, where it is not practical to design such variation into the 

experiment structure. In particular, the author envisages that this package will 

provide a useful tool in the analysis of clinical microarray data, particularly in the 

identification of spurious sources of gene-expression change. 

Given the weak transcriptional activity exhibited by Myc (Grandori and 

Eisenman, 1997; Cole and McMahon, 1999), it is particularly important to remove 

the noise caused by superfluous sources of variation to ensure that significant 

changes in gene-expression as a result of MycER
TAM

 activation can be identified. 

Many sources of error were prevented through careful experimental design. In 

particular, environmental variables were controlled by consistent laboratory 
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conditions in the animal house, variation in sample processing was controlled by 

ensuring common experimental procedures (such as ensuring consistent start 

times for all treatments to remove effects of circadian rhythms), and some 

phenotypic variables were controlled by the selection of age- and gender-matched 

animals. The main source of unaccounted nuisance variation between samples was 

genotypic difference relating to the use of mice from different litters (although the 

use of inbred transgenic lines ensured that these effects were minimised). 

However, due to limits on animal numbers for this study, a batched design was 

not used to ensure independence of treatment and nuisance variables. Instead, 

randomisation was performed over all samples to remove systematic bias between 

treatment groups. 

However, inclusion of the batching variable as a covariate in the Envisage 

analysis, together with further covariates relating to RNA quality obtained from 

each sample prior to hybridisation, identified flaws with this design. Analysis of 

the effects of treating the „Time‟ treatment variable as a factor, compared to as a 

linear variate, identified a clear confounding effect between „Time‟ and the 

covariates. In particular, the batch covariate appeared to show a significant 

relationship with „Time‟, suggesting that the batching approach utilised 

introduced some systematic bias between time points, and may not be suitable for 

inclusion into the model. This time-effect appeared to be orthogonal to the 

treatment variables „4OHT‟ and „4OHT:Tissue‟, which were of interest to the 

analysis. Also, inclusion of covariate terms into the Envisage model identified a 

confounding effect with „Tissue‟, highlighting the fact that RNA quality varies 

based on the tissue from which it is isolated (Section 4.2.2.3 and Section 4.2.3.2). 

This suggests that the covariate terms suggested for inclusion here may not be 

suitable for inclusion in this analysis.  

This analysis indicates that the Envisage analysis package may not be best suited 

for the analysis of designed factorised experiments such as this, but may be more 

suited for studies where covariate effects cannot be assessed prior to analysis and 

designed into the experiment structure. Linear model approaches to model fitting, 

such as those utilised in Envisage, allow for a wide range of analytical 
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approaches. There are currently many analytical packages available that provide 

such tools for the analysis of gene-expression data, and in particular to allow the 

inclusion of nuisance variables into the analysis. It is hoped that Envisage will 

find a place among these, allowing access to this powerful class of models for 

users with limited knowledge of statistics and programming, ensuring that the 

greater biological context can be taken into account. 
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Chapter 4 Comparison of Transcriptional 

Response to MycERTAM Activation in Suprabasal 

Keratinocytes and Pancreatic β-Cells 

4.1 Introduction 

Section 1.1 provided a review of the known cellular functions of Myc, particularly 

the molecular pathways involved in promoting proliferation and apoptosis. 

However, many of the studies cited in this section derive their conclusions from in 

vitro analyses. Whilst these allow us to understand in greater detail how Myc is 

able to drive cellular function, it is not always clear why any single pathway is 

favoured over another in the context of the organism as a whole. The MycER
TAM

 

transgenic model for Myc deregulation, described in Section 1.2, provides 

exquisite control over Myc-induced proliferative and apoptotic phenotypes in 

vivo. This model allows direct control over the „time 0‟ of Myc deregulation, 

allowing tracking of the changes in gene-expression subsequent to activation of 

ectopic Myc activity. By observing changes in gene-expression that occur in the 

early stages following MycER
TAM

 activation, direct targets of Myc may be 

distinguished from those changes occurring downstream of Myc deregulation.  

As described in Section 1.2.4, it is clear that tissue context plays a significant role 

in determining ultimate cell fate in response to deregulated Myc function. Upon 

activation of the MycER
TAM

 chimeric protein in the suprabasal keratinocytes of 

the skin, target cells enter the cell cycle and undergo mitosis, leading to an 

increase in cell numbers within the suprabasal layer, and formation of papilloma-

like growths. In stark contrast to this, whilst activation of MycER
TAM

 in 

pancreatic β-cells results in entry of target cells into the early stages of the cell 

cycle (G1/S-phase), the predominant phenotypic outcome is acute apoptosis, 

leading to destruction of β-cells and involution of islet mass. This indicates that 

suprabasal skin cells are able to bypass apoptosis-related tumour suppressor 

functions in order to expose the oncogenic potential of the Myc transcription 
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factor, while the tumour suppressive functions remain intact in pancreatic β-cells. 

This fact is corroborated by the proliferative response to MycER
TAM

 activation 

seen when apoptosis is blocked by concomitant expression of the anti-apoptotic 

Bcl2 homolog BclXL (Pelengaris et al., 2002b). 

In this chapter, the divergence in the response to deregulated Myc activity 

between the skin and pancreatic cell populations is analysed at the transcriptome 

level using Affymetrix MOE430 Plus 2 mouse GeneChips (Section 1.4), together 

with statistical tools designed specifically for this type of multi-variable analysis 

(Chapter 3). The MycER
TAM 

conditional in vivo model for Myc activation 

(Section 1.2) was utilised to allow identification of early responses to deregulated 

Myc activity, with an aim to identify putative target genes that may explain the 

seemingly dichotomous function of Myc. Full lists of genes discussed within this 

thesis can be found in Appendix B: Gene lists.  
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4.2 Results 

4.2.1 Evidence of MycER
TAM

 activation following 4OHT 

administration 

4.2.1.1 Pancreatic islet β-cells 

As previously described in Section 1.2.3, 4OHT treatment of pins-mycER
TAM

 

transgenic mice leads to entry of β-cells into the cell cycle, but also results in a 

predominantly apoptotic response (Pelengaris et al., 2002b). The short time 

course of MycER
TAM 

activation considered within this experiment (maximum 32 

hours) was insufficient to result in an observable change in islet morphology for 

target tissue (as seen by staining with H&E), but showed an increase in cell 

proliferation as evidenced by immunofluorescent staining of Ki67, a marker for 

cell cycle entry (Figure 4.2.1a).  

Samples were stained concomitantly for β-cell-specific Insulin (red) and Ki67 

(green), together with a nucleus-specific DAPI stain (blue), to confirm that cells 

whose proliferation status was altered upon MycER
TAM

 activation were Insulin-

producing β-cells. VT control animals (32 hours) showed no proliferating cells 

within their islets, but after only 4 hours of 4OHT treatment, Ki67 positive β-cells 

were detectable. By 32 hours of 4OHT treatment, Ki67-positive β-cells were still 

detectable, but possibly at lower levels. This may be indicative of the promotion 

of apoptosis. 

Apoptotic cells were identified by immunofluorescent staining for the executioner 

Caspase 3 molecule. The antibody chosen was able to bind both the full length 

Pro-Caspase 3 protein (35 kiloDaltons (kDa); cytoplasmic) and the large fragment 

of the cleaved Caspase 3 protein (17/19 kDa; perinuclear). This method was 

chosen over the often used terminal uridine deoxynucleotidyl transferase-

mediated dUTP nick-end labelling (TUNEL) assay (which identifies fragmented 
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DNA) (Gavrieli et al., 1992), due to its ability to identify cells in the early stages 

of apoptosis (Duan et al., 2003).  

Pancreas tissue was stained concomitantly for the executioner Caspase 3 protein 

(green), β-cell-specific Insulin (red) and a nuclear specific stain (blue). Staining of 

VT control tissue sections identified no Caspase 3-positive cells, suggesting that 

no Caspase 3 (active or inactive) was present. However, by 4 hours of MycER
TAM

 

activation, staining for cleaved Caspase 3 was detected around nuclear DAPI 

throughout the islets. Staining for the active Caspase 3 subunit was also detected 

32 hours subsequent to MycER
TAM

 activation, indicating significant apoptotic 

activity,  

Previous studies using an antibody specific for the large subunit (17/19 kDa) of 

cleaved Caspase 3 have identified no cleaved Caspase 3 staining within WT β-

cells (Ladiges et al., 2005) and β-cells of non-obese diabetic (NOD) mice (Reddy 

et al., 2003a; Reddy et al., 2003b). However, given that identification of apoptosis 

using TUNEL identifies only 4-7 % of β-cells as apoptotic within 72 hours 

(Pelengaris et al., 2002b), it is perhaps surprising that such wide-spread apoptosis 

was detected following only 4 hours of MycER
TAM 

activation. This is particularly 

true given that this implies that Pro-Caspase 3 was produced and cleaved to its 

active form within this short time period. Whilst the staining performed here 

identified a clear increase in positively stained cells, it was not clear exactly how 

this correlated with Caspase 3 activation. 

It is possible that the discrepancy in the data may have been due to so called 

„leaky Myc‟, whereby MycER
TAM

 molecules were activated independently of 

4OHT treatment. However, with no WT samples to compare against, this 

hypothesis could not be examined. It is also possible that these discrepancies were 

due to some problem with the staining protocol used. Unfortunately, due to 

constraints on time, repeating the staining was not possible. However, the 

induction of apoptosis in pins-mycER
TAM

 mice following MycER
TAM

 activation is 

well documented (Pelengaris et al., 2002b; Pelengaris et al., 2004; Lawlor et al., 

2006; Cano et al., 2007), and was clear given the change in gene-expression 

detected (Section 4.2.9.1). 
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4.2.1.2 Suprabasal keratinocytes 

As described in Section 1.2.2, 4OHT treatment of inv-mycER
TAM

 transgenic mice 

leads to entry of suprabasal keratinocytes into the cell cycle, resulting in an 

increase in proliferation and eventual formation of papilloma-like growths 

(Pelengaris et al., 1999). The short time course of MycER
TAM

 activation 

considered within this experiment (maximum 32 hours) was insufficient to 

produce a noticeable change in keratinocyte morphology, with the suprabasal 

epidermal layer remaining only 1 or 2 cells thick. However, immunofluorescent 

staining for the cell cycle marker Ki67 indicated an increase in cell proliferation 

following MycER
TAM

 activation (Figure 4.2.1b). 

Samples were stained sequentially for the proliferation marker Ki67 (green) and 

the suprabasal keratinocyte-specific Keratin 1 (red), together with the nuclear-

specific DAPI stain (blue) to discern between proliferating basal keratinocytes and 

suprabasal keratinocytes that have begun to proliferate due to activation of 

MycER
TAM

. VT control tissue sections (32 hours) showed proliferating cells only 

within the basal layer of the epidermis. After 32 hours of MycER
TAM

 activation, 

Ki67 staining was also detected in Keratin 1-positive cells, indicating that 

activation of MycER
TAM

 in suprabasal keratinocytes resulted in cell cycle entry of 

suprabasal cells undergoing a program of terminal differentiation as previously 

described (Pelengaris et al., 1999).  

Whilst conventional apoptosis does not feature in the maintenance of epidermis 

homeostasis, it has been suggested that terminal differentiation of skin 

keratinocytes may itself act to control against aberrant growth, since affected cells 

will ultimately be shed and removed from the surrounding micro-environment 

(Jensen and Watt, 2006). Sequential staining of skin sections for the Caspase 3 

executioner protein (green), and suprabasal-specific Keratin 1 (red), together with 

a nuclear-specific DAPI stain (blue) identified no apoptotic cells in either VT 

control tissue samples or samples taken following 32 hours of MycER
TAM

 

activation. This indicated that activation of MycER
TAM

 did not promote apoptosis 
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in suprabasal keratinocytes, suggesting that suprabasal keratinocytes are able to 

circumvent Myc-induced cell death.  
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Figure 4.2.1: Short term activation of MycER
TAM 

in pancreatic β-cells and suprabasal 

keratinocytes (p.t.o) 
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a) Staining of pancreas tissue sections with H&E identified tissue morphology. The short time 

scale of activation within this experiment (maximum 32 hours) was insufficient to allow an 

observable change in tissue morphology between VT controls (32 hours) and 4OHT-treated 

samples. However, immunofluorescent staining for the cell cycle marker Ki67 (green) identified 

an increase in β-cell proliferation (identified by concomitant staining with β-cell-specific Insulin; 

red) following activation of MycER
TAM

. Staining for the early apoptosis marker Caspase 3 (green) 

identified a significant increase in apoptotic β-cells (identified by concomitant staining with 

Insulin; red) following MycER
TAM

 activation. This indicated that activation of MycER
TAM

 in pins-

mycER
TAM

 mice resulted in promotion of cell cycle and apoptosis in β-cells, as previously 

described (Pelengaris et al., 2002b). 

b) Staining of skin tissue sections with H&E identified epidermis morphology, although the thin 

nature of murine epidermis made distinguishing epidermal layers difficult. Staining with H&E 

showed that the short time scale of activation within this experiment (maximum 32 hours) was 

insufficient to allow an observable change in tissue morphology between VT controls (32 hours) 

and 4OHT-treated samples. Immunofluorescent staining for the cell cycle marker Ki67 (green) 

identified positively stained cells in the basal layer of the epidermis in VT control sections. 

However, cells in the suprabasal layers (identified by sequential staining with suprabasal 

keratinocyte-specific Keratin 1; red) showed no such staining. Following 32 hours of MycER
TAM

 

activation, Ki67 staining was detected in both basal and suprabasal cells, indicating promotion of 

cell proliferation in suprabasal cells in response to MycER
TAM

 activity. Staining for the early 

apoptotic marker Caspase 3 (green) identified no apoptotic cells in either basal or suprabasal 

layers, either before or after MycER
TAM

 activation. This indicates that normal apoptosis does not 

play a role in the MycER
TAM

-initiated phenotype in suprabasal keratinocytes, and that activation of 

MycER
TAM

 in inv-mycER
TAM

 mice results in promotion of cell cycle with no discernable apoptosis 

detected, as previously described (Pelengaris et al., 1999). Note that 4 hour MycER
TAM

 active skin 

sections were not stained due to constraints on time. 

Images for each condition are representative sections from different levels through replicate tissue 

samples. β, β-cell; b, basal keratinocyte; sb, suprabasal keratinocyte; hf, hair follicle. 
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4.2.2 Optimisation of laser capture microdissection (LCM) 

protocol 

4.2.2.1 LCM and RNA extraction for pancreatic islet cells 

Due to the high number of RNase species, RNA extracted from the pancreas is 

very prone to rapid degradation (Chirgwin et al., 1979; Gill et al., 1996; Mullin et 

al., 2006). Freshly isolated pancreas RNA from tissue immediately snap frozen 

after sacrifice is often of a poorer quality than that of other tissues, resulting in a 

smaller 28S:18S rRNA ratio. For example, Figure 4.2.2A shows the Bioanalyzer 

trace for a control sample of freshly isolated good quality RNA from the skin 

(RIN = 9.2), whilst Figure 4.2.2B shows the Bioanalyzer trace for a freshly 

isolated sample of “good” quality RNA extracted from the pancreas (RIN = 7.9). 

Existing protocols described in Materials and Methods, Section 2.2, were not 

suitable for isolation of RNA of an adequate quality for microarray hybridisation. 

RNases remain inactive at low temperatures; hence it is important to ensure 

careful storage of RNA samples to avoid degradation over time. However, the 

RNases in pancreas are so active that air drying the section at room temperature 

(RT) for 10 secs is sufficient for RNA to become completely degraded by RNases 

(Figure 4.2.2C; RIN = 2.3).  

Laser capture microdissection of islet cell populations using the PixCell I and II 

LCM system (Arcturus Engineering, Mountain View, CA) has previously been 

described (Ahn et al., 2007), using the protocol defined in Sgroi, Teng et al. 

(1999). One key step in this protocol is to ensure that frozen sections are not 

allowed to air-dry prior to the procedure. To ensure maximum RNA quality, it 

was necessary to prepare a modified LCM protocol that further preserved RNA 

integrity. This protocol was optimised in a sequential manner such that RNA 

integrity was preserved throughout the fixing, staining and dehydrating 

procedures, and a compromise between RNA quality and RNA yield was made 

when performing the laser capture procedure. The complete optimised protocol is 

described in Materials and Methods, Section 2.2.1. 
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Figure 4.2.2: RNA degradation by ribonucleases is rapid in pancreatic tissue 

The high abundance of RNase species in pancreatic tissue means that RNA is rapidly degraded. 

RNA quality is often measured using the Agilent 2100 Bioanalyzer, which produces an 

electropherogram trace of fluorescence against time, which also indicates RNA abundance against 

molecule size. A) RNA isolated from skin tissue is robust and of a good quality. This is evidenced 

in the Bioanalyzer trace by two distinct peaks representing the 18S and 28S rRNA species. B) 

RNA isolated from pancreas tissue is generally of a poorer quality due to the presence of 

ribonuclease molecules. This can be seen by the reduction in size of the 28S peak which is 

susceptible to RNA degradation. C) Briefly air drying pancreas tissue sections for only 10 secs is 

sufficient for ribonucleases to completely degrade isolated RNA. This is clear from the lack of any 

discernible 18S and 28S peaks, and the abundance of peaks at the lower end of the time scale, 

indicating the presence of mainly smaller cleaved RNA molecules. 
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4.2.2.2 LCM and RNA extraction from suprabasal keratinocyte cells 

In order to extract RNA from a pure population of epidermal cells rather than 

whole skin (which also contains dermis), we attempted LCM. However, due to the 

nature of skin epidermal tissue as a protective barrier, intercellular bonds are very 

strong and isolation of sufficient good quality RNA for microarray hybridisation 

from LCM of suprabasal keratinocytes proved difficult using the protocol 

described above, a problem also noted by Agar et al. (2003). 

To overcome the strong bonds between cells in the skin, the power of the laser 

was increased to its maximum setting, and the speed of movement of the piezo 

mount was decreased to its slowest setting. Even with such drastic changes in the 

laser parameters, it often took 10 or more complete passes of the laser before the 

cells of interest became fully separated from the surrounding tissue (as compared 

to 2 passes for the pancreas). Also, strong electrostatic forces between the skin 

tissue and the glass slide support made it difficult to consistently lift tissue from 

the LCM platform which confounded the problem. With the slow setting, this 

meant that only one or two laser captured tissue segment could be collected within 

the time scale of 15 minutes, and these were not guaranteed to lift away. Given 

that the isolated suprabasal tissue segment was generally only 1 or 2 cells in 

thickness, this resulted in collection of a negligible quantity of cells for RNA 

isolation. 

Several steps were taken to improve isolated cell numbers. Firstly, given that 

RNA isolated from skin cells is generally more stable than that collected from 

pancreas, the strict limit of 15 mins for the laser capture could safely be 

disregarded. However, even by increasing the time spent collecting cells, it was 

only possible to isolate a small area of suprabasal cells. The use of the serine 

protease trypsin was considered, to break down cell adhesion proteins and reduce 

inter-cellular attraction. Trypsin was made up in solution with DEPC-treated 

phosphate buffered saline (PBS) and added to the section before fixing. 

Comparing the effects at a variety of concentrations indicated that any beneficiary 
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effects on the cell adhesion were counteracted by the effect on cell morphology, 

making it difficult to isolate intact segments of suprabasal keratinocytes.  

As suggested by Agar et al. (2003), the strong electrostatic forces between the 

skin sections to the glass slide support were prevented by using non-charged 

Superfrost glass slides (Menzel-Glaser, Braunschweig, Germany) coated in 

RNase-free glycerol. A comparison of different times spent in the glycerol/ethanol 

solution and different concentrations indicated that this process had little effect 

under the SL μCut laser capture system used in this study.  

Given the failure of these optimisation procedures to produce an adequate number 

of cells for RNA-extraction, and due to the time constraints of the doctorate 

program, it was decided to forego the use of LCM for the skin samples. Instead, 

RNA was isolated from whole dorsal skin sections (Materials and Methods, 

Section 2.2.2). Given that the major constituent of whole skin is the dermis, which 

consists predominantly of connective tissues, it was believed that there would be 

fewer cells showing gene-expression changes over time throughout the time 

course of MycER
TAM

 activation due to normal homeostasis in the skin as 

compared to the pancreas. One issue that remained however was the presence of 

basal keratinocytes, which undergo proliferation as a part of normal homeostasis. 

Changes in gene-expression in basal cells may therefore confound changes in 

gene-expression driven by MycER
TAM

 activation in the suprabasal keratinocytes. 

However, this problem would be difficult to avoid with typical approaches to 

isolation of the epidermis (such as trypsin-based degradation of the dermis), and 

given the thin nature of murine epidermis would have been impossible to avoid 

using the SL µ-cut LCM platform. 

4.2.2.3 Quality of isolated RNA from optimised laser captured pancreatic 

islets and whole skin sections 

RNA quality was measured using the RNA integrity number (RIN) as defined by 

the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA), and RNA was 

quantified using a Nanodrop ND-1000 spectrophotometer (Nanodrop 
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Technologies, Wilmington, DE). RNA quality was generally good, with mean 

RINs of 6.1 ± 0.85 and 8.1 ± 0.90, and overall yields of 76 ± 46.7  ng and 

80 ± 49.0 ng total RNA for the pancreas and skin respectively. Overall RNA 

quality for all samples in the study is shown in Figure 4.2.3. In general, skin 

samples produced RNA of a higher quality than pancreas samples, which is likely 

a result of the increased RNase activity present in pancreas tissue. This suggests 

that there is in fact some confounding effect between tissue and RNA quality.  

Both tissues produced RNA that was determined to be of a suitable quality for use 

in microarray analyses, with only one out of forty-eight samples producing RNA 

with a RIN less than 5; Panc T 8hr (2) (𝑅𝐼𝑁 = 4.7). However, whilst the RIN 

provides a useful objective measure of RNA quality, there are no commonly 

accepted threshold values to determine the relative merit of the observed value. 

For the present analysis, an arbitrary threshold of RIN = 5 was used to determine 

which RNA samples were of a suitable quality for microarray hybridisation, and 

this cutoff was chosen based on the conventions of the Molecular Biology Service 

Department at the University of Warwick. However, it must be noted that 

selection of samples for removal based on this threshold is similarly arbitrary. 
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Figure 4.2.3: Quality of isolated RNA for pancreas and skin tissue 

Quality of RNA following isolation from laser captured islets and whole skin sections was 

measured using the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). This produced a 

quantitative value between 1 and 10, the RNA integrity number (RIN), defining the quality of the 

RNA sample. A RIN of 5 or above was considered to be suitable for microarray hybridisation. In 

general, RNA quality was good, with only one out of forty-eight samples analysed showing a RIN 

below this limit (Panc T 8hr (2)). There was a clear difference in quality of RNA between the two 

tissues, with skin samples generally producing RNA of a higher quality than pancreas samples. 

This is indicative of the higher number of RNases present in the pancreas, and also of the 

difference in sample preparation between the two tissues, and suggests a confounding effect 

between tissue and RNA quality. 
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4.2.3 Optimisation of in vitro transcription (IVT) protocol 

4.2.3.1 Protocol optimisation 

The standard protocols for the Affymetrix IVT protocol defined in the GeneChip 

Expression Analysis Technical Manual (Affymetrix, 2004) resulted in very low 

yields of 2a-cRNA for six samples in the first batch processed (Figure 4.2.4). To 

avoid loss of precious RNA samples, analysis of further batches was halted while 

this problem was studied further. Personal communication with Giorgia Riboldi-

Tunnicliffe from Affymetrix raised the possibility of the presence of some 

inhibitor within the RNA samples that may inhibit the amplification of cDNA.  

Following Giorgia‟s recommendations, the process was repeated with the 

following modifications to the protocol. Starting RNA samples were diluted to 6 

μl in nuclease-free water instead of 3 μl, and double volumes of polyA control 

probes and first cycle reagents were used to improve first round cRNA yield. 

After first cycle clean up, cRNA was eluted in normal volumes nuclease-free 

water and second cycle cRNA synthesis was performed as normal. This modified 

protocol (described in detail in Materials and Methods, Section 2.4.1) greatly 

improved 2a-cRNA yields, with only 2 of 14 samples tested failing to meet the 

recommended minimum yield of 10 μg (Figure 4.2.4). Only one of these samples 

produced a yield significantly below this cutoff. 
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Figure 4.2.4: Using double volumes of reagents in the second cycle of the Affymetrix IVT 

reaction produced higher yields of 2a-cRNA for microarray hybridisation 

Following the standard protocols for cRNA synthesis using the Affymetrix GeneChip Two-Cycle 

Target Labelling and Control Reagents kit produced low yields of 2a-cRNA. 6 out of the 14 

samples tested produced a yield below the 10 μg minimum required for hybridisation to the arrays. 

Using double volumes of all reagents and polyA controls in the first cycle cRNA synthesis step of 

the protocol produced greater yields for all samples after second cycle synthesis of 2a-cRNA, with 

only 2 of 14 samples failing to produce yields suitable for hybridisation. 
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4.2.3.2 Yield of 2a-cRNA from optimised IVT protocol 

The resulting yields of 2a-cRNA following the modified 2-round linear 

amplification are shown in Figure 4.2.5. The modified 2-round linear 

amplification method yielded 32 ± 17.1 μg and 52 ± 21.7 μg high-quality, 2a-

cRNA for pancreas and skin respectively for 43 of the 48 independent samples. 

Five samples produced less than the recommended 10 µg 2a-cRNA after 2-round 

linear-amplification: Panc T 8hr (2) (23.8 𝜇𝑔), Panc T 8hr (3) (4.1 𝜇𝑔), Panc T 

32hr (1) (0 𝜇𝑔), Panc U 16hr (3) (1.9 𝜇𝑔) and Panc U 32hr (1) (3.2 𝜇𝑔). Of these 

5 samples, only 1 also showed a low RIN (Panc T 8hr (2)). The yield for the 

remaining samples was in general good, indicating that the poor yield of 2a-cRNA 

may be due to the presence of some remaining inhibitor that may prevent 

amplification. Of particular note was the sample Panc T 32hr (1) which produced 

an almost undetectable yield of 2a-cRNA. As with the RNA quality, the yield of 

2a-cRNA was in general higher for skin samples than for pancreas samples, 

suggesting a confounding effect with the tissue variable. The high variability seen 

for these yields most likely relates to the fact that, due to limitations of the LCM 

procedure, 2a-cRNA was typically produced from low volumes of RNA. 
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Figure 4.2.5: Yield of 2a-cRNA following two-cycle in vitro transcription 

A two-round IVT reaction was used to prepare double-amplified biotin-labelled cRNA (2a-cRNA) 

for microarray hybridisation. The protocol was modified as described in Section 4.2.3.1 to ensure 

maximum yield for hybridisation. A minimum of 10 μg 2a-cRNA is suggested for hybridisation to 

Affymetrix GeneChips. In general, 2a-cRNA yield was good, with skin samples producing higher 

yields on average than pancreas samples (suggesting confoundment of 2a-cRNA yield with tissue). 

Five of the forty-eight samples in the study produced  a yield of 2a-cRNA lower than the 

recommended limit, with one sample – Panc T 32hr (1) – producing an undetectable yield of 

cRNA. All samples were hybridised to avoid introduction of systematic errors by repeating 

samples in isolation. 
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4.2.4 Microarray data quality control 

The quality of the data was assessed using a large number of diagnostic quality 

control (QC) metrics as described in Section 1.4.3. Despite the importance of 

quality control in microarray experiments, guidelines for acceptable quality in 

these analyses are vague. The approach used here was inspired by the 

comprehensive QC analysis of Jones et al. (2006), where pre-hybridisation QC 

measures for Affymetrix microarrays were compared to post-hybridisation QC 

measures to identify possible diagnostics for the identification of samples that will 

perform poorly before hybridisation to expensive arrays. Here, QC diagnostic 

tests were used to confirm the quality of sample data at all stages of the 

microarray process, including pre-hybridisation measures to confirm the quality of 

the starting material, post-hybridisation measures to confirm that the hybridisation 

procedure introduced no errors, and measures of the quality of the resulting data 

(at both the probe-level and at the summarised probe set level).  

For brevity, the results from each individual test are not included here. As an 

example, Figure 4.2.6 shows the distribution of gene-expression data for each 

sample represented as boxplots (as described in Section 1.4.3.8). Replicate 

samples (shown using identical colouring) should show comparable distributions, 

allowing identification of poor quality samples (ringed red). In general, samples 

showed very good comparison, particularly for the skin.  
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Figure 4.2.6: Graphical display of the distribution of gene-expression data using boxplots 

allows identification of outlying samples 

Boxplots of gene-expression data sets allow visual representation of the distribution of the data. 

Comparing individual boxplots for un-normalised data allows identification of outlying samples 

whose data is not comparable to its replicates. Triplicate samples are coloured similarly to assist in 

comparisons. In general, the distribution of replicates is comparable, and samples showing non-

comparable data distribution can be identified (ringed red). These represent samples showing low 

yields of 2a-cRNA, indicating that hybridising an array with a small amount of starting material 

can result in poor signal. This is especially true of sample Panc T 32 hrs (1), which showed a yield 

of almost 0 μg of 2a-cRNA in the IVT reaction, and appears to show generally low expression 

signals throughout. 
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Samples identified as poor quality in the QC analyses also showed low 2a-cRNA 

yields, suggesting that low quantities of starting material may result in low levels 

of hybridisation to the array and poor data quality. Of particular note is sample 

Panc T 32 hrs (1), which showed a yield of almost 0 μg 2a-cRNA using IVT, and 

generally showed very low levels of hybridisation. 

A simple penalty scoring system was used to penalise samples that performed 

poorly in the QC metrics and the resulting QC score was used to identify poor 

quality samples in the sample set. Samples were assigned a score of 0 if the results 

of the QC test were satisfactory, 1 if the results of the QC test were below 

recommendations but still tolerable, or 2 if the results of the QC test were poor. 

This penalty score was used to identify poor quality samples instead of a single 

QC metric to combine information regarding sample and data quality from a large 

number of metrics relating to various aspects of sample processing. In particular, 

Jones et al. (2006) showed that the quality of data was not well predicted by pre-

hybridisation measures such as the RIN, suggesting that no single measure 

captures the full quality of samples for determining poorly hybridised samples. 

Figure 4.2.7 shows the QC penalty scores for each of the 48 samples. Bars on the 

graph are coloured if they represent samples that were hybridised with a low 

quantity of 2a-cRNA (red), had a low RIN (green) or both (yellow). From this 

graph, it appears that hybridising poorer quality RNA with a low RIN had no clear 

effect on determining ultimate data quality, whilst hybridising samples with a 

lower quantity of 2a-cRNA resulted in a high QC penalty score for several 

samples.  

This process identified seven of the forty-eight samples as being of poor quality: 

Panc T 16hr (3), Panc T 32hr (1), Panc U 8hr (2), Panc U 16hr (1), Skin T 4hr (3), 

Skin T 8hr (3), and Skin U 8hr (1). The poor quality of these samples in 

comparison to their replicates would result in an increase in the variance of 

residual estimates, leading to lower p-value estimates during model fitting. These 

samples were therefore removed from all further analyses to increase the chance 

of detecting significant effects. However, removal of these samples leads to the 

introduction of bias into the data due to the resulting unbalanced treatment groups 
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(since some groups will have three replicates while others will have fewer). The 

resulting unbalanced design also increases the complexity of the required model 

since the treatments are no longer orthogonal. It was lucky to note that samples 

removed from the analysis represented unique conditions such that one replicate at 

most was removed from each of the triplicate sets. 

The relationship between the QC penalty score and both the RNA integrity and 

2a-cRNA yield is shown in Figure 4.2.8. It is clear that both low and high RIN 

samples produced poor quality data, and in fact no samples that were identified as 

being of poor quality showed a 𝑅𝐼𝑁 < 5. This indicated that an observed low RIN 

is not sufficient to determine samples that may produce poor quality data. 

Similarly, the correlation of the QC penalty score with the 2a-cRNA yield 

indicated that only one of the five samples that were hybridised with less than 10 

μg 2a-cRNA were removed. This indicates that good quality data can be produced 

from low 2a-cRNA yields and that the limit of 10 μg may be overly conservative. 

These pre-hybridisation QC metrics may therefore be insufficient to determine the 

quality of the resulting data, a conclusion also drawn by Jones et al. (2006). 
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Figure 4.2.7: Quality control penalty scores for array data 

A simple penalty scoring system, based on a number of QC metrics at all stages of microarray 

analysis, was used to identify outlying samples that may bias the microarray gene-expression data. 

In general, samples that performed poorly for one QC test performed poorly across all QC tests. 

These samples produced large QC penalty scores and were removed if this was greater than a 

cutoff value, chosen arbitrarily as 10. Bars on the graph are coloured if they represent samples that 

were hybridised with a low quantity of 2a-cRNA (red), had a low RIN (green) or both (yellow). 

From this graph, it appears that low RIN had no clear effect on determining ultimate data quality, 

whilst only one sample with a low 2a-cRNA yield resulted in a high QC penalty score. This 

indicates that pre-hybridisation measures of sample quality may not be suitable metrics for 

determining resulting data quality. 
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Figure 4.2.8: Comparison of QC penalty score with RNA integrity and 2a-cRNA yield 

A simple penalty score system was implemented based on a number of quality control metrics to 

determine outlying samples within the data. In general, samples that performed poorly in one QC 

test performed poorly across all of the QC tests. A cutoff of 10 was used to determine poor quality 

samples that should be removed prior to analysis. The quality of samples prior to hybridisation 

was a poor estimator of ultimate data quality. Samples removed from the analysis showed a wide 

range of RINs and produced varying yields of 2a-cRNA. In fact, good quality, reproducible data 

was produced from less than the recommended minimum starting amount of 2a-cRNA, indicating 

that the suggested minimum of 10 μg 2a-cRNA may be conservative. 
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4.2.5 Data quality analysis 

Data were clustered by sample in GS-GX using hierarchical clustering based on 

the Pearson correlation (Section 1.5.4), such that samples showing similar 

expression profiles across the gene set were ranked as being more similar than 

those showing more varied patterns of expression. A heatmap showing clustering 

of similar samples, together with a hierarchical tree structure identifying the level 

of similarity between samples, can be seen in Figure 4.2.9. When clustering was 

performed across all samples in the data set, the majority of samples clustered 

based on the tissue of origin (Figure 4.2.9a). However, six samples did not fall 

into their associated tissue class, indicating that these samples represented 

outlying expression sets.  

These samples represented all but one of the seven samples identified as having 

poor quality hybridisation in Section 4.2.3.2. This may indicate that sample 

quality was poor, preventing correct clustering with related samples of a higher 

quality. It is also possible that these samples may indicate a mix-up in sample 

labelling, and the author notes the high RIN (RIN = 9) of sample Pancreas T 16hr 

(3), which may be more consistent with skin derived RNA than pancreas. 

However, the poor performance of these samples across a wide range of QC 

metrics, and the general care that was taken in preventing such labelling errors, 

may indicate that poor sample hybridisation is more likely the case. Removal of 

these samples from further analyses produced a quality controlled data set that 

showed perfect clustering based on tissue of origin (Figure 4.2.9b). 
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Figure 4.2.9: Clustering of normalised expression signal identifies a clear separation between 

skin and pancreas 

Probe level data was summarised and normalised, and expression levels were compared across 

samples (using the Pearsson correlation as a measure of similarity) to identify gene-expression 

profiles that do not correlate well between replicates. Hierarchical clustering of samples identified 

a clear separation between skin and pancreas samples, which was expected given the difference in 

sample quality and processing between these cohorts. This shows the need to normalise each 

cohort individually (as described in Materials and Methods, Section 2.6.1). a) Clustering of all 

samples in the data set identified 6 samples (highlighted) that clustered within the wrong cohort, 

indicating poor data quality. These samples represent six of the seven samples shown to be of poor 

quality using a combination of QC metrics. b) Removal of these samples, along with the 7
th
 poor 

quality sample defined in Section 4.2.3.2, resulted in complete clustering of samples by tissue. 
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Quality controlled data were normalised as described in Section 2.6.1, producing 

time courses for both the skin and the pancreas such that the expression signal at a 

particular time point represented the fold change detected in the probe set 

following MycER
TAM

 activation. The resulting expression profiles of the 

normalised data (described in Section 2.6.1) for the 12,349 curated probe sets 

(described in Section 2.6.2) are shown in Figure 4.2.10. The profile for each probe 

set is coloured based on the normalised signal at the 4 hour time point for the 

respective tissue (red, up-regulated; yellow, no change; blue, down-regulated). 

For the pancreas, it appears that early changes in gene-expression remain stable, 

with probe sets showing an increase or decrease in expression at 4 hours 

remaining up- or down-regulated at 8 hours. By 16 hours, changes in expression 

had become more varied, illustrating the dynamic nature of gene-expression. 

For the skin, changes in expression across the time points appears more varied, 

with many genes showing initial down-regulation at 4 hours also showing a large 

increase in expression at 8 hours. It also appeared that the expression of genes 

showed peaks at the 8 and 32 hour time points. Given that these time points 

represent 8 hours following daily 4OHT administration, it is possible that this 

represents a delay in MycER
TAM

 activation following topical application of 

4OHT. The structure of the gene-expression data is discussed further in the 

following chapters. 
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Figure 4.2.10: Normalised expression profile for curated genes following a time course of 

MycER
TAM

 activation in pancreatic β-cells and suprabasal keratinocytes 

As described in Section 2.5, the design of this experiment allowed normalisation of 4OHT-treated 

mice to their vehicle-treated counterparts. The GC-RMA normalised data for each 4OHT-treated 

sample was normalised to the median of the vehicle-treated GC-RMA normalised replicates within 

the same treatment group. This was done for each time point in the experiment for the two tissues.  

Data were further normalised using a median normalisation across samples. The normalised 

signals for each condition are shown here for the 12,349 curated probe sets described in Section 

2.6.2. The expression profile for each probe set is coloured based on its expression level at 4 hours 

for the respective tissue (red, up-regulated; yellow, no change; blue, down-regulated).  
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In the following sections, results were taken from the Envisage model fitted with 

covariate terms as described in Section 3.4.2. Model terms „4OHT‟, „Tissue‟, 

„Time‟, „2a-cRNA yield‟, „RIN‟ and „Batch number‟, and their associated 

interactions (up to the first order), were used in the model fitting procedure for 

each gene. Significance p-values for each term were calculated for each gene that 

included the term in its fitted model, as described in Section 3.3.3. For the first 

stage of the analysis, genes showing a significant effect for 4OHT treatment were 

of primary interest, as these represented genes showing response to activation of 

MycER
TAM

.  

Both tissues were analysed together within the fitted model, although the results 

for each tissue are presented separately in the following sections to make clear 

distinctions between the responses to MycER
TAM

 activation in the two cell types. 

The values expressed within these tables represent the normalised data 

(representing fold-change following MycER
TAM

 activation), as described in 

Materials and Methods, Section 2.6.1. 4OHT p-values defined in each table 

represent the p-values estimated for the „4OHT‟ variable using Envisage. Genes 

of interest were identified by a significant effect in response to 4OHT treatment 

(p-value ≤ 0.05, chosen due to convention) in this covariate model, and a 2-fold 

change in the normalised gene-expression at either 4 or 8 hours following 

MycER
TAM

 activation. Focus was placed on these early time points to identify 

genes whose change in expression may relate to direct Myc-activation, since Myc 

transactivation is shown to be maximal within 8 hours (Wu et al., 1999).  

The magnitude of the fold changes for each tissue and time point was identified 

by colouring the tables to identify genes showing ≥ 2-fold up-regulation (red) or 

down-regulation (blue). t-test-based flags indicate the significance of gene-

expression changes following activation of MycER
TAM

 within individual 

tissue/time point conditions (“*” for p-value ≤ 0.05, “**” for p-value ≤ 0.01). 

Briefly, for each gene and for each condition in the experiment (i.e. some specific 

time point and tissue), a t-statistic was calculated and used to estimate the 

significance of the difference in the means of the fitted data YT for the 4OHT-
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treated samples and the means of the fitted data YU  for the vehicle-treated samples 

given the fitted model. The t-statistic is defined as: 

 𝑡 =
𝑌𝑇 − 𝑌𝑈
𝑆𝐸𝐷

 4-1 

Where SED is the standard error of the difference: 

 𝑆𝐸𝐷 =   
1

𝑛𝑇
+

1

𝑛𝑈
  𝑆𝑆𝐸/𝑑𝑓𝑟𝑒𝑠   4-2 

Where SSE is the error sum of squares   𝑦𝑖 − 𝑦𝑖  
2𝑛

𝑖 , dfres is the residual degrees 

of freedom from the full fitted model, and nT and nU are the number of observed 

values for the 4OHT-treated and VT groups (for the given time point and tissue) 

respectively. This statistic was compared to the t-distribution with dfres DF to 

estimate the probability that such a t-statistic would be found purely by chance. 

These contrast p-values therefore specify the significance of the change in 

expression detected at each experimental condition. 

4.2.6 The transcriptional response upon activation of MycER
TAM

 

in the skin was delayed in comparison to the pancreas 

Analysis of gene-expression using Envisage identified 5,841 probe sets 

(representing 4,624 unique genes) as being significantly altered following 

activation of MycER
TAM

 by administration of 4OHT (Section 3.4.2). Of these, the 

expression levels of 1,309 probe sets (1,101 genes) were altered greater than 2-

fold (up- or down-regulated) after only 4 hours of 4OHT treatment for the 

pancreatic β-cells, while only 373 probe sets (348 genes) were similarly affected 

for the suprabasal keratinocytes. However, after 8 hours following initial 4OHT 

treatment, the expression levels of 1,711 (1,445 genes) and 1,567 (1,389 genes) 

probe sets were altered greater than 2-fold for the pancreas and the skin 
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respectively (Figure 4.2.11). This suggests that the transcriptional effect of 

MycER
TAM

 activation was more rapid in the β-cells than for the suprabasal 

keratinocytes. The transcriptional delay in skin compared to the pancreas may be 

the result of different methods of 4OHT administration used for the two tissues 

(topical and IP administration for the skin and pancreas respectively). Topical 

administration of 4OHT may require a longer time to perfuse into keratinocytes of 

the skin than for β-cells of the pancreas. MycER
TAM

-initiated changes in gene-

expression were therefore detected at a later time point for the skin than for the 

pancreas.  
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Figure 4.2.11: Transcriptional response to MycER
TAM

 activation was delayed in the skin 

Activation of MycER
TAM

 led to a significant change in expression of a large number of genes 

within only 4 hours for the pancreas (> 2-fold change, p < 0.05). However, the number of genes 

showing a significant change in expression was much lower for the skin, and a similar 

transcriptional response to the pancreas was not detected until 8 hours post-MycER
TAM

 activation. 

This indicated that topical application of 4OHT may be a slower means of 4OHT administration 

than IP injection, possibly due to the need for perfusion through the outer skin layers. 
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4.2.7 Activation of MycER
TAM 

in the skin and the pancreas 

mediated the transcription of genes involved in a wide range 

of cellular functions 

As described in Section 1.1, Myc is involved in a wide range of cellular functions, 

including cell growth, proliferation, apoptosis and differentiation. Analysis for 

enrichment of GO terms within the list of 5,841 probe sets (4,624 unique genes) 

found to be significantly altered following activation of MycER
TAM

 identified 

genes involved in myriad cellular functions. Figure 4.2.12 shows gene list 

numbers for the biological functions of most relevance to this study. The majority 

of genes found to be significantly altered following MycER
TAM

 activation in 

either tissue (green bars) appeared to be related to metabolism, which may not be 

surprising given the role of Myc as a global transcription factor. This was also 

indicated by the large number of genes relating to transcription, transport and 

signal transduction.  

Interestingly, genes involved in post-transcriptional (mRNA processing, RNA 

splicing) and post-translational modification (phosphorylation, protein folding, 

proteolysis and ubiquitin cycle) were also present. This suggested that Myc may 

also exhibit regulatory effects on cellular function through non-transcriptional 

means, a field of work that has recently received much attention (Cowling and 

Cole, 2007; Dominguez-Sola et al., 2007). As expected, genes involved in cell 

cycle progression and apoptosis were also present, along with genes involved in 

related functions such as cell adhesion and cytoskeletal organisation. Genes 

involved in angiogenesis, cellular growth, DNA damage and DNA repair were 

also represented. 

Independent analysis of GO classifications for genes showing significant early 

changes in expression (≥ 2-fold change within the first 8 hours of MycER
TAM

 

activation and 𝑝 ≤ 0.05 for model term „4OHT‟) for the pancreas (blue bars) and 

skin (red bars) identified no clear difference in gene numbers between the two. 

This indicates that MycER
TAM

 activation resulted in modulation of a wide range 

of functions in both tissues. In general, activation of MycER
TAM

 in the pancreas 
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resulted in a slightly higher proportion of genes being affected than for the skin, 

although this is likely a result of the delayed transcriptional response seen in the 

skin as compared to the pancreas (Section 4.2.2).  

Table 4.2.1 shows a hypergeometric analysis of GO term enrichment (Materials 

and Methods, Section 2.6.5) performed in GS-GX for the genes of interest. p-

values represent the probability of seeing the observed proportion of genes from a 

particular GO term by chance (based on a hypergeometric distribution), with a 

low value suggesting significant enrichment of genes relating to the specific 

biological process. From this, it is clear that genes involved in RNA processing 

and metabolism, DNA replication, cell cycle, apoptosis and DNA damage repair 

are all significantly enriched within this list. These data therefore fit well with the 

notion of Myc as a pleiotropic transcription factor, and particularly with its known 

role in proliferation and apoptosis.  
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Figure 4.2.12: Activation of MycER
TAM

 resulted in significant changes in expression of genes 

involved in a wide range of cellular functions 

Analysis of 5,841 probe sets (representing 4,624 unique genes), whose expression was altered 

upon activation of MycER
TAM

 in pancreas or skin (green bars), identified a wide range of Myc-

mediated functions. Myc is known to have pleiotropic properties, and this was revealed in the 

microarray data. The majority of genes found to be regulated by Myc were involved in metabolism 

and transcriptional activity. However, Myc also appeared to play a part in regulating genes 

involved in post-transcriptional and post-translational regulatory functions, indicating a possible 

role for Myc in non-transcriptional modification of gene regulation. Genes involved in cell 

proliferation and apoptosis, and related functions such as cell growth, cell adhesion and 

cytoskeletal organisation were also affected by deregulated Myc. Independent analyses of genes 

whose expression was altered greater than 2-fold within 8 hours for the skin (red bars) and the 

pancreas (blue bars) identified no significant variation between the levels of response for the two 

tissues. 
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Table 4.2.1: Gene ontology enrichment for MycER
TAM

-mediated gene-expression 

GO Term 

Expression altered 

in response to 

MycER
TAM

 for 

either tissue 

Pancreas 

4 or 8 hours 

Skin 

4 or 8 hours p-value 

mRNA processing 151 54 27 1.05E-26 

Cell cycle/proliferation 292 141 85 5.19E-18 

RNA processing 231 100 48 5.67E-18 

RNA metabolism 269 115 57 6.92E-18 

RNA splicing 129 46 25 1.11E-11 

Metabolism 2525 1052 763 2.69E-11 

Ribosome biogenesis 74 32 23 1.21E-09 

DNA replication 97 55 14 1.94E-09 

Protein targeting to the 

mitochondria 12 9 6 9.64E-07 

Protein biosynthesis or  

translation 239 96 82 2.75E-03 

Translation 73 27 17 4.15E-03 

Cell cycle checkpoint 19 11 6 5.13E-03 

Protein folding 90 26 30 6.68E-03 

DNA damage checkpoint 11 6 3 2.04E-02 

Proteolysis 219 89 65 5.44E-02 

Glycolysis 23 3 7 5.46E-02 

DNA repair 79 42 13 7.52E-02 

Apoptosis 199 81 64 8.56E-02 

Insulin secretion 4 2 1 0.179 

Cytoskeleton organisation  

and biogenesis 168 73 60 0.329 

Ubiquitin cycle 177 79 50 0.815 

Glucose homeostasis 5 4 2 0.868 

Cell growth and/or 

maintenance 39 18 15 0.901 

Endocytosis 71 34 31 0.951 

Phosphorylation/ 

dephosphorylation 293 126 95 0.979 

Insulin receptor signalling  

pathway 12 5 4 0.995 

Angiogenesis 40 12 18 0.996 

Transport 875 362 286 0.996 

Transcription 655 284 199 0.999 

Cell adhesion 157 47 57 1 

Signalling/signal  

transduction 685 280 233 1 
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4.2.8 Activation of MycER
TAM 

promoted cell cycle entry in 

pancreatic β-cells and suprabasal keratinocytes 

As discussed in Section 1.1.4, one of the key functions of the Myc proto-

oncoprotein is promotion of cell cycle progression, particularly G1/S-phase 

transition (Amati et al., 1998; Dang, 1999; Eilers, 1999). The role of MycER
TAM

 

activation in the promotion of G1/S transition in the skin and the pancreas has 

been previously noted (Pelengaris et al., 1999; Pelengaris et al., 2002b; Lawlor et 

al., 2006). Here we show that this previously identified phenotype is identified in 

the gene-expression analysis for both the skin and the pancreas. 

4.2.8.1 MycERTAM activation-induced cell cycle entry of pancreatic β-cells 

The effect of Myc on the cell cycle at the transcriptional level was apparent from 

the number of key cell cycle regulatory genes whose expression was altered upon 

Myc activation after 4 to 8 hours, when Myc transactivation was maximal (Wu et 

al., 1999). Of the 2,482 probe sets (2,032 genes) found to change significantly 

upon MycER
TAM

 activation for the pancreatic β-cells within the first 8 hours, 213 

probe sets (171 genes) were designated as relating to cell cycle and proliferation 

by GO classification  in GS-GX. Of these, 116 probe sets (88 genes) showed an 

increase in expression (Supplementary Table 1) and 101 probe sets (88 genes) 

showed a decrease in expression (Supplementary Table 2). Note that here, and 

elsewhere, there appears to be some discrepency in the number of detected genes 

between the up- and down-regulated gene lists. However, this is due to the 

presence of genes whose expression is detected as up-regulated at one of the early 

time points, but down-regulated at the other (or vice-versa). These genes will 

therefore be included in both the up-regulated and down-regulated gene lists. 

Genes of interest described in this section are shown in Table 4.2.2, and are 

coloured in relation to their expression (≥ 2-fold, red; ≤ 2-fold, blue). 

Cyclin proteins and their associated kinases, key regulators of cell cycle 

progression, were well represented within this group. Cyclin genes ccnd1 (Figure 
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4.2.15), ccnd2 (Figure 4.2.16) and ccne2 (Figure 4.2.17), whose products are 

necessary for G1/S-phase transition in the cell cycle, were significantly up-

regulated greater than 2-fold within 4 hours of Myc activation, indicating a direct 

transcriptional role for Myc in promoting G1/S-phase progression. Cyclin genes 

ccna2 (Figure 4.2.18), ccnb1 (Figure 4.2.19) and ccne1, whose products are 

involved in later G1/S-phase and G2/M-phase cell cycle events, were up-regulated 

greater than 3-fold subsequently at 8 hours, with highly significant (contrast p-

value ≤ 0.01) changes at almost all subsequent time points. The Myc target gene 

database 
3
 maintains up-to-date information regarding putative Myc-target genes. 

Of these cyclin genes, ccna2 (Jansen-Durr et al., 1993) and ccnd1 (Philipp et al., 

1994; Guo et al., 2000) have been previously designated as putative Myc targets 

through high-throughput screening, and ccnb1 (Yin et al., 2001) and ccnd2 

(Bouchard et al., 1999; Perez-Roger et al., 1999; Bouchard et al., 2001) have been 

previously confirmed as Myc targets using ChIP analysis.  

The gene for the Cyclin D2-related cdk4, also a previously characterised direct 

Myc target gene (Hermeking et al., 2000), showed a significant increase in 

expression of 2-fold after 4 hours of MycER
TAM

 activation, with a significant  > 6-

fold increase detected subsequently at 16 hours (contrast p-value ≤ 0.01). This 

was detected for three independent probe sets on the array designed to query the 

cdk4 transcript. Myc-induced cell cycle progression in β-cells was further aided 

by > 3-fold down-regulation at 8 hours of another known Myc target gene, the 

CDKI cdkn1b (p27
Kip1

), which inhibits G1/S-phase transition by association with 

the Cyclin E-Cdk2 complex (Yang et al., 2001) (Figure 4.2.22). Also, the 

expression of cks2, a Myc target gene whose product is involved in degradation of 

p27
Kip1

, was found to increase significantly from 8 hours following MycER
TAM

 

activation (contrast p-values ≤ 0.01 for all subsequent time points), with a 

particularly large increase in expression of > 12-fold detected at the 16 hour time 

point. These data fit well with the role for Myc in early cell cycle progression 

described in Section 1.1.4. 

                                                 

3
 http://www.myc-cancer-gene.org/site/mycTargetDB.asp 
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Interestingly, the cdc2a gene, whose product Cdk1 is essential for mammalian cell 

division (Th'ng et al., 1990; Itzhaki et al., 1997), was also found to be highly up-

regulated; 3-fold at 8-hours (contrast p-value ≤ 0.05), 12-fold at 16 hours (contrast 

p-value ≤ 0.05), and 3-fold at 32 hours (contrast p-value ≤ 0.05; see Figure 

4.2.20). Cdk1 has been found to substitute for other CDKs to drive cell cycle 

progression (Santamaria et al., 2007), and is particularly associated with Cdk4 in 

G1/S-phase progression (reviewed in Kaldis and Aleem, 2005). This may indicate 

a significant role for Cdk1 in the promotion of cell cycle progression following 

MycER
TAM

 activation in β-cells. Alternatively, it has been shown that premature 

activation of Cdk1 can lead to mitotic catastrophe in G2/M-phase and apoptosis 

(upstream of p53-induced MOMP) in neurons (Castedo et al., 2002). Given that 

this CDK was detected at later time points, this may indicate a possible role for 

Cdk1 in the MycER
TAM

-induced apoptosis pathways. 

In addition to this, the CDKI cdkn2c (p18
Ink4c

), which inhibits G1/S-phase 

transition via interactions with Cdk4 (Serrano et al., 1993) and Cdk6 (Guan et al., 

1994), was down-regulated 3-fold at 4 hours. However, by 16 hours the 

expression of cdkn2c (p18
Ink4c

) had risen dramatically by 6-fold . In addition, the 

CDKI cdkn1a (p21
Cip1

) – a downstream target of the tumour suppressor p53 – was 

up-regulated 2-fold at 8 hours (Figure 4.2.23), together with significant changes in 

expression less than 2-fold also detected at 4 hours and 8 hours (contrast p-value ≤ 

0.01). These results could indicate that cell cycle arrest is associated with 

promotion of apoptosis by MycER
TAM

, or that p53-induced cdkn1a expression 

results from activation of the DNA damage response pathway in relation to 

apoptosis, as discussed in Section 4.2.9.1. 
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Table 4.2.2: Genes relating to cell cycle showing significant change in expression following 

activation of MycER
TAM

 (p-value ≤ 0.05 for 4OHT term) in pancreatic β-cells. Red = ≥ 2-fold 

up-regulation; Blue = ≥ 2-fold down-regulation. ‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-

value ≤ 0.01. 

  

Fold change from control 

  Gene 

Symbol GenBank 

4 

hours 

8 

hours 

16  

hours 

32 

hours 

4OHT 

p-value Biological role 

ccna2 X75483 0.91 ** 5.41 * 14.48 ** 3.11 **   0.01087 
G1/S and G2/M 

cell cycle 

ccnb1 NM_007629 1.07 3.37 ** 11.07 ** 3.49 **   0.00214 G2/M cell cycle 

ccnd1 NM_007631 2.02 ** 2.25 * 0.84 * 1.93   0.00163 G1/S cell cycle 

ccnd1 NM_007631 1.92 ** 3.93 * 1.19 * 3.21   0.01484 G1/S cell cycle 

ccnd1 NM_007631 3.59 ** 4.3 * 1.68 * 3.41   0.00387 G1/S cell cycle 

ccnd2 NM_009829 1.68 * 0.72 2.18 3.01 *   0.02235 G1/S cell cycle 

ccnd2 NM_009829 2.3 * 2.02 1.3 2.29 *   0.02619 G1/S cell cycle 

ccnd2 AK007904 2.05 * 0.67 1.99 2.52 *   0.01481 G1/S cell cycle 

ccne1 NM_007633 1.8 ** 3.35 ** 8.21 ** 1.82 **   0.00128 G1/S cell cycle 

ccne1 BB293079 1.82 ** 7.54 ** 1.86 ** 2.13 **   2.73E-05 G1/S cell cycle 

ccne2 AF091432 3.04 ** 8.16 ** 7.78 ** 8.86 **   0.00087 G1/S cell cycle 

cdc2a NM_007659 1.06 4.54 ** 14.85 ** 3.45 **   0.00419 
G1/S and G2/M 

cell cycle 

cdk2 AV303171 1.075 1.331 0.912 0.902   NA 
G1/S and G2/M 

cell cycle 

cdk2 NM_016756 1.024 0.846 1.67 1.225   NA 
G1/S and G2/M 

cell cycle 

cdk4 NM_009870 2.24 0.94 10.97 ** 1.17   0.04959 G1/S cell cycle 

cdk4 NM_009870 2.03 0.74 6.52 ** 1.63   0.02607 G1/S cell cycle 

cdk4 NM_009870 2.18 0.9 6.34 ** 1.38   0.02168 G1/S cell cycle 

cdkn1a AK007630 1.56 ** 2.12 ** 1.62 ** 1.49   0.00501 Cell cycle arrest 

cdkn1b NM_009875 1.23 0.29 ** 0.76 * 0.96 **   0.01016 Cell cycle arrest 

cdkn2c BC027026 0.32 ** 1.15 7.05 ** 0.56 *   0.02466 Cell cycle arrest 

cks2 NM_025415 0.91 3.26 ** 13.58 ** 4.86 **   0.004375 G1/S cell cycle 

cks2 NM_025415 0.96 2.86 ** 12.67 ** 2.33 **   0.011831 G1/S cell cycle 
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4.2.8.2 MycERTAM activation-induced cell cycle entry of suprabasal 

keratinocytes 

The transcriptional role of Myc on the cell cycle was less pronounced for 

suprabasal keratinocytes when compared to β-cells. Of the 1,821 probe sets (1,617 

genes) found to change significantly upon MycER
TAM

 activation within the first 8 

hours for the suprabasal keratinocytes, 144 probe sets (129 genes) were 

designated as relating to cell cycle and proliferation by GO classifications. Of 

these, 73 probe sets (68 genes) showed an increase in expression (Supplementary 

Table 3), and 74 probe sets (65 genes) showed a decrease in expression 

(Supplementary Table 4). Several of the genes defined in these lists are more 

commonly classified as relating to angiogenesis or cell survival, so subheadings 

have been used to make this clear. Genes of interest described in this section are 

shown in Table 4.2.3, and are coloured in relation to their expression (≥ 2-fold, 

red; ≤ 2-fold, blue). 

Cell Cycle Genes 

As with the pancreas, the cyclin gene ccnd2 (Figure 4.2.16) was up-regulated 

greater than 2-fold at 8 hours. No significant change was detected at 4 hours, and 

by 16 hours, expression levels had returned to normal. However, a 2-fold increase 

was once again detected at 32 hours, suggesting peaks in expression at 8 hrs and 

32 hrs. This pattern of expression in the suprabasal keratinocytes was detected for 

many genes, and is likely due to the delayed activity of MycER
TAM

 following 

topical application, as described in Section 4.2.6. This indicates that there may be 

a delay of roughly 8 hours following each daily dose of 4OHT. However, this 

expression profile was detected for only one of three probe sets specific for the 

ccnd2 gene, and the time point specific contrast p-values were not found to be 

significant. 

The cyclin D3 gene ccnd3 also showed a significant increase in expression of 2-

fold at 8 hours (contrast p-value ≤ 0.01), with significant but low magnitude 

changes also detected at 4 hours and 16 hours (contrast p-values ≤ 0.01). 

However, later cyclin genes, such as ccna and ccne, showed no significant change 
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within the suprabasal keratinocytes. Also, the ccnb1 gene, whose product is 

involved predominantly in later cell cycle events, was shown to have a significant 

change within the skin. However in contrast to the pancreas, the detected change 

was a significant 2-fold down-regulation at 8 hours (contrast p-values ≤ 0.05; 

Figure 4.2.19).  

The CDK gene cdk4, whose product forms a complex with Cyclin D2 to promote 

cell cycle entry, was highly up-regulated at 8 hours, with a fold change of almost 

12 (Figure 4.2.21), although this change was not seen at the later time points. This 

expression profile was seen across several probe sets suggesting this accurately 

represented the change in gene-expression. Intriguingly, however, this was not 

confirmed by qRT-PCR (Section 4.2.12.4). Also, as with the pancreas, no change 

was detected for the Cyclin E-associated CDK gene, cdk2. However cdk7, which 

has a role in both activating cyclin complexes and regulating transcription, was 

also 2-fold up-regulated at 8 hours (contrast p-values ≤ 0.01), although no change 

was detected at the later time points. 

As with the pancreas, the CDKI gene cdkn1b (p27
Kip1

) (Figure 4.2.22) was down-

regulated greater than 2-fold throughout the time course (with a < 2-fold change 

in expression at 8 hours, contrast p-value ≤ 0.01), although a lower change in 

expression was detected using qRT-PCR (Section 4.2.12.6). This may indicate a 

loss in cell cycle inhibitory proteins during MycER
TAM

-induced proliferation. 

Oddly, the loss of expression of cdc25a, which is required for G1/S-phase cell 

cycle transition by activating Cdk1 (Galaktionov and Beach, 1991), seemed 

incompatible with the proliferative response seen in the cells.  

A significant loss in expression, particularly at 8 hours following MycER
TAM

 

activation (contrast p-value ≤ 0.01), was detected for the epidermal growth factor 

gene egf and its receptor egfr, whose products are involved in stimulating 

epidermal growth (Cohen and Elliott, 1963), although the relevance of the egf 

pathway to MycER
TAM

-promotion of proliferation is not clear.  
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Angiogenesis Genes 

The loss of expression at 8 hours seen for the epidermal growth factor egf and its 

receptor egfr, whose products are involved in stimulating epidermal growth 

(Cohen and Elliott, 1963), seemed incompatible to the observed phenotype. The 

placental growth factor gene, pgf¸ showed a marked increase throughout the time 

course, increasing in expression by 2-fold at 8 hours and 16 hours (contrast p-

values ≤ 0.01), and 8-fold at 32 hours (contrast p-value ≤ 0.01). Pgf is a member 

of the vascular endothelial growth factor (VEGF) family, and has been shown to 

result in increased numbers, branching and size of dermal blood vessels following 

over-expression in basal keratinocytes of adult mice (Odorisio et al., 2002). This 

may indicate a role in the development of neovasculature seen following 

MycER
TAM

 activation in the suprabasal keratinocytes (Pelengaris et al., 1999).  

vegfc, a further member of the VEGF family, showed down-regulation of 2-fold at 

8 hours, although this change was not classed as significant from the contrast p-

values and was not seen at any other time point. Further VEGF genes, vegfa and 

vegfb, were not classed as showing significant change upon MycER
TAM

 activation 

by Envisage, although vegfa did show a significant 2-fold increase in expression 

at 8 hours (contrast p-value ≤ 0.05). These results may indicate a transcriptional 

response upon MycER
TAM

 activation for genes relating to neovascular growth. 

However, given that prominent angiogenesis is not detected in the skin until 3-4 

days following MycER
TAM

 activation (Pelengaris et al., 1999), it is likely that the 

short time course considered here is too early to identify a transcriptional response 

in genes relating to vascularisation.  

DNA Damage Genes 

The checkpoint kinase gene chk1, whose product is involved in Atr-related DNA 

damage control, was down-regulated by greater than 2-fold at 8 hours. However, 

this change was seen for only one of the three probe sets specific for the chk1 

gene, and was not detected as significant in the contrasts. In general, the change in 

expression for chk1 was limited, which indicates that DNA damage checkpoints 

were not activated within the suprabasal keratinocytes upon MycER
TAM

 



272 

 

activation, allowing proliferation to continue unchecked. As shown below in 

Section 4.2.9, this is in contrast to the DNA damage response seen in the 

pancreas.  

Cell Survival Genes 

akt1 and akt2, members of the Akt survival pathway, showed greater than 2-fold 

change in expression at 8 hours and 32 hours (contrast p-values ≤ 0.01) suggesting 

a possible role for the Akt pathway in promoting survival in the skin, however this 

result was not confirmed by using qRT-PCR (Figure 4.2.25). This is discussed in 

greater detail below in Section 4.2.9.2. 

Summary 

Activation of MycER
TAM

 in inv-mycER
TAM

 mice results in entry of suprabasal 

keratinocytes into the cell cycle (Pelengaris et al., 1999), and this phenotype was 

confirmed through immunofluorescence staining with the cell cycle marker Ki67 

(Figure 4.2.1). However, many genes that would be expected to be involved in 

MycER
TAM

-regulated promotion of suprabasal keratinocyte proliferation (e.g. 

ccnd2, cdk4, and cdkn1b) did not appear to show expected changes in expression 

that were seen in the pancreas (Section 4.2.8.1).  

As previously described, turnover of cells in the pancreas is far slower than that of 

the skin. Whilst it is important for the skin to be in a constant state of dynamic 

equilibrium between cell proliferation and cell loss from the skin surface, β-cells 

must remain more stable in order to maintain the delicate balance of Insulin in the 

blood. Therefore, whilst islet cells from VT control mice are largely quiescent, the 

basal stem cells of the skin epidermis are undergoing cell cycle progression during 

normal homeostasis (Section 1.2). Given that the number of suprabasal cells 

induced to proliferate within 32 hrs of MycER
TAM

 activation was small, changes 

in expression of cell cycle genes likely show less significance than for the islets. 
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Table 4.2.3: Genes relating to cell cycle showing significant change in expression following 

activation of MycER
TAM

 (p-value ≤ 0.05 for 4OHT term) in suprabasal keratinocytes. Red = 

≥ 2-fold up-regulation; Blue = ≥ 2-fold down-regulation. ‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-

test p-value ≤ 0.01. 

  

Fold change from control 

  Gene 

Symbol GenBank 

4  

hours 

8  

hours 

16  

hours 

32 

hours 

4OHT 

p-value Biological role 

akt1 NM_009652 0.79 3.33 ** 1.07 2.72 ** 0.003781 Cell survival 

akt2 NM_007434 1.24 2.3 ** 1.1 2.37 ** 0.007853 Cell survival 

ccnb1 NM_007629 0.69 0.44 * 1.36 0.66 0.002143 G2/M cell cycle 

ccnd2 NM_009829 1.32 1.52 1.01 1.42 0.022348 G1/S cell cycle 

ccnd2 NM_009829 0.89 0.9 1.3 0.87 0.026191 G1/S cell cycle 

ccnd2 AK007904 1.63 3 1.03 2.4 0.014806 G1/S cell cycle 

ccnd3 NM_007632 0.84 ** 2.64 ** 0.85 ** 3.86 0.000512 G1/S cell cycle 

cdc25a C76119 1.19 0.44 1.08 0.81 0.00184 
Activation of 

Cdk1 

cdk2 AV303171 1.136 1.05 1.022 0.926 NA G1/S cell cycle 

cdk2 NM_016756 0.885 0.882 1.032 0.945 NA G1/S cell cycle 

cdk4 NM_009870 1.83 12.73 ** 0.88 1.93 0.049585 G1/S cell cycle 

cdk4 NM_009870 1.5 11.77 ** 1.09 1.89 0.026067 G1/S cell cycle 

cdk4 NM_009870 1.64 11.53 ** 0.91 1.63 0.021676 G1/S cell cycle 

cdk7 U11822 0.91 2.24 ** 1.05 1.57 * 0.002113 
Cell cycle 

regulation 

cdkn1a AK007630 1.01 1.4 * 1.1 0.91 0.005006 Cell cycle arrest 

cdkn1b NM_009875 0.2 0.51 ** 0.5 1.06 * 0.010159 Cell cycle arrest 

chk1 BB298208 0.88 1 1.36 1.28 0.004048 
DNA damage 

checkpoint 

chk1 C85740 0.83 0.43 1.45 1.15 0.004993 
DNA damage 

checkpoint 

chk1 NM_007691 0.7 0.8 1.47 1.4 0.005829 
DNA damage 

checkpoint 

egf NM_010113 1.64 ** 0.47 ** 0.93 0.91 0.027391 Growth factor 

egfr AV369812 1.15 0.4 ** 1.37 * 0.49 ** 0.000479 
Growth factor 

receptor 

pgf NM_008827 1.1 2.33 ** 2.23 ** 8.19 ** 0.031444 Angiogenesis 

vegfa U50279 0.785 1.998 * 1.16 1.026 NA Angiogenesis 

vegfa NM_009505 1.086 2.139 * 1.155 0.734 NA Angiogenesis 

vegfb U48800 0.553 * 1.796 * 0.908 1.287 NA Angiogenesis 

vegfc BB089170 0.79 ** 0.39 0.85 0.79 0.016314 Angiogenesis 
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4.2.9 Activation of MycER
TAM

 in vivo leads to up-regulation of 

apoptotic death pathways in pancreatic β-cells but not in 

suprabasal keratinocytes 

In stark contrast to the proliferation seen in the suprabasal keratinocytes, the 

overwhelming phenotypic response to activation of transgenic MycER
TAM

 in 

pancreatic β-cells is apoptosis (Pelengaris et al., 2002b). In this section, the 

difference in transcriptional regulation of genes relating to apoptosis and cell 

survival are discussed. 

4.2.9.1 MycERTAM activation-induced apoptosis of pancreatic β-cells 

Of the 2,482 probe-sets found to change significantly upon Myc activation for the 

pancreas within the first 4 to 8 hours, 92 (representing 79 unique genes) were 

designated as relating to cell death and apoptosis by GO classification. Of these, 

42 probe sets (32 genes) showed an increase in expression (Supplementary Table 

5), and 50 probe sets (47 genes) showed a decrease in expression (Supplementary 

Table 6). Genes of interest described in this section are shown in Table 4.2.4, and 

are coloured in relation to their expression (≥ 2-fold, red; ≤ 2-fold, blue).  

Early activation of key regulators of apoptosis featured prominently in these data. 

The tumour suppressor cdkn2a, which encodes for the CDKI p16
Ink4a

 and the 

alternative reading frame tumour suppressor p19
Arf 

(p14
Arf

 in humans), was 

significantly up-regulated 2-fold at 4 hours and remained at an elevated level 

throughout the time course (Figure 4.2.26). This indicated a possible role for the 

p19
Arf

/p53/Mdm2 tumour suppressor pathway in Myc-mediated apoptosis.  

The role of Myc in this pathway has previously been identified (Zindy et al., 

1998; Eischen et al., 1999). Also, in the study of Lawlor et al. (2006), the RM 

double transgenic model for Myc deregulation was used to identify genes whose 

expression was altered immediately upon Myc activation and subsequently 

reversed upon deactivation of MycER
TAM

, thereby suggesting a key role in Myc-

induced tumour maintenance. No change was observed in the study for the gene 
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cdkn2a (p19
Arf

), nor in the p53-target genes cdkn1a (p21
Cip1

) and mdm2, 

indicating that concomitant over-expression of BclXL may protect against 

apoptosis by limiting Myc-induced expression of cdkn2a (p19
Arf

), which has also 

been noted by (Nilsson and Cleveland, 2003).  

It is also worth noting the work of Finch et al. (2006), who showed no role for 

p19
Arf

 in Myc-induced apoptosis in β-cells, as loss of p19
Arf 

in the MycER
TAM

 

transgenic model resulted in mainly increased proliferation, not suppression of 

apoptosis. However, the role of p19
Arf 

in defending against aberrant oncogenic 

Myc-induced hyper-proliferation may be related to cell cycle arrest, and not 

directly to apoptosis pathways. 

Expression of genes involved in the DNA damage response appeared to play a 

large part in Myc-induced apoptosis in this model (Supplementary Table 7). A 

large increase in expression was detected after 8 hours of Myc activation for 

rad51 and h2afx, whose protein products are involved in homologous 

recombination and repair of DNA. Also, significant up-regulation of hus1 and 

rad1 – whose products form the 9-1-1 DNA damage sensing machinery with 

Rad9 – indicated that oncogenic stress through deregulation of Myc resulted in the 

induction of DNA double strand breaks.  

The gene for the DNA-damage mediator Atr was also found to be up-regulated by 

2-fold throughout the time course from 4 hours (Figure 4.2.27), and the associated 

checkpoint kinases chk1 and chk2 were up-regulated 2-fold from 8 hours (contrast 

p-values ≤ 0.05 at 8 hours, ≤ 0.01 at 16 and 32 hours; Figure 4.2.28). The gene for 

the double-strand break-related DNA damage mediator Atm showed no 

significant change in expression, although it has been shown that Atm plays a 

significant role in Myc-induced apoptosis in lymphomagenesis in mice (Maclean 

et al., 2007). The genes cdkn2a (p19
Arf

)
 
(Zindy et al., 1998; Dang, 1999)

 
and atr 

(Schlosser et al., 2003) are previously categorised Myc target genes. The 

checkpoint kinase genes chk1 and chk2 have not been previously classified as 

Myc target genes, indicating that the observed changes in expression may be 

downstream of Atr. 
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The anti-apoptotic function of BclXL seen in RM double transgenic mice 

(Pelengaris et al., 2002b) indicates that MycER
TAM

-induced apoptosis is related to 

Bax/Bak-mediated intrinsic mitochondrial pathway. Activation of this intrinsic 

apoptotic pathway was evident at the transcriptional level by 2-fold increased 

expression of bax and the somatic Cytochrome c gene, cycs (Figure 4.2.29) at 16 

hours after MycER
TAM

 activation, together with lower significant fold-changes at 

all other time points. Both bax (Mitchell et al., 2000; Fernandez et al., 2003) and 

cycs (Guo et al., 2000; Morrish et al., 2003) have been previously shown to be 

putative direct Myc targets due to the presence of non-canonical E-box Myc-Max 

binding sites, and association of Myc with the bax promoter has been 

demonstrated through ChIP (Fernandez et al., 2003). However, given that the 

increased expression of these genes is detected at 16 hours, it is unlikely that these 

are direct MycER
TAM

 targets in this case, and it is likely that changes in 

expression occur downstream of MycER
TAM

 activation. 

MycER
TAM

-mediated expression of bax may be a direct consequence of p53 

stabilisation, also suggested by cdkn1a (p21
Cip1

) up-regulation. However, no 

significant change in expression was detected in other pro-apoptotic p53-target 

genes such as the Bcl2 family members bbc3, noxa, bim and bid. This indicates 

that p53-dependent activation of Bax may occur not through transcriptional 

regulation of pro-apoptotic Bcl2 members, but through direct associations of p53 

within the cytosol (Mihara et al., 2003; Chipuk et al., 2004; Erster and Moll, 

2005). The mitochondrial respiratory gene for Endonuclease G, endog (Figure 

4.2.30), was also found to be up-regulated after only 4 hours of MycER
TAM

 

activation, further indicating the promotion of MOMP in response to MycER
TAM 

activation. This short time scale also supports the early increase in perinuclear 

Caspase 3 staining shown in Figure 4.2.1a. 

As well as the intrinsic mitochondrial apoptotic pathway, Myc activation in vitro 

sensitises cells to extrinsic signals through the TNF death receptor Fas (Janicke et 

al., 1994; Klefstrom et al., 1994; Hueber et al., 1997). Expression of the fas gene 

was increased dramatically (~ 6-fold) after only 4 hours of Myc activation in the 

pancreas, and remained highly expressed throughout the 32 hour time course. This 
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indicated a possible direct transcriptional role for Myc in the extrinsic Fas 

pathway, although these changes were not detected as significant through the use 

of contrast t-tests. Also flip (also known as cflar), whose product acts to inhibit 

association of Fadd with the Fas ligand/receptor complex, was down-regulated 2-

fold at 32 hours. However, the large change in expression seen for fas in the 

microarray study was not confirmed using qRT-PCR (Figure 4.2.31). As 

described in Section 4.2.12.10, this was due to a problem relating to probe 

annotations. 

The expression of both cdc2a and birc5 showed almost identical profiles of up-

regulation upon activation of MycER
TAM

 – 3-fold at 8-hours, 12-fold at 16 hours, 

and 3-fold at 32 hours. Under normal conditions, Cyclin B-Cdk1 complexes 

phosphorylate and activate the IAP Survivin (birc5), which inhibits apoptosis and 

allows proliferation to continue. However, given that apoptosis is not inhibited in 

this case, it is likely that the role of these genes is in proliferation, and not 

survival. Survivin is essential for normal mitotic regulation in human cell lines 

due to its role in chromatid segregation and microtubule assembly in late mitosis 

(Yang et al., 2004), and expression of birc5 is often seen in cells undergoing rapid 

proliferation (Ambrosini et al., 1997). The high increase in expression of both of 

these genes at the later 16 hour time point may therefore be linked to the 

predominant role of birc5 in the G2/M transition phase of the cell cycle (Li et al., 

1998a). Also, premature activation of Cdk1, prior to G2/M-phase cell cycle, has 

previously been shown to promote mitotic catastrophe and apoptosis, and this has 

been tied to the effects of DNA damage (Castedo et al., 2002). The increase in 

expression detected within 8 hours of MycER
TAM

-activation may therefore 

indicate a possible role for this CDK in oncogenic Myc-induced apoptosis. 

Together, these data suggest a cooperative role for a variety of Myc targets in 

promoting apoptosis. We propose a model showing that sustained Myc activation 

results in DNA damage (as previously reported), which correlates with up-

regulation of genes involved in the DNA-damage response. This leads to 

activation of p53 and Bax-mediated release of Cytochrome c from the 

mitochondrion, resulting in apoptosis. Given the lack of transcriptional changes 
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seen in p53-regulated pro-apoptotic members of the Bcl2 superfamily, it is 

possible that this occurred through direct activation of Bax, or inhibition of BclXL 

and Bcl2, by accumulated active p53 in the cytosol. However, this cannot be 

shown from the microarray data, and further proteomics analysis would be 

required to confirm or refute this.  

Activation of MOMP was further evidenced by an increase in expression of the 

pro-apoptotic mitochondrial factors cycs and endog, which may indicate 

replenishment of proteins lost from the mitochondria during apoptotic signalling. 

Release of Cytochrome c from the mitochondria leads to a caspase activation 

cascade, resulting in cell death. Increased expression of the tumour suppressor 

cdkn2a (p19
Arf

) was also detected, which may have been involved in stabilisation 

of the p53 tumour suppressor by inhibition of Mdm2, or in promoting cell cycle 

arrest prior to apoptosis together with up-regulation of the p53-target gene cdkn1a 

(p21
Cip1

). 
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Table 4.2.4: Genes relating to apoptosis showing significant change in expression following 

activation of MycER
TAM

 (p-value ≤ 0.05 for 4OHT term) in pancreatic β-cells. Red = ≥ 2-fold 

up-regulation; Blue = ≥ 2-fold down-regulation. ‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-

value ≤ 0.01. 

  

Fold change from control 

  Gene 

Symbol GenBank 

4  

hours 

8  

hours 

16  

hours 

32 

hours 

4OHT 

p-value Biological role 

atm AK021102 0.787 0.545 1.173 0.669   NA DNA damage response 

atm NM_007499 0.84 0.442 ** 1.038 1.11   NA DNA damage response 

atr AF236887 2.31 4.04 ** 2.57 2.87   4.44E-05 DNA damage response 

bax BC018228 1.17 1.7 ** 2.55 ** 1.83 **   0.00104 Induction of MOMP 

bbc3 AW489168 1.401 0.701 1.065 1.154   NA Induction of MOMP 

bid AV376592 1.165 0.834 1.137 1.14   NA Induction of MOMP 

bid NM_007544 1.097 1.063 1.006 1.03   NA Induction of MOMP 

bid NM_007544 0.986 0.852 1.163 1.283   NA Induction of MOMP 

birc5 BC004702 0.542 * 2.034 ** 17.28 ** 1.886 **   NA Inhibitor of apoptosis 

cdc2a NM_007659 1.06 4.54 ** 14.85 ** 3.45 **   0.00419 Cell cycle 

cdkn1a AK007630 1.56 ** 2.12 ** 1.62 ** 1.49   0.00501 Cell cycle arrest 

cdkn2a NM_009877 2.54 ** 2 ** 1.49 ** 2.7 **   0.00026 cell cycle arrest 

cflar AK020765 0.81 * 0.79 * 1.2 0.49 **   0.00268 Inhibitor of Fas signalling 

cflar BE284491 0.83 * 0.88 * 0.55 0.43 **   0.0443 Inhibitor of Fas signalling 

cflar BE284491 1.02 * 0.98 * 1 0.94 **   0.00663 Inhibitor of Fas signalling 

chk1 NM_007691 1.52 2.19 * 3.12 ** 1.65 **   0.00405 DNA damage response 

chk1 C85740 2.05 5.34 * 6.01 ** 3.86 **   0.00499 DNA damage response 

chk1 BB298208 1.15 3.84 * 2.76 ** 2.05 **   0.00583 DNA damage response 

chk2 NM_016681 1.22 2.17 ** 3.81 ** 2.29 **   0.01976 DNA damage response 

cycs NM_007808 1.15 * 2.04 ** 1.64 ** 2.06 **   0.04759 Activation of Caspase 9 

cycs NM_007808 0.96 * 1.02 ** 2.72 ** 2.42 **   0.00164 Activation of Caspase 9 

endog AV104666 2.94 ** 3.02 ** 1.48 ** 1.85 **   1.19E-05 DNA fragmentation 

endog NM_007931 2.66 ** 3.12 ** 2.27 ** 2.07 **   7.61E-06 DNA fragmentation 

fas BG976607 2.74 1.87 2.58 2.58   0.00014 Death signal receptor 

fas BG976607 9.9 13.59 9.74 11.38   0.00632 Death signal receptor 

fas BG976607 4 7.72 2.13 4.96   0.00112 Death signal receptor 

fas BG976607 6.57 6.48 3.57 14.03   0.00221 Death signal receptor 

h2afx NM_010436 1.16 2.42 ** 5.22 ** 1.4 **   0.00117 DNA damage repair 

hus1 AF076845 1.45 1.1 2.35 ** 1.3   0.01463 DNA damage marker 

hus1 NM_008316 0.93 2.13 2.07 ** 1.67   0.01852 DNA damage marker 

pmaip1 NM_021451 1.13 1.15 1 0.88   0.02258 Induction of MOMP 

rad1 NM_011232 2.08 ** 2.87 ** 2.2 * 1.76   0.00377 DNA damage marker 
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4.2.9.2 Survival of suprabasal keratinocytes following MycERTAM 

activation 

The primary phenotype upon activation of MycER
TAM

 in the suprabasal 

keratinocytes is proliferation (Pelengaris et al., 1999), as suprabasal cells that 

have begun a process of terminal differentiation re-enter the cell cycle (Section 

1.2.2). Whilst conventional apoptosis does not feature in the maintenance of 

epidermis homeostasis, it has been suggested that terminal differentiation of skin 

keratinocytes may itself act to control against aberrant growth, since affected cells 

will ultimately be shed and removed from the surrounding micro-environment 

(Jensen and Watt, 2006).  

Of the 1,821 probe sets (1,617 genes) found to change significantly upon 

MycER
TAM

 activation within the first 8 hours for the suprabasal keratinocytes, 73 

(66 genes) were found to relate to apoptosis and cell death by GO classification. 

Of these, 42 probe sets (37 genes) showed an increase in expression 

(Supplementary Table 8), and 31 probe sets (29 genes) showed a decrease in 

expression (Supplementary Table 9). Genes of interest described in this section 

are shown in Table 4.2.5, and are coloured in relation to their expression (≥ 2-

fold, red; ≤ 2-fold, blue). 

Of particular interest were the two probe sets for the survival factor gene igf1 

(Figure 4.2.32), whose product has been shown to inhibit Myc-induced apoptosis 

in vitro by blocking Cytochrome c release from the mitochondria through the 

Akt1 tumour suppressor pathway (Lowe et al., 2004). igf1 was significantly up-

regulated greater than 2-fold by 8 hours and remained up-regulated at the later 32 

hour time point for the skin (contrast p-values ≤ 0.01), suggesting a possible 

survival pathway allowing the suprabasal keratinocytes to bypass the Myc-

induced apoptosis seen in the β-cells. In conjunction with this, the thymoma viral 

proto-oncogene akt1 was significantly up-regulated 3-fold at 8 hours and 2-fold at 

32 hours (Figure 4.2.25), and a similar expression profile was also seen for akt2, a 

second member of the Akt protein kinase family. This suggested that Igf1-
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mediated survival signalling following MycER
TAM

 activation in the suprabasal 

keratinocytes occurred through the Akt protein kinase pathway.  

However, as can be seen in Figure 4.2.32 and Figure 4.2.25, the change in 

expression identified using the microarrays was not replicated with qRT-PCR for 

igf1 and akt1. Whilst a change in expression was detected for Igf1, it was below 

the 2-fold threshold. However, given the increased sensitivity of the qRT-PCR 

procedure, this may still represent a significant change in expression. 

Interestingly, qRT-PCR also identified a significant increase in expression for igf1 

in the β-cells that was not detected in the microarrays, suggesting that increase of 

igf1 expression may occur in response to MycER
TAM

 for both tissues. Validation 

of the results seen for akt1 using qRT-PCR identified no change in expression, 

suggesting that this may represent a false positive result. This is discussed in more 

detail in Section 4.2.12.1. 

In comparison to results seen for the pancreatic β-cells, no expression change was 

detected for genes involved in the DNA damage response, such as atr, chk1 or 

chk2. However, activation of such proteins (e.g. through phosphorylation events) 

within MycER
TAM

-activated keratinocytes would need to be investigated further 

before ruling out the DNA damage pathway. Interestingly, the growth arrest and 

DNA-damage-inducible 45 gamma gene gadd45g, whose product is involved in 

the G2/M DNA damage checkpoint, showed a highly significant 4-fold change in 

expression at 4 hours, and remained significantly up-regulated throughout the time 

course (contrast p-values ≤ 0.01). The pro-apoptotic Bcl2 family member pmaip1 

(Noxa) showed a decrease in expression of 2-fold at 8 hours. Oddly, a 2-fold loss 

of expression was also seen for the inhibitor of apoptosis protein Birc4 within 8 

hours of MycER
TAM

 activation. 

Several members of the extrinsic apoptosis pathway were also evident in this list, 

including a probe set representing the fas TNF death receptor gene showing a 5-

fold up-regulation at 8 hours. However, this was not maintained throughout the 

time course, and a 2-fold down-regulation was detected at 32 hours for this and 

two other probe sets. However, as described in Section 4.2.12.10, it was later 
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discovered that these probe sets did not in fact relate to the Fas receptor, but that 

an error in probe annotation had occurred.  

Also seen were several members of the TNF superfamily of apoptosis-inducing 

receptors. tnfrsf12a, which has been found to be involved in inducing both 

apoptosis and angiogenesis (Wiley et al., 2001; Wiley and Winkles, 2003), 

showed a significant increase in expression of 3-fold at 8 hours. tnfrsf4, whose 

product has been implicated in promoting survival through induction of Bcl2 and 

BclXL expression in CD4 T cells (Rogers et al., 2001), similarly showed an 

increase in expression of 2-fold at 8 hours. 

It appears from these data that the response in apoptosis-related genes for the 

suprabasal keratinocytes was quite different from that of the β-cells. In particular, 

in contrast to the skin, various members of the DNA damage checkpoint pathway 

were up-regulated in the β-cells following MycER
TAM

 activation. Induction of 

survival related genes igf1, akt1 and akt2 suggested a role for the Igf1-mediated 

Akt pathway in keratinocyte survival, although it is not clear whether apoptosis is 

predominantly inhibited via the Igf1 signalling pathways by preventing MOMP at 

the mitochondria, preventing activation of DNA damage response, or both. Since 

this analysis focuses on RNA expression levels, it is not possible to conclusively 

say whether or not DNA damage pathways are active in the skin, however it is 

likely that damaged DNA accumulates as the tumour progresses, but apoptosis is 

inhibited environmentally (such as through the Igf1 receptor survival pathways).  
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Table 4.2.5: Genes relating to apoptosis showing significant change in expression following 

activation of MycER
TAM

 (p-value ≤ 0.05 for 4OHT term) in suprabasal keratinocytes. Red = 

≥ 2-fold up-regulation; Blue = ≥ 2-fold down-regulation. ‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-

test p-value ≤ 0.01. 

  

Fold change from control 

  Gene 

Symbol GenBank 

4  

hours 

8  

hours 

16 

hours 

32 

hours 

4OHT 

p-value Biological role 

akt1 NM_009652 0.79 3.33 ** 1.07 2.72 **   0.00378 Cellular survival 

akt2 NM_007434 1.24 2.3 ** 1.1 2.37 **  0.007853 Insulin signalling 

atr AF236887 1.216 1.09 1.5 1.496   NA DNA damage response 

birc4 BF134200 0.51 ** 0.34 ** 1.12 0.87  0.005291 Inhibitor of caspases 

chk1 NM_007691 0.7 0.797 1.464 1.395   NA DNA damage response 

chk2 NM_016681 0.84 0.607 * 1.112 1.37   NA DNA damage response 

fas BG976607 0.84 1.13 2.12 ** 1.37   0.00014 Death signal receptor 

fas BG976607 1.35 0.58 1.52 ** 0.45   0.00632 Death signal receptor 

fas BG976607 0.85 5.35 0.86 ** 0.49   0.00112 Death signal receptor 

fas BG976607 0.8 1.37 1.15 ** 0.38   0.00221 Death signal receptor 

gadd45g AK007410 4.44 ** 5.44 ** 3.27 ** 2.87 **   1.30E-05 
DNA damage and growth 

arrest 

igf1 NM_010512 1.09 * 2.5 ** 1.61 2.35 **   0.00325 Proliferation and survival 

igf1 AF440694 1.8 * 2.31 ** 1.13 3.17 **   0.00013 Proliferation and survival 

igf1 BG075165 1.04 1.12 2.43 4   0.00084 Proliferation and survival 

igf1r BB446952 1.10 0.52 ** 0.848 0.74 *   NA Proliferation and survival 

pmaip1 NM_021451 1.43 * 0.44 ** 0.82 * 0.9 0.022582 Activation of Bax 

tnfrsf12a NM_013749 1.14 3.21 ** 1.44 ** 1.18 0.013343 
Apoptosis and 

angiogenesis receptor 

tnfrsf12a NM_013749 1.22 2.9 ** 1.4 ** 1.14 0.010767 
Apoptosis and 

angiogenesis receptor 

tnfrsf4 NM_011659 1.25 2.24 ** 1.94 ** 1.04 0.005782 Death signal receptor 
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4.2.10 Activation of MycER
TAM 

resulted in loss of differentiation 

markers in pancreatic β-cells and suprabasal keratinocytes 

4.2.10.1 MycERTAM activation-induced differentiation of pancreatic β-cells 

Activation of Myc is often associated with loss of differentiation of cells and has 

been found to block terminal differentiation in a variety of cell types (Coppola and 

Cole, 1986; Maruyama et al., 1987; Freytag, 1988). Ectopic expression of Myc 

has been shown to repress the expression of the Insulin gene, ins2 (Kaneto et al., 

2002; Laybutt et al., 2002; Pelengaris et al., 2002b). Genes related to β-cell 

differentiation and function are shown in Table 4.2.6, and are coloured in relation 

to their expression (≥ 2-fold, red; ≤ 2-fold, blue).  

Activation of MycER
TAM

 in the pancreatic β-cells resulted in down-regulation of 

ins2 by > 6-fold at 4 hours, indicating a loss in Insulin production within a short 

time period following Myc-deregulation. However, the expression level of ins2 

subsequently increased dramatically, showing a significant 12-fold increase in 

expression at 16 hours and 14-fold at 32 hours following MycER
TAM

 activation 

(Figure 4.2.13A). Since the number of β-cells used for RNA extraction was 

roughly identical for each sample, this indicates acute increase in the levels of 

Insulin production within the β-cells in response to continuous MycER
TAM

 

activation, and not in response to an increase in β-cell mass. 

Although a paradox at first glance, this response may be the result of a positive 

feedback loop. We have observed a period of hypoglycaemia in mice within the 

first 24 hours of MycER
TAM 

activation (Figure 4.2.13B), which correlates with an 

increase in Insulin release into the bloodstream (manuscript in preparation). As 

our microarray data show an increase in Insulin at the transcript level, this may 

also contribute to the onset of hypoglycaemia. The experiment described within 

this thesis was conducted in parallel with a further microarray study, observing the 

effects of the Glucagon-like peptide 1 (Glp1) analog, Exenatide (Amylin 

Pharmaceuticals, San Diego, CA; Eli Lilly and Company, Indianapolis, IN), on  

the diabetic phenotype associated with MycER
TAM

 activation in the pancreatic β-

http://en.wikipedia.org/wiki/Amylin_Pharmaceuticals
http://en.wikipedia.org/wiki/Amylin_Pharmaceuticals
http://en.wikipedia.org/wiki/Amylin_Pharmaceuticals
http://en.wikipedia.org/wiki/Eli_Lilly_and_Company
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cells. This branch of the study (which will not be discussed further) considered a 

further time point at 72 hours following MycER
TAM

 activation. Observation of 

ins2 levels at this later time point indicated that this period of high Insulin 

production is limited, as gene-expression subsequently returned to low levels (> 3-

fold down-regulated) indicative of loss of β-cell differentiation. This leads to a 

time window within the first two days where a balance is struck between an 

increased rate of Insulin production and the simultaneous loss of cells due to 

MycER
TAM

-driven apoptosis. 

It has recently been postulated that this period of hypoglycaemia is due to sudden 

ablation of β-cells, leading to synchronous release of large amounts of excess 

Insulin into the pancreatic ducts (Cano et al., 2007). However, recent work within 

the Michael Khan group at the University of Warwick has confirmed that this 

period of hypoglycaemia is also detected within non-apoptotic RM mice, 

indicating that it is unlikely to be attributable to β-cell apoptosis (manuscript in 

preparation). Also, this hypothesis does not account for the observed increase in 

Insulin production at the transcriptional level. This phenomenon is currently being 

studied by members of the group.  
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Figure 4.2.13: Activation of MycER
TAM

 in β-cells leads to loss of insulin production and 

increased blood glucose levels, with a brief window of hypoglycaemia in the first 24 hours  

A) Activation of MycER
TAM

 in pancreatic β-cells led to a rapid decrease in expression of Insulin 

(ins2), indicating a loss of differentiation correlating with increased β-cell proliferation. However, 

by 16 hours following MycER
TAM

 activation, ins2 expression had risen dramatically to > 12-fold 

indicating acute increase in Insulin production in β-cells showing deregulated Myc activity. By 72 

hours, ins2 expression had returned to low levels, indicating that this period of increased Insulin 

production is limited to only a few days, and soon returns to levels indicative of loss of β-cell 

differentiation. B) This change in expression of Insulin correlates with a period of hypoglycaemia 

observed in pIns-mycER
TAM

 (for example, indicated here at time 16 hrs) and in RM double 

transgenic mice (data not shown) following MycER
TAM

 activation, following acute release of 

Insulin into the bloodstream. 

  



292 

 

 

   



293 

 

Members of the homeodomain transcription factors Pdx1, Pax4, Hb9, Nkx2.2 and 

Nkx6.1 are essential in pancreatic development (Chakrabarti and Mirmira, 2003). 

Probe sets for the pancreatic and duodenal homeobox gene pdx1 (or ipf1), whose 

product activates transcription of the Insulin gene as well as a number of genes 

involved in Glucose-sensing (Hui and Perfetti, 2002), were also found to show a 

significant loss in expression at 8 hours following MycER
TAM

 activation (as well 

as significant loss in expression < 2-fold at all other time points), which correlated 

with the early reduction seen in Insulin production.  

The transcription factor nkx6.1, whose product is essential for β-cell 

differentiation (Sander et al., 2000), also showed significant down-regulation in 

the early stages of MycER
TAM

 activation, although expression of this gene was 

shown to increase during later stages, possibly linking with the induced 

hypoglycaemia. Further Pdx1-regulated genes slc2a2 (Glut2; previously classed 

as a putative Myc target gene ) and gck (Glucokinase), both part of the Glucose-

sensing machinery and involved in membrane transport and phosphorylation of 

Glucose respectively, also followed similar expression profiles, as did the gene for 

the Glucagon-like peptide, glp1, which acts to stimulate Insulin release and block 

Glucagon release (Nauck et al., 1993; Elahi et al., 1994; Kjems et al., 2003). 

These data indicated a loss in β-cell differentiation and carbohydrate metabolism 

function following activation of MycER
TAM

. 

In the study of Gu et al. (2004), the transcriptional profile of murine pancreas was 

categorised at various points during development. A group of 217 mature islet-

specific genes were defined, providing markers for fully differentiated β-cells. 

These 217 genes were represented by 378 probe sets on the MOE 430 Plus 2 

GeneChip arrays. Of these probe sets, 84 (60 genes) showed significant change in 

the pancreas upon activation of MycER
TAM

. Thirty eight of these probe sets (30 

genes) showed a 2-fold decrease within 8 hours of MycER
TAM 

activation 

(Supplementary Table 10), while only 7 probe sets (6 genes) showed a 2-fold 

increase (Supplementary Table 11). This indicated that activation of MycER
TAM

 

resulted predominantly in the loss of mature β-cell markers, and loss of cell 

differentiation.  
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Of the seven probe sets that showed an increase in gene-expression in the present 

study, four represented genes that were classified as being related to immune 

response through GO ontologies, including histocompatability two genes h2-l, h2-

aa and h2-d1 which were up-regulated greater than 2-fold throughout the time 

course. Other genes included pcnt, which is involved in centrosomal microtubule 

formation during mitosis; the E1A antagonist creg1, which acts to control 

regulation through the cell cycle (Veal et al., 1998; Flory et al., 2000); and pcsk2, 

which encodes a serine protease that plays a role in the processing of 

neuroendocrine precursors into mature hormones together with Pcsk1 and Pcsk3 

(Seidah and Chretien, 1997; Steiner, 1998). Pcsk2 plays an important role in 

converting Pro-Insulin to mature Insulin through proteolytic cleavage (Furuta et 

al., 1997; Furuta et al., 2001; Zhu et al., 2002). 

Of the thirty eight probe sets that showed a decrease in gene-expression upon 

MycER
TAM

 activation, the majority were involved in metabolism. The solute 

carrier family member Glut2 is a transmembrane protein responsible for the 

transport of Glucose through the cell membrane of β-cells and is an essential part 

of the Glucose sensing machinery. The corresponding gene, Slc2a2, was down-

regulated 2-fold at 8 hours indicating a reduction in the Glucose sensing capacity 

of the cells as previously described. The interleukin receptors il1r1 and il6ra were 

both down-regulated greater than 2-fold from 4 hours, indicating a reduced 

response to cytokine signalling through Il-1 and Il-6. Il-1 has been previously 

implicated in lipid metabolism by regulating Insulin levels and lipase activity 

under physiological conditions (Matsuki et al., 2003). The protein product of the 

kl gene (Klotho) is a hormone that acts to repress signalling by Insulin and Igf1 to 

prevent aging (Kurosu et al., 2005), and this was seen to be down-regulated 

greater than 2-fold at 8 hours.  

These data suggest that activation of MycER
TAM

 resulted in loss of function of β-

cells by interrupting the Glucose sensing machinery. Insulin production was also 

directly affected, resulting in poor glycaemic regulation, and onset of 

hyperglycaemia and diabetes as previously described. However, a short period of 

increased Insulin production was seen within the first day following onset of β-
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cell ablation, which corresponded to a previously identified „window‟ of 

hypoglycaemia seen in both pins-mycER
TAM

 and RM transgenic mice. It is worth 

noting that this change in Insulin expression would similarly affect the expression 

of the c-mycER
TAM

 transgene, leading to a feedback loop in the system. However, 

the levels of inactive MycER
TAM

 in β-cells is high prior to initial 4OHT treatment, 

and further expression of MycER
TAM

 through the short time course considered 

here contributes only minimally to transient MycER
TAM

 levels. 
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Table 4.2.6: Genes relating to differentiation showing significant change in expression 

following activation of MycER
TAM

 (p-value ≤ 0.05 for 4OHT term) in pancreatic β-cells. Red 

= ≥ 2-fold up-regulation; Blue = ≥ 2-fold down-regulation. ‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-

test p-value ≤ 0.01. 

  

Fold change from control 

  Gene 

Symbol GenBank 

4  

hours 

8  

hours 

16 

hours 

32  

hours 

4OHT 

p-value Biological role 

creg1 BC027426 2.09 ** 2.25 ** 1.52 ** 2.31 **   0.00171 E1A antagonist 

gck BC011139 0.62 0.63 1.27 1.19   NA Glucose metabolism 

gck L38990 0.59 * 0.14 ** 2.32 ** 0.87   NA Glucose metabolism 

glp1 AF276754 0.838 0.544 1.138 1.033   NA Glucose metabolism 

h2-aa AV086906 7.66 1.52 ** 0.74 * 4.26   0.00605 Chromosome structure 

h2-d1 M34962 4.55 2.25 1.59 5.37 *   0.00231 Chromosome structure 

h2-l M86502 4.93 1.99 1.94 5.96 **   0.00514 Chromosome structure 

h2-l M69068 4.72 1.91 1.9 7.18 **   0.00165 Chromosome structure 

il1r1 NM_008362 0.53 ** 0.43 ** 1.7 * 0.6 *   0.00289 Cytokine signalling 

il6ra X53802 0.36 ** 0.45 * 1 0.47 **   0.0047 Cytokine signalling 

ins2 NM_008387 0.15 * 0.32 11.8 ** 14.15 **   NA Glucose metabolism 

kl BQ175355 0.84 0.37 ** 0.98 0.89   0.0213 
Repression of Insulin 

and Igf1 signalling 

nkx2-2 NM_010919 0.62 0.74 * 1.78 0.47 **   0.02222 Pancreas development 

nkx6-1 AF357883 0.57 * 0.35 ** 2.63 ** 1.29   0.03537 Pancreas development 

pcnt NM_008787 2.63 4.27 4.98 ** 4.78   5.43E-06 
Centrosomal 

microtubule formation  

pcsk2 BB357975 2.41 ** 0.56 ** 0.78 ** 1.09 **   0.01453 Insulin processing 

pcsk2 AI839700 1 ** 0.48 ** 0.74 ** 0.96 **   0.03789 Insulin processing 

pcsk2 NM_008792 0.57 ** 0.39 ** 1.99 ** 2.68 **   0.04146 Insulin processing 

pdx1 AK020261 0.76 ** 0.22 ** 0.76 * 0.47 **   0.00821 Insulin production 

pdx1 AK020261 0.69 ** 0.38 ** 0.71 * 0.74 **   0.0414 Insulin production 

slc2a2 NM_031197 0.89 * 0.42 ** 0.97 0.77 **   0.00248 Glucose sensing 
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4.2.10.2 MycERTAM activation-induced differentiation of suprabasal 

keratinocytes 

Activation of MycER
TAM

 in suprabasal keratinocytes has previously been shown 

to result in loss of differentiation of suprabasal keratinocytes undergoing terminal 

differentiation (Pelengaris et al., 2002b). Analysis of genes showing significant 

changes in expression upon MycER
TAM

 activation identified key genes relating to 

keratinocyte differentiation. These are shown in Table 4.2.7, and are coloured 

based on their change in expression (≥ 2-fold, red; ≤ 2-fold, blue).  

Most notable within this list is the Involucrin gene inv, which encodes a key factor 

in the progression of differentiation of keratinocytes. Involucrin works together 

with its substrate transglutaminase to cross link with membrane proteins and 

provide support to the cell (Eckert and Green, 1986). inv expression was 

decreased significantly throughout much of the time course, indicating that 

activation of MycER
TAM

 results in loss of differentiation in suprabasal 

keratinocytes. Despite the down-regulation seen in inv, the transglutaminase gene 

tgm2, which is involved in the formation of covalent bonds throughout 

keratinocyte differentiation, seemed to show a slight increase in expression from 8 

hours. 

Key processes in epidermal homeostasis include regulation of the actin 

cytoskeleton of differentiating cells and tight control of cell adhesion to allow cell 

migration to the surface. Integrin genes itga7, itgb2, and itgb6, whose products are 

involved in signal transduction and mediation of cell adhesion, showed 

predominantly up-regulation following MycER
TAM

 activation. However, itga7 

also showed a 2-fold down-regulation at 4 hours. Probe sets representing the 

Plectin gene (plec1), whose product is involved in formation of the cytoskeleton 

and maintenance of structural integrity (Svitkina et al., 1996; Wiche, 1998), were 

also found to show an increase in expression, with one probe set showing high 

levels of expression change throughout the time course. However, contrast t-tests 

did not identify these changes as being statistically significant. 
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Cystatin A (csta) is a cysteine protease inhibitor that is involved in development 

of epidermal keratinocytes through its action as a precursor to the cornified cell 

envelope of differentiated keratinocytes (Rasanen et al., 1978; Pernu et al., 1990). 

As with inv, this gene shows down-regulation of 2-fold at 4 hours and 16 hours, 

suggesting a loss in the differentiated status of cells. Cystatin F (cst7), a further 

cysteine protease inhibitor involved in keratinocyte development (Ni et al., 1998), 

showed up-regulation of 2-fold at 8 hours; although this was not seen throughout 

the whole time course. 

Perhaps surprisingly, differentiation-related keratins such as suprabasal Keratins 1 

and 10, and basal Keratins 5 and 14, were not identified as changing significantly 

due to 4OHT treatment by Envisage (and hence have 4OHT p-value = NA). 

However, t-test contrast analysis of individual conditions identified a significant 

loss in expression of 2-fold (contrast p-value ≤ 0.01) for the suprabasal 

keratinocyte-specific Keratin 1 (krt1) at 4 hours. This suggested an initial loss in 

suprabasal keratinocyte differentiation. Interestingly however, an increase in 

expression was detected at the later 8 hour time point (contrast p-value ≤ 0.01), 

which was also shown for the basal keratinocyte-specific Keratin 14, although this 

change was not maintained throughout the time course. This may suggest that, 

whilst early suprabasal keratinocyte differentiation markers show decreased 

expression, the short time course of MycER
TAM

 activation considered here may 

not be sufficient to see a loss in expression of key Keratins. 

These data show that activation of MycER
TAM

 in suprabasal keratinocytes results 

in down-regulation of genes important in keratinocyte differentiation. These 

include genes involved in maintaining structural integrity of the cell and cross-

linking in the cornified epidermal layer. It is interesting to note that several of 

these genes showed down-regulation within 4 hours of MycER
TAM

 activation, 

despite the apparent ~ 8 hour delay seen in MycER
TAM

 activity (Section 4.2.6). It 

is also worth noting that the early down-regulation seen in the suprabasal 

keratinocyte differentiation-related inv gene results in concomitant loss of 

MycER
TAM

 expression in inv-mycER
TAM

 transgenic mice. This may partially 

explain the minimal proliferation detected within these cells throughout this short 
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time-course. These results suggest that induction of proliferation in suprabasal 

keratinocytes is incompatible with normal terminal differentiation.  
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Table 4.2.7: Genes relating to differentiation showing significant change in expression 

following activation of MycER
TAM

 (p-value ≤ 0.05 for 4OHT term) in suprabasal 

keratinocytes. Red = ≥ 2-fold up-regulation; Blue = ≥ 2-fold down-regulation. ‘*’ = t-test p-

value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01. 

  

Fold change from control 

  Gene 

Symbol GenBank 

4  

hours 

8 

hours 

16 

hours 

32 

hours 

4OHT 

p-value Biological role 

cst7 NM_009977 1.03 2.02 ** 1.02 1.46 ** 0.03966 
Cysteine protease 

inhibitor 

csta C89521 0.48 ** 1.07 0.37 ** 0.53 ** 0.00051 
Cysteine protease 

inhibitor 

itga7 NM_008398 0.49 * 1.64 * 0.86 2.63 ** 3.05E-

02 

Adhesion and cell 

signalling 

itgb2 NM_008404 1.3 3.05 ** 0.62 4.39 ** 0.00118 
Adhesion and cell 

signalling 

itgb6 NM_021359 1.11 2.24 ** 1.33 ** 1.89 ** 0.00059 
Adhesion and cell 

signalling 

inv AV009441 0.36 ** 0.64 ** 0.26 ** 0.84 0.00556 
Keratinocyte 

differentiation 

krt1 NM_008473 0.45 ** 4.25 ** 0.73 * 0.84 0.0405 
Suprabasal keratinocyte 

differentiation 

krt5 BC006780 1.67 ** 1.26 * 1.32 0.69 ** NA 
Basal keratinocyte 

differentiation 

krt10 AK014360 0.86 0.877 0.90 1.00 NA 
Suprabasal keratinocyte 

differentiation 

krt14 BC011074 0.91 2.17 ** 0.92 1.00 NA 
Basal keratinocyte 

differentiation 

krt14 BC011074 0.89 2.02 ** 0.976 0.951 NA 
Basal keratinocyte 

differentiation 

plec1 BM210485 0.50 1.41 1.26 3.07 * 0.03399 Cytoskeleton formation 

plec1 BM232239 3.34 5.39 2.83 0.82 * 0.00209 Cytoskeleton formation 

tgm2 BC016492 0.88 2 ** 1.92 ** 5.34 0.00154 
Structural integrity of 

cell 

tgm2 AW321975 1.18 0.77 ** 1.83 ** 1.08 0.0006 
Structural integrity of 

cell 

tgm2 BB550124 1.34 0.71 ** 1.82 ** 1.09 0.00056 
Structural integrity of 

cell 

tgm2 BB041811 1.06 0.66 ** 2.23 ** 1.29 0.00075 
Structural integrity of 

cell 
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4.2.11 Comparison between the skin and the pancreas 

The Envisage model fitting procedure produced a list of 1,564 probe sets (1,434 

genes) whose expression was found to change significantly within the first 8 hours 

due to the joint effects of MycER
TAM

 activation and the type of tissue under study 

(≥ 2-fold change in expression at 8 hours, and p < 0.05 for model term 

„4OHT:Tissue‟). These genes therefore represent a differential transcriptional 

response to MycER
TAM 

activation between the two tissues, and may indicate 

functional diversity indicative of the opposing outcomes seen in the phenotypes. 

QT clustering of the expression profiles of genes across the time points for both 

tissues together (Materials and Methods, Section 2.6.4) identified 27 clusters of 

genes whose expression profiles across the time courses for the two tissues were 

correlated between genes, indicating possible co-regulation and functional 

similarity (Figure 4.2.14: 1-27). Relaxing the criteria to allow clusters containing 

fewer than 10 genes had no effect on those shown below, but identified 18 further 

clusters, including one which was included due to its high significance to the 

comparison of the skin and the pancreas (Figure 4.2.14: 28). 

GO enrichment was performed to identify likely roles for co-regulated genes 

within each cluster. As expected, many probe sets within the clusters related to 

processes such as metabolism and transcription. Several clusters showing 

particularly varied expression profiles between the two tissues were of particular 

interest, and GO analysis identified functionally related classes of genes involved 

in key cellular events in MycER
TAM

-induced proliferation and apoptosis.  
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Figure 4.2.14: Quality threshold clustering of genes altered due to the joint effects of 

MycER
TAM

 activation and tissue type identified functionally related gene clusters  

Genes identified as showing significant differential expression due to the joint effects of 

MycER
TAM

 activation and tissue were clustered to identify functionally related genes. QT 

clustering was performed using the Pearson correlation, and identified 28 unique clusters across 

the time courses of MycER
TAM

 activation for the skin and the pancreas. Shown here are the 

normalised signal intensities (representing fold-change following activation of MycER
TAM

) for 

these genes over time for the two tissues. Of particular interest were clusters showing varied 

expression profiles between the two tissues, indicating disparate functional roles that may explain 

the dichotomous phenotypic outcomes of MycER
TAM

 activation in the two tissues. 
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Cluster 2 consisted of probe sets representing genes whose expression continued 

to rise steadily within the first 16 hours, but began to level off after 32 hours for 

the pancreas, but showed no change for the skin. Probe sets within this cluster 

were largely found to be involved with the M-phase of the cell cycle, particularly 

DNA replication and repair, which may explain why these genes were not 

significantly up-regulated within the first 4 hours. This cluster identified co-

expression of probe sets for Cdk1 and Cyclin A2, suggesting a possible role for 

Cdk1 in G2/M-phase following MycER
TAM

 activation. However, it is also possible 

that Cdk1 is related to mitotic catastrophe and apoptosis in β-cells following 

deregulation of Myc, as suggested by Castedo et al. (2002). These genes together 

indicate a significant increase in replication activity upon MycER
TAM

 activation. 

The probe sets of cluster 24 shared similar expression profiles with those of 

cluster 2, and analysis of GO term enrichment again identified cell cycle and 

DNA replication as the predominant cellular functions. In particular, genes 

involved in cytoskeleton organisation and biogenesis, organelle localisation and 

cell division were well represented, indicating that cellular mitosis is one of the 

predominant responses following MycER
TAM

-activation in β-cells.  

Cluster 11, whose members were significantly increased throughout the time 

course for the pancreas but not for the skin, contained probe sets relating primarily 

to DNA replication and cell cycle, again linking with the role for MycER
TAM

 in 

initiating cell cycle progression. The presence of probe sets relating to the 

minichromosome maintenance (MCM) deficient genes mcm6 and mcm7, whose 

products make up part of the MCM complex involved in DNA unwinding (Ishimi, 

1997), the cdt1 gene, whose product is involved in association of the MCM 

complex with chromatin, and various helicase related genes indicated that this 

cluster represents genes relating primarily to DNA replication. 

Probe sets in cluster 19 also showed significant increase throughout the time 

course for the pancreas and not for the skin, and GO enrichment identified DNA 

replication, DNA damage checkpoint and cell cycle as being well represented 

within the list. This was particularly obvious due to the correlation between the 

DNA damage checkpoint related genes atr and chk1, and further members of the 
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MCM complex, mcm2, mcm5 and mcm7. Similarity between clusters 11 and 19 

indicated a key role for DNA damage response and repair in MycER
TAM

-induced 

apoptosis in the β-cells. Association of Myc with MCM proteins has previously 

been described (Koch et al., 2007). This close co-expression between genes 

whose products are involved in the formation of the DNA replication machinery 

may link to the recent work of Dominguez-Sola et al. (2007), who identified a 

non-transcriptional role for Myc in DNA replication. While such associations with 

Myc at the protein level are not determinable from these expression data, the 

synergy indicated here suggests functional cooperation. 

Cluster 4 identified genes whose expression was significantly up-regulated at a 

steady rate upon MycER
TAM

 activation throughout the time course for the 

pancreas, but showed no change for the skin. Probe sets within this cluster 

appeared to be particularly related to carbohydrate metabolism, and the most 

obvious of these was that of the pyruvate dehydrogenase kinase gene pdk1. Mice 

with Pdk1 knocked out specifically within the β-cells have been shown to develop 

severe hyperglycaemia due to loss of β-cell mass, indicating a role for Pdk1 in 

maintaining Glucose homeostasis (Hashimoto et al., 2006). It is therefore 

surprising to find that, in a model in which β-cell mass is ultimately reduced, 

expression of pdk1 actually appeared to increase. This may relate to the changes 

seen in the Insulin gene in Section 4.2.10.1. Other probe sets within this cluster 

represented genes involved in RNA processing, indicating a transcriptional 

response to MycER
TAM

 activation. 

Cluster 28 was one of 18 additional clusters formed when the criteria were relaxed 

to allow for clusters with fewer members. It was included here due to the striking 

difference between the expression profiles for the skin and for the pancreas. The 

placental growth factor gene pgf, whose product is a member of the VEGF family 

of angiogenesis-related genes, showed 2-fold increase in expression at 8 hours, 

which increased further throughout the time course to 6-fold at 32 hours. Over-

expression of Pgf in basal keratinocytes of adult mice has been previously shown 

to result in increased numbers, branching and size of dermal blood vessels 

(Odorisio et al., 2002), indicating that this may play a key role in the induction of 
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angiogenesis previously associated with activation of MycER
TAM

 in suprabasal 

keratinocytes (Pelengaris et al., 1999). 

However, the predominant cellular function of these genes was found to be 

regulation of proteolysis, with the majority of probe sets (5 of 7) relating to 

members of the kallikrein family of serine proteases. These proteins have been 

implicated in the regulation of tissue micro-environment, particularly through 

degradation of the extra-cellular matrix, often via activation of matrix 

metalloproteinases (MMPs). This is required to allow the growth of new 

vasculature, indicating a functional relationship between kallikreins and Pgf. As 

with pgf, expression of klk genes was found to increase significantly within 8 

hours following activation of MycER
TAM

, and continued to increase dramatically 

throughout the time course. klk9, klk21, klk24 and klk27 showed increases in 

expression of 57-, 18-, 20- and 143-fold respectively at 32 hours in the skin, 

which were particularly high in comparison to other genes in this experiment. The 

Kallikrein 1 gene, klk1, in particular showed an increase of expression of 274-fold 

at 32 hours, indicating a highly significant change in expression following Myc-

deregulation. The fact that these expression changes occurred at later time points 

following MycER
TAM

 activation, indicates that they are not related to direct 

transcriptional regulation by Myc. 

Klk1 and Klk9 have previously been found to be expressed throughout the 

epidermis of normal human skin (Komatsu et al., 2003), and play a role in 

degradation of the extra-cellular matrix and loss of squamous cells during 

keratinocyte differentiation. Deregulated expression of Klk family members has 

also been implicated in many cancer types (Yu et al., 1996; Bhattacharjee et al., 

2001; Iacobuzio-Donahue et al., 2003; Chung et al., 2004; Yousef et al., 2004), 

and several human Klks are used as biomarkers in the screening, diagnosis and 

prognosis of cancers – e.g. Kallikrein 3 for prostate cancer (Stamey et al., 1987) 

and Kallikrein 9 for ovarian cancer (Yousef et al., 2001).  

Of particular note is the role of Klk1 in Igf1-regulated tumour survival through 

degradation of the Igf binding protein, Igfbp3, in humans. This prevents Igfbp3 

from antagonising Igf1-Igf1r interactions, allowing Igf1 to bind to its receptor and 
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initiate tumour survival through the Akt pathway as previously described (Rehault 

et al., 2001). The mouse kallikreins Klk21, Klk24 and Klk27 have also been 

shown to be functionally active within the testes, both in degradation of the extra-

cellular matrix and initiation of survival through degradation of Igf1bp3 (Matsui 

et al., 2000; Matsui and Takahashi, 2001; Matsui et al., 2005).  

Together with changes in expression of Igf1 and Akt genes shown previously in 

Section 4.2.9.2, these data suggest a possible significant role for Igf1 and the 

kallikrein family of serine proteases in promoting cell survival in the keratinocytes 

upon MycER
TAM

 activation, allowing the tumourigenic potential of Myc to be 

realised. 

4.2.12 Validation of gene-expression using qRT-PCR 

Due to the often highly variable nature of microarray experiments, it is important 

to validate the results of gene-expression analysis to avoid false positive results. 

The sensitivity of qRT-PCR to even small changes in gene-expression between 

samples makes it one of the most commonly used procedures for validation of 

microarray results. 22 genes of interest were selected based on the microarray 

gene-expression results, and comparative qRT-PCR was performed to estimate 

changes in gene-expression between 4OHT-treated and vehicle-treated samples at 

4 hrs, 8 hrs and 32 hrs for the skin and the pancreas. For qRT-PCR, total RNA 

was taken from original samples – those used for the microarray hybridisation – to 

ensure comparability with the microarray gene-expression results.  

Due to the generally low concentration of starting RNA (Section 4.2.2.3), samples 

were amplified for the transcript of interest prior to qRT-PCR in a multiplexed 

reaction (Materials and Methods, Section 2.7.3). Because of the non-uniform 

amplification seen for several of the gene-expression assays, qRT-PCR could not 

be performed for the genes ccne1, cdkn2b (p15
Ink4b

) and chk1 (Materials and 

Methods, Section 2.7.6). Results for the pre-amplified qRT-PCR reactions and 
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their comparison with the microarray gene-expression results are shown in Figure 

4.2.15 to Figure 4.2.33. Each figure shows a comparison between the normalised 

gene-expression data from the microarray analysis and from subsequent qRT-PCR 

analysis, and an image of the microarray gene-expression profiles for the skin and 

the pancreas, captured from the GS-GX analysis suite. Bars in the barplot indicate 

the mean of the observed normalised data for replicate samples (as described in 

Materials and Methods, Section 2.6.1), which represents the mean fold change 

following activation of MycER
TAM

. Error bars in each case represent the standard 

deviation of the replicate data. 
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Figure 4.2.15: qRT-PCR and microarray results for Cyclin D1 (ccnd1) 

 

Figure 4.2.16: qRT-PCR and microarray results for Cyclin D2 (ccnd2) 

 

Figure 4.2.17: qRT-PCR and microarray results for Cyclin E2 (ccne2) 
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Figure 4.2.18: qRT-PCR and microarray results for Cyclin A2 (ccna2) 

 

Figure 4.2.19: qRT-PCR and microarray results for Cyclin B1 (ccnb1) 

 

Figure 4.2.20: qRT-PCR and microarray results for Cell division cycle 2a (cdc2a) 
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Figure 4.2.21: qRT-PCR and microarray results for Cyclin dependent kinase 4 (cdk4) 

 

Figure 4.2.22: qRT-PCR and microarray results for p27
Kip1

 (cdkn1b) 

 

Figure 4.2.23: qRT-PCR and microarray results for p21
Cip1

 (cdkn1a) 
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Figure 4.2.24: qRT-PCR and microarray results for p18
Ink4c

 (cdkn2c) 

 

Figure 4.2.25: qRT-PCR and microarray results for Thymoma viral proto-oncogene 1 (akt1) 

 

Figure 4.2.26: qRT-PCR and microarray results for p19
Arf

 (cdkn2a) 
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Figure 4.2.27: qRT-PCR and microarray results for Ataxia telangiectasia and Rad3 related 

(atr) 

 

Figure 4.2.28: qRT-PCR and microarray results for Checkpoint kinase 2 (chk2) 

 

Figure 4.2.29: qRT-PCR and microarray results for Cytochrome c, somatic (cycs) 
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Figure 4.2.30: qRT-PCR and microarray results for Endonuclease G (endog) 

 

Figure 4.2.31: qRT-PCR and microarray results for Fas/CD95 receptor (fas) 

 

Figure 4.2.32: qRT-PCR and microarray results for Insulin-like growth factor 1 (igf1) 
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Figure 4.2.33: qRT-PCR and microarray results for Insulin-like growth factor 1 receptor 

(igf1r) 
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Figure 4.2.34: Correlation between gene-expression results from microarray and qRT-PCR 

analyses. 

The similarity of the normalised gene-expression results between the microarray and qRT-PCR 

analyses for the 19 genes of interest are shown by plotting a scatterplot of the mean over replicates 

for the skin (red) and pancreas (black) over the three time points considered. Also shown is the 

Pearson correlation (r) between the two methods for the combined skin and pancreas data, 

indicating the similarity between the two approaches. Validation using qRT-PCR was generally 

comparable with microarray results (r = 0.66 ± 0.259), although there were several genes where 

microarray results were not replicated (e.g. akt1, cdkn1b, cdkn2a, fas, igf1, cdk4). 
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Validation of microarray gene-expression results using qRT-PCR in general 

showed good reproducibility between the two methods, particularly for the β-

cells. It is clear that the results from the microarray analysis are in general more 

variable than those of the qRT-PCR results, as evidenced by the large standard 

deviation error bars. This is due to the increased sensitivity of the qRT-PCR 

procedure in detecting changes in gene-expression. The correlation between the 

two methods for each of the 19 genes is also shown in Figure 4.2.34. This figure 

shows a scatterplot of the mean normalised gene-expression values for the two 

methods for each time point, and for each tissue (pancreas = black, skin = red). 

Also shown is the Pearson correlation (r) between the two methods of the 

combined skin and pancreas data, which provides an objective value defining the 

level of validation. In general, the qRT-PCR method validated the results from the 

microarray experiment well (r = 0.66 ± 0.259). There were however several genes 

showing disparate results between the two methods, and these are discussed in the 

following sections. 

4.2.12.1 Thymoma viral proto-oncogene (akt1) 

The akt1 gene showed a low level of correlation between the two methods (r = -

0.496). No change in expression was detected for the early time points in the 

microarray analysis (1-fold change for both 4 and 8 hours) for the pancreas 

(Figure 4.2.25).  However, qRT-PCR analysis identified a significant increase in 

expression for both the 4 hour (greater than 2-fold) and 8 hour (greater than 4-

fold) time points. In contrast to this, the microarray analysis identified a 

significant increase in expression for the skin samples at the 8 hour (3-fold) and 

32 hour (2-fold) time points. However, qRT-PCR analysis identified no such 

increase, indicating a possible false positive result. Sequence alignment using the 

basic local alignment search tool (BLAST) (Altschul et al., 1990) from the NCBI 

confirmed that both the qRT-PCR probe and the microarray probe set identified 

the same akt1 transcript. The reason behind the discrepancy between the two 

methods is thus unknown, and further validation is necessary to confirm the 

microarray gene-expression. 
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4.2.12.2 Cyclin D2 (ccnd2) 

The correlation between the qRT-PCR and microarray results for the ccnd2 gene 

was high (r = -0.838), lending support to the validity of this result. However, a 

notable difference between the two methods was seen for the pancreas 8 hour time 

point (Figure 4.2.16), where microarray analysis failed to identify a significant 

change in gene-expression, but qRT-PCR identified a large increase in expression 

(greater than 5-fold) that fit in well with the observed proliferative phenotype. In 

contrast, the 2-fold change in gene-expression seen in the skin samples at 8 hours 

and 32 hours was not identified in the qRT-PCR results.  

The expression level for ccnd2 in the microarray experiment was calculated as an 

average across three probe sets that were each found to be significant using 

Envisage. One of these probe sets was designated as detecting alternative 

transcripts from the same gene, so may affect the levels of detected expression. 

Removing this probe set resulted in levels of gene-expression remaining at normal 

levels throughout the time course for the skin, which matched to the results found 

using qRT-PCR. Comparing the expression levels of the two remaining probe 

sets, it appeared that while one showed no change in expression at 8 hours for the 

pancreas, the other showed an increase in expression greater than 2-fold 

throughout the time course.  

Sequence alignment using BLAST indicated that the non-specific probe set and 

the probe set showing no change in expression at 8 hours were located towards the 

5‟ end of the mRNA sequence, suggesting that the discrepancy in the signals may 

be related to RNA degradation. It also appeared that the length of the ccnd2 

transcript interrogated by these probe sets was shorter than that of the transcript 

identified by qRT-PCR, possibly leading to an increased effect of RNA 

degradation on the signal. If the probe set that identifies transcripts within the mid 

region of the ccnd2 mRNA was considered alone, the detected levels of 

expression change were very similar for the microarray and qRT-PCR data in both 

the skin and the pancreas. 
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4.2.12.3 Cell division cycle 2a (cdc2a) 

Observed changes in gene-expression for cdc2a were generally well validated by 

qRT-PCR (r = 0.957), with the possible note that the detected changes in gene-

expression were higher using qRT-PCR than for the microarray experiments 

(Figure 4.2.20). This is due to the higher sensitivity in the qRT-PCR procedure. 

The microarray results identified no change in expression through the time course 

for the skin, and the qRT-PCR results confirmed this at the 4 and 32 hour time 

points. However, qRT-PCR detected almost 4-fold down-regulation of cdc2a at 8 

hours. Sequence analysis of the qRT-PCR probes identified no obvious difference 

between the selected primer and the microarray probe set, indicating that further 

validation is necessary. 

4.2.12.4 Cyclin-dependent kinase 4 (cdk4) 

Despite the apparent proliferative phenotype of the pancreatic β-cells, the cdk4 

gene was found to show no change in expression upon MycER
TAM

 activation in 

the pancreas microarray experiment at 4, 8 or 32 hours (Figure 4.2.21). An 

increase in expression of almost 9-fold was detected at 16 hours, but this time 

point was not included in the validation studies due to budget constraint. qRT-

PCR validation for the cdk4 gene showed poor correlation with the detected 

microarray results (r = -0.472), and identified significant increases in cdk4 

expression at 8 hours (4-fold) and 32 hours (2-fold). The skin showed the opposite 

effect, with microarray results identifying a large increase in cdk4 expression at 8 

hours (11-fold) which was not identified using qRT-PCR. Given the small error 

bars in the detected microarray signal, which indicate closely matching results for 

all replicates, this is surprising. This discrepancy appeared to be confined to the 8 

hour samples for the skin and the pancreas.  

As with ccnd2, the cdk4 gene-expression was calculated as the average of 3 probe 

sets found to be significant using Envisage. Of these probe sets, only one was 

designed to match a single unique transcript for the cdk4 gene. One probe set 
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recognised several alternative transcripts from the cdk4 gene, while the other 

contained probes that may cross-react with transcripts from other genes. This may 

indicate that some form of cross-reaction occurred such that the microarray signal 

was no longer specific to the transcript of interest. Also, the transcript sequences 

targeted by these probe sets were very short, indicating that they may be 

susceptible to cross-reaction and RNA degradation. Despite this, it is interesting 

to note that the 3 probe sets showed almost identical expression profiles to one 

another. 

Another explanation is that the qRT-PCR probes selected for this analysis were 

designed within a single exon of the cdk4 transcript, indicating that genomic DNA 

may be detected. This problem was unavoidable with the off-the-shelf gene-

expression assays used in this study, although may be avoided in the future by 

designing primers specifically across exon boundaries. Detection of genomic 

DNA as well as the specific transcript in VT 8 hour samples may explain the 

apparent down-regulation detected here. 

4.2.12.5 Cyclin-dependent kinase inhibitor 1a (p21Cip1) 

The results from the qRT-PCR analysis closely match those of the microarrays 

(Figure 4.2.23; r = 0.870). However, the changes in gene-expression detected 

with qRT-PCR were in general larger as compared to the microarrays for the 

pancreas. This showed that the expression of the cell cycle arrest-promoting 

CDKI p21
Cip1

 is influenced by MycER
TAM

 activation even at 4 hours, which may 

indicate inherent tumour suppressor activity in the cell following MycER
TAM

-

induced proliferation. Given that proliferating β-cells are detected throughout the 

time course, it is clear that these changes are not sufficient to arrest cell cycle 

progression following ectopic activation of MycER
TAM

. 
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4.2.12.6 Cyclin-dependent kinase inhibitor 1b (p27Kip1) 

The CDKI p27
Kip1

 showed down-regulation in both the skin and the pancreas 

tissue, indicating Myc-initiated loss of cell cycle inhibitors in cell cycle 

progression (Figure 4.2.22). Validation using qRT-PCR showed poor correlation 

with the microarray results (r = 0.392), and whilst qRT-PCR identified loss of 

expression of cdkn1b (p27
Kip1

) for both the pancreas and the skin, this change was 

much smaller than that seen using microarrays. Due to the sensitivity of the 

technique, the gene-expression estimates using qRT-PCR are more accurate and 

these changes, while less than 2-fold, may still be significant. 

4.2.12.7 Cyclin-dependent kinase inhibitor 2a (p19Arf) 

In general, Figure 4.2.26 showed that the results for qRT-PCR matched up well 

with the microarray results, although this correlation did not seem to be 

represented by the detected correlation in Figure 4.2.34 (r = 0.323). In general, 

qRT-PCR identified larger fold-changes for the pancreas than the microarray, 

possibly due to the increased sensitivity of the assay, suggesting that the 

relationship between the two sets of results may not be linear and this may explain 

the low correlation score detected for this gene. The qRT-PCR results also 

indicate a more significant increase in cdkn2a (p19
Arf

) expression for the pancreas 

at 4 hours as compared to the microarray results, with no discernible change at the 

later time points. This may indicate that the p19
Arf

-related apoptotic pathways are 

immediately activated by Myc activation within the skin, but that apoptosis is 

inhibited by survival signalling pathways, such as Igf1. 

4.2.12.8 Cyclin-dependent kinase inhibitor 2c (p18Ink4c) 

The expression of the Cdk4 and Cdk6 inhibitor p18
Ink4C

 was not well validated by 

the qRT-PCR results (Figure 4.2.24; r = 0.076). BLAST sequence analysis 

indicated that the microarray probe set recognised a sequence located primarily at 
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the 3‟ end of the cdkn2c (p18
Ink4c

) transcript, whilst the qRT-PCR probes spanned 

the majority of the whole transcript. This may indicate a reason for the 

discrepancy seen between the two methods.  

4.2.12.9 Cytochrome c, somatic (cycs) 

The results of qRT-PCR and microarray studies in general matched well for the 

cycs gene (Figure 4.2.29; r = 0.786). The change in expression detected in the 

microarrays for the pancreas at 8 hours following MycER
TAM

 activation showed 

high variation, but validation using qRT-PCR confirmed a significant increase in 

expression of 3-fold. However, as with cdk4, the increased signal detected in the 

qRT-PCR results may be a result of detection of genomic DNA due to the probe 

used. 

4.2.12.10 Fas death receptor (fas) 

The results of the microarray analysis indicated a very large statistically 

significant increase in expression of fas in the pancreas across 4 probe sets on the 

array. However, validation using qRT-PCR revealed no such increase in 

expression (Figure 4.2.31), and in general correlation between the two data sets 

was poor (r = 0.484). Given the size of the observed change in expression (~ 8 

fold across the time course) and the fact that this was seen in 4 out of 5 probe sets 

for the Fas receptor, this result was surprising and unfortunate. To understand why 

the two procedures produced such vastly different results, BLAST was used to 

compare the probe set sequences to the gene transcript sequence queried by the 

qRT-PCR probe. When the sequences were compared, no significant overlap was 

discovered between the sequences, indicating that their target transcripts were in 

fact different. The only Fas-specific probe set that matched to the qRT-PCR probe 

was the probe set showing no change in expression across the time course for both 

the skin and the pancreas. This indicates that there is no observed change in 

expression for fas in either the microarray study or the qRT-PCR study, and that 
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the probe sets that previously showed significant fold changes are not specific to 

the fas transcript.  

Confirmation of the probe annotation using the Affymetrix GeneChip annotation 

database, NetAffx 
4
, identified only the non-changing probe set as specific for Fas. 

Two of the remaining probe sets were identified with the X-linked myotubular 

myopathy gene mtm1, and the remaining two had no annotation. This indicates 

that annotations were incorrect in both GS-GX (annotation updated in March 2007 

using standard annotations from the NCBI RefSeq
5
, GenBank

6
 and Entrez Gene

7
 

sequence databases) and Bioconductor (annotation updated using the October 

2007 build of the mouse4302 (Liu et al.) and mouse4302cdf packages). This 

discovery highlights the need to confirm probe annotations, and to ensure that 

annotations are kept up to date. 

  

                                                 

4
 https://www.affymetrix.com/analysis/netaffx/index.affx 

5
 http://www.ncbi.nlm.nih.gov/RefSeq/ 

6
 http://www.ncbi.nlm.nih.gov/Genbank/index.html 

7
 http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene 
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4.3 Summary 

This chapter has discussed the results of a large microarray experiment performed 

to analyse the differences in transcriptional response to deregulated Myc activity 

in two distinct tissues – suprabasal keratinocytes and pancreatic β-cells. To ensure 

that changes in gene-expression were attributable to activation of the MycER
TAM

 

protein in β-cells, and not to effects within the exocrine pancreas, LCM was used 

to isolate homogenous islet tissue for RNA extraction. Despite the large 

detrimental effect of RNases on RNA integrity seen in pancreas derived samples, 

the optimised protocol discussed in Section 4.2.2.1 produced good quality RNA 

suitable for microarray hybridisation. Due to the nature of murine epidermis, 

LCM of suprabasal cells was found to be impractical given the constraints of the 

project, and RNA was instead isolated from sections of whole skin tissue. 

The overall quality of RNA and subsequent yields of 2a-cRNA were good, with 

skin-derived samples generally showing superior quality. Extensive quality 

control throughout the microarray hybridisation procedure identified outlying 

samples that may bias subsequent analyses. In general, there appeared to be no 

correlation between initial sample quality and ultimate data quality, indicating that 

hybridisation of low quality samples can still produce good quality data. There are 

limits however, and one sample hybridised with a very low volume of 2a-cRNA 

produced particularly poor quality data. 

Gene-expression analysis identified a clear proliferative response in the β-cells, 

evidenced by the change in expression of key cell cycle genes following 

MycER
TAM

 activation. This was also shown by immunofluorescent staining with 

the cell cycle marker protein Ki67 (Figure 4.2.1). Ki67 staining in the skin also 

identified increased expression in MycER
TAM

-encoding suprabasal keratinocytes, 

however the levels of Ki67-positive cells was less conclusive than for the β-cells. 

Ki67 staining also identified proliferating cells in the basal epidermis layer in both 

VT and 4OHT-treated animals, which may have acted to mask differential 

expression of key cell cycle genes within the suprabasal keratinocytes. This may 
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also have been detrimentally affected by the apparent delay in MycER
TAM

 

response to 4OHT treatment when administered topically (Section 4.2.6). 

Analysis of changes in expression of genes relating to apoptosis and survival 

identified increased expression of key members of the DNA damage pathway as 

being correlated with MycER
TAM

 activation and subsequent apoptosis in the 

pancreatic β-cells. It is hypothesised that this culminates in activation of Bax at 

the mitochondria (although it is not clear whether this occurs via activation of of 

the tumour suppressor p53), resulting in release of Cytochrome c from the 

mitochondria and subsequent apoptotic signalling in the β-cells. However, further 

analyses would be required to establish a causal role for Myc in these pathways.  

Increased expression of the Igf1 survival factor in the suprabasal keratinocytes 

suggests that avoidance of Myc-induced apoptosis may occur through the Igf1 

receptor (e.g. through the Akt survival pathway). Previous proteomics studies 

within the Mike Khan research group at the University of Warwick using the same 

transgenic system have identified levels of the Igf1 receptor protein as being 

increased following activation of MycER
TAM

 in suprabasal keratinocytes 

(manuscript in preparation), further suggesting a role for the Igf pathway in 

survival of suprabasal keratinocytes. However, no such change was detected for 

the Igf1 receptor at the transcript level (Figure 4.2.33) suggesting that this change 

is not a transcriptional response to Myc. A large increase in expression of key 

Kallikrein genes in the skin, whose products are involved in both vascularisation 

(specific to the keratinocyte MycER
TAM

 model) and also in augmentation of the 

Igf1 receptor pathway through degradation of the Igf1r antagonising Igf binding 

proteins, suggests a tissue specific pathway for determining ultimate cell fate 

following MycER
TAM

 activation. 
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Chapter 5 General Discussion 

5.1 Discussion 

The Myc proto-oncogene has previously been implicated in the control of many 

cellular functions, particularly those involved with promoting proliferation. The 

myriad putative targets of the Myc transcription factor, found using global studies 

for gene-expression such as microarrays, have led to the belief that Myc may act 

as a global transcription factor, regulating the expression of up to 15 % of the 

genome. An alternative hypothesis is that only a small subset of these genes is in 

fact direct targets of Myc, with further changes occurring downstream.  

Of particular interest has been the discovery that oncogenes such as c-myc, whose 

deregulation can lead to unchecked proliferation and formation of tumours, have 

the potential to promote apoptosis under certain conditions. This acts as an 

inherent tumour suppressor function to limit the formation of cancers. The 

formation of malignant growths thus requires the cooperation of several somatic 

lesions to not only deregulate proliferative control, but also to inhibit protective 

apoptotic function and allow the oncogenic potential of proto-oncogenes such as 

c-myc to be realised.  

However, whilst in vitro studies identifying the conditions under which Myc can 

promote apoptosis have provided key insights into the diverse range of Myc-

induced functionality, they fail to take into account the all-important effect of 

tissue context in vivo. The MycER
TAM

 switchable in vivo model for Myc-

deregulation has provided a number of insights into the dichotomy of Myc-

functionality. The most intriguing of these is the fact that deregulation of Myc 

activity alone can result in vastly different outcomes depending solely on tissue 

location – unchecked proliferation in the suprabasal keratinocytes of the skin and 

apoptosis in the pancreatic β-cells.  
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To identify the processes by which circumvention of tumour suppression is 

accomplished within the suprabasal keratinocytes, transcriptional analysis using 

high-density microarrays was performed to identify the differential transcriptional 

response between the two tissues in a time course following Myc deregulation. 

The switchable MycER
TAM

 transgenic mouse model allowed precise control over 

the „Time 0‟ of aberrant Myc activity, allowing analysis of transcriptional changes 

at the very early stages of the Myc-induced phenotype. In this way, changes in 

gene-expression that occur as a direct consequence of Myc deregulation can be 

distinguished from those that occur further downstream. 

The linear model fitting algorithm Envisage was designed and written by the 

author to identify statistically significant effects in the gene-expression data in 

complex experimental designs such as this. In particular, this process allowed 

identification of effects on gene-expression of not just experimental variables, but 

also of superfluous variation related to experimental design, non-homogeneity of 

samples, and fluctuations in environmental conditions. This allowed identification 

and correction of problems within the experimental design that may otherwise 

have resulted in false assignment of significance during the analysis, such as batch 

effects and sample quality.  

5.1.1 Quality control 

One of the key rules for microarray analyses is the saying: “garbage in → garbage 

out”. It was therefore essential to ensure that the quality of starting materials and 

the resulting data were of a suitable quality to ensure accurate conclusions could 

be drawn. Quality control was performed throughout the experiment to ensure that 

no errors were introduced prior to data analysis. This included performing pre-

hybridisation (RNA and 2a-cRNA quality), post-hybridisation (%P, control probe 

signal, scale factor, etc.), probe-level (PLMs, RNA degradation plots, boxplots, 

etc.) and post-normalisation (boxplots, PCA, scatterplots, etc.) control checks. 
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Throughout the experiment, many precautions were taken to ensure that 

introduction of errors was minimised, and analysis of these QC metrics identified 

no significant introduction of error throughout the protocol. Given the extensive 

processing required to extract RNA from pancreatic islets using LCM, this was 

particularly good news.  

In general, RNA quality was good, indicating that the optimised LCM protocol 

described in Section 4.2.2.1 is suitable for isolation of RNA from homogenous 

sources with high levels of RNA degradation, such as the pancreatic islets. 

Throughout the procedure, the difference in quality between the pancreas and the 

skin was evident, with skin samples generally performing better in tests than 

pancreas samples. This was evidence of both the difference in RNA degradation 

levels in the two tissues, and also the disparity in the RNA isolation methods used. 

However, this also indicated that there was a level of confoundment between 

RNA quality and tissue, suggesting that this was not a suitable variable for 

inclusion as a covariate in the Envisage model. 

Poor quality samples were detected throughout the experiment by their poor 

performance in the various QC tests (Section 4.2.4). A large number of QC 

metrics were used to identify sample quality at all stages of the analysis. A simple 

scoring system was used to combine the various metric scores, allowing 

information relating to all possible aspects of microarray hybridisation to be 

considered. A simple score was assigned to each sample depending on whether 

the sample passed the recommended thresholds for the QC metric (QC penalty = 

0), fell outside of the threshold but remained within suitable bounds (QC penalty 

= 1), or fell well outside of the threshold value (QC penalty = 2). Whilst this 

approach was in some ways not as objective as using, say, the RIN to define poor 

quality samples, it allowed the large number of QC analyses performed to be 

included in the decision of which samples to remove from the analysis. In 

particular, Jones et al. (2006) showed that pre-hybridisation metrics such as RIN 

may not be an accurate predictor of ultimate data quality. The decision as to which 

samples should be removed was, in general, straightforward. In particular, it was 

positive to see that the sample hybridised with almost 0 μg 2a-cRNA was 
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identified as the sample of poorest quality, indicating that this process was capable 

of identifying particularly poor samples. However, the four other samples 

hybridised with less than 10 μg 2a-cRNA were not identified as having poor 

quality hybridisation, and in fact performed well across the QC tests. This may 

suggest that the recommended minimum of 10 μg 2a-cRNA is overly 

conservative, or alternatively may suggest that quantification was inaccurate for 

low yields. 

It was interesting to note that sample Panc T 16hr (3), which was identified as a 

poor quality sample with a QC penalty of 12, corresponded to a pancreas-derived 

RNA sample with a particularly high RIN of 9. Given that the goal of many of the 

QC tests was the identification of outliers from the triplicate samples, it is possible 

that this sample was identified not because it represented a poor replicate, but 

instead because the sample quality was superior to the other replicates (with RINs 

of 6.8 and 5.8 for replicates (1) and (2) respectively). However, the fact that this 

sample appeared to be of a much greater quality than all other pancreas RNA 

samples called its authenticity into question. The RIN for this sample was greater 

than that for RNA extracted from freshly excised pancreas, and in fact seemed 

more in line with RINs seen in skin-derived RNA samples. Since the reason for 

the extremely high RIN was not well understood, and the two remaining replicate 

samples performed extremely well across the QC tests (with both showing QC 

penalty scores of 0), this sample was removed. 

Surprisingly, there appeared to be no significant relationship between sample 

quality prior to microarray hybridisation and the quality of the resulting data 

(Figure 4.2.8). Poor quality RNA produced reproducible data, and poor quality 

data were produced from good quality RNA. This indicates that screening samples 

based on pre-hybridisation measures such as the RIN may not be a suitable 

approach to the removal of poor quality samples, which may otherwise have been 

a useful way for cutting costs given the high price of running replicate samples. A 

similar conclusion was also drawn in a more thorough study of this kind 

performed by Jones et al. (2006). This indicates that seemingly poor quality or 
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low yields of starting material may yet produce good quality microarray data from 

which conclusions may be drawn. 

5.1.2 Envisage: Significance Analysis of Microarray Data 

Within an experimental setting, it is impossible to ensure that the condition under 

consideration is the only source of variation within the experiment. Random 

measurement errors, technical errors, and effects due to variation in phenotype 

and environment can elicit significant responses in gene-expression that may 

shroud the true changes of interest. The dynamic nature of gene-expression means 

that these effects can never be truly accounted for in an in vivo system, 

particularly in a clinical setting where laboratory conditions and standards cannot 

be maintained. Such unwanted variation can introduce bias into standard 

significance analysis (such as ANOVA), assigning significance to genes whose 

change in expression may be in response to variables other than the main 

experimental parameters.  

A method for correcting for the effects of superfluous variation in analyses for 

significant changes in expression is therefore required, and this was the inspiration 

behind the development of Envisage (Chapter 3) (Robson et al., manuscript in 

preparation). By including a wide range of variables in the model, variation in 

gene-expression can be better attributed to the different sources, thus reducing the 

estimated residual variability, and allowing a more precise assessment of 

treatment effects. This allows the effects of otherwise ignored sources of variation 

on gene-expression to be considered. Envisage provides a frame for the inclusion 

of such extenuating factors into standard analyses for significant gene-expression 

changes, thus providing a more accurate representation of the true biology of the 

system under scrutiny. 

The techniques ustilised in the Envisage modelling package are by no means 

unique, and many other packages provide tools allowing for similar analyses (e.g. 
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the limma package available from Bioconductor (Smyth et al.), the microarray 

ANOVA (MAANOVA) package available as a package in R or Matlab (Wu et 

al.), and the Significance Analysis of Microarrays (samr) package in R (Tibshirani 

et al.)). One of the main advantages of Envisage is the simplicity of the interface, 

which allows analysis of complex data sets in a simple point and click manner. 

Also, the interface of Envisage with GS-GX makes this package particularly 

useful for use by non-statistical based users, who may not be familiar or 

comfortable with using other R-based packages for analysis of their data.  

It is fair to say, however, that for more complex analyses, other packages that 

allow more complex data structures may be preferable. In particular, Envisage 

provides no means for providing contrast information, allowing direct 

comparisons between specific conditions in the analysis. However, Envisage is 

well suited for broad analyses of the significant effects in experiments where the 

effects of additional confounding variables cannot be well controlled (in 

particular, for clinical studies). In such experiments, where confounding effects 

cannot be designed into the structure of the data (such as though the use of 

experiment blocks), Envisage allows the inclusion of such terms into the analysis. 

However, for designed experiments, where covariate effects are designed into the 

experiment structure and treatment effects are balanced and orthogonal, other 

analysis methods (such as ANOVA) may be preferable. 

Section 3.4.1 shows the results of a comparison between Envisage, and an 

ANOVA F-test across three variables. The limitations of ANOVA were described 

previously in Section 1.5.3.3, although ANOVA can be considered a „gold 

standard‟ approach for the analysis of balanced and orthogonal experimental 

designs (with ANCOVA a natural extension when there are potential additional 

covariates). This offered a simple way to test that the automated model fitting 

procedure used in Envisage was suitable. In particular, Envisage was tested 

against ANOVA with a full saturated model specified, which should show 

identical results between the two for a balanced experimental design. 

The removal of poor quality samples (Section 4.2.4) ensured that the data set was 

no longer balanced, and hence the different approaches (Type I SS for ANOVA, 
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Type II SS for Envisage) would no longer be expected to show identical results. 

Also, the model-selection procedure of Envisage meant that the number of genes 

showing p-values for each model term was often lower for Envisage than for 

ANOVA, although this was avoided by fitting a saturated model for both 

ANOVA and Envisage. For each model term, comparison between genes with 

associated p-values for both techniques showed good correlation between the two. 

As described, the majority of the differences were attributable to slight differences 

in the p-value assignment of each method, as erroneous genes showed p-values 

very close to the cutoff of 𝑝 = 0.05 . This indicates that the model fitting 

procedure produces accurate models to describe the data. 

However, the main benefit of Envisage is its ability to control for the effects on 

gene-expression of variables not of primary interest to the analysis. The typical 

approach to avoid the effect of confounding sources of variation is to design these 

into the structure of the experimental setup, such that treatments are applied to 

blocks of samples showing similar covariate effects. In this way, covariate effects 

are made to be orthogonal to treatment effects, and effects relating to variables of 

interest can be distinguished from nuisance variables. Whilst phenotypic and 

genotypic discrepancies were largely avoided in this study through the use of age- 

and gender-controlled inbred mouse lines, and environmental effects were 

minimised by ensuring consistent humidity, temperature, lighting, etc. in the 

animal housing facility, variation existed in the technical processing of samples. 

Despite measures taken to minimise the detrimental effects of RNases during 

sample processing (for example, see Section 4.2.2), RNA extracted for microarray 

hybridisation was found to be of varying quality – particularly for the pancreas 

samples (Section 4.2.2.3). The yield of 2a-cRNA from the optimised IVT protocol 

was also found to be variable throughout the samples (Section 4.2.3.2), and may 

indicate initial sample quality. Also, given the logistics of processing forty eight 

samples, batching of samples was necessary.  

The limited number of genotypically viable mice available for this study meant 

that design of experiment blocks (in particular to create blocks of litter mates) was 

difficult, and instead randomisation was performed across the entire sample set. 
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The choice of splitting samples into seven batches was based on the need for RNA 

to be processed on the Agilent Bioanalyzer in groups of twelve samples. The 

forty-eight samples considered in this experiment were a subset of eighty-four 

samples crossing two experiments which were processed in parallel, providing a 

natural choice of seven batches of twelve samples for processing. Had the forty-

eight samples been processed independently, the design of the experiment may 

have leant itself to treatment in 8 batches, with each batch consisting of two sets 

of triplicate samples (for either skin and pancreas samples with the same 

treatment, or for 4OHT and vehicle treated samples for a single tissue). This 

experimental design would have allowed block design of nuisance variables such 

as the litter number, ensuring that such blocked effects were not confounded with 

the treatment effects of interest. To limit the introduction of systematic variation 

related to the treatment of samples within batches, randomisation was performed 

across all samples. Samples were continuously re-randomised at each stage of 

sample processing in an attempt to prevent the introduction of batch-specific 

effects, although it is possible that this approach may have actually worked to 

increase confounding variation within the data set.  

RNA quality, 2a-cRNA yield and batch number were included in the modelling 

procedure in order to identify significant effects. RNA quality and 2a-cRNA yield 

showed significant effects on the expression of a relatively small number of genes, 

and this agreed with results seen during the data QC stage showing that the pre-

hybridisation sample quality was not significantly correlated with data quality 

(Section 4.2.3.2). This is likely due to the 3‟-bias of the probes on the 

microarrays, since RNA degradation occurs from the 5‟ to the 3‟ end. A larger 

effect was detected due to batching, although this was not deemed to be 

detrimental to the data. However, genes found to show a significant effect based 

on the batch were treated with caution. Importantly, any covariate effects were 

corrected by including these additional variables within the analysis. The majority 

of variation in the gene-expression was explained by the main variables of 

interest, indicating that this was a well designed and well implemented 

experiment, and that the results and conclusions drawn were relevant to the 

biological reality of the system.  
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However, this analysis identified several problems with the design of this 

experiment. Firstly, the detected batch effects indicated that the continuous re-

randomisation approach used throughout this analysis was not the most suitable to 

remove nuisance batch effects. A block design may have been more suitable in 

this case. Randomisation, whilst important to remove systematic effects, is best 

performed within this block structure (“block what you can, randomise what you 

cannot” – Sir George E. P. Box). However, due to the small number of samples 

available for this experiment with the required genotype, blocking of littermates 

(to reduce genotypic difference between samples, a key source of confounding 

bias) proved to be difficult. Since many additional sources of confounding 

variation (gender, age, temperature, humidity, feeding times, etc.) were largely 

controlled by the design of the experiment and the conditions within the animal 

housing, blocking was not performed, and randomisation was performed across 

the entire sample set. The use of continuous re-randomisation was suggested as a 

method of ensuring that batch effects would add no significant bias to the data 

(personal communications with members of the UKAffy discussion group), but 

may have actually had an adverse effect on the introduction of nuisance variation 

in the data. In particular, the ability to remove such effects is relinquished by 

using this method. 

Secondly, the use of covariate terms relating to RNA quality may not be suitable 

for including in this analysis. As seen in Figure 4.2.3 and Figure 4.2.5, there is a 

clear difference in RNA quality between the two tissues indicating that there may 

be a confounding effect between the tissue variable and the RNA quality 

covariates. This was particularly clear from the large reduction in the number of 

genes found to show a significant response to model interaction terms relating to 

tissue (4OHT:Tissue and Tissue:Time) when covariate effects were also included 

in the model. 

Comparing the results of Envisage analysis when the „Time‟ variable is treated as 

a factor compared to when it is treated as a numerical variable with a linear 

relationship identified further confounding effects in the data, particularly with the 

covariate terms included in the model. The model assumptions are inherently 
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different between these two methods, since numerical treatment of „Time‟ 

assumes a linear relationship between gene-expression and „Time‟ with 1 DF, 

whilst treating „Time‟ as a factor allows for changes in gene-expression between 

time points with a 3 DF model. This results in a decrease in the number of 

significantly detected genes for the linear „Time‟ model as it is unable to identify 

genes showing significant effects between time points, but not across the time 

course as a whole. Changing the model assumption for the „Time‟ variable also 

resulted in an increase in the number of genes showing a significant effect for the 

covariate terms, suggesting that there may be some confoundment between these 

variables and „Time‟. However, no such confounding effect was detected for the 

4OHT and 4OHT:Tissue terms which were of primary interest. 

These results suggest that there were perhaps issues with the experimental design, 

although the decisions behind the design choices remain valid. These data also 

suggest that there were various confounding effects between the experimental 

variables, and in particular for the covariate terms. With this in mind, it may 

perhaps have been unwise to include these terms in the Envisage model fitting 

process. This perhaps highlights that the Envisage modelling procedure is not best 

suited for the analysis of designed experiments such as this, and in particular for 

studies where nuisance variables are accounted for in the block structure of the 

experimental design. One particular point to be aware of for such designed 

experiments is that the treatment and blocking variables included in the 

experimental design should always be included in the model. This can be ensured 

by specifying these terms as a minimal model when running the program, 

(although it must be noted that this was not done for the present analysis). 

Envisage therefore remains most useful for the analysis of experiments where 

nuisance variables cannot be easily designed into the structure of the experiment, 

such as for clinical studies where the effects of such covariates cannot be analysed 

ahead of time. 

Despite these potential issues however, the Envisage analysis identified clear 

biologically relevant changes in expression in response to activation of the 

MycER
TAM

 transcript in both the pancreatic β-cells and (to a lesser extent) the 
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suprabasal keratinocytes. These responses in gene-expression are described in the 

following sections. 

5.1.3 Comparison of Transcriptional Response to MycERTAM 

Activation in Suprabasal Keratinocytes and Pancreatic β-

Cells 

5.1.3.1 Activation of MycERTAM promoted cell cycle entry in pancreatic 

β-cells and suprabasal keratinocytes 

The proliferative response to MycER
TAM

 activation within the two distinct tissues 

is well documented, and was confirmed in this study through 

immunohistochemical staining for the proliferation marker Ki67 (Figure 4.2.1). 

The resulting expression changes detected in cell cycle related genes for the two 

tissues are discussed in the following sections. 

Pancreatic β-cells 

The transcriptional response of cell cycle genes in the pancreas were indicative of 

a strong proliferative response as described in Section 1.1.4, with key G1/S-phase 

genes (e.g. Cyclin D2, Cyclin E and Cdk4) showing significant increases in 

expression within the first 4 hours and later G2/M-phase genes (e.g. Cyclin A and 

Cyclin B) increasing subsequently from 8 hours and remaining up-regulated 

throughout the time course. Many of these changes represent putative Myc target 

genes, and were confirmed using qRT-PCR (Section 4.2.12).  

Interestingly, the Cdk1 gene (cdc2a) showed a significant increase in gene-

expression from 8 hours though to 32 hours (3-12 fold), and this was validated 

with qRT-PCR. However, the role for Cdk1 in this case remains unclear, since it 

has been implicated in: promoting proliferation by substituting with other CDKs, 

such as Cdk2 which showed no change in expression (Santamaria et al., 2007); 

inhibiting apoptosis in Myc-transformed cell lines through phosphorylation of 
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Survivin (birc5) by Cyclin B/Cdk1 complexes (Goga et al., 2007); and mitotic 

catastrophe and promotion of apoptosis following early activation of Cdk1 prior 

to G2/M-phase (Castedo et al., 2002).  

The dramatic down-regulation seen in the CDKI cdkn1b (p27
Kip1

) from 8 hours in 

the pancreas pointed towards Myc-mediated induction of proliferation. However, 

this result was intriguing, since loss of p27
Kip1

 normally occurs through 

degradation of the protein when complexed with Cyclin E/Cdk2 (Section 1.1.4). 

Down-regulation at 4 hours of the CDKI cdkn2c (p18
Ink4c

), which inhibits Cdk4 

and Cdk6, also pointed towards G1/S phase cell cycle entry. However, the 

subsequent 6-fold increase by 16 hours may indicate induction of cell cycle arrest 

prior to apoptosis. Importantly, a link has been shown previously between p18
Ink4c

 

and the Atr/Atm DNA damage response pathways described below (Park et al., 

2005). This study shows direct interaction between p18
Ink4c

 and the Atr/Atm 

kinases, resulting in increased levels of p53, leading to growth arrest or apoptosis. 

An important role for p53 is detected in our data (shown below) following 

MycER
TAM

 activation, including up-regulation of the p53 cell cycle arrest target 

cdkn1a (p21
Cip1

). 

These data support the idea that Myc-induced cell cycle progression occurs 

through direct activation of key cell cycle genes such as ccnd1, ccnd2 and ccne2. 

Whilst it is not possible to infer specific Myc-induced transcription from the 

microarray data, the short time point at which these changes were seen (4 hours) 

would suggest a causal effect of Myc. Further changes in cell cycle related genes 

such as ccna2, ccnb1, cdc2a and cdkn1b (p27
Kip1

), which showed expression 

changes from 8 hours of MycER
TAM

 activation, may therefore occur downstream 

of Myc. 

Also of interest was the increase in expression of genes such as mcm2, mcm7 and 

cdt1, which are involved directly in DNA replication, within only 4 hours of 

MycER
TAM

 activation. The level of co-expression seen in these genes following 

Myc expression may link to recent work suggesting a non-transcriptional role for 

Myc in the control of DNA replication (Dominguez-Sola et al., 2007). However, 
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it is not possible to make any firm assertions regarding protein interactions from 

the expression data, so this remains to be seen. 

Suprabasal keratinocytes 

Despite the clear transcriptional role for MycER
TAM

 in proliferation in the β-cells, 

the gene-expression response for cell cycle-related genes in the suprabasal 

keratinocytes was less pronounced. The cyclin gene ccnd2 was up-regulated 

greater than 2-fold at 8 hours and 32 hours, with no significant change detected 

for the other time points. This pattern of expression was detected for a number of 

genes, and can be seen in the normalised expression profiles of Figure 4.2.10. 

Peaks appeared to occur at 8 hours following daily 4OHT administration, which 

may indicate a delay in 4OHT treatment through the use of topical administration 

(Section 4.2.6). 

Other cell cycle-related genes showing significant expression included ccnd3 and 

cdk4, which both showed up-regulation at 8 hours. Also, as with the pancreas, a 

significant down-regulation was detected for the CDKI gene cdkn1b (p27
Kip1

) 

throughout the time course. Given that changes to p27
Kip1

 in cell cycle progression 

normally occur at the protein level through ubiquitin-mediated protein 

degradation, this result was surprising. Validation using qRT-PCR identified a 

similar loss in expression; however this was of a lower magnitude than for the 

microarray. 

No change in expression was detected at later time points, and further cell cycle 

related genes (e.g. ccna, ccne and cdk2) remained unchanged, which seemed 

contrary to the proliferative phenotype shown in Figure 4.2.1. This problem may 

have arisen due to the presence of RNA from non-mycER
TAM

-expressing cells. 

Given the thin nature of the mouse epidermis (one or two cells thick only), this 

was unavoidable. Isolation of suprabasal keratinocytes using LCM proved 

impractical, and other methods (such as trypsin-based degradation of the dermis) 

were deemed too damaging to RNA. Given that the dermis contains very few cells 

in comparison to the epidermis (for example, see Figure 4.2.1b), and that these 
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cells likely undergo limited changes in gene-expression, it was decided that 

inclusion of dermal-derived total RNA would not prove problematic.  

In fact, the problem likely arose due to the presence of basal-derived total RNA, 

since basal cells undergo cell cycle progression as part of normal homeostasis 

even in VT transgenic animals (Figure 4.2.1b). In the β-cells, no proliferating cells 

were detected in VT islets (Figure 4.2.1a), meaning that changes in gene-

expression relating to cell-cycle progression were more specific to those cells 

induced to proliferate following MycER
TAM

 activation. However in comparison, 

the presence of proliferating cells in the basal layer meant that it was difficult to 

attribute detected gene-expression changes solely to activation of MycER
TAM

 in 

suprabasal keratinocytes. Given that 2-fold change in expression was typically 

used to identify differentially expressed genes, detected changes in the expression 

of key cell cycle genes may have fallen below cutoff values. Given the high levels 

of noise inherent to microarray studies, particularly with a maximum of only 3 

replicate samples for each condition (a necessity due to budget constraints), 

identification of differentially expressed genes relating to the cell cycle between 

MycER
TAM

-active and MycER
TAM

-inactive samples was difficult. 

Despite this, it may be argued that the presence of RNA from proliferating basal 

cells should not be detrimental to the detection of differential expression for genes 

relating to apoptosis and survival, as no apoptosis was detected within the basal or 

suprabasal cells of VT animals (Figure 4.2.1b). Thus comparing the 

transcriptional response to Myc-deregulation in the two tissues should still 

identify genes relating to apoptosis and survival whose response to MycER
TAM

 

activation is different for the two tissues. Such variation may relate to 

transcriptional events responsible for the dichotomous phenotypic response to 

Myc-deregulation. Comparison between the two systems was therefore still 

considered a valid analysis. 
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5.1.3.2 Activation of MycERTAM in vivo leads to up-regulation of 

apoptotic death pathways in pancreatic β-cells but not in 

suprabasal keratinocytes 

To confirm the presence of apoptotic cells within the tissue samples of interest, 

sections were stained for the effector Caspase 3. No staining was detected for 

active Caspase 3 within the epidermis, indicating that apoptosis is not initiated 

within the suprabasal keratinocytes following activation of MycER
TAM

. However, 

staining for Caspase 3 in pancreatic β-cells identified a clear apoptotic response 

after only 4-hours of MycER
TAM

 activation. The transcriptional response of each 

tissue to MycER
TAM

 activation for genes relating to apoptosis and cell survival is 

discussed here. 

Pancreatic β-cells 

Promotion of apoptosis in the β-cells was clear from the number of apoptosis 

genes identified as being significantly affected upon MycER
TAM

 activation. Of 

particular interest was the change seen in genes involved in the DNA damage 

checkpoint pathway, which has been previously implicated in Myc-induced 

apoptosis (Felsher and Bishop, 1999; Mai and Mushinski, 2003; Bartkova et al., 

2005; Gorgoulis et al., 2005; Dominguez-Sola et al., 2007). Genes whose 

products are involved in DNA repair, such as rad51 and h2afx, and members of 

the 9-1-1 DNA repair marker complex, rad1 and hus1, showed significant 

changes in expression early following MycER
TAM

 activation, indicating that early 

events in Myc-mediated apoptosis may occur as a result of DNA strand breaks. 

Subsequent progression of apoptosis through the DNA damage response 

checkpoints appeared to follow the Atr pathway, and not the Atm pathway as has 

previously been described (Pusapati et al., 2006; Maclean et al., 2007). However, 

since the microarray data corresponds to transcriptional events, protein level 

activation of these pathways cannot be confirmed or rejected in our study, and it is 

not possible to exclude a role for Atm. atr and the related checkpoint kinase 

genes, chk1 and chk2, showed significant up-regulation throughout the time 

course for both the microarray and qRT-PCR, suggesting a role for Myc in direct 
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transcriptional regulation of DNA response genes. atr has previously been 

identified as being responsive to Myc in human cells (Schlosser et al., 2003), 

although further work is required to confirm these genes as direct Myc targets. 

Activation of the Atr-related DNA checkpoint pathways seen in these data 

corroborates current hypotheses of DNA damage as one of the defining events in 

Myc-induced apoptosis. 

The apoptotic function of Myc likely occurs through Bax-mediated 

permeabilisation of the mitochondria, leading to release of Cytochrome c and 

activation of effector caspases such as Caspase 3. This is evident from the anti-

apoptotic role of BclXL in RM double transgenic mice (Pelengaris et al., 2002b; 

Lawlor et al., 2006), and from studies that have shown Bax to be essential for 

Myc-induced apoptosis (Eischen et al., 2001; Soucie et al., 2001; Juin et al., 

2002; Dansen et al., 2006). In fact, loss of Bax is sufficient to allow rapid 

progression of invasive, angiogenic tumours following Myc deregulation (Dansen 

et al., 2006).  

A recent study using a transgenic MycER
TAM

 mouse model in which Myc is 

expressed in the basal layer of the epidermis under the Keratin 5 promoter (K5-

Myc) showed that deregulated Myc resulted in an increase of p53 resulting (at 

least to some degree) from activated Atm (Pusapati et al., 2006). Loss of Atm in 

this model resulted in a significant decrease in apoptosis, and near-complete 

inhibition of apoptosis was detected in a p53-null background. This shows that 

deregulated Myc-induced apoptosis can be driven through DNA damage-related 

activation of the tumour suppressor p53, which promotes formation of the MAC 

by Bax and release of Cytochrome c into the cytosol. The data presented in this 

thesis fit well with this model, indicating that Myc induces apoptosis by resulting 

in activation of the DNA damage pathway. This leads to activation of Atr/Atm 

and checkpoint kinases Chk1 and Chk2, which ultimately phosphorylate and 

activate the tumour suppressor p53. However, we are aware that for such claims to 

be made, we would need to confirm activation of the Atm/Atr proteins, as well as 

downstream proteins such as Chk1, Chk2 and H2ax. 
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Gene-expression analysis suggests that active p53 likely has two complementary 

roles in this case: arresting cell cycle progression though CDKIs p21
Cip1

 and 

p18
Ink4c

, and initiating apoptosis through Bax. Whilst expression of bax was found 

to increase within 8 hours of MycER
TAM

 activation, this change was not 

maintained throughout the time course. Also, other pro-apoptotic p53 target genes 

(such as the Bcl2 family members bbc3, noxa, bid and bim) showed no significant 

change in expression, suggesting that p53 transcriptional activity was not induced. 

Previous studies have shown that, while Bax is essential for Myc-induced 

apoptosis (Section 1.1.5), this is not related to altered bax expression (Soucie et 

al., 2001; Juin et al., 2002). This indicates that activation of Bax at the 

mitochondria does not occur as a result of p53-mediated transcription, but rather 

through some p53-dependent non-transcriptional mechanism.  

This may occur due to the ability of activated p53 in the cytosol to act in a similar 

way to BH3-only Bcl2 family members, leading to direct activation of Bax at the 

mitochondrial membrane and/or release of pro-apoptotic factors from 

sequestration by BclXL and Bcl2 (Mihara et al., 2003; Chipuk et al., 2004; Erster 

and Moll, 2005). The loss of membrane potential and the subsequent release of 

apoptotic factors from the mitochondria may also explain the subsequent up-

regulation of mitochondrial proteins such as Cytochrome c and Endog throughout 

the time course, which may occur as a response to replenish lost mitochondrial 

stores.  

These data also suggest a possible role for p19
Arf

 in the Myc-induced apoptotic 

response, as expression of cdkn2a (p19
Arf

) was found to be significantly increased 

throughout the time course. p19
Arf

 may act to stabilise the active p53 tumour 

suppressor in the cytosol by inhibiting the p53-antagonist Mdm2. p19
Arf

 has 

previously been shown to be implicated in Myc-induced apoptosis in the K5-Myc 

mouse model (Russell et al., 2002), and has been shown to work in cooperation 

with DNA damage-related activation of p53 upon oncogenic stress (Pauklin et al., 

2005). However, the role of p19
Arf

 in the suppression of Myc-induced 

tumourigenesis has more recently been linked to its ability to arrest cell cycle 

progression (Finch et al., 2006). In this study, suppression of p19
Arf

 in the pins-
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mycER
TAM 

transgenic model identified no loss in apoptosis, but instead showed an 

increase in β-cell replication. This suggests that the primary role for p19
Arf

 

following deregulation of Myc may be in suppression of proliferation. The fact 

that loss of p53 in this model resulted in marked reduction in Myc-induced β-cell 

apoptosis suggests that there may be another upstream promoter of p53 activity 

other than p19
Arf

 that is yet to be identified for this mouse model. One strong 

possibility is the Atm/Atr DNA damage pathways described above. 

It originally appeared as if the Fas TNF pathway played a significant role in 

MycER
TAM

 induced apoptosis, suggesting that the extrinsic death pathways may 

work in conjunction with intrinsic mitochondrial pathways during Myc-induced 

apoptosis. A significantly large increase in the expression of several probe sets 

specific for the Fas receptor was seen, suggesting that Myc may sensitise cells to 

apoptotic signalling by increasing the number of available Fas receptors in the cell 

membrane. Unfortunately, this result turned out to be incorrect due to an error in 

probe annotation (Section 4.2.12.10). In fact, of the 5 probe sets on the array 

shown to relate to the Fas receptor, the single probe set that showed no change in 

expression upon MycER
TAM

 activation was the only one to be specific for the fas 

transcript. This error in annotation appears to be recent, since up-to-date 

annotation files for both Bioconductor and GS-GX were used during analysis. 

This highlights the need to ensure correct and up-to-date annotations are 

maintained at all times. Also, this suggests that the Fas death receptor is not 

involved in MycER
TAM

-induced apoptosis in the pancreatic β-cell model, and 

instead that the intrinsic mitochondrial pathway is the key route to Myc-induced 

cell death. 
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Suprabasal keratinocytes 

In contrast to the islets, no change in expression was detected in genes involved in 

DNA damage response (e.g. atr, chk1 or chk2) within suprabasal keratinocytes. 

Also, no change in expression was detected for the p53-pathway mediator p19
Arf

, 

although a significant increase of 4-fold was detected using qRT-PCR at 4 hours 

following MycER
TAM

 activation. Since these data correspond to changes at the 

transcriptional level, further analyses would need to be performed to confirm or 

discount Atr/Atm pathway protein activation within these cells. In particular, the 

data described above for the K5-Myc basal epidermis model indicates both the 

p19
Arf

 (Russell et al., 2002) and Atm (Pusapati et al., 2006) pathways are 

activated to induce keratinocyte apoptosis in vivo following Myc-deregulation. 

Although apoptosis is not evident in the inv-mycER
TAM

 model, it is possible that 

Myc over-expression leads to activation of p19
Arf

 and/or Atm/Atr at the protein 

level, leading to p53 activation. One indication that p53 is indeed active in the 

skin model is the significant and sustained increase in expression of the G2/M 

DNA damage checkpoint gene gadd45g, a known p53 target which induces 

growth arrest in the G2/M transition stage. 

Of particular interest to this study were the cell survival genes igf1, akt1, and akt2. 

Increased expression of these genes through the time course as compared to the β-

cells suggests that evasion of apoptosis may occur through the Igf1-Igf1r-

mediated Akt pathway. Activation of this pathway results in inactivation of the 

pro-apoptotic Bcl2 protein Bad, allowing Bcl2 and BclXL to bind to and inhibit 

Bax at the mitochondria (Figure 1.1.3). This prevents Bax-mediated release of 

Cytochrome c from the mitochondria and allows cells to continue to proliferate 

unchecked.  

These data provide some evidence towards the role of the Igf1 survival pathway in 

suprabasal keratinocytes following MycER
TAM

 activation, with 2-fold up-

regulation of Igf1 detected in the skin from 8 hours through to 32 hours. 

Confirmation of results using qRT-PCR identified a lesser response in gene-

expression change for igf1, although given the increased sensitivity of the 

technique this may still be of a significant magnitude. Although no change in 
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expression was seen for the Igf1 receptor, proteomic studies on the inv-mycER
TAM

 

model within the group have identified an increase in the Igf1r protein in 

suprabasal epidermis (data not shown). 

Increased expression was also detected for the survival factor genes akt1 and akt2, 

which showed up-regulation in the keratinocytes from 8 hours. However, this was 

not confirmed using qRT-PCR (Figure 4.2.25). Despite this, it is activation of the 

Akt protein that would indicate activation of the Igf1 signalling pathway, and this 

is currently under investigation. 

Apoptosis is prevented in suprabasal keratinocytes following deregulation of Myc. 

However, it is possible that terminal differentiation of keratinocytes itself serves 

as a tumour suppressive function. It is possible that Myc induces the Atm/Atr 

DNA damage response pathway to promote cell cycle arrest to control against 

aberrant proliferation in order to allow repair of damaged DNA. Cells in which 

DNA repair is insufficient remain maintained within the epidermis. However, 

whilst such an event would be deleterious for many internal tissues such as the 

pancreas, this is not the case for skin epidermis, where Myc-activated suprabasal 

keratinocytes will ultimately be sloughed off the skin surface as denucleated 

squames (Figure 1.2.2).  

5.1.3.3 Activation of MycERTAM resulted in loss of differentiation 

markers in pancreatic β-cells and suprabasal keratinocytes 

Activation of MycER
TAM

 resulted in a clear loss in expression of differentiation 

marker genes for both the skin and the pancreas. Most obvious amongst these 

were the cell-specific genes for Insulin (ins2) in the β-cells and Involucrin (inv) in 

the suprabasal keratinocytes, which both showed an early loss in expression 

following MycER
TAM

 activation. It is interesting to note that, since the MycER
TAM

 

construct is placed under the control of the ins2 and inv gene promoters for the 

pancreas and the skin respectively, expression of the pins-mycER
TAM

 and inv-

mycER
TAM

 transgenes may also be similarly affected. In this way, activation of 

MycER
TAM

 may ultimately lead to a reduction in MycER
TAM

 production, resulting 
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in a feedback loop. MycER
TAM

 levels are typically high in the cells of these 

transgenic mice (Littlewood et al., 1995). Despite the fact that the MycER
TAM

 

protein has only a short half-life, it was assumed that cellular levels of the 

MycER
TAM 

protein remained suitably high throughout the short time course even 

with a reduction in mycER
TAM

 expression (although this was not analysed 

explicitly). It was believed that this change in MycER
TAM

 production did not have 

any significant negative effect on the data, however such a feedback loop may 

explain the bimodal expression profile typically seen of genes throughout this 

experiment, particularly for the skin (Figure 4.2.10). 

Pancreatic β-cells 

Comparison of the pancreas data set with the gene markers for pancreas 

development identified by Gu et al. (2004) showed that several genes relating to 

β-cell function were down-regulated. Many of these related to Glucose sensing 

and Insulin secretion, indicating that MycER
TAM

 plays a role not just in decreasing 

β-cell numbers through apoptosis, but also in inhibiting β-cell function. These 

effects cooperate to deregulate Glucose metabolism, leading to hyperglycaemia. 

Interestingly however, after the initial drop in Insulin expression, levels proceeded 

to increase dramatically for the 16 hour time point. A similar change in expression 

was also seen in various genes relating to Glucose sensing and Insulin secretion. 

Further analysis of a later time point at 72 hours showed that after 3 days of 

MycER
TAM

 activation, Insulin expression levels once again fell to below those of 

VT controls (Figure 4.2.13). This indicated that this period of high ins2 

expression was limited to the first few days of MycER
TAM

 activation.  

A short period of hypoglycaemia within the first 24 hours or so of MycER
TAM

, 

which correlates with increased ins2 expression levels, has previously been noted 

(manuscript in preparation). The reasons behind this remain unclear, although the 

suggested hypothesis is that the sudden onset of apoptosis within the β-cells 

results in an influx of Insulin into the blood stream from acutely apoptotic cells 

(Cano et al., 2007). However, the results seen here identified an increase not only 

in Insulin levels in the blood, but also in ins2 expression at the transcriptional 

level. This hypoglycaemic window is also seen in 4OHT-treated RM mice 
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(manuscript in preparation), suggesting that this phenotype is not related to 

MycER
TAM

-induced apoptosis. This indicates that the proposed hypothesis is 

incorrect, and work is currently underway to understand this phenomenon. 

Suprabasal keratinocytes 

The role for Myc in modulating both proliferation (Hashiro et al., 1991) and 

terminal differentiation (Gandarillas and Watt, 1997) in the epidermis has been 

previously described. The microarray study of Frye et al. (2003) showed that 

activation of Myc in the basal keratinocytes using the k14-mycER
TAM

 transgenic 

model results in basal cells leaving the stem cell compartment and entering a 

program of terminal differentiation. However, activation of Myc in the suprabasal 

keratinocytes – which are already in the process of terminal differentiation – 

results in cells exiting from their differentiated state and re-entering the cell cycle 

(Pelengaris et al., 1999). This can be seen in the present study by early down-

regulation of the key differentiation marker inv, the suprabasal-specific krt1, and 

genes relating to cell adhesion, cytoskeleton formation and structural integrity 

such as csta and the Integrin genes itga7, itgb2 and itgb6.  

However, increased expression was also detected in several genes relating to 

keratinocyte differentiation, including the plec1 gene, whose product is involved 

in formation of the cytoskeleton and maintenance of structural integrity (Svitkina 

et al., 1996; Wiche, 1998), and tgm2, whose product is involved in the formation 

of covalent bonds throughout keratinocyte differentiation. Also, the suprabasal-

specific Keratin 1 gene, krt1, actually showed an increase in expression at later 

time points. However, it is possible that these discrepancies are due to the small 

number of cells induced to proliferate within the short time course considered. 

These data indicate that activation of MycER
TAM

 results in a decrease in the 

differentiated state of keratinocytes, possibly indicating that Myc-induced 

suprabasal keratinocyte proliferation is incompatible with terminal differentiation. 
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5.1.3.4 Comparison between the skin and the pancreas 

Analysis of the temporal pattern of gene-expression following MycER
TAM

 

activation allowed identification of functionally related genes by using clustering 

algorithms (Section 1.5.4). By identifying co-regulated genes showing varying 

profiles between the two tissues, it was hoped that key functional divergences in 

the functional role of Myc may be discovered. QT clustering identified a number 

of co-regulated genes involved in a number of cellular functions (Section 4.2.11).  

A high level of similarity was seen in genes involved in key cell cycle events, 

particularly DNA replication, spindle formation, organelle localisation, 

cytoskeleton organisation and division. DNA damage genes atr and chk1 were 

found to have similar expression profiles, and these were clustered well with 

MCM genes involved in DNA unwinding. The expression of these genes was also 

closely linked to similarly expressed genes involved in DNA repair, indicating 

close linkage between the proliferative action of Myc and the DNA damage 

response mechanism. These changes were detected for the pancreas, but not for 

the skin. However, it is not clear whether this represents a fundamental divergence 

in function between the two tissues, or whether the presence of replicating basal 

keratinocytes may influence the detection of changes in DNA damage response 

genes in suprabasal keratinocytes. 

Of particular interest was the co-regulation seen in several kallikrein genes, which 

were found to be highly expressed in the skin but not in the pancreas. This change 

in expression was very large in comparison to other genes, so clearly represented 

a significant effect. The role of these proteins in cell survival – specifically in the 

Igf1 pathway through degradation of the Igf1 inhibitor, Igfbp3 – suggests a 

possible role in survival for the suprabasal keratinocytes. The role of Igf1 in the 

prevention of Myc-induced apoptosis in fibroblasts has been previously noted 

(Harrington et al., 1994a), and Igf1 is well described as a factor in cell survival 

during tumour growth, particularly in breast cancer (Bonneterre et al., 1990; Ellis 

et al., 1998; Subramanian et al., 2007) and pancreatic cancer (Ohmura et al., 

1990; Bergmann et al., 1995; Min et al., 2003; Stoeltzing et al., 2003; Zeng et al., 
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2003). Therefore, the increase in expression of Igf1 detected in the suprabasal 

keratinocytes following MycER
TAM

 activation, together with proteomic evidence 

of an increase in the Igf1 receptor (data not shown), suggests a key role in 

determining response to MycER
TAM

 activation. 

Kallikreins such as these also play a role in control of tissue micro-environment, 

degradation of the extracellular matrix through activation of MMPs. Similar co-

expression was detected for the angiogenesis inducing placental growth factor 

gene pgf, which requires extracellular matrix degradation to allow vascular 

growth. These results suggest that prevention of apoptosis may occur due to an 

increase in the levels of kallikrein proteins in the extracellular space, which may 

also link to induction of vascularisation seen in the inv-mycER
TAM

 transgenic 

model. These may facilitate tumourigenesis and neovascularisation by degrading 

the extracellular matrix, and may also act to degrade Igf1-inhibiting proteins such 

as Igfbp3. This allows Igf1 to bind to its receptor and initiate survival pathways 

(e.g. through Akt), leading to inhibition of Bax-mediated Cytochrome c release 

from the mitochondria. The fact that up-regulation of Igf1 was seen for both the 

skin and the pancreas (as evidenced in the qRT-PCR results – Figure 4.2.32) may 

suggest that this plays a major role in determining cell survival, but is kept in 

check through inhibitory mechanisms that must be avoided to prevent apoptosis. 

However, this proposed mechanism raises two important questions: 

1. If suppression of Myc-mediated apoptosis occurs at the mitochondria 

through inactivation of Bax, why do we not see earlier apoptosis-related 

expression changes (such as DNA-damage related genes) in the skin? 

2. Why are the kallikrein genes up-regulated in the skin but not in the 

pancreas? 

If the point at which apoptosis was evaded occurred downstream of p53 

activation, evidence of activation of the DNA damage response would be 

expected in the suprabasal keratinocytes. However, whilst no significant change in 

expression was detected for the DNA damage response genes in the skin, this does 

not rule out activation of the pathway at the protein level, through 
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phosphorylation of Atr/Atm and subsequent checkpoint kinases Chk1 and Chk2. 

Protein-level analysis remains to be performed to confirm or reject the role of the 

DNA damage pathway in suprabasal keratinocytes. 

The question as to why kallikreins were activated in the skin but not in the 

pancreas may well be central to the dichotomous phenotypic outcome of 

MycER
TAM

 activation between the two tissues. Given that Myc usually acts as a 

rather weak transactivator, with changes in expression usually of only a few fold 

changes (Grandori and Eisenman, 1997; Cole and McMahon, 1999), it is likely 

that the kallikrein genes (which showed very large changes in expression) are 

under the influence of some other regulatory factor. One possible explanation for 

the difference in activity between the tissues may come from the role of steroid 

hormones, such as estrogen, in regulating kallikrein expression (Smith et al., 

1992; Borgono and Diamandis, 2004; Rajapakse et al., 2007). Estrogen is known 

to be very active within the skin, with roles in wound healing and regulation of 

epidermal thickness (Bolognia, 1995; Azzi et al., 2005). It may be the case that 

estrogen activity within the β-cells is insufficient to protect against Myc-induced 

apoptosis. In fact, it has previously been shown that estrogen can protect against 

oxidative stress-induced apoptosis in β-cells in mice by associating with estrogen 

receptor alpha (ERα) (Le May et al., 2006).  

The idea that estrogen levels may influence the phenotypic outcome may also be 

supported by observations that male mice suffer more severe hyperglycaemia than 

female mice following MycER
TAM

 activation (data not shown). This may suggest 

that the higher levels of estrogen in female mice alleviate MycER
TAM

-induced 

apoptosis somewhat, resulting in fewer apoptotic cells. However, studies are yet 

to confirm that the number of apoptotic β-cells is greater for male mice than for 

females, and all mice used throughout this study were male to ensure that 

between-sample variation was minimised.  

However, one further confounding issue with using the 4OHT driven MycER
TAM

 

transgenic model is the fact that synthetic analogues of estrogen such as 4OHT 

have been shown to activate the endogenous estrogen receptor (Smith et al., 1997; 

Dudley et al., 2000). It is therefore possible that these skin-specific changes in 
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gene-expression relate to activation of estrogen-responsive pathways by 

ectopically administered 4OHT as opposed to endogenous estrogen. To rule out 

this effect, further studies would need to be performed, comparing the resulting 

changes in gene-expression following activation of MycER
TAM

 by 4OHT with 

those in 4OHT-treated WT littermates. 

These data suggest a possible mechanism by which the tissue-specific 

environment may play a role in determining the fate of cells following Myc 

deregulation (Figure 5.1.1). It is important to note that changes at the 

transcriptional level make up only a small part of the many changes occurring 

within the cell in response to Myc deregulation. Details of protein-level changes, 

post-translational modifications, or epigenetic modifications of DNA are beyond 

the scope of this analysis. However, these results provide several avenues for 

future research, and further analysis into the roles of estrogen, kallikreins and Igf1 

may lead to improved understanding of the survival pathways that can serve to 

augment the oncogenic role of Myc. 
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Figure 5.1.1: Proposed mechanism for Myc-induced apoptosis and survival  

Activation of MycER
TAM

 leads to unchecked proliferation in suprabasal keratinocytes, but 

predominantly apoptosis in pancreatic β-cells. Shown here is a proposed mechanism for the tissue-

specific determination of cell fate following Myc deregulation. Initiation of the apoptotic 

machinery following activation of MycER
TAM 

appears to occur through activation of the DNA 

damage checkpoint pathway, leading to activation of the p53 tumour suppressor. The route by 

which Myc is able to promote DNA damage is not clear, but the data may suggest a direct role for 

Myc in transcriptional regulation of key DNA damage genes atr, chk1 and chk2. Gene-expression 

results suggest there is no transcriptional response in atm, however activation of Atm may be 

involved at the protein level. Activation of p53 prevents association with the p53-inhibitor Mdm2, 

allowing accumulation of the stable protein. This process may be further assisted by p19
Arf

 (a 

previously categorised Myc target gene), which binds to and inhibits the Mdm2 protein. It is also 
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possible that the role for p19
Arf

 in Myc-induced apoptosis is through its ability to promote cell 

cycle arrest, along with the p53-activated p21
Cip1

. As well as activating cell cycle, p53 may be 

involved in Bax-activated MOMP. The lack of expression change seen for pro-apoptotic p53-

target genes suggests that the predominant role for activated p53 is in direct activation of Bax or 

inhibition of Bcl2 or BclXL at the mitochondria. Activated Bax forms the MAC, allowing release of 

apoptotic factors such as Endog and Cytochrome c into the cytosol. This is highlighted by the 

increase in expression of the corresponding genes, endog and cycs, which may suggest 

transcriptional replenishment of lost mitochondrial proteins. Given the rapid change in expression 

of these genes following MycER
TAM

 activation, this may suggest a direct role in transcriptional 

regulation of these genes by Myc. Cytochrome c induces apoptosis through activation of a caspase 

cascade, culminating in activation of the effector Caspase 3, and destruction of the cell. This is 

further aided by Endog-mediated degradation of DNA. Activation of Bax is regulated by both pro- 

and anti-apoptotic members of the Bcl2 superfamily. Bcl2 and BclXL act to prevent formation of 

the MAC by associating with and inhibiting Bax proteins. Increased expression of Igf1 in both 

tissues suggests that survival pathways are also activated by Myc. This may occur through the Akt 

pathway, culminating in inhibition of Bcl2 and BclXL. Whilst no change in these key DNA 

damage-responsive genes was detected in the skin, the activation of the DNA damage response at 

the protein level cannot be discounted. However, it is also possible that survival signals act to 

prevent Myc-induced DNA damage. The Igf1 protein is prevented from binding to its receptor and 

activating survival pathways by the Igf binding protein Igfbp3. It is suggested that Igfbp3 prevents 

Igf1 from activating survival signals in the pancreas, allowing suppression of tumour growth 

through apoptosis, whilst activation of MycER
TAM

 in the skin leads to a large response in 

kallikrein genes, whose products are known to degrade Igfbp3. Kallikrein genes are 

transcriptionally activated by steroid hormones such as estrogens, which are found in large 

numbers within the epidermis, suggesting a possible tissue environment-specific divergence in 

transcriptional response following MycER
TAM

 activation.   
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5.2 Conclusions 

The fate of a cell following deregulation of Myc is dependent on cell type and 

location. However, the pathways responsible for deciding the ultimate fate of the 

cell between „life‟ (uncontrolled proliferation) and „death‟ (i.e. apoptosis) in vivo 

are not yet clear. The MycER
TAM

 transgenic mouse model allows controlled 

deregulation of Myc in adult mice, enabling tracking of early changes downstream 

of aberrant Myc activity. High throughput transcriptional profiling was used to 

identify transcriptional events that may explain the disparity in the phenotypic 

response to MycER
TAM

 activation in the suprabasal keratinocytes (proliferation) 

and pancreatic β-cells (apoptosis). Gene-expression profiling of the pancreatic β-

cells identified the DNA damage checkpoint pathway as the likely route by which 

Myc-mediates apoptosis in this system, resulting in activation of p53 and release 

of the pro-apoptotic factor Cytochrome c from the mitochondria. A role for the 

tumour suppressor p19
Arf

 was also detected, although recent studies have 

suggested that this may relate to Myc-induced cell cycle arrest, and not to p53 

stabilisation and apoptosis as previously hypothesised. Whilst a direct 

transcriptional role for these expression changes cannot be inferred from these 

data, the suggested mechanism fits well with previous studies in the field, and 

suggests a key role for Myc in inducing DNA damage and abrogating the 

apoptotic response through induction of further pro-apoptotic factors. 

Comparative analysis between the two tissues suggests an important role for the 

Igf1 survival pathway in determining ultimate cell fate. The key discrepancy 

between the two systems appears to be the presence of members of the kallikrein 

serine protease family, which were dramatically up-regulated throughout the time 

course. These enzymes have been implicated both in degradation of the 

extracellular matrix facilitating angiogenic growth (a consequence of MycER
TAM

 

activation present in the suprabasal keratinocytes and not in the β-cells), and in 

degrading Igf1r antagonists such as Igfbp3. In this way, Klks may work to 

promote survival signalling through Igf1, leading to inhibition of apoptosis at the 

mitochondria and allowing the tumourigenic potential of deregulated Myc to be 
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realised. Whilst at this stage we can only speculate, it is proposed that this 

difference in Klk activity may occur as a result of high levels of steroid hormones, 

such as estrogen, which are responsible for regulating Klk expression. A 

mechanism is therefore proposed by which the tissue-specific environment may 

influence the role of Myc in determining cell fate (Figure 5.1.1), however this 

remains to be investigated further in future studies. 

The decision for a cell to become apoptotic depends on the complex interactions 

of many pro- and anti-apoptotic factors. The comparative levels of these factors 

may ultimately determine the fate of a cell. Different tissues may exhibit varying 

levels of these factors, resulting in a seesaw effect as pro- and anti-apoptotic 

factors compete for dominance. However, it also appears that tissue-specific 

environmental characteristics can affect the interaction between these factors, 

having a decisive effect on cell fate. The cellular events that can tip the balance 

one way or another during oncogenic stress are thus of great importance, as 

understanding the circumstances under which cells can bypass this defensive 

apoptotic response and allow tumour growth may lead to the discovery of new 

targets for therapeutic intervention. 

This study has aimed to identify tissue-specific transcriptional events that may 

allow cells to evade the apoptotic effects of tumour suppression. We have sought 

to determine the factors that allow a cell to determine whether to continue life 

despite irregularity in Myc function, or to destroy itself to protect the organism. In 

some sense, we have aimed to determine the „suicide note‟ for the β-cells – why 

have they resigned to destroy themselves whilst the suprabasal keratinocytes are 

happy to continue to survive despite the detrimental effect of Myc?  

To answer this, a complete and thorough microarray experiment was designed and 

implemented to study the function of the cells at the transcriptional level. 

Experimental protocols were significantly optimised to ensure data quality was 

maximised; a thoroughly considered quality control procedure was utilised to 

ensure erroneous data were identified and removed; the analysis tool Envisage 

was designed and employed to specifically answer the questions central to the 

experiment; a thorough analysis of the resulting data was performed to identify 
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potential mechanisms indicative of the discrepancy in the phenotypes; and several 

results of interest were analysed (and in many cases, successfully validated) using 

qRT-PCR.  

A possible mechanism whereby tissue-specific environmental factors may 

influence cell fate following Myc deregulation has been proposed, hypothesising 

that the decision to live or die may relate to tissue-specific environmental factors. 

However, this remains speculation as the approach taken here gives an insight into 

only one aspect of the changes occurring within the cell in response to Myc 

deregulation. Much remains to be learnt from analysis of protein-level changes, 

post-translational modifications, or epigenetic modifications of DNA. This study 

has identified several new lines of investigation for future analysis into the dual 

roles of Myc in apoptosis and survival. It is hoped that such studies will prove 

fruitful and provide further insight into the complex role of this enigmatic protein. 
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5.3 Further work 

The design and implementation of Envisage largely focused on the ability to 

identify and correct for effects on gene-expression of sources of variation within 

an experiment that are not of primary interest to the researcher. This was 

influenced by the highly variable biological background of replicate samples in 

clinical studies. However, in its current form, the algorithm used in the model 

fitting procedure remains quite simple and may yet be improved.  

Currently, one problem with this method is that estimates of the variance for each 

group may be sensitive to outliers, particularly if only a few replicate samples are 

used (as is often common with microarray experiments). The number of arrays 

used in an experiment will typically be much fewer than the number of genes 

analysed. Inclusion of methods such as the Empirical Bayes approach utilised by 

the limma package in R (Smyth, 2004; Smyth, 2005), or a non-parametric re-

sampling method such as the bootstrap or jack-knife methods (Efron, 1981), 

would allow more stable estimates for the variance by “borrowing” information 

on variance across the genes as well as across the samples.  

There are also several issues with the model fitting approach which must be 

considered and improved. Firstly, since the model fitting approach of Envisage 

results in only a subset of the model terms included in the selected model for 

some genes, the multiple testing correction is applied to a different number of 

genes for each model term. This may result in biased estimates for the adjusted p-

values. Another issue with the Envisage package is that it is currently quite 

simple, and is not able to account for more complex experiment designs or 

multiple error strata. This may thus limit the utility of Envisage to only a limited 

number of experimental designs. In addition, there are currently no methods for 

the inclusion of contrasts into the analysis approach, so whilst it is possible to 

analyse the variables that show significant effects, it is not possible to further 

analyse the effects of each specific factor level. This makes Envisage useful for 

broad analyses of the most significant variables within a dataset, but not for more 
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specific analyses of the conditions under which significant changes are detected. 

Such contrast specification utilities may yet be added to a future release. 

Also, the use of the AIC in the model fitting procedure may be overly liberal, 

adding terms with small regression coefficients that may lead to unnecessarily 

complex models. A model fitting criterion such as the least absolute shrinkage and 

selection operator, or LASSO (Tibshirani, 1996; Tibshirani, 1997), may instead be 

preferable. This minimises the SS, as described in Section 1.5.3.3, whilst 

imposing a limit on the absolute sum of the coefficients of Equation 1-13 such 

that  |𝛽𝑚 |𝑝
𝑚=1 < 𝑠 for some threshold value 𝑠. This method essentially shrinks 

the coefficients of some terms while setting others to zero, limiting the number of 

terms and ensuring parsimony in the fitted model.  

Another addition to the package would be to include some method of clustering 

results within the model-fitting framework. It may be assumed that genes showing 

similar effects from the model terms are functionally related, providing a method 

of clustering to infer functionally related genes based on similarities between the 

fitted models. This clustering method may allow identification of genes showing 

similar regression coefficients, which may indicate co-expression in the system 

under analysis. Such improvements were unfortunately not implemented due to 

constraints on time, however remain viable options for the future. 

Much still remains to be discovered within the microarray data set. The temporal 

nature of the experiment was originally designed with identification of network 

structure in mind. Whilst it was decided that such an analysis was outside of the 

scope of this project, current collaborations with members of the Engineering 

Department at the University of Warwick will hopefully yield interesting results 

in the future. 

The role of the DNA damage response pathways in MycER
TAM

-induced apoptosis 

remains to be studied in more detail. Validation studies using qRT-PCR have 

certainly strengthened the evidence pertaining to a DNA damage response being 

instrumental in Myc-induced apoptosis, and this corroborates the work of other 

researchers within the field. However, further functional studies may yet be 
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performed to confirm these results within this system, and in particular to identify 

the presence/absence of the DNA damage response in suprabasal keratinocytes. 

The central role of Atr and the checkpoint kinases, and the role of the p53-

stabilising tumour suppressor p19
Arf

 in particular may provide interesting targets 

for gene knockdown approaches such as RNA interference, which may 

functionally validate their roles in this process. It is of particular interest to 

understand the role played by p19
Arf

 in this system, whether as a stabiliser of p53 

activity, or as an inducer of cell cycle arrest. 

Possible routes for the bypass of the apoptotic functions of Myc may involve the 

survival factor Igf1, and the kallikrein family of serine proteases, which have all 

been shown to exhibit significant changes in their expression within this 

experiment. Further functional validation must be performed in order to make 

firm assertions regarding their role in the dichotomy of MycER
TAM

-activation in 

these diverse tissues. Studies are currently underway regarding the role of the Igf1 

and Igf1 receptor in the prevention of Myc-induced apoptosis, which have also 

been identified through proteomics analyses performed within the Michael Khan 

group (data not shown). Of particular interest will be the role (if any) of estrogens 

and the kallikrein family members in determining cell fate. Functional studies, 

perhaps using kallikrein knockout mice or RNA interference techniques to 

suppress specific mRNAs, may help to elucidate the mechanisms involved in the 

regulation of these pathways. In particular, the specific role played by Myc in 

these pathways remains to be seen. 
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Appendix A: Gene abbreviations 

Gene Protein Name 

akt1-3 Akt1-3 v-akt murine thymoma viral oncogene homolog 

1-3 

apaf1 Apaf1 Apoptotic peptidase activating factor 1 

atm Atm Ataxia telangiectasia mutated 

atr Atr Ataxia telangiectasia and Rad3 related 

bad Bad Bcl-associated death promoter 

bak Bak BCL2-antagonist/killer 

bax Bax Bcl2-associated X protein 

bbc3 Puma/Bbc3 Bcl-2 binding component 3 

bcl2 Bcl2 B-cell leukemia/lymphoma 

bclW BclW Bcl2-like 2 

bclXL BclXL Bcl2-like 1, extra large 

bid Bid BH3 interacting domain death agonist 

bim Bim Bcl2-like 11 (apoptosis facilitator) 

birc5 Birc5/Survivin Baculoviral IAP repeat-containing 5 (survivin) 

brca1 Brca1 Breast cancer 1, early onset 

cak Cak Cyclin activating kinase 

casp1-14 Caspase 1-14 Caspase, apoptosis-related cysteine peptidase 

1-14 

cbp Cbp CREB binding protein 

ccna Cyclin A Cyclin A 

ccnb Cyclin B Cyclin B 

ccnd Cyclin D Cyclin D 

ccne Cyclin E Cyclin E 

cdc25a Cdc25a Cell division cycle 25a 
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Gene  Protein Name 

cdc2a Cdk1 Cyclin dependent kinase 1 

cdk2-11 Cdk2-11 Cyclin dependent kinase 2-11 

cdkn1a p21
Cip1/Waf1 

Cyclin dependent kinase inhibitor 1a 

cdkn1b p27
Kip1 

Cyclin dependent kinase inhibitor 1b 

cdkn2a p19
Arf 

Cyclin dependent kinase inhibitor 2a 

cdkn2b p15
Ink4b 

Cyclin dependent kinase inhibitor 2b 

cdkn2c p18
Ink4c 

Cyclin dependent kinase inhibitor 2c 

cdt1 Cdt1 Chromatin licensing and DNA replication 

factor 1 

cflar Flip Flice inhibitory protein 

c-fos c-Fos FBJ osteosarcoma oncogene 

chk1, 2 Chk1, 2 Checkpoint kinase 1, 2 

cks Cks CDC28 protein kinase 

c-myc c-Myc Myelocytomatosis, cellular 

creg1 Creg1 Cellular repressor of E1A-stimulated genes 1 

cst7 Cst7 cystatin F (leukocystatin) 

csta Csta Cystatin A (stefin A) 

cul1 Cul1 Cullin 1 

cycs Cyto c Cytochrome c, somatic 

e2f1-8 E2f1-8 E2F transcription factor 1-8 

eif1-5 Eif1-5 Eukaryotic translation initiation factor 1-5 

endog Endog Endonuclease g 

fadd Fadd Fas-associated death domain 

fas Fas/CD95/Apo1 Fas (TNF receptor superfamily member 6) 

flice Flice/Caspase 8 Caspase 8 

gadd45g Gadd45g Growth arrest and DNA-damage-inducible, 

gamma 

gck Gck Glucokinase 
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Gene Protein Name 

gcn5 Gcn5 General control of amino-acid synthesis 5 

glp1 Glp1 Glucagon-like peptide 1 

h2-aa H2-Aa Histocompatibility 2, class II antigen A, alpha 

h2afx H2afx H2A histone family, member X 

h2-d1 H2-D1 Histocompatibility 2, D region locus 1 

h2-l H2-L Histocompatibility 2, D region 

hb9 Hb9/Mnx1 Motor neuron and pancreas homeobox 1 

hdac1, 2 Hdac1, 2 Histone deacetylase 1, 2 

hus1 Hus1 HUS1 checkpoint homolog (S. pombe) 

igf1 Igf1 Insulin-like growth factor 1 

igf1bp1-7 Igfbp1-7 Insulin-like growth factor binding protein 1-7 

igf1r Igf1r Insulin-like growth factor 1 receptor 

il1r1 Il1r1 Interleukin-1 receptor 1 

il6ra Il6ra Interleukin-6 receptor a 

ins Insulin Insulin 

inv Inv Involucrin 

itga1-11 Itga1-11 Integrin, alpha 1-11 

itgb1-8 Itgb1-8 Integrin, beta 1-8 

ki67 Ki67 Antigen identified by monoclonal antibody Ki-

67 

kl Klotho Klotho 

klk1-27 Klk1-27 Kallikrein 1-27 

l-myc l-Myc Myelocytomatosis, lung 

mad Mad MAX dimerization protein 1 

max Max MYC associated factor X 

mcm2-7 Mcm2-7 Minichromosome maintenance deficient 2-7 

mdm2 Mdm2 Transformed 3T3 cell double minute 2, p53 

binding protein 
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Gene Protein Name 

miz1 Miz1 Zinc finger and BTB domain containing 17 

nkx2.2 Nkx2.2 NK2 transcription factor related, locus 2 

nkx6.1 Nkx6.1 NK6 transcription factor related, locus 1 

n-myc n-Myc Myelocytomatosis, neuronal 

pax4 Pax4 Paired box 4 

pcnt Pcnt Pericentrin (kendrin) 

pcsk1-3 Pcsk1-3 Proprotein convertase subtilisin/kexin type 1 

pdx1 Pdx1/Ipf1 Pancreatic and duodenal homeobox 1 

pgf Pgf Placental growth factor 

pi3k Pi3k Phosphoinositide 3-kinase 

plec1 Plec1 Plectin 1 

pmaip1 Noxa/Pmaip1 Phorbol-12-myristate-13-acetate-induced 

protein 1 

rad1-17 Rad1-17 Replication activation domain 1-17 

rb1 Rb Retinoblastoma 1 

skp2 Skp2 S-phase kinase-associated protein 2 

slc2a2 Glut2 Solute carrier family 2 (facilitated Glucose 

transporter), member 2 

smac Smac/Diablo Second mitochondria-derived activator of 

caspases 

smc1 Smc1 Structural maintenance of chromosomes 1 

sp1, 3 Sp1, 3 Trans-acting transcription factor 1, 3 

tgm2 Tgm2 Transglutaminase 

tnf Tnf Tumour necrosis factor (TNF superfamily, 

member 2) 

tnfr1, 2 Tnfr1, 2 Tumour necrosis factor receptor 

tradd Tradd TNF receptor-associated death domain 

trail Trail TNF-related apoptosis inducing ligand 
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Gene Protein Name 

trp53 p53 Transformation related protein p53 

trrap Trrap Ttransformation/transcription domain-

associated protein 

v-myc v-Myc Myelocytomatosis, viral 
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Appendix B: Gene lists 

Supplementary Table 1: Cell cycle genes showing significant increase in expression within 8 

hours of MycER
TAM

 activation in the pancreatic β-cells. p-value derived from analysis of the 

‘4OHT’ term in the Envisage model. Flags represent significant effects detected at specific 

time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

akap8 BB037566 2.72 ** 1.93 * 0.9 1.48 ** 7.99E-06 

akap8 BG069776 2.53 ** 1.95 * 1.11 1.96 ** 0.004869 

anapc1 AV113524 2.73 ** 0.43 ** 4.82 ** 2.34 ** 0.001374 

bop1 BM213936 2.75 ** 2.86 ** 2.96 ** 3.1 ** 7.74E-05 

brms1l AK003055 0.99 2.45 ** 1.71 ** 1.08 0.000107 

bub1b AU045529 1.54 * 3.86 ** 21.18 ** 2.47 ** 0.000959 

ccna2 X75483 0.91 ** 5.41 * 14.48 ** 3.11 ** 0.010868 

ccnb1-rs1 NM_007629 1.07 3.37 ** 11.07 ** 3.49 ** 0.002143 

ccnd1 NM_007631 2.02 ** 2.25 * 0.84 * 1.93 0.001627 

ccnd1 NM_007631 1.92 ** 3.93 * 1.19 * 3.21 0.014837 

ccnd1 NM_007631 3.59 ** 4.3 * 1.68 * 3.41 0.003873 

ccnd2 NM_009829 2.3 * 2.02 1.3 2.29 * 0.026191 

ccnd2 AK007904 2.05 * 0.67 1.99 2.52 * 0.014806 

ccne1 NM_007633 1.8 ** 3.35 ** 8.21 ** 1.82 ** 0.001283 

ccne1 BB293079 1.82 ** 7.54 ** 1.86 ** 2.13 ** 2.73E-05 

ccne2 AF091432 3.04 ** 8.16 ** 7.78 ** 8.86 ** 0.000871 

cd40 BB220422 3.08 1.36 2.64 * 0.94 1.74E-05 

cdc14b AK013228 2.17 ** 0.34 ** 0.63 1.46 0.009572 

cdc25a C76119 2.73 ** 2.77 * 2.16 ** 3.81 ** 0.00184 

cdc25a C76119 2.39 ** 2.24 * 1.83 ** 2.05 ** 0.0064 

cdc2a NM_007659 1.06 4.54 ** 14.85 ** 3.45 ** 0.004186 

cdc37 AK013255 2.13 ** 2.36 ** 1.17 ** 1.82 ** 0.000284 

cdc6 NM_011799 3.02 * 10.59 ** 15.69 ** 8.81 ** 0.004407 

cdc7 AB018574 5.79 ** 4.32 ** 4.27 ** 5.19 ** 0.000715 

cdca5 NM_026410 0.74 15.39 ** 25.14 ** 10.75 ** 0.000357 

cdca5 NM_026410 0.83 2.93 ** 18.54 ** 3.03 ** 0.003913 

cdca7 AK011289 2.91 ** 1.8 ** 1.18 * 1.58 * 0.000223 

cdca7l BC006933 3.05 ** 4.18 ** 3.34 ** 5.58 ** 0.003352 

cdkn1a AK007630 1.56 ** 2.12 ** 1.62 ** 1.49 0.005006 

cdkn2a NM_009877 2.54 ** 2 ** 1.49 ** 2.7 ** 0.000264 

cdt1 AF477481 5 ** 16.63 ** 37.16 ** 6.04 ** 2.36E-06 

cdt1 AF477481 3.62 ** 5.24 ** 13.12 ** 8.31 ** 0.002799 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

cenpm NM_025639 1.06 3.52 ** 10.38 ** 1.76 0.015638 

cep55 AK004655 1.21 2.63 ** 10.02 ** 3.18 ** 0.001102 

chek1 BB298208 1.15 3.84 * 2.76 ** 2.05 ** 0.004048 

chek1 C85740 2.05 5.34 * 6.01 ** 3.86 ** 0.004993 

chek2 NM_016681 1.22 2.17 ** 3.81 ** 2.29 ** 0.019763 

cks1b NM_016904 1.5 * 3.21 ** 4.22 ** 2.77 ** 3.47E-06 

cks1b NM_016904 1.3 * 3.55 ** 7.9 ** 4.26 ** 0.000506 

cks2 NM_025415 0.91 3.26 ** 13.58 ** 4.86 ** 0.004375 

cks2 NM_025415 0.96 2.86 ** 12.67 ** 2.33 ** 0.011831 

clspn BG067086 1.37 3.64 ** 10.13 ** 1.53 0.035206 

cnbp BM237919 2.21 ** 1.41 0.85 2.22 ** 0.036888 

cse1l NM_023565 1.62 ** 2.3 ** 3.23 ** 1.81 ** 4.37E-05 

cul5 BB702110 2.68 0.92 * 1.65 0.98 0.016909 

cwf19l1 BB749215 1.7 * 2.28 ** 0.63 0.96 0.006289 

dbf4 NM_013726 3.49 ** 5.48 ** 10.84 ** 4.82 ** 3.29E-05 

dhcr7 NM_007856 2.37 ** 2.63 ** 1.21 * 1.6 ** 0.001596 

dis3 BM232345 2.61 ** 2.37 ** 2.39 ** 3.92 ** 0.000507 

dnajc2 BG067003 2.3 ** 2.1 ** 2.44 ** 1.85 ** 8.56E-06 

dnajc2 BG067003 2.49 ** 1.09 ** 2.47 ** 1.87 ** 0.005595 

dock4 BG068753 4.26 ** 2.31 ** 1.14 1.66 ** 0.000871 

dock5 AK004325 2.63 ** 2.08 ** 1.71 ** 1.98 ** 0.000205 

e2f3 BQ176318 2.54 ** 1.55 1.11 1.61 * 0.00021 

e2f5 BC003220 2.31 * 0.73 * 1.3 2.21 * 0.029519 

eef1e1 NM_025380 3.15 ** 2.33 ** 7.85 ** 8.45 ** 8.73E-05 

frk BB787292 2.23 ** 1.18 0.94 0.59 ** 0.015192 

gmnn NM_020567 1.57 * 6.01 ** 9.71 ** 5.67 ** 5.62E-05 

h2afx NM_010436 1.16 2.42 ** 5.22 ** 1.4 ** 0.001174 

hells NM_008234 2.59 14.95 ** 20.22 ** 10.82 ** 0.00272 

hells AK021390 1.27 6.08 ** 5.18 ** 3.95 ** 0.049171 

hspa8 AK004608 3.32 ** 3.85 ** 1.06 1.15 0.000406 

igf1 NM_010512 2.21 0.64 1.05 1.09 ** 0.00325 

jag2 AV264681 3.32 ** 2.62 2.14 4.69 ** 0.000236 

jag2 AV264681 2.57 ** 1.41 1.01 2.49 ** 0.001409 

mcm2 BB699415 1.66 3.08 4.09 ** 2.93 ** 0.00025 

mcm3 C80350 4.05 3.93 13.89 ** 9.87 ** 0.002198 

mcm3 BI658327 1.22 3.36 2.43 ** 1.96 ** 0.000242 

mcm4 BC013094 1.69 ** 3.01 ** 4.47 ** 2.7 ** 0.024174 

mcm5 AI324988 4.51 ** 20.38 ** 6.84 ** 10.15 ** 3.43E-05 

mcm6 NM_008567 1.65 ** 5.93 ** 6.1 ** 5.14 ** 0.020149 

mcm6 BB099487 2.38 ** 10.85 ** 12.34 ** 5.08 ** 0.00041 

mcm7 NM_008568 1.64 ** 2.64 ** 4.61 ** 2.47 ** 0.001371 

mcm7 BB464359 2.63 ** 4.84 ** 5.56 ** 4.17 ** 0.00015 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

mcm7 BB407228 2 ** 4.95 ** 3.71 ** 3.06 ** 0.000883 

mki67 X82786 0.67 2.2 * 25.01 ** 1.44 * 0.031045 

mphosph9 BG067775 3.2 ** 1.64 1.9 2.05 * 0.029834 

ncaph BB725358 0.5 4.14 ** 33.38 ** 6.24 ** 0.003466 

nup62 NM_053074 1.87 2.71 4.56 ** 2.57 ** 8.77E-06 

nup62 AW240611 2.17 2.41 2.93 ** 2.7 ** 3.73E-05 

odc1 S64539 1.79 ** 2.34 ** 1.69 ** 1.88 ** 2.12E-05 

orc2l BB830976 2.15 1.91 ** 1.64 * 2.38 ** 4.54E-06 

orc2l BB830976 0.9 3.94 ** 1.89 * 2.54 ** 0.005752 

orc4l BB620704 1.02 2.19 ** 0.74 * 1.5 ** 0.012472 

orc6l NM_019716 2.17 ** 1.82 ** 1.75 ** 2.61 ** 5.97E-05 

p42pop AF364868 1.51 * 3.02 ** 1.45 * 1.92 ** 0.001944 

pa2g4 AA672939 1.95 ** 4.83 ** 1.32 ** 1.59 4.15E-05 

pa2g4 BM232515 2.24 ** 1.35 ** 1.7 ** 3.14 0.004893 

pa2g4 AI152156 2.55 ** 1.85 ** 0.98 ** 2.27 0.000752 

pa2g4 BM232515 2.1 ** 5.55 ** 2.78 ** 2.66 0.000473 

pa2g4 AA672939 2.14 ** 2.25 ** 0.46 ** 1.13 0.000106 

pcna BC010343 0.96 3.32 ** 20.99 ** 4.87 ** 0.005464 

pola1 NM_008892 1.16 2.85 * 9.23 ** 1.53 0.029454 

ppargc1b NM_133249 5.02 ** 1.06 0.98 1.74 * 0.034594 

ppp1r8 BC025479 2.48 ** 0.68 ** 2.25 2.11 * 0.048537 

rad1 NM_011232 2.08 ** 2.87 ** 2.2 * 1.76 0.00377 

rad50 NM_009012 1.68 * 3.48 ** 1.6 4.18 ** 0.021127 

rcc2 AV122997 2.32 * 2.25 * 1.82 ** 8.48 ** 0.000133 

rif1 AK018316 4.01 1.62 1.63 1.94 0.000908 

rif1 AK018316 2.28 1.26 1.67 2.51 0.021757 

ripk2 NM_138952 2.22 ** 0.92 1.1 2.52 ** 0.007429 

ruvbl1 NM_019685 2.5 ** 2.18 * 3.73 ** 7.33 ** 0.000116 

sgol1 NM_028232 1.17 3.01 17.62 ** 2.76 0.000468 

skp2 AV259620 2.98 ** 2.57 ** 5.48 ** 1.74 * 0.035912 

skp2 BB055741 2.43 ** 3.03 ** 8.04 ** 3.97 * 0.017959 

skp2 BB784099 2.52 ** 1.6 ** 4.17 ** 2.21 * 0.046724 

skp2 AV259620 3.81 ** 3.7 ** 10.41 ** 1.66 * 0.003072 

smpd3 BF456582 1.3 2.07 ** 1.69 ** 3.34 ** 0.044087 

spc24 BF577722 0.81 2.77 ** 14.54 ** 1.45 * 8.74E-05 

stmn1 BC010581 0.65 ** 2.98 7.54 ** 1.7 0.011405 

tfdp1 BG075396 3.14 ** 1.86 ** 3.48 ** 3.2 ** 7.99E-06 

tfrc BB810450 4.29 ** 0.78 0.73 1.85 * 0.009638 

tnfsf5ip1 NM_134138 2.2 ** 2 2.47 ** 5.52 ** 0.005229 

tubb5 BG064086 1.11 3.14 ** 2.31 ** 2.16 ** 0.003102 

txnl4 AW552577 2.17 ** 1.56 ** 1.83 ** 3.46 ** 0.000117 

uhrf1 BB702754 1.78 10.09 ** 9.25 ** 4.2 ** 0.00156 
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Supplementary Table 2: Cell cycle genes showing significant decrease in expression within 8 

hours of MycER
TAM

 activation in the pancreatic β-cells. p-value derived from analysis of the 

‘4OHT’ term in the Envisage model. Flags represent significant effects detected at specific 

time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

abca7 NM_013850 0.62 ** 0.36 ** 0.79 0.49 ** 0.001295 

agt AK018763 1.02 0.27 ** 1.75 ** 2.23 ** 0.004482 

ai844718 AI844718 0.99 0.31 ** 1.35 * 0.42 ** 0.010287 

anapc1 AV113524 2.73 ** 0.43 ** 4.82 ** 2.34 ** 0.001374 

appl1 BG073343 1.08 0.38 ** 0.44 ** 0.93 0.010668 

arx BB322201 0.58 ** 0.63 ** 0.4 ** 0.57 ** 0.000444 

asah2 NM_018830 0.47 ** 0.25 ** 0.55 ** 0.7 * 4.62E-07 

bcl2l2 BB485989 1.29 0.41 ** 0.53 ** 0.53 ** 0.012412 

bin1 U60884 1.09 0.56 ** 2.23 ** 1.3 ** 0.00724 

bin1 BG293813 1.04 0.34 ** 0.38 ** 0.53 ** 0.009659 

btg1 L16846 0.47 ** 0.42 ** 1.09 0.64 ** 0.002209 

btg1 AW322026 0.62 ** 0.4 ** 0.99 0.74 ** 0.002357 

btg2 NM_007570 0.31 ** 0.43 ** 1.25 * 0.78 0.015696 

btg2 NM_007570 0.45 ** 0.34 ** 1.71 * 1.11 0.025367 

ccng2 U95826 0.38 ** 0.42 ** 1.81 0.66 * 0.000465 

ccni NM_017367 0.59 * 0.55 ** 0.77 0.91 * 0.000169 

ccnl2 AK008585 0.93 0.47 ** 1.07 * 0.57 0.037282 

cd9 NM_007657 0.44 ** 0.5 * 2.43 * 2.02 * 0.035585 

cdc14a BB479310 0.55 * 0.5 ** 0.8 0.87 0.038201 

cdc14b AK013228 2.17 ** 0.34 ** 0.63 1.46 0.009572 

cdc23 BB492440 0.94 0.43 ** 1.01 1.57 ** 0.011765 

cdkn1b NM_009875 1.23 0.29 ** 0.76 * 0.96 ** 0.010159 

cdkn2b AF059567 0.47 ** 0.32 ** 0.76 0.45 ** 0.001199 

cdkn2c BC027026 0.32 ** 1.15 7.05 ** 0.56 * 0.024661 

cfl1 NM_007687 1.45 0.49 ** 1.24 2.14 ** 0.006256 

cgrrf1 AV305616 0.67 ** 0.42 * 1.71 ** 0.6 ** 0.022894 

cgrrf1 AK004156 0.52 ** 0.74 * 1.89 ** 1.98 ** 0.030366 

col8a1 AV292255 0.44 ** 0.47 ** 0.98 4.08 ** 0.009906 

ctnna1 NM_009818 0.49 ** 0.62 ** 1.51 ** 0.92 0.000473 

d5ertd40e C77487 0.59 ** 0.59 ** 1.25 0.45 ** 0.013948 

egfr AV369812 0.76 * 0.47 ** 0.97 1 0.000479 

elk3 BC005686 0.63 * 0.46 ** 0.62 * 0.72 0.035167 

erbb3 BF140685 0.51 ** 0.54 ** 0.73 * 1.54 0.014831 

esr1 NM_007956 0.62 0.25 1.8 ** 1.49 0.010188 

fgf1 AI649186 0.53 ** 0.74 * 0.75 * 0.94 0.002184 

flcn BC025820 0.45 ** 0.57 ** 2 0.56 ** 0.007496 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

frk BB787292 0.63 ** 0.35 0.45 0.97 ** 0.003432 

gadd45b AK010420 0.73 * 0.33 ** 2.11 ** 0.48 ** 0.001694 

gadd45g AK007410 0.58 * 0.4 ** 2.08 ** 0.63 ** 1.30E-05 

gng2 BB522409 0.49 ** 1.08 * 0.9 ** 0.78 0.009745 

golt1a BC024448 0.48 ** 0.43 ** 1.57 * 0.86 0.014803 

gsk3b BB831420 0.92 0.44 ** 0.7 ** 0.57 ** 0.002762 

htatip2 AF061972 0.84 0.41 ** 0.78 ** 0.72 ** 0.016576 

igf2 NM_010514 0.5 ** 0.79 1.01 0.93 0.014592 

il1r1 NM_008362 0.53 ** 0.43 ** 1.7 * 0.6 * 0.002892 

il6ra X53802 0.36 ** 0.45 * 1 0.47 ** 0.004703 

itga6 BM935811 0.68 * 0.37 ** 0.81 0.71 0.016939 

kitl BB815530 0.76 * 0.38 ** 0.33 ** 0.55 ** 0.005882 

lmo1 NM_057173 0.37 ** 1.18 2.63 ** 0.75 * 0.016203 

lpp BB089138 1.05 0.3 ** 1.18 * 0.85 ** 0.012568 

lpp BM236111 1.16 0.52 ** 0.73 * 0.37 ** 0.002906 

mapk12 BC021640 0.75 * 0.52 ** 0.69 * 1.17 0.021212 

mapk7 NM_011841 1.02 0.41 ** 1.11 * 1.02 0.010869 

mitf BB763517 0.46 * 0.43 ** 0.98 0.93 0.01716 

mta3 NM_054082 0.68 * 0.31 ** 1.29 * 1.01 0.000871 

mtag2 NM_016664 0.67 ** 0.42 ** 1.31 0.66 ** 0.001173 

ncaph BB725358 0.5 4.14 ** 33.38 ** 6.24 ** 0.003466 

nek1 BB418199 1.16 * 0.49 0.47 0.69 ** 0.000186 

nfatc1 NM_016791 0.91 0.4 1.06 1.28 0.002721 

nfkbia BB096843 0.64 ** 0.46 ** 1.41 0.85 ** 0.040282 

nfu1 BC018355 0.9 0.41 ** 3.89 ** 5.25 ** 0.000155 

nr2c2 AV162817 1.11 0.48 ** 1.21 1.11 0.026226 

numb U70674 0.7 ** 0.4 ** 1 0.5 ** 0.00042 

pard3 AW543460 0.93 0.55 * 0.66 0.87 0.011453 

pard3 BE199556 0.53 0.54 * 1.37 0.62 0.000169 

pard6a NM_019695 0.69 ** 0.38 ** 1.67 ** 0.53 ** 0.004508 

pbx1 L27453 0.95 0.43 0.93 1.05 0.037642 

pbxip1 AV220340 0.42 ** 0.6 ** 0.41 ** 0.61 ** 0.004918 

pdx1 AK020261 0.76 ** 0.22 ** 0.76 * 0.47 ** 0.008211 

pdx1 AK020261 0.69 ** 0.38 ** 0.71 * 0.74 ** 0.041404 

pgf NM_008827 0.51 ** 0.39 ** 1.2 0.5 ** 0.031444 

pkd1 NM_013630 0.86 0.38 ** 1.34 0.86 0.019938 

ppargc1a BB745167 0.51 ** 1.08 0.36 ** 0.32 ** 0.00229 

ppp1cc BG071790 1.54 0.72 ** 2.71 ** 2.55 ** 0.025228 

ppp1r8 BC025479 2.48 ** 0.68 ** 2.25 2.11 * 0.048537 

prkar1b NM_008923 0.63 ** 0.35 ** 2.26 ** 1.12 ** 0.047205 

prkar1b BB274009 0.7 ** 0.41 ** 1.08 ** 0.64 ** 0.018337 

prkar1b BB283894 0.85 ** 0.39 ** 2.18 ** 0.73 ** 0.000177 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

rasgrf1 AF169826 0.69 0.49 ** 1.23 ** 0.92 0.0075 

rasip1 AK003910 1.39 0.43 ** 1.1 0.29 ** 0.008586 

rassf4 AV291679 0.4 ** 0.26 * 0.83 * 0.54 ** 0.003493 

rb1cc1 BE570980 0.97 0.45 ** 0.57 0.94 0.037941 

reck NM_016678 0.39 ** 0.54 ** 0.93 0.82 0.000164 

rgs2 AF215668 1.51 0.32 2.55 ** 1.02 * 0.022341 

rnf6 BI738010 0.52 * 0.65 ** 1.08 0.5 ** 0.027362 

rnf6 BI738010 0.77 * 0.46 ** 1.15 0.46 ** 0.040255 

s100a6 NM_011313 0.5 ** 0.94 1.45 * 1.62 ** 0.0117 

sash1 BI658899 0.54 ** 0.99 1.03 0.97 0.00026 

sesn3 NM_030261 0.77 * 0.51 ** 1.19 0.73 ** 0.015285 

siah2 AA414485 0.52 ** 0.76 ** 1.32 ** 0.87 0.011982 

sipa1l1 BI153574 0.94 0.51 ** 0.91 0.54 0.026869 

smarca2 AK011935 0.82 0.48 ** 0.79 * 0.8 * 0.001044 

smarca2 BM230202 0.94 0.44 ** 0.58 * 0.65 * 0.010874 

stat5a U36502 0.57 ** 0.46 ** 0.83 1 0.003117 

tnfsf13 NM_023517 0.33 ** 0.95 2.49 1.88 0.01273 

trp53bp2 BB814564 0.85 0.43 ** 1.6 * 1.1 0.037677 

tspan5 AK015705 0.76 * 0.38 ** 0.49 ** 1.24 0.04554 

tubb1 AW493179 0.41 ** 0.96 1.25 0.8 * 0.000493 

uchl1 NM_011670 0.47 ** 0.34 ** 1.75 3.78 ** 0.030195 

unknown BF471533 0.56 0.4 0.94 1.17 0.019641 

unknown BM238838 1.95 0.32 0.35 0.38 0.001903 
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Supplementary Table 3: Cell cycle genes showing significant increase in expression within 8 

hours of MycER
TAM

 activation in the skin suprabasal keratinocytes. p-value derived from 

analysis of the ‘4OHT’ term in the Envisage model. Flags represent significant effects 

detected at specific time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

akt1 NM_009652 0.79 3.33 ** 1.07 2.72 ** 0.003781 

akt2 NM_007434 1.24 2.3 ** 1.1 2.37 ** 0.007853 

atf5 AF375476 0.8 3.03 ** 1.07 3.45 ** 0.007942 

b230120h23rik BB561086 2.54 ** 1.49 * 1.69 * 0.6 * 0.001607 

bin1 U60884 1.28 3.12 1.15 3.1 0.00724 

bop1 BM213936 0.77 2.37 ** 1.38 2.51 ** 7.74E-05 

brms1 NM_134155 1.79 3.68 ** 1.6 1.05 0.036994 

camk2d AF059029 0.72 ** 2.07 ** 0.97 ** 1.22 ** 0.009523 

ccnd2 AK007904 1.63 3 1.03 2.4 0.014806 

ccnd3 NM_007632 0.84 ** 2.64 ** 0.85 ** 3.86 0.000512 

cd34 NM_133654 0.98 2.76 ** 1.04 3.37 ** 0.006083 

cd3g M58149 1.55 2.22 ** 1 0.8 0.044598 

cd9 NM_007657 1.27 2.17 * 0.69 1.09 0.035585 

cdc34 BI794243 1.22 2.21 ** 1.52 1.94 * 0.037859 

cdc37 AK013255 1.05 2.58 * 1.42 1.49 0.000426 

cdk4 NM_009870 1.83 12.73 ** 0.88 1.93 0.049585 

cdk4 NM_009870 1.5 11.77 ** 1.09 1.89 0.026067 

cdk4 NM_009870 1.64 11.53 ** 0.91 1.63 0.021676 

cdk7 U11822 0.91 2.24 ** 1.05 1.57 * 0.002113 

cetn3 BC002162 0.69 2.22 ** 0.99 1.33 0.01078 

cfb NM_008198 0.88 2.73 ** 0.54 ** 3.96 ** 0.029819 

cfl1 NM_007687 1.01 2.48 ** 1.25 2.36 ** 0.006256 

cgref1 BC023116 0.67 ** 2.26 ** 0.82 * 2.59 ** 0.033148 

ciao1 AK004129 1.33 3.7 ** 1.17 1.53 0.010593 

cks1b NM_016904 0.78 * 2.04 ** 0.82 1.34 0.000506 

cops5 NM_013715 1.03 2.01 ** 0.93 1.71 ** 0.008324 

csf1 BM233698 1.67 ** 3.02 ** 1.79 ** 3.89 ** 0.000568 

csf1r AK004947 1.19 2.79 ** 0.55 ** 2.67 ** 0.003082 

ctnnb1 BI134907 1.34 2.36 1.09 1.67 0.034574 

eef1e1 NM_025380 1.49 3.48 ** 1.65 * 1.58 ** 8.73E-05 

erh BB071632 0.65 ** 3.66 ** 0.91 2.17 ** 4.37E-05 

evi2a NM_010161 0.98 3.68 ** 0.64 * 3.18 ** 0.049158 

fcgr1 AF143181 0.62 5.88 1.32 8.27 ** 0.000362 

fes BG867327 1.11 2.55 ** 0.75 ** 3.18 ** 0.000477 

gadd45g AK007410 4.44 ** 5.44 ** 3.27 ** 2.87 ** 1.30E-05 

gadd45gip1 BE368753 0.47 ** 3.5 ** 0.55 ** 3.85 ** 0.034335 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

hras1 NM_008284 1.19 2.87 ** 0.8 1.42 0.013043 

hras1 BC011083 1.06 2.2 ** 0.86 1.36 0.016689 

hspa8 BC006722 0.93 2.38 0.93 2.2 0.021573 

hspa8 BC006722 1.13 2.48 0.94 2.6 0.009973 

ifrd2 BB540964 1.06 2.23 ** 1.59 3.3 ** 0.00325 

igf1 NM_010512 1.09 * 2.5 ** 1.61 2.35 ** 0.000129 

igf1 AF440694 1.8 * 2.31 ** 1.13 3.17 ** 0.037463 

igh-6 AI326478 0.14 ** 3.06 0.32 ** 3.26 ** 0.001176 

itgb2 NM_008404 1.3 3.05 ** 0.62 4.39 ** 0.017104 

mis12 BC026790 0.83 2.06 ** 1.08 1.86 ** 0.003241 

ndel1 BC021434 2.39 * 0.27 ** 0.46 ** 1.04 0.00203 

nek6 BB528391 0.85 2.11 ** 1.3 2.25 ** 0.000155 

nfu1 BC018355 1.14 2.29 ** 0.89 1.56 0.005464 

pcna BC010343 1.42 3.23 ** 0.86 3.18 ** 0.031444 

pgf NM_008827 1.1 2.33 ** 2.23 ** 8.19 ** 0.009284 

polr3d BC016102 1.47 * 4.21 ** 1.52 2.63 ** 0.00229 

ppargc1a BB745167 2.3 ** 0.84 0.78 0.74 0.003812 

pstpip1 U87814 0.98 2.73 ** 1.53 1.98 ** 0.010424 

ptgds2 NM_019455 0.93 2.96 ** 0.93 1.09 0.00377 

rad1 NM_011232 0.75 3.33 ** 0.79 2.22 * 2.13E-05 

ran AV090150 0.86 2.17 ** 1.35 1.75 ** 0.019522 

rassf2 AK018504 1.03 3.77 ** 1.01 1.5 ** 0.003309 

rogdi BC006914 0.72 2.16 ** 0.96 1.31 0.014577 

rp23-143a14.5 NM_027136 0.71 2.22 ** 0.98 1.87 ** 0.000116 

ruvbl1 NM_019685 0.97 2.21 ** 1.57 2.16 ** 0.005751 

sept11 AV229846 2.16 ** 1.02 1.46 ** 0.9 0.005006 

sept9 NM_017380 0.75 2.3 ** 0.94 2.1 ** 0.003502 

sfpi1 NM_011355 0.77 2.53 ** 0.91 4.66 ** 0.002031 

skp1a AV347477 0.85 * 2.14 ** 0.93 1.03 0.007487 

slfn2 NM_011408 1.34 2.75 ** 0.94 2.88 ** 0.001677 

tial1 NM_009383 0.76 ** 2.33 ** 0.91 2.83 ** 0.01273 

tnfsf13 NM_023517 1.03 2.13 * 0.35 ** 1.47 0.001952 

tnfsf5ip1 BC016606 1.1 3.17 1.06 1.99 0.000653 

triap1 AK007514 1.02 3.6 ** 0.92 2.11 ** 0.034875 

u2af1 NM_024187 0.98 2.16 ** 1.2 1.52 0.002046 

ywhab NM_018753 0.84 2.23 ** 1.09 2.42 ** 0.026275 
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Supplementary Table 4: Cell cycle genes showing significant decrease in expression within 8 

hours of MycER
TAM

 activation in the skin suprabasal keratinocytes. p-value derived from 

analysis of the ‘4OHT’ term in the Envisage model. Flags represent significant effects 

detected at specific time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

4732435n03rik AV371987 0.77 0.42 ** 0.5 ** 0.81 0.000556 

ahr BE989096 1.22 0.47 ** 0.92 0.51 ** 0.031511 

ai467657 AA419994 0.91 0.31 ** 1.04 0.46 ** 3.03E-05 

asah2 NM_018830 0.65 ** 0.48 ** 0.9 0.89 4.62E-07 

bmp2 AV239587 0.44 ** 0.37 ** 0.88 * 0.41 ** 7.86E-05 

bmp4 NM_007554 0.41 ** 0.76 0.58 ** 0.67 * 0.000697 

btc NM_007568 0.34 0.27 ** 0.65 ** 0.47 ** 0.000705 

btc AV231340 0.78 0.33 ** 0.68 ** 0.57 ** 0.006474 

bub1b AU045529 0.48 ** 0.53 * 1.11 0.9 0.000959 

camk2d NM_023813 0.9 ** 0.44 ** 0.81 ** 0.6 ** 0.004559 

camk2d AV337193 0.56 ** 0.47 ** 0.64 ** 0.35 ** 0.000282 

ccnb1-rs1 NM_007629 0.69 0.44 * 1.36 0.66 0.002143 

cdc14b AK013228 0.84 0.32 ** 0.84 0.64 * 0.009572 

cdc25a C76119 1.19 0.44 1.08 0.81 0.00184 

cdc73 BM935271 0.97 0.39 ** 1.06 0.52 ** 0.00153 

cdkn1b NM_009875 0.2 0.51 ** 0.5 1.06 * 0.010159 

chek1 C85740 0.83 0.43 1.45 1.15 3.29E-05 

crip3 AF367970 0.48 ** 0.87 * 0.61 ** 0.91 0.001596 

d5ertd40e C77487 0.93 0.47 ** 1.24 1.14 0.001553 

dbf4 NM_013726 0.41 ** 1.39 * 1.19 1.6 ** 6.87E-05 

dhcr7 NM_007856 0.48 ** 0.49 ** 0.99 1.41 * 0.027391 

ednra AW558570 0.94 0.43 ** 0.84 * 0.46 ** 0.000479 

efnb1 NM_010110 0.39 ** 0.51 ** 1.11 1.09 0.014831 

egf NM_010113 1.64 ** 0.47 ** 0.93 0.91 2.13E-05 

egfr AV369812 1.15 0.4 ** 1.37 * 0.49 ** 0.010188 

erbb3 BF140685 0.89 0.48 ** 0.74 0.45 ** 0.000618 

ereg NM_007950 0.16 ** 0.27 ** 0.63 ** 0.93 0.003432 

esr1 NM_007956 0.44 0.86 0.58 1.03 0.034335 

figf NM_010216 0.76 ** 0.47 ** 1 1.63 ** 8.54E-05 

frk BB787292 0.45 0.98 0.51 0.7 0.004749 

gadd45gip1 BE368753 0.47 ** 3.5 ** 0.55 ** 3.85 ** 0.000139 

gas1 BB550400 1.16 0.4 ** 0.99 0.42 ** 0.00272 

gspt1 AW537663 0.5 ** 0.94 1.23 1.23 0.037463 

h2-ea U13648 1.15 0.3 ** 0.59 ** 1.66 ** 0.000194 

hells NM_008234 0.36 0.53 1.38 1.33 0.002514 

igh-6 AI326478 0.14 ** 3.06 0.32 ** 3.26 ** 0.010831 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

il1a BC003727 0.46 ** 0.93 0.44 ** 0.32 ** 0.005882 

jag1 AV359819 0.71 ** 0.47 ** 0.92 0.52 ** 0.035102 

kitl BB815530 1.11 0.42 ** 1.26 0.7 0.003406 

kitl BB815530 1.07 0.29 ** 1.17 1.31 0.002906 

loh11cr2a BC004727 0.87 0.43 ** 1.65 ** 0.8 * 0.00041 

lpp BB557975 1.32 0.42 ** 1.28 0.58 ** 0.019714 

lpp BM236111 1.17 0.5 ** 0.82 0.64 ** 0.003241 

mcm6 BB099487 0.51 ** 0.59 1.21 1.16 0.024372 

myc BC006728 0.31 ** 0.7 * 0.59 ** 1.27 0.011453 

ndel1 BC021434 2.39 * 0.27 ** 0.46 ** 1.04 0.007197 

nipbl BF661272 0.99 0.47 ** 1.19 0.78 * 0.004969 

pard3 AW543460 1.09 * 0.49 ** 1.08 * 0.73 0.01133 

pard3 BG063922 0.78 * 0.45 ** 0.7 * 1.19 0.022582 

pard6b BE953582 0.52 0.33 ** 0.96 0.91 ** 0.005339 

pard6b BE953582 0.67 0.37 ** 1.19 0.5 ** 0.000177 

pmaip1 NM_021451 1.43 * 0.44 ** 0.82 * 0.9 0.009509 

ppp1r13b BG064715 0.7 0.52 0.78 1.19 0.038674 

prkar1b BB283894 0.29 ** 0.58 ** 0.47 ** 1.11 0.043241 

prkar2b BB216074 0.59 ** 1.16 0.94 1.5 * 0.002571 

prox1 BE994433 1.18 0.5 ** 1.08 0.91 0.026183 

ptprv NM_007955 0.49 ** 1.36 0.97 2.1 ** 0.000852 

pycard BG084230 0.49 ** 1.34 0.83 1.44 * 0.000908 

racgap1 NM_012025 0.49 0.86 0.99 1.76 0.021757 

rb1cc1 BE570980 1.11 0.48 1.03 0.66 0.006484 

rif1 AK018316 0.6 0.49 1.7 0.74 0.007547 

rif1 AK018316 1.37 0.49 1.5 0.67 0.003072 

runx2 D14636 0.5 ** 0.58 ** 0.81 * 0.84 * 0.027828 

scin NM_009132 1.12 0.49 ** 1.16 0.62 ** 0.006421 

skp2 AV259620 0.53 0.49 * 1.02 1.11 3.71E-06 

smarcb1 NM_011418 0.49 1.17 0.88 2.16 0.001903 

sphk2 AK016616 0.41 ** 0.61 ** 0.93 0.69 * 0.014006 

tgfa M92420 0.83 0.32 ** 0.78 0.43 ** 0.006056 

Unknown BM238838 1.26 0.45 0.67 1.13 0.004993 

Unknown BB071777 0.89 0.43 0.82 0.53 0.009326 

Unknown AU042527 1.78 0.45 1.08 0.93 0.013948 

vegfc BB089170 0.79 ** 0.39 0.85 0.79 0.016314 

zbtb16 Z47205 1.95 0.52 0.89 0.51 * 0.031087 

zwint BC013559 0.66 ** 0.48 ** 1.25 0.75 ** 0.026178 
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Supplementary Table 5: Apoptosis genes showing significant increase in expression within 8 

hours of MycER
TAM

 activation in the pancreatic β-cells. p-value derived from analysis of the 

‘4OHT’ term in the Envisage model. Flags represent significant effects detected at specific 

time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

bcl2 BI664467 1.32 2.5 ** 0.99 1.29 0.007792 

birc6 BG071331 2.41 ** 0.59 * 0.94 0.92 0.044489 

bnip1 BG073508 2.6 ** 1.1 3.59 ** 4.69 ** 0.000214 

camk1d BG071931 2.91 ** 2.31 ** 0.76 1.29 0.010131 

cd40 BB220422 3.08 1.36 2.64 * 0.94 1.74E-05 

cdc2a NM_007659 1.06 4.54 ** 14.85 ** 3.45 ** 0.004186 

cdkn1a AK007630 1.56 ** 2.12 ** 1.62 ** 1.49 0.005006 

cdkn2a NM_009877 2.54 ** 2 ** 1.49 ** 2.7 ** 0.000264 

cse1l NM_023565 1.62 ** 2.3 ** 3.23 ** 1.81 ** 4.37E-05 

cugbp2 BB644164 1.45 2.38 * 1.19 ** 1.06 0.010569 

cycs NM_007808 1.15 * 2.04 ** 1.64 ** 2.06 ** 0.001638 

eef1e1 NM_025380 3.15 ** 2.33 ** 7.85 ** 8.45 ** 8.73E-05 

endog NM_007931 2.66 ** 3.12 ** 2.27 ** 2.07 ** 7.61E-06 

fas BG976607 6.57 6.48 3.57 14.03 0.000139 

fas BG976607 4 7.72 2.13 4.96 0.006321 

fas BG976607 9.9 13.59 9.74 11.38 0.001117 

fas BG976607 2.74 1.87 2.58 2.58 0.002214 

fastkd1 BE957020 2.54 ** 1.16 1.87 ** 1.61 * 0.011133 

hells NM_008234 2.59 14.95 ** 20.22 ** 10.82 ** 0.00272 

hells AK021390 1.27 6.08 ** 5.18 ** 3.95 ** 0.049171 

htra2 AW323050 1.49 2.25 1.16 ** 1.75 ** 0.016942 

igf1 NM_010512 2.21 0.64 1.05 1.09 ** 0.00325 

jag2 AV264681 3.32 ** 2.62 2.14 4.69 ** 0.000236 

jag2 AV264681 2.57 ** 1.41 1.01 2.49 ** 0.001409 

litaf AV360881 3.17 ** 0.81 1.78 ** 1.7 ** 0.003786 

nup62 NM_053074 1.87 2.71 4.56 ** 2.57 ** 8.77E-06 

nup62 AW240611 2.17 2.41 2.93 ** 2.7 ** 3.73E-05 

parp1 BB767586 2.48 ** 2.26 ** 0.97 1.95 ** 8.08E-05 

pdcd11 AK003899 3.61 ** 1.75 * 2.09 ** 3.42 ** 0.000226 

prkar2a AK004336 2.55 ** 2.79 ** 1.41 * 2.71 ** 0.001012 

prkar2a AK004336 2.33 ** 2.59 ** 1.14 * 3.22 ** 2.16E-05 

ptrh2 BB178232 2.23 ** 2.39 * 0.61 1.62 0.023708 

ripk2 NM_138952 2.22 ** 0.92 1.1 2.52 ** 0.007429 

siva1 AF033112 1.26 2.27 ** 3.4 ** 1.53 ** 0.020671 

tbrg4 BB139935 2.09 1.74 1.16 ** 2.26 ** 7.12E-05 

tfdp1 BG075396 3.14 ** 1.86 ** 3.48 ** 3.2 ** 7.99E-06 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

thoc1 BC024951 2.15 ** 0.91 ** 1.4 * 1.58 ** thoc1 

thoc1 BC024951 2.13 ** 0.97 ** 1.64 * 1.19 ** thoc1 

thoc1 BG066490 2.18 ** 3.27 ** 1.33 * 2.4 ** thoc1 

tnfsf5ip1 NM_134138 2.2 ** 2 2.47 ** 5.52 ** tnfsf5ip1 

usp14 AW107924 1.94 ** 2.33 ** 0.91 ** 1.04 usp14 
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Supplementary Table 6: Apoptosis genes showing significant decrease in expression within 8 

hours of MycER
TAM

 activation in the pancreatic β-cells. p-value derived from analysis of the 

‘4OHT’ term in the Envisage model. Flags represent significant effects detected at specific 

time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

aatk NM_007377 0.64 ** 0.4 ** 0.93 1.16 0.000473 

agt AK018763 1.02 0.27 ** 1.75 ** 2.23 ** 0.004482 

apaf1 AK018076 0.5 1.14 1.42 1.32 0.007714 

asah2 NM_018830 0.47 ** 0.25 ** 0.55 ** 0.7 * 4.62E-07 

bcl2l2 BB485989 1.29 0.41 ** 0.53 ** 0.53 ** 0.012412 

bnip3 NM_009760 0.75 0.48 ** 1.55 ** 0.67 ** 0.014857 

btg1 L16846 0.47 ** 0.42 ** 1.09 0.64 ** 0.002209 

btg1 AW322026 0.62 ** 0.4 ** 0.99 0.74 ** 0.002357 

btg2 NM_007570 0.31 ** 0.43 ** 1.25 * 0.78 0.015696 

btg2 NM_007570 0.45 ** 0.34 ** 1.71 * 1.11 0.025367 

card6 BB766747 0.44 ** 0.55 ** 0.73 * 0.51 ** 4.66E-05 

ctnna1 NM_009818 0.49 ** 0.62 ** 1.51 ** 0.92 0.000473 

dap BC024876 0.77 * 0.52 ** 1.19 0.71 * 0.004095 

dlg5 BC021314 0.72 * 0.45 ** 0.71 ** 0.98 0.003389 

efhc1 AK006489 0.57 ** 0.41 ** 1.09 0.62 ** 0.001059 

elmo3 AI481208 1.27 0.29 ** 0.79 0.48 ** 0.021212 

eya1 BB760085 0.81 * 0.46 ** 1.51 ** 1.14 0.017138 

gadd45b AK010420 0.73 * 0.33 ** 2.11 ** 0.48 ** 0.001694 

gadd45g AK007410 0.58 * 0.4 ** 2.08 ** 0.63 ** 1.30E-05 

gsk3b BB831420 0.92 0.44 ** 0.7 ** 0.57 ** 0.002762 

htatip2 AF061972 0.84 0.41 ** 0.78 ** 0.72 ** 0.016576 

ikbkg BB821318 1.72 ** 0.49 ** 0.71 * 3 ** 0.004462 

il1r1 NM_008362 0.53 ** 0.43 ** 1.7 * 0.6 * 0.002892 

inhba NM_008380 0.58 ** 0.42 ** 0.98 0.64 ** 0.013148 

irf6 NM_016851 0.71 * 0.44 ** 1.19 0.81 0.019855 

kitl BB815530 0.76 * 0.38 ** 0.33 ** 0.55 ** 0.005882 

mapk10 BB453775 0.46 ** 0.42 ** 1.23 ** 0.87 ** 4.07E-06 

mapk8ip1 BB546463 0.75 ** 0.43 ** 0.7 0.5 ** 0.015573 

mapk8ip2 AW536912 0.44 ** 0.94 1.8 * 1.67 * 0.005901 

mitf BB763517 0.46 * 0.43 ** 0.98 0.93 0.01716 

nfkbia BB096843 0.64 ** 0.46 ** 1.41 0.85 ** 0.040282 

nod1 BB138330 1.03 0.31 ** 1.25 1.25 0.023552 

nuak2 AK004737 0.5 ** 1.13 1.97 ** 0.7 ** 0.024528 

peg3 AB003040 0.45 ** 0.25 ** 0.79 ** 0.55 ** 0.000397 

phlda1 NM_009344 0.51 ** 1.06 1.57 * 0.7 * 0.030067 

pik3ca AI528567 0.83 * 0.48 ** 1.53 ** 0.92 0.002475 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

prkar1b NM_008923 0.63 ** 0.35 ** 2.26 ** 1.12 ** 0.047205 

rtn4 BE988775 0.67 ** 0.61 ** 0.57 * 0.66 ** 0.001425 

rtn4 AK003859 0.57 ** 0.44 ** 1.28 * 0.59 ** 0.00012 

serinc3 BM244064 0.65 * 0.5 1.23 0.82 0.011082 

sgk NM_011361 1.01 0.53 ** 1.27 1.09 0.019309 

sh3kbp1 BB326929 0.74 * 0.48 ** 0.47 ** 1.03 0.011982 

siah2 AA414485 0.52 ** 0.76 ** 1.32 ** 0.87 0.035316 

sqstm1 BM232298 0.46 ** 0.3 ** 3.04 ** 0.59 * 0.011586 

stambp AA289490 0.74 ** 0.34 ** 0.56 ** 0.74 ** 0.003117 

stat5a U36502 0.57 ** 0.46 ** 0.83 1 0.003252 

tnfrsf22 BB366863 0.36 ** 0.76 * 1.88 * 0.91 0.01273 

tnfsf13 NM_023517 0.33 ** 0.95 2.49 1.88 0.029572 

traf6 AV244412 0.8 * 0.32 ** 1.09 1.14 0.037677 
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Supplementary Table 7: Activation of MycER
TAM

 in pancreatic β-cells resulted in significant 

change in expression of genes involved in DNA damage response. p-value derived from 

analysis of the ‘4OHT’ term in the Envisage model. Flags represent significant effects 

detected at specific time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

atr AF236887 2.31 4.04 ** 2.57 2.87 4.44E-05 

cdc2a NM_007659 1.06 4.54 ** 14.85 ** 3.45 ** 0.004186 

chek1 C85740 2.05 5.34 * 6.01 ** 3.86 ** 0.0040477 

chek1 BB298208 1.15 3.84 * 2.76 ** 2.05 ** 0.0049931 

chek1 NM_007691 1.52 2.19 * 3.12 ** 1.65 ** 0.0058294 

h2afx NM_010436 1.16 2.42 ** 5.22 ** 1.4 ** 0.0011743 

hus1 AF076845 1.45 1.1 2.35 ** 1.3 0.0146337 

hus1 NM_008316 0.93 2.13 2.07 ** 1.67 0.0185243 

nbn NM_013752 1.65 * 1.02 2.4 ** 1.83 ** 0.0116503 

ptprv NM_007955 1.01 0.95 1.06 0.95 0.043241 

rad1 NM_011232 2.08 ** 2.87 ** 2.2 * 1.76 0.00377 

rad51 NM_011234 1.07 6.97 ** 30.92 ** 2.39 ** 0.000283 

triap1 AK007514 1.76 ** 1.12 2.03 ** 1.76 * 0.0006526 
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Supplementary Table 8: Apoptosis genes showing significant increase in expression within 8 

hours of MycER
TAM

 activation in the suprabasal keratinocytes. p-value derived from 

analysis of the ‘4OHT’ term in the Envisage model. Flags represent significant effects 

detected at specific time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

akt1 NM_009652 0.79 3.33 ** 1.07 2.72 ** 0.003781 

akt2 NM_007434 1.24 2.3 ** 1.1 2.37 ** 0.007853 

atf5 AF375476 0.8 3.03 ** 1.07 3.45 ** 0.007942 

b230120h23rik BB561086 2.54 ** 1.49 * 1.69 * 0.6 * 0.001607 

bag1 NM_009736 0.72 2.33 ** 1.11 2.01 ** 0.003798 

bnip1 BG073508 0.56 ** 2 ** 0.84 2.44 ** 0.000214 

c1qtnf6 AK012868 0.59 * 3.55 ** 0.57 ** 6.15 ** 0.018492 

cd209b AF374471 1.14 2.09 ** 0.32 ** 1.2 ** 0.001609 

cd3g M58149 1.55 2.22 ** 1 0.8 0.044598 

ciapin1 NM_134141 1.17 2.72 ** 1.14 2.49 ** 0.032304 

dnaja3 AK004575 1.2 2.62 ** 1.33 2.47 ** 0.007569 

eef1e1 NM_025380 1.49 3.48 ** 1.65 * 1.58 ** 8.73E-05 

eif5a BF384094 1.5 2.56 ** 1.38 1.71 7.99E-06 

fas BG976607 0.85 5.35 0.86 ** 0.49 0.001117 

fcer1g NM_010185 0.91 3.71 ** 0.84 4.54 ** 0.001439 

gadd45g AK007410 4.44 ** 5.44 ** 3.27 ** 2.87 ** 1.30E-05 

hras1 NM_008284 1.19 2.87 ** 0.8 1.42 0.013043 

hras1 BC011083 1.06 2.2 ** 0.86 1.36 0.005963 

hspa5 AJ002387 1.12 2.74 ** 0.91 2.28 ** 0.001325 

igf1 NM_010512 1.09 * 2.5 ** 1.61 2.35 ** 0.00325 

igf1 AF440694 1.8 * 2.31 ** 1.13 3.17 ** 0.000129 

jmjd6 AK017622 1.08 2.31 ** 1.09 2.42 ** 0.000231 

lsp1 NM_019391 1.08 3.67 ** 0.66 ** 1.92 ** 0.008392 

nek6 BB528391 0.85 2.11 ** 1.3 2.25 ** 0.00203 

pdcd2l AK003339 0.76 2.84 ** 0.88 ** 2.09 ** 0.028861 

pdcd2l AK003339 0.96 2.14 ** 0.74 ** 1.62 ** 0.005131 

pigt AK019717 1 2.08 ** 0.93 * 1.47 0.002608 

ptrh2 BC026947 0.98 2.26 0.92 1.35 * 0.035495 

siva1 NM_013929 1.04 2.18 ** 0.91 1.52 0.003626 

siva1 AF033112 1.02 2.4 ** 1.28 1.38 0.006496 

sqstm1 BM232298 2.13 * 2.3 ** 0.93 0.91 0.035316 

tial1 NM_009383 0.76 ** 2.33 ** 0.91 2.83 ** 0.001677 

tlr1 AF316985 2.2 ** 3.7 ** 1.87 ** 5.01 ** 0.000375 

tnfrsf12a NM_013749 1.14 3.21 ** 1.44 ** 1.18 0.013343 

tnfrsf12a NM_013749 1.22 2.9 ** 1.4 ** 1.14 0.010767 

tnfrsf4 NM_011659 1.25 2.24 ** 1.94 ** 1.04 0.005782 
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Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

tnfsf13 NM_023517 1.03 2.13 * 0.35 ** 1.47 0.01273 

tnfsf5ip1 BC016606 1.1 3.17 1.06 1.99 0.001952 

tnfsf9 NM_009404 0.95 2.24 ** 1.04 0.81 0.0447 

tradd BB749262 0.8 3.51 ** 0.78 1.45 0.000653 

triap1 AK007514 1.02 3.6 ** 0.92 2.11 ** 0.010491 
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Supplementary Table 9: Apoptosis genes showing significant decrease in expression within 8 

hours of MycER
TAM

 activation in the suprabasal keratinocytes. p-value derived from 

analysis of the ‘4OHT’ term in the Envisage model. Flags represent significant effects 

detected at specific time points (‘*’ = t-test p-value ≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

ahr BE989096 1.22 0.47 ** 0.92 0.51 ** 0.031511 

ai467657 AA419994 0.91 0.31 ** 1.04 0.46 ** 3.03E-05 

asah2 NM_018830 0.65 ** 0.48 ** 0.9 0.89 4.62E-07 

bcl2l11 BB667581 1.96 ** 0.43 ** 0.96 0.79 ** 0.036131 

birc4 BF134200 0.51 ** 0.34 ** 1.12 0.87 0.005291 

bmf BB212341 0.62 ** 0.29 ** 0.5 ** 0.64 ** 5.31E-05 

c1qtnf7 BB039211 0.62 ** 0.28 ** 0.69 ** 0.51 ** 5.42E-06 

elmo3 AI481208 0.5 ** 0.89 0.67 * 0.9 0.021212 

gas1 BB550400 1.16 0.4 ** 0.99 0.42 ** 8.54E-05 

glo1 BC024663 1 0.35 ** 1.3 1.13 0.03944 

glo1 BC024663 1.13 0.32 ** 1.3 0.79 0.032921 

hells NM_008234 0.36 0.53 1.38 1.33 0.00272 

il1a BC003727 0.46 ** 0.93 0.44 ** 0.32 ** 0.000194 

il1rap BE285634 0.82 * 0.43 0.92 ** 0.44 0.009618 

kitl BB815530 1.11 0.42 ** 1.26 0.7 0.010831 

kitl BB815530 1.07 0.29 ** 1.17 1.31 0.005882 

myc BC006728 0.31 ** 0.7 * 0.59 ** 1.27 0.019714 

pmaip1 NM_021451 1.43 * 0.44 ** 0.82 * 0.9 0.022582 

ppp1r13b BG064715 0.7 0.52 0.78 1.19 0.005339 

prkar2b BB216074 0.59 ** 1.16 0.94 1.5 * 0.009509 

ptprv NM_007955 0.49 ** 1.36 0.97 2.1 ** 0.043241 

pycard BG084230 0.49 ** 1.34 0.83 1.44 * 0.002571 

rffl AW123157 0.83 0.44 ** 0.99 0.61 ** 0.034411 

scin NM_009132 1.12 0.49 ** 1.16 0.62 ** 0.007547 

serinc3 BM239368 0.99 0.46 ** 0.8 * 1.04 0.017428 

sgpl1 NM_009163 0.81 ** 0.45 ** 0.75 ** 1.36 ** 0.000419 

sphk2 AK016616 0.41 ** 0.61 ** 0.93 0.69 * 0.006421 

tm2d1 AF353993 0.49 ** 1.02 0.88 1.79 ** 0.023572 

tns4 BB142697 0.67 * 0.44 ** 0.92 0.93 0.005475 

trib3 BB508622 1 0.51 ** 0.71 0.63 * 0.001954 

zbtb16 Z47205 1.95 0.52 0.89 0.51 * 0.031087 
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Supplementary Table 10: Mature islet β-cell genes up-regulated within 8 hours following 

activation of MycER
TAM

. p-value derived from analysis of the ‘4OHT’ term in the Envisage 

model. Flags represent significant effects detected at specific time points (‘*’ = t-test p-value 

≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

creg1 BC027426 2.09 ** 2.25 ** 1.52 ** 2.31 ** 0.001706 

h2-aa AV086906 7.66 1.52 ** 0.74 * 4.26 0.006055 

h2-d1 M34962 4.55 2.25 1.59 5.37 * 0.002308 

h2-l M86502 4.93 1.99 1.94 5.96 ** 0.005144 

h2-l M69068 4.72 1.91 1.9 7.18 ** 0.001647 

pcnt NM_008787 2.63 4.27 4.98 ** 4.78 5.43E-06 

pcsk2 BB357975 2.41 ** 0.56 ** 0.78 ** 1.09 ** 0.01453 
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Supplementary Table 11: Mature islet β-cell genes down-regulated within 8 hours following 

activation of MycER
TAM

. p-value derived from analysis of the ‘4OHT’ term in the Envisage 

model. Flags represent significant effects detected at specific time points (‘*’ = t-test p-value 

≤ 0.05, ‘**’ = t-test p-value ≤ 0.01). 

  

Fold change from control 

 

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

1110003e01rik NM_133697 0.64 ** 0.35 ** 1.82 0.6 ** 0.000882 

1810015c04rik NM_025459 0.75 0.36 ** 1.02 0.46 ** 0.032155 

acot11 NM_025590 0.76 0.32 ** 1.04 0.82 0.000444 

arfgap3 BG067878 0.5 ** 0.52 ** 1.13 0.45 ** 0.014405 

c3 K02782 0.9 0.52 * 2.85 * 2.19 ** 0.006855 

ddc AF071068 0.63 ** 0.49 ** 1.64 * 1.08 0.010593 

defb1 BC024380 0.33 ** 0.41 ** 1.02 0.23 ** 5.13E-05 

defb1 BC024380 0.29 ** 0.48 ** 0.91 0.2 ** 4.09E-05 

fkbp1b NM_016863 0.87 0.48 ** 1.21 0.67 * 0.001985 

gramd3 AV259880 0.71 ** 0.36 ** 0.64 ** 0.72 ** 0.000283 

h2-d1 NM_010380 0.54 0.41 2.18 1.12 * 0.004778 

il1r1 NM_008362 0.53 ** 0.43 ** 1.7 * 0.6 * 0.002892 

il6ra X53802 0.36 ** 0.45 * 1 0.47 ** 0.004703 

kl BQ175355 0.84 0.37 ** 0.98 0.89 0.021298 

lamp2 BB390704 0.98 0.49 ** 1.28 0.87 0.01545 

mapk10 BB453775 0.46 ** 0.42 ** 1.23 ** 0.87 ** 4.07E-06 

mapk10 L35236 0.47 ** 0.23 ** 1.64 ** 1.77 ** 0.007442 

ndrg4 AV006122 0.43 ** 0.4 ** 0.85 0.77 0.009491 

ndrg4 AI837704 0.31 ** 0.35 ** 1.24 0.93 0.046516 

nupr1 NM_019738 0.6 * 0.37 ** 1.31 0.51 * 0.00678 

nupr1 NM_019738 0.61 * 0.53 ** 1.29 0.67 * 0.03423 

papss2 BF786072 0.21 ** 0.19 ** 1.39 0.22 ** 1.54E-05 

papss2 BF786072 0.32 ** 0.16 ** 0.69 0.3 ** 0.000236 

papss2 BF780807 0.68 ** 0.13 ** 0.97 0.38 ** 0.000156 

pcsk2 AI839700 1 ** 0.48 ** 0.74 ** 0.96 ** 0.037893 

pcsk2 NM_008792 0.57 ** 0.39 ** 1.99 ** 2.68 ** 0.041463 

pftk1 AI327038 0.43 1.16 1.36 ** 0.81 0.023166 

pgcp BB468025 0.72 0.52 ** 1.12 0.88 0.02741 

pip5k1b NM_008846 0.29 * 0.83 ** 2.88 ** 1.07 * 0.008443 

pip5k1b NM_008846 0.63 * 0.44 ** 1.88 ** 1.74 * 0.009431 

psmb9 NM_013585 0.47 ** 0.23 ** 2.31 ** 0.65 * 0.000561 

ptprn NM_008985 0.48 ** 0.48 ** 0.86 1.98 * 0.008885 

rgs2 AF215668 1.51 0.32 2.55 ** 1.02 * 0.022341 

slc2a2 NM_031197 0.89 * 0.42 ** 0.97 0.77 ** 0.002479 

snap25 BE952593 0.56 ** 0.45 ** 1.71 ** 1.11 0.012387 
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Fold change from control  

Gene Symbol GenBank 4 hours 8 hours 16 hours 32 hours 

4OHT 

p-value 

sqrdl AF174535 0.51 ** 0.4 ** 1.62 * 0.76 0.003079 

tapbpl BC017613 0.54 ** 0.41 ** 1.93 ** 0.84 0.001013 

tspyl4 BC017540 0.59 * 0.45 ** 1.11 0.91 0.00143 
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