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Abstract

The binomial random graph model G(n, p), along with its near-twin sibling G(n,m),

were the starting point for the entire study of random graphs and even probabilistic

combinatorics as a whole. The key properties of these models are woven into the

fabric of the field and their behaviour serves as a benchmark to compare any other

model of random structure. In this thesis we contribute to the already rich literature

on G(n, p) in a number of directions.

Firstly, vertex to vertex hitting times of random walks in G(n, p) are con-

sidered via their interpretation as potential differences in an electrical network. In

particular we show that in a graph satisfying certain connectivity properties the

effective resistance between two vertices is typically determined, up to lower order

terms, by the degrees of these vertices. We apply this to obtain the expected values

of hitting times and several related indices in G(n, p), and to prove that these values

are concentrated around their mean.

We then study the statistics of the size of the r-neighbourhood of a vertex

in G(n, p). We show that the sizes of these neighbourhoods satisfy a central limit

theorem. We also bound the probability a vertex in G(n, p) has an r-neighbourhood

of size k from above and below by functions of n, p and k which match up to

constants.

Finally, in the last chapter the extreme values of the r-degree sequence are

studied. We prove a novel neighbourhood growth estimate which states that with

high probability the size of a vertex’s r neighbourhood is determined, up to lower

order terms, by the size of its first neighbourhood. We use this growth estimate to

bound the number of vertices attaining a smallest r-neighbourhood.

v



Chapter 1

Introduction

In this thesis we shall consider various properties and statistics of the binomial

random graph model G(n, p). The binomial random graph is the distribution over

n-vertex simple labelled graphs generated by including each edge independently with

probability p. The random graph G(n, p) has been the subject of intense study over

the previous half century and there are several books on the topic [20, 43, 50].

The model is studied for a variety of reasons, one reason is that many graph

properties undergo a transition around some threshold value of p. One of the most

remarkable of these transitions is the “double jump” phase transition for the size

of the largest component of the graph, this was first observed and shown by Erdős

and Rényi in the landmark paper [38]. The model has served as a test bed for other

percolation techniques such as susceptibility [49].

Random walks on graphs have also received a lot of attention throughout the

last century [2, 57, 58]. Many graph properties such as expansion are closely related

to the hitting and cover times of random walks [23], there is also a close connection

to spectral properties [5]. We can view a group as a graph and then amenability

can be determined by the rates of escape of a random walk on the group [9]. Many

algorithms utilise random walks for example random walks were used to solve the

undirected reachability problem in polynomial time and log space [3]. The celebrated

Markov chain Monte Carlo algorithms for sampling from a probability distribution

can also be seen as random walks on graphs and their success is dependent on the

mixing time of this walk [32, 61]. Some applications of random walks on random

graphs are surveyed in [30].

Interpreting a graph as an electrical network has yielded many great things,

most notable for this thesis is the connection to random walks [24, 33, 72]. Electrical

networks and resistance forms play a role in theory of convergence of stochastic
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processes on discrete metric spaces [53]. Recently the effective resistance has also

found a use in graph sparsification [69].

The first part of the thesis is concerned with effective resistance and param-

eters related to vertex hitting times of random walks on G(n, p). We calculate the

effective resistance R(i, j) between two vertices i, j of G(n, p) and show that with

high probability for a given pair the leading order term for the effective resistance

is given by the sum of the reciprocals of the degrees of i and j (Theorem 5.3.1).

Exploiting the strong connection between electrical networks and random walks we

use our resistance bounds to calculate the expectation of the vertex hitting times,

Kirchhoff index and a number of related indices (Theorem 5.1.1). We also show

concentration around the mean for these quantities (Theorem 5.2.1). In particular

we show that expected time for a random walk to travel between two typical vertices

in G(n, p) is n± o(n) w.h.p. (Theorem 5.2.1 and Corollary 2.3.3).

The second half of the thesis is concerned with the distribution of the r-

neighbourhoods in G(n, p). As will be discussed in Section 1.2 many problems in

random graphs such as determining the diameter of the graph and existence of

the giant component can be approached by showing that the neighbourhoods of

vertices in the graph grow at a certain rate. This is typically done by comparing

the neighbourhoods to generations in a branching process or Galton-Watson tree. It

seems natural to study the distribution of the r-neighbourhoods sizes and a greater

understanding of these may be useful for other problems in G(n, p). A good way to

understand the r-neighbourhood distribution when a closed description of the law in

terms of known distributions seems elusive is to study the probability that a vertex

u has exactly k vertices lying at distance precisely r from it in G(n, p). We bound

this probability from above and below by functions which differ only by a constant

factor (Theorem 6.0.1). We also prove a central limit theorem for the size of the

r-neighbourhood of a vertex in G(n, p) (Theorem 6.0.2). Indeed, what we show is

that the size of the rth-neighbourhood of a vertex centred by the mean (np)r and

scaled by standard deviation (np)(2r−1)/2 converges in distribution to a standard

normal distribution. The order of the mean here is what one would expect from a

graph with average degree np and good expansion properties. Why the standard

deviation is (np)(2r−1)/2 is less clear.

In the last Chapter we prove a growth estimate for the r-neighbourhoods

(Theorem 7.1.1). This estimate differs from any I have seen in the literature as it

states that the r-neighbourhood of a vertex is concentrated around (np)r−1 times

the size of the first neighbourhood. This is used to give a bound on the number

of vertices with minimum degree which is smaller than any fixed positive decimal
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power of n, for G(n, p) above the connectedness threshold (Theorem 7.3.4). In the

final section we offer a conjecture regarding the threshold for uniqueness of vertices

with a minimum r-neighbourhood in G(n, p) (Conjecture 7.4.1).

We now give a more detailed overview of the results and the structure of the

thesis before reviewing the literature relating to the results presented in this thesis.

1.1 Overview and results

In Chapter 2 we will introduce binomial random graphs, hitting times and the

related random walk indices we study in the first half of the thesis. We shall also

formally define what we mean by the effective resistance R(i, j) between two vertices

i, j ∈ V (G), informally this is the potential difference between i and j when one

unit of current flows from i to j and each edge has unit resistance. For now we

shall try and state the results with as few definitions as possible. The theorems are

numbered by the chapter/section where they are proved.

1.1.1 Random walks and effective resistance

In Chapter 3 we define the modified-breadth first search algorithm MBFS(G, {i, j}).
This algorithm takes a graph G and two vertices i, j as input and outputs a sequence

of “pruned” neighbourhoods indexed by distance from {i, j}. We then define a

connectivity property for graphs, Definition 3.3.1, which we call the strong k-path

property. This property roughly says there are many paths of length at most k

between the second neighbourhoods of i and j. The main theorem of the chapter

gives an upper bound for the effective resistance in graphs satisfying the strong k-

path property. The bound on R(i, j) is in terms of the reciprocals of the pruned

neighbourhoods output by the algorithm MBFS(G, {i, j}).
In Chapter 4 we show that provided the edge parameter p in the random

graph G(n, p) lies in the range c log n ≤ np < n1/10 for some fixed c > 0 then

the strong k-path property is satisfied for a given pair of a vertices i, j with high

probability. We also prove a number of results about the distribution of the pruned

neighbourhoods output by the MBFS algorithm run on G(n, p) and provide couplings

to the original first and second neighbourhoods of i, j in V (G).

In Chapter 5 we apply the results of Chapter 4 to G(n, p). Firstly, for i ∈
V (G) we let γr(i) denote the number of vertices at distance r from i, thus γ1(i)

is the degree of i. Let G ∼d G(n, p) mean G is distributed according to the law of

G(n, p). By applying the resistance bound from Chapter 4 to G(n, p) we obtain

Theorem 5.3.1. Let G ∼d G(n, p) and i, j ∈ V, i 6= j.

3



(i) For every c > 0 if c log n ≤ np ≤ n1/10, then

P
(∣∣∣∣R(i, j)−

(
1

γ1(i)
+

1

γ1(j)

)∣∣∣∣ > max

{
1

γ1(i)2
+

1

γ1(j)2
,
9(γ1(i) + γ1(j)) log n

γ1(i)γ1(j)np log(np)

})
≤ 2np2 + o

(
e−np/4

)
.

(ii) For every c > 0 if np = c log n, then for any fixed k > 0

P
(∣∣∣∣R(i, j)− 2

c log n

∣∣∣∣ > 10

c2 log(n) log log(n)

)
≤ 5

(log n)k
.

(iii) If np = ω(log n) and np ≤ n1/10, then

P
(∣∣∣∣R(i, j)− 2

np

∣∣∣∣> 7
√

log n

(np)3/2

)
= o

(
1

n7/2

)
.

Thus with high probability the main contribution to the effective resistance

R(i, j) between two given vertices i, j ∈ V comes from the flow through edges

connecting i and j to their immediate neighbours.

Exploiting the strong connection between random walks and effective resis-

tance, an outline of this connection is given in Sections 2.2 & 2.5, we can apply our

bounds on resistance to a number of random walk indices. The first of these are ran-

dom walk hitting and commute times, denoted h(i, j) and κ(i, j) respectively; they

are the expected time taken for a random walk from i ∈ V to first visit j ∈ V , and

then also return to i in the case of κ(i, j). Another is the Kirchhoff index, K(G),

which is the sum of all effective resistances in the graph. The remaining indices

are stationary hitting times Hi(G), the mean hitting time T (G), Kemeny’s constant

H(G), and cover costs cci(G), cc(G). These are sums of hitting times weighted by

combinations of stationary or uniform distributions of vertices. These quantities

will all be defined and introduced formally in Chapter 2.

Let C := Cn be the event that G ∼d G(n, p) is connected. Let a(n), b(n) :

N→ R, then for ease of presentation we use the notation

a(n)
O
= b(n) to denote a(n) =

(
1±O

(
log n

np log(np)

))
b(n).

Theorem 5.1.1 concerns moments of the above graph indices on G(n, p) conditioned

to be connected. This conditioning is to ensure the expectation is bounded.

Theorem 5.1.1. Let G ∼d G(n, p) with log n+ log log log n ≤ np ≤ n1/10. Then for

any i, j ∈ V (G) where i 6= j,

4



(i) E
[
R(i, j)

∣∣C] O= 2

np
, E

[
h(i, j)

∣∣C] O= n, E
[
κ(i, j)

∣∣C] O= 2n,

(ii) E
[
K(G)

∣∣C] O= n

p
, E

[
cc(G)

∣∣C] O= n, E
[
cci(G)

∣∣C] O= n,

(iii) E
[
K(G)2

∣∣C] O= n2

p2
, E

[
h(i, j)2

∣∣C] O= n2, E
[
cci(G)2

∣∣C] O
= n2,

(iv) E
[
Hi(G)

∣∣C] O= n, E
[
H(G)

∣∣C] O= n, E
[
T (G)

∣∣C] O= n,

(v) E
[
Hi(G)2

∣∣C] O= n2, E
[
H(G)2

∣∣C] O= n2, E
[
T (G)2

∣∣C] O= n2.

We also have concentration for these indices resulting from their moments.

Theorem 5.2.1. Let G ∼d G(n, p) with log n + log log log n ≤ np ≤ n1/10, f(n) :

N → R+. Then for X ∈ {h(i, j), κ(i, j), K(G), Hi(G), H(G), T (G), cci(G), cc(G)},
i, j ∈ V, i 6= j,

P

(∣∣∣X − E
[
X
∣∣C] ∣∣∣ > E

[
X
∣∣C]√ f(n) log n

np log(np)

)
= O

(
1

f(n)

)
+ P(Cc) .

Notice that P(Cc) ≤ elog(n)−np ≤ 1/ log log(n) by Theorem 2.3.1, so in par-

ticular by choosing f(n) = log log(np) above we see that these random variables

concentrate in a sub-mean interval with high probability. Theorems 5.1.1 and 5.2.1

are valid only for np ≤ n1/10, however concentration for all of the aforementioned

random variables has been determined for np above this range by spectral methods

or otherwise. The original contribution of this thesis is determining expectation and

concentration close to the connectedness threshold np = log n where it is hard to

obtain good estimates on the relevant spectral statistics of G(n, p). In particular

the results of this thesis extend or complement some or all of the results in the

papers [22, 51, 59, 73], this will be outlined in Section 1.2. It is noteworthy that if

np = ω (log(n)) then tighter concentration can be obtained for the above quantities

by Theorem 5.3.1 (iii). For example the next corollary, proved in section 2, follows

almost directly from Tetali’s formula (2.14) and Theorem 5.3.1 (iii).

Corollary 2.3.3. Let G ∼d G(n, p) where np = ω(log n). Then

P

(
sup
{i,j}⊆V

|h(i, j)− n| > 11n

√
log n

np

)
= o

(
1

n3/2

)
.

Notice that Theorem 5.2.1 holds for one pair i, j ∈ V and that the exceptional

probability is too large for a union over all pairs. This seems disappointing however

5



if np = Θ (log(n)) then the statement of Theorem (5.2.1) does not hold for all pairs

of vertices as shown by the following proposition.

Proposition 3.1.4. Let G ∼d G(n, p). If np = log(n) + 100 log log log(n), then

P(there exists i, j ∈ V : h(i, j) > n log(n)/2) = 1− o(1).

For any 1 < c <∞ if np = c log(n) (1± o(1)) then there is an a > 0 such that

P(there exists i, j ∈ V : h(i, j) > (1 + a)n) = 1− o(1).

Bollobás & Thomason [21, Theorem 1] showed that the threshold for having

minimum degree k(n) coincides with the threshold for having at least k(n) vertex-

disjoint paths between any two points. Let paths2(i, j, l) be the maximum number

of paths of length at most l between vertices i and j of G that are vertex disjoint

on V \ (B1(i) ∪B1(j)). The strong k-path property can be used to prove a related

“local first neighbourhood relaxation” of this statement for two vertices.

Theorem 5.4.2. Let G ∼d G(n, p) where for any c > 0, c log n ≤ np ≤ n1/10. Let

l := log n/ log(np) + 9. Then for i, j ∈ V where i 6= j,

(i) P(paths2(i, j, l) 6= min{γ2(i), γ2(j)}) ≤ 5n3p4 + o
(
e−7 min{np,logn}/2),

(ii) P
(∣∣paths2(i, j, l)− (np)2

∣∣ > 3(np)3/2
√

log np
)

= o (1/np).

1.1.2 The statistics of r-neighbourhoods in G(n, p)

In Chapter 6 we consider the distribution of the size of the r-neighbourhood of a

vertex u in the binomial random graph G(n, p). It is fairly straightforward to see

that conditional on the sizes of all the preceding neighbourhoods {γ1(u)}r−1
i=0 we

have that γr(u) is distributed according to Bin
(
n−

∑r−1
i=0 γi(u), 1− (1− p)γr−1

)
.

We are interested in P(γr(u) = k), this is the probability that a vertex attains a

neighbourhood size k. It is not so clear how this probability should depend on n, p

and k from the conditional distribution, we show the following.

Theorem 6.0.1. Let G ∼d G(n, p), where np→∞, and u ∈ V . Let r := r(n), r ≥ 1

and k := k(n) be such that (np)2r = o (n) and k = Θ((np)r). Let α = k/(np)r. Then

there exists C := C(α) <∞ such that

P(γr(u) = k) ≤ C · e
(α−α log(α)−1)np√

(np)2r−1
.

6



If in addition α > 1/2π then there exists c := c(α) > 0 such that

P(γr(u) = k) ≥ c · e
(α−α log(α)−1)np√

(np)2r−1
.

This theorem applies to any r(n) up to ≈ log(n)/2 log(np) which is close to

half the diameter of G(n, p) [25]. Theorem 6.0.1 is almost a local limit theorem for

γr(u) however, we only know the limit up to a constant. We also prove the following

central limit theorem for γr(u).

Theorem 6.0.2 (Central Limit Theorem for γr(u)). Let G ∼d G(n, p), where np→
∞. Let r := r(n) be such that (np)r+1/2 = o (n) and let u ∈ V . Then(

γr(u)− (np)r

(np)(2r−1)/2

)
d−→ N (0, 1).

The convergence above is in distribution to a normal random variable with

mean zero and variance one.

The final chapter, Chapter 7, is somewhat more speculative. We consider one

extreme of the r-degree sequence, namely δr which is the smallest r-neighbourhood

of any vertex in G(n, p). We prove a technical theorem which shows that the r-

neighbourhood of vertex in G(n, p) is essentially determined by its first neighbour-

hood.

Theorem 7.1.1. Let G ∼d G(n, p), u ∈ V and r := r(n) ≥ 1 be such that (np)r+1 =

o (n). Let λ∗ :=
√

min {10γ1(u) log(np), 2 log(n)} and define the event

Eu,r :=

r⋂
i

{∣∣γi(u)− γ1(u)(np)i−1
∣∣ ≤ λ∗(np)i−1

√
γ1(u)

np

}
.

For any c > 0 if np ≥ c log n then P((Eu,r)c) = o
(

1
n

)
+ o(e−np) .

This estimate is applied to prove a novel upper bound on the number of

vertices attaining an r-neighbourhood of minimum size.

Theorem 7.3.4. Let G ∼d G(n, p) where lim inf
n→∞

np− log(n) > −∞. Let r := r(n) ≥
2 be such that (np)r+1 = o (n). Then with high probability the number of vertices

attaining an r-neighbourhood of minimum size is bounded above by e
O
(√

log(n)
)
.

I believe that this bound is far from optimal and in the last section I motivate

Conjecture 7.4.1 which states that above the connectedness threshold there is a

unique vertex with smallest r-neighbourhood for r ≥ 2.
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1.2 Literature and background

As noted above many results in the literature on random walk indices arise from

connections with spectral theory. To discuss these results we must first clarify some

definitions. Let A be the adjacency matrix of a graph G and D be the diagonal ma-

trix with Di,j = γ1(i) if i = j and Di,j = 0 otherwise. The combinatorial Laplacian

L is defined as L := D − A. Let L†(G) denote the Moore-Penrose pseudoinverse of

L(G). This is a generalisation of the inverse of a matrix, see [66] for more details.

Boumal & Cheng [22] exploit an expression for the Kirchhoff index K(G) in

terms of the trace of L†(G) to obtain expectation and concentration for K(G) on

G(n, p) with np = ω
(
(log n)6

)
. We will now outline a related expression for K(G)

and explain how this can also be used with spectral statistics to control K(G). Let

λi be the eigenvalues of L(G), where G is a finite connected graph. Then by the

matrix tree theorem we have the following expression for the Kirchhoff index [45]

K(G) =
∑
λi 6=0

1

λi
. (1.1)

A theorem of Coja-Oghlan, [27, Theorem 1.3], states that if G ∼d G(n, p) with np ≥
C0 log n for sufficiently large C0 then the non-zero eigenvalues of L(G) concentrate

around the means. Combining these estimates with (1.1) yields concentration for

K(G) and with extra work the leading order term of E
[
K(G)

∣∣C] can be determined

when np ≥ C0 log n. It is of note however that Boumal & Cheng obtain second order

terms for E
[
K(G)

∣∣C], which is not possible with the latter method. Theorems 5.1.1

and 5.2.1 extend the range of known results giving expectation and concentration

for K(G) when np ≥ log n+ log log log n.

Löwe & Torres [59] obtain concentration results for H(G), Hi(G), κ(i, j) on

G(n, p), defined as Kemeny’s constant, stationary hitting time and commute time

respectively. Again, the result comes from using expressions for these quantities

in terms of the eigenvectors and eigenvalues of the transition matrix of the simple

random walk, these expressions can be found in [58]. Löwe & Torres then apply

results from Erdős et. al. [35, 36] to bound from above the reciprocal of the spectral

gap. Löwe & Torres require np = ω
(
(log n)C0

)
for some C0 > 0 sufficiently large

as this is needed to apply the results in [35, 36]. Theorems 5.1.1 and 5.2.1 extend

these results to the range np ≥ log n+ log log log n.

Von Luxburg, Radl & Hein [73, Theorem 5] prove bounds on the difference

of h(i, j)/2|E| and κ(i, j)/2|E| from 1/γ1(i) + 1/γ1(j) and 1/γ1(i) respectively for

non bipartite graphs by the reciprocal of the spectral gap and the minimum degree
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of G. They then apply these to various geometric random graphs. The issue with

applying these bounds to Erdős-Rényi graphs is that we have to bound from above

the reciprocal of the spectral gap so a lower bound on the spectral gap is required.

This appears to be a very hard problem and to the author’s knowledge the state of

the art in eigenvalue separation for G(n, p) are the papers [35, 36]. So, as is the case

with the Löwe & Torres result, if we wish to apply these to get concentration for

h(i, j), κ(i, j) in G(n, p), then we have to make the assumption np = ω
(
(log n)C0

)
for some C0 sufficiently large. Theorem 5.2.1 however provides concentration results

for h(i, j) and κ(i, j) when log n+ log log log n ≤ np ≤ n1/10.

In [51] Jonasson studies the cover time, the expected time to visit all ver-

tices from the worst start vertex, for G(n, p). He bounds the cover time by showing

effective resistances and hitting times on G(n, p) concentrate in the regimes where

ω(log n) = np ≤ n1/3. Jonasson does not use spectral methods and instead achieves

an upper bound on the effective resistance by finding a suitable flow. This is the

approach we have also taken, however we use a refined analysis and extend Jonas-

son’s results for hitting times to the case where np ≥ log n + log log log n and for

effective resistance to the case np ≥ c log n, c > 0.

It is worth noting that the cover time has since been determined for all

connected G(n, p) by Cooper & Frieze [28] using mixing time estimates. One cannot

deduce much about the individual hitting times h(i, j) from this result. The question

we address is: “what does a typical hitting time look like?”. The mixing time of

G(n, p) has also received much attention [13, 14, 42, 63].

A neighbourhood growth estimate is the statement: with probability X the

random variable γr(u) lies in the interval Y . We use these frequently, an example

of a standard growth estimate is Lemma 4.1.2, whereas Theorem 7.1.1 is a more

specialised. One problem ffor which neighbourhood growth estimates are invaluable

is estimating the diameter. One way to bound the diameter is to let the neigh-

bourhoods branch from two distinct vertices until they are large enough that they

share a common vertex or there is an edge between them with high probability. It

turns out that this is quite an effective way to estimate the diameter in G(n, p) see

[16, 25, 67]. We prove the strong k-path property in Chapter 3 using a similar idea.

Another set of problems where the distribution of the r-neighbourhoods of

G(n, p) have been considered is in the reconstruction and assembly problems [17, 62].

They ask whether given certain local information, such as some neighbourhood

statistics, about a (random) graph it is possible to determine the graph in question.

These problems are related to the graph isomorphism problem [8]. To my knowledge

a central or local limit theorem for the r-neighbourhoods has never been proven.
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Chapter 2

Preliminaries

We must now clarify some notation. Throughout, unless otherwise stated, we shall

take G = (V,E) to be an n-vertex simple graph. For a graph G let d(i, j) be the

graph distance between i, j ∈ V and define the following

Γk(i) := {j ∈ V : d(i, j) = k} , γk(i) := |Γk(i)| , Bk(i) :=

k⋃
h=0

Γh(i), (2.1)

which are the kth neighbourhood of i, size of kth neighbourhood and the ball of

radius k centred at i respectively. Let R+ and Z+ denote the strictly positive real

numbers and integers respectively. We use the following asymptotic notation. Let,

� f(n) = O(g(n)) if there exists N ∈ N,K ∈ R+ such that for all n > N, |f(n)| ≤
Kg(n),

� f(n) = o(g(n)) if for any ε > 0 there exists N ∈ N such that ∀n > N, |f(n)| <
εg(n),

� f(n) = Ω(g(n)) if there exists N ∈ N,K ∈ R+ such that for all n > N, f(n) ≥
Kg(n),

� f(n) = ω(g(n)) if for any K ∈ R+ there exists N ∈ N such that for all

n ≥ N, f(n) ≥ K|g(n)|,

� f(n) = Θ(g(n)) if f(n) = Ω(g(n)) and f(n) = O(g(n)),

� f(n) ∼ g(n) if for any ε > 0 there exists N ∈ N such that for all n >

N, |f(n)/g(n)− 1| < ε.

Throughout log(·) denotes the natural logarithm base e. We will make frequent use

of the following inequalities.
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Hölder’s inequality: For k = 1, . . . , n let Xk be random variables, pk ∈ [1,∞) where∑n
k=1 1/pk = 1 and E

[
Xpk
k

]
exists, then

E[X1 · · ·Xn] ≤ E[Xp1
1 ]

1/p1 · · ·E[Xpn
n ]1/pn . (2.2)

Bernoulli’s inequality: Let x ≥ −1, then

(1 + x)r ≤ 1 + rx for 0 ≤ r ≤ 1 and (1 + x)r ≥ 1 + rx for r ≥ 1. (2.3)

Note also that if r ≥ 1 and 0 ≤ x ≤ 1 and x→ 0 then by the binomial theorem

(1− x)r ≤ 1− rx+ (rx)2/2. (2.4)

2.1 Probabilistic notions and tools

For a sequence of events E := {En}∞n=0 we say that the event E holds with high

probability (w.h.p.) if lim
n→∞

P(En) = 1.

For a random variable X let X ∼d Y denote X being distributed according

to the law of Y .

For random variables A,B, we say that B dominates A if P [A > x] ≤
P [B > x] for every x and we use the notation B �1 A, or A �1 B in this case.

If A �1 B and A,B ≥ 0 then E [Aα] ≤ E [Bα] for any α ≥ 1.

Mill’s ratio [40, Chapter VII]: Let X ∼d N
(
µ, σ2

)
, be normally distributed

with mean µ and variance σ2. Then

P(|X − µ| ≥ x) ≤
√

2σ2

π

e−x
2/2σ2

x
. (2.5)

Let Bin(n, p) denote the binomial distribution over n trials each of probability p.

This is the distribution with probability density given by

P(Bin(n, p) = k) :=

(
n

k

)
pk(1− p)n−k.

We will make frequent use of the following binomial tail bounds.

Lemma 2.1.1 (Chernoff bounds [26, Theorem 2.4]). If X ∼d Bin(n, p), then for

any a > 0

(i) P [X < np− a] ≤ exp
(
− a2

2np

)
,

(ii) P [X > np+ a] ≤ exp
(
− a2

2(np+a/3)

)
.
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The following is a basic coupling inequality relating two random variables on

a common probability space. I could not find a proof for this so I include one for

completeness.

Lemma 2.1.2 (Folklore). If X,Y are real valued random variables on a probability

space (Ω,F,P), then for any B ⊂ R,∣∣∣P(X ∈ B)− P(Y ∈ B)
∣∣∣ ≤ P(X 6= Y ) .

Proof. First for the lower bound we have

P(X ∈ B) ≥ P({X ∈ B} ∩ {X = Y }) = P({Y ∈ B} ∩ {X = Y })

= 1− P({Y /∈ B} ∪ {X 6= Y }) ≥ P(Y ∈ B)− P(X 6= Y ) .

Then for the upper bound:

P(X ∈ B) = P({X ∈ B} ∩ {X = Y }) + P({X ∈ B} ∩ {X 6= Y })

≤ P(Y ∈ B) + P(X 6= Y ) .

Combining these two inequalities yields the result.

Let Y be a real random variable and f : R → R such that E[f(Y )] exists.

Let E be any event such that P(E) ≥ 1/2, then

E
[
f(Y )

∣∣∣E] ≤ E [f(Y )]

P (E)
≤ E [f(Y )] +

E [f(Y )]P(Ec)
1− P(Ec)

≤ E [f(Y )] (1 + 2P(Ec)) .

We shall use the second moment method for some arguments in this thesis. This is

use of the Chebyshev inequality [6, Theorem 4.1.1]: Let X be a real-valued random

variable with expected value µ and variance σ2. Then for any t > 0

P(|X − µ| ≥ tσ) ≤ 1

t2
. (2.6)

Another common form is known Cantelli second moment inequality:

P(X ≤ µ+ t) ≤ σ2

σ2 + t2
. (2.7)

2.2 Random walks on graphs and related observables

Throughout we will be working on a finite simple connected graph G = (V,E) with

|V | = n and |E| =: m. Let X := (Xt)t≥0 be the simple random walk on G. The
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hitting time h(i, j) is the expected time for X to hit vertex j when started from

vertex i. That is, if PG
i is the law of X on G started from i ∈ V then

h(i, j) := EG
i [τj ] , where τj := inf {t : Xt = j} .

Let π(u) = γ1(u)/(2m) be the mass of u ∈ V with respect to the stationary dis-

tribution of the simple random walk X on G. We then define the following two

functions for j ∈ V ,

Hj(G) :=
∑
i∈V

π(i)h(i, j), H(G) :=
∑
j∈V

π(j)h(i, j). (2.8)

The function Hj(G) is known as the stationary hitting time to j, H(G) is known

as the random target time or Kemeny’s constant, see [2, 57]. Kemeny’s constant is

independent of the vertex i, see [58, Eq. 3.3]. The quantities H(G), Hi(G) arise in

the study of random walks and Markov chain mixing [2, 57]. Let

T (G) :=
∑
i,j∈V

π(i)π(j)h(i, j) (2.9)

be the mean hitting time of G, see [2, 57]. The expected running time of Wilson’s al-

gorithm for sampling a uniform spanning tree from a connected graph G is O(T (G)),

[75]. Let R(i, j) be the effective resistance between two vertices i, j ∈ V with unit

resistances on the edges, this is formally defined in Section 2.5. The following sum

of resistances is known as the Kirchhoff index, see [22, 45, 54],

K(G) :=
∑
{i,j}⊆V

R(i, j). (2.10)

The Kirchhoff index features heavily in Mathematical Chemistry. The cover cost

cci(G) of a finite connected graph G from a vertex i was studied in [44, 45]. We also

introduce the uniform cover cost cc(G). For i ∈ V we define these terms as

cci(G) :=
1

n− 1

∑
j∈V

h(i, j), cc(G) :=
1

n(n− 1)

∑
i,j∈V

h(i, j). (2.11)

The hitting times h(i, j) can be far from symmetric in the example of the lollipop

graph, which is a path of length n which shares one of its end vertices with vertex

from the clique on n vertices, the orders of hitting times range from 1 to n3 [58].

The commute time κ(i, j) is the expected number of steps for a random walk from i

to reach j and return back to i. The commute time κ(i, j) is symmetric and related
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to hitting times and effective resistances by the commute time formula [72]

κ(i, j) := h(i, j) + h(j, i) = 2m ·R(i, j). (2.12)

Using (2.12) we can relate the uniform cover cost to the Kirchhoff index

cc(G) =
1

n(n− 1)

∑
(i,j)∈V 2

h(i, j) =
1

n(n− 1)

∑
{i,j}⊆V

κ(i, j) =
2m ·K(G)

n(n− 1)
. (2.13)

The following relation for hitting times is know as Tetali’s formula [58]

h(i, j) = mR(i, j) +
∑
u∈V

γ1(u)

2
[R(j, u)−R(u, i)] . (2.14)

Relations (2.12), (2.13) and (2.14) will be useful to us as they allow us to control

commute times, cover costs and hitting times by effective resistances.

2.3 The binomial random graph model

The binomial random graph model G(n, p) is often referred to as the Erdős-Rényi

random graph however it was originally introduced by Gilbert [46]. The model is

a probability distribution over simple n vertex graphs, where an n vertex graph

G = (V,E) is sampled with probability

P(G = G) = p|E(G)|(1− p)(
n
2)−|E(G)|.

This P is the product measure over edges of the complete graph Kn where each edge

occurs as an i.i.d. Bernoulli random variable with probability 0 < p := p(n) < 1.

Throughout E will denote expectation with respect to P. We take G ∼d G(n, p)

to mean G is distributed according to the law of G(n, p). The binomial random

graph G(n, p) is closely related to another random graph model G(n,m) introduced

by Erdős-Rényi [37] around the same time. In G(n,m) one starts with the empty

graph on n vertices and adds m edges uniformly. The two models are very similar

although generally G(n, p) is easier to analyse as there is more independence between

events described by collections of edges.

One feature of G(n, p) worth mentioning is that for each u ∈ V the degree of u

is binomially distributed γ1(u) ∼d Bin(n−1, p) and the degrees are not independent.

The number of edges |E| = m is also binomially distributed, m ∼d Bin
((
n
2

)
, p
)

since

there are
(
n
2

)
potential edges and each occurs independently with probability p.
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For more information consult one of the many books on random graphs

[20, 43, 50].

In this thesis we will study the graph indices described in Section 2.2 when

the graph is drawn from G(n, p), so each of the graph indices becomes a random

variable. For any of these random variables to be well defined and finite we need

G to be connected. Take C := Cn to be the event G is connected; we will drop

the subscript n where it is implicit. Let PC(·) := P (· | C) and EC := E [· | C] be

the expectation with respect to PC . The following theorem gives a bound on being

disconnected above the np = log n connectivity threshold.

Theorem 2.3.1 ([19, Theorem 9, Ch. VII.3]). Let G ∼d G(n, p), np = log n+ ω(n)

where ω(n)→∞. Then

P(Cc) ≤ 4 · e−ω(n). (2.15)

Let Xi,k be the collection of vertices with an ith-neighbourhood of size k,

more formally

Xi,k := {v ∈ V : γi(v) = k} .

The degree sequence of a graph is the vector (|X1,0|, |X1,1|, . . . , |X1,n−1|), likewise

for some r ≥ 1 we define the r-degree sequence (|Xr,0|, |Xr,1|, . . . , |Xr,n−1|). The

shape of the degree sequence of G(n, p) will feature heavily in this thesis and so the

following theorem will be invaluable.

Theorem 2.3.2 (Theorem 1 in [18]). Let ε > 0 be fixed, εn−3/2 ≤ p := p(n) <

1− εn−3/2, let k = k(n) be a natural number and set λk := λk(n) = n ·
(
n−1
k

)
pk(1−

p)n−k−1, this is the expected number of vertices of degree k. Then the following

assertions hold.

(i) If lim
n→∞

λk(n) = 0, then lim
n→∞

P(|X1,k| = 0) = 1.

(ii) If lim
n→∞

λk(n) =∞, then lim
n→∞

P(|X1,k| > t) = 1, for every fixed t.

(iii) If 0 < lim inf
n→∞

λk(n) < lim sup
n→∞

λk(n) <∞, then |X1,k| has asymptotically Pois-

son distribution with mean λk: for every fixed r

P(|X1,k| = r) ∼
eλkλrk
r!

,

for every fixed r.

We now have what we need to prove the following Corollary to Theorem

5.3.1 (iii).
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Corollary 2.3.3. Let G ∼d G(n, p) where np = ω(log n). Then

P

(
sup
{i,j}⊆V

|h(i, j)− n| > 11n

√
log n

np

)
= o

(
1

n3/2

)
.

Proof. Recall that m := |E| and let µ :=
(
n
2

)
p. Define the the following events

E1 :=
⋂
u∈V

{
|γ1(u)− np| ≤ 3

√
log(n)np

}
E2 :=

{
|m− µ| ≤ 3

√
log(n)µ

}
.

E3 :=
⋂

{i,j}∈V

{∣∣∣∣R(i, j)− 2

np

∣∣∣∣≤ 7
√

log n

(np)3/2

}
.

Recall γ1(u) ∼d Bin (n− 1, p), thus by the Chernoff bound, Lemma 2.1.1, we have

P(Ec1) ≤ n · exp

−
(

3
√

log(n)np
)2

2(n− 1)p

+ n · exp

−
(

3
√

log(n)np
)2

2
(
np+

√
log(n)np

)


= o

(
1

n2

)
.

Similarly, since for the number of edges m we have m ∼d Bin
((
n
2

)
, p
)
, the Chernoff

bound yields P(Ec2) = o
(
1/n3

)
. Recall Theorem 5.3.1 (iii) and observe that

P(Ec3) ≤
(
n

2

)
· o
(

1

n7/2

)
= o

(
1

n3/2

)
.

Conditional on E := E1 ∩ E2 ∩ E3 we have the following by Tetali’s formula (2.14)

|h(i, j)− n| =

∣∣∣∣∣
((

n

2

)
p± 3

√
log(n)

(
n

2

)
p

)(
2

np
± 7
√

log n

(np)3/2

)

±
∑
u∈V

1

2

(
np± 3

√
log(n)np

)(14
√

log n

(np)3/2

)
− n

∣∣∣∣∣
=

∣∣∣∣∣n
(

1± 7
√

log n

2
√
np

(1± o(1))

)
± n (1± o(1))

7
√

log n
√
np

− n

∣∣∣∣∣
≤ 11n

√
log n

np

for any {i, j} ⊆ V . The result follows since P(Ec) ≤ P(Ec1)+P(Ec2)+P(Ec3) = o
(

1
n3/2

)
.
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2.4 Reciprocal moments of binomial random variables

We also have the following closed form for moments of binomial random variables,

Theorem 2.4.1 ([55, Theorem 4.1]). Let X ∼d Bin(n, p), ni := n(n − 1) . . . (n −
i + 1) and S(d, i) be the Stirling partition number of d items into i subsets. Then

for d ≥ 0,

E
[
Xd
]

=
d∑
i=0

S(d, i)pini, where S(d, i) :=
1

i!

i∑
k=0

(−1)k+i

(
i

k

)
kd.

One practical consequence of the above theorem is the following. Let X ∼d
Bin(n, p), 0 < p := p(n) < 1 and d ≥ 0 fixed, then Theorem 2.4.1 above yields

E
[
Xd
]

= S(d, d)pdnd ±O
(
pd−1nd−1

)
= (np)d ±O

(
(np)d−1

)
. (2.16)

This next Proposition is useful in combination with the lemma following it.

Proposition 2.4.2. Let X ∼d Bin (n, p) , Y ∼d Bin (n− 1, p) , α ∈ Z, α ≥ 1.

Then

E
[
1{X≥1}

Xα

]
:=

n∑
k=1

1

kα

(
n

k

)
pk(1− p)n−k = E

[
np

(Y + 1)α+1

]
.

Proof.

E
[
1{X≥1}

Xα

]
:=

n∑
k=1

1

kα

(
n

k

)
pk(1− p)n−k

=

n−1∑
k=0

1

(k + 1)α

(
n

k + 1

)
pk+1(1− p)n−1−k

=
n−1∑
k=0

np

(k + 1)α+1

(
n− 1

k

)
pk(1− p)(n−1)−k

= E
[

np

(Y + 1)α+1

]
.

The lemma below gives an upper bound on the expectation of reciprocal

powers of X ∼d B(n, p) when p := p(n) is allowed to tend to 0. This lemma may
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be of independent interest since other results in the literature appear to require p

bounded away from 0.

Lemma 2.4.3. Let Xn ∼d Bin(n, p) for p := p(n) with np → ∞, a ∈ R, b ∈
Z, a, b > 0. Then

1

(a+ np)b
≤ E

[
1

(a+Xn)b

]
≤ 1

(a+ np)b
+O

(
1

(np)(b+1)

)
.

Proof. Let f(x) := fa,b(x) = (a+ x)−b for any constants a, b > 0. The lower bound

follows from Jensen’s inequality since f(x) is convex for a, b > 0 and x > −a.

Let µn = E[Xn] = np. When np → ∞ it is possible to find some r := r(n)

such that r = ω(
√
np log(np)) and r = o(np). The Chernoff bound, Lemma 2.1.1

(i), then yields

P(Xn ≤ µn − r) ≤ exp
(
−r2/2µn

)
= o(1/np).

With this r we can achieve the following a priori upper bound for any b ≥ 1:

E[f(Xn)] ≤ 1

ab
P(Xn ≤ µn − r) + f(µn − r)P(Xn > µn − r)

= (1 + o(1))f(µn). (2.17)

By Taylor’s theorem there is some ξn between Xn and µn such that

f(Xn) = f(µn) + f ′(µn) (Xn − µn) + f ′′(ξn) (Xn − µn)2 .

Using Hölder’s inequality (2.2) and the fact f(x) is decreasing when x > 0, we have

(E[f(Xn)]− f(µn))2 ≤
(
f ′(µn)E[Xn − µn] + E

[
f ′′(ξn) (Xn − µn)2

])2

≤ E
[
f ′′(ξn)2

]
E
[
(Xn − µn)4

]
≤ E

[
f ′′(Xn)21{Xn≤µn}

]
E
[
(Xn − µn)4

]
+ E

[
f ′′(µn)21{Xn>µn}

]
E
[
(Xn − µn)4

]
≤ (2 + o(1))f ′′(µn)2E

[
(Xn − µn)4

]
. (2.18)

The last inequality follows by (2.17) since f ′′(µn) = b·(b+1)·(a+µn)−(b+2). Observe

E
[
(Xn − µn)4

]
= np(1− p)

(
3p(n− 2)− 3p2(n+ 2) + 1

)
= O((np)2), (2.19)
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this can be calculated using the binomial moment generating function or by Theorem

2.4.1. Hence by (2.18), (2.19) and (fa,b(x))
′′

= b(b+ 1)fa,(b+2)(x), we have

E[f(Xn)] ≤ f(µn) +
(
O
(

(a+ µn)−2(b+2)
)
·O((np)2)

)1/2

=
1

(a+ np)b
+O

(
1

(np)b+1

)
.

2.5 Electrical network basics

There is a rich connection between random walks on graphs and electrical networks.

Here we will give a brief introduction to this area in order to cover essential notation

and definitions used for our results; consult one of the books [33, 60, 65] for more

complete introduction to the subject.

An electrical network, N := (G,C), is a graph G and an assignment of

conductances C : E(G)→ R+ to the edges of G. The resistance r(e) of an edge e is

defined by r(e) := 1/C(e).

The graph G is undirected and we define ~E(G) := { ~xy : xy ∈ E(G)}, this is

the set of all possible orientations of edges in G. For some i, j ∈ V (G), a flow from

i to j is a function θ : ~E(G)→ R satisfying θ( ~xy) = −θ( ~yx) for every xy ∈ E(G) as

well as Kirchhoff’s node law for every vertex apart from i and j, i.e.∑
u∈Γ1(v)

θ( ~uv) = 0 for each v ∈ V, v 6= i, j.

A unit flow from i and j is a flow with strength one, where by strength one we mean∑
u∈Γ1(i)

θ(~iu) = 1,
∑

u∈Γ1(j)

θ( ~uj) = 1.

For the network N = (G,C) we can then define the effective resistance RC(i, j)

between two vertices i, j ∈ V (G). First for a flow θ on N let

E(θ) =
∑
e∈ ~E

θ(e)2

2C(e)
,

be the energy dissipated by θ. Then for i, j ∈ V (G), RC(i, j) can be defined as

RC(i, j) := min {E(θ) : θ is a unit flow from i to j} .
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This is the energy dissipated by the current of strength 1 from i to j in N = (G,C).

We will work with unit conductances so we have C(e) = 1 for all e ∈ E(G), when

this is the case we write R(i, j) instead of RC(i, j). This corresponds to the effective

resistance in Equations (2.10), (2.12) and (2.14).

A useful property is Rayleigh’s monotonicity law [60, § 2.4 ]: If C,C ′ :

E(G) → R+ are conductances on the edge set E(G) of a connected graph G

and C(e) ≤ C ′(e) for all e ∈ E(G) then for all pairs {i, j} ⊂ V (G), we have

RC′(i, j) ≤ RC(i, j).

One can also recover the familiar laws of resistors in series and parallel:

� Series Law. Two edges, with resistances r1 and r2, arranged in series are

equivalent to a single edge of resistance r1 + r2.

� Parallel Law. Two edges, with resistances r1 and r2, arranged in parallel are

equivalent to a single edge of resistance r3 where r3 satisfies the formula

1

r3
=

1

r1
+

1

r2
.
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Chapter 3

Bounds on effective resistances

in graphs

The aim of this section is to obtain lower and upper bounds on R(u, v) for u, v ∈
V (G) for a graph G where the main contribution to R(u, v) is from the first neigh-

bourhoods of u and v. These bounds will later be applied to the binomial random

graph G(n, p).

3.1 Lower bounds in terms of degrees

The following is a very useful lower bound on the effective resistance between two

vertices of a graph.

Theorem 3.1.1 (Nash-Williams inequality [64]). Let {
∏
k} be disjoint edge-cutsets

which separate the vertex i from j. Then

R(i, j) ≥
∑
k

∑
e∈
∏
k

c(e)

−1

,

where c(e) is the conductance of e.

As a warm up we shall apply the Nash-Williams inequality to locally tree-like

graphs. We call a graph on n vertices locally tree-like if for a 1− o(1) proportion of

vertices the following property holds: for any fixed radius R, the ball of radius R

around a vertex does not contain a cycle. We will use the Nash-Williams inequality

above to prove Proposition 3.1.2, a lower bound on the commute time in regular

tree-like graphs.
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Proposition 3.1.2. Let d ≥ 3 be fixed and G be connected d-regular locally tree-like

graph. Then for (1− o(1))
(
n
2

)
pairs of vertices {i, j} ⊆ V we have

κ(i, j) ≥ (2− o(1))
(d− 1)

(d− 2)
n.

Proof. In any n vertex graph of maximum degree d it holds that (1− o(1))
(
n
2

)
pairs

of vertices are at distance at least Ω (log n/ log d) from each other. To see this let

M = log n/(2 log d), then

|{{i, j} ⊂ V : d(i, j) ≤M}| ≤
∑
i∈V
|{j ∈ V : d(i, j) ≤M}|

≤ ndM

= o
(
n2
)
.

If in addition the graph is locally tree-like then a (1−o(1)) proportion of these “well

separated” pairs also have finite neighbourhoods that look like d-regular trees. For

two such vertices i, j we can take the edges at distance 0 ≤ k ≤ M from {i, j} as

disjoint edge-cutsets - where distance of an edge from a vertex is measured by the

graph distance to the nearest end vertex of the edge.

By the Nash-Williams inequality we have

R(i, j) ≥
∑
k

∑
e∈
∏
k

1

−1

≥ 2

M∑
k=0

1

d

1

(d− 1)k

=
2

d

(
1− 1

(d−1)M

1− 1
d−1

)

= (1− o(1))
2

d

(d− 1)

(d− 2)
.

Then by the commute time formula:

κ(i, j) = 2mR(i, j) ≥ 2 · dn
2
· (1− o(1))

2

d

(d− 1)

(d− 2)
= (2− o(1))

(d− 1)

(d− 2)
n.

Note this lower bound from the Nash-Williams inequality gives the correct

constant for random regular graphs as Cooper, Freize and Radzik [29] claim that
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most hitting times in a random d-regular graph have the asymptotic h(i, j) ∼ (d−1)
(d−2)n.

Recall that γ1(v) denotes the size of the first neighbourhood of vertex v ∈
V (G). Jonasson gives the following lower bound on effective resistance, we shall in-

clude a proof for completeness as it follows easily from the Nash-Williams inequality,

Theorem 3.1.1

Lemma 3.1.3 ([51, Lemma 1.4]). For any graph G = (V,E) and u, v ∈ V , u 6= v

R(u, v) ≥ 1

γ1(u) + 1
+

1

γ1(v) + 1
.

Proof. There are two cases; either uv /∈ E or uv ∈ E. In the first case, since

uv /∈ E, the edges adjacent to u and the edges adjacent to v form two disjoint

edge-cutsets. These two edge-cutsets have sizes γ1(u) and γ1(v) respectively. Thus

by the Nash-Williams inequality, Theorem 3.1.1, we have

R(u, v) ≥ 1

γ1(u)
+

1

γ1(v)
.

In the second case we replace the edge uv with two internally disjoint paths of length

two both beginning at u and ending at v. This adds two vertices of degree two to

the graph which are both attached to u and v alone and by the laws of resistors in

series and parallel the resistance of these two paths in parallel is the same as the

single edge uv. We are now in a situation however where u is no longer connected

to v by an edge. Thus we can revert to the first case taking the edges adjacent to

u and the edges adjacent to v form two disjoint edge-cutsets with sizes γ1(u) + 1

and γ1(v) + 1 respectively. Thus by the Nash-Williams inequality, Theorem 3.1.1,

we have

R(u, v) ≥ 1

γ1(u) + 1
+

1

γ1(v) + 1
.

Since in this case the resistance is always lower we take this bound.

Observe that although the above bound holds for any two distinct vertices it

is only really meaningful if they are in the same connected component. This is since

otherwise the effective resistance between the two vertices is defined to be infinite.

We are now ready to prove the Proposition 3.1.4, this proposition featured

in the introduction as a example to show that close to the connectedness threshold

we have some hard to reach vertices. This is proven using Lemma 3.1.3 and some

facts about random graphs and random walks from Chapter 2.
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Proposition 3.1.4. Let G ∼d G(n, p). If np = log(n) + 100 log log log(n), then

P(there exists i, j ∈ V : h(i, j) > n log(n)/3) = 1− o(1).

For any 1 < c <∞ if np = c log(n) (1± o(1)), then there is an a > 0 such that

P(there exists i, j ∈ V : h(i, j) > (1 + a)n) = 1− o(1).

Proof. Let X1,1 := {v ∈ V : γ1(v) = 1} be the number of vertices in G with degree

1. Let λ1(n) be the expected number of vertices of degree 1, thus

λ1(n) = n ·
(
n− 1

1

)
p(1− p)n−2

= n2pe− log(n)−100 log log log(n)+O(log(n)2/n)

≥ log(n)e−100 log log log(n).

Thus λ1(n)→∞ as n→∞ and so by Theorem 2.3.2 for any fixed t

lim
n→∞

P(|X1,1| ≥ t) = 1.

Thus with high probability there are is at least one pair of vertices i, j both with

degree 1. We have the following lower bound on the effective resistance between two

vertices of degree 1 by Lemma 3.1.3

R(i, j) ≥ 1

γ1(i) + 1
+

1

γ1(j) + 1
=

1

2
+

1

2
= 1.

Let m := |E| be the number of edges in G ∼d G(n, p). We know that m is a

binomially distributed random variable with parameters
(
n
2

)
and p since each edge

occurs with probability p independently from the others. Therefore by the Chernoff

bound, Lemma 2.1.1, we have

P

(
m <

(
n

2

)
p−

√
2 log(n)

(
n

2

)
p

)
≤ exp

−
(√

2 log(n)
(
n
2

)
p
)2

2
(
n
2

)
p

 ≤ e− log(n). (3.1)

Hence with probability 1−o(1)−1/n there is a pair of vertices i, j both with degree

1 and m ≥
(
n
2

)
p−

√
2 log(n)

(
n
2

)
p. Thus by the commute time formula 2.12 we have

κ(i, j) = 2m ·R(i, j) ≥ 2

((
n

2

)
p−

√
2 log(n)

(
n

2

)
p

)
· 1 = (1− o(1))n log(n).
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Since the commute time κ(i, j) = h(i, j)+h(j, i) at least one of h(i, j) of h(j, i) must

be greater than n log(n)/3 with probability 1− o(1)− 1/n.

We now turn to the proof for the case np = (c+ o(1)) log(n), this follows the

rough idea of the proof of [51, Theorem 2.2]. Let k = (1− ε)np for some 0 < ε < 1

and we shall again appeal to Theorem 2.3.2 with the following argument

λk = n

(
n− 1

k

)
pk(1− p)n−1−k ≥ n√

2πk

(
e

(1− ε)

)(1−ε)np
e−np(1− o(1))

Observe that − log(1− t) = +t− t2/2 + t3/3 + t4/4 · · · ≥ t+ t2/2 for t < 1 we have

by the Taylor series. Thus we have the following

λk ≥
n

3
√
k
e−εnp−(1−ε) log(1−ε)np ≥ n

3
√
k
e−εnp+(1−ε)(+ε+ε2/2)np ≥ ne−

ε2(1+ε)np
2

3
√
k

Thus for any 0 < ε < 1 satisfying ε2(1+ε)c
2 < 1, a concrete example would be

ε =
√

1/(c+ 1), we have that λk → ∞ and so by Theorem 2.3.2 there are at least

two vertices with degree less than (1−ε)np w.h.p. Thus, as before, by (3.1) and the

commute time formula 2.12 we have the following w.h.p. for such a pair of vertices

κ(i, j) = 2m ·R(i, j) ≥ 2

((
n

2

)
p−

√
2 log(n)

(
n

2

)
p

)
· 2

(1− ε)np
=

(2− o(1))n

1− ε
.

Thus one or both of the hitting times h(i, j) or h(j, i) must be greater than (1 +a)n

for some a > ε
2(1−ε) > 0 with high probability.

3.2 Upper bounds on the effective resistance

The first upper bound on the effective resistance is of course the trivial bound

R(i, j) ≤ d(i, j). This follows since if u and v are connected then there is a path of

length d(i, j) between them so we can send one unit of current through this path,

the resistance of the path is d(i, j) by the formula for resistors in series. To get

any better bounds than this on the effective resistance something must be assumed

about the graph.

One direction is to bound the resistance in terms of isoperimetric or expansion

quantities. Expansion in a graph can be defined in many ways however one definition

that seems fairly universal and will be of use to us for stating the next theorem is

the following from [23], which first appeared in [4]. Firstly we define the vertex

boundary ∂A of set A of vertices to be the vertices of G\A with neighbours in A.
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An (n, d, α)-expander is a graph G = (V,E) on n vertices of maximal degree d, such

that every subset X ⊆ V satisfying |X| ≤ n/2 has |∂X| ≥ α|X|.
Expander graphs have many application in graph theory, computer science

and beyond [47]. Chandra et. al. [24] showed the following bound on the maximum

effective resistance in an expander.

Theorem 3.2.1 ([24, Theorem 5.2.]). A connected (n, d′, α)-expander G with min-

imum degree d, has resistance at most 24/(α2(d+ 1)).

This was later refined by Sauerwald and Stauffer to give the following.

Corollary 3.2.2 ([68, Corollary 6.1]). For any graph with vertex expansion α,

R(s, t) ≤ 24

α2 · (min {d(s), d(t)}+ 1)
.

The binomial random graph G(n, p) shares many properties with expander

graphs and typical sets of vertices have a large vertex boundary. Although G(n, p)

satisfies good expansion properties trying to pin down the specific dependence, on

p, of the vertex-isoperimetrical constant α is challenging. Benjamini et. al. study

the related edge-isoperimetrical constant [10]. Benjamini and Kozma present the

following upper bound for the effective resistance [11, 12], where the second citation

is an amended version of the same paper.

Theorem 3.2.3 ([11, Theorem 2.1.]). Let G be a finite graph. Let w and u be

vertices of G. Let R(w, u) be the electric resistance between w and u. Then

R(w, u) ≤ C (Lw + Lu) , Lv :=

blog2 |G|c∑
i=1

max
v∈A

A connected
|G|2−(i−1)≤|A|≤|G|2−i

|A|
|∂A|2

+
1

|∂A|

If we wish to apply either of the last two bounds to G(n, p) then, at best,

they should give us R(i, j) ≤ O(1/γ1(u) + 1/γ1(u)), which is what we want up a

constant. We seek a bound which allows us to recover the correct constant for the

leading order term thus we will need a new upper bound. This is what we present

in the remainder of this chapter.

3.3 The strong k-path property

We now aim to obtain an upper bound where the dominant term looks roughly like

the one in Lemma 3.1.3. To achieve this we analyse the following modified breadth-

first search (MBFS) algorithm. The inputs to the MBFS algorithm are a graph G
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and a subset I0 = {u, v} ⊆ V (G), the outputs are sets Ii, Si ⊆ V (G) and Ei ⊆ E(G)

indexed by the iteration of the algorithm. The algorithm is similar to one used in

[6, Ch. 11.5] to explore the giant component of an Erdős-Rényi graph. However,

the MBFS algorithm differs from other variations on breadth-first search algorithms

used in the literature as it starts from two distinct vertices. More importantly it also

differs by removing clashes, where a clash is a vertex with more than one parent in

the previous generation as exposed by a breadth-first search from two root vertices.

Modified breadth-first search algorithm, MBFS(G, I0): To begin set S0 :=

V \I0, and Si = Ii = Ei = ∅ for all i ≥ 1. Then generate the sets Si, Ii and Ei for

i ≥ 1 iteratively by the following procedure:

Step 1: For each w ∈ Si−1 check all pairs {w,w′} where w′ ∈ Ii−1 and do the

following:

� If, for every w′ ∈ Ii−1, ww′ /∈ E(G) then add w to Si.

� If there is one unique w′ ∈ Ii−1 such that ww′ ∈ E(G) then add w to

Ii and add ww′ to Ei.

Step 2: If Si 6= Si−1 then advance i to i+ 1 and return to Step 1. Otherwise end.

The set Ii contains the “active” vertices in the ith iteration and Si is the set

of vertices that have not been used in the first i iterations and Ei is the set

{xy ∈ E(G) : x ∈ Ii−1, y ∈ Ii} of edges ”accepted” by the algorithm. Notice that

S0 ⊇ S1 ⊇ S2 . . . and the sets {Ii}i≥0 are all disjoint. A vertex in Si will not be

added to either Ii+1 or Si+1 if it has two or more neighbourhoods in Ii, in this in-

stance it is just ignored by the algorithm. If instead those vertices in Si with edges

to more than one vertex in Ii we added them to Ii+1 then this procedure would

describe a standard breadth-first search starting from two root vertices. Notice also

that in Step 1 the order in which we consider the vertices of Si and then the edges

between Si and Ii is unimportant.

For each pair of vertices I0 ⊆ V the MBFS algorithm provides a filtration

Fi := Fi(I0), (3.2)

where F0 ⊆ F1 ⊆ · · · , on the set of labelled graphs on V . Roughly speaking

Fi(I0) only sees graphs that are the distinguishable by MBFS run up to step i ≥ 0

from initial set I0. To make this precise we must first describe an equivalence

relation on graphs. Let u, v ∈ V and G,F be graphs on V . We say G ∼={u,v}k F if
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the same k-sequence of sets {Si, Ii, Ei}1≤i≤k is output when MBFS(G, {u, v}) and

MBFS(F, {u, v}) are run for k iterations. Let I0 = {u, v} ⊆ V and define Fi(I0) to

be the σ-algebra where the atoms are the equivalence classes of ∼={u,v}i .

Let x ∈ Ik where Ik is produced by running MBFS(G, I0) for some given I0.

We shall now definition Γ∗i (x), the MBFS neighbourhood of x, for i ≥ 1

Γ∗i (x) =

{
y ∈ Ik+i :

there exists x = x0, x1, . . . , xi = y where

xj−1xj ∈ Ek+j for all j = 1, . . . , i

}
, (3.3)

and Γ∗0(x) := x. If we restrict to the subgraph of G output by MBFS(G, I0) then

Γ∗i (x) is the subset of the ith neighbourhood of x ∈ Ik which is furthest from the set

I0. We can also define Γ∗i (x) for i ≥ 1 inductively

Γ∗i (x) :=
{
z ∈ Ik+i : there exists y ∈ Γ∗i−1(x) and yz ∈ Ei

}
.

To try and clarify (3.3) we define the following sets Sk(x) which are the vertices in

Sk that will not cause any clashes when the Γ∗-neighbourhood of x is explored,

Sk(x) := Sk

∖ ⋃
z∈Ik, z 6=x

Γ1(z)

 . (3.4)

We can then also define the neighbourhood Γ∗i (x) inductively by the following

Γ∗i (x) =
⋃

y∈Γ∗i−1(x)

Γ1(y) ∩ Sk+i(y).

Define for some constant d the pruned neighbourhood Φd
1(x) of x ∈ I1 by

Φd
1(x) := Γ∗1(x)\ {y : γ∗1(y) ≤ d} , and let ϕd1(x) :=

∣∣∣Φd
1(x)

∣∣∣ . (3.5)

This is the MBFS neighbourhood of x with all the neighbours who have less than d

”MBFS-children” removed. Define the pruned neighbourhoods Ψd
1(w) of w ∈ I0 by

Ψd
1(w) := Γ∗1(w)\

{
y : ϕd1(y) = 0

}
, and let ψd1(w) :=

∣∣∣Ψd
1(w)

∣∣∣ . (3.6)

We define Ψd
0(u) = {u} and the pruned second neighbourhood Ψd

2(w) of w ∈ I0 by

Ψd
2(w) :=

⋃
x∈Ψd1(w)

Φd
1(x) =

⋃
x∈Γ∗1(w)

Φd
1(x). (3.7)
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For MBFS(G, {u, v}) define Ψd
i , the pruned version of Ii for i = 0, 1, 2, by

Ψd
i := Ψd

i (u) ∪Ψd
i (v), i = 0, 1, 2.

We prune the first neighbourhoods of vertices x ∈ I1 to obtain Φd
1(x) so

that later on when we consider the trees induced by the union up to i of the Γ∗-

neighbourhoods of y ∈ Φd
1(x) we can get good control over the growth rate of the

trees. We prune the first neighbourhoods of vertices w ∈ I0 as above so that we

can send flow from our source vertex w to its pruned neighbourhood Ψd
1(w) without

having to worry about it getting stuck in any “dead ends”.

Recall (3.2), the definition of the filtration Fk(I0). Observe that if x ∈ Ik then

Γ∗1(x) is Fk+1 measurable. It is worth noting however that if y ∈ I1 then Φd
1(y) is F3

measurable and not necessary F2 measurable since Φd
1(y) is determined by vertices

at distances 2 and 3 from I0. A consequence of this is that for w ∈ I0, Ψd
1(w),Ψd

2(w)

are both F3 measurable as they are both determined by the Φd
1-neighbourhoods of

points in Γ∗1(w).

We use the sets Ψ and Γ∗ returned from running the MBFS algorithm on a

graph G in the following definitions.

Definition 3.3.1 (Strong k-path property). We say that a graph G on [n] :=

{1, . . . , n} has the strong k-path property for integers k, d ≥ 0 and a pair of vertices

u,v if for every pair (x, y) ∈
(
Ψd

2(u)×Ψd
2(v)

)
the neighbourhoods Γ∗k(x) and Γ∗k(y)

are non-empty and there is at least one edge ij ∈ E(G) where i ∈ Γ∗k(x), j ∈ Γ∗k(y).

For u, v ∈ [n] and k, d ≥ 0 we let An,k,du,v be the set of graphs on [n] satisfying the

strong k-path property for u, v and d. We refer to this as the strong k-path property

and slightly neglect the dependence on d as we shall see in the next chapter that for

random graphs the value of d does not make so much difference to the results.

The sets Bu,v,d
w for w ∈ {u, v}, d ≥ 0 are also defined using the output of

MBFS(G, {u, v}):

Bu,v,d
w :=

{
G : V = [n],Ψd

1(w) 6= ∅
}
, and let Bd

u,v := Bu,v,d
u ∩Bu,v,d

v . (3.8)

3.4 An upper bound on effective resistance for graphs

satisfying the k-path property

The next Theorem provides an upper bound on the effective resistance for graphs

satisfying the strong k-path property. We will show in the next chapter that the
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u v

Ψd
1(u)

Ψd
2(u) Ψd

2(v)

Ψd
1(v)

Φd
1(t) t

w

z

Γ∗k(x)

x

Figure 3.1: This diagram illustrates the strong k-path property An,k,du,v , see definition
3.3.1. In the above example the the vertex z is not in Ψd

2(u) since it is connected
to less than d vertices in I3 and the vertex w is not in I2 as it has more than one
parent in I1.

strong k-path property is satisfied in sparsely connected G(n, p) for specified k. We

then apply Theorem 3.4.1 to obtain estimates for the resistance and hitting times

in G(n, p). Theorem 3.4.1 may potentially be applied to bound resistance in other

related random graph models such as random intersection graphs [43, Ch. 11] and

Chung-Lu graphs [26] in certain regimes. The regimes where this approach may be

most valuable are regimes where there is constant minimum degree, the range of the

degrees is large and it is hard to get good enough control on the spectral statistics

to apply spectral methods to obtain estimates on the hitting times with the correct

leading constant.

Theorem 3.4.1. Run MBFS(G, {i, j}) and suppose G ∈ An,k,di,j . Then

R (i, j) ≤ 1

ψd1(i)
+

1

ψd1(j)
+

∑
a∈Ψd1(i)

k + 2

ψd1(i)2ϕd1(a)
+

∑
b∈Ψd1(j)

k + 2

ψd1(j)2ϕd1(b)
.

Proof. We will follow the convention that 1/0 = ∞. If G /∈ Bi,j then the bound

holds trivially as at least one of the first two terms on the right is infinite.

We will now define a graph H which must exist as a sub-graph of G whenever

G ∈ An,k,di,j ∩ Bi,j . The sub-graph H will be defined as a union of many sub-

graphs of G which are themselves described by the sets produced from running

MBFS(G, {i, j}).
Define Uw, w ∈ I0 to be the graph on V (Uw) := Ψd

0(w) ∪ Ψd
1(w) ∪ Ψd

2(w),
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where Ψd
0(w) = {w}, with edge set

E(Uw) :=
{
yz ∈ E(G) : y ∈ Ψd

h(w), z ∈ Ψd
h+1(w), h = 0, 1

}
.

For each x ∈ Ψd
2 define the tree Tk(x) to be the tree on V (Tk(x)) :=

k⋃
i=0

Γ∗i (x) with

edge set

E(Tk(x)) := {yz ∈ E(G) : y ∈ Γ∗i (x), z ∈ Γ∗i+1(x), 0 ≤ i ≤ k − 1}.

By the strong k-path property there is at least one edge x̃ỹ ∈ E(G) where

x̃ ∈ Γ∗k(x), ỹ ∈ Γ∗k(y) for all pairs (x, y) ∈ Ψd
2(i)×Ψd

2(j). If there is more than one

edge we select one and disregard the others. Let this set of edges be E∗. Let F

be the graph E(F ) = E∗ and V (F ) := {z : zw ∈ E∗}. Thus F is a set of edges

complete with end vertices which bridge some leaf of tree Tk(x) to some leaf of Tk(y)

for each pair (x, y) ∈ Ψd
2(i)×Ψd

2(j).

With the above definitions the sub-graph H is then

H := Ui ∪ Uj ∪

 ⋃
x∈Ψd2

Tk(x)

 ∪ F.
Consult Figure 3.1 for more details. We will now describe a unit flow θ from i to j

through the network N = (H,C) where C(e) = 1 for all e ∈ E(H). This flow will

be used to bound from above the effective resistance R(i, j) in G.

(i) Since G ∈ Bi,j we have ψd1(i), ψd1(j) ≥ 1, thus we can send a flow θ( ~iia) =

1/ψd1(i) through each edge ~iia ∈ ~E(Hi) where ia ∈ Ψd
1(i). Likewise assign a

flow θ( ~jjb) = −1/ψd1(j) to each edge ~jjb ∈ ~E(Hj) where jb ∈ Ψd
1(j). Observe

that one unit of flow leaves i and enters j. The contribution to E(θ) from the

flow through these edges is

∑
ia∈Ψd1(i)

1(
ψd1(i)

)2 +
∑

jb∈Ψd1(j)

1(
ψd1(j)

)2 =
1

ψd1(i)
+

1

ψd1(j)
.

(ii) For each ia ∈ Ψd
1(i) we send the flow θ( ~iaia,f ) = 1/

(
ϕd1(ia)ψ

d
1(i)

)
through each

edge ~iaia,f ∈ ~E(Hi) where ia,f ∈ Φd
1(ia). Likewise for each jb ∈ Ψd

1(j) we send

a flow θ( ~jbjb,h) = −1/
(
ϕd1(jb)Ψ

d
1(j)

)
through each edge ~jbjb,h ∈ ~E(Hj) where

jb,h ∈ Φd
1(jb). By definition of Ψd

1(i), Ψd
1(j) the sets Φd

1(ia) and Φd
1(jb) are

non-empty so this is well defined. We see that Kirchhoff’s node law is satisfied
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Γ∗k−d+2(z)

Γ∗k−d+3(w)

zwt θ( ~wz)θ( ~tw)

Figure 3.2: The descendants of t ∈ Id−2 in the tree Tk(ia,f ) rooted at ia,f , where
the notation is consistent with Step (iv) from the proof of Theorem 3.4.1. Here the
descendants of w are shown in green and those that also have z as an ancestor are
are shown in red. The edges of E∗ and their endpoints are shown in blue.

at each vertex ia ∈ Ψd
1(i) since

∑
ia,f∈Φd1(ia)

θ
(

~iaia,f

)
=

∑
ia,f∈Φd1(ia)

1

ψd1(i)ϕd1(ia)
=

1

ψd1(i)
= θ( ~iia),

and likewise for each jb ∈ Ψd
1(j). The contribution to E(θ) from these edges is

∑
w∈{i,j}

∑
w′∈

Ψd1(w)

∑
w′′∈

Φd1(w′)

1(
ψd1(w)ϕd1(w′)

)2
=

∑
ia∈Ψd1(i)

1

ψd1(i)2ϕd1(ia)
+

∑
jb∈Ψd1(j)

1

ψd1(j)2ϕd1(jb)
.

(iii) For each edge ~xy ∈ ~E(F ) let ia,f denote the unique vertex in Φ2(i) such that

x ∈ Tk(ia,f ) and jb,h ∈ Φ2(j) denote the unique vertex such that y ∈ Tk(jb,h).

There is some unique ia ∈ Ψd
1(i) such that ia,f ∈ Φd

1(ia) and jb ∈ Ψd
1(j) such

that jb,h ∈ Φd
1(jb). We then assign the following flow to ~xy:

θ( ~xy) =
1

ϕd1(ia)ψd1(i)ϕd1(jb)ψ
d
1(j)

.

The reason for this is that if we sum the flows leaving Tk(ia,f ) through the
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vertex set Γ∗k(ia,f ) for some ia ∈ Ψd
1(i) with ia,f ∈ Φd

1(ia) we obtain

∑
jb∈Ψd1(j)

∑
jb,h∈Φd1(jb)

1

ψd1(i)ϕd1(ia)ψd1(j)ϕd1(jb)
=

1

ϕd1(ia)ψd1(i)
,

which is the amount of flow entering Tk(ia,f ) at the vertex ia,f and likewise for

the trees Tk(jb,h) for every jb ∈ Ψd
1(j) with jb,h ∈ Φd

1(jb). In the next step we

show Kirchhoff’s node law will be satisfied at each vertex in V (F ) by virtue of

the assignment of flow through the trees Tk(ia,f ), Tk(jb,h). The contribution

to E(θ) by the sub-graph F is

∑
ia∈Ψd1(i)

∑
jb∈Ψd1(j)

∑
ia,f∈Φd1(ia)

∑
jb,h∈Φd1(jb)

1(
ψd1(i)ϕd1(ia)ψd1(j)ϕd1(jb)

)2
≤

∑
ia∈Ψd1(i)

1

ψd1(i)2ϕd1(ia)
+

∑
jb∈Ψd1(j)

1

ψd1(j)2ϕd1(jb)
.

The inequality above follows since when G ∈ Bi,j we have ψd1(i), ψd1(j) ≥ 1 and

ϕd1(ia), ϕ
d
1(jb) ≥ 1 by definition for all ia ∈ Ψd

1(i), jb ∈ Ψd
1(j).

(iv) For each ~uz ∈ ~E (Tk(ia,f )) we set θ( ~uz) proportional to the amount of flow

leaving z’s descendants in the set Γ∗k(ia,f ), see Figure 3.2. If z ∈ Is then let t

be the parent of u when Tk(ia,f ) is rooted at ia,f and let t = ia if u = ia,f . We

set

θ( ~uz) :=


∑

x∈Γ∗k−s+2(z)

∑
xy∈E∗

θ( ~xy)∑
x∈Γ∗k−s+3(u)

∑
xy∈E∗

θ( ~xy)

 · θ(~tu).

Kirchhoff’s node law is satisfied at each vertex u ∈ V (Tk(ia,f )) since∑
z∈Γ∗1(u)

θ( ~uz) = θ(~tu).

Let E (θ|Tk(x)) :=
∑

e∈ ~E(Tk(x)) θ(e)
2/2, where x ∈ Ψd

2, denote the contribution

to E(θ) by the flow through edges of the tree Tk(x). We now make the following

claim to be proven later:

Let x ∈ Ψd
2 and t be the unique vertex in Ψd

1 connected to x in H. Then

E (θ|Tk(x)) ≤ k · θ (t, x)2 . (3.9)

Recall that θ (t, x) = 1/
(
ψd1(w)ϕd1(t)

)
where w ∈ {i, j}. Thus by (3.9) the
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contribution to E(θ) from the edges of
⋃
x∈Ψd2

Tk(x) is then at most

∑
w∈{i,j}

∑
w′∈

Ψd1(w)

∑
w′′∈

Φd1(w′)

k(
ψd1(w)ϕd1(w′)

)2 =
∑

ia∈Ψd1(i)

k

ψd1(i)2ϕd1(ia)
+
∑

jb∈Ψd1(j)

k

ψd1(j)2ϕd1(jb)
.

(v) Finally for any edge e ∈ ~E(G)\ ~E(H) we set θ(e) = 0, this contributes 0 to

E(θ).

Now we collect the contributions to E(θ) from the edges in E(H) in Steps (i)-(v)

above to obtain the following bound on R(i, j) for G ∈ An,k,di,j ∩Bi,j

R(i, j) ≤ E(θ) ≤ 1

ψd1(i)
+

1

ψd1(j)
+

∑
ia∈Ψd1(i)

k + 2

ψd1(i)2ϕd1(ia)
+

∑
jb∈Ψd1(j)

k + 2

ψd1(j)2ϕd1(jb)
.

All that remains is to prove the claim (3.9): Consider the set Si of edges of Tk(x)

with closest endpoint from x at distance 0 ≤ i ≤ k−1 from x, this edge set separates

x from the leaves of Tk(x). The combined flow through Si is θ(t, x) since this is the

amount of flow entering Tk(x) at x and leaving the tree through its leaves. Thus

since the contribution to E(θ) by the edges of Si is the sum of the squares of the

flows through each edge of Si we see that this cannot exceed θ(t, x)2 by convexity.

The result follows by summing the contributions from the k such edge sets Si.
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Chapter 4

The strong k-path property for

G(n, p)

In this chapter we show that for G(n, p), in a range of p which we call sparsely

connected, with high probability the strong k-path property holds for a k which is

roughly half the diameter of G(n, p).

4.1 Neighbourhood growth bounds

In the previous section we obtained Theorem 3.4.1 which is an upper bound for the

effective resistance in a graph with the strong k-path property. This bound is by

an expression involving the pruned neighbourhoods Φ1 and Ψ1, defined at (3.5) and

(3.6) respectively. To apply this bound we must gain control over the distributions

of γ∗, ϕ and ψ.

A key feature of the MBFS algorithm is that the clashing vertices are removed

rather than being assigned a unique parent. Though this means we are reducing the

sizes of the neighbourhoods, removing clashing vertices in this way ensures that for

MBFS on G ∼d G(n, p) the sequence {γ∗1(xi)}|X|i=1 for any X ⊆ Ik is exchangeable.

Lemma 4.1.1. Let G ∼d G(n, p), I0 := {u, v} ⊂ V and i, k ≥ 0. Run MBFS(G, I0).

(i) Then |S1| ∼d Bin
(
n− 2, (1− p)2

)
and |I1| ∼d Bin (n− 2, 2p(1− p)).

(ii) Conditioning on {x ∈ Ik} and |Sk(x)|, then

γ∗1(x) ∼d Bin(|Sk(x)| , p).
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(iii) Conditioning on {x ∈ Ik} , |Sk+i|, |Ik+i| and γ∗i (x), then

γ∗i+1(x) ∼d Bin
(
|Sk+i|, γ∗i (x) · p · (1− p)|Ik+i|−1

)
.

(iv) Let x ∈ V . Conditioning on γi(x) and |Bi(x)|, then

γi+1(x) ∼d Bin
(
n− |Bi(x)|, 1− (1− p)γi(x)

)
.

Proof. Item (i): a vertex in S0 is in S1 if it is not connected to either vertex in I0.

This happens independently with probability (1− p)2 for each of the n− 2 vertices

in S0 thus

|S1| ∼d Bin
(
n− 2, (1− p)2

)
.

A vertex in S0 is in I1 if it is connected to exactly one vertex in I0. This happens

independently with probability 2p(1− p) for each of the n− 2 vertices in S0 thus

|I1| ∼d Bin (n− 2, 2p(1− p)) .

Item (ii): recall the definitions of Γ∗1(x) and Sk(x) for x ∈ Ik, given by (3.3) and

(3.4) respectively. Observe the following relation:

Γ∗1(x) = (Γ1(x) ∩ Sk) \
⋃
y∈Ik
y 6=x

Γ1(y) = Γ1(x) ∩ Sk(x).

Since we completely remove the vertices if they clash, and the edges of G are indepen-

dent, the order MBFS explores the neighbourhoods of each y ∈ Ik is unimportant.

Assume that we have explored the neighbourhood of every y ∈ Ik with y 6= x. We

then know which vertices in the neutral set Sk will not clash if included in Γ1(x) and

these are the vertices in Sk(x). Since edges occur independently with probability p,

conditioning on |Sk(x)| yields

γ∗1(x) ∼d Bin(|Sk(x)| , p).

Item (iii): for a vertex v ∈ Sk+i we have v ∈ Γ∗i+1(x) when there is exactly one edge

yv ∈ E(G) where y ∈ Γ∗i (x) and there is no edge of the form y′v ∈ E where y′ ∈ Ik+i

and y′ 6= y. Conditioning on the sizes of Ik+i and Γ∗i (x) we see that each v ∈ Sk+i

is a member of Γ∗i+1(x) with probability γ∗i (x) · p · (1− p)|Ik+i|−1. These events are

independent as each edge occurs independently. Thus, conditioning on |Sk+i|, |Ik+i|
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and γ∗i (x), we have

γ∗i+1(x) ∼d Bin
(
|Sk+i|, γ∗i (x) · p · (1− p)|Ik+i|−1

)
.

Item (iv): a vertex in V \Bi(x) is in Γi+1(x) if it is connected to a vertex in Γi(x). For

each y ∈ V \Bi(x) the probability there is no yz ∈ E where z ∈ Γi(u) is (1− p)γi(x)

and the events are all independent. Thus conditional on γi(x) and |Bi(x)|,

γi+1(x) ∼d Bin
(
n− |Bi(x)|, 1− (1− p)γi(x)

)
.

Let x ∈ Ik. Choosing i = 0 in Lemma 4.1.1 (iii) gives the following condi-

tional on |Sk| and |Ik|

γ∗1(x) ∼d Bin
(
|Sk|, p(1− p)|Ik|−1

)
.

This appears to differ from the distribution Bin (|Sk(x)|, p) given by Lemma 4.1.1

(ii). However this is not the case as, conditional on |Sk| and |Ik|,

|Sk(x)| ∼d Bin
(
|Sk|, (1− p)|Ik|−1

)
.

The following two lemmas provide tail estimates for the distributions of Γi

and Γ∗i neighbourhoods, where i ≥ 1. We prove the Lemmas by induction where

the inductive step comes from applying Chernoff bounds to the binomial distribu-

tions described in Lemma 4.1.1. For Lemma 4.1.2 this induction shows that with

high probability the sequence γ1(u), γ2(u), . . . is bounded above by the sequence

a1np, a2(np)2, . . . where the ai satisfy a recurrence relation. This recurrence can

later be solved to give bounds on the sequence ai based on the exceptional proba-

bility desired. This strategy is inspired by [25].

Lemma 4.1.2 (Γ-Neighbourhood bounds). Let G ∼d G(n, p) where np→∞. Then

for u ∈ V and any i ≤ log n/ log(np), k > 3 the following holds

(i) P
(
γi(u) > 2k2(np)i

)
= o

(
e−3(k−3)np/2

)
,

(ii) P
(
|Bi(u)| > (2k2 + 1)(np)i

)
= o

(
e−3(k−3)np/2

)
.

Proof. Item (i): we wish to show the following by induction on i ≥ 0

P

 i⋃
j=0

{γj(u) > aj(np)
j}

 ≤ i∑
j=0

e−j exp

(
− λ2

2(1 + λ/3
√
np)

)
,
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where ai ≥ 0 is given by the recurrence

ai+1 = ai +
λi
√
ai

(np)(i+1)/2
, a0 = 1,

and λi =
√

3i+ λ2 for some λ specified later. Let Ei := {γi(u) ≤ ai(np)
i} and

Hi :=
i⋂

j=0
Ei. Observe that for the base case γ0(u) = 1 = a0. Notice also that

ai(np)
inp+ λi

√
ai(np)i+1 = (np)i+1

(
ai + λi

√
ai

(np)(i+1)/2

)
= ai+1(np)i+1. (4.1)

Conditional on γi(u) we have γi+1(u) �1 Bin (γi(u) · n, p). Thus by (4.1) above

P((Ei+1)c ∩Hi) := P
(
{γi+1(u) > ai+1(np)i+1} ∩ Hi

)
≤ E

[
P
(
Bin (γi(u) · n, p) > ai(np)

inp+ λi

√
ai(np)i+1

∣∣∣∣γi(u)

)
1Hi

]
.

Now by the Chernoff bounds, Lemma 2.1.1, we have

P((Ei+1)c ∩Hi) ≤ E

exp

− λ2
i ai(np)

i+1

2
(
ai(np)i+1 + λi

√
ai(np)i+1/3

)
1Hi


= E

exp

− 3i+ λ2

2
(

1 + λi/3
√
ai(np)i+1

)
1Hi


Since ai ≥ 1 and np = ω(1) we have λi/

√
ai(np)i+1 ≤ λ/√np. Thus

P((Ei+1)c ∩Hi) ≤ e−i exp

(
− λ2

2
(
1 + λ/3

√
np
))P(Hi) , (4.2)

for n large enough. Now observe that Hi+1 ⊆ Hi and Hi is the disjoint union of

Hi+1 and (Ei+1)c ∩Hi. Hence we have the following reduction by (4.2)

P(Hi+1) = P(Hi)− P((Ei+1)c ∩Hi) =

(
1− e−i exp

(
− λ2

2
(
1 + λ/3

√
np
)))P(Hi) .

If we continue this iteratively we have the following

P(Hi+1) =

i∏
j=0

(
1− e−j exp

(
− λ2

2
(
1 + λ/3

√
np
)))P(H0) .

38



If we recall that H0 = {γ0(u) ≤ 1} so P(H0) = 1. Thus we have

P(Hi+1) ≥ 1−
i∑

j=0

e−j exp

(
− λ2

2
(
1 + λ/3

√
np
)) .

Let λ = k
√
np for any k ≥ 0 and observe that

k2

2(1 + k/3)
=

3k

2
− 3k

2(1 + k/3)
=

3k

2
− 9

2(1 + 3/k)
>

3(k − 3)

2
. (4.3)

Then, by (4.3) above and since np = ω (1), we obtain

P((Hi)c) ≤
i∑

j=0

e−j exp

(
− λ2

2(1 + λ/3
√
np)

)

=
e

e− 1
exp

(
− k2np

2(1 + k/3)

)
= o

(
e−3(k−3)np/2

)
. (4.4)

By (4.4) above it makes sense to consider k > 3, thus we will show that ai ≤ 2k2

for all i and any k > 3. Since a0 = 1 ≤ 2k2 assume ai ≤ 2k2, then by (4.1) we have

ai+1 = ai +
λi
√
ai

(np)(i+1)/2
= 1 +

λ0
√
a0√
np

+
i∑

j=1

λj
√
aj

(np)(j+1)/2
.

Recall that λi =
√

3i+ λ2 and observe that λ0 = λ = k
√
np. Thus we have

ai+1 = 1 + k +

i∑
j=1

√
3j + k2np

√
2k2

(np)(j+1)/2

≤ 1 + k +
√

2k2

i∑
j=1

3j/np+ k2

(np)j/2

≤ 1 + k +O
(

(np)−1/2
)

≤ 2k2.

Thus is follows by (4.4) that for any k > 3 we have

P
(
γi(u) > 2k2(np)i

)
≤ P((Hi)c) = o

(
e−3(k−3)np/2

)
.

39



Item (ii): Observe that conditional on
i⋂

j=0
{γj(u) ≤ 2k2(np)i} ⊆ Hi we have

|Bi(u)| =
i∑

j=0

γj(u) ≤
i∑

j=0

2k2(np)i ≤ (2k2 + 1)(np)i.

The result follows since P((Hi)c) = o
(
e−3(k−3)np/2

)
by (4.4).

Notice that what we have actually proved above is stronger than the state-

ment of Lemma 4.1.2 and that the term 2k2 can be improved easily to something

O (k). We have stated the Lemma as it is for backwards compatibility.

We now prove some lower bounds on growth for the pruned neighbourhoods,

the proof is similar to that of Lemma 4.1.2 however slightly more involved as the

distribution of the Γ∗ neighbourhoods is more complicated.

Lemma 4.1.3 (Γ∗-Neighbourhood lower bounds). Let G ∼d G(n, p) and i ∈ Z
satisfy

1 ≤ i ≤ blog(n)/ log(np)c − 3. (4.5)

Let Ψd
2 be defined with respect to MBFS(G, {u, v}) for u, v ∈ V and d ≥ 0.

(i) Let c > 0, np ≥ c log n and d ≥ max
{
d50
c e, 50

}
. Then

P
(
γ∗i (y) < 15(np)i−1

∣∣∣ y ∈ Ψd
2

)
= o

(
e−4np

)
.

(ii) If np = ω (log n) then for any fixed d,K ≥ 0

P
(
γ∗i (y) < 9

10(np)i
∣∣∣ y ∈ Ψd

2

)
= o

(
n−K

)
.

(iii) If np− log n→∞ then for any 5 ≤ i ≤ blog(n)/ log(np)c − 5

PC
(
|Bi(v)| < 15(np)i−5

)
= o

(
n−4

)
.

Proof. We will first set up the general framework for a neighbourhood growth bound

and then apply this bound under different conditions to prove Items (i), (ii) and (iii).

Run MBFS(G, {u, v}) and let y ∈ Ih, ni := |Si+h|, pi := p · (1− p)|Ii+h|−1 and

ri =
∏i
j=i0

njpj . We wish to show that there exists some i0 ∈ Z, i0 ≥ 0 such that

for all i ≥ i0:

P
(
γ∗i+1(y) < ai+1ri

)
≤ (i+ 1) exp

(
−λ2/2

)
, (4.6)
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where ai ≥ 0 satisfies ai+1 = ai − λ
√
ai/
√
ri, for some initial ai0 we will find later.

Observe

airi−1nipi − λ
√
airi−1nipi =

(
ai − λ

√
ai√
ri

)
ri = ai+1ri.

Applying Lemma 4.1.1 (iii) and conditioning on Fi+h yields

γ∗i+1(y) ∼d Bin (ni, γ
∗
i (y)pi) .

Let Hi := {γ∗i (u) ≥ airi−1} ∈ Fi+h. Now by Lemma 2.1.1 (i) and the inductive hy-

pothesis, this is the bound P(γ∗i (y) < airi−1) ≤ i exp
(
−λ2/2

)
, we have the following

P
(
γ∗i+1(y) < ai+1ri

)
= E

[
P
(
γ∗i+1(y) < airi−1nipi − λ

√
airi−1nipi

∣∣Fi+h)]
≤ E

[
P
(
Bin (ni, γ

∗
i (y)pi) < airi − λ

√
airi

∣∣Fi+h)1Hi
]

+ P(Hci )

≤ exp
(
−λ2airi/(2airi)

)
+ i exp

(
−λ2/2

)
= (i+ 1) exp

(
−λ2/2

)
.

The above always holds, however it may be vacuous as if i is too large then ai may

be negative. This can also happen for an incorrect choice of the starting time i0

and initial value ai0 . We address this in the application making sure to condition on

events where everything is well defined. In this spirit let l := blog(n)/ log(np)c−h−1

and define the event

D :=
l⋂

i=0

{
|Ii+h| ≤ 144(np)i+h

}
∩
{
γ∗i (y) ≤ 72(np)i

}
∩
{
|Si+h| ≥ n− 146(np)i+h

}
.

Conditioning on the event D and the filtration Fi+h for any i ≤ l ensures that

Bin (ni, γ
∗
i (y)pi) is a valid probability distribution and nipi = (1 − o(1))np. By

Lemma 4.1.2 with k = 6,

P(Dc) ≤ 2

l∑
i=0

P
(
Bi+2(u) > 73(np)i+2

)
+ 2

l∑
i=0

P
(
Γ(u)i+2(u) > 72(np)i+2

)
+

l∑
i=0

P
(
Γi(u) > 72(np)i

)
= o (exp (−4np)) . (4.7)

Item (i): recall from (3.7) that if y ∈ Ψd
2(u) ∪ Ψd

2(v) ⊆ I2 then γ∗1(y) > d for any

fixed d. Conditional on D ∩ F3, γ∗2(y) �1 Bin (n(1− ε), dp(1− ε)) for any fixed
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1 > ε > 0 provided n is large enough. If we choose λ = 3
√
np, d ≥ max

{
d50
c e, 50

}
then Lemma 2.1.1 (i) yields

P(γ∗2(y) < dn1p1/2) = E
[
P
(
γ∗2(y) < dn1p1/2

∣∣F3

)
(1D + 1Dc)

]
≤ e−dnp/10 + P(Dc)

≤ e−λ2/2.

Take i0 = 1 and a2 = d/3 since onD we have d/2n1p1 ≥ dnp/3. Now a2 ≥ · · · ≥ ai so

on the event D we have the following for any ε > 0 and 3 ≤ i ≤ blog(n)/ log(np)c−3

ai = a2 −
i−1∑
k=2

λ
√
ak√
rk
≥ d

3
− (3 + ε)

√
d

3np
≥ 16,

since conditional on D we have ri =
∏i
j=i0

njpj ≥ (1 − ε)(np)i for any ε > 0 and

1 ≤ i ≤ blog(n)/ log(np)c − 3 when n is large. Notice also that γ∗1(y) > d > 15(np)0

so by (4.6)

P
(
γ∗i+1(y) < 15(np)i

)
≤ P

(
γ∗i+1(y) < ai+1ri

)
+ P(Dc)

≤ (i+ 1)e−λ
2/2 + o

(
e−9np/2

)
≤ e−4np.

Item (ii): in this case on the event D we have nipi = (1 − o(1))np = ω(log n) for

every 0 ≤ i ≤ l, so we do not need to rely on the fact that γ∗1(y) ≥ d to start the

branching, thus the following holds for any d ≥ 0. Let λ =
√

3K log n where K > 0

is any fixed constant. As before conditioning on D ∩ F3 ensures that for any fixed

1 > ε > 0 we have γ∗1(y) ∼d Bin (n0, p0) �1 Bin (n(1− ε), p(1− ε)) when n is large

enough. By Lemma 2.1.1 (i),

E
[
P
(
γ∗1(y) < r0 − (5/4)λ

√
r0

∣∣F3

)
(1D + 1Dc)

]
≤ e−25λ2/32 + P(Dc)

≤ exp
(
−λ2/2

)
.

Take i0 = 0, a1 = 19/20 since on D we have r0 − (5/4)λ
√
r0 ≥ 19np/20. Now

a1 ≥ · · · ≥ ai so on the event D we have the following for any ε > 0 and 2 ≤ i ≤
blog(n)/ log(np)c − 3

ai = a1 −
i−1∑
k=1

λ
√
ak√
rk
≥ 19

20
− (1 + ε)

√
19 · 3K log n√

20np
=

19

20
− o(1) ≥ 9

10
.
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Thus for any 1 ≤ i ≤ blog(n)/ log(np)c − 3, K > 0 we have

P
(
γ∗i (y) < 9/10(np)i

)
≤ P(γ∗i (y) < airi−1) + P(Dc)

≤ (i+ 1)e−λ
2/2 + e−9np/2 ≤ o

(
n−K

)
.

Item (iii): since G ∈ C there exists a path u := u0, u1, . . . , ul with uj−1uj ∈ E for

each 1 ≤ j ≤ l. Let f(uj) be the number of ujv ∈ E where v ∈ V \{u0, . . . , ul}.
Then for any fixed d

P(f(uj) < d) =

d−1∑
i=1

(
n− l − 1

i

)
pi(1− p)n−i−l−1

≤
d−1∑
i=1

(np)i

i!
e−(n−d−l)p

≤ (np)de1−(1−(d−l)/n)np

= ed log(np)−(1−(d−l)/n)np

= e−(1−o(1))np.

Let E be the event {γ1(uj0) ≥ d for some 0 ≤ j0 ≤ 4}. As np ≥ log n and {f(uj)}lj=0

are i.i.d.:

PC(Ec) ≤ P(f(uj) < d)5 /P(C) ≤ e−5(1−o(1)) logn ≤ o
(
n−4

)
. (4.8)

On E there is some uj0 ∈ V with d(u, uj0) = j0 ≤ 4 and γ1(uj0) > d. We use

the stochastic domination γi(uj0) �1 γ∗i (uj0) to bound the growth of |Bi+j0(u)|
from below by that of γ∗i (uj0). Here we consider uj0 ∈ Ij0 defined with respect to

MBFS(G, {u, v}) for some v ∈ V . Let λ = 3
√

log n, d ≥ max
{
d50
c e, 50

}
. On D,

rj0+1 ≥ .99np when n is large. By Lemma 2.1.1 (i):

E
[
P
(
γ∗j0+2(u) < dnj0+1pj0+1/2

∣∣Fj0+1

)
1D∩E

]
≤ E

[
e−drj0+1/81D∩E

]
≤ e−λ2/2.

Take i0 = j0 + 1 and aj0+2 = d/3 since on D ∩ E we have dnj0+1pj0+1/2 ≥ dnp/3.

Now ai0 ≥ · · · ≥ ai and on the event D ∩ E we have ri = (1 − o(1))(np)i−j0 . Thus

we have the following for any ε > 0 and j0 + 3 ≤ i ≤ blog(n)/ log(np)c − j0 − 1:

ai = aj0+2 −
i−1∑

k=j0+2

λ
√
ak√
rk
≥ d

3
− (3 + ε)

√
d log n

3(np)2
≥ 16.
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Notice also γ∗j0+1(y) > d > 15(np)0. Thus for any 4 ≤ i ≤ blog(n)/ log(np)c − 5:

PC
(
|Bi+1(u)| < 15(np)i−5

)
≤ PC

(
γi+1(u) < 15(np)i−j0−1

∣∣D, E)+ PC(Dc) + PC(Ec)

≤ P
(
γ∗i+1(y) < ai+1ri

∣∣D, E) /P(C) + P(Dc) /P(C) + PC(Ec) .

By the bounds on P(C), P(D) and P(Ec) by (2.15), (4.7) and (4.8) respectively

PC
(
|Bi+1(u)| < 15(np)i−5

)
≤ 2(i+ 1)e−λ

2/2 + o
(
e−4np

)
+ o

(
n−4

)
= o

(
n−4

)
.

4.2 The strong k-path property for G(n, p)

Recall An,k,du,v is the set of graphs on [n] satisfying the strong k-path property for

u, v ∈ [n], see Definition 3.3.1. Let G ∼d G(n, p) and define the function

D =

max
{
d50
c e, 50

}
if np = (c± o(1)) log(n) where c > 0

0 if np = ω (log(n))
. (4.9)

The significance of D to the pruned neighbourhoods should be evident from the

statement of Lemma 4.1.3. From now on whenever we denote any of the pruned

neighbourhoods Φ1(u),Ψ1(u), φ1(u), ϕ1(u), . . . without the index d we take this to

mean d = D, for example ϕ2(u) := ϕD2 (u), where D is given by (4.9). Define the

following event:

Anu,v := { exists k ≤ log n/(2 log np) + 2 such that G ∈ An,k,Du,v }. (4.10)

Recall the definition (3.8) of Bu,v,d
w :=

{
G : V = [n],Ψd

1(w) 6= ∅
}

for w ∈
{u, v} ⊂ V and also the intersection Bd

u,v := Bu,v
u ∩Bu,v,d

v . For the same D we define

Bu,vw :=
{
G ∈ Bu,v,D

w

}
, Bu,v = Bu,vu ∩ Bu,vv . (4.11)

We are now in a position to show that the strong k-path property holds in sparsely

connected binomial random graph with high probability.

Lemma 4.2.1. Let G ∼d G(n, p) where for any c > 0, c log n ≤ np < n1/10. Then
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for u, v ∈ V, u 6= v

P
((
Anu,v

)c)
= o

(
e−7 min{np,logn}/2

)
and P((Bu,v)c) = e−(1−o(1))np.

Proof. Run MBFS(G, {u, v}), u, v ∈ V . For k ≥ 0 let T := Tu,v,k = T1 ∩ T2 where

T1 :=
{
|Sk+2| ≥ n− n5/6

}
,

and

T2 := {|Γ∗k(x)× Γ∗k(y)| ≥ 4n, for all (x, y) ∈ Ψ2(u)×Ψ2(v)} .

On the event T1 when MBFS(G, {u, v}) has run for k + 2 iterations there is still

a lot of the graph yet to explore and the algorithm will run for at least one more

iteration. The k in the definition of T will be the one occurring in the description

of Anu,v. Set the value of k to be

k := k(n, p) =


⌈
log
(

4n
(15)2

)
/ (2 log(np))

⌉
+ 1 if np = c log n where c > 0⌈

log
(

400n
81

)
/ (2 log(np))

⌉
if np = ω (log n) ,

(4.12)

and notice k ≤ log(np)/ (2 log n) + 2 for large n. It remains to show that for this k,

given by (4.12), we have

P
(
G /∈ An,k,Du,v

)
= o

(
e−7 min{np,logn}/2

)
.

Let R := Ru,v be the event
{
|Ψ2(u)×Ψ2(v)| ≤ (72(np)2)2

}
. Since ψd2(u) ≤ γ2(u)

for any d ≥ 0, u ∈ V an application of Lemma 4.1.2 with k = 6 yields

P(Rc) ≤ P
(
ψ2(u) > 72(np)2

)
+ P

(
ψ2(v) > 72(np)2

)
= o

(
e−9np/2

)
. (4.13)

We have the following by the tower property and the bound (4.13) for P(Rc)

P(T c) ≤ E
[
P
(
T c2
∣∣F3

)
1R
]

+ P(T c1 ) + P(Rc)

≤ 2E
[
ψ2(u)ψ2(v)1RP

(
γ∗k(w) < 2n1/2

∣∣{w ∈ Ψ2},F3

)]
+ 2P

(
γk+2(u) > n5/6/2

)
+ o

(
e−9np/2

)
,
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as {γ∗1(x)γ∗1(y) < k} ⊆ {γ∗1(x) or γ∗1(y) <
√
k}. Observe that provided np ≤ n1/10

the choice of k given by (4.12) satisfies (4.5) in Lemma 4.1.3. Thus by Lemmas

4.1.2, 4.1.3 (i) and 4.1.3 (ii) we have

P(T c) ≤ 2(72(np)2)2P
(
γ∗k(w) < 2n1/2

∣∣w ∈ Ψ2

)
+ 3 · o

(
e−9np/2

)
≤ e5 log(np)−4 min{np,logn} + o

(
e−9np/2

)
= o

(
e−7 min{np,logn}/2

)
. (4.14)

The bound P
(
γ∗k(w) < 2n1/2

∣∣w ∈ Ψ2

)
≤ e−4 min{np,logn} comes from an amalgama-

tion of Lemmas 4.1.3 (i) and 4.1.3 (ii), where we have chosen K = 4 for Lemma

4.1.3 (ii). This is so we can cover the different values of np with one bound. Recall

that Ψ2 = ΨD
2 , the use of this bound is valid since D, given by (4.9), satisfies the

assumptions on d in the statement of Lemma 4.1.3.

Let Lx,y be the following event indexed by (x, y) ∈ Ψ2(u)×Ψ2(v),

Lx,y := {x′y′ /∈ E, for every pair (x′, y′) ∈ Γ∗k(x)× Γ∗k(y)}.

This is independent of Fk+2 as each x′y′ has not been checked up to iteration k+ 2,

thus

P
(
Lx,y

∣∣Fk+2

)
1T = P

(
x′y′ /∈ E

)γ∗k(x)γ∗k(y)
1T

≤ (1− p)4n1T

≤ 2 exp (−4np) 1T . (4.15)

Recall Definition 3.3.1 of the strong k-path property An,k,Du,v and observe{
G /∈ An,k,Du,v

}
=

⋃
(x,y)∈Ψ2(u)×Ψ2(v)

{Γ∗k(x) = ∅} ∪ {Γ∗k(y) = ∅} ∪ Lx,y.

Observe that for each i, j ≥ 0 the random variables {γ∗j (w)}w∈Ii are identically

distributed. Recall also that Ψ1(u),Ψ1(v),R ∈ F3. Now by the union bound, tower
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property and since ψ1(u)ψ1(v) ≤ (72(np)2)2 on R, we have the following

P := P
({
G /∈ An,k,Du,v

}
∩R ∩ T

)
≤ E

 ∑
(x,y)∈Ψ2(u)×Ψ2(v)

E
[(

1Lx,y∪{γ∗k(x)=0}∪{γ∗k(y)=0}

)
1R1T

∣∣∣F3

]
≤ E

[
(72(np)2)21RE

[(
1Lx,y + 1{γ∗k(x)=0} + 1{γ∗k(y)=0}

)
1T

∣∣∣F3

]]
.

Now since x, y ∈ Ψ2 and γ∗j (x), γ∗j (y) are identically distributed for any j ≥ 0:

P ≤ (72(np)2)2
(
E
[
E
[
1Lx,y1T

∣∣∣Fk+2

]]
+ 2P

(
γ∗k(w) = 0

∣∣{w ∈ Ψ2},F3

))
.

By Lemma (4.1.3) (i), (4.15) and since T ∈ Fk+2 we have

P ≤ (72(np)2)2
(
E
[
P
(
Lx,y

∣∣∣Fk+2

)
1T

]
+ 2e−4 min{np,logn}

)
= o

(
e−7 min{np,logn}/2

)
.

By (4.13), (4.14) and the bound on P
({
G /∈ An,k,Du,v

}
∩R ∩ T

)
directly above:

P
(
G /∈ An,k,Du,v

)
≤ P

({
G /∈ An,k,Du,v

}
∩R ∩ T

)
+ P((R∩ T )c)

≤ o
(
e−7 min{np,logn}/2

)
.

For P((Bu,v)c), use Lemma 2.1.2 to bound the difference between the ψ and γ∗-

distributions:

P((Bu,v)c) ≤ P(ψ1(u) = 0) + P(ψ1(v) = 0)

≤ 2P(γ∗1(u) = 0) + 2P(ψ1(u) 6= γ∗1(u)) .

Then since P(ψ1(u) 6= γ∗1(u)) is known by Lemma 4.3.1 we have

P((Bu,v)c) ≤ 2P(γ∗1(u) = 0 | γ∗1(v) ≤ 32np) + 2P(γ1(v) > 32np) + 2e−(1−o(1))np.

Applying Lemma 4.1.1 (ii) to the first term and Lemma 4.1.2 (i) with k = 4 to the

second:

P((Bu,v)c) ≤ 2(1− p)n−32np−1 + o
(
e−3(4−1)np/2

)
+ e−(1−o(1))np = e−(1−o(1))np.
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The event Anu,v is generally applied in combination with Bu,v as G ∈ An,k,Du,v

can be meaningless if G /∈ BD
u,v. However, we have defined the event Bu,v and Anu,v

separately as sometimes it is necessary to condition on something stronger than the

event Bu,v. The bound on R(u, v) for G ∈ An,k,Du,v , Theorem 3.4.1, is sensitive to

the Ψ-neighbourhoods being empty and so we will also need the following crude but

resilient bound on effective resistance in connected G(n, p) when calculating errors.

Lemma 4.2.2. Let G ∼d G(n, p) be such that np− log n→∞. Then for i, j ∈ V ,

PC(R(i, j) > 3 log n/ log(np)) = o(n−4).

Proof. Since G ∈ C the effective resistance between two points is bounded from

above by the graph distance. Let Ji,j := {|Bk(i)| · |Bk(j)| ≥ 4n} where

k := k(n, p) =

⌈
log
(

4n
152

)
2 log(np)

⌉
+ 5.

Using Lemma 4.1.3 (iii) to bound PC
(
J ci,j
)

, since 5 ≤ k ≤ blog(n)/ log(np)c − 5

when n large:

PC(R(i, j) > 2k + 1)

≤ PC
(
d(i, j) > 2k + 1

∣∣∣Ji,j)+ PC
(
J ci,j
)

≤ P
(
xy /∈ E, ∀(x, y) ∈ Bk(i)×Bk(j), Bk(i) ∩Bk(j) = ∅

∣∣∣Ji,j) /P(C)

+ 2PC
(
|Bk(j)| < 2

√
n
)
≤ 2(1− p)4n + 2 o

(
n−4

)
= o

(
n−4

)
.

The result follows since 2k + 1 = 2

(⌈
log
(

4n
152

)
2 log(np)

⌉
+ 5

)
+ 1 ≤ 3 logn

log(np) for large n.

4.3 Neighbourhood couplings

In this section we state and prove Lemma 4.3.1 which bounds the difference in

distribution between the sizes of the pruned neighbourhoods Ψd
1 and Ψd

2 and the

original neighbourhoods γd1 and γd2 . Lemma 4.3.1, in combination with Lemma

2.1.2, will allow us to gain control over the Ψd
1 and Φd

1 neighbourhood distributions

in G(n, p) by relating them to the Γ∗-neighbourhood distributions which are known

by Lemma 4.1.1.
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Lemma 4.3.1. Let G ∼d G(n, p) and for any c > 0 let c log n ≤ np ≤ o(n1/3). Let

d ≥ 0 be fixed and let I1 and the ϕd1, ψ
d
1 , ψ

d
2 and γ∗-distributions be defined with

respect to MBFS(G, {u, v}), u, v ∈ V . Then

(i) P
(
ϕd1(x) 6= γ∗1(x)

∣∣x ∈ I1

)
= e−(1−o(1))np,

(ii) P
(
ψd1(u) 6= γ∗1(u)

)
= e−(1−o(1))np,

(iii) P
(
ψd1(u) 6= γ1(u) or ψd1(v) 6= γ1(v)

)
≤ 2np2 + e−(1−o(1))np,

(iv) P
(
ψd2(u) 6= γ2(u) or ψd2(v) 6= γ2(v)

)
≤ 4n3p4 + e−(1−o(1))np +O

(
n2p3

)
.

Proof. Item (i): run MBFS(G, {u, v}) and let x ∈ I1. By the definition (3.5) of

ψd1(x), if γ∗1(x̃) > d for all x̃ ∈ Γ∗1(x) then ϕd1(x) = γ∗1(x). Hence for x ∈ I1,

A := P
(
ϕd1(x) 6= γ∗1(x)

∣∣F2

)
= P

(
γ∗1(x̃) ≤ d for some x̃ ∈ Γ∗1(x)

∣∣F2

)
≤

∑
x̃∈Γ∗1(x)

P
(
γ∗1(x̃) ≤ d

∣∣F2

)
.

If x̃ ∈ Γ∗1(x), x ∈ I1 then x̃ ∈ I2. Knowing the parent of x̃ does not affect the

γ∗1 -distribution conditioned on {x̃ ∈ I2}, so by Lemmas 4.1.1 (iii) as |S2|, |I2| ∈ F2

A ≤ γ∗1(x)P
(
Bin

(
|S2|, p(1− p)|I2|−1

)
≤ d
∣∣∣|S2|, |I2|

)
= γ∗1(x)

d∑
j=0

(
|S2|
j

)(
p(1− p)|I2|−1

)j (
1− p(1− p)|I2|−1

)|S2|−j
.

Now using the bounds
(
n
j

)
≤ nj/j! and (1− p)n ≤ exp(−np) we have

A ≤ γ∗1(x)
d∑
j=0

(
|S2|p(1− p)|I2|

)j
j!

exp
(
−p(1− p)|I2| (|S2| − j)

)
≤ dγ∗1(x)

(
|S2|p(1− p)|I2|

)d
exp

(
−p(1− p)|I2| (|S2| − d)

)
.

Let Ex :=
{
|I2| ≤ 66(np)2

}
∩{γ∗1(x) ≤ 32np}∩{|S2| ≥ n− 66(np)2} for x ∈ I1, then

P
(
ϕd1(x) = γ∗1(x)

∣∣F2

)
1Ex ≤ 32de(d+1) log(np)−p(1−66n2p3)(n−66(np)2−d)

= e−(1−o(1))np. (4.16)

Recall that |I2| ≤ |B2(u)|+ |B2(v)|, γ∗1(x) ≤ γ1(x) and |S2| ≥ n− |B2(u)| − |B2(v)|.
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We have the following for x ∈ I1, np = ω(log log n) by Lemma 4.1.2 (ii) with k = 4:

P(Ecx) ≤ P(γ1(x) > 32np) + 2P
(
|B2(u)| > 33(np)2

)
≤ 3 · o

(
e−3(4−3)np/2

)
= e−(1−o(1))np.

Now for x ∈ I1, by the tower property, (4.16) and the above bound on P(Ecx), we

have

P
(
ϕd1(x) 6= γ∗1(x)

)
≤ E

[
P
(
ϕd1(x) = γ∗1(x)

∣∣F2

)
1Ex

]
+ P(Ecx) = e−(1−o(1))np.

Item (ii): for ũ ∈ I1 the distribution of γ∗1(ũ) conditioned on |S1|, |I1| is known by

4.1.1 (iii). Thus using the bound (1 − p)n ≤ exp(−np) we obtain the following for

ũ ∈ I1,

P
(
γ∗1(ũ) = 0

∣∣F1

)
= P

(
Bin

(
|S1|, p(1− p)|I1|−1

)
= 0
∣∣∣|S1|, |I1|

)
=
(

1− p(1− p)|I1|−1
)|S1|

≤ exp
(
−|S1|p(1− p)|I1|

)
. (4.17)

Recall the definition (3.6) of Ψd
1(u). If ũ ∈ Γ∗1(u) then ũ ∈ I1 and knowing the

parent of ũ does not affect the γ∗1 -distribution conditioned {ũ ∈ I1}. So by Lemma

2.1.2 and (4.17) we have

P
(
ψd1(u) 6= γ∗1(u)

∣∣F1

)
= P

(
ϕd1(ũ) = 0 for some ũ ∈ Γ∗1(u)

∣∣F1

)
≤

∑
ũ∈Γ∗1(u)

P
(
ϕd1(ũ) = 0

∣∣F1

)
.

Now using the coupling lemma, Lemma 2.1.2, yields the following for ũ ∈ I1

P
(
ψd1(u) 6= γ∗1(u)

∣∣F1

)
≤ γ∗1(u)P

(
γ∗1(ũ) = 0

∣∣F1

)
+ γ∗1(u)P

(
ϕd1(ũ) 6= γ∗1(ũ)

∣∣F1

)
≤ γ∗1(u) exp

(
−|S1|p(1− p)|I1|

)
+ γ∗1(u)P

(
ϕd1(ũ) 6= γ∗1(ũ)

∣∣F1

)
. (4.18)

Let Eu := {|I1| ≤ 64np} ∩ {γ∗1(u) ≤ 32np} ∩ {|S1| ≥ n − 66np}, u ∈ I0. Now by
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(2.3):

γ∗1(u) exp
(
−|S1|p(1− p)|I1|

)
1Eu ≤ elog(32np)−(n−66np)p(1−64np2)

= e−(1−o(1))np. (4.19)

Recall |I1| �1 γ1(u) + γ1(v) and |S1| ≥ n − |B1(u)| − |B1(u)|. Lemmas 2.1.1 and

4.1.2 (ii) yield

P(Ecu) ≤ 3P(γ1(u) > 32np) + 2P(|B1(u)| > 33np) = o
(
e−3np/2

)
. (4.20)

For u ∈ I0, ũ ∈ I1 we use the tower property and (4.18) to give

P := P
(
ψd1(u) 6= γ∗1(u)

)
≤ E

[
P
(
ψd1(u) 6= γ∗1(u)

∣∣F1

)
1Eu

]
+ P(Ecu)

≤ E
[
γ∗1(u) exp

(
−|S2|p(1− p)|I1|

)
1Eu

]
+ E

[
γ∗1(u)1EuP

(
ϕd1(ũ) 6= γ∗1(ũ)

∣∣F1

)]
+ P(Ecu) .

Using the bounds from (4.19), Item (ii) and (4.20) on the above three terms respec-

tively we obtain

P ≤ e−(1−o(1))np + 32npP
(
ϕd1(ũ) 6= γ∗1(ũ)

∣∣ũ ∈ I1

)
+ o

(
e−3np/2

)
= e−(1−o(1))np.

Item (iii): let I0 = {u, v} and H := {γ1(u) = γ∗1(u), γ1(v) = γ∗1(v)}. By Item (ii)

P
(
ψd1(u) 6= γ1(u) or ψd1(v) 6= γ1(v)

)
≤ P

(
{ψd1(u) 6= γ1(u) or ψd1(v) 6= γ1(v)} ∩ H

)
+ P(Hc)

≤ P
(
ψd1(u) 6= γ∗1(u) or ψd1(v) 6= γ∗1(u)

)
+ P(Hc)

≤ 2e−(1−o(1))np + P(Hc) . (4.21)

To calculate P(Hc) in the above recall the definition (3.3) of γ∗1(u) and observe

P(Hc) = P({uv ∈ E} ∪ {xu ∈ E and xv ∈ E for some x ∈ V \I0})

≤ P(uv ∈ E) +
∑

x∈V \I0
P(xu ∈ E and xv ∈ E) = p+ (n− 2)p2. (4.22)
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Then combining (4.21) and (4.22) yields the bound

P
(
ψd1(u) 6= γ1(u) or ψd1(v) 6= γ1(v)

)
≤ 2e−(1−o(1))np + p+ (n− 2)p2

≤ 2np2 + e−(1−o(1))np.

Item (iv): let I0 = {u, v} and L := {γ2(u) = γ∗2(u), γ2(v) = γ∗2(v)}. Then

L :=

 ⋂
x∈γ1(u),y∈γ1(v)

{xy /∈ E}

 ∩
 ⋂
z∈S1

{|{x ∈ I1 : xz ∈ E}| ≤ 1}

 ∩H, (4.23)

by the definition (3.3) of γ∗2(u). Observe that by the Bernoulli inequality (2.3),

P
(
|{x ∈ I1 : xz ∈ E}| > 1

∣∣F1

)
= 1−

∑
a=0,1

P
(
|{x ∈ I1 : xz ∈ E}| = a

∣∣F1

)
= 1− (1− p)|I1| − |I1|p(1− p)|I1|−1

≤ 1− (1− |I1|p)− |I1|p(1− |I1|p)

= (|I1|p)2 .

By (4.23), the above estimate on P
(
|{x ∈ I1 : xz ∈ E}| > 1

∣∣F1

)
and H ∈ F1, we have

P
(
Lc
∣∣F1

)
≤

∑
x∈γ1(u),y∈γ1(v)

P
(
xy ∈ E

∣∣F1

)
+
∑
z∈S1

P
(
|{x ∈ I1 : xz ∈ E}| > 1

∣∣F1

)
+ P

(
Hc
∣∣F1

)
≤ γ1(u)γ1(v)p+ |S1| (|I1|p)2 + 1Hc .

Then by the bound on P
(
Lc
∣∣F1

)
above, the tower property and Hölder’s inequality

(2.2) we have the following

P(Lc) = E
[
P
(
Lc
∣∣F1

)]
≤ p
√
E[γ1(u)2]E[γ1(v)2] + p2

√
E[|S1|2]E[|I1|4] + E[1Hc ] .

By Lemma 4.1.1 |S1| ∼d Bin
(
n− 2, (1− p)2

)
, |I1| ∼d Bin (n− 2, 2p(1− p)). Thus

applying the bound on moments of binomial random variables from (2.16) yields

P(Lc) ≤ p
(
(np)2 +O(np)

)
+ p2

√
(n2 − 4n2p+O(n)) (16(np)4 +O((np)3)) + P(Hc)

≤ n2p3 +O
(
np2
)

+ 4n3p4 +O
(
n2p3

)
+ p+ (n− 2)p2

= 4n3p4 +O
(
n2p3

)
.

Let F :=
{
ψd2(u) = γ2(u), ψd2(v) = γ2(v)

}
. Then by the definitions (3.6) and (3.7)
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of the vertex sets Ψ1(u) and Ψ2(u) we have

F :=
{
ψd1(u) = γ1(u), ψd1(v) = γ1(v)

}
∩
(⋂

x∈I1

{
ϕd1(x) = γ∗1(x)

})
∩ L.

Let D = {γ1(u), γ1(v) ≤ (1 + 7/min{c, 1})np, }. Then, for x ∈ I1, by Items (i),(iii):

P(Fc) ≤ P
(
ψd1(u) 6= γ1(u) or ψd1(v) 6= γ1(u)

)
+ E

[
|I1|P

(
ϕd1(x) = γ∗1(x)

∣∣F1

)
(1D + 1Dc)

]
+ P(Lc)

≤ 2np2 + e−(1−o(1))np +O
(
npe−(1−o(1))np

)
+ nP(Dc) + 4n3p4 +O

(
n2p3

)
≤ 4n3p4 + e−(1−o(1))np +O

(
n2p3

)
.

The last inequality holds since

P(Dc) ≤ 2 exp

(
− 72

2(min{c, 1})2 (1 + 7/min{c, 1})
np

)
= o

(
1/n2

)
by Lemma 2.1.1 (ii).
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Chapter 5

Effective Resistance and Hitting

times in G(n, p)

In this Chapter we will apply the results of the previous chapter to prove Theorems

5.1.1, 5.2.1, 5.3.1 and 5.4.2. We must first state and prove Lemma 5.0.1 which

provides higher reciprocal moments of Ψ1 and Φ1 and provides other bounds which

are of use to us when we prove the main theorems. These moments arise in the

proof of Theorem 5.1.1 when we apply Hölder’s inequality (2.2) to the resistance

bound in Theorem 3.4.1.

Recall the definitions of Aku,v and Bu,v from (4.10) and (4.11) respectively.

Recall also the function D (4.9) in the definitions of Aku,v and Bu,v and that if we

state a pruned neighbourhood without reference to d then we take d = D, i.e.

Ψ1 := ΨD
1 .

Lemma 5.0.1. Let G ∼d G(n, p) where log n + log log log n ≤ np < o(n1/3). Let

α ≥ 1 and Ψ1(u),Ψ1(v) be defined with respect to MBFS(G, {u, v}), u, v ∈ V . Then

(i) EC
[

1Bu,vu
ψ1(u)α

]1/α

=
1

np
+O

(
log n

(np)2 log(np)

)
,

(ii) EC

[(
sup

x∈Ψ1(u)

1Bu,vu
ϕ1(x)

)α]1/α

≤ O
(

1

np

)
.

(iii) If c log n ≤ np ≤ n1/10, for any fixed c > 0, then

P
(
R (u, v) >

(
1

ψ1(u)
+

1

ψ1(v)

)(
1 +

9 log n

np log(np)

))
= o

(
e−np/4

)
+o
(
n−7/2

)
.

Proof. Item (i): we restrict to the event Bu,vu = {G ∈ Bu,v,Du } to ensure the expec-
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tation is bounded,

E := EC
[

1Bu,vu
ψ1(u)α

]
=

n∑
k=1

1

kα
PC
(
ψD1 (u) = k

)
=

n∑
k=1

1

kα
P
(
{ψD1 (u) = k} ∩ C

)
P(C)

.

Applying the coupling lemma, Lemma 2.1.2, and then Lemma 4.3.1 to bound

P
(
γ∗1(u) 6= ψD1 (u)

)
gives the following upper bound for the last term in the line

above

E ≤
n∑
k=1

1

kα
P(γ∗1(u) = k) + P(γ∗1(u) 6= ψ1(u))

P(C)
=

n∑
k=1

1

kα
P(γ∗1(u) = k) + e−(1−o(1))np

P(C)
.

Let γ̃1(v) := |Γ1(v) ∩ S0| ∼d Bin(n − 2, p). By Lemma 4.1.1 we have γ∗1(u) ∼d
Bin(n− 2− h, p) conditional on {γ̃1(v) = h}. The law of total expectation and the

fact that the harmonic series diverges at rate log(n) yield the following

E ≤
n∑
k=1

1

kα

n−2∑
h=0

P
(
γ∗1(u) = k

∣∣∣γ̃1(v) = h
)
P(γ̃1(v) = h)

P(C)
+O

(
(log n)e−(1−o(1))np

P(C)

)
.

Now by writing out P
(
γ∗1(u) = k

∣∣∣γ̃1(v) = h
)
P(γ̃1(v) = h) explicitly we have

E ≤
n∑
k=1

1

kα

n−2∑
h=0

(
n−2−h

k

)
pk(1− p)n−2−h−k ·

(
n−2
h

)
ph(1− p)n−2−h

P(C)
+ e−(1−o(1))np

=
n−3∑
h=0

(
n− 2

h

)
ph(1− p)n−2−h

P(C)

(
n−2−h∑
k=1

1

kα

(
n− 2− h

k

)
pk(1− p)n−2−h−k

)
+ e−(1−o(1))np.

Applying Proposition 2.4.2 to the bracketed sum above where we let Xh be a random

variable with distribution Bin(n− h− 3, p) yields

E ≤ np

P(C)

n−3∑
h=0

(
n− 2

h

)
ph(1− p)n−2−hE

[
1

(Xh + 1)α+1

]
+ e−(1−o(1))np.
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The weight in front of the expectation term is the density of a Bin(n−2, p) random

variable. Split the sum at t :=
√

3np(α+ 2) log(np) and bound the expectation to

give

E ≤ np

P(C)

(
P(Bin(n− 2, p) ≤ t)E

[
1

(Xt + 1)α+1

]
+ P(Bin(n− 2, p) > t)

)
+ e−(1−o(1))np.

Using Lemma 2.1.1 to bound P(Bin(n− 2, p) > t) and Lemma 2.4.3 to calculate the

expectation term E
[

1
(Xt+1)α+1

]
we have

E ≤ np

P(C)

[(
1

((n− t− 3)p)α+1 +O

(
1

((n− t− 3)p)α+2

))
+ o

(
1

(np)α+2

)]
+ e−(1−o(1))np.

By (2.15), P(Cc) ≤ O(log n/(np log(np))) whenever np ≥ log n+ log log log n. Thus

E ≤ 1

(1− P(Cc))(np)α
+O

(
1

(np)α+1

)
=

1

(np)α
(1 +O(P(Cc))) +O

(
1

(np)α+1

)
.

Recall the Bernoulli inequality (2.3): (1+x)r ≤ 1+rx, for any x > −1 and 0 ≤ r ≤ 1.

Applying this yields

E1/α ≤
(

(1 +O(P(Cc)))
(np)α

+O

(
1

(np)α+1

))1/α

=
(1 +O(P(Cc)))1/α

np

(
1 +O

(
1

np

))1/α

=
1 +O(P(Cc))

np

(
1 +O

(
1

np

))
=

1

np
+O

(
log n

(np)2 log(np)

)
.

Item (ii): Let H be the event {ϕD1 (x) = γ∗1(x) for all x ∈ I1} ∈ F3 and define

Kp :=
(

1−
√

3/2
)
np(1− 66np2). (5.1)

Recall Ψ1(u) ⊂ I1 for u ∈ I0 and switch between the ϕ and γ∗1 distributions on the

event H:

Pu := P
(

inf
x∈Ψ1(u)

ϕ1(x) < Kp

)
≤ P

({
inf
x∈I1

γ∗1(x) < Kp

}
∩H

)
+ P(Hc) .
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Now by the tower property and the definition of H we have

Pu ≤ E
[
P
(

inf
x∈I1

γ∗1(x) < Kp

∣∣F1

)]
+ E

[
P
(
ϕ1(x) 6= γ∗1(x) for some x ∈ I1

∣∣F1

)]
.

Applying the union bound since I1 ∈ F1 yields

Pu ≤ E
[
|I1|P

(
γ∗1(x) < Kp

∣∣x ∈ I1,F1

)]
+ E

[
|I1|P

(
ϕ1(x) 6= γ∗1(x)

∣∣x ∈ I1,F1

)]
.

Let a := 4/min{c, 1} where c > 0 is any fixed positive real number such that np ≥
c log n. Separate the expectations into parts

{
|I1| ≤ 4a2np

}
and

{
|I1| > 4a2np

}
:

Pu ≤ 4a2npE
[
P
(
γ∗1(x) < Kp

∣∣x ∈ I1,F1

)]
+ 4a2npP

(
ϕ1(x) 6= γ∗1(x)

∣∣x ∈ I1

)
+ 2nP

(
|I1| > 4a2np

)
.

Since γ∗1(x) ∼d Bin(|S1(x)|, p) by Lemma 4.1.1, S1(x) ∈ F2, and by Lemma 4.3.1

(i) we have

Pu ≤ 4a2npE
[
P
(
Bin(|S1(x)|, p) < Kp

∣∣F2

)]
+ 4a2(np)e−(1−o(1))np + 4nP

(
γ1(u) > 2a2np

)
.

Applying Lemma 2.1.1 to the first term and Lemma 4.1.2 (i) with k = a to the last

yields

Pu ≤ 4a2npE
[
e−(|S1(x)|p−Kp)2/(2|S1(X)|p)

]
+ 4a2(np)e−(1−o(1))np + 4n · o

(
e−3(a−3)np/2

)
.

Separating the expectation into the two disjoint parts
{
|S1(x)| ≤ n− 66(np)2

}
and{

|S1(x)| > n− 66(np)2
}

we have the following bound from above

Pu ≤ 4a2(np) · e−((n−66(np)2)p−(1−
√

3/2)np(1−66np2))
2
/(2np)

+ 2P
(
|B2(u)| > 33(np)2

)
+ o

(
e−np/2

)
.

Rearranging the first term and applying Lemma 4.1.2 (ii) with k = 4 to the middle

term yields the following

Pu ≤ 4a2npe−np/3 + o
(
e−3(4−3)np/2

)
+ o

(
e−np/2

)
= o

(
e−np/4

)
. (5.2)

Recall supx∈Ψ1(u) 1Bu,vu /ϕ1(x) < 1/D, see (3.5) & (3.6). Applying the Bernoulli
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inequality (2.3) we obtain

EC

[(
sup

x∈Ψ1(u)

1Bu,vu
ϕ1(x)

)α]1/α

≤
(

1

(Kp)α
+

1

DαP(C)
P
(

inf
x∈Ψ1(u)

ϕ1(x) < Kp

))1/α

≤ 1

(Kp)

(
1 + (Kp)

αe−np/4/DαP(C)
)1/α

≤ O
(

1

np

)
. (5.3)

Note that the bound (5.2) on Pu holds for any np ≥ c log n, c > 0 fixed. The

restriction on np to np ≥ log n comes from (5.3), where we need P(C) bounded

below by a constant.

Item (iii): conditioning on the event Anu,v and applying Theorem 3.4.1 yields

R (u, v) ≤ 1

ψ1(u)
+

1

ψ1(v)
+

∑
a∈Ψ1(u)

k + 2

ψ1(u)2ϕ1(a)
+

∑
b∈Ψ1(v)

k + 2

ψ1(v)2ϕ1(b)

≤ 1

ψ1(u)

(
1 + (k + 2) · sup

x∈Ψ1(u)

1

ϕ1(x)

)
+

1

ψ1(v)

(
1 + (k + 2) · sup

x∈Ψ1(v)

1

ϕ1(x)

)
.

Recall Kp from (5.1) and bound on k in description of the event Anu,v, note thatKp≥
np/9 and k ≤ log(n)/ log(np) for large n. Thus inserting these bounds, conditional

on H := {ϕ1(a) ≥ Kp for all a ∈ Ψ1} ∩ Anu,v we have

R (u, v) ≤
(

1

ψ1(u)
+

1

ψ1(v)

)(
1 +

k + 2

Kp

)
≤
(

1

ψ1(u)
+

1

ψ1(v)

)(
1 +

9 log n

np log(np)

)
.

Applying the bounds on Pu from (5.2) and on P
((
Anu,v

)c)
by Lemma 4.2.1 yield

P(Hc) ≤ 2P
(

inf
x∈Ψ1(u)

ϕ1(x) < Kp

)
+ P

((
Anu,v

)c)
= o

(
e−np/4

)
+ o

(
n−7/2

)
.

5.1 Expectation for hitting times, Theorem 5.1.1

Let Si,j be the event {R(i, j) > 3 log n/ log(np)}. By Lemma 4.2.2, if np−log n→∞
then we have the following

PC(Si,j) := PC(R(i, j) > 3 log n/ log(np)) = o(n−4). (5.4)
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If G ∈ C then there is a path of length at most n − 1 between any i, j ∈ V . Since

effective resistance is bounded by graph distance for all i, j ∈ V we have the bound

R(i, j) ≤ n− 1. (5.5)

Let C := Cn be the event that G ∼d G(n, p) is connected. Let a(n), b(n) : N → R,

then for ease of presentation we use the notation

a(n)
O
= b(n) to denote a(n) =

(
1±O

(
log n

np log(np)

))
b(n).

We shall now (re)state one of the main theorems of this chapter and then prove it.

Theorem 5.1.1. Let G ∼d G(n, p) with log n+ log log log n ≤ np ≤ n1/10. Then for

any i, j ∈ V (G) where i 6= j,

(i) E
[
R(i, j)

∣∣C] O= 2

np
, E

[
h(i, j)

∣∣C] O= n, E
[
κ(i, j)

∣∣C] O= 2n,

(ii) E
[
K(G)

∣∣C] O= n

p
, E

[
cc(G)

∣∣C] O= n, E
[
cci(G)

∣∣C] O= n,

(iii) E
[
K(G)2

∣∣C] O= n2

p2
, E

[
h(i, j)2

∣∣C] O= n2, E
[
cci(G)2

∣∣C] O
= n2,

(iv) E
[
Hi(G)

∣∣C] O= n, E
[
H(G)

∣∣C] O= n, E
[
T (G)

∣∣C] O= n,

(v) E
[
Hi(G)2

∣∣C] O= n2, E
[
H(G)2

∣∣C] O= n2, E
[
T (G)2

∣∣C] O= n2.

We shall arrange the proof as follows: the proof of each item in the statement

of Theorem 5.1.1 will appear as a subsection and within this subsection each moment

calculation will be contained in a proof environment.

5.1.1 Proof of Theorem 5.1.1 (i)

Proof of EC [R(i, j)]. Let C1 be the event Ani,j ∩ Bi,j and k∗ = log(n)/ log(np). Ob-

serve conditional on C1, for large n, we have k + 2 ≤ k∗, where k is as in Theo-

rem 3.4.1. First we apply the bound on resistance from Theorem 3.4.1 to bound

EC [R(i, j)1C1 ] from above

EC [R(i, j)1C1 ] ≤
∑

x∈{i,j}

EC
[

1Bi,jx
ψ1(x)

]
+ k∗ · EC

 ∑
a∈Ψ1(x)

1Ani,j∩Bi,j

ψ1(x)2ϕ1(a)

 . (5.6)

By Lemma 5.0.1 (i) the first term in the sum is 1/(np)+O
(
log n/(np)2 log(np)

)
. To

bound the second term, start by pulling out supa∈Ψ1(x) 1/ϕ1(a) from the sum over
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a ∈ Ψ1(x) to obtain

E := k∗ · EC

 ∑
a∈Ψ1(x)

1Ani,j∩Bi,j

ψ1(x)2ϕ1(a)

 ≤ k∗ · EC[( sup
a∈Ψ1(x)

1

ϕ1(a)

)
1Ani,j∩Bi,j

ψ1(x)

]
.

Using Hölder’s inequality (2.2) on the product of random variables in the expectation

gives

E ≤ k∗ · EC

[
sup

a∈Ψ1(x)

1Bi,jx
ϕ1(a)2

]1/2

EC
[

1Bi,jx
ψ1(x)2

]1/2

.

Upper bounds for each of the expectation terms can be found in Lemma 5.0.1,

yielding

E ≤
(

log n

log(np)

)
·O
(

1

np

)
·
(

1

np
+O

(
log n

(np)2 log(np)

))
= O

(
log n

(np)2 log(np)

)
.

Combining the estimates on E above with the bound on EC
[
1Bi,jx /ψ1(x)

]
by Lemma

5.0.1 (i) yields the following

EC [R(i, j)1C1 ] ≤ 2

(
1

np
+O

(
log n

(np)2 log(np)

)
+O

(
log n

(np)2 log(np)

))
=

2

np
+O

(
log n

(np)2 log(np)

)
.

When np ≥ c log n and c > 3 we have the following for EC
[
R(i, j)1(C1)c

]
by

first applying the effective resistance bound (5.5) then bounds on P[Cc1] from Lemma

4.2.1:

EC
[
R(i, j)1(C1)c

]
≤ (n− 1)

P(C)
P
((
Ani,j ∩ B

i,j
i,j

)c)
= n

(
e−(1−o(1))np + o

(
1/n7/2

))
= o

(
1/n2

)
.

If logn+ log log log n ≤ np ≤ 3 log n then we further partition using Si,j from (5.4)

to obtain

EC
[
R(i, j)1(C1)c

(
1Si,j + 1Sci,j

)]
≤ 3 log n

P(C) log np
P
((
Ani,j ∩ B

i,j
i,j

)c)
+ nPC

(
Sci,j
)

= o
(

1/n4/5
)
.
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The upper bound follows as EC [R(i, j)] = EC [R(i, j)1C1 ] + EC
[
R(i, j)1(C1)c

]
. Let D

be the event {γ1(i), γ1(j) ≥ np − a√np} where a = 3
√

log n if np = ω(log n) and

a = 3
√

log logn if np = O(log n). Then applying Lemma 3.1.3 and 1 ≥ 1D yields

EC [R(i, j)] ≥ EC
[

1

γ1(i) + 1
+

1

γ1(j) + 1

]
≥ 2

1

np+ a
√
np

PC(D)

when i 6= j. Making use of the inequality PC(Dc) ≤ P(Dc) /P(C) and then bounding

P(Dc) from below by Lemma 2.1.1 we have

EC [γ1(u)·R(i, j)] ≥
(

2

np
−O

(
a

(np)3/2

))(
1− 1

P(C)
(e−

a2

2 − 2e−
a2

3 )

)
=

2

np
−O

(
log n

np log np

)
.

Proof of EC [h(i, j)]. We have the following expression for hitting times from (2.14):

EC [h(i, j)] = EC [mR(i, j)] +
1

2

∑
u∈V

(EC [d(u)R(u, j)]− EC [d(u)R(u, i)])

= EC [mR(i, j)] ,

when i 6= j, by symmetry. We will calculate EC [γ1(u)R(i, j)] and apply

EC [m ·R(i, j)] =
1

2

∑
u∈V

EC [γ1(u)R(i, j)] .

Let M be the event {γ1(u) ≤ 5np, for all u ∈ V }. Then for each {i, j} ⊂ V we

define the disjoint events

C1 := Ani,j ∩ Bi,j , C2 := (C1)c ∩M, C3 := (C1)c ∩Mc.

We will now bound EC [γ1(u) ·R(i, j) · 1C1 ] from above using the Hölder inequality

(2.2). This is almost identical to the calculation for EC [R(i, j) · 1C1 ], see (5.6). How-

ever, we also use (2.16) to give bounds of the form E[γ1(u)α] = (np)α +O
(
(np)α−1

)
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where α is a positive real number. We have

EC [γ1(u) ·R(i, j) · 1C1 ]

≤
∑

x∈{i,j}

EC

[
γ1(u)1Bi,jx
ψ1(x)

]
+ k∗ · EC

 ∑
xaΨ1(x)

γ1(u)1C1
ψ1(x)2ϕ1(xa)


≤ 2

(
1 +O

(
log n

(np) log(np)

)
+O

(
log n

(np) log(np)

))
= 2 +O

(
log n

(np) log(np)

)
.

When np ≥ c log n and c > 3 for expectation on C2 := Cc1 ∩M we apply the trivial

effective resistance bound R(i, j) ≤ n − 1 (5.5) and γ1(u)1M ≤ 5np, then bound

P(Cc1) by Lemma 4.2.1 yielding

EC [γ1(u)R(i, j)1C2 ] ≤ (5np)(n− 1)

P(C)
P
((
Ani,j ∩ B

i,j
i,j

)c)
= o

(
1/n2

)
.

If log n+ log log log n ≤ np ≤ 3 log n then we further partition using Si,j from (5.4),

to obtain

EC
[
γ1(u)R(i, j)1C2

(
1Si,j + 1Sci,j

)]
≤ (5np)

3 log n

P(C) log np
P((C1)c) + 5n2pPC

(
Sci,j
)

= o
(

1/n4/5
)
.

Since PC (Mc) ≤ n · exp
(
−3 · 42np/8

)
/P(C) = o(1/n5) by Lemma 2.1.1 we have

EC [γ1(u) ·R(i, j)1C3 ] ≤ (n− 1)2PC(Mc) = o(n−3).

Combining expectations over C1, C2 and C3 yields the following for any u, i, j ∈ V
and any i 6= j

EC [γ1(u) ·R(i, j)] = EC [γ1(u) ·R(i, j) (1C1 + 1C2 + 1C3)]

≤ 2 +O

(
log n

np log np

)
. (5.7)

Let D be the event {γ1(u) ≥ np − a
√
np} ∩ {γ1(i), γ1(j) ≤ np + a

√
np} where

a = 3
√

log n if np = ω(log n) and a = 3
√

log logn if np = O(log n). Then by Lemma

3.1.3 and 1 ≥ 1D we have the following

EC [γ1(u)·R(i, j)] ≥ EC
[

γ1(u)

γ1(i) + 1
+

γ1(u)

γ1(j) + 1

]
≥ 2

np− a√np
np+ a

√
np

PC(D)
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when i 6= j. Since PC(Dc) ≤ P(Dc) /P(C) and bounding P(Dc) by Lemma 2.1.1 we

have

EC [γ1(u)·R(i, j)] ≥
(

2−O
(

a
√
np

))(
1− 1

P(C)
(e−

a2

2 − 2e−
a2

3 )

)
= 2−O

(
log n

np log np

)
. (5.8)

Summing (5.7) and (5.8) over u ∈ V yields the required bounds for EC [h(i, j)].

Recall that for functions a(n), b(n) we use

a(n)
O
= b(n) to denote a(n) =

(
1±O

(
log n

np log(np)

))
b(n).

Proof of EC [κ(i, j)]. This follows from the result for EC [h(i, j)] as by (2.12) we have

EC [κ(i, j)] = EC [h(i, j) + h(j, i)] = 2EC [h(i, j)]
O
= 2n.

5.1.2 Proof of Theorem 5.1.1 (ii)

Proof of EC [K(G)] ,EC [cci(G)] ,EC [cc(G)]. We will use linearity of expectation to ex-

press the expectations of these indices in terms of quantities we have already calcu-

lated. The bounds for EC [R(i, j)] in Theorem 5.1.1 (i) hold for all {i, j} ⊆ V . Hence

by (2.10) we have

EC [K(G)] =
∑
{i,j}⊆V

EC [R(i, j)]
O
=
n(n− 1)

2
· 2

np

O
=
n

p
.

The bounds for EC [h(i, j)] in Theorem 5.1.1 (i) hold for all i, j ∈ V, i 6= j. So by

(2.11) we have

EC [cci(G)] =
1

n− 1

∑
j∈V \{i}

EC [h(i, j)]
O
=

1

n− 1
· (n− 1) · n O

= n.

The bounds for EC [κ(i, j)] in Theorem 5.1.1 (i) hold for all {i, j} ⊆ V . Thus by

(2.13) we have

EC [cc(G)] =
1

n(n− 1)

∑
{i,j}⊆V

EC [κ(i, j)]
O
=

1

n(n− 1)
· n(n− 1)

2
· 2n O

= n.
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5.1.3 Proof of Theorem 5.1.1 (iii)

Proof of EC
[
K(G)2

]
. Observe that by (2.10) we have

EC
[
K(G)2

]
=

∑
{i,j}⊆V

∑
{w,z}⊆V

EC [R(i, j)R(w, z)] . (5.9)

For each pair {i, j}, {w, z} ⊂ V define the following disjoint events

C1 := Ani,j ∩ Anw,z ∩ Bi,j ∩ Bw,z, C2 := (C1)c .

Let E := EC [R(i, j)R(w, z)1C1 ]. The effective resistance bound from Theorem 3.4.1

yields

E ≤ EC

 ∏
(x,y)∈

{(i,j),(w,z)}

 1

ψ1(x)
+

1

ψ1(y)
+

∑
b∈{x,y}

∑
a∈Ψ1(b)

k∗

ψ1(b)2ϕ1(a)

1C1



≤
∑

x∈{i,j}
y∈{w,z}

EC[ 1Bi,jx 1Bw,zy

ψ1(x)ψ1(y)

]
+

∑
f,g∈{x,y}
f 6=g

k∗ · EC

 ∑
a∈Ψ1(f)

1C1
ψ1(f)2ψ1(g)ϕ1(a)




+ (k∗)2 ·
∑

x∈{i,j}
y∈{w,z}

EC

 ∑
a∈Ψ1(x)

1C1
ψ1(x)2ϕ1(a)

 ∑
a∈Ψ1(y)

1C1
ψ1(y)2ϕ1(a)

 .
By removing sup 1/ϕ(a) from the sums over a ∈ Ψ1(x),Ψ1(y) and by symmetry we

have

E ≤ 4EC

[
1Bw,zw

1Bi,ji
ψ1(i)ψ1(w)

]
+ 8k∗ · EC

[
sup

a∈Ψ1(i)

1C1
ϕ1(a)ψ1(i)ψ1(w)

]

+ 4(k∗)2 · EC

[(
sup

a∈Ψ1(i)

1

ϕ1(a)

)(
sup

b∈Ψ1(w)

1

ϕ1(a)

)
1C1

ψ1(i)ψ1(w)

]
.
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Then applying Hölder’s inequality (2.2) and substituting like terms yields

E ≤ 4EC

[
1Bi,ji
ψ1(i)2

]
+ 8k∗ · EC

[
sup

a∈Ψ1(i)

1Bi,ji
ϕ1(a)3

]1/3

EC

[
1Bi,ji
ψ1(i)3

]2/3

+ 4(k∗)2 · EC

[
sup

a∈Ψ1(i)

1Bi,ji
ϕ1(a)4

]1/2

EC

[
1Bi,ji
ψ1(i)4

]1/2

.

Now applying the estimates in Lemma 5.0.1 to the expectations above we obtain

E ≤ 4

(
1

(np)2
+O

(
log n

(np)3 log(np)

))
+ 8 ·O

(
log n

(np)3 log(np)

)
+ 4 ·O

((
log n

(np)2 log(np)

)2
)

=
4

(np)2
+O

(
log n

(np)3 log(np)

)
.

When np ≥ c log n and c > 3 we have the following for expectation on C2 by first

applying the effective resistance bound (5.5) then using Lemma 4.2.1 to bound from

above the results of applying the union bound to P(C2) = P(Cc1):

EC [R(i, j)R(w, z)1C2 ] ≤ (n− 1)2

P(C)
P(C2)

≤ n2
(

2e−(1−o(1))np + o
(

1/n7/2
))

= o (1/n) .

If log n+ log log log n ≤ np ≤ 3 log n then we further partition using Si,j from (5.4)

to obtain

EC
[
R(i, j)R(w, z)1C2

(
1Si,j∩Sw,z + 1(Si,j∩Sw,z)c

)]
≤ (3 log(n)/ log(np))2 P(C2) /P(C) + 2(n− 1)2PC

(
Sci,j
)

≤ O
(

(log n)2e−(1−o(1))np
)

+ n2o(1/n4)

= o
(

1/n4/5
)
.

Combining expectations over C1 and C2 gives the upper bound on EC [R(i, j)R(w, z)].

Let D be the event {γ1(i), γ1(j), γ1(w), γ1(z) ≤ np + a
√
np} where a =

3
√

log logn if np = O(log n) and a = 3
√

log n if np = ω(log n). By Lemma 3.1.3 and
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1 ≥ 1D we have

EC [R(i, j)R(w, z)] ≥
∑

x∈{i,j}, y∈{w,z}

EC
[

1D
(γ1(x) + 1) (γ1(y) + 1)

]
≥ 4(

np+ a
√
np
)2PC(D)

for i 6= j, w 6= z. By applying the bound PC(Dc) ≤ P(Dc) /P(C) and and then using

the Chernoff bound, Lemma 2.1.1, to bound P(Dc) from above we obtain

EC [R(i, j)R(w, z)] ≥
(

4

np
−O

(
a

(np)3/2

))2(
1− 4

P(C)
e−a

2/3

)
≥ 4

(np)2
−O

(
log n

(np)2 log np

)
.

The result follows from the above bounds and (5.9).

Proof of EC
[
h(i, j)2

]
. Let g(a, b, c, d) := EC [γ1(u)γ1(v)R(a, b)R(c, d)], if we apply

Tetali’s formula (2.14) and expand out EC [h(i, j)h(i, a)] we obtain the following for

any i, j, a ∈ V :

EC [h(i, j)h(i, a)] = EC

[(∑
u∈V

γ1(u)

2
(R(i, j) +R(j, u)−R(u, i))

)

·

(∑
v∈V

γ1(v)

2
(R(i, a) +R(a, v)−R(v, i))

)]

=
1

4

∑
u,v∈V

g(i, j, i, a) +
∑

(w,z)∈
{(u,i),(j,a)}

g(i, w, v, z)−
∑

w∈{i,u}

g(w, j, i, v)


+

1

4

∑
u,v∈V

∑
w∈{i,v}

(g(u, j, w, a)− g(w, a, i, u))

=
1

4

∑
u,v∈V

EC [γ1(u)γ1(v)R(i, j)R(i, a)] . (5.10)

To see the above, observe that R(a, b)R(c, d) = 0 if and only a = b or c = d.

Thus only the first term, g(i, j, i, a), will always be non-zero. All the other terms

contain one or more input from {u, v} so will be zero at different times. Of the

eight other terms there are two positive and two negative terms containing one of

{u, v}, then two positive and two negative terms containing both u and v as inputs.
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Thus by symmetry when the sums are expanded everything apart from the first

term g(i, j, i, a) cancels.

For (u, v, i, j, w, z) ∈ V 6 with i 6= j, w 6= z define the event

Mu,v := {γ1(v), γ1(u) ≤ 7np} .

We define the following disjoint events

C1 := Ani,j ∩ Anw,z ∩ Bi,j ∩ Bw,z, C2 := Cc1 ∩Mu,v, C3 := Cc1 ∩Mc
u,v.

Recall k∗ = log(n)/ log(np) and that conditional on C1, for large n, we have k +

2 ≤ k∗, where k is as in Theorem 3.4.1. Let E := EC [γ1(u)γ1(v)R(i, j)R(w, z)1C1 ].

Applying Theorem 3.4.1 yields

E ≤ EC

γ1(u)γ1(v)
∏

(x,y)∈
{(i,j),(w,z)}

 1

ψ1(x)
+

1

ψ1(y)
+
∑

b∈{x,y}

∑
ba∈Ψ1(b)

k∗

ψ1(b)2ϕ1(ba)

1C1


≤

∑
x∈{i,j}
y∈{w,z}

EC
[
γ1(u)γ1(v)1Bi,j∩Bw,z

ψ1(x)ψ1(y)

]

+ k∗ ·
∑

x∈{i,j}
y∈{w,z}

∑
f,g∈{x,y}
f 6=g

EC

 ∑
a∈Ψ1(f)

γ1(u)γ1(v)1C1
ψ1(f)2ψ1(g)ϕ1(a)



+ (k∗)2 ·
∑

x∈{i,j}
y∈{w,z}

EC

γ1(u)γ1(v)

 ∑
a∈Ψ1(x)

1C1
ψ1(x)2ϕ1(a)

 ∑
b∈Ψ1(y)

1C1
ψ1(y)2ϕ1(b)

 .
By removing sup 1/ϕ(a) from the sums and reducing using symmetry we have

E ≤ 4EC

[
γ1(u)γ1(v)1Bi,ji

1Bw,zw

ψ1(i)ψ1(w)

]
+ 8k∗ · EC

[
sup

a∈ψ1(i)

γ1(u)γ1(v)1C1
ϕ1(a)ψ1(i)ψ1(w)

]

+ 4(k∗)2 · EC

[
γ1(u)γ1(v)

(
sup

a∈ψ1(i)

1

ϕ1(a)

)(
sup

b∈ψ1(w)

1

ϕ1(a)

)
1C1

ψ1(x)ψ1(y)

]
.
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Then applying Hölder’s inequality (2.2) and collecting similar terms we obtain

E ≤ 4EC
[
γ1(u)4

]1/2 EC[ 1Bi,ji
ψ1(i)4

]1/2

+ 8k∗ · EC
[
γ1(u)5

]2/5 EC[ sup
a∈Ψ1(i)

1Bi,ji
ϕ1(a)5

]1/5

EC

[
1Bi,ji
ψ1(i)5

]2/5

+ 4(k∗)2 · EC
[
γ1(u)6

]1/3 EC[ sup
a∈Ψ1(i)

1Bi,ji
ϕ1(a)6

]1/3

EC

[
1Bi,ji
ψ1(i)6

]1/3

.

Now applying the estimates in Lemma 5.0.1 to the expectations above yields

E ≤ 4

(
1 +O

(
log n

np log(np)

))
+ 8 ·O

(
log n

np log(np)

)
+ 4 ·O

((
log n

np log(np)

)2
)

= 4 +O

(
log n

np log(np)

)
.

For C2 := Cc1∩M and np ≥ 3 log n we apply the effective resistance bound (5.5) and

γ1(u)1M, γ1(v)1M ≤ 7np, then bound P(Cc1) by Lemma 4.2.1 yielding

EC [γ1(u)γ1(v)R(i, j)R(w, z)1C2 ] ≤ 7(n− 1)4p2

P(C)
P(Cc1)

≤ 7n4p2 · e−(1−o(1))np

= o
(

1/n4/5
)
.

If log n+ log log log n ≤ np ≤ 3 log n we further partition using Si,j ,Sw,z from (5.4)

to obtain

EC
[
γ1(u)γ1(v)R(i, j)R(w, z)1C2

(
1Si,j∩Sw,z + 1(Si,j∩Sw,z)c

)]
≤ (7np)2 (3 log n/ log np)2 P(Cc1) /P(C) + 7n4p2

(
PC
(
Sci,j
)

+ PC
(
Scw,z

))
= o

(
1/n4/5

)
.

Since PC (Mc) ≤ exp
(
−3 · 62np/18

)
/P(C) = o(1/n6) by Lemma 2.1.1 we have

EC [γ1(u)γ1(v)R(i, j)R(w, z)1C3 ] ≤ (n− 1)4PC(Mc) = o(n−2).

Combining expectations over C1 , C2 & C3 gives

EC [γ1(u)γ1(v)R(i, j)R(w, z)] ≤ 4 +O

(
log n

np log(np)

)
. (5.11)
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Let D be the event {γ1(u), γ1(v) ≥ np− a√np} ∩ {γ1(i), γ1(j), γ1(w), γ1(z) ≤ np+

a
√
np} where a = 3

√
log logn if np = O(log n) and a = 3

√
log n if np = ω(log n).

By Lemma 3.1.3:

EC [γ1(u)γ1(v)R(i, j)R(w, z)] ≥
∑

x∈{i,j},
y∈{w,z}

EC
[

γ1(u)γ1(v)1D
(γ1(x) + 1) (γ1(y) + 1)

]

≥ 4

(
np− a√np

)2(
np+ a

√
np
)2PC(D)

≥
(

4−O
(

a
√
np

))(
1− 2

P(C)
e−

a2

2 − 4

P(C)
e−

a2

3

)
= 4−O

(
log n

np log np

)
, (5.12)

for i 6= j, w 6= z. The bound on PC(D) is by Lemma 2.1.1. Combining (5.10)–(5.12)

yields

EC [h(i, j)h(i, a)] = n2 ±O
(

n log n

p log(np)

)
, (5.13)

for any i, j, w, z ∈ V, i 6= j, w 6= z. Thus we have the result for EC
[
h(i, j)2

]
.

Proof of EC
[
cci(G)2

]
. This follows from (5.13) above as by the definition (2.11) of

cci(G),

EC
[
cci(G)2

]
=

1

(n− 1)2
EC

∑
j∈V

h(i, j)

2
=

1

(n− 1)2

∑
j,k∈V ;j,k 6=i

EC [h(i, j)h(i, k)]

O
= n2.
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5.1.4 Proof of Theorem 5.1.1 (iv)

Proof of EC [H(G)] ,EC [Hi(G)] ,EC [T (G)]. Recall the definitions (2.8),(2.9) for i ∈ V :

Hi(G) :=
∑
j∈V

γ1(j)

2m
h(j, i),

H(G) :=
∑
j∈V

γ1(j)

2m
h(i, j),

T (G) :=
∑
i,j∈V

γ1(i)γ1(j)

4m2
h(i, j),

where m := |E| ∼d Bin
((
n
2

)
, p
)
. Let h =

(
n
2

)
− 1, m∗ ∼d Bin (h, p). Then we have

the following for any given k ∈ Z, k ≥ 1 using Proposition 2.4.2 and the fact that

C ⊂ {m ≥ 1} we have

EC
[

1

mk

]
= E

[
1C
mk

]
1

P(C)
≤ E

[
1{m≥1}

mk

]
1

P(C)
= E

[ (
n
2

)
p

(m∗ + 1)k+1

]
1

P(C)
.

Observe that by (2.15), P(Cc) ≤ O(log n/(np log(np))) whenever np ≥ log n +

log log log n. Using Lemma 2.4.3 to bound the expectation term we have

EC
[

1

mk

]
=

(
1

(hp+ 1)k+1
+O

(
1

(hp+ 1)k+2

)) (n
2

)
p

P(C)

=
2k

n2kpk
+O

(
log n

n2k+1pk+1 log(np)

)
.

Now by the Bernoulli inequality (2.3) for any given a, k ∈ Z, a, k ≥ 1 we have

EC
[

1

mk

]1/a

=
2k/a

n2k/apk/a

(
1 +O

(
log n

np log(np)

))1/a

≤ 2k/a

n2k/apk/a
+O

(
log n

n2k/a+1pk/a+1 log(np)

)
. (5.14)

Using Hölder’s inequality to break the product of random variables in the expecta-

tion yields

EC [T (G)] ≤ 1

4

∑
i,j∈V

EC
[
γ1(i)6

]1/6 EC[γ1(j)6
]1/6 EC[ 1

m12

]1/6

EC
[
h(i, j)2

]1/2
.
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Then applying (2.16), (5.14) and the upper bound on EC
[
h(i, j)2

]
from Theorem

5.1.1 (iii) we obtain

EC [T (G)] ≤ n2

4

(
n2p2 +O(np)

)( 4

n4p2
+O

(
log n

n5p3 log(np)

))(
n+O

(
log n

p log(np)

))
= n+O

(
log n

p log(np)

)
.

The same upper bounds for EC [Hi(G)] and EC [H(G)] follow similarly. By (2.14) we

have

T (G) =
∑
i,j∈V

γ1(i)γ1(j)

4m2

(
mR(i, j) +

∑
u∈V

γ1(u)

2
[R(u, j)−R(u, i)]

)

=
∑
i,j∈V

γ1(i)γ1(j)R(i, j)

4m

+
∑

i,j,u∈V

(
γ1(i)γ1(j)γ1(u)

8m2
R(u, j)− γ1(i)γ1(j)γ1(u)

8m2
R(u, i)

)
,

for G connected. As G is connected the effective resistance bound, Lemma 3.1.3,

yields

T (G) ≥
∑
i,j∈V
i 6=j

∑
w∈{i,j}

γ1(i)γ1(j)

4m(γ1(w) + 1)
+
∑
j,u∈V
j 6=u

∑
w∈{u,j}

γ1(j)γ1(u)

4m(γ1(w) + 1)

−
∑
i,u∈V

γ1(i)γ1(u)

4m
R(u, i).

Rearranging and reducing sums using the bound γ1(i)/(γ1(i) + 1) ≤ 1 we have

T (G) ≥
∑
i∈V

(
γ1(i)

2(γ1(i) + 1)
− γ1(i)

4m

)
+
∑
j∈V

(
γ1(j)

γ1(j) + 1
− γ1(j)

2m

)

+
∑
u∈V

(
γ1(u)

2(γ1(u) + 1)
− γ1(u)

4m

)
−
∑
i,u∈V

γ1(i)γ1(u)

4m
R(u, i)

= 2n− 2
∑
i∈V

1

γ1(i) + 1
− 2−

∑
i,u∈V

γ1(i)γ1(u)

4m
R(u, i).
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Manipulating the sums and bounding terms in a similar manner yields

H(G) =
∑
j∈V

γ1(j)

2m

(
mR(i, j) +

∑
u∈V

γ1(u)

2
[R(u, j)−R(u, i)]

)

≥ n− 1

2
−
∑
j∈V

1

2(γ1(j) + 1)
+

m− 1

(γ1(i) + 1)
− 1

+
∑
j,u∈V
j 6=u

∑
w∈{u,j}

γ1(j)γ1(u)

4m(γ1(w) + 1)
−
∑
j,u∈V

γ1(u)γ1(j)

4m
R(u, i)

≥ 3n

2
+

m− 1

γ1(i) + 1
−
∑
u∈V

3

2(γ1(u) + 1)
− 5

2
−
∑
u∈V

γ1(u)

2
R(u, i).

Again by a similar procedure we have the following for the stationary hitting time

Hi(G)

Hi(G) =
∑
j∈V

γ1(j)

2m

(
mR(i, j) +

∑
u∈V

γ1(u)

2
[R(u, i)−R(u, j)]

)

≥ n− 1

2
−
∑
j∈V

1

2(γ1(j) + 1)
+

m− 1

(γ1(i) + 1)
− 1

+
∑

u∈V,u6=i

γ1(u)

2

(
1

γ1(i) + 1
+

1

γ1(u) + 1

)
−
∑
j,u∈V

γ1(u)γ1(j)

4m
R(u, j)

≥ n+
2m− 2

γ1(i) + 1
−
∑
u∈V

1

γ1(u) + 1
− 7

2
−
∑
j,u∈V

γ1(u)γ1(j)

4m
R(u, j).

Let D be the event {m ≥ n2p/2 − a
√
n2p/2} ∩ {γ1(j) ≤ np + a

√
np} where a =

3
√

log logn if np = O(log n) and a = 3
√

log n if np = ω(log n). Now by Lemma

2.1.1 we obtain

PC(D) =
(
1− exp

(
−a2/2

)
/P(C)− exp

(
−a2/2(1 + a/3

√
np)
)
/P(C)

)
= 1− o (1/np) .
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By Hölder’s inequality (2.2), 1 ≥ 1D and the bound on PC(D) in the line above we

have

EC [Hi(G)] ≥ n+ 2

(
n
2

)
p− a

√(
n
2

)
p− 1

np+ a
√
np+ 1

PC(D)− n · EC
[

1

γ1(u) + 1

]
− 7

2

− n

4
EC
[
γ1(j)4

]1/4 EC[ 1

m4

]1/4

EC
[
γ1(u)2R(u, j)2

]1/2
= n−O

(
log n

p log(np)

)
.

The last equality comes from applying estimates to the expectation terms which are

given by Lemma 2.4.3, (2.16), (5.14) and (5.11) respectively. Similarly we have

EC [H(G)] ≥ 3n

2
+

(
n
2

)
p− a

√(
n
2

)
p− 1

np+ a
√
np+ 1

PC(D)− 3n

2
· EC

[
1

γ1(u) + 1

]
− 5

2

− n

2
EC
[
γ1(u)2R(u, i)2

]1/2
= n−O

(
log n

p log(np)

)
,

and also,

EC [T (G)] ≥ 2n− 2n · EC
[

1

γ1(i) + 1

]
− 2

− n

4
EC
[
γ1(i)4

]1/4 EC[ 1

m4

]1/4

EC
[
γ1(u)2R(u, i)2

]1/2
= n−O

(
log n

p log(np)

)
.
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5.1.5 Proof of Theorem 5.1.1 (v)

Proof of EC
[
H(G)2

]
,EC

[
Hi(G)2

]
,EC

[
T (G)2

]
. We will first bound EC

[
h(i, j)3

]
from

above. By Tetali’s formula (2.14) we obtain the following for any i, j, a ∈ V

EC
[
h(i, j)3

]
= EC

 ∏
w∈{x,y,z}

(∑
w∈V

γ1(w)

2
(R(i, j) +R(j, w)−R(w, i))

)
=

1

8

∑
x,y,z∈V

EC
[
γ1(x)γ1(y)γ1(z)R(i, j)3

]
. (5.15)

Similarly to (5.10) when the product is expanded everything apart from the only

term with effective resistances not dependent on the indices of summation cancels.

There are three positive and three negative terms containing one of {x, y, z}, then

six positive and six negative terms containing two of {x, y, z}, finally four positive

and four negative terms containing all three indices {x, y, z}. When the sum over

x, y, z is taken all the terms containing at least one of x, y, z cancel.

For each (x, y, z) ∈ V 3 let Mx,y,z be the event {γ1(x), γ1(y), γ1(z) ≤ 8np}
and define the following disjoint events

C1 := Ani,j ∩ Bi,j , C2 := Cc1 ∩Mx,y,z, C3 := Cc1 ∩Mc
x,y,z.

Let α = (α1, α2, α3, α4) be a multi-index and
(

3
α

)
= 3/α1!α2!α3!α4! be the

multinomial coefficient. Let E := EC
[
γ1(x)γ1(y)γ1(z)R(i, j)31C1

]
. Applying the

resistance bound, Theorem 3.4.1, to E yields the following

E ≤ EC

γ1(x)γ1(y)γ1(z)

 1

ψ1(i)
+

1

ψ1(j)
+
∑

b∈{i,j}

∑
a∈Ψ1(b)

k∗

ψ1(b)2ϕ1(a)

3

1C1


≤
∑
|α|=3

(
3

α

)
EC

γ1(x)γ1(y)γ1(z)

ψ(i)α1ψ(j)α2

 ∑
a∈Ψ1(i)

k∗

ψ1(i)2ϕ1(a)

α3
 ∑
a∈Ψ1(j)

k∗

ψ1(j)2ϕ1(a)

α4

1C1

 .
Again, by taking supremums to remove the random sum in each of the last three

terms and then applying Hölder’s inequality to all the terms as was done for (5.6)

we obtain

E ≤ 8

(
1 +O

(
log n

np log(np)

))
+ 24 ·O

(
log n

np log(np)

)
+ 24 ·O

((
log n

np log(np)

)2
)

+ 8 ·O

((
log n

np log(np)

)3
)

= 8 +O

(
log n

np log(np)

)
.
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For C2 and np ≥ 4 log n applying the bound γ1(x), γ1(v), γ1(z) ≤ 7np onMx,y,z ⊆ C2,

the effective resistance bound (5.5) and then bounding P(Cc1) by Lemma 4.2.1 yields

EC
[
γ1(x)γ1(y)γ1(z)R(i, j)31C2

]
≤ 8(n− 1)6p3

P(C)
P(Cc1)

≤ 8n6p3 · o
(

1/n7/2
)

= o
(

1/n1/5
)
.

If log n+ log log log n ≤ np ≤ 4 log n then we further partition using Si,j from (5.4)

to obtain

EC
[
γ1(x)γ1(y)γ1(z)R(i, j)31C2

(
1Si,j + 1(Si,j)c

)]
≤ (8np)3 (3 log n/ log np)3 P(Cc1) /P(C) + 8n6p3PC

(
Sci,j
)

= o
(

1/n4/5
)
.

Since PC
(
Mc

x,y,z

)
≤ exp

(
−3 · 72np/20

)
/P(C) = o(1/n7) by Lemma 2.1.1 we have

EC
[
γ1(u)γ1(v)R(i, j)31C3

]
≤ (n− 1)6PC

(
Mc

x,y,z

)
= o(1/n).

Inserting the combined expectations over C1 , C2 and C3 into (5.15) yields

EC
[
h(i, j)3

]
≤ n3

(
1 +O

(
log n

np log(np)

))
. (5.16)

By the definition (2.9) of T (G)2 and Hölder’s inequality (2.2) with exponent 3, we

have

EC
[
T (G)2

]
= EC

∑
i,j∈V

γ1(i)γ1(j)

(2m)2
h(i, j)

2
= EC

 ∑
i,j,x,y∈V

γ1(i)γ1(j)γ1(x)γ1(y)

(2m)4
h(i, j)h(x, y)


≤

∑
i,j,x,y∈V

(
EC

[(
γ1(i)γ1(j)γ1(x)γ1(y)

(2m)4

)3
]
EC
[
h(i, j)3

]
EC
[
h(x, y)3

])1/3

.
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Using Hölder’s inequality again this time with exponent 5 and collecting like terms

yields

EC
[
T (G)2

]
≤ n4

24

(
EC
[
γ1(i)15

]4 EC[ 1

m60

])1/15 (
EC
[
h(i, j)3

]2)1/3
.

Applying the bounds (2.16), (5.14) and (5.16) respectively then Bernoulli’s inequal-

ity (2.3) gives

EC
[
T (G)2

]
≤ n4

24

(
(np)60 +O

(
(np)59

))1/15
(

260

n120p60
+O

(
log n

n121p61 log(np)

))1/15

·
(
n6 +O

(
n6 log n

np log(np)

))1/3

= n2 +O

(
n2 log n

np log(np)

)
.

Then by Jensen’s inequality and the lower bound on EC [T (G)] from Theorem 5.1.1

(iv)

EC
[
T (G)2

]
≥ EC [T (G)]2

≥
(
n−O

(
n log n

np log(np)

))2

= n2

(
1−O

(
log n

np log(np)

))
.

Similar calculations yield the same bounds for EC
[
H(G)2

]
and EC

[
Hi(G)2

]
.

5.2 Concentration for hitting times, Theorem 5.2.1

The previous theorem, Theorem 5.1.1, provided second moments for the hitting

times and some other indices. We can apply the second moment method to prove

the following concentration result.

Theorem 5.2.1. Let G ∼d G(n, p) with log n + log log log n ≤ np ≤ n1/10, f(n) :

N → R+. Then for X ∈ {h(i, j), κ(i, j), K(G), Hi(G), H(G), T (G), cci(G), cc(G)},
i, j ∈ V, i 6= j,

P

(∣∣∣X − E
[
X
∣∣C] ∣∣∣ > E

[
X
∣∣C]√ f(n) log n

np log(np)

)
= O

(
1

f(n)

)
+ P(Cc) .

Proof of Theorem 5.2.1. Let X ∈ {h(i, j), κ(i, j), Hi(G), H(G), T (G), cci} where

76



i, j ∈ V and recall EC [·] = E[·|C]. We have the following for these X by Theorem

5.1.1

Var
(
X
∣∣C) = n2 +O

(
n log n

p log(np)

)
−
(
n+O

(
log n

p log(np)

))2

= O

(
n log n

p log(np)

)
.

We can also calculate the conditional variance of K(G) by Theorem 5.1.1, this yields

Var
(
K(G)

∣∣C) =
n2

p2
±O

(
n log n

p3 log(np)

)
−
(
n

p
±O

(
log n

p2 log(np)

))2

= O

(
n log n

p3 log(np)

)
.

By the Chebyshev inequality (2.6) for each of the above

P
(∣∣∣X − E

[
X
∣∣C] ∣∣∣ ≥ λ(n)

√
Var (X|C)

∣∣∣ C) ≤ 1

λ(n)2
.

For X above we have Var (X|C) = O
(
E
[
X
∣∣C]2 logn

np log(np)

)
by Theorem 5.1.1, thus

there exists some K independent of n and X such that

√
Var (X|C) < E

[
X
∣∣C]√ K log n

np log(np)
,

for large n. By choosing λ(n) =
√
f(n)/K for any function f(n) we have

P

(∣∣X − E
[
X
∣∣C]∣∣ > E

[
X
∣∣C]√ f(n) log n

np log(np)

∣∣∣∣∣ C
)
≤ K

f(n)
= O

(
1

f(n)

)
. (5.17)

The result follows since P(A) ≤ P(A|C) + P(Cc), for any event A.

For cc(G) we will obtain concentration by comparison with K(G). For any

function f(n) let E be the event
{∣∣m− (n2)p∣∣ ≤√3 log(f(n))

(
n
2

)
p
}

. Recall that

cc(G) =
2mK(G)

n(n− 1)
,

by (2.13), where m := |E| ∼d Bin(
(
n
2

)
, p). Then conditional on event E we have

|cc(G)/p−K(G)| = |K(G) · (2m/n(n− 1)p)−K(G)|

≤ K(G)
√

6 log(f(n))/n2p.

Let T be the event
{∣∣∣K(G)− EC [K(G)]

∣∣∣ ≤ EC [K(G)]
√

f(n) logn
2np log(np)

}
, where
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P(T |C) is given by (5.17). Observe that E
[
cc(G)

∣∣C] O
= pE

[
K(G)

∣∣C] by Theorem

5.1.1, so conditional on the event E ∩ T we have

∣∣∣∣cc(G)

p
−K(G)

∣∣∣∣ ≤ EC [K(G)]

(
1 +

√
f(n) log n

2np log(np)

)√
6 log(f(n))

n2p

≤
3E
[
cc(G)

∣∣C]
p

√
log(f(n))

n2p
.

Finally by the estimates above and the triangle inequality, conditional on the event

E ∩ T we have the following∣∣∣cc(G)

p
− EC [cc(G)]

p

∣∣∣ ≤ ∣∣∣cc(G)

p
−K(G)

∣∣∣+
∣∣∣K(G)− EC [K(G)]

∣∣∣
+
∣∣∣EC [K(G)]− EC [cc(G)]

p

∣∣∣
≤

3E
[
cc(G)

∣∣C]
p

√
log(f(n))

n2p
+

E
[
cc(G)

∣∣C]
p

√
f(n) log n

2np log(np)

+
n

p
·O
(

log n

np log(np)

)
≤ EC [cc(G)]

p

√
f(n) log n

np log(np)
. (5.18)

We then apply the Chernoff bounds, Lemma 2.1.1, to obtain

P(Ec) ≤ exp

(
−3 log(f(n))

(
n
2

)
p

2
(
n
2

)
p

)
+ exp

 −3 log(f(n))
(
n
2

)
p

2
((

n
2

)
p+

√
3 log(f(n))

(
n
2

)
p/3
)


≤ o
(

1

f(n)

)
.

Finally by (5.18), the above bound on P(Ec) and the bound (5.17) on P(T c) we have

P

(∣∣∣cc(G)− EC [cc(G)]
∣∣∣ > EC [cc(G)]

√
f(n) log n

np log(np)

)
≤ P(Ec) + P(T c)

≤ O
(

1

f(n)

)
+ P(Cc) .

78



5.3 Resistance and degree, Theorem 5.3.1

We prove the following theorem using the resistance bounds from Chapter 3 and

the results of Chapter 4 which relate the pruned neighbourhoods to the original

neighbourhoods in G(n, p).

Theorem 5.3.1. Let G ∼d G(n, p) and i, j ∈ V, i 6= j.

(i) For every c > 0 if c log n ≤ np ≤ n1/10, then

P
(∣∣∣∣R(i, j)−

(
1

γ1(i)
+

1

γ1(j)

)∣∣∣∣ > max

{
1

γ1(i)2
+

1

γ1(j)2
,
9(γ1(i) + γ1(j)) log n

γ1(i)γ1(j)np log(np)

})
≤ 2np2 + o

(
e−np/4

)
.

(ii) For every c > 0 if np = c log n, then for any fixed k > 0

P
(∣∣∣∣R(i, j)− 2

c log n

∣∣∣∣ > 10

c2 log(n) log log(n)

)
≤ 5

(log n)k
.

(iii) If np = ω(log n) and np ≤ n1/10, then

P
(∣∣∣∣R(i, j)− 2

np

∣∣∣∣> 7
√

log n

(np)3/2

)
= o

(
1

n7/2

)
.

Proof of Theorem 5.3.1. Define the following three functions for ease of notation

ri,j :=
1

γ1(i)
+

1

γ1(j)
,

fi,j :=
1

γ1(i)2
+

1

γ1(j)2
,

gi,j :=
9(γ1(i) + γ1(j)) log n

γ1(i)γ1(j)np log(np)
.

Item (i): we wish to show that R(i, j) differs from ri,j by at most max{fi,j , gi,j}.
Let H be the event {|R(i, j)− ri,j | ≤ max{fi,j , gi,j}}. By Lemma 3.1.3 we have

R(i, j)− ri,j ≥ −
(

1

γ1(i)2 + γ1(i)
+

1

γ1(j)2 + γ1(j)

)
> −

(
1

γ1(i)2
+

1

γ1(j)2

)
= −fi,j .

Let L be the event {ψ1(i) = γ1(i), ψ1(j) = γ1(j)}, where P(L) = 2np2 + e−(1−o(1))np
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by Lemma 4.3.1. We also define the following event

F :=

{
R(i, j) ≤

(
1

ψ1(u)
+

1

ψ1(v)

)(
1 +

9 log n

np log(np)

)}
.

Observe P(Fc) = o
(
e−np/4

)
+ o

(
n−7/2

)
by Lemma 5.0.1 (iii). Conditional on L∩F

R(i, j)− ri,j ≤
(

1

γ1(u)
+

1

γ1(v)

)(
1 +

9 log n

np log(np)

)
−
(

1

γ1(u)
+

1

γ1(v)

)
≤ gi,j .

Thus combining the bounds on R(i, j) conditional on L ∩ F above we have

P(Hc) ≤ P(R(i, j)− ri,j < −fi,j) + P(R(i, j)− ri,j > gi,j) ≤ P(Lc) + P(Fc) .

Applying the bounds on P(Lc) and P(Fc) from Lemmas 4.3.1 (iii) and 5.0.1 (iii)

respectively:

P(Hc) ≤ o
(
e−np/4

)
+ o
(
n−7/2

)
+ 2np2 + e−(1−o(1))np ≤ 2np2 + o

(
e−np/4

)
.

Item (ii): we seek to bound the tails of |R(i, j) − 2/np| when np = O(log n). Let

E(λ(n)) be the event
{
|γ1(i)− np| , |γ1(j)− np| ≤

√
np · λ(n)

}
, for λ(n) = o(np).

By Lemma 2.1.1:

P(E(λ(n))c) ≤ 2 exp

(
−(
√
np · λ(n)− p)2

2(n− 1)p

)
+ 2 exp

 −(
√
np · λ(n)− p)2

2
(
np+

√
np · λ(n)/3

)


≤ 4e−λ(n)/3.

Choose λ(n) = 3k log logn, k ∈ R+, then conditional on the event E(λ(n)) ∩ H we

have ∣∣∣R(i, j)− 2

np

∣∣∣ ≤ ∣∣∣R(i, j)− ri,j
∣∣∣+
∣∣∣ri,j − 2

np

∣∣∣
≤ 19 log(n)

2(np)2 log(np)
+

2
√
k log logn

(np)3/2

≤ 10 log(n)

(np)2 log(np)
,
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since max{fi,j , gi,j} ≤ 19 log(n)/
(
2(np)2 log(np)

)
on E(λ(n))∩H. Thus by Item (i):

P
(∣∣∣∣R(i, j)− 2

np

∣∣∣∣ > 10 log n

(np)2 log(np)

)
≤ P((H ∩ E)c)

≤ P(Hc) +
4

(log n)k

≤ 5

(log n)k
.

Item (iii): our aim is now to bound the tails of |R(i, j)− 2/np| when np = ω(log n).

Run MBFS(G, {i, j}) and let T be the event{
ψ1(i) ≥ np− 3

√
np log n

}
∩
{
ψ1(j) ≥ np− 3

√
np log n

}
.

Recall γ∗1(i) ∼d Bin (n− γ1(j)− 2, p) by Lemma 4.1.1. Then by Lemmas 2.1.2 and

4.3.1 we have

P(T c) ≤ P
({
γ∗1(i), γ∗1(j) ≥ np− 3

√
np log n

}c)
+ P(ψ1(i) 6= γ∗1(i) or ψ1(j) 6= γ∗1(j))

≤ 2P
(
Bin (n− 2np− 2, p) < np− 3

√
np log n

)
+ 2P(γ1(i) > 2np) + e−(1−o(1))np.

Then applying the Chernoff bounds, Lemma 2.1.1, and recalling in this instance

np = ω(log n) gives the following

P(T c) ≤ 2e−(3
√
np logn−1)2/2np + 2e−np/2(1+1/3) + e−(1−o(1))np

= o(1/n4). (5.19)

Now for large n, conditional on the event T ∩ F we have

R(i, j) ≤
(

2

np
+

2 · 3
√

log n

(np)3/2

)(
1 +

9 log n

np log(np)

)
<

2

np
+

7
√

log n

(np)3/2
. (5.20)

Choose λ(n) = 4 log n, then applying Lemma 3.1.3 conditional on the event E(λ(n))

yields

R(i, j) ≥ 2

np
− 2
√

12 log n

(np)3/2
>

2

np
− 7
√

log n

(np)3/2
, (5.21)

for large n. By upper and lower bounds on R(i, j), (5.20) and (5.21) respectively,
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we have

P
(∣∣∣∣R(i, j)− 2

np

∣∣∣∣> 7
√

log n

(np)3/2

)
≤ P(T c) + P(Fc) + P(E(4 log n)c) .

Now by (5.19), Lemma 5.0.1 (iii), P(E(4 log n)c) ≤ 4e−np/3 (Lemma 2.1.1) we have

P
(∣∣∣∣R(i, j)− 2

np

∣∣∣∣> 7
√

log n

(np)3/2

)
≤ o(1/n4) + o

(
e−np/4

)
+ o

(
1/n7/2

)
+ o(1/n4)

= o
(

1/n7/2
)
.

5.4 Paths in G(n, p), Theorem 5.4.2

Let κ(G) be the maximum k such that G has more than k vertices and remains

connected whenever fewer than k vertices are removed. Let δ1(G) be the size of the

smallest first neighbourhood of any vertex in G. Bollobás & Thomason showed the

following theorem.

Theorem 5.4.1 ([21, Theorem 1]). Let G ∼d G(n, p), 0 < p := p(n) < 1. Then,

P(κ(G) = δ1(G)) = 1− o(1).

Note that this was proven for the case δ1(G) = k, for fixed k, by Erdős-

Rényi [39], Ivčenko [48] and Bollobás [15]. We will show a theorem which is in this

spirit and says that there are many edge independent paths between the second

neighbourhoods of two vertices in G(n, p) with high probability.

Let paths2(i, j, l) be the maximum number of paths of length at most l

between vertices i and j of G that are vertex disjoint on V \ (B1(i) ∪B1(j)). The

strong k-path property can be used to prove a related “local first neighbourhood

relaxation” of the Bollobás & Thomason theorem for two vertices. What we mean

by a relaxation in this context is that we allow the paths between two vertices i, j

to be non-disjoint within the first neighbourhoods of i, j.

Theorem 5.4.2. Let G ∼d G(n, p) where for any c > 0, c log n ≤ np ≤ n1/10. Let

l := log n/ log(np) + 9. Then for i, j ∈ V where i 6= j,

(i) P(paths2(i, j, l) 6= min{γ2(i), γ2(j)}) ≤ 5n3p4 + o
(
e−7 min{np,logn}/2),

(ii) P
(∣∣paths2(i, j, l)− (np)2

∣∣ > 3(np)3/2
√

log np
)

= o (1/np).
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It is of note that unlike Bollobás & Thomason’s result, Theorem 5.4.2 (i)

is a statement about the paths between two given vertices rather than a global

statement. If one wishes to prove a similar relaxed connectivity condition on the

whole graph a more sophisticated statement is needed.

Proof of Theorem 5.4.2. Item (i): For i, j ∈ V we define Ei,j to be the following

event:

Ei,j := {there is no path from i to j of length less than 4.} .

Then by over-counting the number of paths we have

P
(
Eci,j
)
≤

3∑
l=1

P(there exists a path from i to j of length l)

≤ p+ (n− 2)p2 +

(
n− 2

2

)
p3

≤ n2p3. (5.22)

Conditional on Ei,j every path between i and j must pass through at least one vertex

from each of γ2(i) and γ2(j), though these vertices may not be distinct. So there

cannot be more than min{γ2(i), γ2(j)} paths between i, j ∈ V which are vertex

disjoint on V ∗ := V \ (B1(i) ∪B1(j)) since Γ2(i) ∪ Γ2(j) ⊆ V ∗. Thus conditional on

Ei,j for any l ≥ 0 we have

paths2(i, j, l) ≤ min{γ2(i), γ2(j)}. (5.23)

For a lower bound on paths2(i, j, l) we construct min {ψ2(i), ψ2(j)} vertex disjoint

paths between i and j using the strong k-path property, Definition 3.3.1. A coupling

is then used to relate the pruned second neighbourhoods to the standard second

neighbourhoods.

For the path construction condition on the event Ani,j and assume with-

out loss of generality ψ2(i) ≤ ψ2(j). Take any subset Ψ2(j)∗ ⊆ Ψ2(j) with ψ2(i)

elements and any perfect matching M between Ψ2(i) and Ψ2(j)∗. Given any

pair (x, y) in the matching M , conditional on Ani,j , there is some k and some

pair (xk, yk) ∈ Γ∗k(x) × Γ∗k(y) such that xkyk ∈ E. We define the path Px,y :=

i, ix, x, x1, . . . , xk, yk, yk−1, . . . , y, jy, j, where x, x1, . . . , xk is the unique path from x

to xk in the tree Tk(x) := ∪ki=0Γ∗i (x) and ix is the unique vertex in Γ∗1(i) connected

to x. The equivalent descriptions hold for y, y1, . . . , yk ∈ Tk(y) and jy ∈ Γ1(j) with

respect to y and j. The paths {Px,y}(x,y)∈M are all vertex disjoint on V ∗ since the

trees {TK(u)}u∈Ψ2 are all vertex disjoint. Each path in Pi,j has length l := 2k + 5
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where the k is given by the event Ani,j . Thus conditional on the event Ani,j we have

paths2(i, j, l) ≥
∣∣{Px,y}(x,y)∈M

∣∣ = min {ψ2(i), ψ2(j)} . (5.24)

Exchanging the ψ2 and γ2 distributions on the event {ψ2(i) 6= γ2(i) or ψ2(j) 6=
γ2(j)} yields

P := P(paths2(i, j, l) 6= min{γ2(i), γ2(j)})

≤ P(ψ2(i) 6= γ2(i) or ψ2(j) 6= γ2(j)) + P(paths2(i, j, l) < min{ψ2(i), ψ2(j)})

+ P({paths2(i, j, l) > min{γ2(i), γ2(j)}}) .

Now by (5.24) and (5.23) we have the following

P ≤ P(ψ2(i) 6= γ2(i) or ψ2(j) 6= γ2(j)) + P
(
(Ani,j)c

)
+ P

(
Eci,j
)
.

By the bounds on these probabilities from Lemma 4.3.1 (iv), Lemma 4.2.1 and (5.22)

respectively:

P ≤ 4n3p4 +O
(
n2p3

)
+ o

(
e−7 min{np,logn}/2

)
+ n2p3

≤ 5n3p4 + o
(
e−7 min{np,logn}/2

)
.

On the event Ani,j the strong k-path property is satisfied for some k ≤ b logn
2 log(np)c+2.

We conditioned on the event Ani,j , thus l = 2k + 5 ≤ logn
log(np) + 9.

Item (ii): Let Di,j be the event{
|γ1(i)− np| ≤

√
3np log(np)

}
∩
{
|γ1(j)− np| ≤

√
3np log(np)

}
.

Observe that we have the following by the Chernoff bounds, Lemma 2.1.1,

P
(
Dci,j

)
≤ exp

(
−3np log np

2(n− 1)p

)
+ exp

(
− 3np log np

2
(
(n− 1)p+

√
3np log np/3

))

= o

(
1

np

)
.

Now by Lemma 4.1.1 (iv) γ2(u) ∼d Bin
(
n− 1− γ1(u), 1− (1− p)γ1(u)

)
, conditional

on γ1(u) for any u ∈ V . Observe that (1−p)k ≤ 1−kp+(kp)2 when (kp)i ≥ (kp)i+1

for all i and recall the Bernoulli inequality (2.3). Thus conditional on Di,j we have
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the following

γ2(i) �1 Bin
(
n− 2np, np2 − 2p

√
log(np)np

)
,

γ2(j) �1 Bin
(
n, np2 + p

√
3 log(np)np

)
.

Let Ri,j be the event
{∣∣min{γ2(i), γ2(j)} − (np)2

∣∣ ≤ 3(np)3/2
√

log np
}

, thus we have

P
(
Rci,j

)
≤ 2P

(
γ2(i) > (np)2 + 3(np)3/2

√
log np

)
+ 2P

(
γ2(i) < (np)2 − 3(np)3/2

√
log np

)
.

Then by applying the above stochastic domination for γ2(i) we obtain

P
(
Rci,j

)
≤ 2P

(
Bin

(
n, np2 + p

√
3 log(np)np

)
> (np)2 + 3(np)3/2

√
log np

)
+ 2P

(
Bin

(
n− 2np, np2 − 2p

√
log(np)np

)
< (np)2 − 3(np)3/2

√
log np

)
+ 4P

(
Dci,j

)
.

Finally the Chernoff bounds, Lemma 2.1.1, and the above bound on P
(
Dci,j

)
yield

P
(
Rci,j

)
≤ 2 exp

 −(3−
√

3)2(np)3 log(np)

2
(
(np)2 + (np)3/2

√
3 log(np)

)


+ 2 exp

(
−(3− 5/2)2(np)3 log(np)

2
(
(np)2 + 3(np)3/2

√
log np/3

))+ 4 · o
(

1

np

)
= o

(
1

np

)
.

The result now follows from Item (i) and the bound on P
(
Rci,j

)
directly above since

P
(∣∣paths2(i, j, l)− (np)2

∣∣ > 3(np)3/2
√

log np
)

≤ P(paths2(i, j, l) 6= min{γ2(i), γ2(j)}) + P
(
Rci,j

)
≤ 5n3p4 + o

(
e−7 min{np,logn}/2

)
+ o (1/np)

= o (1/np) .
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Chapter 6

The distribution of the sizes of

r-neighbourhoods in G(n, p)

The aim of this chapter is to have a better understanding of the probability that

the r-neighbourhood of a vertex in G(n, p) has size k, namely

P(γr(u) = k) .

If we consider the first neighbourhood of a vertex v ∈ V , the case r = 1, then this

is simple to understand since γ1(v) ∼d Bin(n− 1, p). More generally, Lemma 4.1.1

(iv) states that for any r ≥ 1 the distribution of γr(u), conditional on γi(u) for

i = 1, . . . , r − 1, is given by

γr(v) ∼d Bin

(
n−

r−1∑
i=0

γi(v), 1− (1− p)γr−1(v)

)
. (6.1)

For r ≥ 2 this is a far more complex distribution to analyse as it depends on the sizes

of the previous neighbourhoods γi(v) for 0 ≤ i ≤ r−1. However, we would expect it

to resemble a binomial distribution with some parameters. One näıve guess might

be Bin
(
n, nr−1pr

)
, for an appropriate range of p and r. This is motivated by (6.1)

where we have simply plugged E[γr−1(u)] ≈ (np)r−1 in for the value of γr−1(u) and

considered the contribution from
r−1∑
i=0

γi(v) to be negligible.

Recall that log(·) denotes the natural logarithm base e. The following theo-

rem, which we prove in Section 6.4, shows that the density function of γr(u) resem-

bles that of the Gaussian and Binomial distributions.

Theorem 6.0.1. Let G ∼d G(n, p), where np→∞, and u ∈ V . Let r := r(n), r ≥ 1
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and k := k(n) be such that (np)2r = o (n) and k = Θ((np)r). Let α = k/(np)r. Then

there exists C := C(α) <∞ such that

P(γr(u) = k) ≤ C · e
(α−α log(α)−1)np√

(np)2r−1
.

If in addition α > 1/2π then there exists c := c(α) > 0 such that

P(γr(u) = k) ≥ c · e
(α−α log(α)−1)np√

(np)2r−1
.

To see why Theorem 6.0.1 suggests the distribution of γr(u) is binomial in

nature outside of the extreme values we will make a comparison with P(γ1(u) = k)

when np = o
(
n1/2

)
and k = Θ(np). Let α := k/np. By Stirling’s approximation we

can derive the following asymptotic approximation for P(γ1(u) = k) in this regime:

P(γ1(u) = k) =

(
n− 1

k

)
pk(1− p)n−k−1

∼ 1√
2πk

(npe
k

)k
e−np

∼ e(α+α log(α)−1)np√
2πα(np)

.

Up to constants this has exactly the same form as the function in Theorem 6.0.1

for r = 1. Theorem 6.0.1 is almost a local limit theorem and it suggests that γr(u)

satisfies a central limit theorem with mean (np)r and variance (np)2r−1. Indeed we

show this in our next Theorem.

Theorem 6.0.2 (Central Limit Theorem for γr(u)). Let G ∼d G(n, p), where np→
∞. Let r := r(n) be such that (np)r+1/2 = o (n) and let u ∈ V . Then(

γr(u)− (np)r

(np)(2r−1)/2

)
d−→ N (0, 1).

These two theorems are consistent with our understanding that the distri-

bution of γr(u) is binomial in nature however, the näıve guess of γr(u) having a

distribution close to that of Bin(n, (np)r−1p) is incorrect. This is because a ran-

dom variable distributed according to Bin(n, (np)r−1p) has variance of order (np)r

whereas Theorem 6.0.2 and Theorem 6.0.1 show the variance of γr(u) is actually

significantly greater since it has order (np)2r−1.

We prove Theorem 6.0.1 using a classical method attributed to Pierre-Simon

Laplace. We will introduce this in a heuristic manner in Section 6.2 before applying
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the same idea rigorously in the remainder of the Chapter to prove Lemma 6.2.3.

Firstly however we will first prove Theorem 6.0.2 using another tool associated with

Laplace, the Laplace transform.

6.1 Proof of the CLT for neighbourhood size

We wish to show the distribution of the size of the r-neighbourhoods, suitably scaled,

converges in distribution to a Normal distribution. If E[·] is expectation with respect

to some probability measure µ then for a random variable X with law µ we define

the Laplace transform [41, Ch. XIII] to be

L(µ)(s) = E
[
e−sX

]
.

The following classical theorem shows to prove convergence in distribution of γr(u),

suitably scaled, to a normal random variable it suffices to show convergence of the

Laplace transform associated to the sequence of random variables to the Laplace

transform of a Gaussian random variable.

Theorem 6.1.1 (Extended continuity theorem [41, Theorem 2(a), Ch. XIII]). For

n = 1, 2, . . . let µn be a measure with Laplace transform ωn. If ωn (λ) → ω (λ) for

λ > a, then ω is the Laplace transform of a measure µ and µn → µ. Conversely, if

µn → µ and the sequence {ωn(a)} is bounded, then ωn (λ)→ ω (λ) for λ > a.

This theorem also appears in Kallenberg’s book [52, Theorem 4.22] where it

is attributed to Lévy and Bochner. We can now prove Theorem 6.0.2.

Proof of Theorem 6.0.2. To begin we define the filtration F̃r in the following way

F̃r := F̃(G, u, r) = σ (Γi (u) : 0 ≤ i ≤ r) .

This is the filtration generated by the vertices at distance at most r from u. Observe

that by the tower property we have

E
[
e−λγr+1(u)

]
= E

[
E
[
e−λγr+1(u)

∣∣F̃r]] .
Recall Lemma 4.1.1 (iv) states that conditional on |Br(u)|, γr(u) ∈ F̃r we have

γr+1(u) ∼d Bin
(
n− |Br(u)|, 1− (1− p)γr(u)

)
.

Observe that E
[
e−λBin(n,p)

]
= (1 − p + e−λp)n since the binomial random variable

88



is a sum of independent Bernoulli random variables. Thus we have the following

E
[
e−λγr+1(u)

]
= E

[(
(1− p)γr(u) + e−λ

(
1− (1− p)γr(u)

))n−|Br(u)|
]
.

Let f(γr(u)) denote the bracketed term in the expectation above. Observe

f(γr(u)) := (1− p)γr(u) + e−λ
(

1− (1− p)γr(u)
)

= e−λ +
(

1− e−λ
)

(1− p)γr(u).

We will consider λ = o(1) and thus e−λ = 1 − λ + O
(
λ2
)
. By the Bernoulli in-

equality (2.3) and (2.4) whenever γr(u)p = o(1) we have (1− p)γr(u) = 1− γr(u)p+

O
(
γr(u)2p2

)
. Thus if γr(u)p = o(1) then the following holds

f(γr(u)) = 1− λ+ λ2/2− · · ·+
(
λ− λ2/2 + · · ·

) (
1− γr(u)p+O

(
γr(u)2p2

))
= 1− λγ1(u)p+O

(
λγr(u)2p2

)
−O

(
λ2γr(u)p

)
. (6.2)

Otherwise by the Taylor series for log(1− p) we have

f(γr(u)) = 1− λ+ λ2/2− · · ·+
(
λ− λ2/2 + · · ·

)
exp (log(1− p)γr(u))

= 1−
(
λ+ λ2/2− · · ·

) (
1− e−γr(u)p−O(γr(u)p2)

)
. (6.3)

Thus f(γr(u)) ≤ 1 by (6.2) and (6.3) since supx∈R+
e−x = 1. Recall that for β > 3:

P
(
|Br(u)| > (2β2 + 1)(np)r

)
= o

(
exp

(
−3(β − 3)np

2

))
,

by Lemma 4.1.2. Let Er :=
{
|Br(u)| ≤ (2β2 + 1)(np)r

}
. Hence for β > 3 we have

E
[
e−λγr+1(u)1(Er)c

]
≤ 1 · P((Er)c) = o

(
e−3(β−3)np/2

)
. (6.4)

Now for the remaining part of the partition we have γr(u)p1Er ≤ (β2 +1)(np)r+1/n.

We will now reduce the Laplace transform of the centred and λ-scaled γr+1(u)

random variable to that of the centred and λ-scaled γr(u) random variable. As

we are dealing with r + 1 for convenience the assumption of the theorem becomes
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(np)r+3/2 = o(n). We have the following by (6.2)

E
[
e−λγr+1(u)1Er

]
= E

[
(1− λγr(u)p+O(λγr(u)p (λ+ γr(u)p)))n−|Br(u)| 1Er

]
≤

E
[(

1− λγr(u)p+O
(
λnrpr+1

(
λ+ nrpr+1

)))n
1Er
]

(1−O(λnrpr+1))(β2+1)(np)r

=
E
[
exp

(
−λγr(u)np+O

(
λ(np)r+1

(
λ+ nrpr+1

)))
1Er
]

(1−O(λnrpr+1))(β2+1)(np)r

=
E[exp (−λγr(u)np) 1Er ] exp

(
O
(
λ(np)r+1

(
λ+ nrpr+1

)))
(1−O(λnrpr+1))(β2+1)(np)r

. (6.5)

Let λ = t/(np)(2r+1)/2, where t ∈ R+. Then for this choice of λ we have

λ(np)r+1
(
λ+ nrpr+1

)
=

t2

(np)r
+
t(np)r+3/2

n
,

and also applying Bernoulli’s inequality to the denominator of (6.5) yields

(
1−O

(
λnrpr+1

))(β2+1)(np)r ≥ 1−O
(
λn2rp2r+1

)
= 1−O

(
(np)r+1/2

n

)
.

Thus combining (6.4) with (6.5) for this choice of λ we obtain

E
[
exp

(
− tγr+1(u)

(np)(2r+1)/2

)]
≤ E

[
exp

(
− tγr(u)

(np)(2r−1)/2

)](
1 +O

(
1

(np)r

)
+O

(
(np)r+3/2

n

))
(6.6)

+ o
(
e−3(β−3)np/2

)
.

Similarly by (6.2) we have

E
[
e−λγr+1(u)

]
≥ E[(1− λγr(u)p+O(λγr(u)p (λ+ γr(u)p)))n 1Er ]

= E
[
exp

(
−λγr(u)np+O

(
λn2p2

(
λ+ np2

)))
1Er
]

≥ E
[
exp (−λγr(u)np)

(
1− 1(Er)c

)]
≥ E[exp (−λγr(u)np)]− P((Er)c) , (6.7)

since γr(u) ≥ 0. Thus if we let λ = t/(np)(2r+1)/2 then (6.4) and (6.7) yield

E
[
exp

(
− tγr+1(u)

(np)(2r+1)/2

)]
≥ E

[
exp

(
− tγr(u)

(np)(2r−1)/2

)]
− o
(
e−3(β−3)np/2

)
. (6.8)
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Observe that E
[
exp

(
t(np)r+1

(np)(2r+1)/2

)]
= et

√
np. Thus by (6.6) and (6.8) we have

E
[
exp

(
− t(γr+1(u)− (np)r+1)

(np)(2r+1)/2

)]
= et

√
npE
[
exp

(
− tγr(u)

(np)(2r−1)/2

)](
1 +O

(
1

(np)r

)
+O

(
(np)r+3/2

n

))
± et

√
npo
(
e−3(β−3)np/2

)
= E

[
exp

(
− t (γr(u)− (np)r)

(np)(2r−1)/2

)](
1 +O

(
1

(np)r

)
+O

(
(np)r+3/2

n

))
± et

√
npo
(
e−3(β−3)np/2

)
. (6.9)

For simplicity we shall denote ar := E
[
exp

(
− t(γr(u)−(np)r)

(np)(2r−1)/2

)]
, br := 1

(np)r + (np)r+3/2

n

and c := et
√
npo
(
e−3(β−3)np/2

)
. Then ignoring the fact there may be constant factors

in front of the bi terms we see that (6.9) above is a recurrence of the following form

ar+1 = ar(1 + br)± c.

Iterating this we obtain the following expression for ar+1 in terms of a1, bi and c

ar+1 = a1 ·
r∏
i=1

(1 + bi)±
r∑
i=1

c ·
r∏

j=i+1

(1 + bj)

= a1 · (1 + b1 + · · ·+ br + b1b2 + · · ·+ bibj + · · ·+ b1b2b3 + · · · )

± c ·

[
r∑
i=1

(1 + bi+1 + · · · br + bi+1bi+2 + · · · )

]
.

If we consider the relative sizes of bi for various 1 ≤ i ≤ r we see that the largest

terms are b1 and br and that bi = O(max{b1, br}/(np)) for all 2 ≤ i ≤ r − 1. Thus

ar+1 = a1 · (1 + (b1 + br)(1 + o(1)))± c · (1 + (b2 + rbr)(1 + o(1))) .
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If we now apply the above to the original relation (6.9) we obtain

E
[
exp

(
− t(γr+1(u)− (np)r+1)

(np)(2r+1)/2

)]
= E

[
exp

(
− t(γ1(u)− np)

√
np

)](
1 +O

(
1

np

)
+O

(
(np)r+3/2

n

))
(6.10)

± et
√
npo
(
e−3(β−3)np/2

)(
1 +O

(
1

(np)2

)
+O

(
r · (np)r+3/2

n

))
.

We now have an expression on the right hand side which we can evaluate easily since

γ1(u) ∼d Bin(n− 1, p). We include this standard calculation for completeness:

a1 = E
[
exp

(
− t(γ1(u)− np)

√
np

)]
= et

√
np ·

(
1− p+ e−t/

√
npp
)n−1

.

Recall that e−λ = 1− λ+ λ2/2− λ3/3! + · · · and observe

a1 = et
√
np

(
1−

(
t
√
np
− t2

2np
+

t3

6(np)3/2
−O

(
t4

(np)2

))
p

)n−1

= et
√
np exp

(
− (n− 1)

(
pt
√
np
− pt2

2np
+O

(
pt3

6(np)3/2

)
− t2p2

np
− · · ·

))
= exp

(
t2

2
+O

(
1
√
np

))
.

Thus by (6.10), since β > 3 was arbitrary, we have

E
[
exp

(
− t(γr+1(u)− (np)r+1)

(np)(2r+1)/2

)]
→ exp

(
t2

2

)
.

The result follows by Theorem 6.1.1 since et
2/2 is the Laplace transform of a Normal

N (0, 1) random variable.

6.2 Laplaces’s method

Laplace’s method is a means of evaluating integrals by approximating them using

a Taylor series in an interval around a global (or local) maxima. The method

originated from a 1774 paper of Laplace [56] and appears in many books, for example

[31, Chapter 5] and [34, Section 2.4]. This introduction to the method follows the

style of Stefan Wagner’s notes [74] from the Athens summer school where I first

learnt of the method [1].
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The typical situation where Laplace’s method is applied is when we have an

integral of the form

f(t) =

b∫
a

eg(x,t) dx

and we would like to know its asymptotic behaviour as t→∞. To apply Laplace’s

method we take the following steps:

� Identify the maximum of g(x, t) for fixed t.

� Approximate g(x, t) in an interval of x(t) around the maximum.

� Estimate the contribution of the tails (remaining intervals).

Here is a rough explanation of how the method works. Suppose the function g(x, t)

is at least three times differentiable. The maximum occurs at a point x∗ = x∗(t)

where

gx(x∗, t) :=
dg

dx
= 0 and gxx(x∗, t) :=

d2g

dx2
< 0.

Around x∗ we have the Taylor expansion

g(x, t) = g(x∗, t) +
gxx(x∗, t)

2!
(x− x∗)2 +

gxxx(x∗, t)

3!
(x− x∗)3 + · · ·

If we now consider the integral

f(t) =

b∫
a

eg(x,t) dx

then by the Taylor expansion around x∗ we can be approximate the integral by

∞∫
−∞

eg(x
∗,t)+ gxx(x

∗,t)
2

(x−x∗)2 dx = eg(x
∗,t)

∞∫
−∞

e
gxx(x

∗,t)
2

(x−x∗)2 dx.

By inspection of the integral on the right hand side we see that since gxx(x∗, t) is

a negative constant the integral has the form of a Gaussian integral with variance

−gxx(x∗, t). This can be evaluated explicitly giving

eg(x
∗,t) ·

√
2π

−gxx(x∗, t)
.

For this approach to work and be rigorous we need several things to be true.

Firstly, the error term in the Taylor approximation must be small in a suitable
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region [x∗ − A, x∗ + A] around the maximum. This usually means that A := A(t)

needs to be chosen in such a way that

gxxx(x∗, t)A(t)3 → 0 as t→∞.

This is so that if we truncate the Taylor series the error from the higher order terms

goes to zero.

Secondly, the contribution of the parts outside the central region [x∗−A, x∗+
A] needs to be negligible. For this, it is generally required that

gxx(x∗, t)A(t)2 →∞ as t→∞.

The reason for this is that the error term

E :=

x∗−A∫
−∞

e
gxx(x

∗,t)
2

(x−x∗)2 dx+

∞∫
x∗+A

e
gxx(x

∗,t)
2

(x−x∗)2 dx,

coming from completing the Gaussian integral resembles the tails of a Gaussian with

mean x∗ and variance 1/|gxx(x∗, t)|. Thus by the Mill’s ratio Gaussian tail bound

(2.5) we have

E = P
(∣∣∣N (x∗, 1

−gxx(x∗,n)

)
− x∗

∣∣∣ ≥ A) ≤√ 2

π|gxx(x∗, t)|A2
e−|gxx(x∗,t)|A2/2,

which goes to zero for sufficiently fast as t grows. The right choice of the central

interval size parameter A is key to the success of the method. What we have not yet

mentioned is that error arising from originally restricting the integral to the central

interval. This is the contribution from the integrals

x∗−A∫
a

eg(x,t) dx and

b∫
x∗+A

eg(x,t) dx.

The success of the approximation also depends on this being negligible compared

with the contribution from the interval [x∗ −A, x∗ +A].

6.2.1 Laplace’s method for Gamma-like functions

The Laplace method will obviously not work for any integral, but it works very

well on uni-modal integrals which decay fast outside of the central region around
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the maximum. A typical example of a function with an integral representation that

works well with the Laplace method is the Gamma function

Γ(z) =

∫ ∞
0

xz−1e−x dx

Indeed, using Laplace’s method as described above one can prove Stirling’s approx-

imation

Γ(z + 1) ∼
√

2πz
(z
e

)z
.

If more derivatives are considered in the Taylor expansion and a suitable A is found

then the approximation can be improved. Indeed the higher order terms bearing

the coefficients from Stirling’s sequence can also be recovered if Laplace’s method is

applied to the Gamma function and more derivatives are utilised.

Fortunately for us we can derive an expression for P(γr(v) = k) with an inte-

gral form that vaguely resembles the Gamma function. We wish to define a family

F of functions which bear resemblance to the integrand of the Gamma function.

Recall that throughout we use o(·), O(·) and Θ(·) in relation to n.

Definition 6.2.1. Let a, b, c : N → R be functions of n such that a(n) → 0,

b(n) → ∞ and c(n) = O(1) as n → ∞. In addition let a, b and c satisfy c log(b) =

o (| log(a)|) and log(a)2 = O(b). The family F consists of all functions f : R×N→ R
of the form

f(x, n) = a(n)xxb(n)−c(n)x,

for some a, b and c as described.

For ease of presentation we shall purposely neglect to show the dependence

on n, denoting a(n) by a for example. We also must define what it means for one

function to maximise another.

Definition 6.2.2 (maximiser). Let m : N → R and f : R × N → R. We say that

the function m is a maximiser of f if the following holds for every n ∈ N

f(m(n), n) = max
x∈R

f(x, n).

Lemma 6.2.3. Let f ∈ F have the form f(x, n) = axxb−cx given by Definition

6.2.1. Let m := m(n) be a maximiser of f . Then

m =
b

c+ c log(m)− log(a)
= − b

log(a)

(
1 +O

(
c log(b)

| log(a)|

))
.
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Let A := A(n) be monotonically increasing and satisfy ω
( √

b
|log(a)|

)
= A = o

(
b2/3

|log(a)|

)
.

Then

m+A∫
m−A

f(x, n) dx = f(m,n)

[ √
2πb

| log(a)|

(
1 +O

(
c log(b)

| log(a)|

))
−O

(√
be−(A| log(a)|)2/2b

A| log(a)|

)]

·
(

1±O
(

(A| log(a)|)3

b2

))
.

Proof. Let g(x, n) := x log(a)+(b−cx) log(x) so then we have f(x, n) = eg(x,n). Let

us compute the first three derivatives of g with respect to x

gx(x, n) = log(a) + b/x− c− c log(x)

gxx(x, n) = −b/x2 − c/x

gxxx(x, n) = 2b/x3 + c/x2.

Thus for each n there is a stationary point at the value m(n) which is the solution to

log(a(n)) + b(n)/m(n)− c(n)− c(n) log(m(n)) = 0. Thus we can write m implicitly

as m = b/(c+ c log(m)− log(a)). Recall that − log(a)→∞ and m ≥ 0, this yields

log(m) = log(b)− log (c+ c log(m)− log(a)) ≤ log(b),

and then since c log(b) = o (| log(a)|) by assumption we have

m = − b

log(a)

(
1 +O

(
c log(b)

| log(a)|

))
.

We evaluate the second and third derivatives at the stationary point m to obtain

gxx(m,n) = −(c+ c log(m)− log(a))2

b
− c(c+ c log(m)− log(a))

b

= − log(a)2

b

(
1−O

(
c log(b)

| log(a)|

))
,

gxxx(m,n) = +
(c+ c log(m)− log(a))3

b2
+
c(c+ c log(m)− log(a))2

b2
,

= − log(a)3

b2

(
1−O

(
c log(b)

| log(a)|

))
,

thus m is a maxima. To begin, any monotonic function A := A(n) satisfying

ω

( √
b

|log(a)|

)
= A = o

(
b2/3

|log(a)|

)
,
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gives the following

ξ2 := gxx(m,n) ·A2 = − log(a)2

b

(
1−O

(
c log(b)

| log(a)|

))
·A2 = ω(1), (6.11)

ξ3 := gxxx(m,n) ·A3 = − log(a)3

b2

(
1−O

(
c log(b)

| log(a)|

))
·A3 = o(1). (6.12)

Applying Taylor’s theorem we deduce that for x ∈ [m−A,m+A] we have

g(x, n) = g(m,n) +
gxx(m,n)

2
(x−m)2 ±O(ξ3) .

Now using this approximation for g in the integral we obtain

m+A∫
m−A

f(x) dx = eg(m,n)±O(ξ3)

∫ m+A

m−A
exp

(
gxx(m,n)

2
(x−m)2

)
dx. (6.13)

Observe that if x = o(1) then by the Taylor series for e we have ex = 1 + Θ (x).

Applying this to the first term of (6.13) and then completing the integral yields

m+A∫
m−A

f(x) dx = (1±O(ξ3)) eg(m,n)

[∫ ∞
−∞

exp

(
gxx(m,n)

2
(x−m)2

)
dx

−
∫ ∞
m+A

exp

(
gxx(m,n)

2
(x−m)2

)
dx

−
∫ m−A

−∞
exp

(
gxx(m,n)

2
(x−m)2

)
dx

]
.

Label the above integrals i1, i2 and i3 respectively. We will compute them by recog-

nition with standard Gaussian integrals. To begin observe that we have

i1 =

√
−2π

gxx(m,n)
=

√
2πb

| log(a)|

(
1 +O

(
c log(b)

| log(a)|

))
.

Notice that the second and third integrals, i2 and i3, together give the probability

that a Gaussian random variable with mean m and variance 1/|gxx(m,n)| takes a

value more that A away from its mean. Thus the Mill’s ratio (2.5) yields

i1 + i2 ≤

√
2

π|gxx(m,n)|
·

exp
(
gxx(m,n)A2

2

)
A

= O

(
exp (−ξ2/2)√

ξ2

)
.
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Thus combining the above estimates for i1, i2 and i3 we have

m+A∫
m−A

f(x) dx = f(m)

( √
2πb

| log(a)|

(
1 +O

(
c log(b)

| log(a)|

))
−O

(
e−ξ2/2√
ξ2

))
(1±O(ξ3)) .

The result follows by (6.11) and (6.12).

6.3 The Euler-Maclaurin summation formula for Gamma-

like sums

The Euler-Maclaurin summation formula is a classical theorem which is useful for

approximating sums by integrals. We will now state the first derivative form of this

as we shall use it in the proof of Lemma 6.3.2.

Theorem 6.3.1 (First derivative form of the Euler-Maclaurin summation formula

[7]). For any function f with a continuous derivative on the interval [1, n] we have

n∑
i=1

f(i) =

∫ n

1
f(x) dx+

∫ n

1
(x− [x])f ′(x) dx+ f(1).

Note that in the general version of the Euler-Maclaurin summation formula

there are some more terms involving the Bernoulli numbers present and the remain-

der is a integral involving kth derivatives, where the choice of k ≥ 1 is left to the

user. I have tried using the more general version with higher order derivatives how-

ever this appeared to gave no significant improvement of the result so we use the

first derivative version of the Theorem for simplicity.

Recall the family F from Definition 6.2.1 and what it means to be a max-

imiser of a function, Definition 6.2.2.

Lemma 6.3.2. Let f ∈ F have the form f(x, n) = axxb−cx given in Definition 6.2.1.

Let m be a maximiser of f . Let A := A(n) be monotonically increasing in n and

satisfy ω
(

log
(
b/| log(a)|2 + 2

) √
b

|log(a)|

)
= A = o

(
b2/3

|log(a)|

)
and A2 = o

(
b

c| log(a)|

)
.

Then

(i)
m−A∑
x=1

f(x, n) +
∞∑

x=m+A

f(x, n) = O

(
f(m,n)

b

| log(a)|2
exp

(
−(A log(a))2

b

))
.

(ii)

∣∣∣∣∣∣
m+A∑

x=m−A
f(x, n)−

m+A∫
m−A

f(x, n) dx

∣∣∣∣∣∣
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≤ f(m,n)

(
1 +O

(
1

| log(a)|

)
+O

(
A| log(a)|

b

)
+O

(
(A| log(a)|)3

b2

)
+O

(
cA2

m

))
.

Proof. For ease of presentation we will shall abuse notation and write f(x) instead

of f(x, n) and use a instead of a(n), hiding the dependence on n. To begin we

calculate the first derivative of f . For each fixed n we have

f ′(x) :=
df(x)

dx
= f(x) ·

(
log(a) +

b

x
− c− c log(x)

)
. (6.14)

We will factor f(m) from f(m+ h),

f(m+ h) = am+h(m+ h)b−c(m+h) = f(m)ahm−ch(1 + h/m)b−c(m+h). (6.15)

When h = o (m) the following holds by Taylor’s approximation for log(1 + h/m)

f(m+ h) = f(m)ahm−che(h/m−h
2/2m2+h3/3m3+··· )(b−c(m+h)).

Recall that m = b/(c+ c log(m)− log(a)), inserting this yields

f(m+ h) = f(m)ahm−cheh(c+c log(m)−log(a))−ch−h2b/2m2+(ch2/2m+h3b/3m3)(1+o(1))

= f(m)e−h
2b/2m2+(ch2/2m+h3b/3m3)(1+o(1)). (6.16)

Item ((i)): If A+ i = o (m) then for j = o (m) by (6.16) we have

f(m+A+ i+ j)

f(m+A+ i)
=
e−(A+i+j)2b/2m2+(c(A+i+j)2/2m+(A+i+j)3b/3m3)(1+o(1))

e−(A+i)2b/2m2+(c(A+i)2/2m+(A+i)3b/3m3)(1+o(1))

= e−(2j(A+i)+j2)(b/2m2(1−O((a+i+j)/m))−c/m))

= e−(j(A+i)+j2)b/m2(1−o(1)). (6.17)

We choose j so that max{Aj, j2} · (b/m2) = Ω (1), this is so that the ratio (6.17) is

strictly less than 1. Since m is the maximum we know that f(m + i) is decreasing

in i thus for such a choice of j we have the following by (6.17)

m∑
i=0

f(m+A+ i) ≤
dm/je∑
k=0

j · f(m+A+ kj) = O (j · f(m+A)) . (6.18)
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Otherwise (A+ i)/m > 0 since A is monotone and we have the following by (6.15)

f(m+A+ i+ 1)

f(m+A+ i)
=
a(1 + (A+ i+ 1)/m)b−c(m+A+i+1)

mc(1 + (A+ i)/m)b−c(m+A+i)

=
a [(1 + (A+ i)/m) (1 + 1/(m+A+ i))]b−c(m+A+i)

mc(1 + (A+ i)/m)b−c(m+A+i)(1 + (A+ i+ 1)/m)c

=
a (1 + 1/(m+A+ i))b−c(m+A+i)

mc(1 + (A+ i+ 1)/m)c
,

applying Taylor’s approximation for log(1 + 1/(m+ a+ i)) yields

f(m+A+ i+ 1)

f(m+A+ i)
=
a exp

(
b
m

(
1− A+i

m+A+i

)
− c+ b

2(m+A+i)2
+ o(1)

)
mc(1 + (A+ i+ 1)/m)c

.

Recall that m = b/(c + c log(m) − log(a)), c log(m) < − log(a) and log(a)2 = O(b)

by Lemma 6.2.3 and Definition 6.2.1. Then since (A+ i)/(m+ a+ i) > β for some

constant β > 0 we have

f(m+A+ i+ 1)

f(m+A+ i)
=
a exp (c log(m)− log(a) + β log(a) +O(1))

mc(1 + (A+ i+ 1)/m)c

=
O
(
aβ
)

(1 + (A+ i+ 1)/m)c

= o (1) .

Thus for any j such that max{Aj, j2} · (b/m2) = Ω (1) we have the following by

(6.16), (6.18) and comparison with a geometric series

∞∑
i=m+A

f(i) =
2m∑

i=m+A

f(i) +
∞∑

i=2m

f(i)

= O (j · f(m+A)) +O(f(m+A))

= O
(
j · f(m)e−A

2b/m2
)
.

The bound on the lower part of the sum is the same. For an upper bound on j take

j =
√
m2/b ∼

√
b/| log(a)|2 as this satisfies max{Aj, j2} · (b/m2) = Ω (1). Thus

∞∑
i=m+A

f(i) = O
(√

b/| log(a)|2 · f(m)e−A
2b/m2

)
.

Provided our choice of A satisfies A = ω
(

log
(
b/| log(a)|2 + 2

) √
b

|log(a)|

)
the term on
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the right hand side is o (f(m)), the extra +2 in the log is because it may be the case

that b/| log(a)|2 = 1 and we do not want the expression to be zero.

Item ((ii)): By Theorem 6.3.1 and the triangle inequality we have∣∣∣∣∣∣
m+A∑
m−A

f(x)−
m+A∫
m−A

f(x) dx

∣∣∣∣∣∣ ≤
m+A∫
m−A

|(x− [x])f ′(x)|dx+ f(1)

≤
m+A∫
m−A

|f ′(x)| dx+ a, (6.19)

since 0 ≤ (x− [x]) ≤ 1. For h ≤ A equations (6.14) and (6.16) yield

f ′(m+ h) = f(m+ h)

(
log(a) +

b

m+ h
− c− c log(m+ h)

)
= f(m)e−h

2b/2m2+(h3b/3m3+ch2/2m)(1+o(1))

(
− bh

m2 +mh
− c log

(
1 +

h

m

))
applying Taylor’s approximation for log(1 + h/m), where h = o(m) yields

f ′(m+ h) = f(m)e−(h2b/m2)(1−O(h/m)−O(cm/b))

(
− bh

m2 +mh
− ch

m
+O

(
h2

m2

))
= −f(m)e−(h2b/m2)(1−O(A/m)−O(cm/b)) bh

m2 +mh

(
1 +O

(m
b

))
.

Thus we have the following

m+A∫
m−A

|f ′(x)| dx =

A∫
−A

|f ′(m+ h)| dh

=
bf(m)

(
1 +O

(
m
b

))
m

A∫
−A

∣∣∣∣∣he−(h2b/m2)(1−O(A/m)−O(cm/b))

m+ h

∣∣∣∣∣ dh.

≤
bf(m)

(
1 +O

(
m
b

))
m(m−A)

A∫
−A

∣∣∣he−(h2b/m2)eO(bA3/m3)+O(cA2/m)
∣∣∣ dh.

≤
2bf(m)

(
1 +O

(
m
b

)
+O

(
A
m

))
m2

eO(bA3/m3)+O(cA2/m)
A∫

0

he−(h2b/m2) dh.

= f(m)

(
1 +O

(m
b

)
+O

(
A

m

)
+O

(
bA3

m3

)
+O

(
cA2

m

))
·
[
1− e−(A2b/m2)

]
.

101



The result follows by (6.19) since m ∼ −b/ log(a) by Lemma 6.2.3 and because of

the conditions on A from the assumptions of the Lemma.

Before we begin with the proof of Theorem (6.0.1) we need the following

Lemma.

Lemma 6.3.3. Let G ∼d G(n, p). Let v ∈ V , r ≥ 2 and 1 ≤ k = o (n). Then

P
(
{γr(v) = k} ∩

{
γr−1(v) ≤ k/e2np

})
≤ e−k.

Proof. Let h =
r−2∑
i=1

γi(v) and we have the following by Lemma 4.1.1

P := P
(
γr(v) = k

∣∣∣ {γr−1(v) ≤ k/e2np
}
∩ σ(h)

)
≤ P

(
Bin

(
n− h, 1− (1− p)k/e2np

)
= k

)
Now since 1− (1− p)k/e2np ≤ k/e2n by the Bernoulli inequality (2.4) and k = o (n)

we have

P ≤ P
(
Bin

(
n− h, k/e2n

)
= k

)
≤
(
n− h
k

)(
k

e2n

)k (
1− k

e2n

)n−h
≤
(ne
k

)k ( k

e2n

)k
≤ e−k.

Since this bound is independent of h we have

P
(
{γr(v) = k} ∩

{
γr−1(v) ≤ k/e2np

})
≤ e−k.

6.4 Proof of Theorem 6.0.1

We are now ready to prove the main theorem of this chapter.

Proof of Theorem 6.0.1. We will first consider the distribution of γ2(u). Observe
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the following

P(γ2(u) = k) =

n−k−1∑
l=1

P
(
γ2(u) = k

∣∣γ1(u) = l
)
P(γ1(u) = l)

=

b4npc∑
l=1

P
(
γ2(u) = k

∣∣γ1(u) = l
)
P(γ1(u) = l) + o

(
e−2np

)
, (6.20)

since P(γ1(u) > b4npc) ≤ exp
(
− 9np

2(1+(3/3))

)
= o

(
e−2np

)
by Lemma 2.1.1. Let Pk

denote the sum in (6.20) above so that we can ignore the o
(
e−2np

)
error term for

the time being. Recall that conditional on γ1(u) we have γ2(u) ∼d Bin(n− γ1(u)−
1, 1− (1− p)γ1(u)) by Lemma 4.1.1, thus we have

Pk =

b4npc∑
l=1

(
n− 1− l

k

)(
1− (1− p)l

)k
(1− p)l(n−1−l−k)

(
n− 1

l

)
pl(1− p)n−1−l.

Applying the identity
(
n−1
l

)(
n−1−l
k

)
=
(
n−1
k

)(
n−k−1

l

)
and collecting some lower order

terms we obtain

Pk =

(
n− 1

k

)
(1− p)n

b4npc∑
l=1

(
n− k − 1

l

)(
1− (1− p)l

)k
(1− p)ln+O(lk)pl.

By inequalities (2.3) and (2.4) and since k = O
(
(np)2

)
and l = O(np) we have

(
1− (1− p)l

)k
= (lp)k

(
1− lp

2
+O

(
(lp)2

3!

))k
= (lp)ke−O(lkp). (6.21)

the Taylor approximation to the logarithm yields (1− p)a = e−pa+O(ap2), thus

Pk =

(
n− 1

k

)
e−np+O(n3p4)pk

b4npc∑
l=1

(
n− k − 1

l

)
lke−lnppl,

where we bounded and collected all errors in the second term. Observe(
n

k

)
=
n · (n− 1) · · · (n− k + 1)

k!
=

1√
2πk

(en
k

)k (
1−O

(
k2

n

))
, (6.22)

by Stirling’s approximation, provided k = o (
√
n). Thus

Pk =
e−np

(
1±O

(
n3p4

))
2π
√
k

(enp
k

)k b4npc∑
l=1

(
e1−npnp

)l
lk−1/2−l. (6.23)
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Our plan is to recognise that the summand above has the form of a function from

the family F for some suitable a := a(n), b := b(n) and c := c(n). We shall then

bound the sum from above using Lemmas 6.3.2 and 6.2.3.

To this end let a = e1−npnp, b = k − 1/2, c = 1 and f(l, n) := allb−l. Thus

f(l, n) is the summand in (6.23) and we notice that f ∈ F (see Definition 6.2.1)

and m ∼ k/np by Lemma 6.2.3. Also observe that b/| log(a)|2 = Θ(1). Choose

A := A(n) = log(np) and we see that ω (1) = A = o
(
(np)1/3

)
. Thus we can apply

Lemma 6.3.2 to give the following upper and lower bounds

b4npc∑
l=1

f(l, n) ≤
m+A∫
m−A

f(l, n) + f(m,n)

(
1 +O

(
(log(np))2

np

)
+O

(
e−Θ(log(np)2)

))
, (6.24)

b4npc∑
l=1

f(l, n) ≥
m+A∫
m−A

f(l, n)− f(m,n)

(
1 +O

(
(log(np))2

np

)
+O

(
e−Θ(log(np)2)

))
. (6.25)

Again since ω (1) = A = o
(
(np)1/3

)
we can apply Lemma 6.2.3 to give

∫ m+A

l=m−A
f(l, n) = f(m,n)

[ √
2π(k − 1/2)

np− log(np)− 1

(
1 +O

(
log(np)

np

))

−O

(
e−Θ(log(np)2)√

log(np)

)](
1±O

(
(log(np))3

np

))
. (6.26)

Combining (6.24) and (6.26) then collecting error terms yields the upper bound

b4npc∑
l=1

f(l, n) ≤ f(m,n)

(√
2πk

np
+ 1 +O

(
(log(np))3

np

))
. (6.27)

Likewise (6.25), (6.26) and collecting error terms provide the lower bound

b4npc∑
l=1

f(l, n) ≥ f(m,n)

(√
2πk

np
− 1−O

(
(log(np))3

np

))
. (6.28)

All that remains it to compute the value of f(m,n), for large n.

Observe that f(l, n) = eg(l,n) where g(l, n) := (1− np+ log(np)) · l + log(l) ·
(k − 1/2− l). Let us compute the first derivative of g with respect to l,

dg

dl
:= gl(m,n) = −np+

k − 1/2

l
+ log(np)− log(l).
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We can find the following implicit form for the solution to gl(m,n) = 0

m =
k − 1/2

np+ log (m)− log(np)
. (6.29)

We need to estimate log(m). Let α = k/(np)2, and observe that by (6.29):

log(m) = log (α) + log(np) + log (1− 1/2k)− log (1 + (log(m)− log(np))/np) .

Applying the Taylor expansion for log(1 + x) we obtain

log(m) = log (α) + log(np)− 1
2k −O

(
1
k2

)
− log(m)−log(np)

np

+ (log(m)−log(np))2

2(np)2
−O

(
(log(m)−log(np))3

(np)3

)
. (6.30)

Let tm = log(m)− log(np). Inserting the first few terms from (6.30) yields

tm = log(α)− 1
2k −O

(
1
k2

)
− tm

np + t2m
(np)2

−O
(

t3m
(np)3

)
= log(α)− log(α)/np±O

(
1/(np)2

)
. (6.31)

Now using the estimate (6.31) for tm in the expression (6.30) for log(m) we have

log(m) = log (α) + log(np)− log(α)
np + 2 log(α)+log(α)2−1/α

2(np)2
±O

(
1

(np)3

)
. (6.32)

We now apply (6.32) to (6.29) to obtain an explicit asymptotic expression for m

m =
k − 1/2

np+ log (α)− log(α)
np + 2 log(α)+log(α)2−1/α

2(np)2
±O

(
1

(np)3

) . (6.33)

Observe that for a, b, c ∈ R and x→∞ we have the following Laurent series

1

x+ a+ b/x+ c/x2
=

1

x
− a

x2
+
a2 − b
x3

±O
(

1

x4

)
.

Using the Laurent series to expand the denominator of (6.33) we have

m = α(np)− α log(α) +
α log(α)2 + α log(α)− 1/2

(np)
±O

(
1

(np)2

)
. (6.34)

Let ag := (1 − np + log(np)) · m and bg := log(m) · (k − 1/2−m). We can now
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calculate ag up to terms of lower order using (6.32) and (6.34):

ag = (1− np+ log(np))
(
α(np)− α log(α) + α log(α)2+α log(α)−1/2

(np) ±O
(

1
(np)2

))
= α(np)− α log(α)− α(np)2 + α log(α)np− α log(α)2 − α log(α) + 1/2

+ α(np) log(np)− α log(α) log(np)±O
(

log(np)
np

)
= −α(np)2 + α log(np)np+ α (1 + log(α))np− α log(α) log(np)

− α log(α)2 − 2α log(α) + 1
2 ±O

(
log(np)
np

)
.

Again using (6.32) and (6.34) we obtain the following estimate for bg

bg =
(

log (α) + log(np)− log(α)
np + 2 log(α)+log(α)2−1/α

2(np)2
±O

(
1

(np)3

))
·
(
α(np)2 − 1

2 − α(np) + α log(α) +O
(

1
np

))
= α log (α) (np)2 + α log(np)(np)2 − α log(α)np+ α log(α) + α log(α)2

2 − 1
2

− log(α)
2 − log(np)

2 − α log (α)np− α log (np)np+ α log(α)

+ α log(α)2 + α log(α) log(np) +O
(

log(np)
np

)
= α log(np)(np)2 + α log(α)(np)2 − α log(np)np− 2α log(α)np

+
(
α log(α)− 1

2

)
log(np) + 3α log(α)2+4α log(α)−log(α)−1

2 +O
(

log(np)
np

)
.

We then combine to give g(m,n) = ag + bg and thankfully some terms cancel:

g(m,n) = α log(np)(np)2 + α (log(α)− 1) (np)2 + α (1− log(α))np

− log(np)
2 + α log(α)2−log(α)

2 +O
(

log(np)
np

)
.

Finally, since f(m,n) = eg(m,n) and ex = 1 + Θ (x) whenever x = o(1), we have

f(m) =

(
k

npe

)k e(α−α log(α))np

√
np

· α
α log(α)

2

√
α

(
1 +O

(
log(np)
np

))
.
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Thus by (6.20), (6.23) and (6.27) we have the following the upper bound

P(γ2(u) = k) ≤
e−np

(
1±O

(
n3p4

))
2π
√
k

(enp
k

)k
f(m)

(√
2πk

np
+ 1 +O

(
(log(np))3

np

))
+ o

(
e−2np

)
=
e(α−α log(α)−1)np

(np)3/2

(
α
α log(α)

2

α
√

2π

(√
2πα+ 1 + o(1)

))

≤ C · e
(α−α log(α)−1)np

(np)3/2
.

for some constant C since α = k/(np)2 = Θ (1). Similarly, provided that α > 1/2π,

we have the following lower bound by (6.20), (6.23) and (6.28)

P(γ2(u) = k) ≥ e(α−α log(α)−1)np

(np)3/2

(
α
α log(α)

2

α
√

2π

(√
2πα− 1− o(1)

))

≥ c · e
(α−α log(α)−1)np

(np)3/2
.

for some constant c > 0 since α > 1/2π.

We now consider P(γr(u) = k) when r ≥ 3. We shall use our upper and lower

bounds on P(γ2(u) = k) as the basis for an induction on r. Observe the following

for some β > 3 to be chosen later.

P(γr+1(u) = k) =
n−k∑
l=1

P({γr+1(u) = k} ∩ {γr(u) = l})

=

β2(np)r∑
l=k/e2np

P({γr+1(u) = k} ∩ {γr(u) = l}) + P
(
γr(u) ≥ β2(np)r

)
+ P

(
{γr+1(u) = k} ∩

{
γr(u) ≤ k/e2np

})
=

β2(np)r∑
l=k/e2np

P({γr+1(u) = k} ∩ {γr(u) = l}) (6.35)

+ o
(
e−

3(β−3)np
2

)
+O

(
e−k
)
,

where we bounded the last two terms using Lemmas 4.1.2 and 6.3.3 respectively.

Let B denote the sum in line (6.35) and Ir be the event
{
|Br(u)| ≤ (2β2 + 1)(np)r

}
.

107



Then

B ≤
β2(np)r∑
l=k/e2np

P({γr+1(u) = k} ∩ Ir−1 ∩ {γr(u) = l}) + P((Ir−1)c)

Now since P((Ir−1)c) = o
(
e−

3(β−3)np
2

)
by Lemma 4.1.2 we have

P(Ir−1 ∩ {γr(u) = l}) = P(γr(u) = l)− o
(
e−

3(β−3)np
2

)
.

Since k = ω(np) we have e−k = o
(
e−

3(β−3)np
2

)
for any β > 0, thus

P(γr+1(u) = k) =

β2(np)r∑
l=k/e2np

P
(
γr+1(u) = k

∣∣∣Ir−1 ∩ {γr(u) = l}
)
P(γr(u) = l)

± o
(
e−

3(β−3)np
2

)
(6.36)

Let Fr be the filtration σ (γi(v); 0 ≤ i ≤ r) and let h =
r−1∑
i=0

γi(u). Observe that we

have the following by Lemma 4.1.1

K := P
(
γr+1(u) = k

∣∣∣Fr−1 ∩ {γr(u) = l}
)

= P
(
Bin

(
n− l − h, 1− (1− p)l

)
= k

)
=

(
n− l − h

k

)
(1− (1− p)l)k(1− p)l(n−l−h−k)

Similarly to (6.21) we have
(
1− (1− p)l

)k
= (lp)ke−O(lkp), thus

K =

(
n− l − h

k

)
(lp)ke−pl(n−h)±O(lkp)

Now notice that on the event Ir−1 we have the following by (6.22)

K · 1Ir−1 =
1√
2πk

(
ne

k

(
1− O(l)

n

))k (
1−O

(
k2

n

))
(lp)ke−npl±O(lkp)

=

(
1±O

(
k2/n

))
√

2πk

(npe
k

)k
lke−npl,

since conditional on Ir−1 we have (l+h)k = O(lk). Let Pu denote the sum in Equa-

tion (6.36) so we can temporally ignore the error term. Notice that the summand
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of the sum in (6.36) is precisely
(
E
[
K · 1Ir−1

]
/P(Ir−1)

)
P(γr(u) = l), thus

Pu =
(npe)k

(
1±O

(
k2/n

))
√

2π (k)k+1/2

β2(np)r∑
l=k/e2np

lke−plnP(γr(u) = l) . (6.37)

Recall α = (l/(np)r). We shall assume the following inductive hypothesis: for

α = Θ(1) there exists a constant 0 < C <∞ such that

P(γr(u) = l) ≤ C · e
(α−α log(α)−1)np√

(np)2r−1

(
1 +O

(
l2

n

))
,

and if in addition α > 1/2π then there exists a constant 0 < c <∞ such that

P(γr(u) = l) ≥ c · e
(α−α log(α)−1)np√

(np)2r−1

(
1−O

(
l2

n

))
.

Applying the inductive hypothesis to (6.37) yields the upper bound

Pu ≤
C(npe)k

(
1 +O

(
k2/n

))
(k)k+1/2

√
2π(np)2r−1

β2(np)r∑
l=k/e2np

lke−pln · e(α−α log(α)−1)np. (6.38)

To bound Pu from below, in the case that k/(np)r+1 > 1/2π, we discard the lower

tail of the sum (6.37) and apply the inductive hypothesis, this yields

Pu ≥
c(npe)k

(
1−O

(
k2/n

))
(k)k+1/2

√
2π(np)2r−1

β2(np)r∑
l=bk/np−(np)r/ log(np)c

lke−pln · e(α−α log(α)−1)np. (6.39)

This is valid since l/(np)r ≥ k/(np)r+1 −O(1/ log(np)), thus for large enough n by

conditions on k we have l/(np)r > 1/2π.

The sums in (6.38) and (6.39), with summand f(l, n) := e−pln·e(α−α log(α)−1)np,

above are identical and by expressing α = l/(np)r in full we have

f(l, n) = lke−pln
(
e(np)r

l

)l/(np)r−1

e−np√
(np)2r−1

= lk−l/(np)
r−1
(
e(1+r log(np))/(np)r−1−np

)l
.

Once again we wish to bound a sum from above using Lemmas 6.3.2 and 6.2.3.

Let a = e(1+r log(np))/(np)r−1−np, b = k and c = (np)−r+1. Then letting f(l, n) :=

allb−cl denote the summand in (6.23) we notice that f ∈ F and m ∼ k/np. This
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time however we have b/| log(a)|2 = Θ
(
(np)r−1

)
. Let A = (np)3(r−1)/5 so that

ω
(
r · log(np) · (np)(r−1)/2

)
= A = o

(
(np)(2r−1)/3

)
and also A = o

(
(np)2r+1

)
. Thus

Lemma 6.3.2 (i) yields

β2(np)r∑
l=k/e2np

f(l, n) =
m+A∑
l=m−A

f(l, n) +O
(

(np)r−1f(m,n)e−np
(r−1)/5

)
.

Now we can apply Lemma 6.3.2 (ii) to the sum term above to obtain

m+A∑
l=m−A

f(l, n) =

m+A∫
l=m−A

f(l, n)± f(m,n)

(
1 +O

(
1

np

)
+O

(
1

(np)(2r+1)/5

)

+O

(
1

(np)(r+4)/5

)
+O

(
1

(np)(4r+11)/5

))
.

The integral above can be expressed in terms of f(m,n) by Lemma 6.2.3 giving

m+A∫
m−A

f(l, n) dl = f(m,n)

[ √
2πk

np− (1 + r log(np))/(np)r−1

(
1 +O

(
r log(np)

(np)r

))

−O

(
e−(np)(r−1)/5

(np)(r−1)/5

)](
1±O

(
1

(np)(r+4)/5

))
.

Hence, combining the three estimates above yields

β2(np)r∑
l=k/e2np

f(l, n) = f(m,n)

√
2πk

np

(
1±O

(
1

(np)(r−1)/2

))
(6.40)

Notice that the term
√

2πb/| log(a)| from Lemma 6.2.3 is Θ
(
(np)(r−1)/2

)
. Hence

any error terms not multiplied by this term will be relatively very small. When we

were estimating P(γ2(u) = k) the parameters gave
√

2πk
np = Θ (1) and so the error

term from Lemma 6.3.2 (ii) had the same order as the integral.

Let g(l, n) =
(
(1 + r log(np))/(np)r−1 − np

)
l + log(l)

(
k − l/(np)r−1

)
. Thus

gl(l, n) :=
dg(l, n)

dl
=
r log(np)

(np)r−1
− np+

k

l
− log(l)

(np)r−1
.
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Hence we can find the following implicit form for the solution to gl(m,n) = 0

m =
k

np+ (log (m)− r log(np)) /(np)r−1
. (6.41)

We need to estimate log(m). Let α = k/(np)r+1 and observe that by (6.41):

log(m) = log (α) + r log(np)− log (1 + (log (m)− r log(np)) /(np)r) . (6.42)

Then using the Taylor expansion for log(1 + x) we have

log(m) = log (α) + r log(np)− log (m)− r log(np)

(np)r

+
(log (m)− r log(np))2

(np)2r
−O

(
(log (m)− r log(np))3

(np)3r

)
. (6.43)

Let tm = log (m)− r log(np). Inserting the first few terms of (6.42) yields

tm = log(α)− tm
(np)r

+
t2m

(np)2r
−O

(
t3m

(np)3r

)
= log(α)− log(α)

(np)r
±O

(
1

(np)2r

)
. (6.44)

Then using the estimate (6.44) for tm in the estimate (6.43) for log(m) we have

log(m) = log (α) + r log(np)− log(α)

(np)r

+
2 log(α) + log(α)2

2(np)2r
±O

(
1

(np)3r

)
. (6.45)

We can use this to get the following expression for m

m =
k

np+ log(α)
(np)r−1 − log(α)

(np)2r−1 + 2 log(α)+log(α)2

2(np)3r−1 ±O
(

1
(np)4r−1

) . (6.46)

Observe that for a, b, c ∈ R and x→∞ we have the following Laurent series

1

x+ a/xr−1 + b/x2r−1 + c/x3r−1
=

1

x
− a

xr+1
+
a2 − b
x2r+1

±O
(

1

x3r+1

)
.

By expanding the denominator of (6.46) using the Laurent series we obtain

m = α(np)r − α log(α) +
α log(α)2 + α log(α)

(np)r
±O

(
1

(np)2r

)
. (6.47)
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Let ag :=
(
(1 + r log(np))/(np)r−1 − np

)
m and bg := log(m)

(
k −m/(np)r−1

)
, thus

g(m,n) = ag + bg. We will estimate ag and bg using (6.45) and (6.47):

ag =

(
1 + r log(np)

(np)r−1
− np

)(
α(np)r − α log(α)±O

(
1

(np)r

))
= αnp+ αr log(np)np− α(np)r+1 + α log(α)np±O

(
1

(np)r−1

)
,

bg =

(
log (α) + r log(np)− log(α)

(np)r
±O

(
1

(np)2r

))
·
(
α(np)r+1 − αnp+O

(
1

(np)r−1

))
= αr log(np)(np)r+1 + α log(α)(np)r+1 − 2α log(α)np

− αr log(np)np±O
(

1

(np)r−1

)
.

Hence g(m,n) is equal to

g(m,n) = α log(α(np)r)(np)r+1 − α(np)r+1 + α (1− log(α))np±O
(

1

(np)r−1

)
.

Thus we have

f(m,n) =

(
k

enp

)k
eα(1−log(α))np.

Therefore by (6.36), (6.38) and (6.40) we have the following for any β > 3

P(γr+1(u) = k) ≤
C(npe)k

(
1 +O

(
k2/n

))
√

2π (k)k+1/2
√

(np)2r−1
f(m,n)

√
2πk

np

(
1 +O

(
1

(np)(r−1)/2

))
+ o
(
e−

3(β−3)np
2

)
= C · e

(α−α log(α)−1)np√
(np)2r+1

(
1 +O

(
k2

n

))
.

Similarly by (6.36), (6.39) and (6.40) we obtain the corresponding lower bound when

α > 1/2π

P(γr+1(u) = k) ≥ c · e
(α−α log(α)−1)np√

(np)2r+1

(
1−O

(
k2

n

))
.
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Chapter 7

Vertices with the smallest

r-neighbourhoods in G(n, p)

Recall that for a vertex u ∈ V and some r ≥ 0 the r-neighbourhood of a vertex u,

denoted Γr(u), is the collection of vertices at distance precisely r from u, so once

again

Γr(u) := {v ∈ V : d(u, v) = r} ,

and we use γr(u) to denote |Γr(u)|, the size of the r-neighbourhood of u. Let

δr := min
u∈V

γr(u),

be the size of the smallest r-neighbourhood in the graph.

The main result of this chapter, Theorem 7.3.4, is an upper bound on the

number of vertices which attain an r-neighbourhood of minimum size, i.e. the

number of u ∈ V such that γr(u) = δr(G). Let Xi,k be the collection of vertices with

an ith-neighbourhood of size k, more formally

Xi,k := {v ∈ V : γi(v) = k} .

The difficulty with controlling the sizes of the sets Xr,k for r ≥ 2 is that

despite the results of Theorem 6.0.1 we still know relatively little about the distri-

bution of the sizes of the r-neighbourhoods in G(n, p). In particular we do not know

the distribution of δr(G) or the joint distributions of the sizes of r-neighbourhoods

of different vertices.
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7.1 Relating r -neighbourhood to first neighbourhoods

In this section we present a theorem which goes some way towards addressing the

problem of not knowing the distribution of δr(G) by relating the r-neighbourhoods

of vertices to their first neighbourhoods. The theorem is a concentration result for

γr(u). It differs slightly from standard r-neighbourhood growth estimates, such as

those of Lemma 4.1.2, as we have concentration of γr(u) around γ1(u)(np)r−1 as op-

posed to around E[γr(u)] ≈ (np)r. By asking for concentration around γ1(u)(np)r−1,

which is essentially the expected value conditional on the size of the first neighbour-

hood, rather then just the expected value of γr(u) we can obtain good concentra-

tion with a small exceptional probability. The price we pay for this is that the

value γ1(u)(np)r−1, which the random variable γr(u) is concentrated around, is it-

self random. We wish to apply this to estimate the minimum r-neighbourhood δr(G)

and so concentration around γ1(u)(np)r−1 is more useful than concentration around

E[γr(u)] as δr(G) is by definition as far as possible from E[γr(u)].

The proof of Theorem 7.1.1 below is similar to those of Lemma 4.1.2 and

4.1.3 and the idea of establishing a recurrence relation for the coefficients ai, bi is

inspired by [25].

Theorem 7.1.1. Let G ∼d G(n, p), u ∈ V and r := r(n) ≥ 1 be such that (np)r+1 =

o (n). Let λ∗ :=
√

min {10γ1(u) log(np), 2 log(n)} and define the event

Eu,r :=
r⋂
i=1

{∣∣γi(u)− γ1(u)(np)i−1
∣∣ ≤ λ∗(np)i−1

√
γ1(u)

np

}
.

For any c > 0 if np ≥ c log n then P((Eu,r)c) = o
(

1
n

)
+ o(e−np) .

Notice in the statement above that λ∗ = o (np), thus for each γi(u) we have

concentration in an interval smaller than the value of γi(u). Also the exceptional

probability in the statement above is o(1/n) when np ≥ log(n) so a union bound

can be taken and the statement holds for all vertices.

Proof of Theorem 7.1.1. To begin we will introduce the filtration F̃r given by

F̃r := F̃(G, u, r) = σ (Γi (u) : 0 ≤ i ≤ r) .

This is the filtration generated by the vertices at distance at most r from u. Let

nr := n−Br(u), pr :=
(

1− (1− p)γr(u)
)
/γr(u), tr :=

r∏
i=1

nipi,
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for r ≥ 0 and t0 = 1. Observe that γr+1 ∼d Bin(nr, γr(u)pr) conditional on F̃r by

Lemma 4.1.1. Also note that nr, pr, tr ∈ F̃r. Let i ≥ 2 and define E iu to be the event

E iu := {aiti−1 ≤ γi(u) ≤ biti−1} , (7.1)

where ai, bi are given by the following recurrences for i ≥ 1,

ai+1 = ai − λ
√
ai/ti,

bi+1 = bi + λ
√
bi/ti,

(7.2)

with initial value a1 = b1 = γ1(u) and λ =
√

min {9γ1(u) log(np), 3 log(n)/2}.
Let Hr be the event

⋂r
i=1

{
γi(u) ≤ 2C2(np)i

}
for some C > 3 to be chosen

later. Notice that by the Bernoulli inequality we have

γi(u)p(1− γi(u)p/2) ≤ 1− (1− p)γi(u) ≤ γi(u)p.

Thus conditional on Hr we have the following for any k ≤ r

p ≥ pk ≥ p(1− C2nkpk+1)

n ≥ nk ≥ n− (2C2 + o(1))(np)k

(np)k ≥ tk ≥
k∏
i=1

np
(
1− (2C2 + o(1))ni−1pi

) (
1− C2nipi+1

)
= (np)k

(
1− (C2 + o(1))nkpk+1

)
. (7.3)

We wish to show by induction that conditional on Hr the following holds for all

2 ≤ i ≤ r

ai ≥ γ1(u)− λ
√
γ1(u)/np(1 + o (1)),

bi ≤ γ1(u) + λ
√
γ1(u)/np(1 + o (1)).

(7.4)

Recall λ =
√

min {9γ1(u) log(np), 3 log(n)/2} and a1 = γ1(u). We will establish

(7.4) for ai, the proof for bi is identical. By the recurrence relation (7.2) for ai we

have

ak+1 = a1 −
k∑
i=1

λ

√
ai
ti

= γ1(u)− λ

√
γ1(u)

t1
−

k∑
i=2

λ

√
ai
ti
.
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Assuming the inductive hypothesis that ai satisfies (7.4) for all i ≤ k yields

ak+1 ≥ γ1(u)− λ

√
γ1(u)

t1
−

k∑
i=2

λ

√
γ1(u)− λ

√
γ1(u)/np(1 + o (1))

ti
.

Recall that (np)r+1 = o(n). Since tk = (np)k
(
1−O

(
nkpk+1

))
conditional on Hr

we have

ak+1 = γ1(u)− λ

√
γ1(u)

np(1− o(1))
−

k∑
i=2

λ

√
γ1(u)

(np)i
(1 + o (1))

≥ γ1(u)− λ

√
γ1(u)

np
(1 + o(1)) .

Recall the event E iu := {aiti−1 ≤ γi(u) ≤ biti−1} for i ≥ 2 from (7.1). We extend E iu
to i = 1 by defining E iu = Ω. Then we have P

((
E2
u

)c ∣∣∣ F̃1 ∩ E1
u

)
= P

((
E2
u

)c ∣∣∣ F̃1

)
.

Let Dru be the event
r⋂
i=1
E iu and observe that for i ≥ 1 the following holds

P
((
E i+1
u

)c ∣∣∣ F̃i ∩ Diu) = P
(
Bin (ni, γi(u)pi) < ai+1ti

∣∣∣ F̃i ∩ Diu)
+ P

(
Bin (ni, γi(u)pi) > bi+1ti

∣∣∣ F̃i ∩ Diu) .
Now by the recurrence relations for ai and bi, given by (7.2), we have

P
((
E i+1
u

)c ∣∣∣ F̃i ∩ Diu) = P
(
Bin (ni, γi(u)pi) < aiti − λ

√
aiti

∣∣∣ F̃i ∩ Diu)
+ P

(
Bin (ni, γi(u)pi) > biti + λ

√
biti

∣∣∣ F̃i ∩ Diu) .
An application of the Chernoff bounds, Lemma 2.1.1, yields

P
((
E i+1
u

)c ∣∣∣ F̃i ∩ Diu) ≤ exp

(
−λ

2

2

)
+ exp

(
− λ2

2 + λ/3
√
biti

)
.

Recall that conditional on Hr we have ti ∼ (np)i by (7.3) and bi ∼ γ1 by (7.4), thus

λ

3
√
biti

=

√
min {9γ1(u) log(np), 3 log(n)/2}

9γ1(u)(np)i (1− o(1))
= O

(√
log(np)

(np)i

)
.

This gives us the following upper bound

P
((
E i+1
u

)c ∣∣∣ F̃i ∩ Diu)1Hr ≤ exp

(
−λ

2

3

)
1Hr = max

{
1

(np)3γ1(u)
,

1

n3/2

}
.
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Recall that γ1(u) ∈ F̃1 and so exp
(
−λ2/3

)
∈ F̃1. Observe that

1 =
(
1{γ1(u)=0} + 1{γ1(u)>0}

)(
1Hr + 1(Hr)c

)
≤ 1{γ1(u)=0} + 1{γ1(u)>0}1Hr + 1(Hr)c .

Also notice that P
((
E i+1
u

)c ∣∣∣ F̃i ∩ Diu)1{γ1(u)=0} = 0 because γ1(u) = 0 implies that

γi(u) = 0. Combining these observations yields

P
((
E i+1
u

)c ∣∣∣Diu) = E
[
P
((
E i+1
u

)c ∣∣∣ F̃i ∩ Diu)]
≤ 0 + E

[
exp

(
−λ2/3

)
1{γ1(u)>0}

]
+ P((Hr)c) . (7.5)

If 9γ1(u) log(np) > 3 log(n)/2 then exp
(
−λ2/3

)
≤ 1/n3/2. Thus assume that

9γ1(u) log(np) ≤ 3 log(n)/2 and we have the following for E
[
exp

(
−λ2/3

)
1{γ1(u)>0}

]
E
[
1{γ1(u)>0}

(np)3γ1(u)

]
=

n−1∑
k=1

1

(np)3k
P(γ1(u) = k)

≤
np∑
k=1

1

(np)3k
·
(
n− 1

k

)
pk(1− p)n−1−k +

n

(np)np
.

Applying the bound
(
n
k

)
≤ nk/k! and Bernoulli’s inequality (2.3) we have

E
[

1

(np)3γ1(u)

]
≤ (1− p)n

np∑
k=1

(np)k

(np)3kk!(1− (k + 1)p)
+

n

(np)np
≤ 2e−np

(np)2
.

Recall that P((Hr)c) = o
(
e−3(C−3)np/2

)
, by Lemma 4.1.2 where C > 3 was arbitrary.

Thus we have the following by (7.5)

P
(
E i+1
u

∣∣∣Diu) ≥ 1− 2e−np

(np)2
− 1

n3/2
− o

(
e−3(C−3)np/2

)
≥ 1− 3e−np

(np)2
− 2

n3/2
. (7.6)

Recall that Dru :=
r⋂
i=1
E iu. Since

r⋂
i=1
E iu ⊆

r−1⋂
i=1
E iu the event Dr−1

u is the disjoint union

of the events Dru and (Eru)c ∩ Dr−1
u . Thus we have the following

P(Dru) = P
(
Dr−1
u

) (
1− P

(
(Eru)c

∣∣∣Dr−1
u

))
.
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By applying this decomposition repeatedly we obtain

P(Dru) = P
(
E1
u

) r∏
j=2

(
1− P

((
Eju
)c ∣∣∣Dj−1

u

))
.

The upper bound on P
(

(Eru)c
∣∣∣Dr−1

u

)
from (7.6) holds for all j ≤ r, hence

P(Dru) ≥ P
(
E1
u

)(
1− 3e−np

(np)2
− 2

n3/2

)r
.

Recall that P
(
E1
u

)
= 1, thus by the Bernoulli inequality (2.3) we have

P(Dru) ≥
(

1− r
(

3e−np

(np)2
+

2

n3/2

))
= 1−O

(
e−np

np

)
−O

(
1

n3/2

)
, (7.7)

where the final equality holds since r ≤ log(n)/ log(np) ≤ np. Consider the event

R :=

r⋂
i

{∣∣γi(u)− γ1(u)(np)i−1
∣∣ ≤ (np)i−1 · λ∗

√
γ1(u)

np

}
,

from the statement of the theorem. Observe that conditional on the event H1

100λ

99

√
γ1(u)

np
+ γ1(u)2C2p ≤ λ∗

√
γ1(u)

np
,

where we recall H1 =
{
γ1(u) ≤ C2np

}
. Hence by the triangle inequality

R∩H1 ⊇

(
r⋂
i

{
|γi(u)− γ1(u)ti−1| ≤ (np)i−1 · 100λ

99

√
γ1(u)

np

})
⋂(

r⋂
i

{∣∣γ1(u)ti−1 − γ1(u)(np)i−1
∣∣ ≤ γ1(u) · 2C2ni−1pi

})
.

The first bracketed event in the intersection above is a subset of Dru by (7.1) and

(7.4) and second is a subset of Hru =
⋂r
i=1

{
γi(u) ≤ 2C2(np)i

}
by (7.3). Thus by

(7.7) and Lemma 4.1.2 we have

Rc ≤ P((Dru)c) + P((Hr)c) = O

(
e−np

np

)
+O

(
1

n3/2

)
+ o

(
e−3(C−3)np/2

)
.

The result follows since C > 3 was arbitrary.
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7.2 Second moment estimates for sets of vertices with

given degree

As mentioned before we do not have so much control over the joint distribution of

the r-neighbourhoods in G(n, p). This is an issue if we wish to try to calculate the

number of vertices which attain a minimum size r-neighbourhood using the second

moment method. The joint distributions are very complicated to calculate even for

second neighbourhoods so instead we control the second moments of the sizes of sets

of vertices with first neighbourhoods of a certain size.

The following lemma is essentially a more detailed version of the second

moment estimates used to estimate the number of vertices of a certain degree by

Bollobás [15]. The proof is based around standard calculations found in [20, 43]. We

state and prove it here as I cannot find it stated or proved explicitly in the literature

for sets of vertices with degrees taking values in a set R as opposed to just a single

value.

Lemma 7.2.1. Let G ∼d G(n, p), R ⊆ [0, 1, . . . , n−1] and let r∗ := max{r : r ∈ R}.
Then Var

[∣∣⋃
i∈RX1,i

∣∣] is bounded from above by

E
[∣∣∣⋃

i∈R
X1,i

∣∣∣](1 +O

(
r∗ (r∗ + np) + (np)2

np
P(γ1(v) ∈ R)

))
.

Moreover, if k = O(np), p = o (1) and E[|X1,k|]→∞, then

P(|X1,k| > 0) = 1− o(1).

Proof. Notice that P
(
uv ∈ E

∣∣γ1(v) = r
)

= r/(n− 1) since each edge is independent

of all other edges. Thus letting r∗ = maxr∈R r we have P
(
uv ∈ E

∣∣γ1(v) ∈ R
)
≤

r∗/(n− 1). Therefore we have the following by the law of total probability

P
(
γ1(u) = i

∣∣γ1(v) ∈ R
)

≤
(
n− 2

i− 1

)
pi−1(1− p)n−1−i r∗

n− 1
+

(
n− 2

i

)
pi(1− p)n−2−i

=

(
n− 1

i

)
pi(1− p)n−1−i

(
ir∗

(n− 1)2p
+

n− 1− i
(n− 1)(1− p)

)
.

Then since i ≤ r∗ and P(γ1(u) = i) =
(
n−1
i

)
pi(1− p)n−1−i we have the following

P
(
γ1(u) = i

∣∣γ1(v) ∈ R
)
≤ P(γ1(u) = i)

(
1 +O

(
r∗ (r∗ + np) + (np)2

n2p

))
. (7.8)
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We can then apply the bound in line (7.8) above to obtain

P(γ1(u) ∈ R, γ1(v) ∈ R)

=
∑
i∈R

P
(
γ1(u) = i

∣∣γ1(v) ∈ R
)
P(γ1(v) ∈ R)

≤
∑
i∈R

P(γ1(u) = i)P(γ1(v) ∈ R)

(
1 +O

(
r∗ (r∗ + np) + (np)2

n2p

))
= P(γ1(u) ∈ R)P(γ1(v) ∈ R)

(
1 +O

(
r∗ (r∗ + np) + (np)2

n2p

))
.

Let X :=
⋃
i∈RX1,i. We have the following expression for Var [|X|]

E
[(∑

u∈V
1γ1(u)∈R −

∑
u∈V

P(γ1(u) ∈ R)
)2
]

=
∑
u∈V

∑
v∈V

(P(γ1(u) ∈ R, γ1(v) ∈ R)− P(γ1(u) ∈ R)P(γ1(v) ∈ R))

≤ E[|X|] +
∑
u,v∈V,
u6=v

O

(
r∗ (r∗ + np) + (np)2

n2p

)
P(γ1(u) ∈ R)P(γ1(v) ∈ R)

≤ E[|X|] + E[|X|]
∑
v∈V

O

(
r∗ (r∗ + np) + (np)2

n2p

)
P(γ1(v) ∈ R)

≤ E[|X|]
(

1 +O

(
r∗ (r∗ + np) + (np)2

np
P(γ1(v) ∈ R)

))
.

For the second part if R = {k} where k = O(np) then max{(r∗)2/np, np} = O(np).

Therefore by the main statement of the theorem we have

Var [|X1,k|] ≤ E[|X1,k|] (1 +O(pE[|X1,k|])) .

Thus if E[|X1,k|]→∞ then by the second moment method [6, Theorem 4.3.1]:

P(|X1,k| = 0) ≤
Var [|X1,k|]
E[|X1,k|]2

≤ 1

E[|X1,k|]
+O(p) = o (1) .

Notice |X1,k| ≤ n so this estimate is at least as good as the estimate in [43].
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7.3 A bound on the number of vertices with a minimum

r-neighbourhood

The following proposition seems to be a well known fact. This proposition is needed

to prove Lemma 7.3.2 so I prove it for completeness as I cannot find it stated

explicitly in the literature, though it is of note that [20, Theorem 7.2] is a similar

result for the related model G(n,m). The proof is based on the proof of connectivity

threshold in the book by Freeze & Karoński [43, Theorem 4.1]. Notice that if p is

below the threshold 2np = log(n) then isolated paths of length one start to appear.

Proposition 7.3.1 (Folklore). Let G ∼d G(n, p) with 2np = log(n) + log log(n) +

w(n) where w(n)→∞. Then with high probability G consists of a giant component

and isolated vertices.

Proof. It suffices to prove the Proposition when log(n)+log log(n)+w(n)
2n ≤ p ≤ 2 log(n)

n ,

because by Theorem 2.3.1 above this range we are connected w.h.p.

Let T be the event that G consists of a giant component and isolated vertices.

Let Ck := Ck,n be the number of components with k vertices in G(n, p).

P(T c) = P

bn/2c⋃
k=2

{Ck > 0}

 ≤ bn/2c∑
k=2

P(Ck > 0) ≤
bn/2c∑
k=2

E[Ck] ,

by the union bound and Markov’s inequality. Now observe that

E[Ck] ≤
(
n

k

)
kk−2pk−1(1− p)k(n−k),

as there are
(
n
k

)
ways of choosing the vertices and the component must be connected,

contributing kk−2pk−1, but not connected to anything else in the graph, which

happens with probability (1− p)k(n−k). Thus if k ≤ 10:

E[Ck] ≤
(npe
k

)k kk−2e−kp(n−10)

p
≤ en (npe)k−1 e−knp+o(1),

and so we see that the bound on E[Ck] achieves its maximum at k = 2 in which case

we have the following since 2np ≥ log(n) + log log(n) + w(n):

E[C2] ≤ ne (npe) e−2np+o(1)

≤ ne2 log(n)e− log(n)−log log(n)−w(n)+o(1)

= O
(
e−w(n)

)
.
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Now if 10 ≤ k ≤ bn/2c then we have

E[Ck] ≤
(npe
k

)k
kk−2pk−1e−knp/2 ≤ en(npe)k−1

k2
e−knp/2 ≤ n

(
2e log(n)

n1/4

)k−1

.

Thus we have

P(T c) ≤ O
(
e−w(n)

)
+

bn/2c∑
k=10

n1−k/4+o(1) = o (1) .

A key observation is that vertices of degree zero have r-degree zero. The

following lemma shows that, provided that r is not too large, w.h.p. these are the

only vertices of r-degree zero.

Lemma 7.3.2. Let G ∼d G(n, p) where np = log(n)+log log(n)+w(n)
2 and w(n) → ∞.

Let r := r(n) ≥ 2 be such that (np)r = o (n). Then

P(Xr,0 = X1,0) = 1− o(1).

Proof. To begin if Γ1(u) is empty then Γr(u) is empty for all r ≥ 1, thus X1,0 ⊆ Xr,0.

Notice that {Xr,0 6⊆ X1,0} = ∪u∈V {γ1(u) ≥ 1} ∩ {γr(u) = 0} and denote this event

E . We decompose the event E into two disjoint events C1(u) := E ∩ {Br(u) = V }
and C2(u) := E ∩ {Br(u) 6= V }. By Theorem 4.1.2 we have

P(|Br(u)| ≤ 33(np)r, for all u ∈ V ) ≥ 1− n · e−3np/2 = 1− o(1). (7.9)

If C1(u) holds then Bi(u) = V for some 1 ≤ i < r, thus |Br(u)| = n. By the

assumption (np)r = o (n) we have Br(u) = o (n) w.h.p. for every u ∈ V from (7.9).

This implies that P(∪u∈V C1(u)) = o(1).

By Proposition 7.3.1 with high probability every vertex is either isolated or

contained in the giant component. We know that on the event C2(u) the ball Bi(u)

contains at least two vertices and so w.h.p every vertex outside the ball must be

isolated. However by (7.9) we know that w.h.p. |Bi(u)| = o (n), for every u ∈ V ,

and so w.h.p. the graph must have at least n/2 isolated vertices. The probability

there are n/2 or more isolated vertices is o(1). This is by the second moment method

since E[|X1,0|] = λ0(n) = elog(n)−np+O(np2) = o(
√
n) by (7.13) and by Lemma 7.2.1

Var(|X1,0|) ≤ E[|X1,0|] (1 + o(1)). This implies that P(∪u∈V C2(u)) = o(1). Thus

P(E) = P(∪u∈V (C1(u) ∪ C2(u))) = o(1) and so P(Xr,0 = X1,0) = 1− o(1).
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The next lemma allows us to control the number of vertices of minimum

r-degree by showing that w.h.p they must also have a small degree. This is of use

because sets of vertices defined by the size of their first neighbourhoods are easier

than those defined by the sizes of their r-neighbourhoods. In particular we have

good control of the joint distribution of sets of vertices with given degree by Lemma

7.2.1.

Lemma 7.3.3. Let G ∼d G(n, p) where lim inf
n→∞

np− log(n) > −∞. Let r := r(n) ≥ 2

be such that (np)r+1 = o (n). Let

h =

⌊
3

√
min {10(δ1)2 log(np), 2δ1 log(n)}

np

⌋
,

and let X :=
h⋃
i=0

X1,δ1+i. Then P(Xr,δr 6⊆ X) = o (1).

Proof. Let λ∗ =
√

min {10γ1(u) log(np), 2 log(n)}. For r ≥ 2 define the event

Er :=

{∣∣γr(u)− γ1(u)(np)r−1
∣∣ ≤ λ∗(np)r−1

√
γ1(u)

np
, for all u ∈ V

}
.

Let h = b3λ∗
√
δ1/npc and X :=

h⋃
i=0

X1,δ1+i be as in the statement of the lemma.

If {δ1 = 0} then by Lemma 7.3.2 we have Xr,δr = Xr,0 = X1,0 = X with high

probability. Thus we now assume that δ1 ≥ 1. For any x ∈ X1,δ1 and y ∈ V such

that γ1(y) > δ1 + h we have the following conditional on Er ∩ {δ1 ≥ 1}

γr(y) ≥ δ1(np)r−1 + b3λ∗
√
δ1/npc(np)r−1

− λ∗(np)r−1

√(
δ1 + b3λ∗

√
δ1/npc

)
/np

> δ1(np)r−1 + λ∗(np)r−1
√
δ1/np

≥ γr(x),

provided n is large. Thus conditional on Er ∩ {δ1 ≥ 1} we have Xr,δr ⊆ X. Hence

collecting these bounds together we have the following

P(Xr,δr 6⊆ X) ≤ P(Xr,0 6⊆ X1,0) + P
(
Xr,δr 6⊆ X

∣∣∣Er ∩ {δ1 ≥ 1}
)

+ P(Ecr ) = o(1),

where P(Ecr ) ≤ n(o(1/n) + o(e−np)) = o(1) by Lemma 7.1.1.

We are now ready to prove an upper bound on the number of vertices at-

123



taining an r-neighbourhood of minimum size.

Theorem 7.3.4. Let G ∼d G(n, p) where lim inf
n→∞

np− log(n) > −∞. Let r := r(n) ≥
2 be such that (np)r+1 = o (n). Then with high probability

|Xr,δr | = e
O
(√

log(n)
)
.

Proof. Recall h and X from the statement of Lemma 7.3.3. We wish to bound

E[|X|] from above. By linearity of expectation we have

E
[
|X|
∣∣∣δ1

]
= n

h∑
i=0

(
n− 1

δ1 + i

)
pδ1+i(1− p)n−1−δ1−i.

Now let j be any i ∈ [0, h] which maximises the function
(
n−1
δ1+i

)
pδ1+i(1− p)n−1−δ1−i.

Thus

E
[
|X|
∣∣∣δ1

]
≤ nh

(
n− 1

δ1 + j

)
pδ1+j(1− p)n−1−δ1−j

≤ nh(n− δ1 − 1) · · · (n− δ1 − j) · pj

(δ1 + 1) · · · (δ1 + j) · (1− p)j

(
n− 1

δ1

)
pδ1(1− p)n−1−δ1 .

Then since (1− p)j ≥ (1− p)h ≥ 1− hp = 1− o(1) and also h = o(δ1) we have the

following by the Bernoulli inequality (2.3)

E
[
|X|
∣∣∣δ1

]
≤ 2h

(
np

δ1

)j
E
[
|X1,δ1 |

∣∣∣δ1

]
≤ 2h

(
np

δ1

)h
E
[
|X1,δ1 |

∣∣∣δ1

]
.

Recall h = b3λ∗
√
δ1/npc, where λ∗ =

√
min {10δ1(u) log(np), 2 log(n)}. Assume we

are in the case where 10δ1 log(np) < 2 log(n) and consider the function ax (b/x)ax.

The first derivative of ax (b/x)ax is

d

dx

(
ax

(
b

x

)ax)
= a

(
b

x

)ax(
ax log

(
b

x

)
− ax+ 1

)
. (7.10)

This is positive for small enough x. Let a = 3
√

10 log(np)/np and b = np, then

δ1a (b/δ1)δ1a is the function h
(
np
δ1

)h
up to constants. Examination of (7.10) reveals

that h
(
np
δ1

)h
is increasing in δ whenever 10δ1 log(np) < 2 log(n). Thus in this case

2h

(
np

δ1

)h
≤ 6
√

10 log(n)

5
√

log(np)np

(
5 log(np)np

log(n)

) 3
√
10 log(n)

5
√

log(np)np

= e
O
(√

log(n)
)
.
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For the second case where 10δ1 log(np) ≥ 2 log(n) we will consider the function

a
√
x (b/x)a

√
x with first derivative

d

dx

(
a
√
x

(
b

x

)a√x)
= a

(
b

x

)a√x (a√x (log
(
b
x

)
− 2
)

+ 1
)

2
√
x

.

Thus the maximiser is close to the point x = b/e2, and if we take a = 3
√

2 log(n)/np

then we have the function h
(
np
δ1

)h
up to constants. Thus in the second case we have

2h

(
np

δ1

)h
≤
√
np log(n)(e2 − o(1))

√
np/e2·3

√
2 log(n)/np = e

O
(√

log(n)
)
.

Thus we have

E[|X|] ≤ E
[
e
O
(√

log(n)
)
E
[
|X1,δ1 |

∣∣∣δ1

]]
= e

O
(√

log(n)
)
E[|X1,δ1 |] . (7.11)

Consider the following for any k ≥ 0

P(γ1(u) = k + 1) =
(n− 1)!

k!(n− 1− k)!
pk(1− p)n−1−k

(
p(n− 1− k)

(1− p)(k + 1)

)
=
np

k
(1± o(1))P(γ1(u) = k) .

Now by Lemma 7.2.1 we have that if E[|X1,k|] → ∞ for some k = O(np) then

P(|X1,k| > 0) = 1− o(1). When np ≥ 10 log(n) we know that δ1 ≥ (n− 1)p/2 with

high probability since by the Chernoff bound, Lemma 2.1.1 we have

P(δ1 < (n− 1)p/2) ≤ n · exp

(
−(n− 1)p

4

)
≤ o (1/n) .

Thus for np ≥ 10 log(n) we have np/δ1 ≥ 1/2. This means we can bound E[|X1,δ1 |]
by some function going to infinity with n fairly slowly, for concreteness shall take

E[|X1,δ1 |] = O(log(n)), since otherwise we must have some k < δ1 such that

E[|X1,k|] = ω(1) in which case δ1 ≤ k with high probability, a contradiction! When

np ≤ 10 log(n) and δ1 > 0 by the same argument we have E[|X1,δ1 |] = O(np/δ1) =

O(log(n)). This argument fails if δ1 = 0 and so our bound on E[|X1,δ1 |] must include

the expected number of vertices of degree zero given by E[|X1,0|] = n(1 − p)n−1 ≤
ne−np = O(1).

Thus combining these observations with (7.11) and noticing that log(n) =
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o
(
e
√

log(n)
)

yields the following bound

E[|X|] ≤
(
1 + ne−np

)
· eO

(√
log(n)

)
= e

O
(√

log(n)
)
.

Let t := max {E[|X|] , log(n)} and observe that

P(|Xr,δr | ≤ E[|X|] + t) ≤ P(|X| ≤ E[|X|] + t) + P(Xr,δr 6⊆ X) .

Now since δ1 + h = O(np) w.h.p. and (np)r+1 = o (n) we have that Var |X| ≤
E[|X|] (1 +O(pE[|X|])) = E[X] (1 + o(1)) by Lemma 7.2.1. Thus by the Cantelli

second moment inequality (2.7) and Lemma 7.3.3 we have

P(|Xr,δr | ≤ E[|X|] + t) ≤ E[|X|] (1 + o (1))

E[|X|] (1 + o (1)) + t2
+ o(1) = o(1).

The result follows since E[|X|] + t = e
O
(√

log(n)
)
.

7.4 A conjecture regarding the uniqueness of vertices

with a minimal r-neighbourhood

Let Ur be the event that there is only one vertex which attains the smallest r-

neighbourhood. Thus, in keeping with our notation, we would denote

Ur := {|Xr,δr | = 1} .

We make the following conjecture.

Conjecture 7.4.1. Let G ∼d G(n, p), let r(n) ≥ 2 be such that (np)2r = o (n), let

w = w(n) = np− log(n). Then the following assertions hold.

(i) If lim
n→∞

w(n) = −∞, then lim
n→∞

P(Ur) = 0.

(ii) If lim
n→∞

w(n) =∞, then lim
n→∞

P(Ur) = 1.

(iii) If −∞ < lim inf
n→∞

w(n) ≤ lim sup
n→∞

w(n) <∞, then

P(Ur) ∼ e−e
−w

(1 + e−w).

If instead we consider the first neighbourhoods of vertices in G(n, p), this is

the case r = 1, then we have a different situation which is outlined in the following

theorem.

126



Theorem 7.4.1 (Theorem 4 in [18]). Let G ∼d G(n, p) and p ≤ 1/2. Then

(i) If lim
n→∞

np

log(n)
=∞, then lim

n→∞
P(U1) = 1.

(ii) If lim
n→∞

P(U1) = 1, then lim
n→∞

np

log(n)
=∞.

Recall that the threshold for connectedness in G(n, p) is np = log(n) by

Theorem 2.3.1. To summarise the theorem and the conjecture above we can say

that w.h.p. there is a unique vertex with minimum first neighbourhood if and only

if np dominates log(n), whereas for r ≥ 2 it is conjectured that w.h.p. there is a

unique vertex attaining the smallest r-neighbourhood whenever we are above the

connectedness threshold np = log(n).

To understand the threshold in Conjecture 7.4.1 consider the following ob-

servation: if a vertex has an empty first neighbourhood then it has an empty r-

neighbourhood, for any r ≥ 1. If we are well below the connectedness threshold

there are many isolated vertices and so we do not have a unique vertex with small-

est r-neighbourhood as there are many vertices with an empty first neighbourhood.

Indeed we will prove Conjecture 7.4.1 Item (i) in a slightly stronger form.

Proposition 7.4.2. Let G ∼d G(n, p). If lim
n→∞

np− log(n) = −∞, then

lim
n→∞

P

( ∞⋃
r=1

Ur

)
= 0.

Proof. Observe that if the first neighbourhood of a vertex is empty then its r-

neighbourhoods are empty for all r ≥ 1, thus for any t ≥ 2 we have

{|X1,0| ≥ t} ⊆
∞⋂
r=1

{|Xr,δr | ≥ t} ⊆
∞⋂
r=1

Ucr . (7.12)

Let λ0(n) := E[|X1,0|] = nP(Bin(n− 1, p) = 0) be the expected number of vertices

of degree 0, as in the statement of Theorem 2.3.2. Observe that by the Taylor

expansion for the logarithm we have

λ0(n) = n(1− p)n−1 = nelog(1−p)(n−1) = ne−np+O(np2) = elog(n)−np+o(1). (7.13)

Now if lim
n→∞

np− log(n) = −∞ then λ0(n) → ∞ and so by Theorem 2.3.2 we have

P(|X1,0| > t)→ 1 for any fixed t. The result follows by (7.12).

What is not trivial to establish is that if the smallest first neighbourhood is

non zero then the smallest r-neighbourhood is attained uniquely. This statement is
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formulated in the following conjecture.

Conjecture 7.4.2. Let G ∼d G(n, p) where lim inf
n→∞

np − log(n) > −∞. Let r :=

r(n) ≥ 2 be such that (np)2r = o (n). Then

P
(
Ur
∣∣δ1 ≥ 1

)
= 1− o(1).

The conjecture above states that conditional on the graph having mini-

mum degree 1 (and thus being connected w.h.p.) we have that the smallest r-

neighbourhood is attained uniquely. Proposition 7.14 below shows that Conjecture

7.4.1 follows from Conjecture 7.4.2. Hopefully the proof of Proposition 7.14 will

explain the conjectured behaviour of P(Ur) around log(n) threshold. In particular

we shall see that if Conjecture 7.4.2 holds then P(Ur) is asymptotically equivalent

to the probability that there are exactly 0 or 1 vertices of degree zero.

Proposition 7.4.3. Let G ∼d G(n, p) where lim inf
n→∞

np − log(n) > −∞. Let r :=

r(n) ≥ 2 be such that (np)2r = o (n). If

P
(
Ur
∣∣δ1 ≥ 1

)
= 1− o(1), (7.14)

then Items (ii) and (iii) of Conjecture 7.4.1 hold.

Proof. To begin recall Lemma 7.3.2 and observe the following decomposition

P(Ur ∩ {δ1 = 0}) = P(Ur ∩ {δ1 = 0} ∩ {X1,0 = Xr,0})

+ P
(
Ur ∩ {δ1 = 0}

∣∣ {X1,0 6= Xr,0}
)
P(X1,0 6= Xr,0)

= P(|X1,0| = 1) + o(1).

Hence conditioning on the event that at least one vertex has no neighbours yields

P(Ur) = P(Ur ∩ {δ1 = 0}) + P(Ur ∩ {δ1 ≥ 1})

= P(|X1,0| = 1) + P
(
Ur
∣∣δ1 ≥ 1

)
P(δ1 ≥ 1) + o(1). (7.15)

Now assuming (7.14) holds we are almost done.

For Item (ii) of Conjecture 7.4.1: If w(n)→∞ then P(δ1 ≥ 1) = 1− o(1) by

Theorem 2.3.2. Thus by (7.14) we have P
(
Ur
∣∣δ1 ≥ 1

)
P(δ1 ≥ 1) = 1 − o(1) and so

the result follows by (7.15).

For Item (iii) of Conjecture 7.4.1: If −∞ < lim inf w(n) ≤ lim supw(n) <∞
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then by Theorem 2.3.2 we have

P(|X1,0| = 1) ∼ e−λ0λ0 = e−e
−w
e−w,

P(|X1,0| = 0) ∼ e−λ0 = e−e
−w
,

where P(|X1,0| = 0) = P(δ1 ≥ 1). Plugging these expressions for P(δ1 ≥ 1) and

P(|X1,0| = 1) into (7.15) yields the result.

To motivate Conjecture 7.4.2 the overall variance of γr(u) is large (of order

(np)2r−1) however, the number of r-neighbourhoods is n so these neighbourhoods

must take values in a wide range as we consider large r. It can also be seen by an

argument in the proof of Theorem 7.3.4 that there cannot be many vertices attaining

a first neighbourhood of size δ1. This leads me to believe that the range of sizes for

the second neighbourhoods of vertices with degree δ1 is fairly large and only one of

them attains the minimum. In addition (much in the spirit of Theorem 7.1.1 and

Lemma 7.3.3) no vertex with a first neighbourhood larger than the smallest attains

a minimal sized second neighbourhood. To prove this would require control of the

joint distribution of the r-neighbourhoods.
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