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Abstract

In this thesis we study energy conservation for the incompressible Euler equa-
tions that model non-viscous fluids. This has been a topic of interest since Onsager
conjectured regularity conditions for solutions to conserve energy in 1949. Very
recently the full conjecture has been resolved in the case without boundaries.

We first perform a study of the different conditions used to ensure energy
conservation for domains without boundaries. Results are presented in Chapter 2,
as well as an analysis of the similarities between the weakest of these conditions and
the conditions we use later with a boundary.

We then study the time regularity in Chapter 3 and present a detailed proof
for energy conservation without boundaries imposing the conditions u ∈ L3(0, T ;L3)
and

lim
|y|→0

1

|y|

∫ T

0

∫
|u(x+ y)− u(x)|3 dx dt = 0.

In Chapters 4 and 5 we consider the easiest case of a flat finite boundary correspond-
ing to the domain T2×R+. In Chapter 4 we use an extension argument and impose
a condition of continuity at the boundary to prove energy conservation under the
conditions that u ∈ L3(0, T ;L3(T2 × R+)),

lim
|y|→0

1

|y|

∫ T

0

∫
T2

∫ ∞
|y|
|u(x+ y)− u(x)|3 dx3 dx2 dx1 dt = 0,

u ∈ L3(0, T ;L∞(T2× [0, δ))) and u is continuous at the boundary. We then improve
this result further by making it a local method in Chapter 5 and use a different
definition of a weak solution where there is no pressure term involved.

Chapter 6 considers various different definitions of weak solutions for the
incompressible Euler equations on a bounded domain. We study the relations be-
tween these varying definitions with and without pressure terms. We then use the
recent work of Bardos & Titi (2018), who showed energy conservation with pressure
terms included, to get a condition for energy conservation when we consider a weak
solution without reference to the pressure term.

v



Chapter 1

Introduction

In this thesis we will focus on the incompressible Euler equations, which model the

movement of non-viscous fluids. Denoting by u the velocity field of the fluid and by

p the scalar function corresponding to the pressure we can write the equations for

the pair (u, p) as

∂tu+∇ · (u⊗ u) +∇p = 0, ∇ · u = 0.

We study the equation on domains without a boundary (Rd or Td with d ≥ 2) and

on domains Ω with a boundary. In the last case we impose the no-flux boundary

condition, that is, u · n = 0 on ∂Ω, where n is the outward normal to the boundary.

We will study whether these solutions conserve energy, that is, for every t ∈ [0, T ]

we have ‖u(t)‖L2 = ‖u(0)‖L2 and what are the weakest regularity conditions needed

to ensure this energy conservation.

If we consider sufficiently smooth solutions u that are C1 on Rd or Td with

d ≥ 2, or solutions u that are C1 on a domain Ω with a Lipschitz boundary (satisfying

u ·n = 0 on ∂Ω on the boundary) then an easy integration-by-parts argument shows

that energy is conserved. However, when considering weak solutions, as defined in

Section 3.1, we only have u ∈ Cw(0, T ;L2) ∩ L3(0, T ;L3) and we do not have the

regularity needed to perform these operations. We therefore need to regularise the

equation first, manipulate the now smooth terms and then converge back to the

original weak solution imposing necessary conditions on the solution so that energy
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is conserved.

Onsager’s conjecture (1949) was originally formulated into two parts. Firstly,

a ‘positive’ part stating that weak solutions satisfying a Hölder continuity condition

of order greater than one third in space should conserve energy, that is, if a weak

solution u(·, t) ∈ C1/3+ε for some ε > 0 then u will conserve energy. Secondly,

a ‘negative’ part conjecturing that there exists solutions u(·, t) ∈ C1/3−ε that do

not conserve energy. Nowadays the conjecture is formulated to consider the weak

solution u with regularity in both space and time as below.

Conjecture 1.1 Onsager’s Conjecture for a weak solution u ∈ Cw(0, T ;Hσ) of the

Euler equations states that:

• (‘Positive part’) if u ∈ L3(0, T ;C1/3+ε) for some ε > 0 then u conserves

energy, that is, for every t ∈ [0, T ] we have ‖u(t)‖L2 = ‖u(0)‖L2

• (‘Negative part’) and for every ε > 0 there exists least one solution u ∈

L3(0, T ;C1/3−ε) that does not conserve energy for ε made arbitrarily small

but positive.

The ‘negative’ part has been resolved in the very recent works of Isett (2016)

and Buckmaster et al. (2016) where solutions are constructed prescribing an ar-

bitrary energy profile and we will not consider this problem here. Bardos & Titi

(2009) and Bardos et al. (2012) constructed explicit shear solutions in L∞(0,∞;L2)

that do conserve energy and Bardos & Titi (2013) notes that this shows that low

regularity of a weak solution does not imply energy dissipation (or creation). The

case where the solutions have regularity exactly u(·, t) ∈ C1/3 is still open.

We will focus on the first part of this conjecture, i.e. conditions for energy

conservation, and will consider the problem in several different domains.

1.1 Historical results

The majority of the studies on energy conservation for the incompressible Euler

equations have been carried out on the domains Rd or Td. The important property
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of these domains is that they have no boundary and thus no boundary conditions

that complicate the calculations. For the next few paragraphs we will go through the

past work on Rd or Td gradually weakening the conditions for energy conservation

until we will obtain the condition

lim
q→∞

∫ T

0
2q‖∆qu‖3L3 dt = 0,

where ∆q performs a smooth restriction of u into Fourier modes of order 2q (see

Chapter 2).

The first proof of energy conservation for weak solutions was given by Eyink

(1994) on the torus. The method, taking inspiration from the ideas of Onsager

(1949), involved studying a Fourier formulation of the equation and writing the

solution as a Fourier series. He then studies the solution in dyadic Fourier modes

and observes that if the series representing the nonlinear term converges absolutely

then the order of the sums can be commuted and we have energy conservation.

This is linked to looking at the energy flux between different scales in Fourier space

and the main proof revolves around controlling the energy flux to the large Fourier

modes. Since controlling the large scale Fourier modes means that we are imposing

conditions on the small scale fluctuations of the function this imposes a differentia-

bility condition on the function. Energy conservation is obtained assuming that the

solution satisfies u(·, t) ∈ Cα? for α > 1/3 with a uniform bound for t ∈ [0, T ]. A

definition of the space Cα? equivalent to that of Eyink’s is as follows: expand u as

the Fourier series

u =
∑
k∈Z3

ûke
ik·x,

imposing conditions to ensure that u is real (ûk = û−k) and is divergence free

(k · ûk = 0); then u ∈ Cα? (T3) if

∑
k∈Z3

|k|α|ûk| <∞.

Requiring u ∈ Cα? with α > 1/3 is a stronger condition than the one-third Hölder
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continuity conjectured by Onsager.

Subsequently Constantin, E, & Titi (1994) gave a short proof of energy con-

servation, in the framework of Besov spaces (but still on the torus), under the weaker

assumption that

u ∈ L3(0, T ;Bα
3,∞) with α > 1/3. (1.1)

As Cα ⊂ Bα
3,∞ this proves the ‘positive’ part of Onsager’s Conjecture with no

boundary. Here Bs
p,r denotes a Besov space as defined in Bahouri et al. (2011) and

Lemarié-Rieusset (2002). The α in Bα
p,r corresponds to the amount of ‘differentiable

regularity’ of the function, but measured in other spaces to have different control of

the ‘integrability’.

This method involved regularising the weak formulation of the equation by

mollification and then noting that we have energy conservation if we can permute

the mollification operator with the product operator. This is a similar problem to

that studied by Eyink (1994) before, however, here we must find conditions on the

solution u to re-order integrals rather than sums. Here the remainder terms left

over from permuting the product of solutions with mollification are similar to the

energy flux problem in the work by Eyink (1994). They study the properties of the

solution u at small scales and observe that with the regularity u ∈ L3(0, T ;Bα
3,∞)

with α > 1/3 one can control the remainder terms and show that they tend to zero

at small scales.

Duchon & Robert (2000) showed that solutions satisfying a weaker regularity

condition still conserve energy. They derived a local energy equation that contains

a term D(u) representing the dissipation or production of energy caused by the lack

of smoothness of u; this term can be seen as a local version of Onsager’s original

statistically averaged description of energy dissipation used to motivate the original

conjecture. Here the term D(u) is of the form

D(u)(x) = lim
ε→0

1
4

∫
∇ϕε(ξ) · u(x− ξ)− u(x)|u(x− ξ)− u(x)|2 dξ
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where ϕε is a ‘nice mollifier’ as defined later in (3.3). They showed that if u satisfies

1

|ξ|

∫
|u(t, x+ ξ)− u(t, x)|3 dx ≤ C(t)σ(|ξ|), (1.2)

where σ(a) → 0 as a → 0 and C ∈ L1(0, T ), then ‖D(u)‖L1(0,T,L1(T3)) = 0 and

hence the kinetic energy is conserved. The condition in (1.2) is weaker than (1.1).

A detailed review examining this and further work relating to Onsager’s conjecture

is given by Eyink & Sreenivasan (2006).

More recently energy conservation was shown by Cheskidov et al. (2008)

when u lies in the space L3(0, T ;B
1/3
3,c(N)), where B

1/3
3,c(N) is a subspace of B

1/3
3,∞. We can

introduce two operators Sq and ∆q which perform smooth restrictions of functions in

Fourier space, with the full definitions given in Chapter 2. Sq restricts to all Fourier

modes below 2q and ∆q restricts to the modes of order 2q. Using these operators

we can define the space

B
1/3
3,∞(Rd) :=

{
f : f ∈ S ′ and ‖S0f‖L3 +

∥∥∥∥2
q
3 ‖∆qf‖L3

∥∥∥∥
l∞(q,N)

<∞

}
,

further, we can define the subspace

B
1/3
3,c(N) :=

{
f : f ∈ B1/3

3,∞ and lim
q→∞

2
q
3 ‖∆qf‖L3 = 0

}
.

The space of L3(0, T ;B
1/3
3,∞) is important with regards to Onsager’s conjecture

as for any dimension d ≥ 2 it has the correct scaling for energy conservation and is

coined an Onsager-critical space in Shvydkoy (2010). For some function space B we

say that it is Onsager-critical if denoting velocity by U , length by X and time by T

we have the relation

(dim ‖ · ‖B)3 = TU3Xd−1.

This scaling comes from studying the term

∫ t

0

∫
Ω
∇ · (u⊗ u) · udx dt,
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which we obtain by testing the Euler equations with u and integrating over space

and time. We see that we have three velocity terms, one integration in time, an

integration over all of space and then one derivative and so we obtain the scaling

TU3Xd−1 on the right hand side.

In fact Cheskidov et al. (2008) showed that energy conservation holds for

solutions satisfying the still weaker condition

lim
q→∞

∫ T

0
2q‖∆qu‖3L3 dt = 0. (1.3)

In a follow-up paper Shvydkoy (2009) (see also Shvydkoy, 2010) states that this

condition is equivalent to

lim
|y|→0

1

|y|

∫ T

0

∫
|u(x+ y)− u(x)|3 dx dt = 0, (1.4)

and proves a local energy balance under this condition. Here the method involves

using the Fourier definition of Besov spaces, splitting the solution into a sum of

∆q Fourier modes, and truncating the series to regularise the equation. Then with

similar methods to Eyink (1994) and Constantin, E, & Titi (1994) a flux term is

derived and is split up into two terms corresponding to different scales. Here a

bound is obtained treating the small scales and large scales separately. With this

method they were able to relax the condition for energy conservation still further.

We observe that condition (1.2) has similar form to (1.4), yet explicitly separates

the limit and the integrability in time. This makes (1.4) less restrictive than (1.2)

which will be shown in Chapter 2 along with a proof of the equivalence of condition

(1.3) to condition (1.4).

When discussing the problem on a bounded domain Ω with the condition

u · n = 0 on the boundary it becomes harder to prove energy conservation. While

it is now well understood how the potential dissipation or creation of energy could

be generated by the local interaction of the fluid (or high wave numbers in Fourier

space) there is now the added complication of how to regularise the equation and

keep the boundary data and the incompressibility condition. In all the previous
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works the incompressibility of the solution is preserved by the regularising techniques

used and this significantly helps with the calculations as the pressure term no longer

appears. Further, the regularising techniques involve a non-local operator and thus

more refined methods would have to be used to maintain the boundary data.

Recently Bardos & Titi (2018) have considered the case of energy conser-

vation on a bounded domain with a C2 boundary and showed energy conservation

to hold for solutions u, where u ∈ L3(0, T ;Cα(Ω̄)) for α > 1/3, to give a proof

of Onsager’s conjecture on a bounded domain. Their definition of a weak solution

uses smooth, compactly supported test functions ψ, but without any assumption of

incompressibility; therefore the pressure is included in the weak formulation. More

precisely, a pair (u, p) is a weak solution if for ψ ∈ C∞c (Ω× (0, T ))

〈u, ∂tψ〉Ω + 〈u⊗ u : ∇ψ〉Ω + 〈p : ∇ · ψ〉Ω = 0, in L1(0, T ),

where 〈·, ·〉Ω denotes the L2 inner-product over Ω. In the analysis of the equation in

this formulation estimates for p are required. To obtain these estimates they use the

fact that u and p are connected via an elliptic equation. Namely, p weakly solves

−∆p = ∂i∂j(uiuj) in Ω, and ∇p · n = −(uj∂jui)ni on ∂Ω,

where we sum the components over the repeated indices. They only assume that

ψ ∈ C∞c (Ω × (0, T )) and do not include incompressibility in the test functions.

This allows the use of smooth cut-off functions to be used to restrict u and then

mollification can be applied to the restricted u and so it can be used as a test

function as now smooth and compactly supported.

A similar method to Constantin, E, & Titi (1994) is then applied, however,

for the non-linear and pressure terms extra remainder terms are produced from the

gradient of the smooth cut-off function. Here using the boundary conditions, that

u·n = 0 on the boundary and that u ∈ L3(0, T ;Cα(Ω̄)) for α > 1/3, these remainder

terms are shown to vanish.
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1.2 Outline

In this thesis we will present work proving energy conservation on domains with

a boundary; however we will use incompressible test functions and so no pressure

term appears in the weak formulation of the equation. In Chapter 2 we will present

preliminary work that compares previous conditions used to impose energy conser-

vation on domains without a boundary. The main result of Proposition 2.9 was

stated before in Shvydkoy (2009), but the proof is a new proof.

In Chapter 3 we present a new proof of energy conservation on domains

without a boundary, i.e. for Rd or Td for d ≥ 2. Here we concentrate on a new

method to rigorously derive sufficient time regularity of Jεu so that it can be used

as a test function. We focus on techniques that are easily extendable to a domain

with a boundary with the extra steps presented in Chapter 5. We then adapt some

of the ideas from Duchon & Robert (2000) and give a direct new proof that energy

conservation follows on the whole domain under the condition that

∫
R3

∫
R3

∇ϕε(ξ) · (v(x+ ξ)− v(x))|v(x+ ξ)− v(x)|2 dξ dx→ 0

as ε→ 0, where ϕ is a radial mollifier, as defined in (3.3).

Given this condition it is relatively simple to show energy conservation un-

der the assumption (1.4), which we do in Theorem 3.9, and under the alternative

condition ∫ T

0

∫
R3

∫
R3

|u(x)− u(y)|3

|x− y|4+δ
dx dy dt <∞, δ > 0, (1.5)

which is equivalent to requiring u ∈ L3(0, T ;Wα,3(R3)) for some α > 1/3 (Theorem

3.10). Although energy conservation of a weak solution was known under assump-

tion (1.4) the proofs in this section are new and we obtain a new result of energy

conservation using assumption (1.5).

In Chapter 4 we use condition (1.4) to analyse energy conservation in the

domain D+ := T2 × R+. We show that if (u, p) is a weak solution, in the sense of

Definition 4.1, on D+ where p is a distribution defined on the boundary only, that
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is, p ∈ D′(∂D+× [0, T ]) then (uR, p) is a weak solution, in the sense of Definition 4.1,

on D−. Here uR is an appropriately ‘reflected’ version of u, and that uE := u+ uR

almost everywhere, is a weak solution, in the sense of Definition 3.2, on D := T2×R.

It follows that energy is conserved for uE under condition (1.4); from here we deduce

conservation of energy for u under the condition

lim
|y|→0

1

|y|

∫ t2

t1

∫
T2

∫ ∞
|y|
|u(t, x+ y)− u(t, x)|3 dx3 dx1 dx2 dt = 0.

This condition is very similar to the best known condition for the spatial domains

R3 or T3 with just an extra restriction so that it is only acting on the interior of

the domain. We require additional assumptions near ∂D+, where we assume that

u ∈ L3(0, T ;C0(T2 × [0, δ)) for some δ > 0, see Theorem 4.6. Though this was

the first proof of energy conservation with a boundary it uses a global extension

(from T2 × R+ to T2 × R) which is a potential drawback when trying to generalise

to more domains, though this is solved in Chapter 5. The conditions needed here

for energy conservation are weaker than those in Bardos & Titi (2018) and give a

good indication of the conditions for energy conservation that should be aimed for

in other bounded domains.

In Chapter 5 we use ur a locally ‘reflected’ version of u and obtain energy

conservation with the same assumptions as before on the domain D+. However,

here we use incompressible test functions that also satisfy the no-flux boundary

conditions and so there are no pressure terms appearing in the weak formulation of

the equation. Further, the extension is done locally around the boundary which may

be beneficial when considering extending this result to bounded domains. Again the

proofs in this section are all new as we generalise our result from Chapter 4.

Finally, in Chapter 6 we consider the recent results in Bardos & Titi (2018).

We compare their definition of a weak solution (which includes the pressure) and the

definition of a weak solution assuming incompressibility of the test functions, where

no pressure term is involved. We show that assuming u ∈ L3(0, T ;Cδ) for some δ > 0

is enough to show that a solution defined using incompressible test functions only,
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so that no reference to a pressure term appears in the weak formulation, will also

be a distributional solution, as defined in Bardos & Titi (2018). We can therefore

apply the results in Bardos & Titi (2018) to the pressure-less definition of a weak

solution to obtain energy conservation of our weak solution on a bounded domain

with a C2 boundary, where u ∈ L3(0, T ;Cα) for some α > 1/3. Here we apply

standard techniques to obtain this new result.
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Chapter 2

A study of Energy conservation

Conditions

Here we want to study the conditions discussed in Chapter 1 that have been used

to show energy conservation. We will show that conditions (1.3) and (1.4) are

equivalent and are the weakest conditions known to guarantee energy conservation.

We will define the Besov spaces Bs
p,r and Bs

p,c(N) (as a subspace of Bs
p,∞)

using the Littlewood-Paley decomposition. Then, for functions defined on Rd, we

give a proof of equivalence of the conditions (1.3), namely

lim
q→∞

∫ T

0
2q‖∆qu‖3L3 dt = 0 (2.1)

and (1.4), namely

lim
|y|→0

1

|y|

∫ T

0

∫
|u(x+ y)− u(x)|3 dx dt = 0

in Proposition 2.9. In order to prove the equivalence of the above conditions we will

introduce the general definition of a Besov space and the notation we will be using.

Firstly, we will recall some important function spaces; the interested reader

may consult Bahouri et al. (2011), for example.
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Definition 2.1 (Schwartz space) (Page 22-23, Robinson, Rodrigo, & Sadowksi

(2016)) The Schwartz space S(Rd) is the space of all smooth functions f on Rd such

that

pk,α(f) := sup
x∈Rd

|x|k|∂αu(x)|.

is finite for every choice of k ∈ N and α ≥ 0 where α is a multi-index (i.e. an

element of Nd).

This is the space of smooth functions where we have decay faster than any

polynomial for every derivative. From this space we can define the associated dual

space of tempered distributions.

Definition 2.2 (Tempered distributions) (Page 22-23, Robinson, Rodrigo, &

Sadowksi (2016)) We define the space of tempered distributions S ′(Rd) as the space

of all bounded linear functionals T on S(Rd) that are continuous in the sense that

T (fn)→ 0 as n→∞ if (fn) ∈ S(Rd) with pk,α(fn)→ 0 as n→∞ for all k and α

(as defined in Definition 2.1).

We can now recall the definition of the Fourier transform on Rd from Bahouri

et al. (2011) as

Ff(ξ) =

∫
Rd

e−2πix·ξf(x) dx,

and define the inverse Fourier transform

F−1f(x) =

∫
Rd

e2πix·ξf(ξ) dξ,

where F ,F−1 : S → S.

Bahouri et al. (2011), page 22, proves that the Fourier transform is an auto-

morphism of S′ and an automorphism of L2 and so we can extend F ,F−1 : L2 → L2

and can further extend them to act on tempered distributions.

We recall the definition in Rd of Sj ,∆j , the usual building blocks of a

Littlewood-Paley decomposition (see Lemarié-Rieusset (2002) and Bahouri et al.

(2011)). We choose a smooth function Ψ ∈ C∞0 (B1(0)) such that Ψ(ξ) = 1 for

12



|ξ| ≤ 1
2 and let ψ(ξ) = Ψ( ξ2)−Ψ(ξ). We then have the useful properties that

Ψ(ξ) +
∑
j≥0

ψ(
ξ

2j
) = 1, (2.2)

and further, for |i− j| ≥ 2 implies that supp(ψ( ξ
2j

)) ∩ supp(ψ( ξ
2i

)) = ∅.

Using ψ and Ψ as building blocks we and can now define, for j ∈ Z,

∆ju(x) := F−1

(
ψ

(
ξ

2j

)
Fu
)

(x) = 2dj
∫
h(2jz)u(x− z) dz, (2.3)

Sju(x) := F−1

(
Ψ

(
ξ

2j

)
Fu
)

(x) = 2dj
∫
h̃(2jz)u(x− z) dz, (2.4)

where we have set h := F−1ψ and h̃ := F−1Ψ; notice that the integral of h over

Rd is zero. Indeed, we see that

F(f)(0) =

∫
Rd

e−2πix·0f(x) dx =

∫
Rd
f dx,

thus ∫
Rd
hdx = F(h)(0) = F(F−1ψ)(0) = ψ(0) = 0.

Due to (2.2) we have

S0 +

∞∑
j=1

∆j = Id, (2.5)

where we make sense of this decomposition in terms of tempered distributions. We

can now make use of these operators Sj and ∆j to define Besov spaces.

Definition 2.3 (Besov space) Let s ∈ R, 1 ≤ p, r ≤ ∞. Then we define

Bs
p,r(Rd) :=

{
f : f ∈ S ′ and ‖S0f‖Lp +

∥∥∥∥2qs‖∆qf‖Lp
∥∥∥∥
lr(q,N)

<∞

}
,

with the norm

‖f‖Bsp,r := ‖S0f‖Lp +

∥∥∥∥2qs‖∆qf‖Lp
∥∥∥∥
lr(q,N)

.

We can use Sj to define a useful subspace of tempered distributions S ′0 where we

13



have restricted the space so that Fourier transform of the tempered distribution is

locally integrable around 0 thus controlling the low frequencies.

Definition 2.4 The space S ′0(Rn) is the space of tempered distributions S ′ such that

for f ∈ S ′

lim
m→−∞

Smf = 0 in S′.

Using this definition and the operator ∆j we can define the homogeneous Besov

spaces. Here, unlike the non-homogeneous case, the the sum in the lr norm is now

over the space Z.

Definition 2.5 (Homogeneous Besov space) Let s ∈ R, 1 ≤ p, r ≤ ∞. Then

we define

Ḃs
p,r(Rd) :=

{
f : f ∈ S ′0 and

∥∥∥∥2qs‖∆qf‖Lp
∥∥∥∥
lr(q,Z)

<∞

}
,

with the semi-norm

‖f‖Ḃsp,r :=

∥∥∥∥2qs‖∆qf‖Lp
∥∥∥∥
lr(q,Z)

.

Finally we consider a subspace of Bs
p,∞ that appears when considering the Onsager’s

conjecture; see Cheskidov et al. (2008), Shvydkoy (2009) and Shvydkoy (2010).

Definition 2.6 The subspace Bs
p,c(N) has the Bs

p,∞ norm and is defined by

Bs
p,c(N) := {u : u ∈ Bs

p,∞ and lim
q→∞

2qs‖∆qu‖Lp = 0}.

The use of Besov spaces allows for a more refined control of the function’s

differential regularity and integrability, thus with this greater control problems in-

volving a critical regularity can be approached with more ease.

For certain exponents we obtain some well known spaces (see for example

Bahouri et al. (2011), Chapter 2):

• The Sobolev space Hs = Bs
2,2.

• The non-integer Hölder spaces we have C [s],s−[s] = Bs
∞,∞.
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• However, for s ∈ N the space Bs
∞,∞ is strictly larger than Cs and Cs−1,1.

In order to show that for s 6∈ N that C [s],s−[s] = Bs
∞,∞ at least for s ∈ (0, 1)

we can use the definition of Besov spaces as defined in Peetre (1976) who use a

difference quotient and for s ∈ (0, 1)

Bs
p,q :=

{
f : f ∈ Lp and

(∫
Rd

(
‖f(·+ h)− f(·)‖Lp

|h|s

)q dh

|h|d

) 1
q

<∞

}
, (2.6)

and in the case where q =∞ one requires

Bs
p,∞ =

{
f : f ∈ Lp and sup

h

‖f(·+ h)− f(·)‖Lp
|h|s

<∞
}
.

We see that if we want the Bs
∞,∞ space then we can consider the space

Bs
∞,∞ =

{
f : f ∈ C0 and sup

h

‖f(·+ h)− f(·)‖L∞
|h|s

<∞
}

and see that this is the definition of the space Cs for s ∈ (0, 1).

In Bahouri et al. (2011) (Theorem 2.36), they prove, for s ∈ (0, 1) and

(p, r) ∈ [1,∞]2, the equivalence of the norm ‖ · ‖Ḃsp,r , defined in Definition 2.5 and

the norm

‖f‖X :=

(∫
Rd

(
1

|y|s

(∫
Rd
|f(x+ y)− f(x)|p dx

)1/p
)r

dy

|y|d

)1/r

,

which shows the equivalence of the space defined by (2.6) (for the homogeneous

case) and the space given by Definition 2.5.

We conclude this introduction with useful embeddings. Let 1 ≤ p1 ≤ p2 ≤ ∞

and 1 ≤ r1 ≤ r2 ≤ ∞; then for any s ∈ R, the space Bs
p1,r1 , is continuously embedded

in

B
s−d( 1

p1
− 1
p2

)

p2,r2 .
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2.1 Relations between Energy Conservation Conditions

With the use of Besov spaces we will now study the various conditions that have

been used to ensure energy conservation on the solutions to the incompressible Euler

equations, on Rd.

Firstly, we will study the original energy conservation result for Onsager’s

conjecture by Constantin, E, & Titi (1994) and compare it to the later condition

of Cheskidov et al. (2008). We will show that Cheskidov et al. (2008) was an

improvement of Constantin, E, & Titi (1994).

Proposition 2.7 If u∈L3
(
0, T ;Bα

3,∞
)

for some α>1/3 then u∈L3
(

0, T ;B
1/3
3,c(N)

)
.

Proof We know that for ε = α− 1/3 > 0

2
q
3 ‖∆qf‖L3 = 2αq‖∆qf‖L32−εq.

Thus

sup
q≥q0
{2

q
3 ‖∆qf‖L3} = sup

q≥q0
{2αq‖∆qf‖L32−εq} ≤ sup

q≥q0
{2−εq} sup

q≥q0
{2αq‖∆qf‖L3}.

Taking limits as q0 →∞ we obtain that

lim sup
q→∞

{2
q
3 ‖∆qf‖L3} ≤ lim

q→∞
{2−εq} sup

q
{2αq‖∆qf‖L3}.

Assuming that f ∈Bα
3,∞ then supq{2αq‖∆qf‖L3} is finite and since limq→∞{2−εq}=0

we have

lim
q→∞
{2

q
3 ‖∆qf‖L3} = 0

and so we are done. �

Proposition 2.8 If u ∈ L3

(
0, T ;B

1
3

3,c(N)

)
then u satisfies (2.1), namely

lim
q→∞

∫ T

0
2q‖∆qu‖3L3 dt = 0.
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Proof For u ∈ L3

(
0, T ;B

1
3

3,c(N)

)
we have by definition,

∫ T

0

(
sup
q
{2

q
3 ‖∆qu‖L3}

)3

dt <∞ and lim
q→∞

2q‖∆qu(t)‖3L3 = 0 for a.e. t.

Setting fq(t) := 2q‖∆qu‖3L3 , this gives limq→∞ fq(t) = 0 a.e. Further setting

g(t) :=

(
sup
q

{
2
q
3 ‖∆qu‖L3

})3

then fq(t) ≤ g(t) a.e. t and g(t) is integrable thus we can apply the Dominated

Convergence Theorem (DCT) to finish the proof. �

The next proposition was stated but not proved in Shvydkoy (2010). It

involves the equivalence of the best condition currently known used to ensure energy

conservation in terms of the dyadic decomposition and the condition that we want

to consider in the coming chapters in terms of integrals.

Proposition 2.9 For u ∈ L3(0, T ;L3(Rd)), and s ∈ (0, 1) the condition (1.3),

namely

lim
q→∞

∫ T

0
(2sq‖∆qu‖L3)3 dt = 0

is equivalent to condition (1.4), namely

lim
|y|→0

1

|y|3s

∫ T

0
‖u(·+ y)− u(·)‖3L3 dx dt = 0.

The proof is based on the analysis in Bahouri et al. (2011) (Theorem 2.36).

For the equivalence of conditions (1.3) and (1.4) on Rd, we will use the case where

s = 1/3. Further, note that the equivalence of similar expressions could be shown

for different Lp, Lq
(

dy
|y|d

)
norms and not just for p = 3 and q =∞, yet for simplicity

we restrict to the case we actually use in the thesis.

Proof We will split the proof into two parts and start by showing, for s ∈ (0, 1),

that if u satisfies

lim
q→∞

∥∥∥∥2sq‖∆qu‖L3

∥∥∥∥
L3([0,T ])

= 0
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then

lim
|y|→0

∥∥∥∥ 1

|y|s
‖u(·+ y)− u(·)‖L3

∥∥∥∥
L3([0,T ])

= 0.

We notice that the terms in the limit are all non-negative so it suffices to

find an upper bound that goes to zero in the limit. Firstly using (2.5) we obtain the

bound,

‖u(·+ y)− u(·)‖L3 ≤ ‖S0u(·+ y)− S0u(·)‖L3 +

∞∑
q=1

‖∆qu(·+ y)−∆qu(·)‖L3 . (2.7)

We will now calculate one bound for the first term and two bounds for the second

term, one of which we will use for small q and the other for large q.

For the S0u terms we notice that S0u = S1S0u by looking at the supports of

Ψ(·) and Ψ(2·); more precisely, we notice that Ψ(2·) = 1 over the support of Ψ(·) so

we obtain

S0u(x+ y)− S0u(x) = S1S0u(x+ y)− S1S0u(x).

We can then use the definition of S1, given by (2.4), in terms of h̃, to obtain

S1S0u(x+ y)− S1S0u(x) = 2d
∫
Rd

[
h̃(2(x+ y − z))− h̃(2(x− z))

]
S0u(z) dz.

We can then use the Fundamental Theorem of Calculus to obtain,

S0u(x+ y)− S0u(x) =
d∑
i=1

2yi

∫
Rd

(∫ 1

0
2d[∂ih̃] (2x+ 2ζy − 2z) dζ

)
S0u(z) dz.

Since ‖2d∂ih̃ (2(·+ ζy)) ‖L1 is uniformly bounded independently of ζ and y, so we

can apply Young’s convolution inequality,

‖S0u(·+ y)− S0u(·)‖L3 ≤ C|y| sup
i=1,...,d

[∫ 1

0
‖2d∂ih̃ (2(·+ ζy)) ‖L1 dζ

]
‖S0u‖L3 (2.8)

≤ C|y|‖S0u‖L3 .

For the second term of (2.7) we can simply bound using the triangle inequality
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and the translation invariance of the norm:

‖∆qu(·+ y)−∆qu(·)‖L3 ≤ 2‖∆qu‖L3 . (2.9)

We will use this bound for large q later on. We can also bound the second term

of (2.7) using a similar method to the S0 term. First note that by considering the

supports of ψ(2q·) and ψ(2q
′ ·) we obtain

∆q =
∑

|q′−q|≤1

∆q∆q′ .

Thus, using the definition of ∆q, given by (2.3), in terms of h, to obtain

∆qu(x+ y)−∆qu(x) =
∑

|q′−q|≤1

(
∆q∆q′u(x+ y)−∆q∆q′u(x)

)
=

∑
|q′−q|≤1

2qd
∫
Rd

[h(2q(x+ y − z))− h(2q(x− z))] ∆q′u(z) dz.

We can then use the Fundamental Theorem of Calculus to obtain

∆qu(x+ y)−∆qu(x)

=
∑

|q′−q|≤1

d∑
i=1

2qyi

∫
Rd

∫ 1

0
2qd [∂ih] (2q(x+ ζy − z)) dζ∆q′u(z) dz.

As ‖2qd[∂ih] (2q ·+2qζy) ‖L1 is uniformly bounded independently of q, ζ and y we

can apply Young’s convolution inequality to obtain

‖∆qu(·+ y)−∆qu(·)‖L3 ≤ C2q|y|
∑

|q′−q|≤1

‖∆q′u‖L3 . (2.10)

We will use this bound for small q later on.

Combining estimate (2.8) and estimate (2.9) for large q and estimate (2.10)

for small q to bound (2.7) and choosing to split the sum for small q ≤ k and large
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q > k we obtain,

‖u(·+ y)− u(·)‖L3 ≤ C

|y|‖S0u‖L3 +
∑

1≤q≤k
|y|2q

∑
|q′−q|≤1

‖∆q′u‖L3

+ 2
∑
q>k

‖∆qu‖L3

 .

Now we see that

∑
1≤q≤k

|y|2q
∑

|q′−q|≤1

‖∆q′u‖L3 =
∑

1≤q≤k
|y|2q (‖∆q−1u‖L3 + ‖∆qu‖L3 + ‖∆q+1u‖L3)

≤ C
∑

0≤q≤k+1

|y|2q‖∆qu‖L3

and so we obtain

‖u(·+ y)− u(·)‖L3 ≤ C

|y|‖S0u‖L3 +
∑

0≤q≤k+1

|y|2q‖∆qu‖L3 + 2
∑
q>k

‖∆qu‖L3

 .

If we choose k such that |y| ≈ 2−k then we obtain the bound

≤ C

2−k‖S0u‖L3 +
∑

0≤q≤k+1

2−qs2q−k2qs‖∆qu‖L3 +
∑
q>k

2−qs2qs‖∆qu‖L3

 ,

which yields

≤C|y|s
(

2−k(1−s)‖S0u‖L3 +
∑

0≤q≤k+1

2(1−s)(q−k)2qs‖∆qu‖L3 +
∑
q>k

2s(k−q)2qs‖∆qu‖L3

)
.

Therefore,

I :=

∥∥∥∥‖u(·+ y)− u(·)‖L3

|y|s

∥∥∥∥
L3(0,T )

≤ C
∥∥∥2−k(1−s)‖S0u‖L3

+
∑

0≤q≤k+1

2(1−s)(q−k)2qs‖∆qu‖L3 +
∑
q>k

2s(k−q)2qs‖∆qu‖L3

∥∥∥
L3(0,T )

,
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which becomes

I ≤ C

(
2−k(1−s)∥∥‖S0u‖L3

∥∥
L3(0,T )

+
∑

0≤q≤k+1

2(1−s)(q−k)
∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

+
∑
q>k

2s(k−q)
∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

)
.

To simplify the analysis of the second and third terms we will define,

K(r) =


2(s−1)r, r ≥ 0

2(s−1)r + 2sr, r = −1

2sr, r < −1

obtaining,

I ≤ C

(
2−k(1−s)∥∥‖S0u‖L3

∥∥
L3(0,T )

+
∑
q

K(k − q)
∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

)
.

We can split the sum into the parts where q < k
2 and q ≥ k

2 and obtain

I ≤ C

(
2−k(1−s)∥∥‖S0u‖L3

∥∥
L3(0,T )

+
∑
q< k

2

K(k − q)
∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

(2.11)

+
∑
q≥ k

2

K(k − q)
∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

)
.

For the second term of (2.11) for q < k
2 we have that k − q > 0 and so observe that

K(k − q) = 2(s−1)(k−q) so

∑
q< k

2

K(k − q) ≤ C2(s−1) k
2 .

Then using Hölder’s inequality for l1 and l∞, we obtain

∑
q< k

2

K(k − q)
∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

≤ C2(s−1) k
2 sup
q< k

2

∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

. (2.12)
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For the third term in (2.11) we can split the sum up and show that it is finite and

bounded independently of k. We see that

∑
q≥ k

2

K(k − q) =
∑

k
2
≤q≤k

2(s−1)(k−q) +
∑
k+1<q

2s(k−q) +K(−1).

Using the formula for a sum of a geometric series we see that

∑
k
2
≤q≤k

2(s−1)(k−q) = 1 + 2(s−1) + · · ·+ 2(s−1)( k
2

) =
1− 2

k
2

(s−1)

1− 2s−1
≤ 1

1− 2s−1

and ∑
k+1<q

2s(k−q) =
1

1− 2−s
.

We can apply these bounds and the K(−1) estimate to obtain

∑
q≥ k

2

K(k − q)
∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

≤ C sup
q≥ k

2

∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

. (2.13)

Using (2.12) and (2.13) we see that by taking limits as |y| → 0, using that |y| ≈ 2−k,

we obtain

lim
|y|→0

∥∥∥∥‖u(·+ y)− u(·)‖L3

|y|s

∥∥∥∥
L3(0,T )

≤ C lim
k→∞

(
2−k(1−s)∥∥‖S0u‖L3

∥∥
L3(0,T )

+ 2(s−1) k
2 sup
q< k

2

∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

+ C sup
q≥ k

2

∥∥2qs‖∆qu‖L3

∥∥
L3(0,T )

)
. (2.14)

The first term will go to zero in the limit as k → ∞ as for s ∈ (0, 1) we have

2−k(1−s) → 0 and ‖‖S0u‖L3‖L3([0,T ]) is bounded as u ∈ L3
(
[0, T ];L3

)
. From the

assumption (1.3) we have

sup
q
‖2sq‖∆qu‖L3‖L3(0,T ) <∞ and lim

q→∞
‖2sq‖∆qu‖L3‖L3(0,T ) = 0

as the existence of the limit guarantees that the supremum is finite. Therefore,

since (s − 1) < 0, in the limit as k → ∞ the second term of (2.14) vanishes. For
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the third term of (2.14) we can use the assumption on u above to see that this term

will vanish in the limit as well and so we are done.

Now we want to prove the reverse direction and show that for s ∈ (0, 1) if u

satisfies

lim
|y|→0

∥∥∥∥ 1

|y|s
‖u(·+ y)− u(·)‖L3

∥∥∥∥
L3([0,T ])

= 0

then

lim
q→∞

∥∥∥∥2sq‖∆qu‖L3

∥∥∥∥
L3([0,T ])

= 0.

We start off with the definition of ∆qu(x), given by (2.3), in terms of h, and

use that the integral of h over Rd is zero, to obtain a difference of u as follows

∆qu(x) = 2qd
∫
Rd
h(2qy)u(x+ y) dy = 2qd

∫
Rd
h(2qy)(u(x+ y)− u(x)) dy.

Thus using Minkowski’s inequality,

‖2qs‖∆qu‖L3‖L3([0,T ]) ≤
∥∥∥∥2qd

∫
Rd

2qs|h(2qy)|‖u(·+ y)− u(·)‖L3 dy

∥∥∥∥
L3([0,T ])

≤2qd
∫
Rd

2qs|h(2qy)| ‖‖u(·+ y)− u(·)‖L3‖L3([0,T ]) dy.

Now using the substitution z = 2qy we obtain

‖2qs‖∆qu‖L3‖L3([0,T ])

≤
∫
Rd
|z|s|h(z)|

∥∥∥∥ 2qs

|z|s
∥∥∥u(·+ z

2q

)
− u(·)

∥∥∥
L3

∥∥∥∥
L3([0,T ])

dz. (2.15)

We can split the integral in (2.15) into two parts where | z2q | ≤ δ and | z2q | > δ such

that

∫
| z
2q
|>δ

+

∫
| z
2q
|≤δ
|z|s|h(z)|

∥∥∥∥ 2qs

|z|s
∥∥∥u(·+ z

2q

)
− u(·)

∥∥∥
L3

∥∥∥∥
L3([0,T ])

dz := I + II.
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Recalling the assumption

lim
|y|→0

∥∥∥∥ 1

|y|s
‖u(·+ y)− u(·)‖L3

∥∥∥∥
L3([0,T ])

= 0,

we can fix ε > 0 and choose δ > 0 such that for all q

II =

∫
| z
2q
|≤δ
|z|s|h(z)|

∥∥∥∥ 2qs

|z|s
∥∥∥u(·+ z

2q

)
− u(·)

∥∥∥
L3

∥∥∥∥
L3([0,T ])

dz

≤
∫
| z
2q
|≤δ
|z|s|h(z)|ε dz.

Then as |z|s|h(z)| has finite integral over Rd so we can bound by Cε. For I we see

that,

I =

∫
| z
2q
|>δ
|z|s|h(z)|

∥∥∥∥ 2qs

|z|s
∥∥∥u(·+ z

2q

)
− u(·)

∥∥∥
L3

∥∥∥∥
L3([0,T ])

dz

=

∫
| z
2q
|>δ
|h(z)|2qs

∥∥∥∥∥∥u(·+ z

2q

)
− u(·)

∥∥∥
L3

∥∥∥
L3([0,T ])

dz

≤ C2qs‖u‖L3(0,T ;L3)

∫
| z
2q
|>δ
|h(z)| dz.

Taking the limit as q →∞ of both sides of (2.15) we obtain

lim
q→∞

‖2qs‖∆qu‖L3‖L3([0,T ]) ≤ lim
q→∞

(I + II) ≤ Cε+ lim
q→∞

I

≤ Cε+ lim
q→∞

(
C2qs‖u‖L3(0,T ;L3)

∫
| z
2q
|>δ
|h(z)| dz

)
.

Now, since h ∈ S we know that there exists C > 0 such that

|h(z)| ≤ C

1 + |z|s+d+2

and so ∫
| z
2q
|>δ
|h(z)| dz ≤ C

∫
| z
2q
|>δ

|z|d−1

1 + |z|s+d+2
d|z| ≤ C 1

2q(s+1)
.

Thus we obtain that limq→∞ I = 0 and we are done.

�
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2.2 Conclusion

Both conditions (1.3) and (1.4) are the weakest known conditions to imply that

a weak solution of the Euler equations satisfies energy conservation and we have

shown that these conditions are equivalent on Rd

Condition (1.3) uses Fourier techniques and so though a powerful tool in Rd

it only works in this case; when considering solutions on a domain with a boundary

this condition would not be useful. The importance of this equivalence result lies in

the fact that condition (1.4) only treats the functions in real space and so similar

conditions to (1.4) can be generated that make sense in a domain with a boundary.

We will, however, still have to define boundary conditions for the function. This

suggests that a version of condition (1.4), modified around the boundary, would

be a suitable condition to guarantee energy conservation for a weak solution on a

bounded domain.
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Chapter 3

Energy Conservation in the

Absence of Boundaries

In this chapter we will treat the incompressible Euler equations on a domain without

boundaries: R3, T3, or one of the hybrid domains T × R2 or T2 × R. We write D

in what follows to denote any one of these domains, being careful to highlight any

differences required in the definitions/arguments required to deal with the periodic

or hybrid cases.

We will show that if u ∈ L3(0, T ;L3(D)) is a weak solution of the Euler

equations (as in Definition 3.2) that satisfies

lim
|y|→0

1

|y|

∫ T

0

∫
D
|u(t, x+ y)− u(t, x)|3 dx dt = 0,

then energy is conserved on [0, T ], by which we mean that ‖u(t)‖L2 = ‖u0‖L2 for all

t ∈ [·, T ].

Further, we will also show energy conservation under the condition that

u ∈ L3(0, T ;Wα,3(R3)) for any α > 1/3, i.e. if u is a weak solution of the Euler

equations on the whole space that satisfies u ∈ L3(0, T ;L3(D)) and

∫
D

∫
D

|u(x)− u(y)|3

|x− y|3+3α
dx dy <∞,
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then energy is conserved.

Here the main part of the work is to show the necessary time regularity

needed to use a regularised solution, Jεu, as a test function. Although this approach

has been used repeatedly in the literature [Eyink (1994), Constantin, E, & Titi

(1994), Duchon & Robert (2000), Cheskidov et al. (2008), Shvydkoy (2010) and

Bardos & Titi (2018)] the issue of the time regularity of Jεu is usually sidestepped.

Shvydkoy (2010) treats the time regularity of Jεu in detail using Fourier analysis

techniques. Here we address this issue without the use of Fourier techniques so that

the method can be generalised to domains with boundaries, as done in Chapter 5.

It is an interesting result that by regularising the solution u in space only one

also gains Lipschitz regularity in time which is enough to use a mollified solution

as a test function and further, enough to manipulate the terms involving the time

derivative. We also rigorously show how to ‘regularise the equation’.

As a result we are able to prove energy conservation without any Fourier

techniques and under the weakest condition currently known.

The work in this chapter and Chapter 4 is an extension of Robinson et al.

(2018a).

3.1 Weak solutions of the Euler equations

For vector-valued functions f, g and matrix-valued functions F,G we use the nota-

tion

〈f, g〉 =

∫
D
fi(x)gi(x) dx and 〈F : G〉 =

∫
D
Fij(x)Gij(x) dx,

employing Einstein’s summation convention (sum over repeated indices).

We use the notation D(D) to denote the collection of C∞ functions with com-

pact support in D, and S(D) for the collection of all C∞ functions with Schwartz-like

decay in the unbounded directions of D, e.g. for T2 × R we require

sup
x∈T2×R

|x3|k|∂αφ| <∞,
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for all α, k ≥ 0, where α is a multi-index over all the spatial variables (x1, x2, x3) and

k ∈ N. Note that in the periodic directions the requirement of ‘compact support’

is trivially satisfied. The spaces Dσ(D) and Sσ(D) consist of all divergence-free

elements of the spaces D(D) or S(D).

We denote by Hσ(D) the closure of Dσ(D) in the norm of L2(D); this coin-

cides with the closure of Sσ(D) in the same norm.

Elements of Hσ(D) are divergence free in the sense of distributions, i.e.

〈u,∇φ〉 = 0 for all φ ∈ D(D);

but in fact this equality holds for all φ ∈ S(D), and even for all φ ∈ H1(D): indeed,

since Sσ(D) is dense in Hσ(D), for any u ∈ Hσ(D) we can find (un) ∈ Sσ(D) such

that un → u in L2(D), and then for any φ ∈ H1(D) we have

〈u,∇φ〉 = lim
n→∞

〈un,∇φ〉 = lim
n→∞

〈∇ · un, φ〉 = 0

(cf. Lemma 2.11 in Robinson, Rodrigo, & Sadowksi, 2016, for example).

In a slight abuse of notation we denote by Cw([0, T ];Hσ) the collection of all

functions u : [0, T ] → Hσ(D) that are weakly continuous into L2 (rather than Hσ),

i.e., the map

t 7→ 〈u(t), φ〉

is continuous for every φ ∈ L2(D). Note that Cw([0, T ];Hσ) ⊂ L∞(0, T ;Hσ).

We take as our space-time test functions the elements of

STσ := {ψ ∈ C∞(D × [0, T ]) : ψ(·, t) ∈ Sσ(D) for all t ∈ [0, T ]}.

We choose these functions to take values in Sσ (rather than in Dσ) since the property

of compact support is not preserved by the Helmholtz decomposition, whereas such

a decomposition respects Schwartz-like decay.

28



Lemma 3.1 Any ψ ∈ S can be decomposed as ψ = φ + ∇χ, where φ ∈ Sσ and

χ ∈ S, and moreover there exists Cs, independent of ψ such that

‖φ‖Hs + ‖∇χ‖Hs ≤ Cs‖ψ‖Hs (3.1)

for each s ≥ 0.

Proof (Cf. Theorem 2.6 and Exercise 5.2 in Robinson et al., 2016.) Since ψ ∈ S

we can write ψ in Fourier space, using a hybrid of Fourier series in the periodic

directions and the Fourier transform in the unbounded directions. In the periodic

directions we will consider T2 to be the periodised region [−1/2, 1/2]2 and thus

(x1, · · · , xn) ∈ Tn 7→ (k1, · · · , kn) ∈ Zn. To ensure that u is real valued we impose

that û(k) = û(−k) for the components of k in Z. Further, if we are considering the

fully periodic case (D = Td), then û(0) = 0 so that u has zero mean.

For example, in the case D = T2 × R we have

ψ(x) =

∫ ∞
−∞

∑
(k1,k2)∈Z2

û(k)e2πik·x dk3,

and we can set

φ(x) =

∫ ∞
−∞

∑
(k1,k2)∈Z2

(
I − k ⊗ k

|k|2

)
û(k)e2πik·x dk3,

and

χ(x) =

∫ ∞
−∞

∑
(k1,k2)∈Z2

k · û(k)

|k|2
e2πik·x dk3;

in the fully periodic case we omit the k ⊗ k/|k|2 term when k = 0. It is easy to

check that these functions have the stated properties. �

Assuming that u is a smooth solution of the Euler equations

∂tu+ (u · ∇)u+∇p = 0 ∇ · u = 0

if we multiply by an element of STσ and integrate by parts in space and time then

29



we obtain (3.2) below; the pressure term vanishes since ψ is divergence free and we

have decay in the unbounded directions and we have periodic boundary conditions

in the periodic directions. Requiring only (3.2) to hold we obtain our definition of

a weak solution.

Definition 3.2 (Weak Solution) We say that u ∈ Cw([0, T ];Hσ) is a weak solu-

tion of the Euler equations on [0, T ], arising from the initial condition u(0) ∈ Hσ,

if

〈u(t), ψ(t)〉−〈u(0), ψ(0)〉−
∫ t

0
〈u(τ), ∂tψ(τ)〉 dτ =

∫ t

0
〈u(τ)⊗u(τ) : ∇ψ(τ)〉 dτ (3.2)

for every t ∈ [0, T ] and every ψ ∈ STσ .

We note here that replacing STσ by DTσ leads to an equivalent definition (via

a simpler version of the argument of Lemma 3.3, below).

Throughout this thesis we let ϕ be a radial scalar function in C∞c (B(0, 1))

with
∫
R3 ϕ = 1 and for any ε > 0 we set ϕε(x) = ε−3ϕ(x/ε). Then for any function

f we define the mollification of f as Jεf := ϕε ? f where ? denotes convolution.

Thus

Jεf(x) = ϕε ? f(x) :=

∫
R3

ϕε(x− y)f(y) dy =

∫
B(0,ε)

ϕε(y)f(x− y) dy. (3.3)

In the periodic directions we extend f by periodicity in this integration. We insist

that ϕ is radially symmetric since this ensures that the operation of mollification

satisfies the ‘symmetry property’, that is, for u ∈ Lp and v ∈ Lq with 1/p+1/q = 1,

we have

〈ϕε ? u, v〉 = 〈u, ϕε ? v〉, (3.4)

(see Majda & Bertozzi (2002), for example).

Our aim in the next section is to show the validity of the following two
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equalities that follow from the definition of a weak solution in (3.2). The first is

〈u(t), Jεu(t)〉 − 〈u(0), Jεu(0)〉 −
∫ t

0
〈u(τ), ∂tJεu(τ)〉 dτ

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇Jεu(τ)〉 dτ ; (3.5)

this amounts to using Jεu, a mollification of the solution u, as a test function in

the definition of a weak solution (3.2): we need to show that there is sufficient time

regularity to do this, which we do in Section 3.2. The second is

∫ t

0
〈∂tJεu(τ), u(τ)〉dτ = −

∫ t

0
〈∇ · Jε[u(τ)⊗ u(τ)], u(τ)〉 dτ, (3.6)

assuming that u ∈ L3(0, T ;L3). One could see this heuristically as a “mollification

of the equation” tested with u; we will show that this can be done in a rigorous way

in Section 3.2.1. We can then add these equations and take the limit as ε → 0 to

obtain the equation for conservation (or otherwise) of energy (Section 3.2.2).

3.2 Using Jεu as a test function

We will show that if u is a weak solution then in fact (3.2) holds for a larger class

of test functions with less time regularity. We denote by C0,1([0, T ];Hσ) the space

of Lipschitz functions from [0, T ] into Hσ.

Lemma 3.3 If u is a weak solution of the Euler equations in the sense of Definition

3.2 then (3.2) holds for every ψ ∈ Lσ, where

Lσ := L1(0, T ;H3) ∩ C0,1([0, T ];Hσ).
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Proof We will extend to f ∈ Lσ using a density argument. We first note that for

a fixed u we can write (3.2) as E(ψ) = 0 for every ψ ∈ STσ , where

E(ψ) := 〈u(t), ψ(t)〉 − 〈u(0), ψ(0)〉 −
∫ t

0
〈u(τ),∂tψ(τ)〉 dτ (3.7)

−
∫ t

0
〈u(τ)⊗ u(τ) : ∇ψ(τ)〉 dτ

and observe that E is linear in ψ. Further, we observe that STσ is dense in Lσ and

therefore for an f ∈ Lσ there exists a sequence of functions ψn ∈ STσ such that

‖f − ψn‖Lσ := ‖f − ψn‖L1(0,T ;H3) + ‖f − ψn‖C0,1([0,T ];L2) ≤
1

n

and ψn is a Cauchy sequence under the Lσ norm.

We need to show that for ψ ∈ STσ that |E(ψ)| ≤ C‖ψ‖Lσ and will proceed

term-by-term. For the first two terms of (3.7) we have

|〈u(t), ψ(t)〉 − 〈u(0), ψ(0)〉| ≤ 2‖u‖L∞(0,T ;L2)‖ψ‖L∞(0,T ;L2)

≤ 2‖u‖L∞(0,T ;L2)‖ψ‖C0,1(0,T ;L2),

using the fact that u ∈ Cw([0, T ];Hσ). For the last term of (3.7) we observe that

∣∣∣∣∫ t

0
〈u(τ)⊗ u(τ) : ∇ψ(τ)〉dτ

∣∣∣∣ ≤ T‖u‖2L∞(0,T ;L2)‖∇ψ‖L1(0,T ;L∞)

≤ T‖u‖2L∞(0,T ;L2)‖ψ‖L1(0,T ;H3)

using the general Sobolev inequalities from Evans (1998), Chapter 5, here for spatial

dimension three but for higher dimensions more derivatives will be needed. Finally

for the third term of (3.7)

∣∣∣∣∫ t

0
〈u(τ), ∂τψ(τ)〉dτ

∣∣∣∣ ≤ ‖u‖L∞(0,T ;L2)‖∂τψ‖L1(0,T ;L2)
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and we want to show that ‖∂τψ‖L1(0,T ;L2) ≤ C‖ψ‖C0,1(0,T ;L2). We see that

‖∂τψ‖L1(0,T ;L2) =

∫ T

0

[∫
|∂τψ(x, τ)|2 dx

] 1
2

dτ

=

∫ T

0

[∫ ∣∣∣∣ limh→0

ψ(x, τ + h)− ψ(x, τ)

h

∣∣∣∣2 dx

] 1
2

dτ

=

∫ T

0

[∫
lim
h→0

∣∣∣∣ψ(x, τ + h)− ψ(x, τ)

h

∣∣∣∣2 dx

] 1
2

dτ.

We can now use Dominated Convergence Theorem since ψ ∈ STσ and so

‖∂τψ‖L1(0,T ;L2) =

∫ T

0
lim
h→0

1

|h|

[∫
|ψ(x, τ + h)− ψ(x, τ)|2 dx

] 1
2

dτ

≤ T sup
t∈[0,T ]

lim
h→0

1

|h|

[∫
|ψ(x, τ + h)− ψ(x, τ)|2 dx

] 1
2

dτ

≤ T‖ψ‖C0,1(0,T ;L2).

It follows that

|E(ψ)| ≤ C‖u‖L∞(0,T ;L2)‖ψ‖C0,1([0,T ];L2) + C‖u‖2L∞(0,T ;L2)‖ψ‖L1(0,T ;H3).

We want to show that E(f) := limn→∞E(ψn) = 0. As E is linear and for

ψ ∈ STσ we have that |E(ψ)| ≤ C‖ψ‖Lσ then for m > n ≥ N we have that

|E(ψn)− E(ψm)| = |E(ψn − ψm)| ≤ C‖ψn − ψm‖Lσ ≤
C

n

and so E(ψn) is a Cauchy sequence and so by completeness of R it converges and

as E(ψn) = 0 for all n thus E(f) = 0 for any f ∈ Lσ. �

We now study the time regularity of u when paired with a sufficiently smooth

function that is not necessarily divergence free.
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Lemma 3.4 If u is a weak solution of the Euler equations then

|〈u(t)− u(s), φ〉| ≤ C|t− s| for all φ ∈ H3(D), (3.8)

where C depends only on ‖u‖L∞(0,T ;L2) and ‖φ‖H3.

Proof We use Lemma 3.1 to decompose φ ∈ S(D) as φ = η+∇σ, where η ∈ Sσ(D),

σ ∈ S(D), we have

‖∇η‖L∞ ≤ ‖∇η‖H2 ≤ ‖η‖H3 ≤ C‖φ‖H3 ,

using (3.1) and the fact that H2(D) ⊂ L∞(D). Since u(t) is incompressible for

every t ∈ [0, T ], we have

〈u(t)− u(s), φ〉 = 〈u(t)− u(s), η +∇σ〉 = 〈u(t)− u(s), η〉.

Since η ∈ Sσ and ∂tη = 0 it follows from Definition 3.2 of a weak solution at times

t and s that

〈u(t)− u(s), φ〉 =

∫ t

s
〈u(τ)⊗ u(τ) : ∇η〉 dτ

and hence

|〈u(t)−u(s), φ〉| ≤ ‖u‖2L∞(0,T ;L2)‖∇η‖L∞ |t−s| ≤ C‖u‖
2
L∞(0,T ;L2)‖φ‖H3 |t−s|, (3.9)

which gives (3.8) for all φ ∈ S.

We now want to extend to φ ∈ H3(D). Let ψ ∈ S and φ ∈ H3 such that,

using density, there exists ε > 0 such that ‖ψ − φ‖H3 ≤ ε then we have

|〈u(t)− u(s), φ〉| ≤ |〈u(t)− u(s), φ− ψ〉|+ |〈u(t)− u(s), ψ〉|

≤ C‖u‖L∞(0,T ;L2)‖φ− ψ‖H3 + |〈u(t)− u(s), ψ〉| ≤ Cε+ |〈u(t)− u(s), ψ〉|.
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We can now use (3.9) to see that

|〈u(t)− u(s), φ〉| ≤ Cε+ C‖u‖2L∞(0,T ;L2)‖ψ‖H3 |t− s|

≤ Cε+ C‖u‖2L∞(0,T ;L2)‖ψ − φ‖H3 |t− s|+ C‖u‖2L∞(0,T ;L2)‖φ‖H3 |t− s|

≤ Cε+ C‖u‖2L∞(0,T ;L2)‖φ‖H3 |t− s|.

Since we can make ε arbitrarily small we are done. �

A striking corollary of this weak continuity in time is that a mollification in

space alone yields a function that is Lipschitz continuous in time.

Corollary 3.5 Given a solution u of the Euler equations we have Jεu ∈ Lσ for any

ε > 0; in particular the function Jεu(x, t) is Lipschitz continuous in t as a function

into L2(D):

‖Jεu(·, t)− Jεu(·, s)‖L2 ≤ Cε‖u‖2L∞(0,T ;L2)|t− s|. (3.10)

Proof Take f ∈ L2(D) with ‖f‖L2(D) = 1, and let φ = Jεf . Then φ ∈ H3(D), and

using the symmetry property (3.4) we have

〈u(t)− u(s), φ〉 = 〈u(t)− u(s), Jεf〉

= 〈(Jεu(t)− Jεu(s)), f〉.

Since we have ‖φ‖H3 ≤ Cε‖f‖L2 = Cε it follows from Lemma 3.4 using the bound

(3.9) that

|〈Jεu(t)− Jεu(s), f〉| ≤ Cε‖u‖2L∞(0,T ;L2)|t− s|.

Since this holds for every f ∈ L2(D) with ‖f‖L2(D) = 1 we obtain the inequality

(3.10) and Jεu ∈ C0,1([0, T ];L2).

As mollification commutes with differentiation it follows that Jεu is diver-

gence free. Finally, since u ∈ L∞(0, T ;L2), we observe that Jεu ∈ L∞(0, T ;H3)

and

‖Jεu‖L1(0,T ;H3) ≤ T‖Jεu‖L∞(0,T ;H3)
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as [0, T ] is bounded. �

We have now obtained the results needed to use Jεu as a test function in the

definition of a weak solution. We can combine the results of Lemma 3.3 and the

previous Corollary 3.5 so use Jεu as a test function and obtain

〈u(t), Jεu(t)〉 − 〈u(0), Jεu(0)〉 −
∫ t

0
〈u(τ), ∂tJεu(τ)〉 dτ

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇Jεu(τ)〉dτ ;

we have validated equation (3.5), the first of the two equalities we need.

3.2.1 Mollifying the equation

We will now derive (3.6). The idea is to test with a mollified test function and move

the mollification from the test function onto the terms involving u; all terms are

then smooth enough to allow for an integration by parts.

Lemma 3.6 If u is a weak solution of the Euler equations from Definition 3.2 then

∫ t

0
〈∂tJεu, φ〉 dτ = −

∫ t

0
〈∇ · Jε[u⊗ u], φ〉 dτ (3.11)

for every t ∈ [0, T ] and any φ ∈ STσ .

Proof Take φ ∈ STσ , and use ψ := ϕε?φ as the test function in the weak formulation

(3.2). Then

〈u(t), (ϕε ? φ)(t)〉 − 〈u(0), (ϕε ? φ)(0)〉 −
∫ t

0
〈u(τ), ∂t[ϕε ? φ](τ)〉 dτ

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇[ϕε ? φ](τ)〉dτ.

Since we have chosen ϕ to be even we have that 〈ϕε ? u, v〉 = 〈u, ϕε ? v〉 (see (3.4))

and therefore we can move the derivatives and mollification onto the terms involving

u. We will do this in detail for the term on the right-hand side, since it is the most
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complicated; the other terms follow similarly. We obtain

∫ t

0
〈u(τ)⊗ u(τ) : ∇[ϕε ? φ](τ)〉dτ =

∫ t

0
〈u(τ)⊗ u(τ) : ϕε ?∇φ(τ)〉dτ

=

∫ t

0
〈Jε[u(τ)⊗ u(τ)] : ∇φ(τ)〉 dτ = −

∫ t

0
〈∇ · Jε[u(τ)⊗ u(τ)], φ(τ)〉dτ.

This implies that

〈Jεu(t), φ(t)〉 − 〈Jεu(0), φ(0)〉 −
∫ t

0
〈Jεu(τ), ∂tφ(τ)〉dτ

= −
∫ t

0
〈∇ · Jε[u(τ)⊗ u(τ)] : φ(τ)〉dτ.

Since Jεu and φ are both absolutely continuous in time, the integration-by-parts

formula

〈Jεu(t), φ(t)〉 − 〈Jεu(0), φ(0)〉 −
∫ t

0
〈Jεu(τ), ∂tφ(τ)〉 dτ =

∫ t

0
〈∂tJεu(τ), φ(τ)〉 dτ

finishes the proof. �

We now show that (3.11) holds for a much larger class of functions than

φ ∈ STσ under some additional integrability conditions on u.

Lemma 3.7 If u is a weak solution of the Euler equations from Definition 3.2 and in

addition u ∈ L3(0, T ;L3) then (3.11) holds for any φ ∈ L3(0, T ;L3) ∩ Cw(0, T ;Hσ).

(Recall that we use Cw(0, T ;Hσ) to denote Hσ-valued functions that are weakly

continuous into L2.)

Proof First we will obtain from (3.11) an equation that holds for all test functions

ψ from the space S(D × [0, T ]), not just for ψ ∈ STσ . For this we will use the

Leray projection P, (see Robinson, Rodrigo, & Sadowksi (2016), for example), the

projection onto divergence-free vector fields. Since for any ψ ∈ S(D × [0, T ]) we

have Pψ ∈ Sσ, it follows from (3.11) that

∫ t

0
〈∂tJεu+∇ · Jε[u⊗ u],Pψ〉 dτ = 0.
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Since P is symmetric (〈Pg, f〉 = 〈g,Pf〉) and P∂tJεu = ∂tJεu (since P commutes

with derivatives and Jεu is incompressible) we obtain

∫ t

0
〈∂tJεu+ P(∇ · Jε[u⊗ u]), ψ〉dτ = 0 for every ψ ∈ S(D × [0, T ]).

Since Jεu is Lipschitz in time (as a function from [0, T ] into Hσ) its time derivative

∂tJεu exists almost everywhere (see Theorem 5.5.4 in Albiac & Kalton (2016), for

example) and is integrable; we can therefore deduce using the Fundamental Lemma

of the Calculus of Variations (u ∈ L2(Ω) with
∫

Ω u ·ψ = 0 for all ψ ∈ C∞c (Ω) implies

that u = 0 almost everywhere in Ω, see e.g. Lemma 3.2.3 in Jost & Li-Jost (1998))

that for almost every (x, t) ∈ D × [0, T ]

∂tJεu+ P(∇ · Jε(u⊗ u)) = 0.

Observing that P∇·Jε(u⊗u) ∈ L3/2(0, T ;L3/2) and that ∂tJεu has the same

integrability since ∂tJεu = −P∇ · Jε(u ⊗ u), we can now multiply this equality by

any choice of function φ ∈ L3(0, T ;L3) ∩ Cw(0, T ;Hσ) and integrate:

∫ t

0
〈∂tJεu, φ〉dτ = −

∫ t

0
〈P∇ · Jε[u⊗ u], φ〉 dτ

= −
∫ t

0
〈∇ · Jε[u⊗ u],Pφ〉 dτ = −

∫ t

0
〈∇ · Jε[u⊗ u], φ〉dτ,

where we have used the fact that Pφ = φ since φ(t) ∈ Hσ for every t ∈ [0, T ]. �

Note that the condition on u ∈ L3(0, T ;L3) is stronger than necessary for

the proof but since Theorem 3.9 will need this condition the above result will suffice

for our purposes.

We can now use u as a test function in (3.11) and thereby obtain equation

(3.6), the second of the equalities we need.
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3.2.2 Energy Conservation

We can now add equations (3.5) and (3.6) to obtain

〈u(t), Jεu(t)〉 − 〈u(0), Jεu(0)〉

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇Jεu(τ)〉 − 〈∇ · Jε[u(τ)⊗ u(τ)], u(τ)〉 dτ, (3.12)

valid for any u ∈ L3(0, T ;L3) ∩ Cw(0, T ;Hσ) that is a weak solution to the Euler

equations.

In order to proceed we will need the following identity. We note that its

validity is entirely independent of the Euler equations, but relies crucially on the

fact that ϕ is radial and that the function v is weakly incompressible, so in Hσ.

Lemma 3.8 Suppose that v ∈ L3 ∩Hσ and define

Jε(v) :=

∫
R3

∫
R3

∇ϕε(ξ) · (v(x+ ξ)− v(x))|v(x+ ξ)− v(x)|2 dξ dx.

Then

1
2Jε(v) = 〈∇ · Jε[v(τ)⊗ v(τ)], v(τ)〉 − 〈v(τ)⊗ v(τ) : ∇Jεv(τ)〉.

Proof We have

Jε(v) =

∫
R3

∫
R3

∂iϕε(ξ)(vi(x+ ξ)−vi(x))(vj(x+ ξ)−vj(x))(vj(x+ ξ)−vj(x)) dξ dx.

Expanding the expression for Jε(v) yields

∫
R3

{∫
R3

∂iϕε(ξ)vi(x+ ξ)vj(x+ ξ)vj(x+ ξ) dξ −
∫
R3

∂iϕε(ξ)vi(x)vj(x)vj(x) dξ

+

∫
R3

∂iϕε(ξ)vi(x+ ξ)vj(x)vj(x) dξ −
∫
R3

∂iϕε(ξ)vi(x)vj(x+ ξ)vj(x+ ξ) dξ

+2

[∫
R3

∂iϕε(ξ)vi(x)vj(x+ ξ)vj(x) dξ −
∫
R3

∂iϕε(ξ)vi(x+ ξ)vj(x+ ξ)vj(x) dξ

]}
dx.

Note that the second term is zero since ϕε has compact support, and the third term

is zero since v is incompressible. For the fourth term we can change variables and
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set η = x+ ξ to obtain

−
∫
R3

∫
R3

∂ηiϕε(η − x)vi(x)vj(η)vj(η) dη dx.

As ∂iϕε is an odd function we have

∫
R3

∫
R3

∂iϕε(x− η)vi(x)vj(η)vj(η) dη dx,

which becomes

∫
R3

vi(x)∂xi

[∫
R3

ϕε(x− η)vj(η)vj(η) dη

]
dx =

∫
R3

vi(x)∂i(Jε[vjvj ]) dx = 0,

where again the term becomes zero as we use the incompressibility of v. A similar

calculation for the first term gives

∫
R3

∫
R3

∂iϕε(ξ)vi(x+ ξ)vj(x+ ξ)vj(x+ ξ) dξ dx =

∫
R3

∂i(Jε[vivjvj ])(x) dx = 0,

using periodicity and decay at ∞. For the final two terms similar calculations yield

2

∫
R3

[vj∂iJε(vjvj)− vjvi∂iJε(vj)] dx = 2[〈∇ · Jε[v ⊗ v], v〉 − 〈v ⊗ v : ∇Jεv〉]

and the result follows. �

Note that here again the assumption that v ∈ L3 is stronger than needed

but will hold when we use the result in Theorem 3.9.

We now want to look at the limit as ε → 0 of both sides of (3.12) and see

what condition on the solution is needed for the right hand side of (3.12) to converge

to zero. While we only need to show energy conservation on the time interval [0, t]

we will present the argument for a general interval [t1, t2] as it does not require any

additional arguments.

Let t1, t2 ∈ [0, T ] with t1 < t2. We can take the difference of (3.12) with itself

once with t = t1 then t = t2 and then take the difference of these two equations to
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obtain

〈u(t2), Jεu(t2)〉 − 〈u(t1), Jεu(t1)〉

=

∫ t2

t1

〈u(τ)⊗ u(τ) : ∇Jεu(τ)〉 − 〈∇ · Jε[u(τ)⊗ u(τ)], u(τ)〉dτ

= −1

2

∫ t2

t1

Jε(u) dt.

Therefore talking the limit as ε→ 0, since u ∈ Cw([0, T ];Hσ) we obtain

‖u(t2)‖2L2 − ‖u(t1)‖2L2 = −1

2
lim
ε→0

∫ t2

t1

Jε(u) dt.

Hence any condition on u that guarantees that

lim
ε→0

∫ t2

t1

Jε(u) dt→ 0 as ε→ 0 (3.13)

ensures energy conservation. We give two such conditions in the next section.

3.3 Two spatial conditions for energy conservation in

the absence of boundaries

First we provide another proof (cf. Shvydkoy, 2009) of energy conservation under

condition (1.4). Here, we will consider a different commutator, namely, Jε(u), as

we show (3.13), without requiring Fourier analysis.

Theorem 3.9 If u ∈ L3(0, T ;L3(D)) is a weak solution of the Euler equations that

satisfies

lim
|y|→0

1

|y|

∫ T

0

∫
D
|u(t, x+ y)− u(t, x)|3 dx dt = 0,

then energy is conserved on [0, T ].

Proof We take t1, t2 with 0 ≤ t1 ≤ t2 ≤ T , and consider the integral of |Jε(u)|

over [t1, t2]; our aim is to show that this is zero in the limit as ε → 0. We start by
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noticing that

∫ t2

t1

|Jε(u)| dt ≤
∫ t2

t1

∫
D

∫
R3

1

ε4

∣∣∣∣∇ϕ(ξε
)∣∣∣∣ |u(x+ ξ)− u(x)|3 dξ dx dt.

We can then change variables ξ = ηε and obtain,

∫ t2

t1

|Jε(u)| dt ≤
∫ t2

t1

∫
D

∫
R3

1

ε
|∇ϕ (η)| |u(x+ εη)− u(x)|3 dη dx dt.

Using Fubini’s Theorem we can exchange the order of the integrals:

∫ t2

t1

|Jε(u)| dt ≤
∫
R3

∫ t2

t1

∫
D

|u(x+ εη)− u(x)|3

|εη|
dx dt |η| |∇ϕ (η)| dη.

Taking limits as ε goes to zero

lim
ε→0

∫ t2

t1

|Jε(u)| dt ≤ lim
ε→0

∫
R3

∫ t2

t1

∫
D

|u(x+ εη)− u(x)|3

|εη|
dx dt |η| |∇ϕ (η)| dη.

We are finished if we can exchange the outer integral and limit. This can be done

using the Dominated Convergence Theorem. To do this we define the non-negative

function,

f(y) =
1

|y|

∫ t2

t1

∫
D
|u(x+ y)− u(x)|3 dx dt.

By assumption lim sup|y|→0 f(y) = 0, thus for any ε>0, we have supy∈B0(ε) f(y)≤K

for some K = K(ε). Further, supp(ϕ) is compact. Combining these facts we obtain

a dominating integrable function

g(η) := K|η| |∇ϕ (η)| ,

and the result follows. �

We now show how the general condition in (3.13) allows for a simple proof

of energy conservation when u ∈ L3(0, T ;Wα,3(R3)) for any α > 1/3. The use

of condition (3.14) below to characterise this space is due independently to Aron-

szajn, Gagliardo, and Slobodeckij, see Di Nezza, Palatucci, & Valdinoci (2012), for

example.
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Theorem 3.10 If u is a weak solution of the Euler equations on the whole space

that satisfies u ∈ L3(0, T ;Wα,3(R3)) for some α > 1/3, i.e. if u ∈ L3(0, T ;L3(R3))

and ∫
R3

∫
R3

|u(x)− u(y)|3

|x− y|3+3α
dx dy <∞, (3.14)

then energy is conserved.

Proof First observe that for α > 1/3 the space Wα,3 has a factor |x− y|4+δ in the

denominator of (3.14), where δ = 3α− 1 > 0.

As in the previous proof, our starting point is that

∫ t2

t1

|Jε(u)|dt ≤
∫ t2

t1

∫
R3

∫
R3

1

ε4

∣∣∣∣∇ϕ(ξε
)∣∣∣∣ |u(x+ ξ)− u(x)|3 dξ dx dt.

We can write

∫ t2

t1

∫
R3

∫
R3

1

ε4

∣∣∣∣∇ϕ(y − xε
)∣∣∣∣ |u(y)− u(x)|3 dy dx dt

=

∫ t2

t1

∫
R3

∫
R3

1

ε4

∣∣∣∣∇ϕ(y − xε
)∣∣∣∣ |u(y)− u(x)|3 dy dx dt

=

∫ t2

t1

∫
R3

∫
R3

|y − x|4+δ

ε4

∣∣∣∣∇ϕ(y − xε
)∣∣∣∣ |u(y)− u(x)|3

|y − x|4+δ
dy dx dt

≤ cKϕε
δ

∫ t2

t1

∫ ∫
|u(y)− u(x)|3

|y − x|4+δ
dy dx dt = cεδ,

since ‖∇ϕ‖L∞ ≤ Kϕ and the integrand is only non-zero within the support of ϕ,

i.e. where |y − x| ≤ 2ε. Energy conservation now follows. �

3.4 Conclusion

In this chapter we have presented an explicit method to prove energy conservation of

weak solutions of the incompressible Euler equations where there are no boundaries.

Though this method was presented for the spacial domains D, of dimension 3, we

can generalise to any dimension d ≥ 2 with all the potential d-dimensional hybrid

domain variations of T and R. Here we have focused on a method that does not use

Fourier techniques and so is easier to generalise when considering the problem with
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a boundary. Here we have given a complete proof to show the time regularity of the

regularised solution and so justify the use of Jεu as a test function. The method to

obtain the required time regularity is easy to generalise when considering a domain

with a boundary and these steps are done in Chapter 5. As shown in Chapter 2

the final condition we use to prove energy conservation is the weakest condition

known and as defined without using Fourier techniques so we will consider similar

conditions in domains with boundaries to prove energy conservation.
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Chapter 4

Energy Balance on T2 × R+

We will now present the first result that concerns a domain where we do have a

boundary that is flat and has finite area. Here we consider the domain T2 × R+,

where R+ = [0,∞), with a weak form of incompressibility that encodes the non-flux

boundary condition prescribed for C1 solutions, that for a solution u, u·n = u·e3 = 0

on ∂(T2×R+) = T2×{0}. We will consider a weak formulation of the equation that

only prescribes a boundary pressure term that is a distribution on the boundary.

We then show that such a solution u can be extended to a weak solution uE on the

boundary-free domain D := T2 × R. (Note that in this chapter we reserve D for

this particular domain.)

This extension is then shown to have the property that it solves the weak

formulation of the equations in the lower domain T2 × R−, where R− = (−∞, 0],

where the boundary pressure term is the same as before. However, the normal

component at the boundary is now in the opposite direction and thus uE solves the

weak formulation of the equations on D, as considered in the previous Chapter 3

(Definition 3.2).

Finally, we can relate the condition for energy conservation for uE back to

conditions on u and obtain the result that if u ∈ L3(0, T ;L3(T2 × R+)) is a weak

solution of the Euler equations that satisfies u ∈ L3(0, T ;C0(T 2 × [0, δ]) for some
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δ > 0 and

lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ ∞
|y|
|u(t, x+ y)− u(t, x)|3 dx3 dx1 dx2 dt = 0;

then u conserves energy on [t1, t2].

Throughout this chapter as we will be dealing with functions supported on

D−, D+ and D. For ease of notation if we have functions v with support D− and w

with support D+ then will define v + w with support D as the sum of functions ṽ

and w̃, both with support D, where ṽ and w̃ are the functions v and w respectively

where they have been extended by zero.

4.1 Weak solutions on D+ := T2 × R+

In this section we will specify the class of weak solutions we will be studying on D+

but first we will need to define and explain the properties of the function spaces we

will be using; for more details one can study Chapter 2 of Robinson, Rodrigo, &

Sadowksi (2016).

We define S(D+) and Sσ(D+) by restricting functions in S(T2 × R) and

Sσ(T2 × R) to D+; this means that we have Schwartz-like decay in the unbounded

direction, and that the functions have a smooth restriction to the boundary.

We let

Sn,σ(D+) := {φ ∈ S(D+) : ∇ · φ = 0 and φ3 = 0 on ∂D+} (4.1)

and define Hσ(D+) to be the completion of Sn,σ(D+) in the norm of L2(D+). Func-

tions in Hσ(D+) are weakly divergence free in that they satisfy

〈u,∇φ〉 = 0 for every φ ∈ H1(D+); (4.2)

that this holds for every φ ∈ H1(D+) and not only for φ ∈ D(D+) (which can be

proved exactly as in Section 3.1 for the domain D) will be useful in what follows.

[In this case, although there is a boundary, for any φ ∈ Sn,σ(D+) we have vanishing
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normal component. This means that the potential boundary term that would appear

in applying Gauss’s formula vanishes and so we obtain weak incompressibility. This

is shown in Lemma 2.11 in Robinson, Rodrigo, & Sadowksi (2016).]

For functions in Hσ we see that they have a vanishing normal component in

trace sense given by the Gauss formula. That is, the normal component of u is well

defined on the boundary as a bounded linear functional on the space of traces of

functions in H1 given by

0 = 〈∇ · u, v〉D+ + 〈u,∇v〉D+ =

∫
∂D+

(u · n)v dx

for u ∈ Hσ and v ∈ H1 (since ∂D+ is Lipschitz).

As before, in a slight abuse of notation we denote by Cw([0, T ];Hσ(D+))

the collection of all functions u : [0, T ] → Hσ(D+) that are weakly continuous into

L2(D+).

We define

STσ (D+) := {ψ ∈ C∞(D+ × [0, T ]) : ψ(·, t) ∈ Sσ(D+) for every t ∈ [0, T ]},

which will be our space of test functions; note that these functions are smooth and

incompressible, but there is no restriction on their values on ∂D+.

To obtain a weak formulation of the equations on D+ we consider first a

smooth solution u with pressure p that satisfies the Euler equations
∂tu+∇ · (u⊗ u) +∇p = 0 in D+

∇ · u = 0 in D+

u · n = 0 on ∂D+,

where n is the outward normal to ∂D+, so that the third equation is in fact u3 = 0

on ∂D+. We can now multiply the first line by a test function φ ∈ STσ and integrate
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over space and time to give

∫ t

0
〈∂tu+∇ · (u⊗ u) +∇p, φ〉D+ dτ = 0.

We can now integrate by parts and obtain

〈u(t), φ(t)〉D+ − 〈u(0), φ(0)〉D+ −
∫ t

0
〈u, ∂tφ〉D+ dτ −

∫ t

0
〈u⊗ u : ∇φ〉D+ dτ

− 〈u3, u · φ〉∂D+×[0,t] dτ −
∫ t

0
〈p,∇ · φ〉D+ dτ + 〈p, φ · n〉∂D+×[0,t] = 0.

We notice that as u3 = 0 on ∂D+ and ∇·φ = 0 in D+ the two terms involving these

expressions vanish and we have

〈u(t), φ(t)〉D+ − 〈u(0), φ(0)〉D+ −
∫ t

0
〈u, ∂tφ〉D+ dτ

−
∫ t

0
〈u⊗ u : ∇φ〉D+ dτ + 〈p, φ · n〉∂D+×[0,t] = 0.

Since we have not restricted the values of φ on ∂D+ we have a contribution

from the boundary, namely

〈p, φ3〉∂D+×[0,t].

We therefore require p ∈ D′(∂D+ × [0, T ]) in our definition of a weak solution.

Definition 4.1 (Weak Solution on D+) A weak solution of the Euler equations

on D+×[0, T ] is a pair (u, p), where u∈Cw([0, T ];Hσ(D+)) and p∈D′(∂D+×[0, T ])

such that

〈u(t), φ(t)〉D+ − 〈u(0), φ(0)〉D+ −
∫ t

0
〈u(τ), ∂tφ(τ)〉D+ dτ

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇φ(τ)〉D+ dτ − 〈p, φ · n〉∂D+×[0,t], (4.3)

for every t ∈ [0, T ] and for every φ ∈ STσ (D+).

Note that in the final term, φ · n = −φ3.
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4.2 Half plane reflection map

We introduce an extension uE := u+ uR a.e. that takes a vector field u defined in

D+ to one defined on the whole of D. Essentially we extend ‘by reflection’, with

appropriate sign changes to ensure that uR, the ‘reflection’ of u, is a weak solution

on D− := T2 × R−. We can then show that uE is a weak solution on the whole of

D (in the sense of Definition 3.2).

Given a vector-valued function f : D± → R3 we define fR : D∓ → R3 by

fR(x, y, z) :=


f1(x, y,−z)

f2(x, y,−z)

−f3(x, y,−z)

 (4.4)

extending f and fR by zero beyond their natural domain of definition, we set

fE(x, y, z) :=


f(x, y, z) + fR(x, y, z) z 6= 0

1
2(f(x, y, z) + fR(x, y, z)) = (f1(x, y, 0), f2(x, y, 0), 0) z = 0.

Clearly fE = f + fR almost everywhere.

Lemma 4.2 If u ∈ Hσ(D+) then uR ∈ Hσ(D−) and uE ∈ Hσ(D).

Proof Since u ∈ Hσ(D+) there exists un ∈ Sn,σ(D+) (see (4.1)) such that un → u

in L2(D+). Clearly un,R ∈ Sn,σ(D−) and un,R → uR in L2(D−). Therefore uR ∈

Hσ(D−). Further, un+un,R trivially belongs to Sσ(D) and is divergence free. Since

un + un,R converges to uE in L2(D) we obtain the desired result. �

Now we will show that, with an appropriate choice of the pressure, uR is a

weak solution of the Euler equations in the lower half space D−. Note that we do

not need to extend the pressure distribution p.
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Theorem 4.3 If (u, p) is a weak solution to the Euler equations on D+ then (uR, p)

is a weak solution in D−, i.e.

〈uR(t), φ(t)〉D− − 〈uR(0), φ(0)〉D− −
∫ t

0
〈uR(τ), ∂tφ(τ)〉D− dτ

=

∫ t

0
〈uR(τ)⊗ uR(τ) : ∇φ(τ)〉D− dτ − 〈p, φ · n〉∂D−×[0,t], (4.5)

for every t ∈ [0, T ] and for every φ ∈ STσ (D−).

Note that, as always, n represents the outward normal to the domain (here

D−), and therefore in the final term we have φ · n = φ3.

Proof Notice first that any φ ∈ STσ (D−) can be written as ψR, where ψ = φR and

φR ∈ STσ (D+). Now, the change of variables (x1, x2, x3)→ (y1, y2,−y3) in the linear

term yields

〈uR, ψR〉D− = 〈u, ψ〉D+ .

For the nonlinear term one can check case-by-case, with the same change of variables,

that ∫
D−

[(uR)i(uR)j∂j(ψR)i](x) dx =

∫
D+

[uiuj∂jψi](y) dy.

Finally for the pressure term we have

〈p, ψ · n〉∂D+ = 〈p, ψ3〉 = −〈p, φ3〉 = 〈p, φ · n〉∂D− ,

since ψ3(x, y, 0) = −φ3(x, y, 0). �

By adding (4.3) and (4.5) it follows that uE is a weak solution of the Euler

equations on D.

Corollary 4.4 The extension uE is a weak solution of the Euler equations on D in

the sense of Definition 3.2.

50



Proof For ζ ∈ STσ we can use ζ|D+ as a test function in (4.3) and ζ|D− in (4.5)

and add the two equations to obtain

〈uE(t), ζ(t)〉D − 〈uE(0), ζ(0)〉D −
∫ t

0
〈uE(τ), ∂tζ(τ)〉D dτ

=

∫ t

0
〈uE(τ)⊗ uE(τ) : ∇ζ(τ)〉D dτ,

where the pressure terms have cancelled due to the opposite signs of the normal

in the two domains; but this is now the definition of a weak solution of the Euler

equations in D, given by Definition 3.2. �

Since uE is a weak solution of the incompressible Euler equations on D,

Corollary 3.9 guarantees that if uE ∈ L3(0, T ;L3(D)) and

lim
|y|→0

1

|y|

∫ T

0

∫
D
|uE(t, x+ y)− uE(t, x)|3 dx dt = 0, (4.6)

then uE conserves energy on [t1, t2]. Due to the definition of uE this implies that

‖uE(t2)‖2L2(D) − ‖uE(t1)‖2L2(D) = 2‖u(t2)‖2L2(D+) − 2‖u(t1)‖2L2(D+) = 0,

i.e. we obtain energy conservation for u, as a solution on D+. We now find conditions

on u alone (rather than uE = u+ uR) that guarantee that (4.6) is satisfied.

4.3 Energy Conservation on D+

Here we will prove our main result in Theorem 4.6: energy conservation on D+

under certain assumptions on the weak solution u. The bulk condition we need for

u to conserve energy is similar to the condition needed for Theorem 3.9, where we

had no boundary.
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Lemma 4.5 Let u ∈ L3(0, T ;L3(D+)) be a weak solution of the Euler equations on

D+ such that

lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ ∞
|y|
|u(t, x+ y)− u(t, x)|3 dx3 dx1 dx2 dt = 0; (4.7)

then (4.6) holds if and only if

lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ |y|
−|y|
|uE(t, x+ y)− uE(t, x)|3 dx3 dx2 dx1 dt = 0. (4.8)

Proof We can split the integral over D in (4.6) into three sub-integrals over the

regions A := {x|x3 > |y|}, B := {x|x3 < −|y|} and C := {x||x3| ≤ |y|}. We have

|uE(t, x+ y)− uE(t, x)|3 = [IA(x) + IB(x) + IC(x)] |uE(x+ y)− uE(x)|3.

For
∫
A, since x3 > 0 and x3 + y3 > 0 then uE is in fact u, thus

lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ ∞
−∞

IA(x)|uE(t, x+ y)− uE(t, x)|3 dx3 dx1 dx2 dt

= lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ ∞
|y|
|u(t, x+ y)− u(t, x)|3 dx3 dx1 dx2 dt = 0

by (4.7). For
∫
B a very similar argument holds with the extra changes of variables

x3 7→ −ξ3 and (y1, y2, y3) 7→ (ζ1, ζ2,−ζ3); then using the notation x̃ = (x1, x2) we

have

lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ ∞
−∞

IB(x)|uE(t, x+ y)− uE(t, x)|3 dx3 dx1 dx2 dt

= lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ −|y|
∞

|uE(t, x+ y)− uE(t, x)|3 dx3 dx1 dx2 dt

= lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ ∞
|y|
|u(t, x̃+ ỹ, ξ3 − y3)− u(t, x̃, ξ3)|3 dξ3 dx1 dx2 dt

= lim
|ζ|→0

1

|ζ|

∫ t2

t1

∫∫
T2

∫ ∞
|ζ|
|u(t, x̃+ ζ̃, ξ3 + ζ3)− u(t, x̃, ξ3)|3 dξ3 dx1 dx2 dt,
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which converges to zero by (4.7). This leaves only the integral over the region C,

which is (4.8). �

Thus to show energy conservation we have reduced the problem to showing

that

lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ |y|
−|y|
|uE(t, x+ y)− uE(t, x)|3 dx3 dx2 dx1 dt = 0.

We will impose the a condition of continuity on a strip around the boundary

to deal with the presence of this term, that is, there exists a δ > 0 such that

u ∈ L3(0, T ;C0(T2 × [0, δ])).

We note that, since ∂D+ = T2 is compact, for each t ∈ [0, T ] there exists a

non-decreasing function wt : [0,∞) → [0,∞) with wt(0) = 0 and continuous at 0,

such that

|u(t, x+ z)− u(t, x)| < wt(|z|) (4.9)

whenever x ∈ ∂D+ and x+ z ∈ D with |z| ≤ δ
2 .

We have assumed so far that u ∈ Cw([0, T ];Hσ(D+)) and so have u · n = 0

on the boundary in a trace sense. We are now assuming this extra continuity on this

strip around the boundary and so now have u · n = 0 on the boundary point-wise.

We can now provide conditions on u to ensure energy conservation.

Theorem 4.6 Let u ∈ L3(0, T ;L3(D+)) be a weak solution of the Euler equations

on D+ that satisfies u ∈ L3(0, T ;C0(T2 × [0, δ]) for some δ > 0, and

lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ ∞
|y|
|u(t, x+ y)− u(t, x)|3 dx3 dx1 dx2 dt = 0;

then u conserves energy on [t1, t2].
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Proof By considering Lemma 4.5 we just need to show that

lim
|y|→0

1

|y|

∫ t2

t1

∫∫
T2

∫ |y|
−|y|
|uE(t, x+ y)− uE(t, x)|3 dx3 dx2 dx1 dt = 0.

We have assumed that u ∈ L3(0, T ;C0(T2× [0, δ]), thus u ∈ L3(0, T ;L∞(T2× [0, δ])

and so

uE ∈ L3(0, T ;L∞(T2 × [−δ, δ]).

Then, since for all |y| < δ we have

1

|y|

∫∫
T2

∫ |y|
−|y|
|uE(t, x+ y)− uE(t, x)|3 dx3 dx2 dx1 ≤ C sup

x∈T2×[0,δ)

|u(t)|3,

we can move the limit inside the time integral using the Dominated Convergence

Theorem, and it suffices to show that

lim
|y|→0

1

|y|

∫∫
T2

∫ |y|
−|y|
|uE(t, x+ y)− uE(t, x)|3 dx3 dx2 dx1 = 0

for almost every t ∈ (t1, t2). As, u ∈ L3(0, T ;C0(T2 × [0, δ])

uE ∈ L3(0, T ;C0(T2 × [−δ, δ]),

this is because u ·n = 0 on the boundary point-wise and so the boundary values are

the same for u and uR. Now fix t and let x′ = (x1, x2, 0); then

|uE(t, x′ + x3 + y)− uE(t, x′ + x3)| ≤|uE(t, x′ + x3 + y)− uE(t, x′)

+ uE(t, x′)− uE(t, x′ + x3)|

≤wt(|y + x3|) + wt(|x3|) ≤ 2wt(2|y|)
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and thus

1

|y|

∫∫
T2

∫ |y|
−|y|
|uE(t, x+ y)− uE(t, x)|3 dx3 dx2 dx1

≤C 1

|y|

∫∫
T2

∫ |y|
−|y|
|wt(2|y|)|3 dx3 dx2 dx1

≤C 1

|y|
|T2||y||wt(2|y|)|3 → 0

as |y| → 0, which is what we required. �

We note that all the conditions for this theorem are satisfied by a weak

solution u that satisfies

|u(x, t)− u(y, t)| ≤ Cf(x3)|x− y|α

for α > 1
3 and f ∈ L3(0,∞).

4.4 Conclusion

This method is a consequence of the choice of extension and the symmetry of the

domain; furthermore, we do not need any estimates on the pressure. We further

see that for the bulk of the solution away from the boundary effects the same as-

sumptions as before on R3 or T3 are required. Here we need some interesting and

quite natural extra assumptions near and on the boundary, namely boundedness

and continuity at the boundary.

However, it is not obvious how to extend this method to an arbitrary bounded

domain as we would have to show that one can solve, for any region Ω, an outer

weak solution problem on Ωc, with a perscribed boundary pressure term, that has

the required regularity to apply the theory in Chapter 3 on R3.

We also have this boundary pressure term and it would be nice to remove this

from the proof. In Chapter 5 we will use a similar reflection map for the solution but

only in a local strip outside of the boundary and obtain energy conservation under

the same conditions as in this chapter but we use a definition of a weak solution
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that does not require the boundary pressure term, or indeed any pressure in the

definition.

56



Chapter 5

Energy Conservation on T2 × R+

via a Local Extension

It was noted that although the last chapter gave a simple proof of energy conserva-

tion on the domain T2×R+ under a weak set of conditions, the argument there had

a few drawbacks; we had a boundary pressure term appearing in the definition of a

weak solution and it would be difficult to generalise the method to a weak solution

of the Euler equations on an arbitrary bounded domain.

In this chapter we will fix all these drawbacks. We will consider the same

domain D+ but now we remove the boundary pressure term from the definition of

a weak solution. We only set a local extension and do not require the extension to

solve any form of equation, only to keep incompressibility and boundary conditions.

We still rely on the same conditions on the solution u as introduced in the previous

chapter.

With this local method and no boundary pressure term it should be easier

to generalise the argument to an arbitrary bounded domain.

The work in this chapter is an extension of Robinson et al. (2018b).
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5.1 Pressure-less weak solutions on D+ := T2 × R+

The spaces used here are similar to the ones defined in Sections 3.1 and 4.1 so we

will just point out the slight differences here.

We define the space of test functions

Sn,σ(D+ × [0, T ]) := {ψ ∈ S(D+ × [0, T ]) :

∇ · ψ(·, t) = 0, ψ · n = 0 on ∂D+ ∀t ∈ [0, T ]}.

Here we have added the restriction that ψ · n = 0 on ∂D+ to the space of test func-

tions. This allows us to remove the pressure term entirely in the weak formulation

of the solution.

To obtain a weak formulation on D+ assume that we have a smooth solution

u with pressure p that satisfies the incompressible Euler equations
∂tu+∇ · (u⊗ u) +∇p = 0 inD+

∇ · u = 0 inD+

u · n = 0 on ∂D+,

where n is the outer normal to ∂D+, so with this domain the third equation is in

fact u3 = 0 on ∂D+. We can multiply (inner product) the first line by a vector

valued test function φ ∈ Sn,σ(D+× [0, T ]) and integrate over all space and the time

interval (0, t) to obtain

∫ t

0
〈∂tu+∇ · (u⊗ u) +∇p, φ〉D+ dτ = 0,

where 〈·, ·〉D+ denotes the L2-inner product in space. We can now integrate by parts

58



and obtain

〈u(t), φ(t)〉D+ − 〈u(0), φ(0)〉D+ −
∫ t

0
〈u, ∂tφ〉D+ dτ −

∫ t

0
〈(u⊗ u) : ∇φ〉D+ dτ

−
∫
∂D+×[0,t]

u3u · φ dSx dτ −
∫ t

0
〈p,∇ · φ〉D+ dτ +

∫
∂D+×[0,t]

pφ3 dSx dτ = 0.

We notice that both u3 = 0 and φ3 = 0 on ∂D+; further, we have that ∇ · φ = 0 in

D+ and so the three terms involving these expressions vanish and we have

〈u(t), φ(t)〉D+ − 〈u(0), φ(0)〉D+ −
∫ t

0
〈u, ∂tφ〉D+ dτ −

∫ t

0
〈(u⊗ u) : ∇φ〉D+ dτ = 0.

Thus we have a weak formulation of the equations where there are no pressure terms

appearing.

Definition 5.1 (Pressure-less Weak Solution on D+) A weak solution of the

Euler equations on D+×[0, T ] is a vector-valued function u : D+×[0, T ]→ R3 where

u ∈ Cw([0, T ];Hσ(D+)) such that

〈u(t), ψ(t)〉D+ − 〈u(0), ψ(0)〉D+ −
∫ t

0
〈u(τ), ∂tψ(τ)〉D+ dτ (5.1)

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇ψ(τ)〉D+ dτ,

for every t ∈ [0, T ] and for all ψ ∈ Sn,σ(D+ × [0, T ]).

Here we have obtained a different definition of a weak solution on D+. In

Definition 4.1 we have the extra boundary pressure term. We will compare different

definitions of weak solutions in Chapter 6 but do not know the exact relation between

weak solutions given by these definitions or whether they are equivalent.

As in Chapter 3 we use the same definition of mollification, though when

we want to regularise a function we will need that function to be defined on all of

D := T2×R. Thus if we apply mollification to a function only defined on D+ what

we are implicitly doing is extending by zero to the entirety of D and then mollifying.
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5.2 Localised half plane reflection map

In Chapter 4 we used the extension uE and showed many useful properties of this

extension. However, for this chapter we will use a restricted form of the reflection

map introduced in Chapter 4. We will restrict to a region within distance δ of

the boundary to obtain ur, then get a restricted extension ue := u + ur almost

everywhere. We will then show that Jεue and JεJεue are incompressible in D+ and

have the required boundary conditions to be a test function. In order to prove these

properties of ur and ue we have to define a few more spaces with unusual boundary

conditions.

For ease of notation, for any set I ⊂ R we define DI := {x ∈ D : x3 ∈ I}.

To prove that Jεue and JεJεue are incompressible in D+ we have to define

some function spaces which will treat the boundary x3 = 0 differently to the new

boundary we have created at x3 = −δ.

Definition 5.2 We define the spaces of functions that are zero on the lower bound-

ary x3 = −δ

Dl(D[−δ,0]) := {ψ ∈ C∞(D[−δ,0]) : ψ = 0 for x3 = −δ},

Sl(D[−δ,∞)) := {ψ ∈ S(D[−δ,∞)) : ψ = 0 for x3 = −δ},

H1
l (D[−δ,0]) := the completion of Dl(D[−δ,0]) in the H1(D[−δ,0]) norm.

and

H1
l (D[−δ,∞)) := the completion of Sl(D[−δ,∞)) in the H1(D[−δ,∞)) norm.

Further, we define the incompressible spaces of functions with zero normal compo-
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nent on the upper boundary

Du,σ(D[−δ,0]) := {ψ ∈ C∞(D[−δ,0]) : divψ = 0 and ψ · n = 0 for x3 = 0}

and

Hu,σ(D[−δ,0]) := the completion of Du,σ(D[−δ,0]) in the L2(D[−δ,0]) norm.

Further, we define

Sσ(D[−δ,∞)) := {φ ∈ S(D[−δ,∞)) : ∇ · φ = 0}

and

H̃σ(D[−δ,∞)) := the completion of Sσ(D[−δ,∞)) in the L2(D[−δ,∞)) norm.

It is important to notice that we have used the notation H1
l (D[−δ,0]) to emphasise

that the boundary values are not zero on both boundaries but only on the lower

boundary x3 = −δ.

Functions in Hu,σ(D[−δ,0]) are weakly divergence free with respect to func-

tions in H1
l (D[−δ,0]) in that they satisfy

〈u,∇φ〉D[−δ,0] = 0 for every φ ∈ H1
l (D[−δ,0]).

The boundary terms we would expect when integrating by parts vanish as u has

zero normal component at the top boundary and φ vanishes at the lower boundary.

Indeed, since Du,σ(D[−δ,0]) is dense in Hu,σ(D[−δ,0]), for any u ∈ Hu,σ(D[−δ,0]) we

can find (uk) ∈ Du,σ(D[−δ,0]) such that uk → u in H1(D[−δ,0]), and then for any

φ ∈ H1
l (D[−δ,0]) we have

〈u,∇φ〉D[−δ,0] = lim
k→∞
〈uk,∇φ〉D[−δ,0] = lim

k→∞
〈∇ · uk, φ〉D[−δ,0] = 0.

61



We have no boundary terms in the integration-by-parts above as uk ·n = 0 on ∂D+

for all k and φ = 0 for {x3 = −δ}. Further, we notice that if v ∈ H̃σ(D[−δ,∞)) then

〈v,∇φ〉D[−δ,∞)
= 0 for every φ ∈ H1

l (D[−δ,∞)).

Given a vector-valued function f : D+ → R3 we define fR and fE as in

Section 4.2. We then define ge := ID[−δ,∞)
(x)gE(x) for some δ > 0 so this can be

considered as just a local extension of width δ from the boundary. This naturally

gives rise to the definition gr := I[−δ,∞)(x)gR(x).

We have defined this extension so that after mollification it should have all

the properties of a test function. This will allow us to use it as a test function so

we can regularise the equation and manipulate the terms.

Note that for any δ > 0 from the definition of ue that

‖ue‖Lp(D[−δ,∞)) ≤ ‖ue‖Lp(D) ≤ C‖u‖Lp(D+).

Lemma 5.3 If v ∈ Hσ(D+) then ve ∈ H̃σ(D[−δ,∞)) and for δ > 2ε

1. ‖ve‖Lp(D[−δ,∞)) ≤ C‖v‖Lp(D+), with C independent of δ,

2. Jε(ve) and Jε(Jε(ve)) are incompressible in D+, and

3. Jε(ve) · n = 0 and Jε(Jε(ve)) · n = 0 on ∂D+.

Proof To show that ve ∈ H̃σ(D[−δ,∞)), notice that since v ∈ Hσ(D+) the reflection

vR ∈ Hσ(D−), and therefore vr ∈ Hu,σ(D[−δ,0]) as vR satisfies the appropriate

boundary conditions at x3 = 0. We can then perform the same steps as in proving

Lemma 4.2.

For part 1 we see that

‖ve‖Lp(D[−δ,∞)
= ‖v + vR‖Lp(D[−δ,∞)) ≤ ‖v‖Lp(D+) + ‖vR‖Lp(D[−δ,∞)) ≤ C‖v‖Lp(D+)

as ‖vR‖Lp(D−) = ‖v‖Lp(D+). For part 2 we see that the extension is weakly in-
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compressible since it is in H̃σ(D[−δ,∞)) by Lemma 4.2 and so Jε(ve) is strongly

incompressible in D+. To show this note that ve ∈ H̃σ(D[−δ,∞)) and so

〈ve,∇φ〉D = 〈ve,∇φ〉D[−δ,∞)
= 0 for all φ ∈ Sl(D[−δ,∞))

where

φ ∈ Sl(D[−δ,∞)) := {φ ∈ S(D[−δ,∞)) : φ = 0 for x3 = −δ}.

We can let φ = Jεη or JεJεη for any η ∈ S(D[−(δ−2ε),∞)) and extend it by zero to

all of D so we keep that φ = 0 for x3 = −δ and thus

0 = 〈ve,∇Jεη〉D[−δ,∞)
= 〈Jεve,∇η〉D[−(δ−2ε),∞)

= 〈∇ · Jεve, η〉D[−(δ−2ε),∞)
.

Notice that we need δ − 2ε > 0. We have that Jεve is strongly incompressible in

D+. Similarly for JεJεve.

For part 3 we will first show that Jε(ve)3 = 0 on ∂D+. Note that this is the

same as Jε((ve)3) = 0. Our extension is locally an odd function in the region of

width δ in the third component and ϕε is an even function thus the integral over the

ball centered around the boundary is zero. Since Jεve is still odd the same argument

works for JεJεve. Here, as before, we need δ > 2ε so it is an odd extension. �

We now consider various convergence results for Jε(ue) and JεJε(ue).

Lemma 5.4 If u ∈ Lp(D+) with 1 ≤ p < ∞ then ‖Jε(ue) − u‖Lp(D+) → 0 and

‖JεJε(ue)− u‖Lp(D+) → 0.

Proof Since we are only integrating over D+ we have

‖JεJε(ue)− u‖Lp(D+) = ‖JεJε(ue)− ue‖Lp(D+) ≤ ‖JεJε(ue)− ue‖Lp(D).

Then as mollification converges in Lp(D) we are finished. For more details see Majda

& Bertozzi (2002) page 98. �

For the next lemma we will show that the reflection map can be moved
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across the L2 inner-product. The reflection map given by (4.4) can be extended

to functions defined on D so for f : D → R3 we define fR : D → R3, where we

reflect back from D to all of D again. Notice that in the proof of the lemma for

vr = ID[−δ,∞)
vR we need γ ≤ δ − ε to keep the symmetry used in the proof.

Lemma 5.5 Fix δ > 0, and let u and v be arbitrary vector fields on D. Let vr =

ID[−δ,∞)
vR then for γ ≤ δ we have

〈u, vr〉T2×(−γ,γ) = 〈ur, v〉T2×(−γ,γ).

Further, if ε, γ > 0 satisfy γ ≤ δ − ε we have

Jε(fr)(x) = [Jε(f)]r(x)

and thus

〈Jεu, Jεvr〉T2×(−γ,γ) = 〈Jεur, Jεv〉T2×(−γ,γ).

Proof The first part is just a simple change of variables of x3 to −ξ3, using the

symmetric domain of integration and the simple reflection map. Using the notation

x = (x̃, x3) we can use the change of variables x3 = −ξ3 so that

〈u, vr〉T2×(−γ,γ) =

∫∫
T2

∫ γ

−γ
ui(x̃, x3)vri(x̃, x3) dx3 dx̃

=

∫∫
T2

∫ γ

−γ
ui(x̃,−ξ3)vri(x̃,−ξ3) dξ3 dx̃.

We can use the maps of u 7→ ur and vr 7→ v in the region T2 × (−δ, δ). For i = 1, 2

∫∫
T2

∫ γ

−γ
ui(x̃,−ξ3)vri(x̃,−ξ3) dξ3 dx̃ =

∫∫
T2

∫ γ

−γ
uri(x̃, ξ3)vi(x̃, ξ3) dξ3 dx̃
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while for i = 3 we have that the minus sign moves across and so have

∫∫
T2

∫ γ

−γ
u3(x̃,−ξ3)v3r(x̃,−ξ3) dξ3 dx̃ =

∫∫
T2

∫ γ

−γ
−u3(x̃,−ξ3)− v3r(x̃,−ξ3) dξ3 dx̃

=

∫∫
T2

∫ γ

−γ
u3r(x̃, ξ3)(v3(x̃, ξ3) dξ3 dx̃

and so 〈u, vr〉T2×(−γ,γ) = 〈ur, v〉T2×(−γ,γ).

For the second part we just have to show that Jε(fr) = Jε(f)r in the region

where γ ≤ δ − ε as we can then apply the first part to obtain the result. As Jε acts

component-wise this is easy to see. For i = 1, 2

[Jε(fr)]i(x) =

∫
Bε(0)

ϕε(ỹ, y3)(fr)i(x̃− ỹ, x3 − y3) dy3 dỹ

=

∫
Bε(0)

ϕε(ỹ, y3)fi(x̃− ỹ,−x3 + y3) dy3 dỹ

=

∫
Bε(0)

ϕε(ỹ,−ξ3)fi(x̃− ỹ,−x3 − ξ3) dξ3 dỹ

=

∫
Bε(0)

ϕε(ỹ, ξ3)fi(x̃− ỹ,−x3 − ξ3) dξ3 dỹ = ([Jε(f)]r)i(x)

since ϕε is a radial function. For i = 3 the calculation is similar but we have to deal

with an extra minus sign in the map of fr 7→ f , we obtain

[Jε(fr)]i(x) =

∫
Bε(0)

ϕε(ỹ, y3)(fr)i(x̃− ỹ, x3 − y3) dy3 dỹ

=

∫
Bε(0)

ϕε(ỹ, y3)− fi(x̃− ỹ,−x3 + y3) dy3 dỹ

=−
∫
Bε(0)

ϕε(ỹ,−ξ3)fi(x̃− ỹ,−x3 − ξ3) dξ3 dỹ

=−
∫
Bε(0)

ϕε(ỹ, ξ3)fi(x̃− ỹ,−x3 − ξ3) dξ3 dỹ = ([Jε(f)]r)i(x).

This finishes off the proof. �
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5.3 Using JεJε(ue) as a test function

We will show that if u is a weak solution then in fact (5.1) holds for a larger class

of test functions with less time regularity. We denote by C0,1([0, T ];Hσ(D+)) the

space of Lipschitz functions from [0, T ] into Hσ(D+). Most of the argument in this

section follow that from Chapter 3, with minor changes and generalisations needed

because of the boundary.

Lemma 5.6 If u is a pressure-less weak solution of the Euler equations on D+ as

in Definition 5.1, then (5.1) holds for every ψ ∈ Ln,σ, where Ln,σ is the completion

of Sn,σ under the L1(0, T ;H3) ∩ C0,1([0, T ];Hσ) norm.

The proof is the same as the proof in Chapter 3 except we use the density of

Sn,σ in Ln,σ with respect to the norm

‖ · ‖L1(0,T ;H3) + ‖ · ‖C0,1([0,T ];L2).

We now study the time regularity of u when paired with a sufficiently smooth

function that is not necessarily divergence free.

Lemma 5.7 If u is a pressure-less weak solution on D+ from Definition 5.1 then

|〈u(t)− u(s), ψ〉D+ | ≤ C|t− s| for all ψ ∈ S(D+), (5.2)

where C depends only on ‖u‖L∞(0,T ;L2) and ‖ψ‖H3. Further, we have

|〈u(t)− u(s), ψ〉D| ≤ C|t− s| for all ψ ∈ S(D). (5.3)

The proof is the same as in Chapter 3 except here, since we are considering

a domain with boundary, the Helmholtz–Weyl decomposition of a vector-valued

function ψ ∈ S(D+) into ψ = η +∇σ gives an η ∈ Sn,σ(D+). This can be seen in

Chapter 2 theorem 2.16 of Robinson, Rodrigo, & Sadowksi (2016). Note that as the
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support of u is D+ we have that

|〈u(t)− u(s), ψ〉D| ≤ C|t− s| for all ψ ∈ S(D),

which gives (5.3).

Remark The inequalities hold for ψ ∈ H3(D+) for (5.2) and ψ ∈ H3(D) for (5.3)

as the constant C depends on the H3 norm of ψ. Thus we can use density to extend

this lemma to these larger spaces of functions.

Corollary 5.8 Let u be a pressure-less weak solution on D+ from Definition 5.1.

Fix fix ε > 0 and δ > 0 such that δ > 2ε, then the functions Jε(ue)(x, ·) and

JεJε(ue)(x, ·) are Lipschitz continuous in t as a function into L2(D+):

‖Jε(ue)(·, t)− Jε(ue)(·, s)‖L2(D+) ≤ Cε|t− s|, (5.4)

and

‖JεJε(ue)(·, t)− JεJε(ue)(·, s)‖L2(D+) ≤ Cε|t− s|. (5.5)

Furthermore, Jε(ue), JεJε(ue) ∈ Ln,σ.

Proof First to prove (5.5) set v = ue(t)− ue(s) and we see that

‖JεJεv‖L2(D+) ≤ ‖JεJεv‖L2(D[−δ,∞))
≤ ‖Jεv‖L2(D[−δ,∞))

and for (5.4) we see that

‖Jεv‖L2(D+) ≤ ‖Jεv‖L2(D[−δ,∞))
;

then notice that

‖Jεv‖L2(D[−δ,∞))
=‖Jε([u(t)− u(s)] + [ur(t)− ur(s)])‖L2(D[−δ,∞))

≤2‖Jε([u(t)− u(s)])‖L2(D[−δ,∞))
.

Using a generalisation of Lemma 5.7 for ψ ∈ H3, let ψ = Jεf for f ∈ L2(D) with
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‖f‖L2(D) = 1; we obtain

|〈u(t)− u(s), Jεf〉D| =|〈Jε(u(t)− u(s)), f〉D|

≤‖u‖L∞(0,T ;L2(D+))‖ϕε‖W 3,1 |t− s|‖f‖L2 .

We can then take the supremum over all f with ‖f‖L2 = 1 over both sides to finish

off the Lipschitz in time bound and obtain (5.4) and (5.5).

We now need to prove the other properties required to be elements of the

space Ln,σ for both Jεue and JεJεue. Finally, since u ∈ L∞(0, T ;L2), we observe

that both Jεue and JεJε(ue) ∈ L∞(0, T ;H3) and

‖Jε(Jε(ue))‖L1(0,T ;H3) ≤ T‖Jε(Jε(ue))‖L∞(0,T ;H3)

as [0, T ] is bounded (similary for Jεue).

We see from Lemma 5.3 that both Jεue and JεJε(ue) are divergence free and

Jε(Jε(ue)) · n and Jε(ue) · n vanish on ∂D+, proving that both Jεue and JεJεue are

in Ln,σ. �

This section and in particular Corollary 5.8 now allows us to use JεJε(ue) as

a test function in the weak formulation of the Euler equations and we have shown

the sufficent regularity of Jε(ue) needed to manipulate terms in the future.

5.4 Manipulating equation

Since JεJε(ue) ∈ Lσ it follows from Lemma 5.6 that

〈u(t), JεJε(ue)(t)〉D+ − 〈u(0), JεJε(ue)(0)〉D+ −
∫ t

0
〈u(τ), ∂tJεJε(ue)(τ)〉D+ dτ

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇JεJε(ue)(τ)〉D+ dτ. (5.6)
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Let v ∈ Lp(D+) with support in D+ and extend by zero to all of D; then

〈v, JεJε(ue)〉D+ =

∫
D+

v · JεJε(ue) dx =

∫
D
ID+v · JεJε(ue) dx

=

∫
D

∫
D
ϕε(x− y)ID+v(x) · Jε(ue)(y) dy dx

=

∫
D

∫
D
ϕε(x− y)ID+v(x) dx · Jε(ue)(y) dy

=

∫
D
Jε(ID+v(x)) · Jε(ue)(y) dy

=

∫
D[−ε,∞)

Jε(v(x)) · Jε(ue)(y) dy

=〈Jεv, Jε(ue)〉D[−ε,∞)
.

Using this in (5.6) we obtain

〈Jε(u)(t), Jε(ue)(t)〉D[−ε,∞)

− 〈Jε(u)(0), Jε(ue)(0)〉D[−ε,∞)
−
∫ t

0
〈Jε(u)(τ), ∂tJε(ue)(τ)〉D[−ε,∞)

dτ

=

∫ t

0
〈Jε(u(τ)⊗ u(τ)) : ∇Jε(ue))(τ)〉D[−ε,∞)

dτ. (5.7)

We want to take limits as ε→ 0 of (5.7) and show that the L.H.S becomes

1

2

(
‖u(t)‖2L2(D+) − ‖u(0)‖2L2(D+)

)
.

and thus, if we show the R.H.S. converges to zero we will have energy conservation.

Here we will use the Lipschitz in time regularity of Jεue shown in Corollary 5.8 to

manipulate the term with the time derivative in the L.H.S. of (5.7). We will then

use Lemma 5.5 to show that the remainder term converges to zero.

Note that for the first two terms in the L.H.S of (5.7) we can use Lemma 5.4
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to obtain

lim
ε→0

(
〈Jε(u)(t), Jε(ue)(t)〉D[−ε,∞)

− 〈Jε(u)(0), Jε(ue)(0)〉D[−ε,∞)

)
= lim

ε→0

(
〈Jε(u)(t), Jε(ue)(t)〉D − 〈Jε(u)(0), Jε(ue)(0)〉D

)
= 〈u(t), ue(t)〉D − 〈u(0), ue(0)〉D = ‖u(t)‖2L2(D+) − ‖u(0)‖2L2(D+).

For the last term on the L.H.S. of (5.7) linearity implies

∫ t

0
〈Jε(u)(τ), ∂tJε(ue)(τ)〉D[−ε,∞)

dτ =

∫ t

0
〈Jε(u)(τ), ∂tJε(u)(τ)〉D[−ε,∞)

dτ

+

∫ t

0
〈Jε(u)(τ), ∂tJε(ur)(τ)〉D[−ε,∞)

dτ.

As Jε(u) ∈ C0,1([0, T ];Hσ) thus

2

∫ t

0
〈Jε(u)(τ), ∂tJε(u)(τ)〉D[−ε,∞)

dτ =

∫ t

0
∂t〈Jε(u)(τ), Jε(u)(τ)〉D[−ε,∞)

dτ

= ‖Jεu(t)‖2L2(D[−ε,∞))
− ‖Jεu(0)‖2L2(D[−ε,∞))

,

and taking limits gives

lim
ε→0

∫ t

0
〈Jε(u)(τ), ∂tJε(u)(τ)〉D[−ε,∞)

dτ =
1

2
(‖u(t)‖2L2(D+) − ‖u(0)‖2L2(D+)).

Therefore the L.H.S. of (5.7) will converge to what we want as long as

lim
ε→0

∫ t

0
〈Jε(u)(τ), ∂tJε(ur)(τ)〉D[−ε,∞)

dτ

= lim
ε→0

∫ t

0

∫
T2

∫ ε

−ε
Jε(u)(τ) · ∂tJε(ur)(τ) dx dτ = 0 (5.8)

and so this remainder term must vanish in the limit. From Lemma 5.5 we see that

∫ t

0

∫
T2

∫ ε

−ε
Jε(u)(τ) · ∂tJε(ur)(τ) dx dτ =

∫ t

0

∫
T2

∫ ε

−ε
Jε(ur)(τ) · ∂tJε(u)(τ) dx dτ,
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which implies that

2

∫ t

0

∫
T2

∫ ε

−ε
Jε(u)(τ) · ∂tJε(ur)(τ) dx dτ =

∫ t

0
∂t

∫
T2

∫ ε

−ε
Jε(u)(τ) · Jε(ur)(τ) dx dτ

=

∫
T2

∫ ε

−ε
Jε(u)(t) · Jε(ur)(t) dx−

∫
T2

∫ ε

−ε
Jε(u)(0) · Jε(ur)(0) dx.

Taking limits as ε→ 0 gives us (5.8).

We are left with the R.H.S. of (5.7) and have the term

lim
ε→0

(∫ t

0
〈Jε(u⊗ u)(τ) : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ

)
=: lim

ε→0
I.

We can write

I =

∫ t

0
〈Jε(ue ⊗ u)(τ) : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ

+

∫ t

0
〈Jε((u− ue)⊗ u)(τ) : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ.

For the second term we notice that the intersection of the supports of u

and u − ue is just the boundary, a set of measure zero and so (u − ue) ⊗ u = 0

almost everywhere and the second term vanishes. For the first term we use an

identity to commute the mollification with the product which is similar to that used

by Eyink (1994) and also used by Constantin, E, & Titi (1994), Cheskidov et al.

(2008), Shvydkoy (2009) and Shvydkoy (2010). Here, however, we have two different

functions in the product rather than the same function twice. The same identity

used below is independently used in Bardos & Titi (2018). We will use the identity

Jε(ue ⊗ u) = rε(ue, u)− (ue − Jε(ue))⊗ (u− Jε(u)) + Jεue ⊗ Jεu (5.9)

with

rε(ue, u) :=

∫
D
ϕε(y)(ue(x− y)− ue(x))⊗ (u(x− y)− u(x)) dy.
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As rε(u, ue) expands to

∫
D
ϕε(y)[ue(x−y)⊗ u(x−y)−ue(x)⊗u(x−y)−u(x)⊗ue(x−y) + ue(x)⊗u(x)] dy

= Jε(ue ⊗ u)− ue ⊗ Jεu− u⊗ Jεue + ue ⊗ u

we see the validity of (5.9).

Therefore we obtain

I=

∫ t

0
〈[rε(ue, u)−(ue−Jε(ue))⊗(u−Jε(u))+Jεue⊗Jεu] : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ.

First we consider the term

∫ t

0
〈Jεue ⊗ Jεu : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ.

If we integrate by parts any potential boundary terms vanish as the support

of Jεu is in D[−ε,∞) and so we obtain

−1

2

∫ t

0

∫
D[−ε,∞)

(∇ · Jεu)|Jε(ue)|2 dx dτ,

note that this term is zero by incompressibility.

5.4.1 Remainder terms vanish in the limit

We are now left with the remainder terms

∫ t

0
〈[rε(ue, u)− (ue − Jεue)⊗ (u− Jεu)] : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ. (5.10)
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As (∇ϕ)ε is an odd function its integral is zero and therefore we can add

∫
D

(∇ϕ)ε(y)⊗ (−ue)(x)) dy

to ∇Jε(ue) to obtain

∇Jε(ue) =

∫
D

(∇ϕε)(y)⊗ (ue(x− y)− ue(x)) dy. (5.11)

Firstly we can write rε(u, ue) in full as

∫ t

0
〈rε(ue, u) : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ

=

∫ t

0

〈∫
D
ϕε(y)(ue(x− y)− ue(x))⊗ (u(x− y)− u(x)) dy :∫

D
(∇ϕε)(z)⊗ (ue(x− z)− ue(x)) dz

〉
D[−ε,∞)

dτ.

Bringing the modulus inside the integral and using the change of variables z = εξ,

y = εη we have

∣∣∣∣∣
∫ t

0

∫
D[−ε,∞)

rε(ue, u) : ∇Jε(ue)(τ) dx dτ

∣∣∣∣∣
≤
∫ t

0

〈∫
B1(0)

|ϕ(η)||ue(x− εη)− ue(x)||u(x− εη)− u(x)|dη :∫
B1(0)

1

ε
|∇ϕ(ξ)||ue(x− εξ)− ue(x)|dξ

〉
D[−ε,∞)

dτ.

Then we can use Fuibini’s theorem, Minkowski’s inequality and Hölder’s inequality
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to obtain

∣∣∣∣ ∫ t

0

∫
D[−ε,∞)

rε(ue, u) : ∇Jε(ue)(τ) dx dτ

∣∣∣∣ (5.12)

≤
∫
B1(0)

|ϕ(η)|‖ue(· − εη)− ue(·)‖L3(0,t;L3(D[−ε,∞)))

×‖u(· − εη)− u(·)‖L3(0,t;L3(D[−ε,∞)))
dη

×1

ε

∫
B1(0)

|(∇ϕ)(ξ)|‖ue(· − εξ)− ue(·)‖L3(0,t;L3(D[−ε,∞)))
dξ.

We will show that the right-hand side of (5.12) tends to zero as ε→ 0 in the proof

of Theorem 5.10 to prove energy conservation.

For the other term in (5.10) we have

∫ t

0
〈(ue − Jεue)⊗ (u− Jεu) : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ.

This becomes

∫ t

0
〈(ue − Jεue)⊗ (u− Jεu) : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ

=

∫ t

0

∫
D[−ε,∞)

∫
D
ϕε(z)(ue(x− z)− ue(x)) dz⊗∫

D
ϕε(y)(u(x− y)− u(x)) dy

∫
D

(∇ϕε)(w)⊗ (ue(x− w)− ue(x)) dw dx dτ,

where again we have used (5.11) for the ∇Jε(ue) term. Thus following similar steps

as before with the change of variables z = ηξ, y = εζ, w = εξ we have

∣∣∣∣ ∫ t

0
〈(ue − Jεue)⊗(u− Jεu) : ∇Jε(ue)(τ)〉D[−ε,∞)

dτ

∣∣∣∣ (5.13)

≤
∫
B1(0)

|ϕ(η)|‖ue(· − εη)− ue(·)‖L3(0,t;L3(D[−ε,∞)))
dη

×
∫
B1(0)

|ϕ(ζ)|‖u(· − εζ)− u(·)‖L3(0,t;L3(D[−ε,∞)))
dζ

×1

ε

∫
B1(0)

|(∇ϕ)(ξ)|‖ue(· − εξ)− ue(·)‖L3(0,t;L3(D[−ε,∞)))
dξ.
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We will show that the right-hand side of (5.13) tends to zero as ε→ 0 in the proof

of Theorem 5.10 to prove energy conservation.

In order to deal with the limit as ε tends to zero both in (5.12) and (5.13)

we will use the Dominated Convergence Theorem to move the limit inside these

integrals.

Lemma 5.9 Let u be solution to the pressure-less incompressible Euler equations

on T2 × R+ as in Definition 5.1, with u ∈ L3(0, T ;L3). Assume that u satisfies:

• The interior condition,

lim
|y|→0

1

|y|

∫ T

0

∫
D[|y|,∞)

|u(x+ y)− u(x)|3 dx dt = 0.

• The boundary condition, that there exists a δ > 0 such that

u ∈ L3(0, T ;L∞(T2 × [0, δ)).

Then the limit as ε→ 0 can be moved inside the integrals over η, ξ, ζ in (5.12) and

(5.13).

Proof We are going to apply the Dominated Convergence Theorem on five similar

terms in (5.12) and (5.13) which simplify to:

lim
ε→0

1

ε2/3

∫
B1(0)

|ϕ(η)|‖ue(· − εη)− ue(·)‖L3(0,t;L3(D[−ε,∞)))

× ‖u(· − εη)− u(·)‖L3(0,t;L3(D[−ε,∞)))
dη, (5.14)

lim
ε→0

1

ε1/3

∫
B1(0)

|ϕ(η)|‖ue(· − εη)− ue(·)‖L3(0,t;L3(D[−ε,∞)))
dη,

lim
ε→0

1

ε1/3

∫
B1(0)

|ϕ(ζ)|‖u(· − εζ)− u(·)‖L3(0,t;L3(D[−ε,∞)))
dζ
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and two terms of the form

lim
ε→0

1

ε1/3

∫
B1(0)

|(∇ϕ)(ξ)|‖ue(· − εξ)− ue(·)‖L3(0,t;L3(D[−ε,∞)))
dξ. (5.15)

The last three can be treated similarly so we shall take (5.15) as an example. We

can split the domain of the L3 norm into D[ε,∞) and D[−ε,ε]. Considering the D[ε,∞)

part we see that with ξ ∈ B1(0) then ξε ∈ Bε(0) and so ue(x − ξε) − ue(x) =

u(x− ξε)− u(x). We can define the non-negative function

f(y) =
1

|y|

∫ t

0

∫
D[|y|,∞)

|u(x+ y)− u(x)|3 dx dt

and notice that from the assumption that lim|y|→0 f(y) = 0 we have, for sufficiently

small ε > 0, that supy∈Bε(0) f(y) ≤ K for some K = K(ε). Since the supp(∇ϕ) is

compact and the function is bounded, we obtain a dominating integrable function

h(ξ) := CK1/3|∇ϕ(ξ)|

and so

lim
ε→0

1

ε1/3

∫
B1(0)

|(∇ϕ)(ξ)|‖ue(· − εξ)− ue(·)‖L3(0,t;L3(D[ε,∞)))
dξ

=

∫
B1(0)

|(∇ϕ)(ξ)| lim
ε→0

1

ε1/3
‖ue(· − εξ)− ue(·)‖L3(0,t;L3(D[ε,∞)))

dξ.

We are left with showing that

lim
ε→0

1

ε1/3

∫
B1(0)

|(∇ϕ)(ξ)|‖ue(· − εξ)− ue(·)‖L3(0,t;L3(D[−ε,ε]))
dξ

=

∫
B1(0)

|(∇ϕ)(ξ)| lim
ε→0

1

ε1/3
‖ue(· − εξ)− ue(·)‖L3(0,t;L3(D[−ε,ε]))

dξ.

We assumed that u ∈ L3(0, T ;L∞(T2 × [0, ε)) and so we know that

ue ∈ L3(0, T ;L∞(T2 × (−ε, ε))).
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Thus in the region T2 × (−ε, ε) we can define the non-negative function

g(y) =
1

ε1/3

[∫ t

0

∫
T2×(−ε,ε)

|ue(x+ yε)− ue(x)|3 dx dt

]1/3

≤ C

ε1/3
|T2|1/3ε1/3

[∫ t

0
sup

x∈T2×(−2ε,2ε)

|ue(x)|3 dt

]1/3

.

Thus we obtain the dominating integrable function

l(ξ) := C‖u‖L3(0,T ;L∞(D[−ε,ε]))
|∇φ(ξ)|

and so we can bring the limit inside the integral.

For (5.14) we proceed as before, splitting D[−ε,∞) into D[ε,∞) and D[−ε,ε]. As

there are two terms involving u in (5.14) we have to consider cross terms. Namely

‖ue(· − εη)− ue(·)‖L3(0,t;L3(D[−ε,∞)))
‖u(· − εη)− u(·)‖L3(0,t;L3(D[−ε,∞)))

=‖u(· − εη)− u(·)‖2L3(0,t;L3(D[ε,∞)))
(5.16)

+‖ue(· − εη)− ue(·)‖L3(0,t;L3(D[−ε,ε]))
‖u(· − εη)− u(·)‖L3(0,t;L3(D[ε,∞)))

(5.17)

+‖ue(· − εη)− ue(·)‖L3(0,t;L3(D[ε,∞)))
‖u(· − εη)− u(·)‖L3(0,t;L3(D[−ε,ε]))

(5.18)

+‖ue(· − εη)− ue(·)‖L3(0,t;L3(D[−ε,ε]))
‖u(· − εη)− u(·)‖L3(0,t;L3(D[−ε,ε]))

.(5.19)

For the terms over D[−ε,ε] we can define the integrable function

l̃(ξ) := C‖u‖L3(0,T ;L∞(D[−ε,ε]))
|ϕ(ξ)|1/2

and the terms over D[ε,∞) we can define the integrable function

h̃(ξ) := CK1/3|ϕ(ξ)|1/2.

Then for (5.16) we can use h̃2, for (5.17) and (5.18) we can use h̃l̃ and finally

for (5.19) we can use l̃2. Thus for (5.14) we can define the dominating integrable
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function

m(ξ) := h̃2(ξ) + 2h̃(ξ)l̃(ξ) + l̃2(ξ)

and so bring the limit inside the integral over η in (5.14) and thus we are done. �

In order to manipulate the terms in (5.12) and (5.13) we have to deal with

differences in u and ue near the boundary. To control these terms in a strip around

the boundary we will use similar techniques to Chapter 4 and add the assumption

that there exists a δ > 0 such that u ∈ L3(0, T ;C0([0, δ))).

Theorem 5.10 (Energy Conservation) Let u be solution to the pressure-less in-

compressible Euler equations on T2 ×R+ from Definition 5.1 with u ∈ L3(0, T ;L3).

Assume that u satisfies the three conditions:

• The interior condition,

lim
|y|→0

1

|y|

∫ T

0

∫
D[|y|,∞)

|u(x+ y)− u(x)|3 dx dt = 0. (5.20)

• The boundary condition, that there exists a δ > 0 such that

u ∈ L3(0, T ;C0(T2 × [0, δ)).

Then u conserves energy on [0, T ].

Proof It suffices to show that both (5.12) and (5.13) vanish in the limit as ε→ 0.

First we want to bring the limit inside the integrals which is shown in Lemma 5.9.

We have reduced the problem to showing that

lim sup
ε→0

1

ε
‖u(· − εη)− u(·)‖3L3(0,t;L3(D[−ε,∞)))

<∞,

lim
ε→0

1

ε
‖ue(· − εη)− ue(·)‖3L3(0,t;L3(D[−ε,∞)))

=0

for almost every η.

Again splitting the domain of the L3 norm and considering, for the interior
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region D[ε,∞), then for ηε ∈ Bε(0) both lines above reduce to showing that

lim
ε→0

1

ε
‖u(· − εη)− u(·)‖3L3(0,t;L3(D[ε,∞)))

= 0.

With the change of variables y = εη for η ∈ B1(0) we have

lim
|y|→0

1

|y|
‖u(· − y)− u(·)‖3L3(0,t;L3(D[ε,∞)))

= 0

and this is controlled by the interior condition (5.20).

We now need to show that

lim sup
ε→0

1

ε
‖u(· − εη)− u(·)‖3L3(0,t;L3(T2×(−ε,ε)) <∞, (5.21)

lim
ε→0

1

ε
‖ue(· − εη)− ue(·)‖3L3(0,t;L3(T2×(−ε,ε))) =0. (5.22)

For (5.22) as there exists a δ > 0 such that u ∈ L3(0, T ;C0(T2 × [0, δ)) we

have, similarly to Theorem 4.6, that u · n = 0 pointwise on the boundary; the

boundary values are the same for u and ur and so ue ∈ L3(0, T ;C0(T2 × (−δ, δ)).

We fix t and let x′ = (x1, x2, 0); we have, using wt defined in (4.9), that

|ue(t, x′ + x3 + εη)− ue(t, x′ + x3)| ≤|ue(t, x′ + x3 + εη)− ue(t, x′)

+ue(t, x
′)− ue(t, x′ + x3)| ≤wt(|εη + x3|) + w(t, |x3|) ≤ 2wt(2ε|η|)

and thus

1

|ε|

∫∫
T2

∫ ε

−ε
|ue(t, x− εη)− ue(t, x)|3 dx3 dx2 dx1

≤C 1

ε

∫∫
T2

∫ ε

−ε
|wt(2ε|η|)|3 dx3 dx2 dx1

≤C 1

ε
|T2|ε|wt(2ε|η|)|3 → 0

as ε→ 0 for almost every t.
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For (5.21) we have assumed that u ∈ L3(0, T ;L∞(T2 × [0, δ))) and so

u ∈ L3(0, T ;L∞(T2 × (−δ, δ))).

We see that

1

ε
‖u(· − εη)− u(·)‖3L3(0,t;L3(T2×(−ε,ε))

≤C
ε
|T2|ε‖u(· − εη)− u(·)‖L3(0,t;L∞(T2×(−ε,ε))

=C|T2|‖u‖L3(0,t;L∞(T2×(−δ,δ)) ≤ C.

Thus taking the limit as ε→ 0 we have that the limit is bounded.

We have shown that the remainder terms (5.12) and (5.13) both vanish in

the limit and so we obtain energy conservation. �

5.5 Conclusion

We have shown energy conservation of solutions u of the Euler equations on the

domain D+, where u satisfies the same conditions as in Chapter 4. Our method

does not depend on the dimension and so analogous methods hold in Td−1×R+ for

d ≥ 2.

Importantly, there is no pressure terms appearing in the definition of a weak

solution so there are no complications of the existence of this term and the regularity

it will need.

Further, this method is completely local around the boundary. Thus all of

the methods used would generalise to an arbitrary domain as long as an extension

for that domain can be defined that has the properties we needed, noticeably for

small ε > 0;

1. ‖ve‖Lp(D[−δ,∞)) ≤ C‖v‖Lp(D+),

2. Jε(ve) and JεJε(ve) are incompressible in D+,

80



3. Jε(ve) · n = 0 and JεJε(ve) · n = 0 on ∂D+.

A possibility would be to flatten the boundary and use this extension, then

regularise in the flat domain and finally map back to the original domain. This may

cause extra difficulties with the nice properties of mollification which we will have

to account for.
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Chapter 6

Energy Conservation in Ω

In the previous chapter we were able to show energy conservation of solutions to

the Euler equations with a local extension and without reference to the pressure in

the weak formulation of the equations. However, we have only considered the case

of a flat boundary with finite area. Here we now want to discuss potential ways of

approaching the same problem on a generic bounded domain.

In the recent work of Bardos & Titi (2018), energy conservation was shown

for weak solutions to the Euler equations, as given by Definition 6.2, where they did

not have incompressible test functions. Without incompressibility of the test func-

tions the pressure explicitly appears in the weak formulation of the equations and

estimates on the pressure are needed. To show energy conservation they assumed

that the solution u satisfied the extra regularity condition that

u ∈ L3(0, T ;Cα(Ω̄)) for α > 1/3 with a C2 boundary ∂Ω.

This proves Onsager’s conjecture for bounded domains with a C2 boundary.

In the previous chapter we considered weak solutions of the Euler equations

with incompressible test functions and did not have a pressure term appearing in

the equations and so no estimates of the pressure term are necessary. However, on a

bounded domain there are many choices of definition for a weak solution depending

on the family of test functions used. We have the option of including incompress-
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ibility or not but also a choice of boundary conditions: compact support, just zero

normal component or arbitrary boundary values. Further, we can choose to use, or

not, the Leary projection, described in Robinson, Rodrigo, & Sadowksi (2016) for

example, and the option of compact support, or not, of the test functions in time

as well.

Here we will introduce our preferred Definition 6.1, the generalisation of

a weak solution of the Euler equations as in Chapter 5, to a bounded domain.

Here we use incompressible test functions in the definition with vanishing normal

components. We will then introduce the definition used by Bardos & Titi (2018)

and show that if we assume that

u ∈ L3(0, T ;Cδ(Ω̄)) for δ > 0

then if u is a solution for Definition 6.1, which we have been using, then it is also

a solution for Bardos & Titi (2018). Thus we have energy conservation under the

same conditions as Bardos & Titi (2018) for Definition 6.1.

6.1 Different Definitions of Weak Solution

We will define a weak formulation of the Euler equations on a bounded domain Ω

with at least a Lipschitz boundary so the normal n is well defined. We will follow

similar steps to Chapter 5, where we considered the spatial domain D+ but, as

the domain is now bounded, we will not require Schwartz-like decay and smooth

functions will be enough. Here we will briefly remind the reader of the spaces used.

First, we define the space of test functions

C∞n,σ(Ω× [0, T ]) := {ψ ∈ C∞(Ω× [0, T ]) : u(·, t) ∈ C∞n,σ(Ω) ∀t ∈ [0, T ]},

where

C∞n,σ(Ω) := {ψ ∈ C∞(Ω): ∇ · ψ = 0 and ψ · n = 0 on ∂Ω}
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and the space Hσ(Ω) as

Hσ(Ω) := the completion of C∞n,σ(Ω) in the L2(Ω) norm.

Note that functions in Hσ(Ω) are weakly divergence free with respect to H1(Ω)

similarly to (4.2). The construction and properties of Hσ(Ω) can be found in Section

2.2 of Robinson, Rodrigo, & Sadowksi (2016).

We can suppose that u is a smooth solution to the Euler equations, take the

inner-product of the equations with ψ ∈ C∞n,σ(Ω×[0, T ]) and integrate over Ω×[0, T ].

We can then perform integration-by-parts on both the time and spacial derivatives

and use the incompressibility and boundary conditions of both u and ψ to simplify

the equation. We can then ask what is the minimum regularity of u that is needed

to make sense of the equation and by doing this we derive a weak solution of the

Euler equations on Ω in a way that involves no pressure term; we will call this the

pressure-less form of a weak solution.

Definition 6.1 (Pressure-less form) A weak solution on Ω ⊂ R3 of the Euler

equations on [0, T ] is a vector-valued function u ∈ Cw([0, T ];Hσ(Ω)) such that

〈u(t), ψ(t)〉Ω−〈u(0), ψ(0)〉Ω−
∫ t

0
〈u(τ), ∂tψ(τ)〉Ω dτ =

∫ t

0
〈u(τ)⊗u(τ) : ∇ψ(τ)〉Ω dτ,

for every t ∈ [0, T ], for any ψ ∈ C∞n,σ(Ω× [0, T ]).

Another definition is presented in the introduction of Bardos & Titi (2018)

where they include the full pressure term in the weak formulation. Here they use a

class of test functions that are not incompressible, but are compactly supported in

Ω× (0, T ).

For the next definition of a weak solution we need to define, for any domain

Ω, the space of distributions on Ω, denoted D′(Ω), as the space of all continuous

linear functionals on D(Ω). The definition used by Bardos & Titi (2018) is as follows

Definition 6.2 (Bardos & Titi, 2017) Let Ω ⊂ R3 be a bounded domain with

a C2 boundary, ∂Ω. Then (u, p) is a weak solution of the incompressible Euler
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equations in Ω× (0, T ) if u ∈ L∞(0, T ;Hσ(Ω)), p ∈ D′(Ω× [0, T ]) and

〈u, ∂tφ〉Ω + 〈u⊗ u : ∇φ〉Ω + 〈p,∇ · φ〉Ω = 0, in L1(0, T ). (6.1)

for every test vector field φ ∈ D(Ω× (0, T )).

The a-priori regularity of p is not made explicit in Bardos & Titi (2018) so

here we have assumed that p ∈ D′(Ω × [0, T ]) as the weakest condition possible to

allow us to write down the equation and make sense of the last term on the left-hand

side of (6.1). However, as a consequence of the above definition p is a weak solution

of the elliptic boundary-value problem

−∆p = ∂i∂j(uiuj) in Ω and ∇p · n = −(uj∂jui)ni on ∂Ω (6.2)

for almost every t. As Bardos & Titi (2018) assume that u ∈ L3(0, T ;Cα) for

α > 1/3 to prove energy conservation, this allows them to use the work in Chapters

5 and 6 of Krylov (1996) to show that p ∈ L3/2(0, T ;Cα) which solves (6.2). [In fact

using Krylov (1996) it is enough to have the extra assumption that u ∈ L3(0, T ;Cδ)

for δ > 0 for p ∈ L3/2(0, T ;Cδ) to solve (6.2).]

Bardos & Titi (2018) chose test functions compactly supported in time and

chose u to have only L∞ regularity in time so do not include the time end-points,

that is, the terms of the form

〈u(t), ψ(t)〉Ω − 〈u(0), ψ(0)〉Ω,

that occur in Definition 6.1.

We will show that if we restrict our class of solutions from L∞(0, T ;Hσ(Ω))

to Cw([0, T ];Hσ(Ω)) one can restrict the Definition 6.2 to Definition 6.3 below.

We define the class of test functions that are compactly supported in space

but not in time as

C∞([0, T ];D(Ω)) := {ψ ∈ C∞(Ω× [0, T ]) : supp(ψ(·, t)) ⊂⊂ Ω for every t}.
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Take ψ ∈ C∞([0, T ];D(Ω)) and a sequence of smooth functions χn compactly

supported and approaching 1 on the interval [0, t] in the limit as n → ∞, that is,

χn ∈ C∞([0, T ]) with values between zero and 1

χn(τ) =


1 τ ∈ [1/n, t− 1/n],

0 in a neighbourhood of 0 & t

smooth, otherwise.

Then φn := χnψ yields a sequence of φn ∈ D(Ω × [0, T ]) that tends to ψ ∈

C∞([0, T ];D(Ω)). If we substitute φn = χnψ in (6.1) we obtain

〈u, ∂t(χnψ)〉Ω + 〈u⊗ u : ∇(χnψ)〉Ω + 〈p,∇ · (χnψ)〉Ω = 0, in L1(0, T ). (6.3)

For the second and third terms χn is independent of the spatial variables and so

lim
n→∞

∫ t

0
〈u⊗u : ∇(χnψ)〉Ω dτ = lim

n→∞

∫ t

0
χn〈u⊗u : ∇ψ〉Ω dτ =

∫ t

0
〈u⊗u : ∇ψ〉Ω dτ

and

lim
n→∞

∫ t

0
〈p,∇ · (χnψ)〉Ω dτ = lim

n→∞

∫ t

0
χn〈p,∇ · ψ〉Ω dτ =

∫ t

0
〈p,∇ · ψ〉Ω dτ.

For the first term in (6.3) we have

∫ t

0
〈u, ∂t(χnψ)〉Ω dτ =

∫ t

0
〈u, χn∂tψ〉Ω + 〈u, ψ∂tχn〉Ω dτ,

where the limit of the first term in the R.H.S. becomes

lim
n→∞

∫ t

0
〈u, χn∂tψ〉Ω dτ = lim

n→∞

∫ t

0
χn〈u, ∂tψ〉Ω dτ =

∫ t

0
〈u, ∂tψ〉Ω dτ.

For the second term we notice that ∂tχn = 0 in the region (1/n, t− 1/n); however,

in the regions [0, 1/n] and [t− 1/n, t] we see that the function χn goes from a value
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1 to value 0. Using the Fundamental Theorem of Calculus then

∫ 1/n

0
∂tχn(τ) dτ = 1 and

∫ t

t−1/n
∂tχn(τ) dτ = −1

for all n. Thus as n → ∞ these terms become approximations to the identity and

so

lim
n→∞

∫ 1/n

0
∂tχn(τ)f(τ) dτ = f(0) and

∫ t

t−1/n
∂tχn(τ)g(τ) dτ = −g(t).

Using this we obtain

lim
n→∞

∫ t

0
∂tχn〈u, ψ〉Ω dτ

= lim
n→∞

[∫ 1/n

0
∂tχn〈u(τ), ψ(τ)〉Ω dτ −

∫ t

t−1/n
∂tχn〈u(τ), ψ(τ)〉Ω dτ

]

= 〈u(0), ψ(0)〉Ω − 〈u(t), ψ(t)〉Ω.

Here we are converging to a point t and so need to assume enough regularity

on u so that 〈u(t), ψ(t)〉Ω makes sense. Therefore we need to restrict from u in

L∞(0, T ;Hσ) to u that is weakly continuous in time, that is, Cw([0, T ];Hσ). We

will therefore restrict Definition 6.2 so that it treats the solutions in time in a similar

way to Definition 6.1

Definition 6.3 (Full Pressure Compact Support form) Let Ω be a bounded

subset of R3, with a C2 boundary, ∂Ω. Then (u, p) is a weak solution of the incom-

pressible Euler equations in Ω × (0, T ) if u ∈ Cw([0, T ];Hσ(Ω)), p ∈ D′(Ω × [0, T ])

such that

〈u(t), ψ(t)〉Ω − 〈u(0), ψ(0)〉Ω −
∫ t

0
〈u(τ), ∂tψ(τ)〉Ω dτ

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇ψ(τ)〉Ω dτ +

∫ t

0
〈p(τ),∇ · ψ(τ)〉Ω dτ, (6.4)

for every t ∈ [0, T ] for any ψ ∈ C∞([0, T ];D(Ω)).
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6.2 Energy Conservation on Ω

From results of Bardos & Titi (2018) if we consider a solution u in Definition 6.3 on

a domain Ω with a C2 boundary with u ∈ L3(0, T ;Cα(Ω̄)) for α > 1/3 then energy

is conserved. Here we will discuss the relation between Definition 6.3 and 6.1 and

show that if u is a ‘pressure less’ weak solution, as in Definition 6.1 then it is a weak

solution in the sense of distributions as in Definition 6.3 and thus we can apply the

result of Bardos & Titi (2018) to such a weak solution.

Firstly, we will derive the weak formulation of equation (6.2).

Lemma 6.4 Let u be a weak solution, as in Definition 6.3 and if p solves

∫ t

0
〈u⊗ u : ∇(∇σ)〉Ω dτ +

∫ t

0
〈p,∆σ〉Ω dτ = 0 (6.5)

for all σ ∈ C∞(0, T ;C∞(Ω)) then p is a weak solution of equation (6.2), i.e. the

elliptic boundary-value problem

−∆p = ∂i∂j(uiuj) in Ω and ∇p · n = −1

2
(uj∂jui)ni on ∂Ω.

Proof For the first term of (6.5) we can use integration-by-parts in the

spatial variable to obtain

∫ t

0
〈u⊗ u : ∇∇σ〉Ω dτ =

∫ t

0

∫
∂Ω

(u · n)(u · ∇σ) dx dτ

−
∫ t

0
〈∇ · (u⊗ u),∇σ〉Ω dτ = −

∫ t

0
〈∇ · (u⊗ u),∇σ〉Ω dτ

as u · n = 0 on the boundary. We can integrate-by-parts again and obtain

−
∫ t

0
〈∇ · (u⊗ u),∇σ〉Ω dτ = −

∫ t

0

∫
∂Ω

[∇ · (u⊗ u) · n]σ dx dτ

+

∫ t

0

∫
Ω
∇ · [∇ · (u⊗ u)]σ dx dτ. (6.6)

A similar calculation with the second term of (6.5) using the boundary condition
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that ∇σ · n = 0 gives that

∫ t

0
〈p,∆σ〉Ω dτ = −

∫ t

0

∫
∂Ω

[∇p · n]σ dx dτ +

∫ t

0

∫
Ω

[∆p]σ dx dτ. (6.7)

If we then compare the first term on the R.H.S. of (6.6) with the first term of the

R.H.S. of (6.7) and similarly for the second terms we get the two equations in (6.2)

and so we see that (6.5) is the weak formulation of (6.2). �

Using the lemma above, we can show the relation between Definition 6.1 and

6.3.

Theorem 6.5 Suppose that u is a weak solution in the sense of Definition 6.1 with

u ∈ L3(0, T ;Cδ) for δ > 0.

Let p satisfy ∫ t

0
〈u⊗ u : ∇(∇σ)〉Ω dτ +

∫ t

0
〈p,∆σ〉Ω dτ = 0

for all σ ∈ C∞(0, T ;C∞(Ω)). Then the pair (u, p) is a distributional solution in the

sense of Definition 6.3.

Proof Take a weak solution u as in Definition 6.1, i.e u solves

〈u(t), φ(t)〉Ω−〈u(0), φ(0)〉Ω−
∫ t

0
〈u(τ), ∂tφ(τ)〉Ω dτ =

∫ t

0
〈u(τ)⊗u(τ) : ∇φ(τ)〉Ω dτ,

for every t ∈ [0, T ], for any φ ∈ C∞n,σ(Ω× [0, T ]). Now we take p satisfying (6.5) and

want to show that the pair (u, p) satisfies

〈u(t), ψ(t)〉Ω − 〈u(0), ψ(0)〉Ω −
∫ t

0
〈u(τ), ∂tψ(τ)〉Ω dτ

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇ψ(τ)〉Ω dτ +

∫ t

0
〈p(τ),∇ · ψ(τ)〉Ω dτ,

for all ψ ∈ C∞([0, T ];D(Ω)). Given any ψ ∈ C∞([0, T ];D(Ω)), we can perform a

Helmholtz decomposition as explained in Robinson, Rodrigo, & Sadowksi (2016) so
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that

ψ = φ+∇σ where φ, σ ∈ C∞([0, T ];C∞(Ω))

with ∇ · φ(·, t) = 0 and φ(·, t) · n = 0 and ∇σ(·, t) · n = 0 on the boundary ∂Ω.

We obtain φ, σ∈C∞([0, T ];C∞(Ω)) because when we construct the Helmholtz

decomposition we must solve two elliptic equations. From standard elliptic regularity

theory as ψ(t, ·) ∈ C∞(Ω) we obtain φ(t, ·), σ(t, ·) ∈ C∞(Ω). As ∂nt ψ(t, ·) ∈ C∞(Ω)

for any n ∈ N we further obtain ∂nt φ(t, ·), ∂nt σ(t, ·) ∈ C∞(Ω) . Finally, we note

that when considering ∂nt ψ as we have time derivatives that are independent of

the spacial elliptic problem we can commute the derivatives and obtain that φ, σ ∈

C∞([0, T ];C∞(Ω)).

When we use this decomposition in (6.4) and expand every term out after

using weak incompressibility of u we obtain

〈u(t), φ(t)〉Ω − 〈u(0), φ(0)〉Ω −
∫ t

0
〈u(τ), ∂tφ(τ)〉Ω dτ

=

∫ t

0
〈u(τ)⊗ u(τ) : ∇φ(τ)〉Ω dτ +

∫ t

0
〈u(τ)⊗ u(τ) : ∇(∇σ)(τ)〉Ω dτ

+

∫ t

0
〈p(τ),∇ · φ(τ)〉Ω dτ +

∫ t

0
〈p(τ),∆σ(τ)〉Ω dτ.

Using Definition 6.1 this simplifies to

∫ t

0
〈u⊗ u : ∇∇σ〉Ω dτ +

∫ t

0
〈p,∆σ〉Ω dτ = 0,

for all σ ∈ C∞([0, T ];C∞(Ω)). We see that if p solves this equation then equation

(6.4) would hold. From Lemma 6.4 this weak equation is the same as (6.2). As we

have assumed that u ∈ L3(0, T ;Cδ) for δ > 0 then using Krylov (1996) we can solve

(6.2) to obtain a p ∈ L3/2(0, T ;Cδ) and so equation (6.4) holds and we are done. �
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6.3 Conclusion

We have shown that sufficiently regular solutions in the sense of Definition 6.1 are

solutions in the sense of Bardos & Titi (2018). In particular this applies to solutions

that are in

u ∈ L3(0, T ;Cε(Ω̄)) for ε > 0.

Their result therefore implies energy conservation for this class of weak solutions

under the assumption that u ∈ L3(0, T ;Cα(Ω̄)) for α > 1/3 with a C2 boundary

∂Ω. It is interesting to note, however this condition has a little stronger regularity

than that suggested by the analysis in Chapters 4 and 5, which suggests that the

set of conditions in Theorem 5.10 should be sufficient. Further, the proof of energy

conservation for strong solutions works for any bounded domain with a Lipschitz

boundary and so this suggest that the C2 boundary condition could be improved as

well.
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Chapter 7

Further Work

In Chapter 2, we compared the different regularity conditions used to show energy

conservation on domains in the absence of boundaries. We were able to show that

the conditions of u in L3(0, T ;L3) and

lim
|y|→0

1

|y|

∫ T

0

∫
|u(x+ y)− u(x)|3 dx dt = 0,

are equivalent to the weakest known conditions.

We noticed that this condition can be generalised to bounded domains and

then by adding extra continuity conditions of the solution u near the boundary, we

were able to show energy conservation for weak solutions of the Euler equations on

the domains Td−1×R+ for d ≥ 2, in Chapters 3, 4 and 5, with the set of conditions:

• the interior condition,

lim
|y|→0

1

|y|

∫ T

0

∫
D[|y|,∞)

|u(x+ y)− u(x)|3 dx dt = 0,

• the boundary condition, that there exists a δ > 0 such that

u ∈ L3(0, T ;C0(T2 × [0, δ)),

Where in fact we do not use the continuity in the full strip T2 × [0, δ) but only use
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the fact that the function defined point-wise and is continuous at ∂D. We were

able to prove this in two ways. Firstly, in Chapter 4, we used a global extension

which solved the equations on Td−1×R with a boundary pressure term in the weak

formulation of the equations. Then, in Chapter 5, we were able to improve this by

removing the boundary pressure term from the weak formulation and also we were

able to use only a local extension around the boundary.

In recent work of Bardos & Titi (2018) energy conservation was shown for

weak solutions of the Euler equations on a bounded C2 domain Ω under the condition

u ∈ L3(0, T ;Cα(Ω̄)) for α > 1/3.

In Chapter 6 we considered their definition, which involved a pressure term, and

compared it to a definition without the pressure term, that is, a natural generalisa-

tion of the weak formulation we used earlier in Chapter 5. This allowed us to show

that we could apply their results to our weak formulation.

However, these results have left some unanswered questions. We see that the

conditions used for the domain Td−1×R+, in Chapters 4 and 5, are weaker than the

conditions needed by Bardos & Titi (2018) and it is natural to ask whether their

conditions can be weakened to make them more similar to our set of conditions used

for the domain Td−1 × R+. Further, the proof of energy conservation for strong

solutions only needs Lipschitz regularity for the domain yet for the work of Bardos

& Titi (2018) a C2 boundary was needed, leaving scope for improvement.

One possible way to do the might be to flatten a C1 boundary with charts

and use the local extension we considered in Chapter 5 to extend the function on

each chart. We could then regularise by mollification on each chart to smooth the

function in the flat domain and finally map back to the original domain. This

method may cause extra difficulties, since the nice properties of mollification will

be altered, which we will have to account for. However, this method would be a

potential way to improve the regularity conditions for energy conservation and could

extend the argument to all C1 bounded domains.
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The method of Bardos & Titi (2018) used a cut-off function to restrict the

solution away from the boundary before regularisation by mollification, so the test

function remained within the domain. This method, and any other similar ap-

proaches, need this C2 boundary regularity for suitable convergence of the derivative

of the cut-off function to the normal of the boundary. However, similar approaches

could be used to weaken the regularity needed to the conditions we used in Chapters

4 and 5.

Classical local energy balance equations for strong solutions to the Euler

equations exist: for a region U ⊂ Ω we have the energy balance equation

1

2
∂(|u|2) = −∇ ·

(
u

[
1

2
|u|2 + p

])
.

Here the change in energy of a solution in the region U is given by the flux of a

term through the boundary of that region. In Shvydkoy (2010) weak formulations

of this energy balance were shown for solutions that satisfy (1.4) on the region

U . This further suggests that our set of conditions in Chapters 4 and 5 would be

enough, on a bounded domain, to ensure energy conservation. It would be interesting

to investigate whether this local energy flux can be used to give another method

to prove energy conservation in general bounded domains. Potentially using our

regularity conditions from Chapter 5 in this case.
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P.G. Lemarié-Rieusset (2002) Recent developments in the Navier-Stokes problem.

CRC Press.

P.-L. Lions (1997) Mathematical topics in fluid mechanics, volume 1: Incompressible

models. Oxford University Press. 50:B81–B81.

A. Majda & A. Bertozzi (2002) Vorticity and incompressible flow. Cambridge

University Press.

E. Di Nezza, G. Palatucci, & E. Valdinoci (2012) Hitchhiker’s guide to the fractional

Sobolev spaces. Bull. Sci. Math. 136, 521-573.

96



L. Onsager (1949) Statistical hydrodynamics. Il Nuovo Cimento (1943-1954) 6,

279–287.

J. Peetre (1976) New thoughts on Besov spaces. Mathematics Department, Duke

University.

J.C. Robinson, J.L. Rodrigo, & W. Sadowski (2016) The three-dimensional Navier–

Stokes equations. Cambridge University Press.

J.C. Robinson, J.L. Rodrigo, & J. Skipper (2018a) Energy conservation in the 3D

Euler equations on T2 × R+. In C.L. Fefferman, J.C.Robinson, & J.L.Rodrigo

(Eds.) Partial Differential Equations in Fluid Mechanics LMS Lecture Notes.

Cambridge University Press, Cambridge, UK.

J.C. Robinson, J.L. Rodrigo, & J. Skipper (2018b) Energy conservation for the 3D

Euler equations on T2 × R+ for weak solution defined without reference to the

pressure. Asymptotic Analysis, to appear.

R. Shvydkoy (2009) On the energy of inviscid singular flows. J. Math. Anal. Appl.

349, 583–595.

R. Shvydkoy (2010) Lectures on the Onsager conjecture. Discrete Contin. Dyn.

Syst. Ser. S 3, 473–496.

97


