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Glossary

If S and are sets, as usual 

S £ means that S is a subset of S^.

S n S 1 is the intersection of S and .

S uS. is the set-theoretical union of S and S^.

S is the difference set of and S, namely the set of those elements 

belonging to but not to S. 

x e S means that x belongs to S.

(x,y,z.... .) is the set consisting of the elements x,y,z.........

(J is the set of natural numbers, Z is the set of integers.

If m.neZ , m > n  means that m is greater or equal to n (in the natural 

order of Z ),whereas m > n means that m is stricly greater than n.

(m,n) is the greatest common divisor of m and n. 

m|n means that m divides n.

Through this thesis p will always denote a prime number.

If G is a group,

H < G  means that H is subgroup of G.

H < G  ............. a proper subgroup of G.

H < G  " " " " a normal subgroup of G.

If H < G,

Q
H is the normal closure of H in G.

Hg is the core of H in G.

N (H) is the normaliser of H in G.b

By [G/m ] we shall denote the lattice^of, spbgroups of G containing H.
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N(G) is the norm of G.

Z(G) is the centre of G.

If a is an ordinal, ZQ (G) is the ath-term of the upper central series of 

G. In particular Z^G) = u 7n (G).

G ‘ is the derived (or commutator) subgroup of G.

If n 2 2, G ^  denotes the n -commutator subgroup of G.

If S e G, <S> is the subgroup generated by the elements of S.

If S and S.j are subgroups ofG, [S,S^] = < x y ^y|x e S,y e > .

If x e G  and SiG, we shall write |x,S] instead of [<x> ,S] , while,

if x and y are both elements of G, [x,y] denotes the element x ^y ^xy.

If H < K < G , l<N (H) , C (K/H) = ( g e L| [k,g] e H for all ke K) .C (K/H)
G L *-

is a subgroup of L, the centraliser in L of K/H. 

yIf xeG, ye G, x is the conjugate of x by y, namely y xy.

If xeG, |x| is the order of x ( |x| = »  if <x> is infinite cyclic).

If m e N, x is said to be a m'-element if |x| is finite and ( |x|,m) = 1.

If n  is a set of primes a group G is said to be a 77-group if |x|*oo

for all x e G and ( |x| ,q) = 1 for every prime q ¿ n  .

G is said to be of finite exponent m, where m e  N, if m is the maximum of

the orders of the elements of G.Otherwise G is said to be of infinite 

exponent.

t

A



Ill

If G is a p-group (by p-group we mean a )p(-group), fi.(G) = < x l x e G  and xp = 1 >, 
i 1

and (G) = < xP I x e G > .

If {G .} is a set of groups,.Dr G. is the restricted direct product
i i £ I i d  1

of the G ' s. If I = {i_, .... ,i ) is finite, sometimes we writei I n

D̂r̂ G.. = Ĝ  x....x G.. . Direct products will always be restricted.
1 n

Cgo denotes the (additive) group of Z.

C denotes the(multiplicative) group of complex (pn )t-roots of unity.
P

C denotes the Prlifer group relative to p, namely u,,C .oo ndl n
P P

= mod means congruent modulo.

i



1

Chapter 1. Introduction, notation and some assumed results.

1.1 Introduction.

If G is a group and H, K are subgroups of G, as usual denote the 

intersection of H and K by H n K, and the join of H and K, 

namely the intersection of all the subgroups of G containing H and 

K, by <H, K > . Then the set L(G) of all the subgroups of G 

endowed with the two operations

n : L(G) x L(G) - L(G)

(H. K) - H n K

and < , > : L(G) x L(G) -  L(G) 
(H, K) -*■ < H, K >

is a lattice. Following Suzuki ( [24], page 31, chapter II), if G 

and G-| are groups, by a projectivity it : G ■+• Gj we shall mean a 

lattice isomorphism from L(G) onto L(G-|). In such a situation we 

shall often say that G1 is a projective image of G or that G 

and G.| are projective, and, if H s G, we shall write Hu for the 

image of H under tt . Also, by a projective image X of a subgroup 

H of some group G we shall implicitly mean that there exist a group 

G-j and a projectivity n : G such that X = H* . If G and

G.j are isomorphic groups certainly they are projective, but most of 

the times the converse is far from being true. Thus the following 

general question arises naturally: to what extent does the lattice of 

subgroups of a group determine the group structure? In other words,



As a matter of fact in most of the cases it is very hard to give a 

satisfactory answer. This thesis is mainly devoted to building up some 

tools and techniques which hopefully in some cases could be useful for 

this task.

Let G and G-j be groups and tt : G G-j a projectivity.

Whereas for an arbitrary subgroup H of G it is in general impossible 

to describe how H17 behaves inside G-j, a lot, as we shall see, can be 

said when H is normal in G. And, as the presence of normal subgroups 

in G is strongly interconnected with the structure of G, hopefully 

the knowledge of the behaviour inside G-| of the images under tt of the 

normal subgroups of G would give informations on the structure of G-j 

in relation to the structure of G. This thesis is just concerned with 

normal subgroups and their projective images. The study of this topic 

has been carried out (in chronological order) at first, in the fifties, 

by Suzuki ( [24 ] , chapter II, 7) and successively, among the others, 

by Yakovlef ( [25 ] ), Schmidt ([ 19]), Menegazzo ( [12], [13l ),

Rips ([ 15]), Zacher ([26],[27 ]), Napolitani-Zacher ([ 14]). A major 

part of this thesis is in fact inspired by results of Schmidt and Menegazzo 

in [ 19] and [ 12] respectively.

If H is a normal subgroup of G, H77 need not be normal in 6-j.

(As a simple example take for G an elementary abelian group of order 

9 and for G^ the symmetric group on three letters. G and G1 clearly 

have isomorphic subgroup lattices.) Thus we may consider the normal 

closure K77 of H77 in G^, namely the minimal normal subgroup of G^ 

containing H77 , and the core N77 of H77 in G-|, namely the maximal

how much can a projective image of a given group G differ from G?
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normal subgroup of contained in H77 . We aim to obtain information

about the embedding of H77 in G-| and to 'measure' its 'deviation' 

from normality in terms of the structure of K^/N17 and the action of 

G-| on K^/N77 . We give a brief sketch of the results obtained. The 

thesis is divided in five chapters. The present chapter is introductory. 

The second one is inspired, as we said, by a result of Roland Schmidt 

( C191, Lemma 3.3, (a)) who showed that, in the above notation, if G

(and hence G-|) are finite, then N and K are normal in G. This

result has proved to be very useful; in fact it implies that tt induces

in a natural way a projectivity from the group G/N to Gi/N17 and

therefore, in order to investigate what happens in G-| above N77 we 

are allowed to assume that H77 is core-free in G-j, namely that 

N77 = 1. This assumption, as we shall see, has many consequences on the 

structure of H and H77 and on their embeddings in G and G-j 

respectively. The aim of the chapter is to prove Schmidt's result in 

total generality, removing the hypothesis of finiteness on G (see 

Theorem 2.1.1).

The third and fourth chapters are dedicated to investigating the 

structure of H/N and H^/N77 (by what we have just pointed out, we 

may assume, without loss of generality, that N77» 1.). In this direction 

Menegazzo has proved the following beautiful result.

Theorem 1.1.1 (Menegazzo, [12 J ). Let n : G -*• G-| be a projectivity 

with G a finite group of odd order. If H <  G and H77 is core-free 

in G-j , then H is abelian.

Since the structure of a projective image of an abelian group is well



known (see [24], chapter I, sections 4 and 5), Theorem 1.1.1 gives 

also many information on H 77 ; in particular H 77 is a metabelian 

modular group. We recall that a group G is modular if the identity

< U, V > n W = <U, V n W> 

is satisfied for all U, V, W s G with W £ U.

Abelian groups are clearly modular. However, from the statement of 

Menegazzo's theorem, two questions arise naturally. Firstly, what happens 

if G is finite of even order? Menegazzo's proof did not work for groups 

of even order, but no counterexample was known. Secondly, going even 

further on, what can we say if we remove the hypothesis of finiteness on 

G? In chapters 3 and 4 we give answers to these questions. More precisely 

in chapter 4 we prove, by exhibiting a counterexample, that unfortunately 

Theorem 1.1.1 is not true for groups of even order. The counterexample 

consists of two finite 2-groups G and G1 of the same order 213 , 

a projectivity w : G -*■ G-| and a non-abelian normal subgroup H of G 

of order 27 such that H77 is core-free in G-j. In the first part of the 

chapter we also prove that the counterexample is minimal, in a sense that 

will be specified in the statement of Theorem 4.1.2. The results of chapter 

4 have been obtained in collaboration with my supervisor,

Dr. S.E. Stonehewer.

Although, as we have seen, (in the usual notation and with N77» 1)

H need not be abelian, in chapter 3 we prove (see Theorem 3.1.1) that 

H and H77 are soluble groups of derived length < 3. This result is 

general, without any finiteness assumption. But we would like to point 

out that the merit of removing the hypothesis of the finiteness of G
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is due essentially to the following powerful recent result by Rips ([15 ]).

Theorem 1.1.2 (Rips, Zacher [261,Teorema A). Suppose that G and 

G-| are groups, it : G G-j is a projectivity and H is a subgroup of G 

of finite index in G. Then has finite index in G-|.

This theorem was proved first by Rips. On hearing the statement 

of the result, before seeing Rips' proof, Zacher found a different 

much shorter proof.

Theorem 1.1.2 has several useful consequences. One of them, which 

we will also use in the proof of Theorem 3.1.1 is the following.

Corollary 1.1.3 ( [26 J, Corollario 1). Let G and G1 be groups,

it : G -*• G-| a projectivity and H < G  with G/H infinite cyclic. Then 

H17 < G ] .

Using Theorem 1.1.2 and corollary 1.1.3 the proof of Theorem 3.1.1 

can be reduced to the case when G and G-j are finite p-groups and 

G/H is cyclic. Then the case p odd is settled by Theorem 1.1.1, and 

it remains to deal with the case p=2 which we investigate mainly in 

Theorem 3.2.3 . In the last section of the chapter (see Proposition 3.4.1) 

we give an example of how this machinery can be applied, assuming that 

G is soluble, to bound the derived length of G-| in terms of the

derived length of G , improving a similar result by Yakovlev ([25 1).

In the last chapter we obtain some information about the actions 

(In the usual notation and still assuming N^« 1) of G on K and 

of G 1 on K1* (Theorem 5.1.2), in the attempt to generalise to infinite 

groups a result by R. Schmidt (C19l, Theorem 3.4) stating, for G



finite, the existence of series

1 = Nq £ N] £ ... < N = K 

and

1 = Mq < M1 < ... <L = K11

of normal subgroups of G and Ĝ  respectively, such that N - +-j/N̂  

and M-j+-|/M- are cyclic (or even, in certain cases, central in G 

and G^ respectively). Unfortunately we have not been able to obtain 

a general result holding for every group G, but only for a certain class 

(Theorem 5.3.4 ). This completes a rough sketch of the contents of the 

thesis.

In the following section we shall give some more preliminary 

definitions and state some more preliminary well-known results.

1.2 Preliminaries and some assumed results.

We recall that a subgroup H of a group G is a Dedekind subgroup 

(modular for some authors) of G if

< U, H > n V = < U, H n V > for all U, V s G such that UsV 

and

< U ,  H > n V  = < U n V ,  H >  for all U, V s G such that Hs V.

Remark 1.2.1. It 1s clear from the definition of modular group and 

Dedekind subgroup that a group is modular if and only if all its subgroups 

are Dedekind subgroups.



A normal subgroup is clearly a Dedekind subgroup and,since the 

definition of a Dedekind subgroup is purely lattice-thoretical, it follows 

that the projective image of a Dedekind subgroup is still Dedekind, in 

particular the projective image of a normal subgroup is a Dedekind 

subgroup. Closely connected with the notion of Dedekind subgroup we 

have the notion of quasinormal subgroup.

A subgroup H of a group G is quasi normal in G if 

HX = XH for all X s G.

It is easy to see that a quasinormal subgroup is a Dedekind subgroup. 

Moreover, the connection between these two classes of subgroups is given 

by the following theorem.

Theorem 1.2.2 (Napolitani, Stonehewer, see [22], Prop. 1).

A subgroup H of a group G is quasinormal in G if and only if H 

is a Dedekind and ascendant subgroup of G.

We recall that H is ascendant in G if there exist an ordinal

y and subgroups Ha for every ordinal a s y such that HQ = H, = G,

H« * He

Ha *  Ha+1

if a s g, H = u w 
a B<ct p

if a is a limit ordinal and

H is called subnormal if y is finite.

Remark 1.2.3. Theorem 1.2.2 implies that a Dedekind subgroup 

H of a finite p-group G is quasinormal in G. It is also an easy 

exercise to see that this is still true assuming only G locally 

nilpotent. For, in order to prove that H is quasinormal in G it is 

sufficient to show that hx e < x > H for all x « G, h « h. By 

Proposition 1.2.4 (11), H n <h, x> is a Dedekind subgroup of <h,x>.

Since <h,x> is nilpotent, H n <h,x> is quasinormal in



<h, x> by Theorem 1.2.2 . Thus we have

hx e (H n <h, x>)<x> = <x>(Hn<h,x>) c <x> H, 

as required.

Dedekind and quasi normal subgroups will play an important role in 

our treatment. In the following proposition we collect some of their 

basic properties. The proofs are almost immediate.

Proposition 1.2.4. The following hold:

(i) The join of any number of Dedekind (quasinormal) subgroups is a 

Dedekind (quasinormal ) subgroup.

(ii) If H is a Dedekind (quasinormal) subgroup of a group G 

and X s G, then H n X is a Dedekind (quasinormal) subgroup of X.

(iii) If N < G  and H * N, H is a Dedekind (quasinormal) 

subgroup of G if and only if H/N is a Dedekind (quasinormal) subgroup 

of G/N .

(iv) If a group G is the direct product of the periodic subgroups 

A.|, A2 such that (| a-j I , I a2 I) ■ 1 for all a1 £ A1, a2 « ,

then every Dedekind (quasinormal) subgroup of A^, i = 1,2, is a 

Dedekind (quasinormal) subgroup of G.(This follows immediately from the 

definition of Dedekind and quasinormal subgroups using the fact that,for 

all subgroups H of G, we have H» (H n A-j) * (H n A2).)

(v) A maximal subgroup which is quasinormal is normal.



(vi) A periodic quasinormal subgroup H of a group G is 

normalised by all the elements of G whose order is coprime to the 

order of every element of H.

In addition we recall three results on quasinormal subgroups, due 

respectively to Maier-Schmid ( [11 ]), Gross ( [ 5 ], Lemma 3.1 and

[ 6 ] i Lemma 3.2) and Stonehewer ( [21] , Lemma 2.1).

Theorem 1.2.5 (Maier-Schmid ). A core-free quasinormal subgroup 

of a finite group G lies in the hypercentre of G.

Lemma 1.2.6 (Gross ). Let G = H <x> be a finite p-group where 

H is a core-free quasinormal subgroup of G. Then

(a) H n <x > = 1 ;

(b) n-|(G) is elementary abelian ;

(C) nr(G) = nr(H) nr(<x>) , 3 ^ ( 6 ) )  = 1 and

H ilr(G)/ nr(G) is core-free in GA2r(G) for any positive integer

(d) ^(G) has nilpotency class s p-1 .

Moreover, if p = 2, then

(e) I <x> i 2 2n+2 , where 2n is the exponent of H ;

(f) n2(<x>) < Z(G) ;

(9) ft3(G) Has nilpotency class s 2 .
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Lemma 1.2.7 (Stonehewer). A quasinormal subgroup H of a group 

G is normalised by every infinite cyclic subgroup of G which inter­

sects H trivially .

The following proposition shows how some basic group-theoretical 

properties behave under the action of a projectivity. The proofs can 

be found in [23 ] and [24 ] . Before we state it we recall the 

definition of P-group .

A group G is a P-group if either it is an elementary abelian

p-group or G = A <b> where V A  is an elementary abelian p-group,

<b> has prime order q, q | p-1 and ab = ar for some integer r 

with r £ 1 mod p for all a e A. If G = A<b> is a non-abelian 

P-group, where A and <b> are as above, then L(G) s L(X), where 

X is an elementary abelian p-group isomorphic to A x B, with |B|= p

This was already pointed out by Baer (see [24 ], chapter I, section 3) 

In particular a P-group is a modular group.

Proposition 1.2.8. Let G and G-| be groups and it : G * Gj a 

projectivity. Then the following hold.

(a) (See [24], chapter 1, Theorem 2). If G is cyclic

(locally cyclic), G-j is cyclic (locally cyclic).

(b) (See [24], chapter 1, Theorem 4). If G is the direct

product of the periodic subgroups G^ such that elements of distinct 

G^'s have coprime order, then G| is the direct product of the G*'s 

and again elements of distinct G^'s have coprime orders.



(c) (An easy extension to the locally finite case of [23], 

Theorem 3). If G is a locally finite p-group, then G-j is also a

locally finite p group except in the following cases:

(i) G is isomorphic to the Priifer group Cp» and

G-j s Op«*, for some prime q * p.

(ii) G is cyclic and G-| is cyclic of q-power order 

for some prime q /. p.

(iii) G is elementary abelian and G-| is a non-abelian P-group.

(d) If G is abelian, then G-| is a metabelian modular group 

(see [24], chapter 1, Theorems 17,18).

In chapters 2 and 5 we shall need the following stronger and 

more detailed version of Theorem 1.1.2, which is due to Zacher.

Lemma 1.2.9 (Zacher, [27], Lemmas 3.2, 3.3 ). Let G and G-| 

be groups, it : G Ĝ  a projectivity, H a normal subgroup of G 

such that G/H is finitely generated. Then the following hold.

(1) l(H*)Gl : H*! <

(11) h"/(h\
bl

is a nilpotent group of finite exponent.

(111) If H* is not quasinormal in G-|, then G-i/iH^)^ is 

andperiodic
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(a) Gj/tH^g = P f / O ^  ? ... x>^/(Hu )Gi x ^ / ( H ^ g  ,

where t < °° , and for 1 s i < t P?/(Hir)r is a finite non-abelian
1 fal

“iP-group of order q.. , where p̂  and are primes, q^ < p̂

and 1 s . Moreover, elements of distinct direct factors have coprime 

order;

(b) = (tf/iH^g x ...x Q^/iH^Jg x Q^/iH^Jg where
U 1  U 1  g  ^ 1  I T  “ 1

Q* = H*n P* . I Q * :  (H * )g  I = q  ̂ , (Q*) 1 = (Q ? )P i  ,

Q17 = K11 n Hu is quasinormal in G-| and H17 is quasinormal in

Kw ;

( c )  (H17) 1/ (H7T) g i =

where (Qir)K’r/(Hir)r is 
bl

p;/(h7T)Gi x ...x P^/(HTr)gi x (Q7r)K/(H7T)gi

nilpotent of finite exponent.

In 1.1 we have defined modular groups. The following theorem, 

due to Iwasawa, describes the structure of locally finite modular p-groups. 

We recall that a group is Hamiltonian if it is non-abelian and all its 

subgroups are normal. A Hamiltonian group is the direct product of a 

quaternion group of order 8 and a periodic abelian group without elements 

of order 4.

Theorem 1.2.10 ( [24], chapter 1, Theorem 18). A locally finite

non-abelian p-group G is modular if and only if either G is Hamiltonian 

or G = <A,t> where A is abelian of finite exponent and, for all 

a e A,' afc = a^+P where s is an integer and s a 2 if p = 2 .
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Remark 1.2.11 It is easy to deduce from theorem 1.2.10, using 

an inductive argument, that, if G is a locally finite modular non-
Di-1

Hamiltonian p-group, the map x -*■ xp is an endomorphism of fi,j(G)

for all i a 0 (see [24], chapter 1, page 15).

Finally we introduce the following notation.

Let G be a group and tt a projectivity from G to some group G-|. 

For subgroups X, Y of G such that X £ Y we shall often denote the 

subgroups of G ( ( x V * ) " " 1 and ((X17)^)*"1 by x"’* and X^ y 

respectively.
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Chapter 2.

On the core and the normal closure of the image of a normal subgroup. 

2.1. Introduction.

The aim of this chapter is to show that, when considering problems about 

a projectivity it of a group G with a normal subgroup H, we may 

assume that H77 is core-free in G77 . More precisely we will prove the 

following theorem.

Theorem 2.1.1 Let G and G^ be groups, « : G ■» G^ a 

projectivity and H <  G. Then H r and H77’6 are normal in G.7T,b

In particular it follows that it induces a projectivity from the 

group G/H^ G to ^ / ( H 77̂  and H77/(H77)̂. is core-free in

g i/(h 77)g 1 • 1

As mentioned in chapter 1 in the introduction, Theorem 2.1.1 

has been proved by R. Schmidt when G, and hence G-j, are finite 

groups ([19 ]» Lemma 3.3, (a)). However his proof is based on the 

investigation of the behaviour of minimal normal subgroups under the 

action of a projectivity and so it is not adaptable to the general case, 

since minimal normal subgroups do not exist in general. Thus our 

approach must be different and Lemma 1.2.9 will be an essential tool 

in the proof. We also need some preliminary results on periodic locally 

cyclic quasinormal subgroups. We will obtain them in the following 

section.



2.2 On periodic locally cyclic quasinormal subgroups.

We recall that the norm N(G) of a group G is the intersection 

of all the normalisers of the subgroups of G. The following result is 

due to Schenkman ([17 ]).

Theorem 2.2.1 (Schenkman) N(G) s Z2(G) .

For quasinormal subgroups of prime order we have the following 

simple, but, as we shall see, useful lemma.

Lemma 2.2.2 . Let H be a core-free quasinormal subgroup of prime 

order of a group G. Then H < N(G) . In particular, by Theorem 2.2.1,

H s Z2(G).

Proof. Let |H|= p , say. If x is any element of G such that

<x> is infinite cyclic or of order coprime to p, then, by Proposition 

1.2.4 (vi) and Lemma 1.2.7,

x c Nq (H9) for all g c G . (1)

Thus, since H is not normal in G, there exists y e G of 

p-power order not normalising H. Fix the element x and set 

X = < H, y, x > , T = H<y> . Then, by (1), HX = HT and H is

core-free in T. Also T is a p-group and therefore, applying Lemma 

1.2.6 (a), (b), (c) to T, it follows that HX is elementary abelian 

of order p and |H n <y>l= P . H contains p+1 subgroups of

order p. Moreover, by (1), | X : NX(H)| = |T : N^(H) | and 

| T : Ny(H) | p, namely H has p distinct conjugates in X.
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Therefore, by (1),

x normalises every subgroup of H . (2)

Let T-| = <H,z> , where <z> is the Sylow p-subgroup of <yx>

(note that, since yx does not normalise H, |yx| is finite by

X T1Lemma 1.2.7 ). Again by (1), H = H and H is core-free in the
y y

p-group T.. Thus, by Lemma 1.2.6 (c), H n <z> = H n <yx> has
y

order p. Clearly yx centralises H n <yx> . Thus, by (2), y
y

normalises, and therefore centralises, H n <yx> . Hence x also
X Xcentralises H n <yx> and so, by (2), x c CQ (H ). Therefore

H s Cg <x e G| <x> s Cœ or (|x|, p) = 1>

Moreover a quasinormal subgroup of order p clearly normalises the 

p-subgroups. Therefore H normalises every subgroup of G, namely 

H s N(G) , as required.

□

Lemma 2.2.3 . Suppose that H is a periodic, locally cyclic, 

quasinormal subgroup of a group G and S s H. Then S is quasinormal 

in G.

V

Proof. By Proposition 1.2.4 (i) we may assume, withour loss of

generality, that S is a p-subgroup of H. In order to prove that S 

is quasinormal in G it is sufficient to show that S<x> = <x> S

for every cyclic subgroup <x> of G such that <x> is infinite 

cyclic or of prime power order. If <x> is infinite cyclic then,



17 -

by Lemma 1.2.7, <x > s Ng(H) and therefore <x> s Ng(S) since S 

is characteristic in H. Thus, assume that <x> has prime power 

order qn , say. If q^p , since | <H9, x> : H® | | qf1 for all 

g e G, H/H<h x> is a q-group. It follows that S s H<H and

so x normalises S. Suppose, finally, q = p and let 

C = <S, x> n H. C is quasinormal in <S, x> by Proposition 1.2.4(i).

As S <C, by Theorem 1.2.2 S is ascendant in <S, x> . It is well-

known (see [16 ], Theorem 2.31 vol. 1) that the join of ascendant

p-subgroups is a p-subgroup. Therefore, S<̂ ,x>, and consequently 

<S,x> , are p-groups. Hence C is also a p-group. If S s x> 

then x normalises S. Therefore, suppose S z x> . Then it will

not be restrictive to assume C = 1. As C has finite index in<S ,x>

C <x> , C <x> = <S,x> is now a finite p-group, and C is a core-free

quasinormal subgroup of C<x> . Also S = i^(C) for some i 2 1.

Applying Lemma 1.2.6 (c) to C<x> we get

<x>s » <x>ni<x>ni (c)= <x>ni (c<x>) =
= n.(c<x>)<x> = sni <x><x> = s<x> ,

The proof is now completed.

□

The following proposition generalises Lemma 2.2.2 . Although this 

generalisation will not be necessary for our purposes, it has perhaps 

some interest in the light of Theorem 1.2.5 . Indeed the latter is 

false, in general, for infinite groups:for example F. Gross (C 7 ])
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has constructed a group G containing a non trivial core-free quasi- 

normal subgroup H where, among other properties, Z(G) = .

We will bring up again the subject of possible generalisations of 

Theorem 1.2.5 in Chapter 5. Proposition 2.2.4 goes in the opposite 

direction.

Proposition 2.2.4 . A core-free, periodic, locally cyclic, 

quasinormal subgroup H of a group G is contained in Z (G). More
(A)

precisely, if S is a p-subgroup of H of order pn , say, then

Proof. Assume n ^  1 and set n = fij(S). By Lemma 2.2.3 n

is quasinormal in G, and so fj s Z2(G) by Lemma 2.2.2 . It follows 

that n9 Z(G) <aG for all g € G. Thus, since S n Z(G)=1, 

nG = £29 X ( nG n Z(G)). Let N/nP be the core of Sft6/ nG in G/ftG

Then N = N9 =(S9 n N)fiG =(S9 n N)(fi? x(nG n Z(G))) for all g e G.

elementary abelian. Moreover n (S9 n N) = 1, as S is core-free
gcG

in G. Therefore N is residually an elementary abelian p-group, and

Q
12 is generated by quasinormal subgroups of order p, hence it is

p
so N itself is elementary abelian. It follows that N = d . Thus

SflG/ilG is core-free in G/fiG and |SnG/flG | = pn_  ̂ . By induction 

on n SfiG/nG s Zg^ n_i j(G/fjG). As fjG s Z2(G), the result follows.

□



2.3 Proof of Theorem 2.1.1

We show first that

H <  G . ir,G (3)

We claim that, in order to prove (3), it is not restrictive to 

assume G/H finitely generated. Indeed, assume that (3) holds whenever 

G/H is finitely generated. Let now G arbitrary (namely with G/H 

not necessarily finitely generated). Let r be the set of finite sub­

sets of G. For F e T set IV = (G e r|G 2 F ) . By hypothesis,

for F e T , H m _ <3 <H, F > and therefore7T 9 <n f r >

Htt,G = 0 Hn <H,G> < <H*f >

Thus q is normalised by every finitely generated subgroup of G,

namely H _ < G  . ir,u

Assume then that G/H is finitely generated. For simplicity of 

notation set N = H^ ̂ and suppose, by way of contradiction, that N

is not normal in G. Set M = N® . Clearly M s H. By Lemma 1.2.9

(ii) H^/N17 , and consequently also M^/N* , are periodic nilpotent 

groups of finite exponent. Let H be the set of primes dividing the 

exponent of m’V n ". Mff/Nff =■ <(N<N,9>)1T/Nir| g « G> and hence 

II = (p | p divides exp((N<^,9>)ir/Nir) for some g « G } (here we are

using the usual fact that if II is a set of primes and G is a nilpotent

group which is the join of periodic n-subgroups, then G is a n-group). 

Therefore, for every p e H there exists 9p < G such that
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(N<N,9p>)1T/N1T contains a subgroup R^/N77 , say, of order p.

We observe that N, as the image under ir of the normal subgroup 

N77 of G-j, is a Dedekind subgroup of G. Thus, by proposition 1.2.4

(i) N<N,9p > , and consequently its projective image (N<N,9P>)Tr ,

are Dedekind subgroups (of G and G-| respectively). Besides, 

(N<N,9p>)TT/N1T is cyclic, since «fi.gp^ /N77 = <9p>1T/<9p>irn N77 

and <9p>ir is cyclic by Proposition 1.2.8 (a).

Suppose now that, for some p £ n, i^/N77 is not quasinormal in 

G-j/N17. Then we claim that H^/N77 is not quasinormal in G^/N77 .

Indeed, if this is not the case, as a result of Theorem 1.2.2 and of the

fact that H^/N77 is nilpotent, (N<N,9p>)77/N77 is also quasinormal in 

G^/N77 . Thus, by Lemma 2.2.3 , i^/N77 is quasinormal in G^/N77 ,

against the hypothesis. Hence H^/N77 is not quasinormal in Gi/N77 .

Then it follows that G-j/N77 has the structure described in Lemma 1.2.9

(iii). Following the notation introduced in that lemma (with (H77)r= N77),
bl

suppose that Rp/NM s ( N ^ ’̂ P* n KJ^/N77 . The latter is a Dedekind

subgroup of K^/N77 and it is also a subnormal subgroup of (Q")1' /N 

since (Q )* /Nw is nilpotent. Therefore, by Theorem 1.2.2,

( N ^ ’^p* n k j^/n 77 is quasinormal in K^/N77 . Proposition 1.2.4 (iv) 

then implies that it is in fact quasinormal in G-j/N17 . Thus, as 

a result of Lemma 2.2.3, Rp/N77 is quasinormal in G-j/N77 , again

contradicting the assumption. Hence R ^ N 77 t (N<N,9P >n KJ^/N77 .

Again from Lemma 1.2.9 (iii) (and always using the notation introduced

TT. K17 /.i IT

there) it follows that f^/N17 = Q* /N77 for some 1 s ipS t. 

we have shown that

Therefore

' ®  *
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Hence

and

if, for some p €JT, R^/N77 is not quasinormal in

G^/N77 then G-j/N77 has the structure described

in Lemma 1.2.9 (iiil and R?/N7r= Q* /N77 far
, . P 1psome 1 s ip s t. (4 )

the only prime in n dividing exp(P? /N77! is p, (5)
P

R^/N77 is the Sylow p-subqroup of H^/N77 and. m V n 77. (6)

For all 

normalised by

P ej

< v f •

there exists xp such that Rp is not 

We show that

p does not divide ((m V N 77) n ( <xp.N^/N77) | . (7)

In order to show (7) we distinguish two cases:

(i) R̂ J/N77 is quasi normal in G ^ N 77. Then

[R^/N17, <xp,N>17/N77 ] is a non identical (because <xp>Tr does n°t

normalise r£ ) p-group (because (r£) V n77 itself is a p-group, 

since it is generated by quasinormal subgroups of order p) contained 

7n ( < xp»N>7T/N1T) n Z(G-j/N71̂) (Lemma 2.2.2 ). Therefore the subgroup

of order p of the cyclic group <xp,N>7T/Nir lies in Z(G-j/N71).

Then, as M^/N77 is core-free in G ^ N 77 , ( 7) follows.

(ii) rJJ/N17 is not quasinormal in G ^ N 77 . Assume, by way of 

contradiction, that (7) is false. Then, since,by (6), Rp/N77 is the 

Sylow p-subgroup of M^/N77, it follows that
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(M^/N77) n (<xp , N ^ / N 77) = f^/N71. Therefore < x .N^/N17-* centralises

of (7).

We next show that

for each p€ n there exists zp e G-j such that

<zp > N^/N77 does not normalise i^/N77 and

normalises R^/N77 for each sen different from p.

( 8)

Again, in order to prove (8) we distinguish two cases.

(a) RjJ/N77 is not quasinormal in G-i/N17. Then, by (4) and

(5) any element <zp>e Pp. such that <zp>N'rT/N7r ^ / N 77 satisfies the 

required conditions.

(b) R^/N77 is quasinormal in Gi/N77 . Then R^/N77 is

normalised by the elements of infinite order or of order coprime to p 

(Lemma 1.2.7 and Proposition 1.2.4 (iv)). Therefore there exists 

zp e G-| such that <z > n V n 17 is a p-group not normalising R^/N11. 

Moreover <zp> nV n 77 normalises i^/N77 if s/p by Proposition

1.2.4 (vi) if R^/N77 is quasinormal in G-j/N77 , and by (4) and (5) 

if R^/N77 is not quasinormal in G-j/N77. Hence (8) is proved.

If <y> /(<y> n N) « , since mV n77 is periodic, if follows that

n <y, N i*77 = N77 and therefore M n<y,N> = N <<y,N> . Thus,

suppose that | «y.N^/N77 | is finite. For each prime number r let

Let y « G. We show that 

y normalises N. (9)
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y p e G such that <yr> s <y> and <yr,N>1T/H7r ts the Sylow

r-subgroup of «y.N^/N77 . Since <y,N> is the join of the subgroups 

< y r .N> , in order to prove (9) it is sufficient to show that yp

normalises N for each r. Set <yr> « <yr>Tr • Set also

R /N = c^p/N77 | p c n>. Since R^/N77 s H^/N77 and the latter is

nil potent, R77/!!77 is the direct product of the rJJ/N77 's. Again

we have to split our investigation in two different cases.

(a) y r normalises r77 . Let z be the product of the z 's,

where the zp ’s are the elements of G] introduced in (8 ). Set 

<z>77 = <z> and < t r >77 = <zyr> . < y r>N77/N77 normalises the

characteristic subgroups rJJ/N77 of rV n77 for all p € n. 
Therefore, by definition of z, rJJ/N77 is neither normalised by 

<z,N>77 /N77 nor by <tr .N^/N77 for each p e n. Hence, by (7),

( < z ,N>77/Nw) n (M77/N77)= 1 =(<tr.N^/N77) n ( M W ) .

Therefore M n <tr,N> = N < < t r,N> and M n <z,N> = N <  <z,N> ,

namely N is normalised by <tr,z> . Since

<tr »z>1T * <zyr. z> i <yr> , <yp> s <tr,z> . Thus yr normalises N.

( 8 ) y r does not normalise R77. Then there exists p « n 

such that <yp> N^/N77 does not normalise R^/N77. By (7 ) p does not 

divide |(M^/N17) n (<yr> N V N 77 )|. Hence, as <yr> N^/N77 is an 

r-group, if p=r
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If p*r , then, by Proposition 1.2.4 (vl) Rj/N* is not quasinomial 

in G ^ N  . Then, by (4), yr e and, by (5), r i II. Therefore (10) 

holds even when p/r. From (lo) it follows that Mn n <y ,N>* = N* .

So

M n <yr, N> = N <1<yr, N > .

This completes the proof of (8). Since y is an arbitrary element of 

G, it follows that N is normal in G, contradicting the hypothesis 

that N is not normal in G. Therefore N, i.e. H r , is normal in
7T»b

G.

In order to complete the proof of Theorem 2.1.1 it remains to

show that H77*^ <G. Suppose that this is not the case. Then
7T G 7T G
H > (H ’ )G ^ H. Moreover, by applying what we have just proved to

G -j
the group G], the normal subgroup (H77) 1 of G, and the projectivity

17 1; Gl - G, it follows that ((H77) ’) . = ((H77*2)-)17 <JG, .*  ,G ] b 1

Thus, since H77 s ((H17,G)G)77 , we have

(H77)^ s ((H7T»G)g)77 < (H77*5)77 = (H77)61 ,

a contradiction. Theorem 2.1.1 is finally proved.

0
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Chapter 3.

On the derived length of a normal subgroup with a core-free 

projective image.

3.1 Introduction.

In the next chapter we will prove, by exibiting a counterexample 

(see Theorem 4.1.1 ), that Theorem 1.1.1 is false if we remove the 

hypothesis that the group G is finite of odd order. However the 

subgroup H that we will construct in Theorem 4.1.1 is metabelian. 

Thus, it was natural to ask whether, removing the hypothesis of G 

finite of odd order in the statement of Theorem 1.1.1 , H is always 

metabelian. Unfortunately we still do not have an answer to this 

question. However, in the present chapter we are able to prove the 

following

Theorem 3.1.1 . Let G and G-j be groups, it: G -► G-| a 

projectivity and H a normal subgroup of G such that H11 is core 

free in G^. Then H and H17 are soluble group of derived length 

at most 3.
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We point out that Theorem 3.1.1 has been obtained after the 

discovery of the counterexample in Theorem 4.1.1 . The proof of 

Theorem 3.1.1 shows how the problem can be reduced to the case where 

G = H<a> is a finite 2-group with H n <a> = 1. We would like to 

mention that Theorem 2.1.1 is used in this reduction process.

Sections 2 and 3 are then devoted to the study of the structure of 

G and G-| in Theorem 3.1.1, assuming that G = H<a> is a finite 

2-group . At the end of section 2 the proof of Theorem 3.1.1 is 

derived. Section 4 uses the results in section 3 to improve a theorem 

by Yakovlev (see Proposition 3.4.1), who showed that the projective

image of a soluble group of derived length s n is soluble of derived
3 2lengh s 4n + 14n - 8n (see [25 ], Theorem 4).

3.2 The abelian case for some finite 2-groups.

In this section we shall give a sufficient condition (Theorem 3.2.3) 

for H to be abelian whenever H is a normal subgroup of a finite 

2-group G= H<a> , tt: G -*■ Ĝ  is a projectivity and Hn is core-free 

in G-j . We point out that Theorem 3.2.3 is the key result, together 

with Theorem 1.1.1, in order to obtain the more general Theorem 3.1.1 .

In the next chapters we shall often make use of some well-known 

facts occurring in projectivities of certain finite p-groups. We shall 

state them in the following lemma. Most of these facts are easy 

consequences of Lemma 1.2.6 on core-free quasinormal subgroups. 

However, since the statements do not seem to appear explicitly in the 

literature, we shall indicate how to derive them from Lemma 1.2.6 .



Lemma 3.2.1 contains also a result ((xtii)) which is not an easy 

consequence of Lemma 1.2.6 . It is due to Menegazzo and it will be 

extremely useful in the proof of Theorem 3.2.3 and 4.1.3 . Since 

it is not published, we shall give a proof.

Lemma 3.2.1 . Let G and G^ be finite p-groups, where p is 

a prime, 1/ H < G  such that G = H<a> and let tt : G G-j be a 

projectivity such that H* is core-free in Gr  Set <a,> « <a>n 

and suppose that H has exponent pr . Then

(i) H n <a> = 1, n <ai> = 1 ;

(11) for all i s 0, ^(G)- flj(H) Z) A V and ^(G,)« n1

(ill) for all IV o Hirni (G, (G is core-free in Gj/n^Gj) ;

(iv) for all i * 0 n1+l(G>/«1(G) and ni+l (Gi )/ -̂((G-|) ai"e

elementary abelian;

(V) for all i z 0 sW G)/ni(G> and ni+2(Gl)/iM Gl) have
nil potency class s p-1 ;

(vi; if p=2 , forali i » 0  ^ ( G ) / ^  (G) and «1+3(G1 )/ni (G, ) 

have nilpotency class s z ;

_i-l
(vii) for all i * 1 the map x -*■ xp is an endomorphism of 

(G); the same power map is an endomorphism of 0.(6^ ;

(vili) if p=2, n2<a> s; Z(G) and ^2<al> * zCGi) »
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(tx) if p=2, la I i 2r+^ (of course H 11 has exponent 2r and

)a, J = ja ] ).

Denote the rank of f2, (G) by m+1. Then

(x) if p=2 or m ^ 2, tr restricted to n,(8) is induced by 

an isomorphism;

(xi) there is a basis { eQ , e^..., em } of ^(G) such that 

{e1,...,em } is a basis of (H) , < ^ >  = n1<a> ,

el = el ’ ei = ei-lei * f°r 2 5 i s m. Also there exists 

a basis (f0 ,...,fm > of ^  (G^) such that <fi> *< ei>1T

for 0 s i s m, =
fi-lfi mod

A i
<f0 ,... ,f^_2> for 1 si<m

and, moreover, if P=2 , f 1*2 * f/ 2  (if m 2),

t3 « f1Sf2f3 , 0 s 6 s 1 (if m 2 3) ;

(xii) for all 1 s i  s m  fi-|(H) contains exactly one subgroup 

of order 21 normalised by a, namely <e,,..., e.^, ei> .

Similarly, for all 0 si sm , il, (G,) contains exactly 

one subgroup of order 2 normalised by a-j, namely 

^0» ^  » fi> 5

(xiii) if p=2, 0,(6) s Z(f2r(G)) and 0, (G,) s Z(Qp(G1)) ( [13]).

Proof. By Theorem 1.2.2 is quasinormal in G,. Hence (i),

(ii), (iii) follow immediately from Lemma 1.2.6 (a) and (c).

(iv) For all 1 * 0 it induces a projectivity from G/ft,(G) to
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G1/^i^G1)* Thus> as a consequence of (iii) tn order to prove (iv) 

we may assume 1=0. Then Jl| (G-|) is elementary abelian by Lemma 1.2.6 

(b). Consequently Jl|(G) is a modular finite p-group of exponent p 

and therefore it is abelian.

(v) . As in (iv) we may assume i=l. Then Lemma 1.2.6 (d)
m -1

shows that JlgiG-j) has class sp-1. Set 1^= ( ( H))7731 for every

integer m. Since J^(H) o  G, is certainly quasinormal in J2g(G).

Let Nm = ^  follows from (ii) that

^(GJ/^m = (Km'/\ ^ i22<a>Nn)̂ Nm^' • Thus Lemma 1.2.6 (d) applied to the

group ng(G)/N , implies that ^(^)/^m has class < p-1. But, since

(^(H))^ is core-free in G-|, n 1^ = 1 and (v) follows.
m

(vi) . The proof is analogous to the proof of (v) replacing the 

Jig’s with Jig's and using (g) instead of (c) in Lemma 1.2.6 .

(vii) . We use induction on i. For i=l the statement is clearly 

true. Therefore assume, by inductive hypothesis, that the statement is 

true for some 1 * 1 .  By (iii) the hypotheses are preserved in the 

factor groups G/Jl^G), Gg/Jli (Gi). Also, by (iv),

ilj (G/Jl̂  (G)) = Jli+1 (G)/J1. (G). Thus, if x, y e Jl̂  (G), by the inductive

„1-1 pi-l „1-1
hypothesis we have (xy)K = xK y mod Jl-|(G). Moreover 

„1-1 . Di-1
xH , y w £ Jlg(G), which has class s p-1 by (v) and therefore 

it is regular, in the sense of Ph. Hall (see C 8 ], Kapitel III, §10).



- 30 -

Hence, as in addition, by (iv), (f2„(G))’ is elementary abelian, we have 
1 i i

(xy)p = xp yp . The proof for is analogous. Thus the

statement is true for i+1 and (vii) holds.

Tram 7T-1
(viii) . By Lemma 1.2.6 (f), f22<a-|> sZ(G1 ) . Set ^»(H)" 1 "

and Nm =CSn^G for every inte9er m. 1^ is quasinormal in G. Thus,

again by Lemma 1.2.6 (f), Ciî2<a> , G ] s Nm for all m . Since H*

is core-free in G-j, n Nm = 1. Therefore fi2<a>sZ(G) t as required.
m

(ix) . It follows immediately from Lemma 1.2.6 (e) .

(x) . It is a particular case of the fundamental Theorem of 

projective geometry, by considering n-|(G) and (G-j ) as vector 

spaces over a field with p elements (see [ 1 ], Theorem 2.2.6).

(xi). Clearly <a-j> = 1. Suppose that | ^H j<a>|> p‘

Then there exist two distinct subgroups of H of order p, <v> and 

<w> , say, such that <v>u and <w>ir are core-free quasinormal 

subgroups of il-j (H^) <a^> . It follows that <v>7r x <w>* induces 

a cyclic group of automorphisms on <a-| > and so Cjj <a-j> i 1,

»1«
a contradiction. Therefore |C^ (H)<a>l= p* * Consequently there

exists a basis (e^..., em> of il-|(H) (considered as a vector 

space over a field with p elements) such that

el “ eT  ei = ei-l ei for i in the range 2 si sm.

Set <eQ> = il-|<a> . For all i in the range O s i s m  we have
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<e0*ei.... ei-l,ei;> = < a.e^,.. • ,e. > . Hence, in particular,

<e0 ,...,ei> is normalised by Moreover, for 1 s i < m ,

ei-l £ < e i * a> and therefore < i . Then, considering

the further fact that a^ does not normalise < e-]>ir , it follows, for 

0 sism, that we can find generators f. of <e->ir such that

1 _
fi H fi-lfi mod < f 0.... fi-2 >

and

fl = f0 fl *

Thus, if m & 2 we have

f = fa f f
T2 T0 fl T2

and, if m 2 3

f3' ■ f0 f? f2 f3

2 s i  sm

Os as p-1

Os 6,yS p-1.

In order to complete the proof of (xi) we must show that if ms2 and p=2 we 

can choose the e ^ s  and the f ^ s  subject to the further condition that 

a= y= 0. To obtain this we replace ei by eT_"^ a eT“1ei for 

i ¿ 3  , e2 by e^ae2 , f. by f T ^  for i a 3  , and

f2 by fiaf2 •

By (x) tt is induced by an isomorphism. Thus for the new e^'s and 

ft's we still have <f^> « se^»11 for 0 s i s m and it is also
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straightforward to check that all the other required conditions are 

satisfied .

(xii). It is an immediate consequence of (xi).

(xiii). We show first that

[ n j(G) ,  ^( G )  ] = 1. ( i)
Suppose, by way of contradiction, that (1) is false and assume also 

that |H| is minimal with respect to (1) to be false. Let 

{eQ,... ,em }, ifo»*-*»^} be bases of iij(G) and ^(G.) respectively 

as in (xi). It follows from (i) that

ira-, it
e0 1 H (2)

ira. it ^
On the other hand e^eQ c H ((xi)) and so

e1 i H
Tra-j ir-1

(3)

Let K s H such that K
Tra i 7T /m173!77 r y773!77 is normalised(H )G. K

•na. it

by a and does not contain e,. Therefore, by (xii), K n H = 1
_ i

and it implies that K773!77 and its projective imageK(via the projectivity 

ira^ir"1: G + G) are cyclic groups. Moreover, as e^eQeZ(G) ((vii)) and (xii)),

<e-|e0> s K
TT â  i  TT irar̂ ir“^

and <e-|> ■ <;eien:> ' s K. By Theorem 2.1.1-ro
-1applied to the projectivity ïï a-jir : G -► G, K is normal in G

i r a  -, i t-1 1Hence ira-j tt induces a projectivity from G/K to G/K and



- 33 -

TT̂ iTr 1 ua-jir-1

H 1 ' /K

Tra-|U-1
is core-free in G/K

ira-|Tr
Therefore the groups

-1G/K, G/K , the projectivity ira^ and the subgroup H/K of

G/K satisfy the hypotheses of the lemma. Then the minimality of | H | 

implies that C ii-j (G/K) ,H/K ]■ 1. In particular we have

C O-j (G), H 3 s il1 (K) = <e]> (4)

Consider now Ur_-|(H). It is a non-trivial normal subgroup of G

contained in fi-|(H). Thus °r_-|(H) i <e-j> by (xii). Also, by (vii), 
?r-l

ur_l(H) = {" |h e H }. Therefore there exists he H of order 2r

such that

,r-l
= e.

Then, by (xi ),

TiS-iTT TTd̂ TTTT a-, ii ii a-» m
£21(<h> ) = <e1 > = <eQe1> .

In particular

TT a  -I TT
< h >  n H = < 1 >

Tra-.Tr-1 rra, tt”1ii civil ii ii ^
Since H /(H n H) is cyclic of order at most 2 and

-1

< h>
TT a-|TT

2r, it follows that

tt a  i TT Tra-.Tr"1 Tra-.Tr"1 
» (H n H ' ) < h > 1 (5)
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We next show that

ira-iir-1
Cn,(G), H ’ 3 = 1 (6)

To see this we observe that, from (4), <h> is normalised by ftj(G).

TTcl i  7T

Therefore <h> is also normalised by fij(G) (this follows, for

instance, from the fact that |<h,x> : <h> 1 * 2 for all x cii^G)

T t a ,  IT  ^ T T a , IT ^
and consequently |<h,x> : <h> I s 2).

-1

Thus

-1 -1Tra,Tr ira, i t

C <h> 1 , iij (G) ] s H n <h> = 1 . (7 )

ua-jir_-l , -1i r a ,  tt

Moreover, since H 1 is quasinormal in G, H nH is quasinormal 

in H. Hence, by Proposition 1.2.4 (v), iî-j(H) normalises nH.

Then

ira-iTT  ̂ ua-iTT-^
[ i!-| (H), H 1 n H <e}> n H 1 = 1 , ( 8)

by (3) and (4). Now (6) follows from (5), (7), (8), (ii), and (viii).

Let <b> be any subgroup of order 2r containing . Order 

considerations and (ii) show that

uaiir"^
a (G) = H 1 <b> .r

Considering the fact that, if <b> is normalised by fi^G), then it is
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centralised by ^(G), it follows by (6) that

<b> is not normalised by i2-j(G) . (9)

Order considerations and (3) give the further decomposition

ira-.iT ^
nr(G) = H 1 <h>

Therefore, by (4) and (6)

[ ^(G). nr(G)] = [il-j (G). <b > ]= <e-|> . ( 10)

normal

Set <h-|> = <h>1T . Since <h> is normalised by f2-|(G), <h-|> is

ised by n-|(G-|). Suppose that ^  ) < h l> 2 <^0'^1 *** * *fm-l> '

Then f = f mod ,r <h,>and so either f centralises both <h,> m m 1 m I
a, a,

and <h^ > or induces on <h-|> and <h-|> the same power 1+2

2r-l
(because [f , h ^  e<h-|> n il-jiG^ = <h-j > ). In both cases

a, 2r-l ai 2r_1 ai

r-1

Cfm .h1h1 '] £ <h1 (hi ) > = < f]f1 >

a, ?r-l
° <f0> = (^i^i ) •

a, r
by (vii). Therefore <h-|h-| > is a subgroup of order 2 containing 

f , normalised by (G1)- It implies that its preimage under n is 

a subgroup of order 2r containing e^, normalised by fl^G) , 

contradicting (9). Thus <^0'^1’* *’’^ m - ^  * Cq  (q ) > and we can
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find x e <e1,e2 ,...,e(n i >  such that x 4 <e,,e2 ,...,em_2>

<x>7r 4 (g > . Set <Xi>=<x>7T . Then

and

C h,, x, ] - fi (ID

21 ?1 
By putting <a > = <b> in (10), where <a > = ftr<a> , it

follows from the action of a on ft,(G) that

m = 2^ + 1  and ft, (G) n Z(ftr(G))=<e0>e,,... ,em_,>. (12) 

1 aJ 1The 2 elements x 0 < j s 2 -1 form a basis of <e,,... ,e -> . 

Therefore

C , ( <x><x,a * ) = 1 • <a>' ' (13)

Moreover,by (vii) and (ix), ft,<za > = <eQ> for all z e H. Hence, 

recalling also that x e Z(H) by (12), we have

2
ft, <x, a2 > = ft, <x,za2 > = <e > x <x><x,a >

Thus, in particular,

ft, <x,, a2> = «-| <x,, h,a2>

and so, by (11),

al 2 2 2"f 1= [h i • x-j ] b [h| |X| ] c
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Then e-| e ^  <x,a^> n H = <x> X,a , contradicting (13). With

this contradiction the proof of (1) is completed.

It remains to show that

C i V V *  W ] = 1 •

As a consequence of (1) every subgroup of ilr(G,) is normalised by 

(G-j). In other words any element y e ^  (G1) induces a power 

automorphism on O^Gj). In particular, for any element u> of «r(G1) 

of order 2r

2r-l
Cy,(i)] e <w> n f2-| (G-| ) = <io > ,

and so either y centralises <o>> or induces on <to> the power 

1 + 2  . Then, considering the fact that (G-j ) contains at least

two cyclic subgroups of order 2r intersecting trivially (e.g. fir<a.> 

and any cyclic subgroup of H17 of order 2r) and using (vi i ), it is 

not hard to see that the power automorphism induced by y on nr(Gi) 

is universal and it is either the identity or the power 1 + 2r"̂  .

It follows that

I A, (G-j ) : n](G1) n Z C ^ J - I  * 2 .

Moreover, since n-j (G-j ) n Z(ftr(Gj)) <  G-|, by (xii)

CGi ) n Z(fîr(G-j )) * <fg »f] »• • • ,fm-l> »
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where {1q tf •j>• • • t

of n1 (G-|) and (G)

and ie^.e-j,... ,em > are the usual bases 

respectively, as in (xi).

Assume now, by way of contradiction, that f induces the power

l+2r_1 on fir(G-|). Set <a2 >. = i y a , » ' . Then [fm ,a2 ]= fQ

1 1  a'' 1gives m=2 . The 2 elements e„ 0 s j s 2- 1 form a basism
of il-|(H). Therefore

<e ,a2>

C<a>(<em> ) " 1 • (14)

Moreover, by (vii) and (ix), <a^z> = <eQ> for all z c H. In
2

particular <a z> n H = 1. Therefore 

2 2<e ,a > <em ,a z> 9 ,
<e_> m = <em> = <6-,, a£> n H = <e_, a^z> n Hm m  m m

Then

<fm ’ al> n = <fm* al zl> n h1T , (15)

for all z, e H1* . As we have seen in proving (1), there exists
tt ,r-l

hj « H such that h^ = f^ . Thus

a2
fl = Chl- V  " Chl* fm ] 1 " Chla? * V Ca5 ‘ V £<fm*a?>nH7T*

2
by (15). Therefore e] e <em> a2> n H = <em><e,n,a > . contradicting

(14). This completes the proof of (xiii).

□
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Before we proceed it will also be convenient to state two well- 

known results about certain modular p-groups. A proof of the first 

result (part (a) in the following lemma) can be found in [25 1 

(Lemma 3). The second (part (b)) is due to Menegazzo ([13 1) and, 

as it is not published, for completeness reasons we shall give Menegazzo's 

proof.

Lemma 3.2.2 . Let G be a finite modular p-group, of exponent 

pr , where p is a prime.

(a) If exp Z(G) = pr , then G is abelian.

(b) If G is not Hamiltonian and G/iij_1 (G) is not cyclic, then

G contains a characteristic abelian subgroup A such that 

G/A is cyclic and every automorphism of G induces the 

identity on G/A.

Proof, (a) is proved in [25], Lemma 3.

(b) Assume that G is non-abelian. By Theorem 1.2.10 G= N<t> 

where N is abelian and t induces on N the power 1+p* , p* > 2.

By hypothesis N has exponent pr . Let A= Cg(N). A is abelian,

G/A is cyclic and Cq (A) = A. We now distinguish two cases. (i)

(i) N/fir_i (N) is not cyclic. Let a= xt^ be an element of 

A, where x e N, and let a be an automorphism of G. We show that 

a“ « A. Since t̂  e Z(G) s A, a“ c A if and only if xa e A .

As ur-i(N ) (3 N/f2r_-j (N)) is non-cyclic there exists an element u in N
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of order pr such that <u> n <xa>= 1. <u> and <x“> are both
x“

normal subgroups of G, therefore u = u and since x“ induces a 

power automorphism on N, it follows that x“ induces the identity 

on N. Thus xa e A and so A is characteristic. Moreover ta 

induces on Na the power 1+p* and it induces a power on N as well.

These powers coincide on N n Na , which has exponent pr (otherwise 

N/nr_l(N ) would be a quotient of the cyclic group N/N n Na ), and 

therefore ta induces on N the power 1+p* . Thus t"^ t“ e A, as 

required.

(ii) N/ilr_i (N) is. cyclic. This forces t to have order pr .

Moreover, since N has exponent pr and <t> n A = C .(N), it
nr-x nr-X

follows that <t> n A = <r > and therefore A = N<tp > . Let 
. y . y X \

xt’P , xeN,p&r-X, be an element of A of order pr. Then, since (xtnP )P=xP,

we have ( x t ^ V  = x t ^  xPX = ( xt i PM)1+PX .
Thus, as A is generated by elements of order pr, it follows that

t induces on A the power automorphism 1+p* . Recalling that the

group of power automorphismsof an abelian group is in the centre of the

whole automorphism group, in order to complete case (ii) it is

sufficient to prove that A is characteristic in G. To show this we

shall prove that A concides with the subgroup B of G generated by

the cyclic normal subgroups of G of order pr. Clearly A < B.

Conversely, let <b> be a cyclic normal subgroup of G of order pr. 
v

We can write b= tp y, where y e N and v 2; 0. Suppose v=0 .

Then G = N<b> and so, by Remark 1.2.11 Ur_i (G) =  -j (N)  i<b> .
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Thus, since »r_-,(N) is cyclic, <b> n O H (N). 1 . Therefore there 

exists h e N of order pr such that <h> n <b> = 1 . Recalling 

that <b> induces a group of power automorphisms on N and is normal 

in G, it follows that b centralises N and so G is abelian, a 

contradiction. Hence v a 1 and it implies that |y| = pr (by

Remark 1.2.11 , in a modular p-group G, ^(iT>(G)) = 1 for all i £ 0).

As <b> is normal in G we have

nv A
Cb,t] = Ctp y, t3 = [y, t] = yp c <b> ,

and, moreover,

n A _A „v A _v+A
<yp > = <bp > = <(tp y)p > = <tp yp >

v+A
for some integer p . It follows that tp £ <t> n <y> = 1 ,  as we

have seen before in proving that v 2 1. Therefore pr |pv+* ,
r-A

i.e. v i r-A and so, finally, b e KJ<tp > = A, as required.

□

We are now in the position to prove the key result of chapter 3.

Theorem 3.2.3 . Let G = H<a> be a finite 2-group, where H is

a normal subgroup of G of exponent 2r , r s 1, and let it be a 

projectivity from G to some group Ĝ  such that H* is cpre-free 

in G-j . If |H/iîj__1 (H) | * 23 , then H is abelian.

Proof. Since H t 1, by Proposition 1.2.8 (c) G] is a finite

2-group..

Also, by the same remark «| -j(G) is non-cyclic as O^^GJsG/n _-|(G).
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Set <a-|> = <a>w and let {e0,...,em } , (fQ .... be bases

of ft-| (G) and f i ^ )  respectively (ftj (G) and (G]) are elementary 

abelian by Lemma 3.2.1 (iv)), chosen as in Lemma 3.2.1 (xi). By 

Lemma 3.2.1 (vii) ur.-,(H)s ^(H). Hence m 2 3 and from

Lemma 3.2.1 (xii) it follows that

_i (H ) ^ <e3> x <e2> x <e^> (16)

Let

TTayir"̂  Tra?i:~̂
Q = H n H 1 , Q| = H n H (17)

Tra -j tt-1
Since H n <a> = 1 (Lemma 3.2.1, (i)), H n<3> = 1* namely

Trai-ir-1
t u- - - - - -  ,j (Lemma 3.2.1 (x) and (xi)),

ei 4 H

Therefore, as e ^  e H

7T311T ^
(18)

in particular e1 4 Q. Thus Q n <e3,e2 ,e-|> < <e3,e2,e-|> .

On the other hand a simple calculation using Lemma 3.2.1 (x),(xi), shows 

that <e2 e.|, e3 e2 e^> s Q. Therefore we have

Q n <e3 , e2, e-f = <e2 e1, e3 e2 e^> (19)

and

Q n Qa n <e3> e2, e^> - <e3 ej+ >̂ ( 2 0 )

2 -1 -1
Similarly e 4 H™8! ^ and e2eo £ (Lemma 3.2.1 (i),(x),(xi)).
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.2 -1 
ttS - .  ttIIWl II

Therefore e2 4 H ; in particular e2 4 Q Again Lemma 3.2.1

(x), (xi) also gives <e3 e^, e ^  s Q,. Hence

_ p
Q-j n <e3, e2 , e-j > = <e3 e2> e-j > ( 2 1 )

and

Q n Q-| n <e3, e2 , e-j > = <e3 ei> e1 > . ( 22)

The lattices [H/Q] , CH/Q-j D , [Q/Q n Qa ] and CQ/Q n Q1 ] are 

chains, since they are isomorphic to sublattices of the chain CG/H1 and 

it implies that

IH : Qnr.-,(H) 1 * 2 ,  IH : Q1nr_'I(H) 1 * 2 ,

(23)

IH : (Q n Qa )i\._i(H) I * 4 , IH : (Q nQ1 )Slf._1 (H) I * 4.

Moreover we have Qi2r_-| (H)/^.-, (H) s Ur_-|(Q) < U r_-, (H)s H/Or^(H), 

by Lemma 3.2.1 (vii), (16) and (19). Therefore, by (23),

|t5r_-,(Q) 1= I H/nr-l <H> 1/2 =l Ur -1<H>I/2 * (24)
and so (24) together with (16) and (19) yields

Ur_l(Q) 0 <e3* e2 * el> “ <e2ei* e3 e 2 el> * (25)

In the same way, using (21), we get
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<V_1 ) n <e3> e2* ei > = <e3 e| . e1 > . (26)

Moreover, by Lemma 3.2.1 (vii) and by (16), (19), (20) we have

(QnQa)nr.1(H)/nr.1(H)s ^ . 1(QnQa)< «r_i(Q)<».1(H)s H/^.^H).

Therefore, by (23)

U r_-|(Q n Q ) | =| H / ^ ^ H )  |/4 =| Ur_.,(H)|/4 , (27)

and so (27) together with (16) and (20) yields

y r_l(Q n Q3) n <e3, e2 , e1> = <e3 e] + e> (28)

Similarly, using (22),

ur_](Q n Q-|) n <e3, e2> e-|> = <e3 e| e^> (29)

Applying Lemma 3.2.1 (vii), by (25), (26), (28) and (29) it follows that 

there exist hj « Qj, h? £ Q, h3 e Q n Q-,, h £ Q n Qa such that

jf-1
el’ h2

,r-l 2r-l 6 2r-l
= e2el ’ h3 = e3e2 el* h =

,1+P

2r_1 /u2r_1 .a a.2r_1Using Lemma 3.2.1 (vii) we have e ^  h1 =(h1 ) = (h-|) =(h1 [h1 ,a])

.2r-1,u _,2r_1
= h1 [ h ^ a r  - e ^ h p a ]

Chl,a-|] = a)-| e f2r_-|(H).

2r-l ,r-l
Hence [h-| ,a] . = 1, namely
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a 2r_1 a a ?r_1 9r_1
Similarly e£= ( e ^  )a = (h2 ) = (ha) = (h2 Ch2, a])*

,r-l ,r-l ,r-l ,r-l
= h2 [h2 ,a]t = e2e-| [h2 ,a] c . Therefore [h2,a]2 = e 1

and Lemma 3.2.1 (vii) together with (30) imply that [h2,a] = h ^  

where e ii1_i (H). Finally, in the same way,

e3C2+B e l+B = (e3e2 el)3 = (h3 = (h3 )2 =(h3 th3»a] )2

2r-l 2r-l 2r-l ?r-l
= h3 [h3,a] = e3e£ e^ [h3,a] . Thus [h3,ar = e2e^ =

1+R 2r~̂= (h2h-| p) and again Lemma 3.2.1 (vii), together with (30), imply

1 +3
that [h3,a] = h2 h3 w3 , where w3 e fir_-|(H). Summarizing, the 

following relations hold

ha = h^a»i, h2= h2ĥ to2, ha= h3h2hj+eo)3, where ciij_-j (H) for 0sis3. (31)

Since <h-|> n Q = <h2> n Q-j = <h2 h^> n Q-| = <ha> n Q = 1 and since

Q and are quasinormal in H, recalling that [H/Q], [H/Q-j ] ,

[Q/Q n Q-j] and CQ^/Q n Q^] are chains and using Lemma 3.2.1 (vii), 

yields

n ^ H )  = «i(Q1) il^hgh^ = fi.(Q) ni<ha> =

- nj(Q n Qj)

■rra 3 tt ^
Write <k.> =  <h^> . Then, by Lenina 3.2.1 (x)

(32)
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2r ' 1kj = e, eQ i Q . (33)

Therefore, by order considerations, we obtain

Tra-iir”^
H 1 = Q<k]> . (34)

We divide the rest of the proof in some steps.

Step 1. If H is a modular group, then H is abelian, 

ira. tt
By (34; it follows that H 1 = Q<qk^> for all q e Q .

Tra.w' 1
Thus I <q k-j > / <q k> > n Q| = |<IC|>/<k^> n Q | = |<k^>|= 2 = exp(H ),

and it implies that
713 •* 7T 7131 7T

in H (H is now a modular group, since it is the projective

image of H via the projectivity iraitt ^).  Hence, for all q̂  e Q it

follows that <q-|, q k-j> n Q = <q-|> <  <q-j, qk-|> .

In particular every subgroup of Q is normal in Q and therefore Q is 

abelian, since it does not contains subgroups isomorphic to the quaternion 

group (Lemma 3.2.1 (v)). Thus <h> s Z(QQa) = Z(Q<ha>) = Z(H) (by (32)) 

and this forces H to be abelian (Lemma 3.2.2 ).

We now use induction on |H| . By Lemma 3.2.1 (v) we may and shall 

assume r z 2 .

Step 2. dr_i(H ) is abelian, it induces a projectivity from 

nr_l (H)<a> to flr_i (H1T)<a1> and

<qk| > nQ = <1> . Moreover <q^> is quasinormal
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l«r_l(H)/«r-2^H >|st 1 V ^ r ^ ” » 1* 1 n / V l ^ 1 2 8 ’

by Lemma 3.2.1 (vii) and (v). Thus,by induction, ilr_^(H) is abelian.

Step 3. H' s a,(H) n Z(H). Since H/il^H) = Hn] (G)/^ (G) 

we have

H/nr_i (H)s(H/n1 (H))/nr _1 (H/n, (h ))=(h« 1 (G)/^ (G) (h q, (G)/^ (g ) ). 

Hence

|CHn1 (G)/n1 (G))/nr_1 (Hn1 (G)/n1 (G))| ^ 23 .

Therefore, by Lemma 3.2.1 (iii), we can apply induction and it follows 

that HO| (G)s H/0| (H) is abelian. Lemma 3.2.1 (xiii) completes

the proof of Step 3 .

Step 4. If |H/nr.1 (H)| > 23 , H is abelian. Set

ir S - iir  i r a .  it
K 1 = (H 1 )G .

ira.ir-  ̂ na.ir ^
By (18) e 1 4 K 1 n H. Since K n H is normalised by a ,

na.Tr"^
from Lemma 3.2.1 (xii) it follows that K n H ■ 1. Therefore

ira.ir  ̂ _■> _i
K 1 and its projective image K (via the projectivity ira-j it :G-*-G)

7râ TT~
are cyclic groups. On the other hand e]e Q e K •
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n Z(G) (Lemma 3.2.1 (vili), (xii)). Hence e1 e K,

. . , , iraiir
in particular K / 1. Also K, as the preimage of (H )g under

the projectivity ira-jir  ̂ : G -*■ G is normal in G (Theorem 2.1.1 ).

and
-1

/K is core-free in G/K . Applying Lemma 3.2.1

(vii), since K is cyclic, gives

I (H/K)/f2r _1 (H/K) I = I U ^ ^H /K Jl s 1 «r_-, (H)K/K| * 23 .

Therefore, by induction, H/K is abelian and step 3 implies that

H' s n-|(K) = <e^> . Then, by (30), <h-|> o  H and hence <k^> is
. , . uâi 7T“i ira i tt™ i

quasinormal in H ' . Since Q <  H 1 and < k ^  n Q = 1 ((33))

for every q eQ we have <q,k-j> n Q = <q> <<q,k > , namely <k-]>

induces a power automorphism on Q which is now abelian since

Q n H 1 = Q n <e-|> = 1 by (19). Moreover k, centralises the group

of exponent 4 Q/i2r_2(Q) (Lemma 3.2.1 (v)). Therefore, from the locally

finite modular p-groupsstructure theorem (Theorem 1.2.10) it follows

step 3 forces H to be abelian, proving step 4 .

Therefore we may and shall assume that |H/fl j(H)| = 8. Then, from 

Lemma 3.2.1 (vii) and from (30) it follows that

Tra.ir-1
that H and its projective image H are modular groups. Finally

H » ^3 » ^2* ^1* (35)
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Step 5. nr_-|(H) normalises <hj> and <h2 > . From step 3

it follows that < h p  h2> * Z(H) and, by (32), 

ftr_-](H) s <Q n Q-| • h2> • Hence we have

<hi> V i < H )>' * ni<Q n Qi* hr  5 ni(Qi) (36)

and

<h2 » V l (H)>' s ni<Q n Ql* h2* * ni(Q)' (37)

It is clear from (21) and from the action of a on il-j (H) that <e,> 

is the unique non trivial subgroup of n-| (Q-|) normalised by a . 

Moreover, by (31), a normalises <h-j ,nr_i (H)> and hence a 

normalises <h-|, _-j(H)>1 . Therefore, by (36),

<h1, nr_1 (H)>' £ < e ^  s <h^> , (38)

and so nr.-|(H) normalises <h.j> .

By (31), (38) and step 2 we have

[h2 ,i2r_1 (H)]a-[h2h1a)2,nr.1 (H)]£[h2 ,nr.1 (H)][h,^r_1 (H)]s[h2 ,nr_1 (H)D<e1>.

Thus a normalises <h2 ,nr_j(H)>‘ <e.j> and, assuming that 

<h2 ,nr-l^H J> ' not conta1ned <e2> e]>* f°llows that
n2 ni

<h2 ,nr-l(^)>l contains an element of the form e3e2 e^ . Also (30) 

a^ normalises (H)>* •implies that
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n2 nl 2
Therefore [e3e2 e^ , a ] = e] £ <h2>«r _1 (H)>* s Oj(Q), by (37), 

contradicting (19). Hence

<h2* ^r-l^ >> * <e2 ’ el> n Q = <e2 ei> = n-|<h2> • 

and so i2r_i(H) normalises <h2>. This completes the proof of step 5.

Step 6. i2r._i (H) s Z(H). By step 5 <k^> is quasinormal in

7T3i ■» 7T 7T3 -i 7T
nr_-](H )<ki> • Since Q <3 H and <k1 > n Q = 1 ((33)), it

follows that, for all q € o _  ̂(Q), <q,k^>n Q=<q> « a ^ . k p  . Thus

k̂  induces a power automorphism on ^ ^ ( Q ) .  (39)

Let a be an integer such that |aa | = 2r. By (33) and (30) 

r-1 r_  ̂ r-1
e^e0= k^ _ aa2 ^  . Then Lemma 3.2.1 (vii) implies that

kj = aa h^w where u e nr_-j(G). Thus [k^,a] = [a°h^u , a] =

* [h1 m. a] = [h], a]w[u, a] ; also [h], a] e nr_1(H) by (31) and 

Cu.a] £ nr.1(G) n G' * «^(H). Therefore Ck-,, a] £ Q^^H) which

is abeMan by step 2. Together with (39) this implies that k-j induces 

the same universal power on fir_-|(Q) and on ftr_i(Qa ), and hence it 

induces a power on (Q)nr_i (Q*) •

Since h £ Q, by (32) we obtain (Qa)a« p_1 (Q)<hZ>#-nr _1 (H).

Therefore
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k-j induces a power automorphism on n .(H) . (40)

2-1
Let < l<2> = <h2>

Tra 17T
By (30) and Lemma 3.2.1 (x) and (xi) ,

■i
r l  2r_1 a2r-1= e2 el e0 = h2 a (41)

Then Lemma 3.2.1 (vii) implies that 1^= a“h2 w* , w' e £2r  ̂(G) .

From step 5 it follows that <k^> is quasinormal in nr_-j (Q] )<k2> •

Since <k2> n = 1 ((21), (41)) and Q, is normal in
-1TTa-.Tr

H . f o r  every q] £ «r _1 (Q-,) we have < q r k2>n Q1=<q]> <r<q1,k2>.

In other words

induces a power automorphism on nr_1(Q-]). (42)

Using Lemma 3.2.1 ( ii) we can write oo = (aa)2ib , io'= (aa )2^c , 

where b and c are elements of ^r_-j(H) and i, j are suitable integers.

HoS/n^-jiH) is abelian, since (nr(H)<a“>)' = (fir(G))' s (iip_1 (G) n H) =

=nr_l(H). Therefore k-j = aa+2ct’ ĥ  mod nr_-j(H) and

= a0l+2a  ̂ h2 mod nr_-|(H). Moreover there exist odd integers 6 ,y 

such that k^ = aoth1 mod (H) and k£ s h2a'a mod .

It follows that k^ k^ = h2 h^w" , where w" is an element of the abelian 

group i (H) and so, since both k-| and k2 induce power 

automorphisms on fl ,(Q-j),

h2 h-j induces a power automorphism on r̂r_i (Q-j)• (43)
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Moreover, by (31), we have [h2 h], i2r_] (H)]=:h2 h] w2, n ^ ( H ) ]  =

= [h2 , ilr_-|(H)]a < <e2 e-j>a = <e2> = ft-| <h2 h^> . Therefore <h2 h^> 

is normalised by «r_-|(H) and consequently by fir_1 (Q1); since 

fil<h2 hl* = <e2> ^ Qi (21)> ^  follows from (43) that

[h2 h1 , nr_-j(Q-j)] = 1 . Thus, using (32), we also have 

Ch2 h-j, ^r_i (H)] = 1 and consequently [h2_, ^r_-|(H)]a =

= [h2 h^ <̂ , ilr_i(H)]=[h2 h-|, r2f_i(H )] = 1. Therefore

V l < H) 5 z ( V l (H)<h2* V *  * (44)

In order to complete the proof of step 6 , by (35) it is now sufficient 

to show that h3 commutes with fJp_i (H) .

By (32) <h3, £lr_i (H)> s <Qn Q], hi;, h^> and, since <h^, h2> s Z(H),

it follows that <h3 , i?r_i (H)>' s <Q n Q1 , h2 , h^>'s Q n .

Furthermore, by (31) and (44), [h3,nr_̂  (H) ]a=[h3h2h-|W3,ilr_-| (H) ] =

= [h3, fij_i (H) D. Therefore <h3> _i (H )>1 is normalised by a .

On the other hand Q n Q1 does not contain any non trivial subgroup 

normalised by a ((22) and Lemma 3.2.1 (xii)). Thus <h3,nr_1 (H)>'= 1

and this concludes the proof of step 6 .

Step 7 (final step). H is abelian.

H = nr_-|(H) <h3» h2 * hi> (35). Thus steps 3 and 6 give
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H 1 = <[h2, ]> ,

and H 1 is an elementary abelian normal subgroup of G of 

Hence, by Lemma 3.2.1 (xii),

H' < <e3, e2> e^ > .

By (31) and steps 3 and 6, [h2 , h1 ]a=[h2 h-, <̂ , h1 w1 >[ h2 , h 

Thus, as a result of Lemma 3.2.1 (xii) ,

Ch2 , h-j ] e <e-| > .

Furthermore, again by (31) and steps 3 and 6 , we obtain 

d 1+3[h3, h^ ] _Eh3 h2 h-j ^ , h-j ( 3-Ch3 , h3 3Ch2, h-j D and hence, 

a normalises the elementary abelian group of order s 4 <[h

Therefore, by Lemma 3.2.1 (xii), <[h3> hj], e-|> < <e2> e ^  

since <h3, h-j> s Q1 , it follows from (2 1) that

[h3, h.| 3 e <e2 , e ^ n Q i  = <ei> .

Thus, by (46) and (47), IH'I * 4 and so again Lemma 3.2.1 

implies that

H' s <e2, .

Since <h3, h2> s Q, from (19) and (30) it follows that

(45)

order s 8 .

1 ] •

(46)

by (46),

3, hi 3, ei> . 

and,

(47)

(xii)

(48)
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Ch3, h2D e <e2 , e-|> n Q = <e2e.|> < <h2> , hence

<h2> is normalised by h3 .

Moreover, by (31) and steps 3 and 6 , we have

a2
[h3, h2]a =[h3 hj, h2]=[h3, h ^ C h ^  h2]

2
Since, by (48), a centralises H', (50) implies that

Ch2 , hj] = 1.

Therefore, by (35), step 6 , (49) and (51), it follows that 

<h2> and <h2>a are normal in H.

By (31)

[h3> 3] s flp_i(h) <hi, h2> = flp_'](M) <h2 , h2>

and fir_i (H) <h-j, h2> is abelian by step 6 and (51).

Thus h3 induces on <h2> and <h2> the same power.

Hence h3 induces a power automorphism on _i (H)<h^, h2> .

Since H/ilr_2(H) is abelian, by (35) and Theorem 1.2.10 i

that H is a modular group. Finally step 1 forces H to be 

This completes the proof of Theorem 3.2.3 .

(49)

(50)

(51)

, follows 

abelian.

□
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3.3 The general case .

Before proving Theorem 3.1.1 we obtain some more informations on the 

structure of groups G and G1 , when G = H<a> is a finite 2-group

and G] = G77 for some projectivity it : G -► G] such that H77 is

core-free in G-j. Before we start investigating on 2-groups we state 

and prove an unpublished useful result on projectivities of finite 

p-groups, due to Menegazzo.

Theorem 3.3.1 (Menegazzo [13]). Let G and G] be finite p-groups

r : G - G1 a projectivity, H a normal abelian subgroup of G such

that G = H<a> and H77 is core-free in G-|. Then

(a) Q
H77’ is a modular p-group,

and (b) G77 is metabelian.

Proof. Write pr = exp H (r>l), <a^> = <a6> = ilr<a> , and

let (e0> e1 ,...,em) , {fQ, f-j.... fm> be bases of (G) and

(Gi) respectively chosen as in Lemma 3.2.1 (xi). In order to prove 

(a) we show first that

O
Pr<a> (= <a >) induces a group of power automorphisms on H. (52)

This is obvious if H is cyclic. Then, suppose H non cyclic and write 

s = min (1|1 t K and H/il^H) 1s cyclic }. $ tl, as H is not

cyclic. By a familiar argument, using Lemma 3.2.1 (xii), there exists
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,r-l
h £ H such that h = e-j . Then, by the choice of the f.j's and

ei s •

^ T 77 Y 6
n-| (<h> 1 ) = <e{ ej>

-1

(53)

where 1 s y s p-1, I $ { s p-1 . Therefore, using Lemma 3.2.1 (vii) 

and (ii), it follows that

<h>

„ -1
h 77 R

=<aph'>

i r a - i i r  7 r a - .i T
for some h' £ H. Set Q = H n H . H /Q is cyclic of order

at most pr , and <a®h’> n Q = 1, by (53). Hence

H 1 = Q<aph‘> . (54)

Tra, tt ^
Since H is a modular p-group (as the image of the abelian group

-1 SH under the projectivity ira-iir ) and <a h'> n Q = 1 (by (53)), we have

<q, a® h'> n Q =<q> ^  <q, a® h’> .

for al1 q e Q. O O
In other words aph' , and therefore also a , induce a power automorphism

8 8 aon Q. It follows that a = (a ) induces a power automorphism on
a 8 aQ and, furthermore, ap induces the same power on Q and Q . Thus
8 aap induces a power automorphism on QQ . Since H n <a> = 1 (Lemma

ira.’i"!
3.2.1 (i)), (53) shows that e-j 4 H 1 , in particular

e! 4 Q • (55)



Then, as |H I = I H | , (54) and order considerations show that
Tra-jir

H = Q x <h> (56)

In particular H/Q is cyclic, and it implies that QG = QQa. Moreover, 

by (55) and Lemma 3.2.1 (xii), Q is core-free in G. Therefore, as 

2s = exp Q, we have |QG | > 2s |Q| = |Q n$<h>|=|ns(H)|. Hence

QQa = ns(H) ,

B 8and we have shown that a induces a power automorphism on fis(H). If s=r, a

induces a power automorphism on H, as required. Suppose s < r.

it induces a projectivity from G/0|(G) to G1 (G^) and Hw£ij (G,)/«, (G,)

is core-free in G-j/Sli(Ĝ ) (Lemma 3.2.1 (iii)). Therefore, using induction

on |H| , we may assume that (<a>ii-| (G)/Oj (G)) induces a group of
Q

power automorphisms on Hi^ (G)/fi-j (G), namely that a induces a power 

automorphism on H/ft^(H).

O
Suppose then that a acts as the power X on H/i2^(H), and as 

the power y on fi (H).
B , r-s B _r-s

~herefore we have h ■ (i x where xcft,(H), (hp ) = hp «
r-s

= hp * . Thus X = y mod ps . <x> is normalised by aB (because

f2̂ (H) s fls(H)) and, since exp Q = ps , by (56) it follows that aft

acts as the power X on H/<x> . Suppose first that x « <h>. Then 
r-1 I

x » h ^  for some integer v. Set X' * X + vpr ; as before for

X, we have A* = y mod ps . For all y t H we can write y * h^z

for some integer i and some z t Q.
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.• -3 1X' M
Then y a = ( h'z )a = h z ( h’z )X = yA , namely aB acts as 

the power X' on H. On the other hand, if x 4 <h>, <x> n <x>a = 1 

by Lemma 3,2.1 (xii). Also, aB acts as the power X both on H/<x>

and H/<x> . In particular h = hAx yields ha <x>a = (h<x>a )A =

= hAx<x>a , and so x e <x>a , a contradiction. This completes the 

proof of (52). Using the decomposition ftr(G) = Hf2r<a>, (52) guarantees 

the modularity of ilr(G) if p/2, by virtue of Theorem 1.2.10. On the 

other hand, if p=2, Lemma 3.2.1 (v) shows that £2r(G)/nr_2(G) is 

abelian, and therefore [H, aB] s i2r_2 (Gj n H = ¡lr_2 (H) (since ilr_2 (G)
j— o

has exponent at most 2 by Lemma 3.2.1 (iv)). This shows, that
8a induces on H a power b 1 mod 4, and therefore, again by Theorem 

1.2.10, ftr (G) is modular. Since H1̂  is clearly contained in iir(G), 

(a) follows. As far as (b) is concerned, observe that fir(G-|) is 

a modular non Hamiltonian (by Lemma 3.2.1 (v)) p-group, and
o8

r2|_(G1 J/fij_-j (G1) is non-cyclic (as a 4 <h,iir_-|(G)> by Lemma 3.2.1

(vii)). Then, as a result of Lemma 3.2.2 (b), nr(G-|) contains an 

abelian subgroup A normal in G such that il (G-j)/A s Z(G^/A).

Since G^/nr (G-|) is cyclic, (b) follows;

□

The following result is due to Yakovlev ([25], Lenma 6 ).

Lemma 3.3.2 . In the hypothesis of Lemma 3.2.1, if B is 

quasinorraal in G and B * H, then B oG.

Remark 3.3.3 . In what follows we need to know that a projective 

image of a metacyclic 2-group G is still metacyclic. This immediately
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follows, if IGI 2 25 , from this result of Blackburn ([ 8 ] ,

Satz 1.1.3 , Kapitel 11) .

Proposition (Blackburn). Let |G| = 2n with n > 5. Suppose that, 

for some integer r such that 5 s r s n, every subgroup of G of 

order 2r  ̂ and 2r can be generated by two elements. Then G is 

metacyclic.

On the other hand, if |G| s 2^ , a direct exam of the few 

possible cases completes the proof.

□

The situation described in the following lemma is complementary 

to the one described in Theorem 3.2.3 .

Lemma 3.3.4 . Let G = H<a> be a finite 2-group, where H is 

non trivial normal subgroup of G and let n be a projectivity from 

G to some group G-j such that H77 is core-free in Gj. Suppose that 

In-!(H)I s 4. Then

(a) H and H77 are metacyclic modular non Hamiltonian groups, 

and

(b) Gj has derived length s 4 .

Proof. Since H^l, from Proposition 1.2.8 (c) it follows that 

G.| is a 2-group. We immediately observe that, by Lemma 3.2.1 (v),

H and H77 are not Hamiltonian. Suppose now first that fi-j (H) is cyclic.



Then H, and consequently H77 are cyclic groups and also G, is 

metabelian by Ito's Theorem (see [ 8 ], Kapitel VI, Satz 4.4 ). 

Therefore we may assume that 0|(H) is non-cyclic. Set <a-j> » o :»77 

and let {e-j, e2 ) , {f-|, f̂2) be bases of ft-|(H) and îi (H71) respec­

tively as in Lemma 3.2.1 (xi). Set also Q = n H. The same

argument used in proving (19) in Theorem 3.2.3 shows that 

Q n <e-j, e2> = <e-| e2> . Thus Q is cyclic. Q is also normal in

T r a -iT T - !  T r a - i T r " !  i r a - i i r  ^ T r a - . i T  ^
H and H 1 /Q is cyclic, since H /Q s HH 1 /H< G/H.

T T a - .T r
Therefore H is metacyclic and consequently, by Remark 3.3.3 ,

its projective image H is also metacyclic. In order to complete the 

proof of (a) it remains to show that H and H77 are modular groups.

To show this we observe first that, since n2(H) is abelian and meta-

cyclic, | H) I 2 16« and therefore a centralises fi2(Q) s fl2(H).

a -1i r a .  i t  4
Thus (Q) <a > . As a consequence of Lemma 3.2.1 (ii) and

a  I T S  *i  7T a a

(ix), <Gj. Hence H <a > = H<a > and it follows

that ft2(Q) By Lemma 3.2.1 (xii), i2-|(H‘) s <e-|> and therefore

a  T T 3 1 T T  a

H' n Q = 1. Thus fi2(Q) s Z(H<a^>) = Z(H <a >). In particular

na-jir'̂
il2(Q; s Z(H ) and, by virtue of Theorem 1.2.10, this is sufficient

TTa.ir"̂
to guarantee the modularity of H and hence of H and H77 .

H77
It remains to prove (b). Set X77 = ((H1)77) and let 

JH'| = 2s , say. We show first that X is an abelian normal subgroup

irh.ir ^
of G. By Lemma 3.3.2, (H1) for all h1 £ H . Hence X is
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We next show that

G,
(G1 )/(X77) is cyclic. (60)

To see that, we observe that (H ' ) 71 is a core-free cyclic quasinormal 

subgroup of <(H')7r, a,> . Thus, by Lemma 1.2.6 (c)

|(H')1T(H1)irai | = | | = | f2s<(H')1T, a]>| .

ira-, G-,
It follows that (H‘)Tr(H') , and hence also (X17) , contain >.

Moreover, since ils(H) is a metacyclic group, as H is, ^(HJ/H 1 is
G«i “1

cyclic. Also ((X11) ^  contains o <a> and H' and, by Lemma
 ̂ G _ i

3.2.1 (ii), we have n (G) = n (H)n <a> . Therefore a,(G)/((X^) 1)w
s G s s s

is cyclic and so (Ĝ  )/{X*) is also cyclic, as required.

_ G.
Since (X ) is not Hamiltonian (Lemma 3.2.1 (v)), by (58),

Q
(59) and Lemma 3.2.2 (b) , (X^) 1 possesses acharacteristic abelian

7Tsubgroup A such that (X ) 1 /A is cyclic and every automorphism of
G G

(X") 1 induces the identity on (X11) V a . Therefore, by (60),

ns (Gi) is metabelian. Thus, by (57), G^ has derived length * 4 ,

and (b) is proved.

□

Combining Theorem 3.2.3 and Lemma 3.3.4 yields:
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Theorem 3.3*5 . Let G = H<a> be a finite 2-group, where H 

is a normal subgroup of G and let ir be a project!vity from G to 

some group G 1 such that H* is core-free in G ^  Then

(a) There exists a natural number r such that nr(H) is

abelian and H/i!r(H) is a metacyclic modular non-Hamiltonian 

group. In particular H has derived length at most 3;

(b) H^ has derived length at most 3 ;

(ç) G-| has derived length at most 6 .

Proof. If H = 1 (a), (b) and (c) trivially hold. Therefore 

assume H ^ 1. Then Ĝ  is a finite 2-group by Proposition 1.2.8 (c).

Let r = min {n £ N | |ft| (H/i2n(H) | s 4} . tt induces a projectivity from

G/ilr(G) to G1/np(G1 ) and H7ri2|_(Ĝ  )/f2r(Gi ) is core-free in G-|/i2r(G1) 

(Lemma 3.2.1 (11i )). Moreover Hnr(G)/nr(G ) = H/nr(H) , as Gr(G) 

has exponent 2r (Lemma 3.2.1 (v)). Thus, by Lemma 3.3.4, H/ftr(H) 

is a metacyclic modular non Hamiltonian group. Hence (a) is proved if 

r = 0 . Suppose then r >0. tt induces a projectivity from nr(H)<a> 

to ilr(H7r)<a>Tr and

|nr(H)/«r_!(H) I - ln! (H/«r_i CH) I * 8

by definition of r. Therefore Theorem 3.2.3 applied to the group 

nr(H)<a>. shows that Gr(H) is abelian. This proves (a) .
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By Remark 3.3.3 H^/n^H*) is metacyclic. Therefore (b) holds

if r=0 . Assume r > 0 .  Then ^ ( H 77)/^., (H77) is non-cyclic by 

definition of r, and ft^H77) is a modular 2-group, since ^(H) 

is abelian.

Thus, by Lemma 3.2.2 ilr(H7T) contains a characteristic abelian 

subgroup A such that ^(H^J/A is cyclic and every automorphism of 

^ ( H 77) induces the identity on nr(HTr)/A. Hence, since 

(H7T)'f2r(H7T)/i2r(H7r) is cyclic, it follows that (H77) ̂  s A. Therefore 

(H17)^)- i an(j (t>) follows.

In order to show (c) we observe that it induces a projectivity 

from G/nr(G) to G ^ n ^ )  and H«r(G)/nr(G) s H/Or(H). Thus

|n1 (Hf2r(G)/f2r(G))| = |fl1 (H/i2r(H))| s 4

by the choice of r. Applying Lemma 3.3.4 to the groups G/fi (G) and 

Gi/nr(G1) it follows that G^/nr(G-|) has derived length at most 4. 

Moreover, since nr(H) is abelian, Theorem 3.3.1 (a) applied to the 

groups flr(H)<a> and nr(H7T)<a>77 shows that Sir(i2r(H7T)<a>77) =
7T

= (fi (H17)) <nr ^ ’ a> is a modular group, i.e.

nr(G-|) is a modular group

by Lemma 3.2.1 (ii). In particular nr(G^) is metabelian.

Therefore G-j has derived length s 6. This completes the proof of 

Theorem 3.3.5 .

□
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In order to prove Theorem 3.1.1 we need the following result, 

due to R. Schmidt ([18 ], Lemmas 2 and 3).

Lemma (Schmidt) 3.3.6 . Let M be a Dedekind subgroup of the 

finite group G and suppose that the lattice [G/M] is a chain.

Then there are primes p,q such that either G/NL is a p-group or 

M is maximal in G and G/Mq is non abelian of order pq.

The following remark, due to Menegazzo ([12 ], Corollary), will 

also be useful to us.

Remark 3.3.7 . Let M be a Dedekind subgroup of the group G.

Then = n M „ , whereG xe$ <M,x>

S ={xeG|<x>/<x> n M is infinite cyclic or has prime power order).

We conclude the present section with the proof of Theorem 3.1.1 .

Proof. Denote by S the set (x e Gl<x>/<x> n H has prime

power order) . Since <x>1T/<x>ir n H1* has prime power order if and 

only if <x>/<x> n H has prime power order and it is infinite cyclic 

if and only if <x,H>/H is infinite cyclic (see Proposition 1.2.8(a)), 

by Corollary 1.1.3 and Remark 3.3.7 it follows that

Also, as a result of Theorem x><  <H,x> and therefore,

in order to prove the theorem, we may assume that G/H is a cyclic p-group.
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Hence I G77 : H77 I < » (Theorem 1.1.2 ) and therefore G and G77 

are now finite groups. Moreover, since [G^/H17] is a chain, excluding 

the trivial cases H=1 or H of prime order, by Lemma 3.3.6 it follows 

that G-| is a non abelian q-group for some prime q. Proposition 1.2.8 (c) 

implies that G is also a q-group and therefore q=p . It p is odd 

then H is abelian (Theorem 1.1.1) and so H77 is metabelian (Proposi­

tion 1.2.8 (d)). If p=2 then Theorem 3.3.5 (a) and (b) applies.

We have finally proved Theorem 3.1.1 .

□

3.4 A bound for the derived length of a projective image of a 

soluble group with given derived length.

In [ 3 ] (Problem 40) the following question was posed: If G

is a soluble group and v is a projectivity from G to some group G-j,

is G^ also soluble? The answer, for G finite, was obtained by

Suzuki ([23], Theorem 12) and Zappa ([28]). The general answer was

given by Yakovlev ([25 ]), who also gave a bound for the derived length
3 2of G^ in terms of the one of G (namely 4n + 14n - 8n if n is the 

derived length of G). In the following proposition, using the results 

previously obtained, we are able to improve Yakovlev's bound.

Proposition 3.4.1. Let G and G] be groups, it : G -*• G] a 

projectivity and suppose that G is soluble of derived length s n.

Then G-j is soluble of derived length s 6 n - 4 .
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Proof. Clearly we may assume that G is finitely generated. 

We argue by induction on n. If n=l then G] is metabelian by

I \TT hasProposition 1.2.8 (d). Assume n > 1. Then, by induction, (G1)

derived length at most 6(n-l)-4 . G/G1 is a finitely generated

abelian group, therefore G/G' «cc^G'/G' x.... x<ct>G7G' , for

suitable ci £ G, 1 s i s t, such that <ci>/<ci> n G’ is infinite

cyclic or has prime power order. Set Hi= <G', c,.... c.^ ,ci+1.....ct>

for 1 i i s t, Since n H? s G! , in order to prove the statement
1 si st

1̂  for 1 s i s t. Choose 

i in this range. Clearly G] =<Hi, c ^ *  . Hence, if 

<ci>/<c1-> n G' is infinite cyclic, from Corollary 1.1.3 it follows 

that H? <Gi* Thus, in this case, Gj ^  h7 . So, suppose that

l<ci>/<ci> n G' | is a prime power. Then |G] : h 7| < <*> (Theorem 1.1.2)

and the lattice [G]/H?] is a chain. Therefore, if H? is not normal 

in G-j (the case H? <G-| is trivial since in that case G^ s H? ), 

since Hi is a Dedekind subgroup of G-,, according to Lemma 3.3.6 we 

have the following two possibilities:

it is sufficient to show that g |6^

an

(a) G,/(H?)r is a non abelian group of order pq, where pI 1 la i
* ' 7T ‘

and q are prime numbers. In particular G^/(H^)q is 

metabelian and so g | ^  s h| ;

(b) G.j/(H^)g is a (finite) non-abelian p-group for some prime

number p. Set n T = (H™)g . By Theorem 2.1.1 is normal

in G. Therefore tt induces a projectivity from G/Ni to

G-j/N1! and the latter is a finite p-group. Proposition 1.2.8 

(c) implies that G/N< is also a finite p-group. If p is
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odd then H.j/N.. is abelian (Theorem 1.1.1 ). Thus, recalling 

that G =<H1-, c^>, from Theorem 3.3.1 (b) and Theorem 3.3.5 (c), 

it follows that G-|/n7 is metabelian if p is odd and it has 

derived length at most 6 if p=2 . Therefore, in any case, 

we have s H? and this proves proposition 3.4.1 .

□

Remark 3.4.2 . The bound obtained in Proposition 3.4.1 almost 

certainly is not the best possible. Indeed no example is known where 

G-| (in the notation of Proposition 3.4.1 ) has derived length > n + 1. 

However, with the present methods it seems difficult to obtain the best 

possible bound.
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Chapter 4 .

A non abelian normal subgroup with a core-free projective image.

4.1 Introduction and statements of the main results.

In [12 ] Menegazzo left open the question of whether the hypothesis 

that G has odd order in the statement of Theorem 1.1.1 is necessary.

The main purpose of this chapter is to show that this is in fact the case.

Theorem 4.1.1 . There are finite 2-groups G, G-j, a normal 

subgroup H of G and a projectivity tt: G -*• G. such that Hu is

core-free in G-| and H is not abelian.

The groups G and G-j which we construct in order to prove Theorem

4.1.1 have order 2 and the normal subgroup H has order 2 .

Not surprisingly for groups of this order it has not been easy to establish

the existence of a projectivity n from G to Ĝ  . Therefore it is

natural to ask if there are smaller and less complicated examples, which

would simplify the problem of finding tt and proving that it ĵ s a

projectivity. In fact we have been able to prove that all examples G
13and G^ contain sections of order 2 and H always has a (non abelian) 

quotient of order 27 . Again this has not been an easy exercise, but we 

could not reasonably expect these facts to be accepted without proof. 

Theorems 4.1.2 and 4.1.3 are concerned with these minimality questions. 

Also, the subgroup H of the group G which we construct has derived 

length 2. No example seems to be known in which the derived length of 

H exceeds 2. However, as a result of Theorem 3.1.1, H is always soluble 

of derived length at most 3. Thus it can reasonably be conjectured that in 

fact H is always metabelian.
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Theorem 4.1.2 . Suppose that G and G 1 are groups, ir : G-^G] 

is a projectivity and H < G  with H/H^ G non abelian. Then there 

is a subgroup X of G containing H such that X/H is cyclic and

(i) x/Xtt,x is a finite 2-group of order ;> 213 ,

(ii) H/H^. x is non-abelian of order a 2  ̂ .

Thus it induces a projectivity X/H.^ X /(H7T)x tt and the non- 

abelian normal subgroup H/H^ x has core-free image.

The proof of this theorem quickly reduces to a consideration of 

finite 2-groups and will then follow from

Theorem 4.1.3 . Suppose that X and X, are finite 2-groups,

■n" : X -► X-j is a projectivity, H < X and X/H cyclic. If H17 is

core-free in X-| and H is non-abelian, then (i) |XI i 2 ^  and (ii)

IHI 2 27 .

Deduction of Theorem 4.1.2 from Theorem 4.1.3 . Let G, G^, tt 

and H satisfy the hypotheses of Theorem 4.1.2 . By Remark 3.3.7

( H \ n (H") 
x e S <H,x>

where S = (x e G||<x>/(<x> n H)| is a prime power or infinite ).

However, by Corollary 1.1.3, if <x> is infinite and <x> n H ■ 1, 

then <x>ir normalises Hff. Thus, since H/H^ G is non-abelian and
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V < H , x >  4 < H ’X> » ( 1 )

by Theorem 2.1.1, there is an element 

|<x>/(<x> n H)| is a prime power and 

Let X =<H,x> . Then we see from (1)

x in G such that

H/H m  is non-abelian.
IT,  , X >

that tt induces a projectivity

x/n^x - x V < h V  .

We will show that X/H^ x is a finite 2-group of order at least 213 

and H / H ^ x has order a 27. (Then X^/fn77̂  will have the same 

order as X/H Y, by Proposition 1.2.8 (c)).7T> A

Factoring by x anc* (H77̂  7n X and X77 respectively, 

we may assume that H v = 1 and (H77) ^  = 1. Now X/H is cyclic of7T> A A

prime power order pn say, and clearly n a 1. Therefore |X77: H77! 

is finite by Theorem 1.1.2 . Since H77 is core-free in X77, it follows 

that X* and hence X are finite. If n = 1 then H is a maximal 

subgroup of X and hence H77 is a maximal subgroup of X . As the 

image of a normal subgroup of X, H77 is a Dedekind subgroup of X17 .

It follows from Lemma 3.3.6 that X17 is non abelian of order clr»
TT

where q and r are primes. This implies that H and hence H have 

prime order, contradicting the fact that H is not abelian.

Therefore n 2 2, and, again by Lemma 3.3.6 

X77 is a q-group,
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for some prime q. Since Xw is not abelian, X is also a q-group 

(Proposition 1.2.8 (c)) and so q=p . Thus X and Xu are finite 

p-groups. By Theorem 1.1.1 we see that p=2. Since X/H is cyclic, 

Theorem 4.1.3 shows that |X| ;t 213 and |H | ;» 27, as required.

□

We prove Theorem 4.1.3 in section 2. Sections 3-6 are devoted 

to the proof of Theorem 4.1.1, which we now summarize briefly. Theorem 

4.1.3 tells us that there is an example proving Theorem 4.1.1 with 

G = H<a> , a finite 2-group, and H n <a> = 1 by Lemma 3.2.1 (i).

Lemma 3.2.1 (v) does not allow us to take a generalised quaternian 

group for H. Therefore we choose H such that 0|(H) has rank 2 and 

then Lemma 3.3.4 (a) tells us that H must be metacyclic and modular. 

Theorem 4.2.3 tells us that |H| z 27 and we choose

H = <h, q | h16 = q8 = 1, hq = h9> (2)

of order 27 , consistent with the above and Lemma 3.2.1 . Similarly 

we choose the element a of order 2® and define an action of a on 

H with G = H<a> consistent with the results of Lemma 3.2.1 . In 

order to find a second group G-j and a projectivity i\ : G -*• Ĝ  

such that is core-free in G^, we were able to show that

H-| cannot be abelian or isomorphic to H. Therefore we define

H-| = < h 1> q 1 I h ] 6 = q® = 1 ,  h ^  = h® > ( 3 )
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and form a product G] = <a] > where |a] | = 26 and H. is core-free

in G-j, again consistent with Lemma 3.2.1 . Every projectivity between 

finite groups of the same order is induced by an element map. In section 

3 we define a bijection a G G-| and in section 4 we show that the 

image of a restricted to each subgroup of E = <H, a2 > is a subgroup 

E] = <H-j, a-| > . However, while section 5 establishes the analogous 

result for all subgroups of G other than the cyclic ones outside E, 

it is easier for us to abandon element maps in order to handle these latter 

subgroups where tt is defined directly. The short section 6 shows that 

it is surjective and a projectivity.

Baer's work [ 2 ] on projectivities from abelian groups is the 

starting point of our construction of tt. The only other result on 

projectivities that we have been able to use is the following, due to 

Schmidt ([19] , Lemma 2.5)).

Lemma 4.1.4 . Let G be a group, Z and H subgroups of G with

Z < H, and suppose that for every subgroup U of G either 1) i H or

ZsU. Let Z and H be subgroups of the group G with the same 

properties. If t is a projectivity from H to H and a is an 

isomorphism from [G/Z] to C G/Z 3 such that UCT = UT for all sub­

groups between Z and H, then the map p defined by Up = UT for 

U s H and Up = Ua for U $ H is a projectivity from G to G .

Finally, we recall an elementary fact occurring in modular 2-groups.

In a finite modular 2-group G, ^(G) s N(G) (4 )

To see this, let x e G with |x| s 4 and let g e G. If |g| » 2, 

then <x,g> has order s 8 and [g,x] = 1 .  If g has order 2 2, 

induction on |g| suffices to establish (2) (In fact the hypothesis that 

G is finite in (4 ) is not needed).





By Lemma 3.2.1 (i v), il^X)/^ (X) and )/ftj(Xj) are elementary

abelian of rank t+1 , say. Also it induces a projectivity from X/0|(X) 

to Xj/0|(X.|) and (X1 )/ii1 (X1) is core-free in X ^ n ^ X ^  (by

Lemma 3.2.1 (iii). Therefore, by Lemma 3.2.1 (xi), fi^Xl/fy(X) has

a basis {c.ft^X) | 0 <i < t} such that

<cQ> = n2<a> , c.. t fi2(H) <r°r 1 5 i s t »

c® = c] mod fl-j (H)

ca i ci_ic-j m°d il-j(H) , 2 < i s t ,

and there are elements d^e S22(X^) such that

<d.j> = <c^>" , 0 s i < t | (8)

al
di E di-ldi mod Di-2 * 1 s 1 5 t • (9)

where, for -1 s j s t , Dj = <dQ ,d1..... dj.,fi1(X])> . (Note that

<d0> = ii2<ai> and di e Q2(H^) , 1 s i s t . Also it is clear that

each Oj is a^-invariant.)

Denote the exponent of H by 2r . Then

ur-2(Hnl(X)/nl(x))

is a non-trivial normal subgroup of X/il^(X) contained in Hfr|(X)/ft.(X) .
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Therefore, by Lemma 3.2.1(xii)applied to X/fi^(X) and X-|/n^(X^) , 

c ^ i X )  £ ur_2(Hn1 (X)/^(X)) .

Also Lemma 3.2.1 (vfi)(again applied to X/Oj(X) and X̂  (X^)) shows

that

?r-2
Ur_2(H!V X)/nl(X)) * {h V X)|h c H} .

So there exists an element h c H such that 

2 r " 2
h h c-j mod il-| (X) ,

„r-2
l .e. c1 = h w ,

where w . (X) . Therefore, replacing by c^w , we may assuux1

that

0r-2 ( 10)

Since ^ ( X )  is abelian (by Lemma 3.2.1 (v)), substituting for ĉ  

in (7) and squaring gives

,.2r*\ a h2r_1(h ) = h

and hence, by (5), 

,r-l (11)
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Let
-1

Q = H n H1

It is easy to see that <e0e1>1t = ^ f ^  and thus (5) and (6) show 

that

-1

H n <e0, e i> = <eQe }> . ( 1 2 )

Therefore

Q n <e0 ,e.,> = 1

a,Ti
Now H < X shows that Q < H,1 and since X/H is cyclic,

a,,'1

-1

H

We have

u -I "
, /Q is also cyclic. It follows that 

IH| = IH*1” | s 2r |Q| .

| = 2r and e] i Q (by (13)), and so

H = Q<h> and Q n <h> = 1 .

From (11), (5) and (6)

-1

and

na, n
h> 1 ;) = <eoei

-lTra.n 
<h> ' n Q * 1

-1 -1Tia1*a« 7t
H-j = Q<h>

(13)

(14)

(15)

( 16)

A
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In order to prove (i), i.e. |X| 2 2 , we argue by contradiction

and assume that |X| is minimal such that (i) is false. We distinguish 

two cases depending on the exponent of H . The first is not difficult.

Case 1 : exponent of H £ 2^ . Then |a| * 2r+  ̂ t 2^ (Lemma 3.2.1

(ix)) and hence |H| s 2^ and, by (14), 10 1 £ a • In particular 

Q i ^(H) and so QX s n2(H) • By Lemma 3.2.1 (v) L22(H) ’s abelian 

and therefore

13

S72(H) = Qil2<h> . ( 17)

Y
Thus |Q | s 16 and hence any

4
exponent s 4 . Therefore a 

However, by 3.2.1 (ii),

X
2-group of automorphisms of Q

a,TT-l
centralises Q . Then Q <

has
4<a > .

al
nr(xi) = = H1nr<a1> = h 1 n ^ a ^  .

Applying n”  ̂ we have

a-.iT a-.iT .
H $ H, U <a> < H, <a > .1 r l

Thus Q < H and H/Q is cyclic by (14). But every normal subgroup 

( +1) of X lying in H contains e^ '(Lemma 3.2.1 (x11)) and so Q is 

core-free in X . It follows that H is abelian, giving a contradiction.

Case 2 : exponent of H s 2^ . Since fi2(H) is abelian, the 

exponent of H is 2^ . Suppose that |a| 2 2^ . Then, by (14), |Q| s 8
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Now ft-|(H) and H/f2^(H) are both abelian (Lemma 3.2.1 (v)) and have
. Q
order at most 16. Therefore a centralises H and hence also Q . 

As in case 1, it follows that

a.TT « a ■« tt
Q <i H-| <a°> and H s s <a > .

Then Q < H and Q is core-free in X . Thus again H is abelian, 

giving a contradiction.

5 3Therefore we may assume that |a| = 2  (and H has exponent 2 ). 

So

IQ I * 2 (18)

Let

R = R" = (H.) 2 .
1 1 H-|<a^>

By Lemma 3.2-.1 (ix) H-j/Rj has exponent 5 4 . Hence R > y2(H) • Q

has exponent 2^ , then (14) shows that |̂ 2(^ )I a ^ • Since there is 

a unique normal subgroup of order 4 of X lying in i^(H) (Lemma 3.2.1 

(xii)) viz. <e-| ,e2> , it follows that

e2 £ «2(H) s R .

a?
Then f2 « ^  • However by (6) f2 = fQf2 l H1 , contradicting R1 s H]

and R R̂  . Thus

Q has exponent s 4 .
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We claim that

H’ = <ej> . (T9)

To see this, we observe from Lemma 3.2.1 (v) that H/n-|(H) is abelian. 

Theretore

H ‘ s fl.| (H) ( 20)

-1 -111 n na-, i
Now let (H, ) = K 1 . Thus K s H and, by Theorem 2.1.1, K (as

* -1
T í a  1  TT _ 1

the preimage of K under the projectivity ira.-tt :X -*- X ) is
-1 1a -.it

normal in X . From (12) e^ / H-j and so

T i a . T T  ^
e1 l K 1 n H o X .

Then

na,it ^
K 1 n H = 1 ,

since every non-trivial normal subgroup of X contained in H contains 

ê  by (5). It follows that

Tta.TT ^
K and K are cyclic. (21)

By Lemma 12.1 (v11i),en e Z(X) and, by (5) , e, c Z(X) .
-1 1 -1

e0el € n ^t
a i 7t

, by (12) , and so eQe1 £
TT311T

<e-j> = <e0ei> e K .

Therefore 

. Thus

( 22)
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Now consider the projectivity

•) i r a ,T T
na^n" : X/K -*• X/K

By minimality of |X| , H/K must be abelian. Then, using (20)

H’ 5 (H) n K = <e^

by (21) and (22). Therefore, since we are assuming that H is not 

abelian, we have proved (19).

Now it follows that <h> < H . By Lemma 3.2.1 (ii)

(23)

r

(24)

by Theorem 1.2.10. .

. 2(Here we are using the fact that x centralises h according to 

Lemma 3.2.1 (v)J, Since fi2(X) is invariant under any autoprojectivity, 

it follows from (24) that

na. 7i”^
« h >  - ,x> is a modular 2-group.

JL à L
-

S12(X) = S22(H)n2<a> .

Thus, since n2<a> s Z(X) (Lemma3.2.1 (vi ii)), we see that 

<h> o <h,n2(X)> . Therefore for any element x e. fi2(X)

<h,x> is a modular 2-group,
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However |x| £ 4 and then by (4) x normalises all subgroups of this
ua,ir

group; in particular <h> is normalised by x . Therefore

-1

Tra-.iT  ̂ Tia.iT ^
[<h> ,<x>] s <h> n H = 1 ,

by (15). Thus

Tta.TT
<h> is centralised by ft2(X)

-1
(25)

Let b e X such that b4 = eQ . Suppose, for a contradiction, that

<b> is normalised by il2(X) • Then

[<b>, S12(X)] s <b> n H = 1 . (26)

Also, by Lemma 3.2.1 (ii) «3(X) =H«3<a>= H<b> (the latter by order 

consideration). Thus we obtain

a.Ti  ̂ Tra 1 i t   ̂ a,i t  ^a-. n iia*. 11 u-l I'
n3(X) = H-j <b> = H-| <b> ,

-1ira. n
since n1(<b> ) = <eQ> . Therefore, using (16),

-1

n3(X) * Q<h> <b>

However, Q has exponent s 4 , and so we obtain

-1TTa-.1T
n3(X) = n2(X)<h> <b> . (27)
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Now it follows (from (25) and (26)) that ^ ( x) lies in the centre 

of iij(X) . But H = Q<h> and this implies that H is abelian, a 

contradiction. Thus

no cyclic subgroup of order 8 of X , containing 
------------------------------------------------------ (28)

eg , is normalised by ^(X) •

Write <h,> = <h>1T and let x-| e ^(X-j) • By (24)

<h^,x^> is a modular 2-group. (29)

Since |x, | s 4 , <h^> is normalised by x-j , by (4). Therefore

<h^> is normalised by ¡^(^i) (30)

and the group of automorphisms of <h^> induced by has °r(ier

s 2 .

Recall that = <dQ ,d1,... ,dt_1 ,n1 (X] )> and suppose for a

contradiction that

[Dt.1,h1] = 1 . (31)

Since D._^ is a^-invariant, 

al
[Dt-l*hl ] " 1 • (32)
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From (9), mod Dt_.j and so, by (29) and (30), 

J+4kn-j , for some k ,

and

. V t  ai (l+4k )
n, = h.

By Lemna 3.2.1 (vii),

al 4 4 ^al(h.| ) = h-j h-j (= fp)

a. a.
and hence <h^h^ > is normalised by d^ and <h-|h  ̂ ,dt>

cl i
Thus, by (31) and (32) < h^h.'.x^ is modular for all x 

Applying it  ̂ it follows that

31 tt'1
«h.| ĥ  >1T ,x> is modular

for all x e il2(x) • Therefore,by (4 ),

<h
a, -1 
1•|h1 > is normalised by ft2(X)

*1 tT 1But from (33) <h^h^ > has order 8 and contains eg

Now we know that CD^_-j,ĥ  ] 4 1 • Hence, by (30),

(28).

[Dt_i ,hj ] = < ^ >  .

(33)

is modular.

1 e n2(xi) •

, contradicting 

(34)
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Now we can show that t a 3 . For, by Lemma 3.2.1 (xiii)

[h1 ,n1 (x1.)] = l .

Also, by Lemma 3.2.1 (vii) (recall that <dQ> = il2<a^>), 

[h-j ,dQ ] = 1 .

Furthermore by (8) and (10) <d^> = ^^'h^> and so

Ch1 ,d1 ] = 1 .

Thus (34), (35), (35) and (37) show that

t 2 3 and |ii2(X)/01 (X) | 2 16 .

However, from (17), (18) and (23), |n2(X)| s 28 . Therefore 

il2(X) is abelian, |fZ-, (X) | 2 |n2(x)/fi1 (X)| and we must have

In-j(x) | = |n2(X)/n1 (X)| = 16 .

Thus m = t = 3 .

Now, X/i22(X) is abelian and so, modulo f22(X^) , X̂
4

with <a^> of index 2. It follows that [h^ ,â  ] e <a^>n2(X.| 

there are integers (0 s i s 3) such that

4a0 ai a2 a3 
[h1 ,a1 ] = a, ud-j d2 d^

(35)

(36)

(37)

, since

is modular 

) . Therefore

mod fi-| (X) .
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A straightforward calculation using (9) gives

Since h1 and a^ belong to and £13(X^ )/il̂  (X^) is abelian

(Lemma 3.2.1 (v)) we have

<*2 = 0 mod 2 .

In particular this shows that X-| is not generated modulo (X-j) , by 

a-j and ĥ  and hence X is not generated, modulo n-j(X) , by a and 

h . Therefore

($1
[h,a] = ci c2 moci

for suitable integers 6 1 , 8 0 . Recall that the definition of h requires
' <■ (3

As before, without changing c^ modulo fi-|(X) , we may assume that (10) 

still holds, i.e.,

only that h2 = c1 mod ST|(X) . Thus we may replace h by hc2 

and then

61 62
2 c3

[h ,a] c fi,(H) . (38)

2 (39)

Now it follows from (38) that, modulo fl^X^ , < ^ , 8,» is a modular



87 -

V*

group and so

Ch] ,a-|] e <a4 , n1(X])> , (40)

since h.j has order 4 modulo fi-|(X̂ ) . Also, from (7) and (38), we 

see that c3 <t <c2 ,h,a> and so

<c2 ,h,a> < X .

Then by minimality of |X| ,

lc2,h] = 1 . (41)

Consider the element 

2
x = hc^a

belonging to X . We will derive our final contradiction by showing 

that <c2 ,x> is a modular group, while <c2 ,x> is not modular. By 

Lemma 3.2.1 (vi)

04(X)/01(X) and «4(X1 )/«,(X,) have class s 2 . (42)

Then (42) shows that

x2 = h2a4[a2,hc3] mod ^(X)

= h2a4[a2,c3] mod ^(X) , by (38),

= a4 mod ^(X) , by (7) and (39).
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Since m = 3 , [a\fi.j(X)] = 1 and therefore

4 8x = a

Let <x,> = <x>

(43)

It is not hard to see that

X1 = hld3afk *

where i, j , k are odd.

By (42)

x^ = h^[a^k, h^d3] mod fi-j (X-j )<a^>

e h^[a^k ,d3] mod ^ ( X ^ o ^  (by (40))

, 4
= 1 mod n](X1)<a1>

(by (9) and the fact that d̂  = h^ mod n^(X^)) . Since fi-j(X̂ ) is

lule, [a^ , SI, (X1)3 = 1 and s
..2.

4 ,.8.
a 4-dimensional <a-j >•

Since H^<x-|> = H-j<a^>

4 8IIAXV <a^ >

Take b = a^ in

(44)

n a ^ -1 4
n3(X) = n2(x)<h> <a > 

-1TT « TT a
By (25), [fi2(X),<h> 1 ] - 1 . Thus, Cil2(X),<a >3 + 1 . otherwise
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fn2(X ) 1 . forcing H to be abelian. In fact

[^(X) ,<a^>] = <e1 > . (45)

ira.|H-1

For, fio(X) = H<a > . However, by (15), <h> n H = 1 and so

na, u
n3(X) = H<h> , by order considerations. Therefore

-1

tn2(x),ii3(x)] = cnz(X),H]

= m 2(H),Hl (by Lemma 3.2.1 (ii) and (vi i))

= <e]>

by (19).

Thus (45) follows. Since (7) shows that <c3>

[c3,a4] = 1 , otherwise [il2(H),<a4>] = 1 , contradicting (45) 

Therefore, by (45),

<C3,a>

[c3,a ] = e-| (46)

By (7)

c2 = C-j^W , c3 = C2C3W1 ’

where w, w1 c f2-|(H) . Write

11 n2 13
w " el e2 e3 •
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Then a straightforward calculation using (7), (11), (38), (39), gives

a4 1+i3 
c3 = el c3

11_’2
Thus ij = 0 by (46). Replacing c2 by c2e2 e3 ancl us^ng (5) we

have, therefore,

[c2 ,a] = c1 .

Since ĉ  (= h p  is centralised by a , it follows that

2 2[c2 ,a ] = c1 = e] . (47)

In particular <a ,c2>/<e0,e1> .is abelian and so the projective image 

<a^,d2>/<f0,f1> is modular. In this quotient d2 has order at most 4 

(in fact it is 4) and a^ has order 8. Therefore

2 8[d^,a^ •

On the other hand, [d2 ,a^] t <a®> , otherwise <d2 ,a^> would be modular
2 2 and hence <c2>a > would be modular, forcing c2 to normalise <a > ,

which contradicts (47). Thus

[d2,a^ ) e f p a p  • (48)

Recall that x = hc^a . Then



(by (41))[c2 ,x] = [c2 ,a 3

= e, , (49)

by (47). Similarly (with = h^d^a^ , i,j,k odd)

[d2,x13 = td2 ,a^k][d2 ,hJ]

e mod<a®> (by (34) and (48)) 

e 1 mod<a^> .

Therefore <d2 ,x^> is modular, by (44), and hence its preimage <c2 ,x> 

is modular. Then c2 normalises <x> . But this is incompatible with

(43) and (49). This completes the proof of Theorem 4.1.3 (i).

In order to complete the proof of Theorem 4.1.3, we must show

(ii) |H| a 2^ . Suppose, for a contradiction, that |H| s 2^ . By (i),
7 4¡a| £ 2 . We use the notation of (i). If H has exponent a 2 , then

the argument of Case 1 in (i) shows that H is abelian. On the other
3

hand, if H has exponent s 2 , then the argument of the first paragraph

of Case 2 in (i) again shows that H is abelian. Therefore v/e have the 

desired contradiction.

2

0
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4.3 The groups and the projectivity of Theorem 4.1.1 .

Construction of the groups. We will construct a group G with a 

normal non-abelian subgroup H, a second group G^ and a projectivity

i t  : G G^

such that H11 is core-free in G^. The groups G and G1 will be finite
13 7

of order 2 , H will be metacyclic of order 2 and G/H will be cyclic.

Thus let
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r 2 -, .4
[a ,q] ■ h

[a*.h] = h8 .

(52)

(53)

The construction of Gj proceeds as follows. Let elements bj and 

hj generate cyclic groups of order 16 and form their direct product

Xi = <bj> x <h1>.
The relation (53) shows that

X = <a\h> » <a^> * <h> = X,. (54)

The subgroup <bj> will be the image under i t  of <a >; and <hj> will be 

the image of <h> and Xj the image of X.

The group Xj has an automorphism 6 of order 4 defined by

.8 _ K-3.8 uB - h5

Thus there exists a split extension Yj of Xj by a cyclic group <qj> of 

order 8, presented by

Yx = <bj.hj.qJb}6 = h}6 - qj ■ 1. hj1 = hj, bj1 = b^hJ.hj1» h6>. (55)

This group Yj has order 2^. The subgroup <q^> will be the image of <q>

under t t .



We make one final extension of Y^ by a cyclic group of order 4.

First we define a map y on the generators of and show that y extends 

to an automorphism of Y^. Let

bl = bi» hl = hl ql* ql = hi2qi1 - (56)

From the presentation of Y^ and elementary commutator identities we 

see that Y^ = <h4, b4> and

Y^ has class 2 . (57)

Then it is easy to check that y preserves the relations of Y^ and extends 

to an automorphism. We claim that

y4 is conjugation by b^. ( 5 d )

For,

and

q f  " i b ^ J , } ) " ^ ^ 1)-1 -  ( b ^ H h i V  -  b f h « q i .



Therefore

hy4 .  h8 , . 8 . 9 , 9  c h .  hblhl  bl ' bih 1) hi  " hi
and

Y4 .2,. 8. 9,12,. 2, 12„ , _ .4, 8 _ blq{ = b1(b1h1) ( b ^  qj) » b ^ ^  ' ^  •

Hence (5b) follows. By the cyclic extension theorem (see, for example, 

[20], p. 250), there is a group

G1 = w

where Yj « G ^ G j/Yj is cyclic of order 4 and a1 = bj. This group is 

presented as follows:

G1 = <ai * hi * cl i l a i 4 = hi 6 " «l? " h l ’ = hl* a i 1 = a l 12hl*
i.;* • ■*. s 1 • .¡4»m . $  ■ - ; v > .‘i Mi

(59)

13
(Here we have used (55), (56) and (58).) The order of G^ is 2 , i.e. 

the same as the order of G. The cyclic subgroup <a^> will be the inage 

of <a> under i t .  We note that

a8 and h8 lie in the centre of G (60)

and a|6 lies in the centre of G^.
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Let

H 1 = <hi •c1i> *

Here <h^> has order 16 and <q1> has order 8. This subgroup will be

the image of H (<» G) under u and it is easy to see that

is core-free in G^. (61)

For,

= <h8 ,q4> = W,

say. Using the fact that Y1 Igiveri by (55)) has class 2 and has 

exponent 4, we have

and

( h ^ 1 = (a'^hjq})8 = a“ h®

(qj)'1 - (h'^i1)4 - hjq4.

Thus

al “ “ * 3
-

a?
Therefore W n W 1 n W « 1, proving (61)

W 1 ■= <a?2h?,hjqj> and W 1 = <h®, a j 2q 4 > .

)
a ,  a T
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Definition of tt.

First we define an element map

o :G G, (62)

Every element of G can be written uniquely in the form

akh V , (63)

where

0 s k s 63, 0 s j s 15, O s  i i 7. (64)

Similarly every element of G-j can be written in the form

(65)

where k, j, i are integers uniquely determined modulo 64, 16, 8 

respectively. Writing the elements of G in the form (63), the map 

(62) i s defined by

where

, k. j i.o kVj* 1 1 (a h q ) E hx qx , (66)

k* « k(l + 4i) (67)

j' - J(1 + 41) (68)

1' - n  + 2 1f 1 1s odd (69)
(1 + 4jk if 1 is even.



Remarks 1. Replacing k, j, i by integers congruent modulo 64, 16, 8

respectively does not change the element (63). Also the right hand sides 

of (68) and (69) will be unchanged modulo 16, 8 respectively and 

therefore they can be used as the exponents of h^ and q^ in (66).

However, the right hand side of (67) will be invariant only modulo 32 

and so it can be used as the exponent of a^ in (66) only when k is even.

2. The term 4jk in the definition of i' should be viewed as a small 

adjustment to what will shortly emerge as a natural map to consider in 

order to attempt to construct it.

Next we show that

the map o is a bijection. (70)

For, suppose that

(i) k2(l + 4ix) = k2(l + 4i2) mod 64

(ii) j1(l + 4ix) £ j2(l + 4i2) mod 16

(iii) i! £ i2 mod 8.

Suppose that ij is odd. Then i^ = i1 + 2 i s  odd. So i'2 is odd (by (i 1 i)) 

and therefore = i2 + 2 (by (69)). It follows that ij * i2 and hence

jl - j2, k1 = k2 (from (ii), (i) respectively). Now suppose that ^  is 

even. Then i^ ■ ij + A j ^  is even and so 1£ is even. Thus - 12 + 4j2k2 

and (iii) becomes
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i + 4j,k, = i 2 + 4j2k2 mod 8. (71)

Therefore from (ii) we see that = j2> Similarly from (i), ^  = k2 mod 4. 

Thus (71) shows that i1 *= i2 and then k1 - k2 follows from (i). This 

establishes (70).

We are now ready to define it. It is easy to see that the elements 

(63) with k even form a subgroup E of index 2 in G. Similarly the 

elements (65) with k even form a subgroup Ex of index 2 in .

If 1 i' i 1
Every cyclic subgroup <a hJ q >, with k1 odd, is generated by 

an element of the form ah^q^. If K is a subgroup of E or a non-cyclic 

subgroup of G, define

(72)

(We have not checked to see if we can define K = K for all K, because 

such a calculation would be too tedious.)



-  1 0 0  -

4.4 Consideration of tt restricted to E .

8 2 8 2Cyclic subgroups. Let B = <a ,h ,q>, BE = <aE> hj, qj> (s Y^).

It is clear from (67), (68) and (69) that a restricts to a bijection 

from B to B^. The subgroup B is abelian and homogeneous of exponent 8
o o

with basis {a , h , q). The subgroup B^ is the split extension of
o 2 H 2

<a°, h^> = <a^> x <h£> (homogeneous of exponent 8) by <q^> 2 C^, where 

q^ conjugates the elements of <a^, h^> to their 5th powers, as we easily 

see from (59). In particular B1 is a modular group and it is a well- 

known fact that B and Bj have isomorphic subgroup lattices. In [2]

Baer shows how to construct a bijection from B to BE inducing a projectivity. 

It is not difficult to check that our map o is Baer's map. However, while 

o has its origins in the work of Baer, it is not necessary to check our 

claim here, because we will prove that o|E induces a projectivity from 

E to Ej, and therefore (by restriction) a projectivity from B to B^.

We show first that

o maps cyclic subgroups of E to cyclic subgroups of E^. (73)

Therefore we need formulas for powers of elements of E and E,. As we 

have already pointed out (before (51)),E has class 2. Then for any 

elements u, v of E,

, .n n nr -,n(n-l)/2 n A \(uv) = u v [v,u] 4 "  . (74)

So it is easy to check that



(75)( a 2 k h V ) *

2k. j 
a 1h 1

where = ki. mod 32

H {.j + 2[i(2j-k) + 2jk](i.-l)}i. mod 16 1

= ii, mod 8. J

(76)

In order to obtain a formula for powers of elements of E^, we
p

first consider the action of a^ on powers of q^. We claim that 

-,2k
, ival 8ki(2i-l) .-4ki i 
(qx) = a i hl V (77)

We prove this by induction on k. When k = 0, (77) is trivially true. 

Therefore suppose that (77) holds for some k £ 0. From (59)

( a ' V ^ ) ^ ( h i V r 1.

In order to express the right hand side in the standard form (65), we 

use

r 4 t -16h8[ar  q A] = ax hx

(from (59)). The fact that = <aJ.hj.qj> is a class 2 group then 

gives

a l hI 4qr

Taking 1-th powers, we obtain



102 -

, i\dl 8i.-4i i rh‘4n 8,i(i-l)/Z _ 8i(2i-l).-4i 1
(q!) “ ax qt [h1 q ^ a ^  al hl ql‘

Similarly

and so , . - 4 k i , dl _ . -4ki (hx ) = hx

(78)

Now conjugating (77) by aĵ  gives2(k+l)(q i ) a l  = a 8 k i ( 2 i - l ) h-4ki a8 i ( 2 i - l ) h-4iqi
8(k+l)i  (2i — 1) h-4(k+1)i 1

'1

uq l . u5

Thus (77) holds for all k.

Now let xx = a^hjqj. Using (77), (78) and the relation h1i = hj 

(59), it follows that

4 ' W
where k' = 4k C1 + 2i (21 — 1) + 8 j ]  

j' - 2(j - 2J1 - 21k - 4jk) 
1' - 21



and

4 k" i" i"
A  -  »5 hi  « ! (79)

where

k“ = 8k [1 + 2i(2i + 1)] 

j" = 4(j-2ji - 2ik) 

i" = 4i.

The factors of (79) conmute and so, if k is odd,

16 32
X1 ~ al

32.

(80)

has order 2. Modulo <a^ >,

[hi»ai = ^i* ^ l ,ql^ = and [q^,a^] - a^h^ '

the last by (77). Thus these three commutators all lie in the centre 

of E1/<a^2> and since Ej = <a2, h ^  qL>, we see that E1/<a^2> has 

class 2.

When k is even, Xĵ t Yj, which also has class 2, by (57). Therefore, 

using (74) in E,/<a22>if k is odd, and in Yj if k is even, we have

m _2k0hJ0n10 
X1 = al hl ql

where



( 8 1 )

2ky = 2km[l + 2i(m-l)] C mod 32 if k is odd
1 mod 64 if k is even

J0 = m{j-2[i(k+j) + 2jk] (m-1)} mod 16

Ìq = im mod 8.

Now we can begin to establish (73). Let

x •= a2kh V .

We will show that

o o <x> = <x >.

(82)

(83)

When k is even we do this directly. When k is odd, we show first that

<x>
o 32^ i. <x > <a^ >. (84)

However, in this case the exponent of a^ in x has the form 2k', where 

k' is odd (by (67)), and so a^2 e <x°>, by (80). Thus (84) will imply 

<x>° s <x°>. Since x and x° both have order 32, by (75) and (80), (83) 

will then follow. (We work modulo <ax > when k is odd in order to 

simplify calculations.)

Let i. be an integer. We show that there is an integer m such

that

( x V  - (x0)m (modulo <a^2> if k is odd).



2k j i
By (75), xA = a *h 1q 1, where k ^  j^, iĵ  satisfy (76). Recalling 

Remark 1 (after (69)), the form (65) for (x^)0 has

a^ exponent ■ 2k^(l + 4i^), (85)

h^ exponent = j^(l + 4i^) (86)

and qj exponent “ /’ i^ + 2 1 f i ^ i s  odd (87)

1 ’l ^   ̂i ''s even

(T 2k« jy ip
(from (67), (68) and (69)). Now write x = ax • Then by (81) the

form (65) for (x°)m (for any integer m) has

a^ exponent = 2k2m[l + 2i2(m-l)] ( mod 32 if k2 is odd
(88)

j mod 64 if <2 is even,

h^ exponent = + 2j2k2](ni-l)} (89)

and q^ exponent = i2m* (90)

By (67), (68), (69) we have

k2 = k(1 + 4i) (91)

j2 - J(1 + 41) (92)

i2 -r 1 + 2 if 1 is odd 

I 1 If 1 is even.
(93)
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We need to show that the three equations obtained by equating (85), (86), 

(«7) respectively with (b8), (89), 190) have a common solution for m.

We distinguish three cases.

Case 1. 1 and & are odd. From (76) and (91) we see that

i^ and î, are odd.

Therefore equating (87) and (90) gives 

H  + 2 = (i + 2)m mod 8.

The solutions of this congruence are

m = 3Ü - 2 + 8X, (94)

2 2where X is ar\y integer. Thus m = i. mod 8. Now equating (85) and (88) 

yields

Therefore this congruence will hold if we find m satisfying

£(1+4 il) = (l+4i)m [l+2(i+2)(m-1)]mod 16. (95)



INote that when we consider the case i odd ana Z even, the congruence 

to be satisfied by equating (85j and (88) is still (95J, and for 1 

even and any Z we only replace (i+2) on the right hand side of (95) 

by i.) Substituting for m (from (9<0),(95) reduces to

4X = (*-l)(i+l)mod 8. (96)

Equating (8b) and (89) gives

(j+2[1(2j-k) + 2jk]U-l)H(l + 4U )

= {j(l+4i)-2[(1+2)lk+j)+2jk](m-l)}m mod 16. (97)

(As before observe that when we consider i odd and Z even, (97) remains 

unchanged; ana when i is even and Z is arbitrary, then we change only 

(i+2) on the right hand side of (97) to i.) A routine check shows that any 

choice of X gives a value of m (from (94)) satisfying (97). Since (£-l)(i+l) =0 

mod 4, we can take X ■ (£-l)(i+l)/4, which satisfies (96) and so there is a 

solution for m in this case.

Case 2. i odd and Z even. Now 1 is even (76) and i2 is odd (93).

Equating (87) and (90) gives

U  H (i+2)m mod 8.

The solutions of this congruence are

m = 3£ + 8X (98)



p p
for any integer X. Again m = Jt mod 8. Equating (85) and (88) yields 

(95) (as previously noted). Substituting for m from (98) reduces (95) 

to

4A = i(i + i + 1) mod 8. (99)

Equating (86) and (89) gives (97) (as before) and it is easy to check 

that any choice of X in (98) satisfies (97). So it is necessary only 

to solve (99) for X. Again *U+i+l) i 0 mod 4 and we can take 

X = *.U+i + l)/4.

Case 3 . i even. This time i1 and i£ are both even (by (76) and (93)).

So, equating (87) and (yO),

i£ = im mod 8. (100)

It we recall the remark after (95), setting (85) equal to (88) gives 

(95) with (i+2) on the right hand side replaced by 1. Tnen (95) reduces 

to

m = l + 2 U U - 1 )  mod 16. (101)

Any solution m of this congruence satisfies 

m = 1 nod 8

A



and hence satisfies (iOO). Finally equating (86) and (89) gives 197) 

with (i+2) replaced by i on the right hand side (as observed immediately 

after (97;). Substituting for m from (101) yields

ijJHt-1) = 0 mod 4,

which is clearly true since i is even. Therefore m = & + 2ii.(£-l) is 

a solution in this case, we have now proved (73;.

Arbitrary subgroups. We show now that a maps every subgroup of E 

to a subgroup of E,. The following two results will achieve this.

Write N = <a^,h>.

Lemma 4 4 . 1 . If U is a subgroup of N and V is a suogroup of E, then 

(UV)° = u V .

2k l ^ 1  1̂  ̂1
Proof. Let u e U, v e V. Tnen u = a hJ (by (53)) and v = a n q 

Again using (53) we have

2k+2k j+8jk1+j1 i1 
uv = a *h Aq 1

and hence

(2k+2k ;(l+4i.) (j+Sjk.+j.)(l+4i^ m 
(uv) * ax hx



n o  -

where m = ij+2 if is odd and m = i^ if i^ is even, From (78) and 
2

the fact that o ^ h ^  has class 2, it follows that

(j^8jkli(l^41l) 2^(1441 j) _ 32 8 J k\
3 =

and so

„ 2k(l+4i.) j(l+4i.) ¿k (l+4i.j+32jk J,(l+4i.)
(uv)° = (ax 1 hj 1 )(a1 1 1 S p .

Thus if j + k^ are not both odd, then (uv)° = (u*+4’)°v°. On the otner

hand if k^ is odd, then = e?*' by (75) and (76). If also j is odd,
32jki 32 . . . , _

then a 1 ' ai • Moreover, for any element of G,

(a32cj)° - afg° («2)

(by definition of o). Hence in this case (uv;° = (u1+4i)° iv1 )a . There­

fore in both cases lUV)° = U°V°. □

Now let Nx = «a2,!^. Then we have

Lenina 4.4.2. o induces a projectivity from N to

Proof. From the definition of o, it is clear that a restricts to a 

bijection from N to N^. We apply Lemma 4.1.4 to N and iwith 

<a32>, X ■ <a4 ,h> for Z,H respectively and <a32>, = <a4 ,h^> for Z, H

respectively. By (54), X 5 and o:a4khj a4kh3 defines an Isomorphism 

X •* Xj. Thus, in particular, o induces a projectivity from X to Xj.
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similarly N/<a32> E N1/<a^2> (by (53) and (78)) and

o:<a32>a2kh'j - <a32>a2khj

defines such an isomorphism (by (102)). Suppose that U s N and U  ̂ X.
32Then (75) and (76) show that <a >s U; and similarly if Uj s, N1 and

^1 ^ ^1’ ^ en (®0) gives <a32> s Ur  Thus Lenina 4.1.4 shows that a induces

a projectivity N ■* N,. □

Now let K be a subgroup of E. By (51) and (52), N <1 E and

E = N<q>. So K = UV where U = K n N and V is cyclic. By Lemma 4.4.1

K° = U°V°, and by Lemma 4.4.2 UJ is a subgroup of Ej. Also V° is a 

subgroup of E,. by (73). Again by (73) (K0 )'1 = K . Therefore

U°V0« K° = (K0 )'1 = (V0)"1(U0 )"1 « V°U° 

and it follows that K° is a subgroup of E^. We have now shown that

a (and hence it, by (15)) map each subgroup of E to a subgroup of E ^

Si
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4 . 5  Consideration of tt applied to subgroups outside E.

Let x = a^h^q’ where k is odd. Then x t E , but |G:E| = 2
2 2 C

and so x e E . From section 4 we know that <x > is a subgroup of

G.j . We will prove next that

<x2>° = <(x°)2> . (103)

For this purpose it suffices to show that

( i ) 1*1 - |x°|
( 1 1 ) ( x 3 ) 2  <r < x '

Proof of (i). Remembering that k is odd, we easily obtain 

(from (50))

(104)

Similarly

(hy k . h3j-4kjq4j . (105)

Then (104) and (105) give

x2 = a2kh4j(l-k)+2ki+8jiq4j > (106)

Since the factors in (106) commute, taking the 8th powers gives

x16 , a16k < (107)
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In particular |x| = |a| = 64 .

Now since k is odd, x° has a-j exponent (in (66)) odd. 

Therefore consider an element of G-j of the form x̂  = a|h®q“ where Y is odd. Using (59) and (77) gives

ai/ „ a .  ' 4«(y -1)h2a(2a+Y+4) -a 
al hl ql mod <a (108)

and (59) and (78) give

(h?)“1 = a‘43hB(4Y+3)q43 nlod <a r „
5!6'

(109)

(These congruences can easily be established by induction on y •)

Then (108) and (109) show that

x2 = a4aY+2Y-4t<-43h40(l+Y)+2ciY+4«2 +8a+4og^4B n)0<j;a|6> _ (HO)

32
The factors on the right hand side of (110) commute modulo <a1 > (from 

(77) and (78)) and hence, taking 8th powers in (110), we obtain 16

16 _ 16y+320
X1 al

Therefore, since y is odd,

<xj6> • <a|6>

and |x-| | = |a-j | = 6 4  . This proves (i).



In order to prove (ii) we may work modulo <a|^> . For, 

a]6 = (a16)° = (x16V  (where l is odd, by (107)) and so 

a]6 e <x2>a Recall that x = akh'3q1 where k is odd. We

have x° = a|h^q“ = x1 (say), where

= k(l+4i) , 6 = j(l+4i) , a =
i+2 if i odd 

i+4jk if i even
(111)

(by (66)). From (106) and (66) we obtain

(x2 )0 •- a2kh4j(l-k)+2ki+8jin4j . 16q, * mod <a-j > ( 112)

We want to show that the congruence 

((x2 )°)X i x2 mod <a]6>

(where x2 is given by (110) and (111))has an integer solution for X . 

Comparing exponents of a^, h1, q-j in (110) and the X-th power of 

(112) (noting that the factors on the right-hand side of (112) commute), 

we must solve

kX = 2ay + y * 2a - 28 mod 8 , 

(2j(l-k)+ki+4ji)X = 23(l+y)+aY+2a2+4a+2a3 mod 8

(113)

(114)



p
We substitute for a.g.-y from (111) and note that k = 1 mod 8 , 

since k is odd. When i is odd the solution of (113) is

X = -l-2k(j+1) mod 8

which clearly satisfies (115) and can easily be checked to satisfy (114). 

When i is even, the solution of (113) is

X £ 1 -2 j k mod 8

which again satisfies (114) and (115). Therefore (ii) is true and (103) 

follows.

Suppose that K is a non-cyclic subgroup of G with K ^ E . We 

will show that

K° is a subgroup of G-j (116)

k i i
Clearly, K contains an element of the form x = a hJq where k is 

odd. We claim that

F = <h8 ,a8> s K (117)

For, since G/H is cyclic and K is non-cyclic, K n H = 1 . Thus if
o  8 J i  4

h 4 K , then K n H contains an element of the form h q in fî (H)

But then K contains
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8j 1 _4 8j 1„4 A J J 8j1~4 k 4 k, _ .8[h q ,x] = [h q ,a hJq 1 = Lh q ,a 1 = Lq ,a ] = h ,

Q
giving a contradiction. Therefore h e K . Also K contains 

x8 = a8kh81 , by (106), and so a8 c K . Then (117) follows.

Now let F-| = <a8 ,h?> . So = F° . Also, for all x e G ,

,c ,o r- a (Fx) = F.x (118)

For, let f c F . Then (fx)° = f°x° mod<a82> and so (fx)° c F-jX0 . 

Thus, by order considerations, (118) follows. By (60), F lies in the 

centre of G , and from the presentation of , we see that F̂  < G-| 

Recall that K is a non-cyclic subgroup of G and that K ^ E . In 

order to prove (116) we distinguish three cases.

k j i
Case 1 : K/F is cyclic. Then K = <F,x> , where x = a hJq 

and k is odd. It suffices to show that

(Fx2r+1)° = F1(x2r)°x° (119)

for any integer r . For, recalling (103), <x2>° = <(x ) > . Also

any generator of <x> can be written as x 

then

2r+l Hence if (119) holds,

Thus

(*2r* V .  F,(x2r)°x° E  F,<x°>

0 - 0  <x> c F«. <x > ( 120)

"  ; ’
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Therefore

K° = (F<x>)° c F,<x°>

by (118) and (120). But by (103) and (118)

(F<x2>)° = F]<(x°)2> .

Since F<x2> has index 2 in F<x> and F^<(x‘ ) > has index 2 in 

F.<x°> , order considerations show that

K° = (F<x>)° = F]<x°> .

Thus K° is a subgroup of G-j .

To prove (119), we have (from (106))

2 _ 2k. 2ki 4j . rx = a h q 0 mod F .

Since the factors on the right hand side of this congruence commute (as 

is easily seen from the presentation (50) of G), it follows that

2r _ 2k-r. 2kir 4jr „  . cx = a  h q mod (• .

Then (again from (50))

x2r+l _ fl2kr+kh-2kir+jq4jr+i mod F .
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Therefore

(x2r+1)a = aM2r+l) (l+4i )h(-2k1r+j)(l+4i )q|l mod F]

where ^  «= 4jr+i+2 if i is odd and ij = 4jr+i+4j if i is even.

It follows that

(x2” ')» = ,2kr>k(lt4i)h-2k1rtJ<l*«)qJ' lnod F)

= a2krh2k(rq;jra;(,*4i)^ <'*,1)ql,‘4jr "Oi F,

- (x2r)°x° mod F1 .

We have now proved (119) and hence Case 1 is complete.

? ? ^1^1 1̂ 2^2 2^2 
Case 2 : K n H s <h ,q > . L e t v  = a h q  , w  = h q

be elements of G . Since h2 and q] commute modulo F] , we see

that

(vw)° = v°w° mod F-j . (^21)

Now K/K n H = KH/H and therefore K/K n H is cyclic and 

K = V(K n H) ,

where V is cyclic. Thus from (T21) it follows that 

K° = V°(K n H)° mod F] ;
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i.e. F]K° = F1V°(K n H)° and so, by (118),

K° = (F1V°)(K n H)° . (122)

Applying case 1 to FV , we see that (FV)° is a subgroup of G-|

Also (118) shows that (FV)° = F]V° ; and from section 4.2 we know that 

(K n H)° is a subgroup of G, . Now, by section 4.1 and case 1, K 

contains all powers, in particular the inverse, of each of its elements. 

Therefore from (122)

K° = (K0 )"1 = (K n H)°(F1V°)

and hence K° is a subgroup of G1 .

Case 3 : K n H $ <h2 ,q2> . We claim that

4 4 4<a ,h ,q > s K . (123)

For, since K n H $ <h2 ,q2> , K contains an element

.Jln1l u = h q

where at least one of jj, i-| is odd. Also, since K ^ E , K contains 

an element

x = ah'iq’

2 . x = a2h2y j mod F .

F rom (106)



Suppose that i-j is odd. Then without loss of generality we may
2

assume that 1 ^ = 1  . Thus K contains [u,x ] ; and modulo F

o Ji 9 Ji 1 2
[u,x*] = [h q,a j = th '.a^ltq.a4 ]

= rq.a2] (by (53))

= h4 (by (52)).

Since F < K , it follows that h4 c K . Therefore

a 4 4
qH c <u\ii > s K .

Now suppose that i-| is even. Then is odd and we may even

assume that j] = 1 . Hence h = u4 < K . Also

tu.xJ - [ h q \ a h V l  = I h . a h V  lq Iq 1 ,ahdq11 .

Thus modulo F

[u,xl = (h,a3[q,al 1 = h"2q4 (h2q‘2) 1 (*">"» (50))

-2+2i, 4-2i,
5 h 'q 9

9 4-2i!Therefore h q c K . Then K contains
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It follows that, for all i, ,

4 4<h ,q > £ K .

Now K • contains x4 and, by (106), x4 = a4h4  ̂ . Thus a4 e K and

(123) follows.

Let J = <a4 ,h4 ,q4> . Then J < G . For, from (50) we see that 

<h4 ,q4> « G . Also from (52) and (53) a4 is central in G modulo 

<h4 ,q4> . Similarly J, = J° < G1 . For, from (55), it follows that

^(Y,) = <a]6 ,h4 ,q4> « G1 ;

and, modulo 8 2(Y,) , a, is central in G, 

Let g e G . Then

(Jg)° = Jl9° (124)

To see this, let y i J . Thus

y = a4kh4jq4i and g = a W 1

Then

4k+k, 4 j+j, 4i+i, 
yg = a h q rood F

and so

(yg)
(4k+k, )(1+Ai,) (4j+j1)(l+4i1) i2 

H a , '  hl ql mod F1
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where i2 = 41+1j+2 if i-, is odd and i2 = 4i+i1+4k1J1 if i1 is 

even by (118). Thus

k. j, i„
(yg)° = a1 h-j = g mod J-, .

Therefore

(Jg)° = U (yg)° £ j g° 
ycJ

and (124) follows.

The groups G/J and G1/J1 are isomorphic via the map induced by 

a -► a1 , h -> h1 , q q1 and o induces this isomorphism. Therefore if

g1,g2 c K , then

q°g°2 c = (JK)° (by (124))

= K°

by (123). Thus K° is a subgroup of G-, .

We have finally proved (116), i.e. for every non cyclic subgroup 

K of G with K $ E ,  K° is a subgroup of G, .
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4.6 Surjectivity of tt .

We now know that it , defined by (72), maps each subgroup of G 

to a subgroup of G-| of the same order. Let U and V be subgroups 

of G with U < V . Then

U 1’ < V" . (125)

For, by (76) and (107), E has exponent 32 and G has exponent 64.

Thus suppose that U is cyclic of order 64, generated by u = ah'lq 

Then V is non-cyclic and so V11 = Va . But u r V° and so 

<u > s V , i .e. U < V

Now suppose that V is cyclic of order 64, generated by v = ah'lq1 .
2

Then U < E n <v > and so

U* = Ua s <v2>° = <(v°)2> (by (103))

< <va> = V1' .

Finally suppose that neither U nor V is cyclic of order 64. Then 

U* = U° < V° = V71 . We have now proved (125).

In order to prove that tt is a projectivity from G to G1 it is 

sufficient now to show that each subgroup of G^ occurs in the image of 

tt . This will follow from the following result.
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Lemma4.6.1 Let G , G^ be finite 2-groups. Suppose that it is 

a map from the subgroup lattice of G into the subgroup lattice of Ĝ

such that U s V if and only if u" i v" and

(i) |U| = |Uff| . all U < G ,

(ii) U" is cyclic whenever U is cyclic ,

(iii) Gu = G] .

Then tt is a projectivity from G to G-j .

Proof. Suppose that the Lemma is false. Choose K-j s G-j with 

|K^| minimal subject to

(a) K-j has no preimage under n and

(b) there is a subgroup N s G with N1' > and |N :K^| = 2 .

This choice is possible by (iii). Also N is not cyclic,by (i) and (ii). 

Therefore there exist maximal subgroups  ̂ of N . Let M = n .

Then |N:M| = 4 and so |Nn :M‘| = 4 , by (i). Since M < N and

a N" and N/M , N^/M17 are elementary of order 4, it follows that 

K1 $ M77 . Let L1 = H" (i K] . Then L1 < M11 and L] a N17 with 

Nr/L^ elementary of order 8. Now |M77:L̂  | = 2 and therefore, by choice 

of Kj , there is a subgroup L s G such that L17 = L̂  .

We claim that

there is an element t c N such that t2 4 L (126)



For, if not, C^(N) s L and then L o N . Since |N:L|= 8 , N/L is 

then elementary of order 8. Thus would have a preimage under it .

Then (126) follows.

Let T = <L,t> . If T = N , then N = <M,t> and N/M is cyclic, 

which is not the case. Therefore T < N and |T:L| = 4 , by (126).

Thus |T7I:L.|| = 4 , by (i). Now we see that

there is a unique subgroup strictly between T and L .

For, if there were two such subgroups, they would be normal in T and L 

would be their intersection, showing that T/L is elementary of order 4.

But T/L is cyclic by definition.

Now T7T/L1 < N*'/L-j and so T1'/L̂  is elementary of order 4. Therefore 

there are three subgroups strictly between T" and L̂  (all of index 4 

in N77) and there is only one subgroup strictly between T and L , 

contradicting our choice of Kj . H

Returning to the conclusion of the proof of Theorem 4.1.1, we see that all 

the hypotheses of Lemma 4.6.1 are satisfied by our groups G and G-j , and 

the map it , defined in (50), (59) and (72). Therefore we have finally 

shown that n:G -*• G1 is a projectivity, H < G , H7' is not abelian, and 

H7' is core-free in G1 . This completes the proof of Theorem 4.1.1 .

□
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Remark. Lemma 4.6.1 does not hold for finite p-groups when p
3

is odd. For, let G be the non-abelian group of order p and exponent 

p and let G 1 be the elementary abelian p-group of rank 3. It is not 

difficult to define a map m , from the lattice of subgroups of G to 

the lattice of subgroups of G-j , which is not a projectivity but which 

satisfies the hypotheses of Lemma 4.6.1 . •
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Chapter 5.

On the embedding of core-free images of normal subgroups.

5.1 Introduction

As usual, let G and G] be groups, H < G and let *:G —  G] be a projectivity 

such that H* is core-free in G1. As already mentioned in 1.1, R. Schmidt 

( [19] , Theorem 3.4) has shown that, if G is finite, there exist series

1 = N .... < N t* H*’6

and

, G1
1 = Mq < M 1 < ___ < M s= (H )

of normal subgroups of G and G^respectively, such that, for all 

0 < 1 <  t-1,. O S  j<s-l, Ni+]/Ni and M ^ / M ^  are cyclic, and, even more, 

central in G and G1 respectively (i.e. [N.+1,G] £ N. and [Mj+1,G1]< M^),

if h " is quasinormal in G^. This chapter is just concerned with the 

attempt to extend Schmidt's result to infinite groups. We now briefly 

discuss the results obtained. First of all we recall the definition of 

series.

Let X be a group and let I be a linearly ordered set. Following 

Robinson ( [16] , 1.2), a series in X with ordered type - is a set of 

subgroups of X

J  * { va\ a e £ }

such that
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(b) \ < V a if t< a .

<C,Va «  *„•

The subgroups A and Va are the terms of if , and the groups ,\a /va 

are the factors of if . From the definition of if it follows that, for

1 i xe X, there exists a unique o= ct(x ) in r such that

X € A <T( X )\'«t(x )’

If Y i s a group acting on X, if is said to be Y-invariant if each 

term of if is Y-invariant.

Returning to the groups G, G., the projectivity * and the normal 

subgroup H of G, in the light of Schmidt's result the following question 

arises naturally:

do exist a G-invariant series if ■ {Aw , Vff|ael} in H ,G and a
G

G^invariant series ¿ f ^  {a ^,V^ |/ieM} in (H*) 1 such that

(1 M b /Vw and are cyclic, (1)

or, if H* is quasinormal in G^,

The following recent result due to Napolitani and Zacher ( [14] , Satz 2.6), 

reduces question (1) to the case that H is quasinormal in G^.

(ii) [Act, G J < va and [A^J, G ^ v , }  .
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Theorem 5.1.1. Let 6 and G1 be groups, t :G —  Ĝ  a projectivity

and H<3 G such that H is core-free in . If H is not quasinormal in

G,, then G and G, are periodic, G * ( Dr P.) x K, G, =  ( Or P? ) x k ’
1 1 ieI i 1 i€ I i

where P. and P.T are P-groups, and elements of distincts direct factors

have coprime order. (Thus, in particular, H = (H n Dr P^) x (HnK) and

H n K  < G). Moreover (HnK)T is quasinormal in G..

From Theorem 5.1.1 and the structure of P-groups it is clear that, 

in order to answer question (1) it is sufficient to show the existence 

of series of type (ii) assuming that H is quasinormal in G^. 

Unfortunately we have not been able to answer question (1) in total 

generality, and our proof holds only for a certain class of groups 

(see Theorem 5.3.4.). The reason for this is partially due to the fact 

that it is still not clear to what extent Maier-Schmid theorem 

(Theorem 1.2.5) holds for infinite groups; and, as a matter of fact. 

Theorem 1.2.5 is an essential tool in the proof of the above mentioned 

Schmidt's result. We discuss briefly the relevance of a possible 

extention to infinite groups of Theorem 1.2.5, in relation with question 

(1). Although, as we have seen in 2.2, Theorem 1.2.5 is false if we re­

move from the statement the hypothesis of finiteness of G, the following 

questions still do not have an answer. Let Q be a core-free quasinormal

subgroup of a group X;



. Xdoes exist an X-invariant series in Q whose factors are central

Is Q < Z  (X) for some n <oo if X is assumed to be finitely gene- 
nQ

rated modulo Q (i.e. X = < Q,x.,...,xn> ,n<oo ) ?

A positive answer to question (3) would lead, using a method described 

in [16] , 8.2, that we will briefly summarize in 5.3, to a positive 

solution of questions (1) and (2).
x

It is well known that, if X is finitely generated modulo Q, Q is
x

nilpotent of finite exponent ( [10]) and X/C^(Q ) is periodic ([ 4 ] ). 

Therefore question (3) can be split in the following way.

If X is finitely generated modulo the core-free quasinormal subgroup
X

Q and S is the Sylow p-subgroup of Q, is X/C^(S ) a p-group ?

If X is finitely generated modulo the core-free quasinormal subgroup 

Q, is X/CX<QX) finite ?

As far as we know, neither (4) nor (5) have been solved. On the other 

hand the situation has shown to be easier to handle in the context of 

projectivities, namely when there exist a group G, a normal subgroup

7T 7T
H of G and a projectivity w:G — ■ X = G such that Q = H .In this case 

we have been able to solve question (4). More precisely we shall prove

in X ?

the following theorem.
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Theorem 5.1.2. Let G and be groups, t :G —  G.j a projectivity 

and H o G  such that G/H is finitely generated and HT is a core-free

that is nil potent of finite exponent by Lemma 1.2.9 (i i >). Then

As far as question (5) is concerned, it is, unfortunately, still 

unsettled even in the context of projectivities. It is mainly for this 

reason that we have obtained an answer to question (1) only for a certain 

class A  of groups (see 5.3 for the definition of A  ), class for which 

question (5) has a positive solution.

In the next section we prove Theorem 5.1.2.

5.2 Proof of Theorem 5.1.2 * i

Since is a periodic nilpotent group (Lemma 1.2.9 (ii)), by Proposition

7t 7t n
1.2.8 (b), S < G. Therefore S is a Dedekind subgroup of G1. Since S < H , 

by Theorem 1.2.2 S* is quasinormal in G p  We claim that

in G^ by Theorem 1.2.2 and Lemma 1.2.9 (1).) Also, 1f S i 1, by 

Proposition 1.2.4 (vi) and Lemma 1.2.7, there exists a p-element w]€G]

quasi normal subgroup of G p  Let S^ be the Sylow p-subgroup of HT (recall

7f ]
) and G,/C„ ((S ) ) are p-groups.

b.

ST,G and (s’*) 1 are locally finite p-groups. ( 6 )

i n 1
This is clear for (S*) , since (S ) is the join of the nilpotent

y 7T V l
subnormal p-subgroups (S^) , as v̂  varies in G p  ((S ) is subnormal
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T T 1
which does not normalise S . Hence <(S ) ,w^> is a locally finite

non-abelian p-group. Then, by Proposition 1.2.8 (c) it follows that 

< (S1) ,w^> , and consequently ST’ , are locally finite p-groups.

In particular, by Remark 1.2.3,

the preimage under n of every conjugate of S in

is quasinormal in G.
(7)

Also, again by Remark 1.2.3,

Q
every Dedekind subgroup of G (of G.) contained in S *

G (8)
(in (s’1) ) is quasinormal in G (in G^).

Suppose now that x and y are elements of G such that
G

|<x>/<x>nCG(ST,G) | = q" and \<y>'/<y> n CQ ((S**) 1) I = rm where q and r 

are primes different from p. Assume also that <x> and <y> are infinite 

cyclic or of prime power order. We will show that

<x> < Cg (s',,G ) • (9)

and

<y>* i <L ((S’1) 1 ). HO)
1

Denote by the group ^  (s’r,<S,h>/S%<Sjh>), where

h e (T* { h « G | <h>’r is a p-group} and 1 >0. Assume for the moment that,

for all heiT and for i >1 we have
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and

l ^ h l  £ Si-l,h‘

Thus x acts trivially on the quotients Since x induces a

p'-automorphism on the finite p-group ST,<S,h>/S.^<s>h> (since

s"f/(s’T)<s h>T has finite index and is core-free in <S,h>T /S <s>h>T »

<S,h>T /s’ „ *, and therefore also <S,h>/S - h * are finite), by [ 9 ]<S,n> T»,-o»n̂

7.10 it follows that

[<x>,S |< ST

Similarly

Therefore

and

,<S,h>

(<y>\ ( s Y S*h>) < (S’,)<$>h>. .

1<X>,S1- ĥ iTS’f,<S,h> m}

[ < y > \ s n ] <  )< S  h 5 7  = 1

since ^ ( S " )  ^  i =1 by Proposition 1.2.4 (vi) and Lemma 1.2.7. In 

particular

l<x>,S*,<S,h>' =1

and

[<y>r.(s’r)<- .,] -l.'<S,h>

Therefore <x> and <y>* act trivially on the factors of the series

( 12 )
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*,<S,h>

and

1 < S c u < S *,<S,h>

1 < (S’) t «a (s’T)<S’h><5,n>

respectively. Recalling that, by (6), s’r,<^*h> and (s’t)< ^,h are locally 

finite p-groups, using again (9 ] 7.10, it follows that

and

[ x ,S,r*<S-h> ] =i

[<y>*, (S,r)< S ’h>n] -1.

Then, since by Proposition 1.2.4 (vi) and Lemma 1.2.7

(ST)Gl = < (STr)<S’h>,r I he 3* > and s’1’6 - < s’,<S,h> I *** > ’

(9) and (10) follow. Hence we are reduced to prove (11) and (12).

We claim that
T " 'l

<y>* and <x>* normalise every conjugate R of S .

This is clear for <y>T , and for <x>’T if <x>T is infinite cyclic or has 

order coprime to p, by Proposition 1.2.4 (vi) and Lemma 1.2.7 respectively. 

On the other hand, if <x>* is a p-group, then, from Proposition 1.2.8 (c) 

it follows that <x ,R>t is elementary abelian, and so (13) holds even in 

this case. Similarly
71

x and y normalise the preimage under n of every conjugate of S .

Consider now the group A * <S,h,x,y>, where he 0“ . From (13) it

follows that ( S V  * (S )< ^,h> and (S ) „ * (S )<j ^  • Hence, by
A

Theorem 2.1.1, S . . and s"*<S,h> are normal in A, and therefore 
*,<5,h>

(13)

(14)
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S. . andi,h i  ,h are nonial in A and A respectively for all i ¿0. Also,

as a result of lemr-a 1.2.6 (c) applied to the finite p-group <S,h> /IS )<s h>m

STS T /S ' is core-free in <S,h>,/S. . for all i 20. Fix an i>l. 
i,h i,h i ,n

Since our argument in order to prove (11) and (12) will ta<e place inside 

the groups 3 s < S,. ^,h,x,y> and B , factoring by S^j h and •

Me nay assume, without loss of generality, that S..^ h *1. Then, in 

particular, 1*1. Set X * < Q.(S),h>.

Q  (ST) is now core-free in X 

and, since ii^lS) is normal in B,
T T

ii^S ) is quasinornal in 3

by (8). Therefore, assuming il^S) * 1 (if n,(S) *1 tnere is nothing 

to prove), from Proposition 1.2.8 *C/ it rcllows that

X is a finite p-group.

Then lema3.2.1 (xi 1) applied to X and XT shows that

iys) contains a unique normal subgroup of X of order p.

Thus ftj(S) contains a unique minimal normal subgroup N, say, of B. let 

MT be a conjugate of W^(S ) in 3 such that N ^ X . Then ,1̂  N * 1 

and therefore

M_n n^S) *1.

Moreover, as a result of lemma 3.2.1 (ii) and (1v),

a  (X) and « 1 <X*> are elementary abelian

and
a i x )  • fl̂ (S) x n1(xT) * n { S * )  x h > ) .

(15)

0 6 )

(17)

(18)

(19)
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In particular, since n ^ S )  4 1 and li^S*) is not normal in X*. recalling

also that S, . < ii,(X), it follows from (19) that 
1, n 1

si,h ■ ni(x> and is,’h' ■ “i0'’1- 
Thus, by (14) and by the definition of B, we see that Mg * M<M h>.

2
Furthermore, by (18), h centralises a subgroup of order p of s1>h*

-r
Therefore, by (19), Mg 4 1 and consequently, by (17), lMg|« p. Hence Mg

T
is a core-free quasinormal subgroup of order p of B . The same argument 

used in proving (13) shows that <y>T and <x>* normalise every conjugate 

0f M ^ i n  b "\ Since <h>* does not normalise Mg ((15) and (18)), <yh> and 

<xh>* do not normalise M * as well. Hence, by Lemma 2.2.2,

1 4 |<yh>r,Mg) < <yh>* n ZfB*)" S * ^

and

1 4 [<xh/, Mg) < <xh>T n Z t B ^ J n S ^ .

On the other hand, by (15) and (19), (■ ^(X*)) contains a unique

subgroup of order p which is normalised by <h>’t , namely « 1(<h> ). Thus, 

necessarily,

and

It follows that

and

Set <hj> = <h> .

d, <h> * S, . n <xh>1 i, n

n (<h * ) * (Si h ) n <yh> . 

<x> centralises ii^h> 

<y>* centralises ii^(<h>T ).

( 2 0 )

( 21 )
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Using (19) we can write S, . = ii,(S 1 ) x i3,<h> and1 ,h 1 1
nht

S, . = i2 (S n!) x ii.Uh:»*) for every integer t. As t varies we have,
1, h r I

by (15),

ht n -1

ni21(s’rhl’r ) = 1 , nii ( S ^ 1 ) = 1. 
1 ,t -1

Finally, since <x> and <y>* normalise n.(S 1 ) and ^ ( S  1)

respectively ((14) and (13)), using (20) and (21), (11) and (12) follow.

In order to complete the proof of the theorem it remains to show that
^ G

G/Cg(ST,k ) and Gj/Cg ((S*) ) are periodic groups.

Let <g> be an infinite cyclic subgroup of G. Let also R71 be a conjugate 

of S* in G] and heir . For all i>l denote by Ri h/RT><R>h> the 9rouP

ii.(R
",<R,h>

/R ..<R,h>> T1.h/\ < R , l » t h e 5 r °“P °,<RRt-,.h/,W > :

As a result of Lemma 1.2.6 (c) applied to the finite p-group

<R,h>’r/RT<R h>* , we obtain

i Ri T h 5 C '  = , Ri . h : Ti , h > s  p’

and, moreover, R ^ R ^  h/ R ^ , ^  is core-free in <R,h>*/R1 *

Thus, recalling that <g>* normalises R ^ h and every conjugate of T ^ h 

in <R,h>n (Lemma 1.2.7) and, similarly, g normalises R1>h and the 

preimage under n of every conjugate of ^  h in <R,h>t , it follows that

I«”''

and

lgl 1 ,R1,h 1 - Ri-l,h’

where <g.>-<g>’f. As h varies in (T and R* varies in the set of conjugates

( 22)
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of S* in G^, the exponents of the groups have a common

, Gl
upper bound (this is because (S ) has finite exponent by Lemma 1.2.9 

(i),(ii)).Therefore there exists an integer s such that

9 (P- " S . R I S K 'f,<R,h>

and

I g!p"1)s .r'i s i r ’ i<R,h> 

n . _*r .
for all heiT and for every conjugate R of S in G^. Moroever h£jp(R )<R h>*=l.

by Proposition 1.2.4 (vi) and Lemma 1.2.7,for every R*. Therefore, since 
G

(S*) is the join of the R*'s, we obtain

| g(P"1)S .S**®]- 1

and

I 9(P'1’5 1 1 =,(S*> '1=1.

This proves (22). The proof of Theorem 5.1.2 is now completed.

□

5.3 On Maier-Schmid theorem in the context of projectivities.

Let A  be the class of groups defined as follows:

a group G belongs to A  if and only if every periodic homomorphic 

image of a finitely generated subgroup of G is finite.

Note that the class A  1s projectively Invariant. For, suppose that G c A  , 

*:G —  G] is a projectivity, F* is a finitely generated subgroup of G1
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and NT< F" such that f ’V n* is periodic. By Lemma 1.2.9 (i), I NF: N|

is finite. Also, since F/N^ is periodic, by hypothesis F/NP is finite.

Therefore |F : N|<o° and so F /N* is finite.

In this section we give a positive solution to question (1) stated 

in 1.1, assuming that the group G belongs to A  . We first give a brief

summary of the method employed, which is essentially the same as the one

described in [16] , 8.2. In fact the next paragraph is entirely taken 

from [16] , 8.2.

Let X be a group and let<y ,={A„ .vitrei} be a series in X. cf determines 

a binary relation -< on X defined as follows: x-<y means that either x = 1 

or x i 1 and <r(x) <o(yj (recall that <r(x) is the unique element of X 

such that x It is easy to see that < has the following

properties

(i) xx y and y x z  imply that xXz,

(ii) either x X y  or y x x (possibly both),

(iii) x -< 1 implies x = 1,

(iv) x x y  and z X y  imply xz ’-<y,

(v) y X x y imply yxz.

Conversely, if -< is a binary relation on X satisfying (23), it determines

a series 1n X in the following way. Let us define

x ~ y  if and only if both x x y  and y X x  hold.

Then ~  is an equivalence relation on G by (1) and (11). Let X be the set 
I

(23)
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i

of all /^-equivalence classes on G other than 111 (note that ill is a 

~-equivalence class by (iii)). Define a linear ordering on £ as follows: 

if a,T€ I , then <r< t if and only if a t t and there exist xe<r 

and y e T  such that x-<y.

By (i) •< is well-defined and, by (ii), -< is a linear ordering on £ .

If d e l  let

and

A ff = { x|x e G,x -<y for some yea)

It is shown in 1161 , 8.2,that |<r<=x} is a series in X.

Evidently we have obtained a 1-1 correspondence between series in X and 

binary relations on X satisfying (23).

Suppose now, in addition, that there is a group G acting on X and 

denote by x9 the image of x e X under the action of geG. If if is a 

G-invariant series in X such that G induces the identity on the factors 

of if , then the binary relation -< on X determined by if (in the way defined 

above) satisfies

x x  ̂ for all 1 ** x e X, geG.

For, x ]x9 e v0 (xj» and this implies that either x ^x9 = 1 or

<*(x ^x9)<<*(x). In both cases, by definition of -< , it follow that x-fix x9.

(24)

i

Conversely, if ^ is a binary relation on X satisfying (24) 1n addition to 

(23), then the series determined by -< in the way defined above is G-invariant 

and G induces the identity on the factors. For, suppose that 1 i x e A fl
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of all ^-equivalence classes on G other than 111 (note that (11 is a 

~-equivalence class by (iii)). Define a linear ordering on z as follows: 

if » , t e  z , then ff<r if and only if a / t and there exist x € a 

and y e r  such that x-<y.

By (i) •< is well-defined and, by (ii), -< is a linear ordering on z .

If a el let

and

A ct= { x | x e G,x -<y for some y e « }

It is shown in [16] , 8.2,that {Atf,V0 |«ex} is a series in X.

Evidently we have obtained a 1-1 correspondence between series in X and 

binary relations on X satisfying (23).

Suppose now, in addition, that there is a group G acting on X and 

denote by x9 the image of x e X under the action of geG. If if is a 

G-invariant series in X such that G induces the identity on the factors 

of if , then the binary relation -< on X determined by if (in the way defined 

above) satisfies

x x  ̂ for all 1 y x e X ,  geG.

For, x-1x9 € V . and this implies that either x ]x9 - 1 or 
"(x)

o(x ^x9)<<*(x). In both cases, by definition of -< , it follow that x-/;x x9 .

(24)

Conversely, if -< is a binary relation on X satisfying (24) 1n addition to 

(23), then the series determined by -< in the way defined above is G-1nvariant 

and G induces the identity on the factors. For, suppose that 1 i x c A fl
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of all /^-equivalence classes on G other than <11 (note that <11 is a 

~-equivalence class by (iii)). Define a linear ordering on x. as follows: 

if a , t € X , then a < t  if and only if a 4 t and there exi st x e a 
and y e r  such that x-<y.

By (i) ■< is well-defined and, by (ii), -< is a linear ordering on I .

If a let

and

A ct = { x | x  e G,x-<y for some yew}

It is shown in (161 , 8.2,that {A„,Va |<rei} is a series in X.

Evidently we have obtained a 1-1 correspondence between series in X and 

binary relations on X satisfying (23).

Suppose now, in addition, that there is a group G acting on X and 

denote by x9 the image of x e X  under the action of geG. If if is a 

G-invariant series in X such that G induces the identity on the factors 

of iP , then the binary relation -< on X determined by if (in the way defined 

above) satisfies

x-jtx"1^  for all 1 4 xeX, g e G. (24)

For, x ]x9 e V . ,, and this implies that either x ^x9 * 1 or 
<Mx)

o(x ^x9 )<°(x). In both cases, by definition of -< , it follow that x-/<x x9 .

Conversely, 1f -< is a binary relation on X satisfying (24) 1n addition to 

(23), then the series determined by -< in the way defined above Is G-1nvariant 

and G Induces the identity on the factors. For, suppose that 1 i x e A g
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for some ~-equi valence classa. We show that

( 2 5 )

for all geG. By (24) and by definition of A a , x ^x9 4 a. Thus, if 

x_1x9 i 1 (if x_1x9 = 1 obviously it belongs to ), denoting by [x 1x9]

the ~

Therefore , and since x ^x9 e A , , (25) follows.
[ x - V j

We recall that, if G is a group, a local system C of subgroups of G 

is a collection of subgroups of G such that every finitely generated 

subgroup of G lies within some member of C .

The following lemma, whose significance will be shortly clear, is a 

particular case of Lemma 8.22 in [16] .

Lemma 5.3.1. Let C be a local system of subgroups of a group G. 

Suppose that, for each H e  C, there is a function : H x X —  (0,1) . 

Then there is a function a: G x G —  10,1) such that, for every finite

subset {(x1,y])...... .(x^yj) of G x G* there is an He C such that

(x^.y^) H x H and «(x^.y^) = for 1 ' !>•••♦ m *

Remark 5.3.2. A binary relation ■( on a set X can be described by 

means of the function

a : X x X —  (0,1)

defined by

w„(x,y) » 1 if x-<y ,

À
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« (x,y) = 0 otherwise.

In particular, if X is a group and C is a local system of subgroups of X 

such that for each Y e C there is a binary relation ■< on Y, then 

Lemma 5.3.1 says that

there is a binary relation ■< on X such that, for every

finite subset ((x^.y.)...... ^xn ,yn ^  of X x X there

is Y e C such that x.. ,ŷ  e Y and x^ -< y^ if and only if 

x • -<„y ■ for 0 S i < n .i Y l

( 26)

Proposition 5.3.3. Let G be a group acting on a group X.

(a) If C is a local system of subgroups of X such that for each

Y € C there is a G-invariant series ify in Y on whose factors the action 

induced by G is trivial, then there is a G-invariant series in X with the 

same property.

(b) If is a local system of subgroups of G such that for all

H e C, there is an H-invariant series £f° in X on whose factors the 
1 n

action induced by H is trivial, then there exists a G-invariant series 

in X on whose factors the action induced by G is trivial.

Proof (a) For each Ye C the binary relation -< on Y determined 

by satisfies (23) and (24) (with Y and G for X and G respectively).

By Remark 5.3.2 there is a binary relation ■< on X satisfying (26)

(with C for C and X for X). Then, since for each Y e t  the binary 

relation -< satisfies (23) and (24) (with Y for X and G for G), it is

clear that -< satisfies (23) and (24) as well (with X for X and G for G).



<* (x,y) = 0 otherwise.

In particular, if X is a group and C is a local system of subgroups of X 

such that for each Y e C there is a binary relation ■< on Y, then 

Lemma 5.3.1 says that

there is a binary relation -< on X such that, for every

finite subset {(x^.y^), ... , (xn»YnM  of X x X there

is Y € C such that x.,y.e Y and x.-<y. if and only if i i l i

x.j for 0 £ i <, n.

Proposition 5.3.3. Let G be a group acting on a group X.

(a) If C is a local system of subgroups of X such that for each

Y e C there is a G-invariant series if in Y on whose factors the action 

induced by G is trivial, then there is a G-invariant series in X with the 

same property.

(b) If is a local system of subgroups of G such that for all

H e C, there is an H-invariant series £f°u in X on whose factors the 
1 H

action induced by H is trivial, then there exists a G-invariant series 

in X on whose factors the action induced by G is trivial.

Proof (a) For each Ye C the binary relation < on Y determined 

by ify satisfies (23) and (24) (with Y and G for X and G respectively). 

By Remark 5.3.2 there is a binary relation -< on X satisfying (26)

(with C for C and X for X). Then, since for each Y e C the binary 

relation -< satisfies (23) and (24) (with Y for X and G for G), 1t 1s 

clear that -< satisfies (23) and (24) as well (with X for X and G for G).
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Consequently, as shown in the beginning of the section, the series in X

associated to -< satisfies the required conditions.

(b) For each H e r the binary relations on X determined by if 
I H H

satisfies (23) and (24) (with X for X and H for G). By considering

C* = {*H |XH = X for all H € as a local system of subgroups of X and

associating to each X the binary relation -< , by Remark 5.3.2 it follows

that there is a binary relation ■< on X satisfying (26) (with C  for JL’ and X

for X). Then, since for each H e P the binary relation -< satisfiesI H

(23) and (24) (with X for X and H for G), it is clear that -< satisfies 

(23) and (24) as well (with X for X and G for G). Consequently the series 

in X associated to <  satisfies the required conditions.

□

We are now ready to prove

Theorem 5.3.4. Let G and G^ be groups, H<jG, and suppose that G e ji .

Let *r: G — -G^ be a projectivity such that H* is core-free in G ^  Then 

there exist a G-invariant series if in and a G.-invariant series
Q

¡f in (Ht) 1 whose factors are cyclic and if, in addition, is quasinormal 

in G^, then G induces the identity on the factors of if and G1 induces the 

identity on the factors of

Proof. As we have already pointed out in 5.1, as a result of 

Theorem 5.1.1, we may assume that h’ 1s quasinormal 1n G^. Let J  be the set 

of finitely generated subgroups of G. If Fe J  set ■ { Eej-| E £ F } . By
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Theorem 5.1.2 F/Cr(H’N<H,F>/H u _ )and F*/C ((h ’')<H,F> /(H*) )
F **<H*F> F* <H,F>*

are periodic and therefore finite (use the projective invariance of for the finiteness 

of the latter) by the hypothesis on G. In particular has a finite number
<H -^r

of conjugates in <H,F>’r; then, considering that 1(H) ’ : H | < oo

(Lemma 1.2.9 (i)), it follows that (H,r)<H,F> /(H^) , and hence also
<H,F>

H>r’< ’ >/H _ are finite groups. Again Theorem 5.1.2 implies that there
^,<H,F>

exists an integer n̂ . such that

iff*-*" < 2■ « « . F ^ / t H ^  ) (27)

and

(28)

Let now Xe J" , Y . Set

and

>0 - H , >i

4 o . ( H V " - fc

. X.....X I for all 1 £f«N

i hY m >

i times

. X, ...,X ] for all 1 < 1 e U. 
1 times

Then (27) and (28) show that, if Z € J

F < H and -  (H tu 7^7n^ *,<H,Z> nz <H,Z>

Thus, since z £j- H <R z>* * 1, we obtain

n y. 
iell i

n a 
U U  i

Therefore I F, } , Is an X-invariant series In h ?,,<H,Y > on whose factors 

X acts trivially. Similarly {¿1 } ic|) 1s an x^-invariant

series in (h ’')<H,Y on whose factors X acts trivially. As Y varies

in 5^, the groups H ’T,<H,Y> form a local system of X-invariant subgroups
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of and the groups (H’r)<H,Y> form a local system of X^-invariant
n G]

subgroups of (H ) . Therefore, by Proposition 5.3.3 (a) there exist an
Q

7T G ^ 7T 1
X-invariant series in H ’ and an X -invariant series in (H ) on whose

71
factors X and X respectively act trivially. Finally, as X varies in T  , 

the groups X and X * form local systems of G and G1 respectively. Applying 

Proposition 5.3.3 (b) it follow that there exist a G-invariant series in
Q

H*’® and a G^invariant series in (H^) , on whose factors G and Ĝ

respectively induce the identity.

□
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