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The following extract is from the opening scene of act one of “Rosencrantz and 

Guildernstern are dead" Tom Stoppard, Faber (1967).

Rosencrantz and Guildernstern have been tossing coins and betting on the outcome. 

Some eighty coins have come down heads consecutively...

R06: Heads. Getting a bit of a bore, isn't It?

GUtL A bore?

ROS: Wall...

GUIL: What about the suspense?

What suspense?

It must be the law of diminishing returns....! feel the spell about to be 

broken

Roa
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A bstract

This thesis describes the development of a Crossed Beam instrument for the 

study of ion-molecule reactions. A full investigation of some gross systematic errors, 

in apparatus which had been previously installed, is made. Where time has prevented 

the further development, then conclusions have been transformed Into specifications, 

and practical solutions described. Experimental data is presented which is interpreted 

as evidence that the beams intersect and that low intensity of the scattered products 

and the forementioned systematic errors veil these data. The reduction of data, 

containing such errors, to useful chemical interpretation is extremely difficult, 

hence the need for further modification.

Data are presented in chapter 3 consistent with the quadrupole acting as a 

linear particle accelerator. The effect on an in itially monochromated beam is of 

causing an unacceptable energy spread. The spherical and chromatic aberrations of 

both source and detector are identified as the principal systematic errors using 

computer simulation (SIMION) for forward convolution.

The development of a pulsed neutral beam source is described In chapter 4. 

The performance of the beam source Is critically analysed and compared to alternative 

sources. A generally applicable model is derived to predict the shutter opening 

function of pulsed sources. Such a study has not previously been made. It is 

anticipated that this model will be of use to the solution of non-steady flow problems 

le. calculation of time dependent flow field properties, or In the deconvolution of TOF 

spectra from beam sources. Performance data for the beam source and some calculated 

properties are given.

The subject of Ion-molecule reactions Is Introduced by development from 

simple ideas. The subject matter covered Is not Intended to be exhaustive, but covers 

the examples o f ion-molecule reactions of personal Interest. Recent crossed beem 

studies are examined and suggestions of possible new experiments made.





Interest in Ion-molecule interactions

As energy is added to matter, characteristic changes are observed from solid 

to liquid and gas 1. Injection of sufficient energy will result in plasma formation by 

the detachment of an electron:

m
M

Energy
M+ + e*

or by some dissociative process eg. ion pair formation:

[ 2]

M
Energy

X+ + Y '

The ionisation or dissociation energy is analogous to the latent heat and hence such 

plasmas can be described as a fourth state of matter. In the presence of a large 

density of energy, ionisation will occur: ions are formed in nuclear reactions, mainly 

as by-products, and in flames where ion processes are important in flame 

propagation and combustion. These examples have sufficient exoergic energy releases 

to support ion formation.

Ions which persist for a long period of time have a high probability of 

interaction with a second particle. These bimolecular Interactions are the basis of 

gas phase ion-molecule chemistry and have a general significance in the physical and 

applied sciences. Detailed study of ion chemistry provides data and techniques useful 

to disciplines as diverse as engineering (eg. combustion efficiency, semiconductor 

manufacture) and astronomy (eg. planetary atmospheres, solar wind etc.).

The importance of theory

Single measurements or results are rarely significant In any scientific 

discipline. Placed In the proper context amongst analogous data, the importance can

1



be seen by comparing and contrasting results. This practice makes theoretical 

predictions possible, ie. demonstration of a quantitative understanding of unknown 

systems. The testing of theories is in itself an important driving force in science. 

This is particularly true for the type of chemical physics related to ion-molecule 

reactions, since questions are posed about the very nature of reactivity.

The first theory of ion-molecule reactions was formulated to explain the 

variation in kinetic rates of reaction in the gas phase. The model is taken from 

Langevin theory 2 and describes the interaction of a structureless ion with a 

polarisable molecule. The resulting Langevin equation 3 has formed the basis a 

number of subsequent and improved theories 4-5.

Langevin cross section C l . Q - charge on the ion in units of e (the fundamental 

unit of charge), a -  polarisability of the neutral species, p -  reduced mass. 

v r-  initial relative velocity. £ o - permittivity of free space.

Theoretical explanations of macroscopic (bulk) and microscopic (molecular 

level) behaviour are prominent in the literature 3-17 . Early empirical and 

analytical theories have been superseded by complex theories upon the advent of 

powerful, fast computers. The growth of modeling, using detailed many state quantum 

dynamical 15 and trajectory calculations 1 0  6.2« on accurate ab initio potential 

surfaces 8‘ 10, has produced a technology lag. Reducing the gap between the most 

advanced state-to-state calculations and what can be done to validate them by 

quantitative experiment, remains a principal driving force to the study of reaction 

dynamics.

This section Is summarised by figure 1.1.

[3]

o L -  2ftQ 
(4 ite 0)v

1
2

2





Generalities on structure and reactivity

The types o f chemical species studied in the gas phase can be grouped into 

three categories: clustered molecules, neutrals and ions. Clusters may be charged or 

uncharged, but are worthy of separation from the other categories. The neutral and 

ionic groups can be further subdivided into open- and closed-shell reactants, and 

each includes monatomic species.

Clusters

The newest o f the three fields is that of cluster chemistry 18-19. a  rapid 

growth in research e ffort has been directed by the semiconductor industry. This 

growth is due mainly to the search for moieties with properties intermediate between 

the bulk and the molecular. Properties of clusters do appear to be different: cluster 

formation is dominated by the so called magic number stability 19'53. The chemical 

reactions of a substrate chemisorbed to a clustered molecule have energetics governed 

by the binding energy o f the cluster, weighed against the energetics of the adsorbate 

undergoing a change 53.

Discrete particles

Chemistry amongst discrete species is determined by a number of constraints: 

Size and symmetry

Reactions between particles including only a small total number of atoms, 

often display pronounced selectivity between different reaction channels. The 

selectivity is caused by symmetry constraints In the part of the reaction co-ordinate 

leading to a minimum separation between the reaetenio. Consideration of the least 

symmetric intermediate is required to map reactants on to products via the relevant 

angular momentum coupling schemes 20. selection rules 21 and quantum state and 

molecular orbital correlations 2223.

3



One particular case is of interest. When a small molecule or ion includes a 

heavy atom this also means the presence of a large orbital angular momentum 24. The 

reaction dynamics can be complicated considerably because of coupling of angular 

momenta, especially In the case o f angle-resolved scattering studies. To a first 

approximation in the analysis o f differential scattering data, the angular and 

kinematic parts of the potential are separable 2S. The approximation breaks 26 down 

when coupling between the different angular momenta occurs ie. the torque caused by 

high impact parameter collisions, orb ita l and rotational angular momenta. Iterative 

routines for the deconvolution of centre  of mass (CM) scattering data have been 

developed 27 to recover the correct differential cross sections from the CM data.

Larger small molecules and ions

As mentioned above the least symmetric combination of collision partners 

governs the symmetry restrictions on reaction. As the total number of atoms 

included in a reaction increases, then the least symmetric combination falls rapidly 

to C». Symmetry restrictions are not often seen for reactions involving more than 

about ten atoms in total. Combinations of reactants with as few as four atoms may 

have a least symmetric geometry along the reaction coordinate of C j 28. A large 

number of internal energy modes, such as is available to polyatomic species, 

generally extends the lifetime of a particle which has gained sufficient energy to 

dissociate. This effect can be predicted from the Ramsperger-RIce-Kassel-Marcus 

(RRKM) expression for the expectation lifetime of a particle undergoing a 

unimolecular decay 7.

Reactant internal energy also has a strong effect on reducing local symmetry 

particularly through vibration 29.

4



Branching and stereochemistry

Molecular collisions in which the combined number o f atoms in the reactants 

is large have chemistry governed by alternative constraints to  symmetry. Many 

more competing channels in the chemistry may be observed. The formation of 

products by different routes is affected by the thermochemistry and by a new 

constraint caused by their larger size ie. stereochemistry 30.

Electronic structure and potential energy surface effects

Molecular neutrals and ions are termed closed shell if the  outermost occupied 

principal electronic shell (valence shell) is complete. The neutra l and ionised closed 

shell species have differences in electronic structure. Incomplete or open valence 

shell species also display electronic differences. The salient differences between 

these types can be summarised.

Neutral molecules with closed principal electronic shells, generally have a 

ground electronic potential energy surface (X-state) which is well separated from 

the excited states. Excited states are termed A,B,C...eto. in ascending order of energy 

above that of the ground state. The separability of the states makes this type of 

molecule accessible to state selection: aed- this property has been exploited by 

chemists in exciting selected transitions using narrow band w idths of laser light 

31,32.

In contrast, ionisation of a species causes contraction o f molecular size and of 

the gap between electronic states. The Influence of the large number of low lying 

excited electronic states on the chemistry of an lorv compared to  an Iso-electronic 

neutral, is to reduce the threshold energies at which branching reactions, avoided 

crossings and intersections of potential surfaces will alter the  dynamics. For 

example a simple chemical reaction Involving only two particles and three atoms (A 

♦  BC)+, there exist two electronic potential manifolds for each set o f reactants:
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[4 ]

[5]
A +  + B C --------------- ►  products

A  + B C + --------------- ►  products

Moieties which have incomplete electronic shells may experience sm all 

barriers in the reaction coordinate. Some even have no barrier at all in excess o f any 

endoergicity of the reaction 33. The reactions of small molecules with open shell 

configurations therefore, can proceed upon every collision.

There are more differences in the typical electronic structures of open shell 

moieties: many of the higher electronic states may be degenerate. In cases such as 

A r+ and Cl which are iso-electronic, the ground electronic configuration has two 

spin orbit states (2P3/2. 2Pl/2) which are close to degenerate:

A r*  2 P 3/2 —  2 P 1/2  energy difference 34 -  1432 cm-1 or 0.177 eV

Cl 2 P 3/2  ^ —  2 P 1/2  energy difference 34 -  881 cm-1 or 0.109 eV

The nature and position of barriers and wells on an adiabatic reaction surface 

determine the gross energy requirements. An early barrier in the entrance valley o f 

a surface will be surmounted efficiently by kinetic energy alone. Those surfaces with 

late barriers (eg. the microscopic reverse case of the above) are more efficiently 

surmounted by Internal energy. This behaviour can lead to an increase or decrease o f 

two orders of magnitude in rate of reaction, for the addition of a single quantum of 

vibrational energy per molecule. Large differences are still seen, even if the total 

energy content of the reactants (kinetic ♦ Internal) is kept constant.

Comment

In addition to the general scheme outlined above, detailed consideration of the 

energy disposal must be considered in interpreting reaction data. The microscopic
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effect of energy on the reactivity of chemical species underpins thermal reaction rate 

theory.

In 1986 Herschbach 36. Polanyi 37 and Lee 38 were awarded the Nobel prize 

for the ir pioneering work In the field of reaction dynamics, emphasising the 

importance of this field to the understanding of chemical reactivity.

Techniques in the study of ion-molecule chemistry

Two recent books have been published on the modern techniques used in the 

study of gas phase ion chemistry 39.40 The review articles presented in those books 

contain substantial experimental detail, including mathematical analyses of the 

relevant kinematics. A brief comparison of the advantages and disadvantages of the 

a lternative methods is desirable here, in order to evaluate the crossed-beam 

experiment.

General

The choice of techniques used to study an ion-molecule reaction or process 

depend upon the Information sought. Experiments may be carried out on many 

different levels, from ultimate specification of reactant and product conditions to 

thermally averaged measurements. Figure 1.2 illustrates the relationship between 

all the different experiments, what each determines and the mathematical operations 

required to link them. There is a good deal of overlap in the ranges of study available 

from each type of experiment, due to the design of versatile equipment. The growth in 

interest in tandem techniques has lead to the fabrication of some novel apparatus 

41 •42 , coupling together various different equipment for the study of reaction 

sequences.
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Swarm methods

The types of experiment can be divided into categories. Amongst these are the 

Swarm  techniques 43 44 eg. Flowing afterglow  (FA), Selected ion flow drift tube 

(SIFDT) etc. These are flow-tube experiments in which ions are typically formed In 

a discharge source and introduced to a carrier reagent gas flow. Historically products 

were detected by measuring a characteristic visible chemiluminescence, either 

directly or by the use of marker reactions which produce light. The most common 

method of detection is now mass selective achieved using quadrupole mass analysis and 

charge sensitive ion detecting apparatus. Selection of species of particular mass ions 

or products from reaction of a particular mass in drift tubes has been achieved with 

the use of radio-frequency electrodes. The analogy between the stop and go function of 

this type of mass filter has lead to the name traffic light filters 4S.

The reactants experience a large number of collisions throughout the reaction 

zone of a swarm apparatus, hence the energy content is averaged and can be defined by 

Maxwell-Boltzmann mathematics. The technique is, therefore, particularly 

attractive for the measurement of thermochemical and kinetic data. This advantage 

also limits the usefulness because no investigations can be made with non-thermal 

reactants. Electronic and some vibrational excitations are not efficiently quenched by 

multiple collisions. A study can be made of the effect of excess energy in an otherwise 

thermalised Ion, when internal energy transfer depleting a particular vibrational 

mode or electronic state is slow.

An example of a chemical investigation using SIFT is the reaction 4S:

m

OH- H2O + CH3B r--------------►  CH3OH + Br- + H2O

This reaction is studied at 300 K (0.02 eV) and provides the thermal energy limit to 

the low energy data obtained using a tandem mass spectrometer. In the SIFT study, 

the reactant ions are produced by electron impact Ionisation of water vapour and 

mass selected for Injection to the flow tube using a QMF. The observed reaction



channel, seen above, is interesting in view of the more exothermic channel producing 

solvated B r .  This solvated leaving group (H2O B r)  constitutes less than 8% of the 

product yield in this channel, indicating that the precursor of the B r  is not formed 

by CID of H2O B r \  This result indicates that the reaction coordinate does not 

efficiently couple the so called Walden inversion (or Sn2 mechanism) 47 and the 

transfer of solvent molecule. Thus, it appears from the data that Br' is formed 

directly, in contrast with the solution result in the presence of the bulk solvent 48.

Mass spectrometric techniques.

The m*»st common, non-analytical studies made with mass spectrometers are 

on the unimolecular decomposition of Ions at kilovolt energies. The high energies 

used are necessary for transmission through the analysing sectors of the instrument. 

In the traditional mass spectrometer (MS) ion-molecule reactions can be performed 

in a high-pressure ion source. Equilibrium and thermodynamic measurements have 

been made in this way 49

In a standard electric and magnetic sector mass spectrometer, mass separation 

is made possible by a differential deflection the components of an ion beam according 

to energy and momentum respectively. Mass separation is achieved by passing an ion 

beam of narrow energy distribution through both an electric and a magnetic sector. 

High resolution can be obtained by selecting a narrow portion of the beam at strategic 

points along the flight path. The quadrupole mass filter (QMF) provides an 

alternative for mass selection, normally at low resolution. This latter type of 

analyser has a dynamic range of only a few electron volts. Many bond energies lie in 

the range 1-5 eV making techniques which access it very attractive. The QMF has 

become popular for ion trapping and collision-gas cell experiments; especially using 

the trlple-quadrupole tandem mass spectrometer. MS-colllslon cell geometries 

allow the determination of total cross sections to reasonable accuracy, since the 

physical geometry of the cell is known 51. The principal drawback of the collision
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cell geometry is the random thermal motion of the target gas. This effect limits the 

attainable resolution in the centre of mass quite severely.

Inaccuracies in measurements can be caused by scattering losses and the 

questionable integrity of the single collision regime. Cross section measurements can 

not be made unless the pressure in the collision cell is well characterised and the 

majority of ions undergo only one collision. Many collision-induced dissociation 

experiments are performed with gas admitted until the primary signal is attenuated 

by 50-60%. Under conditions where an attenuation of greater than a few percent 

observed, then multiple collisions are probable 52. In that case all dynamical 

information is lost. In the case of floated cells the question of the effect on molecular 

properties of the high potential and consequences for some measurements does not 

appear to have been addressed.

The investigations of aluminium cluster ions made by Jarrold and Bower 

illustrate the low-energy collision-cell technique and some of the properties of 

cluster ions. An example of their work is the collision induced dissociation (CIO) of 

A lnO m n>3-26 m-1,2 clusters 53. In the experiment a laser ablates the surface of 

an aluminium rod. Small clusters aluminium with a bound oxygen are formed 

(AlnOm n>3 m - 1 .2 ). These clusters are ionised by fast-electron bombardment, then 

expanded in a He buffer gas in the hope of relaxing the varied internal energy content 

of the ions formed during the ionisation step. Ions are mass selected using a QMF and 

then dissociated in a collision cell using noble gas targets. The authors note that In 

the controlled conditions of the cell, multiple collisions are expected.

The relative abundance of the cluster and CIO products are measured for 

selected ions. A strong dependence on cluster size of the effective total cross section 

supports the argument that stability varies with cluster size (magic numbers). The 

principal products of the dissociation are strongly bound moieties eg. the AfeO 

neutral and the remaining ion A ln.2 0 m -i- In the initial cluster Ion, the oxygen 

appears to be strongly bound (energies of 6-8 eV). This property is attributed to a 

rapid onset of metallic properties upon increasing the number of clustered atoms.

0



The change from molecular to metallic character appears to begin with relatively 

small clusters (A le*).

An example of a fundamental reaction studied using a modified commercial 

mass spectrometer, is the collision induced dissociation and field ionisation studies of 

Bordas-Nagy and Holmes 54'56.

In one of these studies 54 energy release measurements are made, using the 

technique of mass-analysed kinetic-energy spectroscopy (MIKES) on H3*  at 9.9 eV 

energy. The H3+ moiety is prepared predominantly in the ground state ion using a 

high pressure electron impact ionisation source by the sequence:

[7]
H2 + e - --------------► H2+* {+ H 2 } --------------► H3* ‘ + H

H3+* + H2 --------------► H3+ + H2*

In the experiment the beam is attenuated (10%) in a collision cell and the 

energy releases upon dissociation measured. The dissociation of H3+ using He and Ne 

target gases is interpreted as having two distinct channels. The first of these 

channels is a collisional excitation of the H3+ to the 1A and 1B states. The reactant 

states do not correlate directly with those of the products. A non-adiabatic transition 

between the reactants and ground state products occurs in the region of an avoided 

crossing in the potential surface. The most probable internuclear separation for a 

curve crossing is at an interatomic separation equal to the turning point of the 

ground state V -4 vibrational level. The difference between measured and calculated 

energy releases for the dissociation supports the claim that the V -4 level is most 

frequently populated. In the second channel, the formation of high Rydberg (HR) 

species changes the observations. The authors believe that the decomposition 

dynamics of the HR fragments is consistent with the three body dissociation reaction:

[8]

H3+ ------------- ► 2H + H+

11



Total spin conservation is observed for collisions with He and Ne. The 

alternative target atoms Ar, Kr and Xe contrast by the different coupling scheme for 

the larger orbital angular momentum. This relaxes the selection rule conserving the 

total spin in favour of conservation of the total angular momentum.

Resonant methods and ion trapping

Experiments of this type utilise the different responses of ions to electric 

fields modulated at radio frequency. Formation and reaction of ions is performed in 

the same region, hence ions can have long residence times. These properties give the 

technique certain advantages. The ion trapping and long ion-residence time 

experiments are suited to ionisation techniques which have low signal generation and 

poor stability eg. fie ld  desorption (FD) 57 or resonance enhanced multi-photon 

ionisation (REMPI) 58. Using these tools photodissociation dynamics can be readily 

investigated. Alternatively long synthetic paths can be followed, in which the high 

sensitivity required is satisfied by forming, reacting and detecting ions non­

destructive^ in the same physical space.

Ion cyclotron resonance (ICR) and related techniques 59 have the advantage of 

enormous resolving power at low mass 60. Ion-molecule reactions involving 

reactants of moderate or low mass, performed on these instruments take best 

advantage of the resolution. Accurate masses may be required in the analysis of 

experimental data. ICR can be applied to reactions with low yields caused by small 

reaction cross sections or an inefficient branching in the case of competition between 

channels.

ICR is disadvantaged by problems of near-resonant ion ejection. Similarly In 

quadrupole Ion traps, trajectories of ions which lie just outside the stability region 

for transverse motions take many cycles of the applied RF field before ejection is 

Induced. These techniques are not suited to the time-resolved study of very fast 

physical processes.
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A study utilising two complementary ICR techniques has been made to 

investigate the energy disposal in non-resonant CT reactions of NH3 with a variety of 

simple ions 61. A variable voltage trapping cell ICR method was used to measure 

kinetic energy releases. The measurement of total rates of reaction and analysis of 

the internal energy content was made using a tandem ICR apparatus. The reaction of 

NH3+* with H2O was used to diagnose the internal-energy content of the NH3+ ion. 

There are two product channels for this reaction: formation of H3O  and formation of 

N H 4* . The reaction promoting NH4+ is marginally exothermic and is seen 

exclusively at low internal-energy contents, whilst the reaction promoting H3O+ is 

endothermic by 4.35 eV. By measuring the product branching ratios the authors 

were able to measure the average internal-energy content of NH3+* up to a 

maximum of about 5 eV. Results indicate that the precursor CT reagent ions deposit 

between 1 and 4.9 eV of energy into NH3+ . The observation that this transfer is less 

efficient for increasingly large precursor ions is a reflection of the greater number 

o f modes to partition the energy released.

State selected chemistry and laser applications

The most detailed information on state resolved chemical reactions can be 

derived from laser experiments. The laser has contributed substantially to the study 

and the understanding of state-to-state reaction dynamics. There are two principal 

techniques used to investigate state-selected chemistry: they are laser based and 

coincident detection experiments.

Laser-based experiments normally involve more than one laser. Reactants 

are formed from the gas phase precursors by picking out transitions to select the ro- 

vibrational state required. A subsequent laser is typically used as a detector by the 

powerful method of laser induced fluorescence (LIF), first applied to reaction 

dynamics by Zare and co-workers e2. The biggest advantage of the use of lasers is in 

the excitation of forbidden transitions. These transitions use virtual states to provide 

a  stepping stone to higher states by the coherent absorption of photons of a particular



wavelength. Problems can result from power broadening of states and relaxation of 

selection rules. These effects have been used to advantage In the dressing of reactant 

states to produce novel reactions 63.

The coincidence techniques work by detecting an ion gated with the collection 

of the electron expelled by threshold ionisation. An example ion-molecule 

experiment of this type is the threshold electron secondary ion coincidence (TESICO) 

developed by Koyano and Tanaka 64. In the TESICO experiment a precursor photoion 

is used to synthesise secondary ions of interest in addition to providing the threshold 

electron to start the reaction clock. The disadvantage of the experiment is the -ifce- 

scattering loss of products in close' collisions.

The reactions of CH5* are of considerable interest and have been widely 

studied, because of the use of this reagent as in the chem ical ionisation  (Cl) 

technique. A systematic study of the reactions:

[» )

c m +  +  c m ------------------- ►  C H 5 +  +  C H 3

which form this reagent in the source are of interest. A study of this reaction has 

been made in a collaborative study between groups using the complementary 

techniques of TESICO and of crossed beams 64,65

The crossed-beam study, between 0.6 and 3 eV. showed that three 

mechanisms were in simultaneous operation. Two of these reactions were 

interpreted as H+ and H transfer reactions at the CM angles of 180° and 0°  

respectively. There was also a small quantity of the CH5 + formed from a C2H8 + 

intermediate complex whose lifetime was greater than about 10‘12 s over the energy 

range 0.6-2.5 eV. Although the mechanisms were distinct in this crossed beam 

study, the internal energy dependence of the branching ratios could not be 

investigated. The average eneray content In this study of the combined Internal modes 

was 1.0 eV and this was spread over the estimated range of energies: 0.2-1.3 eV.
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In contrast, the dependence of these reactions upon internal energy could be 

analysed by TESICO to the resolution allowed by the overlapping states of the CH4* 

ion. The magnitude of the internal energy content was defined precisely for five 

values in the range 0.13-1.07 eV. Information upon the actual modes populated was 

not available due to the in tractable threshold photoelectron spectrum. These 

reactions showed additional information about the total cross section. Surprisingly, 

it diminished with an increase in both internal and translational energy. The 

branching ratios of the isotopomer reactions, including the charge-transfer channel, 

were measured and used to distinguish between the different mechanisms seen in the 

crossed-beam reaction. The results indicate that the CT reaction channel is never 

more than 50% of the total ion yield. Furthermore, the proportion of product giving 

rise to the dominant H+ transfer channel goes up with internal energy and. to a 

lesser extent, with kinetic energy at the expense of the other reactive channels.

Some of the work on orientation effects has been done with lasers. One of the 

most interesting experiments tha t has been performed is the femtosecond time 

resolved photodissociation dynamics 66' 70. Snapshot data can be transformed into 

information on the repulsive potential surface on which the projectiles move.

A most elegant example o f the femtosecond time resolved photodissociation 

dynamics, made by Zewail and co-workers, is the hot-atom reaction 66:

[ 10 ]

H + C 0 2 ---------------- ►  C O  + OH

proceeding via a bent HOCO transition state.

In this study a supersonic expansion of HI and CO2 is made under conditions 

promoting the formation of a 1:1 mixed bimolecular cluster. This cluster is a van 

der Waals linear molecule bound by a single H O hydrogen bond. A picosecond laser 

pulse starts the reaction clock and dissociates the HI bond. A second laser (probe) 

maps the progress of the developing reaction recording snapshots in time with a 

resolution of a few femtoseconds. A number of advantages are gained by the cunning
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use of the aligned clustered precursor. The H atom is released with a velocity of 20 

kms'1(2.07 eV) directed initially along the OCO bond. This energy release gives the 

collision energy in the CM framework directly. The impact parameter for collision 

has a reduced range of values because the precursor molecule is a locked rotor. The 

signal to noise ratio is greatly enhanced by clustering the precursor and by limiting 

the potential surface to a single orientation.

Beam experiments

Beam techniques to be discussed here are the guided ion-beam, merged beam 

and the crossed-beam experiments. These experiments have been kept separate from 

the section on mass spectrometry, because the reactions are always performed 

outside the source area.

The guided ion-beam experiment 13.83.52,71 involves the production of a 

mass selected, low energy ion beam which is injected into an ion guide. The ion guide 

consists of long multipole rod system to which a modulated inhomogeneous electric 

field is applied. Ions confined to motion within the guide are steered though a gas cell, 

where reaction products are formed. Products are trapped within the ion guide and 

are transported to the detector for mass analysis. The technique is suited to absolute 

determinations of total reaction cross sections, because products are collected from 

all 4n steradians of solid angle. The presence of the strong inhomogeneous electric 

field at the point of ion formation provides the advantage and limitation that nascent 

internal excitation is efficiently relaxed.

A recent paper by Boo and Armentrout 33 illustrates the guided ion beam 

technique. The energetics and reaction mechanisms of S iH* ♦ D2 and SiD* ♦ H2 are 

presented together with a study of the collision induced dissociation of SiDa*. The 

reaction SiH* ♦ D2 proceeds to form three distinct products: SIHD*. SI*.and SID2+. 

The absolute cross sections for these reactions are measured and the threshold 

energies for each of the channels are compared to literature values. Results indicate 

a lack of barriers in excess of the endothermicitles of these channels, but the
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measured cross sections are smaller than the Langevin cross section by half an order 

of magnitude. The difference is attributed to the difference in zero point energies not 

accounted for in the model.

For the reaction SiH* + D2 (and SiD* + H2 ), the reaction mechanism is 

interpreted as consistent with the formation of a transient SiHD2 *  (S IH 2 D+) 

intermediate: 1.6 eV more stable than the reactants. The transient is supposed to 

dissociate according to a thermodynamic control consistent with statistical 

population of the different exit channels in the reaction coordinate. By that argument 

the transient must be long-lived on the scale of intramolecular energy transfer ie. 

more than several rotational periods. Direct evidence for the intermediate is not 

available. This reaction has not been studied by the crossed-beam technique which 

might verify the mechanism 72.

The merged-beam experiment 13.52.71.73-76 ¡s rather different in nature.

It begins by the formation of two Ion beams. The first of these is the neutral beam

precursor, which is formed as an ion beam for the purpose of acceleration and

manipulation. The beam is neutralised by resonant charge transfer before being

passed into a merging magnet. The merging magnet is used to direct the second 
e

reactant m beam on to the direction of the neutral beam. The magnet also induces 

rejection of any residual charged particles left in the.neutral beam. The experiment 

has the largest range of initial relative collision energies. The in itial relative 

velocity can be varied easily from zero to several kilovolts if desired. The most 

interesting prospects are in the study of subthermal collisions In ion-molecule 

reactions. The use of resonant charge transfer of the neutral beam can be used to 

provide internal excitation of the reactant. In fact it is unlikely that vibrationally 

relaxed beams can be produced after successive ionisation and neutralisation of the 

neutral reactant beam. The electronic transitions are governed by Franck-Condon 

factors and a large number of vibrations would be expected to be significantly 

populated.
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A systematic study of the reaction of D2+ with X (X -  C, N, O, F) has been 

made by Gentry and co-workers using the merged-beams technique 73’ 76. Two of 

these reactions are interesting to contrast 73-74. In each reaction the study has been 

made over the energy range from 0.002 eV to almost 30 eV. The total reaction cross 

sections are measured as a function of energy and decline rapidly as the energy is 

increased.

The reaction:

i n )

D2+ + F (2P ) ---------------- ►  DF+ + D

is adiabatic and direct at all energies. An inflection at 25 eV is observed in the 

declining total cross section as a function of energy. This inflection is interpreted as 

evidence of a second adiabatic channel which correlates the reactants to an endoergic 

channel involving the excited products DF*(2 I )  ♦ D(2S).

In contrast the detailed dynamics of the X -  O reaction are different. The 

0 ( 3P) has an electrostatic quadrupolar moment dominating the dynamics. The 

approaching ion locks into the O atom according to the spatial orientation of the 

electronic angular momentum. This locking of the reactants reduces the ranges of 

symmetric combinations available and the efficiency of the reaction. There are six 

separate potential energy surfaces for the different (LJ) couplings in the long range 

part of the potential. In the closer approach these six surfaces correlate smoothly 

with just three symmetries. For the surface of A symmetry 87% of collisions lead 

to reaction and 53% for the B.

The crossed-beam experiment is considered in more detail in the next section.
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The crossed beam experiment

In a crossed ion-neutral beam experiment relative differential cross-sections 

are measured as a function of energy at a known initial angle of incidence (normally 

90°) and of scattering angle, all defined in the laboratory frame of reference. The 

differential cross section, Il a b  (V.6 ,<I>), is the quantity of product flux scattered to 

within a small section of solid angle, defined by 0 ,<D, per unit time.

A considerable angular momentum results from the combination of large 

impact parameters and the in itia l relative velocities of the reactants. To a first 

approximation the product is confined to the plane containing the initial velocity 

vectors. Perturbations to this approximation exist and are many fold: for example, 

spread in the initial beam conditions, the 3D nature of the cross section of the target, 

molecular angular momenta (rotation, orbital...) etc. Nevertheless <X> will always be 

small, because of the magnitude of the torque of the initial velocity vectors and the 

differential cross section, Il a b  (V .0 ), is effectively just dependent on 0 .  In addition 

the effect of the different perturbations is minimised by the detector resolution in the 

<D plane.

In order to present the data in a tractable form the transformation of the data

can be made into several different spaces. The most simple transformation for the

data is Into laboratory polar space, because the data is measured in this coordinate
C

system. The other transformations are to CM polar and to ¿artesian coordinates. The 

reduced/acobian transforms 77-78 for each of these data are displayed below.

[121

lLAB(E)dE -  lug (V>dV
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[ 13]

[14]

•cart  ■  1 •lab <V.e.4>)

•cm  (U.0,0) -  U Ilab  (V.0,0)

I -  Product flux, E -  Energy. V -  LAB frame velocity, U -  CM frame velocity,

6  -  LAB frame meridional polar angle. O  -  LAB frame azumutal polar angle.

CM -  centre of mass. LAB -  Polar laboratory frame, CART -  Cartesian frame 

0 -  CM azumutal angle. 6 -  CM meridional polar angle.

C  J
A full discussion of the derivation of the ¿artesian /acobian has been made by 

Ryan 79. Alternatively, a rigorous presentation o f vector space arithmetic for data 

reduction from any initial angle of incidence has been published by Herman and 

Friedrich 80.

The ¿artesian form has become standard because the volume elements have 

constant size and the representation is not changed by the choice of origin. The data 

can the be presented in the form of a Newton diagram, which enables both the 

laboratory and CM representations to be reconciled on a single plot. The other 

representations each introduce a distortion of the data caused by their respective 

dependences on a reciprocal velocity term (see Herman and Birkinshaw) 77.

Figure 1.3 shows two Newton diagrams. The first of these illustrates the 

connection between the initial and relative vectors in laboratory and CM velocity 

space. The second diagram In the figure shows the contribution to the differential 

cross section of various product velocity vectors and the detector resolution.
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FIGURE 1.3: NEWTON DIAGRAMS TO ILLUSTRATE SOME OF THE EXPERIMENTAL 
CONDITIONS IN VECTOR SPACE.



Key equations of reactive scattering

Products with a given amount of kinetic energy are collected at a scattering 

angle measured in the laboratory. This data is then transformed into the ^artesian 

centre o f mass (CM). In the CM frame, the observer appears to have travelled along 

the vector describing an elastic sticky co llision. Under this mathematical 

transformation the motion of the centre of mass through space is removed. Only the 

relative motions of the reactants and products remain, and the dynamics are 

considerably simplified.

Referring to the vectors labelled in figure 1.3. two vector equations for the 

magnitudes of the relative velocities (V’r e l . Vr e l ) can be written:

[15]

V r el-V c - vJ

[16]

Vrel- vT-Vb

Applying the conservation of linear momentum in the CM framework one obtains the 

equation:

[17]

MaUa + MqUq ■ McUc + MdUd ■ 0 

M -  Mass. U -  CM velocity.

for each pair of reactants or products. Each laboratory velocity can be expressed by a 

sum of two vectors. The first of these for any moiety is the CM vector. The second is 

constructed from the relevant relative velocity vector for reactants or products. The 

equation is of the form:

[18 ] _
Ub -  Ma Vrel

Ma + Mb
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The relative kinetic energy (Et ) of the collision can be shown from this to be 

1 1 9 1
E t  ~ MA . M b Vrel - ]£ .•  v rel 

2 (M a + M b) 2

p -  reduced mass.

The energetics of the reaction are subject to the principle of the conservation 

o f total energy. The sum of the total energy contained in the products and in the 

reactants, including the difference in zero point energies, is constant. This can be 

stated mathematically as:

[ 20 ]

Et' + Ie' + AHr -  Et + lE -  Ejotal

Ie  -  Internal energy. Et  -  Relative kinetic energy, AHr -  Enthalpy change of the 

reaction (prime indicates products).

From this equation it is possible to construct a series of circular zones around the CM 

origin. The locus of each circle depicts the threshold for formation or stability limit 

of a product in a specific state:

[ 2 1 ]

Qmax = ETotal - EThreshold(P+)

[22 ]

Qmin -  ETotal * EThreshold(P+)" ^Dissociation(P+)

Q -  Exoergicity, E -  Energy, P+ -  Ion state considered.

Product Ion flux may be correlated to products with a particular level of excitation, or 

in a given state, if it appears between the circles describing the formation and 

stability limits of a particular quantum state. The limit imposed on the resolution of 

these states in a kinetic energy measurement is in the overlap between rotational or 

vibrational progressions or channels of reaction.
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c
The angular distributions ol the products in the CM ¿artesian space are 

recoverable from the double differential cross section (that is differentiated with 

respect to U and 6 )

[23]
Icm (0) o  u 2j  ICART (U.e)<JU 

0

and the relative translational energy of the products from the relation:

[2 4 ]

P(Et ') = Uc .2it Me ♦ MD J Icari (Uc.e) sin(e) da
Me Mo o

The distributions of product ion flux can be drawn as contour or as 

axonometric plots. These plots are 30 pictorial representations of the differential 

cross sections. The form of the plot depends on the detailed reaction mechanism 

operating and the time window accessed. This time window is not variable, nor is it 

well defined. A molecule or ion has many of its own internal clocks which span 

different time scales: the time taken to excite an electronic transition (~ 10 '16 s); 

the period of vibration ( - 10 '13 s); the time lapse between absorption of energy to 

spontaneous phosphorescence ( - 10*3 s) etc..

The periods of vibration (~ 10 *13 s) and of rotation ( * 1 0 ‘ 12 s) are of 

interest here. No chemical change, with the exception of electron transfer, can occur 

in a time shorter than about 50% of a vibrational period, because this is the actual 

time taken to move atoms. Naturally there is some variation in vibrational periods 

depending on the reduced mass and energy content of the vibrator, but the range of 

values is within an order of magnitude. If the time scale for the interaction of the 

particles exceeds the rotational period the dynamics changes and the pictorial 

representation of the differential cross section changes in a characteristic manner.
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The separating products retain a sense of the direction  of the initial CM 

velocity vector of their precursors, providing that the minimum lifetime of the 

intermediate is greater than one rotational period. Under these conditions the product 

is distributed isotropically into a mathematical space, I(6 )s in (6 )d 6d<|>. The 

mathematical space is itself polarised, due to the factor of sine. This factor normally 

leading to a build up of intensity at the poles, because for the equation above to be 

constant 1(6) must be proportional to sin*1 6 . Figure 1.4.

In the complex case, the appearance of the product distribution map depends 

on the symmetry of the dissociating intermediate. This distribution is without 

exception symmetric to reflection in the plane intersecting the relative velocity 

vector perpendicular to the centre of mass: see figure 1.5.

The classification of crossed beam reactions is made according to the 

description of the mechanism. In the case of an asymmetric distribution of products 

with respect to reflection In the plane defined above, the reaction is said to be direct 

and proceeds without the formation of an intermediate complex. The reaction 

products are said to be long lived if they arise from a mechanism involving a 

intermediate complex. That means the products form via a metastable transient or 

well in the potential energy surface with a lifetime exceeding several rotational 

periods. There are intermediate cases between these extremes, the term osculating 

complex was coined by Herschbach 82 to describe the interaction lasting close to one 

rotational period. The interpretation of results must be made with extreme care, 

because direct interactions can lead both to forward and to backward scattering. A 

change between one direct mechanism and another could be mistaken for evidence of a 

complex mechanism.

The strength of the crossed beam experiment Is In elucidation of these very 

fast mechanisms. The measurements made on a crossed beam apparatus can have a 

high error caused by unknown systematic effects and great care must be taken to 

obtain reproducibility. The most obvious problem with the experiment Is the 

unknown dimensions of the beam intersection (crossing region). All processes
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FIGURE 1.4: DIAGRAMS TO ILLUSTRATE HOW ISOTROPIC DISTRIBUTION OF PRODUCT 
ION FLUX INTO l<«)>in(ex» LEADS TO A BUILD UP OF POLAR INTENSITY
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leading to scattering loss or attenuation of a reactant A, are linked to the Lambert- 

Beer law. Under single collision conditions this equation takes the form:

[25J

A -  exp(-o nB I)
'0

For the absolute determination of the cross section of any process the path length (I) 

must be known as well as the total, soft-sphere cross section (o) and the number 

density per unit volume (n B) of the target. Unfortunately. 1 can only be estimated 

and hence only relative measurements of differential cross sections can be made. 

These measurements will be self-consistent for constant beam conditions.
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Requirements of the crossed beam experiment

The successful performance of a crossed beam experiment depends on the 

satisfaction of some basic conditions. Each beam must be stable and reproducible, 

intense, collimated and near monoenergetic. The ranges of acceptable conditions are 

tabulated below:

Table i . l :  Conditions required for a crossed beam experiment.

CONDITION NEUTRAL BEAM ION BEAM

Angular
divergence*

1-«"FWHM 1-4°FWĤ

Beam flux 10 17 molecules s ' 0.1-1 nA

E »«w  spread' 15-293 K 02-0 5 eV

S U y * > 1 week > 1 day

Reproductoity* 10% 10%

^denotes a minimum condition and * denotes a maximum.

NB. The extrema of these conditions can not be defined with absolute quantitative 

values. Some are formed from a further set of constraints unique to each 

apparatus and all are coupled together by their conflicting effects on intensity and 

resolution. The final choice of acceptable conditions is a balancing of local 

requirements, such as the size of the crossing volume In the light of detector 

acceptance (typically 2°). magnitude of the cross section or initial Ion energy.

The background pressure must be kept low to ensure that the free path of the 

secondary ions is at least comparable to the dimensions of the vacuum chamber.
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Using Kennard's value 83 for the mean free path tor a vacuum chamber of 1 m 

diameter the background should be of higher vacuum than 5x10*5 mbar 84 . 

Similarly, the ions traversing the target beam should have a significant probability 

of only experiencing a single collision. Routine maintenance to the vacuum system 

and the working parts is essential to good performance.

Crossed ion-neutral beam instruments

The first crossed ion-neutral molecular beam instrument was built by 

Turner et al in 1965 85. This instrument was designed for the measurement of 

differential cross sections and angular distributions. Since then over seven 

instruments 86-93 have been built for the study of angular and energy distributions 

from crossed ion-molecule reactions, in addition to the single-beam gas-cell 

instruments.

An apparatus for the study o f total electron-transfer cross sections has been 

built by Ng et a l9* . The instrument uses two pulsed supersonic beam sources. The 

first source is the ion-beam precursor, state-selected ions are generated by pulsed 

laser photoionisation, ions are extracted and focussed into a beam using traditional 

electrostatic ion optics. The angle-scanning detector has been removed from the 

design and replaced by a pair of quadrupole mass analysers, each in line with one 

primary reactant beam. The beam intersection is also reasonably well defined thus 

improving the accuracy of the measurements.

All the other crossed beam instruments, except the one stationed at the 

University of Warwick, have conventional sector ion optics for the production of the 

Ion beam. There is some variation In the Ionisation techniques used to produce the 

ions. High pressure colllslonal stabilisation, electron Impact (El), resonant charge 

transfer (CT) and photolonlsatlon techniques have all been applied. The choice of 

neutral beam is either an effusive (eg. capillary array) or a supersonic beam.
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By far the widest variety of innovative design in crossed beam instruments is 

in the detection system. An experiment requiring the measurement of product 

distributions as a function of scattering angle must have moving parts. An angle 

scanning detector and analyser is normally more sim ple to make. Moving parts 

should be light, hence a common choice of mass analyser is the QMF in the detector. 

Sectors and even time of flight (TOF) 90 have also been used as detectors. Normally 

the detector is moved, however, there is a precedent for instruments with rotatable 

sources and a fixed detector 86.92

Chemical dynamics using crossed beams

The reactions investigated in early studies using crossed beams include 

examples of both the persistent complex mechanism and direct Interactions. Products 

have been observed scattered forwards and also and also backwards with respect to the 

ion beam initial (CM) velocity vector (J/f) and symmetrically around the CM. These 

are predominantly studies of proton transfer reactions and were made before about 

1980. All these examples have been extensively and repeatedly reviewed in the 

literature 52.71,77,82.94-99. F0r the purpose o f illustrating statements on 

reactivity etc. made in this chapter a selection o f recent, relevant and landmark 

papers is reviewed below.

(No + Hg)* benchmark reactions of group 1 8

The reactions H2+ ♦ No where No- Xe.Kr.Ar.Ne, He are interesting. For No- 

Ne.He reaction is observed to produce exclusively the catalytic dissociation of H2+ - 

Reaction on the other charge exchanged manifold, however, produces NoH*. For 

No-Kr,Ar and Xe the NoH* Ion can be formed from both surfaces. Mahan 22 analysed 

the strict symmetry restrictions on the reactions of noble gases with hydrogen. The 

different dynamics for the lighter noble gases in the reactions No* + H2 and No ♦ H2+ 

can be explained In terms of the orbital correlations of states.
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Whilst all the (No,H2 )+ reactions have been studied 92.100-109 the most 

widely known is the bench-mark reaction of No-Ar. These reactions are direct and 

lead to forward peaking with respect to the oncoming ion. The dynamics suggest large 

impact parameter reactions where a hydrogen atom in stripped from  the target 

neutral with almost no momentum transfer to the remaining atom. This phenomenon 

has been approximated by a model called the spectator stripping mechanism which 

models the reaction dynamics and product energy disposal at intermediate energies.

In the high and low energy regime very significant deviations have been 

observed between the measured dynamics of Ar* + H2 and the predictions of the SS 

model. These shortfalls even in the most simple of reactions, uncover the gross 

simplification o f the model. The model represents an extreme lim iting  case of 

reactivity and is a good first approximation to use when analysing CM data. In the 

attempt to describe the actual high- and low-energy behaviour of reactions the model 

has been revised In several ways. Polarisation stripping includes a consideration of 

the acceleration and retardation induced by the attractive part of the long range 

interactions of the different ion-molecule pairs. The addition of a polarisation term 

modifies the low-energy behaviour and explains the increased forward peaking at low 

energies. The addition of the elastic scattering of the spectator satisfies the angular 

dependence of the differential cross section, whilst retaining good agreement with 

energy disposal for stripping reactions. The model can then be applied to rebound 

reactions ” 0.

Later studies performed with vibrationally excited H2+ scattered from  He and 

Ne produces efficient reaction for va3 111. The reaction has subsequently been used 

by Farrar in source reactions to quench H2+ excitation in order to crudely assess the 

role of vibration in (H2 + ♦ Ar) reactions 101.
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4-centre reactions of CO+ with 02 and NO 112-114

Jarroid et a l studied three reactions of CO4*. The first of these was:

[26]
CO+ + O 2 --------------► C02+ + o
* 3r  x'rig 3p

AH -  -0.58 eV; t .81 eV £ Energy range of study £10.12 eV 

Several ionic species were detected: C+ was of low intensity at all energies, O♦ 

intensity was thought to correlate with C0 2+ dissociation and a broad band of C>2+ was 

assigned to CT. No further studies were made on these species.

C 0 2+ was found to react by a direct mechanism at all energies and a barrier 

was discovered in the reaction coordinate leading to a peak at 5 eV in the kinetic 

energy dependence of the cross section. In the reaction there was a preponderance for 

forward scattering « ithough backwards scattering: an increase in forward recoil 

takes the product outside the elastic circle at the highest energy studied. The 

efficiency of backwards scattering peak was assigned to a competing ideal knockout 

channel in a collinear reactant approach, and was observed to increase with energy. 

This could also be explained by an increased collection efficiency in the presence of 

discrimination effects in the detector.

There are three problems explained in the text. These are 1: discrimination 

against slow ions in the RPD analyser. 2: Further discrimination against slow 

product collected at large laboratory scattering angles. 3: the lack of detectable 

modulation of background pressure when chopping the neutral beam.

It is unfortunate in this study that the charge transfer cross section was not 

measured to normalise the differential cross sections of other process against 

literature results 11S. This would have proven the authors claim that the appearance 

of the barrier in the reaction was due to an avoided crossing into the charge transfer 

surface, because the net effect would be to change the branching ratios sharply 

decreasing the quantity of O2+ formed by CT. A further study to include Isotopic
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resolution 180  is suggested by the authors to enable the two different possible 

positions of attachment of the O- stripped to be assessed. Changing the source for a Cl 

source should improve the relaxation of nascent C O * vibronic excitation and remove 

the possibility that the reaction is driven by high cross section reaction of the higher 

vibrational CO*.

The reaction to form CO2*  is not observed In SIFT studies. This is perhaps not 

surprising considering kinetic energy dependence of the cross sections. The limit to
-DRIFT,

the range of energies studied is about 5 eV for SIFTAthis is just at the peak of the

reaction cross section for CO2*  production. It is interesting that the reaction was not 
above

detected below threshold since in the study made by Jarrold at al, the increase in the 

cross section is only 10 fold. The SIFT technique has substantially greater 

sensitivity than that of the crossed beam.

Also studied were the analogue reactions of CO* with NO. The reaction findings are 

summarised below.

[27]
CO+ + NO-------------► NCO+ + 0
x’r  x 2n, X 3I  3P

AH -  +2.70 eV

3.5 eV £ Range of study £10 eV

[28]

CO+ + NO-------------► CO2+ + N
x  2r  x  2n, x  2na 4d
x  x  T i, x  2n, 2d

AH -  +0.81 eV, lower process is a spin forbidden predissociation.

2.5 eV £ Range 0» study £13 eV
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A CT product is expected in these reactions, however, other products to those noted 

above, were not reported. The significance of the CT channel is the same as discussed 

above.

The reaction to form (NCO)* is complicated by the existence of three stable 

isomers. Formation of the highest energy Isomer requires a concerted insertion into 

CO bond during reaction which is unlikely in view of the direct nature of the reaction 

for all energies. The NCO+ appearance energy is not measured directly, but by 

extrapolation agrees well with the calculated appearance of NCO+. The calculated 

threshold of the next highest energy ion is plausibly close within the energy range 

over which the reaction was studied, taking into account the combined error of the 

experiment and calculation.

As was observed for the reaction with O2 , a maximum is observed in a plot of
relA hw . cn * *  tccfto A  vTrsitf kiVtctic t « t r g y ( o ^ v s k .£ . ) .
kinotie energy versus relative cross sec tion. The barrier was assigned as before to

n v u c n w «  » i  *%«. <T ,Z1  Kk plot-
an avoided crossing in the reaction coordinate. For NCO+ this bam er consisted of a 

broad maximum peaking about 8 eV and for CO2 a sharper peak at 6 eV. No 

explanation is offered by the authors for the broadening of the peak. We note that the 

ion begins to dissociate before the calculated limit. The nature of the broadening may 

arise, therefore, from the contribution of a second NCO+ isomer.

The authors speculate on the relative branching into the different channels of 

reaction. Qualitatively they attribute the closer collisions to the formation of NCO*. 

whilst grazing trajectories lead to CO2 +- At low energies NCO* gave rise to 

backwards scattering In contrast to the forward nature of the 0 0 2 *  peak. The authors 

note that the spectator stripping model does not explain their observations. This 

demonstrates the need for more accurate theories, such as can only be made after 

accurate ab initio potential energy surfaces have been calculated on which Monte- 

Carlo trajectory studies can be made.

The conclusions drawn in these papers are reasonable, but leave a lot of scope 

for confirmation. The authors have shown that the neglected area o f four-centre 

reactions of substantial molecules is interesting and worthy of further study.
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Reactions on surfaces with a double potential minimum well

Much of the recent work from the Farrar group, Rochester USA, has been

concerned with a model of ion-molecule reactions proposed by Brauman 116. In the

model, reaction is hypothesised to occur on a potential surface with two minimum

potential wells. The wide variety of reaction rates is then rationalised on the basis of

a reaction coordinate which samples both of these wells and of the barrier height

separating them. The results of Brauman have been consistent with the model, but

the crossed-beam technique is uniquely able to provide unambiguous confirmation of

this mechanism if it occurs.
A* of *  ffachoo it is
Owe such tor whieh >♦ n  suggested that the reaction occurs on surface with a 

double minimum, is the reaction of the ammonia ion with isotopic variants of 

hydrogen 115\  This reaction has two competing channels going to different reaction 

products:

[29]

NH3+ + D 2 ----------------►  NH3D+ +  H

[30]
NH3+ + D2  ----------------►  NH2D+ + HD

An early crossed beam study of NH3*(H2 ,H)NH4+ over the translational 

energy range 1.2 eV s  E j $4-6 eV by Eisele el a l 118 had not confirmed the low 

energy mechanism of reaction. At the higher energy the reaction was clearly direct. 

More recent studies of this reaction with vibrationally excited reactants using 

different techniques had been rationalised in opposing ways.

Farrar e l al were able to produce high-quality reactant beams of initial 

relative kinetic energy of only 0.5 eV. substantially lower than the limit of Eisele's 

work. The study contains a number of interesting features.

Reactants were prepared with average vibrational energies of 3.3, 4.0 and 

4.9 aV by resonant charge transfer. The rate of reaction was enhanced for an Increase
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Li* ♦ RX Li* ♦ R ♦ HX

R G U R E  1.6: THE REACTION COORDINATES FOR THE REACTIONS OF NH3* 

______________WITH P2 AND U* WITH RX (ALKYL HALIDES)



in vibrational energy In both channels. The larger of the cross sections for the

competing channels is that of NH3-*-(D2 ,D )N H 3D *. The latter reaction showed

symmetric peaking along the initial relative velocity vector. The authors regarded

this as being consistent with a prolate symmetric top molecule dissociating along its

reaction coordinate. The mechanism was assigned to an osculating complex
i*

mechanism, because the forward peak increasesfcintensity as the energy content of the 

intermediate molecule becomes higher; decreasing the lifetime of the ion. In contrast, 

the alternative channel is direct at all energies. Each of these reaction channels has a 

shallow pair of minima. The implication is that the second well is not sampled by the 

hydrogen atom exchange reaction. The schematic reaction coordinates are shown in 

figure 1 .6.

A further series of reactions 11 ®‘122 has been studied where the analysis has 

not been so simple. Farrar has found the scientific community much more hostile to 

his views 123 on interpretation of the lithium ion catalysed elimination reactions of 

aliphatic halides and alcohols as proceeding via Brauman's model. In these cases the 

reaction coordinate has some different features to those of the NH3+ + D2 system.

Kinetic spectroscopy in charge transfer reactions

Some important work has been produced by large group of Jean Futrell at Utah 

and subsequently at Delaware 124-132. This group has made a systematic study of the 

CT reactions of small molecules and found interesting differences between these and 

the chemistry of atoms and atomic ions. Following improvements in the quality of 

resolution obtainable on their instrument this group has also measured detailed cross 

sections for reaction.

Many charge or electron transfer reactions have been studied for atomic ion - 

atom systems. The role of resonant charge transfer is known and unsurprising for 

symmetric systems such as He*(He.He)He* AH -  0. For the cases of long range 

interaction between the ion and the neutral, weak coupling of the particle momenta 

results in the observation of near rectilinear trajectories. In the high-energy range
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small deflection angles in the centre of mass is commonly observed. The energetics of 

the reactions of atomic ions with atoms considerably simplifies the dynamics due, in 

part, to the absence of vibrational modes of the separated reactants and products. 

Some complication is caused by the disposal of angular momentum in these reactions. 

This effect dominates the close-coupling interactions in this regime. The coupled 

spin and orbital angular momenta are split into two states that are separated by only 

a few tenths of an electron volt. These states are sufficiently low lying to be 

populated, and are sufficiently well separated to be resolved in a translational 

spectrum (accessible to a crossed beam study).

Recent publications from the Futrell group have demonstrated elastic, 

superelastic and subelastic charge transfer. The superelastic and subelastic 

processes arise from electron-ion recombination. Below a threshold impact 

parameter at sufficiently low energy, formation of a long-lived orbiting ion induced 

dipole complex is observed. At the higher energies low impact parameter collisions 

are observed. These observations are consistent with the prediction that the Langevin 

cross section for a process increases as the energy decreases. Both inelastic and 

elastic scattering channels were observed. The resonant symmetric charge transfer 

is elastic with near rectilinear trajectories. The second, non-reactive channel, 

demonstrates energy redistribution with an endoergic transition excited involving a 

change of A J-1 .

For the reaction of A t*  (2 P3/2 . 2 P i /2 ) ♦ Ar there is some evidence of 

superelastic scattering from the AJ- 1  transition for which the energy release of 

AH-0.18 eV is converted into translational energy.

This group has also presented a series of more adventurous two-body 

reactions involving more than two atoms. Here, the Inclusion of the rotational and 

vibrational contents of the molecular ion and neutral molecule complicate the 

dynamics. New dynamics were observed for which theoretical studies are required. 

The resonant CT and presence of the low energy complex In N2*(N 2 ,N2 )N2+ giving 

rise to a symmetric distribution are both observed at energies below 1.5 eV, with the
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contribution from the complex diminishing as the energy rises above it's dissociation 

threshold. The most surprising feature o f the reaction dynam ics is a 

phenomenological energy window in which population of all the allowed vibrational 

bands of the N2+ ground state are formed. The scattering is clearly separated in the 

kinetic energy part of the plot of the differential cross section. The v -3  level gives 

rise to backward scattering (with respect to the direction of the incoming ion) at the 

energy of 1.4 eV.

The reaction of Ar+ with N2 is quite interesting. Futrell and co-workers 129 

developed the ability to vary the state population in the beam up to (essentially) pure 

2p 3 /2 - This was used effectively to allow linear deconvolution of CM data. The 

contributions to the total observed dynamics are quite different for the two states.

The reaction was found suitable to make a formal study on the chemistry of the source, 
w/h «re- w «
with the reaction^used to monitor the content of the effluent beam.

Reactions of doubly charged ions

Few crossed beam studies have been made on doubly charged ions to date. 

Herman and co-workers 133-135 have studied the single electron transfer (SET) 

reactions of atomic double ions. In the studies that have already been made on these 

systems, large cross sections for SET are observed for reactions on potential 

surfaces where the cross over of the two CT surfaces is in the 2-6 A range of 

reactant separation. Other features of the data are very similar to those of the 

charge transfer reactions in the section Kinetic spectroscopy In charge transfer 

reactions  ie. state separation is resolved in the double differential cross section 

o(U .O )

Interest in the reactions of doubly charged ions is likely to grow. The full
d > c -*h o *

potential of the area will not be realised until scattering studies on molecular double 

-fees has been performed. Ions such as CS22*  are easy to make and appear in 30 eV
flUcaJho*

electron Impact ionisation spectra of the CS2 neutral molecule. A molecular double 

4e* of this complexity (compared to Hg2* or Kr2* for example) might be expected to
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show alternative reaction channels (to SET) provided the cross section for single 

electron transfer is low in the energy regime of study. Simple collision induced 

decomposition might not be interesting, but the reactions involving ion transfer and 

with a three body half collision (separating products) are plausible channels. It is 

quite interesting that the second product ion remains unobserved in these reactions. 

Measurement of the second ion would allow better resolution to be obtained and 

unambiguous interpretation of the differential cross sections.

Reactions of polyatomic ions

An example of one polyatomic reaction system 65 has already been given in 

this chapter (page 14-15). The reaction was seen to have considerable complexity. 

A second, similar system studied by Sonnenfroh and Farrar 136, illustrates the 

limitation of the technique. In the reaction of CH3* with C2H4* . C3H3* is formed by 

the rapid sequential loss of two molecules of H2 . In these conditions no useful 

dynamical information can be obtained without first observing and measuring the 

recoil o f C3H5 '*' transient. There are many other examples o f the more complicated 

and varied reactions than just these two. As a rule of thumb the more atoms 

contained in a system, the less information can be derived about the detailed 

microscopic mechanisms.

Aims

The aim of this study was to update the crossed beam instrument at the 

University of Warwick, to allow systems to be studied with more control over mass 

resolution and energy (both internal and kinetic) specification.

The study of four-centre reactions has been somewhat neglected falling 

between the smallest systems, from which much has been learned and the larger 

systems that groups would like to study in detail. One systems of interest is CS* + O2. 

The interest lies in changes to the reaction dynamics between analogue reactions CS*
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and C O +. Some of the possible effects of low energy diffuse 3d orbitals and the higher 

angular orbital momentum have already been mentioned. There are also differences 

in other physical properties as with any homologous series.

There has been little attention paid to the study of angular resolved negative 

ion-m olecule reactions. This may in part be due to the greater d ifficulty in 

producing negative ions precursors. Beam studies might be expected to solve some 

problems eg. the mechanism by which hydrogen abstraction occurs amongst simple 

hydrocarbons. For this reaction there are at least four plausible channels:

(31)

[32)

O- + RH2

[33]

(34)

O + RH2 ------- ---------►  RHO- + H
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Description o f the instrumentation

Three different vacuum apparatus have been used during this study. They are 

the crossed-beam apparatus: conta ining two beam sources and a rotatable ion 

detector-analyser; a vacuum test ce ll for setting up the neutral beam; and a gas 

handling inlet system.

The crossed beam apparatus

V a c u u m  s y s te m  {Figure 2 .1 )

The vacuum system consists o f a high-and a low-vacuum. The low-vacuum 

manifold is constructed from a network of copper pipes. Semi-permanent, 

demountable joints are sealed with Viton elastomer O-rings. Four double stage rotary 

pumps 137 evacuate the low-vacuum manifold. The network of pipes has been 

designed to be versatile, allowing pumps to be switched between several duties. The 

pressure is monitored continuously at strategic points in the vacuum lines using 

pirani 138 and thermocouple 130 gauges. The pressure is maintained of the order 

1 0 -2 - 10*3 mbar throughout the low-vacuum manifold.

The high-vacuum manifold is differentially pumped in three chambers: the 

large or main chamber and the neutral beam, and ion beam chambers. High vacuum is 

maintained by three diffusion pumps charged with Santovac 5 diffusion pump oil 14°. 

The pressure is monitored in each chamber by means of Bayard-Alpert type 

ionisation gauges 14 1-142 driven by IGC11 controller modules 143. Each diffusion 

pump is backed by a dedicated mechanical rotary pump 137 during operation.

The ion beam generator is located in a separate turret and is pumped by a 300 

I.s ' 1 diffusion pump 144. The ultimate pressure for this chamber is 3x10 7 mbar 

and typical operating pressures are o f the order of 1x1 O'5 mbar.

The neutral beam chamber is also pumped by a 300 l.s' 1 diffusion pump 144. 

The turret is mounted on the top o f a 500mm x #111 mm (+ indicates a circular
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FIG URE 2.1: DIAGRAM OF THE INSTRUMENT FROM ABOVE AND BELOW 
AS A THIRD ANGLE PROJECTION



diameter) double elbow pipe which reduces the pumping speed at the orifice to 110  

I.8*1 145. This chamber has an ultimate pressure of 8x1 O'7 mbar and is operated at 

up to 5x1 O’4 mbar.

The p rincipal components of the instrument, inc lud ing  the two source 

chambers, are contained within the large vacuum chamber (P late 1 ). This chamber 

is pumped by a 1700 I.»’1 diffusion pump 146. The lid of this chamber consists of a 

0 1m x 0.75m bell with a thermally insulated copper inner jacket, to provide optional 

cryogenic differential pumping of condensible vapours. The interior of the apparatus 

is visible through a large porthole constructed out of 1* perspex sealed against a Viton 

O-ring. The lid o f the main vacuum chamber is demountable by means of a 2D gantry 

hoist, to provide easy access to the working components. Under vacuum the lid is 

sealed by means o f a large Viton O-ring positioned around an aluminium spacer. The 

ultimate vacuum, without cryogenic pumping, is about 6x 10' 7 mbar. Typical 

operating pressures in this chamber are of the order of 10 ‘6 mbar. The liquid 

nitrogen supply for the cryogenic pump is made with an automatic level sensor and 

refill unit 147 from a 200 I liquid reservoir 148. O verpressure protection is 

provided using the main chamber pressure monitor.

The neutral beam vacuum test cell

Construction and performance

A self contained vacuum system was constructed (figure 2.2) to set up and to 

analyse the performance of the pulsed neutral valve 149 This system is mounted on a 

trolley in order to make it poriable and convenient to operate. Substantial benefits 

are achieved when using the test cell: the pump down time from atmospheric pressure 

to 10 '5 torr is just three minutes for a favourable seal, compared with sixty minutes 

for the main vacuum equipment. In addition, the risk and consequences of a serious 

vacuum accident are both considerably reduced.
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The chamber is pumped by an oil vapour diffusion pump 144, backed by a 

mechanical rotary pump 15°. Demountable sections of the low-vacuum lines are 

sealed with Viton O-rings. The rotary pump can be switched to roughing operation 

using Saunders valves 151 in the backing line. The ultimate pressure of this unit is 

of the order of 10'6 torr. The background is typically only 4-5x1 O'5 torr with a 

normally sealed valve mounted: indicating that the valve has a high "DC” leak rate.

O p e ra t io n

The pulsed valve is assembled (supplement 2.1) and then mounted on the 

perspex flange at the top of the test cell. The valve is triggered and releases a pulsed 

jet of gas. The gas pulse passes through a fast-response ionisation gauge 152 before it 

is discharged directly into the orifice of a diffusion pump. Cations produced by the 

partial ionisation of the gas pulse are collected and processed by a fast preamplifier 

1S3. The preamplifier provides unit gain current-to-voltage conversion, with a 

10ns rise time and fast slew rate. The output is displayed on a digital storage 

oscilloscope system 154. Alterations to the pulse shape can be made as required using 

the built in adjustment of the valve and the pulsed beam control unit (figure 2.3).

The gas handling inlet system

C o n s t ru c t io n  (figure 2 .4 )

The inlet system has been designed to be a portable and versatile tool. The 

system Is compact and self-contained and all components including flow control units 

are trolley mounted. The vacuum line is demountable and is centrally pumped from a 

common mechanical rotary pump 150 equipped with a glass foreline trap.

The vacuum system consists of a network of stainless steel 0.25* (Swagelock 

155 sealed), 0.5" (Cajon 155 and OHFC copper gasket 156 flange sealed) and assorted 

T  (muff coupled 1S7) tubes. VQ QH97 159 valves are mounted on the wider bore 

(0.5") stainless steel tubes. These valves restrict the safe upper lim it for high
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pressure operation to just 3 bar 159. The gas handling system has been designed to 

withstand the use of corrosive materials and reagents in several forms.

Modes of operation

Volatile liquids can be introduced from a small quickfit test tube (B10 

standard taper) connected by a glass to metal seal to the swagelock/0.25‘  stainless 

steel tubing. The temperature around the liquid reservoir is reduced in order to 

maintain a slight pumping effect. This ensures that the saturated vapour pressure is 

controlled by the equilibrium established between the liquid surface and the vapour 

above it. and not by the equilibria of condensation on the walls at room temperature. 

The vapour pressure can be predicted from the Clausius-Clapeyron 160 equation to 

within 5% under these conditions.

Substances which are gaseous at room temperature can be mixed or stored in a 

stainless steel reservoir. Alternatively, provision is made to use gases directly from 

a regulated gas cylinder. The gas capacitance manometer (baratron) 161 can be 

connected to the instrument side of a solenoid operated feedback valve 162. The 

pressure is regulated from the measurements recorded by the baratron head by a set 

of feedback controllers 163.

Detection

The ion detector ( figure 2.5)

During the period of study the configuration of the rotatable ion detector and 

energy analyser has not been altered. In its present configuration this consists of an 

entrance plate leading to a retarding potential difference (RPD) energy analyser, a 

quadrupole mass filter 164 and a channel electron multiplier ie s .

The RPD analyser consista of three Independently charged electrodes. The 

electrodes are fabricated from thin circular stainless steel plates punctured by a 

central 5mm aperture. A fine stainless steel wire mesh is stretched, and spot welded.
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flat across the aperture. The transmission of the central electrode mesh is 73% 

(180 w ires per inch (wpi)) 166 and for the first and third electrode mesh is 8 1% 

(100 wpi) 166. Under normal operating conditions the first and third electrodes are 

retained a t earth potential and the central electrode is charged with a voltage ramp.

The  ions passed by the RPD energy analyser travel through an electrode free 

region before mass analysis. The mass separation is made using a quadrupole mass 

filter (QMF) 164 operated at 2MHz and tuned along a DC:RF scan line o f 0.35 ♦ 13.5 

VDC -  V r f - Ions exiting the QMF are detected by a closed-ended channel electron 

multiplier (CEM) 16s, which is set off axis to reduce the noise level caused by stray 

high energy radiation and neutral molecules. The detector can be rotated under 

vacuum in  both the azimuthal and meridional planes using a series of gear trains 

extending from out o f the vacuum system. The sliding seals at the vacuum to 

atmosphere interlock are pumped to minimise the risk of virtual leaks.

The ion beam can also be monitored using a plate ion collector constructed and 

attached to  the ion detector such that it can be rotated into the alignment with the 

primary ion beam.

TOF analysis of the neutral beam

A tim e of flight (TOF) analyser can be installed into the vacuum system for the 

purpose o f characterising the neutral beam. This consists of two IQ5Q ion gauges 157, 

with their g lass sheids cut away and mounted on aluminium supports. The supports 

Inhibit the movement of the rotatable detector and must be removed from the vacuum 

system during normal operation. The output is displayed on a digital storage system 

as In the vacuum test cell. Hard copies of the oscilloscope output have been obtained 

with an oscilloscope camera 167,o r  by dumping data from the digital storage adapter 

to a dot matrix printer.
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Beam generation
Io n  b e a m  g e n e ra t io n  (figure 2 .6)

The ion beam was generated, by electron bombardment of the precursor gas or 

vapour, in a Bayard-Alpert type of ion-source. The ions were extracted from the ion 

source using a simple lens system, and injected into a naked quadruple (VSW Mass 

analyst 200). The ion beam was then focussed by an electrostatic octopole lens, 

collimated and focussed using a final series of electrodes (denoted the exit assembly). 

The mass filters used in this project were commisioned as a special edition from VSW.

Both of the quadripoles, in the source and in the detector, were originally 

made to be residual gas analysers. The detection assembly of these residual gas 

analysers was removed and discarded. The naked quadripoles were incorporated into 

the vacuum equipment as shown in fig. 2 .1 a and 2.5.

The configuration o f the ion beam generator has been changed many times in

the duration of this study. The specific configurations and methodology used in 
c* * r * r S .

experiments are^discussed in supplement e.g. The basic apparatus for ion beam 

formation is: an electron impact source, a quadrupole mass analyser, an astigmatic 

octopole focusser 168 and several electrostatic lenses and collimating apertures.

The quadrupole m ass analysers In the ion source and detector are based on 

commercial residual gas analysers 164. The system was produced as a special edition 

and has been further modified in this laboratory.

The generation of a neutral beam

The neutral beam is mounted into a differentially pumped turret which can be 

rotated from outside the vacuum system. During this study, four neutral beam 

generators have been used. They are a single glass capillary, a glass nozzle, a 

multichannel scintered glass capillary array 189 and a pulsed valve 17°. The glass 

nozzle and capillary are mounted In an X, Y. pitch and yaw adjuster. The capillary
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array and pulsed valve are mounted in an enclosed box on to which a different, equal 

range adjuster is built.

The performance and specific experimental details for the pulsed neutra l beam 

are presented in chapter 4. Experiments using other neutral beam sources have been 

performed to look for evidence of scattering. In these experiments the neutra l beam 

is unmodulated and a change in detected product intensity, reaction product, angular 

and energy disposal is used to correlate results.

Electronic apparatus and detection

The treatment of the pulsed output from the CEM detector is best described by 

block and flow diagrams. (Figure 2.7-2.9). Several pieces of electronic equipment 

have been constructed during the period of study for this project. The circuit 

diagrams for these are shown in figures (2.11-2.14).

Free electrodes

The remaining free electrodes, shown in the configurations drawn in figure 

2.6. can be raised to desired voltages by 30W power supplies 171. These electrodes 

are connected to a clean earth via a suitable capacitor to filter off noise.

The electrostatic octopole

The octopole is connected using the configurations shown in figure 2.6.(t»«i0-

Voltages are supplied from power supplies, stepped down over a potential d ivide^ and
Actual

measured at source. The measured voltage can be used as a guide to the eppiw»d 

voltage. Empirical determinations suggest that the applied voltages measured at the 

voltage divider are reduced to 90% of their value when measured on the octopole rods 

inside the equipment.
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FIGURE 2.9: LOGIC OF DATA COLLECTION FOR EXPERIMENTS SUCH AS 
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Alignment

The experimental apparatus has been aligned using a travelling telescope 

system equipped with spirit levels. The apparatus has a series of alignment marks 

cut during machining to which adjustment and alignment is referenced. The neutral 

beam elbow joint contains a socket coaxial with the centre of the table (tolerance < 

0.1 mm), checked by viewing the motion of the end of the point whilst the neutral 

beam turret Is rotated by 90°.

A machined brass pointer is positioned in the central socket so that the tip of 

the pointer, the centre of the ion exit plate, and cross hairs positioned on an optical 

window behind the ion source are brought into line (with the ion source removed). 

The neutral beam is aligned at 90° to this original direction and the alignment is 

checked by placing a plane mirror at 45° to the ion beam through the central plane of 

the table, and superimposing the image of the ion beam exit plate on the neutral beam 

source, seen by removing the mirror.

Computation of ion energy spectra

Integral ion energy spectra were accumulated in a multi-channel analyser 

(Ortec 7100) using a multi-channel scaling  mode. The spectra (or profiles) were 

transferred using an IEEE 488 Bus into an Apple lie desk top minicomputer. The data 

were converted from ASC11 to integer Inside the minicomputer and differentiated by 

subtraction of adjacent channels.

The principal problem associated with using this method for the extraction of 

Ion energy spectra is discussed in the section on analysis of errors below. Provision 

was made in the analysis to normalise the error of each channel. This was not found to 

be generally helpful.
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Analysis of errors

The function probed by the retarding potential difference energy analysis is a 

continuous function describing the distribution o f energies l(V).

The in tegral of this ion energy function is sampled repeatedly by applying a 

stopping potentia l to reject all ions below a threshold energy V (r). The energy is

scanned as a tim e dependent voltage, turning the analysis into a stochastic function. 

Ion formation under given conditions is a random process, occuring with a constant 

rate. The randomness of the formation is not affected by an orderly transport through 

the ion optics, thus the energy content can be described by a Poisson probability

H ifunction * * * .

[35]

X  -  sweep width x channel width x X  3 1 (v) all v. 

3  -  flux scaling X -  Poisson's random variable.

For sim plicity, we consider a non-continuous function at a resolution below 

the sampling w idth. The limit is effectively infinite resolution or singularity in the 

energy distribution l(V). Such a function leads to a true step function in the integral 

ion energy spectrum J(V).

Vies
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[36]

For o svr < Vies  x ■ xi 

For Vf > Vies x -  o.

Vies -  A voltage in the ion energy spectrum, Vr -  ramp voltage.

By chopping up the v axis into a series ot time or voltage windows (channels), 

two (unctions emerge. For channels with (v ♦ 5v) < V ie s  there is one Poisson 

probability (unction w ith a  most probable value xj. For those with (v + 8v) > V ie s  

there is another, equal to zero. After an experiment sampling J ( V) we might obtain:

A plot of the value xv against frequency of occurance would approximate to the 

density of individual frequencies of occurance characteristic of each function. The 

first moment of this statistica l sample Is the mean -  X. The second (central)

be used as a suitable index of the random spread in the sample. To obtain in fe rm ahe n 

any information about l ( y ) ,  from a measure of J ( V), requires a transformation to be 

made. That transform ation is the differentiation of l ( V), and is made by the 

subtraction of adjacent channels:

moment Is the variance a lso -  X. The standard deviation Is therefore >/X.. This can

(37)

l(V4l) • I(V) - J(V^O.S)
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The transformation causes noise amplification as shown below.

The standard deviation in both l(v+ 1 ) and l(V) is >/X., for channels falling 

into the range 0 Svr < Vies- The standard error in the difference J(v+0 .5 ) can be

calculated by combining the errors in each:

[38]

io l(v + 1 ) l2 f  o l(v )  12 = fo j(v+ 0 .5 ) 1 2
t'<v+1> |  |  l(v )  J ~ |j(v + 0 .5 )  }

in this special case oJ(V+o.5) -  V(2X).

For real distributions which may be as follows:

there are a significant number of s ing le  channels for which a unique Poisson 

distribution exists. Hence, only one datum (xi) is available on the distribution 

function. The form of the function is -of- known (Poisson), hence the standard 

deviation can then be used to estimate if any given point is representlve of the mean. 

Nb. The specific probability of xi equalling any particular single value Is very small 

for large X, ie. P(X| -  g) — ► 0 as X —̂  «>.
Normally. It is not possible to assume the form of l(y ) probed and in the 

remaining cases it is unadvisable to do so. In these conditions the value of X cannot 

be calculated. The reason for this is that real distributions are not singular and for a
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WliW'
usable choice of channel^or window on to the function J(V). J(v) is a continuously 

changing function of partial flux. Thus, the best approximation to X| is Xj,and for the 

probable error is Vxj (xj is the number of counts actually recorded). The deviation 

of each single value from the most probable for a given Poisson function is related to 

the third momow A,1/4. In the differentiation o f rea l profiles the error is well 

represented by V(xv+ i + xv): nb. this is the general form of the error considered 

before as a special case.

A small, low energy component of l ( V) can be swamped by the error from 

much larger contributions to l(V). because the error in a channel of J(V) is due the 

sum of components higher than v. This problem is not encountered for band pass 

energy analysers such as electric sector analysers, and is a draw back specifically in 

the use of RPD analysers.

The analysis of errors here gives a background to the problems of data 

handling. Specific errors occur in other places eg. the random variation of pulses in 

the neutral beam target adding a channelw ise  error (which is independent of the 

voltage ramp); or the limit to resolution caused by fie ld  penetration between the 

mesh wires proportional to Vr and falling off with r * .

General experimental practice

All changes in experimental set-up are recorded in full in a laboratory note 

book updated daily. An experimental configuration is current for all investigations 

using that apparatus until notification of a new se t-up  is given. The variable 

conditions are noted on a specially designed sp read  sheet (figure 2.15), 

extraordinary conditions and observations are recorded separately following this 

sheet under coded heading of the investigation. It Is Intended that by this policy, all 

results and observations are available for reappraisal in the light of new knowledge 

or better insight.
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The reproducibility of experiments has been enhanced by the use of the spread 

sheet. A set of data can be dialed up to reproduce the previously recorded data to 

better than 10%. A slight adjustment is usually necessary to tune the ion beam after 

such a cycle, due to local variations presumed to include unavoidable surface charging 

etc.

Energy profiles are smooth processed using a five point polynomial fit option

of the MCA. All energy profiles recorded in a laboratory note book are archived. The*
is

archive^ contained on 5.5' floppy disc. To reduce storage requirements only raw data 

are archived in a manner suitable for processing or transferral back to the 

multichannel analyser for smoothing.

Computer programs for simulation and data transfer

Several simple computer programs, to expedite the processing of data, have 

been written for an Apple lie microcomputer using Applesoft basic and DOS 3.3. The 

data transfer programs are modified from assembler source code (EG&G Ortec Apple 

lle/7100/01A data transfer routines). These programs (appendix 3) are 

inefficient, but functional. There is considerable scope for improving these 

programs.

A commercial ion optic program (SIMION) was used to model parts of the 

apparatus and is discussed In chapter 3. A data processing program for the output 

data from SIMION is presented in appendix 3, with illustrative data from one run.

Supplement 1
Setting up the pulsed valve

Silicon0 procedure

Previous silioone sealant was removed mechanically from the ribbon carrier 

and nozzle orifice (no solvent has yet been found to dissolve the silicone). The naked



surface of the ribbon carrier was primed, taking care not to get primer down the 

nozzle orifice. A needle was inserted into the orifice and set perpendicular to the base 

plane of the nozzle. Fresh silicone was laid on to the ribbon carrier. A small piece of 

acetate sheet was cut with a central hole and placed over the needle and on to the 

silicone. The sheet was manipulated to remove air bubbles in the layer, and to ensure 

that the layer was flat and thin. The silicone was left>foc.to dry for a minimum of 12 

hours, then the needle was removed. The acetate sheet was frozen with solid CO2 and 

carefully peeled away. Excess silicone was cut from the ribbon carrier sides with a 

scalpel and the surface inspected under a microscope for flaws.

Ribbon installation notes

It has been found that, if the valve was constructed before the installation of 

the ribbon, then the procedure is simplified. Ribbons of approximately 1 mm width 

were cut from a sheet of phosphor bronze 173 (50 x 50 mm x 25 pm) with a pair of 

sharp scissors. A flat ribbon was chosen and placed into the jaws and clamped into 

position. The ribbon was manipulated until It was taut and lying flat along the length 

of the ribbon carrier. The solder was applied in situ to the ends of the ribbon, taking 

care to minimise the time that the ribbon was heated, as this promotes brittleness and 

ultimately fracturing of the ribbon. Ribbons of the wrong dimensions, or which were 

curled or twisted were discarded.

Supplement 2

A je t test for nozzles

Jet tests were designed to expose problems with the cut of the nozzle orifice

and to provide a quality control test for the rejection of unsuitable nozzles. In one 
X

experimenyxessurised stagnation volume of water was applied to the nozzle from the 

forward and the reverse direction. The divergence of the beam, from a reference 

plane (the base). Is estimated by trigonometric methods. Ultimately, the nozzle is
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rejected if the jet of water will not pass through the skimmers assembly, located on

to the valve base plate. This has been machined to be coaxial and orthogonal to the

tr * *  uAcaA o o vjU  .
Ihe neaale oritieo to Ideal. Similarly, pressurised He was used to check If 

gas from the naked valve could penetrate through the skimmers, when the valve was 

mounted in the main apparatus.

Supplement 3

The line of sight experiment

A performance test for the ion optics is a line of sight experiment. In such 

experiments the detector and the ion source were aligned coaxially, and the ion optics 

and mass filters grounded. The characteristics of the source were recorded as a 

reference and the performance of other equipment recorded. The individual effects 

were investigated by systematically introducing each new piece of equipment.
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Introduction to ion optics

Many of the physical and mathematical principles used in ion optics were 

known before the discovery of the first charged particles. The subject area can be 

divided up into static field ion and electron optics, and dynamic fields. The former 

case has been developed continuously and is well understood. Ion physics in the gas 

phase has been important in chemistry in the post war period (1945-present) when 

the power and possibilities of mass spectrometry as an analytical technique became 

apparent. Dynamic-field ion physics, however, is  more recent and less well 

understood especially within chemistry.

Historical basis

Hamilton 174.175 set up the basis jo r ion optics in describing the motion of a 

particle as a function o f velocity and position. Using the integral of momentum over 

a given path, the action  of the particle is described.

[39]

S -  Action of the particle, v -  Velocity of the particle, ds -  Small step along the 

path A, B. m -  mass o f the particle.

Applying the principal of least action (Maupertuis), the fractional change in path 

must vanish ie. 5s—^ 0 .  Thus, the integral is minimised and the trajectory of the 

particle is described by the shortest path between A and B. For constant mass and 

velocity; and in the absence of external forces, the shortest path of a particle must 

also be the shortest time of travel. This can be shown from an alternative 

perspective. Expressing the integral again as a function of time:

Concepts of electrostatic ion optics

B

A
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[40]

S -  Jmv2 dt
A

m, v, S -  defined as above, df -  short interval of time during which the particle 

moves closer towards B.

and applying the principle of least time (Fermat), the integral is again minimised 

and the same conclusion is reached.

In the case of non-relativistic motion, as described above, the energy of an 

ion at a point in an electrostatic field can be described exactly. The total kinetic 

energy (Et ) is given by sum of the difference in electrostatic potential between the 

point of interest (Vi) and the point o f formation (Vf). and by the thermal kinetic 

energy (Em b ) prior to ionisation.

[41]

Et -  (Vi - Vf) + Emb

Equation quoted for units of electron volts.

Only a small error is introduced if the prior thermal motion (<0.1eV) is ignored. 

The equation can be then be written:

[42]

' /2  mv2 = e(Vi - Vf) = eAV

Greater accuracy is obtained if the ion energy is referred to the potential of the 

formation point, especially at low energy.

The change in velocity of an ion in different electric fields, is analogous to the 

change in the velocity of light In a refractive medium. It can be shown 174 from 

these principles, that a practical refractive index for a charged particle moving In 

an electrostatic field is:
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[43]
n = Vv

n -  Refractive index. V -  electrostatic potential.

Thus, electrostatic fields exhibit the lensing phenomenon when an ion passes into 

regions o f different potential. The analogy to light optics is limited for several 

reasons. One of these is that the electrostatic potential is soft, infinite and changes 

continuously as a function of distance from a point. The actual trajectory of the ion 

is modified continuously rather than sharply, through a gradually changing force 

between the regions of different electric field gradient. The refractive medium or 

lens in light optics in contrast is hard and finite, well defined and changes suddenly at 

an instant in the flight path. These differences gives rise to some idiosyncrasies in 

light optics, an example is the diverging lens. In ion optics, there is no formal 

equivalent of the diverging lens, since any lens ultimately focusses either positively 

or negatively charged particles passing through the lens and returning into the prior 

electric potential.

The equivalent lens

Provided the transformation to the final trajectory only is required, then a 

useful approximation to the action of an actual lens is the equivalent lens. This is the 

phenomenological lens which causes an equivalent deflection of incident ion 

trajectories, but which acts suddenly, like a hard optical lens.

There are six cardinal points of the equivalent lens: two foci, two principal 

points and two nodal points. These six points can be used to describe the action of the 

idealised equivalent lens. The points are distances from an axial reference position 

at which the six planes intersect the axis perpendicular to Its direction of 

propagation. Rays incident on a perfect lens and travelling parallel to the axis are 

brought to a common axial point called the focus. The conjugate focus is defined 

similarly for parallel rays travelling from the reverse direction. The definition of
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the focal lengths requires a reference point and two are in common use. The midfoca! 

length is referenced to the geometric centre of the lens and the focal length is 

referred to the appropriate principal point.

The principal point is the projection o f the point on to the axis, at which the 

extrapolated portions of the initial and final trajectory meet. The two principal 

planes have unit magnification, ie. a ray entering the lens travelling towards a point 

on the first principal plane, exits the lens as if it has come from the conjugate point 

on the second. Physically these planes represent the hard refractive faces of the 

equivalent lens. The outstanding difference between this ion optic lens and the optical 

lens is that the principal planes are crossed over for the ion optic case.

Nodal points are the points on the axis towards which a ray can be directed to 

emerge from the second face with exactly the same angle as the initial angle of 

incidence.

These properties only apply to lenses where the midfocal lengths lie outside 

the principal planes, ie. the rays do not cross over within the lens. A diagrammatic 

summary is provided in figure 3.1.

The paraxial ray equation

Rays which are close to the axis, with angles of incidence relative to the axis 

such that s ine-e, are termed paraxial rays. A special analytical formula for these

rays has been devised called the paraxial ray equation : 174.175

[44J

♦' d r <t>" 
+ ? * d l  + 9 * <*> 0

0 -  Electrostatic potential, ' indicates differentiation with respect to z,

" Indicates double differentiation with respect to z, z Is the axial direction and r 

the radial direction in cylindrical polar coordinates.
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Note the formal equivalen/^between v and <t>. It is sometimes more convenient 

to express the electrostatic potential in terms of a Greek character, for example 

when differentiation occurs in the equation. This convention is used in this 

m anuscript.

This approximate equation is obeyed by paraxial rays. In the derivation it is 

assum ed that the only significant terms in the description of the electrostatic 

potentia l are the first order terms. Examination o f the paraxial ray equation is 

in s tru c tiv e .

The first point to note is the absence of a term in (e/m). The equation does 

not d ifferentiate between the trajectories of ions of different mass, hence the 

tra jectories are the same for all ions provided that the energy is constant. The 

equation is also dimensionless and only depends linearly on the electrostatic potential 

(*). The position of the cardinal points are referenced to the size of the lens only, 

hence trajectories are conserved when the applied potential is raised and lowered 

proportionally for all the electrodes.

The potential field

The solution of a problem of ion optics can be greatly enhanced by the use of 

models. Trajectories can be run over a potential function in what are known as ray- 

tracing simulations. In any ray-tracing study, the form of the potential function 

must be  known. Several methods o f calculating the potential function are are 

available. The potential function required is normally the Laplace equation, which 

assumes no space charge:

[45 ]

V 2* .  0

V2- d2 d2 d2

57* SF *5?"operator (the Laplaclan operator). $ electrostatic potential.
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The most convenient method of trajectory study, since the advent of the 

powerful desk top microcomputer, is the iterative relaxation method followed by the

direct solution of the equations of motion of the particle.

Computer modelling of trajectories

The relaxation method is quite an old technique used to solve the Laplace 

equation and is used in the computer program SIMION 176 and in an alternative 

program written by Davis 177. The principal of the technique is to break up the 

active space between electrodes into small manageable portions. The potential 

function is approximated along the independent directions of the array by linear 

gradients over these sections.
C x

For example, consider a 2D ¿artesian electric field gradient varying in .X  and
y
X. Figure 3.2. A grid  is created covering the active space. The voltage at a given 

point is related to connected neighbouring points as follows:

VI -  Voltages : the relationships of these is seen in figure 3.2.

D -  Grid spacing, x, y -  co-ordinates. $  -  electrostatic potential

Setting the field gradients to zero as required by the Laplace equation, an expression 

for Vq can be obtained:

[46]
v , - v

D

[47]

D
d d  d »  d 2$  n

[48]
Vo« 0 25 (V, + V2+ V3+ V«)
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FIG URE 3.2: DIAGRAM TO SHOW THE NETWORK ESTABLISHED FOR A COMPUTER 
____________ CALCULATION OF THE ELECTRIC FIELD GRADIENT. _______



There is a residual value after the calculation of V0 which is an error term in the 

quantity V0. The accuracy of the potential distribution is controlled by the size of the 

array (reduction in D and increase in the number o f points) and the acceptable 

residual. The speed of convergence is strongly dependent on efficient use of the 

computer time. Efficiency is enhanced by the grading o f initial potentials, and the 

order in which the potentials are relaxed. A technique called overrelaxation of the 

potential also reduces the time taken to reach the asymptotic potential.

The equations of motion for the particle studied are  solved directly to obtain, 

iteratively, the particle trajectories.

Aberrations: operation of a real lens

Extension of the significant terms considered in the  expansion for the electric 

field generated by an electrostatic lens to third-order theory, leads to five new 

terms in the potential function called aberrations. They are the spherical 

aberration; coma; astigmatism; distortion; and curvature o f field. These aberrations 

are the corrections of the inadequate first order electrostatic approximation.

The full theory extended to electro- and magnetostatics yields many more 

aberrations. Including the magnetic focussing, the re  are eight third-order 

geometric corrections. Several more geometric aberrations are obtained if the fifth 

order terms are considered. In combination with the geometric aberrations there 

are also four electronic aberrations. The errors that are  relevant to this study are 

the five third order electrostatic aberrations and two electronic aberrations: the 

space charge error and the chromatic aberration. In the transport of Ions as In the 

present crossed beam ion optics, the spherical aberration has the greatest effect 

upon the quality of the beam. A sharp image of a defined object is not required, in 

producing a collimated reactant beam. The principal e ffects of coma, astigmatism, 

distortion, and curvature of field are of blurring the im age, beam spread is not 

seriously affected provided these are small.

60



The spherical aberration arises from the differential refraction of paraxial 

and marginal rays. This gives rise to different foci, which spreads the focus along an 

axial line. The chromatic aberration produces the same effect from a different cause. 

Different components of energy within the beam incident on the lens at a particular 

point, with a defined angle, are refracted by different amounts. The addition of space 

charge limits the maximum current density that can flow through a volume per unit 

time. The latter effect is caused by the mutual repulsion of the components of the 

beam and limits the size of a focus. This effect is pronounced at low energies. This 

section is summarised in figure 3.3.

Electrodynamic fields: operation of the quadrupoie mass 
f i l te r

A quadrupoie mass filte r consists o f four e lectrodes arranged axi- 

symmetrically f 78-180 The opposite pole pairs are connected electrically and a 

sinusoidal potential is applied to each. The potential distribution generated inside the 

electrode space can be described by the equation:

[49]

♦t “  [U + Vcos(<ot)l. x2 - y2 

2 f o 2

0t -  Electrostatic potential at a time instant, t; t -  Time, r0 -  axis to quadropole 

rod minimum distance. U -  DC applied potential, V -  Peak maximum radio 

frequency applied potential. x,y -  Coordinate variables in the direction of the rod 

pairs, to -  Frequency of the applied RF potential.

Strictly, this equation only applies to an ideal quadrupolar set. consisting of four 

infinitely long, perfectly aligned rods, with hyperbolic cylindrical faces. Most 

quadrupolas by contrast have circular cylindrical electrodes. The central portion of
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the potential distribution from cylindrical rods closely approximates that of the 

hyperbolic asymptote.

The electric field can be derived by differentiating the potential distribution 
C

with respect to the orthogonal ^artesian set x,y,z:

[50]

Ex-  - -[U  + Vcos(<ot)J x_

r o

[51]

^  -  - [U + Vcos(iot) J ^

r 0

[52]

0

The equations of motion for a charged particle in these fields can be obtained 

by considering the restoring force of a charged particle at a point.

[53]

F -e E
F -  Restoring force, e -  Electronic charge, E -  Electric field gradient.

Now writing the force as F

[54]

ma or in the standard differential form:

F m d2s

5?
F -  Restoring force, m -  Mass of the particle, s -  A distance along x or y, 

t  -  Time.

V
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Then three equations can be obtained, one for each independent axis:

[55]
d2x + [U + Vcos(tot) ] ex .  o 
d t2 m r0 2

[56]

[57]

Symbols as described above.

These are the first order equations of motion of a particle of mass to charge ratio m/e 

under the influence of the modulated field. The first order approximation is only 

accurate for paraxial trajectories. The form of these equations can be identified with 

that of the Matthieu canonical equations, by the substitution of U and V for 

dimensionless quantities a and q; and t for

a. q. £ - reduced variables in the canonical Matthieu equation, s -  x or y. m, co,

t0. e, U and V have been described In the text previously. £ i i  'H’u
f i r s t  W t t g *  a  -n  1

The Matthieu and Newtonian equations provide a useful insight Into the 

operation o f the quadrupole. A single plot In a:q space shows the four stability

[58]
4eU 2eV

$ -
t_

2a - 2 2

[59]
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regions. Most mass filters use the first stability region. A plot of this region in U:V 

space shows the effect of mass and the filter operation in detail. Figure 3.4.

In the first part of figure 3.4 the full a.q stability plot is shown with a 

portion of this plot (region one) expanded. Trajectories satisfying the condition for 

stability in both x and y directions are enclosed within the triangular section. Mass 

separation is shown in the second part of figure 3.4. A scan line of constant gradient 

is used to intersect the stability region close to the apex. The closer to the apex this 

line becomes, the lower the number of transmitted ions becomes. This is 

complemented by an increased resolution.

The negative rod of the quadrupole mass filter acts a high-mass band-pass 

filter. Ions which respond too slowly to the modulated restoring force of V will 

collide with the negative rod and become neutralised. Similarly, a simultaneous low- 

mass band-pass filter is operative in the other transverse plane. The light ions are 

neutralised on the positive rod because they respond too rapidly to the changing 

potential. The operation described is the effect on positive ions and is reversed for 

negative ions. The filter can be made to have variable resolution by changing the 

intercept of the scan line with the stability region close to the apex. The QMF is an in 

line mass speclrometeriprovided that unit mass resolution can at least be obtained).

The trajectories of ions in the perfect quadrupole are either oscillatory and 

stable, or oscillatory and exponential. Typical applied potentials for a region one 

OMF operating at 2MHz are linear. In this study, scan lines are described between V 

-  0-1000V peak-to peak and U -  0.53-74.1 V. These values are significantly 

different to those quoted from the manufacturer 181.

Real quadruples

The three main differences between real and ideal QMF's are: the fringing 

fie lds  at the entrance and at the exit of the filter; imperfections in the quadrupole 

geometry; and the potential distribution a long distance from the axis. These 

differences cause a number o f deleterious effects on the performance of the
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FIG U R E  3.4: DIAGRAM TO SHOW THE STABILITY REGIONS IN AN OPERATING 
QUAORUPOLE MASS FILTER



quadrupole. The fringing field is a time dependent end effect caused by the quadropole 

having a finite length.

A quadrupole of a finite length has a maximum to the injection energy along 

the axis for effective mass separation. The resolution of the quadrupole depends on 

the number of cycles of the modulated field experienced. Some inherently unstable 

trajectories will be passed by the filter if the number of cycles of RF modulation Is 

less than the half life of the trajectory concerned. The transmission of the 

quadrupole. toward stable trajectories, is not isotropic for ions of different masses 

at the same energy 182.

Much of the work done on the effects of these imperfections relates to the 

acceptance characteristics of the filter with a certain length of fringing field 

179,183 a  plot of the acceptance o f the quadropole in phase space shows an ellipse of 

increasing eccentricity with increasing the applied voltage or the length of the 

fringing field. The effect of twisted, warped or misaligned rods has also been 

addressed 179.

To combat the problems of fringing fields o f the quadrupole, several methods 

have been applied. Brubaker proposed the application of a delayed AC or DC ramps 

184. by the use of a prequadrupole or Brubaker lens. A second device, which is a 

ceramic leaky dielectric, can be inserted into the quadrupole to filter out the RF 

potential in the region of the fringing field 185.

The question of the effect o f the QMF on the translational energy of mass 

filtered particles has not been recognised in chemical applications to the knowledge 

of the author, although the use o f RF fields in particle accelerators Is quite routine 

186. The performance of the crossed beam Instrument in the present study is limited 

by this little considered effect.
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Performance, observations, results and discussion

The performance of the ion optics, as indicated by the condition of the ion 

beam, is illustrated by figures 3.5-3.9. The remaining part o f this chapter is 

concerned with specific ion optic problems. It is  structured In sections, and an 

attempt has been made to find a natural, logical progression through these sections. 

Consider the mass spectra in figures 3.S-3.7. These spectra were recorded on 

several different precursor species. Unit mass resolution can be be obtained for 

each QMF driver. The primary Ion beam also gave low stability, moderate 

reproducibility, large angular divergence (eg. figure 3.8), small ion currents and 

broad energy spreads (eg. figure 3.9) using configuration A (see figure 2.6A). In 

addition to these five general effects there were three specific observations which 

would not occur if the ion optics were operating as intended. Firstly, electrons could 

be detected on the final collimating aperture of the ion beam source. This effect can 

be seen clearly in figures 3.5-3.7. Secondly, a large positive ion flux could be 

collected under certain conditions when the source was switched to a negative ion 

mode. Thirdly, the integral ion energy spectrum often showed a maximum In the 

spectrum, greater than zero volts. The latter result implies that for an ion beam of 

constant composition, more ions exist with energy greater than eV, than exist with 

energy greater than 0. These three additional effects seem paradoxical at first sight. 

These observations made it obvious that a detailed understanding of the Ion optics was 

required.

During the first two years of this project, all the changes to the configuration 

of the apparatus were made on semi-empirical judgements. Some progress was made 

In eliminating some of the problems. A lack of proper data storage facilities In the 

early stages of the work, meant that judgements on the value of data were necessary 

at the Instant of their collection. Due to the number of times that specific 

Investigations had to be repeated, this method proved to be a false eoonomy of time.
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A  spectrum  o f a m ix tu ra  o f  a ir  and ha lium . N ofa  th e  un it reso lu tio n  In d ica tad  by tha 

presence o f tha 20  and 17 pa a ks  o f air. N ota  a lso  th a  larga nega tive-ion s ign a l causad by 

e lactrons panatrating in to  th a  q u a d ru p le . T h is  occu rs  despite tha p ra se n ce  o f H a ‘  (mass 

4 ). This spactrum  w as c o lle c te d  using an e le c tro m e te r on the a x il c o llim a tin g  apertu re 

us ing  con figu ra tion  A  ( fig u re  2.6A ).

F IG U R E  3.5: MASS SPECTRUM OF AIR/He
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FIG U R E  3.8: ANGULAR PROFILE SHOWING POOR COLLIMATION AND THE 
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In addition it was not possible to interpret data retrospectively in the light of new 

insight or knowledge.

Discussion of the separate problems and effects is made in the following 

sections:

Stability and reproducib ility

Ion source and modelling of the ion source

Ion energy

The retarding potential difference analyser 

Evidence for scattering 

Recommendations 

Conclusion and summary

Stability and reproducibility

An experiment was made to check the stability of the mass filter and source. 

A mass selected ion beam was set up with the octopole and exit assembly removed and 

monitored over a period of 48 hours. The ion flux varied within the approximate 

expectation of ±Vx (x -  count rate). These results were compared with those 

obtained by replacing the octopole and exit assembly.

Rewiring the octopole w as found to improve the stability. The octopole is a 

stigmator (a lens to correct for the 3rd order effect of astlmagtism) for the highly 

astigmatic flux exiting the QMF. Figure 2.6a shows the connections used by Kelly. 

Variations In the supply voltages are not axisymmetric and lead to a wandering 

maximum In the ion beam. The connections drawn In figure 2.6a may have been used 

previously to correct for the physical misalignment of the source 188. By 

reconnecting as figure 2.6c, varia tions In the electric field lead to axisymmetric 

changes in focussing properties. Using the wiring drawn in figure 2.6b the ion beam 

can be maintained along its axis; small variations lead to less dramatic changes in the 

optical properties. The beam can also be directed at over a small vertical range, 

assisting beam Intersection during a crossing experiment.
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A temperature drift in the initialising stages of the source and mass filter 

supplies was observed. The equipment should be switched on for about thirty 

minutes to allow the electronics to reach optimum operating temperature. Some 

retuning was necessary after this period.

Two further effects contributing to poor reproducibility were noted. In 

implementing the new QMF no account had been taken to match the dimensions of the 

octopole support, as a result the lens is a very loose fit. The new quadrupole rods are 

shorter than the old rods leading to a gap of 7.90 mm between the octopole and the 

quadrupole. The coupling of these two fields causes a time dependent potential 

distribution. The time of flight of a rectilinear trajectory of a 6 eV ion of mass 28 

across that gap is 1.2 ps. This time is equivalent to 2.4 periods of RF modulation. A 

top hat shaped electrode was placed in to the gap to decouple the fields (figure 3.10). 

Following the introduction of this decoupling collar an improvement in the operation 

of the octopole was noticed. A single, reliable optimum value of the focussing 

potentials applied to the octopole was observed for each ion energy, where previously 

there had been several.

To prevent surface charging, a single layer o f colloidal graphite (Aquadag) was 

applied to the electrode in the source exposed to the Ion beam. The exit plates 

assembly was constructed with the aid of dowels to ensure that the p lateiwere 

concentrically aligned. Since these measures were introduced, the stability and 

reproducibility of the ion beam has not normally been a problem.

Once good stability was introduced, it was possible to assess the effects of the 

multitude of other instrumental conditions. Using a data sheet to record all the 

experimental conditions day to day reproducibility was dramatically improved. This 

can be demonstrated by reproducing the data to within experimental error simply by 

dialing up the recorded conditions.
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Electrons in the quadrupole
-K it pttftr*  ©f

The construction of the ion source and^ion burns caused by normal operation 

are drawn in figure 3.11. The ion beam precursor gas diffuses into a volume inside a 

photoetched grid anode. Ionisation occurs when electrons, formed by thermionic 

emission from a hot tungsten cathode, collide with the ion beam precursor. Ions are 

extracted by field penetration from the ion source.

Electrons were detected at the final collimating electrode of the beam source 

for focus voltages up to  cfL. 110% of the electron energy. This can be seen in the 

figures 3.5-3.7. The electron current collected was roughly proportional to the 

electron emission in the source 180. The electron current maximised when the focus 

voltage was equal to the electron energy. It was also found empirically that the best 

ion energies were obtained for only small differences between the electron energy 

and the focus potential. In the cases of EE - F and EE « F the Ion flux was diminished. 

For F> or •  EE the largest ion fluxes are observed. For example at -31 eV no ions 

are detected when the electron energy falls below -27 eV. If V is raised with EE fixed 

at 27 eV then the ion flux decreases. In all cases the measured distribution of 

energies was large, but minimised with maximum ion flux.

A model of the ion source was made In order to rationalise these observations. 

An electrode set was constructed from a array of 130 x 63 points using SIMION 3.0. 

The mirror image facility expands this array to double size. This program does not 

allow for 3D modelling and has the best accuracy for planar simple electrodes aligned 

parallel to the axis along which the ions are transported. The source is assumed to be 

a cylindrically symmetric potential array. In this way the electrons w ill only move 

in planes intersecting the axis of the potential array. Space charge is assumed not to 

be significant.

Six o f the o u tpu t trajectory profiles are shown in figures 3.12-3.14. 

Figures 3.12b and 3.14b are examples of simulations in which electrons start at the 

filament with zero energy. These results explain the ion burn patterns observed in 

the source (figure 3.11).
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Figure 3.13a, 3.13b and 3.14a show that trajectories can penetrate the the 

entrance of the quadrupole from starting points away from the filament. These 

arrays have different grid structures, but the effect is little changed and this result 

is qualitatively significant. Note particularly that the number of trajectories 

entering the quadrupole is not changed by an increase in the focus voltage from -56 

to -70 eV (the magnitude of the electron energy). A further increase in the ratio; 

focus : electron energy, causes the focus electrode to reflect all the incident electron 

trajectories (figure 3.12a).

The trajectories of the electrons penetrating the quadrupole are stable with 

respect to the number of Iterations per grid point. The model fails to quantitatively 

simulate the 4Me- experimental result of electrons penetrating the quadrupole, when 

electrons are started at the filament with zero energy. Some important qualitative 

results are noted. The use of a grid with a coarse mesh allows significant field 

penetration and loss of ions formed close to the perimeter of the grid. The electrons 

started at arbitrary points in space can be seen to focus efficiently into the 

quadrupole. The number of trajectories passing into the quadrupole is not 

diminished by an increase in focus potential, instead they are focussed down to a 

more paraxial beam.

Note that the actual trajectories that are plotted in this study are of limited 

use. The actual potential Is highly anisotropic and complication due to space charge 

from mA electron emission -aJe- expected to be large. The stability of the various 

trajectories with respect to an increase in the number of iterations per grid point 

gives a qualitative Indication of the error. Those simulated trajectories, which 

model the real trajectories well are highly stable with respect to an increase in 

number of iterations per grid point used. The trajectories which make many 

crossings of the source and are trapped for long times have poor stability with 

respect to an increase in the number of Iterations.

At an energy of 70 eV, electrons travel the length of the quadrupole (100 

mm) In 2x10*® s. This value Is only a fraction (1/100) of the period of modulated
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field of the quadrupole. In this frame of reference the quadrupole mass filter is 

apparently only an electrostatic lens to the electron. Thus, unstable electron 

trajectories can be transmitted even for large electric field gradients. An electron 

current is not detected on the final collimating electrode when a large ion current of 

low mass is simultaneously observed. This is illustrated by figure 3.6. In such a 

case the net beam current only is measured. Thus, no useful measurement Is 

obtained on either charged particle. Electrons might cause unwanted reactions if 

they were present at the crossing region during an experiment. Ions could also be 

formed from neutral gases in the quadrupole. These ions would have the phase 

corrected energy of the field at the point of formation.

Modifications were proposed on the basis of these qualitative results. The top 

of the grid was blocked off to prevent electrons entering the quadrupole. To reduce 

the lateral field penetration the grid was covered in a fine wire mesh. This would be 

expected to increase ion flux and also reduce the tendency of ions to dive towards the 

grid mounting plate, which acts as the electron trap in this source.

Ion energy

The Ion energy spread in the primary beam was unacceptably broad. Figure 

3.9 is one such example. Figure 3.15 was recorded after routine maintenance. The 

differences in FWHM of the recorded ion energy is dramatic (1.6-0.25 eV), but the 

difference in the configurations used to record them is only minor.

There are several possible explanations for the apparent energy change. The 

RPO only analyses energy in a direction that is orthogonal to the plane containing the 

RPD, le. the direction of transport o f the beam (z). The component of velocity of an 

ion In the z direction gives rise to an apparent vector energy quentlty (Ez). This 

Important parameter is related in energy (E). according to the relation Ez -  Ecos6, 

where 0 is the angle subtended between the particle trajectory and the z axis. A 6 eV 

Ion, for example, would just be transmitted by a 5 V ramp if the angle of incidence 

was 33°. This explanation has been eliminated because e for the required energy
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d iscrim ination  e ffe c ts  at th e  de tector

FIGURE 3.15: ION ENERGY PROFILES INDICATING THE IMPROVEMENT OF RESOLUTION 
OBTAINED WHEN THE OMF IS EARTHED.



deficit and the angular acceptance of the quadrupole. estimated by trigonometry to be 

3-5°, are different by an order of magnitude.

Further information is provided in figure 3.16. Including an RF only 

quadrupole can broaden the ion energy substantially. Figure 3.17 shows that the ion 

energy resolution can be improved by recessing the ion source from the quadrupole 

and mass selecting. It can be inferred from this data that the RF broadens the energy 

distribution directly.

One explanation is that the RF electric field penetrates into the ion source to 

the point of ion formation. When a mesh is placed across the quadrupole entrance 

plate, the effect persists. The quadropole act as a transmitter, broadcasting  RF 

electromagnetic radiation. This airborne RF. of 2 MHz frequency, should not pass 

through the source plate hole. If. however, the pick up o f stray RF on the grid was 

large, then a time dependent spreading of ion energies would result.

The 2 MHz noise on the source electrodes was measured in a test performed in 

atmospheric conditions. The maximum amplitude of the noise was 50 mV. The 

conditions of the plasma generation source would be different due to differences in 

the permittivity of air and a plasma. Repeating the measurement with the source 

operating, changes this value to *80 mV peak to peak. These changes are not o f the 

correct order of magnitude to cause the experimental result alone.

To understand the effect, the basic considerations o f ion formation must be 

restated. The potential energy of a particle with charge e in an electric field is 

Independent of its mass. The difference. AV, between the electric potential at the 

point of formation and the point of interest gives the ion energy by the product eAV 

Independent of the intermediate energies (cf Hess' law) 1®°. This holds providing 

that the trajectory is smooth and continuous over a smooth, continuous potential. 

Exceptions to this or methods by which an Ion can change its energy are 

discontinuous eg. by a collision with a third body or the spontaneous conversion of 

translational energy into another form of energy.
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The observations on the ion energy are consistent with the explanation that 

the quadrupole causes a discontinuity in the linear acceleration (see figure 3.18). 

The first order quadrupole equation:

[52]
0

Symbols defined previously.

implies that th is  does not happen. In the fringing field, however, the ion is 
(  r t t u r d t d )

accelera ted jn to  the enclosed volume of the quadrupole where the approximation 
os

becomes good, then the ion is^retarded on exiting the quadrupole. The amount of 

energy imparted to an ensemble of particles is zero on average, and the energy of a

particular ion depends on the phase and position o f entry and exit of the field.
A/£. T h e  * * * €/*  S t *  fan e* . »way n o h  be h u t. iff f o r  e>U.scr,*i,*AHoo k>e»w£ t *

br&xiJtoneS ocaui.
^  The effect of the FtPD

Once it was established that the ion source gave a near monochromatic ion 

beam, it was possible to investigate the effect of the RPD analyser. Figure 3.19 

shows the m easured integral ion energy pro files from a series of sim ilar 

experiments which produced unexpected results. The form of the spectrum was the 

first surprise. A ll of these spectra should be identical and to within experimental 

error a step function of energy. The second surprise was the gross effects caused by 

some small changes in conditions. The cause of the changes in appearance of profiles 

E to F, and H to I are changes in applied potential of just -3V. The spectra show 

several features. A plateau from 0-1.5 eV rising to a peak at between 1.5-2.0 eV.

The fall off to the base line is a gentle slope with a hint of a shoulder at 3-4 eV. At a 

first sight the ion energy appears to be of a broad spread.

The retarding potential difference analyser is constructed from three thin 

electrodes with wire mesh spot welded over the aperture. The operation of such a 

system is expected to introduce plane contours, perpendicular to the path of $ 6  Ion.
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10 profiles r«corded under the lame basic conditions. In each case the slight change in
conditions should not prom ote a change in  th e  fo rm  o f the p ro file . In each case th e  pro file  

should be a near perfect step function, if  th e  R P D  energy ana lyse r is w orking a s  specified .
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ERROR IN THE RPD ANALYSER



The transmission of such a system is independent of voltage, up to the voltage at 

which the energy resulting from the component of velocity in the direction of the 

analyser (Ez) becomes less than the barrier. A closer look at the construction of the 

RPO analyser shows that the electrodes have a slight top hat shape. A possible 

explanation for the results is some sort of focussing effect. This suggestion may 

appear at first sight oversimplified, due to the apparent structure In the spectra 

(possibly indicating multiple effects). This focussing effect proposed can be shown 

to be consistent with the data by modelling.

A model of the electrode structure was made in a 77 x 37 SIMION 3.0 array. 

The array was refined to 0.0005 V accuracy. The fast adjust option was used to alter 

the potentials on the array. Trajectories were calculated using fifty iterations per 

grid point. High stability of trajectories to a change in the number of iterations per 

grid point was obtained.

143 trajectories, initially parallel to the axis and o f a single energy were 

run over a variable potential barrier. A total of fifteen runs were recorded. The 

SIMION program was not large or versatile enough to model the exact array. A 

functional computer program was written to extrapolate the final coordinates and 

angle of exit from output data produced in the system dialog . The dialog file is the 

computer reoord, in SIMION, which records all input from the keyboard and output 

to the VOU. The computer program allows independent variation of two probe 

parameters. The parameters are the distance (XA) to a field stop aperture and the 

diameter (YA) of that aperture. The distances are measured in grid units, which can 

be used to scale the array. In this study 3QU -  1 mm. Figure 3.20 shows the plotted 

trajectories of five of the fifteen runs made. Each one. in the absence of focussing, 

should look like profile A. As the voltage on the central electrode is Increased a 

strong focussing effect does occur.

The model represents the ideal monochromatic experiment in the absence of 

space charge effects. To test the first-order operation o f the model an orifice of 

14.01 QU was placed at axial distances of XA -  40 and 750 QU. The results are
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5 examples of the model electrode structure and ion trajectories. In each case the central 

electrode Is raised to a positive potential whilst the remaining two electrodes are raised to 

earth potential. Under ideal operation, of the RPD analyser, each of these trajectory plots 

should resemble case A. Case 0 shows the spherical aberration clearly. Case E showa an 

extreme example of the irfsing effect.

FIGURE 3.20: SIMION PLOTS O f 143 ION TRAJECTORIES OVER A SIMULATED RPD 
ELECTRODE ARRAY



plotted in figure (3.21). Curve 1 represents the ideal result expected, that Is all of 

the 143 incident trajectories being transmitted. Curve 2 represents the case for XA 

-  40 GU, where all the ions passing through the analyser are collected. Curve 3 is 

the effect at 750 GU (25 cm).

The model indicates that the lens does not act ideally, even under ideal 

conditions,which would normally be expected to yield perfect behaviour. Ions are 

lost because the lens acts like the iris controlling the pupil in an eye: this can be 

seen in figure 3.20. As the voltage on the central electrode is Increased the effective 

aperture o f the lens is reduced: notice the similarity of curve 2 to figure 3.15. 

Curve 3 follows the same pattern of behaviour up to 2.5 eV, when there is a sharp 

deviation and more trajectories than expected are lost. The reason for this behaviour 

is the tensing action induced by the shape of the electrodes. The lens is highly 

spherically aberrated and the different shorter foci of the marginal trajectories 

gives rise to the deviation the curve 3 in the figure. Altering the value of XA varies 

the position of the knuckle in curve 3.

Varying the second parameter, the orifice size VA. leads to a maximum in the 

plot. Figure 3.22 shows curves for three values o f YA (1.51, 3.01 and 6.01 GU) at 

an axial distance XA -  150 GU. The position of the maximum is moved forward as the 

aperture is reduced. The peak also becomes sharper and more pronounced as XA is 

reduced.

This model appears to be very flexible and can be used to fit actual data. 

Figure 3.23 has four simulated plots of the fifteen runs varying XA over a fixed YA. 

Figure 3.24 shows three plots. One of these is processed data from an archived plot 

(RONQ5.7-1/3/89), and the other two are simulations. YA is fixed to model the 

first point and XA is varied around realistic values to match the experimental 

results. The simulation results are scaled to the ion energy of the experimental 

results. In the absence of post acceleration this does not affect the actual fod. only 

the ratio of ion energy to barrier height changes the focus.
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Tasting the  perform ance o f the m od e llin g  resu lts. The th re e  p lo ts  ind ice te  the d iffe ren t 

appearance of the sam e data.

C ase 1 represents the expected fo rm  o f the p lo t o f an ideal ion beam over th e  RPD 

C ase 2 represents the actual fo rm  o f the p lot o f an ideal ion  beam  over the RPD.

C ase 3 represents the sam e data w ith  XA .  750 QU. Y A  -  14.01 OU.

FIGURE 3.21 : PERFORMANCE PLOTS FOR THE RPO MOOEL

V



T h re e  p lo ts  s im u la tin g  tha ex tre m e  selectiv ity  to w a rds ions at d iffe re n t cen tra l e le c trod e  

v o lta g e s  (y axis).

FIGURE 3.22: PERFORMANCE PLOTS FOR THE RPD MOOEL
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Pre lim inary  m od e llin g  p lo ts  fix ing th e  XA  value.

Q C ase A - actua l da ta : from  the a rch ive  RONQS.7 - 1/3/80 

♦  Caae B • w ith  X A  .  242 QU. YA -  10.01 OU.

K Caae C  - w ith  X A  -  242 OU. YA -  8.01 OU.

□  Caae D - w ith  X A  -  242 OU. YA -  4.01 OU.

O  C ase E - w ith XA  -  242 OU. YA -  5.01 OU.

j FIGURE 3 .23 : FITTING PLOTS USING THE RPO MOOEL
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M od e llin g  p lo ts  w h ic h  have been fit to  th e  ac tua l da ta by  chosing Y A  to  g ive  th e  correc t 

s ta rt in g  po int.

♦  C a s e  A  • actua l d a ta : from  the archive R O N Q 5.7  - 1/3/80 

O  C a se  B - with XA -  533 GU . YA -  7.81 GU.

□  C a se  C - w ith XA -  40 0  GU . YA -  7.51 GU.

FIGURE 3.24: FITTING PLOTS USING THE RPD MODEL



The chromatic and spherical aberrations can be individually tested in the

model. The spherical aberration is particularly large; this is caused by a deviation

from ideally shaped parabolic contours.

Similar observations to those described here were noted by Jarrold and Kelly

when operating the RPO analyser. The conditions in their experiments are unclear.

Jarrold attributes the effect to trajectories which are o ffset by some angle with

respect to the axis normal to the RPD analyser (this would occur if the centre around

which the detector rotates was not the crossing region or reaction zone) and to space

charge limiting behaviour. Following the derivation o f the Langmuir-Child equation

for the space charge limit of ions in a quasi 1 dimensional diode, however, it can be

seen that Jarrold's values are overestimated by a factor o f (M«/M|). The source of

this error is an incorrect substitution of a kinetic energy term for a potential

energy term into the equation as quoted by Jones 187. The actual space charge limit

for the RPD analyser is in the order o f 10*6 A and not 10*® A, for a charged particle

of velocity 6.5 km s*1 (eg. a singly charged particle o f mass 28 at 6 eV). It Is

possible that the bottle neck for the space charge limit is actually the quadrupole.

Kelly and Jarrold both use the pole bias of the quadrupoie to eliminate undesirable

effects in the peak profiles. This empirical modification of the experimental

conditions works (figure 3.25) and can be rationalised from the modelling of the

detector. Negative pole bias extends the compound focus of the detector. This is
M If *■** Q M r

equivalent to changing XA in the model. Brino'"0 n r  quadrupole maps
u me»* ptofite. M f«** ye
tho prefko onto that e ) tho vortobio pupil oiso roeeW. The effect of this modification 

(/toflwelty)
on energies which areAexpected to be missing from an analysis of the primary ion

beam is undetermined. These energies would be present in reactions leading to a

partitioning of translational energy away from the prior kinetic energy of the ion.

No beams composing of mixed ion energies have been modelled. The chromatic
(a. pots bias)

aberratioruen is not compensated by this modification of experimental parameter^.

When a RF only quadrupole is Included in the line o f sight arrangement at the 

detector some of the focussing effect of the RPD Is removed. Trajectories are
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The m oa t extrem e d isc rim in a tio n  tha t w a s  svar reco rded to r the  arch ive o f e n e rg y  spectra. 

This is caused by the R PD  analyser fo cuss ing  the ions c lo se  to  the ion e n e rg y  on  to  a very 

sm all de tector qu ad rup o le  en tran ce acceptance area. N ote the  s im ilarity to  p lo ts  conta ined 

in  fig u re  3.22

FIG URE 3 .25: DATA SHOWING THE POWER OF RESOLUTION AND POLE BIAS IN 
MASKING DETECTOR ABERRATIONS



randomised by the oscillations in the RF field. If the quadrupole is operated as a mass 

filter then the effect can persist, if there is strong focussing on to the acceptance 

plane of the quadrupole. This is equivalent to reducing both XA and YA in the model. 

Each section of the energy profile, up to the point of strong focussing on to the 

acceptance plane, is isotropic. Then a strong focussing leads to a sharp peak as the 

number of ions entering the quadrupole is increased. Compare figure 3.22 to 3.25 

and figure 3.26b which is less dramatically affected.

Performance of the ion beam

The best ion energy profiles obtained have FWHM between 0.16 and 0.12 eV. 

Since the cause of unacceptable energy resolution was intrinsic in the quadrupole, an 

experiment was conceived to test if the beams intersect; the most basic experiment. 

Using a precursor gas of argon (purity > 99%) and ionising it under low pressure 

conditions below the threshold for Ar2*  formation must lead to a great excess of Ar+ 

ions. Following such a procedure removes some of the need for mass selection In the 

primary beam.

Evidence o f scattering in two body crossing experiments

Figure 3.27 shows the profiles of two beams with the neutral beam turned on 

and off. A beam of Ar+, without mass selection, was crossed with a beam of neutral 

Ar atoms effusing from a capillary array. This experiment offers some evidence that 

the beams intersect because the primary ion signal was attenuated. The horizontal 

angular profile shows a narrow maximum, which shifts slightly in position. The 

count rate at wide angles is increased relative to the experiment with the beam off. 

There is also a change in the appearance of the integral ion energy spectrum, for the 

beam on and beam off experiments. The shape of the plot can be rationalised on the 

basis of the previous discussion of the optical behaviour of the detector. There does 

not, however, appear to be a broad CT peak in line with the capillary array. The
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NOMINAL ANGLE

FIG URE 3 .27 : ANGULAR AND ENERGETIC DATA: EVIDENCE FOR A LOW NUMBER OF 
ION-MOLECULE COLLISIONS?



mechanical movement used in angular measurements is impaired by the physical 

leng th  of the RF leads connected to the detector QMF. which makes the latter 

determination difficult to perform. These leads cannot be lengthened, because the RF 

generator units must be balanced, that is4hef the stray capacitance of the leads must 

be charged in a time less than a quarter of the period of the RF modulation.

Recommendations

D etec to r m odifications

The effect of the chromatic and spherical aberrations can be reduced by the 

inclusion of aperture stops on the exit of the RPD analyser. This would reduce the 

transmission, but keep the trajectories paraxial and improve angular resolution. A 

Brubaker lens could be mounted as close to the exit of the RPD analyser as possible, 

and in front of the QMF. The addition of this RF-only short quadrupole would have 

two positive effects. These effects are5!  reduction in XA and an increase in the area of 

the entrance plane of the whole system. The ions arriving at the QMF are already 

phase  locked and the acceptance efficiency of the quadrupole is also improved.

The only other long term solution is to redesign the RPD analyser. The 

curvature of the field at the edge of the lens can be reduced by beveling the rear of 

the electrodes. To delay the effect of iris formation, the voltages applied to the 

electrodes in the analyser can be ganged. That is they can be scanned in constant 

vo ltage difference to keep the principal focus of the lens constant or in constant ratio 

reducing some of the chromatic effects.

Ion beam source modifications

Modifications are suggested to improve the operation of the ion beam source. 

The first modification should be replacement of the ion source. A conventional ion 

source has several advantages over the Bayard-Alpert type used in this study. The 

use o f magnets and an electron trap reduces the volume of the Ion formation element.
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Hence, larger fie ld gradients can be used to extract the ions, without increasing the 

intrinsic source energy spread above an acceptable level. The use of an electron 

trapping plate would  eliminate the possibility of electrons entering the quadrupole. 

This modification would free the focus voltage and electron energy from their mutual 

interdependence. An ionisation efficiency investigation could be carried out with 

confidence of reproducibility. One disadvantage of changing the source over is a 

certain reduction in the number of ions formed by the source per torr o f reagent gas. 

This does not necessarily mean that the primary ion signal would be reduced. If the 

ionisation is more selective or the injection more efficient and increased signal could 

be obtained.

A number o f low quality experiments are possible using a quadrupole in the 

ion beam source. Modifications which would Improve the behaviour of the ion optics 

are inclusion of a Brubaker lens and the use of aperture stops. The transmission of 

ions into the mass filter would be improved by the inclusion of a Brubaker lens as 

before. The aperture stops are placed before the Brubaker lens and after the 

quadrupole. The ions injected into the quadrupole are then made paraxial and the 

change in ion energy in the fringing fields are minimised. Stopping down the exit 

also reduces the transmission o f electrons or unstable trajectories far o ff axis. 

Thus, the observed ion energy would have a narrower distribution about the true 

energy of formation. As a lens, the quadrupole mass filter is severely spherically 

aberrated. Stopping the exit and the entrance down reduces this aberration.

Following an improvement in Ion energy and collimation. the beam should be 

easier to bring to  a single focus. The final collimating electrode in the ion beam 

generator can be used as an angle defining aperture and should be earthed. The 

divergence can be improved at the expense of ion flux. Care should be taken to avoid 

the effects of residua l spherical and chromatic aberrations when using an angle 

defining stop. Under some conditions wings on the angular plot can be detected as a 

direct result o f these aberrations (see figure 3.8).
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This apparatus is only capable of producing moderate quality results, if it 

works at Its best, after these modifications are carried out. An ion beam generator 

including a quadrupole and no further energy selection cannot be used to perform 

experiments at the resolution required. More intense beams with more controllable 

ion optic characteristics can be formed using electrostatic and magnetostatic sectors. 

This Instrument could be m odified to incorporate a Wien filter. Any other 

possibilities are prohibited by the physical size and configuration of the instrument. 

A more versatile vacuum reaction chamber would have demountable sources so that 

new innovations could be included as modifications without the problems of space or 

size constraints.

Conclusions

In order to make any experiment possible for which data can be collected and 

interpreted with any confidence, the ion optic problems of an instrument must be 

understood. Although this appears to be standard practice in the leading laboratories, 

when building or modifying apparatus, no such study has been made for this crossed 

beam instrument. A systematic study of some of the ion optic properties of this 

apparatus was seen to be necessary, following the collection of some empirically 

unreasonable data and the observation poor day-to-day reproducibility. Some subtle 

changes in experimental conditions caused gross changes in observed data where a 

slight effect was expected. D ifficulty was also experienced In reproducing the 

results of previous researchers to  within experimental error, especially given the 

limited data on experimental conditions recorded in their note books.

The investigation has produced a better understanding of the ion optic 

character of the apparatus and explains the experimental results. This formal study 

has taken up much of the time of this project, but has provided a firm base of 

understanding for the evaluation of experimental data and modification required 

before experiments can be performed.

80



A large body of data has been collected in order to perform this investigation. 

This collection would have taken a prohib itive ly long time without considerable 

streamlining of experimental practice. Several functional computer programs have 

been written to expedite the transfer and processing of data.

The principal conclusion of this chapter are:

1. The detector is severely affected by aberrations. These have been successfully 

modeled and the experimental results have been interpreted in terms of these. The 

space charge error has been ruled out as a cause o f the experimental results.

2 . The ion source gives rise to stray electrons which can be detected along the ion 

flight path.

3 . The quadrupole mass filter changes the energies of ions entering into it. The 

suitability of the quadrupole mass filter In a source for crossed beam experiments 

has been discussed in light of this effect.

4. Several major modifications must be made to the ion optics before this





Introduction gas dynamics

Kantrowitz and Grey 191 drew attention to many of the benefits of supersonic 

expansion molecular beam sources, over effusive and oven beam sources, in a seminal 

theory paper in 1951. They predicted an increase in intensity and a decrease in the 

velocity spread. These enhancements are of significant advantage to the study of 

reaction dynamics. The predictions of Kantrowitz and Grey were partially verified  in 

experimental investigations 192:the enhancements observed were not as marked as the 

expectation, due to the unforeseen counter productive effects of skimmer interactions. 

Thus, the most significant tool, until the advent of the laser, for the study o f the 

dynamics of elementary chemical reactions was created. A large volum e of 

publications on the subject of supersonic beams has appeared in the literature, 

concerning both theoretical detail and experimental data. The transport and gas 

dynamics of the supersonic expansion are considered to be well understood, but many 

of the formulae are approximations to analytical solutions which do not exist. Several 

books are available which describe background and the Important equations from that 

work 1 M 1 M

A continuous supersonic expansion requires an enormous pumping speed (as 

much as 100,000 I s '1),to remove molecules from the under expanded portion o f the 

beam. Hagena 197 proposed in 1964 that the pumping speed requirements could be 

reduced, whilst retaining the advantages of the supersonic expansion, by pulsing the 

aperture of the nozzle. The modulated or pulsed beam has further popularised the use 

of supersonic expansion beam sources in chemical dynamics. A wide variety of design 

o f pulsed valves have been published 1*7-204 These beam sources are complicated 

significantly by the mechanisms of the shutter. Considerable effort has been made in 

making reliable valves with long working lives and with a wide range of applications. 

There are many engineering problems associated with the manufacture of a pulsed 

beam source. Thus, a greater demand Is made on the skills of the experimenter in 

constructing a pulsed beam than a continuous beam source. The types of materials
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which give rise to stability at elevated temperatures are hard and refractory. Those 

which are able to give good vacuum seals do not have high temperature stability. These 

examples indicate the compromises that are required in the construction of a pulsed 

molecular beam.^^Tiis increase in complexity affects the performance and the appeal of 

pulsed beam sources.

The compromises that are made in constructing a modulated beam source, and 

the changes that have to be made to incorporate an effective aperture and shutter, 

affect the flow characteristics of the valve. The pulse of gas is only equivalent to a 

small portion of a continuous supersonic beam in principle. In practice, even the ideal 

lim it of Its operation does not fulfil this notion. The limit to the minimum pulse time 

for formation of a supersonic jet has been analysed 207.208 |n the model an ideal 

shutter function was assumed for the valve, and the sudden-freeze approximation was 

applied to characterise the expanding jet. It was concluded that for some of the beam to 

reach supersonic flow, a lower limit to the minimum pulse width of ca. 10 ps should be 

imposed In the design criteria for new sources. The fastest reported pulse to date is 7 

ps FWHM 208 Gentry notes that measured pulse widths less than this are clearly 

possible, but that the calculation of minimum pulse width is correct probably to 

within half an order of magnitude. Apart from experimental performance data, the 

minimum time studies outlined above, and a suggestion that the beam source acts like a 

biased harmonic oscillator i®*.209( no attempt has been made to rationalise the real 

time evolution of the pulse beam envelope.

In this chapter details of the design, development, evaluation and performance 

data for a pulsed valve are given with the specific aim of installing it in a crossed ion- 

neutral beam apparatus. The harmonic oscillator model of Gentry and Giese Is extended 

to provide a simple framework for the evaluation of the beam evolution.
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Overview of pulsed beam sources

There is a wide variety of design for pulsed molecular beam sources 198-205 

These work on three underlying principles: the piezoelectric effect, magnetic 

attraction and the electromotive effect. The first valves were based on fuel injectors 

modified from the commercial valves available from the automobile industry. The 

modified fuel injector type and some other types o f reliable valves have been 

constructed around solenoid mechanisms. These valves typically contain a sprung 

ferritic plunger, which forms the valve shutter and is disturbed from the valve seat 

by a transient magnetic field. The magnetic field is formed by pulsing the solenoid 

coil, into which the plunger is attracted, with an energising current pulse. The coil of 

the solenoid has a high inductance which precludes ultrafast (<100jis) operation. In 

the piezoelectric type valves, motion is induced when a voltage is applied to a 

piezoelectric crystal. Both the piezoelectric and solenoid type valves can be latched 

open without power dissipation problems. Thus, these valves have continuously 

variable duty factors.

The fastest reported gas pulse was recorded using the Gentry and Giese design of 

electromotive valve 108. In this valve, the driving force to open the valve's sprung 

shutter is generated between two parallel, closely spaced conductors carrying 

counterflowing currents. This valve requires an enormous power (2-3 kA, 1-2 kV- 

current pulse) and dissipation of heat generated during the operation is a problem: the 

valve must be supplied with cooling water. An alternative use of the electromotive 

effect is in the simple Flemming's motor. Motion is induced, according to the 

Flemming left hand motor rule, into a conductor carrying a current In the presence of 

a perpendicular magnetic field. This design differs from that of Gentry and Giese in 

that the transient magnetic field of one of the conductors Is replaced by a permanent 

magnetic field. In this way the power requirement o f the valve is reduced (now 

directly proportional to current (I) not I2 as previously). The performance of the 

valve Is maintained, and the problem of cooling water supply Is replaced by problems
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arising from a residual magnetic field. The valve types, discussed above, are compared 

in table 4.1.

An interesting method for reducing the effective pulse length o f valves with 

slow acting shutters, has been demonstrated by Bassi et a l203. The expansion is 

quenched in the first chamber of differential pumping, by the scattering induced by 

molecules reflected from the collimating aperture. The attenuation o f the molecules in 

the background in this chamber is so severe, that a sharp pulse much shorter than the 

open time of the valve is observed, followed by a long tail off. This clever modification 

of the pulse time does not, however, reduce the pumping requirements of the system 

since the quantity of discharged gas is the same. Thus, the pump-out time constant is 

not reduced.

Elements of Gas dynamics

The elements described below are applicable to steady state gas dynamics. The 

introduction given here is quite terse. A more lengthy discussion can be found in 

Miller 217 if this is required.

Continuum Fluid

In gas dynamics it is most convenient to consider that matter is uniformly 

dispersed throughout the space it occupies in a continuum, and the expanding jet as a 

steady-state flow system. The large number of molecules, in even small quantities of 

gas at moderate pressure, ensures that the mean-free path is short and the expected 

number of collisions in unit time is large, justifying the continuum approximation. 

Treatment of the beam as a continuum has a number of advantages. Many of the 

properties of the beam, for example, can be obtained from a thermodynamic treatment 

105,106 greatly simplifying the analysis. The thermodynamic description of the 

expansion offers a potential for confusion ie. the internal energy o f the ensemble 

provides the energy for the expansion and not the energy contained within the internal
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T A B L E  4 .1 : Comparison of four valve types

VALVE TYPE PIEZOELECTRIC SCLENOO
COUTERFLCWNG

CURRENT
FLEMMINGS

MOTOR

ORIVMQ FORCE THE CHANGE OF 
SHAPE OF A 

CRYSTAL 
WITH APPLIED 

VOLTAGE

MAGNETIC 
ATTRACTION 

OF A FERRITIC 
PLUNGER

ELECTROMAGNETIC 
REPULSION 

INDUCED NTO 
CONDUCTORS 

CARRYING 
OPP06»*) 
CURRENTS

ELECTROMAGNETIC 
INDUCTION BY 
ACONDUCTOR 
CARRYING A 

CURRENT IN A 
MAGNETIC FIELD

PULSE LENGTH 78 M -  
CONTINUOUS

100 M -
CONTNUOUS

7 - 4 0  |U 17 - 48 M

NOZZLE SIZE 0.1 • 1 mm VARIABLE VARIABLE VARIABLE

OUTY FACTOR CONTINUOUSLY
VARIABLE

CONTINUOUSLY
VARIABLE <1% <1%

OPERATING
FREQUENCY

750 Ml 280 Hi 10 Hi 120 Hi

MAXIMUM
OPERATING

TEMPERATURE

ARALOITE LIMIT 
-  100*C

COOLANTUMIT
100 *c

FOR WATER

VITON LIMIT 
•  BOO *C

CONNECTIONS 1 «  78 O .  GAS 2 * 80 Q • GAS 2 «50 O • GAS 
.  COOLING WATEF

2 «  SO n  .  GAS

TERMINAL 
MACH NUMBER 10 • 11 a  o

PULSE SHAPE FLAT TOPPED/ 
TRIANGULAR FLAT TOPPED TRIANGULAR TRIANGULAR

SETUP PRESSURISED Ha 
OR TEST RIG

PRESSURISED Ha 
OR TEST RIG TEST RIG

TEST RIG 
(CRITICAL»

STAGNATION 400 lorr - c  100 aim. 200 torr -

REPROOUCBILITY t  10% » 1 0 % » 8 %

9 3 *
ADVANTAGES

NO STRAY FIELDS, 
COMMERCIAL 

VALVE

COMMERCIAL
VALVE.

RELIABLE

COM4ERCIAL 
VALVE. SMALL 

CONSTRUCTION
fasTpulse

FAST PULSE

SCME
DISADVANTAGES

NON CORROSIVE 
GASES ONLY.

NEGATIVE
TEMPERATURE

»COMPLETE
OP©«NQOFTHE

SHUTTER.
BOUNCMG

STRAY MAGNETIC
m A

HOI M C t«) 
HttH NDUCTANCE 
OF THE BOLENOIO

BOLMCNQ

HKXIHIMINT'.
2-3 MVA max

COOUNG. 
STRAY RF

STRAY RF AND 
MAGNETIC FIELDS 

DIFFICULTY IN 
CONSTRUCT»« 

m i N ii/ .ii 
NON CORROSIVE 

GASES



modes of individual particles. The actual mechanism of the expansion is molecular in 

nature. The velocities of particles in the beam become aligned following thousands of 

two-body collisions. The translational-translational energy transfer and rotational- 

translational energy transfer are efficient and the populations of energy states 

contained in these mode\s change significantly during the expansion. The rotational 

temperature, as measured in the microwave spectra of supersonic beams, can reach 

temperatures lower than 1K. This can be shown by comparing the recorded spectra 

and the calculated spectra for the test substance at the relevant temperature. The 

translational temperature also relaxes, but is relatively hot. The equivalent measure 

of temperature  in this case is that of a Maxwell distribution function giving rise to an 

equivalent energy spread. The translational temperature, therefore, reflects the 

alignment of velocities. Electronic and vibrational modes are normally inefficiently 

relaxed in collision and can survive for many thousands of collisions, as a result the 

energy content in these modes is usually unchanged.

Continuum steady flow mass rate

The mass flow rate of a first converging and then diverging nozzle (Laval 

nozzle) can be calculated for the assumptions of a continuum fluid. The minimum area 

of the nozzle can be used in the equation:

[6 0 ]

W -  molecular mass of the substance.

This equation strictly applies to a Laval type nozzle of the geometry described above. 

The mass flow rate Is preferable to the molar flow rate because it is constant even if

H L  Ji_
R T 0| y + i

O non
m -  mass flow rate. P0 -  stagnate pressure. A* -  minimum area of the throat, 

Y -  ratio of heat capacities. R -  gas constant. Te -  stagnantlemperatu re,

g non
m -  mass flow rate, P0 -  stagnate pressure. A*
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clustering occurs. The expansion is assumed to occur adiabatically and that the value 

of y for any particular case holds constant throughout the temperature range 

considered. In the cases of O2 . N2 and air the vibrational mode is inactive at room 

temperature. Expansion from a gas with a stagnation temperature much higher 

requires that this mode to be taken into account.

T e rm in a l v e lo c i ty  o f  th e  b e a m

The terminal velocity of the beam can be calculated from the continuum flow 

equation 217:

[61 ]

v „  -  terminal velocity of the gas. R -  gas constant. T0 -  stagnate temperature, 

y  -  ratio of heat capacities, W -  molecular weight.

For example, oxygen expanding from an ambient stagnation temperature: v „  -  730 

m s '1. The terminal properties of the beam are reached quite rapidly within a few 

nozzle diameters of the exit of the source. Using a second equation based on the Mach 

number (the local speed of sound), the velocity at different points in the expansion can 

be calculated from a back fit to the equation 217:

v -  velocity at some defined point, M -  Mach number, R -  gas constant, T0 -  
h**"\

s tagna te  temperature (the temperature of the gas if It is brought to rest 

adiabatically), y  -  ratio of specific heats.

V _  -  [ 2RT„ y  j r  
lW  <y-1)J

[62 ]

f Rv  Y  i 1 +
l  W (y-1) J 1
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Putting M -  10 the velocity o f oxygen is v -  712.4 m s '1. This value is -  97% of the 

terminal velocity (730 m s '1, see above) of the expansion.

Molecular properties must be considered in the analysis of continuous flow gas 

expansions where the continuum approximation breaks down. The thermodynamic 

description assumes the expansion is both adiabatic and isentropic. The heat 

capacities, which control the state functions S and H of the beam, may not be constant 

for large changes in temperature ( -  300 K). There are other problems too. The beam 

diverges and the density of the quasi-continuum is reduced. Thus, the mean-free path 

increases until the molecules of the beam effectively cease to collide. In addition, three 

or more body collisions can give rise to nucléation: this is not accounted for in the 

continuum model. Condensation produces side effects which further reduce the 

applicability o f the continuum model eg. latent heat is released Into the beam, the 

molecular number density is reduced, a disparate mass mixture is produced etc.

Heavy molecules in gas mixtures, such as clusters in a bath of the monomer 

units are known to undergo a velocity slip 218. presumably due to the greater inertia 

(cf. Brownian motion). The velocity slip has been used to separate isotopic uranium in 

flow systems 215. This system has advantages, ie. the technology is simpler and the 

separation is more efficient than the gas centrifuge technique 215 .

Hagena derived a scaling law for the rates of formation o f clusters within 

beams. He obtained a dependence on stagnation pressure, orifice diameter and the 

stagnation temperature 211. The result is useful in the choice o f experimental 

configuration to promote or reduce the population of clusters in experiments. A whole 

area of study o f clustered species in the gas phase has been made possible using jets. 

The formation of clusters is, however, disadvantageous in experiments requiring fast 

pulses of monomer units.
cme,

Figure 4.1 shows a £  section of a sonic nozzle-beam expanding as a free jet. 

There is a complex shock structure formed by a rotated intercepting shock wave called 

the barrel shock. Inside this volume the gas becomes supersonic, then it becomes over 

expanded and Is shocked back to subsonic velocities on passing through the Mach disc.
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These shock waves form the mechanism by which information is propagated within the 

beam. By this mechanism, molecules can adjust to meet the down stream conditions 

even though they are travelling at their own (sonic) event horizon ie. faster than 

information, in the form of sound waves, can be transmitted to them. The position of 

the Mach disc can be calculated in the dimensionless parameter x<*/d as a function of P0 

(the stagnation pressure) and the background pressure, Pp:

Xm -  the position of the Mach disc, d -  the nozzle throat diameter, P0 -  stagnation 

pressure (the pressure of the static gas in the gas reservoir), Pb -  background 

pressure in the chamber into which the gas expands.

This continuum result is very sensitive to the background pressure. For example, for 

a continuous valve operating at P0 -  1 atm and Pb *  10'4 atm, the theoretical position 

of the Mach disc is x<j/d -  2120. The background pressure in the first chamber of 

differential pumping is quite high in a Campargue type source213. In this type of 

source, a weak shock structure has been observed and the position of the Mach disc is 

of the order o f x<j/d -  30. The optimum position for the skimmer in this type of

source is ob served in front of the Mach disc and several nozzle diameters from the 

source exit. In free jet sources pumped by diffusion pumps, the background pressure 

is maintained at a much lower pressure. The beam is skimmed a long distance from the 

theoretical position of the Mach disc, in the zone of silence. In this region the beam is 

dense and travelling supersonically. These properties are maintained if the skimmer 

does not seriously disrupt the gas flow.

[63]

locAttcl
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Skimmers

The effect of skimmers on the gas flow has been discussed in detail 21 ° . A 

skimmer can cause a reduction in intensity, a reduction in average velocity and an 

increase in the velocity spread. Shock waves formed on the bow of an obstacle, such as 

a skimmer, disrupts the flow more if the obstacle is blunt. The gas is forced to expand 

around the object in the manner of an aerofoil. The angle (6) around which the gas 

moves is given by the Prandtl-Meyer equation 196:

y  -  ratio o f heat capacities. M -  Mach number, 0  -  expansion angle.

There are approximate methods for solving for the so called flow properties 

(eg. the velocity at an instant) which account for the molecular properties of the beam. 

The method of characteristics and sudden freeze methods are two. In the former case 

the properties are calculated along orderly, Laminar flow lines or streamlines, by an 

iterative method. In the sudden freeze model the expansion is considered to be 

interrupted at a hemispherical locus called the quitting surface at some specified 

distance from the orifice. The non-isentropic character is approximated as happening 

suddenly at this surface. The surface represents a singular disruption between two 

regions o f continuous calculable flows and is said to be the boundary between the 

continuum and molecular fluids. For the purpose o f calculations, the skimmer can be 

taken to be the maximum distance at which the quitting surface can occur. The 

skimmer has the effect o f selecting a part of the beam. Thus, the thermodynamic 

universe is divided and the continuum theory does not hold. The expansion Is then 

quenched by the skimmer. This is exactly the function of the notional quitting surface 

described above.
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The pulsed beam

The pulsed beam construction is given in appendix 2, in sufficient detail for a 

replica to be made. A photograph of the assembled valve is shown In plate 2. This 

photograph is accompanied by figure 4.2, which shows the valve in an exploded form.

The valve base was constructed on a flange so that It could be loaded into the 

front of a pressure box. The pressure box is shown in plate 3. and the relevant 

construction drawings are included in appendix 2.

The following section describes the development of this design from the point at 

which a prototype valve had been chosen. The reasons for changing the design of 

various components is discussed briefly. The logic for the profession of the chapter is:

1. to set out the design criteria
cnteri*

2. to explain why theseAwere not met by the prototype

3. to discuss the performance of the design (|ncluded in appendix 2).

Considerations on incorporating the beam into 
the main apparatus

Mechanical considerations

In fitting the pulsed beam Into the main apparatus several mechanical 

constraints and specifications had to be met:

1 The pulsed valve had to be supported rigidly.

2  There had to be a wide range of adjustment, sufficient to ensure that the beam 

could be aligned with the crossing centre.

3 The adjustment had to be easy to make kt situ.

4 The dimensions of the pressurised stagnation chamber had to be minimised to 

maximise the size of the ducts through which the background gas is expelled.
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FIGURE 4.3: A DIAGRAM TO REPRESENT THE NEUTRAL-SEAM 
DIFFERENTIALLY PUMPED VACUUM CHAMBER





5 The valve had to be easy to load into the stagnation pressure chamber, without 

affecting the critical set up made on the remote vacuum test cell.

The mount for the adjustment was built on a flat base bolted on to a  support at 

the top of the neutral beam chamber arm. Slackening the four securing bolts allows a 

yaw adjustment in the meridional plane o f -  ±15°. The pressure box is demountable

from a worm and pinion gear which provides a pitch adjustment of -  ±5° (azimuthal
This &4jiurw' is oww* *  vitth the c u m b e r

plane), (plate 8 . a diagram is also included in appendix 2 . The pressure can is

suspended from a rear mounting translator allowing displacement a long X.Y

coordinates of -  ±5 mm and -  ±10 mm respectively. Adjustments can be made in situ

using an Allen key. The turret was constructed from three portions (the design sheets

are included in appendix 2). The front piece is used to mount the skimmers assembly.

The bottom section is loaded first and the valve is manipulated until the skimmers

locate into the valve base. The front section is then bolted on and final adjustments

made before the top of the turret is added isolating the chamber.

Calculation o f the pumping speed availability

A consideration of the available pumping speed will assist in the evaluation of 

the pulsed beam source.

Consider figure 4.3 which depicts, schematically, the neutral beam chamber 

and its diffusion pump. For the beam to work efficiently, and in order that the 

diffusion pump does not stall and has constant pumping speed, m olecular flow 

conditions must be maintained. Thus, for the following calculation, m olecular flow 

conditions are assumed. A guide to the maximum pressure, where m olecular flow 

conditions hold, is when the free path of the molecules -  the tube diameter. For a pipe 

of *111 mm the pressure (P) must satisfy the inequality: P< 5 x 10 4 torr.

The dimensions of the neutral beam source are shown in figure 4.3. The bend 

in the pipe can be ignored and the length of the pipe along the centre line (I) o f the pipe 

is used In equations for a straight pipe (of equivalent dimensions).
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Comparison of the pumping speed of the naked diffusion pump (DPSm) « f t *  the pumping

speed of the diffusion pump and the arm (*rmSm) indicates a significant reduction. The

total speed armSm is just 110 I.**1 compared to DPSm -  300 I.S'1 for air. This value

holds provided that the orifice at the top of the arm  is completely unobstructed. In

practice this molecular pumping speed for air for the stack is not the quantity

available, because the conductance of the turret is not infinite. The orifice is -  50%

obstructed at the throat, when the mounting support Is loaded in the absence of the

stagnation chamber. Thus, combined pumping speed is estimated to be 55 l.s '1. When

the valve, stagnation chamber and skimmers are all mounted in the turret then the 
rtdtACi.4 hi lts$ fH **

pumping speed isAsignificantly reduood to beiew 55 l.s-1. The turret is approximately 

1/3 filled by irregular shaped equipment. A final complication is that the initial pulse 

is fired in a direction perpendicular to the pumping orifice. If these problems are 

considered in the analysis, then it must be conceded that the actual pumping speed of 

the full system is much less than 55 l.s '1 and that it Is also incalculable.

The throughput of a system in the steady state can be equated at each of the end 

of the pipe. The throughput (Q) is given by:

[69]

Q -  SlPl

Sj -  the pumping speed at the point I, P| -  the pressure at the point I.

Hence, the actual pumping speed of the system could be determined experimentally 

using a calibrated leak, but this has not been done to date.

The pump-out time constant is of interest when using a pulsed beam source, 

because the system is not in a steady state. The high transient gas load deposited into 

the turret must be pumped away before the next pulse is fired. Qentry writes the 

background pressure as a sum of exponential decays 194. In his method, the time- 

dependence of the background signal is recognised. This limits the repetition rate of 

the valve, and In combination with the duty factor, limits the rate of data collection for
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valves delivering short pulses. Such a determination is important if the system is run 

at a gas load close to stalling the diffusion pump, otherwise the concept of pump out 

time constant can be used to select a suitable repetition rate experimentally.

Development of a simple motor valve

A design of pulsed neutral beam valve had already been chosen at the outset of 

this project. A prototype valve, from the design of Qorry and coworkers 199, was 

completed within the first three months of this project. The performance of the 

prototype valve was poor compared with the performance data quoted in the literature 

(see column 5 of table 4.1). The following section describes briefly some specific 

problems encountered and their solutions. Some of the data described here were 

recorded during a visit to the University of Manchester. Dr P. Gorry's cooperation in a 

visit to his laboratory is gratefully acknowledged.

Prea mp l i  fica  tio n

The pulse from the valve was detected using a fast response Bayard-Alpert type 

Ion gauge. The Ionised portion of the pulse was collected on the central electrode of the 

gauge and was pre-amplified for display on an oscilloscope. Initially the detected 

signal from the ionised gas pulse was preamplified using a circuit based on the design 

o f Gentry and Giese 198. That circuit gave poor electronic stability: the circuit easily 

broke into oscillation. No good signals were measured using this preamplifier and so it 

was replaced with a design based on that of Keyser ef al. See figure 2.13 for the 

circuit diagram.

Magnetic flux

The measured flux of the original, naked magnet was 0.23 T. This value was 

found to be almost V j  reduced from the batch average of 0.32 T quoted by the 

manufacturer. This magnet was remagnetised and soft iron pole pieces added to
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concentrate the flux in the region o f the ribbon. The magnetic field strength was 

remeasured after these modifications to be 0.6 T. Gorry quotes a magnetic field 

strength of 1 T in his original paper. This value was based on geometric considerations 

and overestimated the flux by some 25-33 %. The most concentrated magnetic field 

measured 0.9 T between pole pieces was designed to give a rise to a field much larger 

than IT . Subsequent magnets have been developed, with pole pieces, to generate a 

measured field of 1.2 T in this work.

Pulsed source control unit

Consider the pulses shown in figure 4.4. This figure shows the current pulse 

output from the PSCU. These pulses are the electronic drive signals from the different 

pulsed source control units. The relative maximum current pulse measured was -  

x10 as large for the Manchester PSCU. In addition the pulse shapes were different. 

The fast switch off thyristor was changed, and the charge recovering diode and the 

inductor were removed from the circuit In the Warwick PSCU. Gorry's unit also 

incorporated paper oil capacitors obtained from an old television. The half life for 

discharge of the fastest modem polypropene capacitors used in the Warwick PSCU is 

less the speed of the paper oil capacitors. Such capacitors are no longer commercially 

available.

Nozzle

A deposit underneath the hole was observed consisting of a white/ pale green 

oompound. This deposit was asymmetric indicating that the beam expansion was not 

axisymmetric. A subsequent, more detailed inspection o f the nozzle, indicated a second 

small deposit on the edge of the nozzle. In the absence of further evidence this may be 

consistent with an emission of Cu particles from the ribbon during transient heating. 

Old ribbons become much brittler and lose their cupric lustre. These observations are 

also consistent with the proposed copper atom emission, however, direct evidence, as 

might be gained from a surface analysis of the ribbon, has not been collected.
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FIGURE 4 .4 : A SCHEMATIC REPRESENTATION OF THE RELATIVE PULSE 
SHAPES AND PULSE HEIGHTS. BETWEEN THE PSCU OF QORRY 
AND THE ORIGINAL PSCU OF WARWICK. AT THE TIME OF A 
VISIT TO GORRVS LABORATORY IN MANCHESTER.



The le t test was designed to quantify the deviation of the effluent jet from the 

axis desired. The deviation of the water jet correlated strongly with the lobe of the 

deposit. By constructing the valve in its pressure box and repeating the experiment it 

was shown that the reverse jet was diametrically opposite the lobe of the deposit. 

Repeating the measurement with a forward jet produced a deviation in the same 

direction as the deposit lobe and o f the secondary deposit. Example results are drawn 

in figure 4.5.

This jet test was used as the preliminary test to examine the quality of new

nozzles. In all. eight further nozzles were constructed. Two of these provided a

satisfactory jet test. One of these was fabricated using a spark erosion method. The

addition of the silastic silicone sealant to this nozzle, however, altered the water jet 
fo o r» ,* ! A lt'»Ky«»l*nc wvWci* A a h c  au

performance. The silicone sealant ie euppiiod m a owepoooien ef glacial aeetie aeid.
«Uu'1'W  C t i r .
The silicone does not seem to be dissolved by any solvent, including glacial acetic acid, 

after it has set. Silicone which adheres to the textured sides of the nozzle orifice, 

formed in the spark erosion process, cannot easily be removed by mechanical methods. 

Another acceptable nozzle was formed by drilling with high speed cobalt drills. The 

dominant problem after successful manufacture has been keeping the orifice clear of 

obstruction. Acceptable performance was maintained by safeguarding the nozzle when 

applying the sMioone and by using painstaking cleaning procedures.

The performance of the valve improved following these modifications, pulses 

were obtained of -  60 us FWHM. Although the performance did not match even that of 

the Gorry s minimum pulseAthe results were encouraging.

A New Valve Body

The prototype valve designed by Kelly, was not suitable for installation into the 

main apparatus for these reasons:

1 It was not possible to fit the valve into the stagnation volume without 

dismantling it ( ♦ *
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2 The base plate and stagnation box had several holes in sealed only with screw 

threads.

3 There was insufficient adjustment for the pulsed beam, because the stagnation 

volume was too large.

4 The skimmers could not be aligned reliably.

A new valve was designed to remove or minimise these problems. Particular 

care was taken to ensure that the nozzle and skimmers would be coaxial and easy to 

construct. The valve is shown in plate 2, and an exploded view of the valve is shown in 

figure 4.2: the design sheets are in appendix 2.

Some of the dimensions of the prototype valve were retained in the new design, 

so that some of the original parts could be used: thus reducing the construction time. 

The parts which were used again were the jaws and jaw  supports. It was thought that 

these had little effect on the pulse performance, but later in the development the slack 

fit of the jaws was made tighter by silver soldering on to the metal and back machining. 

It was also found that the grip of the jaws on the ribbon had a small effect on the pulse. 

Superior performance was obtained using ribbons trapped between the jaws when 

using a PEEK lower mandible and a 1 mm glass fibre impregnated viton upper 

mandible. The length of the electrical connections in the main equipment was 

minimised and the leads on the test cell inductance matched, to make the conditions of 

the test cell set up transferrable fo -H ie  « a m  «YYMtrWuj.

The new valve, turret and skimmers alignment took -  1 year to construct. The 

modifications to the original design were made on empirical grounds. The ribbon 

carrier was made to fit rigidly into the base plate fixing the hole concentrically. The 

length of the aperture was reduced to Improve the speed of the expansion. Both of the 

modifications increased the complexity of the ribbon carrier adding to the cost and 

construction time. The design is considered below.
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Geometric considerations of the design specifications

In the following sections the new valve body is evaluated.

Nozzle

A cross section of the nozzle is drawn in figure 4.6. Using the shock structure

of a free jet, it is possible to assess the contribution of the walls to background

molecules in the source. It was assumed that the gas jet was unaffected by the walls of

the nozzle down stream, if they were recessed by a large enough distance. This
netmeol v

empirical reasoning, used in the design of the new nozzle is valid, but is not^strictly 

valid for the actual construction. From the Prandtl-Meyer equation (equation (64]), 

valid for a continuum flow, a free jet accelerating from v -  0 —► •• sweeps out an 

angle of 130.4° from the beam axis. Thus, for true vortex formation the nozzle must 

be acutely angled with a total included angle at the tip of no more than 98°.

Using a (cos e)*angular distribution estimated from the peaking factors of 

Beijerinck and Verster 21 ®, 6% of the total mass flow could be reflected from the down 

stream walls of the nozzle. This estimate is given for the configuration and dimensions 

shown in figure 4.6. That is. 6% of the molecules leaving the source have Initial 

angles, which in the absence of further molecular collisions, would lead to a collision 

with the down stream nozzle walls.

If a transient shock structure is assumed to be established during the expansion 

then several angles can be calculated. The position of the Mach disc is given by the 

equation:

[70 ]
1
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The barrel shock wave has a maximum diameter of -  0.75 xm between 0.5 and 0.75 of 

the distance !o the Mach disc 19S. The results are independent of the stagnation 

pressure, because the position and size of the Mach disc scale identically with 

pressure. Table 4.2 illustrates this point with sample calculations o f the angles a.fi.y 

using a value o f 0.67 xm for de-

The barrel shock wave is a dense region of gas and can be formed completely 

within the confines of the down-stream nozzle wall. The barrel shock wave may serve 

to shield the overexpanded portion of the beam from the molecules reflected from the 

nozzle walls out of the under expanded portion of the gas pulse. The presence of solid 

objects down stream of the nozzle may cause a deterioration of the nozzle performance. 

Most pulsed valves have a downstream portion which blocks rectilinear trajectories in 

part of the forward hemisphere (2n solid angle). The effect o f this portion may only 

be to limit the terminal Mach number of the nozzle as in a Laval nozzle.

Skimmers and turret

The terminal velocity of a beam expanded from a stagnation temperature o f 298

K, may be as large as 730 m.s*1 for O2 . At this velocity a beam of 100 ps duration

(full width a t base) would be -  73 mm in length. The number density o f the

background molecules, through which the beam passes, is constant over the duration of

the pulse provided that the shortest path of a molecule deflected out of the beam, and

then back into it, requires less than 100 ps to complete. For any number of elastic
(M U  M M

reflections th is  must be 73 mm per surface encountered. The volume of the turret has 

been maxim ised with this effect in mind. The mounting plates for the skimmers, 

however, o ffe r a shorter path than the minimum suggested In the previous argument 

and allow almost direct scattering back into the beam. These plates are necessary for 

the dynamic differential pumping o f the source and so they can not be removed. It is 

not currently possible to cryopump the skimmer plates.

In a low  density region the effect of the skimmer orifice can be assessed by a 

simple consideration alone. Molecules from the beam Incident on the annular orifice of
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the skimmer are reflected according to the co s ine  distribution around the angle of 

specular reflection. In such a case -  49% of the scattered beam would be expected to 

be reflected directly into the path of the on com ing beam. If the the magnitude o f the 

solid angle occupied by the skimmer orifice edge  is known the number o f beam 

molecules reflected into the beam can be determined from the intensity, usually quoted 

in units of s r 1.s '1. Even from this simple ana lysis the minimisation of the skimmer 

wall thickness at the intercepting orifice can be seen. In the presence of a high density 

of gas the role of the skimmer is even more critica l. An oblique shock wave from the 

edge of the intercepting orifice is obtained. The cause of the shock is the change of 

direction in the gas which must occur causing further expansion. The expanding gas is 

again subject to the Prandtl-Meyer equation. This shock wave will detach from the end 

of the skimmer if the orifice is blunt. This m inim ises the angle through which the gas 

must turn reducing the work done. The high d ensity  region of the shock is made 

thicker and is brought forward into the path o f the  oncoming beam. This effect can 

cause severe attenuation of the beam.

An estimate of the full width of the beam at the crossing region can be made 

using geometric considerations. This estimate in m ade by considering two skimmers of 

1 and 2 mm orifices placed at 15 and 30 mm from  the nozzle aperture respectively. 

Laminar flow along rectilinear streamlines is assum ed. The beam spread projected on 

to a distant plane is then given by:

(711
dx -  dN + 2xCr cos 6

0 -  tan 1 V  dN
2 x .

dx -  diameter of the beam at the crossing region, Xcr -  distance to the crossing 

region, dN -  nozzle diameter, dt  -  skimmer o rifice  diameter, xB -  distance to the 

skimmer orifice.
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The flow is not straight, however, and the beam expands after the  final aperture due to 

the contribution of the perpendicular velocity of the beam. In a  normal expansion the 

so called perpendicular temperature, characterised by an energy distribution 

perpendicular to the axis, continues to cool throughout the expansion. In practice the 

first skimmer provides efficient quenching of the expansion, decreasing the ratio of 

velocity to the local speed of sound, perpendicular to the axis o f the  expansion.

Loss calculations

Attenuation of the neutral beam is caused by scattering by molecules in the 

background gas. and by direct interference from the skimmers. The contribution to 

the attenuation from the background gas can be calculated from  the Lambert-Beer 

equation. This can be written in terms of the pressure in the  background of the 

expansion chamber as:

I -  beam flux at pressure p, l0 -  beam flux if the pressure p  were zero, p -  

chamber pressure, o  -  soft sphere cross section for collision, I -  path length, k -  

Boltzmann constant, T -  temperature of the background gas (where applicable).

For a turret pressures of 5 x 10'4 mbar (5 x 10'2 Pa) and 1 x 10 ‘3 mbar (1 0 -1 

Pa), at T -  293, o  -  2 x 10*1® m2. and I -  6 x 10 2 m the beam is reduced from lQ to 

86% and 74% respectively.

Performance

During much of the development of the valve no method was available to store 

the satisfactory or interesting pulse wave forms. The quantita tive  work in this 

chapter has been performed using a limited amount of data.
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Consider figure 4.7, it shows a Polaroid photograph of -  4500 pulses. The 

pulse measures 60 ps at FWHM, and indicates the reproducibility of the pulses. Some 

of the contribution to the line width is caused by electrical interference. The 

reproducibility o f the peak height is estimated to be better than 8.5%, based on the 

variation in peak height from a fixed point on the base line.

Figure 4.8a shows a sim ilar pulse, recorded using the DSA 524 A and 

oscilloscope. The wave form is an average of 256 pulses. Note the similarity in form 

between this pulse and the photographed pulse, indicating equivalent operation. A 

different type o f pulse is shown in figure 4.8b. There is a second discreet maximum in 

this wave form, which is from the first bounce of the pulse. This is behaviour is 

typical in the valve if the ribbon is not set up correctly. There are precedents where 

four or more bounces are observed, and it is possible, under some conditions, to 

generate a single pulse in the position of the first bounce. These conditions are 

normally unstable leading to a reduction in performance and reproducibility with 

time. Once some proficiency in constructing the valve was gained, it was possib le to 

avoid the formation of more than three pulses.

The figure 4.9 depicts a plot of background pressure versus pulse width 

(driving voltage). This plot is referred to as ‘ the opening function o f the valve” . The 

salient features of the plot are:

1 The decrease in background pressure tor an increase in pulse width, below  the 

threshold for opening the valve.

2 The plateau region between 60 and 80 % of the maximum pulse width.

3 The linear increase of the background pressure with pulse width, beyond the 

bursting point.

There are several other observations regarding the performance of the valve. 

There is quite a strong variation In performance associated with the repetition rate. At 

low rep. rates a larger pulse width is required to open the valve. At high rep. rates 

there appear to be favourable frequencies for the desired operation. A prominent 

bounce can be minimised by picking out these natural frequencies. In the case ot
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operating the valve at high gas loads then strange peak shapes can be observed. This 

happens when the sum of the AC and the DC components of the pulse exceed the line 

voltages of the operational amplifier and the signal output on the oscilloscope clips.

The pulsed valve has also been tested in situ. A pulse has been observed to

expand across the vacuum chamber. As expected, this pulse is spread out by the time 
A

of flight of components in the be^m of different velocities. When the skimmers 

assembly was added, the pulse appeared to be quenched. An attempt was made to 

measure theAhalf width of the pulse. The results seem to indicate a homogeneous 

central portion of the pulse: » 30 cm broad at -  40 cm from the source.

Model for the pulsed beam shutter envelope

These sections include a full development of the biased harmonic oscillator 

model, in an attempt to produce a formula for the calculation of the non-steady flow 

developing from any pulsed beam source. This model is discussed and compared using 

data from the pulsed beam design.

Preliminary considerations

An analytical expression can be derived to model the shutter function of the 

valve. Consider figure 4.10. We assume, firstly, that the valve orifice has portions a  

and b, which, for the purpose of the model, can be treated separately. The gas flow 

from the valve is moderated by the bottle neck of the conductances of the two portions. 

Consideration of the relative conductances in the viscous flow regime will provide the 

basis of the model.

We assume that the flow is streamlined and laminar throughout the, so called. 

control volume shown in figure 4.10. Under the conditions of fully developed viscous 

flow (Poiseuille flow), it is possible to produce analytical expressions for the 

conductances. The velocity In a Poiseuille flow is related by 196:
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T A B L E  4 .3 : MEASURED AND CALCULATED QUANTITIES IN THE 
DETERMINATION OF THE RIBBON LIFTING FORCE

Quantity Measure E rro r

7 .0  x  1 0 '3 m ± 5 x 10 "4 m

d * 5 .0  x IO "3 m ± 3 x 10*4 m

Bb 0 .9 8  W b m '2 ± 6 x 1 0 '3 W b m "2

B * 0 .3 3  W b m '2 ± S x  1 0 '3 W b m '2

t 6 .6  x 1 0 '* s ± 0.2 x 10 '6 s

Length of section b 

Length of section A 

Magnetic flux across B 

B a  Magnetic flux across A 

t  Time to cross the ribbon

3.76 pF ± 10% discharged into the ribbon and cables.
This is set at the pulse width or driving voltage.

•mis mbk bt f\aMapw fwflt Ilf .
V





[73]
U a Xmax2 -X|2

U -  velocity of Poiseuille flow. Xmax -  maximum distance from a reference point. 

X| -  distance to the point at which the flow is calculated.

From this relation, the flow through a circular tube of radius R and length I can be 

obtained:

174]

B ill

C c -  conductance of a pipe of circular cross-section. R -  p ipe radius, P -  

pressure, I -  pipe length. -  viscosity of the fluid.

The flow is driven by the pressure difference between the ends of the pipe, (P i-P 2 )- 

Similarly the flow between two flat, parallel plates, (in the absence of perturbations 

at the edges), is given by:

(75]
C „ - nwh3 . (Pr P„) 

12lii

Cp -  conductance of a flat plate section, w -  width of the plate, h -  separation of the 

plates. I -  length In the direction of the flow, r) and P as before.

These two functions are plotted in figure 4.11. In a pulse beam experiment, we can 

state that h, the separation of the shutter and valve seat, varies as a function (H(t)) of 

time:
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[76]

h -  H(t)

The value of the pressure drop over the portion b  may also vary in time. In this case, 

under conditions of viscous flow, the time dependent mass flow is related also to the 

pressure. This must be taken into account when calculating the bottle neck ie. the 

smallest conductance. The functional form of H(t) will be discussed later. There is a 

turning point (hmax) in the value of h. depending on the function, H(t). For any value 

of h the relative conductances can be obtained from this graph.

Referring to figure 4.11. following a rupture of the valve seal, the conductance

of the valve follows a second function, this time depending on H(t). The ambient gas 
ak

expands into the vacant space at-the- nearly^the background pressure Pb until the ratio 

Po/Pb exceeds a critical value Q 185:

A further change in the pressure ratio. P<>/Pb- does not affect the effective pressure 

(P#ff) between portions a and b- The stagnation gas is under expanded and cannot move 

into the control volume at a higher pressure. The effective pressure P«t( under the 

valve shutter is given by 185:

This is the minimum effective stagnation pressure of portion b. it .  the valve. The 

conductance of b  is shown In figure 4.11, plotted for this minimum pressure. P .«. and 

for the maximum pressure. P0. The maximum value is set by withdrawing the shutter 

to Infinity when P«ff -  P0. The point of intersection between the lower conductance of

[77 ]

[78]
P c

G
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the portion b  and the portion a  at the relevant value o f h is termed herit- The point,

hCrit. is the first point at which the conductances are equal. The imposed pressure
K -  « 0 -

differences a re J V G  a nd T eff/G for a  and b  respectively.

We make the further assumption that, everything that flows in through a  also 

flows out through b  up to the point at which the lift o f the ribbon becomes hcrjt . 

Beyond this point, the pressure in the stagnation-volume of b  must increase 

asymptotically to the pressure P0. also causing an increase in the conductance of b- 

The functional dependence of the pressure in this volume on h above hc rit can be 

derived. The conductance of the system increases linearly with excess pressure P i .

We define Cc' and Cp' to be the conductances described in equations [74J and 

[75J with the pressure dependence removed. It can be shown that:

[7 9 ]
P  C 'c P°
P ’ C 7 7 7 7 r r >

The behaviour is slightly different when the valve shutter closes. As the

shutter moves from Infinity to the valve seal in a finite time, a small pressure wave is

propagated. Excess pressure over P0 is lost from the sides of the shutter almost 
(»K u iH tr c losing)

isobarlcally. Thus, P*ft -  P0 for h>hCnt^ A method for the calculation of H(t) is 

required. For this we develop the ideas of Gentry and Giese 208.195

An impulsively driven harmonic oscillator

To a first approximation the valve is considered to be a harmonic oscillator 

driven by an Impulsive force. We define two energy terms Ek and Ep for the kinetic 

and potential energies o f the shutter respectively:

[8 0 ]

V
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[B1]
_  2 Ep -  KX

2

m . -  the Inertial mass of the shutter. V , -  shutter velocity. K -  force constant. 

xt  -  displacement.

Under simple harmonic motion these terms interchange freely. The total energy (E j) 

o f  the valve is the given by the relation:

[82]
Et  -  Ek + Ep

Following the initial impulse, the valve shutter is opened by accelerating it 

instantaneously to a velocity. vmax. For undamped oscillation a sinusoidal wave form 

is  induced. The time taken to convert Ek to Ep is:

[83]

T h e  natural period of oscillation (to) is, therefore,:

[84]

- ■ -M *

a nd  the displacement of the the shutter in free oscillation Is:

[85]
X -  xm„  sin

oo
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[86]

x -  xm„  sin 2it■ W

The biased SHO model

A barrie r is present in the valve forming the mechanical seal of the shutter. 

This barrier is  denoted Eb. and can be represented in terms of a biasing function. This 

function can be expressed using an equivalent energy obtained from an apparent seal of 

xH t | as follows:

[87]

E b  “  K ( x seal)

The plot o f natura l period versus displacement is shown in figure 4.12 for the 

unbiased oscillator. The effect of the biasing function on the actual period is shown In 

figure 4.12. The open time of the valve can be treated as a phase angle $ t, of the total 

natural period in the unbiased case by:[88]
<}>, -2jcAt 

t  .

0i -  phase angle of w, the natural period. At -  pulse

Writing a - s ln0  -  x ,/xmax then 0 t  can be shown to be:

[89]
■1 r 2 i4>, -  tan [ 2ad -a  rf 2a (l-a ; ) r  1 

1 (1 -2 ® *) |

Now rearranging the barrier equation [87], xMai can be expressed as:
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FIGURE 4 .12: DIAGRAM TO SHOW THE SIMPLE HARMONIC OSCILLATOR MOOEL 
AND THE EFFECT OF APPLYING A BARRIER OR BIAS.





conserved between these two pans. In this case the two parts can be equated a t the 

maximum displacement:

[9 4 ]

K l (*<>2 .  k 2( x 2)2
2 . 2 .

Ki -  small force constant, K2 -  large force constant.

The shutter has its natural frequency modified In the same way that the phase velocity 

of light changes in media of different refractive Indices. The total natural period then

becomes:

The motion of the valve, however, is not harmonic. The collision with the valve seat is 

inelastic and hence the equation cannot be applied. There is a discontinuity In the wave 

leading to a residual force. It is likely that this is the most prominent and important 

mechanism for dissipating energy. The valve, therefore, has two fundamental 

frequencies associated with it, they are the harmonic frequencies of the biased 

oscillator and the real biased oscillator. The longer of these frequencies may be excited 

by the application of a resonant drive pulse.

There are several possible mechanisms for the dissipation of energy other than 

the collision with the valve seat. A back EMF is Induced by eddy currents opposing the 

motion of the shutter in the permanent magnetic field. This effect probably accounts 

for the difference in the ultimate speed between the Gentry and Giese valve and that of 

Gorry. A modification of the forces in the shutter function can be expected from this 

phenomenon. Energy Is also dissipated in the valve as heat and sound, caused by the 

resistive work done.

[95 ]
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Bursting force on the ribbon

In order to find the impulsive driving force used to open the shutter, we define 

the following variables:

F -  force; v -  average drift velocity; V -  charging voltage; Bj -  local magnetic 

flux; Q -  total charge; C -  discharged capacitance; dj -  length of the conductor over 

which Bj acts; t -  time taken for the charge to cross d; e -  electronic charge; n -  total 

number of electrons. I -  current.

Consider figure 4.13a. The force experienced by m oving charge (e) 

perpendicular to a flux B| is given by:

[96]

F -  Biev
For n electrons this becomes:

[97]

F ■ nBiev.

Alternatively, we can write, ne -  Q (the total charge), giving:

[98]

F -  BiQv

v can be e.pressed as tha cVt, and ths aquation becomes

[99]
F -  B|Qd,

T

Now. CV -  It -Q . and wa can aubslltuta to gtva aimer
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FIGURE 4 .13: DIAGRAM SHOWING A) THE RELATIONSHIP OF FORCES ACTING
ON THE RIBBON. B) THE SECTIONS DRAWN FOR THE MAGNETIC 
FIELD IN A CALCULATION (SEE TEXT)



[100]

[101]

F -  B,CVd,
T ,

or F -  Bjldi

Consider Figure 4.13a. We use F -  CVBjd/t. assuming that the magnetic flux outside
fa-•*■■**>

a.b.c is negligible^ We obtain a sum of three components, but since da -  dc. this can be

written as:

[102]

or alternatively:

[103]

F -  l(Bbdb + 2Bada)

if it is simple and convenient to measure the current.

In order to make a first approximate determination for the magnitude of F, we 

can calculate the upper bound using equation [102] and neglecting the apparent 

overshoot or negative capacitance. The total capacitance of the discharge is obtained 

from the bank of capacitors in the PSCU (0 x 470 nF). Assuming that:

1 All the 3.76 pF ± 10% capacitance is discharged

2 Fringing magnetic field effects are zero outside the regions specified in figure 

4.13b.

3 The pulse time to cross da. db. dc is the same, and that it is short compared with 

the valve open time, then the pulse Is impulsive. Then we can state that t -  ta, 

tb. tc the full width of the pulse at base.
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Now we can calculate a value for the lifting force (F) from the equation:

[104]

F - C V Bbdb 4 2B.d.j

(fcyc 10+ )
Results are presented in table4.3^ F jo t -  5.8 x 1 0 3 N V 1 ±  14%. The error is 

calculated from:

[105]

The second method of determining the lifting force was made by a measurement 

of the transient current pulse. A standard test resistance o f 0.05 i i  ± 10% was 

wired, in series, to the live side of the valve. The voltage developed across the resistor 

was recorded on Polaroid film using an oscilloscope camera. The voltage was integrated 

and used to calculate the total transient current.

The resistance was minimised so that the current drawn by the test resistor 

would be negligible. However, the time taken for the pulse to cross the resistor may be 

longer than that to cross the ribbon. This affects the value of t used in the calculation. 

Figure 4.14 shows a reproduction of the Polaroid recorded. The pulse area was 

determined by the mass of a cut out section of film assuming constant film density. The 

force was 0.4 N ± 10% for a pulse of 100V ± 5% at a reading of 2.1 on the PSCU 

vernier scale. Note the two calculated values are In the same order of magnitude: the 

value the calculation at 100 V is 0.58 N, this is very encouraging.

Due to the loss mechanisms such as reflection and dissipation of the test 

resistor, we may suggest the 0.4 N value is an upper bound. If instead we consider that 

the value of t may be too large then this value is a lower bound. These two effects are 

probably in part self cancelling. The former capacitance discharge value is a more





rigorous upper bound, but is more useful since the functional dependence on pulse 

width has been derived. This function could be calibrated and then scaled for accuracy.

Forces acting on the ribbon to oppose opening.

Qualitatively we can write all of the forces contributing to the inertia of the 

valve. They are friction, pressure, mechanical force, weight and tension. The friction 

arises from the physical sticking of the ribbon on the silastic. This is expected to be 

small for a relatively cool valve and is neglected. The force exerted by the pressure 

difference across the ribbon gives rise to the pressure term. The mechanical sealing 

force is in part unquantifiable. The ribbon in a well set up valve is usually flat in
-tva. fo rte  a r ,\.og fro ~ \

which case tWe-can be assumed to be zero. The weight of the ribbon is slight and is 

neglected. Finally the tension of the ribbon is normally neglected for the same reason 

as the mechanical force Is neglected. This last assumption may not be good when the 

valve opens, as the ribbon must flex. A component of the force proportional to sine, 

where sine vanishes when e -  0, will try to restore the seal.

From these assumptions we can state that the barrier to be overcome is 

entirely due to the pressure difference across the ribbon.

The barrier energy

The activation  barrier arises from the force exerted by 1 atmosphere of

pressure (approximately 101000 Pa) over the area of contact between the ribbon and

ribbon carrier (5 x 10‘® m 2). The barrier, by this argument, is a fixed value for

each pressure and area. In this case. 1 atm and 5 x 10'® m2, this value is 0.505 N. 
O S -

Thls value may be reduced to 0.5/G, if the valve does not reseal fully after the 

first time of opening. This is a quantitative estimate of the ease with which the valve 

may reopen giving rise to secondary pulses.

v
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Discussion

Mechanisms of loss

We can speculate that there are other vibrational modes in the valve, into 

which energy can flow by dispersive coupling, but which are not actively coupled to 

the opening function. There is also electrical loss caused by changes in the impedance 

at the connections and solder joints. The reflection of the initial drive pulse reduces 

the impulsive drive force, but the electronic reflections are over in a time much too 

short to cause secondary pulses. Matching the impedance of the cables and valve at the 

junctions may offer some reduction in the power requirements.

Frequency dependence of the pulse

Residual energy left in the valve may exceed the energy required to open the 

valve a second time. For this to occur the energy dissipated by the valve must be less 

than the difference between the initial energy and that of the barrier. Bounces are 

observed with many valves. These are mostly due to the mechanical reflection of the 

shutter when the barrier has not been fully re-established. That is, the barrier is 

reduced, meaning that more energy must be dissipated if the valve is not to re-open. 

Observation of bounces is more prevalent in valves where the shutter and valve seat do 

not collide normally.

The model can be used to explain qualitatively some of the observed features of 

the operation o f the valve. Statements concerning the operation under changing 

experimental parameters have already been made. The frequency of the operation 

(rep. rate) is expected to be coupled to the pulse width control and affects the 

performance of the valve, this can be Interpreted as the resonant excitation of the 

underlying biased oscillator fundamental frequency.

Reconsider figure 4.9 showing the opening function. The biased oscillator 

model has the fundamental period is split into unequal, open and closed portions. At a 

current pulse energy less than the threshold required to surmount the barrier, the net

1 16



seal of the valve Improves when a pulse is applied. This explains the initial 

observation o f a decrease in the background pressure of the expansion chamber. 

Increasing the pulse width would lead to a predicted low positive gradient in the 

background pressure as the shutter barely opens. In the plot this region is flat to

within the experimental error. A final true gas burst leads to the rapid increase in the

£ s tr ia e
aokgfeund avorago pressure.

The speed of operation o f the valve can be predicted to be altered by the 

increasing xMai at a constant force constant. This reduction in pulse width is 

associated with a reduction in the maximum throughput of gas possible. Reducing the 

natural frequency of the oscillation, by increasing the force constant o f the valve, at a 

constant xaaa|/xmax, reduces the full width half maximum of the gas pulse measured. 

The cost of this increase is large in the extra power then required to open the valve.

The damping function of the valve appears to be the important criterion in the 

appearance or non-appearance of shutter bounces causing the secondary gas pulses. 

The critical operation of the valve is accounted for by this. The thresholds of many of 

the effects, such as reestablishing the full seal, appear through discontinuous functions. 

Thus, the setting up procedure can not be made into a sort of iterative convergence 

toward the optimum settings.

The deposited substance underneath the nozzle

Considering the beam as a continuum we can examine the Prandtl-Meyer 

equation in more detail. We can write that for an adiabatic, isentroplc, perfect gas the 

angle through which beam molecules are deflected during expansion is given by:

164]
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The Prandtl-Meyer angle for an expansion to M -  8 is 6 -  95.62°. The increase in 

Mach number upon expansion, from zero at the nozzle throat, therefore, must exceed 

M -  8 for the deposit to turn through >90° and thus, to be deposited around the orifice 

exit. This is consistent with the data of Gorry, which was back fitted to an equation of 

Anderson and Fenn 1" .

Secondary pulses

A mechanical reflection of the valve shutter provides a secondary impulse for

the valve to open. The valve will not open, if the energy dissipated during the first half

cycle is sufficient to reduce the force below the threshold for opening the shutter.

Normally the valve dissipates energy at a constant rate, and if bouncing is observed

there must be another mechanism causing the secondary pulse. A bounce is possible if

the energy of the barrier is reduced, or If the reflected impulse is coherent with the

phase of the shutter. The reflected parts of the electronic pulse, formed where the 
H-CocrttJCly on*hch<d,

impedance is ewomotohod are over far too quickly for them to be a realistic possibility. 

A twist in the ribbon provides a plausible mechanism for reducing the barrier 

threshold. The whole of the pressure barrier cannot be established suddenly as Is 

desired, instead, the different parts of the shutter are reflected separately, and the full 

seal is not quite established. An inelastic collision with the valve seat is probably the 

most effective mechanism for dissipation of energy. The efficiency of this process may 

be reduced when the collision of the valve seat and the shutter is not normal and 

sudden. If this were so then twists in the ribbon would be even more critical In 

providing a channel for secondary bounces.

Performance of the model

Figure 4.15 and figure 4.16 show the leading edge of the pulses in figure 4.8 a 

and b plotted against a normalised (sin 6 )3 function (sin6 is directly proportional to h). 

The agreement between the plots is Impressive and supports the analytical form of the 

expression derived in the model. Figure 4.16 b supports the theory since the x-y plot
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of the two curves is s convincing straight line. Disappointingly, it appears that hern 

is not reached in  this valve: this would be indicated by a deviation from  this line. The 

shutter does n o t fully open to provide the terminal gas flow. The pulses shown in 

reference 204 show the expected dependence in the leading edge. That is the pulse does 

not reach a plateau region suddenly, but goes into a region of slower increase, reaching 

the plateau asymptotically.

Prognosis

It Is not possible to calculate the force constant in this va lve empirically as 

with a solenoid va lve or the Gentry and Giese valve. In these designs the shutter is 

sprung and equations are available to calculate the residual force  forming the 

mechanical seal. There must be some measurement made, however, If the force 

constant of the supposed oscillator cannot be calculated. This can be obtained from a 

measurement o f the maximum displacement during free oscillation and in biased 

oscillation, and th e  maximum speed of the valve. A laser reflection experiment timed 

on a fast oscilloscope may give both of these in a single measurement. At least one 

report has appeared in the literature of the measurement of the displacement of a 

shutter using a laser technique.

Pulse trailing edge

The tall o f the pulse has not been discussed in this chapter. Contributions to 

this may be expected from clustered particles in the beam, and from diffusive loss of 

the component o f the beam down stream of the shutter when the expansion is 

terminated. The la tter can be developed from the method of Saenger and Fenn. and the 

former must be analysed experimentally. The experiment to assess the contribution to 

the pulse from slower moving clusters can be investigated by heating the valve for 

expansions of the same stagnation gas. The gases used may be seeded beams and beams 

of pure particles. Helium, for instance, has a very shallow well for formation of a 

dimer and would be  expected to produce the sharpest pulses, even disregarding its
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lower molecular mass. Argon or krypton expansions may show significant longer tails 

due to their higher dimer scaling rates, however, these may not be significant. The use 

of noble gases has the advantage that the specific heat constant must remain constant 

throughout the expansion, elim inating the possibility o f unwanted complicating effects 

such as diabaticity.

Calculation of flow field properties

There is a prospect of calculating the time dependent flow field properties using 

the model shutter function. The calculation can be made in principle, by following a 

procedure of:

1 Calculating the subsonic flo w  velocities and mean free paths as a function of 

time at the nozzle exit.

2 Scaling the expected number o f collisions to the shutter function.

3 A quitting surface position is chosen and the collision number expectancy 

calculated for each section o f the expansion.

4 A minimum threshold is chosen for the number o f collisions required for a 

continuum analysis of beam properties. For these sections the properties can 

be calculated allowing a function of two independent variables to be described 

P(Ny.Pv)- This function is all that is required to predict the time of flight 

envelope.

5 Remaining velocities not described by the continuum can be predicted from a 

thermal spread of velocities around the subsonic velocities, because these have 

not reached fully developed flow.

Measurement of the distribution of velocities function

A measurement of the velocities at various points in the pulse can also be made 

If the beam contains a suitable chromophore then the LIF doppler profiles of the beam 

measured in the direction of the flow, with perpendicular excitation, can be measured. 

The laser beam pulse duration must be  kept short and then the sections of the beam can
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be investigated by scanning the excitation pulse through the gas pulse by varying the 

delay.

Quitting surface and sudden freeze

The sudden freeze model may be applied in considering non-steady flow in the 

pulsed beam expansions. Each section of the shutter function will have a characteristic 

quitting surface at specific, but different d is tance  from the source. The quitting 

surface position is determined from the index parameters: the number density (N(t)) 

of the shutter function, the local mean free path and the exit velocity of the aperture. 

The average number of collisions required to change the speed ratio by a certain 

amount can be applied for each portion of the beam between the orifice of the valve and 

the skimmer. Ultimately there are either insufficient collisions for a continuum 

description to be valid or the skimmer is reached before the quitting surface, or the 

quitting surface is reached freezing the flow fie ld  properties upstream (molecular 

flo w ).

We note that the position of the qu itting  surface varies with 1/no and 

approaches infinity as no is reduced to zero. The speed ratio should minimise at the 

maximum position of no- If a quasi-1-dimensional momentum equation is applied to
C a rte l

the Jest volume (figure 4.10) then we would predict, for a continuum gas, that the exit 

velocity is minimised for the nozzle when the m ass flow rate is greatest. This effect 

would partially offset the \p6 movement of the quitting surface.

Conclusion

A valve has been developed and incorporated into a crossed beam apparatus. 

There are some problems which remain outstanding. A pulse has not been observed in 

the main apparatus with the skimmers in place. This suggests that the skimmers need 

remaking, since much effort has been directed towards ensuring that the expansion is 

axisymmetric. The minimum pulse width of the valve has been measured at ca. 60 us
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»■* J w a K**
FWHM. This is significantly longer than pulses quoted as. no longer^than 45 p s .CFmjmm^ 

recorded on a similar valve 199 The difference can be attributed to differences in the 

force constants of the valves, operating as harmonic oscillators.

A model has been derived which explains qualitatively, all the observations and 

effects of the valve. The form of the critical dependence on the position of the shutter 

above the valve seat has been tested and the results are encouraging. The salient 

features o f the operation of the valve can be summarised:

1 The valve seal improves below the opening threshold, because the biased 

oscillator spends longer during a period directing the impulse at the valve seat.

2 There is a complicated dependence of the valve parameters on pulse repetition 

frequency, caused by the excitation of resonant frequencies in the valve.

3 The secondary pulses are caused by bouncing the shutter. The condition for this 

to occur is that the residual energy of the valve is la rger than the energy 

required to open the shutter. This condition is met when the full seal of the 

valve is not suddenly reestablished. Examples of conditions under which this 

may occur are if the ribbon is twisted or the forces on the ribbon are not 

centralised.

4 Independent evidence is provided that some of the pan ic les in the beam reach 

Mach 8 or better.

5 The nascent number density forming the gas pulse at TO F -  0. depends on the 

ratio of two conductances in the viscous regime. This function is expected to 

follow a(sln9)3 dependence up to a critical opening point. This point represents 

the point at which the portion of the aperture, lim iting the gas flow, changes 

from a  to fe-

6 The trailing edge of the valve has the same dependence as the leading edge, 

reflected through the peak maximum. There is an over lapping function causing 

the longer tail which has not been quantified. This function may be due to both 

clustered molecules undergoing velocity slip and the collapse of the expansion.
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Methods have been described In which specific further investigations for the 

model can be made. These investigations are anticipated to make the model more useful 

quantitatively. A plausible methodology has also been suggested for the development of 

these ideas to the calculation of the time dependence of non-steady flows.
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This thesis sets out a more rigorous and fundamental approach to the 

understanding o f an instruments systematic errors. The contents of this thesis make 

the study o f chemical reactions using this apparatus a possibility. A great deal of 

painstaking ground work has been made and written down such that a student, with 

suitable technical support, could begin at the point where this thesis stops. The 

separate parts of the instrument have been shown to work Individually under 

carefully controlled conditions.

Prognosis for the neutral beam model

It is hoped that the model for the neutral beam shutter function will be of 

significant use to those requiring the calculated properties of neutral beams. The 

shutter function can be used in the deconvolution of time of flight spectra from 

pulsed beam sources and may have application to the calculation of the time dependent 

flow field properties.

The model requires some further development and testing, but the initial 

results are very promising. In order to make full use of these Ideas, in the absence 

of a continuation student, collaboration with an established molecular beam group is 

desirable.

Prognosis on chemistry

A programme for the study of several chemical reactions was outlined at the 

beginning of th is project. These reactions are mentioned in the alms section of 

chapter 1 of this thesis. It has not been possible to study any of these systems due to 

the periods o f instrumental development. This development was necessary and has 

provided some interesting and useful knowledge. There are still, however, several 

reactions still left open to investigation. The crossed beam reactions of four centre 

two body systems have been shown, in this laboratory, to have interesting features. 

CS* ♦ O2. NO and SO would be interesting to compare to the work on CO* ♦ O2 and NO.

Summary o f positive aspects of this work
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The performance of this instrument will always be limited by the choice o f a 

QMF in the ion beam source. The fundamental flaw In using such a design has been 

exposed in this study. The problems encountered in producing a monoenergetic beam 

of reactant ions, caused by the fringing field of the QMF, does not necessarily mean 

that the instrument Is useless. The technology required to make high resolution 

kinetic energy experiments possible cannot be installed into this apparatus. The 

instrument is dated by its design, and the choice of the geometry of the instrument 

even limits the choice of alternative sources. It is possible that a significant 

contribution to modern research could be made using the instrument in pioneering 

new areas of research interest. Atom exchange reactions of double charged ions 

would be interesting for example, and might be studied using a modified version of 

the present instrument. The use of a thermionic metal ion source would also allow a 

new range of simple reactions to be studied.

A study of the chemical reactions of double charged cations would need to be 

conducted in parallel to complementary theoretical studies. These reactions tend to 

have a large SET cross sections, which might be expected to dominate the reactivity. 

Thus, the theoretical studies would be useful to indicate favourable cases. In any 

usable case, It can be specified that the substrate must be small enough for the 

dynamics to be tractable, and that the reaction of interest must have a measurably 

large cross section. In a parallel investigation, the choice of reactant is also 

constrained by the complexity of the calculations required to produce accurate gb 

Initio surfaces. Systems containing just four or five centres require considerable 

computer time. Small species of moderate complexity, therefore, may offer the best 

prospect of novel reactions. CS24“* and N0 2 * *  are relatively stable and easy to 

obtain, and may fulfil the criteria.
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Modifications were suggested In chapter 3, based on experimental and 

simulation studies, to limit the effects of the RF on the primary ions' energy. These 

modifications remain as further work and have been summarised below for 

completeness.

1 The electron Impact ion source does not give satisfactory operation. The 

Bayard-Alpert type source should be exchanged eg. for a more conventional 

crossed electron beam El ion source. A replacement source, of whatever type, 

should include the following specifications. Electrons are collected away from 

the ion flight path. The electric field gradient over the ionisation region is 

small. The source parameters are decoupled giving independent operation in 

altering the ion energy etc.

2 The ions formed by the ion source should be injected paraxially into a Brubaker 

lens. The Brubaker lens will improve the transmission of higher mass ions and 

reduce the quadrupole fringing field.

3 The exit of the quadrupole should be field and angle stopped to reduce the 

transmitted beam to more first order type trajectories.

4 The octopole should have a new spacer built designed so that It is a push fit into 

the quadrupole support. It should also hold the angle and field stop apertures for 

the quadrupole exit.

5 The detector should also contain a Brubaker lens. The entrance for this lens 

should be flush with the exit of the RPD energy analyser.

6 The three lens RPD energy analyser could be remachined to reduce the curvature 

of field towards the margins. To avoid mechanical fabrication work the voltages 

can be ganged to maintain the focussing point of the threshold energy. This 

modification reduces the spherical aberration.

The instrument can be used with either a multicapillary array or with a 

pulsed valve, after a consistent and satisfactory ion beam has been achieved. There 

are some outstanding modifications required in either case. For use with a

Summary of conclusions (further work)
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multicapillary array, provision should be made to modulate the beam. This 

modulation should be done inside the neutral beam turret. For use with the current 

pulsed valve three problems must be overcome. They are:

1 The stray magnetic field at the crossing region should be reduced eg. by magnetic 

shielding.

2 Blunt skimmers. The new design should incorporate a sharp edged orifice and 

have highly polished surfaces. Electroformed skimmers of this specification are 

commercially available in a range of orifice sizes, and they have the optimum, 

curved conical-section geometry.

3 The problem of ensuring that the expansion is axisymmetric.

I recommend that the simple motor valve be discarded. The commercial 

piezoelectric valve (beam dynamics) based on the design of Cross and Valentini offers 

several significant advantages.

1 The valve is less difficult to set up and can be adjusted in situ using pressurised 

helium.

2 The valve does not contain a magnet, thus stray magnetic fields are unimportant.

3 Nozzles are relatively cheaper and are available j t i a range of laser drilled 

orifices of different sizes.

4 The piezoelectric valve Is voltage, not current driven and so inductance effects 

are less Important.

5 Use of smaller nozzles at a given stagnation pressure reduces the gas load on the 

system. The repetition rate, which Is important because it will be the limiting 

factor in data acquisition in pulsed experiments, could then be Increased.

Final comments

In order to answer the questions that current chemical physics research and 

that of the next decade will supply, a new instrument must be built. Good design 

would make this instrument versatile. A modular approach to design allows the 

replacement of parts when they become obsolete. For instance, external beam
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sources, allow more flexibility In the pumping plant. The Ion beam optics should be 

constructed from sectors. A reverse geometry oommerdal mass spectrometer could 

be used as the ion beam source. Incorporation of a fast pumping plant would enable 

the use o f a supersonic neutral beam source. Many laboratories using high gas load 

sources, use an additional dump pump to collect the waste neutral beam from the 

reaction chamber. This extension of the normal pumping plant allows the use of 

pulses significantly longer than the dimension of the instrument to be used without 

an undesirable rise in the background partial pressure.
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Appendix 2

Design Drawings

C ontents in o rder:

Pulsed beam nozzle

Pulsed beam base plate

Pulsed beam p illa rs

Pulsed beam c lam p ing  jaw s

Magnet po le  p ieces

C ap illa ry  a rray  base plate

Pulsed beam box b lanking  flange

S ta gna tion  p ressu re  cham ber

S ta g n a tio n  cham ber ad jus te r

S kim m ers  a ssem b ly  loca tion  ring

Skim m ers assem b ly  loca tion  ring  s u p p o rt p late No1

Skim m ers assem b ly  skim m ers s u pp o rt p la te  No2

Skim m ers assem b ly  skim m ers s u pp o rt p la te  No3

Skim m ers assem b ly  spacing rods

Skim m ers and sk im m ers ring  c o n s tru c tio n

Three part tu rre t - top

Three part tu r re t - bottom

Three part tu r re t - fron t

Test r ig  layo u t

Base fla ng e  fo r  the  vacuum  te s t-c e ll, FIQ flange 

th e  vacuum  te s t-c e ll 

Test r ig  vacuum  cell

C ondensab le  va po u rs  trap  (fo r In le t tro lle y )
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SKIMMERS ASSEMBLY 
LOCATION RING 

SCALE x8
ALL DIMENSIONS IN mm 

MATERIAL: STEEL, NON-MAG 

STAINLESS TYPE 316L 

JR TRAINOR T1/0/88 
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FITTING INTO THE 

"SKIMMERS BASE PLATE"
b - MACHINE TO AN 

EXACT FIT TO THE 
' PULSED BEAM BASE 
PLATE“
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Appendix 3

Computer programs

These programs have been written in Applesoft 
basic and DOS 3.3. Source machine code routines 

are called from two libraries:

1. EG&G Ortec Apple lle/7100/01A data transfer 
routines. 2. Applesoft library routines.
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