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Abstract 
 
The present research pursues two main interrelated objectives: one the one hand, to derive a unified 
definition of the concept of supply chain resilience (SCRes) from which a quantitative holistic measure 
of SCRes that appraises both dynamic and inherent resilience can be developed; on the other, to 
evaluate the theoretical effectiveness—due to the use of simulated experimental data—of a buffering 
strategy founded on the use of on-hand inventory buffers or short-term manufacturing capacity to build 
up SCRes. In this sense, the review of the literature uncovered not only flaws in the existing approaches 
to measure SCRes, but also opposing standpoints on the theoretical effectiveness of using a buffering 
strategy to inhibit the frequency/impact of SC disruptions. From the literature it is also unclear in which 
cases or under what circumstances the unit of analysis for this research should adopt a buffering 
strategy as mentioned. The unit of analysis selected for these purposes is a real-world military food 
supply chain (MFSC) operating in a risky environment that provides subsistence items to a medium-size 
military force (<280,000 troop members). The research methods to address the two research objectives 
proposed are, first, a robust model based on discrete simulation; and second, an open-ended 
questionnaire administered to the staff of the MFSC. The first method—simulation—provides the data 
required to test the nine ex-ante hypotheses, while the second method—questionnaire—complements 
the previous ones by increasing their usefulness and empirical validity. The simulation experiment 
performed consists of subjecting the MFSC under analysis to the stepwise occurrence of three 
categories of risk—operational risks or R1r; natural disasters and intentional attacks or R2r; and black-
swan events or R3—while on-hand inventory buffers or short-term manufacturing capacity—the 
buffering strategy—are gradually increased following an efficient experimental design. To test the nine 
hypotheses of the research, it was necessary to apply an approach based on data mining techniques—
mining causal association rules—and non-parametric methods—the Kruskal-Wallis rank sum and 
Binomial distribution tests, and the Wilcoxon rank sum test with continuity correction. In this way, 
based on a novel perspective related to the application of the concept of tail autotomy effect (TAE) to 
obtain a measure of SCRes (ReT), the evaluation of the output data of the simulation model indicates 
that: (1) ceteris paribus, increases in the frequency of occurrence of seven of the nine risk events 
considered reduce ReT in the MFSC with 99% confidence; (2) increases in on-hand inventory buffers 
positively moderate the relationship between the frequency of occurrence of risks and ReT, with 99% 
confidence, regardless of the category of risk—R1r, R2r, or R3—affecting the MFSC; (3) increases in 
short-term manufacturing capacity positively moderate the relationship between the frequency of 
occurrence of risks and ReT, with 95% confidence for the categories of risk R1r and R3, and with 99% 
confidence for R2r; and (4) from the open-ended questionnaire, the staff of the MFSC shows a marked 
preference for the use of on-hand inventory buffers over short-term manufacturing capacity to avoid 
the occurrence of disruptions. Despite the theoretical implications of these findings, the assumptions of 
the simulation model, the non-inclusion of the cost factor, and the utilization of a single MFSC may 
limit to a certain extent their generalization to other scenarios or unit of analysis. To ameliorate these 
deficiencies, the construction of the simulation model incorporates nine types of risk, the evaluation of 
ninety configurations of the MFSC—simulation runs, and the consideration of a lengthy horizon of 
analysis of up to twenty years, allowing other military-SCs or even commercial-SCs can take advantage 
of the implications of the results of this research. Thus, from a practical point of view, this research 
provides (military) logisticians with clear guidelines for making decisions on when and how to use on-
hand inventory buffers or short-term manufacturing capacity to create resilience or to inhibit the 
occurrence of disruptions caused by categories of risk R1r, R2r, and R3. From a theoretical standpoint, 
this research makes an original contribution to the body of knowledge in SC management by providing 
a novel conceptual framework mainly applicable to MFSCs, which includes the analysis of three 



 xiii 

categories of risk; a holistic measure of SCRes (ReT) including dynamic and inherent resilience; and the 
analysis of the application of a buffering strategy based on on-hand inventory buffers and short-term 
manufacturing capacity. In doing so, the findings of the research provide sufficient criteria for resolving 
the controversy concerning the theoretical effectiveness of the aforementioned strategy to create 
resilience and/or to inhibit the occurrence of disruptions in SCs.  
 
Key words – Buffering strategy, Supply chain risks, Supply chain disruptions, Supply chain resilience, 
Defence logistics, Tail autotomy effect 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xiv 

List of Abbreviations 
 

AL Assembly line 
ARM Association rule mining 
AP Autotomy period 
CB Combat brigades 
CIA Correlated inspection approach 
CoT Contingency theory 
CSSB Combat service support battalion 
CSSU Combat service support units 
CSSR Case study survey research 
CT Cycle time 
D Demand 
DES Discrete-event simulation 
DL Defense Logistics 
DP Disruption period 
DS Data set 
DSE Design of simulation experiment 
EC Effective capacity 
FR Fill rate 
HLC Head logistics command 
I Inventory 
KS Kolmogorov-Smirnov test 
KW Kruskal-Wallis test 
LB Logistics brigades 
LOC Line-of-communication 
LT Lead time 
MaB Maintenance battalion  
MCV Mill’s method of concomitant variation 
MeB Medical battalion  
MLS Military logistics system 
MFSC Military food supply chain 
OAT Order arrival time 
OPT Order placement time 
PT Processing time 
QB Quartermaster battalion  
QDM Questionnaire data matrix 
QRD Questionnaire raw data 
ROP Re-order point 
RP Recovery period 
S Work shifts 
SB Supply battalions 
SC Supply chain 
SCRes Supply chain resilience 
SDM Simulation data matrix 
SPT Shortest processing time 
SW Shapiro-Wilk test 
TAE Tail autotomy effect 
TB Transport battalions 
TC Theoretical capacity 
W Wilcoxon rank sum test with continuity correction 
WDC Warehouse and distribution centre 



 xv 

 

 
 
 
 
 
 
 
 
 
 

 
Chapter 1 

INTRODUCTION 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 16 

Chapter 1. Introduction 
 
1.1 “Troops’ lives may be at stake without us!” 
 
The initial idea for developing this study was born eleven years ago when the logistics chief of 
the Colombian Army uttered this sentence in his welcoming speech to a group of military 
reservists during a training course. The General intended to convince us of the key role that 
military logistics plays for modern armed forces, yet he did not need to strive so hard. Military 
logistics by itself has become the cornerstone of the strategy in modern armed forces (Prebilic, 
2006). No army in the world, not even the most powerful in weaponry, can operate on short 
notice and/or at long distances without adequate logistical support. The most recent conflicts in 
the world, as well as the ‘new’ roles assigned to armed forces, e.g., helping in humanitarian 
operations, confirm this fact (Byman et al., 2000). Despite this, military history is full of cases 
that demonstrate what happens when logistics criteria are not properly taken into account in the 
planning of military operations (Cohen & Gooch, 2006). Moreover, it is sometimes overlooked 
that the high uncertainty that for the most part characterizes military operations also affects 
military supply chains (SCs) by causing logistical breakdowns, making this type of SC the most 
exposed to the occurrence of risks. Thereby, when a logistical breakdown occurs, the possibility 
of loss of human life increases. In this regard, Demchak (2010) pointed out that preserving the 
continuity of military operations is equivalent to being resilient (p.63), whilst Yoho and colleagues 
(2013) stressed the need to incorporate the latter concept (resilience) into military-SCs, noting 
furthermore the scarcity of research in the field of defence logistics. Accordingly, the subject of 
this study is an attempt to improve the resilience of the Colombian military’s supply chain of 
military food (MFSC), or, in other words, to make the MFSC less disruption-prone.   
  
1.2 Objectives and Scope of the Study 
 
All types of SC are inevitably exposed to a wide range of risks, regardless of their structure, level 
of complexity, or context (Kleindorfer & Saad, 2005; Svensson, 2000). Some of these risks have 
the potential to become disruptive events, i.e., they can interrupt, temporarily or permanently, 
the flow of supplies to end-customers (Chopra et al., 2007). The occurrence of disruptive events 
regularly causes a negative impact on the performance, profitability, and/or shareholder value of 
commercial-SCs (Hendricks & Singhal, 2005; Ponomarov & Holcomb, 2009). However, for 
military-SCs in general, such effects can be deeper, potentially endangering the life of troops. 
What can a military-SC as enunciated do to reduce the frequency/impact of disruptive events? 
 
This is not a simple question. An analysis of the literature reveals that military-SCs have 
emulated several of the best practices applied by their civilian counterparts, commercial-SCs. 
Thus, approaches such as mass-logistics (Wang, 2000), velocity management (Dumond et al., 1995), 
sense & response logistics (Tripp et al., 2006), or focused logistics (DoD, 2010), to name a few, have 
been applied in military-SCs in an attempt to deal with this problem. However, to judge by the 
criticism of these initiatives (Girardini et al., 1995; Moore & Antill, 1999; Parlier, 2011), the 
results have not been entirely satisfactory, and in some cases seem to have aggravated the 
problem (Needham & Snyder, 2009). Accordingly, I argue in this research that a robust 
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solution, that is, “one that works well most of the time” (Hopp & Spearman, 2008, p.250), can 
be achieved through the operationalization of the concept of resilience or “the ability to bounce 
back from a disruption” (Sheffi & Rice, 2005, p.41).  
 
From a theoretical point of view, the application of the concept of resilience can be a rather 
effective way to reduce the incidence of disruptions in military-SCs (Tatham & Taylor, 2008; 
Kovács & Tatham, 2009), especially when their particular characteristics—viz., organizational 
goals, operating environment, customer lead-time, level of risk, nature of logistics operations, 
procurement system, pattern of demand, and marketing channels—are taken into account. 
Nonetheless, in spite of the positive comments that the concept of resilience generates, as far as 
I know, no new approach or administrative practice directly involving the application of the 
concept of resilience has hitherto been developed, nor is there evidence regarding its application 
in any military-SC.  Thus, for the operationalization of the concept of resilience in military-SCs, 
several hurdles first must be overcome.  
 
First, the huge diversity of definitions and multiple interpretations of SC-resilience (SCRes) that 
can be found in the literature—this research identified 24 definitions of SCRes—to some extent 
hinders the operationalization of the concept of SCRes. Second, despite the significant interest 
that the topic of SCRes has generated among scholars and practitioners, the gap between its 
theoretical underpinnings and attempts to operationalize the concept has yet to be filled. And 
third, not all the approaches for creating SCRes and/or to inhibit the occurrence of disruptions 
described in the literature—see e.g. Tukamuhabwa et al (2015)—can be directly applied to 
military-SCs, due, inter alia, to their specificities mentioned above. Indeed, of the available 
approaches, ‘strategies based on redundancy’, particularly buffering strategies, seems to be the best 
suited to application in military-SCs. Therefore, I propose in this research two main objectives:  
 
(1) to derive a unified conceptualization of SCRes based on the existing definitions, research done 
and gaps identified in the literature review from which a quantitative holistic measure of SCRes 
that appraises both dynamic and inherent resilience can be developed; and secondly, 
  
(2) to evaluate the theoretical effectiveness of a buffering strategy founded on the use of on-hand 
inventory buffers or short-term manufacturing capacity to build up SCRes.  
 
In general, with respect to the stated objectives, some authors have pointed out that little 
empirical research has been done on the interactive effects of buffering strategies on SC-
disruptions or those to respond to risks (Marley et al., 2014; Sodhi et al., 2012). Moreover, it is 
worth noting the existence of a theoretical conflict regarding the effectiveness of using 
inventory and/or capacity to make SCs more resilient. On the one hand, some authors praise 
the benefits of using inventory or capacity, e.g. Pettit and colleagues (2013); on the other hand, 
others see no advantage in their use as inhibitors of SC disruptions, e.g. Kim and colleagues 
(2015). To date, this debate has not been satisfactorily resolved. 
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1.3 Statement of the Research Problem and Research Methods 
 
Drawing on the lack of empirical studies and theoretical discussion on the effectiveness of the 
aforesaid buffering strategy, the research problem is posited in the following terms:  
 
How is the resilience level—dynamic and inherent—of a military food supply chain in a risky environment 
affected by increases in on-hand inventory buffers/short-term manufacturing capacity? 
 
The formulation of the above research problem poses the derivation of a universal definition of 
SCRes; the development of a theoretical framework on disruptions to assess resilience in 
MFSCs that includes the two above-mentioned dimensions; and the use of a quite robust tool—
a simulation-based method—to ‘recreate’ the risky environment for the MFSC under analysis, 
due to the absence of historical records and the inability to modify the experimental setting at 
convenience. The simulation tool selected for this purpose is Simulink [v.R2015b-8.6.0.26] by 
MATLAB®. The risky simulated environment for the MFSC consists of nine types of risk 
organized into three categories—operational risks, R1r; natural disasters and intentional attacks, 
R2r; and black-swan events, R3—within a simulation horizon of up to 20 years. Due to the 
volume and nature of the output data of the simulation model, data mining techniques—mining 
causal association rules—and non-parametric methods—the Kruskal-Wallis rank sum and 
Binomial distribution tests, and the Wilcoxon rank sum test with continuity correction—were 
chosen to test the nine research hypotheses that are raised. 
 
The results of the simulation model are supplemented with an open-ended questionnaire 
administered to twelve staff member of the MFSC in order to improve the internal validity of 
the research findings. In this way, whilst the simulation model indicates what logisticians should 
do in case R1r, R2r, or R3 occurs, the questionnaire points out what logisticians would do if they 
face these categories of risk. Furthermore, given the nature of the dominant method of research 
used to generate data (simulation), it can be said that the ‘positivist perspective’—or analytical 
school—is the paradigm that best characterizes the present research. 
 
1.4 Contributions of the Study 
 
This study can be seen as a series of interconnected contributions. In this way, the major 
contribution lies in the ‘extended conceptual framework’, which is introduced in Chapter 3, 
supported and analysed in Chapter 6, and later discussed in Chapter 7, respectively. Thus, the 
originality of the conceptual framework is not given by the individual variables included for 
analysis—three categories of risk, a measure of SCRes, and in the middle of the two, a buffering 
strategy based on on-hand inventory buffers and short-term manufacturing capacity—, but by 
the manner in which they were arranged and assessed as a whole, thereby providing a tangible 
solution for the above-mentioned research problem (question). In doing so, the conceptual 
framework allows a better understanding of the resilience phenomenon, as well as providing 
new findings on how SCRes can be improved through the application of a buffering strategy. 
The second main contribution of this research is contained within the aforesaid conceptual 
framework, and it relates to the derivation of a unified conceptualization and a novel 
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quantitative measure of SCRes (ReT), both described in Chapter 5. The proposed measure of 
SCRes is based on a self-defence mechanism called ‘tail autotomy effect’ (TAE) and includes 
the two dimensions of the concept of resilience: ‘dynamic resilience’ and ‘inherent resilience’. 
TAE’s approach for SCRes offers an innovative perspective on how SCs respond to the 
occurrence of disruptions caused by risks. The resulting ReT is integrated into a robust 
simulation model of the MFSC and the results are measured through techniques of data mining 
and non-parametric methods.        
 
Last but not least, this study contributes in several ways to the underexplored field of defence 
logistics by typifying the internal processes of a real-world MFSC (Chapter 6); by providing 
theoretical explanations of why it is worth studying buffering strategies in military-SCs (Chapter 
3); by giving a thorough description of the risks that most often affect military-SCs and 
constructing a probabilistic simulation model for these (Chapter 6); and lastly, by arguing for the 
need to implement and measure resilience in military-SCs (Chapter 5). 
 
1.5 Structure of the Study 
 
For the development and completion of the previous ‘extended argument’, eight chapters are 
required, as shown in Figure 1. Accordingly, Chapter 2 carries out a systematic literature review 
on how the concept of SCRes has been operationalized heretofore. As a result, several research 
gaps and hidden patterns within the literature are revealed, as well as the prevalent research 
methods for gathering and analysis of data. Chapter 3 refines the six key-variables to be studied 
and the presumed relationship among them—the ‘conceptual framework’ in which this study is 
based. From this conceptual framework, nine hypotheses of research are then derived. Chapter 
4 draws on the results of the prior systematic review and conceptual framework, by answering 
two main questions: why a simulation-based method was utilised to gather data, and why data 
mining techniques and non-parametric statistics were used to test the nine hypotheses.  
 
Chapter 5 derives a unified conceptualization of SCRes based on the definitions available in the 
literature. A universal definition of SCRes, along with TAE, is then used to construct a 
quantitative measure of resilience or ReT. Chapter 6 describes each one of the steps that make 
up the simulation model of the MFSC, including the description of the SC under analysis, the 
identification and assessment of risk events that affect the SC, the assumptions of the model, 
the verification and validation of the model, the experimental design, and the programming 
code in Simulink®. Additionally, this chapter also explains how the data from the simulation 
model and the open-ended questionnaire administered to MFSC’s staff are gathered, organized, 
and prepared for a further analysis and discussion in the subsequent chapter. Chapter 7 
examines each one of the nine hypotheses of the research’s conceptual framework by using data 
mining techniques and non-parametric statistics. Finally, Chapter 8 delineates the conclusions of 
the study from the findings and results of the previous chapter and presents the main 
implications and limitations of this study, as well as suggestions for further research. 
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Figure 1. Structure of the thesis research 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.6 Summary of Chapter 1 
 
This chapter laid the foundations for the present study.  Beginning with the delimitation of the 
context, it stated the objectives and scope of the study, by emphasizing the lack of research and 
the existence of a theoretical conflict regarding the effectiveness of a buffering strategy to make 
SCs more resilient. Second, it formulated the research problem to be dealt with, as well as the 
research methods that will be used for the gathering and testing of data. Third, it pinpointed the 
main contributions of the study. Finally, it described the overall structure of the study. The 
following chapter develops a systematic review of the literature on the approaches used to 
measure the concept of resilience in military-SCs. 
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Chapter 2. Systematic Literature Review  
 
2.1 Introduction 
 
This review of the applicable literature has been developed from the perspective of the research 
questions raised in the introductory chapter of this investigation and comprises two main parts. 
The first part (section) focuses on the previous empirical studies that include the variables ‘on-
hand inventory buffers’ and/or ‘short term manufacturing capacity’ with the ‘occurrence of 
risks/disruptions’ and/or ‘SC-resilience’. The second part (subsequent sections) examines ‘how 
the concept of resilience in SCs (SCRes) has been operationalized so far’. Thus, the main 
objective of this review is to find, analyse, and classify the existing literature on this topic, 
identifying previous approaches, patterns, and gaps in the body of knowledge, in order to 
develop a new SCRes measure. This review of the literature is guided by a ‘systematic’ protocol 
recently incorporated into the SC management field (Wilding & Wagner, 2014). This protocol 
aims to minimise bias in the search for information, allowing the replication of this procedure 
by other authors (Torgerson, 2003). Business Source Complete® by EBSCO was the main research 
engine used to access management databases, though the search process was complemented by 
Google Scholar®. A systematic literature review (SLR) for the mentioned topic identified a total of 
40 documents through a five-stage process (Denyer & Tranfield, 2009). The critical analysis of 
each of these documents, as well as the findings and research gaps encountered, are described 
below.   
 
2.2 Topical Research and Gaps 
 
2.2.1 Topical research 
 
Overall, the study of how the occurrence of risks affects the performance of SCs—e.g., their 
level of resilience—and how these develop strategies to prevent/mitigate such consequences—
i.e., disruptions—is currently a theme of great interest among academics (Bode et al., 2011), and 
provides the theoretical underpinning of this research. Nevertheless, the literature on this 
subject is not entirely homogeneous. While a variety of approaches based on anecdotal evidence 
or self-reported data abounds in the literature—Hendricks & Singhal, 2012; Wagner & Bode, 
2008—, theoretical-based models on empirical and/or verifiable hypotheses/proposals are 
rather scarce. To date, relatively few empirical studies (eleven) include in their conceptual 
frameworks the variables ‘on-hand inventory buffers’ and/or ‘short term manufacturing 
capacity’ with the ‘occurrence of risks/disruptions’ and/or ‘SC-resilience’. The following is a 
critical analysis of the eleven empirical studies found in the literature that fulfils this condition. 
The hypotheses/propositions/questions of interest for the present research in each one of 
these studies are indicated as follow.  
 
Zsidisin and Wagner (2010) tested the extent to which SCRes practices moderate disruption 
frequency, using an online questionnaire survey for various types of companies. The hypotheses 
of interest are: “Supply management professionals that create supply chain resiliency through [1] 
flexibility and [2] redundancy in response to risk perceptions, experience the effects of supply 
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disruption less frequently.” (p.5). The authors found that both hypotheses were statistically 
significant. However, Zsidisin and Wagner also found that having multiple suppliers, inventory 
buffers, and business continuity plans might not reduce the frequency of disruptions. The 
authors attribute this contradictory result to the fact that companies usually overestimate the 
benefits of creating redundancy.  
 
Bode and colleagues (2011) proposed a model of organizational responses to SC-disruptions, 
using an online questionnaire survey of European commercial businesses. These authors posed 
three hypotheses of interest: (1) “The greater the impact of a supply disruption on a firm, the 
greater its pursuit of buffering and bridging”; (2) “The positive relationship between the impact 
of a supply chain disruption and the pursuit of buffering is weaker when prior trust in the 
involved exchange partner is low than when it is high”; and, (3) “The positive relationship 
between the impact of a supply chain disruption and a firm’s pursuit of buffering is weaker 
when the firm’s prior experience is low than it is when prior experience is high” (pp.836-39). 
For all hypotheses mentioned, authors found strong statistical validity. 
 
Colicchia and colleagues (2010) modelled a supply process of a European retailer and a 
manufacturing company in the presence of risks. The research question proposed in this study 
is: “how a company […] can increase its supply chain resilience by employing […] mitigation 
actions and contingency plans” (p.683). By using a Monte Carlo simulation-based model, the 
authors compared the effectiveness of contingency plans and mitigation actions. The results 
showed that contingency plans are more effective than mitigation actions; however, the highest 
level of resilience (lowest variability of the SC) is achieved when both approaches are utilised 
conjointly. Similarly, Schmitt and Singh (2012) modelled an assembly distribution system subject 
to the occurrence of supply disruptions and demand uncertainty. By using a discrete-event 
simulation, the authors developed a model to improve resilience (service level) based on 
inventory placement and back-up mitigation methods—inventory, capacity, and time. Two 
questions of interest are: (1) “Where should inventory be held in the network to minimize total 
costs and meet minimum average service levels?” and (2) “What is the best response type for 
back-up capabilities?” (p.23).  
 
Hoffmann and colleagues (2013) studied the background of supply risk management 
performance using an online questionnaire survey of Germans cross-industry. The hypothesis 
of interest is: “Risk mitigation weakens the effect of [1] environmental uncertainty and [2] 
behavioural uncertainty on a buyer’s supply risk management performance” (p.203). The 
authors found statistical evidence that supports previous hypothesis. However, they also 
mentioned that the moderating effect is only significant for part [1]. Boone and colleagues 
(2013) evaluated the impact of inventory management of service parts on the continuity and 
resiliency of the SC of the USAF. In their model, the term “system approach” refers to the 
holistic representation of all parts in the system when making inventory-level decisions and 
backorders disrupt the inventory flow. Thus, the two hypotheses of interest are: (1) “The system 
approach will reduce the duration of flow disruptions, ceteris paribus, thus enhancing 
resiliency”; and, (2) The system approach will reduce the duration of operational disruptions, 
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ceteris paribus, thus enhancing resiliency” (p.224). The authors found that both hypotheses are 
statistically supported.     
 
Marley and colleagues (2014) empirically studied the interactive effects of complexity and 
buffering on SC disruptions in the analysis of a steel processing plant, by using the lenses of 
normal accident theory. These authors posed a proposition of interest: “The lower the 
inventory levels, the greater the likelihood of a customer experiencing a normal supply chain 
disruption” (p.145). Marley and colleagues found that the above proposition is not statistically 
supported. In other words, adding more inventories to the SC is not a useful strategy to mitigate 
SC-disruptions. However, in this regard, the authors noted that this result does not contradict 
the existing theory, but rather ‘complements it.’ Bradley (2015) studied the effect of capacity and 
inventory buffers as mitigators of catastrophic SC disruptions in manufacturing firms. Based on 
the review of the literature, the author argued that to use inventory buffers as mitigators of SC-
disruptions, aspects such as location and capacity of warehousing of the SC need to be 
addressed beforehand. By using examples of SCs affected by disruptions, Bradley theorizes that 
characteristics of inventory buffers vary with SC location, suggesting the use of a “reservoir of 
stored capacity” as an alternative for alleviating the negative effects of catastrophes on the 
performance of the SC. Furthermore, and based on secondary information, the author evaluated 
the financial feasibility of a capacity and inventory buffer strategy using net income and credit 
worthiness.  
 
Brandon-Jones and colleagues (2015) studied the moderating effect of production capacity and 
safety stock at suppliers and plants, on the relationship between the frequency of SC disruptions 
and plant performance. For this purpose, the authors analysed a number of British 
manufacturing firms through the application of a survey instrument. The hypotheses of interest 
in this study are: (1) “The higher the level of production capacity, the lower the negative effects 
of disruption frequency on plant performance”; (2) “The higher the level of safety stock at 
suppliers, the lower the negative effects of disruption frequency on plant performance”; and, (3) 
“The higher the level of safety stock at plant, the lower the negative effects of disruption 
frequency on plant performance.” The authors found that, while extra production capacity and 
safety stock at suppliers positively affect plant performance, safety stock at the plant generates a 
negative impact on plant performance.          
 
Park and colleagues (2016), based on an online questionnaire survey of Korean firms, found 
that the hypothesis “The higher the level of safety stock a firm keeps, the less frequently supply 
chain disruptions occur” (p.124) is not statistically significant. Despite this result, the authors 
argued that safety stock has only a partial negative impact on the occurrence of SC-disruptions. 
Finally, Brusset and Teller (2017) examined the moderating effect of risks on the relationship 
between external integration and flexibility capabilities, and SCRes, through an online 
questionnaire survey of French SCs. These authors found that the hypothesis “There is a 
positive relationship between the implementation of [supply chain] capabilities and the level of 
resilience in supply chains” (pp.61-62) is not uniformly supported. That is, there is statistical 
significance for the effect of integration and flexibility capabilities on SCRes, but not for the 
relationship between external capabilities and SCRes. Regarding the latter, Brusset and Teller 
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argued against this result, by pointing out that SC managers consulted do not have sufficient 
experience dealing with external capabilities, which means that the effects of resilience have not 
been observed yet. 
  
2.2.2 Gaps in the topical research  
 
Overall, the eleven empirical studies previously analysed provide valuable insights to the 
literature on SC disruptions/resilience domains, yet they are not devoid of limitations. The first 
observation is related to the expanded use of qualitative research techniques for analysing the 
mentioned variables. Thus, in six of the theoretical frameworks described—Park et al, 2016; 
Zsidisin and Wagner, 2010; Bode et al, 2011; Hoffmann et al, 2013; Brandon-Jones et al, 2015; 
and Brusset and Teller, 2017—, the measurements of the sources and impact of risks, the 
occurrence of disruptions, and/or the level of the SCRes, are based on respondents’ perceptions 
rather than on measurable objective criteria. This aspect—derived from using 
phenomenological methodologies—reduces the validity and reliability of these analyses and may 
lead to conflicting results. In this sense, a concomitant issue is the heterogeneity of the samples 
of individuals selected for survey application, in which cultural issues, managers’ experience, or 
proclivity to the occurrence of risks of the industry/sector analysed, can influence the results of 
such studies. The type of methodology employed also limits the depth of research questions 
raised. For example, the hypotheses described above are presented from a broad perspective, 
without considering the specific impacts that each type of risk may have, and what strategies the 
SCs should adopt. In other words, most previous research has addressed the impact of risks as a 
whole, ignoring the differential effect each category of risk has on SC-performance. 
Furthermore, the articles’ authors themselves mention shortcomings related with the reliability 
of surveys’ respondents and the generalizability of the results by using cross-sectional data.  
 
On the other hand, regarding the articles that used quantitative methodologies, the study by 
Schmitt and Singh (2012) and Colicchia and colleagues (2010) offer limited results in terms of 
the scope. The lack of a formal theoretical framework, i.e., presented in terms of research 
hypotheses or propositions, impedes the establishment of statistical significance among 
variables of interest. In addition, the criteria used to measure SCRes, while adequate for 
purposes of both studies, are poorly defined, especially if they are contrasted with available 
definitions of SCRes in the literature (see e.g. Table 5.1). As for the article by Marley and 
colleagues (2014), the reliability of the results of their research is based on the use of empirical 
data (with no intervention) from a working steel processing plant. The utilisation of this type of 
data represents the ideal scenario for conducting research (Rosenbaum, 2010). However, the 
inability of the researchers to modify the configurations of the plant at convenience (the 
experimental setting), e.g., to manipulate the policy of inventory level or to change the lot size 
of the order of raw materials to test the plant under ‘extreme scenarios’, limits to some extent 
the depth of this research. The same limitation is observed in the work of Boone and colleagues 
(2013). Lastly, the theoretical framework described in the study by Bradley (2015) is the one that 
most closely resembles the content of the present research. Indeed, Bradley’s study included 
capacity and inventory buffers as elements to mitigate SC-disruptions. However, the scope of 
this study is limited and it points in a different direction (financial perspective), not to mention 
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that the variable SCRes was not included in the analysis. Finally, it is also worth mentioning 
that, except for the work of Boone and colleagues (2013), the other studies are based on the 
analysis of commercial-SCs. 
 
2.3 Protocol for the Systematic Literature Review (SLR) 
 
Following Denyer and Tranfield (2009), five steps make up the protocol for developing a SLR, 
including (1) question formulation, (2) locating studies, (3) study selection and evaluation, (4) 
analysis and synthesis, and (5) reporting and using the results. These steps were applied to the 
main stream above mentioned below.   
 
Question formulation and locating studies 
 
The question that will guide the review of the literature is as follows: ‘how the concept of 
resilience in SCs (SCRes) has been operationalized so far’. In this way, by using the Business 
Source Complete® by EBSCO as the main research engine to access management databases 
together with Google Scholar® platform, were define the search strings.  
 
The search strings considered in the SLR for this topic were ‘supply chain resilience’ or ‘resilient 
supply network’. The keywords were ‘evaluation’, ‘metric’, ‘index’, ‘measurement’, ‘measure’, 
‘assessment’ and ‘indicator’. Others documents outside the research criteria were also included, 
given that there are concepts allied with SCRes such as ‘supply chain robustness’, ‘supply chain 
flexibility’, ‘supply chain vulnerability’, and ‘supply chain reliability’. Both strings and keywords 
were examined in all fields of peer-reviewed academic journals, books, conference proceedings, 
and theses, for a timespan from 2001 to date (July, 2017).  
 
Study selection and evaluation 
 
The selection of the year 2001 as a starting point for analysis was due to the attacks of 
September 11 in New York City, which became a milestone in the development of the SC risk 
management/disruptions (Colicchia & Strozzi, 2012; Snyder et al., 2016), two disciplines closely 
related with the study of SCRes. Hence, despite the specificity of strings and keywords used, the 
initial search based on the analysis of titles and summaries retrieved 323 entries, of which 108 
were discarded because they were not related directly with the established search criteria or were 
duplicated. Thus, from 215 documents, a closer inspection of informational content left only 43 
documents. Further checks allowed including seven additional bibliographical references in the 
body of inspected documents, from which ten were ultimately discarded, leaving a total of 40 
documents for analysis and coding. Figure 2.1 summarizes the search process of documents in 
relation to the guiding question above formulated. The steps 3 and 4 of the SLR corresponding 
to the analysis and synthesis of documents retrieved, and the report and use the results, are 
explained in detail in Sections 2.4 to 2.6.  
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Figure 2.1 Overview of the SLR for the operationalization of SCRes 
 

 
 
2.4 Critical Analysis of the Literature Review  
 
The critical analysis of the 40 selected documents is described below. The documents are 
grouped according to the approach used to measure SCRes. 
 
2.4.1 SCRes measurements based on resilience triangle approach 
 
The resilience triangle, or the model to reduce the likelihood of failure, its consequences and the 
time of recovery, originally proposed by Bruneau and colleagues in the context of seismic 
resilience of communities (2003, 2007), has had a notable influence on the formulation of 
SCRes’ indices/indicators in the LSCM field. For instance, Falasca and colleagues (2008) used 
this idea to pose a theoretical framework for assessing SCRes. Xu and colleagues (2014) 
complemented the resilience triangle with an additional criterion, redundancy. These authors 
developed a robust analytical model to predict SCRes from the analysis of a centralised SC, 
which is seen as a biological cell that adapts and recovers by itself from random disruptions. 
The SCRes measurement is tested using a simulation approach. Lastly, Zobel and Khansa 
(2014) extended this framework by integrating a trade-off variable between robustness and 
rapidity, which they called ‘the predicted resilience’. As described in their article, the function of 
resilience is the triangle area where the (inverted) base corresponds to the time needed to 
recover to normal operations; and the height, the percentage of lost quality. Based on this 
approach, the authors extended the concept of resilience to multi-event situations such as 
disasters with large losses but quick recovery, smaller losses but slower recovery, and so on. 
Zobel and Khansa’s model offers a general perspective on how to measure resilience within the 
framework of the occurrence of natural disasters, but more research is needed to apply these 
results to the specific context of SCs.  
 
2.4.2 SCRes measurement based on graph/network theory approaches and/or 
simulation applications 
 
Several authors have emphasized the use of graph/network theory and/or simulation 
techniques to measure SCRes. Datta and colleagues (2007) studied the performance of a 
manufacturing SC-network against variations in demand using an agent-based modeling 
methodology. The criteria used to measure the operational resilience are the customer service 
level, the production change over time, the average inventory, and the total average network 
inventory. This paper stands out not only for its findings on how to enhance the previous 

323 documents

Sourcing using 
search strings 
and key words

215 documents

Removing non-
relevant and 
duplicates

43 documents

Closer 
inspection of  
documents

50 documents

Checking 
inside of  
documents

40 documents

Final analysis 
and coding of  
documents



 28 

criteria, but also because is the first work in the literature to propose a measurement for SCRes. 
Wang and Ip (2009) proposed an evaluation approach to measure resilience in aircraft 
maintenance and service logistics networks. These authors considered redundancy and 
distribution to be the factors affecting resilience. Despite the specificity of Wang and Ip’s 
approach, the underlying idea may be replicated for other types of SCs. Also, this approach 
provides guidance on how to measure resilience without including disruption analysis. Ip and 
Wang also applied an equivalent approach to measure resilience in transportation networks (Ip 
& Wang, 2011). Zhao and colleagues (2011) used network topology and a simulation approach 
to measure resilience in a military logistic network based on the supply availability rate, the 
number of nodes, and the length of average and the maximum supply-path. Kim and colleagues 
(2015) proposed a network resilience metric based on the analysis of nine criteria, viz. network 
density, average degree, walks, average walk length, maximum and minimum walk lengths, 
connectivity, betweenness centrality, and network centralization. Their final resilience measure 
for supply networks is the ratio of the number of nodes or arcs disrupted to the total number of 
nodes/arcs.  
 
In the same sense, Soni and colleagues (2014) developed an index to quantify SCRes from the 
identification of ten resilience enablers proposed by experts from industry and academy, viz. 
agility, collaboration, information sharing, sustainability, risks and revenue sharing, trust, 
visibility, culture, adaptability, and SC structure. Thus, using graph theory, these authors built up 
a resilience digraph for the ten enablers, from which interdependency relationships are inferred 
through the application of interpretative structural modeling. The calculation of the resilience 
index is thereby a percentage of the ideal cases from the ten enablers. Thus, from a practical 
perspective, Soni et al’s index is a robust and meaningful approach to rank a set of SCs 
according to their resilience level. However, the selection of the enablers may not be 
generalizable to all SC types. Mari and colleagues (2015; 2015b) measured SCRes using four 
criteria: accesibility, robustness, responsiveness, and flexibility. The resulting metric of resilience 
is applied on a theoretical SC and then verified through a simulation model. More recently, 
Mohan and Bakshi (in press) formalised the measure of SCRes through the concept of 
disruption-recovery time. By using graph theory, the authors examined how quickly a SC-
network can rid itself of the disruption caused by a trigger event from the application of three 
concepts: the ripple effect, the critical component property, and the bidirectional propagation of 
disruptions. Lastly, Li and colleagues (2017) defined a resilience measure from the maximum 
allowable recovery time, the amount of product delivered, and the average delivery distance. 
The above measure of resilience was applied on a mobile phone SC-network using Monte Carlo 
simulation.  
 
2.4.3 SCRes measurements from attributes associated with SCs 
 
Several authors have proposed various SCRes measurements from attributes associated with 
SCs. Jüttner and Maklan (2011), from a case study on three manufacturing companies, explored 
the relationship between SC-risk management and SC-vulnerability, and SCRes. By using 
structured interviews and secondary information, these authors found that flexibility, velocity, 
visibility, and collaboration exert a positive influence on SCRes. However, despite these 
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findings, the nature of these results does not allow establishing a numerical relationship between 
the categories analysed and SCRes. In a similar fashion, Spiegler and colleagues (2012) assessed 
SCRes by applying a dynamic perspective to inventory levels and shipment rates. These authors 
used the drivers proposed by Ponomarov and Holcomb (2009), viz., readiness, response and 
recovery, and combined them with the absolute error (ITAE). The resulting measure of SCRes 
is a robust but complex dynamic model. Carvalho and colleagues (2012), in a theoretical work, 
argued that before any attemp at measuring SCRes, a framework that relates the current 
operations, the transition states, and the vulnerability points of SCs, should be developed. In a 
later work applied to the automotive industry, Carvalho and collegues (2013) developed a 
composite index to evaluate agility and resilience practices in SCs. The authors used Delphi 
method to calculate the so-called AR-index, which is derived from a weighted sum of 14 sub-
indicators, seven of which are to measure SC agile behaviour, and the remaining seven to 
measure resilient behaviour. Compared to other resilience measures, the so-called AR-index is 
intuitive and easy for managers to implement in practice. However, the idea of measuring two 
complex concepts at the same time (agility and resilience) may pose data aggregation problems.  
 
Pettit and colleagues (2013) created a survey-based tool for assessing SCRes on the premise that 
the concept of resilience need not be accurately specified. The proposed tool or SCRAMTM 
integrates 21 factors and 111 subfactors that link SCs vulnerabilities and capabilities to a 
‘balanced resilience’, an intermediate point between the ‘zone of erosion of profits’ and the ‘risk 
exposure zone’. Despite the originality of this proposal, the subjectivity in the measurement of 
factors and subfactors coupled with the large amount of longitudinal-data required render the 
so-called SCRAM index difficult to benchmark with other SCs. Azevedo and colleagues (2013) 
integrated the assessment of greenness and resilience in a unique index using the Delphi 
method. This ‘ecosilient-index’ is the sum of the products of the green/resilient SC-practices 
implemented and their specific weights, the latter provided by a set of experts. Undoubtedly, the 
novel aspect of this proposal lies in the integration of the two concepts mentioned. 
Nonetheless, the identification and evaluation of what the authors call “green and resilient 
practices,” as well as the assignation of the specific weights, hinders using the ecosilient-index as 
a yardstick. Cardoso and colleagues (2014) proposed a composed resilience indicator from the 
analysis of the design and characteristics of five SCs, although the character of this study is 
exploratory. In a further work (2015), these authors combined several economic-performance 
factors and SCRes. Thus, SCRes is measured through a set of 11 sub-indicators selected from 
the literature that focus on three aspects of SC-networks: design, centralization, and operational 
issues. More recently, Li and colleagues (2017b) used use survey data to evaluate the financial 
performance of a firm from 3 dimensions of SCRes: SC preparedness, SC alertness, and SC 
agility. 
 
2.4.4 SCRes measurements from allied concepts  
 
The measurement of the concepts allied to the notion of resilience has also been addressed in 
the literature. Thomas (2009) quantified logistics-effectiveness for contingency operations in the 
military context. Thomas considered a unit of analysis to be a SC-network for routing the right 
logistics to the right place in support of contingency operations. Thus, the approach proposed 
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measures SC-reliability by establishing the conditions and probabilities of failure at each link of 
the SC-network. Wagner and Neshat (2010) developed an index to measure vulnerability based 
on graph theory and a four-step algorithm. These authors constructed a SC-vulnerability index 
based on the analysis of the interdependencies of three groups of drivers: supply side, demand 
side, and SC-structure. The approach presented in this article provides a well-founded method 
for measuring vulnerability. However, the generalizabilty of the proposed model to other SCs is 
limited by the subjectivity of the method utilised (experts’ opinion). Martínez and Pérez (2005) 
developed an index of flexibility to be applied to automotive SCs. By using an online 
questionnaire, the authors operationalized six variables including flexibility, environmental 
uncertainty, technological complexity, mutual understanding, interdependence, and supplier 
dependence. Similarly, Sokri (2014) proposed three independent metrics to measure flexibility in 
military-SCs through the analysis of two elements: flexibility in supply and capacity of delivery. 
The merit of this article lies in its simplicity, practicality, and pertinence in assessing the 
flexibility of military-SCs.  
 
2.4.5 SCRes measurements based on conceptual approximations from other disciplines 
 
Several attempts to operationalize SCRes have been proposed using conceptual approximations 
from other disciplines. Shuai and colleagues (2011) provided a quantitative measure of SCRes 
based on the application of ‘biological cell elasticity theory’. The construction of this SCRes 
measurement took into account the time needed for achieving a normal state and the gap 
between the normal state and the original state. Shuai and colleagues’ article, although novel in 
terms of employing an approach not previously used in the literature, is very complex and 
impractical in application to real SCs due to the assumptions considered. Similarly, Raj and 
colleagues (2015) developed a new measure of SCRes based on the so-called ‘Cox proportional 
hazard’ (Cox, 1972). Using this idea, these authors added a likelihood dimension to SCRes by 
aggregating the failure point function to the system. The proposed measure of SCRes is tested 
through a simulation model for a SC subjected to 12 different sources of disruptions. However, 
as with the previous model, the strong assumptions required to implement Cox’s model limit its 
applicability to real SCs.  
 
Munoz and Dumbar (2015) developed an approach for measuring operational resilience at the 
level of firm/SC from the idea of ‘transient responses’, or the analysis of post-disruption 
performance data over time. The authors quantified SCRes using a multidimensional metric that 
is evaluated through a linear weighted-sum aggregate index. However, again, the applicability of 
this metric to real-world SCs is restricted by the assumptions associated with the modelling 
process. Dixit and colleagues (2016) developed a measure for SCRes from the concept of the 
‘expected value of the fraction of demand-satisfied post-disaster’. These authors used a multi-
objective stochastic mixed-integer programming model based on the percentage of unfulfilled 
demand and the total transportation cost post disaster, both applied to a SC-network. The 
results of the model were complemented with the use of genetic algorithms and surrogate 
models. Dixit and colleagues’ work is undoubtedly a novel theoretical contribution to the 
operationalization of SCRes. Nevertheless, from a practical point of view, its applicability is 
questionable. Lastly, Sahu and Datta (2017) proposed a quantitative metric for SCRes based on 
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the application of the ‘fuzzy set theory’. These authors analysed the case of an automobile part 
manufacturing company, from which numeric data (fuzzy numbers) based on qualitative 
experts’ judgments (survey data) were collected. Despite the novelty in the use of a fuzzy-based 
approach to measure SCRes, the subjectivity of the input data set, and the amount of 
information required, also make the model impractical in application to other SCs.     
 
2.4.6 SCRes measurements based on previous approaches  
 
Other studies have used previous indices/indicators to measure SCRes or a combination of 
them. Lomax and colleagues (2013) applied the resiliency analysis support tool (RAST) to a 
military-SC. This approach was designed for the US military forces to use during disaster and 
humanitarian response operations, though it can also be used by civilian organizations. RAST’s 
main objectives are to increase situational awareness of disasters occurrence and to support 
decision-making processes. To this end, RAST uses information from different sources to show 
in real-time the geographical position of available resources such as food, shelter, sanitation, and 
health supplies. Yilmaz-Börekci and colleagues (2014) set out a measurement scale to assess 
supplier resilience in supply networks from interviews and surveys in manufacturing and 
services companies. Similarly, Nikookar and colleagues (2014) evaluated well-known practices to 
increase SCRes in the automotive industry using interviews and surveys. In a similar fashion, 
Barroso and colleagues (2015) proposed an aggregated quantitative index of resilience to be 
applied in SCs or individual firms, by considering several settings and previous approaches to 
enhance resilience.  
 
Pant and colleagues (2014) developed a set of measures of resilience to be applied in container 
terminals. The measurement criteria used are the time to total system restoration, the time to 
full system service resilience, and the time to α%-resilience. Similarly, Garcia-Herreros and 
colleagues (2014) analysed SCRes with risk of facility disruptions. The authors based their idea 
on the notion that SCRes is associated with backup capacity. Thus, using a two-stage stochastic 
programming approach, Herrera and colleagues constructed a robust mathematical model that 
allows finding the best SC-design to minimize investment and expected cost from multiples 
scenarios with disruptions. The measure of SCRes discussed in this article is not explicit but it is 
incorporated into SC-flexibility to meet customer demand despite the occurrence of disruptions. 
Ambulkar and colleagues (2015) proposed a qualitative scale of resilience at the firm level based 
on an analysis of how they develop resilience to SC-disruptions. These authors utilised the 
survey method to collect cross-sectional data. Firm resilience is operationalised by integrating 
the SC disruption orientation, the resource reconfiguration, and the risk management 
infrastructure. The main limitation of this analysis is related to the type of data used, which only 
provides a snapshot of the phenomenon being analysed at any given time, restricting the ability 
to infer causal relationships among the analised variables.  
 
Lücker and Seifert (2017) developed an operational metric for quantifying resilience in the 
context of pharmaceutical SCs. The authors based the SCRes analysis on two mitigation levers: 
stockout quantity and stockout time. Finally, Pourhejazy and colleagues (2017) measured the 
resilience of a SC-network using data envelopment analysis (DEA). To this end, the authors 
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evaluated the best-practice and less-performing SC-network configurations of a liquefied 
petroleum gas company. Available capacity, average clustering coefficient, number of supply 
nodes, distance between supply and demand nodes, average node degree, and population 
exposure, are the 7 factors considered for the resilience index. The use of DEA for SCRes 
evaluation is undoubtedly a novel approach from a theoretical point of view. However, the 
limitations of the proposed index are proportional to the number of DEA requirements, 
reducing its usability.  
 
2.5 Findings  
 
2.5.1 Patterns found in the literature  
 
As shown in the previous critical analysis, the operationalization of the SCRes concept has been 
approached from different angles, from which some initial patterns in the literature already are 
visible. Table 2.1 summarizes the previous classification and identifies the main methodologies 
for the collection (or generation) and analysis of the data, as well as the entity subject of study.  
 
Table 2.1 Summary of patterns in the literature on the operationalization of the SCRes concept 

 

Pattern Authors (year) Method for 
gathering data 

Method for 
data analysis Unit of analysis 

1. Based on 
resilience-triangle 
approach 

Falasca et al (2008) Simulation Unspecified Generic supply chain 
Xu et al (2014) Simulation Comparison of system 

configurations 
Generic supply chain 

Zobel and Khansa 
(2014) 

Simulation Comparison of system 
configurations 

Populated area 

2. Based on 
resilience 
graph/network 
theory 

Datta et al (2007) Simulation Comparison of system 
configurations 

Manufacturing supply 
network 

Wang and Ip (2009) Assumed data Genetic algorithm Aircraft maintenance 
and service logistics 

networks 
Ip and Wang (2011) Assumed data Optimization Transportation 

networks 
Zhao et al (2011) Simulation Comparison of system 

configurations 
Military supply chain 

Kim et al (2015) Simulation Comparison of system 
configurations 

Generic supply chain 
networks 

Soni et al (2014) Case study Interpretive structural 
modeling 

Manufacturing supply 
chains 

Mari et al (2015), 
(2015b) 

Simulation Comparison of system 
configurations 

Generic supply chain 
network 

Mohan and Bakshi (in 
press) 

Analytical Unspecified Generic supply chain 
network 

Li et al (2017) Simulation Comparison of system 
configurations 

Mobile phone supply 
chain network 

3. From attributes 
associated with 
supply chains 

Jüttner and Maklan 
(2011) 

Survey Content analysis + 
Pattern matching 

Manufacturing firms 

Spiegler et al (2012) Simulation Comparison of system Generic supply chain 



 33 

configurations 
Carvalho et al (2012), 
(2013) 

Survey Experts’ weighting 
results 

Automotive supply 
chains 

Pettit et al (2013) Survey Mixed-method 
triangulation 

Several firms from 
different industries 

Azevedo et al (2013) Survey Experts’ weighting 
results 

Automotive supply 
chains 

Cardoso et al (2014), 
(2015) 

Case study Expected net present 
value, optimization 

Supply chain network 

Li et al (2017b) Survey Confirmatory factor 
analysis 

Several firms from 
different industries 

4. From allied 
concepts 
 

Thomas (2009) Assumed data Analytical Contingency logistics 
system 

Wagner and Neshat 
(2010) 

Survey Principal component 
analysis 

Several firms from 
different industries 

Martínez and Pérez 
(2005) 

Survey Tau-equivalent reliability Automotive firms 

Sokri (2014) Analytical Unspecified Military supply chain 
5. Based on 
conceptual 
approximations 
from other 
disciplines 

Shuai et al (2011) Analytical Unspecified Generic supply chain 
Raj et al (2015) Simulation Model coefficient 

estimation 
Generic supply chain 

Munoz and Dumbar 
(2015) 

Simulation Structural equation 
modeling 

Generic supply chain 

Dixit et al (2016) Simulation Comparison of system 
configurations 

Generic supply chain 
network 

Sahu and Datta (2017) Survey Fuzzy weighting experts Automotive firms 
6. Based on 
existing 
approaches to 
measure SCRes 

Lomax et al (2013) Assumed data Descriptive Military supply chain 
Yilmaz-Börekci et al 
(2014) 

Survey Exploratory factor 
analysis 

Several firms from 
different industries 

Nikookar et al (2014) Survey Critical factor index 
method 

Automotive supply 
chains 

Garcia-Herreros et al 
(2014) 

Assumed data Optimization Generic supply chain 

Barroso et al (2015) Simulation Comparison of system 
configurations 

Automotive supply 
chains 

Pant et al (2014) Simulation Comparison of system 
configurations 

Container terminals 

Ambulkar et al (2015) Survey Exploratory factor 
analysis 

Several firms from 
different industries 

Lücker and Seifert 
(2017) 

Survey, past 
records 

Optimization Pharmaceutical 
supply chain 

Pourhejazy et al 
(2017) 

Case study Data envelopment 
analysis 

Petroleum-gas firm 

 
 
2.5.2 Classification by type of journal and publication year 
 
Table 2.2 shows the number of articles per journal and its respective rating per the most recent 
Academic Journal Guide ABS guide. Similarly, Figure 2.1 shows the number of publications on 
the operationalization of the SCRes concept over time.  
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Table 2.2 Distribution of the publications on the operationalization of the concept of SCRes 
with respect to journals 

 
Journal # publications ABS rating* 
IEEE Systems Journal 4 n.f. 
Computers & Industrial Engineering 3 ★★ 
Journal of Operation Management 2 ★★★★ 
International Journal of Production Research  2 ★★★ 
Omega  2 ★★★ 
Sustainability 2 n.f. 
International Journal of Logistics Systems and Management 2 n.f. 
International Journal of Operations & Production Management 1 ★★★★ 
International Journal of Production Economics 1 ★★★ 
Informs 1 ★★★ 
Computers & Operations Research 1 ★★★ 
Supply Chain Management: An International Journal 1 ★★★ 
International Journal of Logistics: Research and Applications 1 ★★ 
Benchmarking: An International Journal 1 ★ 
International Journal of Agile Systems and Management 1 ★ 
Journal of Change Management 1 ★ 
Management Research Review 1 ★ 
International Journal of Systems Science: Operations & Logistics 1 n.f. 
Industrial Engineering and Engineering Management 1 n.f. 
Journal of Cleaner Production 1 n.f. 
Journal of Modelling in Management 1 n.f. 
International Journal of Industrial Engineering 1 n.f. 
Management and Production Engineering Review 1 n.f. 
International Journal of Business Logistics 1 n.f. 
Industrial & Engineering Chemistry Research  1 n.f. 
Others (proceedings, theses, and book chapters) 5 n.a. 
Total 40 - 

 Academic Journal Guide 2015 (1390 total entries). Retrieved from: 
 https://charteredabs.org/academic-journal-guide-2015-view/ 
 n.f.: no matching records found; n.a.: no applicable 
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Figure 2.2 Number of publications on the operationalization of the concept of SCRes  
by year (2001-2017*) 

                    * Up to July, 2017.  
 
2.5.3 Classification by research approach and level of suitability of SCRes 
 
Based on the works of Beamon (1999), Latva-Koivisto (2001), and Modrak and colleagues 
(2013), the level of suitability of the SCRes indices/indicators described in the publications 
analysed is evaluated taking into account four criteria: (1) validity or the measure of the inclusion 
of all pertinent aspects of the notion of SCRes, from 1-none to 5-all; (2) ease of implementation or 
the measure of the difficulty in implementing the index/indicator of SCRes, from 1-very 
difficult to 5-very easy; (3) universality or the measure of how comparable the SCRes’ results are 
when different examiners use it; from 1-not comparable to 5-very comparable; and (4) 
intuitiveness or the measure of how easy is to understand the index/indicator of SCRes, from 1-
very difficult to 5-very easy. Likewise, the list of publications is classified by the research 
approach. The results of this evaluation are shown in Table 2.3.  
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Table 2.3 Classification of the publications according to the level of suitability of SCRes 
 

Authors (year) Quantitative Qualitative 
Suitability level of SCRes 

index/indicator  
(0-lowest, 1-highest) 

Wang and Ip (2009) �  0.80 
Kim et al (2015) �  0.80 
Ip and Wang (2011) �  0.80 
Xu et al (2014) �  0.75 
Sokri (2014) �  0.75 
Wagner and Neshat (2010)  � 0.70 
Soni et al (2014)  � 0.65 
Ambulkar et al (2015)  � 0.65 
Zobel and Khansa (2014)  �  0.65 
Carvalho et al (2013)  � 0.65 
Cardoso et al (2015) �  0.65 
Mari et al (2015) �  0.65 
Thomas (2009) �  0.65 
Mari et al (2015) �  0.65 
Jüttner and Maklan (2011)  � 0.60 
Garcia-Herreros et al (2014)    0.60 
Spiegler et al (2012) �  0.60 
Datta et al (2007) �  0.60 
Azevedo et al (2013)  � 0.60 
Lückera and Seiferta (2017) �  0.60 
Mohan and Bakshi (2017) �  0.60 
Pant et al (2014) �  0.60 
Barroso et al (2015) �  0.55 
Pourhejazy et al (2017) �  0,55 
Sahu et al (2017) �  0.50 
Martínez and Sánchez (2005)  � 0.50 
Dixit et al (2016) �  0,50 
Zhao et al (2011) �  0,50 
Li et al (2017)  � 0.50 
Pettit et al (2013)  � 0.45 
Munoz and Dunbar (2015) �  0.45 
Yilmaz-Borekci et al (2014)  � 0.45 
Nikookar et al (2014)  � 0.45 
Carvalho (2012)  � 0.40 
Raj et al (2015) �  0.40 
Falasca et all (2008) �  0,35 
Shuai et al (2011) �  0.35 
Cardoso et al (2014) �  0.30 
Lomax et al (2013) �  0.30 
Percentage 70.0% 30.0% - 
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Figure 2.3 Classification of publications according to research approach 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.6 Research Gap  
 
The review of the literature on the operationalization of the SCRes concept has uncovered 
several gaps that are promising for the development of future research. The first aspect to 
highlight is the unusual interest in studying ‘how to measure SCRes’ that has been created 
among academics and professionals. The new realities and changing scenarios faced by SCs are 
perhaps the main motivation for studying resilience (Cardoso et al., 2015). In fact, as can be 
seen in Table 2.2, not one of the top-journals in the field of LSCM has remained oblivious to 
this phenomenon, and the number of articles published on this topic points to a growing trend 
(see Figure 2.1). However, the current number of articles on this matter remains relatively low, 
pointing to a need for more research. In spite of the rather low numbers, the review of existing 
studies allowed identification of some preliminary patterns in the literature, as described in 
Table 2.1. Some of these patterns seem to be ‘depleted’, e.g. ‘the triangle-based approach to 
resilience’, while others offer new and interesting avenues for making practical contributions on 
the subject, e.g. ‘the approaches based on conceptual approximations from other disciplines’, 
but still with some aspects in need of improvement (e.g. suitability).  
 
Regarding the approaches employed, one aspect in common among all the attempts to measure 
SCRes lies on their marked eclecticism in the derivation of decision variables. Most of the 
studies listed in Table 2.1 combined different methodologies and concepts to obtain a ‘better 
approximation of resilience’. However, the excessive use of the ‘eclectic approach’—especially 
in quantitative approaches—may result in intricate and impractical indices or indicators. In 
Table 2.3, the suitability of the previous attempts to operationalize the concept of SCRes is 
evaluated, and only a small fraction of them (5/40) could be classified in the first quartile of the 
sample. This result indicates that, from my perspective, there is room to propose new simplified 

Qualitative, 
30% 

Quantitative, 
70% 
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low-complexity indexes or indicators of SCRes, without falling into simplistic approaches. In 
addition, Figure 2.3 shows the clear dominance of quantitative approaches (70.0%) over 
qualitative approaches (30.0%). Regarding the latter, it can be said that, while the survey-based 
method is a research methodology with a long tradition in LSCM (Sachan & Datta, 2005), when 
it is used as a criterion for assessing SC-attributes as SCRes, the validity and reliability of the 
resulting index/indicator is significantly less than when using quantitative methods. This is 
because such methodologies add a component of subjectivity that cannot be easily replicated in 
other contexts or types of SCs (Spiegler et al., 2012).  
 
A third aspect is related to the separation between the concept of SCRes and the attempts to 
operationalize it. In most of the SCRes measures described in Table 2.1, the decision variables 
or component elements of the index or indicator do not seem to be closely related to any of the 
definitions of SCRes. This gap between the ‘theory and practice’ is more pronounced in the 
conceptual approaches from other disciplines (pattern 5 in Table 2.1) than in those approaches 
based on attributes associated with SCs (pattern 3). In other words, if the elements that shape 
the notion of SCRes, viz. readiness, response, recovery, and growth (Hohenstein et al., 2015) are 
studied in-depth, it can be concluded that several of the SCRes measures listed in Table 2.1 and 
2.3 are not totally consistent with the concept itself. Moreover, ‘inherent resilience’ or the 
strength that a SC holds from the available resources (Azadegan, 2017), is another missing 
element in many of the indices or indicators analysed. Finally, the plurality of approaches 
described in the literature is a clear indication that there is not a single best method for 
measuring SCRes. This remark leads us to think about the need to create specific resilience 
measures adjusted to specific types of SCs. 
 
2.7 Summary of Chapter 2  
 
The application of a systematic protocol for the review of the literature allowed the 
identification of 40 publications directly related to the operationalization of the concept of 
SCRes. The in-depth analysis of these documents revealed the existence of six patterns 
associated with the approach used to measure resilience, which are applied to a wide variety of 
SCs, logistics systems, and individual firms. The research approaches utilised are predominantly 
quantitative in nature. In this regard, the most prevalent method for collecting data is 
simulation-based tools, and for the analysis of data, the comparison of system configurations. 
The review of the literature also uncovered several research gaps promising for exploration: (1) 
Unusual interest among academics and practitioners in measuring SCRes, (2) the excessive 
complexity of the existing SCRes measures, (3) the clear prevalence of quantitative approaches 
over qualitative approaches, (4) the gap between the theoretical underpinnings of SCRes and the 
attempts to operationalize the concept, and (5) the missing element in several of the proposed 
SCRes measures: inherent resilience. The following chapter constructs the conceptual 
framework and research hypotheses.  
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Chapter 3. Hypotheses Development and Conceptual Framework 
 
3.1 Introduction  
 
The purpose of this research is to understand to what extent the application of a buffering 
strategy affects the relationship between the occurrence of risks and the level of resilience in a 
SC of military food (MFSC). In this sense, the main motivation is to advance the debate in the 
literature around the theoretical effectiveness of this kind of SC strategy to create resilience 
and/or to inhibit the occurrence of disruptions, both in the context of military-SCs. To this 
end, this chapter constructs a conceptual framework that relates three main categories of risk—
operational (R1r), natural disasters-and-intentional-attacks (R2r), and black-swan events (R3r)—to 
SC-resilience (SCRes); and, acting as contingent factors, on-hand inventory buffers and short-
term manufacturing capacity. The development of this conceptual framework is addressed 
through the lens of contingency theory (CoT). The rest of the chapter is organized as follows. The 
second section provides arguments as to why buffering strategies in military-SCs deserve to be 
studied. The third section outlines previous empirical works in commercial-SCs—due to the 
lack of previous works on resilience applied to military-SCs—related to the analysis of the 
aforementioned variables, from which gaps and a conceptual model based on CoT are both 
identified. The fourth section derives and presents research hypotheses and a conceptual 
framework. Lastly, fifth section integrates the constituent elements of the research.   
 
3.2 Why Study Buffering Strategies and Why in Military Supply Chains? 
 
Existing literature outlines a number of strategies to improve resilience in commercial-SCs. For 
instance, Tukamuhabwa and colleagues (2015) categorised these into strategies (1) that increase 
flexibility, (2) based on redundancy, (3) are for building collaborative relationships, and (4) aim 
to improve agility. The buffering strategy described in this research can be seen as a safeguard 
that protects the military-SC under analysis from the occurrence of disruptions in order to gain 
stability (Bode et al., 2011); i.e., it falls into the category of SC strategies based on the creation of 
redundancy. In this regard, in a recent paper, Marley and colleagues (2014) pointed out that not 
many works have examined empirically the interactive effects between complexity and buffering 
strategies on SC disruptions, and Sodhi and colleagues (2012) underlined the need for more 
empirical studies on how SCs should use buffering strategies to respond to risks. Therefore, the 
little empirical research to evaluate the ‘theoretical effectiveness’ of this type of strategy presents 
an important gap that must be filled. Apart from this controversy, which will be further 
explored, the reason for studying a buffering strategy lies in the very nature of the unit of 
analysis (military). It is important to note that by ‘theoretical effectiveness’ in this context is 
meant the use simulated data instead of empirical data for testing the research hypotheses due 
to the lack or nonexistence of the latter (Davis & Bingham, 2007).  
 
For military-SCs, the possibility of ‘switching a buffering strategy on/off’ is almost 
‘instantaneous’ in practice. Thus, increasing on-hand inventory buffers or adding more short-
term manufacturing capacity to deal with disruptions is easily executable (Waters, 2007). 
However, this is not the case for the other categories of strategies, which advocate the 
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implementation of several practices such as standardization of finished products, utilization of a 
flexible supply base, exchange of information with partners, and real-time tracking of assets and 
deliveries to customers (Tang, 2006). Moreover, not all these strategies can be easily 
implemented in military-SCs. For instance, regarding the first practice suggested for a MFSC, 
troops’ nutritional requirements fit the characteristics of combat scenarios, thereby producing 
generic combat rations, which might be considered an issue of inconvenience as regards the 
physical performance of soldiers on the frontline. Continuing with the example, due to the 
governmental character of military-SCs, the acquisition of raw materials and inputs is subject to 
rigorous procurement procedures, making them less opaque to the public eye, but less flexible 
for the selection of suppliers. This ‘rigidity’ in the procurement process relates to the reluctance 
of military-SCs to share information with their stakeholders, including their suppliers (Schwartz, 
2014; Walden, 2005; Fox, 2011). Finally, the hostile environment of military-SCs is a major 
impediment for monitoring their performance in real-time, particularly in downstream 
operations. This problem is accentuated when the theatre of operation moves away from the 
supply units. 
 
An additional issue to be mentioned is the high operational cost of setting up buffering 
strategies in SCs (Christopher & Peck, 2004). It is a fact that the activation of more work-shifts 
or holding/replenishing more inventory will negatively impact the cost structure in SCs. Thus, 
for a commercial-SC, the decision of whether to implement a buffering strategy is relatively 
simple: ‘choose the lowest cost between applying this strategy and not doing it (shortage cost)’. 
However, for a military-SC operating in conditions of war, the costs of shortage, i.e., the cost 
associated with non-compliance with the mission and/or the loss of human lives is, by rule of 
thumb, usually higher than labour or inventory costs. Consequently, aspects related to the costs 
of implementing a buffering strategy will be considered marginal within this context.    
 
3.3 Topical Research, Gaps, and Conceptual Model  
 
3.3.1 Theoretical model from contingency theory lens (CoT) 
 
The Section 2.2 outlined the prior studies that directly resemble the present research insofar as 
the variables analysed. This section describes the lens through which the present research 
framework is examined: the contingency theory (CoT). The origins of CoT go back to the research 
by Lorsch and Lawrence (1970), Chandler (1969), and Burns and Stalker (1994), on the 
performance of organizations in their environments, though some authors pointed out that its 
starting point was Bertalanffy’s systems theory (Skyttner, 2005). CoT conceives of organizations 
as open-systems that are influenced by their environment (or contingencies), allowing them to 
adapt continuously through the acquisition of new capabilities (Woodward, 1980). In this sense, 
the literature about this topic considers organizational structures and administrative systems to 
be based on environmental and organizational factors, without implying a causal relationship 
between them (Donaldson, 2001). CoT offers a robust perspective for analysing military-SCs 
operating in hostile environments, since it provides a context in which the relationship between 
two variables is contingent upon some third variable (Tosi & Slocum, 1984; Fynes et al., 2005). 
For instance, Mikes and Kaplan (2014) developed a contingency framework that hypothesizes 
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the ‘fit’ between risks and observable variations in the mix of enterprise risk management, as 
well as organizational effectiveness. Using the same approach, Tomlin (2006) pointed out that 
companies can use two tactics to deal with disruptions: mitigation and contingency tactics, or 
response actions after the occurrence of disruptions.      
 
Drawing on CoT, Figure 3.1 describes the conceptualization of a military-SC. In this figure, a 
military-SC provides combat rations to the troops in a hostile environment. The main objective 
of this SC is to guarantee continuity of military operations by minimizing the frequency and/or 
duration of disruptions in the flow of supplies. The occurrence of disruptions is due to both 
external/internal factors (risks) immersed in a complex and heterogeneous environment, 
outside the reach of the SC. In response, the SC develops adaptive and survival mechanisms 
(congruency mechanisms), which increase the effectiveness of the SC logistics processes. Thus, 
lesser and/or shorter disruptions in the flow of supplies are evaluated through performance 
measures that verify the fit between congruence mechanisms and independent variables. The 
practical contributions of CoT to the theoretical model in Figure 3.1 are (1) the examination of 
the context of the military-SCs from (2) the identification of contingent variables (management 
practices), by giving as a result (3) an effective organizational design (e.g. a more resilient 
military-SC). The theoretical model of Figure 3.1 provides a useful starting point for the 
subsequent development of the ex ante hypotheses and conceptual framework. 

 
 

Figure 3.1 Performance of a military-supply chain in presence of risks and congruent 
mechanisms from contingency-based theory 
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and H1c) describes the direct effect between increases in the frequency of occurrence of three 
categories of risk (Rcr) and the level of resilience of the military-SC under analysis (SCRes). 
Although this relationship denotes the extant theory, i.e., it should be taken as true, it will be 
subject to statistical validation. The second set of hypotheses (H2a, H2b, and H2c) describes the 
interactive effect that increases to the levels of on-hand inventory buffers (It,S) may have on the 
relationship between risks and SCRes. Lastly, the third set of hypotheses (H3a, H3b, and H3c) 
describes the interactive effect that increases in short-term manufacturing capacity (S) may have 
on the relationship between risks and SCRes. In the three mentioned cases, the effect of risks 
on the SC (disruptions) is assessed individually (by categories of risk), following the suggestion 
of Sheffi (2005) who stated, “each type of disruption should be anticipated and defended 
against differently” (p.13). In this sense, it is worth mentioning that the analysis of the previous 
empirical works in commercial-SCs described in Section 3.3 serves as starting point and 
reference framework for the above three sets of hypotheses on military-SCs. Nonetheless, for 
their formulation, the perspective selected in this research is Plato’s approach or carving at the joints 
(Van de Ven, 2007), i.e. juxtaposing or comparing competing explanations regarding the 
utilisation of It,S or S to increase SCRes in the light of the author’s findings. 
 
3.4.1 Hypotheses concerning the direct effect of increases in the frequency of 
occurrence of risks on the measure of resilience in supply chains: Hypotheses H1a, H1b, 
and H1c  
 
What is the linkage between risk and resilience? Few authors have explored in depth the 
implications of this relationship, perhaps due to its ‘obvious’ nature. Kahan and colleagues 
(2010), in a study for the U.S. Department of Homeland Security, examined the scope of this 
association from both qualitative and quantitative points of view. According to this study, risk 
and resilience are inversely related to each other. Thus, the more resilient a system is, the less 
prone it is to facing risks. On the other hand, the fewer/more risks a system faces, the 
higher/lower its level of resilience is.  
 
In a broad sense, the notion of resilience might be interpreted as a measure of the performance 
of a system within a risky environment. From this perspective, the study by Wagner and Bode 
(2008) sheds lights on this relationship (risk and resilience) in the context of SCs. These authors 
developed survey-based empirical research in which they examined the relationship between the 
occurrence of five types of risk—demand side, supply side, regulatory, legal and bureaucratic; 
and catastrophic—and SC-performance. The results of this study, however, are somewhat 
disconcerting; while there is statistical significance for demand and supply side risks, the 
statistical support for regulatory, legal and bureaucratic, and catastrophic risks is weak. Wagner 
and Bode argued that this outcome is due to the fact that high-level executives underestimate 
the occurrence of these risks by considering them as exceptional events with a low likelihood of 
occurrence.  
 
Hopp and Spearman (2008) posed a principle applicable to all manufacturing systems that 
underpins the linkage between risk and resilience. According to these authors, increases in 
variability negatively affect the performance of production systems. Hopp and Spearman 
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termed this relationship variability law. The variability is, in this context, the result of a mixture of 
predictable and unpredictable randomness with disruptive effects. More recently, Brandon-
Jones and colleagues (op. cit., 2015) hypothesised a negative relation between the frequency of 
SC disruptions and the performance of manufacturing plants. In this regard, the authors 
confirmed this hypothesis, though subject to interaction effects. Therefore, based on previous 
works and studies outlined in the topical research, it can be said there are arguments to posit the 
following three hypotheses: 
 
Hypothesis 1a (H1a): ‘Ceteris paribus, increases in the frequency of occurrence of operational 
risks (R1r) reduce the measure of resilience in supply chains (ReT).’ 
 
Hypothesis 1b (H1b): ‘Ceteris paribus, increases in the frequency of occurrence of natural-
disasters-and-intentional-attacks (R2r) reduce the measure of resilience in supply chains (ReT).’ 
 
Hypothesis 1c (H1c): ‘Ceteris paribus, increases in the frequency of occurrence of black-swan 
events (R3) reduce the measure of resilience in supply chains (ReT).’ 
  
3.4.2 Hypotheses concerning the moderating effect of on-hand inventory buffers in the 
relationship between the frequency of occurrence of three categories of risk and the 
measure of resilience in supply chains: Hypotheses H2a, H2b, and H2c  
 
The first scientific reference on inventory management dates back to the second decade of the 
20th century (Harris, 1913). Since then, hundreds of articles and entire treatises on this topic 
have been written, e.g., Analysis of Inventory Systems (Hadley & Within, 2012). The first works that 
considered inventory to prevent SC disruptions focused on “the single/multiple-supplier 
problem” or supply side, that is, interruptions in the supply of raw materials/components for the 
production/assembly of finished products, e.g., Goyal, 1977; Parlar & Perry, 1996; or to handle 
natural variations in demand which occur at the retailer stage of the SC or demand side, e.g., Ross, 
2015. Nevertheless, the discussion of inventory as a mechanism for enhancing resilience and/or 
mitigating a broader range of SC disruptions is more recent. To date, inventory is the most 
prevalent buffering method used by SC managers because it does not need to be coordinated 
with suppliers or customers (Lapide, 2008). Despite this, two contradictory points of view in the 
literature coexist regarding the real effectiveness of inventory to prevent the occurrence of 
disruptions in SCs.  
 
The first view argues that ‘inventory can indeed enhance the level of resilience in SCs, and, as result, prevent 
the occurrence of disruptive events’. Within this perspective, several nuances can be found. Rice and 
Caniato (2003), Lee and Wolfe (2003), and Jüttner and colleagues (2003) were the first authors 
to suggest increases in stockpiling and buffer inventory as a mechanism for creating resilience in 
SCs and/or mitigating disruptions. Chopra and Sodhi (2004), and Lockamy and McCormack 
(2010) pointed out that increasing inventory reduces delays and procurement and capacity risks, 
but also increase inventory risks. Christopher and Peck (2004) indicated that the selective use of 
inventory provides “slacks” that create more resilient SCs. Zsidisin and colleagues (2005) 
pointed out that the use of inventory to prevent SC disruptions is conditioned to low levels of 
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waste and variance. In a similar fashion, Boone and colleagues (2013) pointed out that 
inventories are a necessary component of an effective SC strategy, but that they can have 
detrimental effects on the SC when the inventory approach is misused. Similarly, Tomlin and 
Wang (2012) mentioned that a buffering strategy based on stockpile inventory is not without 
limitations, and that therefore, four factors should be considered for its application: risk profile, 
detection, isolation, and recovery. These authors recommended the use of inventory for 
frequent-but-short disruptions, and for rare-but-long disruptions, whenever, in the latter, a 
disciplined process for maintaining the stockpile exists.  
 
Faden (2014) showed that the use of inventory buffers should be higher when the production 
forecast is less reliable. Sheffi (2002), and Sheffi and Rice (2005) recommended that SCs should 
keep “strategic emergency stock” in a fashion similar to the way U.S. strategic oil reserves are 
administered. These authors pointed out that this stock should not be used for day-to-day 
fluctuations, but only in case of the occurrence of an extreme disruption. A similar idea is 
proposed by Tang (2006), Pickett (2006), and Bode and colleagues (2011), who suggested the 
use of “shock absorbers” at certain strategic locations along the SCs—such as warehouses, 
logistics hubs, and distribution centres—to avoid inventory holding and obsolescence costs. 
Complementing this approach, Son and Orchard (2013) suggested using strategic inventory 
reserves instead of inventory buffers due to the lower holding cost of the former. Finally, Stecke 
and Kumar (2009) and Pettit and colleagues (2013) mentioned that SCs should carry extra 
inventory as a coping strategy to mitigate the negative effects of disruptions and/or to deal with 
demand fluctuations.  
 
In contrast to above studies, the second view postulates in general that ‘inventory does not create 
SCRes, nor is it and effective way to prevent the disruptions in SCs.’ Christopher and Lee (2004) 
discussed how the utilisation of inventory buffers is a clear indication of lack of visibility and 
control in the SC. These authors also pointed out that the worst-case scenario occurs when a SC 
holds high levels of inventory buffers and the demand decreases at the same time. In the same 
line of thinking, Bandaly and colleagues (2012) indicated that SCs face the risk of obsolescence 
when they keep inventory buffers for the mitigation of demand-side uncertainty. Tomlin (2006), 
by analysing a hypothetical SC with two suppliers—one unreliable, and the other reliable but 
more expensive—concluded that inventory mitigation does not work well when disruptions are 
rare and long. Zsidisin and Wagner (2010) compared redundancy and flexibility practices in SCs. 
According to the results found, redundancy—based on the use of safety stock, multiples 
suppliers, and low capacity utilization rates—is a less effective practice to reduce risks than 
flexibility. In a similar fashion, Hopp and colleagues (2012) concluded regarding the use of 
inventory as a protective mechanism for SC disruptions that it can mitigate disruptions and its 
use depends on the SC environment, but it is not sufficient by itself to protect against rare-but-
long disruptions.  
 
In a study on how to mitigate SC disruptions, Marley and colleagues (2014) argued that high 
inventory should not be considered an effective countermeasure, since it may increase the 
number of downstream disruptions in SCs. The main argument of these authors revolves 
around the idea of “complexity in systems”. These authors indicated that increasing inventory 
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exacerbates the complexity of the SCs by increasing the likelihood of occurrence of “normal 
disruptions” in complex processes. Kim and colleagues (2015), researching structural 
relationships among entities within a SC network, contended that, first, redundancy—based on 
the use of inventory buffers—as a mitigation strategy for disruption needs to be understood in a 
holistic and integrative manner; and second, redundancy does not necessarily create higher 
resilience. Lastly, in a similar vein, Cardoso and colleagues (2015) found evidence indicating that 
in not all the cases adding more redundancy—in the form of more inventories—through 
mitigation strategies leads to more resilient SCs. The analysis of these authors shows that 
aspects such as the type and probability of disruptions, as well as the structure of the supply 
network are concomitant factors that should be taken into account. Thereby, by weighting both 
points of view, there are arguments to posit the following hypotheses:  
 
Hypothesis 2a (H2a): ‘On-hand inventory buffers (Ιt,S) moderate the relationship between the 
frequency of occurrence of operational risks (R1r) and the measure of resilience in supply chains 
(ReT), with the relationship being enhanced by increases in the levels of Ιt,S.’ 
 
Hypothesis 2b (H2b): ‘On-hand inventory buffers (Ιt,S) moderate the relationship between the 
frequency of occurrence of natural-disasters-and-intentional-attacks (R2r) and the measure of 
resilience in supply chains (ReT), with the relationship being enhanced by increases in the levels 
of Ιt,S.’ 
 
Hypothesis 2c (H2c): ‘On-hand inventory buffers (Ιt,S) moderate the relationship between the 
frequency of occurrence of black-swan events (R3) and the measure of resilience in supply 
chains (ReT), with the relationship being enhanced by increases in the levels of Ιt,S.’ 
 
3.4.3 Hypotheses concerning the moderating effect of increases in the levels of short-
term manufacturing capacity in the relationship between the frequency of occurrence of 
three categories of risk and the measure of resilience in supply chains: Hypotheses H3a, 
H3b, and H3c  
 
Short-term manufacturing capacity is based on the number of available work shifts in the SC. 
Several of the authors who suggested the use of on-hand inventory buffers also recommended 
the utilisation of this mechanism to enhance SCRes and/or prevent the occurrence of disruptive 
events (Rice & Caniato, 2003; Christopher & Peck, 2004; Chopra & Sodhi, 2004; Lapide, 2008; 
Cardoso et al., 2015). Likewise, researchers appear to be more predisposed to recommending 
increases in manufacturing capacity than to building inventory buffers to mitigate disruptions, 
due especially to the cost of the latter. For instance, Christopher and Peck (Ibid., 2004) 
mentioned that capacity is a more flexible mechanism than inventory, with both essential to 
SCRes. Lapide (Op.cit., 2008) pointed out that using SC capacity to prevent disruptions is as 
effective as using inventory. Simchi-Levi and colleagues (2007) suggested that the use of a 
redundant strategy (including increases in capacity) might be effective against risks of the type 
“unknown-unknowns” type. Zsidisin and Wagner (2010) found that a low capacity utilization 
rate reduces risks but not as much as flexibility does. Hendricks and Singhal (2012) and Hopp 
and colleagues (2012) pointed out that reducing overcapacity makes SCs more prone to 
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disruptions. Thus, similarly to the previous analysis, there are arguments to posit the following 
hypotheses:  
 
Hypothesis 3a (H3a): ‘Short-term manufacturing capacity (S) moderates the relationship 
between the frequency of occurrence of operational risks (R1r) and the measure of resilience in 
supply chains (ReT), with the relationship being enhanced by increases in the levels of S.’ 
 
Hypothesis 3b (H3b): ‘Short-term manufacturing capacity (S) moderates the relationship 
between the frequency of occurrence of natural-disasters-and-intentional-attacks (R2r) and the 
measure of resilience in supply chains (ReT), with the relationship being enhanced by increases 
in the levels of S.’ 
 
Hypothesis 3c (H3c): ‘Short-term manufacturing capacity (S) moderates the relationship 
between the frequency of occurrence of black-swan events (R3) and the measure of resilience in 
supply chains (ReT), with the relationship being enhanced by increases in the levels of S.’ 
 
3.4.4 Conceptual framework of the research  
 
All previous hypotheses constitute the conceptual framework of this research and are applicable 
to military-SCs, as shown in Figure 3.2. Two basic patterns are distinguishable in the conceptual 
framework described: (1) the direct effect between the three categories of risk (Rcr) and the 
measure of resilience for military-SCs (ReT), and, (2) the interaction of a buffering strategy (It,S, 
S) in the relationship between Rcr and ReT.   

 
Figure 3.2 Conceptual framework for the three categories of risk (Rcr), the measure of resilience 

for military-SCs (ReT), and a buffering strategy (It,S, S) 
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3.5 Comprehensive Research Perspective  
 
Within the context of defense logistics area, the definition of the research problem—central 
question—emerged mainly from a preliminary approximation to the LSCM literature; and 
second, from the previous knowledge and experience of the researcher upon military-SCs. Thus, 
while the initial literature review allowed the identification of the topic of the research— What is 
the most appropriate strategy to increase supply chain resilience or SCRes?—, the analysis and observation 
of the performance of military-SCs and the background of the researcher enabled the selection 
of the unit of analysis for the research—military food supply chain or MFSC.   
 
The designation of the topical research and the unit of analysis led to new questions: What is 
the most suitable definition of SCRes? How to measure resilience in military-SCs? Is it different 
from doing it in commercial-SCs? What aspects within the SCRes literature need more 
attention? In a nutshell, how to raise the level of resilience in MFSCs and what is the most 
appropriate strategy? Thereby, a deeper review of the literature from the objectives of the 
research that could cover all these aspects was needed. 
 
With these questions in mind, the objectives of the research were clearly stated. In this way, the 
first research objective relates to the derivation of a universal conceptualization of SCRes and its 
subsequent operationalization; and the second objective, with the evaluation of the effectiveness 
of a buffering strategy in the context of MFSCs. The systematic review of the literature revealed 
gaps and patterns in the SCRes literature that, together with the previous identification of 
topical research and the selection of the unit of analysis, allowed deriving the research 
hypotheses, and subsequently, the conceptual framework of the research. Figure 3.3 summarizes 
the above.   
 

Figure 3.3 Blueprint of the research  
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3.6 Summary of Chapter 3 
 
The conceptual framework above described allows articulating four major stages of this 
research: review of the literature, operationalization of the concept of resilience, formulation of 
a simulation model, and analysis and results. For this purpose, in this chapter presented a solid 
justification of the interest in studying buffering strategies in military-SCs. Second, it developed 
a thorough review of previous empirical work related to risks/disruptions affecting the 
performance of SCs in overall and the buffering strategies used. Third, it obtained a theoretical 
model from CoT theory lenses, which serves as a starting point for the derivation of the nine 
research hypotheses applied to military-SCs. Lastly, it constructed a novel and comprehensive 
conceptual framework, which is the basis of this research. As described in the topical research, 
several of the variables considered in this conceptual framework have already been studied in 
previous theoretical or empirical works. However, how the variables of interest were arranged, 
as well as how they will be further evaluated and analysed, make this conceptual framework an 
original solution approach for the research problem posited in the introductory chapter.  
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Chapter 4. Research Methods 
 
4.1 Introduction 
 
The purpose of this chapter is to explain how and why the research methods for generating and 
analysis of data required for testing the research hypotheses were selected. To this end, this 
chapter is splitted up into two main sections. The first section focuses on the research methods 
for gathering of data, and the second section, on the research methods for their analysis. 
Building off the patterns found in the review of the literature in Chapter 2, each of these 
sections describes the research methods available in the literature, the research methods selected 
for each case, and the underlying reasons that justified their adoption for the purposes of the 
present research.  
 
4.2 For the Collection of the Data 
 
As was set forth in Chapter 1, the research problem proposed in this study comprises two main, 
integrated objectives: (1) to derive a unified conceptualization of SCRes based on the existing 
definitions, research done and gaps identified in the literature review from which a quantitative 
holistic measure of SCRes that appraises both dynamic and inherent resilience can be 
developed; and secondly, (2) to evaluate the theoretical effectiveness of a buffering strategy 
founded on the use of on-hand inventory buffers or short-term manufacturing capacity to build 
up SCRes.  
  
To attain the first objective, a whole theoretical framework upon the operationalization of the 
SCRes concept and a text-mining algorithm were developed respectively, as will be explained in 
Chapter 5. To reach the second objective, two interrelated aspects must be addressed: First, we 
must examine the performance of a real-world military food SC (MFSC) in a hostile and 
changing environment; and second, we need to evaluate the effectiveness of a buffering strategy 
as described on the level of SCRes, as will be explained both in Chapter 6. Under ideal 
circumstances (Rosenbaum, 2010), the information needed to assess both aspects should come 
from an observational study in which the occurrence and impact of risk events on the SC under 
analysis are available and sufficiently detailed over time; and secondly, the information should 
be based on changes made for convenience from the levels of on-hand inventory buffers and 
short-term manufacturing capacity, or through randomized controlled trials, with the aim of 
measuring in situ the effect of these adjustments on the resilience of the SC. 
 
Yet, the above conditions are difficult to achieve in practice. Firstly, there are few organizations 
with robust information systems to collect this type of data, let alone that are willing to disclose 
it to third parties (Tang, 2006). The situation described applies particularly to military-SCs, in 
which the information availability for risk analysis is usually limited, unreliable, or unavailable 
(Freier, 2008; Birkemo, 2013). And secondly, it is not feasible to modify the internal parameters 
of an actual SC at the expense of obtaining experimental results. Concerning the MFSC under 
analysis, there are no detailed historical records of the occurrence of risks/disruptions over time 
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nor studies that relate the effects that adjustments on the internal parameters/policies of the SC, 
e.g. outsourcing of logistical functions, may cause on its performance. Despite these 
information gaps, the author of this study had direct access to technical records of the SC 
related to characteristics and types of rations assembled, supplier and raw material information 
required, production capacity, internal SC-configuration, number of workers, times of delivery 
and distribution, and quantity and frequency of rations demanded, among other technical 
aspects. 
 
Thus, if the research objectives and information constraints mentioned above are taken into 
account, what is the most appropriate modeling approach for gathering data from a military-SC 
operating in a risky environment? To answer this question, Table 4.1 characterizes the main 
approaches outlined in the literature for modeling disruptions in SCs, while Figure 4 
summarizes the most common research methods used to collect data for the operationalization 
of the concept of SCRes, from the information provided in Table 2.1. 
 

Table 4.1. Modeling approaches for SC-disruptions 
Modeling 
approach  

Characteristics and main 
assumptions 

Problem-solving 
capability 

Information 
requirements 

1. Analytic 
Stochastic 
Models, e.g. King 
and Wallace 
(2012) 

- Discrete and continuous 
probability functions 
- Very flexible to model 
- Model decisions have to be 
made before collecting data 
- Computationally difficult to 
solve 
- Wide range of applications 
and approaches 

This approach allows 
determination of the 
optimal structure of an 
SC under uncertainty in 
the face of unexpected 
events or disruptions. 

High 

2. Bayesian 
Networks, e.g. 
Darwiche (2009), 
Donaldson 
(2010) 

- Compact representation 
- Use of conditional 
probabilities 
- Robust to simulate small 
disruptions 
- Operational flexibility with 
different variables 
- Past information determines 
the future 
- Variety of applications 

This approach enables 
modeling disruptions and 
causal relationships for 
SCs in a context of 
uncertainty through the 
use of (incomplete) 
historical data. 

Moderated 

3. Behavioural, 
e.g. Croson and 
Donohue (2002) 

- Complete rationality of 
decision makers 
- Principles for modeling are 
based in social science 
- Disruptions and unexpected 
events are mainly based on 
behavioural factors 
- Few applications in literature 

This approach allows 
analysing human 
behaviour within SCs, 
and how their actions can 
reduce the impact of 
unexpected disruptions. 

High 
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4. Game 
theoretical—non-
cooperative and 
cooperative 
game, e.g. 
Papapanagiotou 
and Vlachos 
(2012) 

- Set of players 
- Strategy space 
- Payoff functions 
- Multiples goals 
- Constrains and conflicting 
objectives 

This approach enables 
analysing SC-disruptions, 
emphasizing the 
interactions between 
suppliers and retailers 
under stochastic 
conditions and policies of 
risk sharing. 

High 

5. Networks 
based—Petri-
Nets’ variants— 
Girault and Valk 
(2003) 

- High level of abstraction 
- Graphical and mathematical 
methods 
- Very flexible for modeling 
different logistics problems 
- Unsuitable for large-scale 
systems 
- Varied applications in 
literature 

This approach is 
considered a kind of 
simulation-based tool. It 
allows examining settings 
of concurrency, 
asynchrony, parallelism 
and distribution in non-
deterministic and/or 
stochastic SCs. 

Moderated 

6. Principal 
Agent, e.g. 
Swaminathan and 
Smith (1998) 

- High level of abstraction 
- Flexible and reusable 
framework to develop models 
- Robust but complex to apply 
- Few applications in literature 

This approach is 
considered a kind of 
simulation-based tool. It 
enables understanding 
sequential and 
hierarchical disruptions in 
different types of SCs 
based on generic, 
modular and reusable 
structures. 

High 

7. Simulation—
Discrete and 
Dynamics, e.g. 
Chung (2004) 
and Sterman 
(2000)  

- Experimentation in 
compressed time 
- Flexible but costly in terms 
of time 
- Discrete, dynamic or both  
- Graphical and mathematical 
methods 
- Few analytic requirements 
- Very sensitive to data 
collection 
- Appropriate to analyse 
complex problems 

This approach allows 
evaluating the impact of 
different disruptive events 
along the SC at 
researcher’s own 
convenience, according 
the level of detail 
desired—system oriented 
or process oriented. 

Moderated 
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Figure 4.1 Commonly used research methods to collect data for the operationalization of the 
concept of SCRes 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
As is derived from Table 4.1, each modeling approach described therein comes along with a set 
of characteristics, assumptions, and problem-solving capability that define its scope of 
application. In this way, ‘analytic stochastic models’ are not appropriate for application to the 
research problem since the purpose of the study is not to find an overall/local optimum 
solution; the ‘Bayesian networks’ approach requires a certain amount of historical data to 
produce reliable outcomes that, as mentioned above, are not available at the MFSC; a 
‘behavioural’ approach is used to address research problems that directly involve the 
representation of human decision-making regarding SC-disruptions, a scope of application away 
from the present research problem; the ‘game theoretical’ approach has been used to study the 
interaction of entities within the SC, but as with the previous option, it is far removed from the 
present research problem; ‘petri-nets variants’ is a family of graphical approaches within 
discrete-event simulation tools with a varied number of applications in SC-disruptions that do 
properly fit to the present research problem, particularly coloured petri-nets (Jensen & Kristensen, 
2009), but with a limited number of robust software packages available; the ‘principal agent’ 
approach is a simulation-based tool used to represent the behaviour of individual decision 
makers—or autonomous agents—at a micro level of the SC, a level of analysis not required to solve 
the research problem; lastly, the ‘simulation’ approach—system dynamics and discrete-events 
simulation—enables the modeling of SC-disruptions from a macro and a process-oriented 
perspective, which makes it suitable, especially with the latter perspective, for the research 
problem at hand. It should be noted that, from a practical point of view, the key difference 
between a ‘simulation’ approach and ‘petri-nets variants’ is that for the former, the number and 
robustness of the software packages is higher, though their results are equivalent to each other.  
 
Furthermore, Figure 4 describes the pattern of dominance of the ‘simulation approach’ over 
other research methods for the collection of data to operationalize the concept of SCRes. 
Thereby, from a total of 40 publications analysed, in 14 of them the paradigm ‘discrete-event 
simulation’ (DES) was the main research methodology chosen by predecessor studies for the 

Simulation 
35% 

Case study 
7% 

Survey 
25% 

Others 
33% 
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collection of the data. This result confirms the presumption of several authors that simulation-
based studies are the dominant paradigm for SCRes analysis (Mandal, 2014; Datta & 
Christopher, 2011). Needless to say that the remaining research methodologies included in 
Figure 4.1 do not fit with either the nature of the data required nor with the information 
constraints mentioned.       
 
Therefore, based on the previous arguments, DES, in the form of the software Simulink 
[v.R2015b-8.6.0.26] by MATLAB®, was the tool selected for the collection (or generation) of 
the data for the MFSC, which is implemented in Chapter 6 and the program code described in 
Annex B. It is advisable at this point briefly to mention the main uses and limitations of the 
DES within the context of the SC-disruption/SCRes. For instance, Dong and colleagues (2009) 
pointed out that DES is a proper tool to assess robustness and resilience to disruptions of a 
supply network; Al-Aomar and colleagues (2015) affirmed that DES can be used to design, 
improve, and validate ex-ante the performance of manufacturing systems; and Melnyk and 
colleagues (2009) indicated that DES can be applied in modeling the risks that trigger the 
disruptions in SCs, building up the simulation model itself, establishing appropriate policies and 
parameters in the SC, and analysing the output data of the simulation runs.  
 
By contrast, Behdani (2013) argued that when DES is applied for analysing SC-disruptions, the 
micro-level entities of the SC are “passive objects with no decision-making capability”; and 
Fishman (2001) pointed out that the results of the simulation have a limited range of 
applicability that need to be confronted with reality. Thus, in an attempt to minimise such 
limitations of DES and increase the usefulness and validity of the findings of this study, the 
output data of the DES were complemented with the results of an open-ended questionnaire 
administered to the MFSC staff under analysis. By virtue of the foregoing, this study can be 
considered mixed-method research (Johnson et al., 2007). The results of the open-ended 
questionnaire and details on how was conducted are described in Section 6.10 of this research.      
The following section explains the criteria utilised for the selection of the research methods for 
the analysis of the output data of the simulation model.   
 
4.3 For the Analysis of the Data 
 
The selection of the research methods required for the analysis of the output data of the 
simulation model was influenced by three aspects: First, the review, analysis and derivation of a 
unified definition of SCRes from the existing conceptualizations in the literature; second, the 
adoption of the ‘simulation paradigm’ or DES to generate the dataset required for examining 
the research hypotheses; and third, the nature of the research problem as a whole. Regarding the 
first aspect, the problem consisted of synthesizing a new conceptual approach of SCRes that, 
although novelty itself, contained the ‘DNA of the twenty-four definitions’ identified in the 
review of the literature in Chapter 2 of this research. In other words, the purpose was not only 
to obtain a new definition of SCRes, but also to derive one that was universal. The approaches 
for qualitative-information analysis available in literature—e.g. grounded theory (Charmaz, 1983), 
thematic synthesis (Thomas & Harden, 2008), or framework synthesis (Pope et al., 2000), among 
others—seemed to be inappropriate to address this problem since the high number of SCRes 
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conceptualizations that must be analysed. Another alternative solution approach considered was 
to define an inclusive criterion from the available definitions on SCRes—e.g. choose the SCRes’ 
definition most cited in the scientific literature—and then use it as a reference in the 
construction of the new unified concept of SCRes. However, the use of this approach involved 
the risk of bias in the selection of one of the existing definitions of SCRes over the others. 
Therefore, a robust and neutral analysis-approach based on objective criteria that would allow 
the easy extraction of the underlying components common to the twenty-four definitions of 
SCRes was required. The method selected was text-mining data, and the results of its application 
are described in detail in Subsection 5.4, and the algorithm used in Annex A. 
 
Regarding the second aspect, the adoption of a DES model to collect the data required for 
testing the research hypotheses restricts the use of statistical methods to only one: non-parametric 
statistical methods. This is because, by definition, the output variables of DES models are not 
normally distributed (Kleijnen, 2015). This assumption is statistically verified in the study in 
Subsection 7.2.2. Lastly, concerning the third aspect, the nature of the research problem posited 
in Chapter 1 aims to ‘compare’ the resilience of the MFSC according to the levels of on-hand 
inventory buffers/short-term manufacturing capacity and the categories of risk considered. 
Thereby, taking into account both factors, the resulting question is, what are the non-parametric 
statistical methods best suited to comparing the resilience levels of a military-SC under distinct 
configurations? The answer to the above question is summarized in Table 4.2. 
 

Table 4.2. Non-parametric methods to compare data series 
 

 
Hence, from Table 4.2, the two main tests adopted for the analysis of the output data of the 
simulation model are the Kruskal-Wallis rank sum test and the Wilcoxon rank sum test with continuity 
correction. The first test is used to verify if the univariated time series examined come from 
different populations, while the second test is used to verify if one of the univariated time series 
is lower than the other (Wassermann, 2006). The application of the above tests guarantees the 
verification of the sets of hypotheses 2 (H2) and 3 (H3), as described in Sections 7.3 and 7.4, 
respectively. In those cases in which the application of the Kruskal-Wallis rank sum test is not 
conclusive, an additional test is applied: the Binomial test. 
 
In the analysis of the set of hypotheses 1, given that the comparison to be made is between the 
frequency of occurrence of several types of risk and the level of resilience of the SC, the 
approach chosen is different from that applied in the analysis of the sets of hypothesis 2 and 3. 
Thus, a technique for data mining is selected for this purpose: association rule mining. The 
application of this technique allows finding the degree of relationship and the relation of 
causality if any between the frequency of occurrence of risks and the level of resilience of the 
SC, which involves analysing a high volume of data. In this regard, Zhang and colleagues (2016) 
stated that compared with traditional exploratory data analysis, “association rule mining is 

Setting Non-parametric method 
One sample Wilcoxon rank signed test 

Two independent samples Wilcoxon rank sum test with continuity correction 
Several independent samples Kruskal-Wallis rank sum test 
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superior in investigating multiway interactions between numerous entities that are hard to 
represent by a single model.” (p.1). The application of the above test guarantees the verification 
of the set of hypothesis 1 (H1), as explained in Section 7.2. Lastly, Figure 4.2 summarizes the 
way in which the different research methods described above concur to the achievement of the 
first (a) and second (b) research objectives.  
 

Figure 4.2 Research design and research objectives 
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4.4 Summary of Chapter 4 
 
This chapter provided the arguments on how and why the research methods for gathering and 
analysis of the data were selected. For the collection of data, the main research method selected 
was discrete-event simulation (DES), and as complement to the above, an open-ended questionnaire was 
administered, making this study mixed-method research. Two fundamental reasons motivated the 
adoption of DES: first, the impossibility of experimenting with a real-world military-SC, and 
second, the limitations of information of the variables analysed. Similarly, for the analysis of 
data, the research methods selected were association rule mining for testing the set of hypothesis 1 
(H1) given the efficiency of this technique in the analysis of high volume of data; and the 
Kruskal-Wallis sum rank and Binomial distribution tests, and the Wilcoxon sum rank test with continuity 
correction for the testing the sets of hypothesis 2 and 3, respectively, given the non-normality of 
the output data of the simulation model.   
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Chapter 5. Operationalization of Resilience in Military Supply Chains 
 
5.1 Introduction 
 
SC-performance measures are essential for managers to make right decisions (Gunasekaran & 
Kobu, 2007), and measuring SC-resilience (SCRes) has become key in recent years. In this 
regard, it can be said that SC-managers need better methods to assess the determinant factors of 
SC-proneness to disruptions (Kleindorfer & Saad, 2005; Bode & Wagner, 2015). The review of 
the literature in Chapter 2 of this research evidenced a limited number of publications 
concerning the quantification of SCRes. As far as known, the notion of SCRes was first 
mentioned in the literature by Rice and Caniato (2003) and first-measured by Datta and 
colleagues (2007), which makes this subject in relatively new area of research. Since then, 
researchers have actively tried to operationalize this concept with relative success, although the 
existing measures of SCRes pose several weaknesses that need to be improved. This chapter 
proposes a new quantitative measure of SCRes (ReT) based on the gaps found in the review of 
the literature, but could be used for any type of SCs. ReT is based on the tail autotomy effect (TAE) 
and includes the two dimensions of the concept of resilience: dynamic resilience and inherent 
resilience. Thus, the chapter is organized as follows: the first part describes the characteristics and 
justification of implementing a measure of resilience in military-SCs. In the second part, a text-
mining algorithm is used to derive a unified definition of SCRes. In the third part, the 
fundamentals of disruption analysis in military-SCs are presented through the TAE lens. The 
chapter ends with the introduction of the analytical measure of resilience or ReT.                
 
5.2 Characteristics of Military Supply Chains 
  
Military-SCs are framed in the field of defense logistics (DL). The post-Second War II 
perspective of the DL refers to how the country’s armed forces are supplied timely and 
continuously with goods and services, or more specifically, how military personnel and/or 
equipment are mobilized to theatres of operation that demand their presence. Several authors 
and organizations have widely theorized in this regard, e.g., Eccles (1959), Falk (1986), DoA 
(2008), Kress (2016), and Zeimpekis and colleagues (2015). However, the essence of the DL has 
barely varied in the last 60 years, due to perhaps to the lack of interest of the topic among 
researchers (Yoho et al., 2013). Military-SCs are not monolithic organizations. In fact, they can 
be significantly different depending on several factors: volume and weight of cargo, operational 
context of the battlefield, mission assigned, and, especially, the branch of the military forces 
they supply. Operations manuals of the military powers (DoD, 2008; NATO, 2012) point out 
that the logistics supplies for ground troops are made up of massive amounts of food and 
ammunition, which are mobilized by land, sea, or inland waterways. Troops deployed on the sea 
(naval forces) need mostly food, fuel, and ammunition, which are carried mainly by marine 
transports, and, in exceptional cases, by air. Last but not least, crews of pilots and air-support 
personnel chiefly demand fuel, ammunition, and repair parts, which are usually mobilised by 
aerial means. As a general rule, the volume and amount of supplies sent to the Navy or Air 
force are smaller than to the Army due to the lower number of men in service. Likewise, 
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between ground and aerial delivery, the latter is the preferred method for re-supplying forward-
operation bases because it is safer, though more expensive. An appropriate way to characterize 
military-SCs is to compare them with their civilian counterparts, commercial-SCs. As is known, 
both SCs share many similarities such as having a common origin (Southern, 2011; La Londe et 
al., 1971). For instance, their logistics processes—suppliers, procurement, operations, 
distribution and customers—are fairly similar (McGinnis, 1992; Christopher, 2011). However, 
because they supply dissimilar end-customers and operate in different environments, their 
differences seem to be deeper than their commonalities.  
 
The most notable divergence is related to the objectives of the organization. Thus, whereas the 
emphasis of military-SCs is on responsiveness and preparation for war (Wang, 2006; Moore et 
al., 1991), the objective of commercial-SCs is to contribute to long-term profitability and 
maximize shareholder value (Hopp, 2008; Wilhite et al., 2014). Gansler and Lucyshyn (2006) 
pointed out this disparity of objectives as “losing sales vs. losing lives”. In this sense, a 
concomitant factor is the customer lead-time. The customer lead-time in military-SCs is determined 
by the characteristics of the mission and/or the operational conditions of the terrain, but not by 
the competitors of the market, as is the case with commercial-SCs. This aspect makes it such 
that the lead-times of the military-SCs are short and inflexible to changes, which restricts the use 
of this dimension (time) as an alternative or buffering in case of disruptions in the flow of 
finished items.  
 
The level of risk to which both SCs are exposed is another differential factor. Comparatively, the 
military-SC environment is characteristically uncertain, complex, and hostile, not to mention 
that there is a constant possibility of loss of human life. Thus, “how do you hide logistics?” is a 
recurrent question on the battlefront (Pagonis & Krause, 1992). It could be said, on the other 
hand, that commercial-SCs face some degree of uncertainty in their operations, but never 
comparable to the level of risk involved in military operations. One of these risks is related to 
the nature of cargo transported. Military-SCs carry a wide range of hazardous materiel, including 
explosives, fuel, ammunition and heavy equipment, over long distances (Spellman, 2007). The 
transportation of war materiel usually includes the mobilization of troops to the theatre of 
operations/war, and, if necessary, the return of this materiel from the theatre to the source of 
supply or point of disposal, in what is called retrograde operations (Klinghoffer et al., 2015). The 
above capabilities are rarely observed in commercial-SCs. The same apply for the range of items 
in inventory, which regularly exceeds 50,000 SKU in military-SCs (Tatham, 2005).  
 
Finally, the procurement system for the acquisition of raw materials and components in military-SCs 
can be considered rather rigid compared to commercial-SCs. Due to their governmental nature, 
military-SCs must follow a set of regulations designated to ensure transparency and impartiality 
with the selection of suppliers. However, as a side effect, the application of these rules reduces 
the flexibility and efficiency of the procurement system (Rutner et al., 2012). Other differences 
between military and commercial-SCs worth mentioning are the variability of the pattern of 
demand (Wang, 2000), the hierarchy of organizational structure (Bjørnstad, 2011), and the 
absence or presence of marketing channels (Kim, 1996).  
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5.3 The Need to Implement and Measure Resilience in Military Supply Chains 
 
Despite the large number of studies and detailed analyses about the detrimental effects that risks 
may have on the performance of SCs—e.g., Hendricks & Singhal, 2005; Zsidisin & Ritchie, 
2009; Wagner & Bode, 2008; Ivanov et al., 2014—, managers do not seem to be fully engaged 
in building up resilience, to judge from how SCs continue to be impacted by risk events. A 
recent report on business interruptions over the period 2010-2014 indicates a growing incidence 
of risks in SCs (AGCS, 2015). An illustrative case is the aftermath of the series of explosions in 
the Chinese port city of Tianjin, which killed 173 people, resulting in estimated losses of US$3.3 
billion, as well as massive logistical delays in several global supply networks for months. Bode 
and colleagues (2011) attribute this ‘managers inattention’ to the uncertainty associated with the 
identification and evaluation of risks, while Hendricks and Singhal (2012) affirm that it is due to 
the poor understanding of the magnitude and persistent effect of disruptions on financial 
performance. But at the end of the day, how important is the notion of resilience to military 
logisticians? Would it make a difference to military personnel if the resilience level of the SC 
were increased on average, say, 20%? What would be the consequences if the resilience level 
decreased in the same proportion? How much resilience do military-SCs need?   
 
Overall, it can be said that there are not many studies in the literature on SCRes that provide 
satisfactory answers to these questions, since the assumptions on which they are based are not 
fully compatible with the characteristics and context of military-SCs. Thus, arguments such as 
gaining a competitive advantage (Ponomarov & Holcomb, 2009; Sheffi, 2015), improving the 
sustainability of operations (Fiksel, 2006), increasing innovation (Golgeci & Ponomarov, 2013), 
increasing the market share (Hohenstein et al., 2015), or reducing costs/increasing sales (Park et 
al., 2016), seem at first glance attractive arguments for adopting resilience paradigm in 
commercial-SCs, but not very convincing or even applicable for military-SCs. As noted 
previously, military-SCs are not looking for better financial performance or market position, but 
rather for a continuity of operations.    
 
An analysis of the tenets that underlie the main work philosophies implemented by military-SCs 
confirms this lack of attention to resilience. Thus, the mass-logistics approach consists of 
prepositioning massive stockpiles of supplies and weapons systems, or the so-called “iron 
mountains” of supplies, to cope with demand uncertainty (Wang, 2000; Girardini et al., 1995). 
Precision logistics & integrated logistics capability rests on a simple methodology: “define-measure-
improve” (Fricker & Robbins, 2000). Velocity management initiative is a concept based on high-
velocity processes tailored to meet the needs of customers (Dumond et al., 1995; Dumond et 
al., 2001). Sense & response logistics is an approach based on highly adaptive, self-synchronizing and 
dynamically reconfigurable demand to support network-centric operations and mitigate support 
shortfalls (Tripp et al., 2006). Customer wait time is an approach designed to optimize system 
readiness and to meet performance goals for a weapons system through long-term support 
arrangements (Gansler & Lucyshyn, 2006; DAU, 2005). Lean sustainment initiative is a set of 
practices including maintenance, repair and overhaul that keep the systems operating and up-to-
date throughout their entire life cycle (Mathaisel et al., 2009). Lastly, focused logistics is an integral 
strategy that combines information, logistics and transportation technologies to provide rapid 
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response in critical situations, to track key assets, and to deliver tailored logistics packages and 
sustainment at all levels of military operations (DoD, 2010).    
 
All the approaches above are based on the application of lean and/or agile principles but not on 
a resilience paradigm, which is evidence of the apparent disinterest or unknowingness of the 
military logisticians about the importance of this concept. Some specialists from the academy 
have begun to highlight the need for implementing resilience into military-SCs. Dowdall (2004), 
by examining the UK defence industry supply system, underscored the importance of resilience 
for facing the demands of highly competitive environments. Similarly, Tatham and Taylor 
(2008), by analysing the British military-SC model, emphasized the necessity of the resilience as 
a mechanism to avoid or absorb shocks through stocks. Demchak (2010) suggested that 
military-resiliency is embedded in the mechanisms of learning—e.g., manuals, precepts, or 
doctrine—that serve as a guide to survival during combat operations. Parlier (2011) 
incorporated the notion of resilience into a multidisciplinary conceptual model applied to the 
U.S. Army. More recently, Yoho and colleagues (2013), in a review paper on defence logistics, 
pointed out the relevance of including a resilience paradigm as a research cluster due to the need 
of military-SCs to withstand the high degree of uncertainty associated with the environment in 
which they operate.  
 
Accordingly, military-SCs need to be more resilient than their civilian counterparts. Being very 
exposed to the occurrence of risks makes them prone to interruptions in the flow of supplies 
that could endanger the life of troops. This is a strong argument for implementing the notion of 
resilience in military-SCs. In this sense, this research argues that the more resilient the military-
SCs are, the less likely they are to suffer the negative impacts of risks, and as a result, the 
frequency and intensity of disruptions will be reduced. Hence, resilience in military-SCs must be 
interpreted as the SC-ability to accomplish the mission. For instance, if the supplied items are of 
the type Class I—subsistence and commercially bottled water—or Class V—ammunition—, 
fewer interruptions will mean more lives saved. Similarly, the need to quantify resilience can be 
summarized in the well-known principle of quality, “if you can’t measure it, you can’t improve 
it.” This means that, without a proper measure of resilience, it is not possible to evaluate the 
effectiveness of resilience-building strategies implemented (Tang & Tomlin, 2008); in other 
words, SCRes cannot be improved if it cannot be measured.   
   
5.4 Toward a Universal Definition of Supply Chain Resilience (SCRes) 
 
The SCRes concept must be accurately defined prior to any attempt to measure it. However, the 
review of the literature revealed no less than 24 definitions about SCRes, as shown in Table 5.1. 
Which of these definitions is the best descriptor of the SCRes concept? In an effort to avoid 
bias in the selection of any of these characterizations, a text-mining algorithm in R (2013) (see 
Annex A) based on Feinerer and colleagues (2008) was applied to the set of definitions in Table 
5.1. The general idea of applying an algorithm of this type is to find the frequency of occurrence 
of key words, from which a unified definition of SCRes can be derived. Connectors and 
superfluous words such as ‘the,’ ‘and,’ ‘in,’ ‘to,’ ‘for,’ ‘or,’ and so on, are not taken into account 
within the selection. Figure 5.2 shows the plot of the results of the text mining analysis. The 
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most frequent words used by the authors of Table 5.1 apart from ‘supply,’ ‘chain,’ and 
‘network,’ are ‘ability’ (24 times), ‘disruption’ (16 times), ‘state’ (9 times), ‘operations’ (7 times), 
‘original’ (6 times), ‘return’ (6 times), ‘respond’ (6 times) and ‘unexpected’ (5 times). 
  

Table 5. Definitions of supply chain resilience (SCRes) 
 

No. Author(s) (year) Definition of SCRes 
1 Rice and Caniato 

(2003) 
Resilience in the supply network environment is the ability to react to unexpected disruption 
and restore normal supply network operations. 

2 Christopher and 
Peck (2004) 

Resilience is the ability of the supply chain to return to its original state or move to a new, 
more desirable state after being disturbed. 

3 Closs and McGarrell 
(2004) 

Resilience is the supply chain’s ability to withstand and recover from an incident. A resilient 
supply chain is proactive – anticipating and establishing planned steps to prevent and 
respond to incidents. Such supply chains quickly rebuild or re-establish alternative means of 
operations when the subject of an incident. 

4 Christopher and 
Rutherford (2004) 

Resilience is the ability of a system to return to its original (or desired) state after being 
disturbed. 

5 Sheffi (2005) Resilience in terms of the corporate world is the ability of the company to bounce back 
from a large disruption including the speed with which it returns to a normal level of 
performance. 

6 Gaonkar and 
Viswanadham 
(2007) 

Resilience is the ability of a supply chain to maintain, resume and restore operations after a 
disruption. 

7 Datta (2007) SCRES is not only the ability to maintain control over performance variability in the face of 
disturbance but also a property of being adaptive and capable of sustained response to 
sudden and significant shifts in the environment in the form of uncertain demands. 

8 Datta et al (2007) Resilience of the supply network is the ability of the production–distribution system to meet 
each customer demand for each product on time and to quantity. 

9 Falasca et al (2008) Resilience is the ability of a supply chain to reduce the probabilities of a disruption, to 
reduce the consequences of those disruptions when they occur and to reduce the time to 
recover normal performance. 

10 Longo and Oren 
(2008) 

Resilience is a critical property that, in a context of supply chain change management, allows 
the supply chain to react to internal/external risks and vulnerabilities, quickly recovering an 
equilibrium state capable of guaranteeing high performance and efficiency levels. 

11 Ponomarov and 
Holcomb (2009) 

Resilience is the adaptive capability of the supply chain to prepare for unexpected events, 
respond to disruptions, and recover from them by maintaining continuity of operations at 
the desired level of connectedness and control over structure and function. 

12 Barroso et al (2010) SCRES is the supply chain’s ability to react to the negative effects caused by disturbances 
that occur at a given moment in order to maintain the supply chain’s objectives. 

13 Pettit et al (2010) SCRES is the ability to survive, adapt and grow in the face of turbulent change. 
14 Guoping and Xinqiu 

(2010) 
Resilience is the ability of the supply chain to return to its original or ideal status under 
emergency risk environment. 

15 Carvalho et al (2011) SCRES is concerned with the system’s ability to return to its original state or to a new more 
desirable one after experiencing a disturbance and avoiding occurrence of failure modes. 

16 Shuai et al (2011) Resilience is defined as the rapid recovery ability to equilibrium after the supply chain is 
attacked by a disturbance and we use the recovery time to measure the ability. 

17 Christopher (2011) Resilience is the ability of the supply chain to cope with unexpected disturbances. 
18 Xiao et al (2012) Resilience is the supply chain’s ability to return to the original or ideal status after external 

disruption and includes both the abilities of adaptability to the environment and recovery 
from the disruption. 

19 Yao and Meurier 
(2014) 

SCRES is defined as the ability to bounce back from disruptions and to permanently deal 
with and respond to the changing environment. 

20 Ponis and Koronis 
(2012) 

Resilience is the ability to proactively plan and design the supply chain network for 
anticipating unexpected disruptive (negative events), respond adaptively to disruptions while 
maintaining control over structure and function and transcending to a post robust state of 
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operations, if possible a more favourable one than that prior to the event, thus gaining a 
competitive advantage. 

21 Brandon-Jones et al 
(2014) 

SCRES is defined as the ability of a system to return to its original state, within an 
acceptable period of time, after being disturbed. 

22 Hohenstein et al 
(2015) 

SCRES can be defined as the ability to prepare for, respond to, and recover from potential 
disruptions, and increase market share. 

23 Tukamuhabwa et al 
(2015) 

Resilience is the adaptive capability of a supply chain to prepare for and/or respond to 
disruptions, to make a timely and cost effective recovery, and therefore progress to a post-
disruption state of operations– ideally, a better state than prior to the disruption. 

24 Kim et al (2015) Supply network resilience is a network attribute to withstand disruptions that may be 
triggered at the node or arc level. 

 
Figure 5.1 Plot of the results of the text-mining analysis of SCRes definitions available in the 
literature 
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Thus, from the previous analysis, the ‘universal definition’ of SCRes derived is as follows:  
 

The adaptive ability of the supply chain/network to respond to/react to/resist to 
unexpected operational disruptions, recover from them and return to the 
original/desired state. 

 
This result is adopted in the subsequent sections of this research as the unified definition of 
SCRes, and it is used in particular as a reference point for the selection of the variables that 
make up the proposed analytical measure of resilience.  
 
5.5 Disruptions in Military Supply Chains 
 
Disruptions in SCs are by and large regarded as “unplanned events that may occur in the supply 
chain, which might affect the normal or expected flow of materials and components” 
(Svensson, 2000, p.731). In the same sense, Handfield and colleagues (2008) defined disruption 
as “a major breakdown in production or distribution nodes that impacts other nodes in the 
supply chain” (p.34). Wagner and Bode (2006, 2009) adopted a different perspective by defining 
SC disruption as the trigger that leads to SC risk. In a later work, these authors (2015) extended 
the definition of SC-disruption to an unintended event occurring upstream, inbound or in the 
sourcing of the supply network that seriously threatens the continuity of operation at the level 
of the firm. Rice and Caniato (2003) affirmed that disruptions have the potential to cause entire 
SC-networks to fail, and Ivanov and colleagues (2014) emphasised its unpredictability. Kim and 
colleagues (2015), by using graph theory, affirmed that a supply network disruption occurs when 
“the network no longer has a walk from the source to the sink node due to disruptions” (p.53). 
Chopra and colleagues (2007) distinguished between disruptions—interruption of supply—and 
delays—recurrent risks, by underlining the importance of this differentiation in the 
implementation of mitigation strategies. Ambulkar and colleagues (2015), in an analysis of firm 
resilience, identified four types of disruptions, including supply disruption, logistics/delivery 
disruptions, inhouse/plant disruptions, and natural hazards/regulatory and political issues. 
Craighead and colleagues (2007) argued that SC disruptions are unavoidable, and Blackhurst and 
colleagues (2011) pointed out that the impact of disruptions depends on the level of SCRes. 
  
All this research expands our understanding of the phenomenon of disruption, particularly on 
how disruptions originate, how they spread throughout SCs’ structure, and how they affect the 
performance of SCs. However, more in-depth analysis is needed regarding how SCs respond to 
disruptions (Zsidisin & Wagner, 2010). In fact, none of these studies addresses the equivalence 
of the tail autotomy effect (TAE) as an internal mechanism of response to the occurrence of risks. 
This mechanism of self-defence has been observed by zoologists in some species of lizards, 
who induce the separation of their own tail from their trunk to distract predators and to escape 
dangerous situations (Vitt et al., 1977; Niewiarowski et al., 2017). Figure 5.2a describes the initial 
situation without risk to the lizard. In Figure 5.2b, the lizard’s tail detaches from the trunk 
before the imminent attack of a predator. The interesting aspect of this prodigy of nature lies in 
the autotomy of movement of the lizard’s tail after the blood flow is interrupted as a result of a 
complex neuromuscular control system, as described in Figure 5.2c. The autotomic movement 
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continues for up to 30 minutes due to the energy reserves stored in the tail (glycogen). Finally, 
after months, the lizard’s tail recovers and returns to its original size and shape, as described in 
Figure 5.2d.  

Figure 5.2 Tail autotomy effect in lizards (TAE) 
 

 
The application of this animal defensive mechanism is relevant for this research since it 
provides an alternative perspective on how SCs respond to the occurrence of disruptions caused 
by risks. Therefore, the TAE is observed in SCs when, due to an increase in the frequency of 
occurrence of risks and/or its level of impact, the SC manufacturing capacity is oversaturated or 
the physical assets of the SC are seriously damaged. The materialization of the risks can literally 
cut or separate the SC into two parts—the first, from the point of impact of the risk, upstream 
through the end of the chain, and the second, from the point of impact of the risk, downstream 
through the other end of the chain—without implying that the ‘movement’ of supplies to the 
end-users is interrupted. This behaviour is similar to that observed in Figure 5.2 when ‘the tail 
of the chain’—the second part—continues moving autonomously for a given period, after 
which it returns to its original state. A deeper analysis of the TAE in SCs enables the 
characterization of the following two types of SC-disruptions.      
 
5.5.1 Partial disruption 
 
A partial disruption occurs when fluctuations in the demand for finished items and/or 
disturbances in facilities, lines-of-communication, processes, workstations or machines do not 
interrupt the flow of supplies to end-users, i.e., the SC cycle time of the a order j is equal to its 
lead time (CTj = LTj). During this period of autotomy, the SC achieves the maximum level of 
resilience, or, in a particular case, the resilience of the MFSC prevents the disruptive events 
from interrupting completely the flow of rations to military personnel, as shown in Figure 5.3. 
Thus, once the impact of the risks ends, the SC will return progressively to the previous state of 
non-disruption that existed before the occurrence of the risk (continuous line). But, if a new risk 
affects the SC, it may continue in the same state (dotted line), or degenerate rapidly into total 
disruption (segmented line).  

(a) (b) (c) (d) 
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Figure 5.3 Partial disruption in the supply chain (SC) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The period of autotomy of the SC occurs within the SC cycle time for each order j (CTj). Thus, 
the length of the period of autotomy for an order j (APj) is equal to the sum of the impacting 
times of the risks on the SC (∑Rcr) minus their overlapping times (∑R1r ⋂⋯  Rc4). An 
algorithmic solution to calculate APj in the simulation model is provided below.   
 
 
Algorithm 1: Determining the period of autotomy of the order j-th (APj) 
1: LET CTj = (OATj – OPTj), LTj = LT, Rcr: [R

0
cr, R

f
cr] with j = 1…6,000, c = 1…3, r = 1…4, and                 

Ω = {R11, R12…Rcr} 
2: IF the impact of at least one Rcr ∈ Ω manifests within the interval [OPTj, OATj] AND CTj = LTj,  
3: THEN, APj = ∑Rcr – ∑(R1r ∩…Rc4)  
 
 
5.5.2 Total disruption 
 
In the same way as with the previous typology, a total disruption occurs when fluctuations in the 
demand for finished items and/or disturbances in facilities, lines-of-communication, processes, 
workstations or machines interrupt the flow of supplies to end-users, causing the SC cycle time 
to be greater than the lead time (CT > LT). Theoretically, during this period of disruption, the 
resilience level is at its lowest since the SC cannot withstand the negative effects of fluctuations 
in the demand and/or disturbances along the chain, as shown in Figure 5.4a. However, once the 
occurrence of the risk is detected (R0cr) within the disruption period, a recovery process starts to 
reverse this condition and return to the previous state of non-disruption prior the occurrence of 
the risk (segmented line). The SC can also change in state back to the period of autotomy 
(dotted line). Thus, the period of recovery is contained within the period of disruption (RP ≤ DP), as is 
depicted in Figure 5.4b.  
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Figure 5.4 Total disruption in the supply chain 
 

 
 
This ‘containerization’ occurs because the SC does not change from one state (of total 
disruption) to another (of non-disruption/partial disruption) abruptly, but rather this process 
occurs gradually. The gradualness in returning to a new, more desirable state is indeed the 
recovery period. Its importance lies in that during this time, the SC exhibits a resilience level 
higher than zero but lower than in the AP. Thus, the length of the period of recovery for an 
order j-th (RPj) is given by the difference between the order arrival time of the j-th order (OATj) 
and the first-time of the occurrence/detection of a risk (R0cr), while the period of disruption for 
an order j-th is equal to the cycle time (CTj). Algorithmic solutions to calculate RPj and DPj in 
the simulation model are presented below.  
 
Algorithm 2: Determining the period of recovery of order j-th (RPj) 
1: LET CTj = (OATj – OPTj), LTj = LT, Rcr: [R

0
cr, R

f
cr] with j = 1…6,000, c = 1…3, r = 1…4, and                 

Ω = {R11, R12…Rcr} 
2: IF the impact of at least one Rcr ∈ Ω manifests within the interval [OPTj, OATj] AND CTj > LTj,  
3: THEN, RPj = (OATj – first-R0

cr) 
 
 
Algorithm 3: Determining the period of disruption of order j-th (DPj) 
1: LET CTj = (OATj – OPTj), LTj = LT, Rcr: [R

0
cr, R

f
cr] with j = 1…6,000, c = 1…3, r = 1…4, and                 

Ω = {R11, R12…Rcr} 
2: IF the impact of at least one Rcr ∈ Ω manifests within the interval [OPTj, OATj] AND CTj > LTj,  
3: THEN, DPj = CTj  
 

 
5.5.3 An analytical example of supply chain disruptions  
 
In order to clarify the previous analysis, Figure 5.5 describes the three cases that may occur 
within the simulation model of SC-disruptions. Consider the time horizon of an SC for three 
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orders, j = 1…3. Order 1 is placed at OPT1 and delivered at OAT1 within the set period LT1, 
i.e., CT1 = LT1. Also, as noted, no risks occur during CT1. This fact implies that it is not feasible 
to estimate the level of SCRes, since this can only be measured when the SC is affected by the 
occurrence of risks. Therefore, the non-disruption period for the order 1 (N-DP1) is the time 
between OPT1 and OAT1.  
 
Similarly, order 2 is placed at OPT2 and expects to be delivered at the end of LT2. However, the 
unforeseen occurrences of the risks RA, RB and RC affect the performance of the SC by making 
CT2 higher than LT2, or in simpler terms, Order 2 is delivered late. Hence, the period of recovery 
for order 2 (RP2) is the time between the first occurrence of a risk (R0A) and the arrival time of 
the order (OAT2); and the period of disruption (DP2) is the difference between OAT2 and OPT2. 
Lastly, order 3 is placed at OPT3 and delivered at OAT3, within the set period LT3, i.e., CT3 = 
LT3. It should be noted that, although during CT3 the risks RA, RB and RC impact SC 
performance, order 3 is delivered on time, i.e., CT3 = LT3. Hence, the period of autonomy for order 
3 (AP3) is the sum of the individual impacts of risks RA (RfA – OPT3), RB (RfB – OPT3) and RC 

(RfC – R0C), minus the overlapping times between RA and RB (RfA – OPT3).  
 

Figure 5.5 Supply chain disruptions 
 

 
5.6 Measuring Resilience in Military Supply Chains 
  
A new SCRes measure should be constructed to fill the gaps and shortcomings found in the 
review of the literature developed in Chapter 2, which can be summarized as follows: (1) the 
measure should be based on ‘conceptual approximations from other disciplines’ (pattern 5 
found at the SLR); (2) the approach should be simplified and easy to apply; (3) it should be an 
objective-quantitative assessment measure; (4) it must be consistent with accepted definitions of 
SCRes; (5) it must include a way to measure inherent-resilience; and finally, (6) it should be 
specific to a particular type of SC. In addition, as Pettit and colleagues suggested (2013), the 
measurement of SCRes cannot be seen as a single event, but as a process over time. 
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5.6.1 Variable selection 
 
In order to guarantee consistency of the proposed measure of SCRes with the concept itself, 
two key aspects are identified from the ‘universal definition’ presented in Section 5.4: (1) ‘to 
respond to/react to/resist unexpected operational disruptions’, and (2) ‘to recover from them 
(disruptions) and return to the original/desired state.’ This first aspect of the definition of 
SCRes refers to the ability of an SC to resist/cope with the consequences of potentially 
damaging random risks. In other words, the stochastic nature of disruptions caused by risks 
makes them unavoidable (an exogenous variable), but their impact can be reduced/minimized, 
depending on the level of SCRes. Thus, theoretically, the SC is resilient when it experiences 
periods of autotomy; on the other hand, it is not resilient during periods of disruption. From this 
perspective, these concepts seem to be opposed to each other, but the second aspect of the 
definition of SCRes—or the ability of the SC to recover from the occurrence of disruptions as 
quickly as possible, which involves the condition of resilience, is in fact included within the 
period of disruption. That is, based on the premise of the inevitability of disruptions (Craighead 
et al., 2007; Burns, 2015), the SC is also resilient when it rapidly recovers from the disturbing 
state and returns to the previous state (or an even better one) before the impact of the risk is 
felt. This SC capability is operationalized throughout the period of recovery. In this way, the 
proposed measure is completely consistent with the unified definition of SCRes presented 
above, and with the basic set of attributes of SC disruption management (Ivanov et al., 2014). 
The analytical measure of resilience in military-SCs is thereby obtained from the following sub-
indicators:  
  
(1) The period of autotomy for each order j (APj) in units of time t 
(2) The period of recovery for each order j (RPj) in units of time t 
(3) The period of disruption for each order j (DPj) in units of time t   
 
It should be clarified that the three sub-indicators mentioned above are consistent with the 
concepts of SCRes in Table 5.1, as well as with the unified definition derived from them. 
However, these sub-criteria do not measure the inherent resilience in the design features of the 
SCs, i.e., during periods of non-disruption. This is, in fact, a failure in the definitions on SCRes 
described in the literature. The measure of inherent or static resilience will be discussed later. 
 
5.6.2 Weighting and derivation of sub-indicators 
 
There are two key questions that must be solved in order to weight the three above sub-
indicators of SCRes. First, when does a military-SC reach its maximum/minimum level of 
resilience? Regarding this question, in a risky scenario, the military-SC achieves resilience’s 
maximum value (Remax ) when it is able to resist the impact of risks, avoiding the total 
interruption of flow of supplies to the troops (APj). Conversely, the military-SC reaches the 
resilience’s minimum value (Remin) when the occurrence of risks causes a total interruption of 
the flow of supplies to the troops except during the period of recovery (DPj – RPj). During the 
period (DPj – RPj), the flow of supplies to the troops is interrupted by the impact of risks, but 
the recovery process has not started yet. Finally, the SC achieves an intermediate level of 
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resilience (Re) during the period of recovery (RPj). It should be noted that, the three sub-
indicators of SCRes do not need to be normalized since all of them are expressed in the same 
unit of time. Figure 5.6 summarizes the allocation of weights for each state of the SC.  
 

Figure 5.6 Weighting levels of SCRes 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

In the three states an SC can operate as described in Figure 5.6, the sine qua non condition is 
‘the occurrence of risks.’ This is the usual way that SCRes has been measured in the literature 
(Christopher & Peck, 2004; Blackhurst et al., 2011; Klibi et al., 2010; Kim et al., 2015), and is 
the basis for the application of TAE. This dynamic-resilience approach is based on the 
emphasis in the SCRes definitions on the occurrence of risks as triggering factors of disruptions, 
as seen in Table 5.1. But, what happens to SCRes in the absence of risks (disruptions)? Is it 
measurable? If the perspective on resilience as an intrinsic SC-ability linked to its internal 
strengths and capabilities is accepted (Pettit et al., 2010; Wang & Ip, 2009), measurement of 
SCRes under ‘non-risks’ conditions is also necessary. Rose (2007) calls this static resilience. 
Unfortunately, few studies in the LSCM field have examined in detail how to measure resilience 
or what factors should be considered in an environment of non-occurrence of risks, e.g., 
Craighead et al (2007). Consequently, both perspectives of resilience are adopted in this 
research. First, this research measures dynamic resilience through the TAE lens, i.e., when the 
SC experiences periods of autotomy (APj), recovery (RPj) or non-recovery (DPj – RPj). And 
second, we measure static resiliency through the fill rate (FR). Several authors have used this SC-
performance index as measure of the resilience in SCs (Schmitt & Singh, 2012; Barroso et al., 
2011; Xanthopoulos et al., 2012). We integrate FR to obtain a more robust measure of SCRes.    
 
Hence, APj, RPj, DPj and FRt are the four sub-indicators for measuring resilience in military-SCs 
(ReT). The first three are calculated for each order j over time from the procedures explained in 
Algorithms 1, 2 and 3, respectively. In the proposed model, APj is an independent and 
disjointed measure of DPj and RPj. By virtue of this independence, a variation of APj does not 
affect the value of DPj or RPj. The range of values of APj is 0 < APj ≤ LT, whenever CTj = LTj. 
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Figure 5.7 describes the level of resilience as a function of APj, with Remax and LT fixed, from 
Equation 5.1. Hence, the longer the APj, the greater the resilience of the SC.   

 
Figure 5.7 Resilience as function of the autotomy period, APj 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Re(APj) = Remax
APj
LT

                                                                                                        (5.1) 

 
 
In the proposed model, the SC is also resilient—but less than during the APj —when it is 
recovering from the impact of risks. The range of values of RPj is 0 < RPj ≤ CTj, whenever CTj 
> LTj. The RPj is in practice contained within the DPj (or CTj), and is assumed that it lasts from 
when the occurrence of the first risk is detected (R0cr) until the order j is delivered (OATj). 
Regarding its mathematical expression, this study adopts the suggestion of Blackhurst and 
colleagues (2011), who affirm that “the resiliency of a supply chain and the recovery time from a 
disruption should be inversely related” (p.376). Figure 5.8 describes the level of resilience as a 
function of RPj, with Re fixed, from Equation 5.2. Hence, the shorter the RPj, the greater the 
resilience of the SC.   
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Figure 5.8 Resilience as function of the recovery period, RPj 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Re(RPj) = Re
1
RPj

                                                                                                                            (5.2) 
 
The third sub-indicator for measuring SCRes is actually the subtraction of RPj from DPj. This 
time corresponds to a period of non-resilience or highest vulnerability of the SC (Asbjørnslett, 
2009; Sheffi & Rice, 2005). The range of values of (DPj – RPj) is 0 < DPj – RPj ≤ CTj, whenever 
CTj > LTj. This sub-indicator is included within the measurement of resilience in order to 
maintain the consistency of the model, though the value of resilience is zero in all cases due to 
the weighting parameter assigned (Remin), as shown in Figure 5.9, from Equation 5.3. 
 

 
Figure 5.9 Resilience as function of the non-recovery period  (DPj  – RPj) 
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Re(DPj, RPj ) = Re
min DPj − RPj

CTj
                                                                                                 (5.3) 

 
The last sub-indicator for measuring SCRes is the fill rate (FRt), which is a modification of the 
Cachon and Terwiesch’s formula (2008), FR = 1 − E(Bt)

E(Dt)
. The original formula evaluates the FR 

over time from the expected backorder and the expected demand. The purpose is to measure 
the expected fraction of orders that are served. This study uses the same logic but a new 
variable is added to the formula: the number of lost or unattended orders j in period t (Ut). 
Thus, the proposed formula to measure resilience as function of the SC-performance (FRt) is 
given in Equation 5.4. An increase in the number of backorders (Bt) or lost orders (Ut) in 
relation to the total number of orders demanded (Dt) is a clear indication of lower resilience in 
the SC, with Bt + Ut ≤ Dt. Equation 5.4 also describes a function with memory; that is, Bt 
accumulates overtime, and after a certain period (order cancellation time), Bt are categorized as 
Ut, without disappearing from the calculation of resilience. Figure 5.10 depicts the relationship 
between resilience and the fill rate (FTt)—the latter as a function of Bt, Ut, and Dt.    
 

Figure 5.10 Resilience as function of the fill rate, FTt 
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In the following sub-section the aggregation of the measurement of resilience (ReT) is 
introduced based on the previous sub-indicators. 
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5.6.3 An analytical measure of resilience for military supply chains, ReT 
 
Following the above framework, a conditional function is selected for the four sub-indicators of 
the analytical measure of resilience (ReT). ReT is a time-dependent function that can be applied 
to any type of SC. ReT is normalized on a 0 to 1 scale and the four sub-indicators are expressed 
on a ratio scale to make them compatible with the axioms of measurement theory (Tversky et 
al., 1988). The frequency of measurement is determined by the regularity of work orders j. Thus, 
the level of ReT for each order j is obtained from the individual measures of APj, RPj and/or 
(DPj – RPj), or FRt , as is described in Equation 5.5. Figure 5.11 summarises the derivation of 
ReT. 
 

ReT=
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APj
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 APj

Re
1

RPj
RPj

Remin
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CTj
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Dt
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                                                                                                (5.5)   

 
Figure 5.11 Steps involved in deriving the measure of resilience for military supply chains, ReT 
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5.7 Summary of Chapter 5 
 
This chapter contributed to the literature on the operationalization of the concept of SCRes in 
several ways. First, it fully characterized military-SCs in light of their peers, commercial-SCs. In 
this sense, new arguments such as the need to implement and measure SCRes were introduced 
and later discussed. Secondly, it derived a universal definition of SCRes from the analysis of the 
various conceptual approaches in the existing literature. The application of a text-mining tool to 
the set of SCRes-theoretical approximations avoided biases in the selection of a reference 
definition. Thirdly, the chapter developed a theoretical framework to assess resilience in 
military-SCs through the tail autonomy effect. This novel perspective offers an alternative way of 
understanding disruptions in (military) SCs. Last but not least, from this framework and the 
shortcomings previously identified in the review of literature in Chapter 2, this chapter offered a 
holistic measure of SCRes that appraises both dynamic and inherent dimensions. The resulting 
measure of SCRes, or ReT, will be integrated into the results of the simulation model in the next 
chapter.  
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Chapter 6. Simulation Model Output Data and Questionnaire 
 
6.1 Introduction 
 
This research is based on two main sources of information: a non-terminal simulation model for 
the military food supply chain or MFSC, and second, an open-ended questionnaire administered 
to twelve staff members of an MFSC. The first seven subsections of this chapter describe in 
detail the stages of simulation model (Banks, 1999; Law, 2003) for a real-world military food 
supply chain (MFSC), which is responsible for the provision of subsistence items, particularly 
combat rations. The primary objective of these subsections is to model the three scenarios of 
research hypotheses proposed in Chapter 3, that is: (1) increases in the frequency of occurrence 
of risks; (2) increases in the levels of on-hand inventory buffers in the presence of risks; and (3) 
increases in the short-term manufacturing capacity in the presence of risks. Thus, the first and 
second sections describe the military logistics system (MLS) and the operations that make up 
the MFSC. The third section illustrates the analysis of risks that affect the MFSC. The fourth 
section sets out the assumptions that were considered for simulation of the MFSC. The fifth 
section explains the processes of verification and validation of the simulation model. The sixth 
section details the experimental design in which the research hypotheses are based. And, the 
seventh section defines the simulation run length, the warm-up period, and the output data of 
the model.  
 
Unlike the previous ones, sections eight and ninth of this chapter explain how data from both 
sources of information—simulation model and questionnaire—were gathered, organized, and 
prepared to facilitate subsequent data analysis. This way, the eighth section sets out the output 
data of the simulation model, and the ninth section presents the raw questionnaire data. Lastly, 
but not less important, Annex B contains the programming code in Simulink® and details 
regarding how the simulation model was built, which were left out of the chapter due to their 
length.        
  
6.2 Description of the Military Logistics System (MLS) 
 
Military-SCs do no operate in isolation but rather are an integral part of a macro-system called 
the military logistics system (MLS). The main objective of the MLS is to provide timely and 
continuous support to all members of the military forces of a country. An MLS lends joint 
logistical support to all branches of the military including the Army, the Navy and the Air 
Force, in relation to their needs and requirements for the fulfilment of assigned tasks. However, 
the existence of a single MLS to meet the needs of all branches of the military is not the 
observed pattern in all the countries. In some geopolitically influential countries with powerful 
military forces, such as the USA, each branch of the military forces works as an independent 
entity with its own MLS, which may promote a healthy competition among them by reducing 
the impact of intentional attacks on the logistics system, at the expense of achieving economies 
of scale and efficiency.        
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The general structure of the MLS under analysis consists of two major operational units, logistics 
brigades (LBs) and combat brigades (CBs), as described in Figure 6.1. In this structure, LBs derive 
their existence from the CBs (Kress, 2016). However, the performance of the latter depends 
substantially on the former. Thus, the points of contact between them are the plans for 
purchasing raw materials, production of items, maintenance of machinery and equipment, and 
storage and distribution of finished products. 
 
The LBs are the backbone of the military logistics strategy (Pagonis & Krause, 1992), and their 
number may vary from country to country depending on the size and capabilities of the military 
forces they supply. In the MLS under study, two LBs are currently in operation. Within 
structure of a LB, the head logistics command (HLC) is the unit responsible for formulating and 
supervising the mentioned plans, and the military logistics agency (MLA) leads the execution of 
those plans. Combat service support battalions (CSSBs) receive, classify, store, and distribute raw 
materials. Quartermaster battalion (QB) is a mega-factory (six SCs) that manufactures intendancy 
material such as ammunition and explosives, uniforms, wood and metal articles, footwear, and 
food. Supply battalions (SBs) are in charge of storing, transporting, and distributing finished 
products. Transport battalions (TBs) provide the physical means for transporting finished 
products. Maintenance battalion (MaB) repairs military equipment, weapon systems, machinery, 
and facilities. Lastly, medical battalion (MeB) is responsible for the medical rehabilitation of 
personnel wounded in combat, reverse logistics, and humanitarian operations. Note that, in 
Figure 6.1, first-tier suppliers are not part of the MLS.  
 
Combat brigades (CBs) are the other major operating unit of a MLS, as is described in Figure 6.1. 
CBs are the largest military unit deployed in case of warfare or any threat that requires a rapid 
military response. Although CBs are military units specialized in war operations, their internal 
structures include tactical logistics units named combat service support units (CSSUs). CSSUs have 
the task of receiving and storing finished products, and then carry them into the theatre of 
operations. CSSUs act as the cross-docking point between the LBs and the end-users of the 
MLS. This process is carried out through several means of transport—by land, sea, o air—
according to the level of urgency of the military operation and the availability of equipment.  
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Figure 6.1 Description of the military logistics system (MLS) 
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6.3 The Supply Chain of Military Food (MFSC) 
 
The statement “An army marches on its stomach!” attributed to Napoleon is more pertinent 
than ever before. All armies need a regular provision of food in order to carry out the mission 
and keep on fighting. Without food, troops’ morale and performance fall. This is main reason 
why the SC of military food (MFSC) was chosen for analysis, among the six SCs that make up 
the MLS. The main objective of a MFSC is to provide troops “the right meal at the right place 
and at the right time” (DOA, 2010, p.vi). MFSCs conventionally provide a broad range of 
subsistence items, including regular food not-ready-to-eat, to be prepared in kitchen areas or 
ration C1; individual combat rations delivered in special packaging and to be consumed by a 
soldier during a day or ration C2; and a group of combat rations normally designed for six men 
or ration C3. This research will focus only on rations of type C2. 
 
In most of cases, troops cannot sit down for a hot cooked meal, but must pick up the food and 
move ahead, so troops rely on ready-to-eat food. Combat rations ensure adequate physical and 
cognitive performance by military personnel in different settings (NATO, 2010). Combat 
rations are part of the Class I items—Subsistence and commercially bottled water—and are 
primarily used in combat or training operations, for airborne personnel, in difficult-to-reach 
areas, or in the absence of field kitchen equipment. The food for soldiers no only has to be tasty 
but has to remain in optimal conditions. Combat rations are non-perishable food for up to three 
years at 27ºC or less, odourless, packaged in airtight and labelled bags resistant to adverse 
climatic conditions—temperatures ranging -10ºC to 50ºC, easy-to-open without specific tools, 
and ready-to-eat by troops. Rations must meet strict technical protocols based on the NATO-
Stanag-2937 (NATO, 2013) or an equivalent technical standard, e.g. Military Technical 
Standard-0065-A4 in the case of this study.  
 
Each pack of combat ration contains three meals, each one with the 1,300 calories; 
macronutrients—carbohydrates, protein and fat; micronutrients—vitamins, minerals, and trace 
elements—and the fibre needed for a high performance athlete (soldier) for 24 hours. Combat 
rations must be as light and compact as possible. A combat ration pack must not exceed 1,400 
grams of weight in order to facilitate its air transport, airdropped operations, or relocation by 
the soldier himself. Typically, a soldier carries an average of five rations in a combat bag-pack 
for personal consumption, though this figure depends on the length of mission and frequency 
of re-supply. In the following subsections, the macro-operations that make up the MFSC are 
described in detail.  
 
6.3.1 Raw materials (rm) 
 
Currently, the MFSC assembles 21 types of combat rations based on the nutritional 
requirements of troops and climatic conditions in which military operations are carried out. 
However, to simplify the analysis, we will assume that MFSC produces only one type of combat 
rations, the ‘Cold weather combat ration # 1’. Table 6.1 lists the 12 raw materials (rm#) required 
for their manufacture.     
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Table 6.1 Raw materials required for the assembly of the ‘Cold weather combat ration # 1’ 
 

Raw 
material Breakfast Raw 

material Lunch Raw 
material Dinner Raw 

material 
High-calorie 

products 

rm1 
1 portion of 
meat pastry 

(150 gr) 
rm4 

1 portion of 
chickpeas soup 

(180 gr) 
rm7 

1 
portion 
of meat 
goulash 
(180 gr) 

rm10 

1 can of 
condensed 

milk 
(100 gr) 

rm2 

1 bar of 
chocolate 

with cheese 
(25 gr) 

rm5 
1 sachet of 

hydrating drink 
(36 gr) 

rm8 

1 piece 
of fruit 
bread  

(100 gr) 

rm11 

1 bag of 
peanuts with 

sesame 
(100 gr) 

rm3 

1 piece of 
wheat  
bread 

(100 gr) 

rm6 
1 piece of corn  

bread 
(100 gr) 

rm9 

1 bar of 
sugar 
cane  

(125 gr) 

rm12 
1 bag of mixed 

fruit 
(50 gr) 

 
6.3.2 Manufacturing capacity of the assembly line (AL) 
 
Table 6.2 describes the theoretical capacity (TCS) and effective capacity (ECS) of the assembly 
line expressed in hours according to the number of active work-shifts (S), and under 
deterministic conditions—no risks occur. TC indicates the production capacity of the AL 
without discounting the time required for maintenance of machines and installations, i.e., 
operating 7 days per week continuously, while EC is equal to TC less time for maintenance—24 
hours each week, with TC > EC. Table 6.2 shows the values for TC and EC according the 
number of S, assuming that 1 shift (S = 1) is equal to 8 hours, 1 day is equal to 3 shifts, 1 week 
is equal to 7 days, 1 month is equal to 4 weeks, 1 semester is equal to 6 months, and 1 year is 
equal to 2 semesters. 

 
Table 6.2 Theoretical capacity (TCs) and effective capacity (ECS) of the AL in hours 

 
Period TC1 EC1 TC2 EC2 TC3 EC3 
Year 2,688 2,304 5,376 4,608 8,064 6,912 

Semester 1,344 1,152 2,688 2,304 4,032 3,456 
Month 224 192 448 384 672 576 
Week 56 48 112 96 168 144 
Day 8 16 24 
Shift 8 

 
 
Similarly, Table 6.3 describes TCS and ECS for the AL expressed in rations according to the 
number of active work shifts (S). To date, the MFSC operates at an assembly rate (λ) equal to 
320.5 rations/hour and 1 active work shift (S = 1). At that production level, MFSC can 
assemble up to 738,432 rations/year, provided no risk occurs.  
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Table 6.3 Theoretical capacity (TCS) and effective capacity (ECS) for the AL in rations 

 
Period TC1 EC1 TC2 EC2 TC3 EC3 
Year 861,504 738,432 1723,008 1,476,864 2,584,512 2,215,296 

Semester 430,752 369,216 861,504 738,432 1,292,256 1,107,648 
Month 71,792 61,536 143,584 123,072 215,376 184,608 
Week 17,948 15,384 35,896 30,768 53,844 46,152 
Day 2,564 5,128 7,692 
λ 320.5 

 
6.3.3 Process of assembling combat rations 
 
In this research, as a convention, a process is the set of operations designed to accomplish a 
specific task or to prepare/receive/transport raw materials, work-in-progress inventory (WIP) 
or finished items within a period. A process may include workers, workstations, materials, and 
working methods. An operation, on the other hand, indicates a sequence of activities and 
methods of work performed by a single person/work-team in workstations to achieve specific 
tasks.   
 
The assembly process of combat rations in the MFSC is depicted in Figure 6.2. This process 
follows a dual policy of production, that is, assembly-to-stock from operation 1 at MLA to 
operation 9 at SB, and assembly-to-order from the latter to operation 13 at the theatre of 
operations. Regarding the inventory policy, the re-order point (ROP) of the chain is of the type 
(ROP, Q), i.e., a fixed quantity of raw material/finished items is placed whenever the inventory 
position in each operation falls below ROP. The description of each of the 13 operations that 
make up the process of assembly of combat rations is detailed below. 
 
Operation 1 (Op1, j): Contracting of suppliers 
 
Operation 1 (Op1, j) is performed by the MLA. This operation involves the contracting of raw 
material suppliers for the assembly and distribution of combat rations. The time needed to 
prepare, evaluate, select and contract 12 suppliers through public tenders is one month (PT = 
672 hours). The output of the Op1, j is 12 contracts for the same number of suppliers (Q = 
{cntr1…cntr12}), which must be renewed twice a year (F = biannual or every 4,032 hrs). Op1, j 
may be subject to ‘delays in contracting with suppliers’ (R12).      
 
Operation 2 (Op2, j): Preparation and shipping of raw materials to the warehouse and distribution centre 
 
Operation 2 (Op2, j) is performed by external suppliers. This operation consists of preparing and 
sending the necessary quantities of raw materials for the assembly of combat ration packs (see 
Table 6.1). The processing time for the delivery of inputs is one day (PT = 24 hours). Op2, j 
ends when the shipment of raw materials required for a working month and an active shift (S = 
1) is delivered to the warehouse and distribution centre (WDC), with Q = {190,000 rm1…190,000 



 85 

rm12} and a monthly reorder point (ROP = every 672 hours). Failures during Op2, j may cause 
‘shortages of raw materials and components’ (R13).            
 
Operation 3 (Op3, j): Reception, verification and storage of raw materials  
 
Operation 3 (Op3, j) is carried out at the WDC installations. This operation consists of the 
reception, verification and storage of the 12 raw materials for the assembly of combat ration 
packs. The processing time of raw materials is one day (PT = 24 hours), and there is no raw 
material stored at the beginning of the operation (It,1 = 0). Weekly, WDC prepares the shipment 
of raw material required for a workweek and an active shift (S = 1) to AL, i.e., Q = {15,500 
rm1…15,500 rm12} and ROP = every 168 hours. Op3, j is subjected to the incidence of ‘natural 
disasters’ (R21).          
 
Operation 4 (Op4, j): Transport and delivery of raw materials to assembly line 
 
Operation 4 (Op4, j) is executed through a line-of-communication (LOC). This operation consists of 
the transportation and delivery of the 12 raw materials necessary for the assembly of combat 
ration packs from WDC to the AL. The delivery time for the inputs is one day (PT = 24 hours). 
The quantity of raw material transported corresponds to the requirements of a workweek and 
an active shift (S = 1) to the AL, i.e., Q = {15,500 rm1…15,500 rm12} and ROP = every 168 
hours. Op4, j is vulnerable to ‘terrorist attacks’ (R22).   
 
Operation 5 (Op5, j): Pre-assembly of high-calorie products for combat rations 
 
Operations 5, 6 and 7 form part of the AL of combat rations. Op5, j is the first operation of the 
AL and consists of the pre-assembly of high-calorie products for each combat ration. At an 
assembly rate (λ) of 320.5 rations/hour, the processing time for each pre-assembly of combat 
ration is 0.003125 hours (PT = 1/λ), and the delivery frequency of pre-assemblies to the 
following workstation is immediate (ROP = every 0.003125 hours), one after the other (Q = 1). 
After a work shift of 8 hours, Op5, j will have transferred a total of 2,564 pre-assemblies to the 
next workstation. There is no raw material stored at the beginning of Op5, j (It,1 = 0). Op5, j is 
prone to experiencing ‘breakdowns in workstations’ (R11), ‘natural disasters’ (R21), and ‘black-
swan events’ (R3).     
 
Operation 6 (Op6, j): Assembly of combat rations 
 
Operation 6 (Op6, j) is the second operation of the AL and consists of the manual assembly of 
combat rations. The processing time of each pack of combat ration is 0.003125 hours (PT = 
1/λ), and the frequency of delivery of assemblies to the following workstation is immediate 
(ROP = every 0.003125 hours), one after the other (Q = 1). After a work shift of 8 hours, Op6, j 
will have transferred a total of 2,564 assemblies to the next workstation. Op6, j is prone to 
experiencing ‘breakdowns in workstations’ (R11), ‘natural disasters’ (R21), and ‘black-swan 
events’ (R3). 
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Operation 7 (Op7, j): Quality control of combat rations 
 
Operation 7 (Op7, j) is the last operation of the AL and consists of the verification and final 
packaging of combat rations in boxes of 10 units. The time required to check and package 
combat rations is 0.003125 hours/unit (PT = 0.003125 hours), and the frequency of shipments 
to the supply battalion (SB) is every 2 days (ROP = every 48 hours). The shipment of combat 
rations to SB occurs only when the batch size achieves 5,000 rations (Q = when batch size 
achieves 5,000 rations). Due to its nature, Op7, j can individually be impacted by ‘quality 
problems’ (R14), and along with Op5, j and Op6, j by ‘natural disasters’ (R21) and ‘black-swan 
events’ (R3). It should be noted that the processing times of Op5, j, Op6, j, and Op7, j describe a 
balanced AL (PT5 = PT6 = PT7). 
 
Operation 8 (Op8, j): Transportation and delivery of combat rations to supply battalion 
 
Operation 8 (Op8, j) is executed through an LOC. This operation consists of the transportation 
and delivery of combat rations from the AL to the SB. The delivery time for the combat ration 
packs is one day (PT = 24 hours) and shipments occur only when the batch size achieves 5,000 
rations (Q = ‘when batch size achieves 5,000 rations’), every two days (ROP = 48 hours). Op8, j 
is vulnerable to ‘terrorist attacks’ (R22).  
 
Operation 9 (Op9, j): Receipt, classification, and storage of combat rations 
 
Operation 9 (Op9, j) is carried out at the SB installations. This operation consists of the receipt, 
classification, and storage of combat ration packs. The processing time of combat ration packs 
is one day (PT = 24 hours), and there are no finished items stored at the beginning of the 
operation (It,1 = 0). Op9, j ends when batch sizes in the range of 2,400 to 2,600 rations (Q = 
2,400 to 2,600 rations) are sent to the combat service support units (CSSUs), at a daily freight rate 
(ROP = 24 hours). Op9, j can be individually impacted by ‘natural disasters’ (R21), and together 
with Op3, j, Op5, j, Op6, j, and Op7, j by ‘black-swan events’ (R3).          
 
Operation 10 (Op10, j): Transportation and delivery of combat rations to combat service support units 
 
Operation 10 (Op10, j) is performed through an LOC. This operation consists of the 
transportation and delivery of combat rations from SB to CSSUs. The delivery time for the 
combat ration packs is one day (PT = 24 hours). Shipments occur in batch sizes ranging from 
2,400 to 2,600 rations at a daily freight rate (ROP = 24 hours). Op10, j is vulnerable to ‘terrorist 
attacks’ (R22).   
 
Operation 11 (Op11, j): Delivery and distribution of combat rations 
 
Operation 11 (Op11, j) is carried out at the CSSU installations. This operation consists of the 
receipt, delivery, and distribution (in less than 1 hour) of combat rations to the troops deployed 
in the theatre of operations. Because of its temporal nature, the processing time is considered a 
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nuisance factor (PT = 0). Shipments occur in batch sizes ranging from 2,400 to 2,600 rations at 
a daily freight rate (ROP = 24 hours). Op11, j can be impacted by ‘terrorist attacks’ (R23). 
 
Operation 12 (Op12, j): Transportation and dispatching of food rations for troops 
 
Operation 12 (Op12, j) is performed through a LOC. This operation consists of the 
transportation and final delivery of combat rations from CSSUs to troops in the theatre of 
operations. The delivery time for combat ration packs is one day (PT = 24 hours). Shipments 
occur in batch sizes ranging from 2,400 to 2,600 rations at a daily freight rate (ROP = 24 
hours). Op12, j is vulnerable to ‘terrorist attacks’ (R22).   
 
Operation 13 (Op13, j): Military personnel in operations waiting for the delivery of combat rations 
 
The theatre of operations is the physical place on the ground, sea, or air where military actions 
are carried out. In this thesis, the words ‘troops’ or ‘military personnel’ are used interchangeably 
to refer to any warfighter of any military branch in need of combat rations. The closest supply 
units to the troops in the theatre of operations are the CSSUs. These units use all the resources 
available to support the theatre-feeding mission, i.e., terrestrial, aerial, and maritime means, 
which presupposes having an adequate logistical structure. Although careful planning of any 
military action, including the determination of the number of rations to be consumed during the 
development of military operations, is a standard in modern armies, the battlefield involves 
enormous asymmetries of information or uncertainty. Hence, Op13, j is subjected to contingent 
orders for combat rations (R24). 

 
Table 6.4 Regular demand for military rations (Drg) 

 

Function Description Distribution 
parameters Model assumptions 

Demand for 
combat rations 

Regular demand for combat 
rations is originated in the 
last link of the MFSC, 
ranging between 2,400 and 
2,600 every day, during 6 
days per week. 

Uniform 
distribution U(X 
∈ Z+, a = 2,400, 
b = 2,600) for a 
≤ x ≤ b 

(1) The probability that the 
demand takes any value within 
the considered range is identical 
in all cases, and, (2) the demand 
for rations is placed every 24 
hours, 6 days per week. 
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Figure 6.2 Initial configuration of the MFSC (Cf0: S = 1, It,1 = 0, and R1r , or R2r , or R3 enabled) 
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The pattern of demand for military items is highly variable (Wang, 2000), and combat rations 
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Z+) with parameters a = 2,400 and b = 2,600, for a ≤ x ≤ b. This means that the MFSC handles 
regular orders j of size Q ranging from 2,400 to 2,600 rations/day for six days a week. Thus, 
theoretically, the expected annual demand for combat rations fluctuates from 691,200 to 
748,800 rations/year. The first figure represents the best scenario under regular conditions 
(Drgbest), and the second, the worst scenario (Drgworst). In addition, troops can potentially face 
contingent military operations (Thomas, 2009), i.e., unforeseen military actions as a response to 
stochastic events of varied nature (R24). This type of military operations generates sudden orders 
for combat rations that must receive priority attention to ensure a rapid deployment and 
mobilization of troops. These contingency requirements also range from 2,400 to 2,600 
rations/month, that is, 28,800 additional rations/year in the best-case scenario (Dcnbest) and 
31,200 additional rations/year in the worst-case scenario (Dcnworst). Therefore, if the MFSC 
manufacturing capacity in deterministic conditions (It,1 = 0 and Rcr = all disabled) and S = 1 is 
compared with the average annual demand for rations (regular and contingent), the result is that 
the first one (738,432 combat rations/year) is slightly lower than the second (750,000 combat 
rations/year). Table 6.4 describes the distribution parameters and assumptions of Drg for 
combat rations.  
 
6.4 Risk Analysis in the MFSC 
 
Carpenter and colleagues (2001) pointed out two aspects that should be taken into account 
when a system’s resilience is being measured: (1) Which configuration makes a system resilient, 
and (2) What kind of threats could affect a system? This section is related to the latter question, 
i.e., what the main risks are that may cause disruptions in military SCs and how these can be 
modelled.  
 
6.4.1 An overview of risks affecting supply chains 
 
The most elemental notion of the concept of risk involves two elements: uncertainty and damage 
(Kaplan & Garrick, 1981). The literature on the types of risk that can affect an SC is vast and 
heterogeneous, to the extent that some authors have suggested reorienting research efforts to 
different areas rather than continue to propose ‘new’ risk classifications (Hoffmann et al., 2013). 
Table 6.5 confirms this fact and provides a sample of the different risk classifications existing in 
the literature, which were developed from the analysis of commercial-SCs.  
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Table 6.5 Exemplary review of risk classification in SCs 
 

Author(s) Risk sources/levels/types 
Johnson (2001) - Demand risks 

- Supply risks  
Jüttner et al (2003)  - Environmental 

- Network related 
- Organizational 

Giunipero and Eltantawy (2004) - Political events 
- Product availability 
- Transportation distances 
- Changes in technology and labour markets 
- Financial instability 
- Management turnover  

Paulsson (2004) - Operational disturbances 
- Tactical disruptions 
- Strategic uncertainties 

Christopher and Peck (2004) - Internal to the firm 
- External to the firm but external to the SC-network 
- External to the network 

Chopra and Sodhi (2004) - Disruptions 
- Delays 
- Systems 
- Forecasts 
- Intellectual property 
- Procurement 
- Receivables 
- Inventory 
- Capacity 

Peck (2005) - Value stream/product or process 
- Assets and infrastructure dependencies 
- Organisations and inter-organisational networks 
- Environmental 

Kleindorfer and Saad (2005) - Risks from coordination of supply and demand 
- Risks from disruptions to normal activities 

Tang (2006) - Operational risks 
- Disruption risks 

Craighead et al (2007) - Supply chain density 
- Node criticality 

Manuj and Mentzer (2008)  - Supply 
- Demand 
- Operational 
- Security risks 

Tang and Tomlin (2008) - Supply risks 
- Process risks 
- Demand risks 
- Intellectual property risks 
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The risk classifications described in Table 6.5 provide a preliminary framework for studying 
risks in the MFSC under analysis. However, these classifications are based on assumptions 
applicable primarily to commercial-SCs, and therefore they do not fully fit the context and 
characteristics of military-SCs (see discussion in Section 5.2). In fact, the type of uncertainty that 
most characterizes the environment of military-SCs is not repeatable, not observable, or both 
(Cohen et al., 1991). As a result, three specific criteria based on the SC risk-management 
framework proposed by Handfield and McCormack (2008) are used for the identification, 
analysis, and estimation of risks considered in the simulation model. 
 
First, historical records of risk occurrence in the MFSC under study were collected. This 
process included visits to the combat ration assembly plant and the main supply centres, the 
review of procedures manuals and interviews with staff personal. In addition, operations 
manuals of the Colombian Army and official reports from the Ministry of Defense also were 
consulted (NAC, 2010; NAC, 2013; MNDC, 2014). All these documents provided relevant 
information about the risk factors that could affect the development of logistical operations on 
the frontline. Second, previous approaches applied to military-SCs and/or equivalent scenarios 
were taken as a reference point (Loredo et al., 2015; Moore et al., 2015; Thadakamaila et al., 
2004; Birkemo, 2013; Ezell et al., 2010; Colicchia et al., 2010). The review of these studies 
allowed including risks that might represent potential threats for the MFSC under study, but 
that have not materialized yet. And third, the two previous analyses were complemented with 
secondary sources of information related to the country risk of the MFSC (Richani, 2013; 
Ghesquiere et al., 2006; Cardona & Carreño, 2011; GFDRR, 2012). Thus, the country’s 
propensity for natural disasters and the existence of terrorist groups provided additional criteria 
for quantifying the impact of risks (distributional parameters) affecting the MFSC under study. 
 
The result of the joint application of the above-mentioned criteria allowed a better 
characterization of the nine types of risk, which were grouped into three categories, as described 
in Tables 6.6, 6.7 and 6.8, respectively. This categorization adopted as classification criterion the 
degree of uncertainty that accompanies each risk, i.e. the quantity and quality of information 
available that from each risk, from the lowest to the highest level (Wideman, 1992; Jorion, 2009; 
Rumsfeld, 2003). 
 
 

- Behavioural risks 
- Political/social risks 

Wagner and Bode (2008) - Demand side 
- Supply side 
- Regulatory, legal and bureaucratic 
- Catastrophic 

Trkman and McCormack (2009) - Endogenous uncertainty 
- Exogenous uncertainty 

Ellis et al (2010) - Magnitude of supply chain disruption 
- Probability of supply chain disruption 
- Overall supply chain disruption risks 
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6.4.2 Known-knowns: Operational risks or risks inherent to the supply chain (R1r) 
 
Kleindorfer and Saad (2005) defined operational risks as equipment malfunctions, unforeseen 
discontinuances of supply, and human-centred issues from strikes to fraud. This category 
describes risk events for which there is strong evidence of its occurrence (known-knowns). This 
means that their distributions of probability and impact on SC-performance are relatively 
known, or can be estimated reliably.  
 
Thus, R1r are inherent in all types of SCs and have been widely discussed in the literature, e.g. 
Hopp and Spearman (2008) or Girling (2013). Usually, their frequency of occurrence is high and 
their impact is moderate, though occasionally the occurrence of R1r may represent a major 
threat to SCs (Rice & Caniato, 2003; Craighead et al., 2007). In the present analysis, this 
category of risk encompasses the occurrence of ‘breakdowns in machines or workstations (R11)’, 
‘delays in contracting with suppliers (R12), ‘shortages of raw materials and components (R13)’, 
and ‘quality problems (R14)’. Table 6.6a describes their underlying causes and effects on the 
performance of the SC under study, while Table 6.6b characterizes the probability distributions 
and assumptions adopted for their modeling. 
 

Table 6.6a Description, causes, and foreseeable effects of R1r at the MFSC 
 

Type of risk Notation  
(Rcat_type) 

Description Possible causes Foreseeable (alleged) 
effects on the MFSC 

Breakdowns 
in machines 
or 
workstations 

R11 

One or more machines or 
workstations interrupt their 
operations without previous 
notice. Machines or workstations 
cannot be immediately restarted 
after the interruption. 

Unforeseen technical failures, 
inadequate maintenance 
and/or inappropriate use of 
equipment. 

Declines in production. 
After a time, the affected 
machine or workstation 
returns to normality. 

Delays in 
contracting 
with suppliers 

R12 
The contracting process of raw 
materials is delayed in any of its 
phases. 

Lack of offerers, or the 
occurrence of legal problems 
during preparatory, pre-
contractual, or contractual 
phases. 

The contract required by 
the supplier for the 
delivery of raw materials 
is not finished in time, 
causing delays in the 
procurement process. 

Shortages of 
raw material 
and 
components 

R13 
Planned deliveries of materials 
and components are delayed. 

Attributable to the suppliers 
as result of inadequate 
planning, machines failures, 
strikes or environmental 
factors, among others. 

Raw materials and other 
components required for 
the assembly process are 
not delivered in time 
causing delays in 
operations. 

Quality 
problems R14 

Quality control problems in the 
assembly process. 

Technical or human failures 
during the process of 
assembly. 

Some WIP inventories 
have to be re-processed 
increasing the times of 
operation, which causes 
declines in production. 
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Table 6.6b Probability distributions and assumptions for modelling R1r at the MFSC 
 
Type of 

risk Probability distribution Distributional 
parameters Modeling assumptions 

R11 

Uniform-discrete, U(x: occurrence of a breakdown at 
the workstation in an interval of 168 hours; a: the 
lower bound of the interval of time in hours; b: the 
upper bound of the interval of time in hours).  
Exponential, exp(x: time in hours before the machine 
is repaired, β: average time in hours before the 
machine is repaired). The average time in hours 
before the machine or workstation is repaired is 
equal to two hours. 

U(x ∈ Z+, a: 1, b: 
168) for  a ≤ X ≤ 
b;  
exp(x ∈ R+, β: 2) 
for β > 0 

(1) The negative effects of 
breakdowns at Op5 and Op6 are all 
equivalent, (2) the probability of 
occurrence of any workstation’s 
breakdown is identical along of the 
interval of time, and (3) the average 
time in hours before the 
machine/workstation is repaired is 
independent for each event. 

R12 
Binomial, B(x: number of contracts delayed in n 
contracting processes; n: number of contracting 
processes, p: likelihood that one contract is delayed). 

B(x ∈ Z+, n: 12, p: 
1/11) for n ≥ 1 
and 0 ≤ p ≤ 1 

(1) The likelihood of delays in Op1 
remains constant for each of n 
contracting processes (p = 1/11), (2) 
which are considered independent 
of each other, and (3) if one of the 
contracting process is delayed, one 
week (168 hours) is added to MLA 
processing time. 

R13 
Binomial, B(x: number of delayed deliveries in n 
planned deliveries; n: number of planned deliveries; 
p: likelihood that one delivery is delayed). 

B(x ∈ Z+; n: 12, p: 
1/10) for n ≥ 1 
and 0 ≤ p ≤ 1 

(1) The likelihood of delays in Op2 
remains constant for each of n 
deliveries (p: 1/10), (2) which are 
considered independent of each 
other, and (3) if one delivery is 
delayed, one day (24 hours) is added 
to each supplier’s processing time. 

R14 
Binomial, B(x: number of non-conforming products, 
n: number of units produced per shift; p: probability 

that one non-conforming product is produced). 

B(x ∈ Z+, n: 
2,564, p: 3/100) 

for n ≥ 1 and 0 ≤ 
p ≤ 1 

(1) The likelihood of non-
conforming products in Op7 
remains constant for each shift (p: 
3/100), (2) the number of units 
produced is independent of each 
other, and (3) if any defective 
product is detected, the item is 
returned to the previous operation 
for re-processing. 

 
 
6.4.3 Known-unknowns: Natural disasters and intentional attacks (R2r) 
 
The second category consists of two types of risk, natural disasters and intentional attacks. This 
unified risk category describes events with asymmetric information (Hintsa et al., 2009), i.e. 
although there is evidence of their occurrence, their frequency, location, and impact on the SC 
is imprecise, incomplete, or insufficient (know-unknowns). Compared with the previous category 
of risk, their frequency of occurrence is smaller but their impact is greater. 
 
Natural disasters (R21) encompass a wide range of risks with a common origin: “mother nature” 
(Stecke & Kumar, 2009). In the present analysis, the incidence of R21 in the military-SC can be 
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direct, e.g., earthquakes, storms or floods; or indirect, e.g., when fires, explosions, power 
outages or any other related events are caused by natural disasters (Altay & Ramírez, 2010). The 
other typology of risk considered in the same category is intentional attacks (R22...24). These risk 
events are characteristic of military-SCs, but not exclusive to them (Willis et al., 2005). In the 
MFSC under analysis, this type of risk describes deliberate actions perpetrated by terrorist 
groups against facilities, means of transport, or even civilian targets (Paté-Cornell & Guikema, 
2002). In the present analysis, this category of risk includes ‘attacks to lines-of-communication 
(R22)’, ‘attacks on forward-support logistics units (R23)’, and ‘contingent demand (R24)’. Table 
6.7a describes the underlying causes and their effects on the performance of the MFSC under 
study, while Table 6.7b characterizes the probability distributions and assumptions adopted for 
their modeling. 
 

Table 6.7a Description, causes, and foreseeable effects of R2r at the MFSC 
 

Type of risk Notation  
(Rcat_risk) 

Description Possible causes Foreseeable (alleged) effects  
on the MFSC 

Earthquakes, 
storms, floods, 
fires, and power 
cuts. 

R21 
Natural phenomena 
that may cause serious 
damage to SC facilities. 

Multiples causes beyond 
the control of the SC or 
so-called ‘mother nature’. 

Warehouses and the assembly line 
are taken out of operation causing 
delays in the delivery of raw 
materials and finished items. After 
a time, affected facilities return to 
normality. 

Attacks on the 
lines-of-
communication 

R22 

The lines-of-
communication that 
connect the nodes of 
the SC are taken out of 
operation. 

Mostly terrorist attacks 
caused by rebels or 
terrorist groups. 

The means of transport are 
destroyed, causing delays in the 
delivery of raw material or finished 
items. After the attack, the lines-of-
communication are restored. 

Attacks on 
forward logistics-
support units 

R23 

Severe damage or 
complete destruction of 
forward-logistics 
support units. 

Mostly terrorist attacks 
caused by rebels or 
terrorist groups. 

The destruction of forward 
logistics support units may produce 
shortages in the delivery of finished 
items to troops. After the attack, a 
new forward stock position is re-
activated. 

Contingent 
demand R24 

Unforeseen small or 
mid-range military 
operations involving the 
rapid mobilization of 
combat units and the 
means for their support. 

Several triggers such as 
military incursions into 
towns, attacks on 
aircrafts or military 
installations, armed 
harassment, ambushes, 
and illegal roadblocks, 
among others, cause the 
mobilization of troops. 

Unexpected mid-range demand 
fluctuations (growth) of finished 
items. 
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Table 6.7b Probability distributions and assumptions for modelling R2r at the MFSC   
 
Type of 

risk Probability distribution Distributional 
parameters Modeling assumptions 

R21 

Uniform-discrete, U(X: occurrence of a natural 
disaster in an interval of 16,128 hours; a: the lower 
bound of the interval of time in hours; b: the upper 
bound of the interval of time in hours).   
Exponential exp(x: time in hours before the assembly 
line returns to operation, β: average time in hours 
before the plant returns to operation). The average 
re-entry time in operation is equal to 120 hours (5 
days). 

U(x ∈ Z+, a: 1, 
b: 16,128) for  a 
≤ X ≤ b;  
exp(x ∈ R+, β: 
120) for β > 0. 

(1) The likelihood of occurrence of 
natural disasters is identical along the 
simulation horizon; (2) when a 
natural disaster happens Op3, Op5, 
Op6, Op7 and Op9 are simultaneously 
affected; and (3) the average re-entry 
time in operation is independent for 
each operation. 

R22 

Uniform-discrete, U(x: destruction of one line-of-
communication in a interval of 4,032 hours; a: the 
lower bound of the interval of time in hours, b: the 
upper bound of the interval of time in hours). 
Exponential, exp(x: time in hours before the affected 
line-of-communication is rehabilitated, β: average 
time in hours before the line-of-communication is 
rehabilitated). The average time of rehabilitation is 
equal to 24 hours (1 day). 

U(x ∈ Z+, a: 1, 
b: 4,032) for a ≤ 
x ≤ b;  
exp(x ∈ R+, β = 
24) for β > 0 

(1) The likelihood that Op4, Op8, 
Op10 and Op12 are destroyed is 
identical along the period considered, 
and (2) rehabilitation times for each 
line-of-communication are 
independent of one another. 

R23 

Uniform-discrete, U(x: destruction of the forward 
logistics support unit in an interval of 8,064 hours, 
a: the lower bound of the interval of time in hours, 
b: the upper bound  of the  interval of time in 
hours). 
Exponential, exp(x: time in hours before the affected 
forward logistics support unit is re-activated, β: 
average time in hours before the forward logistics 
support unit is re-activated). The average time of re-
activation is equal to 120 hours (5 days). 

U(x ∈ Z+, a: 1, 
b: 8,064) for a ≤ 
x ≤ b;  
exp(x ∈ R+, β: 
120) for β > 0; 

(1) The likelihood that Op11 is 
destroyed is identical for any week 
along the simulation horizon, (2) the 
mean duration of re-activating an 
affected forward logistics support 
unit is independent for each case, 
and (3) the likelihood that a single re-
entry occurs in non-overlapping 
intervals is independent of the 
number of re-entries that occur in 
any other disjointed time interval. 

R24 

Uniform-discrete 1, U1(x: time of a sudden increase in 
demand in an interval of 672 hours, a: the lower 
bound of the interval of time in hours, b: the upper 
bound of the interval of time in hours).  
Uniform-discrete 2, U2(Dcn: size of a sudden increase 
in demand between 2,400 to 2,600 rations/672 
hours; c: the lower bound of the contingent demand 
in rations, d: the upper bound of the contingent 
demand in rations). 

U1(x ∈ Z+, a: 1, 
b: 672) and 
U2(Dcn ∈ Z+, c: 
2,400, d: 2,600) 
for a ≤ x ≤ b 
and c ≤ Dcn ≤ d 

(1) The likelihood of occurrence of 
an increase in the demand (Op13) is 
identical for any week along the 
simulation horizon, and (2) the 
likelihood associated with the size of 
the demand is the same for the 
indicated range. 

 
 
6.4.4 Unknown-unknowns: Black-swan events (R3) 
 
The last category of risk considered in the analysis (black-swans events) is the most complicated to 
characterize since, by definition, there are no previous records of their occurrence (unknown-
unknowns). According to Taleb (2010), a black-swan is an atypical event (outlier) that cannot be 
related to any past event, and whose occurrence carries a critical impact. In line with this 
definition, and based on real war games to which this author had access (IHSND, 2007), a 
black-swan event (R3) occurs in the MFSC under analysis when the AL (Op5...7) and the SB 
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(Op9) are taken out of operation because of an air-strike launched by the aviation of a 
neighbouring country. It should be noted that, even though this scenario has never yet 
occurred, military experts consider it a likely outcome in a border conflict with a neighbouring 
country. Table 6.8a describes the underlying causes of this risk and its effects on the 
performance of the MFSC under study, while Table 6.8b characterizes the probability 
distribution and assumptions adopted for its modeling. 
 

Table 6.8a Description, causes, and foreseeable effects of R3 at the MFSC 
 

Type of risk Notation  
(Rcat_risk) 

Description Possible causes Foreseeable (alleged) effects 
on the MFSC 

Black-swan 
events R3 

Surprising and premeditated 
airstrikes launched by the air 
force of a neighbouring 
country against critical logistics 
facilities such as quartermaster 
battalions and military 
warehouses. 

A sudden border conflict with 
a neighbouring country 
motivated by political or 
economic reasons, in which 
air power is used. 

The assembly line and the 
military warehouses of the SC 
are temporarily taken out of 
operation, after which time 
these facilities return to 
normality. 

 
 

Table 6.8b Probability distributions and assumptions for modelling R3 at the MFSC   
 
Notation  
(Rcat_risk) 

Probability distribution Distributional 
parameters Modeling assumptions 

R3 

Uniform-discrete, U(x: time of 
occurrence of a black-swan event in a 
interval of 161,280 hours, a: the lower 
bound of the interval of time in hours, 
b: the upper bound of the interval of 
time in hours). 

U(x ∈ Z+, a = 
1, b = 161,280) 
for a ≤ x ≤ b 

(1) The probability of occurrence of a black-
swan event is the same along the simulation 
horizon; (2) when a black-swan event occurs, 
Op5, Op6, Op7 and Op9 are simultaneously taken 
out of operation during 672 consecutive hours; 
and (3) operations affected return to normality 
after this time. 

 
6.5 Assumptions of the Simulation Model 
 
The simulation model of the MFSC incorporates eight key assumptions. All these premises were 
posed to avoid including unnecessary details, to reduce the execution time, and to emphasize 
some characteristics of the real-world MFSC under analysis. 
 
6.5.1 Operation mode and end-users 
 
In real environments, military-SCs meet the needs of a range of end-customers such as military 
personnel, civilians, civil response organizations, and humanitarian relief forces. This 
responsiveness ability depends on the operating-mode of the military-SC. Generally speaking, in 
war mode; effectiveness is preceded by efficiency and cost criteria, while in peace mode the 
opposite occurs (Tatham, 2005). In this analysis, it is assumed that the MFSC functions in war 
mode, i.e. it meets only the needs of the troops. 
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6.5.2 Proactive strategy to mitigate the impact of risks   
 
Risks cannot be totally avoided due to their stochastic nature, but their effects can be reduced 
(Kaplan & Garrick, 1981, p.12). This is indeed one of the key assumptions on which the SCRes 
paradigm rests (Jüttner & Maklan, 2011). SCs may choose to take some action in advance of 
risks, or to respond to them only if they occur. In this research it is assumed that the MFSC 
does not react post hoc to the materialization of risks, but that the MFSC adopts a proactive 
strategy (buffering strategy).      
 
6.5.3 Single and homogeneous product 
 
Real-world SCs manufacture a wide range of products in actual practice. Indeed, as previously 
indicated, the MFSC assembles 21 types of combat ration. However, to simplify the analysis, it 
will assume that the MFSC manufactures only one type of ration, the ‘Cold weather combat 
ration # 1’.  
 
6.5.4 Backorders and scheduling rule 
 
When troops’ demands are not met within the stipulated lead-time, they are labelled as 
backorders. This is because military-SCs cannot outsource/subcontract military items by 
restrictions in the law. In the simulation model, backorders are demands for military rations that 
have not yet been delivered. Hence, each SC-configuration (Cfi) begins with zero backorders; 
and they then accumulate in a list of pending orders to be delivered according to the MFSC’s 
capability. Each new backorder is entered on a list of up to 60 delayed orders, so that if a new 
backorder is created, the last order in the list is removed and labelled as lost or unattended order 
(Ut). As all backorders have equal weight, they are scheduled according to the shortest 
processing time rule (SPT rule), i.e., ‘do backorders in increasing order of their size.’ The SPT 
rule allows minimisation of the average completion time, the average flow time, and the average 
wait time (Bernus et al., 2007). The only exception to the SPT rule occurs when new orders are 
placed as result of contingent military operations (see R24 in Table 6.7b). This type of order 
(contingent demand) has priority over regular demands.  
 
6.5.5 Lines-of-communication and warehouses 
 
Two entities play a crucial role in the MFSC under study: lines-of-communication (LOCs) and 
storage locations (WDC, SBs and CSSBs). With regard to LOCs, the availability of distribution 
vehicles and the planning/analysis of routes are taken for granted. Similarly, storage capacities 
of WDC, SBs and CSSBs are assumed to be unlimited along the simulation horizon of the 
model.  
 
6.5.6 Suppliers, placement orders, and fulfilment of raw material deliveries  
 
Three assumptions are made for simplifying the simulation model. First, the number of hired 
suppliers is equal to the number of raw materials required. Second, the order placement time of 
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combat rations is instantaneous. And lastly, partial deliveries of raw material/finished products, 
incomplete and inaccurate documentation to support the order, or last-minute changes in 
orders/productions plans are not allowed.   
 
6.5.7 Preparation of machines, worker strikes, and maintenance times  
 
The simulation model does not consider machine preparation times or worker strikes. The first 
assumption is reasonable since the MFSC only assembles a single item; thereby production 
losses at the end of each shift or at the beginning of the next shift are negligible. Regarding the 
second assumption, the nature of the MFSC under study precludes the strike of workers 
because in the origin country of the military-SC, this activity is considered a violation of the law. 
Lastly, the maintenance of machines and installations is done once every 7 days for 24 hours. 
 
6.5.8 Non-terminating simulation with steady state parameters 
 
The simulation of the MFSC is considered a non-terminating simulation with steady state 
parameters. The above means that the length of a simulation run—established in up to 20 
years—is not determined by the occurrence of any event. In addition, the parameters of the 
model distributions remain unchanged during this period. This assumption exerts a significant 
influence on the results of the simulation model.   
 
6.6 Verification and Validation of the Simulation Model  
 
The verification and validation of simulation models are two processes independent of each 
other but complementary in nature. Thus, while the purpose of verification is to ensure that the 
code of the simulation software works as intended, the purpose of the validation is to confirm 
that the simulation output data is an adequate representation of reality (Chung, 2004). Both 
processes are described in detail below.  
 
6.6.1 Verification of the simulation model 
 
Verification of the simulation model is carried out through the run-time model verification library of 
Simulink®. This software functionality comprises several block libraries that can be used to 
substantiate the performance of a simulation model. In this analysis, only three of them were 
used (see Figure 6.3). The parameters utilised for the verification of the simulation model were 
the SC-manufacturing capacity (see Table 6.3) and the frequency of risks (Tables 6.6b, 6.7b, and 6.8b). 
The three block libraries shown in Figure 6.3 point out what happens when some of the two 
mentioned parameters abandon their limits or intervals of occurrence.  
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Figure 6.3 Simulink® run-time model verification library 
 
 
 
 
 
 
 
 
The verification experiment consisted of 42 simulation-runs that examined the consistency of 
the MFSC model. Each check-block depicted in Figure 6.4 was applied to the indicated 
parameters. For example, as indicated in Table 6.9, for the first block of verification (assertion), 
12 simulation runs were carried out to verify that the throughput of the MFSC (amount of 
rations produced per unit of time) is not zero at any time, and 9 simulation runs were carried 
out to verify that none of the risks considered ‘is not zero’ (occurs) at any time of the simulation 
horizon of the model. The application of the two remaining blocks (dynamic range and static 
upper bound) is detailed in the same table. The results of the 42 simulation-runs confirm that 
the MFSC model is structurally correct.         
 

Table 6.9 Verification criteria for simulation of the MFSC  
 

Simulink 
verification 

blocks 

According to the supply chain 
manufacturing capacity 

(Table 6.3) 
Runs 

According to the frequency 
of occurrence of risks 

(Table 5.10) 
Runs 

Assertion Verify that the throughput is not 
zero in any period. 12 

Verify that none of the risk 
events in the simulation 
horizon is not zero. 

9 

Dynamic range Check that the throughput falls 
inside the specified shift ranges. 12 n.d. 0 

Static upper 
bound n.d. 0 

Check that the frequency of 
each type of risk is equal or 
less than the specified 
upper bound in the 
simulation horizon. 

9 

n.d.: not defined 
 
6.6.2 Validation of the simulation model 
 
The purpose of the validation process is to confirm that the output data of the simulation 
model adequately characterizes the data obtained from the real-world system (MFSC); in other 
words, simulation output data must be within a “satisfactory range of accuracy” (Sargent, 2013, 
p.12). The foregoing implies making use of classical statistical tests such as F, Kolmogorov-
Smirnov, t, Mann-Whitney, Schruben-Turing, χ2 , among the most used, for examining the 
similarity between the two sets of data (Smith et al., 1996) (Sandikci & Sabuncuoglu, 2006). Yet 

Assertion 
Dynamic 

range 
Static  

upper bound 
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the problem with this approach is that output data from both simulation models and real-world 
systems are characteristically non-stationary and highly auto-correlated, which limits the 
application of such statistical tests (Smith et al., 1996; Sandikci & Sabuncuoglu, 2006). Thus, 
instead of removing the non-stationarity and autocorrelation patterns from both data sets, the 
validation of the simulation model for this research was assessed through the correlated inspection 
approach (CIA) proposed by Law and Kelton (1991).  

 
This validation procedure has been used widely in the literature of several disciplines to evaluate 
the validity of the output data of simulation models with respect to real-world systems, e.g. 
(Graham et al., 2006; Sivakumar & Chong, 2001; Chen & Wang, 2016). Figure 6.4 describes the 
CIA used in this research. As shown in the figure below, the simulation model is constructed on 
the basis of the same input data from the real-world SC, which allows comparing both output 
data under equivalent circumstances or replicative validity (Troitzsch, 2017) 
 

Figure 6.4 Correlated inspection approach (CIA) for validation of the simulation model 
 
 

 
 
 
 
 
 
The ‘number of rations per year delivered to the troops’ is the output variable chosen for 
validating the simulation model for the MFSC. This variable is an appropriate indicator to 
measure the overall performance of the MFSC. Thus, the CIA consists of comparing the actual 
quantity of rations delivered to the troops during one year (Pt) with its equivalent result in the 
simulation model (ECS = 1). The records of Pt describe the historical performance of the MFSC 
over the last eight years (P1…P8), while each value of ECS is the average of three simulation 
runs, each one with a different seed. With the values of the two parameters, the percentage 
change of Pt with respect to ECS for each case is estimated (%Δ). The analysis is then 
complemented with the calculation of the RMSE on the square difference between Pt and ECS. 
All the above is detailed in Table 6.10.  
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Table 6.10 Comparison of the quantity of rations per year actually delivered to military 
personnel (observed data Pt vs. simulated data ECS)    

 
Quantity of rations 
delivered to military 

personnel 

Year 
RMSE 

1 2 3 4 5 6 7 8 

Pt 711,808 901,131 806,454 719,344 731,016 629,429 707,203 728,878 

87,918 
ECS = 1 725,021 773,675 735,389 771,434 888,776 712,315 732,883 801,239 
Pt - ECS -13,213 127,456 71,065 -52,090 -157,760 -82,886 -25,680 -72,361 

%Δ -1.86% 14.14% 8.81% -7.24% -21.58% -13.17% -3.63% -9.93% 
 

 
Figure 6.5 Percentage change of Pt with respect to ECS (%Δ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The values of %Δ in Table 6.10 are plotted in Figure 6.5 for greater clarity. With respect to this 
figure, the main observation is that the differences between the two variables are within the 
range of values found in the simulation of similar logistics systems (Merkuryev et al., 2009), 
though in some cases these differences appear to be high, e.g. year 5 in Figure 6.5. This is due to 
the fact that the simulation model does not capture all aspects involved in Pt, such as decisions 
of discretionary nature on variations in the production rate or trend and/or seasonality of the 
demand function. The modelling assumptions described in Section 5.5 of this thesis also 
contribute to have in some cases a larger %Δ. In addition to applying the CIA to the data, 
knowledgeable engineers of the MFSC reviewed the simulated data by using an approximation 
of the Turing test (Turing, 1950) and obtained equally satisfactory results.  
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6.7 Design of the Simulation Experiment 
 
The design of simulation experiment (DSE) is based on three main scenarios: (1) increases in 
the frequency of occurrence of the three categories of risk, (2) increases in the levels of on-hand 
inventory buffers, and (3) increases in the levels of short-term manufacturing capacity. The 
simulation of these three scenarios provides the output data needed to calculate the measure of 
resilience (ReT) for the nine hypotheses obtained in Chapter 3. The flexibility of the simulation 
tool allows configuration of parameters of the MFSC as well as a switching of each category of 
risk to on/off as required. The three scenarios of simulation are explained below.  
 
6.7.1 Notation 
 
This section details the notation adopted throughout the DSE and subsequent sections: 
 
Indices  
j  Job order j-th of combat ration packs in the simulation horizon, j = 1…6,000 
k  Number of operation, k = 1… 13 
t  Number of hours in the simulation horizon, t = 1…161,280 
c   Category of risk, c = 1…3 
r  Type of risk, r = 1…4 
i Number of runs in the simulation experiment, i = 1…102 
λ Assembly rate of rations per hour, λ = 320.5 rations/hour 
cntr#  Supplier contract, cntr# = cntr1…cntr12 
rm#  Raw material, rm# = rm1…rm12 
 
Parameters 

 

WIP Work-in-progress inventory (sub-assemblies) 
MFSC Supply chain of military food 
SCRes Supply chain resilience 
MP Military personnel (end-users) of the MFSC 
Opk, j  Operation k-th of order j-th in the MFSC 
PTOp  Processing time of operation k-th 
ROPOp  Re-order point of operation k-th 
Q  Quantity of contracts/raw material/WIP/rations in the MFSC 
TCS  Theoretical capacity of assembly line in units of t or rations according to the number 

of work shifts S 
ECS  Effective capacity of assembly line in units of t or rations according to the number of 

work shifts S 
Pt Historical data of the number of rations per year delivered to the troops 
Rcr  Type of risk r of category c during CTj 
R1r  Operational risks, r = 1…4 
R2r  Natural disasters and intentional attacks, r = 1…4 
R3  Black-swan events 
R0

cr  Time detection of risk Rcr 
Rf

cr  Final time of impact of risk Rcr 
Rf

cr − R0
cr  Period of impact of risk Rcr 
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Ιt,S  On-hand inventory buffers of raw material/rations for a period t and work shifts S 
S  Number of shifts, S = 1…3 
Cf0 Current configuration of the MFSC with 1 work shift (S = 1), no stocks in operations 

3, 5 and 9 (Ιt,1 = 0), and some Rcr category enabled 
Cfi  Configuration i of the MFSC with respect to Ιt,S, S, or any external operating condition 

related to the frequency of occurrence of Rcr 
Ω Set of risks Rcr in the simulation horizon, Ω = {R11, R12…Rcr} 
Dt  Demand for rations in period t 
OPTj  Order placement time of order j-th 
OATj  Order arrival time of order j-th 
CTj  Supply chain cycle-time of order j-th 
LTj  Supply chain lead-time (fixed) of order j-th 
Remax  Maximum resilience weighting factor 
Re  Mean resilience weighting factor 

Remin Minimum resilience weighting factor 
 
Variables 

 

APj  Autotomy period of order j-th 
DPj  Disruption period of order j-th 
RPj  Recovery period of order j-th 
DPj  − RPj  Non-recovery period of order j-th 
N-DPj  Non-disruption period of order j-th 
Bt  Backorders in period t 
Ut  Number of lost or unattended orders j in period t 
FRt Fill rate or percentage of orders j that are not backordered (Bt) and/or unattended (Ut) 

from the stock in the supply battalion in period t  
ReT Measure of SCRes over time for the order j-th 
 
 
6.7.2 Scenario I:  Increasing the frequency of occurrence of the risk categories 
  
The DSE for the first scenario consists of subjecting MFSC to a higher frequency of occurrence 
of the three categories of risk described in Tables 6.6, 6.7, and 6.8, respectively. The output data 
obtained are the input to calculate the four sub-indicators (APj, RPj, DPj−RPj, and N-DPj) that 
make up the measure of resilience (ReT) introduced in Chapter 5, and for testing the set of 
hypotheses 1 (H1a, H1b, and H1c). Set of hypotheses 1 indicates in general that ‘increases in the 
frequency of occurrence of risks (R1r, R2r, and R3) are negatively related to the measure of 
SCRes.’ To provide output data needed for testing these hypotheses, Table 6.11 consolidates 
the frequency of risks per year/simulation run built up from Tables 6.6, 6.7, and 6.8. For 
example, ‘quality problems’ (R14) is the most frequent risk—442,368 events in 20 years, and 
‘black-swan events’ (R3), the least frequent—1 event every 20 years. 

 
 
 
 



 104 

Table 6.11 Frequency of occurrence of the three categories risk (‘current level of risk’) 
 

Type of risk Unit of measure Events 
per year 

Estimated events in 
a simulation run* 

R11 Breakdowns 48 960 
R12 Delayed contracts 2 1/6 44 
R13 Delayed deliveries 58 1,152 
R14 Defective products 22,153 443,059 
R21 Natural disasters 1/2 10 
R22 Attacks 2 40 
R23 Attacks 1 20 
R24 Contingent orders 12 240 
R3 Destructive attacks 1/20 1 

         *Up to 20 years or 161,280 hours 
 
The levels described in Table 6.11 represent ‘the current level of risk’ that MFSC faces. The 
internal parameters of the MFSC, including inventory and capacity, were kept fixed at a 
constant level—ceteris paribus condition—during the time of simulation (up to 20 years or 
161,280 hours), with S = 1 and It,1 = 0. Table 6.12 summarizes the factor coding for the three 
categories of risk considered (Rcr), in which the column with the symbol ‘−’ ‘represents the 
current level of risk that the MFSC faces, and the column with the symbol ‘+’, a higher level of 
risk.       

Table 6.12 Factor coding for Rcr 

 
Notation − (current risk level) + (increased risk level) 

R11 U(a: 1, b: 168) U(a: 1, b: 42) 
R12 B(n, p: 1/11) B(n, p: 4/11) 
R13 B(n, p: 1/10) B(n, p: 4/10) 
R14 B(n, p: 3/100) B(n, p: 8/100) 
R21 U(a: 1, b: 16,128) U(a: 1, b: 4,032) 
R22 U(a: 1, b: 4,032) U(a: 1, b: 1,344) 
R23 U(a: 1, b: 8,064) U(a: 1, b: 1,344) 
R24 U(a: 1, b: 672) U(a: 1, b: 336) 
R3 U(a: 1, b: 161,280) U(a: 1, b: 80,640) 

 
Tables 6.13, 6.14 and 6.15 are derived from Table 6.12. Thus, Tables 6.13 and 6.14 describe the 
design of the matrix for R1r and R2r, respectively. In these two cases, a full factor design is used 
with ten different configurations (Cfi). Similarly, Table 6.15 describes the design of the matrix 
for R3, with two levels (−/+) and six replications per pattern, for a total of ten simulation runs. 
Each Cfi is run with a different seed. The simulation horizon for each Cfi in Tables 6.13 and 
6.14 is 10 years, while for the Cfi in Table 6.15 it is 20 years. 
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Table 6.13 Design matrix with increased levels of R1r (H1a) 
 

Cfi R11 R12 R13 R14  Cfi R11 R12 R13 R14 
Cf1 − − + +  Cf6 + + − + 
Cf2 − + − −  Cf7 + − − + 
Cf3 + − + +  Cf8 + − − − 
Cf4 + + + −  Cf9 − + + + 
Cf5 − − + −  Cf10 − + − + 

 
Table 6.14 Design matrix with increased levels of R2r (H1b) 

 
Cfi R21 R22 R23 R24  Cfi R21 R22 R23 R24 
Cf11 + − + +  Cf16 − + − − 
Cf12 + − − −  Cf17 − + + − 
Cf13 + + − +  Cf18 − − + − 
Cf14 + + + −  Cf19 − + − + 
Cf15 − − + +  Cf20 + + + + 

 
Table 6.15 Design matrix with increased levels of R3 (H1c) 

 
Cfi R3  Cfi R3 
Cf21 −  Cf26 − 
Cf22 +  Cf27 − 
Cf23 +  Cf28 − 
Cf24 +  Cf29 + 
Cf25 +  Cf30 − 

 
6.7.3 Scenario II: Increasing the levels of on-hand inventory buffers 
 
Starting from configurations described in Tables 6.13, 6.14, and 6.15, the DSE for the second 
scenario consists of elevating the levels of on-hand inventory buffers of the MFSC (It,S) at three 
specific points along the chain (Op3, j, Op5, j, and Op9, j). The choice of operations 3, 5 and 9 is 
because they are in practice critical storage points of raw material/finished products. The output 
data obtained are the input to calculate ReT and to test the second set of hypotheses (H2a, H2b, 
and H2c), which in general indicate that ‘increases in the levels of on-hand inventory buffers (It,S) 
moderate the relationship between risks and the level of SCRes.’ For this purpose, Table 6.16 
describes the five different levels of on-hand inventory evaluated (I168,1, I336,1, I504,1, I672,1, and 
I1344,1) at the three operations mentioned (Op3, j, Op5, j, and Op9, j).      
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Table 6.16 On-hand inventory buffers (It,S) held at critical points of the MFSC (Op3, j, Op5, j, and 
Op9, j) 

 
Opk,j Type of I I168,1  I336,1  I504,1  I672,1  I1344,1 
Op3, j rm1 …rm12 15,360  30,720  46,080  61,440  122,880 
Op5, j rm1 …rm12 15,360  30,720  46,080  61,440  122,880 
Op9, j rations 15,750  31,500  47,250  63,000  126,000 

 
The level of It,S associated with each Cfi described in Tables 6.17, 6.18 and 6.19 represents the 
on-hand inventory buffers of raw material/rations for t = 168, 336, 504, 672, or 1,344 hours; 
and S = 1 work shift, with I168,1 < I336,1 < I504,1 < I672,1 << I1344,1. That is, the level of It,S is 
randomly increased from I168,1 to I1344,1, and the number of work shifts S is kept fixed at the 
current level (It,1). This design is replicated two times for each It,S, for a total of 30 SC-
configurations (from Cf31 to Cf60) for each one of the three categories of risk (R1r, R2r, and R3). 
Due to the nature of each category of risk considered, the simulation horizon for each Cfi in 
Tables 6.17 and 6.18 is 10 years, while for the Cfi in Table 6.15 it is 20 years.        

 
Table 6.17 Design matrix with on-hand inventory buffers (It,S) and levels of R1r increased (H2a) 

 
Cfi It,S  Cfi It,S 
Cf31 I504,1  Cf36 I1344,1 
Cf32 I336,1  Cf37 I672,1 
Cf33 I168,1  Cf38 I672,1 
Cf34 I1344,1  Cf39 I168,1 
Cf35 I336,1  Cf40 I504,1 

 
 

Table 6.18 Design matrix with on-hand inventory buffers (It,S) and levels of R2r increased (H2b) 
 

Cfi It,S  Cfi It,S 
Cf41 I1344,1  Cf46 I1344,1 
Cf42 I336,1  Cf47 I168,1 
Cf43 I504,1  Cf48 I336,1 
Cf44 I168,1  Cf49 I672,1 
Cf45 I504,1  Cf50 I672,1 
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Table 6.19 Design matrix with on-hand inventory buffers (It,S ) and levels of R3 increased (H2c) 
 

Cfi It,S  Cfi It,S 
Cf51 I672,1  Cf56 I504,1 
Cf52 I1344,1  Cf57 I336,1 
Cf53 I672,1  Cf58 I336,1 
Cf54 I1344,1  Cf59 I168,1 
Cf55 I504,1  Cf60 I168,1 

 
This second scenario of simulation assumes that the MFSC starts with inventory buffers (raw 
material or rations) at positions Op3, Op5, and Op9, as described in Table 6.16. These 
operations can be impacted by R21 in the case of Op3; R11, R21 and R3 in the case of Op5; and, 
R21 and R3 in the case of Op9 (see Figure 6.2). Thus, independently of the occurrence of the 
above risks, every t = 168, 336, 504, 672, or 1,344 hours, and the level of It,S is replenished in 
the quantities of raw material and rations indicated in Table 6.16. In general, the policy 
described for this second scenario of simulation fits the practices implemented by some armies 
after World War II as a vehicle for risk management and is known as strategic inventory reserves 
(NRC, 2008). In this regard, Sheffi (2001), and Chopra and Sodhi (2004) have suggested its use 
as alternative to buffer severe disruptions when holding cost and risk of obsolescence are low. 
More recently, Son and Orchard (2013) tested its cost-effectiveness ratio in mitigating SC-
disruptions. 
  
6.7.4 Scenario III: Increasing the levels of short-term manufacturing capacity 
 
Similarly to the previous case, starting from configurations described in Tables 6.13, 6.14, and 
6.15, the DSE for the third scenario consists of elevating the levels of short-term manufacturing 
capacity of the MFSC (S). The output data obtained are the input to calculate ReT and to test 
the third set of hypotheses (H3a, H3b, and H3c), which in general indicate that ‘increases in the 
level of short-term manufacturing capacity moderate the relationship between risks and the level 
of SCRes.’ To this end, Table 6.19 describes the three configurations of the MFSC according to 
the number of work shifts activated per day, i.e. S = 1, 2, or 3. The differences between 
configurations relate to the quantities of raw material sent from WDC (Op3, j) to AL (Op5, j). 
Hence, with two work shifts activated, the quantity of raw material sent from Op3, j to Op5, j is 
double (31,000 units of each rm) that of operating with one work shift activated (S = 1), and 
triple (47,000 units for each rm) that of operating with three work shifts activated (S = 3). In 
addition, when MFSC operates full capacity (S = 3), the lot size of combat rations sent from AL 
(Op7, j) to SB (Op9, j) increases up to 7,000 rations/shipment. In the three mentioned 
configurations (S = 1, 2, and 3), zero inventory stock is held at critical storage points (Op3, j, 
Op5, j, and Op9, j), in order to isolate the effect of adding more manufacturing capacity to the 
MFSC. 

 
 
 



 108 

Table 6.20 Short-term manufacturing capacity (S) of the MFSC  
 

Opk,j PT 
S = 1  S = 2  S = 3 

Q ROP  Q ROP  Q ROP 

Op1, j 672 12 contracts 4,032  12 contracts 4,032  12 contracts 4,032 

Op2, j 24 190,000 units of each rm 672  190,000 units of each rm 672  190,000 units of each rm 672 
Op3, j 24 15,500 units of each rm 168  31,000 units of each rm 168  47,000 units of each rm 168 
Op4, j 24 15,500 units of each rm 168  31,000 units of each rm 168  47,000 units of each rm 168 

Op5, j 0 1 pre-assembly 0  1 pre-assembly 0  1 pre-assembly 0 

Op6, j 0 1 pre-assembly 0  1 pre-assembly 0  1 pre-assembly 0 

Op7, j 0 5,000 rations 48  5,000 rations 24  7,000 rations 24 

Op8, j 24 5,000 rations 48  5,000 rations 24  7,000 rations 24 

Op9, j 24 2,000 to 2,500 rations 24  2,000 to 2,500 rations 24  2,000 to 2,500 rations 24 

Op10, j 24 2,000 to 2,500 rations 24  2,000 to 2.500 rations 24  2,000 to 2,500 rations 24 

Op11, j 0 2,000 to 2,500 rations 24  2,000 to 2,500 rations 24  2,000 to 2,500 rations 24 

Op12, j 24 2,000 to 2,500 rations 24  2,000 to 2,500 rations 24  2,000 to 2,500 rations 24 

 
The number of S associated with each Cfi described in Tables 6.21, 6.22 and 6.23 represents the 
number of work shifts activated according to the needs of contracts, raw materials, WIP, and 
rations detailed in Table 6.20. The level of S is increased randomly from S = 1 to full capacity or 
S = 3. This design is replicated up to three times for each S, for a total of 30 configurations 
(from Cf61 to Cf90) for each one of the three categories of risk (R1r, R2r, and R3). Due to the 
nature of the categories of risk considered, the simulation horizon for each Cfi in Tables 6.21 
and 6.22 is 10 years, while for the Cfi in Table 6.23 it is 20 years.        
 
Table 6.21 Design matrix with short-term manufacturing capacity (S) and levels of R1r increased 

(H3a) 
 

Cfi S  Cfi S 
Cf61 2  Cf66 2 
Cf62 1  Cf67 1 
Cf63 3  Cf68 2 
Cf64 3  Cf69 3 
Cf65 1  Cf70 3 
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Table 6.22 Design matrix with short-term manufacturing capacity (S) and levels of R2r increased 
(H3b) 

 
Cfi S  Cfi S 
Cf71 1  Cf76 3 
Cf72 3  Cf77 2 
Cf73 2  Cf78 1 
Cf74 3  Cf79 2 
Cf75 2  Cf80 1 

 
Table 6.23 Design matrix with short-term manufacturing capacity (S) and levels of R3 increased 

(H3c) 
 

Cfi S  Cfi S 
Cf81 1  Cf86 3 
Cf82 3  Cf87 2 
Cf83 2  Cf88 1 
Cf84 3  Cf89 2 
Cf85 2  Cf90 1 

 
6.7.5 Evaluation of the efficiency of the simulation experiment design 
 
As important as the experimental design itself, is the evaluation of its level of efficiency. For this 
purpose, three optimality criteria were applied to the nine design matrices described in Tables 
6.13 to 6.15, Tables 6.17 to 6.19, and Tables 6.21 to 6.23, respectively: (1) D-efficiency, (2) G-
efficiency, and (3) A-efficiency. 
  

Table 6.24 Evaluation of the efficiency of the simulation experiment   
 

Testing design matrix  
for hypothesis 

Table 
# 

Execution 
order D-criteria G-criteria A-criteria 

H1a 6.14 Random 95.72 91.28 92.59 
H1b 6.15 Random 95.72 91.28 92.59 
H1c 6.16 Random 95.72 91.28 92.59 
H2a 6.18 Random 95.72 91.28 92.59 
H2b 6.19 Random 95.72 91.28 92.59 
H2c 6.20 Random 95.72 91.28 92.59 
H3c 6.22 Random 95.72 91.28 92.59 
H3b 6.23 Random 95.72 91.28 92.59 
H3c 6.24 Random 95.72 91.28 92.59 
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The calculations for the three optimality criteria are shown in Table 6.24 and were made based 
on Equations 6.1, 6.2, and 6.3, respectively: 
 

D-efficiency = 100 !
! Χ

'Χ
1
p ,                                                                                           (6.1)  

 
where Χ is the model matrix, n is the number of simulation runs, and p is the number of terms; 
 
G-efficiency = 100p nVar y|x max,                                                                                       (6.2) 
 
where nVar y|x max is the maximum relative prediction variance over the design region, and 
 

A-efficiency = 100p nTrace Χ'Χ -1
,                                                                                     (6.3) 

 

where Trace Χ'Χ
-1

is the sum of the squares of the entries in Χ. 
 
Three key inferences can be made from the results described in Table 6.24: (1) the volume of 
the joint confidence region for the vector of regression coefficients was minimised, (2) the 
maximum prediction variance over the design region was minimised, and (3) the sum of the 
variances of the regression coefficients were minimised (Pukelsheim, 2006). In a nutshell, the 
results of the three-optimality criteria point to high efficiency in the experimental design for 
simulating the MFSC.  
 
6.8 Simulation Output Data 
 
6.8.1 Simulation run length 
 
Several heuristic procedures have been proposed to ascertain the run length of a non-
terminating simulation model (Chen & Kelton, 2003; Chen, 2016; Srikant & Whitt, 1995). The 
key to solving this problem is to find an appropriate balance between the accuracy of simulation 
output data and the amount of time available for making the simulation runs (Cheng, 2007). 
Accordingly, the execution time for the simulation model is determined via application of the 
multiple of the number of events’ criterion (El-Haik & Al-Aomar, 2006; Garg & Wang, 1990). These 
authors suggested that the simulation run length is a function of the frequency and duration of 
the events considered within the analysis, especially those considered as ‘the rarest events’. This 
definition leads us to black-swan events, the most uncertain category of risk of all considered in 
this research, and the one with the lowest frequency of occurrence. As was established in Table 
6.11, ‘one black-swan event occurs every 20 years’.  
 
In this regard, El-Haik and Al-Aomar (2006) suggested that each type of event must be repeated 
at least five times per run, which would require consideration of a simulation run length of 100 
years for analysing a black-swan event scenario. This period would be too long for evaluating 
the MFSC, especially if the model assumptions explained in Section 6.5 were taken into account. 
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Moreover, a 100-years simulation horizon would require a time period of 15.85 hours to run a 
single simulation, making the execution of the whole simulation model impractical. Thus, taking 
into consideration all of the above arguments, it makes sense to set the simulation run length at 
20 years or 161,280 hours.  
            
6.8.2 Warm-up period for the simulation model 
 
For a non-terminating simulation with steady-state parameters as the present, the output data of 
the simulation model must converge to a steady-state mean before they can be analysed.  This is in 
order to avoid erroneous inferences about the phenomenon studied. The above problem is 
known in the literature on simulation as an “initial transient period”, “start-up period” or 
“warm-up period” (Lavenberg, 1981; Sandikci & Sabuncuoglu, 2006). In the specific case of the 
MFSC, the analysis of the problem of a warm-up period means that the simulation output data 
must be eliminated at the beginning of the simulation. This period is equivalent to the time 
elapsed before an order of size Q = 5,000 rations reach the supply battalion or Op9, as shown in 
Figure 6.2. Due to the configuration of the MFSC, the availability of finished products at this 
point allows troops to be supplied within a pre-set lead-time of 48 hours.  
 
Thus, if the nature of SC-operations 1 to 9 were deterministic, the warm-up period would be 
equal to the sum of its processing times, i.e., 838.8 hours. However, as has been mentioned, the 
processing times may be affected by stochastic events (risks), which make directly estimating the 
warm-up period complex. Although several methods have been proposed in the literature for 
solving the warm-up period problem in non-terminating simulations, e.g. see (Robinson, 2007), 
they are imprecise and there is always a latent risk of loss of valuable simulation data. To avoid 
these shortcomings, the robustness of the simulation tool (Simulink®) is used to determine the 
warm-up period in each simulation run accurately. Thus, within the framework of the flow 
diagram that simulates the behaviour of the supply battalion (Op9), a Boolean flag is activated, i.e., it 
takes the value “true”, when the first arrival of an order Q = 5,000 rations is verified. It is from 
this moment on that the output data of the simulation model is collected. This procedure 
ensures that the simulation data comes from a phase when the MFSC has reached a steady state.    
 
6.8.3 Output data of the simulation model 
 
Output data of the simulation model needed for calculating the measure of resilience (ReT) and 
testing the research hypotheses are summarized in Table 6.25. The first column describes the 
configuration of the SC (Cfi) with i = 1…90. The second column refers to the number of j-th 
order of combat ration packs on the simulation horizon, with j = 1…6,000. The third column 
(OPTj) contains order-placement times for each order j. Similarly, the fourth column (OATj) 
contains order-arrival times for each order j. The fifth column (CTj) indicates the time cycle for 
each order j (OATj minus OPTj). The sixth column (LTj) contains SC lead-times (fixed) for each 
order j. The seventh column (Bt) describes backorders accumulated for each period t. Likewise, 
the eighth column (Ut) describes unattended orders accumulated for each period t. The ninth, 
tenth, and eleventh columns represent the criteria formulated in Chapter 5, i.e., the autotomy 
period (APj), the recovery period (RPj), and the disruption period (RPj), respectively, for each 
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order j. Lastly, the twelfth column (Rcr) describes the type of risk r associated with the category 
of uncertainty c for each operation Opk,j.  
 

Table 6.25 Simulation output data by supply chain configuration, Cfi = 1…90  
 

Cfi j OPTj OATj CTj LTj ∑Bt ∑Ut APj RPj DPj Rcr/Op 

Cf1…90 
1 OPT1 OAT1 CT1 LT1 ∑B1 ∑U1 AP1 RP1 DP1 

R12, none 
R13, none 

R21, none 
R22, none 

R11, R21, R3, 
none 

R11, R21, R3, 
none 

R14, R21, R3, 
none 

R22, none 
R21, R3, none 

R22, none 
R23, none 
R22, none 

R24, none 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

6,000 OPT6,000 OAT6,000 CT6,000 LT6,000 ∑B6,000 ∑U6,000 AP6,000 RP6,000 DP6,000 R24, none 
 
6.9 Simulation Output Data  
 
6.9.1 Simulation data matrix (SDM) 
 
The purpose of the simulation model developed in this chapter is to provide the necessary data 
for calculation of the four sub-indicators that make up the measure of resilience (ReT), as 
described in Figure 6.6. Each sub-indicator is calculated for each order j throughout a 
simulation horizon of up to 20 years. Hence, a total of ninety simulation runs were performed 
according to the experimental design proposed in Section 6.7 of this chapter. Each one of the 
ninety simulation runs describes a specific configuration of the MFSC (Cf1…90), as shown in the 
simulation data matrix (SDM) in Equation 6.4. In the SDM, each ReT(Cf1…90) is a numerical 
univariate time series describing the measure of SCRes for MFSC. By way of example, Figure 
6.7 shows the measure of SCRes for Cf1, Cf47, and Cf85 for j = 1…200 graphically. 
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Figure 6.6 Data flow in the simulation model for MFSC 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 6.7 Measure of SCRes for Cf1, Cf47, and Cf85 
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The first 10 simulation runs in Equation 6.4, or ReT(Cf1…10), configure data sample 1 (DS1) and 
underpin hypothesis 1a (H1a). Similarly, data sample 2 (DS2) is associated with hypothesis 1b 
(H1b), data sample 3 (DS3) with hypothesis 1c (H1c), data sample 4 (DS4) with hypothesis 2a 
(H2a), data sample 5 (DS5) with hypothesis 2b (H2b), data sample 6 (DS6) with hypothesis 2c 
(H2c), data sample 7 (DS7) with hypothesis 3a (H3a), data sample 8 (DS8) with hypothesis 3b 
(H3b), and data sample 9 (DS9) with hypothesis H3c (H3c). It is worth noting that DS1…3 in the 
SDM include, in addition to ReT(Cf1…30), the element Rcr or univariate time series denoting the 
frequency of occurrence of the three categories of risk. Lastly, the columns of the SDM 
represent the states ‘initial configuration of the MFSC (Cf0)’, ‘increased on-hand inventory 
buffers (Cf0 + It,S)’, and ‘increased short-term manufacturing capacity (Cf0 + S)’; the rows show 
the three categories of risk considered in this study (R1r, R2r, and R3).   

 

SDM =

                    Cf0              Cf0+It,S             Cf0+S

R1r  DS1 =
R!! , ReT Cf1

⋮
R!! , ReT Cf10

DS4 =
ReT Cf31

⋮
ReT Cf40

DS7 =
ReT Cf61

⋮
ReT Cf70

R2r  DS2 =
R!! , ReT Cf11

⋮
R!! , ReT Cf20

DS5 =
ReT Cf41

⋮
ReT Cf50

DS8 =
ReT Cf71

⋮
ReT Cf80

R3    DS3 =
R!, ReT Cf21

⋮
R!, ReT Cf30

DS6 =
ReT Cf51

⋮
ReT Cf60

DS9 =
ReT Cf81

⋮
ReT Cf90

                  (6.4) 

 
The DSs shown in Equation 6.4 share another common feature. To obtain the DS1 ... 3, 30 
different seeds were used, one for each ReT(Cf1 ... 30). These same seeds were ‘re-used’ to obtain 
DS4 ... 6 and DS7 ... 9. For example, the seed used for ReT(Cf7) is the same for ReT(Cf37) and 
ReT(Cf67). This commonality allows comparison of MFSC performance under identical 
conditions of risk, though using different configurations or parameters. This property of 
simulation-based models is key for ‘isolating the underlying cause’ that produces variations in 
the MFSC, particularly for testing the set of hypotheses H2 and H3 of this study. Law (2015) 
called this property of simulation models comparison of system configurations.    
 
6.9.2 Assessing normality of SDM   
 
Before performing subsequent statistical analysis, it is necessary to determine whether the main 
output variable of the simulation model, or ReT(Cfi), follows a normal distribution. As known, if 
statistical analyses are applied to data that do not fit the normality assumption, the results of the 
analysis may be biased (Kennedy & Bush, 1985). Therefore, three standard statistical criteria are 
applied to the first thirty ReT(Cfi) series contained in DS1…3 of SDM: (1) Histogram, (2) Q-Q plot, 
and, (3) Kolmogorov-Smirnov and Shapiro-Wilk tests. For the remaining data samples (DS4…9), it is 
plausible to assume monotonic results since each ReT(Cf31…90) series was run with the same 
seed per row, as explained in the previous section.  
 



 115 

By way of example, Figure 6.8 shows histogram and Q-Q plot for ReT(Cf1). One observes in 
Figure 6.8a that the data do not fit the theoretical quartile of a normal distribution. Similarly, in 
Figure 6.8b, if the series were normal, the quartiles observed would be similar to the kernel 
(straight line)—another indication that the data do not come from a normal distribution. Similar 
results were obtained for the remaining DSs. Hence, the Kolmogorov-Smirnov (KS) and 
Shapiro-Wilk (SW) tests were applied to confirm or deny this result. Thus, the null and 
alternative hypotheses can be posited as: 
 

H0: ‘Data follow a normal distribution’ 
  

Ha: ‘Data do not follow a normal distribution’ 
 

Table 6.26 Test of normality for ReT(Cf1) 
 

Kolmogorov-Smirnov* Shapiro-Wilk 
KS df p-value SW df p-value 

0.429 4,241 0.000 0.054 4,241 0.000 
                                        * Lilliefors significance correction 

 
 

Figure 6.8 Histogram and Normal Q-Q plot for ReT(Cf1) 
 

(a) (b) 

 
 

The results of both statistics tests are shown in Table 6.26. Thus, since the p-value for the 
observed KS = 0.429 and SW = 0.054 are both lower than 2.2×10-16 with 4,241 degrees of 
freedom (df) and a level of significance α = 0.01, therefore H0 can be rejected with 99% 
confidence, i.e., ReT(Cf1) do not follow a normal distribution. The same analysis is replied to the 
remaining 29 univariate time series, as shown is Table 6.27. In all cases, results are equivalent to 
ReT(Cf1); namely, ReT(Cf2…30) do not follow a normal distribution. The blank spaces in 
ReT(Cf21…30) for the SW-test cannot be calculated because the data series are saturated and there 
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are not enough degrees of freedom per error; in other words, the nature of the simulated risk 
(R3) produces relatively few impacts on SCRes compared to the total number of instances. 
However, the KS-test provides sufficient evidence itself to confirm that the data examined is 
non-normal. 
      

Table 6.27 Test of normality for ReT(Cf2…30) 
  

 Kolmogorov-Smirnov* Shapiro-Wilk 
 KS df p-value SW df p-value 

ReT(Cf2) 0.429 4,420 0.000 0.045 4,420 0.000 
ReT(Cf3) 0.439 2,151 0.000 0.057 2,151 0.000 
ReT(Cf4) 0.410 2,186 0.000 0.051 2,186 0.000 
ReT(Cf5) 0.436 2,279 0.000 0.051 2,279 0.000 
ReT(Cf6) 0.432 2,061 0.000 0.045 2,061 0.000 
ReT(Cf7) 0.427 2,115 0.000 0.056 2,115 0.000 
ReT(Cf8) 0.456 2,278 0.000 0.053 2,278 0.000 
ReT(Cf9) 0.367 2,061 0.000 0.110 2,061 0.000 
ReT(Cf10) 0.433 2,061 0.000 0.046 2,061 0.000 
ReT(Cf11) 0.438 2,165 0.000 0.531 2,165 0.000 
ReT(Cf12) 0.454 2,186 0.000 0.030 2,186 0.000 
ReT(Cf13) 0.459 1,956 0.000 0.486 1,956 0.000 
ReT(Cf14) 0.410 2,186 0.000 0.051 2,186 0.000 
ReT(Cf15) 0.437 2,203 0.000 0.527 2,186 0.000 
ReT(Cf16) 0.417 2,218 0.000 0.550 2,218 0.000 
ReT(Cf17) 0.448 2,227 0.000 0.521 2,227 0.000 
ReT(Cf18) 0.410 2,277 0.000 0.599 2,277 0.000 
ReT(Cf19) 0.459 2,120 0.000 0.473 2,120 0.000 
ReT(Cf20) 0.474 2,168 0.000 0.051 2,168 0.000 
ReT(Cf21) 0.487 5,709 0.000 n.d. n.d. n.d. 
ReT(Cf22) 0.491 5,695 0.000 n.d. n.d. n.d. 
ReT(Cf23) 0.461 5,697 0.000 n.d. n.d. n.d. 
ReT(Cf24) 0.476 5,689 0.000 n.d. n.d. n.d. 
ReT(Cf25) 0.483 5,698 0.000 n.d. n.d. n.d. 
ReT(Cf26) 0.482 5,710 0.000 n.d. n.d. n.d. 
ReT(Cf27) 0.472 5,710 0.000 n.d. n.d. n.d. 
ReT(Cf28) 0.471 5,709 0.000 n.d. n.d. n.d. 
ReT(Cf29) 0.456 5,698 0.000 n.d. n.d. n.d. 
ReT(Cf30) 0.485 5,710 0.000 n.d. n.d. n.d. 

                                    * Lilliefors significance correction 
           n.d.: not defined 
  

6.10 Case Study Survey Research (CSSR) 
 
Compared to the previous works analysed in Section 2.2 or Topical Research and Gaps—which are 
mainly based on the use of a single methodology for gathering data—, the implications of the 
findings of this research have to a certain extent greater scientific validity, since the 
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methodological shortcomings attributed to discrete simulation models—discussed in Section 
4.2—are alleviated by the inclusion of a case study survey research or CSSR (Chmiliar, 2010). By 
virtue of the above, the present research can be catalogued as a mixed study, i.e. the combination 
of positivist and interpretative approaches (Johnson et al., 2007). Figure 6.9 describes the 
integration of both methodologies for the collection of data. 
 

Figure 6.9 Research design for the collection of data 
 
 
 
 
 
 
 
 
 
 
6.10.1 Purpose of the CSSR   
 
Before proceeding further, it is convenient to clarify the specific role that the CSSR plays in this 
research. The CSSR herein applied is an open-ended questionnaire of eleven questions via 
paper-and-pencil, administered only to the staff of MFSC under study in a single session, to 
examine their individual beliefs or preferences regarding ‘what is the most effective way to 
prevent the occurrence of disruptions into the MFSC.’ Thereby, CSSR is intended to be used as 
a supplement to the output data of simulation model by adding a more realistic perspective, rather 
than to explain the relationships of the variables considered in the conceptual framework in 
Chapter 3. Information from the CSSR allows having a more holistic view of the research 
problem by directly contrasting the results of the simulation model with real data. In this sense, 
Chmiliar (2010) pointed out that although a CSSR can be used for describing how the answers 
respondents distribute and relate regarding the questionnaire-answer options, it cannot explain 
the cause-and-effect relationship among them.  
 
6.10.2 Validity, sample size, and administering of the CSSR   
 
Chmiliar (Ibid, 2010) underlined that the validity of a CSSR is contingent to the honesty degree 
and willingness to participate of respondents. For this reason, the validation process of the 
questionnaire consisted of two main parts. Firstly, the initial versions of the questionnaire were 
drafted and discussed with the CEO of the MFSC and his team of advisors. This process of 
internal validation of the questionnaire took no less than three weeks and was definite not only 
to ensure its suitability, but also to allow the selected staff members could answer it without fear 
of reprisal or prejudice. Secondly, from these meetings, several suggestions were incorporated 
and, as result, a first completed version of the questionnaire was sent to the Biomedical and 
Scientific Research Ethics Committee of the University of Warwick (BSREC) to be reviewed. 
The BSREC follows a strict protocol established for these cases. Thus, substantial queries about 

Collection of  
data

Real-world 
MFSC

Simulation 
model of  
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research

Empirical 
findings of  
the research



 118 

different aspects of the study and related documentation were raised by the BSREC. After this 
new round of queries and issues, a second completed version of the questionnaire was sent back 
to the BSREC. Counting from when the first questionnaire was designed, to fully approved by 
the BSREC (REGO-2017-1919) and administered to MFSC staff members, the whole process 
required a period of eight months.  
 
Regarding the size of the sample, the questionnaire was administered to a group of twelve 
people from a total of sixteen that make up the staff of the MFSC under study, which 
represents a very significant sample size close to 70% of the total population, though the 
selection of the respondents was the responsibility of the MFSC’s CEO. Lastly, it should be 
noted that the application of the questionnaire was preceded by the presentation of the scope 
and objectives of the research to the group of interest, and each of the eleven questions was 
carefully explained to avoid misinterpretations among respondents. 
 
6.10.3 Results of the CSSR 
 
The questionnaire in discussion is detailed in Annex C and consists of eleven questions in total, 
as is explained in Figure 6.10. The first two are contextual questions, and the remaining nine are 
questions related to the risk events considered in the simulation analysis. Within these 
‘hypothetical scenarios’, respondents were asked to indicate what alternative they would 
consider the most effective for preventing the occurrence of disruptions in the MFSC 
(vignette). The response options available were a choice between ‘to increase the on-hand 
inventory buffers along different locations of the MFSC’, or, alternatively, ‘to increase the 
number of working-shifts per day’.  
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Figure 6.10 Questionnary design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The use of hypothetical scenarios to elicit information about beliefs, intentions, or attitudes 
from participants regarding a particular phenomenon is part of what is called experimental vignette 
studies (Atzmüller & Steiner, 2010). Aguinis and Bradley (2014) argued in this sense that this 
experimental approach is appropriate for contrasting causal inferences derived from quantitative 
methods in which the researcher can manipulate and control independent variables. In this 
same sense, the reason of using this approach in the questionnaire was to measure in practice 
what the MFSC staff would do if they faced risk events as described in each question. Although 
the questions raised implicitly suggest a relation of causality between the implementation of the 
two practices mentioned (inventory and capacity) and a reduction of disruptions in the MFSC, 
they only serve to contrast the results of the simulation model in the terms mentioned. The 
results of the questionnaire are summarized in Table 6.28.   
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Table 6.28 Questionnaire data matrix (QDM) 
 

Inquiry of questionnaire 
(risk considered) 

B1 
(R11) 

B2 
(R12) 

B3 
(R13) 

B4 
(R14) 

C1 
(R21) 

C2 
(R22) 

C3 
(R23) 

C4 
(R24) 

D1 
(R3) 

Respondent It,S S It,S S It,S S It,S S It,S S It,S S It,S S It,S S It,S S 
1. Chief Executive Officer  � �   � �   � �  �  �   � 
2. Distribution Manager �  �  �  �  �  �  �  �  �  
3. Business Manager �   � �   � �  �  �   � �  
4. Operations Manager 1 �  �  �  �  �  �  �  �  �  
5. Operations Manager 2 �  �  �  �   �  �  �  �  � 
6. Senior Engineer 1  �  �  � �  �  �  �   � �  
7. Senior Engineer 2 �  �  �  �  �  �  �   � �  
8. Senior Engineer 3  �  �  �  �  � �  �  �   � 
9. Industrial Engineer 1  �  � �   � �  �  �   � �  
10. Industrial Engineer 2 �  �  �  �   � �  �   �  � 
11. Industrial Engineer 3 �  �  �  �   � �  �   � �  
12. Industrial Engineer 4 �  �  �   � �  �  �   � �  

Total answers 8 4 8 4 9 3 8 4 7 5 11 1 11 1 4 8 8 4 
% 67 33 67 33 75 25 67 33 58 42 92 8 92 8 33 67 67 33 

 
The results of the questionnaire data matrix (QDM) in Table 6.28 point to a clear preference—
with the single exception of question C4 for R24 or contingent orders—for the use of on-hand 
inventory buffers (It,S) instead of short-term manufacturing capacity (S). Of the total of 
respondents’ answers (108), 74 of them favour using on-hand inventory buffers (68.5%) over 
short-term manufacturing capacity (31.5%). This perspective about ‘what SC managers would 
do for preventing the occurrence of disruptions’ serves as a baseline for the output data of the 
simulation model, and will be discussed in detail in the following chapter.  
 
6.11 Summary of Chapter 6 
 
This chapter is the backbone of the research of this thesis. It provides the output data of the 
simulation model required to calculate the measure of resilience (ReT) and to test the three sets 
of research hypotheses, but also how ReT was calculated. To this end, by applying well-known 
procedures for non-terminal simulation, it described and developed a thorough simulation 
model for the supply chain of military food (MFSC) by using Simulink® tool by MATLAB. The 
development of the simulation model required an in-depth characterization of the MFSC 
subject of study, including the identification of raw materials used, the determination of 
effective and theoretical assembly capacity, the operations needed for the assembly of combat 
rations, and a description of patterns of demand. Second, it identified and characterized the 
three categories of risk that might affect the MFSC. Third, it specified the assumptions utilised 
for the simulation model of the MFSC, as well as mechanisms for its verification and validation. 
Fourth, it designed an efficient simulation experiment for three scenarios of simulation, one for 
each set of research hypotheses. Fifth, it described the output data of the simulation model. 
Sixth, it explained how ReT was calculated from output data of the simulation model (four sub-
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indicators). Graphical descriptions of ReT were also provided. Seventh, it detailed the 
relationship between the samples of data of the SDM and the research hypotheses. Eighth, it 
corroborated with several statistical tests the non-normality of ReT, which implies that non-
parametric tests should be conducted for further analyses. Lastly, it explained the protocol 
through which an open-ended questionnaire was administered to the staff of the MFSC. Finally, 
the consolidated results of the questionnaire were presented and analysed. In the following 
chapter, the output data from the simulation model will be used for testing the nine hypotheses 
of research, and outcomes from the questionnaire, to contrast the previous results.      
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Chapter 7. Discussion of Results of Simulation Model and 
Questionnaire  
 
7.1 Introduction 
 
This chapter is closely integrated with Chapter 3—Hypotheses Development and Conceptual 
Framework—and Chapter 6—Simulation Model Output Data and Questionnaire—of this study 
and comprises three main sections. The first section relates to the testing of the set of 
hypotheses 1 (H1) and includes the extraction of the rules of association between the categories 
of risk (Rcr) and the measure of SCRes (ReT), as well as the determination of causality between 
them. The second section relates to the testing whether ‘increases in on-hand inventory buffers 
(It,S) moderate the relationship between Rcr and ReT’ or the second set of hypotheses (H2). 
Lastly, the third section relates to the testing whether ‘increases in short-term manufacturing 
capacity (S) moderate the relationship between Rcr and ReT’’ or the third set of hypotheses (H2). 
The two previous sections are based on Mill’s method of concomitant variation, the conjoint 
application of the Kruskal-Wallis rank sum test and Wilcoxon rank sum test with continuity 
correction, and the Binomial distribution test. 
 
7.2 Examining the Direct Effect of Increases in the Frequency of Occurrence of 
Risks (Rc r) on the Measure of Resilience in Supply Chains (ReT): Hypotheses H1a, 
H1b, and H1c 
 
Section 7.2 sets up the link between risk and resilience, which was raised through the set of 
hypotheses 1 (H1abc) in Chapter 3. For this purpose, the first subsection establishes the degree of 
association between the three categories of risk considered in the analysis (Rcr) and the proposed 
resilience measure (ReT). The second subsection establishes the degree of causality between Rcr and 
ReT, based on the analysis of the previous subsection. 
 
7.2.1 Extracting rules of association between Rc r and ReT 
 
The set of hypotheses 1 (H1) raised in Chapter 3 of this research indicates in general that, 
‘ceteris paribus, increases in the frequency of occurrence of risks (Rcr) reduce the measure of 
resilience in supply chains (ReT).’ In this hypothetical relationship, Rcr represent the predictor 
variables, and ReT, the response variable, together configuring a frequent item set (Borgelt, 2012). 
Testing this relationship is necessary condition for examining the set of hypotheses H2 and H3 
since in the proposed simulation model the occurrence of risks is the only possible cause of 
disruptions in the MFSC under analysis. For this purpose, in Equation 6.4, the DS1...3 were 
examined independently. Thus, for example, the analysis of the element ‘R1r, ReT (Cf1)’ that 
belongs to DS1 is a tuple of 5 variables (columns) and 4,240 instances (rows). Four of these 
variables describe the frequency of occurrence of operational risks and their respective location 
in the MFSC (R11 in Op5, R11 in Op6, R12 in Op1, and R14 in Op7); the fifth variable describes 
the numerical value of ReT for Cf1. The remaining 29 elements that make up column 1 of the 
simulation data matrix are organized in tuples in an equivalent way. It is important to note that 
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by ‘frequency of occurrence of risk’ in this context is meant the probability distribution that 
governs the relation between the available information and the decision process (Heckman et 
al., 2015). 
 
The methodology selected to analyse such a volume of data is association rule mining or ARM 
(Agrawal et al., 1993; Agrawal et al., 1996). ARM is considered one of the most well-studied 
techniques in data mining (Witten et al., 2017), as well as an area of growing interest in LSCM 
given its demonstrated efficacy for the analysis of large datasets (Chen et al., 2005; Jain et al., 
2007; Vinodh et al., 2011). ARM is selected to capture relations of the form ‘when variable X 
adopts value x then variable Y adopts value y ’, symbolically ‘X = x ⇒Y = y’, with both X and 
Y being a frequent item set. The application of ARM requires three conditions: (1) X and Y 
must be non-empty sets, (2) any variable must appears at least once in X and Y, and (3) Y must 
be a categorical variable (van der Aalst, 2016). 
 
Thus, taking into consideration the mentioned conditions, two algorithms in language R (see 
Annexes D and E) were elaborated to be applied on DS1...3. The first algorithm was used to 
categorize Rcr and ReT, as shown in Equation 7.1; and the second algorithm, to extract the 
interesting association rules based on a ‘minimum support’ or minsup and a ‘minimum 
confidence’ or minconf. The application of this approach is a condition necessary ‘to prune’ the 
large number of association rules that are obtained by utilising a priori algorithms (Agrawal & 
Srikant, 1994; Tan et al., 2004). 
 

Rcr=
Rcr = 0 Non-occurrence
Rcr = 1 Occurrence
Rcr > 1 Frequent occurrence

           ReT=

0.0 ≤ ReT≤ 0.3 Low

0.3 < ReT≤ 0.5 Medium

0.5 < ReT≤ 1.0 High

                    (7.1) 

 
Thereby, considering the categorization proposed in Equation 7.1, ‘support’ and ‘confident’ 
measures are defined as  
 
supp(Rcr = ‘O’ ∨ ‘F’ ⇒ReT = ‘L’) = P(Rcr = ‘O’ ∨ ‘F’ ∪ ReT = ‘L’)                                          (7.2) 
conf(Rcr = ‘O’ ∨ ‘F’ ⇒ReT = ‘L’) = P(ReT = ‘L’|Rcr = ‘O’ ∨ ‘F’)                                              (7.3) 
 
The values selected for Equations 7.2 and 7.3 were a minsup ≥ 0.1 and a minconf ≥ 0.9. Minsup’s 
value represents the percentage of transactions from D1…3 that contains both ‘Rcr = O or F’ and 
‘ReT = L’; while minconf’s value is the conditional probability that a transaction from D1…3 that 
contains ‘Rcr = O or F’ also contains ‘ReT = L’. In this way, the result of applying the a-priori 
algorithm on D1…3 with the mentioned values of minsup and minconf allowed the extraction of 
755 association rules or strong rules (Lenca et al., 2008). Bearing in mind that the total number of 
risks occurring by operation in the MFSC is equal to 20, 755 strong rules still represent a large 
number of data to be analysed. Therefore, as Bayardo and colleagues (2000) suggested, the 755 
strong rules are filtered out by applying a criterion of redundancy. These authors pointed out 
that an association rule could be considered redundant if other association rules with the same 
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or a higher confidence value also exist. Applying this criterion to the above analysis, the rule ‘Rcr 
= O or F ⇒ReT = L’ is redundant if 
 
conf(R�

cr = ‘O’ ∨ ‘F’ ⇒ReT = ‘L’) ≥ conf(Rcr = ‘O’ ∨ ‘F’ ⇒ReT = ‘L’)                                       (7.4) 
 
The result of applying the criterion of redundancy described in Equation 7.4 considerably 
reduced the number of strong rules, from 755 to 79. Thereafter, the association rules of this 
sub-set with any Rcr = 0 (N) were discarded. Thereby, the final selection of association rules for 
DS1…3 and their measures of interestingness is shown in Table 7.1. 
 
Table 7.1 Interesting association rules of the form Rcr=‘O’ ∨ ‘F’=>ReT(Cfi)=‘L’ extracted from 

DS1…3 
 

# Cfi Association rules Supp Conf Lift* 
2 5 R11_2=F, R13=O=> ReT=L 0.11 1.00 2.98 
5 9 R11_2=F, R14=F=> ReT=L 0.23 0.98 2.60 
6 9 R11_1=F, R14=F=> ReT=L 0.24 0.98 2.60 
1 13 R22_4=O, R24=F=> ReT=L 0.11 1.00 2.36 
3 13 R22_1=O, R24=F=> ReT=L 0.13 1.00 2.37 
4 13 R22_3=O, R24=F=> ReT=L 0.14 1.00 2.37 
5 13 R24=F=>ReT=L=> ReT=L 0.27 0.98 2.33 
1 15 R23=O, R24=F=> ReT=L 0.11 1.00 2.52 
2 15 R22_2=O, R24=F=> ReT=L 0.12 0.99 2.51 
1 27 R3_2=O=> ReT=L 0.10 0.96 9.15 
2 27 R3_3=O=> ReT=L 0.10 0.96 9.15 
3 27 R3_4=O=> ReT=L 0.10 0.96 9.15 
4 27 R3_1=O=> ReT=L 0.10 0.96 9.15 

                                        *Lift = Supp/P(Rcr =‘O’ ∨ ‘F’)P(ReT=‘L’) 
 
7.2.2 Determining causality for interestingness rules of association between Rc r and ReT 
 
The confirmation of the set of hypotheses H1 is a condition necessary but not sufficient to 
prove the interaction effect of on-hand inventory buffers (set of hypotheses H2) and/or short-
term manufacturing capacity (set of hypotheses H3) that make up the conceptual framework of 
this research. Thus, once the set of thirteen interesting association rules described in Table 7.1 
have been mined from DS1 ... 3, the following step is to establish their relation of causality if any. 
In this regard, Houtsma and Swami (1995) pointed out that rules of association of the form ‘X 
= x  ⇒Y = y ’—as described in Table 7.1—do not imply a causal relationship per se. 
Accordingly, three criteria were applied: (1) Chi-squared test or χ2, (2) Phi-coefficient or φ, and 
(3) Causal rule based on odds-ratio (ω). 
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Chi-squared test χ2  and Phi coefficient φ  
 
Regarding the first two criteria, χ2 is used as a measure of the significance of the association 
between Rcr and ReT; and φ, as a measure of their degree of association (Fleiss et al., 2003). It is 
noteworthy that neither χ2  nor φ  are decisive statistical criteria of the purported causal 
relationship between Rcr and ReT, though a high level of significance or degree of association of 
these variables supports this proposition. Thus, based on Fleiss and colleagues (2003) and 
Álvarez (2003), the general form of the contingency table is described in Table 7.2, and the 
formulas for χ2 and φ are described in Equations 7.5 and 7.6, respectively: 

 
Table 7.2 The 2×2 contingency table for association rules of the form Rcr =‘O’ ∨ 

‘F’=>ReT(Cfi)=‘L’ 
 

Rcr = ‘O’ ∨ ‘F’ 
ReT(Cfi) = ‘L’ Total 1 0 

1 n11 n10 n1. 
0 n01 n00 n0. 

Total n.1 n.0 n.. 
 

χ2 =n.. lift− 1 2 supp ∗ conf
conf− supp (lift − conf)                                                                          (7.5) 

 
and 
 

φ =
χ2

n..
                                                                                                                                (7.6) 

 
With the above elements, null and alternative tests of hypothesis of the level of significance and 
degree of association for rules described in Table 7.1 are formulated as follows: 
 

H0: 
‘Rcr and ReT are not related/associated or they are 
independent variables of each other.’ 

  

Ha: 
‘Rcr and ReT are related/associated or they are 
dependent variables of each other.’ 

 
In this manner, as general rule, if the p-values of χ2 or φ obtained from Equation 7.5 or 7.6 are 
lower than a specific level of significance, the inference is made that Rcr and ReT are 
associated/related of each other; otherwise, the null hypothesis cannot be rejected. Fleiss and 
colleagues (2003) suggested that φ values above 0.35 point to a positive association of the 
variables considered. 
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Causal rule based on odds-ratio (ω) 
 
Regarding the third criterion, Li and colleagues (2013, 2015) proposed using the values of the 
contingency table to estimate the lower (ω!) and the upper (ω!) confidence intervals of the 
odds ratio for rules of association of the form ‘X = x ⇒Y = y ’, as is described in Table 7.2, and 
Equations 7.7, 7.8 and 7.9. The odds-ratio is defined as 
 

ω =
n11n00
n01n10

,                                                                                                                         (7.7) 
the lower confidence interval is defined as   
 

ω!= exp lnω − !' 1
n11

+ 1
n10

+ 1
n01

+ 1
n00

,                                                                   (7.8) 

 
and the upper confidence interval is defined as   
 

ω!= exp lnω + !' 1
n11
+
1
n10
+
1
n01
+
1
n00

,                                                                             (7.9) 

 
where !'  corresponds to the tabulated value of the standard Normal distribution chosen 
according to the desired confidence level for the critical region. Formally, the hypotheses testing 
can be written as: 
 

H0: ‘Rcr is not the cause of ReT’ 
  

Ha: ‘Rcr is the cause of ReT’ 
 
In this way, the rule of decision is given by ‘if ω! is higher than 1, the value of ω is significantly 
higher than 1, and therefore it can be inferred that Rcr is the cause of ReT, or, in other words, H0 
is rejected.’ 
 
Results of the statistical hypothesis tests 
 
Table 7.3 summarizes the interestingness measures for χ2, φ, and ω, as well as the values of 
contingency tables required to calculate the observed values of ω! and ω!. By way of example, 
from data in Table 7.3, the rule of association # 1 of the configuration 13—‘when risk R22 occurs 
at least one time or risk R24 occurs frequently, the level of ReT is low’—is examined through the Chi-
square test, the Phi-coefficient, and the Causal rule based on odds-ratio, respectively. Since the 
p-value for the observed value of χ2 = 329.53 obtained from Equation 7.5 and one degree of 
freedom (df = 1) is lower than a significance level of 2.2×10-16, there are sufficient arguments to 
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reject H0; thereby the inference is made that R22 or R24 and ReT are related/associated with each 
other. Equivalently, since the p-value for the observed value of φ  = 0.40 obtained from 
Equation 7.6 is higher than the chosen reference value (0.35), there are sufficient arguments to 
reject H0; thereby the inference is made that a positive association between R22 or R24 and ReT 

exists. Lastly, since the observed value for ω!= 52.72 obtained from Equation 7.8 is higher than 
1 and the value of ω = 377 is significantly higher than 1, there are sufficient arguments to reject 
H0; thereby the inference is made that increases in the frequency of R22 or R24 reduce the level 
of ReT. By and large, given that the observed values for χ2 = 329.53, φ = 0.40, and ω!= 52.72 
are the lowest ones for χ2, φ, and ω! in Table 7.3, and that larger values of χ2, φ, and ω! 
provide more convincing evidence to reject H0, the corresponding null hypotheses for the 
remaining twelve rules of association are also rejected.  
 
Table 7.3 Interestingness measures, contingency tables, and odds-ratio confidence intervals for 

interesting association rules* 
 

# Cfi Rcr=‘O’ ∨ ‘F’=>ReT(Cfi)=‘L’ 
Interestingness measures  Contingency tables Confidence intervals 

χ2 φ ω  n11 n10 n01 n00 ω! ω! 
2 5 R11_2=F, R13=O=>ReT=L 576.92 0.50 772.47  258 1 506 1,515 108.11 5,519.07 
5 9 R11_2=F, R14=F=>ReT=L 959.79 0.68 192.69  467 10 309 1,275 101.74 364.93 
6 9 R11_1=F, R14=F=>ReT=L 1014.55 0.70 196.25  488 11 288 1,274 106.51 361.58 
1 13 R22_4=O, R24=F=>ReT=L 329.53 0.40 377.00  206 1 618 1,131 52.72 2,695.77 
3 13 R22_1=O, R24=F=>ReT=L 401.02 0.45 504.44  254 1 570 1,132 70.59 3,604.26 
4 13 R22_3=O, R24=F=>ReT=L 426.68 0.47 551.21  270 1 554 1,131 77.15 3,937.76 
5 13 R24=F=>ReT=L 962.80 0.70 203.34  531 10 293 1,122 107.35 385.12 
1 15 R23=O, R24=F=>ReT=L 397.08 0.44 531.09  248 1 622 1,332 74.34 3,794.00 
2 15 R22_2=O, R24=F=>ReT=L 438.30 0.45 279.01  257 2 613 1,331 69.17 1,125.34 
1 27 R3_2=O=>ReT=L 5,444.25 0.98 116,978.00  598 26 1 5,086 15,844.98 863,608.04 
2 27 R3_3=O=>ReT=L 5,444.25 0.98 116,978.00  598 26 1 5,086 15,844.98 863,608.04 
3 27 R3_4=O=>ReT=L 5,444.25 0.98 116,978.00  598 26 1 5,086 15,844.98 863,608.04 
4 27 R3_1=O=>ReT=L 5,444.25 0.98 116,978.00  598 26 1 5,086 15,844.98 863,608.04 

        * Zero values in contingency tables were replaced by 1 to avoid infinite ω as Li et al (2015) indicated. 
 
The above results mostly confirm hypotheses H1a, H1b, and H1c. As derived from the rules of 
association shown in Table 7.1, not all types of risk initially considered as ‘potentially disruptive’ 
were included—e.g. see Tables 6.6a-b-c and 6.7a-b-c. For example, for the categories of risk R1r 
and R2r, increases in the frequency of occurrence of risk R12—‘delays in contracting with 
suppliers’—and R21—‘earthquakes, storms, floods, fires and power cuts’—turned out not to be 
associated with reductions in ReT. Although it cannot be ruled out that in the simulation model 
the occurrence of such types of risk do not disrupt the MFSC under study, the most plausible 
explanation for this ‘counter-intuitive’ result seems to be related to the use of ‘minsup-
minconf’s approach’ for the extraction of the ‘strong rules’. In this regard, it is known that 
during the process of pruning several interesting association rules may not be included (Brijs & 
Vanhoof, 2003), which inevitably leads to a loss of valuable information. Hence, despite this 
result, the sample of the thirteen causal association rules described in Table 7.1 still provides 
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sufficient basis for testing the sets of hypothesis H2 and H3, as described in the following 
section. 
 
7.3 Examining the Moderating Effect of On-Hand Inventory Buffers (It ,S) in the 
Relationship between the Frequency of Occurrence of Three Categories of Risks 
(Rc r) and the Measure of Resilience in Supply Chains (ReT): Hypotheses H2a, H2b, 
and H2c 
 
Testing of hypotheses H2a, H2b, and H2c is based on the comparison of levels of ReT(Cfi) in 
datasets DS4, DS5, and DS6 with respect to datasets DS1, DS2, and DS3, as is pointed out in 
Equation 6.4. The reasoning here employed is grounded on Mill’s method of concomitant variation or 
MCV (2012). In this respect, Mill stated “Whatever phenomenon varies in any manner 
whenever another phenomenon varies in some particular manner, is either a cause or an effect 
of that phenomenon, or is connected with it through some fact of causation.” (p.387). Mill’s 
ideas are the basis of mostly experimental and quasi-experimental designs for generalized causal 
inference (Shadish & Cook, 2002).  
 
Comparison of system configurations, a key property in simulation-based models, perfectly matches 
the above description of MCV since (1) the presumed cause of increases/decreases in the level 
of SCRes, i.e. inventory buffers or manufacturing capacity, is known and manipulable; (2) the 
consequent output in the simulation model can be objectively measured, i.e. ReT; and, (3) there 
is no other attributable cause apart from the two mentioned variables—inventory and 
capacity—that explain increases/decreases in the level of SCRes, bearing in mind that the 
simulation runs per row described in Equation 6.4 were performed using the same seed (see 
discussion in Sub-section 6.9.1). Therefore, by applying MCV to the scenarios described by the 
set of hypotheses 2, if statistical evidence is found indicating that increases in the levels of on-
hand inventory buffers elevate ReT, then it can be inferred that the first causes the second, or, in 
other words, on-hand inventory buffers moderate the relationship between risks and resilience. 
This same reasoning is also applied to examine the set of hypotheses 3 in Section 7.4.     

 
Due to the non-normality feature of the ReT(Cf1…90) time series discussed in Subsection 6.9.2, 
two analogous non-parametric methods were selected to obtain the aforesaid statistical 
evidence: (1) the Kruskal-Wallis rank sum test or KW (Kruskal & Wallis, 1952), and (2) the 
Wilcoxon rank sum test with continuity correction or W (Wilcoxon, 1945). The first test (KW) 
is the equivalent of an F test for one-way ANOVA and is used in this analysis to be sensitive to 
differences among means in the ReT(Cfi) time series, as long as both time series are random 
samples of their respective populations, independent of each other and mutually independent 
among ReT(Cfi), and their scale of measurement is expressed in ordinal terms. Similarly, the 
second test (W) is an unbiased and consistent yardstick equivalent to the two-sample t test, and 
is used in this analysis to determine if one of the two time series of ReT(Cfi) is lower than the 
other—one-sided test, as long as both time series are symmetric, independent of each other, 
and their scale of measurement is at least an interval. For the proposed analysis, it is reasonable 
to consider that the two time series ReT(Cfi) to be compared are random samples, exhibit 
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mutual statistical independence, and can be paired as “before” and “after” observations 
(Conover, 1999). Therefore, the hypotheses testing for the KW-test can be set up as follows:      
 

H0: 
‘Both ReT(Cfi) and ReT(Cfi+30) or ReT(Cfi) and ReT(Cfi+60) come from 
identical populations and their differences are due to randomness’ 

  

Ha: 
‘‘Either ReT(Cfi) and ReT(Cfi+30) or ReT(Cfi) and ReT(Cfi+60) come 
from different populations’ 

 
The null distribution for the KW-test is the Τ probability distribution as described in Equation 
7.10: 

 

Τ = 12
N N + 1

R!
!

n!
− 3 N + 1 ,                                                                                           (7.10) 

 
where N = n!

!
!!1  denotes the total number of observations in each ReT(Cfi), and R! represents 

the sum of the ranks assigned to the ! -th sample. However, due to the fact that the 
mathematical form of Equation 7.10 is too cumbersome to work with, Chi-square distribution 
(χ2) with k – 1 = 1 degree of freedom (df) is recommended as an approximation to null 
distribution Τ (Conover, 1999). Thus, the hypothesis testing for the W-test can be written as 
follows: 
 

H0: 
‘Both ReT(Cfi) and ReT(Cfi+30) or ReT(Cfi) and ReT(Cfi+60) come from 
identical populations and their differences are due to randomness’ 

  

Ha: 
‘Values of ReT(Cfi) are systematically lower than ReT(Cfi+30) or 
ReT(Cfi+60)’, 

 
with i = 1…30.  

    
The observed rank sum W of the W-test is given by the sum of the dominant rank where 
 

W = R! ,                                                                                                                                   (7.11) 
 
where the expressions 
 

µW = n1 N + 1
2

,                                                                                                                          (7.12) 
 
and 
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σW = n1n2 N + 1
12

,                                                                                                                  (7.13) 
 

are the mean and the standard deviation, with n1 and n2 the number of observations for ReT(Cfi) 
and ReT(Cfi+30) or ReT(Cfi) and ReT(Cfi+60), respectively. In the cases in which the sizes of n1 
and n2 increase, the null distribution for the WMW-test suggested is the Normal probability 
distribution (Z). The ! statistic by standardizing W is described in Equation 7.14: 

 

! = W − µW
σW

                                                                                                                                 (7.14) 
  
where ! is the quartile of the standard Normal random variable Z with P(Z ≤ !) = p and P(Z > 
!) = 1 − p.   
 
7.3.1 Testing hypothesis 2a (H2a): ‘Increases in It ,S moderate the relationship between 
R1r and ReT’ 
 
The results of all pairwise comparisons between ReT(Cf1…10) or DS1 and ReT(Cf31…40) or DS4 of 
using KW and W tests are summarized in Table 7.4. 

 
Table 7.4 Results of the application of Kruskal-Wallis and Wilcoxon rank sum tests for 

comparison of DS1 to DS4 
 

DS1 DS4 
Kruskal-Wallis Wilcoxon 

χ2 df p-value W	 p-value 
ReT(Cf1) ReT(Cf31) 5,655.600 1 0.000 518,580.000 0.000 
ReT(Cf2) ReT(Cf32) 5,597.800 1 0.000 895,530.000 0.000 
ReT(Cf3) ReT(Cf33) 2,890.100 1 0.000 124,580.000 0.000 
ReT(Cf4) ReT(Cf34) 2,775.000 1 0.000 215,900.000 0.000 
ReT(Cf5) ReT(Cf35) 2,772.500 1 0.000 259,000.000 0.000 
ReT(Cf6) ReT(Cf36) 2,771.000 1 0.000 114,130.000 0.000 
ReT(Cf7) ReT(Cf37) 2,864.900 1 0.000 112,280.000 0.000 
ReT(Cf8) ReT(Cf38) 2,943.600 1 0.000 187,020.000 0.000 
ReT(Cf9) ReT(Cf39) 2,817.400 1 0.000 97,736.000 0.000 
ReT(Cf10) ReT(Cf40) 2,806.500 1 0.000 101,370.000 0.000 

 
By way of example, from data shown in Table 7.4, the KW-test is used to compare whether 
time series ReT(Cf6) and ReT(Cf36) come from identical populations. Since the p-value for the 
observed χ2 = 2,771 and one degree of freedom (df = k – 1 = 1) is lower than 2.2×10-16 with a 
level of significance α = 0.01, there are sufficient arguments to reject H0; thereby the inference 
is made that the values of the time series ReT(Cf6) and ReT(Cf36) are statistically different from 
each other. By and large, given that the observed value of χ2 = 2,771 is the lowest one for χ2 in 



 132 

Table 7.4, and that larger values of χ2 provide more convincing evidence to reject H0, the 
corresponding null hypotheses for the remaining nine pairwise comparisons are also rejected.  
 
Similarly, from data shown in Table 7.4, the W-test is used to assess whether the time series 
ReT(Cf9) has systematically lower values than ReT(Cf39). Since the p-value for the observed rank 
sum W = 97736 and a level of significance α = 0.01 is lower than 2.2×10-16, there are sufficient 
arguments to reject H0; thereby the inference is made that the values of the time series ReT(Cf9) 
are systematically lower than the values of the time series ReT(Cf40). Overall, given that the 
observed rank sum W = 97,736 is the lowest one for W in Table 7.4, and that larger values of W 
provide more convincing evidence to reject H0; the corresponding null hypotheses for the 
remaining nine pairwise comparisons are also rejected. To sum up, the results of the KW and W 
tests indicate that the hypothesis H2a is statistically supported with 99% confidence. The 
statistics verification of H2a also confirms the presumption of the MFSC staff on its 
effectiveness as inhibitor of disruptions caused by operational risks (R1r). Indeed, as can be seen 
from Table 6.28 on this category, respondents’ answers widely favoured the use of inventory 
rather than capacity to prevent disruptions caused by risks R11—‘breakdowns in machines or 
workstations’—and R14—‘quality problems’ by a percentage of 67% to 33%, and for disruptions 
caused by risk R13—‘shortages of raw material and components’, by a percentage of 75% to 
25%. 
 
7.3.2 Testing hypothesis 2b (H2b): ‘Increases in It ,S moderate the relationship between 
R2r and ReT’ 
 
The results of all pairwise comparisons between ReT(Cf11…20) or DS2 and ReT(Cf41…50) or DS5 

using both the KW and W tests are summarized in Table 7.5. 
 

Table 7.5 Results of the application of Kruskal-Wallis and Wilcoxon rank sum tests for 
comparison of DS2 to DS5 

 

DS2 DS5 
Kruskal-Wallis Wilcoxon 

χ2 df p-value W	 p-value 
ReT(Cf11) ReT(Cf41) 419.690 1 0.000 1,501,300.000 0.000 
ReT(Cf12) ReT(Cf42) 1,886.900 1 0.000 595,550.000 0.000 
ReT(Cf13) ReT(Cf43) 1,274.800 1 0.000 657,310.000 0.000 
ReT(Cf14) ReT(Cf44) 129.860 1 0.000 1,889,700.000 0.000 
ReT(Cf15) ReT(Cf45) 520.420 1 0.000 1,464,100.000 0.000 
ReT(Cf16) ReT(Cf46) 1,447.800 1 0.000 842,810.000 0.000 
ReT(Cf17) ReT(Cf47) 250.360 1 0.000 1,800,900.000 0.000 
ReT(Cf18) ReT(Cf48) 549.880 1 0.000 1,553,100.000 0.000 
ReT(Cf19) ReT(Cf49) 1,127.400 1 0.000 910,590.000 0.000 
ReT(Cf20) ReT(Cf50) 297.600 1 0.000 1,639,200.000 0.000 

 
By way of example, from data shown in Table 7.5, the KW-test is used to compare whether 
time series ReT(Cf14) and ReT(Cf44) come from identical populations. Since the p-value for the 



 133 

observed χ2 = 129.86 and df = 1 is lower than 2.2×10-16 with a level of significance α = 0.01, 
there are sufficient arguments to reject H0; thereby the inference is made that the values of the 
time series ReT(Cf14) and ReT(Cf44) are statistically different from each other. By and large, given 
that the observed value of χ2 = 129.86 is the lowest one for χ2 in Table 7.5, and that larger 
values of χ2 provide more convincing evidence to reject H0, the corresponding null hypotheses 
for the remaining nine pairwise comparisons are also rejected.  
 
Similarly, from data shown in Table 7.5, the W-test is used to assess whether the time series 
ReT(Cf12) has systematically lower values than ReT(Cf42). Since the p-value for the observed rank 
sum W = 595,550 and a level of significance α = 0.01 is lower than 2.2×10-16, there are sufficient 
arguments to reject H0, thereby the inference is made that the values of the time series ReT(Cf12) 
are systematically lower than the values of the time series ReT(Cf42). By and large, given that the 
observed rank sum W = 595,550 is the lowest one for W in Table 7.5, and that larger values of 
W provide more convincing evidence to reject H0, the corresponding null hypotheses for the 
remaining nine pairwise comparisons are also rejected. 
 
To sum up, the results of the KW and W tests indicate that the hypothesis H2b is statistically 
supported with 99% confidence. However, the statistical verification of H2b only confirms the 
presumption of the MFSC staff on its effectiveness as inhibitor of disruptions in two of the 
three risks considered: R22 or ‘attacks on the lines-of-communication’ and R23 or ‘attacks on 
forward logistics-support units’ in percentages of 92% to 8% and 67% to 33%, respectively. 
 
7.3.3 Testing hypothesis 2c (H2c): ‘‘Increases in It ,S moderate the relationship between 
R3 and ReT’ 
 
The results of all pairwise comparisons between ReT(Cf21…30) or DS3 and ReT(Cf51…60) or DS6 of 
using both the KW and the W tests are summarized in Table 7.6. 
 

Table 7.6 Results of the application of Kruskal-Wallis and Wilcoxon rank sum tests for 
comparison of DS3 to DS6 

 

DS3 DS6 
Kruskal-Wallis Wilcoxon 
χ2 df p-value W	 p-value 

ReT(Cf21) ReT(Cf51) 394.270 1 0.000 15,151,000.000 0.000 
ReT(Cf22) ReT(Cf52) 749.380 1 0.000 14,107,000.000 0.000 
ReT(Cf23) ReT(Cf53) 725.430 1 0.000 14,224,000.000 0.000 
ReT(Cf24) ReT(Cf54) 777.810 1 0.000 14,041,000.000 0.000 
ReT(Cf25) ReT(Cf55) 744.310 1 0.000 14,199,000.000 0.000 
ReT(Cf26) ReT(Cf56) 251.160 1 0.000 15,563,000.000 0.000 
ReT(Cf27) ReT(Cf57) 389.250 1 0.000 15,190,000.000 0.000 
ReT(Cf28) ReT(Cf58) 355.970 1 0.000 15,284,000.000 0.000 
ReT(Cf29) ReT(Cf59) 677.880 1 0.000 14,368,000.000 0.000 
ReT(Cf30) ReT(Cf60) 375.980 1 0.000 15,246,000.000 0.000 
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By way of example, from data shown in Table 7.6, the KW-test is used to compare whether 
time series ReT(Cf26) and ReT(Cf56) come from identical populations. Since the p-value for the 
observed χ2 = 251.16 and df = 1 is lower than 2.2×10-16 with a level of significance α = 0.01, 
there are sufficient arguments to reject H0. Thereby the inference is made that the values of the 
time series ReT(Cf26) and ReT(Cf56) are statistically different from each other. By and large, given 
that the observed value of χ2 = 251.16 is the lowest one for χ2 in Table 7.6, and that larger 
values of χ2 provide more convincing evidence to reject H0, the corresponding null hypotheses 
for the remaining nine pairwise comparisons are also rejected.  
 
Similarly, from data shown in Table 7.6, the W test is used to assess whether the time series 
ReT(Cf24) has systematically lower values than ReT(Cf54). Since the p-value for the observed rank 
sum W = 14,041,000 and a level of significance α = 0.01 is lower than 2.2×10-16, there are 
sufficient arguments to reject H0. Thereby the inference is made that the values of the time 
series ReT(Cf24) are systematically lower than the values of the time series ReT(Cf54). By and 
large, given that the observed rank sum W = 14,041,000 is the lowest one for W in Table 7.6, 
and that larger values of W provide more convincing evidence to reject H0, the corresponding 
null hypotheses for the remaining nine pairwise comparisons are also rejected. 
 
To sum up, the results of the KW and W tests indicate that the hypothesis H2c is statistically 
supported with a 99% confidence. It is noteworthy that the statistical verification of H2c totally 
confirms the presumption that the MFSC staff has on its effectiveness as inhibitor of 
disruptions caused by R3 or ‘black swan events’ in a percentage of 67% to 33%. 
 
7.4 Examining the Moderating Effect of Short-Term Manufacturing Capacity (S) 
in the Relationship between the Frequency of Occurrence of Three Categories of 
Risks (Rc r) and the Measure of Resilience in Supply Chains (ReT): Hypotheses 
H3a, H3b, and H3c 
 
The set of hypotheses H3 is tested in the following sub-sections by utilising the same reasoning 
and statistical approach as in the previous section.   
 
7.4.1 Testing hypothesis 3a (H3a): ‘Increases in S moderate the relationship between R1r 
and ReT’ 
 
The results of all pairwise comparisons between ReT(Cf1…10) or DS1 and ReT(Cf61…70) or DS7 

using both KW and W tests are summarized in Table 7.7. 
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Table 7.7 Results of the application of Kruskal-Wallis and Wilcoxon rank sum tests for 
comparison of DS1 to DS7 

 

DS1 DS7 
Kruskal-Wallis Wilcoxon 

χ2 df p-value W	 p-value 
ReT(Cf1) ReT(Cf61) 5,509.610 1 0.000 709,713.000 0.000 
ReT(Cf2) ReT(Cf62) 165.640 1 0.000 8,224,947.000 0.000 
ReT(Cf3) ReT(Cf63) 2,833.620 1 0.000 167,260.500 0.000 
ReT(Cf4) ReT(Cf64) 2,900.800 1 0.000 143,101.000 0.000 
ReT(Cf5) ReT(Cf65) 0.000 1 0.000 2,596,921.000 0.000 
ReT(Cf6) ReT(Cf66) 2,795.780 1 0.000 104,789.500 0.000 
ReT(Cf7) ReT(Cf67) 23.760 1 0.000 2,068,911.000 0.000 
ReT(Cf8) ReT(Cf68) 3,003.400 1 0.000 186,471.000 0.000 
ReT(Cf9) ReT(Cf69) 2,757.560 1 0.000 138,219.500 0.000 
ReT(Cf10) ReT(Cf70) 2,842.930 1 0.000 87,905.500 0.000 

 
Unlike in the previous analysis, the results of the application of the KW-test in Table 7.7 shows 
an χ2atypical-value in one of the ten pairwise comparisons: ReT(Cf5) and ReT(Cf65). As can be 
seen, an observed value of χ2 = 0.00 and df = 1 produces a p-value = 1, a result that is not 
statistically significant at α = 0.01, implying that the mean of the two populations is equal to the 
mean of the other. In other words, H0 has failed to be rejected for this pairwise comparison. In 
contrast to this result, the remaining nine comparisons show KW-test values above zero. Thus, 
the time series ReT(Cf7) and ReT(Cf67) are compared to each other to see whether they come 
from identical populations. Since the p-value for the observed χ2 = 23.76 and df = 1 is lower 
than 1.091×10-6 with a level of significance α = 0.01, there are sufficient arguments to reject H0. 
Thereby the inference is made that the values of the time series ReT(Cf7) and ReT(Cf67) are 
statistically different of each other. Given that the observed value of χ2 = 23.76 is the lowest 
one for χ2 in Table 7.7—not including the mentioned atypical value, and that larger values of χ2 
provide more convincing evidence to reject H0, the corresponding null hypotheses for the 
remaining eight pairwise comparisons are also rejected.  
 
So, what statistical inference can be made if both results are considered at the same time, i.e. one 
observed value of χ2that is not statistically significant and nine observed values of χ2 that are? To 
answer this question, an additional hypothesis testing based on the binomial distribution is applied. 
This probability distribution fits to the above-mentioned question since there are a fixed 
‘number of pairwise comparisons using KW test (n)’; each KW-test has two possible 
outcomes—‘statistically significant’ or ‘not statistically significant’; the probability that a KW 
test is statistically significant (p) is the same for each KW test; and the KW tests are independent 
of each other. Thus, from the data described in Table 7.7, the null and alternative hypotheses 
can be set up as follows: 
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H0: 
‘Probability (p) that the proportion of the number of KW-tests in 
which the null hypothesis is rejected is 0.9 or higher’ 

  

Ha: 
‘Probability (p) that the proportion of the number of KW-tests in 
which the null hypothesis is rejected is lower than 0.9’’ 

   
With n = 10 and p = 0.9, an observed value of the binomial distribution x such that B(X = x, 
10, 0.9) ≤ 0.05 is required. The value found that satisfies this condition is x = 6 at a significance 
level α = 0.05; thereby, the rejection region corresponds to the values of x ≤ 6 and H0 has failed 
to be rejected.     

 
Similarly, from data shown in Table 7.7, the W-test is used to assess whether the time series 
ReT(Cf10) has systematically lower values than ReT(Cf70). Since the p-value for the observed rank 
sum W = 87,905.5 and a level of significance α = 0.01 is lower than 2.2×10-16, there are 
sufficient arguments to reject H0, thereby the inference is made that the values of the time series 
ReT(Cf10) are systematically lower than the values of the time series ReT(Cf70). By and large, 
given that the observed rank sum W = 87,905.5 is the lowest one for W in Table 7.7, and that 
larger values of W provide more convincing evidence to reject H0, the corresponding null 
hypotheses for the remaining nine pairwise comparisons are also rejected. 
 
To sum up, the results of KW, Binomial distribution, and W tests confirm that the hypothesis 
H3a is statistically supported with a 95% of confidence. However, this statistics verification of 
H3a contradicts the presumption that MFSC staff has on its effectiveness as inhibitor of 
disruptions caused by operational risks (R1r). As pointed in the Subsection 6.2.8, respondents’ 
answers supported in all cases the use of on-hand-inventory buffers rather than short-term 
manufacturing capacity. 
 
7.4.2 Testing hypothesis 3b (H3b): ‘Increases in S moderate the relationship between R2r 
and ReT’ 
 
The results of all pairwise comparisons between ReT(Cf11…20) or DS2 and ReT(Cf71…80) or DS8 

using both the KW and W tests are summarized in Table 7.8. 
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Table 7.8 Results of the application of Kruskal-Wallis and Wilcoxon rank sum tests for 
comparison of DS2 to DS8 

 

DS2 DS8 
Kruskal-Wallis Wilcoxon 

χ2 df p-value W	 p-value 
ReT(Cf11) ReT(Cf71) 142.550 1 0.000 2,174,721.000 0.000 
ReT(Cf12) ReT(Cf72) 1,874.390 1 0.000 597,565.000 0.000 
ReT(Cf13) ReT(Cf73) 864.830 1 0.000 1,585,366.000 0.000 
ReT(Cf14) ReT(Cf74) 154.690 1 0.000 1,834,199.000 0.000 
ReT(Cf15) ReT(Cf75) 509.600 1 0.000 1,417,720.000 0.000 
ReT(Cf16) ReT(Cf76) 1,424.330 1 0.000 801,059.000 0.000 
ReT(Cf17) ReT(Cf77) 1,427.640 1 0.000 797,669.000 0.000 
ReT(Cf18) ReT(Cf78) 68.170 1 0.000 1,795,998.000 0.000 
ReT(Cf9) ReT(Cf79) 1,129.920 1 0.000 912,433.500 0.000 
ReT(Cf10) ReT(Cf80) 72.220 1 0.000 1,532,981.000 0.000 

 
By way of example, from data shown in Table 7.8, the KW test is used to compare whether 
time series ReT(Cf18) and ReT(Cf78) come from identical populations. Since the p-value for the 
observed χ2 = 68.17 and df = 1 is lower than 2.2×10-16 with a level of significance α = 0.01, 
there are sufficient arguments to reject H0; thereby the inference is made that the values of the 
time series ReT(Cf18) and ReT(Cf78) are statistically different from each other. By and large, given 
that the observed value of χ2 = 68.17 is the lowest one for χ2 in Table 7.8, and that larger values 
of χ2 provide more convincing evidence to reject H0, the corresponding null hypotheses for the 
remaining nine pairwise comparisons are also rejected.  
 
Similarly, from data shown in Table 7.8, the W test is used to assess whether the time series 
ReT(Cf12) has systematically lower values than ReT(Cf72). Since the p-value for the observed rank 
sum W = 597565 and a level of significance α = 0.01 is lower than 2.2×10-16, there are sufficient 
arguments to reject H0; thereby the inference is made that the values of the time series ReT(Cf12) 
are systematically lower than the values of the time series ReT(Cf72). By and large, given that the 
observed rank sum W = 597,565 is the lowest one for W in Table 7.8, and that larger values of 
W provide more convincing evidence to reject H0, the corresponding null hypotheses for the 
remaining nine pairwise comparisons are also rejected. 
 
To sum up, the results of the KW and W tests indicate that the hypothesis H3b is statistically 
supported with a 99% confidence. However, the statistics verification of H3b only confirms the 
presumption that the MFSC staff has on its effectiveness as inhibitor of disruptions in one of 
the three risks considered: R24 or ‘contingent demand’, at a percentage of 67% to 33%. As 
pointed out in Subsection 6.2.8, respondents’ answers mostly support the use of on-hand 
inventory buffers over short-term manufacturing capacity. 
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7.4.3 Testing hypothesis 3c (H3c): ‘Increases in S moderate the relationship between R3 
and ReT’ 
 
The results of all pairwise comparisons between ReT(Cf21…30) or DS3 and ReT(Cf81…90) or DS9 of 
using both KW and W tests are summarized in Table 7.9. 

 
Table 7.9 Results of the application of Kruskal-Wallis and Wilcoxon rank sum tests for 

comparison of DS3 to DS9 
 

DS3 DS9 
Kruskal-Wallis Wilcoxon 

χ2 df p-value W	 p-value 
ReT(Cf21) ReT(Cf81) 6,333.570 1 0.000 14,755,996.00 0.000 
ReT(Cf22) ReT(Cf82) 797.280 1 0.000 14,061,608.00 0.000 
ReT(Cf23) ReT(Cf83) 749.530 1 0.000 14,201,009.00 0.000 
ReT(Cf24) ReT(Cf84) 807.560 1 0.000 14,013,353.00 0.000 
ReT(Cf25) ReT(Cf85) 747.570 1 0.000 14,195,900.00 0.000 
ReT(Cf26) ReT(Cf86) 266.080 1 0.000 15,548,548.00 0.000 
ReT(Cf27) ReT(Cf87) 345.070 1 0.000 15,334,500.00 0.000 
ReT(Cf28) ReT(Cf88) 5,920.180 1 0.000 14,656,195.00 0.000 
ReT(Cf29) ReT(Cf89) 0.000 1 0.000 16,233,602.00 0.000 
ReT(Cf30) ReT(Cf90) 0.000 1 0.000 163,02,050.00 0.000 

 
 
The results of the application of the KW test in Table 7.9 show χ2atypical-values in two of the 
ten pairwise comparisons: ReT(Cf29)-ReT(Cf89) and ReT(Cf30)-ReT(Cf90). As mentioned before, 
an observed value of χ2 = 0.00 and df = 1 produces a p-value = 1—a result which is not 
statistically significant at α = 0.01, implying that the mean of each of the two populations is 
equal to the other. In other words, H0 has failed to be rejected for these pairwise comparisons. 
In contrast to these results, the remaining eight comparisons show KW-test values above zero. 
Thus, the time series ReT(Cf26) and ReT(Cf86) are compared to each other to see whether they 
come from identical populations. Since the p-value for the observed χ2 = 266.08 and df = 1 is 
lower than 2.2×10-16 with a level of significance α = 0.01, there are sufficient arguments to 
reject H0. Thereby the inference is made that the values of the time series ReT(Cf26) and 
ReT(Cf86) are statistically different from each other. By and large, given that the observed value 
of χ2 = 266.08 is the lowest one for χ2 in Table 7.9, no including the two atypical values, and 
that larger values of χ2 provide more convincing evidence to reject H0, the corresponding null 
hypotheses for the remaining seven pairwise comparisons are also rejected. However, similar to 
the case described in Subsection 7.4.1, there are two observed values of χ2  that are not 
statistically significant and eight observed values of χ2 that are. By applying the same form of the 
null and alternative hypotheses, an observed value of the binomial distribution x such that B(X 
= x, 10, 0.8) ≤ 0.05 is required. Thus, with n = 10 and p = 0.8, the value found that satisfies this 
condition is x = 5 at a significance level α = 0.05; thereby the rejection region corresponds to 
the values of x ≤ 5 and H0 has failed to be rejected.      
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Likewise, from data shown in Table 7.9, the W test is used to assess whether the time series 
ReT(Cf22) has systematically lower values than ReT(Cf82). Since the p-value for the observed rank 
sum W = 140,61,608 and a level of significance α = 0.01 is lower than 2.2×10-16, there are 
sufficient arguments to reject H0; thereby the inference is made that the values of the time series 
ReT(Cf22) are systematically lower than the values of the time series ReT(Cf82). By and large, 
given that the observed rank sum W = 14,061,608 is the lowest one for W in Table 7.9 and that 
larger values of W provide more convincing evidence to reject H0, the corresponding null 
hypotheses for the remaining nine pairwise comparisons are also rejected. 
 
To sum up, although the results of the KW and W tests indicate that hypothesis H3c is 
statistically supported at 95% confidence, the verification of H3c is not supported by the 
presumption that MFSC staff has on its effectiveness as inhibitor of disruptions caused by R3 or 
‘black-swan events’. As pointed out in Subsection 6.2.8, respondents’ answers give no credibility 
to the use of short-term manufacturing capacity for this purpose.   
 
7.5 Summary of Chapter 7 
 
This chapter statistically tested the three sets of hypotheses that make up the conceptual 
framework constructed in Chapter 3 of this study. The output data of the simulation model 
were the main input for the process of hypotheses testing, though the data from the 
questionnaire were used as a baseline to compare overall results. Thus, for the analysis and 
testing of the first set of hypotheses (H1a, H1b, and H1c), four techniques were used: Association 
rule mining, Chi-squared test, Phi-coefficient, and Causal rule based on odds-ratio. The result of 
the hypothesis tests partially supported H1a, H1b, and H1c, that is, these included solid statistical 
evidence of the adverse effects that seven of the nine risk events considered  (R11, R13, R14, R22, 
R23, and R3) have on the level of SCRes of the MFSC when their frequency of occurrence is 
increased. The two remaining risk events (R12 and R21) were discarded during the process of 
pruning the interesting rules of association.  Similarly, for the analysis and testing of the set of 
hypotheses 2 (H2a, H2b, and H2c) and the set of hypotheses 3 (H3a, H3b, and H3c), Mill’s method 
of concomitant variation, two non-parametric tests—Kruskal-Wallis rank sum test and 
Wilcoxon rank sum test with continuity correction, and the Binomial distribution were utilised 
conjointly. In this regard, the application of the aforementioned tests totally confirmed the set 
of hypotheses 2 (H2) and the hypothesis H3b with 99% confidence, while the hypotheses H3a 
and H3c were confirmed with 95% confidence. The following chapter discusses in depth the 
above findings in terms of their theoretical and practical contributions and limitations, as well as 
avenues for future studies.       
 
 
 

 
 



 140 

 
 
 
 
 
 
 
 

 
 
 

Chapter 8 
CONCLUSIONS AND  
FUTURE RESEARCH 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 141 

Chapter 8. Conclusions and Future Research  
 
8.1 Introduction 
 
This study set out to examine the theoretical effectiveness of a buffering strategy, founded on 
increases in on-hand inventory buffers and short-term manufacturing capacity, to elevate the 
level of resilience of a real-world supply chain of military food (MFSC) highly exposed to the 
occurrence of various types of risk due to its very nature. The central research question that was 
formulated for this purpose is restated as follows: 
 
How is the resilience level—dynamic and inherent—of a military food supply chain in a risky environment 
affected by increases in on-hand inventory buffers/short-term manufacturing capacity? 
 
The importance of this topical research lies in the positive effects that the application of a 
buffering strategy as described could have on the performance of military-SCs. As demonstrated 
in the results of the simulation modeling, when the buffering strategy was applied on the MFSC, 
the period of autotomy increased, or the period of recovery decreased, or the period of disruption 
decreased, or a combination of the three. In short, the MFSC became more resilient, which 
translates into a lower risk of loss of human lives.  
 
Prior to the completion of this study, there was controversy prevalent in the literature regarding 
the effectiveness of using on-hand inventory buffers and/or short-term manufacturing capacity 
to prevent the occurrence of disruptions and/or to create SCRes. Aspects such as the relatively 
low number of empirical works and the abundance of anecdotal evidence on the subject, the 
inadequacy of the methodologies used to measure SCRes, the gap between theoretical and 
practical issues on this concept, and the little interest of researchers on topics related to defence 
logistics, among others, fueled this controversy. I argue that the results and findings provided in 
this study greatly clarify this debate, as well as enable new research to be developed. 
 
This chapter has been structured in six main sections. The second section synthesizes the 
empirical findings derived from the analysis of the nine research hypotheses and the open-
ended questionnaire. The third section discusses the implications of the results of the study with 
respect to the current debate in the literature on the effectiveness of a buffering strategy based 
on on-hand inventory buffers and short-term manufacturing capacity. The fourth section gives 
some practical suggestions on how to apply the mentioned buffering strategy. The fifth section 
points out the limitations of the study, particularly those related to the assumptions of the 
simulation model, the non-inclusion of the factor cost, and the utilisation of a single unit of 
analysis. And lastly, the sixth section delineates an agenda for future research. 
  
8.2 Empirical Findings 
 
Based on the central research question mentioned above, this study formulated nine research 
hypotheses for analysis organized into three sets (H1, H2, and H3), and an open-ended 
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questionnaire initially introduced in Chapters 6 and further discussed in Chapter 7. The 
synthesis of the discussion of results for each one is stated as follows: 
 
8.2.1 From the research hypotheses  
 
Hypothesis 1a (H1a): ‘Ceteris paribus, increases in the frequency of occurrence of operational risks (R1r) reduce 
the measure of resilience in supply chains (ReT)’  
 
In the proposed analysis, this category of risk comprises ‘breakdown in machines or 
workstations (R11)’,  ‘delays in contracting with supplies (R12)’,  ‘shortages of raw material and 
components (R13)’, and ‘quality problems (R14)’. These risks were modelled as ‘highly frequent 
and low impact stochastic events’, whilst the initial configuration of the MFSC—one work shift 
activated and zero-inventory level at operations 3, 5, and 9—was kept unaltered during the time 
of the simulation or ceteris paribus condition. Therefore, the three statistical criteria employed—
Chi-squared test, Phi-coefficient, and Causal Rule based on Odds-ratio—confirmed with a 
degree of confidence equal to 99% that when the frequency of occurrence of R11, R13, and R14 
was increased, MFSC’s measure of resilience (ReT) was reduced. This result is not, however, 
extensible to R12 since this type of risk was discarded during the process of extraction of rules 
of association between Rcr and ReT.   
 
Hypothesis 1b (H1b): ‘Ceteris paribus, increases in the frequency of occurrence of natural-disasters-and-
intentional-attacks (R2r) reduce the measure of resilience in supply chains (ReT)’ 
 
This category of risk comprises ‘earthquakes, storms, floods, fires, and power cuts (R21)’,  
‘attacks on the lines-of-communication (R22)’,  ‘attacks on forward logistics-support units (R23)’, 
and ‘contingent demand (R24)’. These risks were modelled as rare and high-impact stochastic 
events, whilst the initial configuration of the MFSC—one work shift activated and zero-
inventory level at operations 3, 5, and 9—was kept unaltered during the time of the simulation. 
Therefore, the three statistical criteria employed—Chi-squared test, Phi-coefficient, and Causal 
Rule based on Odds-ratio—confirmed with a degree of confidence equal to 99% that when the 
frequency of occurrence of R22, R23, and R24 was increased, MFSC’s measure of resilience (ReT) 
was reduced. This result is not, however, extensible to R21 since this type of risk was discarded 
during the process of extraction of rules of association between Rcr and ReT.      
 
Hypothesis 1c (H1c): ‘Ceteris paribus, increases in the frequency of occurrence of black-swan events (R3) reduce 
the measure of resilience in supply chains (ReT)’  
 
This category of risk (R3) was modelled as stochastic events with the ‘lowest frequency and 
highest impact’ within the analysis—‘one time every twenty years’, whilst the initial 
configuration of the MFSC—one work shift activated and zero-inventory level at operations 3, 
5, and 9—was kept unaltered during the time of the simulation. Therefore, the three statistical 
criteria employed—Chi-squared test, Phi-coefficient, and Causal Rule based on Odds-ratio—
confirmed with a degree of confidence equal to 99% that when the frequency of occurrence of 
R3 was increased, MFSC’s measure of resilience (ReT) was also reduced.  
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Hypothesis 2a (H2a): ‘On-hand inventory buffers (Ιt,S) moderate the relationship between the frequency of 
occurrence of operational risks (R1r) and the measure of resilience in supply chains (ReT), with the relationship 
being enhanced by increases in the levels of Ιt,S’ 
 
For the analysis of this hypothesis, MFSC’s on-hand inventory buffers at three critical points—
operations 3, 5, and 9—were randomly increased from five pre-determined levels—on-hand 
inventory buffers for one, two, three, four, and up to eight weeks—following an efficient 
simulation experiment, while the four risks of the category R1r were enabled. Therefore, the 
results of the two hypothesis tests utilised—the Kruskal-Wallis sum rank test and the Wilcoxon 
sum rank test with continuity correction—confirmed with a degree of confidence equal to 99% 
that when on-hand inventory buffers were increased by the indicated levels, the MFSC’s 
measure of resilience (ReT) increased in the presence of R1r.   
 
Hypothesis 2b (H2b): ‘On-hand inventory buffers (Ιt,S) moderate the relationship between the frequency of 
occurrence of natural-disasters-and-intentional-attacks (R2r) and the measure of resilience in supply chains (ReT), 
with the relationship being enhanced by increases in the levels of Ιt,S’ 
 
For the analysis of this hypothesis, MFSC’s on-hand inventory buffers at three critical points—
operations 3, 5, and 9—were randomly increased from five pre-determined levels—on-hand 
inventory buffers for one, two, three, four, and up to eight weeks—following an efficient 
simulation experiment, while the four risks of the category R2r were enabled. Therefore, the 
results of the two hypothesis tests utilised—the Kruskal-Wallis sum rank test and the Wilcoxon 
sum rank test with continuity correction—confirmed with a degree of confidence equal to 99% 
that when on-hand inventory buffers were increased by the indicated levels, the MFSC’s 
measure of resilience (ReT) increased in the presence of R2r.     
 
Hypothesis 2c (H2c): ‘On-hand inventory buffers (Ιt,S) moderate the relationship between the frequency of 
occurrence of black-swan events (R3) and the measure of resilience in supply chains (ReT), with the relationship 
being enhanced by increases in the levels of Ιt,S’ 
 
For the analysis of this hypothesis, MFSC’s on-hand inventory buffers at three critical points—
operations 3, 5, and 9—were randomly increased from five pre-determined levels—on-hand 
inventory buffers for one, two, three, four, and up to eight weeks—following an efficient 
simulation experiment, while the category of risk R3 was enabled. Therefore, the results of the 
two hypothesis tests utilised—the Kruskal-Wallis sum rank test and the Wilcoxon sum rank test 
with continuity correction—confirmed with a degree of confidence equal to 99% that when on-
hand inventory buffers were increased by the indicated levels, the MFSC’s measure of resilience 
(ReT) increased in the presence of R3.  .   
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Hypothesis 3a (H3a): ‘Short-term manufacturing capacity (S) moderates the relationship between the frequency 
of occurrence of operational risks (R1r) and the measure of resilience in supply chains (ReT), with the relationship 
being enhanced by increases in the levels of S’ 
 
For the analysis of this hypothesis, MFSC’s short-term manufacturing capacity was increased 
randomly from the two available levels—two or three work shifts activated—following an 
efficient simulation experiment, while the four risks of the category R1r were enabled. Therefore, 
the results of the three hypothesis tests utilised—the Kruskal-Wallis sum rank test and Binomial 
distribution test, and the Wilcoxon sum rank test with continuity correction—confirmed with a 
degree of confidence equal to 95% that when short-term manufacturing capacity was increased 
by the indicated levels, the MFSC’s measure of resilience (ReT) increased in the presence of R1r.   
 
Hypothesis 3b (H3b): ‘‘Short-term manufacturing capacity (S) moderates the relationship between the 
frequency of occurrence of natural-disasters-and-intentional attacks (R2r) and the measure of resilience in supply 
chains (ReT), with the relationship being enhanced by increases in the levels of S’’ 
 
For the analysis of this hypothesis, MFSC’s short-term manufacturing capacity was increased 
randomly from the two available levels—two or three work shifts activated—following an 
efficient simulation experiment, while the four risks of the category R2r were enabled. Therefore, 
the results of the two hypothesis tests utilised—the Kruskal-Wallis sum rank test and the 
Wilcoxon sum rank test with continuity correction—confirmed with a degree of confidence 
equal to 99% that when short-term manufacturing capacity was increased by the indicated 
levels, the MFSC’s measure of resilience (ReT) increased in the presence of R2r. 
 
Hypothesis 3c (H3c): ‘Short-term manufacturing capacity (S) moderates the relationship between the frequency 
of occurrence of black-swan events (R3) and the measure of resilience in supply chains (ReT), with the relationship 
being enhanced by increases in the levels of S’  
 
Lastly, for the analysis of this hypothesis, MFSC’s short-term manufacturing capacity was 
increased randomly from the two available levels—two or three work shifts activated—
following an efficient simulation experiment, while the category of risk R3 was enabled. 
Therefore, the results of the three hypothesis tests utilised—the Kruskal-Wallis sum rank test 
and binomial distribution tests, and the Wilcoxon sum rank test with continuity correction—
confirmed with a degree of confidence equal to 95% that when short-term manufacturing 
capacity was increased by the indicated levels, the MFSC’s measure of resilience (ReT) increased 
in the presence of R3.  
 
8.2.2 From the open-ended questionnaire 
 
The analysis of the results of the open-ended questionnaire administered to twelve staff 
members of the MFSC showed respondents’ strong preference for the use of on-hand 
inventory buffers to prevent the occurrence of disruptions over short-term manufacturing 
capacity. Thus, in eight of the nine questions of the questionnaire posited—one for each type of 
risk, the alternative selected as the most effective to prevent the risk of disruption was ‘to 
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increase the inventory buffers at different locations in the supply chain.’ The only exception to 
this was for the risk R24 or ‘contingent demand.’ In this regard, when the respondents were 
consulted about this pattern, the answer was unanimous: “The needs of the troops do not wait, 
so what better than to use the on-hand inventory buffers?” 
 
In conclusion, taking into account both results of the analysis of the simulation model and of 
the open-ended questionnaire with respect to the above-mentioned research question, it can be 
said that in all cases considered, higher levels of on-hand inventory buffers or short-term 
manufacturing capacity led to a higher level of resilience in military-SCs faced with operational 
risks, or intentional attacks, or black-swan events with at least a 95% confidence; though if 
military logisticians had to decide between the use of on-hand inventory buffers or short-term 
manufacturing capacity, they would choose the first alternative over the second in all cases 
except to prevent the risk of disruption due to contingent demand. 
 
8.3 Theoretical Implications 

  
As mentioned throughout this study and discussed in detail in Chapter 3, a theoretical conflict 
regarding the effectiveness of using inventory and/or capacity to reduce the incidence of SC-
disruptions and/or to create SCs more resilient has been prevalent in the literature on SC-
disruptions/SCRes.  
 
Regarding the supportive arguments, three points of view can be identified: (1) Authors as Rice 
and Caniato (2003), Colicchia et al (2010), Schmitt and Singh (2012), Lee and Wolfe (2003), 
Christopher and Peck (2004), Sheffi (2002), Jüttner et al (2003), Sheffi and Rice (2005), Stecke 
and Kumar (2009), and Bradley et al (2015) emphasise in general that ‘the more…the better’—i.e. 
increases in the level of inventories or in the manufacturing capacity is an effective strategy to 
make SCs more resilient with little or none undesired effect; (2) In an intermediate position, 
other authors as Chopra and Sodhi (2004), Lockamy and McCormack (2010), Boone et al 
(2013), Son and Orchard (2013), Brandon-Jones et al (2015), and Hoffman et al (2013) advocate 
that ‘the more…the better, but…’—i.e. although increases in the level of inventories or in the 
manufacturing capacity may be an effective strategy to make SCs more resilient, this is not 
exempt of adverse effects. Lastly, (3) there is a group of authors as Tomlin (2006), Hopp et al 
(2012), Zsidisin and Wagner (2010), Zsidisin et al (2005), Tomlin and Wang (2012), Faden 
(2014), Tang (2006), Pickett (2006), and Bode et al (2011) argue that ‘the more…the better only 
for…’—i.e. to increase the level of inventories or the manufacturing capacity could be an 
effective strategy to make SCs more resilient, but only under certain circumstances.      
 
On the opposite side, there is a line of authors who have a diverging standpoint with respect to 
the use of inventory or manufacturing capacity to inhibit SC-disruptions or to make SCs more 
resilient, on which two points of view can be identified: (4) authors as Kim et al (2015) and 
Brusset and Teller (2017) argue in general that ‘the more…the same’—i.e. increases in the levels of 
inventories or in the manufacturing capacity have no effect on SCs to make them more resilient. 
And (5) authors as Marley et al (2014), Christopher and Lee (2004), Bandaly et al (2012), and 
Park et al (2016) posit that ‘the more…the worse’—i.e. increases in the levels of inventories or in 
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the manufacturing capacity not only is an innocuous strategy to make SCs more resilient, but 
also their performance can be negatively affected.    
 
Regarding the above supportive arguments, the results of this research contradict to some 
extent the authors’ position (1)—‘the more…the better’—and give support to the authors’ position 
(2)—‘the more…the better, but…’ That is, although this research did not include the ‘cost factor’ 
due to the nature of the unit of analysis—see discussion in this regard in Section 3.2—, it is 
undeniable that increases in the level of on-hand inventory buffers or short-term manufacturing 
capacity carry higher costs and make SCs prone to the incidence of some risks. Likewise, the 
results of the study confirm that both on-hand inventory buffers/short-term manufacturing 
capacity are efficient inhibitors in the short term of disruptions caused by a broad range of 
risks—nine in total, or up to twenty if the place of occurrence of the risk is considered as a 
differential element, which contradicts to some extent the authors’ position (3)—‘the more…the 
better only for…’ Lastly, concerning the non-supportive arguments —author’s position (4) and (5) 
—, the results of the study directly contradict the two authors’ position discussed.  
 
Last, but not least, this research confirms the observations made by Lapide (2008) and Waters 
(2007) in the sense of the relative ease for implementing a buffering strategy as described to 
prevent the occurrence of SC disruptions and/or increase the level of resilience. This aspect is 
of paramount importance for military-SCs, especially when the rigidities they face are taken into 
account, as discussed in Section 3.2. 
 
8.4 Practical Implications 
 
As emphasized in Chapter 3, the choice of the aforesaid buffering strategy as a central research 
topic was motivated by its advantages and ease of use for application in military-SCs. This type 
of strategy represents in practice not only the first line of defense available to military 
logisticians to deal with the occurrence of disruptions, but also the easiest strategy to 
implement. In this sense, it is worth mentioning that the results obtained cover not only 
military-SCs but also commercial-SCs. Thus, the results of the study indicate that a buffering 
strategy based on on-hand inventory buffers or short term manufacturing capacity as simulated 
can effectively hedge against the risks and high uncertainty that, for the most part, characterizes 
military operations. Technical details on how to implement and evaluate such a strategy in 
practice were described in Chapter 6 of this study. Hence, for its correct application, a careful 
monitoring of the holding/replenishment/obsolescence inventory costs, for the first case, and 
the labour cost, for the second, has to be implemented conjointly. Lastly, any change detected in 
the long-term pattern of demand affecting its steadiness must be quickly incorporated into the 
buffering strategy, which implies that the SC should have a fine-tuned cross-functional 
forecasting process in advance.        
 
8.5 Limitations of the Study 
 
The limitations of the present study are explained as follows: 
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8.5.1 From the assumptions of the simulation model  
 
The simulation model that represents the behaviour of the MFSC incorporates a number of 
simplifying assumptions (eight). The output data of the simulation model are the main input of 
the results of the study; thereby the results and findings of this study must be seen in light of 
such assumptions. Of all of them, one in particular strongly influences the results of this study: 
the assumption related to the stationarity of the SC-parameters over time—see Subsection 6.58. 
Thus, although it is reasonable to suppose that assembly of rations ‘hunts’ the demand in a 
push-based SC—the behaviour of the MFSC up to operation 9 or supply battalion, to assume in 
general that demand is stable throughout the simulation period—up to 20 years—is a strong 
assumption within the model. This factor is decisive since it delimits the effectiveness of the 
buffering strategy studied. In other words, the effectiveness of the buffering strategy is 
guaranteed as long as the demand for items is steady over time; otherwise, as pointed out by 
Christopher and Lee (2004), the outcome can be higher financial risks. However, this 
assumption—steady-state demand function—is not entirely implausible, at least for military-
SCs, since the total number of combat rations demanded in a period t is function of the number 
of troops in period t, and this latter, in turn, is restricted by the installed capacity of military 
garrisons and the assigned budget.          
 
8.5.2 From the non-inclusion of the cost factor 
 
Cost factor was not considered in the analysis as a critical variable mainly for the reasons 
explained in Section 3.2 of this study, which can be summarized in the following proposition: 
‘For military-SCs only, in conditions of war, the cost of shortages of troops is always higher 
than the result of adding, holding, replenishing, or obsolescence inventory costs and/or labour 
cost.’ This proposition encompasses the premise that failures in the timeliness of supply order 
deliveries entail the risk of loss of life. In addition, neither the seminal concept of resilience 
proposed by Holling (1973) nor the SCRes definitions introduced in Table 5 include the cost 
factor, except for in the work of Tukamuhabwa and colleagues (2015). However, for the sake of 
discussion, if the military-SCs operated in peace mode, their operating conditions would be 
quite similar to commercial-SCs, therefore further research should include the cost factor. 
 
8.5.3 From utilising of a single unit of analysis 
 
This study is based on the analysis of a single military-SC responsible for supplying a broad 
range of subsistence items, in particular, combat ration packs. Hence, the utilisation of a single 
unit of analysis limits to some extent the generalization of the results to other similar SCs. This 
is attributable not only to the difficulties in accessing information on this typology of SCs—due 
to their strategic nature for the armed forces of a country, but also because of their small 
number. For example, in the country in which the MFSC under analysis is located, only a total 
of six SCs currently operate. To overcome this limitation, the simulation model considered 90 
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different SC configurations within the experimental design, which is in practice equivalent to 
having the same number of units of analysis.    
 
8.6 Agenda for Further Studies 
 
The following subsections present the agenda for further research. 
 
8.6.1 Between on-hand inventory buffers and short-term manufacturing capacity, is 
there any synergistic effect, and is one more effective at preventing SC-
disruptions/creating SCRes than the other? Is there any other factor to consider? 
 
As previously stated, the empirical findings of this study indicated with a high degree of 
confidence that both on-hand inventory buffers and short-term manufacturing capacity 
positively moderate the measure of SCRes or ReT. Moreover, respondents’ preference clearly 
favoured the use of the first over the second. In fact, the results of the non-parametric tests 
appear to be more significant for on-hand inventory buffers than for short-term manufacturing 
capacity. However, the results of the present study are not conclusive for this aspect and more 
research needs to be completed to answer the two header questions. Finally, the SC lead-time 
could be an additional factor to include within the analysis of buffer-related strategies. 
 
8.6.2 In search of an optimum level of SCRes 
 
As mentioned before, the empirical evidence found in the simulation model indicates with a 
high degree of confidence that both on-hand inventory buffers and short-term manufacturing 
capacity positively moderates the level of SCRes. In the case of the MFSC under analysis, as 
outlined above, the cost factor was not included in the study as a critical variable. However, if 
the same studied buffering strategy was to be implemented in commercial-SCs, this critical 
factor (cost) should be included into the analysis. In this sense, the idea of finding ‘an optimum 
level of resilience in supply chains’ that also could integrate the four sub-indicators described in 
Equation 5.5 might be a good starting point for a new promising research avenue. The above 
would require, however, re-considering the use of a simulation-based tool as the primary 
research method to gather (generate) data.  
 
8.6.3 Applying the measure of SCRes (ReT) to management of projects  
 
This study developed a robust theoretical framework in Chapter 5 to assess resilience in 
military-SCs by using the tail autonomy effect. As was explained, this novel perspective offers an 
alternative way of understanding SC-disruptions. However, this theoretical framework might be 
also be used in a discipline allied with logistics and supply chain management (LSCM): project 
management (PM). The LSCM and PM disciplines are intrinsically coupled, to extent that the 
design and enhancement of SCs can be seen as a set of interrelated projects (Ayers, 2010). 
Therefore, the application of concepts such as an ‘autotomy period’, ‘recovery period’, 
‘disruption period’, and ‘filled rate’ may help to respond to the research question: How do we 
make more resilient projects? 
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8.7 Summary of Chapter 8 
 
The chapter explained in detail how the study fulfilled the research problem introduced in 
Chapter 1. In doing so, it synthesized the empirical findings from the research hypotheses and 
the open-ended questionnaire. Second, it pinpointed the theoretical implications for the open 
debate on the effectiveness of a buffering strategy based on on-hand inventory buffers and 
short-term manufacturing capacity. Third, it highlighted the practical implications for military 
logisticians and stakeholders on how to implement a buffering strategy as mentioned. Fourth, it 
pointed out the three main aspects that limit the generalization of the results of the study. 
Lastly, it delineated an agenda for future research.  
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Annexes 
 
Annex A. Algorithm for Text Mining Applications in R  
 
Software 1: Text mining package (tm) 
 
Version: 0.7-1 
Authors: Feinerer, I. and Hornik, K. 
Year: 2017 
Repository:  https://cran.r-project.org/web/packages/tm/index.html 
 
Step 1: Load the packages 
 

library("tm") 
library("wordcloud") 
library("RColorBrewer") 

 
Step 2: Load the text 
 

text <- readLines(file.choose()) 
 
Step 3: Load the data as a corpus 
 

docs <- Corpus(VectorSource(text)) 
  
Step 4: Text transformation 
 

Replace some characters with space: 
 

toSpace <- content_transformer(function (x , pattern ) gsub(pattern, " ", x)) 
docs <- tm_map(docs, toSpace, "/") 
docs <- tm_map(docs, toSpace, "@") 
docs <- tm_map(docs, toSpace, "\\|") 

 
Step 5: Cleaning the text 
 

Convert the text to lower case:  
 

docs <- tm_map(docs, content_transformer(tolower)) 
 
Step 6: Remove numbers, common stop-words, punctuations and unnecessary white space 
  

docs <- tm_map(docs, removeNumbers) 
docs <- tm_map(docs, removeWords, stopwords("english")) 
docs <- tm_map(docs, removePunctuation) 
docs <- tm_map(docs, stripWhitespace) 
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Step 7: Build a document matrix that contains the frequency of the words 
 

dtm <- TermDocumentMatrix(docs) 
m <- as.matrix(dtm) 
v <- sort(rowSums(m),decreasing=TRUE) 
d <- data.frame(word = names(v),freq=v) 

 
Software 2: Word clouds 
 
Version: 2.5 
Author: Fellows, I.  
Year: 2014 
Repository: https://cran.r-project.org/web/packages/wordcloud/index.html 
 
Step 8: Generate the word cloud 
 

set.seed(1234) 
wordcloud(words = d$word, freq = d$freq, min.freq = 1, 

          max.words=200, random.order=FALSE, rot.per=0.35,  
          colors=brewer.pal(8, "Dark2")) 
 

Arguments of the word-cloud generator function: 
 
words: the words to be plotted. 
freq: their frequencies. 
min.freq: words with frequency below min.freq will not be plotted. 
max.words: maximum number of words to be plotted. 
random.order: plot words in random order. If false, they will be plotted in decreasing 
frequency. 
rot.per: proportion words with 90-degree rotation (vertical text). 
colors : color words from least to most frequent.  
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Annex B. Simulink program code 
 
The software Simulink® [v.8.6.0] of MATLAB was used for modeling a supply chain of military 
food (MFSC) subjected to the stepwise occurrence of three categories of risk—operational 
risks, R1r; natural disasters and intentional attacks R2r; and black-swan events, R3—while on-
hand inventory buffers and short-term manufacturing capacity—the buffering strategy—were 
gradually increased following an efficient experimental design. All Simulink models work based 
on the discrete time specified in each configuration. In the case analysed, the reference was 
0.00312 real-time seconds, which describes the lowest processing time of the MFSC that 
occurred in operations 5, 6, and 7 or assembly-line. 
 
In order to ensure that all simulation runs generate different data from each other, that is, the 
quantity of rations required and times of occurrence of risks in each case, it was necessary to 
specify within the function of uniform distribution of pseudorandom numbers embedded in 
MATLAB, a seed or initial value that would guarantee the generation of different data in the 
variables mentioned in each configuration. Likewise, to simulate the occurrence of the risks, 
MATLAB code functions were used, independent and distinct in each case, as described in 
Tables 6.6, 6.7, and 6.8. These functions have as their only input-parameter a seed that generates 
different time-values in each execution, while inside they have an output that throws a vector 
containing both the time of occurrence of the risk and the recovery time of the operation, for 
those cases in which operations would require these. 
 
Each of the 13 operations of the simulation model is represented by a block containing two 
main components: one buffer, which is responsible for storing the rations that arrive at the 
operation as the SC ‘pushes’ each order; and a flowchart, coded within a flowchart-block in 
charge of controlling the inputs, time, and output of each of the operations. In each of the 13 
operations of the MFSC, the buffer is modelled through a reading-function that verifies whether 
the immediately preceding operation sends supplies. If the buffer detects the entry of new 
rations, it adds the amount received to the amount stored in its memory; otherwise it overwrites 
the value stored in its memory. Regarding the flowchart, this is represented differently in each 
of the operations. 
 
Because the simulation model considers the delays caused by the risks that occurred during the 
execution of each configuration, it was necessary to program a block that would act as a barrier 
of the data on each of the parameters associated with each request generated. The parameters 
that were specified within this matrix were: the quantity of rations required by the order, the 
number of the associated order, the time in which the order was generated, and the total 
amount of accumulated orders and lost orders. This matrix is sent as an input variable to 
operation 9 or the supply battalion, which is responsible for processing and ordering, from lowest 
to highest value (SPT-rule), and then the attended order is removed from the queue.  
 
Thereby, from a macro-perspective, the simulation model of the MFSC is visualized as follows: 
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The operation 1 (‘Military logistics agency’) as follows: 
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The operation 2 (‘Suppliers’) as follows: 
 

 
The operation 3 (‘Warehouse & Distribution Centre’) as follows: 
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The operation 4 (‘Line-of-Communication’) as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The operation 5 (‘Assembly-Line’) as follows: 
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The operation 6 (‘Assembly-Line’) as follows: 
 

 
The operation 7 (‘Assembly-Line’) as follows: 
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The operation 8 (‘Line-of-Communication’) as follows: 
 

 
The operation 9 (‘Supply Battalion’) as follows: 
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The operation 10 (‘Line-of-Communication’) as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The operation 11 (‘Combat Service Support Units’) as follows: 
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The operation 12 (‘Line-of-Communication’) as follows: 
 
 

 
An lastly, the operation 13 (‘Theatre of Operations’) as follows: 
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Annex C. The Open-Ended Questionnaire 
 

Thank you for agreeing to take part in this important questionnaire whose main purpose is to 
contrast the output results of the simulation modeling regarding the effectiveness of buffering 
strategies in the relationship between risks and resilience. This questionnaire contains 11 
questions organized in 4 sections, and an estimated time of 15-20 minutes to be completed. 
With the exception of the Section A, the Sections B, C and D are of the type “What do you 
think of…?”. Assume in the questions in Sections B, C and D that you are able to decide on the 
implementation of any of the available alternatives. Remember that your answers will be kept 
strictly confidential. 
 
Section A – Respondents Background (number of questions: 2) 
 
Respondent’s full name:  
__________________________________________________________________________ 
 
A1. What is your position in the organization? 
 
 
 
 
A2. Describe briefly the main functions of your position  
� 
� 
� 
� 
 
Section B – Analysis of Operational Risks (number of questions: 4) 
  
B1. Consider the following hypothetical situation: A machine in one of the working stations in 
the assembly process suffers a breakdown. The potential risk is that the flow of rations to the 
military personnel might be interrupted/impacted by this event. Of the following two 
alternatives choose the option (þ) that you consider is the most effective to prevent the risk of 
disruption (before the hypothetical situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
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B2. Consider the following hypothetical situation: The contracting process of any of the raw 
materials required for the assembly of rations is delayed from the initial schedule. The potential 
risk is that the flow of rations to the military personnel might be interrupted/impacted by this 
event. Of the following two alternatives choose the option (þ) that you consider is the most 
effective to prevent the risk of disruption (before the hypothetical situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
 
B3. Consider the following hypothetical situation: Planned deliveries of raw 
materials/components required for the assembly of rations are delayed from the initial schedule. 
The potential risk is that the flow of rations to the military personnel might be 
interrupted/impacted by this event. Of the following two alternatives choose the option (þ) 
that you consider is the most effective to prevent the risk of disruption (before the hypothetical 
situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
 
B4. Consider the following hypothetical situation: A number of defective items or non-
conforming are detected during the assembly process.  The potential risk is that the flow of 
rations to the military personnel might be interrupted/impacted by this event. Of the following 
two alternatives choose the option (þ) that you consider is the most effective to prevent the 
risk of disruption (before the hypothetical situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
 
Section C – Analysis of Natural Disasters & Intentional Attacks (number of questions: 
4) 
 
C1. Consider the following hypothetical situation: A natural disaster1 affects the assembly plant 
taking out of operation for several days. The potential risk is that the flow of rations to the 
military personnel might be interrupted/impacted by this event. Of the following two 
alternatives choose the option (þ) that you consider is the most effective to prevent the risk of 
disruption (before the hypothetical situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
 

                                            
1	Earthquake, storm, flood, fires, or power cuts.	



 179 

C2. Consider the following hypothetical situation: A ration shipment and its mean of transport 
are destroyed in a terrorist attack causing operation delays. The potential risk is that the flow of 
rations to the military personnel might be interrupted/impacted by this event. Of the following 
two alternatives choose the option (þ) that you consider is the most effective to prevent the 
risk of disruption (before the hypothetical situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
 
C3. Consider the following hypothetical situation: A centre of warehousing of rations is affected 
by a terrorist attack causing operation delays. The potential risk is that the flow of rations to the 
military personnel might be interrupted/impacted by this event. Of the following two 
alternatives choose the option (þ) that you consider is the most effective to prevent the risk of 
disruption (before the hypothetical situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
 
C4. Consider the following hypothetical situation: An unexpected increase in the demand of 
rations occurs. The potential risk is that the contingent order will not be served on time. Of the 
following two alternatives choose the option (þ) that you consider is the most effective to 
prevent the risk of disruption (before the hypothetical situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
 
Section D – Black-Swan Events (number of questions: 1) 
 
D1. Consider the following hypothetical situation: An air-attack from a neighbour country is 
launched taking the assembly plant out of operation for several weeks. The potential risk is that 
the flow of rations to the military personnel might be interrupted/impacted by this event. Of 
the following two alternatives choose the option (þ) that you consider is the most effective to 
prevent the risk of disruption (before the hypothetical situation occurs): 
 
a. Increase the inventory buffers along different locations in the supply chain � 
b. Increase the number of working-shifts per day � 
 
End of the questionnaire (Fin del cuestionario)----------------------------------------------------------- 
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Annex D. Algorithms for Categorizing Rc r and ReT in R  
 
library(Matrix) 
library(arules) 
library(xlsx) 
 
i <- 1 
 
for(i in c(1:30)){ 
 
  CF <- read.xlsx(paste("D:/Project/Input_Continuo/Cf", i, ".xlsx", sep = ""), sheetIndex = 1)  
 
  name.column <- colnames(CF) 
  columns <- ncol(CF) 
  risks <- ncol(CF) - 1 
 
  CF.1 <- CF 
  x <- 1 
 
  for(x in c(1:riesgos)){ 
 
    a <- CF[,x] 
 
    b <- cut(a, 
             breaks = c(-Inf,0,1,Inf), 
             labels = c("N", "O", "F")) 
 
    assign(paste("r", x, sep = ""), b) 
    CF.1[ , paste("r", x, sep = "")] <- b 
 
    x <- x+1   
 
  } 
 
  c <- CF[, columns] 
  d <- cut(c, 
           breaks = c(-Inf, 0.003, 0.0051, Inf), 
           labels = c("L", "M", "H")) 
 
  assign("ReT1", d) 
  CF.1[ , "ReT1"] <- d 
 
  CF.1[1:columns] <- list(NULL) 
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  names(CF.1) <- name.column 
 
  write.csv(CF.1, file = paste("D:/Project/Catego_Continuo/Cat_Con_Cf_", i, ".csv", sep = 
""), row.names=FALSE) 
 
  i <- i+1 
 
} 
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Annex E. A Priori Algorithm for Mining Rules of Type ‘Rc r = O ∨ F ⇒ReT = L’ 
(E) 
 
library(Matrix) 
library(arules) 
library(xlsx) 
 
i <- 1 
 
for(i in c(1:30)){ 
   
  CF <- read.csv(file= paste("D:/Project/Catego_Continuo/Cat_Con_Cf_",i, ".csv", sep = ""), 
header=TRUE, sep = ",") 
   
  #  View(CF) 
   
  rules.CF <- apriori(CF, parameter = list(maxtime=20, maxlen=20, minlen=2, supp=0.1, 
conf=0.9, target="rules"), control = list(verbose=F)) 
   
  #  inspect(rules.CF) 
   
  ## rules.CF <- subset(rules.CF, subset = rhs %pin% "ReT=") 
   
  #  inspect(rules.CF) 
  #                        Rules According to Experimental Design  
  #                        ******************************** 
   
  switch( i, 
           
          #  CF 1 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R13=O" | lhs %ain% "R13=F" | 
                                  lhs %ain% "R14=O" | lhs %ain% "R14=F" ), 
           
          #  CF 2 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R12=O"| lhs %ain% "R12=F" ), 
           
          #  CF 3 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R11_1=O" | lhs %ain% "R11_1=F" 
| 
                                  lhs %ain% "R11_2=O" | lhs %ain% "R11_2=F" | 
                                  lhs %ain% "R13=O" | lhs %ain% "R13=F" |  
                                  lhs %ain% "R14=O" | lhs %ain% "R14=F" ), 
          #  CF 4 
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          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R11_1=O" | lhs %ain% "R11_1=F" 
| 
                                  lhs %ain% "R11_2=O" | lhs %ain% "R11_2=F" | 
                                  lhs %ain% "R12=O" | lhs %ain% "R12=F" |  
                                  lhs %ain% "R13=O" | lhs %ain% "R13=F" ),  
           
          #  CF 5 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R13=O"| lhs %ain% "R13=F" ), 
           
          #  CF 6 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R11_1=O" | lhs %ain% "R11_1=F" 
| 
                                  lhs %ain% "R11_2=O" | lhs %ain% "R11_2=F" | 
                                  lhs %ain% "R12=O" | lhs %ain% "R12=F" |  
                                  lhs %ain% "R14=O" | lhs %ain% "R14=F" ), 
           
          #  CF 7 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R11_1=O" | lhs %ain% "R11_1=F" 
| 
                                  lhs %ain% "R11_2=O" | lhs %ain% "R11_2=F" | 
                                  lhs %ain% "R14=O" | lhs %ain% "R14=F" ), 
          #  CF 8 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R11_1=O" | lhs %ain% "R11_1=F" 
| 
                                  lhs %ain% "R11_2=O" | lhs %ain% "R11_2=F" ), 
           
          #  CF 9 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R12=O" | lhs %ain% "R12=F" | 
                                  lhs %ain% "R13=O" | lhs %ain% "R13=F" | 
                                  lhs %ain% "R14=O" | lhs %ain% "R14=F" ),  
           
          #  CF 10 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R12=O" | lhs %ain% "R12=F" | 
                                  lhs %ain% "R14=O" | lhs %ain% "R14=F" ),  
           
          #  CF 11 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R21_1=O" | lhs %ain% "R21_1=F" 
| 
                                  lhs %ain% "R21_2=O" | lhs %ain% "R21_2=F" | 
                                  lhs %ain% "R21_3=O" | lhs %ain% "R21_3=F" |  
                                  lhs %ain% "R21_4=O" | lhs %ain% "R21_4=F" | 
                                  lhs %ain% "R21_5=O" | lhs %ain% "R21_5=F" | 
                                  lhs %ain% "R23=O" | lhs %ain% "R23=F" |  
                                  lhs %ain% "R24=O" | lhs %ain% "R24=F" ), 
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          #  CF 12 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R21_1=O" | lhs %ain% "R21_1=F" 
| 
                                  lhs %ain% "R21_2=O" | lhs %ain% "R21_2=F" | 
                                  lhs %ain% "R21_3=O" | lhs %ain% "R21_3=F" |  
                                  lhs %ain% "R21_4=O" | lhs %ain% "R21_4=F" | 
                                  lhs %ain% "R21_5=O" | lhs %ain% "R21_5=F" ), 
           
          #  CF 13 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R21_1=O" | lhs %ain% "R21_1=F" 
| 
                                  lhs %ain% "R21_2=O" | lhs %ain% "R21_2=F" | 
                                  lhs %ain% "R21_3=O" | lhs %ain% "R21_3=F" |  
                                  lhs %ain% "R21_4=O" | lhs %ain% "R21_4=F" | 
                                  lhs %ain% "R21_5=O" | lhs %ain% "R21_5=F" | 
                                  lhs %ain% "R22_1=O" | lhs %ain% "R22_1=F" |  
                                  lhs %ain% "R22_2=O" | lhs %ain% "R22_2=F" | 
                                  lhs %ain% "R22_3=O" | lhs %ain% "R22_3=F" |  
                                  lhs %ain% "R22_4=O" | lhs %ain% "R22_4=F" |  
                                  lhs %ain% "R24=O" | lhs %ain% "R24=F" ),  
           
          #  CF 14  
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R21_1=O" | lhs %ain% "R21_1=F" 
| 
                                  lhs %ain% "R21_2=O" | lhs %ain% "R21_2=F" | 
                                  lhs %ain% "R21_3=O" | lhs %ain% "R21_3=F" |  
                                  lhs %ain% "R21_4=O" | lhs %ain% "R21_4=F" | 
                                  lhs %ain% "R21_5=O" | lhs %ain% "R21_5=F" | 
                                  lhs %ain% "R22_1=O" | lhs %ain% "R22_1=F" |  
                                  lhs %ain% "R22_2=O" | lhs %ain% "R22_2=F" | 
                                  lhs %ain% "R22_3=O" | lhs %ain% "R22_3=F" |  
                                  lhs %ain% "R22_4=O" | lhs %ain% "R22_4=F" | 
                                  lhs %ain% "R23=O" | lhs %ain% "R23=F" ), 
           
          #  CF 15 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R23=O" | lhs %ain% "R23=F" | 
                                  lhs %ain% "R24=O" | lhs %ain% "R24=F" ),  
           
          #  CF 16 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R22_1=O" | lhs %ain% "R22_1=F" 
| 
                                  lhs %ain% "R22_2=O" | lhs %ain% "R22_2=F" | 
                                  lhs %ain% "R22_3=O" | lhs %ain% "R22_3=F" |  
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                                  lhs %ain% "R22_4=O" | lhs %ain% "R22_4=F" ), 
           
          #  CF 17 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R22_1=O" | lhs %ain% "R22_1=F" 
| 
                                  lhs %ain% "R22_2=O" | lhs %ain% "R22_2=F" | 
                                  lhs %ain% "R22_3=O" | lhs %ain% "R22_3=F" |  
                                  lhs %ain% "R22_4=O" | lhs %ain% "R22_4=F" | 
                                  lhs %ain% "R23=O" | lhs %ain% "R23=F" ), 
           
          #  CF 18 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R23=O" | lhs %ain% "R23=F" ), 
           
          #  CF 19 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R22_1=O" | lhs %ain% "R22_1=F" 
| 
                                  lhs %ain% "R22_2=O" | lhs %ain% "R22_2=F" | 
                                  lhs %ain% "R22_3=O" | lhs %ain% "R22_3=F" |  
                                  lhs %ain% "R22_4=O" | lhs %ain% "R22_4=F" | 
                                  lhs %ain% "R24=O" | lhs %ain% "R24=F" ),   
           
          #  CF 20 
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R21_1=O" |  
                                  lhs %ain% "R21_2=O" | lhs %ain% "R21_2=F" | 
                                  lhs %ain% "R21_3=O" | lhs %ain% "R21_3=F" |  
                                  lhs %ain% "R21_4=O" | lhs %ain% "R21_4=F" | 
                                  lhs %ain% "R21_5=O" | 
                                  lhs %ain% "R22_1=O" | lhs %ain% "R22_1=F" |  
                                  lhs %ain% "R22_2=O" | lhs %ain% "R22_2=F" | 
                                  lhs %ain% "R22_3=O" | lhs %ain% "R22_3=F" |  
                                  lhs %ain% "R22_4=O" | lhs %ain% "R22_4=F" | 
                                  lhs %ain% "R23=O" | lhs %ain% "R23=F" | 
                                  lhs %ain% "R24=O" | lhs %ain% "R24=F" ),  
           
          #  CF 21 
          #  CF 22 
          #  CF 23 
          #  CF 24 
          #  CF 25 
          #  CF 26 
          #  CF 27 
          #  CF 28 
          #  CF 29 
          #  CF 30 



 186 

           
          rules.CF.S <- subset(rules.CF, subset = lhs %ain% "R3_1=O" |  
                                  lhs %ain% "R3_2=O" | 
                                  lhs %ain% "R3_3=O" |   
                                  lhs %ain% "R3_4=O" ) 
           
  ) 
   
  #  inspect(rules.CF.S) 
   
  rules.CF.S <- sort(rules.CF.S, by="confidence") 
   
  quality(rules.CF.S) <- cbind(quality(rules.CF.S), chiSquared = interestMeasure(rules.CF.S, 
measure = "chiSquared", transactions = CF)) 
  quality(rules.CF.S) <- cbind(quality(rules.CF.S), phi = interestMeasure(rules.CF.S, measure = 
"phi", transactions = CF)) 
  quality(rules.CF.S) <- cbind(quality(rules.CF.S), oddsRatio = interestMeasure(rules.CF.S, 
measure = "oddsRatio", transactions = CF)) 
  quality(rules.CF.S) <- cbind(quality(rules.CF.S), redundant = is.redundant(rules.CF.S)) 
   
  rules.CF.S <- as(rules.CF.S, "data.frame") 
   
  write.xlsx(rules.CF.S,file=paste("D:/Project/Output_Continuo/Rules _Con_CF_",i, ".xlsx", 
sep = ""), sheetName = paste("Rules CF_",i, ".xlsx", sep = ""), col.names=TRUE, 
row.names=FALSE, append=FALSE, showNA=TRUE) 
   
  i <- i+1 
   
} 
  


