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Glossary

If S and are sets, as usual
SE means that S is a subset of S~
SnS1 is the intersection of S and
SuS. is the set-theoretical union of S and S".
S is the difference set of and S, namely the set of those elements
belonging to but not to S.
xe S means that x belongs to S.
(X,y¥,zZ--.-. ) is the set consisting of the elements x,y,z

@ is the set of natural numbers, Z is the set of integers.
If m.neZ , m>n means that m is greater or equal to n (in the natural
order of Z ),whereas m >n means that m is stricly greater than n.
(m,n) is the greatest common divisor of m and n.

mln means that m divides n.

Through this thesis p will always denote a prime number.

If G is a group,

H<G means that H is subgroup of G.

H<G i a proper subgroup of G.

H<G " " " " a normal subgroup of G.
If H<G,

Q

H is the normal closure of H in G.
Hg is the core of H in G.
Nb(H) is the normaliser of H in G.

By [G/m] we shall denote the lattice”of, spbgroups of G containing H.



N(G) 1is the norm of G.

Z(G) is the centre of G.

If a 1is an ordinal, ZQ(G) is the ath-term of the upper central series of
G. In particular Z~G) = u 7n(G).

G*“ is the derived (or commutator) subgroup of G.

If n22, G~ denotes the n -commutator subgroup of G.

If SeG, <S> is the subgroup generated by the elements of S.

If S and Sj are subgroups ofG, [S,5] = <x y “y|xeS,ye > .

If xeG and SiG, we shall write |x,S] instead of [ ,S] , while,
if x and y are both elements of G, [x,y] denotes the element x ~y “xy.
If H<K<G , |<NG(H) , CL (K/H) = (gel] [k,g] e H for all ke K) .C*_(K/H)
is a subgroup of L, the centraliser in L of K/H.

If xeG, ye G, ¥ is the conjugateof x by y, namely y xy.

If xeG, |x] 1is the order of x I =» if <x> is infinite cyclic).
If me N, x is said to bea m"-element if |x] 1is finite and ( |[x].,m) = 1.
If n is a set of primes a group G is said to be a77-group if |x]*oo
for all xeG and (Jx] ,q) = 1 for every prime g ¢n

G is said to be of finite exponent m, where me N,if m is the maximum of

the orders of the elements of G.Otherwise G is said to be of infinite

exponent.



i
If G is a p-group (by p-group we mean a )p(-group), TFi.(G) =<xIxeG and xp = 1>,
i 1
and ©G) =<xP IxeG> .

If {G i} i is a set of groups,iDdr G'l is the restricted direct product

of the Gi' s. If I = {iT’ e ,i ) is finite, sometimes we write

Dr'G.. = G X....Xx G. . Direct products will always be restricted.
1 n

Cgo denotes the (additive) group of Z.

C denotes the(multiplicative) group of complex (pn)t-roots of unity.
o]

C 00 denotes the Prlifer group relative to p, namely nHI’C -

= mod means congruent modulo.



Chapter 1. Introduction, notation and some assumed results.
1.1 Introduction.

If G 1is a group and H, K are subgroups of G, as usual denote the
intersection of H and K by H n K, and the join of H and K,
namely the intersection of all the subgroups of G containing H and
K, by <H, K>. Then the set L(G) of all the subgroups of G

endowed with the two operations

n : L(G) x L(G) - L)

(H. K - HnKkK

and

<, >: LG) x LG) - L@O)

(H, K) @ <H K>

is a lattice. Following Suzuki ( [24], page 31, chapter 1l), if G
and G| are groups, by a projectivity it : C mGj we shall mean a
lattice isomorphism from L(G) onto L@G-])- In such a situation we
shall often say that G1 is a projective image of G or that G
and G| are projective, and, if H s G, we shall write Hu for the
image of H wunder w. Also, by a projective image X of a subgroup
H of some group G we shall implicitly mean that there exist a group
Gj and a projectivity n : G such that X =H* . If G and
GjJ are isomorphic groups certainly they are projective, but most of
the times the converse is far from being true. Thus the following
general question arises naturally: to what extent does the lattice of

subgroups of a group determine the group structure? In other words,



how much can a projective image of a given group G differ from G?
As a matter of fact in most of the cases it is very hard to give a
satisfactory answer. This thesis is mainly devoted to building up some

tools and techniques which hopefully in some cases could be useful for

this task.

let G and Gj be groups and w : G Gj a projectivity.
Whereas for an arbitrary subgroup H of G it is in general impossible
to describe how HI7 behaves inside G-j, a lot, as we shall see, can be
said when H is normal in G. And, as the presence of normal subgroups
in G is strongly interconnected with the structure of G, hopefully
the knowledge of the behaviour inside G| of the images under w of the
normal subgroups of G would give informations on the structure of Gj
in relation to the structure of G. This thesis is just concerned with
normal subgroups and their projective images. The study of this topic
has been carried out (in chronological order) at first, in the fifties,
by Suzuki ( [24 ] , chapter Il, 7) and successively, among the others,
by Yakovlef ( [25] ), Schmidt ([ 19]), Menegazzo ¢ [12], [131 ),
Rips ([ 15]), Zacher ([26],[27 1), Napolitani-Zacher ([ 14]). A major
part of this thesis is in fact inspired by results of Schmidt and Menegazzo

in [19] and [ 12] respectively.

If H is a normal subgroup of G, H7 need not be normal in 6.
(As a simple example take for G an elementary abelian group of order
9 and for G the symmetric group on three letters. G and G1 clearly
have isomorphic subgroup lattices.) Thus we may consider the normal
closure K7 of H7 in G”, namely the minimal normal subgroup of G"

containing H7 , and the core N7 of H7 in G|, namely the maximal



normal subgroup of contained in H7 . We aim to obtain information
about the embedding of H7 in G| and to "measure” its “deviation®

from normality in terms of the structure of K~/NI7 and the action of

G] on KA/N77 . We give a brief sketch of the results obtained. The
thesis is divided in five chapters. The present chapter is introductory.
The second one is inspired, as we said, by a result of Roland Schmidt

( C191, Lemma 3.3, (a)) who showed that, in the above notation, if G
(and hence G-|) are finite, then N and K are normal in G. This
result has proved to be very useful; in fact it impliesthat w« induces
in a natural way a projectivity from the group G/N to Gi/NT7 and
therefore, in order to investigate what happens in G] above N7 we
are allowed to assume that H7/ is core-free in G, namely that

N77 = 1. This assumption, as we shall see, has many consequences on the
structure of H and H7 and on their embeddings in G and Gj
respectively. The aim of the chapter is to prove Schmidt"s result in
total generality, removing the hypothesis of finiteness on G (see

Theorem 2.1.1).

The third and fourth chapters are dedicated to investigating the
structure of H/N and H~A/N7 (by what we have just pointed out, we
may assume, without loss of generality, that N7 1.). In this direction

Menegazzo has proved the following beautiful result.

Theorem 1.1.1 (Menegazzo, [12 J ). Let n : G %G| be a projectivity
with G a finite group of odd order. If H< G and H7 is core-free

in Gj , then H is abelian.

Since the structure of a projective image of an abelian group is well



known (see [24], chapter 1, sections 4 and 5), Theorem 1.1.1 gives
also many information on H7 ; in particular H7/ 1is a metabelian

modular group. We recall that a group G is modular if the identity

<U, V>nW=x<U, VnW

is satisfied for all U, V, W s G with W £ U.

Abelian groups are clearly modular. However, from the statement of

Menegazzo®s theorem, two questions arise naturally. Firstly, what happens

if G is finite of even order? Menegazzo®"s proof did not work for groups

of even order, but no counterexample was known. Secondly, going even

further on, what can we say if we remove the hypothesis of finiteness on

G? In chapters 3 and 4 we give answers to these questions. More precisely

in chapter 4 we prove, by exhibiting a counterexample, that unfortunately

Theorem 1.1.1 is not true for groups of even order. The counterexample

consists of two finite 2-groups G and G1 of the same order 213 ,

a projectivity w : G @G| and a non-abelian normal subgroup H of G

of order 27 such that H7 is core-free in G-j. In the first part of the

chapter we also prove that the counterexample is minimal, in a sense that

will be specified in the statement of Theorem 4.1.2. The results of chapter
4 have been obtained in collaboration with my supervisor,

Dr. S.E. Stonehewer.

Although, as we have seen, (in the usual notation and with N74 1)
H need not be abelian, in chapter 3 we prove (see Theorem 3.1.1) that
H and H7 are soluble groups of derived length < 3. This result is
general, without any finiteness assumption. But we would like to point

out that the merit of removing the hypothesis of the finiteness of G



is due essentially to the following powerful recent result by Rips ([15 D).

Theorem 1.1.2 (Rips, Zacher [261,Teorema A). Suppose that G and
G| are groups, it : G GJ is a projectivity and H 1is a subgroup of G

of finite index in G. Then has finite index in G-].

This theorem was proved first by Rips. On hearing the statement
of the result, before seeing Rips" proof, Zacher found a different

much shorter proof.

Theorem 1.1.2 has several useful consequences. One of them, which

we will also use in the proof of Theorem 3.1.1 is the following.

Corollary 1.1.3 ( [26J, Corollario 1). Let Gand G1 be groups,
it -G G| a projectivity and H <G with G/H infinite cyclic. Then

HT <G ]

Using Theorem 1.1.2 and corollary 1.1.3 the proof of Theorem 3.1.1
can be reduced to the case when G and GJ are finite p-groups and
G/H is cyclic. Then the case p odd is settled by Theorem 1.1.1, and
it remains to deal with the case p=2 which we investigate mainly in
Theorem 3.2.3 . In the last section of the chapter (see Proposition 3.4.1)
we give an example of how this machinery can be applied, assuming that
G is soluble, to bound the derived length of G| in terms of the

derived length of G , 1improving a similar resultby Yakovlev ([25 1).

In the last chapter we obtain some information about the actions
(In the usual notation and still assuming N*« 1) of G on K and
of G1 on K (Theorem 5.1.2), in the attempt to generalise to infinite

groups a result by R. Schmidt (C191, Theorem 3.4) stating, for G



finite, the existence of series

1 =Ng£N]JE ... <N =K
and

1 =Mg <Ml< ... & = K

of normal subgroups of G and G" respectively, such that N —+ /M

and M+-]M are cyclic (or even, in certain cases, central in G

and G" respectively). Unfortunately we have not been able to obtain

a general result holding for every group G, but only for a certain class
(Theorem 5.3.4 ). This completes a rough sketch of the contents of the

thesis.

In the following section we shall give some more preliminary

definitions and state some more preliminary well-known results.

1.2 Preliminaries and some assumed results.

We recall that a subgroup H of a group G 1is a Dedekind subgroup

(modular for some authors) of G if

<U H>nV=<U, HnV > for all U, V s G such that UsV

and

<U, H>nV =<UnV, H> for all U, V s G such that Hs V.

Remark 1.2.1. It 1s clear from the definition of modular group and
Dedekind subgroup that a group is modular if and only if all its subgroups

are Dedekind subgroups.



A normal subgroup is clearly a Dedekind subgroup and,since the
definition of a Dedekind subgroup is purely lattice-thoretical, it follows
that the projective image of a Dedekind subgroup is still Dedekind, in
particular the projective image of a normal subgroup is a Dedekind
subgroup. Closely connected with the notion of Dedekind subgroup we

have the notion of quasinormal subgroup.

A subgroup H of a group G 1is quasinormal in G if

HX = XH for all X s G.

It is easy to see that a quasinormal subgroup is a Dedekind subgroup.
Moreover, the connection between these two classes of subgroups is given

by the following theorem.

Theorem 1.2.2 (Napolitani, Stonehewer, see [22], Prop. 1).
A subgroup H of a group G is quasinormal in G if and only if H

is a Dedekind and ascendant subgroup of G.

We recall that H is ascendant in G if there exist an ordinal

y and subgroups Ha for every ordinal asy such that HQ= H, = G,
* if asg, H =uw if a 1is a limit ordinal and

H« He a Bt p

Ha * Ha+1 H is called subnormal if y is finite.

Remark 1.2.3. Theorem 1.2.2 implies that a Dedekind subgroup
H of a finite p-group G 1is quasinormal in G. It is also an easy
exercise to see that this is still true assuming only G locally
nilpotent. For, in order to prove that H is quasinormal in G it is
sufficient to show that hx e <x >H for all x « G, h « h. By
Proposition 1.2.4 (11), H n <h, x> is a Dedekind subgroup of <h,x>.

Since <h,x> is nilpotent, H n <h,x> is quasinormal in



<h, x> by Theorem 1.2.2 . Thus we have

hx e n <h, x>)<x> = <x>(Hn<h,x>) C <x> H,

as required.

Dedekind and quasi normal subgroups will play an important role in
our treatment. In the following proposition we collect some of their

basic properties. The proofs are almost immediate.
Proposition 1.2.4. The following hold:

(i) The join of any number of Dedekind (quasinormal) subgroups is a

Dedekind (quasinormal ) subgroup.

(ii) If H is a Dedekind (quasinormal) subgroup of a group G

and X s G, then H n X is a Dedekind (quasinormal) subgroup of X.

(iii) If N<G and H * N, H 1is a Dedekind (quasinormal)
subgroup of G if and only if H/N is a Dedekind (quasinormal) subgroup
of G/N

(iv) If a group G is the direct product of the periodic subgroups
A.l, A2 such that (] &l ,l1a2 D) m1l for all al £ Al, a2 «
then every Dedekind (quasinormal) subgroup of A”, i = 1,2, is a
Dedekind (quasinormal) subgroup of G.(This follows immediately from the
definition of Dedekind and quasinormal subgroups using the fact that,for

all subgroups H of G, we have H» (H n A-j) * (H n A2).)

() A maximal subgroup which is quasinormal is normal.



(vi) A periodic quasinormal subgroup H of a group G is
normalised by all the elements of G whose order is coprime to the

order of every element of H.

In addition we recall three results on quasinormal subgroups, due
respectively to Maier-Schmid ([11 ]), Gross ( [ 5 ], Lemma 3.1 and

[ 61 ilLemma 3.2) and Stonehewer ( [21] , Lemma 2.1).

Theorem 1.2.5 (Maier-Schmid ). A core-free quasinormal subgroup

of a finite group G lies in the hypercentre of G.

Lemma 1.2.6 (Gross ). Let G = H<x> be a finite p-group where

H 1is a core-free quasinormal subgroup of G. Then
@ Hn<x>=1 ;

() n-|(G) is elementary abelian ;
© nr@ = nrH) nr(<x>) , 3r(6)) =1 and
H ilr (G)/ nr(G) is core-free in GA2r (G) for any positive integer

@ ~(G) has nilpotency class s p-1

Moreover, if p = 2, then

e I<xx>i1 2 2n+2 , where 2n is the exponent of H ;

® n2(<x>) < zZ(@6) ;

(©)) fi3(G) Has nilpotency class s 2 .
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Lemma 1.2.7 (Stonehewer). A quasinormal subgroup H of a group
G is normalised by every infinite cyclic subgroup of G which inter-

sects H trivially

The following proposition shows how some basic group-theoretical
properties behave under the action of a projectivity. The proofs can
be found in [23 ] and [24 ] . Before we state it we recall the

definition of P-group

A group Gis a P-group if either it is an elementary abelian
p-group or G =A <b> where VA is an elementary abelian p-group,
<b> has prime order g, q |p-1 and ab = ar for some integer r
with r £ 1 mod p for all a e A. If G = A<b> is a non-abelian
P-group, where A and <b> are as above, then L(G) s L(X), where
X is an elementary abelian p-group isomorphic to A x B, with |B]=p
This was already pointed out by Baer (see [24 ], chapter I, section 3)

In particular a P-group is a modular group.

Proposition 1.2.8. Let G and G| be groups and it : G * G a

projectivity. Then the following hold.

@ (See [24], chapter 1, Theorem?2). If G is cyclic

(locally cyclic), G is cyclic (locally cyclic).

() (See [24], chapter 1, Theorem4). If G 1is the direct
product of the periodic subgroups G~ such that elements of distinct
G""s have coprime order, then G| is the direct product of the G*"s

and again elements of distinct G""s have coprime orders.



©) (An easy extension to the locally finite case of [23],
Theorem 3). If G is a locally finite p-group, then Gj 1is also a

locally finite p group except in the following cases:

(i) G is isomorphic to the Priifer group Cp» and

G§ s &, for some prime q * p.

(i) G is cyclic and G| is cyclic of qg-power order

for some prime q /. p.

(iii) G is elementary abelian and G| is a non-abelian P-group.

@ If G is abelian, then G| 1is a metabelian modular group

(see [24], chapter 1, Theorems 17,18).

In chapters 2 and 5 we shall need the following stronger and

more detailed version of Theorem 1.1.2, which is due to Zacher.

Lemma 1.2.9 (Zacher, [27], Lemmas 3.2, 3.3 ). Let G and G
be groups, it : G G a projectivity, H a normal subgroup of G

such that G/H 1is finitely generated. Then the following hold.

@  1¢ED6 z HAL <

[¢)) h"/(h\ is a nilpotent group of finite exponent.
bl

(111) If H* is not quasinormal in G-], then G-i/iH)" is

periodic and



12

(@) Gj/tH~rg =PFf/70~ ? ... x>/(Hu)Gi x ~/(H"g ,

where t < < ,and for 1si <t P?/(HiNr is a finite non-abelian

P-group of order ! ¢-. , where p* and are primes, g < p®
and 1 s . Moreover, elements of distinct direct factors have coprime
order;

(b) = (tf/iH?g x ...x QM/iHNJg x QM iHNIg where

U1 U1 g A T “1
Q* =H* P* . 1Q*: (H¥g I =0~ , Q%) 1= (Q?)Pi ,
Q7 = KW n Hu 1is quasinormal in G| and HIT is quasinormal in
Kw

() (HD) Y(HT)gi = p;/(MGix ...x PA/(Hgi x (QHK/(HMgi

where QINK (HiNr is nilpotent of finite exponent.
bl

In 1.1 we have defined modular groups. The following theorem,
due to Ilwasawa, describes the structure of locally finite modular p-groups.
We recall that a group is Hamiltonian if it is non-abelian and all its
subgroups are normal. A Hamiltonian group is the direct product of a

quaternion group of order 8 and a periodic abelian group without elements

of order 4.

Theorem 1.2.10 ( [24], chapter 1, Theorem 18). A locally finite
non-abelian p-group G is modular if and only if either G is Hamiltonian
or G=<A,t> where A is abelian of finite exponent and, for all

aeA,” at=antP where s is an integer and s a2 if p =2
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Remark 1.2.11 It is easy to deduce from theorem 1.2.10, using
an inductive argument, that, if G is a locally finite modular non-
Di-1
Hamiltonian p-group, the map X 2mxp is an endomorphism of fi,j(®

for all i a0 (see [24], chapter 1, page 15).

Finally we introduce the following notation.
Let G be a group and w a projectivity from G to some group G|
For subgroups X, Y of G such that X £ Y we shall often denote the
subgroups of G ((xV*)""1 and ((XIH™)*"1 by x"’ and X"y

respectively.
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Chapter 2.

On the core and the normal closure of the image of a normal subgroup.

2.1. Introduction.

The aim of this chapter is to show that, when considering problems about
a projectivity it of a group G with a normal subgroup H, we may
assume that H7/ is core-free in G77 . More precisely we will prove the

following theorem.

Theorem 2.1.1 let G and G be groups, « : G »G' a

projectivity and H< G. Then H?TB and H776 are normal in G.

In particular it follows that it induces a projectivity from the

group G/HN G to N/ (HT and H7/ (HT7Y. is core-free in

gi/(hTgl = 1

As mentioned in chapter 1 in the introduction, Theorem 2.1.1
has been proved by R. Schmidt when G, and hence G-j, are Tfinite
groups ([19 J» Lemma 3.3, (a))- However his proof is based on the
investigation of the behaviour of minimal normal subgroups under the
action of a projectivity and so it is not adaptable to the general case,
since minimal normal subgroups do not exist in general. Thus our
approach must be different and Lemma 1.2.9 will be an essential tool
in the proof. We also need some preliminary results on periodic locally
cyclic quasinormal subgroups. We will obtain them in the following

section.



2.2 On periodic locally cyclic quasinormal subgroups.

We recall that the norm N(G) of a group G 1is the intersection
of all the normalisers of the subgroups of G. The following result is

due to Schenkman ([17 1).

Theorem 2.2.1 (Schenkman) N(G) s Z2(G)

For quasinormal subgroups of prime order we have the following

simple, but, as we shall see, useful Ilemma.

Lemma 2.2.2 . Let H be a core-free quasinormal subgroup of prime
order of a group G. Then H < N(G) . In particular, by Theorem 2.2.1,
H s Z2(G).

Proof. Let |H|=p , say- If x is any element of G such that
<X> is infinite cyclic or of order coprime to p, then, by Proposition

1.2.4 (vi) and Lemma 1.2.7,

x ¢ Ng(H9) for all g c G . (D)

Thus, since H is not normal in G, there exists y e G of
p-power order not normalising H. Fix the element x and set
X=<H,y, x>, T=Hy> . Then, by (@), HX=HT and H is
core-free in T. Also T s a p-group and therefore, applying Lemma
1.2.6 (@), (), (¢ to T, it follows that HX 1is elementary abelian
of order p and |H n <y>l= P . H contains p+l subgroups of
order p. Moreover, by @, |X :NX®H)] =T : NH) | and

IT :Ny(H) | p, namely H has p distinct conjugates in X.
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Therefore, by (),

x normalises every subgroup of H . (&)

Let H = <H,z> , where <z> is the Sylow p-subgroup of <yx>
(note that, since yx does not normalise H, lyx] is finite by
Lemma 1.2.7 ). Again by (), HX = HTl and H is core-free in the
p-group T.. Thus, by Lemma 1.2.6 (c), Hy n <z> = Hy n <yx> has
order p. Clearly yx centralises Hy n <yx> . Thus, by (2), vy

normalises, and therefore centralises, H n <yx> . Hence x also

centralises HX n <yx> and so, by (2), x c CQ(HX). Therefore

HsCg <xeGl <x> sCe or (x|, p) = 1>

Moreover a quasinormal subgroup of order p clearly normalises the
p-subgroups. Therefore H normalises every subgroup of G, namely

H s N(G) , as required.

Lemma 2.2.3 . Suppose that H is a periodic, locally cyclic,
quasinormal subgroup of a group G and S s H. Then S is quasinormal

in G.

Proof. By Proposition 1.2.4 (i) we may assume, withour loss of
generality, that S is a p-subgroup of H. In order to prove that S
is quasinormal in G it is sufficient to show that S<x> = <x> S
for every cyclic subgroup <x> of G such that <x> is infinite

cyclic or of prime power order. If <x> is infinite cyclic then,
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by Lemma 1.2.7, <x > s Ng(H) and therefore <x> s Ng(S) since S

is characteristic in H. Thus, assume that <> has prime power
order gn , say. If g™ , since |<H9, x> - H® | | oL for all

g e G, H/H<h x> is a g-group. It follows that S s kH and

so Xx normalises S. Suppose, finally, q =p and let

C =<S, x> n H. C is quasinormal in <S, x> by Proposition 1.2.4(i).
As S <C, by Theorem 1.2.2 Sis ascendant in <S5, x> . It is well-
known (see [16 ], Theorem 2.31 vol. 1) that the join of ascendant

p-subgroups is a p-subgroup. Therefore, S<*,x>, and consequently

<S§,x> , are p-groups. Hence C is also a p-group. If S s x>
then x normalises S. Therefore, suppose S z x> . Then it will
not be restrictive to assume C<S,x> = 1. As C has finite index in
C<x> , C<x> = <§,x> is now a finite p-group, and C is a core-free

quasinormal  subgroup of C<x> . Also S= i®(C)for some i 2 1.

Applying Lemma 1.2.6 (c) to C<x> we get

<X>s » <x>ni<x>ni (c)= <x>ni (c<x>) =

= N(CX>)<X> = SNI <> = S<X>

The proof is now completed.

The following proposition generalises Lemma 2.2.2 . Although this
generalisation will not be necessary for our purposes, it has perhaps
some interest in the light of Theorem 1.2.5 . |Indeed the latter is

false, in general, for infinite groups:for example F. Gross (C 7 ]
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has constructed a group G containing a non trivial core-free quasi-
normal subgroup H where, among other properties, Z(G) =

We will bring up again the subject of possible generalisations of
Theorem 1.2.5 in Chapter 5. Proposition 2.2.4 goes in the opposite

direction.

Proposition 2.2.4 . A core-free, periodic, locally cyclic,
quasinormal subgroup H of a group G is contained in Z (G). More
®

precisely, if S is a p-subgroup of H of order pn , say, then

Proof. Assume n®* 1 and set n = fij(§). By Lemma 2.2.3 n
is quasinormal in G, and so fj s Z2(G) by Lemma 2.2.2 . It follows
that n9 Z(G) <aG for all g € G. Thus, since S n Z(G)=1,
nG =£9 X (nG nZ(G)). Let N/nP be the core of Sft6/ nG in G/ftG
Then N = N9 =(S9 n N)fiG =(S9 n N)(Fi? x(nG n Z(G))) Tfor all g e G.

2 is generated by quasinormal subgroups of order p, hence it is

elementary abelian. Moreover n (89 nN) =1, as S is core-free
in G. Therefore N is residuaglj(lzg an elementary abelian p-group, and
so N itself is elementary abelian. It follows that N = dp . Thus

SAG/IIG is core-free in G/fiG and |ISnGAAG | = pn_" . By induction

on n SAG/nG s Zg”™ n_i j(G/TjG). As 1 s Z2(G), the result follows.



2.3 Proof of Theorem 2.1.1

We show first that
I-lir,G <6 ®

We claim that, in order to prove (3), it is not restrictive to
assume G/H Finitely generated. |Indeed, assume that (3) holds whenever
G/H is finitely generated. Let now G arbitrary (namely with G/H
not necessarily finitely generated). Let r be the set of finite sub-
sets of G. For Fe T set IV =(Ger|G2 F) . By hypothesis,

for Fe T, H7r9 A > B <H,F > and therefore

Htt,G = 0 Hn <H,G> < <H*f>

Thus q is normalised by every finitely generated subgroup of G,

namely H. <G
ir,u

Assume then that G/H is Tfinitely generated. For simplicity of
notation set N = HA" and suppose, by way of contradiction, that N
is not normal in G. Set M= N® . Clearly M s H. By Lemmal.2.9
(ii) HA/NT7 , and consequently also MA/N* , are periodic nilpotent
groups of finite exponent. Let H be the set of primes dividing the
exponent of mVn". MFZNTF = <(N<N,9>)I/Nir] g « G> and hence
Il = (p |p dividesexp((N<~,9>)w/Nir) for some g « G } (here we are
using the usual fact that if Il is a set ofprimes and G isa nilpotent
group which 1is the join of periodic n-subgroups, then G is a n-group).

Therefore, for every p e H there exists 9p < G such that
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(N<N,9p>)IVNT contains a subgroup RMNTI , say, of order p.

We observe that N, as the image under ir of the normal subgroup
N7 of G-j, 1is a Dedekind subgroup of G. Thus, by proposition 1.2.4
(1) N<N,9p> , and consequently its projective image (N<N,9P>)Tr ,
are Dedekind subgroups (of G and G| respectively). Besides,
(N<N,9p>)T/NTT is cyclic, since «Fi.gp”N /N77= <9p>1T/<9p>an N77

and <9p>r 1is cyclic by Proposition 1.2.8 (a).

Suppose now that, for some p £ n, /N7 1is not quasinormal in
G-J/NI7. Then we claim that H~/N7 isnot quasinormal in GA/N77 .
Indeed, if this is not the case, as aresult of Theorem 1.2.2 andof the
fact that HA/N77 is nilpotent, (N<N,9p>)7/N7 1is also quasinormal in
GN/NT . Thus, by Lemma 2.2.3 , i~/N7is quasinormal in G~/N7 ,
against the hypothesis. Hence H~/N77is not quasinormal in Gi/N7/ .
Then it follows that G-j/N7 has the structure described in Lemma 1.2.9
(iii). Following the notation introduced in that lemma (with (ngi N7,
suppose that  Rp/NM S (N~’AP* n KINN77 . The latter is a Dedekind
subgroup of KA/N77 and it is also a subnormal subgroup of (QIF)E]]/I\F[r
since (@Q )* /Nw is nilpotent. Therefore, by Theorem 1.2.2,
(N~A™p* n kj™nT7 is quasinormal in KN/N77 . Proposition 1.2.4 (iv)
then implies that it is in fact quasinormal in G-jJ/NIY . Thus, as
a result of Lemma 2.2.3, Rp/N77  is quasinormal in G-j/N77 , again
contradicting the assumption. Hence RAN77 £ (N<N,9P>n KJIN/NT7
Again from Lemma 1.2.9 (iii) (and always using the notation introduced

there) it follows that fA/NT = Q* /N7 for some 1 s ipS t. Therefore

we have shown that
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if, for some p €JT, RA/N7 is not quasinormal in
GN/N71 then G-j/N77 has the structure described
in Lemma 1.2.9 (iiil and R?/N4= Q* /N7 far
some I sipst P Ip @)
Hence

the only prime in n dividing exp(P? /N7! is p, )
and P

RA/N77 is the Sylow p-subqgroup of HA/N7/ and. mV n77. ()

For all P ej there exists xp such that Rp is not

normalised by We show that

< v f e

p does not divide ((VN7) n ( <xp-N~/NT)]| . a

In order to show (7) we distinguish two cases:

() RIN7T is quasi normal in GAN7. Then
[RAMN17, <xp ,N>I//N77 ] is a non identical (because <xp3lr does n°t
normalise rE ) p-group (because (r£) V n7 itself is a p-group,
since it is generated by quasinormal subgroups of order p) contained
n (< Xp»N>7T/NID) n ZG-j/NT)  (Lemma 2.2.2 ). Therefore the subgroup
of order p of the cyclic group <xp,N>7I/Nwr lies in Z(G-j/NTD) .

Then, as M~/N7 is core-free in GAN7 , (7)) follows.

(i) rJINI is not quasinormal in GAN7 . Assume, by way of
contradiction, that (7) is false. Then, since,by (6), Rp/N7 is the

Sylow p-subgroup of M~/N77, it follows that
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(MANT) n (<xp, NA/NT) = /N7 Therefore < x .N~/NI7* centralises

of ().

We next show that

for each p€ n  there exists zp e G§ such that
<zp> N~/N7/  does not normalise i™/N77 and (8)

normalises RA/NT7 for each sen different from p.

Again, 1in order to prove (8) we distinguish two cases.

(@ RJIN77 is not quasinormal in G-i/NI7. Then, by (4) and
(5) any element <zp>e Pp. such that <zp>N'WN#n ~/ N7  satisfies the

required conditions.

(b) RA/N7  is quasinormal in Gi/N7 . Then R~N/N77 is
normalised by the elements of infinite order or of order coprime to p
(Lemma 1.2.7 and Proposition 1.2.4 (iv)). Therefore there exists
zp e G such that <z >nVnI is a p-group not normalising R"/N1l.
Moreover <zp> nV n7 normalises i*/N7 if s/p by Proposition
1.2.4 (vi) if RA/N77 is quasinormal in G-j/N7 , and by (4) and (5)

if RAN77 is not quasinormal in G-j/N77. Hence (8) 1is proved.

Let y « G. We show that

y normalises N. (©))
If <y> /(<y> nN) « , since mV n7 is periodic, if follows that
n <y, N ¥ = N7 and therefore M n<y,N> = N<<y,N> . Thus,

suppose that | <y .N~/N77 | 1is finite. For each prime number r let
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yp e G such that <yr> s <y> and <yr ,N>IPH# ts the Sylow
r-subgroup of «y.N~A/N7/ . Since <y,N> 1is the join of the subgroups

<yr .N> , in order to prove (9)it is sufficient to show that vyp

normalises N for each r. Set <yr> «<yr3r «Set also
R /N = c™p/N77 |p c n>. Since RA/NTT s HA/NTT and the latter is
nil potent, R/ is the direct product ofthe rJIN77 "s. Again

we have to split our investigation in two different cases.

(a) yr normalises r7 . Let 2z be the product of the 2z 's,
where the 2zp ’s are the elements of G] introduced in (8). Set
<z = <z> and <tr>77 = <zyr> .  <yr>N7I/NT7 normalises the
characteristic subgroups rJIN7  of rV n77 for all p € n.
Therefore, by definition of 2z, rJIN7 is neither normalised by

<z ,N>7 /N7 nor by <tr .N~A/N7 for each p e n. Hence, by (7),

(<z N>T/Nw) n (MT/NTD= 1 =(<tr .NA/N7) n (MW) .

Therefore M n<tr,N> = N<<tr,N> and M n<z,N> = N< <z,N> ,
namely N is normalised by <tr,z> . Since
<tr»z2IT * <zyr. z> i <yr> ,<yp>s <tr,z> . Thus yr normalises N.

(8) yr does not normalise R7. Then there exists p «n
such that <yp> N/N77 does not normalise RAN/NT77. By (7) p does not
divide |(MMNI7) n (<yr> NVNT77)]. Hence, as <yr> NA/N7/ 1is an

r-group, if p=r
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If p*r , then, by Proposition 1.2.4 (vl) Rj/N* is not quasinomial
in GAN . Then, by (4), yr e and, by (), r i Il. Therefore (10)
holds even when p/r. From (lo) it follows that Mn n <y ,N>* = N*

So

Mn<yr, N> = N <l<yr, N> .

This completes the proof of (8). Since y is an arbitrary element of

G, it follows that N is normal in G, contradicting the hypothesis
that N is not normal in G. Therefore N, i.e. H7T>B’ is normal in
>

G.

In order to complete the proof of Theorem 2.1.1 it remains to
show that H7#" <G. Suppose that this is not the case. Then

TG TG
H > H 7 )G ™ H. Moreover, by applying what we have just proved to
o4

b
the group G], the normal subgroup (H7) 1 of G, and the projectivity

r1; GI - G, it follows that ((H™) *) . = ((H7?2)-)T7 <3G,
* G] b 1

Thus, since H7 s ((H17,6)G)77 , we have
HD N s (HTG)Q)TT < (HTPS)7T = (HTDH6L

a contradiction. Theorem 2.1.1 is finally proved.
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Chapter 3.

On the derived length of a normal subgroup with a core-free

projective image.

3.1 Introduction.

In the next chapter we will prove, by exibiting a counterexample

(see Theorem 4.1.1 ), that Theorem 1.1.1 is false if we remove the
hypothesis that the group G is finite of odd order. However the
subgroup H that we will construct in Theorem 4.1.1 is metabelian.
Thus, it was natural to ask whether, removing the hypothesis of G
finite of odd order in the statement of Theorem 1.1.1 , H 1is always
metabelian. Unfortunately we still do not have an answer to this
question. However, in the present chapter we are able to prove the

following

Theorem 3.1.1 . Let G and GJ be groups, it: G > Gj a
projectivity and H a normal subgroup of G such that HILl 1is core

free in G~. Then H and HIT are soluble group of derived length

at most 3.
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We point out that Theorem 3.1.1 has been obtained after the
discovery of the counterexample in Theorem 4.1.1 . The proof of
Theorem 3.1.1 shows how the problem can be reduced to the case where
G = H<a> is a finite 2-group with Hn<a> = 1. We would like to
mention that Theorem 2.1.1 is used in this reduction process.
Sections 2 and 3 are then devoted to the study of the structure of
G and G| in Theorem 3.1.1, assuming that G = H<a> is a finite
2-group . At the end of section 2 the proof of Theorem 3.1.1 is
derived. Section 4 uses the results in section 3 to improve a theorem
by Yakovlev (see Proposition 3.4.1), who showed that the projective
image of a soluble group of derived length s n is soluble of derived

lengh s 4n3 + 14n2 - 8n (see [25 ], Theorem 4).

3.2 The abelian case for some finite 2-groups.

In this section we shall give a sufficient condition (Theorem 3.2.3)
for H to be abelian whenever H is a normal subgroup of a finite
2-group G= H<a> , w: G G 1is a projectivity and Hn is core-free
in G . We point out that Theorem 3.2.3 is the key result, together

with Theorem 1.1.1, in order to obtain the more general Theorem 3.1.1

In the next chapters we shall often make use of some well-known
facts occurring in projectivities of certain finite p-groups. We shall
state them in the following lemma. Most of these facts are easy
consequences of Lemma 1.2.6 on core-free quasinormal subgroups.
However, since the statements do not seem to appear explicitly in the

literature, we shall indicate how to derive them from Lemma 1.2.6



Lemma 3.2.1 contains also a result ((xtii)) which is not an easy
consequence of Lemma 1.2.6 . It is due to Menegazzo and it will be
extremely useful in the proof of Theorem 3.2.3 and 4.1.3 . Since

it is not published, we shall give a proof.

Lemma 3.2.1 . Let G and G be finite p-groups, where p 1is
a prime, 1/ H <G such that G = H<a> and let uw :G GJ be a
projectivity such that H* is core-free in Gr Set <a,> « <a>n

and suppose that H has exponent pr . Then
O) Hn<a> =1, n <ai> =1 ;

@ forall is 0, ~@6)- flj() <> and ~(G,)« ni

(it for all = o Himi(, G is core-free in Gj/n~Gj) ;

(V) forall i *0 9,16G5/1E) 9 nisl Gi) (G aie

elementary abelian;

W forall i z0 g GymieGs> @9 Lis2¢GIYiM GI) have

nil potency class s p-1 ;

(vi; if p=2 , forali i»0 ~(G)/”™ (G) and «1+3(G1)/ni(G,)
have nilpotency class s 7 ;

i-1
(vii) for all i * 1 the map x @axp is an endomorphism of

(G); the same power map is an endomorphism of 0. (6" ;

(vili) if p=2, n2<a> 5§ 27(G) and ~2<al> * zCGi) »



(i),

(9]

&9

(xi)

(xii)

~
X
=

Proof.

if p=2,
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lal i 2r+~ (of course H1L has exponent 2r and

Ja, J= ja])-

Denote the rank of 1,(G) by m+l. Then

if p=2

or m N2, tr restricted to n,(8) is induced by

an isomorphism;

there is a basis {eQ,e”..., em } of ~(G) such that

{el,...,em} 1is a basis of (H) , <~> =nlka> ,

el =el’” ei =ei-lei * for 2 51 sm. Also there exists
a basis @0,...,fm> of ~ (G”) such that <fi>*<ei>Il
for 0 sism, = fi-Ifi mod <f0,... ,f~ 2> for 1si<m

and, moreover, if p=2

Ai
. Bl /2 Gf mn 2,

3 « f8f2F3 , 0 s 6s1 Gf m23) ;

for all 1 si sm fi-]J() contains exactly one subgroup

of order 21 normalised by a, namely <€,,..., €.0, ei> .
Similarly, for all 0 si sm, il,(G,) contains exactly

one subgroup of order 2 normalised by a-j, namely

AO» N » fi> 5

if p=2, 0,(6) s zZ(f2r(G)) and 0, (G,)s Z(Qp(Gl)) ( [13D)-
By Theorem 1.2.2 is quasinormal in G,. Hence (i),

(iii) follow immediately from Lemma 1.2.6 (@) and (c)-

v

For all

1 *0 it induces a projectivity from G/ft,(G) to
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G1/7i”NG1l)* Thus> as a consequence of (iii) tn order to prove (iv)

we may assume 1=0. Then J|G-]) is elementary abelian by Lemma 1.2.6

(). Consequently JI|(G) 1is a modular finite p-group of exponent p

and therefore it is abelian.

(v) . As in (iv) we may assume i=l. Then Lemma 1.2.6 (d)

m -1
shows that JIgiGj) has class sp-1. Set 1= ( ( H))7AL for every
integer m. Since J"(H) o G, is certainly quasinormal in J29(G).

Let Nm = ~  follows from (ii) that

AN(GI/™Am = (Km™A N 2<a>NnyWNm~® e Thus Lemma 1.2.6 (d) applied to the
group ng(G)/N , implies that ~(~)/™m has class < p-1. But, since

QG is core-free in G|, n1* =1 and (v) follows.
m
(vi) . The proof is analogous to the proof of (v) replacing the

Jig’s with Jig’s and wusing (g) instead of (c) in Lemma 1.2.6

(vii) . We use induction on i. For i=l the statement is clearly
true. Therefore assume, by inductive hypothesis, that the statement is
true for some 1*1. By (iii) the hypotheses are preserved in the
factor groups G/JING), Gg/dli (Gi). Also, by (iv),

il VII™(G)) = i+l (G)/IL. (G). Thus, if x, y e I (G), by the inductive

,»1-1 pi-1  ,1-1
hypothesis we have (xy)K = xK y mod JI-](G)- Moreover

»1-1 . Di-1
xH , YW £ JIg(G), which has class s p-1 by (v) and therefore

it is regular, in the sense of Ph. Hall (see C 8 ], Kapitel 111, 810).
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Hence, as in addition, by (iv), (f2,(G))” is elementary abelian, we have
1 i i
(xy)p =xp yp - The proof for is analogous. Thus the
statement is true for i+l and (vii) holds.
Tram 71
(viii) . By Lemma 1.2.6 (f), f2<a-|>sz(Gl) . Set ~»(H)" 1"
and Nm =CSn~G for every inte9er m. 1~ is quasinormal in G. Thus,
again by Lemma 1.2.6 (f), Cii<a> , G]s Nm for all m . Since H*
is core-free in G, N Nm = 1. Therefore fi2<a>sZ(G) t as required.
m

(ix). It follows immediately from Lemma 1.2.6 ()

(x)- It is a particular case of the fundamental Theorem of
projective geometry, by considering n-](6) and G3) as vector

spaces over a field with p elements (see [ 1 ], Theorem 2.2.6).

(xi). Clearly <a-j> = 1. Suppose that | MMj<a>|> p*

Then there exist two distinct subgroups of H of order p, <v> and
<w> , say, such that <v>u and <w>r are core-free quasinormal
subgroups of W HN <a”> . It follows that V> X <w>* induces
a cyclic group of automorphisms on <a| > and so Cii <a-j> 1 1,

a contradiction. Therefore |Cr (H)<a>l= p* * Consequently there
»l«
exists a basis (enr..., em> of il-]) (considered as a vector

space over a field with p elements) such that

el “eT ei=ei-l ei for i in the range 2 si sm.

Set <eQ> = il-]<e> . For all 1 in the range Osism we have



<e0*l....ei-l,eip= <a.e”,..e,e.> . Hence, in particular,
<e0,...,ei> is normalised by Moreover, for 1si<m ,
ei-l1 £<ei*a> and therefore < i . Then, considering

the further fact that a" does not normalise <e-J>ir , it follows, for

0 sism, that we can find generators f. of <e->ir such that

fi-1fi mod <fO....fi-2> 2si sm

-h
x|

and

fl fo fl *

Thus, if m & 2 we have

E"BhEk Os as p-1

and, if m 2 3

£3* = fo 7 2 £3 Os 6,yS p-1.
In order to complete the proof of (xi) we must show that if ms2 and p=2 we
can choose the e”s and the f~s subject to the further condition that
a= y= 0. To obtain this we replace ei by eT "™ a eT“lei for

i¢3 , e2 by enae2 , f. by T~ for ia3 , and

f2 by fiaf2 e«

By (xX) w is induced by an isomorphism. Thus for the new e”"s and

ft"s we still have <f*> « se™1l for 0Osism and it is also



straightforward to check that all the other required conditions are

satisfied .

(xii). It is an immediate consequence of (xi).

(xiii). We show Ffirst that

[ ni(G), ~(6) 1=1 Q)

Suppose, by way of contradiction, that (1) is false and assume also

that |H] 1is minimal with respect to (1) to be false. Let

{eQ,... ,em }, ifo»*-*»~"} be bases of ij@© and ~(G.) respectively

as in (xi). It follows from (i) that
i, it
e0 1 H ®
ira. it ©
On the other hand e”eQ c H ((xi1)) and so
Tajir
el i H (€))
Trai ™ - _
let K s H such that K @173!77 SG- & is normalised
*B. it
by a and does not contain e,. Therefore, by (xii), K nH=1

and it implies that K773'7 and its projective imageK(via the projectivity

iraNir'l: G+ G) are cyclic groups. Moreover, as e”eQezZ(G) ((vii)) and (xii)),
Tai 1T irarir,

<e-]e0> s K and <e-|]> m <;<_eire61:> "s K. By Theorem 2.1.1

applied to the projectivity T a—jir_l :G G, K 1is normal in G

ira »it
Hence g tt_l induces a projectivity from G/K to G/K 1 and
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TMTr 1 ua—jir_l ira]Tr

H 1 *"/K is core-free in G/K Therefore the groups
Trau™t .

G/K, G/K , the projectivity ira” and the subgroup H/K of

G/K satisfy the hypotheses of the lemma. Then the minimality of |H |

implies that C i (G/K) ,H/K Im 1. In particular we have

COj(G), H3sillK) =<e]> (0))

Consider now Ur -J(H). It is a non-trivial normal subgroup of G

contained in fi-|JH). Thus °r -|(H) 1 <e-J> by (xii). Also, by (vii),

?r-1
ur_L(H)={" |[heH }. Therefore there exists he H of order 2r

such that

,r=1

Then, by (xi),

RS TH L 20
£21 (<h> ) =<el> = <eQel> .

In particular

TadT
<h> n H=<1>

Tanil-1 wa, a’l n
Since H /(H n H) is cyclic of order at most 2 and

Taqr ™
< h> 2r, it follows that

ta ITT Tra-.Tr''l Tra-.Tr'"1
» HnH * )<h> 1 ®)
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We next show that
ira—iir-l

cn,(G), H * 3=1 ®

To see this we observe that, from (4), <h> is normalised by Tftj(G).

TTeli 7T

Therefore <h> is also normalised by Tfij(G) (this follows, for
instance, from the fact that I<h,x> :<h>1* 2 for all Xx cii”G)
Tta, IT ~ TTa, IT ~
and consequently |<h,x> : <h> 1 s2).
Thus
ﬁaﬂfl iRLn-l
C<h> 1 , (@G)] s HnN<h> =1 . (7)
wejie’! ira, Wk
Moreover, since H 1 is quasinormal in G, H nH is quasinormal
in H. Hence, by Proposition 1.2.4 (v), iH(H) normalises nH.
Then
A A w-Tr-"
[ HH),H 1 n H <e}>nH 1 =1, (8)

by (3 and (4). Now (6) follows from (5), (7)), (8), (ii), and (viii).

Let <b> be any subgroup of order 2r containing . Order

considerations and (ii) show that

Considering the fact that, if <b> is normalised by fi”~G), then it is
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centralised by ~(G), it follows by (6) that

<b> is not normalised by i2§© . (©)

Order considerations and (3) give the further decomposition
-’ ~

nr(G) =H 1 <h>

Therefore, by (4) and (6)

L~(GC). nr®] = IJ(C). <b>]= <> . (10

Set <h-]> = <h>T . Since <h> is normalised by ®-]©), <h-|> is

normal jsed by n-|(G-]). Suppose that N )<hl> 2 <”O"AL x5 fp-1> ¢
Then F = f_ mod ,r <h,>and so either f centralises both <h,|>
m m 1 m
a, a, r-1
and <h™ > or induces on <-|> and <> the same power 1+2
2r-1

(because [f , h™ e<h-|> n il-JiG" = <h-j > ). In both cases

a, 2r-1 ai 2r1 ai
Cfm.h1h1™] £ <hl (it ) - >=<f]fl

a, ?r-1
°<f0> = (MM ) -

a, r
by (vii). Therefore <+|h-] > is a subgroup of order 2 containing
f , normalised by (G1)- It implies that its preimage under n is

a subgroup of order 2r containing e”, normalised by fI®G) ,

contradicting (9). Thus KNQNL**7PAm-AN  * Cg (g ) > and we can
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find x e <el,e2,...,e(qi> such that X 4 <e,,e2,...,em_2> and
<XX>Tr 4 (@] > . Set <Xi>=<T . Then
Ch,, x, 1- fi (1D

21 71
By putting <a > = <b> in (0), where <a > = fr<a> , it

follows from the action of a on ft,(G) that

m=2"+1 and ft, (G) n Z(ftr (G))=<e0>e, ,... ,em_,>. (12)

The 21 elements an 0<js 21—1 form a basis of <e,,... ,e -
Therefore

Copgpd <X><x,a * ) = 1 » 13
Moreover,by (vii) and (ix), ft,<za > = <eQ> for all 2z eH. Hence,

recalling also that x eZ(H) by (12), we have

ft <x, a2>= ft, <x,za2 > = <e > X <x><x,a2>
Thus, in particular,
ft, <x,, a2> = «|<x,, h,a2>
and so, by (11),
2 2 2

‘= Mixils M KT c
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Then e] e ™ <x,a™> nH = <x> X,a , contradicting (13). With

this contradiction the proof of (1) is completed.

It remains to show that

CivVv* W 1=1 -«

As a consequence of (1) every subgroup of ilr(G,) is normalised by
G-J)- In other words any element y e ~ (Gl1) induces a power

automorphism on O0~Gj). In particular, for any element w of «r(G1l)

of order 2r

2r-1
¥.] e <w> n B|G]) =<0 >,

and so either y centralises <o> or induces on <to> the power

1+2 . Then, considering the fact that GJ) contains at least
two cyclic subgroups of order 2r intersecting trivially (e.g. fir<a.>
and any cyclic subgroup of HIT of order 2r) and using (vii), it is
not hard to see that the power automorphism induced by y on nr@Gi)
is universal and it is either the identity or the power 1 + 2r™

It follows that

1A, G§) :n1(Gl) n ZCAJ-1 * 2 .

Moreover, since M GJ) n Z(far (GJ)) < G|, by (xii)

CGi) n Z(Fir Gj)) * <fg »f] »e ee  fmn-1> »
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,em> are the usual bases

in  (xi).

where {lg tfepeeet and iet.ej,...

of n1@G|]) and © respectively, as

that f induces the power

by way of contradiction,
Then [fm,a2 ]= fQ

Assume now,

I1+2r .1 on fir(G-]). Set <a2 > =1iya,»" .
form a basis

! . TJhe 2 elements € 0sjs 21—1

gives m=2
of il-JH). Therefore
<e ,az2>
as

C<a>(<em>

by (vii) and (ix), <a™z> = <eQ> for all z cH. In

H = 1. Therefore

Moreover,

particular <a z> n

<e ,a2> <em ,a22> 9 )
<e,> m . = <em> = <6—m, aE>n H = <€p.» az> n H

Then

<fm” al>n = <fm* al zI> n HT , (15)
for all 2z, e HF* . As we have seen in proving (1), there exists

R t r-1

hj « H such that hA = f . Thus

a2

fl = Chl- v " Chl* fm] 1 " Chla? *V Ca5 “ V £<fm*a?>nH7T*
2
by (15). Therefore e] e <em> a2> n H = <em><e,n,a > contradicting

(19). This completes the proof of (xiii).
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Before we proceed it will also be convenient to state two well-
known results about certain modular p-groups. A proof of the Tfirst
result (part (@) in the following lemma) can be found in [25 1
(Lemma 3). The second (part (b)) is due to Menegazzo ([13 1) and,
as it is not published, for completeness reasons we shall give Menegazzo®s

proof.

Lemma 3.2.2 . Let G be a finite modular p-group, of exponent

pr , where p 1is a prime.

@ If exp Z(G) = pr , then G is abelian.

) If G 1is not Hamiltonian and &iij_1(G) is not cyclic, then
G contains a characteristic abelian subgroup A such that
G/A is cyclic and every automorphism of G induces the

identity on G/A.

Proof, (@) 1is proved in [25], Lemma 3.

(b) Assume that G is non-abelian. By Theorem 1.2.10 G= N<t>
where N is abelian and t induces on N the power 1+p* , p* > 2.
By hypothesis N has exponent pr . Let A= Cg(N). A is abelian,

G/A is cyclic and Cq(A) = A. We now distinguish two cases.§

O) Nfir_i (N\) is not cyclic. Let a= xt" be an element of
A, where x e N, and let a be an automorphism of G. We show that
a“ « AL Since t e Z(G) sA, a“cA if and only if xa e A

As ur-i(N) @ Nf2r 4 (N)) 1is non-cyclic there exists an element u in
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of order pr such that <u> n <xa>= 1. <u> and <x“> are both
normal subgroups of G, therefore wu : =u and since x“ induces a
power automorphism on N, it follows that x* induces the identity

on N. Thus xa e A and so A is characteristic. Moreover ta
induces on Na the power 1+p* and it induces a power on N as well.
These powers coincide on N n Na, which has exponent pr (otherwise
N/nr_I(N) would be a quotient of the cyclic group N/N n Na), and

therefore ta induces on N the power 1+p* . Thus t'" t“ e A, as

required.

(i Nilr_i (N) is. cyclic. This forces t to have order pr .

Moreover, since N has exponent pr and <t> nA =C .(N), it
nr-x nr-X
follows that <t> nA = <r > and therefore A = N<tp > . Let
y -y X\

xt’P , xeN,p&r-X, be an element of A of order pr. Then, since (xtnP )P=xP,

we have

(xt~rV =xt”™ xPX = (xtiPM1+PX

Thus, as A is generated by elements of order pr, it follows that
t induces on A the power automorphism 1+p* . Recalling that the
group of power automorphismsof an abelian group is in the centre of the
whole automorphism group, in order to complete case (ii) it is
sufficient to prove that A is characteristic in G. To show this we
shall prove that A concides with the subgroup B of G generated by
the cyclic normal subgroups of G of order pr. Clearly A < B.
Conversely, let <b> be a cyclic normal subgroup of G of order pr.
\%

We can write b= tp y, where y e N and v 2;0. Suppose v=0

Then G = N<b> and so, by Remark 1.2.11 Ur_i (G) = J(\N) i<b>
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Also, by the same remark «| —-j(G) 1is non-cyclic as 0~"GJsG/n _-|(©)-
Thus, since »r -,(N) 1is cyclic, <b> nOH (N). 1 . Therefore there
exists h eN of order pr such that <h> n <b> =1 . Recalling
that <b> induces a group of power automorphisms on N and is normal
in G, it follows that b centralises N and so G is abelian, a
contradiction. Hence v al and it implies that |y| = pr (by
Remark 1.2.11 , in a modular p-group G, ~(iT>@G)) = 1 for all i £ 0).

As <b> is normal in G we have

nv A
Co,t] = Ctpy, 3 =1Ly, t] = yp c <b> ,

and, moreover,

nA A "V A _V+A
<yp > =<bp >=<(tp y)p >=<tp yp>

V+A
for some integer p . It follows that tp £ <t> n<y> =1, as we

have seen before in proving that v 2 1. Therefore pr |Jpv+*
r-A
i.e. Vv ir-A and so, finally, b e Kitp > = A, as required.

O

We are now in the position to prove the key result of chapter 3.

Theorem 3.2.3 . Let G= H<a> be a finite 2-group,where H is
a normal subgroup of G of exponent 2r , rs 1, and let it be a
projectivity from G to some group G such that H* is cpre-free

in 6§ . If Wit 1(H) | *23 , then H is abelian.

Proof. Since H t 1, by Proposition 1.2.8 (c) G] is afinite

2-group. .



Set

of ()

<a-|> =

abelian by Lemma 3.2.1 (iv)), chosen as

Lemma 3.2.1 (vii) ur.-,(H)s ~(H). Hence m 2 3 and from
Lemma 3.2.1 (xii) it follows that
_i(H) N <e3> x <e2> x <e”™> (16)
Let
TTayir'” Tra?i: "
Q=HnH 1 , Ql =H nH (17)
Trage
Since H n <a> = 1 (Lemma 3.2.1, (i)), H n<3> = 1* namely
Trai-ir-1 )
Therefore,-as -e-* e H (Lemma 3.2.1 (X) and (xi)),
mur A
ei 4H (€23))
in particular el 4 Q. Thus Q n <e3,e2.,e|> < <e3,e2.,e|> .
On the other hand a simple calculation using Lemma 3.2.1 (Xx),(xi), shows
that <e2 e.], e3 e2 e”> s Q. Therefore we have
Q n<e3,e2, e-f =<e2 el, e3 e2 e @9
and
QnQan <e3> e2, &> - <e3 gj+> (20)
2 1 -1
Similarly e 4 H"8! ~ and e2eo0 £ (Lemma 3.2.1 (i),(X),(xi)).

<a>w and let

and fi")
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{e0,...,em} , (fQ .... be bases

respectively (g (G) and (G]) are elementary

in Lemma 3.2.1 (xi). By
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wfat

Therefore e2 4 H ; in particular e2 40Q Again Lemma 3.2.1

(xX), (xi) also gives <e3 e, e s0Q,. Hence
o5 n<eS,e2,ej>:<eSeg> ej> (21)
and

Q nQ] n<e3,e2, ej>=<e3 e>el> . (22)

The lattices [H/Q] , QD , [Q/Q nQa] and CQ/QnQl] are
chains, since they are isomorphic to sublattices of the chain CG/H1 and

it implies that

IH : Qnr.-,(H) 1*2, IH :Qlnr"I(H) 1*2,

(23
IH: @QnQa)iN._i() 1 *4 , IH - QnQL)SH_1(H) I * 4.
Moreover we have Qix - (H)/*.-, (H)s Ur_-|(Q < Ur-, (H)s H/0r~(H),
by Lemma 3.2.1 (vii), (16) and (19). Therefore, by (23),
[5r -,(Q) 1= IH/nr-1 <> 1/2 =l Ur-1<H>12 * (24)
and so (24) together with (16) and (19) yields
Ur_I1(Q) O <e3* e2* el> “ <e2ei* e3 e2 el> * (25)

In the same way, using (21), we get



<V 1 ) n<e3> e2* ei>=<e3 e| .el>. (26)
Moreover, by Lemma 3.2.1 (vii) and by (16), (19), (20) we have
QnQa)nr.1(H)/nr.1(H)s . 1(QnQa)< «_i(Q)<».1(H)s H/"N."H).
Therefore, by (23)
Ur-lQ nQ )I=l H/""H) V4 =l Ur_..(DI/4 , @n
and so (27) together with (16) and (20) vyields
yr_1(Q nQ3) n<e3, e2, el> = <e3 e]+e> (28)
Similarly, using (22),
ur_1(Q n QD n<e3, e2> e> = <e3 e]| en> (29

Applying Lemma 3.2.1 (vii), by (25), (26), (28) and (29) it follows that

there exist hj «Qj, h? £Q, h3 eQnq,,h £Q nQa such that

jf-1 ,r-1 2r-1 6 2r-1

,1+P
el” h2 =e2el > h3 = e3e2 el* h =

Using Lemma 3.2.1 (vii) we have e~ ht'—t=CH2"—1y2= 0332~ =(hi[h1.al)

2r-1 r-1
2r-1 2r 1 ’
= Kf" [lfv‘a’r r—_ e~hpa] Hence [],a] .= 1, namely

Chl,a-|] = H e fx_-|(H).



or 1 2r 1 or 1

similarly ef= (e~ da= (2 =) = (md) "= = (h2ch2, a])* -
,r-1 ,r-1 ,r-1 ,r=1

= h2 [h2,a]t = e2e] [h2.,a] c . Therefore [h2,a]2 = el

and Lemma 3.2.1 (vii) together with (30) imply that [h2,a] = h”

where e il i (H). Finally, in the same way,
e3C2+B el+B = (e3e2 el)3 = (h3 = (h3)2 =(h3 th3»a] )2
2r-1 2r-1 2r-1 ?r-1
= h3 [h3,a] = e3ef e [h3,a] . Thus [h3,ar = e2enN =
+R.2r-" - . - -
= (2 p) and again Lemma 3.2.1 (vii), together with (30), imply

that [h3,a] = h2h%+3W3 , where w3 e fir_-|J(H). Summarizing, the

following relations hold
ha = h™a»i, h2= h2htw2, ha= h3h2hj+e03, where aij §(H) for Osis3. (31)

Since <> nQ = <h2>nQ =<h2 > n @ = <ha>nQ =1 and since

Q and are quasinormal in H, recalling that [H/Q], [WQ-j]
[Q/Q n Q-] and cQM/Q n QM are chains and using Lemma 3.2.1 (vii),

yields

nAH) = «i(Ql) il~hgh” = fi.(Q) ni<ha> =
(€7
- nj(Q n QP

ma3e N
Write <k.> = <h”> . Then, by Lenina 3.2.1 (X)



kf" l-e eQiQ . (33)

Therefore, by order considerations, we obtain
Tradiir’'»

H 1  =0Q<k]> . G

We divide the rest of the proof in some steps.

Step 1. If H 1is a modular group, then H is abelian,

it
By (34; it follows that H 1 = Q<gk”™> for all g e Q
Tra.w' 1
Thus Ikgikg> 7/ <gke> n Q] = |<IC|>/<k”™> n Q | = |<k™>|= 2 = exp(H ).
and it implies that <gk|] >nQ = <1> . Moreover <qg”> is quasinormal
T Ak
in H (H is now a modular group, since it is the projective

image of H via the projectivity iraitt *). Hence, for all ‘e Q it
follows that <g-l, 9 k> n Q = <> < <9, gk-|>

In particular every subgroup of Q is normal in Q and therefore Q is
abelian, since it does not contains subgroups isomorphic to the quaternion
group (Lemma 3.2.1 (v)). Thus <h> s Z(QQa) = Z(Q<ha>) = zZ(H) (by (32))

and this forces H to be abelian (Lemma 3.2.2 ).

We now use induction on |Hl . By Lemma 3.2.1 (v) we may and shall

assume r z 2 .

Step 2. dr_i(H) is abelian, it induces a projectivity from

nr_1 (H)<a> to fir_i (HN<al> and
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lar I(H)/«r-27H>|t 1 V A r A "» 1*1n/VI1~128 "

by Lemma 3.2.1 (vii) and (v). Thus,by induction, ilr_~(H) is abelian.

Step 3. H* s a,(H) n Z(H). Since H/il™H) = Hn](G)/" (G)

we have

H/nr_i (H)s(H/n1 (H))/nr_1 (H/n, (h))=(h«1(GC)/™ (G) (ta, (G)/" (@))-

Hence

[CHN1 (G)/nl (G))/nr_1 (Hn1(G)/nl @)| ~ 23 .

Therefore, by Lemma 3.2.1 (iii), we can apply induction and it follows

that HO| (G)s H/0] (H) is abelian. Lemma 3.2.1 (xiii) completes

the proof of Step 3 .

Step 4. If |[H/nr.1(H)] > 23 , H is abelian. Set

irS-iir ira. it
K 1 =H 1 )G
irair-" na.ir
By (18) el 4K 1 n H. Since K nH is normalised by a ,
na.Tr'”
from Lemma 3.2.1 (xii) it follows that K n Hwm 1. Therefore
iair © > i
K 1 and its projective image K (via the projectivity g it :6-*-G)
ral T~

are cyclic groups. On the other hand e]eQ e K -
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n Z(G) (Lemma 3.2.1 (vili), (xii)). Hence el e K,

.- , , iraiir
in particular K / 1. Also K, as the preimage of (H )g under

the projectivity igir» : G G 1is normal in G (Theorem 2.1.1 ).
and

-1
/K is core-free in G/K . Applying Lemma 3.2.1

(vii), since K is cyclic, gives
I(H/K)/F2x 1 (H/K) 1=1 UAAH/ZKIDs  1«r - (HK/K] * 23 .

Therefore, by induction, H/K is abelian and step 3 implies that
H* s n-](K) = <e”> . Then, by (30), <h-|> o0 H and hence <k™> s

uai i ) iniu"i
H - Since Q <H 1 and <k nQ =1 ((33))

quasinormall in
for every q eQ we have <g,k-J> n Q = <g> <<q,k > , namely <-]J>
induces a power automorphism on Q which is now abelian since

QnHlIl=Q n<e]>=1 by (19). Moreover Kk, centralises the group
of exponent 4 /ixr_2@Q) (Lemma 3.2.1 (v)). Therefore, from the locally

finite modular p-groupsstructure theorem (Theorem 1.2.10) it follows

Trair
that H and its projective image H are modular groups. Finally

step 3 forces H to be abelian, proving step 4 .

Therefore we may and shall assume that |H/fl jJ(H)|] = 8. Then, from

Lemma 3.2.1 (vii) and from (30) it follows that

H » AZy AQ* N1* (35)
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Step 5. nr_-JH) normalises <hj> and <h2> . From step 3

it follows that <hp h2>* Z(H) and, by (32),

fr -JH) s <Q n - h2> e Hence we have

<hi> Vi <H)>" * ni<Q n Qi* hr 5 ni(Qi) (36)
and

<h2» V1 (H)>" s ni<Q n QI* h2* * ni(Q)" (€))

It is clear from (21) and from the action of a on iH#H) that <e,>
is the unique non trivial subgroup of n{(@-]) normalised by a .
Moreover, by (31), a normalises <j,nr_i (H)> and hence a
normalises <], _-j)>1 . Therefore, by (36),

<hl, nr_1(H)>" £ <e” s <h™> (38)
and so nr.-J(H) normalises <h.j> .

By (31), (38) and step 2 we have

[h2 ,ir_1 (H)]a-[h2hla2 ,nr.1 (H)]£[h2 ,nr. 1 (H)]1[h,~r_1 (H)]s[h2,nr_1 (H)D<el>.

Thus a normalises <h2,nr_j(H)>*“ <e.j> and, assuming that

<h2 ,nr-1"HJ3>" not contalned <e2>e]>* fellows that
) n2 ni
<h2 ,nr-1(")>1 contains an element of the form e3e2 e . Also (30)

implies that a® normalises H>* -
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Therefore [e3e5]2 e’OI , a2] = e] £ <h2>«r_1(H)>* s 0j(Q), by (37),

contradicting (19). Hence

<h2* Ar-1~ > * <e2” el>n Q = <e2 ei> = nkh2> -

and so &x_i(H) normalises <h2>. This completes the proof of step 5.

Step 6. D i1 (H) s Z(H). By step 5 <k~> s quasinormal in

TEwTT 34T
nr_-JH )<ki> = Since Q <BH and <ki1>nQ = 1 ((33)), it

follows that, for all g € o_"(Q), <qg,k™™n Q=<g> «a”.kp . Thus
kK induces a power automorphism on ~~(Q). (39)

Let a be an integer such that Jaa] = 2r. By (33) and (30)

r-1 r n r-1

erel0= k¥ _ aa2 N . Then Lemma 3.2.1 (vii) implies that

kj = aa h™w where u e nr_44@G). Thus [k~,a] = [a°h?u, a] =

* [l m.a] = [h], alwu, a] ; also [h],a]l enr 1H) by (31) ad
Cual £nr.1(G) nG *«™(H). Therefore (k,, a] £ Q”"H) which

is abeMan by step 2. Together with (39) this implies that kj induces
the same universal power on fir_-](Q) and on ftr_i(Qa), and hence it

induces a power on Qnria@)-

Since h £ Q, by (32) we obtain (Qa)a« p_1(Q)<hzZ>#-nr_1 (H)-

Therefore



kg induces a power automorphismon n .(H) . (40)
Trad7t
Let <R> =<h2> By (30) and Lemma 3.2.1 (xX) and (xi) ,
.irl - e2 el e0 = ha'™L 221 41)

Then Lemma 3.2.1 (vii) implies that 1= a“h2 w* , w" e £ ~(G)
From step 5 it follows that <k”> is quasinormal in nr g4(@Q])<k2> -

Since <k2> n =1 (21), (41)) and Q, is normal in

o
H .for every q] £ «r_1(@-,) we have <qr k2>n Ql=<q]> <r<ql,k2>.

In other words

induces a power automorphism on  nr_1@Q])- 42

Using Lemma 3.2.1 ( i) we can write ®= (aa)2ib , 1i0o= (aa)2”c ,
where b and ¢ are elements of ~r -j(H) and 1i,j] are suitable integers.

HoS/n”~-jiH) is abelian, since (nr(H)<a“>)" = (fr(G))" s @Gip_1(G) nH)=
=nr_I(H). Therefore kK = aat2ct” ™ mod nr_-j(H) and

= alOl+2a™ h2 mod nr_-]J(H). Moreover there exist odd integers 6,y
such that k~ = aahl mod (H and K s h2a"a mod

It follows that k™ k» = h2 h™w" , where w" 1is an element of the abelian
group i(H) and so, since both k| and k2 induce power

automorphisms on fl , Q).

h2 hj induces a power automorphism on rY_i QJ) 43)
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Moreover, by (31), we have [h2 h], &_](H)]=:h2 h] w2, n*(H)] =

= [h2, ilr -]J(H)]a < <e2 epa = <e2> = f <h2 h*> . Therefore <h2 h">
is normalised by «r_-J(H) and consequently by fir_1(Ql); since
fil<h2 hl* = <e2> ~ Qi (@1)> ~ follows from (43) that

[h2 h1, nr§@4)] = 1 . Thus, using (32), we also have

Ch2 h-j, ~r_i(H)] = 1 and consequently [h2, *"r -|(H)]a =

=[h2 b <, ilr_i(")]=[h2 h|, ZFi¢H)] = 1. Therefore

VI<H) 5 z(V I (H)<h2x v * = (44)

In order to complete the proof of step 6, by (35) it is now sufficient
to show that h3 commutes with £b i (H)

By (32) <h3, fr_i (H)> s <Qn Q], hi;, h"> and, since <h”, h2> s Z(H),
it follows that <h3, _i (H)> S <QnQl, h2, h">"s Q n

Furthermore, by (31) and (44), [h3,nr ~ ) Ja=[h3h2h-W3,ilr {4 H) ] =

= [h3, fi_i(H)D. Therefore <h3> _i(H)>1 is normalised by a .

On the other hand Q n Ql does not contain any non trivial subgroup

normalised by a ((22) and Lemma 3.2.1 (xii)). Thus <h3,nr_1(H)>"= 1

and this concludes the proof of step 6 .

Step 7 (final step). H is abelian.

H = nr_-J(H) <h3» h2* hi> (35). Thus steps 3 and 6 give
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H1 =<[h2, P, (45)

and H1 is an elementary abelian normal subgroup of G of order s 8

Hence, by Lemma 3.2.1 (xii),

H* < <e3, e2> eM> .
By (31) and steps 3 and 6, [h2, hlJa=[h2 h, <, hlwl>[h2, hl] .
Thus, as a result of Lemma 3.2.1 (xii) ,

Ch2, ]l e <> . (46)

Furthermore, again by (31) and steps 3 and 6, we obtain
d 1+3 - -
[h3, T _Eh3 h2 iy ™ , h§ ( 3-Ch3, h33Ch2, JD and hence, by (46),
a normalises the elementary abelian group of order s 4 <[h3, hi3, ei> .

Therefore, by Lemma 3.2.1 (xii), <[h3> hj], e|]> < <e2> e" and,

since <h3, hj> s Q1 , it follows from (21) that
[h3, h]3 e <e2, e”nQi = <ei> . “@n

Thus, by (46) and (47), IH"1 * 4 and so again Lemma 3.2.1 (xii)

implies that

H* s <e2, . (48)

Since <h3, h2> s Q, from (19) and (30) it follows that



Ch3, h2D e <e2, e-|> n Q = <e2e.|> < <h2> , hence

<h2> is normalised by h3 . (49)
Moreover, by (31) and steps 3 and 6, we have

a2
[h3, h2]a =[h3 hj, h2]=[h3, h~Ch~ h2] (50)
2

Since, by (48), a centralises H", (60) implies that

ch2, hj] = 1. 6D
Therefore, by (35), step 6, (49) and (51), it follows that

<h2> and <h2>a are normal in H.

By (31)

[h3> 3] s flp_i(h) <hi, h2> = flp ") <h2, h2>

and fir_i (H) <h-j, h2> is abelian by step 6 and (51).

Thus h3 induces on <h2> and <h2>  the same power.

Hence h3 induces a power automorphism on _1(H)<hn, h2> .

Since H/ilr_2(H) is abelian, by (35) and Theorem 1.2.10 i , follows

that H is a modular group. Finally step 1 forces H to be abelian.

This completes the proof of Theorem 3.2.3



3.3 The general case

Before proving Theorem 3.1.1 we obtain some more informations on the
structure of groups G and G1, when G = H<a> is a finite 2-group
and G] = G77 for some projectivity it : G » G] such that H7 is
core-free in Gj. Before we start investigating on 2-groups we state
and prove an unpublished useful result on projectivities of finite

p-groups, due to Menegazzo.

Theorem 3.3.1 (Menegazzo [13]). Let G and G] be finite p-groups

G _ a projectivity, H a normal abelian subgroup of G such

Gl
that G = H<a> and H7 1is core-free in GJ|. Then

0
¥

(a) H77” is a modular p-group,
and

(b) G77 is metabelian.

Proof. Write pr =exp H (r>1), <a™> = <a6> = ilr<a> , and
let (e0> el,...,em) , {fQ, fj.... fm> be bases of (6) and
(Gi) respectively chosen as in Lemma 3.2.1 (xi). In order to prove

(@ we show first that
O - -
Pr<a> (= <a >) induces a group of power automorphisms on H. (52)
This is obvious if H is cyclic. Then, suppose H non cyclic and write

s =min (1]1 tK and H/il™H) 1s cyclic }. $ tl, as H 1is not

cyclic. By a familiar argument, using Lemma 3.2.1 (xii), there exists
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,r-1
h £H such that h = e . Then, by the choice of the Tf.j°s and
ei s -
-1
ANTT Y 6
nd(<h> 1 ) = <e{ ej> (€9))

where l1sysp-1, 1 ${s p-1 . Therefore, using Lemma 3.2.1 (vii)

and (ii), it follows that

7z R
<h> =<aph*>

ira-iir Tra-.iT

for some h" £H. Set Q=HnH . H /Q is cyclic of order

at most pr , and <a®h’> nQ = 1, by (63). Hence

H 1 = Q<aph* . (€D)
Tra,it
Since H is a modular p-group (as the image of the abelian group

H under the projectivity ira—iir_l) and <aSh*> n Q =1 (by (53)), we have

<g, a® h"> n Q =<g> ™ <q, a® h™> .
for all qeQ. o
In other words aph® , and therefore also a , induce a power automorphism
on Q. It follows that a8 = (a8)a induces a power automorphism on

Qa and, furthermore, a% induces the same power on Q and Qa. Thus
a[8) induces a power automorphism on QQa. Since Hn<a> =1 (Lemma

ira.’i'"
3.2.1 (1)), (53) shows that ej 4 H 1 , iIn particular

el 4Q - (55)



Trajir
Then, as H I=1H] , (54) and order considerations show that

H=0Q x<h> (56)

In particular H/Q 1is cyclic, and it implies that QG = QQa. Moreover,
by (65) and Lemma 3.2.1 (xii), Q 1is core-free in G. Therefore, as

2s = exp Q, we have IG ]| > 2s1Q] = |Q n$<h>|=|ns(H)]|- Hence

Qa =ns) ,
and we have shown that aB induces a power automorphism on fis(H). If s=r, a8
induces a power automorphism on H, as required. Suppose s < r.
it induces a projectivity from G/0](G) to G1 (GN) and Hwfj(G,)/«, (G,)
is core-free in G-j/Sli(") (Lemma 3.2.1 (iii)). Therefore, using induction
on |H , we may assume that (<e>ii-] (G)/0j (G)) induces a group of
power automorphisms on Hi” (G)/M§ (G), namely that aQ induces a power

automorphism on H/ft"(H).

0
Suppose then that a acts as the power X on H/i2*(H), and as

the power y on fi (H).
B . r-s B _r-s
~herefore we have h m @x where xcft,H), (hp ) =hp «
r-s
= hp * . Thus X =y mod ps . <x> is normalised by aB (because

2°H) s fk(H)) and, since exp Q = ps, by (66) it follows that aft

acts as the power X on H/<x> . Suppose first that X « <h>.  Then
r-1 1

X » h~n for some integer v. Set X" * X + vpr ; as before for

X, we have A* =y mod ps . For all y tH we can write y * h"z

for some integer i1 and some z t Q.
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Then ya = (h"z)a=h 1z (h’z )X =yA , namely aB acts as

the power X" on H. On the other hand, if x 4 <h>, <x> n <x>a =1
by Lemma 3,2.1 (xii). Also, aB acts as the power X both on H/<x>
and H/<x> . In particular h = hAx yields ha <x>a = (h<x>a)A =

= hAx<x>a , and so x e <x>a , a contradiction. This completes the
proof of (562). Using the decomposition fir(G) = Hfa<a>, (52) guarantees
the modularity of ilr(G) if p/2, by virtue of Theorem 1.2.10. On the
other hand, if p=2, Lemma 3.2.1 (v) shows that £r(G)/nr_2(G) is
abelian, and therefore _[H, aB] s & _2@Gj nH = ijir 2H) (since ilr_2©6)
has exponent at most 2]—0 by Lemma 3.2.1 (iv)). This shows, that

a8 induces on H a power b 1 mod 4, and therefore, again by Theorem
1.2.10, fwr(G) 1is modular. Since H® is clearly contained in iir (G),
(@ Tfollows. As far as (b) is concerned, observe that firG]) is

a modular non Hamiltonian (by Lemma 3.2.1 (v)) p-group, and

4 (GlIfj_4(G1l) is non-cyclic (as a08 4 <h,iir_-|(G)> by Lemma 3.2.1
(vii)). Then, as a result of Lemma 3.2.2 (b), nrG]) contains an
abelian subgroup A normal in G such that il (G-j)/A s Z(GN/A).

Since GMNnrG]) is cyclic, (b) follows;

The following result is due to Yakovlev ([25], Lenma 6).
Lemma 3.3.2 . In the hypothesis of Lemma 3.2.1, if B is

quasinorraal in G and B * H, then B 0G.

Remark 3.3.3 . In what follows we need to know that a projective

image of a metacyclic 2-group G is still metacyclic. This immediately
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follows, if IG1 2 25 , from this result of Blackburn ([ 8 ] ,

Satz 1.1.3 , Kapitel 11)

Proposition (Blackburn). Let |6] = 2n with n>5. Suppose that,
for some integer r such that 5 s r s n, every subgroup of G of
order 2r ~ and 2r can be generated by two elements. Then G is

metacyclic.

On the other hand, if |G] s 2~ , a direct exam of the few

possible cases completes the proof.

The situation described in the following lemma is complementary

to the one described in Theorem 3.2.3

Lemma 3.3.4 . Let G = H<a> be a finite 2-group, where H is
non trivial normal subgroup of G and let n be a projectivity from
G to some group Gj such that H7 is core-free in Gj. Suppose that

In-1(H)I s 4. Then

@ H and H77 are metacyclic modular non Hamiltonian groups,
and

() Gj has derived length s 4

Proof. Since H~”1, from Proposition 1.2.8 (c¢) it follows that
G] 1is a 2-group. We immediately observe that, by Lemma 3.2.1 (v),

H and H7 are not Hamiltonian. Suppose now first that Mg (H) 1is cyclic.



Then H, and consequently H77 are cyclic groups and also G, is
metabelian by Ito"s Theorem (see [ 8 ], Kapitel VI, Satz 4.4 ).
Therefore we may assume that O|(H) is non-cyclic. Set <a-j> » 0 »7
and let {e-j, e2) , {f~|, f2) be bases of ft-|H and ¥i(H7) respec-
tively as in Lemma 3.2.1 (xi). Set also Q = n H. The same

argument used in proving (19) in Theorem 3.2.3 shows that

Q n <ej, e2>=<| e2> . Thus Q is cyclic. Q is also normal in

Tra-iTT- ! Tra-iTr"! ira-iir » Tra-.iT ~

H and H 1 /Q is cyclic, since H /Q s HH 1 /H< G/H.
TTa-.Tr

Therefore H is metacyclic and consequently, by Remark 3.3.3 ,

its projective image H 1is also metacyclic. |In order to complete the

proof of (a) it remains to show that H and H7 are modular groups.

To show this we observe first that, since n2(H) is abelian and meta-

cyclic, | H)I 2 16« and therefore a centralises Q) s R2(H).
a -1
ira.it 4
Thus () <a > . As a consequence of Lemma 3.2.1 (ii) and
a ITS 5 7T a a
(ix), <Gj - Hence H <a > = H<a > and it follows
that Q) By Lemma 3.2.1 (xii), E|(H*) s <e-|> and therefore
a TT31TT a
H* nQ =1. Thus M@ s Z(H<a™>) = Z(H <a >). In particular
ne-jir
ik@Q; s Zz(H ) and, by virtue of Theorem 1.2.10, this is sufficient
TTa.ir~
to guarantee the modularity of H and hence of H and H7 .

H77
It remains to prove (b). Set X7 = ((HL)7) and let
JH*| = 2s , say. We show Ffirst that X 1is an abelian normal subgroup

irh.ir »
of G. By Lemma 3.3.2, (H1) for all hl £H . Hence X is
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We next show that

G,
CLY/ (XD is cyclic. (60)

To see that, we observe that (H') 71 1is a core-free cyclic quasinormal

subgroup of <(H")™, a,> . Thus, by Lemma 1.2.6 (¢)

[(HD)T(HDirai =] I=1 B<(H")1T, a]>|
i, G,
It follows that (H*)T(H") , and hence also (X17) , contain >,
Moreover, since ik(H) is a metacyclic group, as H is, ~(HJ/Hl is

Gd “1

cyclic. Also (X1 ~» contains o,<a> and H and, by Lemm%l3 ;

3.2.1 (ii), we have n (6G) =Gn (H)n <a> . Therefore a,(G)/((X™) 1)w
s s s s

is cyclic and so (CADYALSD) is also cyclic, as required.

Since (X_)G. is not Hamiltonian (Lemma 3.2.1 (v)), by (58),
(59) and Lemma 3.2.2 (b) , (X")Ql possesses acharacteristic abelian
subgroup A such that (X7r) /A is cyclic and every automorphism of
(X")Gl induces the identity on (XJ:L)GV a. Therefore, by (60),
ns (Gi) is metabelian. Thus, by (67), G has derived length * 4 ,

and (b) is proved.

Combining Theorem 3.2.3 and Lemma 3.3.4 vyields:
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Theorem 3.3*5 . Let G = H<a> be a finite 2-group, where H
is a normal subgroup of G and let ¥ be a projectlvity from G to

some group G1 such that H* 1is core-free in G~ Then

(@ There exists a natural number r such that nr(H) is
abelian and H/ilr(H) 1is a metacyclic modular non-Hamiltonian

group. In particular H has derived length at most 3;

(b) HN has derived length atmost 3 ;

© G] has derived length atmost 6.

Proof. If H=1 @), () and (c) trivially hold. Therefore
assume H ~ 1. Then G is a finite 2-group byProposition 1.2.8 (©).
Let r =min {n £N|JEHI2An(H) | s 4}. w« induces aprojectivity from
&/ilr(G) to G1/np(Gl) and HMA @ Y/fx(Gi) is core-free in GJ/ixr(Gl)
(Lemma 3.2.1 (11i)). Moreover Hnr(G)/nr(G ) =H/nr(H) , as Gr@G)
has exponent 2r (Lemma 3.2.1 (v)). Thus, by Lemma 3.3.4, H/ftr(H)
is a metacyclic modular non Hamiltonian group. Hence (&) is proved if
r=0 . Suppose then r >0. w induces a projectivity from nr(H)<a>

to ir(H<a>Tr and

InF(H)/«r 1) 1 - Int(H/«r_iCH) 1 * 8

by definition of r. Therefore Theorem 3.2.3 applied to the group

nr(H)<a>. shows that Gr(H) is abelian. This proves (@)
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By Remark 3.3.3 HA/n~H*) is metacyclic. Therefore (b) holds
if r=0 . Assume r>0. Then ~(H7/"., (H7 is non-cyclic by
definition of r, and ft"7) is a modular 2-group, since ~(H)
is abelian.

Thus, by Lemma 3.2.2 ilr(H7) contains a characteristic abelian
subgroup A such that ~(H”J/A is cyclic and every automorphism of
N(H7) induces the identity on nr(HW/A. Hence, since

(HM*2r (HmMy/i2r (H) is cyclic, it follows that (H7)” s A. Therefore
(H)™)- 1 an( (@) follows.

In order to show (c) we observe that it induces a projectivity

from G/nr(G) to G~ ~n~™) and H«r(G)/nr(G) s H/O0r(H). Thus
Inl (Hf2r (G)/f2r @)| = [l H/i2r (H))| s4

by the choice of r. Applying Lemma 3.3.4 to the groups G/fi (G) and
Gi/nr(Gl1) it follows that G"/nrG|]) has derived length at most 4.
Moreover, since nr(H) is abelian, Theorem 3.3.1 (@) applied to the
groups fir (H)<a> - and nr(HM<a>77 shows that Sir @ (HM<a>77)=

= (HI7)<nr ~ a> is a modular group, i.e.
nrG]) 1is a modular group

by Lemma 3.2.1 (ii). In particular nr(G”) is metabelian.
Therefore Gj§ has derived length s 6. This completes the proof of

Theorem 3.3.5
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In order to prove Theorem 3.1.1 we need the following result,

due to R. Schmidt ([18 ], Lemmas 2 and 3).

Lemma (Schmidt) 3.3.6 . Let M be a Dedekind subgroup of the
finite group G and suppose that the lattice [G/M] 1is a chain.
Then there are primes p,q such that either G/NL is a p-group or

M is maximal in G and G/Mg 1is non abelian of order pqg.

The following remark, due to Menegazzo ([12 ], Corollary), will

also be useful to us.

Remark 3.3.7 . Let M be a Dedekind subgroup of the group G.

Then G - Xg$ M<M,3<> , Where
S ={xeG]<x>/<x> n M 1is infinite cyclic or has prime power order).
We conclude the present section with the proof of Theorem 3.1.1
Proof. Denote by S the set (x e GI<x>/<x> n H has prime
power order) . Since <x>II/<x>irn H¥ has prime power order if and

only if <x>/<x> n H has prime power order and it is infinite cyclic
if and only if <x,H>/H is infinite cyclic (see Proposition 1.2.8(a)),

by Corollary 1.1.3 and Remark 3.3.7 it follows that

Also, as a result of Theorem X>< <H,x> and therefore,

in order to prove the theorem, we may assume that G/H 1is a cyclic p-group.



Hence IG77 : H771 < » (Theorem 1.1.2 ) and therefore G and G7

are now finite groups. Moreover, since [GA/HI7] s a chain, excluding
the trivial cases H=1 or H of prime order, by Lemma 3.3.6 it follows
that G| 1is a non abelian g-group for some prime . Proposition 1.2.8 (¢)
implies that G is also a g-group and therefore qg=p . It p 1is odd
then H 1is abelian (Theorem 1.1.1) and so H7 1is metabelian (Proposi-
tion 1.2.8 (d)). If p=2 then Theorem 3.3.5 (@) and (b) applies.

We have finally proved Theorem 3.1.1

3.4 A bound for the derived length of a projective image of a

soluble group with given derived length.

In [3 ] (Problem 40) the following question was posed: If G
is a soluble group and v is a projectivity from G to some group G-j,
is G also soluble? The answer, for G finite, was obtained by
Suzuki ([23], Theorem 12) and Zappa ([28]). The general answer was
given by Yakovlev ([25 ]), who also gave a bound for the derived length
of G in terms of the one of G (namely 4n3+ 14n2— 8n if n is the
derived length of G). In the following proposition, using the results

previously obtained, we are able to improve Yakovlev®s bound.

Proposition 3.4.1. let G and G] be groups, it : G *G] a
projectivity and suppose that G is soluble of derived length s n.

Then GJ is soluble of derived length s 6 n - 4
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Proof. Clearly we may assume that G 1is finitely generated.
We argue by induction on n. If n=l then G] is metabelian by
Proposition 1.2.8 (d). Assume n > 1. Then, by induction, (GiyT has
derived length at most 6(n-1)-4 . G/Gl is a finitely generated
abelian group, therefore G/G" «cc™G"/G" X....x<ct>G7G" , for

suitable ci £G, 1s i s t, such that <ci>/<ci> n G” is infinite

cyclic or has prime power order. Set Hi= <G", c,....c.” ,ci+l..... ct>
for 1 i 1ist, Since n H? s G! , in order to prove the statement
1sist

it is sufficient to show that g6 1A~ for 1 s i s t. Choose
an j in this range. Clearly G] =<Hi, c~* . Hence, if
<ci>/<c*> n G" is infinite cyclic, from Corollary 1.1.3 it follows

that H? <Gi* Thus, in this case, Gj ~ h7 . So, suppose that
I<ci>/<ci> n G" | is a prime power. Then |G] : h7] < & (Theorem 1.1.2)

and the lattice [G]/H?] is a chain. Therefore, if H? is not normal
in Gj (the case H? <G-| 1is trivial since in that case G s H? ),
since Hi is a Dedekind subgroup of G-,, according to Lemma 3.3.6 we
have the following two possibilities:
(@) G,I/(H’i)liai is a non abelian group of order pg, where p
* . .

T
and g are prime numbers. In particular G~/(H™)q is

metabelian and so g|” s h] ;

() Gj/(HN)g is a (finite) non-abelian p-group for some prime
number p. Set nT = (HY)g . By Theorem 2.1.1 is normal
in G. Therefore w induces a projectivity from G/Ni to
G-JMNI! and the latter is a finite p-group. Proposition 1.2.8

(c) implies that G/N< is also a finite p-group. If p is
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odd then HJAN.. 1is abelian (Theorem 1.1.1 ). Thus, recalling
that G =<H%, c™>, from Theorem 3.3.1 (b) and Theorem 3.3.5 (¢),

it follows that G-|/n7 is metabelian if p is odd and it has

derived length at most 6 if p=2 . Therefore, in any case,
we have s H? and this proves proposition 3.4.1
O
Remark 3.4.2 . The bound obtained in Proposition 3.4.1 almost

certainly is not the best possible. Indeed no example is known where
G] (in the notation of Proposition 3.4.1 ) has derived length > n + 1.
However, with the present methods it seems difficult to obtain the best

possible bound.
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Chapter 4

A non abelian normal subgroup with a core-free projective image.

4.1 Introduction and statements of the main results.

In [12 ] Menegazzo left open the question of whether the hypothesis
that G has odd order in the statement of Theorem 1.1.1 1is necessary.

The main purpose of this chapter is to show that this is in fact the case.

Theorem 4.1.1 . There are finite 2-groups G, Gj, a normal
subgroup H of G and a projectivity +t: G %G. such that Hu is

core-free in G| and H 1is not abelian.

The groups G and G which we construct in order to prove Theorem
4.1.1 have order 2 and the normal subgroup H has order 2
Not surprisingly for groups of this order it has not been easy to establish
the existence of a projectivity n from G to G . Therefore it is
natural to ask if there are smaller and less complicated examples, which
would simplify the problem of finding « and proving that it js a
projectivity. In fact we have been able to prove that all examples G
and G" contain sections of order 213 and H always has a (non abelian)
quotient of order 27. Again this has not been an easy exercise, but we
could not reasonably expect these facts to be accepted without proof.
Theorems 4.1.2 and 4.1.3 are concerned with these minimality questions.
Also, the subgroup H of the group G which we construct has derived
length 2. No example seems to be known in which the derived length of
H exceeds 2. However, as a result of Theorem 3.1.1, H is always soluble

of derived length at most 3. Thus it can reasonably be conjectured that in

fact H is always metabelian.
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Theorem 4.1.2 . Suppose that G and Gl1 are groups, ir : G-"G]
is a projectivity and H <G with H/HNG non abelian. Then there

is a subgroup X of G containing H such that X/H is cyclic and

(1)  x/Xu,x is a finite 2-group of order »213 ,

(ii) H/H . x  is non-abelian of order a 2" .

Thus it induces a projectivity X/H.~" X /(HMxw and the non-

abelian normal subgroup H/HN x has core-free image.

The proof of this theorem quickly reduces to a consideration of

finite 2-groups and will then follow from

Theorem 4.1.3 . Suppose that X and X, are finite 2-groups,
X g is a projectivity, H < X and X/H cyclic. If HI is
core-free in X| and H 1is non-abelian, then (i) IXI i 2" and (ii)

H 2 27

Deduction of Theorem 4.1.2 from Theorem 4.1.3 . Let G, G, «

and H satisfy the hypotheses of Theorem 4.1.2 . By Remark 3.3.7

(H\ n (H")<H x>
xeS ’
where S = (x e G||<x>/(<x> n H)| is a prime power or infinite ).

However, by Corollary 1.1.3, if <x> is infinite and <x> n H m 1,

then <x>ir normalises Hff. Thus, since H/H” G 1is non-abelian and



V<H, x> 4 <H’X> » (1)

by Theorem 2.1.1, there is an element x in G such that

|<x>/(<x> n H)| is a prime power and /4 is non-abelian
1T, JX > -
Let X =<H,x> . Then we see from (1) that w« induces a projectivity
x/n*"x - xV<hV

We will show that X/H™ x 1is a finite 2-group of order at least 213
and H/H"x has order a 27. (Then X~/fn7 will have the same

order as X/H7>X, by Proposition 1.2.8 (c)).

Factoring by x anc* (H™ n X and X7 respectively,
we may assume that HZX =1 and (H77%" = 1. Now X/H 1is cyclic of

prime power order pn say, and clearly n a 1. Therefore |X77: H77!

is finite by Theorem 1.1.2 . Since H7/ is core-free in X7/, it follows
that X* and hence X are finite. If n=1 then H 1is a maximal
subgroup of X and hence H7 is a maximal subgroup of X . As the

image of a normal subgroup of X, H7 is a Dedekind subgroup of XI7 .
It follows from Lemma 3.3.6 that XI7 1is non abelian of order dr»
where q and r are primes. This implies that H' and hence H have

prime order, contradicting the fact that H is not abelian.

Therefore n 2 2, and, again by Lemma 3.3.6

X77 is a g-group,
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for some prime . Since Xw 1is not abelian, X 1is also a g-group
(Proposition 1.2.8 (c)) and so qg=p . Thus X and Xu are finite
p-groups. By Theorem 1.1.1 we see that p=2. Since X/H is cyclic,

Theorem 4.1.3 shows that |X] %213 and [H] »27, as required.

O

We prove Theorem 4.1.3 in section 2. Sections 3-6 are devoted
to the proof of Theorem 4.1.1, which we now summarize briefly. Theorem
4.1.3 tells us that there is an example proving Theorem 4.1.1 with
G = Hca> , a Ffinite 2-group, and H n <a> =1 by Lemma 3.2.1 (i).
Lemma 3.2.1 (v) does not allow us to take a generalised quaternian
group for H. Therefore we choose H such that O]J(H) has rank 2 and
then Lemma 3.3.4 (@) tells us that H must be metacyclic and modular.

Theorem 4.2.3 tells us that |H z 27 and we choose

H=<h, g | h16 =98 =1, hg = h9> ()

of order 27 , consistent with the above and Lemma 3.2.1 . Similarly
we choose the element a of order 2@ and define an action of a on
H with G = H<a> consistent with the results of Lemma 3.2.1 . In
order to find a second group GJ and a projectivity N : G =&
such that is core-free in G, we were able to show that

H{ cannot be abelian or isomorphic to H. Therefore we define

H =<hl>ql | h]6 =g® = 1, h™ = h® > (3)



73 -

and form a product G] = <a]> where |Ja]J] =26 and H. is core-free
in G-j, again consistent with Lemma 3.2.1 . Every projectivity between
finite groups of the same order is induced by an element map. In section

3 we define a bijection a G G] and in section 4 we show that the
image of a restricted to each subgroup of E = <H, a2> is a subgroup

E] = <H-j, a]> . However, while section 5 establishes the analogous
result for all subgroups of G other than the cyclic ones outside E,
it is easier for us to abandon element maps in order to handle these latter
subgroups where +w 1is defined directly. The short section 6 shows that

it IS surjective and a projectivity.

Baer®"s work [ 2 ] on projectivities from abelian groups is the
starting point of our construction of w. The only other result on
projectivities that we have been able to use is the following, due to

Schmidt ([19] , Lemma 2.5)).

Lemma 4.1.4 let G be a group, Z and H subgroups of G with
Z < H, and supposethat for every subgroup U of G either ) i H or
ZsU. Let Z and H be subgroups of the group G with the same
properties. If t s a projectivity from H to H and a is an
isomorphism from [G/Z] to C G/Z 3 such that U = UT for all sub-
groups between Z and H, then the map p defined by Up = UT for

Us H and Up =Uafor U $H 1is a projectivity from G to G

Finally, we recall an elementary fact occurring in modular 2-groups.

In a finite modular 2-group G, ~(G) s N(G) @)

To see this, let x e G with |x] s4 and let ge G. If gl » 2,
then <x,g> has order s 8 and [g,x] =1. If g has order 2 2,

induction on |g| suffices to establish (2) (In fact the hypothesis that

G is finite in (@) is not needed).






By Lemma 3.2.1 (iv), il*"X)/~(X) and YTtj(Xj) are elementary
abelian of rank t+1 ,say. Also it induces a projectivity from X/0](X)
to Xj/olCX-D and (X1)/iil(X1) is core-free inX~An~ X"~ (by

Lemma 3.2.1 (iii).Therefore, by Lemma 3.2.1 (xi), Fi™X1/fy(X) has

a basis {c.ft"X) | 0 <i <t} such that

<cQ> = n2<a> , c. t K ¥r 15ist»

c®

c] mod fH(H)

caici_icgmdilgH) , 2 <i st

and there are elements d"e 2 (X") such that

d.j> =<c>" , 0si<t] ®
al
di E di-ldi mod Di-2 * 1s 15t - (©)
where, for -1 s js t, Dj = <dQ,dl..... dj.,fil(X])>. (Note that

<do> = iiXai> and die 2(HY) , 1s i st . Alsoit is clear that

each 0 1is a”-invariant.)

Denote the exponent of H by 2r . Then

ur-2Hn 1 (X)/n1(x))

is a non-trivial normal subgroup of X/il*(X) contained in Hfr](X)/ft.(X)
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Therefore, by Lemma 3.2.1(xii)applied to X/fiN(X) and X-]/n*(X™)

cNMiX) £ ur 2(Hn1(X)/~(X))

Also Lemma 3.2.1 (vfi)(again applied to X/0j(X) and X* (X™)) shows

that

-2
ur 2V X)/n1 (X)) * {h V. X)|h c H}

So there exists an element h ¢ H such that

2r"2 R
h h ¢ mod HX) ,
»r=-2
l.e cl =nh wo,
where w . (X) . Therefore, replacing by c™w , we may assuuxl
that
or-2 ( 10)

Since ~(X) is abelian (by Lemma 3.2.1 (v)), substituting for

in (7) and squaring gives

(th*\f - HZ[}

and hence, by (5),

,r-1
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Let

Q = H nHL

It is easy to see that <eQel>k="f " and thus (5) and (6) show

that
-1

H n <e0,ei> = <eQe}> . (12)
Therefore

Qn<eb,e.,> =1 (¢KX)]

aJT_l

Now H < X shows that Q <H,1 and since X/H is cyclic,
ajd,; "1l

H, /Q is also cyclic. It follows that
IH = IH*1” | s 2r|Q]
We have | =2r and e] i Q (by (13)), and so

H = Q<h> and Qnc<h>=1. (€2))

From (11), (5) and (6)

-1
na, n

h> 1 (15)

) = <eoei

and <h> * nQ=*1

Hi = g<h> 1 (16)



In order to prove (i), 1i.e. IX] 2 213

, Wwe argue by contradiction
and assume that |X] is minimal such that (i) is false. We distinguish

two cases depending on the exponent of H . The first is not difficult.

Case 1 : exponent of H £ 2~ . Then Ja] * 2r+~ t 2 (Lemma 3.2.1
(ix)) and hence |H s 20 and, by (14), 11 €£ a < In particular
Qi ~"(H) and so QX s n2(H) =« By Lemma 3.2.1 (v) 2(H) ’s abelian

and therefore
2 (H) = Qilz<h> . (17)

Y X
Thus |Q | s 16 and hence any 2-group of automorphisms of Q has
4 a,TT-1 4
exponent s 4 . Therefore a centralises Q . Then Q< <a >

However, by 3.2.1 (i),
N L _ _ ?I
nr(xi) = = Hlnr<al> = hl n~a”

Applying n”~ we have

a-.ir a-.iT

H$ H,l Ur<a> < H,I <a >

Thus Q <H and H/Q is cyclic by (14). But every normal subgroup
(+1) of X 1lying in H contains e "(Lemma 3.2.1 (x11)) and so Q is

core-free in X . It follows that H is abelian, giving a contradiction.

Case 2 : exponent of H s 2~ . Since M) is abelian, the

exponent of H is 2~ . Suppose that |Ja] 2 20 . Then, by (14), Q] s 8
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Now ft|H) and H/f2~(H) are both abelian (Lemma 3.2.1 (v)) and have
. Q
order at most 16. Therefore a centralises H and hence also Q

As in case 1, it follows that
a. T « a Kt

Q dH <a®°> and Hs s <a >

Then Q <H and Q 1is core-free in X . Thus again H 1is abelian,

giving a contradiction.

Therefore we may assume that |a =25 (and H has exponent 23).

So
Q1 * 2 (18)
Let
R =R = (H) 2
1 1 H-|<a™>
By Lemma 3.2-.1 (ix) Hj/Rjhas exponent 54 . Hence R >y2(H) - Q

has exponent 2~ , then (14) shows that P2(™)I1 a ™ < Since there is
a unique normal subgroup of order 4 of X |lying in i*(H) (Lemma 3.2.1

xii)) viz. <],e2> , it follows that

e2 £ «2(H) s R

a?
Then 2 « ~ e However by (6) f2 = fQf2 I H1 , contradicting R1 s H]

and R RN . Thus

Q bhas exponent s 4
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We claim that
H” = <ej> . (U2

To see this, we observe from Lemma 3.2.1 (v) that H/n-|(H) is abelian.

Theretore
He s ] (H) 20y
11nt e, i1
Now let (H, ) =K 1 . Thus K s H and, by Theorem 2.1.1, K (as
* —
Tial TT 1 1
the preimage of K under the projectivity iRt :X *X ) is
a-it !
normal in X . From (12) e/ Hj and so
Tia.TT
el 1l K 1 nHoX
Then

since every non-trivial normal subgroup of X contained in H contains
et by (5). It follows that

&I ~
K and K are cyclic. (@XD)

By Lemma12.1 (vl1li),en e Z(X) and,by (B6) , e, ¢ Z(X) . Therefore
ait i

coel € n At , by (12) , and so eQel £ . Thus

<e-j> = <elei> e K . (22)
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Now consider the projectivity

Dl ira,TT
na”n" T X/K % X/K

By minimality of |X] , H/K must be abelian. Then, using (20)
H”> 5 H nK=<en

by (21) and (22). Therefore, since we are assuming that H is not

abelian, we have proved (19).

Now it follows that <h> < H . By Lemma 3.2.1 (ii)
LK) = R (H)n2<a> . @3)

Thus, since n2<a> s Z(X) (Lemma3.2.1 (viii), we see that

<h> o <h,n2(X)> . Therefore for any element x e fi2(X)

<h,x> is a modular 2-group, €Z))

by Theorem 1.2.10.

_ _ 2 _
(Here we are using the fact that x centralises h  according to

Lemma 3.2.1 (W)J, Since fR2(X) is invariant under any autoprojectivity,

it follows from (24) that

na. w”»
«h> - X is a modular 2-group.
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However |x] £ 4 and then by (4) x normalises all subgroups of this

ua,ir_1
group; in particular <h> is normalised by x . Therefore
Tra—.iT ~ Tia.iT ~
[<h> ,<x>] s <h> nNH =1,
by (15). Thus
Tt
<h> is centralised by f2(X) (25)
Let b e X such that b4 = eQ . Suppose, for a contradiction, that

<b> is normalised by iR(X) < Then

[<b>, S2(X)] s <b> NH = 1 . (26)

Also, by Lemma 3.2.1 (ii) «3(X)=H«3<a>= H<b> (the latter by order

consideration). Thus we obtain

am ~  TEsdAs ahd ~

n3(X) = H§ <b> = H <b> ,
ian
since nl(<b> ) = <eQ> . Therefore, using (16),
-1
n3(X) * Q<h> <b>

However, Q has exponent s 4 , and so we obtain

Tt

n3(X) = n2(X)<h> <b> . @n
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Now it follows (from (25) and (26)) that ~ (x) lies in the centre
of 1ij(X) . But H = Q<h> and this implies that H 1is abelian, a

contradiction. Thus

no cyclic subgroup of order 8 of X , containing

—————————————————————————————————————————————————————— (28)
eg , 1is normalised by ~(X) e
Write <h,> = <h>TT and let x| e "(X-J) = By (24
<h”,x~> is a modular 2-group. (29)
Since Ix,] s 4 , <h™> is normalised by >4 , by (4). Therefore
<h”> is normalised by j*(*i) (30)
and the group of automorphisms of <h”> induced by has °r(ier
s 2
Recall that = <dQ,dl,... ,dt_1,n1(X])> and suppose for a
contradiction that
[Dt.1,h1] = 1 . G

Since D. N is a”-invariant,

al
[Dt-1*hl ] " 1 « (€79



From (9), mod Dt .j and so, by (29) and (30),

%4k , for some k ,

and

.Vt ai(l+4k)
n, = h.

By Lemna 3.2.1 (vii),

ol 2H* = nf 13! = @) (33)

a. a.
and hence <h™h™ > is normalised by d* and <h-h” ,dt> is modular.

di
Thus, by (31) and (32) < h~h.".x” is modular for all X1 e n2(xi) =

Applying it ~ it follows that

1 1

31 '
«h. | >T ,x> is modular

for all x e IR(x) = Therefore,by (4),

a1 -1
<h e|n1+> is normalised by fRX)

But from (33) <hhAts>T 1

(28).

has order 8 and contains eg , contradicting

Now we know that CD™ -j,i] 4 1 = Hence, by (30),

[Dti,hj] = <> . [€0))
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Now we can show that t a 3 . For, by Lemma 3.2.1 (xiii)

[h1,n1 (x1)] =1 . (35
Also, by Lemma 3.2.1 (vii) (recall that <dQ> = iR<a™>),

[ ,dQ] =1 . (36)
Furthermore by (8) and (10) <d”> = ~"h”> and so

Chi,d1] =1 . @N
Thus (34), (35), (35) and (37) show that

t23 and [i2X)/01(X) | 2 16

However, from (17), (18) and (23), [n2(X)] s 28 . Therefore , since

ib(X) is abelian, = ) 2 m2)/fil (X)] and we must have

Inj) | = In2(X)/n1 (X)] = 16

Now, X/i2(X) 1is abelian and so, modulo £2(") , X* is modular
4
with <a”™> of index 2. It follows that [ ,2*] e <a”>n2(.|) - Therefore

there are integers (O s i s 3 such that

[hi.a1] = o 20a3'a32R°  mod M0
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A straightforward calculation using (9) gives

Since hl and a" belong to and £33N YN (X))  is abelian

(Lemma 3.2.1 (V) we have

<2 = 0 mod 2
In particular this shows that X{| 1is not generated modulo - , by
a and KW and hence X 1is not generated, modulo n-j(X) , by a and
h . Therefore

@

[h,a] = ci ¢c2 moci

for suitable integers 61, 8<.O . Recall that the definition of h requires
62

only that h2 = cl mod ST|(X) . Thus we may replace h by hcg c3

and then
[h,a] c fi,(H) . (38)

As before, without changing c¢" modulo fi-]|() , we may assume that (10)

still holds, i.e

2 (39)

Now it follows from (38) that, modulo fI~AX~ , <~ ,8,» is a modular
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group and so
Chl.,aI] e <a4 , n1(X]1)>

since hj has order 4 modulo fi-]¢X)

see that c¢3 4€<c2,h,a> and so
<c2 ,h,a> < X .

Then by minimality of |X] ,

Ic2,h] =1 .

Consider the element

X = hcha

belonging to X . We will derive our final

that <c2,x> is a modular group, while

Lemma 3.2.1 (vi)

04(X)/01(X) and «4(X1)/«,(X,) have class s 2 .

Then (42) shows that

X2

h2a4[a2 ,hc3] mod ~(X)

h2a4[a2,c3] mod ~(X)

Also, from (7) and (38), we

<c2 ,x> is not modular.

by (38),

= a4 mod "(X) , by (?) and (39).

contradiction by showing

(40)

CY)

By

“2)
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Since m = 3 , [a\fi.j(X)] = 1 and therefore

X = a “43)

Let <x,> = <x> It is not hard to see that

X1 = hld3afk *

where i, j, k are odd.

By (42)

xN h~[a~k, h~d3] mod g (4 )<a™>

[¢]

h~[a”k ,d3] mod » ( X"~o ™ (by (40))

4
1 mod n](X1)<al>

(by (99 and the fact that d* = h™ mod n*(X*)) . Since Tfi-j¢¥») is

4 ,-8.
a 4-dimensional <aj> lule, [@ , SI,(X1)3 =1 and s
.2
Since HA<x-|> = Hj<a™>
<><4)> - <a§> (44)

Take b = a* 1In

na”-1 4
n3X) = n2(x)<h> <a >

T «Tl'_l a
By (25), [f2(X),<h> 1 ] -1 . Thus, CiR(X),<a >3 + 1 . otherwise



- 8 -

m2(X) 1 . forcing H to be abelian. In fact
[~ (X) ,<a~>] = <el> . (45)
ira i
For, fio(X) = H<a > . However, by (15), <h> nH=1 and so
na,u_l
n3(X) = H<h> , by order considerations. Therefore

2 (),ii3(x)] = cnz(X),H]

=m 2(H),HI (by Lemma 3.2.1 (ii) and (vii))

= <e]>

by (19).

<C3,a>
Thus (45) follows. Since (7) shows that <c3>

[c3,a4] = 1 , otherwise [il2(H),<a4>] = 1 , contradicting (45)

Therefore, by (45),

[c3,a ] =¢ (46)

By ()

€2 =C4™W . c3=czcaml -

where w, wlc f2-|H) . Write

11 n2 13
w " el e2 e3 -



Then a straightforward calculation using (7), (11), (38), (39), gives

a4 1+i3
c3 =-el c3

11 2
Thus i =0 by (46). Replacing c2 by c2e2 €3 axl us™g (5) we

have, therefore,
[c2,a] = cl
Since ¢ (= hp is centralised by a , it follows that

[c2 ,a2] - = e] . (C))

In particular <a ,c2>/<e0,el> .is abelian and so the projective image
<an,d2>/<f0,f1> is modular. In this quotient d2 has order at most 4

(in fact it is 4) and a has order 8. Therefore
[d",a’2 -

On the other hand, [d2,a"] t <a®> , otherwise <d2,a™> would be modular

2 ; ; 2
and hence <c2>a > would be modular, forcing c2 to normalise <a >

which contradicts (47). Thus
[d2,2*) e fpap = “48)

Recall that x = hc®a - Then



[c2,x] = [c2 ,a23 (by (41))

=e, , 49
by (47). Similarly (with = h~rd™a”™ , i,j,k odd)

[d2,x13 = td2,a*k][d2 ,hJ]

e mod<a®> (by (34) and (48))

e 1 mod<a”™>

Therefore <d2,x> is modular, by (44), and hence its preimage <c2,x>
is modular. Then <c2 normalises <x> . But this is incompatible with

(43) and (49). This completes the proof of Theorem 4.1.3 (i).
In order to complete the proof of Theorem 4.1.3, we must show

(ii) |Hl a 2~ . Suppose, for a contradiction, that |[H s 2~ . By (i),
ial £ 27 . We use the notation of (i). If H has exponent a 24 , then
the argument of Case 1 in (i) shows that H 1is abelian. On the other

hand, if H has exponent s 23 , then the argument of the first paragraph

of Case 2 in (i) again shows that H 1is abelian. Therefore we have the

desired contradiction.
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4.3 The groups and the projectivity of Theorem 4.1.1

Construction of the groups. We will construct a group G with a

normal non-abelian subgroup H, a second group G" and a projectivity
it -G e

such that H.l is core-free in G*. The groups G and G1 will be finite

3

of order 2l , Hwill be metacyclic of order 27 and G/H will be cyclic.

Thus let
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Eaz,qf . i 2)

[a*.h] = h8. (53)

The construction of Gj proceeds as follows. Let elements bj and

hj generate cyclic groups of order 16 and form their direct product

Xi = <bj> x <hl>.

The relation (53) shows that
X = <a\h> » <a™> * <h> = X,. (€D

The subgroup <bj> will be the image under i« of <a >; and <hj> will be

the image of <h> and Xj the image of X.

The group Xj has an automorphism 6 of order 4 defined by

.8 K-3.8 uB - hb

Thus there exists a split extension Yj of Xj by a cyclic group <qgj> of

order 8, presented by

YXx = <bj.hj.qJb}6 = h}6 - qj ® 1. hjl = hj, bjl = bAhJ.hjl» he>.  (55)

This group Yj has order 2”~. The subgroup <g”> will be the image of <g>

under .



We make one final extension of Y» by a cyclic group of order 4.
First we define a map y on the generators of and show that y extends

to an automorphism of YA, Let

bl =bi» hl =  hl g gl = hi2gil- (56)

From the presentation of Y~ and elementary commutator identities we

see that Y» = <h4, b4> and

YA has class 2 . (€D

Then it is easy to check that y preserves the relations of Y~ and extends

to an automorphism. We claim that

y4 is conjugation by b". (5d)

For,

and

qf "ib”AJ,})"AAD-1- (b~ HhiV - bfh«qi.



Therefore
4 - ey o« P
and

= BTInIy 2 Bn125y » 58 = APLL

Hence (5b) follows. By the cyclic extension theorem (see, for example,

[20], p- 250), there is a group

Gl=w

where Yj « G~Gj/Yj is cyclic of order 4 and al = bj. This group is

presented as follows:

Gl = <ai*hi*dilai4 = hi6é " «? " nt - =hl* ai 1= all2hl*

i;j*em*. s 1le _j45n . $ GNP - 9

13
(Here we have used (55), (66) and (58).) The order of G is 2, i.e.
the same as the order of G. The cyclic subgroup <a”> will be the inage

of <a> under .. We note that
a8 and h8 lie in the centre of G (60)

and a6 lies in the centre of G
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Let

H1 = <hiedi>*

Here <h”> has order 16 and <ql> has order 8. This subgroup

the image of H (» G) under u and it is easy to see that

is core-free in G\
For,

= <h8,q4> = W,

say. Using the fact that Y1 Igiveri by (55)) has class 2 and

exponent 4, we have

(h~1= (a"~hjgP8 = a“ he

and
@)1 - (h™™Mi) - hjod .

Thus

a! oosF 3, _ )
W”1 = <a?2h?,hjqj> and WS1 = <h®, aj2q4>.

. P

Therefore W nW 1 n W  « 1, proving (61)

will

has

be

(61
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Definition of «tt.

First we define an element map

0:G G, (62)

Every element of G can be written uniquely in the form

akh Vv , (63)

where

0s ks63, 0sjsi15 O0s ilif7. (64)

Similarly every element of Gj can be written in the form

(65)

where k, j, i are integers uniquely determined modulo 64, 16, 8
respectively. Writing the elements of G in the form (63), the map
(62) is defined by

(akhjq')O E kVH;'q%l, (66)
where

kK* « k(1 + 4i) ®n

it - J@ + 4 (68)

1" - n +2 1f 1 1s odd (69)

(1 + 4jk if 1 is even.



Remarks 1. Replacing k, j, 1 by integers congruent modulo 64, 16, 8
respectively does not change the element (63). Also the right hand sides
of (68) and (69) will be unchanged modulo 16, 8 respectively and
therefore they can be used as the exponents of h" and g~ in (66).
However, the right hand side of (67) will be invariant only modulo 32

and so it can be used as the exponent of a® in (66) only when k is even.

2. The term 4jk in the definition of i" should be viewed as a small
adjustment to what will shortly emerge as a natural map to consider in
order to attempt to construct it.

Next we show that

the map o is a bijection. (70)
For, suppose that
O) k2(l + 4ix) = k2 + 41i2) mod 64
i jJid + 4ix) £ j2{ + 4i2) mod 16
(iii) 1! £ i2 mod 8.
Suppose that ij is odd. Then i® = il + 2is odd. So i2 is odd (by (ili))
and therefore = 12 + 2 (by (69)). It follows that ij * i2 and hence
Jjl - j2, k1 = k2 (from (ii), (i) respectively). Now suppose that ~ is

even. Then i m ij + AjJ”~ is even and so 1£ is even. Thus - 12 + 4j2k2

and (iii) becomes
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i + 4j,k, = 12 + 4j2k2 mod 8. D)

Therefore from (ii) we see that = j2> Similarly from (i), ~ = k2 mod 4.
Thus (71) shows that il = i2 and then k1l - k2 follows from (i). This

establishes (70).

We are now ready to define it. It is easy to see that the elements
(63) with k even form a subgroup E of index 2 in G. Similarly the

elements (65) with k even form a subgroup Ex of index 2 in

Every cyclic subgroup <aﬂhj q'l>, with k1 odd, is generated by
an element of the form ah”~g”. |If K is a subgroup of E or a non-cyclic

subgroup of G, define
@2

(We have not checked to see if we can define K = K for all K, because

such a calculation would be too tedious.)
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4.4 Consideration of u restricted to E

a8,h2,q>, BE = <a§> h%, qj> (s YM).

Cyclic subgroups. Let B =<
It is clear from (67), (68) and (69) that a restricts to a bijection
from B to BA. The subgroup B is abelian and homogeneous of exponent 8
with basis {ao, ho, q) - The subgroup B~ is the split extension of
<a9, hg> = <aﬂ> X <h§> (homogeneous of exponent 8) by <g~> 2 C~, where
g~ conjugates the elements of <a®, h”"> to their 5th powers, as we easily
see from (59). In particular Bl is a modular group and it is a well-
known fact that B and Bj have isomorphic subgroup lattices. In [2]
Baer shows how to construct a bijection from B to BE inducing a projectivity.
It is not difficult to check that our map o is Baer"s map. However, while
o has its origins in the work of Baer, it is not necessary to check our

claim here, because we will prove that o]E induces a projectivity from

E to Ej, and therefore (by restriction) a projectivity from B to B".

We show first that
o maps cyclic subgroups of E to cyclic subgroups of E~. (73)

Therefore we need formulas for powers of elements of E and E,. As we
have already pointed out (before (51)),E has class 2. Then for any

elements u, v of E,

(uv)n _ unvn[V,uj,QKWJJ/Z_ ?7@9

So it is easy to check that



k. j

(a2kh Vv )* a 1h 1 (@5)
where = ki. mod 32
H Lj + 2[i2j-k) + 2jKI(i--D}i- mod 16 1 (76)
= i, mod 8. J

In order to obtain a formula for powers of elements of E", we
first consider the action of aR on powers of g*. We claim that
-%

, Ival gki(2i-1) .-4ki i
ai ( ) hl Vv

() = an

We prove this by induction on k. When k = 0, (77) is trivially true.

Therefore suppose that (77) holds for some k £ 0. From (59)
(a" V™)™ (hiVvVril.

In order to express the right hand side in the standard form (65), we

use

Ea% qaf = axto%
(from (59)). The fact that = <aJ.hj.qj> is a class 2 group then
gives

alhl4gr

Taking 1-th powers, we obtain
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(q!}dl w a%l.—4|q{ Eni43,\a§v|(|—l)/z —'aql(ZI_l)h14lq}‘
Similarly
(78)
and so

A kiydl _ sk

Now conjugating (77) by aj® gives

2(k+1)
(qi)al =a8ki(2i-1)h-4ki a8i(2i-1)h-4iqi
8(k+D)i (2i—3) h-4(k+1)i 1
"1

Thus (77) holds for all k.
= athjaj. Usi ion K11 =
Now let xx = a”hjqj. Using (77), (78) and the relation 1 =hj

(59), it follows that
"W
4

4kc1 + 2i (21-1D + 8j]

where

~
I

© _ 2@ - 201 - 21k - 4jK)

it
|

1" - 21



and

4 kK* i
A - »5hi «! 9
where
k“ =8k[1 + 2i(2i + 1)]
Jj" = 40-2ji - 2ik)
i" = 4i.
The factors of (79) conmute and so, if k is odd,
16 32
80
X1 -~ al (80)
has order 2. Modulo <a§25,
[hi»ai = 7~i* ~ 1 ,qlIn = and [gN,a™] - ath~ -t
the last by (77). Thus these three commutators all lie in the centre
of El/<a”2> and since Ej = <a2, h™ glL>, we see that El/<a”2> has
class 2.
When k is even, X} t Yj, which also has class 2, by (57). Therefore,
using (74) in E,/<a22>if k is odd, and in Yj if k is even, we have
m _2kOhJOn10
X1 =al hl gl

where



2ky = 2km[l + 2i(m-1)] C mod 32 if k is odd
1 mod 64 if k is even

JO = m{j-2[iCk+j) + 2jk] (m-1)} mod 16 (61)
Tqg = im mod 8.
Now we can begin to establish (73). Let

X «a2khV . (82)
We will show that

D P @3
When k is even we do this directly. When k is odd, we show first that

<X> i <x%> <a’32,>\_ 64

However, in this case the exponent of a® in x has the form 2k*, where
k* s odd (by (67)), and so a”2 € <x°>, by (80). Thus (84) will imply
<x>° s <x°>. Since x and x° both have order 32, by (75) and (80), (83)
will then follow. (We work modulo <ax > when k is odd in order to

simplify calculations.)

Let i. be an integer. We show that there is an integer m such

that

(xV - (x0O)m (modulo <an2> if k is odd).



By (75), xA =

2k J i

a *h 1q 1, where k™ j», iyt satisfy (76). Recalling

Remark 1 (after (69)), the form (65) for (x*)0 has

a® exponent m 2kA(1 + 4i7), (85)
h~ exponent = jA(l + 4i7) (86)
and qj exponent “ /i~ + 21fi~is odd @n
11~ ~i ™s even
a 2k« jy ip
(from (67), (68) and (69)). Now write x = ax e Then by (81) the
form (65) for (x°)m (for any integer m) has
a”n exponent = 2k2m[l + 2i2(m-1)] ( mod 32 if k2 is odd (88
88
Jj mod 64 if <2 is even,
h~ exponent = + 2j2k2](ni-D} 89
and g~ exponent = iZ2m* (90)
By (67), (68), (69) we have
k2 = k(1 + 41) (D)
j2 - 3@ + 41) 2
i2 -rl1+ 2 if 1 is odd
(93)

1 1 1f 1 is even.
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We need to show that the three equations obtained by equating (85), (86),
(«7) respectively with (b8), (89), 190) have a common solution for m.

We distinguish three cases.

Case 1. 1 and & are odd. From (76) and (91) we see that
i” and 1, are odd.
Therefore equating (87) and (90) gives
H +2= (G + 2)m mod 8.
The solutions of this congruence are
mo=30 -2+ 8X, €

where X is ar\y integer. Thus m2 = 12 mod 8. Now equating (85) and (88)

yields

Therefore this congruence will hold if we find m satisfying

£(@A+4iD) = (1+4i)m [1+2(i+2)(m-1)]mod 16. (95)



INote that when we consider the case i odd ana Z even, the congruence
to be satisfied by equating (855 and (88) is still (95J, and for 1
even and any Z we only replace (i+2) on the right hand side of (95)

by i.) Substituting for m (from (9<0),(95) reduces to
4X = (*-1)(i+Dnod 8. (96)
Equating (8b) and (89) gives
G+2[12j-k) + 2jkJU-I)H(I + 4U)
= {j(1+4i)-2[(1+2) 1k+])+2jk](m-1)}m nmod 16. 97)

(As before observe that when we consider i odd and Z even, (97) remains
unchanged; ana when i is even and Z is arbitrary, then we change only

(i+2) on the right hand side of (97) to i.) A routine check shows that any
choice of X gives a value of m (from (94)) satisfying (97). Since (E-D(i+l) =0
mod 4, we can take X m (E-D)(i+1)/4, which satisfies (96) and so there is a

solution for m in this case.

Case 2. 1 odd and Z even. Now 1 is even (76) and i2 is odd (93).

Equating (87) and (90) gives
U H (i+2)m mod 8.
The solutions of this congruence are

m= 3£ + 8X (98)



p p
for any integer X. Againm = X mod 8. Equating (85) and (88) yields
(95) (as previously noted). Substituting for m from (98) reduces (95)

to
4A = i(i + i+ 1) mod 8. (99)

Equating (86) and (89) gives (97) (as before) and it is easy to check
that any choice of X in (98) satisfies (97). So it is necessary only

to solve (99) for X. Again *U+i+l1) 1 0 mod 4 and we can take

X = *.U+i +1)/4.

Case 3. 1 even. This time il and if are both even (by (76) and (93)).

So, equating (87) and (y0),
i£ = im mod 8. (100)

It we recall the remark after (95), setting (85) equal to (88) gives
(95) with (i+2) on the right hand side replaced by 1. Tnen (95) reduces

to
m=1+ 2UU-1) mod 16. (101)

Any solution m of this congruence satisfies

m=1 nod 8



and hence satisfies (i00). Finally equating (86) and (89) gives 197)
with (i+2) replaced by i on the right hand side (as observed immediately

after (97;). Substituting for m from (101) yields

ijJHt-1) = 0 mod 4,

which is clearly true since i is even. Therefore m = & + 2ii.(E-1) is

a solution in this case, we have now proved (73;.

Arbitrary subgroups. We show now that a maps every subgroup of E
to a subgroup of E,. The following two results will achieve this.

Write N = <a™, h>.

Lemma 44.1. If U is a subgroup of N and V is a suogroup of E, then

(UV)° = uVv.

N VAN N
Proof. Letue U, v e V. Tnen u = a2kh\5 (by (63)) and v = a ln 1q L

Again using (63) we have

2k+2k j+8jk1+j1 il
uv = a *h Ag 1

and hence

(2k+2k ;(1+4i) +Sik-+j)H)+4inr m
() * ax hx
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where m = ij+2 if is odd and m = i if I® is even, From (78) and

2
the fact that o~ h~ has class 2, it follows that

G 8ikIT(1MLD) 271441 §) 32 8J k\
3

and so

» 2k(1+41) j(1+4i1) ck (M+4i.j+32jk  J,(1+4i1.)
(uv)° = (ax 1 hj 1)@l1 1 Sp .

Thus if j + k™ are not both odd, then (uv)° = (u*+4”)°v°. On the otner

hand if k™ is odd, then = € by (75) and (76). If also j is odd,
32jki 32 .
then alJ ' ai < Moreover, for any element of G,

(a32cj)° - afg® («2)

(by definition of 0). Hence in this case (uv;° = (ul+4i)° ivl )a. There-

fore in both cases IUV)° = U°V°. ad

Now let Nx = «a2,!”~. Then we have
Lenina 4.4.2. o induces a projectivity from N to

Proof. From the definition of o, it is clear that a restricts to a
bijection from N to N». We apply Lemma 4.14 to N and iwith

<a32>, X m <a4 ,h> for Z,H respectively and <a32>, = <a4 ,h»> for Z, H
respectively. By (54), X 5 and o:a4dkhj adkh3 defines an Isomorphism

X & Xj. Thus, in particular, o induces a projectivity from X to Xj.



similarly N/<a32> E N1/<a”2> (by (53) and (78)) and
0:<a32>a2kh"j - <a32>a2khj

defines such an isomorphism (by (102)). Suppose that U s N and U ~ X.
Then (75) and (76)show that <a 32>s U; and similarly if Uj s N1 and

AL A AL N en (RO) gives <a32> s Ur Thuslenina 4.1.4 shows that a induces

a projectivity N o N,. O

Now letK be a subgroup of E.By (51) and (52), N <€ E and
E = N<g>. SoK = UV where U = K n Nand V is cyclic.By Lemma 4.4.1
Ke = U°v°, and by Lemma 4.4.2 UJ is a subgroup of Ej. Also V° is a

subgroup of E,. by (73). Again by (73) (K0O)"1 = K . Therefore

U°VO« K® = (KO)"1 = (VO)"1(U0)"1 « VoU°

and it follows that K° is a subgroup of E~. We have now shown that

a (and hence it, by (15)) map each subgroup of E to a subgroup of E~
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4.5 Consideration of tt applied to subgroups outside E.

Let x = a*h”g” where Kk 1is odd. Then x t E , but |G:E] =2
2 - 2C .
and so x e E . From section 4 we know that <x > is a subgroup of

Gj - We will prove next that
<x2>° = <(x°)2> . (103)

For this purpose it suffices to show that

(i) *1 - |x°|
(11) (x3)2 <« <x'
Proof of (i). Remembering that k 1is odd, we easily obtain

(from (50))

(104)
Similarly
(hy k . h3j-4kjgdj . (105)
Then (104) and (105) give
x2 = a2khdj(I-k)+2ki+8jig4j > (106)

Since the factors in (106) commute, taking the 8th powers gives

x16 , alék < 107)
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In particular |x] = |Ja] = 64

Now since Kk 1is odd, x° has aj exponent (in (66)) odd.
Therefore consider an element of GJ of the form Xx* = alh®q“ where

Y is odd. Using (69) and (77) gives

/,a. @b 4«(y-1)h2a(2a+Y+4) -a
al hi gl mod <a (108)
and (59) and (78) give
(h?)“1 = a‘43hB(4Y+3)q43 nlod <a5!r6w (109)

(These congruences can easily be established by induction on y <)

Then (108) and (109) show that

X2 = adaY+2Y-4t<-43h40(1+Y)+2ciY+4«2 +8a+40g”4B nOj;al6> _ (HO)

2
The factors on the right hand side of (110) commute modulo <a§ > (from

(77) and (78)) and hence, taking 8th powers in (110), we obtaing

16 _  16y+320
X1 al

Therefore, since vy is odd,
<xj6> = <a]6>

and Pl | = fed| =64 . This proves (i).



In order to prove (ii) we may work modulo <a]®> . For,
alé = (al6)° = (x16V (where 1 is odd, by (107)) and so
a]6 e <x2>a Recall that x = akh'3ql where k is odd. We
have x° = alh”g“ = x1 (say), where

i+2 if i odd

. a-= (111)
i+4jk if 1 even

= k(1+4i) , 6 = j(1+4i)

(by (66)). From (106) and (66) we obtain

(x2)0 = a2kh4j(1-K)+2Ki+8jigdl mod af®> (112)
We want to show that the congruence

((x2)°)X 1 x2 mod <a]6>

(where x2 is given by (110) and (111))has an integer solution for X
Comparing exponents of a”, hl, g 1in (110) and the X-th power of
(112) (noting that the factors on the right-hand side of (112) commute),

we must solve

kX = 2ay +y * 2a - 28 mod 8 (113)

Ci(1-kK)+ki+4ji)X = 23(1+y)+aY+2a2+4a+2a3 mod 8 (114)



We substitute for a.g.-y from (111) and note that kp = 1 mod 8

since k 1is odd. When i 1is odd the solution of (113) is
X = -1-2k(j+1) mod 8

which clearly satisfies (115) and can easily be checked to satisfy (114).

When i is even, the solution of (113) is
X £ 1-2jk mod 8

which again satisfies (114) and (115). Therefore (ii) is true and (103)

follows.

Suppose that K 1is a non-cyclic subgroup of G with K™ E . We

will show that
K° is a subgroup of Gj (116)

_ k. 11 .
Clearly, K contains an element of the form x = a hqu where Kk is

odd. We claim that
F = <h8,a8> s K 17

For, since G/H is cyclic and K 1is non-cyclic, K nH =1 . Thus if

[o] 8Ji 4
h 4K , then K nH contains an element of the form h q in fir(H)

But then K contains
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8j 8 8j
h Ye*x] = LA 1= 1§%,aK1 = 1g*,a%1 =18

Q
giving a contradiction. Therefore h e K . Also K contains

x8 = a8kh81 , by (106), and so a8 c K . Then (117) follows.

Now let H <a8,h?> . So =F . Also, for all xeG

Exy° = EX? (118)

For, let f c F . Then (fx)° = f°x° mod<a82> and so (fx)° c X0
Thus, by order considerations, (118) follows. By (60), F [lies in the
centre of G , and from the presentation of , Wwe see that P < G
Recall that K is a non-cyclic subgroup of G and that K~ E . |In

order to prove (116) we distinguish three cases.

k j i
Case 1 : K/F is cyclic. Then K = <F,x> , where Xx = a h&q

and k is odd. It suffices to show that

(FX2r+1)° = F1(X2r)°x° (119
for any integer r . For, recalling (103), <x2>° =<(x ) > . Also
- 2r+l -
any generator of <x> can be written as X Hence if (119) holds,
then
*2r* V . F,(X2r)°x° e F,<x°>
Thus

x>0 TR x > (120
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Therefore
Ko = (Fx>)° ¢ F,<x°>

by (118) and (120). But by (103) and (118)
(Fx2>)° = F]<(x®)2> .

Since F<x2> has index 2 in F<x> and F~<(x“) > has index 2 in

F.<x°> , order considerations show that

Ko = (F<x>)° = F]<x°>

Thus K° is a subgroup of Gj

To prove (119), we have (from (106))
x2 ——a2k'thI q46 mod F .
Since the factors on the right hand side of this congruence commute (as
is easily seen from the presentation (50) of G), it follows that

2r AT
a

N 2kir 4jr

h q fod" % .
Then (again from (50))

x2r+1 _ fRkr+kh-2kir+jq4jr+i mod F
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Therefore

(X2r+1)a = aM2r+1) (1+41 )h (-2k1r+j)(I+4i )|l mod F]

where ~ «4jr+i+2 if 1 is odd and ij = 4jr+i+4j if 1 is even.

It follows that

(x2” ")» = ,2kr>k(1t4i)h-2k1rtI<1*«)qJ" Inod F)

a2krh2k(rqg;jra; (,*4i)™ <"*,1)ql, “4jr "0i F,

(x2r)°x° mod F1 .

We have now proved (119) and hence Case 1 is complete.

? ? NN M 272 272
Case 2 : KnHs<h ,g>.Letv =ahaq ,W =h q
be elements of G . Since h2 and q] commute modulo F] , we see
that
(vw)° = v°w® mod F§ . *21)

Now K/K n H = KH/H and therefore K/K nH is cyclic and

~
1

V(K n H)

where V is cyclic. Thus from (T21) it follows that

K = V(K n H)° mod F]
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i.e. FlK°® = F1v°(K n H)° and so, by (118),
Ke = (F1Iv°)(K n H)° . (122)

Applying case 1 to FV , we see that (FV)° is a subgroup of G

Also (118) shows that (FV)° = F]Jv°® ; and from section 4.2 we know that

(K n H)° is a subgroup of G, . Now, by section 4.1 and case 1, K
contains all powers, in particular the inverse, of each of its elements.

Therefore from (122)
K° = (K0)"1 = (K n H)°(F1v°)
and hence K° is a subgroup of G1 .
Case 3 : KnH$ <h2,q2> . We claim that
<a? ,h4 ,q4> s K . (123)
For, since K nH $ <h2,g2> , K contains an element
u=~h

-JiIn1ll
q

where at least one of jj, H 1is odd. Also, since K ~ E , K contains

an element

From (106)

x2 = a2h2y j mod F



Suppose that H 1is odd. Then without loss of generality we may

2
assume that 17=1 . Thus K contains [u,x ] ; and modulo F

o Ji 9 Ji 1 2
[u,x*] = [h g,a j = th ".a*ltg.a4]

rq.a2]  (by (53))

ha  (by (52)).

Since F < K , it follows that h4 c¢ K . Therefore

qﬂ c <u‘\1ii4> s K .

Now suppose that #H 1is even. Then is odd and we may even

assume that j] =1 . Hence h =u4 <K . Also

tu.xJ - [hg\ahVl =1h.ahV i 1Iq 1,ahdqll

Thus modulo F

[u,xl = (h,a3[q,al 1 = h"2g4(h2q“2) 1 >"» (50))

-2+21, 4-2i,
5 h "9

211
Therefore h 9q4 21t c K . Then K contains
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It follows that, for all i,

<h4,q4> £ K

Now K econtains x4 and, by (106), x4 = a4h4~ . Thus a4 e K and

(123) follows.

let J =<a4,M4,04> . Then J <G . For, from (60) we see that
<h4 ,04> « G . Also from (62) and (63) a4 is central in G modulo

<h4 ,q4> . Similarly J, =J° <Gl . For, from (565), it follows that

A(Y,) = <al6,hd,q4> « G1

and, modulo 82(Y,) , a, is central in G,

Let geG . Then

Jg)° = JIge (124)
To see this, let y i J . Thus

y = adkh4jq4i and g=a W 1

Then

ak+k, 4j+j, 4i+i,
yg = a h q rood F

and so

(4k+k, Y(1+A1,) (45+31)(1+4i1) 2
(y9 Ha, " hi gl mod F1
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where 12 = 41+1j+2 if ¥, is odd and 12 = 4i+il+4k1J1 if il is

even by (118). Thus
o9° = a

Therefore

(o)°

U@ £] g
ycd

and (124) follows.

The groups G/J and G1/J1 are isomorphic via the map induced by

a»al , h->h1, q gl and O induces this isomorphism. Therefore if
gl,g2 ¢ K , then
9°g°2 ¢ = (JK)y® (by (124))

= K°

by (123). Thus K° is a subgroup of G,

We have finally proved (116), i.e. for every non cyclic subgroup

K of G with K$E, K® is a subgroup of G,
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4.6 Surjectivity of T .

We now know that i , defined by (72), maps each subgroup of G
to a subgroup of G| of the same order. Let U and V be subgroups

of G with U <V . Then

Uz < v . (125)

For, by (76) and (107), E has exponent 32 and G has exponent 64.
Thus suppose that U is cyclic of order 64, generated by u = ah"Iq
Then V is non-cyclic and so Vi=Va . But u r V° and so

<u>sV , 1.e. U <V

Now suppose that V is cyclic of order 64, generated by v = ah"Iql

2
Then U < E n <v > and so

U* = Ua s <v2>° = <(v°)2> (by (103))

< <va> = VI"

Finally suppose that neither U nor V is cyclic of order 64. Then

U* = U° <V° =V . We have now proved (125).

In order to prove that « 1is a projectivity from G to G1 it is
sufficient now to show that each subgroup of G" occurs in the image of

tt . This will follow from the following result.
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Lemma4.6.1 Let G , G be finite 2-groups. Suppose that it is

a map from the subgroup lattice of G into the subgroup lattice of &

such that U sV if and only if u" i v" and

G) U= Uil . all U< G,

(i) U" 1is cyclic whenever Uis cyclic

Then @ 1is a projectivity from G to Gj

Proof. Suppose that the Lemma is false. Choose Kkj s GJ with

IK*] minimal subject to

@ kj has no preimage under n and

() there is a subgroup N s G with NI > and N KM = 2 .

This choice is possible by (iii). Also N is not cyclic,by (i) and (ii).

Therefore there exist maximal subgroups n of N Let M = n

Then N:M] =4 and so |Nn:M°] =4 , by (i). Since M < N and

aN*' and N/M , NA/MT are elementary of order 4, it follows that
K1 $M7 . Let L1 =H" @K] . Then L1 <ML and L] a NI with
Nr/L~  elementary of order 8. Now |[M77:l" | = 2 and therefore, by choice

of Kj , there is a subgroup L s G such that LT = L

We claim that

there is an element t ¢ N such that t2 4 L (126)



For, if not, CM(N) s L and then L o N . Since |N:L|]=8 , N/L is
then elementary of order 8. Thus would have a preimage under it

Then (126) follows.

let T=<L,t> . If T=N, then N = <M,t> and N/M is cyclic,
which is not the case. Therefore T <N and |T:L] =4 , by (126).

Thus |T7I.L.]] = 4 , by (i). Now we see that

there is a unique subgroup strictly between T and L

For, if there were two such subgroups, they would be normal in T and L
would be their intersection, showing that T/L is elementary of order 4.

But T/L s cyclic by definition.

Now T7/L1 < N“A-j and so TI/I™ is elementary of order 4. Therefore
there are three subgroups strictly between T*' and L~ (all of index 4
in N77) and there is only one subgroup strictly between T and L

contradicting our choice of Kj . H

Returning to the conclusion of the proof of Theorem 4.1.1, we see that all
the hypotheses of Lemma 46.1 are satisfied by our groups G and Gj , and
the map it , defined in (60), (89) and (72). Therefore we have finally
shown that n:G %G1 1is a projectivity, H < G , H7 is not abelian, and

H7 is core-free in G1 . This completes the proof of Theorem 4.1.1

O
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Remark. Lemma 4.6.1 does not hold for finite p-groups when p
is odd. For, let G be the non-abelian group of order p3 and exponent
p and let G1 be the elementary abelian p-group of rank 3. It is not
difficult to define amap m , from the lattice of subgroups of G to
the lattice of subgroups of Gj , which is not a projectivity but which

satisfies the hypotheses of Lemma 4.6.1 . <
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Chapter 5.

On the embedding of core-free images of normal subgroups.

5.1 Introduction
As usual, let G and G] be groups, H< G and let *:G - G] be a projectivity
such that H* is core-free in G1. As already mentioned in 1.1, R. Schmidt

( [19] , Theorem 3.4) has shown that, if G is finite, there exist series

1 =N ... <Nt* H*’6

and
1=Mg<Ml< __ <Ms= (H )Gl
of normal subgroups of G and G~respectively, such that, for all
0<1< t-1,. 0S j<s-1, Ni+]/Ni and M~/M~ are cyclic, and, even more,
central in G and G1 respectively (i.e. [N.+1,G] £ N. and [Mj+1,G1]< W),
if h" is quasinormal in G*. This chapter is just concerned with the
attempt to extend Schmidt®"s result to infinite groups. We now briefly
discuss the results obtained. First of all we recall the definition of
series.

Let X be a group and let 1 be a linearly ordered set. Following

Robinson ( [16] , 1.2), a series in X with ordered type - is a set of

subgroups of X

J *{ va\ aef}

such that
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() \<Va if t<a.
<C,Va« *, e
The subgroups A and Va are the terms of if , and the groups ,\a /va
are the factors of if . From the definition of if it follows that, for

11 xe X, there exists a unique 0= ct(x) in r such that

X€AZOON@x )"
If Y is a group acting on X, if is said to be Y-invariant if each
term of if is Y-invariant.
Returning to the groups G, G., the projectivity * and the normal
subgroup H of G, in the light of Schmidt®"s result the following question
arises naturally:
do exist a G-invariant series if m{Aw ,Vfflael} in H ,G and a
GMinvariant series ¢ f~ N, VA |/ZieM} in (H*)Gl such that
am b/Vw and are cyclic, (€))
or, if H* is quasinormal in G?,

(ii) [Ad, GJI<va and [AN, GNv, }

The following recent result due to Napolitani and Zacher ( [14] , Satz 2.6),

reduces question (1) to the case that H 1is quasinormal in G/.
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Theorem 5.1.1. Let 6 and G1 be groups, t:G — G a projectivity
and H33 G such that H is core-free in . IfH is not quasinormal in

G,, then G and G, are periodic, G * (Dr P.) x K, G,= (Or P?2 ) x k~’
i} 1 iel i L 15

where P. and P.T are P-groups, and elements of distincts direct factors
have coprime order. (Thus, in particular, H = (Hn Dr P") x (HnK) and

HnK < G). Moreover (HnK)T is quasinormal in G..

From Theorem 5.1.1 and the structure of P-groups it is clear that,
in order to answer question (1) it is sufficient to show the existence
of series of type (ii) assuming that H is quasinormal in G .
Unfortunately we have not been able to answer question (1) in total
generality, and our proof holds only for a certain class of groups
(see Theorem 5.3.4.). The reason for this is partially due to the fact
that it is still not clear to what extent Maier-Schmid theorem
(Theorem 1.2.5) holds for infinite groups; and, as a matter of fact.
Theorem 1.2.5 is an essential tool in the proof of the above mentioned
Schmidt®s result. We discuss briefly the relevance of a possible
extention to infinite groups of Theorem 1.2.5, in relation with question
(1. Although, as we have seen in 2.2, Theorem 1.2.5 is false if we re-
move from the statement the hypothesis of finiteness of G, the following
questions still do not have an answer. Let Q be a core-free quasinormal

subgroup of a group X;
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does exist an X-invariant series in Q whose factors are central
in X ?
Is Q<Zz (X) for some n <oo if X is assumed to be finitely gene-

nQ
rated modulo Q (i.e. X =<Q,X.,...,Xn> ,Nn<00 ) ?

A positive answer to question (3) would lead, using a method described
in [16] , 8.2, that we will briefly summarize in 5.3, to a positive
solution of questions (1) and (2).

It is well known that, if X is finitely generated modulo Q, QX is

X
nilpotent of finite exponent ([10]) and X/C~(Q ) is periodic ([ 4 ])-

Therefore question (3) can be split in the following way.

IT X is finitely generated modulo the core-free quasinormal subgroup

X
Q and S is the Sylow p-subgroup of Q, is X/C~A(S ) a p-group ?

IT X is finitely generated modulo the core-free quasinormal subgroup

Q, s X/CX<QX) finite ?

As far as we know, neither (4) nor (5) have been solved. On the other
hand the situation has shown to be easier to handle in the context of
projectivities, namely when there exist a group G, a normal subgroup

- - - 7T m -
H of G and a projectivity w:G —-mX =G such that Q = H .In this case
we have been able to solve question (4). More precisely we shall prove

the following theorem.



Theorem 5.1.2. Let G and be groups, t:G — Gj a projectivity
and HoG such that G/H is finitely generated and HT is a core-free
quasi normal subgroup of Gp Let S be the Sylow p-subgroup of HT (recall
that is nil potent of finite exponent by Lemma 1.2.9 (ii>). Then

T
) and G’/Cb (s )]) are p-groups.

As far as question (5) is concerned, it is, unfortunately, still
unsettled even in the context of projectivities. It is mainly for this
reason that we have obtained an answer to question (1) only for a certain
class A of groups (see 5.3 for the definition of A ), class for which
question (5) has a positive solution.

In the next section we prove Theorem 5.1.2.

5.2 Proof of Theorem 5.1.2F%
Since is a periodic nilpotent group (Lemma 1.2.9 (ii)), by Proposition
T ) } s n
1.2.8 (b), S<G. Therefore S is a Dedekind subgroup of G1. Since S < H ,
by Theorem 1.2.2 S* is quasinormal in Gp We claim that
ST,G and (s™) 1 are locally finite p-groups.
L i n_ 1 _ L :
This is clear for (8¥) , since (S ) is the join of the nilpotent
v |
subnormal p-subgroups () , as V" varies in Gp ((S ) is subnormal

in & by Theorem 1.2.2 and Lemma 1.2.9 (1).) Also, 1f S i 1, by

Proposition 1.2.4 (vi) and Lemma 1.2.7, there exists a p-element w]EG]
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which does not normalise ST . Hence <(ST) 1,W"> is a locally finite
non-abelian p-group. Then, by Proposition 1.2.8 (c) it follows that
< (S1) ,wn> , and consequently ST’ , are locally finite p-groups.

In particular, by Remark 1.2.3,

the preimage under n of every conjugate of S in

Q)
is quasinormal in G.
Also, again by Remark 1.2.3,
Q
every Dedekind subgroup of G (of G.) contained in S *
G ®
(in (s ) is quasinormal in G (in G").
Suppose now that x and y are elements of G such that
G
| <x>/<x>nCG(ST,G) | = g' and \<y>"/<y> nCQ ((*) 1)1 =rm where q and r
are primes different from p. Assume also that <x> and <y> are infinite
cyclic or of prime power order. We will show that
x> < @E,.6) - (©)
and
<y>* i <L ((S1) 1). HO)
1
Denote by the group ~ (sT,<S,h>/S%<Sjh>), where

he M{h«G|<h>Y is a p-group} and 1>0. Assume for the moment that,

for all heiT and for i>1 we have



and
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I ~h I £ Si-1,h

Thus x acts trivially on the quotients Since x induces a

p"-automorphism on the finite p-group ST,<S,h>/S.~<s>h> (since

s'f/(sTxs h>T has finite index and is core-free in <S,h>T /S <s>h>T »

<S,h>T /s’

<5,n>

*
’

and therefore also <S,h>/ >r6»#\* are finite), by [9]

7.10 it follows that

Similarly

Therefore

and

since ~(S")

particular

and

Therefore <x>

N

and

[<x>.S I< ST,<S,h>

(<y>\ (sYS*h>) < (8,¥$>h>.

1<X>,S1- MITS¥,<S,h> m}

[<y>\sn] < xS h57 =1

=1 by Proposition 1.2.4 (vi) and Lemma 1.2.7. |In

kx>,5*,<S,h>" =1

[<y>r.(s1)§§’h5] -I.

<y>* act trivially on the factors of the series
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1< S*’<§’H> < S~k’<S,h>

and
1< ()5 ot @ (sT¥Sh>
respectively. Recalling that, by (6), sT,<**h> and (s*)<”,h are locally
finite p-groups, using again (9 ] 7.10, it follows that
[x ,S,r<S-h>1] =i
and
[<y>*, (S,X)xS’h>n] -1

Then, since by Proposition 1.2.4 (vi) and Lemma 1.2.7

(STl =< (STrxS’tP,r 1 he 3> and s1°6 -<s?,<S,h> | *** >~
(@ and (10) follow. Hence we are reduced to prove (11) and (12).

We claim that

<y>* and <x>* normalise every conjugate RT of S . 13
This is clear for <y>T , and for <x>T if <x>T is infinite cyclic or has
order coprime to p, by Proposition 1.2.4 (vi) and Lemma 1.2.7 respectively.
On the other hand, if <x>* 1is a p-group, then, from Proposition 1.2.8 (c)
it follows that <x,R>t is elementary abelian, and so (13) holds even in
this case. Similarly

71
x and y normalise the preimage under n of every conjugate of S . a4

Consider now the group A *<S,h,x,y>, where he 0 . From (13) it

follows that (SV * (S X~,h> and (S )., * G H)g ~ « Hence, by
A

Theorem 2.1.1, S* & and s"*<S,h> are normal in A, and therefore
’< 7 >
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S_ " and i h are nonial in A and A respectively for all i¢:0. Also,
1, )
as a result of lemr-a 1.2.6 (c) applied to the finite p-group <S,h> /IS )Xs h>m

STSiTh/Si'h is core-free in <S,h>,/S.i . for all 120. Fix an i>l.

Since our argument in order to prove (11) and (12) will ta<e place inside
the groups 3 s <S. *,h,x,y> and B , factoring by S*j h and -

Me nay assume, without loss of generality, that S..~ h *1. Then, in

particular, 1*1. Set X * < Q.(S),h>.

Q (ST) is now core-free in X (15)
and, since 1i7lS) is normal in B,
ii"ST) is quasinornal in 3
by (8). Therefore, assuming ilns) =1 (Gf n,(S) *1 tnere is nothing
to prove), from Proposition 1.2.8 */ it rcllows that
X is a finite p-group.
Then lema3.2.1 (xil) applied to X and XT shows that
iys) contains a unique normal subgroup of X of order p. 06)
Thus  ftj(S) contains a unique minimal normal subgroup N, say, of B. let
MT be a conjugate of WA(S ) in 3 such that N ~ X . Then ,®» N * 1
and therefore
M_n n~S) *1. @an
Moreover, as a result of lemma 3.2.1 (ii) and (1v),
a (X)) and «1<X*> are elementary abelian €)

and
aix) *  TIN® x N1(XT) * ngs»*) X h>) . a9
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In particular, since n”S) 4 1 and 1i”"S*) 1is not normal in X*. recalling
also that S,l ﬁ < iiI(X), it follows from (19) that
si,hm niGe ad is,’h" = “10”LE
Thus, by (14) and by the definition of B, we see that Mg * M<M h>.
2
Furthermore, by (18), h centralises a subgroup of order p of si1>h*
.r
Therefore, by (19), Mg 4 1 and consequently, by (17), IMg|]« p. Hence Mg
T
is a core-free quasinormal subgroup of order p of B . The same argument
used in proving (13) shows that <y>T and <x>* normalise every conjugate
Of M~Ain b'™\ Since <h>* does not normalise Mg ((15) and (18)), <yh> and
<xh>* do not normalise M* as well. Hence, by Lemma 2.2.2,
1 4 |<yh>r,Mg) < <yh>*n ZfB*)" S*~
and
14 [<xh/, Mg) < <xh>Tn ZtB~JInS~.
On the other hand, by (15) and (19), (m ~(X*)) contains a unique
subgroup of order p which is normalised by <h>% , namely «1(<h> ). Thus,
necessarily,
d’1<h> Si,ﬁ n <xh>
and
n (<h*) * (Si h)n <yh>
It follows that
<x> centralises 117h> (20)
and
<y>* centralises 1i1™N<h>T). (21)

Set <hj> = <h>
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htn -1
Using (19) we can write S’.L,F] = "I(S 1 ) X |31,<h> and
nht
S1 ; = i2r(S nt) x ii'Uh:»*) for every integer t. As t varies we have,
by (15),
ni2l(srhlr ) =1 , nii (S"1) = 1.
1 ,t -1

Finally, since <x> and <y>* normalise n.(S 1 and ~(S 1)
respectively ((14) and (13)), using (20) and (21), (11) and (12) follow.
In order to complete the proof of the theorem it remains to show that

NG
G/Cg(ST,k) and Gj/Cg ((S*) ) are periodic groups. (22

Let <g> be an infinite cyclic subgroup of G. Let also R7 be a conjugate

of S* in G] and heir . For all i>1 denote by Ri h/RT><R>h> the 9rouP

. ",<R,h>
H.R R _R.h>> TI.h/\<R, I »the5r°“P °, <RRt-,.h/W >

As a result of Lemma 1.2.6 (c) applied to the finite p-group

<R,h>1/RT<R h>* , we obtain

iRTh5C " =,Ri.h: T,h>s p’

and, moreover, R~R”~ h/ R~ ,N is core-free in <R,h>*/R1*
Thus, recalling that <g>* normalises R”h and every conjugate of T”~h
in <R,h>n (Lemma 1.2.7) and, similarly, g normalises R1>h and the

preimage under n of every conjugate of ~ h in <R,h>t , it follows that

1«

and

Igl 1 ,R1,h1- Ri-1,h’

where <g.>-<g>f. As h varies in (Tand R* varies in the set of conjugates
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of S* in G”, the exponents of the groups have a common
, Gl
upper bound (this is because (S ) has finite exponent by Lemma 1.2.9

(i),(i1)).Therefore there exists an integer s such that

9(P-"S .RISKuf p 1o

and

1g!'p"D)s rfisir  icg pn>
- _ n o, -
for all heiT and for every conjugate R of S 1in G*. Moroever hfjpR XR h>*=I.
by Proposition 1.2.4 (vi) and Lemma 1.2.7,for every R*. Therefore, since

G
(€] is the join of the R*"s, we obtain

lgP"1)S .S**@]- 1
and

|9(P'1’5 ,(S*> ¥i=q .

This proves (22). The proof of Theorem 5.1.2 is now completed.

O

5.3 On Maier-Schmid theorem in the context of projectivities.
Let A be the class of groups defined as follows:
a group G belongs to A if and only if every periodic homomorphic

image of a finitely generated subgroup of G is finite.

Note that the class A 1s projectively Invariant. For, suppose that G c A

*:G6 — G] 1is a projectivity, F* is a finitely generated subgroup of G1
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and NT< F" such that f Vn* isperiodic. By Lemma 1.2.9 (i), INF: N|

is finite. Also, since F/NN s periodic, byhypothesis F/NP is finite.

Therefore |F : N|<o° and so F /N* is finite.

In this section we give a positive solution to question (1) stated
in 1.1, assuming thatthe group G belongs to A . We first give a brief
summary ofthe method employed, which is essentially the same as the one
described in [16] , 8.2. In fact the next paragraph is entirely taken
from [16] , 8.2.

Let X be a group and lety ,={A,, .vitrei} be a series in X. cf determines
a binary relation <on X defined as follows: x-<y means that either x = 1
or x i1 and <r(X) <o(yj (recall that <r(X) 1is the unique element of X

such that x It is easy to see that < has the following

properties

(1) xxy and yxz imply that xXz,
(ii) either xXy or yxx (possibly both),
(iii) x=<1 implies x = 1, 23
(iv) xxy and zXy imply xz ’-<y,
v) yXxy imply yxz.
Conversely, if < 1is a binary relation on X satisfying (23), it determines
a series 1n X in the following way. Let us define
x~y if and only if both xxy and yXx hold.

Then ~ is an equivalence relation on G by (1) and (11). Let X be the set
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of all /"-equivalence classes on G other than 111 (note that ill is a
~-equivalence class by (iii)). Define a linear ordering on £ as follows:

ifa,T€E 1l , then<r<t if and only if a tt and there exist xe<r

and yeT such that x-<y.

By (i) <= is well-defined and, by (ii), =< is a linear ordering on £

If del let
Af={x|x e G,x <y for some yea)
and
It is shown in 1161 , 8.2,that |<r<=>¢ is a series in X.

Evidently we have obtained a 1-1 correspondence between series in X and
binary relations on X satisfying (23).

Suppose now, in addition, that there is a group G acting on X and
denote by x9 the image of x e X under the action of geG. Ifif is a
G-invariant series in X such that G induces the identity on the factors
of if , then the binary relation <on X determined by if (in the way defined
above) satisfies

X XN for all 1 *xeX, geG.

For, x ]x9 e vO (xj» and this implies that either x ™x9 = 1 or

< (X MX9)<<*(x). In both cases, by definition of <, it follow that x-fix x9.

Conversely, if ~ is a binary relation on X satisfying (24) 1n addition to

(23), then the series determined by =< in the way defined above is G-invariant

and G induces the identity on the factors. For, suppose that 1 i xeAfl

€
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of all "-equivalence classes on G other than 111 (note that (1 1is a
~-equivalence class by (iii)). Define a linear ordering on z as follows:

if »,te z , then ff<r if and only if a /t and there exist x€a

and yer such that x-<y.

By (i) < is well-defined and, by (ii), =< is a linear ordering on z

If ael let
Act={x|xe G,x <y for some ye«}
and
It is shown in [16] , 8.2,that {Atf,VO J«ex} is a series in X.

Evidently we have obtained a 1-1 correspondence between series in X and
binary relations on X satisfying (23).

Suppose now, in addition, that there is a group G acting on X and
denote by x9 the image of xe X under the action of geG. Ifif is a
G-invariant series in X such that G induces the identity on the factors
of if , then the binary relation <on X determined by if (in the way defined
above) satisfies

X XN for all 1 yxeX, geG.

For, x-1x9 € V and this implies that either x ]x9 - 1 or

" 0O

o(x ™9)<<*(x). In both cases, by definition of <, it follow that x-/;x x9.

Conversely, if < is a binary relation on X satisfying (24) 1n addition to

(23), then the series determined by =< in the way defined above is G-lnvariant

and G induces the identity on the factors. For, suppose that 1 i x c Afl

@
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of all /~-equivalence classes on G other than <11 (note that <11 is a
~-equivalence class by (iii)). Define a linear ordering on x as follows:

if a,t€X , thena<¢ if and only if a 4 t and there exist xea

and yer such that x-<y.

By (i) x is well-defined and, by (ii), =< is a linear ordering on 1

If a let
Aca={x |x e G,x-<y for some yew}
and
It is shown in (161 , 8.2,that {A,,,Va |<rei} is a series in X.

Evidently we have obtained a 1-1 correspondence between series in X and
binary relations on X satisfying (23).

Suppose now, in addition, that there is a group G acting on X and
denote by x9 the image of xeX under the action of geG. Ifif is a
G-invariant series in X such that G induces the identity on the factors
of iP , then the binary relation <on X determined by if (in the way defined
above) satisfies

x-jex'1~r for all 1 4 xeX, geG.

For, x Ix9 e V i ),, and this implies that either x ~x9 * 1 or
<Mx

o(x ™x9)<°(x). In both cases, by definition of <, it follow that x-/<x x9.

Conversely, 1f < is a binary relation on X satisfying (24) 1n addition to

(23), then the series determined by < in the way defined above Is G-lnvariant

and G Induces the identity on the factors. For, suppose that 1 i xeAg

@
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for some ~-equi valence classa. We show that

(25)
for all geG. By (24) and by definition of Aa , x X9 4 a. Thus, if

x 1x9 i 1 (f x_1x9 = 1 obviously it belongs to ), denoting by [x 1x9]

the -~

Therefore , and since X ~x9 e A , , (25) follows.
[x-V]

We recall that, if G is a group, a local system C of subgroups of G
is a collection of subgroups of G such that every finitely generated
subgroup of G lies within some member of C

The following lemma, whose significance will be shortly clear, is a
particular case of Lemma 8.22 in [16]

Lemma 5.3.1. Let C be a local system of subgroups of a group G.

Suppose that, for each He C, there is a function :Hx X - (0,)
Then there is a function a: G x G — 10,1) such that, for every finite
subset {(x1,y])----.- - (xX™yj) of G x G* there is an He C such that
Ny Hx H and «(xM.y?) = for 1 " 1>eee¢ n*

Remark 5.3.2. A binary relation @ on a set X can be described by
means of the function
a : XxX - (0,

defined by

w,,(X,y) » 1 if x-<y
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« (X,y) = 0 otherwise.
In particular, if X is a group and C is a local system of subgroups of X
such that for each Ye C there is a binary relation on Y, then
Lemma 5.3.1 says that
there is a binary relation xon X such that, for every
finite subset ((XM.y.).-..... ~n,yn™ of X x X there

isYeC such that x.,y*e Y and x*<y" if and only if

xi-—<v{yr for 0Si<n.

Proposition 5.3.3. Let G be a group acting on agroup X.

(@ If C is a local system of subgroups of Xsuch that for each
YEC there is a G-invariant series ify in Y on whose factors the action
induced by G is trivial, then there is a G-invariant series in X with the
same property.

G If is a local system of subgroups of G such that for all
H e C,l there 1is an H-invariant series Ef’n in X on whose factors the
action induced by H is trivial, then there exists a G-invariant series
in X on whose factors the action induced by G is trivial.

Proof (a) For each Ye C the binary relation < on Y determined
by satisfies (23) and (24) (with Y and G for Xand G respectively).
By Remark 5.3.2 there is abinary relation & on Xsatisfying (26)

(with C for C and X for X). Then, since for each Yet the binary
relation < satisfies (23) and (24) (with Y for X and G for G), it is

clear that -< satisfies (23) and (24) as well (with X for X and G for G).

(26



< (X,y) =0 otherwise.
In particular, if X is a group and C is a local system of subgroups of X
such that for each Ye C there is a binary relation on Y, then
Lemma 5.3.1 says that
there is a binary relation <on X such that, for every
finite subset {(x".yM), , (xn»YnM  of X x X there

is YEC such that xi,yie Y and x|—<y_I if and only if

X J for O£ ign.

Proposition 5.3.3. Let G be a group acting on a group X.

(@ If C is a local system of subgroups of X such that for each
YeC there is a G-invariant series if 1in Y on whose factors the action
induced by G is trivial, then there is a G-invariant series in X with the
same property.

G If is a local system of subgroups of G such that for all
H e C,l there is an H-invariant series Ef}_lj in X on whose factors the
action induced by H is trivial, then there exists a G-invariant series
in X on whose factors the action induced by G is trivial.

Proof (a) For each Ye C the binary relation < on Y determined
by ify satisfies (23) and (24) (with Y and G for X and G respectively).
By Remark 5.3.2 there is a binary relation < on X satisfying (26)

(with C for C and X for X). Then, since for each Y e C the binary
relation < satisfies (23) and (24) (with Y for X and G for G), 1t 1s

clear that —< satisfies (23) and (24) as well (with X for X and G for G).
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Consequently, as shown in the beginning of the section, the series in X

associated to —< satisfies the required conditions.

(b) For each H e rI the binary relationsH on X determined by ifH
satisfies (23) and (24) (with X for X and H for G). By considering
C* = {*H|XH = X for all H € as a local system of subgroups of X and
associating to each X the binary relation —< , by Remark 5.3.2 it follows
that there is a binary relation xon X satisfying (26) (with C for Xand X
for X). Then, since for each H e P | the binary relation —<|_| satisfies
(23) and (24) (with X for X and H for G), it is clear that —< satisfies
(23) and (24) as well (with X for X and G for G). Consequently the series

in X associated to < satisfies the required conditions.

O

We are now ready to prove

Theorem 5.3.4. Let G and G* be groups, H<jG, and suppose that Ge ji .
Let *: G —-G" be a projectivity such that H* is core-free in G~ Then
there exist a G-invariant series if in and a G.-invariant series
if in (Ht) 1 whose factors are cyclic and if, in addition, is quasinormal
in G~, then G induces the identity on the factors of if and G1 induces the
identity on the factors of

Proof. As we have already pointed out in 5.1, as a result of
Theorem 5.1.1, we may assume that h” 1s quasinormal 1n G~. Let J be the set

of finitely generated subgroups of G. If FeJ set m {Eej-| EEF} . By
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Theorem 5.1.2 F/Cr (HN<H,F>/H u_Dand F*/C ((h™xH,F> /(H*) )
F FECHAE> F* <H,F>*

are periodic and therefore finite (use the projective invariance of for the finiteness

of the latter) by the hypothesis on G. In particular has a finite number
<H -~r
of conjugates in <H,F>T; then, considering that 1(H) ~ :H]l< o

(Lemma 1.2.9 (i)), it follows that (H,N)xH,F> /(HY) , and hence also
<H,F>

Hx< 7 >/H <H P> are Ffinite groups. Again Theorem 5.1.2 implies that there

exists an integer nm\. such that

i x> <mM«« . FN[tH N )
and
Let now Xe J* , Y . Set
>0 - H , i D G X 1 for all 1£f«N
i times
and
40.(HV"-TFc ihY m> . X -..,X ] for all 1<1lel.
1 times

Then (27) and (28) show that, if Z€ J

Fn,\ < H*,<H,Z> and nz ~ H QH,ZQ7

Thus, since z£j- H<R z>* * 1, we obtain

n_y. n-a.
iell i uu i
Therefore IF, }, Is an X-invariant series In h?,,<H,Y > on whose factors

X acts trivially. Similarly {1 }ic)) 1s an x”-invariant

series in (h ™)H,Y on whose factors X acts trivially. As Y varies

in 5, the groups HT,<H,Y> form a local system of X-invariant subgroups

@n

28
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of and the groups (HY)XH,Y> form a local system of X~-invariant
n G]

subgroups of (H ) . Therefore, by Proposition 5.3.3 (@) there exist an
_ _ _ i TG N _ ) . m 1
X-invariant series in H ~ and an X -invariant series in (H ) on whose
s
factors X and X respectively act trivially. Finally, as X varies in T ,
the groups X and X * form local systems of G and G1 respectively. Applying
Proposition 5.3.3 (b) it follow that there exist a G-invariant series in

H*’® and a GMinvariant series in (HY) , on whose factors G and "

respectively induce the identity.

O
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