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Abstract

In this Thesis we study the Anderson metal-insulator transition starting from an
atomistically correct ab initio description of a doped semiconductor. In particular,
we use density functional theory to simulate model systems of sulphur-doped sil-
icon (Si:S) with few impurities in a large cell. From the resulting Kohn-Sham
Hamiltonian, we build an effective tight-binding Hamiltonian for larger systems
with an arbitrary number of dopants. Our effective model assumes the same po-
tential around single and paired impurities, for up to ten nearest neighbours and
disregarding configurations of three and more close impurities. We generate up
to a thousand disorder realisations for systems of 163 to 223 atoms and a large
range of impurity concentrations. From the diagonalisation of these realisations
we study the formation of an impurity band in the band gap of the host semi-
conductor. With increasing impurity concentration, this band undergoes an An-
derson metal-insulator transition, namely (i) it approaches and merges with the
conduction band and (ii) its states delocalise starting from the band centre. From
themultifractal fluctuations of the wave functions near criticality, we characterise
the Anderson transition in terms of its critical concentration nc and exponent ν .
We identify two regimes: for energies in a “hybridization region”, where the con-
duction band seems to influence the impurity band, we observe an increase from
ν ≈ 0.5 to ν ≈ 1, compatibly with the experimental values; deeper in the band,
instead, the estimates of ν fluctuate between 1 and 1.5, compatibly with ν ≈ 1.59
(ν ≈ 1.3) found in the Anderson model without (with) electron-electron inter-
actions. Our results suggest a possible resolution of the long-standing exponent
puzzle due to the interplay between conduction and impurity states.
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Chapter 1

Introduction

We do not know if it was a dark and stormy night, but it was certainly the 1950s
when Philip Warren Anderson was working on the unexpectedly long relaxation
times of electron spins observed in the experiments on doped silicon conducted
by Feher et al. (1955). Exactly sixty years ago this year, he proposed in Anderson
(1958) a model where an electron diffuses via “quantum jumps” from site to site
in a random lattice, and deduced that, when this randomness, also called disorder,
is sufficiently strong, electron diffusion vanishes. Anderson’s idea was to place
an electron on a specific site, let it evolve to the asymptotic time limit, and then
compute the probability of finding it near the original site. When the disorder is
stronger than a critical value, this probability remains localised around the starting
position and decays exponentially over distance with a characteristic length ξ ,
called the localisation length.

Anderson localisation is fundamentally an interference effect, where a wave of
wavelength λ is scattered elastically by the impurities of a disorderedmedium, with
` the mean free path between two scattering events. The comparison of these two
length scales, together with the size of the system L, defines three different regimes
(Feng and Jin, 2005). Firstly, if ` > L, the wave propagates through an effectively
homogeneous medium. When λ < ` < L, instead, subsequent scattering events
randomise the direction of the wave and transport is di�usive. It can be shown, e.g.
in Sheng (2006), that, after multiple scattering, the backscattered waves interfere
constructively. Since the increased backscattering opposes their propagation, the
diffusion constant for waves must be reduced compared to the classical case. This
effect, called weak localisation, is considered a precursor of Anderson localisation.
When λ/` & 1, called the Ioffe-Regel criterion (Ioffe and Regel, 1960), the wave
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2 CHAPTER 1. INTRODUCTION

can resolve the inhomogeneity of the medium, the backscattering increases and
the diffusion constant eventually vanishes, leading to localisation.

It took a number of years to recognise the broad repercussions of Anderson’s
work, after which a web of interconnected concepts developed way beyond the
problem of impurity band conduction. Unsurprisingly, there are a number of
excellent reviews that retrace this fascinating history, e.g. Al’tshuler and Lee (1988)
and Lagendijk et al. (2009). In the next pages we will also expose the concepts we
consider essential to contextualise our work.

1.1 Conduction in a doped semiconductor

What Anderson was seeking to describe is the diffusion of nuclear spins in a lattice
or the conduction in the impurity band of a semiconductor (see Ch. 2). This band
arises from the broadening of the impurity level that appears when we substitute
one atom of the host material for a donor. In this context, disorder manifests itself
as the randomly placed impurities perturbing the otherwise periodic potential
landscape. Of the many themes connected to Anderson’s work, then, we will
review those related to the impurity band conduction problem, which is the topic
of this Thesis. For this reason, it is time to introduce a second leading character
of this story: Sir Neville Francis Mott, co-recipient with Anderson and John Van
Vleck of the 1977 Nobel Prize in Physics. Anderson credits him for the progress
and for keeping alive his interest in the twenty years after the paper on localisation
(Anderson, 2010).

Mott had been working since the late 1940s on the metal-insulator transition
(MIT), i.e. the transition from ametallic phase (overlapping bands) to an insulating
phase (separated bands). If the disorder in the potential describing the impurity
band of a doped semiconductor is strong enough, all wave functions are localised
and transport is suppressed (Kohn, 1964). If it is not, Mott (1966) pointed out
that localised states are more likely to appear first in the tails of the band. This
is because electrons can hop only between states with similar energy, and at the
tails there are fewer states available (Thouless, 1974). Localised and delocalised
states should then be separated by an energy Ec, called the mobility edge. When
the Fermi energy crosses Ec, e.g. by changing the doping, the system undergoes
what Mott called an “Anderson transition”. It took until the end of the 1980s for
Mott and others to develop and test ideas on the emergence of conduction in an
impurity band; we sketch some of this history in Chapter 6. The basic idea is
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that, with increasing donor concentration, the impurity band of a semiconductor
delocalises with an Anderson transition and merges with the conduction band of
the host material.

1.2 Critical behaviour and universality

When the Fermi energy crosses the mobility edge into the localised phase, the
conductivity σ of the sample continuously goes to zero. As we discuss in Chapter
5, this result stems from the work of Thouless, Wegner and then the “gang of 4”
(Abrahams et al., 1979), who studied the Anderson transition from the perspective
of critical phenomena. From this approach, called the scaling theory of localisation,
two important concepts emerge: that the transition is universal and exists only for
dimensions d > 2 (notice the strict inequality).

Universality is a hypothesis stating that most properties near a continuous phase
transition do not depend on the microscopic details of the Hamiltonian, like the
particular form of disorder or electronic and atomic interactions, but on global
properties, such as its dimensionality and symmetries. Microscopic models could
then be categorised in universality classes, identified by the values of the critical expo-
nents that govern the power-law divergence of relevant thermodynamic quantities
at the phase transition (Cardy, 1996).

As for dimensionality, the absence of a transition in one dimension had already
been theorised by Landauer (1957, 1970), Anderson (1958) and Mott and Twose
(1961). The interestingmarginal cased = 2, instead, has been verified in numerical
studies (MacKinnon and Kramer, 1981), as well as experiments on thin metallic
films (Dolan and Osheroff, 1979) and silicon MOSFETs (Bishop et al., 1980;
Uren et al., 1981), but the prediction of the scaling theory holds for a gas of non-
interacting electrons at the absolute zero and in the absence of magnetic fields.
An Anderson transition in d < 3 could then occur when we consider a magnetic
field, as we now discuss, or in the presence of interactions, which is the topic of
Sec. 1.5.

In 1980, v. Klitzing et al. (1980) discovered that the Hall conductivity of a
2D electron gas in a transverse magnetic field shows discrete values, what is now
known as integer quantum Hall effect (IQHE). These observations can only be
explained by including the effects of disorder: because of imperfections in the
system, the discrete states of a perfect crystal, called Landau levels, broaden into
bands with tails of localised states, separated from delocalised states by a mobility



4 CHAPTER 1. INTRODUCTION

edge. The quantum Hall transition (QHT), the jump between discrete values
of the conductivity, occurs when the Fermi energy moves between mobility
gaps, where the states are localised, crossing a region of delocalised states. This
clarifies why the study of the Anderson and quantum Hall transitions are strongly
connected. For additional details, the reader can consult the reviews byHuckestein
(1995), Kramer et al. (2005) and Evers and Mirlin (2008).

The other known possibility for an Anderson transition to occur in 2D is
in the presence of spin-orbit coupling, as was first observed experimentally by
Kravchenko et al. (1995). Compared to the standard Anderson model, the pres-
ence of a magnetic field or spin-orbit interaction breaks time-reversal T and spin-
rotation S symmetries, respectively. Invoking universality, then, we conclude that
these systems belong to different classes. When both symmetries are preserved,
the Hamiltonian matrix is symmetric and thus invariant under rotations with
orthogonal matrices (hence we speak of “orthogonal symmetry class”). On the
other hand, when T is broken but S is preserved, the Hamiltonian is Hermitian
and hence invariant under rotations with unitary matrices (“unitary symmetry
class”). Finally, when S is broken but T is preserved, the Hamiltonian matrix is
invariant under rotations with symplectic matrices (“symplectic symmetry class”).
The topic is much broader and more complex than this short summary, and the
reader is invited to start from Evers and Mirlin (2008) and references therein to
find more details. As a summary, we want to point out here that, for d = 3, critical
points exist for all three classes, while, for d = 2, they have been found only in the
unitary and symplectic classes.

1.3 The exponent puzzle

Let us now focus again on the Anderson transition in the orthogonal symmetry
class. In this case we are interested in the exponent ν describing the divergence of
the localisation length with disorder, in the case of the Anderson model, or with
dopant concentration, in experiments with doped semiconductors. The first of
such experiments, by Paalanen et al. (1983) on phosphorous-doped silicon (Si:P),
reported ν ≈ 0.5 on both sides of the transition. In the metallic regime, i.e. for
concentrations n larger than a critical value nc, the scaling of the conductivity as
σ ∝ (n/nc − 1)ν is measured. Notice that, at least in 3D, σ scales with the same
exponent of the localisation length, as we show in Sec. 5.1. In the insulating
regime, instead, the metal-insulator transition is observed via the scaling of the
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Figure 1.1: Experimental estimates of the critical exponent in different materials
throughout the years. We have collected the values from Thomas (1985), M.
Itoh et al. (2004), and references therein. Whenever the original authors did not
provide an estimate on the uncertainty, we have set it to 0.

donor polarizability χ ∝ (nc/n − 1)−2ν (Rosenbaum et al., 1980).

In the following years, many other experiments were performed, with various
techniques and on different materials. Interestingly, they also found different
exponents, as shown in Fig. 1.1. The results on different materials seem to fall
in two categories based on the degree of compensation, namely the presence of
acceptors in addition to donors. Reviewing the experimental results from those
years, Thomas (1985) notices that for uncompensated materials ν ≈ 0.5, while
for compensated semiconductors and amorphous materials ν ≈ 1. An explanation
for the different behaviour in Si:P and other uncompensated semiconductors was
proposed by Stupp et al. (1993), where ν ≈ 1.3 was found by (i) narrowing the
critical region when performing the scaling analysis and (ii) including only the
data where a reliable extrapolation to temperature T → 0 is possible. Following
these precautions, some years later Waffenschmidt et al. (1999) repeated the same
experiments on Si:P performed by Paalanen et al. (1982) and found a critical
exponent of ν ≈ 1 instead of 0.5. In the same year and in a similar experiment,
Bogdanovich et al. (1999) found the critical exponent for uncompensated Si:B to
be ν ≈ 1.6, a significant increase from the initial ν ≈ 0.65 found byDai et al. (1991).
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In this case, the discrepancy with the results of Waffenschmidt et al. (1999) might
be attributed to higher temperatures, which do not allow a reliable extrapolation
to T → 0, or to strong spin-orbit scattering (Evers and Mirlin, 2008).

Further references and a summary of the different experimental estimates of
ν can be found in M. Itoh et al. (2004). In this work, the authors use a novel
doping technique, based on neutron-induced transmutation, to study the MIT
in Ga:Ge. This method allows the production of homogeneously-doped samples,
as opposed to melt-doping methods, which can yield significant fluctuations in
the doping concentration between samples. The authors study the transition both
with and without compensation and magnetic field. In all cases, the critical expo-
nent is found to be around 1, with the caveat, for the uncompensated samples, that
the critical region is restricted to 1% of the critical concentration of impurities.
Outside of this region, the authors cannot scale their data with temperature; they
therefore rely on the T → 0 extrapolation used in previous studies and find again
ν ≈ 0.5. A number of factors, then, can influence the estimate of the critical
exponent: (i) the technique used to grow the samples, and the degree of homo-
geneity they can achieve throughout a crystal, (ii) the degree of purity, since
perfect compensation is impossible to achieve in experiments, (iii) the breadth of
the critical region, and (iv) temperature. As long as the critical region is kept
narrow, however, the picture consistently points to a value of ν ≈ 1. Two points
remain unexplained so far. The first is the connection between the degree of
compensation and the critical region: the authors speculate that ν ≈ 0.5 is actually
the intrinsic behaviour of the uncompensated semiconductor, although this would
disagree with scaling theory and its consequences (e.g. ν ≥ 2/3 found by Harris
(1974); Chayes et al. (1986)). The second is that the estimate of ν from theoretical
models is not 1, as we now review.

After the publication of the scaling theory of localisation in 1979, MacKinnon
and Kramer (1981) and Pichard and Sarma (1981) independently developed the
transfer matrix method (TMM) to calculate the localization length ξ . As we discuss
in Ch. 5, the scaling of ξ/L with linear size L and disorderW gave the estimate
ν = 1.2 ± 0.3, which is compatible with the experimental values (MacKinnon and
Kramer, 1981). Some years later, however, Schreiber et al. (1989) showed that,
by increasing the accuracy of the TMM, the estimate of the exponent shifted to
ν = 1.5 ± 0.2. From then on, further refinement of the calculations and of the
scaling methods led to a reduction of the estimate uncertainty to ν = 1.57 ± 0.02
(Slevin andOhtsuki, 1999). This estimate was confirmed by numerical simulations
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with wave-function-based measures over large disorder ensembles, which resulted
in ν = 1.590(1.579, 1.602), the most accurate estimate of ν in the non-interacting
3D Anderson model (Rodriguez et al., 2011).

It is interesting to note that a similar discrepancy appears also in the study of
the quantum Hall transition (2D unitary class), where experiments find ν ≈ 2.38
(Li et al., 2009) and numerical simulations of the Chalker-Coddington model
(Chalker and Coddington, 1988) find ν = 2.593 ± 0.005 (Slevin and Ohtsuki,
2009). For a review of the numerical estimates of ν of the Anderson transition
in different symmetry classes and dimensions, the reader can consult Slevin and
Ohtsuki (2014).

1.4 Direct observation of Anderson localisation

At the turn of the millennium it was clear that numerical simulations and exper-
iments did not agree on the value of the critical exponent. A vast sea separates
these two shores. On the one hand, it seems that the simplicity of the Anderson
model, lacking the treatment of interactions or material-specific features (crystal
structure, presence of nuclei, electronic configuration), is insufficient to capture
the physics of the impurity band of a real material. On the other hand, doped
semiconductors are too complex systems for experiments to single out any specific
factor that drives or influences the localisation transition. In these systems, after all,
we do not observe the explicit (de)localisation of the electron wave function, but
rather its indirect consequences as a MIT, measured in the transport experiments
described in the previous section.

The problem with a direct confirmation of localisation is that electrons are in
fact quite “sticky”: they interact with each other and also with phonons. Hence, it
becomes rather difficult to disentangle the role of disorder from that of interactions.
Anderson localisation, however, is a universal wave phenomenon and should occur
also in classical waves, as shown by Sajeev John (John et al., 1983; John, 1984).
Shortly thereafter, Anderson himself proposed some experiments with elastic and
electromagnetic waves (Anderson, 1985), the latter attracting a lot of interest
due to the weakly-interacting nature of photons and the large coherence lengths
available with lasers. The possibility of localising light could lead to significant
technological advancements in several fields, from photovoltaic to medical devices
(Segev et al., 2013; Wiersma, 2013).
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1.4.1 Classical waves

Localisation of light has been quite elusive so far. From the theoretical point of
view, localised states of light could be observed in a medium with high refrac-
tive index and at an intermediate frequency, that of Mie scattering, where the
wavelength is comparable to the typical size of the scatterers (John, 1984). As for
experiments, the first to claim the observation of three-dimensional light localisa-
tion wasWiersma et al. (1997), although it later turned out that these results could
be described equally well by residual absorption (Scheffold et al., 1999). Ten years
later, Störzer et al. (2006) reported localisation of light in an experiment with com-
pressed titanium-oxide powders, a similar material to the “white paint” suggested
by Anderson (1985) himself. By studying the time-resolved profile of short pulses
transmitted through the samples, the authors can separate the different effects of
disorder and absorption. It took ten additional years for the same team to ascertain
that, in fact, their observations could result from fluorescent emission processes,
and that Anderson localisation of light in 3D remains unobserved (Sperling et al.,
2016). As remarked by Skipetrov and Page (2016), while the refractive index of
common transparent materials might be insufficient for these observation, ad hoc
engineered materials might provide a successful avenue. Photonic crystals, for
instance, had already been proposed by John (1984) and have been employed to
observed localisation of light in 2D (Schwartz et al., 2007).

Localisation of sound waves, instead, was first reported by Hu et al. (2008). In
this experiment, a ultrasound pulse was transmitted through a cylindrical sample
composed of aluminium beads forming a random network. The frequency of the
pulse was 0.2–3MHz, such that the wave length was comparable with the bead
and pore size. The sound wave hit one of the faces in its centre and the transverse
intensity profile I (ρ, t) was measured on the other side, at radii ρ away from the
centre ρ = 0. By studying I (ρ, t)/I (0, t) any time-dependent absorption effect is
cancelled. In the diffusive regime, the transverse intensity profile spreads in time
like a Gaussian wave packet, while in the localised regime it saturates. A similar
setup was later used in Faez et al. (2009) to present the first experimental observa-
tion of the multifractal nature of the “wave function” (in this case the normalised
intensity profile) near the localisation transition (see Ch. 4). The same research
group further improved their experimental investigation in Aubry et al. (2014),
Hildebrand et al. (2014). In Cobus et al. (2016), in particular, they demonstrate
the existence of an Anderson mobility gap and calculate the localisation length as
a function of frequency, obtaining ν ∼ 1 as a first rough estimate of the critical
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exponent.

1.4.2 Cold matter

In the same year, two experiments (Billy et al., 2008; Roati et al., 2008) observed
the spatial localisation of a non-interacting Bose-Einstein condensate (BEC). A-
tomic gases are an excellent platform to study problems in condensed matter
theory, owing to the control over atomic interactions and disordered potentials.
Furthermore, the direct imaging of condensates allows the measurement of prop-
erties, like the localisation length, which were unavailable before.

In Billy et al. (2008), the BEC was confined in a one-dimensional wave guide
using a weak magnetic field. The confining field was then switched off and
the condensate was allowed to expand, driven by the initial repulsive interaction
energy, in the presence of a disorder potential. The latter was generated using
an optical speckle field, i.e. a random intensity pattern formed by the diffusion of
coherent laser light on an irregular surface. This process yields a disorder potential
with no long-range correlations and whose parameters can be tuned with high
accuracy (Clément et al., 2006). In the presence of disorder the expansion of
the BEC soon halts, and after 1 s the density profile along the wave guide shows
exponentially localised tails.

Roati et al. (2008) used instead a BEC on a one-dimensional quasi periodic
lattice to realise experimentally the Aubry-André model (Aubry and André, 1980),
which shows an Anderson transition already in 1D. Two parameters can be in-
dependently tuned: the tunnelling between sites J and the disorder strength ∆.
The time evolution of the spatial distribution of the condensate was studied us-
ing absorption imaging, and fitting with an exponential decay showed a smooth
crossover between ballistic diffusion (∆/J = 0) and localisation (∆/J � 1).

A few years later, similar experiments with ultracold matter were conducted
to observe Anderson localisation in three dimensions. In both cases, ultracold
atoms – of fermionic nature for Kondov et al. (2011) and a BEC for Jendrzejewski
et al. (2012) – were allowed to expand in a 3D optical disorder potential. In 3D
we expect to see an Anderson transition and hence a mobility edge Ec. This was
directly measured first by Semeghini et al. (2015) by developing techniques to
control the energy distribution. In this experiment, a BEC is first loaded into
the low-energy states below Ec; a controlled perturbation of the disorder is then
used to excite a fraction of these states above Ec; these states are then allowed to
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diffuse through the system and become invisible to the imaging device used in
the experiment; the missing states are finally used to determine the position of Ec.

Experiments with cold matter are very exciting because they are a platform
with controllable disorder and energy, and hence open the door to a laboratory
realisation of the Anderson model. An experimental test of its universality has
already been performed by Lopez et al. (2012) using a quasi-periodic atomic
kicked rotator, where they found an average critical exponent of ν = 1.63 ± 0.05.
Semeghini et al. (2015) also mention the possibility of measuring ν by narrowing
the energy distribution in future experiments.

Two decades into the millennium, then, we can say that our experimental
techniques have become so advanced that we can now replicate in the lab, without
external disturbances, simplified and paradigmatic models of reality – the vision
of a quantum simulator (Johnson et al., 2014). How have theoretical models fared
in resolving the exponent puzzle?

1.5 The role of interactions

Progress in understanding the Anderson transition in the presence of interactions
has been slower than its non-interacting counterpart. One of the first problems
considered was whether electronic interactions would support hopping conductiv-
ity, the phonon-assisted hopping between localised states of an electron that is
not excited to the mobility edge (Miller and Abrahams, 1960). Fleishman and
Anderson (1980) showed that “short-range” interactions (including Coulomb for
dimensions d < 3) are not sufficient to cause transport without phonons or delo-
calised states, hence the conductivity remains zero. This was later confirmed and
further developed by Gornyi et al. (2005) and Basko et al. (2006).

Another question that soon arose is whether interactions are able to induce a
MIT in two dimensions, as reported bymany experiments on thin films performed
in the 1990s (see Abrahams et al. (2001) for a review). The founding principles to
answer this question were laid in the work of Finkelshtein (1983), which extends
the field-theoretical description of the Anderson model (Wegner, 1979) to include
the effect of interactions. For the many subsequent theoretical developments,
please consult Belitz and Kirkpatrick (1994). One of the most important results
that followed was the work by Punnoose and Finkel’stein (2005), which presents a
theory of the MIT in a disordered 2D electron gas. The phase transition emerges
because interactions have an “anti-localisation” effect that contrasts the presence
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of disorder and stabilises the metallic phase (Finkel’stein, 2010).
An important development in the study of the MIT in 2D materials comes

from the work of Richardella et al. (2010), who used scanning tunnelling mi-
croscopy (STM) to visualise the electronic states of a two-dimensional dilute mag-
netic semiconductors. The correlation length, computed from the spatial structure
of the states, shows a divergence at the Fermi energy when increasing the sample
doping, the trademark of a MIT. At the same time, the multifractal spectrum (see
Ch. 4) shows a characteristic shift towards the weak multifractality limit, identi-
fied in a reference delocalised state from the valence band. This work proves that
the critical correlations in the electronic states near the MIT are not necessarily
washed away by the presence of the Coulomb interaction (Burmistrov et al., 2013),
but are even accessible in an experimental context. Like in experiments with cold
matter, imaging techniques could prove very insightful in understanding how
interactions affect localisation.

1.6 Approaches to include interactions

As pointed out in the perspective by Thouless (2010), electron-electron interac-
tions can be included in theoretical models using the Hatree-Fock method or
density functional theory (DFT, see Ch. 2) by Kohn and Sham (1965). In fact,
the idea of using DFT to study the MIT in doped semiconductors is much older
(Ghazali and Hugon, 1978).

In 2014, Amini et al. (2014) performed a Hartree-Fock simulation to study dis-
ordered, spinless fermions interacting via the Coulomb potential, whose intensity
U is used to drive the transition. The authors confirm the persistence of multi-
fractality and compute, from the divergence in U of the correlation (localisation)
length ξ , two estimates for the critical exponent: νI ≈ 1 for the insulating regime,
and νM ≈ 0.5 for the metallic regime. The scaling of ξ , however, is studied only
for one system size, and fitting the metallic/insulating branches separately con-
tradicts the scaling theory of localisation, which assumes that one single function
describes both regimes.

Another numerical work reporting an estimate of the critical exponent when
including the Coulomb interaction is Harashima and Slevin (2014). Here, the
donors in Si:P are distributed randomly in a medium with the effective mass and
dielectric constant of silicon. The Schrödinger equation is solved self-consistently
using density functional theory (DFT), which offers an approximation to the
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Coulomb interaction via an exchange-correlation functional (see Ch. 2 for an in-
troduction) in the local-density approximation (LDA). The authors study the
multifractal properties of the highest-occupied single-electron state and, similarly
to previous studies by Slevin and Ohtsuki (1999), perform a finite-size scaling
analysis of the transition (see chapters 4 and 5) yielding an estimate ν ≈ 1.3. The
deviation in critical exponent from ν ≈ 1.59 of the non-interacting case is consis-
tent with the idea that the Coulomb interaction should change the universality
class of the transition (Burmistrov et al., 2013). Despite the intrinsic approxima-
tions of DFT, acknowledged by the authors, this work has the merit of bringing
together density functional theory, which is routinely and reliably employed to
study the properties of (often more complex) materials, with the finite-size scal-
ing analysis of the transition, which proved so successful in estimating ν in the
non-interacting Anderson model. We must nevertheless remark that the estimate
of Harashima and Slevin (2014) is still not compatible with ν ≈ 1 found in exper-
iments. Their model, after all, describes donors in an effective medium, which
might be an oversimplified description of a doped semiconductor.

1.7 Organisation of this work

Considering the current advance in high-performance computing, we set out to
study doped semiconductors ab initio. We use density functional theory to simulate
a volume of silicon atoms, with a fraction of donor impurities. In its more modern
incarnations, DFT is able to simulate up to 103-104 atoms on adequately-sized
supercomputers, but these tasks usually require several hours on many hundreds
or thousands of computing cores. We cannot realistically perform a disorder
average to study the MIT. For this reason, in this Thesis we use the Kohn-Sham
Hamiltonian to construct e�ective tight-binding models of doped semiconductors.
We drive the MIT by changing the concentrations of impurities and the size of the
systems. After computing the eigenstates of the tight-binding Hamiltonians, we
perform a finite-size scaling analysis of the multifractal exponents to characterise
the transition (Rodriguez et al., 2011; Harashima and Slevin, 2014).

The organisation of this thesis follows the stages of the work flow. Chapter 2 is
about the prototypical DFT simulations of doped silicon that we use afterwards to
generate the effective models. Accordingly, we will review the basics of density
functional theory, of silicon, and of doping, comparing them with the results
of our simulations. Finally, we discuss how disorder is realised by randomly
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distributing impurities in the silicon lattice.
In Chapter 3 we move to the construction of the effective models. We briefly

present the tight-binding model and connect it to both the Anderson model and
the Kohn-Sham Hamiltonian. The discussion continues with the assumptions
and technical details involved in reusing the DFT results to build the effective
models. We touch upon the topic of diagonalising the tight-binding models and
the limitations imposed by the available computing power.

From the diagonalisation we obtain eigenvectors and eigenvalues. The sta-
tistical properties of the former are analysed using multifractal analysis (MFA),
which is the theme of Chapter 4. We give an introduction to multifractals and
how they arise in the study of continuous phase transitions. As an example, we
show the multifractality of the DFT-simulated wave function. We extend MFA
to include the averaging over disorder and apply it to investigate the properties of
our effective model.

Chapter 5 is wholly devoted to the finite-size scaling analysis of the transition.
For this reason, we introduce the scaling theory of localisation and finite-size
scaling analysis, followed by a discussion of the fitting procedure and the relia-
bility of the scaling function we use. We show the phase diagram of the critical
concentration and exponent as a function of the energy in the band gap, and test
the robustness of these results with respect to the system sizes, the coarse graining
applied to the wave functions, and the multifractal moment. Our data suggests
that the impurity band delocalises first in the centre, and that the critical exponent
increases from ν ≈ 0.5 at the Fermi energy to 1-1.5 deeper in the impurity band.

In Chapter 6we talk about the MIT in the impurity band (IB). We introduce
the work of Mott on the conduction in the IB and identify the conditions for a
MIT as the merging of the band and a delocalisation of its states near the Fermi
energy. From the eigenvalues of the effective models we observe the formation
of an impurity band, while the delocalisation transition was studied in Ch. 5. By
combining the information on the merging with the conduction band, and the
localisation of the states in the IB, we justify the trends observed in the phase
diagrams.





Chapter 2

Silicon: properties and
simulations

The first step of our workflow consists in simulating prototypes of doped silicon
ab initio, and that is the focus of this chapter. We introduce the electronic structure
problem and density functional theory (DFT) as a method to solve it. This thesis
is about Anderson localisation, hence we include only the minimal information
on DFT required to perform the simulations in this work: the Hohenberg-Kohn
theorems and the role of the electron density distribution, the Kohn-Sham equa-
tions, pseudopotentials, linear-scaling DFT and nonorthogonal bases, calculation
of forces, geometry relaxation.

We then discuss how to simulate a large cube of solid silicon, as the results
of these calculations will be the basis of the chapters that follow. We focus on
the crystal structure and its symmetries, as this will help us decide how many
prototypes we need to study when we consider single and pairs of impurities.

We also introduce basic concepts in the electronic properties of defects, com-
paring shallow impurities and deep centres, exemplified, respectively, by phos-
phorus and sulphur. In this summary we already show and compare the results
from some of our own DFT calculations. We conclude with some observations
on the creation of pairs of defects, defining an “effective potential” between im-
purities, on the techniques to grow samples of doped silicon, and on how these
are reflected in the generation of disordered samples to study with the effective
models introduced in the next chapter.

15
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2.1 Electronic structure and density functional theory

In this section we discuss the electronic structure problem and how density func-
tional theory (DFT) can be used to solve it. We follow the logical thread exposed
in Feng and Jin (2005) and combine it with Martin (2004). This introduction
is in no way meant to convey the subtle art of a DFT practitioner, it is rather
intended for the reader familiar with Anderson transition and general concepts of
condensed matter physics.

2.1.1 Definition of the eletronic structure problem

The central goal of condensed matter physics is to study the properties of solids. In
particular, the conduction properties of a material can be understood by studying
the permitted energy states of an electron inside it.

A solid is composed of many atoms,¹ each contributing to the total energy of
the system with the kinetic energy of its nucleus and surrounding electrons, as
well as with the Coulomb interaction between all charged subsystems. Assuming
the absence of electromagnetic fields and ignoring the spin degrees of freedom,²
we may write the Hamiltonian of this system as

H =
∑
i

p2i
2m
+

∑
α

P2α
2Mα

+

∑
i>j

e2

‖r i − r j ‖
+

∑
α>β

ZαZβe
2

4πε0‖Rα − Rβ ‖
−

∑
i,α

Zαe
2

4πε0‖r i − Rα ‖
,

where pi , r i ,m and −e indicate, respectively, the momenta, coordinates, mass and
charge of the electrons, while Pα , Rα ,Mα and Zαe indicate the same quantities for
the nuclei, and ε0 is the dielectric constant of the vacuum. In the framework of
quantum mechanics all positions and momenta, and hence the Hamiltonian, are
operators in the Hilbert space describing the corresponding electron or nucleus.
It is customary to cast the Hamiltonian operator in the position representation
by substituting pi → −i~∇i and Pα → −i~∇α , and write the corresponding
eigenvalue equation, i.e. the Schrödinger equation of the many-body interacting
system that is our solid. This equation, enclosing all physical properties of the
system, is practically impossible to solve, since the dimension of the solution space

1Remember Avogadro’s number NA ≈ 6.022 × 1023 atoms.
2Unless we need to compute the magnetic properties of a material.
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grows exponentially with the number of atoms in the material. One of the goals
of the theory of condensed matter is to find approximations that can be used to
simplify this problem.

One approximation consists in regrouping the system in ions, composed of
the nuclei and inner-shell electrons, and valence electrons, which can be delo-
calised and thus contribute to electric or thermal transport. This valence electron
approximation (Hellmann, 1935) holds for many materials, e.g. alkalis or noble
metals (Hellmann and Kassatotschkin, 1936), but does not apply when the valence
electrons are in the inner shells, like in transition metals (d electrons) or rare earths
(f electrons).

We then notice that the mass of the nuclei is, usually, several orders of mag-
nitude larger than that of the electrons, which means that the time scale of the
nuclear motion is also much longer. The electrons, moving correspondinglymuch
faster, can thus adiabatically follow the movement of the nuclei. This separation
of time scales allows³ to decouple the electronic from the ionic motion, known as
Born-Oppenheimer approximation (Born and Oppenheimer, 1927). We can there-
fore write a separate Schrödinger equation for the electrons, which, in atomic
units (~ =m = e = 4πε0 = 1), reads[
−
1
2

∑
i

∇2i +
∑
i>j

1
‖r i − r j ‖

+
∑
i

v(r i )

]
Ψ(r1, . . . ,rN ) = EΨ(r1, . . . ,rN ) . (2.1)

In this approximation, all electrons move in the static potential v due to the ions,
as happens in a periodic or homogeneous structure. The electronic structure prob-
lem, then, is the solution of the many-body Schrödinger equation (2.1) for the
electronic degrees of freedom.

2.1.2 Solution via density functionals

While most textbooks, e.g. Feng and Jin (2005), would now follow the historical
progression of introducing the Hartree and Hartree-Fock approximations, we
will skip directly to density functional theory (DFT). The difference between these
methods is revealed by the name: the starting point for the former is the wave
function, while for the latter it is the electron density.

3It can be shown that the error on this approximation depends on (m/M)1/4, where M is the
mass of an ion.
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The foundation of DFT relies on the theorems of Hohenberg and Kohn (Ho-
henberg and Kohn, 1964), which state that (i) the ground-state density n0(r ) of
any system of electrons uniquely determines the external potential vext(r ) acting
on them, and that (ii) for any such vext(r ) there exists a functional EHK of the elec-
tron density n(r ) that is minimised by the ground-state density n0(r ) and whose
minimum is the ground-state energy of the system. It goes beyond the scope of
this work to prove these theorems, interested readers may consult any modern
textbook on condensed matter (Feng and Jin, 2005; Patterson and Bailey, 2010),
electronic structure (Martin, 2004), or DFT (Engel and Dreizler, 2011).

As is usually noted, theHohenberg-Kohn theorems prove the existence of such
a functional EHK but do not give instructions as to its calculation. Nevertheless,
there are further approximations we can make to simplify (2.1). We can split EHK

itself in three terms that follow those in (2.1), namely a kinetic termT [n], a term for
the interaction between the electrons Eint[n], and a term Eext[n] for the interaction
with an external field (e.g. that of the ions): EHK[n] = T [n] + Eint[n] + Eext[n].
Notice that this functional, evaluated at the ground-state density n0(r ), yields the
total energy of the electrons: if we want the total energy of the system we need
to add a contribution from the ions, which will be a constant if they have fixed
positions.

While we can simply define⁴

Eext[n] =

∫
Vext(r )n(r ) dr ,

we need to use a further ansatz to get simpler expressions for Eint and T . In this
framework, calledKohn-ShamDFT, we put aside our original system and take a set
of non-interacting electrons with the same density n(r ). Logically, we now need
to define a new functional EKS that yields the same energy as that of the original
system described by EHK. As we are treating a system of indistinguishable non-
interacting electrons, we can describe each of them with a local single-particle
orbital ψi (r ) and construct the many-body state as a Slater determinant (Kohn
and Sham, 1965). The corresponding density, therefore, has the simple form

n(r ) =
∑
i

|ψi (r )|
2 , (2.2)

4Notice that now the definition of the external potential is Vext[n] = δEext
δn , as opposed to that

in (2.1).
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with the summation running over all electrons (and spins, if relevant to the prob-
lem). Inspired again by (2.1), we define two new terms: the kinetic energy of the
new, non-interacting system

Ts[n] = −
1
2

∑
i

∫
ψ ∗i (r ) · ∇

2ψi (r ) dr , (2.3)

and the Coulomb interaction of the density of electrons with itself, which we call
the Hartree energy

EH[n] =
1
2

∬
n(r )n(r ′)

‖r − r ′‖
dr dr ′ . (2.4)

Since we have no reason to believe that the kinetic and interaction terms of the
initial interacting “Hohenberg-Kohn system” and its equivalent non-interacting
“Kohn-Sham system” add up to the same value, we need to introduce a term to
account for the possible difference, the exchange-correlation (XC) functional Exc[n].
We can now write the final form of the Kohn-Sham energy functional as

EKS[n] = Ts[n] + EH[n] + Exc[n] + Eext[n] . (2.5)

2.1.3 The Kohn-Sham equations

With the Kohn-Sham approximation we have simplified the problem by intro-
ducing terms that can be computed exactly (Ts and EH) and hiding everything
else in the exchange-correlation term Exc. There may be cases, e.g. for weakly-
interacting electrons, where the magnitude of Exc is much smaller than the other
terms and an approximated form is sufficient. In fact, fundamental research in
DFT deals with the formulation of appropriate functionals to solve the electronic
structure problem for different materials (Neugebauer and Hickel, 2013).

We will not comment further on the role of Exc, and instead simply continue
on the path indicated by theHohenberg-Kohn theorems. The ground state and its
energy are found by minimising EKS with respect to the single-particle orbitalsψi .
We will simplify the calculation by differentiating with respect to the conjugate
ψ ∗i , using the chain rule, and Eqs. (2.2) and (2.3):

δEKS
δψ ∗i

=
δTs
δψ ∗i
+

[
δEH
δn
+
δExc
δn
+
δEext
δn

]
δn

δψ ∗i

= −
1
2
∇2ψi (r ) + [VH(r ) +Vxc(r ) +Vext(r )]ψi (r ) . (2.6)
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The potentials VH, Vxc and Vext are all defined as the functional derivative with
respect to the density n(r ) of the corresponding energy functionals. Since EKS

is minimised under the constraint that the single-particle orbitals are normalised,
we need to introduce a set of Lagrange multipliers εi , obtaining[

−
1
2
∇2 +VH(r ) +Vxc(r ) +Vext(r )

]
ψi (r ) = εiψi (r ) . (2.7)

This is the Kohn-Sham equation and the operator in square brackets is the Kohn-
Sham Hamiltonian. As a Schrödinger-like equation, Eq. (2.7) is solved as an eigen-
value problem. Notice that the effective potential Veff(r ) = VH(r ) +Vxc(r ) +Vext(r )
still depends on the electron density, which is itself defined by the single-particle
orbitals that solve (2.7). Like in the Hartree and Hartree-Fock methods, the Kohn-
Sham equation must be solved self-consistently: we start from a trial density and
computeVeff, from which Eq. (2.7) is solved to find new single-particle orbitalsψi ,
from which a new density is calculated. This cycle is repeated until we find the
initial and final densities to be equal within a certain threshold. Once convergence
has been reached, those densities are equal to the ground-state density n0 and we
can obtain the corresponding energy E0 = EKS[n0].

We shall remark here that, while Eq. (2.7) is a Schrödinger-like equation,
the single-state orbitals ψi are not the wave functions of the electrons and the
εi ’s are not the corresponding energies. The only exception is the energy of the
highest occupied single-state orbital, which can be proved to be equal to the
ionization potential of the interacting system (Janak’s theorem—see Engel and
Dreizler (2011) for proof ). The reason is that the Kohn-Sham systemwe have built
is an approximation of the original interacting problem that is meant to give the
same electron density and total energy. The difference between the Kohn-Sham
eigenvalues, however, can still be interpreted as a zeroth order approximation to
the excitation energies of the system, as shown in Görling (1996). For this reason,
we can compare the band structures calculated by DFT with that obtained in
angle-resolved photoemission spectroscopy (ARPES) experiments, and thus assess
whether the Kohn-Sham eigenvalues are a good approximation to the real energy
bands (Giustino, 2014).

Other important repercussions of our approximations are that DFT strictly
computes properties of the ground state only, and does not give any information
on excited states without extending its original foundations (with e.g. the GW
approximation). Furthermore, it only treats uncorrelated electrons, those whose
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positions do not influence each other via the Coulomb repulsion. This does not
contradict our premises: DFT still models the Coulomb interaction within Veff,
and it does indeed work for systems where electrons effectively only interact via
a mean field. However, like all other independent-particle methods, traditional
semi-local functionals fail to capture the physics of “strongly correlated” systems
like Mott insulators or heavy-electron metals. Please refer to Martin (2004) for
further discussion and references.

2.1.4 Pseudopotentials

In addition to the exchange-correlation functional, ab initio calculations using
common basis sets, such as plane waves, rely also on the choice of a pseudopotential,
namely a description of the Coulomb interaction of the nuclei. The potential
around a nucleus is a central diverging potential that will scatter any particle
travelling towards it. As shown in any quantum mechanics textbook, e.g. Cohen-
Tannoudji et al. (2005), this problem can be solved by using a decomposition in
partial waves. In the asymptotic regime, far away from the divergence, the particle
behaves like a superposition of plane waves with a phase shift determined by the
potential. We can therefore substitute the original nuclear potential with another
potential that induces the same phase shifts and hence yields the same results away
from the cores.

In the original derivation, presented e.g. in Feng and Jin (2005) or Patterson
and Bailey (2010), the wave function for the valence electron is decomposed in
a “pseudofunction” and a linear combination of atomic orbitals for the electrons
in the inner shells. It is then shown that the pseudopotential that gives rise to
the “pseudofunctions” via the Schrödinger equation is much weaker than the
original potential. The divergences of the Coulomb interaction of the nuclei is
compensated by the atomic orbitals of the core electrons, known as the cancellation
theorem (Cohen and Heine, 1961). The weakness of the pseudopotential also
proves the free-particle or delocalised behaviour of the valence electrons, except
for the already-mentioned cases of transition metals and rare earths where there
is no clear distinction with the core electrons.

2.1.5 Linear scaling DFT

One of the aspects that makes DFT so successful is its computational cost, which
scales polynomially as O(N 3) with the number of atoms N . This scaling compares
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favourably to the original problem (2.1), whose solution space scales exponentially
as 3N , and also to other methods based on correlated wave functions, which
usually scale with N 5 (Møller and Plesset, 1934) to N 7 (Coester and Kümmel,
1960). Despite this, a cubic scaling still makes it difficult to study systems with
more than a few hundred atoms (e.g. a largemolecule) even on national-level high-
performance computing facilities. This limitation has prompted the research into
linear-scaling DFT, that is methods to achieve O(N ) scaling of the computation.
These methods exploit the so-called “near-sightedness” of quantum mechanics,
namely the assumption that a part of the system is unaffected by a perturbation far
away (Kohn, 1996). In practice, it is up to the user to define how far is actually “far”,
where longer radii of influence yieldmore accurate, but alsomore computationally
expensive calculations. We will now discuss how this is achieved in the specific
implementation that we use throughout this project, called ONETEP (Haynes et al.,
2006).

We start by extending the notion of electron density to a matrix ρ̂, which, in
the position representation, reads

ρ(r ,r ′) =
∑
i

fiψ
∗
i (r )ψi (r

′) , (2.8)

where fi ∈ [0, 1] is the occupation number of the Kohn-Sham orbital ψi . The
electron density (2.2) is the diagonal of this density matrix: n(r ) = 2ρ(r ,r ), with
the factor of 2 accounting for the spin degeneracy. In this formalism, the total
energy of the system is E = 2Tr[ρ̂Ĥ ], where Ĥ is the Kohn-Sham Hamiltonian
in the basis of {ψi }. The minimisation of E, under the constraints N = 2Tr[ρ̂]
(normalisation) and ρ̂2 = ρ̂ (idempotency of a projection operator), is efficiently
implemented following the method by Li et al. (1993). It has been shown (see Refs.
in Haynes et al. (2006)) that for a material with a finite band gap (an insulator), the
density matrix decays exponentially with the distance ‖r − r ′‖. This justifies the
near-sightedness assumption and allows to truncate the density matrix elements
for sites further apart than a cutoff rK, such that the information contained in ρ̂

scales linearly with the number of atoms.

Another feature that allows to achieve order-N scaling is the introduction of a
set of support functions ϕα centred on each atom α , called nonorthogonal generalized
Wannier functions (NGWFs). These functions, similar to local orbitals, extend only
up to cutoff radii rNGWF. This cutoff defines the “near-sightedness” of the DFT,
since the local orbitals on two sites will overlap only if their distance is less than
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2rNGWF. Publications about ONETEP employ standard bra-ket notation and write
|ϕα 〉, where ϕα (r ) = 〈r |ϕα 〉. These support functions have corresponding dual
functions ϕα such that

〈ϕα |ϕβ 〉 =

∫
ϕ∗α (r )ϕβ (r ) dr = Sα β 〈ϕα |ϕ

β 〉 =

∫
ϕ∗α (r )ϕ

β (r ) dr = δα,β .

(2.9)
Here Sα β is the overlap matrix and represents the metric tensor of the space defined
by a nonorthogonal basis, while δα,β is the Kronecker delta. Notice that for an
orthogonal basis Sα β = δα,β and we would identify the support functions with
their duals. For further discussion please refer to O’Regan (2012). This implies,
then, that every problem we solve with ONETEP is described not only by a Kohn-
Sham Hamiltonian Hα β , but also by an overlap matrix Sα β that describes the basis
of NGWFs.

2.1.6 Forces and geometry relaxation

When we simulate a compound material, as in our case, the atom of the impurity
species might deform the surrounding lattice. For this reason, the final topic we
touch is how to relax the crystal structure to minimise the total energy of a system.

This process is also a cycle that starts with the self-consistent minimisation
of the total energy when the ions are kept fixed. The positions of the atoms
are then perturbed to find a lower total energy. We repeat the self-consistent
cycle to find the ground state and then compute the force on the i-th ion via the
Hellmann-Feynman theorem as

F i = −
dE
dr i
= − 〈Ψ|

dH
dr i
|Ψ〉 . (2.10)

We finally update the positions and start again until the changes in energy and
forces are within a specified threshold. Notice that we solve the Kohn-Sham equa-
tions self-consistently every time we change the positions of the ions, although
the converged electronic structure information of one step is used as starting guess
in the next. This ensures that the electronic and ionic degrees of freedom are
always decoupled, as required in the Born-Oppenheimer approximation, but also
implies that a geometry relaxation requires significantly more resources than a
fixed-geometry calculation. Its practical implementation is possible using methods
like the Broyden-Fletcher-Goldfarb-Shanno algorithm (Press et al., 2007), which
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relies on an iteratively-improved approximation of the inverse Hessian matrix.

2.2 Fundamentals of Si: crystal structure, semiconducting
properties, simulations

In this section we point out the necessary details to simulate pure or doped silicon
with ONETEP.

2.2.1 Diamond cubic structure

At standard pressure, silicon crystallises in a diamond cubic lattice, like carbon and
other group-IV elements. The tetrahedral arrangement of the bonds to its four
nearest neighbours can be explained by the formation of hybridized sp3 orbitals,
where one electron is promoted from the 3s to the 3p shell (Yu and Cardona,
2010). As a result, silicon atoms have four valence electrons, instead of two. A
unit cell of the diamond cubic lattice contains 8 atoms (see Fig. 2.2, right), whose
positions are given by{a

4
(x ,y, z) : x ,y, z ∈ Z, (x ≡ y ≡ z mod 2) ∧ (x + y + z mod 4) ∈ {0, 1}

}
,

(2.11)
where a ≈ 5.4Å is the lattice constant (Nagy and Strand, 2009). The explicit
coordinates of the points, in units of a/4, are

1 : (0, 0, 0), (2, 2, 0), (2, 0, 2), (0, 2, 2) 2 : (3, 3, 3), (1, 1, 3), (1, 3, 1), (3, 1, 1) ,
(2.12)

which can be seen as two interpenetrating face-centred cubic (fcc) lattices, which
we label ’1’ and ’2’. Notice that the two sublattices are separated by a/4(1, 1, 1),
hence no translation a(m,n,p), withm,n,p ∈ Z, can transform a point of 1 (resp.
2) into one of 2 (resp. 1). We use this translation vector to build the super cell, i.e.
the lattice of a larger system composed of several unit cells in the three dimensions.

2.2.2 Simulations of pure Si

In Fig. 2.1 we show the structure and essential keywords of a ONETEP input file
used to simulate a system of 4096 Si atoms. For themeaning of the single keywords
we refer the reader to the documentation on the ONETEP website,⁵ and to Skylaris

5http://www.onetep.org/Main/Keywords
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task : SINGLEPOINT
xc_functional : PBE
kernel_cutoff : 1000.0 bohr
write_hamiltonian : T
maxit_ngwf_cg : 18
ngwf_threshold_orig : 1.4e-6
maxit_lnv : 30
minit_lnv : 10
lnv_threshold_orig : 2e-7
elec_energy_tol : 1e-7 hartree
cutoff_energy : 880.0 eV
psinc_spacing .5083350000 .5083350000 .5083350000

%block species
Si Si 14 9 8.0
%endblock species

%block species_atomic_set
Si "SOLVE ws=2 wp=2.2 wd=6.6 S=400 R=8"
%endblock species_atomic_set

%block species_pot
Si "silicon.recpot"
%endblock species_pot

%block lattice_cart
81.3336 0.0000 0.0000
0.0000 81.3336 0.0000
0.0000 0.0000 81.3336

%endblock lattice_cart

%block positions_abs
Si 0 0 0
Si 5.08335 5.08335 0
...
%endblock positions_abs

Figure 2.1: Essential blocks and keywords of the ONETEP input file to simulate
pure Si.

and Haynes (2007) for a discussion on the choice of the different parameters and
thresholds for crystalline Si.

The important point that needs to be mentioned in this context concerns
the choice of NGWFs. Silicon is an element of the IV group, has 14 electrons,
and its electronic configuration reads [Ne]3s23p2. The minimal basis set, then,
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would consist of the single s and the three p orbitals, for a total of four NGWFs.
Convergence with this basis set, however, requires rather large truncation radii
(usually rNGWF = 12a0, where a0 = ~2/(me2) is the Bohr radius). The solution
we instead adopt to achieve better convergence is to expand the basis set with the
five d orbitals, and reduce their truncation radii to rNGWF = 8a0. All the matrices
throughout this project will be written in this basis, hence all of them will have a
linear size of 9N , if N is the number of atoms.

The other point that is worth mentioning is that the kernel cutoff we have
chosen is rK = 1000a0, which is much larger than the box size 81.1336a0. This
means that we are not imposing any cutoff beyond the near-sighted description
arising from the NGWFs (see Sec. 2.1.5).

In Fig. 2.2 we show the probability amplitude |ψ (r )|2 of the electron in the
highest occupied Kohn-Sham eigenstate for a system of 4096 Si atoms. This state
is at the top of the valence band and, as expected from a periodic potential, it is
extended like a Bloch wave throughout the volume.

By construction, the band gap calculated in Kohn-Sham DFT cannot equal
the true band gap (Martin, 2004). In practice DFT gives very good qualitative
predictions, but quantitatively underestimates the band gap, one reason being that
it underestimates the correlations between electrons (Feng and Jin, 2005). The
estimate obtained in our simulation is 0.691 eV (Fig. 2.6), which is 59% of the
experimental value of 1.17 eV at 4K (Green, 1990).

2.2.3 Simulation of doped Si

As discussed before, we can subdivide the diamond lattice into ‘1’ and ‘2’ sublattices
according to Eq. (2.12). If we imagine standing at a site from ‘1’, like (0, 0, 0), we
will see our nearest neighbours at the displacements⁶

∆1 = {(−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)} . (2.13)

On the other hand, if we are sitting at a ‘2’ site, our neighbours will be at

∆1 = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)} , (2.14)

which is the point reflection of ∆1. Because a reflection in three dimensions is not
orientation-preserving, namely it cannot be replicated by a simple rotation, we

6In the rest of this section we will be writing lengths in units of a/4.
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Figure 2.2: Probability amplitude |ψ (r )|2 of the highest occupied Kohn-Sham
eigenstate of 4096 Si atoms, as obtained from our DFT simulation. On the left
(right) we show the full system (a unit cell). Small (high) amplitudes are indicated
in opacity and colour by transparent violet (solid red). Black circles indicate the
lattice positions. Lengths are expressed in Bohr radii.

need to simulate an isolated impurity both in ‘1’ and ‘2’ positions. The reason is
that dopants in the different sublattices form bonds with Si in opposite directions,
and the corresponding matrix elements, written in the basis of atomic-orbital-like
support functions, would need to be rotated accordingly, which is non-trivial.

This observation also determines how many cases we need to simulate if we
want to include pairs of impurities. If we consider up to the fourth shell of neigh-
bours, as we justify in Sec. 3.2 and Fig. 3.3 for this project, an atom has 34 neigh-
bours. This would lead to a total of 68 simulations (34 configurations for each
sublattice), but we now show that only half of them are needed. Odd shells connect
atoms between ‘1’ and ‘2’, hence we only need one simulation for each displace-
ment in (2.13), for instance that with the impurities at (0, 0, 0) and (−1,−1,−1).
Even shells, instead, connect sites from the same sublattice, since the relative orien-
tation of the orbitals might be different. Because of the same symmetry, however,
to each displacement δ there corresponds a −δ , so we only need to do half of the
simulation for each sublattice. In Fig. 2.3 we have reported the displacement vec-
tors for the first two shells (for an atom in the ‘1’ sublattice) as an example. For the
second shell, displacements in opposite directions have been written in adjacent
columns. In total, then, we need to do 34 simulations for the pair configuration,
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SHELL I
-1/4 -1/4 -1/4 -1/4 1/4 1/4 1/4 -1/4 1/4 1/4 1/4 -1/4

SHELL II
-1/2 -1/2 0 1/2 1/2 0 -1/2 1/2 0 -1/2 1/2 0
0 -1/2 -1/2 0 1/2 1/2 0 1/2 -1/2 0 -1/2 1/2

-1/2 0 1/2 1/2 0 -1/2 -1/2 0 -1/2 1/2 0 1/2

Figure 2.3: Displacement vectors connecting a ‘1’ site to its first and second nearest
neighbours in the diamond cubic lattice, expressed in units of lattice parameters.

in addition to the 2 simulations for the single impurity case.

Compared to Fig. 2.1, the ONETEP input file for the doped samples should
consistently use the same thresholds and cutoffs. The only needed change is in the
species, species_atomic_set and species_pot blocks, where the correspond-
ing lines for the dopant species should be added. For all simulations that have
been used as basis material for Ch. 3, we have tightened the convergence thresh-
old lnv_threshold_orig to 10−9 to obtain more accurate occupancies (at least
0.99%) of the defect states. Each fixed-geometry simulation was run on 1152 cores
for around 12 h on ARCHER, the UK National High Performance Computing
Facility.

As we will see in the following section, if we consider an impurity that induces
a lattice deformation, we also need to geometrically relax the lattice for each
configuration. In this case, we can save computational resources by calculating
the distortion for one displacement and reusing it as a starting configuration for
the other displacements to the same shell. For the same symmetry arguments
derived from having two distinct sublattices, one may reuse a distorted lattice by
rotating and/or inverting it with respect to the centre of the simulation box. The
reader who attempts this should make sure that the undistorted lattice is correctly
mapped onto itself ! A geometry relaxation simulation, also on 1152 cores, can take
up to 5 times more using a tolerance on the maximum atomic forces of 1 eV/Å. As
we show in Sec. 2.3, the relaxation of the lattice leads to a decrease in the energy of
the impurity states appearing in the band gap. We have not considered a tighter
constraint on the atomic forces, as this would require a significant increase in
computational costs that would not lead to an appreciable change in the properties
of the doped system.
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2.3 Doping, shallow impurities and deep centres

The conduction properties of a semiconductor can bemodified by the introduction
of defects. While there are several types of defects, we focus now on substitutional
defects, which occur when a host atom is replaced by an atom of a different species.
When such defects contribute free electrons to the material, they are called donors,
when they remove them (or “contribute holes”) they are called acceptors.

For silicon, an element from group IV, donors are elements from group V, i.e.
P, As or Sb, while double donors are elements from group VI, chalcogens like S,
Se or Te. Examples of acceptors, instead, include group-III elements like B, Al,
Ga or In, while group II provides double acceptors like Be or Zn. In the following
subsections we review the effects of doping Si with P and S, the elements we have
considered for this project (see Sec. 3.5).

2.3.1 Shallow impurities: doping with phosphorus

Let us consider a system of pure Si and then substitute one Si for a P atom. In
terms of charges, the new atom adds one valence electron and one proton in the
nucleus. This additional electron, which is not used to form covalent bonds with
the neighbouring atoms, is free to move in the ionic potential of P, but is screened
by the presence of the other Si atoms. A good approximation for the resulting
effective potential, then, is that of a hydrogen atom in an effective medium, silicon
(Resta, 1986; Feng and Jin, 2005; Yu and Cardona, 2010). Therefore, the permit-
ted energies for the donated electron are, like for the hydrogen atom, described
by the Rydberg series:

En = ECB −
R∗
n2

R∗ =
m∗
m

1
ε2
R . (2.15)

Here R∗ is the Rydberg constant for the donated electron, which is proportional
to the Rydberg constant for the hydrogen atom R = e4m(2~2) via the effective
massm∗ and the dielectric constant ε of the medium. The ground state has index
n = 1 and the energies of the excited states are closer to the conduction band
energy ECB with higher n. For this reason, donor impurities are called hydrogenic
or shallow.

The ground state itself is a localised state whose envelope function can also be
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Figure 2.4: Probability amplitude |ψ (r )|2 of the impurity state induced by a P
impurity in the 4096 Si system, as obtained from our DFT simulation. On the
left we show the whole cell, while on the right we show a cut at z ≈ 40.67a0
(indicated with a dashed line on the leftward picture). The logarithmic scale on
the right holds for both figures, and in the leftwards plot we also scale opacity from
transparent (small values) to solid (higher values). The 10% smallest values are
not shown. For the full system we show the lattice positions in light grey, while
for the slice we separate the unit cells with dashed lines. Lengths are expressed in
Bohr radii.

calculated (Feng and Jin, 2005; Yu and Cardona, 2010) as

F (r ) =
1

(πa3∗)1/2
e−r/a∗ a∗ =

(
m

m∗
ε

)
a0 , (2.16)

where, like for the Rydberg constant, we have introduced an effective Bohr radius
a∗ for the donated electron. For a free electronic charge in Si, the conduction-
band effective mass is m∗ ≈ 0.3m, the scaled Rydberg constant is R∗ ≈ 31meV,
and the effective Bohr radius is a∗ ≈ 38a0 Yu and Cardona (2010).

Following Sec. 2.2.3, we use ONETEP to simulate a system of 4096 Si atoms
with one substitutional impurity. In Fig. 2.4 we plot the probability amplitude of
the impurity state, singled out by its energy in the band gap. The corresponding
energy gap with the conduction band of the bulk system is 16meV (Fig. 2.6),
which is in line with the underestimation of the band gap discussed in 2.2.2 and
with the results by Smith et al. (2017).



2.3. DOPING, SHALLOW IMPURITIES AND DEEP CENTRES 31

2.3.2 Deep centres: doping with sulphur

Traditionally, deep centres were those defects that introduced energy levels near
the middle of the band gap, although nowadays the notion has been extended to
any defect that does not behave like a shallow impurity. Deep centres have more
localised wave functions and introduce a highly-localised potential in the material,
e.g. due to the difference in electronegativity between the impurity and the host
material (Yu and Cardona, 2010).

Paralleling the discussion on P in Si, a sulphur impurity introduces two protons
in the nucleus and two additional valence electrons, which it donates to the system.
This system cannot be described with a hydrogen-like Hamiltonian and therefore,
for deep centres, we cannot formulate an effective mass theory. Determining the
potential in this context is non-trivial and beyond the scope of this thesis. In fact,
the energy levels for deep centres are usually determined using first-principles
approaches or the tight-binding method, which is well suited for the problem
of an electron bound to a strong potential (Jaros, 1980; Bachelet, 1986; Yu and
Cardona, 2010).

When calculating the energy levels introduced by deep centres, we need to be
careful about the lattice relaxation: both the defect and the surrounding host atoms
will move if the energy gained by distorting the lattice is less than the energy
lost when the defect becomes a deep centre (Yu and Cardona, 2010). Otherwise,
when the distortion is not energetically favourable, the defect will induce an
energy level much closer to the conduction band, and will then be classified as a
shallow impurity.

In Fig. 2.5 we show the probability amplitude of an electron in the impurity
state induced by a deep centre, as calculated using ONETEP and allowing the
lattice to relax. Compared to Fig. 2.4, the state is much more localised (notice the
different scales in the legends). The energy to the conduction band of the bulk
system is 0.150 eV (Fig. 2.6), which is almost 10 times bigger than for a P impurity.
For comparison, the same energy for a fixed-geometry system is 0.129 eV: higher,
as expected. In our simulations this energy level is doubly-occupied by the extra
electrons donated by the S defect, as this is the configuration with the lowest
energy (Overhof et al., 1991).

The extent to which the lattice is deformed is shown in Fig. 2.7. After around
15a0, the 9th shell of nearest neighbours, the distortion of the lattice looks neg-
ligible; in fact, beyond the first neighbours it is already an order of magnitude
smaller.
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Figure 2.5: Same plots as in Fig. 2.4, but for a silicon system doped with one S
impurity.
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Figure 2.6: Summary of the results obtained with ONETEP on the band gap in
Si and the impurity states of P and S. The parabolas represent the valence and
conduction bands. The ticks indicate, from left to right, the top of the valence
band, the S impurity state, the P impurity state and the bottom of the conduction
band.
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Figure 2.7: Magnitude of the distortion of the lattice introduced by a P (red circles)
or S (blue squares) impurity in Si. We group the atoms, by their distance r to the
impurity, in shells of nearest neighbours (abscissae). The atoms in each shell are
displaced radially from the defect to a new distance r ′. On the ordinates we show
the norm of the displacement δ = |r − r ′ |, which we find to be the same for all
atoms in a shell (up to around 0.001%, due to the different rotational symmetry
of the lattice and the local orbitals). For P, we find that the lattice is not distorted
beyond the eighth shell of nearest neighbours.

2.4 Defect pair formation and doping techniques

In this section we discuss how the total energy of the system changes when we
introduce two impurities at varying distance. The energy U needed to form a
pair of defects at distance d is given by

U (d) = [EXX(d) − ESi] − 2(EX − ESi) = EXX(d) − 2EX + ESi . (2.17)

Here ESi is the total energy to put together a system of pure Si, while EX and
EXX, computed by ONETEP, are the total energy needed to build a system with,
respectively, one and two impurities. The energyU , then, represents an “effective
potential” between impurities that determines the distance separating two defects.

In Fig. 2.8 we show the results from P and S. For phosphorus, U is always
positive, seems to oscillate but essentially vanishes for defects beyond the fourth
shell of nearest neighbours (one unit cell). We can interpret this trend by saying
that it is unlikely to find two P defects closer than a unit cell. For sulphur, instead,
U is negative for direct neighbouring defects and then oscillates around zero for
the other shells of neighbours. This implies that it is energetically favourable to
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have two S impurities on adjacent sites, as we will further discuss in Sec. 3.2.

2.4.1 Growth of doped samples

The behaviour determined from U is related to the experimental doping tech-
niques for Si. The metal-insulator transition in Si doped with P (Si:P) occurs at
concentrations around 1018 cm−3, two orders of magnitude lower than the corre-
sponding solid solubility of roughly 1020 cm−3 (Bachelet, 1986). In very general
lines, the growth of a doped semiconductor like Si:P involves the melting of the
host material and the deposition on its surface of the impurities from a surround-
ing gas. During the resolidification process, the P atoms have enough time to
diffuse and redistribute in a spatial configuration compatible with the potential
defined by U .

For Si:S, instead, we have the opposite situation: the transition occurs at con-
centrations of 1020 cm−3 (Winkler et al., 2011), which is four orders of magnitude
higher than the solid solubility of S in Si, around 1016 cm−3 (Bachelet, 1986). This
implies that, if we used the same doping technique as with Si:P, the excess sulphur
would precipitate. In this case, then, we need to hyperdope Si with S, as realised for
the first time by Winkler et al. (2011) using ion implantation to shoot the defects
into the host, and pulsed-laser melting and rapid resolidification to reform the
surrounding lattice. With this technique, the behaviour deduced fromU does not
matter any more, as the S defects will be distributed randomly.

For more information on the growth of doped semiconductors please consult,
e.g., Yu and Cardona (2010).

2.4.2 Generation of disordered samples

Crystal growth is a non-equilibrium process whose simulation is a non-trivial
problem that we are not going to tackle or even discuss in depth here. The inter-
ested reader could start, e.g., from Landau and Binder (2000) and the references
therein. To generate disordered samples of Si:P we run a simple Monte Carlo
(MC) simulation using the Metropolis method: we generate an initial configura-
tion with a fixed number of impurities and compute the total energy from the
effective potentialU . We then swap the position of an impurity with a neighbour-
ing Si site and calculate the change in energy ∆E. Finally, we generate a random
number α ∈ (0, 1) and, if α < e−β∆E , we accept the move. Here β−1 = kBT , where
kB is Boltzmann’s constant and T is the temperature at which the growth process
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Figure 2.8: Energy needed to form a defect pair at a specific distance, for both P
(red circles) and S (blue squares), obtained from ONETEP runs with 4096 atoms.
For S we only show the results from the relaxed-geometry runs used in the later
chapters (so up to the fourth nearest neighbours). The ordinates axis is broken in
order to better show the difference in scale. Both data series are obtained while
keeping the lattice fixed, which means that the points for S are an upper bound
to the minimum total energy.

is happening. By repeating this procedure several times over all impurities in the
system, we should reach a ground-state configuration.

As mentioned before, we assume that the hyper-doping technique used to
grow S-doped samples is able to place those impurities randomly in the host. For
this reason, we generate disordered realisations of this material by just changing
the atom assigned to randomly picked sites from Si to S.





Chapter 3

From ab initio to effective models

In this Chapter we talk about the second part of the work flow, namely how we
use the output from the ab initio simulations to construct effective models for many
disorder realisations.

We start by recalling notions about the tight-binding model and connecting
it to the Anderson model and the DFT description of the material. With these
concepts, we can introduce our effective models, the underlying approximation
and their technical implementation. We also highlight the aspects that our model
retains from an atomistic description and set it apart from the paradigm of the
Anderson model.

Finally, we discuss how to diagonalize the matrices to obtain eigenvalues and
eigenvectors. We also point out that the several layers of complexity in our model
make it a much harder problem than the Anderson model.

3.1 The tight-binding model

The tight-binding model (TBM) is used, as the name suggests, to describe elec-
trons bound to a nucleus via a strong potential, strong enough that the interaction
with the rest of the lattice can be considered a negligible perturbation (Diu et al.,
1989). For this reason, the TBM has been widely used to study the electronic
structure of deep centres, as mentioned in Sec. 2.3.2. The reader can find a dis-
cussion of the TBM in most textbooks on condensed-matter physics, including
Kittel (2005), which we follow in the rest of the section.

An electron in said potential is described by an atomic orbital φ(r −r j ) centred
on the nucleus at r j , namely its wave function decays exponentially on length

37
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scales much smaller than interatomic distances. The assumption behind the TBM,
then, is that we can write the wave function of an electron in a crystal as a linear
combination of said atomic orbitals:¹

ψk (r ) =
1
√
N

∑
j

eik ·r jφ(r − r j ) . (3.1)

This is a Bloch function with wave vector k for a crystal of N atoms, since we can
show that ψk (r + R) = exp(ik · R)ψk (r ), where R is a translation from one lattice
point to another.

Switching to bra-ket notation, we now define ψk (r ) = 〈r |ψk 〉 and φ(r − r j ) =
〈r |φ j 〉. The expectation value of the Hamiltonian H is therefore

〈H 〉 = N −1 〈ψk |H |ψk 〉 = N −1
∑
j,m

eik ·(rm−r j ) 〈φ j |H |φm〉 . (3.2)

Since we are working with a lattice, we can define ρ j = r j − rm and simplify the
double sum as

〈H 〉 =
∑
j

e−ik ·ρ j
∫

φ∗(r − ρ j )Hφ(r ) dr . (3.3)

At this point, it is customary to distinguish the diagonal elements ε (where ρ j = 0)
and the off-diagonal t(ρ j ) as

ε =

∫
φ∗(r )Hφ(r ) dr and t(ρ j ) =

∫
φ∗(r − ρ j )Hφ(r ) dr . (3.4)

These terms of the TBM are also called, respectively, “self-energies” and “hopping”
terms.

The Anderson model of Ch. 1 is the TBM of a simple-cubic crystal of hydro-
gen nuclei, i.e. of a material with only 1s atomic orbitals. In this case, however,
we allow the diagonal elements εj to be different for each site, and we consider
constant off-diagonal Hi j = t if sites i, j are first nearest neighbours 〈i, j〉 and 0
otherwise. The corresponding Hamiltonian hence reads

H =
∑
j

εj |φ j 〉 〈φ j | + t
∑
〈i, j 〉

|φ j 〉 〈φi | . (3.5)

In the Anderson model, we usually set t = 1, while εj is a random variable

1The TBM is also known, for this reason, as the Linear Combination of Atomic Orbitals
(LCAO) approximation.
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Figure 3.1: Wave functions for an exemplary systems of 4067 Si atoms and 29
S impurities. On the left we show a localised state deep in the impurity band
and on the right an extended state above εF. We have represented the top 90%
wave function valuesψi with spheres of volume proportional to |ψi |2. Opacity and
colour are proportional to − logL |ψi |

2, with L = 16 here, so that lower (higher)
values are in red transparent (violet solid). The box sizes are in units of a.

drawn from a uniform distribution over the interval [−W /2;W /2], where the
parameterW is the disorder strength. At a critical valueWc ∼ 16.5 (Slevin and
Ohtsuki, 1999) the wave function at the band centre E = 0 undergoes a transi-
tion from extended (W < Wc) to localised (W > Wc). While localisation can be
defined more rigorously (del Rio et al., 1995), for this work we are happy with
the commonly accepted form

|ψ (r )| ∝ e−
|r −r 0 |
ξ , (3.6)

where r0 is a localisation centre and ξ is the localisation length introduced in Ch. 1.
States that do not satisfy (3.6) are called interchangeably extended or delocalised.

Finally, we observe here that the Kohn-Sham Hamiltonian (2.7), written in
the basis of NGWFs defined in (2.9), has the same structure as the TBM. The most
important difference here is that each site is described by nine orbitals, instead of
one. This implies that the Hamiltonian is divided in 9 × 9-sized submatrices of
self-energies (of and between the single NGWFs) and hopping terms (between
NGWFs of the same or different sites). The overlap matrix has an analogous
structure.
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3.2 Translation from DFT to effective models

As mentioned in Ch. 1, simulating ab initio a sufficiently large sample of disorder
realisations, for a number of concentrations and systems sizes, is simply not feasible,
even with the efficient scheme implemented in ONETEP. Since they have the same
structure, however, we can translate the DFT matrices into a TBM that is more
efficient to build.

The idea of combining DFT and TBM is far from new, with early work
including Andersen and Jepsen (1984), Sankey and Niklewski (1989) or Porezag
et al. (1995). In those works the goal is to calculate ab initio specific tight-binding
elements, an operation that usually requires the transformation from the standard-
DFT basis of plane waves, to the localised basis set of the TBM.

In our approach, instead, we recognise the tight-binding structure of the
Kohn-Sham Hamiltonian, when written in a basis of localised support functions,
and we use it to build effective Hamiltonians that can reproduce the results ob-
tained from the DFT. The focus is on building a DFT-like system rather than
a TBM. This is achieved by simulating prototypes of pure or doped Si, as de-
scribed in Ch. 2. The idea is the following: when we build the Hamiltonian²
of a disordered sample, we assume that the self-energies and hopping blocks for
each impurity are those calculated with ONETEP for a doped system. The final
Hamiltonian, therefore, looks like the Hamiltonian for pure Si, expect for those
blocks that describe the presence of a defect. The matrix blocks that we reuse
from the DFT simulations are stored in catalogues, whose construction and use we
now describe (see Fig. 3.2).

The assumption behind using catalogues to build effective models is that the
potential around each impurity is locally the same. It is up to us to decide the
extent of this ‘locality’: the higher the range of the hopping, the more accurately
we capture the effect of the impurity potential. For our effective models, we keep
all hopping terms up to the 10th shell of nearest neighbours,³ since this is the
extent of the “near-sighted” description via the local orbitals (see Sec. 2.1.5).

This picture should be completed by treating pairs of impurity with a separate
catalogue, unless we can justify that (i) two defects do not interact at any distance
or (ii) the formation of pairs is discouraged by an associated energy cost, as de-
scribed in Sec. 2.4. For this reason, we have computed a catalogue of pairs only

2In the rest of the section, everything that is said about the Hamiltonian also holds for the
overlap matrix.

3From here on, by “shell” we will always mean a shell of nearest neighbours.



3.2. TRANSLATION FROM DFT TO EFFECTIVE MODELS 41

a) Catalogue

0

2

4

6

8

y/
a

0 2 4 6 8
0

2

4

6

8

x/a

y/
a

0 2 4 6 8
0

2

4

6

8

x/a

y /
a

b) Effective tight-binding model

Figure 3.2: Construction of the effective tight-binding model. Part (a) represents
the catalogue of prototypes. For clarity we show a projection on the xy plane
and distances in units of a, the Si lattice parameter. The upper plot depicts one
impurity (yellow) and the neighbouring Si atoms (green); the lower plot shows
two impurities at distance a and their Si neighbours (dark green). Gray sites
indicate Si atoms unaffected by the impurity potential. In (b) we show how we
build an effective tight-binding model with 29 impurities. The colour code is the
same as in (a) and indicates which catalogue is used. Due to the projection on the
xy plane some impurities appear closer than they are. Reproduced from Carnio
et al. (2017).

for sulphur, and not for phosphorus. Analogously to how we use the catalogue
for isolated impurities, when a site is near a pair the Hamiltonian blocks are taken
from the DFT simulation of that pair. For Si sites that are close to two impurities
that are not considered a pair, we use the matrix blocks that connect it to the
closest of the defects.

In this work, two defects are a pair when they are nomore than a unit cell apart.
This cut off can be decided by comparing the ONETEP runs of pairs at increasing
distance to their effective model using the single-impurity catalogue. Because
each defect induces a state in the band gap of Si, a parameter we can compare is
the difference in energy between the defect states, see Fig. 3.3. When S defects are
first nearest neighbours, they form bonding and anti-bonding states, where the
former descend into the valence band while the latter remain in the band gap. In
this case we compare the distance of the anti-bonding state to the lowest-energy
conduction band state. While the 1-impurity catalogue manages to capture this
feature of first nearest neighbours, the corresponding 2-impurity catalogues gives
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Figure 3.3: Ratio of the energy difference between the two impurity states ap-
pearing when a system of 4096 atoms is doped with a pair of defects at increasing
distance. The ‘1-impurity catalogue’ is built from systems with only one impu-
rity, while the ‘extended catalogue’ includes the description of pairs of defects.
For situations where only one state in the gap appears, discussed in the text, the
gap is taken between said state and the lowest conduction band state.

a better description by definition. Moreover, the 1-impurity catalogue predicts a
similar situation when S defects are second nearest neighbours. This contradicts
the results from ONETEP and is correctly rectified in the extended catalogue.

Of course, restricting the catalogues to pairs is arbitrary: like in diagrammatic
theories, we could include triplet, quadruplets, et cetera. To gauge how our ap-
proximation is performing, we have simulated a system with 4096 atoms and 29
S impurities, both with our effective model and ONETEP. As shown in Fig. 3.4,
we obtain a spectrum of impurity states that extends roughly over the same range
of energies, especially towards the valence band. The number of states in the
spectrum also matches between the effective model and the ONETEP simulation,
i.e. we obtain the correct number of bonding and anti-bonding states, as discussed
in the previous paragraph. We note, however, that the effective model slightly
underestimates the energy in the upper portion of the spectrum, resulting in a
larger band gap than computed by the DFT, where the impurity and conduction
band seem to have already joined.
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Figure 3.4: Density of states of an exemplary system of 4067 Si atoms and 29 S
impurities, obtained by summing Gaussian distributions with σ = 10meV cen-
tred over the eigenvalues. We show the spectrum obtained from the ONETEP
simulation with a blue dashed line, while that from its effective model is in red
continuous. The spectra are aligned at the Fermi energy εF (dashed line), defined
as the midpoint between the energies of the highest occupied and lowest unoccu-
pied states. Reproduced from the Supplemental Materials to Carnio et al. (2017).

3.3 Technical construction

We now delve into the technical aspects of the construction of the effective models.
The starting point is the list of atom positions, with the indication of their species.
The format we use is simply that of a ONETEP input file, Fig. 2.1, except that
coordinates are expressed in units of lattice parameter a. For the specific case of
Si, we can actually re-express all coordinates in units of a/4, in order to work
with integer coordinates. One might avoid this “post-processing” and use integer
coordinates consistently from the very beginning. In this case we do not need to
take into account the coordinates of the relaxed lattice: the displacement of the
lattice sites (Fig. 2.7) occurs on a much smaller length scale than the interatomic
separation, hence we can always uniquely map the sites of the original and the
deformed lattices.

3.3.1 Description in map

The list of coordinates is subsequently converted to a map of the system, exempli-
fied in Fig. 3.5. For each atom we report, in order:
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1 -1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1 2 0.75 0.25 0.25 -0.75 -0.25 1.25 0.00 0.00 0.00
3 2 2 0.25 0.75 0.25 0.00 -1.50 -0.50 0.25 -1.75 -0.25

. . .
12 3 2 0.75 0.25 1.25 -0.75 0.75 -0.75 -0.75 1.25 -1.25

. . .
123 0 2 2.75 2.25 2.25 0.00 0.00 0.00 0.00 0.00 0.00

. . .

Figure 3.5: Example of a map of the doped Si system.

index The index i in the list.

catalogue The catalogue c, namely the source of the elements in the Hamiltonian
used to describe this site. It is an integer that can have values −1 (the site is a
Si atom more than 10 shells away from any impurity), 0 (the site is occupied
by an impurity), 1 (a Si atom within 10 shells from an isolated impurity),
and 2 to 5 (a Si within 10 shells from a pair of defects).

sublattice An index s indicating whether the site belongs to sublattice ‘1’ or ‘2’
as defined in (2.12).

position The position r i of site i.

distances to closest defects The displacement vector(s) δ i,1 (δ i,2) to the closest
(second closest) defect, or 0 if c < 1 (c < 2).

This description contains all the information needed to build our effective systems.
It is definitely not the most efficient: the catalogue c, for instance, can be deduced
from ‖δ i,1−δ i,2‖. Nine Cartesian coordinates are also redundant, when we could
use polar angles and triangulation. Notice, however, that such description might
involve real numbers with a finite-precision representation. This might create
problems when reading from and comparing to strings of numbers from the
catalogues. A redundant description with integer coordinates, as described above,
makes this process easier and more error-proof.

3.3.2 Creation of the catalogues

Now that we have introduced themap, we can discuss howwe build the catalogues
from the ONETEP-simulated prototypes, starting from those with dopants.

From the map of a prototype we know where the impurities (c = 0) and the
surrounding shells (c ≥ 1) are. We shall remind the reader here that our matrices
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are divided in 9×9 blocks, hence, for example, the impurity will be described by a
“row of blocks” i0 (we will call it “block-row” from now on). From this block-row
we are interested in the block of self-energies (on the block-diagonal) and the
hopping terms to the neighbours. If one such block of hopping terms is j, in the
catalogue we will store

0, s,r j − r i0 , (0, 0, 0), (0, 0, 0) , (3.7)

together with the 81 real numbers forming the block. By changing j, the dis-
placement r j − r i0 will point to all neighbours of site i0 and, as stated before, we
only store those up to the 10th shell.

This example shows the general procedure to build the catalogue: we start
from the map, single out all elements with c ≥ 0 and, for each of them, store
self-energies and hopping blocks to their neighbours. To keep things in order,
we create a different file for each value of c and for Hamiltonian or overlap matrix
elements.

The gathering of the catalogues and its subsequent reuse in building the effec-
tive models need to be done consistently, i.e. there are a number of details that need
to be taken care of, or things will go wrong. For what concerns the catalogues:

• we need to symmetrize the source matrix, which might be not symmetric
due to numerical fluctuations introduced by the DFT;

• if for a site i we have ‖δ i,1‖ = ‖δ i,2‖, so the two closest impurities are at
the same distance, we store catalogue entries both in the order δ i,1,δ i,2 and
δ i,2,δ i,1.

We conclude with some words on the construction of c = −1, the matrix
elements to describe the host material. In this case, from a prototype of 4096
Si atoms, we have 2048 sites for each sublattice s. For each of these sites, the
self-energy and hopping terms should be equal, up to numerical fluctuations of
around 0.05% introduced by the DFT simulation. We counteract this effect by
averaging over all blocks with the same s and displacement vector.

3.3.3 Construction of the effective matrices

To build the effective models we first load in the memory the map of the system
and the catalogues. Most of the work, then, is done by a double loop that computes
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the catalogue entry connecting two sites and looks for the corresponding matrix
elements in the catalogues.

More specifically, we only build the upper triangles of the matrices, since
they are symmetric. We therefore scan through the 9 × 9 blocks using indices
i = 1, . . . ,N (for the block-rows) and j = i, . . . ,N (block-columns), where N is
again the number of sites. If wewant to fill in block (i, j), we retrieve the catalogues
ci and c j that describe block-rows i and j. Notice that we are still talking about
rows, here, since the catalogue is stored in rows.

Let us take the case where ci = −1 and c j = 1: when we scan through the
catalogue for i we will be looking for hopping terms to a site that is influenced
by an isolated defect. But such terms do not exist in the c = −1 catalogue! For
this reason, we have to introduce the check ci < c j , which, if true, triggers the
swapping of i with j. When we do so, however, we will retrieve in the catalogue
the hopping terms j → i, while we want those i → j, which means that the matrix
elements we find will need to be transposed with respect to the main diagonal of
the matrix. Without the implementation of this check, the matrices we build will
be incorrect. Unfortunately, because we feed the upper-triangular matrices to the
diagonalization routine, we would still obtain real (but wrong!) eigenvalues.

Another detail that needs attention is the implementation of periodic boundary
conditions, both in the construction of the catalogues and of the effective models.
The shells of neighbours for a site might extend into the periodic copies of the
system and these points must be mapped into the original system. In fact, we
identify such neighbours by looping over all points in the system and checking if
their equivalent site in a periodic copy is within the shells cut off. This operation
usually requires modulo operations to map a distance δ = xi − x j in the interval
[−Lx/2,Lx/2]. If the box size in the x direction is Lx , in Mathematica (Wolfram
Research Inc., 2015) we will write Mod[xi-xj,Lx,Lx/2], whereas in Fortran we
will compute

δ̃ =


(δ + Lx/2 mod Lx ) − Lx/2 δ ≥ 0

(δ − Lx/2 mod − Lx ) + Lx/2 δ < 0
. (3.8)

We have provided these examples because the definition of the modulo operation,
especially when the dividend is negative, can change between programming
languages.

Finally, depending on the diagonalization routine, the output will have to be
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cast in a specific format. We save space by storing the matrices in the Compressed
Sparse Row format (Saad, 2011), i.e. we ignore the zero values. Moreover, when
it comes to the blocks on the diagonal, we shall remember to discard the values in
the lower triangle. The sparsity of the Hamiltonian (overlap) matrix is 662/(9N )
(554/(9N )), where the specific numbers depend on the number of neighbours
included in the catalogue, i.e. on the “near-sightedness” of our DFT simulations
(see Sec. 3.2).

3.4 Diagonalisation

Like for the Kohn-Sham Hamiltonian (2.7), once we have the Hamiltonian H and
overlap S matrices we diagonalize them to find eigenvalues εj and eigenvectors
ψj :

H |ψj 〉 = εjS |ψj 〉 j = 1, . . . , 9N 3 . (3.9)

The presence of S , also known asmass matrix, makes Eq. (3.9) a generalised eigenvalue
problem. Because both matrices are symmetric and S is positive-definite by Eq.
(2.9), the eigenvalues are real and the corresponding eigenvectors are mutually
orthogonal with respect to the scalar product defined by S : 〈ψi |Sψj 〉 = δi, j (Saad,
2011). If this does not happen, something has gone wrong in the implementation
discussed in the previous Section.

The eigenvectors that solve (3.9) are written in the basis of support functions
discussed in Sec. 2.1.5, i.e. in the basis with 9 orbitals per site: |ψj 〉 =

∑
α M

j
α |ϕα 〉.

For the analysis that follows, wewrite the eigenvectors in a “site” basis by summing
over the nine orbital coefficients of each site k:

|Ψj
k |

2 =
∑
α ∈k

∑
β

M j
αSα βM

j
β . (3.10)

This transformation also deals with the unavoidable consequences of workingwith
a non-orthogonal basis: while

∑
k |Ψ

j
k |

2 = 〈ψj |Sψj 〉 = 1, we might have M j
α ≤ 0

for some orbital α . If after the summation we have |Ψj
k |

2 ≥ 0,∀k, we interpret
(3.10) as the probability of finding an electron in site k.
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3.5 Numerical challenges and the choice of sulphur

We tackle Eq. (3.9) numerically using JADAMILU (Bollhöfer and Notay, 2007), a
code to obtain few eigenvalues and eigenvectors of large sparse matrices. This
library has already been employed to diagonalise the 3D Anderson model (AM,
Schenk et al. (2006)) in different numerical studies (Rodriguez et al., 2009, 2011;
Thiem and Schreiber, 2013; Harashima and Slevin, 2014; Puschmann et al., 2015;
Moore et al., 2017).

Let us imagine an effective system with N atoms in total, NX of which are
impurities. The corresponding concentration n is given by

n =
NX

Volume
=

NX

N

8
a3
, (3.11)

where a is the lattice constant of Si. If we want to study the impurity states
induced in the band gap we need to ask JADAMILU for at least NX eigenvectors,
around a certain target εt . From Eq. (3.11), however, we can see that NX , at a
given concentration, increases with N . In comparison, the spectrum of the AM
is symmetric and the delocalisation-localisation transition is studied only for the
state with energy closest to 0.

The features that make our model realistic, compared to the AM, are also those
that make it more complex and difficult to treat numerically. First of all, since our
matrices describe the 9 orbitals as well, the size of our matrices is 9 times larger.
Moreover, we allow hopping up to the 10th shell in the diamond cubic lattice, for
a total of 146 neighbours; in comparison, the hopping in the AM is only to the
nearest neighbours, 6 for the simple cubic lattice. As mentioned in the previous
section, the larger number of neighbours in our model translates in Hamiltonian
(overlap) matrices that have 662 (554) non-zero elements per row, two orders of
magnitude more than the 7 in the AM.

Nevertheless, the construction and diagonalization of a 4096-atom system
with a concentration of S dopants of 1% takes around half an hour on a recent
Intel processor, which is considerably less than the 12 h on 1152 cores needed for
the DFT simulations of the prototypes. It is also considerably more than what is
required to simulate an AM with the same number of sites.

The additional complexity in our model also prevents us from diagonalizing
systems as large as those in the recent studies of the 3D AM (Rodriguez et al., 2011;
Lindinger and Rodríguez, 2017). For this reason, the results presented in Ch. 4, 5



3.5. NUMERICAL CHALLENGES AND THE CHOICE OF SULPHUR 49

N	=	163

N	=	223

N	=	303

Si:P
Si:S

n	
[1
02

0 	c
m

−3
]

0

0.5

1

1.5

2

2.5

NX

0 5 10 15 20

Figure 3.6: Dependence of the concentration on the number of impurities NX
and of total atoms N , from Eq. (3.11). As an example we show the smallest and
largest system sizes we consider in this work, namely N = 163 (red) and N = 223
(blue), as well as N = 303 (green) for comparison. Horizontal lines indicate the
critical concentrations for Si:P (violet) at approximately 3.5 × 1018 cm−3, and for
Si:S (orange) at 2 × 1020 cm−3. The latter value was arbitrarily chosen knowing
that it falls between 1.8 and 4.3 × 1020 cm−3 (Winkler et al., 2011).

and 6 correspond to Si:S, only. As mentioned in Sec. 2.4, the critical concentration
for Si:P (3.52 × 1018 cm−3) is two orders of magnitude smaller than that of Si:S
(∼ 1020 cm−3). This implies that simulating a systemwith NX P impurities requires
two orders of magnitude more host atoms than in the case of S dopants. In fact, if
we consider a system with 10 648 atoms, which is the largest we can diagonalize,
a single P impurity corresponds to a concentration n = 4.7 × 1018 cm−3, greater
than the critical value and hence already in the metallic regime. As shown in Fig.
3.6, we need much larger systems, for instance N = 303 = 27 000, before we have
just a couple of states in the localised regime.





Chapter 4

Multifractality of the wave
functions

After diagonalising the effective models and obtaining the impurity band states,
we are going to analyse their statistical properties. From the theory of critical
phenomena, briefly reviewed following Cardy (1996) in Sec. 4.1, we retrace how
the critical wave function at the Anderson transition was understood to have a
multifractal nature.

With this motivation, in Sec. 4.2 we follow Tél (1988) and Janssen (1994) in
reviewing the basic concepts and definitions behind multifractals. These concepts
are then translated in the context of disordered physics and used to analyse the
statistical properties of the wave functions from our simulations.

The reader should be aware that it is difficult to disentangle the results from
this chapter to those that follow. In particular, the multifractal analysis relies, at
least for what this chapter concerns, on the knowledge of the critical point of the
Anderson transition, which is estimated in Ch. 5.

4.1 Continuous phase transitions

A phase transition is a sudden change in the properties of a system (a phase) caused
by the variation in external conditions. These changes are reflected in the non-
analytical behaviour of thermodynamic quantities at specific points in parameter
space, the critical points. In the case of the Anderson transition, an increase in the
degree of disorder drives the system from a delocalised (or extended) phase to a
localised phase (see Sec. 3.1).

51
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Phase transitions are called discontinuous, or first-order, if the relevant thermo-
dynamic quantities show discontinuities when passing through the critical point.
In a continuous or second-order phase transition, instead, the divergence is seen in
the correlation length ξ , i.e. the distance over which the fluctuations in the mi-
croscopic degrees of freedom of the material are correlated. At criticality, then,
we observe the absence of length scales: the fluctuations in the system are correlated
at all length scales, at least down to microscopic distances like the lattice constant
a. The system must be in a unique (critical) phase that is continuously connected
to the phases on each side of the transition, implying that the thermodynamic
quantities change smoothly across the transition.

For the Anderson transition, the absence of length scales means that the wave
function at the critical disorder is self-similar (Aoki, 1982). It also needs to have a
“filamentary” structure (Aoki, 1983), i.e. it needs to be extended throughout the
volume, but also occupy an infinitesimal fraction of it, a property of the localised
phase. This structure, then, allows the critical phase to be continuously connected
to both the extended and localised phases. In conjunction with its self-similar
property, the critical wave function qualifies as a fractal, at least if we disregard the
lower limit imposed by a. A few years later, Castellani and Peliti (1986) realised,
based on the earlier work of Wegner (1980), that the critical wave function is not
a simple fractal, but rather an “interwoven family” of fractals, each with its own
dimension and distribution. Such an object is a multifractal (Mandelbrot, 1972,
1974).

4.2 Multifractals

To better understand the link between self-similarity and fractality, let us consider
a system occupying a finite region of space Σ ⊂ RD with a local density ρ(r ).
Following Pietronero (1990), we define the pair correlation function,

д(r ) = 〈ρ(r + r ′)ρ(r ′)〉r ′ , (4.1)

which gives the probability that two points separated by r both belong to the
region Σ. For simplicity, we now assume that the correlation function is isotropic,
д(r ) = д(r ). In the absence of length scales, д obeys homogeneity laws (or scale-
invariance) with respect to a resolution or coarse-graining λ. More specifically, if we
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rescale lengths as r → r ′ = λr we have that

д(r ′) = λκд(r ) , (4.2)

where κ is a homogeneity exponent. The solution to this equation is given by a
power-law behaviour, д(r ) ∝ rκ . If we then fix r as the reference length scale, and
д(r ) = 1,

д(λ) = λκ (4.3)

translates self-similarity into a mathematical relation.

We can finally define fractal objects as self-similar structures whose observed
spatial extent (e.g. volume) depends, with a power-law behaviour, on the resolu-
tion at which we look at it. For fractals originating from a mathematical relation,
the dependence on the resolution can extend over an infinite range. For fractals
appearing in physical systems, instead, the range of λ is usually limited by macro-
and/or microscopic scales. A very comprehensive list of examples can be found in
Malcai et al. (1997).

4.2.1 Measures, fractals and multifractals

Let ψ (r ) be the wave function of an electron in a L × L × L volume. The modulus
square |ψ (r )|2 defines a normalised measure on this volume, which we partition in
boxes of linear size l = λL. The number of boxes will then be λ−d , where d = 3 is
the Euclidean dimension of the support of the system. The probability of finding
the electron in box i, then, is the box-probability

µi =

∫
box i
|ψ (r )|2 dr . (4.4)

We can then define the fractal dimension D of the system by counting the number
of boxes where the box-probability does not vanish:¹ N (λ) ∼ λ−D . Because the
electron can access any portion of the volume, i.e. there is no region of space with
vanishing probability, we conclude that the fractal dimension D = d = 3, which
is not very interesting.

1It is customary to use ∼ to indicate that the proportionality constant is independent of the
resolution and can thus be ignored. This constant might appear, for instance, when the boxes,
whichever their shape, do not perfectly cover the system. Since we are covering boxes with boxes,
most of the relations in this section are actually equalities.
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Compared to the fractal dimension, more insightful is actually the study of the
powers of the box-probability µqi , which is the idea behind multifractal analysis. If
the wave function is a multifractal, we expect to see the power-law behaviour of
(4.3):

〈µq〉L ∼ λ
D+τq , (4.5)

where 〈. . .〉L denotes the average over all boxes in the volume. Equivalently, we
can introduce the partition sum Rq(λ) (also the generalised inverse participation ratio)
as 〈µq〉L = λDRq(λ) and write

Rq(λ) =
∑
i

µ
q
i ∼ λ

τq . (4.6)

The mass exponents τq describe the scaling behaviour of the moments and do not
depend on λ.

Let us stress again that multifractality holds if, in the power-law relation of
Eq. (4.5), τq , 0 for a finite range of λ: the box size l should be smaller than the
system size, but also larger than the microscopic scale a. At the same time, for
critical states at the Anderson transition, the system size is much smaller than the
correlation length ξ , such that

a � l < L � ξ (4.7)

Additionally, the wave function is a truly critical (and hence multifractal) only
in the thermodynamic limit, where both L and ξ diverge, hence τq is uniquely
defined in the limit λ → 0. For finite systems, instead, we choose states and
coarse-grainings that satisfy (4.7). In this case, we can estimate τq by fitting the
slope of logRq(λ) versus log λ. We are assuming here that multifractality survives
in finite systems (Cuevas and Kravtsov, 2007), and postpone the discussion of this
non-trivial assumption to Ch. 5.

From (4.5) and the normalisation of the wave function, it is possible to show
that τ0 = −D and τ1 = 0. This implies that we can generalise the definition of
the fractal dimension to a function Dq such that D0 = D and τq = Dq (q − 1). In
the case of a simple fractal Dq ≡ D, while for a multifractal Dq has a non-trivial
dependence on q. The deviation from the simple-fractal case is captured by the
anomalous scaling exponent ∆q = (Dq − d)(q − 1) = τq − d(q − 1).
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4.2.2 The multifractal spectrum

The scaling of the moments Rq , yielding τq , is enough to fully characterise the
multifractal nature of the wave function. Now we present an equivalent descrip-
tion of the multifractal that will be useful, in the sections that follow, to validate
our results and compare them to the 3D Anderson model. This description is
founded on a multifractal measure (Frisch and Parisi, 1985), a distribution such that,
around each box i, µi = λαi . The set of boxes with αi ∈ [α ,α + dα], then, con-
stitutes a simple fractal with dimension f (α), such that the number of said boxes
is

Nλ(α) ∼ λ
−f (α ) and αi =

log µi
log λ

. (4.8)

This is the formalisation of the idea of Castellani and Peliti (1986), where the
multifractal is composed of different simple fractals.

We re-express the partition sum of Eq. (4.6) as

Rq(λ) =
∑
i

µ
q
i =

∑
i

λqαi =

∫
N (α)λqα dα ∼

∫
λqα−f (α ) dα . (4.9)

For small λ, we can use the saddle point approximation and find that the biggest
contribution in the integral (4.9) comes from the value of α that maximises (since
λ < 1) the argument of the exponential, i.e. the αq such that f ′(αq) = q. We can
then write, from (4.6), τq = qαq − f (αq). If we identify fq = f (αq) we can see that
(q,τq) and (αq , fq) are related by a Legendre transformation:

fq = q αq − τq and αq =
dτq
dq
. (4.10)

It can be proven, e.g. in Janssen (1994), that τq is a monotonically increasing
function in q, which implies that αq > 0,∀q.

We can combine singularity strengths αq and the singularity spectrum fq to ob-
tain the multifractal spectrum f (α). This function is equivalent to the generalised
dimensions Dq in characterising the multifractal, and in the case of a simple frac-
tal analogously reduces to the point (D,D) in a (α , f (α)) plot. As shown in the
example of Fig. 4.1, f (α) is a convex function reaching its maximum at α0 with a
value f0 = τ0 = D. From (4.10) we further notice that f1 = α1, since τ1 = 0. The
spectrum is therefore tangential to the functions f0(α) ≡ D and f1(α) = α .
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Figure 4.1: Multifractal spectrum f (α) for the ONETEP prototype described in
Ch. 2, computed for q from −2 to 5 in steps of 0.1 (increasing from right to left).
Dashed lines indicate the functions f0 ≡ D and f1(α) = α .

4.2.3 Symmetry of the multifractal spectrum

Using the nonlinear σ model, Mirlin et al. (2006) have analytically proven that at
criticality the multifractal exponents (4.10) satisfy the exact symmetry relation

αq + α1−q = 2d f1−q = fq + d − αq . (4.11)

Assuming the universality of the critical properties at the Anderson transition,
this result is expected to generally hold for the Wigner-Dyson symmetry classes
(see Ch. 1). Indeed, this result was confirmed numerically for different systems,
including the 3D Anderson model (Rodriguez et al., 2008; Vasquez et al., 2008)
and experiments (Faez et al., 2009)

4.3 Multifractal analysis of the wave function

In the rest of the chapter we are interested in the singularity strengths αq , which,
together with the mass strengths τq and the anomalous dimensions ∆q are called
multifractal exponents (MFE). In this section we recast the exponents derived in
Sec. 4.2 in a form that is more convenient for numerical calculations, mostly by
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reducing the loss of precision. We then extend our definitions to include a disorder
average.

4.3.1 Numerical calculation

Following Chhabra et al. (1989), it is convenient to define, from (4.6) and (4.10),
the auxiliary quantity

Sq(λ) =
dRq(λ)
dq

=
∑
i

µ
q
i log µi . (4.12)

This ratio can be interpreted as an average with respect to the measure defined
by µq . The latter is also called q-microscope, because it increases the large (small)
box-probabilities for q > 0 (q < 0). A computationally-friendly formulation of
the MFE reads

τq = lim
λ→0

logRq(λ)
log λ

∆q = τq − q(d − 1) αq = lim
λ→0

Sq(λ)

Rq(λ) log λ
. (4.13)

To comply with (4.7), we choose λ ≤ 1/2, namely we consider boxes of linear
size up to l ≤ L/2. We coarse-grain the wave function using the partitioning
scheme proposed by Thiem and Schreiber (2013). Here, the box size l can take
any integer value (up to L/2), so that λ−1 = L/l can take non-integer values. This
is achieved by first periodically replicating the original system, such that it can
be exactly covered by an integer number of boxes, and then by averaging over
the possible equivalent box origins. The increased number of available box sizes
translates, in the linear fits, in reduced uncertainties in the estimated slopes.

4.3.2 Ensemble averaging

So far we have computed the multifractal properties of a single wave function. The
multifractal analysis of the Anderson transition is usually performed by taking an
average over the disorder realisations. The definitions of the MFE can be extended
by defining the ensemble average of the partition sum as 〈Rq(λ)〉 ∼ λτ

ens
q , such that

τ ensq = lim
λ→0

log〈Rq(λ)〉
log λ

. (4.14)
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We then proceed to take the Legendre transform and define

f ensq = qαensq − τ
ens
q and αensq =

dτ ensq

dq
= lim
λ→0

〈Sq(λ)〉

〈Rq(λ)〉 log λ
. (4.15)

Notice that, in the ensemble average of αq , the q-microscope µqi is normalised
by 〈Rq〉, namely the averaged partition sum of the wave function. If we nor-
malised the µqi terms for every wave function we would obtain the typical average
α
typ
q = 〈Sq/Rq〉/log λ (λ→ 0). While in the ensemble average all wave functions,
including rare events, are equally weighted, the typical average is dominated by
the behaviour of “typical” wave functions.² The presence of rare events translates
in the appearance of negative fractal dimensions (see Sec. 4.5.1), a feature of the
f (α) that is best captured by ensemble averaging. Please consult Evers and Mirlin
(2008), and references therein, for more details.

The standard deviation σαq associated to αensq (at a fixed λ) is related to the
standard deviations σSq and σRq and the covariance cov(Sq ,Rq) via propagation of
the variance (Rodriguez et al., 2011):

σαq = α
ens
q

√√
σ 2
Sq

〈Sq〉2
+

σ 2
Rq

〈Rq〉2
− 2

cov(Sq ,Rq)
〈Sq〉〈Rq〉

, (4.16)

and, analogously,

στq =
σRq

〈Rq〉 log λ
, (4.17)

so that, finally, σ 2
fq
= σ 2

αq + σ
2
τq . The standard error of the mean is obtained by

dividing every standard deviation by
√
N, where N is the number of available

realisations.
For finite systems, the multifractal exponents are computed, as explained in

Sec. 4.2.1, by estimating the slope of a log〈Rq(λ)〉 vs. log λ plot, in the case of τ ensq .
Accordingly, the uncertainties (4.16) and (4.17) on the data points at fixed λ have
to be multiplied by a factor log λ.

4.4 Statistics and disorder average

Before applying the multifractal analysis to the wave functions calculated in the
effective model, let us now resume the discussion of chapters 2 and 3. For each

2This is the same difference between arithmetic and geometric mean.
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system size N = L3 we diagonalize realizations with NS randomly-distributed im-
purities, with values chosen to regularly sample approximately the same range of
concentrations n, given by Eq. (3.11). In Table 4.1 we report the number of real-
izations Ncomputed for each system size, and the total number of corresponding
wave functions.

For each realisation we compute NS + 5 states, to ascertain that we obtain a
complete impurity band (IB). The additional states usually come from the con-
duction band (CB), but, especially with very few impurities, we have also found
states from the valence band (VB). This requires criteria to distinguish such bands.
The VB states, assuming there are NVB of them, are filtered out by checking that
(i) their energy is less than 6.28 eV (the top of the VB in the empty Si system),
and (ii) their participation ratio³ is greater than the convenient value 0.3. This
value is a safe lower bound that we have chosen after studying a handful of real-
isations which included VB states. From the NS + 5 − NVB states left, the lower
NIB = NS − NB are impurity band states, where NB is the number of bonding
states that have disappeared into the VB (cf. Sec. 3.2). The remaining states are
then CB states.

After categorising the states, we can define the Fermi energy εF as the mid-
point between the energy of the highest IB state, which is occupied when we
build the many-body wave function of all electrons, and the energy of the lowest
(unoccupied) CB state.

We then redefine εF = 0 for each realization and partition the negative en-
ergies in several bins centred on {Ei }i . For each bin we consider the eigenstate
Ψj (in the site basis, see 3.4) whose energy εj is closest to Ei , and calculate the
auxiliary quantities (4.6) and (4.12), which we include in the ensemble average of
the multifractal exponents (4.15).

4.5 Results from the effective models

In Fig. 4.2 we show the average singularity spectrum for the ensemble of 10 648
atoms with 140 impurities, a system that is critical at energy close to −0.249 eV
(estimated in Ch. 5). The increase in the ensemble size does not change the shape
of the spectrum significantly, but has the effect of reducing the error bars on the
data points. In particular, it is the calculation of the average 〈Rq〉 and 〈Sq〉 in Eq.

3From Eq. (4.6) calculated as [NR2(1/L)]−1.
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N NS n [1020 cm−3] 〈N〉 (Nmin,Nmax)
∑
N Eigenstates

163 4–200 0.49–24 802 (200,1000) 68 153 2 943 811
183 5–322 0.43–28 758 (106,1000) 64 430 3 951 351
203 5–365 0.31–23 732 (162,1000) 71 051 5 640 229
223 10–410 0.47–19 541 (293,733) 34 067 5 521 425
Total no. of realizations and wave functions: 237 311 18 056 816

Table 4.1: Summary of the range of impurities NS, the concentration n, the av-
erage, minimum, maximum and total number of disorder realizations for each L,
indicated by 〈N〉, Nmin, Nmax and

∑
N, respectively. The final column indicates

the total number of eigenstates calculated per system size, and the last row the
total for all N = L3 and n. Reproduced from Carnio et al. (2017).

(4.15) that benefits from larger ensembles, since smaller error bars in the data used
for the linear fits implies smaller uncertainties on the fit parameters, see Fig. 4.3.

We quantitatively report the quality of said fits in the lower panel of Fig. 4.2,
where we show the linear correlation coefficient r2 and the p value. As noted in
Rodriguez et al. (2008), while r2 ≈ 1 indicates a good linear behaviour, small p
values suggest that the uncertainties on the data point are too small to support the
deviation from the linear behaviour we are fitting. This is likely due to the limited
number of realisations available for the ensemble averaging. For comparison, at
the end of the two branches, i.e. for large |q | values, error bars are larger and
hence the quality-of-fit increases again.

4.5.1 Negative fractal dimensions

Error bars increase on the two ends of the spectrum, for negative q (right) and
positive (left). For q < 0, the q-microscope increases the weight of small values
of the wave function, which are more sensitive to numerical fluctuations from
the diagonalization. The other end of the spectrum (q > 0, left) describes instead
the presence of rare critical functions with small values of α and hence large
|ψ |2 ∼ L−α . The set of these values scales with a negative fractal dimension f (α),
which means that their occurrence frequency vanishes in the L→∞ limit. This is
a known effect arising from ensemble averaging (Chhabra and Sreenivasan, 1991)
and known since the pioneering work of Mandelbrot (Mandelbrot, 1984). This
finite-size effect is further observed and commented in Rodriguez et al. (2008),
where larger systems are accessible and studied. In comparison, the single state
used to produce Fig. 4.1 does not show said rare boxes with large probability
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amplitudes, as indicated by fq > 0.

4.5.2 Width of the multifractal spectrum

Finally, let us comment on the width of the distribution in Fig. 4.2, as compared to
the Anderson model studied in Rodriguez et al. (2008). A narrow f (α) spectrum
implies that extreme values (either large or small) occur less frequently. This
means that, in our case, the average state near criticality in our model looks more
homogeneous or extended than in the Anderson model. In Fig. 4.4, instead,
we show the singularity spectrum for a system of 10 648 atoms, which, for 230
impurities, is close to criticality at the Fermi energy εF = 0 and deeper in the
impurity band at −0.320 eV (estimated in Ch. 5). While both spectra are narrower
than the Anderson model, the critical wave function at εF appears on average more
extended than deeper in the impurity band. This observation will resurface again
in Chapters 5 and 6.

Our results are reminiscent of those found by Mirlin and Evers (2000) for
the power-law random banded matrix (PRBM) model, which describes a 1D
chain with random long-range hopping decaying as r−α over distances larger
than a band width b. For the critical value α = 1, the model undergoes an
Anderson transition for any value of b, which parametrises a family of critical
models that can be studied from the weak- (b � 1) to the strong-coupling (b � 1)
regime. For b � 1 the model show a “quasi-metallic” behaviour, where the
critical wave functions shows statistical properties similar to the delocalised phase.
The singularity spectrum becomes correspondingly narrower with a parabolic
shape, a regime called weak multifractality. In this case the multifractal spectrum
follows the parabolic approximation (Janssen, 1994):

f (α) ' d −
(α − α0)

2

4(α0 − d)
and α0 = d + γ . (4.18)

In Fig. 4.2 we fit our full-ensemble data to (4.18) to find the estimate value α0 ≈
3.55. We only report an approximate value without uncertainty because the
parabolic behaviour is an approximation and does not necessarily hold for the
whole spectrum, since f (α) is defined only for positive α . In fact, at qc = (d+γ )/2γ
(Evers and Mirlin, 2008) we have αqc = 0 and f (0) is finite (a termination point),
whereas our results in Fig. 4.2 and those in Rodriguez et al. (2008) seems to suggest
that f (α) → −∞ in the limit α → 0 (hence no termination point).
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4.5.3 Symmetry of the multifractal spectrum

In Fig. 4.2 we also show the symmetrised spectrum obtained by computing and
plotting {α1−q , f1−q} from Eq. (4.11). As expected from the previous paragraphs,
the uncertainty on the data points increase at the extremities. Within these error
bars, the spectra are in good agreement with each other. We verify the same
symmetry relation also for the spectra in Fig. 4.4. While at −0.320 eV there is
excellent agreement between the spectra, at the Fermi energy there is a slightly
higher discrepancy, especially at extreme values of q. Since this discrepancy would
be resolved by taking two standard deviations as confidence intervals, instead of
one, we cannot attribute this discrepancy to any specific underlying physical factor
or systematic error.
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Figure 4.2: Above: singularity spectrum for L = 22 and NS = 140, sampled
for values of q from −2 to 5 in steps of 1/4 (increasing from right to left) at
energy −0.249 eV. Blue diamonds show the results for the ensemble of the first
100 disorder realisations, while red circles indicate the results from all available
realisations (597). Simple error bars, without data point, indicate the symmetrised
spectrum to the full ensemble. Dashed lines indicate the functions f0 ≡ D and
f1(α) = α . The dotted line indicates the spectrum for the Anderson model at
criticality, reproduced from Rodriguez et al. (2008), while the dot-dashed line
indicates the fit to the parabolic approximation (4.18). Below: linear correlation
coefficient r2 (red) and quality of fit p (black) for the linear fits used to extrapolate
the thermodynamic limit of αq (diamonds) and fq (circles), shown in Fig. 4.3.
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Figure 4.3: Linear fits used to produce the data plotted in Fig. 4.2. The slopes of
the lines yield αq (panel above) and fq (below). For clarity we only show data for
integer values of q from −2 (red) to 5 (grey), with data for q = 0 highlighted with
a full symbol.
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Figure 4.4: Singularity spectrum for L = 22 and NS = 230, sampled for values
of q from −2 to 5 in steps of 1/4 (increasing from right to left). The ensemble
contains 500 realisations. Green circles indicate the average over the ensemble of
states near the Fermi energy εF = 0, while red squares indicate the ensemble over
states closest to −0.320 eV. The corresponding symmetrised spectra are indicated
with the same colours by the error bars only.





Chapter 5

Finite-size scaling of the transition

5.1 Scaling theory of localisation

The “scaling theory of localisation” was formulated by Abrahams et al. (1979) and
is based on the ideas developed in the 1970s, most notably by Landauer (1970),
Thouless (1974) and Wegner (1976). In Ch. 4 we saw that, at the Anderson
transition, the correlation length ξ diverges when approaching the critical point
and the state of the system shows self-similarity, at least for a finite range of coarse
grainings. Following renormalisation group arguments (Wilson, 1971), Wegner
obtains the scaling of the correlation (localisation) length as

ξ ∼ |w |−ν . (5.1)

While we refer to Wegner (1976) for the formal proof, an intuitive argument
to derive this relation proceeds as follows. Let us consider a transformation that
rescales lengths r and energies ε such that the density of states (per energy and
volume) remains constant: r ∼ b−1 and ε ∼ bd , where b is the resolution and d

is the dimensionality of the space (cf. Ch. 4 for the notation). Let w indicate a
(perturbatively small) distance from the critical point, with w > 0 describing the
delocalised phase, and let us assume that w also rescales with the resolution b with
an exponent y such thatw ∼ by . This scaling relation can be inverted (i.e. we look
at how w changes to establish at which resolution we are studying the transition)
to write b ∼ |w |1/y , such that the scaling relation for lengths (including ξ ) can be
rewritten as r ∼ |w |−1/y = |w |−ν , if we set y = 1/ν .

In the same work, Wegner (1976) uses the Kubo-Greenwood formula (Kubo,

67
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1957; Greenwood, 1958) to derive the scaling of the conductivity as

σ ∼ w (d−2)ν w > 0 . (5.2)

The constraint w > 0 ensures that the conductivity is non-vanishing only in
the extended regime. The scaling exponent of the conductivity is often defined
as s = (d − 2)ν , which constitutes a hyperscaling relation because it involves the
dimensionality d of the system (Cardy, 1996; Herbut, 2007). Hyperscaling holds
within a finite critical dimension dc, but for the metal-insulator transition it holds
in any dimension (Imada et al., 1998). Notice that for d = 3, we have s = ν .

In the late 1970s, it became apparent that a scaling theory of localisation should
be based on the conductance G, an extensive property, rather than the conductivity,
which is intensive, i.e.

G = σLd−2 . (5.3)

In their scaling argument forG, Thouless and co-workers (Edwards and Thouless,
1972; Thouless, 1974) consider a system of size Ld and replicate it to construct a
system of size (2L)d , so that the eigenstate of the larger sample is a linear combi-
nation of the eigenstates of the smaller sample. They then compute the energy
difference ∆E obtained by changing the boundary conditions from periodic to
antiperiodic, with the idea that a state localised in one of the subsystem is barely
affected by boundary effects. Finally, they compare ∆E to the average spacing
δW between energy levels and show that ∆E/δW becomes exponentially small in
the localised phase, while it is large for extended states. This “Thouless number”
∆E/δW is actually the dimensionless conductance:

д =
∆E

δW
=

G

e2/h
∝ Ld−2 . (5.4)

In their pioneering work, Abrahams et al. (1979) assume that д is the only
relevant variable in a scaling theory of localisation, and that it obeys the scaling
relation

д(bL) = f (b,д(L)) or, equivalently, β[д(L)] =
d logд(L)
d logL

. (5.5)

Here β (or, equivalently, f ) is an analytic function (at least near the transition) that
depends explicitly only on the dimensionless conductance, and not on the system
size, energy or microscopic details like the disorder realisation.
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Figure 5.1: Sketch of the asymptotic behaviour of the β function of Eq. (5.5) for
dimensions d = 1 to 3. In the д→ +∞ limit we have β → d −2, while for д→ −∞
we have β ∝ logд. The black dot indicates the critical conductance дc such that
β(дc) = 0.

While a functional form of β is unknown, we can have a qualitative idea of
its behaviour by studying some asymptotic cases, which we show in Fig. 5.1. For
β > 0, the logarithmic derivative of д(L) is positive, namely the dimensionless
conductance increases with system size. This is the metallic behaviour of Eq. (5.3),
which means that, for large д, β(д) = d − 2. If β < 0, instead, д decreases with
system size. This is the behaviour in the localised phase (cf. Eq. 3.6), where the
Thouless number becomes exponentially small: д(L) ∝ exp(−L/ξ ), which yields
β(д) ∝ logд. For β = 0, the dimensionless conductance is invariant with system
size: this identifies the critical point of the transition. One of the most acclaimed
results of the scaling theory of localisation is that it predicts a phase transition only
for d > 2, where, at дc, β crosses from negative to positive values (see Ch. 1). Since
β is always negative for d ≤ 2, at least assuming monotonicity, the eigenstates
of an “Anderson system” (T = 0, non-interacting electrons, without magnetic
scattering) are always localised.

5.2 The problem with finite systems

The critical phenomena we have discussed in Ch. 4 and in the previous section,
starting from the divergence of the correlation length (5.1), are formally defined
only in the thermodynamic limit (Van Hove, 1949), namely when the system size
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is infinite¹. In finite systems, instead, the phase transition loses the sharpness stem-
ming from the non-analyticity, since the partition function of the system, as a
finite sum of analytic functions, is itself analytic (Herbut, 2007). Of course, real
macroscopic systems have such a large number of constituents, often compared
to the Avogadro number NA ≈ 6.022 × 1023mol−1, that they are effectively very
close to the thermodynamic limit. As of 2018, no computer simulation is able to
get even close to simulating physical systems of macroscopic size. In this work,
specifically, we study systems with 103-104 atoms.

Let us, for simplicity, consider a cubic system of linear size L and measure on
it an observable a that assumes the value a∞ in the thermodynamic limit. In our
finite system we expect to see aL = a∞ + δaL, with δaL a finite-size perturbation
vanishing in the limit L → ∞ and containing information on the geometry and
boundary conditions (Brankov et al., 2000). This correction becomes relevant in a
second-order phase transition, where properties of the system are determined by
the correlation between the microscopic degrees of freedom and the correlation
length ξ cannot grow beyond the system size L.

The procedure that relates aL to its thermodynamic limit a∞ is called finite-
size scaling (FSS) analysis, and was established by Fisher and Barber (1972). For
the analysis that follows we rely on the assumptions of phenomenological FSS: L/ξ
is the only relevant variable necessary to study finite-size effects, and these are
appreciable, as described in the previous paragraph, when L ∼ ξ (Brankov et al.,
2000). The FSS approach was used by Pichard and Sarma (1981) and MacKinnon
and Kramer (1981) to test the one-parameter scaling model of Eq. (5.5) for the
Anderson model. At a given dimension d, the (finite-size) correlation length at
disorder w and length L is given by

ξL(w) = ξ∞(w) fd

(
L

ξ∞(w)

)
, (5.6)

where ξ∞ is the correlation length in the thermodynamic limit and the scaling
function fd is different for each dimension. By changing variables from L/ξ∞ to д,
it is possible to relate fd to β (MacKinnon and Kramer, 1981). In fact, assuming the
scaling theory of localisation (5.5) is equivalent to assuming the scaling hypothesis
(5.6) for the critical behaviour, given the existence of a finite conductance дc at

1More precisely, in the thermodynamic limit the number of atoms N and the volume of a system
V = L3 (assumed cubic for simplicity) diverge with constant concentration ρ = N /V . Since this is
realised in periodic structures like crystals, we will often just mention L→∞ as the thermodynamic
limit, as is often found in the literature.
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the transition (Dobrosavljević et al., 2012).

5.3 Finite-size scaling of multifractal exponents

More generally we assume that the scaling behaviour of a quantity Γ around the
critical point in a system of size L can be described by an analytic function fΓ(L/ξ ).
If we identify the source of disorder in the (rescaled) concentration of dopants
w = (n − nc)/nc, from Eq. (5.1) we can write

L/ξ (w) ∼ L|w |ν . (5.7)

It is customary to rewrite fΓ as a function of wL1/ν , where, using the vocabulary
of the renormalisation group approach (Cardy, 1996), w is the relevant field and
1/ν is the associated relevant exponent.

The characterisation of the transition we present in this work is based on the
statistical properties of the electronic wave functions. The candidate quantities
for Γ, hence, are the multifractal exponents (4.15), in particular αq . We now
momentarily forget to question whether such quantities are suitable for a scaling
analysis, and derive expressions for potential scaling functions fΓ.

5.3.1 Derivation of scaling functions

To extend the multifractal analysis beyond the critical point we follow the work
by Rodriguez et al. (2011), which is itself based on Yakubo and Ono (1998).
The starting assumption is that the partition sum Rq of (4.6) for the ensemble of
realisations at fixed w , L and λ scales like (5.6):

〈Rq〉(w,L, λ) = λ
τ∞q Rq(L/ξ (w), λ) , (5.8)

where τ∞q is themass exponent τq in the thermodynamic limit. Compared to (4.13),
the scaling function Rq includes the deviation from the critical point (w , 0), the
finite-size effects (finite L) and coarse-graining effects (λ > 0). Themass exponents
are derived from Rq like in Sec. 4.2:

τq(w,L, λ) = τ
∞
q +

q(q − 1)
log λ

Tq(L/ξ (w), λ) , (5.9)
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where Tq is related to Rq , and the factor q(q − 1) ensures that τ0(w,L, λ) = −d and
τ1(w,L, λ) = 0, ∀w,L, λ. Analogously, since ∆q = τq − d(q − 1), we have

∆q(w,L, λ) = ∆∞q +
q(q − 1)
log λ

Tq(L/ξ (w), λ) , (5.10)

while

αq(w,L, λ) =
dτq(w,L, λ)

dq
= α∞q +

1
log λ

Aq(L/ξ (w), λ) . (5.11)

When we approach the critical point, w → 0 and ξ → ∞, the functions Tq and
Aq attain a finite value such that, e.g. for αq ,

αλq = lim
w→0

αq(w,L, λ) = α
∞
q +

Aq(0, λ)
log λ

, (5.12)

where the second term is system-size invariant (depends only on λ) and vanishes
in the thermodynamic limit λ→ 0.

5.3.2 Validity of the scaling assumption

The question that arises when dealing with finite systems is whether the wave
function is still a multifractal. Formally speaking, the wave function is a true
multifractal only at the critical point (Sec. 4.1). For a finite L, however, the
effective critical point shifts away as L−1/ν from its thermodynamic limit (Cardy,
1996). Luckily this is not a problem, since, as shown by Cuevas and Kravtsov
(2007), states on the two sides of the transition still show multifractal features
characteristic of a critical wave function.

Now that we can construct a multifractal measure from the wave functions
away from the critical point, we can actually check the most important assumption
we have taken so far, namely that a localisation-delocalisation transition occurs in
our model. From the discussion in Ch. 4, in particular Eq. (4.8), we know that
the histogram distribution Nλ(α) of the measure α depends, at the critical point,
only on the coarse-graining λ = l/L, rather than separately on the system size L
and the box size l . At the critical point, then, Nλ(α) has the same shape for any L,
provided that the wave functions are coarse-grained with the matching l box size.
The dependence of Nλ(α) on L gradually reappears away from the critical point,
where in the strong (weak) disorder regime, larger systems becomemore localized
(delocalized). This is shown in Fig. 5.2, where we plot the (ensemble) probability
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Figure 5.2: Ensemble PDF of the multifractal measure α at coarse-graining λ =
1/2 and energy ε − εF = −0.249 eV, as a function of the concentration n (in
units of 1020 cm−3), for two system sizes L3 = 4096 (blue dots) and 10648 (red
crosses). For clarity we show the histogram for three concentrations: before the
transition (n = 4.6 × 1020 cm−3), near the critical point (6.8 × 1020 cm−3), and after
(8.8 × 1020 cm−3). The critical point (nc = 6.7 × 1020 cm−3) is indicated by a black
dashed line and the value used is from table A.3. On the bottom plane we show
the position of the average α0 also for the intermediate concentrations, connected
by lines to guide the eye. We use again blue dots with a solid line for L3 = 4096
and red crosses with a dashed line for 10648. Reproduced from the Supplemental
Materials to Carnio et al. (2017).
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distribution function (normalised histogram) PDF(α) = Nλ(α)λ
d/Nat λ = 1/2 for

three values of n: the lowest in the localized regime, the intermediate close to the
critical point and the highest in the delocalised regime. The ensemble PDF(α) is
built by filling one single histogram with the N available wave functions.

Because of the limited spread in system sizes and the large common coarse-
graining, the difference in the PDFs outside the critical point is not very well
pronounced in Fig. 5.2. An alternative check consists in fixing the system size
and study how the PDF renormalises with the coarse graining (Lindinger and
Rodríguez, 2017). As presented in Sec. 5.1, the “MacKinnon-Kramer” variable
ξ/L (MacKinnon and Kramer, 1981) scales like λ−1, which implies that, with in-
creasing λ, ξ/L becomes smaller. Physically this means that, upon coarse-graining,
localised (delocalised) states become more localised (delocalised), or, equivalently,
that the renormalisation flow rescales the disorder away from its critical value,²
if a phase transition, and hence a critical point, exists. We verify this in Fig. 5.3:
upon increasing the box size l in a system of L3 = 4096 atoms, the PDF’s move in
opposite directions.

5.4 Scaling at fixed coarse-graining ratio

We now present how we fit the data from our simulations (Sec. 4.4) to scaling
functions from the previous section. In particular, the function in Eq. (5.11)
contemplates scaling in two variables, L and λ (or, equivalently, l = λL). A possible
simplification involves considering data at a fixed λ, which is then expected to scale
only with system size (Rodriguez et al., 2011).

The coarse-graining procedure is straightforward: at resolution λ, we define
λ−3 boxes with volume (λL)3 and calculate the corresponding measures µi , as
described in Sec. 4.2, from the sites of the wave function that fall into the each
box. This implies that, if l = λL is not an integer, the number of points from the
original wave function that falls in each box will be different. This procedure
differs from that discussed in Sec. 4.3, where each box contains the same number
of points from the original wave function. With this latter partitioning method
we cannot obtain a common value of λ between the system sizes.

In the following, only λ = 1/2 yields an equal number of points in each box. In
the other cases, what might cause a problem is the accumulation of probability in
a certain box due to the larger number of points, so that the coarse grained wave

2The value of disorder is rescaled to lower (higher) values in the localised (delocalised) phase.
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Figure 5.3: Ensemble PDF of the multifractal measure α at energy ε − εF =
−0.249 eV for L3 = 4096 atoms. In blue we show the PDF for NS = 20, in orange
for NS = 100. Filled symbols indicate a coarse-graining with box size l = 1, while
empty symbols connected by a dotted line indicate l = 4.

function looks more localised in said box. We expect this type of fluctuation to be
compensated in large ensembles, where the chances of finding a low-probability
box increases.

5.4.1 Fits and scaling

At a fixed λ, the only variable left in Eq. (5.11) is L/ξ , and hence we can work
with the equivalent function Ãq(ρL

1/ν ) to be determined. Notice that, compared
to Sec. 5.3, our scaling function depends on a new relevant variable ρ that takes
into account possible non-linear dependencies on w :

ρ(w) = w +

mρ∑
i=2

biw
i . (5.13)

Assuming its analyticity, the scaling function is also Taylor-expanded around
ρL1/ν = 0, i.e. at the critical point ρ = 0:

Ãq(ρL
1/ν ) =

nL∑
i=0

aiρ
iLi/ν . (5.14)
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The zeroth-order term a0, in the case of fixed λ, is equal to αλq of Eq. (5.12). Like
in MacKinnon and Kramer (1981), the function Ãq can be used to collapse the
data on two branches given by

Ãq(±(L/ξ )
1/ν ) , (5.15)

where the positive (negative) sign indicates, in our model, the delocalised (lo-
calised) phase (see the example of Fig. 5.4).

Following Rodriguez et al. (2011) we fit the data αq(w,L, λ) against the scaling
function (5.14), for increasing expansion orders nL andmρ , to determine the values
of the parameters {ai }, {bi }, nc (implicit inw) and ν , for a total of NP = nL+mρ +2
parameters. We fit the data using the method of least squares minimization, i.e.
we minimize the quantity

χ2 =

nD∑
i=1

[yi − f (xi )]
2

σ 2
i

, (5.16)

where yi are the ND data points corresponding to the xi initial conditions, σi their
corresponding uncertainty and f is the fitting function we are considering (Press
et al., 2007). We also calculate the goodness-of-fit p as

p =
Γ

(
1
2 (NP − ND),

1
2 χ

2
)

Γ
(
1
2 (NP − ND)

) , (5.17)

where Γ(x) is the Euler Γ function and Γ(a,x) is the upper incomplete Γ function
(Abramowitz and Stegun, 1970). In Appendix A, and in the figures in Sec. 5.6, we
present fits with a goodness-of-fit value p ≥ 0.05, the value conventionally used
in statistical hypothesis testing (Owen and Jones, 1994). For each energy value,
we use the smallest concentration interval that yields the smallest uncertainties
in nc and ν . We also make sure that the estimates of the critical parameters do
not change, within error bars, with larger concentration intervals (robust fits) and
when increasing the expansion order of the scaling function (stable fits).

5.4.2 An example

As an example, in Fig. 5.4 we show a fit for α0 at energy −0.249 eV and λ = 1/2,
including ND = 106 data points. From the p value we accept a fit with nL = 3
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Table 5.1: Test of the robustness of the fit described in Sec. 5.4.2, containing the
description of the symbols. All concentrations are expressed in units of 1020 cm−3.
The centre of the concentration interval isn0 = 6.7 × 1020 cm−3. The star indicates
the candidate fit whose robustness is tested.

nL mρ NP χ2 p nc ν ω

3 1 6 67 0.55 6.87(30) 1.33(56) 0.15
3 1 6 86 0.47 6.74(26) 1.39(43) 0.20

? 3 1 6 100 0.48 6.72(23) 1.25(30) 0.25
3 1 6 120 0.35 6.78(24) 1.44(28) 0.30
3 1 6 161 0.02 6.77(24) 1.50(26) 0.35

andmρ = 1 (hence NP = 6), yielding χ2 ≈ 100 and p ≈ 0.48. The results for the
critical parameters are

nc = 6.72(23) × 1020 cm−3 ν = 1.25(30) . (5.18)

In table 5.1 we test the robustness of the fits, i.e. how the critical parameters change
with the width of the critical region, measured as

ω =
nmax − nmin

nmax + nmin
. (5.19)

The parameters from all fits are compatible within the error bars. As a rule of
thumb, we choose the smallest spread that minimizes the uncertainties. In this
example, for ω < 0.25 we obtain significantly higher uncertainties, while for
ω > 0.25 the p value decreases lower than the acceptance threshold of 0.05. From
this pool, therefore, we choose ω = 0.25 as the best fit. This fit is then tested for
stability, namely we increase nL andmρ , separately and together, as reported in
table 5.2. This second set of fits shows similar p values and compatible critical
parameters, hence we accept the candidate fit as robust and stable.

In Fig. 5.4 we show the data and the scaling function (5.14) for the four
different values of L. By definition the curves meet at nc, where the system shows
size invariance. From the fitted values of nc and ν we replot the data as a function
of L/ξ (5.7) and show that it collapses on the curves Ã0(±(L/ξ )

1/ν ).
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Table 5.2: Test of the stability of the fit described in Sec. 5.4.2 and highlighted in
Table 5.1. All concentrations are expressed in units of 1020 cm−3. The centre of
the concentration interval is n0 = 6.7 × 1020 cm−3 and its width is ω = 0.25. The
star indicates the candidate fit whose stability is tested.

nL mρ NP χ2 p nc ν

? 3 1 6 100 0.48 6.72(23) 1.25(30)
4 1 7 100 0.46 6.71(23) 1.26(30)
3 2 7 99 0.48 6.79(25) 1.19(25)
4 2 8 99 0.47 6.82(25) 1.18(25)
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Figure 5.4: Scaling of α0 for energy −0.249 eV and λ = 1/2, with points indicating
the numeric values obtained from the ensemble average. Left: fitting of the data
points α0 for different concentration n and system size L, indicated by colour. The
same colours are used to plot the scaling functions Ã0(ρL

1/ν ) for the different values
of L. Right: same data points with abscissa rescaled as L/ξ (in log scale) and colours
indicating the value of n for each data point. The critical concentration is indicated
as nc on the scale. The underlying fit is given by Ã0(±(L/ξ )

1/ν ). Reproduced from
the Supplemental Materials to Carnio et al. (2017).
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5.5 Other scaling possibilities

5.5.1 Inclusion of irrelevant corrections

If the data series do not meet in the single point of Eq. (5.12), we can consider
a scaling function that depends additionally on an irrelevant field η with a cor-
responding irrelevant exponent y < 0, i.e. Ãq(ρL

1/ν ,ηLy ). While we could fit
a two-dimensional Taylor expansion in the two variables as done in Slevin and
Ohtsuki (1999), we follow the approach in Rodriguez et al. (2011) of expanding
the scaling function in the irrelevant variable and truncating the expansion after
the first order:

Ãq(ρL
1/ν ,ηLy ) = Ã0

q(ρL
1/ν ) + ηLy Ã1

q(ρL
1/ν ) . (5.20)

Like in (5.14), the one-parameter scaling functions Ã0
q and Ã1

q are expanded in
their arguments up to orders n0 and n1, respectively. Similarly, the irrelevant field
is expanded as

η(w) = 1 +
mη∑
i=1

ciw
i . (5.21)

The zeroth-order term is just a factor in front of the expansion parameters of Ã1
q ,

hence it has been set to 1 to minimize the number of parameters. This amounts,
then, to NP = n0 + n1 +mρ +mη + 4. Because of its accuracy in estimating the
critical parameters of the transition, this method has also been used to study the
metal-insulator transition in other Anderson systems (Puschmann et al., 2015;
Moore et al., 2017).

Let us clarify here that, for most energy channels at λ = 1/2 and 1/4 we do not
see a shift in the crossing point of the data series. In the following we try fitting
the function (5.20) to our data to exclude the need for an irrelevant term. As we
will repeat again in the following, for large λ and small system sizes, fitting with
(5.14) is adequate and yields the usual estimate ν ≈ 1.6 in studies on the Anderson
localisation in different universality classes (Slevin and Ohtsuki, 2014; Devakul
and Huse, 2017).

As shown in table 5.3, fits using (5.20) converge and have p > 0.05, but do not
consistently meet the stability criterion for the available system sizes. For some
of them y is very large in magnitude and has a vanishing uncertainty. In fact,
in the limit y → −∞ the irrelevant contribution in (5.20) disappears and we are
effectively fitting the data to (5.14), but with unnecessary additional parameters.
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This is indeed the case of the fit indicated with a star, which corresponds to the
best fit obtained in table 5.1. In other cases, instead, the uncertainty on y (or ν ) is
of the same order of magnitude, or bigger, than the value itself.

As expected, since with our data we cannot see a shift in the critical point,
it is not possible to reliably estimate an irrelevant exponent. This is consistent
with the renormalisation group argument (Cardy, 1996) that irrelevant variables
vanish with large enough coarse-graining. This effect is shown also in Lindinger
and Rodríguez (2017): a comparison between different values of λ shows that,
for λ = 1/2, the irrelevant shift vanishes and the crossing point of the data series
approaches the critical point. In the same work, the values of the critical disorder
and the critical exponent remain consistent for the different coarse grainings,
while, as expected, y decreases to more negative values.

For smaller coarse-grainings like λ = 1/4 and λ = 1/6, however, we are still
unable to estimate the irrelevant exponent, with results undistinguishable from
those in table 5.3. In Fig. 5.5 we show the corresponding data sets: the irrelevant
shift, if present, cannot be distinguished and, as discussed above, the crossing
point shifts to higher concentrations compared to that for λ = 1/2 (dashed line).
This does not necessarily mean that there is no irrelevant shift: as shown in Fig.
5.6, the quality of fit dramatically decreases with λ = 1/6, meaning either that
(5.14) is insufficient to describe the trend in the data or that the error bars are
underestimated compared to the intrinsic fluctuations in the ensemble average. In
this case, p ≥ 0.05 is a sufficient criterion to filter out inadequate fits.

The irrelevant shift is probably hidden by two concurrent factors: small sys-
tem sizes and too few realisations. While the shift should be more visible for
small systems (the irrelevant term scales like L−|y |), it might still be smaller than
the sampling of the concentrations, which cannot be finer than substituting one
additional site of the lattice and hence decays like L−3, see (3.11). This also implies
that, to have enough data points for a convergent fit, we need to consider a larger
concentration range, at least compared to the disorder values used in Rodriguez
et al. (2011). As for the number of realisations, our data shows fluctuations larger
than the uncertainties associated to the points, which are standard errors of the
mean and decay as

√
N, where N is the number of realisations. Our ensembles

reach a maximum of 1000 realisations, which is an order of magnitude smaller
than in the high-precision studies of the non-interacting Anderson transition
(Rodriguez et al., 2011; Lindinger and Rodríguez, 2017) due to the additional
numerical requirements. This effect is partially mitigated by renormalizing the
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Table 5.3: Results for the fits of the data in Fig. 5.4 (λ = 1/2) with an irrelevant
term.

n0 n1 mρ mη NP χ2 p nc ν −y
? 3 0 1 0 8 97 0.39 6.73 ± 0.24 1.29 ± 0.35 4.36 × 105

3 0 2 0 9 94 0.45 7.47 ± 7.22 1.34 ± 1.00 1.69 ± 26.27
3 1 1 0 9 97 0.36 6.78 ± 0.24 1.29 ± 0.35 5.66 × 105
3 0 2 0 9 94 0.44 6.83 ± 0.24 1.25 ± 0.29 5.18 × 106
3 2 1 0 10 96 0.37 7.12 ± 3.31 1.05 ± 1.52 2.98 ± 24.43
3 0 2 1 10 94 0.41 6.83 ± 0.24 1.25 ± 0.29 3.64 × 106
3 1 2 0 10 94 0.43 6.93 ± 0.75 1.06 ± 0.92 7.50 ± 51.60
3 1 1 1 10 96 0.37 6.93 ± 1.68 0.97 ± 1.25 3.03 ± 24.13
3 1 2 1 11 94 0.38 6.83 ± 0.24 1.25 ± 0.29 277.21
3 2 1 1 11 97 0.31 6.73 ± 0.24 1.29 ± 0.35 103.75
3 1 2 1 11 93 0.41 6.99 ± 1.35 0.89 ± 1.93 3.45 ± 34.25
3 2 1 1 11 94 0.39 7.14 ± 0.94 0.42 ± 0.50 2.05 ± 2.11
3 2 2 1 12 92 0.43 7.22 ± 0.76 0.37 ± 0.44 1.95 ± 2.12

wave functions: for λ = 1/2 the renormalised system is defined on λ−3 = 8 sites
and the distribution of the GMFE’s (4.15) will be broader, as the chance of finding
large box-probabilities increases (see, e.g. Fig. 5.3). This, in turn, translates into
larger error bars on the values of αq . The downside, however, is that the estimates
of the critical parameters will also have a larger uncertainty.

To conclude, the best analysis we can perform on the data is by fitting the
λ = 1/2 and λ = 1/4 coarse-grained data with only a relevant variable. By
accepting robust and stable fits with p ≥ 0.05, this method allows to consistently
and reliably find best fit estimates.

5.5.2 Two-parameter scaling

Another possibility is to scale the data with both L and λ using Eq. (5.11), or,
equivalently, with l = λL. This method was successfully established by Rodriguez
et al. (2011) because it has the merit of determining, simultaneously, the critical
parameters of the transition and the thermodynamic-limit value of the multifractal
exponent under study.

Its disadvantage, instead, is that it relies on correlated data – it uses the same
ensemble for different coarse grainings – and hence it requires very high precision,
i.e. large ensembles. Moreover, as a correction for non-vanishing λ, Eq. (5.11)
and its Taylor expansion hold for small λ. As we have small system sizes compared
to Rodriguez et al. (2011), we can only access larger values of λ. This might be a
reason why we are not able to obtain an acceptable fit using this method.
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Figure 5.5: Data sets for λ = 1/4 (left) and λ = 1/6 (right) and energy
−0.249 eV, in the same format of Fig. 5.4. The estimated crossing points are
n0 = 7.8 × 1020 cm−3 (left) and 8.5 × 1020 cm−3 (right), while the width of the
critical region (5.19) is, in both cases, ω = 0.25. The dashed line indicates the fit
estimate nc ≈ 6.72 × 1020 cm−3 found for λ = 1/2.
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Figure 5.6: The p values obtained from fitting the data at fixed λ = 1/6 resolution.
The horizontal line indicates the threshold of 0.05 above which fits are accepted
and hence tested for stability and robustness.
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5.6 Phase diagrams

We report now the results obtained from fitting the scaling behaviour of exponents
α0 and α1 for λ = 1/2 and λ = 1/4, as discussed in Sec. 5.4. We fit the ensemble-
averaged data near the energy bins {Ej } below the Fermi energy (see Sec. 4.4) and
listed in Appendix A. We emphasize that, for each energy, we have taken a single
wave function from each sample to avoid inter-sample correlations (Rodriguez
et al., 2011).

For each fit we obtain the critical concentration nc and exponent ν and in
the following we plot phase diagrams, i.e. how the critical parameters change
within the impurity band (IB). The phase diagram obtained when including all
four system sizes is shown in Fig. 5.7.

5.6.1 Critical concentration

The set of critical concentrations as a function of energy constitute the mobility
edge (see Ch. 1): for higher concentrations the wave functions are, on average and
in the thermodynamic limit, delocalised, otherwise they are localised.

In Fig. 5.7 the mobility edge appears flat for energies −0.02 eV . ε − εF ≤ 0
and then quickly decreases until it reaches a minimum at around −0.1 eV. For
lower energies the mobility edge increases again, with smaller but relatively con-
stant slope. For the intermediate energies −0.15 eV . ε − εF . −0.1 eV, some fit
results are missing. In this regime the critical concentration is very low, close to
the minimum concentration given by having one impurity in the sample, and
the available data points in a given range of concentration are few. In these cases,
however, the raw data itself shows the critical point shifting to lower concentra-
tions, which confirms that, at these energies, the critical concentration reaches a
minimum.

While these results will be discussed in Ch. 6 in the context of the formation
of the IB, we point out here already that, from the shape emerging in Fig. 5.7,
the possible tails of the band delocalise later than the centre.

5.6.2 Critical exponent

Close to the Fermi energy, we find values ν ∼ 0.5, while, for energies −0.1 eV .
ε − εF ≤ 0, ν increases up to roughly 1. Deeper in the IB, for ε − εF . −0.15 eV,
the results for different λ and q are roughly distributed between 1 and 1.5 (see
Sec. 5.6.4). For intermediate energies, −0.15 eV . ε − εF . −0.1 eV the situation
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is unclear, for the same reasons discussed for nc: if the fit converges, is accepted
and shows a critical concentration, the estimate of ν fluctuates and shows large
error bars: a reflection of the too few and fluctuating data points that underlie the
fit. We might reduce the uncertainties by computing more realisations, or, as we
mention also in Ch. 7, by considering larger system sizes. In the latter case, wave
functions are sampled on larger domains, which improves the estimation of the
multifractal exponents via Eq. (4.13).

The shape of the phase diagram for ν suggests the existence of at least two
different regimes: close to the Fermi energy we find the value ν ∼ 0.5 found also
in the experiments on Si:P and other uncompensated semiconductors discussed
in Ch. 1. Moving deeper into the impurity band, instead, this behaviour changes
(roughly continuously, at least at the top of the band), until we reach a relatively
stable value for lower energies. The phase diagram stops at around −0.33 eV
because, in this work, we generate data up to around 2.5 × 1021 cm−3 (Table 4.1).
Higher concentrations require more impurities and hence more computation
time, as discussed in Sec. 3.5.

5.6.3 Dependence on system size and resolution

We now discuss the stability of the results with respect to the system sizes included
in the fitted data, and to the coarse-graining chosen. In all cases, the scaling
function (5.14) supports only a common crossing point (no irrelevant shift), so
the critical concentration is usually easily resolved and its estimate has a small
uncertainty. The critical exponent, on the other hand, is related to the spread in
system sizes and hence is more susceptible to the fluctuations in the data. In general,
the accuracy of its estimate depends on the number of system sizes available.

In Fig. 5.8 we plot an earlier phase diagram, computed without the data for L =
22. To better show the difference, we pick q = 0 and further separate the results
for λ = 1/2 (Fig. 5.9) and λ = 1/4 (Fig. 5.10). As discussed, the addition of a system
size does not yield major changes in the estimates of the critical concentration,
except maybe near the Fermi energy. According to their uncertainties, however,
the estimates at those energies are still compatible. With respect to the critical
exponent, instead, the additional system size helps reducing the uncertainty on
the estimate, as discussed above. While the estimates with L = 22 are compatible,
in the case of λ = 1/4 (Fig. 5.10) they seem to be consistently slightly lower than
those with L ≤ 20. This seems to be the case also for λ = 1/2 for the energies at the
top of the IB. A bigger difference appears, instead, between the two resolutions.
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Figure 5.7: Phase diagram with data up to L = 22. Critical concentrations nc and
exponents ν as a function of the energy ε from the Fermi level εF, for q = 0 (red
circles) and q = 1 (blue triangles). Full and open symbols show, respectively, the
results for λ = 1/4 and λ = 1/2 coarse-grainings. The error bars, shown only for
λ = 1/4 and if larger than symbol size, represent the 95% confidence level on the
fit parameters. The error bars for λ = 1/2 are of the same order of magnitude as
for λ = 1/4 and are omitted for clarity. The shading indicates the concentrations
and energies where the average wave function in the thermodynamic limit is
localised. Reproduced from Carnio et al. (2017).

The shift to higher values of nc when decreasing λ has already been discussed in
Sec. 5.5.1 and shown in Fig. 5.5. It is intriguing to see that this indeed happens for
ε − εF . −0.1 eV, while for ε − εF & −0.1 eV we observe the opposite behaviour.
We have no explanation for this effect.

The changes in the critical exponent, instead, depend on the energy. The
increasing trend from 0.5 to 1 at the top of the band, −0.1 eV . ε−εF ≤ 0, is present
for both coarse-grainings but can be seen more sharply for λ = 1/4. The “plateau”
regime for ε − εF . −0.15 eV, instead, sees a decrease from approximately 1.5 to 1.
Due to the large uncertainties, however, the estimates for λ are compatible. Since
the addition of a system size leads to the reduction of the uncertainties, without
changing the general trend that we observe, the reduction of ν near the Fermi
energy is not likely to be a finite-size effect.
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Figure 5.8: Phase diagram with data up to L = 20. Symbols, colours, and error
bars are used like in Fig. 5.7.
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Figure 5.9: Comparison between the fit results when including system sizes up to
L = 20 (red circles) and L = 22 (blue triangles), for λ = 1/2 and q = 0. The error
bars represent the 95% confidence level on the fit parameters.
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Figure 5.10: Comparison between the fit results when including system sizes up
to L = 20 (red circles) and L = 22 (blue triangles), for λ = 1/4 and q = 0. The
error bars represent the 95% confidence level on the fit parameters.

5.6.4 Dependence on multifractal moments

In Fig. 5.11 we compare the phase diagram for λ = 1/2 and three different values
of q. The critical concentration for q = −1 essentially follows the results obtained
for q = 0 and q = 1, with only slightly higher values in the middle of the band
and a better resolution near ε −εF ≈ −0.1 eV. For the initial transient at −0.1 eV .
ε−εF ≤ 0, the estimates of the critical exponent are in good agreement for all values
of q. At lower energies, instead, the estimates for q = −1 are significantly lower,
but still agree in most cases. It is also not clear whether they have an increasing
trend or they fall on a plateau as seems to happen for q = 0 and 1. Moreover, from
this comparison seems to emerge a cusp-trend for ν near −0.1 eV. In principle,
we do not expect to see any discrepancy in the results for different q values, except
for larger estimate uncertainties when studying q > 1, where the error bars on
the multifractal exponents increase (see Sec. 4.5). From the data we cannot tell
whether the difference between q values has a physical explanation or is a statistical
artefact due to the small ensemble size.
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Chapter 6

Metal-insulator transition in the
impurity band

In Ch. 5 we have shown that an Anderson localisation-delocalisation transition
occurs in the impurity band. In this Chapter we discuss whether this transition
is the backbone of a more general metal-insulator transition in the material. The
study of metal-insulator transitions is essentially the work of Sir Neville Mott,
hence in this overview we follow his review (Mott, 1990).

6.1 Impurity conduction

Conduction in a doped semiconductor is the result of two competing mechanisms:
usual charge transport by conduction-band electrons and donor-to-donor tun-
nelling of electrons entirely in the impurity band, i.e. without activation into the
conduction band. This second process, called impurity conduction, depends on the
overlap of the wave functions on the impurity sites, and dominates at low temper-
atures, where the occupancy of the conduction band states vanishes. It was first
observed by Hung and Gliessman (1950). Fritzsche (1958) identified two further
mechanisms of impurity conduction. For low impurity concentration, transport
is possible only when the system is compensated, i.e. when a n-type semiconduc-
tor (doped with donors) contains a minor fraction of acceptors. In this case, the
acceptors will accept a number of donated electrons, therefore leaving the same
number of donors ionized (unoccupied). The electron in an occupied state can
then be thermally excited and tunnel to a vacant state, a process called “hopping”
(see Ch. 1).

89
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In uncompensated samples, higher temperatures might excite an electron into
hopping among occupied states. The activation energy of this process is seen to
decrease for increasing concentration and vanishes at the critical concentration
nc. As we know from Ch. 5, at this concentration states become extended and
conduction becomes metallic.

For highly-doped uncompensated semiconductors, the experiment by Alexan-
der and Holcomb (1968) shows the existence of both nc and an additional char-
acteristic concentration nCB, beyond which the Fermi level moves into the con-
duction band and, at that energy, electrons show conduction-band properties.
In all materials considered, nCB > nc, namely, by increasing concentration, the
impurity band first delocalises and then merges with the conduction band. These
two processes are independent: the wave function at the Fermi energy might
be localised around the donors without there being a gap between impurity and
conduction band (Alexander and Holcomb, 1968; Mott, 1990).

So far we have not specified which localisation mechanism underlies the metal-
insulator transition. In fact, Mott was convinced initially that the localisation
transition was driven by the Hubbard energy¹ U , making it a Mott transition.
After reviewing the calculations of Bhatt and Rice (1981) and the experimental
observations of Hirsch and Holcomb (1987), however, Mott concluded that, at
least in materials like silicon and germanium, with or without compensation, an
Anderson transition (with long-range interactions) occurs.

In the rest of the Chapter we will follow the same steps to verify whether our
ab-initio-based model shows a metal-insulator transition in the impurity band. We
already know that the localisation-delocalisation transition is of Anderson type: as
a single-particle approach, DFT cannot access electronic correlations underlying
Mott physics (see Sec. 2.1.3). From the phase diagram in Fig. 5.7, we also suspect
the existence of an impurity band, whose density of states we now properly show.
What remains to be checked, than, is the existence of a concentration nCB where
the impurity and conduction band merge.

6.2 Formation of the impurity band

From the eigenvalues εj in Eq. (3.9), rescaled to the Fermi energy εF for each
realisation (see Sec. 4.4), we can compute the average density of states (DOS) and
observe the formation of the impurity band (IB). Let Ei be the rescaled spectrum

1The cost of double occupancy of the same lattice site.
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for realisation i for a given system size L and number of impurities NS. The
average DOS is calculated by summing over Gaussian distributions centred on
each rescaled eigenvalue ε̃ ∈ E=

⋃
i Ei with a standard deviation (smearing) σ :

DOS(ε) =
1

N
√
2πσ 2

∑̃
ε ∈E

e−
(ε−ε̃ )2

2σ 2 , (6.1)

where N indicates the number of realisations and ensures that the integrated
DOS yields the number of impurities. The DOS shown in Fig. 6.1 is calculated
by summing over Gaussian distributions of standard deviation σ = 0.05mHa =
1.36meV. With increasing concentration of impurities, the IB forms as a peak in
the band gap and extends rightwards until it merges with the conduction band
(CB), and leftwards towards the valence band (VB) in a long tail. In Fig. 6.1
we have also indicated the energy regions where the states become on average
delocalised in the thermodynamic limit, based on the results of Ch. 5. Themobility
edges move outwards from the centre of the band, asymmetrically in the direction
of the long lower-energy tail. This behaviour descends from the asymmetry in
the phase diagram of nc itself (Fig. 5.7).

The characterisation of the DOS is an important problem in the study of the
conduction properties of the impurity band. Early studies based on one-electron
tight-binding Hamiltonians (Cyrot-Lackmann and Gaspard, 1974) also find an
impurity level that broadens, with increasing concentration, into an asymmetric
band with a long tail towards the valence band. In a recent study on electron trans-
port in the IB of a doped semiconductor, Wellens and Jalabert (2016) find qualita-
tively similar results using a self-consistent diagrammatic perturbation approach.
To the best of our knowledge, the result shown Fig. 6.1 is the quantitatively most
detailed description of the IB of a doped semiconductor.

The IB plays a central role in semiconductor-based solar cells. As shown in
Luque and Martí (1997), intermediate energy levels in the band gap, connected
to the valence and conduction bands by optical transitions, can yield very high
efficiencies in idealised solar cells. Deep-level impurities, like sulphur in silicon,
are therefore excellent candidates to capture low-energy photons (Winkler et al.,
2011). When the impurity states are localised, however, they act as nonradiative
recombination centres, i.e. they promote electron-hole recombination with the
emission of a phonon, rather than a photon, as desired in a photovoltaic device.
Luque et al. (2006) show that the delocalisation of the impurity state suppresses
this unwanted recombination process. The localisation-delocalisation transition
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Figure 6.1: DOS of the IB for 4096 atoms at three different concentrations. The
shading indicates energies where states are on average delocalised (in the L→∞
limit), according to Fig. 5.7. The delocalised CB states, separated by a vertical
dashed line at εF, are also shaded. Crossed shading indicates states that might be
delocalised, but are outside our concentration range. Reproduced from Carnio
et al. (2017).

in impurity bands, then, is essential to reach the efficiency computed for idealised
solar cells.

6.3 Band gap closing and the metal-insulator transition

In Fig. 6.1 we can see that the impurity (IB) and conduction band (CB) merge
when increasing the concentration beyond a characteristic value nCB that we try
to determine in the following. The distinction of IB and CB exists only when
we can observe a clear gap between them. From the diagonalisation, however,
all we can do is count states, as described in Sec. 4.4, and define εIB (εCB) as the
energy of the highest occupied (lowest unoccupied) many-independent-electron
state. By definition, then, εCB > εIB and the bands would never merge, contrarily
to what appears in Fig. 6.1.

We can therefore compare two alternative quantities, the energy gap εgap =
εCB − εIB and the average energy level spacing in the IB, ∆IB. When εgap � ∆IB

the system has a clearly defined gap and cannot conduct. On the other hand,
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Figure 6.2: Gap closure indicator δIB as a function of n. Error bars indicate the
standard error of the mean. The area shaded in gray highlights the concentrations
at which IB and CB mix. Reproduced from Carnio et al. (2017).

when εgap . ∆IB we cannot distinguish a band gap among the energy differences
between states, and hence there is no point in distinguishing two bands in the
first place. To qualitatively capture the behaviour of the two bands, we then define
the relative ratio between these quantities

δIB =
εgap − ∆IB

εgap
, (6.2)

such that, for εgap � ∆IB, δIB ∼ 1. This is indeed the case for small impurity
concentrations, shown in Fig. 6.2. Upon increasing n, we observe δIB decrease and
vanish for 7 × 1020 cm−3 . nCB . 9 × 1020 cm−3, indicated by the grey area. We
estimate the width of this region by eye, as δIB is only a qualitative indicator. The
negative values for higher concentrations indicate that the “band gap”, intended
as the separation between the highest occupied and lowest unoccupied energy
levels, is smaller than the mean level spacing throughout the IB. This could be
interpreted as a higher level density near εF, where the top of the IB merges with
the CB.

In the only experiment on the MIT in Si:S we are aware of, presented in
Winkler et al. (2011), the critical concentration at the Fermi energy is found
to lie between 1.8 and 4.3 × 1020 cm−3. Considering the approximations at the
foundation of ourmodel, we can be satisfiedwith obtaining a critical concentration
of the same order of magnitude. In fact, starting from aDFT treatment, we already
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Figure 6.3: Shift of the average Fermi energy εF as a function of concentration n
for the four system sizes we simulated.

know that our critical concentration is bound to be at least two times bigger: this
is because DFT underestimates the correlations between electrons (see Sec. 2.2.2),
and hence the average distance between impurities, which is approximately n−1/3c .

In Fig. 6.3 we show how the average Fermi energy shifts higher in energy
with increasing concentration. After a steep increase at low concentrations, εF
seems to stabilise and even decrease slightly. This is consistent with the picture of
merging bands: when counting the states we will reach the region where the top
of the IB meets the lower CB states. This behaviour, however, seems to happen
for concentrations around 2nCB.

The experiments by Alexander and Holcomb (1968) on Si:P and other materi-
als find that nc < nCB, namely the IB first delocalises and then merges with the CB.
In our model, instead, we find the opposite. This might be due to the different
material, since sulphur is a deep centre in silicon (see Sec. 2.3). Its IB forms closer
to the middle of the band gap and hence might require a higher concentration
to extend all the way to the CB. We need results on a semiconductor doped with
shallow impurities to test this hypothesis.

6.4 Delocalisation in the impurity band

In Fig. 6.4 we add α0 as another dimension to the DOS of Fig. 6.1. In this 2D
histogram, then, we can study how states are distributed not only in energy, but
also with respect to their localised character, since the exponent α0 allows an
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Figure 6.4: Distribution of the moments α0 as a function of ε shifted with εF
(vertical dashed line). For NS = 40 we show the density plot of the distribution
(from blue for low to red for high density) and the contour lines enclosing 68%
(white) and 95% (black) of the α0’s. For NS = 100 we indicate the same contours
(red, dashed). The Roman numbering and alternate shading indicate the regions
described in the main text of Sec. 6.4. Reproduced from Carnio et al. (2017).

ordering in the localisation properties of a wave function. Using Eq. (4.13) we can
show that α0 = 3 for the perfectly extended state |ψ |2 = L−d (a plane wave), while
α0 → ∞ in the limit of a state localised on lattice site i, i.e. |ψ 2 | = δi, j . In a plot
like in Fig. 6.4, therefore, a downward shift of the points indicates delocalisation
of the states.

From the data for NS = 40 (n = 4.9 × 1020 cm−3) we can distinguish these four
regimes (highlighted in Fig. 6.4):

(i) Beyond the Fermi energy ε − εF ≥ 0 we can see an accumulation of conduc-
tion band (CB) states, with α0 ≈ 3.15.

(ii) For −0.05 eV . ε − εF . 0, the density of states is low and α0 increases to
values around 3.4.

(iii) The majority of the states are concentrated for energies between −0.2 eV
and −0.05 eV and their α0 remains around 3.4, with a slight decrease.
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(iv) For energies lower than −0.2 eV we see a long tail of states that are more
localised the deeper we move into the IB.

Upon increasing the number of dopants to NS = 100, we can see from the contour
lines in Fig. 6.4 that the distinction between (i), (ii) and (iii) disappears. This
representation suggests that the IB and CB not only merge with respect to energy,
but with respect to the localisation properties, too. In fact, this picture supports the
idea that the two bands connect first, and only later the states become delocalised.
It is tempting to imagine this process as the reciprocal approach of the denser
regions (i) and (iii), with the intermediate hybridisation region (ii) to form some
sort of connection between the two. The information in Fig. 6.4 can shed some
light on results we have seen in the previous chapters. The first observation is
that some states are more delocalised than others: clearly in (iv) states are highly
localised. In the plateau region (iii), instead, we expect to see some delocalised
states in the shaded area where n > nc. The values of α0 for these states, however,
is still significantly higher than those near εF. Also for NS = 100, the unified band
shows an increment of α0 for lower energies. This is consistent with what we have
observed in Fig. 4.4, where, for a given nc and L, the critical state at the Fermi
energy is more delocalised than that deeper in the band.

6.5 Band merging and the critical exponent

Another open question is the behaviour of ν observed in the phase diagrams
of Sec. 5.6, in particular the increasing behaviour near the Fermi energy. The
division of the energy axis in different regimes in Fig. 5.7 and 6.4 bears some
similarities. In particular, the energies where ν increases seems to correspond
to the hybridisation region (ii). Intuitively we could say that, because of the
interference of the conduction band, the states near the Fermi energy are, on
average, more extended. This means that, when we attach our sample to a battery,
we are going to measure a higher conductivity. According to Eq. (5.2), the
conductivity scales like σ ∼ wν in the metallic regime. Since in the critical regime
|w | � 1, an increase in conductivity can be explained by either a decrease in ν or
a change in the proportionality factor.

The same argument can be formulated also for the multifractal exponent. Let
us work with l = 1 and a certain L, like in Fig. 6.4. At this fixed λ we can use Eq.
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(5.14) to say that, at a certain rescaled disorder w , α0 scales like

α0(w,L) ∼ a0 + a1wL1/ν . (6.3)

Here a0 = αλ0 is the crossing point defined in (5.12) and showed, e.g., in Fig. 5.4.
In the delocalised regime, wherew > 0, the quantity α0(w,L)−αλ0 will be negative
(cf. again Fig. 5.4), i.e. has opposite sign to w and thus a1 is a negative constant.
Equation (6.3) thus becomes

αλ0 − α0(w,L) ∼ wL1/ν . (6.4)

If, because of hybridisation with conduction band states (with α0 ≈ 3), the average
α0(w,L) effectively has a lower value than expected, then for w > 0 we will
get further away from the crossing point, and hence we will see an increase
in αλ0 − α0(w,L). If we call νmix and ν the critical exponent measured, respectively,
with and without the influence of the conduction band states, then we must have

wL1/νmix ≥ wL1/ν , (6.5)

which immediately leads to
νmix ≤ ν . (6.6)

We therefore conclude that the hybridisation with more extended states, like
near εF, is compatible with an effective reduction in the observed ν . Analogously,
hybridising with more localised states leads to an effective increase in ν . This
might explain the behaviour in the tail of localised states in (iv), where the physics
of the Anderson transition seems to reemerge with ν reaching the range of its
universal value, whether without (Slevin and Ohtsuki, 1999), or with interactions
(Harashima and Slevin, 2014).





Chapter 7

Conclusions and outlook

In this Thesis we present an effective tight-binding model, based on an ab ini-
tio approach, to study the metal-insulator transition in a doped semiconductor.
We start from the planning and set up of density functional theory (DFT) sim-
ulations, and work our way to the characterisation of the transition in terms of
critical concentration of impurities and critical exponent. This model inherits the
salient features of DFT: it describes a single electron at T = 0, interacting with
other electrons and nuclei via the Coulomb interaction (as approximated in the
exchange-correlation functional).

Since we have worked with doped silicon (Si), Ch. 2 is devoted to the DFT
simulation of Si, bulk or with impurities, with phosphorous (P, Fig. 2.4) and
sulphur (S, Fig. 2.5) as examples. We discuss the different treatment of single and
paired impurities and the generation of disordered samples. The results of the DFT
simulations – i.e. the Kohn-Sham Hamiltonians – are used to construct effective
tight-binding models (ETBM) following the prescriptions given in Ch. 3. We
have a system where the matrix elements of the host atom provide the background
potential, and those of the impurities are an identical local perturbation, randomly
placed in the lattice. This perturbation extends up to ten neighbours away from
a site, and we contemplate two fundamental types: single and paired impurities
(Fig. 3.2). We have shown that the spectrum of impurity states in the ETBM
agrees well qualitatively with a DFT simulation of the same system (Fig. 3.4). We
generate and diagonalise up to a thousand disorder realisations of the ETBM for
four system sizes with different impurity concentrations (table 4.1).

Chapter 4 deals with the multifractal properties of the wave function at critical-
ity. After a review of the main definitions, we compute the singularity spectrum
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of a wave function computed with DFT and show that it has a multifractal nature
(Fig. 4.1). This result is in line with previous experimental (Richardella et al.,
2010), theoretical (Burmistrov et al., 2013), and numerical (Amini et al., 2014;
Harashima and Slevin, 2014) studies, where the critical fluctuations of the wave
function at criticality are expected to survive in the presence of the Coulomb
interaction. Analogously, we compute the ensemble-averaged singularity spec-
trum for the ETBM near the critical concentration and show that multifractality
persists also under the assumptions behind the effective models. Similarly to the
non-interacting Anderson model (Rodriguez et al., 2008), the multifractal spec-
trum f (α) for the ETBM correctly respects the symmetry expected from field-
theoretical models (Mirlin et al., 2006) and shows the presence of negative fractal
dimensions related to rare events (Fig. 4.2). A noticeable difference, however, is
that f (α) has a nearly-parabolic shape (weak multifractality), a common trait with
the Anderson transition in 2 + ϵ , with ϵ � 1, and with the power-law random
banded matrix model with b � 1 (Evers and Mirlin, 2008). Finally, from the f (α)

spectrum near the two mobility edges, we observe that the eigenstate is more
delocalised near the Fermi energy than deeper in the band (Fig. 4.4). We explain
this observation in Ch. 6 as the presence of different localisation regimes in the
impurity band.

In Ch. 5 we study the scaling with system size and disorder of the multifractal
exponents calculated in Ch. 4. We introduce the scaling theory of localisation and
finite-size scaling. We check that the ETBM captures the Anderson transition
by checking both the self-similarity of the distribution of the logarithmically-
renormalised wave function α (see Eq. (4.8) and Fig. 5.2), and its flowing towards
opposite regimes under box-size renormalisation (Fig. 5.3). After verifying the
adequacy of the fitting function (Fig. 5.4), we present the phase diagrams of the
critical concentration nc and exponent ν as a function of energy from the Fermi
level, ε − εF (Fig. 5.7). We discuss the stability of the results for different coarse-
grainings and different moments. Despite some variations in the specific values,
our data consistently show some interesting trends. Over the same energy range,
the critical concentration decreases to a minimum, while the critical exponent
increase from 0.5 to 1. Deeper in the band, the critical concentration increases
again, while the critical concentration fluctuates between values 1 and 1.5. From
the concave shape of nc we deduce that, like an Anderson band, the delocalisation
transition starts in the centre of the impurity band and moves towards the tails
with increasing concentration.
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The behaviour of the impurity band (IB) is studied in Ch. 6. The prerequisites
for a metal-insulator transition in the IB are a delocalisation transition of the
Anderson type, studied in Ch. 5, and the merging with the conduction band
(CB). The latter we show by computing the density of states (DOS) of the band
(Fig. 6.1), and by comparing the mean level spacing to the band gap (Fig. 6.2).
We then compute a 2D DOS by adding the information on the average α for each
wave function (Fig. 6.4). From this plot we recognise different regimes in the band:
a central accumulation of states, which becomes progressively more delocalised,
a tail of highly-localised states deeper in the band, and a “hybridisation region”
that connects the central peak to the conduction band. While all states undergo
a delocalisation transition, these different regions might explain the variation in
the critical exponent reported in the phase diagram. In particular, we show that
hybridisation with extended states, e.g. from the conduction band, can lead to the
observed reduction in the estimate of the critical exponent when approaching the
Fermi energy.

A comparison with M. Itoh et al. (2004) is in order. As our model describes
an uncompensated semiconductor, and our finite-size scaling analysis includes
a large critical regime, we would expect ν ≈ 0.5. While this indeed happens
near the Fermi energy, it does not justify the increasing trend deeper in the IB,
where we find ν ≈ 1 to 1.5 by keeping the same critical regime. M. Itoh et al.
(2004) observe nonetheless that deliberate compensation seems to lead to estimates
ν ≈ 1. This can be reconciled with our results, since compensation can shift the
Fermi energy deeper in the band, where we indeed find ν � 0.5. As to why, in a
compensated sample, ν ≈ 1 robustly over large critical regions, we do not have a
definite answer.

In Harashima and Slevin (2014) the estimate for the critical exponent is ν ≈ 1.3
for the Fermi level,¹ while we find ν ≈ 0.5. The question they address, however,
is how the Coulomb interaction changes the critical exponent of the Anderson
transition. To this end, they consider a model with hydrogenic impurities (see Sec.
2.3) in an effective medium with the dielectric constant and effective mass of Si.
Our model, instead, is arguably closer to the description of a doped semiconductor:
we treat the host Si atoms on the same footing as the impurities, i.e. the electrons
are allowed to interact also with the host nuclei and valence electrons. We also

1They consider the ensemble of the highest-occupied Kohn-Sham eigenstates, whereas we
define εF as the midpoint of the band gap. We do not expect this difference to play any significant
role.
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use the diamond lattice, which has a lower connectivity (Z = 4), compared to the
three-dimensional simple cubic lattice (Z = 6). This should change the value of
the critical disorder, as already observed by Anderson (1958), but it is not known
to change the critical exponent (see, e.g. Puschmann et al. (2015) for a study
of Anderson localisation on lattices with random connectivities). Another more
technical difference is that the effective models are not the self-consistent solution
of the Kohn-Sham Hamiltonians. They are rather an approximation, as discussed
in Sec. 3.2. Still, since this approximation works quite well in reproducing the
DFT results (see Fig. 3.4), we do not expect it to yield such a large discrepancy
in the estimates of ν . Finally, at least in the case of sulphur, we only include the
local strain fields encoded in the catalogues, rather than allowing the geometry
relaxation of the whole system when a significant number of dopants is present.
We argue, however, that this systematic error is negligible: the deformation of the
lattice extends, at most, to the first few shells of nearest neighbours, as seen in Fig.
2.7. Its correction, moreover, would preclude the possibility to build catalogues,
and hence effective model, so the disorder average would come at the price of
several DFT simulations. All considered, then, our results do not contradict those
of Harashima and Slevin (2014), and, in fact, ν ≈ 1.3 is compatible with the values
we find deeper in the IB. While they also compute the DOS and show two bands
merging, it would be interesting to have a complete picture with a phase diagram
like Fig. 5.7 and a 2D histogram like Fig. 6.4 to study how the two bands interact.

Another factor that might change the value of the critical exponent is the
correlation in the disorder potential. Contrarily to the Andersonmodel, where the
on-diagonal elements are random variables, our Hamiltonians consists of a finite
set of matrix blocks (from the catalogues) appearing in random rows and columns,
making our disorder correlated. From the extended Harris criterion (Weinrib and
Halperin, 1983), however, we expect the critical exponent to be higher or equal
the uncorrelated case ν ≈ 1.59 (Ndawana et al., 2004). For this reason, a plausible
picture is that the universality class of the Anderson transition with the Coulomb
interaction is characterised by ν ≈ 1.3 (Harashima and Slevin, 2014), where, in a
real material, the influence of the conduction band causes ν to decrease to roughly
0.5 near the Fermi energy. To test this hypothesis we need to isolate this band
hybridisation process. Ideally, we could start from the band of an Anderson model,
where a delocalisation-localisation transition happens like in the impurity band,
and mix it with a band of delocalised states, mimicking the conduction band of
a semiconductor. A tight-binding Hamiltonian that describes the merging of an
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impurity and a conduction band can be found, e.g., in Radjenovic and Tjapkin
(1989). In Plyushchay et al. (2003), instead, the transition in a two-band Anderson
model is studied, but not in the case that a delocalising “impurity” band mixes
with an extended “conduction” band. If our deduction in Sec. 6.5 is correct, we
should see an exponent ν0 ≈ 1.59 (Rodriguez et al., 2011) when the impurity band
delocalises without the influence of the conduction band, and ν ≤ ν0 otherwise. If
this is the case, we could exclude the Coulomb interaction as a direct cause of the
reduction of ν , although still involved in the formation and merging of the bands.

The estimate of ν from the two-band Anderson model could also be useful in
establishing whether the estimate ν ≈ 0.5 at the Fermi energy is a band-related
effect. As mentioned in Ch. 1 for the experimental results, this specific value is
interesting because it violates the Harris criterion ν > 2/d, where d = 3 is the
dimensionality of the space. This bound on ν was proved as a general theorem by
Chayes et al. (1986), assuming the divergence at the critical point of an “appropri-
ately defined” correlation length. This correlation length essentially corresponds
to the localisation length of Eq. (3.6), namely the localised phase must be charac-
terised by an exponentially suppressed probability of finding an electron at long
distances (refer to Chayes et al. (1986) for a formal definition). In the hybridisation
regime, then, this requirement may not be met any more, since the ensemble of
states we consider includes both impurity and conduction band states with dif-
ferent localisation properties (see Sec. 6.4 and Fig. 6.4). Clearly further research
is needed to understand this hybridisation process and its impact on the critical
exponent.

The effective reduction of ν near the Fermi energy might not be (solely) a
band effect. Ideally we would like to analyse how the picture depends on the
Coulomb interaction. Tuning the strength of the interaction seems reminiscent
of the approach of Harashima and Slevin (2014), who renormalise the potentials
in Eq. 2.7 with the effective parameters of silicon. We notice, however, that the
Coulomb interaction regulates also the attractions between nuclei and core elec-
trons, the formation of a lattice and, ultimately, the stability of matter! Simulating
an alternative reality with a different electromagnetic interaction sounds like a
fascinating endeavour, one that should be handled with care, especially considered
the lack of experimental results to compare potential outcomes to.

The critical exponent of the transition might also depend on material-specific
effects, in our case on properties of Si:S, while most studies report on semicon-
ductors doped with shallow impurities, in particular Si:P. When we introduce
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many P impurities, the shallow energy level of one atom broadens into a band,
which, compared to the case of a deep-level donor like sulphur, will be closer
to the conduction band. In Sec. 2.3 we found that a P atom in Si introduces an
impurity level around −0.016 eV, while a S atom around −0.150 eV (compare it
with the DOS of Fig. 6.1). What happens, then, to the hybridisation region of
Fig. 6.4 in Si:P? Since the P level is 10 times closer to the CB than the S level
(see Fig. 2.6), we imagine the behaviour of Fig. 6.4 to occur on an energy scale
10 times smaller, which implies that we would still see a reduction of the critical
exponent due to band hybridisation.

Our method can be adapted also to other systems, in order to potentially
discriminate material-specific effects. The essential step consists in writing a tight-
binding model that suits the material and identifying the essential blocks that
constitute it. For binary materials, like Si:B, Si:As, Si:Sb, Ge:Sb, or silicon doped
with other chalcogens, the procedure is similar to that presented in Ch. 3. If more
species are involved, for instance in the case of co-doping (Si:P,B or Ge:Ga,As),
the number of configurations to include in a catalogue will grow, but the funda-
mental principles in the construction will not change. We would then run DFT
simulations to extract the matrix terms that describe such blocks and use them to
build an effective model. If the effective models correctly reproduce the properties
of the DFT simulations, we can proceed with studying a MIT in said material.
Of course, the feasibility of such a project also depends on the size of the small-
est system we need to compute, as discussed for Si:P in Sec. 3.5. The treatment
with effective tight-binding models is not limited to three-dimensional materi-
als. Density functional theory is routinely used to characterise two-dimensional
nanostructures created in the laboratory, e.g. Wilson et al. (2017). With an ef-
fective tight-binding model we can then sample more efficiently the ensemble of
different configurations. This also opens the possibility of an independent con-
firmation of the interaction-enabled MIT in 2D, beyond the theoretical study of
Punnoose and Finkel’stein (2005).

Further investigation should also include studying larger system sizes, for two
reasons. Firstly, ν ≈ 0.5 might result from taking a broad critical region, as
described in the work of M. Itoh et al. (2004). This observation, however, is
not consistent with the results deeper in the IB, where we take similarly broad
critical regions and obtain ν ≈ 1 to 1.5. New numerical evidence on larger
systems would clarify the matter. As a second reason, larger systems lead to
more accurate estimation of the critical parameters, as discussed in Ch. 5. A
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possibility to circumvent the technical difficulties related to the diagonalisation
of large systems, then, is the “Kernel Polynomial Method” (KPM), an alternative
way to characterise the transition This method has been successfully employed
in Jung et al. (2012, 2016) to study the Anderson MIT with magnetic impurities.
In the case of vanishing exchange interaction, the non-interacting Anderson
case, a finite-size scaling analysis yields ν = 1.48 ± 0.06. In Jung et al. (2012)
the authors claim that the core of the KPM consists of matrix multiplications,
which use little memory and scale as O(N ) when the Hamiltonian matrix is in a
sparse representation. Implementation and optimisation on parallel architectures
is also under research (Zhang et al., 2013; Kreutzer et al., 2015). Nevertheless, the
presence of the overlap matrix must be taken into account and implemented in
the method, as explained e.g. in Röder et al. (1997), and might make this method
less convenient.

In conclusion, we have constructed an ab initio model of a doped semiconduc-
tor (Si:S) that replicates the essential processes of the metal-insulator transition
in the impurity band, namely the hybridisation with the conduction band and
the delocalisation of its states. To the best of our knowledge, this is the first time
Anderson localisation is observed in an ab initio model of a doped semiconductor.
Because of its complexity, the investigation is still in its early stages in terms of
sophistication and accuracy, similarly to the studies on the Anderson model in the
1980s compared to now. The solution of the generalised eigenvalue problem of
Eq. (3.9) is certainly the hardest numerical challenge and strongly limits the reach-
able system sizes. Despite this, the critical exponents we obtain seem to bridge
the gap between experimental observations and theoretical estimates. This raises
a number of questions, delineated above, aimed at better understanding and char-
acterising the delocalisation transition, especially in relation to the hybridisation
of the impurity and conduction bands. The connection to the world of material
science, incorporated in our method, represents a paradigm shift that holds the
promise of new insights on, and potentially resolution of, questions on Anderson
localisation in real materials.





Appendix A

Fit results

In this Appendix we present tables of the stable and robust fits that constitute
the basis of the pictures in Ch. 5. The values of q and system sizes are indicated
in the captions, with results listed by decreasing energy and coarse-graining λ.
The concentrations used for each energy lie in the interval (n0,nf ). Energies are
expressed in eV and all concentrations in units of 1020 cm−3. Uncertainties on the
critical exponent ν and concentration nc are 95% confidence intervals. NP and ND

indicate, respectively, the number of parameters and of data points used, while χ2

and p are the values of the χ2 statistics and the goodness-of-fit probability. The
expansion is in the ordermL,mρ .

Table A.1: Fit results for L ≤ 20 and q = 0.

Ei λ (n0;nf ) ν nc NP ND χ2 p mL mρ

0.000 1/2 (6.2; 14.6) 0.60 ± 0.18 10.39 ± 0.76 6 60(0.11) 47 0.73 3 1
−0.011 1/2 (6.2; 14.6) 0.63 ± 0.17 10.57 ± 0.78 6 60(0.12) 45 0.80 3 1
−0.023 1/2 (5.6; 16.8) 0.68 ± 0.11 11.34 ± 0.71 7 65(0.13) 69 0.14 3 2
−0.034 1/2 (6.8; 16.0) 0.90 ± 0.27 11.58 ± 0.99 6 57(0.13) 63 0.11 3 1
−0.045 1/2 (6.2; 14.6) 0.88 ± 0.22 10.44 ± 0.75 6 60(0.13) 48 0.70 3 1
−0.057 1/2 (5.7; 13.3) 0.83 ± 0.21 9.60 ± 0.66 6 61(0.12) 55 0.48 3 1
−0.068 1/2 (5.0; 11.8) 0.88 ± 0.25 8.34 ± 0.60 6 64(0.13) 54 0.62 3 1
−0.079 1/2 (4.0; 9.4) 0.90 ± 0.25 6.65 ± 0.41 6 74(0.13) 57 0.83 3 1
−0.102 1/2 (0.4; 1.2) 1.04 ± 0.41 0.78 ± 0.09 6 31(0.47) 16 0.92 3 1
−0.113 1/2 (0.5; 1.3) 0.74 ± 0.24 0.85 ± 0.07 6 29(0.50) 23 0.49 3 1
−0.125 1/2 (0.6; 1.4) 0.67 ± 0.24 0.94 ± 0.07 6 30(0.53) 20 0.71 3 1
−0.136 1/2 (0.7; 1.7) 0.82 ± 0.29 1.15 ± 0.09 6 37(0.51) 30 0.52 3 1
−0.147 1/2 (0.8; 2.0) 2.06 ± 1.31 1.41 ± 0.20 6 38(0.55) 32 0.45 3 1
−0.159 1/2 (1.1; 2.5) 1.34 ± 0.50 1.78 ± 0.15 6 40(0.45) 37 0.31 3 1
−0.170 1/2 (1.3; 3.1) 1.20 ± 0.37 2.15 ± 0.15 6 40(0.41) 40 0.21 3 1
−0.181 1/2 (1.8; 3.4) 1.11 ± 0.44 2.54 ± 0.17 6 31(0.33) 18 0.85 3 1
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Table A.1 continued from previous page
Ei λ (n0;nf ) ν nc NP ND (prec.) χ2 p mL mρ

−0.193 1/2 (2.3; 4.3) 2.14 ± 1.17 3.27 ± 0.34 6 38(0.28) 40 0.15 3 1
−0.204 1/2 (2.6; 4.8) 1.57 ± 0.63 3.54 ± 0.26 6 44(0.28) 52 0.07 3 1
−0.215 1/2 (3.1; 5.7) 1.47 ± 0.51 4.42 ± 0.28 6 54(0.26) 48 0.46 3 1
−0.227 1/2 (3.4; 6.2) 1.65 ± 0.53 4.93 ± 0.30 6 61(0.25) 59 0.33 3 1
−0.238 1/2 (4.2; 7.8) 1.33 ± 0.37 5.77 ± 0.26 6 72(0.21) 61 0.64 3 1
−0.249 1/2 (4.7; 8.7) 1.50 ± 0.46 6.77 ± 0.39 6 72(0.21) 69 0.38 3 1
−0.261 1/2 (5.3; 9.8) 1.66 ± 0.69 7.46 ± 0.57 6 65(0.21) 69 0.18 3 1
−0.272 1/2 (6.1; 11.3) 1.57 ± 0.70 8.60 ± 0.77 6 58(0.20) 36 0.96 3 1
−0.283 1/2 (6.3; 11.7) 2.49 ± 1.59 9.02 ± 1.27 6 55(0.21) 49 0.47 3 1
−0.295 1/2 (6.0; 11.2) 1.49 ± 0.58 8.53 ± 0.67 6 58(0.25) 47 0.66 3 1
−0.306 1/2 (6.4; 12.0) 1.73 ± 0.78 9.38 ± 0.96 6 56(0.25) 65 0.07 3 1
−0.317 1/2 (6.7; 12.4) 1.56 ± 0.69 9.39 ± 0.87 6 52(0.26) 46 0.46 3 1
−0.329 1/2 (6.9; 12.9) 2.09 ± 1.07 10.03 ± 1.16 6 53(0.27) 38 0.82 3 1
0.000 1/4 (6.8; 12.6) 0.48 ± 0.16 9.71 ± 0.60 6 52(0.10) 46 0.49 3 1
−0.011 1/4 (7.3; 13.5) 0.47 ± 0.11 10.33 ± 0.43 6 51(0.10) 42 0.59 3 1
−0.023 1/4 (7.5; 13.9) 0.57 ± 0.12 10.66 ± 0.39 6 49(0.09) 54 0.12 3 1
−0.034 1/4 (7.0; 13.0) 0.69 ± 0.12 10.08 ± 0.37 6 51(0.09) 52 0.22 3 1
−0.045 1/4 (6.7; 12.4) 0.76 ± 0.14 9.43 ± 0.35 6 52(0.09) 51 0.30 3 1
−0.057 1/4 (5.9; 11.1) 0.79 ± 0.14 8.36 ± 0.27 6 58(0.09) 38 0.92 3 1
−0.068 1/4 (4.9; 9.1) 0.87 ± 0.15 6.94 ± 0.20 6 70(0.09) 77 0.12 3 1
−0.079 1/4 (3.8; 7.0) 0.95 ± 0.15 5.33 ± 0.15 6 69(0.08) 62 0.50 3 1
−0.091 1/4 (2.6; 4.8) 1.33 ± 0.43 3.68 ± 0.22 6 44(0.09) 50 0.10 3 1
−0.136 1/4 (1.8; 3.4) 1.05 ± 0.32 2.56 ± 0.14 6 31(0.10) 19 0.80 3 1
−0.147 1/4 (1.9; 3.5) 1.74 ± 0.64 2.88 ± 0.24 6 33(0.12) 37 0.10 3 1
−0.159 1/4 (2.1; 3.9) 1.53 ± 0.54 3.01 ± 0.20 6 35(0.12) 35 0.19 3 1
−0.170 1/4 (2.5; 4.7) 1.20 ± 0.32 3.59 ± 0.18 6 41(0.11) 43 0.16 3 1
−0.181 1/4 (2.8; 5.2) 1.21 ± 0.28 4.06 ± 0.16 7 47(0.12) 54 0.07 3 2
−0.193 1/4 (3.0; 6.2) 0.95 ± 0.14 4.49 ± 0.14 6 66(0.11) 82 0.03 3 1
−0.204 1/4 (3.6; 6.6) 1.03 ± 0.17 5.12 ± 0.16 6 67(0.11) 66 0.30 3 1
−0.215 1/4 (4.1; 7.7) 0.96 ± 0.14 5.66 ± 0.15 6 73(0.11) 87 0.05 3 1
−0.227 1/4 (4.4; 8.2) 1.09 ± 0.19 6.29 ± 0.19 6 72(0.12) 85 0.06 3 1
−0.238 1/4 (4.9; 9.1) 1.03 ± 0.19 6.99 ± 0.23 6 70(0.12) 68 0.34 3 1
−0.249 1/4 (5.3; 9.9) 1.08 ± 0.19 7.80 ± 0.29 7 66(0.13) 70 0.15 3 2
−0.261 1/4 (5.9; 10.9) 1.19 ± 0.28 8.38 ± 0.39 6 59(0.13) 66 0.11 3 1
−0.272 1/4 (6.3; 11.7) 1.05 ± 0.21 8.94 ± 0.36 6 55(0.13) 54 0.29 3 1
−0.283 1/4 (6.8; 12.6) 1.05 ± 0.20 9.65 ± 0.39 6 52(0.14) 51 0.30 3 1
−0.295 1/4 (6.7; 12.5) 1.17 ± 0.22 9.56 ± 0.38 6 55(0.14) 41 0.78 3 1
−0.306 1/4 (7.3; 13.5) 0.94 ± 0.17 10.16 ± 0.36 6 51(0.15) 53 0.20 3 1
−0.317 1/4 (7.5; 13.9) 1.16 ± 0.25 10.66 ± 0.48 6 49(0.15) 49 0.26 3 1
−0.329 1/4 (7.7; 14.3) 1.22 ± 0.29 10.96 ± 0.52 6 47(0.16) 35 0.73 3 1
−0.340 1/4 (8.0; 15.0) 1.36 ± 0.40 11.47 ± 0.65 6 46(0.17) 38 0.57 3 1
−0.351 1/4 (8.3; 15.3) 1.15 ± 0.28 11.84 ± 0.58 6 47(0.18) 35 0.73 3 1
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Table A.1 continued from previous page
Ei λ (n0;nf ) ν nc NP ND (prec.) χ2 p mL mρ

−0.363 1/4 (8.8; 16.3) 1.18 ± 0.33 12.46 ± 0.67 6 44(0.18) 31 0.80 3 1
−0.374 1/4 (9.4; 17.4) 1.44 ± 0.49 13.43 ± 0.96 6 43(0.20) 31 0.76 3 1

Table A.2: Fit results for L ≤ 20 and q = 1.

Ei λ (n0;nf ) ν nc NP ND χ2 p mL mρ

0.000 1/2 (7.3; 13.5) 0.59 ± 0.25 10.25 ± 0.83 6 51(0.12) 38 0.77 3 1
−0.011 1/2 (7.4; 13.7) 0.48 ± 0.17 10.51 ± 0.68 6 51(0.13) 37 0.80 3 1
−0.023 1/2 (7.8; 14.6) 0.62 ± 0.27 11.21 ± 0.84 6 48(0.14) 52 0.14 3 1
−0.034 1/2 (7.6; 14.0) 0.83 ± 0.35 10.81 ± 0.94 6 49(0.14) 51 0.19 3 1
−0.045 1/2 (7.1; 13.3) 0.75 ± 0.26 10.20 ± 0.72 6 52(0.14) 58 0.11 3 1
−0.057 1/2 (6.8; 12.6) 1.01 ± 0.44 9.66 ± 0.86 6 52(0.14) 57 0.12 3 1
−0.068 1/2 (5.7; 10.5) 0.76 ± 0.28 8.11 ± 0.56 6 61(0.15) 56 0.44 3 1
−0.079 1/2 (4.9; 9.1) 0.74 ± 0.26 6.91 ± 0.37 6 70(0.14) 49 0.91 3 1
−0.102 1/2 (0.4; 1.1) 1.03 ± 0.51 0.65 ± 0.11 6 26(0.73) 10 0.98 3 1
−0.113 1/2 (0.4; 1.1) 0.82 ± 0.41 0.75 ± 0.09 6 26(1.09) 23 0.28 3 1
−0.125 1/2 (0.5; 1.4) 0.69 ± 0.25 0.86 ± 0.09 6 35(0.98) 18 0.94 3 1
−0.136 1/2 (0.7; 1.5) 1.07 ± 0.56 0.99 ± 0.16 6 35(0.87) 26 0.61 3 1
−0.147 1/2 (0.7; 2.0) 1.63 ± 0.79 1.25 ± 0.17 6 45(1.13) 46 0.21 3 1
−0.159 1/2 (1.0; 2.2) 1.37 ± 0.66 1.59 ± 0.16 6 39(0.84) 41 0.16 3 1
−0.170 1/2 (1.2; 2.8) 1.33 ± 0.58 2.01 ± 0.19 6 40(0.71) 42 0.16 3 1
−0.181 1/2 (1.4; 3.4) 1.23 ± 0.43 2.37 ± 0.17 6 41(0.60) 27 0.82 3 1
−0.193 1/2 (1.5; 4.5) 1.71 ± 0.51 3.01 ± 0.24 6 59(0.58) 69 0.07 3 1
−0.204 1/2 (2.0; 4.8) 1.50 ± 0.46 3.41 ± 0.24 6 52(0.46) 61 0.06 3 1
−0.215 1/2 (3.0; 5.6) 1.74 ± 0.74 4.29 ± 0.33 6 52(0.33) 50 0.31 3 1
−0.227 1/2 (3.3; 6.1) 1.58 ± 0.57 4.65 ± 0.30 6 60(0.33) 53 0.49 3 1
−0.238 1/2 (4.0; 7.4) 1.76 ± 0.60 5.78 ± 0.36 6 71(0.27) 69 0.36 3 1
−0.249 1/2 (4.6; 8.6) 1.37 ± 0.44 6.50 ± 0.35 6 71(0.26) 78 0.14 3 1
−0.261 1/2 (5.3; 9.9) 1.79 ± 0.88 7.76 ± 0.75 6 66(0.25) 72 0.14 3 1
−0.272 1/2 (6.1; 11.3) 1.62 ± 0.77 8.53 ± 0.81 6 58(0.24) 40 0.88 3 1
−0.283 1/2 (6.4; 11.8) 1.93 ± 1.08 9.01 ± 1.05 6 55(0.26) 55 0.27 3 1
−0.295 1/2 (6.0; 11.2) 1.58 ± 0.70 8.43 ± 0.73 6 58(0.30) 54 0.39 3 1
−0.306 1/2 (6.2; 11.4) 1.32 ± 0.53 8.74 ± 0.70 6 56(0.32) 66 0.06 3 1
−0.317 1/2 (6.6; 12.2) 1.45 ± 0.63 9.28 ± 0.82 6 54(0.33) 43 0.66 3 1
−0.329 1/2 (6.9; 12.7) 2.38 ± 1.49 9.79 ± 1.34 6 52(0.34) 34 0.90 3 1
0.000 1/4 (6.8; 12.6) 0.53 ± 0.18 9.71 ± 0.61 6 52(0.13) 45 0.50 3 1
−0.011 1/4 (7.2; 13.4) 0.67 ± 0.22 10.28 ± 0.62 6 49(0.13) 30 0.94 3 1
−0.023 1/4 (7.4; 13.8) 0.66 ± 0.16 10.52 ± 0.47 6 48(0.13) 46 0.29 3 1
−0.034 1/4 (7.0; 13.0) 0.70 ± 0.13 10.05 ± 0.39 6 51(0.13) 45 0.46 3 1
−0.045 1/4 (6.7; 12.4) 0.74 ± 0.15 9.49 ± 0.38 6 52(0.13) 49 0.35 3 1
−0.057 1/4 (5.9; 11.1) 0.80 ± 0.17 8.42 ± 0.33 6 58(0.13) 37 0.94 3 1
−0.068 1/4 (4.8; 9.0) 0.84 ± 0.16 6.83 ± 0.21 6 71(0.13) 73 0.23 3 1
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Table A.2 continued from previous page
Ei λ (n0;nf ) ν nc NP ND (prec.) χ2 p mL mρ

−0.079 1/4 (2.8; 6.6) 1.48 ± 0.33 4.65 ± 0.26 6 70(0.14) 64 0.49 3 1
−0.091 1/4 (1.1; 2.5) 2.06 ± 0.97 1.70 ± 0.21 6 40(0.21) 41 0.18 3 1
−0.102 1/4 (0.7; 1.7) 1.07 ± 0.35 1.21 ± 0.10 6 37(0.27) 28 0.60 3 1
−0.113 1/4 (0.7; 1.7) 1.06 ± 0.32 1.10 ± 0.08 6 37(0.31) 45 0.05 3 1
−0.125 1/4 (0.7; 1.7) 0.97 ± 0.26 1.19 ± 0.07 6 37(0.37) 36 0.25 3 1
−0.136 1/4 (0.9; 2.1) 1.39 ± 0.49 1.43 ± 0.11 6 39(0.36) 26 0.79 3 1
−0.147 1/4 (1.0; 2.4) 2.10 ± 1.02 1.68 ± 0.19 6 40(0.40) 43 0.14 3 1
−0.159 1/4 (1.2; 2.8) 1.62 ± 0.53 1.96 ± 0.16 6 40(0.39) 46 0.08 3 1
−0.170 1/4 (1.6; 3.6) 1.51 ± 0.39 2.57 ± 0.16 6 43(0.30) 38 0.44 3 1
−0.181 1/4 (1.8; 4.2) 1.77 ± 0.51 2.97 ± 0.20 6 46(0.28) 39 0.50 3 1
−0.204 1/4 (3.0; 5.6) 1.29 ± 0.32 4.38 ± 0.21 6 52(0.22) 51 0.28 3 1
−0.215 1/4 (3.5; 6.5) 1.23 ± 0.26 5.00 ± 0.19 6 65(0.20) 55 0.62 3 1
−0.238 1/4 (4.5; 8.3) 1.17 ± 0.24 6.32 ± 0.21 6 73(0.20) 55 0.85 3 1
−0.249 1/4 (4.9; 9.1) 1.30 ± 0.31 7.06 ± 0.31 6 70(0.21) 74 0.19 3 1
−0.261 1/4 (5.6; 10.4) 1.36 ± 0.40 7.90 ± 0.43 6 62(0.20) 67 0.16 3 1
−0.272 1/4 (6.0; 11.2) 1.41 ± 0.40 8.56 ± 0.50 6 58(0.21) 62 0.16 3 1
−0.283 1/4 (6.4; 12.0) 1.40 ± 0.35 9.20 ± 0.50 6 56(0.21) 60 0.15 3 1
−0.295 1/4 (6.2; 11.6) 1.25 ± 0.29 9.05 ± 0.46 6 57(0.24) 37 0.93 3 1
−0.306 1/4 (6.9; 12.7) 1.43 ± 0.39 9.88 ± 0.59 6 52(0.24) 49 0.34 3 1
−0.317 1/4 (7.0; 13.0) 1.52 ± 0.42 10.08 ± 0.63 6 51(0.25) 51 0.25 3 1
−0.329 1/4 (7.4; 13.7) 1.71 ± 0.58 10.47 ± 0.74 6 51(0.26) 38 0.77 3 1
−0.340 1/4 (7.4; 13.7) 1.46 ± 0.42 10.53 ± 0.63 6 51(0.28) 50 0.28 3 1
−0.351 1/4 (7.9; 14.7) 1.48 ± 0.48 11.25 ± 0.72 6 47(0.29) 36 0.69 3 1
−0.363 1/4 (8.2; 15.2) 1.29 ± 0.41 11.63 ± 0.70 6 47(0.30) 38 0.62 3 1
−0.374 1/4 (8.9; 16.5) 2.00 ± 1.05 12.65 ± 1.35 6 44(0.31) 31 0.79 3 1

Table A.3: Fit results for L ≤ 22 and q = 0.

Ei λ (n0;nf ) ν nc NP ND χ2 p mL mρ

0.000 1/2 (7.7; 14.3) 0.49 ± 0.13 10.99 ± 0.44 6 72(0.11) 57 0.78 3 1
−0.011 1/2 (7.7; 14.3) 0.58 ± 0.14 11.01 ± 0.44 6 72(0.11) 62 0.61 3 1
−0.023 1/2 (8.3; 13.8) 0.68 ± 0.19 11.01 ± 0.43 6 58(0.11) 65 0.11 3 1
−0.034 1/2 (7.8; 13.0) 0.73 ± 0.18 10.38 ± 0.37 6 62(0.12) 59 0.36 3 1
−0.045 1/2 (7.3; 12.1) 0.75 ± 0.17 9.69 ± 0.33 6 68(0.13) 81 0.05 3 1
−0.057 1/2 (6.8; 10.2) 0.74 ± 0.23 8.60 ± 0.34 6 68(0.13) 80 0.06 3 1
−0.068 1/2 (6.2; 9.3) 0.81 ± 0.25 7.79 ± 0.30 6 84(0.13) 94 0.11 3 1
−0.079 1/2 (5.1; 7.7) 0.85 ± 0.33 6.43 ± 0.26 6 90(0.12) 88 0.35 3 1
−0.102 1/2 (0.2; 1.4) 1.01 ± 0.26 0.82 ± 0.08 6 45(0.43) 27 0.92 3 1
−0.113 1/2 (0.2; 1.4) 0.77 ± 0.16 0.82 ± 0.05 6 45(0.55) 39 0.46 3 1
−0.125 1/2 (0.4; 1.6) 0.69 ± 0.13 1.00 ± 0.06 6 52(0.69) 53 0.21 3 1
−0.136 1/2 (0.6; 1.8) 0.91 ± 0.23 1.21 ± 0.08 6 50(0.59) 56 0.10 3 1
−0.147 1/2 (0.8; 2.3) 1.34 ± 0.39 1.48 ± 0.11 6 54(0.59) 63 0.07 3 1
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Table A.3 continued from previous page
Ei λ (n0;nf ) ν nc NP ND (prec.) χ2 p mL mρ

−0.159 1/2 (1.1; 2.5) 1.26 ± 0.35 1.84 ± 0.12 6 47(0.46) 48 0.22 3 1
−0.170 1/2 (1.3; 3.1) 1.16 ± 0.27 2.21 ± 0.12 6 49(0.42) 45 0.38 3 1
−0.181 1/2 (1.6; 3.6) 1.54 ± 0.40 2.65 ± 0.16 6 53(0.38) 45 0.57 3 1
−0.193 1/2 (2.3; 4.3) 1.73 ± 0.57 3.29 ± 0.20 6 47(0.29) 53 0.10 3 1
−0.204 1/2 (2.3; 4.9) 1.54 ± 0.36 3.65 ± 0.18 6 61(0.32) 71 0.07 3 1
−0.215 1/2 (3.1; 5.7) 1.46 ± 0.37 4.43 ± 0.21 6 67(0.27) 52 0.79 3 1
−0.227 1/2 (3.3; 6.8) 1.49 ± 0.28 5.06 ± 0.20 6 102(0.24) 119 0.06 3 1
−0.238 1/2 (3.9; 8.1) 1.58 ± 0.29 5.90 ± 0.21 6 127(0.21) 131 0.25 3 1
−0.249 1/2 (5.0; 8.4) 1.25 ± 0.30 6.72 ± 0.23 6 106(0.20) 100 0.48 3 1
−0.261 1/2 (6.1; 9.1) 1.32 ± 0.43 7.68 ± 0.33 6 86(0.20) 86 0.31 3 1
−0.272 1/2 (5.4; 11.2) 1.68 ± 0.33 8.32 ± 0.38 6 131(0.22) 140 0.17 3 1
−0.283 1/2 (6.1; 11.3) 1.43 ± 0.30 8.62 ± 0.35 6 107(0.22) 97 0.60 3 1
−0.295 1/2 (6.6; 11.0) 1.33 ± 0.34 8.83 ± 0.38 6 84(0.24) 69 0.75 3 1
−0.317 1/2 (8.0; 12.0) 1.25 ± 0.46 9.97 ± 0.46 6 52(0.24) 51 0.30 3 1
0.000 1/2 (7.7; 14.3) 0.49 ± 0.13 10.99 ± 0.44 6 72(0.11) 57 0.78 3 1
−0.011 1/2 (7.7; 14.3) 0.58 ± 0.14 11.01 ± 0.44 6 72(0.11) 62 0.61 3 1
−0.023 1/2 (8.3; 13.8) 0.68 ± 0.19 11.01 ± 0.43 6 58(0.11) 65 0.11 3 1
−0.034 1/2 (7.8; 13.0) 0.73 ± 0.18 10.38 ± 0.37 6 62(0.12) 59 0.36 3 1
−0.045 1/2 (7.3; 12.1) 0.75 ± 0.17 9.69 ± 0.33 6 68(0.13) 81 0.05 3 1
−0.057 1/2 (6.8; 10.2) 0.74 ± 0.23 8.60 ± 0.34 6 68(0.13) 80 0.06 3 1
−0.068 1/2 (6.2; 9.3) 0.81 ± 0.25 7.79 ± 0.30 6 84(0.13) 94 0.11 3 1
−0.079 1/2 (5.1; 7.7) 0.85 ± 0.33 6.43 ± 0.26 6 90(0.12) 88 0.35 3 1
−0.102 1/2 (0.2; 1.4) 1.01 ± 0.26 0.82 ± 0.08 6 45(0.43) 27 0.92 3 1
−0.113 1/2 (0.2; 1.4) 0.77 ± 0.16 0.82 ± 0.05 6 45(0.55) 39 0.46 3 1
−0.125 1/2 (0.4; 1.6) 0.69 ± 0.13 1.00 ± 0.06 6 52(0.69) 53 0.21 3 1
−0.136 1/2 (0.6; 1.8) 0.91 ± 0.23 1.21 ± 0.08 6 50(0.59) 56 0.10 3 1
−0.147 1/2 (0.8; 2.3) 1.34 ± 0.39 1.48 ± 0.11 6 54(0.59) 63 0.07 3 1
−0.159 1/2 (1.1; 2.5) 1.26 ± 0.35 1.84 ± 0.12 6 47(0.46) 48 0.22 3 1
−0.170 1/2 (1.3; 3.1) 1.16 ± 0.27 2.21 ± 0.12 6 49(0.42) 45 0.38 3 1
−0.181 1/2 (1.6; 3.6) 1.54 ± 0.40 2.65 ± 0.16 6 53(0.38) 45 0.57 3 1
−0.193 1/2 (2.3; 4.3) 1.73 ± 0.57 3.29 ± 0.20 6 47(0.29) 53 0.10 3 1
−0.204 1/2 (2.3; 4.9) 1.54 ± 0.36 3.65 ± 0.18 6 61(0.32) 71 0.07 3 1
−0.215 1/2 (3.1; 5.7) 1.46 ± 0.37 4.43 ± 0.21 6 67(0.27) 52 0.79 3 1
−0.227 1/2 (3.3; 6.8) 1.49 ± 0.28 5.06 ± 0.20 6 102(0.24) 119 0.06 3 1
−0.238 1/2 (3.9; 8.1) 1.58 ± 0.29 5.90 ± 0.21 6 127(0.21) 131 0.25 3 1
−0.249 1/2 (5.0; 8.4) 1.25 ± 0.30 6.72 ± 0.23 6 106(0.20) 100 0.48 3 1
−0.261 1/2 (6.1; 9.1) 1.32 ± 0.43 7.68 ± 0.33 6 86(0.20) 86 0.31 3 1
−0.272 1/2 (5.4; 11.2) 1.68 ± 0.33 8.32 ± 0.38 6 131(0.22) 140 0.17 3 1
−0.283 1/2 (6.1; 11.3) 1.43 ± 0.30 8.62 ± 0.35 6 107(0.22) 97 0.60 3 1
−0.295 1/2 (6.6; 11.0) 1.33 ± 0.34 8.83 ± 0.38 6 84(0.24) 69 0.75 3 1
−0.317 1/2 (8.0; 12.0) 1.25 ± 0.46 9.97 ± 0.46 6 52(0.24) 51 0.30 3 1
0.000 1/4 (7.5; 13.9) 0.41 ± 0.06 10.68 ± 0.25 6 76(0.09) 71 0.43 3 1
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Table A.3 continued from previous page
Ei λ (n0;nf ) ν nc NP ND (prec.) χ2 p mL mρ

−0.011 1/4 (7.4; 13.8) 0.48 ± 0.07 10.57 ± 0.22 6 74(0.09) 77 0.21 3 1
−0.023 1/4 (8.5; 12.7) 0.68 ± 0.18 10.56 ± 0.30 6 46(0.09) 53 0.09 3 1
−0.034 1/4 (6.9; 12.9) 0.65 ± 0.06 9.98 ± 0.24 7 85(0.09) 96 0.08 3 2
−0.045 1/4 (6.8; 11.3) 0.72 ± 0.09 9.09 ± 0.18 6 80(0.09) 95 0.05 3 1
−0.057 1/4 (6.0; 10.0) 0.72 ± 0.09 7.98 ± 0.14 6 99(0.09) 110 0.10 3 1
−0.068 1/4 (4.6; 8.5) 0.89 ± 0.12 6.75 ± 0.16 6 64(0.09) 74 0.07 3 1
−0.159 1/4 (1.7; 4.1) 1.20 ± 0.17 2.89 ± 0.10 7 52(0.14) 61 0.06 3 2
−0.181 1/4 (2.9; 4.8) 1.09 ± 0.21 3.93 ± 0.13 7 47(0.13) 54 0.07 3 2
−0.215 1/4 (4.3; 7.1) 0.91 ± 0.12 5.59 ± 0.11 7 94(0.11) 109 0.05 4 1
−0.227 1/4 (4.4; 8.2) 0.96 ± 0.10 6.31 ± 0.11 7 116(0.11) 130 0.08 3 2
−0.238 1/4 (5.2; 8.6) 0.88 ± 0.11 6.86 ± 0.12 6 107(0.12) 110 0.25 3 1
−0.249 1/4 (6.1; 9.1) 0.93 ± 0.17 7.60 ± 0.16 6 86(0.12) 98 0.08 3 1
−0.261 1/4 (6.7; 10.1) 1.03 ± 0.19 8.32 ± 0.20 6 70(0.12) 70 0.28 3 1
−0.272 1/4 (7.2; 10.8) 0.84 ± 0.13 9.09 ± 0.22 7 59(0.13) 65 0.11 3 2
−0.283 1/4 (7.5; 11.3) 0.90 ± 0.15 9.36 ± 0.20 6 55(0.14) 63 0.08 3 1
−0.295 1/4 (7.7; 11.5) 0.96 ± 0.16 9.58 ± 0.21 6 54(0.14) 39 0.81 3 1
−0.306 1/4 (8.2; 12.2) 0.90 ± 0.17 10.19 ± 0.22 6 49(0.14) 38 0.69 3 1
−0.317 1/4 (8.0; 13.4) 1.07 ± 0.17 10.72 ± 0.26 6 60(0.14) 59 0.28 3 1
−0.329 1/4 (9.0; 13.4) 1.10 ± 0.24 11.17 ± 0.30 6 45(0.14) 33 0.74 3 1

Table A.4: Fit results for L ≤ 22 and q = 1.

Ei λ (n0;nf ) ν nc NP ND χ2 p mL mρ

0.000 1/2 (8.2; 13.6) 0.52 ± 0.19 10.94 ± 0.49 6 59(0.11) 51 0.57 3 1
−0.011 1/2 (8.1; 13.5) 0.49 ± 0.13 10.82 ± 0.39 6 60(0.12) 51 0.61 3 1
−0.023 1/2 (8.8; 13.2) 0.57 ± 0.22 10.99 ± 0.44 6 44(0.12) 48 0.13 3 1
−0.034 1/2 (8.3; 12.4) 0.54 ± 0.18 10.34 ± 0.35 6 48(0.13) 43 0.43 3 1
−0.045 1/2 (7.7; 11.5) 0.80 ± 0.28 9.61 ± 0.38 6 54(0.15) 60 0.12 3 1
−0.057 1/2 (6.8; 10.2) 0.71 ± 0.23 8.56 ± 0.34 6 68(0.15) 80 0.06 3 1
−0.068 1/2 (5.5; 10.1) 0.72 ± 0.13 7.78 ± 0.24 6 117(0.15) 129 0.11 3 1
−0.079 1/2 (4.6; 8.5) 0.98 ± 0.26 6.44 ± 0.27 6 119(0.14) 136 0.07 3 1
−0.091 1/2 (0.0; 1.0) 1.13 ± 0.79 0.48 ± 0.14 6 27(0.62) 32 0.06 3 1
−0.102 1/2 (0.1; 1.3) 0.89 ± 0.30 0.68 ± 0.08 6 37(0.67) 18 0.97 3 1
−0.113 1/2 (0.1; 1.3) 0.74 ± 0.22 0.73 ± 0.07 6 37(0.96) 34 0.31 3 1
−0.125 1/2 (0.4; 1.4) 0.76 ± 0.22 0.89 ± 0.08 6 45(1.21) 40 0.44 3 1
−0.136 1/2 (0.6; 1.7) 0.85 ± 0.28 1.11 ± 0.09 6 48(1.09) 50 0.19 3 1
−0.147 1/2 (0.7; 2.0) 1.49 ± 0.54 1.36 ± 0.13 6 51(1.15) 55 0.15 3 1
−0.159 1/2 (0.9; 2.6) 1.23 ± 0.32 1.69 ± 0.11 6 56(0.87) 60 0.16 3 1
−0.170 1/2 (1.1; 3.2) 1.22 ± 0.27 2.10 ± 0.12 6 62(0.79) 63 0.24 3 1
−0.181 1/2 (1.3; 3.8) 1.48 ± 0.32 2.46 ± 0.14 6 68(0.71) 74 0.14 3 1
−0.193 1/2 (1.6; 4.7) 1.49 ± 0.28 3.07 ± 0.16 6 75(0.54) 88 0.06 3 1
−0.204 1/2 (2.1; 4.9) 1.59 ± 0.37 3.52 ± 0.19 6 66(0.45) 78 0.06 3 1
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Table A.4 continued from previous page
Ei λ (n0;nf ) ν nc NP ND (prec.) χ2 p mL mρ

−0.215 1/2 (3.0; 5.6) 1.58 ± 0.48 4.32 ± 0.23 6 64(0.34) 57 0.52 3 1
−0.227 1/2 (3.5; 6.5) 1.55 ± 0.40 4.98 ± 0.23 6 87(0.29) 97 0.10 3 1
−0.238 1/2 (4.1; 7.5) 1.72 ± 0.39 5.81 ± 0.24 6 112(0.26) 106 0.48 3 1
−0.249 1/2 (5.0; 8.4) 1.28 ± 0.33 6.70 ± 0.25 6 106(0.24) 96 0.59 3 1
−0.261 1/2 (6.2; 9.2) 1.30 ± 0.45 7.66 ± 0.33 6 83(0.23) 86 0.22 3 1
−0.272 1/2 (6.3; 10.5) 1.58 ± 0.53 8.43 ± 0.47 6 91(0.24) 74 0.81 3 1
−0.283 1/2 (6.1; 11.3) 1.52 ± 0.35 8.61 ± 0.40 6 107(0.27) 104 0.41 3 1
−0.295 1/2 (6.6; 11.0) 1.39 ± 0.40 8.81 ± 0.42 6 84(0.29) 73 0.63 3 1
−0.317 1/2 (8.0; 12.0) 1.24 ± 0.49 9.95 ± 0.49 6 52(0.28) 50 0.32 3 1
0.000 1/4 (7.3; 13.5) 0.45 ± 0.07 10.44 ± 0.26 6 79(0.12) 72 0.51 3 1
−0.011 1/4 (7.4; 13.7) 0.51 ± 0.07 10.45 ± 0.23 6 77(0.12) 77 0.29 3 1
−0.023 1/4 (7.4; 13.7) 0.69 ± 0.09 10.49 ± 0.25 6 77(0.13) 80 0.23 3 1
−0.034 1/4 (6.9; 12.7) 0.68 ± 0.08 9.70 ± 0.19 6 88(0.13) 102 0.07 3 1
−0.045 1/4 (7.7; 10.4) 0.72 ± 0.24 9.14 ± 0.25 6 42(0.13) 40 0.29 3 1
−0.057 1/4 (6.4; 9.6) 0.66 ± 0.11 7.98 ± 0.15 6 79(0.13) 72 0.49 3 1
−0.068 1/4 (5.4; 8) 0.82 ± 0.18 6.74 ± 0.15 6 92(0.13) 96 0.21 3 1
−0.079 1/4 (2.9; 6.1) 1.55 ± 0.33 4.50 ± 0.21 6 83(0.15) 92 0.12 3 1
−0.102 1/4 (0.5; 1.9) 1.24 ± 0.22 1.09 ± 0.08 7 57(0.32) 54 0.33 4 1
−0.125 1/4 (0.4; 2.0) 0.99 ± 0.13 1.21 ± 0.06 6 63(0.53) 72 0.09 3 1
−0.136 1/4 (0.6; 2.2) 1.15 ± 0.21 1.40 ± 0.07 6 61(0.56) 64 0.20 3 1
−0.147 1/4 (1.2; 2.2) 1.48 ± 0.65 1.74 ± 0.13 6 34(0.37) 37 0.13 3 1
−0.170 1/4 (1.6; 3.4) 1.40 ± 0.31 2.52 ± 0.13 6 44(0.32) 39 0.43 3 1
−0.181 1/4 (2.0; 4.1) 1.65 ± 0.39 3.00 ± 0.16 6 51(0.29) 46 0.45 3 1
−0.193 1/4 (2.5; 5.1) 1.37 ± 0.21 3.86 ± 0.13 7 63(0.24) 70 0.10 3 2
−0.204 1/4 (3.1; 5.7) 1.11 ± 0.17 4.29 ± 0.12 6 67(0.22) 77 0.08 3 1
−0.215 1/4 (3.5; 6.5) 1.22 ± 0.19 4.94 ± 0.14 6 87(0.20) 73 0.73 3 1
−0.227 1/4 (4.5; 6.7) 1.14 ± 0.28 5.73 ± 0.16 6 74(0.19) 81 0.13 3 1
−0.238 1/4 (4.8; 8.0) 1.02 ± 0.15 6.33 ± 0.13 6 104(0.19) 95 0.57 3 1
−0.249 1/4 (5.7; 8.5) 1.03 ± 0.22 7.09 ± 0.17 6 92(0.19) 86 0.49 3 1
−0.261 1/4 (5.9; 9.9) 1.17 ± 0.20 7.85 ± 0.21 6 100(0.20) 94 0.47 3 1
−0.272 1/4 (6.4; 10.6) 1.25 ± 0.22 8.48 ± 0.24 6 90(0.21) 91 0.28 3 1
−0.283 1/4 (6.7; 11.1) 1.20 ± 0.19 8.89 ± 0.23 6 83(0.22) 85 0.25 3 1
−0.295 1/4 (6.8; 11.4) 1.13 ± 0.18 9.04 ± 0.24 6 78(0.23) 51 0.97 3 1
−0.306 1/4 (7.3; 12.1) 1.22 ± 0.20 9.68 ± 0.26 6 68(0.24) 65 0.38 3 1
−0.317 1/4 (8.2; 12.4) 1.11 ± 0.30 10.09 ± 0.29 6 47(0.23) 50 0.15 3 1

Table A.5: Fit results for L ≤ 22 and q = −1.

Ei λ (n0;nf ) ν nc NP ND χ2 p mL mρ

0.000 1/2 (7.6; 14.0) 0.53 ± 0.13 10.81 ± 0.43 6 74(0.31) 65 0.58 3 1
−0.011 1/2 (7.8; 14.6) 0.62 ± 0.15 11.17 ± 0.45 6 72(0.31) 68 0.40 3 1
−0.023 1/2 (8.3; 13.8) 0.67 ± 0.18 11.01 ± 0.42 6 58(0.31) 67 0.08 3 1
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Table A.5 continued from previous page
Ei λ (n0;nf ) ν nc NP ND (prec.) χ2 p mL mρ

−0.034 1/2 (7.8; 13.0) 0.67 ± 0.16 10.44 ± 0.36 6 62(0.33) 64 0.22 3 1
−0.045 1/2 (7.4; 12.3) 0.74 ± 0.17 9.73 ± 0.34 6 66(0.34) 69 0.19 3 1
−0.057 1/2 (6.4; 10.8) 0.70 ± 0.14 8.66 ± 0.28 6 89(0.34) 103 0.07 3 1
−0.068 1/2 (5.8; 9.6) 0.81 ± 0.18 7.67 ± 0.26 6 104(0.34) 112 0.16 3 1
−0.079 1/2 (4.7; 7.9) 1.10 ± 0.39 6.30 ± 0.29 6 103(0.34) 105 0.28 3 1
−0.091 1/2 (1.6; 4.7) 1.22 ± 0.30 3.05 ± 0.23 6 75(0.49) 75 0.29 3 1
−0.102 1/2 (0.8; 2.4) 1.37 ± 0.39 1.65 ± 0.15 6 55(0.78) 51 0.40 3 1
−0.113 1/2 (0.7; 2.0) 1.05 ± 0.27 1.24 ± 0.10 6 51(0.93) 54 0.17 3 1
−0.136 1/2 (1.0; 2.2) 0.74 ± 0.19 1.62 ± 0.10 6 46(1.07) 33 0.78 3 1
−0.147 1/2 (1.2; 2.8) 0.88 ± 0.19 1.95 ± 0.11 6 48(0.93) 53 0.11 3 1
−0.159 1/2 (1.4; 3.4) 0.88 ± 0.18 2.36 ± 0.12 6 51(0.93) 48 0.33 3 1
−0.170 1/2 (1.8; 3.6) 1.02 ± 0.26 2.69 ± 0.14 6 48(0.88) 41 0.49 3 1
−0.181 1/2 (2.0; 4.2) 0.88 ± 0.18 3.11 ± 0.13 6 52(0.87) 46 0.48 3 1
−0.193 1/2 (2.6; 4.8) 1.08 ± 0.28 3.69 ± 0.18 6 55(0.77) 57 0.21 3 1
−0.204 1/2 (3.0; 5.0) 0.78 ± 0.21 4.08 ± 0.15 6 48(0.76) 35 0.77 3 1
−0.215 1/2 (3.4; 6.4) 1.18 ± 0.27 4.86 ± 0.20 6 82(0.61) 75 0.50 3 1
−0.227 1/2 (3.5; 7.3) 1.09 ± 0.15 5.39 ± 0.15 6 117(0.60) 129 0.11 3 1
−0.238 1/2 (4.7; 7.9) 0.97 ± 0.20 6.26 ± 0.17 6 103(0.53) 74 0.96 3 1
−0.249 1/2 (5.2; 8.6) 1.15 ± 0.28 6.83 ± 0.23 6 107(0.56) 99 0.53 3 1
−0.261 1/2 (5.8; 9.6) 1.21 ± 0.30 7.71 ± 0.31 6 104(0.56) 107 0.26 3 1
−0.272 1/2 (5.9; 11.1) 1.41 ± 0.30 8.54 ± 0.37 6 112(0.57) 105 0.51 3 1
−0.283 1/2 (6.1; 11.3) 1.25 ± 0.24 8.67 ± 0.34 6 107(0.60) 85 0.87 3 1
−0.295 1/2 (6.3; 11.7) 1.26 ± 0.25 8.90 ± 0.34 6 101(0.62) 96 0.44 3 1
−0.317 1/2 (7.1; 13.3) 1.46 ± 0.36 10.20 ± 0.52 6 81(0.65) 77 0.41 3 1
−0.329 1/2 (7.9; 13.3) 1.38 ± 0.48 10.50 ± 0.54 6 60(0.67) 39 0.94 3 1
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