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Abstract—Faster and more cost-efficient, crowdsourced delivery is needed to meet the growing customer demands of many
industries, including online shopping, on-demand local delivery, and on-demand transportation. The power of crowdsourced delivery
stems from the large number of workers potentially available to provide services and reduce costs. It has been shown in social
psychology literature that fairness is key to ensuring high worker participation. However, existing assignment solutions fall short on
modeling the dynamic fairness metric. In this work, we introduce a new assignment strategy for crowdsourced delivery tasks. This
strategy takes fairness towards workers into consideration, while maximizing the task allocation ratio. Since redundant assignments are
not possible in delivery tasks, we first introduce a 2-phase allocation model that increases the reliability of a worker to complete a given
task. To realize the effectiveness of our model in practice, we present both offline and online versions of our proposed algorithm called
F-Aware. Given a task-to-worker bipartite graph, F-Aware assigns each task to a worker that minimizes unfairness, while allocating
tasks to use worker capacities as much as possible. We present an evaluation of our algorithms with respect to running time, task
allocation ratio (TAR), as well as unfairness and assignment ratio. Experiments show that F-Aware runs around 107× faster than the
TAR-optimal solution and allocates 96.9% of the tasks that can be allocated by it. Moreover, it is shown that, F-Aware is able to provide
a much fair distribution of tasks to workers than the best competitor algorithm.

Index Terms—spatial crowdsourcing, crowdsourced delivery, fairness.
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1 INTRODUCTION

Spatial crowdsourcing has emerged as a viable solution
for delivery logistics, such as on-demand local delivery,
online shopping, and on-demand transportation [10]. As
such, it has attracted significant attention from both the
academia and the industry in recent years. For instance,
Amazon utilizes the crowd to provide same day shipment
of packages from warehouses to customers 1. Postmates2, a
company offering on demand food and delivery, is available
all around the US. Enormous growth of the crowdsourced
taxi services Uber3 and Lyft4 has attracted significant inter-
est, resulting in numerous research studies being conducted
about them.

Crowdsourced delivery applications have three stake-
holders: customers, workers and the matching platform.
Customers submit tasks of spatial deliveries to the plat-
form. The platform matches the tasks with the workers’
availabilities, and allocates workers to tasks considering
the spatio-temporal requirements. To support faster and
cheaper delivery, spatial crowdsourcing platforms require
a critical mass of workers. The workers should be attracted
by a high income potential which is possible with a large
number of customers. This situation drives these platforms
into a chicken and egg problem [29], in which a powerful
network is necessary to attract customers and customers are
necessary to engage a powerful network.

* Part of this work was done while the author was an intern at IBM.
1. http://flex.amazon.com
2. http://www.postmates.com
3. http://www.uber.com
4. http://www.lyft.com

A negative correlation between job satisfaction and
worker turnover is naturally expected in crowdsourcing
environments. According to a study with MTurk workers,
a common indicator of positive behavior of the employer,
hence the job satisfaction, is fairness [7]. Fairness can be
defined in the context of anti discrimination laws, equity of
opportunity and equality of outcome [37], [3]. In the context
of crowdsourcing, the distributive fairness is particularly
relevant [16], [17]. This definition seeks fairness based on
the proximity between a worker’s own input/output ratio
and the input/output ratio of a referent [1]. For example,
the workers would expect to be assigned a fair number of
tasks that is proportional to their spatio-temporal matching
qualities/availabilities for the tasks. Effect of such fairness
expectations on the likelihood of participation is more than
that of considerations of self-interest [17]. Hence, fairness
needs to be considered as an essential concept for sustaining
a powerful crowd with significant participation of work-
ers [5].

In this paper, we study the problem of fair allocation
of delivery tasks to workers within the context of spatial
crowdsourcing. The tasks are associated with receive and
delivery locations and time constraints. The workers inform
the platform about their working status using availabilities,
i.e., the location and time period they are willing to serve.
While the primary objective is to maximize the task allocation
ratio (TAR), which is the ratio of number of allocated tasks
to number of all tasks, we aim to achieve this via a fair
distribution of tasks to workers. Current approaches focus
only on the first objective of maximizing the number of
tasks under certain constraints from workers [21]. While
this reduces the use of third party services or employing
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full time couriers [29], it ignores fairness and worker satis-
faction. This can result in lower engagement and migration
to other services. [16].

There is a number of challenges to achieve an effective
and fair crowdsourced delivery. First, unlike other crowd-
sourcing applications, a redundant allocation of tasks is not
possible in the crowdsourced delivery. Redundant allocation
improves the reliability of task completion by increasing
the number of workers the task is assigned to [10][21]. In
delivery tasks, however, only one worker can be allocated
to complete the task. Hence, to increase the reliability of
the worker selection in such tasks, we employ a 2-phase
allocation model. In the first phase, the platform selects a
set of nominees among available workers and the task is
offered to a subset of them. In the second phase, the platform
selects one worker among those who accepted the offer. This
avoids the broadcasting of the offer to all nominees in the
first phase to forestall spamming of the workers.

The second challenge is to provide distributional fairness
among workers to ensure participation. Unless workers and
their availabilities are identical, assigning each worker an
equal number of tasks is not a fair distribution, as it does not
take the user input into consideration. To address this issue,
we call the input/output ratio local assignment ratio and set
the output of a worker as the amount of revenue she gets
from the system, while the input is the total reward of the
offers she has accepted (not necessarily allocated). This view
allows us to define a technical measure of the global fairness
as the coefficient of variation, a statistical measure of relative
variability, of all local assignment ratios. A low coefficient of
variation is associated with the fairness of allocation.

Without considering fairness, the task allocation problem
can be reduced to the minimum cost flow (MCF) prob-
lem [21]. However, the MCF-based solutions fall short to
capture fairness, since every assignment needs to update its
cost matrix. We introduce F-Aware as a solution to assign
tasks to workers in a bipartite graph, by minimizing the un-
fairness locally and allocating tasks to fill worker capacities.

The third challenge is to handle online allocation. In
applications such as online shopping (e.g., with a 3-hour
delivery guarantee), the platform can allocate multiple tasks
in mini-batches with no global knowledge of all tasks and
availabilities in advance. In contrast, in on-demand trans-
portation services, like Uber and Lyft, customers want to
know whether the vehicle is on the way, almost instantly.
Therefore the allocation should be done at the very moment
of the task arrival. F-Aware with the 2-phase model is shown
to be applicable for offline, online, and mini-batch allocation
strategies.

In summary, this paper makes the following contribu-
tions:

• Model. We introduce a generic task allocation model
to cover a variety of crowdsourced delivery sce-
narios. The 2-phase allocation model increases the
reliability of task completion by double-checking
a worker’s willingness to complete the tasks. This
model handles the case where a potential worker may
refuse the task even though she is available.

• Algorithm. We introduce a fairness-aware solution
called F-Aware, which locally minimizes unfairness,

while targeting maximum task allocation. The MCF-
based algorithms fall short on modeling the dynamic
fairness metric, and are not feasible for the online
scenarios.

• Online Allocation. We enhance our 2-phase model
to perform online task allocation. We show that F-
Aware is effective also for online and mini-batch
allocation scenarios, as it is for offline allocation.

We provide a comprehensive experimental study using
real-world datasets to showcase the effectiveness and effi-
ciency of our 2-phase model and of the F-Aware algorithm
in terms of running time, task allocation ratio, and fairness
it achieves.

The rest of this paper is organized as follows. Section 2
gives the preliminaries of the problem. Section 3 explains
the details of our 2-phase task allocation model. Section 4
extends our approach to online task allocation. Section 5
presents the experimental evaluation. Section 6 discusses the
related work. Finally, Section 7 concludes the paper.

2 PROBLEM DEFINITION

We aim to develop a new strategy on allocation of tasks to
workers in a crowdsourced environment. The overall goal
is to maximize the task allocation ratio (TAR), the ratio
of number of allocated task over the number of all tasks,
while distributing tasks to workers fairly. We now give the
preliminaries of the domain and formalize this multi-criteria
optimization problem.
Definition 1. Time period. A time period, h, is a pair of date-

time values b and e, representing the beginning and end
times, respectively.

Definition 2. Delivery task. Tasks are in the form of spatio-
temporal deliveries, such as workers need to move to
the source of the delivery to receive the item and deliver
it to the recipient. In this manner, one can consider
a task as a composite of receive and deliver steps. We
represent the set of all tasks with T , and ith task with
ti. A task is a quintuple {hs, ls, hr, lr,m}. Here, h and l
represents a time period and a geo-spatial point such as
a latitude/longitude pair, respectively. Subscripts s and
r stands for the source and the destination of the task.
In other words, ti.ls stands for location of the source
while ti.lr stands for location to deliver the item for ith

task ti. Note that these steps are associated with different
time periods, as receive and deliver steps have their own
validity periods hs and hr . Lastly, m represents the
reward of the task.

Definition 3. Worker. Workers are people who participate in
the platform to make money. We represent the set of all
workers withW , and ith worker with wi. Each worker, is
a triple {A, c, f}. wi.A is the set of availabilities of worker
wi, wi.c is her capacity and wi.f is the local assignment
ratio. Local assignment ratio, which will be detailed later,
is a dynamic metric used to determine how fair the
system treated a worker so far, defined as the ratio of
the worker’s revenue over the total reward of the offers
she has accepted. The revenue of the worker equals to
sum of rewards of the tasks allocated to her.
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{ls,hs,lr,hr,m}
Refinement of 
Nominees 
(Task Allocation and
Assignment Ratio)

Selection of Best (Task
Allocation Ratio and
Fairness) Candidate

A llocationL ( tj ,   )

{h,l,r}

Fig. 1: Tasks and availabilities are the inputs of the platform. For each task, the nominees are identified. During this
calculation, the system also finds out the acceptance probability, based on Equation 8. The task is multicasted to k of those
nominees. Workers who accept the offer are referred to as candidates and one worker among the candidates is selected for
allocation.

Definition 4. Availability. Workers inform the system about
their working status using availabilities. aip is the pth

availability of ith worker wi, such that aip ∈ wi.A. Each
availability is a triple, {h, l, r}. aip.l is a geo-spatial point.
It is the center of the region in which wi is willing to
accept tasks. aip.r is the radius of the same region. Let
us represent this region with the Cr(l, r) function. The
worker is ready to serve during the time period aip.h.

For a task, ti, to be completed, a worker has to move to
the receive location, ti.ls, during its validity period ti.hs; and
after that, she has to move to the deliver location, ti.lr , during
its validity period ti.hr. An example task ti in crowdsourced
delivery could be to pick-up a gift item from a local shop
(ti.ls) between 12:00 and 14:00 on 23rd of December 2016
(ti.hs), and deliver it to a home address (ti.lr) between 18:00
and 22:00 on the same day (ti.hr). In return for completing
this task, the worker will be paid ti.m amount of money.
In the real world, multiple parameters effect the ti.m value,
including the distance between ti.ls and ti.lr, the size of the
package, and the sensitivity of the content, etc.

2.1 Fairness
An effective network is key to building a powerful crowd-
sourcing platform, therefore, providing continuous partici-
pation of workers and avoiding worker turnover are crucial.
A negative correlation is naturally expected between job
satisfaction and worker turnover in crowdsourcing envi-
ronments. According to a study with MTurk 5 workers, 11
to 26 percent of turnover in crowdsourcing environment is
explained with job satisfaction. In the same study, fairness
is listed as one of the most common indicator of the job
satisfaction [7], [30]. Fairness needs to be considered as a
first class citizen in designing crowdsourcing applications
to ensure long term commitment and participation [5].

There are three major forms of fairness defined in the
social psychology literature, namely: procedural, interactional,
and distributive. Procedural fairness is the perception of jus-
tice on the procedures, policies, and the criteria used by
the decision maker [16]. Interactional fairness is the interper-
sonal aspect of the procedural fairness. Distributive fairness

5. http://www.mturk.com/

is defined as the proximity between a worker’s own in-
put/output ratio and the input/output ratio of a referent [1].
Prior research on the relationship between fairness and job
satisfaction shows that when fairness is regressed along all
three dimensions, the job satisfaction gets impacted the most
due to the loss of distributed fairness [30]. Note that, unless
the workers are identical, assigning each worker to an equal
number of tasks is not a fair distribution by this definition,
as it does not take user input into consideration. Therefore,
we define a new fairness model that captures distributive
fairness, which will be detailed shortly.

2.2 Formalization
With the given definitions, let us first define the problem
before discussing each component separately.
Fair allocation of delivery tasks in a crowdsourcing
environment: Given the set of delivery tasks T and the
set of workers W , represented with their availabilities, the
problem is allocating tasks to workers with the goals of
maximizing the task allocation ratio (TAR) and minimizing
the unfairness (F ) objectives, under the candidacy, capacity
and assignment ratio (AR) constraints which will be
explained next.

Task Allocation Ratio (TAR): To reduce the dependency
of the businesses to using a third party service we set
maximizing task allocation ratio (TAR) as the first component
of our objective function. TAR is defined as the ratio of
the number of allocated tasks over the number of all tasks.
Formally, let Tall be the set of allocated tasks and T be the
set of all tasks. The TAR, defined as:

TAR =
|Tall|
|T |

(1)

Unlike other crowdsourcing applications, redundant al-
location of tasks is not possible in crowdsourced delivery.
Therefore, in order to increase the reliability of a worker
completing a given task, the allocation is done via a 2-phase
procedure, illustrated in Figure 1. In the first phase, the
system nominates a set of workers whose availabilities are
suitable to complete the task. The task is offered to these
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nominees, and they have an opportunity to accept or reject it.
A worker may refuse the offer, even though she is available.
For brevity, we leave the details of nomination and offering
strategy to the next section. Workers who have accepted the
offer are called candidates. In the second phase, one worker
among the candidates is selected and is assigned to the task.

Fairness: Recall that distributive fairness is defined as the
proximity between a worker’s own input/output ratio and
the input/output ratio of a referent. In the 2-phase allocation
model, the input of a worker is the total reward of the
offers she accepted. Note that availabilities cannot be used
as input since a worker might reject offers even though she
is available. The output of a worker, on the other hand, is
the amount of money she earned. Intuitively, not all tasks
have the same complexity, yet the reward of each task is
proportional to its hardness. To capture the hardness of
the tasks while determining a worker’s input/output ratio,
instead of counting the number of tasks a worker accepted
or got assigned, we use the reward of each task. Each worker
wi is associated with a local assignment ratio (LAR), w.fi,
defined as the ratio of the total reward of tasks allocated
to a worker (output) over the total reward of tasks she has
accepted (input). Formally, let wi.Tall be the set of tasks
allocated to worker wi, and wi.Tacc is the set of offers she
has accepted, the LAR of wi is defined as:

wi.f =

∑x
j=1 tj .m∑y
k=1 tk.m

, ∀j,k tj ∈ wi.Tall, tk ∈ wi.Tacc (2)

where

x = |wi.Tall| and y = min(|wi.Tacc|, wi.c) (3)

The number of tasks a worker accepts can exceed her ca-
pacity, since she will be assigned to a subset of the tasks she
has accepted. However, since the capacity limits the number
of allocations, we consider minimum of {|wi.Tacc|, wi.c}
acceptances when calculating the denominator. The system
is considered more fair as the proximity of the LAR values
will be higher. Although the standard deviation of the set
of LAR values represents this proximity, using it as the
evaluation metric would be misleading since the different
allocation schemes will have different number of tasks allo-
cated. Hence, we evaluate the overall fairness of the system,
F , using coefficient of variation of the set of LAR values,
i.e., standard deviation of the LAR values divided by their
mean. Let F be the set of all local assignment ratio values of
users system fairness, F , is formalized as:

F =
σ(F )

µ(F )
(4)

Candidacy Constraint: Recall wi.Tacc is the set of tasks
worker wi has accepted. A given task tj can be assigned
to worker wi only if the system nominated her for the task,
and she accepted the offer: ti ∈ wi.Tacc.

Capacity Constraint: Definition of the capacity constraint is
intuitive. The number of tasks assigned to a worker cannot
exceed her capacity: |wi.Tall| ≤ wi.c.

Assignment Ratio Constraint: Note that each task is offered

TABLE 1: Commonly Used Notation
Notation Explanation
h [b, e] time period; beginning from b, ending at e
w{A, c, f} worker; consists of set of availabilities

(w.A), capacity (w.c) and local assignment
ratio (w.f )

t{hs, ls, hr, lr,m} task; consists of source location (t.ls), source
time period (t.hs), destination location
(t.lr), destination time period (t.hr) and a
reward (t.m).

aip{h, l, r} pth availability of ith worker wi consists of
a time period h, a location l and radius r

T ,W , A, F set of all tasks, workers, availabilities and
local assignment ratios respectively.

Tall, wi.Tall,
wi.Tacc

set of allocated tasks, allocated tasks to
worker wi and tasks accepted by wi.

to a set of nominees, yet among the candidates who accept
the offer, only one worker will be selected. To forestall
spamming of workers and avoid unnecessary communi-
cation costs, we avoid broadcasting offers to nominees. At
the one extreme, the task can be repeatedly unicasted until
one nominee accepts it. However, this approach would cause
potentially long wait times. Therefore, we present a hybrid
solution: multicasting the offer to k workers, which avoids
spamming of the workers while increasing the probability
of at least one nominee accepting the offer. The value of k is
calculated for each task independently. In the next section,
we show that higher values of k will result in higher number
of candidates, but it leads to a large set of spammed workers.
To be able to define an upper limit, we introduce a system-
wide metric called assignment ratio (AR), which is the ratio of
the number of allocated tasks over the number of accepted offers.
Higher AR indicates more accurate nominee selection, or
less number of spammed workers. Therefore, we constraint
assignment ratio to be higher than a predefined threshold θ.
We formalize the AR as follows:

AR =
|Tall|∑|W|

i=1 |wi.Tacc|
(5)

And define assignment ratio constraint as AR ≥ θ. Later, we
will discuss relaxing this constraint to decrease the wait time
of the customers.

3 ALLOCATION MODEL

In this section, we describe the details of the 2-phase allo-
cation model. Inputs to the system are the tasks from the
customers, and the availabilities from the workers, both with
time and location components. In many practical cases, both
the tasks and the availabilities are registered in advance.
Hence, one needs to check if a worker is still willing to
do the job. Our model is able to do this check to increase
the reliability of the worker with respect to the completion
of the given task. In the next section, we also cover the
online allocation scenario, in which tasks and availabilities
can appear anywhere, anytime.

In the remaining parts of this section, we give the details
of the 2-phase model in three steps: (i) nomination of
workers, (ii) batched progressive offer strategy, and (iii)
task allocation.
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tj.ls tj.lr

wi aip wi aiq

d ( tj.ls, tj.lr)  

wi  aip

tj.ls tj.lr

Fig. 2: Movement cost calculation of a task is different de-
pending on the number of availabilities satisfying it. Roads
are numbered with respect to travel order.

3.1 Nomination of Workers
Initial step of the 2-phase allocation procedure is to find
out the appropriate set of workers to offer the task. These
workers are called nominees. For a worker wi to be nomi-
nated to a task tj , her availability set, wi.A, should contain
the necessary availabilities to satisfy both steps of tj . Recall
since tasks are in the form of spatio-temporal deliveries,
one can divide them into two: receive and deliver steps.
Satisfying one of these parts, lets assume receive, means that
worker wi should have at least one availability aip, such
that time period of task tj .hs intersects with time period
of availability aip.h and source location tj .ls lies inside the
region Cr(aip.l, aip.r).

One can formalize the satisfaction relation between a
step, receive or deliver, of a task tj and an availability aip of a
worker as a function S:

S(tj .hs, tj .ls, aip) ≡ (tj .hs ∩ aip.h 6= ∅)∧
(tj .ls ∈ Cr(aip.l, aip.r))

(6)

The intuition behind dividing the tasks into two steps is
that, a worker can have separate availabilities such that one
satisfies the requirements of the receive step and the other
satisfies the deliver step. Given the set of workers, the system
searches for those workers that have satisfying availabilities
for both steps of a task. To formulate this relation, we
employ the S function to locate the pair of availabilities
of a worker wi that satisfy the receive and deliver steps,
respectively. We denote the resulting function as N(tj , wi).
If no such pair can be located, then the function produces
an empty set.

N(tj , wi) =

{aip, aiq}
∃ aip ∈ wi.A|S(tj .hs, tj .ls, aip)∧
∃ aiq ∈ wi.A|S(tj .hr, tj .lr, aiq)

∅ otherwise
(7)

We should note that, in Equation 7, p and q values can be
equal, which means a single availability might satisfy both
requirements.

It would be unrealistic to assume that all nominated
workers will have the same probability to accept the of-
fered task. Besides availability, there are many factors that
influence such a decision. Existing research showed that
workers are willing to accept the tasks that are less costly for
them and closer to their home locations [2]. Therefore, the
acceptance probability of each nominated worker for a given
task is negatively correlated with the task’s cost, which is
the movement cost in our case.

Many existing local delivery systems use the distance
between the source and the destination as an indicator of the
payment amount. It means that, tasks which require longer
traveling pay more to their workers. On the other hand,
the movement cost of a task might differ between workers,
as they should move towards the source from their current
location or move back to their previous location from the
destination. Since we do not track the workers’ locations,
we assume that a worker is at the location provided as
part of her valid availability and she tends to go back to
that location, after completing the deliver step. We also
assume that the acceptance does not depend on the previous
acceptances or rejections.

Figure 2 shows two different scenarios regarding the
calculation of the movement cost of a task. Let us define the
movement cost of a task as α + β, and let d be the func-
tion that calculates the distance between two geo-spatial
points. The distance between source and the destination,
given by α = d(tj .ls, tj .lr), remains the same no matter
which worker is assigned to the task. On the other hand,
the distance traveled towards the source and from the
destination, β, depends on the worker availabilities. In the
first scenario, single availability of the worker, aip, satisfies
both of the steps of the task. Therefore, the worker will
only move towards the source, and from the destination
(β = d(aip.l, tj .ls) + d(tj .lr, aip.l)). In the second scenario
however, after moving towards the source, as well as after
delivering the item, worker will go back her initial posi-
tion. Moreover, distances between the locations of those
availabilities should be considered as well. Consequently,
workers movement in the second scenario would be equal
to β = 2× d(aip.l, tj .ls) + 2× d(tj .lr, aiq.l) + d(aip.l, aiq.l).

The reward of the task is positively correlated with α
and indifferent to who completes the task. Minimum value
for the total travel distance is 2 × α, which happens when
the worker is already at the source location, or at the
destination location, or lies on the linear line connecting
these two points, i.e. α = β. Intuitively, workers are will-
ing to accept tasks with high income and less movement.
Therefore, acceptance probability of a task tj by worker wi,
denoted as R(tj , wi), is positively correlated with α, but
negatively correlated with β. For the ideal case, α = β
acceptance probability should be 1. We formalize this model
in Equation 8. To take into account the probability of a
worker refusing an offer even when she is a perfect match,
we use a constant c, where 0 ≤ c ≤ 1.

R(tj , wi) = eα−β × c (8)

Since α ≤ β and 0 ≤ c ≤ 1 the value of R is guaranteed
to lay between 0 and 1. Selection of nominees for a task
tj outputs the set L(tj ,W), which contains the worker wi
and acceptance probability R(tj , wi) pair. This set is used
in our batched progressive offer strategy, a technique we
implement to minimize the waiting time, while maximizing
the assignment ratio.

L(tj ,W) = {wi, R(tj , wi)|wi ∈ W ∧N(tj , wi) 6= ∅} (9)

Let A be the set of all availabilities. Brute force approach
to construct L(tj ,W) for a given task tj ∈ T iterates
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through the availabilities set A and calculates R(tj , wi) if
N(tj , wi) 6= ∅, for each worker wi ∈ W . For all tasks,
complexity of this calculation is O(|T ||A|). To decrease the
computation time, we index availabilities on the temporal
dimension using interval trees. For each task, we query this
index two times, one for the receive step, and one for the
deliver step. We check the spatial intersection only for the
resulting availabilities. In the Online Task Allocation section,
we discuss how long to wait between task arrival and
nominee selection processes.

3.2 Batched Progressive Offer Strategy
There are three different approaches regarding offering a
task to a predefined set of nominees. The first approach is
broadcasting the offer. To forestall spamming of workers
and avoid unnecessary communication costs, we avoid
broadcasting offers to nominees. Moreover, we want to
minimize the number of cases where a worker accepts
the incoming offer but is not allocated to the task, as this
might cause churn over time. Therefore, the ideal case is
when there is exactly one candidate. Reaching this ideal
case is only possible with unicasting the offer. However,
there is the probability of the nominee rejecting the offer,
even though she is available. Therefore, the system should
follow a progressive approach, by offering the task one by
one, until somebody accepts, and waiting for a preset time
between each round. Obviously, this will result in a long
waiting time for the customer to see if his task is going to
be served or not. To avoid both situations, we multicast the
offer to k nominees in batches, progressively, until there is
at least one candidate. With this approach, we decrease the
waiting time of the customer, while limiting the number of
candidates. For each task, once the value of k is calculated,
it is used for further batching, if necessary.

Let us call the probability of the task being accepted by
at least one nominee as probability of response. For each task
tj , the probability of response, when offered to k nominees,
can be calculated using the probability of all k nominees
refusing it. Recall that L(tj ,W) is the set of nominee and
acceptance probability pairs, and assume that it is sorted by
the acceptance probability values. Probability of response for
a batch of k workers is calculated as follows.

P (k, L(tj ,W)) = 1−
k∏
i=1

(1− (R(tj , wi))) (10)

By keeping the value of P (k, L(tj ,W)) above a tuning
parameter ε, the lower bound of the k can be defined. We
call ε, the threshold of probability of response.

The upper bound, however, is calculated using the as-
signment ratio as a constraint. To limit the value of k, first
we should be able to predict how many nominees are likely
to accept the offer. In the worst case for assignment ratio
all k nominees accept the offer. As we try to maximize the
assignment ratio, the number of candidates should not exceed
a certain number. Although it is not realistic to expect that
all k workers will accept the offer, it is still useful to limit
the k value.

Given a task tj , let us define the probability of ith

worker accepting the offer as a random variable xi. Then

the expected value of it is E[xi] = R(tj , wi). Transforming
into multiple workers, assignment ratio would be one over
the number of candidates, therefore, it would be equal to
E[ 1

x1+x2+...+xk
]. From probability theory, it is known that

E[ 1
x1+x2+...+xk

] ≥ 1
E[x1+x2+...+xk]

, thus the latter could
be used as a lower bound for the expected value, where,
E[x1 + x2... + xk] = R(tj , w1) + R(tj , w2) + ...R(tj , wk).
With this at hand, let us define a function E(k, L(tj)) as a
lower bound for the expected value of the assignment ratio:

E(k, L(tj ,W)) =
1

E[x1 + x2 + ...+ xk]
(11)

Recall one of the constraints is keeping the assignment
ratio of the system above a predefined threshold θ. We
use the same threshold, as a lower bound to function
E(k, L(tj ,W)) to satisfy assignment ratio constraint locally,
for each allocation. Although local satisfaction is stronger
than the global constraint, as we will discuss next, the
assignment ratio constraint is relaxed when it contradicts
with the probability of response.

While the probability of response P (k, L(tj ,W)) is pos-
itively correlated with k, as it is shown above, the expected
value of the assignment ratio (value of E(k, L(tj ,W))) de-
creases with it. Therefore, bounding E function from below,
sets an upper bound on the value of k. With the above
defined thresholds, the value of k should guarantee that
probability of response P (k, L(tj ,W)) is above ε, while the
assignment ratio constraint is satisfied for each task, i.e.
E(k, L(tj ,W)) is above θ.

In summary, k is selected using following inequality:

k ≥ min{k|(P (k, L(tj ,W)) ≥ ε}
k ≤ max{k|E(k, L(tj ,W)) ≥ θ}

(12)

k is set to the maximum value that satisfies both of those
inequalities. However, the given inequality might be invalid
with respect to selection of the ε and θ values. Consider that,
even the smallest k value satisfying the upper inequality
might not satisfy the lower one. In that case, we relax the
assignment ratio constraint, and use the k that satisfies the
upper inequality.

After this calculation, the task is offered to the first k
workers and the system waits for a predefined time. Recall
that, workers are sorted in the decreasing order of the
acceptance probability. In case of all nominees refuse the
offer, the task is offered to the next k workers, until there is
at least one candidate or all nominees are asked.

3.3 Task Allocation
The last step of the 2-phase model is to select one worker
among the candidates to allocate the task.

Figure 3 shows an example scenario in which there are
three tasks and three candidates. The edges are from tasks to
their candidates. For example t1 is accepted by w1 and w2,
while w1 is the only candidate for t2. The simplest version of
this problem is finding a one-to-one assignment scheme of
tasks to workers, assuming all the edges have equal weight.
By definition, this is the bipartite graph assignment prob-
lem. In our specific case, there is a one-to-many relationship
between the tasks and the workers. Moreover, to capture
the spatial aspect of the problem, one might want to use
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Fig. 3: Allocation of tasks to candidates

edge weights to represent movement cost and add capacity
to workers as well. Including these additional constraints,
the task-to-worker bipartite graph can be represented as a
flow graph by adding a source and a sink. With this repre-
sentation, task to worker allocation can be reduced to the
minimum cost flow (MCF) problem and solved optimally
with well known algorithms, i.e. successive shortest path or
cycle canceling [21].

Even though they reach optimal result on task allocation,
minimum cost flow based solutions have their own draw-
backs. First of all, running time of the optimal solution is far
from being feasible because of high complexity. Given the
task to candidate bipartite graph G(E, V ), s.t. V = T ∪ W
and E represents the acceptances, the complexity of a care-
ful implementation of successive shortest path algorithm is
O(|V ||E|log|V |). Second, with the aforementioned defini-
tion of fairness, it is hard to integrate it into the MCF-based
algorithms. This is because at each iteration LAR values are
updated, which updates the cost-matrix as well.

Assuming that LAR values are static, introducing fair-
ness as a new constraint transforms the problem to mini-
mum cost maximum flow problem. The goal of this prob-
lem is to select the minimum cost flow among multiple
maximum flows. In our setting, this corresponds to max-
imizing task allocation ratio while minimizing unfairness
objectives. This problem could be solved with Hungarian
algorithm, however, similar to the previous discussion, the
high complexity of the algorithm,O(n3), makes it inefficient
for online allocation scenarios [24].

The naı̈ve approach for allocation is random selection
of one candidate, which is used as one of the baselines in
our experimental evaluation. On the other hand, to capture
the spatial aspect of crowdsourced delivery, it is beneficial
to allocate the nearest worker [21]. This approach can be
extended by proactive allocation of workers, if distribution
of tasks is known in advance [25]. Last but not the least,
inspired from file allocation techniques from the operating
systems literature, selecting the Least Allocated Worker first
could increase the Task Allocation Ratio by reserving room
for further allocations. While all approaches are feasible in
terms of their running time, our experimental evaluation
shows that they either fell short in terms of modeling the
fairness or have subpar performance with respect to task
allocation when the capacity is constrained.

To cope with the aforementioned challenges, we intro-
duce an algorithm called F-Aware, given in Algorithm 1. It
is a greedy algorithm that allocates tasks to workers one by

Alg. 1: F-Aware Task Allocation
Data: G(E, V ): Task-Worker Bipartite Graph s.t. V = T ∪W
Result: G′(E, V ):Updated Bipartite Graph
G′(E, V )← G(E, V ) . Copy the original graph
T ← sort(T ) . Tasks sorted in increasing order of in-degree
for t ∈ T do . For each task in task list

. Get the subset of workers sharing an edge with t
W ′ ← G(E, V ).get(t)
W ′ ← sort(W ′) . Workers sorted in increasing LAR order
isAssigned← False
index← 0
while ¬isAssigned&& index < |W ′| do . Assignment is
not done but there are still candidates

w ←W ′.get(index)
if w.c > 0 then . If worker has capacity

G′(E, V )← G′(E, V ) ∪ assign(t, w) . Mark edge
profit(w)← profit(w) + t.m . Update profit
w.c← w.c− 1 . Decrease capacity
isAssigned← True

else
index← index+ 1

return G′(E, V ) . Return the modified bipartite graph

one. Given the task-to-worker bipartite graph G(E, V ), s.t.
V = T ∪ W , it considers tasks in the increasing order of
the node in-degree. Tasks with less candidates are placed
first, as the ones with higher degree have more flexibility.
For each task, each worker with remaining capacity higher
than 0 is considered as a candidate and the one with the
lowest local assignment ratio is selected. If there are more
than one worker with the same LAR, the one with the
higher denominator is selected. Recall that if the capacity
of a worker, wi.c, is lower than the number of tasks she
has accepted, we only consider the first wi.c offers. The
process continues until all tasks are visited. When a task tj is
assigned to a worker wi, the input graph, the total earnings,
and the residual capacity of wi are updated accordingly.

Our experimental results confirm the effectiveness of F-
Aware in terms of running time, task allocation ratio, and
fairness it achieves.

4 ONLINE TASK ALLOCATION

While in offline allocation based applications, all the tasks
and availabilities are known in advance, in real-time en-
vironments, they can appear at anytime, anywhere [36].
Consider an example scenario, in which a customer would
like to travel to airport and asks the crowd for a ride.
Overnight reply to this request would be too late, as the user
would take a taxi after waiting for a relatively small amount
of time. In fact, these dynamically arriving requests require
online processing. Therefore, the problem of allocating tasks
to workers in a dynamically changing environment raises.

While aforementioned example requires instant response
to a customer, there are also some crowdsourced delivery
applications that allow decision maker system to wait for
a period, before allocating the task. Online shopping is
an example of such applications. In this case, a seller can
wait to group deliveries by their destinations and allocate
only one worker for multiple packages. During this waiting
period, system collects mini-batches of tasks and worker
availabilities for a period and they are processed against
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each other when the period expires. In this section, we
present our modifications on the 2-phase allocation model
to cover both instant and mini-batch allocation scenarios.

Figure 1 shows the illustration of the workflow for the
2-phase allocation model. Our first modification for adapt-
ing this workflow to online task allocation is adding two
windows on the selection of nominees. These windows are
for the tasks and for the availabilities, respectively. They
are neither sliding nor tumbling windows. When a task or
availability arrives, it is appended into the corresponding
window. An availability is removed from the window when
it expires. A task on the other hand can be removed under
two conditions: i) it is assigned to a worker, ii) it expires.
However, waiting until expiration of a task before allocation
might cause misses, as all satisfying availabilities might
expire meanwhile. Therefore, we also define a window size,
in terms of minutes. For every window expiration, the
tasks are processed against availabilities and nominees are
identified. After this step, batched progressive offer and task
allocation steps are used as they are. There are two corner
cases about tasks. First, if a task has no nominees at the
time of the window expiration, it stays in the window and
participates in the following window expirations, until its
own expiration. Second, if the task has nominees but all of
them rejected the offer, it again remains in the window for
new nominees to arrive. The same task is never offered to
the same nominee more than once.

There are multiple constraints on the window size deci-
sion. First of all, it should be shorter than the smallest time
period of the set of all tasks and availabilities to guarantee
processing. Second, the waiting time should not exceed
reasonable response time of the application. An online
shopping application that needs 2-hours delivery guarantee
cannot define the window size as 3 hours. For applications
that require instant reply, the window size can be set to 0. In
instant task allocation, when a task arrives, it is processed
against the availabilities window to identify nominees. If
there are not any, it is added to the tasks window and
stays there until its expiration time. When an availability
arrives, all tasks and availabilities present in the window
are processed, since this availability might be completing a
partial match. A partial match is possible when a worker has
a satisfying availability for only one of the steps of the task.
We leave the detailed discussion of partial match processing
as future work. In our experimental evaluation, we study
the feasibility and effectiveness of our allocation model
with various window sizes, including instant allocation, i.e.
window size equals to 0.

5 EXPERIMENTAL EVALUATION

In this section, we present the detailed evaluation of our
proposed 2-phase allocation model and the fairness-aware
task allocation algorithm, F-Aware.

To easily determine the superiority of a solution over
other solutions, we combine optimization goals into a single
parametric objective function O and define it as:

O = TAR× e−(ρ∗F) (13)

Since the goals are maximizing the TAR while minimiz-
ing the unfairness, the objective function is proportional to

TAR. But the exponential part of it is inversely proportional
with the global unfairness metric F . To enable the system
to prioritize one component of the objective over the other,
we introduce the parameter ρ, where 0 ≤ ρ ≤ 1. By setting
ρ to 0, one can simplify this objective to task allocation ratio
only. Higher values of it will increase the importance of the
unfairness in the overall objective.

The evaluation includes four sets of experiments. In
the first set, we compare F-Aware with 4 other competitor
algorithms in terms of task allocation ratio (TAR), unfairness
and value of the objective function. Recall that the objective
function, as defined in Eq. 13, is the combined metric of
TAR and unfairness. The naı̈ve approach of assigning tasks
to workers is random selection among the candidates, re-
ferred to as Random in the performance graphs. The second
approach is to select Least Allocated Worker First(LAF). The
intuition behind this approach is trying to reserve room for
further task allocations. Existing work of task allocation in
spatial crowdsourcing mostly use Nearest Neighbor Priority
strategy [21], [25] to capture the spatial-aspect of the prob-
lem. [21] introduces allocation techniques based on location
entropy, and [25] extends nearest worker priority technique
with pro-active deployment of workers to geo-grids. We
only prioritize the nearest worker since we do not make
assumptions on distribution of tasks. This algorithm is re-
ferred to as Nearest in this section. Lastly, we use successive
shortest paths algorithm which solves the minimum cost
flow(MCF) problem [23]. This algorithm is optimal on Task
Allocation Ratio, hence it is used to evaluate TAR of all algo-
rithms. The second set of experiments studies the efficiency
of our batch incremental offer strategy, that is how different
values of ε and θ affect the k value, thus assignment ratio,
and unfairness. The third set studies online task allocation,
presenting task allocation ratio and unfairness as a function
of window size. Finally, the last set is the sensitivity study
that presents task allocation ratio and unfairness of different
time period lengths as a function of coefficient of mean. As
we will detail soon, length of the time period and coefficient
of the mean are two variables we use to adapt real-world
data to our setup.

We implemented all algorithms using Java 1.8. All exper-
iments were executed on a Linux server with 2 Intel Xeon
E5520 2.27GHz CPUs and 64GB of RAM.

Dataset. Experiments are performed using two real-
world datasets. The first dataset contains the Foursquare
check-ins from New York City for the month of May
2012 [34]6. This dataset contains around 50,000 check-ins
from 987 different users. The second dataset is a taxi-trip
dataset for Manhattan, for the same time period7. We used
up to 512,000 randomly sampled rows from the taxi dataset.
Half million tasks for a city, for one month, is a fair work-
load, considering assignment could be done independently
for each city. Each row of the check-in data contains a user
id, time of the check-in, and the location of it. Each row in
the taxi dataset contains the time and the location of the
pick-up and the drop-off. It also contains the cost of the trip.
To simulate crowdsourced delivery behavior, we use taxi
trips as tasks and check-ins as spatio-temporal availabilities

6. sites.google.com/site/yangdingqi/home/foursquare-dataset
7. www.nyc.gov/html/tlc/html/about/trip record data.shtml
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Fig. 4: Scalability
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Fig. 5: Effect of the Worker Capacity

of the workers. For both datasets, we converted all time
points to time ranges by adding time periods. Given a point
in time, p, a period of length ∆T is created with beginning
and end points [p, p+ (∆T )]. We treat pick-up location and
time of a taxi trip as the task’s source location and source
validity time. The same applies to drop-off location and time
and tasks deliver location and validity. For each check-in,
we use the location of it as the location of the availability
and converted the time of it to a time period as described
above. Radius of each availability is sampled from a Normal
distribution with mean and standard deviation calculated
using taxi trips. We study the effect of this conversion as part
of our last experiment presented in this section, by varying
the mean size of the time period. For all other experiments,
the mean value for the time period is taken as 2 hours. Last,
we used the cost of the trip as the reward of the task.

5.1 Scalability
In this set, we present two subsets of experiments. In the
first subset, we observe the running time performance, task
allocation ratio, and unfairness as a function of the number
of tasks. The number of tasks is doubled for every data
point ranging from 4000 tasks up to 512,000. Capacities of
the workers are assigned using a Normal distribution and
the mean is set to the number of tasks over the number
of workers. Standard deviation of the distribution is set
to mean over 4 to make sure all capacities are at least
0. Using this tight capacity assignment for this particular
experiment set, we ensure that the capacity is barely enough
for allocating all the tasks. This gives a clear advantage
to algorithms that can allocate tasks close to optimal. In
the second subset, we observe the task allocation ratio and
unfairness as a function of worker capacity. 128,000 tasks
are used, and capacities are doubled for every data point
ranging from 32 to 4096. To observe the behavior of the
MCF algorithm, we also present unfairness as a function of

capacity using 8000 tasks (Figure 5b). In this experiment,
capacities are ranging from 4 to 256.

Figures 4, and 5 present our scalability related results. In
all figures, the x-axis represents either the number of tasks
to allocate, or the capacity of workers, and y-axis represents
the performance metric. Different series represent different
assignment algorithms. Figure 4a plots the running time
as a function of the number of the tasks. We make two
observations from the figure. First, and most importantly,
F-Aware runs 107 times faster than the Minimum Cost Flow
MCF algorithm. For 32,000 tasks, the running time of the
MCF is 1.89× 108 milliseconds while F-Aware completes in
27 milliseconds. Because of the long evaluation time, we
do not present MCF results for more than 32, 000 tasks.
Secondly, the running time of the F-Aware algorithm is linear
with the task count. Increasing from 4000 tasks to 512,000
tasks, the running time increases from 4.6 milliseconds to
13,130 milliseconds. The difference between the running
times of Random, LAF and Nearest assignment algorithms
are negligible.

Figure 4b plots the task allocation ratio as a function
of the number of tasks. To increase readability, it also
includes the zoomed small figure of data points between
[4000, 32,000]. Since any allocation algorithm will left tasks
with no candidates unassigned, in this experiment we con-
sider only tasks with at least one candidate. We observe
that all allocation algorithms are able to hold their alloca-
tion ratio with the increasing number of tasks. The most
important observation is that F-Aware is able to assign 96.9%
of the tasks that are allocated by MCF. For 32, 000 tasks,
MCF reaches to 97% task allocation ration, while F-Aware
allocates 94% of all tasks. When we double the number of
tasks, F-Aware still allocates 96.5% of tasks, while Random
and Nearest worker allocation algorithms stay at 80% and
84%, respectively. In terms of TAR, LAF is the best com-
petitor of F-Aware. This is expected as its goal is to increase
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the number of allocated tasks. However, TAR of F-Aware is
still higher. For 512,000 tasks, F-Aware reaches to 98.1% task
allocation ratio, while LAF reaches to 95.3%.

We discuss the Figures 4c, 5a, 5b and 5c together as they
are complementary. First three figures plot the unfairness as
a function of task count, capacity and capacity respectively.
The last one represents the number of assigned tasks, as a
function of capacity. In Figure 5b, we use only 8000 tasks to
include MCF algorithm. In the first Figure, (4c), we use up to
512,000 tasks but exclude MCF after 32,000 tasks, because of
the impractically long running time. For the remaining two,
we use 128,000 tasks, and capacity of the workers varies
from 32 to 4096.

At this point, it would be useful to recall, LAR of a
worker is the ratio of revenue she made from completed
task over total reward of the offers she has accepted. How-
ever, since capacity limits the assignable task count, if a
worker wi accepts more offer than her capacity wci , we only
consider first wci offers when calculating LAR. Therefore,
when evaluating performance of an algorithm in terms of
fairness, one must consider two cases when capacity limits
assignments, and when there are more than enough room
for assignments.

When worker capacities are enough to serve all tasks, we
observe a significant difference between unfairness values.
In Figure 5b, for small dataset, Random, Nearest, and MCF
perform similar. In contrast, unfairness metric of LAF 0.8×
of the same metric of those three. We observe F-Aware,
performs best among all. Unfairness metric MCF algorithm
is 1.5× that of our F-Aware algorithm when capacity is
256. For the larger task set, the difference between LAF
and F-Aware becomes even more significant (figures 5a, 5c).
When the capacity is set to 1024 unfairness value of LAF is
0.41 while F-Aware has only 0.16 unfairness. For same data
point Nearest, and Random have 0.30, 0.27 unfairness values
respectively. We make two additional observations from this
figure. First, up to 256 capacity, unfairness values increase.
This is because capacity of workers less than number of ac-
ceptances. In this set of experiments each worker accepts 215
offers in average. After this point number of accepted tasks
used when calculating LAR. Using Figure 5c we observe
all algorithms reach maximum number of allocated tasks
at capacity 1024, which reflected as stabilized unfairness
values in Figure 5a. Second, LAF performs poorer than
Nearest and Random assignment approaches. Since it does
not take user input into account, (i.e. accepting offers) when
tasks are distributed evenly, workers who have accepted
small number of offers have LAR = 1, while workers with
large number of acceptances have too low LAR values.

When capacity is set to a too low value, we cannot
observe significant difference between unfairness values of
MCF, LAF, and F-Aware. This is because all workers are
fully allocated. On the other hand, in Figure 4c values of
unfairness metric for Random, and Nearest is around 3.6×
that of F-Aware. The reason behind is system could serve
less number of tasks (Figure 4b), when one of these two
assignment algorithm is used.

Figures 4d and 5d present the performance in terms of
our objective, Eq 13, as a function of task count and capacity
respectively. In these experiments, the ρ parameter is set to
1, to observe the balanced outcome of task allocation ratio and

fairness. In Figure 4d, we observe that the difference between
the objective values of F-Aware and MCF are negligible. F-
Aware performs as good as MCF, in terms of our objective,
with 107 times faster processing speed. Another observation
from the same figure is that, F-Aware performs 4% better
than LAF, even with limited capacity. For 128, 000 tasks, F-
Aware has 0.86 objective value while LAF has 0.82. When
there are more than enough room for assignments, we
observe that the gap between F-Aware and LAF becomes
even more significant, as shown by Figure 5d. For a capacity
value of 4096 the objective value of F-Aware is 0.5, while
LAF could reach only 0.39. Objective values of Nearest and
Random are better than LAF, because of the lower unfairness
values, but still they are far from performing as good as
F-Aware.

To summarize this experiment set, one can say that
using MCF is impractical due to its long running time. In
contrast, F-Aware runs 107 times faster. When only TAR
is considered, LAF performs similar to F-Aware, but the
other two approaches, Random and Nearest, leave 19% and
15% of all tasks unassigned, respectively. While LAF is the
best competitor of F-Aware, in terms of TAR and runtime,
its unfairness metric value is 2.5× that of F-Aware and its
objective value is 80% that of our F-Aware algorithm.

5.2 Effect of the Batch Size
We observe average k, unfairness, assignment ratio, and av-
erage wait time as a function of the probability of response
threshold ε. Figure 6 presents our batch size related results.
In all figures x-axis represents the value of ε and y-axis
represents a performance metric. Different series represent
different assignment ratio thresholds, θ. For all series we
use the F-Aware assignment algorithm. For this set of ex-
periments capacity of workers is high enough to prevent a
bottleneck.

Figure 6a plots the change in the value of k as a function
of ε. The series with circle marker is the unicast line, i.e. k
is set to 1. Recall that the value of k is bounded from below
by a function of ε and bounded from above by a function of
θ. We select the largest k inside this range. Higher values
of ε and θ imply tighter bounds. Since θ = 0.0 means
unlimited upper bound, practically it is the broadcasting
line. We observe that as long as ε ≤ 0.95 the value of k
is limited by the assignment ratio threshold θ. Increasing θ
from 0.2 to 0.4 decreases the average k value from 14 to
6. Since task completion is our primary goal, when lower
bound is higher than the upper bound (possible in some
cases based on the definition of Equation 12), we use the
lower bound for deciding the k value. One can observe this
behavior when ε ≥ 0.95, as all the average k values are
closer to broadcasting.

Figure 6b plots the unfairness as a function of ε. We
observe that smaller k values provides a more fair systems.
The unfairness of unicasting is 0, as whenever a worker
accepts a task, she will be assigned to it. Whereas the unfair-
ness of broadcasting is 0.36. Most importantly, unfairness
of multicasting the offer to an average of 5.8 nominees is
0.20. There are two reasons behind this observation. First,
local assignment ratio of a worker is negatively correlated
with the number of her acceptances. Therefore, the mean of
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Fig. 6: Effect of the Batch Size
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Fig. 7: Online Task Allocation

the set of LAR values increases, which leads to a decrease
in the coefficient of variation metric. Second, and more
importantly, when a worker accepts an offer, probability of
her getting the job is higher with the smaller values of k.
In the extreme case, that is unicasting, acceptance implies
assignment, hence unfairness = 0. We can also observe
a similar behavior in Figure 6c. Assignment ratio of the
unicasting equals to 1. For the other series, we can see that
assignment ratio is negatively correlated with the average
k value. For broadcasting, it decreases up to 0.13. When
the average k is 5.8, the assignment ratio is 0.38. Another
important observation is theoretically θ = 1.0 should be
the unicast line but it has 0.6 assignment ratio. The reason
behind is ε is a stronger constraint than θ. We do not observe
same behavior lines other than θ = 1.0, and θ = 0.8

Figure 6d plots the average wait time as a function of
ε. y-axis shows the average number of rounds passed until
there is at least one candidate. Recall that the task is offered
to nominees in batches until there is at least one response.
Between each round, the system waits for a predefined
period to let nominees decide. For some scenarios, e.g.
on-demand transportation, customers expect almost instant
reply. Higher number of rounds before acceptance leads
to late notification to a customer. In case of broadcasting,
since all nominees are notified at once, number of rounds
for response is always 1. However, as we have just seen,
broadcasting leads to low assignment ratio and high unfair-
ness. At the other extreme, that is unicasting, the average
wait time is 1.8× of broadcasting. Multicasting is better
than both approaches. Multicasting the task to an average of
5.08 (ε = 0.8, θ = 0.95) nominees leads to only 1.01 average
rounds, while providing only 0.13 unfairness.

In summary, one can say that multicasting is better than
broadcasting in terms of assignment ratio and fairness. More-
over, it beats unicasting when average wait time is considered,
while being almost as fair.

5.3 Online Allocation
We observe the task allocation ratio and unfairness as a
function of the window size and as a function of capacity.
Figure 7 shows our online allocation related results. For
Figures 7a and 7b, the x-axis represents the window size
in terms of minutes. In addition to window size equals
to 0, the x-axis also includes data points starting from 2
minutes, going up to 64, doubling at each step. Different
series represent different task allocation algorithms. For
Figures 7c and 7d, the x-axis represents worker capacities.
The values are doubled for each data point, starting from
16, going up to 512. For all figures, the y-axis represents a
performance metric. In this set, we used 96, 000 tasks.

Figure 7a shows the task allocation ratio as a function of
the window size. The red line with cross markers represents
offline F-Aware algorithm. All the other series are drawn
relative to this line, therefore it is the y = 1 line. We
observe that for the instant task allocation, the difference
between different series is negligible. This is because the
number of nominees for each task is very small, and thus the
decisions of the algorithms do not create any difference. On
the other hand, when the window size is increased, we can
see that F-Aware, and LAF performs better than the other two
approaches and gets closer to the offline assignment. For the
64 minutes window, F-Aware, and LAF allocates 88%, and
85% of the tasks assignable by offline allocation, whereas
Nearest, and Random allocation approaches stay at 79% and
76%, respectively.

Figure 7b plots unfairness as a function of the window
size using the same setup as Figure 7a. When smaller win-
dows are used, since tasks are offered to only current nom-
inees, the unfairness behavior is similar to using smaller k
values. For example, unfairness is 0, when instant allocation
strategy applied, as in unicasting. For longer window sizes,
the results expected to become more similar to the offline
setup. For example The unfairness of offline F-Aware is
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Fig. 8: Sensitivity Experiment
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Fig. 9: Discussions

0.13, while online F-Aware increases from 0.04 to 0.11 when
window size increased to 64 minutes from 2 minutes. The
most important observation is F-Aware performs best among
all online algorithms. For the window size of 64 minutes
online F-Aware has 0.11 unfairness while LAF, Nearest, and
Random have 0.15, 0.32, 0.33 respectively. We also observe
the other three algorithms are even less fair than offline F-
Aware, for windows larger than 16 minutes.

Figures 7c and 7d plot the task allocation ratio and
unfairness as a function of worker capacity. Different series
represent different window sizes, including offline and in-
stant assignments. For all series, F-Aware algorithm is used.
We make two main observations. First, the task allocation
ratio for smaller window sizes is higher compared to larger
window sizes. The reason behind this is that, some of
the availabilities satisfying tasks expire before making a
decision. At first sight, one might think larger window sizes
should produce closer results to the offline scenario, but this
is not the case. In the offline scenario all the information
is known in advance, and decisions are made before expira-
tion. In contrast, with large windows the availabilities might
expire before processing. Second, larger windows result
in less fair allocation. As we mentioned earlier, smaller
windows behave like batches with smaller k values. As
batch-size experiments showed, when a task offered to less
number of workers, fairness increases since sum of total
accepted offers for each worker decreases.

5.4 Sensitivity Experiments
We observe the task allocation ratio and unfairness as a
function of the coefficient of mean. Different series represent
different ∆T values. Recall that these are the two parame-
ters involved when we used the taxi trips as the tasks, and
the check-ins as spatio-temporal availabilities of workers.
The radius added to a check-in is sampled from a Normal
distribution with mean and standard deviation set to that of
the taxi trips. For each data point on the x-axis, the mean of
this distribution is multiplied with the respective number.
For all experiments, y-axis represents a performance metric.

Figure 8a plots the task allocation ratio as a function of
the coefficient of radius. We observe that ∆T has a great
effect on the task allocation ratio. When coefficient of radius
is 1 and ∆T = 1, 57% of the tasks are allocated, while this
number is 82% when ∆T = 8 for the same coefficient. On
the other hand, we cannot observe the same effect for larger
radius values. Consider the ∆T = 4 line. The task allocation
ratio increases by only 0.1% when the coefficient is increased
from 1 to 4.

Figure 8b plots unfairness using the same setup from
Figure 8a. We observe that the difference between unfairness
values is negligible. The peaks are a results of randomness
present in task acceptance. Therefore, we conclude that
unfairness is not effected from the adaption of real-world
data to our problem setup.

5.5 Discussions
We present two additional experiments that provide in-
sights of our 2-phase assignment model and the F-Aware
algorithm. Figure 9a shows the distribution of workers as
a function of the average earning per acceptance. We observe
that 800 workers have average values between 2$ and 4$
when F-Aware algorithm is used. Although the most dense
areas similar for other approaches as well, we can see that
the standard deviation of them is much higher, which is an
indicator of unfairness.

Unlike traditional crowdsourcing, in spatial crowdsourc-
ing workers have to physically travel to the source and
destination of the task. Therefore, dollar earned per traveled
kilometer is a good indicator of the what is the reward of a
worker in return of her labor. In this point we would like to
remind that, batched progressive offer strategy multicasts
the offer to the workers who are most likely to accept it,
implicitly workers who are closer to the task.

Figure 9b presents dollar earned per kilometer as a
function of the coefficient of mean values as in the sensitivity
experiments. Solid lines represent different assignment algo-
rithms when the batched progressive offer strategy is used,
while dashed lines show the same but when the offers are
broadcasted. Recall that the nearest worker assignment is
beneficial for capturing the spatial aspect of the assignment
problem. In case of broadcasting, represented with dashed
lines, we observe the Nearest better than other approaches.
Using this approach, workers could make more than 20
cents per kilometer more compared to other approaches.
On the other hand, we observe the other three approaches
benefit significantly from multicasting. The difference be-
tween Nearest and F-Aware decreases from 22 cents to 5 cents
when the system prefers to multicast the offers instead of
broadcast. Therefore, we could state that F-Aware approach
captures the spatial aspect of the problem, with the help
of multicasting, as well as allocating each task to Nearest
worker.

In summary, our experimental evaluation shows that:
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• F-Aware is efficient: It runs around 107 times faster
than the MCF algorithm and allocates 98.1% of the
assignable tasks.

• F-Aware is fair: Unfairness metric of the LAF is 2.5×
that of F-Aware and, it maintains its fairness with
increasing capacity, and increasing task count.

• Batched progressive offering is useful to limit the
assignment ratio, while not sacrificing the wait time.
Moreover, it helps to capture the spatial aspect of the
problem by helping to provide competitive dollar per
kilometer ratio with Nearest worker approach.

6 RELATED WORK

We discuss the related work in the areas of crowdsourcing,
including spatial crowdsourcing and fairness.
Crowdsourcing. A wide spectrum of crowdsourcing appli-
cations are surveyed in [12]. Crowdsourcing is proposed
also for technical tasks such as relational query process-
ing [18], [28], [26]. In [20], three crucial aspects of crowd-
sourcing, namely task design, marketplace dynamics, and
worker behavior are analyzed. However, none of these
methods from the literature have considered fairness among
workers. To the best of our knowledge, this is the first work
that applies the concept and findings of fairness from social
psychology research to crowdsourcing applications.
Spatial Crowdsourcing. Spatial crowdsourcing requires
workers to physically travel to task locations. Earlier
work [2], [21], [11] extended crowdsourcing to the physical
world, with a variety of applications such as answering
queries [18], [28] and serving micro-tasks (such as taking
a photo of a monument) [10], [36], [9]. Numerous work
has addressed the maximum task assignment problem [21],
[11], [31] and its extensions that integrate the reliability of
workers [22], [33]. In [10], maximizing the reliability and
spatial diversity are considered together. Although these
works study task allocation in spatial crowdsourcing, they
mostly focus on offline scenarios. In [19], online allocation
is performed when only the workers are dynamic. In [36],
micro tasks are allocated when both tasks and workers can
appear anywhere, anytime. Different from our work, [32]
learns the workers’ acceptance probability in dynamic tasks
static workers setup. Recall, we assume acceptance depends
on the hardness level of the tasks and independent from
previous acceptances. Unlike these works, in crowdsourced
delivery, redundant task allocation is not possible. Similar
to our problem, in the context of crowdsensing, there is a
trade off among quality of information (QoI), budget and
time constraints, which requires multi-objective aware task
allocation algorithms as well. A recent work solves this
problem with a particle swarm optimization technique that
maximizes the aggregated QoI/budget ratio. A delegation
mechanism is used, in case the workers cannot finish their
allocated task, they may recommend a set of workers from
their social network to complete it [15]. This technique
serves the same purpose with our 2-phase allocation model.
Fairness is not in the scope of any of the aforementioned
work.
Fairness in Crowdsourcing. In various application do-
mains, such as networking [27], staff scheduling [14], and

resource allocation [4], fairness is considered to be one
of the most important constraints. In [8], fairness among
customers, but not workers, is considered. Its goal is making
sure that the system is fair to the customer when it is not
possible to serve all tasks. In [6] unfairness is defined as
discrimination against individuals, while in [13], the au-
thors differentiate between various perspectives on fairness
and ethics in crowdsourcing. They consider distributional
fairness as a subjective measure and discuss ethical implica-
tions. In [35], in addition to the cost minimization objective,
fair allocation of tasks to heterogeneous workers (workers
with different capacities and costs to execute the task) is
studied. The central idea of fairness in [35] is to maximize
the minimum utility of all bidders (workers). Utility is
defined as the number of allocations. They also assume that
the set of all tasks is known in advance and workers are
predefined. Unlike previous works in spatial crowdsourc-
ing, [25] stresses both the cost incurred by the movement of
the worker and the fairness of the assignment among the
workers. A sequence of sets of spatial tasks are assigned
to crowdsourced workers as they arrive. The one-to-one
assignment of tasks to workers is done in mini-batches.
In their setup, workers are not assigned to multiple tasks.
On the other hand, to provide redundant task allocation
they copy the task, and allocate one worker for each copy.
Besides utilizing a redundant task allocation strategy, the
fairness definition of this work is different from for our
scenario. Yet, in the experimental evaluation we included
the least allocated worker first, LAF, which is inspired from
this work. We showed that, according to the state-of-the-
art fairness definition, LAF is not fair unless all workers are
homogeneous.

7 CONCLUSION

In this paper, we created a strategy on allocation of delivery
tasks. In this strategy, we use a combined objective of maxi-
mum task allocation and fair distribution of tasks to work-
ers. In our 2-phase allocation model, for each task a set of
nominees are identified using availabilities of workers. The
task is offered to nominees using our batched-progressive offer
strategy. Once the candidates for each task are identified, we
showed that the problem can be reduced to Minimum Cost
Flow(MCF) problem if fairness is not considered. To cope
with drawbacks of MCF-based solutions in terms of running
time and lack of fairness handling, we introduce our F-Aware
algorithm. We then adapt our model to online task allocation
and mini-batch task allocation scenarios. Our evaluation
showed that F-Aware runs around 107× faster than the TAR-
optimal solution and assigns 96.9% of the tasks that can be
assigned by it. Moreover, F-Aware assigns 18% more tasks
than random assignment approach and is 2.5× more fair
than the least allocated worker first assignment strategy.

Our experimental evaluation showed that the dis-
tributed fairness criteria can be satisfied with no significant
changes in task allocation ratios. The proposed approach
of fair allocation of tasks can lead to more sustainable
crowdsourced delivery platforms. Human perspectives of
fairness with quantitative and qualitative surveys, and long-
term effects of fair allocation strategies in real crowdsourced
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delivery platforms are among potential future work in this
area.
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