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Abstract 

Cyber crime is a significant threat to modern society that will continue to grow as 

technology is integrated further into our lives. Cyber attackers can exploit 

vulnerabilities to access computing systems and propagate malware. Of growing 

concern is the use of multiple exploits across layers of the software stack, plus faster 

criminal response times to newly disclosed vulnerabilities creating surges in attacks 

before signature-based malware protection can take effect. The wide scale adoption 

of few software systems fuels the problem, allowing identical vulnerabilities to be 

exploited across networks to maximise infection in a single attack. This requires new 

perspectives to tackle the threat. Biodiversity is critical in the functioning of healthy 

ecosystems. Whilst the idea of diversity benefiting computer security is not new, 

there are still gaps in understanding its advantages. 

A mathematical and an agent-based model have been developed using the 

ecosystem as a framework. Biodiversity is generated by individualised software 

stacks defined as genotypes with multiple loci. The models allow the protection 

offered by diversity to be quantified for ad hoc networks which are expected to 

become prevalent in the future by specifying how much diversity is needed to 

tolerate or mitigate two abstract representations of malware encompassing different 

ways multiple exploits target software stack layers. Outputs include the key 

components of ecosystem stability: resistance and resilience. Results show that 

diversity by itself can reduce susceptibility, increase resistance, and increase the 

time taken for malware to spread, thereby allowing networks to tolerate malware 

and maintain Quality of Service. When dynamic diversity is used as part of a multi-

layered defence strategy with additional mechanisms such as blacklisting, 

virtualisation, and recovery through patching and signature based protection, 

diversity becomes more effective since the power of dynamic software updating can 

be utilised to mitigate attacks whilst maintaining network operations. 
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1 Introduction 

Chapter 1 

Introduction 

This chapter establishes the motivation, hypothesis, research contributions, and 

structure for the work presented within this thesis. The motivation and rationale 

behind the consideration of biodiversity in the context of cyber security stems from 

both a) the impact that wide-scale cyber attacks such as those caused by malware 

can have when systems use the same non-diverse software or underlying 

technology, and b) the benefit biodiversity can have within a natural ecosystem in 

providing resistance against attack from disease and pests.  

Included is an introduction to the concept of biodiversity for cyber security through 

several motivating factors. These include an ever-changing cyber threat landscape 

fuelled by advancements in technology, risks associated with computing 

monocultures, and the range of benefits provided by biodiversity within natural 

systems. Gaps in current research knowledge are highlighted together with an 

emphasis on wireless mobile computing such as ad hoc networks which are 

predicted to become more prevalent in the future. Understanding the benefits and 

mechanisms of biodiversity underlying natural systems and applying them to this 

digital wireless domain may enhance cyber security against such malware attacks. 
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1.1 Motivation 

1.1.1 The Changing Cyber Threat Landscape 

One of the biggest security problems modern society currently faces is the 

growing threat from cyber attacks. Cybercrime is estimated to cost the global 

economy US$575 billion annually [4], and maintaining an adequate level of security 

is a co-evolving process between improved defensive techniques and ever more 

sophisticated attack methods. Advancements in technology fuel this process but 

also simultaneously change the threat landscape. The world purchased more than 

1.4 billion smartphones in 2015 [5] and it is predicted there will be 50 to 200 billion 

total connected devices by 2020 [6] [7] [8]. This has the potential for them to be 

integrated into every aspect of our lives creating an attractive target for online 

criminals. Cyber attackers exploit vulnerabilities within the software, firmware or 

underlying fabric of the devices, as well as the user to gain access to important data, 

deny the use of services, spy, control systems, spread viruses, and sometimes cause 

irreversible damage.  Worryingly it has been estimated that up to 70% of attacks go 

undetected [4]. Most software programs have vulnerabilities and since it is difficult 

to remove all vulnerabilities, the problem is likely to become worse as the use of 

wireless supported mobile computing and the Internet of Things (IoT) continues to 

grow and change the threat landscape. 

1.1.2 The Risks of Computing Monocultures 

The increased use of computing devices and wide scale adoption of few 

operating systems (OS) and common protocols continues to pose a significant 

threat. Computing monocultures refers to the widespread use of the same 
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hardware, firmware, or software. Although different patching habits of individuals 

can create some level of diversity between devices using the same firmware or 

software, the diversity is restricted to the locality and functionality of the patch. 

Similarly different versions of the same software, for example different versions of 

operating systems, may utilise much of the same underlying libraries. Therefore 

large commonality of code described in this way adds to the monoculture 

argument. For example of the 1.4 billion smartphones purchased in 2015 98 percent 

were dominated by two operating systems: five out of six ran the Android OS, and 

one in seven ran “ppleȂs iOS [5]. This made Android devices the most targeted by 

attackers [9] [10] [5], a trend that has been on-going for several years [11]. A similar 

scenario is seen with desktop personal computers (PCs) where Microsoft Windows 

dominates the OS market, and it is predicted that over the next five years leading-

edge IoT devices will experience the same scenario [7]. Having a small number of 

different operating systems or application software is more economically efficient 

because of the ease of maintenance and compatibility. It also has greater user appeal 

because of the need to learn only a few different types of applications and systems. 

However, much effort is spent protecting the resultant computer networks from 

attacks and malware, which in some cases can spread to a large number of devices 

in a matter of minutes [12] [13]. In ŘŖŗś Symantec reported that ȃ“ttackers “re 

Moving Faster, Defenses “re NotȄ [14] in response to attackers exploiting zero-day 

(publically unknown) vulnerabilities much faster than vendors could create and roll 

out patches. Patch times can range from a day [5] to several months [14], however 

even generating patches within a few hours may not be fast enough to stop the short 

term spread. Additionally, it has been reported that zero-day attacks can last up to 
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30 months before the vulnerability is even disclosed [15]. The number of new mobile 

vulnerabilities being discovered is increasing every year, with the Common 

Vulnerabilities and Exposures (CVE) database reported that vulnerabilities with 

Android in 2016 were estimated to be twice that of 2015 (131) [16]. Current security 

solutions for mobile devices remain limited in their ability to protect, particularly 

against zero-day attacks, with manufacturers being slow to address fundamental 

security issues for IoT devices. Additionally it is predicted that over the next five 

years attackers will not just be targeting applications and operating systems but will 

look for additional vulnerabilities at layers lower down the software stack 

independent of operating systems [7] such as low level drivers and protocols. The 

use of multiple exploits (code or data directed at a specific vulnerability) across 

layers of the software stack will pose a significant threat, especially if they are 

targeting zero-day vulnerabilities. The 2010 Stuxnet worm for example is known to 

have used four separate zero-day exploits [17]. 

The risk associated with software monocultures has long been recognised within 

the computing industry [18] [19], however the physical technology and 

infrastructure to produce, and maintain alternative versions of software is only now 

becoming possible [20]. As the number of devices and vulnerabilities grow, 

traditional security methods will become less effective. To keep up with the 

sophistication of attack methods there will need to be greater automation of 

defences and new paradigms of defence mechanisms including those to alleviate the 

monoculture risks. 
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1.1.3 Agricultural Monocultures and Biodiversity within 

Natural Systems 

The risks of monocultures are well known within the agricultural industry which 

has experienced the resultant problems first hand. A single species is often selected 

for its productivity or disease resistance properties and is grown over a large area 

for economic efficiency [21]. But this efficiency creates risks: Land cultivated in this 

way removes the naturally diverse communities, reduces the soil quality, and 

results in the need for fertilizers to protect crops from pests and diseases. 

The range of plants, animals, insects and other organisms living within an 

ecosystem is termed biodiversity. Biodiversity is linked to the stability and 

productivity of ecosystems buffering them from pest invasions, disease epidemics 

and extreme environmental events [22]. Biodiversity is also critical to the 

functioning of such ecosystems and the services they provide. The  agricultural 

industry is now becoming more appreciative of the essential benefits biodiversity 

brings and is slowly changing its habits through modernisation of traditional 

methods such as crop diversification and crop rotation [23] to help reduce 

infestations of pests in the soil. The benefit of biodiversity has also been evinced in 

other areas of natural systems. It has been shown to reduce the spread of diseases 

between animals such as Lyme disease [24], and the hantavirus affecting deer mice 

[25]. High levels of biodiversity have also been found to increase resistance against 

extreme climate events, which are now becoming more frequent world-wide [26] 

[27]. 
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1.2 Hypothesis 

The intuition that diversity might be desirable has existed within the security 

profession for many years. In the 1970s N-version programming [28] was proposed 

within the field of fault tolerance to increase the reliability of systems that used 

software. It was known that identical software running on independent systems 

would fail in exactly the same way with the same inputs. Interest in this approach as 

a security mechanism grew as computers became ubiquitous, attacks became more 

common, and the risks of a software monoculture was acknowledged [19] [18]. A 

biological perspective on diversity as a security mechanism however has largely 

been overlooked and requires an understanding of ecological processes and 

interactions, and their effects on the system [29]. Current research is mainly focused 

at point solutions for creating diverse software [30] [31] [32] [33] [34], although there 

has been some work on creating diverse networks [35] [36] [37] and measuring 

diversity within networks [38] [39] [40]. Despite the recently growing research in 

this area there is still a large gap in understanding the actual benefits of diversity as 

a security mechanism, particularly from an ecological perspective, even whilst 

evidence surrounding the benefits of biodiversity in natural systems is continuously 

growing. 

It is expected that peer-to-peer wireless networks such as ad hoc networks will 

become more mainstream than they are currently. This drive will be as a result of 

billions more connected devices such as through the evolving IoT [8], and 

developing protocols such as fifth generation (5G), which supports direct device to 

device communication [41]. Such topologies are decentralised, rely on physical 
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locality to form local communication links, and may change due to the mobility of 

devices.  

Creating diversity of software to the benefit of security within such topologies 

has largely been unexplored, let alone from an ecological perspective. There are 

similarities between peer-to-peer mobile wireless networks and natural 

communities due to their movement and short range communication patterns 

making them a good candidate for studying the effects of biodiversity as a security 

mechanism. Additionally, the modelling of multi-exploit malware propagation 

targeting vulnerabilities across layers of a software stack has so far been neglected 

in the literature. 

The focus of this research combines these two domains where the hypothesis for 

this work is therefore: 

“Incorporating biodiversity within peer-to-peer mobile 

wireless computer networks makes them more resistant 

to multi-exploit malware propagation.” 

1.3 Contributions to Research 

The original and significant contributions of this thesis are: 

 Definition of an Ecosystem model of an ad hoc network (§5). 

Aspects published in the conference proceedings of the IEEE Symposium 

on Computational Intelligence in Cyber Security, 2011 [1]. The model 

proposes that by applying biodiversity strategies at different scales of a 
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network, the destructive effects arising from security attacks can be 

counterbalanced with the constructive effects of biodiversity to maintain 

ecosystem function and services, and hence benefit overall resistance and 

resilience. 

 Modelling of multi-layer multi-exploit malware within diverse computing 

systems which includes (§6, §7): 

o Representations, including analytical, of malware types with 

multiple exploits targeting multiple software layers with two 

different (logical AND and OR) relationships (§6).   

o Genetic matching of malware types to devices forms part of the 

novel approach of simulating malware propagation in diverse 

computing devices (§6, §7). 

The representations allow the susceptibility of a network to be determined, 

and allow simulation of such malware in a network where the diversity 

remains static (§6, §7) (the software on each device remains fixed during the 

simulation scenario) or is dynamic (the software on each device can change 

during the simulation according to the rules of the diversity algorithm) (§7). 

 Definition of metrics to measure the diversity of any computing network (§5, §6, 

§7). 

Single measures of diversity in computing systems have been defined in 

the literature; however several metrics are necessary to define diversity of 

multi-layer software stacks across a network, including those to define the 
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software stack granularity, the number of different software, their 

distribution, and their structural composition. A genetic approach is used 

where several definitions from ecology have been adopted. The Nei genetic 

diversity index [42], which has not been used previously, has been adopted in 

its monoploid form to measure the distribution of different software. It is 

very rarely stressed in the literature that it can be applied to any number of 

chromosome sets since most studies focus on diploid chromosomes of 

animals and plants. It is used here to measure the global performance of the 

dynamic diversity algorithm and calculate theoretical maximum diversity 

values for a given network configuration.  

 Development of a mathematical epidemic model which includes (§6): 

o Enhancements to the compartmental (applicable to both 

deterministic and stochastic) SI/SIR models to incorporate malware 

types with multiple exploits across multiple software layers in a 

wireless peer-to-peer ad hoc network where the diversity remains 

static. 

o A method has been developed to calculate optimum amounts of 

diversity necessary to tolerate or mitigate different types of multi-

exploit, multi-layer malware. 

o Ecosystem outputs including resistance and resilience. 

Note that enhancement of the SIR model to incorporate static diversity for an 

exploit targeting only single software configurations has already been proposed in 

the literature [43]. 
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 Development of an agent-based simulation framework within the Mathworks 

Matlab environment to understand how biodiversity can make wireless 

peer-to-peer computer networks more resistant to malware (§7). The 

source code for the model is available at the permanent link : 

http://wrap.warwick.ac.uk/98458. 

The simulation framework allows the diversity of networks to either 

remain static, or be modified dynamically. It allows for testing, simulating 

and experimenting with different diversity algorithms, networks, attacks, and 

additional security mechanisms to prove and explore the hypothesis. The 

simulation framework incorporates the following aspects: 

o A mobility model controlling how and when individual devices 

communicate with one another. The following standard models 

have been used: 

 Uniformly distributed random encounter. 

 Random Waypoint which has been further developed to 

model the selection of devices to form a communication 

link with and the successful data transmission. 

o A diversity model controlling what software is installed on each 

device and when. Within this a dynamic diversity algorithm has been 

developed based upon local information. The algorithm can incorporate 

optional security mechanisms to enhance the effectiveness of 

diversity, and constraints that may limit the diversity achievable. 



Chapter 1  Ph.D. Thesis 

Jennifer Jackson 11 of 357 May 2017  

o A malware model to inject malware into the network at a predefined 

time and monitor the health of each device as the simulation 

progresses. The SI/SIR compartments have been used. 

o Metrics including biodiversity levels as the simulation progresses, 

and ecosystem outputs including resistance and resilience. 

Further contributions of note include: 

 A comprehensive review covering how biodiversity works in nature and where 

lessons can be learned and applied to ad hoc networks (§2, §5, and work 

published in [1]). 

 A comprehensive review of current research associated with diversity as a 

security mechanism (§3.4).  

 A comprehensive review of the location of vulnerabilities at different scales of 

an ad hoc network and their link to undesirable security events 

(disturbances) (§3). A self contained study is published online [2]. 

 Simulations of malware propagation with different spreading mechanisms in 

Bluetooth peer-to-peer networks. Published aspects included within the 

thesis are documented within the Declaration. Work published in the 

journal paper [3]. 

1.4 Thesis Structure 

This chapter has given an introduction to the concept of biodiversity for cyber 

security. The next three chapters provide a comprehensive background that directly 

supports the work in the remainder of this thesis. Chapter 2 details the link between 
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biodiversity and ecosystems in natural systems, and how biodiversity is critical to 

the functioning of such ecosystems and the services they provide. Chapter 3 

explores computer security in detail, the extent of current diversity research, and the 

enabling technologies that may allow the diversity of computing and software 

possible. Chapter 4 details methods of modelling mobile networks, malware and 

epidemiology. Chapter 5 draws on the background material and presents an 

ecosystem model of an ad hoc network. Chapters 6 and 7 present the two different 

diverse system models developed and Chapter 8 details their results and analysis. 

Chapter 9 draws together the conclusions by summarising the work presented, and 

providing ideas for future work. 

Figure 1-1 provides a graphical representation of the thesis structure: 

 

Figure 1-1 – Thesis structure 
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1.5 Summary 

This introduction has established the concept of biodiversity for cyber security. 

The focus of the biodiversity inspired security research is wireless peer-to-peer 

mobile networks since they are predicted to become prevalent in the future 

computing market. The hypothesis given for this work is that incorporating 

biodiversity within peer-to-peer mobile wireless computer networks makes them 

more resistant to multi-exploit malware propagation. The final sections of this 

chapter outlined the contributions made by this work and the structure of the thesis. 
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2 Ecology and Biodiversity in Natural Systems 

Chapter 2 

Ecology and Biodiversity in Natural 

Systems 

2.1 Introduction 

Understanding biodiversity from an ecological perspective, its relationships, and 

how its effectiveness is measured against external inputs is important for 

considering analogous relationships and measures of diversity within mobile 

wireless peer-to-peer networks and its effectiveness against malware. This chapter is 

split into two sections: 

The Biodiversity and Ecosystem Relationship: The first section discusses biodiversity 

and its relationship with other components of an ecosystem. It discusses how 

biodiversity links to ecosystem functionality, how biodiversity is affected by 

external disturbances, and how the effect of biodiversity on limiting the severity of 

disturbances is measured. 

Measuring Biodiversity: The second section details the metrics for measuring 

biodiversity at the genetic level only, which are referenced during later chapters of 

the thesis. 
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2.2 The Biodiversity and Ecosystem Relationship 

2.2.1 Biodiversity within Ecosystems 

An ecosystem is comprised of interacting organisms such as plants, animals, 

insects etc and their physical environment. The global behaviour of an ecosystem is 

the result of local peer-to-peer interactions of such organisms and with their 

environment resulting in distributed (sharing of tasks), self-organising (global 

coordination from local interactions), and emergent (collective behaviour or 

property) properties. Biodiversity encompasses the variety of genes, species, or 

functional traits within an ecosystem and is critical to the functioning of such 

ecosystems and the emergent services they provide. External influences can impact on 

biodiversity and function and affect these services.  Ecosystem health, and in 

particular its relationship with biodiversity, is often assessed by looking at the 

outputs of ecosystem functions and services where productivity, stability, and disease 

transmission are measures often used within field studies and theoretical models. 

 

Figure 2-1 – Biodiversity and ecosystem relationship 
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2.2.1.1 Biodiversity 

There are generally three levels of biodiversity defined in the literature: genetic 

diversity, species diversity, and ecosystem diversity. Most theoretical and experimental 

studies focus on the species level when considering ecological consequences of 

biodiversity because it is easier to work with and measure [22], however 

biodiversity is hierarchical and over the past decade there has been a steadily 

growing interest in the genetic level, with research suggesting that genetic diversity 

can also have significant effects on ecological processes [44]. In addition to these 

three levels another dimension of diversity is often discussed, especially in relation 

to ecosystem function, and that is functional diversity. This encompasses functional 

traits at all three levels of diversity but research is again often focused at the species 

level.  

(1) Genetic diversity is the variety of differences between the genetic makeup of 

individuals. It is often measured within species at an individual scale but does not 

necessarily have to be limited to that. Genotypes determine the actual set of genes 

carried by an individual and phenotypes are the observable characteristics and traits 

coded for by those genes.  

(2) Species diversity is usually measured within a geographical region or 

ecosystem at a community scale by quantifying the number of different species and 

their distribution. It is different to genetic diversity in that groups of individuals 

with the same characteristics are divided into distinct groups which are usually well 

known and documented. The classification of species is usually via a taxonomy 
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approach using a hierarchical branching structure with various kingdoms defining 

the top level, such as the animal kingdom.  

(3) Ecosystem diversity includes the measurement of diversity of communities, 

geographical regions or complete ecosystems. For example species diversity can be 

measured at and between different scales of geographical areas [45]. 

 (4) Functional diversity is about differences in functional traits. Ecosystem 

function depends on functional diversity more than on the number of different 

species alone. For example, species may have the same role creating redundancy but 

low functionality; alternatively, species may have different roles creating low 

redundancy but high functionality.  

2.2.1.2 Ecosystem Functions 

Ecosystem functions are the ecological processes that take place within an 

ecosystem as a result of environmental factors and individual functionality, in 

particular the interaction of the individual with others and the environment. They 

have been categorised in different ways such as in terms of material, energy and 

information flow [46], or broken down into categories such as regulating functions 

(e.g.  water and nutrient regulation, pollination), supporting functions (e.g. soil 

formation such as chemical weathering of rocks), and provisioning functions (e.g. raw 

materials such as biomass and plant production) [47]. Biodiversity has a strong 

influence over ecosystem function and is discussed further in section 2.2.2.1. 
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2.2.1.3 Ecosystem Services 

Ecosystem services are the benefits that ecosystems provide to humanity and are 

derived from the many functions operating within an ecosystem. They are of a 

particular concern to ecologists since their demise or loss can be devastating [48] 

[49] [50]. Services can also be broken down into regulating services (e.g. air and water 

quality, buffering against extreme natural events such as drought, controlling pests 

and diseases), provisioning services (e.g. food products such as fish, crops and 

livestock, water, fuels such as wood and gas) [50], and sometimes additionally 

cultural services (e.g. providing iconic landscapes and recreational opportunities) [47] 

and further supporting services (e.g. crop pollination) [46] [51]. 

2.2.1.4 Disturbances 

Disturbances are influences on an ecosystem which can be both natural and 

artificial such as rain or human interaction, and can also be severe such as a flood or 

a drought. Disturbances can impact biodiversity which in turn affects functions and 

services. There are two aspects of disturbances: disturbance events and the natural 

disturbance regime [52]. 

(1) A disturbance event is an incident that disrupts an ecosystem usually over a 

relatively short period of time. Disruptions can include the spread of a disease, 

changes in the physical environment or resources. 

(2) The natural disturbance regime shapes an ecosystem over long time scales 

and includes many disturbances with varying intensities at different spatial and 

temporal scales such as changing temperatures and seasons [53] [54] [55]. This 
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generates natural levels of biodiversity by varying the conditions in which different 

species can operate.  

2.2.1.5 Measured Outputs 

Productivity and stability (including resistance and resilience), are often measured 

to assess the output of an ecosystem and how well it can cope with the effects of 

disturbances and changes in biodiversity. Often in the literature function and 

productivity are grouped together. For example the function of producing biomass 

often leads to assessing biomass productivity. Stability is about assessing how well 

the ecosystem can cope under different scenarios, such as how the productivity 

changes and how quickly the ecosystem recovers from a disturbance like a disease 

epidemic [56]. Productivity, stability and disease transmission are discussed further 

in section 2.2.2.2. 

2.2.1.6 Relationships 

There are relationships between disturbance, biodiversity, and ecosystem 

function. Within the literature some studies focus on just disturbance and its effect 

on species diversity [57] [53] [58] [59] [60] or genetic diversity [61] [62] [63], some 

consider the relationship between biodiversity and ecosystem function (§2.2.2.1) [64] 

[22] [65] [46], whilst others consider the effects of disturbance severity on the 

measured outputs as a result of species [66] [67] [27] or genetic [68] [44] [69] 

diversity (§2.2.2.2). The latter two relationships are discussed further in the next 

section since these both consider biodiversity as a controlling mechanism on the 

output of an ecosystem. 
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2.2.2 Biodiversity Relationships 

2.2.2.1 Biodiversity Mechanisms Underlying Ecosystem Function 

Biodiversity has a large influence on ecosystem function and since the measured 

outputs of an ecosystem are based upon the productivity and stability of functions 

and services, this section details the mechanisms (as pictured in Figure 2-2) that link 

biodiversity to ecosystem function. This includes Niche differentiation (§2.2.2.1.1), 

facilitation (§2.2.2.1.2), multiple trophic levels (§2.2.2.1.3), and genetic variation 

(§2.2.2.1.4).  

 

Figure 2-2 – Biodiversity mechanisms linking ecosystem function 
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a species interacts with another species there may be some overlap in one or more 

dimensions (Figure 2-3 (b)) creating competition of resources. The niche space then 

becomes restricted due to the competition (Figure 2-3 (c)) and this is called the 

realised niche. Niche overlap determines how strongly two species might compete 

with each other. If species are too similar the lesser competitor will either be 

excluded from an area or go extinct ǻGauseȂs exclusion principleǼ [71]. When species 

coexist, competition can drive them into different niches. This process is called niche 

differentiation of which there are several types (Figure 2-2). One of the most 

discussed is resource partitioning where species divide up a resource such as food at 

different places (spatial resource partitioning), at different times (temporal resource 

partitioning), or in different ways (niche complementarity, or morphological 

differentiation). Often temporal resource partitioning is discussed as a separate form 

of niche differentiation and is referred to as temporal niche differentiation, conditional 

differentiation or the storage effect [72] where species have different competitive 

abilities under different environmental conditions. The mechanisms of niche 

differentiation is not just limited to species, niche complementarity has also been 

found during various genotypic diversity experiments [73] [69] [74].  

 

 

Figure 2-3 – Fundamental and realised niches of coexisting species 
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Additionally, functional complementarity has been discussed in the literature as a 

specific type of niche complementarity where different species occupy different 

functionally distinct niches, benefiting ecosystem function [65] [22] and providing an 

important link between biodiversity and productivity [65] [75]. With negligible 

niche overlap, termed perfect complementarity, more of the total niche space is used, 

increasing ecosystem functioning but causing fragility due to the dependence on 

specific species. With large niche overlap there is large ecosystem function, but this 

quickly saturates as species diversity increases making them functionally redundant 

(Figure 2-4) [22]. Redundancy can improve the stability of the ecosystem if species 

are lost, but can competition between species when the resource is limited [65]. This 

suggests that both functional redundancy and functional complementarity are 

needed to benefit ecosystem services rather than just the number of different 

species.  
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Figure 2-4 – Relationship between species diversity and ecosystem function [22] 

Functional complementarity also occurs at the genetic level. Whilst genes can 

provide unique functionality, functional redundancy can also occur during the 

evolutionary process producing genes with overlapping functionality. The most 

common method is through direct gene duplication [76] caused by errors during 
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DNA replication such as through reproduction. Another method is through natural 

selection where previously dissimilar genes evolve to provide similar functionality 

through partial functional overlap [77]. 

2.2.2.1.2 Facilitation 

Facilitation describes interactions between species or individuals, but can also 

apply at the genetic level [78] [79] [44], creating positive benefits for at least one 

without causing harm to the other. Facilitation can be either mutual where both 

species benefit, or commensal where only one species benefits. Increasing species 

diversity in the presence of facilitation can lead to increased ecosystem functioning 

[80] [81].  

 

2.2.2.1.3 Multiple Trophic Levels 

Many of the experimental studies have involved plant or microbial populations, 

often within a single trophic level (hierarchical level in an ecosystem such as the 

position in the food chain) [22] [82] [50] however it has been recognised that 

diversity across multiple trophic levels has the potential to impact ecosystem functions 

even more strongly [50]. The levels (Figure 2-5) consist of primary producers, at the 

bottom, followed by primary consumers, secondary consumers, and tertiary consumers, 

which consume species within the levels below them. There are also decomposers that 

break down dead or dying tissue from other species at different levels. The trophic 

pyramid however is often a very simplified picture of reality, where interactions 

between levels are very complex. 
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Figure 2-5 – The trophic pyramid 

2.2.2.1.4 Genetic Variation 

Whilst there is evidence that the previous mechanisms are relevant at both the 

species and genetic levels [44], genetic variation appears only at the genetic level. 

Genetic variation is the variation of genes within a population and is the driving 

force behind functional differences between individuals and species. It is also a 

prominent component of evolutionary change and determines genetic diversity [83] 

[44] (§2.3.2).  

Chromosomes are located within every cell but the number of sets can vary 

between species. There can be one set (monoploid), two sets (diploid), three sets 

(triploid) and more than three sets (polyploid). Animals and plants have two sets of 

chromosomes and are therefore diploid as shown in Figure 2-6. Each chromosome 

pair contains genes, representing short sections of DNA, which are located at a 

specific site called a locus [84].  
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Figure 2-6 – Chromosome pair with multiple loci and alleles 

Simplistically, loci determine traits or functions. Single genes can determine 

discrete traits such as eye colour, whereas the additive effect of multiple genes can 

determine continuous traits such as height. Genes may come in several different 

variants called Alleles. When both of the chromosome copies within the pair contain 

the same allele this is called homozygous and when they are different they are called 

heterozygous. A genotype represents the actual genes found within an individualȂs 

chromosome. Differences between alleles and genotypes, and their frequencies in a 

population, signifies the amount of genetic variation. 

Genetic variation is caused by multiple factors. If two or more alleles coexist in 

the population at a specific locus, this is termed genetic polymorphism. Many species 

have genetic polymorphism at different loci [83]. Reproduction processes such as 

crossover (DNA exchange by parents) and mutation (random change, potentially 

creating a new allele) as well as the migration of individuals and genetic drift 

(occurrence of alleles randomly fluctuate over time) [85],  can change the frequency 

and distribution of alleles, and introduce different combinations of genes leading to 

individualised genotypes.  
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2.2.2.2 The affects of Biodiversity on Limiting Disturbance 

Severity 

There are two outputs of ecosystems that are commonly measured in relation to 

the effects of biodiversity on limiting disturbance severity. These are productivity 

and stability [64] [22] [86] [27] (see Figure 2-7). When disturbances occur, the 

productivity and stability can be affected in different ways depending upon the 

disturbance severity and the level of biodiversity within the ecosystem. When 

disease spread is considered as a disturbance event, such as in the case of an 

epidemic, properties involving the dynamics around disease transmission is also 

analysed. 

 

Figure 2-7 – The effect of biodiversity on limiting disturbance severity 

 

2.2.2.2.1 Productivity 

Productivity is about the efficient use of input resources to generate outputs. It is 

a measure of how much and how quickly something is being produced. 
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ecological studies it is generally measured by the rate of increase in the total 
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community biomass (total mass of living matter) in an area [66]. Changes in 

productivity in relation to disturbances or biodiversity change can be measured 

over time to assess ecosystem stability (§2.2.2.2.2) [88] [27]. 

2.2.2.2.2 Stability 

Stability in relation to ecosystems can have two meanings, either the 

measurement of the temporal variability of an ecosystem property (temporal 

stability), or the measurement of an ecosystemȂs ability to defy change such as that 

from disturbances [89] [90] [22] [27]. Often the temporal attribute measured is the 

variance in population densities, or changes in productivity, such as that of biomass, 

over time (see Figure 2-8 (a)) since most biodiversity and ecosystem functioning 

studies focus on plants or microbial communities [88] [90] [22] [27]. There may also 

be a tolerance threshold, below which ecosystem functions and services become so 

degraded that it impacts the ability of the ecosystem to survive or recover. When the 

stability of a system is a measure of its ability to return to equilibrium following 

disturbance, two dimensions of stability are used, termed resistance (sometimes 

persistence) and resilience [22]. 

(1) Resistance describes how much of an ecosystem property changes in 

response to disturbance. The less the property changes the more resistant it is (see 

Figure 2-8 (b)). For example the resistance of productivity to climate events has been 

studied in grasslands in relation to diversity [27], as well as resistance of 

productivity to plant invasions where the invading plant biomass [91], and the 

invading plant cover [92] were measured in relation to biodiversity with the studies 

showing that biodiversity can act as a good barrier. 
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(2) Resilience, more specifically Engineering resilience [93] assumes that stable 

ecological systems operate at a single global equilibrium (one stable state) so that 

the resilience is a measure of the time taken to return to this global equilibrium 

following a disturbance (see Figure 2-8 (b)). The faster the ecosystem can recover, 

the more resilient it is [21] [27]. Ecosystems may react differently to different types 

of disturbances in which case the resilient and resistant characteristics will change. 

 

Figure 2-8 – Methods of measuring ecosystem stability 

2.2.2.2.3 The Case of Disease Spreading 

The spread of a disease is considered as a disturbance event [55] especially if it 

turns into an epidemic. Controlling the spread of diseases is often defined as a 
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as another output component of assessing ecosystem health. Whilst some studies in 

relation to disease spread and biodiversity examine stability components, such as 

that involving species diversity and productivity changes [94] or resistance of alleles 

(§2.2.2.1.4) against pathogens in genetic studies [95], others instead focus on changes 

in actual disease transmission of a population [56]. Experimental research suggests 

that the effect of biodiversity loss on the spread of diseases can have two outcomes; 

either it can decrease, or increase (majority of cases) transmission [56]. This can be 

linked to two theories regarding biodiversity and disease spread: The Dilution Effect 

and the Amplification Effect:  

(1) The Dilution Effect [24] [96] [97] [56], is any factor that causes a relative 

reduction in: the number of individuals that are susceptible to the disease and can 

pass it on (suitable hosts) relative to the total number of individuals, or their 

encounter rates, which can decrease the transmission of disease. For example a 

decrease in the relative number of those susceptible through an increase in the 

number of different species. 

(2) The Amplification Effect [98] [97] [56] is caused by factors that cause a 

relative increase in: the number of individuals that are susceptible to the disease and 

can pass it on (suitable hosts), or their encounter rates, which can increase the 

transmission of disease, for example an increase in the number of susceptible 

individuals when species that are added to increase diversity are also susceptible. 

For genetic diversity studies, disease transmission is studied in relation to genetic 

variation (§2.2.2.1.4), both in terms of genotypes and alleles. There is a general 

consensus that genetically homogenous populations are more vulnerable to disease 
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transmission than genetically diverse populations [99] [100], which has been seen in 

agriculture where disease epidemics have destroyed monocultured crops [101] 

(§1.1.3).  Studies also suggest that genotypes with high allelic diversity are needed 

in a population to constrain transmission [102] [103] [99] particularly when exposed 

to multiple parasites [103] [99]. 

2.3 Measuring Biodiversity 

2.3.1 Introduction 

As outlined in section 2.2.1.1 genetic, species, and functional diversity measures 

are used to describe biodiversity in ecosystems. The majority of practical studies 

focus on species diversity because it is easier to measure than genetic diversity [104] 

[44]. However, measurement at the genetic level can determine diversity within and 

between the species of whole ecosystems by considering differences in genotypic 

structure at the individual scale. This section reviews biodiversity measures at the 

genetic level only, these being referenced during later chapters. 

2.3.2 Genetic Diversity 

When analysing genetic diversity in relation to genotypes (§2.2.2.1.4) there are 

two types of measures: those based directly upon genotypes as a whole entity, and 

those based upon alleles which make up the genotypes. These two aspects are 

reviewed below. 
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2.3.2.1 Genotypic Measures 

Genotypic measures focus directly on the genotype and ignore its allelic 

construction. A selection of measures described below is used in the literature to 

assess diversity. 

2.3.2.1.1 Genotypic Richness 

Genotypic richness      is the number of different genotypes that has been 

measured within a population. Observational studies can count the number of 

genotypes, whilst experimental studies can create the required number of genotypes 

using clonal species [44].  

2.3.2.1.2 The Proportion of Different Genotypes 

The proportion of different genotypes      within a population of size   is defined in 

Equation (2-1) [105] as the genotypic richness per population. It has a maximum 

value of 1 when all individuals within the population have a unique genotype and 

approaches 0 when there are very few genotypes. 

        
(2-1) 

 

2.3.2.1.3 Genotypic Diversity  

Genotypic diversity      [106] [105] takes into account the frequency of all the 

different genotypes     , where   is the frequency of the  th genotype, as shown in 

Equation (2-2) giving an indication as to how the genotypes are distributed across 

the population. It has a minimum value of 1 when there is only one genotype 

present in the population, and a value of    when multiple genotypes are present 
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and are evenly distributed, up to a maximum value of      when all individuals 

have a unique genotype. 

                 
(2-2) 

 

2.3.2.1.4 Genotypic Evenness  

Genotypic evenness      [105] as given in (2-3) specifies how evenly or dominantly 

the genotypes are distributed amongst the population.  When a single genotype 

dominates, providing that there is more than one genotype present in the 

population, the evenness approaches 0. When the genotypes are evenly distributed, 

the evenness has a maximum value of 1.   

         
(2-3) 

 

2.3.2.2 Allelic Measures 

Allelic measures concentrate on the genetic variation of alleles across a 

population where alleles are positioned at different loci within a genotype 

(§2.2.2.1.4). A selection of measures described below is used in the literature to 

assess diversity. 

2.3.2.2.1 Allelic Richness 

Allelic richness      [44] is the average number of different alleles per locus that 

has been measured across a population. It is on a par with genotypic richness but is 

now focused at the allelic level. Similar to genotypic richness it does not consider 
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how many instances of each allele are present. As shown in Equation (2-4) The 

number of different alleles     at each locus     is summed and then divided by the 

total number of loci    . 

             
    

(2-4) 

 

2.3.2.2.2 The Nei Genetic Diversity 

The Nei Genetic Diversity     [42] is defined as the probability that at a single 

locus any two alleles chosen at random from the population are different to each 

other. This principle applies for monoploid (haploid), diploid and any other 

polyploidy chromosome sets (§2.2.2.1.4) but is very rarely stressed in the 

literature [42] [107] since most studies measuring genetic diversity in this way 

focus on diploid chromosome sets of animals and plants. For diploid 

chromosome sets the genetic diversity measure for a single locus is referred to as 

the expected heterozygosity which is a measure of how different the two allele 

pairs are (§2.2.2.1.4). For monoploids the terminology of heterozygosity cannot 

be applied but the Nei Genetic Diversity is still valid since it assumes that any 

two alleles chosen at random can be from different individuals. The frequency      of each different allele     at each locus can be calculated using Equation 

(2-5) as the number of times the allele is present      divided by the total number 

of alleles     across the population.  The value     is equivalent to the 

population size     for monoploids and twice the population size      for 

diploids since a diploid has two alleles for each gene. 
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        (2-5) 

The probability that two alleles chosen at random will be the same      is given 

by Equation (2-6) and is also a measure of homozygosity (§2.2.2.1.4) for a population 

with diploid chromosomes. This is summed over all the different allele possibilities     (Not to be confused with A which is the total number of alleles across a 

population, for which the same allele may occur multiple times). 

             
    

(2-6) 

Subtracting this from unity gives the probability      that two alleles chosen at 

random will be different and denotes the genetic diversity at a single locus    , 

which is given in Equation (2-7). For a population with diploid chromosomes this 

will be a measure of heterozygosity. 

                
    

(2-7) 

The final diversity index     is usually calculated by averaging the diversity 

across all loci (L) as given in Equation (2-8). The genetic diversity index has values 

between 0 where every individual in the population has the same set of alleles, and 

1 if every individual has a different allele at every locus. 

             
    

(2-8) 
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2.3.2.2.3 The Shannon Diversity Index 

The Shannon Diversity Index [108] (Shannon entropy) was originally used to 

quantify the uncertainty of information content in strings of text. The greater the 

numbers of different letters, and the more equal their frequency within the text, the 

more difficult it is to correctly predict which letter will come next. The same concept 

can be applied to alleles where the more alleles there are at a locus and the more 

equal their distribution amongst the population, the more diverse the population 

becomes [44]. The Shannon entropy for a given locus      is given in Equation (2-9), 

and is firstly calculated in a similar manner to the Nei Genetic Diversity by 

measuring the frequency      of each different allele     at the locus.  Different 

logarithmic bases have been used for the index such as the natural logarithm, and 

the base 2 logarithm [109]. The equation is summed over all the different alleles 

possibilities    .  

                   
    

(2-9) 

Similar to the Nei Genetic Diversity measure, the Shannon entropy     can be 

averaged across all loci     as given in Equation (2-10). 

           
    

(2-10) 

The maximum diversity occurs when all alleles are equal in frequency. The upper 

limit for a single locus is governed by the number of different allele possibilities at 

that locus     and can be simplified to Equation (2-11). 
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            (2-11) 

2.3.2.3 Maximum Number of Unique Genotypes 

For a monoploid set of chromosomes, the maximum number of unique 

genotypes         that can be created is the product of the number of different 

allele possibilities     at each of the loci     as given in Equation (2-12). 

                 
(2-12) 

Where     is the total number of loci. Figure 2-9 (a) shows the number of unique 

genotypes for two loci having up to 10 alleles, and Figure 2-9 (b) shows the number 

of unique genotypes for four loci with the same number of alleles at each locus. 

From the opposite perspective, the number of loci and alleles needed to represent at 

least a specific number of genotypes will in general have a number of solutions.  

  

Figure 2-9 – Maximum number of unique genotypes 
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For example, to generate at least 50 genotypes, there needs to be at least 2 loci 

with 7 and 8 alleles (Figure 2-9 (a)) or 4 loci and 3 alleles in each (Figure 2-9 (b)). 

2.3.2.4 Comparison of Measures 

Figure 2-10 (a) and (b) show comparisons of the genotypic and allelic measures of 

diversity for a simulated population having genotypes comprising a single locus 

and four loci respectively. It is an illustration to support the mathematical equations 

highlighting differences between what they show. The number of different allele 

possibilities     is the same at each locus and is varied between 1 and 10. The 

population size     of 20,000 has been chosen such that it is twice the maximum 

number of possible genotypes         from a four locus, 10 allele combination. This 

is to allow the simulation of genotypes to occur at least twice and be evenly spread 

across the population so that maximum diversity is achieved and can be observed in 

Figure 2-10 (a) and (b). For a single locus as shown in Figure 2-10 (a), the Genotypic      and Allelic      Richness increase together linearly with the number of alleles 

since a single locus with one allele can have only one possible genotype, two alleles 

can have two genotypes, and so on. The Genotypic Diversity      also follows the 

same relationship, since when the genotypes are evenly distributed, its value is 

equal to the Genotypic Richness. It also follows from even distribution that the 

Genotypic Evenness      measure is flat at unity across any number of alleles. The 

Nei and Shannon measures both show the maximum allelic diversity values that 

can be achieved when the alleles, and hence genotypes are evenly distributed. The 

difference between the measures being that the Nei Genetic Diversity 
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asymptotically approaches unity as the number of alleles increases whereas the 

Shannon Index increases with the number of alleles. 

 

Figure 2-10 - Comparison of genetic diversity measures 

The Proportion of Genotypes      measure remains low for any number of 

alleles up to 10, indicating that although the alleles and genotypes are evenly 

distributed leading to maximum diversity under these constraints, the number of 

unique genotypes in comparison to population size is very small. 

With four loci as shown in Figure 2-10 (b) the averaged allelic measures across all 

loci are the same as that for a single locus since the chosen population size is large 

enough to achieve even distribution and maximum diversity given the locus and 
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Genotypic Diversity     , and hence the Proportion of Genotypes      in 

comparison to population size which reaches a half when four loci with ten alleles 

are used. 

Figure 2-10 (c) shows the same measures for four loci but with a limited 

population size of 100. Figure 2-10 (d) shows the Nei and Shannon measures 

separated out for each individual locus. The genotype assignment to individuals 

within the population is set so that the minimum number of alleles are used to 

achieve the maximum number of genotypes.  

As shown in Figure 2-10 (d) when there are up to three alleles within each locus, 

the population size is greater than the potential number of genotypes (see Figure 2-9 

(b)) and so all alleles occur within the population and are distributed as evenly as 

possible. Additionally, the Genotypic Richness      is limited by the number of loci 

and alleles. When there are four or more alleles in each locus the population size 

becomes smaller than the potential number of genotypes. Under this condition the 

Genotypic Richness      is limited by the population size. The actual genotypes of 

the population are a subset of those available for which there could be many 

different subsets, with potentially some alleles either not being expressed, or 

dominating at a particular loci. This means that even when every individual in the 

population has a different genotype, the allelic diversity (Nei and Shannon) may not 

necessarily be maximal. This is illustrated in Figure 2-10 (d) when only a minimum 

number of alleles are used to achieve richness. Domineering alleles in loci three and 

four reduce the diversity to zero at these particular loci when the number of alleles 

in loci one and two is increased to maintain genotypic richness. This thereby 
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reduces the overall allelic diversity measures of Nei, Shannon, and Allelic Richness 

as shown in Figure 2-10 (c). This example provides a key illustration of the 

differences between genotypic measures and allelic measures, where it may be 

possible to maximise genotypic richness and diversity without fully exploiting the 

potential allelic richness and diversity.  This makes the use of both types of 

measures important for assessing genetic diversity. 

 

 

2.4 Summary 

An ecosystem comprises interacting organisms and their physical environment, 

resulting in distributed, self-organising, and emergent properties. Biodiversity 

encompasses the variety of genes, species, or functional traits within an ecosystem 

and is critical to the functioning of such ecosystems and the emergent services they 

provide. Ecosystem functions are the ecological processes that take place and the 

ecosystem services are the benefits provided to humanity. External influences, 

termed disturbances, can impact on biodiversity and function and affect these 

services. There are several mechanisms that link biodiversity to ecosystem function 

including niche differentiation (particularly functional complementarity), 

facilitation, interactions between trophic levels, and genetic variation. Ecosystem 

health, and in particular its relationship with biodiversity, is often assessed by 

looking at the outputs of ecosystem functions and services where productivity, 

stability, and disease transmission are measures often used within studies. Stability 

can have multiple meanings such as the variance of an attribute, or the ability to 

defy change in which the two dimensions resistance and resilience are often used. 
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The literature suggests that biodiversity loss can cause either dilution or 

amplification of susceptible individuals and thereby reducing or increasing disease 

transmission. These ecological concepts are mapped onto peer-to-peer networks in 

the form of an ecosystem model of an ad hoc network and are described in chapter 

5. Security attacks such as malware forms unwanted disturbances to the ecosystem 

model. 

Diversity measured at the genetic level can determine diversity within and 

between the species of whole ecosystems by considering differences in genotypic 

structure at the individual scale. There are two types of genetic diversity measures: 

those based directly upon genotypes as a whole entity, and those based upon alleles 

which make up the genotypes. Whilst genotypic measures are useful in identifying 

the uniqueness of the population and the distribution of genotypes, allelic measures 

can additionally show the distribution of alleles which can be analysed either 

independently at each locus or as an average across the whole genotype. When the 

measures are analysed together they provide a useful picture of the genetic diversity 

of the population from both genotypic and allelic aspects. The following measures 

are used as metrics in the measurement of diversity within the ecosystem model of 

an ad hoc network (defined in 5.3.2.1): Genotypic Richness, Genotypic Diversity, 

Allelic Richness, and Nei Genetic Diversity Index. The Genotypic Richness, Allelic 

Richness and the Shannon Index are referenced in section 3.4.4 during a review of 

diversity measures of computing systems for security. 
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3 Cyber Security and Diversity in Computing Systems 

Chapter 3 

Cyber Security and Diversity in 

Computing Systems 

3.1 Introduction 

 

The purpose of this chapter is to introduce the background material associated 

with: the practical viability of diversity, how greater numbers of connected devices 

is driving more peer-to-peer wireless networks, how malware and vulnerabilities 

are associated with different layers of the software stack, and what gaps there are in 

this field of research. This chapter is split into three sections: 

Computing Systems: The first section discusses enabling technologies of future 

computing systems that have the potential to aid in the realisation of biodiversity as 

a security mechanism. These include automated software generation and 

dissemination, virtualisation and hardware support, and the modularity of software 

stacks. Topology is considered with a focus on networks conducting peer-to-peer 

communication. 

Cyber Security: The second section on cyber security predominantly discusses 

malware, which is a form of cyber attack rife in monoculture software 
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environments. It summarises the different types of malware along with the stages of 

a successful malware attack. The location and types of vulnerabilities exploited by 

malware within the software stack are discussed. The implications of attacks using 

multiple and publically unknown exploits are highlighted.  

Diversity: The third section explores the literature on the current state of research 

associated with diversity within computing systems. Three main areas of research 

are reviewed including the diversification of software at the code level, 

diversification at the network level and the metrics used to evaluate diversity within 

such systems. This section concludes with an evaluation of the open areas of 

research within this field. 

3.2 Computing Systems 

3.2.1 Enabling Technologies 

The future of computing systems lies within a globally connected world of 

devices and people, and will combine advancements in enabling technologies to 

provide access anywhere and at anytime. Some of these enabling technologies could 

also be utilised to realise diversity. Particular attention is given to automated 

software generation, including dissemination and updating, virtualisation and 

hardware support, and the modularity of software stacks.  

3.2.1.1 Automated Software 

The dissemination of software traditionally involved a pre-installation on a new 

device, or through the purchase of a disk. Nowadays software can be readily 

downloaded via the Internet, updates are often automated, and users can choose 
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from a broad range of application software. Franz [110] identifies one of the 

fundamental enablers of diversity to be the ease of obtaining software, making it 

possible to distribute and patch unique versions. The advancement of dynamic 

software compilation and cloud computing could be harnessed to provide the necessary 

computing power to generate large volumes of these unique versions as and when 

required. In addition to this, efforts are being sought to prevent the need to restart 

software or computers when patches are applied. Much research has been 

conducted around dynamic software updating (DSU) which would allow the unique 

versions to be updated or modified without affecting functionality or run-time 

performance [111] [112]. 

3.2.1.2 Virtualisation 

Virtualisation is seen as one of the key enabling technologies for the future 

Internet. It is the artificial creation of a resource such as a hardware platform, 

storage device or server by combining or partitioning physical hardware or software 

and isolating it from the rest of the system [113]. For example the resources of a 

single computer could be partitioned so it appears there are two isolated computers 

available instead of one. Virtualisation has grown rapidly because of its use in cloud 

computing [114] and Bring Your Own Devices (BYODs) [115]. It has been used for 

many years in desktop computers, but more recently in mobile devices with 

software such as ȁHorizon MobileȂ by VMware [116], and open source software led 

by the Xen project and backed by AMD and Google [117]. Virtualisation has use in 

networks [118] [119], servers, services [120] [121], physical objects [122] [123], and devices 
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(embedded) [113], increasing hardware utilisation, security, and efficient 

administration [124].  

Virtualisation within devices could prove to be a useful tool in the realisation of 

software diversity due to its ability to switch between isolated software programs, 

operating systems, or entire software stacks, and could provide an alternative to, or 

complement the research field of dynamic software updating. Devices could be pre-

installed with only a low level virtualisation and management layer, so that the 

enabling technologies of dynamic software compilation and cloud computing could 

be used to provide hardware-independent functionality and individually tailored 

operating systems and drivers as and when required [113]. Virtualisation can also 

isolate malware prone applications by providing some protection against known 

and unknown viruses through protecting the disk and files. If an infection occurs 

software can be reloaded to its original, known good state and thus remove the 

malware. Virtualisation can be partial, for example through sandboxing (Figure 3-1 

(a)) of malware prone applications such as web browsers. Sandboxes examine 

certain system calls for malicious behaviour, then rewrite or block them as 

appropriate.  Virtualisation can also be full using virtual machines (VMs) (Figure 3-1 

(b)) to isolate whole operating systems [125]. VMs are created and managed by 

Hypervisors [126] which either sit directly on top of the physical hardware (type 1 

hypervisor) or sit on top of the host operating system (type 2 hypervisor). Although 

virtualisation has the potential to aid diversity, there are a number of design issues 

that would need to be addressed before it can be practically used (§9.3.2.4.) 
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Figure 3-1 – Virtualisation scenarios 

It is not just virtualisation however that could support diverse software, hardware 

enabling technologies could also be important for the successful deployment of 

diversity. Chip designs made up of small processors for parallel software tasks 

could have the potential to accommodate diverse software onto a single chip [127] 

[128]. 

3.2.1.3  Software as a Modular Structure 

All computing devices are equipped with an underlying hardware and software 

architecture. The latter is comprised of numerous software components organised 

into layers that perform specific functions and is called a software stack. 

Complementary to the software stack is the network protocol stack, which is also 

comprised of layers, but contains protocols defining the communication from one 

device to another within the network [129]. Operating Systems have well defined 

software stacks and adhere to the relevant network protocol stacks to communicate 

across the network.  

Within the future it is likely that this modularity will remain, but with increased 

functionality. There has already been an explosion of functionality of user software 

Type 1 hypervisor

Host Hardware

Hypervisor

Type 2 hypervisor

Host Hardware

Host OS

Hypervisor

Sandboxing

Host Hardware

Host OS

Apps

OS
App

1

App

2

App

3

App

4

sandbox VM1

Apps

OS

VM2

Apps

OS

VM3
Apps

OS

VM1

Apps

OS

VM2

Apps

OS

VM3

a) Partial virtualisation b) Full virtualisation



Chapter 3  Ph.D. Thesis 

Jennifer Jackson 47 of 357 May 2017  

with the introduction of ȁ“pp storesȂ but the increase in functionality is likely to 

extend to other layers of the stack as more emerging products enter the IoT. The 

ability to partition software into layers and functionality, whether source code or 

binary files, could be beneficial for creating diverse computing systems where 

alternative versions can be generated with the same functionality using the same or 

different techniques at each layer of the stack. 

Four different software stacks supporting computing devices are described here 

and shown in Figure 3-2 to illustrate the similarities between them in terms of 

software layers and functionality. The first three software stacks: the Android [130] 

[131], iOS [132] [133] and Windows 8 [134] [135] are all distinct operating systems 

that can be used with mobile devices. The Windows 8 architecture has a split 

software stack with a shared kernel. One half caters for a modern ȁStyleȂ with touch 

screen capability and the other half encompasses the old classic desktop structure. 

The fourth software stack: the generic open source Linux OS [136] [137] is designed 

as a modular structure so that different distributions such as Ubuntu or Debian can 

be used with the same underlying core libraries, with a pick and mix of different 

software packages and versions. Although the layers and software components 

across all four operating systems are named and partitioned differently, the general 

functionality remains consistent across the architectures. The layers can be 

partitioned into four main categories. Starting from the lowest layer that sits just 

above the hardware, the categories are: kernel, core OS libraries, application 

services, and applications. 
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Figure 3-2 – Comparing different operating system software stacks 
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to support the drawing of graphical user interface (GUI) windows, and 

communicates with the graphics card device driver in the kernel. Other notable 

libraries at this layer include networking and web support, database functions such 

as support for the Structured Query Language (SQL), media support such as 

multimedia streaming, video and audio capabilities including CODECs (Coder 

Decoder: coding and decoding of media files), and security such as Secure Sockets 

Layer (SSL) for establishing encrypted links between web servers and browsers.  

• The application services layer is the level at which application frameworks are 

created, with functionality such as window managers that control the position, style 

and timing of windows drawn on the display screen. The open source Linux 

software stack has separate windows managers and desktop software packages. The 

GNOME desktop, for example, uses the GTK+ toolkit containing a collection of 

applications to form a graphical environment which itself uses the X11 windowing 

application program interface (API). The multimedia streaming package in 

Windows 8 (Silverlight) is an application framework for browser multimedia 

applications and is used by Netflix for streaming films and television programs. The 

Android application framework is comprised of a number of managers controlling 

different aspects. 

• The applications layer is where all the user software is found. Applications 

utilise the application services layer of an operating system, and sometimes libraries 

in lower layers to create interactive user software. Internet browsers for example sit 

at this layer for which there can be different products that are compatible with the 

same operating system such as Firefox and Opera (plus others) for Linux, or 
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different versions of a product across operating systems such as Firefox for Linux or 

Firefox for Windows. 

There are compatibility issues between different software stacks due to 

dependencies on lower layer libraries, with often only one choice available for a 

specific function. It is only at the application layer where there tends to be more 

choice of software, particularly with the introduction of ȁ“pp storesȂ. The evolving 

suite of open source Linux software modules however at lower layers provides a 

wider choice of functions that can be mixed and matched as appropriate with the 

added benefit of being compatible. The development of open source software within 

the IoT is also growing [139] [140] [141] [142] [143] [144] [145]. This increased use of 

open source could provide a natural method of software diversity since there can 

often be alternative choices of modules providing similar functionality. Additionally 

open source is constantly under scrutiny meaning bugs tend to be fixed quickly, and 

it costs less in monetary terms for the end user than proprietary counterparts 

making it a cost effective way of introducing diversity and fixing vulnerabilities. 

3.2.2 The Future Topology of Connected Devices 

In the past, society has seen the integration of mobile phone networks and the 

Internet using smartphone devices, third generation (3G) networks and protocols, 

local wireless access points using WiFi and wireless peer-to-peer communication 

using Bluetooth [146]. In the future, the IoT will combine enabling technologies with 

many different types of objects, for a vast range of applications requiring 

improvements in networks and services [8] [6] [147] (Figure 3-3). Traditional 

internet networks are based upon the application layer client-server model [129]. In 
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the future, the IoT is likely to be constructed from different topologies utilising a 

multitude of communication protocols, depending upon the connected devices and 

their application (Figure 3-3). There will be more localised peer-to-peer communication 

such as device to device (D2D) or machine to machine (M2M) making more use of 

protocols such as Bluetooth, or the fourth generation (4G) WiFi Direct and LTE 

Direct, or their fifth generation (5G) equivalents when they are released [146]. They 

may also be connected in an ad hoc fashion, as and when the services are required, 

such as in the case of moving phones or vehicles creating localised ad hoc networks 

[148].  

 

Figure 3-3 – Topology of the future Internet 

3.2.3 Peer-to-Peer, Ad hoc, and Sensor Networks 

Localised Peer-to-peer communication describes the direct communication between 

one device and another. This section describes different types of peer-to-peer 

networks and where mobile ad hoc networks fit in. Several networks communicate 

in a peer-to-peer fashion, although the underlying mechanisms and network 

topology may be different. 
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A peer-to-peer overlay network has a distributed architecture and generally operates 

at the application layer of a network protocol stack (§3.2.1.3) using the Internet as 

the underlying network and can operate over wired or wireless connections [149]. In 

a traditional client-server model, shown simplistically in Figure 3-4 (a) without 

including network detail, a user will communicate with a single server to transfer a 

whole file. By contrast, in a peer-to-peer overlay network (Figure 3-4 (b)) 

connections with multiple hosts are made with many small data requests to each. 

The peer-to-peer client then combines the data to recreate the file. BitTorrent is one 

of the most popular peer-to-peer file sharing protocols and is often used for 

downloading films [150].  

Whilst peer-to-peer overlay networks provide logical peer-to-peer 

communication, ad hoc networks provide physical peer-to-peer connections. They are 

formed at the lower network layer of a network protocol stack (§3.2.1.3). They also 

have a distributed architecture, but devices used within ad hoc networks tend to 

interact closely with humans often following human mobility patterns (§4.2). Each 

node in the network acts as a router and a host which self-configure to form an 

arbitrary topology [151] (Figure 3-4 (c)). Nodes communicate through single-hop 

and multi-hop paths to each other in a peer-to-peer fashion. For nodes that are both 

mobile and wireless with multi-hop functionality, they are generally referred to as 

Mobile “d hoc NETworks ǻM“NETȂsǼ [148] [152].  
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Figure 3-4 – Network topologies 
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scenarios such as mobile phone communication, rescue operations, health care, and 

much more [154].  

Sensor networks are sometimes discussed in the literature as a type of ad hoc 

network, but they can also be considered different from ad hoc networks [154] 

depending upon the type of network topology and application areas that are being 

considered [155]. Devices contain sensors and actuators and collaborate between 

themselves using wired and wireless technologies which may be static or mobile. 

They normally have a central device responsible for gathering sensed data called the 

sink or master and interact more closely with the environment for applications such 

as machine surveillance, tracking of goods, and precision agriculture [154]. The 

three most common topologies are mesh, star and tree (Figure 3-5), where the mesh 

topology could incorporate an ad hoc network if required for a specific application 

[155].  

 

Figure 3-5 – Sensor network configurations 

a) mesh

b) star

c) tree

To Internet

or local 

network

master

slave

slave

slave

slave
slave

slave

slavemaster

slave

router

slave slaveslaveslave

router

slave

slave

slave

slave

master

slave

slave



Chapter 3  Ph.D. Thesis 

Jennifer Jackson 55 of 357 May 2017  

3.3 Cyber Security 

3.3.1 Malware in a Monoculture Environment 

The increased use of computing devices and wide scale adoption of a limited 

number of operating systems (OS) and common protocols continues to pose a 

significant software monoculture threat. Malware is prolific in monoculture 

environments since it can spread over networks taking advantage of software, such 

as widely used operating systems, that all have the same vulnerability. Malware is 

any malicious software used to interfere with computer operations, access private 

data and systems, or display unwanted advertising. It can infect or delete files, deny 

services by flooding the network, enable remote access to control devices, modify 

system applications, prevent functions from working or even turn off security 

features such as antivirus tools. The main types of malware include:  

 Viruses: Attach to other programs to spread, and self-replicate when 

executed. 

 Worms: self-replicate without needing other programs to spread. 

Sometimes require user interaction to initiate the spread (e.g. Cabir Worm 

[156] ). 

 Trojans: Appear as legitimate software (e.g. hidden within ȁ“pp storesȂ 

[157]) and can harbour spyware, ransomware, or adware. 

 Spyware: Capture sensitive data or key presses to obtain login details. 

 Ransomware: Extract money by encrypting files or locking the device until 

a ransom is paid (ransomeware targeting mobile users is increasing [157]). 

 Adware: Launches unwanted advertisements. 
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3.3.2 Successful Malware Attacks 

Malware takes advantage of vulnerabilities unintentionally (mostly) created in 

the design and implementation of software code. Exploit code is written and used 

within malware to exploit a vulnerability. The exploit code can comprise a small 

piece of software, a block of data or a chain of commands. A successful malware 

attack requires several steps as shown in Figure 3-6. The first is an entry point for an 

exploit utilising a vulnerability through which there is redirection of control on the 

target computer to download a payload.  The payload could be the malware itself, 

or a downloader which then creates a backdoor for other types of malware to be 

installed. Malware then carries out its intended execution such as stealing data, or 

causing damage. If the malware has avoided detection and has been programmed to 

spread over the network, it will then start infecting other computers, either straight 

away, or after a trigger. Sometimes exploit kits are used which include pre-written 

exploit code targeting vulnerabilities in unpatched software. Some exploit kits run 

on web servers, with the purpose of identifying software vulnerabilities in client 

machines so that malware can be executed. 

 

Figure 3-6 – Steps of a successful malware attack 
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to choose from. For example the ŘŖŗś mobile ȁGodlessȂ malware contains multiple 

exploits that can gain root access to various versions of Android-based devices. 

Once the malware has achieved root access it can receive remote instructions to 

download other malicious software [158].  

Some attackers however use exploits to target publically unknown 

vulnerabilities. These types of attacks are called zero-day and are growing more 

common. They can last up to 30 months [15] before the vulnerability is publically 

disclosed (Figure 3-7), and are often targeted at specific organisations such as the 

government. Additionally, these types of attacks can use multiple zero-day exploits 

to gain entry to the  network, access information, propagate to other devices and 

perform malicious tasks. The 2010 Stuxnet worm for example used four separate 

zero-day exploits to gain entry and cause disruption to an Iranian nuclear power 

plant [17]. The first exploit targeted an automatic file execution vulnerability in a file 

shortcut of Microsoft Windows OS which was used to inject the worm via USB 

sticks into a computer system. The second targeted a shared print-spooler 

vulnerability using remote code execution (§3.3.4) which was subsequently used to 

spread the worm. The third and fourth targeted system-level privileges to gain 

control even when computers had been locked down to only allow specified 

software to run. This was the first threat to use so many publically unknown 

vulnerabilities. 
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Figure 3-7 – Zero-day attack time line adapted from [15] and [14] 
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the ȁHeartbleedȂ and ȁShellShockȂ zero-day vulnerabilities were disclosed in 2014, 

between thirty and thirty five thousand follow on attacks were recorded [14] (Figure 

3-7). A surge in attacks does not always happen this quickly but usually faster than 

vendors can deploy patches. Trident for example was patched in 10 days after it was 

disclosed [160], but many people still use old software that is no longer supported 

through patches such as Windows XP which accounts for around 18% of infections 

[161]. 

 

Figure 3-8 – Vulnerabilities in the software stack targeted by Pegasus exploits 
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software stack and that malware can be injected or propagated using a single 

vulnerability at any layer. The actual exploit code however will be different for each 

unique vulnerability discovered. Secondly, vulnerabilities described here are 

referenced later in the chapter. A full description of the vulnerabilities and their 

location is included in the study [2].  

Several of those listed relate to buffer or memory vulnerabilities (nos. 

3,12,14,17,18) which can occur at any layer of the software stack and lead to the 

execution of malware. For example a buffer copy without checking the size of the input 

(no.3) often leads to the classic buffer overflow attack where the attacker writes data 

outside the bounds of the buffer to an adjacent location. This can change the 

behaviour of the program, overwrite local variables or a function pointer, or change 

a return address to point to malware.  

In contrast, the leading vulnerability, improper neutralization of inputs during web 

page generation (no. 1) only affects Web applications but can lead to a range of 

attacks including an ideal entry point for malware. It occurs when untrusted inputs 

are not mitigated against. The most common attack method is via script injection, 

often called cross-site-scripting, where attackers inject JavaScript or other content 

into a web page that the web server application generates. The web page can then 

be accessed by other users, whose browsers execute the malicious script.  

Code injection attacks often target online SQL databases by modifying 

improperly checked SQL queries (no. 2). Additionally they can be used in 

conjunction with memory corruption to redirect execution to the injected code, for 

example for malware, by modifying a code pointer in memory. Code reuse attacks 
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can also be used, where instead of injecting new code small sections of legitimate 

code called gadgets are chained together to execute the exploit instead. 

Other vulnerabilities that improperly deal with external inputs (nos. 4,6,7,9,15,16) 

can allow an attacker to by-pass security mechanisms. Cross-site request forgery 

(no.4) for example occurs when a web application insufficiently verifies requests by 

the user allowing an attacker to trick a user into making an unintentional request to 

the web server which is then treated as authentic. Other errors leading to security 

mechanisms being bypassed, include the setting of improper access, restrictions and 

permissions (nos. 5,8,19,20,21,22,25) and can lead to code execution for the 

propagation of malware. 

 

Figure 3-9 –Location of vulnerabilities in the software stack [162] [2] 
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22 Al location of Resources  Without Limits  or Throttl ing

23 URL Redirection to Untrusted Si te

24 Use of a  Broken or Risky Cryptographic Algori thm

25 Race Condition

Applications

Kernel (OS Drivers)

3,11,12,14-18,21,22

Core OS libraries

3,11,12,14-18,21,22,24

Application services (OS System)

3,11,12,14-18,20-22,24,25

Web

1-25

Database

2,3,5,6,

10-12,

14-19,

21,22,25

Other

3,7,11,12,

14-19,

21,22,24

2010 MITRE/SANS top 25 vulnerability list
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3.4 Diversity 

3.4.1 Diversity as a Security Mechanism 

In the 1970s, N-version programming was proposed within the field of fault 

tolerance to increase the reliability of systems that used software [28]. It was known 

that identical software running on independent systems would fail in exactly the 

same way with the same inputs, so the idea was therefore to create N-versions of the 

software. Since then the concept of diversity within computer networks has 

expanded, with the majority of research focused upon applications such as 

improving communications [163-165], avoiding security attacks [35, 37, 39, 166, 167] 

[168], designing fault tolerant systems for harsh environments [169-172] improving 

test simulations [173], and in developing enabling technologies to support such 

concepts [127]. Interest in the use of diversity as a security mechanism within 

computing developed as computers became ubiquitous, attacks became more 

common, and the risks of a software monoculture were acknowledged [19], [18]. A 

biological perspective on diversity as a security mechanism was touched upon by 

Forrest [174] who recognised that diversity is an important source of robustness in 

biological systems, and its beneficial effects in computing systems should be 

investigated. Later, Crandall highlighted that biological diversity for computer 

security needed an ecosystem perspective [29]. There has been very little 

development in this research area until recently since the development of key 

enabling technologies (§3.2.1) such as dynamic software compilation, cloud 

computing, and virtualisation is only now making it possible to produce, 

disseminate and maintain the different versions of software needed [20]. 
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Consequently there has been a renewed interest around diversifying software [175]. 

Diversity used as a security mechanism aims to make it more difficult for attackers 

to target multiple devices and networks during a single attack. The propagation of 

malware relies on being able to exploit the same vulnerability on multiple machines 

and so diversity makes attackers target each system individually. Without 

knowledge of the programs on a specific computer targeted attacks such as those 

using zero-day vulnerabilities become more difficult [14]. Diversity as a security 

mechanism is not just applicable to singular computers and their user software but 

may also manifest in other areas of defence such as network design [176] and 

network defence mechanisms. Diversity of network defensive techniques such as 

firewalls and intrusion detection systems is also related to the notion of defence in 

depth [177], which is a multi-layered defence strategy with complementary 

techniques to block, detect, monitor and remove suspicious activity to reduce the 

probability of a successful attack. 

Diversity research relevant to malware and the security of computers, their 

interconnected network (as opposed to diverse network defence), and user software 

can be broadly partitioned into three categories:  

1) Creating diverse code 

2) Creating diverse systems 

3) Measuring and analysing diversity 
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3.4.2 Creating Diverse Code 

Creating diverse code involves practical code level manipulation techniques such 

as obfuscation, insertion, and randomisation of code, data, or binary files to generate 

different versions of software with the same functionality. Some techniques have 

been designed that can be applied at the source, or compilation and linking stage, 

usually prior to software distribution, whilst other techniques have been developed 

to be applied after distribution such as during installation, loading, or program 

execution  [178]. Research has shown that diversifying software is possible using 

these techniques. Additionally, larger scale experiments have been carried out 

recently that prove diversity can actually be a viable method for wide scale use 

[179],[180]. There are some key types of attacks against which code level 

diversification is good at guarding. These include information leaks, memory 

corruption such as buffer overflows, as well as code injection and code reuse, the 

majority of which can allow the propagation of malware [181] [182] [178]. 

Vulnerabilities allowing these types of attacks are discussed in section 3.3.4. 

3.4.2.1 Source Code Transformations 

Generating different source code implementations has been widely researched 

within the field of fault tolerance, where the idea originated from N-version 

programming, and has often been a manual task [178]. Techniques for the automatic 

generation of source code are more recent. Source code transformations is a technique 

used to automatically create a diverse set of program variants by undergoing 

different transformations given a baseline source code. Some of the transformations 

are purely random while others involve program analysis [179], and are all based on 
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removing, adding or replacing statements in source code [180]. This technique has 

been demonstrated by performing diversity transformations on the server side of a 

client-server network [179]. Multiple cloned copies of the server software stack, 

called request handlers are generated to deal with incoming requests. Instead of 

using cloned copies, these multiple copies could all be different providing 

diversification.  

3.4.2.2 Compiler Transformations 

Compilers are used to translate high level source code into low-level machine 

code automatically. Some diversity techniques take advantage of this process 

already in place by extending existing compilers to automatically diversify machine 

code. 

The NOP insertion technique [33] [34] works by randomly inserting non-

alignment, no operation (NOP) instructions during compile time giving a large 

number of program variants. A NOP is an instruction that the processor fetches and 

executes without any effect on the processor register or machine memory. Although 

adding NOP instructions can positively impact diversity it can also negatively affect 

the performance of the generated binary file.  

Another proposed method utilises the compiler optimisation algorithm. 

Compilers usually try to find the best binary implementation to give optimum 

performance out of numerous possibilities. Instead of choosing the best solution, the 

alternative compiler solutions could also be used to generate alternative unique 

binaries [110] [183] [20]. 
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3.4.2.3 Address Space Randomisation 

Address space randomisation randomises the locations of data and code objects in 

memory [184]. Address space layout randomisation (ASLR) is one of the most well 

known diversity techniques which randomises the layout of a section of memory for 

an executing program. A compiler equips the code for base address randomisation 

and then the operating system changes the virtual memory addresses at which the 

code is loaded [178]. The idea is to provide some protection from memory 

vulnerabilities without needing to remove them from the system such as those 

involving code injection buffer overflow attacks (§3.3.4). Since the randomisation on 

each machine is different, any exploit that depends on a specific relative memory 

address will generally fail. ASLR is in widespread use within operating systems 

such as Google Android, Linux, Microsoft Windows, and iOS [185] [186]. 

3.4.2.4 Data Space Randomisation 

Data space randomisation (DSR) [187] is where the representation of different data 

objects or code in memory is randomised. Data space randomisation can be 

implemented in a variety of ways [185]. One way to modify the data is through 

encryption such as to logically XOR each data object in memory with a unique mask 

and then decrypt it before it is used. In the case of a memory vulnerability attack for 

example using code injection (§3.3.4), the attacker would only be able to write a 

random value into memory rather than the intended value [187]. 
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3.4.2.5 Instruction Set Randomisation 

Instruction set randomisation (ISR) creates a unique set of synthetic instruction sets 

randomly for each computer such as for the Intel x86 machine code [188] [189] [190] 

[191]. Translation from the synthetic instruction set to the instruction set of the 

actual target computer requires an interpreter or just-in-time compiler. Code 

injection attacks utilise the synthetic instruction set and therefore are unable to 

penetrate into the system.  

3.4.2.6 Executable Code Randomisation 

Randomisation techniques such as ASLR and ISR that rely on the 32-bit and 64-

bit architectures can potentially be open to brute force attacks [168] [192] where an 

attacker has many attempts with different combinations until successful. Executable 

code randomisation is where executable code is broken into many functional blocks 

that can be shuffled in memory just before execution [181]. The number of unique 

permutations is higher than ASLR. With 5ŖŖ blocks there are ȁśŖŖ factorialȂ 

permutations making a brute force attack difficult.  

Another technique named In-place code randomisation [193] is based on the 

randomisation of the code sections of binary executable files. Firstly code is 

extracted from the executable binaries using a disassembler, and then 

transformations are conducted on small sections of code such as substitution with 

functionally equivalent alternatives, reordering of instructions, and reordering of 

register preservation code. 
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3.4.3 Creating Diverse Systems 

Creating diverse systems, involves the creation of diverse networks or algorithms 

at a higher level of abstraction to analyse their behaviour in relation to either 

diversity alone, or the effectiveness of diversity against an attack model. There have 

been relatively few research papers associated with diversity algorithms to analyse 

overall network behaviour. Those that do exist are very wide ranging in their 

methodology and are often for a specific topology or purpose making them difficult 

to compare. Additionally some are preliminary studies or ideas and therefore have 

limited results in which to analyse the effectiveness of diversity adequately. These 

diverse systems are described below. 

3.4.3.1 Colouring Algorithms 

Colouring algorithms, which are widely investigated in graph theory [194] 

(§4.2.4), have been proposed [35],[36],[37] to try to minimize the number of 

neighbours running the same software package.  In this type of algorithm each 

colour is assumed to be a different software package where each node in the 

network runs a single software package but each can be the same, or different. 

Colouring algorithms however tend to require a global perspective of the network, 

where knowledge of all the links between nodes are needed in order to assign 

colours. In an ad hoc network where, nodes are moving, and links between them are 

constantly changing these types of algorithms would not necessarily be practical. 

Additionally the compulsory assignment of software packages to nodes would be 

difficult in these changing scenarios. Colouring algorithms proposed for software 

diversity involve a fixed number of colours, usually 3 or 4 [35],[37] and are based on 
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network topologies with fixed communication links. OȂDonnell [35] used a network 

topology generated from email traffic logged over a fixed time period to investigate 

4 types of colouring algorithms. The first is where each node randomly chooses a 

colour which remains fixed. The second is where each node at random intervals 

analyses its neighbours and chooses a new colour for itself if the current one is used 

frequently. The third allows pairs of nodes to swap their colours, and the fourth 

combines self updating and swapping which was found to produce the best colour 

distribution across the network. An attack was simulated by selecting one colour to 

be vulnerable with the goal of switching every node in the network to the 

vulnerable colour. This was achieved by introducing malicious nodes to lie about 

different aspects of the algorithm such as their colour or proposed swap. The 

analysis found that the fourth algorithm with the ability to switch between the two 

methods made it more difficult for the attacker because it was unclear which 

method the targeted node was going to carry out and proposed that diversity 

algorithms should contain diversity within them as well. 

Yang [37] focused on sensor networks by partitioning sensor nodes into cells of 

either tessellating hexagons with three possible colours or squares with four 

possible colours (Figure 3-10). The links between sensors were modelled using 

graph theory. Each hexagon or square contained sensors with the same colour. Once 

a cell colour is compromised more than one sensor is infected, with the intention 

that a potential worm attack could be quarantined. A worm attack was simulated 

using a standard Susceptible - Infected model (§4.3.2) where each sensor was able to 

adopt either of two states: susceptible where it is susceptible to the worm but not yet 
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infected, and infected where it has been infected by the worm. With four colours 

arranged in squares as shown in figure 3-10, the minimum distance between the 

same colour is the length of the cell (L). The number of connected sensors (which are 

assumed to be fixed in location) with the same colour is dependent upon L and the 

transmission range of the sensors R. When R is less than L the infection can be 

quarantined to a single cell so that the total number infected is dependent upon the 

number in the infected cell and their location of being within transmission range of 

each other. For a non-diverse system all sensors could potentially become infected 

(assuming R is large enough between individual sensors) since it would be 

equivalent to all cells having the same colour. 

 

Figure 3-10 – Four colour, colouring algorithm [37] 

3.4.3.2 Epidemic Based Attack Models 

Epidemic models are widely used within ecology to study the spread of diseases 

and have also been used to model the spread of malware in computer networks 

(§4.3). Introducing software diversity into epidemic models has been considered by 

Hosseini [195] who used a scale free network topology often considered as a 

common structure of the Internet, together with a discrete-time deterministic SEIRS 

epidemic model with   diverse software packages. The SEIRS epidemic model has 4 

Sensor location in squares Graph representation
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states: Susceptible, Exposed, Infected, and Recovered, where once recovered the 

individuals become susceptible again to the same attack. The deterministic 

equations are modified such that by applying   diverse software packages, the rate 

of infection of propagation   is adjusted to    . Another similar model uses 

networks and epidemics to model the diversity and malware propagation of nodes 

[196]. The assumption is that compilers with ȃdiversity enginesȄ produce many 

different executable software variants to generate diverse node types. There are   

node types and   nodes with   malware. For homogeneous mixing networks, the 

total number of nodes infected is     . These equations assume that maximum 

diversity is being achieved so that the number of different software packages or 

node types are equally distributed, thus keeping the equations simplified. The 

colouring algorithm used by Yang [37] (§3.4.3.1) also included an epidemic 

Susceptible - Infected model to analyse how a worm might propagate in response to 

the diversity scheme developed. 

3.4.3.3 Biological-Inspired Models 

Genetic programming [197] is a large topic of research in which computer 

programs are encoded as a set of genes (§2.2.2.1.4) that evolve using an evolutionary 

algorithm to find programs that perform well against set criteria. Usually many 

programs are tested over lots of generations until a solution converges. It has been 

proposed that the parameters used to control how diverse the programs are can be 

used to develop a method for generating a pool of diverse programs (rather than 

converging to a single solution) [198]. It is unclear from the literature whether this 

method has been practically tested.  
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Holtschulte [199] describes a model inspired by the immune system of how 

computers on a network distribute and share patches to repair variants of software 

in response to an attack. The diversity being considered here is the diversity of the 

software patches generated by each node in response to an attack, rather than the 

diversity of the original software in the network which is the same. Nodes attempt 

to generate their own repairs or send requests to neighbours for software variants 

until a resistant variant is found. The research showed that the network topologies 

that allowed the largest amount of software sharing had the least diverse software 

variants, but were also the quickest to resist new attacks, presumably because when 

a resistant variant was found it could be distributed more quickly.  

 Another ecosystem related model, but does not fit into the epidemic model 

category, is that of Bi-partite relationships (Figure 3-11, individuals categorised into 

two sets with relationships between them). These observed relationships within 

ecosystems have been used to introduce ecological based diversity ideas into client-

server software architectures where one set represents the servers and the other the 

clients connected with relationships as shown in Figure 3-11 [175]. The project 

proposed (but not simulated or implemented at the time of this writing) the 

definition of evolution rules to generate diversity in the client server networks. They 

highlighted that the rules should consider a trade-off between providing more 

servers for redundancy and increased cost. 

 

Figure 3-11 – Client–server bipartite graph 

clients
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3.4.3.4 Other Models 

The problem of deciding which software variants to assign to nodes in a network 

has been considered from an optimisation perspective so that the [200] overall 

network resiliency is optimised when placing diverse variants at routing nodes 

within a cloud based network consisting of routing nodes and client nodes (Figure 

3-12). An attack model assigns a probability of an attacker being able to exploit a 

vulnerability for a particular variant within a constrained time frame. Subsequently 

any routing node in the network with this variant becomes compromised. The 

resiliency metric was computed based upon the number of surviving client-to-client 

connections offered by the network when under attack. 

 

Figure 3-12 – Diversity assignment within a cloud 

Diversity for the prevention of software piracy has also been proposed as an idea 

(but not simulated or practically tested) [167]. The model suggests two levels of 

diversification. Firstly each distributed copy is different, and secondly each 

installation of a specific copy is different. It is proposed that a database keeps track 

of the legitimate copies. When a user requests an update, it is tailored to each 

unique copy.  

Instead of designing networks where devices differ from one another in terms of 

software, methods have been proposed to create diverse versions of software 

internally on a single device with a monitor analysing the outputs (Figure 3-13). 

routers

clients
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When the outputs differ an attack is assumed and the variants are reset to 

previously known good states. Using redundant programs has been widely studied 

within the field of fault tolerance. Using different versions of commercially available 

software has been investigated [201] as well as automatically generated software 

[202].  

 

Figure 3-13 – Internal device level diversity 

The use of virtual machines to create internal device diversity has also been 

proposed [203] [204]. A device level system named ChameleonSoft [203] partitions 

software programs into small chunks which run within separate capsules. A capsule 

is described as a smart micro sandbox/virtual machine encapsulating a single active 

code variant as part of a running application. The capsules manually or 

automatically use a pre-generated set of functionally equivalent variants which are 

intelligently shuffled at runtime to confuse the attacker. Confusing a targeted 

attacker can make it difficult to establish what vulnerabilities may be present or 

what resources are being used in a specific device at any given time. 

3.4.4 Measuring and Analysing Diversity 

A broad range of techniques have been proposed for measuring and analysing 

diversity of computer networks and are achieved either through the gathering of 

data, or through the use of diversity metrics. Some metrics are single statistical 

values, whilst others are multi-dimensional. Other techniques do not measure 

Variant 1 Variant 2
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diversity directly but analyse other important properties such as the commonality of 

vulnerabilities between software. Descriptions of the methods used are detailed 

below. 

3.4.4.1 Shannon Index 

The Shannon Index (or Shannon Entropy) is used to measure species and genetic 

diversity in natural systems (§2.3.2.2.3). It has also been used for analysing diversity 

in a computer network after the response to an attack where diverse software 

patches and repairs were generated [199]. It has also been used to measure diversity 

(discussed as entropy) of a bipartite graph interconnecting hosts and vulnerabilities 

within a game theoretic model [40].  

3.4.4.2 Number of Variants 

A popular metric is just to simply use the number of different software variants. 

Hosseini [195] and Hole [196] both use the parameter   (number of software 

variants) within their epidemic models to describe the diversity. This metric is on a 

par with diversity richness (species, genotypic, or allelic) which is used as a 

diversity measure in natural systems (§2.3). This metric however does not take into 

account the distribution and number of each type used. 

3.4.4.3 Resiliency 

The Diversity Assignment Problem [200] as described in 3.4.3.4 was presented to 

specify how to optimize overall network resiliency when placing diverse variants at 

routing nodes. The resiliency metric was used as a measure of diversity and was 
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computed based upon the number of surviving client-to-client connections offered 

by the network when under attack. 

3.4.4.4 Multi-dimensional Properties 

Measuring diversity has also been considered from a multi-dimensional 

perspective. It was proposed that diversity should be measured by considering 6 

dimensions as shown in Figure 3-14 representing the functional capabilities of the 

network architecture [38]. Dimensions proposed were: operating systems, 

communications medium, service model, network protocol, transport protocol, and 

routing mechanism. The distance between network elements reflects their diversity, 

for example the distance between OSs Linux and Windows would be large and the 

distance between Network protocols IPv4 and IPv6 would be small. A point in the 

multi-dimensional space would be representative of the software stack on a unique 

device. Three dimensions have also been proposed representing aspects that are 

orthogonal to each other such as hardware, operating system, and application 

software.  

 

Figure 3-14 – Multi-dimensional diversity metric [38] 
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This is combined with the Shannon Entropy discussed in section 3.4.4.1 above so 

that the final entropy measure is the sum of the entropies of each dimension [39]. 

3.4.4.5 Analysing Software Binary Files 

An attempt at measuring the existing diversity of systems has been carried out 

by collecting data and analysing variants of software binary files [205]: Three 

metrics were proposed to measure diversity; 1) The probability of a successful 

targeted attack which is based upon the number of instances of the most frequent 

variant of a given file and the total number of instances of that file. 2) The ratio of 

the number of variants to the total number of instances of all the variants of a file. 

The bigger the ratio, the more variants the file has and subsequently more attacks 

are needed to compromise all the instances of the file. 3) The coefficient of variation. 

This is the ratio of the standard deviation to the mean. If the ratio is small the 

instances are distributed uniformly. 

3.4.4.6 Common Vulnerabilities 

Another approach to measuring diversity in current software has been through 

the analysis of vulnerabilities. One study analysed the commonality of 

vulnerabilities of 11 different operating systems over a 15 year period [206]. Data 

was extracted from the National Institute of Standards and Technology (NIST) 

National Vulnerability Database (NVD). Every pair of OSs were analysed for 

common vulnerabilities. Common vulnerabilities were found to exist, and not 

surprisingly, there were more common vulnerabilities between different versions of 

the same OS such as between Windows 2008 and Windows 2003 than between 

completely different OSs. It was also found that one vulnerability affected nine OSs, 
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which related to a well known problem in the design of the TCP leading to denial of 

service problems. This means that vulnerabilities introduced at the design stage can 

propagate into the code no matter how it is implemented. In general though the 

commonality of vulnerabilities were deemed sufficiently low enough to declare that 

building a system with diverse OSs may be a useful security technique.  

Another study focused on application software during a one year period [207]. 

The research highlighted that the majority of the software products, including those 

providing the same service and those that ran on multiple operating systems, either 

did not have the same vulnerability or cannot be compromised with the same 

exploit. However it was noted that although different distributions of the same 

product could not be attacked by the same exploit code they had at least an 80% 

chance of suffering from the same type of vulnerability. In general, again it was 

concluded that using different commercial software applications could be an 

effective security technique. 

3.4.5 Diversity Open Research 

There are currently open research questions regarding where and when diversity 

should be introduced [208], or whether it should be applied everywhere at all levels 

and layers. There are currently a wide range of ideas and methodologies proposed 

for network level diversity often targeted at a specific topology or purpose, however 

the majority are limited to conceptual ideas and minimal analysis. Despite the 

growing research in this area there is still a large gap in understanding the actual 

benefits of diversity as a security mechanism [209], particularly from an ecological 

perspective. 
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There is no well defined metric for measuring diversity within computer 

networks. A broad range of techniques have been proposed but none capture both 

the granularity of diversity at different layers of a software stack and the 

distribution of diversity at the same time. Additionally none consider practical 

constraints associated with compatibility issues, user preferences or devices unable 

to participate due to hardware limitations. 

The tools and technologies enabling wide-spread software diversity to become a 

reality are slowing merging together, however many of the methodologies are still 

early stage proposals and larger scale experiments analysing their practical 

effectiveness are still limited or yet to be undertaken. 

3.5 Summary 

This chapter discussed three areas of technology and research. The first focused 

on the Internet. Software and protocols of the future are likely to remain 

modularised, perhaps with even more functionality and choice, particularly with 

the continuously evolving open source paradigm. Software stacks can be partitioned 

into four main layers, although these layers can be broken down further to define 

specific functionality. The modularity of software, together with improved 

virtualisation, and better automated software generation and dissemination, could 

allow individually tailored software stacks to be dynamically created providing a 

powerful tool for enabling diversity. The Internet will comprise different topologies 

utilising a multitude of communication protocols depending upon the devices and 

their application. There will be more localised peer-to-peer communication, with ad 

hoc networks featuring more prominently in the future. 
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The second section on cyber security focused upon malware which is prolific in 

monoculture environments since it can spread over networks taking advantage of 

software, such as widely used operating systems with the same vulnerability.  

Malware can exploit a multitude of different types of vulnerabilities which can 

appear at different layers of the software stack. Publically unknown vulnerabilities 

are particularly dangerous as they are used in zero-day attacks, where the damage 

can go unnoticed for long periods of time. The use of multiple exploits across layers 

poses a significant threat, especially if they are targeting zero-day vulnerabilities. 

The third section explored the current state of research of diversity within 

computing systems. Diversity as a security mechanism increases the difficulty for 

attackers to target multiple devices and networks during a single attack. It prevents 

the attacker from having detailed knowledge of each computer, forcing them to be 

targeted individually, and in turn increasing the difficulty of propagating malware. 

Research has shown that diversifying software is possible through diversification at 

the code level. Code level diversification however does not consider the dynamics of 

diversity at multiple layers of the stack or the dynamics at a network level in the 

face of an attack where it may not be possible for all devices to apply a diversity 

technique. Diversity analysis at the network level allows the effects of the creation 

and distribution of diverse code to be analysed using different methods, both from 

centrally generated sources and via distributed methods. It also enables the 

resistance of a network to be simulated under a range of different conditions in the 

face of a malware attack. There are currently open research questions regarding 

diversity. There is still a large gap in understanding the actual benefits of diversity 
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as a security mechanism and particularly from an ecological perspective. There is no 

well defined metric for measuring diversity within computer networks. Those 

proposed do not capture both the granularity of diversity at different layers of a 

software stack and the distribution of diversity simultaneously. Additionally none 

of the research considers practical constraints associated with compatibility issues or 

user preferences. 
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4 Modelling 

Chapter 4 

Modelling 

4.1 Introduction 

This chapter details the modelling of peer-to-peer communication networks with 

an emphasis on mobile ad hoc networks, highlighting their comparability with 

natural systems. Compartmental based methods for modelling the propagation of 

malware at a system level are reviewed. These epidemic models are widely used for 

modelling the spread of diseases within natural systems. Details regarding the 

properties of the deterministic and stochastic SIR (Susceptible, Infected, Recovered) 

models are given which are used by development work in later chapters. Agent-

based epidemics are considered for modelling malware at the individual level as 

well as infection genetic models where matching algorithms are used to match 

pathogens to hosts. These principles are also used by development work in later 

chapters. 

4.2 Modelling Ad Hoc Networks 

Devices utilising direct peer-to-peer communication, particularly those within ad 

hoc networks can be compared with natural systems since the devices, for example 
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mobile phones, interact closely with humans following their mobility and 

interaction patterns [210]. Ad hoc networks are expected to become more prominent 

in the future Internet either as a separate topology or integrated with sensor and 

peer-to-peer overlay networks (§3.2.3), so the focus of this research will be limited to 

networks which are ad hoc. There are a number of methodologies for modelling 

such networks which are summarised in the following sections. 

4.2.1 Mobility Models 

Mobility models consider the movement patterns of devices within a mobile 

network and can be used to visualise individual or aggregated travel paths. There 

are two types of mobility models generally used: traces and synthetic models [211]. 

Traces are generated from observed data and can provide accurate information 

when using large datasets. Synthetic models attempt to represent the mobile 

behaviour realistically without the need for trace data. A number of synthetic 

models exist for ad hoc networks [211]. One model that is used in many simulation 

studies is the Random Waypoint model [212] [213] [214] [215] [216] [217]. It was 

developed to represent the mobility patterns of people with mobile devices within a 

confined environment such as a room [218]. As pictured in Figure 4-1 each node 

starts by remaining stationary for pause time seconds. It then selects a destination 

point within a bounded rectangular area. The node then moves to that destination at 

a selected speed. Values for the destination, speed and pause time are chosen 

independently and at random from uniform distributions between upper and lower 

bounds. When the destination is reached the cycle of pause, choosing a destination, 

and moving at speed is repeated until the end of the simulation. 
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Figure 4-1 – Random waypoint mobility model 

4.2.2 Simulators 

Mobility models are often integrated into event-based simulators to allow the 

detailed modelling of new or improved protocols such as those necessary to provide 

ad hoc routing. Simulators such as Opnet, NS3, and QualNet [219] are used to 

model detailed characteristics at different layers of the network stack under realistic 

conditions. As well as mobility models the simulators can include other realistic 

characteristics such as radio transmission, buffer space for the storage of messages, 

and data traffic models. A downside of these simulators is that much effort is 

required to learn the details of the simulator architecture and programming 

language. These types of simulators can be seen as a type of agent-based model with 

very detailed characteristics for the agents (nodes) in the network. 

4.2.3 Agent-Based Models 

Agent-based Models (ABM) attempt to capture the complexity of individual 

behaviour and have been widely used across a growing number of fields [220]. Such 

models, however, do not necessarily need the detailed characteristics used within 
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simulators, and can follow a set of simple rules at a higher level of abstraction, 

sometimes generating emergent behaviour [221].  ABMs allow a wide choice of 

design parameters and rules making each model different but tailored to each 

research question. They have been used for modelling ad hoc networks [219] [222] 

[223] and use software such as Netlogo and Matlab to model high level behaviour. 

4.2.4 Graph Theory 

Graph theory is another technique for modelling communication networks. A 

graph is made up of vertices (nodes or points) which are connected by edges (links 

or lines). Graph theory is used to measure properties such as the degree distribution 

(probability that a vertex chosen uniformly at random has degree k, where degree k 

is the number of edges connected to a vertex) or clustering coefficient (measure of 

how strongly nodes in a graph cluster together). Graph theory has been used to 

study the architecture of the Internet [224] and analyse the behaviour of routing 

protocols of ad hoc networks [225] [226]. 

4.2.5 Homogeneous Mixing Models 

When the networks to be analysed are considered to be large, homogeneous 

mixing models can be used to model the network as a whole entity. Here it is 

assumed the system is the average of the individual nodes where nodes make 

contact with each other in a peer-to-peer fashion at random. Such assumptions 

originated from the modelling of infectious diseases within human populations 

using deterministic and stochastic methods and have since additionally been used 

to model the propagation of malware within mobile wireless networks. This is 

discussed in more depth in the next section (§4.3). 
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4.3 Epidemic Modelling of Mobile Malware 

4.3.1 Mathematical Models of Epidemics 

There are two main types of mathematical models that are used to describe the 

spreading characteristics of epidemics: deterministic, and stochastic which can be 

used to make system level predictions [227] [228]. The deterministic model always 

performs the same way for a given set of initial conditions and is used to model 

large populations (or networks), whereas for the stochastic model randomness is 

present and the output result is a probability distribution. Stochastic models are able 

to model smaller populations and are often considered to be more realistic.  

A mechanism that links these models is the concept of compartments where 

individuals are assumed to be in one of a number of different compartments (states 

or classes) at any given time. These compartments represent the individualsȂ health 

status with respect to the disease. For example the population could be divided into 

those who are Susceptible (S), those who are Infected (I) and those who have 

Recovered (R). For both the deterministic and stochastic based models, the number 

within each compartment is simulated as the epidemic progresses. Malware epidemic 

models have used a multitude of different compartments. The SI variant has been 

used for modelling a mobile phone virus using two compartments where there are 

no recovery mechanisms [229]. The SEIS model includes an extra Exposed (E) 

compartment as there may be an incubation period before the virus attacks [230]. 

The extra susceptible (S) in the model name denotes the fact that instead of 

recovery, the devices become susceptible again. The SEIRD model was proposed to 

model virus propagation specifically via Bluetooth and MMS to investigate the 
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Commwarrior virus [231]. The additional Dormancy (D) compartment represents 

the condition when the virus drains the battery by sending out many MMS 

messages. The author of this thesis proposed a SEPTICOX model incorporating 

conditions where the phones were switched off or offline for Bluetooth based 

networks which required a number of additional compartments: Prevented (P), 

Treated (T), Contained (C), Offline (O), eXposed off-line (X) [3].  

Details regarding the properties of the deterministic and stochastic SIR models 

are described in the following text which are used as a reference for development 

work in chapter 6 of this thesis. Note that the work assumes that once devices have 

fully recovered from a particular malware (through patching or anit-virus tools) 

they cannot be re-susceptible to the same malware so that the 'R' compartment is 

designated the end state. Thus the closely related SIRS model [228], where there is 

no end state (compartment) and re-susceptibility can occur following recovery, has 

not been detailed within the background material (see chapter 6) 

4.3.2 The Deterministic SIR Model 

In the deterministic SIR [228], where individuals mix homogeneously (§4.2.5), 

and the population is considered to be large, the law of mass action is applied to the 

rates of transmission between two compartments where the rate of interaction is 

proportional to the product of the numbers in each compartment. The transition 

rates from one compartment to another are mathematically expressed as 

derivatives, hence the model is formulated using differential equations. 
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4.3.2.1 Model Equations 

The basic SIR model was initially developed by Kermack and McKendre [232] and 

is comprised of three compartments as shown in Figure 4-2. The   compartment 

represents those that are susceptible to a disease or virus but not yet infected,   

represents those that are infected and infectious with the disease, and   represents 

those that have recovered from the disease.   defines the total population size and 

is assumed to be fixed.  

 

Figure 4-2 – SIR model 

  is known as the infection rate (or effective contact rate) and is defined as [233]:  

      
(4-1) 

Where   is the probability of an infection given contact between a susceptible and 

an infected individual, and   is the average rate of contact between susceptible and 

infected individuals. The rate at which those susceptible become infected is 

attributed to the proportion of the population who are already infected     

multiplied by the infection rate  . 

  is the rate of recovery of an individual, and can also be written as: 

      
(4-2) 

Where   is the duration of the infection. 

S I R

βI/N γ
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The model is described using differential equations, where the transition rates 

from one compartment to another are expressed as derivatives: 

           
(4-3) 

              
(4-4) 

        (4-5) 

4.3.2.2 Discrete Model 

The model can also be represented in discrete form using difference equations, 

where the number in each compartment at the next time step       is formulated 

by the rates and the number in each compartment at the current time step    . This 

approach is convenient for computer simulation of the model: 

                        
(4-6) 

                              
(4-7) 

                   (4-8) 

The total population size     is assumed to be fixed so that:   

                  (4-9) 

4.3.2.3 Deterministic Epidemic Example 

To illustrate the mathematics an example showing an epidemic following the SIR 

equations is given through simulation in Figure 4-3 (a) .When an epidemic occurs 

susceptible individuals become infected and move to the infected compartment 

faster than infected individuals can recover (where      creating a peak of 
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infections. Figure 4-3 (a) shows the number within each compartment as the 

epidemic progresses. The SIR model was simulated from difference equations 

(§4.3.2.2) using Mathworks Matlab. The number infected      increases and then 

falls as recovery takes place. To show an epidemic occurring the condition     

needs to occur as stated above. In this example values are chosen to represent this 

condition where       and       . With no recovery, the SIR model reduces to 

two states   and  , which is also known as the SI model. Under this condition all of 

those susceptible will eventually become infected, and stay infected as shown in 

Figure 4-3 (b). 

 

Figure 4-3 – Deterministic SIR model using difference equations. 
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4.3.2.4 End Time of the Epidemic 

When there is no chance of recovery, the dynamical equations can be simplified 

so that Equation (4-4) becomes: 

                      (4-10) 

where the time at which the epidemic reaches its final state has an analytical 

solution. Substituting       into Equation (4-10) results in a logistic equation for I 

[228]: 

              
(4-11) 

With a solution [228]: 

                              (4-12) 

The end of the simulation    is specified to occur when the number infected is 

within 1 of its final value           so that Equation (4-12) becomes: 

                              
(4-13) 

Rearranging for   : 

                           (4-14) 

 

4.3.2.5 The Reproduction Number R0 

A key metric used in epidemiology to determine whether a disease will spread or 

not is the reproduction number. It is defined as the number of secondary cases 
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produced by a single infection within a susceptible population [233]. The 

reproduction number can be derived by considering that an epidemic occurs if the 

number of infected individuals increases, where: 

       
(4-15) 

Substituting in Equation (4-4) becomes: 

           
(4-16) 

         (4-17) 

        
(4-18) 

At the outset of an epidemic, where    , everyone except the initial infected 

individual is susceptible. At this point   can therefore be approximated to  , and 

the equation simplifies to: 

     
(4-19) 

                                   
 (4-20) 

For    values greater than 1 an epidemic occurs, and for    values equal to or 

less than 1, the epidemic dies away. Figure 4-3 (c) shows the number of infected 

individuals for varying values of   when   is fixed at 0.3. When             , 
there is an epidemic as the number of infected individuals increases above the initial 

value of 1. As the value of   is reduced, the peak value of the infection is reduced, 

the time of the peak moves to the right and the spread of the infection increases. 

When              the epidemic dies away as the number of infected 
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individuals never goes above 1 as shown by the sub-graph in Figure 4-3 (c). When              the infection dies away even faster, with the corresponding curves 

reduced to zero very quickly. Figure 4-3 (d) shows the corresponding    

relationship with  , as   is varied between 0.1 and 0.5 (as given in Figure 4-3 (c)), 

additionally showing    when       for a fixed      . 

4.3.2.6 The Balance Equation 

Another important attribute of an epidemic is its final state, which is the total 

fraction of the population that was infected. A balance equation [234] can be derived 

that describes the final state of the system when t→ ∞, by dividing the differential 

equations of the SIR model (Equations (4-3) and (4-5)). 

                      

                   
(4-21) 

This implies the solution: 

                    (4-22) 

During an epidemic those within the infected state will eventually move to the 

recovered state, so at the end of the epidemic there will only be those still 

susceptible     , or recovered     . This means that: 

             (4-23) 

Assuming that at    , no individuals have yet recovered, so that       , then            , and Equation (4-22) can be rearranged to: 
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                         (4-24) 

which can also be expressed as a fraction of  : 

                        
Where             

(4-25) 

Solving for      determines the fraction that were infected at the end of the 

epidemic. This equation can be solved numerically using the approximation that         and is graphed in Figure 4-4. 

 

Figure 4-4 – Final size of the epidemic as a fraction of the population size 
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Stochastic SIR models are often described using discrete or continuous time 

Markov chains or stochastic differential equations [235]. A probabilistic model takes 

into account that there may be some element of randomness in at least one of the 

parameters. Predictions from that model are probability distributions, for example 

distributions of the possible numbers of those susceptible, infected or recovered. 

The Markovian standard stochastic SIR epidemic model [228] [234] assumes a closed 
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epidemic model (§4.3.2). An important feature of the stochastic model is that due to 

the inherent nature of randomness, a major outbreak is not always guaranteed when     . For example, during the initial outbreak the infected individual or a small 

number of individuals that have already become infected may recover by chance 

before they can infect others. This is termed an initial fade-out [236] or a minor 

epidemic outbreak [234]. An overview of the general stochastic SIR model is given 

here together with some important properties and approximations that have been 

developed in the literature, on the assumption of a large population. These are used 

as a reference for the developed model described in chapter 6. 

4.3.3.1 Rate of Contact 

For a stochastic SIR model the infectious individuals have contact with other 

individuals randomly in time at a constant average rate  . Each contact is with an 

individual selected uniformly at random from the population. The time between 

contacts is described by an exponential distribution which is a type of probability 

distribution that describes the time between events in a Poisson process that occur 

continuously and independently at a constant average rate. 

To coincide with the deterministic model the mean contact period    is the 

reciprocal of the deterministic contact rate  , so that the exponential probability 

density function (PDF): 

   :                 

           

(4-26) 

A PDF of a   value of 0.3 is pictured in Figure 4-5. 
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Figure 4-5 – PDF for a c value of 0.3 

                            
(4-27) 

                                   
(4-28) 

                                          
(4-29) 

4.3.3.2 Infectious Period 

Infected individuals remain infectious for a time period and then recover. As 

with the contact rate, the infectious period is described by an exponential 

distribution. To coincide with the deterministic model the mean infectious period    
is the reciprocal of the deterministic recovery rate  . So that: 

                                
(4-30) 

                                     
(4-31) 

                                              
(4-32) 
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4.3.3.3 Discrete Time Markov Model for a Single Compartment 

These types of distributions can be modelled using a Markov process [228] which 

is used to develop stochastic epidemic models and form approximations of some 

important properties. As with the deterministic model, the stochastic Markov model 

analyses how the system progresses but will have different sample paths every time 

it is run.  

A discrete time Markov model is used to illustrate how the stochastic epidemic is 

modelled. Suppose an epidemic model has just one compartment, and hence one 

Markov process,      representing the number of individuals within that 

compartment at time  . For a discrete time model the processes are defined on a 

discrete time scale               and the states, each representing a possible 

number of individuals within the compartment, are discrete random variables             The times between successive jumps of the process are exponentially 

distributed with parameter  . The rate diagram can be drawn as follows: 

 

Figure 4-6 – Rate diagram for a Markov process 

Where state   represents the state where there are   individuals within the 

compartment      . The rate diagram can be expressed as a rate matrix   whose 

elements define the transition rates from one state to another. 
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The probability   that within a small time interval    the number of individuals   within the compartment has increased by one is given by: 

                        (4-33) 

And the complement, where the probability   that within a small time interval    

the number of individuals   within the compartment has remained the same is 

given by: 

                          (4-34) 

The time step    is chosen sufficiently small such that the number of infected 

individuals changes by at most one during the time interval. This means that the 

rate matrix is largely zero valued otherwise it would need to include the rates to 

other states where the number of infected could change by more than one. To 

ensure that the transition probabilities lie in the time interval, the time step    must 

satisfy: 

      (4-35) 

The probabilities can be expressed as a probability matrix   whose elements now 

define the transition probabilities from one state to another. 
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The corresponding probability diagram is given: 

 

Figure 4-7 – Probability diagram for a discrete Markov process 

This process can be coded into software to visualise the different sample paths 

every time it is run. 

4.3.3.4 Discrete Time Markov Model for a Stochastic SIR 

With multiple compartments the Markov process becomes a vector, so that each 

Markov state has a vector component for each necessary compartment. With an SIR 

model it is considered that only the processes of   and   compartments are needed 

since        . Within a small time interval         , the probability   of an 

infection is given by the simultaneous transitions      , where one individual 

leaves the   compartment, and       where one individual enters the   

compartment. Similarly, within a small time interval         , the probability   of 

recovery is given by the simultaneous transitions      , where one individual 
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leaves the   compartment, and              , where one individual 

enters the   compartment. The probability equations are therefore: 

                                                   
(4-36) 

                                              

Where      is the infection rate and   is the recovery rate. 

(4-37) 

And the complement: 

                                                             
(4-38) 

To ensure that the transition probabilities lie in the time interval, the time step    

must satisfy: 

                       
(4-39) 

4.3.3.5 Stochastic Epidemic Example 

To illustrate the mathematics an example showing an epidemic following the SIR 

Markov process is given through simulation in Figure 4-8 using Mathworks Matlab. 

Parameters were set to show a comparison with the deterministic model (§4.3.2.3). 

When there is no recovery,    , the SIR behaves as an SI model. For an average 

contact rate of 0.3                    the mean result of a large number of 

runs (1000) is shown in Figure 4-8 (a) together with the deterministic solution. Fifty 

of the individual runs for those infected are shown in Figure 4-8 (b). When recovery 

is added, where        the mean result of 1000 runs is shown in Figure 4-8 (c). 

There is a large difference between the stochastic solution and the deterministic 

result. The reason for this can be seen by inspecting individual runs of the recovered 
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compartment in Figure 4-8 (d), where, for a proportion of the runs there is either 

very little or no recovery. These runs account for the condition where minor 

outbreaks have occurred and have resulted in the mean being very different from 

the deterministic result. Under the SI scenario there is no chance of recovery and so 

the possibility of a minor outbreak does not occur. Under these circumstances the 

mean of the stochastic SI model is closer to the deterministic SI model. 

 

Figure 4-8 – Stochastic SIR model. 

4.3.3.6 Important Stochastic SIR Properties 

The following summarises some important properties of the stochastic SIR model 

which are used during development work in chapters 6 and 8. 
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Probability of an outbreak, early stage approximation: When the number in the 

population is considered to be large, the initial phase of the epidemic can be 

approximated by a homogeneous branching process [234], which shows that when      the final size of the epidemic is bounded in probability and the epidemic will 

only be minor. However when      the epidemic will have both a minor element, 

which is bounded with a probability  , and a major element, which is unbounded 

with a probability    . For a standard stochastic model with a closed 

homogeneous uniformly mixing population and one initially infected,           the 

probabilities can be summarised as: 

                                                              
(4-40) 

                                                           
(4-41) 

Final size approximation: The final fraction infected      are those that end up in 

the recovered state at the end of the outbreak. This fraction is a solution to the 

balance equation (§4.3.2.6), which is the same equation as for the deterministic 

model, except it is assumed that a negligible fraction of the population is initially 

infected, so that: 

                (4-42) 

This equation always has the solution       , corresponding to a minor 

outbreak, and when     , there is another unique solution of      between 0 and 

1 corresponding to a major outbreak [234] (Figure 4-4). 
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Final size distribution of a major outbreak: The final size of a major outbreak will be 

normally distributed around the final size approximation. The notation for a normal 

distribution is defined here as: 

             

Where      denotes a normal distribution,   denotes the mean, and    denotes 

the variance which is the square of the standard deviation. The threshold theorem [234] 

derives the normal distribution of a major outbreak as: 

                                                                              
(4-43) 

Where   is the number of individuals,        is the mean final size with   

individuals (excluding initial infectives) and where                    so that the mean   becomes zero, and the variance is defined by the second term.    is the squared 

coefficient of variation of the infectious period. 

            
                    

                                                     

(4-44) 

4.3.4 Agent-Based Epidemics 

The concept of compartments used in the mathematical models can also be 

incorporated into other models such as agent-based models. SI and SIR variants 

have been incorporated into mobile phone models [237]. Within agent-based models 

nodes are modelled as separate entities so that the result of individual interactions 
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and their behavioural rules determine the spreading dynamics of the epidemic. As 

pictured in Figure 4-9 each node maintains its own health status which can also be 

aggregated into a network level perspective depending upon the nature of the 

simulation model. Agent-based models tend to be difficult to compare since the 

design of agents, their interactions, and behavioural rules depend upon the specifics 

of the scenario being modelled. Agent-based models can also have stochastic 

elements generating output results that are probability distributions. 

 

Figure 4-9 – Epidemic agent-based model 

4.4 Infection Genetics 

It may not just be individual interactions and behaviours that determine the 

spread of diseases. Another set of models that try to mimic infection are those 
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mechanics of the infection at the individual scale and assume that individuals differ 
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in terms of their genetic make-up. Both the individuals (potential hosts of the 

disease) and the parasite or pathogen causing the infection are modelled. Matching 

algorithms are used to match the pathogens to hosts which subsequently then cause 

them to become infected. Two prominent models are gene-for-gene [238] [239] [240] 

which is based on plant-pathogen interactions and matching-alleles [239] [241] [240] 

[43] [99] based on self/non-self recognition systems in invertebrates. Both models 

include a genotype for the host and a genotype for the pathogen or parasite. Figure 

4-10 shows host and parasite genotypes with two loci each, where A1 and A2 

represent two different alleles at locus 1, and, B1 and B2, represent two different 

alleles at locus 2. Within the gene-for-gene model the parasite alleles within the 

parasite genotype are labelled as either a - avirulent (weakly infectious) or v - 

virulent (highly infectious), and the host alleles within the host genotype are 

labelled as either s - susceptible or r - resistant. A host can resist (R) a parasite if the 

host has a resistant allele at any locus for which the parasite has an avirulent allele 

at the corresponding locus, otherwise infection occurs (I). For the matching-alleles 

model a parasiteȂs genotype must exactly match a hostȂs genotype to successfully 

infect the host. For example genotype A1, B1 of the host matches genotype A1, B1 of 

the parasite.  

These general principles of genetic matching are incorporated within 

development work of later chapters to model malware propagation in diverse 

computing devices and form a novel aspect of the work.  
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Figure 4-10 – Two different infection genetic models 
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network level behaviour of malware propagation. These models use compartments 

to signify the health status of the network. Properties of the deterministic and 

stochastic SIR epidemic models have been reviewed. Compartmental methods can 

also be incorporated into agent-based models where the result of individual 

interactions and their behavioural rules determine the spreading dynamics of the 

malware. Another class of models used to analyse disease spread study the 

mechanics of infection at the genetic level. They assume both individuals and 

pathogens differ in terms of their genetic make-up. Matching algorithms are used to 

match pathogens to hosts which subsequently become infected. These modelling 

concepts are used during development work of later chapters. Specifically 

homogeneous mixing and the RWP model is integrated together with a 

compartmental approach of monitoring device infection status in a high abstract 

level ABM. Additionally matching algorithms are used to match malware to device 

configurations. Mathematical modelling of malware incorporating both 

deterministic and stochastic methods are also used during development work.
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5 Ecosystem Model of an Ad Hoc Network 

Chapter 5 

Ecosystem Model of an Ad Hoc 

Network 

5.1 Introduction 

This chapter links the background material presented in chapters 1 to 4 with the 

work that follows, and is comprised of two sections: 

An Ecosystem Perspective of an Ad Hoc Network Environment: The first section 

describes an ad hoc network environment as an ecosystem using comparable 

terminology and relationship analogies to natural ecosystems as described within 

chapter 2.  

A Diverse System Model: The second section firstly outlines the requirements for a 

diverse system model applicable to ad hoc networks together with constraints that 

highlight the first steps taken in proving the hypothesis of this thesis. Secondly a 

threat model of malware utilising multiple exploits across layers of the software 

stack is defined. Thirdly an overview of two developed models is described. The 

first is based upon the mathematical epidemic approach, and the second is an agent-

based approach. 
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5.2 An Ecosystem Perspective of an Ad Hoc Network 

Environment 

Organisms within natural ecosystems (§2) and devices within ad hoc networks 

(§3) both interact in a peer-to-peer fashion, are distributed, and self-organise. It is 

likely that peer-to-peer wireless networks such as ad hoc networks will become 

more mainstream than they are currently and therefore forms the basis of the 

network topology in which to investigate diversity (§3.2.2). If an ad hoc network, 

together with its users and application environment, is regarded as an ecosystem as 

shown in Figure 5-1 then comparable terminology can be defined and relationship 

analogies can be made to natural ecosystems. Note that the definition of an 

ecosystem here should not be confused with the term ȁsoftware ecosystemȂ which 

has recently been used to describe the progressive development of a software 

product or service incorporating development framework tools, organisations, 

external developers and users such as the Android platform [242]. 

 

Figure 5-1 - Ad hoc network ecosystem 
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Figure 5-2 shows the ecosystem diagram equivalent to that pictured in Figure 2-1 

of Chapter 2, but for an ad hoc network environment, showing its relationships with 

software and hardware diversity. Within natural ecosystems, biodiversity is linked 

to functions and services and its ability to maintain them when faced with 

unwanted disturbances. It is proposed that by applying biodiversity strategies 

within an ad hoc network, the destructive effects arising from security attacks can 

be counterbalanced with the constructive effects of biodiversity to maintain 

ecosystem function and services, and hence benefit overall resistance and resilience. 

Although the focus here is on ad hoc networks, many of the principles described are 

also applicable to computer networks in general. Analogous relationships between 

software and hardware diversity and ad hoc network ecosystem functions and 

services are described in the following text. 

 

Figure 5-2 - Diversity relationships in an ad hoc network ecosystem 
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5.2.1 Scales and Diversity Definitions 

An ad hoc network environment can be partitioned into three scales on a par 

with those discussed in natural systems: Individual (I), community (C) and 

ecosystem (E). The individual scale comprises the independent devices (or nodes) 

and includes software stacks, protocol stacks, physical hardware, and individual 

behavioural characteristics and constraints. The community scale includes 

communities of nodes forming part of a network, or a complete network. This scale 

is concerned with topology and node distribution, data flow and community 

behaviours. The ecosystem scale incorporates multiple clusters of nodes or multiple 

networks and interactions between them, the environment and the users. It also 

includes beneficial outputs such as the resulting services. 

Many principles of diversity are applicable at multiple scales (§2.2.2), with some 

diversity metrics relevant to both species and genotypes (§2.3). Ecologists tend to 

describe diversity in relation to species since it is the easiest to measure and 

experiment with however there is growing evidence that the same relationships 

have been observed at the genotypic level. Partitioning individuals by genotype 

composition or common characteristics into species is well defined in natural 

systems, however categorising elements of an ad hoc network, in theory can be 

conducted on a sliding scale depending upon the chosen granularity. For example a 

software program could form a genetic element of an ad hoc device, or it could be 

categorised into a species of software. The most important aspect is the relevant 

diversity relationships that exist regardless of the scale. For an ad hoc network 

ecosystem the definitions of diversity are partitioned as follows, however the 
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relationships in 5.2.6 are described where they are analogous to that observed in 

nature regardless of the partition. 

(1) Genetic Diversity: This describes the variance in structural composition of 

devices in terms of software and hardware components and is applicable at the 

individual scale. There are methods for defining and measuring diversity in terms 

of genetics that is applicable to defining and measuring the diversity of software 

composition across devices (§2.3) which is discussed further in this chapter (§5.2.6, 

§5.3.2) and used in subsequent chapters (§6.3, §7.4). 

(2) Species Diversity: Species diversity could potentially have multiple meanings 

depending upon the chosen granularity and focus as described above. When 

categorising ad hoc devices as complete entities, species could mean a type of 

device, such as a local ad hoc router or a gateway to the internet, and would be 

applicable at the community scale. Alternatively, when describing software as 

individuals from a pool of available programs, species could mean a type of 

software program, such as a web browser, or an instant messaging application. This 

is because there are analogies between natural species diversity mechanisms and the 

way in which software is developed and adopted by users. Relationship analogies 

are described further in section 5.2.6. 

(3) Ecosystem Diversity: This is the diversity between distinctly separate groups 

or networks of devices, or the diversity incorporating both networks and users and 

the environment. It is applicable at the ecosystem scale and can be measured in 

terms of genetics or species. 
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(4) Functional Diversity: This is the variance and breadth of functionality and 

services, as a result of software, hardware, devices or networks interacting with 

their users and the environment. Consequently functional diversity spans 

individual, community and ecosystem scales. 

5.2.2 Software and Hardware Functions 

As with natural ecosystems, an ad hoc network ecosystem is comprised of many 

interacting components; not just the devices themselves, but interacting layers of 

software and hardware generating a range of processes and functionality at 

different scales. For example functions can arise from single or multiple interacting 

software and hardware modules, or be generated by single or multiple devices. 

Functions can be partitioned into regulating, supporting, and provisioning categories 

as they share similar analogies to those described within natural systems (§2.2.1.2). 

Table 5-1 gives some examples for each type. Network access, for example, is a 

regulating function since it controls how and when the network can be accessed for 

data transmission. Data and program storage is a supporting function since it allows 

all of the software programs to be stored in memory along with any data that is 

generated or shared: without it the devices would not be able to operate as 

intended. The sending of text messages is a provisioning function since it can be 

viewed as a product that is produced from within the ad hoc network. 

5.2.3 Network and User Services 

Network and User Services are the beneficial services provided by the interaction 

of all the components in the ad hoc network ecosystem, and, like natural systems, 

are derived from multiple underlying functions. Services can also be partitioned 
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into regulating, supporting, and provisioning categories (§2.2.1.3) as shown in Table 

5-1. Examples of regulating services include the quality of service of data or 

communication traffic, or, in the broadest sense, the control of malware spreading. 

Supporting services include distributed data storage and data gathering which is 

driven by the natural topology of an ad hoc network. Provisioning services include 

the beneficial product outputs such as an electronic health care service, or a 

multimedia data streaming service. 

Table 5-1 – Ad hoc ecosystem functions and services 
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environment over long time scales such as changes in technological advances, 

trends in user habits, business markets, and application areas which will contribute 

to evolving functions and services. A single disturbance is an event of intense stress 

occurring over a relatively short period of time potentially causing large changes to 

the dynamics of the ad hoc network. Security attacks such as malware can be 

thought of as single disturbance events creating destructive effects at varying 

speeds and severity depending upon the specific attack. 

5.2.4.2 Malware Disturbance Events 

As with natural ecosystems where diseases can spread quickly in monoculture 

populations (§1), so too can malware under similar conditions where there is wide 

spread use of identical software (§3). Examples of the effects of different malware on 

functions and services [243] [244] [245] [246] at different scales is shown in Table 5-2. 



Chapter 5  Ph.D. Thesis 

Jennifer Jackson 116 of 357 May 2017  

Table 5-2 - Malware effects on functions and services 
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5.2.5 Measured Outputs 

Productivity and stability are two important output measurements of natural 

ecosystems because they consider the effects on function, and the impact on 

resistance and resilience, of disturbance. When the spread of disease is considered, 

additional transmission characteristics are also analysed.  

Within ad hoc networks, and networks in general, the term productivity is not 

discussed directly, instead the overall functional performance of a service, termed 

Quality of Service (QoS), is often used [129] [247] [248]. QoS can be considered 

through a number of functional outputs associated with performance such as 

throughput (amount of data successfully transferred within a fixed time period), bit 

error rate (number of transmission bit errors per unit time), and network delay (time 

taken for a bit of data to be transferred). It often depends upon the context as to 

which is used. Estimation of such characteristics can often be achieved through 

network simulators (§4.2.2). Additionally, it would be possible to analyse these 

functional outputs in response to malware so that the resistance and resilience of the 

networkȂs quality of service could be inferred and is discussed further in section 

6.4.1. 

5.2.6 Natural Biodiversity Mechanisms 

5.2.6.1 Software at the Individual Scale 

In order to form analogies between natural diversity mechanisms and underlying 

ad hoc ecosystem functions a device is framed in terms of genetic software 

components. This is because genetic diversity can inform the diversity between 
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individuals, species, or ecosystems (§2.3.1). Additionally, in order to devise 

biodiversity strategies based on local interactions and multiple layers of software, 

whilst incorporating multi-exploit malware, it is necessary to focus on the 

individual scale of a device and its structural composition. Figure 5-3 shows an ad 

hoc ecosystem with devices (Figure 5-3 (a)) comprised of individualised software 

stacks (Figure 5-3 (b)) generated from a pool of available software (Figure 5-3 (c) and 

(d)). This pool of software can be stored locally in whole or in part but is assumed to 

be separate from the realised software stack.  

The structural composition of each deviceȂs individualised software stack (Figure 

5-3 (a)) can be considered from a genetic perspective by representing this structural 

composition as a genotype (§2.2.2.1.4). The pool of available software (Figure 5-3 (c)) 

contains a bounded number of functions and variants with which to configure the 

genotype. The genotype is split into four layers representing the four general layers 

of the software stack (§3.2.1.3): applications (Layer A), application services (Layer 

B), core OS libraries (Layer C), and kernel (Layer D). Each layer is comprised of one 

or more software functions representing genes, termed software gene functions (F). 

Each function is situated at a specific locus (L) within the software stack. 

Software gene functions for example may include web browsing, window 

management, graphics rendering, or hard disk interfacing. Each software gene 

function can be represented by one of a number of possible software gene variants 

(alleles in a biological systems), such as web browser type 1, or web browser type 2. 

Here a monoploid set of chromosomes is assumed (§2.2.2.1.4) so that only one 

variant is allowed at a locus within a single genotype at any given time.  
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Figure 5-3 – Software at the individual scale 
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Software gene variants are defined from the perspective of propagating malware 

and are assumed to be sufficiently different, whilst remaining functionally 

equivalent, to warrant the necessity of different exploit code to penetrate the 

vulnerability. 

In addition to this, each layer has a bounded functional niche space (§2.2.2.1.1) as 

shown in Figure 5-3 (d) by a third axis, where the variant axis has been rotated. Each 

software gene function has a position within the functional niche space 

representative of the functionality of that gene. There may be both overlapping and 

non-overlapping functions between loci. For example non-overlapping functions 

could be web browsing and document writing, whereas overlapping functions 

could be text messaging and email, both of which enable the sending and receiving 

of plain text communication. In principle, software genotypes can be of varying 

lengths encompassing different functions, allowing functional diversity to exist 

within the ad hoc network ecosystem. 

Software is defined here in terms of genetics with two components of gene 

function and gene variant. However, as mentioned previously biodiversity 

mechanisms researched within ecology, predominantly associated with species, are 

also relevant at multiple scales, and are particularly relevant from the perspective of 

software functionality, and are described below. 

5.2.6.2 Niche Differentiation 

A niche for a particular software program is defined here by its functionality. As 

with natural ecosystems, when software overlaps in terms of functionality, 

sometimes competition or temporal conditions can reduce the softwareȂs 
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fundamental niche to a realised niche (§2.2.2.1.1). For example text messaging and 

email overlap in sending text communication. When users have access to both, 

competition of usage and adoption by users results in each of the two mechanisms 

being better suited under different conditions leading to two different niches. It is 

quite possible that text messaging is used for sending short amounts of text because 

it is quick and instant, whereas email is used for sending larger amounts of text 

often in a more formal manner.  

Ecological research suggests that both perfect complementarity (no functional 

overlap) and functional redundancy (functional overlap) greatly benefit ecosystems 

(§2.2.2.1.1). If software systems were designed with this in mind then perfect 

complementarity would generate greater functionality more rapidly as more 

software programs are developed. The downside would be a total dependence on a 

specific program to provide a certain function. Malware targeting a specific 

program type such as email could therefore cause loss of critical functionality, and 

hence redundancy is also needed. Within current software systems, where software 

for the user or application is the focus, both perfect complementarity and functional 

redundancy exist, but it is not evident from the literature if this has ever been 

analysed. Additionally, different software variants providing the same functionality 

exist, such as different web browser software or different email software 

applications. Functionality of software may not always remain static and could 

dynamically change during operation. Self-modifying code such as software 

reflection, where software is able to examine its own operation and modify its 

functionality at runtime, could potentially cause changes in the realised functional 
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niche space at a particular locus (figure 5-3 (d)) over time (albeit that this represents 

only a part of the larger fundamental niche space to which it has access), which 

could also differ on different computers. One question is whether the changes could 

significantly impact the overall functional goal of the loci. Small changes may be 

beneficial for diversity as it could lead to slightly different approaches, different 

ordering of lower level commands and different memory locations of data, whilst 

still achieving the same goal. Significant changes however could mean that two 

variants at the same locus could no longer be considered as having the same 

functionality and would violate the concept of functionally equivalent software 

variants. 

5.2.6.3 Facilitation 

Software programs seldom operate in isolation of each other and facilitation 

(§2.2.2.1.2) is a natural process in software systems. Two or more pieces of software 

interacting together can cause a positive benefit for at least one of the software 

programs. An example would be of two software programs: a scanner driver 

software interfacing directly to the scanner hardware, and a software program to 

view and save the scanned image. Without the scanner driver, there would be no 

scanned image to view. Within ecology, increasing diversity in the presence of 

facilitation is thought to increase ecosystem function but the exact mechanisms and 

effects, particularly at the genetic level, are largely unknown (§2.2.2.1.2). However 

this type of arrangement is normal within software stacks where there are many 

dependencies between software functions at different layers. 
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5.2.6.4 Trophic Levels 

The dependence between software functions at different layers of the software 

stack can also be viewed as being similar to the interaction between trophic levels of 

natural systems (§2.2.2.1.3). Similar to the lowest trophic level, the lowest software 

layer contains primary functions that interface to the outside world such as drivers 

for hardware and other low level functions (kernel). The next layer (core OS 

libraries) is built upon the kernel. The third layer (application services) is built upon 

the core OS libraries or sometimes the kernel as well. The top layer (applications) 

utilises the lower layers to provide functional software for the user. It is known in 

ecology that diversity at lower layers can increase the number of species at higher 

layers. In terms of software this would indicate that the more diversity in software 

functionality in the kernel, the more diversity there is, or can be at the application 

layer. This makes sense since devices with only a disk driver functionality in the 

kernel would have very limited application software. On the other hand if the 

kernel had drivers for a range of different sensors and actuators then a multitude of 

different application software would exist, and this is seen in practice with large 

volumes of ȁ“ppsȂ available in ȁApp StoresȂ [249] [250]. As well as dependencies 

across layers there may be dependencies within layers at a finer level of granularity, 

for example between software programs and dynamic libraries. For the scheme 

proposed in Figure 5-3 this would mean dependencies between loci. The implication 

being that in order for particular loci to be operational, specific lower level loci 

would need to be present, limiting genotype configurations. However, a software 

program and the dynamic libraries it uses remain decoupled until the program 
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actually runs. This is beneficial for diversity because patching and updating of the 

library can be conducted without recompiling or re-linking the software program, 

but more importantly different variants of the same library can be used on different 

computers. 

5.2.6.5 Genetic Variation 

Within ecology, genetic variation is the driving force behind functional 

differences between individuals (§2.2.2.1.4). Using the assumption that the software 

stack of a device can be represented as a genotype with multiple loci representative 

of multiple layers of software as shown in Figure 5-3, then the genetic variation of a 

group of ad hoc devices can be defined. The genetic variation is the number and 

frequency of different software variants across each locus and the number and 

frequency of different software stack genotypes. For one software gene function at a 

single locus, as the number of variants increases so too does the possible number of 

different genotypes. For example if there are five possible web browser variants, 

there are five possible genotypes. Although web browsers are inherently prone to 

being an initiating source of an attack (e.g. users unknowingly clicking onto 

malicious links), variants are considered to be sufficiently different with respect to 

propagating malware to warrant the necessity of different exploit code to penetrate 

the vulnerability (§5.2.6.1). As more gene functions are added, and hence more loci, 

the possible number of different genotypes increases according to Equation (2-12). 

Genetic variation of software variants determines the genetic diversity of the ad hoc 

network for which there are numerous measures used within ecology (§2.3.2). These 
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methods could equally apply to the diversity of software composition across 

devices. 

5.3 A Diverse System Model 

5.3.1 The Requirements for a Diverse System Model 

5.3.1.1 Requirements Overview 

There is a large gap in understanding the benefits of diversity as a security 

mechanism from an ecological perspective (§3.4.5). Additionally there is no well 

defined metric for measuring diversity of computing systems. Ad hoc networks will 

feature more prominently in the future Internet (§3.2.3) and possess similar 

characteristics to natural ecosystems such as localised interactions, distributed 

architecture and the production of analogous functions and services to those of 

ecosystems. The spread of malware, similar to the spread of diseases, is rife in 

monoculture environments (§1.1.2), where it takes advantage of vulnerabilities at 

different layers of the software stack.  

To investigate the benefits diversity brings against disturbances, such as malware 

spreading events within an ecosystem context, a model of a diverse system (§3.4.3) is 

required. It will need to simulate the injection of malware events whilst 

incorporating multiple layer exploits, diversity schemes based upon local 

interactions, mobility, and the peer-to-peer nature of ad hoc networks. It should also 

consider practical constraints such as user preferences (§3.4.5) and software 

compatibility, where there may be dependencies between specific variants at 

different loci (§3.2.1.3). Dependency between the presence of one locus and another, 
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such as dependency on specific lower layer libraries, is not included (§5.2.6.4) 

however the model could be extended to allow different loci, and different numbers 

of loci on different computers. It will need to assess important outputs of an 

ecosystem such as the quality of service as a measure of productivity, resistance and 

resilience components of stability, as well as malware transmission characteristics. 

In addition to this, metrics for measuring diversity is required that captures the 

granularity of different functions and layers of a software stack and their 

distribution across devices in the network.  

Most of the diverse system models developed in the literature (§3.4.3) treat each 

node as a complete entity. For example, treating nodes as different colours, or 

different single variants of software. As a result, and in general, malware modelling 

tends to simulate the targeting of single software variants as a complete entity on a 

device. The primary contribution of the model is to incorporate diversity whilst 

accounting for malware that uses multiple exploits targeting different 

vulnerabilities at different layers of a software stack, which is a growing concern 

within cyber security (§3.3). The model also allows the evaluation of different 

diversity strategies and is able to compare single and multiple exploit malware 

whilst using the same diversity strategy. 

5.3.1.2 Model Constraints 

The following assumptions and constraints have been applied as a starting point 

in modelling such a system, but the model could be extended at a later date to 

include further aspects. 
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• Within the natural biodiversity-ecosystem relationship, biodiversity can both 

affect the response to disturbance events, and can be affected by disturbance events 

(§2.2.2). This research only focuses on the effect of biodiversity on the response to 

disturbance events as a first step in modelling such complex relationships. 

• Additionally this research focuses strictly on disturbance events over short 

time scales and ignores the effects of natural changes over long time scales caused 

by a disturbance regime (§2.2.1.4). This includes considering only closed networks 

where the number of nodes remains fixed so that there are no nodes entering or 

leaving the network. 

• The disturbance event studied is constrained to malware since this is known 

to be rife in conditions where there is wide spread use of identical software and is 

on a par with disease spread in natural systems. 

• The structural composition of each deviceȂs individualised software stack is 

considered from a genetic perspective by representing the structural composition as a 

genotype. Specific constraints are outlined in section 5.3.1.3 below. Malware and its 

exploits are also considered from a genetic perspective with the ability to target one 

or more software variants. 

• Modelling of behaviours and node interactions remains at a high level of 

abstraction so that event based simulators, where data flow and detailed 

functionality of software is modelled, is not necessary. 
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5.3.1.3 Genotype Structure Constraints 

To simplify modelling and to demonstrate the concepts of both diversity and 

malware targeting multiple layers, one function is included from each of the four 

layers of the defined software stack (§3.2.1.3) leading to genotypes with a fixed 

length of four loci. It is not necessary to model untargeted loci since they have no 

impact on malware propagation at an abstract level. This means that malware 

carrying exploits is limited to targeting at most four loci, one per layer, with any 

number of software variants being bounded only by the simulation parameters. This 

is a reasonable constraint to make since even the well known multi-exploit malware, 

Stuxnet (the first to use so many unknown cross-layer exploits §3.3.3), only targeted 

as many as four layers of the stack. It is additionally implied that at the time of 

initial infection the exploits are unknown and cannot be detected or blocked by anti-

virus software as in the case of a zero day attack (§3.3.3). It demonstrates both the 

concept and the applicability of the current practical scenario of four exploits in the 

AND configuration. The OR configuration is applied to both cross layer and within 

layer and so the total number of exploits modelled can be far greater.  Secondly, it is 

assumed that every device in the network has the same set of functionality (i.e four 

lociǼȄ and this functionality does not change ǻi.e through self-modifying code) so 

that the niche space remains fixed throughout the simulations and the variants at 

each locus are considered to be functionally equivalent. Thirdly, it is assumed that 

there is no functional overlap between the four chosen loci. Fourthly, although 

facilitation and trophic levels are inherent in interacting software programs and 

layered software stacks, their interacting mechanisms are not included in the model. 
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These constraints allow the model to initially focus upon the effects of gene 

variation with respect to software variants whilst fixing the number of functions. 

This is because individual malware code predominantly targets specific variants 

with individualised exploits. With non-overlapping functions and a fixed number of 

loci across all genotypes, functional diversity is limited to the definition of the 

number of loci representing the different gene functions. However, the model could 

be extended at a later date to include the effects of functional variation such as 

varying the number of loci and functional overlap, making it additionally possible 

to categorise malware into types that target certain functions. Additionally the 

model could be extended to include relationships between layers impacting 

vulnerability using multi-stage Boolean logic. This will encompass dependencies 

between layers that contribute to software becoming vulnerable or not (see future 

work §9.3.1.3). 

 Figure 5-4 shows an example genotype with four loci. The first locus represents 

software relating to an application layer functionality such as web browsing. The 

second locus represents an application services layer functionality such as window 

management, which may be used by the web browser application to manage the 

style and position. The third locus represents a core OS library such as graphics 

rendering which may be used by the window manager to process 2D and 3D 

graphics. The fourth locus represents a kernel layer functionality such as low-level 

hard disk interfacing which may be used to manage downloaded files. For every 

genotype on every device, each locus can have one of a number of different variants, 
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so for example locus 1 could have one of a limited number of different web 

browsers. 

 

Figure 5-4 – Constrained genotype with four loci 

The example shows a possible scenario, but equally represents any defined stack 

or partial stack at an abstract representation, where it is assumed that the 

granularity chosen and the functionality defined is in relation to the attacking 

malware. The variants at each locus can be automatically generated variants using 

diversity techniques or comprised of already available software (COTS), but are 

assumed to be sufficiently different from the perspective of the malware to warrant 

the necessity of different exploit code to penetrate the vulnerability (§5.2.6.1). For 

example, if the vulnerability lies within the source code implementation or design of 

an automated set of diverse binary files then the vulnerability may exist in all files, 

but the exact exploit code would need to be different for each variant. This is one of 

the fundamental benefits of diversity – to prevent vulnerabilities that exist from 

being exploited on a wide scale. If variants consist of different COTS software (e.g. 

Linux OS, Windows OS) the vulnerabilities are more likely to be different in the 

variants. However if the COTS variants were different versions of the same software 
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(e.g. 10.12.5, 10.12.6) they could still be considered as different if different exploits 

are required, even if targeting the same vulnerability. The model takes into account 

the ability to infect different versions of the same software by specifying exploits 

within a locus (as opposed to across loci). The malware threat model and types are 

defined in §5.3.3. 

5.3.2 Diversity Measures 

There are many diversity measures in the literature for natural systems (§2.3), 

several of which have been used in isolation to define diversity in computing 

systems, or new multidimensional ones have been defined (§3.4.4). It is proposed 

here that diversity of computing systems is not defined by a single measure, but 

through several, all providing a different but necessary perspective (§2.3.2.4).  

The diversity measures defined here along with the defined genetic composition 

of software described above captures the principles of all those proposed in the 

literature. For example multidimensional functions (§3.4.4.4) is captured in terms of 

software gene functions and functional overlap, where the partitioning of gene 

functions into different loci form the dimensions and are only limited by the 

granularity of the defined functions. The necessary measures are all currently used 

to assess genetic diversity within natural systems and are defined here (in terms of 

computing devices and software stack genotypes) for clarity which are used by the 

models (§6, §7). Additionally defined is the process for increasing diversity in 

relation to the metrics and the definition of maximum diversity. 
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5.3.2.1 Measures Definition 

Genotypic Richness      – This is the number of different software stack genotypes 

currently in use across all devices within the ad hoc ecosystem (§2.3.2.1.1). 

Genotypic Diversity      - This takes into account the frequency of all the different 

software stack genotypes across all devices and is calculated using Equation (2-2) 

(§2.3.2.1.3). 

Number of Variants     - This is the number of software gene variants at a 

particular locus across all devices. 

Variant Richness      - This is the average number of different software gene 

variants per locus across all devices. This is the same as the allelic richness (§2.3.2.2.1) 

and is calculated using Equation (2-4). 

Variant Diversity      – This takes into account the frequency of software gene 

variants across all devices and can be calculated independently at each locus or 

averaged across loci. The Nei Genetic Diversity index is used as a measure of variant 

diversity as given by Equation (2-8) (§2.3.2.2.2). 

5.3.2.2 Increasing Diversity 

Diversity at a single locus can be increased in two ways by either: 

1) Increasing the number of software gene variants, or 

2) Equalising the distribution of variants across all devices 

Diversity of multiple loci can be increased in three ways by either: 
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1) Increasing the number of loci (software gene functions / software stack 

layers) 

2) Increasing the number of software gene variants at any locus, or 

3) Equalising the distribution of either, or both variants and genotypes. 

5.3.2.3 Maximum Diversity Definition 

Maximum Number of Unique Genotypes: The number of variants at each locus 

dictates the maximum possible number of genotypes that could exist (Equation 

(2-12)). 

Maximum Genotypic Diversity: This is the maximum diversity that can be achieved 

for a given set of genotypes, where they are evenly distributed across all devices. 

The given set of genotypes does not necessarily have to be the maximum number of 

unique genotypes (Equation (2-2)). 

Maximum Variant Diversity: This is the maximum diversity of a given set of 

variants at a locus where all the available variants are evenly distributed. The Nei 

Genetic Diversity index (§2.3.2.2.2), (as well as the Shannon index), assess each locus 

independently and so maximum variant diversity at every locus may not 

necessarily need to utilise all of the possible unique genotypes. Figure 5-5 shows 

two examples where maximum variant diversity is achieved with three variants in 

each of the two loci (A1 to A3 and B1 to B3). In Figure 5-5 (a) even though only three 

genotypes are present in a network with nine devices, the three variants in each 

locus are evenly distributed, where each genotype appears three times. Figure 5-5 

(b) shows an alternative solution where all the maximum number of nine unique 
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genotypes are fully utilised and the three variants in each locus are also evenly 

distributed. 

 

Figure 5-5 - Maximum variant diversity with nine devices and three variants 

Absolute Maximum Diversity: To guarantee absolute maximum diversity within an 

ad hoc ecosystem there are four conditions that need to be fulfilled. 

1) For a given number of variants and loci there exists a maximum number of 

unique genotypes, all of which need to be utilised across the devices of the ad hoc 

ecosystem. 

2) The maximum number of unique genotypes needs to be evenly distributed so 

that maximum Genotypic Diversity occurs. 

3) It follows that if the maximum number of unique genotypes are evenly 

distributed so too are the variants within each locus so that maximum Variant 

Diversity is also achieved. 

Locus 1 Locus 2 Locus 1 Locus 2

A1 B1 A1 B1

A2 B2 A1 B2

A3 B3 A1 B3

A1 B1 A2 B1

A2 B2 A2 B2

A3 B3 A2 B3

A1 B1 A3 B1

A2 B2 A3 B2

A3 B3 A3 B3

Device Genotype Device Genotype

a) 3 Genotypes used 

to achieve maximum 

variant diversity at 

each locus

b) 9 Genotypes used 

to achieve maximum 

variant diversity at 

each locus



Chapter 5  Ph.D. Thesis 

Jennifer Jackson 135 of 357 May 2017  

4) To allow absolute maximum diversity to be achieved practically, the minimum 

number of ad hoc devices needs to be equal to the maximum number of unique genotypes, 

or a multiple of, to achieve an even distribution. 

5.3.3 Malware Threat Model 

The malware threat model is defined at an abstract level and depicts a theoretical 

representation regarding the way in which malware uses exploits to target different 

layers of the software stack to infect and propagate. The threat model is based upon 

the background research of malware (§3.3) applied to the previously defined 

software stack genotype (§5.2.6). 

Within this threat model, malware is defined by three parameters: 

1) The number of exploits targeting different software variants at each locus (e1 

to eL). 

2) The number of different loci targeted by the exploits (L). 

3) The logic function defining the relationships of the exploits in order to carry 

out its malicious intention (AND, OR). 

The malware representation is shown in Figure 5-6 showing exploits, loci and the 

logic function block. A single exploit is assumed to only be able to penetrate a single 

software variant. In practical terms this means that if an exploit is capable of 

penetrating two non-identical but similar software program stacks with common 

components, then they would be considered as being the same variant at the loci of 

the common components where the exploit is targeting. If different exploit code is 

needed then they would be considered as being different variants. It is possible for 
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malware to carry multiple exploits at each loci to enable it to penetrate different 

variants of the same function. The number of loci defines the number of different 

software stack layer functions targeted by the malware in order to successfully carry 

out its malicious intention. The logic function defines the relationship of the exploits 

across the loci and is based upon two types: the logical AND type and the logical OR 

type. The AND and OR logical functions (together with inversion) form the basic 

blocks for which all other logical functions can be created and has therefore initially 

been limited to these two types. 

 

Figure 5-6 – Malware threat model 

The logical AND type, is representative of malware that uses one or more exploits 

across loci to infect and propagate, and thus creating an AND relationship across 

these loci. In this case at least one of the variants in each of the loci targeted by the 

exploits must be present on a device to cause an infection. This means that the AND 

malware type only targets loci for which it has an exploit for. All other loci are not 

affected. 
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As an example the AND malware type is mapped to the Pegasus malware 

(§3.3.3) that targeted iPhone devices in 2016 and is shown in Figure 5-7. Here three 

exploits are used in an AND relationship across loci, where all three software 

vulnerabilities have to be present in order for the malware to be successful. Other 

multi-exploit AND malware exist, for example the self-propagating Stuxnet worm 

(§3.3.3) requires four separate exploits to infect and propagate. Although these 

malware do not have the capability to propagate over peer to peer wireless 

connections (e.g like the Cabir worm over Bluetooth [156], it does demonstrate the 

principles of using multiple exploits in an AND relationship. As the rise in mobile 

malware continues, multiple exploits are likely to become equally applicable to ad 

hoc networks with propagation over peer to peer wireless connections. 

Additionally, these malware examples only targeted one variant at each of the loci 

but it could have been theoretically possible to have used alternative exploits 

targeting different variants at the same locus if it was deemed worthwhile by the 

attackers, and suitable vulnerabilities were found. In 2017 for example at least eight 

vulnerabilities were identified across different OS implementations (potential 

variants) of the Bluetooth software stack [251] (at the Kernel layer) potentially 

leading to the automated spread of malware over peer to peer Bluetooth 

connections without being detected. It is just a matter of time before these are 

exploited by malware in unpatched versions of operating systems. 
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Figure 5-7 – Pegasus malware AND threat representation 

Using alternative exploits to target old and new versions of software is becoming 

increasingly common as many users infrequently install updates or not at all. The 

CopyCat malware [252] for example iterates through six exploits, mostly at the 

kernel level, using several well-known Android vulnerabilities in order to gain 

access to root privileges of a device. When these alternative exploits target different 

functionality at different loci, an OR relationship is created. This can include 

malware with the ability to infect and propagate via alternative mechanisms. The 

logical OR type, is representative of malware that needs only one exploit to infect and 

propagate, but carries multiple exploits which are available for use. With the 

CopyCat malware for example, exploits targeted vulnerabilities in the camera 

driver, the IPV4 communications function, and user calls in the API library. Figure 

5-8 shows an example based upon three exploits of the CopyCat malware showing a 

comparative OR threat representation to the Pegasus AND malware. 
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Figure 5-8 – OR threat representation example based upon the CopyCat malware 

The reviewed epidemic models of computer security (§3.4.3.2) perceive malware 

as a single entity attacking a particular type of device. In comparison with the 

malware threat model this would be equivalent to a single locus without any logic 

function block, and is compared mathematically in chapter 6 (§6.3.2). 
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have been seen in practice, the threat model could allow scenarios to be portrayed 
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that can be partitioned into layers of functions. However within this research it is 

applied only to the ad hoc network environment under the assumption that the 

malware is capable of propagating via peer to peer connections as shown by the 

malware data flow in Figure 5-9. This is representative of current and future real 

world scenarios such as those described in §3.2.2, where examples include moving 

inter vehicular communications, mobile sensor networks and other mobile devices. 

 

Figure 5-9 – Malware data flow in an ad hoc peer to peer environment 
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5.3.4 Diverse System Model Overview 

5.3.4.1 General Overview 

This section describes the general architecture at a high-level of two diverse 

system models that have been developed to incorporate software diversity and 

malware at the genetic level of an ad hoc network ecosystem. The intention of the 

overview is to highlight the key differences between the models and what each 

method offers. The mathematical content and simulation processes are detailed 

within the individual chapters for each model (§6,7). The model with the greatest 

flexibility to incorporate distributed dynamic diversity algorithms, realistic features 

and constraints follows an agent-based approach (§4.3.4). The model is 

predominantly simulation based following defined processes that are applied to 

each and every individual. Under certain constraints this model is comparable to an 

enhanced mathematical epidemic model, which has also been developed to 

incorporate software diversity and malware at the genetic level. The epidemic 

model is predominantly derived and calculated mathematically at a system level 

without knowledge or control of individual behaviour, and is a key difference 

between the two models. The epidemic model also provides a means for 

comparison against standard epidemic models (§4.3.1) as well as the agent model. 

The two models are outlined below with details of their design and implementation 

documented in chapter 6 for the epidemic based model and chapter 7 for the agent-

based model. 
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5.3.4.2 Constrained Diverse System Model: Mathematical 

Epidemic 

The mathematical based approach is comprised of a network model, a 

susceptibility model and a malware model as shown in Figure 5-10 and represents a 

system level view of the whole network.  

 

Figure 5-10 – Architecture of the epidemic based diverse system model 

Network model: The network model assumes wireless communication protocols 

are employed utilising peer-to-peer communication with ad hoc devices that move 

around with their users. Devices can have the same or different software stack 
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devices combine to produce the ecosystems network and user services. At least one 

wireless access point is assumed to be present providing a connection to the Internet 

and an entry point for malware. The inherent nature of a mathematical approach 

assumes homogeneous mixing of devices and so does not offer the flexibility of the 

agent-based approach which can incorporate mobility modelling with geographic 

waypoint information and location based constraints. This highlights another key 

difference between the two models. However, with the epidemic approach, an 

analytical result can be achieved under the assumption of average system level 

conditions. 

Susceptibility model: The susceptibility model mathematically derives the 

susceptibility of the network for a given diversity and malware configuration. The 

diversity of the network is set or derived at a system level (unlike the agent model 

where genotypes are individually set at each device). Malware with multi-locus 

exploits, as defined by the threat model (§5.3.3), is assumed to be capable of 

spreading within the network. The example malware in Figure 5-10 shows a single 

exploit targeting variant 3 at locus 2, but could consist of any number of exploits at 

different loci. The diversity and exploits are used to mathematically determine the 

proportion of devices that are susceptible to a pre-defined malware. The diversity of 

the network within a given time frame is constrained to being static so that once a 

diversity-malware configuration has been created it does not change throughout the 

dynamics of a simulation (unlike the agent model where the genotype 

configurations and hence diversity can change). This follows the assumptions made 

by currently proposed mathematical epidemic models involving diversity (§3.4.3.2). 



Chapter 5  Ph.D. Thesis 

Jennifer Jackson 144 of 357 May 2017  

The difference in this proposed model is that a genetic approach is taken to include 

different software functions at different layers of the stack together with malware 

utilising multiple exploits. Current methods assume each node comprises a single 

software variant and additionally malware targets a single software variant. The 

principles of genetic matching between exploits and genotypes is similar to the 

ideas used within infection genetic models (§4.4), but is matched through analytical 

calculations and is targeted specifically for the malware types defined by the threat 

model (§5.3.3). With static genotypes, the susceptibility of the network and the 

average rate of contact (§4.3) between those that are susceptible is pre-calculated 

before applying the malware model. 

Malware model: Parameters generated from the susceptibility model are fed into 

the malware model to obtain simulated ecosystem outputs. The mathematical 

malware model can be either deterministically or stochastically based and currently 

supports either the SI or SIR compartmental models (§4.3). This approach is 

different to the agent model where individual devices keep track of their own health 

status which is determined by the dynamics of the individual simulation (rather 

than the mathematical equations). 

The mathematics of the epidemic model is detailed in chapter 6. 

The constrained epidemic model offers a method of: 

(a) Comparing the proposed genotype structure which consists of software gene 

variants at different loci that can be targeted by multi-exploit malware with current 

epidemic models of diversity, where a genotype or node is considered as a complete 

entity. The model developed can additionally simulate non-maximally diverse 
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scenarios (not considered by other diversity based epidemic malware models 

§3.4.3.2), allowing the diversity of current networks or networks with domineering 

software variants, to be analysed in response to malware and compared to the 

maximally diverse case. 

(b) Verifying the agent-based model under homogeneous mixing and static 

diversity constraints. 

(c) Comparing the mathematical model with the agent-based model, which can 

include additional features such as dynamic diversity, additional security 

mechanisms, geographic mobility and realistic constraints. 

(d) Modelling abstract ecosystem outputs of resistance and resilience and 

maintaining functional performance (Quality of Service) in response to diversity 

and specific types of malware attacks. 

5.3.4.3 Diverse System Model: Agent-Based 

Unlike the epidemic approach where the general architecture (Figure 5-10) is 

representative of the whole network at a system level, the general architecture of the 

agent-based approach as shown in Figure 5-11 (of the diversity and malware 

interaction) represents a single device, and is the same for every device. The agent-

based approach is comprised of a network model, a diversity model and a malware 

model.  
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Figure 5-11 – Architecture of the agent-based diverse system model 
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mixing of devices so that verification and comparisons can be made to the epidemic 

model (§7). 

Diversity model: The diversity model uses the genotype structure outlined in 

section 5.3.1.3 to represent the software composition of a device. The diversity of the 

network within a given time frame can be either described as static like the 

epidemic model, where the genotypes remain fixed in each device, or dynamic, 

where the genotypes may change based upon device level decisions from 

information obtained during local encounters and is described further in §7. The 

software genotype on each device is self determined by the diversity model. The 

diversity controller within each device has its own perspective on the diversity of 

the network based upon its local encounters, and in response, determines what 

software genotype should be chosen in order to maximise diversity, subject to any 

constraints. Practical constraints can be applied together with additional security 

mechanisms to explore the effectiveness of diversity as an integrated security 

approach. Whilst the concept of static diversity assignment and dynamic diversity 

assignment are similar to ideas proposed by colouring algorithms for diversity 

(§3.4.3.1), the colouring algorithms have been fixed to 3 or 4 colours (software 

programs) and are simulated on networks with fixed communication links. The 

algorithms developed here are for ad hoc networks with continuously changing 

communication links, are multi-layered, and are unbounded in the number of 

potential software programs. 

Malware model: Devices keep track of their own health status which may be 

susceptible, infected or recovered following the basic SIR epidemic compartments 
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(§4.3.4), but does not follow the mathematical equations like the epidemic model. 

Successful genetic matching between the deviceȂs own genotype and exploits only 

occurs if malware is received by the device and the exploits match to vulnerable 

software components. The malware model uses computational genetic matching 

between the deviceȂs own genotype and a propagating piece of malware, which also 

takes into account the malwareȂs logical function as defined by the threat model 

(§5.3.3). If a match occurs the device is deemed to have become infected, and this in 

turn can change the internal state of the device from susceptible (S) to infected (I). 

An aggregation of the states of the individual devices provides the system level 

perspective. These computational matching methods are similar to those used 

within infection genetic models (§4.4), but as with the epidemic model, is tailored 

specifically for the defined malware types (§5.3.3).  As a result of the interaction of 

the devices, incorporating genotypes and malware, diversity is measured along 

with ecosystem outputs such as resistance and resilience. 

The agent model offers a method of: 

(a) Exploring diversity and malware beyond the limitations of the epidemic 

approach, through dynamic diversity based on local interactions, user influence and 

constraints, additional security mechanisms, and geographic mobility. 

5.3.4.4 Modelling Environment 

The modelling environment used for both models is Mathworks Matlab since it 

provides a computational environment for modelling the high level abstraction of 

device behaviours, as well as matrix manipulation for performing simultaneous 

device operations. Its ability to aid in the generation of GUIȂs is useful for creating 
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fast modelling interfaces for retrieving, generating and saving settings and 

simulation data. The built-in libraries help reduce the need to spend time debugging 

low level code which could otherwise be needed. Disadvantages however are the 

simulation times and memory usage when simulating large networks. To improve 

this, manipulation of data types and controlled saving of data during simulations is 

required. 

5.4 Summary 

This chapter has presented an ecosystem model for an ad hoc network, making 

analogies between natural biodiversity mechanisms relating to functionality within 

ecosystems, and natural diversity mechanisms relating to functionality within ad 

hoc networks. Malware can be thought of as destructive disturbance events 

affecting the function and stability of the ad hoc environment. Although the focus 

here is on ad hoc networks, many of the principles described are also applicable to 

computer networks in general. In an ad hoc network ecosystem, functionality is 

predominantly generated by underlying software and hardware components which 

can be captured in terms of genetics at the individual scale of devices. There are two 

key components of software at the genetic level affecting ecosystem functionality: 

That is software gene function and software gene variant. The analogous 

relationships described imply that the fundamental enabling mechanisms for 

enhancing diversity already exist within the current structure of software and ad 

hoc networks. There are methods for measuring diversity at the genetic level that 

could equally apply to the diversity of software composition across devices. 
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A diverse system model is required to simulate these mechanisms where 

individualised software stacks can be represented as genotypes. Some constraints 

have been applied such as limiting the number of loci to four, with one non-

overlapping function being represented from each of the four layers of the software 

stack. This allows the model to focus upon the effects of gene variation with respect 

to software variants and malware targeting specific variants with individualised 

exploits. Single measures of diversity in computing systems have been defined in 

the literature; however it is proposed here that several metrics are necessary to 

define computing diversity at the genetic level, all of which provide a different but 

necessary perspective. A threat model has been defined, focussing upon two types 

of malware; the logical AND and the logical OR which are representative of 

malware using multiple exploits to gain entry and propagate. Two system models 

have been proposed: the mathematical epidemic model, which is detailed within 

chapter 6, and the agent model which is detailed within chapter 7. 
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6 Constrained Diverse System Model: Epidemic Based 

Chapter 6 

Constrained Diverse System Model: 

Epidemic Based 

6.1 Introduction 

This chapter details the architecture and mathematical derivation of the 

constrained diverse system model. The constraints as a result of using an epidemic 

model are described, together with some fundamental questions that the model can 

address under these constraints. The main aspect is the susceptibility model which 

generates both diversity and malware and subsequent analytical genetic matching. 

Two types of malware as defined in the previous chapter have been incorporated, 

each with varying numbers of exploits. Susceptibility equations are derived for the 

two types of malware for software stack genotypes having up to four loci. Outputs 

of the model are defined including resistance and resilience components of stability, 

along with input constraints so that an optimum diversity can be calculated to either 

tolerate or prevent a specific type of malware attack.  
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6.2 System Model Overview 

6.2.1 Overview and Constraints 

The constrained diverse system model builds upon the basic mathematical SIR 

epidemic model (§4.3.1) to investigate diversity and malware propagation at the 

genetic level. The mathematical approach is constrained by four key aspects:  

1) Homogeneous mixing, where the system is the average of the individual 

devices (§4.2.5). 

2) Static diversity, where the genotypes present on each device remain fixed 

throughout a malware epidemic. 

3) Software functions are assumed to be compatible with each other so there are 

no constraints regarding genotype configurations.  

4) Individual users have no influence over the choice of genotypes which are 

predetermined by a centralised source.  

Despite these constraints some key mathematical results have been established to 

answer the following questions under the given constraints: 

1) What security protection or mitigation is offered by biodiversity? 

2) How much biodiversity is needed to overcome specific attacks and is there 

an optimum biodiversity level? 

A key feature of this mathematical approach is the susceptibility model which 

defines the diversity and the malware, and subsequently the susceptibility. 

Additionally, to incorporate diversity into the SIR an equivalent malware model is 

defined and is described below. 
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6.2.2 Equivalent Epidemic Model with Diversity 

6.2.2.1 Without Diversity 

Using the SIR as the underlying model (either deterministic or stochastic), it is 

assumed that a large number of ad hoc devices      exist, and the devices mix 

homogeneously where they make wireless contact with each other at an average 

rate     , as shown in Figure 6-1 (a). 

 

Figure 6-1 - Equivalent epidemic model 
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For a basic SIR model as shown in Figure 6-1 (a), where there is no diversity 

between devices, the entire network is assumed to be susceptible to the malware so 

that the number of devices      within the network equates to the number of 

susceptible devices. During an epidemic simulation, which is modelled by the SIR 

equations (§4.3.2.1), those susceptible may become infected, before recovering 

through various mechanisms, if they are available, such as malware detection and 

removal after antivirus updates. The sum of the devices within the S, I and R 

compartments equate to the number of devices within the network      which 

remains fixed throughout an epidemic simulation. The rate of infection       is the 

product of the contact rate      and the probability of transmission    .  
6.2.2.2 With Static Diversity 

6.2.2.2.1 Extra Immune Compartment 

For a network where there is static diversity, only a proportion of the network      is susceptible, since only those genotypes with exploit matched vulnerable 

software variants can ever become infected. The remaining devices are considered 

immune as shown in Figure 6-1 (b). The malware model could be extended so that 

those devices that are immune could be given another compartment labelled as ȁZȂ, 

where the sum of the devices within the S, I, R and Z compartments equate to the 

number of devices within the network       However, since the rate of entering or 

leaving the compartment is zero for each specific malware attack, the Z 

compartment is fully detached from the SIR compartments. This results in those that 

are immune not participating in the dynamics of the epidemic spread, and leaving 

only those susceptible      being included. 
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6.2.2.2.2 Equivalent Model 

An equivalent malware model as shown in Figure 6-1 (c) can be defined with the 

inclusion of a susceptibility model to calculate the proportion of devices that are 

susceptible      given a specific type of malware attack and diversity scenario. This 

can then be used to identify the number of susceptible devices      participating in 

the spreading dynamics of a known model. The number of susceptible devices 

within the network      can be defined as: 

        (6-1) 

And those immune      as: 

            (6-2) 

Additionally, assuming that the density of the network, and hence the contact 

rate of the network      remains unchanged, it follows that the average rate of 

contact between only those that are susceptible     , is also a proportion     , but of 

the total network contact rate      so that: 

        (6-3) 

Resulting in a modified infection rate     : 

       (6-4) 

These results can then be fed into the standard SIR model to simulate the output 

dynamics. 
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6.3 Susceptibility Model 

6.3.1 Overview 

Susceptibility is described here as either the proportion      or number of devices      which could potentially become infected by a particular malware. The 

susceptibility model calculates the susceptibility for a given diversity and malware 

scenario. It is assumed there is a statically diverse network so that pre-computing 

the susceptibility in this way is valid for the constrained diverse system model. The 

susceptibility, as shown in Figure 6-2, will depend upon both the diversity of the 

software gene pool generated by the system diversity generator, and the malware 

generated by the system malware generator. The term system is prefixed here to signify 

that the diversity and malware are generated and controlled at the system level for 

the constrained epidemic model. The diversity of the software gene pool depends 

upon several parameters including the number of loci, which has been limited to a 

maximum of four (§5.3.1.3), the number and frequency of software gene variants at 

each locus, and hence the number of possible unique genotypes (§2.3.2.3). The 

specific type of malware attack generated depends upon the number of exploits, the 

targeted loci and variants, and one of two types of malware which are defined in the  

malware threat model(§5.3.3). The example malware in Figure 6-2 shows a single 

exploit targeting variant three at locus two, but could consist of any number of 

exploits at different loci. Genetic matching between these two aspects determines 

the susceptibility, for which an analytical result has been derived (§6.3.2). 
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Figure 6-2 – Susceptibility model 
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number of susceptible devices is then equivalent to the number of times the 

susceptible genotype (software package or node type) occurs within the network    . Additionally the security models either assume each device has a unique 

genotype, or the genotypes are equally distributed so that maximum diversity is 

assumed, thus equating the susceptibility with one exploit to a value of    .  

The definition used by Lively [43] for a non-computing genetic diversity 

epidemic model defines the number susceptible in terms of susceptible genotype 

frequencies so that maximum diversity is not necessarily assumed. Using this 

definition the number of devices susceptible in the network      for a single locus 

and a single exploit can instead be defined as: 

         (6-5) 

Where    is the frequency of the  th genotype that is susceptible and    is the 

total number of devices in the network. The single layer models will subsequently 

be referred to as the ȁone locus modelȂ since they are equivalent to a software stack 

genotype model with one locus. 

For software stack genotypes with multiple loci, together with viruses using 

multiple exploits (within or across loci for the AND and OR types) the above 

equation will not hold since more than one genotype may become susceptible.  

 

Figure 6-3 - Single locus genotypes – one locus model 
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6.3.2.2 Multiple Loci and Multiple Exploits (Genotypic 

Perspective) 

The remainder of this analytical result describes new work that has been 

developed. To consider multiple loci and multiple exploits, firstly consider 

susceptibility from a purely genotypic perspective. Figure 6-4 shows genotypes with 

multiple loci (up to a maximum of four) with upper bounds on the number of 

software gene variants at each locus. The number of genotypes     is the product of 

the number of software variants at each locus (§2.3.2.3), which are all assumed to be 

used in the network. 

 

Figure 6-4 - Multiple locus genotypes 
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(6-6) 

In a static network that is at absolute maximum diversity (§5.3.2), the frequency of 

all the genotypes will be equal and the equation simplifies to: 

                                
(6-7) 

Where   is the number of susceptible genotypes, and   is the maximum number of 

unique genotypes. 

Both Equations (6-6) and (6-7) follow the general Equation (6-1) of the 

susceptibility model where 

        

               
                                                         

(6-8) 

This gives a general result for the proportion susceptible    in terms of 

susceptible genotypes where    is the sum of the frequencies of the susceptible 

genotypes in the general case or the ratio of 
   for the maximally diverse case. The 

proportion susceptible    however can be defined more specifically in terms of loci, 

variants, and exploits so that for a given malware and diversity scenario the 

susceptibility can be calculated. The equation for    will also change depending 

upon which of the two, logical AND, or logical OR, malware types is being 

considered. These equations are derived as follows and forms the analytical method 

of genetic matching. 
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6.3.2.3 Sp for Multiple Loci and Multiple Exploits (Logical AND 

type) 

Figure 6-5 gives examples of susceptibility for the AND case when there are three 

software variant choices at each of two loci (A1 to A3 and B1 to B3). In all examples 

there are nine (3 x 3) possible genotypes. As shown in Figure 6-5 (a), when an 

exploit targets one software variant on one locus (A1), the proportion of nodes that 

become susceptible is the frequency      of A1. Under maximum diversity this 

equates to 3/9ths (1/3) since it is assumed that the frequency of all genotypes is 

equal. When two variants are targeted by two exploits (A1 or A2) at the same locus 

(either of the two variants need to be present in the genotype, equating to both 

being susceptible), as shown in Figure 6-5 (b), the susceptibility increases to         or 6/9ths (2/3). However, when one variant is targeted on each of the two 

loci (A1 and B1), as shown in Figure 6-5 (c), the susceptibility changes to        or 

1/9th (1/3 X 1/3), since both variants must be present to become susceptible. As 

shown in Figure 6-5 (d) when either of two variants on both loci are targeted, the 

susceptibility increases to                , or 4/9ths (2/3 X 2/3).  
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Figure 6-5 - Examples of susceptible genotypes for the AND type 
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independent event. Additionally the proportion susceptible at each locus for a given 

exploit scenario defines the probability of those susceptible. 

The probability     of one independent event occurring on one locus   is 

therefore given by 

                           
    

(6-9) 

                                      (6-10) 

Where     is the frequency of variant   of those susceptible,     is the number of 

exploits targeting locus  , and    is the number of variants in locus  . 
Multiple Loci: For multiple independent events occurring (multiple loci targeted 

by exploits) the probability AND rule (multiplication rule) given in Equation (6-11) 

can be applied 

                                           
          

    

(6-11) 

Where   is the number of loci targeted by an exploit.  

This equation defines    for the AND type and holds for any number of loci. 

Logical AND type 

Multiple Loci: 

            
    (6-12) 
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6.3.2.4 Sp for Multiple Loci and Multiple Exploits (Logical OR 

type) 

Figure 6-6 give examples of susceptibility for the OR case. When an exploit 

targets one or more software variants on one locus, the OR case is identical to the 

AND case as shown on Figure 6-6 (a) and (b). For multiple loci the two cases 

become different. When an exploit targets one variant on either of the two loci (A1 

or B1) as shown in Figure 6-6 (c) the susceptibility becomes             , where 

the subtraction accounts for the genotype that is double accounted for in the 

summation. Maximum diversity is 5/9ths (1/3 + 1/3 – 1/9). As shown in Figure 6-6 

(d) the susceptibility increases to                               , or 8/9ths 

(2/3 + 2/3 -4/9) when two variants on either of the loci are targeted (A1 or A2, or B1 

or B2). 

 

 

Figure 6-6 - Examples of susceptible genotypes for the OR type 
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Unlike the logical AND type where equation (6-12) holds for any number of loci, 

the analytical derivation of the OR type results in different equations for different 

number of loci.  

One Locus: The OR case can also be derived using probability theory. For one 

locus the OR case is identical to the AND case.  

The probability     of one independent event occurring on one locus   is given by 

                           
    

(6-13) 

                                      (6-14) 

Where     is the frequency of variant  ,    is the number of exploits targeting 

locus  , and    is the number of variants in locus  . 
Logical OR type: 

(one locus) 

         (6-15) 

Two Loci: For two independent events occurring (two loci targeted by exploits) 

the probability OR rule (General Addition Rule) can be applied as given in Equation 

(6-16). 

                                             (6-16) 

And therefore the proportion susceptible    for a two locus network becomes 

Logical OR type: 

(two loci) 

             
           

    (6-17) 
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For multiple independent events (multiple loci targeted by exploits) the OR rule 

can be generally applied iteratively based on the number of loci. The three and four 

locus derivations are documented in Appendix A (A.1) and (A.2). The result for the 

four locus is used extensively and referenced within the results (chapter 8) since the 

underlying model is based upon a software stack genotype with four loci. 

6.4 Outputs 

6.4.1 Outputs of Current Epidemic Models 

Whilst mathematical models of epidemics focus on transmission characteristics 

and epidemic thresholds, they rarely consider or link these to ecological 

productivity and stability directly. Also, terminology used within the literature in 

reference to ecosystems such as stability and resistance has different meanings for 

epidemic models. For example Stability analysis of epidemic models investigates the 

reaction of the system to small perturbations around equilibrium points (fixed 

points) determined from the actual equations of the system model [254]. The 

analysis determines if the points are stable (system moves towards the point) or 

unstable (system moves away from the point). The term resistance either means drug 

resistance which develops when micro-organisms no longer respond to a drug to 

which they were previously susceptible [255], or host resistance which describes how 

susceptible a particular host is to a particular disease or pathogen [256] [257]. These 

two aspects are both incorporated within the equations or design of epidemic 

models so that transmission characteristics and resultant effects can be analysed at 

the system level.  
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However, it is possible to infer ecological outputs from epidemic models in some 

cases. For example the final size of an epidemic (§4.3.2.6) describes the system level 

perspective of the total proportion of individuals that were infected [234]. If instead, 

the total proportion of individuals that were not infected is considered, then this can 

be used as a measure of system level resistance. Some models inherently incorporate 

recovery parameters such as the classic SIR model (§4.3.1) for which system 

recovery times, usually discussed as the duration of the epidemic [234] or the 

extinction time of the epidemic [258], can be simulated under different conditions.  

The duration of the epidemic can be used to infer engineering resilience since it 

indicates how quickly the system can recover from a given scenario. An advantage 

is that these stability parameters can be measured at a high level of abstraction 

without the need to simulate user data flow to measure functional performance. 

6.4.2 Outputs Overview of the Developed Model 

This section defines the outputs from the model using the high level abstraction 

described above for the two key components of ecosystem stability: resistance and 

resilience (§2.2.2.2.2, §5.2.5). An overview of the outputs is shown in Figure 6-7. The 

resistance component      can be calculated and constrained analytically, and 

compared to the simulated output. The resilience component      is determined 

from simulation since it has no analytical solution (§4.3.2.4), and is described further 

in §6.4.5.2. However when there are no recovery mechanisms for the malware, the 

peak infection time      can be calculated for the deterministic SI case. Additionally, 

an optimum diversity can be determined for a specific type of malware attack given 

one of two constraints. The first constraint relates to the maintenance of ecosystem 
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function when faced with malware so that an acceptable Quality of Service (QoS) is 

still guaranteed (§5.2.5). A QoS Tolerance      is used to determine a required 

malware resistance from which an optimum diversity can be determined. The 

second constraint which is only applicable when recovery mechanisms are in place 

is to determine the optimum diversity to prevent a major outbreak of the malware. 

This occurs when the reproduction number is below the critical threshold        
(§4.3.2.5). The calculated optimum diversity necessary to tolerate or overcome a 

specific malware attack also leads to the quantification of the minimum number of 

devices required to uphold this optimum diversity requirement. 

 

Figure 6-7 - Overview of outputs, constraints and optimum diversity 

6.4.2.1 Malware with No Recovery (SI) 
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recovery in the timescale of the epidemic, the SIR model reduces to an SI model 

(§4.3.1). The resistance      of the ad hoc ecosystem to the malware becomes 

critical, where there may be a tolerance     , below which ecosystem functions and 

services become severely degraded (§2.2.2.2.2). The time taken to reach the 

maximum degradation in services can also be calculated     . 
6.4.2.2 Malware with Recovery (SIR) 

When recovery mechanisms for malware are available within the timescales of 

the epidemic such as software patching or antivirus signature detection to remove 

and recover the infected devices, resilience      as well as resistance      becomes 

important. As well as using diversity to maintain QoS, it can also be used to 

maintain the reproduction number below the critical threshold        and prevent 

a major epidemic outbreak. 

The analytical calculations and optimisation methods to determine the necessary 

diversity to tolerate or mitigate an attack are described in the remainder of this 

section. 

6.4.3 Resistance to Malware (MR) 

6.4.3.1 Resistance to Malware (MR) with no recovery (SI) 

As shown in Figure 6-8 (a), without recovery (SI model), all of the susceptible 

devices      will eventually become infected over time and the resistance      is 

the number that do not become infected out of a total number     , or the number 

immune     , so that for a deterministic or stochastic SI model the malware 

resistance is defined as: 
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             (6-18) 

6.4.3.2 Resistance to Malware (MR) with recovery (SIR) 

Resistance to malware with recovery is defined in the same way as no recovery: 

as the number that do not become infected. However with recovery mechanisms in 

place, resistance is not just attributed to by those immune. The rate of infection and 

the rate of recovery that make up the reproduction number     , have an effect on 

the final size of the epidemic (§4.3.2.6 , §4.3.3.6), and hence those that do not become 

infected. This reproduction number relationship (note the difference in the axis 

between Figure 6-8 (a) and (b)), as pictured in Figure 6-8 (b) is shown in relation to 

the final size of an epidemic      and the total network size   . The malware 

resistance for a deterministic model and approximated for the stochastic model is 

defined as: 

                  (6-19) 

 

Figure 6-8 - Resistance to malware (MR) with and without recovery 

Sections 6.4.3.3 and 6.4.4 further describe the mathematics of Figure 6-8. 
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6.4.3.3 Quality of Service Tolerance (QT) 

As discussed within section 5.2.5 the overall functional performance of services 

generated by an ad hoc network ecosystem is termed Quality of Service (QoS). In 

the absence of network simulators to measure specific functional outputs associated 

with QoS, the best the epidemic model can do is to assume that an infected device 

has a defined amount of impact on functional performance which in turn degrades 

the overall QoS. This can be considered particularly true for malware such as 

viruses, worms, and Trojans (§5.2.4). In the simplest case it can be assumed that 

infected devices contribute nothing to the overall QoS, whereas uninfected devices 

contribute fully. This means that once a device has become infected it looses normal 

functionality, and is only left with the ability to re-transmit the malware to other 

devices. An infected device degrades QoS in proportion to the number of devices in 

the network. If only a single device is infected there will only be a small impact, and 

if all devices in the network are infected the QoS becomes zero. Under this 

assumption the QoS is represented by the network level output of resistance to 

malware. However the model could be extended to incorporate the general case 

where the contribution to QoS is dependent upon the defined specifics of the 

malware, including both the damage caused, and the mechanisms by which 

propagation occurs (§5.2.5). The models have not been designed to depict behaviour 

of the network fabric, however improved techniques for measuring QoS using 

network simulators is discussed in §9.3.1.2. 

The Quality of Service Tolerance      is defined here as the required resistance 

level in order to maintain an acceptable QoS for an ad hoc ecosystem when faced 
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with a malware attack. The QoS, or functional performance of the ad hoc ecosystem 

may become severely impacted below this resistance level. For example, a    of 0.8 

would imply that the ad hoc ecosystem needs to be at least 80% resistant to the 

malware to maintain an acceptable QoS. 

   is the proportional tolerance level of resistance as shown in Figure 6-8 so that 

when constrained: 

        (6-20) 

6.4.4 Optimum Diversity for a Specific Malware Attack 

For a specific malware attack it is possible to determine the optimum diversity in 

terms of the number of software gene variants required at each locus for either a 

specified Quality of Service Tolerance level     , or the reproduction number 

threshold        to prevent a major malware outbreak. Firstly it is required to 

determine the resultant constrained susceptibility     , given a specified   ,  which 

can subsequently be used with the AND type    or the OR type    equations (§6.3.2) 

to find the optimum diversity (§6.4.4). 

6.4.4.1 Constrained Sp With no Recovery (SI) and specified QT 

For a constrained    with no recovery the constrained susceptibility    can be 

determined as follows. 
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Using the constraint 

              

Substitute in         

             

Divide through by   and rearrange for    

        

(6-21) 

6.4.4.2 Constrained Sp With Recovery (SIR) and specified QT 

For a constrained    with recovery the constrained    can also be determined. 

Using the constraint 

                     

Substitute in                      (from Equation (4-25)) 

                 

Divide through by    

            

Rearrange for      

            

(6-22) 

 

Substitute      into the final size Equation (4-25):  

                        
(6-23) 



Chapter 6  Ph.D. Thesis 

Jennifer Jackson 174 of 357 May 2017  

And substitute              

                                    
 

Rearranging for    

                                                   

This gives the required proportion susceptible    for a specified    and      . 

There are however three bounds as shown in Figure 6-8 (b). The asymptotic 

bound (A) occurs for high values of    where the final size of the epidemic 

approaches all those devices in the network that are susceptible where         in 

relation to   . This will happen when the recovery rate is very small relative to the 

infection rate and resembles the SI model where there is no recovery. 

Rearranging Equation (6-22) for    

Bound A as shown in Figure 6-8 (b) 

             
                  

(6-24) 

At this point    is defined as its lowest possible value to maintain the specified 

tolerance. The resultant diversity required to maintain this    will be at its highest. 

The bound (B) occurs when     . At this point the rate of recovery is so high 

relative to the infection rate that all of the devices can be susceptible and the 
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required tolerance can still be achieved. The resultant diversity will be at its lowest 

for a specific type of attack. Using Equation (6-22) 

Bound B as shown in Figure 6-8 (b) 

            

                

(6-25) 

The bound (C) is a critical value of        , which must not be exceeded when all 

devices are susceptible to maintain at least a specified QoS to keep within the 

bounds of A and B for a specified quality of service. Using the final size Equation 

(4-25) with the approximation that       , and substituting in the bound B for     : 

Bound C -    as shown in Figure 6-8 (b) 

                                  
Rearranging for    

                     
              

                     

(6-26) 

 

Additionally           

                       

(6-27) 
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Therefore 

       

It is also worth noting that when all devices are susceptible the model reduces to 

a standard SIR model so that when    is reduced further beyond    to below a 

value of 1 a major malware epidemic will be prevented. For a specified    therefore 

there is a trade off between the speed of recovery and diversity. The faster the 

recovery (lower    value), the higher the tolerated susceptibility and hence less 

diversity is required. At the bounds B/C (the critical value of        ) the minimum 

amount of diversity is required, whilst at the bound A, the maximum amount of 

diversity is required. Figure 6-9 shows the relationship between    and   . When    is 100%, maximum resistance is specified which can only be achieved when 

either the susceptibility      is zero, or when      to prevent a major malware 

epidemic (§6.4.4.3). 

 

Figure 6-9 - Critical value Rc for a specified Quality of Service Tolerance 
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6.4.4.3 Constrained Sp With Recovery (SIR) and specified R0<1 

To mitigate a specific malware attack by preventing a major outbreak the 

reproduction number must be less than 1. Again this can be used to constrain the 

susceptibility    and optimise the diversity. 

Using 

           

Rearranging for    

       

(6-28) 

6.4.4.4 Optimisation of Diversity 

To optimise diversity three assumptions are made:  

1) Variants are evenly distributed amongst devices for all loci so that in order to 

achieve the Quality of Service Tolerance level or reproduction threshold it is 

assumed absolute maximum diversity can be achieved with the calculated optimum 

number of variants.  

2) The number of variants at each locus has a minimum bound such that the 

number must be equal to or greater than the number of exploits, since without the 

least number of variants present the exploit would not exist. 

3) The optimum number of variants is defined as the minimum number needed 

such that variant richness is minimised: 
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(6-29) 

The resultant number of genotypes necessary is 

        
    

(6-30) 

6.4.4.4.1 For the AND malware type (General) 

Assuming maximum diversity can be achieved for a given number of loci and 

variants then using Equations (6-10) and (6-12) where 

               
                       

(6-31) 

Rearranging, and assuming    is constrained 

                                                     (6-32) 

The product of the number of variants at each locus equates to the maximum 

number of unique genotypes (or genotypic richness) (§2.3.2.3, §5.3.2). The number of 

variants at each locus that satisfies this number of genotypes and minimum bounds, 

can have multiple solutions (§2.3.2.3). The optimum solutions for a given malware 

and QoS tolerance, can be defined from the minimisation of the variant richness     .  
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Worked example for two loci AND, with no recovery: 

                           
                                                   

The potential solutions for v1 and v2 are given in Table 6-1 and Figure 6-10 (a) 

showing the bounds of the solutions. The optimum solutions are shown by the 

shading in Table 6-1 with a value of 6.5 and in Figure 6-10 (b) by the minimum of 

the curve of the variant richness solutions. 

Table 6-1 - Worked example for the two locus AND type 

 

 

Figure 6-10 - Diversity optimisation example for the two locus AND type 
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The computational result of an example where there are no malware recovery 

mechanisms with two loci is given below (results for four loci are given in §8.2.2). 

Malware is specified with two exploits at locus one, and four at locus 2, with a 

Quality of Service tolerance of 80%. The result indicates a number of possible 

optimum solutions with an average of 6.5 variants required. With 40 genotypes, the 

minimum number of ad hoc devices participating in the network would also need 

to be 40 in order to satisfy absolute maximum diversity. 

6.4.4.4.2 For the AND malware type (Average) 

For a practical system it may not be possible to specify the exact number of 

exploits at each individual locus that the network must tolerate or mitigate, instead 

it may be possible to specify an average number of exploits to obtain an average 

number of variants at each locus (variant richness). Assuming the number of 

exploits and variants are the same in each locus, so that                          then Equation (6-32) can be simplified to: 

Variant Richness:            
 

(6-33) 

For the average equation there is only one solution and so minimisation is not 

required. 

6.4.4.4.3 For the OR malware type (General and Average) 

The OR malware type has been defined for up to four loci. Assuming the 

absolute maximum diversity can be achieved for a given number of loci and 

variants then the following optimisations can be defined. 
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Single locus: 

The result for the single locus case is identical to the AND malware type but has 

been included here for clarity and completeness. Using Equation (6-15) for one locus 

where 

                   (6-34) 

Then by rearranging for   and assuming     is constrained the number of 

variants required can be easily solved for a fixed number of exploits and tolerance. 

                    (6-35) 

The result gives one possible solution for   . 

Two Loci: 

Using Equation (6-17) for 2 loci where 

                
                                     

    
(6-36) 

Rearranging the equation for    and assuming     is constrained. The general 

equation is: 

                                               

(6-37) 

This will give different solutions for    when    is varied above the minimum of   , with the optimum solutions satisfying the minimum variant richness     . 
The computational result of an example with no malware recovery mechanisms 

with two loci is given below (results for four loci are given in §8.2.2). Malware is 
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specified with two exploits at locus one, and four at locus 2, with a Quality of 

Service tolerance of 80%. As with the two locus AND example, the result has a 

number of possible optimum solutions with an average of 28 variants required 

generating 720 to 780 genotypes.  

Worked example for the two locus OR: 

                           
                   

                         

The minimum bounds for the number of variants are shown in Figure 6-11 (a) 

leaving only valid solutions in the top right quadrant, with optimum solutions 

being the minimum variant richness as shown in Figure 6-11 (b).  

 

Figure 6-11 - Diversity optimisation example for the two locus OR type 
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of exploits and variants are assumed to be the same in each locus, so that                  then equation (6-36) can be reduced giving the average equation: 

            
(6-38) 

Which can be solved numerically for  . 

A similar derivation for the general and average equations can be shown for 

three and four loci, and is documented within Appendix A (A.3) and (A.4). The 

determination of the exact number of variants can be solved computationally, 

results of which are documented in chapter 8 (§8.2.2). 

6.4.4.4.4 For the OR malware type (Approximation) 

When the number of variants     at each locus becomes large relative to the 

number of exploits     at each locus, then the summation term dominates the 

resultant susceptibility     . So that for relatively large values of   or correspondingly 

small values of   , the OR susceptibility equations can be approximated by: 

                       
                       

                            

(6-39) 

For given values of           and   ,    can be computed for a range of            

values to find the valid solutions satisfying the minimum variant richness     . 
Variant Richness (average number of variants for an average number of exploits): If the 

number of exploits and variants are assumed to be the same in each locus, Equation 

(6-39) can be simplified to: 
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Giving: 

        

(6-40) 

Approximations and exact solutions for up to four loci are compared in Figure 

6-12 for one exploit per locus (Figure 6-12 (a)) and eight exploits per locus (Figure 

6-12 (b)) when all loci have the same number of variants. The graphs show the 

example when a specified QoS tolerance of 80% with no recovery equates to a small 

value of susceptibility with a large variant richness. In this region the exact solutions 

are close to the approximated solutions (dashed lines). 

 

Figure 6-12 - Exact and approximation curves for the OR malware type 
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diversity). The required minimum network size to achieve the required constraint is 

therefore no longer governed by the number of genotypes, but the variant richness 

so that a smaller number of devices are needed to achieve the required constraint 

such as QoS Tolerance. 

6.4.5 Resilience to Malware (ML) 

For a malware model with no recovery, there is no resilience component; 

however the time at which the peak infection occurs can be calculated. For a 

malware model with recovery the resilience can be measured under differing 

scenarios. 

6.4.5.1 Peak Infection Time T1 of Malware with No Recovery (SI) 

For an SI deterministic model the time    at which the infection peaks has an 

exact solution, when the number infected gets to within 1 of its final value. Equation 

(4-14) in section 4.3.2.4 defines    as:  

                             
(6-41) 

For a partially susceptible network with static diversity, the equation becomes: 

                                

                                        

                                        

(6-42) 



Chapter 6  Ph.D. Thesis 

Jennifer Jackson 186 of 357 May 2017  

6.4.5.2 Resilience to Malware with Recovery (SIR) 

For an SIR model, the reciprocal of the time at which the epidemic ends and all 

devices have recovered to their original operational state signifies the system level 

rate of recovery, or resilience   . However, there is no analytical solution for the 

end time (§4.3.2.4), but can be measured from the SIR simulation when the number 

recovered is within 1 of its final value. Equation (6-43) defines    as:  

                     
(6-43) 

 

6.5 Summary 

This chapter describes a mathematical epidemic approach to a diverse system 

model that has been developed to incorporate software diversity and malware at the 

genetic level of an ad hoc network ecosystem. The mathematical approach is 

constrained by four key aspects: 1) homogeneous mixing, 2) static diversity, 3) 

compatible software functions, and 4) non–influential users. Despite these 

constraints some key mathematical equations and methods have been established to 

investigate the security protection or mitigation offered by diversity and how much 

diversity is needed to tolerate or overcome specific attacks under these constraints. 

The mathematical approach has been developed with the standard SI/SIR epidemic 

models and can be used with both deterministic and stochastic methods. 

A key feature of this mathematical approach is the susceptibility model which 

defines the diversity and the malware, and subsequently the susceptibility. Two 

types of malware have been incorporated; the logical AND and the logical OR 
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which are representative of malware using multiple exploits to gain entry and 

propagate. Equations have been derived using probability theory for the 

susceptibility of both the AND and OR types for multiple exploits, loci, and 

software gene variants. The AND and OR methodology of matching exploits to 

genotypes is different from the standard gene matching algorithms used in ecology 

since the method used here is more appropriate to malware and the different types. 

It is more generalised but can also be constrained for specific malware and diversity 

scenarios. Under any specific malware and diversity scenario the resulting epidemic 

can be simulated. Current epidemic based malware models of diversity have been 

referred to as the ȁone locus modelȂ since they are equivalent in this model to a 

software stack genotype with one locus.  

Outputs from the model developed by this work include the two key 

components of ecosystem stability: resistance and resilience. An optimum diversity 

can be determined to either tolerate a specific malware attack given a specified QoS 

tolerance, or overcome an attack when recovery mechanisms such as software 

patching and antivirus detection are in place. For a specified QoS tolerance there is a 

trade off between the speed of recovery and diversity. The faster the recovery, the 

higher the tolerated susceptibility and hence less diversity is required. Under certain 

constraints approximations can be used to simplify, yet still determine, the optimum 

diversity required. Worked examples are included showing how diversity 

optimisation can be computationally determined. The calculated optimum diversity 

necessary to tolerate or overcome a specific malware attack informs upon the 
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minimum number of devices required to uphold this optimum diversity 

requirement. 

In relation to the hypothesis (§1.2), the development of the epidemic model gives 

some insight into how incorporating biodiversity concepts into computer networks, 

specifically ad hoc networks, can make them more resistant to cyber attacks. The 

model can inform the amount of security protection offered by biodiversity in the 

form of either tolerance to a specific type of attack, or mitigation to a specific type of 

attack when recovery mechanisms are available. Under such scenarios the optimum 

level of diversity necessary to provide the required security protection can be 

determined. 
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7 Diverse System Model: Agent-Based 

Chapter 7 

Diverse System Model: Agent-Based 

7.1 Introduction 

This chapter describes the architecture of the agent-based diverse system model. 

Firstly an overview of the system is given, highlighting which aspects are comparable 

to the epidemic model. Each of its three components; network model, diversity model, 

and malware model are then described over several sections detailing their design and 

modes of operation. A section on outputs describes a number of measured properties 

including resistance and resilience and how an optimum diversity can be measured 

for a given scenario. Finally a description of the implementation framework is given. 

7.2 System Model Overview 

The agent-based diverse system model has been designed with greater flexibility 

than the epidemic based method (§6) with the inclusion of dynamic genotype 

configuration, geographical location, integration with some existing security 

mechanisms, and realistic constraints associated with software configuration 

limitations as a result of users, hardware, or compatibility. However, it is also 

capable of simulating the same conditions as the epidemic model to allow the 
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comparison of results between the diversity methods and for the comparison of 

results where the inclusion of additional mechanisms is made. 

The agent model has several modes of operation as shown in Figure 7-1 which 

can be described by the selection of a network model, a diversity model, and a malware 

model. Selection of those circled by a dashed line indicates the modes that are 

comparable to the epidemic approach. 

As with the epidemic approach, the network model assumes that ad hoc devices 

move around with their users. Devices have the same or different software stack 

genotypes that, in this agent-based approach, are either fixed for a period of time or 

are dynamically changed in response to new information. Additionally in the agent 

approach it is possible for devices to exchange genotype information upon contact 

with each other (In the sense of observation of software configuration on the 

contacted device). A malware source initially infects one device which can then lead 

to malware propagating within the ad hoc network. 

In the agent-based approach there are two choices of network model. The first uses 

the homogeneous mixing assumption (§4.2.5) where random encounters are 

generated between devices. The second uses the random waypoint (§4.2.1) approach 

to inform the physical locations of devices to determine which, when, and for how 

long nearby devices are in range. The network model is further described in section 

7.3. 

There are two types of diversity model, static diversity where the genotypes present 

on each device remain fixed throughout a malware epidemic simulation, and 
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dynamic diversity where the genotypes may change in response to information. The 

two models are described further in sections 7.4 to 7.6. 

The malware model is responsible for the generation of malware exploits, genetic 

matching, and the monitoring of health states. It has two modes of operation, one in 

which it is assumed there are no recovery mechanisms in place for the malware. In 

this case each device has two health states of susceptible or infected (SI), which is 

comparable with the SI compartments of the epidemic model (§6.4.2.1). The second 

mode of operation is when there are recovery mechanisms in place where each 

device has an additional recovered (R) state, which is comparable with the SIR 

compartments of the epidemic model (§6.4.2.2). The inclusion of additional security 

mechanisms alters the dynamics between states and is described further in section 

7.7. Outputs from the model are covered in section 7.8. 

 

Figure 7-1 – Agent-based diverse system model showing modes of operation 

7.3 Network Model 

The network model has two modes of operation: random encounters and random 

waypoint, both of which result in a non deterministic pattern of encounters and are 

described as follows. 
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7.3.1 Random Encounters 

The random encounters method of homogeneous mixing uses randomisation of 

encounters between devices that is comparable to the stochastic epidemic model. 

This network model has been implemented to enable direct comparisons between 

the epidemic approach and the agent approach with the same input conditions. 

Additionally, at the same time it incorporates an element of realism that stochastic 

models try to represent (§4.3.3). The flow chart is given in Figure 7-2. The 

encounters occur stochastically with an average rate of contact   to model the 

Poisson process (§4.3.3.1). A random number is chosen for each device from a 

uniform distribution with a value between 0 and 1. This is used within an inequality 

equation to validate an encounter against the contact rate   at each time step. The 

binary result determines whether an encounter has occurred (encounter flag). The 

number of the randomly encountered device is selected from a uniform distribution 

of those devices in the network. The randomly chosen device is selected such that it 

cannot be itself. On a successful encounter it is assumed that both genotype 

information and malware, if it is present, are transmitted, so that the probability of 

transmission    . With the random encounter method there is no consideration to 

the locality of devices, or the length of time taken to transmit the genotype or 

malware data. This is inherent in the specified average rate of successful contact. 
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Figure 7-2 - Random Encounters implementation 

7.3.2 Random Waypoint 

7.3.2.1 Calculation of Waypoints 

The random waypoint algorithm has been implemented as described in section 

4.2.1 to model the mobility of devices within a confined rectangular area where the 

selected destination, speed and a stationary time period (pause) of each device is 

chosen randomly from a uniform distribution. The result is a set of waypoints (x 

and y coordinates) defining the location of every device at every time step of the 

simulation. The flow chart of the implementation is given in Figure 7-3. During the 

calculation process there are small differences between the randomly selected 

destinations and the actual destinations during each segment of a devices travel 

path. This is due to integer rounding of the incremental x and y coordinates (delta x 

and delta y) and therefore the true destination, distance and angle are recalculated. 

Set the contact rate c

Choose a random 

number

On each time step

If random number < 

contact rate c

Set encounter flag

Choose a random 

node to encounter with 

but must not be itself



Chapter 7  Ph.D. Thesis 

Jennifer Jackson 194 of 357 May 2017  

  

 

Figure 7-3 - Random Waypoint implementation 
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The random waypoint model has the flexibility to be extended to include other 

geographically shaped areas of interest or modified to incorporate non-random 

waypoints. Additionally the random waypoint algorithm could be replaced with 

real waypoint data of mobility patterns and is therefore a first step toward 

modelling geographical location of devices. 

7.3.2.2 Selection of Devices in Range 

Communication between devices in practical ad hoc networks is controlled 

through routing protocols (§3.2.3), which form part of a larger network protocol 

stack (§3.2.1.3). There may be several factors that determine which devices exchange 

data, and when this occurs, including the requirement to be in range, availability to 

provide the necessary bandwidth, link strength and link duration. Routing 

protocols store routing information in routing tables to instruct where particular 

data is to be sent. In the absence of a simulator (§4.2.2) to model realistic network 

traffic and routing a more abstract approach is taken based upon several relevant 

factors as described below. 

To model a successful encounter between devices they must be within 

communication range, a parameter which can be configured for the simulation run, 

for a period of time long enough to transmit genotype information and malware. 

The method for selection of devices in range has been modelled as one of the 

following (pictured in Figure 7-4). 

1. Nearest in range 

2. Random in range 

3. Available in range 
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Figure 7-4 – Selection of devices in range 
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more than one other device at any point in time. The nearest in range selection 

method is an alternative where the likelihood of better link strength and link 

duration is favoured by the model for the transmission of data.  
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The third selection method only selects devices that are both in range and are 

available to provide the maximum link bandwidth since they are not currently 

communicating with any other device. This could represent a routing protocol 

where the availability of a device is a favoured factor. 

7.3.2.3 Successful Data Transmission 

Successful data transmission between a pair of devices can only be achieved if 

the communication link can be maintained long enough. In this model it is assumed 

that the genotype data and malware are transmitted in an order consistent with a 

hierarchical network protocol stack (§3.2.1.3), where the malware cannot be sent 

prior to link establishment; moreover it is assumed that the entirety of the 

packetised genotype or malware data must be communicated for successful receipt. 

The transmission of data between devices is modelled using a tagging system where 

the selected device in range is tagged to signify the start of data transmission.  The 

tag is released if the device goes out of range or if the data is transferred 

successfully. The implementation method that determines which devices are in 

range and when they are tagged is given in the flowchart of Figure 7-5 (a). Euclidian 

distances between devices are calculated using their x and y coordinate positions to 

determine if they are in range. The tagging process is described using the state 

diagram pictured in Figure 7-5 (b). The time required to successfully transmit 

genotype data and the time required to successfully transmit the malware exploit 

are two parameters that can be set in the model. When the device is tagged the end 

times of successful transmissions of genotype (genotype end time) and exploit data 

(exploit end time) are calculated. If there is no malware then the tag is released at the 
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end of the genotype data transmission (state 3: Transmit genotype). If the tagged 

device goes out of range before one of the end times then the tag is released and the 

transmission of related data is unsuccessful. Since it is assumed that the genotype 

data is transmitted before the malware, it may be possible to successfully transmit 

genotype data, but not the malware.  

 

Figure 7-5 - Successful data transmission implementation 
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minimum time before genotype information is captured again from the same device 

(genotype time out). This prevents repeated data capture of the same genotype 

information in a slow moving scenario. However, if a repeatedly encountered 

device becomes newly infected, the infection is transmitted assuming it remains in 

range for long enough. 

7.4 Diversity Model - Measuring and Calculating 

Diversity 

7.4.1 Achieving Maximum Diversity in a Practical Ad hoc 

Network 

It is recognised that the more software gene variants and loci there are within a 

system, the greater the number of possible genotype configurations there are, which 

could become large (§2.3.2.3, Figure 2-10). It quickly becomes impractical to model 

network sizes capable of achieving absolute maximum diversity for one instance of a 

network. Additionally, network sizes in practice may range from being very small 

to very large. When simulating malware propagation, it is sufficient to only include 

enough genotypes to adequately model the proportion susceptible. Since it is only 

those susceptible that can ever become infected (§7.5.1).A condition of maximum 

diversity is that all variants are distributed evenly at each locus (§5.3.2.1). The 

measured distribution of variants is incorporated into the Nei diversity index 

calculation (§2.3.2.2.2) and is referred to as variant diversity within this research 

(§5.3.2.1). To achieve maximum variant diversity at a single locus there needs to be 

sufficient devices      to represent all of the available variants    . When the 

number of devices is large enough that all possible genotypes can be evenly 
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represented as well then the absolute maximum diversity condition can also be 

achieved. The agent-based model therefore aims to maximise diversity by 

maximising variant diversity at each locus independently, regardless of the network 

size. 

7.4.2 Calculating the Maximum Obtainable Variant Diversity 

The maximum value of the Nei Genetic Diversity for the monoploid genotype 

case (§5.6.2.1) occurs at one locus when the number of devices      is the same as 

the number of available variants     such that every variant is only used once. This 

leads to the frequency of each variant being 
   . The maximum diversity index of 1 

(§2.3.2.2.2) however is only achievable for large network sizes (and a 

correspondingly large number of variants), where, using the substitution for the 

number of different alleles     with the number of variants     in equation (2-7) of 

the Nei diversity Index gives: 

               
       

                                    
                 

Substitute in     , to give the Nei diversity as 

                                

(7-1) 

However, for the ad hoc network being modelled, the number of devices is likely 

to be greater than the number of variants available at a locus, which may be few in 
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number for practical reasons. In this case the maximum obtainable diversity will be less 

than the maximum diversity (given a fixed network size) and less than 1. At the 

maximum obtainable diversity the variants are evenly distributed across the 

devices, so that the frequency of each variant is     resulting in the probability (Nei 

diversity) at a single locus as: 

                   
                                                 

(7-2) 

For example when the number of variants is only two, the maximum obtainable 

variant diversity is 0.5, regardless of how many devices (subject to a minimum of 

two) are present in the network which means that half of the devices will have one 

variant and the other half will have another variant. When     , equations (7-2) 

and (7-1) are equivalent. This calculable value provides a reference as to the level of 

diversity that can be achieved given a finite number of variants under ideal 

conditions. 

7.4.3 Practical Constraints Limiting Variant Diversity 

In an ideal scenario it is assumed that all devices are able, and all users are 

willing, to use any of the different versions of software available at every locus. 

Additionally, the ideal scenario assumes that software across loci is compatible, 

such that any genotype can be possible given a fixed number of variants at each 

locus. In practice however, generating the ideal scenario may be difficult. For 

example if diversity is achieved through readily available versions of software 

programs providing the same functionality (§3.2.1.3) they may not be compatible 
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across loci (e.g. operational only with a specific operating system), they may differ 

in terms of quality and efficiency, and both user desirabilities and hardware 

limitations may have an influence over which ones are chosen for a specific device. 

Additionally user desirabilities may differ, depending upon whether they are 

imposed at a community scale, such as from an IT department where groups of 

devices may be constrained, or at an individual scale through personal preferences. 

Additionally, producing automated diverse versions of software or binary files is 

still in its infancy (§3.2.1.1), and even when implemented there may still be 

problems interfacing between the different products. These practical constraints 

could lead to variant or genotype configurations that are unusable or unfavourable, 

which will influence diversity patterns in the network. The inclusion of constraints 

in the agent model is detailed in sections 7.6.1.1, 7.6.2.2, and 7.6.2.4. 

7.5 Diversity Model - Static Diversity 

7.5.1 Distribution of Software Gene Variants 

The diversity model has two modes of operation, the first of which is static 

diversity. Static diversity can either be fixed for all runs of a simulation with a pre-

computed data set to achieve a specific distribution of variants and hence 

genotypes, or the variants can be assigned randomly at the start of every run. The 

random assignment of variants is used to achieve the maximum diversity possible 

for a given number of devices, loci and variants. At the start of each simulation run, 

each device chooses a software variant from the available pool at each locus using a 

uniform random distribution so that on average the software variants are 

distributed evenly across devices independently at each locus. This method of 
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random assignment is comparable to the epidemic model of static diversity under 

maximum conditions (§6.3.2.2). Figure 7-6 (a) shows the measured variant diversity 

from simulation against the calculated maximum obtainable under ideal conditions 

(§7.4.2) for a given variant richness with four loci and 1000 devices averaged over 10 

runs. The maximum genotypic richness (number of genotypes) (§5.3.2) and 

genotypic diversity (§5.3.2) that can be achieved is 1000, as shown in Figure 7-6 (b), 

which is as expected with 1000 devices.  

The maximum number of unique genotypes (§5.3.2) surpasses this when     , 

however when simulated with enough devices, or averaged over a sufficient 

number of runs, all unique genotypes will be utilised with equal probability. For a 

large variant richness a sufficient number of devices or runs become impractical to 

simulate as described in section 7.4.1, so that a proportion of genotypes will not be 

represented. However when simulating malware propagation, it is sufficient to only 

include enough genotypes to adequately model the proportion susceptible. The 

proportion susceptible is determined by the malware defined. If 50% of the 

genotypes are susceptible then a network size capable of adequately simulating this 

could be smaller than if only 1% are susceptible. If only 1% are susceptible the 

network would need to be relatively bigger (or more runs would be needed) so that 

on average the susceptibility is adequately represented. In practice for such a 

scheme it may be both true that there are more genotypes available than currently 

being used in the network of interest, or less genotypes available than the number of 

devices. For example ten variants at each of the four loci would generate 10,000 

genotypes. For a small network it may be true that only a subset of these are realised 
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at any given time. For static diversity simulated over a number of runs (or different 

network instances, where genotypes are assigned randomly) would average out so 

that all genotypes are equally used, even though in a single instance not all would 

be used. 

 

Figure 7-6 - Diversity measures in static diversity mode 

7.5.2 Susceptibility 

For the agent-based model the health status of every device is initially set to 

susceptible (§7.7.1) at the start of a simulation run regardless of genotype 

configuration. However the true susceptibility of the network can be measured 

under static diversity conditions by matching the generated genotypes against a 

specific malware attack type, and summing all those that match. Whilst the 

susceptibility should closely match the result of the epidemic model, under the 

same diversity and malware conditions, the dynamics of the infection and specific 

parameters will depend upon the network model. For the random encounter 

network model, the dynamics of the infection should closely match the epidemic 

model with the same input parameters.  
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7.6 Diversity Model – Dynamic Diversity 

This section describes two dynamic diversity algorithms, both of which aim to 

maximise variant diversity given a fixed number of variants, devices and loci. The 

first is based upon the random selection of available variants and is an extension to 

the static case that forms a baseline in which to make comparisons. The second 

algorithm allows individual devices to select variants based upon information 

obtained during local encounters with other devices and incorporates the 

geographical locality of devices. The flow charts for the two algorithms are given in 

Figure 7-7, with the differences highlighted by the double-lined boxes.  

The literature suggests that a degree of dynamism in a diversity scheme can be 

beneficial to confuse a targeted attacker (§3.4.3.1 and §3.4.3.4), however in a moving 

network where communication links are continuously changing, and in a future 

Internet where software and malware can rapidly evolve, together with access to 

vast quantities of data affecting local decisions, the need to be real-time dynamic 

may be essential. 

The algorithms can optionally incorporate two additional mechanisms, as 

indicated by the dashed lines, of current technology to explore the benefits of a 

dynamic scheme when integrated with existing security mechanisms such as 

vulnerability data and virtualisation (VM update). These are in addition to the 

standard recovery mechanisms included by the epidemic model (§6.4.2.2) and 

implemented by the agent model (§7.7.3.2). In addition, practical constraints, as 

indicated by the dotted lines, such as software compatibility and user influence can 
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be switched on to see the effects a realistic scenario may have. The algorithms and 

the additional mechanisms are further described below. 

 

Figure 7-7 - Dynamic diversity algorithms 
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The most simplistic dynamic algorithm, the random variant (RV), attempts to 
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response to input triggers such as time (RV-T), encounters with other devices (RV-

E), or other system triggers. The flow chart for the random variant algorithm is 
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7.6.1.1 Constraints – User Influence 

User constraints can be applied to both algorithms, but differ in the flexibility of 

the constraints that can be applied. For the RV algorithm, variants are constrained 

such that they are either available or not available for selection. This coincides with 

the way in which variants are selected randomly from those available without any 

bias. For example individual constraints such as physical hardware restrictions or 

user software preferences may limit those available for selection. When a device is 

constrained, such that only one variant can be selected, the result is a device with 

static diversity. Incorporating constraints into the dynamic model will limit the 

achievable variant diversity (§7.4.3) that the ad hoc ecosystem can achieve when 

maximisation is being sought. 

7.6.2 Dynamic Diversity Algorithm– Favourability Score (FS) 

The favourability score algorithm (FS) attempts to maximise diversity by 

allowing each device to make variant choices based upon local encounters with 

other devices and exchanging genotype information. Each device independently 

maintains its own perspective on the local distribution of software variants and 

variant diversity, and adjusts its own genotype accordingly. The agent model in 

dynamic diversity mode assumes that the genotype information of encountered 

devices is visible. For the scheme to become practically viable both a discovery 

protocol and a trust model would need to be developed to provide the necessary 

reliable information. There are many discovery protocols in existence for the 

automatic detection of devices, their services and parameters to connect them. The 

Bluetooth service discovery protocol for example determines which Bluetooth 
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profiles are supported to determine compatibility [260]. A discovery protocol for the 

exchange of genotype information would discover software variants rather than 

profiles. Additionally a trust model would be needed to establish trust relationships 

between devices to both authenticate the validity of the genotype information, and 

maintain privacy between trustees. Trust models for ad hoc networks determine 

trustworthiness of other devices without central authorities [261] allowing devices 

to participate in various protocols, for example determining trustworthy routes for 

forwarding data packets [262]. The work in the thesis does not develop a discovery 

protocol or evaluate trust models for the exchange of genotype information; instead 

the research firstly considers whether allowing software variant information to be 

visible upon contact would be of benefit to both diversity and security against 

existing forms of malware propagation. It also considers whether there are 

advantages of dynamic diversity using this methodology over static diversity or 

random assignments of variants.  

The flow chart for the FS algorithm is shown in Figure 7-7 (b). During the 

diversity maximisation period, as each device encounters another device 

successfully, the genotypes of the encountered devices are recorded. When enough 

encounters have been made, a parameter which can be set, a diversity metric 

(§7.6.2.1), is calculated based upon the genotypes of the encounters. If necessary the 

device will adjust the genotype to a different software variant configuration in an 

attempt to improve diversity within the network (§7.6.2.3, §7.6.2.4). If restrictions 

are set such as through vulnerability data (§7.6.3), software compatibility (§7.6.2.4), 

or user constraints (§7.6.2.2), this will affect the chosen genotype. 
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7.6.2.1 Calculating the Diversity Metric 

The diversity metric (dm) is formed independently by every device and indicates 

which variants could be chosen to improve diversity. Firstly, genotype data is 

stored by every device in a running buffer with a first in – first out (FIFO) 

arrangement, the depth of which can be set. The frequency of each recorded 

software variant      at every locus is calculated by summing the occurrence of each 

variant stored in the buffer and dividing by the number of encounters. This 

indicates how many of each variant is being used locally. To obtain a metric 

indicating which variants could be chosen to even out their distribution, the 

frequency is subtracted from unity and then normalized across each locus to 1. This 

results in variants used frequently being assigned a low metric value and variants 

used infrequently being assigned a high metric value up to a maximum of 1.  

                           (7-3) 

It is assumed that each device only stores the most recent genotype information 

so that the diversity metric is calculated from only those stored in the buffer. If all 

genotypes were stored and used, the data would not be representative of the current 

local network since both network and software stack configurations will change 

over time. 

7.6.2.2 Constraints - Individual and Community User 

Desirabilities 

The application of user constraints is more flexible in the FS algorithm, than the 

RV algorithm, but can also be limited to match the RV case. The constraints are 

based around two aspects that limit the maximum obtainable variant diversity 
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(§7.4.3); a) community scale desirabilities, and b) individual scale desirabilities. The 

levels assigned are used to influence the software choices of the algorithm when 

selecting genotype configurations. Unlike the binary constraints of the RV 

algorithm, here the constraints are applied in the range 0 to 100. Table 7-1 shows an 

example of how these two aspects could be initialized.  

Community scale desirabilities      – Each software variant has a community scale 

desirability level, which could be based on the specification of an IT department, or 

accommodate realistic data for a network such as 70% of users prefer, in an indirect 

sense, the Google Android core OS library. A number is assigned for each software 

variant in the range 0 to 100, where the sum of these desirabilities totals 100 for each 

locus. The community scale desirabilities impose a system level constraint without 

attributing software to specific individuals. This means that the variant diversity 

level will be maintained, even though devices are making individual and local 

decisions. 

Individual scale desirabilities      – The individual scale desirabilities are attributed 

to specific individuals. There is no difference in dynamic variant diversity levels 

from the community scale desirabilities when the same aggregated percentage of 

software is set. However, differences in the dynamics of the malware propagation 

will occur when specific individuals are constrained, for example, to never select the 

vulnerable software variants. Additionally, differences will occur when either 

location based constraints are imposed on specific individuals or devices move in 

non-random mobility patterns. Each software package has an individual desirability 

level based on the current userȂs desirability for the software. For example the user 
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desirability may be to use the software represented by variant 1 of locus 1 most of 

the time, but with a willingness to switch to variant 2, 3, or 4 if necessary. 

Additionally users may have specific requirements relating to specialised software 

in order to efficiently perform their responsibilities.  In this case it is possible to 

constrain specific individuals to use a fixed (static) software variant or variants, 

whilst the remainder of the network tries to maximise diversity. It is important that 

the diversity scheme does not negatively impact the user experience and so there 

may be the need to maintain a proportion of specific individual desirabilities whilst 

maximising diversity of the ad hoc ecosystem. The desirability value is also a 

number between 0 and 100 for each software package, but may be different within 

each device. The sum of these desirabilities totals 100 for each locus.  

The constraints of user and community desirability data cannot be applied in the 

same way to the RV algorithm as the FS algorithm due to the random selection of 

variants. A configuration comparable to the RV constraints would be to apply a 

desirability value of zero to those variants that are unwanted and apply equal 

values to those variants wanted. When a device is constrained in the FS algorithm 

such that only one variant can be selected, the result, as with the RV algorithm, is a 

device with static diversity. 
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Table 7-1 - Setting desirability values example 

 

7.6.2.3 Favourability Score 

The favourability score     combines the diversity metric (§7.6.2.1), the 

constraints (§7.6.2.2), and the vulnerability data (§7.6.3). The equation given in (7-4) 

is termed the favourability score because it ȁfavoursȂ rather than determines 

particular software choices. 

                        (7-4) 

Where    is the diversity metric,    and    are constraints (§7.6.2.2), and                are weighting factors to weight the importance or inclusion of each 
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summation term. For example to perform diversity maximisation only, both     and     are set to zero.   is a binary matrix of vulnerability data (further described in 

§7.6.3) with a ȁŖȂ representing variants that should be blacklisted, and a ȁŗȂ 

representing variants that are deemed low risk and safe to use. The binary matrix is 

used to completely mask out unsafe variants from the list. The model currently 

assumes that each device has knowledge of the variants available to it to make an 

informed choice (§5.2.6.1). In practice however different devices may have 

knowledge of different variants, depending upon how they are generated and 

stored. For example all devices may have knowledge of COTS variants such as 

alternative commercial software or open source software modules (§3.2.1.3) as they 

would be readily accessible, however variants generated via automated code 

diversification techniques (§3.4.2) may not necessarily be widely available. 

7.6.2.4 Probabilistic Variant Choice and Compatibility Filtering 

The chosen variant at each locus of the genotype is selected probabilistically and 

independently based upon the favourability score where a higher score results in a 

higher probability that it will be chosen. This prevents all devices from choosing the 

same solution if there is a ȁbestȂ option. In an ideal scenario where all variants are 

compatible across loci this selection method is capable of always choosing 

operational genotypes. In a realistic scenario however, not all configurations of 

software may be compatible and so the option of compatibility filtering can also be 

included. The four steps involved in the decision process for updating a genotype 

with compatibility filtering are shown in Figure 7-8. In general it is often the 

operating system that dictates compatibility (§3.2.1.3) and so the core OS library is 
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used as the reference locus in this example, however it could be applied to any 

locus. Firstly the software variant choices are split into subsets where a mask is 

created for every OS core library variant to identify compatible software. In the 

second step an OS core library variant is chosen probabilistically from the OS core 

library locus using the favourability score. The third step applies the mask of the 

chosen OS to obtain a filtered favourability score. In the fourth step the remaining 

locus variants are chosen from the filtered favourability score using the same 

probabilistic approach. 

 

Figure 7-8 - Updating a genotype with software compatibility filtering 
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Variants 
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vulnerability and antivirus/software companies to produce antivirus signatures and 

software patches (§3.3.3). The level of threat perceived by the disclosed vulnerability 

dictates the amount of time, effort and speed in which antivirus signatures and 

software patches are released. Even the fastest developed patches may not be 

enough to prevent a surge in attacks which can occur within a few hours of 

disclosure (§3.3.3). With dynamic diversity it is possible to temporarily prevent 

software variants perceived as a security risk due to exposed vulnerabilities from 

being chosen as a valid variant solution. The term blacklisting is used here to denote 

the mechanism of preventing specific vulnerable variants from being chosen. 

Software vulnerability information is currently stored in publically accessible 

databases such as the NIST National Vulnerability Database (§3.4.4.6), or the CVE 

database (§1.1.2). The automated dissemination of vulnerability information could 

be released as soon as it becomes available and this would be a lot sooner than the 

corresponding antivirus signature and software patch, and more importantly, 

potentially faster than the response from cyber attackers (assuming users allow the 

diversity scheme to act upon the vulnerability data). 

Blacklisting is introduced into the model stochastically with an average rate   at 

which the blacklisting information is disseminated. This can be set as an 

independent rate, or a rate dependent upon the contact rate between devices. For 

example it can be set such that an average of 1 in 10 contacts made are with an 

access point capable of providing updated blacklisting information. Blacklisting of 

software variants within the model is undertaken by all devices in the network, 

however it is acknowledged that in practice some users may wish to avoid changing 
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configurations, for example due to compatibility implications. As shown in Figure 

7-7, for both algorithms, as soon as new vulnerability data becomes available it is 

applied immediately by constraining the choice of variants and re-updating (§7.6.4) 

the internal genotype. For those that are still susceptible, blacklisting provides a 

temporary immunity until new antivirus signatures or patching is applied. The 

effects of blacklisting on the malware model are detailed in section 7.7.3. 

7.6.4 Stopping and Starting the Genotype Update Process 

The genotype update process is required to make an intelligent genotype 

selection in order to maximise the variant diversity of the network, subject to the 

available variants and applied constraints. Whilst frequent changes of variants at 

some loci may be hidden and go unnoticed by the user, others may disrupt the user 

experience. Additionally if there is malware already propagating in the network, the 

act of switching to a vulnerable genotype could spread the malware even further. 

Therefore once diversity is maximised it may then be beneficial to update genotypes 

less often, such as only updating when there are new constraints, variants, or other 

information as shown in the flow chart of Figure 7-7. The start-stop state diagrams 

for the update process of the RV algorithm and the FS algorithm are shown in 

Figure 7-9 (a) and (b) respectively. 

For the RV algorithm, the local genotype information is not collected and so the 

only triggers for stopping the update process as shown in Figure 7-9 (a) is either time 

based, or encounter based. For example it can be possible to select the genotype once 

in a single update cycle and then remain static by not updating until a system trigger 

occurs for the device such as the availability of new variants, different constraints, 
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or vulnerability data allowing temporary blacklisting. For the FS algorithm the 

decision to stop updating is based upon each deviceȂs individual perception of the 

optimisation of the locally measured variant diversity. The local measurements are 

calculated using the Nei Index equation (2-8) from the recorded genotypes stored in 

the buffer as shown in the flow chart of Figure 7-7 (b). The running standard 

deviations of these measurements are calculated over a number of samples to 

determine how much the diversity level is changing; when optimised there is very 

little change. As shown in Figure 7-9 (b) when there is at least a sufficient number of 

samples and the standard deviation has progressed below a minimum threshold, a local 

minimum is found by comparing the previous standard deviation value to the 

current value before stopping the update process. If the standard deviation goes 

above a maximum threshold due to changes in the network by other devices, or a 

system trigger occurs, then the device restarts updating its own genotype again. 

 

Figure 7-9 - Stop-start update states for the RV and FS algorithms 
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The time evolution of a stop-start update sequence from one device using the FS 

algorithm is shown in Figure 7-10. The variant choice for a single locus, the standard 

deviation of the locally measured diversity (Std.) and relevant trigger signals are 

shown. Firstly the data buffer fills with variant diversity measurements (Buffer full) 

which are used to calculate the running standard deviation. During this period 

variant choices are being selected as part of the update process. When the local 

minimum is found below the minimum threshold the device is triggered to stop 

updating (1. Stop updating). At this point variant number one is chosen. Sometime 

later an encounter is made with a device with vulnerability data which triggers the 

blacklisting of vulnerable variants. This also provides a system trigger to re-start the 

update process, which then halts when the stop conditions are true (2. Blacklisting 

and update). In this scenario variant one is blacklisted and therefore becomes 

unselected. When a new patch for the vulnerable variant is installed (Patch 

download), the device stops blacklisting and re-starts the update process where any 

of the variants can be selected (3. Patch and update). In this scenario the device had 

become infected prior to blacklisting and subsequently moves to the recovered state 

(Recovery). 
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Figure 7-10 - Time evolution of a stop-start update sequence from one device 
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the virtualisation tools which can be reloaded at any specified time (§3.2.1.2). Using 

virtualisation to swap small chunks of functionally equivalent software has been 

practically tested (§3.4.3.4) by one research group proving that the concept is 

feasible, however using virtualisation to manage complete software stacks 

seamlessly would require further development of the technology and is discussed in 

future work (§9.3.2.4).  

On the assumption that VM technology could provide a practical platform, the 

dynamic model also incorporates an optional element which, when enabled, models 

that every time a genotype is updated, any malware present in the current 

configuration is also deleted. Unlike blacklisting, this does not make the device, 

temporarily immune: It could still become infected in the future with the same 

malware. The effects of virtualisation on the malware model are detailed in section 

7.7.3. 

7.7 Malware Model 

The malware model generates the exploits, genetically matches them to 

genotypes and monitors the health state of each device at every time step of the 

simulation using the SIR compartments. The health states are aggregated and used 

to assess the malware attack as it propagates through the network. Unlike the 

epidemic model, in the agent model the malware can be introduced at any time in 

the simulation, so that it may be introduced before, during, or after specific 

mechanisms have been introduced. 
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7.7.1 Susceptibility 

In the agent model all devices are assumed to be initially susceptible. This is 

different from the epidemic model which requires that the susceptibility is pre-

computed (which remains fixed) in order to assess the dynamics of the malware. 

This is because within a dynamically diverse network all of the devices are 

potentially susceptible to any specific malware attack, since any device is capable of 

adopting any possible genotype. However, in the agent model the time window in 

which each device is truly susceptible will be variable and dependent upon local 

information, individual decisions and the constrained choice of different variants. It 

is not necessary to compute this true instantaneous susceptibility to progress the 

dynamics of the simulation since the mechanism of genetic matching accounts for 

this by only allowing those instantaneously susceptible (those currently with a 

vulnerable genotype) to become infected given a successful malware encounter.  

7.7.2 Contact Rate and Probability of Infection 

For the agent-based model the contact rate    is determined by the network 

model. For the random encounters approach (§7.3.1) the contact rate can be set and 

is comparable to the epidemic model. It is assumed that once an encounter has been 

made with an infected device there is a successful transmission of the infection so 

that      For the random waypoint approach there are several parameters that 

determine the contact dynamics and successful transmission of the malware (§7.3.2).  

Regardless of the network model, it is assumed that once the propagating malware 

has successfully entered into a device and has been matched to a deviceȂs genotype, 

the infection is transmitted. This can happen if there are either no antivirus 
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mechanisms in place to detect or block the malware, or the malware is unknown 

such as in the case of a Zero-day attack. 

7.7.3 SIR Compartments 

Each device is accountable for its own SIR state. The transitions between the 

states on any particular device are determined by the interaction of the devices in 

the network, the diversity of the genotypes, the malware exploit data, and the 

instantaneous rate values. The flow sequence of the SIR state machine for each 

device is shown in Figure 7-11. There are four mechanisms that determine the 

movement between states. The first two mechanisms of genetic matching and 

recovery are present in the epidemic model. In the agent model however, genetic 

matching can be influenced by more than just the exploits and contact rate. 

Additional mechanisms such as changing genotypes, data transmission times, and 

device locality will also cause an effect, and increasing the realism of the model. The 

dotted lines represent additional flow mechanisms that are not present within the 

epidemic model and include the effects from both blacklisting and virtualisation 

when in dynamic diversity mode. The effects of these four mechanisms are further 

described below. 
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Figure 7-11 - Flow sequence of the SIR compartments in the agent-based model 
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Figure 7-12 - Genetic matching flow chart 

7.7.3.2 Recovery Mechanisms 

As with the epidemic model recovery mechanisms are assumed to occur at a 

recovery rate after infection. Such mechanisms include patching or antivirus 

signature detection to remove malware that was previously unknown at the time of 

the initial outbreak. When no recovery mechanisms are included for the duration of 

the epidemic, only the susceptible (S) and infected (I) states can be reached. When 

recovery mechanisms are included a recovery rate   can be set for each device. This 

type of recovery mimics the epidemic model when they are all set to the same value 

and initialised at the start of the initial malware outbreak. Similar to the generation 

of the contact rate in the Random Encounter model, the recovery of the devices 

occurs stochastically with an average rate of recovery   to model the Poisson 

process. A random number is chosen for each device from a uniform distribution 

Initial SIR 

state

Genetic matching 

between exploit data 

and genotype

Is there a successful 

malware encounter?

Y

N

Matched result output 

to SIR



Chapter 7  Ph.D. Thesis 

Jennifer Jackson 225 of 357 May 2017  

with a value between ȁ0Ȃ and ȁ1Ȃ and is used within an inequality equation to 

validate the recovery against the recovery rate   at each time step.  

7.7.3.3 The Effects of Blacklisting 

Blacklisting is applied to any device regardless of which state it is in (since the 

device itself cannot detect an infection in this model §9.3.1.2), however it is only of 

use when devices are still susceptible and would be equivalent to an extra temporary 

immunity state as that pictured in Figure 7-11, where the device is prevented from 

becoming infected. The SȂ state denotes that the actual effect of blacklisting for those 

that become temporarily immune is to remain in the susceptible state. The start of 

blacklisting information dissemination may be at the point of initial malware 

infection if the vulnerability has just been disclosed but could equally have been at 

some point in the past if prior knowledge of a potential threat was received, or 

further in the future if it models a zero day attack where the vulnerability and 

knowledge of an exploit is still unknown. For those already infected blacklisting 

offers no protection and it is assumed these devices remain infectious, even though 

the vulnerable variant is no longer used. When the signatures or software patches 

are released to detect and remove the malware, the infected devices can recover and 

the temporary blacklisting can be removed.  

7.7.3.4 The Effects of Virtualisation and Deleting Infected 

Genotypes 

Like blacklisting, the use of VMȂs to create and destroy genotypes, is applied to 

every device regardless of what state it is in, but is only of use when devices are 

actually infected since it removes undetected malware. During a genotype - VM 
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update cycle, if the device is infected it will move back to the susceptible state as 

shown in Figure 7-11. Simulations and analysis involving virtualisation are 

conducted in conjunction with blacklisting (§8.3.4).  

7.8 Outputs 

This section defines the outputs from the agent model as shown in Figure 7-13, 

most of which are comparable to the epidemic model. Only two analytical outputs 

are defined for the agent model, all other outputs are determined from simulation 

including the two key components of stability: resistance and resilience. A key 

benefit of the epidemic model is its analytical solutions. This enables an optimum 

diversity to be calculated in terms of the number of variants at each locus to tolerate 

or mitigate a specific type of attack for a given scenario. In constrained mode, the 

agent model is comparable to the epidemic model and therefore simulated outputs 

are compared to those calculated. Beyond the bounds of the epidemic model, with 

the inclusion of dynamic diversity, device geographical location, blacklisting, 

virtualisation and practical constraints, the results are analysed purely through 

simulation and comparisons with the epidemic based results. The outputs are 

summarised as follows. 
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Figure 7-13 - Outputs and optimum diversity for the agent-based model 
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The minimum network size (minimum number of ad hoc devices) to achieve absolute 

maximum diversity         (§5.3.2.3): This is the minimum number of ad hoc devices 

necessary to utilise every possible genotype configuration for one run instance of a 

simulation and is calculated using equation (2-12).  

7.8.2 Simulated Outputs 

Variant Diversity of the network       : This is the measured instantaneous variant 

diversity from the simulation across all devices in the network calculated using the 

Nei diversity index equation (2-8). 

Local Variant Diversity measured by each device     ): This is the measured 

instantaneous variant diversity from the simulation across all local encounters 

stored in the genotype buffer calculated using the Nei diversity index equation (2-8). 

Blacklisting Dynamics     : This is the instantaneously measured number of 

devices that are currently blacklisting variants. 

Virtualisation Dynamics      : This is the instantaneously measured number of 

devices performing VM updates. 

Infection Dynamics     : This is the instantaneously measured number of devices 

infected. 

Resistance to Malware     :  As per the epidemic model, this is the measured 

number of devices that do not become infected at the end of the epidemic. For the 

agent model, with or without recovery mechanisms, this equates to the number of 

devices in the S ǻor SȂǼ state at the end of the epidemic ǻmajor outbreakǼ simulation 

since all devices initially start in the S ǻor SȂǼ state. 
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(7-5) 

Resilience to Malware     : This is the reciprocal of the measured time when the 

number recovered is within 1 of its final value. 

Peak Infection Time      (no recovery): This is the time at which the number 

infected is within 1 of its final value. 

7.8.3 Implication of Outputs 

Optimisation of Diversity: For the agent model optimisation of diversity is 

measured through simulation across a parameter range to either tolerate or mitigate 

a specific attack. Unlike the epidemic model where optimisation can be calculated, 

for the agent model the point of desired tolerance, or mitigation is the measured 

point of the optimised diversity.  

Quality of Service Tolerance     :  This is the measured resistance that will inform  

the Quality of Service for a particular scenario and malware type. When resistance is 

measured over a varying parameter, the value of the parameter at the required    

can be found.  

7.9 Matlab Implementation 

This section provides a brief overview of the Matlab implementation of the 

agent-based diverse system model. 

The initial implementation of the agent model was created as a distributed 

architecture in a modular structure. A frame work has been developed with a user 
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interface to allow further network models, diversity algorithms and attack models 

to be added. The model can be run from the user interface where settings files can 

be created, saved and run, multiple simulations can be run sequentially, and output 

files can be saved or loaded into the display. The model can also be run in batch mode 

where a sequence of tests is left to run in order, each providing input to the main 

GUI window, which is pictured in Figure 7-14. 

 

Figure 7-14 - Main GUI window of the Matlab implementation 

A more abstract and efficient implementation was also created which captured 

the individuality of the devices whilst making use of the software tool in a single 

software program environment to utilise global parameters. For example the 

malware exploit data can be stored as a global variable and matched to genotypes 

individually, producing the same result as if the exploit data had been transmitted, 

received and stored individually. This implementation improved simulation speed 

by an order of magnitude and has been used as the basis for the results. 
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A flow chart describing the implementation flow of the software is given in 

Figure 7-15. Where relevant the individual components are referenced to their 

appropriate section or figure number describing the process in more depth. The 

source code for the Matlab implementation of the models can be found at the 

permanent link: http://wrap.warwick.ac.uk/98458. 

http://wrap.warwick.ac.uk/98458
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Figure 7-15 - Matlab software implementation flow 
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If Random Waypoint network model selected

-Perform random waypoint movement of devices (Figure 7-3)

-Selection and tagging of devices in range (Figure 7-5)

-Buffer genotype data (§7.3.2.3)

-(Including the transmission of genotype information and malware) 

If Recovery selected

-Choose those to receive recovery mechanism (§7.7.3.2 , input to 

Figure7-7)

If Blacklisting selected

-Choose those to receive vulnerability data (§7.6.3, §7.7.3.3 , input 

to Figure7-7)

Genetic matching

-Between exploit data and genotype (Figure7-12)

Determine the next state of each device

SIR compartments (Figure7-11)

Update genotypes: If RV dynamic diversity algorithm selected

-Perform random variant selection (§7.6, Figure7-7a)

Update genotypes: If FS dynamic diversity algorithm selected

-Perform favourability score algorithm (§7.6, Figure7-7b)

Do every time step

Do every run of the model
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7.10  Summary 

This chapter describes an agent-based simulation approach to a diverse system 

model that, like the epidemic model, has been developed to incorporate software 

diversity and malware at the genetic level of an ad hoc network ecosystem. The 

chapter predominantly describes the design of the model and, unlike the epidemic 

model, the outputs of the agent model are analysed purely through simulation. The 

agent-based diverse system model is comprised of three components; a network 

model, a diversity model, and a malware model. It has been designed with greater 

flexibility than the epidemic based method with the inclusion of dynamic genotype 

configuration, device geographical location, and practical constraints. In the agent 

model, diversity does not remain as a stand-alone security strategy. The dynamic 

approach is exploited through the integration with other security mechanisms such 

as publically available vulnerability data and virtualisation technology to enhance 

its effectiveness. However, it is also capable of simulating the same conditions as the 

epidemic model to allow the comparison of results between diversity methods and 

for the comparison of results where the inclusion of additional mechanisms is made. 

Optimisation of diversity is measured through simulation across a parameter range 

to either tolerate or mitigate a specific attack.  

The development of the agent model provides a simulation framework for 

incorporating biodiversity concepts and algorithms, different network models and 

malware models, and integrating them with other security mechanisms.  In relation 

to the hypothesis, the framework provides a method for analysing how diversity 

can make ad hoc networks more resistant to cyber security attacks. 
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8 Results and Analysis 

Chapter 8 

Results and Analysis 

8.1 Introduction 

The purpose of this chapter is to demonstrate through mathematical modelling 

and simulation the hypothesis that Incorporating biodiversity within peer-to-peer mobile 

wireless computer networks makes them more resistant to multi-exploit malware 

propagation. This is achieved using the two models developed and detailed in 

chapterȂs Ŝ and ŝ. This chapter is split into two sections: 

Constrained Diverse System Model: Epidemic Based - This section details the results 

of the epidemic based system model (§6). It firstly looks at the susceptibility 

relationship with diversity and malware types, since for the epidemic model, this 

can inform on the extent of the malware attack when there are no recovery 

mechanisms. Secondly it looks at the optimisation of diversity in order to predict 

how much is needed to either tolerate different malware in order to maintain 

Quality of Service, or mitigate malware when recovery mechanisms are present. 

Thirdly it looks at the resistance and resilience outputs of the ad hoc network 

ecosystem to show the relationship with diversity in relation to different types of 

malware attacks. 
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Diverse System Model: Agent-Based- This section details the results of the agent-

based system model (§7). It firstly compares the agent model to the epidemic model 

under the same input conditions, specifically comparing the amount of static 

diversity needed to mitigate different types of malware. The purpose of which is to 

verify functionality of the agent model. Secondly the performances of the dynamic 

algorithms are assessed in reaching the maximum diversity level, both under ideal 

conditions, and when generic constraints are applied. The aim is to compare 

random with intelligent decisions, and compare the maximum achievable diversity 

with the actual diversity achieved. Thirdly the different modes of operation are 

analysed using the random encounter network model, including dynamic diversity 

as a standalone approach, and then with the additional security mechanisms in 

order to assess their beneficial impact. The effect of constraints on resisting the 

different malware types are considered including spatially constraints which are 

analysed using the Random Waypoint (RWP) network model. Unless explicitly 

stated, results are given for the one locus malware and the four locus malware 

configurations which cover the two extreme cases over the range considered. The 

results compare, for example a 4 exploit cross layer malware such as Stuxnet in the 

AND scenario (but in an ad hoc network), with the equivalent OR scenario and with 

malware targeting a single locus (which by its definition, additionally compares 

other epidemic malware models which consider malware and devices as single 

entities (§6.3.2.1). As previously stated susceptibility relationships are important for 

the static diversity case because they directly impact the magnitude of the malware 

attack. Here the implication of other loci configurations are also discussed (§8.2.1). 
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8.2 Constrained Diverse System Model: Epidemic 

Based 

8.2.1 Susceptibility Relationships for Static Diversity 

Devices that are susceptible to a specific instance of malware are at risk from 

being attacked. When diversity remains static for a period of time, so too does the 

susceptibility, allowing epidemic based models to predict the extent of the malware 

attack. The question is whether increasing static diversity can reduce the 

susceptibility of the ad hoc ecosystem, and lower the security risk. 

The answer to this question depends upon several factors including the type of 

malware, the number of exploits and the variants they target, the initial diversity of 

the ad hoc ecosystem, and how diversity is increased (§5.3.2.2). 

8.2.1.1 The One Locus Model with Increasing Variant Diversity 

When the initial diversity is realised from an unequal distribution of software 

variants there are many solutions for increasing diversity from a minimum (single 

variant dominance) to a maximum (evenly distributed variants). Figure 8-1 gives 

two examples for a single locus, equivalent to the one locus model, with a maximum 

of eight possible variants being used (v1 to v8). For both examples, at minimum 

variant diversity ǻȁminȂ columnǼ only one variant is utilised with the highest 

possible frequency. “t maximum variant diversity ǻȁmaxȂ columnǼ all eight variants 

are evenly distributed with identical frequencies. The two examples differ in that 

the first has one dominating variant that becomes less dominant as diversity is 

increased, by use of the other variants in a minimal way, whilst the second example 

maintains an even distribution of variants as more are utilised.  
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Figure 8-1 – Susceptibility relationship with increasing variant diversity 
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in the case of malware A, or increase susceptibility, as in the case of malware B. This 

result has been seen within natural systems and is explained by the dilution effect 

(§2.2.2.2.3) where increasing diversity dilutes the proportion of susceptible variants, 

and the amplification effect whereby increasing diversity increases the representation 

of susceptible variants. This result is intuitively expected in a static diversity 

scenario and confirms that exploits targeting higher frequency variants result in a 

more susceptible ad hoc ecosystem, and pose a higher security risk. The modelling 

of non-maximally diverse scenarios is not considered by other malware models, but 

it can allow the effects from the diversity of current networks to be analysed in 

response to different malware types, assuming the necessary data can be collected 

for each analysed layer of the software stack (§9.3). 

8.2.1.2 Multiple Loci at Absolute Maximum Diversity 

When a fixed number of software variants are evenly distributed, susceptibility is 

no longer dependent on which variant the malware is targeting at a given locus: The 

malware could target any single variant and the susceptibility would be the same. 

The susceptibility is now dependent upon the malware type and the number of 

exploits targeting the variants at each locus. Two malware types have been defined, 

the logical AND, and the logical OR (§5.3.3). The difference in their susceptibility 

relationships with varying numbers of exploits (exploit richness) for a fixed variant 

richness of 8 is shown in Figure 8-2 (a) and (b) respectively.  The relationships in 

these graphs show the condition of absolute maximum diversity (§5.3.2) where the 

maximum number of unique genotypes are utilised and equally distributed in addition 

to variants at each locus being equally distributed. The relationships follow the 
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susceptibility equations for the logical AND and logical OR types (§6.3.2), and allow 

comparisons between multiple loci and the ȁone locus modelȂ (single locus, §6.3.2.1).  

 

Figure 8-2 - Susceptibility relationships at absolute maximum diversity 
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Understanding susceptibility relationships is important because it defines the 

magnitude of the malware attack when there are no recovery mechanisms in place. 

Particularly when considering homogeneous mixing models where devices are 

assumed to make contact with each other at random which forms an underlying 

assumption of the mathematical epidemic model (§4.2.5). When there are recovery 

mechanisms the reproduction number (§4.3.2.5) additionally contributes to the 

extent of the malware attack.   

For a fixed exploit and variant richness (as shown in Figure 8-2 (a)) increasing the 

number of loci in which the AND malware type targets not only reduces the 

susceptibility but the reduction in susceptibility also becomes less. This means that 

in practice it is beneficial from a security perspective to ȁencourageȂ malware to 

ȁhaveȂ to use multiple exploits across layers to infect and propagate, for example 

designing loci divisions that make it difficult for malware to spread using only one 

exploit. Although, the benefit of malware using an increasing number of cross layer 

exploits diminishes. For the OR malware type the susceptibility increases with the 

number of loci, for a given exploit and variant richness. This is because the more 

exploits there are available, which increase with the number of loci in this example, 

the greater number of genotypes there are that will be susceptible, making this type 

of malware a high security risk. However, opposite to the AND scenario, for a fixed 

exploit and variant richness (as shown in Figure 8-2 (b)) increasing the number of 

loci in which the OR malware type targets not only increases the susceptibility but 

this increase diminishes as more cross layer exploits are added. 
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However increasing diversity through variant richness for either of the malware 

types, under absolute maximum diversity conditions, reduces the susceptibility as 

shown in Figure 8-2 (c) and (d). The difference being in the gradients of their 

reduction. For the AND malware type, every increase in variant richness produces a 

large reduction in the proportion of susceptible devices. For an exploit richness of 

one the proportion of devices susceptible becomes very small by the time a variant 

richness of ten is reached. For the OR malware type the reduction is smaller, and 

when the variant richness is large relative to the total number of exploits, the 

susceptibility can be approximated by the one locus model with the same total 

number of exploits (§6.4.4.4.4). As shown by the curves, the equivalent one locus 

model (with the same total number of exploits) has either the same or a higher 

susceptibility, and therefore malware writers with OR capability wishing to inflict 

maximum damage regardless of the variant richness could better do so by targeting 

any single locus with multiple exploits (see Figure 5-6 Malware threat model) rather 

than spreading the exploits across loci.  

8.2.2 Optimum Diversity to Tolerate or Mitigate a Malware 

Attack 

8.2.2.1 Optimisation and Simulation Process 

This section considers how much diversity is needed to tolerate or mitigate a 

specific type of malware attack (§6.4.4). When tolerance      is required to maintain 

a specific QoS for the ad hoc network ecosystem, or mitigation is required to 

prevent a major outbreak (reproduction number     ), the diversity optimisation 

process follows that pictured in Figure 8-3. Firstly the specified constraint is used to 
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calculate the necessary susceptibility      using equations (6-21), (6-23), and (6-28) 

defined in section 6.4.4. The calculated    is then used to determine the diversity in 

terms of the optimum number of variants needed per locus to tolerate or mitigate a 

specific malware attack (§6.4.4.4) using equations (6-32),(6-33) for the AND malware 

and (A-7),(A-8) for the OR malware. To simulate and verify the calculated 

predictions using a malware model, the    value is recalculated using the 

discretised optimum number of variants. This is used to calculate susceptible 

infection rate      and the number of susceptible devices      for input in to the 

malware model. Running the deterministic or stochastic malware model (§4.3.1, 

§6.4.2) can be used to measure peak infection times, resistance or resilience, for 

either optimum diversity conditions, or other specified diversity levels for a specific 

malware attack. 

 

Figure 8-3 - Process for optimising diversity and simulating the malware model 
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8.2.2.2 Tolerance of a Specific Attack with no Recovery (SI) 

When there are no recovery mechanisms, tolerance of a security attack is critical 

in maintaining QoS. It is presumed that high QoS levels are required to maintain 

adequate functioning of an ad hoc ecosystem. However 100% tolerance is likely to 

be difficult to achieve in practice since the susceptibility asymptotically approaches 

zero as the variant richness increases producing diminishing benefits. A tolerance 

below this may be sufficient to maintain an adequate QoS for the network. QoS 

Tolerances of 80%, 90% and 95% are used to compare and determine the required 

diversity in terms of the optimum number of software gene variants at each of the 

four loci to tolerate a specific attack. Capturing the exact tolerance requirement for 

real networks is difficult in the absence of data, or event based simulators which 

have the ability to model lower levels of abstraction such as traffic generation and 

communication protocols (see §9.3.1.2). 

8.2.2.2.1 Optimum Diversity (General) 

In the first instance the general equations are used (§6.4.4.4.1, §6.4.4.4.4) to 

calculate the exact number of variants necessary to tolerate a specific number of 

exploits targeting each of the four loci in the modelled software stack (§5.3.1.3, 

Figure 5-5). A range of exploits are demonstrated for both the AND and OR 

malware types up to a maximum of eight per locus. Table 8-1 shows the exact 

number of exploits used and Figure 8-4 shows the calculated results.  
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Table 8-1 – Specific AND and OR malware examples 

 

The optimum number of variants for the four locus AND and OR malware types 

are computed using the general equation (6-32) and the general approximation 

(because a high tolerance equates to a low   ) equation (6-39) respectively, together 

with the minimisation equation (6-29) (§6.4.4.4) where the first computed optimum 

solution is used as the final result. Optimum diversity results for the AND and OR 

malware types for the three selected tolerance levels are given in Figure 8-4. To 

show the results graphically the total number of exploits used by each malware is 

on the x axis of the graphs. The required number of variants for each locus 

(v1,v2,v3,v4) to tolerate each malware is shown in each vertical set on the graphs as 

numbered. For the AND malware type fewer than 20 variants are needed per locus 

to maintain a QoS Tolerance between 80% and 95% for up to eight exploits at each 

locus. For the OR malware type however, up to 160 variants are needed for an 80% 

tolerance rising to over 600 to maintain a 95% tolerance. 
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Figure 8-4 - Optimum diversity (variants at each locus) to tolerate an attack 
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The advantage of the general method is that there can be several optimum 

solutions from which to choose. This could be particularly useful for the AND 

malware type where there are relations across loci, even for a large number of 

variants. For example if there are an abundance of variants available at one locus, 

but the variants are restricted at another, the QoS could be maintained by allocating 

an alternative valid solution, aiming to comply with the variant restrictions. One 

realistic example could be a limited number of available core OS library variants 

balanced by having a greater number of application service variants (§3.2.1.3). 

8.2.2.2.2 Optimum Diversity (Average) 

In situations when the exact security risk at each locus is not clear, an average 

number of exploits (exploit richness) can instead be specified resulting in a diversity 

optimisation of an average number of variants (variant richness). Here there is only 

one diversity solution and no minimisation is required. The one locus model is 

compared to the four locus genotype model with the AND malware type using the 

variant richness equation (6-33), and the OR malware type using the approximation 

equation (6-40). The results are shown in Figure 8-5 for the three specific    values. 

Results for two and three loci are given in Appendix B. 

The variant richness follows a linear relationship with the exploit richness. The 

non-exact linear relationship for the four locus AND case (Figure 8-5 (c)) is due to 

rounding when calculating an exact integer number of variants. For the AND 

malware type, as more exploits are added across loci (e.g across four loci compared 

to one locus) to propagate the malware and act out its malicious intent, the less 

variant richness is required to achieve the same QoS Tolerance. However the 
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resultant number of unique genotypes is very large as shown in Figure 8-5 (d) and 

hence the minimum network size to achieve the required tolerance, under 

maximum diversity conditions is also very large. For smaller network sizes the 

number of genotypes present will equal the number of devices so that not all of 

those possible genotypes will be utilised. This may alter the susceptibility and hence 

the QoS. For the OR malware type (Figure 8-5 (b)), more variant richness is required 

to achieve the same QoS tolerance, however under approximation conditions 

(§6.4.4.4.4), the variant richness can also be used to define the minimum network 

size which is considerably less than for the AND type. For the one locus model, the 

resultant number of genotypes is the same as the variant richness. 

 

Figure 8-5 - Optimum diversity (variant richness) to tolerate an attack 
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An example of a four locus – four exploit AND malware type is the Stuxnet 

worm (§3.3.4). The worm caused the disruption of a nuclear facility, but closely 

related versions, were later found propagating elsewhere [17]. To tolerate such a 

worm at a network level where 95% of QoS is maintained, only three variants at 

each of the four loci would have been needed. For an equivalent OR malware type, 

such as those generated using exploit kits (§3.3) 80 variants would be needed. 

8.2.2.3 Peak Infection Time with No Recovery (SI) 

For a fixed number of devices    and contact rate                the peak 

infection time    can either be estimated by calculation (for the deterministic model 

§6.4.5.1) for a specified QoS Tolerance    (results given in §8.2.2.3.1) or calculated 

from a specific malware attack with a specified    (results given in §8.2.2.3.2) following 

the process in Figure 8-3. In the first calculation no knowledge of the specific 

malware attack or diversity is used. For a specified   , equation (6-21) is used to 

calculate    and then substituted in equation (6-42) to calculate the peak time   . For 

a more accurate result diversity is firstly optimised for a specific malware attack to 

account for the discrete values needed for the number of variants at each locus 

(§6.4.4). This information is then used to recalculate the susceptibility    for a 

specific attack where the true peak infection times, using equation (6-42), can be 

calculated. 

8.2.2.3.1 Specified QoS Tolerance 

Figure 8-6 (a) shows the calculated time of peak infection for a specified QoS 

Tolerance (80%, 90% and 95%), whilst Figure 8-6 (b) shows the simulated time 

(measured from simulation) for both the deterministic and stochastic SI models. The 
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total network size was made large (20,000) so that even after reduction to those 

susceptible, the simulated network was still considered large. The peak infection 

time parameters are given in Table 8-2. The stochastic simulation was averaged over 

500 runs, with the standard deviation bar as shown. As predicted, the simulated 

deterministic result agrees with the calculated deterministic result. The difference 

between the deterministic and stochastic curves is known as the stochastic lag [228]. 

The higher the specified QoS tolerance the fewer the number of devices that become 

infected overall. Also the time to reach the peak of infection takes longer giving 

more time available to react to the malware if intervention mechanisms such as 

detection or recovery are present.  

 

Figure 8-6 - Calculated and simulated peak infection times 

Table 8-2 – Peak infection time parameters 
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8.2.2.3.2 Specific Malware Attack with QoS Tolerance 

Figure 8-7 show the corresponding calculated peak infection times for the 

optimum variant richness given in Figure 8-5 for the three specified    values. For 

the one locus model and the OR type, the peak infection times in this scenario are 

the same as those calculated and shown in Figure 8-6 (a) since the calculation 

resulted in an integer number of variants for the    values specified, although this 

is not generally the case for all    values.  For the AND malware type there is a 

difference due to both the power terms in the average variant richness equation 

(6-33) and integer rounding. As an example, for the four locus AND type with one 

exploit per locus, the true peak infection time is calculated to be over twelve hours 

for 95% tolerance instead of just under four hours as previously estimated from 

calculation, and thereby lengthening the time window of performance degradation 

and hence increasing the reaction time for intervention. Results for two and three 

loci are given in Appendix B and show similar differences in the peak infection 

times for the AND case. 
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Figure 8-7 - Calculated peak infection times with no recovery 
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specified   . The three critical values of    are calculated and shown in Table 8-3 

using the Bound C equation (6-26). 

Table 8-3 – Critical Rc values for a given QT 

 

Small       values indicate either a low infection rate or a high recovery rate. 

Under this condition, a high proportion of devices can become susceptible whilst 

the QoS is still maintained.  

Optimisation of diversity for a fixed    of 0.8 (80%) with recovery is shown for 

the one locus model (Figure 8-8 (b)), the four locus AND malware type (Figure 

8-8(c)), and the four locus OR malware type (Figure 8-8 (d)). Malware types with up 

to eight exploits at each locus are calculated. Four fixed values of the       ratio are 

used between the upper and lower bounds, where         (bound A) and      (bound B) (§6.4.4.2). For the one locus case as shown in Figure 8-8 (b), the 

required variant richness (    varies between 8 and 40 for 8 exploits. The required 

upper limit of 40 equates to the result when there is a very low recovery rate or a 

high infection rate since this is representative of when        for the non recovery 

scenario. The lower limit of 8 equates to the result where      where all devices 

are susceptible and so the number of variants equates to the minimum number 

imposed to accommodate 8 exploits. This equates to the result when there is a high 

recovery rate or a low infection rate. 

 

QT RC

0.8 (80%) 1.1157

0.9 (90%) 1.0536

0.95(95%) 1.0259
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Figure 8-8 - Optimum diversity to tolerate an attack with recovery. 
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maintain an acceptable QoS. There is therefore a trade off between maintaining QoS, 

the speed of recovery, and the variant richness. 

The ability to recover quickly through patching in a system with diversity will 

depend upon the way in which variants are generated and the way in which 

variants are stored, and maintained. When variants are generated by COTS software 

the total number of different patches required to maintain them will be higher than 

a non-diverse system as there will be more underlying software. When comparing 

patching against malware only however, the same number of different fixes will be 

required in a non-diverse system as a diverse system to recover from the same 

number of different malware. Even if the malware is comprised of multiple exploits, 

each of the targeted vulnerabilities would need to be fixed in the software in both a 

non-diverse and diverse system. In practice however for a non-diverse system 

multiple fixes may be combined into a single patch, but would need to be 

distributed to all devices. For a statically diverse system a smaller number of 

devices would require patching. However the fixes may need to be spread over 

several individual patches to be applied in parallel to different variants at different 

loci. For the AND malware type, recovery would begin the moment the first patch is 

applied due to the dependent relationship across loci. In a dynamically diverse 

system the distribution of patches will depend upon how variants are stored. If 

variants are stored in a globally accessible pool, patches would be applied to the 

pool so that when they are next downloaded the patched versions are retrieved. 

However if variants are stored locally, a single patch would need to be disseminated 

to all devices with the vulnerable variant. When variants are generated using 
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automated techniques, the amount of patching may depend upon the source of the 

vulnerability. If an exploit attacked a single variant where the vulnerability source 

was in the software code then all associated variants may need to be recompiled and 

patched to avoid similar exploits attacking the same vulnerability in different 

variants. If the vulnerability is associated with a single variant, only that would 

need to be patched or replaced. 

8.2.2.5 Mitigation of an Attack with Recovery (SIR) 

To prevent a major outbreak of a specific malware type the reproduction number    must be less than 1, where, using equation (6-28)    must be less than the ratio     . Figure 8-9 shows the relationship in terms of variant richness necessary to 

mitigate an attack for a range of      ratios with varying exploit richness. The one 

locus model is compared to the four locus genotype for both the AND and OR 

malware types. For example, for a      ratio of 0.2, the one locus model would 

require 20 software variants to mitigate a malware attack with 4 exploits. A four 

locus AND malware attack with 4 exploits, each targeting a different locus (exploit 

richness of one) would required a variant richness of 2 to mitigate the attack. A four 

locus OR malware attack with the same exploit richness would require 19 variants. 
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Figure 8-9 - Optimum diversity to mitigate an attack with recovery 
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a densely populated area where there may be many ad hoc devices, the average 

time between successful contacts may therefore be around 10 seconds. With this 

contact rate, the four locus AND malware type would only require a variant 

richness of 6 to mitigate the attack, the one locus model would require 720 variants 

and the four locus OR malware type would require a very large variant richness of 

2,879 before preventing the spread. 

 

Figure 8-10 – Malware mitigation of a practical scenario 
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AND type leading it to span true ȁmulti-lociȂ since the generated genotype 

configurations (assuming they encompass the separate locations at which the 

malware targets) will reduce the susceptibility (§8.2.1.2). Equally there needs to be 

consideration of the OR malware type which increases susceptibility as the number 

of exploits across loci increases (§8.2.1.2). If the granularity and functionality 

definition of the software stack genotypes is ill-considered for potential OR cases, it 

may not improve the security benefit against these types of malware. 

8.2.2.6 Simulated Resistance and Resilience to Mitigate an Attack 

The resistance and resilience outputs of the ad hoc network ecosystem are used 

to show their relationship with diversity in a constrained diverse system model. The 

four locus AND and OR malware types are simulated using the deterministic 

malware model (stochastic results are shown in §8.3.1.2) to measure the resistance 

and resilience properties for mitigating a specific attack. A fixed      ratio of 0.2 is 

used to show the relationship. For example, from inspection of Figure 8-9 (a), 

mitigation of the four locus AND type, with an exploit richness of one should occur 

at a variant richness of two.    values are calculated for a specified diversity and 

malware attack using the process pictured in Figure 8-3.  The diversity is varied 

over a range to include the calculated optimum diversity points given by the          lines in Figure 8-9. The deterministic malware model is run for a fixed 

network size of 1000 devices      with those calculated to be susceptible as    at an 

infection rate of    using equations (6-1),(6-3),(6-4). Both the resistance and resilience 

parameters are measured from the output of the simulations, where 100% resistance 

equates to the point at which there is no malware outbreak. The calculated 
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susceptibility values    for specific AND and OR malware attacks are shown in 

Figure 8-11 (a) and (b) respectively. The dashed lines are representative of an    

value of 1 for an exploit richness of 1, and correspond to the calculated non 

discretised    values. Figure 8-11 (c) and (d) show the simulated number infected 

for the AND and OR malware types, each with one exploit, respectively for above 

and below the      critical threshold. Variant richness values corresponding to      show a clear malware outbreak with devices being infected. Variant richness 

values corresponding to      show the single infection dying away.  

Figure 8-11 (e) and (f) show the simulated resistance from the deterministic 

malware model for the AND and OR malware types respectively by measuring the 

final size of the epidemic simulated and using the resistance equation (6-19) to 

determine the resistance. For each specific malware simulated, as diversity increases 

so too does the resistance, until it asymptotically approaches 100% past the critical 

variant richness value where     . The calculated points for the single exploit case 

are indicated as dashed lines. The result is as expected and matches the variant 

richness values calculated in Figure 8-9. With recovery mechanisms in place 

therefore it is possible to determine from the simulated resistance, the variant 

richness required to mitigate against specific malware types. 
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Figure 8-11 – Simulated resistance and resilience to mitigate an attack 
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Figure 8-11 (g) and (h) show the measured resilience for the OR and AND 

malware types respectively by recording the reciprocal of the time in which the 

number recovered settles to within 1 device of the final value (§6.4.5.2). As diversity 

increases towards the point of mitigation, the resilience actually worsens. The 

reason for this can be explained: As diversity increases, fewer devices are 

susceptible to the malware but the overall density of the devices remains the same. 

This results in the malware taking longer to spread since it will take longer for a 

susceptible device to come into contact with an infected device. Consequently this 

means longer to recover from the point of initial infection (the infection curves 

become shallower and more spread out). This has the result of reducing the 

resilience until it reaches a minimum at the      point. As diversity is increased 

further beyond this point resilience rapidly increases as the malware infection dies 

away faster. This result indicates that for the SIR epidemic model, an increase in 

diversity can either reduce or increase resilience depending upon which side of the      line it sits. However the model assumes that recovery can only occur after 

infection has already taken place, since this is what happens in a biological system 

where the recovery rate indicates the average time in which an individual remains 

unwell before recovering. In a practical computing network patching and antivirus 

updates now tend to occur at regular intervals regardless of whether a device is 

infected and recovery could occur whilst still susceptible potentially changing the 

resilience response to diversity and the point of mitigation and is discussed further 

in future work (§9.3.1.3). 
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8.2.3 Section Summary 

This first section detailed the results of the epidemic based constrained diverse 

system model. Despite its constraints it is able to model some general diversity 

principles in relation to an ad hoc network ecosystem. The OR malware type poses a 

higher security risk over the AND malware type since the more exploits there are 

available, the greater the overall susceptibility. Additionally, malware with multiple 

exploits targeting the same locus is a greater threat than those targeting multiple 

loci with the same number of multiple exploits. Increasing static diversity in terms 

of variant diversity in the ad hoc ecosystem can either increase or decrease 

susceptibility of the devices depending upon which variants the malware is 

targeting and the starting point of diversity in terms of variant frequencies. When 

absolute maximum diversity is already achieved in an ad hoc ecosystem for a fixed 

number of loci and variants, increasing diversity further in terms of variant richness 

reduces the susceptibility and hence the security risk for both the OR and AND 

malware types. 

When there are no recovery measures in place the susceptibility defines how 

resistant the ad hoc ecosystem is since all those susceptible eventually become 

infected with the malware. With no recovery, static diversity can be optimised to 

tolerate a specific type of attack in order to maintain a specified quality of service. 

The process of diversity optimisation can be used to inform the minimum number 

of software gene variants required at each locus of a software stack genotype. The 

general method of diversity optimisation can be used to choose from several 

solutions, which could benefit situations where there are a limited number of 

variants available at one particular locus, such as a limited number of operating 
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system core library variants, and an abundance of variants at another. This could be 

particularly useful for guarding against the AND malware type where there are 

relations across loci. The time taken for the malware to fully spread, denoted as the 

peak infection time, can be calculated from a specified quality of service tolerance or 

a specific type of attack. 

When there are recovery measures in place such as through the release of 

antivirus signatures and software patches it may be possible to have a higher level 

of susceptibility whilst maintaining an adequate quality of service. There is a trade 

off between optimising diversity, maintaining quality of service, and the speed of 

recovery. Additionally, when there is recovery, diversity can be used to not only 

tolerate, but also mitigate against a specific attack. The minimum variant richness is 

calculated to prevent the spread of specific malware types which occurs when the 

reproduction number is less than unity. For the four locus AND malware type, such 

as a Bluetooth version of the Stuxnet worm, mitigation of the attack at the network 

level could have occurred with a variant richness of 6 assuming it could be detected 

and patched within a couple of hours. 

 Ecosystem resistance and resilience can be measured from the malware model 

given a constrained set of input parameters. Resistance to malware increases with 

static diversity, which asymptotically approaches 100% once past the critical 

mitigation point. Simulated resistance can therefore also be used to determine the 

necessary diversity needed to mitigate an attack. Static diversity can both reduce 

and increase resilience depending upon which side of the mitigation point it sits. As 

diversity increases fewer devices are susceptible resulting in the malware taking 
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longer to spread and consequently longer to recover (since the model assumes 

recovery only takes place after an infection), and hence reducing the resilience until 

mitigation occurs. As diversity is increased further beyond this point resilience 

rapidly increases as the malware infection dies away faster.  

8.3 Diverse System Model: Agent-Based 

8.3.1 Constrained Agent System Model as an Epidemic Model 

Firstly, the agent model is constrained by the random encounter (RE) network 

model, static diversity, and the SIR malware model as detailed in chapter 7, and 

compared to the epidemic model by measuring susceptibility and simulating the 

mitigation of the different malware attack types. The purpose is to verify and 

baseline the agent model to allow further comparisons with additional and dynamic 

mechanisms. All simulations are conducted at maximum variant diversity for a 

given number of variants. 

8.3.1.1 Susceptibility Relationships: Agent vs. Epidemic 

The proportion of devices susceptible to a particular malware type within a static 

diversity system of the agent model is compared to that calculated using the 

epidemic model equations (§6.3.2) and is given in Figure 8-12. The initial diversity 

conditions are generated using the static diversity random assignment (§7.5.1), 

which when matched directly with malware gives the initial susceptibility of the 

network. The network was simulated with 1000 nodes over 10 runs (although the 

same accuracy can be achieved with 10 nodes over 1000 runs). The susceptibility 

influences how many and how quickly the devices become infected and the result is 
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generated from the combination of diversity and malware type. For the epidemic 

model only those susceptible are simulated in a malware attack. For the agent 

model, all devices are simulated, however it is necessary to ensure that the number 

susceptible can be adequately represented within the population to achieve an 

accurate result without requiring the full calculated minimum network size (§7.8.1).  

 

Figure 8-12 – Susceptibility: agent model vs. epidemic model 

The simulation includes the variant richness parameter range used in subsequent 

results to capture the point of mitigation for the examples modelled (Upper bound 

of 10 for the 1 locus malware, 30 for the 4 locus OR malware, 5 for the 4 locus AND 

malware). Figure 8-12 confirms how the simulated agent model susceptibility result 
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is closely aligned to the calculated epidemic model result for the static diversity 

scenario averaged over the 10 runs. 

8.3.1.2 Comparative Mitigation of an Attack 

For the epidemic model, the mitigation point of an attack where 100% resistance 

occurs, for a given exploit richness and malware type can be calculated to determine 

the necessary variant richness and is previously shown in section 8.2.2.5, for fixed      ratios. The constrained agent model behaves as a stochastic epidemic model 

(§7) and so the resistance and resilience output measurements of the deterministic 

example along with the approximation properties of the stochastic SIR (§4.3.3.6) are 

used to predict the measured agent result. As with the deterministic epidemic 

model example a fixed      ratio of 0.2 is used where                    . 

Comparisons are conducted for an exploit richness      of one so that the calculated 

variant richness     , using equations (6-33) and  (A-8), to mitigate an attack under 

absolute maximum diversity (§5.3.2.3) conditions is estimated for the agent result as 

given in Table 8-4. Results from the agent model are shown with an exploit richness 

of one, to focus upon additional aspects that the mathematical model does not 

simulate. Increasing the exploit richness will follow the relationships already shown 

by the mathematical model with the same input conditions (§8.2). 

Table 8-4 - Calculated variant richness to mitigate an attack 

 

Malware type

Exploit 

Richness 

(ER)

Calculated 

mitigation point: 

Variant Richness 

Discrete         

mitigation point: 

Variant Richness (VR)

One locus model 1 5.00 5

4 loci AND 1 1.50 2

4 loci OR 1 18.43 19
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Simulations are conducted with 1000 devices. For the stochastic and agent 

models each data point is averaged over 100 runs. Statistical properties of the output 

simulations are graphically compared, in Figure 8-13 to Figure 8-15, to the 

approximation calculations of the stochastic SIR (§4.3.3.6) to confirm accuracy of the 

results. These properties include the proportion of major outbreaks (Equation 4-41), 

the mean resistance (determined from the mean of the final size – Equation 4-42), 

and the standard deviation (Equation 4-43) of the output distributions over the 

variant richness range of interest. 

8.3.1.2.1 One Locus Model 

The results for the one locus model are given in Figure 8-13 with the compared 

resistance and resilience given in (a) and (b) respectively. The dashed lines represent 

the calculated mitigation point        before rounding to the nearest whole    

number (note for the one locus model      produces an exact    of 5). The 

measured resistance of the simulated agent and stochastic models are derived from 

the mean of the final size of the major outbreak distribution, which is shown for the 

agent model in Figure 8-13 (c) and (d) for two different    values. Figure 8-13 (c) 

shows the result when     . Under this condition      and the minor and 

major outbreak distributions are far apart. The measured proportion of major 

outbreaks for each    of the agent and stochastic models is given in Figure 8-13 (e) 

and is closely comparable to the stochastic approximation calculation ((4-42). The 

infection curves for the simulated outputs are given in Figure 8-13 (f) showing the 

resultant mean of only the major epidemics against the deterministic model. 
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Outputs for          are clearly visible and closely resemble the deterministic 

result. 

As    approaches 1, the minor and major distributions merge together as shown 

in Figure 8-13 (d) for a    of 5 at the calculated mitigation point       , thus 

making it difficult to distinguish the separation between the two distributions. 

When major outbreaks are no longer detected (determined by a specified cut off 

point between the two distributions) only minor outbreaks remain. At this point the 

simulated    is assumed to be the point of malware mitigation. 

Due to the stochastic nature of the modelȂs output around the mitigation point 

major outbreaks may still be occurring: It depends on how close the    point is to 

the mitigation point. In the case of the one locus model the    point of 5 sits exactly 

at the mitigation point. For the agent model some major outbreaks will still occur 

due to the way in which the software variants are assigned randomly from a 

uniform distribution. The measured susceptibility distribution      of the agent 

model at      is shown in Figure 8-13 (h). The calculated    at      is 0.2 

equating to 200 devices. The distribution sits around this point leading to some runs 

with major outbreaks (those above 200 susceptible devices). By the time      only 

minor outbreaks are detected and the resistance for both stochastic and agent 

models is measured as 100%. Both the stochastic and agent models have therefore 

detected the mitigation point to be located at     . 

The resilience measured by both the stochastic and agent models as shown in 

Figure 8-13 (b) reduces with variant richness to a minimum at the mitigation point 

due to the infection taking longer to spread and hence longer to recover before 



Chapter 8  Ph.D. Thesis 

Jennifer Jackson 269 of 357 May 2017  

jumping to maximum resilience where no major outbreaks occur. The deterministic 

model however rises comparatively slower as there is no distinction between minor 

and major epidemics, with the infection dying away faster as diversity increases 

(§8.2.2.6). 

8.3.1.2.2 Multiple Loci 

Results for the four locus AND and OR malware types are given in Figure 8-14 

and Figure 8-15 respectively. For the AND result both the agent and stochastic 

models measure the mitigation point correctly as      due to three factors. Firstly, 

the true calculated mitigation point lies under      and is shown by the dashed 

line in Figure 8-14 (a), (b), and (e) so that when      there is already no trace of 

major outbreaks occurring. Secondly, Figure 8-2 of section 8.2.1.2 shows the 

relationship between    and    for the different malware types. The AND malware 

type shows a steep gradient so that when    is increased from 1 to 2 there is a large 

change in    (   shifts from 1 to 0.0625) which corresponds to             . This 

gives the clear simulated result of the mitigation point. Thirdly the approximated 

standard deviation is very small for a low-valued    and so the error will be very 

small over 100 runs. This can be seen in Figure 8-14 (g) where the measured 

standard deviation is very close to the approximated value. 

For the OR result as shown in Figure 8-15 there is a larger difference between the 

measured and calculated result for the opposite reasons to the AND case. The 

steepness of the    versus    gradient at the critical    value of 0.2        is much 

shallower than the AND case and also more shallow than in the one locus model. 

Therefore, several of the    points lie very close to the critical    value with the 
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susceptibility distributions overlapping the mitigation point. The approximated 

standard deviation of the distribution is very large as shown in Figure 8-15 (g), 

causing the minor and major outbreaks to merge together and making it difficult to 

establish a cut off point between the two distributions. This larger standard 

deviation increases the uncertainty of the mitigation point which must then be 

extended to a point where no major outbreaks are detected, which occurs after the 

calculated        point. For the agent model this is measured as       and in 

the stochastic model measured as      . 

In conclusion therefore the constrained agent model is representative of the 

stochastic model, however there may be differences in the measured point of 

mitigation. The stochastic and agent models may show a higher diversity 

requirement to mitigate an attack than the approximated or deterministic result. 
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Figure 8-13 - One locus model: agent vs. stochastic and deterministic 
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Figure 8-14 – Four locus AND malware: agent vs. stochastic and deterministic 
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Figure 8-15 – Four locus OR Malware: agent vs. stochastic and deterministic 
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8.3.2 Dynamic Diversity Performance with the RE Network 

Model 

For the static diversity case modelled by the constrained mode of operation, 

maximum diversity is already achieved through the uniformly distributed pre-

assignment of variants. In a practical ad hoc network diversity may not be pre-

assigned, or the starting condition may have no diversity at all in a worst case 

scenario. In order to achieve maximum diversity and be able to adapt to changing 

information and constraints, diversity is assigned dynamically using continuous 

dynamic updating (§7.6). The performance of the random variant (RV) algorithm, 

which can be seen as an extension to the static case, and the Favourability Score (FS) 

algorithm, which assumes distributed knowledge, in reaching the maximum 

obtainable variant diversity is compared with the random encounter (RE) network 

model (see §8.3.6 for the random waypoint (RWP) network model). 

8.3.2.1 Ideal Scenario 

The maximum variant diversity that can be achieved in an ideal scenario where 

there are no practical constraints is limited by the number of variants and can be 

calculated using equation (7-2). The time taken to achieve this limited maximum 

variant diversity, given a fixed contact rate, from a starting point where all devices 

have the same set of variants and hence genotypes (i.e no diversity), is dependent 

upon how often the devices are updated. Figure 8-16 (a) shows the time evolution of 

the network in reaching maximum diversity for four different update rates (number 

of encounters before an update) when the variant richness     . The linear 
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relationship with time is shown in Figure 8-16 (b) where it tapers towards a point 

when updates are performed at every encounter.   

 

Figure 8-16 - Dynamic diversity performance: random encounters 
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data and will be unrepresentative of local genotype configurations both in terms of 

physical locality and time. A buffer size of 10 is chosen to perform decisions based 

upon the most recently encountered devices and their configurations. For small    

values, which would be likely in practice if commercial off the shelf (COTS) 

software programs are utilised to generate the different variants (§3.2.1.3,3.4.4.6), the 

FS algorithm is faster at reaching maximum diversity. This can be explained by 

considering the initial conditions. When the initial point of diversity is at a 

minimum (all devices have the same dominating variant), the dominating variant 

has an equal probability of being picked again for the RV-E algorithm relative to the 

other variants, whereas it is less likely to be chosen initially by the FS algorithm 

since it is already being used with a high frequency. The probability of picking the 

dominating variant reduces as the variant richness increases hence the time to reach 

maximum diversity in this case is approximately the same for both algorithms. For 

the RV algorithm that is dependent upon time only (RV-T), maximum diversity can 

be reached in one time interval (not shown in the graphs) when the update rate is 

set to one time interval. The fastest way to achieve maximum diversity for the 

distributed algorithm is to perform updates at every successful encounter where 

new genotype information is available. 

8.3.2.2 The Constrained Scenario 

For a generically constrained scenario, the calculated maximum obtainable 

variant diversity (§7.4.2) can no longer be reached, instead the actual diversity 

achieved can be measured and is compared between the RV-E and FS algorithms. A 

generically constrained scenario refers to anything in the ad hoc ecosystem 
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constraining the availability of, or reducing the use of variants, and thus limiting the 

variant diversity (§7.4.3). For example those caused by user desirabilities or 

hardware constraints, the blacklisting of variants, or software incompatibilities. 

Constraints are applied to both algorithms such that a proportion of devices (¼ , ½, 

¾) are limited to having a selection choice of the same single variant at a single 

locus such that for the constrained devices they appear to have no diversity between 

them which remains static over time. The remaining devices continue to have a 

choice of all variants.  

Figure 8-16 (d) shows the resultant variant diversity of the network as    is 

varied for a single locus. The differences between the achievable diversity reached 

by the two algorithms can be explained. For lower    values, the FS algorithm can 

obtain a higher diversity since it will avoid using the constrained variant whereas 

the RV algorithm continues to assign the constrained variant using the same 

uniform distribution. This also accounts for the larger difference when more devices 

are constrained. For a large   , there is less difference in achievable diversity 

between the two algorithms, since there are more variants to choose from and the 

likelihood of choosing the constrained variant diminishes. 

In an ideal scenario therefore both the RV and FS dynamic diversity algorithms 

can achieve maximum diversity, with the FS algorithm performing faster with the 

same input conditions. When a realistic scenario is simulated where there are likely 

to be constraints imposed on a proportion of the devices, the distributed FS 

algorithm can have an advantage over the RV algorithm by achieving a higher 
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variant diversity level. The impact of constraints and differences in variant diversity 

on malware propagation is considered in section 8.3.5. 

8.3.3 Malware Attack within an RE Network with Continuous 

Updating 

8.3.3.1 With no Recovery (SI) 

During continuous dynamic updating, the dynamic diversity algorithms aim to 

maximise diversity, and if left, continue to update and maintain the required 

diversity level responding to encounters with other devices and changes in the 

network. Constantly changing configurations can confuse a targeted attacker 

(§3.4.3.4), but its effect on the spread of malware, when configurations are selected 

from a common pool is shown in Figure 8-17. Figure 8-17 (a) shows the averaged 

time evolution of a malware epidemic using the different static and dynamic 

diversity schemes, with the dynamic algorithms using continuous dynamic updates. 

No additional security mechanisms or constraints are used. Under this 

configuration the malware model has two states: S and I, and the FS and RV 

algorithms perform equally following the same curves. The dynamic algorithms are 

compared to both the static case with the same variant richness of five, and the case 

of no diversity. The contact rate is fixed at 0.02, since when there is no recovery, 

there is no reproduction number and varying the contact rate does not change the 

magnitude of the final state, only the speed at which it happens. It is the impact of 

diversity that is the focus, not the changing timescales. The malware epidemic is 

initiated after the dynamic algorithms have reached their maximum diversity level. 

As shown in Figure 8-17 (a), for such a dynamic diversity scheme eventually all 
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devices become infected over time, and this is unlike the static case which protects a 

proportion of devices from becoming infected (for a single malware). The reason 

being is that as devices randomly interact within a closed space, at some point in 

time an infected device will still come into contact with a susceptible device. The 

result of continuous dynamic updating from the same pool of software is that the 

final size of the epidemic is as bad as the non-diverse case so that the resistance is 

zero. However, the infection process is slowed down by dynamic diversity and the 

linear relationship between time and the number of variants is shown in Figure 8-17 

(c) and (d). The time taken for the whole network to become infected is also 

dependent on the contact rate of devices and hence the update rate of genotypes as 

shown in Figure 8-17 (b) since the malware can only spread at the rate of susceptible 

contact. Attempting genotype update rates more often than every encounter has no 

further impact on the network infection time, which can be seen where the RV-T 

(update rate of one time interval) and the RV-E (update rate of one encounter) 

follow the same curve.  

This suggests that although the continuous dynamic mechanism lengthens the 

time taken to reach the peak of infection in comparison to no diversity at all, it 

would be more beneficial to employ static diversity when there are no additional 

security mechanisms in place to minimise the final size of the epidemic. Static 

diversity however can be open to targeted attacks on specific devices if their 

configurations remain fixed and become known for a sufficient amount of time. 

Additionally, devices in reality do not move in random patterns. For example if 

moving devices with common vulnerable variants congregate, malware may spread 
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quickly in these areas when configurations cannot be changed. Thus the optimum 

solution would be to maximise diversity as quickly as possible in a changing 

network and then remain static for as long as possible, particularly during a 

malware epidemic.  The results also suggest that whilst distributed analysis of local 

diversity could be beneficial for maximising network variant diversity in a 

practically constrained scenario (§8.3.2), allowing all devices access to all software 

may not be effective. Restricting software access would not be realistic when 

variants are provided by COTS software programs, however automated software 

generation using the techniques described in section 3.4.2 could be used to locally 

generate variants from established sources with restrictions on their distribution. 

 

Figure 8-17 - Malware epidemic comparing different diversity schemes 
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8.3.3.2 With Recovery (SIR) 

When recovery mechanisms are available to remove malware from infected 

devices and prevent re-infection, diversity can be used to mitigate an attack even 

when performing continuous dynamic updates. In fact, the same mitigation point is 

observed for both static and dynamic diversity as shown in Figure 8-18 for the one 

locus, and Figure 8-19 for the four locus AND and OR malware types. The 

proportion of major outbreaks quickly diminishes to zero past the mitigation point. 

Results are shown for malware with an exploit richness of one.  For    values less 

than the mitigation point, the resistance to the malware can be much less for 

continuous dynamic updating, depending upon the update rate. For the single locus 

case and the OR type it can be seen that the faster the update rate (small number of 

encounters), the lower the resistance, until the      point where the amount of 

variant richness is sufficient to prevent further malware outbreaks. The reduction in 

resistance due to the dynamic algorithms is not apparent for the AND case shown 

since for a    of 1 all devices are susceptible so there is no diversity, and for a    of 

2, the      point has already been surpassed, showing no differences in the 

outcome between static and dynamic diversity.  
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Figure 8-18 – Malware resistance with recovery – one locus 
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Figure 8-19 – Malware resistance with recovery – AND / OR 
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resistance to malware. A low resistance to malware will lead to a poorer quality of 

service for the network as a whole (§6.4.3.3).  

8.3.4 Malware Attack in an RE Network with Additional 

Mechanisms 

The agent model includes the option to stop updating software stack genotypes 

once variant diversity has been maximised, only resuming the update process if a 

defined trigger occurs (§7.6.4). Thus, effectively becoming equivalent to the static 

case if malware is initiated during the static period. This section considers the effect 

of diversity when additional security mechanisms are present during a malware 

attack within the static period and how this compares to post infection recovery 

mechanisms. The additional security mechanisms include blacklisting (§7.6.3) of 

known vulnerable variants, which is only possible when alternative variants are 

dynamically available, and the effects from the utilisation of a virtualisation platform 

(§7.6.5). The time evolution effects from blacklisting and virtualisation are firstly 

analysed before considering the comparative resistance and epidemic timescales. 

The time evolution of a one locus malware epidemic with blacklisting is shown in 

Figure 8-20 (a) for the FS algorithm.    is fixed at 0.02 as with previous examples, 

and the variant diversity is firstly maximised with a     . The number of devices 

that have stopped updating, and the number that are performing blacklisting are 

measured throughout the simulation and are shown in the graph. After all devices 

in the network have stopped updating malware is then injected into the system. It is 

assumed that at the point of injection, the vulnerability has just been publically 

disclosed and the blacklisting data begins to be disseminated.  



Chapter 8  Ph.D. Thesis 

Jennifer Jackson 285 of 357 May 2017  

 

Figure 8-20 - Malware epidemic with additional mechanisms 
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Malware attacks like this can happen as part of a surge in follow on attacks after 

a zero-day vulnerability has been announced (§3.3.3) and before a patch or antivirus 

signature has yet to be released. On reception of blacklisting information, devices 

restart the genotype update process to enable vulnerable variants to be temporarily 

deselected (§7.6.3) resulting in a drop in the variant diversity of the network. In this 

scenario the act of reducing diversity has made the network less susceptible to a 

specific malware attack by reducing the representation of those with vulnerable 

variants resulting in the dilution effect (§2.2.2.2.3).  

The time evolution of a one locus epidemic with blacklisting plus the additional 

effects from virtualisation (VM update) is shown in Figure 8-20 (b) where an 

infection is removed if it is present during a genotype update cycle. This happens 

during the period of static diversity when a trigger occurs to restart the update 

process such as new vulnerability data becoming available. In the specific time 

evolution shown this has had the effect of the final state of all devices returning to 

or remaining in the susceptible compartment, and in effect recovering the network 

from the epidemic. 

Figure 8-21 (a) shows the comparative relationship between recovery, 

blacklisting, and blacklisting with virtualisation for the one locus model, against 

malware resistance for four values of variant richness     . The recovery and 

blacklisting rates are varied over the same range, with the infection rate      fixed at 

0.02 as in previous examples. Unlike the recovery mechanism, blacklisting does not 

result in minor and major outbreaks (Figure 8-21 (e)), instead it results in a single 

distribution of the final number left in the susceptible state corresponding to the 
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resistance. The reason being is that blacklisting impacts only those still susceptible 

and cannot remove an infection once it is present. Two example distributions at 

different blacklisting rates for      are shown in Figure 8-21 (b) to illustrate this. 

Resistance to malware is measured by the proportion that does not become infected 

(§6.4.3). When virtualisation is included it is measured by firstly counting the 

number of devices that have been infected at least once during the epidemic (since a 

single device may become infected multiple times), and then subtracting this from 

the network size. For all security mechanisms the minimum resistance is dictated by 

the variant richness, since at the lowest rate where the mechanisms do not exist, it is 

only the effects from static diversity that persist. Comparative results show that 

blacklisting is more effective at resisting malware when applied at the same rate. 

This is because recovery mechanisms are applied after infection has already 

occurred and blacklisting can be effective before infection occurs. However, the 

mitigation point is the same for blacklisting as it is for recovery, and occurs when 

the rate increases beyond the rate of new infectives     . So that the point of 

mitigation occurs when          , where    is defined by the malware and 

variant richness (§6.3.2). For dissemination rates of blacklisting below the mitigation 

point, variant richness becomes effective at increasing the resistance. Similar to the 

recovery mechanism, there is a trade off between the speed of dissemination, 

diversity, and resistance. Figure 8-21 (c) shows the effect of blacklisting during 

continuous dynamic updating, where although the resistance against malware is 

very poor for low blacklisting rates, the approach can still very quickly outperform 

the recovery mechanism. 
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Figure 8-21 – Comparative malware resistance with security mechanisms 
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The effect of adding virtualisation marginally increases the resistance, but, as 

stated previously, has the benefit of recovering the network without requiring 

signature based protection or patching. However without these signature or 

patching mechanisms the network is open to a repeat attack from the same 

malware.  

Figure 8-22 shows the comparative resistance and epidemic times for the 

different security mechanisms for the specific one locus, four locus AND, and the 

four locus OR examples. The variant richness is varied for the two dynamic 

algorithms at maximum variant diversity. The contact rate and hence    is fixed at 

0.02, the recovery rate   is fixed at 0.004, resulting in a      ratio of 0.2 as per 

previous examples. The blacklisting rate is fixed at the same rate as the recovery to 

compare resistive performance. For the recovery scenario the end of the epidemic 

time occurs when, after a major outbreak, all devices have recovered and is 

equivalent to the resilience time. During blacklisting, devices that become infected 

before they have received the necessary vulnerability data do not recover and 

therefore the end time of the epidemic occurs when the peak infection occurs. With 

additional virtualisation, and assuming the malware cannot escape outside the VM 

isolation (§7.6.5), individual recovery occurs when a VM is deleted and recreated 

during the update process. The device however does not become immune, only re-

susceptible and therefore the time to the end of the epidemic is measured when the 

infected state reaches a minimum after the initial infection has started (such as that 

shown in Figure 8-20 (b)). When there is no diversity        blacklisting and 

hence VM updating does not occur and therefore devices do not return to the 
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susceptible state, and time in this case is not measured. All times are measured 

when the system is within one of its final value.  

 

Figure 8-22 – Comparative resistance and epidemic times with different malware 
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All dashed lines within Figure 8-22 represent the point of mitigation. For the 

comparatively chosen blacklisting rate (0.004), the resultant resistance is very high 

for all malware types regardless of the variant richness (as can also be seen in Figure 

8-21 (a)). When virtualisation is added to additionally recover those infected 

resistance is increased further and in the scenario simulated has increased the 

resistance against all malware types to 100%. As shown by the graphs in Figure 8-22 

(b), (d) and (f) the additional mechanisms correspondingly reduce the end time of 

the epidemic.  

8.3.5 Malware Attack in an RE Network with Constraints 

This section analyses the effects of diversity on the resistance and resilience to 

malware when different constraints are applied. Firstly the effects of generic 

constraints are considered for both the dynamic algorithms in relation to the 

diversity performance analysed in 8.3.2.2. Secondly the effects of user desirabilities 

and software compatibility on malware resistance and peak infection times are 

considered for the FS diversity algorithm. 

8.3.5.1 Constraints with Single Locus Malware and Recovery 

(SIR) 

Figure 8-23 shows what happens to malware resistance and resilience when the 

generic constraints are applied (§8.3.2.2), where ¼, ½, and ¾ of devices are limited 

to one variant. The resultant variant diversity achieved by the FS and RV algorithms 

for such constraints were previously shown in Figure 8-16 where the FS algorithm is 

able to achieve a higher variant diversity level for small variant richness values. This 

result is reflected in the achieved resistance against malware as shown in Figure 
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8-23 where the FS algorithm is able achieve a higher resistance for small variant 

richness values. For this scenario recovery mechanisms are in place where malware 

mitigation for the one locus model (    ) is indicated by a dashed line in Figure 

8-23 (a). When ¼ are constrained to the same variant the susceptibility becomes 

                      , where     is fixed at one since there is only one variant 

and     can vary along the variant richness axis. When    is set very large the first 

term approximates zero so that        , meaning that the mitigation susceptibility 

of 0.2 can never be reached. The resistance therefore levels out as variant richness is 

increased, and so too does the resilience as shown in Figure 8-23 (b).  

 

Figure 8-23 – One locus SIR with generic constraints 
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increasing the variant richness of the remaining devices without improving 

recovery times. 

8.3.5.2 FS Constraints with Multi Locus Malware 

The distributed FS algorithm is able to model additional multi-locus constraints 

including user desirabilities and software compatibility across loci (§7.6.2.2). Results 

are shown in Figure 8-24 for the four locus AND and OR malware types when there 

are no additional security mechanisms in place and devices have stopped updating. 

The resistance and peak infection times are shown for four scenarios: 1. Without 

constraints, 2. With user desirability constraints, 3. With software compatibility 

filtering, and 4. With user desirabilities and compatibility filtering.    is fixed at 0.02 

as previous examples. 

User desirability constraints can be set based upon the data from real networks if 

it is available to gain an understanding with regard to their vulnerability to different 

malware types relative to a network with maximum diversity. Here constraints are 

set at the community scale to represent a plausible scenario where a favoured 

variant from each locus has 84% usage, equivalent to a market share held by 

Android during the first quarter of 2016 as reported by Gartner [264]. The remaining 

variants are favoured with equal probability. The malware is set so that the 

favoured variant at each locus is targeted by an exploit. The resultant effect of the 

four locus AND malware type on resistance is shown in Figure 8-24 (a) where it is 

reduced to 0.5 from almost 1 with no constraints, and correspondingly reducing the 

peak infection time as shown in Figure 8-24 (b).  
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Figure 8-24 – Four locus malware with FS algorithm specific constraints (SI) 
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number of variants (greater than one) since the same variants are always susceptible 

by the same percentage, hence giving the flat line. The resultant effect of the four 

locus OR malware type on resistance and peak infection time is shown in Figure 

8-24 (c) and (d) respectively where the four locus OR susceptibility Equation (A-4) 

results in        hence the measured resistance is zero, also with a flat line across 

all variant richness values. 

Software compatibility filtering is constrained such that each OS core library 

variant is compatible with only two variants at each of the other loci. Variants are 

chosen such that the compatible variant number is the same in each of the other loci, 

plus the next one, if it exists, otherwise it is wrapped around as shown in Figure 

8-24 (f). This configuration is representative of software that is dependent upon 

other software at different layers with some overlap that may occur through 

compatibility with closely related versions of the same program. The resultant effect 

is a reduction in the number of genotypes, however the variant diversity remains 

maximised as shown in Figure 8-24 (e) (filtering) since the variants themselves 

remain equally distributed (§5.3.2). As shown in Figure 8-24 (a) the effect of 

compatibility filtering has reduced the resistance against the AND type only when 

user desirabilities are additionally assigned, but interestingly has increased the 

resistance against the OR type as shown in Figure 8-24 (c) when used both stand 

alone and with user desirabilities. This is because the act of forcing only specific 

variants across loci to be compatible introduces an AND relationship in the 

genotypes. For the OR case the resulting reduction in genotypes from filtering 

means that a higher proportion of the genotypes available to use are without a 
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vulnerable variant. For the AND case little difference is seen since there is already 

an AND relationship across the loci, unless the user desirabilities are set, where the 

resistance reduces because a higher proportion of devices (84%) has the vulnerable 

genotype (variant 1 in each locus). This results in the amplification effect (§2.2.2.2.3) 

where the representation of those vulnerable is increased. Although only one 

specific example is given here for compatibility filtering, it highlights its effect on 

constraining genotypes and introducing an AND relationship for the OR malware 

type which could occur for any combination of compatibility filtering across loci, 

although the exact result would vary depending upon the filter applied. 

8.3.6 Dynamic Diversity Performance with the RWP Network 

Model 

For the RWP network model, when devices move around randomly in a closed 

space the resultant diversity and resistance relationships that appear at the network 

level are similar to those of the RE model. This is because the random movement of 

devices results in all devices eventually coming into contact with each other. 

Differences arise in terms of time scales, where for the RWP model, the contact rate 

is determined by several parameters (§7.3.2). Additionally it is possible to introduce 

spatial effects into the RWP model that the RE model cannot analyse. 

For example when generic constraints (¼, ½, and ¾ of devices are constrained to 

the same variant) are applied to a random selection of devices, a similar relationship 

is observed between the RWP as shown in Figure 8-25 (a) and the RE network 

(Figure 8-16 (d) §8.3.2.2) models. Simulations were run with 1000 devices, and a 

fixed FS buffer size of 10 genotypes as per previous results (§8.3.2) where the buffer 
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size represents the most recently encountered devices and their configurations. The 

device selection method chosen is random in range comparative to the RE network 

model, although the selection method does not affect the final variant diversity 

obtained. Updates occurred every encounter once the data buffer was full, together 

with a genotype time out period of 10 seconds and a 1 second genotype data 

transmission window so that the maximum variant diversity was achieved as fast as 

possible. For randomly moving devices, their average speed, transmission range, 

and bounded area does not affect the final variant diversity obtained, only the time 

at which it is achieved. It is difficult to compare the two network models directly 

since the successful contact rate of the RWP model is determined by these additional 

parameters, rather than being specified directly. A fixed wireless transmission range 

of 10m equivalent to a standard Bluetooth connection [3], a bounded area of 600m 

by 600m (the size of a large park, or small campus facility), and an average walking 

speed of 1.4ms-1 was modelled. The mean time to reach maximum diversity when 

there are no constraints was measured for each of the three device selection 

methods (available in range, random in range, nearest in range) as the time required 

to transmit data between devices was varied. The result is shown in Figure 8-25 (b), 

where for high data transmission times the available in range selection method is 

shown to marginally (in this scenario) take longer to reach maximum diversity since 

the devices have to wait longer between communications.  
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Figure 8-25 – Random waypoint variant diversity relationships 
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data was set at two seconds and the devices were limited to a slow walking pace of 

1ms-1. As shown, when the network variant diversity is low, the locally measured 

diversity by the devices is also low, with some devices measuring 0.2, and others 

0.4, with a majority of the devices operating with variant 1. When variant diversity 

of the network is at its maximum level, the local variant diversity measured by each 

device is also at a maximum where in the majority of cases different variants are 

located adjacent to each other. 

 

Figure 8-26 – Dynamic diversity performance: random waypoint 
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additional security mechanisms are applied. Due to simulation times, in the order of 

a day per simulation set, a small network size of 100 devices was modelled with a 

genotype and virus transmission time of 1 second and averaged over 100 runs for 

each data point. 

The two generically constrained scenarios are pictured in Figure 8-27, where (a) 

shows the random assignment of constraints, and (b) shows the location based 

constraints (such a room or office). Constraints are applied such that ¼ of the 

devices are constrained to using the same single variant at each locus, equivalent to 

devices using the same software stack. The location constrained devices are 

bounded spatially to an area ¼ the size of the simulation area, whilst those 

remaining are free to move or be positioned anywhere in the bounded simulation 

space. This could be representative of a work place with devices that have no 

diversity, surrounded by devices that employ the dynamic diversity scheme, some 

of which may also enter the work place and then leave again, for example customers 

visiting a shop, a tourist attraction, or a public service. The network is simulated 

until it becomes maximally diverse and the devices have stopped updating before 

malware is released. The source of malware is modelled so that it is always initiated 

from the device closest to the origin. The resistance to malware is measured, along 

with the peak infection times, and the average distance the malware travelled from 

its origin. 
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Figure 8-27 – Random waypoint constraints 
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travelled is skewed by their random movement such that for a single infected 

device, its final location reflects the distance even if it has not infected any other 

devices.  

 

Figure 8-28 – Effects of spatial constraints on malware types – moving devices 
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Figure 8-29 – Effects of spatial constraints on malware types – stationary devices 
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d) Stationary devices – resistance standard deviation
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its distance. Room placed constraints result in the least travelled malware with an 

increasing variant richness reducing the distance further, particularly for the AND 

malware type which was reduced to approximately the diagonal length of the room 

indicating it had been spatially contained for only a handful of variants.  

For stationary devices, the transmission range relative to the density and location 

of those susceptible impacts upon the resistance, the peak infection time, and the 

distance malware travels. For small transmission ranges, such as 1m, the malware 

does not travel at all even when there is no diversity since devices are too far apart 

to communicate (not shown). As the transmission range increases, the network 

becomes less resistant and malware travels further on average. When the 

transmission range is set at 10m, the resistance relationship with diversity is 

comparable to the moving case as shown in Figure 8-29 (a) and Figure 8-28 (a). 

However the peak infection times as shown in Figure 8-29 (b) are higher and there is 

a larger difference between the three constrained scenarios. Stationary devices 

therefore can tolerate longer recovery times to achieve the same    mitigation point. 

For stationary devices malware travels the least when there are no constraints (as 

expected), and the most for randomly placed constraints as shown in Figure 8-29 (c). 

Similar to the moving devices result, the four locus AND malware type is shown to 

be confined within the constrained area by relatively few variants. Further increases 

in variant richness will eventually confine the one locus and the four locus OR 

malware types preventing further spatial spread. 
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8.3.8 Section Summary 

This second chapter section detailed the results of the agent-based diverse system 

model. In constrained static diversity mode, the agent model performs as a 

stochastic epidemic model where there may be differences in the measured malware 

mitigation point from the approximated or deterministic result due to the rate of 

change of the variant richness versus susceptibility relationship for specific malware 

types. Static diversity however can lead to targeted attacks on specific devices if 

their configurations remain fixed and become known. Also real devices do not move 

in random patterns and therefore random static assignment of software may not be 

the best distribution for a particular scenario where there may be continuous 

changes in the network topology or influences from constraints.  

Incorporating dynamic diversity allows software stacks to be changed in 

response to network conditions, new information, or to confuse a targeted attacker. 

The fastest way to achieve maximum diversity from a starting point of no diversity 

is to perform update decisions at every successful encounter. The FS algorithm can 

be faster than the RV algorithm at reaching maximum variant diversity for the same 

input conditions, and can also achieve a higher diversity level when practical 

constraints are applied and few variants are available, which may be likely in 

practice. This is reflected in the amount of resistance provided by the two 

algorithms during a malware attack, with the RV algorithm requiring a faster 

recovery rate to achieve the same variant richness mitigation point. If any malware 

type is released during continuous updating of genotypes (from the same pool) 

without security measures, eventually all devices become infected resulting in no 
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resistance. The time to reach the peak infection however in comparison to no 

diversity is lengthened because of dynamic updating which is dependent on either 

reducing the update rate or increasing the variant richness. Without any mechanism 

for recovery the optimum solution to preserve resistance against malware is to 

maximise diversity as quickly as possible and then remain static for as long as 

possible. When recovery mechanisms are applied at a fixed rate, the same 

mitigation point is observed for both static and continuous dynamic diversity for 

each malware type, meaning constantly changing configurations, for example to 

confuse a targeted attacker can be tolerated if the variant richness is high enough. 

Operating with a variant richness that is below the mitigation point may give a 

lower resistance for continuous updating depending upon the malware type and 

relative recovery rate.  

As well as responding to changing network conditions, dynamic diversity allows 

integration with potentially more effective security mechanisms that can be applied 

sooner than antivirus signatures or patching. When compared to recovery 

mechanisms, blacklisting can be more effective at increasing resistance and reducing 

the duration of the epidemic, even at the same rate since it can be applied before an 

infection occurs. Similar to the recovery mechanism there is a trade off between 

dissemination speeds, diversity and resistance. When a virtualisation platform is 

added where infections are removed during blacklisting updates, resistance is 

increased even further. In the scenario simulated this resulted in the mitigation of all 

malware types with an exploit richness of one as soon as a second variant became 

available at each locus. 
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Desirability constraints can be set for the FS algorithm to reflect the diversity of 

real networks. An example has been shown to reflect the market share of the 

currently dominating mobile phone operating system and its impact on the 

resistance to the different malware types comparative to maximum diversity. For an 

84% dominance at each locus of the vulnerable variant, the resistance against the 

four locus AND type is halved, and the resistance against the four locus OR type is 

reduced to zero, rendering any remaining diversity ineffective. Introducing 

software compatibility to reflect problems arising from the use of COTS software as 

diverse variants can result in a reduction of the number of available genotypes, 

whilst maintaining variant diversity. This can have the effect of introducing an 

AND relationship across loci, reducing the number of genotypes with vulnerable 

variants, and increasing the resistance against the OR malware type. For the AND 

malware type there is already an AND relationship so this has little effect, unless the 

genotypes are not equally distributed where the vulnerable genotype has a greater 

representation resulting in the amplification affect and reduced resistance. 

Introducing spatially located constraints modelled by the RWP network model 

can change peak infection times, and the average distance travelled by different 

malware types, in comparison to randomly located constraints. Increasing variant 

richness in the remaining unconstrained network can contain the spread of the 

malware such as preventing its spread beyond a vulnerable office with little 

diversity. Differences in peak infection times however will require differing rates of 

recovery to achieve mitigation of malware for a given variant richness.  
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8.4 Summary 

The results from two different, but closely related, diverse system models have 

been analysed. Under static diversity conditions, and within an ideal scenario, the 

epidemic model can predict the diversity requirement needed to tolerate or mitigate 

specific types of malware attacks. The agent model can simulate the same conditions 

as the epidemic model (albeit with much longer simulation times) and subject to 

some differences in the results due to its stochastic nature. When recovery is 

included it resembles the stochastic epidemic model. Predictions from the epidemic 

model can be used by the agent model to make comparative measures against 

dynamic diversity algorithms, practically constrained scenarios, or the inclusion of 

additional security mechanisms. 

The combined results show that resistance to multi-locus malware within an ad 

hoc network ecosystem can be improved by maximising variant diversity and 

increasing the number of variants at each locus, with the additional effect of 

lengthening the time at which the peak infection is reached. When recovery 

mechanisms are in place there is a trade off between optimising diversity, 

maintaining quality of service or mitigation, and the speed of recovery. The exact 

diversity requirements can be calculated by the epidemic model or simulated by the 

agent model. The multi-locus OR malware type poses a higher security risk than the 

AND malware type and consequently requires considerably more software variants 

to tolerate or mitigate against the malware for the same number of exploits. 

The results confirm the hypothesis (§1.2) that incorporating biodiversity concepts 

within computer networks can make them more resistant to cyber security attacks. 
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When diversity becomes dynamic and integrated with other security mechanisms it 

can become even more effective. When compared to recovery mechanisms for 

example, blacklisting can be more effective at increasing resistance and reducing the 

duration of the epidemic since it can be applied before an infection occurs, helping 

to alleviate surges in attacks from newly disclosed vulnerabilities. 

Simulating constrained scenarios can aid in understanding the impact of 

diversity on current networks, or where practical limitations may affect the 

outcome. Software compatibility, for example, may be beneficial in increasing the 

resistance against the multi-locus OR malware type due to the effect of introducing 

an AND relationship across loci. Spatially located constraints modelled through the 

RWP network model have shown that diversity can be used to contain malware 

outbreaks to local areas, when there is both very little diversity and susceptible 

configurations within these areas. 
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9 Conclusion and Future Work 

Chapter 9 

Conclusion and Future Work 

9.1 Introduction 

This chapter is split into two sections. The first section summarises the 

motivation for the work performed, the research carried out, and the conclusions 

from the results and analysis. The second section outlines some practical limitations 

of the models and provides some suggestions for further work. 

9.2 Conclusion 

9.2.1 Motivation 

Motivation behind the work in this thesis has been inspired through a number of 

topics including malware epidemics exasperated through monoculture software 

and criminals responding faster to new vulnerabilities, multiple exploits targeting 

different layers of the software stack, the benefits and relationships of biodiversity 

in natural ecosystems, and future trends in the growth of ad hoc networks and peer-

to-peer connections. 

Although diversity for cyber security is already considered as a beneficial 

mechanism, it has yet to be fully quantified. A diverse system model incorporating 
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ecosystem concepts, the modularity of software stacks, potential diversity enabling 

technologies, and practical constraints, together with cross layer multiple exploit 

malware propagating within ad hoc networks, provides a method for analysing the 

benefits of diversity and how much is required to tolerate or mitigate specific types 

of attacks. In creating the model, metrics for the diversity of computing systems 

have been defined. 

9.2.2 Research 

Using the ecosystem as a framework, together with the mechanisms that link 

biodiversity to functionality, relevant analogies were made to define an ad hoc 

network ecosystem. Although the focus is on ad hoc networks, many of the 

principles described are also applicable to computer networks in general. The 

biodiversity functionality is generated by software and hardware components 

where individualised software stacks are defined as genotypes with multiple loci. 

Some constraints were applied to limit the size of genotypes and focus on software 

gene variation, as oppose to software gene functionality, and incorporate malware 

with cross layer multiple exploits. A threat model has been defined with two types 

of malware: the logical AND and the logical OR, which are representative of 

malware using multiple exploits in different ways to gain entry and propagate 

(chapter 5). The AND and OR types are limited to a single stage logical function, but 

there may be other types of malware exploit relationships such as both OR and 

AND across loci requiring multi-stage logic. However, the AND and OR logical 

functions (together with inversion) form the basic blocks for which all other logical 

functions can be created (see future work §9.3.1.3).The number of loci was limited to 
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four to both represent one function from each of the broad layers of the software 

stack (§3.2.1.3), and to correspond with real malware using up to 4 exploits targeting 

different layers (§3.3.3). This limitation on the number of loci still allows diversity 

and multi-loci malware concepts to be modelled, when there are no dependencies 

between functionality such as lower level libraries, however in practice there would 

be many loci, with differing amounts on different computers with many 

dependencies. 

Two diverse system models have been developed to incorporate software 

diversity and malware at the genetic level utilising the ad hoc network ecosystem 

concept. The first is a constrained system level mathematical model, and the second 

is an agent-based model. 

The constrained diverse system model builds upon the traditional mathematical 

SIR epidemic model and is comprised of a network model, a susceptibility model 

and a malware model. The mathematical approach is constrained by assuming 

homogeneous mixing, static diversity, compatible software functions, and non–

influential users. Despite these constraints some key mathematical results have been 

established to investigate the security protection offered by diversity and how much 

diversity is needed to tolerate or mitigate against specific types of attacks. 

Additionally the mathematical model provides a stepping stone between, and a 

method of comparing, an existing one locus model to the multiple locus method and 

the agent model developed here (chapter 6). 

The agent-based diverse system model is able to simulate the same conditions as 

the epidemic model, but additionally incorporates dynamic genotype configuration 
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which can be based on local interaction, user mobility and practical constraints. The 

dynamic approach is further exploited through the integration with other security 

mechanisms such as publically available vulnerability data, and virtualisation 

technology to enhance its effectiveness. This allows the exploration of dynamic 

diversity and malware propagation beyond the constraints of the epidemic 

approach. The agent-based approach is comprised of a network model, a diversity 

model and a malware model. Optimisation of diversity is measured through 

simulation across a parameter range to either tolerate or mitigate a specific attack. 

Although simulation times are much longer for this model, its development 

provides a simulation framework for incorporating additional biodiversity 

algorithms, network models and malware models, as well as integrating them with 

other security mechanisms as part of an integrated security approach (chapter 7). 

Single measures of diversity in computing systems have been defined in the 

literature, however several metrics are necessary to define diversity at the genetic 

level of computing systems such as ad hoc networks, all of which provide a 

different, but important perspective. The number of software variants at each locus 

of the software stack, termed variant richness when the quantity is the same, 

indicates the amount of variation at the locus level. However it is also necessary to 

understand variant distribution in order to maximise the diversity for a given set of 

variants and hence a measure of variant diversity is needed. The number of variants 

and their distribution determines the number of unique genotypes in the network 

which can be limited by the number of devices. For multiple locus malware, 

maximising the utilisation of the different genotypes keeps susceptibility at a 
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minimum. Outputs from the two models include the two key components of 

ecosystem stability: resistance and resilience (chapter 6 and 7).  

9.2.3 Results and Analysis 

Results from the epidemic and agent models have shown that biodiversity 

applied within a simulated ad hoc network ecosystem can provide tolerance against 

multi-locus malware, or provide improved mitigation when recovery mechanisms 

are in place. This has the overall effect of improving the resistance against such 

attacks and benefiting cyber defence. The exact diversity requirements needed to 

tolerate or mitigate malware can be calculated by the epidemic model or simulated 

by the agent model. Predictions from the epidemic model can additionally be used 

by the agent model to make comparative measures against dynamic diversity 

algorithms, practically constrained scenarios, or the inclusion of additional security 

mechanisms. The results are limited in that they show malware that can only target 

up to four loci in a single targeted attack. In a real system there may be multiple 

malware targeting different combinations of loci with varying dependencies. 

The epidemic model showed that few software variants are needed to drastically 

reduce the susceptibility and increase resistance of the overall network, with 

differences depending upon the type of malware attack. The logical AND malware 

type with multiple exploits spread across layers of the software stack poses the least 

risk and can be tolerated or mitigated with very few software variants. The OR 

malware type poses a higher security risk since the more exploits the malware has 

available, the greater the overall susceptibility. In a practical system therefore it is 

not necessary for every device to have a different software variant installed at every 
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locus to adequately tolerate or mitigate different types of malware. For the epidemic 

model it is possible to quantify through calculation, an optimum diversity, given a 

specified quality of service that will tolerate, or mitigate an attack for the two 

different types of malware. The optimum diversity calculated assumes the diversity 

of the devices remain static (i.e. unchanged) for a period of time equal to or longer 

than the duration of the epidemic. When recovery mechanisms are in place there is a 

trade off between optimising diversity, maintaining quality of service or mitigation, 

and the speed of recovery. The faster the recovery, the higher the tolerated 

susceptibility and hence less diversity is required. Modelling static diversity can 

allow epidemic based models to predict the extent of a malware attack under such 

conditions. Static diversity however can lead to targeted attacks on specific devices. 

Additionally real devices do not move in random patterns and therefore random 

static assignment of software may not be the best distribution for a changing 

network topology with user influences and constraints. 

The flexibility of the agent model allows both static and dynamic diversity to be 

modelled whereby software stacks are able to be dynamically modified in response 

to changing network conditions, new information, or as a response to additional 

security mechanisms. However simulation times are much longer, with large 

networks and a large variant richness or long timescales becoming impractical to 

simulate. The distributed favourability score diversity algorithm can be beneficial 

over the random variant algorithm when there are few variants (likely to occur in 

practice with COTS software) by achieving a higher variant diversity, more quickly 

under the same input conditions and constraints. This is reflected in a higher 
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resistance provided by the distributed algorithm during a malware attack. The 

concept of dynamic diversity is based upon the assumption that it is possible to 

change variants without disrupting the user experience or device operations. It is 

also a mechanism for confusing a targeted attacker regarding existence of 

vulnerabilities at a particular device. In continuous updating mode dynamic 

diversity can linearly extend the peak infection time as the number of variants, or 

the time between updates, increases, but without recovery or intervention 

mechanisms in place the entire network can become infected, when the same set of 

variants are available to every device (e.g. when standard commercial software is 

available as variants). Static diversity therefore is necessary to maintain long term 

resistance in the absence of recovery or intervention. For a dynamic scheme it is 

beneficial to maximise diversity as quickly as possible and then remain static for as 

long as possible. When recovery is available at a fixed rate, the same mitigation 

point, in terms of variant richness, is observed for both static and dynamic diversity 

meaning that constantly changing configurations, for example to confuse a targeted 

attacker, can be tolerated if the variant richness is high enough. When dynamic 

diversity is integrated with other security mechanisms it can become even more 

effective:  In comparison with recovery mechanisms for example, blacklisting can be 

more effective at increasing resistance and reducing the duration of the epidemic, 

even if at the same rate, since it can be applied before an infection occurs helping to 

alleviate surges in attacks from newly disclosed vulnerabilities. Similar to the 

recovery mechanism there is a trade off between dissemination speeds, diversity 

and resistance. When a virtualisation platform is added to allow infections to be 

removed during blacklisting updates, resistance is increased even further. 



Chapter 9  Ph.D. Thesis 

Jennifer Jackson 317 of 357 May 2017  

Simulating constrained scenarios can help to understand the diversity impact of 

current networks, or where practical limitations may affect the overall resistive 

outcome of a diversity scheme. Software compatibility for example may be 

beneficial in increasing the resistance against the multi-locus OR malware type due 

to the effect of introducing an AND relationship across loci. Spatially located 

constraints modelled by the RWP network model can change peak infection times in 

comparison to those of a random placement, requiring differing rates of recovery to 

achieve mitigation for a given variant richness. Additionally, increasing the variant 

richness of the unconstrained devices in these scenarios can contain malware 

outbreaks to local areas, such as a vulnerable office, where diversity maybe lower. 

The combined results confirm the hypothesis that incorporating biodiversity 

concepts within ad hoc networks, a form of peer-to-peer mobile wireless network, 

can make them more resistant to cyber security attacks (chapter 8). The 

contributions of the research are listed in §1.3.  

9.3 Future Work 

This section considers a number of parallel avenues that are necessary to take the 

research further including additional functionality, improved modelling 

approaches, real world scenarios, and practical considerations. 

9.3.1 Additional Functionality 

9.3.1.1 Specific to the Mathematical Epidemic Model 

The epidemic model is much faster computationally than the agent model in 

predicting diversity requirements and resistance to different malware types. 

Remaining statically diverse during a malware epidemic has resistive benefits and 
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modelling such a scenario can be representative of a time window of a dynamic 

scheme, or a situation where it may not be practical or desirable to keep changing 

software configurations. However the epidemic model is currently limited in terms 

of functionality where the specified contact rate alone defines how quickly the 

malware can spread. In a practical ad hoc network, wireless transmission 

characteristics and the time taken to transfer malware contribute to a successful 

contact. These aspects have been incorporated into the agent-based model on top of 

the random waypoint mobility algorithm, but simulation times are very long. A 

mathematical network model of moving devices has been incorporated into the 

deterministic Bluetooth malware epidemic model previously developed by the 

author [3]. It includes additional states to simulate different malware spreading 

mechanisms. The research focus was on diversity, but a next step for the epidemic 

model would be to integrate these aspects together with diversity, multilayer 

software stacks and logical malware types, as well as the additional security 

mechanisms such as blacklisting and virtualisation to generate a more functional 

and representative mathematical model. Blacklisting can be added through the 

inclusion of an additional state which will have the effect of removing susceptible 

devices causing them to become temporary immune at a specified rate. 

Virtualisation causes feedback from the infected state into the susceptible state, and 

both of these two additional mechanisms will change the dynamical equations of 

the malware model. This will provide results faster than the agent model with the 

benefit of being able to simulate networks with a large variant richness over long 

timescales. 



Chapter 9  Ph.D. Thesis 

Jennifer Jackson 319 of 357 May 2017  

9.3.1.2 Specific to the Agent Model 

A benefit of the agent model is in its flexibility to add functionality without the 

requirement to describe the process mathematically meaning additional concepts 

that are difficult or impossible to model using the epidemic method can still be 

incorporated. For example diversity through evolutionary principles (§3.4.3.3) 

alongside multiple and mutating malware, locally generated variants, or limiting 

variant choices at each device rather than allowing selection from a pre-existing 

software pool. This may be feasible when variants are generated as different 

binaries from the same source code. Modelling malware with the potential to attack 

the diversity concept could also be investigated. 

A simple example has been demonstrated in the results to highlight the effect of 

user influence on diversity patterns and hence malware resistance. Collected data of 

computer configurations from a medium sized network could give a more realistic 

insight into the current diversity of software stacks and their variation at different 

layers. This data could be fed into the agent-based model to analyse its current 

resistance to different multi-exploit malware. The concept of blacklisting and 

resetting of software stacks through virtualisation could be integrated with heuristic 

methods used by antivirus software of malware detection to provide a model of 

detection, removal, and temporary immunity. A reflection on the expectation of 

homogeneous mixing within ad hoc networks and whether this is realistic would 

depend upon the scenario under which it is being considered. A market, science 

fair, careers event, conference, or other clearly defined area where devices may 

move around with users could be considered representative. However in many 
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cases particular patterns of mobility may occur, for example people and cars 

travelling along repeated routes. This will alter the assumption of random contact 

into non-random, with some cars or people never coming into local contact with 

each other at all. It should also be noted however that although homogeneous 

mixing is not realistic in many cases it does however form a baseline for which 

many models and research is based. Additionally the random waypoint model has 

the flexibility to be extended to include other geographically shaped areas of interest 

with different spatial effects, or modified to incorporate non-random waypoints 

such as movement patterns of devices travelling between non-random destinations. 

Alternatively the random waypoint algorithm could be replaced with real waypoint 

trace data of mobility patterns providing true movement of devices and resulting in 

more realistic diversity and malware relationships. The modelling approach used to 

represent an ad hoc network has been from a high level abstract perspective. Lower 

levels of abstractions are necessary to capture the true dynamics of an ad hoc 

network and how malware or other types of attack may interfere with operations. It 

would be beneficial to incorporate routing algorithms, traffic generation models and 

emulate true multilayer software stacks using event based simulation. This will 

better inform on the effect of diversity and malware propagation on the measurable 

quality of service parameters such as throughput, latency, and end user impact. For 

the simulation scenarios diversity optimisation results were obtained for QoS 

tolerances between 80% and 95% resulting in a large range in diversity requirement 

(Figure 8-5).  The measurable QoS parameters listed above will aid in the 

assessment of more realistic QoS requirements in order to define the optimal 

diversity necessary. Finally, the agent-based model as currently implemented takes 
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a significant time to execute a scenario, in the order of a day to run a small 

simulation set across a parameter range, with even longer times prevailing when the 

random waypoint network model is used. More efficient coding techniques or a 

different language, such as C++, could be used to accelerate processor intensive 

functions. 

9.3.1.3 General Functionality 

Recovery mechanisms integrated into the SIR epidemic model assume antivirus 

or patching occurs after malware infection has already taken place, since this is 

what happens in a biological system where the recovery rate indicates the average 

time in which an individual remains unwell before recovering. In a practical 

computing network patching and antivirus updates now tend to occur at regular 

intervals regardless of whether a device is infected; if a patch is developed in time 

recovery could effectively occur whilst some devices are still susceptible, potentially 

changing the resistance and resilience response to diversity and the point of 

mitigation. Future work could include the modelling of more realistic patching to 

account for regular updates. Additionally, in practice not all users patch their 

software, for example to avoid potential conflicts between components or across a 

network, and so future work could analyse this aspect and include it in the model. 

The way in which malware targets exploits at multiple layers of the software 

stack is defined by the logical AND and OR types applied as a single stage logical 

function. The AND and OR logical functions (together with inversion) form the 

basic blocks for which all other logical functions can be created. The model could be 

extended to include multi stage logic to model more complex malware exploit 
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functions (§5.3.3) or relationships between layers impacting whether software 

becomes vulnerable or not (§5.3.1.3). 

Both diverse system models are limited such that each device can only utilise one 

variant per locus at a time leading to monoploid genotypes. In practice, for some 

users, it may be necessary to have the use of more than one variant from the same 

locus for example if incompatible software programs are used as variants where 

access to different files and data are needed. The models could therefore be 

extended to include multiple variant selections. Finally, the biodiversity concepts 

explored here are also applicable to other types of computer networks, the exact 

mechanisms will differ due to how and when connections are made and differences 

between distributed and centralised architectures. The work focuses on ad hoc 

networks and is bounded by the characteristics of such a topology (which will 

inherently be different to other topologies). Ad hoc networks by themselves, for 

example, do not scale easily due to excessive protocol overhead and tend to be 

limited to small geographical regions. The lack of scale however does not 

necessarily have an adverse impact on the effectiveness of a biodiversity scheme. 

The principle of software variants at different layers of a software stack applies to 

both small and large networks. The physical separation of different ad hoc networks 

may actually prove to be advantageous, by helping to contain malware to localised 

regions. Additionally global connectivity can be achieved through access points to 

the internet such as in the case of mesh networks (§3.2.3) allowing new variants and 

vulnerability data to be accessed. Future work could explore the effects on different 

network models. 
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9.3.2 Practical Considerations 

9.3.2.1 Practical Generation, Dissemination and Storage of 

Variants 

There are  still remaining questions regarding what should be made diverse, for 

example results suggest that only a handful of variants may be necessary at each 

software layer to mitigate against a single exploit four locus AND malware attack 

such as Stuxnet. In this case it may be practically viable to have a small number of 

different software programs available at each stack layer. On the other hand to 

mitigate a four locus OR malware type of attack, several hundred, or even 

thousands of variants may be necessary in which case the automated generation of 

software variants from a limited source of software programs would be required to 

generate the large volumes of variants required. The practicability in disseminating 

and maintaining large volumes of different software variants still needs to be 

addressed. Creation and dissemination methodologies still remain at the concept 

stage within the literature and further practical trials are needed [179]. For example, 

there is suggestion that compiler generated software originating from single source 

code (§3.4.3), potentially conducted within the cloud (§3.2.1.1), could provide the 

necessary functionally equivalent variants when requested by users [110]. Such 

concepts could be embedded within current software download areas, for example 

ȁ“ppȂ stores, requiring no additional user input. This suggests the generation of 

automated variants could be via a centralised source, but the option of generating 

variants locally and dynamically from known good raw software sources has 

largely been unexplored. Within a distributed network such as an ad hoc network it 
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may be advantageous to be able to both download variants at relatively slow 

timescales, and generate or swap in new ones locally on faster timescales to be able 

to adapt to local situations. Generating diversity at the compiler stage is only one 

approach to generating diverse software (§3.4.3), other techniques can be applied 

after distribution such as during installation, loading or program execution [178]. 

These techniques for example could be adopted locally. In practice only a small 

number of variants may be able to be stored locally due to limitations in memory, 

and therefore techniques for local and dynamic generation within ad hoc networks 

would be advantageous. If the concept of blacklisting is to be made viable, fast 

access to alternative variants are necessary such as alternative choices stored locally. 

Results showed that regular changing of genotypes to confuse a targeted attacker 

from the same global pool of software could lead to the entire network becoming 

infected. Additionally, results showed that limiting variant choices through 

compatibility filtering can actually reduce the spread of malware, and therefore 

limiting variant choices by each device and self generation of variants should be 

explored further. When diversity is generated from independent software programs 

it may result in a greater difficulty of maintenance, a larger range in their quality 

since the diverse variants both within and across loci may come from many 

different sources. Even those that do come from the same source such as through 

the diversification of binary files or memory allocation may differ in terms of 

efficiency of resources, and speed. The quality however may only become a problem 

if it starts to noticeably impact the end user. Finally, as with any software 

distribution method, there is the possibility of variants being generated from 
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unauthenticated sources containing hidden malicious code, and careful 

management of distribution is also required. 

9.3.2.2 Security of Genotype Exchange for the Distributed 

Algorithm 

With the distributed favourability score algorithm where genotype information is 

exchanged, careful attention is needed towards the secure sharing of information 

during the communication link set up and the authenticity of the data since ill-

informed genotype information could result in variant choices to the advantage of 

the attacker. As discussed in §7.6.2 In order for the scheme to become practically 

viable both a discovery protocol to determine software variant information, and a 

trust model to authenticate and maintain privacy of the genotype information 

between trustees would need to be developed. 

9.3.2.3 Vulnerability Data and Blacklisting 

Software vulnerability information is currently stored in publically accessible 

databases (§3.4.4.6). In order for blacklisting as described within this thesis to 

become viable, the speed of dissemination will be critical in preventing infections. 

There is a trade off between the speed of blacklisting and variant richness to obtain 

the necessary resistance for the specified malware type. Antivirus companies are 

best placed to assess vulnerability data, and disseminate blacklisting information as 

a precursor to disseminating updated signature databases to detect and block the 

malware. This is because they already have the expertise in understanding the 

vulnerabilities, their perceived threat, and the necessary infrastructure to 

disseminate the data using authentication and integrity checks during downloads. 
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Antivirus companies can already block access to certain websites and terminate 

suspicious activity, and therefore processing vulnerability data would be an 

additional capability integrated into a multi-layered security approach. Careful 

consideration will be necessary to the perceived level of threat since it would be 

undesirable for many variants to be simultaneously blacklisted as this will reduce 

the diversity of the network, increasing the susceptibility to other potential attacks. 

Additionally there may be the need for the recipient to be involved in the 

blacklisting decision process if the inconvenience of an unusable variant out-weighs 

the risk of infection. The automated dissemination of vulnerability information 

could be released as soon as it becomes available and would be more timely than 

the corresponding antivirus signature and software patch, and more importantly 

potentially faster than the response from cyber attackers. 

9.3.2.4 Virtualisation 

Dynamically changing software stacks, or parts of software stacks on devices, 

including through blacklisting can only be viable, if it is physically and succinctly 

possible to do so without affecting the user experience and interrupting network 

operations, such as without having to reboot devices. Virtualisation could 

potentially provide a mechanism for this. Using virtualisation to swap chunks of 

functionally equivalent software in an attempt to confuse a targeted attacker has 

been investigated in the literature (§3.4.3.4) highlighting that the concept is possible. 

However, there are currently practical limitations that need to be overcome before 

virtualisation technology can be fully used for dynamic diversity. For example in 

order for a dynamic strategy to utilise virtualisation, a diversity hypervisor or a 



Chapter 9  Ph.D. Thesis 

Jennifer Jackson 327 of 357 May 2017  

hypervisor extension supporting diversity would need to be developed. This would 

need to automate and manage the usage of virtual machines to create, back-up, and 

destroy genotypes on-the-fly and enable security loop holes to be evaded until a 

patch is created. Hiding diversity to maintain an adequate user experience from the 

device requires additional complexity. A possible solution is given in Figure 9-1. 

Although the bulk of the software would be embedded within the VM Genotypes it 

is proposed in the first instance that standard clients together with user selected 

(constrained) software are run on the user VM with what appears to look like 

relevant proxies on a VM Genotype. These clients would use data protocols with 

network traffic such as email, and web access. This would allow client software 

preferred by the user to remain constant whilst allowing the underlying software to 

be made diverse using VM Genotypes. The proxies would carry out additional 

security tasks, above normal servicing requests, such as rendering and recoding of 

the data before returning it back to the client. This would help prevent malicious 

exploits from penetrating through to the client. Development of proxies capable of 

supporting the clients would be complex and made difficult by secure network 

protocols. An alternative solution would be to construct a specific framework of thin 

or zero client [265] software for the biodiversity scheme to replace the standard set 

of clients and provide front ends to common applications such as word processing. 

The thin client would be a translated ȁimageȂ of the software running on the VM, 

similar to those used for cloud computing, except it would be tailored to the user 

and would remain constant unless changed by the user, regardless of the diverse 

software running on the VM genotype. The functionality of the standard client 
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would then be encompassed back into the VM genotype giving more control over 

the diversity of components, with the associated greater security benefits. 

 

Figure 9-1 - Possible virtualisation architecture to support dynamic diversity 
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A Constrained Diverse System Model: Epidemic 

Equation Derivations  

Appendix A 

Constrained Diverse System Model: 

Epidemic Equation Derivations  

A.1 Susceptibility Derivation: Three Locus Logical OR 

Malware Type 

Three Loci: For three independent events the probability OR rule (General 

Addition Rule) can be applied iteratively using the two locus result    . 

                                                      

(A-1) 

 

                                                       

                                                                                   

 

And therefore the proportion susceptible    for a three locus network becomes 
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Logical OR type: 

(three loci) 

             
                                                  

(A-2) 

A.2 Susceptibility Derivation: Four Locus Logical OR 

Malware Type 

Four Loci: For four independent events the probability OR rule (General 

Addition Rule) can be applied iteratively. 

                     

                                            

(A-3) 
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Therefore the proportion susceptible    for a four locus network 

becomes: 

Logical 

OR type: 

(four loci) 

             
                                                                                                                                          

(A-4)  
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A.3 Diversity Optimisation Derivation: Three Locus OR 

Malware Type 

General Equation: 

Using Equation (A-2) for 3 loci where 

                
                                                              

                                                                  

(A-5) 

For a given          value, and   ,    can be solved computationally for a range 

of    and    values to find the valid solutions satisfying the minimum variant 

richness     . Where the valid solutions are positive and non imaginary, and must be 

greater than the number of exploits. 

Average Equation: 

Variant Richness (average number of variants for an average number of exploits): 

Assuming the number of exploits and variants are the same in each loci, the 

equation can be simplified to: 

                  
(A-6) 

Which can be solved numerically for  . 
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A.4 Diversity Optimisation Derivation: Four Locus OR 

Malware Type 

General Equation: 

Using Equation (A-4)  for 4 loci where 

                
                                                                                                                                                                           

                                                                                                                                                                        

(A-7) 

For a given             value, and   ,    can be solved numerically for a range of        and    values to find the valid solutions satisfying the minimum variant 

richness     . Where the valid solutions are positive and non imaginary, and must be 

greater than the number of exploits. 
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Average Equation: 

Variant Richness (average number of variants for an average number of exploits): 

Assuming the number of exploits and variants are the same in each locus, the 

equation can be simplified to: 

                        
(A-8) 

Which can be solved numerically for  . 
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B Optimum Diversity and Peak Infection Times for 

Two and Three Loci  

Appendix B 

Optimum Diversity and Peak 

Infection Times for Two and Three 

Loci  



Appendix B  Ph.D. Thesis 

Jennifer Jackson 336 of 357 May 2017  

B.1 AND Malware Type 

 

Appendix Figure B-1 – AND malware type 
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B.2 OR Malware Type 

 

Appendix Figure B-2 – OR malware type 
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Abbreviations 

3G Third Generation 

4G Fourth Generation 

5G Fifth Generation 

ABM Agent-Based Models 

AMD Advanced Micro Devices, Inc 

API Application Program Interface 

ASLR Address Space Layout Randomisation 

BYOD Bring Your Own Devices 

CODEC COder-DECoder 

COTS Commercial Off The Shelf 

CVE Common Vulnerabilities and Exposures 

D2D Device-to-Device 

DNA DeoxyriboNucleic Acid 

DNS Domain Name Server 

DSR Data Space Randomisation 

DSU Dynamic Software Updating 

FIFO First-In First-Out 

FS Favourability Score 

GIMP GNU Image Manipulation Program 

GNOME GNU Network Object Model Environment 

GNU GNU's Not Unix! 

GPU Graphics Accelerator Card 

GTK+ Object-oriented GIMP ToolKit 

GUI Graphical User Interface 

ICMP Internet Control Message Protocol 

IoT Internet of Things 

IP Internet Protocol  

ISR Instruction Set Randomisation 

IT Information Technology 

KDE K Desktop Environment 

LTE Long Term Evolution 

LXDE Lightweight X11 Desktop Environment 

M2M Machine to Machine 

MANETs Mobile Ad hoc NETworks 

MIMO Multiple Input Multiple Output 

MITRE The Mitre Corporation 

MMS Multimedia Messaging Service 

MU Multi-User 

NIST National Institute of Standards and Technology 

NOP No Operation (computer instruction) 

NVD National Vulnerability Database 

OS Operating System 

OSI Open Systems Interconnection 

PAN Personal Area Network 
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PC Personal Computer 

PDF Probability Density Function 

PHP PHP Hypertext Preprocessor 

QoS Quality of Service 

RFID Radio Frequency Identification Device 

RE Random Encounter 

RV Random Variant 

RV-T Random Variant – Time 

RV-E Random Variant – Encounter 

RWP Random WayPoint 

SANS SysAdmin, Audit, Network and Security (Escal Institute of 

Advanced Technology) 

SEIRD Susceptible Exposed Infected Recovered Dormancy 

SEIRS Susceptible Exposed Infected Recovered Susceptible 

SEIS Susceptible Exposed Infected Susceptible 

SEPTICOX Susceptible Exposed Prevented Treated Infected Contained 

Offline eXposed-offline 

SI Susceptible Infected (epidemic model) 

SIR Susceptible Infected Recovered (epidemic model) 

SMTP Simple Mail Transfer Protocol (email) 

SQL Structured Query Language 

SSH Secure Socket Shell (secure remote login) 

SSL Secure Sockets Layer 

TCP Transmission Control Protocol  

UDP User Datagram Protocol 

USB Universal Serial Bus 

VM Virtual Machine 

WiFi Wireless Fidelity 

X11 X window system (protocol version 11) 

XFCE XForms Common Environment 

XOR eXclusive-OR 
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Trademarks 

The following are presented in the text and have, or assert to have, status as 

(registered) trademarks: 

Apache Software Foundation 

Apache® 

Apple Inc. 

Apple®, Cocoa Touch®, iPhone®, Safari® 

BitTorrent, Inc. 

BITTORRENT® 

Bluetooth SIG, Inc. 

Bluetooth® 

Canonical Limited 

U”UNTU™ 

Cisco Systems, Inc. 

iOS® (licensed to Apple Inc.) 

Eclipse Foundation, Inc. 

Eclipse® 

Google Inc. 

Google™, “ndroid™, Gmail™ 

Intel Corporation 

Intel™ 
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Kai Kreuzer (openHAB Foundation e.V) 

OpenHAB® 

Linux Mark Institute 

Linux® 

MathWorks, Inc. 

M“TL“”®, ThingSpeak™ 

Microsoft Corporation 

Internet Explorer™, Microsoft™, Outlook™, Silverlight™, Visual ”asic™, 
Windows™, Visio™ 

MITRE Corporation  

MITRE® 

Mozilla Foundation 

Mozilla®, Firefox® 

MySQL AB 

MySQL® 

Netflix, Inc. 

NETFLIX® 

Opera Software AS 

Opera® 

Oracle Corporation 

Oracle®, Java®, JavaScript™ 

SCALABLE Network Technologies, Inc. 

QualNet® 
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Silicon Graphics, Inc. 

OpenGL® 

Software in the Public Interest, Inc. 

Debian® 

Symantec Corporation 

Symantec™ 

Riverbed Technology, Inc. 

OPNET® 

Velcro Industries B.V.  

Velcro® 

Wi-Fi Alliance 

Wi-Fi® 
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