A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/106740/

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Jane M. Hawkins

Thesis submitted for the degree of Doctor of Philosophy.

Mathematics Institute
University of Warwick
October 1980.

TAELE OF CONTENTS.

Page
Summary (v)
Introduction (vii)
CHAPTER 1. Notation and Definitions 1
§1. Diffeomorphisms of T^{n}. 1
52. Ergodic Theory Preliminaries 5
CHAPTER II. Rotation Nombers of Type III
Diffeomorphisms of T^{l}. 9
53. Introduction 9
§4. The Proof of Theorem 3.1. 11
§5. Topological Properties of the set of Type III $_{1}$-Diffeomorphisms 34
CHAPTER III. Type III ${ }^{-D i f f e o m o r p h i s m s ~ o f ~}$ Higher Dimensional Tori. 39
56. Introduction 39
57. Type III, jiffeomorphisms are a G_{δ} 41
58. Cartesian Froduct Diffeomorphisms 46
59. Skew Products of Type III, 53

Page

CHAPTER IV. Smooth Type III Diffeomorphisms 61
§10. Introduction 61
§11. Type III Diffeomorphisms of T^{n}. 64
812. Type III Diffeomorphisms of $T^{1} \times R$. 71
§13. Type III ${ }_{\lambda}$ Diffeomorphisms of $T^{n} \times \mathbb{R}^{\mathbf{P}}, 0<\lambda<1 . \quad 94$
14. Type III, $0 \leq \lambda<1$ Diffeomorphisms
of Arbitrary Manifolds

References

Acknowledgements.

I would like to thank my supervisor Dr. Klaus Schmidt for his endless suggestions, advice, and encouragement during the past three years. In addition to his invaluable mathematical assistance, the support I received in the form of a close friendship with Klaus and his wife Annelise helped me bring my thesis to a finish.

I owe thanks to David Epstein and Dusa McDuff for getting me started on my thesis by introducing me to the subject, and to all my friends in the Mathematics Institute who discussed mathematics with me throughout the past years.

Thanks to my famis who patiently encouraged me to complete my studies in England. Special thanks are due to Peta McAllister for a beautiful typing job.

Finally I am indebted to Marshall Aid Commemoration Commission who provided me with generous financial support during my first three years at Warwick.

Declaration.

The contents of Chapter II are contained in a paper with Klaus Schmidt as co-author, which will be submitted for publication.

The nature of the joint work is the following. The construction given in Chapter II, Section 54 arose from some suggestions given by Klaus Schmidt to this author to improve an earlier weaker result. Most of the estimates, as they appear here, were hammered out together.

Summary .

This thesis is about a classification of ergodic diffeomorphisms of manifolds introduced by Krieger [13]. We start with the definition which states that if f denotes a non-singular ergodic transformation of a probability space (X, S, μ) which admits no o-finite invariant measure equivalent to the given measure, then f is of type III. We then look at a finer division of the type III class of transformations by specifying the ratio set of f, which gives information about the values that the Radon-Nikodym derivative of f^{n} (the $n^{\text {th }}$ iterate of f) takes on sets of positive measure. The ratio set is an invariant of weak equivalence, hence of conjugation by diffeomorohisms.

We examine some relationships between the differentiable and metric structures of diffeomerphisms of manifolds, starting with some known results on the circle $[7,8,11]$.

The first chapter introduces most of the necessary definitions, background theorems, and notation.

The second chapter extends results of Kerman and Katznelson by giving a construction for c^{2} diffeomorphisms of the circle which are of type III 1 . The rotation numbers of these diffeomorphisms form a set of measure 1 in [0,1]; Herman's theorem shows this is not possible for C^{3} diffeomorphisms.

In Chapter 3 we discuss the topology of type III 1 diffeomorphisms in the space of C^{∞} diffeomorphisms of T^{n}. We prove that type III ${ }_{1}$ diffeomorphisms form a dense G_{δ} in certain closed subspaces of Diff $f^{\infty}\left(T^{n}\right)$.

The fourth chapter deals with the more pathological cases: type III λ_{λ} and type IIIo diffeomorphisms. The main result of this chapter is a theorem which proves that every smooth paracompact manifold of dimension ≥ 3 admits a smooth type III diffeomorphism. This uses techniques from Herman [7], and is based on a result about ergodic smooth real line extensions of diffeomorphisms proved earlier in the chapter. Type III λ_{λ} diffeomorphisms are show: to be easy to construct from the results on type III ${ }_{0}$ and type III, diffeomorphisms.

Introduction.

Let f be a non-singular automorphism of a Lebesgue space (X, S, μ). The problem of describing the conditions under which μ is equivalent to an f-invariant measure has been the subject of much study $[2,3,4,6$, 11,15]. Ornstein was the first, in 1960, to construct a non-singular transformation of a measure space which admits no o-finite invariant measure equivalent to the given measure [15]. Herman constructed examples of diffeomorphisms of the circle which are $C^{l+\varepsilon}$, and later some smooth maps of every paracompact manifold of dimension greater than or equal to three, which do not admit a-finite invariant measures equivalent to Lebesgue measure [7]. kazznelson also constructed some C^{∞} examples on the circle.

We develop ideas from [7] and [14] in this thesis to study the problem in more detail. After introducing some definitions and notation in Chapter I, we first recall the relationship between rotation numbers of diffeomorphisms of the circle and conjugacy to the rotation diffeomorphism. Herman's Theorem proves the existence of a set $A \subset[0,1]$ of full Lebesgue measure such that every C^{3} diffeomorphism of the circle whose rotation number lies in A admits a unique finite invariant measure equivalent to Lebesgue measure. In this chapter we also introduce the concept of the ratio set and describe briefly Krieger's classification of non-singular transformations given in [13].

Chapter II consists of a construction which proves that for every $\alpha \varepsilon$, there exists a c^{2} diffeomorphism of the circle with rotation number α which admits no o-finite invariant measure equivalent to Lebesgue measure. Some topological results concerning the size of the set of type III ${ }^{1}$ diffeomorphisms of the circle are included, extending a result of Herman [8].

The third chapter deals with type III 1 diffeomorphisms of higher dimensional manifolds. Herman has shown in [7] the existence of a c^{∞} type III_{1} diffeomorphism on every smooth paracompact manifold of dimension ≥ 3. We study the topo!ogy of the set of such diffeomorphisms. The results concerning the rozation number of a diffeomorohism of the circle generalise only to a limited extent to higher dimensions; the rotation number of a diffeomorphism of a higher dimensional torus is not always welldefined if we use the definition given in Chapter I.

We prove, in a general setting, that C^{r} type III, diffeomorphisms form a G_{δ} on any compact manifold. The task is then to determine which manifolds and which spaces of diffeomorphisms admit dense sets of type III 1 diffeomorphisms. We give several methods for constructing C^{∞} type III $_{1}$ diffeomorphisms on T^{n}, starting with Katznelson's construction on $\mathrm{T}^{\mathbf{1}}$. The existence cf a residual set of type III diffeomorphisms can
be shown in various closed subspaces of $\operatorname{Diff}{ }^{\infty}\left(T^{n}\right)$.

The fourth chapter deals with more pathological types of diffeomorphisms which do not admit any invariant measure equivalent to Lebesgue measure. In particular we study type III $_{0}$ and type III, diffeomorphisms. Sections $\S 10$ and $\S 11$ deal with extending smooth type III diffeomorphisms of the circle to the n-torus.

Section $\S 12$ contains a useful result on smooth ergodic real line extensions. We see in Chapter II that for certain irrational numbers $\alpha \in[0,1]$, every C^{\prime} cocycle for R_{α} is a coboundary. A similar result holds for C^{∞} cocycles; the proof uses the same Fourier series techniques of Il.5.7. Therefore, it is not obvious that a type III diffeomorphism of T^{1} has an ergodic rea? line extension, since we need a smooth cocycle which is not a coboundary. In this section we prove that if X is a locally compact manifold, f an ergodic diffeomorphism of X with a recurrent cocycle which is not a coboundary but a c^{∞} limit of coboundaries, then there exists a dense \tilde{G}_{6} of ergodic real line extensions of f. It is a trivial consequence of Herman's Theorem that logDf is always a C^{∞} limit of coboundaries for ergodic $f \varepsilon \operatorname{Diff}^{\infty}\left(T^{1}\right)$. By our construction of type III ${ }_{0}$ diffecmerphisms of T^{n} this condition still holds, so we can apply the theorem. Hence we can extend our type III diffeomorphisms to $T^{n} \times \mathbb{R}^{p}$, and now wsing methods similar to those of Herman we can find
(x)
type III diffeomorphisms of arbitrary paracompact manifolds.

The chapters are labelled with Roman numerals, and the sections are numbered continuously. A reference to II.5.3 means Chapter II, Lemma 5.3 (in Section 55), for example.

CHAPTER I.

Notation and Definitiors.
87. Diffeomorpiisms of T^{n}.

Let Diff ${ }_{+}^{r}\left(T^{n}\right)$ denote the group of orientation preserving c^{r} diffeomorphisms of the n-torus, $T^{n}=\mathbb{R}^{n} / Z^{n}$ where $n \geq 1$ and $1 \leq r \leq \infty$. If we lift T^{n} to R^{n} we can also lift $f \varepsilon \operatorname{Diff}_{+}^{r}\left(T^{n}\right)$ to $\tilde{f}: \mathscr{P}^{n} \rightarrow \mathbb{R}^{n}$, where $\tilde{f}=I d+\phi$, and ϕ is z^{n}-periodic. We deiine the set
F is a diffeomerphism

$$
D^{r}\left(T^{n}\right)=\left\{\tilde{f}: R_{i}^{n}-i_{n}^{n} \mid \tilde{f}=I d+\phi, \phi \text { is } \mathbf{Z}^{n} \text {-periodic }\right\} .
$$

We define the c^{r} norm for $1 \leq r<\infty$ by:

$$
\left\|\left.f\right|_{i r}=\right\| f f\left\|_{0}+\right\| D f\left\|_{0}+\ldots+| | D^{r} f\right\|_{0},
$$

and if $r=\infty$, we define the metric:

$$
\|f-g\|_{\infty}=\sum_{r=0}^{\infty} 2^{-r| | f-g| |_{r}} \frac{1+\| f-\left.g\right|_{r}}{1+}
$$

Then $D^{r}\left(T^{n}\right)$ is a topological group with centre $C=\left\{R_{p}(x)=x+p \mid p \varepsilon \mathbb{Z}^{n}\right\}$. Clearly we have $\operatorname{Diff}_{+}^{r}\left(T^{n}\right) \cong \frac{D^{r}\left(T^{n}\right)}{C}$ for each $1 \leq r \leq+\infty$. We will usually write $f \in D^{r}\left(T^{n}\right)$ for both the map f and its lifting, unless confusion arises.

The rotation number of $f \varepsilon D^{r}\left(T^{1}\right)$, denoted $\rho(f)$, is defined to be the uniform limit of the sequence $\left\{\frac{f^{k}-I d}{k}\right\}, k \in \mathbb{N}$. We normalise $\rho(f)$ so that $0 \leq \rho(f)(=\rho(f))<1$. It is wellknown that ρ is invariant under conjugation (i.e., $\rho(f)=\rho\left(h^{-1} \circ f \circ h\right)$ for every $f \in D^{r}\left(T^{1}\right)$ and every $\left.h \in D^{0}\left(T^{l}\right)\right)$, and that $\rho: D^{r} T^{?}, \rightarrow \mathbb{R} / \mathbb{Z}$ is continuous with respect to the C^{r} topology. Furtnermore, $f \in D^{r}\left(T^{1}\right)$ has periodic points if and only if $\rho(f)$ is rational. A full discussion of the rotation number and its properties is given in [8]. We write $F_{\alpha}^{r}=\left\{f \varepsilon D^{r}\left(T^{1}\right) \mid \rho(f)=\alpha\right\}$, and denote $F^{r}\left(T^{1}\right)=D^{r}\left(T^{1}\right)$-int $\rho^{-1}(Q)$, (where int denotes interior).

Consider $\alpha \in \mathbb{R}-\mathbb{2} / \mathbb{Z}$, and recall the continued fraction expansion of a given by:

$$
\begin{aligned}
\alpha & \left.=\left[a_{1}, a_{2}, \ldots, .\right]\right] \\
& =\frac{1_{1}}{a_{1}}+\frac{1}{a_{2}}+\ldots .
\end{aligned}
$$

The $n^{\text {tn }}$ convergent of c is denoted by P_{n} / q_{n}, where P_{n} and q_{n} satisfy the well-known recursion formulae: $p_{0}=0$, $p_{1}=q_{0}=1, q_{1}=a_{1}, p_{n}=a_{n} p_{n-1}+p_{n-2}$, and $q_{n}=a_{n} q_{n-1}+q_{n-2}$, for $n \geq 2$. We can now define the set A for which Herman's Theorem is true.

Definition 1.1.

Let $\alpha \in R-Q / \mathbb{Z}, \alpha=\left[a_{1}, \ldots, a_{n}, \ldots\right]$. We say that α satisfies condition if for every $\varepsilon>0$, there exists $B>0$ such that

$$
\left(1+a_{i}\right)^{\Pi}\left(1+a_{i+1}\right)>B^{\left(1+a_{i}\right)\left(1+a_{i+1}\right)}=0\left(q_{n}^{\varepsilon}\right) \quad \text { as } n \rightarrow \infty .
$$

We now define:

$$
A=\{\alpha \in[0,1]-Q \mid \alpha \text { satisfies condition } A\} ;
$$

it is shown in [8] that $m(A)=1$. We say that a is of constant type if $\sup _{n \geq 1} a_{n}<\infty$.
We define the set $\Omega=\{\alpha \in A \mid \alpha$ is not of constant type $\}$. We state Herman's Theorem since it will be referred to throughout the thesis.

Theorem 1.2.

$$
\begin{aligned}
& \text { If } f \in D^{r}\left(T^{1}\right), 3 \leq r \leq \infty \text { and } \rho(f) \in A \text {, then } f \text { is } \\
& C^{r-2} \text { conjugate to } R_{\alpha} \text {. If } r=\infty \text {, then } f \text { is } C^{\infty} \text { conjugate } \\
& \text { to } R_{\alpha} \text {. }
\end{aligned}
$$

52. Ergodic Theory Preliminaries.

Let (X, S, u) denote a Borel space where μ is a probability measure on (X, S). Let f denote a non-singular ergodic transformation of (X, S, μ), i.e. every f-invariant set $B \in S$ satisfies either $\mu(B)=0$ or $\mu(B)=1$. We define the set $\operatorname{Aut}(X, S, \mu)=\{T:(X, S) \longrightarrow$ such that T is nor-singular a_{A} Borel automorphism of $\left.(x, 5)\right\}$, and let

$$
O_{f}(x)=\left\{f^{n} x: n \in \bar{k}\right\}
$$

The full group of f is defined by

$$
[f]=\left\{V_{\varepsilon} A u t(X, S, \mu): V x \in 0_{f}(x) \text { for every } x \in X\right\} \text {. }
$$

Definition 2.1.

Two transformations $f, g \varepsilon A u t(X, S, \mu)$ are weakly equivalent if there exists a measurable invertible map $\psi: X \rightarrow X$ with $\psi_{\star}^{-1} \mu^{n} \mu$ and $\psi\left(0_{f}(x)\right)=O_{g}(\psi X)$ for $\mu-$ a.e. $x \in X$.

We now introduce an invariant of weak equivalence.

Definition 2.2 .

Let $f \in \operatorname{Aut}\left(X, \mathcal{S}^{2}, u\right)$ be an invertible, ergodic transformation. A non-negative real number t is said to lie in the ratio set of f, $r^{*}(f)$, if for every Borel set $B \in S$ with $\mu(B)>0$, and for every $\varepsilon>0$,

$$
\mu\left(\bigcup_{n \in Z}\left(B \cap f^{n} B \cap\left\{x_{\varepsilon} X:\left|\frac{d \mu f^{-n}}{d_{\mu}}(x)-t\right|<\varepsilon\right\}\right)\right)>0 .
$$

Here $\frac{d \mu f^{-n}}{d \mu}$ denotes the Radon-Nikodym derivative of $f_{\star}^{n} \mu$ with respect to μ. $\because \in$ set $r(f)=r^{\star}(f) \backslash\{0\}$. One can show that $r(f)$ is a closed subgroup of the multiplicative group of positive real numbers \mathbb{R}^{+}, and that f admits a o-finite invariant measure if and only if $r^{*}(f)=\{1\}$ [13]. If f has no o-finite invariant measure equivalent to μ, there are three possibilities:
(1) $r^{*}(f)=\{t \varepsilon R: t \geq 0\}$, in which case f is said to be of type III;
(2) $r^{*}(f)=\{0\} \cup\left\{\lambda^{n}: n \in \mathbb{Z}\right\}$ for $0<\lambda<1$; in this case f is said to be of type III ${ }_{\lambda}$; or,
(3) $r^{*}(f)=\left\{0, \cdots\right.$. Then f is of type III ${ }_{0}$.

The ratio set is actually an example of the set of essential values for a particular cocycle for f. We shall briefly introduce these more general ccncepts from the study of non-singular group actions on measure speces. For the purposes of this thesis, we will give the definitions in the differentiable context; for the most general dofinitions, we refer the reader to [16].

Let (X, j, μ) denote a C^{∞}, compact manifold with smooth probability measure μ. Let $f \in \operatorname{Diff}^{\infty}(X)$ be u-ergodic (it is always non-singular) and let H be a locally compact second countable abelian group. The action $(n, x) \rightarrow f^{n}(x)$ of \mathbb{Z} on X is clearly non-singular since for every $n \varepsilon \mathbb{Z}, x \mapsto f^{n} x$ is a Borel automorphism of X which leaves is quasi-invariant.

Definition 2.3.
the \mathbb{Z}-action of f on X
A Borel map a: $\mathbb{Z} \times X \rightarrow H$ is called a cocycle for \wedge if the following condition holds:

For every $n, m \in Z$ and for every $x \in X$, we have

$$
\equiv\left(n, f^{m} x\right)-a(n+m, x)+a(m, x)=0 .
$$

A cocycle $a: \bar{z} \leqslant X \rightarrow H$ is called a coboundary if there exists a Borel $\operatorname{map} b: X \rightarrow H$ with $a(n, x)=b\left(f^{n} x\right)-b(x) \quad n \in \mathbb{Z}$, for $\mu-a . e$.
$x \in X$. Two cocycles a_{1} and a_{2} are said to be cohomologous if their difference is a coboundary.

The following defines a cohomology invariant which generalises the concept of the ratio set.

Definition 2.4.

Let $(X, 5, \mu)$ be as above, f an outomorphism which acts nonsingularly and ergodically on (X, S, μ) and let $a: \mathbb{Z} \times X \rightarrow H$ be a cocycle. An element $a \varepsilon H=H \cup: \infty$ is called an essential value of a if, for every Borel set $B \in \zeta$ with $\mu(B)>0$ and for every neighbourmece $\because \because x j$ of x in H,

$$
\mu\left(Z \cap f^{-n} B \cap(x: a(n, x) \in N(x) i)>0\right.
$$

for some $n \in \mathbb{Z}$. The set of essential values is denoted by $E(a)$, and we put $E(a)=E(a) \cap H$. We will state a few well-known properties of $E(a)$.
(1) $E(a)$ is a non-empty closed subset of R;
(2) $E(a)$ is a closed subgroup of H;
(3) $E(a)=\{0\}$ if and only if a is a coboundary.
(4) $E\left(a_{1}\right)=E\left(a_{2}\right)$ nenever a_{1} and a_{2} are cohomologous.

CHAPTER II.

Rotation Numbers of Tyos II: 1 Diffeomorphisms of T^{1}.
§3. Introduction.

In [11], Katzneison constructs ergodic \mathbf{c}^{∞} diffeomorphisms of the circle which do not admit any σ-finite measure equivalent to Lebesgue measure. The rotation numbers of these diffeomorphisms are Liouville numbers of a very special form and are, in particular, contained in a subset of the circle of Lebesgue measure zero. Subsequently Hermar [7. proved that the set of C^{∞} diffeomorphisms of the circle, which are of type III 1 form a dense G_{δ} in F^{∞}. Herman's Theorem implies, however, that the rotation numbers of all these type III ${ }_{1}$ diffeomorphisms lie in the complement of the set A defined in Definition 1.1. Herman's Theorem also implies that the situation is basically unchanged if one looks at C^{3}-diffeomorphisms of the circle. His nethods suggest that c^{2}-diffeomorphisms might exhibit a different behavior, and this is the starting point for this chapter. Using a refinement of Katznelson's construction, we obtain, for a.e. $a \in[0,1)$, a C^{2}-diffeomorphism of the circle of type III with rotation number $=$. The main result of this chapter is the following:

Theorem 3.1.
For every $\alpha \varepsilon \Omega$, there exists a diffeomorphism $f \in D^{2}\left(T^{3}\right)$ with $\rho(f)=\alpha$, which is of type III 1 .

Theorem 3.1 will be a consequence of a slightly stronger assertion (Proposition 4.4.), which in turn has an interesting topological implication. In Section 5 we prove that, for every $a \in A$, the set of type III, ${ }^{\text {-diffeomorphisms is a dense }} G_{\delta}$ in $F_{\alpha}^{2}\left(T^{1}\right)$.

In $[8, X I]$, Herman posed the following problem:
If a is a number of constant type, and if $2 \leq r<+\infty$, does there exist $f \in F_{\alpha}^{r}$ such that f is not C^{r-1} conjugate to R_{α} ? The answure the thes question is still not known since Ω does not contain numbers of constant type.

Theorem 3.1 aiso sneds some light on a related problem. If α is of constant type and if $\phi \in C^{1}\left(T^{1}\right)$ with $\int_{T} \phi(x) d x=0$, then there exists $\psi \varepsilon L^{2}\left(T^{1}, \pi_{i}\right)$ satisfying $\psi-\psi O R_{\alpha}=\phi$-a.e. We have proved that for each $\alpha \in \Omega \quad$ there exist uncountably many $f \varepsilon F^{2}$, and for each f a function $\phi \in C^{1}\left(T^{1}\right)$ with $\int_{T^{1}} \phi(x) d m=0$ which is such that the equation $\psi-\psi 0 f=\phi$ has no m-measurable solution.

Later in the thesis we see that if $B=\overline{\left\{\phi \varepsilon C^{\top}\left(T^{\top}\right) \mid \phi=\psi-\psi o f\right\}}$, (where the closure is taken with respect to the C^{1} topology) and if there exists a single ϕ in B with the above property then there is a dense G_{δ} in B with the same properts.
64. The Proof of Theorem 3.1.

Let $f \varepsilon D^{2}\left(T^{1}\right)$ with $\alpha=\rho(f) \in T^{l}\left(Q\right.$, and let $\alpha=\left[a_{1}, a_{2}, \ldots\right]$ be the continued fraction expansion of $\rho(f)$. For every $n \geq 0$, $P_{n}(f)$ denotes the partition of T^{\top} given by the points $\left\{f^{j}(0)\right.$: $\left.0 \leq j \leq a_{n}-1\right\}$. f sends each interval in $P_{n}(f)$ onto some other interval in the same partition, with the exception of two subintervals. Furthermore, if $I \in P_{n}(f)$, and if $J \subset I$ is one of the subintervals in the partition of I defined by $p_{n+1}(f)$, then $f^{q_{n}}$ sends J onto one of its two neighbours in I, except possibly when J lies at one of the two ends of I. A much more detailed discussion can be found in [11]. We now turn to the proof of Theorem 3.1 and start with a measure theoretic proposition closely related to [11,II, Theorem 1.1].

Proposition 4.1.
Let $f \varepsilon D^{2}\left(T^{1}\right)$ with $\alpha=\rho(f) \varepsilon T^{\top} \backslash Q$, and let, for every $n \geq 1, P_{n}(f)$ be the partition of T^{1} described above. Suppose that the following condition holds for infinitely many n : for every $I \in P_{n}(f)$ there exists a Borel set $C=I$ and a positive integer j_{0} with

$$
\begin{align*}
& f^{j}(c) \subset 1 \tag{4.1}\\
& m(c) \geq 10^{-4} m(1) \tag{4.2}
\end{align*}
$$

and such that

$$
\begin{equation*}
10^{-3} \leq\left|\log D f^{\mathbf{j}_{0}}(t)\right| \leq 1 \tag{4.3}
\end{equation*}
$$

for every $t \in \mathcal{C}$. Then f admits no o-finite invariant measure equivalent to m.

Proof.

If f admits a σ-finite invariant measure m^{\prime} equivalent to m, we have $d m^{\prime}(t)=g(t) d m(t)$ for some Borel function $g>0$ on T^{1} which satisfies $g \circ f(t) \cdot D f(t)=g(t)$ for m a.e. $t \in T^{1}$. There exists a $c>0$ sucn that the set $E=\left\{t \varepsilon T^{\top}: c \leq g(t) \leq 1.001 c\right\}$ has positive measure. Let t_{o} be a point of density of E. By definition, we have

$$
\lim _{\substack{n \rightarrow \infty \\ t_{0} \varepsilon I \in P_{n}(f)}} \frac{m(I n E)}{m(I)}=1
$$

Choose n large enough so that, for $t_{0} \in I \in P_{n}(f)$,

$$
m(I \cap E)>\left(1-10^{-6}\right) m(I)
$$

and such that n is one of the numbers satisfying (4.1) - (4.3).

From (4.2) and (4.3) se get

$$
\begin{aligned}
& \frac{1}{3} m(C) \leq m\left(f^{j o}(C)\right) \leq 3 m(C) \\
& m\left(f^{j o}(C)\right) \geq 3^{-1} 10^{-4} m(I) \\
& m(C \cap E) \geq m(C)-m(I \backslash E)=m(C)-(m(I)-m(I \cap E)) \\
&>m(C)-10^{-6} m(I) \geq\left(1-10^{-2}\right) m(C) \\
& m\left(f^{j o}(C) \cap E\right) \geq m\left(f^{j o}(C)\right)-m(I \backslash E)>m\left(f^{j_{0}}(C)\right)-10^{-6} m(I) \\
&>m\left(f^{j^{j}}(C)\right)-3 \cdot 10^{-2} m\left(f^{j_{0}}(C)\right) \\
&=\left(1-3 \cdot 10^{-2}\right) m\left(f^{j_{0}}(C)\right) .
\end{aligned}
$$

and

This implies

$$
\begin{aligned}
\therefore\left(f^{-j_{0}}\left(f^{j_{0}}(C) \cap E\right)\right) & >3^{-1} m\left(f^{j_{0}}(C) \cap E\right) \\
& >3^{-1} \cdot\left(1-3 \cdot 10^{-2}\right) m\left(f^{j_{0}}(C)\right) \\
& >3^{-2} \cdot\left(1-3 \cdot 10^{-2}\right) m(C)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& m\left(C \cap E \cap f^{-j} 0\right. \\
& m)
\end{aligned} \begin{aligned}
& \geq m\left(C \cap f^{-j} 0(E)\right)-m(C \backslash E) \\
& \\
& >3^{-2}\left(1-3 \cdot 10^{-2}\right) m(C)-(m(C)-m(C \cap E)) \\
& \\
& >3^{-2}\left(1-3 \cdot 10^{-2}\right) m(C)-10^{-2} m(C) \\
& \\
& >0.09 m(C)>0 .
\end{aligned}
$$

Put $B=C \cap E \cap f^{-j} O(E) . m(B)>0$, and we get

$$
10^{-3} \leq\left|\log D f^{j_{0}}(t)\right|
$$

for every $t \in B$, from (4.3). On the other hand,

$$
D f^{j_{0}}(t)=\frac{g_{\bullet f}^{j_{0}}(t)}{g(t)}
$$

and hence

$$
\begin{aligned}
& \mid \log \partial f^{j} O \\
&(t) \mid=\left|\log \operatorname{gof}^{j_{0}}(t)-\log g(t)\right| \\
& \leq \log 1.001<10^{-3},
\end{aligned}
$$

since both t and $f^{j^{j}(t)}$ lie in E whenever $t \in B$. This contradiction proves the non-existence of an invariant measure m' ~ m .

Remark 4.2.

Any reader familiar with the notion of the ratio set $r *(f)$ (cf.I, s2) will realize that we have just proved that $r^{*}(f) \neq\{1\}$. A closer look at the proof of Proposition 4.1. shows that $r(f) \neq\{1\}$, so that the diffeomorphism f must either be of type III ${ }_{\lambda}$ for some λ with $1>\lambda \geq \frac{1}{e}$, or of type III, . If $f: T^{\top} \rightarrow T^{1}$ or $f: T^{\top} \rightarrow \mathbb{R}$ is a $c^{r}-$ map, we denote by $\|f\|_{r}$ its c^{r}-norm.

Proposition 4.3.

Let $\alpha \in \Omega$ (cf.I, 1.1), and let $0<\delta, n<1$ and $N \geq 1$ be fixed. There exists a diffeomorphism $f \varepsilon D^{\infty}\left(T^{1}\right)$ and integers j_{0}, M such that $M>N$ and $1 \leq j_{0}<q_{R+1}$ which satisfy

$$
\begin{align*}
& \rho(f)=\alpha, \tag{4.4}\\
& P_{n}(f)=P_{n}\left(R_{\alpha}\right) \text { for } 0 \leq n \leq M, \tag{4.5}\\
& \left\|f-R_{\alpha}\right\|_{2}<n, \tag{4.6}
\end{align*}
$$

$$
\begin{equation*}
\|\log D f\|_{0} \leq 10^{-1} . \delta . n . d-1 \text {, } \tag{4.7}
\end{equation*}
$$

and for every $I \in P_{M}(f)$ there exists an interval $C \in I$ such that $f^{j o}(C) \subset I, \quad r(C) \geq 2.10^{-4} \mathrm{~m}(I)$, and

$$
\begin{equation*}
\left|\log D f^{j_{0}}(t)\right| \geq 2.10^{-3} \delta \text { for every } t \in \mathbb{C} \tag{4.8}
\end{equation*}
$$

Furthermore we have

$$
\begin{equation*}
\left\|\log D f^{j_{0}}\right\|_{0} \leq 0.5 \delta \tag{4.9}
\end{equation*}
$$

Proof.

Let $a=\left[a_{1}, a_{2}, \ldots\right]$ be the continued fraction expansion of $\alpha \in A$, and let, for every $n \geq 1, d_{n}=\left\|q_{n} \alpha\right\|$, where $\|\cdot\|$ denotes the distance from the nearest integer. For every $n \geq 1$, the partition $P_{n}\left(R_{\alpha}\right)$ consists of q_{n} intervals; q_{n-2} of these have length $d_{n-1}+d_{n}$, and $a_{n} a_{n-1}$ have length d_{n-1}. The partition $P_{n+1}\left(R_{\alpha}\right)$ divides each interval $I \varepsilon P_{n}\left(R_{\alpha}\right)$ into either a_{n+1} or $a_{n+1}+1$ subintervals, all of which have length d_{n}, except for one interval at one of the ends of I, which will have length $d_{n}+d_{n+1}$. From this discussion we conclude that, for every $n \geq 1$,

$$
\begin{equation*}
1 / 2 q_{n} \leq d_{n-1} \leq 1 / q_{n} \text {. } \tag{4.10}
\end{equation*}
$$

We now fix M > Nith

$$
a_{M+1} \geq 10^{3} n^{-1}
$$

where n, N are the numbers appearing in the statement of this proposition. (2.10) implies

$$
d_{M} \leq q_{M+1}^{-1} \leqslant a_{M+1}^{-1} q_{M}^{-1} \leq 2.10^{-3} n d_{M-1}
$$

so that the longer intervals in $P_{M}\left(R_{\alpha}\right)$, which have length $d_{M-1}+d_{M}$, differ from the shorter ones (of length d_{M-1}) by at most $2.10^{-3} \mathrm{~d}_{M-1}$. Let $\psi_{1}: T^{1}+R$ be the function

We choose and fix a c^{∞}-function $\psi_{2}: T^{\top} \rightarrow R$ such that $\psi_{2}(t) \geq 0$ for every $t \in T^{1}, \int \psi_{2} d m=1, \psi_{2}(t)=\psi_{2}(1-t)$, and $\psi_{2}(t)=0$ for $10^{-3} d_{M-1} \leq t \leq 1-10^{-3} \cdot d_{M-1}$. The function $\psi_{+}: T^{1} \rightarrow R$ will denote the convoluioion $\psi_{1}{ }^{*} \psi_{2}$, and we set $\psi_{-}(t)=\psi_{+}(1-t)$. Let now, for evary $\dot{i} \in P_{M}\left(R_{\alpha}\right), \gamma(I)$ denote the mid-point of the interval I , anc put

$$
\begin{aligned}
& \phi_{+}(t)=\operatorname{IEP}_{M}^{\Sigma}\left(R_{\alpha}\right) \psi_{+}(t-\gamma(I)), \\
& \phi_{-}(t)=\underset{I \varepsilon P_{M}\left(R_{\alpha}\right)}{-} \psi_{-}(t-\gamma(I)) .
\end{aligned}
$$

Clearly ϕ_{+}and ϕ_{-}are C^{∞}-functions, and they are easily seen to satisfy the following conditions.

$$
\begin{align*}
& \left\|\phi_{+}\right\|_{0}=\left\|\phi_{-}\right\|_{0} \leq 1, \tag{4.11}\\
& \left\|D \phi_{+}\right\|_{0}=\left\|D_{-}\right\| \|_{0} \leq \frac{32}{15} \pi d_{M-1}^{-1}<7 d_{M-1}^{-1}, \tag{4.12}\\
& \left\|D^{2} \phi_{+}\right\|_{0}=\left\|D^{2} \phi_{-}\right\|_{0} \leq \frac{1}{2}\left(\frac{64}{15} \pi d_{M-1}^{-1}\right)^{2}<90 d_{M-1}^{-2}, \tag{4.13}
\end{align*}
$$

and

$$
\begin{equation*}
\phi_{+}(l \alpha)=\phi_{-}(l \alpha)=0 \text { for } 0 \leq \ell \leq q_{M}^{-1} \text {. } \tag{4.14}
\end{equation*}
$$

We conclude that

$$
\left\|\phi_{+}\right\|_{2}=\left\|\phi_{-}\right\|_{2}<\operatorname{lod}_{M-1}^{-2} .
$$

For every I $\varepsilon P_{M}\left(P_{\alpha}\right)$, we have

$$
\begin{align*}
D_{\phi_{+}}(t) \geq 10^{-1} d_{M-1}^{-1} \text { for every } t \in J_{1}(I)= & {\left[r(\mathrm{I})+0.018 d_{M-1} \cdot r(I)+\right.} \\
& \left.0.247 d_{M-1}\right] \tag{4.15}
\end{align*}
$$

and

$$
\begin{align*}
D \phi_{-}(t) \leq-10^{-1} d_{M-1}^{-1} \text { for every } t \in J_{2}(I)= & {\left[r(I)-0.247 d_{M-1}-r(I)-\right.} \\
& \left.0.018 d_{M-1}\right] . \tag{4.16}
\end{align*}
$$

Consider now, for every $c \in[-1,1]$,

$$
\phi_{c}(t)= \begin{cases}\phi_{+}(t)+(1-c) \phi_{-}(t) & \text { for } 0 \leq c \leq 1, \\ \phi_{-}(t)+(1+c) \phi_{+}(t) & \text { for }-1 \leq c \leq 0,\end{cases}
$$

and put

$$
\begin{equation*}
f_{c}(t)=t+\alpha+10^{-2} \cdot \delta \cdot n \cdot d_{M-1}^{2} \quad \phi_{c}(t) . \tag{4.17}
\end{equation*}
$$

Since the functions \dagger_{+}and ϕ_{-}have disjoint supports, it is clear that the relations (4.11) - (4.14) hold with $\phi_{c}, c \in[-1,1]$, replacing ϕ_{+}or ϕ_{-}. In particular we note that f_{c} can be considered as a diffeomorphism of T^{1}, and that $\left\|f_{c}-R_{\alpha}\right\|_{2}<n$
for every $c \in[-1,1]$. In our next step we fix the value of c. An easy estimate shows that $\rho\left(f_{+1}\right)$ and $\rho\left(f_{-1}\right)$ lie on different sides of α. Since the map $c \rightarrow f_{c}$ is continuous from $[-1,1]$ to $D^{\infty}\left(T^{1}\right)$, there exists a $c_{0} \varepsilon[-1,1]$ with $\rho\left(f_{c_{0}}\right)=\alpha$, and we put $f=f_{c_{0}}$. So far we have proved that f satisfies (4.4) and (4.6). (4.5) follows from (4.14) and (4.17), and (4.7) is clear from the inequalities:

$$
0.95 x \leq \log (x+1) \leq x \text { for } 0 \leq x \leq 0.1
$$

and

$$
\begin{equation*}
1.05 x \leq \log (x+1) \leq x \text { for }-0.1 \leq x \leq 0 \tag{4.18}
\end{equation*}
$$

and from (4.12) and (4.17). In order to prove (4.8) and (4.9), we set $l_{0}=\operatorname{Int}\left(\frac{5}{\eta}\right)$ and

$$
\begin{equation*}
j_{0}=\ell_{0} q_{M} . \quad \text {, where Int denotes the integral part. } \tag{4.19}
\end{equation*}
$$

Then (4.12), (4.17) and (4.18) yield

$$
\begin{aligned}
\left\|\log D f^{j_{0}}\right\|_{0} & \leq j_{0} \cdot\|\log D f\|_{0} \leq 1.06 \cdot j_{0} \cdot 10^{-2} \delta \eta d_{M-1}^{2} \quad\left\|D_{\phi_{c}}\right\|_{0} \\
& \leq 7.05 \cdot 7 \cdot 10^{-2} \cdot \delta \eta d_{M-1} \cdot j_{0} \\
& \leq 10^{-1} \delta M d_{M-1} .5 M^{-1} q_{M} \\
& \leq 0.5 \delta
\end{aligned}
$$

by (4.10). Having proved (4.9), we consider (4.8) and assume first that $c_{0} \geq 0$. Put

$$
J_{j}^{\prime}(I)=\left[r(I)+0.132 d_{M-1}, r(I)+0.133 d_{M-1}\right] \text {. }
$$

The inequalities

$$
\begin{aligned}
\left|f^{k}(t)-R_{\alpha}^{k}(t)\right| & \leq k \cdot 10^{-2} \delta n d_{M-1}^{2}| | \phi_{c_{0}} \mid \|_{0} \\
& \leq l_{0} q_{M} \cdot 10^{-2} \delta n d_{M-1}^{2} \\
& \leq 5.10^{-2} d_{M-1}
\end{aligned}
$$

where $0 \leq k \leq j_{0}$ and

$$
\begin{aligned}
\left|f^{j_{0}}(t)-t\right| & \leq \ell_{0} R_{\alpha}^{q_{M}}(t)-t \mid+\ell_{0} q_{M} \delta n d_{M-1}^{2} \cdot 10^{-2} \\
& \leq \ell_{0}\left(d_{M}+\delta n d_{M-1} \cdot 10^{-2}\right) \\
& \leq 10^{-2} d_{M-1}
\end{aligned}
$$

imply the following: for every $I \in P_{M}\left(R_{\alpha}\right)$ and for every k with $0 \leq k \leq j_{0}$ there exists an interval $\tilde{I}_{\varepsilon} P_{M}\left(R_{\alpha}\right)$ with

$$
\begin{equation*}
f^{k}\left(U_{j}^{\prime}(I)\right) \subset J_{1}(\tilde{I}) \tag{4.20}
\end{equation*}
$$

In the particular case $k=j_{0}$ we get $\tilde{I}=I$. For later reference we give here a more precise estimate: if $I \varepsilon P_{M}\left(R_{\alpha}\right)$, one has

$$
\begin{equation*}
f^{j_{0}}\left(J_{j}(1)\right) \subset\left[r(1)+0.07 d_{M-1}, r(I)+0.2 d_{M-1}\right] . \tag{4.21}
\end{equation*}
$$

From (4.7) and (4.18) we have

$$
\begin{aligned}
& 0.95 \cdot 10^{-2} \delta n d_{M-1} d_{N-1} \sum_{k=0}^{j_{0}^{-1}}{ }^{D}{ }_{o} C_{0}\left(f^{k}(t)\right) \\
& \leq \sum_{k=0}^{j_{0}-1} \log \left(1+10^{-2} \delta n d_{M-1} d_{M-1} D_{C_{C_{0}}}\left(f^{k}(t)\right)\right) \\
& =\sum_{k=0}^{j_{0}-1} \log D f\left(f^{k}(t)\right)=\log D f^{j_{0}}(t),
\end{aligned}
$$

and we can apply (4.15) and (4.20) to get

$$
0.002375 \delta \leq 0.95 \cdot 10^{-3} \delta n j_{0} d_{M-1} \leq \log D f^{j}(t)
$$

for every $t \in C=J_{j}(I), I \varepsilon P_{M}\left(R_{\alpha}\right)$. This proves (4.8) under the assumption that $c_{0} \geq 0$. If $c_{0}<0$, one uses $J_{2}(I)$, defined
in (4.15), chooses $J_{2}(\mathrm{I})=\left[\gamma(I)-0.133 d_{M-7}, \gamma(\mathrm{I})-0.132 \mathrm{~d}_{\mathrm{M}-1}\right]$, and obtains

$$
-0.0025 \delta \geq \log D f^{j}(t)
$$

for every $t \in C=J_{2}(i), I \varepsilon P_{q_{1}}\left(R_{\alpha}\right)=P_{M}(f)$. Again we have verified (4.8). The expression (4.21) is now replaced by

$$
\begin{equation*}
f^{j_{0}}\left(J_{2}^{\prime}(I)\right) \subset\left[\gamma(I)-9.2 d_{M-1}, r-0.07 d_{M-1}\right] . \tag{4.22}
\end{equation*}
$$

The proof of Proposition 4.3 is complete.

Proposition 4.4.

Let $\alpha \in \Omega$ and $0<\varepsilon<1$ be fixed. There exists a diffeomorphism $f_{n} \varepsilon D^{2}\left(T^{1}\right)$ satisfying the following conditions.

$$
\begin{align*}
& \rho\left(f_{0}\right)=\alpha, \tag{4.23}\\
& \left\|f_{0}-R_{\alpha}\right\|_{2}<\varepsilon, \tag{4.24}\\
& f_{0} \text { is of type } I I I_{1} . \tag{4.25}
\end{align*}
$$

Proof.

Using an induction argument we shall construct a sequence $\left(f_{n}\right)=D^{\infty}\left(T^{1}\right)$ which converges in $D^{2}\left(T^{i}\right)$ to a limit f_{0}, and f_{0} will satisfy (4.23) - (4.25). For this construction we choose and fix a sequence $\left(\delta_{n}: n \geq 1\right)$ of real numbers satisfying

$$
\begin{align*}
& 0<\delta_{n} \leq 1 \text { for every } n \geq 1, \\
& \delta_{2 n}=1 \quad \text { for every } n \geq 1, \tag{4.26}
\end{align*}
$$

and
the set $\left\{\delta_{n}: n \geq 1\right.$ is dense in $[0,1]$.

The sequence $\left(f_{n}\right) \subset D^{\infty}\left(T^{l}\right)$ will be obtained through repeated applications of Proposition 4.3: Given $\delta_{\ell}, \eta_{\ell}, N_{\ell}$ we use Proposition 4.3 to define a function $f=\tilde{f}_{\ell+1} \varepsilon D^{\infty}\left(T^{1}\right)$ satisfying (4.4)-(4.9), and we put $j_{0}=j_{\ell+1}, M=M_{\ell+1}$, and $C=C_{\ell+1}$ (I)CI, for every $I \in P_{M_{\ell+1}}\left(\tilde{f}_{\ell+1}\right) \cdot N_{\ell+1}$ will then be chosen depending on $M_{\ell+1}$ and $\tilde{f}_{\ell+1}$. To start the process, let $f_{1}=R_{\alpha}, \quad M_{1}=0, N_{1}=1$,
 $n=\eta_{1}, N=N_{1}$ to get $f=\bar{f}_{2}=f_{2}, \quad M=M_{2}, j_{0}=j_{2}, \quad$ and
$\tilde{C}_{2}(I)=C_{2}(I) C I$ for every $I \in P_{M_{2}}\left(f_{2}\right)$, satisfying (4.4)- (4.9).
Suppose now that we have constructed $f_{1}, \ldots, f_{\ell}, n_{j}, \ldots, n_{\ell-1}$, $M_{1}, \ldots, M_{\ell}, N_{1}, \ldots, N_{2-1}$. By Herman's Theorem (cf. I, 51) there exists $h_{\ell} \in \operatorname{Diff}{ }^{\infty}\left(T^{\gamma}\right)$ with $f_{\ell}=h_{\ell}^{-1} R_{\alpha} h_{\bar{z}}$. Choose $N_{\ell} \geq M_{\ell}$ such that

$$
\begin{equation*}
\max _{\mathrm{I}_{\mathrm{N}_{\ell}}\left(\mathrm{f}_{\ell}\right)} \sup _{\mathrm{t}_{1}, \mathrm{t}_{2} \varepsilon I}\left|D h_{\ell}^{-1}\left(\mathrm{t}_{1}\right)-D h_{\ell}^{-1}\left(\mathrm{t}_{2}\right)\right|<3 / 5| | h_{\ell} \|_{1}, \tag{4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{1 \varepsilon P_{N_{\ell}}\left(\tilde{f}_{\ell}\right)} t_{1}, t_{2}^{\varepsilon I}: \log D h_{\ell}^{-1}\left(t_{1}\right)-\log D h_{\ell}^{-1}\left(t_{2}\right) \mid<10^{-4} \delta_{\ell+1} \tag{4.29}
\end{equation*}
$$

We put $h_{1}=$ id, define

$$
\begin{equation*}
n_{\ell}=\left(\min _{1 \leq n \leq \ell} \delta_{n} \cdot\left(1+\left|\left|h_{n}\left\|_{3}+\right\| h_{n}^{-1}\right| \|_{3}\right)^{-2}\right) \cdot \varepsilon \cdot 2^{-\ell} 10^{-5} \cdot q_{M_{l}+1}^{-1}\right. \tag{4.30}
\end{equation*}
$$

and apply Proposition 4.3 with $n=\eta_{\ell}, \delta=\delta_{\ell}, N=N_{\ell}$ to obtain $f=\tilde{f}_{\ell+1}, j_{0}=j_{\ell+1}, \quad M=M_{\ell+1} \quad$ and $C=\tilde{c}_{\ell+1}(I) \subset I, I \in P_{M_{\ell+1}}\left(f_{\ell+1}\right)$ satisfying (4.4) - (4.9). The general inequality

$$
\begin{equation*}
\left\|h^{-1} R_{\alpha} h-h^{-1} g h\right\|_{2} \leq 10| | R_{\alpha}-g \mid \|_{2} \cdot\left(1+\left|\left|h \left\|_{3}+\left|\left|h^{-1}\right| \|_{3}\right)^{2}\right.\right.\right.\right. \tag{4.31}
\end{equation*}
$$

$h \in D i f f^{3}\left(T^{1}\right), g \varepsilon D^{2}\left(T^{1}\right)$, implies that

$$
f_{i+1}=h_{\ell}^{-1} \dot{f}_{\ell+1} h_{\ell}
$$

satisfies

$$
\begin{equation*}
\left\|f_{\ell}-f_{\ell+1}\right\|_{2} \leq\left(\min _{1 \leq n \leq \ell} \delta_{n}\right) \varepsilon \cdot 2^{-\ell} 10^{-4} a_{M_{\ell+1}}^{-1} . \tag{4.32}
\end{equation*}
$$

For every $I \in P_{M_{\ell+1}}\left(f_{\ell+1}\right)$, put

$$
\begin{equation*}
C_{\ell+1}(I)=h_{\ell}^{-1}\left(\tilde{C}_{l+1}\left(h_{\ell}(I)\right)\right) . \tag{4.33}
\end{equation*}
$$

From (4.28) one proves easily

$$
\begin{equation*}
m\left(C_{\ell+1}(I)\right) \geq 10^{-4} m(I) \tag{4.34}
\end{equation*}
$$

for every $I \in P_{M_{\ell+1}}\left(f_{\ell+1}\right)$.

This induction procedure allows us to define a sequence ($f_{\ell}: \ell \geq 1$) in $D^{\infty}\left(T^{1}\right)$, which satisfies (4.28) - (4.34) for every $\ell \geq 1$. (4.32) implies in sarticular that $\left(f_{\ell}\right)$ is a Cauchy sequence in $D^{2}\left(T^{1}\right)$, and we desfine

$$
\begin{equation*}
f_{0}=\lim _{\ell} f_{\ell} \tag{4.35}
\end{equation*}
$$

in $D^{2}\left(T^{1}\right)$. It is now necessary to go through a series of estimates in order to prove that f_{0} satisfies the required conditions. By construction (4.23) and (4.24) are obvious, but (4.25) is somewhat more difficult to prove. We first observe that, for every $k \leq \ell$,

$$
P_{M_{k}}\left(f_{k}\right)=P_{M_{k}}\left(f_{\ell}\right),
$$

so that

$$
\begin{equation*}
P_{M_{k}}\left(f_{k}\right)=P_{1_{k}}\left(f_{0}\right) \tag{4.36}
\end{equation*}
$$

for every $k \geq 1$. Our next aim is to show that

$$
\begin{equation*}
f_{0}^{f_{k}}\left(c_{k}(1)\right) \subset I \tag{4.37}
\end{equation*}
$$

for every $I \in P_{M_{k}}\left(f_{0}\right)$ and for every $k \geq 2$. Statements (4.21) and (4.22) imply that, for every $k \geq 2$, and for every $I \in P_{M_{k}}\left(\tilde{f}_{k}\right)$, the interval $\dot{f}_{k}^{j_{k}}\left(\tilde{C}_{k}(I)\right)$ has distance $>10^{-2}{ }_{d_{M}}{ }_{\mu_{k}-1}$ from the endpoints of I. Now (4.33) shows that the interval $f_{k}^{j_{k}}\left(C_{k}(I)\right)$ has distance $>10^{-2} d_{M_{k}-1} \cdot\left\|D{n_{k}}_{k}\right\|_{0}^{-1}$ from the endpoints of I, for every $I \in P_{M_{k}}\left(f_{k}\right)$. We will prove (4.27) if we can show that

$$
\begin{equation*}
\left\|f_{0}^{j_{k}}-f_{k}^{j_{k}}\right\|_{0} \leq 10^{-2} d_{M_{k}-1}\left\|D h_{k}\right\|_{0}^{-1} \tag{4.38}
\end{equation*}
$$

for every $k \geq 2$. (4.38) will follow from

$$
\begin{equation*}
\left\|f_{p}^{j_{k}}-f_{k}^{j_{k}}\right\|_{0} \leq 10^{-2} d_{M_{k}-1}\left\|D h_{k}\right\|_{0}^{-1} \tag{4.39}
\end{equation*}
$$

for every $k \leq p$. To prove (4.39) we first note that (4.7) and (4.30) imply, for every $j=1, \ldots, q_{M_{-}-1}, 2 \geq 1$,

$$
\begin{aligned}
\left\|\log D \tilde{f}_{\ell+1}^{j}\right\|_{0} & \leq j\left\|\log D \tilde{f}_{\ell+1}\right\| \|_{0} \\
& \leq j \cdot 10^{-1} \delta_{\ell} n_{\ell} d_{M_{\ell-1}} \\
& \leq 2^{-\ell} 10^{-6} q_{M_{l+1}}^{-1}\left(\inf _{l \leq n \leq \ell}\left(1+| | h_{n}\| \|_{3}+\left\|h_{n}^{-1}\right\| \|_{3}\right)^{-2}\right) \\
& <10^{-6} .
\end{aligned}
$$

Hence $\left\|\log D \tilde{f}_{\ell+1}^{\mathrm{j}}\right\|_{0}>2^{-1}\left\|1-D \tilde{f}_{\ell+1}^{\mathrm{j}}\right\| \|_{0}$ and

$$
\begin{aligned}
& \left\|f_{\ell}^{j}-f_{\ell+1}^{j}\right\|_{0}=\left\|h_{\ell}^{-1} R_{\alpha}^{j} h_{\ell}-h_{\ell}^{-1} f_{\ell+1}^{j} h_{\ell}\right\|_{0} \\
& \leq\left\|O n_{2}^{-1}\right\|\left\|_{0} \cdot\right\| R_{\alpha}^{j}-\bar{f}_{\ell+1}^{j}\| \|_{0} \\
& \leq\left\|D n_{\ell}^{-1}\right\|\left\|_{0} \cdot\right\| D R_{\alpha}^{j}-D f_{\ell+1}^{-j}\| \|_{0} \\
& =\left\|D h_{\ell}^{-1}\right\|_{0} \cdot\left\|1-D \tilde{f}_{\ell+1}^{j}\right\| \|_{0} \\
& <2\left\|D h_{\ell}^{-1}\right\|\left\|_{0} \cdot\right\| \log D f_{\ell+1}^{j} \|_{0} \\
& <10^{-5} \cdot 2^{-\ell} d_{\ell 4} \cdot\left(\min _{l \leq n \leq \ell}\left(1+\left\|h_{n}\right\|_{3}+\left\|h_{n}^{-1}\right\| \|_{3}\right)^{-1}\right) .
\end{aligned}
$$

During the last estimate :/e have used the fact that

$$
\rho\left(\bar{f}_{\ell+1}^{j}\right)=\rho\left(R_{\alpha}^{j}\right)=j \alpha
$$

Adding up the inequalities (4.40) we get, for every $k<p$,

$$
\begin{aligned}
\left\|f_{k}^{j_{k}}-f_{p}^{j_{k}}\right\| \|_{0} & \leq \sum_{\ell=k}^{p-1}\left\|f_{l}^{j_{k}}-f_{\ell+1}^{j_{k}}\right\| \|_{0} \\
& \leq 10^{-5} d_{M_{k}} \cdot\left(\min _{l \leq n \leq k}\left(1+\left\|h_{n}\right\|_{3}+\left\|h_{n}^{-1}\right\| \|_{3}\right)^{-1}\right. \\
& \leq 10^{-5} d_{M_{k}} \cdot\left\|D h_{k}\right\|_{0}^{-1}
\end{aligned}
$$

which proves (4.39). We now intend to prove the inequality

$$
\begin{equation*}
\delta_{k} \cdot 10^{-3} \leq\left|\log D f_{0}^{j_{k}}(t)\right| \leq \delta_{k} \cdot 0.6 \tag{4.41}
\end{equation*}
$$

for every $k \geq 2$, every $t \in C_{k}(I)$, and every $I \in P_{M_{k}}\left(f_{0}\right)$. To verify (4.41), we use induction. Our hypothesis is that, for every $\ell=2, \ldots, P$, and for every $k \leq \ell$,

$$
\begin{equation*}
\delta_{k}\left(2.10^{-3}-10^{-4}\left(2-2^{1-\ell}\right)\right) \leq\left|\log D f_{\ell}^{j} k(t)\right| \leq \delta_{k}\left(0.5+10^{-4}\left(2-2^{1-\ell}\right)\right) \tag{4.42}
\end{equation*}
$$

To prove that (4.42) holds for $\ell=p+1$, we proceed exactly as in (4.40):

$$
\begin{aligned}
& \left\|\log D f_{p}^{j_{k}}-\log D f_{p+1}^{j_{k}}\right\|_{0} \\
= & \left\|\log D\left(h_{p}^{-1} R_{\alpha}^{j_{k}} h_{p}\right)-\log D\left(h_{p}^{-1} \tilde{f}_{p+1}^{j_{k}} h_{p}\right)\right\|_{0} \\
\leq & \left\|\log D h_{p}^{-1}\left(R_{\alpha}^{j_{k}} h_{p}\right)-\log D h_{p}^{-1}\left(\tilde{f}_{p+1}^{j_{k}} h_{p}\right)\right\| \|_{0} \\
+ & \left\|\log D \tilde{f}_{p+1}^{j_{k}}\right\| \|_{0} \\
\leq & \left\|0^{2} h_{p}^{-1}\right\|\left\|_{0} \cdot\right\| D h_{p}\| \|_{0} \cdot\left\|R_{\alpha}^{j_{k}}-\tilde{f}_{p+1}^{-j_{k}}\right\|_{0}+j_{k} \cdot\left\|\log D \tilde{f}_{p+1}\right\| \|_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|D^{2} h_{p}^{-1}\right\|\left\|_{0} \cdot\right\| D h_{p}\left\|_{0} \cdot\right\| 1-D \tilde{f}_{p+1}^{j_{k}}\left\|_{0}+j_{k}\right\| \log D \tilde{f}_{p+1}\| \|_{0} \\
& \leq j_{k} \cdot\left\|\log D \tilde{f}_{p+1}\right\|_{0} \cdot\left(2\left\|D^{2} h_{p}^{-1}\right\|_{0} \cdot\left\|D h_{p}\right\|_{0}+1\right) \\
& \leq j_{k} \cdot 10^{-1} \delta_{p} \eta_{p} d_{M_{p}-i} \cdot\left(2\left\|D^{2} h_{p}^{-1}\right\|_{0} \cdot\left\|D h_{p}\right\| \|_{0}+1\right) \\
& \leq j_{k} \cdot \delta_{p} \cdot d_{M_{p}-1} \cdot\left(2\left\|D^{2} h_{p}^{-1}\right\|\left\|_{0}\right\| D h_{p} \|_{0}+1\right) \cdot \\
& \leq\left(\min _{l \leq n \leq p} \delta_{n} \cdot\left(1+\left\|h_{n}\right\|_{3}+\left\|h_{n}^{-1}\right\| \|_{3}\right)^{-2}\right) \cdot \varepsilon \cdot 2^{-p} \cdot 10^{-6} \cdot 9_{M_{p}+1}^{-1} \\
& \leq \delta_{k} \cdot 2^{-p} \cdot 10^{-6}
\end{aligned}
$$

for every $k=1, \ldots, p$, since $j_{k} \leq q_{m_{k-1}} \leq q_{M_{p}+1}$. Adding up these inequalities as before we see that (4.42) holds for $\ell=p+1$ and $k<\ell$. Turning now to $k=p+1$ we have

$$
\begin{aligned}
& \log D f_{p+1}^{j}(t)=\log \left(D\left(h_{p}^{-1} f_{p+1}^{j} h_{p+1}\right)\right)(t) \\
= & \log D h_{p}^{-1}\left(f_{p+1}^{j}\left(h_{p}(t)\right)\right)+\log D h_{p}(t) \\
+ & \log D f_{p+1}^{j}\left(h_{p}(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\log D h_{p}^{-}\left(\tilde{f}_{p+1}^{j}\left(h_{p}(t)\right)-\log D h_{p}^{-1}\left(h_{p}(t)\right)\right. \\
& +\log D f_{p+1}^{-j_{p+1}}\left(h_{p}(t)\right) .
\end{aligned}
$$

Since $t \in \tilde{C}_{p+1}(I)$ implies $\tilde{f}_{\hat{p}+1}^{j}(t) \in I$ for every $I \in P_{M_{p+1}}\left(\tilde{f}_{\tilde{p}+1}\right)$ (cf. 4.8), we can apply (4.29) and (4.33) to get

$$
\left|\log \underset{D f_{p+1}^{j}}{j_{p+1}}(t)-\log \underset{D f_{p+1}^{-j}}{p+1}(t)\right|<10^{-4} \delta_{p+1}
$$

for every $t \in C_{p+1}(i), \quad I \in P_{M_{p+1}}\left(f_{p+1}\right)$. We have that (4.8) and (4.9) imply (4.42) for $k=p+1, \quad \ell=p+1$, so that (4.41) follows by continuity.

Finally we see that (4.34), (4.36), (4.37) and (4.41), together with (4.26), allow us to apply Proposition 4.1 and Remark 4.2 now shows that f_{0} is either of type III, or of type III ${ }_{\lambda}$ for $\lambda<1$. To prove that $f_{0} i^{i}$ indeed of type $I I I_{1}$, we use an indirect argument and assume that f_{0} is of type III $_{\lambda}$. By (4.27), the set

$$
\left.s=i n \geq 1:-\log \lambda / 2 \leq \delta_{n} \leq-\log \lambda\right\}
$$

is infinite. A routine calculation, involving the Lebesgue density theorem, (4.34), (4.36), (4.37) and (4.41) (for $k \in S$) now implies that $r\left(f_{0}\right)$ must contain an element r satisfying

$$
1<e^{-10^{-3} \log \lambda / 2} \leq \gamma \leq e^{-0.6 \log \lambda}<\lambda^{-1},
$$

which is absurd. This contradiction proves that f_{0} satisfies (4.25), and the proposition is completely proved.

Remark 4.5.

Proposition 4.4 implies Theorem 3.1.
55. Topological Properties of the set of Type [II ${ }_{1}$ - Diffeomorphisms. Motivated by [8,II.4], we define, for $r, s \geq 0, a \varepsilon T^{\top}$,

$$
\begin{aligned}
0^{r, s}= & \left\{g^{-1} R_{\alpha} g \varepsilon F_{\alpha}^{r}\left(T^{1}\right): g \varepsilon D^{s}\left(T^{1}\right)\right\}, \\
O_{\alpha}^{r, a c}= & \left\{g^{-1} R_{\alpha} g \varepsilon F_{\alpha}^{r}\left(T^{1}\right): g\right. \text { is absolut } \\
& \text { with respect to Lebesgue measur } \\
0_{\alpha}^{r}= & \left\{g^{-1} R_{\alpha} g: g \varepsilon D^{r}\left(T^{1}\right)\right\},
\end{aligned}
$$

$$
o_{\alpha}^{r, a c}=\left\{g^{-1} R_{\alpha} g \in F_{\alpha}^{r}\left(T^{1}\right): g\right. \text { is absolutely continuous }
$$

with respect to Lebesgue measure $m\}$,
and

$$
\begin{aligned}
F^{r, m}= & \left\{f \varepsilon F_{a}^{r}\left(\top^{l}\right): f \text { admits a } \sigma\right. \text {-finite invariant } \\
& \text { measure equivalent to } m\} .
\end{aligned}
$$

In a more general form Herman's Theorem states that, for every $\alpha \in A$, and for every $r \geq 3$.

$$
0_{\alpha}^{r, r-2}=\sigma_{\alpha}^{r, 3 c}=F_{\alpha}^{r, m}=F_{\alpha}^{r} .
$$

Furthermore Herman has shown that 0_{α}^{r} is meagre in F_{α}^{r}, for every $a \in T^{\top} \backslash Q$, and for every r with $1 \leq r<\infty$. For $a \in T^{1} \backslash f, a$ not of constant type, a stronger assertion holds: $0_{\alpha}^{r, r-1}$ is meagre in $\overline{0_{\alpha}^{r}}$, where the bar denotes closure in the c^{r}-topology (cf. [8,XI.4]).

In this section we shall indicate some consequences of Proposition 4.5 concerning the 'size' of $0_{\alpha}^{2, a c}$ and $F_{\alpha}^{2, m}$ in F_{α}^{2}, which will improve Herman's result in this special case. Our main assertion in this section is the following:

Proposition 5.3.

$$
\begin{align*}
& \text { For all } \alpha \in \Omega, \text { the set } \\
& \qquad \begin{array}{l}
G_{\alpha}=\left\{f \in F_{\alpha}^{2}: f \text { is of type } I I I_{1}\right\}
\end{array} \tag{5.1}
\end{align*}
$$

is a dense G_{0} in F_{z}^{2}.

Corollary 5.2.

$$
F_{\alpha}^{2, m} \text { and } \mathcal{O}_{z}^{2, a c} \text { are meagre subsets of } F_{\alpha}^{2} \text {. }
$$

We shall prove 2 moosition 5.1 by applying the lemmas below.

Lemma 5.3.

$$
\text { For } a \in A, 0 \leq r \leq \infty, \quad \overline{0_{\alpha}^{r}}=F_{a}^{r} .
$$

Proof.

This is a trivial consequence of Herman's Theorem since
F_{α}^{∞} is dense in F_{α}^{r} for every $r=0, \ldots, \infty$.

Lemma 5.4.

Let $f \in F_{a}^{r}, r \geq 2$ and assume that f is of type III ${ }_{1}$. Then $r_{i}^{-1} \sigma \sigma$ oh is of type III for every $h \in D^{0}\left(T^{1}\right)$ which is absolute iv continuous with respect to m.

Proof.

The ratio set is an invariant of weak equivalence and hence of conjugacy by non-singular automorphisms.

Lemma 5.5.
The set G_{α} in (5.1) is a G_{δ} in F_{α}^{2}, for every $a \varepsilon T^{1} Q$.

Proof.
By $[8, \operatorname{Cin} .1]$, the set $G=\left\{f=F^{2}: f\right.$ is of type III $\}$ is a
dense G_{8} in $F^{2}=D^{2}\left(T^{1}\right)$ int $\rho^{-1}(Q)$, where int denotes interior. Hence $\quad G_{\alpha}=F_{\alpha}^{2} \cap G$ is a G_{δ} in $F_{\alpha}^{2}=F^{2} \cap \rho^{-1}(\alpha)$. Note that G_{α} may be empty!

Proof of Proposition 5.1.

Lemma 5.5 shows that it suffices to prove that G_{α} is dense in F_{α}^{2}. Suppose there exists an open set U in F_{α}^{2} such that $U \cap G_{\alpha}=\varnothing$. By Lemma 5.3 , there exists $g \varepsilon U$ such that $g=h^{-1} O R_{\alpha}$ oh , where $h \in D^{2}\left(T^{1}\right)$. Now we define the map $H: F_{\alpha}^{2} \rightarrow F_{\alpha}^{2}$ by $H(f)=h \circ f \circ h^{-1}$. We have $H(g)=R_{a}$, and it is easy to see that H is a homeomorphism with respect to $-n=G^{2}$ topology. Thus $H(U)$ is open in F_{α}^{2} and contains R_{α}. By Proposition 4.5, $H(U)$ contains a type III, diffeomorphism so dy Lemma 5.4, U does as well. This contradiction proves the proposition.

Corollary 5.6.

$$
\begin{aligned}
& \text { For every } \alpha \in \Omega \quad \text { there exists } f \varepsilon F_{\alpha}^{2} \text { which is not } \\
& C^{1} \text { conjugate to } R_{\alpha} \text {. } \\
& \text { Using the notation of Proposition } 5.1 \text { we see that for every } a \varepsilon A \text {, } \\
& f \varepsilon G_{\alpha} \text { implies trat the equation } \log D f=\dot{\psi}-\psi^{\circ} f \text { has no m-measurable } \\
& \text { solution. We comoare this with a known result for the linearised }
\end{aligned}
$$

equation, where a is of constant type implies the existence of an L^{2} solution for every C^{1} cocycle. We include the result and a proof for completeness. If α is of constant type, it is not yet known if Corollary 5.6 is true.

Proposition 5.7.

> If $\alpha \varepsilon R \backslash Q / Z$ is of constant type and if $\phi \in C^{\top}\left(T^{1}\right)$ with $\int_{T^{1}} \phi(x) d m=0$, then there exists $\psi \in L^{2}\left(T^{\top}, m\right)$ satisfying $\psi-\psi^{\circ} R_{\alpha}=\phi$ m-a.e.

Proof.
We write $\phi(x)=\sum_{k=-\infty}^{\infty} \hat{\phi}(k) e^{2 \pi i k x}$, where $\hat{\phi}(k), k \in Z$ are the Fourier coefficients of ϕ. Solving the equation $\psi-\psi \circ R_{\alpha}=\phi$ then reduces to showing that $\sum_{k \neq 0}^{\sum}\left|\frac{\hat{\phi}(k)}{1-e^{2 \pi i k a}}\right|^{2}<+\infty$ (for an L^{2} solution). Since a is of constant type there exists a constant $C>0$ such that for every $k \in Z,\|k a\|>\frac{C}{k}$, and therefore a constant C. such that $\left|1-e^{2 \pi i k \alpha}\right|>\frac{C^{L}}{k}$.

$$
\text { Now } \sum_{k \neq 0}\left|\frac{\hat{b}(k)}{1-e^{2 \pi i k z}}\right|^{2} \leq \sum_{k \neq 0}\left|\frac{k}{c^{k}}\right|^{2} \cdot|\hat{\phi}(k)|^{2} .
$$

Since $\phi \in C^{1}\left(T^{1} ;\right.$, we have $\sum_{-\infty}^{\infty}|k|^{2} \cdot|\hat{\phi}(k)|^{2}<+\infty$, and the result follows.

CHAPTER III.

Type IIi ${ }^{\text {-Diffeomoranisms of Higher Dimensional Tori. }}$
56. Introduction.
orientation preserving
Every $\boldsymbol{A}_{\mathrm{e}}$ ergodic diffeomorphism of the circle can be extended to an ergodic flow on T^{2} by taking the suspension flow. Once an ergodic flow is obtained, a standard result gives the existence of a set of $t \in R$ for which the diffeomorphism obtained by fixing the flow at time t is ergodic and preserves the measure theoretic properties of the original diffeomorphism. We use this technique, as suggested by rerman in [7], to obtain some results on the topology of type III ${ }_{1}$ diffeomorphisms on T^{n}.

Another method for obtaining ergodic flows and diffeomorphisms on T^{2} is to look at ergodic circle extensions of the dynamical system given by:

$$
\begin{aligned}
F: & T^{n} \times R
\end{aligned} \rightarrow T^{n} \times R ~(x, y) \mapsto\left(f x, y+\log \frac{d m f^{-1}}{d m}(x)\right) .
$$

[^0]CHAPTER III.

Type III, -Diffeomorbhisms of Higher Dimensional Tori.
56. Introduction.
orientation preserving
Every A_{A} ergodic diffeomorphism of the circle can be extended to an ergodic flow on T^{2} by taking the suspension flow. Once an ergodic flow is obtained, a standard result gives the existence of a set of $t \in \mathbb{R}$ for which the diffeomorphism obtained by fixing the flow at time t is ergodic and preserves the measure theoretic properties of the original diffeomorphism. We use this technique, as suggested by rerman in [7], to obtain some results on the topology of type III, diffeomorphisms on T^{n}.

Another method for obtaining ergodic flows and diffeomorphisms on T^{2} is to look at ergodic circle extensions of the dynamical system given by:

$$
\begin{aligned}
& F: T^{n} \times R \rightarrow T^{n} \times R \\
& (x, y)+\left(f x, y+\log \frac{d m f^{-1}}{d m}(x)\right) .
\end{aligned}
$$

Motivated sy a Daper of Jones and Parry [10], we show that "most" C^{∞} functions $: T^{n} \mathbb{R} \rightarrow T^{1}$ give ergodic extensions for each F as defined
above. Thus we obtain results about smooth type III, diffeomorphisms of the skew product type.

Using conjugacy we obtain topological results for a larger class in $D^{r}\left(T^{n}\right)$.

We begin Chapter III with a lemma proving that type III, diffeomorphismsalways form a G_{6}. Thus to prove the existence of a residual set of such diffeomorphisms, the question is reduced to showing the existence of a dense set.
above. Thus we obtain results about smooth type III, diffeomorphisms of the skew product type.

Using conjugacy we obtain topological results for a larger class in $D^{r}\left(T^{n}\right)$.

We begin Chapter III with a lemma proving that type III, diffeomorphisms always form a $G_{\bar{o}}$. Thus to prove the existence of a residual set of such diffeomorphisms, the question is reduced to showing the existence of a dense set.
67. Type III Diffeomorphisms Are a G_{δ}.

Let (X, ζ, μ) be a compact manifold, with μ a C^{∞} probability measure on X. Consider the space

$$
L_{0}^{2}(x, \mu)=\left\{n \leq 1^{2}(x, \mu) \mid \int_{x} h d \mu=0\right\}
$$

and let $\left\{h_{i}\right\}_{i_{\in N}}$ denote a countable dense set in $L_{0}^{2}(X, \mu)$. We prove the following lemma similar to [7, v].

Lemma 7.1.

Let $g: X \rightarrow x$ an invertible transformation which preserves
μ. Then g is u-ergodic if and only if

$$
\inf _{m \geq 1}\left|\frac{1}{m} \sum_{j=1}^{m-1} h_{i} o^{j}\right|_{2}=0 \quad \text { for all }
$$

$i \in N$ and where $\quad 1 \quad I_{2}$ denotes the L^{2}-norm.

Proof.
(=>) Assume g is u-ergodic. Then by Von Neumann's mean ergodic theorem, for all $h \in L^{2}(X, \mu)$,

$$
\left.\lim _{m \rightarrow \infty}\right|_{m} \sum_{j=0}^{m-1} h \circ g^{j}-\left.\int_{k} h d \mu\right|_{2}=0
$$

This implies in particular, for every $i \in N$,

$$
\lim _{m \rightarrow \infty}\left|\frac{1}{\frac{1}{m}} \sum_{j=1}^{m-1} h_{i} \circ g^{J}\right|_{2}=0
$$

($<$) Assume that

$$
\inf _{m \geq 1}\left|\frac{1}{m} \sum_{j=1}^{m-1} h_{i}^{\circ} g^{j}\right|_{2}=0 \text { for every } i \in N \text {. }
$$

Suppose there exist $\because \varepsilon L_{0}^{2}(X, \mu)$ such that $f \circ g=f \quad \mu-a . e . \quad x \varepsilon X$. Then we have for every $i \in N, \int_{X} h_{i} \cdot f d \mu=\int_{X} h_{i} \cdot\left(f \circ g^{-1}\right) d \mu$ (since g preserves μ)

$$
\begin{aligned}
& =\int_{X}^{n}\left(h_{i} \circ g\right) \cdot f d \mu=\int_{X}\left(h_{i} \circ g^{j}\right) \cdot f d_{\mu} \\
& =\frac{1}{m} \sum_{j=0}^{m-1} \int_{X} h_{i} \circ g^{j} \cdot f d \mu \quad \text { (since }
\end{aligned}
$$

the integral is independent of j). Now by Holder's inequality,

$$
\frac{i}{m} \sum_{j=0}^{m-1} \int_{x} h_{i} \circ g^{j} \cdot f d \mu \leq\left. 1 \frac{1}{m} \sum_{j=0}^{m-1} h_{i} \circ g^{j}\right|_{2} . \mid f l_{2}
$$

for every m, so $\int_{x}^{i} h_{i} . f d \mu=0$ for every i. Clearly $\int_{X} h_{i} \cdot f d \mu=0 \forall E N^{X}$ implies that $f \equiv$ constant $\mu-a . e . \quad$ and hence
that g is μ-ergodic.

We use Lemma 7.1 to prove the following theorem.

Theorem 7.2.

Let $\operatorname{Diff}^{\infty}(X)$ denote the space of C^{∞} diffeomorphisms of X. With the C^{∞} topology on $\operatorname{Diff}^{\infty}(X)$, the set of type III diffeomorphisms is a G_{δ}.

Proof.

By definition and [16], f $\varepsilon \operatorname{Diff}^{\infty}(X)$ is of type III, if the map

$$
\begin{aligned}
F: X \times R & \rightarrow X \times R \\
(x, y) & \mapsto\left(f x, y+\log \frac{d \mu f^{-1}}{d}(x)\right) \quad \text { given by: }
\end{aligned}
$$

is $\nu=e^{-y} d \mu d y$ - ergodic. (Note that F preserves ν).

If we let $C_{n}=X \times(-n, n)$ denote the cylinder without boundary, and let v_{n} denote $\left.v\right|_{C_{n}} \cdot\left|v\left(C_{n}\right)\right|^{-1}$, we can consider the map $F_{C_{n}}=F_{n}$, the mad induced by F on C_{n}. Then F_{n} preserves the probability measure v_{n} and we see that F is v-ergodic if and only
that g is μ-ergodic.

We use Lemma 7.1 to prove the following theorem.

Theorem 7.2.

Let Diff ${ }^{\infty}(X)$ denote the space of C^{∞} diffeomorphisms of X. With the C^{∞} topology on $\operatorname{Diff}^{\infty}(\mathrm{X})$, the set of type III 1 diffeomorphisms is a G_{δ}.

Proof.

By definition and [16], $f \in \operatorname{Diff}^{\infty}(x)$ is of type III, if the map

$$
\begin{aligned}
& F: X \not X \mathbb{R} \rightarrow X \times R \\
& (x, y) \mapsto\left(f x, y+10 q \frac{d \mu f^{-1}}{}(x)\right) \quad \text { given by: }
\end{aligned}
$$

is $v=e^{-y} d \mu$ dy - ergodic. (Note that F preserves $\boldsymbol{\nu}$).

If we let $C_{n}=X \times(-n, n)$ denote the cylinder without boundary, and let v_{n} denoze $\left.v\right|_{C_{n}} \cdot\left|v\left(C_{n}\right)\right|^{-1}$, we can consider the map $F_{C_{n}}=F_{n}$, the mad induced by F on C_{n}. Then F_{n} preserves the probability measure v_{n} and we see that F is v-ergodic if and only
if F_{n} is v_{n}-ergodic for every $n \geq 1$.
Let $\left(h_{n, i}\right)_{i \in N}$ be a countable dense subset of $L_{o}^{2}\left(C_{n}, v_{n}\right)$;
i.e. $\int_{C_{n}} h_{n, i} d \nu_{n}=0$ for every $i \in N$, for fixed $n \in N$.

For fixed values of i, n, and k we define:

$$
B_{k, i, n}=\left\{\left.f \varepsilon \operatorname{Diff} f^{\infty}(x)\right|_{m \geq 1}\left|\frac{1}{m} \sum_{j=0}^{m-1} h_{n, i} \circ F_{r}^{j}\right|_{2}<\frac{1}{k}\right\} .
$$

We claim that for each triplet (k, i, n) the set $B_{k, i, n}$ is open in the C^{∞} =ovelogy. This is because the map

$$
f \rightarrow 1 \frac{1}{m} \sum_{j=0}^{m-1} h_{n, i} \circ F_{n}^{j} l_{2}
$$

is continuous with respect to the C^{∞} topology on the domain and the L^{2} topology on the range, for fixed m, n, i. Since the infimum of continuous maps is upper semicontinuous, it follows that $B_{k, i, n}$ is open.

We now consider:

$$
B=\bigcap_{n} \bigcap_{i} \bigcap_{k} B_{k, i, n}
$$

Clearly B is a G_{j} and $f \in B$ implies $\forall n \varepsilon N, \forall i \varepsilon N$, and $\forall k \in N$,

$$
\left.\inf _{m \geq 1} \frac{j_{n}}{m-1} \sum_{j=0}^{m, i}{ }^{\circ} F_{n}^{j}\right|_{2}<\frac{1}{k},
$$

so F_{n} is ν_{n}-ergodic for every $n \in N$, hence F is v-ergodic.
Note that, a priori, this G_{δ} may be empty. If $X=T$, from Katznelson's construction it follows that the set of type III, diffeomoranisms in $F^{\infty}=D^{\infty}\left(T^{1}\right)$-int $\rho^{-1}(Q)$ is a dense G_{δ}. This result is proved using different methods in [7].
58. Cartesian Product Diffeomorphisms.

We will show thet type III, diffeomorphisms form a dense G_{δ} in certain closed subspaces of the space of diffeomorphisms of higher dimensional tori.

Let $P R^{r}\left(T^{n}\right)$ denote the set of C^{r} diffeomorphisms of the form:

$$
f \varepsilon P R^{r}\left(T^{n}\right) \Rightarrow f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)
$$

where $f_{i} \in D^{r}\left(T^{-l} ;\right.$. Searly $P^{r}\left(T^{n}\right) \subset D^{r}\left(T^{n}\right)$ and for each $n \geq 1,0 \leq r \leq \infty, P R^{r}\left(T^{n}\right)$ is a closed subgroup of $D^{r}\left(T^{n}\right)$ (with respect to composition).

Herman has shown in $[8, X I I I]$ that in general one cannot define the rotation number of $f \varepsilon D^{r}\left(T^{n}\right)$ for $n \geq 2$. In $\operatorname{PR}^{r}\left(T^{n}\right)$, however, there is a natural extension of the rotation number. We define, for $f \varepsilon P P^{r}\left(T^{n}\right), \rho(f)=a=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ where $\boldsymbol{a}_{\boldsymbol{i}}=\rho\left(\mathrm{f}_{\mathbf{i}}\right)$ for $1 \leq \boldsymbol{i} \leq n$.

We write $=R_{q}^{r}\left(T^{n}\right)=\left\{f \in P R^{r}\left(T^{n}\right) \mid \rho(f)=\alpha \varepsilon \mathbb{R}^{\bar{n}}\right\}$,
and

$$
=\mathbb{R}^{r}\left(T^{n}\right)=\left\{f \in P R^{r}\left(T^{n}\right) \mid f_{i} \in F^{r}\left(T^{\eta}\right), 1 \leq i \leq n\right\}
$$

Recall that $F^{r}\left(T^{\top}\right)=D^{r}\left(T^{1}\right)$ int $\rho^{-1}(\mathbb{Q})$.
58. Cartesian Product Diffeomorphisms.

We will show that type III $_{1}$ diffeomorphisms form a dense G_{δ} in certain closed subspaces of the space of diffeomorphisms of higher dimensional tori.

Let $P R^{r}\left(T^{n}\right)$ denote the set of C^{r} diffeomorphisms of the form:

$$
f \in P R^{r}\left(T^{n}\right) \Rightarrow f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right),
$$

where $f_{i} \in D^{r}\left(T^{-}\right.$. Slearly $P^{r}\left(T^{n}\right) \subset D^{r}\left(T^{n}\right)$ and for each $n \geq 1,0 \leq r \leq \infty, P R^{r}\left(T^{n}\right)$ is a closed subgroup of $D^{r}\left(T^{n}\right)$ (with respect to composition).

Herman has shown in $[8, X I I I]$ that in general one cannot define the rotation number of $f \varepsilon D^{r}\left(T^{n}\right)$ for $n \geq 2$. In $P R^{r}\left(T^{n}\right)$, however, there is a natural extension of the rotation number. We define, for $f \varepsilon P P^{r}\left(T^{n}\right), \rho(f)=a=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \varepsilon \mathbb{R}^{n}$ where $\alpha_{i}=\rho\left(f_{i}\right)$ for $1 \leq i \leq n$.

We write $=R_{i}^{r}\left(T^{n}\right)=\left\{f \in P R^{r}\left(T^{n}\right) \mid \rho(f)=\alpha \in \mathbb{R}^{n}\right\}$, and

$$
\mathcal{F}^{r}\left(T^{n}\right)=\left\{f \in \operatorname{PR}^{r}\left(T^{n}\right) \mid f_{i} \in F^{r}\left(T^{\gamma}\right), 1 \leq i \leq n\right\} .
$$

Recall that $F^{r}\left(T^{-}\right)=D^{r}\left(T^{1}\right)$ int $\rho^{-1}(\mathbb{Q})$.

To extend our results to higher dimensions we need to recall some elementary facts about ergodic flows on compact manifolds.

Definition 8.1 .
$A \quad C^{r}$ flow on a manifold X is a C^{r} map $f: X \times R \rightarrow X$ such that if we denote $f_{t}(x)=f(x, t), \forall x \in X, t \in R$, then
(i) $f_{s+t}(x)=f_{s} \circ f_{t}(x) \quad \forall s, t \in R$,
(ii) $f_{0}=I d_{x}$. Then it follows that
(iii) $f_{-t}=f_{t}^{-1}$.
A flow on (X, S, μ) is a μ-ergodic if whenever $f_{t}(A)=A$ for some $A \in S$ and for every $t \in R$, then either $\mu(A)=0$ or $\mu\left(A^{C}\right)=0$.

Equivalently, f_{t} is u-ergodic if whenever $\phi 0 f_{t}=\phi$ for ϕ in $L^{\infty}(X, \mu)$, then ϕ is a constant μ-almost everywhere.

Definition 8.2 .

A non-singuiar ergodic flow f_{t} on (X, ζ, μ) is of type III if it admits no e-finice invariant measure equivalent to μ.

We say f_{t} is of type III, if the flow

$$
S: X \times R \times R \rightarrow X \times R \quad \text { given by }
$$

$$
(x, z, t) \rightarrow\left\langle f_{t}(x), z+\log \frac{d \mu f_{t}^{-1}}{d \mu}(x)\right) \quad \text { is }
$$

$v=e^{-z} d \mu \operatorname{dz}-$ ergodic.

If f is any diffeomorphism of a compact manifold of dimension n ≥ 1, there exists a canonical method for obtaining a flow on an ($n+1$)-dimensional manifold, associated with f, called the suspension flow of f. ide sefine $F_{t}=$ \{suspension flow of f on $X \times / \sim$, where $\left.(x, y) \sim\left(f^{\prime 7} x, y+n\right) \quad n \in \mathbb{Z}\right\}$; for details of this standard construction we refer the reader to [77]. The following proposition is an easy consequence of the construction.

Proposition 8.3.

If $f \varepsilon \operatorname{Diff} f^{r}(X)$ and f is u-ergodic, then F_{t} is μ Mm-ergodic. It is then a trivial corollary of this proposition that the suspension flow of a type $: \mathrm{II}_{\mathrm{f}}$ diffeomorphism is also of type III,.

We use the following well-known result [14] to obtain higher dimensional cifeomorphisms from flows.

Lemma 8.4.

Let (Y, S, v) be a Lebesgue space, v a positive o-finite measure and G_{t} a flow on Y preserving v and v-ergodic. If G has no orbit of full v-measur:, then there exists a set $C \subset[0,1], m(C)=1$, such that for all $t_{0} \in C, G_{t_{0}} \in \operatorname{Aut}(Y, v)$ is v-ergodic.

Theorem 8.5.

For every $n \geq 1$ there exists a set $B_{n} \subset \mathbb{R}^{n}-0^{n} / Z^{n}$, $m\left(B_{n}\right)=1$ such that for every $\alpha \in B_{n}$ there is a residual set of type III, C^{2} diffeomerpinisms in $F R_{\alpha}^{2}\left(T^{n}\right)$.

Proof.

We use induction on n. For $n=1$, let $B_{1}=A$ (cf.I 1.1) and apply II.5.1. Now assume the theorem is true for $n=k$; we show this implies the theorem for $n=k+1$ as well. If $g \in F R_{\alpha}^{2}\left(T^{k}\right)$ is of type III $_{j}$, then the following map is $v=e^{-z} d m @ d z$-ergodic.

$$
\begin{aligned}
& S_{g}: T^{k} \times R \rightarrow T^{k} \times R \\
& \\
& \quad(x, z) \mapsto\left(g x, z+\log \frac{d m g^{-1}}{d m}(x)\right)
\end{aligned}
$$

Taking the suspension flow of S_{g}, one obtains a $v^{\prime}=v \Omega$ m-ergodic flow on $T^{k} \times T^{1} \times R$. We apply Lemma 8.4 to obtain a set $A_{g} \subset[0,1], m\left(A_{g}\right)=1$ such that for every $t_{c} \varepsilon A_{g}, S_{g} t_{o}$ is a v^{\prime}-ergodic diffeomorphism of $T^{k+1} \times \mathbb{R}$. The map $S_{g} t_{0}$ is of the form:

$$
\begin{aligned}
& T^{K} \times T^{1}{ }_{\times R} \rightarrow T^{k} \times T^{1} \times R^{\prime} \\
& (x, y, z) \rightarrow\left(g x, y+t_{0}, z+\log \frac{d m g^{-1}}{d m}(x)\right)
\end{aligned}
$$

Now consider a countable dense subset $\left\{P_{i}\right\}_{i \varepsilon N}$ of $G_{\alpha}\left(T^{k}\right),(C f . I I . S .1)$; then for every $g \varepsilon\left\{D_{i}\right\}_{i \in N}$ we obtain a set $A_{i} \subset[0,1]$, with $m\left(A_{i}\right)=1$ Using the definizion of set A from 1.1 .1 , we let $\bar{A}=\bigcap_{i \in N}\left(A_{i} \cap A\right)$. Putting $B_{k+1}=B_{k} \times \tilde{A}$ implies that $m\left(B_{k+1}\right)=1$. If $\beta=\left(\beta_{j}, \ldots, B_{k+1}\right) \varepsilon B_{k+1}$ then there exists $f \varepsilon \mathcal{F R}_{\beta}^{2}\left(T^{k+1}\right)$ of the form $f\left(x_{j}, \ldots, x_{k+1}\right)=\left(g\left(x_{j}, \ldots, x_{k}\right), x_{k+1}+\beta_{k+1}\right)$ where
 By Theorem 7.2 we have a G_{δ} of type $I I I_{1}$ diffeomorphisms in $R_{\beta}^{2}\left(T^{k+1}\right)$. To show that the set

$$
\left.\left.\left\{f \in=\frac{2}{e^{\prime}}-\frac{k+1}{}\right) \right\rvert\, f \text { is of type } I I_{1}\right\} \text { is dense, }
$$

we recall that the ratio set is an invariant of absolutely continuous conjugacy. We note also that for every $\alpha \in \tilde{A}$, the set of functions in $F_{\alpha}^{2}\left(T^{1}\right)$ which are conjugate to R_{α} in an absolutely continuous way are dense in F_{z}^{2} (Decause F_{α}^{∞} is dense in F_{α}^{2} and Herman's Theorem applies). Therefore, since the product of dense sets is dense in $F R_{\left(\beta_{1}, \ldots, \beta_{k}\right)}^{2}\left(T^{k}\right) \times F_{\alpha}^{2}\left(T^{1}\right)$, the theorem is proved.

For every $n \geq 1$ and $r \geq 1$, we define
$G^{r}\left(T^{n}\right)=\left\{g^{-1} 0 \leqslant 0 g \mid g \in D^{r}\left(T^{n}\right), f \in F^{r}\left(T^{n}\right)\right\}$. Taking the closure of this set with respect to C^{r} topology gives a set denoted $\overline{G^{r}\left(T^{n}\right)}$. We first prove \equiv Esrollary to the proof of Theorem 8.5.

Corollary 8.6.

It is generic in $F R^{\infty}\left(T^{n}\right)$ that $f_{\varepsilon} F R^{\infty}\left(T^{n}\right)$ is of type III.

Proof.

We use induction. The case $n=1$ is true from [11]. By methods used in 8.5 we can obtain the result on $T^{n}, n \geq 2$.

Corollary 8.7.

It is generi $=$ in $\overline{G^{r}\left(T^{n}\right)}, n \geq 1, r \geq 2$, that $f \varepsilon \overline{G^{r}\left(T^{n}\right)}$ is of type $I_{1} I_{1}$.

Proof.
Given any element $f \varepsilon \overline{G^{r}\left(T^{n}\right)}, f$ is arbitrarily close in the C^{r} topology to a map of the form $\tilde{g}=g^{-1} \circ \neq 0, g \in D^{r}\left(T^{n}\right)$, $f \in \mathcal{F R}^{r}\left(\mathrm{~T}^{n}\right)$, and f is of type III 1_{1}. By invariance under conjugacy, g is of type III, so density is proved.
59. Skew products of type [II $]$.

In this section we will first present some results about smooth circle extensions of discrete dynamical systems. These results are similar to results of Jones and Parry [10] for the continuous case. A slight modification of the first proposition gives the main result of this section.

Theorem 9.1.
Given (X, \bar{y}, μ) a connected compact manifold and $f \in \operatorname{Diff}{ }^{\infty}(X)$, \mathcal{H}-ergodic and of type III $_{1}$. It is generic in $C^{\infty}\left(x, T^{1}\right)$ (with the C^{∞} topology) that the skew product extension given by:

$$
\begin{aligned}
& X \times T^{\top} \rightarrow X \times T^{\prime} \\
& (x, z) \mapsto(f x, z \cdot \psi x) \text { for } \psi \in C^{\infty}\left(X, T^{1}\right)
\end{aligned}
$$

is of type III $_{1}$.
Recalling the definitions given in Chapter 1, Section $\mathbf{5 2}$, we see that every ϵ^{∞} map from X to T^{1} determines a multiplicative $=^{\infty} \mathbf{z}$-cocycle as follows. Given any C^{∞} (Borel)
map $\psi: X \rightarrow T^{1}$ we define a multiplicative cocycle for the \mathbb{Z}-action of $f \in \operatorname{Diff}^{\infty}(x)$ on X by:

$$
a(n, x)= \begin{cases}n-1 \\ \prod_{k=0} & v\left(f^{k} x\right) \\ \text { if } n \geq 1 \\ 1 & \text { if } n=0 \\ -a\left(-n, f^{n} x\right) & \text { if } n<-1\end{cases}
$$

The set $C^{\infty}\left(X, T^{l}\right)=\left\{\psi: X \rightarrow T^{l} \mid \psi\right.$ is $\left.C^{\infty}\right\}$ forms a group under pointwise multiplication; it is a complete topological group with respect to the C^{∞}. topology.

Consider also the set $G=\left\{\phi: X \rightarrow T^{1} \mid \phi\right.$ is a Borel map and $\phi \circ f / \phi=h$-a.e. for some $\left.h \in C^{\infty}\left(X, T^{1}\right)\right\}$. We identify two functions in G if and only if they are equal u-a.e. G is a group under pointwise multiplication.

We define the map $\eta: G \rightarrow C^{\infty}\left(X, T^{\top}\right)$ by $\phi \rightarrow \phi \circ f / \phi$. We see that η is a homomorphism and that ker $\eta=$ constant maps $\equiv T^{1}$. If we now define a metric on G by: for every $\phi_{1}, \phi_{2} \in G$,

$$
\delta\left(\phi_{1}, \phi_{2}\right)=\int_{X}\left|\phi_{1}-\ddagger_{2}\right| d_{1}+| | n \phi_{1}-n \phi_{2} \|_{\infty},
$$

then we see that \mathcal{G} is complete and separable with respect to δ, and that η is a continuous group homomorphism.

The smooth skew product uniquely determined by a C^{∞} cocycle is the following:

$$
\begin{aligned}
& S \psi: X \times T^{1} \rightarrow X \times T^{1} \\
& \therefore x, z ;-(f x, z \cdot a(1, x)) \\
& = \\
& \quad(f x, z \cdot \psi(x)) \text { for } \psi \in C^{\infty}\left(x, T^{1}\right) .
\end{aligned}
$$

The next theorem is proved in [16].

Theorem 9.2.
The skew product $S \psi$ is $\mu \& m$-ergodic if and only if $E(a)=T^{1}$. (Recall the definition of $E(a)$ given in $1,52$.

This helps is to prove the following.

Projosition 9.3.

Given (X, μ) as in 9.1 and $f \varepsilon \operatorname{Diff}^{\infty}(X)$, fu-ergodic, the set $\left\{\psi \in C^{\infty}\left(X, T^{\top}\right) \mid 5 \psi\right.$ is μ am-ergodic\} is a residual set in $C^{\infty}\left(X, T^{1}\right)$ with respect to the i^{∞} topology.

Proof.

By using I.2.3 and Thenrem 9.2, it is clear that S_{ψ} is μ 前-ergodic if and only if for every $k \geq 1$, and for every $\phi \in G$, $\psi^{k} \neq \phi \circ f / \phi$ a.e. !eecause if $E(a) \neq T^{1}$, then $E(a)=\{0\}$ or $E(a)=\left\{\omega_{i}\right\}_{i=\}}^{k}=t h$ roots of unity.) Therefore it suffices to show that $n G$ is of the first category in $C^{\infty}\left(X, T^{1}\right)$; i.e. it can be written as the countable union of nowhere dense sets. Suppose that ηG is of the second category in $C^{\infty}\left(X, T^{1}\right)$; then the closure of ${ }_{\eta G}$ has non-empty interior in $C^{\infty}\left(X, T^{1}\right)$.

- By the Open Madoing Theorem (${ }^{*}$), n is continuous implies that $n: G \rightarrow C^{\infty}\left(X, T^{1}\right)$ is open. Then $n G=C^{\infty}\left(X, T^{1}\right)$ because the only subgroup of $C^{\infty}\left(X, T^{\top}\right)$ which is both open and closed (and non-empty) is itself. However $-G \neq C^{\infty}\left(X, T^{?}\right)$ because there exists $B \varepsilon(0,1)$ such that $e^{2 \pi i b}$ is rot a coboundary. (Just choose β not in the L^{∞}

spectrum of f or use Lemma 8.4.) This contradiction proves the proposition.

(*) Version of the Open Mapping Theorem used: Let E and D be complete, metrisable, separable groups. The homomorphism $\boldsymbol{\xi}$ of E into D is open if it satisfies: (i) the graph of ξ is a closed sub set of $E \times D$; (ii) the closure of $\xi(V)$ is a neighbourhood of Id d_{D} whenever V is a neighbourhood of $I d_{E}$ in E. (See [12].) In Proposition 9.3, (i) is satisfied by the continuity of n, and it can be shown that (ii) holds if $n G$ is non-meagre.

Remark 9.4.

Let $f \varepsilon D i f f^{\infty}(X)$ be of type $I I_{1}$; then $F: X \times \mathbb{R} \rightarrow X \times \mathbb{R}$ given by $(x, z) \rightarrow\left(f x, z+\log \frac{d u f^{-1}}{d \mu}(x)\right)$ is $\nu=e^{-z} d \mu d z$ - ergodic. A smooth cocycle for F is given by any C^{∞} map $\psi: X \times R \rightarrow T^{1}$ and defined as before. In particular, the subset of $C^{\infty}\left(X \times R, T^{?}\right)$ defined by $H=\left\{\left.\psi \varepsilon C^{\infty}\left(X \times R, T^{1}\right)\right|_{\psi}\left(X, z_{1}\right)=\psi\left(x, z_{2}\right), \forall x \in X, z_{1}, z_{2} \in R\right\}$ describes the set of C^{∞} maps which do not depend on the \mathbb{R}-coordinate. It is not difficilit to see that H forms a topological group under pointwise multioitcation with respect to the C^{∞} topology, and that
$H \equiv C^{\infty}\left(X, T^{1}\right)$. By defining $G^{1}=\left\{\phi: X \times R+T^{1} \mid \phi\right.$ is Borel and $\phi \circ F / \phi=h$ a.e. for scme $h \in H\}, \eta^{\prime}$ such that $n^{\prime}(\phi)=\phi \circ F / \phi$, $\phi \in \mathrm{G}^{\prime}$, and

$$
\delta^{\prime}\left(\phi_{1}, \phi_{2}\right)=\int_{X \times R} \frac{\left|\phi_{1}^{-\phi_{2}}\right|}{1+\left|\phi_{1}-\phi_{2}\right|} d \mu \Omega m+\left\|n^{\prime} \phi_{1}-n^{\prime} \phi_{2} \mid\right\|_{\infty},
$$

we can use 9.3 to prove Theorem 9. as a simple corollary.

Proof of Theorem 9.1.
It is generic in $C^{\infty}\left(X, T^{1}\right)$ that the skew product $S_{\psi: X \times \top^{1} \rightarrow X \times \top^{\top}}$ defined by $(x, y) \rightarrow(f x, y \cdot \psi(x))$, (where f is as above), is of type III $_{\mathbf{1}}$.

Proof.

By 9.3 and 9.4 we see that $\eta^{\prime} G^{\prime}$ is meagre in H, so the set $\left\{\psi \varepsilon C^{\infty}\left(x, T^{1}\right) \left\lvert\,\left(f x, y \cdot \psi(x), z+\log \frac{d \mu f^{-1}}{d \mu}(x)\right)\right.\right.$ is $\mu^{\Omega m-e r g o d i c\}}$ is
residual in $C^{\infty}\left(x, l^{-1}\right)$ for each f of type III_{1}.
We define tre set

$$
\begin{aligned}
S P^{r}\left(T^{n}\right) & =c 1\left\{f \varepsilon D^{r}\left(T^{n}\right) \mid f\left(x_{1}, \ldots, x_{n}\right)\right. \\
& =\left(f_{1}\left(x_{1}\right), x_{2}+\Psi_{1}\left(x_{1}\right), x_{3}+\Psi_{2}\left(x_{1}, x_{2}\right), \ldots, x_{n}+\Psi_{n-1}\left(x_{1}, \ldots, x_{n-1}\right)\right)
\end{aligned}
$$

where $f_{1} \in F^{r}\left(T^{l}\right)$ and $\left.\Psi_{i} \in C^{r}\left(T^{i}, T^{l}\right)\right\}$,
where cl denotes closure taken with respect to the c^{r} topology; then as another corollary of 9.3 we obtain the following result.

Corollary 9.6.

For $r \geq 1, n \geq 1$, it is generic in $S P^{r}\left(T^{n}\right)$ that $f \varepsilon S P^{r}\left(T^{n}\right)$ is of type $I I I_{1}$.

Proof.

By Theorem 7.2, it suffices to show the set $\left\{f_{\varepsilon} S^{r}\left(T^{n}\right) \mid f\right.$ is of type $\left[I I_{1}\right\}$ is dense. Since $S P^{r}\left(T^{n}\right) \equiv F^{r}\left(T^{l}\right) \times C^{r}\left(T^{1}, T^{1}\right) \times \ldots \times C^{r}\left(T^{n-1}, T^{1}\right)$ we can prove the result by induction. For $n=1$ it is true. Assume there exists a dense set in $S P^{r}\left(T^{k}\right)$ for which $f \varepsilon S P^{r}\left(T^{k}\right)$ is of type III . We tien can find, by 9.3, a dense (residual) set in $C^{\infty}\left(T^{k}, T^{1}\right)$ for which $\left(f(x), x_{k+1} \dot{\psi}(x)\right)$ is of type $I I I_{1}$, where $x=\left(x_{1}, \ldots, x_{k}\right) \varepsilon T^{k}$ and $\psi \in C^{\infty}\left(1^{-k}, \cdots^{-}\right)$. Using the product topology we are done.

Corollay 9.7.

$$
\text { For } r \geq 1, n \geq 1 \text { it is generic in the set }
$$

$$
\operatorname{GP}^{r}\left(T^{n}\right)=\operatorname{cl}\left\{g^{-1} \circ f \circ g: S \varepsilon D^{r}\left(T^{n}\right), f \varepsilon S P^{r}\left(T^{n}\right)\right\}
$$

$$
\text { that } h \varepsilon G P^{r}\left(T^{n}\right) \text { is of type } I I I_{1} \text {. }
$$

CHAPTEP IV.

SMOOTH TYPE IIIO DIFEEOMORPHISMS.
s10. Introduction.
In [7], Herman proved that every paracompact manifold of dimension ≥ 3 admits a C^{∞} type III $_{1}$ diffeomorphism. Since a type III ${ }_{0}$ diffeomorphism, f, has uncountably many ergodic components of the skew product with $a(n, x)=\log \frac{\operatorname{d}_{\mu} f^{-n}}{d \mu}(x)$, we need a different method to extend smooth type III_{0} diffeomorphisms from the circle (wnere we know from [1] such an f exists) to $T^{n} \times \mathbb{R}^{m}$ for $m, n \geq 1$. Once we obtain type III ${ }_{0}$ diffeomorphisms on $T^{n} \times \mathbb{R}^{m}$, we can apply Herman's methods with slight modifications to obtain the existence of a smooth type II_{0} diffeomorphism on every paracompact manifold.

We begin the criapter with some results about the topology of type III 0 diffeomorphisms in certain spaces of smooth diffeomorphisms of T^{n}, for $n \geq 1$.

In section 372 we prove the existence of smooth, ergodic real line extensions for the \mathbf{Z}-action of a type III $_{0}$ diffeomorphism on a

CHAPTEP IV.

SMOOTH TYPE IIIO DIFFEOMORPHISMS.
510. Introduction.

In [7], Herman proved that every paracompact manifold of dimension ≥ 3 admits a C^{∞} type III, diffeomorphism. Since a type III 0 diffeomorphism, f, has uncountably many ergodic components of the skew product with $a(n, x)=\log \frac{d \mu f^{-n}}{d \mu}(x)$, we need a different method to extend smooth type III 0 diffeomorphisms from the circle (wrere we know from [1] such an f exists) to $T^{n} \times \mathbb{R}^{m}$ for $m, n \geq 1$. Once we obtain type III ${ }_{0}$ diffeomorphisms on $T^{\mathbf{n}} \times \mathbb{R}^{\mathbf{m}}$, we can apply Herman's methods with slight modifications to obtain the existence of a smooth type III ${ }_{0}$ diffeomorphism on every paracompact manifold.

We begin tne cnapter with some results about the topology of type III $_{0}$ diffeomorphisms in certain spaces of smooth diffeomorphisms of T^{n}, for $n \geq 1$.

In section 512 we prove the existence of smooth, ergodic real line extensions for the \mathbb{Z}-action of a type III ${ }_{0}$ diffeomorphism on a
manifold X. Special thanks are due to Klaus Schmidt and Ralf Spatzier for helpful discussions on the construction given in Theorem i2.7. It is not difficult to show that most of these ergodic extensions give a smooth type III ${ }_{0}$ diffeomorphism of $X \times \mathbb{R}$.

In $\S 13$ and $\S 14$ we add some results about type III λ_{λ}, diffeomorphisms of manifolds $0<\lambda<1$, for completeness.
511. Type III 0 Diffeomorphisms of T^{n}.

Recall from III. 8 that
$F R^{\infty}\left(T^{n}\right)=\left\{f \in D^{\infty}\left(i^{n}\right) \mid \bar{r}=\left(f_{1}, f_{2}, \ldots, f_{n}\right), f_{i} \in F^{\infty}\left(T^{l}\right)\right\}$. To obtain a type III 0 diffeomorphism of the torus in higher dimensions, the construction is similar to the one in III. 8.5 but has the added complication of a non-trivial ergodic decomposition of $(x, y) \rightarrow\left(f x, y+\log \frac{d \mu f^{-1}}{d \mu}(x)\right)$.

Theorem 11.1.
For every $n \geq ?$, the set $\theta^{n}=\left\{\operatorname{ffFR}^{\infty}\left(T^{n}\right) \mid f\right.$ is of type III $\left.{ }_{0}\right\}$ is dense in $F R^{\infty}\left(T^{n}\right)$ in the C^{∞} topology.

Proof.

Let $n=1$. The theorem is true by [11]. Assume it is true for $n=k$. We claim tnere exists a measurable set $C \subset[0,1], m(C)=1$ such that for every $t \in C$, the map $\left(f, R_{t}\right): T^{k+1} \rightarrow T^{k+1}$ is of type III $_{0}$. We prove this claim as follows. Consider the ergodic decomposition of ine skew product defined by

$$
\begin{aligned}
& F::^{-k}, \mathbb{R} \rightarrow T^{k} \times \mathbb{R} \\
& \left(x, z_{j}-\left(f x, z+\log \frac{d \mu f^{-1}}{d \mu}(x)\right) \quad x \in T^{k}, z \in \mathbb{R},\right.
\end{aligned}
$$

which preserves the measure $v=e^{-z} d \mu ⿴ 囗 ⿰ 丿 ㇄$ ．By［16］there exists a Borel probability space (Y, j, ρ) and σ－finite measures q_{y} on （ $T^{k} \times \mathbb{R}, S_{k}, v$ ）such that：
（i）$y \rightarrow q_{y}(B)$ is Borel for every $B \in S_{k}$
（ii）$v(B)-\int_{T} k_{x R} q_{y}(B) d \rho(y)$
（iii）Every $q_{y}, y \in Y$ is invariant and ergodic under F ， and q_{y} and q^{\prime} ，are mutually singular when $y \neq y^{\prime}$ ．
（iv）Let $\left.E=. \partial \in ड_{k}: F(B)=B\right\}$ ．For every $B \in Z$ ，put $B_{y}=\left\{y \in Y: q_{y}(B)>0\right\}$ ．Then $Z_{Y}=\left\{B_{Y}: B \in Z\right\}$ is equal to I mod sets of ρ－medsure zero．

For each $y \in Y$ ，the map $F_{t}: T^{k} \times R \times T^{1} \rightarrow T^{k} \times R \times T^{1}$ defined by $(x, z, w) \rightarrow\left(f x, z+\log \frac{d \mu f^{-1}}{d \mu}(x), w+t\right)$ is $q_{y} 9$ m－ergodic for $m-a . e$. $t \in[0,1]$ ．This can be shown by taking the suspension flow of F and applying Lemma 8.4 for each $y \in Y$ ．If we can prove that the set $Q=\left\{(y, t) \in(Y \times I, \eta \times d, p \times m): F_{t}\right.$ is $q_{y} m$ ergodic $\}$ is $p=m$ measurable，then by Fubini＇s Theorem，since $\rho m(Q)=1$ there exists a set $C \subset[0,1], m(C)=1$ such that ${ }_{l}$ for $p-$ a．e．$y \in Y, F_{t}$ is $q_{y} m$
ergodic. By the uniqueness of ergodic decomposition, this implies that F_{t} is of type III $_{0}$.

Now given any $g \in F R^{\infty}\left(T^{k+1}\right), g$ is of the form: $g\left(x_{1}, \ldots, x_{k}, x_{k+1}\right)=\left(g_{p}\left(x_{1}\right), \ldots g_{k+1}\left(x_{k+1}\right)\right)$, where $g_{j} \varepsilon F^{\infty}\left(T^{1}\right)$. By hypothesis θ^{k} is dense in $F R^{\infty}\left(T^{k}\right)$, so for every $\varepsilon>0$ there exists $\tilde{g} \varepsilon \theta^{k}$ such that

$$
\left\|\left(\tilde{g}\left(x_{1}, \ldots, x_{k}\right), g_{k+1}\left(x_{k+1}\right)\right)-g\left(x_{1}, \ldots, x_{k+1}\right)\right\|_{\infty}<\varepsilon / 2 .
$$

By continuity of $\rho(\mathrm{g})$, and recalling from I.l.1. that $m(A)=1$ (A is defined in $\quad i . i ;$, we can find $h \in F^{\infty}\left(T^{1}\right)$ such that:
(i) $\left\|h-g_{k+1}\right\|_{\infty}<E / 2^{k}$, and
(ii) $\rho(h) \in C_{g} \cap A$, where C_{g} is the set obtained above for which $t \in C_{\tilde{g}} \Rightarrow\left(\tilde{g}, R_{t}\right)$ is of type $I I I_{0}$. Since $m(A)=m\left(C_{\tilde{g}}\right)=1$, we have $m\left(A \cap C_{\tilde{g}}\right)=1$.

By Herman's theorem, $h=k^{-1} O R_{t_{0}} o k$ for some $t_{o} \varepsilon C_{\tilde{y}}$ and $k \in D^{\infty}\left(T^{l}\right)$. By invariance under conjugation of the ratio set, the map $\left(\tilde{g}, R_{t_{0}}\right)$ is $=\tilde{T}$ type III $_{0}$ if and only if (\tilde{g}, h) is of type III ${ }_{0}$.
ergodic. By the uniqueness of ergodic decomposition, this implies that F_{t} is of type $11 I_{0}$.

Now given any $g \varepsilon F R^{m}\left(T^{k+1}\right), g$ is of the form:
$g\left(x_{1}, \ldots, x_{k}, x_{k+1}\right)=\left(g_{1}\left(x_{1}\right), \ldots g_{k+1}\left(x_{k+1}\right)\right)$, where $g_{i} \in F^{\infty}\left(T^{1}\right)$. By hypothesis θ^{k} is dense in $\operatorname{FR}^{\infty}\left(T^{k}\right)$, so for every $\varepsilon>0$ there exists $\tilde{g} \varepsilon \theta^{k}$ such that

$$
\left\|\left(\tilde{g}\left(x_{1}, \ldots, x_{k}\right), g_{k+1}\left(x_{k+1}\right)\right)-g\left(x_{1}, \ldots, x_{k+1}\right)\right\|_{\infty}<\varepsilon / 2 .
$$

By continuity of $\rho(\mathrm{s})$, and recalling from 1.1.1. that $m(A)=1$ (A is defined in $=\therefore . i j$, we can find $h \in F^{\infty}\left(T^{1}\right)$ such that:
(i) $\left\|h-g_{k+1}\right\|_{\infty}<\varepsilon / 2^{k}$, and
(ii) $\rho(h) \in C_{g} \cap A$, where $C_{\tilde{g}}$ is the set obtained above for which $t \in C_{\tilde{g}} \Rightarrow\left(\bar{g}, R_{t}\right)$ is of type $I I I_{0}$. Since $m(A)=m\left(C_{\tilde{\tilde{q}}}\right)=1$, we have $m\left(A \cap C_{\tilde{g}}\right)=1$.
By Herman's theorem, $h=k^{-1} \circ R_{t_{0}} \circ k$ for some $t_{0} \in C_{\tilde{g}}$ and $k \in D^{\infty}\left(T^{1}\right)$. By invariance under conjugation of the ratio set, the map $\left(\tilde{g}, R_{t_{0}}\right)$ is ci type $I I_{0}$ if and only if (\tilde{g}, h) is of type $I I_{0}$.

Thus we have shown that given any $g \in \operatorname{FR}^{\infty}\left(\mathrm{T}^{k+1}\right)$ ，we can find a map of the form：

$$
\begin{aligned}
& \tilde{h}: F R^{\infty}\left(T^{k+1}\right) \rightarrow F R^{\infty}\left(T^{k+1}\right) \\
& \left(x_{1}, \ldots, x_{k}, x_{k+1}\right) \rightarrow\left(\tilde{g}\left(x_{1}, \ldots, x_{k}\right), h\left(x_{k+1}\right)\right)
\end{aligned}
$$

such that for some $\tilde{g} \in F R^{\infty}\left(T^{k}\right)$ of type $I I I_{0}$ ，and some h satisfying （i）and（ii）．Furthermore we have $\left|\mid \bar{h}-g \|_{\infty}<\varepsilon\right.$ ．

The proof is done if we can show that the set Q defined above is ρ measurabie．We prove this in the lemma that follows．

Lemma 11．2．

The set

$$
\underset{\rho ⿴ 囗 十}{Q}=\left\{(y, t) \varepsilon(Y \times \bar{I}, J x \dot{S}, \rho a m): F_{i} \text { is } q_{y} \text { am-ergodic }\right\}
$$

is measurable．

Proof．

$$
\text { Let } X=T^{k} \times R, \text { and denote by } X_{n} \text { the manifold }
$$

$X_{n}=T^{k} \times(-n, n)$. The skew product F defined in 11.1 is always conservative, so we can induce on X_{n}. Let F_{n} denote the induced transformation on X_{n}, and we write $F_{n t}$ for the map

$$
\begin{aligned}
& F_{n t}: X_{n} \times T^{1} \rightarrow X_{n} \times T^{1} \\
& (x, z, w) \rightarrow\left(F_{n}(x, z), w+t\right) \quad \text { for every }
\end{aligned}
$$

$x \in T^{k}, z \in(-n, n), w \in T^{1}$. We define, for every $y \in Y$ and $n \geq 1$, a normalised measure on x_{n} equivalent to the induced measure obtained from q_{y} restricted to x_{n}. Call these measures $p_{y}^{(n)}$; then $p_{y}^{(n)}\left(x_{n}\right)=1$ for $n \geq 1$. Clearly we have F_{t} is q_{y} am-ergodic if and only if $F_{n i}$ is $p_{y}^{(n)}$ am-ergodic for every $n \geq 1$. To show Q is measurable, we show that $Q_{n}=\left\{(y, t) \varepsilon Y \times\left. I\right|_{n t}\right.$ is $p_{y}^{(n)}$ am-ergodic\} is pam-measurable for each $n \in N$.

To show Q_{n} is measurable, we use Lemma 7.1 from Chapter III in the following form.

Lemma 7.1'
With the above notation, $F_{n t}$ is $p_{y}^{(n)}$ am-ergodic if and only if

$$
\inf _{m \geq 1} \frac{1}{m} \sum_{j=0}^{m-1} h_{i}=\left.F_{n t}^{-} \int_{X_{n} \times I} h_{i} d p_{y}^{(n)} a m\right|_{L^{2}\left(X_{n} \times I, p_{y} a m\right)}
$$

where $1 \quad L_{L^{2}}\left(X_{n} I, p_{y}^{(n)} 9 m\right)$ denotes the relevant L^{2} norm and $h_{i} \in\left\{h_{k}\right\}_{k \in N}$ and $\left\{h_{k}\right\}_{k \in N}$ is a countable dense sequence of Borel (L^{2}) functions on $X_{n} \times I$, (hence measurable for $p_{y}^{(n)}$ anm , for every $y \in Y$).

Since the infimum of measurable functions is measurable, and since the countable intersection of measurable sets is measurable, it suffices to show that for each fixed m, i, and $n \in N$, the map

$$
\begin{aligned}
& (x, z, w, y, t) \rightarrow 1 \frac{1}{m} \sum_{j=0}^{m-1} h_{i} \circ F_{n t}^{y}(x, z, w) \\
& -\int_{X_{n} \times I} h_{i} d p_{y}^{(n)} a m L^{2}\left(X_{n} \times I, p_{y}^{(n)} m m\right)
\end{aligned}
$$

is measurable, for every $X \in X_{n}, z \varepsilon(-n, n), W \varepsilon T^{1}, y \in Y$, and $t \in[0,1]$.

Using the definition of Lebesgue integral and elementary facts about measurable functions, it is not difficult to see that the map:

$$
\Phi_{(m, i, n)}: \check{x} \times(-n, n) \times \top^{1} \times Y \times I \rightarrow \mathbb{R} \quad \text { given by: }
$$

where $\mid \quad L_{L}^{2}\left(X_{n} I, p_{y}^{(n)} 2 m\right)$
denotes the relevant L^{2} norm and $h_{i} \in\left\{h_{k}\right\}_{k \in N}$ and $\left\{h_{k}\right\}_{k \in N}$ is a countable dense sequence of Borel (L^{2}) functions on $X_{n} \times I$, (hence measurable for $P_{y}^{(n)}$ am , for every $y \in Y$).

Since the infimum of measurable functions is measurable, and since the countable intersection of measurable sets is measurable, it suffices to show that for each fixed m, i, and $n \in N$, the map

$$
\begin{aligned}
(x, z, w, y, t) & \rightarrow \left\lvert\, \frac{1}{m} \sum_{j=0}^{m-1} h_{i}^{\circ} F_{n t}^{y}(x, z, w)\right. \\
& -\int_{X_{n} \times I} h_{i} d p_{y}^{(n)} a m \mid L^{2}\left(x_{n} \times I, p_{y}^{(n)} \text { am }\right)
\end{aligned}
$$

is measurable, for every $X \in X_{n}, z \varepsilon(-n, n), w \in T^{1}, y \in Y$, and $t \in[0,1]$.

Using the definition of Lebesgue integral and elementary facts about measurable functions, it is not difficult to see that the map:

$$
\Phi_{(m, i, n)}: X \times(-n, n) \times T^{\top} \times Y \times I \rightarrow \mathbb{R} \quad \text { given by: }
$$

is Borel for each fixed triplet (m, i, n) and hence the infimum map, denoted $\otimes_{\mathbf{i}, \boldsymbol{n}}$ is Borel also.

$$
\text { Thus the set } \bar{Q}=\bigcap_{n \in N} \bigcap_{i \in N} \delta_{i, n}^{-1}(0)
$$

is a measurable set in $X \times \mathbb{R} \times T^{l} \times Y \times I$, and by Fubini's Theorem we have that the projection on $Y \times 1$ of \bar{Q} is measurable in $Y \times I$. Now we conclude by observing that

$$
\begin{aligned}
\Pi_{\gamma_{x I}}(\square) & =\left\{(y, t) \in \gamma_{\times I} \mid F_{t} \text { is } \rho \otimes m \text {-ergodic }\right\} \\
& =Q, \text { so the lemma is proved. }
\end{aligned}
$$

912. Type III 0 Diffeomorphisms of $T^{1} \times R$

We begin with a result which is analogous to Proposition 9.3(Ch. III), but is weaker due to the non-compactness of \mathbb{R}.

Proposition 12.1.

Let (X, S, μ) be a smooth compact manifold with μ a C^{∞} probability measure on X. Let $f \varepsilon \operatorname{Diff} f^{\infty}(X)$ be an ergodic diffeomorphism. Suppose there exists an element which is not a coboundary in the set:

(where the closure is taken with respect to the C^{∞} topology). Then the set of coboundaries is meagre in e.

Proof.

The proof is similar to that of III.9.3. We consider C as a complete topological group under pointwise addition and with respect to the C^{∞} topoiogy. If we let

$$
E=\{\phi: X \rightarrow \mathbb{R} \quad \text {, is a Borel map and } \phi-\phi O f=h \text { a.e. for some } h \varepsilon \mathcal{C}\},
$$

and identify two functions in E if and only if they are equal $\mu-\mathrm{a} . e .$, then we see that E is a group under pointwise addition.

We define the map: $L: E \rightarrow e$ by setting $L(\phi)=\phi-\phi \circ f$. We see that L is a group homomorphism and ker $L=$ constant maps $\cong \mathbb{R}$. We now define a metric on E by:

$$
\text { for all } \phi_{1}, \phi_{2} \in E \text {, }
$$

$$
\xi_{R}\left(\phi_{1}, \phi_{2}\right)=\int_{x} \frac{\left|\phi_{1}-\phi_{2}\right|}{1+\left|\phi_{1}^{-\phi_{2}}\right|} d \mu+\left|\left|L \phi_{1}-L \phi_{2}\right| \|_{\infty} ;\right.
$$

then we see that \leq is complete and separable with respect to $\delta_{\mathbb{R}}$, and that L is a continuous group homomorphism.

Using the Open Mapping Theorem, and the assumption that there exists $\psi \in \mathbb{e}$ such that $\psi \notin$ image L, the proposition is proved.

Remark 12.2.

Under the assumption that there exists at least one element which is not a coboundary in C, we will prove that there is in fact a dense G_{G} of elements in \mathcal{C} which contain all of \mathbb{R} in their essential ange; i.e. there is a dense G_{δ} in C, call it \mathcal{E}_{e}, such thaz if $\phi \varepsilon \mathcal{E}_{e}$, then the skew product given by:
$F: X \times R \rightarrow X \times R \quad$, where

$$
(x, y) \rightarrow(f x, y+\phi x) \text { is } \mu m-e r g o d i c .
$$

We begin with an easy iemma, whose proof is similar to $[16,9.6]$. We denote $E\left(a_{\phi}\right)=E(\phi)$.
Lemma 12.3.

Let (X, S, μ) and f be as in 12.1. The set $\mathcal{E}=\left\{\phi \in C^{\infty}(X, \mathbb{R}) \mid F: X \rightarrow \mathbb{R}\right.$ defined in Remark 12.2 is μ m-ergodic $\}$ is a G_{δ}.

Proof.

By the most general form of III.9.2, $E=\left\{\phi \varepsilon C^{\infty}(X, R) \mid E(\phi)=\mathbb{R}\right\}$. Let S_{0} denote a countable, dense subalgebra for X. Let $\left\{\lambda_{\mathbf{i}}\right\}_{i \in N}$ be a dense sequence in \mathbb{R}. Fix any element $B \in S_{o}$ and any number $B \varepsilon\left\{\lambda_{i}\right\}_{i \varepsilon N}$. Claim that for every fixed $\delta>0$ and $\varepsilon>0$ the set

$$
U(B, B, \varepsilon, \delta)=\left\{\phi \varepsilon C^{\infty}(X, \mathbb{R}) \mid \sup _{V \varepsilon[f]} \mu\left(B \cap V^{-1} B \cap\right.\right.
$$

$\left.\left\{x: a_{\phi}(V, x) \in(3-s, \bar{s}+\varepsilon j\}\right)>\delta\right\}$ is open in $C^{\infty}(X, R)$ with the C^{∞} topology. (Proot of claim. Clearly, for fixed n, the map $\phi \rightarrow \sum_{i=0}^{n-1} p^{\circ} f^{i}$ is zontinuous in $C^{\infty}(X, R)$ with respect to the C^{∞}
topology. We recall that $V_{X}=f^{\frac{n(y)}{X}}$ for some $n \in Z$ and for every $x \in X . B y[16,2.6], a_{p}(V, x)=a_{\phi}(n, x)=\sum_{i=0}^{n-1} \phi \circ f^{i}(x)$. Therefore by continuity, we can \because ind $\delta>0$ small enough s.t. $\|\phi-\tilde{\phi}\|_{\infty}<\delta$ implies that $\mu\left\{x:\left|a_{\phi}(y, x)\right|<\varepsilon\right\}=\mu\left\{x:\left|a_{\tilde{\varphi}}(v, x)\right|<\varepsilon\right\}$.)
Then $\bigcap_{B \in S_{0}} \bigcap_{m} U\left(B, 3, \frac{1}{m}, \frac{\mu(B)}{4}\right)$
$=\left\{\phi \in C^{\infty}(X, \mathbb{R}) \mid \beta \in E(\phi)\right\}$, and finally we have
$\varepsilon=\bigcap_{i} \bigcap_{B} \bigcap_{m} U\left(B, \lambda_{i}, \frac{1}{m}, \frac{\mu(B)}{4}\right)$
$=\left\{\phi \in C^{\infty}(X, \mathbb{R}): E_{\{ }(\phi)=\mathbb{R}\right\}$, which proves the proposition.

Remark 12.4.
Since $C \subset C^{\infty}(X, R)$ is a closed subgroup, the set $\varepsilon_{e}=\{\phi \varepsilon \subset \mid E(\phi)=\mathbb{R}\}$ is also a G_{δ}. It is easy to see that the set ε_{e} is dense in C if it is not empty. For if there exists an element $\psi \varepsilon \varepsilon_{e}$, then by adding a suitable coboundary to ψ we can find another element of ε_{e} arbitrarily close in the C^{∞} topology to any ϕ_{ε} С.

In the next iemma we will prove that if there exists an element $\psi_{\varepsilon} \ell$ such that $\equiv(\psi)=\{n \lambda\}_{n \in \mathbb{Z}}$ for some $0<\lambda$, then there exists an element $\tilde{\psi} \varepsilon \mathcal{E}_{e}$.

Lemma 12.5.

Let (X, S, μ) and f be as in 12.1. Suppose there exists an element $\psi \varepsilon C$ suci that $E(\psi)=\{n \lambda\}_{n \in Z}$ for some $0<\lambda$. Then \mathcal{E}_{e} is a dense \hat{G}_{0} in \circlearrowright.

Proof.

Since $\lambda \in E(\psi)$, we have for all $B \varepsilon S, \mu(B)>0$ and all $\varepsilon>0$,

$$
\sup _{\varepsilon} \sup _{f} \mu\left(5 \cap v^{-!} ?_{2} \cap\left\{x:\left|a_{\psi}(V, x)-\lambda\right|<\varepsilon\right\}\right)>\frac{\mu(B)}{2}
$$

We can choose an irrational scalar $c \in R, 0<c<1$ such that $\beta=c \lambda$, and λ and σ are rationally independent. Then for all $x \in\left\{x:\left|a_{\psi}(V, x)-\lambda\right|<\varepsilon\right\}$, we have

$$
a_{c \psi}(V, x)=\sum_{i=0}^{n-1} c \psi \circ f^{i}(x)=c \sum_{i=0}^{n-1} \psi \circ f^{i}(x),
$$

for some $n \in \mathbb{Z}$, so $\left|a_{c \psi}(V, x)-\beta\right|<\varepsilon$ as well. Let $\dot{\psi}=c \psi$. Thus $\beta \in E(\tilde{\psi})$. $3 y$ adding suitable coboundaries to $\tilde{\psi}$, we see that the set $\left\{\in \sum_{i}(\phi) 3\{n \beta\}_{n \in 2}\right\}$ is dense in P, and the proof of Lemma 12.3 snows us that it is in fact a G_{δ}. Similarly, we have
that $U_{\lambda}=\left\{\phi \varepsilon \subset \mid E(\phi) \ni\{n \lambda\}_{n \varepsilon} \mathbb{Z}^{\ell}\right.$ is a dense G_{δ}. Then $U_{\lambda} \cap U_{\beta}$ is also a dense G_{0} in C, and since the set of essential values for $\phi \in C$ forms a closed additive subgroup of $R, \lambda \in E(\phi)$ and $\beta \in E(\phi)$ imply that $E(\phi)=\mathbb{R}$ since λ and β are rationally independent. Therefore the proposition is proved.

The only remaining possibility is that every element $\phi_{\varepsilon} C$ which is not a coboundary satisfies $E(\phi)=\{0, \infty\}$. In Theorem 12.7 we will show that even under this assumption we can construct elements in \mathcal{E}_{e}. This theorem is sufficient to ensure that type III ${ }_{0}$ diffeomorphisms of compact manifolds have ergodic real line extensions, which is what is needed to extend type III diffeomorphisms to arbitrary manifolds.

We first prove a oroposition which is necessary for the construction in Theorem 12.7.

Proposition 12.6.

Let (X, S, μ) be a smooth paracompact manifold with μ a smooth σ-finite measure on X. Let $f \in \operatorname{Diff} f^{\infty}(X)$ be a μ-ergodic diffeomorphism. We denote by 5_{0} a countable dense subalgebra of S, and t is as in 12.1. Suppose there exists $\phi \in \mathcal{C}$ such that ϕ is recurrent and $E(\phi)=\{0, \infty\}$. Then there exists a set $\psi \subset \mathbb{C}$, such that Ψ is a dense G_{δ} in C with ressect to the C^{∞} topology and every element $\psi \in \Psi$ satisfies the following condition:

For every $\varepsilon>0$, for every $M \in \mathbf{R}^{+}$, and for every $B \in S_{o}$, there exists $\phi \in \mathcal{E}$ with $\|\phi\|_{\infty} \leq 1$ and $E(\phi)=\{0, \infty\}$, and $V \in[f]$ such that $\mu\left(B \cap V^{\dagger} B \cap\left(x:\left|a_{\psi}(V, x)\right|<\varepsilon\right\} \cap\left\{x:\left|a_{\phi}(V, x)\right|>M\right\}\right) \geq \frac{\mu(B)}{\frac{1}{2}}$

Proof.

We choose a countable dense set $\left\{\phi_{\mathfrak{i}}\right\}_{\mathbf{i d N}}$ in the unit ball of \mathcal{C}, where for every $i \in \mathbb{N}, E\left(\phi_{i}\right)=\{0, \infty\}$ and ϕ_{i} is recurrent. We choose a countable dense set in the full group of f, denoted $\left\{V_{k}\right\}_{k \in N}$. Let $M \in \mathbf{N}$ denote a positive integer. We define the set:

$$
\begin{aligned}
& \Lambda(B, M, \varepsilon, \ell, j, k, i) \\
& =\left\{\psi \varepsilon \in \mid \mu\left(B \cap\left(\mathbb{V}_{k}^{-1} B \cap\left\{x:\left|a_{\psi}\left(V_{k}, x\right)\right|<\varepsilon\right\}\right)\right\} \cap\right. \\
& \left.\left\{x\left|a_{1_{\phi}}\left(V_{k}, x\right)\right|>M\right\}\right) \\
& \quad{ }_{j} \quad\left(1-\frac{1}{\ell}\right) \mu(B) \cdot 2^{-1} .
\end{aligned}
$$

By the continuity of ψ, and using techniques from 12.3 we can show that for each fixed ($B, M, \varepsilon, \ell, j, k, i$) the set $\Lambda(B, M, \varepsilon, \ell, j, k, i)$ is open in ℓ with respect to the C^{∞} topology.

We also claim that $\Gamma(B, M, \varepsilon, \ell, j)=\bigcup_{k} \bigcup_{i} \wedge(B, M, \varepsilon, \ell, j, k, i)$ is open and dense in ℓ. Clearly it is open, and it is dense because each $\Gamma(B, M, \varepsilon, \ell, j)$
contains the coboundaries. To show this, fix $\varepsilon_{0}, M_{0}, B_{0, j_{0}}$ and ℓ_{0}. Suppose $\psi \in \mathbb{e}$ is a coboundary. Then choose any $\phi_{0} \in \mathbb{e}$ which satisfies $E\left(\phi_{0}\right)=\{0, \infty\}$ and $\frac{1}{j_{0}}\left\|\left.\right|_{0}\right\|_{\infty} \leq 1$. Since ψ is a coboundary we write $\psi=n-\eta^{\circ} f$ where η is a Sorel function on X, and we find a set $D_{0} \subset B_{0}$ such that $|\eta(x)-\eta(y)|<\varepsilon_{0} / 4$ for all $x, y \in D_{0}$. Since $\infty \in E\left(\phi_{0}\right)$, we can find an integer p such that $\mu\left(D_{0} \| f^{-p_{0}} \cap\left(x\left|a_{j_{0}}^{\phi_{0}}(0, x)\right|>M_{0}\right\}\right)>0$. Using the exhaustion argument method of $[15,9.4]$, we can find an element $V_{k} \in[f]$ such that $\mu\left(B \cap V_{k}^{-1} B \cap\left\{x:\left|a_{\psi}\left(V_{k}, x\right)\right|<\varepsilon_{0}\right\} \cap\right.$ $\left\{x:\left|a_{\frac{1}{j_{0}} \phi_{0}}\left(V_{k}, x\right)\right|>:_{0} ;>\left(1-\frac{1}{\ell_{0}}\right) \mu\left(B_{0}\right) 2^{-1}\right.$.

This proves that $\psi \varepsilon \Gamma\left(B_{0}, M_{0}, \varepsilon_{0}, \ell_{0}, j_{j}\right)$.
We now define $\psi=\bigcap_{B \in S_{0}} \bigcap_{M} \bigcap_{\varepsilon} \bigcap_{\ell} \bigcap_{j} r(B, M, \varepsilon, \ell, j)$, (where $\varepsilon \in\left\{\varepsilon_{r}\right\}_{r a n}$ is a countable set such that $\left.\varepsilon_{r} \leq \frac{1}{r}\right)$.

Clearly ψ is a dense G_{δ}, and it remains to show that $\psi \in \psi$ satisfies the hypotheses of the proposition. If $\psi \in \Psi$, then for every $\varepsilon_{r}>0$, for every $M \varepsilon \mathbb{N}^{+}$, for every $B \varepsilon S_{0}$, and for every $j, \ell \in \mathbf{N}^{+}$there exists $\rho_{i} \in C, E\left(\phi_{\mathbf{j}}\right)=\{0, \infty\}, \phi_{\mathbf{i}}$ is recurrent, and there exists $V_{k} E$ satisfying:
contains the coboundaries. To show this, fix $\varepsilon_{0}, M_{0}, B_{0}, j_{0}$ and $\ell_{0} \cdot$ Suppose $\psi \in E$ is a coboundary. Then choose any $\phi_{0} E$ which satisfies $E\left(\phi_{0}\right)=\{0, \infty\}$ and $\frac{1}{j_{0}}\left\|\|_{0} \leq 1\right.$. Since ψ is a coboundary we write $\psi=\eta-\eta^{\circ} f$ where η is a Sorel function on X, and we find a set $D_{0} \subset B_{0}$ such that $|\eta(x)-\eta(y)|<\varepsilon_{0} / 4$ for all $x, y \in D_{0}$. Since $\infty \in E\left(\phi_{0}\right)$, we can find an integer p such that $\left.\mu\left(D_{0} \cap f^{-D_{D} \cap\left(x \mid a_{j_{0}}^{j_{0}}\right.}(D, x) \mid>M_{0}\right\}\right)>0$. Using the exhaustion argument method of $[15,9.4]$, we can find an element $V_{k} \varepsilon[f]$ such that $\mu\left(B \cap v_{k}^{-1} B \cap\left\{x:\left|a_{\psi}\left(V_{k}, x\right)\right|<\varepsilon_{0}\right\} \cap\right.$

$$
\left(x:\left|a_{\frac{1}{j_{0}} \phi_{0}}\left(V_{k}, x\right)\right|>::_{0} ;\left(1-\frac{1}{\ell_{0}}\right\rangle_{\mu}\left(B_{0}\right) 2^{-1}\right.
$$

This proves that $\psi \varepsilon \Gamma\left(B_{0}, M_{0}, \varepsilon_{0}, l_{0}, j_{j}\right)$.
We now define $\Psi=\bigcap_{B \varepsilon S_{0}} \bigcap_{M} \bigcap_{\varepsilon} \bigcap_{\ell} \bigcap_{j} r(B, M, \varepsilon, \ell, j)$, (where $\varepsilon \in\left\{\varepsilon_{r}\right\}_{r \in N}$ is 2 zountable set such that $\left.\varepsilon_{r} \leq \frac{1}{r}\right)$.

Clearly ψ is a dense G_{δ}, and it remains to show that $\psi \varepsilon \psi$ satisfies the hypotheses of the proposition. If $\psi \in \Psi$, then for every $\varepsilon_{r}>0$, for every $M \in \mathbf{N}^{+}$, for every $B \in S_{0}$, and for every $j, \ell \in \mathbf{N}^{+}$there exists $\phi_{i} \in C, E\left(\phi_{i}\right)=\{0, \infty\}, \phi_{i}$ is recurrent, and there exists $V_{k} E$ satisfying:

$$
\begin{aligned}
& \mu\left(B \cap v_{k}^{-1} B \cap\left\{x:\left|a_{\psi}\left(V_{k}, x\right)\right|<\varepsilon\right\} \cap\right. \\
& \left.\left\{x:\left|a_{\frac{1}{j} \phi_{i}}\left(V_{k}, x\right)\right|>M\right\}\right)>\left(1-\frac{1}{l}\right) \mu(B) \cdot 2^{-1} .
\end{aligned}
$$

This concludes the proof.
We make ψ into a complete metric space by defining a metric on ψ given by:

$$
D_{\infty}\left(\phi_{1}, \phi_{2}\right)=\left\|\phi_{1}-\phi_{2}\right\|_{\infty}+d_{\infty}\left(\phi_{1}, \phi_{2}\right)
$$

where $d_{\infty}\left(\phi_{1}, \phi_{2}\right)$ is defined in the following way.
Let $d(\phi, A)=\inf | | \phi-\psi \mid \|_{\infty}$ for any set $A \subset E$. We index the countable set of sets $\Gamma(B, \varepsilon, M, j, k)$ by $s \in \mathbb{N}$, say. Then we define

$$
d_{s}\left(\phi_{1}, \phi_{2}\right)=\left|\frac{1}{d\left(\phi_{1}, \Gamma_{s} c^{c}\right)}-\frac{1}{d\left(\phi_{2}, \Gamma_{s} c\right.}\right| \text {, where }
$$

r_{s}^{C} denotes the complement of the open set $r_{s}=r_{s}(B, M, \varepsilon, \ell, j)$.
Finally we let $d_{\infty}\left(\phi_{1}, \phi_{2}\right)=\sum_{s=1}^{\infty} 2^{-s} \frac{d_{s}\left(\phi_{1}, \phi_{2}\right)}{1+d_{s}\left(\phi_{1}, \phi_{2}\right)}$.
An easy calculation snows that D_{∞} is a metric on Ψ, and that ψ is complete with respect to D_{∞}.

We are now ready for the main theorem of this section.

Theorem 12.7.

Let (X, S, μ) and $f \varepsilon \operatorname{Diff}^{\infty}(X)$ be as in 12.6. Suppose there exists an element $\phi \varepsilon$ which is recurrent and not a coboundary. Then ε_{b} is a dense G_{f} in ℓ with the C^{∞} topology.

Proof.

By 12.3-12.5 if suffices to assume that every element of ε which is not a coboundary satisfies $E(\phi)=\{0, \infty\}$.

Let S_{0} denote a ccuntable, dense subalgebra of X. We fix an element $B \in S_{0}, \quad \mu(3)>0$, and we choose and fix any $\varepsilon>0$.

We will construct $\psi \varepsilon \mathcal{C}$ and $V \in[f]$ such that
$\mu\left(B \cap v^{-1} B \cap\left\{x:\left|a_{\psi}(v, x)-1\right|<\varepsilon\right\}\right) \geq \mu(B) / 2$.
Then, using the notation and methods of Lemmas 12.3-12.5 we see that $U\left(B, 1, \varepsilon, \frac{\mu(B)}{2}\right)$ is open, dense, and non-empty in t (in the C^{∞} topology) for each $B \varepsilon S_{0}$ and $\varepsilon>0$, and therefore the theorem is proved.
A. Setting Up the Construction.

Let ψ be defined as in 12.6. We start the induction process by defining $\phi_{0}=0, \bar{\Xi}_{j}=B, M_{0}=1$, and $\varepsilon_{0}=\varepsilon / 2$. Since $\phi_{0} \varepsilon \psi$ we apply 12.6 to cotain ρ_{1} and ϕ_{1} satisfying:

$$
\begin{equation*}
\mu\left(\tilde{B}_{0} \cap f{ }^{-p_{1}} \tilde{B}_{0} \cap\left\{x:\left|a_{\phi_{0}}\left(p_{1}, x\right)\right|<\varepsilon_{0}\right\} \cap\left\{x:\left|a_{\phi_{1}}\left(p_{1}, x\right)\right|>M_{0}\right\}\right)>0 \tag{12.1}
\end{equation*}
$$

Since the set ψ is dense in C, we can perturb ϕ_{1} slightly if necessary so that $p_{\eta} \varepsilon \Psi$, and (12.1) still holds. We choose
such that $B_{1} \cap f^{p_{1}} B_{1}=\emptyset$. Choose $c_{1} \leq 1$ satisfying

$$
\mu\left(\tilde{B}_{0} \cap f{ }^{-p_{1}} \tilde{B}_{0} \cap\left\{x:\left|a_{\phi_{0}}\left(p_{1}, x\right)\right|<\varepsilon_{0}\right\} \cap\left\{x:\left|a_{c_{1} \phi_{1}}\left(p_{1}, x\right)-1\right|<\varepsilon_{0}\right\}\right)>0
$$

We define $V_{1} \varepsilon[f]$ by

$$
\begin{aligned}
& V_{1}(x)=\left\{\begin{array}{ll}
f^{p_{1}} x & \text { if } x \in E_{1}^{B_{1}} \\
f^{-p_{1}} x & \text { if } x \in f^{p_{1}} B_{1} \\
x & \text { otherwise, }
\end{array}\right. \text { and let } \\
& \tilde{B}_{1}=\tilde{B}_{0} \backslash\left(B_{1} \cap f^{\left.p_{1} \mathcal{B}_{1}\right) . ~ W e ~ d e f i n e ~} \zeta_{1}=c_{1} \phi_{1} .\right.
\end{aligned}
$$

B. The $j \frac{\text { th }}{}$ Stage.

We will define inductively:

$$
\phi_{j} \varepsilon \ell,\left\|\phi_{j}\right\|_{\infty} \leq 1, \varepsilon_{j}\left\langle R^{+}, s_{j} \varepsilon \|^{+}, M_{j} \in R^{+}, \varepsilon_{j}>0, B_{j} \in B, \tilde{B}_{j} \in B, p_{j} \varepsilon N,\right.
$$ $\zeta_{j} \varepsilon \Psi$ and $V_{j} \in f_{j}^{\prime}$ satisfying:

(1) ${ }_{j} \quad 5_{j}=\sum_{\ell=1}^{j} c_{i} p_{i}=\Psi$,

(4) $\quad c_{j}| |_{\ell=0}^{p_{\ell}^{-1}} \phi_{\ell} \|_{\infty}<\varepsilon\left(2^{j+2 \ell}\right)^{-1} \quad$ for $0 \leq \ell \leq j-1$,
$(5)_{j} \quad P_{j}>P_{j-1}, \varepsilon_{j}=E\left(2^{j+1}\right)^{-1}, \quad M_{j} \geq M_{j-1}$,
$(6)_{j} \quad B_{j} \subset \tilde{B}_{j-1} \cap f^{-p_{j_{j}}}{ }_{j-1} \cap\left\{x:\left|a_{c_{j} \phi_{j}}\left(p_{j}, x\right)-1\right|<\varepsilon_{j}\right\}$, $\mu\left(B_{j}\right)>0$, and $B_{j} \cap f^{P_{B_{B}}}=\emptyset$. We define $\tilde{B}_{j}=\tilde{B}_{j-1} \backslash\left(B_{j} \cup f^{p} j_{B_{j}}\right)$.
(7) j

$$
V_{j}(x)=\left\{\begin{array}{l}
V_{k}(x) \text { if } x \in B_{k}, k \leq j-1 \\
f_{j}(x) \text { if } x \in B_{j} \\
i^{-D_{i}(x)} \text { if } x \in f^{P_{j_{B}}} \\
x \quad \text { otherwise. }
\end{array}\right.
$$

C. The induction step.

Assume we are $\ddagger \tau$ the j th stage. First we choose $s_{j+1} \in \mathbf{N}^{+}$ large enough so that
$(2)_{j}$

$$
\begin{aligned}
& \mu\left(\tilde{B}_{j-1} \cap f^{-p_{j_{B}}}{ }_{j-1} \cap\left\{x:\left|a_{c_{j} \phi_{j}}\left(p_{j}, x\right)-1\right|<\varepsilon_{j}\right\} \cap\right. \\
& \left.\left\{x:\left|a_{\zeta_{j-1}}\left(p_{j}, x\right)\right|<\varepsilon_{j}\right\}\right)>0,
\end{aligned}
$$

(3) ${ }_{j} D_{\infty}\left(\zeta_{j-1}, \zeta_{j}\right)<\varepsilon_{j}$,
(4) $\quad c_{j}\left\|\sum_{\ell=0}^{p_{\ell}-1} \phi_{\hat{\ell}}\right\|_{\infty}<\varepsilon\left(2^{j+2 \ell}\right)^{-1} \quad$ for $0 \leq \ell \leq j-1$,
$(5)_{j} \quad P_{j}>p_{j-1}, \varepsilon_{j}=\varepsilon\left(2^{j+1}\right)^{-1}, M_{j} \geq M_{j-1}$,
$(6)_{j} \quad B_{j} \subset \tilde{B}_{j-1} \cap f^{-p_{j_{\bar{B}}}}{ }_{j-1} \cap\left\{x:\left|a_{c_{j} \phi_{j}}\left(p_{j}, x\right)-1\right|<\varepsilon_{j}\right\}$, $\mu\left(B_{j}\right)>0$, and $B_{j} \cap f^{p} j_{B_{j}}=\emptyset$. We define $\tilde{B}_{j}=\tilde{B}_{j-1} \backslash\left(B_{j} \cup{ }_{f}^{p} j_{B_{j}}\right)$.
(7) j

$$
V_{j}(x)=\left\{\begin{array}{l}
V_{k}(x) \text { if } x \in B_{k}, k \leq j-1 \\
f^{p_{j}}(x) \text { if } x \in B_{j} \\
f^{-D_{i}(x)} \text { if } x \in f^{p_{j_{B}}} \\
x \quad \text { otherwise. }
\end{array}\right.
$$

C. The induction step.

Assume we are it the j th stage. First we choose $s_{j+1} \in \mathbf{N}^{+}$ large enough so that

$$
\begin{aligned}
& \sum_{s=s_{j+1}}^{\infty} 2^{-s}<\varepsilon\left(2^{j+3}\right)^{-1} \text {. Then we define } \\
& r_{s_{j+1}}=\gamma_{j+1}=\min _{s \leq s_{j+1}} d\left(\zeta_{j}, \Gamma_{s}^{c}\right) \text {. Since } \zeta_{j} \varepsilon \Psi, \gamma_{j+1}>0 .
\end{aligned}
$$

Now we choose $M_{j+1} \geq \max \left(M_{j}, \varepsilon_{j}^{-1} \gamma_{j+1}^{-2} S_{j+1} 2^{4 j_{p}}\right)$. Using (1) ${ }_{j}$ and Proposition 12.6 we can find $p_{j+1}>p_{j}$ and $\phi \varepsilon t$ such that $\|\phi\|_{\infty} \leq 1$, and for $\varepsilon_{j+1}=\varepsilon_{j} \cdot 2^{-1}$ we have

Let $\phi_{j+1}=\phi$. We choose $c_{j+1}<\frac{1}{M_{j+1}}$ such that

$$
\begin{align*}
& \mu\left(\tilde{B}_{j} \cap f^{-p_{j+1}} \tilde{B}_{j} \cap\left\{x:\left|a_{\zeta_{j}}\left(p_{j+1}, x\right)\right|<\varepsilon_{j+1}\right\} \cap\right. \\
& \left.\left\{x:\left|a_{c_{j+1} \phi_{j+1}}\left(p_{j+1, i}\right)-1\right|<\varepsilon_{j+1}\right\}\right)>0 \tag{12.3}
\end{align*}
$$

$$
\begin{aligned}
& \left\{x:\left|a_{c_{j+1}^{\text {d }} j+1}\left(p_{j-7}, x\right)-1\right|<\varepsilon_{j+1}\right\} \text { such that } \\
& \mu\left(B_{j+1}\right)>0 \text { and } \xi_{i-1} \cap f^{p_{j+1}} B_{j+1}=\emptyset .
\end{aligned}
$$

We can assume that $\zeta_{j}+c_{j+1}{ }_{j+1} \in \Psi$, because if not we could have chosen \tilde{c}_{j+1} or $\tilde{\phi}_{j+1}$ arbitrarily close by such that (12.2) still holds and $\zeta_{j}+\tilde{c}_{j+1} \tilde{j}_{j+j}=\Psi$ (since ψ is dense in $火$). Define $\zeta_{j+1}=\zeta_{j}+c_{j+1}{ }^{\phi}{ }_{j+1}={ }_{i=1} c_{i}^{\phi}{ }_{i}$.

We must now check to see if $(1)_{j+1}$ through $(7)_{j+1}$ hold. For $(7)_{j+1}$, we just define:

$$
V_{j+1}(x)= \begin{cases}V_{k}(x) & \text { if } x \in B_{h}, k \leq j \\ f_{j+1}(x) & \text { if } x \in B_{j+1} \\ f^{-p_{j+1}}(x) & \text { if } x \in f^{p_{j+1}} B_{j+1} \\ x & \text { otherwise. }\end{cases}
$$

By our construction, (1) ${ }_{j+1},(2)_{j+1},(5)_{j+1}$, and (6) ${ }_{j+1}$ obvious 1 y are satisfied.

To check $(3)_{j+1}$ we proceed as follows

$$
D_{\infty}\left(\zeta_{j}, \zeta_{j+1}\right)=| | \zeta_{j}-\zeta_{j+1} \|_{\infty}+\sum_{s=1}^{\infty} 2^{-s} \frac{d_{s}\left(\zeta_{j}, \zeta_{j+1}\right)}{1+d_{s}\left(\zeta_{j}, \zeta_{j+1}\right)}
$$

$$
\leq c_{j+1}| | \varphi_{j+1} \left\lvert\, \|_{\infty}+\sum_{s=1}^{s} 2^{-s+1} \frac{d_{s}\left(s_{j}, s_{j+1}\right)}{1+d_{s}\left(s_{j}, \zeta_{j+1}\right)}+\varepsilon\left(2^{j+3}\right)^{-1}\right.
$$

by our choice of $\mathbf{s}_{\mathbf{j}+\boldsymbol{i}}$.

We have that

$$
\begin{aligned}
& d_{s}\left(\zeta_{j}, \zeta_{j+1}\right)=\left|\frac{1}{d\left(\zeta_{j}, \Gamma_{s}^{c}\right)}-\frac{1}{d\left(\zeta_{j+1}, \Gamma_{s}^{c}\right)}\right| \leq\left|\frac{1}{d\left(\zeta_{j}, \Gamma_{s}^{c}\right)}-\frac{1}{d\left(\zeta_{j}, \Gamma_{s}^{c}\right)+\|\left.\left|\zeta_{j}-\zeta_{j+1}\right|\right|_{\infty}}\right|, \\
& \text { since }\left|d\left(\zeta_{j}, \Gamma_{s}^{c}\right)-d\left(\zeta_{j+1}, \Gamma_{s}^{c}\right)\right| \leq\left|\left|\zeta_{j}-\zeta_{j+1}\right|\right|_{\infty} \text { for each s. so }
\end{aligned}
$$

the denominators $=a n$ vary at most $\left|\left|\zeta_{j}-\zeta_{j+1}\right| \|_{\infty}\right.$, and now we have

$$
\begin{aligned}
\left\|\zeta_{j}-\zeta_{j+1}\left|\left\|_{\infty} \leq c_{j+1}\left|!_{j+1}\right|\right\|_{\infty} \leq c_{j+1} \cdot 1\right.\right. & \leq \varepsilon_{j} \cdot \gamma_{j+1}^{2} \cdot 2^{-4 j} \cdot p_{j}^{-1} \cdot s_{j+1}^{-1} \\
& \leq \varepsilon \cdot \gamma_{j+1}^{2} \cdot 2^{-5 j} \cdot p_{j}^{-1} \cdot s_{j+1}^{-1},
\end{aligned}
$$

and recalling our choice of $\gamma_{j+1}>0$, we have

$$
\begin{aligned}
D_{\infty}\left(s_{j}, \zeta_{j+1}\right) & \leq \varepsilon \cdot 2^{-5 j}-\sum_{j=1}^{s_{j+1}} \frac{\gamma_{j+1}^{2} \cdot \varepsilon \cdot 2^{-(j+6)} s_{j+1}^{-1}}{\gamma_{j+1}^{2}} / 1+\frac{r_{j+1}^{2} \cdot \varepsilon \cdot 2^{-(j+6)} s_{j+1}^{-1}}{\gamma_{j+1}^{2}} \\
& +\varepsilon \cdot 2^{-(j-3)}
\end{aligned}
$$

$$
\leq c_{j+1}\| \|_{j+1} \|_{\infty}+\sum_{s=1}^{s} 2^{-s+1} \frac{d_{s}\left(s_{j}, \zeta_{j+1}\right)}{1+d_{s}\left(\zeta_{j}, \zeta_{j+1}\right)}+\varepsilon\left(2^{j+3}\right)^{-1}
$$

by our choice of s_{j+1}.

We have that

$$
d_{s}\left(\zeta_{j}, \zeta_{j+1}\right)=\left|\frac{1}{d\left(\zeta_{j}, \Gamma_{s}^{c}\right)}-\frac{1}{d\left(\zeta_{j+1}, \Gamma_{s}^{c}\right)}\right| \leq\left|\frac{1}{d\left(\zeta_{j}, \Gamma_{s}^{c}\right)}-\frac{1}{d\left(\zeta_{j}, \Gamma_{s}^{c}\right)+\left\|\zeta_{j}-\zeta_{j+1}\right\|_{\infty}}\right|
$$

since $\left|d\left(\zeta_{j}, \Gamma_{s}^{c}\right)-d\left(\zeta_{j+1}, r_{s}^{c}\right)\right| \leq\left\|\zeta_{j}-\zeta_{j+1}\right\| \|_{\infty} \quad$ for each s, so
the denominators $33-\mathrm{Br}$ by at most $\left\|\zeta_{j}-\zeta_{j+1}\right\|_{\infty}$, and now we have

$$
\begin{aligned}
\left|\left|\zeta_{j}-\zeta_{j+1}\right|\left\|_{\infty} \leq c_{j+1}| | \oint_{j+1} \mid\right\|_{\infty} \leq c_{j+1} \cdot 1\right. & \leq \varepsilon_{j} \cdot \gamma_{j+1}^{2} \cdot 2^{-4 j} \cdot p_{j}^{-1} \cdot s_{j+1}^{-1} \\
& \leq \varepsilon \cdot \gamma_{j+1}^{2} \cdot 2^{-5 j} \cdot p_{j}^{-1} \cdot s_{j+1}^{-1}
\end{aligned}
$$

and recalling our choice of $Y_{j+1}>0$, we have

$$
\begin{aligned}
D_{\infty}\left(\zeta_{j}, 5_{j+1}\right) & \leq \varepsilon \cdot 2^{-5 \dot{j}}-\sum_{s=1}^{s_{j+1}} \frac{r_{j+1}^{2} \cdot \varepsilon \cdot 2^{-(j+6)} s_{j+1}^{-1}}{r_{j+1}^{2}} / 1+\frac{r_{j+1}^{2} \cdot \varepsilon \cdot 2^{-(j+6)_{s}^{-1}}}{r_{j+1}^{2}} \\
& +\varepsilon \cdot 2^{-(:-3)}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \varepsilon \cdot 2^{-5 j}+s_{j+1}\left(\varepsilon \cdot 2^{-(j+6)} s_{j+1}^{-1}\right)+\varepsilon \cdot 2^{-(j+3)} \\
& \leq \varepsilon \cdot 2^{-5 j}+\varepsilon \cdot 2^{-(j+5)}+\varepsilon \cdot 2^{-(j+3)} \\
& <\varepsilon \cdot 2^{-(j+3)}=s_{j+1} .
\end{aligned}
$$

We check (4) ${ }_{j+1}$ as follows. Clearly

$$
c_{j+7}\left\|_{i=0}^{p_{\ell}-1} \phi_{j+1} \circ f^{i}\right\|_{\infty} \leq c_{j+1} \cdot p_{j} \cdot\left\|\phi_{j+1}\right\|_{\infty} \quad \text { since } \quad 0 \leq \ell \leq j,
$$

$$
\begin{aligned}
& \leq \varepsilon_{i} \cdot \gamma_{j+1}^{2} \cdot s_{j+1}^{-1} \cdot p_{j}^{-1} \cdot 2^{-4 j} \cdot p_{j} \cdot\left\|\left.\right|_{j+1} \mid\right\|_{\infty} \\
& \leq \varepsilon \cdot 2^{-(j+1)} \cdot 2^{-(4 j)} \\
& \leq \varepsilon \cdot 2^{-(j+l+2 \ell)}
\end{aligned}
$$

D. Taking the 1 1mi:-

We let $\psi=\sum_{i=1}^{\infty} c_{i} \phi_{i}$. Since (3) ${ }_{j}$ holds for all $j \geq 1, \psi$ is the limit of a Cauchv sequence in Ψ. More precisely, given any $\delta>0$ (we might as well assume $0<\delta<\varepsilon$), we choose $j_{0} d N^{+}$such that $\sum_{j=j_{0}}^{\infty} 2^{-j}<\frac{\delta}{\varepsilon}$. Then for any $m>n \geq j_{0}$ we have

$$
\begin{aligned}
& D_{\infty}\left(\zeta_{n}, \zeta_{m}\right) \leq \sum_{k=0}^{m-n-1} D\left(\tau_{n+k}, \zeta_{n+k+1}\right) \\
& \leq \sum_{k=0}^{m-n-1} \sum_{n+k+1} \text {, by }(3)_{j} \text {. } \\
& \text { Now } \sum_{k=0}^{m-n-1} \varepsilon_{n+k+1} \leq \sum_{k=0}^{n-n-1} \sum^{-(n+k+1)} \\
& \leq \sum_{k=j_{0}}^{\infty} 2^{-k}<\delta,
\end{aligned}
$$

$$
\text { so } D_{\infty}\left(\zeta_{n}, \zeta_{m}\right)<\delta
$$

Therefore $\psi \varepsilon \psi$, since ψ is complete. We can apply 12.6
to ψ and continue the induction process. Then, using an exhaustion argument, we obtain a sequence of sets B_{i} such that $B_{i} \cap B_{j}=$ $=B_{i} \cap f^{p_{j}} B_{j}=B_{j} \cap f^{p_{i}} B_{i}=B_{i} \cap f^{p_{i}} B_{i}=B_{j} \cap f^{p_{j_{B}}}=\emptyset$, for all $i \neq j$, and such that $\mu\left(\bigcup_{i \text { gid }}\left(B_{i} \cup f^{p_{i}} B_{i}\right)\right)>\frac{\mu(B)}{2}$. We also obtain $V \varepsilon[f]$ such that

For all $x \equiv \Xi_{j}$, we have $V(x)=f^{n} j(x)$, and this implies for $x \in B_{j}$,
$\left|a_{\psi}(V, x)\right|=\left|a_{\psi}\left(p_{j}, x\right)\right|$

$$
\begin{aligned}
& \leq\left|a_{\zeta_{j-1}}\left(p_{j}, x\right)\right|+\left|a_{c_{j} \phi_{j}}\left(p_{j}, x\right)\right|+\left|\sum_{k=0}^{p_{j}-1}\left(\sum_{i=j+1}^{\infty} c_{i} \phi_{i}\right) \circ f^{k}(x)\right| \\
& \leq \varepsilon_{j}+1+\varepsilon_{j}+1 \sum_{i=j+1}^{\infty} c_{i}\left(\sum_{k=0}^{p_{j}-1} \phi_{i} o f^{k}(x) \mid\right.
\end{aligned}
$$

by $(2)_{j}$, and now by $(4)_{j}$,

$$
\begin{aligned}
& \leq \varepsilon_{j}+l+\varepsilon_{j}+\sum_{i=j+l}^{\infty} \varepsilon\left(2^{i+2(i-1)}\right)^{-1} \\
& \leq \varepsilon_{j}+l+\varepsilon_{i}+\leq 18 \leq 1+(5 / 8) \varepsilon .
\end{aligned}
$$

From the above and (12.4), an easy calculation shows that $\mu\left(B \cap V^{-1} B \cap\left\{x:\left|a_{\psi}(V, x)-1\right|<\varepsilon\right\}\right) \geq \mu(B) / 2$, and we are done.

We should point out that 12.3 is true for non-compact X, and the hypotheses on ($X, S, \mathrm{si}_{\text {, }}$ in 12.6 are sufficient for 12.7 to be true. We have proved the existence of a dense G_{δ} of l whose elements give ergodic extensions for f; we now need to see which of these skew products have the same ratio sets as f. We will give a necessary and sufficient condition, but firs: we will recall some easily proved facts.

Lemma 12.8.

Let $(x, S, \mu) \geq$ as in 12.6. and let $f \varepsilon \operatorname{Diff}^{\infty}(x)$ be any ergodic
$\left|a_{\psi}(v, x)\right|=j a_{\psi}\left(p_{j}, x\right) \mid$

$$
\begin{aligned}
& \leq\left|a_{\zeta_{j-1}}\left(p_{j}, x\right)\right|+a_{c_{j} \phi_{j}}\left(p_{j}, x\right)\left|+\left|\sum_{k=0}^{p_{j}-1}\left(\sum_{i=j+1}^{\infty} c_{i} \phi_{i}\right) \circ f^{k}(x)\right|\right. \\
& \leq \varepsilon_{j}+1+\varepsilon_{j}+\sum_{i=j+1}^{\infty} c_{i}\left(\sum_{k=0}^{p_{j}-1} \phi_{i} o f^{k}(x) \mid\right.
\end{aligned}
$$

by $(2)_{j}$, and now by $(4)_{j}$,

$$
\begin{aligned}
& \leq \varepsilon_{j}+1+\varepsilon_{j}+\sum_{i=j+1}^{\infty} \varepsilon\left(2^{i+2(i-1)}\right)^{-1} \\
& \leq \varepsilon_{j}+1+\varepsilon_{j}+\varepsilon / 8 \leq 1+(5 / 8) \varepsilon .
\end{aligned}
$$

From the above and (12.4), an easy calculation shows that $\mu\left(B \cap v^{-1} B \cap\left\{x:\left|a_{\psi}(V, x)-1\right|<\varepsilon\right\}\right) \geq \mu(B) / 2$, and we are done.

We should point out that 12.3 is true for non-compact X, and the hypotheses on ($\mathrm{X}, \mathrm{S}, \mathrm{i}$, , in 12.6 are sufficient for 12.7 to be true. We have proved the existence of a dense G_{δ} of b whose elements give ergodic extensions for f; we now need to see which of these skew products have the same ratio sets as f. We will give a necessary and sufficient condition, but firs

Lemma 12.8.
Let $(X, S, \mu) \geq$ as in 12.6. and let $f \varepsilon \operatorname{Diff}^{\infty}(X)$ be any ergodic
diffeomorphism of X. If we consider the skew product $F_{\dot{\varphi}}$ defined by:

$$
\begin{aligned}
& F_{\dot{\varphi}}: X \times R \rightarrow X \backslash R R \\
& (x, y) \sim(\mp x, y+\phi x) \text { where } \phi \varepsilon^{\ell} \text {, then } r^{\star}\left(F_{\phi}\right) \subset r^{\star}(f) \quad .
\end{aligned}
$$

Proof.
Let $F=F_{\hat{\psi}}$. By definition,
$r^{\star}(F)=E\left(\log \frac{d \mu a m F^{-1}}{d \mu ब m}\right)$ where $\frac{d \mu a m F^{-1}}{d \mu ब m}(x, y)$ denotes the Radon-Nikodym derivative of the measure $\mu \mathrm{mm}\left(F^{-1}\right)$ with respect to $\mu \pi m$ at the point $(x, y) \in X=\mathbb{R}$. This implies

$$
\begin{aligned}
& \frac{\varepsilon_{\mu} a m r^{-1}}{d_{i} s m}(x, y)=\operatorname{det} D F(x, y) \\
= & \left.\operatorname{det}\right|_{d \phi} ^{d f(x)} \\
= & d f(x)=\frac{d \mu f^{-1}}{d \mu}(x) \text {. From this we see that }
\end{aligned}
$$

$$
\lambda \varepsilon r^{\star}(F) \Rightarrow \lambda \varepsilon r^{\star}(f) .
$$

Remark 12.9.

Given two cocyeles on $X, \phi_{1}, \phi_{2} \in C^{\infty}(x-Z, \mathbb{R})$, we can define a cocycle $\left(\phi_{1}, \phi_{2}\right): Z_{x} \rightarrow R^{2}$ by $\left(\phi_{1}, \phi_{2}\right)(n, x)=\left(\phi_{1}(n, x), \phi_{2}(n, x)\right) \forall n \in \mathbb{Z}$, $X \in X$. We compac: $\div \because R^{2}$ by adding lines of the form $(\alpha, \infty),(\alpha,-\infty)$, $(\infty, \alpha),(-\infty, \alpha)$ for in $\alpha \in \mathbf{R}$, plus four points at $(-\infty, \infty),(\infty, \infty)$,
$(\infty,-\infty),(-\infty,-\infty)$. Then $(\lambda, B) \in E\left(\phi_{1}, \phi_{2}\right)$ means that for every $B \in S$, $\mu(B)>0$ and for every $\varepsilon>0$, there exists $n \in \mathbb{Z}$ such that $\left.\mu\left(B \cap f^{-n_{B}} \cap i x:\left|\left(\phi_{1}(n, x), \hat{\gamma}_{2}(n, x)\right)-(\lambda, B)\right|<\varepsilon\right\}\right)>0$, or equivalently, $\mu\left(B \cap f^{-n_{B}} \cap\left\{x: \mid \phi_{1}\left(n, x j-\lambda_{i} \mid<\varepsilon\right\} \cap\left\{x:\left|\phi_{2}(n, x)-B\right|<\varepsilon\right\}\right)>0\right.$.

It is clear that $(\lambda, B) \in E\left(\phi_{1}, \phi_{2}\right)$ implies that $\lambda \in E\left(\phi_{1}\right)$ and $B \in E\left(\phi_{2}\right)$, but the converse is not necessarily true. We give an example of the usefulness of considering two cocycles together in the next proposition.

Proposition 12.10.

With (X, S, μ) an m-dimensional manifold and f as in 12.6, we assume further that f is of type III $_{0}$ and that the map $F_{\dot{\varphi}}$ defined in 12.8 is μ am-ergodic. Then $(0, \infty) \varepsilon E\left(\infty, \log \frac{d \mu f^{-1}}{d \mu}\right)$ if and only if F_{ϕ} is of type III $_{0}$.

Proof.
($=>$) Assume that $(0, \infty) \varepsilon E\left(\phi, \log \frac{d \mu f^{-1}}{d \mu}\right)$. By 12.8 it suffices to show that $\infty \in r^{*}\left(F_{\phi}\right)$. Let $\lambda \varepsilon S \times \Omega \subset X \times \mathbb{R}$ be such that $\mu \operatorname{mm}(\mathrm{C})>0$. Chocse F_{0} to be a point of density of C . Then there exists an m+l-dinenstonal cube $R \subset X \times I$ of volume $\delta>0$, centred at $t_{0}=\left(t_{1}, t_{2}\right)$ such that $\mu \oplus(R \cap C)>.99 \delta$. By setting $B=\Pi_{X}(R \cap C)$,
we see that $\mu(B)>0$. Since $(0, \infty) E E\left(\phi, \log \frac{d \mu f^{-1}}{d \mu}\right)$, there exists $n \in \mathbf{Z}$ such that
$\mu\left(B \cap f^{-n} B \cap\left\{x:\left.\right|_{i=0} ^{n-1} p^{\circ} f^{i}(x) \left\lvert\,<\delta^{\frac{1}{m+T}}\right.\right\} \cap\left\{x:\left|\log \frac{d \mu f^{n}}{d \mu}(x)\right|>M\right\}\right)>0$.

This implies that

$$
\begin{aligned}
& \mu \otimes m\left((R \cap C) \cap\left\{(x, y) \in R \cap C \mid\left\langle f^{-n} x, y-\sum_{i=0}^{n-1} \phi^{0} f^{i}(x)\right) \in R \cap C\right\} \cap\right. \\
& \qquad\left\{(x, y)\left|\left|\log \frac{d u f^{n}}{d i^{n}}(x)\right|>M\right\}\right)>0 . \\
& \text { Therefore } \infty \varepsilon r^{*}=\text {. }
\end{aligned}
$$

$(<=)$ Suppose that F is of type III , i.e. $r^{*}(F)=\{0, \infty\}$. Then for every set $C \subset S \times \mathcal{J}, \mu \operatorname{ma}(C)>0$, and for every $M \varepsilon \mathbb{R}^{+}$, we can find an integer n such that

$$
\mu \operatorname{mm}\left(C \cap F^{-n} C \cap\left\{(1 x, y):\left|\log \frac{d \mu m F^{n}}{d \mu m}(x, y)\right|>M\right\}\right)>0 .
$$

Since $\quad \log \frac{d \mu a m F^{n}}{d \mu \pi}(x, y)=\log \frac{d \mu f^{n}}{d \mu}(x)$, and since $F^{-n} C=\left\{=^{-n} x, y-\sum_{i=0}^{n-1} \phi^{0} f^{i}(x)\right),(x, y) \in\{ \}$, then for any $B \varepsilon S, H(B)>0$, we just choose $C=B^{x}(-\varepsilon / 2, \varepsilon / 2)$.

Then clearly there exists $n \in \mathbf{Z}$ such that
$\mu\left(B \cap f^{-n} \cap\left\{x:\left|\sum_{i=0}^{n-1} \phi O f^{i}(x)\right|<\varepsilon\right\} \cap\left\{x:\left|\log \frac{d \mu f^{-n}}{d \mu}(x)\right|>M\right\}\right)>0$.
This implies that $\left(0, \infty j=E\left(\phi, \log \frac{d \mu f^{-1}}{d \mu}\right)\right.$.
Finally we prove the existence of a dense G_{o} of elements in ℓ which satisfy the hypotheses of 12.10. We assume X and f are as in 12.6.

Proposition 12.11.
Let $\psi: X \rightarrow \mathbb{R}$ be a fixed $\left(C^{\infty}\right)$ cocycle for f with $E(\psi)=\{0, \infty\}$. Then the set $\pi=\{<,(, \infty) \in E(\phi, \psi)\}$ is a dense G_{δ} in e.

Proof.
Let S_{0} be a countable dense subalgebra for X. Choose any $B \in S_{0}$, and fix $M_{\varepsilon} \mathbf{R}^{+}$. Since $\infty \varepsilon E(\psi)$, there exists $V_{\varepsilon}[f]$ such that $\mu\left(B \cap v^{-1} B \cap\left\{x:\left|\bar{a}_{\psi}(V, x)\right|>M\right\}\right)>\frac{\mu(B)}{2}$. If we define the set $A(B, M, \varepsilon)=\left\{\phi \varepsilon \ell \mid \sup _{V \in[f]} \mu\left(B \cap V^{-1} B \cap\left(x:\left|a_{\psi}(V, x)\right|>M\right) \cap\right.\right.$ using the same argument as in Lemma 12.3
we see that it is spen for fixed B, M, and E. Now
$\sigma L=\bigcap_{B \in S_{0}} \bigcap_{M \in N} \bigcap_{m_{E N}} A\left(B, M, \frac{1}{n}\right)=\{\phi \varepsilon C \mid(0, \infty) \in E(\phi, \psi)\}$.

Clearly this set is a G_{5}. To show that it is dense, we observe that the coboundaries are dense in ℓ and obviously lie in Ω.

Theorem 12.12.

With X and f as in 12.6 , suppose further that f is of type III ${ }_{0}$. Then the set $C_{0}=\{\phi \varepsilon l \mid(x, y) \mapsto(f x, y+\phi x)$ is of type III $\}$ is a dense G_{δ} in \mathcal{F}.

Proof.

By 12.7, we have thet E_{C} is a dense G_{δ}. By 12.10 and 12.11, we have Ω is a dense G_{δ}. Then $\varepsilon_{C} \cap O l$ is a dense G_{δ} of C and $\varepsilon_{0}=\varepsilon_{\varepsilon} \cap \Omega$.

Corollary 12.13.

There are uncountaily many C^{∞} type IlI D_{0} diffeomorphism on $T^{n} \times \mathbb{R}^{p}$, for every $n \geq 1, p \geq 0$.

Proof.
For $n=1,==2$, we use Katznelson's construction. By 11.1, the result is true for $2 i l n \geq 1$ when $p=0$. By repeated applications of 12.3-12.12 and an induction argument, the corollary is proved.
513. Type III Diffeomorphisms of $\mathrm{T}^{\mathrm{n}} \times \mathbf{R}^{\mathrm{p}}, 0<\lambda<1$.

In this section we will examine type III λ_{λ} diffeomorphisms and show that all the results from 512 hold true for type III $_{\lambda}$, with $0<\lambda<1$. In some sense, type III ${ }_{\lambda}$ transformations are better behaved than III ${ }_{0}$; there is only one type III λ_{λ} ergodic transformation, up to weak equivalence, for each $0<\lambda<1$. We will state the analogous theorems to those in $\$ 12$ and mention the necessary modifications of the proofs.

Theorem 13.1.

The set $0_{\lambda}^{n}=\left\{f \in F R^{\infty}\left(T^{n}\right) \mid f\right.$ is of type III $\left.\lambda_{\lambda}\right\}$ is dense in $F^{\infty}\left(T^{n}\right)$ for every $0<\lambda<1$.

Proof.

The proof is the same as 11.1 and 11.2; we take the suspension flow of the skew product

$$
\begin{aligned}
& F: T^{k} \times \mathbb{R} \rightarrow T^{k} \times \mathbb{R} \\
& \\
& \quad(x, z) \mapsto\left(f x, z+\log \frac{d_{u} f^{-1}}{d_{\mu}}(x)\right), \quad \text { and obtain type III } I_{\lambda}
\end{aligned}
$$

diffeomorphisms of $i^{-k+1} \times \mathbb{R}$ once we have proved that
$Q_{\lambda}=\left\{(y, t) \in\left(Y \times I, J_{\times} \ell, \rho \times m\right): \quad F_{t}\right.$ is q_{y} m-ergodic $\}$ is measurable. (Here, $\left(Y,\lceil, \rho)\right.$ corresponds to the ergodic decomposition of a type $I I I_{\lambda}$

```
transformation. We refer to §ll and [16] for details.)
```

Theorem 13.2.
Let (x, S, μ) and f be as in 12.6. Suppose further that f is of type III, $0<\lambda<?$. Then the set

$$
e_{\lambda}=\left\{\phi \varepsilon E \mid(x, y) \rightarrow(f x, y+\beta x) \text { is of type III } \lambda_{\lambda}\right\}
$$

is a dense G_{0} in e.

Proof.

Use Lemma 12.7 and an obvious modification of 12.11 and 12.12.

Corollary 13.3.

For every $\lambda, 0<\lambda<1$, there are uncountably many C^{∞} type III ${ }_{\lambda}$ diffeomorphisms of $T^{n} \times \mathbb{R}^{p}$, for every $n \geq 1, p \geq 0$.

Proof.

The same as 12.i3.
514. Type 111 ${ }_{\lambda},=\lambda \leq 1$ Diffeomorphisms of Arbitrary Manifolds.

Herman provec in 7.7 that every connected paracompact manifold of dimension ≥ 3 has $=C^{\infty}$ type $11 I_{1}$ diffeomorphism on it. He gave a nice
method for extending resuits on $\mathrm{T}^{\hat{2}} \times \mathbb{R}^{\mathrm{m}-2}$ to any connected paracompact m-dimensional manifold for $m \geq 3$. We will outline the method here for completeness, Eiso including some explanations and modifications for our particular circumstances.

Lemma 14.1.

Let X be an m-dimensional C^{∞} paracompact connected manifold and μ a C^{∞} measure on X. Then there exists an open set $V \subset X$, diffeomorphic to \mathbb{R}^{m} and satisfying $\mu(X-V)=0$.

Proof.

Let T be a C^{∞} zriangulation of X, and let T^{\prime} denote the dual complex of T, i.e. every m-simplex of T corresponds to a vertex of T^{\prime}, and if two m-simplices of T meet in an (m-l)-simplex, this corresponds to a dual edge in T^{\prime} formed by joining interior points in the touching m-simplices. Let C denote the one-skeleton of T^{\prime}, (so C consists of duai vertices and dual edges of T^{\prime}). Let A be a maximal tree for C; then by definition A is a one-dimensional simplicial complex which contains every dual vertex of T^{\prime} and is contractible. Each vertex of A corresponds $=2$ an m-simplex of T, so we can consider the interior of the union of m-s-molices of T traced out by A. We therefore have an m-dimensional zoen set V which is PL isomorphic to \mathbb{R}^{m} and therefore diffeomorphic to $\overline{\mathbb{T i n}}$. Since $X-V$ forms part of the ($m-1$)-skeleton of T,
it clearly has Lebesgue measure zero.

Lemma 14.2.
If $m \geq 3$, there exists an open set U of \mathbb{R}^{m} diffeomorphic to $T^{2} \times \mathbb{R}^{m-2}$ such that $\psi\left(\mathbb{R}^{m}-U\right)=0$.

Proof.
We write $\mathbb{R}^{m}=\mathbb{R}^{3} \times \mathbb{R}^{m-3}$ and then it suffices to prove the theorem for $m=3$. We write $\mathbb{R}^{3}=\mathbb{R}^{2} \times \mathbb{R}$. Then by removing $\{0,0\} \times \mathbb{R}$ from $\mathbb{R}^{2} \times \mathbb{R}$ we have $\left\{\mathbb{R}^{2}-\{0,0\}\right) \times \mathbb{R} \cong T^{1} \times \mathbb{R}^{2}$. Now $T^{1} \times \mathbb{R}^{2}-\left\{T^{1} \times(0,0)\right\} \cong T^{2} \times \mathbb{R}$.

Lemma 14.3.

There exists a $=^{\infty}$ type III $\left(I I I_{\lambda}, 0<\lambda<1\right)$ flow on $T^{2} \times R^{p}$ for every $p \in \mathbb{N}$

Proof.

We apply 12.13 (13.3) to obtain a C^{∞} type III (III $_{\lambda}, 0<\lambda \leq 1$) diffeomorphism of $T^{1} \times \mathbb{P}^{p}$, then we take the suspension flow.

Lemma 14.4.

Let U be an open set of \mathbb{R}^{m}, and let f_{t} be a C^{∞} flow of type III III $_{\lambda}, 0<\lambda \leq 1$) on U. Let x be the infinitesimal generator of f_{t}, i.e. x is defined by:
$\left.\frac{\partial f^{t}}{\partial t}(x)\right|_{t=0}=x{ }^{\rho} f_{t}(x)$. Let $\phi E C^{\infty}(U, \mathbb{R}), \phi>0$, be defined such thaz -n: vector field ϕx is globally integrable and defines a flow g_{t}. Then the flow g_{t} is weakly equivalent to f_{t}.

Proof.

The flow f_{t} sazisities the differential equation: $\frac{\partial f_{t}}{\partial t}=x \circ f_{t}, f_{0}(x)=x$, and $d f_{t}(x)=\operatorname{det}\left(D f_{t}(x)\right)$ satisfies:

$$
\left.\frac{\partial}{\partial t} \log \tau_{t}\right)=\operatorname{div}(x) \circ f_{t}, \log \left(d f_{0}(x)\right)=0,
$$

where $\operatorname{div} x=\sum_{i=1}^{\pi} \frac{x_{i}}{x_{i}}$. It follows that g_{t} satisfies:

Proof.

By 14.1 and 14.2 we have an open set $U \subset X$ of full u-measure and such that u is diffeomorphic to $T^{2} \times \mathbb{R}^{m-2}$. Let f_{t} be a type III ${ }_{0}$ (III, $0<\lambda \leq 1$) fiow on U with infinitesimal generator x; such as flow exists by 14.3 . Let $\phi \in C^{\infty}(X, R)$ be such that $\phi>0$ on $U, \phi=0$ on $X-U$, and such that the vector field
$Y(x)=\left\{\begin{array}{cl}\phi(x) X(x), & \text { if } x \in U, \\ 0, & \text { if } x \in X-U\end{array}\right.$
is C^{∞} on X and globally integrable, thus defining a flow, f_{t}, on X. The flow f_{t} is of type III $\left(I I I_{\lambda}\right)$ by 14.4.

Corollary 14.6.

There exist uncountably many C^{∞} type III $_{0}\left(I I I_{\lambda}, 0<\lambda \leq 1\right)$ diffeomorphisms on every connected, paracompact C^{∞} manifold of dimension ≥ 3.

Proof.

Apply 14.5, 8.4, and the technique used in 11.1.

Proof．

We apply 12.13 （13．3）to obtain a c^{∞} type III （III $_{\lambda}, 0<\lambda \leq 1$ ） diffeomorphism of $T^{1} \times P^{p}$ ，then we take the suspension flow．

Lemma 14．4．

Let U be an open set of \mathbb{R}^{m} ，and let f_{t} be a C^{∞} flow of type III $_{0}\left(I I I_{\lambda}, 0<\lambda \leq 1\right)$ on U ．Let X be the infinitesimal generator of f_{t} ，i．e．x is defined by：
$\left.\frac{\partial f_{t}}{\partial t}(x)\right|_{t=0}=x^{\circ f_{t}(x)}$ ．Let $\phi \varepsilon C^{\infty}(U, \mathbb{R}), \phi>0$ ，
be defined such tha：こ－ミvector field ϕx is globally integrable and defines a flow g_{t} ．Then the flow g_{t} is weakly equivalent to f_{t} ．

Proof．
The flow f_{t} 三acisiies the differential equation：$\frac{\partial f_{t}}{\partial t}=x \circ f_{t}, f_{0}(x)=x$ ， and $\mathrm{df}_{\mathrm{t}}(\mathrm{x})=\operatorname{det}\left(D f_{\mathrm{t}}(x)\right)$ satisfies：

$$
\frac{\partial}{\partial t} l \cos =\operatorname{riv}_{t}=\operatorname{div}(x) \circ f_{t}, \quad \log \left(d f_{0}(x)\right)=0
$$

where $\operatorname{div} x=\sum_{i=i}^{\pi} \frac{i_{i}}{i x_{i}}$ ．It follows that g_{i} satisfies：
$\frac{\partial g_{t}}{\partial t}=\phi \cdot x^{\circ} g_{t}, g_{o}=I d$, and $\frac{\partial}{\partial t} \log \left(d g_{t}\right)=\operatorname{div}(\delta \cdot x)^{\circ} g_{t}=(\phi \cdot \operatorname{div} x)^{\circ} g_{t}+\frac{\partial}{\partial t} \log \left(\phi^{\circ} g_{t}\right) \quad$.

We can associate to f_{t} and g_{t} flows F_{t} and G_{t} respectively, on $U \times \mathbb{R}$ which satisfy the following differential equations:

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} F_{t}\right|_{t=0}=(x, \operatorname{div}(x)), F_{0}=I d ; \\
& \frac{\partial}{\partial t} G_{t}=(\phi \cdot x, \operatorname{div}(\phi \cdot x)), G_{0}=I d .
\end{aligned}
$$

Let \tilde{G}_{t} denote the flow on $U \times \mathbb{R}$ associated to the vector field $(\phi \cdot x, \phi \cdot($ oiv $x))$. Clearly \bar{G}_{t} is weakly equivalent to F_{t} because it has the same orbits as F_{t}, hence the same ergodic decomposition. Now we define the map $h: U \times \mathbb{R} \rightarrow U \times \mathbb{R}$, where $h(x, y)=\left(x, y+\log \phi(x)\right.$. It is easy to see that $G_{t}=h \circ \tilde{G}_{t} o^{-1}$, and the lemma is proved.

Theorem 14.5 .
There exists $\geq C^{\infty}$ type III ${ }_{0}\left(I I I_{\lambda}, 0<\lambda \leq 1\right)$ flow on every paracompact, connecter manifold x of dimension $m \geq 3$.

Proof.

By 14.1 and 14.2 we have an open set $U \subset X$ of full μ-measure and such that μ is diffeomorphic to $T^{2} \times \mathbb{R}^{m-2}$. Let f_{t} be a type III ${ }_{0}\left(I I I_{\lambda}, 0<\lambda \leq 1\right.$) fiow on U with infinitesimal generator x; such as flow exists by 14.3 . Let $\phi \in C^{\infty}(X, R)$ be such that $\phi>0$ on $U, \phi=0$ on $X-U$, and such that the vector field $Y(x)=\left\{\begin{array}{cc}\phi(x)_{X}(x), & \text { if } x \in U, \\ 0, & \text { if } x \in X-U\end{array}\right.$ is C^{∞} on X and globally integrable, thus defining a flow, f_{t}, on X. The flow f_{t} is of type III $_{0}\left(I I I_{\lambda}\right)$ by 14.4.

Corollary 14.6.

There exist uncountably many C^{∞} type III $_{0}\left(I I I_{\lambda}, 0<\lambda \leq 1\right)$ diffeomorphisms on every connected, paracompact C^{∞} manifold of dimension ≥ 3.

Proof.

Apply 14.5, 8.4, and the technique used in 11.1.
$\frac{\partial g_{t}}{\partial t}=\beta \cdot x^{0} g_{t}, g_{0}=I d, \quad$ and $\frac{\partial}{\partial t} \log \left(d g_{t}\right)=\operatorname{div}(\phi \cdot x)^{\circ} g_{t}=(\phi \cdot \operatorname{div} x)^{\circ} g_{t}+\frac{\partial}{\partial t} \log \left(\phi^{\circ} g_{t}\right) \quad$.

We can associate to f_{t} and g_{t} flows F_{t} and G_{t} respectively, on $U \times \mathbb{R}$ which satisfy the following differential equations:

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} F_{t}\right|_{t=0}=(x, \operatorname{div}(x)), F_{0}=I d ; \\
& \left.\frac{\partial}{\partial t} G_{t}\right|_{t=0}=(\phi \cdot x, \operatorname{div}(\phi \cdot x)), G_{\hat{u}}=I d .
\end{aligned}
$$

Let \mathbb{G}_{t} denote the flow on $U \times \mathbb{R}$ associated to the vector field $(\phi \cdot x, \phi \cdot(\operatorname{div} x))$. Clearly \bar{G}_{t} is weakly equivalent to F_{t} because it has the same orbits as F_{t}, hence the same ergodic decomposition. Now we define the map $h: U \times \mathbb{R} \rightarrow U \times \mathbb{R}$, where $h(x, y)=\left(x, y+\log \phi(x j)\right.$. It is easy to see that $G_{t}=h o \bar{G}_{t}{ }^{o}{ }^{-1}$, and the lemma is proved.

Theorem 14.5 .

There exists $\equiv \sum^{-\infty}$ type $11 I_{0}\left(I I I_{\lambda}, 0<\lambda \leq 1\right)$ flow on every paracompact, connectec manifold X of dimension $m \geq 3$.

Proof.

By 14.1 and 14.2 we have an open set $U \subset X$ of full μ-measure and such that μ is diffeomorphic to $T^{2} \times \mathbb{R}^{m-2}$. Let f_{t} be a type III $\left(I I I_{\lambda}, 0<\lambda \leq 1\right)$ fiow on U with infinitesimal generator x; such as flow exists by 14.j. Let $\phi \varepsilon C^{\infty}(X, R)$ be such that $\phi>0$ on $U, \phi=0$ on $X-U$, and such that the vector field $Y(x)=\left\{\begin{array}{cl}\phi(x) x(x) & \text { if } x \in U, \\ 0, & \text { if } x \in X-U\end{array}\right.$ is C^{∞} on X and globally integrable, thus defining a flow, f_{t}, on X. The flow f_{t} is of type III $_{0}\left(I I I_{\lambda}\right)$ by 14.4.

Corollary 14.6.

There exist uncountably many C^{∞} type III $_{0}\left(I_{\lambda}, 0<\lambda \leq 1\right)$ diffeomorphisms on every connected, paracompact C^{∞} manifold of dimension ≥ 3.

Proof.

Apply 14.5, 8.4, and the technique used in 11.1.

Proof.

By 14.1 and 14.2 we have an open set $U \subset X$ of full u-measure and such that μ is diffeomorphic to $T^{2} \times \mathbb{R}^{m-2}$. Let f_{t} be a type III ${ }_{0}\left(I I I_{\lambda}, 0<\lambda \leq 1\right.$) fiow on U with infinitesimal generator x; such as flow exists by $14 . \Xi$. Let $\phi \in C^{\infty}(X, R)$ be such that $\phi>0$ on $U, \phi=0$ on $X-U$, and such that the vector field $Y(x)=\left\{\begin{array}{cl}\phi(x) X(x) & , \text { if } x \in U, \\ 0, & \text { if } x \in X-U\end{array}\right.$
is C^{∞} on X and globally integrab?e, thus defining a flow, f_{t}, on X. The flow f_{t} is of type III $_{0}\left(I I I_{\lambda}\right)$ by 14.4.

Corollary 14.6 .

There exist uncountably many C^{∞} type III $_{0}\left(I I I_{\lambda}, 0<\lambda \leq 1\right.$) diffeomorphisms on every connected, paracompact C^{∞} manifold of dimension ≥ 3.

Proof.

Apply 14.5, 8.4, and the technique used in 11.1 .

PAGES MISSING

REFERENCES

1. Denjoy, A. Sur les courbes définies par les équations différentielles à la surface du tore, J. de Math. Pures et Appl., t.ll, 9 (1932), p.333-375.
2. Douker, Y.N., Finite and o-finite invariant measures, Ann. of Math. 54 (1951), 595-608.
3. Friedman, N., Introduction to Ergodic Theory, Van Nostrand Reinhold, New York (1970).
4. Halmos, P.R., Lectures on Ergodic Theory, Chelsea Publishing, New York (1956).
5. Hardy, G.H. and E.M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Oxford University Press, London 1975.
6. Hawkins, J. and K. Schmidt. On C^{2}-diffeomorphisms of the circle which are of type III, Preprint, University of Warwick (1979).
7. Herman, M.R. Construction de difféomorphismes ergodiques, Preprint (i979).
8. Herman, M.R. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. I.H.E.S. No. 49 (1979), p.5-234.
9. Hopf, E., Theory of measure and invariant integrals, Trans. Amer. Math. Soc. 34 (1932), p.373-393.
10. Jones, R., and h. Parry, Compact abelian group extensions of dynamical systems II, Compositio Math. 25 (1972), p.135-147.
11. Katznelson, Y., Sigma-finite invariant measures for smooth mappings of the circle, J. d'Analyse Math. 31 (1977), p.1-18.
12. Kelley, J., General Topology, Van Nostrand Reinhold, New York (1955).
13. Krieger, W., On the Araki-Woods asymptotic ratio set and non-singular transformations of a measure space.

Contributions to Ergodic Theory and Probability, Springer
Lecture Notes in Mathematics No. 160 (1970), p.158-177.
14. Losert V. and K. Schmidt, Probability measures on groups, Lecture Notes in Mathematics 706, Springer (1979), p.220-230.
15. Ornstein, D.S., On invariant measures, Bull. Amer. Math. Soc. 66 (1960), p.297-300.
16. Schmidt, K., Lectures on Cocycles of Ergodic Transformation Groups, MacMillan Lectures in Mathematics, Vol. I, MacMillan India, (1977).
17. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc. 73 (1967).

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

03705681

[^0]: Motivated by a Daper of Jones and Parry [10], we show that "most" C^{∞} functions $: T^{n} k \mathbb{R} \rightarrow T^{1}$ give ergodic extensions for each F as defined

