

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/106507

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

TITLE
T o w a rd s A K n o w led g e -B ased D i s c r e t e S im u la t io n

M o d e l lin g Environm ent U s in g P r o lo g

AUTHOR A l i Ahmad

INSTITUTION
and DATE

U n iv e r s i t y o f M arw ick

June 1989

Attention is drawn to the fact that the copyright of
this thesis rests with its author.

This copy of the thesis has been supplied on condition
that anyone who consults it is understood to recognise
that its copyright rests with its author and that no
information derived from it may be published without
the author’s prior written consent.

T H E BRITISH L IB R A R Y
DOCUMENT SUPPLY CENTRE

Tow ards A K n o w led g e -B ased D i s c r e t e S im u la t io n

M o d e l l in g E n vironm ent U s in g P r o lo g

by

A l i Ahmad

A t h e s is su b m itte d f o r a d m is s io n to th e d e g r e e o f

D o c to r o f P h ilo s o p h y

U n iv e r s i t y o f M arw ick

S c h o o l o f I n d u s t r i a l and B u s in e s s S t u d ie s

June 1989

V

TABLE OF CONTENTS

Title .. i

Table of contents .. il

List of illustrations.. x ii

Acknowledgements .. xiv

Summary .. xv

Introduction .. xvi

CHAPTER It PROBLEM SOLVING____________________________.......................____ 1

INTRODUCTION .. I

1.1. PROBLEM SOLVING IN G E N ER AL ... 1
1.1.1. PROBLEMATIC SITUATIONS .. I
1.1.2. PROBLEM DESCRIPTION ... 2
1.1.3. THE SOLUTION .. 2
1.1.4. PROBLEM SOLVING... 3
1.1.5. ABSTRACTION: REPRESENTATION IN FORMAL

LANGUAGES .. 4
1.1.6. GENERAL FORMS ... 5
1.1.7. SOLUTION PROCEDURES .. 6
1.1.8. PROBLEM FORMULATION ... 7
1.1.9. METHODOLOGY IN PROBLEM SOLVING 7
1.1.10. THEORIES OF PROBLEM SOLVING ... 9
1.1.11. CLASSES OF PROBLEMS .. 9
1.1.12. PROBLEM SOLVING PARADIGMS ... 10

1.2. OPERATIONAL RESEARCH APPROACHES TO PROBLEM
SOLVING .. 10

1.2.1. PROBLEM SOLVING WITHIN ORGANIZATIONAL
DECISION M AK IN G ... 10

1.2.2. METHODOLOGY OF OPERATIONAL
RESEARCH .. 11

1.2.3. TECHNIQUES OF OPERATIONAL RESEARCH...........................12
1.2.4. DECISION-MAKER AND THE ANALYST 12

1.3. THE USE OF COMPUTERS IN PROBLEM SOLVING............................. 13
1.3.1. SOLUTION PROCEDURES APPLIED BY

HUMANS ________ 13
1.3.2. THE USE OF DEVICES... 13
1.3.3. ANALOGUE ELECTRONIC DEVICES.. 13

Ui

1.3.4. DIGITAL COMPUTERS IN PROBLEM SOLVING— . 14
1.3.5. THE USE OF COMPUTERS IN OPERATIONAL

RESEARCH ... 16
1.3.6. TOWARDS ARTIFICIAL INTELLIGENCE 19

1.4. ARTIFICIAL INTELLIGENCE APPROACHES TO
PROBLEM SO LV IN G .. 20

1.4.1. PROBLEM SOLVING AND ARTIFICIAL
INTELLIGENCE .. 21

1.4.2. THE FORMULATION OF PROBLEMS IN A I 21
1.4.3. PROBLEM-SOLVING PROCEDURES USED

IN AI ... 21
1.4.4. KNOWLEDGE-BASED SYSTEMS (EXPERT

SYSTEMS) ... 22

1.5. TOWARDS ADAPTING ARTIFICIAL INTELLIGENCE
TECHNOLOGY IN MANAGEMENT SCIENCE /
OPERATIONAL RESEARCH .. 22

1.5.1. THE EARLY HISTORY OF OR AND AI 22
1.5.2. THE POTENTIAL APPLICATIONS 23

1.6. CONCLUSION .. 24

CHAPTER 2i A REVIEW OF SIMULATION M ODELUNG 25

INTRODUCTION 25

2.1. ABOUT SIMULATION----- 25
2.1.1. DEFINITIONS OF SIM ULATION... 25
2.1.2. THE PLACE OF SIMULATION IN THE PROBLEM

SOLVER’S TO O LBO X .. 26
2.1.3. THE DIMENSIONS OF SIMULATION .. 27
2.1.4. THE APPU C A T IO N AREAS .. 28
2.1.5. PROBLEMS WTTH THE USE OF SIMULATION 28

2.2. THE EXPERIMENTAL FRAME .. 28

2.3. SIMULATION M O D E L U N G .. 31
2.3.1. SYSTEM DESCRIPTION ... 31
2.3.2. THE ’EXECUTABLE’ SIMULATION M O D E L 31

2.4. DYNAMIC BEHAVIOUR GENERATION ... 32
2.4.1. SIMULATION EXECUTIVES .. 33
2.4.2. THE REPRESENTATION SCHEME FOR THE

SYSTEM'S STATE 33
2.4.3. APPROACHES TO D Y N AM 1C B Ê H A VIO Ù R *

GENERATION ... 34

2.5. SIMULATION SOFTWARE ... 42
2.5.1. SIMULATION LANGUAGES AND PACKAGES 42
2.5.2. SIMULATION PROGRAM GENERATORS 43
2.5.3. SIMULATION ENVIRONMENTS .. 43

iv

2.6. TH E INFLUENCES ON SIMULATION SOFTWARE OF
DEVELOPMENTS IN COMPUTER SCIENCE 45

2.6.1. HARDWARE .. 45
2.6.2. THE AVAILABILITY OF NEW PROGRAMMING

LANGUAGES ... 45
2.6.3. THE GRAMMAR FOR SIMULATION

LANGUAGES
2.6.4. OBJECT ORIENTED PROGRAMMING
2.6.5. COMPUTER GRAPHICS
2.6.6. INTERACTIVE SOFTWARE
2.6.7. SOFTWARE ENGINEERING ... 47
2.6.8. DATA-BASE FACILITIES ... 48
2.6.9. FUNCTIONAL- AND LOGIC PROGRAMMING

PARADIGMS .. 48

2.7. CURRENT TRENDS IN SIMULATION METHODOLOGY 49
2.7.1. TRENDS IN THE PRACTICE OF SIMULATION 49
2.7.2. EXPERIMENTAL-FRAME BASE AND MODEL

BASE ... 50
2.7.3. INTERACTIVE MODEL DEVELOPMENT BY NON­

EXPERTS 50
2.7.4. GRAPHICS WITHIN SIMULATION ... 50

2.8. SIMULATION AND ARTIFICIAL INTELLIGENCE 50
2.8.1. VIEWS ABOUT THE USE OF AI TECHNIQUES IN

SIMULATION ... 51
2.8.2. THE IMPLEMENTATION OF ARTIFICIAL

INTELLIGENCE TECHNOLOGY IN VARIOUS
PHASES OF A SIMULATION ST U D Y 56

CHAPTER 3: KNOWLEDGE-BASED SYSTEMS- AND
LOGIC PROGRAMMING PARADIGMS ... 59

INTRODUCTION ...—--------------- 59

3.1. A REVIEW OF THE KNOWLEDGE BASED SYSTEMS
PARADIGM .. 59

3.1.1. FROM GENERAL PROBLEM SOLVING TO
KNOWLEDGE-BASED PROBLEM SOLVING....................... 59

3.1.2. COMPUTER SYSTEMS FOR THE 1990«..................................... 61
3.1.3. TECHNICAL AND FUNCTIONAL

CLASSIFICATIONS OF EXPERT SYSTEMS........................ 61
3.1.4. KNOWLEDGE-BASED SYSTEMS

ARCHITECTURE .. 62
3.1.5. KNOWLEDGE REPRESENTATION SCHEMES 62
3.1.6. THE INFERENCE ENGINE ... 62
3.1.7. THE CONTROL MECHANISMS FOR

INFERENCE .. 65
3.1.8. THE HANDLING OF UNCERTAINTY WITHIN

INFERENCE 65
3.1.9. THE USER INTERFACE AN D EXPLANATION

FACILITIES ---------------—— 66

3.1.10. THE KNOWLEDGE ENGINEER'S SOFTWARE
TOOLS .. 67

3.2. A REVIEW OF THE LOGIC PROGRAMMING
PARADIGM .. 68

3.2.1. AUTOMATION OF DEDUCTION IN FIRST ORDER
PREDICATE LOGIC ... 68

3.2.2. THE CHARACTERISTIC FEATURES OF
PROLOG .. 69

3.2.3. THE PROBLEM SOLVING INTERPRETATIONS OF
A SET OF PROLOG C LA U S E S .. 70

3.2.4. DATA-BASE INTERPRETATION O F PROLOG
CLAUSES .. 70

3.2.5. COMPILER WRITING AND PR OLOG ... 71
3.2.6. THE RELATIONSHIP BETWEEN PROLOG AND

OBJECTS ...— 71

3.3. THE REPORTED USE OF PROLOG IN SIMULATION 72

3.4. ARGUMENTS TO SUPPORT THE USE OF PROLOG AS
THE IMPLEMENTATION LAN G U A G E FOR THIS
PROJECT .. 74

3.4.1. THE DISTINCTION BETWEEN KNOWLEDGE
REPRESENTATION SCHEMES AND
IMPLEMENTATION LANGUAGES 74

3.4.2. SUPPORTING ARGUMENTS ... 74

3.5. INITIAL CONJECTURES RELATING TO PROLOG AND
SIMULATION LANGUAGE GRAM M ARS 77

CHAPTER 4: A PROTOTYPE SIMULATION ENGINE WRITTEN IN
PROLOG 78

INTRODUCTION 78

4.1. THE INITIAL WORK TOWARDS A SIMULATION ENGINE
USING PASCAL ... 79

4.1.1. BAC K G R O U N D ... 79
4.1.2. M OTIVATION.. 80
4.1.3. THE INITIAL WORK IN PASCAL 81

4.2. THE MOTIVATION FOR THE SHIFT TOW ARDS LOGIC
PROGRAMMING 82

4.2.1. TO EXPLORE THE FEAsrälLTTY O F USING LOGIC
PROGRAMMING FOR SIMULATED
BEHAVIOUR GENERATION .. 82

4.2.2. TO FACILITATE THE USE OF SIMULATION
BASED AI PROBLEM SOLVING
TECHNOLOGY ... 82

4.2.3. THE BUILT IN SYMBOLIC PROCESSING
FEATURES IN PROLOG .. 83

4.3. BACKGR OUND--------------------------------- -—— «4
4.3.1. EXPRESSING SIMULATION MODELS USING

ALTERNATIVE FORM ALISMS.. 84
4.3.2. A PROTOTYPE INTERACTIVE SIMULATION

M ODELUNG ENVIRONMENT .. 84
4.3.3. A PROTOTYPE SIMULATION ENGINE WRITTEN

IN PROLOG ...------- 85

4.4. OBJECTIVES--------------.....----------------------- 85

4.5. THE FIRST VERSION OF THE SIMULATION ENGINE
(THREE PHASE O N L Y)... 86

4.5.1. THE DESIGN FEATURES ... 86
4.5.2. IMPLEMENTATION .. 89
4.5.3. AN EXAMPLE OF BEHAVIOUR GENERATION BY

USING THE SIMULATION ENGINE 93

4.6. THE SECOND VERSION OF THE SIMULATION
E N G IN E ... 95

4.6.1. EXTENSIONS TO THE DESIGN
SPECIFICATIONS ... 95

4.6.2. IMPLEMENTATION .. 95
4.6.3. AN EXAMPLE OF BEHAVIOUR GENERATION BY

EXPRESSING THE ’LORRY' MODEL USING
PROCESSES O N L Y ... 98

4.6.4. A N EXAMPLE OF BEHAVIOUR GENERATION BY
EXPRESSING THE 'LORRY' MODEL USING
PROCESSES, EVENTS AND ACTIVITIES 99

4.6.5. A CONSOLIDATED VIEW OF THE SIMULATION
ENGINE .. 99

4.7. THE DESIRABILITY OF THE PURELY DECLARATIVE
SPECIFICATION OF SIMULATION MODELS 99

4.7.1. DISCUSSION ... 99
4.7.2. A N EXAMPLE .. 102

4.8. CONCLUSIONS AND FURTHER RESEARCH 102
4.8.1. CONCLUSIONS .. 102
4.8.2. FURTHER RESEARCH ... 103

ANNEXE 4A .. 105

4A.1. SIMULATION PROBLEM ('lorry ')... 105
4A.1.1. NATURAL LANGUAGE DESCRIPTION OF THE

PROBLEM .. 105
4A.1.2. NATURAL LANGUAGE DESCRIPTION OF THE

SYSTEM ... 105

ANNEXE 4B ... 108

4B.1. THE ‘lorry* MODEL (THREE PHASE O N LY) 108
4B.1.1. MODEL ARTICULATION .. 108
4B.1.2. A TRACE OF THE SIMULATED BEHAVIOUR

GENERATED BY THE SttIULATION ENGINE
(THREE PHASE ON LY) ... 111

vi

vil

4C.1. THE ’lorry' MODEL (PROCESSES ONLY) ... 114
4C.1.1. MODEL ARTIC ULATIO N ... 114
4C.1.2. A TRACE OF THE SIMULATED BEHAVIOUR

GENERATED BY THE SIMULATION ENGINE
(PROCESSES O N L Y).. U S

ANNEXE 4D .. T------------------------- TTT„ „ 119

4D.1. THE ’lorry' MODEL (A MIXTURE OF THREE PHASE
AND PROCESSES)... 119

4D.1.I. MODEL ARTIC ULATIO N ... 119
4D.1.2. A TRACE OF THE SIMULATED BEHAVIOUR

GENERATED BY THE SIMULATION ENGINE
(MIXED THREE PHASE AND PROCESSES)....................... 119

ANNEXE 4E ... 123

4E.1. A DECLARATIVE ARTICULATION OF THE ’lorry’
M ODEL...123

4E.2. THE DOCUMENTATION FOR THE PREDICATES USED
FOR DECLARATIVE ARTICULATION 123

4E.3. IMPLICATIONS IN RELATION TO MODEL
GENERATION... 125

ANNEXE 4C 114

CHAPTER 5: A PROTOTYPE KNOWLEDGE-BASED DISCRETE
SIMULATION MODEL GENERATION FACILITY 126

INTRODUCTION ...____ 126

5.1. COMPUTER SUPPORT FOR CONSTRUCTING
SIMULATION PROGRAMS .. 127

5.1.1. THE INTERACTIVE ENTRY OF MODEL
COMPONENTS EXPRESSED IN A
DIAGRAMMATIC FORMALISM ... 128

5.1.2. SIMULATION PROGRAM GENERATION IN
ALTERNATE LAN G U A G E S .. 129

5.1.3. MODEL ENTRY AND OUTPUT USING
ALTERNATE WORLD VIEWS .. 129

5.1.4. ASSISTANCE IN MODEL FORMULATION 130
5.1.5. KNOWLEDGE-BASED SIMULATION

M ODELLING.. 130
5.1.6. KNOWLEDGE-BASED SOFTWARE

SPECIFICATION AN D PROGRAM
SYNTHESIS ... 131

5.2. MOTIVATION « .. 132

5.3. OBJECTIVE .. 133

V

viU

5.4. A SUB SET OF SIMULATION MODELS .. 133
5.4.1. CLASSES OF ENTITIES .. 134
5.4.2. QUEUES ------------........---------------.......----........................— 134
5.4.3. ACTIVITY-SETS .. 134
5.4.4. RESOURCES-------......— 134

5.5. DESIGN ASPECTS .. 134
5.5.1. DESIGN PH ILOSOPHY.. 134
5.5.2. A FORM FOR THE GENERIC SPECIFICATION OF

SIMULATION MODELS ... 135
5.5.3. THE FORM OF THE EXECUTABLE MODEL 136

5.6. A PROTOTYPE KNOWLEDGE-BASED DISCRETE
SIMULATION MODEL GENERATION
FACILITY---------- -------- 136

5.6.1. AN OVERVIEW ... 136
5.6.2. THE REPRESENTATION OF THE KNOWLEDGE

136
5.6.3. THE METHOD EMPLOYED FOR MODEL

BUILDING ... 141

5.7. EXAMPLES OF BUILDING SIMPLE MODELS 141
5.7.1. THE PARTIAL 'lorry' MODELS ('merchant' O N LY)

142
5.7.2. THE PARTIAL 'lorry' MODELS ('merchant' AND

'neb' O N LY) ____...........---------------------- 142
5.7.3. A COMPLETE VERSION OF THE 'lorry'

MODEL .. 148
5.7.4. A HARBOUR MODEL--------— 148
5.7.5. 'harbour-1' MODEL— .. 149

5.8. EXTENSIONS TO ALLOW MORE COMPLEX MODELS 151
5.8.1. A LARGER M O D E L .. 151
5.8.2. THE 'harbour-2' M O D EL--------- .. 152

5.9. CONCLUSIONS AND FUTURE DEVELOPMENT 156
5.9.1. CONCLUSIONS ... 156
5.9.2. FUTUR E DEVELOPMENT .. 156

ANNEXE 5A--------- ...------ 158

5A.1. THE PAR TIAL 'lorry' MODEL (MERCHANT ONLY, ONE
INSTANCE OF WEIGH BRIDGE) ... 158

5A.1.1. THE MODEL ARTICULATION AT A VERY HIGH
L E V E L .. 158

5A. 1.2. THE KNOWLEDGE-BASE .. 158
5A. 1.3. THE EXECUTABLE MODEL AS

GENERATED ... 159
5A. 1.4. SNAPSHOTS OF THE WORKING MEMORY AT

VARIOUS STAGES OF THE MODEL
DEVELOPMENT .. 160

to

5B.1. THE PARTIAL 'lorry' MODEL (MERCHANT O N LY , TWO
INSTANCES OF WEIGH BRIDGE) ... 165

5B.1.1. THE MODEL ARTICULATION AT A VERY HIGH
LEV E L ... 165

5B.1.2. THE KNOW LEDGE-BASE.. 165
5B.1.3. THE EXECUTABLE MODEL AS GENERATED

165
5B.1.4. THE CONTENTS OF THE WORKING MEMORY

BEFORE THE OUTPUT OF THE
EXECUTABLE MODEL ... 166

ANNEXE 5C .. 168

5C.1. THE PARTIAL 'lorry' MODEL (MERCHANT AN D NCB
ONLY, ONE INSTANCE OF WE1GH-BRIDGE,
MIXED Q U EU E IN G).. 168

5C.1.1. THE MODEL ARTICULATION AT A VERY HIGH
LEV E L .. 168

5C.1.2. THE KNOWLEDGE-BASE .. 168
5C.1.3. THE EXECUTABLE MODEL AS

GENERATED ... 169
5C.1.4. THE CONTENTS OF THE WORKING MEMORY

BEFORE THE OUTPUT OF THE
EXECUTABLE MODEL ... 170

ANNEXE 5D .. 173

5D.1. THE PARTIAL 'lorry* MODEL (MERCHANT AND NCB
ONLY, ONE INSTANCE OF WE1GH-BRIDGE,
SEPARATE QUEUEING) .. 173

5D.1.1. THE MODEL ARTICULATION AT A VERY HIGH
L E V E L ... 173

5D.1.2. THE KNOWLEDGE-BASE .. 173
5D.1.3. THE EXECUTABLE MODEL .. 173
5D.1.4. THE CONTENTS OF THE WORKING MEMORY

BEFORE THE OUTPUT OF THE
EXECUTABLE MODEL____ 174

ANNEXE 5 1 178

5E.1. THE COMPLETE 'lorry' MODEL (MERCHANT, NCB AND
TRAIN, ONE INSTANCE OF WEIGH-BRIDGE,
ONE INSTANCE OF LOADER, SEPARATE
QUEUEING)..178

5E.1.1. THE MODEL ARTICULATION AT A VERY HIGH
LEVEL ... 178

5E.1.2. THE KNOW LEDGE-BASE... 178
5E.1.3. THE EXECUTABLE MODEL AS GENERATED

179
5E.1.4. THE CONTENTS OF THE WORKING MEMORY

BEFORE THE OUTPUT OF THE
EXECUTABLE MODEL ... 181

ANNEXE S B .. 165

5F.1. THE Turbour-I' MODEL ... 184
5F.1.1. THE MODEL ARTICULATION AT A VERY HIGH

LEVEL.. 184
5F.1.2. THE KNOWLEDGE BASE ... 184
5F.1.3. THE EXECUTABLE MODEL AS

GENERATED______________ __________________185

ANNEXE 5G .. 188

5G.1. THE liar hour+lorry’ M ODEL .. 188
5G.1.1. THE MODEL ARTICULATION AT A VERY HIGH

LEVEL.. 188
5G.1.2. THE KNOWLEDGE BASE ... 188
5G.1.3. THE EXECUTABLE MODEL AS GENERATED

190

ANNEXE 5F___............................... 184

ANNEXE 5H ...—— . 194

5H.1. TH E harbour-2' MODEL ... 194
5H.1.1. THE MODEL ARTICULATION AT A VERY HIGH

LEVEL... 194
5H.1.2. THE KNOWLEDGE-BASE _____________ 194
5H.1.3. THE EXECUTABLE MODEL AS

GENERATED ...195
5H.1.4. THE EXECUTABLE MODEL AFTER

EDITING .. 196

CHAPTER 6s 'WISE' — A PROTOTYPE KNOWLEDGE-BASED
DISCRETE SIMULATION MODELLING
ENVIRONMENT ------- 199

INTRODUCTION ...199

6.1. MOTIVATION .. 200

6.2. THE CONCEPTUAL FRAM EWORK 200

6.3. INITIAL PROBLEMS ..._____................. 202

6.4. IMPLEMENTATION______----- 202

6.5. AN EXAMPLE __________________------ 204
6.5.1. THE KNOW LEDGE-BASE.. 204
6.5.2. THE INTERACTIVE DEFINITION OF THE 'lorry'

MODEL .. 206
6.5.3. EXCEPTION H ANDLING .. 213
6.5.4. THE USER INTERACTION DURING THE MODEL

BUILDING ... 214

6.6. TOW ARDS GENERALIZATIONS...218
6.6.1. THE SIMULATION METHODOLOGY

KNOWLEDGE ________________________ ...__________218
6.6.2. CONDITIONAL BRANCHING ...219
6.6.3. THE FORM OF THE EXECUTABLE M O D E L220
6.6.4. THE SUB-MODELS KNOWLEDGE B A S E220

6.7. CONCLUSIONS_____..___ 224

CHAPTER 7s CONCLUSIONS AND FURTHER RESEARCH 225

7.1. C O NC LU SIO N S... 225
7.1.1. CONCLUSIONS RELATED TO THE WORK ON THE

SIMULATION ENGINE ..225
7.1.2. CONCLUSIONS RELATED TO THE SIMULATION

MODELLING ENVIRONMENT ... 226

7.2. FURTHER RESEARCH ...__ 228

REFERENCES..231

REFERENCES CITED WITHIN QUOTES .. 249

APPENDIX I 253

APPENDIX O ...259

BIBLIOGRAPHY..265

xi

V

L IS T OP ILLUSTRATIONSL IS T OF ILLUSTRATIONS

Figure 1.1. Summary of a package of methodological tools for
systems modelling .. 18

Figure 1.2. Problem Solving can be regarded as the common area of
interest between Operational Research and Artificial
Intelligence.. 20

Figure 2.1. A framework for simulation... 30

Figure 2.2. The simplified development of certain two-phase
simulation languages.. 37

Figure 2.3. The simplified development of three-phase simulation
languages... 38

Figure 2.4. Simulation in the past was characterised by a lack of a
unified methodology .. 41

Figure 3.1. A knowledge system and its environmental
context... 63

Figure 3.2. The building blocks o f a knowledge system .. 64

Figure 4.1. An overview of the simulation engine
environment.. 87

Figure 4.2. The organisation of the Arity/Prolog D atabase................................... 88

Figure 4.3. A flow diagram for the 'four phase' mode of behaviour
generation where the model can be expressed as a
combination of events, activities and processes 97

Figure 4.4. A consolidated view o f the simulation engine 100

Figure 4.5. The entity cycle diagram for the 'lorry' m odel................................... 106

xii

Figura 5.1. An ovarviaw of tha prototypa knowledge-based
simulation modal building anvironroant ... 13?

Figura 5.2. Tha antity cycle diagram for the partial ’lorry' modal
(marchant only, one waigh-bridge) ... 143

Figure 5.3. The antity cycle diagram for the partial 'lorry' modal
(merchant only, two weigh-bridges).. 144

Figure 5.4. The entity cycle diagram for the partial 'lorry'
model (merchant and neb only, one weigh bridge,
mixed queuing) .. 146

Figure 5.5. The entity cycle diagram for the partial 'lorry' model
(merchant and neb only, one weigh bridge, separate
queuing)... 147

Figure 5.6. The entity cycle diagram for the 'harbour_l' model 150

Figure 5.7. The scripts to provide an interaction between processes
through message passing ... 153

Figura 5.8. Tha entity cycle diagram for the 'harbour_2' model 155

Figure 6.1. A Conceptual view of a simulation model at the generic
level ..201

Figure 6.2. An overview of 'WISE' (Warwick Intelligent Simulation
Environment)'..203

Figure 6.3. The entity cycle diagram for the sub-model ’lorry '............................222

Figure 6.4. Tha Hierarchical structuring of a sub-models
knowledge base .. 223

ACKNOWLEDGEMENTS

I feel greatly indebted to The British Council for their Fellowship Award to me

which has enabled this project.

My first thanks should go to my Ph.D. supervisor, Dr. Robert Hurrion, for

accepting to supervise this research, for his support during the project in the form

of helpful discussions and comments on earlier drafts of this thesis, and for

making available source code for his 'LEGO' system during early phases of this

research.

I thank the following for their respective contribution in this project«

Prof. Rolfe Tomlinson for supporting my application to The British Council for

extension in the duration of the Fellowship Award and also for permission to use a

hard disk personal computer for this project for nearly a year.

Mr. Keith Halstead for making available the Pascal source code for an arithmetic

statements interpreter.

The School of Industrial and Business Studies for allowing the use of an Olivetti

M24 personal computer exclusively for this project and also for allowing use of

photocopying, word processing and laser printing facilities within the School.

Lastly, I take this opportunity to offer my special thanks to my parents for their

painstaking effort in bringing me up and for providing me with education and

training. In many ways this thesis is as much their achievement as it is mine.

XV

SUMMARY

The initial chapters of this thesis cover a survey of literature relating to problem
solving, discrete simulation, knowledge-based systems and logic programming.
The main emphasis in these chapters is on a review of the state o f the art in the
use of A rtificial Intelligence methods in Operational Research in general and
Discrete Simulation in particular.

One of the fundamental problems in discrete simulation is to mimic the operation
of a system as a part of problem solving relating to the system. A number of
methods o f simulated behaviour generation exist which dictate the form in which
a simulation model must be expressed. This thesis explores the possibility of
employing logic programming paradigm for this purpose as it has been claimed to
offer a number of advantages over procedural programming paradigm. As a result
a prototype simulation engine has been implemented using Prolog which can
generate simulated behaviour from an articulation of model using a three phase or
process 'world views' (or a sensible mixture of these). The simulation engine
approach can offer the advantage of building simulation models incrementally.

A new paradigm for computer software systems in the form of Know ledge-Based
Systems has emerged from the research in the area of Artificial Intelligence. Use
of this paradigm has been explored in the area of simulation model building. A
feasible method of knowledge-based simulation model generation has been
proposed »nd using this method a prototype knowledge-based simulation modelling
environment has been implemented using Prolog. The knowledge based system
paradigm has been seen to offer a number of advantages which include the
possibility o f representing both the application domain knowledge and the
simulation methodology knowledge which can assist in the model definition as well
as in the generation of executable code. These, in turn, may o ffe r a greater
amount o f computer assistance in developing simulation models than would be
possible otherwise.

The research aim is to make advances towards the goal of 'intelligent' simulation
modelling environments. It consolidates the knowledge related to simulated
behaviour generation methods using symbolic representation for the system state
while permitting the use of alternate (and mixed) 'world views' for the model
articulation. It further demonstrates that use of the knowledge-based systems
paradigm for implementing a discrete simulation modelling environment is
feasible and advantageous.

xvi

INTRODUCTION

Tbt research described in this thesis was undertaken within the Operational
Research/Systems Group of the School of Industrial and Business Studies under the

supervision o f Dr. R. D. Hurrion. The research started in October 1985 and this

thesis marks its 'completion' in June 1989. The main concern of this thesis is

Discrete Simulation Modelling.

The availability of inexpensive processing power in the form of micro computers

has provided necessary encouragement for the use of discrete simulation for

problem solving. Previously simulation has been regarded as a 'court of last

resort', mainly because of its empirical nature, the amount of labour involved and

the need for highly trained personnel for conducting these studies. This view has

changed a great deal by the introduction of the visual interactive approach to

Simulation which enables direct involvement of the decision maker in the

simulation model development and also provides fo r interactive experimentation

with these models. The use of an animated graphic trace provides a quicker

verification of simulation models.

In the past, the conduct of simulation studies have been facilitated by special
purpose software in the form of simulation languages and packages. The current

trend in simulation software is to provide software tools for computer support in

all phases of a simulation study and, with the help of suitable interfaces, to

integrate such tools to provide integrated simulation environments. The main aim

of such integration is to provide for the ease of conducting simulation studies and

also to enable the conduct of simulation studies by non-simulation-experts

(SHANNON, 86).

Concurrently with the ideas related to the development of integrated simulation

environments have emerged two new paradigms related to computer software

from research in the area of artificial intelligence. These are the Knowledge-

Baaed Systems paradigm for software systems and the Logic Programming

paradigm for computer programming. This thesis addresses the problems of

implementing a prototype discrete simulation environment while using these new

paradigms. Two areas of discrete simulation that have been concentrated upon

are: (a) the generation of simulated behaviour from the articulation of a

simulation model using alternate (or mixed) 'world views', and (b) simulation model

XV ii

generation while using a knowledge-based systems framework. The logic

programming language Prolog has been used for implementation throughout. The

method employed for research has been mainly exploratory programming and

prototype system implementation as is the case with roost Artificial Intelligence

related research.

Chapters 1 and 2 are intended to provide a perspective for the research described

in later chapters and attempt a literature survey on Problem Solving and Discrete

Simulation. These chapters undertake a review of the ideas related to the

application of artificial intelligence techniques within expert problem solving and

simulation. Chapter 3 looks somewhat more closely at the new paradigms of

Know ledge-Based Systems and Logic Programming and argues in favour of

exploring their use for providing 'intelligent' discrete simulation modelling

environments.

Chapter 4 describes the research for devising a prototype simulation engine using

Prolog as the implementation language. This simulation engine interprets the

model code at run-time and is capable of driving simulated behaviour from

articulation of model using three phase (i.e. events/activities) or process 'world

views'. A sensible mixture of these two 'world views' is also supported. The need

to support model articulation using alternative or multiple 'world views' was seen

as a possible approach towards the goal of knowledge based simulation

environments. The knowledge of the dynamic behaviour of systems in a given

application domain can be more naturally captured as events, activities or

processes [HURRION, 85]. The ability of a simulation engine to support multiple

'world views' would have direct relevance to the creation of a knowledge-based

simulation modelling environment where the knowledge could be retrieved and

assembled, without a 'world view' related transformation, into an executable

simulation model directly.

Chapter 5 covers research for suitable knowledge representations to enable

knowledge-based construction of simulation models. As a result of this research a

prototype knowledge-based model builder has been implemented using Prolog. The

working of this model builder has beed demonstrated with the help of a number of
examples.

Chapter 6 further develops the knowledge representations of chapter 5 to devise

and implement a knowledge-based model acquisition system for interactively

defining the simulation models. The later part of this chapter covers possible

xviii

generalisations which can be developed from the experiences gained from this

Chapter 7 concludes this thesis with the research findings of using Prolog in

knowledge based environments and gives some ideas about further research.

A note on the citation of references. References cited within square brackets can

be found in the section titled 'References'. Those references which have been

cited by others within quotes have been enclosed in curly brackets and have been

compiled in the section titled 'References Cited Within Quotes'.

A Bibliography at the end of this thesis represents the additional material

consulted during this research.

1

CHAPTER I s PROBLEM SOLVING

INTRODUCTION

ThU chapter alma to provide a perspective to the research described in this thesis.

It takes a brief look at the problem solving activity at a general level while taking

into account the role of previously accumulated application domain knowledge and

problem solving methodology knowledge. The role o f abstract knowledge and

formal languages in relation to problem solving has been described and the use of

Operational Research and Systems Analysis methodology and techniques in

relation to managerial decision making has been briefly covered. The role of
digital computers and computer programming languages for information

processing during problem solving has been considered and Discrete Computer

Simulation, as one of the Operational Research techniques, has been introduced.

More recent developments relating to problem solving computer systems (expert

systems, knowledge-based systems), as have emerged from research in Artificial

Intelligence, have been considered and different views relating to their

relationship with Operational Research have been compiled. The relationships

between artificial intelligence technology and discrete computer simulation have

been taken up in more detail in chapter 2.

1 .1 . PROBLEM SOLVING IN GENERAL

1 . 1 . 1 . PROBLEMATIC SITUATIONS

From what we already know about reality, and from what we currently observe we

attempt to figure out if anything is going wrong or if any opportunities are being

lost due to taking either a wrong action or not taking the right action of

appropriate magnitude. If these 'symptoms' can be identified in a real life

situation, it can be regarded as a problematic situation (e g . [SIMON It
DHPRSSTTW, 87)).

2

1 . 1 . 2 . PROBLEM DESCRIPTION

For the purpose of this thesis we shall take the view that a communicable

description of reality which poses itself as a problem is the starting point of

problem solving. Such a description shall be referred to as a problem description.

It is only natural that the problem description is expressed in one of the 'natural'
languages (e.g. Greek).

'Regardless of the specific way in which a problem statement
cones about ... it is conceptually useful to assume that
there always exists such a statement (or its equivalent,
from the point of view of information content and access) at
the starting point of any problem-solving process. If the
problem-solving activity requires a problem-acquisition
stage whose end point is a problem statement that will
govern the next stage of solution construction, it is useful
to conceive of the situation as consisting of two well-
defined problems: a problem-acquisition problem and a
solution-construction problem.11
p 768;(AMAREL, 87)

A problem description therefore should indicate as to what information — directly

observable, measurable or inferred — has led us to believe that we currently face

a problematic situation, and the criterion which makes us believe so. The sorts of

criteria which may be used include: our belief structure, utilization of resources,
ecological reasons (e.g. pollution), better performance by competitors and so on.

The process of translating the problematic situation into problem description will
be referred to as problem understanding.

1 .1 .3 . THE SOLUTION

With reference to a problem description, a solution is a description of an

achievable real life situation which we desire, envisage or hope for as a result of

taking some form of corrective action. Generally, the specification of the

corrective action is also considered as a part of the solution.

A solution is something we do not know directly and is something we seek to find.

However, we know something about it. For example, when faced with the problem

of planning a layout for a factory, we know the requirements which the layout
must fulfil but we do not know the layout directly. If it is possible to describe the

solution precisely by its characteristics then the problem is said to be well

defined, otherwise, it is said to be ill defined. In case of ill-defined problems,

further exploratory work is generally needed to know more about the problem and

the possible solutions that can be considered.

1 . 1 . 4 . PROBLEM SOLVING

Once it has been possible to describe the problem and the various properties/

features/characteristics/aspects o f the solution we are looking for, then comes

the task of determining a course o f action about which we can claim that on

implementation it will transform the current problematic situation into a situation

which we presently describe and seek as a solution. This task we shall re fer to as

problem solving.

This requires bringing into play all the relevant pieces of knowledge we have about

the situation under study and about the particular problem at hand in a suitable

formation to bridge the gap between the problem description and the solution

description. Particularly we must know what actions are applicable in the current

situation and what effect each action or a sequence of actions will have on the

situation and its successive developments.

The quality of knowledge we have therefore plays an important role in problem

solving and the certainty with which each item of knowledge can be applied to the

situation under study needs to be taken into account. We prefer our knowledge to

be in as general a form as possible as this gives us the opportunity to apply it

within the widest possible context. We also prefer our knowledge to be as 'fine­
grained' as possible as this allows us to consider the problematic situations in

greater detail. Sometimes when relevant pieces of knowledge are not available a

resort has to be made to generate such unavailable knowledge by carrying out

carefully controlled experiments.

It is therefore important that each experience of problem solving is well

documented so that the knowledge is available for future problem solving

situations. With an increasing body of knowledge it is a practical necessity that

our knowledge base is partitioned for the convenience of learning and reference.
It is out of this necessity that various disciplines of study have emerged. For

example law, social sciences, physical sciences, engineering, technology, medical

sciences, and so on, as they deal with problems of satisfying needs in the various

4

1 . 1 . 5 . ABSTRACTION: REPRESENTATION IN FORMAL LANGUAGES

As noted earlier, knowledge about real life situations can be recorded using one of

the natural languages. Words need to be chosen or invented to describe various

elements of the situation and the way these are related to each other and the way

they interact as a part of their behaviour. Natural languages suffer the limitation

that their words do not always convey precise meaning and there is room for

ambiguity. These are therefore not considered entirely suitable for describing our

understanding of reality precisely with a view to problem solving. This is

especially the case because we are always looking for procedural techniques for

problem solving and, the problem description in a natural language is difficult to

subject to known problem solving procedures, to say the least. These

requirements on the use of knowledge have necessitated that the application

domain knowledge is represented in a formal language to convey precise meanings

whereas the problem solving knowledge takes the form of procedures to

manipulate the knowledge thus represented (e.g. [NEWELL, 69]).

Formal languages are characterized by their finite vocabulary, precise meaning

and precise rules of grammar for making legal constructs in those respective

languages. It is not at all necessary that a formal language be restricted to words

and sentences, it can consist o f a set of symbols and rules (i.e. grammar) for

combining these symbols to convey specific meanings. For example in Chemistry

a set of symbols are used to represent elements, chemical reactions, the bondage

of atoms in molecules and so on. Mathematics is another example o f a formal

language in which the quantitative relationships of real situations can be

described. Various diagrammatic languages have been used to capture the system

description such as entity cycle diagrams, petri-nets ...

The development of precise formal languages has also led to the development of a

body of abstract knowledge which need not have any relationship with a specific

real world situation (although abstract knowledge itself is a reality). Generally,
the development of abstract knowledge begins with a set of definitions and axioms

which intuitively we accept to be 'true'. For example with the introduction of

simple ideas about a point, a straight line and a circle, the whole body of abstract

knowledge called Euclidean Geometry has been developed. Abstract Knowledge is

developed by using methods of logical inference and proof procedures to derive

more abstract knowledge from the existing abstract knowledge. Many branches of

mathematics like various algebras. Euclidean geometry, co-ordinate geometries.

differential calculus, Integral calculus, complex mathematics, and so on, are

examples of these bodies o f abstract knowledge.

If it is possible to describe a real world problem in a language for which we have

available a body of abstract knowledge, then such abstract knowledge (in the form

of theorems, lemmas, ...) becomes directly applicable and can assist in arriving at

a solution. For example, the language of geometry can be used to assist a land

revenue department in assessing the tax for a piece of land and also it can assist

an engineer to estimate forces in structural frames. Another example is linear

programming. If it is possible to express the problematic situation as a linear

objective function and a set of linear constraints, then it is possible to 'solve' the

problem of optimising the objective function. Such 'ready made' procedures based

on abstract knowledge which transform the problem expressed in one form into a

solution are referred to as problem solving techniques.

Not only does the abstract knowledge help us solve problems related to existing

systems but it also assists us in the design of future systems. It is evident that by

the use of abstract knowledge it has been possible to design and build systems of

immense complexity. Examples are space missions, global communication

networks, banking systems, and so on.

1 . 1 . 9 . GENERAL FORKS

With the development of abstract knowledge in various languages it has been

found to be convenient to describe this knowledge around some generalized forms.
A general form provides a kind of template in which some of the aspects are made

invariable whereas others may vary from one problem to another. For example in

linear algebra we define a general form for a linear programming (LP) problem.

This form requires an objective function and a set of linear constraints which

constitutes the invariable part of the form. The part which can vary from one LP

problem to another is the coefficients in the objective function, the number of

variables, the number of constraints, the coefficients of the variables in the

constraints.

An attempt is made to develop a general solution procedure related to each

general form of the problem. For example a Simplex procedure is a general

procedure for the solution of any problem which can be expressed in the general
form for an LP problem. There may be more than one general solution procedure

associated with a general form of a problem. Alternatively it may not always be

9

6

possible to develop a general solution procedure for a given general form. The

claim for generality of a solution procedure related to a general form is backed by

some form of proof that the application of the procedure to the problem

description will always lead to the solution of the problem, provided one exists.

The knowledge of general forms and the related general solution procedures

provide us with the necessary abstract conceptual framework with which we

attempt to view problematic situations. If it is possible to express a problematic

situation in a general form for which a general solution procedure is available then

the problem is said to be well structured otherwise with the current state of our

knowledge it is said to be ill structured.

Newell has described this activity in the following words:

"Ws observe that on occasion express ions in some language
are put forward that purport to state 'a problem. ' in
response a method (or algorithm) is advanced that claims to
solve the problem. That is, if input data are given that
meet all the specifications of the problem statement, the
method produces another expression in the language that is
the solution to the problem. If there is a challenge as to
whether the method actually provides a general solution to
the problem (l.e., for all admissible Inputs), a proof may
be forthcoming that it does. If there is a challenge to
whether the problem statement is well defined, additional
formalization of the problem statement may occur. In the
extreme this can reach back to formalization of the language
used to state the problem, until a formal logical calculus
is used."
p 363) (NEWELL, 69)

1 . 1 . 7 . SOLUTION PROCEDURES

The general solution procedures which are backed by a proof are called

algorithms. However, where adequate theory does not exist to provide the

necessary proof but a procedure is intuitively known to provide an acceptable

solution, the procedure is known as a heuristic. (Simon and Newell, 1958} have

identified heuristics as appropriate for ill-structured problems and algorithms as

appropriate to well-structured problems (FORDYCE St NS, 87}.

(A) ALGORITHMS

(Reitman, 1964} has pointed out that the existence of an algorithm presumes: (1)
an explicitly specifiable class of problems all of which may be solved by (2) the

program fo r the algorithm to (3) some well-defined criterion for solution,
(FO R D YC C «1 NS, «7).

(B) H EURISTICS

{Beltrami and Bod in, 1974} has defined heuristics as follows: Think of heuristic

reasoning as meaning that one brings to bear as much intuition, and as many

plausible arguments, as possible on problems which are either computationally

intractable, or for which inadequate theory exists.' [FO R D YCE fc NS, 87].

l . l . t . PROBLEM FORMULATION

The formulation of a problem in a formal language represents our understanding of

the problematic situation and our approach to its solution procedure. So far there

is no general procedure for formulating problems and this area is regarded as an

art rather than a science. A number of 'tactics' are used during the formulation

phase which include simplifying the problem by the use of assumptions and

introducing various levels of representation and interpretation.

The introduction of simplifying assumptions amounts to saying that the analyst

knowingly solves a simpler problem (because he is limited either by the

availability of technique^) for solving the full problem or if available, their

application is not cost effective). He can then amend the solution thus obtained in

the light o f the assumptions he has made (by making use of judgment or by

additional computation).

Representation is used to describe the problem in terms o f the theory on which a

known problem-solving technique is based. A solution has to be interpreted (i.e.

translated back from the formalism in which the problem was originally

represented).

7

1 . 1 . 9 . METHODOLOGY IN PROBLEM SOLVING

Having considered the role of abstract (theoretical) knowledge in problem solving

we now turn our attention to the knowledge which relates to the generalizations

of methods used within problem solving itself. These generalisations are

applicable at the appropriate stages of both real world problem solving and of the

development of a theory (Le. abstract knowledge) since the development of a

theory itself can be regarded as 'a problem'.

In another sense methodology also implies a criteria which has earned some

credibility to be effective in dealing with problems and therefore should be

complied with e.g. scientific method.

8

(A) METHODS WHICH CHARACTERIZE THE APPROACH TO PROBLEM
SOLVING

(a) Top-D ow n and Bottom -O p A p p ro a c h e s

When we start the process of problem solving from our knowledge of the solution

(i.e. goal) and work backwards through subgoals until we arrive at the existing

situation, this approach is known as top-down. Alternatively when we proceed

from the current problematic state and proceed towards the solution the approach

is known as bottom-up. For more detail see p 7-8;[KOWALSKI, 79]

(b) P rob lem R e d u c t io n (D e a l in g w it h c o m p le x i ty)

While dealing with complex problematic situations (ones which do not lend

themselves directly to be formulated within a general form for which we have a

general solution procedure available) the problem needs to be divided into smaller

more manageable sub-problems. This approach to problem solving is called

problem reduction.

“When we are confronted with a coaplex system and have
decided upon a way of looking at this system, we nay ask:
how are its components to be identified? There is no unique
answer to this question. Sometimes the answer is evident,
sometimes it is a matter of taste, and at other times the
selection of suitable components is a crucial point in the
analysis."
p 23: (BIRTWISTLE t DMN, 79).

(B) METHODS WHICH ALLOW OS TO GENERATE MORE KNOWLEDGE FROM
OOR EX ISTIN G KNOWLEDGE

(A) In d u c t io n

Induction is inferring a general principle from a set of examples.

(b) D e d u c t io n

Deduction is inferring a conclusion (specific or general) from known facts and

general principles.

(c) A b d u c t io n

Abduction is formulating s hypothesis about a law governing an observed

phenomenon.

(C) METHODS WHICH RELATE TO ASCERTAINING OUR KNOWLEDGE

(a) H y p o th e s is T e s t in g (E x p e r im e n t in g)

The knowledge which is generated needs to be tested before it can be accepted

generally. This is done by performing experiments, whose outcome needs to be

consistent with our expectations if the knowledge which we have generated is

true.

1 .1 .1 0 . THEORIES OF PROBLEM SOLVING

Having made use of abstraction in problem solving it is natural that some

attention has been paid to develop an abstract theory for the problem solving

phenomenon itself. [WICKELGREN, 74] describes elements of a theory of problem

solving. Encyclopedic entry [AMAREL, 87] presents a formal abstract view of

problem solving from the point of view of creating problem solving systems.

[KOWALSKI, 79] compares the models of problem solving developed in cognitive

psychology and artificial intelligence and argues in favour of logical inference as

the general model for problem solving. [RICH, 83] presents a view of basic

problem solving methods and representation schemes used in artificial intelligence

and related solution procedures.

1 .1 . 1 1 . CLASSES OF PROBLEMS

When confronted with a problematic situation it is helpful to recognize it as one

of a broad category of problems for which we have some accumulation of problem

solving knowledge available. Apart from more usual classification — such as

physical sciences, social sciences, and so on — a functional classification with a

particular view to applicable problem solving methods has also evolved. For

example a given problematic situation may be classified as a diagnostic problem, a

design problem, a planning problem, a control problem and so on. Such

classification is based on the nature of the problem and general similarities in

their solution steps. For example, a doctor trying to diagnose an illness of a

patient and an engineer trying to figure out what is wrong with a particular piece

of machinery follow similar methods. Each may be following a binary search

10

strategy to narrow down th« area in which the problem exiata. Each may be

hypothesizing and then making some tests to either confirm the hypothesis or rule

a possibility out. This is so because both are working on a diagnostic problem.

Such functional classification is a convenient way of classifying our problem

solving knowledge at a functional level. Such a classification does not imply well

defined general solution procedures, such as discussed previously, but only

similarities of patterns of problem solving methods.

1 .1 .1 2 . PROBLEM SOLVING PARADIGMS

The following problem solving paradigms are relevant to this thesis]

Scientific Method

Operational Research and Systems Analysis

Artificial Intelligence (Expert Systems)

1 .2 . OPERATIONAL RESEARCH APPROACHES TO PROBLEM SOLVING

1 .2 .1 . PROBLEM SOLVING WITHIN ORGANISATIONAL DECISION MAKING

Organizational decision making is characterized by an organizational structure

with functional and hierarchical relationships, a communication/re porting

protocol, operating procedures, organizational objectives and the environments

within which the organization operates. Actions are taken in accordance with the

decisions made by the decision makers within the organization. As an

organization operates in real time, it is important to consider the times taken by

the decision makers to sense the problematic situation, the time taken to decide

upoo a future course o f action and the time taken to implement the decision.

(TOMLINSON li D, 83] has proposed a feedback control model for strategic

management which takes into account these time factors.

During the course of organizational decision making considerable knowledge is

generated and the accumulation of such knowledge can be used in forecasting the

future and then planning the organizational objectives, and course of actions

accordingly. The forecast and the plans serve as a reference against which the

actual performance is compared to sense if there is any cause to react.

[COOKE A S, 84] provides a comprehensive coverage of managerial decision

making within an organizational context from a number of angles of views in

addition to the modelling approach taken by Operational Research.

"... generic definition of tere 'model', given first by
(Minsky, 65}

'An object 'A' is a model of an object ‘B* for an observer
'C* if the observer can use 'A' to answer questions that
interest hie about *B'.'a
p 189;(OREN, 82)

The idea of using abstract models has existed in physical sciences for a long time

but its application in decision making, initially to the war time problems, marked

the beginnings of Operational Research (WHITE, 85]. Later on the ideas from

Systems Analysis (the theory and methods developed to deal with the study of

complex systems and problem solving therein) which again had their beginnings in

the physical sciences were also introduced in the organizational decision making.

These ideas were also employed later on for decision making within commercial

organizations and governmental departments other than defence. Since then these

ideas have grown into a discipline of study with its own set of methodologies and

techniques to deal with decision making situations within the organizational

context.

"... OR has developed in two ways: first as an approach to
aiding management decisions through modelling; second, by
producing powerful standard models and methods to fit some
well defined commonly encountered classes of decision."
p 145;(COOKE & S, 84).

1 . 2 . 2 . METHODOLOGY OF OPERATIONAL RESEARCH

(A) S C IE N T IF IC METHOD AND OPERATIONAL RESEARCH

Initially, Operational Research and Systems Analysis was equivalent to the

application of a scientific method to organizational decision problems. In recent

years a large amount of experience has been gained from using this approach to

organizational decision problems and consequently this view is changing. A

number of papers in (Tomlinson A K (eds), 84] particularly concentrate on this

issue, i.e. the evaluation of methodologies from past practices and their outcomes.
More recently Simon has stated this issue in the following words:

"The real world of human decisions is not a world of ideal
gases, frictionless planes, or vacuums."
(SIMON & DHPRSSTTW, 87)

12

(B) M U L T I-D IS C IP L IN A R Y APPROACH IN OPERATIONAL RESEARCH

" ... and, indeed, our whole process in Operational Research
ie a synthesis of various known, or at least accepted,
hypotheses combined to produce a composite prediction."
p 3;(WHITE, 851.

Operational research has drawn upon various disciplines for its problem solving

knowledge. Such knowledge includes both the methodology and the theory on

which various techniques have been based. These include linear algebra,
probability theory, statistics, kinetic theory of gases, and so on. In effect the

operational research approach tends to integrate and further generalize the

problem solving knowledge already available in other disciplines.

(C) OPTIM IZATIO N

In Operational Research a great amount of effort has been spent on developing

and employing optimization techniques to arrive at an optimum solution.

Experience has shown that the meaning of optimum is only related to a particular

formulation and is not absolutely related to reality. In recent years there has

been more emphasis on achieving a 'satisfactory' solution rather than an 'optimum'
solution.

1 . 2 . 3 . TECHNIQUES OF OPERATIONAL RESEARCH

The techniques of operational research are generally classified as deterministic

and stochastic. Deterministic techniques do not take into account the

probabilistic variation in various elements of the model and mainly resort to

mathematical forms of reasoning. Stochastic techniques on the other hand take

into account the possible variability of model parameters and measurement

precision. These techniques are mainly based on probability theory and statistical
forms of reasoning. Further, a set of techniques is based on fuzzy forms of
reasoning.

An application oriented also prevails. For example techniques related to project

planning, scheduling, allocation, distribution, and so on

1.2.4. DECISION-MAKER AND THE ANALYST
Typically in an organization a decision maker (a line person, as opposed to staff) is
charged w ith the responsibility of making decisions for taking actions, whereas an

analyst (a staff person) has the responsibility to provide the necessary support
during the process of decision making.

It can be said that the decision maker on his own, or with the assistance of analyst

brings about a declarative formulation for a decision problem. Whereas the role

of the analyst is to make use of specialized problem solving knowledge to

transcribe the declarative formulation into a procedural formulation, so as to

provide a solution to the formulated problem.

1 .3 . THE USE O f COMPUTERS IN PROBLEM SOLVIMG

1 . 3 . 1 . SOLUTION PROCEDURES A PP LIE D BY HUMANS

When solving a specific problem which has been formulated in one o f the general
forms for which a solution procedure is available, that solution procedure needs to

be carried out to obtain the solution. For exam ple, the solution procedure may

involve drawing a geometrical construction to scale and then measuring off the

solution (e.g. some problems in statics, dynamics, ...). For other problems it might

involve performing some arithmetical operations on numbers which have a specific

meaning for the problem in hand. For more complex and lengthy procedures some

form of ready reckoners in the form of tables o f values have been used. (e.g.

logarithmic tables, trigonometric tables,.....).

13

1 . 3 . 2 . THE USE OF DEVICES

To further ease the burden of calculation (w ith some sacrifice of accuracy)

various devices have been invented which represent numerical quantities on

logarithmic and other scales for manipulation. For example, in a slide rule these

scales can be aligned and the result can be read o ff from the alignment. In

specialized areas, such as weaving looms, musical instruments, it was also possible

to store the procedure itself (e.g. a weaving pattern) which is acted upon by the

machine at the time of weaving. In general, a person skilled in the use of these

techniques is required to perform the procedures.

1 . 3 . 3 . ANALOGUE ELECTRONIC DEVICES

Advancements in electronics have led to interesting developments in which it has

been possible to represent various quantities and their relationships in terms of

V

14

their electronic analogues, as in abstraction their behaviour can be expressed by

the same general form. This enables us to explore the behaviour of a system as a

whole. This is in contrast with the problem reduction approach in which only a

part of a larger system is explored at a time. This type of study was not possible

previously because we were limited in our capability to integrate a large number

of components and their interrelationships in one model.

1 . 3 . 4 . D IG ITA L COMPUTERS IN PROBLEM SOLVING

(A) GENERAL PROCEDURES TO EXPRESS GENERAL FORMS

The invention of the digital computer has opened up a multitude of exciting

avenues in terms of our information processing capability for problem solving.

Software has enabled us to build layers of abstraction on top of the basic primitive

operations available at the machine level. In addition to the high speed of its

operation it provides the necessary infra-structure for expressing general forms,

which can be used directly for the solution of a problem complying with the

requirements of the general form. These general forms are procedural in nature.

For example a general procedure for solving polynomial equations can be written,
which will accept the order of the equation and the values of the coefficients and

then produce the solutions to the desired accuracy within a matter of seconds.

(B) PROCEDURAL LANGUAGES FOR COMPUTER PROGRAMMING

In order to express the general forms as procedures, procedural languages have

been designed which provide the necessary elementary procedural constructs such

as sequential processing, unconditional branching, conditional branching, different

types of looping, which can be assembled serially in the form of a program. The

development of computer languages and the study of the related grammars have

attracted considerable attention and these are the major concern for research in

computer science. There is a large variety within procedural languages available

based on the general forms in which programs can be expressed. For example

languages providing the facility to define one's own types for data and related

operations, strongly typed languages, type-less languages, block structured

languages, object oriented languages, a variety of subprogramming facilities and

the way subprograms are invoked, different types of memory management models,
co-routining facilities and so on.

15

(C) SYMBOLIC PROCESSIMG

Initially, in line with problem solving techniques, computer programming

languages were designed to express problem solving procedures mainly of

arithmetic nature e.g. FORTRAN. The design and implementation of languages

themselves led to the ideas of symbolic processing. This type of processing has

made it possible to write software which enables mathematical transformation

operations to be performed on symbolic expressions (such as differentiation,

integration, Laplace transformation and so on) . The ability o f symbolic

processing reduces the need for coding the information as numbers (e.g. female *

0, male • 1).

(D) NON-PROCEDURAL LANGUAGES

More recently, work in the area of Artificial Intelligence has led to the

development of declarative (Le. non-procedural) languages. In contrast with the

procedural languages where our problem solving knowledge must be translated into

procedures, declarative languages permit the expression of this knowledge in the

form of a set of facts and rules. The language facilities themselves proceed to

select relevant pieces of declarative knowledge when working on the solution of a

particular problem. The development of declarative language has enabled the

implementation of operations used in logic such as matching and unification.

Declarative languages bring computer based problem solving to a higher level i.e.
the human readable description of problem solving knowledge can be directly

acted upon by the computer system to solve a specific problem without going into

the details of procedural coding, which is highly error prone and time consuming.

(E) COMPUTER PROGRAMMING AND PROGRAMMING ENVIRONMENTS

Computer programming has also developed mainly as an art. Various principles

have evolved for efficient program development (e.g. structured programming

techniques, top-down decomposition of large programs, documentation standards,
and so on). Various support and productivity tools have also been created which

help the programmers in the course of the development of software. There has

been a trend towards combining languages, support and productivity tools into

integrated programming environments. For larger software projects the discipline

of software engineering has also evolved.

16

(F) DOMAIN SPEC IF IC PROBLEM SOLVING SYSTEMS

In addition to the development of languages for expressing general forms as

procedures, it has been possible to actually write such procedures for a given

domain of problems and integrate them in the form of a problem solving system

for that domain. Examples are maintenance management systems, project

management systems, medical diagnostic systems, pattern recognition systems

and so on.

1 . 3 . 5 . THE DSE OF COMPUTERS IN OPERATIONAL RESEARCH

(A) MECHANIZATION OF SOLUTION PROCEDURES

"Initially, the coeplexity of the problees that OR could
handle was severely Halted by the coaputational tools that
were available! paper, pencil, and desk calculators. Many
real-world probleas for which the OR tools were otherwise
appropriate were ruled out by the liaits on coaputatlon.
These liaits were draaatically altered by the aodern digital
coaputer, which began to find a civilian aarket about 1950.
With computers available, if the sky was not quite the
liait, the ceiling was now very high; and it becaae higher
each year as coaputers becaae larger and aore powerful and
as researchers in OR addressed the problea of iaproving the
coaputational efficiency of the tools."
p 9 >I SIMON, 87).

Numerical procedures, like evaluating integrals, solving differential equations

numerically, numerical optimization techniques, have also been implemented,
since such procedures already existed.

"In addition to its invaluable contribution to coaputation,
hence to the coaplexity of the probleas that could be
solved, the coaputer gave OR a new tool of analysis:
siaulation or aodeling. Now, probleas that were
analytically intractable and not amenable to optialzation
could be approached by simulating system behavior
numerically."
p 9»[SIMON, 87|.

The solution procedures which are not analytic in nature (e.g. procedures based on

the representations of graph theory) have also been implemented.

(B) COMPUTER SIMULATION

The Computer has not only provided the means of implementing the solution

procedures already discovered theoretically, but also has provided the facilities

17

for modelling itself. With the suitable representation of the system's components

and their interaction with each other during the course of its operation, it is

possible to build a computer model of the system under study. Such a model can

be 'run' to mimic the behaviour of the system over time. Although running the

simulation model itself does not provide the solution to the problems related to

the system, it provides a source of information about the performance of the

system, which otherwise may not have been available or may have required years

to obtain from the study of the actual system. With suitable alterations in the

parameters o f the simulation model a whole performance space can be generated

by running the model after each alteration. Having obtained this information

from simulation runs, the problem solving is then a matter of making a choice.

A validated computer simulation model provides a suitable test ground for testing

hypotheses about the system without affecting the actual system. Such

experimentation results from our formulation of meta-models about the system

and the computer simulation model is parameterized/formulated in response to

the specific demands of the meta model formulated. For extensive discussion on

experimentation with simulation models see [KLEUNEN, 87].

Also, Fig. 1.1. (from [K U R , 79]) shows the use of simulation modelling within the

context of problem solving using a system theoretic approach.

(a) The T y p e s o f p ro b le m s f o r w h ich s im u la t io n i s a s u i t a b l e
t o o l

"(Karplus, 1976) has shown that siaulation can only solve
three (interrelated) fundanental types of probleas. These
are:

a. Assueing that knowledge is available on a systee and its
input vector, coapute its resulting output characteristics
(Analysis/Predlction)

b. Assueing knowledge of input vector and resulting output
characteristics, establish the nature of the system
(Synthesis/Identification)

c. Assuming knowledge of the system and the (desired) output
characteristics, compute the corresponding (necessary) input
vector (Management/Control).

(Note that the term vector is used here for a set of time-
trajectories) . *
p 7;(ELZAS, 80)

I t

Figura 1.1. Suaaary of « packaga of aathodologieal toola for ayacaaa modalling (from [KLIR, 7t)ip 13)

19

"The nature and fundamental aspects of sisolation also
depend to soae extent on the purpose of the exercise. Those
who work in the field of Artificial Intelligence often speak
in this context about working aodes. These modes do not
only describe the way in which the computer is used, but
also the relation between this use and human activity.
Three working aodes can be recognized (weizenbaua 1976):

Simulation Mode: understanding/designlng/planning by
imitation

Performance Mode: designing/controlling based on
whatever (goal-oriented) principle
one can discover

Theory Mode: designing (abstract) theories based
on analogies (practical entities
being acre models of theories).

"It can be stated that, just as the inventions of the early
pioneers in technology, the origin of simulation and
modelling hails from imitation of apparent reality."
p 7)(ELZAS, 80].

1 . 3 . 6 . TOWARDS A R T IF IC IA L INTELLIGENCE

The role of the computer in problem solving has extended from the mechanization

of solution procedures and simulation, to the very processes by which theory is

developed namely mechanical theorem proving (BUN D Y, 83]. Although thinking

about discovering general procedures for theorem proving is not new, the digital
computer has provided a fresh impetus to this line of research and as a result

theorem proving systems have been developed.

Further, a new logic programming paradigm has also evolved, which has logical

operations like matching, unification, and deduction as its primitives.

"One of the key software advances to cone out of expert
systems is non-procedural or declarative programming (Schor,
1986}) (Hong, 1986). It is the inference mechanism (IM)
concept which makes this possible

"Non-procedural programming is writing a program by just
stating the appropriate set of if/then statements without
concern for execution order or which if/then statements are
applicable to different situations. A controlling function
determines which statements to use and their order.
Although this method is not workable across all programming
situations, it is often applicable to expert system
situations."
p 70;(FORDYCE L NS, 87)

20

"By using prédicats logic statements, we can write rules
that are aore general than those already described. This
type of rule building is called logic prograaaing {Dahl,
1983). Prolog (Clocksin and Hellish, 1984} is the aost
popular language for building these types of rules. But it
is straightforward to build such structures in other
languages like LISP and APL2 (Brown et al., 1986)."
p 71;(FORDYCE L NS, 87)

1 .4 . A R T IF IC IA L INTELLIGENCE APPROACHES TO PROBLEM SOLVING

Artificial Intelligence is an umbrella term covering the study of the following with

a view to developing computational models for these:

- Natural language understanding

- human perceptions of hearing, vision.

- human capability o f learning

- human capability of problem solving and related reasoning processes.

Fig. 1.2 shows that problem solving is the common area of interest between

operational research and artificial intelligence.

[Shapiro (ed), 87] provides a comprehensive collection of knowledge about

artificial intelligence in the form o f an encyclopedia.

OR AI

F igu re 1 .2 . P ro b lea S o lv in g can be regarded aa the coaaon
area o f in t e r e s t between O p eration a l Research and
A r t i f i c i a l In t e ll ig e n c e .

21

1 . 4 . 1 . PROBLEM SOLVING AND AR T IF IC IA L INTELLIGENCE

"Problem solving is the central phenomenon studied in AI ...
A major goal of AI is to develop and study problee-solving
systems that are computationally efficient and that are
effective over a broad range of problems."
p 767 > (AMABEL, 87)

The ability to construct reasoning systems has motivated even more general

representations of problems together with more general (possibly weaker) solution

procedures. In one sense it means that we can adopt a problem oriented approach

to problem solving rather than a technique oriented approach which has prevailed.

”... artificial intelligence is the application of methods
of heuristic search to the solution of complex problems
that:

(a) defy the mathematics of optimization,

(b) contain non-quant if iable components,

(c) involve large knowledge bases (including knowledge
expressed in natural language),

(d) incorporate the discovery and design of alternatives of
choice, and

(e) admit ill-specified goals and constraints."
p 11)(SIMON, 87).

1 . 4 . 2 . THE FORMULATION OF PROBLEMS IN A I

The principal form used within AI for expressing a problem is by representing it as

a state space. Such a state space can be generated from an articulation o f the

problem at the time of solving the problem or it can be made available in the form

of a knowledge-base (e.g. production rules) or a combination of the two.

1 . 4 . 3 . PROBLEM-SOLVING PROCEDURES USED IN A I

Corresponding to the representation of problems as a state space, the solution

method principally consists of searching this space to arrive at the solution to the

problem in hand. State space may be searched by using a 'blind' search or by

employing some form of heuristic method to make the search more efficient.

22
1 . 4 . 4 . KNOWLEDGE-BASED SYSTEMS (EXPERT SYSTEMS)

During the early AI research the emphasis was on the generalized representations

of problems and the generalized solution procedures. Attempts at the

incorporation of domain knowledge in problem solving met with greater success

and this gave rise to what is now known as Intelligent Knowledge Based Systems or

more popularly Expert Systems.

Expert systems have been seen to be useful and economical as reported by

(FORDYCE I. NS, 87):

“Expert systems have value because

1. they capture, refine, package, and distribute expertise,
and

2. they solve problems whose complexity (reasoning) exceeds
human ability, or the required scope exceeds any
individual's.*
p 67>(FORDYCE t NS, 87]

“Expert systems ... are economical because of four
characteristics: they are

1. relatively simple to create
2. self documenting
3. capable of significant levels of adaptation to new
situations, and
4. can explain how they arrived at their recommendation,
p 75((FORDYCE t NS, 87)

“Instead of differentiating between OR and AI, we need to
confuse, blend, and synthesize then as much as possible. We
need to build our professional institutions and
organizations to use then together, supporting, reinforcing,
and extending each other.“
p 11i(SIMON, 87).

1.5.1. THE EARLY HISTORY OF OR AND AI
[SIMON, 87] has reviewed the early history of both Operational Research and

Artificial Intelligence. (FORDYCE A NS, 87] has identified that intelligent

23

systems have a strong but less publicised root in the Management Science and

Operational Research field. Also in the words of Simon:

"After about 1960, Al and OR went their separate ways; whole
new generations of scientists trained in each of these
disciplines were largely unacquainted with the techniques
provided by the other. Only when AI builders of expert
systees began, about 1980, to invade the field that had
traditionally been occupied by OR did each group begin to be
aware again of the existence of the other."
p 10;(SIMON, 87).

As noted earlier in this chapter, Operational Research has a history o f adapting

and enhancing tools from other disciplines [WHITE, 85] and so the developments in

the area of Artificial Intelligence can not be ignored [FORDYCE & NS, 87].

"... He should aspire to increase the iapact of MS/OR by
incorporating the AI kit of tools that can be applied to
ill-structured, knowledge-rich, non-quantitative decision
doeains that characterize the work of top sanagesent and
that characterize the great policy decisions that face our
society."
p 8;(SIMON, 87)

1 . 5 . 2 . THE POTENTIAL APPLICATIONS

[SIMON, 87] has identified some of the specific classes of managerial decision

problems in which artificial intelligence technology can be applied

advantageously. These include: (a) the approach to problem solving, i.e. being able

to take a problem oriented point of view as opposed to a technique oriented view,

thus making use of both algorithmic and heuristic problem solving knowledge, (b)

the symbolic processing nature of AI tools can assist the MS/OR scientist in

building effective decision aids for top management, where a large proportion of
the information dealt with is non-quantitative (e.g. English sentences), and (c) the

AI technology of heuristic search is well suited to addressing design problems

which would include generating decision choices for which the technology did not

exist before and where the generation of decision choices depends mainly on the

creativity of the human brain. And finally:

"Ultieately this doaain knowledge will enable the coaputer
to 'understand' the data and problee well enough to reduce
the flow of inforswtion to the decision eaker to a
structured series of available alternatives with an
explanation of their consequences."
p 75;IFORDYCE a NS, 87)

24

1 .6 . CONCLUSION

Operational Researchers and Management Scientists need to take an active

interest in the emerging Artificial Intelligence technology with a view to its

utilisation in the designing of more powerful computer systems for managerial
problem solving and decision support.

END OP CHAPTER 1

25

CHAPTER 2: A REVIEW OP SIMULATION MODELLING

INTRODUCTION

This chapter continues with the theme of the previous chapter but narrows its

focus on the aspects of discrete simulation modelling which relate to the research

described in the later chapters. The initial sections attempt to provide the reader

with a scenario of discrete simulation modelling with particular emphasis on the

simulated behaviour generation methods. The practice of computer simulation is

naturally influenced by the developments in the area of computer science. Such

influences have been given a brief coverage and current trends in simulation

software have been described. Finally, a review o f the literature which relates

simulation with artificial intelligence has been undertaken, as it is the main

concern of this thesis. It must be added that most of this literature became

available only when most of the implementation work described in chapters 4, 5

and 6 had been completed and is included in the review for the sake of

2 .1 . ABOUT SIMULATION

2 .1 .1 . D EFIN IT IO NS OP SIMULATION

In 1979 Pritsker compiled 22 definitions of simulation by various authors,

[PRITSKER, 79], and there has been more since then. This shows the multiplicity

of views about simulation and its evolving nature as the practice of simulation is

becoming more prevalent, due to of computer processing power becoming cheaper,

and the advancement in simulation methodology and available simulation

software.

One reason for many of the definitions of simulation is that it is used in many

subject areas:

"... simulation is coaeon practice in many fields of
science, which all d a l e ownership rights to this
speciality. To eention but a fewi cybernetics, general
systems science, engineering (especially control-).

u n i y t u n t science, operations research, sconoaatrics and
last but not lsast - physics.”
p 5;|ELZAS, 80)

26

It is instructive to have a look at some of these. In mathematics, for example,

simulation covers methods for the evaluation of integrals and the solution of

differential equations by numerical means. In engineering, simulation covers the

finite element techniques for the modelling solids under stress and the flow of

fluids; the simulation of physical systems or their abstract formulations e.g.

control systems, flight simulators, communication networks, distributed computer

systems. Other areas include simulation of global weather conditions, world trade

modelling, battlefield simulations, and so on.

2 .1 .2 . THE PLACE OP SIMULATION IN THE PROBLEM SOLVER'S
TOOLBOX

Since computer simulation has taken many forms in various disciplines, each has

its own domain specific view about it and this somewhat tends to obscure the

fundamental nature of its approach. Simulation has been used for solving

problems which cannot be formulated in one of the general forms for which an

algorithmic solution procedure is available, in the form of an algorithm or a

heuristic. We have an option either to develop the theory well enough to be able

to devise a general procedure for its solution or to resort to the computation

intensive technique of simulation. An example is the evaluation of an integral
which does not lend itself to being solved by the use of a formula. The simulation

approach to the evaluation of the integral proceeds with the evaluation of the

area under the curve in a piecewise fashion using an interval small enough that the

accuracy is at an acceptable level and large enough that the computation costs

are also at an acceptable level. This idea of proceeding from an initial state of

the 'system' (i.e. the function to be integrated) and generating successive 'system

states' in subsequent intervals for data collection (cumulative area) is fundamental
to simulation. This feature characterizes simulation from other forms of
modelling.

Unlike analytical techniques the information obtained from a simulation run is not

of general applicability because the results are specific to the initial conditions

and the terminating limit. Some level of generalization is, however, possible from

the results o f many simulation runs, each with different parameters, if the results

(or any transformation of them) depict any consistent recognisable pattern.

Whereas algorithmic or heuristic procedures are applicable to the aggregate

quantities in the given decision situations (e.g. monthly production), simulation

requires an understanding of the mechanics of the operations in order to produce a

valid simulation model for the problem in hand.

Due to these aspects of using simulation and the fact that simulation is a

computation intensive technique, it has been labelled as 'a technique o f last

resort':

11

"The reason for this experiaental approach, as opposed to
aore 'scientific* analytical techniques, is the coaplexity
of the situation at hand. Operational researchers soaetiaes
refer to siaulation as the technique of last resort (to be
used when all else fails)."
p3 j (VAUCUER, 85).

However, with the availability o f inexpensive processing power in the form of the

computer (microcomputers) alongwith the advancement in simulation software,
this view is changing.

With the more recent systems approach to management problem solving the use of

simulation has further been emphasised. When all the relevant components of a

system are put together in one model the complexity of the model gets well

beyond the limits which analytical techniques can handle.

"Therefor* the choice for systeeic management approaches is
a necessary one. Maybe the most important facet of this
approach is the setting of a course only after rational
evaluation of the effects of alternative courses. This
implies the simulation connection."
p 5;(ELZAS, 80)

2 . 1 . 3 . THE DIMENSIONS OP SIMULATION

(SISSON, 69] has identified the following dimensions of simulation:

Static — Dynamic
Aggregate — Detailed
Physical — Behavioural
Computer — Human
Recursive — Quasi-equilibrium
Continuous - - Discrete
Size of Time Quanta
Deterministic — Stochastic.

This thesis will be concerned with the type of simulation which is Dynamic,
Detailed, Physical, Computer, Recursive and Discrete. The dimensions not

28

mentioned ere considered to be not directly related to this thesis (this, however,
should not be taken to mean that they are not important).

2 . 1 . 4 . THE APPLICATION AREAS

The following classification of papers in [UKSC, 84] provides a representative

sample of the application areas where simulation has been used:

Simulation for Policy and Planning
Biology and Medicine
Control Systems Simulation
Manufacturing Systems Simulation
Simulation in Education
Simulation of Electronic and Computer Systems
Real Time Applications

2 . 1 . 5 . PROBLEMS WITH THE USE OP SIMULATION

Highly skilled and trained experts are needed to conduct simulation studies which

makes simulation an expensive tool:

"Today, in order to use simulation correctly and
intelligently, the practitionei is required to have
expertise in a number of different fields. This generally
means separate courses in probability, statistics, design of
experiments, modeling, computer programming and a simulation
language. This translates to about 720 hours of foraml
classroom instruction plus another 1440 hours of outside
study (more than 1 man-year of effort) and that is only to
gain the basic tools. In order to really become proficient,
the practitioner must then go out and gain real world
practical experience (hopefully under the tutelage of an
expert)."
p 152;(SHANNON, 86).

From a more practical point of view:

"Simulation is experimentation with dynamic models.
Simulation of systems necessitates (1) a model which can be
conceived as a pair of parametric model and a relevant
parameter set, (2) experimental conditions, and (3) a
behaviour generator. During a simulation run, the behavior
generator drives the (model, parameter set) pair under given
experimental conditions to generate model behaviour which
can be trajectory behavior or structural behavior"
p 3;(OREN, 86).

V

29

As a computer simulation model is constructed within an overall framework for

solving specific decision problems related to the system under study, fig. 2.1.

(from (SOL, 86]), the simulation model needs to be general/generic enough that it

is capable of accepting changes in the decision parameters and then producing the

system behaviour accordingly. In this sense the information generated from

running a simulation model is used to define a search space to be explored by the

analyst, to arrive at a requisite solution to the problems in hand or to carry out

further experimentation. Such searchs can be performed intuitively, by using

heuristic methods or be based on meta models as noted in chapter 1. The search

strategy needs to be specified in advance of the construction of the simulation

model. This is also referred to as experimental frame.

"If we think of the aodelling process as part of the overall
process of decision waking, then the objectives derive froe
requests by decision Bakers for nodel with which to assess
the efficacy of proposed policies. ('Decision aaker' and
'policy' are intended here in a broad sense to include
engineer, designer, manager, etc., and iaplenentation,
design, tactic, strategy, etc., respectively.) Such
objectives are supposed to be foraulated as series of
questions regarding a real systea or its coaponents and
ultlaately to be foraulated as experlaental fraaes. An
experiaental fraae is a specification of the kind of data a
model should produce in order to answer the questions of
Interest. The concept however aust be aeaningful both for
real systea as well as aodel experlaentation since in
principle the ssae data could be obtained froa the real
systea (although there are aany reasons why aodels are
preferred in practice)."
pp 29-30} (ZEIGLER, 80).

There can be a number of reasons why the experimentation is preferred on a

simulation model rather than on the real system itself and most textbooks on

simulation provide a list of these (e.g. [PIDD, 84], (LAW fc K, 82], (FISHMAN, 78]).

A simulation model needs to be validated and its credibility established before any

confidence can be placed on the information it generates and the experimental
frame plays a major role in this.

"It should bs noted that the exper laental fraae is key
concept in aodel assessaent since aodel validity is properly
foraulated as a relation involving a aodel, a real systea,
and a fraae in which the behavioral data of the two are
coapared."
p 31}(ZEIGLER, 80).

F ig u r e 2 . 1 . MA fram ew ork f o r s im u la t io n '
(f r o m (SOL, 8 6] p 3 5 9).

31

2 . 3 . SIMULATION MODELLING

2 . 3 . 1 . SYSTEM DESCRIPTION

Depending on the decision problem in hand and the system under study, an analyst

decides on the aspects of the system which are relevant and must be incorporated

in the model. At the first level of abstraction these are put together in the form

o f a system description. Such a description needs to be in a formal language to

precisely capture the system components and their static and dynamic

interrelationships. Such a description may be narrative or diagrammatic or a

mixture of the two. A number of formal languages are in use for this purpose.

Examples are entity/activity cycle diagrams [CLEM ENTSON, 80], petri-nets

[D 'ANGELO, 83], queueing networks, system theoretic representations [ZEIGLER,

84]. System description languages have also been developed which serve as

pseudo-code as well as documentation. Examples include process oriented

simulation model specification and documentation language [FRANKOWSKI & F,

80], DELTA description language [HOLBAEK-HANSSEN fc HN, 77].

The purposes served by a system description are:

* human communication

* documentation of the system

* a basis for programming and verification

Most of the time, the system description is declarative in nature and does not

provide for behaviour generation directly, as time is not explicitly represented. It
would be most desirable if it were possible to generate the system behaviour

directly from the system description using one of the above formalisms.

2 . 3 . 2 . THE 'EXECUTABLE' SIMULATION MODEL

System behaviour generation by the computer however, requires the model to be

in a form acceptable to the computer system in use. The system description

alongwith our approach to behaviour generation therefore must be 'coded', using

one of the computer languages available, before simulation can proceed. The

V

32

language software (compilers/interpreters) available provide the necessary

facilities for conversion of the coded model into directly executable form and for

run time support.

For the convenience of reference, we shall refer to the model expressed in a

computer language as 'executable'. This implies that the model can be 'run'

directly from the command level of the operating system, after the language

software (e.g. a compiler) has converted it into a directly executable form.

The form that an 'executable' simulation model takes depends upon the available

language/software facilities on the computer in use. Some possibilities are

general purpose high level procedural languages (e.g. FORTRAN, Pascal, C , ...),

simulation packages, simulation languages, or a combination of these. More

recently, non-procedural languages (like PROLOG) have also been used for

simulation purposes (FUTO & S, 82].

2 .4 . DYNAMIC BEHAVIOUR GENERATION

"... but it is not the language in which the sieulation is
described that is of prieary importance! it is the systea
which handles the stateaents of this language to transform a
set of serial program steps into a simulation of a parallel­
acting real system.*
p 74;(TOCHER, 69J.

The author does not agree with the first part of this statement and takes the view

that elegance and 'naturalness' (e.g. referential transparency [ROBERTSON, 86])

supported by a simulation language would have significant effect on the cost of a

simulation study. The second part of the statement, however, is the topic of this

With some experience of coding computer simulation models it is not difficult to

recognise that some features are common in all simulation models (e.g.

mechanism for time advance) and others can be formalized (e.g. approaches to

behaviour generation). It is natural that attempts have been made to code these

common aspects of simulation models in a general form, so that these do not have

to be coded for every simulation model. The result of such attempts have been a

number of simulation packages (i.e. suites of routines in general purpose high level

languages) and a number of simulation languages.

"The central problee of discrete systea siaulation Is
scheduling the execution in correct chronological sequence
of sections of program which represent the occurrence of

33

randoe phenomena. It would be nonsensical to have to write
and debug quite coaplicated routines to handle this dynaaic
sequencing every tiae we iapleaent a siaulation aodel.
Hence aost workers are aore than happy to utilise a well-
proven coausercially available siaulation prograaaing
systea."
p 1 7 9 »(D AVIES « 79]

2 . 4 . 1 . SIMULATION EXECUTIVES

An essential part of every simulation language and simulation package is what is

known as the simulation executive [TOCHER, 69] which goes through successive

phases repeatedly to generate the behaviour of the system in the simulated time.
For example while using Hand or Computer Simulation Package (HOCUS) [H ILL,

71] the person who performs the hand simulation is the simulation executive.

His/her role is replaced by a software component within the simulation language

or a simulation package.

2 . 4 . 2 . THE REPRESENTATION SCHEME FOR THE SYSTEM 'S STATE

The model components need to be represented for programming the model for

'execution1 by the computer. It is an intermediate level where the requirements of

the programming language available and the modelling requirements of the

simulation study need to both be met in an efficient manner. On the modelling

end, various items of the model are abstracted as entities, sets, queues, queue

disciplines, etc. A ll these are then represented in terms of the programming

language facilities. For example an entity can be represented as a Pascal

RECORD or a FORTRAN integer and so on, depending on the implementation

language used.

Two main representations used in implementations of simulation software are: (a)

the use of state variables, and (b) set theoretic representations [TOCHER, 69]. A

conceptual term 'entity', which may have attributes, is used to denote the

elements which 'flow' through the system, whereas the system itself is represented

by queues and operations, both of which are mapped onto sets. The simulation

software provides the necessary primitives for the various possible actions by

which the state of the system may be changed (e.g. adding an entity to a set). It
also allows for the inspection of the current state of an entity, queue, operation,

and so on. These representations provide for the coding of the static features of
the system.

34

2 . 4 . 3 . APPROACHES TO DYNAMIC BEHAVIOUR GENERATION

The issue of dynamic behaviour generation relates both to the form in which the

dynamic behaviour is coded and the phases in which the simulation executive

'fires' the relevant parts of the code. There is considerable confusion in the
terminology used to describe these. [TOCHER, 69] has elaborated on this

confusion.

The following sections consider behaviour generation within the context of two

distinct programming paradigms namely procedural and object oriented.

(A) DYNAMIC BEHAVIOUR GENERATION WHILE USING PROCEDURAL
PROGRAMMING PARADIGM

From the point of view o f behaviour generation the simulation executives can be

broadly classified in two categories as Two Phase or Three Phase systems. The

two phase systems can be further classified according to the way the dynamic

behaviour is coded, i.e. activity based or event based. A brief review has been

undertaken in the following:

(a) Two P h ase A c t i v i t y Type

Phase I. The time advance is determined from what are described as time cells.

Time cells are associated with entities in the system or with other system state

variables. The values of the time cells represent the remaining time for which the

associated entityfies) or system state variableis) will remain in their respective

current state(s). The time advance is determined by the minimum value o f the

time cells, and all the time cells are modified accordingly.

Phase II. A ll the possible changes of the system states are scanned. The time

cells at value zero are regarded as representing a particular system condition and

are treated at par with the other conditional system states which lead to a change

of the system state. If the system's state is altered, the scanning is repeated to

explore the possibility of any further changes, until no further changes in the

system state are possible, when Phase I is re-entered.

Such simulation executives therefore require the dynamic behaviour of the system

to be coded as what is known as 'activities', which specify the conditions which

must be met before the state of the system is changed and the actions for

35

changing the system state. The actions to be performed at the completion of an

activity are part of the specification of the activity and are not separately coded.

For an example of an activity type coding of a simulation program using Extended

Control and Simulation Language (ECSL) see [CLEMENTSON, 80].

(b) Two Ph ase E vent Type

Phase I. The time advance is determined from a sorted list of time/event/entity

triples. The entries in this list result from the explicit scheduling of what is

termed as events. These events typically represent the completion of activities

(whose completion time can be predicted when activities are started and therefore

can be scheduled). The events are also known by the name o f bound activities

(only to add confusion to the terminology).

Phase □ . The state of the system is altered by the execution o f what is known as

event routines. From within the event routine further possible changes are

explored which can be made as a result of changes already made by the current

event. Multiple events scheduled for the same simulated time and their

respective conditional changes of state are handled one after the other. When no

more changes can possibly be made then Phase I (i.e. time advance) is re-entered.

Such simulation software therefore requires the dynamic behaviour of the system

to be coded as event routines. The event routines allow for the coding of the

dynamic behaviour of a class of entities in a general form.

(c) T h re e Ph ase

Three phase simulation systems concentrate on processing all the scheduled events

for a given time before the state of the system is scanned for making further

conditional changes, as a result of changes already made during the execution of
the event routines.

Phase I (also called A phase). Time is advanced in this phase as described in the

two phase event type systems.

Phase □ (also called B phase). A ll the events scheduled for the current simulated

time are executed through what is known as event routines.

Phase III (also called C phase). The state of the system is explored through

specific routines for possible conditional changes of the system's state. When no

further changes are possible then Phase I is re-entered.

While using a three phase approach to behaviour generation the dynamic behaviour

of the system is coded as a set of 'event routines' (also called B routines) and a set

of 'activity routines' (also called C routines). An event typically represents the

completion of an operation in the real system thus releasing entities and

resources, whereas an activity typically represents the start of an operation to

engage the available entities and resources. In activity routines the conditions are

known as activity test heads, and the actual actions for changing the system's

state are referred to as the activity bodies [TOCHER, 69].

The three phase approach is favoured more in the UK, whereas the two phase

approach is preferred in the USA. A recent exchange of ideas on this can be seen

in [O'KEEFE, 86b) and [HOOPER, 86). Fig 2.2 (from [MILLS, 86]) shows the

simplified development o f two phase languages whereas fig. 2.3 (also from [MILLS,
86]) depicts the simplified development of three phase languages.

37

F igure

Interactive Graphics CtprtiUtr

2 .2 . "The S im p lif ied development o f c e r t a in two-phase
sim u lation languages" (from [M ILLS, 86) P 234).

ca
r

(i)

38

39

(B) DYNAMIC BEHAVIOUR GENERATION WHILE USING OBJECT ORIENTED
PROGRAMMING PARADIGM

Object oriented programming has been given more importance in recent years,

although it was conceived in the form of the SIMULA language in the 1960's

(STEFDC A B, 86].

(a) The P r o c e s s V iew o f S i a u l a t i o n

An alternate form of an executable simulation model is the description of a

process for each class of entities in the system. A process represents the life -

cycle of an entity in the system, as viewed from the entity's own angle (FR A N T A ,

77], [FRANKOWSK1 A F, 80]. As such an executable simulation model coded in

this form is nearer to the human understanding than the one expressed as a set o f

actions to be performed by the simulation executive in the form of events and/or

activity routines. This implies less effort in coding the simulation model in the

first place and easier maintainability of the code, as there is an element of self

documentation in the code itself. The process form of describing an executable

simulation model therefore represents a 'higher level' specification (i.e. closer to

human understanding as well as machine executable).

"The process approach coses closest to modelling the reality
of interacting entities and gives very aiodular model
specifications."
p 4;(VAUCHER, 85].

The simulation executive capable of generating the behaviour for a simulation

model expressed in the process form makes use of what is called a 'process

interaction' approach to behaviour generation. This approach is in turn based on

computer science concepts of coroutining.

Although the issues of behaviour generation have been considered within the

context of two programming paradigms in which these have evolved, these are by

no means restricted to the respective programming paradigms. A simulation

executive using either of these 'world views' can be implemented using either of

the programming paradigms. More recently, simulation software provides the

flexibility of coding models using alternate world views or even a mixture of these

40

in one model, for example SLAM [PEGDEN & P, 79]. [HURRION, 85] has shown

that it is possible that the process form of a simulation model can be used to

generate the system's behaviour while using a three phase simulation executive.

’Several types of simulation use different modelling and
coeiputational paradigms some of which have fundamental
similarities. for example, simulation uses both global
computation as well as local processing paradigms. The
interface of model modules in the first case can be
specified as coupling, including nested couplings. In local
processing, the interface of model modules can be handled
either by scheduling (as in event or process interaction) or
by message passing (as in object oriented modelling). It
appears that a powerful modelling formalism could capture
the common elements of different paradigms to represent
objects and their interfaces to provide a methodologically
sound basis to conceive complex systems that can be modelled
and simulated. Definitely, the tine is ripe for multi­
formalism model modules in simulation."
p 7,-lOREN, 86).

(D) NEED FOR A U N IF IE D WORLD VIEW

"There are now at least thirty different simulation tools
available to assist the planning of everything from a post
office layout to a complex manufacturing system. This
variety of packages, ranging from a few hundred to many
thousands of pounds in initial cost, has served mainly to
confuse the prospective purchaser of either the actual
software or the services using it. Each supplier, of
course, maintains that his is the best package for your
application."
p 2 26; l M ILLS , 8 6)

Figure 2.4 from [SCHMIDT, 88] depicts the present state of simulation software.

41

42

There is a need to reconcile the various approaches to bring about what can be

described as 'a unified world view' by closing the gap between the various world

views in existence presently:

“The ‘closing of the gap* In fact only depends on two
changes:

a. Finding, enumerating and standardizing the different
modelling formalisms, so as to be able to provide the right
interfaces to allow transit froe one formalisa to the other

b. Leaving behind us the concept that a language, in which
we can formulate models for simulation on a computer, would
also cater for conventional algorithmic (if you wish:
procedural) computer programming. In other words: making
the transition from SPLs (Simulation Programming Languages)
to MOLs (Model Oriented Languages)."
p 9;(ELZAS, 80)

2 .5 . SIMULATION SOFTWARE

2 .5 .1 . SIMULATION LANGUAGES AND PACKAGES

Having considered the basic ideas related to behaviour generation and the form a

simulation model must take for it to be acceptable to a particular simulation

language, a brief look at the technology of simulation software is appropriate:

"Each particular simulation programming language (SPL)
provides the skeleton of a program, principally the time
advance mechanism, together with a series of routines and
data structures which we may use to add the flesh to
describe the characteristics of our own models. The SPL
provides high-level concepts to help us articulate the
unique features of our model, but at the same time it
imposes a rigid structure within which to define the dynamic
behaviour of the elements of the model. There are in fact
some half dozen different skeletal structures, each of which
dictates apparently quite different forms of (user-supplied)
flesh."
p 180;(DAVIES, 79)

Every simulation package and simulation language subscribes to a 'world view', in

terms of a formalism fo r the system description and the particular behaviour

generation approach it employs, which in turn, has a major influence on the form

in which the program is expressed.

[NANCE, 84] has reviewed the history of the way simulation software has evolved

over the past decades. (DAVIES, 79] provides an over view of the internal

structure of a number of different simulation languages. For a well categorized

bibliography of simulation software see [SHUB, 80].

2 .5 .2 . SIMULATION PROGRAM GENERATORS

Coding a simulation model from a system description is a major step in simulation

modelling. Manual programming is highly error prone and expensive. To ease this

burden items of software have been developed under the name of simulation

program generators. These make use of the computer science ideas of automatic

programming coupled with the formalism for the system description (e.g. activity

cycle diagram) and the syntax and semantics of a particular simulation language

(or package) to generate a simulation program in that language. The system is

generally described to a simulation program generator through an interactive

session with it. Examples include CAPS [CLEMENTSON, 80] and DRAFT

[MATHEWSON, 85].

2 .5 .3 . SIMULATION ENVIRONMENTS

Simulation software has evolved well beyond providing the specification facilities

for the behaviour generation aspects of a simulation model. Such software has

been further developed to allow for the specification of an experimental frame,

computer assisted model development, automatic statistics gathering, analysis of
results, graphic display of results, and so on. More specialised simulation

software, which relate to simulations within a specific application domain (e.g.

manufacturing), provide for sub-model library features, where the behaviour of
different types of machinery can be stored to be retrieved and parameterized for

building specific models (e.g. WITNESS (ISTEL, 86]).

"... the distinction of eodel generation and eodel
referencing is as follows: as the tern ieplies, in eodel
generation, models are generated with or without the
assistance of a computer. In model refereeing, already
existing model which were stored in model files, are
retrieved. As a combination of the two concepts, one can
consider, for example, the case where a retrieved component
model can be considered with or without modification and can
be coupled with a newly generated component model."
p 190 ;[OREN, 821

Thm current trend in the design of simulation environments can be summarised by:

- Computer support throughout a simulation study

- Comprehensive and Integrated simulation environments

(A) COMPUTER ASSISTANCE IN ALL PHASES O r SIMULATION

"... there are four basic groups of possibilities for
coaputer-aided modelling systems. They are: (1) model
generation and/or referencing, (2) model acceptability, (3)
model processing, and (4) behaviour processing."
p 189 ;(OREN, 82)

The CASM simulation environment is an example o f a research project which aims

to provide computer assistance in simulation modelling [PAUL, 88].

(B) COMPREHENSIVE AND INTEGRATED

"Perhaps the most descriptive keyword for characterizing the
envisioned simulation practice of the future is
'comprehensive'. That is, practitioners will be doing the
same things they do now, except that, individually and
collectively, they will be able to carry out more of these
activities, to greater effect, in the time and money
available."
p 25;[ZEIGLER, 80).

"The sine qua non of advanced simulation methodology is the
objective of providing comprehensive and integrated
assistance in all aspects of the modelling and simulation
process."
p 25;[ZEIGLER, 80).

"Self contained workstations with integrated development
environments will make a large impact on the shape of
programming in the 90s. Exploratory prototyping of complex
systems, an acceptance of the inevitability of change in
system specifications, and a shift in emphasis from writing
new to modifying existing programs will further increase the
attraction of late binding, object orientation and powerful
program management tools for browsing, design, testing,
modification, instrumentation and optimization of code.
S imulation laboratories hosted on personal workstations
with desktop-based programming environments and graphics
support may well prove a major breakthrough in terms of
effectiveness and user acceptance."
p 47;lKREUTZER, 88).

45

2 .6 . THE INFLUENCES ON SIMULATION SOFTWARE O r DEVELOPMENTS
IM COMPUTER SCIEMCE

"By exploring the fundamental concepts which are common to
simulation and other relevant fields (such as artificial
Intelligence, cybernetics, general system theory, and
computer science) specialized in the knowledge
representation, knowledge generation, knowledge processing,
and knowledge assimilation, we may facilitate their
synergies and symbiosis."
p 3 i (OREM, 8 6 J .

In the following subsections a brief review has been undertaken to establish the

relevance of developments in computer science, and their effect on simulation

methodologies and its software. In a later section the influence of developments

in the field of artificial intelligence have been reviewed.

2 . 6 . 1 . HARDWARE

Developments in the area of computer hardware, especially the availability of

microcomputers as personal machines, have provided the necessary motivation for

the use of simulation modelling in preference to other forms of modelling,

although other forms of modelling have also been implemented on

microcomputers.

Another area in hardware technology which is already making significant impact
on research in simulation is that of parallel processing (e.g. [K O W ALK , 88]).

2 . 6 . 2 . THE A V A IL A B IL IT Y OP NEW PROGRAMMING LANGUAGES

A great majority of simulation systems have been implemented in general purpose

high level computer languages. When FORTRAN was the only available high level

language, both simulation software and simulation models had to be coded in it.

The implication is that all the features of the system must be described in terms

of the limited variety of data structures offered by FORTRAN and its

subprogramming facilities. The advances in general purpose computer language

concepts has enabled simulation software writers to implement their software in

more elegant forms by devising data structures and their related operations

specifically for this purpose. For example a greater variety of data types are

provided by languages like Pascal, Ada, Modula, C , ... and more elegant

subprogramming facilities, in terms o f the way subprograms can be invoked,

provide for richer higher level constructs in which to express simulation concepts.

46

Dynamic memory management concepts in these languages allow for the dynamic

generation of entities during the simulation run which was not possible in

FORTRAN. As an example, [WALES «. L, 86) and [DOWNES «. B, 84] investigate

the suitability of the use of the AD A programming language for simulation.

2 . 6 . 3 . THE GRAMMAR FOR SIMULATION LANGUAGES

Although the specification of grammars for programming languages is one of

principal concern to computer scientists, an attempt at the formalization of the

simulation language CSSL has been commented on by Oren as follows:

"In the 60s, even the eost basic concepts of computer
science such as language specification and grammars, did not
have a strong influence on simulation. For example, the
much acclaimed and influential CSSL definition published in
1967 (Strauss et al, 67} had 126 rules expressed in BNP
(Backus-Naur Fora) and «1 syntactic errors (Oren, 75)"
p 3i(OREN, 86).

[BONGULIELMI & C, 84] has provided a view on the usefulness of deterministic

grammars for simulation languages and has recommended group LL(1) languages

for the construction of simulation software.

2 . 6 . 4 . OBJECT ORIENTED PROGRAMMING

As noted earlier, object oriented programming p arad igm , [S T E F IK & B, 86] and

ideas about co-routining, support the process view of simulation. The ideas of

having data structures and related operations as one unit, as objects, allows data

abstraction which in turn leads to referential transparency thus enabling more

elegant code at a higher level. SIMULA [BIRTWISTLE 6 DMN, 79], DEMOS

[BIRTWISTLE, 81], SMALLTALK [GOLDBERG fc R, 83], ROSS (KLAHR, 86],

BLOBS [MIDDLETON It Z, 86] provide examples of object oriented languages,
which can be employed for simulation related use.

2 . 6 . 5 . COMPUTER GRAPHICS

The role which computer graphics has played in the area of simulation deserves a

special mention, as it has more or less revolutionized the way simulation is used.

The animated graphic trace of the execution of a simulation model and the ability

to interrupt and interact with the model while it is running, has given the decision

maker greater involvement in both visual verification/validation of the simulation

47

model and in experimentation with it. [HURRION, 76] has used the term 'visual
interactive simulation' for this approach to simulation.

These ideas have been further developed [SECKER, 77], [BROWN, 78], [RUBENS,
79], [WITHERS, 81], [FISHER, 82] and also have found their applications in the

development of decision support system generators [MOREIRA da SILVA, 82].

2.8.6. INTERACTIVE SOFTWARE
Considerable research in man-machine interfaces has brought about systems which

are easier to use (Le. user friendly). These ideas have found their way into the

design o f simulation software:

“In such a scheme, users Interact with the computer system
through interfaces which enable them to initiate or engage
in activities. The sequencing of activities may be partly
fixed and partly open to users' control. An activity is
executed by one or more processors (in conjunction with the
user) and acts upon one or more data bases ... In executing
an activity, information is stored in the bases. The
information so generated is accessible to the user through
the interfaces."
p 29;(ZEIGLER, 80].

2 . 6 . 7 . SOFTWARE ENGINEERING

Looking from the software engineering point of view a simulation program is a

piece of software, which requires construction and maintenance. Various

techniques developed in the area of software engineering are therefore relevant.

(SHEPPARD, 83] covers the application of software engineering to simulation. Of

particular relevance to simulation are the ideas related to Fast Prototyping and

Executable Specifications.

"Desirable features of modelling techniques are nodularity
and abstraction. One should be able to specify
independently (as far as possible) each part of the system
and one should not be forced to consider implementation
details."
p 3|{VAUCHER, 89].

"It is much easier to design and debug a specification than
an implementation."
p 11;[ROBERTSON, 86).

48

2 . 6 . 8 . DATA-BASE F A C IL IT IE S

The use of data base concepts in simulation software have been described in

(STANDR1DGE k P , 82]. These include the use of data bases of model elements

and data bases of results or intermediate results. Also in the words of Zeigler:

"Indeed, methodological research in modelling and siaulation
■ethodology has Much in coauaon with developments in the
areas of software engineering and in data base/infornation
systens design.

"On the one hand siaulation progress and tools constitute a
class of software (with soae quite distinctive
characteristics) and should therefore benefit fron the
concepts and tools being developed in structured progressing
(e.g. top down design; {Dykstra, 1976})« data structuring
(e.g. abstract data types; (Liskove and Zilles, 1974)) and
data base design (e.g. data aodel concepts; (Nijssen,
1*77)).

"On the other hand. Modelling and sisulation Methodology is
playing an increasingly laportant role in software and data
base design Methodologies. Indeed there is an intiaate
interreliance of design and Modelling Methodologies on each
other and their activities are also partially analogous
(with tone essential differences; see editor's introduction
to Methodology in systens Modelling and Sinulation, (Zeigler
at. al.(eds), 1979). It is not surprising then that
conputer based software design systens (Teichrow and
Hershey, 1978); (Eatrin, 1978); (Yeh, 1977}) resenble the
sinulation support systens to be described below in
architectural philosophy, if not in facilities provided.
Likewise data models developed in the data base field
resenble the schenes for data representation provided by
siaulation languages (indeed a data base Management system
built upon SIMSCRIPT principles is nearing conpletion
(Markowitz, personal connunication)).

"As developments proceed in these areas, points of
conaonality can be shared to Mutual advantage ((Sangulnetti,
1979); (Cuttler, 1980); {Beauchamp and Field, 1979); (Ryan,
1979); (Rzevski, 1980})."
p 28;(ZEIGLER, 80) .

2 . 6 . 9 . FUNCTIONAL- AND LOGIC PROGRAMMING PARADIGMS

The functional programming language LISP and the logic programming language

PROLOG have also been employed for simulation work. [BIRTWISTLE k K, 86]

reviews the possibilities o f the use of LISP for simulation related work. This

thesis is mainly concerned with the use of the logic programming paradigm for

providing computer simulation environments. The use of PROLOG fo r simulation

will be reviewed in chapter 3.

49

2 .7 . CURRENT TRENDS IN SIMULATION METHODOLOGY

In this section the current trends in the development of simulation methodology

have been reviewed. The following section covers the application of techniques of

artificial intelligence in simulation methodology and simulation environments.

2 . 7 . 1 . TRENDS IN THE PRACTICE OP SIMULATION

Zeigler has identified the following trends in the practice of simulation:

"1. Trend toward independence of Model specification froa
procedural and Machine required specification (providing the
user with Model oriented languages which separate bin to an
increasing extent froa iaplenentation detail).

2. Trend towards Modularity of functional eleaents in
sinulation programming (providing clear segaentation of
parts of a prograa devoted to distinct tasks e.g., structure
declarations, process descriptions, experiaental control,
etc.)

3. Trend toward flexibility in Modelling forsmlisa
(providing the user with a wider range of foraalisms in
which to describe coaponents of his M o d e l).

4. Trend toward tools which provide specialized support of
Modelling and siaulation activities (e.g. statistics,
graphics and optiaization packages).

5. Trend toward the integration of such tools (e.g., the
linking of standard siaulation languages to statistical and
optiaization Modules).

6. Trend toward increased Interactivity (providing the user
with greater immediacy in perceiving the status of coaputer
activity and controlling its direction).

7. Trend toward integration and coaprehensiveness in
specific application doaains (e.g., aircraft design,
econoaetrics models, etc.).

8. Trend toward incorporation into larger contexts
(employing Modelling and siaulation Modules as parts of
larger decision support systems)."
p 28;(ZEIGLER, 80).

50

2 . 7 . 2 . EXPERIMENTAL-FRAME BASE AND MODEL BASE

*Th« support system should maintain a bass of previously
defined experimental frames and help to locate a new frame
among them. A model base of previously developed model
should also be maintained which should be referenceable from
the frames base. That is, knowing which resident frames are
similar to the new frame should provide an entree to the
existing models which are relevant to it. Such models,
after adaptation and simplification, should serve as
components to be interfaced to form a model to which the new
frame is applicable.”
p 31} (ZEIGLER, BO).

2 . 7 . 3 . INTERACTIVE MODEL DEVELOPMENT BY NON-EXPERTS

In the words of Shannon:

”... is the desire to make using the system as easy as
possible and to build into the modeling system most of the
decisions that are now made by the simulation expert. ...
The goal of development of expert simulation systems is to
make it possible for engineers, scientists and managers to
do simulation studies correctly and easily without such
elaborate training."
p 152;(SHANNON, 86).

2 . 7 . 4 . GRAPHICS WITHIN SIMULATION

While reviewing the state of the art (SHANNON, 86] has viewed the use of
graphics in simulation to fall into three categories:

- to facilitate model construction and debugging,

- to provide interactive control during the running of the simulation, and

- to display and help in the understanding of the simulation results.

It further goes on to suggest that graphics could also be used for the specification

(definition) of the system through the use of icons.

2 .8 . SIMULATION AND AR T IF IC IA L INTELLIGENCE

Artificial Intelligence is not only a computer science development, it also cuts

across a number of other disciplines including philosophy and psychology. Its

influence on the practice of simulation therefore needs to be considered

separately from other developments within computer science.

51

"AI can be viewed froa two angles. The scientific approach
aias at understanding the aechanisas of human intelligence,
the computer being used to provide a simulation to verify
theories about intelligence. On the other hand, the
engineering approach attempts to endow a computer with the
intellectual capabilities of people.”
p 701l(DOUKIDIS, 871.

In recent years, following the success of early expert systems, the simulation

community has shown considerable interest in Artificial Intelligence (AI) and its

technology. A number of conferences have taken place which were specifically

devoted to this topic. These include [Holmes (ed), 85], [Birtwistle (ed), 85], [Luker

& A (eds), 86], [Kerckhoffs 8. VZ (eds), 86], (Luker A B (eds), 87], (Henson (ad), 88].

In addition to these conferences, a book titled "Modelling and Simulation

Methodology in the Artificial Intelligence Era" has been published [Elzas A OZ

(eds), 86]. The number of papers published in the professional journals which are

devoted to this topic, provide further evidence of the active interest which the

simulation community has been and is taking in artificial intelligence technology.

The following comments from [SHANNON A MA, 85] are representative:

”... If these claims are even half true, then AI is bound to
have a profound effect upon the art and science of
simulation.”
p 275»(SHANNON fc MA, 85).

"Unless a lot of people are wrong, the technology being
developed in the AI field is going to significantly affect
computers, software, problem solving, and management. If
this is true, then it is obvious that it will also affect
the art and science of simulation. It appears that profound
changes may be inevitable as a result of artificial
intelligence and simulation professionals must not be
intimidated by these changes. Simulationists should think
about how they can benefit froa AI's potentials."
p 276)(SHANNON & MA, 85).

2 . 8 . 1 . VIEWS ABOUT THE USE OF A I TECHNIQUES IN SIMULATION

The following sub sections cover the reported views which relate artificial
intelligence and simulation at a conceptual level.

(A) A I AND SIMULATION HAVE A RECIPROCAL NEED FOR EACH OTHER

"If AI has a need for simulation, operational researchers
using discrete simulation have a reciprocal need for AI.
One of the swjor limitations of traditional simulation is
the inability to model intelligent behaviour (Evans, 1984).

52

Development of worthwhile simulation» he» proved difficult
in e number of domains where some element of autonomous
decision-making is part of the system - for instance, battle
management.
p 7131(O' KEEFE t R, 87).

"Thus, since both fields can benefit from each other in a
significant way, the marriage is inevitable."
p 280;(SHANNON & HA, 85).

"The interchange and coupling between these two disciplines
will, undoubtedly, continue to provide a foundation allowing
significant improvement in the design and construction of
sophisticated 'real-world' systems."
from Preface in (Henson (ed), 88).

(B) THE IDENTIFICATION OP POTENTIAL AREAS FOR THE
APPLICATION OF A I TECHNOLOGY

The following areas have been identified as having potential scope for the

application of artificial intelligence technology:

"... one can readily see that the main developments can be
expected in:
■> improved dialogue facilities with Modelling 6
Simulation systems, especially those that have model bases,
-> Modelling 6 Simulation con s u l t a t i o n systems, that
provide advice on h o w to use w h i c h models for what
purposes,
-> symbolic model mani p u l a t i o n , for comparing model
formulation, searching for certain variables in simulation
programs, extracting steady state (analytical) model from
simulation models, etc.
■> model search and model lnfer e n c i n g in/from
assemblies of model components in model bases,
■> automated simulation program generation from structured
model- and experimental-frame specifications."
p 73 ; (ELZAS, 8 6).

[O'KEEFE A R, 87] have viewed that the application of A l methods and AI

software tools for constructing simulations have resulted in the extension of
existing simulation concepts by the introduction of: Knowledge-based simulation,

Goal-directed simulation, Abstraction, Introspection, and Qualitative simulation.

In addition, other AI ideas applicable to simulation include: Intelligent front-ends,
Access-oriented programming, Temporal reasoning, Computing environments.

53

(C) COMMON GROUND AND CONTRAST

(SHANNON A M A, 85) has identified five dimensions in which A1 and simulation

can be contrasted. These can be summarised as: (a) the way the model is

constructed and run, (b) the separation of the knowledge-base and the control

structure, (c) the nature of the data base, (d) the characteristics related to

processing, and (e) the way expert simulation systems would be used namely: 'user
as tutor', 'user as client' and 'user as pupil'.

Problem solving using simulation and A1 approaches regard are very similar

(mainly search). The association of the two therefore is a natural one, as

simulation was already making use o f generate and test methods (manually) for

solving problems, while using simulation models to test the alternatives. The

availability o f A1 technology with knowledge-based heuristic search techniques

fills a long sought after gap in the ability to produce powerful mechanized

problem-solving system involving simulation. Simulation, therefore, can be

regarded as the most appropriate area in Operational Research to start a cross

fertilization with Al.

"Researchers and practitioners in the field of Sinulation
and those in Artificial Intelligence (AI) have had to face
quite sieilar problees in creating eodels of coeplex and
sonetiees partially understood systeas. To a large extent,
solutions have been developed independently in each area
leading to techniques and software tools which differ
■arkedly in terminology but often overlap in terns of
concepts. The recent stress on knowledge representation in
AI has eaphasized a cosuson ground, modelling of reality, but
each group maintains a slightly different emphasis: dynamic
behaviour for simulationists and logical inference for AI
workers. In the paper, modelling tools and practice in both
areas are contrasted and useful areas of cross-fertilization
are suggested."
p 3{Abstract (VAUCHER, 85).

54

"... that both simulation and AI are concerned with
modelling reality and that there is such similarity of
purpose in the need to represent objects« their attributes
and their interrelations. However, when considering the
dynaaics of programs in each area, the similarity is much
less clear. To the first approximation,
»> Simulation considers the evolution of systems through
t iae,
■> Artificial intelligence considers proof of system
properties.

"Actually, there is common ground. In both, progress is
achieved via a series of transitions subject to
preconditions, events in one case and deductions in the
other. Much of the modeller's art resides in the
specification of suitable set of «precondition, transition»
pairs."
p 5;(VAUCHBt, 85).

[DO U KID IS, 87] has viewed the production rule system, from artificial

intelligence, to be conceptually similar to the three phase behaviour generation

method of simulation.

(D) THE RELATION WITH D EC ISIO N SUPPORT

[MOSER, 86] has outlined the integration of artificial intelligence and simulation

in a comprehensive decision-support system and has reported an experimental

implementation of this named EXSYS. Also:

"Application of the results of artificial intelligence
research is making possible the next advancement in the
provision of management decision support. These new systems
will be able to generate (as well as analyze) solution
alternatives to problem situations."
p 276;(SHANNON t MA, 85).

"... the use of siaulation methodology in conjunction with
decision analysis based on Artificial Intelligence is an
area with almost limitless potential. This is one stage
advanced from decision support, and is definitely a long­
term concept."
p 231; (MILLS, 86).

(E) SIMULATION AS A KNOWLEDGE GENERATION TECHNIQUE

"Perceived from a higher and abstract point of view,
simulation is a form of knowledge generation, based on three
types of knowledge which are (1) descriptive knowledge, (2)
intentional knowledge, and (3) knowledge processing
knowledge."
p 3;(OREN, 86).

55

The knowledge engineer therefore has a need to know more about simulation as a

source of knowledge.

The statistical knowledge generated by running a simulation can be used to induce

rules about the performance of the system being modelled. Rule induction from

statistical data is described in [MINGERS, 87]. Such rules can be made use of

during experimentation with the model to determine the need for further

experimentation. Also such rules can supplement the existing knowledge about

the system which in turn can be utilised for problem solving.

(P) THE MODELLING OP INTELLIGENT ENTITIES IN A SIM ULATION
MODEL

As early as 1969 [SISSON, 69] described the ideas about the simulation o f: group

behaviour, mass behaviour, individual behaviour and mentioned artificial

intelligence in this context. The need for modelling intelligent entities e.g.

managers in business type simulations or generals in battlefield type simulations,

has long been felt, especially when approaching the problem from a systems

point of view. The necessary impetus however, has been provided by research in

and availability of AI techniques, whose fundamental objective is to develop

computer systems which simulate the intelligent behaviour of individuals.

"More importantly, many systems include the presence of a
decision-maker who has considerable control over what
happens in the system - for example, a production controller
in a production system, or a general in a battlefield. To
siaulate such a system, either the simulation must have
access to the decision-maker to make the decisions where
necessary, or the decision-maker must be modelled. The
former approach has been very successfully employed within
visual interactive simulation (VIS) (Bell and O'Keefe,
1987). The latter approach is untested, requiring the use
of AI methods in simulation.''
p 713;[O'KEEFE 4 R, 87).

"Often simple approximations are used instead of modelling
behaviour; for example, the path of activities that a
customer takes in a service simulation (for example, a
simulation of a shop) is modelled by probabilities
determined by prior observation and sampling, rather than by
modelling the decision mechanisms of the customer. The
latter approach may allow for the modelling of aspects of
the system that are typically ignored or are difficult to
model when using the former method - for instance, adaptive
behaviour, where the activity attempted next is determined
by some perception of the present state of the system.
Simple decision rules (for instance, always join the

56

shortest queue) are frequently inadequate."
p 713 ;(O' KEEFE 4 R, 87].

"An intelligent agent differs in that its goal structure is
represented rather than its behavior structure. By
representing only its goal structure, a number of
significant advantages are gained. ..."
p 11;(ROBERTSON, 86].

(G) HIGH LEVEL MODEL SPECIFICATION

Using the knowledge based framework for simulation environments it should be

possible to afford a higher level of specification of the problem, the experimental

frame and the required model than is possible within the conventional

programming environments, e.g. [ROBERTSON, 86], [M UETZELFELDT A RUB,

87].

2 .8 .2 . THE IMPLEMENTATION OF A R T IF IC IA L INTELLIGENCE
TECHNOLOGY IN VARIOUS PHASES OF A SIMULATION STUDY

The following sections document the research implementations of AI technology in

the various phases of simulation.

(A) SIMULATION SOFTWARE AND ENVIRONMENTS

ROSS and KBS are amongst the first implementations making use of artificial
intelligence technology:

"ROSS is ona of the first languages that attempts to aarry
artificial intelligence (AI) Methods with simulation
technology. We have found that the marriage benefits both
parties..."
p 1:(MCARTHUR 4 KN, 84]

"The KBS approach is similar to another artificial
intelligence simulation system, ROSS. Both KBS and ROSS are
object oriented modeling systems that contain attribute and
behavioral descriptions and provide interactive access and
display."
p 26|(REDDY 4 FHM, 86)1

[ADELSBERGER A PSW, 86] has reviewed rule based object oriented simulation

systems and has covered a description and comparison of Simula, Smalltalk, Ross,

KBS, ORIENTSA/K, SmaUworld and Omega.

57

[DOUK1D1S, 87] has reported the following software implementations which make

use of AI techniques in simulation. These implementations form part of an over

all computer aided simulation modelling environment CASM (PA U L, 88].

SPXF: Simulation Problem Intelligent Formulator
uses a natural language interface to develop a logic model of the system
under study.

SIPDESt A Simulation Program Debugger using Expert Systems
helps the user to discover the location of run-time and logical errors in
simulation programs and proposes possible solutions.

ASPES: A Skeletal Pascal Expert System
It is an expert system to which the user can add Pascal code according to
the particular application.

[FLITMAN & H, 87] has reported an expert controller for the control of

experimentation with simulation models.

[MUETZELFELDT & RUB, 87] has reported ECO, a system for computer-aided

construction of simulation programs for ecological modelling.

[KHOSHNEVIS & C , 87] has reported an automated simulation modelling system,
EZSIM, based on AI techniques.

[AHMAD & H, 88] has reported a simulation model generation system using a

Prolog model base. This paper has been included as appendix I for convenience of
reference. This system has been considered in more detail in chapter 5.

[RUIZ-MIER & T, 87) has reported an experimental network simulation

environment, SIMYON, which aims to employ a hybrid methodology unifying the

concepts of Object-Oriented programming, Logic Programming and the discrete

event approach to system modelling.

[HADDOCK, 87] has reported an intelligent front end (a simulation generator)

which allows the user to communicate with the system using only the application

domain terminology.

[M URRAY it S, 88] has reported an implementation of a knowledge-based

simulation model specification system using the generalized knowledge of
queueing systems and the knowledge of SIMAN as the target language.

58

(B) ADVISORY AND SUPPORT SYSTEMS

A further group of implementations can be classified as advisory or support
systems. The main purpose of these systems is that the person conducting a

simulation study can interact with them, instead of a human simulation expert, for

advice or instructions. As such these can be regarded as important constituents of

an intelligent simulation environment.

[TAYLOR & H, 88] has reported "An expert advisor for simulation experimental

design and analysis."

[SARGENT A R, 88] has reported "An experimental advisory system for

operational validity."

[HILL & R, 87] has reported a simulation support system which helps users of

INSIGHT simulation software to locate those logical errors in their models which

lead to the exhaustion of the available memory.

END OP CHAPTER 2

V

59

CHAPTER 3s KNOWLEDGE-BASED SYSTEMS- AND
LOGIC PROGRAMMING PARADIGMS

INTRODUCTION

Chapters 1 and 2 focused on a review of the basic ideas relating to managerial
problem solving and the use of discrete simulation as one of the problem solving

technique. These chapters also covered the different views relating to the

application of artificial intelligence concepts and techniques within problem

solving and, in particular, within simulation modelling. This chapter concentrates

on the emerging knowledge-based systems and logic programming paradigms at a

technical level and argues in favour of using Prolog for implementing the research

described in chapters 4, 5, and 6.

3 .1 . A REVIEW O r THE KNOWLEDGE BASED SYSTEMS PARADIGM

3 . 1 . 1 . FROM GENERAL PROBLEM 80LVING TO KNOWLEDGE-BASED
PROBLEM SOLVING

AI research aims to establish computational approaches to model human cognitive

processes (SIMON, 81]. A I researchers have spent nearly two decades (1956-1976)
persueing a line of research related to discovering generalized representations for

problems and the related general solution methods. At the end of this period

these researchers have concluded that this line of research had not proved

extrem ely fruitful. Using this approach only 'toy' problems could be undertaken

and so-called weak general methods broke down when attempted on non-trivial
problems (either in terms of time required for the solution or the memory space

required). The importance of involving the problem domain knowledge in the

process o f solution was realized and has been used to advantage.

"Although computers have many advantages over humans,
including spaed and consistency, these cannot coepensate for
ignorance."
p 288; (HAYS-ROTH, 87)

"Early on, artificial intelligence researchers discovered
that intelligent behaviour is not so much due to the methods
of reasoning, as it is dependent on the knowledge one has to
reason with."
p 4 >(HUNT, 86).

60

This has given rise to a branch of research known under the name of Intelligent

Knowledge Based Systems or under the more popular name of Expert Systems.
Since these systems involve domain knowledge, are designed to capture the

expertise in a specific restricted problem domain and have the capability of
solving a specific set of problems related to that domain. A number of early

successes in expert systems are reported and these include DENDRAL, M YCIN,

R l, PROSPECTOR (Shapiro (ed), 87). As a result of these early successes, the

interest in the area of expert systems has intensified and the number of

experimental expert systems reported has grown tremendously. At the same time

a number of expert systems have found their way into the commercial market as

well. [WALKER A 14, 86] has reported 1025 internationally identified expert

systems.

The basic idea of these systems is to make the domain knowledge available in such

a form that it can be retrieved and incorporated in the construction of the

solution, in response to a problem posed to the system. The method of

constructing the solution is kept separate from the domain knowledge (usually

known as the inference engine) and this feature characterizes expert systems

paradigm from other types of computer based problem solving in which problem

solving knowledge is integrated with the domain knowledge or a representation of

it (e.g. in a FORTRAN program). Knowledge representation in this way is

however not straightforward:

”... knowledge representation is one of the aoet active
areas of research in artificial intelligence today. The
needed knowledge is not easy to represent, nor is the best
representation obvious for a given task."
p 4;(HUNT, 86].

The problem solving knowledge is built into an inference engine which proceeds

with the interpretation of the problem when it is posed and then proceeds with the

solution construction process by interpreting and applying suitably represented

knowledge from the knowledge base made available to it. The interpretation and

selection of a particular item of knowledge depends upon the current state o f the

development of the solution.

The reader wishing to explore the area o f knowledge based systems in greater

detail may consult the following references: [Shapiro (ed), 87] extensively and

comprehensively covers the field of artificial intelligence as it has developed so

far. [JACKSON, 86] and [JOHNSON A K, 85] provide a suitable introduction to

expert systems. [WALKER 8i 14, 86] provide a recent assessment of expert

systems technology and its applications. [Fox (ed), 84] also provides a review of

61

developments in the expert systems ares. A regular series of technical

conferences related to expert systems are organized by the British Computer

Society Specialist Group on Expert Systems, (ESTC, 84] and [ESTC, 85], Another

series of workshops on expert systems and their applications is held yearly,
(ESAPP, 85) and (ESAPP, 86).

3 . 1 . 2 . COMPUTER SYSTEMS FOR THE 1990s

The confidence in A l technology has grown enough to plan for its implementation

in the computer systems for the 1990s. (BROOKING, 84] has reviewed the

developments related to the next generation of computers in Japan (the Fifth

Generation project), in the UK (the Alvey Directorate initiative), in Europe

(ESPRIT) and in the USA (DARPA and other). Alvey Directorate in the UK and

ICOT in Japan are the sources of further periodic information in this regard.

3 . 1 . 3 . TECHNICAL AND FUNCTIONAL CLASSIFICATIONS OF EXPERT
SYSTEMS

"... knowledge systems differ from conventional programs in
the way they're organized, the way they incorporate
knowledge, the way they execute and the impression they
create through their interactions.”
p 288;(HAYS-ROTH, 87)

A technical classification can be based on the problem solving model employed by

the expert system;

"The most common way to classify expert systems is by the
type of problem-solving model they employ. A problem­
solving model (Nil, 1986) is a scheme for organizing
reasoning steps and domain knowledge to construct a solution
to the problem. AI research and debate has focused and
continues to focus on problem-solving models
(Chandrasekaran, 1986)."
p 67;IFORDYCE k NS, 87)

Also the expert systems can be viewed from a functional classification

"(Rychener, 1985) breaks the present application areas for
expert systems into three categories: diagnosis, design, and
planning"
p 74;(FORDYCE k NS, 87)

V

62

3 .1 .4 . KNOWLEDGE-BASED SYSTEMS ARCHITECTURE

(JOHNSON & K, 85] has reviewed the architectures of a number o f early expert
systems in some detail. A chapter is devoted to each of MYCIN, PROSPECTOR,

PIF, and so on. The review covers the knowledge representation schemes used,

the inferencing techniques employed and the explanation facilities offered.

Figures 3.1 and 3.2 (both from [HAYS-ROTH, 87]) present an overview of the

architecture of a knowledge system and its building blocks.

After the initial experience of devising the elements of the various knowledge

based systems architecture, attention has been paid to the construction of higher

level building blocks which can perform the generic functions needed for the

performance of an expert system. [CHANDRASEKARAN, 86] represents an effort

in this line.

3 .1 .5 . KNOWLEDGE REPRESENTATION SCHEMES

A number o f knowledge representation schemes have been devised and

experimented with by the researchers working in the area of artificial intelligence

/ expert systems (Shapiro (ed), 87). The most common are:

Production Rules

Frames

Semantic Networks

First Order Predicate Calculus

3 .1 .6 . THE INFERENCE ENGINE

An inference engine incorporates a particular problem solving method and is
related directly to the knowledge representation scheme used. For example, with

the production rule type knowledge representation, two approaches to problem

that are solving used are forward chaining or backward chaining, which define a

state space which is then heuristically searched to arrive at a solution. (RICH, 83]

covers the topic of heuristic search. (KOWALSKI, 79] covers the topic of search

when the knowledge is represented as first order predicate logic notation.

63

Pi
qû
re
 3
.1
.

"A
 k
no
wl
ed
ge
 s
ys
te
a
an
d

it
s
en
vi
ro
ru
se
nt
al

co
nt
ex
t"
 (

fr
oa
 [
HA
YS
-R
OT
H,
 8

7|
 p

 2
91
).

In the most general terms, an inference engine works on what is known as a

'recognize and act' cycle, i.e. to recognize the current state of the development o f
the solution and then act accordingly to make further progress in the solution

construction. This type of problem solving has been termed as the pattern

directed inference method. The 'act' part is mainly to retrieve from the

knowledge-base the needed piece of knowledge that is most appropriate to the

current state of development of the solution, to further the progress towards the

solution. The knowledge retrieved is incorporated in the solution constructed so

far and the cycle repeated. Some forms of do main-independent conflict resolution

methods are built into the inference engine to decide if more than one item of

knowledge is applicable, in the current cycle, to determine which one should be

preferred and applied.

3 . 1 . 7 . THE CONTROL MECHANISMS FOR INFERENCE

"Control mechanisms, metarules, oi metaknowledge help direct
the inference mechanism in its rule selection to improve
performance and resolve or prioritize conflicting
instructions (Cromarty, 1985)"
p 70»(FORDYCE t NS, 87)

Both conflict resolution and the search for a solution can be made more efficient

by the use o f what is known as meta-knowledge. Such knowledge supplements the

domain independent built in conflict resolution methods with the domain-specific

knowledge. The availability of meta-knowledge tends to make the search for a

solution more efficient and also restrains the computer from appearing 'un­
intelligent' or following redundant steps.

(RE1CHGELT & V, 86) cover the criteria for choosing representation languages

and control regimes for expert systems.

3 . 1 . S . THE HANDLING OF UNCERTAINTY WITHIN INFERENCE

A further and important source of complexity in inferencing techniques comes

from the way uncertainty about the facts, related to the specific problem being

solved, are treated and incorporated in the solution construction process. This

handling of uncertainty is further accentuated when the knowledge in the

knowledge base also carries associated uncertainty values. This in turn leads to

66

solutions which, of necessity, must have uncertainty (or certainty) value(s)
associated with them.

"In the situation where certainty values are assigned to
variable values, two additional iteas are needed in the
inference engine. One is a mechanism for combining
certainties. The second is a certainty threshold for firing
a rule. (Expert Systems Developaient Env1ronment/VM Reference
Manual, 198b)”
p 69;(FORDYCE 6 NS, 87)

Of particular relevance here are methods known as truth maintenance and

dependency directed backtracking, which deal with whether to proceed with the

next 'recognize and act' cycle or undo previous solution steps in order to take a

different course (HUNT, 86).

"Many people devote considerable effort to the task of
improving the certainty factor technology. To a large
extent this nay prove fruitless.”
p 289;(HAYS-ROTH, 87)

3 .1 .9 . THE USER INTERFACE AND EXPLANATION F A C IL IT IE S

User interaction is used during the initial problem acquisition phase and also

during the solution construction phase. When the inference engine recognizes a

state during the solution construction where an item of knowledge in the

knowledge base can only be applied if further information about the specific

problem being solved is made available, then it employs user interaction through

some form of user interface. In response to the computer needing further

information the user can question why this information is required. The expert

system then explains the context of the question, i.e. the current inference step,
to satisfy the user.

Also, in response to the expert system delivering a conclusion the user may ask for

an explanation as to how the conclusion has been arrived at. The expert system

has then to show the inferencing steps it has taken to arrive at the conclusion.

”The capability of self-explanation has been demonstrated to
have significant effect on the faith the decision maker has
in the system's recommendations. This in turn contributes
to the degree to which the system will be used as an ally.”
p 75;IFORDYCE 6 NS, 87)

67

3 .1 .1 0 . THE KNOWLEDGE ENGINEER'S SOFTWARE TOOLS

(WALKER & M, 86] has listed 168 tools for building expert systems. These have

been subdivided into (a) tools for symbolic processors and workstations (46), (b)
tools for personal computers (89), (c) tools for mainframes (8), and (d)

experimental and inhouse tools (25). The numbers in brackets represent the

number of tools in each category. These tools comprise of artificial intelligence

programming languages, knowledge representation languages, and expert systems

shells.

(A) A I PROGRAMMING LANGUAGES

"There are three general families of languages used for
artificial intelligence programming: (1) functional
applications languages such as LISP, (2) logic programming
languages such as PROLOG, and (3) object-oriented languages
such as SMALLTALK and ACTOR."
p 42;(WALKER L M, 86] .

These languages were developed in response to the need for 'higher level'

languages than the various procedural languages available. Further, these

languages embody some of the primitives used in AI work (e.g. list processing,
search, theorem-proving) which makes articulation of the AI programs much less

tedious than if this had to be done in a procedural language. Although these

languages are known as artificial intelligence languages, it would be a

misconception if every program written in these is regarded as an 'intelligent'
program. The above mentioned three types of languages can be regarded to

represent three distinct programming paradigms, even though these have emerged

from research in artificial intelligence.

"There is open controversy regarding which language is best
for artificial intelligence and multiprocessor programming.
LISP, a functional programming language, has always been
most popular in the United States. PROLOG, a logic
programming language, was chosen for the Japanese fifth
generation project and is gaining some support in North
America. Only the next few years will determine which
language becomes dominant or if both will remain equally
popular in different programming circles."
p 44;(WALKER S M, 86).

(B) KNOWLEDGE ENGINEERING SOFTWARE TOOLS

A number of software tools have been developed which provide computer
assistance in the various phases of the development of an expert system. These

68

include knowledge representation languages e.g. KRL, OPS5; knowledge

engineering environments e.g. KEE; expert system shells e.g. SAVOIR. These

tools vary greatly in their architecture and capabilities. Some of these tools can

only run on special purpose hardware e.g. LISP machine. As noted earlier,

[WALKER A M, 86] include brief technical details on (and also prices for most of)

168 internationally identified software tools for expert systems development. In

general, the tools which can be applied for the development of a comprehensive

expert system tend to be very expensive.

3 .2 . A REVIEW OP THE LOGIC PROGRAMMING PARADIGM

The study of logic provides the forms for valid reasoning. There are many types

of logics in use but we shall be mainly concerned with symbolic logic and in

particular with First Order Predicate Calculus [KOWALSKI, 79].

"Logic programming can be defined broadly as the use of
symbolic logic for the explicit representation of problems
and their associated knowledge bases, together with the use
of controlled logical inference for the effective solution
of those problems."
p 544>[KOWALSKI 4 H, 87).

"Prolog is a practical and efficient implementation of
many aspects of 'intelligent' program execution such as non-
determinism, parallelism, and pattern-directed procedure
call. Prolog provides a uniform data structure, called
t e r m , out of which all data, as well as Prolog programs are
constructed.”
p VIIIl(CLOCKSIN 4 N, 84).

The reader wishing to explore the relationships of Logic Programming with other

computer programming paradigms, and its applications, should re fer to the

encyclopedic entry [KOWALSKI It H, 87] which provides a coverage o f these.

3 . 2 . 1 . AUTOMATION OF DEDUCTION IN F IR ST ORDER PREDICATE
LOGIC

More recently it has been possible to develop procedures to automate deduction,

provided the domain knowledge is expressed using first order predicate calculus

notation and a query is posed using the same notation. These procedures are built
around the symbol processing operation of matching and logical operation of

unification used as primitives. These procedures have theoretical foundations

69

based on Robinson's principle of Resolution for theorem proving. As a result a

computer language Prolog has been developed [COLMERAUER, 85] which employs

first order predicate calculus notation of atoms and terms to represent knowledge

as facts and rules. During the course of deduction in response to a query,
unification bindings of variables, in the query, provide the specific values which

represent solutions) to the problem posed.

3 . 2 . 2 . THE CHARACTERISTIC FEATURES OF PROLOG

Prolog offers only one uniform symbolic structure (a term) in which everything is

expressed. The procedural interpretation of a set of Prolog clauses is implicit and

is built into the language software (i.e. Prolog interpreter) rather than required to

be coded with the program itself. This supports what is known as non­

determinism. In procedural languages all the possibilities must be explicitly

enumerated and coded. These are 'executed' according to the specific set o f data

supplied at the run time whereas the non-determinism in logic programming

permits the same set of clauses to perform differently in response to the different

data supplied at the query time. Further, recursion is strongly supported in Prolog

which provides a high level specification feature.

The syntactic simplicity o f only one type of symbolic data structure alongwith the

non-determinism in the specification of programs, combined with recursion leads

to very compact code which is free from the clutter of procedural details (the

'flow' of control) and allows the programmer to concentrate only on the symbolic

representation of the concepts in the problem domain (arguments) and their

interrelationships (predicates). These features make Prolog a very high level

elegant declarative language as compared with the other general purpose high

level computer languages available.

An introductory tutorial on Prolog is provided by [DAVIS, 85]. The paper by Alain

Colmerauer, who has done pioneering work in implementing the first Prolog

interpreter, provides a sound introduction to the language [COLMERAUER, 85].

For a long time [CLOCKSIN A M, 84] has been the only book available on Prolog.

A more recently published book [STERLING A S, 86] provides advanced Prolog

programming techniques and also includes a wealth of example programs for a

number of applications. [POE A NPS, 84] provide an extensive KWIC (Key Word In

Context) bibliography on Prolog.

3 . 2 . 3 . THE PROBLEM SOLVING INTERPRETATIONS OF A SET OF
PROLOG CLAUSES

A set of Prolog clauses have dual declarative/procedural interpretations, the

latter is based on the resolution principle (or one of its variants) employed. In the

current implementations of Prolog the procedural interpretation must take into

account the sequencing of the clauses and the sequencing of the terms in the body

of clauses, which in turn affect the order in which the variables can be bound and

also defines the basis for backtracking. In this sense, the current implementations

of Prolog can not be regarded as 100 per cent 'pure' logical programming, which

requires procedural interpretation to be independent of the sequencing of the

terms in the body of clauses or of clauses themselves.

‘However the exigencies of asking Prolog into an efficient
prograausing language have led to the use of control
aechanisas which effect the declarative reading. As
indicated by (Robinson, 1983) the CUT is the GOTO of logic
prograaaing, with well documented effects on the declarative
semantics of the program statements. ..."
p 141t(BOBROW, 84)

The logic programming research community is therefore actively engaged in

research to discover methods of bringing Prolog closer to the ideal logic

programming language, thus permitting truely declarative semantics.

70

3 . 2 . 4 . DATA-BASE INTERPRETATION OF PROLOG CLAUSES

A set of Prolog clauses can not only be interpreted as a computer program, but
also as a data base on which complex information retrieval queries can be made.

In many ways the Prolog data base is superior to the current relational data

model, in terms of supporting complex queries and in the maintenance of

consistency and integrity of the data base. These constraints themselves can be

specified as Prolog clauses. The data base aspects of Prolog are directly related

to the knowledge engineering work, in that a knowledge base is a data base

containing generic knowledge items on which pattern directed complex retrieval
operations are required to be made during inferencing. Further, the use of

variables in Prolog terms allows for the generic/general specification of
knowledge which can be particularized at the time of retrieval.

71

3 . 2 . 5 . COMPILER WRITING AND PROLOG

"The most popular approach to parsing In Prolog la definite
clausa grammars or DCGs. DCGs ara a generalisation of
context-free grammars that are executable, because they are
a notâtlonal variant of a class of Prolog programs."
p 256»[STERLING 6 8, 86).

As a matter o f fact the notational symbols for definite clause grammar are either

usually built into Prolog interpreters or can easily be defined as operators to allow

for the grammars to be specified directly in that notation. The importance of

using Prolog for compiler writing comes from the fact that "the specification is

the implementation" (p 121;[WARREN, 80]) as the rest is taken care of by the

nondeterministic nature of Prolog program execution.

"Parsing with DCGs ... is a perfect illustration of Prolog
programming using nondeterministic programming and
difference-lists."
p 256»(STERLING 4 S, 86).

"... it should come as no surprise that the Prolog compiler
is itself written in Prolog, using the very principles which
are the subject of this paper."
p 124»(WARREN, 80).

The relevance of Prolog to parsing with reference to a particular class of

grammars should hardly come as a surprise, because Prolog itself has been evolved

during research into natural language understanding.

3 . 2 . 6 . THE RELATIONSHIP BETWEEN PROLOG AND OBJECTS

It is generally agreed that the first implementation of an object-oriented

programming language was SIMULA by Dahl and Nygaard in 1966 [OOPW, 86].
There is a considerable renewal of interest in object oriented programming

because of its recent use in the implementation of artificial intelligence

"An emerging trend is the increased use of object-oriented
programming to ease the creation of large exploratory
programs."
p 43»(WALKER 4 M, 86).

"The history of ideas (related to object oriented
programming) has some additional threads including work on
message passing as in ACTORS, by Lieberman in 1981, and
multiple inheritance as in FLAVOURS, by Weinreb and Noon in
1981. It is also related to a line of work in AI on theory
of frames by Ninsky in 1975, and their implementation in
knowledge representation languages such as KRL by Bobrow and

72

Winograd in 1977, KEE by Fikes and Kehler in 1985, FRL by
Goldatain and Robarts in 1977, and UNITS by Stef Ik in
1979."
p 44;(WALKER 4 M, 86)

The following excerpt from Abstract to [McCABE, 86] explains the need to relate

object-oriented programming to logic programming:

"... In particular wo axaeina tha class toeplata structure
of object oriented programing languages and relate It to
logic programming. We shall see that there is Indeed a
natural relationship: one which can contribute both to the
practice of logic progressing and to object oriented
progressing. The inheritance analogy suggests a solution to
the probles of how to build large progress."
p 1»|McCABE, 86).

The relationship between object oriented programming and logic programming is

important for simulation related work, because object oriented programming

directly supports the process view of the simulation program specification,

whereas logic programming affords a higher level of specification. If it is possible

to create an automatic translation system which translates the logic specification

o f a system in an executable object oriented simulation program then the

advantage can be gained of both programming paradigms. Efficient

implementations of object oriented programming languages are becoming

available (e.g. C++ [STROUSTRUP, 86]). This avenue of research therefore seems

worth exploring.

3 . 3 . THE REPORTED USE OP PROLOG IN SIMULATION

A number of implementations of simulation software using Prolog have been

reported and these are mentioned in the following. It should be stated that most
o f these implementations (other than those reported by Futo et al) are concurrent

with the work reported in chapters 4, 5 and 6 of this thesis. These systems have

been included here for the sake of completeness.

M -PROLOG and T-PROLOG [FUTO It S, 82] are among the first reported

applications of logic programming within simulation. These have been achieved by

extending the Prolog language with simulation related predicates, as it has been

argued that Prolog on its own does not provide facilities directly related to

simulation [FUTO It G, 87]. In these implementations a simplistic view of
simulation has been taken and there is no explicit representation of either time or

73

the system state. [ADELSBERGER, 84] has provided a further example of T -

PROLOG (a bank robbery) and reviewed the use of Prolog as a simulation

lan gu age .

TS-PROLOG IFUTO It G, 87] is an extension of T-PROLOG which provides for

high level hierarchical specification of the system. TS-PROLOG has also been

described as being suitable for combined discrete/continuous modelling

requirements [FUTO, 85]. A further application of TS-PROLOG for the simulation

of an insulin administration problem has been reported in [FUTO It GD, 86].

Another simulation system TC -PR O LO G has been reported [FUTO It PS, 86] and

its application to compute optimal insulin infusion profiles has been described

[FUTO It P, 86].

T-PROLOG, TS-PROLOG and TC -PR O LO G support the process interaction

approach to behaviour generation and allow for backtracking in simulated time.

T -C P [CLEARY It G U , 85] is an extension of Concurrent Prolog and serves as a

simulation language. In this respect it is similar to TS-PROLOG. It does not

subscribe to a particular simulation world view and supports a declarative

specification of the simulation model and allows for limited backtracking in the

simulated time. Its usefulness in relation to simulating concurrent Prolog

programs has been identified:

"We have also observed during the development of T-CP that
it can be a very useful tool for understanding, debugging,
and testing Concurrent Prolog (CP) progress. The
incorporation of sieulatlon tine provides additional clues
to the operation of CP progress. ..."
p 12;(CLEARY a GU, 85).

SIM POOPS [VAUCHER It L, 87] has been described as a simulation system built

around POOPS, which claims to combine the best features of both logic- and

object-oriented programming.

LOPPS [RADIYA li S, 87] is a Prolog simulation system which takes into account

the three major behaviour generation world views and provides for model
specification using event scheduling, activity scanning or process interaction

world views.

[FLITMAN It H, 87] has reported an expert system implemented in Prolog for

controllii^ the experimentation with simulation models written in a procedural

language (FORTRAN).

74

(TAYLO R & H, 88] has reported WES, an advisory expert system implemented in

Prolog for experimentation with simulation models .

PROSS (O'KEEFE It R, 87] is a simulation system similar to GPSS and has been

implemented using HC-Prolog.

3 . 4 . 1 . THE DISTINCTION BETWEEN KNOWLEDGE REPRESENTATION
SCHEMES AND IMPLEMENTATION LANGUAGES

"Logic programming advocates have been split in whether one
should consider such programming as knowledge representation
or higher level programming."
p 141|(BOBROW, 84).

"Hence we will distinguish between Knowledge Representation
Schemes and Knowledge Representation Languages — s c h e m e s
look towards human understanding and the methodologies for
knowledge elicitation etc., l a n g u a g e s are implementations
of schemes and hence questions of control and efficiency
arise. One finds that certain languages have been directly
Influenced by a scheme. A point that we wish to make is
that Predicate Calculus can be thought of as both a scheme
and as the basis for a language. When conceived as a
language Predicate Calculus may be used, as indeed any
language can, to implement any of the schemes. The argument
for treating Logic Programming as a basis for work in expert
systems, is one to do with having e high level language with
a clear semantics. One can accept, or reject, these
arguments independently of accepting, or rejecting, that
Predicate Calculus is the only scheme in which to consider
knowledge representation.”
p 4;(JOHNSON 4 K, 85).

3 .4 .2 . SUPPORTING ARGUMENTS

(A) ARGUMENT AGAINST THE USE OP A SHELL

Although in principle it is possible to explore the new ground of the use of

Artificial Intelligence in simulation by using an expert system package or a shell,
e.g. (O'KEEFE, 86a], however, such packages are currently experimental in nature
or extremely expensive if well developed. While using such packages one is

constrained by the design and the implementation details of the package e.g.
[AESSP, 85). The choice of a general purpose language is therefore an obvious

75

on*. Using a general purpose language leads to transportable source code,
especially if the language has been standardized. The use of a general purpose

language also provides for more freedom in exploring various ideas, than would be

possible using a package. Further, a language has a sound theoretical basis

whereas a package is a realization of a scheme which might have only a transitory

existence.

(B) THE SELECTION BETWEEN LISP AND PROLOG
As noted earlier, the two general purpose languages developed and used in AI
research are LISP and Prolog. Prolog being a later development than LISP

remains much less explored for its use in simulation and simulation environments,
whereas LISP has been previously considered for simulation work [BIRTWISTLE Ik

K, 86]. Parallel processor machines appear to be the hardware of tomorrow and

Prolog ia more suitable for such machines than LISP. This is evident by Japan's

decision to use Prolog for its Fifth Generation Computer Project.

(C) PROLOG HAS A NUMBER OP HIGH LEVEL PROGRAMMING FEATURES
The choice is further substantiated by the fact that as noted earlier first order

predicate logic is in itself a knowledge representation formalism having well

defined inferencing (problem solving) methods [KOWALSKI, 79]. Further, Prolog

implementations provide built-in theorem-prover and depth-first search facilities.
These provide very high level constructs for implementing knowledge-based types

of systems. It is an opportunity which can not be ignored.

(D) PROLOG AND THE RESEARCH STRATEGY
The fact that Predicate Logic is both a knowledge representation scheme and a

language has been exploited in devising a strategy for this research. Instead of
applying the more frequently used knowledge representation schemes like

production rules or frames it was considered preferable to initially start with the

basic simulation concepts and implement these in Prolog. The experience thus

gained can then be made use of, in visualizing and evolvii^ the higher level

knowledge representations which are specific to simulation and possibly also to

the problem domain. This can be regarded as an application of the problem

oriented approach.

76

(E) ADVANTAGES ANTICIPATED PROM THE USE OP PROLOG IN SIMULATION
In the simulation area, different types of formalisms are used for the system

description and its coding into an executable simulation model (chapter 2). It is

this coding process (i.e. accurately transcribing the model from one formalism

into another) which is error prone and time consuming and is therefore expensive.

The need to communicate with the decision maker during this phase also makes it

further expensive. These difficulties are the major factors which discourage the

use of simulation for problem solving. In order to overcome these difficulties, the

declarative cum procedural nature of Prolog can be explored. The declarative

aspects of Prolog can possibly be exploited for the system description whereas the

procedural aspects can be used for the behaviour generation from such a

description (or from a derivative of It, obtained by an automatic transformation).
If this can be shown to be feasible it would be a substantial advancement in the

simulation modelling area, as it would by-pass the need to transcribe the coding of
a simulation model from one formalism into another. These ideas also link in with

the software engineering concepts of executable specifications and rapid

prototyping.

This process does not need to stop at the specification of the executable model. It

should in principle be possible to gather the statistics by running the simulation

model, also in the first order predicate calculus notation, to serve as a database of
the system's performance under different decision conditions. Such a data base

can be supplemented with other system's knowledge to proceed with the problem

solving proper. Further, if this can be integrated into an over all framework, then

a knowledge based problem solving environment can be created, which can

generate knowledge through automatically building simulation models and running

them, to obtain the needed knowledge to proceed with problem solving. Using this

approach the user need only specify the problem and the rest is handled by the

problem solving system.

Prolog has thus been envisaged as having the potential to provide the necessary

expression facilities in which all types of knowledge (the system description,

behaviour generation, the system's performance, problem solving) can be

expressed. Kowalski has expressed this view rather strongly:

77

"T h a r * la o n ly o n * lan gu age » u l i a b l e f o r r a p r a a a n t in g
i n f o i u l l o n - w h e th e r d e c l a r a t i v e o r p ro c e d u ra l - and th a t
l a f l r a t - o r d e r p r e d i c a t e l o g i c . T h e re la o n l y one
i n t e l l i g e n t way t o p r o c e s s in fo rm a t io n - and th a t i s by
a p p ly in g d e d u c t iv e in f e r e n c e M e th o d s ." (SIGART70, 8 0)
qu o ted f r o a p 92» (JACKSON, 86)

3.5. INITIAL CONJECTURES RELATING TO PROLOG AND SIMULATION
La n g u a c e ' hramm^ p s --

(BONGULIELMI A C, 84] has described the usefulness of deterministic grammars

for simulation languages. (DAVIES, 79] has identified the basic unit o f a

simulation model for the purpose of simulation program generation and has

formulated a grammar for it using BNF (Backus Naur Form) notation. (RADIYA A

S, 87] has also formulated BNF like representations for event scheduling, activity

scanning and process interaction world views. The relevance of Prolog with the

language grammars has been noted earlier in this chapter.

This idea can possibly be exploited for expressing parts of the problem, using

languages most suited to the individual parts. An example of research towards

this goal is represented by the JADE project (UNGER A DCB, 86) in the use of
multiple languages along with a uniform communication protocol to develop JADE

distributed software prototyping and simulation environment. Similar principles

are also evident in the use of a blackboard model for expert system, where

multiple expert systems cooperate to solve the problem through

intercommunication (NO, 86a), (NO, 86b].

Provided that the grammars fo r the respective languages can be formalised as

definite clause grammars, these would constitute the implementation of the

system in conjunction with Prolog (WARREN, 80). The need for writing compilers

for these languages can therefore be by-passed, thus permitting a very high level

of specification of the problem solving system or even an assembly of the system

itself in response to a problem.

END OP CHAPTER 3

78

CHAPTER 4 : A PROTOTYPE SIMULATION ENGINE WRITTEN IN PROLOG

INTRODUCTION

The earlier part of this chapter describes the preliminary work carried out

towards developing a simulation facility, which could generate simulation

behaviour by interpreting the simulation program at the run time. This facility

was seen as providing the base layer for further research in knowledge-based

discrete simulation environments. This preliminary work was implemented in the

programming language Pascal. It was envisaged that it should be possible to

develop a knowledge-base in the form of a library of software modules, which

represented the behaviour of the individual components in a particular application

domain (e.g. in manufacturing domain: conveyors, robots, machining centres and

the like). Such a knowledge-base could then be experimented with, to explore the

ways o f knowledge-based construction of discrete simulation models. A

simulation engine, which would interpret the model code at the run time, was seen

as a useful research tool as well as a useful part of a simulation model

development environment.

In the mean time, a study of the recent developments in artificial intelligence and

knowledge based systems (chapters 2 and 3) suggested that these provide a more

advanced framework for simulation research, as compared with the use of a

Pascal based simulation engine. The use of a logic programming paradigm was

seen as particularly attractive as it provided for the specification of programs at

a higher level than Pascal. These developments provided the necessary motivation

to enhance the scope of this research towards exploring the feasibility of creating

an 'intelligent' simulation modelling environment. The use of Pascal for this

project was therefore discontinued, and it was decided to use the declarative (non­

procedural) language Prolog for the implementation while using a Knowledge-

Based Systems framework.

The rest of the chapter is devoted to a description of the research carried out in

developing a prototype simulation engine, which was implemented in Prolog. The

simulation engine enabled simulated behaviour generation directly from a

declarative articulation of the simulation model as a set of Prolog clauses, while

using the three phase approach to behaviour generation. The simulation engine

was then further extended to also support the articulation of simulation models

79

using the process view. This extension permitted a mode of specification of the

simulation models, where parts of the simulation model could be expressed using

the three phase 'world view', whereas the other parts could be exprssed using the

process 'world view'. This capability of the articulation of the simulation models

using a mixture of world views was considered to be particularly relevant from the

view point of developing a knowledge based framework for the simulation

environment. The behaviour of the various components in a system can be

captured more naturally as events (e.g. a break-down of machinery), activities

(e.g. a machining operation) or process (e.g. the production process for a

component) [HURRION, 85]. A simulation engine which could generate simulated

behaviour from an articulation using a mixture o f world views was seen as

simplifying both the knowledge engineering problems as well as the simulation

model construction method.

A prototype knowledge-based simulation model construction system was developed

and is the topic of chapter 5, whereas implementation of a knowledge-based

interactive model acquisition system is described in chapter 6. Together the three

systems constitute a prototype knowledge-based simulation modelling

environment.

4.1. THE INITIAL WORK TOWARDS A SIMULATION ENGINE USING
PASCAL---

4.1.1. BACKGROUND

(A) AN EXISTING SIMULATION FACILITY (MICROSIM)
A visual interactive simulation package of FO RTR AN subroutines (MICROSIM)

written by Dr. Robert Hurrion was made available in compiled form (i.e. a set of
object modules). This simulation package is used on microcomputers during the

teaching of simulation courses within the Warwick Business School. MICROSIM

subscribes to set representation for the system state together with an event

scheduling framework for the time advance. It provides the necessary routines for

defining the systems components and for altering and inspecting the system's

state, in terms of suitable set operations. It further provides routines for the

generation of random numbers and for data collection, during the experimentation

with simulation models. The graphic facilities provide for an animated trace of
the execution of the simulation model and the graphic display of the results in the

form of histograms. The interactive facilities provided by the package include the

ability to interrupt the execution of the model to inspect the current state of the

80

model elements, and provision of suitable user supplied routines to alter the model

parameters (e.g. resource levels).

Initially simple simulation models were developed using M1CROS1M to gain

familiarity with the package.

(B) AN EXISTING INTERPRETER
Mr. Keith Halstead in the Computing Services Unit o f Warwick University has

developed an interpreter using Pascal, which interprets arithmetic assignment

statements. On successful parsing it outputs the statement in prefix notation

along with its evaluation, if the variables used in the input statement have

previously been assigned values during the current session. If the statement

contained errors, parsing is aborted and the error is reported. It is understood

that this interpreter was developed within the context of a larger interactive

system, where the user could be prompted to provide an arithmetic expression,
which was interpreted for immediate evaluation.

Mr. Halstead kindly agreed to make available the Pascal source code for this

interpreter for this project.

4.1.2. MOTIVATION
The main motivation at the time was to research into the problems involved in

developing an existing visual interactive package of simulation routines into an

advanced simulation environment (albeit, a research prototype). An interpreter

facility which interpreted the model at the run time was considered to be a

necessary component of this envisaged simulation research environment. The

initial step was to develop a simulation engine to facilitate programming of the

simulation models by using an interpreted approach, to save the turnaround time

for compiling the model and linking it with the packaged routines.

The use of Pascal for writing simulation software is considered to be a step

further from the use of FORTRAN which has prevailed in the past. The ability to

create special purpose data structures alongwith the dynamic memory allocation

used in Pascal are distinct advantages for simulation work. Better readability of
the Pascal code and the 'goto less' block structure of Pascal provide for better

software maintenance.

81

There has been considerable interest in the UK in the use of Pascal for coding

simulation models. This is indicated by the Computer Aided Simulation Modelling

Project (CASM Project) at the London School of Economics and Political Science

[P A U L , 88]. Also, O'Keefe had previously reported research in the interactive

simulation modelling environment by using a Pascal based interpreter built in

conjunction with a three phase simulation system by Crookes [O'KEEFE, 84]. It

was fe lt that there was room for exploring different (more advanced) directions in

this line of research, to develop and experiment with a more integrated and

comprehensive simulation modelling environment than has been reported (e.g. the

provision of model-base facilities, the provision for the articulation of the

simulation model using alternative formalisms within one environment, and the

like).

4.1.3. THE INITIAL WORK IN PASCAL

(A) A PRELIMINARY EXERCISE IN MIXING PASCAL WITH FORTRAN
As a preliminary exercise, a shell was written in Pascal which enabled the writing

of simulation programs in Pascal, which could be linked to the M1CROSIM modules

(which have been compiled from FORTRAN source) alongwith the shell itself.

Using this facility much more readable simulation programs could be written in

Pascal, as compared with the same models written in FORTRAN. The mixing of

the languages at the object code level was possible by using Pascal and FORTRAN

compilers from the same company (Prospero Software) which uses a uniform

format for the object modules produced by the two compilers. Some initial

experimentation with the two compilers and a study of the behaviour of the mixed

code was however necessary.

(B) MAKING THE INITIAL STEPS TOWARDS INTERPRETED BEHAVIOUR GENERATION.
An insight was gained into the interpreter technology, after a study of the Pascal
code fo r the arithmetic statements interpreter. As a result, it was possible to

make extensions to the existing interpreter code to provide the capability o f

interpreting a call to a MICROS1M routine and then actually calling the respective

routine to perform its operation. Making use of the previous experience of mixing

Pascal with FORTRAN, it was possible to link the extended interpreter with the

MICROSIM object modules to give an elementary form of the envisaged simulation

engine.

82

It was at this point that the decision was made to explore the possibility of

developing an 'intelligent' simulation modelling environment by making use of the

logic programming paradigm within the knowledge based systems framework. The

reasons for this shift are the subject of the next section.

4.2. THE MOTIVATION FOR THE SHIFT TOWARDS LOGIC PROGRAMMING

4.2.1. TO EXPLORE THE FEASIBILITY OF USING LOGIC PROGRAMMING
FOR SIMULATED BEHAVIOUR GENERATION
As noted in chapter 2, in the past the computer simulation community has been

keen to upgrade their techniques in response to the developments related to

computer languages and programming paradigms. A progression path can be seen

from the use o f high level procedural languages (e.g. FORTRAN) through strongly

typed languages (Pascal, Ada, C), object oriented languages (SIMULA, ROSS) to

the functional programming language (LISP).

Since the advent of Prolog (around 1972) there has been considerable interest in

its use in many areas which had previously employed procedural languages

(chapter 3). [COELHO, 83] has discussed its relevance and usefulness for

developing decision support systems and has also provided a list of other areas in

which Prolog has found applications. [BHARATH, 86] discusses the use of Logic

Programming in Management Science and Operational Research.

At Warwick Business School (FLITMAN, 86] has reported a simulation engine

written in Prolog and also a simulation control expert system also written in

Prolog. [TAYLO R A H, 88] have reported the use o f Prolog to develop an expert

simulation experimentation advisor for experimentation with the simulation

models written using the MICROSIM simulation package.

4.2.2. TO FACILITATE THE USE OF SIMULATION BASED AI PROBLEM
SOLVING TECHNOLOGY
Exploring the use of logic programming (Prolog) within simulation for behaviour

generation and within other simulation related areas (e.g. model building, model

validation, experimentation with simulation models) is a research issue in its own

right. The fact that a large proportion of AI work has been implemented by using

either LISP or PROLOG provided a further motivation for the use of Prolog for

this project. It was hoped that the use of Prolog for this project would prepare

the ground to facilitate the future use of AI problem solving technology in

collaboration with discrete simulation modelling.

4 . 2 . 3 . THE B U ILT IN SYM BOLIC PROCESSING FEATURES IN PROLOG

While using a simulation language or a simulation package the symbolic

representations in a simulation program are further converted at compile time

into the internal representations used by the particular simulation software. For

example, the MICROSIM package represented the state of the system by using an

array of integers, and each symbol for a set or an entity is assigned an integer

value. Further, the attributes of an entity must themselves be referred to by an

integer (e.g. first attribute, second attribute and so on) and can only assume

numerical values. Such representations derived from the symbolic description of a

simulation program make the query and interaction with the model at run time

less intelligible, and require more knowledge of the implementation details used

by the simulation software, which may or may not be available.

The symbolic processing capabilities of Prolog provided an incentive for

attempting an implementation of the representation of the system state directly

from the symbols used in the simulation program. Further, these capabilities were

envisaged to be directly related to the original ideas of interpreting the simulation

program at the run time. A fte r having an experience of the amount of Pascal

code required (over 30 pages) to interpret just an arithmetic statement, these high

level symbolic processing features of Prolog provided an opportunity which was

very difficult to ignore.

At this time the considerations related to the efficiency of running the simulation

model were set aside, and the research explorations concentrated only on

establishing the technical feasibility of a symbolic representation for the system

state, which could permit behaviour generation directly.

Logic programming being a comparatively new programming paradigm and Prolog

being a new language, considerable time and effort had to be spent to gain

familiarity with these.

4.3. BACKGROUND

4.3.1. EXPRESSING SIMULATION MODELS USING ALTERNATIVE
FORMALISMS
The ideas of having options fo r expressing models using alternative and possibly

multiple formalisms have been introduced in (DAVIES, 79] and [PEGDEN & P, 79].

Davies has reported an interactive discrete event simulation modelling

environment, which provides fo r the model description using either event, the

three phase or the life-cycle diagram world views. The model generator receives

the information thus supplied, in a world-view independent form termed as

'descriptive units'. From these descriptive units a simulation program can be

generated which subscribes to the two phase or the three phase model o f

behaviour generation. Thus it is possible to interactively enter a simulation model

using three phase events and activities and get a simulation program fo r a two

phase simulation language.

[PEGDEN & P, 79] goes a step further and provides the capability to express the

model using either a process, event or state variable and allows for either a

discrete or continuous simulation capability.

84

4.3.2. A PROTOTYPE INTERACTIVE SIMULATION MODELLING
ENVIRONMENT
Dr. Robert Hurrion has developed a prototype simulation modelling environment

using SEE WHY [F ID D Y & BH, 81] and has given it the code name LEG O

(HURRION, 85]. This modelling environment provides for the interactive entry of

sections of a simulation model using a particular behaviour generation world view,

and it was possible to use a mixture of these (e.g. process, events, activities).
These parts of the model could be saved in the form of a library for la ter use by

parameterization and the assembly into larger simulation models, which could be

run using the SEE W H Y package. This work has shown that it is possible to

generate the system's behaviour from a process type articulation of the

executable simulation model while the simulation executive is operating in the

three phase mode, thus permitting a sensible and meaningful mixing o f the world

views when articulating an executable model.

[HURRION, 85] also provides a list of advantages to be gained from having the

option to express a simulation model as a mixture of processes, events and

activities. The major advantage among these is that parts of the simulation model

85

can be expressed using the world view most suited to the individual part. Also the

model can be incrementally augmented by including further processes in an

existing model thus building on previous work.

4.3.3. A PROTOTYPE SIMULATION ENGINE WRITTEN IN PROLOG
Flit man has reported writing a simulation engine in Prolog [FLJTMAN, 86]. The

engine was reported to have been based on a three phase mode of behaviour

generation. The system state, however, is not based on set representation but on

a mixture o f lists and clauses in the Prolog database. A s is usual for a research

prototype, simple options for data recording and interaction with the model have

been implemented. It is reported that during interaction with the model it is

possible to alter the logical structure of the model (in addition to more usual

changes, e.g. resource levels) which was regarded as a novel feature. Flit man

concludes that!

"T h e r e s u l t s o f t h is r e s e a r c h have in d ic a t e d th a t PROLOG i s
w e l l s u i t e d b o th t h e o r e t i c a l l y and p r a c t i c a l l y as a
s im u la t io n la n gu a ge . The n a tu ra l p a r t i t i o n by th e PROLOG
s y s tem o f s im u la t io n l o g i c and p rob lem c h a r a c t e r i s t i c s means
th a t t h e s im u la t io n e n g in e i s v e r y s im p le t o u s e . W r it in g
s im u la t io n program s i s redu ced t o w r i t in g a fe w fa c t s ab ou t
th e p ro b le m (an d not th e node o f s o l u t i o n) . "
p 1 0 3 ; IPL ITM AN , 8 «) .

Among the limitations of his simulation engine in Prolog, Flit man mentions the

limited arithmetic capability of Prolog and the slow speed of the execution of the

simulation, which could be overcome by using a faster implementation of Prolog

having extended arithmetic capability.

Flitman's simulation engine did not provide for the facility of alternative world

views for expressing simulation models.

4.4. OBJECTIVES
The objective was set to write a simulation behaviour generation facility in

Prolog, which will accept a simulation model expressed using either process, event
or activity world views or a mixture of these and generate the behaviour of the

system. In effect this was to consolidate the past research within one item of
software, while using the logic programming paradigm for implementation. This

facility will be referred to as the simulation engine.

It was decided to write the simulation engine only to generate the dynamic

behaviour of a model using deterministic time values. The facilities, like the

generation of random numbers, sampling from distributions, statistics collection,

visual interactive facilities, were decided to be left for future development if the

current research proved fruitful. The engine was meant to be a research

prototype rather than a full simulation facility. [CROOKES, 82] has reported 137

simulation packages already in existence.

The main purpose of this exercise was to explore afresh the problems of
implementing a simulation engine in a non-procedural programming language and

to determine if there were any benefits of such a facility.

4.5. THE FIRST VERSION OF THE SIMULATION ENGINE (THREE PHASE
g a m -- -------------------------

As an initial step an implementation was attempted following the three phase

articulation of the dynamic behaviour. This was later extended to allow for the

expression of the dynamic behaviour as processes, and as a sensible mixture of the

three phase and process specification. Fig. 4.1. shows an overview of the use of

the simulation engine in a diagrammatic form. In this section an exposition of the

three phase only version will be undertaken. Section 4.6. will cover the

extensions.

4.5.1. THE DESIGN FEATURES

(A) THE CHOICE OF THE SET REPRESENTATION FOR THE SYSTEM STATE
The particular Prolog interpreter used during this project (Arity/Prolog) provided

a number of built-in predicates known as data-base predicates. Using these

predicates Prolog terms could be stored and retrieved using appropriate keys. The

interpreter itself uses these predicates for storing the clauses in its program data­
base, a Prolog clause being a term with (the neck symbol) as its functor.

Three distinct forms of data-base storage available, were (a) a chain of terms

stored under one key (fig. 4.2), (b) terms in a b-tree, where the tree has a name

and the terms can be stored under different keys. Conceptually these keys form

part of a balanced tree structure whose leaf nodes provide the storage for the

Prolog terms, and (c) terms stored in hash tables under sort keys.

The availability of the data base primitives for the storage of Prolog terms and

the availability of the built-in predicates for the data base operations like

•7

S
Usar

F ig u r e 4 .1 . An o v e rv ie w o f th e s im u la t io n e n g in e
e n v iro n m e n t .

(a) i n d i c a t e s model s t a t i c s
(b) i n d i c a t e s model dyn am ics
(c) in d i c a t e s s im u la t io n t r a c e

88

F i g u r « 4 . 2 . T h « O r g a n i s a t i o n o f T h « A r i t y / P r o i o g D a t a b a s e .
(T h « a r r o w s i n d i c a t e th e d i r e c t i o n in w h ic h o t h e r
e le m e n t s o f t h « d a t a b a s e c a n b e a c c e s s e d)

89

inserting, deleting, retrieving terms provided the necessity motivation to attempt

a generalized implementation of a set representation for the system state, while

using set operations available in MICROSIM as a guideline. A summary list o f the

facilities provided by MICROSIM can be seen in Appendix 0.

(B) MEMORY ALLOCATION MODEL
In line with the implementation of MICROSIM in FORTRAN, it was decided to

generate a finite number of entities in the beginning, rather than to use the

dynamic generation of entities as the simulation proceeds.

(C) THE FORM OF ARTICULATION OF THE SIMULATION MODELS
The following general sections of a simulation program are more or less dictated

by the decision to adopt a set representation for the system state and the three

phase approach to behaviour generation.

(i) Model statics. The definitions of sets (for queues, activity-sets), classes of
entities, resources and the like.

(ii) Model dynamics. The dynamic behaviour coded as a set of events and

activities.

(iii) Start-up events. The scheduling of the first arrivals which allow the behaviour
generation to begin.

(D) TRACE FACILITIES
An event by event trace on the screen was regarded as adequate, and any

graphical animated trace on the screen was left for future development.

4.5.2. IMPLEMENTATION

(A) REPRESENTATIONS FOR THE MODEL STATICS

(a) Seta

Queues and service points are represented as sets, which in their turn are the

names of the respective keys under which the Prolog terms are to be stored. All
set names are stored likewise in a master set.

The following MICROSIM statement for the definition of a set has been

implemented using the following syntax:

v s e t (' s e t _ n a s e ‘ (1 , 2 , 3 , 6 , 7)) .

where 'set_name' is the name under which the set is to be defined. The arguments

(numbers 1 to 7) at present are dummies. In MICROSIM these are the screen

display attributes associated with the set being defined. The dummy arguments

hold the place for possible future developments related to graphics.

The following set operation/inspection primitives were implemented:

v a d d f i
T o add an e n t i t y b e f o r e th e f i r s t e l e e e n t in a s e t

v a d d la
T o add an e n t i t y a f t e r th e l a s t e le e e n t in a s e t

v lo a d
T o add s p e c i f i e d e n t i t i e s in a s e t

v d e le t e
T o rem ove an e n t i t y from a s e t

vbehead
T o r e a o v e th e f i r s t e lem en t o f a s e t

v b e t a i l
T o rem ove th e l a s t e lem en t o f a s e t

move
T o move an e lem en t from one s e t t o an o th e r

vem pty
T o rem ove a l l e lem e n ts from a s e t

is _em p ty
T o b a c k tra c k i f th e s e t i s n o t em pty.

is _ n o t_ em p ty
T o b a c k tra c k i f th e s e t i s empty

h e a d _ t a i l
R e tu rn s b o th f i r s t and la s t e lem e n ts o f a s e t .

(b) R eso u rce s

In MICROSIM resources are not specially declared. It was thought convenient to

have a separate representation for resources (also referred to in the simulation

literature as service facilities) as this tends to make the execution of simulation

90

91

faster, because of the reduced overhead of set operations. Conceptually a

resource has two possible states: busy and idle. This was implemented as a section

of the database with the name of the resource as a key and the number of

resources as the number of terms (atoms) as 'busy' or 'idle'

The following syntax has been used for declaring a resource:

v r e s o u r c e (' resource name ' , «number >)

The following operation/inspect ion primitives related to resources have been

implemented:

s e t _ b u s y

s e t _ l d l e

g e t _ l d l e

(c) E n t i t y C la s s e s

Classes of entities are declared by using the following syntax:

v c la s s (• c la s s _ n a m e '(1 , 2) , « a t t r i b u t e s » , «n u m b e r »).

The arguments 1 and 2 are dummy graphic arguments for future use. «attributes»

is an integer specifying the number of attributes each entity may have and

«number» specifies the size of the class.

The classes of the entities have been implemented as an entry for the class name

stored under a key for the master class, where the names of all the classes

declared are stored. The attributes have been stored as terms in a B-tree with the

index number of the entity in the class as the key.

The following operation/inspect ion primitives related to the attributes of the

entities have been implemented:

g e t _ a t t

s e t _ a t t

92

(B) REPRESENTATIONS FOR THE MODEL DYNAMICS

(a) E v e n t s

The set o f events are stored as a part of the program database as a set of Prolog

clauses with the predicate 'event' and arity 2. For example the following event

clause:

• v e n t (e n d _ s e r v i c e (E n t i t y) , a c t io n s) : -
■ o v e (E n t i t y , s « t _ l , s e t _ 2) ,
setidle(Bachine).

means that when the event named 'end service' is processed the Entity on which

the event has been scheduled is to be moved from 'set_l' to 'set_2', and the

resource called machine is to be set to its idle state from its current busy state.

(b) Activities

Each activity is represented by two clauses with the predicate 'activity' and arity

2. As an example the following two Prolog clauses specify an activity:

a c t i v l t y (s t a r t _ s « r v i c e , c o n d i t io n s) : -
is _ n o t _ e e p t y (q u e u e) ,
g e t i d l e (e a c h i n e) .

activity(start_service(Entity), actions) :-
headtail(queue. Entity, _),
■ove(Entity, queue, set_l),
set_busy(Machine),
s c h e d u le (e n d _ s e r v ic e . E n t i t y , 5 . 0) .

The first 'activity' clause represents the conditions which must be satisfied before

the activity 'start_service' can begin. In the example above it checks that the

queue is not empty and the resource 'machine' is in an idle state. The second

'activity* clause represents the actions which the simulation executive is required

to perform to alter the state of the model when the conditions in the first clause

are met. In the example above it identifies the head entity in the queue into the

Prolog variable "Entity" and then moves the specific entity from 'queue' to 'set l '
and sets the resource 'machine' to the state 'busy' and the completion of the

activity is scheduled.

(C) REPRESENTATIONS FOR THE TIME SET AND TIME ADVANCE MECHANISM
The time set which represents the future scheduled events has been represented as

a b-tree. The event name and the entity on which the event is scheduled is stored

93

under the time value which is used as a key. The property of b-trees that

enablesinformation to be retrieved in the sort order o f keys has been made use of,
and this saves the coding required for the insertion o f a scheduled event at its

chronological position in the time set. In an earlier attempt, however, the

ordinary Prolog database representation for the time set was also successfully

implemented.

4.5.3. AN EXAMPLE OP BEHAVIOUR GENERATION USING THE
SIMULATION ENGINE
An example model of a coal depot [LEC_NOTES, 85] was used to test the

simulation engine. A description of this model has been included in Annexe 4A

along with an entity cycle diagram for the model. This model shall be referred to

as the ’lorry' model.

Annexe 4B presents the articulation of the 'lorry' model using the three phase

world view. The articulation consists of the declaration of:

Model statics: A set of imperative Prolog clauses (these clauses are obeyed
immediately when 'consulted' and do not become part of the Prolog
database) declare sets, classes of entities, resources, and so on,

Model dynamics: The dynamic behaviour of the system is specified as a set
of Prolog clauses, which become part of the Prolog database, and is
referred to at the run time. Two sets of clauses with predicates 'event' and
'activity', as explained above, specify the dynamic behaviour of the system
using the three phase world view, and,

Start up events: These imperative clauses specify the scheduling o f the
first arrivals of the entities from each class.

The three sets of Prolog clauses are presented to the simulation engine through

Prolog's 'reconsult' predicate when the simulation engine itself has been

'reconsulted' and initialized. The start-up events need to be presented last as

these refer to both events and entity declarations. The clauses declaring the

model statics and the model dynamics may be presented to the simulation engine

in any order, as there are no references from one to the other.

When the complete specification of the model has been presented to the

simulation engine, the model can be run by entering the command 'simulate' to

produce a simulation trace on the screen. A sample o f a simulation trace for the

'lorry' model as articulated has also been included in Annexe 4B.

94

The user's typing of 'simulate' calls the simulation engine predicate of the same

name a . a goal, which provides for the simulated behaviour generation. This

predicate has been reproduced in the following:

s im u la te « -
c t r s e t (0 , 0) ,
t i e e (t l a e (0 , 0 , 0 , 0)) ,
r e p e a t ,
(I nl,

g c (full),
a d v a n c e t i a e ,
c t r _ i n c (0 , _) ,
d o _ s c a n n in g

An Arity/Prolog counter is used to count the number of time advances (i.e. event

number) and is initially set to zero using the 'ctr_set(0,0)' subgoal in the body of

the clause. The real time clock of the computer is also set to zero by using the

'time' subgoal. The event number and the real time clock reading is produced as a

part o f the simulation trace.

A fte r initializing the counter and the real time clock, the simulation engine gets

into what can be described as a 'repeat-fail loop', as appears next in the body of
the 'simulate' clause. Within this loop:

'nl' gives a blank line on the screen,

'gc(full)' is an Arity/Prolog's system predicate which recovers memory
space released by erasing terms in the database,

'advance time' subgoal advances the simulated time by retrieving the next
schedule? event from the time set and updating the clock. It also invokes
the b-phase which alters the system state by calling the respective 'event'
clause and producing a line of the trace on the screen,

'ctr_inc' increments the event counter by 1, and finally,

'do scanning' provides for a scan of all the 'activity' clauses that have been
previously made available to the simulation engine as part of the model
dynamics. During scanning the 'conditions' part of the 'activity' clauses are
attempted first and if one succeeds then its 'actions' part is called, which
alters the system state and produces a line of the trace on the screen. The
scanning is repeated until no further 'activity' can be started.

Backtracking occurs when the last subgoal 'fail' is encountered. An Arity/Prolog

control structure called snips (shown by the symbols [I and !]) has been used to

specify that the subgoals within l ! ' and 'IF are skipped on backtracking and the

subgoal 'repeat' is attempted next. The subgoal 'repeat' always succeeds on

backtracking which begins the next simulation cycle.

95

4 .6 . THE SECOND VERSION OF THE SIMULATION EMCIME

4 . 6 . 1 . EXTENSIONS TO THE DESIGN SPECIFICATIONS

In the second version of the simulation engine the design specifications were

extended to have the ability of expressing the model dynamics purely as a set of
processes and also as a combination of processes, events and activities.

4 . 6 . 2 . IMPLEMENTATION

(A) REPRESENTATIONS FOR THE MODEL STATICS

The representations related to the model statics were kept unaltered, because the

same set of static declarations were needed to serve both the three phase and

process forms of articulation of the model's dynamics. This was particularly so,

when the simulation engine was also needed to support the articulation of the

model's dynamics using a mixture of the tw o world views.

(B) REPRESENTATIONS FOR THE MODEL DYNAMICS

A process for an entity represents its life cycle in the system, expressed in terms

of the model's statics, as viewed from the entity's own angle of view. It was

decided to express the process of an entity as the body of a Prolog clause. The

head of the clause identifies the name o f the process using a suitable predicate,

whereas the body of the clause represents the steps which an entity goes through

while it is associated with this process. These steps are expressed as Prolog terms

separated by commas, as in the usual Prolog clause notation. Internally, however,
this clause is broken down and the individual terms, which represent individual

steps, are recorded in the Prolog database with the process name as the key while

keeping the sequence. In this way each step is uniquely identified and can be

accessed through the process name or through the database reference to it.

Another data structure was defined in the form of a b-tree, which represented the

'system attributes' of each entity defined in the model. These system attributes

pointed to the appropriate process step through which the entity was currently

passing provided that it had previously been 'introduced' to the process by the

scheduling of the following system event

in t r o d u c e (E n t i t y , P r o c e s s)

96

The following process steps were implemented:

g e n n e x t (P r o c e s s)

w a l t _ u n t11(h e a d _ o f (Q u e u e))

w a i t _ u n t i l (i d l e (R e s o u r c e))

wait_unti1(m essage found(M essa ge)

seize(Resource)

r e le a s e (R e s o u r c e)

le a v e _ m e s s a g e (M essa ge)

r e n o v e o e s s a g e (M essa ge)

m o v e (S e t l , S e t _ 2)

h o ld (D u ra t i o n)

e x i t s y s t e m (S e t _ l , S e t _ 2)

(C) THE METHOD OF BEHAVIOUR GENERATION AND RELATED
REPRESENTATIONS

A system event 'activate' was defined and implemented. When this event is

processed a system attribute associated with the entity on which the event had

been previously scheduled is set to 'active'. It is possible to scan through these

system attributes to locate all the entities in the model which are active at any

given time. The system events (Le. 'introduce' and 'activate') are scheduled in the

same way as the user supplied events and are kept in the same time set. When an

entity attempts to execute the ’hold(Duration)' process step in the course of

progressing through its process steps, the simulation executive 'de-activates' the

entity and at the same time an 'activate' event is scheduled for this entity after

'Duration'. In this way the entity is temporarily stopped from advancing through

its process steps for the simulated period of 'Duration', because it is not in the

'active' state.

The following 'four phase' model of behaviour generation has been adopted from

[HURRION, 85] (fig. 4.3) for implementation in Prolog.

Phase 1: Advance time to nearest scheduled event (either a system event or
a user supplied event).

Phase 2: Alter the state of the model by performing the actions specified
by the event.

97

F ig u re 4 .3 . A Clow diagram Cor tha 'f o u r p h ase ' mod* o f
behaviour gen e ra t io n ,w h e re th e a o d e l can be
expressed a s a com bination o£ e v e n ts , a c t i v i t i e s and
p rocesses (ad ap ted from (HURRION, 8 5]) .

98

Phase 3s Scan the entities which are currently 'active' and attempt to
advance each through its respective process steps as far as possible. Re­
scan if any entity could be advanced. Enter the fourth phase if no active
entity could be advanced through its process on a re-scan.

Phase 4: Scan the user supplied 'activities' for possible starting. If any
activity could be started then leave the further scanning of the activities
and start phase 3 again. If no activity could be started in a complete scan
then go to phase 1.

4.6.3. AN EXAMPLE OF BEHAVIOUR GENERATION BY EXPRESSING THE
'LORRY' MODEL USING PROCESSES ONLY
The 'lorry' model, previously programmed by expressing the dynamic behaviour by

using events and activities only, has been re-programmed using processes only.

This articulation of the model and the resulting trace from the simulation engine

has been included in Annexe 4C. The same segments of the trace as in the

events/activities version have been included to facilitate comparison.

There are two observations which can be made by comparing the simulation traces

from the two versions. First the process model is slower in its execution as

compared with the events/activities version. This is apparent from the trace that

in the events/activities version the simulated time 152.51 (i.e. the time of arrival
of the 21st merchant) took 2 minutes and 8.9 seconds whereas the corresponding

time value for the process version is 12 minutes and 11.2 seconds. The reasons are

understandable because the search space in the case of the events/activities

version is finite (i.e. the number of activity clauses supplied by the user) whereas

the search space in the case of the process version is dependent on the number of
entities which are currently active. If in the model the queues are building up

(due to say faster arrivals and slower service time) the (real) time between

processing two successive events would increase.

A second observation is that the two traces are not identical. In the

events/activities version it was possible to express the priority rule that the coal
board lorries have a priority over the merchant lorries in the use of the weigh

bridge and the lorries waiting to weigh-in have priority over those waiting to

weigh-out. This was done by ordering the one argument 'activity' clauses, as these

define the search pattern for starting activities. In the process version further

articulation is necessary to translate the priority rule into the search pattern.

99

4.6.4. AN EXAMPLE OF BEHAVIOUR GENERATION BY EXPRESSING THE
'LORRY* MODEL USING PROCESSES, EVENTS AND ACTIVITIES
As a further example the same model dynamics code for the previous two versions

is combined together to show that it is possible to use s mixture of processes,

events and activities for the articulation of the model's dynamics. Through the

start-up events the merchant entity is introduced to the merchant process,

whereas the first arrivals of the neb and the train entities have been scheduled

through their respective arrival events. Although all the code for all the

processes, events and activities is present, the simulation engine 'drives' the model

sensibly. As noted previously further articulation is however necessary to express

priority.

4.6.5. A CONSOLIDATED VIEW OF THE SIMULATION ENGINE
To sum up. Fig 4.4 provides a consolidated view of the operation of the simulation

engine as described in the preceding sections.

4.7. THE DESIRABILITY OF THE PURELY DECLARATIVE
SPECIFICATION OF SIMULATION MODELS

4.7.1. DISCUSSION
It must be stated that the forms used for the articulation of a simulation model
are not fully declarative, which is somewhat against the spirit of logic

programming. In the events/activities case the model must be viewed as 'event'

and 'activity' clauses to express the model in terms of actions to be performed by

the simulation executive. In this sense the articulation is highly procedural as it

specifies the sequence of actions to be performed within the framework of the

three phase behaviour generation method. The process form is somewhat less

procedural in the sense that it does not have to specify the actions to be taken by

the simulation executive, but still it is a sequence of steps through which an entity

must go through during its life cycle in the system.

Implementing a change in s model expressed in a procedural formulation involves

going through an error prone and time consuming (therefore expensive) debugging

phase, followed by verification and possibly revalidation. This is so because the

logical structuring of the model, the behaviour generation approach and the

operational decision rules are interwoven into the procedural code. Such

100

F ig u r e 4 . 4 . A c o n s o l id a t e d v ie w o f th e s im u la t io n en g in e

10!

difficult!«« related to the modification of the code for a simulation model during

experimentation tend to limit the use of simulation for problem solving [e.g.
McARTHUR It KN, 84].

Logic programming being a declarative programming paradigm can be seen as

offering features which could provide the ability to separate the control

(behaviour generation method) from the model code. This can have a number of
advantages both in the overall simulation study and in programming and modifying

the model specification.

The model in declarative form is less susceptible to programming errors for the

simple reason that there is less to code. A declarative logic specification of the

model would consist of a set of symbols representing the model components which

are related to each other through a set of predicates and expressed as clauses. A

further set of clauses can specify the operational rules for investigating the

system's behaviour. A number of such sets of operating rules can be prepared and

simply 'plugged' in for various experiments without having a need to alter the rest

of the model code. Further, since the declarative specification is a statement of

the problem at a higher level, some form of knowledge based model synthesis and

verification system could further enhance the programmer's productivity and the

reliability of the code produced, thus making a simulation study cost effective.

The ability to systematically change a simulation model during experimentation is

of the essence for a successful simulation study. Model specification in a

declarative form should lend itself to the automation o f experimentation with the

simulation model and also present the ability to explore the possibilities in which

the logical structure of the model can be altered. The procedural specification of
a model does not easily lend itself to making structural changes to the model and

the scope of experimentation has to be limited to changing some of the model
parameters even If some degree of automation can be achieved for

experimentation.

The use of the declarative form also opens a way to the use of knowledge based

problem solving techniques developed in the area of artificial intelligence. Using

a knowledge based systems framework for both the model building and the

experimentation with it, one should only need to specify the objectives of the

study and the rest could be left to the computer system. The computer system

should be able to generate the appropriate model requested based on an

102

experimental frame, test the model to see how far it meets the requisite

performance measures and proceed to make 'intelligent' (heuristic) alterations in

the model's specifications to carry out the next 'generate and test* cycle, until the

model which satisfies the original requirements is obtained.

The work by [DAVIS, 79] has already shown that it is possible to automatically

transform the logic specifications of a program into the program in a specified

general purpose high level procedural language. This approach should in principle

be extendible to specialized simulation programs. The advantage of this approach

would be to get all the benefits of a compact high level logic specification, as

described above, together with the efficiency of running a simulation program in a

procedural language or possibly in a simulation language.

4.7.2. AN EXAMPLE
In order to provide a concrete example, a possible declarative articulation of the

'lorry* model as a set of Prolog clauses has been presented in Annexe 4E. The

Annexe also includes the documentation for the predicates used to define the

model.

Although this declarative form of the 'lorry' model is derived from the entity

cycle diagram of the model, it should in principle be possible to derive the entity

cycle diagram from this description (assuming a complete description). The point
is that using a suitable set of predicates, the logic specification can serve the dual
purposes of the system description and of the behaviour generation using the

appropriate simulation engine which is essentially in line with the spirit of logic

programming.

As should be clear from the declarative description of the 'lorry' model, it has not

been 'coded' with reference to a particular behaviour generation approach (i.e. a

world view) this makes the behaviour generation transparent and leaves the

simulation model in a much more communicable form, which is nearer the level of
human (decision maker's) understanding.

103

4. S. CONCLUSIONS AMD FURTHER RESEARCH

4.1.1. CONCLUSIONS
The work described in this chapter has built upon the existing body of knowledge

related to the methods of simulated behaviour generation (the three phase

method, process interaction), the related forms for the articulation of the model's

dynamics (events/activities, processes), and a representation scheme for the

system's state (set representation). This work has demonstrated that it is

technically feasible to unify these ideas by writing a (prototype) generalized

simulation engine using the logic programming paradigm and ideas of symbolic

processing which permit the articulation of the model as Prolog clauses, while

providing the option to choose between alternative world views or even a

(sensible) mixture of these for expressing the model. The simulation engine

provides the capability to generate behaviour directly from a suitable articulation

of the model without taking any further conversion steps (e.g. compilation,
linking).

Purely declarative forms of the articulation of a model are desirable. Future

research should therefore aim at writing a 'simulation engine' which could accept

the declarative specification of a model (for example, based on queuing network

terminology or on system theory terminology) and is able to generate an

appropriate internal representation of the model, for behaviour generation

purposes, and be able to generate simulated behaviour directly. Some success in

this regard has been reported by [FUTO fc G, 87] although the process view of

simulation has been adopted and the approach has been to extend the Prolog

interpreter rather than write a generalised simulation facility using it.

4.8.2. FURTHER RESEARCH
The simulation engine is useful in that it is possible to generate behaviour directly

from the model even though the model runs slower than if it were compiled and

linked. This should not be seen as a shortcoming, particularly in pedagogical
environments. The benefit of a shorter turnaround time could outweigh the slower

execution in terms of saving time which is consumed by the user waiting for the

model to be compiled and linked only to discover that a small error in transcribing

the model logic will force him to go through this time consuming cycle again. In

future, however, parallel processing hardware should improve the excut ion speed.

104

In a real simulation study the simulation engine concept is still useful. Using the

ideas presented in this chapter it should in principle be possible to write a

simulation engine which will accept models written in one of the prevalent
simulation languages. Such a simulation engine could then be used during the

model development stages, and when the model is fully developed and validated it

can be compiled for running efficiently during experimentation.

(A) EFFICIENCY RELATED
Further work, however, is necessary to address the problems related to the

efficiency of running the simulation model. There is an obvious trade-off between

the analyst's time required to explicitly code the method o f behaviour generation

by expressing the model as a set of events and activities and the speed of
execution attained by the simulation engine. If the analyst saves his time by not

explicitly coding the behaviour generation method into the model by expressing

the model as a set of processes, then the simulation engine would require more

time in generating the behaviour through the same length of simulated time.

Expressing the model in terms of events/activities suitably breaks down the

behaviour generation problem for the simulation engine, whereas using process

articulation the method of behaviour generation is not explicitly supplied and the

simulation engine has to do more work to generate behaviour.

The further work can be on the lines of developing heuristic search strategies

during the scanning phase of the behaviour generation, and experimenting with

devising representations to eliminate or constrain any unnecessary searches.
These heuristic search strategies must relate to the further language constructs

for expressing the priorities and other operating rules.

(B) THE FACILITIES FOR EXPRESSING PRIORITIES AND OTHER
OPERATIONAL ROLES
As noted earlier, the operation of the simulation engine is unconstrained with

regards to following any priority rules when the model is expressed (fully or

partially) using the process form. Further work is required to develop language

constructs to express the priority and other operational rules which are 'obeyed' by

the simulation engine at the run time.

105

ANNEXE 4A

4A.1. SIMULATION PROBLEM ('lorry'1
This problem has been adapted from an example problem from [LEC_NOTES, 85).

Since the facilities for random variate generation within the simulation engine

have been left for future development, all stochastic time durations have been

changed to constant values.

4A.1.1. NATURAL LANGUAGE DESCRIPTION OP THE PROBLEM
The problem concerns a coal depot where merchants are complaining that their

vehicles are experiencing delays. Suggestions for improving the service at the

depot are that either an extra weigh-bridge be installed or an extra mechanical

loader be provided. The advantages of these alternatives can be assessed by

simulating three situations :-

(i) The Present Situation - one loader, one weigh-bridge

(ii) An extra weighbridge - one loader, two weigh-bridges

(ill) An extra loader - two loaders, one weigh-bridge.

4A.1.2. NATURAL LANGUAGE DESCRIPTION O F THE SYSTEM
The present situation is as follows

There is one weighbridge which is used by all vehicles to weigh in and to weigh

out. There is also one mechanical loader to load coal into the merchants' lorries.

The merchants' lorries arrive with an interarrival time of 7.27 minutes. They

weigh in (2.42 minutes) and run to the coal stocking area, where the loader loads

them (5.84 minutes). They then run to the weighbridge and weigh out (3.17

minutes).

The Coal Board lorries arrive regularly every 12.14 minutes. They do other work

on the site, and are not loaded with coal. After weighing in (2.22 minutes), they

spend 22 minutes working in the depot, and then weigh out (2.93 minutes).

(m
er

ch
)

(merch)(merch) m_*rrive
o o

ra_pool

l w e ig h b r id g e) (w e ig h _ b r id g e)

Figure 4.5. The entity cycle diagram for the ’lorry' model

ng
_w
ou
t

107

The Coal Board lorries get priority over the merchants' lorries at the weighbridge,
but any lorry arriving to weigh in has priority over any lorry waiting to weigh out.

The loader is usually available for loading lorries. It has to be taken off this work

however when a train arrives at the depot requiring to be unloaded. The inter­

arrival times for the trains is 13.40 minutes. The time taken to unload a train is

17.50 minutes. If the loader is busy when the train arrives, it is allowed to finish

loading the lorry it is working on, but after that the train unloading takes priority

over other waiting lorries.

An entity cycle diagram for this model has been included in fig 4.5.

' l o r r y * PHASE ONLY)

4 B .1 .1 . MODEL ARTICULATION

(A) MODEL STATICS
I - v s e t (a p o o l d , 2, 3, 4, 5, 6, 7)) .
I - v8« t (aq w i n (l ,2, 3, 4, 5, 6, 7)) .
I - vB«t(n w i n (l ,2, 3, 4, 5, 6, 7)) .
s- v se t (nq lo ad (1, 2, 3, 4, 5, 6, 7)) .
j - v se t (« T o a d (1, 2, 3, 4, 5,6, 7)) .
I - vaat(aq_wout(1, 2, 3, 4, 5, 6, 7)) .
s- v a a t(iw o u t (1, 2, 3, 4, 5, 6, 7)) .
I - v a s t (n _poo l(1, 2, 3, 4, 5,6, 7)) .
I - v a a t(nq_w in {1, 2, 3, 4, 5, 6, 7)) .
I - va a t(n _w in (1, 2, 3, 4, 5, 6, 7)) .

v a a t(o_work(1, 2, 3, 4, 5, 6, 7)) .
s- va e t(nq wout(1, 2, 3, 4, 5, 6, 7)) .
«- v a a t(n_wout(1, 2, 3, 4, 5, 6, 7)) .

v a a t(t_p o o l(1, 2, 3, 4, 5, 6, 7)) .
>- v s e t (tq _ u lo a d (l ,2, 3, 4, 5,6, 7)) .
s- v a a t(t u lo a d (1, 2, 3, 4, 5,6, 7)) .
I - n l , w cTta($aata d e fined S).
: - n l .

I - vc laaa (m e rch (1, 2) , 0, 50) .
I - v c la a a (n c b (1, 2) , 0, 50) .
I - v e la s s i t r a in (1, 2) , 0, 15) .
I- write($classas definedS).
I - n l .

I - v reso u rce(weigh b rid g e , 1) .
I - v ra so u rca (lo a d e r , 2) .
«- wr ita(Sresources dafinedS).
I - n l .

w r it e ($ loading c la s se s in p o o la S).
: - n l .
I - v load(m erch, 1, 50, * _p o o l) .
t- v load(ncb , 1, 50, n _p o o l).
>- v lo a d (t ra ln , 1, 15, t _p o o l) .

(B) MODEL DYNAMICS

(a) A c t i v i t i e s

act lv ity (n _w in).
act iv ity (a w in).
act iv ity (n_wout).
activ lty (n_w out).
act iv 1 ty (t_u load)
a c t lv ity (a _ lo a d).

activity(a_win, conditions) j-
is_not empty(mq win),
getidle!weigh bridge),
I .

activity(m w i n (Entity), actions)
head_ tail!nq win. Entity, _) ,
aov«(Entity, »q win, (win),
setbusy(weighbridge)7
schedulejm win_end, Entity, 2.42),

activity(a_load, conditions) s-
is not eapty(aqload),
g#t_idTe(loader),
I .

activity(a load(Entity), actions) :-
headtail(aqload, Entity,),
aove(Entity, aq_load, a_load),
set busy!loader),
schedule(m load end. Entity, 5.84),
I .

activity(awout, conditions) >-

activity(awout(Entity), actions) t-
head_tail(aq_wout, Entity, _),
move(Entity, aq wout, mwout),
set busy(weigh_bridge) ,
schedule(a wout_end, Entity, 3.17),

activity(n_win,conditions) t-

i .
activity(n_win(Entity), actions)

headtai1(nqwin. Entity, _),
aova(Entity, nq win, n_win),
set busy(weigh_Bridge), schedule(n w i n e n d , Entity, 2.22),

activity(n_wout, conditions) i-
is not eapty(nq wout),
get_idla(waigh_Bridge),
! .

activity(n_wout(Entity), actions)
head_tail(nq wout. Entity, _),
move(Entity, nq wout, n_wout),
setbusy(weighBridge),
schedulefn woutend, Entity, 2.93),

activity(t_uload, conditions) s-
is_not empty!tq_uload),
get_idTe(loader),
I .

activity(t_uload(Entity), actions) :-
head tail!tq_uload. Entity, _),
aove(Entity, tquload, t_uload),
set busy(loader),
schedule!t uload_end. Entity, 17.50)

110

(b) Events
event(a_arrive).
event(m_win end),
event(a_load_end).
event(awoutend).
event(narr ive).
event(n_win end),
event(o_worK_end).
event(n_wout_end).
event(tartive).
event(t_uloed_end).
event(i_artlve(Entity), actions) i-

move(Entity, m_pool, mqwin),
head tail(a_pool, Head, _),
schedule(m_arrive. Head, 7.27),

event(a_win_end(Entity), actions) i-
aove(Entity, a_win, mq load),
set_idle(weigh_bridge),

event(«load end(Entity), actions) j-
aove(Entity, a_load, aq_wout),
setidle(loader),
I .

event(a_wout end(Entity), actions) :-
move(Entity, m_wout, m_pool),
set_idle(welgh_bridge),

event(n arrive(Entity), actions) !-
move(Entity, n_pool, nq_win),
head tail(n_pool, Head, _),
schedule(n_arrIve, Head, 12.14),
I .

event(n_win_end(Entity), actions) i-
novelEnt ity, n_vln, o_work),
set_idle(weigh bridge),
schedule(o_wor£_end. Entity, 22.00),

event(o_work end(Entity), actions) t-
aove(Entity, o w o r k , nq_wout).

event(n_wout end(Entity), actions) :-
move(EntIty, n_wout, n_pool),
set_idle(weigh_bridge),

event(t_arrive(Entity), actions)
move(Ent ity, t_pool, tq uload),
head tail(t_pool, Head, _),
schedule!tarrive, Head, 13.40),

event(t_uload_end(Entity), actions)
aove(Entity, tuload, t_pool),
set_idle(loader),
I .

H i

(C) START-OP EVENTS
I- schedule!m arr iv«, merch(l), 7.11).
«- schedule!n arrive, ncb(l), 12.22).
t- schedule(t arrive, traln(l), 13.33)
i- write($initial events scheduled?).
«- nl.

4 B .1 .2 . A TRACE OF THE SIMULATED BEHAVIOUR GENERATED BY THE
SIMULATION ENGINE (THREE PHASE ONLY)

The following trace was obtained on the computer screen when the simulation

engine generated the behaviour from the above articulation of the 'lorry' model.

The numbers on the left are the simulated time, whereas the numbers within the

brackets following the word 'time' on the right are the real time clock readings.

These time values follow the format (hh,mm,ss,nn) where hh is hours, mm is

minutes, ss is seconds and nn is hundredths of a second. The rest is self
explanatory. At the end when the simulation run is interrupted the simulation

engine gets into the query mode and the state of the system can be viewed by

using the query commands.

112

20.03 a_wout_end(aerch(l>)
e ve n t n o (8) / t i a e (0 , 0 , 8 , 2 0)

21.65
event no(9) / tiae(0,0,8,60)

marrive(aerch(3))
» » > started activity(a_win(merch(3)))

22.7 a_load_and(aarch(2))
event_no(10) / time(0,0,9,30)

event nol11) / tiae(0.0,10,80)
24.07 a_win_end(aerch(3))

> » » started actlvity(a_wout(aerch(2)))
» » > started act lvity(a_load(aerch(3)))

24.36 n_arrive(ncb(2))
event_no(12) / tiae(0,0.11«90)

26.73 t_arrive(train(2))
event_no(13) / tiae(0,0,12,30)

152.51

152.73

_arrive(aerch(21))
eventnol132)

eventnol133)
_uload_end(train(10))
» » > started actlvlty(a_load(aerch(18)))

/ tiae(0,2,8,90)

/ t iae (0,2,9,30)

eventno(134) / time(0,2,10,20)
154.94 n_wout_end(ncb(10))

» » > started actlvity(a_win(aerch(21)))

event_no(135) / tiae(0,2,11,0)
157.36 a_wln_end(aerch(21))» » > started act ivity(a_wout (aerch(13)))

157.9 n_arrive(ncb(13))
event_no(136) / time(0,2,13,10)

event_no(137) / tiae(0,2,13,40)
158.57 a_load_end(aerch(18))

» » > started actlvlty(a_load(aerch(19)))

159.78 a arrive(aerch(22))
event_no(138) / tiae(0,2,14,30)

114

ANNEXE 4C

4 C .1 . THE ’ l o r r y ' MODEL (PROCESSES ONLY)

4 C .1 .1 . MODEL ARTICULATION

(A) MODEL 8TATICS

This section of the model is exactly the same as in the previous articulation using

the three phase approach and is therefore not reproduced here.

(B) MODEL DYNAMICS

process(merch p rocess) s -
sove (i_p oo l, mqwin),
gen_next (Kerch_process, 7.27, *_p o o l) ,
wa i t_u n ti1 (h e a d o f (mq_win)),
w a it _u n t ll(id le (weigh_br idge)) ,
move(mq win, *_w in),
seize(weigh b r id g e),
hold(2.42) ,
re lease«w eigh_bridge),
move(e_win, m qload),
wsit_unt11(head of(mq load)),
w a it_u n t il (id le (lo a d e r)) ,
move(*q_load, m load),
se ize «loader) ,
hold« S.84),
re le a se «lo a d e r),
■ove(e_load, mq wout),
wait_until(head_of(m q wout)) ,
w a i t u n t i l (id le «w eigh_bridge)) ,
■ove(aq_wout, mwout),
se iz e «w e lg h b r id g e),
hold«3.17),
re lease (w e igh_brldge),
exit_system (m wout, m_pool).

process(neb_process)
move«n_pool, nqwin),
gen next(neb process, 12.14, n_pool) ,
wait_until(headof(nq_win)),
walt_until(idle(weigh_brldge)),
move(nq_win, n_win),
seize«we igh_bridge),
hold« 2.22),
release(weigh_bridge),

115

a o v e (n _ w i n , o w o r k) ,
h o l d (22. 0) ,
mov e (o _w o rk , n q w o u t) ,
w a i t _ u n t i 1(head o f (n q w o u t)) ,
w a i t _ u n t i 1(i d l e) w e i g h b r i d g e)) ,
move(nq_ w out , n w o u t) ,
s e i z e (we i 9h_.bri d g e) ,
h o l d (2 . 9 3) ,
r e l e a s e) w e i g h br i d g e) ,
e x i t _ s y s t e n (n u o u t , n _ p o o l) .

p r o c e s s (t r a i n _ p r o c e s s) i -
move(t _ p o o l , t q _ u l o a d) ,
ge n n ex t (t u i n j j r o c e s s , 1 3 .40 , t _ p o o l) ,
wa i t _ u n t11(h e a d o f (t q _ u l o a d)) ,
w a i t _ u n t i l (i d l e (l o a d e r)) ,
a o v e) t q _ u l o a d , t _ u l o a d) ,
s e i z e) l o a d e r) ,
h o l d) 1 7 .SO),
r e l e a s e) l o a d e r) ,
e x i t _ s y s t e e (t _ u l o a d , t _ p o o l) .

(C) START-DP EVENTS
l- introduce(aerch)1), merch_process, 7.11).
<- introduce(ncb)l), ncbprocess, 12.22).
s- introduce)train)1), train_process, 13.33).

write($initial events scheduled;),
i - n l .

4 C .1 .2 . A TRACE OF THE SIMULATED BEHAVIOUR GENERATED BY THE
SIM ULATION ENGINE (PROCESSES ONLY)

The note for the trace in section A4.2.2. applies here.

event_no(0) / tine)0 ,0 ,0 ,6 0)
7.11 sys_event(introduce(eerch)1),merch_process))

aerch(l) executed eove(e_pool,eq_win)
■erch(l) executed gen next(aerch process,7.27,a_pool)
aerch(l) executed wait_untll(hea3_of(aqwin))
aerch)1) executed wait_until(idle)weighbridge))
aerch(l) executed aove(aq_win,a_win)
aerch(l) executed seize(t#eigh_bridge)
aerch(l) executed hold(2.42)

event no)1) / tiae)0,0,4,60)
9.53 sys_event(ac tiva te (aerch (1)))

aerch)1) executed re lea se (w e igh brid ge)
a e rc h (l) executed aove(a_win,aq_load)
a e rc h (l) executed w a it_u n til(h ead _o f(aq lo ad))
a e rc h (l) executed w a it_u n t il (id le)lo a d e r))
a e rch (l) executed aove(aq_load,a_load)
aerch)1) executed se ize)lo ad er)
aerch)1) executed ho ld)5.84)

16

event_no(2) / time(0,0,7,50) 12.22 >y*_event(introduce«ncb(1),ncb process)) ncb(l) executed move(n_pool,nq_win)
ncb(l) executed gennext(ncbproc»»»,12.14,n_pool) ncb(l) executed wai t_unt i 1 (h w d o f (nq win))
ncb(l) executed wait_until(idle(weighbridge))
ncb(l) executed aove(nq_win,n_win)
ncb(l) executed seize(weighbridge)
ncb(l) executed hold(2.22)

event no(3) / time(0,0,12,0)
13.33 sys_event(introduce(train(l),train_process))

train(l) executed aove(t_pool,tq_uload) train(l) executed gennext(train process,13.4, t_pool)
train(l) executed wait_until(hea<3_of (tq_uload))
train(l) executed wait_unti1(idle(loader))
train(l) executed aove(tq_uload,t_uload)
train(l) executed seize(loader)
traln(l) executed hold(17.S)

event_no(4) / tim e(0,0,16,50)
14.38 sya_event(introduce(aerch (2) .nierch process))

■erch (2) executed aove(e_pool,mq win)
■erch (2) executed gen_next(eerch process,7.27,e_pool)
■erch (2) executed walt_until(head_oC(M q_win))

event_no(5) / t ia e (0,0 ,19 ,50)
14.44 sys_event(act ivate(ncb(1)))

ncb(l) executed release(weighbridge)
ncb(l) executed sovefn win,o_work)
ncb(l) executed hold(22.0)
merch(2) executed wait_until(idle(weighbridge))
merch(2) executed ■ove(eq_win,ai_wln)
merch(2) executed seize(weighbridge)
Kerch(2) executed hold(2.42)

event no(6) / ti*e(0,0,24,70)
15.37 sys e v e n t (a c t i v a t e (merch(1)))

merch(l) executed release(loader)
■erch(l) executed aove(a_load,»q wout)
merch(l) executed wait_unti1(hea3_of(aqwout))

event_no(7) / tiee(0,0,26,50)
sys event(act ivate(merch(2)))

merch(2) executed release(weigh_bridge)
■erch(2) executed ■ove(a_win,mq_load)
■erch(2) executed wait_until(headof(eqload))
aerch(2) executed wait_unti1(idle(loader))
aerch(2) executed aove(aq_load,a_load)
■erch(2) executed seize(loader)
■erch(2) executed hold(5.84)
merch(l) executed wait_until(idle(weighbridge))
merch(1) executed move(aq_wout,■ wout)
■erch(l) executed seize(weighbrTdge) merch(l) executed hold(3.17)

event_no(8) / tiae(0,0,36,60)
sys event(activate(merch(1)))

merch(l) executed release(weighbridge)
merch(l) executed exit syatea(a_wout,e_pool)

20.03

117

event no(9) / tlme(0,0,38,0) 21.6b sys vvtnt(lntroduce(M r c h (3),metch process))
■•rch(3) executed aovt(a .pool.ng win)
■•rch(3) •«tcutad gen n«xt(«#rch process,7.27,m_pool)
merchi3) «xvcutad walt.unt11(head of(nq win))
merch(3) executed welt unt11(idle(weigh bridge))
merchi 3) executed movernq.win.m win)
merchi 3) executed seizeiwelgh bridge)
merchi 3) executed hold(2.42)

event n o (10) / t inai 0 ,0 ,42,10)
22.7 sys event(activate(merch(2)))

merchi 2) executed release!loader)
march(2) executed move(m_load,mq wout)
merch(2) executed walt_unt11(head of(m q w o u t))

event nu(ll) / tlme(0,0,43,70)
24.07 sys event(activate(merch(3)))

merch(3) executed releaaeiweigh bridge)
merch{3) executed move(mwin.mq load)
merch(3) executed walt_unt11(head of(aq load))
merch(3) executed wait unt11iidle!loader))
merch(3) executed moveTam_load,m load)
merch(3) executed selzeiloader)
merch(3) executed hold(b.84)
merchi 2) executed wait untll(ldle(weigh_br ldge))
march(2) executed au>veTaq_wout.m wout)
merchi2) executed eelxeiwelgh bridge)
merch{2) executed hold(3.17)

event no(12) / time(0,0,51,10)
24.36 eye event(Introduce!ncb(2),ncb.process))

ncb(2) executed aov«(nj)ool,nq win)
ncb(2) executed gen nextinebjirocess,12.14,n pool)
ncb(2) executed wal£_unt11(head of<nq wln))

event no(13) / tine(0 ,0 ,5 3 ,0)
26.73 sys.even t(introduce!train i 2) , tra in .p rocess))

t ra1n (2) executed move(t _j>ool, t q u lo a d)
t r a in (2) executed gen_next(traln p rocess , 1 3 .4 ,t pool)
tra in (2) executed w a iE _u n til(h e a9 _o f(tq u lo ad))

event no(131) / tine(0,12,11,20)
152.51 sys.eventiintroduceimerchi 21),march.process))

merchi 21) executed aove(n_pool,nq_wln)
merchi 21) executed gen.next(march.process,7.27,n pool)

event no(132) / tine(0,12,17,0)
153.51 sys.event(act ivate(merchi 14)))

nerch(14) executed release(weigh bridge)
merchi 14) executed exlt_systen(n_wout,n pool)
ncb(lO) executed wait untiliidleTvsigh.Erldge))
ncb(lO) executed movefnq.wout,n wout)
ncb(lO) executed selze(welgh bridge)
ncb(lO) executed hold(2.93)

118

event 00(133) / tlme(0,12,27,0)
l i b . 80 aya_«v«nt (a c t iva te « tra in «10)))

traln(10) executed ralaasa(loader)
traln(lO) axacutad exit *yttaa(t uload.t pool)
aarch(18) axacutad wait unt11(idle«loader))
■arch«18) axacutad aove7aq_load,a load)
■arch«18) axacutad aelze«loader)
■arch(18) axacutad hold(5.84)

event no«134) / tlaa(0,12,38,60)
156.44 aye event(actlvata(ncb(10)))

ncb(10) axacutad ralaaaa«weigh brldga)
neb«10) axacutad exit ayataa«n wout.n pool)
aerch(19) axacutad wait until(Tdle(weTgh_br idge))
■arch«19) axacutad aoveTaq_win,a win)
■arch«19) axacutad aelze«weigh_brldga)
aarch(19) axacutad hold(2.42)
■arch(20) axacutad wait_unt11 «headof(aq win))

even t_ no (135) / t l a a « 0,12 ,50,10)
157.9 a y a a v a n t « in t ro d u c a (n c b (13),ncb proceaa))

ncb(13) axacutad aova (n_pool,nq_wln)
ncb (13) axacutad gen_next(ncb p ro ceaa ,12.14,n_poo l)
n c b (l 3) axacutad wait u n t i l (haa d_o f (n q_w in))

event no(136) / tiaa(0,12,54,70)
158.86 aya_avent(act ivata(aarch(19)))

■arch«19) axacutad ralaaaa(waigh_bridga)
■archi 19) axacutad aove(a_win,aq_load)
merchi 19) axacutad wait_unti1ihead ofiaq load))
ncb«13) axacutad wait until«ldle(walgh_bridge))
ncb(13) axacutad aoveTnq_win,n win)
nebi13) axacutad aalza(waigh_brldga)
ncbil3) axacutad hold(2.22)

avant_no(137) / tiaa(0,13,3,80)
159.18 ayaavant (act Ivate« ncb(11)))

ncb(ll) executed aova(o_work,nq wout)
ncb(ll) executed wait_unt11(haad of(nq wout))

avantno(138) / tima(0,13,9,60)
159.78 aya event«introduce(aerch(22),aarch_procaaa))

merch(22) axacutad aoveia_pool,aqwln)
aarchÌ22) axacutad gan next(aerch^proceae,7.27,a pool)

avant_no(139) / t i a a (0 ,13,15,10)
160.73 aya_avant(introduce« tra in «1 2),tra in p roceaa))

tra in «12) axacutad aova(t j>oo l,tq uload)
tra in «12) axacutad gen_next(tra in proceaa,13.4 ,t_p o o l)
tra in « 1 2) axacutad wall until«head o f(tq _u lo a d))

Enter query (en te r " h e l p . " f o r help)>

OP ANNEXE 4C

119

ANNEXE 4D

4 P . 1 . THE 1 l o r r y * MODEL (A MIXTURE OP THREE PHASE AND

4 D .1 .1 . MODEL ARTICULATION

(A) MODEL STATICS

This part of the model remains unchanged.

(B) MODEL DYNAMICS

This part of the model is a sum of the model dynamics code for the previous two

(C) START-UP EVENTS

Here the entity 'march' has been introduced to the 'merch_j>rocess' and the first

arrivals for the entities 'neb' and 'train' have been scheduled with reference to

their respective arrival events. A ll the code for the model's dynamics in the

previous two cases (i.e. events and activities only, and processes only), however, is
present and can be activated by a different combination for the scheduling of the

start-up events.

>- introduce(merch(1) , merch process, 7.11).
t - schedule(n_arrive, n c b (l) , 12.22).
i - schedu le!t_arrivs, t r a ln (l) , 13.33).
i - w r ite ($ ln it la l events scheduled*),
i - n l.

4 D .1 .2 . A TRACE OF THE SIMULATED BEHAVIOUR GENERATED BY THE
SIMULATION ENGINE (MIXED THREE PHASE AND PROCESSES)

The note for the trace in section A4.2.2. applies here.

event_no(0) / time(0,0,0,60)
7.11 sys_event(introduce(merch(1),march process))

merch(l) executed aove(a_pool,*q_win)
nerch(l) executed gen_next(March process,7.27,e_pool)
■erch(l) executed wait_unt11(head_of(»q win))
aerch(l) executed wait_until(idle(weighbridge))
■erch(l) executed nove(nq_wln,a_wln)
aerch(l) executed seize(welgh_brldge)
nerch(l) executed hold(2.42)

120

event_no(1) / U m (0 , 0,4,70)9 . b 3 ays event(«et Ivate(aerchiI)))■•rch(l) otcuted r*ltiit(wti^h bridge)
■erch(l) executed aov«(a_wln,aq load)
merchi 1) executed wait_unti1(head ofiaq load))
■archi 1) axacutad wilt unt11iidle!loadar))
■archil) axacutad ■ove?aq_load,a load)
■arch(l) axacutad aelzeiloader)
■archil) axacutad hold(S.84)

event_no(2) / tiae(0,0,7,S0)
i_ a rr iv a (n c b (l))

» » > started act lv lty(n_w ln (ncb(1)))

event_no(3) / tiae(0,0,9,60)
_ a r r iv a (t r a ln (l))

» » > started ac t lv lty (t uload(tra in i 1)))

event n o il) / t i a e (0 ,0«10,40)
14.38 sys_avant(lntroduca(aarch(2) .aarch_process))

■erch(2) axacutad aova(a_pool,aq_win)
■archi 2) executed gen_next(»erch process,7.27,* _pool)
■arch(2) axacutad wait_unt11ih aa3 _o f(aqw in))

14.44 n_win_end(ncb(1))
■archi2) axacutad
■archi2) executed
■archi2) axacutad
■archi2) axacutad

event_no(b) / tlae (0 ,0 ,1 3 ,70)

wait u n t i l i id le (w e lgh_bridge))
■ove(aq_win,■ win)
s a i z a (we igh bridga)
ho ld (2 .42)

event no(6) / t ia e (0 ,0 ,15,70)
l b . 37 sys event(act ivate(merchi 1)))

■archi 1) axacutad ra laa sa iloader)
■ a rch il) executed aove(a load.aq wout)
■a rch il) axacutad wait_unt11(hea3_of(mq wout))

event_no(7) / tiHai 0,0,18,80)
sya event(act ivate(aerchi2)))

merchi 2) axacutad ralaasa(waigh_bridga)
■archi2) axacutad ■ova(a_win,aq_load)
merch(2) axacutad wait_until(head_of(aq load))
■archi2) executed wait_unt11(idle(loader))
■erch(2) axacutad ■ova(aq_load,a_load)
■archi 2) executed saizailoader)
■archi 2) axacutad hold(b.84)
■archil) axacutad walt_until(idla(walgh bridge))
■a rch il) axacutad aove(aq_wout,■ wout)
■archil) axacutad saiza(walghbrldga)
■a rch il) axacutad hold(3.17)

event no(8) / tiaa(0,0,26,80)
•yt event(act ivataimarchi 1)))

■archi 1) axacutad ralaasaiwaigh_brldga)
■archil) axacutad exit_systea(a_wout,a pool)

20.03

121

event_no(9) / t ime)0 , 0 , 28 ,20)
21.65 ays event(lntroduc*(Mrch(3) ,»«ich process))■trch(3) txtcuttd aov*(a_pool,mq win)

march)3) executed ginn«xt(R«rch process,7.27,m_pool)
march(3) axacutad wait_unt11(head of(mq win))
march)3) axacutad wait unt11(idle)watgh b ridge))
march(3) axacutad move(['aq_wln,a_win)
march)3) axacutad seize(welgh bridge)
march)3) axacutad hold)2.42)

event no)10) / time(0,0,32,20)
22.7 aya_avant(actlvata)march(2)))

march)2) axacutad ralaaaa)loadar)
march)2) axacutad move(a_load,mq wout)
march)2) axacutad walt_unt11(head of(mq wout))

avant_no)
sys event(activata(march)3)))

march)3) axacutad release)welgh_bridge)
march)3) axacutad move(a_win,mq_load)
march)3) axacutad walt_unt11(haad of(mq load))
march)3) axacutad wait_unti1(idle)loader))
march)3) axacutad move(mq_load,m load)
march)3) axacutad aalza)loadar)
march(3) axacutad hold(5.84)
march)2) axacutad wait_untll(idle(weigh bridge))
march)2) axacutad move(mq_wout,m wout)
march(2) axacutad saiza(walgh bridge)

. . . . * - - ~ X * 7) ~

) / tima(0,0,3S,10)

march(2) axacutad hold(3.17)

24.36 n _a rr lv a (n cb (2))

26.73 t _ a r r iv a (t r a in (2))

event no)12) / tima)0,0,41,40)

• v e n t n u) 13) / tima)0,0,41,60)

avant no)132) / 1 1 me(0,6,36,90)152.51 eys_event(introduce(merch(21).march j>rocata))
march)21) axacutad move(m_pool,mqwln)
march)21) axacutad gen_next(march process,7.27,m pool)
march)21) axacutad walE_unt11(head_of(mqwin))

eventno(133) / tima)0,6,40,60)
3.45 nwlnand)neb)12))

march)21) axacutad walt_unt11(idle)weigh bridge))
march(21) executed move(mq_win,m win)
march(2 1) axacutad aaiza(waigh bridga)
march(21) axacutad hold(2.42)

e v a n tn o)134) / tIma)0,6,42,80)
155.33 eya_event(act ivate(m erch)19)))

march)19) axacutad re lea se)load ar)
march)19) axacutad mova(m_load,mq wout)
march)19) axacutad w alt_unti1 (haad o f(aq wout))
march)2 0) executed wait un ti1 (id le) lo a d a r))
march)20) axacutad move?*q_load,a_load)
march)20) axacutad se ize)lo ad ar)
march)20) axacutad ho ld)5.84)

122

tvtnt no(135) / tiae(0,6,48,90)
155.87 sysevent (activate(merch(2 1)))

merch(21) executed release(weigh bridge)
merch(21) executed aove(a_win,aq_load)
merch(21) executed wait_unti1(head of(mq load))
aerch(19) executed wait unti1(idle(weighbridge))
aerchj19) executed aove(aq_wout,a wout)
merch(19) executed eeize(weigh bridge)
merch(19) executed hold(3.17)

157.9 n _a rrlve (n cb (13))
eventnol136) / tiae(0,6,55,30)

event_no(137) / t ime(0,6,55,90)
158.57 t_u load_end (train (10))

merch(21) executed wait_unt11(idle(loader))
merch(21) executed aove(aq_load,a_load) nerch(21) executed seize(loader)
nerch(21) executed hold(5.84)

event_no(138) / time(0,6,59,0)
159.04 sys_event(act ivate(nerch(19)))

aerch(19) executed re lease(weigh_bridge)
■erch (19) executed exit_aystea (e_w out,e_poo l)
» » > started activity(n_win(ncb(13)))

event nol 139) / time(0,7,0,90)
159.78 sys_event(introduce(eerch(2 2),raerch_process))

merch(22) executed sove(s_pool,aq_win)
nerch(22) executed gen_next(aerch process,7.27,a_pool)
aerch(22) executed walt_until(hea3_of(aqwin))

160.73 t a r r iv e !t r a in (12))
event_no(140) / t ia e (0 ,7 ,4 ,30)

Enter query (enter “he lp ." for h e lp):

END OP ANNEXE 4D

123

ANNEXE 4E

4 E .1 . A DECLARATIVE ARTICULATION OF THE • l o r r y ' MODEL

The following set of Prolog clauses 'declare' the model described in Annexe 4A.
The following section elaborates on the predicates used.

is _ in f (a _p o o l, aerch, 7.27).
i s _ 1n f (n_pool, neb, 12.14).
l s _ ln f (t _ p o o l , tra in , 13.40).

is_queue(aq_win, march, a_w in).
is queue(m qload, merch, m load).
is_queue(aq_wout, aerch, a_wout).
is_queue<nq_win, neb, n_win).
is_queue(nq_wout, neb, n_wout).
ls_queue(tq uload, t ra in , t_u load).

resource le v e l (w e igh b rid g e , 1).
resou rce_leve l(load er, 2).

is _ac tlv ity (a _w in , (aerch, w eigh_bridge), 2.42).
is _ac tiv ity (a _ lo a d , (aerch, loader), 5 .84).
i s a c t iv l t y f a wout, (aerch, weigh_bridge), 3.17).
is _ac tiv ity (n _w in , (neb, weigh_bridge] , 2.22).
is_ac tiv ity (o_w ork , (n eb), 22 .0).
is_activ ity (n_w out, (neb, weigh_bridge), 2.93).
is _ac tiv ity (t_u lo ad , (t ra in , loader), 17.50).

p rio rlty (w eigh bridge, (n_win, a_win, n_wout, a w o u t)) .
p rio r ity (lo a d e r , (t_u load , a _ lo ad)).

entity_cyc le (aerch , (a w in , a lo a d , a woutI).
entity_cyc le(neb, (n_win, o_work, n w o u t)) .
en t ity _c yc le (t ra in , (t _u lo a d)).

4E .2 . T M
6 M L À k À t îV r

____,‘ATION POR THE PREDICATES USED FOR
ICOtÀtlÒM--

The predicates used for the declarative model articulation in the previous section

have been documented in the following:

(i) Predicate: is inf / 3

is _ in f(P o o l_se t , Entity , A r r lv a ld is t r ib u t io n) .

The 'is_inf' predicate specifies the 'pool sets' (or infinite queues) in which a

particular class of entities is initially loaded. Entities 'arrive' from their

124

respective infinite queues according to the 'Arrival_distribution' and return there

when they have completed their cycle in the system.

(U) Predicate: isqueue / 3

is queue(Queue name, Entity class, Act ivity_naee).

The 'is_queue' predicate declares the presence of a queue in the model. The first

argument specifies the name o f the queue, the second argument specifies the

entity class which makes use o f this queue to wait for an activity which is

specified by the third argument.

(iii) Predicate: resource_level / 2

resource_level(Resource, Level).

The 'resource_level' predicate declares the presence of a resource in the model
and specifies its numbers. The number of identical resources implies the possible

maximum simultaneous occurrences of an activity using the resource as one of the

co-operating entities.

(iv) Predicate: is_activity / 3

is_activity(Activity_na»«,List_of ̂Participants,
Activity_duration).

The 'is_activity' predicate declares the presence of a distinctly identifiable

activity in the model. The first argument 'Activity_name' specifies a name for the

activity. The second argument 'List_of_Participants' specifies the requisite co­
operating entities without which the activity can not proceed. The third argument

specifies the duration of the activity.

I2S

(v) Predicate: priority / 2

priority(Resource, Priority_il e t) .

The 'priority' predicate specifies the priority which an activity has over the use of

a resource. The 'Priority_list' specifies the activities in a sequence from high to

low priority.

(vl) Predicate entity_cycle / 2

ent ity_cycle (Entity_naee, C ntity_cycle).

The 'entity_cycie‘ predicate provides a sequence of activities which an entity goes

through during its life-cycle in the system.

4E. 3 . IM PLICATIONS IN RELATION TO MODEL GENERATION

The ability in a (future) simulation engine to set up a system state and generate

the system's behaviour from a 'world view less' articulation would have important
implications for the model generation system described in chapter 5. In this case

the simulation engine would generate its own code implicitly and it would be

entirely transparent to the user. It should further permit the user to concentrate

on the problem in hand and allow the model generation system to concentrate

entirely on the application domain knowledge to generate the suitable model(s).

A further implication would be that it should be possible to generate an

executable simulation model in a given programming language, from the logic

specification of the model in a 'world view free' form by writing a program

generator for that language.

END OP ANNEXE 4E

126

CHAPTER 5 l A PROTOTYPE KNOWLEDGE-BASED DISCRETE
SIMULATION MODEL GENERATION FAC ILITY

INTRODUCTION
The previous chapter demonstrated the feasibility of implementing a simulation

engine using the logic programming paradigm which would accept a model

expressed as a set of Prolog clauses and generate the system's simulated behaviour
directly. The feasibility of supporting the process form for the articulation of a

simulation model when the simulation engine was working in a three phase cycle

was also demonstrated. Since Prolog clauses have a database interpretation

(chapter 3), the clauses used for the articulation of simulation models in a given

application domain could constitute a knowledge-base from which new models

could be retrieved and/or assembled. This approach although viewed as feasible

was seen as lacking generality. Research into more general forms for the

knowledge representation was indicated, which is described in this chapter.

In this chapter an initial section covers a brief review of the previous approaches

to providing computer support for the construction of simulation programs and

looks at the various forms that such support has taken in the past. The motivation

to approach this problem afresh from the knowledge-based systems point of view

has been described. The rest of the chapter covers the design and implementation

of a prototype knowledge-baaed discrete simulation model-builder which has been

implemented in Prolog. A subset of the simulation world has been defined in

which the various processes in a simulation model can only interact over the use

of resources. The knowledge representations devised and the method developed

for the knowledge-based construction of simulation models within this simplified

simulation world have been discussed. Examples of knowledge-based model

building have been presented by building a sequence of partial versions of the

'lorry' model (Annexe 4A). This has been done by first building a very simple

partial version of this model where only one entity (merchant) 'flows' through the

system. This is followed by building successive partial versions by adding other

entities one at a time (neb and train) and identifyiiqj other possible variations and

finally by building the full version of the model as described in chapter 4. An

example of constructing a simplified ’harbour' model from (POOLE A S, 77] has

also been included.

127

In addition to the interaction of the processes over the use of resources another
form of process interaction where the processes can also interact through

messages has been attempted by augmenting the knowledge-base. This has been

demonstrated with the help of an example, by constructing a more complex model
which includes both the 'harbour' and the 'lorry* as sub-models, such that a process

from the ’harbour' sub-model can interact with a process from the 'lorry* sub­
model through messages (i.e. symbolic tokens) left on a conceptual 'blackboard'.

Another version of the harbour model has been used to demonstrate that it is

possible to preplan the editing of the code generated by the model builder. The

chapter ends with conclusions and some ideas about further research.

S . l . COMPUTE» SUPPORT POH COM8TBOCTIMG SIMULATION PROGRAMS

It has been noted in the earlier chapters that the difficulties related to faithfully

transcribing a simulation model into an executable simulation program, and those

related to quickly modifying it when required during experimentation are among

the major obstacles in the way of widespread use of simulation technology for

problem solving.

"A dynamic (changing) logical nodel needs to be turned into
a computer model with relative ease. Otherwise, if this
part of the process takes a long ties, contact with the real
world problem starts to dleinish.
p 3;(PAUL, 88)

Computer assistance in the form of simulation program generators (SPGs) has

been seen as useful for speeding up the initial programming phase and for making

it less error prone. An SPG is, however, a tool for the analyst and the need for

communication between the decision maker and the analyst remains. [SHANNON,

86] has voiced the need for a greater amount of computer assistance so that the

decision maker can build his/her own simulation models. This in turn implies a

need to capture the domain specific knowledge and the knowledge of simulation

methodology in the form o f a computer software system so that the decision

maker can interact with it to conduct his/her own simulation modelling or even a

complete simulation study.

In the past, simulation program generator software systems have concentrated on

reducing some of the burden of transcribing the semantics of the simulation model
expressed in one of the diagrammatic formalisms (e.g. activity cycle diagrams,
network models, Petri-nets, system theoretic representations and the like) into an

executable simulation program. These items of software have been known by the

name of simulation program generators e.g. CAPS [CLEMENTSON, 80], DRAFT

[MATHEWSON, 84].

A major objection in the use of simulation program generators has been that a

simulation program produced by such generators needs to be edited to incorporate

complex conditions. Generally, it is not possible to capture these conditions by

the particular diagrammatic formalism employed to represent the model and

therefore the program generator which has been built around such formalism can

not produce the executable code for these complex conditions. This has been

regarded as an antithesis. People involved with computer programming know it

very well that modifying and debugging computer programs, particularly the ones

not written by themselves, can take more time and effort than would be required

to write the program originally from the start (e.g. [AHMAD, 78]. Further, in

order to modify a program produced by a program generator, one still requires a

comprehensive knowledge of the diagrammatic formalism employed to define the

model and the particular behaviour generation approach built into the program

generator and, of course, the syntax o f the language in which the program has

been generated. The objective of decision makers being able to build and test

simulation models with the assistance of computer alone fails, because of the need

for implementing changes in the code produced by the simulation program

generators.

The following brief review identifies the various forms in which computer support
has been provided in the past for the purposes of simulation programming.

5 . 1 . 1 . THE INTERACTIVE ENTRY OF MODEL COMPONENTS EXPRESSED
IN A DIAGRAMMATIC FORMALISM

Once the model has been defined using one of the diagrammatic formalisms and

various names have been assigned to its different components, an elementary form

of computer assistance provided by simulation program generators has been to

permit the interactive entry of these names and other parameters, like the

activity durations and the data recording requirements, into the computer. Along

with the interactive entry of the model components some form of checking is also

provided to keep a check on the consistency and to trap some of the logical errors

at the time of the entry. The user interface generally consists of a sequence of
computer initiated dialogues. As such, these systems can be described as offering

the simulation methodology related assistance, but none related to the application

129

domain. The simulation methodology is built into the program generator software

and the user has little freedom to influence it. An Example is CAPS/ECSL system

(CLEMENTSON, 80).

5 . 1 . 2 . SIMULATION PROGRAM GENERATION IN ALTERNATE LANGUAGES

A simulation program generator, being a distinct item o f software, needs to be

'geared' to a programming language or a simulation package which can be

described as the target language or package. Simulation languages and packages

being of a specialised nature are much less subject to standardisation as compared

with the general-purpose computer programming languages for which international
standards exist. In recent years, therefore, the trend has been to generate

simulation programs in a general purpose language (e.g. CASM Project [PAUL,

88)).

The applicability of a simulation program generator is therefore conditional to the

availability of the target simulation language or package. To overcome this

problem intermediate representations for the simulation models have been

devised. From these representations an executable simulation model, in a number
o f different simulation languages or packages, can be generated by employing a

software module related to that language. Using this approach an existing

simulation program generator can be extended to produce a program in a new

simulation language by writing a module related to that language without
affecting the user interface part. Examples are DRAFT/GASP,
DRAFT/SIMSCRIPT systems [MATHEWSON, 74], [MATHEWSON, 84] and

(MATHEWSON, 85).

Such intermediate representations are also important in terms of generalising the

articulation of simulation models and writing new simulation languages or
simulation engines which could accept a simulation program expressed directly

using the intermediate representation, thus moving towards what can be described

as a unified 'world view'.

5 . 1 . 3 . MODEL ENTRY AND OUTPUT USING ALTERNATE WORLD VIEWS

The ideas related to having intermediate representations for generating simulation

programs in different simulation languages have been further extended to allow

fo r the entry of the model using alternative 'world views' and formalisms. This

tends to further modularise the simulation program generator software by

130

employing a module to capture the model expreaaed in one of the prevalent

formalisms and another to output the simulation model in one of the languages.

In this line of research (DAVIES, 76) and (DAVIES, 79) has proposed a basic unity

for expressing the information content of simulation models and has also

formulated a grammar for it. The essential information content of a simulation

model can be expressed in terms of this basic unity, as a set of 'descriptive units'.
Using these ideas it has been reported that it is feasible to design a modular

discrete simulation modelling environment which could accept the simulation

model in alternative formalisms and also produce the generated program in a

number of languages. Using this approach it is possible to provide a simulation

program generator which is capable of providing the widest possible applicability,
as flexibility can be provided at both input and output ends.

[SUBRAHMANIAN & C, 81] has also reported a descriptor language based on the

system theoretic approaches that have been advanced by Oren and Zeigler (e.g.
(ZEIGLER, 84]).

The increase in the number of input and output formalism related options offered

by these systems does not provide the solution to the problem that the generated

program could still require editing before it truly represents the system under

study. Further, the nature of support these systems provide essentially remains

unaltered, i.e. the simulation methodology is coded into the program generator

with little option for the user to influence it.

5 .1 .4 . ASSISTANCE IN MODEL FORMULATION

(DO U KID IS A P, 85) has reported research into expert systems to aid the

simulation model formulation using a natural language understanding approach.
This approach attempts to mimic the natural language communication between

the decision maker and the analyst, while the software system takes up the role of
analyst.

5 .1 .5 . KNOWLEDGE-BASED SIMULATION MODELLING

(KETTEN1S, 86] has reviewed the problems and possibilities related to knowledge-
based model storage and retrieval, while taking into account the level of detail
which would be adequate in a given modelling situation.

131

[STANDRIDGE, 86] has reviewed the progress related to the development of
models from modules. From this paper it appears that different theoretical

approaches have concentrated on building models from software modules (e.g.
subroutines), whereas practical implementations are only beginning to appear.

"The automation of modal development from modules is
be9inning to appear in simulation systems such as TESS and
MAGEST. The future will see more such systems and more
sophisticated ways of linking nodules into models."
p 117; (STANDRIDGE, 86).

[REDDY & FNM, 86] has reported an implementation of a knowledge-based model

building system KBS (similar to ROSS [McARTHUR It KN, 84]) using the database

approach to knowledge retrieval and assembly, while producing a simulation model
in an object oriented programming language.

"A KBS model is a collection of Schema Representation
Language schemata that represent physical and abstract
system entitles. The schema is the basic unit that
represents objects, processes, ideas and so forth.”
p 27;(REDDY L FNM, 86)

5 . 1 . 6 . KNOWLEDGE-BASED SOFTWARE SPECIFICATION AND PROGRAM
SYNTHESIS

In the area of software specification and maintenance [LEUNG It C , 85] has listed

a number of advantages related to the use of a Prolog knowledge-base:

"Using a Prolog knowledge-base to hold software information
offers a number of advantages. These Include the
representation of implicit module relationships, deductive
capability, and a user-friendly interface. Through
derivation rules, it is only necessary to 'hard-store* a
minimal amount of factual data, thus easing maintenance and
reducing the risk of inconsistency. Such a software
knowledge-base also supports an evolutionary and incremental
construction, and is able to respond to change and expansion
in a flexible manner.”
p 139;(LEUNG t C, 85).

The following Abstract also points to the use of the deductive approach to

program synthesis.

’Program synthesis is the systematic derivation of a program
from a given specification. A deductive approach to program
synthesis is presented for the construction of recursive
programs. This approach regards program synthesis as a
theorem-proving task and relies on a theorem-proving method
that combines the features of transformation rules.

132

unification and aatheaatical induction within a single
traaework.”
(MANNA & W, 811 .

5.2. WOTIVATIOH
While using a simulation program generator, all the application domain related

information needs to be supplied by the user, whereas the role of the program

generator is to receive, organize, validate and store it for the final program

generation. Knowledge based systems were seen to provide a possibility where the

application domain knowledge in the knowledge-base could be offered to the user,

thus reducing the burden from the user and at the same time the computer
providing 'intelligent' support in the model formulation and the program

generation. The 'intelligent' part, of course, would come from the knowledge-base

available and the method employed for generating the model. It was hoped that
by using the knowledge-based systems paradigm a greater and more pertinent

form of computer support could be made available to the user and the interaction

between the computer and the user could be made at a higher level than the

interactive entry of the names of model components, which can be easily stored in

the knowledge base.

It was hoped that by providing a knowledge-base which caters for both the

application domain knowledge as well as the simulation methodology knowledge,
the user would have the option to influence and extend both — such flexibility is

not possible with simulation program generators. Only the method employed for

the model generation would be provided by the software in the form of an

inference engine. Further, it was hoped to lead to an extended amount of
computer support which would include the domain specific knowledge, in addition

to the simulation methodology knowledge provided by the simulation program

Computer assistance in the model formulation and the program generation

simultaneously would shift a larger amount of the burden on to the machine, as

compared with what has been possible through simulation program generators

which provide assistance in the program generation only. It was hoped that it
might be possible to do away with the initial requirement of constructing a model
using one of the diagrammatic formalisms.

In view of the major objection to the use of simulation program generators, that
the program produced by these needs further editing, to explore if by employing a

knowledge based framework it is possible to improve upon this situation, and if it

133

u possible to define a model completely entirely interactively with reference to

the knowledge available in the knowledge base. If this could be achieved then a

way could be opened for the decision makers to formulate and run their simulation

models with knowledge-based computer assistance.

The knowledge baaed framework was seen as providing an opportunity of devising

a model generation facility which could generate all the possible models from a

very high level generic articulation. Such a facility was seen relevant within the

context o f an overall problem solving system working on a 'generate and test*

basis, in which a request could be passed on to the model generation facility which

could systematically generate all the possible models which are specialisations of

the generic articulation. Such models could be tested by other modules of the

envisaged problem solver by experimenting with them to ultimately arrive at a

suitable configuration of the system which would adequately satisfy the

performance criterion (see chapter 7 for a further elaboration of this framework).

The ability to systematically alter the logical structure of a simulation model was

seen as a novel feature in terms of simulation model generation.

5 .3 . OBJECTIVE

The objective was set to write a generalized knowledge-based discrete simulation

model building system for a simplified simulation domain using Prolog in order to

demonstrate the feasibility of such a system. Such a system was envisaged to be

capable o f accepting a very high level generic specification of the simulation

models within the specified domain, and by suitable reference to the knowledge in

the knowledge-base, and by 'intelligent' interaction with the user be able to

complete the specification and generate executable simulation programs which

the simulation engine (chapter 4) could run.

Using the expert systems terminology this involved devising suitable knowledge

representations and writing a special purpose inferencing engine for the

knowledge-based generation of simple simulation models.

5 .4 . A SUB 8KT OF BIWJLATIOM MOOEL8

It was decided to begin work on a sub set of simulation models. Any experimental
results could be applied to larger, more complex simulation models. The following

sub sections describe the restrictions to define this sub set.

134

5 . 4 . 1 . CLASSES OF ENTIT IES

The classes of entities are generated in the beginning and loaded into their
respective 'infinity-sets' from where they 'arrive' (as in DRAFT (MATHEWSON,

74]).

At any time an entity is either waiting in a queue (a waiting-set) to take part in a

'service' activity or is taking part in the 'service' activity in what can be called an

'activity-set'.

5 . 4 . 2 . QUEUES

A queue is a set where entities wait to take part in a specific activity. The

discipline of all queues in a model has been limited to 'first in first out' (FIFO) and

therefore entities join the queue at the tail-end and leave the queue from the

head-end. Entities from more than one class may join the queue on a FIFO basis.

5 . 4 . 3 . ACTIV ITY -SETS

An activity-set is a set associated with a particular 'service' activity in the model.

The entity taking part in an activity is 'moved' into an activity-set for the

duration of the activity. An activity can take place with an entity on its own (a

delay) or an entity together with a resource.

5 . 4 . 4 . RESOURCES

A resource can have only two states: 1>usy' and 'idle'. A resource would be in the

'busy' state while taking part in an activity along with an entity and would be 'idle'

when available for its related activity.

5 .5 . DESIGN ASPECTS

5 . 5 . 1 . DESIGN PHILOSOPHY

As has been noted earlier, the main objection to the earlier forms of computer
support, for simulation program generation, has been that the code produced

almost always needs to be edited. In order to improve upon this situation, the

domain specific complex conditions can be coded in a fragmentary form in a

generic manner and maintained in a knowledge base by the analyst. Using the

135

knowledge-based systems approach this knowledge can then be brought into play

at the time of model building to build a complete model which should not require

editing. If this could be shown to be feasible, then a way could be open for the

decision makers to build their own domain specific models entirely with the

support from a knowledge based model builder.

5 . 5 . 2 . A FORM FOR THE GENERIC SPECIFICATION OF SIMULATION
MODELS

Having decided to use Prolog for the implementation it was decided to use a set of
Prolog clauses to articulate the model. The model was viewed as a set of the

names of the entities which 'flow' through the model and the names of the

activities these engage in during their life cycle in the system. The function

symbol 'actor' was used to identify an entity whereas the function symbol 'subgoal'

was used to identify an activity. The choice of these function symbols is arbitrary

and this particular choice represents a world view for the generic specification of
simulation models that entities arriving into the system have a number of subgoals

(at least one) to achieve. A sequence of subgoals for an entity represents its life

cycle in the system. The names of the entities are captured by a Prolog clause

with the predicate name 'model', and there is a 'goal' clause for each entity. This

form of articulation presents the model at a generic level of specification. As an

example, the following four Prolog clauses articulate the 'lorry' model (chapter 4):

m odal(lorry) i -
actor(merchant),
ac to r (n eb),
a c t o r (t r a in).

goal(merchant) i -
subgoal(weigh in),
subgoa l(rn load),
subgoal(w e igh o u t).

goal(neb) t -
subgoal(w eigh_in),
subgoal(o therw ork) ,
subgoal(weigh_out).

go a l(tra in) » -
subgoal(tu n lo a d).

An articulation in this form assumes that the knowledge base contains the

necessary knowledge about the three 'actors' and the five 'subgoals' specified. A

further restriction has been imposed that a 'subgoal' can not be repeated for the

sam e 'actor'.

136

5 . 5 . 3 . THE PORN OF THE EXECUTABLE MODEL

On th« output side, a design decision was made to generate the executable model
in the process form (e.g. Annexe 4C). The interaction between the processes

would be limited to the use of the resources.

5 .6 . A PROTOTYPE KNOWLEDGE-BASED DISCRETE SIMULATION MODEL
GENERATION FACILITY---

A prototype know ledge-based model generation system was implemented using

Prolog. An initial and brief exposition of the system, [AHMAD A H, 88], has been

included in Appendix 1. A more detailed description follows.

5 . 6 . 1 . AN OVERVIEW

Figure 5.1 presents an overview of the model generation system as implemented.

The generic model at a very high level is presented to the prototype model builder

in the form of a computer file which proceeds to complete the specification and

realises the specific model the user has in mind. This is done by making reference

to the application-domain knowledge in the knowledge-base and through user

interaction, if necessary. When the model is completely specified, an executable

simulation program is generated with reference to the simulation methodology

knowledge also available in the knowledge-base. The executable model consists of
two files, one defining the 'static' part of the model and the start-up events,
whereas the other file contains the ‘dynamic* part of the model which consists of a

process description for each 'actor'. These tw o files can be presented to the

simulation engine (Chapter 4) which can 'drive' the model.

5 . 6 . 2 . THE REPRESENTATION OF THE KNOWLEDGE

Two types of knowledge need to be represented: the application domain knowledge

and the simulation methodology knowledge. The representations attempted are

discussed in the following.

(A) THE SIMULATION METHODOLOGY KNOWLEDGE

Having decided upon the process form for the executable model, the

representation of the simulation methodology knowledge was based on expressing

frequently occurring situations in simulation models as process code-segments in a

Si
m

ul
at

io
n

kn
ow

137

F ig u r e 5 .1 . An o v e rv ie w o f th e p ro to ty p e k n o w le d g e -b a a e d
s im u la t io n m odel b u i ld in g en v iron m en t.

1 38

somewhat generalised form. This approach was seen to provide a possibility for

the user to extend the knowledge base by supplying the process fragments of the

situations specific to the domain.

To begin with, the process code-segments for four frequently occurring situations

in the simulation models were incorporated in the knowledge base. These are

stored in the knowledge base by using a predicate 'script'. Each process code

segment is identified by a unique name which is the first argument of the 'script'

predicate. This name will be used to link a particular script to the knowledge in

the application domain. The use of the word script for the predicate name has

been motivated by its use by [SCHANK & A, 77] signifying a similar meaning.

The four 'script' clauses together with their respective diagrammatic equivalents

are presented in the follow

S c r ip t 'a r r i v e *

script(arrive(Process, I_arrival). X. Y) l-
move(X, Y),
gen_next(Process, l_arrival, X).

As a part of the simplification each entity must 'arrive' before it can start taking

part in its first 'subgoal'. A 'subgoal(arrive)' therefore is not explicitly stated in

the model articulation.

S c r ip t 'leave'

(gen_next)

X Y

X Y

script(leave, X, Y) »-
exit_systea(X, Y).

139

This script is s dummy activity of zero duration. The 'exitsystem ' process step

'disengages' the entity from its process when it completes its life cycle in the

system and finally returns back to its infinity queue. This is assumed to be the

last 'subgoal' of each entity and is therefore not explicitly expressed in the model
articulation.

Script 'a'

scriptfa, X, Y) i-
wait_until(head of(X)),
wait_until(Idle?'RESOURCE')),
nove(X, 'ACTIVITY_SET'),
seize! RESOURCE').
hold('DURATION'),
release!'RESOURCE'),
novel'ACTIVITY_SET', Y).

This is one of the most common situations encountered in the simulation models in

the service domain. An entity waits in a queue until it is at the head of the queue

and the resource is available then the activity is started. After the duration of

the activity the resource is released and the entity is moved to another queue

Script ' b *

X Y

X Y

scriptfb, X, Y) I -
novel X, 'ACTIVITY_SET')
hold!'DURATION'),
novel'ACTIVITY_SET', Y).

This is also a common situation in simulation models which represents a delay.

140

(B) THE APPLICATION DOMAIN KNOWLEDGE
The representation of the application domain knowledge has been approached from

two directions. The knowledge related to the entities and the knowledge related

to the activities. The knowledge related to the entities has been captured by the

use of the predicate 'actor_frame'. The following three Prolog clauses represent

the knowledge about the entity 'merchant' in the 'lorry' model of chapter 4.

a c t o r f t a m e (m e r c h a n t , number i n m o d e l (2 0)) .
a c t o r f r a e e (m e r c h a n t , a r r i v a l _ p a t t e r n (n e g _ e x p (7 . 2 7))) .
a c t o r _ f r a m e (m e r c h a n t, f i r s t _ a r r i v a l (7 . 11) J .

The first argument signifies the name of the entity, whereas the second argument
is a term whose functor signifies a particular aspect of the entity and its

argument represents the default value. Any number of aspects related to the

entity can be expressed with as many clauses. The representation is therefore

flexible and extendible. This representation can be seen as a frame [MINSKY, 75]

where the first argument of the predicate 'actor frame' signifies the name of the

frame whereas the second argument represents the 'slot' name and the default

value. Although the inheritance aspects related to frames have not been

implemented as a part of this particular model building system, these were

initially successfully attempted separately with a similar knowledge

representation scheme.

The knowledge related to the activities has been captured by a similar set of

Prolog clauses using the predicate 'subgoal_frame'. The following three Prolog

clauses represent the knowledge about the 'weigh in' activity of the 'lorry' model
(chapter 4).

s u b g o a l _ f r a m e (w e i g h i n , r e s o u r c e (w e i g h b r i d g e)) .
s u b g o a l _ f r a m e (w e i g h i n , d u r a t i o n (d e f a u l t (2 . 4 2))) .
s u b g o a l _ f r a m e (w e i g h i n , s c r i p t (a)) .

The representation is very similar to the one used to capture the knowledge about

the entities. The generic nature of the representation should be noted. In the

'lorry' model both the 'merchant' and 'neb' entities go through the weigh_in but

these are not represented specifically for any entity. Another point to note is

that there is a reference to one of the 'script' clauses described earlier in the

knowledge base. This reference provides a link between the two types of
knowledge and is used for code generation purposes.

141

5 . 6 . 3 . THE METHOD EMPLOYED FOR MODEL BUILDIMG

The method employed for the generation of simple models from this knowledge

representation consists of first analysing the model as articulated, for the

identification of possible process interactions. The various instances of activity-

sets and resources are identified and if multiple possibilities exist, these are

referred to the user for resolving. Once all the instances of activity-sets and

resources have been completely identified a bottom-up synthesis phase is entered

into by generating the various queue names to 'couple* the various 'subgoals' for

each entity present in the model. A ll this specific information is then substituted

into the respective code-segments represented as 'script' clauses to assemble the

process fo r each entity. At the same time the code for defining the static part of
the model is generated from the substitutions, along with the code for scheduling

the start-up events.

In the following section the ideas related to the knowledge representation and the

method o f model building have been further elaborated by following the

construction of a number of models of increasing complexity by using the model
builder as implemented.

5 .7 . EXAMPLES OF BUILDING SIMPLE MODELS

Five examples consisting of four partial versions of the 'lorry' model (chapter 4)

and one complete version were built to illustrate the working of the model builder.
These have been included in Annexes SA to SE. The working as presented has been

taken directly from the computer files used during the construction of these

models and these are un-edited. The headings under which the material has been

organised are: the model as articulated at a very high level, the knowledge

available in the knowledge base, the executable model as output and the contents

of the working memory. For the first illustration (Annexe 5A) the contents of the

working memory have been shown at different stages of the model development.

In the subsequent examples one snap shot of the working memory at the point just
before the executable model is output, this has been included to avoid unnecessary

repetition. The contents of the knowledge-base have been repeated when more

knowledge is added to it, in order to maintain clarity and to keep the Annexes self
contained.

The contents of the working memory consist of a number of Prolog terms stored

under various keys. Some of the symbols used for the functors of these terms

142

bava had to be abbreviated and these are expanded to facilitate understanding and

have been listed in alphabetic order in the following:

res_inst » resource_instance
res_inst_sg_lnst ■ r«source_instance subgoal instance.
res inst sg instances ■ resource instance suBgoal instances.
resource_sg_lnstances ■ resource sut>goal_Instancei.
sg inst • subgoal instance
sg_inst_actr ■ subgoal lnstance actor .
sg_lnstance_actors ■ subgoalinstanceactors.

5.7.1. THE PARTIAL 'lorry' MODELS ('Merchant' ONLY)
To begin the exposition, a very simple partial version of the 'lorry' model will be

considered. In this model only one entity ('merchant') is included and the rest

('neb' and 'train' have been excluded). The model is articulated at a generic level
as follows:

■odel(ay_eodel) i -
actor(eerchant).

goal(merchant) I -
subgoal(weigh in),
su b g o a l(e lo a d),
subgoal(weigh_out).

From this very high level articulation of the model and the knowledge in the

knowledge base (section 5A.1.2.) two models are possible. The first would have

one instance of the weigh bridge serving both the 'weigh in' and the 'weighout'

whereas the second would have two instances of the weigh bridge one serving the

'weigh in' and the other serving the 'weigh out'. These possibilities have been

shown in Figs. 5.2 and 5.3. As there is nothing in the articulation of the model or

in the knowledge base to determine the number of instances o f the 'weigh bridge'
in the model the user is asked a question in this regard. Annexe 5A shows the

building of the model when the user responds that there is one instance of the

'weigh_bridge' whereas Annexe 5B presents the case when there are two instances

of the 'weigh bridge'.

5.7.2. THE PARTIAL 'lorry' MODELS ('Merchant* AND 'neb* ONLY)
The addition of another entity adds to the complexity of the model and therefore

to the process of model building. If the two entities are allowed to mix in the

queues for weighing in and weighing out then there would be only two possible

models depending on the instances of the 'weigh_bridge'. If, however, the two

entities queue separately for weighing in and for weighing out then there can be

one, two, three or four instances of the 'weigh bridge' servit^ the 'weigh in' and

the 'weigh_out' in the various configurations of the model.

(I
M

*!»»)

(A
n

n
ex

e
S

B
).

145

Annexe 5C presents the simpler of the two cases (i.e. allowing mixed queueing,
which is default) and fig. 5.4 depicts this case using an entity cycle diagram. This

model has been articulated as fo llow «

model(my model) I -
actor(merchant),
actor(neb).

goal(merchant) t-
subgoal(weigh in),
subgoal(mload),
subgoal(weighout).

goal(neb) l-
subgoal(weigh_in),
subgoal(other_work),
subgoal(weighout).

By the addition of two further clauses with the predicate ‘own_activity_set‘

(Annexe 5D) the other case has been specified as shown below:

mode1(my mode1) i-
actor(merchant),
actor(neb).

goal(merchant) »-
subgoal(weigh in),
subgoal(m load),
subgoal(weighout).

goal(neb) t-
subgoal(weighin),
subgoal(otherwork),
subgoal(weighout).

ownact ivity set((merchant 1, weigh in).
ownactIvity set((merchantj, we ighout).

These clauses signify that the two entities queue separately for the weigh in and

for the weigh out (fig. 5.5). In both partial models one instance of the

weigh bridge was resolved during user interaction.

(F
IF

O
r

se
p

a
ra

te

q
u

e
u

in
g

)
(A

n
n

ex
e

148

5 . 7 . 3 . A COMPLETE VERSION OP THE ’ l o r r y * MODEL

Annexe 5E presents the same version of the 'lorry* model as has been included in

Annexe 4C and uses the following high level articulation of the model.

mod«1(m y _mode1) i -
actor(merchant),
ac to r (n eb),
acto r(t r a in) .

goal(merchant) : -
subgoal(weigh in),
subgoal(m_loa3),
subgoal(weigh_out) .

goal(neb) t -
subgoal(w eigh_in),
subgoal(other_work) ,
subgoal(w eighout) .

g o a l (t ra ln) i -
subgoal(t unload).

own_activity_set((merchant|, w e ig h in) .
own_activity_set((merchant j , weigh out) .

By the addition of the 'train' in the model there is a further possible interaction of

the merchant with the 'train' over the use of the resource 'loader' and the number

o f possible models is now twice the number that was previously possible with the

'merchant' and the 'neb' only. It should be noted that there are slight differences

between the model in Annexe 4C and the model under discussion (Annexe SE). The

durations of the 'weigh in' and the 'weigh out' for the 'neb' have assumed the same

default values, as have those for the 'merchant', whereas these are different in the

model in the previous chapter. This is so because at present only the logical

structure of the model is resolved by the model builder and the default values are

used for the durations and the number of instances of each resource. Another

difference is that of the presence of a dummy queue alongwith the dummy subgoal
'leave' which is mandatory.

5 . 7 . 4 . A HARBOUR MODEL

(A) DESCRIPTION OF A 'HARBOUR' MODEL
In the following a simplified description of a 'harbour' model is presented. This

has been derived from an original description in (POOLE A S, 77).

149

A harbour is approached by a narrow entry channel along which only one ship at a

time can pass. The following type of ships use the harbour:

1. passenger
2. tanker, and
3. cargo.

The size of the harbour is limited and therefore a ship must not start crossing the

channel into the harbour unless its respective unloading berth is vacant.

O f the three types of ship, the passenger boats arrive regularly every 2 hours.

They take 12 minutes to go through the channel and their unloading time is given

by a uniform distribution between 20 and 40 minutes.

The tankers arrive randomly; their average inter-arrival time is 13 hours. They

take 1 hour 40 minutes to pass through the channel and their unloading time is

given by an Erlang distribution (mean * 36 hours, std. dev. * 12 hrs).

The cargo ships also arrive randomly; their average inter-arrival time is 6 hours 15

minutes. Their channel passage time is 48 minutes and their unloading time is

uniformly distributed between 15 hours and 35 hours.

5.7.5. 'harbour-1' MODEL
For illustration purposes in this section a simplified version of the harbour model

as described above will be built using the knowledge-based model builder. In this

model the restriction related to the size of the harbour will not be catered for and

any number of ships will be permitted in the harbour. In the section 5.8.2 the

knowledge-based construction of a ’harbour-2' model will be demonstrated, which

will cater for this condition.

Annexe 5F includes the model as articulated, the relevant knowledge in the

knowledge base and the executable model as generated. Fig. 5.6 shows this model
with the help of an entity cycle diagram.

8
F

ig
u

re

5
.6

.
T

h
e

e
n

ti
ty

c

y
c

le

d
ia

g
ra

m

fo
r

th
e

'h

a
rb

o
u

r
m

od
el

(A

n
n

ex
e

5
P

).

For ease of reference the articulation of the model has been repeated in the

following:

151

■ods1(«y mode1) x-
actor(pas_ship),
actor (U n ship),
actor(carship).

goal(pasship) I-
subgoal(cross in),
subgoal(pas uload),
subgoal(crossout).

goal(tan_ship) l-
subgoal(cross in),
subgoal(tanuload),
subgoal(crossout).

goal(car_ship) x-
subgoal(cross in),
subgoal(caruload),
subgoal(crossout).

The knowledge base now includes the knowledge related to three 'actors' and five

'subgoals' and there is no need for further 'script' clauses. The model as

articulated implies that ships mix in the queues for 'cross in' and 'croes_out', as

there is no 'own_activity_set' clause. During the user interaction it was resolved

that there is one instance of the channel. An option existed to provide for three

separate 'cross_in' subgoals, one for each of the 'actors' as is the case with the

unloading activity, because the three ships have different crossing in times. The

same could apply for the 'cross out' subgoal. A second option would be to have

only one frame for 'cross_in' and one for 'cross out' (i.e. as it is now) together with

a more elaborate user interaction where the default values of the durations are

verified or supplied at the time of the model generation. A further possibility

could be that a problem-specific knowledge-base is interactively derived from the

generic knowledge-base which would incorporate non-default values and this

knowledge base is made available to the model builder at the time o f the model

building. This approach would support the economy of expression and the

generality of knowledge in the knowledge base which is made specific at the time

of its use.

5. S. EXTKM8IOM8 TO ALLOW WORE COUPLE* MODELS

5 . 1 . 1 . A LARGER MODEL

An attempt was made to build a larger model which covers both the 'harbour-1'

and the 'lorry' models as sub-models, with slight alterations. For illustration

purposes, it will be assumed that the cargo ship in the harbour model brings the

1S2

coal and that both the 'merchant' and the 'train' come to load the coal. Also one

ship-load of coal is equivalent to two train-loads and enough additional coal to

meet all the merchants' requirements adequately. This model specification at a

high level is as follows:

■ode1 (m y_mode1) i -
acto r(merchant) ,
a c to r (n eb),
a c t o r (t r a in),
acto r(pa s_sh ip) ,
a c t o r (t a n s h ip) ,
a c to r (c a r _ sh ip).

goal(merchant) i -
subgoal(weigh in)«
subgoal(m _loa3),
subgoal(weigh_out).

goal(neb) » -
subgoal(w eigh_in),
subgoal(other_work),
subgoal(weigh_out).

g o a l (t ra in) t -
subgoal(t _ lo a d) .

g o a l(p a s s h ip)
subgoal(cross in),
subgoal(pas_uToad),
subgoal(c ross_ou t).

goa l(tan _sh ip)
subgoal(cross in),
subgoal(tan_uToad),
subgoa l(c ro ss_ou t).

goa l(ca r_sh ip) : -
subgoal(cross in),
subgoal(car_uToad),
subgoal(c ross_ou t).

Annexe 5G depicts the construction of this model. Two more 'script' clauses have

been added to the knowledge base to allow the interaction between the cargo ships

and the trains through the passing of the message 'coal' and waiting for this

message. These scripts are depicted in fig 5.7 diagrammatically. It would be

possible for two trains to be loaded after a cargo ship has finished unloading. A

message passing facility (a blackboard) and related primitives were added to the

simulation engine (chapter 4) to enable the running of the code generated. One

instance of each of the channel, the weigh bridge and the loader were resolved

during user interaction.

5.8.2. THE 'harbour-2' MODEL
This example has been included to demonstrate that conditions like the one

related to the size of the harbour in the harbour model, can be incorporated even

when the model builder has the limited capacity for recognising and resolving only

153

O

Script 'c'

Script 'd'

F i g u r e 5 . 7 . The s c r i p t s t o p r o v i d e an i n t e r a c t i o n between
t h e p r o c e s s e s th ro u g h message p a s s i n g
(S e c t i o n 5 G . 1 . 2 .) .

154

one form of process interaction and of substituting for only three keywords (i.e.

atoms: 'RESOURCE1, ACTIVITY SET and 'DURATION') in a 'script' clause for the

purpose of the code generation. In this example an approach to editing the code

generated by the model builder has also been suggested. The articulation of the

model is as follows:

model(ay_eodel) :-
actor(pas_ship),
actorf tan ship),
actor(car_ship).

goal(pasship) :-
subgoal(pasunload).

goal(tanship) :-
subgoal(tanunload).

goal(carship) i-
subgoal(car_unload).

Annexe 5H provides the construction of this model which has been also shown in

fig . 5.8. It is easy to recognise the similarity in the processes for the three ships

and keeping this in view a 'script' clause corresponding to the following diagram

has been devised and included in the knowledge base.

X Y

There are three activities in this diagram whereas at present we can substitute

only for one 'AcTIVfi Y_SET* and one 'DURATION' in the script clause. This

indicates that the code generated will need editing. This has been incorporated by

including the word 'edit' for the durations of cross in and cross_out in the body of

the 'script' clause. In this way it has been possible to preplan the editing which

would be needed. It is hoped that this approach to editing the generated code

would reduce the extent of the major objection to the use of simulation program

generators.

m
od

el

(A
n

n
ex

e
5

H
).

156

5.9. CONCLUSIONS AMD FUTURE DEVELOPMENT

5.9.1. CONCLUSIONS
This work hss demonstrated that it is feasible to build discrete simulation models

by using the know ledge-based systems paradigm while using the logic programming

paradigm for implementation. It has been shown that it is possible to separate the

model building method from both the application domain as well as the simulation

methodology by identifying and reasoning about the possible process interactions

and generating a simulation program when all the possible interactions have been

fully resolved.

This form of computer assistance in simulation model building shifts a larger

amount of the burden onto the computer and the involvement of the user is at am

'intelligent' level as compared with the previous forms o f computer assistance

related to simulation program generation. The availability of both the simulation

methodology knowledge and the application domain knowledge provide for these

advantages. Also, the simulation model does not need to be captured with the

help of one of the diagrammatic formalisms as is required by most simulation

program generators.

The knowledge representations employed provide the knowledge engineer (analyst)
with the flexibility of influencing both the simulation methodology as well as the

application domain knowledge in the knowledge-base and therefore it is possible to

provide for the generation of simulation programs containing complex conditions

as their generation is not 'hard-wired' in the program generator software. Also, it

is possible to preplan the editing of the generated code when the model

complexity exceeds the limits of the system.

5.9.2. FUTURE DEVELOPMENT
The future development of the work described in this chapter would naturally aim

at building more complex models than have been described. This would involve

adding more complex types of scripts and building facilities for resolving further

types of interactions. The articulation o f the initial generic model can also be

enhanced by further constructs to incorporate complex conditional routes for the

entities in the model.

157

For the model builder to appear more 'intelligent' the knowledge base may be

enhanced by a set of rules which would permit or prohibit certain interactions

between the processes under varying circumstances. These sets of rules can also

form part of an experimental frame and can be partitioned to represent the

options to be explored, possibly in a hierarchical fashion. In principle such a rule

base can be made comprehensive so that user interaction is minimal, if at all.

In addition to the rules related to the process interactions, another set of rules

may concern itself with the preliminary calculations to predict an unstable model
(e.g. based on the average interarrival time and the total of the average service

times). A warning system may be set up based on these computations to alert the

user o f a potentially unstable model before experimentation.

Further additions to the knowledge base could include the knowledge of a

simulation language intended to be the target language. Such knowledge may be

incorporated in the form of the grammar for the language.

A further direction of development could be to provide facilities to output the

model in a graphical form for human communication, together with the executable

code for experimentation with the model.

END OF CHAPTER 5

158

5 A .1 . THE PARTIAL ' l o r r y ' MODEL (MERCHANT ONLY, ONE INSTANCE
6 t WEIGH BRIDGE)

5 A .1 .1 . THE MODEL ARTICULATION AT A VERY HIGH LEVEL
model!my_model) «-

actor(m e rc h a n t) .

goal(merchant) »-
subgoal(weigh in),
subgoal(m_1oa3),
subgoal(weighout).

5 A .1 .2 . THE KNOWLEDGE-BASE

The knowledge base consists of three sets of Prolog clauses as follows:

(A) ' a c t o r f r a a e ' CLAUSES
actor_fram e(aerchant, number in_m odel(20)) .
actorfram e(m erchant, a rriva l_p atte rn (n eg_exp (7 .27))) .
actor_frame(merchant, f i r s t _ a r r i v a l (7.11)T.

(B) ' s u b g o a l f ra ise ' CLAUSES
■ubgoal_frame(weighin, resource(weigh bridge)).
subgoal_frame(weighin, duration(default(2 .4 2))).
subgoalframe(weigh in, script(a)) .
subgoalfram e(m _load, resou rce !loader)) .
subgoa lfram efm load , d u ra tion (d e fau lt (5 .8 4))) .
subgoal_frame(m loa d , s c r ip t (a)) .

subgoalfram e(w e igh ou t, resource!weigh b r id g e)).
subgoal_frame(weigh_out, d u ra tion (d e fau lt (3 .1 7))) .
subgoal_frame(weigh_out, s c r i p t (a)) .

(C) ' s c r i p t * CLAUSES
sc rip t (a rr iv e (P ro cess , I a r r i v a l) , X, Y) i -

move(X, Y),
gen_next(Process, I a r r i v a l , X).

scr ip t (leave, X, Y) l -
exit_system(X, Y).

s c r ip t (a , X, Y) : -
wa i t_u n ti1 (head_of(X)) ,
wait until!idle!'RESOURCE')) ,
move(X, ' ACTIVITY_SET') ,
seize!'RESOURCE') ,
hold!'DURATION') ,
re lea se (• RESOURCE') ,
move!•ACTIVITY_SET', Y).

159

5A.1.3. THE EXECUTABLE MODEL AS GENERATED
The following model, as generated by the model builder, is acceptable to the

simulation engine (chapter 4) which can 'drive* the model to provide a trace of the

simulated behaviour. The model consists of two files. One file contains the

model's statics (i.e. the item s which are established before the first time advance)

and in the other file the model dynamics (i.e. a process for each 'actor') are

delivered.

(A) MODEL STATICS AND START-UP EVENTS
t- ni, ni, write($ Defining sets$).
i- vset(a_load_l(1,2,3,4,5,6 ,7)).
t - vset(merchant_qO(l,2,3,4,5,6,7)) .
s- vset(merchantql (1,2,3,4,5,6,7)).
i- vset(merchant _q 2(1,2,3,4,5,6,7)).
>- vset(Merchant_q3(1,2,3,4,5,6,7)).
î- vset(Berchant_q4(l,2,3,4,5,6,7)).
I - vset(weigh! n_l(1,2,3 ,4,5,6,7)).
I - vset(weigh_out_l<1 , 2 , 3,4,5,6,7)).
t- nl, nl, wr ite(?Defining resources?),
t - vresource(loader 1,1).
I - v r e s o u r c e (w e i g h _ E r i d g e _ l , 1) .

<- nl, nl, write(?Def ining classes?).
«- velassi Merchant (1,2),1,20).
I- nl, nl, wr ite($ Loading classes in their pools?).
I - v l o a d (M e r c h a n t , 1 , 2 0 , merc han t_ q0) .

(- nl, nl, write(?Scheduling initial events?),
introduce (merchant (1), merchant _process, 7.11).

(B) MODEL DYNAMICS
process (me rcha n t _process) t -

move(Merchant qO,nerchant_ql),
gennext(aercHant process,7.2 7,merchant_q0),
w a i t _ u n t i l (h e a d o t (m e r c h a n t _ q l)) ,
wai t_u n t i1 (idle(weigh bridge_l)),
move(aerchant_ql ,weigfi_ln_l),
s e i z e (w e i g h br i d g e 1),
hold(2.42),
r e l e a s e ! w e i g h _ b r i d g e 1) ,
m o v e (w e i g h i n l » m e r c h a n t q 2) ,
w a i t u n t i 1 (h e a d o f (Mer chant_q2)) ,
wai t _ u n t i 1 (i d l e (l o a d e r 1)) , ~
mo ve(me rchan t q 2 , m _ l o a 3 _ l) ,
s e i z e) l o a d e r !) ,
h o l d (5 . 84) ,
r e l e a s e) l o a d e r _ l) ,
M o v e (a _ l o a d 1 , a e r c h a n t _ q 3) ,
w a i t _ u n t i 1 (h e a d o f (M e r c h a n t _ q 3)) ,
w a i t u n t i l) i d l e (w e i g h b r i d g e 1)) ,
M O v e (a e r c h a n t _ q 3 , w e i g H _ o u t _ l) ,
s e i z e (w e i g h b r i d g e 1) , ~
hold(3.17),
r e l e a s e (we i g h _ b r i d g e l) ,
M o v e (w e i g h _ o u t _ l ,Me rchan t_q4) ,
e x it_sys tem(me rchant_q4,a e rchant_q0).

160

5A. 1.4. SNAPSHOTS OP THE WORKING MEMORY AT VARIOUS STAGES O F THE MODEL DEVELOPMENT
The model is 'grown' in the working memory from the initial state in which it had

been articulated to the final state in which all the instances of queues, activity

sets and resources are completely specific and are correctly re lated to each other.

The model is developed in the working memory in the form of P ro log terms stored

under various keys some of which are model-specific (e.g. merchant) whereas

others are general (e.g. 'RESOURCES'). This is carried out by calling the

following clause in the model building system as a goal:

build_eodel(A) »-
prepare,
get model(A),
analyse model,
synthesTse_model,
get processes,
savemodel.

The subgoal 'prepare' sets the scene in terms of creating a partition of the

Arity/Prolog database. The 'get_model' subgoal makes reference to the model

which has been previously 'reconsulted' into the database and sets up the initial

keys (explained in chapter 4) for recording the Prolog terms to start the process of

model building. The 'analyse_model' subgoal retrieves the relevant information

from the knowledge base which has also been previously 'reconsulted' and

generates the appropriate instances for the activity sets and the resources. If a

resource is shared by two subgoals then the user is prompted to resolve the

number and the usage of the resource instances. When all the instances of the

activity sets and the resources have been resolved then the subgoal
'synthesise model' is called. This subgoal generates the configuration of the

model by generating the instances of the queues which link the activ ity sets

together and records these under the names of the entities which use these

queues. The names of the queues are identified from the name o f the entity which

uses the respective queues (e.g. m erchantql, merchant_q2) unless it is used by

more than one entity in which case these are identified as 'm odel_q l', 'model_q2‘

and so on. At this stage the configuration of the model is completely specified as

a set of Prolog terms recorded under the appropriate database keys. The

'get_processes' subgoal generates an executable model from this configuration,
and with reference to the simulation methodology knowledge-base (i.e . the 'script'

clauses) by supplying appropriate substitutions for the keywords used in the body

of the 'script' clauses and assembling these as a process for each 'actor'. The

'save_model' subgoal saves the model as a disk file.

161

The contents of the working memory at the various stages of the model

development for the particular model in this Annexe are presented under the

following headings: (A) to begin with, (B) after top down analysis of the model

with reference to the knowledge in the knowledge-base along with resolving the

instances of the resources by interaction with the user, if this was required (C)

after bottom-up synthesis of model, and (O) just before an executable model is

output when the behaviour generation knowledge has also been incorporated in the

model. Some of the information in the following is o f necessity repeated. This

has been done to maintain clarity. The contents o f the working memory at each

stage have been included in full even when there is no change in the terms stored

under a particular key from the previous stage. In the following annexes,

however, only one snapshot of the working memory has been included.

(A) TO BEGIN WITH

Terms recorded under the key 'ACTORS*
actor(eerchant)

Terms recorded under the key merchant
subgoal(weigh in)
subgoal(s_load)
subgoal(weighout)

(B) AFTER ANALYSIS AND RESOLVING RESOURCES

Terms recorded under the key 'ACTORS'
actor(earchant)

Terms recorded under the key merchant
subgoal(weigh in)
subgoal(s_load)
subgoal(weigh_out)
sginst(weigh in,l)
sglnst(e_loa3,1)
sginst(weigh out,l)
res Inst(weigfi in,weigh bridge,1)
ree_inst(e_loa3,loader,I)
res inst(weigh_out,weigh_bridge,1)
arrlve(eerchant,7.27)

Terms recorded under the key ' SUBGOALS'
sub goa1 (a _ l o a d)
s u b g o a l (w e i g h in)
s u b g o a l(w e ig h _ o u t)

162

s u b g o a l _ r e s o u r c e (a _ l o a d , l o a d e r)
s u b g o a l _ r e s o u r c e i w e i g h i n , w e i g h b r l d g e)
s u b g o a l _ r e s o u r c e (w e i g h o u t , w e i g f i _ b r i d g e)
s g _ i n s t a n c e _ a c t o r s (m l o a d (1) , (a e r c h a n t J)
s g _ i n s t a n c e _ a c t o r s (w e i g h _ l n (1) , (m e r c h a n t|)
s g _ i n s t a n c e _ a c t o r s i w e i g h o u t (1) , (me rc han t))
s g _ i n s t _ a c t r (a _ l o a d (l) . m e r c h a n t)
sg i n s t _ a c t r (w e i g h i n (1) « m e r c h a n t)
s g _ i n s t _ a c t r (w e i g h o u t (1) . m e r c h a n t)

T e r * s recorded under the key * R E S O U R C E S '

resou rce!loader)
r e s o u r c e (we i g h _ b r i d g e)
re s o u r c e s u b g o a l s (l o a d e r , (m l o a d))
r e s o u r c e s u b g o a l s (w e i g h b r i 3 g e , (w e i g h l n , w e i g h _ o u t |)
r e s o u r c e _ s g _ i n s t a n c e s (l o a d e r , (a l o a d (T)])
r e s o u r c e _ s g _ l n s t a n c e s (w e l g h b r i d g e , (w e i g h i n (1) , w e i g h o u t (1) J)
r e s _ i n s t _ s g _ i n s t a n c e s (l o a d e r (1) , |m l o a d) i f J)
r e s _ i n s t _ s g _ i n s t a n c e s (w e i g h _ b r i d g e (1) , | w e i g h _ i n (1) . w e i g h o u t (1) J)
r e s _ i n s t _ s g _ i n s t (l o a d e r ! 1) , m _ l o a d (1) j
r e s _ i n s t _ s g _ i n s t (we ig h b r i d g e (1) , w e i g h _ i n (1))
r e s _ i n s t _ s g _ i n s t (w e i g h b r i d g e (1) . w e i g h o u t (1))

(C) A F T E R SYNTHESIS

T e r » a recorded under the key •ACTORS'

actor(merchant)

T e r a s recorded under the key Merchant

subgoal(weigh in)
subgoalim_loa3)
subgoal(weighout)
sginst(weigh in,l)
sginst(rnload,1)
sginstiweigh out,l)
res_inst(weigR in,weigh bridge,1)
res_instia_load,loader,1)
res instiweigh_out«weigh bridge,1)
arrTve(merchant,7.27)
coupling(arrive(merchant,7.27),ql,weigh_in(1))
coupling(weigh in(1),q2,m load(1))
coupling(m_loa9(1),q3,weighout(1))
coupling!weigh_out|1),q4,leave)

T e r a a recorded under the key 'S U B G O A L S '
subgoal(m load)
subgoal(weigh_in)
subgoa1!we igh_out)
subgoal_resource(m_load,loader)
subgoal_resource(weigh in,weigh br idge)
subgoal_resource!weigh_out,weigR_bridge)
sg_instance_actors(m_load(1),(merchant j)
sg_instance_actors(weigh_in(1),[merchant))
sg_instance_actors(weigh out(1),(aerchant])
sginstactr(m_load(1)«merchant)
sg_inst_act r(weigh_in(1)«merchant)
sg_inst_actr(weighout(l).merchant)

163

r«iourc*(l o a d e r)
r e s o u r c e ! w e igh b r i d g e)
r e s o u r c e _ s u b g o a l s (l o a d e r , (■ l o a d))
r e s o u r c e _ s u b g o a l s (w e i g h b r i d g e , (w e i g h i n . w e i g h o u t))
r e s o u r c e s g i n s t a n c e s (l o a d e r , [■ l o a d (1)])
resource_sg_instances(weigh_bridge, (welgh_in(1),weighout(1)))
res_inst_sg_instances! loader (1), |i> loadfl)])
r e s _ i n s t _ e g _ i n s t a n c e e (w e i g h b r i d g e (1) , (w e i g h _ i n (1) , w e i g h o u t (1) 1)
rea_inet_eg_inat(loader(1),m_load(1))
r e s i n s t sg i n s t (w e i g h br i d g e (1) , w e i g h _ i n (1))
r e s i n s t s g i n s t (weighbrldge(1),weighout(1))

(D) BEFORE THE OUTPUT OP EXECUTABLE MODEL

T e r a s r e c o r d e d u n der t h e k e y ' RESOURCES1

T e r a s r e c o rd e d un der th e key 'ACTORS*

actor(m erchant)

T e r a s r e c o rd e d un der th e key arerchant

aubgoal(weigh in)
eubgoal(a _loa3)
subgoal(w eighout)
ag_inst(w eigh in , l)
sg_in st!m _load ,1)
s g in s t (w e ig h o u t ,l)
re s in s t (w e ig h in,weigh b r id g e ,1)
re s_ in st!m _load ,lo ad er,!)
res inat(weigh_out,w e igh b rid g e , 1)
arrlve (ae rch an t,7.27)
coup ling(arrive (m erchant,7.27) ,q l ,w e ig h _ in (l))
coupling(weigh in (1) ,q2 , a 1 oad(1))
coup llng(m_load(1) ,q3 , we igh_out (1))
coupling(weigh_out(1) ,q4 ,leave)

T e ra a r e c o rd e d un der th e k e y 'SUBGOALS'

subgoal(a_load)
subgoal!weigh_In)
su bgoa l(w eigh out)
subgoal_reeource(a_load ,loader)
subgoal resource(weigh_in,weigh br idge)
subgoal_resource(we igh_out, we ig fib r id ge)
sg_in stan ce _acto rs(a _ lo ad (1), [merchant))
ag_instance_actors(w eigh_in (1) , (merchant])
•g instance acto rs (weigh ou t(1) , (merchant])
sg _ in st _a c t r (a _ lo a d (1) .merchant)
sg _ in st _a c t r jw e ig h in ! 1) .merchant)
s g i n s t a c t r (w e igh ou t(1) «merchant)

T e r a s r e c o rd e d un der th e k e y 'RESOURCES'

resou rce (loader)
resource!weigh_br idge)
resou rce_subgoals (loader, (a load))
resource_subgoals(weigh_bridge,(weigh in ,weigh_out))
re so u rcesg Instances(loa d e r, (a l o a d (!)))
resource_sg_instances(weigh bridge, (w e igh _in (1) .weigh out(1)))
res_in st_sg_in stances(loader(1) , (» _ lo a d (1)])
re s_in st_sg_in stances(we igh br idge(1) , (w eigh_in (1) ,weigh out(1)))
re s_ in s t_sg _ in s t (loader(1) ,m_load(1))
re s_ in s t_sg _ in s t (w eigh_bridge(1) , w e ig h _ in (l))
re s_ in st_sg_ in at(we igh_br id g e (1),we igh out(1))

!!
!!

164

vast(merchant _q0(1,2,3,4,5,6,71)
vset(weigh_in_l(1,2,3,4,5,6,71)
vr«source(weigh_bridge_l,1)
vset(merchant_ql(1,2,3,4,5,6,711
vset(m_load_lTl,2,3,4,5,6,71)vresource(loader_1,1)
vset(merchant_q2(1 ,2 ,3 ,4 ,5 ,6 ,7))
vset(weighout 1(1,2,3,4,5,6,71)
vresource(weigK bridgel.l)
vset(merchant q3(1,2,3,4,5,6,711vset(merchant_q4(1,2,3,4,5,6,7))
vclass(merchant(1,2),1,20)
vload(merchant,1,20,merchant_q0)
introduce(merchant(1).merchant ̂process,7.11)

T e r a s r e c o r d e d u n d e r th e k e y * S T A T IC S *

T e r « r ecorded under the key 'P R O C E S S E S '

merchant / (((((move(marchant qO,merchant ql) ,
gennext(merchant process,7.27,merchant_qO)) ,
wait_until(head_of(aerchant_ql)) ,
wait _until(idle(weigh_bridge 1)) , move(merchant_ql,weigh_in_l) ,
se i ze(weigh bridgel) , hold(2.42) , release!weighbridge_l) ,
move(weigh_Tn 1,merchant_q2)) , wait unti1(head of(merchant_q2)) ,
wait_untllTidIe(loader 1)) , move(merchant q2,m_load_l) ,
seize(loader 1) , hold(5.84) , release(loaflerlj ,

ve(m_load I,merchant q3)) , wait_until(head of (merchant_q3)) ,
ituntil(Tdle(weighBridge_l)) , move(merchant_q3,weigh_out_l) ,
ize(weigh bridge l) , hold(3.17) , release«weigh brldge_l) ,
ve(weigh out l,merchant_q4)) ,

exit_system(merchant_q4,merchant_q0))

END O P A N N E X E 5A

V

165

ANNEXE SB

SB. 1 . THE PARTIAL 'lorry* MODEL (MERCHANT ONLY, TWO
INSTANCE!* 6 r MttCH-B B I P & E T -------- ------------------------

SB. 1 .1 . THE MODEL ARTICULATION AT A VERY HIGH LEVEL

As the resource instances are resolved during user interaction the articulation of

the model remains the same as in section A5.1.1.

S B .1 .2 . THE KNOWLEDGE-BASE

The knowledge base also remains the same as in section AS.1.2.

5 B .1 .3 . THE EXECUTABLE MODEL AS GENERATED

(A) MODEL STATICS AND STAR T-UP EVENTS
:- nl, nl, write(SDefining setsS).
:- vset(e_load_l(1,2,3,4,5,6,7)).
!- vset(merchant_qO(1,2,3,4,5,6,7)).

vset(*erchant_ql(1,2,3,4,5,6,7)).
«- vset(merchant_q2(1,2,3,4,5,6,7)).
t - vset(merchant_q3(1,2,3,4,5,6,7)).
:- vset(merchantq4(1,2,3,4,5,6,7)).

vset(weigh_in_l(l,2,3,4,5,6,71).
t- vset(weigh_out_l(1,2,3,4,5,6,7)).

nl, nl, write($Defining resources;).
vresource(loader 1,1).
vresource(we igh_Br idge_l, 1).

s- vresource(weigh_br idge_2,1).
s - nl, nl, write($Defining classes;).
i- vclass(aerchant(1,2), 1,20).

nl, nl, write($Loading classes in their pools$).
t - vload(merchant, 1,2 0 ,eerchant_q0).
t- nl, nl, write($Scheduling initial events$).
i- introduce(eerchant(1),merchant_process, 7.11).

(B) MODEL DYNAMICS
process(eerchant_procese) s -

move(merchant qO,»erchantql),
gennext(nerchant process,7.27,aerchant_qO),
wai t_unt i 1 (head_or(merchant _ql)),
wait until(idle(weigh bridge 1)),
moveT»erchant_ql ,weigH_in_l)7
seize(weigh bridge 1),
hold(2.42) ,~
release(weigh_br idge_l) ,

166

move(weigh in_l,merchant q2), waituntI1(headof(merchant q2)), wait~until(idle(loader 1)),
move(merchant q2,m_load 1), seize!loaderl),
hold(5. 84) , release!loaderl),
move(m_load 1,merchant q3), wa it_unt i1(Head of(merchant_q3)),
wait until!idle(weigh_bridge_2)), move(merchant_q3,we igH_out_l), seize!weigh br idge 2),
hold!3. 17),release!weighbridge 2),
move(weigh_out_l,merchant_q4),
exit_system(merchant_q4,merchant_q0).

SB.1.4. THE CONTENTS OF THE WORKING MEMORY BEFORE THE OUTPUT
OF THE EXECUTABLE MODEL
At this stage the development of model is complete and the executable model as

presented in the previous section (A5.2.3.) can be readily output.

Terms recorded under the key 'ACTORS'
actor(merchant)

Terms recorded under the key merchant
subgoal(weigh in)
subgoal (m_loa<3)
subgoal!waighout)
sginst(weigh in,l)
sginst(mload,1)
sg_inst(weigh out,1)
resinst(weigh in,weigh bridge,1)
res_inst(m_loa9,loader,!)
res inst(weigh_out,weigh_bridge,2)
a r rTve(merchant,7.27)
coupling(arrive(merchant,7.27),ql,weigh_in(l))
coupling(weigh in(1),q2,m_load(1))
coupling(m_loa3(1),q3,weighout(1))
coupling(weighout(l),q4,leave)

Terms recorded under the key 'SUBGOALS'
subgoa1(m l o a d)
subgoal(weighin)
subgoal(weighout)
subgoal_resource(m_load,loader)
subgoal_resource(weigh_in,weigh bridge)
subgoal_r esour ce(we ighou t,we1gfi_bridge)
sg_instance_actors(a_load(1),[merchant))
sg_instance_actors(weigh_in(1),(merchant))
sginstanceactors(weighout(1),(merchant])
sg_inst_actr(m_load(1).merchant)
sg_inst_actr(weigh_in(1).merchant)
sg_inst_actr(weigh_out(1).merchant)

167

resource(loader)
resource(weigh_bridge)
resource_subgoals(loader,(m load))
resource subgoals(weigh_bridge,[weigh in,weigh_out J)
reaource_sg_instances(loader,(a load(I)))
resource_sg_instances(weighbridge, [weigh_in(1).weigh out(1)))
rea_inat_eg_inatances(loader(1),[a load(1)1)
res_inst_sg_instances(weigh_bridge(1),(weighin(l)))
resinst~sg_instances(weighbridge(2),(weighout(1)])
res_inat_ag_inat(loader(1),nload(1))
rea_inat_ag_inat(weigh bridge(1),weigh_in(1))
res_inst_sg_inst(weigh_bridge(2),weigh out(1))

Terns recorded under the key 'STATICS *
vaet(Merchant_q0(1,2,3,4,5,6,7))
vset(weigh_ln_l(l,2,3,4,5,6,7))
vresourcelweigh bridgel.l)
vset(nerchant_ql(1,2,3,4,5,6,7))
vset(m l o a d l (1,2,3,4,5,6,7))
vresourcelloader_l,1)
vset(merchant q2(1,2,3,4,5,6,7))
vset(weighout 1(1,2,3,4,5,6,7))
vresourcelweigE bridge_2,l)
vset(merchant_q3(1 ,2,3,4,5,6,7))
vset(nerchant_q4(1,2,3,4,5,6,7))
vclass(merchant(1,2),1,20)
vload(merchant,1,20,merchant_q0)
Introduce(merchant(1),merchant_process,7.11)

T e r m recorded under the key * PROCESSES *
merchant / (((((move(merchant qO,merchant ql) ,
gennext(merchant process,7.27,merchant_q5)) ,
wait_until(head of(merchant ql)) ,
wait_until(idle(weigh bridge_l)) , aove(aerchant_ql,weigh_in_l) ,
seize(weigh bridgel) , hold(2.42) , release!weighbridge_l) ,
move(weigh In 1,merchant q2)) , wait_unti1(head_of(merchant_q2)) ,
wait_until(idle(loaderl)) , move(merchant q2,m_load_l) ,
seize(loader 1) , hold(5.84) , release(loa3er_l) ,
move(m_load l,merchant q3)) , wait until(head of(merchant q3)) ,
walt_until(Tdle(weigh_5ridge_2)) , move(merchant_q3,weigh_out_l) ,
seize(weigh_bridge_2) , hold(3.17) , release(weigh bridge 2) ,
move(weigh_out_l,merchant_q4)) ,
exit_systen(merchant _q4.merchant_q0))

T e r a s r e c o r d e d u n d e r th e k ey ' RESOURCES *

END OF ANNEXE 5B

5C.1. THE PARTIAL ‘lorry* MODEL (MERCHANT AND NCB ONLY, ONE
IMOTi^E 6F WBlflH-BRIIXSi, MIKED QOEUEIMfi)-------------- -----
The presence o f two 'actors' having some of their 'subgoals' the same adds to the

complexity and to the number of possible models that can be generated from the

same initial articulation and the same knowledge in the knowledge-base. In the

following we shall follow the generation of one model in which there is one

instance of the weigh bridge and only mixed queueing is allowed (which is default).

The next Annexe takes up another version of the same model where the two

'actors' queue separately.

SC. 1.1. THE MODEL ARTICULATION AT A VERY HIGH LEVEL
nodal(mymodel) i-

actor (Merchant),
actor (n eb).

goal(Merchant) t -
subgoal(weigh in),
subgoal(« l o a d),
subgoal(weigh_out).

goal(neb)
subgoal (weigh_in),
subgoal(other work) ,
subgoal (weigh_out).

S C .1 .2 . THE KNOWLEDGE-BASE

(A) 'actor _£ rame' CLAUSES
actor_fraae (Merchant, number in_Model(20)).
actor_f rame (Merchant, arrival_pattern(neg_exp(7.27))).
actor_f rame (merchant, first_arrlval(7.11)).
actor_fraMe(ncb, number in mo d el (2 0)) .
actor_f rame (neb, arrival _pattern(erlang(12.14, 4.3))).
actor_frams(neb, f irst_ar rival (1 2 .2 2)).

(B) 'subqoal fraae' CLAUSES
subgoal_fraae(weigh_in, resource(weigh bridge)).
subgoal_fraae(weigh_in, duration(default(2 .42))).
subgoal_fraae(weigh_in, script(a)).
subgoa1_f rame(m l o a d , resource!loader)).
subgoaIf rase (m_load, duration(default (5.84))).
subgoaIfraae(n_load, script(a)).
subgoal_frame(weigh out, resource(weigh bridge)).
subgoal_frame(weigh_out, duration(defau!t(3.17))).

169

subgoal_frame(weigh_out, script (a)).
subgoal_frame(other work, duration(default(22.0))).■ubgoalframa(othar work, script(b)).

(C) 'script' CLAUSES
script(a, X* Y) l-

wa i t unti1(haad of(X)),
waituntil(ldla('RESOURCE')), move(X, 'ACTIVITY SET'),
seize('RESOURCE'),
hold('DURATION'),
release('RESOURCE'),
move('ACTIVITY_SET' , Y).

teript(b, X, Y) I-
move(X, 'ACTIVITY_SET'),
hold(‘DURATION*),
nove)*ACTIVITY_SET', Y).

5C.1.3. THE EXECUTABLE MODEL AS GENERATED

(A) MODEL STATICS AND START-UP EVENTS
i- ni, ni, write($Defining setsS).
t- vaet(a_load_l(1,2,3,4,5,6,7)).I- veet(merchant qO(1,2,3,4,5,6,7)).
i- veet(merchant_q2(1,2,3,4,5,6,7)).
t- vset(merchant q4(1,2,3,4,5,6,7)).«- vset(modelql (1,2,3,4,5,6,7)).
i- vset(model q2(1,2,3,4,5,6,7)).
I- vset(ncb_q5(1,2,3,4,5,6,7)).
i- vset(ncb_q2(1,2,3,4,5,6,7)).
t- vset(ncb_q4(1,2,3,4,5,6,7)).
t- vset(otherwork 1(1,2,3,4,5,6,7)).«- vset(weighln lTl,2,3,4,5,6,7)).
t- v se t(we i gh_out_1(1,2,3,4,5,6,7))-
t- ni, ni, write($Defining resources}). i- vretourcslloader 1,1).
i- vresource(weigh_Eridge_l,l).
t- ni, ni, write($Defining classes!),
i- velassimerchant(1,2),1,20).
i- vclass(ncb(1,2),1,20).
i- ni, ni, write((Loading classes in their pools!),
t- vload(merchant,1,20,merchant_q0).
t- vload(ncb,1,20,ncbqO).
t- ni, ni, write($Scheduling initial events!),
i- introduce(merchant(l).merchant process,7.11).
t- introduce(ncb(1),ncb_process,12.22).

(B) MODEL DYNAMICS
process(merchant_process) «-

move(merchant qO,model_ql)
gen next(merchant process,7.27,merchant_q0), wai t_unti1 (head off model ql)), waituntil(idle(weighbridge 1)),
move(model ql,weigh in_lj,
seize(weigh bridge I),
hold(2.42),~
release(we igh_bridge 1),
move(weigh_in_l,merchant_q2),

170

wait_until(head_of(merchant q2)),
wait_until(ldle(loader 1)),■ove(Merchant q2,aload 1),
seize!loader_X),hold<5.84),release(loader_l),
move(«load 1,model_q2),wait_unt11(Read_of(model q2)),waituntil(idle(weigh bridge 1)),
move(model q2,weigh out_l),seize(weigfibridge T),
hold!3.17),
release(weigh_bridge_l),move(weigh_out_l,merchant_q4),
ex1t_system(merchant_q4,merchant_q0).

process(neb process) s-
move(ncE_qO,model_ql),gennext(ncb_process,12.14,ncb_q0),
wait_unt11(headof(model ql)),
walt_until(ldle(weigh_brldge_l)),move(model ql,weigh_in_l),
seize!weigR br idge l),hold(2.42)release!wejgh br idge l) ,

move(weigh in_l,ncb_q2), move(neb qi.otherworkj),
hold(22.5),
move(other work l.model q2), wait_until(head_of(model q2)),
welt until!idle(welgh_brldge_l)) , move(model q2,weigh o u t l), seize(weigh bridge!),
hold(3.17)release(we1gh_brldge_l) ,

move(weighout l,ncb_q4), ex 1t_system(ncb_q4,ncb_q0) .

5C.1.4. THE CONTENTS OP THE WORKING MEMORY BEFORE THE OUTPUT
O P THE EXECUTABLE MODEL

Teras recorded under the key •ACTORS*
actor(merchant) actor(neb)
nlx_q(model_ql,(ncb_ql,merchant_ql))
mix_q(model_q2,(neb q3,merchant_q3])
model_q(mode1_q1,ncB_ql)
mode1_q(model ql,merchant_ql)
mode1_q(mode1_q2,nebq 3) mode1_q(mode1_q2,merchant _q 3)

Teras recorded under the key aerchant
subgoal(weigh In)
subgoal (m_loa<3) subgoal(weighout)
sginst(weigh ln,l)
sginst(mload,1) sg_inst(weigh out.l)
resinst(weigh In,weigh bridge,1)
res_inst(m_loa3,loader,1) rea Inst(weighout,weigh_bridge,1)
arrive(aerchant,7.27)
coupling(arrlve(aerchant,7.27),ql,weigh_in(l)) coupl1ng(we1gh in(1),q2,« load(1))
coupling(m_load(1),q3,weigh_out(1))

171

coupling(weighout(1),q4,leave)

Teras recorded under the key neb
subgoal(welgh_in)
subgoal(otherwork)
subgoal(weigh out)
sglnst(weighin,1)
sg_inst(other_work,l)
sginst(weigh out,l)
res_inst(weigfi_in,weigh bridge,1)
res instfweigh out,weigH_bridge, 1)
arrive(neb,12.14)
coupling(arrive(neb,12.14),ql,weigh in(1))
coupling(weigh_in(1),q2,other_work(T))
coupling(other work (1) ,q3 , weigh out(1))
coupling(weigh_out(l),q4,leave)

Teres recorded under the key 'SUBGOALS'
s u b g o a l (■ l o a d)subgoal(other_work)
subgoal(weighin)
subgoal(weighout)
subgoal_resource(n_load,loader)
subgoal_resource(weigh_in,weigh bridge)
subgoal_resource(weigh out,weigK_br idge)
sg instance actors (e_load(1) , J Merchant])
sg instance actors(other work(1),(neb))
sg_instance_actors(weigh_in(1), (Merchant,neb |)
sg_instance_actors(weigh_out (1), (merchant,neb))
sg_inst_actr(M_load(l).merchant)sginst_actr(other_work(1),ncb)
sg_inst_actr(weigh_in(1).Merchant)
sg_inst_actr(weighinj1),ncb)
sg_inst_actr(weigh out(1)«Merchant)
sginstactr(weighout(1),neb)

Teres recorded under the key 'RESOURCES'
resource!loader)
resource!weigh_bridge) resource_subgoals(loader,(m load))
resource_subgoals(weigh bridge, (weigh in,weigh_out))
resource_sg_instances(loader, (m load(T)))
resource_sg_instances(weigh_br idge, [weigh_in(1), weigh out (1) J)
res_inst_sg_instances(loader(1), | m loadfl)))
res_inst_sg_instances(weigh_br idge(l), (weigh_in(1), weigh out (1)))
res inst_sg_inst (loader (1) ,M_load(1))
res_inst_sg_inst (weigh_br idge(1) ,weigh_in(1)) res_inst_sg_inst(weigh_br idge(1), weigh out (1))

Teres recorded under the key 'STATICS*
vset(Merchant_q0(l,2,3,4,5,6,7))vset(weigh in 1(1,2,3,4,5,6,7))
vresource(weigh_br idge 1,1)
vset(Model ql(l,2,3,4,$,6,7))
vset(M_loa3_l(1,2,3,4,5,6,7)) vresource(loader_1,1)
vset(Merchant _q2(1,2,3,4,5,6,7))
vset(weigh out 1(1,2,3,4,5,6,7))
vresource(weigh_br idge 1,1)
vset(Model_q2(1,2,3,4,?,6,7))
vset(merchant _q4(1,2,3,4,5,6,7))
vset(ncb_qO(1,2,3,4,5,6,7))
vset(weigh_in_l(1,2,3,4,5,6,7)) vresource(weighbridge 1,1) vaet(Model_ql(l,2,3,4,5,6,7))

172

vset(other work_l(l,2,3,4,5,6,7)) vset(ncb_qï(1,2,3,4,5,6,7))
vset (weigh out 1(1,2,3,4,5.6,7)) vresourcefweigHbridge 1,1)
vset(eodel q2(1,2,3,4,5,6,7))
vset(ncb_qï(1,2,3,4,S,6,7)) vclass(Merchant(1,2),1,20)
vclass(neb(1,2),1,20) vload(Merchant,1,20,Merchant_qO) vload(neb,1,20,n c b q O)
introduce(merchant(1)«Merchant process,7.11) introduce(ncb(1),neb_process,12,, 22)

Terms recorded under the key • PROCESSES1
merchant / (((((Move(Merchant qO,Model_ql) ,
gennext(merchant process,7.27,merchantqO)) ,
wait until(head_of(nodel_ql)) , wait until(idle(weighbridge 1)) ,
Move(Model ql,weigh_in 1) , seize(weighbridge 1) , hold(2.43) ,
release(weTgh_bridge_lT , novelweigh_in_l,MercKant_q2)) ,
wai t_unt i1(head of(aerchant_q2)) , wait unti1(idle(loader_l)) ,
move(Merchant_q3,m_load_l) , selze(loader 1) , hold(5.84) ,
release!loader 1) , novel« l o a d l ,Model_q3)) ,
wait_until(hea3_of(Model q?)) , walt_until(idle(weigh bridge 1)) ,
Move(Model q2,weigh_out_I) , seize(weighbridge 1) , hold(3.17) ,
release(weigh bridgel) , MOve(weigh_out_l,MercRant_q4)) ,
ex1t_systee(nerchant_q4,nerchant_qO)T
neb / (((((Move(ncb_q0,model_ql) ,
gen_next(ncb_process,12.14,n c b q O)) ,wait_until(head_of(model_ql)) , wait until(idle(weighbridge 1)) ,
move(model ql,weigh in 1) , seize(welghbridgel) , hold(2.43) ,release(weigh bridge l) , move(weigh in_l,ncb_q2)) , move(ncb_q2,other work 1) , hold(22.0) ,
move(other_work_l,ModeI_q2)) , wait_unti1(headof(model q2)) ,
wait_untilTidle(weigh_bridge_l)) , move(modelq2,weigh out 1) , seize(weighbridgel) , hold(3.17) , release(weighbridgeT) ,
novel weigh_out_l,ncb_q4)) , exit_systen(ncb_q4,ncb_q0))

END OP ANNEXE 5C

173

ANNEXE 50

5D.1. THE PARTIAL 'lorry* MODEL (MERCHANT AN
INSTANCE OrWtlgH-BBIDCE, SEPARATE QUEUEINÖ)AND NCB ONLY, ONE

5D.1.1. THE MODEL ARTICULATION AT A VERY HIGH LEVEL
model(mymodel) : -

actor (Merchant),
actor(neb).

goal(aarchant) « -
subgoal(weigh in),
subgoal(m_loa3),
subgoal(weighout).

goal(neb) i-
subgoal(welghin),
subgoal(otherwork),
subgoal(wsighout).

own_actlvlty_sst((asrehant), weighin).
ownactivity_aet((merchant j, wslgh_out).

The knowledge-base remains the same as in A5.3.2.

5D.1.3. THE EXECUTABLE MODEL

(A) MODEL STATICS AND START-UP EVENTS
I- nl, nl, write($Defining sets!),
i- vset(a load 1(1 ,2,3,4,5,6,7)).
i- vset(merchant q0 (1 ,2 ,3,4,5,6,7)).
i- vset(merchant ql(1,2,3,4,5,6,7)).
i- vset(merchant_q2 (1 ,2 ,3,4,5,6,7)).
i- vset(swrehant_q3(1,2,3,4,5,6,7)).
I- vset(merchant q4(1,2,3,4,5,6,7)).
x- vset(ncb_qO(1 ,2 ,3,4,5,6,7)).
1- vset(n c b q l (1,2,3,4,5,6,7)).
1- vset(ncb_q2(1,2,3,4,5,6,7)).
t- vset(ncb_q3(1,2,3,4,5,6,7)).
«- vset(ncb_q4(1,2,3,4,5,6,7)).
x- vset(other work 1(1,2,3,4,5,6,7)).
i- vset(w e i g h i n l (1,2,3,4,5,6,7)).
«- vset(welgh_in~2 (1,2,3,4,5,6,7)).
i- vset(weigh_out_l(1 ,2,3,4,5,6,7)).
i- vset(weigh_out_2 (1,2,3,4,S,6,7)).
t- nl, nl, write($Defining resources$).

vresourcelloader 1,1).
I- vresource(weigh_Eridge_1,1).
t- nl, nl, wrlte($Defining classesS).
i- vclass(merchant(1,2),1 ,2 0).
t- vclass(ncb(1,2),1 ,20).

i- nl, nl, write($Loading classes In their pools$).
vload(aerchant,1,20,merchant_q0).

s- vload(ncb,l,20,ncb_q0).
i- nl, nl, write($Scheduling initial events^),
i- introduca(aarchant(1)«Merchant process,7.11).
i- introduce!neb(1),ncb_process,12.22).

(B) MODEL DYNAMICS
process(Merchant_process) t-

move(nerchant qO,nerchant_ql),
gennext(Merchant process,7.27,Merchant_q0),
wait unt i1(head_ot(merchant_ql)),
wai t u n t i 1(idle(weigh bridge_l))#
nove(Merchant ql,weigfi_in_l),
seize(weigh_bridge_l),
hoId(2. 42),-
release!welghbridge 1),
nove(weigh_in_l,aercEant_q2),
waitunti1(head of(aerchant_q2)),
wait_until(idle(loader 1)),
Move(Merchant q2,n_loa3_I),
seize(loader!),
hold(5.84),
release!loader_l),
move(n_load 1,merchant_q3),
wait unt i1(head of(Merchant ql)),
waituntil(idlefweigh bridgel)),
nove(nerchant_q3,weigR_out_lT,
seize(weighbridge_l),
hold(3.17),
release(weigh_bridge_l),
nove(weigh_out_l,nerchant_q4),
exit_systen(nerchant_q4,aerchant_q0).

process(neb process) i-
nova(n c B q O ,ncb_ql),
gennext(neb jjrocees,12.14,ncb_qO),
wait_until(head_of(neb ql)),
wait unt i1(idle(weigh Eridge l)),
move(neb ql,weigh_in_2),
seize!weigh br idge 1),
hold(2.42),
release(weighbridgel),
nove(weigh ln_2,ncb_q2),
move(neb qj,other work 1),
hold(22.0),
nova(other work_l,ncb q3),
wait_unti1 (head o f (ncE q3)),
wait until!idle(weigh_Eridge_l)),
nove(neb q3,weigh_out_2),
seizefwelgh bridge 1),
hold(3.17),~
release*weighbridge 1),
MOve(weigh_out 2,ncb_q4),
exit_systen(ncb_q4,ncb_q0).

SD.1.4. THE CONTENTS OF THE NORKING MEMORY BEFORE
OF THE EXECUTABLE MODEL

Teras recorded under the key 'ACTORS'
actor(Merchant)
actor(neb)

175

Teru recorded under the key Merchant
subgoal(weigh In)
subgoal(a_loa3)
subgoal(weighout)
sg Inst(weigh in.l)
s g i n s t (■ load,1)
sginstfweigh out.l)
resinst(weigh in,weigh bridge,1)
r e s i n s t (»load,loader,!)
res Inst(weigh_out,weighbridge,1)
arrive(Merchant,7.27)
coupling(arrive(Merchant,7.27),ql,weigh_in(1))
coupling(weigh in(1),q2,a_load(1))
coupling(a_loa<3(1) ,q3,weighout(1))
coupling!weigh_out(1),q4,leave)

Teres recorded under the key neb
subgoal(weigh_in)
subgoal(other_work)
subgoal(weighout)
s g i n s t (weighin, 2)
s g i n s t (other_work,1)
sg_inst(weigh out,2)
res_inst(weigfi_in,weigh bridge, 1)
res inst(weigh out,welgRbridge,1)
arrive(neb,12.14)
coupling(arrive(ncb,12.14),ql.weigh in(2))
coupling(weigh_in(2),q2.other work(I))
coupling(other work(1),q3,weighout(2))
coupling(weighout(2),q4,leave)

Teres recorded under the key 'SOBGOALS'
subgoal(a_load)
subgoal(otherwork)
subgoal(weighin)
subgoal(weighout)
subgoal_resource(M_load,loader)
subgoal_resource(weigh_in,weigh bridge)
subgoal_resource(we igh_out,we igR_bridge)
sg_instance_actors(a_load(1),(Merchant))
sg_instance_actors(other_work(1),(neb))
sg_instance_actors(weigh_in(1), [Merchant|)
sg_lnstance_actors(weigh_ln(2),(neb))
sg_instance_actors(weighout(1),(Merchant))
sg_instance_actors(weighout(2),(neb])
sg_inst_actr(a_load(1).Merchant)
sg_inst_actr(other_work(1),ncb)
sg_inst_actr(weigh_in(1).Merchant)
sg_inst_actr(weigh ln(2),ncb)
sginstactr(weigh out(1).Merchant)
sg_inst_actr(weighout(2),ncb)

Teres recorded under the key 'RESOURCES*
resource!loader)
resource(weigh_bridge)

176

reso urc e _subgo a ls (l oade r , (a load I)
r esource_subgoa ls (weigh_br id ge , (weigh in,we igh_out1)
res o urc e _sg_ ins tances (loader , [a lo a d (1)])
r eso urce sg ins ta nces (w e i g h b r i d g e , (w e i g h _ in (2) , w e ig h _ in (1) .we igh
o u t (2) , weigH o u t (l)))
r es_inst _sg_T nsta nces (loader (1) , (in lo a d (1)))
r e s i n s t sg_ in s ta nces (w e i g h b r i d g e (1) , (weigh i n (1) , weigh i n (2) , wei
gh o u t (1) , w e i g h o u t (2)1)
r e s _ in s t _ a g _ in s t (l o a d e r (1) , ■ lo a d (1))
r e s i n s t s g i n s t (w e i g h b r i d g e (1) .weigh i n (1))
r e s _ in s t _ sg _ in s t (w e ig h _b r idge(1) ,w e ig h _ in (2))
r e s _ in s t _ s g _ in s t (we igh br idge(1) , we igh out (1))
r e s _ in s t _ s g _ in s t (w e ig h bridge (1) .weigh o u t (2))

Terms recorded under the key 'STATICS*
vset (merchant_qO (1 ,2 , 3 , 4 ,5 , 6 , 7))
v s e t (we i g h _ in _ l (1 , 2 , 3 , 4 , 5 , 6 , 7))
v resou rce (we ig h b r i d g e _ l , l)
v s e t (ae rchant_qT (1 , 2 , 3 , 4 ,5 , 6 , 7))
v s e t (a _ l o a d _ l (l , 2 , 3 , 4 , 5 , 6 , 7))
v r e s o u r c e (l o a d e r _ l , 1)
v s a t (merchant_q2(1 , 2 , 3 , 4 , 5 , 6 , 7))
v s e t (w e i g h o u t 1 (1 ,2 , 3 , 4 , 5 , 6 ,7))
v resou rce !we ig h b ridge 1,1)
v s e t (a e r c h a n t _ q 7 (l , 2 , 3 , 4 , 5 , 6 , 7))
v s e t (a e r c h a n t _ q 4 (l , 2 , 3 , 4 , 5 , 6 , 7))
v s a t (ncb_qO(1 ,2 , 3 , 4 ,5 , 6 , 7))
v s e t (we ig h _ in _2 (1 ,2 , 3 , 4 ,5 , 6 , 7))
v re s o u rc e (weigh br idge 1,1)
v s e t (neb q l (1 , 2 , 3 , 4 ,5 , 5 , 7))
v s e t (o the r work_ l (1 , 2 , 3 , 4 , 5 , 6 , 7))
v s e t (n c b _q l (1 , 2 , 3 , 4 ,5 , 6 , 7))
v s e t (weigh out 2 (1 , 2 , 3 , 4 ,5 , 6 , 7))
v re sou rc e (w e igh _bridge 1,1)
v s e t (ncb_q3 (l , 2 , 3 , 4 , 5 , S , 7) j
v s e t (ncb_q4 (1 ,2 , 3 , 4 ,5 , 6 , 7))
v c l a s s (ae rchant (1 , 2) , 1 , 2 0)
v c l a s s (n c b (1 ,2) , 1 ,20)
v l o a d (merchant, l , 20,nerchant_q0)
v l o a d (n eb , 1 , 2 0 ,ncb_q0)
i n t rodu ce (a e rchan t(1) , aerchant p r o c e s s , 7.11)
in t ro du ce (n cb (1) ,ncb p rocess,12.22)

Terms recorded under the key 1 PROCESSES1
merchant / (((((move(aerchant qO,aerchant q l) ,
gen_next (aercha nt p ro c es s ,7 .27 ,merchant q O)) ,
w a i t _ u n t i l (h e a d _ o t (aerchant q l)) ,
w a i t _ u n t i l (i d l e (w e i g h _ b r i d g e l)) , a o ve (a e r ch a n t_q l ,w e igh _ in _ l) ,
s e i z e (w e i g h b r i d g e _ l) , ho ld (2 .42) , r e l e a s e (w e i g h b r i d g e l) ,
move(weigh ln 1 , merchant_q2)) , wait u n t i 1 (head o f (a e r chan t_q2)) ,
w a i t _ u n t i l (i d l e (lo a de r 1)) , move (merchant q2 ,a load 1) ,
s e i z e ! loa de r 1) , ho ld (5 .84) , re 1 ease (loa<Jer_l) ,
move (a_l oad I ,merchant q 3)) , wait _unt l l (h e a d _ o f (ae r ch an t_q3)) ,
w a i t _ u n t i l (T d l e (w e i g h _ B r id g e _ l)) , m o v e (a e r c h a n t _ q 3 ,w e i g h o u t l) ,
s e i z e (w e i g h _ b r i d g e l) , ho ld (3 .17) , r e l e a s e !w e i g h _ b r i d g e _ l) ,
move (we i g h o u t l , a e r ch an t_q 4)) ,
ex it _ s y s tea (a e rch an t_q 4 ,ae rchan t_q0))

177

neb / (((((aovefncbqO.ncbql) ,
gen nextfncbjprocema,12.1 «,n c b q O)) , wa it u n t i1(head of(ncb ql)) , waitunt 11(idle(weigh bridge 1)) , novefncb ql.weigfi in 2) ,
seizefweigh bridge 1) , hold(2.42) , release(weigh bridge 1) , ■ove(weigh_Tn_2,ncE_q2)) , move(ncb_q2 ,other w o r k l) , hold(22.0)
, novelother work_l,ncb_q3)) , wait unt i1(head of(neb q3)) , wait_until(i3le(weigh bridge 1)) , move(ncb_q3,weigh out 2) , •eize(weigh brldge l) , hold(3.17) , release(weigh bridge 1) ,
move(weigh_out_2 , ncb_q4)) , exit syatea(ncb_q4,ncb_qO))

END OP ANNEXE 5D

17#

ANNEXE 5E

Hali
Ôn ê T
Separate

M O D E L (MERCHANT, NC B AND TRAIN,
fil, 6«e mfltimC* 6r L6KBBT----

5E.1.1. THE MODEL ARTICULATION AT A VERY HIGH LEVEL
aodel(ayaodel) i-

actor(Merchant),
actor(neb),
actor(train).

goal(aarchant) j-
aubgoal(weigh in),
■ubgoal(a_loa3),
subgoal(welghout).

goal(neb) s-
■ubgoal(waigh_in),
■ubgoal(otherwork),
■ubgoal(waigh_out).

goal(train) »-
■ubgoal(t unload).

ownactivityset((aerchant J, weighin).
ownactivityset((merchantj, weighout).

5E.1.2. THE KNOWLEDGE-BASE

(A) 'actorfraae' CLAUSES
actor_£raae(aerchant, nuabar inaodel(20)).
actor_fraaa(aarchant, arrival_pattern(nag exp(7.27))).
actor_fraae(aerchant, first_arrival(7.11)).
actorfraae(ncb, nuabar in_aodal(20)).
actorfraae(ncb, arrival_pattern(erlang(12.14, 4.3))).
actorfraae(neb, firat_arrival(12.22)).
actorfrane(train, nuabar in_aodel(20)).
actor_£raae(train, arrivaI_pattern(noraal(13.40, 3.4))).actor_fraae(train, first_arrival(13.33)).

(B) ' s u b g o a l _ f r a a e ' CLAUSES
■ubgoal_£raaa(waigh_in, resource)weigh bridge)).
aubgoal_fraae(weigh_in, duration(default(2.42))).
■ubgoal_fraaa(waighin, script(a)).
subgoal_fraaa(« load, resource(loader)).
subgoal_fraaa(» load, duration(default(5.84))).
aubgoal_£raae(a_load, script(a)).

subgoalframe(welqhout, resource!weigh bridge)),
subgoalf ra«e(we ighout, duretion(default(3.17))).
subgoaI f raee(weigh out, script(a)).
subgoal_frase(other_work, durst ion(default(22.0)))
subgoal~f rase (other _work, scr ipt(b)).
subgoal_frase(t_unload, resource!loader)).
subgoal f rase(t_unload, durat ion(default(17.SO))).
subgoal frase! t unload, script(a)).

(C) 'script' CLAUSES
script(a, X, Y) i-

wa i t unti1(head of(X)),
wait until(idle?'RESOURCE*)),
soveTx, ' ACTI VITY_SET'),
seize!1 RESOURCE'),
hold('DURATION'),
release! 'RESOURCE'),
BOve(' ACTIVITY_SET' , Y).

script(b, X, Y) s-
move! X. * ACTIVITY_SET') ,
hold! 'DURATION'),
SOve('ACTIVITY_SET' , Y).

5E.1.3. THE EXECUTABLE MODEL AS GENERATED

(A) MODEL STATICS AND START-UP EVENTS
, nl, write($ Defining sets$) .
et(sload 1(1,2,3,4,5,6,7)).
et(serchant _q0 11,2,3,4,5,6,7)). et(serchant ql(1,2,3,4,5,6,7)).
et(serchant_q2(l,2,3,4,5,6,7)).
et(aerchant_q3(l,2,3,4,5,6,7)).
et(serchant q4(1,2,3,4,5,6,7)).
et (ncb_qO(1,2,3,4,5,6,7)). let { ncbql (1,2,3,4,5,6,7)) .

- vset(neb q2(1,2,3,4,5,6,7)).
- vset(ncb_q3(1,2,3,4,5,6,7)).
- vset(ncb_q4(1,2,3,4,5,6,7)).- vset(other_work_l(1,2,3,4,5,6,7)).
- vset(tunload 171,2,3,4,5,6,7)).
- vset(train qO(1,2,3,4,5,6,7)).- vset(train_ql(1,2,3,4,5,6,7)).
- vset(train_q2(1,2,3,4,5,6,7)).
- vset(weigh_in_l(1,2,3,4,5,6,7)).
- vset(weigh in 2(1,2,3,4,5,6,7)).
- vset(weigh_out_l(1,2,3,4,5,6,7)).
- vset (welgh_out_2(1,2,3,4,5,6,7)).
- nl, nl, write($Deflning resourcesS).
- vresource(loader 1,1).
- vresource! weigh br idge l,1).
- nl, nl, write($Defining classesS).
- v c l a s a (m e r c h a n t (1 , 2) , 1 , 2 0) .
- vclass(ncb(l,2),1,20).
- vclass!train(1,2),1,20).
- nl, nl, wr ite($ Loading classes in their pools$)
- vload(aerchant,1,20,serchant_qO).
- vload(ncb, 1,20,ncb_q0).
- vload(train, 1,2 0 ,train qO).

180

I- nl, nl, write($Scheduling initial •vants$).
i- introduce(Merchant(1).merchant process,7.11).
t- lntroduce(ncb(l),ncb_process,12.22).
t- introduce!traln(l).train_process,13.33).

(B) MODEL DYNAMICS
process(Merchant_process) i-

move(Merchant q0,Merchantql),
gennext(merchant process,7.27,merchantqO),
waiF_until(head ot(merchant ql)),waitunt11(idle(weigh bridge l)),aove(Merchant ql,weigR_in_l),
seize(weighbridge 1),
hold(2. 42),”
release!weighbridge 1),
move(we igh_in_l,merchant _q2),
wai t_unt i1(head of(aerchant_q2)),
wait_until(idle(loader 1)),aove(Merchant q2,a_loa3_l),
seize(loader I),
hold(5.84),
release)loader 1),
move(n_load 1,merchant_q3),
waitunt ll(Fieadof (merchantq3)),
wait untll(idle(weigh bridge 1)),
aove (aer chant _q3, we igf»_out_lT,seize(weigh bridge 1),
hold!3.17),”
release(we igh bridgel),
■ove(weigh_out_l,aerchant_q4),
ex 1t_systea(nerchant_q4,Merchant_q0).

process(neb process) t -
Move(ncE_qO,ncb_ql),
gen next(neb_process,12.14,ncb_q0),
wait_until(head_of(neb ql)),
wait_unt11(idle(weigh Brldge l)), move(neb ql,weigh-in I),
seize(weigh bridge 1),
hold(2.42),~ release)weigh bndge l),
aove(weigh ln~2,ncb_q2),
aove(neb q?,other_work 1), hold(22.C),
aove(other_work_l,ncb q3), wait until(head of(neb q3)),
wait_until(idle(weighBridgel)), ■ovefneb q3,welghout_2),
seize!welghbridge 1),
hold(3.17),
release(weigh bridge l),
aove(weigh_out 2,ncb_q4),
ex it_systealncB_q4,ncbqO).

process!trainprocess) »-
aove(t r a i n_q0,t ra in_ql),
gen_next(train process,13.4,trainqO),
wait_until(hea3_of(train ql)),
wait until(idle(loaderlT), ■ove(train_ql,t unload 1),
seize!loader 1),
hold(17.5), ”
release!loader 1),
aove(t unload!,train_q2),
exit_systea(train_q2,train qO).

181

5E.1.4. THE CONTENTS OP THE WORKING MEMORY BEFORE THE OUTPUT
OP THE EXECUTABLE MODEL

Teras recorded under the key 'ACTORS*
actor(merchant)
actor(neb)
actor!train)

Teras recorded under the key aerchsnt
subgoal(weigh in)
subgoal(m_load)
subgoa1(wei gh_ou t)
sginst(weigh in,l)
sginat(«load,1)
sg_inst(weigh out,l)
res_inst(weigR in,weigh bridge,1)
resinst(»load,loader,I)
res inst(welgh_out,weigh_bridge,l)
ar rive(aerchant,7.27)
coupling(arrive(aerchant,7.27),ql,weigh_in(1))
coupling(weigh in!1),q2,m load(1))
coupling(e_load(1),q3,weigh_out(1))
coupling(weighout(1),q4,leave)

Teras recorded under the key neb
subgoal(welgh_in)
subgoal(otherwork)
subgoal(weighout)
sginst(weighin,2)
sginst(other work,1)
sg_inst(weigh out,2)
res_inst(weigR in,weiah bridge,1)
res inst(weigh out,welgR_bridge, 1)
arrive(neb,12.14)
coupling(arrive(neb,12.14),ql,weigh in(2))
coupling(weigh_ln(2) ,q2 .other work(T))
coupling(other work(1),q3,weigh_out(2))
coupling(welghout(2),q4,leave)

Teras recorded under the key treln
subgoal(t_unload)
■g_inst(t_unload,1)
res lnst(t unload,loader,1)
arrlve(traln,13.4)
coupl lng(arrive (train, 13.4) ,ql,t_unload(l))
coupling!t_unload(1),q2,leave)

Teras recorded under the key ' SUBGOALS'
subgoal(s_load)
subgoal(other_work)
subgoal!t_unload)
subgoalIweighin)
subgoal!welghout)
subgoalresource((l o a d ,loader)
subgoal_resource(t_unload,loader)
subgoal_resource(weigh in,weigh bridge)
subgoal_resource(weighout ,weigH_br idge)
sg_Instance_actors(a_load(1), (Merchant J)
sg_instance_actors(other_work(1), (neb))
sg_instance_actors(t_unload(1),(train])
sg_lnstance_actors(weigh_in(1),!merchant))
sg_lnstance_actors(weigh_in(2),(neb))

sg_instance_actors(weigh_out(1),(merchant)) sginstanceactors!weighout(2),jncb))
ag_inst_actr(■ load(l).merchant)
sg_inst_actr (other wotk(1),ncb)
sg_inst_actr(t_unload(1),train)
sg_inst_actr(weighing 1).merchant)
sginstactr(weigh_in(2),ncb)
sg_inst_actr (we igh_out(1),aerchant) sg_inst_actr (weighout(2),ncb)

Terms recorded under the key ‘RESOORCES'
resource!loader)
resource(weigh_br idge)
resource_subgoals(loader,(■ load,t unload])
resource_subgoals(weigh_br i3ge,[weigh in,weigh_out])
resource_sg_instances!loader,(■ load!1),t unload!1) j)
resource_sg instances!weigh_bridge,(weigh_in(2),weigh_in(1),weigh_
out(2).weigh out(l)])
res_inst_sg_Tnstances(loader(1),(mload(1),t unload!1)J)res_inst_sg_Instances(weighbr idge(1),(weigh_in(1),weigh inf2),wei
ghout(1)»weighout(2)])res_inst_sg_inst(loader(1),eload(1))
res_inst_sg_inst(loader(1),t unload(1))
res_inst_sg_inst(weighbridge(1),weigh_in(1))
res_inst_sg_inst(weigh br idge(1),weigh in!2))
res_inat_sg_inst(weigh_br idge(1),weighout(1))
res_inst_sg_inst(weigh_bridge(1).weighout(2))

Terms recorded under the key * STATICS'
vset(ierchan t_q0(1,2,3,4,5,6,7))
vset(we igh_in_l(1,2,3,4,5,6,7))
vresource!weigh bridge_l,l)
vset(merchant_qT (1,2,3,4,5,6,7))
vset(a_load_l(1,2,3,4,5,6,7))
vresource!loader 1,1)
vset(aerchant_q2(1,2,3,4,5,6,7)) vset(weighout 1(1,2,3,4,5,6,7))
vresource(weigh br idge_l,l)
vset(Merchant _q5(1,2,3,4,5,6,7))
vset(merchant q4(1,2,3,4,5,6,7)) vset(ncb_qO(1 ,2,3,4,5,6,7))
vset(weigh_in_2(1,2,3,4,5,6,7))
vresource(weigh_bridge 1,1)
vset(ncb_ql(1,2,3,4,5,5,7))
vset(other work_l(1,2,3,4,5,6,7))
vset(ncbql(1,2,3,4,5,6,7))
vset(weigh out 2(1,2,3,4,5,6,7)) vresource(weighbridge 1 ,1)
vset(ncb_q3(1 ,2,3,4,5,i,7))
vset(neb q4(1,2.3,4.5,6,7))
vset(traTn_qO(1,2,3,4,S,6,7)) vset(t_unload 1(1,2,3,4,5,6,7))
vresource(loader 1,1)
vset(train_ql(1,7,3,4,5,6,7)) vset(train q2(1,2,3,4,5,6,7))
vclass(Merchant(1,2),1,20)
vclass(ncb(1,2),1,20)
vclas*(train(1,2),1,20)
vload(Merchant,1,20,merchant _q0)
vload(neb,1,20,ncb_q0)
vload(train,1 ,20,train_q0)
introduce(Merchant(1).Merchant process,7.11) int roduce(neb(1),ncb_process,12 .22)
introduce(train(1) ,train_process,13.33)

183

Terms recorded under the key ’PROCESSES'
merchant / (((((move(merchant qO,merchant ql) ,
gennext(nerchant process,7.27,merchant_q0)) , wait_unt11(head of(merchant _ql)) ,
walt_untll(idle(weigh bridge 1)) , move(merchant ql»weigh_in_l) ,seize(weigh bridge_l)~, hold(2.42) , releasefweigh bridge 1) ,move(weigh_Tn 1,merchant_q2)j , wait_unti1(head o f (merchant_q2)) ,
waitunti1(idle(loaderJ)) , move(merchant q2,m load 1) ,seize!loader 1) , hold(5.84) , release!loaderl) ,move(m load 1«merchant q 3)) , wa i t unti1(head of (merchant_q3)) ,
wait_until(Idle(weigh Bridgel)) , move(merchant q3.weigh out_l) ,eeize(weighbrldgel) , hold(3.17) , release(weigh bridge 1) ,
move(weigh_out_l,merchant_q4)) ,exit_system(merchant_q4,merchant qO))
neb / (((((move(ncbqO,ncbql) ,gen next(ncb_process,12.14,ncb_q0)) , wait_unt il(head of(neb ql)), wait_until(idle(weigh bridge l)) , move(ncb ql,weigh in 2) ,
seize(welgh bridge 1) , hold(2.42) , release!weigh bridge 1) , move(weigh_Tn_2,ncB_q2)) , move(ncb_q2.other work 1) , hold(22.0)
, movefother work_l,ncb_q3)) , wait until(head o f (neb q3)) ,
wa i t unt i 1 (idle (we igh br idge 1)) , move(neb q3, we 1 gh out j) , seize(weigh bridge 1) , hold(3.17) « release(weigh bridge 1) ,
move(weigh_out_2,ncb_q4)) , exit_system(ncb_q4,neb qO))
train / (((noveltrainqO,train ql) ,

gennext)train process,13.4.train qO)) ,wait_until(head_of(trainql)) , wait_until(idle)loader 1)) , move(train ql,t_unload_l) , seize)loader l) , hold) 17.5) ,
release)loaderl) , move)t_unload_l,train_q2)) , exit_systea(train_q2,trainqO))

END OP ANNEXE 5E

184

ANNEXE SF

5 F .1 . THE ' h a rb o u r - 1 ' MODEL

In this model the default mixed queueing has been allowed and one instance of the

channel is present.

5 P .1 .1 . THE MODEL ARTICULATION AT A VERY HIGH LEVEL
model(my_model)actor(pasship),

actor(tanship),
actor(carship).

goal(pas_ship) :-
subgoal(cross in), subgoal (pas uload),
subgoal(crossout).

goal(tan_ship) :-
■ubgoal(cross in),
subgoal(tanuload),
subgoal(cross_out).

goal(carship) s-
subgoal(cross in),
subgoal(car uload),
subgoal(cross_out).

5 F .1 .2 . THE KNOWLEDGE BASE

(A) 'a c t o r _ f r a i
actor,
actor
actor'
actor,
actor'
actor.

raee(pas_ship, number inmodel(20)).
rane(pas_ship, arrival_pattern(constante 120.0))). rame(pas_ship, f irst_arri val(60.11)).
rame(tanship, number inmodel(20)).
raae(tanship, arrival_pattern(neg exp(780.0))).
rame(tanship, first_arrival(390.2Ï)).

actor_frame(car ship,
actor_frane(car_ship,
actor_frane(car_ship.

number in_model(20)).
arrival_pattern(neg exp(375.0))).
first_arrival(188.3Î)).

(B) * subgoal_fraae* CLAUSES
subgoal_frame(cross_in, resource(channel)). subgoal frane(eross in, durât ion(default(60))).
subgoal frane(cross,in, script(a)) .

subgoal_f r ame(crossout, subgoal frame!cross out, subgoaIf rau(cross out,
subgoa1_f r as«(pasuload, subgoal_frame(pas uload ,
subgoal_frame(tanuload, subgoalfrase(tanuload,
subgoal_frame(car_uload, aubgoal_frame(car_uload,

(C) 'script* CLAUSES
script(a, X, Y) x-

wa i t_unt i1(head_of(X)),wait until!idle!'RESOURCE')),move(X , *ACTIVITY_SET*),
seize!'RESOURCE*),hold!'DURATION'),
release!'RESOURCE'),move!'ACTIVITY_SET', Y).

script(b, X, Y) i-move(X, 'ACTIVITY_SET'),hold!'DURATION'),
stove! * ACTIVITY_SET* , Y).

5P.1.3. THE EXECUTABLE MODEL AS GENERATED

resource(channel)).
durât ion!default (SO))). script(a)).
durât ion(default(30))). script(b)).
durât ion(default(2160))) script(b)).
durât ion(default(1500))) script(b)).

(A) MODEL STATICS AND START-UP EVENTS
- nl, nl, write!$Defining setsS).
- v s e t (c a r _ s h i p _ q O (1 , 2 , 3 , 4 , 5 , 6 « 7)) .
- v s e t (c a r _ s h i p _ q 2 (1 , 2 , 3 , 4 , 5 , 6 , 7)) .
- vset(car ship q4(1,2,3,4,5,6,7)).
- vset(car_uloa3 1(1,2,3,4,5,6,7)).
- vset(cross_in_T(1,2,3,4,5,6,7)).
- vset(cross out 1(1,2,3,4,5,6,7)).
- vset(modelql(T,2,3,4,5,6,7)).
- vset(model q2(1,2,3,4,5,6,7)) .
- vset(pas_sf)ip_q0(1,2,3,4,5,6,7)).
- vset(pas_ship_q2(1,2,3,4,5,6,7)).
- vset(pas ship q4(1,2,3,4,5,6,7)).
- vset(pas_uload_l(1,2,3,4,5,6,7)).
- vset(tan ship qO!1,2,3,4,5,6,7)).
- v se t(tan_ship_q2(1 ,2 ,3 ,4 ,5 ,6 ,7)) .
- vset(tan_ship q4(1,2,3,4,5,6,7)).
- vset(tan_uloa3_l(1,2,3,4,5,6,7)).
- nl, nl, write($Defining resources}).
- vresource(channel_l,1).
- nl, nl, write!$Defining clai
- v c l a s s (c a r _ s h i p (1, 2) , 1, 20) .- vclass(passhipf1,2),1,20).
- vclass(tanship! 1 ,2),1,20).

) .

i- nl, nl, wr ite(SLoading classes in thair pools$).
t - vload(carship,1,20,car_ship_qO). i- vloadjpas ship,1,20,pas ship_q0). t- vload(tanship,1,20,t a n s h i p q O) .
i- nl, nl, write($Scheduling initial events$).int roduce(car_ahip(1).carship_procaaa,188.33). i- introduce(pasship(1),pas ship_proca*s,60.11). i- introduce!tanshipj1),tanship_process,390.22).

(B) MODEL DYNAMICS
process(pas_ship_process) s-SK>ve(pas_ship_qO,model_ql),

gen next(pas ship process,120.0,pas_ship_q0),
wait_until(head_or(model ql)),
wait until!idle(channel I)),
move(aodel_ql,cross_in_T),
seize(channel_l),
hold(60),
release(channe1_1),
move(cross in_l7pas_ship_q2),
move(pas_sHip_q2,p a s u l o a d l),
hold(30),
move(pas uload 1,model_q2),
wait_untTl(hea3_of(model q2)),
wait until(idle(channel_T)),
move(model_q2,cross_out_l),
seize(channe11),
hold(SO),
release(channel 1),
move(cross_out_I,pas_ship_q4),
exit_systea(pas_ship_q4,pas_ship_q0).

process! tan_ship_process) s-move(t a n s h i p q O ,modelql),
gen_next(tanship process,780.0,t anshipqO),
wait_until(headot(model ql)),
wait until(idle(channel T)),
move(modelql,cross_in_T),seize(channe11),
hold(60),
release(channel_l),
move(cross in_l,tan_ship_q2),
move(tan sHip q2,tan uload 1),
hold(2160),
move(tan uload l,model_q2),
wait_untTl(hea3_of(model q2)),
wait until(idle(channelT)),
move(model_q2,cross_out_l),
se i ze(channe1_1),
hold(SO),
release(channel 1),
move(cross out_I,tan_ship_q4),
exit_system(tan ship_q4,tanshipqO).

process(car_ship_process) s-
move(car_ship_q0,model_ql),
gennext(carship process,37S.O,car_ship_qO),
wait_until(head_of(model ql)),
wait_until(idleTchannel T)),
move(model ql,cross_in_l),
seize(channell),
hold(60),
release(channel_l),

187

h o l d (l S O O) ,move(car uload 1,model_q2),
wait until(headof(model q2)), wait unti1(idle(channell)), ■ove(model q2,cross_out_l),
sei ze(channel_1) ,

h o l d (5 0) ,release(channel 1),novt(cross_out_I,car_ehip_q4),exit _syst ein (carsh ip_q4 , c a r i h i p q O) .

END OF ANNEXE 5F

188

ANNEXE 5G

SG. 1. THE ‘harbour♦lorry* MODEL

5G.1.1. THE MODEL ARTICULATION AT A VERY HIGH LEVEL
model(my_model)

actor(marchant),
actor(neb),
actor(train),
actor (pas_ah ip),
actor(tan_sh ip),
actor(car_ship).

goal(marchant) s-
subgoal(weigh in),
subgoal(a_loa3),
subgoal (weigh out).

goal(neb) : -
subgoal (we igh_in),
subgoal(othar_work),
subgoal (waighout).

goal(train)
subgoal(t load).

goal(pas ship) l-
subgoal(cross in),
subgoal (pas uload),
subgoal (cross_out).

goal(tanship) I-
subgoal(cross in),
subgoal (tanuload),
subgoal (cross out).

goal(carship) l-
subgoal(cross in),
subgoal (car _uToad),
subgoal (cross_out).

5G.1.2. THE KNOWLEDGE BASE

(A) 'actor_fra
actor_ rame(pas_ship
actor_ rame(pas_ship
actor_ rane(pas_ship
actor_ rame(tanship
actor_ rame(tanship
actor_ rameftanship
actor_ rame(car_ship
actor_ rase(car ship
actor_ rame(car_ship

0 0
u I
s s rame(merchant

rams (merchant

number in_modal(20)).
arrival_pattern(constant(120.0))).
first_arrivaH60.il)).
number in_model(20)).
arrival_pattern(neg exp(780.0))).
first_arrivai(390.2?)).
number in_model(20)).
arrival_pattern(neg_exp(375 .0))) .
first_arrivai(3.55)).
number in_model(20)).
arrival_pattern(neg_exp(27.27))).

189

actor_f r « M (M C c h a n t , f lrst_arr ival(7.U)).
actor_frame(neb, number in model(20)).
actorframe(neb, arrival_pattern(erlang(12.1«, 4.3))).
actor_fraaejneb, firstarrival(12.22)).
actorframe(train, number inmodel(20)).
actor_frame(train, arrival_pattern(normal(113.40, 3.4))).
actor_frame(train, fir«t_arrival<37.33)).

(B) 'subgoalfraae1 CLAUSES
subgoal_frame(cross_in, resource(channel)).
subgoaIframe(cross in, durat ion(default(60))).
subgoa1_frame(crossin, script(a)).
subgoa1_frame(crosscut, resource(channe1)).
subgoal_frame(crossout, duration(default(SO))).
subgoal_frame(cross_out, script(a)).
subgoaIframe(pas_uload, duration(default(30))).
subgoal_frame(pas_uload, script(b)).
subgoal_frame(tan uload, durat ion(default(2160))).
subgoal frame(t anuload, script(b)).
subgoaI frame(car uload, duration(default(SO))).
subgoal_frame(caruload, script(c)).
subgoal_frame(weighln, resource!weigh bridge)).
subgoal_frame(weigh_in, durat ion(default(2.42))).
subgoal_frame(weigh_ln, scrlpt(a)).
subgoal_frame(a load, resource!loader)).
subgoal_frame(m load, duratlon(default(S.84))).
subgoal_frame(m_load, scr ipt(a)) .

subgoal_frame(weigh_out, resource(weigh bridge)).
subgoal_frame(weigh out, duration(defsuit(3.17))).
subgoal_frame(weighout, script(a)).
subgoal_frame(other_work, duration(default(22.0))).
subgoal_frame(other_work, script(b)).
subgoal_frame(t load, resource!loader)).
subgoaIframe(tload, duration(default(17.50))).
subgoal_frame(t_load, script(d)).

(C) 'script* CLAUSES
script(a, X, Y) j-

wa i t_unt i1(head_of(X)),
wait until(idle('RESOURCE')),
move(X , 'ACT1VITY_SET'),seize('RESOURCE'),
hold('DURATION'),
release!'RESOURCE'),
move(•ACTIVITY_SET', Y).

scr ipt(b, X, Y) «-
move(X, 'ACTIVITY_SET'),
hold('DURATION'),
move('ACTIVITY_SET•, Y).

190

SG. 1

(A)

scriptfc, X, Y) s-
■ovf (X, ' ACTIVITY_SET'),
hold(' DURATION *) ,
i M M J M t M f t (O N l) ,
leave ■••sage(coa1),
move (tACTIVITY_SET 1 , Y).

script(d, X, Y) I-
wait_until(headof (X)),
wa i t unt i 1 (m ess ag e fou nd (c o a1)) ,
waituntil(idle(•RESOURCE1)),
remove message(coal),
novel X , * ACTI VITY_SET1),
seize!'RESOURCE1),
hold('DURATION') ,
release! 'RESOURCE*),
■Ove(•ACTIVITY_SET1 , Y).

.3. THE EXECUTABLE MODEL AS GENERATED

MODEL STATICS AND START-DP EVENTS
nl, nl, writelSDef
vset(car ship q0(1
vset(car_ship_q2(1
vset(carship q4(l
vset(car_uload 1(1
vset (cross_in_T(1,
vset(cross out 1(1
vset(«_loa3_l(T, 2,
vset(merchant_q0(1
vset(merchant_q2(1
vset(merchant_q4(1
vset(model_ql(1,2,
vset(model_q2 (1,2
vset(model_q3(1,2
vs«t(model q4(1,2
vset(ncbq5(l,2,3
vset(ncb_q2(1,2,3
vset(ncb_q4(1,2,3
vset(other work 1(
vset (pas_sHip_qS(1
vset(pas_ship_q2(1
vset(pas_ship q4(l
vset(pas_uloa3 1 (1
vset(t_load 1 (1 ,2 ,
vset(tan_shlp_q0(1
vset(tan_ship_q2 (1
vset(tanship q4(l
vset(tan uloa3 1(1
vset(traTnqO(T, 2
vset(train_ql(1,2

- vset(train_q2(1 ,2
vset(weigh_in_l(1.
vset(weigh_out_l (1

ining setsS) .
2 .3 .4 .5 .6 .7 1) .
2 . 3 .4 .5 .6 .7 1) .
2 . 3 . 4 . 5 .6 . 7 1) .

. 2 ,3 ,4 ,5 ,6 ,7 1) .
2 . 3 . 4 . 5 .6 . 7 1) .
,2 ,3 ,4 ,5 ,6 ,7 1) .
3 .4 .5 .6 .7 1) .
, 2 ,3 ,4 ,5 ,6 ,7 1) .
2 . 3 .4 .5 .6 .7 1) .
2 . 3 .4 .5 .6 .7 1) .

3 .4 .5 .6 .7 1) .
3 .4 .5 .6 .7 1) .
3 .4 .5 .6 .7 1) .
3 .4 .5 .6 .7 1) .
4 .5 .6 .7 1) .4.5.6.71) .
4 .5 .6 .7 1) .
1 . 2 . 3 . 4 .5 . 6 . 7 1) .
2 . 3 . 4 . 5 .6 . 7 1) .
2 . 3 . 4 . 5 .6 . 7 1) .
2 . 3 . 4 . 5 .6 . 7 1) .
2 . 3 . 4 . 5 .6 . 7 1) .

3 .4 .5 .6 .7 1) .
2 . 3 . 4 . 5 .6 . 7 1) .
2 . 3 .4 .5 .6 .7 1) .

.2 ,3 ,4 ,5 ,6 ,7 1) .
,2 ,3 ,4 ,5 ,6 ,7 1) .
3 .4 .5 .6 .7 1) .
3 .4 .5 .6 .7 1) .
3 .4 .5 .6 .7 1) .
2 .3 .4 .5 .6 .7 1) .
2 . 3 . 4 . 5 .6 . 7 1) .

- nl, nl, write($De£ining resourcesS).
- vresource! channel 1,1).
- vresource! loader 1,1).- vresource!weigh_Eridgel,1).
- nl, nl, write($Defining classes?).
- vclass(car_ship(1 ,2),1 ,2 0).
- vclass(merchant(1,2),1,20).
- vclass(ncb(1,2),1,20).

191

«- vclass(pasship(l,2), 1,20).
vclass(tan ship!1,2),1,20).

i- vclasa(traTn(l,2),l,20).
»- nl, nl, write($Loading classes in their poolsS).
«- vload(carship,1,20,c a r s h i p q O).
>- vload(Merchant,1,20,merchant_q0).

vload(ncb,1,20,neb qO).
t- vload(pas_ship,1,20,pas_sh ip_q0).
i- vload(tan ship,1,20,tanshipqO).
I- vload(train,1,20,trainqO).
i- nl, nl, write($Scheduling initial events$).
•— introduce(car_ship(1),car_ship_process,3.55).
t- introduce!Merchant!1).Merchant process,7.11).
t- introduce(ncb(1),neb_process,li.22).
t- introduce(pas_ship(1),pas ship_process,60.11).
»- introduce!tan ship!1),tan_ahip_process,390.22).
t- introduce!traTn(l),train_process,37.33).

(B) MODEL DYNAMICS
process(Merchant_process) t-

Move(Merchant q0,aodel_q3),gennext(Merchant process,27.27,Merchant_q0),
wait_until(head_of(Model q3)),
wait until!idle(weigh_brXdge_l)),
aove(nodel q3,weigh in_l),seize(weigh bridge X),
hold(2.42),~
release(weigh_br idge 1),
Move(we igh_in_l,me rcRant_q2),
wa i tunti1(headof(me rchan t _q2)),
wait until!idle(loader 1)),
Move(Merchant q2,a_loa3_l),
seize(l o a d s r_I),
hold(S.84),
release(loader_l),
move(■_load l,model_q4),
wait_unt11(Read_of(Model q4>),wait until(idle(weigh_brldge_l)),
Move(Model q4,weigh out_l),
seize(weigH_bridgeT),
hold(3.17),~
release(weighbridgel),
aove(weigh_out_l,aerchant_q4),
ex it_systCM(Merchant_q4,Merchant_q0).

process(neb process) «-
aove(nc5_q0,Model_q3),
gennext(neb_process,12.14,ncb_q0),
wait_unt11(head_of(aodel q3)),
wait until!idle(weigh_brldge_l)),
Move(Model q3,weigh in_l),
seize(weigH_bridge_T),
hold(2.42),~
release(we igh_br idge_l),
move(weigh ln_l,ncb_q2),
move(neb qi.otherworkl),
hold(22.C),
aove!other_work_l,Model q4),
waitunt11(headof(Model q4)),
wait until!ldle(weigh_brTdge_l)),
Move(Model q4,weigh out_l),
seize(weigh bridge X),
hold(3.17),
release(weigh_bridge_l),
Move(welgh_out l,ncb_q4),
exit_system(nch_q4,ncb qO).

192

processi train .process) i -
move(train_qO.trai n qi),
gen next(train process,113.4,trainqO),
wail_unt i1(hea3_of(train ql)),
waituntil(message found(coal)),
wait_unt i1(idle(loader_l)),
reaove message(coal),
sove(train_ql,t_load_l),
seize(loaderl),
hold(17.5),
release)loaderl),
move(tload 1,train q2),
exit_system(train_q2,trainqO) .

process(pas_ship_process) s-
move(pas_ship_qO,model_ql),
gen next(pas_ship process,1 2 0 .O.passhipqO),
wait_until(head_of(model ql)),
wait_until(idle(channel T)),
move(model ql,cross_in_I),
sei ze(channell),
hold(60),
release(channell),
aove(cross in_l,pas_ship_q2),
move(pas sHip q2,pas uload 1),
hold(30),
move(pas uload l,model_q2),
wait until(head of(model q2)),
waitunt11(idle(channel_T)),
move(model q2, cross_out_l),
seize(channe1 1),
hold(SO),
release(channel 1),
move(cross_out_I,pas_ahip_q4),
ex i t_system(pasship_q4,passhi p_q0).

processitan_ship_process) «“
aoveltan_ship_qO,model_ql),
gennext(tanship process,780.0,t a n s h l p q O),
wait_until(head_oF(model ql)),
wait until(idle(channel 1)),
move(model ql,cross_in_I),
seize(channel 1),
hold(60),
release)channel_l),
move(cross i n i ,tan_ship_q2),
move(tan aKip~q2,tanuload 1),
hold(2165),
move(tan uload l,model_q2),
wait_unt!l(head_of(model q2)),
waitunti1(idle(channel_T)),
move(model q2,c r o s s o u t l),
seize(channel_l),
hold(SO),
release(channel 1),
move(crossoutl,tan_ship_q4),
exit system)tan_ship_q4,tan_ship qO).

process(carship_process) i-
move(car ship q0,mode 1 q 1),
gennext(car_ship process,375.0,car_ship_q0),
wait_unti1(head or(model ql)),
walt_until(idleTchannel X)),
move(model ql,cross_in_T),
seize(channell),
hold(60),
release(channel_1),
move(cross_in_l,car_ship_q2),

193

■ova(car ship_q2,car uload 1),
hold(SO),leave_Bessage(coal), leave_nessage(coal),■ova(car uload l,nodel_q2),
wa i t_untll(hea3_of(model q2)),
wait unti1(idle(channel_l)),
■ova(Model_q2,crosa_out_l),
seize(channel 1),
hold(50),
ralaaaa(channal 1),
■ova(cross_out_T,car_ship_q4),exit_ayste«(car_ship_q4,car ship_q0).

END OP ANNEXE SG

V

194

5H.1. THE 'harbour-2’ MODEL

5H.1.1. THE MODEL ARTICULATION AT A VERY HIGH LEVEL
m odel (ay_mode l)

a c t o r (p a s s h i p) ,
a c t o r (tan s h i p) ,
a c t o r (c a r s h i p) .

g o a l (p a s s h ip) i -
s u b g o a l (p a s_u n load) .

g o a l (u n s h ip) i -
subgoa1 (t a n u n l o a d) .

g o a l (c a r s h i p) i -
s u b g o a l (c a r u n l o a d) .

(A) 'actor frame' CLAUSES
actor_frame(pas_ship, number inmodel(20)).
actorframe(pas_ship, arrival_pattarn(constant(1 2 0 .0))).actor_frame(pasship, f irat_arrival(60.11)) ,
actor_£rame(tanship, number in_modal(20)).
actor_frame(tan ship, arrival_pattarn(neg_exp(780.0))). actorframeftan ship, £irst_arrival(390.25)).
actorfraae(car_ship, number in_model(20)).actorframe(carship, arrival pattern(neg exp(375.0))).actor fraae(car_ship, first_arrival(188.35)).

(B) 's u b g o a l f r a a e ' CLAU S E S
subgoal_frame(pas_unload, resource(channel)).
subgoal_£raae(pas_unload, duration(default(unifora(20, 40)))). subgoal_fraae(pas unload, script(c)).
subgoal_£raae(tanunload, resource!channel)).
subgoal_£rame(tan unload, duration(default (erlang(2160, 720)))). subgoal fraae(tan unload, acript(e)).
subgoal_frame(car unload, resource(channel)).
subgoal_f rame(carunload, duration(default(uniform(900, 2100)))). subgoalframe(carunload, script(e)).

195

(C) 'script* CLAUSES
script(e, X, Y) i-

wait_until(head of(X)),
wa i t_unt i1(is eapty(•ACTIVITY_SET•)),
wa i t_unt i1(idle('RESOURCE')),
move(X, cross in),
saize('RESOURCE'),
hold(edit),
release('RESOURCE'),
■ove(cross in, 'ACTIVITY_SET'),
hold('DURATION'),
waitunt i1(idle('RESOURCE')),
nove(*ACTIVITY_SET*, crossout),
seize!'RESOURCE'),
hold!edit),
release!'RESOURCE'),
move(crossout, Y).

5H.1.3. THE EXECUTABLE MODEL AS GENERATED

(A) MODEL STATICS AND START-UP EVENTS
z- nl, nl, write!$Defining sets$).
z- vset(carshipqO!1,2,3,4,5,6,7)).
i- vset(car_ship_ql(1,2,3,4,5,6,7)). s- vset(car_ship_q2(1,2,3,4,5,6,7)).
z- vsetfcarunload 1(1,2,3,4,5,6,7)). i- vset(pas_ship_q5(1,2,3,4,5,6,7)).
t- vset(pas_ship_ql(1,2,3,4,5,6,7)).
z- vset(pas_ship_q2(1,2,3,4,5,6,7)).
t- vset(pasunload 1(1,2,3,4,5,6,7)).
z- vset(tan_ship_q5(1,2,3,4,5,6,7)).:- vset(tan_ship_ql(1,2,3,4,5,6,7)). i- vset(tanship q2(1,2,3,4,5,6,7)).
z- vset(ta n u n l o a d l (1,2,3,4,5,6,7)).
I- nl. nl, write(SDefining resourcesS). vresource(channel_l,1).
i- nl, nl, write($Defining classes?), i- vclass(car_ship(1,2),1,20).
«- vclass(pas_ship(1,2),1,20).
t- vclass(tan ship!1,2),1,20).
i- nl, nl, write($Loading classes in their pools?), t- vload(car ship,1,20,c a r s h i p q O).
z- vloadipas ship,1,20,p a s s h i p q O).
z- vload(tanship,1,20,t a n s h i p q O).

nl, nl, write(?Scheduling initial events?),
z- introduce!car ship!1),car_ship_process,188.33).
z- introduce!pas ship!1),pas_ship_process,60.11).
z- introduce!tanship(1),tan_ship_process,390.22).

(B) MODEL DYNAMICS
process(pas_ship_process) :-move(p a s s h i p q O ,pas_ship_ql),

gennext(pas ship process,120.0,pas_ship_q0),wait_until(head_oF(pas_ship_ql)),wa i t_unti1(i s eapt y(pas_unload_l)),
wait_unti1(idle!channel 1)),move(pas ship_ql,cross_Tn),
seize!channel_1),

196

hold(edit), r e 1 ease (charme 1 1), raove(cross in,pas unloadl), hold(unifom(20,45)),
waituntil(idle(channel 1)),•ova(pas unload l,cross out),
sei ze(channell),
hold(edit), release(channell) ,
■ove(crosa_out,pas ship q 2),exit system(pas shlp_q2,p a s s h i p q O).

processitan_ship_process) :-move(tanshipqO,tan ship q l),
gennext(tan ship process,780.0,tan_ship_qO),
wait_until(head_of(tan ship ql)),wait unt i1 (is enpty(tan unload l)),wait untiliidle(channel 1))«
noveltanshipql,crossTn),
seizefchannel 1),hold(edit),
release(channel_1),■ove(cross_in,tan unload 1),
hold(erlang(2160,720)) , wait untiliidle(channell)),■ove(t a n u n l o a d l , crossout) ,
seize(channell),
hold(edit),release(channel_l),move(cross_out,tan ship_q2),
exit systew(tan shlp_q2,tan ship qO).

process(car_ship_process) «-■ove(car_ship_qO,car_ship_ql),
gen_next(car ship process,375.0,car_ship_qO),wait_until(head_ot(car_ship_ql)),wait_unt i1(is empty(car unload l)),
wait_until(idle(channel 1)),■ove(car_shipql,cross_Tn),
seize(channel_1),
hold(edit),release!channel_l),move)cross in,car unload_l),
hold(uniCora!900,2100)),
wai t unti1(idle!channel_l)),nove!car unload 1,cross_out),
seize(channel 1),
hold(edit),release(channell),nove(crosscut,car ship_q2),
exit_system(car shTp_q2,car_ship_q0).

5H.1.4. THE EXECUTABLE MODEL AFTER EDITING
Editing has been indicated by the underlining of the terms added or edited.

(A) MODEL STATICS AND START-UP EVENTS
I- nl, nl, write($Oefining sets$). i- vset(car ship q0(l,2,3,4,5,6,7)).
:- vset(car ship ql(1,2,3,4,5,6,7)).
t- vset(car _sh i p q2(1,2,3,4,5,6,7)).
s- vset(carunload 1(1,2,3,4,5,6,7)).
t- vset(pas_shlp_q0(l,2,3,4,5,6,7)).
>- vset(pasship_q 1 (1 ,2 ,3,4,5,6,7)).
>- vset(pas ship_q2(1,2,3,4,5,6,7)).

197

I- vsetlpas unload 1(1,2,3,4,5,6,7)). t- vaet(tan ship_qO(1,2,3,4,5,6,7)).
I- vaet(tan ahip ql(1,2,3,4,5,6,7)). t- vsat(t»n ahip q2(1,2,3,4,5,6,7)). i- vsat(tan_unload_l(1,2,3,4,5,6,7)).
s- vset(cross ln(1,2,3,4,5,6,7)).¡- vsat Ìcro««~òut(1,7 ,3,1,5,6,7)1.
i- ni, ni, writal$Dafining reaourcesS).I- vresource | channel_l,1).
i- ni, ni, writal$Dafining classesS). s- vclass(car_ship(1,2),1,20).
i- vclass(pas_ship(1,2),1,20).I- velassitanahlp(l,2),l,20).
x- ni, ni, wr lta(SLoading classa« In thair poolsS).vload(car_ship,l,2 0 ,car_ship_q0). x- vload(pas _ship,l,20,pas_ship_q0).
i- vload(tanship,1,20,t a n s h i p q O).
t- ni, ni, writa(SSchadullng inltial avants$).I- introducalcar shipl1),ca: shlp_process,168.33).
i- lntroduca(pas_ship(1) ,pas_shlp_procass,60.11).
I- Introduca!tan_ship(1),tansh i pprocess,390.22).

(B) MODEL DYNAMICS
procass(pas_shlp_procass) i-aova(pas_shlp_qO,pas_ship_ql),

gannaxt(pasship procass,120.0,p a s s h i p q O) ,
wa i t_unt11 (head_of(pas_shlp_ql)),waltunt11(ls cnptylpas unload 1)),
walt untiliidTa(channal~l)),move(pas_ship_ql,croas_Tn),
sa i za(channa1_1),
hold(12),ralaaéàfchannal.l),■ovaicross_in,pas unloadl),
hold(uni forai 20,40)),
wait_unt11(idla(channal_l)), mova(pas_unload l , cross out), salzefchannal 1),
hold(12),
raTiaiàtchanna1 _1),■ova(cross_out,pas ship_q2),
«xltayatemlpas shlp_q2,pas s h l p q O).

procass(tan_ship_procass) i-■ovaitan ship q0, tan ship ql),
gannaxt(tan ship procass,780.0,tan_ship_q0),walt untll(head oF(tan_ship ql)),
waitunt 1 1 (ls aapty(tan_unload_l)),walt untiliidla(channal 1)),
■ovaitan shIp ql,cross ln),saizalchannal 1),hold(lOO),
ralaasa(channal _1),■ova(crossin,tan unloadl),
holdlarlangl2160,720)),
wait_untll(idla(channal 1)),■ovaitan unload l,cross out),
saizalchannal 1),
holdllOO),ralaasa(channa1 _1),
■ovaicross out,tan ship q2),axit systaal tan_shlp_q2, tan ship qO).

procass(car_ship_procass) *-

198

aova(car ahip_qO,car_ahip_ql),qannaxt(carihlp process,375.0,car ahip qO),
walt_until(haad_oF(car_8hip_ql)),wait unt11(la empty(carunload_1)),
wait untiliidle(channal 1)).
•ov*Tcar_ahip_ql,croaa_Tn),a#1za(channa1_1),
h o l à l ") ,
raiaaaaichannal_l),■>ova(croaa in,car unload l),
hold(unifor«(900,5100)),
wait untiliidla(channal_l))>•ove (car unload l, croaa out),
sei za(channa1_1),
hold(48) «raT¥alafchanna1_11 «
move(crosa_out,car ahip_q2),axit_ayataa(car_ahlp_q2,car ahip_q0).

199

CHAPTER 6 : 'W IS E ' — A PROTOTYPE KNOWLEDGE-BASED
DISCRETE SIMULATION MODELLING ENVIRONMENT

INTRODUCTION

The coverage of research described in chapter 5 concentrated on the process of

knowledge-based model building and the related knowledge representations. This

chapter describes further research to build upon the model building method to

demonstrate that it can be developed into an expert simulation modelling

environment.

In chapter 5 it was assumed that the user would edit the high level generic

articulation of his/her intended simulation model into a computer file, before

presenting it to the knowledge-based model building system. This in turn implied

that he/she would need to have a prior knowledge of the contents of the

knowledge-base, which is made available to the model building system during the

model construction. In order to provide computer assistance in this regard an

interactive knowledge-based model acquisition system was written using Prolog.

The initial sections in this chapter cover an exposition of its design and

implementation. It proposes to demonstrate that it is feasible to provide adequate

knowledge-based computer support to interactively define a simulation model
without requiring the user to go through any essential paper and pencil work. This

has been seen as a step forward from the other forms of computer assistance for

model building, which require the simulation model to be first expressed with the

help of a diagrammatical formalism which forms the integral part o f the design of

such software.

This chapter illustrates the user interface aspects of both the model acquisition

system and the model building system o f chapter S with the help o f sequences of

screen images. The knowledge-based specification and construction of the lorry '

model (Annexe 4A) has been used as a vehicle of exposition.

The model acquisition system together with the model building system (chapter 5)

and the simulation engine (chapter 4) were compiled separately and were

integrated to constitute a prototype knowledge-based discrete simulation

modelling environment. This environment shall be referred to as 'WISE* (Warwick

Intelligent Simulation Environment).

The final part of this chapter covers the ideas related to the possible ways in

which the 'WISE' system approach can be generalised to provide for the

construction of more complex simulation models.

200

6.1. MOTIVATION
To provide an interactive knowledge-based simulation modelling environment for

use by the decision makers (managers, engineers, ...), to build and run their own

simulation models [SHANNON, 86]. This was seen to be feasible if the knowledge

based system could offer its knowledge to the user in an appropriate form to assist

her/him in defining the initial high level generic articulation of the intended

model, so that the knowledge-based model building could proceed from it (chapter

5).

6.2. THE CONCEPTUAL FRAMEWORK
The high level articulation for a simulation model as described in chapter 5 can be

viewed as shown in fig 6.1. where the circle nodes represent 'actors' and the

rectangles depict the 'subgoals'. The specification of a simulation model can be

regarded as assigning 'actor' names to the circle nodes and appropriate 'subgoal'

names to the rectangle nodes. The model is elicited from the user by first

offering him/her the choice from the 'actors' on which knowledge is available in

the knowledge-base. When the 'actors' have been chosen, then through a similar

dialogue a choice of 'subgoals' is offered for each 'actor' previously selected.

When the selection is complete the high level generic model is output as a set of

Prolog clauses.

Another knowledge-based model specification system KBMC has been reported in

(M URRAY fc S, 88]. This work is concurrent with the research described in this

thesis. The implementation o f KBMC using an expert system building tool (the

OPS83 system) represents a major advancement, because of the use of the

knowledge based systems paradigm having the advantage that the user can extend

the capabilities of such a system by adding more rules to the rule-base. This type

of extension is not possible in the 'conventional' simulation program generator

software. However, in KBMC the application domain knowledge is not

represented at all and the names o f the elements of the models are acquisitloned

through an interactive dialogue much like other 'non-intelligent' simulation

program generators (e.g. CAPS (CLEMENTSON, 80]).

ge
ne
ri
c
le
ve
l.

202

6.3. INITIAL PROBLEMS
During an Initial implementation it was realized that it is possible to build quite

meaningless models by using the method stated above. For example, suppose in

the knowledge-base there is an 'actor' 'train' and also a 'subgoal' 'shopping'. While

making selections it is quite possible to select 'shopping' as a 'subgoal' for 'train'.

To caution the user of this possibility an extension in the knowledge

representation was made. This was done by introducing a 'subgoal_list' slot in the

'actor_fram e' clauses for each 'actor' to signify meaningful 'subgoals' for that

'actor'. In the following the 'actor_frame' clauses for 'merchant' (from Chapter S)
have been shown with the new slot added.

actor_frame(serchant, number ln_model(2 0)). actorframe(merchant, arrival_pattern(neg exp(7.27))). actorfram*(merchant, firstarrival(7.11)).
actorframe(merchant, subgoal list((weighin,

weigh out, m load))).

Also, it was found useful to keep the 'actor frame' and 'subgoal frame' clauses

related to a given model in separate files when these clauses are first formulated.

These files can be integrated into the knowledge base by using the operating

system 'copy' command.

6.4. IMPLEMENTATION
Fig. 6.2 shows an overview of the 'WISE' system. A comparison of this figure with

figures 5.1 and 4.1 would assist in visualizing the development of the system.

A display window was implemented by using Prolog for displaying the names o f the

'actors' and the 'subgoals'. A chain of Prolog atoms stored under a database key

(chapter 4) could be displayed within the window and desired entry could be

highlighted with the help of the arrow- and the page-keys on the keypad. An entry

could be selected by highlighting it and then pressing the 'return' key. A selected

entry could be deleted by highlighting it and then pressing the 'del' key.

A number o f dialogues were designed which displayed the respective entries

('actor' or 'subgoal') and invited the user to select among these. A display of

helpful hints about the actions the user can take in a given stage of dialogue was

implemented. An elementary level of error handling was also implemented e.g. an

203

Figure 6.2. An overview of 'WISE' (Marwick Intelligent
Simulation Environment).

attempt for duplicate selection of an already selected 'actor' (or 'subgoal') was

implemented as an error with suitable reporting.

204

6.5. AN EXAMPLE
In the following a sample session with the 'WISE' system will be presented with the

help of a sequence of screen images. An interactive definition of the 'lorry' model
(chapters 4 and 5) will be used as a vehicle for this exposition.

6.5.1. THE KNOWLEDGE-BASE
For the purpose of this example the following knowledge-base was used. The topic

of knowledge representation has been covered in Chapter 5.

'actorframe' CLAUSES
a c t o r _ f r a n e (ne r cha n t ,
a c t o r _ f r a n e (ne r ch a n t ,
ac t o r f rame(ne r ch a n t ,
ac t o r f rame(ne r ch a n t ,

w e ig h _ in ,
weigh o u t ,
m l o a d])) .

number innodel(20)). arrival_pattern(negexp(7.27))).
first_arrival(7.11)).
subgoal_l1st([

actor_frame(neb, number in_model(20)).
actor_frane(neb, arrivaT_pattern(erlang(12.14, 4.3))).
actor_frane(neb, first_arrival(12.22)).
actor_frame(neb, subgoal_list ((

weighin,
weighout,
other_work))).

actor_frame(train, number innodei(20)). actor_frane(train, arrival_pattern(normal(13.40, 3.4))).
actor_frane(train, firstarrival(13.33)). actor_frame(train, subgoallist((

t_unload1)).
actor_frame(pasship, number Inmodel(20)).
actor_frane(pas_ship, arrival_pattern(constant(120.0))). actor_frane(pas ship, firstarrival(60.1 1)). actorframe(pasship, subgoallist(I crossin,

cross out,
pas_uToad))).

a c t o r f r a m e (t a n sh ip ,
a c t o r _ f r a n e (t a n sh ip ,
a c t o r _ f r a n e) tan sh ip ,
a c t o r _ f r a n e (t a n s h i p ,

c r o s s i n , ”
c r o s s o u t ,
t an _uT o ad])) .

nunber inmodel(20)).
arrival_pattern(neg exp(780.0))). first_arrival(390.22)). subgoallist((

205

a c t o r . f r u t (c i [.s h i p ,
a c t o r _ f r è M (e » t s h ip ,
» c t o r f r s M l ca r s h ip ,
â c t o r _ f c a u (c a r . s h i p ,

c r o s s i n ,
c r o s s out,
c a r . u l o a d J)) .

number i n m o d e l (2 0)) .
a r r i v a l pat te rn «n eg e x p (3 7 5 . 0))) .
f i r a t a t r i v a l l 188.33)) .
s u b g o a l _ l i s t ((

s u b g o a l f r a a e ' C L A U S E S

s u b g o a l f r a n e (w e i g h . i n , r e sou rce (w e igh b r i d g e)) ,
s u b g o a l . f rame (w e i g h . i n , d u r a t i o n (d e f a u l t (2 . 4 2))) .
s u b g o a l f r a e e (w e i g h i n , a c r i p t (a)) .

s u b g o a l f r a m e (m l o a d , r e s o u r c e ! l o a d e r)) .
s u b g o a l . f r a m e (» l o a d , d u r a t i o n « d e f a u l t (5 . B4))) .
s u b g o a l frame(a l o a d , s c r i p t (a)) .

s u b g o a l f r a m e (w e i g h o u t , re sou rce «w e igh b r i d g e)) .
s u b g o a l _ f r a m e (w e i g h _ o u t , durat i o n « d e f a u l t (3 . 1 7))) .
s u b g o a l f r a m e (w e i g h _ o u t , s c r i p t (a)) .

s u b g o a l f r a m e (o th e r _ w o rk , d u r a t i o n (d e f a u l t (2 2 . 0))) .
s u b g o a l . f r a m e (o th e r . w o r k , s c r i p t (b)) .

s u b g o a l . f r a a e l t u n l o a d , r e s o u r c e « l o a d e r)) .
s u b g o a l . f r a m e ! t u n l o a d , d u r a t l o n (d e f a u l t « 1 7 . 5 0))) .
s u b g o a l f r a m e (t u n l o a d , s c r i p t (a)) .

s u b g o a l f r a m e « c r o s s . i n , r e s o u r c e (c h a n n e l)) .
s u b g o a l fr am e (c ros s i n , d u r a t i o n (d e f a u l t (6 0))) .
s u b g o a l f rame (c r o s s i n , ;

s u b g o a l . f rame« c r o s s . o u t ,
s u b g o a l . f r a m e «c r o s s . o u t ,
s u b g o a l . f rame (c r o s s . o u t ,

s u b g o a l f rame(p a s .u l o a d ,
s u b g o a l . f rame (p a s .u l o a d ,

s u b g o a l . f rame« t a n .u lo a d ,
s u b g o a l . f rame« t a n .u lo a d ,

s u b g o a l . f rame« c a r . u l o ad ,
s u b g o a l . f rame« c a r . u l o a d .

script(a)).
resource(channel)).
duration(default(50))). script(a)).
duration«default(30))). script(b)).
duration(default«2 1 6 0))). script(b)).
duration«default(1500))).
script(b)).

script* CLAUSES
s c r i p t (a r r i v e (P r o c e s s , l . a r r i v a l) , X, V) i -

move(X, Y) ,
g e n .n e x t « P r o c e s s , l . a r r i v a l , X) .

s c r i p t (le ave , X, Y) s-
e x i t . s y s t e m (X, Y) .

s c r i p t f a , X, Y) I -
wa i t . unt i 1 (h e a d . o f (X)) ,
w a i t . u n t i l (i d l e « • R E S O U R C E ')) ,
move« X, *ACTIVITY.SET') ,
sei ze «•RE SOURCE ') ,
hold« 'DUR AT ION*) ,
re le as e « ' R ESO U R C E ') ,
move(' ACTIVITY.SET' , Y) .

s c r i p t f b , X, Y) ! -
siove« X, 'ACTIVITY.SET ') ,
ho ld « 'D UR ATIO N ') ,
move« 'A CT IV IT Y .S ET ' , Y) .

¿06

6 . 5 . 2 . THE INTERACTIVE D E F IN IT IO N OP THE ' l o r r y ' MODEL

Using the knowledge-base shown previously, an interactive session with the model

acquisition system will be described with the help of screen images.

The following screen shows the operating system command level at which the

command 'wise' has been entered. Upon invocation, the model acquisition system

consults the knowledge base and makes an announcement to that effect, which

appears near the lower end of the screen.

A fter loading the knowledge-base it enters the first phase of the model definition,

i.e. selection of the 'actors'. The following screen shows the system presenting

the choice of the 'actors' to the user. A window displays in alphabetic order the

names of all the 'actors' on which knowledge is available in the knowledge base.

At any time one entry is highlighted (the highlight has not been shown). The

directions at the bottom of the screen guides the user as to how to select an

'actor'.

207

Lot us Mloct tho nanos of actors In tho nodal

car ship
aorchant
neb
pas.ship
tan ship
train

Tho following toys can bo usod to hlohllpht tho do si rod new:

Pross RtTURN key to soloct ontry. Prost Oil
Pross f 10 koy to and soloctlon.

koy to ronovo ontry.

The following screen shows that by following the directions, the user has selected

the three 'actors' present in the 'lorry' model (chapter 4). These names are

displayed on the left side o f the 'actors' window as they are selected (or deleted).

1st us soioct tho n e it of actors in tho extol

Following the selection o f the 'actors' present in the model, the system enters the

second phase of the model definition, i.e. the selection of the 'subgoals' for each

'actor'. This phase is carried out in two sub-phases. During the first sub-phase

'subgoals' are selected for each 'actor' and in the second sub-phase the selected

'subgoals' are put in their correct sequence.

The following screen shows the system offering the choice of the 'subgoals' for the

'actor' 'merchant' which was selected in the previous phase. The presence of

another window to the right o f the 'subgoal' selection window should be noted.

From the domain knowledge included in the additional 'actor_frame' slot (section

6.4) this window informs the user about the 'sensible' 'subgoals' fo r the 'actor'. It

is however possible to select a 'subgoal' not displayed as one of the intended

'subgoals' by 'insisting'. This will be shown in the section on exception handling.

Let us sslsct tha n m i of subyoals for actor aorchont

car_uload Intondod tubgoals
c ron 1n uolgh In
c ro n out
o load
othor work
pas uload
tunload
tan.ulood
watffc In
■ olfh out

o.load

Tho fot latrina koys con So usod to MyhltgNt tho doslrod nono:
HOMI. INO. UP.AIMOW. DOWN ARROW. PAM UP and PACI DOWN.

Proti MTUNN kay to soloct antry. Prosi OCl kojr to ronovo ontr».
Prosi HO koy to ond soloctlon.

The following screen displays that the user has selected the three 'subgoals' for

the 'actor' 'merchant'. As previously, these 'subgoals' are displayed to the left of
the 'subgoals' selection window as they are selected.

L«t us select the newt of sub«o«lt for ector wrehent

In a similar manner the following two screens show the selection by the user

the 'subgoals' for 'actors' 'neb' and 'train'.

Let us select the neats of sublets for actor train

Having »elected the 'subgoals' the system enters the second sub-phase of putting

the 'subgoals' selected in the correct sequence. The following screen shows the

system displaying the 'subgoals' the user previously selected for the 'actor'

'merchant' and asking the user to enter the serial numbers in the correct sequence.

211

In the following screen the user has entered the correct sequence.

The sequence entered by the user is confirmed by displaying the correct sequence

and asking the user to verify, as has been shown in the following screen.

Similarly the following two screens depict the 'subgoal' sequencing sub-phase for

the 'actor' 'neb'. This completes the sub-phase as 'train* only has one 'subgoal'
which does not require any sequencing.

212

As the definition of the high level generic model is now complete, the system

displays the model as captured and announces the name o f the file in which it has

been saved, as is depicted by the following screen.

213

6 . S . 3 . EXCEPTION HANDLING

Two typos of recaption conditions have been implemented — two error conditions

and one caution condition. The following two screens show the two error

conditions, when an attempt has been made to select an already selected 'actor' or

'subgoal'. Such conditions are prohibited and therefore are blocked.

214

1st ut ttiKt tho newt of mbfO«lt for octor neb
othor wort cor ulood Intondod lubyoolt*n cro«» In ■oiflh In•Ml(ft OUt iron out s.loodothor work

pot ulood t unlood ton ulood ■oi*n In MlfkOMt

othoruor*

(RSOS: Subyool uotyb.tn olroody Oalltl for tKo octor ncS

fron • hoy to procood

The following screen displays a caution condition when an attempt has been made

to select a 'subgoal' which is not intended for the particular 'actor' in question.

This condition is permitted provided the user 'insists'.

6.5.4. THE USER INTERACTION DURING THE MODEL BUILDING
This section covers the user interface aspects o f the user interaction, which is

entered into during the model building, for resolving the instances of the resources

present in the model (chapter 5). Having interactively defined the high level

215

generic model by using the knowledge based model acquisition system the user

now enters the command 'build' at the operating system prompt, as shown in the

screen below. Upon invocation the model building system consults the knowledge

base and begins the model building. As it does so it makes announcements to that
effect near the lower end of the screen.

Upon the identification that there is a possible interaction between the 'merchant'

and the 'train' for the use of the 'loader' it enters into a user interaction by

displaying the following screen (see also Chapter 5). As the generic specification

of the model does not specify the interactions, the system is asking the user to

resolve as to how many instances of the 'loader' there are present in the model.

The user is assisted with the syntax of his/her reply with the help of an example.

In the following screen the user has replied that there is one instance of the

'loader' in the model, which is shared by the two instances of the activities shown.

If the user wanted to say that there are two instances of the 'loader', one for each

(which would in effect mean that there is no interaction between the 'train' and

the 'merchant' over the use of the 'loader') the user could answer by typing either

" U " or -UJ.- or 121." or "HI.(2].\

Similarly, the fo llow ii^ screen shows the resolving of the instances o f the weigh

bridge in the model. It would be interesting to note that as there is no

'own_activity_set' clause in the model, the 'merchant' and the 'neb' share a single

217

instance o f the activity set for the 'weigh_in' and the 'weigh_out'. This in turn

implies that they mix in the queue before this activity set on a first in first out

basis.

Having resolved all the possible interactions present in the model over the use of

the resources, the model building system proceeds with its task and ultimately

delivers the executable model in two files, as shown in the following screen.

218
6 .6 . TOWARDS GENERALIZATIONS

Using the facilities implemented in the prototype system 'WISE', one can build and

run simple but non-trivial simulation models. The last section in Chapter 5

pointed to some of the ways in which these facilities can be extended for building

more complex simulation models. This section more specifically looks at the

possible generalisations that can be made from the experience gained of devising

and implementing a prototype knowledge-based discrete simulation modelling

environment (the 'WISE' system). These generalisations when implemented should

provide for the specification and construction of more complex simulation models,

by using a richer knowledge base and more general model building method, than

have been implemented.

6.6.1. THE SIMULATION METHODOLOGY KNOWLEDGE
At present a script relates to only one input queue and only one output queue.

This can be generalized by having multiple input and output queues and the

activity can be viewed from the point of view of entities in each queue. As an

example the following diagram shows two entities taking part in an activity.

'A c n v r rY S E T

Y2

This generalised situation can be translated into tw o 'script' clai as follows:

219

script(a/2, X2, y2) I-
wiitunt 1 1 (head of(X2),
wait until(seasage found(go)),
1 lnk_with((•EWTITYVU).
Joint eove(X2, 'ACTIVITYSET')
hold('DURATION'),
BOVt(,ACTIVITY_SET', Y2).

The term designsting the 'script' (i.e. 's/1* and 'a/2') has been suitably extended to

allow for multiple entities. A further key-term 'ENTITY'/'N' has been used. The

value of 'N' (Le. 1 or 2) corresponds with the value in the script designator. The

method of model building would now also be required to identify and allocate the

appropriate entity to the appropriate script clause for the purpose of the code

generation.

This representation can be employed to capture the simulation knowledge for the

activities where more than two entities take part.

6.6.2. CONDITIONAL BRANCHING
In simulation models a situation is frequently encountered where an entity upon

completion of an activity determines one of two alternative paths. The condition

which determines which path it will take may be based on probability or the

system's state. In order to incorporate such conditionals in the specification of

the model and in the method of model building some knowledge about these is

expected to be available in the knowledge-base. The following two Prolog clauses

represent a possible generalized specification of conditionals. The first

'condit ionalbranch1 clause specifies a branch based on the outcome of a random

sample, whereas the second clause determines the branch based on the number of
entities in one of the two possible destination queues (Y and Z).

cond itional_branch (cbl, X, Y, X) i -
randos s a s p le (A),(iA <■ 0.4,

eove(X, Y)»
I sove(X, X)
)•

condit ionel_branch(cb2, X, Y, X) l -
nunber ln_queue(Y, N),(Th < 10,

aove(X, Y))
I eove(X, X)
) .

The above two 'conditional_branch' clauses represent frequently occurring

branching conditions. Further domain specific conditions can be incorporated and

given a unique name (similar to 'c b l' and 'cb2' in the above example) which can be

used in the high level articulation o f a model. As an example:

220

goal(entity) i-
subgoal(servicel)
choose path(cbl, path(a), path(b)).

path(a) »-
subgoal(sarv ica2),
subgoal (serviced .

path(b) «-
subgoal(service!)
path(a).

It should be noted that the 'path' and 'choose_path' predicates can be used within

the body of the 'path' clauses. This would provide for the specification of complex

conditional routes for an entity in the model.

6.6.3. THE FORM OF THE EXECUTABLE MODEL
In the current implementation of 'WISE', the dynamic behaviour of the model is

captured by a set of processes, one for each 'actor'. This form does not pose any

problems either in the model building or in the execution by the simulation engine.

With the introduction of conditionals as described above, 'WISE' could be extended

to provide for the appropriate 'flow of control' within a process. The possibilities

include borrowing procedural language constructs, e.g. labels and the GOTO

statement o f FORTRAN or the block structure of PASCAL. These would pose

problems both in the model building and in extending the simulation engine to

execute the code.

Another interesting alternative however seems to exist and should be explored as

it could prove preferable over the use of the procedural language constructs

mentioned above. Keeping in view that the simulation engine interprets each

process step for each entity at the run time it would probably be easier to keep

the process segments separately stored under different Prolog database keys. A

control structure representing the conditions can link these keys to provide for a

suitable branching at the run time. Such representation would be more in line

with the logic programming approach, and would require a simpler model building

method, than if it has to provide for the generation of the flow of the control to

deliver the model in a procedural form.

6.6.4. THE SUB-MODELS KNOWLEDGE BASE
A high level generic simulation model has been viewed as the specification o f the

names of the entities which 'flow' through the system (the 'actors') and to each is

221

associated an ordered list of the names of the activities (the 'subgoals') through

which they go during their life cycle in the system being modelled. The possible

interactions, when two 'subgoals' have a common resource requirement or two

'actors' have the same 'subgoal' name in their list of 'subgoals', are resolved during

a user interaction to completely specify the intended model. Conceptually, this

representation of the model can be made use of for specifying larger building

blocks in the form of sub-models. These sub-models can refer to the same

knowledge base consisting of the 'actor_frame', the 'subgoal_frame' and the 'script'

clauses as has been seen previously. In order to achieve this level, additional

specification will be required to capture the interactions between the processes

within a sub-model. The following set of 'sub model' clauses provides a possible

way o f capturing this knowledge. The equivalent sub-model is depicted in a

diagrammatic form in fig 6.3

su b e o d e lflo r ry , a c t o r _ l is t ((merchant, neb, t r a in !) .
subm odel(lo rry , subgoal_l1st(merchant, (welgh_in ,

m load, weigh outlT-
subm odel!lo rry , su5goal_l1 st (neb, (u e ig h in ,

other_work, weigh o u t)) .
sub_m odel(lorry, a u b go a I_ lis t (tra ln , (t un load)).
sub_m odel(lorry, in te rac tion !resou rce (w e igh b rid ge),

(weigh_ln((merchant, n eb)),
weigh_out!(merchant, n e b))) ,

subm od e l!lo rry , interact ion(resou rce!loader) ,
m_load!(merchant)) , t _u n lo a d ((t r a in))) .

Various possibilities exist in relation to the specification of the simulation models

and the method of model building, while making use of the sub-models knowledge

base. The route of an entity may be described in terms of sub-models (in addition

to subgoals), provided that the sub-models specified already include the entity as

one of its 'actors'. Such routes (e.g. from one sub-model to another) can be used

to 'couple' the two sub-models through linking queues. While specifying simulation

models in this way, the need to identify and to resolve any new interactions would

arise e.g. a resource shared among two sub-models. Such interactions can be

resolved by referring these to the user. Alternatively, it should be possible to

specify the sub-model* at a higher level, which comprise of two or more sub­

models already available in the knowledge base, and to make these also a part of

the knowledge base. In this way a hierarchical knowledge base can be set up with

reference to the purpose of a simulation study and an experimental frame which

can make reference to the sub-models at various level of aggregation defining the

scope of the study. These ideas have been depicted diagram mat ically in fig. 6.4.

It should be noted that the sub-models knowledge base consists o f the knowledge-
based specification of the sub-model, making reference to the knowledge already

222

Input Output queues

Figur« 6.3. Th« entity cycle diagram for th« sub-model
'lorry'.

k
n

ow
le

d
ge

b

a
se

.

available in the knowledge base ('actors', 'subgoals'). While constructing a specific

model, all such specifications would be taken into account and the model viewed

in its totality after resolving any newly arising interactions. Using this framework

certain types of changes in the underlying knowledge base can be accommodated

without affecting the integrity of the knowledge base (e.g. adding further

conditions in a 'script' clause). However, some other types of changes would

invalidate a particular sub-model specification (e.g. removing a resource from a

subgoal which previously had one). The executable model produced would reflect

the current knowledge base even if it was different at the time o f the

specification of the particular sub-models used. The careful management of the

knowledge base is therefore indicated and some form of tools developed to ensure

its consistency and integrity.

The knowledge-based specification of the sub-models can be facilitated by using a

modified combination of the model acquisition system discussed in this chapter

and the model building system (chapter 5). The modification would involve

stopping the reference to the 'script' clauses for the code generation and providing

for the assertion of 'sub-model' clauses instead. Such interactive model

acquisition would ensure consistency and should therefore be preferred over any

manual method, which would necessarily require additional consistency checking.

6.7. CONCLUSIONS
The work described in this chapter has shown that by using the knowledge-based

systems paradigm it is feasible to provide computer assistance fo r defining a

simulation model at a generic level. As a result, keeping in view the work

described in chapters 4 and 5, it is feasible to provide an 'intelligent' simulation

modelling environment where decision makers can attempt to do their own

computer assisted simulation modelling. The knowledge-based systems paradigm

is therefore a suitable paradigm for devising such an environment and a logic

programming paradigm provides the necessary high level features for representing

knowledge and for the implementation of knowledge-based systems.

225

CHAPTER 7: CONCLUSIONS AMD FURTHER RESEARCH

7.1. CONCLUSIONS

7.1.1. CONCLUSIONS RELATED TO THE WORK ON THE SIMULATION ENGINE
It has been possible to demonstrate that it is feasible to implement set

representation for the system's state for the purpose of simulated behaviour

generation at a symbolic level while using a Logic Programming paradigm. It has

also been demonstrated that it is feasible to write a generalised simulation

facility using Prolog, which is capable of generating simulated behaviour from an

articulation of a simulation model using the three phase or the process 'world

views' or a sensible mixture of the two.

The implementation of a simulation engine which works entirely at the symbolic

level can be regarded as an improvement over the ones where the symbols

represent an underlying programming language data structure (e.g. a FORTRAN

integer) which makes it necessary to compile the simulation model and then link it

(at binary code level) with the simulation package. These steps (compiling and

linking) make debugging cumbersome and time consumiz^ and therefore expensive.

The database facilities in Prolog permit the simulation model (e.g. consisting of
'events' and 'activity' Prolog clauses) to be integrated directly with the simulation

engine at the symbolic level. Such integration is permissible even when the

simulation engine has been compiled for running efficiency.

It has been possible to demonstrate that Prolog provides the adequate features for

handling simulated time, which is absolutely necessary for simulated behaviour

generation without the need for extending the language interpreter for this

purpose, as has been proposed by [FUTO A S, 82).

The use of set representation at the symbolic level can also provide for more

intelligible interaction with the model at the run time. The built-in facilities in

Prolog allow for the specification of complex searches to be made, to find for

example, particular entities or queues which satisfy given conditions, whereas

such queries must be provided by user written routines in the case of a procedural

language simulation package, because of the non availability o f built in language

facilities and also, processing takes place at a lower level.

The entities can be assigned symbolic attributes which can help debugging the

model more efficiently than when the attributes are represented, for example, by

integers. In a future implementation it should be possible to assign symbolic

names to the attributes o f an entity (e.g. 'age', lieight' instead of referring to

these as first attribute, second attribute, and so on). This can further make

writing and debugging simulation models easier, and run-time interaction with the

models more intelligible.

Understandably, processing at the symbolic level does not provide for run-time

efficiency. This fact calls for the use of faster and/or special purpose symbol

processing hardware. The run-time execution speed, however, is not the most

important factor in pedagogical environments and the advantages mentioned

above can easily outweigh the execution speed related considerations in such

situations. A further development could be to build a simulation tutoring system

around the prototype simulation engine, as implemented (chapter 4).

The prototype simulation engine therefore represents a consolidation of the

simulation technology related to behaviour generation while using the Logic

Programming paradigm for implementation. Also noted in chapter 4, a future

development of the simulation engine could be to provide for the 'world view free'

articulation of simulation models by simply stating the model's components and

their interrelationships, thus making the mechanism of behaviour generation

entirely transparent.

7.1.2. CONCLUSIONS RELATED TO THE SIMULATION MODELLING
ENVIRONMENT
A feasible method for the knowledge-based construction of non-trivial discrete

simulation models has been proposed. A knowledge-based model generation

system using this method has been implemented in Prolog and its working has been

demonstrated by constructing a number of example models. Using this method it

has been demonstrated that the model building can start from a very high level of

generic specification of the simulation models, and the details are sorted out

during user interaction at an 'intelligent' level. It has been demonstrated that

such generic specification can itself be developed through user interaction with a

227

knowledge-based model acquisition system, while using the same knowledge base

as used for the executable model construction.

The use of a know ledge-based systems paradigm coupled with the symbolic

processing capabilites of Prolog provide a powerful set of tools for implementing

simulation modelling environments, which can provide for a greater amount of

computer assistance than has been possible using the 'conventional' simulation

support tools (e.g. simulation program generators). This is achieved by having the

ability to represent both the application domain knowledge as well as the

simulation methodology knowledge, which makes it possible to define a simulation

model by reasoning with the application domain knowledge while using the

simulation methodology knowledge for generating the executable code when the

model has been completely defined.

The use of a knowledge based systems paradigm offers the advantage that the

knowledge engnieer can focus his/her attention on small parts o f the system (e.g.

one entity, one activity, one script and so on) and such knowledge is retrieved and

assembled at the time of the model specification and the model building.

Therefore it can be said that the application of a know ledge-based systems

paradigm matches the human limitation of being able to concentrate on one thing

at a time and therefore can be regarded as an improvement over previous

software paradigms for problem solving.

The use of a knowledge-based systems framework provides for an accumulation of
the application domain knowledge in a suitable form which can be used for future

simulation modelling. Using further enhancements of this knowledge, such a

knowledge-base can also be used as a basis for problem solving within the

application domain without involving simulation.

There is an interesting implication of the simulation model generation method

described in the previous chapters. By a suitable alteration it can be made to

generate all the possible configurations of a system from an initial high level

generic articulation of the model. Such automatic model generation can be

achieved by eliminating the user interaction phase for resolving the resource

instances and installing a suitable generator facility instead, which would generate

resource-actor-subgoal combinations through backtracking. Such generation of
the possible models can be constrained by the addition of a set o f rules to the

knowledge-base so that only valid and sensible combinations are generated.

228

A model generator, as described above, has important implications for automating

the experimentation with the simulation models, while using simulation for the

design of a future system. The ability to influence the logical structure of the

model in an automatic way during experimentation can be regarded as a novel

feature which has emerged from this research, as previously it was only possible

to alter various model parameters (e.g. resource levels) during experimentation

once the model had been coded.

7.2. FURTHER RESEARCH
The research described in this thesis has concentrated on the issues of simulated

behaviour generation and simulation modelling environments. Concurrent

research at Warwick Business School reported in [TAYLO R , 88] has concentrated

on an experimental advisory system CWES') for the experimentation with

simulation models. Previously, [FLITMAN, 86) has concentrated on: a prototype

Prolog simulation engine, separate specification of the logic of the simulation

model in Prolog while using MICROSIM for the articulation of the rest of the

simulation model, and an experimentation control expert system which exhibits

learning capabilites.

Further research is indicated to consolidate this research and to proceed further

from there. It is envisaged that the 'intelligent' simulation environment described

can be extended to include other phases of the simulation study by enhancing the

knowledge representations to include the knowledge about experimentation with

models, the knowledge of problems (e.g. congestion), and queueing theory

formulae. Using this enhanced knowledge base it should be possible to address

system design problems using a 'generate and test' mode of problem solving, which

is typical of the Artificial Intelligence approach to problem solving. Starting from

the cost/performance requirements and the knowledge available in the knowledge

base, the system should be able to automatically generate alternative

configurations of the proposed system and test these against the requisite

cost/performance criteria. A level of meta-knowledge can be developed to

constrain the generation of possible models to the most promising ones (e.g. by

making early predictions using queuing theory formulae) therefore enhancing

efficiency. In this way a degree of automation coupled with the use of a problem

oriented approach can be realised, while transferring a much greater part of the

problem solving burden on to the computer.

229

A number of publications reporting research in the application of artificial

intelligence techniques in various phases of a discrete simulation study have been

reviewed in chapters 2 and 3. These applications have been researched at various

locations and address different isolated aspects o f a simulation study. A stage has

been reached, when there is a need for further research to integrate and unify the

principles that have evolved from these isolated items of research, and implement

these as a comprehensive and integrated intelligent simulation environment to

make it easier fo r the decision makers to conduct their own simulation studies.

A great majority of these implementations employ a variety of knowledge

representations and programming paradigms. There is therefore a need for

further research to integrate the capabilities of these systems in order to provide

comprehensive and integrated 'intellegent' computer support for a simulation

study. Two approaches seem possible for exploration: (a) to use a multi-expert

system architecture (e.g. a blackboard model) where each expert system

concentrates on a particular phase of a simulation study, and (b) to evolve more

comprehensive knowledge representations and associated inference engines which

cover all the phases of a simulation study. Such systems should be able to afford a

degree of automation in the conduct of simulation studies. Typically, the problem

solving system may start solving a particular problem, posed to it by the user,

until it identifies a knowledge gap in its knowledge-base, which can be filled by

generating such knowledge from experimentation with an appropriate simulation

model. Upon this demand a simulation model can be automatically generated and

experimented with, thus delivering the requisite knowledge for the problem

solving proper to proceed.

The use of artificial intelligence technology need not be limited to the application

in simulation related work, but its use should be explored in relation to other
Operational Research techniques. A reasonable starting point seems to be the

problem formulation phase for particular OR techniques (e.g. Linear

Programming, Decision Theory). The use of the expert systems paradigm in

relation to decision support systems has been considered in [RADZHCOWSK1, 84].

At some stage it should be possible to develop an Expert Operational Research

Systems which would select and apply the appropriate OR technique when a

problem is posed to them.

Prolog with its capability of being used with parallel processing hardware offers

some interesting possibilités in relation to simulated behaviour generation. Using

230

the three phase model for behaviour generation, the c-phase involves searches to

determine the possible changes to the state of the model. As such this phase is

highly computation intensive and therefore most time consuming. It should in

principle be possible to carry out parallel searches to speed up this phase. For

example, a processor may be attached to each set (a queue or an activity set) in

the model. During the c-phase all such processors may proceed independently to

determine the possible next change to the state of the model. Any conflict which

may arise as a result of these independent searches can be resolved with reference

to a set of priority rules by a master processor which would then change the state

of the model.

A further important implication of the parallel processing framework for

simulation is that it should be possible to include an inferencing phase within the

c-phase, which can allow mimicing of the behaviour of 'intelligent' entities within

the model. Such inferencing can be modelled by making available a knowledge

base of the application domain. An 'intelligent' entity in the model can make

decisions with reference to this knowledge base together with the current state of

the model. The multiprocessor approach can also support the multiformalism

specification of the parts of the simulation model, the application domain

knowledge, the experimental frame, and so on (assuming that these can refer to a

common system state representation e.g. set representation).

Another implication of using Prolog can be that its rule base can be dynamically

modified by 'intelligent' entities, thus approaching a level of simulating reality

more closely than with a set of static rules.

Finally, another possible direction of research can be to explore the integration of

visual interactive graphics with the knowledge-based systems framework for

simulation modelling, where the user interface is entirely graphical and the

system's configurations, as generated, can also be depicted in graphical form.

END OF CHAPTER 7

231

REFERENCES

[ADELSBERGER, 84]
H. H. Adelsberger. 1984. "Prolog as a simulation
language." In [WSC, 84] pp 501-504.

[ADELSBERGER t PSW, 86]
H. H. Adelsberger, U. W. Pooch, R. E. Shannon and G.
N. Williams. 1986. "Rule based object oriented
simulation systems." In [Luker & A (eds), 86] pp
107-112.

[AESSP, 85]
The Alvey Expert Systems Starter Pack. 1985.
Manchester: The National Computing Centre Ltd.

[AHMAD, 78]
A. Ahmad. 1978. Transfer of an application from
MUMPS to BASIC. M.Sc. Operational Research
dissertation. Department of Engineering Production.
University of Birmingham.

[AHMAD 6 H, 88]
A. Ahmad and R. D. Hurrion. 1988. "Automatic model
generation using a Prolog model-base." In (Henson
(ed), 88] pp. 137-142.

[AMAREL, 87]
S. Amarel. 1987. "Problem Solving." In [Shapiro
(ed), 87] pp 767-779.

(Aronofsky (ed), 69]
Progress In Operations Research, Volume III:
Relationship Between Operations Research and the
Computer. 1969. J. S. Aronofsky (editor). New York,
etc.: John Wiley. Operations Research Society of
America Publications in Operations Research no. 16.

[BHARATH, 86]
R. Bharath. 1986. "Logic Programming: A Tool for
MS/OR?" Interfaces. 16:5 (September-October) pp 80-
91.

[BIRTWISTLE, 81)
G. M. Birtwistle. 1981. "The design decisions behind
DEMOS." In [UKSC, 81] pp 97-107.

232

[BIRTWISTLE fc DMN, 79]
G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug and K.
Nygaard. 1979. Simula Begin. 2nd Edition. England:
Chartwe11-Bratt Ltd (ISBN 0-86238-009-X); West
Germany: Bratt Institut fur Neues Lernen (ISBN 3-
88598-018-5)? Sweden: Studentlitteratur (ISBN 91-44-
06212-5)

[BIRTWISTLE fc K, 86]
G. Birtwistle and J. Kendall. 1986. "A view of
LISP." In (Luker t A (eds), 86] pp 157-162.

[Birtwistle (ed), 85]
AI, Graphics and Simulation. 1985. Proceedings of
the SCS Multiconference, January 1985, San Diego,
California, USA. G. Birtwistle (editor). San Diego:
Society for Computer Simulation. ISSN: 0735-9276.

[BOBROW, 84]
D. G. Bobrow. 1984. "If Prolog is the answer, what
is the question." In [FGCS, 84] pp 138-145.

[BONGULIELMI 6 C, 84]
A. P. Bongulielmi. and F. E. Cellier. 1984. "On the
usefulness of deterministic grammars for simulation
languages." ACM Simuletter vol. 15 no. 1 (January).
14-36.

(BROOKING, 84]
A. G. Brooking. 1984. "The Fifth Generation game."
In (Forsyth (ed), 84] pp 18-35.

[BROWN, 78]
J. C. Brown. 1978. visual interactive simulation:
Further developments towards a generalised system
and its use in 3 problem areas associated with a
high technology company. MSc Thesis, School of
Industrial Business Studies, University of Warwick.

[BUNDY, 83]
A. Bundy. 1983. "What stories should we tell Prolog
Students?" DAI Working Paper no. 156. Department of
Artificial Intelligence, University of Edinburgh.

[Cellier (ed), 82)
Progress in Modelling and Simulation. 1982. F. E.
Cellier (editor). London, etc.: Academic Press.
ISBN: 0-12-164780-3.

[CHANDRASEKARAN, 86]
B. Chandrasekaran. 1986. "Generic Tasks in
Knowledge-based Reasoning: High-level Building
Blocks for Expert System Design." IEEE Expert. Fall
1986 pp 23-30.

233

[CLEARY fc GU, 85 J
J. Cleary, K.-S. Goh and B. Unger. 1985. "Discrete
event simulation in Prolog." In [Birtwistle (ed),85) pp 8-13.

[CLEMENTSON, 80)
A. T. Clementson. 1980. "ECSL/CAPS Detailed
Reference Manual." University of Birmingham: The
Lucas Institute for Engineering Production.

[CLOCKSIN fc M, 84]
W. F. Clocksin and C. S. Mellish. 1984. Programming
in Prolog. 2nd edition. Berlin, etc.: Springer-
Verlag ISBN: 3-540-15011-0 (also 0-387-15011-0).

(COELHO, 83]
H. Coelho. 1983. "PROLOG: A Programming Tool for
Logical Domain Modeling." In [Sol (ed), 83] pp 37-
45.

[COLMERAUER, 85]
A. Colmerauer. 1985. "Prolog in 10 Figures."
Communications of ACM voi. 28 no. 12 pp 1296-1310.

[COOKE fc S, 84]
S. Cooke and N. Slack. 1984. Making Management
Decisions. London: Prentice-Hall. ISBN 0-13-547837-
5.

[CROOKES, 82]
J. G. Crookes. 1982. "Simulation in 1981." European
Journal of Operational Research, 9, pp 1-7.

(D'ANGELO, 83]
G. J. D'Angelo. 1983. "Tutorial on Petri Nets." ACM
Simuletter, voi. 14, no. 1-4, pp 10-25.

(DAVIES, 76)
N. R. Davies. 1976. "On the information content of a
discrete-event simulation model." Simulation,
October 1976. pp 123-128.

[DAVIES, 79]
N. R. Davies. 1979. "Interactive Simulation Program
Generation." In [Zeigler fc EKO (eds), 79] pp 179-
200.

[DAVIS, 79]
R. E. Davis. 1979. Generating correct programs from
logic specifications. PhD Dissertation. Information
Sciences. University of California, Santa Cruz, USA.

[DAVIS, 85]
R. E. Davis. 1985. "Logic Programming and Prolog: A
Tutorial." IEEE Software, September : 53-62.

234

IDOUKIDIS, 87]
G. I. Doukidis. 1987. "An Anthology on the Homology
of Simulation with Artificial Intelligence." J. Opl
Res. Soc. Vol. 38, No. 8, pp. 701-712.

[DOUKIDIS b P, 85]
G. I. Doukidis and R. J. Paul. 1985. "Research into
Expert Systems to Aid Simulation Model Formulation."
J. Opl Res. Soc. Vol. 36, No. 4, pp. 319-325.

[DOWNES b B, 84)
V. A. downes and R. T. Bosch. 1984. "Discrete event
simulation with Ada." In [UKSC, 84] pp 68-78.

(ELZAS, 80)
M. S. Elzas. 1980. "Simulation and the processes of
change." In [Oren b SR (eds), 80] pp 3-18.

[ELZAS, 86]
M. S. Elzas. 1986. "Relations between artificial
intelligence environment and modelling b simulation
support systems." In (Elzas b OZ (eds), 86] pp 61-
77.

(Elzas b OZ (eds), 86)
Modelling and Simulation Methodology in the
Artificial Intelligence Era. 1986. M. S. Elzas, T.
I. Oren and B. P. Zeigler (editors). Amsterdam, etc:
North-Holland. ISBN: 0 444 701303.

[ESAPP, 85)
Expert systems and their applications - 5th
International Workshop. Avignon, France: 13-15 May
1985. France: Agence de I'Informatieque.

[ESAPP, 86]
Expert systems and their applications - 6th
International Workshop. Avignon, France: 28-30 April
1986. France: Agence de I'Informatique. ISBN: 2-
86851-033-X.

[ESTC , 84]
Research and Development in Expert Systems:
Proceedings of the Fourth Technical Conference of
the British Computer Society Specialist Group on
Expert Systems. University of Warwick: 18-20
December 1984. M. A. Bramer (editor). Cambridge,
etc.: Cambridge University Press. ISBN: 0 521 30652 3.

235

(ESTC, 85)
Expert Systems 85. Proceedings of the 5th Technical
Conference of the British Computer Society
Specialist Group on Expert Systems. University of
Warwicks 17-19 December 1985. M. Merry (editor).
Cambridge, etc.: Cambridge University Press. The
British Computer Society Workshop Series. ISBN: 0-
521-32596-X.

(PGCS, 84]
Fifth generation computer systems 1984. Proceedings
of the International Conference. Tokyo: 6-9 November
1984. Tokyo: OHMSHA (ISBN: 4-274-07221-5) and
Amsterdam: North-Holland (ISBN: 0-444-87673-1).

(FIDDY 6 BH, 81)
E. Fiddy, J. G. Bright and R. D. Hurrion. 1981.
"SEE-WHY: Interactive simulation on the screen." In
Proceedings Institute of Mechanical Engineers,
C293/81, pp 167-172.

[FISHER, 82]
M. W. J. Fisher. 1982. The application of visual
interactive simulation in the management of
continuous process chemical plants. PhD Thesis.
University of Warwick, School of Industrial and
Business Studies.

[FISHMAN, 78]
G. S. Fishman. 1978. Principles of Discrete Event
Simulation. New York, etc.: John Wiley 6 Sons. ISBN:
0-471-04395-8.

[FLITMAN, 86]
A. Flitman. 1986. Towards the application of
artificial intelligence techniques for discrete
event simulation. PhD thesis. University of Warwick,
School of Industrial and Business Studies.

[FLITMAN & H, 87]
A. M. Flitman and R. D. Hurrion. 1987. "Linking
Discrete-Event Simulation Models with Expert
Systems." J. Opl Res. Soc. Vol. 38, No. 8, pp. 723-
733.

[FMS-5, 86]
Proceedings of the 5th International Conference on
Flexible Manufacturing Systems. 3-5 November 1986.
Stratfor-upon-Avon, UK. K. Rathmill (ed). Bedford
IFS (Publications) Ltd. ISBN: 0-948507-17-9 (also 3-
540-16332-8 and 0-387-16332-8).

236

[FORDYCE i NS, 87J
K. Pordyce; P. Norden and G. Sullivan. 1987. "Review
of Expert Systems for the Management Science
Practitioner." Interfaces. 17:2 (March-April) pp 64-

(Porsyth (ed), 84]
Expert Systems: Principles and case studies. 1984.
R. Forsyth (editor). London, etc.: Chapman and Hall.
ISBN: 0-412-26270-3 (hardback), 0-412-26280-0
(paperback).

[Fox (ed), 84]
Expert systems; State of the Art Report 12:7. Edited
by J. Fox. Published by Pergamon Infotech Limited,
Maidenhead, Berkshire, England. 1984. ISBN: 0 08 028
5929.

[FRANKOWSKI & F, 80]
E. N. Frankowski and W. R. Franta. 1980. "A Process
Oriented Simulation Model Specification and
Documentation Language." Software— Practice and
Experience, vol. 10, 721-742.

[FRANTA, 77]
W. R. Franta. 1977. The Process View of Simulation.
New York, etc.: North-Holland. Operating and
Programming Systems Series. ISBN: 0-444-00221-9 and
0-444-00223-5 (pbk.).

[FUTO, 85]
I. Futo. 1985. "Combined discrete/continuous
modelling and problem solving." In [Birtwistle (ed), 85] pp 23-28.

[FUTO 6 G, 87]
I. Futo and T. Gergely. 1987. "Logic Programming in
Simulation." Transactions of The Society for
Computer Simulation vol. 3 no. 3 pp 195-216.

(FUTO 6 GD, 86]
I. Futo, T. Gergely and T. Deutsch. 1986. "Logic
modelling." in [Kerckhoffs & VZ (eds), 86] pp 117-
129.

(FUTO 6 P, 86]
I. Futo and I. Papp. 1986. "The use of TC-PROLOG for
medical simulation." In (Luker 6 A (eds), 86] pp 29-

(FUTO t PS, 86]
I. Futo, I. Papp and J. Szeredi. 1986. "The
microcomputer version of TC-PROLOG." In [Luker c. A (eds), 86] pp 123-128.

237

[TUTO t 8« 82)
I. Futo and J. Szeredi. 1982. “A very high level
discrete simulation system T-PROLOG.N Computational
Linguistics and Computer Languages vol. XV pp 111-
131.

[GOLDBERG t R, 83)
A. Goldberg and D. Robson. 1983. Smalltalk-80: The
Language and its Implementation. Reading,
Massachusetts: Addison-Wesley.

(HADDOCK, 87]
J. Haddock. 1987. MAn expert system framework based
on a simulation generator." Simulation 48:2
(Februrary):45-53.

(HAYS-ROTH, 87)
F. Hays-Roth. 1987. "Expert Systems." In [Shapiro
(ed), 87) pp 287-298.

(Henson (ed), 88)
Artificial Intelligence and Simulation: The
Diversity of Applications. Proceedings of the SCS
Multiconference, 3-5 February 1988. San Diego,
California, USA. T. Henson (editor). San Diego:
Society for Computer Simulation International.

(HILL, 71)
P. R. Hill. 1971. HOCUS (Hand or Computer
Simulation). Egham, Surrey: P. E. Group.

(HILL i R, 87)
T. R. Hill and S. D. Roberts. 1987. "A prototype
knowledge-based simulation support system."
Simulation 48:4 (April)t152-161.

[HOLBAEK-HANSSEN fc HN, 77)
E. Holbaek-hanssen, P. Handlykken and K. Nygaard.
1977. System Description and the DELTA language.
DELTA Project Report no. 4. Secon printing. Oslo:
Norwegian Computing Center Publication no. 523.

(Holmes (ed), 85)
AI and Simulation. 1985. Proceedings from the
Eastern Simulation Conference, March 1985, Norfolk.
W. M. Holmes (editor). San Diego: Society for
Computer Simulation. ISBN: 0-911801-05-7.

(HOOPER, 86)
J. W. Hooper. 1986. "Activity scanning and the
three-phase approach." Technical Comment. Simulation November 1986. pp 210-211.

[HUNT, 86]
V. D. Hunt. 1986. Artificial Intelligence and Expert
Systems Sourcebook. New York and London: Chapman t
Hall. ISBN: 0-412-012111.

[Huntsinger t KKV (eds), 88)
Simulation Environments and Symbol and Number
Processing on Multi and Array Processors. 1988.
Proceedings of the European Simulation
Multiconference, June 1-3, 1988, Nice, France. R. C.
Huntainger, W. J. Karplus, E. J. Kerckhoffs and G.
C. Vansteenkiste (editors). San Diego, California:
Society for Computer Simulation, (also Ghent,
Belgium: Society for Computer Simulation Europe).
ISBN: 0-911801-39-1.

[HURRION, 76]
R. D. Hurrion. 1976. The design, use and required
facilities of an interactive visual computer
simulation language to explore production planning
problems. PhD Thesis. University of London.

(HURRION, 85]
R. D. Hurrion. 1985. "Interactive Discrete Event
Simulation Model Building Using an Integrated
Process/Activity/Event Approach." Unpublished paper.
Available from author at Warwick Business School.

[Hurrion (ed), 86)
Simulation: Applications in Manufacturing. 1986. R.
D. Hurrion (editor). Bedford: IFS (Publications)
Ltd. ISBN;0-948507-33-0 (also 3-540-16357-3 and 0-
387-16357-3).

[ISTEL, 86)
WITNESS User's Manual. 1986. Redditch, England:ISTEL Ltd.

(JACKSON, 86)
P. Jackson. 1986. Introduction to Expert Systems.
Wokingham, etc.: Addison-Wesley Publishing Co.
International Computer Science series. ISBN: 0-201-
14223-6 (pbk.)

[JOHNSON 6 K, 85)
L. Johnson and E. T. Keravnou. 1985. Expert Systems
Technology, A Guide. Kent: Abacus Press. Information
Technology and Systems Series. ISBN: 0-85626-446-6.

239

(Kerckhoffs 6 VZ (eds), 86]
AI Applied To Simulation. Proceedings of the
European Conference at the University of Ghent.
February 25-26, 1985, Belgium. E. J. H. Kerckhoffs,
G. C. Vansteenkiste and B. P. Zeigler (editors). San
Diego, California: Society for computer simulation.
Simulation series voi. 18 no. 1. ISSNt 0735-9276.

(KETTENIS, 86]
D. L. Kettenis. 1986. "Knowledge-based model storage
and retrieval: Problems and possibilities.” In
(Elias 6 OZ (eds), 86] pp 101-111.

(KHOSHNEVIS 6 C, 87)
B. Khoshnevis and A.-P. Chen. 1987. "An automated
simulation modelling system based on AI techniques."
In (Luker 6 B (eds), 87] pp 87-91.

(KLAHR, 86)
P. Klahr. 1986. "Expressibility in ROSS, an object-
oriented simulation system." In (Kerckhoffs t VZ
(eds), 86) pp 136-139.

(KLEIJNEN, 87]
J. P. C. Kleijnen. 1987. "Statistical Tools for
Simulation Practitioners." New York and Basel:
Marcel Dekker, Inc. ISBN 0-8247-7333-0.

(KLIR, 79)
G. J. Klir. 1979. "General systems problem solving
methodology." In (Zeigler 6 EKO (eds), 79) pp 3-28.

(KOWALIK, 88]
J. S. Kowalik. 1988. "impact of parallel processing
on simulation and artificial intelligence." In
(Henson (ed), 88] pp 8-11.

(KOWALSKI, 79)
R. Kowalski. 1979. Logic for Problem Solving. New
York, Amsterdam, and Oxford: North-Holland; New
York: Elsevier Science Publishing Co., Inc. ISBN 0-
444-00365-7 (hbk.) and ISBN 0-444-00368-1 (pbk.).

(KOWALSKI 6 H, 87)
R. A. Kowalski and C. J. Hogger. 1987. "Logic
Programming." In (Shapiro (ed), 87) pp 544-558.

(KREUTZER, 88)
W. Kreutzer. 1988. "A modeller's workbench -
Simulation based on the desktop metaphor." In
(Henson (ed), 88).

240

(LAW fc K, 82)
A. M. Law and W. D. Kelton. 1982. Simulation
Modelling and Analysis. New York, etc.: McGraw-Hill
Book Co. McGraw-Hill series in Industrial
Engineering and Management Science. ISBN: 0-07-
036696-9.

(LEC_NOTES, 85]
R. D. Hurrion. 1985. Lecture notes handed out during
Simulation course for M.Sc MS/OR. Coventry: Warwick
Business School, University of Warwick.

(LEUNG t C, 85)
C. H. C. Leung and Q. H. Choo. 1985. NA knowledge­
base for effective software specification and
maintenance." In [SSD, 85] pp 139-142.

(Luker t A (eds), 86)
Intelligent Simulation Environments. 1986.
Proceedings of SCS Multiconference 23-25 January,
1986, San Diego, California, USA. P. A. Luker and H.
H. Adelsberger (editors). San Diego: Society for
Computer Simulation. Simulation Series vol. 17 no.
I. ISSN: 0735-9276.

(Luker & B (eds), 87]
Simulation and AI. Proceedings of SCS
Multconference, 14-16 January 1987, San Diego,
California, USA. P. A. Luker and G. Birtwistle
(editors). San Diego: Society for computer
simulation. Simulation Series: vol. 18 no. 3. ISSN:
0735-9276.

[MANNA fc W, 81)
Z. Manna and R. Waldinger. 1981. "A Deductive
Approach to Program Synthesis." In (Webber « N
(eds), 81) pp 141-172.

(MATHEWSON, 74)
S. C. Mathewson. 1974. "Simulation program
generators." Simulation. December 1974. pp 181-189.

(MATHEWSON, 84)
S. C. Mathewson. 1984. "The Application of Program
Generator Software and Its Extensions to Discrete
Event Simulation Modeling." H E Transactions, vol.
16, no. 1 (March): 3-18.

[MATHEWSON, 85]
S. C. Mathewson. 1985. "Simulation Program
Generators: Code and Animation on a PC." J. Opl Res.
Soc. Vol. 36 No. 7. pp 583-589.

241

(MCARTHUR t, KN, 84]
D. McArthur, P. Klahr and S. Narain. 1984. "Ross: An
Object-Oriented Language Cor Constructing
Simulations." R-3160-AF. Rand Corporation.

(McCABE, 86]
F. G. McCabe. 1986. "Logic and objects." Dept.
Computing. Imperial College, London. DOC 86/9.

[MIDDLETON i. Z, 86]
S. Middleton and R. Zanconato. 1986. "BLOBS: An
object-oriented language Cor simulation and
reasoning." In (KerckhoCCs & VZ (eds), 86] pp 130-
135.

[MILLS, 86]
R. I. Mills. 1986. "Simulation Cor manuCacturing
systems - a critical review." In (FMS-5, 86] PP 225-
234.

[MINGERS, 87]
J. Mingers. 1987. "Expert Systems — Rule Induction
with Statistical Data." J. Opl Res. Soc. Vol. 38,No. 1, pp. 39-47.

[MINSKY, 75]
M. Minsky. 1975. A Cramework Cor representing
knowledge. In (Winston (ed), 75]

(MOREIRA da SILVA, 82]
C. A. R. Moreira da Silva. 1982. The development oC
a decision support system generator via action
research. PhD thesis. University oC Warwick. School of Industrial and Business Studies.

[MUETZELFELDT 6 RUB, 87]
R. MuetzelCeldt, D. Robertson, M. Uschold and A.
Bundy. 1987. Computer-aided construction oC
ecological simulation programs." DAI Research paper
no. 314. Department oC ArtiCicial Intelligence,
University oC Edinburgh.

(MURRAY l S , 88]
K. J. Murray and S. V. Sheppard. 1988. "Knowledge-
based simulation model speciCication." Simulation.
March 1988 pp 112-119.

(NANCE, 84)
R. E. Nance. 1984. "Model Development revisited." In
(WSC, 84) pp 75-80.

[NEWELL, 69]
A. Newell. 1969. "Heuristic Programming: Ill-
Structured Problems." In (AronoCsky (ed), 69) pp 360-414.

242

(Nil, 86a]
H. P. Nii. 1986. "Blackboard systems: The Blackboard
model of problem solving and the evolution of
Blackboard Architectures." The AI Magazine. Summer 1986.

(Nil, 86b]
H. P. Nii. 1986. "Blackboard systems: Blackboard
Application systems, Blackboard systems from a
knowledge engineering perspective." The AI Magazine. August 1986.

(O'KEEFE, 84]
R. M. Okeefe. 1984. "Developing simulation models:
An interpreter for V.I.S." Ph.D. Thesis.
Southampton University: Faculty of Mathematical
Studies.

[O'KEEFE, 86a]
R. M. O'Keefe. 1986. "Advisory systems in
simulation." In (Kerckhoffs & VZ (eds), 86) pp 73-

IO'KEEFE, 86b]
R. M. O'Keefe. 1986. "The three-phase approach: A
comment on 'strategy-related characteristics of
discrete languages and models'." Simulation 47:5
(November): 208-210.

[O'KEEFE 6 R, 87]
R. M. O'Keefe and J. H. Roach. 1987. "Artificial
Intelligence Approaches to Simulation." J. Opl Res.
Soc. Voi. 38, No. 8, pp. 713-722.

(OOPW, 86)
Proceedings of Object-oriented Programming Workshop.
IBM Yorktown Heights: 9-13 June 1986. Special issue
of ACM SIGPLAN Notices voi. 21 no. 10 (October
1986). ISBN: 0-89791-205-5.

[OREN, 82)
T. I. Oren. 1982. "Computer-Aided Modelling
Systems." in (Cellier (ed), 82], pp 189-203.

[OREN, 86]
T. I. Oren. 1986. "Artificial intelligence and
simulation." In [Kerckhoffs 6 VZ (eds), 86] pp 3-8.

[Oren t SR (eds), 80]
Simulation with Discrete Models: A State-of-the-Art
View. 1980. T. I. Oren (editor-in-chief), C. M. Shub
and P. F. Roth (editors). New York: Institute of
Electrical and Electronics Engineers (IEEE TH0079-
4).

243

[PAUL, 88]
R. J. Paul. 1988. Simulation Modelling: The CASM
Project. London School of Economics and Political
Science. Paper presented at (a) Brioni, Yugoslavia:
The Annual Operational Research Symposium of
Yugoslavia, 11-14 October, 1988 and at (b) Sao Jose
dos Campos, Sao Paulo, Brazil: The 2nd Brazilian
Workshop on Simulation, 1-2 September, 1988.

(PEGDEN 4 P, 79]
C. D. Pegden and A. A. B. Pritsker. 1979. "SLAM:
Simulation language for alternative modelling."
Simulation November 1979 pp 145-157.

(PIDD, 84]
M. Pidd. 1984. Computer Simulation in Management
Science. Chichester, etc.: John Wiley and Sons.
ISBN: 0-471-90281-0.

(POE 4 NPS, 84}
M. D. Poe; R. Nasr; J. Potter and J. Slinn. 1984. "A
KWIC (Key Word in Context) Bibliography on PROLOG
and Logic Programming." J. Logic Programming
1984:1:81:142.

[POOLE 4 8, 77)
T. G. Poole and J. Z. Szymankiezicz. 1977. Using
simulation to solve problems. London, etc.: McGraw- Hill. ISBN:

[PRITSKER, 79]
A. A. B. Pritsker. 1979. "Compilation of definitions
of simulation." Simulation. August 1979. pp 61-63.

(RADIYA 4 S, 87)
A. Radiya and R. G. Sargent. 1987. "Logic
programming and discrete event simulation.” In
[Luker 4 B (eds), 87) pp 64-71.

(RADZIKOWSKI, 84]
P. Radzikowski. 1984. "Framework of the decision
support expert systems." In [WSC, 84] pp 507-515.

[REDDY 4 FHM, 86]
Y. V. R. Reddy; M. S. Fox; N. Husain and M.
McRoberts. 1986. "The Knowledge-Based Simulation System." IEEE Software, March:26-37.

(REICHGELT 4 V, 86)
H. Reichgelt and F. van Harmelsn. 1986. "Criteria
for choosing representation languages and control
regimes for expert systems." DAI Research Paper no.
287. Department of Artificial Intelligence,
University of Edinburgh.

244

(RICH, S3]
E. Rich. 1983. Artificial Intelligence. McGraw-Hill Book Company. ISBN 0-07-052261-8 and ISBN 0-07-
Y66508-7 (International Student Edition).

(ROBERTSON, 86)
P. Robertson. 1986. "A rule based expert simulation
evironment.” In [Luker t A (eds), 86) pp 9-15.

(RUBENS, 79)
G. T. Rubens. 1979. A study of the use of V.I.S. for
decision making in a complex production system. MSc
Thesis. School of Industrial and Business Studies.
University of Warwick.

(RUIZ-MIER 6 T, 87)
S. Ruiz-Mier and J. Talavage. 1987. MA hybrid
paradigm for modeling of complex systems."
Simulation 48:4 (April)t 135-141.

(SARGENT 4 R, 88)
R. G. Sargent and M. J. Rao. 1988. "An experimental
advisory system for operational validity." In
(Henson (ed), 88] pp 245-250.

(SCHANK 6 A, 77)
R. C. Schank and R. P. Abelson. 1977. Scripts,
Plans, Goals, and Understanding. Hillsdale,
N.J.:Erlbaum.

(SCHMIDT, 88]
B. Schmidt. 1988. "Systems analysis, model
construction, simulation: Methodological basis of the simulation system SIMPLEX-II." In (Huntsinger c.
KKV (eds), 88] pp 39-46.

(SECKER, 77]
R. J. R. Seeker. 1977. That V.I.S. offers a viable
technique for examining production planning and
scheduling problems. MSc Thesis. School of
Industrial and Business Studies. University of Warwick.

(SHANNON, 86)
R. E. Shannon. 1986. "Intelligent simulation
environment.” In (Luker 6 A (eds), 86] pp 150-156.

(SHANNON 6 MA, 85)
R. E. Shannon; R. Mayer and H. H. Adelsberger. 1985.
"Expert systems and simulation." Simulation 44:6
(June). 275-284.

245

[Shapiro (ed), 87)
Encyclopedia of Artificial Intelligence. S. C.
Shapiro (editor-in-chief). 1987. John Wiley. ISBN:
0-471-62974-x (vol. 1), 0-471-62973-1 (vol. 2), 0-
471-80748-6 (set).

[SHEPPARD, 83]
S. Sheppard. 1983. "Applying software engineering to
simulation." Simulation January: 13-19.

(SHUB, 80)
C. M. Shub. 1980. "Discrete event simulation
languages." In [Oren f> SR (eds), 80] pp 107-124.

(SIMON, 81)
H. A. Simon. 1981. "Information-Processing Models of
Cognition." Journal of the American Society for
Information Science. September 1981. pp 364-377

(SIMON, 87]
H. A. Simon. 1987. "Two Heads Are Better then One:
The Collaboration between AI and OR." Interfaces.
17:4 (July-August) pp 8-15.

[SIMON 6 DHPRSSTTW, 87)
H. A. Simon; G. B. Dantzig; R. Hogarth; C. R. Plott;
H. Raiffa; T. C. Schelling; K. A. Shepsle; R.
Thaler; A. Tversky and S. Winter. 1987. "Decision
Making and Problem Solving." Interfaces 17:5
(September-October) pp 11-31.

[SISSON, 69]
R. L. Sisson. 1969. "Simulation: Uses.” In [Aronofsky (ed), 69] pp 17-69.

[S O L , 86)
H. G. Sol. 1986. "Expert systems for modelling of
decision support and information systems." In [Elzas 6 OZ (eds), 86) pp 353-363.

(Sol (ed), 83)
Processes and Tools for Decision Support.
Proceedings of the Joint IFIP WG8.3/IIASA Working
Conference. Schloss Laxenburg, Austria: 19-21 July
1982. H. G. Sol (editor). Amsterdam, etc.: North-
Holland Publishing Company. ISBN: 0 444 86569 1.

[SSD, 85)
Proceedings of Third International Workshop on
Software Specification and Design. London: 26-27
August 1985. Washington DC, USA: IEEE Computer
Society Press. ISBN: 0-8186-0638-X.

246

[STANORIDGE, 86]
C. R. Standridge. 1906. "An approach to model
composition from existing modules." In [Elzas 6 OZ
(eds), 86] pp 113-120.

[STANDRIDGE 6 P, 82]
C. R. Standridge and A. A. B. Pritsker. 1982. "Using
Data Base Capabilities in Simulation." In [Cellier
(ed) , 82] pp 347-365.

[STEPIK 6 B, 86]
M. Stefik and D. G. Bobrow. 1986. "Object-oriented
Programming: Themes and variations." The AI
Magazine, Vol. 6, No. 4. pp 40-62.

[STERLING 6 S, 86]
L. Sterling and E. Shapiro. 1986. The Art of Prolog:
Advanced Programming Techniques. Cambridge, MA,
etc.: The MIT Press. (MIT Press series in Logic
Programming) ISBN: 0-262-19250-0 (hard) and 0-262-
69105-1 (paper).

[STROUSTUP, 86]
B. Stroustrup. 1986. The C++ Programming Language.
Reading, Massachusetts: Addison-Hesley.

[SUBRAHMANIAN t C, 81]
E. Subrahmanian and R. L. Cannon. 1981. "A generator
program for models of discrete-event systems.”
Simulation March:93-101.

[TAYLOR 6 H, 88]
R. P. Taylor and R. D. Hurrion. 1988. "An expert advisor for simulation experimental design and
analysis." In (Henson (ed), 88] pp. 238-244.

(TAYLOR, 80]
R. P. Taylor. 1988. An Artificial Intelligence
Framework for Experimental Design and Analysis in
Discrete Event Simulation. Ph.D. Thesis. Warwick
Business School. University of Warwick.

[TOCHER, 69]
K. D. Tocher. 1969. "Simulation: Languages.” In
[Aronofsky (ed), 69] pp 71-113.

[TOMLINSON 6 D, 83]
R. Tomlinson and R. Dyson. 1983. "Some Systems
Aspects of Strategic Planning.” J. Opl Res. Soc.
vol. 34, no. 8, pp 765-778.

247

[Tomlinson 4 K (eds), 84]
Rethinking the Process of Operational Research and
Systems Analysis. 1984. R. Tomlinson and I. Kiss.
Oxford, etc; Pergamon Press. ISBN 0-08-030829-5
(Hardcover). ISBN 0-08-030830-9 (Flexicover).

[UKSC, 81)
Proceedings of the 1981 UKSC Conference on Computer
Simulation. 13-15 May 1981, Harrogate, England.
Surrey: Westbury House (the books division of IPC
Science and Technology Press). ISBN: 0 86103 051 6.

[UKSC, 84)
Proceedings of the 1984 UKSC Conference on Computer Simulation. 12-14 September, 1984. University of
Bath, England. D. J. Murray-Smith (ed). London,
etc.: Butterworths. ISBN 0-408-01504-7.

(UNGER 6 DCB, 86)
B. Unger, A. Dewar, J. Cleary and G. Birtwistle.
1986. "The Jade approach to distributed software
development." In [Kerckhoffs 4 VZ (eds), 86] pp 178-
188.

[VAUCHER, 85]
J. G. Vaucher. 1985. "Views of modelling: Comparing
the simulation and AI approaches." In [Birtwistle (ed), 85] pp 3-7.

[VAUCHER 4 L, 87]
J. G. Vaucher and G. Lapalme. 1987. "Process-
oriented simulation in Prolog." In [Luker 4 B (eds),
87) pp 41-46.

[WALES 4 L, 86]
"An Environemnt for Discrete Event simulation." In
[Luker 4 A (eds), 86] pp 58-62.

[WALKER 4 M, 86]
T. C. Walker and R. K. Miller. 1986. Expert Systems
1987: An Assessment of Technology and Applications.
Madison, GA: SEAI Technical Publications. ISBN: 0-
89671-082-3.

[WARREN, 80]
D. H. D. Warren. 1980. "Logic Programming and
Compiler Writing." Software— Practice and
Experience, vol. 10, 97-125.

[Webber 4 N (eds), 81]
Readings in Artificial Intelligence. 1981. B. L.
Webber and N. J. Nilsson (eds). Tioga Publishing
Company.

248

(WHITE, 85]
D. J. White. 1985. Operational Research. Chichester,
NewYork, Brisbane, Toronto, Singapore: John Wiley <•
Sona. ISBN 0-471-90717-0 (cloth). ISBN 0-471-90718-
9 (paper).

(WICKELGREN, 74)
W. A. Wickelgren. 1974. How to Solve Problems:
Elements of a Theory of Problems and Problem
Solving. San Francisco, USA: W. H. Freeman and
Company. ISBN 0-7167-0846-9 and ISBN 0-7167-0845-0
(p b k •)

[Winston (ed), 75)
The Psychology of Computer Vision. 1975. P. H.
Winston (ed). New York: McGraw-Hill.

(WITHERS, 81)
S. J. Withers. 1981. Towards the on-line development
of visual interactive simulation models. PhD Thesis,
School of Industrial and Business Studies.
University of Warwick.

[WSC, 84]
Proceedings of 1984 Winter Simulation Conference.
28-30 November, 1984, Dallas, Texas. S. Sheppard, U.
W. Pooch and C. D. Pegden (editors). San Diego,
California: Society for Computer Simulation.

(ZEIGLER, 80)
B. P. Zeigler. 1980. "Concepts and software for
advanced simulation methodologies." In [Oren 6 SR
(eds), 80) pp 25-44.

[ZEIGLER, 84]
B. P. Zeigler. 1984. "System-Theoretic
Representation of Simulation Models." H E
Transactions vol. 16, no. 1 (March):19-34.

[Zeiglsr t EKO (eds), 79)
Methodology in Systems Modelling and Simulation.
1979. B. P. Zeigler (editor-in-chief), M. S. Elzas,
G. J. Klir and T. I. Oren (editors). Amsterdam,
etc.: North-Holland. ISBN: 0 444 853405.

249

REFERENCES CITED W ITHIN QUOTES

{Beauchamp and Field, 1979}
J. N. Beauchamp and R. C. Field. 1979. "Simulation
Modelling by Stepwise Refinement." Ins Proceedings
of the Winter Simulation Conference, San Diego, CA.

(Bell and O'Keefe, 1987}
P. C. Bell and R. M. O'Keefe. 1987. Visual
interactive simulation - history, recent
developments and major issues. Simulation. In press.

(Beltrami and Bodin, 1974}
E. Beltrami and L. Bodin. 1974. "Networks and
vehicle routing for municipal waste collection."
Networks, Vol. 4, No. 1, pp 65-94.

{Brown et al., 1986}
J. Brown; J. Cook; L. Groner and E. Eusebi. 1986.
"Algorithms for Artificial Intelligence in APL2."
IBM Santa Teresa Report TR 03.81, IBM Santa Teresa
Lab M75/E42, 555 Baily Ave., P. O. Box S0020, San
Jose, California 95150.

{Chandrasekaran, 1986}
B. Chandrasekaran. 1986. "Generic tasks in
knowledge-based reasoning: High level building
blocks for expert system design." IEEE Expert, Vol.
1, No. 3, pp 23-30.

{Clocksin and Mellish, 1984}
W. Clocksin and C. Mellish. 1984. Programming in
Prolog, second edition, Springer-Verlag, New York

{Cromarty, 1985}
S. Cromarty. 1985. "What are current expert system
tools missing." Proceedings of the IEEE 1985
Computer Conference (COMPCON-85), IEEE Computer
Society Press, Los Alamitos, California, pp.411-418.

{Cutler, 1980}
M. M. Cutler. 1980. A formal program model for
discrete event simulation and its use in the
verification and validation of system models and
implementations. Doct. Dissertation, UCLA, Los Angeles, CA.

(Dahl, 1983}
V. Dahl. 1983. "Logic programming as a
representation of knowledge.” Computer, Vol. 16, No. 10, pp. 106-113.

2S0

{Dykstra, 1976}
E. W. Dykstra. 1976. A Discipline of Programming.
Prentice Hall, N. J.

{Estrin, 1978}
G. Estrin. 1978. MA method for design of digital
systems supported by SARA at the age of one." AFIPS
Conference Proceedings, NCC.

{Evans, 1984}
J. B. Evans. 1984. Simulation and intelligence.
Technical Report TR-A5-84, Centre of Computer
Studies and Applications, University of Hong Kong.

(Expert Systems Development Environment/VM Reference Manual,
1985}
Expert Systems Development Environment/VM Reference
Manual. 1985. manual No. SH20-9609-1, International
Business Machines Corporation, Menlo Park,
California.

(Hong, 1986}
S. Hong. 1986. "Guest editor's introduction for
issue devoted to expert systems in engineering."
IEEE Computer, Voi. 19, No. 7, pp. 12-15.

(Karplus, 1976}
Karplus, W. J. (1976), "The spectrum of mathematical
modelling and systems simulation", in Dekker, L.
(ed). Simulation of Systems, North-Holland,
Amsterdam, pp. 5-13.

(Liskove and Zilles, 1974}
B. Liskove and S. Zilles. 1974. "Programming with
abstract data types." ACM SIGPLAN Notices, 9 1974.

(Minsky, 65}
M. L. Minsky. 1965. "Matter, Mind, and Models."
Proceedings of IFIP Congress, Voi. 1. Spartan Books,
pp 45-49.

(Nil, 1986)
P. Nii. 1986. "The blackboard model of problem
solving." AI Magazine, Voi. 7, No. 2, pp. 38-53.

(Nijssen, 1977}
Architecture and Models in Data Base Management
Systems. 1977. G. M. Nijssen (ed). North Holland
Pub. Co., Amsterdam.

251

(Oran, 75}
T. I. Oren. 1975. Syntactic Errors of the Original
Formal Definition of CSSL 1967. Technical Report No.
75-01, Computer Science Department, University of
Ottawa, Ottawa, Ontario, 1975, 57 p. (Also available
from IEEE Computer Society Repository, No. R75-78.).

(Reitman, 1964}
W. Reitman. 1964. "Heuristic decision procedures,
open constraints, and structure of ill defined
problems." in Human Judgment and Optimality. M.
Shelley and G. Bryans, eds., John Wiley and Sons,
New York.

(Robinson, 1983}
J. A. Robinson. 1983. "Logic Programming — Past
Present and Future." New Generation Computing,
Springer Verlag. Vol. 1, No. 2.

(Ryan, 1979)
K. T. Ryan. 1979. "Software Engineering and
Simulation.” In: Proceedings of the Winter
Simulation Conference, San Diego, CA.

(Rychener, 1985}
M. Rychener. 1985. "Expert systems for engineering
design." Expert Systems, Vol. 2, No. 1, pp. 30-44.

(Rzevski, 1980}
G. Rzevski. 1980. "Systematic design of simulation
software." In: Proceedings of Simulation '80,
Interlaken, Switzerland.

(Sanguinettl, 1979}
J. Sanguinetti. 1979. "A technique for integrating
simulation and systems design." In: Conference on
Simulation, Measurement and Modeling of Computer
Systems. Sigmetrics/Simuletter, Fall.

(Schor, 1986}
M. Schor. 1986. "Declarative knowledge programming:
Better than procedural?" IEEE Expert, Vol. 1, No. 1,
pp. 36-46.

(SIGART70, 80}
ACM SIGART Newsletter, Special Issue on Knowledge
Representation. No. 70, February 1980.

(Simon and Newell, 1958}
H. Simon and A. Newell. 1958. "Heuristic problem
solving: The next advance in operations research.”
Operations Research, Vol. 6, No. 1. pp. 1-10.

2S2

(Strauss et al., 67}
J. C. Strauss. 1967. "The SCi Continuous System
Simulation Language (CSSL)." Simulation, Vol. 9, No.
6, December 1967. pp 281-303.

(Teichrow and Hershey, 1978}
D. Teichrow and E. Hershey. 1978. "PSL/PSA: A
Computer-aided Technique for structure documentation
and Analysis of Information Processing Systems."
IEEE Trans. Soft. Eng. 3/1.

(Weizenbaum, 1976}
Weizenbaum, J. (1976), Computer Power and Human
Reason, W. H. Freeman t Co., San Francisco.

(Yeh, 1977}
Current trends in programming methodology, volume I t
Software specification and design. 1977. R. Yeh
(ed). Prentice Hall, N. J.

(Zeigler et. al.(eds), 1979}
B. P. Zeigler, M. S. Elzas, G. J. Klir and T. I.
Oren. 1979. Methodology in systems modelling and
simulation. North Holland, Amsterdam.

v

253
ARTIFICIAL INTELLIGENCE AND EMULATION! TW OwwMty W

J> W KS MyilK«>ltn>c< o> AtlllKKl U l«l
A H Fahnwry l«Mt Em Dm , CaIIIm Ua. USA. A tm

APPENDIX I

2S6

SSÎ=5câ=: SSZT

S ^ S S S
j S r g S j S î :

' » A l - ••

■ssrasiss!:"

257

the 'arrival' of the first

9. 2 and rig.) vuoi list tns a
a process-file of the »nop modal as produced oy m
-------- — • -cmI3ar oy retrieving tna relevant

Tha modal ouilding procsss u
dacoagaoaitian of ascn 'aubgoal' for aacn actor' to
rsaolvs various inatanoas of activity asts, raaouroas
ana otnar keywords. This resolving is carriad out Dy
identifying tha interaction at <«rious 'actors' tor
activity sats and rssouraas, whim is aacsrtainsd by
retrieving ralatad clauaas fra» too knowledge ossa.

than praaantad with tna cnoica to raaolvs

a of raaourca raquirad by tna

rollowing t
rsaolving t
syntnasia pnaaa occurs. In this p
svsgoals ara couplad b .
------ and idantlfylng t

------------- idual orocaaaa. ____ .
tiva scripts and

triacias by queue
a key words by oocraepondlng

a as rasolvad during tha dacomoaitian pnaaa.
Also during tna synthssis (hasa various declarations
ars also ooiqiosid which mist ba anacutad to provide

that althou«i uear-
d colla te the initial

ifloation, m principle It 1»

•• hoiqtctk somatic» mam

modal builder described
a procsss world view, tha

slmilatton engine is capable of running models written
using either tha process view and/or event world

'that a coup lately

---- nal along wtuch~aniy die*shi?*st
Tha following type of mips use tna

2. tanker

The 'knowledge' aoout tnaaa snipe is aontairad
in the 'actors' knowledge oaaa ifig . 7) xtder tns
naaas 'p ship', 'tanker', and ’c « l ip ' . teen type of
■nip, after arrival enter tna harbour through -_-.e
channel and than unload at its respec tive oertn «no
leave throu î tha channel. Thaaa ‘ subgoals' -eve oaan
given name» 'cross In', 'p_unload' for passenger
mips, 't unload' Tor tanker» 'c_unloed‘ for cargo
mips, an3 'cross out'. Tha knowledge of these
auogoala is aontelnsd in the knowledge bees trig. it.
A model far the hsrbour praolse can be~apecifieo at s
hl0i level ea follows)

goal(p_ahipl 1-
subgoaltcroae_in),
subgoal(p unload!,

with the facility of e knowledge rased -nodal
builder available, e discrete event suaulation coal
can be constructed by non averts by specifying their
models at a him level wudi is interpreted
' intelligently* by oomputar to resolve various
interactions within the nodal to ooaplete tha
•pacification of model in an executable form.

■ 1 sn-rt IT lilfl K.-IXJS era registered
tradenaees o f International Business Machines
Corporation.
••Aritv/Prolog is a registered tradensre of
Arlty Corporation.

¿sa

259

APPENDIX I I

THE PROGRAMMING F A C IL IT IE S PROVIDED BY THE MICROSIM
SIMULATION PACKAGi

The following is a summary list of the facilities provided by the MICROSIM visual

interactive simulation package by Hurrion. This list has been compiled from the

user manual for MICROSIM.

A . SYSTEM STARTUP

CALL SETSYS
To initialize the system

B . ELEMENT DEFIN IT ION ROUTINES

CALL VSET
To define a set

CALL VENTIT
To define an entity

CALL VCLASS
To define a class of entities

CALL VHIST
To define a histogram

C . MODEL MANIPULATION ROUTINES

CALL VLOAD
To load a class of entities (or a section of
a class) in a set

CALL VADDLA
To add an entity at the last position in a
set

VADDFI
To add an entity at the first position in a
set

CALL

260

CALL VBEHEA
To remove the entity at the first position in
a set

CALL VDELETE
To remove an entity from a set

CALL VBETAI
To remove the entity at the last position in
a set

CALL VEMPTY
To remove all entities in a set

CALL SETATT
To set a specific attribute of an entity to a
specific value

CALL MOVEXY
To move an entity from one set to the last
position of another set while on screen
moving in horizontal direction first

CALL MOVEYX
To move an entity from one set to the last
position of another set while on screen
moving in vertical direction first

D . MODEL STATUS/INSPECTION ROUTINES
I - ISIZE(ISET)

The number of entities in ISET are returned
I » I HEAD (ISET)

The entity at the head of ISET is returned
I - ITAIL(ISET)

The entity at the tail end of ISET is
returned

I « I DENT (IPOS, ISET)
The entity at specified position IPOS among
the entities in ISET is returned

I > I POSI T (IE N T , ISET)
The entities in set ISET are searched for a
specific entity IENT and its postion is
returned

I - IATT(IENT, N)
The current value of Nth attribute of entity
IENT is returned.

E . ROUTINES FOR EVENT SCHEDULING AND T IN E ADVANCE

CALL SCHEDL
To schedule an event

CALL ADVANCE
To advance simulation time to the next
scheduled event

F . RANDOM VARIATE GENERATION

CALL SRESET(ISTRM)
To reset the random number stream ISTRM back
to original

R ■ RNDS(ISTRM)
A sample from uniform distribution between
0.0 and 1.0 is returned

R ■ RNEGEX(RMEAN, ISTRM)
A random sample from a negative exponential
distribution with mean RMEAN is returned
using stream ISTRM

R = RNORM(RMEAN, VAR, ISTRM)
A random sample from a normal distribution
with mean RMEAN and variance VAR is returned
using stream ISTRM.

I - INORM(RMEAN, VAR, ISTRM)
A random sample (integer) from a normal
distribution with mean RMEAN and variance VAR
is returned using stream ISTRM

I * INEGEX(RMEAN, ISTRM)
A random sample (integer) from a negative
exponential distribution with mean RMEAN is
returned using stream ISTRM

I * IPOISS(RMEAN, ISTRM)
A random sample (integer) from a Poisson
distribution with mean RMEAN is returned
using stream ISTRM

I - IRAND(IA, IB, ISTRM)
A random sample (integer) from a uniform
distribution between IA and IB is returned
using stream ISTRM.

262

G. SIMULATION DISPLAY ROUTINES
CALL TFORM

To display text on screen
CALL IFORM

To display integer on screen
CALL RFORM

To display a real number on screen
CALL SFORM

To display blank spaces on screen
CALL FILL

To fill an area with colour
CALL RECT

To draw a rectangle on the screen
CALL EFORM

To display the text associated with an entity
CALL SETDSP

To alter the screen display attributes
related to an entity

CALL CLEAR
To clear the screen

CALL LSNOFF(LSN)
To turn the logical screen LSN off

CALL LSNON(LSN)
To turn the logical screen LSN on

L » LSNST(LSN)
The current status of logical screen LSN is
returned

H. DATA RECORDING

CALL ADDHIST
To add a value to a histogram

R « RMEAN(IHIST)
The current mean of a histogram is returned

R = STDEV(IHIST)
The current standard deviation of a histogram
is returned

CALL TIMEON
To start a 'time clock' associated with an
entity

263

CALL RECORD
To read the 'time clock' associated with an
entity and add the value read to a histogram

CALL TIMOFF
To reset the 'time clock' associated with an
entity back to zero.

CALL RECON
To switch on all recording

CALL RECOFF
To switch off all recording

I . COMMANDS AVAILABLE IN INTERACTION MODE
RUN

To 'run* the model
GOTO

To 'run' the model upto a specified value of simulation time
ADVANCE

To 'inch' the model by one time unit at a
time

BATCH
To run the model without animated graphic
display to a specified value of simulation
time.

SPEED
To set the speed of animated graphic display

REFORM
To reform the graphic display

DISPLAY
To display the logical screen numbers which
are currently on

MONITOR
To display the current mode of recording

STOP
To stop the simulation run and return to
operating system

END
To end the simulation by calling a system
event.

264

ELEMENT
To inspect and change the attributes of entities.

OWN
To call the own interaction subroutine
supplied by the user.

J . ROUTINES REQUIRED TO BE SUPPLIED BY USER

CALL FORMSC
To form any static graphic screen displays

CALL FORMTI
To display the simulation time

CALL OWNINT
To provide for the options for altering the
model parameters during own interaction

265

BIBLIOGRAPHY

This bibliography represents additional reading and the entries included in the

References therefore have not been repeated. A n exception has been made for

those entries which have been referred to from within this bibliography. Further,

the keys which identify the entries have been used only for sorting the entries in

alphabetic order and are not necessarily unique.

[ABDEL-HAMID i S, 88]
T. K. Abdel-Hamid and T. R. Sivasankaran. 1988.
"Incorporating expert system technology into
simulation modeling: An expert-simulator for project
management." In (Henson (ed), 88] pp. 268-274.

(ACMCSC, 86]
Proceedings of the 1986 ACM Fourteenth Annual
Computer Science Conference. Cincinnati, OH, USA: 4-
6 Feb 1986. New York, USA: Association of Computing
Machinery.

(ADELSBERGER, 86]
H. H. Adelsberger. 1986. "Introduction to artificial
intelligence." In (Luker & A (eds), 86] pp 141-143.

(ARITY, 86]
The Arity/Prolog Programming Language. Concord,
Massachusetts, USA: Arity Corporation.

(BA1LES, 85]
P. A. Bailes. 1985. "A Low-Cost Implementation of
Coroutines for C." Software — Practice and
Experience, vol. 15(4) , 379-395, (April).

(BALCI, 86]
O. Balci. 1986. "Requirements for model development
environments." Computers and Operations Research,
vol. 13 no. 1 pp 53-67.

(BALCI 6 N, 86]
O. Balci and R. E. Nance. 1986. "Simulation model
development environemnts: A research prototype."
Technical report SRC-86-004 Systems Research Center
and Department of Computer Science. Virginia
Polytechnic Institute and State University,
Blacksburg, Virginia 24061, USA.

266

IBALCI & N, 87)
O. Balci and R. E. Nance. 1987. "Simulation Model
Development Environments: A Research Prototype." J.
Opl Res. Soc. Vol. 38, No. 8, pp. 753-763.

[BALMER & P, 86]
D. W. Balmer and R. J. Paul. 1986. "CASM — The
Right Environment for Simulation." J. Opl Res. Soc.
Vol. 37, No. 5, pp. 443-452.

[BAUMAN 4 T, 86]
R. Bauman and T. A. Turano. 1986. "Production based
language for simulation of Petri nets." Simulation
47:5 (November): 191-198.

[BELL, 85)
M. Z. Bell. 1985. "Why Expert Systems Pail." J. Opl
Res. Soc. Vol. 37, No. 6., pp. 603-618.

[BIRTWISTLE, 73)
G. M. Birtwistle. 1973. "SIMULA - Its features and
prospects" In High level programming languages - the
way ahead: Proceedings of British Computer Society
Conference. NCC Publications.

[Birtwistle (ed), 85]
AI, Graphics and Simulation. 1985. Proceedings of
the SCS Multiconference, January 1985, San Diego,
California, USA. G. Birtwistle (editor). San Diego:
Society for Computer Simulation. ISSN: 0735-9276.

[BOBROW & MS, 86)
D. G. Bobrow, S. Mittal and M. J. Stefik. 1986.
"Expert systems: Perils and promise." Communications
of the ACM. Vol. 29, No. 9 (September) pp 880-894.

[BOND t S, 88)
A. H. Bond and B. Soetarman. 1988. "Multiple
abstraction in knowledge-based simulation." In
[Henson (ed), 88] pp. 61-66.

(BOWEN, 86)
K. A. Bowen. 1986. "New Directions in Logic
Programming." In [ACMCSC, 86] pp 19-27.

[BOWEN t K, 82]
K. A. Bowen and R. A. Kowalski. 1982. "Amalgamating
Language and Metalanguage in Logic Programming." In
[Clark & T (eds), 82] pp 153-172.

(BRACHMAN, 79)
R. J. Brachman. 1979. "On the Epistemological status
of semantic networks." In (Findler (ed), 79] pp 3-
49.

267

(BRACHMAN, 83]
R. J. Brachman. 1983. "What IS-A Is and Isn't: An
Analysis of Taxonomic Links in Semantic Networks.” IEEE Computer. October:30-36.

[BRADY, 79]
M. Brady. 1979. "Expert Problem Solvers.” In [Michie
<ed), 79] pp 49.

[BRATKO, 86)
I. Bratko. 1986. Prolog Programming for Artificial
Intelligence. Wokingham, etc.: Addison-Wesley
Publishing Co. International Computer Science
Series. ISBN: 0-201-14224-4.

[BRATLEY t FS, 83]
P. Bratley, B. L. Fox and L. E. Schräge. 1983. A
Guide to Simulation. New York, etc.: Springer-
Verlag. ISBN: 0-387-90820-X. (also 3-540-90820-X).

[BROWN, 81]
M. G. Brown. 1981. "Simulation languages and the
development of microprocessor based products." In
[UKSC, 81) 44-48.

[BUNDY, 84]
A. Bundy. 1984. "Intelligent front-ends." In [Fox
(ed), 84) pp 15-24.

[CARRIE, 88]
A. Carrie. 1988. Simulation of Manufacturing
Systems. Chichester, etc.: John Wiley and Sons.ISBN: 0-471-91574-2.

[CAVOURAS, 83]
J. C. Cavouras. 1983. "Implementing a Simulation
Tool in a High-level Language with no Multitasking
Facilities." Software— Practice and Experience, vol. 13, 809-815.

[CELLIER, 79]
F. E. Cellier. 1979. "Combined continuous/discrete
system simulation languages -- usefulness,
experiences and future development." In [Zeigler t
EKO (eds), 79) pp 201-220.

[CHANDRASEKARAN, 84]
B. Chandrasekaran. 1984. "Expert systems: Matching
techniques to tasks." In [Reitman (ed), 84] pp 41-

[CHISHOLM fc S, 79]
I. H. Chisholm and D. H. Sleeman. 1979. "An Aide for
Theory Formation." In [Michie (ed), 79] pp 202-212.

268

[CHUBB, 84)
O. W. J. Chubb. 1984. "Knowledge engineering
problems during expert system development." ACM
Simuletter voi. 15 no. 3 (July). 5-9.

(Clark 6 T (eds), 82)
Logic Programming. Edited by K. L. Clark and S.-A.
Tarnlund. A.P.I.C. Studies in Data Processing no.
16. Academic Press. London, etc.

[CLEMA, 80]
J. K. Clema. 1980. "Managing simulation projects."
In (Oran a SR (eds), 80] pp 235-241.

[CLEMENTSON, 78]
A. T. Clementson. 1978. "Extended control and
simulation language." In [UKSC, 78] pp 174-179.

[COHEN a G, 84)
P. R. Cohen and T. R. Gruber. 1984. "Reasoning about
uncertainty: a knowledge representation
perspective." In [Fox (ed), 84) pp 25-34.

(COLMERAUER, 82]
A. Colmerauer. 1982. "PROLOG and Infinite Trees." In
(Clark a T (eds), 82) pp 231-251.

[COLMERAUER, 86)
A. Colmerauer. 1986. "Theoretical Model of Prolog
II." In [van Caneghem a W (eds), 86] pp 3-31.

[CROOKES, 87)
J. G. Crookes. 1987. “Generators, Generic Models and
Methodology." J. Opl Res. Soc. Voi. 38, No. 8, pp.
765-768.

[CROOKES a BCP, 86)
J. G. Crookes; D. W. Balmer; S. T. Chew and R. J.
Paul. 1986. "A Three-Phase Simulation System Written
in Pascal." J. Opl Res. Soc. Voi. 37, No. 6, pp.
603-618.

[D'AGAPEYEFF, 84]
A. d'Agapeyeff. 1984. "Making a start: a view from
British industry." In [Fox (ed), 84] pp 3-13.

[DAVIES, 78]
N. R. Davies. 1978. "Program structure and run-time
efficiency in discrete event simulation" (abstract
only). In (UKSC, 78] pp 172-173.

[DAVIES a D, 87)
H. Davies and R. Davies. 1987. "A Simulation Model
for Planning Services for Renal Patients in Europe."
J. Opl Res. Soc. voi. 38, no. 8, pp 693-700.

269

(DAVIS, 82)
R. E. Davis. 1982. "Runnable Specification as a
Design Tool." In [Clark t T (eds), 82J pp 141-149.

(DAVIS, 86)
P. K. Davis. 1986. "Applying artificial intelligence
tecniques to strategic-level gaining and simulation."
In [Elzas & OZ (eds), 86] pp 315-338.

[DEUTCH 6 FP, 86]
T. Deutsch, I. Futo and I. Papp. 1986. "The use of
TC-Prolog for medical simulation.” In [Luker t A (eds), 86] pp 29-34.

[DOUKIDIS t P, 86]
G. I. Doukidis and R. J. Paul. 1986. "Experiences in
automating the formulation of discrete event
simulation models." In [Kerckhoffs 6 VZ (eds), 86]
pp 79-90.

[DUDA & GH, 79]
R. Duda; J. Gaschnig and P. Hart. 1979. "Model
Design in the Prospector Consultant System for
Mineral Exploration." In [Michie (ed), 79] pp 153- 167.

[DUNHAM 6 K, 81]
N. R. Dunham and A. K. Kochhar. 1981. "Interactive
computer simulation for the evaluation of
manufacturing planning and control strategies." In
(UKSC, 81] pp 82-89.

[ELMAGHRABY & J , 8 5]
A. S. Elmaghraby and V. Jagannathan. 1985. "An
expert system for simulationists." in [Birtwistle
(ed), 85] pp 106-109.

[ELZAS, 86]
M. S. Elzas. 1986. "The kinship between artificial
intelligence, modelling t simulation: An appraisal."
In [Elzas t OZ (eds), 86] pp 3-13.

(ELZAS, 86)
M. S. Elzas. 1986. "The applicability of Artificial
intelligence techniques to knowledge representation
in modelling and simulation." In [Elzas 6 OZ (eds), 86] pp 19-40.

[Elzas & OZ (eds), 86]
Modelling and Simulation Methodology in the
Artificial Intelligence Era. 1986. M. S. Elzas, T.
I. Oren and B. P. Zeigler (editors). Amsterdam, etc:
North-Holland. ISBN: 0 444 701303.

270

[EL SHEIKH fc PHB, 87]
A. R. A. El Sheikh; R. J. Paul; A. S. Harding and W.
Balmer. 1987. MA Microcomputer-Based Simulation
Study of a Port." J. Opl Res. Soc. voi. 38, no. 8,
pp 673-681.

[ENNALS, 86]
R. Ennals. 1986. "Teaching Logic as a Computer
Language in Schools." In [van Caneghem 6 W (eds),
86] pp 129-144

[ERNST (, N, 69]
G. W. Ernst and A. Newell. 1969. GPS: A Case study
in generality and problem solving. New York, London:
Academic Press. ACM Monograph Series.

[ESSAR, 84]
Expert systems. State of the Art Report. 1984. "A
framework for expert systems." In [Pox (ed), 84] pp
125-133.

[ESSAR, 84]
Expert systems. State of the Art Report. 1984.
"Future development: from skill to expertise." In
[Fox (ed), 84) pp 135-143.

[ESSAR, 84]
Expert systems. State of the Art Report. 1984.
"Claims and achievement." In [Fox (ed), 84] pp 145- 155.

(ESSAR, 84]
Expert systems. State of the Art Report. 1984.
"International developments." In [Fox (ed), 84] pp
157-164.

(ESSAR, 84]
Expert systems. State of the Art Report. 1984.
"Research and development." In [Fox (ed), 84] pp
165-175.

(FARGUES 6 LDC, 86)
J. Fargues, M.-C. Landau, A. Dugourd and L. Catach.
1986. "Conceptual Graphs for semantics and knowledge
processing." IBM J. Res. Develop, voi. 30, no. 1 (January):70-78.

(FARKAS <1 SS, 86]
Zs. Farkas, P. Szeredi and E. Santane-Toth. 1986.
"LDM — A Program Specification Support System." In
[van Caneghem t W (eds), 86] pp 105-116.

271

(FEIGENBAUM, 79]
E. A. Feigenbaum. 1979. "Themes and Case Studies of
Knowledge Engineering." In (Michie (ed), 79] pp 3-

(FIKES fc K, 1985]
R. Fikes and T. Kehler. 1985. "The Role of Frame-
Based Representation in Reasoning." Communications
of the ACM. vol. 28, no. 9. 904-920.

(Findler (ed), 79)
Associative networks: Representation and use of
knowledge by computers. 1979. N. V. Findler
(editor). New York: Academic Press. ISBN:?????

(FISHMAN, 73]
G. S. Fishman. 1973. Concepts and Methods in
Discrete Event Digital Simulation. New York, etc.:
John Wiley & Sons. ISBN: 0-471-26155-6.

[FISHWICK, 88]
P. A. Fishwick. 1988. "Qualitative simulation:
Fundamental concepts and issues." In (Henson (ed), 88] pp. 25-31.

(FORDYCE 6 NS, 86]
K. Fordyce; P. Norden and G. Sullivan. 1986.
"Artificial Intelligence and the Management Science
Practitioner: Expert Systems — Getting a Handle on
a Moving Target." Interfaces. 16:6 (November- December) pp 61-63.

[FORDYCE a NS, 87]
K. Fordyce, P. Norden and G. Sullivan. 1987.
"Artificial intelligence and the management science
practitioner: Links between Operations Research and
Expert Systems." Interfaces. 17:4 (July-August) pp 34-40.

[FOX, 84]
J. Fox. 1984. "An annotated bibliography on expert
systems." In (Fox_J. (ed), 84] pp 181-197.

(FOX, 84]
M. E. Fox. 1984. "Expert systems for education and
training." In [Fox (ed), 84] pp 35-48.

[Fox (ed), 84]
Expert systems; State of the Art Report 12:7. Edited
by J. Fox. Published by Pergamon Infotech Limited,
Maidenhead, Berkshire, England. 1984. ISBN: 0 08 028
5929.

272

(FUCHI, 84]
K. Fuchi. 1984. "Revisiting original philosophy of
fifth generation computer systems project." In
(FGCS, 84] pp 1-2-5

(FUCHI, 86)
K. Fuchi. 1986. "Aiming for Knowledge Information
Processing Systems.” In (van Caneghem 4 W (eds), 86]
pp 279-305.

(FUTO t G, 86]
I. Futo and T. Gergely. 1986. "Problems and
advantages of simulation in Prolog.” In (Elzas t OZ
(eds), 86] pp 385-397.

[GAINES t S, 85)
B. R. Gaines and M. L. G. Shaw. 1985. "Expert
systems and simulation.” In (Birtwistle (ed), 85] pp
95-101.

(GENESERETH & G, 85)
M. R. Genesereth and M. L. Ginsberg. 1985. "Logic
Programming." Communications of the ACM. vol. 28,
no. 9. (September):933-941.

[GEORGE, 80]
F. H. George. 1980. Problem Solving. London:
Duckworth. ISBN:

[GIANNESINI SC, 84]
F. Giannesini and J. Cohen. 1984. "Parser Generation
and Grammar Manipulation Using PROLOG'S Infinite
Trees." J. Logic Programming 1984:3:253-265.

(GIESZL, 87)
L. R. Gieszl, 1987. "The expert system applicability
question." In [Luker 6 B (eds), 87] pp 17-20.

[GORDON, 75)
G. Gordon. 1975. The application of GPSS V to
Discrete System Simulation. Englewood Cliffs, NJ:
Prentice-Hall. ISBN: 0-13-039057-7.

[GUENTHNER, 86]
F. Guenthner; H. Lehmann and W. Schonfeid. 1986. "A
theory for the representation of knowledge." IBM J.
Res. Develop, vol. 30, no. 1 (January):39-56.

(HANDLYKKEN & N, 81)
P. Handlykken and K. Nygaard. 1981. "The DELTA
Description Language: Motivation, main concepts and
experience from use." In [Hunke (ed), 81] pp 157-

273

[HANSSON t HT, 82)
A. Hansson; S. Haridi and S.-A. Tarnlund. 1982.
"Properties of a Logic Programming Language." In
(Clark a T (eds), 82] pp 267-280.

[HANSSON a T, 82]
A. Hansson and S.-A. Tarnlund. 1982. "Program
Transformation by Data Structure Mapping." In [Clark
a T (eds), 82) pp 117-122.

[HARANDI a Y, 85]
M. T. Harandi and F. H. Young. 1985. "Template based
specification and design." In [SSD, 85] pp 94-97.

[HARRIS, 86]
M. R. Harris. 1986. "Methods and Models in Inference
Research." DAI Research Paper no. 301. Department of
Artificial Intelligence, University of Edinburgh.

[HAWKINS, 85]
r'. D. Hawkins. 1985. "Artificial intelligence from
the systems engineer's viewpoint." In [Holmes (ed),
85) pp 10-25.

[HAYES-ROTH, 84]
F. Hayes-Roth. 1984. "Knowledge-based expert systems
— the state of the art in the US." In [Fox (ed),
84) pp 49-62.

[HAYS-ROTH, 85)
F. Hayes-Roth. 1985. "Rule-Based Systems."
Communications of the ACM vol. 28, no. 9,(September)¡921-932.

[HENRIKSEN, 83
J. O. Henriksen. 1983. "The integrated simulation
environment (Simulation software of the 1990s)."
Operations Research vol. 31 no. 6 (Nov-Dec 1983) pp
1053-1073.

[HENRIKSEN, 84]
J. O. Henriksen. 1984. "Discrete event simulation
languages: Current Status and future directions." In
(WSC, 84] 83-88.

[Henson (ed), 88]
Artificial Intelligence and Simulation: The
Diversity of Applications. Proceedings of the SCS
Multiconference, 3-5 February 1988. San Diego,
California, USA. T. Henson (editor). San Diego:
Society for Computer Simulation International.

274

(HILTON, 88]
M. L. Hilton. 1988. MA multi-level event scheduling
mechanism Cor supporting intelligent objects." In
(Henson (ed), 88] pp. 127-130.

(HIRSCHMAN fc P, 86]
L. Hirschman and K. Puder. 1986. "Restriction
Grammar: A Prolog Implementation." In (van Caneghem
6 W (eds), 86] pp 244-261.

(HMTREASURY, 85]
H M Treasury. 1985. Expert Systems Some guidelines.

(Holmes (ed), 85]
AI and Simulation. 1985. Proceedings from the
Eastern Simulation Conference, March 1985, Norfolk.
W. M. Holmes (editor). San Diego: Society for
Computer Simulation. ISBN: 0-911801-05-7.

(HONIDEN 6 UK, 85)
S. Honiden, N. Uchihira and T. Kasuya. 1985.
"Software Prototyping with MENDEL." In (LOGICPRO,
85] pp 108-116.

(HOWE, 79]
J. A. M. Howe. 1979. "Learning through Model­
building." In (Michie (ed). 79) pp 215-225.

(Hunke (ed), 81)
Software Engineering Environments. 1981. H. Hunke
(editor). Proceedings of the symposium held in
Lahnstein, Federal Republic of Germany. June 16-20, 1980. Amsterdam, etc: North-Holland Publishing
Company. ISBN: 0 444 86133 5.

(Huntsinger 6 KKV (eds), 88)
Simulation Environments and Symbol and Number
Processing on Multi and Array Processors. 1988.
Proceedings of the European Simulation
Multiconference, June 1-3, 1988, Nice, France. R. C.
Huntsinger, W. J. Karplus, E. J. Kerckhoffs and G.
C. Vansteenkiste (editors). San Diego, California:
Society for Computer Simulation, (also Ghent,
Belgium: Society for Computer Simulation Europe).
ISBN: 0-911801-39-1.

(ISHIZUKA 4M, 84)
M. Ishizuka and T. Moto-oka. 1984. "Overview of
expert systems in Japan." In (Fox (ed), 84] pp 63-

(JONES, 86)
A. W. Jones. 1986. "Possibilities for expert aids in
system simulation." In (Elzas 6 OZ (eds), 86] pp 145-152.

275

[JOYCE a BW, 84)
J. Joyce, G. Birtwistle and B. Wyvill. 1984. "ANDES
-- an environment for animated discrete event
simulation." In (UKSC, 84] 93-101.

[KAUBISCH & PH, 76]
W. H. Kaubisch; R. H. Perrott and C. A. Hoare. 1976.
"Quasiparallel Programming." Software— Practice and
Experience, vol. 6, 341-356.

[Kerckhoffs a vz (eds), 86]
AI Applied To Simulation. Proceedings of the
European Conference at the University of Ghent.
February 25-28, 1985, Belgium. E. J. H. Kerckhoffs,
G. C. Vansteenkiste and B. P. Zeigler (editors). San
Diego, California: Society for computer simulation.
Simulation series vol. 18 no. 1. ISSN: 0735-9276.

[KHOSHNEVIS a C, 86)
B. Koshnevis and A.-P. Chen. 1986. "An expert
simulation model builder." In [Luker a A (eds), 86]
pp 129-132.

[KIMBLER aW, 88]
D. L. Kimbler and B. A. Watford. 1988. "Simulation
program generators: A functional perspective." In
[Henson (ed), 88] pp. 133-136.

(KITZMILLER, 88]
C. T. Kitzmiller. 1988. "Simulation and AI: Coupling
symbolic and numeric computing." In (Henson (ed),
88] pp. 3-7.

[KLAHR, 84)
P. Klahr. 1984. "Artificial intelligence approaches
to simulation." In [UKSC, 84] pp 87-92.

[Klahr a W (eds), 86]
Expert Systems: Techniques, Tools and Applications.
1986. P. Klahr and D. A. Waterman (editors).
Reading, MA, etc.: Addison-Wesley Publishing Co.

[KLEIJNEN, 79]
J. P. C. Kleijnen. 1979. "The role of statistical
methodology in simulation." In [Zeigler a EKO (eds),
79) pp 425-445.

[KORNFELD, 86)
W. A. Kornfeld. 1986. "The purpose and promise of
logic programming." In (ACMCSC, 86) pp 15-17.

(KOWALSKI, 82)
R. A. Kowalski. 1982. "Logic as a Computer
Language." In [Clark a T (eds), 82] pp 3-16.

276

(KOWALSKI, 8 6]
R. Kowalski. 1986. "The limitations of logic." In
(ACMCSC, 86] pp 7-13.

(KRIZ 6 S, 80]
J. Kriz and H. Sandmayr. 1980. "Extension of Pascal
by Coroutines and its Application to Quasi-parallel
Programming and Simulation." Software— Practice and
Experience vol. 10, 773-789.

[LANGEN, 87]
P. A. Langen. 1987. "Application of artificial
intelligence techniques to simulation." In [Luker &
B (eds), 87] 49-57.

(LEE, 83]
R. M. Lee. 1983. "Epistemological Aspects of
Knowledge-based Decision Support Systems." In [Sol
(ed), 83] pp 25-36.

(LEE & S, 85]
S. Lee and S. Sluizer. 1985. "On using executable
specifications for high-level prototyping." In [SSD,
85] pp 130-134.

[LEHMANN & RS, 88]
A. Lehmann; G. Roll and H. Szczerbicka. 1988.
"Application of expert systems in INT3: An
interactive, intelligent and integrated PC modelling
environment." In [Henson (ed), 88] pp. 49-54.

[LEHMANN 6 KKS, 86]
A. Lehmann, B. Knodler, E. Kwee and H. Szczerbicka.
1986. "Dialog-oriented and knowledge-based modelling
in a typical PC environment." In [Luker & A (eds),
86] pp 133-138.

[LEHMANN fc KKS, 86]
A. Lehmann, B. Knodler, E. Kwee and H. Szczerbicka.
1986. "Dialog-oriented and knowledge-based modelling
in a typical PC environment." In [Kerckhoffs 6 VZ
(eds), 86] pp 91-96.

[LLOYD, 84]
J. W. Lloyd. 1984. Foundations of Logic Programming.
Berlin, etc.» Springer-Verlag. ISBN: 3-540-13299-6
(also 0-387-13299-6).

[LLOYD 6 T, 84]
J. W. Lloyd and R. W. Topor. 1984. "Making PROLOG
More Expressive." J. Logic Programming:1984:3:225- 240.

277

(LOGICPRO, 651
Logic Programming '85. Proceedings of the 4th
Conference. E. Wads (editor). Berlin: Springer-
Verlsg.

(Luker 4 A (eds), 86]
Intelligent Simulation Environments. 1986.
Proceedings of SCS Multiconference 23-25 January,
1986, San Diego, California, USA. P. A. Luker and H.
H. Adelsberger (editors). San Diego: Society for
Computer Simulation. Simulation Series vol. 17 no.
I. ISSN: 0735-9276.

(Luker 4 B (eds), 87]
Simulation and AI. Proceedings of SCS
Multconference, 14-16 January 1987, San Diego,
California, USA. P. A. Luker and G. Birtwistle
(editors). San Diego: Society for computer
simulation. Simulation Series: vol. 18 no. 3. ISSN:
0735-9276.

(MARKOWITZ, 84]
H. M. Markowitz. 1984. "Proposals for the
standardization of status description." ACM
Simuletter vol. 15 no. 1 (January). 37-55.

[MATHEWSON 4 A, 78]
S. C. Mathewson and J. A. Allen. "A commentary on
the proposal for a simulation model specification
and documentation language." In (UKSC, 78] pp 158-
171.

(MAYER 4 Y, 84]
R. J. Mayer and R. E. Young. 1984. "Automation of
simulation model generation from system
specification.” In (WSC, 84] 571-576.

(MCGOWAN 4 FC, 85]
C. L. McGowan, M. D. Feblowitz and M.
Chandrasekharan. 1985. "The metafor approach to
executable specifications." In (SSD, 85] pp 163-169.

(McROBERTS 4 FH, 85]
M. McRoberts, M. Fox and N. Husain. 1985.
"Generating model abstraction scenarios in KBS." In
(Birtwistle (ed), 85] pp 29-33.

(Michim (ed), 79]
Expert systems in the micro-electronic age. Edited
by D. Michie. Edinburgh University Press. Edinburgh.

(MILES, 84]
P. W. Miles. 1984. "A methodology for constructing
rule-based data driven discrete event simulations."
In (UKSC, 84] pp 57-67.

278

[MOREIRA da SILVA fc B, 86]
C. Moreira da Silva and J. M. Bastos. 1986. "The use
of decision mechanisms in visual simulation for
flexible manufacturing systems modelling." In
(Kerckhoffs t VZ (eds), 86] pp 165-170.

(MOSER, 1986]
J. G. Moser. 1986. "Integration of artificial
intelligence and simulation in a comprehensive
decision-support system.” Simulation 47:6 (December)
223-229.

(NANCE, 84b]
R. E. Nance. 1984. "Simulation Modeling: Two
Perspectives." H E Transactions, voi. 16, no. 1 (March) p 2.

[NARAIN, 86]
S. Narain. 1986. "MYCIN: The Expert System and Its
Implementation in LogLisp." In (van Caneghem t W
(eds), 86] pp 161-174.

(NAYLOR, 80]
T. H. Naylor. 1980. "Third generation corporate
simulation models.” In [Oren 6 SR (eds), 80] pp 131-
141.

(NEUMANN, 86]
G. Neumann. 1986. "A Prolog tutorial." In (Luker & A
(eds), 86] pp 163-164.

(NEWTON fi. W, 80]
O. L. Newton and J. E. Weatherbee. 1980. "Guidelines
for documenting simulation models: A review and
procedures." In [Oren t SR (eds), 80] pp 243-258.

(NYGAARD, 86]
K. Nygaard. 1986. "Basic Concepts in Object Oriented
Programming." In (OOPW, 86] pp 128-132.

[O'KEEFE, 83]
R. A. O'Keefe. 1983. "Programming Meta-Logical
Operations in Prolog." DAI Working Paper no. 142.
Department of Artificial Intelligence, University of
Edinburgh.

[O'KEEFE, 83]
R. A. O'Keefe. 1983. "Updatable Arrays in Prolog."
DAI Working Paper no. 150. Department of Artificial
Intelligence, University of Edinburgh.

279

(O'KEEFE, S3]
R. A. O'Keefe. 1983. "Classification: a worked
exercise in Prolog." DAI Working Paper no. 153.
Department of Artificial Intelligence, University of Edinburgh.

(O'KEEFE, 84]
R. A. O'Keefe. 1984. "Reading Sentences in Prolog -
a Worked Example." DAI Working Paper no. 159.
Department of Artificial Intelligence, University of Edinburgh.

(O'KEEFE, 85)
R. M. O'Keefe. 1985. "Expert Systems and Operational
Research — Mutual Benefits." J. Opl Res. Soc. Vol.
36, No. 2, pp. 125-129.

(O'KEEFE, 86]
R. M. O'Keefe. 1986. "Advisory systems in
simulation." In [Kerckhoffa 6 VZ (eds), 86] pp 73-

(0'KEEFE 6 BB, 86]
R. M. O'Keefe; V. Belton and T. Ball. 1986.
"Experiences with Using Expert Systems in O.R.." J.
Opl Res. Soc. Vol. 37, No. 7, pp. 657-668.

(O'SHEA, 79)
T. O'Shea. 1979. "Rule-based Computer Tutors." In (Michie (ed), 79] pp 226-232.

(OOPW, 86)
Proceedings of Object-oriented Programming Workshop.
IBM Yorktown Heights: 9-13 June 1986. Special issue
of ACM SIGPLAN Notices vol. 21 no. 10 (October 1986). ISBN: 0-89791-205-5.

(OPEN UNIV, 75)
D. Morris and L. Jones. 1975. Systems Modelling: A
third level course. Milton Keynes: The Open
University Press. ISBN: 0 335 060528.

[OREN, 78]
T. I. Oren. 1978. "A personal view on the future of
simulation languages." In [UKSC, 78] pp 294-306.

(OREN, 79)
T. I. Oren. 1979. "Concepts for advanced computer
assisted modelling." In [Zeigler t EKO (eds), 79] pp

(OREN, 86)
T. I. Oren. 1986. "Implications of machine learning
in simulation." In (Elzas t OZ (eds), 86) pp 41-57.

280

(OREN, 86]
T. I. Oren. 1986. "Knowledge bases for an advanced
simulation environment." In [Luker & A (eds), 86] pp
16-22.

(OREN, 87]
T. I. Oren. 1987. "Aritificial intelligence and
simulation: Prom congnitive simulation toward
cognizant simulation." Simulation 48:4 (April): 129-
130.

(OREN, 87]
T. I. Oren. 1987. "Quality assurance paradigms for
artificial intelligence in modelling and
simulation." Simulation 48:4 (April) :149-151.

(Oren t SR (eds), 80]
Simulation with Discrete Models: A State-of-the-Art
View. 1980. T. I. Oren (editor-in-chief), C. M. Shub
and P. F. Roth (editors). New York: Institute of
Electrical and Electronics Engineers (IEEE TH0079-
4).

[OREN 6 Z, 79]
T. I. Oren and B. P. Zeigler. 1979. "Concepts for
advanced simulation methodologies." Simulation.
March 1979 pp 69-82.

(OREN 6 Z, 87]
T. I. Oren and B. P. Zeigler. 1987. "Artificial
intelligence in modelling and simulation: Directions
to explore." Simulation 48:4 (April): 131-134.

[OVERSTREET 6 N, 85]
C. M. Overstreet and R. E. Nance. 1985. "A
Specification Language to Assist in Analysis of
Discrete Event Simulation Models." Communications of
the ACM. voi. 28, no. 2. (February):190-201.

[OVERSTREET 6 N, 86]
C. M. Overstreet and R. E. Nance. 1986. "World view
based discrete event model simplification." In
(Elzas & OZ (eds), 86] pp 165-179.

[OXBORROW, 87]
E. A. Oxborrow. 1987. "Towards Knowledge Bases -
Semantics, Rules and Object-oriented Programming."
UKC Computing Laboratory Report no. 45. University
of Kent at Canterbury.

[PALME, 76]
J. Palme. 1976. "Experience from the Standardization
of the SIMULA Programming Language." Software—
Practice and Experience, voi. 6, 405-409.

(PAULI A S, 80]
W. Pauli and M. L. Sofa. 1980. "Coroutine Behaviour
and Implementation." Software— Practice and
Experience, vol. 10, 189-204.

(PAUL A C, 87]
R. J. Paul and S. T. Chew. 1987. "Simulation
Modelling Using an Interactive Simulation Program
Generator." J. Opl Res. Soc. Vol. 38, No. 8, pp.
735-752.

(PEREIRA A W, 80]
P. Pereira and D. H. D. Warren. 1980. "Definite
clause grammars for language analysis - a survey of
the formalism and a comparison with augmented
transition networks." Artificial Intelligence
13(1980) pp 231-278.

[PICHLER, 86]
F. R. Pichler. 1986. "Model components for symbolic
processing by knowledge based systems: The STIPS
framework." In [Elzas 6 OZ (eds), 86] pp 133-143.

[PIDD, 87]
M. Pidd. 1987. "Simulating Automated Food Plants."
J. Opl Res. Soc. Vol. 38, No. 8, pp. 683-692.

(Pidd (ed), 89]
Computer Modelling for Discrete Simulation. 1989.
M. Pidd (ed). Chichester, etc: John Wiley A Sons.
ISBN: 0-471-92282-X.

(POLYA, 57]
G. Polya. 1957. How to solve it. Garden City, New
York, USA: Doubleday A Company.

(PRERAU, 85]
D. S. Prerau. 1985. "Selection of an Appropriate
Domain for an Expert System." The AI Magazine.
Summer, 1985. pp 26-30.

[PRITSKER A K, 69)
A. A. B. Pritsker and P. J. Kiviat. 1969. Simulation
with GASP II: A FORTRAN based simulation language.
Englewood Cliffs, NJ: Prentice-Hall. ISBN:

(QUINLAN, 79]
J. R. Quinlan. 1979. "Discovering Rules by Induction
from Large Collections of Examples." In [Michie
(ed), 79) pp 168-201.

[RAJAGOPALAN, 86]
R. Rajagopalan. 1986. "Qualitative modelling and
simulation: A survey." In [Kerckhoffs A VZ (eds),
86) pp 9-26.

282

(RAO t 8, 88)
M. J. Rao and R. G. Sargent. 1988. MAn experimental
advisory system for operational validity." In
(Henson (ed), 88) pp. 245-250.

(REDDY, 87)
R. Reddy. 1987. "Epistemology of knowledge based
simulation." Simulation 48:4 (April)t162-166.

(REICHGELT 6 V, 87)
H. Reichgelt and F. van Harmelen. 1987. "Building
expert systems using logic and meta-level
interpretation." DAI Research Paper no. 303.
Department of Artificial Intelligence, University of Edinburgh.

(REILLY & JD, 85)
K. D. Reilly, W. T. Jones and P. Dey. 1985. "The
simulation environment concept artificial
intelligence perspectives." In (Holmes (ed), 85] pp
29-34.

(REITHAN, 80)
J. Reitman. 1980. "Interactive graphics and discrete
event simulation languages." In (Oren t SR (eds),
80) 125-127.

(Reitman (ed), 84)
Artificial Intelligence Applications for Business.
1984. Proceedings of 1983 NYU Symposium at the New
York University Graduate School of Business
Administration 18-20 May 1983. Norwood, New Jersey: Ablex Publishing Corporation. ISBN: 0-89391-220-4.

(ROACH 6 F, 86]
J. W. Roach and T. D. Fuller. 1986. "A Prolog
Simulation of Migration Dicision-Making in a Less
Developed Country." In (van Caneghem a W (eds), 86]
pp 145-151.

(ROBERTSON & BUM, 87)
D. Robertson; Alan Bundy; M. Uschold and R.
Muetzelfeldt. 1987. "Synthesis of simulation models
from high level specifications." DAI research paper
no. 313. Department of Artificial Intelligence,
University of Edinburgh.

(ROBERTS 6 E, 80)
S. D. Roberts. 1980. "Simulation and health care
delivery." In (Oren t SR (eds), 80] pp 143-164.

(ROBINSON, 79)
J. A. Robinson. 1979. "The Logical Basis of
Programming by Assertion and Ouery." In (Michie
(ed), 79) pp 105-111.

E. G. Roman and S. V. Ahamed. 1986. "A model-based
expert system for decision support in negotiating."
In [Elzas 6 OZ (eds), 86] pp 339-352.

(ROSS, 85]
P. Ross. 1985. Expert Systmes Course. MSc/PhD -
1985/86. DAI Teaching Paper no. 1. Department of
Artificial Intelligence, University of Edinburgh.

(ROZENBLIT 6 Z, 86]
J. W. Rozenblit and B. P. Zeigler. 1986. "Entity-
based structures for modelling and experimental
frame construction." In (Elzas 6 OZ (eds), 86] pp
79-100.

[SAGE T, 80]
A. P. Sage and W. A. H. Thissen. 1980.
"Methodologies for systems modeling." In [Oren f, SR (eds), 80] pp 45-62.

[SAUER f . M, 79]
C. H. Sauer and E. A. Macnair. 1979. "Queueing
Network Software for Systems Modelling." Software—
Practice and Experience, vol. 9, 369-380.

[SCHMIDT, 84]
J. W. Schmidt, 1984. "Introduction to simulation." In [NSC, 84] pp 65-73.

[SCHRIBER, 74]
T. J. Schriber. 1974. Simulation using GPSS. New
York, etc.: John Wiley & Sons. ISBN: 0-471-76310-1.

[SLOMAN, 79]
A. Sloman. 1979. "Epistemology and Artificial
Intelligence." In [Michie (ed), 79] pp 235-241.

(SMITH f . M, 88]
H. R. Smith and K. McVicar. 1988. "Knowledge-based
simulation with frameworks." In [Henson (ed), 88]
pp. 72-77.

[SMITH, 88]
P. Smith. 1988. Expert System Development in Prolog
and Turbo-Prolog™. Wilmslow, Cheshire: SIGMA Press.
ISBN: 1-85058-064-2. Also New York: Halsted Press ISBN: 0-470-20911-9.

[Sol (ed), 83]
Processes and Tools for Decision Support.
Proceedings of the Joint IFIP WG8.3/IIASA Working
Conference. Schloss Laxenburg, Austria: 19-21 July
1982. H. G. Sol (editor). Amsterdam, etc.: North-
Holland Publishing Company. ISBN: 0 444 86569 1.

[SSD, 85]
Proceedings of Third International Workshop on
Software Specification and Design. London: 26-27
August 1985. Washington DC, USA: IEEE Computer
Society Press. ISBN: 0-8186-0638-X.

[STROM, 86]
R. Strom. 1986. "A comparison of the object-oriented
and process paradigms." In [OOPW, 86] pp 88-97.

(SUZUKI, 86)
N. Suzuki. 1986. "Experience with Specification and
Verification of a Complex Computer Using Concurrent
Prolog." In [van Caneghem fc W (eds), 86] pp 188-207.

(SYKES fc CY, 88)
D. J. Sykes; J. K. Cochran and H. H. Young. 1988.
"Development of diagnostic expert systems using
qualitative simulation." In (Henson (ed), 88] pp.

(TAYLOR H, 88)
R. P. Taylor and R. D. Hurrion. 1988. Support
environments for discrete event simulation
experimentation. In [Huntsinger & KKV (eds), 88] pp
242-248.

[TERWILLIGER 6 C, 85]
R. B. Terwilliger and R. H. Campbell. 1985. "PLEASE:
Predicate Logic based Executable SpEcifications."
Report no. UIUCDCS-R-85-1231. Department of Computer
Science, University of Illinois at Urbana-Champaign

(TORN, 85]
A. A. Torn. 1985. "Simulation nets, a simulation
modelling and validation tool." Simulation 45:2
(August). 71-75.

[UKSC, 78)
Proceedings of the 1978 UKSC Conference on Computer
Simulation. 4-6 April 1978. Chester, England.
Surrey: IPC Science and Technology Press. ISBN: 0 902852 92 2.

(UKSC, 81]
Proceedings of the 1981 UKSC Conference on Computer
Simulation. 13-15 May 1981, Harrogate, England.
Surrey: Westbury House (the books division of IPC
Science and Technology Press). ISBN: 0 86103 051 6.

(UKSC, 84)
Proceedings of the 1984 UKSC Conference on Computer
Simulation. 12-14 September, 1984. University of
Bath, England. D. J. Murray-Smith (ed). London,
etc.: Butterworths. ISBN 0-408-01504-7.

[van Caneghem 4> W (eds), 86)
Logic Programming and its Applications. 1986. M. van
Caneghem and D. H. D. Warren (editors). Norwood, New
Jersey: Ablex Publishing Corporation. Ablex series
in Artificial Intelligence. ISBN: 0-89391-232-8.

[WALKER, 84]
A. Walker. 1984. "Data bases, expert systems, and
Prolog." In [Reitman (ed), 84] pp 87-109.

[WALKER, 86]
A. Walker. 1986. "Syllog: An Approach to Prolog for
Nonprogrammers." In [van Caneghem & W (eds), 86] pp

[W ALKER, 8 6]
A. Walker. 1986. "Knowledge systems: Principles and
practice." IBM J. Res. Develop, voi. 30, no. 1
(January):2-13.

(WARREN, 79)
D. Warren. 1979. "PROLOG on the DECsystem-10." In
(Michie (ed), 79) pp 112-121.

[WATERMAN, 8 6]
D. A. Waterman. 1986. D. A. Waterman. 1986. A Guide
to Expert Systems. Reading, MA, etc.j Addison-Wesley
Publishing Co. The Teknowledge series in Knowledge
Engineering. ISBN: 0-201-08313-2

[WINSTON, 84)
P. H. Winston. 1984. Artificial Intelligence. 2nd
Edition. Reading, MA, etc.: Addison-Wesley Publishing Company. ISBN: 0-201-08259-4.

[WSC, 84)
Proceedings of 1984 Winter Simulation Conference.
28-30 November, 1984, Dallas, Texas. S. Sheppard, Ü.
W. Pooch and C. D. Pegden (editors). San Diego,
California: Society for Computer Simulation.

[YAMAMOTO, 86)
Y. Yamamoto. 1986. "Graphic interfaces for modelling
systems." In [Elzas & OZ (eds), 86] pp 399-403.

[YOSHIDA 6 KS, 85]
H. Yoshida, H. Kato and M. Sugimoto. 1985.
"Retrieval of software module functions using first-
order predicate logical formulae." In [LOGICPRO, 85] pp 117-127.

[YOUNG, 84]
R. M. Young. 1984. "Human interface aspects of
expert systems." In [Fox (ed), 84] pp 101-111.

[ZAHEDI, 87]
F. Zahedi. 1987. "Artificial Intelligence and the
Management Science Practitioner: The Economics of
Expert Systems and the Contribution of MS/OR."
Interfaces. 17:5 (September-October) pp 72-81.

(ZAJICEK, 86]
W. A. Zajicek. 1986. "Transforming a discrete-event
system into a logic programming formalism." In
(Elzas 6 OZ, 86] pp 181-192.

(ZEIGLER, 84]
B. P. Zeigler. 1984. "Systems hierarchy as a basis
for simulation model description." ACM Simuletter
voi. 15 no. 1 (January). 8-13.

(ZEIGLER, 86]
B. P. Zeigler. 1986. "System Knowledge: A definition
and its implications." In (Elzas ft OZ (eds), 86] pp

(ZEIGLER ft D.-W, 86]
B. P. Zeigler and L. De Wael. 1986. "Towards a
knowledge-based implementation of multifaceted
modelling methodology." In (Kerckhoffs ft VZ (eds),
86] 42-51.

[Zeigler ft EKO (eds), 79]
Methodology in Systems Modelling and Simulation.
1979. B. P. Zeigler (editor-in-chief), M. S. Elzas,
G. J. Klir and T. I. Oren (editors). Amsterdam,
etc.: North-Holland. ISBN: 0 444 853405.

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

TITLE
Towards A Knowledge-Based Discrete Simulation

Modelling Environment Using Prolog

AUTHOR Ali Ahmad

INSTITUTION
and DATE

University of Warwick
June 1989

Attention is drawn to the fact that the copyright of
this thesis rests with its author.

This copy of the thesis has been supplied on condition
that anyone who consults it is understood to recognise
that its copyright rests with its author and that no
information derived from it may be published without
the author’s prior written consent.

TH E BRIT ISH L IBR AR Y
DOCUMENT SUPPLY CENTRE

3C ru* c. fc A

