A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/106820

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/106820
mailto:wrap@warwick.ac.uk

A Biodiversity Approach
to Cyber Security

by

Jennifer Tracy Jackson

Thesis

Submitted to the University of Warwick

for the degree of
Doctor of Philosophy

Centre for Complexity Science

May 2017

THE UNIVERSITY OF

WARWICK

Front Matter

Contents

Contents

Figures

Tables
Acknowledgements
Declaration

Preface

Abstract

1

Introduction

1.1 Motivation
1.1.1 The Changing Cyber Threat Landscape
1.1.2 The Risks of Computing Monocultures

1.1.3 Agricultural Monocultures and Biodiversity within Natural Systems

1.2 Hypothesis

1.3 Contributions to Research
1.4 Thesis Structure
1.5 Summary

Ecology and Biodiversity in Natural Systems
2.1 Introduction
22 The Biodiversity and Ecosystem Relationship
221 Biodiversity within Ecosystems
221.1 Biodiversity
2.2.1.2 Ecosystem Functions
2.21.3 Ecosystem Services
2214 Disturbances
2215 Measured Outputs
221.6 Relationships
2.2.2 Biodiversity Relationships
222.1 Biodiversity Mechanisms Underlying Ecosystem Function
2.2.2.2 The affects of Biodiversity on Limiting Disturbance Severity
23 Measuring Biodiversity
2.3.1 Introduction
2.3.2 Genetic Diversity
2321 Genotypic Measures
2322 Allelic Measures
2323 Maximum Number of Unique Genotypes
2324 Comparison of Measures
24 Summary
Cyber Security and Diversity in Computing Systems
3.1 Introduction
3.2 Computing Systems
3.2.1 Enabling Technologies
3.21.1 Automated Software
3.21.2 Virtualisation
3.21.3 Software as a Modular Structure

Ph.D. Thesis

ii

viii

xi

xii
xiv
XV

NN G NN DN -

11
13
14
14
15
15
16
17
18
18
19
19
20
20
26
30
30
30
31
32
36
37
40
42
42
43
43
43
44
46

Jennifer Jackson ii of xv May 2017

Front Matter

3.2.2 The Future Topology of Connected Devices
3.2.3 Peer-to-Peer, Ad hoc, and Sensor Networks

3.3 Cyber Security

3.3.1 Malware in a Monoculture Environment

3.3.2 Successful Malware Attacks

3.3.3 Multiple Exploits and Zero-day Attacks
3.3.4 Location of Vulnerabilities in the Software Stack

3.4 Diversity
3.4.1 Diversity as a Security Mechanism
3.4.2 Creating Diverse Code

3421
3422
3423
3424
3425
3426

Source Code Transformations
Compiler Transformations
Address Space Randomisation
Data Space Randomisation
Instruction Set Randomisation
Executable Code Randomisation

3.4.3 Creating Diverse Systems

3.4.3.1
3.4.3.2
3.4.3.3
3434

Colouring Algorithms
Epidemic Based Attack Models
Biological-Inspired Models
Other Models

3.44 Measuring and Analysing Diversity

3441
3442
3443
3444
3.4.4.5
3.4.4.6

Shannon Index

Number of Variants

Resiliency

Multi-dimensional Properties
Analysing Software Binary Files
Common Vulnerabilities

3.4.5 Diversity Open Research
3.5 Summary

4 Modelling

4.1 Introduction
42 Modelling Ad Hoc Networks
421 Mobility Models
42.2 Simulators
423 Agent-Based Models
424 Graph Theory
425 Homogeneous Mixing Models
43 Epidemic Modelling of Mobile Malware
43.1 Mathematical Models of Epidemics
43.2 The Deterministic SIR Model

43.2.1
4322
4323
4324
4.3.2.5
4.3.2.6

Jennifer Jackson

Model Equations

Discrete Model

Deterministic Epidemic Example
End Time of the Epidemic

The Reproduction Number Ro
The Balance Equation

iii of xv

Ph.D. Thesis

50
51
55
55
56
56
59
62
62
64
64
65
66
66
67
67
68
68
70
71
73
74
75
75
75
76
77
77
78
79
82
82
82
83
84
84
85
85
86
86
87
88
89
89
91
91
93

May 2017

Front Matter Ph.D. Thesis

4.3.3 The Stochastic SIR Model
43.3.1 Rate of Contact
43.3.2 Infectious Period
43.3.3 Discrete Time Markov Model for a Single Compartment
4334 Discrete Time Markov Model for a Stochastic SIR
433.5 Stochastic Epidemic Example
433.6 Important Stochastic SIR Properties

434 Agent-Based Epidemics

44 Infection Genetics

4.5 Summary
5 Ecosystem Model of an Ad Hoc Network
5.1 Introduction

52 An Ecosystem Perspective of an Ad Hoc Network Environment
52.1 Scales and Diversity Definitions
52.2 Software and Hardware Functions
52.3 Network and User Services
52.4 Security Attack Disturbances
5241 Disturbance Regime vs Disturbance Events
52.4.2 Malware Disturbance Events
52.5 Measured Outputs
5.2.6 Natural Biodiversity Mechanisms
52.6.1 Software at the Individual Scale
52.6.2 Niche Differentiation
52.6.3 Facilitation
52.6.4 Trophic Levels
52.6.5 Genetic Variation
5.3 A Diverse System Model
5.3.1 The Requirements for a Diverse System Model
53.1.1 Requirements Overview
53.1.2 Model Constraints
53.1.3 Genotype Structure Constraints
5.3.2 Diversity Measures
53.2.1 Measures Definition
5.3.2.2 Increasing Diversity
5.3.23 Maximum Diversity Definition
5.3.3 Malware Threat Model
5.3.4 Diverse System Model Overview
53.4.1 General Overview
53.4.2 Constrained Diverse System Model: Mathematical Epidemic
5.3.43 Diverse System Model: Agent-Based
53.44 Modelling Environment
54 Summary
6 Constrained Diverse System Model: Epidemic Based
6.1 Introduction
6.2 System Model Overview
6.2.1 Overview and Constraints
6.2.2 Equivalent Epidemic Model with Diversity

94

95

96

97

99
100
101
103
104
106
108
108
109
111
113
113
114
114
115
117
117
117
120
122
123
124
125
125
125
126
128
131
132
132
133
135
141
141
142
145
148
149
151
151
152
152
153

Jennifer Jackson iv of xv May 2017

Front Matter Ph.D. Thesis

6.22.1 Without Diversity
6.2.2.2 With Static Diversity
6.3 Susceptibility Model
6.3.1 Overview
6.3.2 Analytical Result of Susceptibility
6.3.2.1 One Locus Model

6.3.2.2 Multiple Loci and Multiple Exploits (Genotypic Perspective)
6.3.2.3 Sp for Multiple Loci and Multiple Exploits (Logical AND type)
6.3.24 Sp for Multiple Loci and Multiple Exploits (Logical OR type)

6.4 Outputs
6.4.1 Outputs of Current Epidemic Models
6.4.2 Outputs Overview of the Developed Model
6.4.2.1 Malware with No Recovery (SI)
6.4.2.2 Malware with Recovery (SIR)
6.4.3 Resistance to Malware (Mr)
6.4.3.1 Resistance to Malware (Mr) with no recovery (SI)
6.4.3.2 Resistance to Malware (Mr) with recovery (SIR)
6.4.3.3 Quality of Service Tolerance (Qr)
6.4.4 Optimum Diversity for a Specific Malware Attack
6.4.4.1 Constrained Sp With no Recovery (SI) and specified Qr
6.4.4.2 Constrained Sp With Recovery (SIR) and specified Qr
6.44.3 Constrained Sp With Recovery (SIR) and specified Ro<1
6.44.4 Optimisation of Diversity
6.4.5 Resilience to Malware (Mv)
6.45.1 Peak Infection Time T: of Malware with No Recovery (SI)
6.4.5.2 Resilience to Malware with Recovery (SIR)
6.5 Summary
7 Diverse System Model: Agent-Based
7.1 Introduction
7.2 System Model Overview
7.3 Network Model
7.3.1 Random Encounters
7.3.2 Random Waypoint
7.3.2.1 Calculation of Waypoints
7.3.2.2 Selection of Devices in Range
7.3.2.3 Successful Data Transmission
7.4 Diversity Model - Measuring and Calculating Diversity
74.1 Achieving Maximum Diversity in a Practical Ad hoc Network
74.2 Calculating the Maximum Obtainable Variant Diversity
7.4.3 Practical Constraints Limiting Variant Diversity
7.5 Diversity Model - Static Diversity
7.5.1 Distribution of Software Gene Variants
7.5.2 Susceptibility
7.6 Diversity Model — Dynamic Diversity

7.6.1 Dynamic Diversity Algorithm— Random Selection of Variants (RV)

7.6.1.1 Constraints — User Influence
7.6.2 Dynamic Diversity Algorithm— Favourability Score (FS)

Jennifer Jackson v of xv

153
154
156
156
157
157
159
161
164
166
166
167
168
169
169
169
170
171
172
172
173
177
177
185
185
186
186
189
189
189
191
192
193
193
195
197
199
199
200
201
202
202
204
205
206
207
207

May 2017

Front Matter

7.6.2.1 Calculating the Diversity Metric
7.6.2.2 Constraints - Individual and Community User Desirabilities
7.6.2.3 Favourability Score
7.6.2.4 Probabilistic Variant Choice and Compatibility Filtering
7.6.3 Using Vulnerability Data - Blacklisting of Vulnerable Variants
7.6.4 Stopping and Starting the Genotype Update Process
7.6.5 Virtualisation — Deleting Infected Genotypes
7.7 Malware Model
7.7.1 Susceptibility
7.7.2 Contact Rate and Probability of Infection
7.7.3 SIR Compartments
7.7.3.1 Genetic Matching and Malware Exploit Data
7.7.3.2 Recovery Mechanisms
7.7.3.3 The Effects of Blacklisting
7.7.3.4 The Effects of Virtualisation and Deleting Infected Genotypes
7.8 Outputs
7.8.1 Analytical Outputs
7.8.2 Simulated Outputs
7.8.3 Implication of Outputs
7.9 Matlab Implementation
710 Summary
Results and Analysis
8.1 Introduction
8.2 Constrained Diverse System Model: Epidemic Based
8.2.1 Susceptibility Relationships for Static Diversity
8.2.1.1 The One Locus Model with Increasing Variant Diversity
8.2.1.2 Multiple Loci at Absolute Maximum Diversity
8.2.2 Optimum Diversity to Tolerate or Mitigate a Malware Attack
8.2.2.1 Optimisation and Simulation Process
8.2.2.2 Tolerance of a Specific Attack with no Recovery (SI)
8.2.2.3 Peak Infection Time with No Recovery (SI)
8.2.2.4 Tolerance of a Specific Attack with Recovery (SIR)
8.2.2.5 Mitigation of an Attack with Recovery (SIR)
8.2.2.6 Simulated Resistance and Resilience to Mitigate an Attack
8.2.3 Section Summary
8.3 Diverse System Model: Agent-Based
8.3.1 Constrained Agent System Model as an Epidemic Model
8.3.1.1 Susceptibility Relationships: Agent vs. Epidemic
8.3.1.2 Comparative Mitigation of an Attack
8.3.2 Dynamic Diversity Performance with the RE Network Model
8.3.2.1 Ideal Scenario
8.3.2.2 The Constrained Scenario
8.3.3 Malware Attack within an RE Network with Continuous Updating
8.3.3.1 With no Recovery (SI)
8.3.3.2 With Recovery (SIR)
8.3.4 Malware Attack in an RE Network with Additional Mechanisms
8.3.5 Malware Attack in an RE Network with Constraints

Ph.D. Thesis

209
209
212
213
214
216
219
220
221
221
222
223
224
225
225
226
227
228
229
229
233
234
234
236
236
236
238
241
241
243
248
251
255
258
262
264
264
264
266
274
274
276
278
278
281
284
291

Jennifer Jackson vi of xv May 2017

Front Matter Ph.D. Thesis

8.3.5.1 Constraints with Single Locus Malware and Recovery (SIR) 291

8.3.5.2 FS Constraints with Multi Locus Malware 293
8.3.6 Dynamic Diversity Performance with the RWP Network Model 296
8.3.7 Spatial Constraints with Multi Locus Malware (RWP) 299
8.3.8 Section Summary 305

8.4 Summary 308

9 Conclusion and Future Work 310
9.1 Introduction 310
9.2 Conclusion 310
9.2.1 Motivation 310
9.2.2 Research 311
9.2.3 Results and Analysis 314

9.3 Future Work 317
9.3.1 Additional Functionality 317

9.3.1.1 Specific to the Mathematical Epidemic Model 317

9.3.1.2 Specific to the Agent Model 319

9.3.1.3 General Functionality 321
9.3.2 Practical Considerations 323

9.3.21 Practical Generation, Dissemination and Storage of Variants 323
9.3.22 Security of Genotype Exchange for the Distributed Algorithm 325

9.3.23 Vulnerability Data and Blacklisting 325

9.3.24 Virtualisation 326

A Constrained Diverse System Model: Epidemic Equation Derivations 329
A1 Susceptibility Derivation: Three Locus Logical OR Malware Type 329
A2 Susceptibility Derivation: Four Locus Logical OR Malware Type 330

A.3 Diversity Optimisation Derivation: Three Locus OR Malware Type 332
A.4 Diversity Optimisation Derivation: Four Locus OR Malware Type 333

B Optimum Diversity and Peak Infection Times for Two and Three Loci 335
B.1 AND Malware Type 336
B.2 OR Malware Type 337

Abbreviations 338

Trademarks 340

References 343

Jennifer Jackson vii of xv May 2017

Front Matter Ph.D. Thesis

Figures
Figure 1-1 — Thesis Structure.........cccoovvviiiiiinininiiicccccccccc e 12
Figure 2-1 — Biodiversity and ecosystem relationshipccccoevviviviiniiniiincennn, 15
Figure 2-2 — Biodiversity mechanisms linking ecosystem function............c.ccccceeuevuee. 20
Figure 2-3 — Fundamental and realised niches of coexisting species............cccccoeuu..... 21
Figure 2-4 — Relationship between species diversity and ecosystem function [22] ... 22
Figure 2-5 — The trophic pyramidccccoeeiiiiiiiiiiiniecc e 24
Figure 2-6 — Chromosome pair with multiple loci and alleles............ccccccccovrinnnnnin. 25
Figure 2-7 — The effect of biodiversity on limiting disturbance severity 26
Figure 2-8 — Methods of measuring ecosystem stabilitycccccoceeiviniiiiiniiinnnne. 28
Figure 2-9 - Maximum number of unique genotypescccocovvrreenieircccneiennnnn. 36
Figure 2-10 - Comparison of genetic diversity measures.............cccocoevevirvricccuenennnne. 38
Figure 3-1 — Virtualisation SCENATioscccoeueueieveieieinieiciciccccc e 46
Figure 3-2 — Comparing different operating system software stacks...............ccce.co.... 48
Figure 3-3 — Topology of the future Internet............ccccoeviniviiiiniiiiiiicie, 51
Figure 3-4 — Network topOlOgiescccccvviviiiiiiiniiiiiniiiiiicc e 53
Figure 3-5 — Sensor network configurationsccoceevvrceeiinncneecccee, 54
Figure 3-6 — Steps of a successful malware attack............ccocoeueviiiininnncce, 56
Figure 3-7 — Zero-day attack time line adapted from [15] and [14]cccccevuririiunnnne 58
Figure 3-8 — Vulnerabilities in the software stack targeted by Pegasus exploits 59
Figure 3-9 —Location of vulnerabilities in the software stack [162] [2].........cccccecvunee. 61
Figure 3-10 — Four colour, colouring algorithm [37].......ccccceeveiviniininiiiiiiiine 70
Figure 3-11 — Client-server bipartite graph...........ccccoooereiiii, 72
Figure 3-12 — Diversity assignment within a cloud..........cccoooovi, 73
Figure 3-13 — Internal device level diversity ..o, 74
Figure 3-14 — Multi-dimensional diversity metric [38]ccccccovvriiininiiiiiniiiinn 76
Figure 4-1 — Random waypoint mobility model............cccccoviiininiinniiiiiiiine 84
Figure 4-2 — SIR Modelccooiiiiiiiiiiiiiiiic e 88
Figure 4-3 — Deterministic SIR model using difference equations.............cccccoeuevrvnnee. 90
Figure 4-4 — Final size of the epidemic as a fraction of the population size 94
Figure 4-5 — PDF for a c value of 0.3........cccooiiiiiiiiccccc e 96
Figure 4-6 — Rate diagram for a Markov process...........cccccoveueivinicininccinnnccinnens 97
Figure 4-7 — Probability diagram for a discrete Markov process...........ccccceevueuevunnee 99
Figure 4-8 — Stochastic SIR model..........ccccvuiiiiiniiiininiiiiiicceeeeee 101
Figure 4-9 — Epidemic agent-based modelccccoriiiiiis 104
Figure 4-10 — Two different infection genetic models........c.ccoovvviininnniniecenes 106
Figure 5-1 - Ad hoc network ecosystem.............cceveveueieieicciccccc e 109
Figure 5-2 - Diversity relationships in an ad hoc network ecosystem....................... 110
Figure 5-3 — Software at the individual scaleccccccoeiiviiinniiiniiice 119
Figure 5-4 — Constrained genotype with four locCi.........cccccvieinniiinnicinniiccen 130
Figure 5-5 - Maximum variant diversity with nine devices and three variants....... 134
Figure 5-6 — Malware threat modelccoooiiiiiii 136
Figure 5-7 — Pegasus malware AND threat representationcccccoceevvinnieinnennes 138

Figure 5-8 — OR threat representation example based upon the CopyCat malware139

Jennifer Jackson viii of xv May 2017

Front Matter Ph.D. Thesis

Figure 5-9 — Malware data flow in an ad hoc peer to peer environment.................. 140
Figure 5-10 — Architecture of the epidemic based diverse system model................. 142
Figure 5-11 — Architecture of the agent-based diverse system model....................... 146
Figure 6-1 - Equivalent epidemic model............cccooeeiiiiniie 153
Figure 6-2 — Susceptibility model...........ccccoovniniiiiiiii 157
Figure 6-3 - Single locus genotypes — one locus modelcoovreiniiiiincnnnnnn. 158
Figure 6-4 - Multiple locus genotypes..........ccoovviiiiiiiiiiiiiiiiiices 159
Figure 6-5 - Examples of susceptible genotypes for the AND type........c.ccccoeurnneee. 162
Figure 6-6 - Examples of susceptible genotypes for the OR type........ccccceevrururnnnnnn. 164
Figure 6-7 - Overview of outputs, constraints and optimum diversity 168
Figure 6-8 - Resistance to malware (Mr) with and without recovery........................ 170
Figure 6-9 - Critical value R« for a specified Quality of Service Tolerance 176
Figure 6-10 - Diversity optimisation example for the two locus AND type............. 179
Figure 6-11 - Diversity optimisation example for the two locus OR type................. 182
Figure 6-12 - Exact and approximation curves for the OR malware type................. 184
Figure 7-1 — Agent-based diverse system model showing modes of operation 191
Figure 7-2 - Random Encounters implementationcccccccvvviiinniiininiicnninnn. 193
Figure 7-3 - Random Waypoint implementation............ccccoeveiiiiininnnieene, 194
Figure 7-4 — Selection of devices in range..........ccccoceueveieircinieininincceecce e 196
Figure 7-5 - Successful data transmission implementation............cccccoeevevevcruennnnnee. 198
Figure 7-6 - Diversity measures in static diversity mode...........ccccccvviiinniinnnnn. 204
Figure 7-7 - Dynamic diversity algorithmscccccoeiiiiiiniiice, 206
Figure 7-8 - Updating a genotype with software compatibility filtering.................. 214
Figure 7-9 - Stop-start update states for the RV and FS algorithms........................... 217

Figure 7-10 - Time evolution of a stop-start update sequence from one device 219
Figure 7-11 - Flow sequence of the SIR compartments in the agent-based model .. 223

Figure 7-12 - Genetic matching flow chartcccccviiiiiiiniie, 224
Figure 7-13 - Outputs and optimum diversity for the agent-based model............... 227
Figure 7-14 - Main GUI window of the Matlab implementationcc.cccccceunee. 230
Figure 7-15 - Matlab software implementation flow........c.ccccccovvvriiiiicccne, 232
Figure 8-1 — Susceptibility relationship with increasing variant diversity 237
Figure 8-2 - Susceptibility relationships at absolute maximum diversity................. 239
Figure 8-3 - Process for optimising diversity and simulating the malware model . 242
Figure 8-4 - Optimum diversity (variants at each locus) to tolerate an attack......... 245
Figure 8-5 - Optimum diversity (variant richness) to tolerate an attack................... 247
Figure 8-6 - Calculated and simulated peak infection times...........ccccccooevvvrinnininnnnnes 249
Figure 8-7 - Calculated peak infection times with no recovery.........ccccocoeveirinnnnnne. 251
Figure 8-8 - Optimum diversity to tolerate an attack with recovery......................... 253
Figure 8-9 - Optimum diversity to mitigate an attack with recovery........................ 256
Figure 8-10 — Malware mitigation of a practical scenarioc.ccccceuvcueciniricccnnnnen. 257
Figure 8-11 — Simulated resistance and resilience to mitigate an attack................... 260
Figure 8-12 — Susceptibility: agent model vs. epidemic modelcccceernnnnnn. 265
Figure 8-13 - One locus model: agent vs. stochastic and deterministic..................... 271
Figure 8-14 — Four locus AND malware: agent vs. stochastic and deterministic 272
Figure 8-15 — Four locus OR Malware: agent vs. stochastic and deterministic........ 273
Figure 8-16 - Dynamic diversity performance: random encounters..............c.ccc....... 275
Figure 8-17 - Malware epidemic comparing different diversity schemes 280

Jennifer Jackson ix of xv May 2017

Front Matter Ph.D. Thesis

Figure 8-18 — Malware resistance with recovery —one locus..........ccccocoevrirruernnnnee. 282
Figure 8-19 — Malware resistance with recovery — AND / OR.........cccccceuvvnnnininnnns 283
Figure 8-20 - Malware epidemic with additional mechanisms...........ccccccceceririninnns 285
Figure 8-21 — Comparative malware resistance with security mechanisms............. 288
Figure 8-22 — Comparative resistance and epidemic times with different malware290
Figure 8-23 — One locus SIR with generic constraints...........ccocoovviviiniiininnnnns 292
Figure 8-24 — Four locus malware with FS algorithm specific constraints (SI) 294
Figure 8-25 - Random waypoint variant diversity relationships............ccccccovrvennnee. 298
Figure 8-26 — Dynamic diversity performance: random waypoint...............ccceevneee. 299
Figure 8-27 — Random waypoint CONStraintscccceeeccccccnininiinenceeees 301

Figure 8-28 — Effects of spatial constraints on malware types — moving devices 302
Figure 8-29 — Effects of spatial constraints on malware types — stationary devices 303
Figure 9-1 - Possible virtualisation architecture to support dynamic diversity 328

Appendix Figure B-1 — AND malware type........cccccoviiininiiiniiiiniiicinicccinens 336
Appendix Figure B-2 — OR malware typeccccccecvviviiininiiiiniiiiniccneccnens 337
Tables
Table 5-1 — Ad hoc ecosystem functions and Servicescccoeceeeivvicininccccnnnnn. 114
Table 5-2 - Malware effects on functions and services............cccooevvinniiiiinniciniennes 116
Table 6-1 - Worked example for the two locus AND type........ccccccecvvviiininiinnnnnnn. 179
Table 7-1 - Setting desirability values example ..o 212
Table 8-1 — Specific AND and OR malware examples..........c.cccocovurrniniiincnnennnnnnn. 244
Table 8-2 — Peak infection time parameters...........ccccoevueveiireeiiiicccecccce e, 249
Table 8-3 — Critical Rec values for a given QT.........ccccoviiiiiniiiiiniiiiniiceccnes 252
Table 8-4 - Calculated variant richness to mitigate an attackccccccccvvriinnnnnn. 266

Jennifer Jackson x of xv May 2017

Front Matter Ph.D. Thesis

Acknowledgements

I thank my supervisors Mark Leeson and Sadie Creese for their support in
allowing me to pursue my own research subject and directions. A particular thanks

to Mark who provided words of encouragement and support during difficult times.

Many thanks to all those that run the Centre for Complexity Science who, have
not only given me the opportunity to undertake this research, but have also been

patient in awaiting its completion.

Thank you to my husband for his unconditional support, and without whom, I
would not have been able to undertake this quest. Also I would like to acknowledge

his assistance in creating a suitably formatted word document thesis template.

Thank you to my Mum and Dad for always being there and having faith in

everything I do.

Finally thank you to my three amazing children who did not exist when I started,

but have somehow kept me sane.

Jennifer Jackson xi of xv May 2017

Front Matter Ph.D. Thesis

Declaration
I declare that this thesis and the work presented within is my own except where
explicitly acknowledged. This thesis is submitted for the degree of Doctor of
Philosophy from the University of Warwick, United Kingdom. No part of the work
presented in this thesis has been submitted in support of an application for another

degree or qualification of this, or any other, university or institute of learning.

Some aspects are adapted from reports or publications written by the author

during the course of this work as follows:

Parts of the text within chapter 3 (§3.4), and parts of the text and general concepts

within chapter 5 have been adapted from the following publication:

(1) J. Jackson, S. Creese, and M. S. Leeson, “Biodiversity: A security approach
for ad hoc networks,” in IEEE Symposium on Computational Intelligence in Cyber

Security, Paris, France, 2011 [1].

Parts of the text within chapter 3 (§3.3.4) have been taken from a report published

on-line within the Warwick Research Archive Portal (WRAP):

(2) Jackson, Jennifer (published 2017, created 2011) “Multi-scale location analysis
of vulnerabilities and their link to disturbances within digital ecosystems”.
Coventry: University of Warwick, Warwick Research Archive Portal.

http://wrap.warwick.ac.uk/86134/ [2]

A number of references have been made to an epidemic malware model that was
developed during a prior Complexity Science MSc, for which the design has not

been included as part of this thesis. However further simulation work investigating

Jennifer Jackson xii of xv May 2017

http://wrap.warwick.ac.uk/86134/

Front Matter Ph.D. Thesis
realistic scenarios using the model was conducted during the PhD period and the
resulting journal paper has been listed here as a contribution to the research. The
work is referenced within chapter 4 (§4.3) and some research aspects regarding
antivirus response times, malware transmission times, and Bluetooth transmission
characteristics are used during simulation of results within chapter 8 (sections

8.2.2.5 and 8.3.6):

(3) J. T. Jackson, and S. Creese, “Virus propagation in heterogeneous bluetooth
networks with human behaviors,” IEEE Transactions on Dependable and Secure

Computing, vol. 9, no. 6, 2012 [3].

Jennifer Tracy Jackson

Jennifer Jackson xiii of xv May 2017

Front Matter Ph.D. Thesis

Preface
The Centre for Complexity Science seeks to develop the knowledge to
understand, control and design complex systems, providing break-throughs in new
applications of complexity science with solutions for society and real-world

problems.

The Centre incorporates the earlier EPSRC Doctoral Training Centre in
Complexity Science and now forms part of the wider MathSys Centre for Doctoral

Training within the Faculty of Science at the University of Warwick.

This document is a thesis following a period of Ph.D. research. The work was
supported through funding from the Engineering and Physical Sciences Research

Council (EPSRC).

The text of this thesis was prepared using Microsoft Word 2007 and set in 11pt
Palatino Linotype. The figures and tables were produced using Microsoft Visio
2007, and Microsoft Excel 2007. The references were managed by Thomson ISI

ResearchSoft EndNote X2.0.4.

Pages: 372

Total Words: 76934
Excluding: -6962
Qualifying: 69972

Qualifying word count excludes Appendix, Abbreviations, Trademarks and
References.

Original submission: May 2017
Final submission: May 2018

Jennifer Jackson xiv of xv May 2017

Front Matter Ph.D. Thesis

Abstract

Cyber crime is a significant threat to modern society that will continue to grow as
technology is integrated further into our lives. Cyber attackers can exploit
vulnerabilities to access computing systems and propagate malware. Of growing
concern is the use of multiple exploits across layers of the software stack, plus faster
criminal response times to newly disclosed vulnerabilities creating surges in attacks
before signature-based malware protection can take effect. The wide scale adoption
of few software systems fuels the problem, allowing identical vulnerabilities to be
exploited across networks to maximise infection in a single attack. This requires new
perspectives to tackle the threat. Biodiversity is critical in the functioning of healthy
ecosystems. Whilst the idea of diversity benefiting computer security is not new,
there are still gaps in understanding its advantages.

A mathematical and an agent-based model have been developed using the
ecosystem as a framework. Biodiversity is generated by individualised software
stacks defined as genotypes with multiple loci. The models allow the protection
offered by diversity to be quantified for ad hoc networks which are expected to
become prevalent in the future by specifying how much diversity is needed to
tolerate or mitigate two abstract representations of malware encompassing different
ways multiple exploits target software stack layers. Outputs include the key
components of ecosystem stability: resistance and resilience. Results show that
diversity by itself can reduce susceptibility, increase resistance, and increase the
time taken for malware to spread, thereby allowing networks to tolerate malware
and maintain Quality of Service. When dynamic diversity is used as part of a multi-
layered defence strategy with additional mechanisms such as blacklisting,
virtualisation, and recovery through patching and signature based protection,
diversity becomes more effective since the power of dynamic software updating can
be utilised to mitigate attacks whilst maintaining network operations.

Jennifer Jackson xv of xv May 2017

Chapter 1 Ph.D. Thesis

Chapter 1

Introduction

This chapter establishes the motivation, hypothesis, research contributions, and
structure for the work presented within this thesis. The motivation and rationale
behind the consideration of biodiversity in the context of cyber security stems from
both a) the impact that wide-scale cyber attacks such as those caused by malware
can have when systems use the same non-diverse software or underlying
technology, and b) the benefit biodiversity can have within a natural ecosystem in

providing resistance against attack from disease and pests.

Included is an introduction to the concept of biodiversity for cyber security through
several motivating factors. These include an ever-changing cyber threat landscape
fuelled by advancements in technology, risks associated with computing
monocultures, and the range of benefits provided by biodiversity within natural
systems. Gaps in current research knowledge are highlighted together with an
emphasis on wireless mobile computing such as ad hoc networks which are
predicted to become more prevalent in the future. Understanding the benefits and
mechanisms of biodiversity underlying natural systems and applying them to this

digital wireless domain may enhance cyber security against such malware attacks.

Jennifer Jackson 1 of 357 May 2017

Chapter 1 Ph.D. Thesis

1.1 Motivation
1.1.1 The Changing Cyber Threat Landscape

One of the biggest security problems modern society currently faces is the
growing threat from cyber attacks. Cybercrime is estimated to cost the global
economy US$575 billion annually [4], and maintaining an adequate level of security
is a co-evolving process between improved defensive techniques and ever more
sophisticated attack methods. Advancements in technology fuel this process but
also simultaneously change the threat landscape. The world purchased more than
1.4 billion smartphones in 2015 [5] and it is predicted there will be 50 to 200 billion
total connected devices by 2020 [6] [7] [8]. This has the potential for them to be
integrated into every aspect of our lives creating an attractive target for online
criminals. Cyber attackers exploit vulnerabilities within the software, firmware or
underlying fabric of the devices, as well as the user to gain access to important data,
deny the use of services, spy, control systems, spread viruses, and sometimes cause
irreversible damage. Worryingly it has been estimated that up to 70% of attacks go
undetected [4]. Most software programs have vulnerabilities and since it is difficult
to remove all vulnerabilities, the problem is likely to become worse as the use of
wireless supported mobile computing and the Internet of Things (IoT) continues to

grow and change the threat landscape.

1.1.2 The Risks of Computing Monocultures

The increased use of computing devices and wide scale adoption of few
operating systems (OS) and common protocols continues to pose a significant

threat. Computing monocultures refers to the widespread use of the same

Jennifer Jackson 2 of 357 May 2017

Chapter 1 Ph.D. Thesis
hardware, firmware, or software. Although different patching habits of individuals
can create some level of diversity between devices using the same firmware or
software, the diversity is restricted to the locality and functionality of the patch.
Similarly different versions of the same software, for example different versions of
operating systems, may utilise much of the same underlying libraries. Therefore
large commonality of code described in this way adds to the monoculture
argument. For example of the 1.4 billion smartphones purchased in 2015 98 percent
were dominated by two operating systems: five out of six ran the Android OS, and
one in seven ran Apple’s iOS [5]. This made Android devices the most targeted by
attackers [9] [10] [5], a trend that has been on-going for several years [11]. A similar
scenario is seen with desktop personal computers (PCs) where Microsoft Windows
dominates the OS market, and it is predicted that over the next five years leading-
edge IoT devices will experience the same scenario [7]. Having a small number of
different operating systems or application software is more economically efficient
because of the ease of maintenance and compatibility. It also has greater user appeal
because of the need to learn only a few different types of applications and systems.
However, much effort is spent protecting the resultant computer networks from
attacks and malware, which in some cases can spread to a large number of devices
in a matter of minutes [12] [13]. In 2015 Symantec reported that “Attackers Are
Moving Faster, Defenses Are Not” [14] in response to attackers exploiting zero-day
(publically unknown) vulnerabilities much faster than vendors could create and roll
out patches. Patch times can range from a day [5] to several months [14], however
even generating patches within a few hours may not be fast enough to stop the short

term spread. Additionally, it has been reported that zero-day attacks can last up to

Jennifer Jackson 3 of 357 May 2017

Chapter 1 Ph.D. Thesis
30 months before the vulnerability is even disclosed [15]. The number of new mobile
vulnerabilities being discovered is increasing every year, with the Common
Vulnerabilities and Exposures (CVE) database reported that vulnerabilities with
Android in 2016 were estimated to be twice that of 2015 (131) [16]. Current security
solutions for mobile devices remain limited in their ability to protect, particularly
against zero-day attacks, with manufacturers being slow to address fundamental
security issues for IoT devices. Additionally it is predicted that over the next five
years attackers will not just be targeting applications and operating systems but will
look for additional vulnerabilities at layers lower down the software stack
independent of operating systems [7] such as low level drivers and protocols. The
use of multiple exploits (code or data directed at a specific vulnerability) across
layers of the software stack will pose a significant threat, especially if they are
targeting zero-day vulnerabilities. The 2010 Stuxnet worm for example is known to

have used four separate zero-day exploits [17].

The risk associated with software monocultures has long been recognised within
the computing industry [18] [19], however the physical technology and
infrastructure to produce, and maintain alternative versions of software is only now
becoming possible [20]. As the number of devices and vulnerabilities grow,
traditional security methods will become less effective. To keep up with the
sophistication of attack methods there will need to be greater automation of
defences and new paradigms of defence mechanisms including those to alleviate the

monoculture risks.

Jennifer Jackson 4 of 357 May 2017

Chapter 1 Ph.D. Thesis

1.1.3 Agricultural Monocultures and Biodiversity within
Natural Systems

The risks of monocultures are well known within the agricultural industry which
has experienced the resultant problems first hand. A single species is often selected
for its productivity or disease resistance properties and is grown over a large area
for economic efficiency [21]. But this efficiency creates risks: Land cultivated in this
way removes the naturally diverse communities, reduces the soil quality, and

results in the need for fertilizers to protect crops from pests and diseases.

The range of plants, animals, insects and other organisms living within an
ecosystem is termed biodiversity. Biodiversity is linked to the stability and
productivity of ecosystems buffering them from pest invasions, disease epidemics
and extreme environmental events [22]. Biodiversity is also critical to the
functioning of such ecosystems and the services they provide. The agricultural
industry is now becoming more appreciative of the essential benefits biodiversity
brings and is slowly changing its habits through modernisation of traditional
methods such as crop diversification and crop rotation [23] to help reduce
infestations of pests in the soil. The benefit of biodiversity has also been evinced in
other areas of natural systems. It has been shown to reduce the spread of diseases
between animals such as Lyme disease [24], and the hantavirus affecting deer mice
[25]. High levels of biodiversity have also been found to increase resistance against
extreme climate events, which are now becoming more frequent world-wide [26]

[27].

Jennifer Jackson 5 of 357 May 2017

Chapter 1 Ph.D. Thesis
1.2 Hypothesis

The intuition that diversity might be desirable has existed within the security
profession for many years. In the 1970s N-version programming [28] was proposed
within the field of fault tolerance to increase the reliability of systems that used
software. It was known that identical software running on independent systems
would fail in exactly the same way with the same inputs. Interest in this approach as
a security mechanism grew as computers became ubiquitous, attacks became more
common, and the risks of a software monoculture was acknowledged [19] [18]. A
biological perspective on diversity as a security mechanism however has largely
been overlooked and requires an understanding of ecological processes and
interactions, and their effects on the system [29]. Current research is mainly focused
at point solutions for creating diverse software [30] [31] [32] [33] [34], although there
has been some work on creating diverse networks [35] [36] [37] and measuring
diversity within networks [38] [39] [40]. Despite the recently growing research in
this area there is still a large gap in understanding the actual benefits of diversity as
a security mechanism, particularly from an ecological perspective, even whilst
evidence surrounding the benefits of biodiversity in natural systems is continuously

growing.

It is expected that peer-to-peer wireless networks such as ad hoc networks will
become more mainstream than they are currently. This drive will be as a result of
billions more connected devices such as through the evolving IoT [8], and
developing protocols such as fifth generation (5G), which supports direct device to

device communication [41]. Such topologies are decentralised, rely on physical

Jennifer Jackson 6 of 357 May 2017

Chapter 1 Ph.D. Thesis
locality to form local communication links, and may change due to the mobility of

devices.

Creating diversity of software to the benefit of security within such topologies
has largely been unexplored, let alone from an ecological perspective. There are
similarities between peer-to-peer mobile wireless networks and natural
communities due to their movement and short range communication patterns
making them a good candidate for studying the effects of biodiversity as a security
mechanism. Additionally, the modelling of multi-exploit malware propagation
targeting vulnerabilities across layers of a software stack has so far been neglected

in the literature.

The focus of this research combines these two domains where the hypothesis for

this work is therefore:

“Incorporating biodiversity within peer-to-peer mobile
wireless computer networks makes them more resistant

to multi-exploit malware propagation.”

1.3 Contributions to Research

The original and significant contributions of this thesis are:
e Definition of an Ecosystem model of an ad hoc network (8§5).

Aspects published in the conference proceedings of the IEEE Symposium
on Computational Intelligence in Cyber Security, 2011 [1]. The model

proposes that by applying biodiversity strategies at different scales of a

Jennifer Jackson 7 of 357 May 2017

Chapter 1 Ph.D. Thesis
network, the destructive effects arising from security attacks can be
counterbalanced with the constructive effects of biodiversity to maintain
ecosystem function and services, and hence benefit overall resistance and

resilience.

e Modelling of multi-layer multi-exploit malware within diverse computing

systems which includes (86, §7):

o Representations, including analytical, of malware types with
multiple exploits targeting multiple software layers with two

different (logical AND and OR) relationships (§6).

o Genetic matching of malware types to devices forms part of the
novel approach of simulating malware propagation in diverse

computing devices (§6, §7).

The representations allow the susceptibility of a network to be determined,
and allow simulation of such malware in a network where the diversity
remains static (§6, §7) (the software on each device remains fixed during the
simulation scenario) or is dynamic (the software on each device can change

during the simulation according to the rules of the diversity algorithm) (§7).

o Definition of metrics to measure the diversity of any computing network (85, §6,
§7)-

Single measures of diversity in computing systems have been defined in
the literature; however several metrics are necessary to define diversity of

multi-layer software stacks across a network, including those to define the

Jennifer Jackson 8 of 357 May 2017

Chapter 1 Ph.D. Thesis
software stack granularity, the number of different software, their
distribution, and their structural composition. A genetic approach is used
where several definitions from ecology have been adopted. The Nei genetic
diversity index [42], which has not been used previously, has been adopted in
its monoploid form to measure the distribution of different software. It is
very rarely stressed in the literature that it can be applied to any number of
chromosome sets since most studies focus on diploid chromosomes of
animals and plants. It is used here to measure the global performance of the
dynamic diversity algorithm and calculate theoretical maximum diversity

values for a given network configuration.

e Development of a mathematical epidemic model which includes (§6):

o Enhancements to the compartmental (applicable to both
deterministic and stochastic) SI/SIR models to incorporate malware
types with multiple exploits across multiple software layers in a
wireless peer-to-peer ad hoc network where the diversity remains

static.

o A method has been developed to calculate optimum amounts of
diversity necessary to tolerate or mitigate different types of multi-

exploit, multi-layer malware.

o Ecosystem outputs including resistance and resilience.

Note that enhancement of the SIR model to incorporate static diversity for an
exploit targeting only single software configurations has already been proposed in
the literature [43].

Jennifer Jackson 9 of 357 May 2017

Chapter 1 Ph.D. Thesis
e Development of an agent-based simulation framework within the Mathworks
Matlab environment to understand how biodiversity can make wireless
peer-to-peer computer networks more resistant to malware (§7). The
source code for the model is available at the permanent link :

http://wrap.warwick.ac.uk/98458.

The simulation framework allows the diversity of networks to either
remain static, or be modified dynamically. It allows for testing, simulating
and experimenting with different diversity algorithms, networks, attacks, and
additional security mechanisms to prove and explore the hypothesis. The

simulation framework incorporates the following aspects:

o A mobility model controlling how and when individual devices
communicate with one another. The following standard models

have been used:

* Uniformly distributed random encounter.

* Random Waypoint which has been further developed to
model the selection of devices to form a communication

link with and the successful data transmission.

o A diversity model controlling what software is installed on each
device and when. Within this a dynamic diversity algorithm has been
developed based upon local information. The algorithm can incorporate
optional security mechanisms to enhance the effectiveness of

diversity, and constraints that may limit the diversity achievable.

Jennifer Jackson 10 of 357 May 2017

Chapter 1 Ph.D. Thesis
o A malware model to inject malware into the network at a predefined
time and monitor the health of each device as the simulation

progresses. The SI/SIR compartments have been used.

o Metrics including biodiversity levels as the simulation progresses,

and ecosystem outputs including resistance and resilience.

Further contributions of note include:

A comprehensive review covering how biodiversity works in nature and where
lessons can be learned and applied to ad hoc networks (§2, §5, and work

published in [1]).

e A comprehensive review of current research associated with diversity as a

security mechanism (§3.4).

e A comprehensive review of the location of vulnerabilities at different scales of
an ad hoc network and their link to undesirable security events

(disturbances) (§3). A self contained study is published online [2].

e Simulations of malware propagation with different spreading mechanisms in
Bluetooth peer-to-peer networks. Published aspects included within the
thesis are documented within the Declaration. Work published in the

journal paper [3].

1.4 Thesis Structure

This chapter has given an introduction to the concept of biodiversity for cyber
security. The next three chapters provide a comprehensive background that directly

supports the work in the remainder of this thesis. Chapter 2 details the link between

Jennifer Jackson 11 of 357 May 2017

Chapter 1 Ph.D. Thesis
biodiversity and ecosystems in natural systems, and how biodiversity is critical to
the functioning of such ecosystems and the services they provide. Chapter 3
explores computer security in detail, the extent of current diversity research, and the
enabling technologies that may allow the diversity of computing and software
possible. Chapter 4 details methods of modelling mobile networks, malware and
epidemiology. Chapter 5 draws on the background material and presents an
ecosystem model of an ad hoc network. Chapters 6 and 7 present the two different
diverse system models developed and Chapter 8 details their results and analysis.

Chapter 9 draws together the conclusions by summarising the work presented, and

providing ideas for future work.

Figure 1-1 provides a graphical representation of the thesis structure:

Introduction

Introducti@

Ecology and
Biodiversity in
Natural Systems

Modelling

Cyber Security and
Diversity in
Computing Systems

Fields of research

Background
chapters

Ecosystem Model
of an Ad Hoc Network

Constrained Diverse
System Model:
Epidemic Based

Results and
Analysis

Diverse System
Model: Agent Based

My own work

Conclusion and
Future Work

Conclusion

Jennifer Jackson

Figure 1-1 — Thesis structure

12 of 357

May 2017

Chapter 1 Ph.D. Thesis
1.5 Summary

This introduction has established the concept of biodiversity for cyber security.
The focus of the biodiversity inspired security research is wireless peer-to-peer
mobile networks since they are predicted to become prevalent in the future
computing market. The hypothesis given for this work is that incorporating
biodiversity within peer-to-peer mobile wireless computer networks makes them
more resistant to multi-exploit malware propagation. The final sections of this

chapter outlined the contributions made by this work and the structure of the thesis.

Jennifer Jackson 13 of 357 May 2017

Chapter 2 Ph.D. Thesis

Chapter 2

Ecology and Biodiversity in Natural
Systems

2.1 Introduction

Understanding biodiversity from an ecological perspective, its relationships, and
how its effectiveness is measured against external inputs is important for
considering analogous relationships and measures of diversity within mobile
wireless peer-to-peer networks and its effectiveness against malware. This chapter is

split into two sections:

The Biodiversity and Ecosystem Relationship: The first section discusses biodiversity
and its relationship with other components of an ecosystem. It discusses how
biodiversity links to ecosystem functionality, how biodiversity is affected by
external disturbances, and how the effect of biodiversity on limiting the severity of

disturbances is measured.

Measuring Biodiversity: The second section details the metrics for measuring
biodiversity at the genetic level only, which are referenced during later chapters of

the thesis.

Jennifer Jackson 14 of 357 May 2017

Chapter 2 Ph.D. Thesis

2.2 The Biodiversity and Ecosystem Relationship

2.2.1 Biodiversity within Ecosystems

An ecosystem is comprised of interacting organisms such as plants, animals,
insects etc and their physical environment. The global behaviour of an ecosystem is
the result of local peer-to-peer interactions of such organisms and with their
environment resulting in distributed (sharing of tasks), self-organising (global
coordination from local interactions), and emergent (collective behaviour or
property) properties. Biodiversity encompasses the variety of genes, species, or
functional traits within an ecosystem and is critical to the functioning of such
ecosystems and the emergent services they provide. External influences can impact on
biodiversity and function and affect these services. Ecosystem health, and in
particular its relationship with biodiversity, is often assessed by looking at the
outputs of ecosystem functions and services where productivity, stability, and disease

transmission are measures often used within field studies and theoretical models.

Measured Biodiversity Measured outputs
| Genetic diversity L A Productivity |
A
Functional - . - —
diversity | Species diversity “ Stability |
Ecosystem diversity Disease transmission |
Biodiversity

Ecosystem

Disturbances .
Services

Ecosystem
Functions

Figure 2-1 — Biodiversity and ecosystem relationship

Jennifer Jackson 15 of 357 May 2017

Chapter 2 Ph.D. Thesis

2.2.1.1 Biodiversity

There are generally three levels of biodiversity defined in the literature: genetic
diversity, species diversity, and ecosystem diversity. Most theoretical and experimental
studies focus on the species level when considering ecological consequences of
biodiversity because it is easier to work with and measure [22], however
biodiversity is hierarchical and over the past decade there has been a steadily
growing interest in the genetic level, with research suggesting that genetic diversity
can also have significant effects on ecological processes [44]. In addition to these
three levels another dimension of diversity is often discussed, especially in relation
to ecosystem function, and that is functional diversity. This encompasses functional
traits at all three levels of diversity but research is again often focused at the species

level.

(1) Genetic diversity is the variety of differences between the genetic makeup of
individuals. It is often measured within species at an individual scale but does not
necessarily have to be limited to that. Genotypes determine the actual set of genes
carried by an individual and phenotypes are the observable characteristics and traits

coded for by those genes.

(2) Species diversity is usually measured within a geographical region or
ecosystem at a community scale by quantifying the number of different species and
their distribution. It is different to genetic diversity in that groups of individuals
with the same characteristics are divided into distinct groups which are usually well

known and documented. The classification of species is usually via a taxonomy

Jennifer Jackson 16 of 357 May 2017

Chapter 2 Ph.D. Thesis
approach using a hierarchical branching structure with various kingdoms defining

the top level, such as the animal kingdom.

(3) Ecosystem diversity includes the measurement of diversity of communities,
geographical regions or complete ecosystems. For example species diversity can be

measured at and between different scales of geographical areas [45].

(4) Functional diversity is about differences in functional traits. Ecosystem
function depends on functional diversity more than on the number of different
species alone. For example, species may have the same role creating redundancy but
low functionality; alternatively, species may have different roles creating low

redundancy but high functionality.

2.2.1.2 Ecosystem Functions

Ecosystem functions are the ecological processes that take place within an
ecosystem as a result of environmental factors and individual functionality, in
particular the interaction of the individual with others and the environment. They
have been categorised in different ways such as in terms of material, energy and
information flow [46], or broken down into categories such as regulating functions
(e.g. water and nutrient regulation, pollination), supporting functions (e.g. soil
formation such as chemical weathering of rocks), and provisioning functions (e.g. raw
materials such as biomass and plant production) [47]. Biodiversity has a strong

influence over ecosystem function and is discussed further in section 2.2.2.1.

Jennifer Jackson 17 of 357 May 2017

Chapter 2 Ph.D. Thesis
2.2.1.3 Ecosystem Services

Ecosystem services are the benefits that ecosystems provide to humanity and are
derived from the many functions operating within an ecosystem. They are of a
particular concern to ecologists since their demise or loss can be devastating [48]
[49] [50]. Services can also be broken down into regulating services (e.g. air and water
quality, buffering against extreme natural events such as drought, controlling pests
and diseases), provisioning services (e.g. food products such as fish, crops and
livestock, water, fuels such as wood and gas) [50], and sometimes additionally
cultural services (e.g. providing iconic landscapes and recreational opportunities) [47]

and further supporting services (e.g. crop pollination) [46] [51].

2.2.1.4 Disturbances

Disturbances are influences on an ecosystem which can be both natural and
artificial such as rain or human interaction, and can also be severe such as a flood or
a drought. Disturbances can impact biodiversity which in turn affects functions and
services. There are two aspects of disturbances: disturbance events and the natural

disturbance regime [52].

(1) A disturbance event is an incident that disrupts an ecosystem usually over a
relatively short period of time. Disruptions can include the spread of a disease,
changes in the physical environment or resources.

(2) The natural disturbance regime shapes an ecosystem over long time scales
and includes many disturbances with varying intensities at different spatial and

temporal scales such as changing temperatures and seasons [53] [54] [55]. This

Jennifer Jackson 18 of 357 May 2017

Chapter 2 Ph.D. Thesis
generates natural levels of biodiversity by varying the conditions in which different

species can operate.

2.2.1.5 Measured Outputs

Productivity and stability (including resistance and resilience), are often measured
to assess the output of an ecosystem and how well it can cope with the effects of
disturbances and changes in biodiversity. Often in the literature function and
productivity are grouped together. For example the function of producing biomass
often leads to assessing biomass productivity. Stability is about assessing how well
the ecosystem can cope under different scenarios, such as how the productivity
changes and how quickly the ecosystem recovers from a disturbance like a disease
epidemic [56]. Productivity, stability and disease transmission are discussed further

in section 2.2.2.2.

2.2.1.6 Relationships

There are relationships between disturbance, biodiversity, and ecosystem
function. Within the literature some studies focus on just disturbance and its effect
on species diversity [57] [53] [58] [59] [60] or genetic diversity [61] [62] [63], some
consider the relationship between biodiversity and ecosystem function (§2.2.2.1) [64]
[22] [65] [46], whilst others consider the effects of disturbance severity on the
measured outputs as a result of species [66] [67] [27] or genetic [68] [44] [69]
diversity (§2.2.2.2). The latter two relationships are discussed further in the next
section since these both consider biodiversity as a controlling mechanism on the

output of an ecosystem.

Jennifer Jackson 19 of 357 May 2017

Chapter 2 Ph.D. Thesis

2.2.2 Biodiversity Relationships

2.2.2.1 Biodiversity Mechanisms Underlying Ecosystem Function

Biodiversity has a large influence on ecosystem function and since the measured
outputs of an ecosystem are based upon the productivity and stability of functions
and services, this section details the mechanisms (as pictured in Figure 2-2) that link
biodiversity to ecosystem function. This includes Niche differentiation (§2.2.2.1.1),

facilitation (8§2.2.2.1.2), multiple trophic levels (§2.2.2.1.3), and genetic wvariation

(§2.2.2.1.4).
Mechanisms linking biodiversity
to ecosystem function
Genetic variation Niche differentiation Facilitation Trophic levels
/ ~ -
S
Resource partitioning Temporal niche differentiation
(conditional differentiation,
storage effect)
_ ~
&
Niche Spatial resource Temporal resource
complementarity partitioning partitioning

(morphological
differentiation)

v

Functional
complementarity

Figure 2-2 — Biodiversity mechanisms linking ecosystem function
2.2.2.1.1 Niche Differentiation and Functional Complementarity

A niche is multidimensional and describes both the place and role in which an
individual or species lives. The full range of possible conditions and resources that a

species can occupy and use is called the fundamental niche (Figure 2-3 (a)) [70]. When

Jennifer Jackson 20 of 357 May 2017

Chapter 2 Ph.D. Thesis
a species interacts with another species there may be some overlap in one or more
dimensions (Figure 2-3 (b)) creating competition of resources. The niche space then
becomes restricted due to the competition (Figure 2-3 (c)) and this is called the
realised niche. Niche overlap determines how strongly two species might compete
with each other. If species are too similar the lesser competitor will either be
excluded from an area or go extinct (Gause’s exclusion principle) [71]. When species
coexist, competition can drive them into different niches. This process is called niche
differentiation of which there are several types (Figure 2-2). One of the most
discussed is resource partitioning where species divide up a resource such as food at
different places (spatial resource partitioning), at different times (temporal resource
partitioning), or in different ways (niche complementarity, or morphological
differentiation). Often temporal resource partitioning is discussed as a separate form
of niche differentiation and is referred to as temporal niche differentiation, conditional
differentiation or the storage effect [72] where species have different competitive
abilities under different environmental conditions. The mechanisms of niche
differentiation is not just limited to species, niche complementarity has also been

found during various genotypic diversity experiments [73] [69] [74].

overlap
Fundamental Fundamental Fundamental Realised Realised
niche of niche of niche of niche of niche of
species 1 species 1 species 2 species 1 species 2
> »- »-
(a) Niche of one species (b) overlapping niches of two species (c) Realised niches of two species

creates competition

Figure 2-3 — Fundamental and realised niches of coexisting species

Jennifer Jackson 21 of 357 May 2017

Chapter 2 Ph.D. Thesis

Additionally, functional complementarity has been discussed in the literature as a
specific type of niche complementarity where different species occupy different
functionally distinct niches, benefiting ecosystem function [65] [22] and providing an
important link between biodiversity and productivity [65] [75]. With negligible
niche overlap, termed perfect complementarity, more of the total niche space is used,
increasing ecosystem functioning but causing fragility due to the dependence on
specific species. With large niche overlap there is large ecosystem function, but this
quickly saturates as species diversity increases making them functionally redundant
(Figure 2-4) [22]. Redundancy can improve the stability of the ecosystem if species
are lost, but can competition between species when the resource is limited [65]. This
suggests that both functional redundancy and functional complementarity are
needed to benefit ecosystem services rather than just the number of different
species.

Functionally
redundant

>

Perfect
complementarity

Functioning

>

Species diversity
Figure 2-4 — Relationship between species diversity and ecosystem function [22]
Functional complementarity also occurs at the genetic level. Whilst genes can
provide unique functionality, functional redundancy can also occur during the
evolutionary process producing genes with overlapping functionality. The most

common method is through direct gene duplication [76] caused by errors during

Jennifer Jackson 22 of 357 May 2017

Chapter 2 Ph.D. Thesis
DNA replication such as through reproduction. Another method is through natural
selection where previously dissimilar genes evolve to provide similar functionality

through partial functional overlap [77].

2.2.2.1.2 Facilitation

Facilitation describes interactions between species or individuals, but can also
apply at the genetic level [78] [79] [44], creating positive benefits for at least one
without causing harm to the other. Facilitation can be either mutual where both
species benefit, or commensal where only one species benefits. Increasing species
diversity in the presence of facilitation can lead to increased ecosystem functioning

[80] [81].

2.2.2.1.3 Multiple Trophic Levels

Many of the experimental studies have involved plant or microbial populations,
often within a single trophic level (hierarchical level in an ecosystem such as the
position in the food chain) [22] [82] [50] however it has been recognised that
diversity across multiple trophic levels has the potential to impact ecosystem functions
even more strongly [50]. The levels (Figure 2-5) consist of primary producers, at the
bottom, followed by primary consumers, secondary consumers, and tertiary consumers,
which consume species within the levels below them. There are also decomposers that
break down dead or dying tissue from other species at different levels. The trophic
pyramid however is often a very simplified picture of reality, where interactions

between levels are very complex.

Jennifer Jackson 23 of 357 May 2017

Chapter 2 Ph.D. Thesis

(carnivores,
omnivores)

Secondary Consumers
(carnivores)
Primary Consumers
(herbivores)
Primary Producers
(plants)

Figure 2-5 — The trophic pyramid

2.2.2.1.4 Genetic Variation

Whilst there is evidence that the previous mechanisms are relevant at both the
species and genetic levels [44], genetic variation appears only at the genetic level.
Genetic variation is the variation of genes within a population and is the driving
force behind functional differences between individuals and species. It is also a
prominent component of evolutionary change and determines genetic diversity [83]

[44] (§2.3.2).

Chromosomes are located within every cell but the number of sets can vary
between species. There can be one set (monoploid), two sets (diploid), three sets
(triploid) and more than three sets (polyploid). Animals and plants have two sets of
chromosomes and are therefore diploid as shown in Figure 2-6. Each chromosome
pair contains genes, representing short sections of DNA, which are located at a

specific site called a locus [84].

Jennifer Jackson 24 of 357 May 2017

Chapter 2 Ph.D. Thesis

Locus4

Figure 2-6 — Chromosome pair with multiple loci and alleles

Simplistically, loci determine traits or functions. Single genes can determine
discrete traits such as eye colour, whereas the additive effect of multiple genes can
determine continuous traits such as height. Genes may come in several different
variants called Alleles. When both of the chromosome copies within the pair contain
the same allele this is called homozygous and when they are different they are called
heterozygous. A genotype represents the actual genes found within an individual’s
chromosome. Differences between alleles and genotypes, and their frequencies in a

population, signifies the amount of genetic variation.

Genetic variation is caused by multiple factors. If two or more alleles coexist in
the population at a specific locus, this is termed genetic polymorphism. Many species
have genetic polymorphism at different loci [83]. Reproduction processes such as
crossover (DNA exchange by parents) and mutation (random change, potentially
creating a new allele) as well as the migration of individuals and genetic drift
(occurrence of alleles randomly fluctuate over time) [85], can change the frequency
and distribution of alleles, and introduce different combinations of genes leading to

individualised genotypes.

Jennifer Jackson 25 of 357 May 2017

Chapter 2 Ph.D. Thesis

2.2.2.2 The affects of Biodiversity on Limiting Disturbance
Severity

There are two outputs of ecosystems that are commonly measured in relation to
the effects of biodiversity on limiting disturbance severity. These are productivity
and stability [64] [22] [86] [27] (see Figure 2-7). When disturbances occur, the
productivity and stability can be affected in different ways depending upon the
disturbance severity and the level of biodiversity within the ecosystem. When
disease spread is considered as a disturbance event, such as in the case of an

epidemic, properties involving the dynamics around disease transmission is also

analysed.

Outputs measuring the effect of

biodiversity on limiting disturbance

severity
/\ Disease spread
- -~ ~
L Y ~
Productivity Stability ~ o
(closely linked to ‘/N A o
ecosystem function) Temporal Resistance Resilience Transmission

properties

stability /\

Engineering Ecological
resilience resilience

Figure 2-7 — The effect of biodiversity on limiting disturbance severity

2.2.2.2.1 Productivity

Productivity is about the efficient use of input resources to generate outputs. It is
a measure of how much and how quickly something is being produced.
Productivity has been used to measure how well a particular ecosystem function is
performing under different conditions in relation to diversity [87], and within

ecological studies it is generally measured by the rate of increase in the total

Jennifer Jackson 26 of 357 May 2017

Chapter 2 Ph.D. Thesis
community biomass (total mass of living matter) in an area [66]. Changes in
productivity in relation to disturbances or biodiversity change can be measured

over time to assess ecosystem stability (§2.2.2.2.2) [88] [27].

2.2.2.2.2 Stability

Stability in relation to ecosystems can have two meanings, either the
measurement of the temporal variability of an ecosystem property (temporal
stability), or the measurement of an ecosystem’s ability to defy change such as that
from disturbances [89] [90] [22] [27]. Often the temporal attribute measured is the
variance in population densities, or changes in productivity, such as that of biomass,
over time (see Figure 2-8 (a)) since most biodiversity and ecosystem functioning
studies focus on plants or microbial communities [88] [90] [22] [27]. There may also
be a tolerance threshold, below which ecosystem functions and services become so
degraded that it impacts the ability of the ecosystem to survive or recover. When the
stability of a system is a measure of its ability to return to equilibrium following
disturbance, two dimensions of stability are used, termed resistance (sometimes

persistence) and resilience [22].

(1) Resistance describes how much of an ecosystem property changes in
response to disturbance. The less the property changes the more resistant it is (see
Figure 2-8 (b)). For example the resistance of productivity to climate events has been
studied in grasslands in relation to diversity [27], as well as resistance of
productivity to plant invasions where the invading plant biomass [91], and the
invading plant cover [92] were measured in relation to biodiversity with the studies

showing that biodiversity can act as a good barrier.

Jennifer Jackson 27 of 357 May 2017

Chapter 2 Ph.D. Thesis

(2) Resilience, more specifically Engineering resilience [93] assumes that stable
ecological systems operate at a single global equilibrium (one stable state) so that
the resilience is a measure of the time taken to return to this global equilibrium
following a disturbance (see Figure 2-8 (b)). The faster the ecosystem can recover,
the more resilient it is [21] [27]. Ecosystems may react differently to different types

of disturbances in which case the resilient and resistant characteristics will change.

Productivity
(Total biomass)

a) Temporal
variability
Tolerance threshold

\

b) Engineering .
resilience Function
(and resistence)

Resilience

Resistence

Figure 2-8 — Methods of measuring ecosystem stability

2.2.2.2.3 The Case of Disease Spreading

The spread of a disease is considered as a disturbance event [55] especially if it
turns into an epidemic. Controlling the spread of diseases is often defined as a

regulating service offered by ecosystems (§2.2.1.3) [50], and therefore has been used

Jennifer Jackson 28 of 357 May 2017

Chapter 2 Ph.D. Thesis
as another output component of assessing ecosystem health. Whilst some studies in
relation to disease spread and biodiversity examine stability components, such as
that involving species diversity and productivity changes [94] or resistance of alleles
(§2.2.2.1.4) against pathogens in genetic studies [95], others instead focus on changes
in actual disease transmission of a population [56]. Experimental research suggests
that the effect of biodiversity loss on the spread of diseases can have two outcomes;
either it can decrease, or increase (majority of cases) transmission [56]. This can be
linked to two theories regarding biodiversity and disease spread: The Dilution Effect

and the Amplification Effect:

(1) The Dilution Effect [24] [96] [97] [56], is any factor that causes a relative
reduction in: the number of individuals that are susceptible to the disease and can
pass it on (suitable hosts) relative to the total number of individuals, or their
encounter rates, which can decrease the transmission of disease. For example a
decrease in the relative number of those susceptible through an increase in the

number of different species.

(2) The Amplification Effect [98] [97] [56] is caused by factors that cause a
relative increase in: the number of individuals that are susceptible to the disease and
can pass it on (suitable hosts), or their encounter rates, which can increase the
transmission of disease, for example an increase in the number of susceptible

individuals when species that are added to increase diversity are also susceptible.

For genetic diversity studies, disease transmission is studied in relation to genetic
variation (§2.2.2.1.4), both in terms of genotypes and alleles. There is a general

consensus that genetically homogenous populations are more vulnerable to disease

Jennifer Jackson 29 of 357 May 2017

Chapter 2 Ph.D. Thesis
transmission than genetically diverse populations [99] [100], which has been seen in
agriculture where disease epidemics have destroyed monocultured crops [101]
(81.1.3). Studies also suggest that genotypes with high allelic diversity are needed
in a population to constrain transmission [102] [103] [99] particularly when exposed

to multiple parasites [103] [99].

2.3 Measuring Biodiversity

2.3.1 Introduction

As outlined in section 2.2.1.1 genetic, species, and functional diversity measures
are used to describe biodiversity in ecosystems. The majority of practical studies
focus on species diversity because it is easier to measure than genetic diversity [104]
[44]. However, measurement at the genetic level can determine diversity within and
between the species of whole ecosystems by considering differences in genotypic
structure at the individual scale. This section reviews biodiversity measures at the

genetic level only, these being referenced during later chapters.

2.3.2 Genetic Diversity

When analysing genetic diversity in relation to genotypes (§2.2.2.1.4) there are
two types of measures: those based directly upon genotypes as a whole entity, and
those based upon alleles which make up the genotypes. These two aspects are

reviewed below.

Jennifer Jackson 30 of 357 May 2017

Chapter 2 Ph.D. Thesis
2.3.2.1 Genotypic Measures

Genotypic measures focus directly on the genotype and ignore its allelic
construction. A selection of measures described below is used in the literature to

assess diversity.

2.3.2.1.1 Genotypic Richness

Genotypic richness (G,) is the number of different genotypes that has been
measured within a population. Observational studies can count the number of
genotypes, whilst experimental studies can create the required number of genotypes

using clonal species [44].

2.3.2.1.2 The Proportion of Different Genotypes

The proportion of different genotypes (G,) within a population of size N is defined in
Equation (2-1) [105] as the genotypic richness per population. It has a maximum
value of 1 when all individuals within the population have a unique genotype and

approaches 0 when there are very few genotypes.

(2-1)

2.3.2.1.3 Genotypic Diversity

Genotypic diversity (Gg) [106] [105] takes into account the frequency of all the
different genotypes (g;), where g is the frequency of the ith genotype, as shown in
Equation (2-2) giving an indication as to how the genotypes are distributed across
the population. It has a minimum value of 1 when there is only one genotype

present in the population, and a value of G, when multiple genotypes are present

Jennifer Jackson 31 of 357 May 2017

Chapter 2 Ph.D. Thesis
and are evenly distributed, up to a maximum value of G, = N when all individuals

have a unique genotype.

_ 1 (2-2)
ZE:? gi®

2.3.2.1.4 Genotypic Evenness

Genotypic evenness (G,) [105] as given in (2-3) specifies how evenly or dominantly
the genotypes are distributed amongst the population. When a single genotype
dominates, providing that there is more than one genotype present in the
population, the evenness approaches 0. When the genotypes are evenly distributed,

the evenness has a maximum value of 1.

Ga (2-3)

2.3.2.2 Allelic Measures

Allelic measures concentrate on the genetic variation of alleles across a
population where alleles are positioned at different loci within a genotype
(§2.2.2.1.4). A selection of measures described below is used in the literature to

assess diversity.

2.3.2.2.1 Allelic Richness

Allelic richness (A,) [44] is the average number of different alleles per locus that
has been measured across a population. It is on a par with genotypic richness but is

now focused at the allelic level. Similar to genotypic richness it does not consider

Jennifer Jackson 32 of 357 May 2017

Chapter 2 Ph.D. Thesis
how many instances of each allele are present. As shown in Equation (2-4) The
number of different alleles (a) at each locus (I) is summed and then divided by the

total number of loci (L).

=L (2-4)

2.3.2.2.2 The Nei Genetic Diversity

The Nei Genetic Diversity (D) [42] is defined as the probability that at a single
locus any two alleles chosen at random from the population are different to each
other. This principle applies for monoploid (haploid), diploid and any other
polyploidy chromosome sets (§2.2.2.1.4) but is very rarely stressed in the
literature [42] [107] since most studies measuring genetic diversity in this way
focus on diploid chromosome sets of animals and plants. For diploid
chromosome sets the genetic diversity measure for a single locus is referred to as
the expected heterozygosity which is a measure of how different the two allele
pairs are (§2.2.2.1.4). For monoploids the terminology of heterozygosity cannot
be applied but the Nei Genetic Diversity is still valid since it assumes that any
two alleles chosen at random can be from different individuals. The frequency
(f;) of each different allele (i) at each locus can be calculated using Equation
(2-5) as the number of times the allele is present (n;) divided by the total number
of alleles (A) across the population. The value (4) is equivalent to the
population size (N) for monoploids and twice the population size (2N) for

diploids since a diploid has two alleles for each gene.

Jennifer Jackson 33 of 357 May 2017

Chapter 2 Ph.D. Thesis

_ M 2-5
fi= (2-5)

The probability that two alleles chosen at random will be the same (py) is given
by Equation (2-6) and is also a measure of homozygosity (§2.2.2.1.4) for a population
with diploid chromosomes. This is summed over all the different allele possibilities
(a) (Not to be confused with A which is the total number of alleles across a

population, for which the same allele may occur multiple times).

P = izZa(fi)z
i=1

Subtracting this from unity gives the probability (p;) that two alleles chosen at

(2-6)

random will be different and denotes the genetic diversity at a single locus (1),
which is given in Equation (2-7). For a population with diploid chromosomes this

will be a measure of heterozygosity.

Py, =1- iia(fi)z
i=1

The final diversity index (D) is usually calculated by averaging the diversity

(2-7)

across all loci (L) as given in Equation (2-8). The genetic diversity index has values
between 0 where every individual in the population has the same set of alleles, and

1 if every individual has a different allele at every locus.

~
L
~

(2-8)

o~
T
[uny

Jennifer Jackson 34 of 357 May 2017

Chapter 2 Ph.D. Thesis

2.3.2.2.3 The Shannon Diversity Index

The Shannon Diversity Index [108] (Shannon entropy) was originally used to
quantify the uncertainty of information content in strings of text. The greater the
numbers of different letters, and the more equal their frequency within the text, the
more difficult it is to correctly predict which letter will come next. The same concept
can be applied to alleles where the more alleles there are at a locus and the more
equal their distribution amongst the population, the more diverse the population
becomes [44]. The Shannon entropy for a given locus (H,;) is given in Equation (2-9),
and is firstly calculated in a similar manner to the Nei Genetic Diversity by
measuring the frequency (f;) of each different allele (i) at the locus. Different
logarithmic bases have been used for the index such as the natural logarithm, and
the base 2 logarithm [109]. The equation is summed over all the different alleles

possibilities (a).

=a (2-9)
Hi= =) filn(f)
i=1

Similar to the Nei Genetic Diversity measure, the Shannon entropy (H) can be

averaged across all loci (L) as given in Equation (2-10).

N
L
~

(2-10)
H,

=~
T
ot

The maximum diversity occurs when all alleles are equal in frequency. The upper
limit for a single locus is governed by the number of different allele possibilities at

that locus (a) and can be simplified to Equation (2-11).

Jennifer Jackson 35 of 357 May 2017

Chapter 2 Ph.D. Thesis

= In(a) (2-11)

H, max

2.3.2.3 Maximum Number of Unique Genotypes

For a monoploid set of chromosomes, the maximum number of unique
genotypes (G, .,) that can be created is the product of the number of different

allele possibilities (a) at each of the loci () as given in Equation (2-12).

=L
2-12
Grmax = 1_[a ()

I=1

Where (L) is the total number of loci. Figure 2-9 (a) shows the number of unique
genotypes for two loci having up to 10 alleles, and Figure 2-9 (b) shows the number
of unique genotypes for four loci with the same number of alleles at each locus.
From the opposite perspective, the number of loci and alleles needed to represent at

least a specific number of genotypes will in general have a number of solutions.

Loci 1 — Number of alleles Number of loci
1 2 3 4 5 6 7 8 9 10‘ 1 2 3 4 _
1 1 2 3 4 5 6 7 8 9 10 1 1 1 1 1
(2]
2 2 4 6 8 10 12 14 16 18 20 § 2 2 4 8 16
5
3 3 6 9 12 15 33 3 9 27 81
8 ®
=4, 4 8 12 16 84| 4 16 64 25
5 2
&5 5 10 20 ©5 5 25 125 625
o 2
S 2
2 6 6 12 g 6 6 36 216 1296
| e}
~N ‘»
©7 7 14 87 7 49
o Q
- u—
o
8| 8 16 =8| 8 64
o)
g 9 9 81
9 9 18 2
10 10 100
10 y 10 20 Y
a) Varying the number of alleles across 2 loci b) Varying the number of loci and

alleles at each locus

Figure 2-9 — Maximum number of unique genotypes

Jennifer Jackson 36 of 357 May 2017

Chapter 2 Ph.D. Thesis
For example, to generate at least 50 genotypes, there needs to be at least 2 loci

with 7 and 8 alleles (Figure 2-9 (a)) or 4 loci and 3 alleles in each (Figure 2-9 (b)).

2.3.2.4 Comparison of Measures

Figure 2-10 (a) and (b) show comparisons of the genotypic and allelic measures of
diversity for a simulated population having genotypes comprising a single locus
and four loci respectively. It is an illustration to support the mathematical equations
highlighting differences between what they show. The number of different allele
possibilities (a) is the same at each locus and is varied between 1 and 10. The
population size (N) of 20,000 has been chosen such that it is twice the maximum

number of possible genotypes (G) from a four locus, 10 allele combination. This

Tmax
is to allow the simulation of genotypes to occur at least twice and be evenly spread
across the population so that maximum diversity is achieved and can be observed in
Figure 2-10 (a) and (b). For a single locus as shown in Figure 2-10 (a), the Genotypic
(Gy) and Allelic (4,) Richness increase together linearly with the number of alleles
since a single locus with one allele can have only one possible genotype, two alleles
can have two genotypes, and so on. The Genotypic Diversity (G4) also follows the
same relationship, since when the genotypes are evenly distributed, its value is
equal to the Genotypic Richness. It also follows from even distribution that the
Genotypic Evenness (G,) measure is flat at unity across any number of alleles. The
Nei and Shannon measures both show the maximum allelic diversity values that

can be achieved when the alleles, and hence genotypes are evenly distributed. The

difference between the measures being that the Nei Genetic Diversity

Jennifer Jackson 37 of 357 May 2017

Chapter 2

asymptotically approaches unity as the number of alleles increases

Ph.D. Thesis

whereas the

Shannon Index increases with the number of alleles.

10 T T T T T T T

—O— Genotypic Richness
—+H&—Proportion Genotypes
st Genotypic Diversity
----- Genotypic Evenness
71 | —&— Allelic Richness
—¥— Nei Genetic Diversity
6 | —®—Shannon Index

Diversity measure
ul
T

b e
B 5 = o a e o oo
2 3 4 5 6 7 8 9 10

Number of alleles
(a) Diversity measures with a single
locus and a population size of 20,000

10 T T T T T T T

—O—Genotypic Richness
—+H&—Proportion Genotypes

sk Genotypic Diversity
----- Genotypic Evenness
7+ —#— Allelic Richness
—¥— Nei Genetic Diversity
6 —®—Shannon Index

Diversity measure
<
T

b Sk
~ *
c r

.

o 0
~ - o
Y 3

2 3 4 5
Number of alleles in each locus
(c) Diversity measures with four loci
and a population size of 100

o %0

Diversity measure

Diversity measure

25

0.5

T T T T T T T T
—o— Genotypic Richness

—H&—Proportion Genotypes
Genotypic Diversity
----- Genotypic Evenness
—=2&— Allelic Richness
—¥— Nei Genetic Diversity
—®—Shannon Index 4

/W.
™ ¥ ¥ ¥ * *® L 3
o o = = M
2 3 4 5 6 7 8 9 10

Number of alleles in each locus
(b) Diversity measures with four loci
and a population size of 20,000

T 3 T 3 T 3 T 3

Locus 1 and 2

—¥— Nei Genetic Diversity
—®—Shannon Index

Number of alleles in each locus

(d) Nei and Shannon diversity measures for each of
the four separate loci and a population size of 100

Figure 2-10 - Comparison of genetic diversity measures

The Proportion of Genotypes (G,) measure remains low for any number of

alleles up to 10, indicating that although the alleles and genotypes are evenly

distributed leading to maximum diversity under these constraints, the number of

unique genotypes in comparison to population size is very small.

With four loci as shown in Figure 2-10 (b) the averaged allelic measures across all

loci are the same as that for a single locus since the chosen population size is large

enough to achieve even distribution and maximum diversity given the locus and

allele constraints. Differences are seen in the increased Genotypic Richness (G,),

Jennifer Jackson

38 of 357

May 2017

Chapter 2 Ph.D. Thesis
Genotypic Diversity (G4), and hence the Proportion of Genotypes (G,) in
comparison to population size which reaches a half when four loci with ten alleles

are used.

Figure 2-10 (c) shows the same measures for four loci but with a limited
population size of 100. Figure 2-10 (d) shows the Nei and Shannon measures
separated out for each individual locus. The genotype assignment to individuals
within the population is set so that the minimum number of alleles are used to

achieve the maximum number of genotypes.

As shown in Figure 2-10 (d) when there are up to three alleles within each locus,
the population size is greater than the potential number of genotypes (see Figure 2-9
(b)) and so all alleles occur within the population and are distributed as evenly as
possible. Additionally, the Genotypic Richness (G,) is limited by the number of loci
and alleles. When there are four or more alleles in each locus the population size
becomes smaller than the potential number of genotypes. Under this condition the
Genotypic Richness (G,) is limited by the population size. The actual genotypes of
the population are a subset of those available for which there could be many
different subsets, with potentially some alleles either not being expressed, or
dominating at a particular loci. This means that even when every individual in the
population has a different genotype, the allelic diversity (Nei and Shannon) may not
necessarily be maximal. This is illustrated in Figure 2-10 (d) when only a minimum
number of alleles are used to achieve richness. Domineering alleles in loci three and
four reduce the diversity to zero at these particular loci when the number of alleles

in loci one and two is increased to maintain genotypic richness. This thereby

Jennifer Jackson 39 of 357 May 2017

Chapter 2 Ph.D. Thesis
reduces the overall allelic diversity measures of Nei, Shannon, and Allelic Richness
as shown in Figure 2-10 (c). This example provides a key illustration of the
differences between genotypic measures and allelic measures, where it may be
possible to maximise genotypic richness and diversity without fully exploiting the
potential allelic richness and diversity. This makes the use of both types of

measures important for assessing genetic diversity.

2.4 Summary

An ecosystem comprises interacting organisms and their physical environment,
resulting in distributed, self-organising, and emergent properties. Biodiversity
encompasses the variety of genes, species, or functional traits within an ecosystem
and is critical to the functioning of such ecosystems and the emergent services they
provide. Ecosystem functions are the ecological processes that take place and the
ecosystem services are the benefits provided to humanity. External influences,
termed disturbances, can impact on biodiversity and function and affect these
services. There are several mechanisms that link biodiversity to ecosystem function
including niche differentiation (particularly functional complementarity),
facilitation, interactions between trophic levels, and genetic variation. Ecosystem
health, and in particular its relationship with biodiversity, is often assessed by
looking at the outputs of ecosystem functions and services where productivity,
stability, and disease transmission are measures often used within studies. Stability
can have multiple meanings such as the variance of an attribute, or the ability to

defy change in which the two dimensions resistance and resilience are often used.

Jennifer Jackson 40 of 357 May 2017

Chapter 2 Ph.D. Thesis
The literature suggests that biodiversity loss can cause either dilution or
amplification of susceptible individuals and thereby reducing or increasing disease
transmission. These ecological concepts are mapped onto peer-to-peer networks in
the form of an ecosystem model of an ad hoc network and are described in chapter
5. Security attacks such as malware forms unwanted disturbances to the ecosystem

model.

Diversity measured at the genetic level can determine diversity within and
between the species of whole ecosystems by considering differences in genotypic
structure at the individual scale. There are two types of genetic diversity measures:
those based directly upon genotypes as a whole entity, and those based upon alleles
which make up the genotypes. Whilst genotypic measures are useful in identifying
the uniqueness of the population and the distribution of genotypes, allelic measures
can additionally show the distribution of alleles which can be analysed either
independently at each locus or as an average across the whole genotype. When the
measures are analysed together they provide a useful picture of the genetic diversity
of the population from both genotypic and allelic aspects. The following measures
are used as metrics in the measurement of diversity within the ecosystem model of
an ad hoc network (defined in 5.3.2.1): Genotypic Richness, Genotypic Diversity,
Allelic Richness, and Nei Genetic Diversity Index. The Genotypic Richness, Allelic
Richness and the Shannon Index are referenced in section 3.4.4 during a review of

diversity measures of computing systems for security.

Jennifer Jackson 41 of 357 May 2017

Chapter 3 Ph.D. Thesis

Chapter 3

Cyber Security and Diversity in
Computing Systems

3.1 Introduction

The purpose of this chapter is to introduce the background material associated
with: the practical viability of diversity, how greater numbers of connected devices
is driving more peer-to-peer wireless networks, how malware and vulnerabilities
are associated with different layers of the software stack, and what gaps there are in

this field of research. This chapter is split into three sections:

Computing Systems: The first section discusses enabling technologies of future
computing systems that have the potential to aid in the realisation of biodiversity as
a security mechanism. These include automated software generation and
dissemination, virtualisation and hardware support, and the modularity of software
stacks. Topology is considered with a focus on networks conducting peer-to-peer

communication.

Cyber Security: The second section on cyber security predominantly discusses

malware, which is a form of cyber attack rife in monoculture software

Jennifer Jackson 42 of 357 May 2017

Chapter 3 Ph.D. Thesis
environments. It summarises the different types of malware along with the stages of
a successful malware attack. The location and types of vulnerabilities exploited by
malware within the software stack are discussed. The implications of attacks using

multiple and publically unknown exploits are highlighted.

Diversity: The third section explores the literature on the current state of research
associated with diversity within computing systems. Three main areas of research
are reviewed including the diversification of software at the code level,
diversification at the network level and the metrics used to evaluate diversity within
such systems. This section concludes with an evaluation of the open areas of

research within this field.

3.2 Computing Systems

3.2.1 Enabling Technologies

The future of computing systems lies within a globally connected world of
devices and people, and will combine advancements in enabling technologies to
provide access anywhere and at anytime. Some of these enabling technologies could
also be utilised to realise diversity. Particular attention is given to automated
software generation, including dissemination and updating, virtualisation and

hardware support, and the modularity of software stacks.

3.2.1.1 Automated Software

The dissemination of software traditionally involved a pre-installation on a new
device, or through the purchase of a disk. Nowadays software can be readily

downloaded via the Internet, updates are often automated, and users can choose

Jennifer Jackson 43 of 357 May 2017

Chapter 3 Ph.D. Thesis
from a broad range of application software. Franz [110] identifies one of the
fundamental enablers of diversity to be the ease of obtaining software, making it
possible to distribute and patch unique versions. The advancement of dynamic
software compilation and cloud computing could be harnessed to provide the necessary
computing power to generate large volumes of these unique versions as and when
required. In addition to this, efforts are being sought to prevent the need to restart
software or computers when patches are applied. Much research has been
conducted around dynamic software updating (DSU) which would allow the unique
versions to be updated or modified without affecting functionality or run-time

performance [111] [112].

3.2.1.2 Virtualisation

Virtualisation is seen as one of the key enabling technologies for the future
Internet. It is the artificial creation of a resource such as a hardware platform,
storage device or server by combining or partitioning physical hardware or software
and isolating it from the rest of the system [113]. For example the resources of a
single computer could be partitioned so it appears there are two isolated computers
available instead of one. Virtualisation has grown rapidly because of its use in cloud
computing [114] and Bring Your Own Devices (BYODs) [115]. It has been used for
many years in desktop computers, but more recently in mobile devices with
software such as “‘Horizon Mobile’ by VMware [116], and open source software led
by the Xen project and backed by AMD and Google [117]. Virtualisation has use in

networks [118] [119], servers, services [120] [121], physical objects [122] [123], and devices

Jennifer Jackson 44 of 357 May 2017

Chapter 3 Ph.D. Thesis
(embedded) [113], increasing hardware utilisation, security, and efficient

administration [124].

Virtualisation within devices could prove to be a useful tool in the realisation of
software diversity due to its ability to switch between isolated software programs,
operating systems, or entire software stacks, and could provide an alternative to, or
complement the research field of dynamic software updating. Devices could be pre-
installed with only a low level virtualisation and management layer, so that the
enabling technologies of dynamic software compilation and cloud computing could
be used to provide hardware-independent functionality and individually tailored
operating systems and drivers as and when required [113]. Virtualisation can also
isolate malware prone applications by providing some protection against known
and unknown viruses through protecting the disk and files. If an infection occurs
software can be reloaded to its original, known good state and thus remove the
malware. Virtualisation can be partial, for example through sandboxing (Figure 3-1
(a)) of malware prone applications such as web browsers. Sandboxes examine
certain system calls for malicious behaviour, then rewrite or block them as
appropriate. Virtualisation can also be full using virtual machines (VMs) (Figure 3-1
(b)) to isolate whole operating systems [125]. VMs are created and managed by
Hypervisors [126] which either sit directly on top of the physical hardware (type 1
hypervisor) or sit on top of the host operating system (type 2 hypervisor). Although
virtualisation has the potential to aid diversity, there are a number of design issues

that would need to be addressed before it can be practically used (§9.3.2.4.)

Jennifer Jackson 45 of 357 May 2017

Chapter 3 Ph.D. Thesis

_VM1 _VM_2] _VM3
I I I
sandbox MVE S g IRl
[—— 1 I A I I L. L.
pps Apps Apps
A A A A .
! ?p | gp gp gp | os I ! 0s I I os | Hypervisor
Host OS Hypervisor Host OS
Host Hardware Host Hardware Host Hardware
Sandboxing Type 1 hypervisor Type 2 hypervisor
a) Partial virtualisation b) Full virtualisation

Figure 3-1 — Virtualisation scenarios

It is not just virtualisation however that could support diverse software, hardware
enabling technologies could also be important for the successful deployment of
diversity. Chip designs made up of small processors for parallel software tasks
could have the potential to accommodate diverse software onto a single chip [127]

[128].

3.2.1.3 Software as a Modular Structure

All computing devices are equipped with an underlying hardware and software
architecture. The latter is comprised of numerous software components organised
into layers that perform specific functions and is called a software stack.
Complementary to the software stack is the network protocol stack, which is also
comprised of layers, but contains protocols defining the communication from one
device to another within the network [129]. Operating Systems have well defined
software stacks and adhere to the relevant network protocol stacks to communicate

across the network.

Within the future it is likely that this modularity will remain, but with increased

functionality. There has already been an explosion of functionality of user software

Jennifer Jackson 46 of 357 May 2017

Chapter 3 Ph.D. Thesis
with the introduction of ‘App stores’ but the increase in functionality is likely to
extend to other layers of the stack as more emerging products enter the IoT. The
ability to partition software into layers and functionality, whether source code or
binary files, could be beneficial for creating diverse computing systems where
alternative versions can be generated with the same functionality using the same or

different techniques at each layer of the stack.

Four different software stacks supporting computing devices are described here
and shown in Figure 3-2 to illustrate the similarities between them in terms of
software layers and functionality. The first three software stacks: the Android [130]
[131], iOS [132] [133] and Windows 8 [134] [135] are all distinct operating systems
that can be used with mobile devices. The Windows 8 architecture has a split
software stack with a shared kernel. One half caters for a modern “Style” with touch
screen capability and the other half encompasses the old classic desktop structure.
The fourth software stack: the generic open source Linux OS [136] [137] is designed
as a modular structure so that different distributions such as Ubuntu or Debian can
be used with the same underlying core libraries, with a pick and mix of different
software packages and versions. Although the layers and software components
across all four operating systems are named and partitioned differently, the general
functionality remains consistent across the architectures. The layers can be
partitioned into four main categories. Starting from the lowest layer that sits just
above the hardware, the categories are: kernel, core OS libraries, application

services, and applications.

Jennifer Jackson 47 of 357 May 2017

Chapter 3 Ph.D. Thesis
Linux
Android Windows 8 ioS Eg. Ubuntu / Linux Mint /
Debian / Fedora etc
Applications: Applications: Apple Apps Applications:
. Style (modern) Desktop (classic) .
Browser (android browser) Browser Browser Browser (Safari) Browser (Firefox, Opera etc)
Applications Email (GMai,tS)utlook,Molto (iexplorer) (iexplorer) Email (i0S mail, Boxer etc) Email (Thnli!ﬁ:i')rd’ Opera
Word processor (officeSuite Email (Outlook) | Email (Outiook) | Word meTSSOF (tQ)uickofﬁce, Word processor (Apache
Word processor | Word processor elements Y !
Pro, Google docs, et OpenOffi
ro, Google docs, etc) (MS word) (MS word) penOffice)
Application Framework: Languages and | User Interface: Cocoa Touch: GNU desktops & interfaces
runtime APIs:
Activity Manager Window Desktops (KDE, GNOME,
Window Manager m"’\‘/’\"‘?‘gdeme”‘ LXDE, XFLE, Cinnamon,
Application Package Manager User interface (Fcl:mc;‘;vs MATE, LXQt, Budgie, etc)
! Resource Manager . - User interface framework,
services Location Manager Media streaming Multitasking, Gui interface/graphics
Telephony Manager (Silverlight), High level system services, (FLTK,GNUstep, GTK+)
Notification Manager Graphics Window Manager(EFL)
Internet messaging (XMPP) Language (GD,VGD|+) Windowing (X11,Wayland)
support user interface, Gaming (SFML)
Libraries and runtime: Network, Languages and Media: GNU open source packages
; P API:
Android core libraries & Storage, Multimedia streaming, Media library (SDL)
Dalvik Virtual Machine Media, . i i & Vi
! - : atabase
ekt 8 Security Languages: Graphics & audio & v@eo Database (MySQL)
€b Kit, N C,C++VB, NET management, Text kit, Web server (Apache)
Graphics (SGL) Runtime lib, .
Core OS Security (SSL) Database (SQL) etc, H/W accelerator (Open GL) System (systemd,runit)
i i Runtime libs, r—
libraries HIW accelerator (Open GL) | HW accelerator 72 0® o Core services: SOﬂévraarehzzz?:AgeizeRtN(lng)
C language library (Libc) (Open GL) Database (SdL) System level services e.g Captalyst Syna’ptic)
Media framework H/W accelerator netW(zrklng, d?ta, rr:gd|a, Web scriﬁting (PHP)
DSutrfsce T;gal_%e; (Open GL) Sésaggacs(;n(ggﬁtgn C language library (glibc)
atabase ite),
Linux Kernel: Core OS kernel drivers: Core OS: Linux Kernel:
Device drivers e.g camera Device drivers e.g camera /
Device drivers e.g camera / Device drivers e.g camera /' USB / display USB / dislgla
USB / display / USB / display WiFi / Bluetooth etc, = pay
L . ! WiFi / Bluetooth etc,
WiFi / Bluetooth etc, WiFi / Bluetooth etc, Low level networking, Low level networking
Kernel Low level networking, Low level networking, Power management, Power management,

Power management,
Memory management,
File management,
Synchronisation
Inter-process communication

Power management,
Memory management,
File management,
Synchronisation,
Inter-process communication

Memory management,
File management,
Synchronisation,
Inter-process communication
hardware accelerator
Security framework

Memory management,
File management,
Synchronisation
Inter-process communication
Security (SELinux, TOMOYO)

Figure 3-2 — Comparing different operating system software stacks

* The kernel layer contains the low level functions such as device drivers that
interact directly with the hardware such as the specific camera built into the device,
the graphics card, and USB ports. There is also: low level networking functionality
such as for a WiFi card, power management, memory management and file
management as well as inter-process communication and threads between
communicating software components. The Android operating system uses the open

source Linux kernel [138] as the basis for its low level functions.

e The core OS libraries layer contains a multitude of libraries performing
numerous functions supported by different programming languages. For example a

library supporting graphics functions both feeds into the application services layer

Jennifer Jackson 48 of 357 May 2017

Chapter 3 Ph.D. Thesis
to support the drawing of graphical user interface (GUI) windows, and
communicates with the graphics card device driver in the kernel. Other notable
libraries at this layer include networking and web support, database functions such
as support for the Structured Query Language (SQL), media support such as
multimedia streaming, video and audio capabilities including CODECs (Coder
Decoder: coding and decoding of media files), and security such as Secure Sockets

Layer (SSL) for establishing encrypted links between web servers and browsers.

* The application services layer is the level at which application frameworks are
created, with functionality such as window managers that control the position, style
and timing of windows drawn on the display screen. The open source Linux
software stack has separate windows managers and desktop software packages. The
GNOME desktop, for example, uses the GTK+ toolkit containing a collection of
applications to form a graphical environment which itself uses the X11 windowing
application program interface (API). The multimedia streaming package in
Windows 8 (Silverlight) is an application framework for browser multimedia
applications and is used by Netflix for streaming films and television programs. The
Android application framework is comprised of a number of managers controlling

different aspects.

* The applications layer is where all the user software is found. Applications
utilise the application services layer of an operating system, and sometimes libraries
in lower layers to create interactive user software. Internet browsers for example sit
at this layer for which there can be different products that are compatible with the

same operating system such as Firefox and Opera (plus others) for Linux, or

Jennifer Jackson 49 of 357 May 2017

Chapter 3 Ph.D. Thesis
different versions of a product across operating systems such as Firefox for Linux or

Firefox for Windows.

There are compatibility issues between different software stacks due to
dependencies on lower layer libraries, with often only one choice available for a
specific function. It is only at the application layer where there tends to be more
choice of software, particularly with the introduction of ‘App stores’. The evolving
suite of open source Linux software modules however at lower layers provides a
wider choice of functions that can be mixed and matched as appropriate with the
added benefit of being compatible. The development of open source software within
the IoT is also growing [139] [140] [141] [142] [143] [144] [145]. This increased use of
open source could provide a natural method of software diversity since there can
often be alternative choices of modules providing similar functionality. Additionally
open source is constantly under scrutiny meaning bugs tend to be fixed quickly, and
it costs less in monetary terms for the end user than proprietary counterparts

making it a cost effective way of introducing diversity and fixing vulnerabilities.

3.2.2 The Future Topology of Connected Devices

In the past, society has seen the integration of mobile phone networks and the
Internet using smartphone devices, third generation (3G) networks and protocols,
local wireless access points using WiFi and wireless peer-to-peer communication
using Bluetooth [146]. In the future, the IoT will combine enabling technologies with
many different types of objects, for a vast range of applications requiring
improvements in networks and services [8] [6] [147] (Figure 3-3). Traditional

internet networks are based upon the application layer client-server model [129]. In

Jennifer Jackson 50 of 357 May 2017

Chapter 3 Ph.D. Thesis
the future, the IoT is likely to be constructed from different topologies utilising a
multitude of communication protocols, depending upon the connected devices and
their application (Figure 3-3). There will be more localised peer-to-peer communication
such as device to device (D2D) or machine to machine (M2M) making more use of
protocols such as Bluetooth, or the fourth generation (4G) WiFi Direct and LTE
Direct, or their fifth generation (5G) equivalents when they are released [146]. They
may also be connected in an ad hoc fashion, as and when the services are required,
such as in the case of moving phones or vehicles creating localised ad hoc networks

[148].

satelite
_-77—*’/7”‘7
m—t Internet .

Base slatlon | . N Smart Farming

D,
N N
Peer-to-peer u % N (@
communication \‘T -
\
Ad hoc \ \ S
network & \\ h ; 'M{'%'_
/ h Wireless h ﬂ ‘-*
access omt ﬁ. - 9
\. P é: & Sensor network
ﬂ“: A‘i hock Ot pga—»o
Personal area network (PAN) networ! Peer-lo‘-pee‘:.-r
with wearable devices Home network with communication Farmers field

smart devices, and
computers

Figure 3-3 — Topology of the future Internet

3.2.3 Peer-to-Peer, Ad hoc, and Sensor Networks

Localised Peer-to-peer communication describes the direct communication between
one device and another. This section describes different types of peer-to-peer
networks and where mobile ad hoc networks fit in. Several networks communicate
in a peer-to-peer fashion, although the underlying mechanisms and network

topology may be different.

Jennifer Jackson 51 of 357 May 2017

Chapter 3 Ph.D. Thesis

A peer-to-peer overlay network has a distributed architecture and generally operates
at the application layer of a network protocol stack (§3.2.1.3) using the Internet as
the underlying network and can operate over wired or wireless connections [149]. In
a traditional client-server model, shown simplistically in Figure 3-4 (a) without
including network detail, a user will communicate with a single server to transfer a
whole file. By contrast, in a peer-to-peer overlay network (Figure 3-4 (b))
connections with multiple hosts are made with many small data requests to each.
The peer-to-peer client then combines the data to recreate the file. BitTorrent is one
of the most popular peer-to-peer file sharing protocols and is often used for

downloading films [150].

Whilst peer-to-peer overlay networks provide logical peer-to-peer
communication, ad hoc networks provide physical peer-to-peer connections. They are
formed at the lower network layer of a network protocol stack (§3.2.1.3). They also
have a distributed architecture, but devices used within ad hoc networks tend to
interact closely with humans often following human mobility patterns (§4.2). Each
node in the network acts as a router and a host which self-configure to form an
arbitrary topology [151] (Figure 3-4 (c)). Nodes communicate through single-hop
and multi-hop paths to each other in a peer-to-peer fashion. For nodes that are both
mobile and wireless with multi-hop functionality, they are generally referred to as

Mobile Ad hoc NETworks (MANET’s) [148] [152].

Jennifer Jackson 52 of 357 May 2017

Chapter 3 Ph.D. Thesis

a) Client/server (star topology) b) Peer-to-peer network

()

‘ 3 ~

Wired backbone

router

c) Wireless mobile ad hoc network d) wireless mesh network, where an ad

connected in a hoc network collaborates with the fixed

peer-to-peer fashion infrastructure to communicate with the
internet

Figure 3-4 — Network topologies

Mobile phones equipped with Bluetooth currently use single hop communication
for transferring files directly between devices. In the future wireless communication
standards will incorporate multi-hop functionality [153] allowing the creation of
mobile ad hoc networks. It is likely that most ad hoc networks will not operate in
isolation, requiring some kind of gateway to the Internet. Mesh networks (Figure 3-4
(d)) may provide this, where ad hoc devices collaborate with fixed infrastructure to

enable access to the Internet [153]. Ad hoc networks are beneficial for temporary

Jennifer Jackson 53 of 357 May 2017

Chapter 3 Ph.D. Thesis
scenarios such as mobile phone communication, rescue operations, health care, and

much more [154].

Sensor networks are sometimes discussed in the literature as a type of ad hoc
network, but they can also be considered different from ad hoc networks [154]
depending upon the type of network topology and application areas that are being
considered [155]. Devices contain sensors and actuators and collaborate between
themselves using wired and wireless technologies which may be static or mobile.
They normally have a central device responsible for gathering sensed data called the
sink or master and interact more closely with the environment for applications such
as machine surveillance, tracking of goods, and precision agriculture [154]. The

three most common topologies are mesh, star and tree (Figure 3-5), where the mesh

topology could incorporate an ad hoc network if required for a specific application

To Internet
or local @
@ network H

[155].

Figure 3-5 — Sensor network configurations

Jennifer Jackson 54 of 357 May 2017

Chapter 3 Ph.D. Thesis

3.3 Cyber Security

3.3.1 Malware in a Monoculture Environment

The increased use of computing devices and wide scale adoption of a limited
number of operating systems (OS) and common protocols continues to pose a
significant software monoculture threat. Malware is prolific in monoculture
environments since it can spread over networks taking advantage of software, such
as widely used operating systems, that all have the same vulnerability. Malware is
any malicious software used to interfere with computer operations, access private
data and systems, or display unwanted advertising. It can infect or delete files, deny
services by flooding the network, enable remote access to control devices, modify
system applications, prevent functions from working or even turn off security

features such as antivirus tools. The main types of malware include:

e Viruses: Attach to other programs to spread, and self-replicate when
executed.

e Worms: self-replicate without needing other programs to spread.
Sometimes require user interaction to initiate the spread (e.g. Cabir Worm
[156]).

e Trojans: Appear as legitimate software (e.g. hidden within “App stores’
[157]) and can harbour spyware, ransomware, or adware.

e Spyware: Capture sensitive data or key presses to obtain login details.

e Ransomware: Extract money by encrypting files or locking the device until
a ransom is paid (ransomeware targeting mobile users is increasing [157]).

e Adware: Launches unwanted advertisements.

Jennifer Jackson 55 of 357 May 2017

Chapter 3 Ph.D. Thesis

3.3.2 Successful Malware Attacks

Malware takes advantage of vulnerabilities unintentionally (mostly) created in
the design and implementation of software code. Exploit code is written and used
within malware to exploit a vulnerability. The exploit code can comprise a small
piece of software, a block of data or a chain of commands. A successful malware
attack requires several steps as shown in Figure 3-6. The first is an entry point for an
exploit utilising a vulnerability through which there is redirection of control on the
target computer to download a payload. The payload could be the malware itself,
or a downloader which then creates a backdoor for other types of malware to be
installed. Malware then carries out its intended execution such as stealing data, or
causing damage. If the malware has avoided detection and has been programmed to
spread over the network, it will then start infecting other computers, either straight
away, or after a trigger. Sometimes exploit kits are used which include pre-written
exploit code targeting vulnerabilities in unpatched software. Some exploit kits run
on web servers, with the purpose of identifying software vulnerabilities in client

machines so that malware can be executed.

Exploit entry point H Redéroen(;trz)ln of H Download payload H Execution H Spread

Figure 3-6 — Steps of a successful malware attack

3.3.3 Multiple Exploits and Zero-day Attacks

The use of multiple exploits could pose a significant threat in the future. Exploit
kits contain multiple exploits targeting known vulnerabilities to gain entry to a

computer, usually these kits only need to use one exploit to succeed but have a pool

Jennifer Jackson 56 of 357 May 2017

Chapter 3 Ph.D. Thesis
to choose from. For example the 2015 mobile ‘Godless” malware contains multiple
exploits that can gain root access to various versions of Android-based devices.
Once the malware has achieved root access it can receive remote instructions to

download other malicious software [158].

Some attackers however use exploits to target publically unknown
vulnerabilities. These types of attacks are called zero-day and are growing more
common. They can last up to 30 months [15] before the vulnerability is publically
disclosed (Figure 3-7), and are often targeted at specific organisations such as the
government. Additionally, these types of attacks can use multiple zero-day exploits
to gain entry to the network, access information, propagate to other devices and
perform malicious tasks. The 2010 Stuxnet worm for example used four separate
zero-day exploits to gain entry and cause disruption to an Iranian nuclear power
plant [17]. The first exploit targeted an automatic file execution vulnerability in a file
shortcut of Microsoft Windows OS which was used to inject the worm via USB
sticks into a computer system. The second targeted a shared print-spooler
vulnerability using remote code execution (§3.3.4) which was subsequently used to
spread the worm. The third and fourth targeted system-level privileges to gain
control even when computers had been locked down to only allow specified
software to run. This was the first threat to use so many publically unknown

vulnerabilities.

Jennifer Jackson 57 of 357 May 2017

Chapter 3 Ph.D. Thesis

Example
surge
in attacks

Y

|
|
\J

Exploit released

Vulnerability found
Vulnerability disclosed |
Signatures released |
Patch released
Patch deployed

W o—n .

[\ /\'\.\,—

| Zero day attack Follow on attacks

/ =

Time (not to scale)

Figure 3-7 — Zero-day attack time line adapted from [15] and [14]

A more recent example in 2016 was a piece of malware named Trident [159]
incorporated into the Pegasus spyware, which used three zero-day exploits to target
iPhone devices. As shown in Figure 3-8 the first exploit targeted a vulnerability in
the Safari WebKit at the application layer leading to memory corruption allowing
the device to be infected when the user clicked onto a link. The second exploit
targeted a kernel mapping vulnerability of the iOS at the core OS layer that leaked
information allowing the attacker to calculate the kernel’s location in memory. The
third exploit targeted a vulnerability at the kernel layer that caused kernel memory
corruption allowing the device to be silently jailbreaked so that surveillance
software could be installed. The three exploits targeted different layers of the

software stack (§3.2.1.3), and all three vulnerabilities needed to be exploited for the

malware to be successful.

The damage caused by zero-day attacks does not stop at the original target. After
a zero-day vulnerability is publicly disclosed, there can be a surge of attacks (Figure
3-7) within a few hours as other cybercriminals race to exploit the vulnerability

before it can be blocked or patched by antivirus vendors. For example, shortly after

Jennifer Jackson 58 of 357 May 2017

Chapter 3 Ph.D. Thesis
the ‘Heartbleed” and ‘ShellShock’ zero-day vulnerabilities were disclosed in 2014,
between thirty and thirty five thousand follow on attacks were recorded [14] (Figure
3-7). A surge in attacks does not always happen this quickly but usually faster than
vendors can deploy patches. Trident for example was patched in 10 days after it was
disclosed [160], but many people still use old software that is no longer supported
through patches such as Windows XP which accounts for around 18% of infections

[161].

Applications
(1. Safari web kit

vulnerability)

Application
services

Core OS

libraries
(2. Kernel mapping

vulnerability)

Kernel
(3. Kernel memory

vulnerability)

Figure 3-8 — Vulnerabilities in the software stack targeted by Pegasus exploits

3.3.4 Location of Vulnerabilities in the Software Stack

An analysis of the location of vulnerabilities within the software stack was
included as part of an on-line published study by the author [2]. The 2010 top 25
most dangerous software errors reported by MITRE and the SANS institute was
used during the study [162]. Figure 3-9 lists the vulnerability types and their
location within the software stack. The purpose is twofold, firstly to stress the
important fact that many types of vulnerabilities can affect multiple layers of the

Jennifer Jackson 59 of 357 May 2017

Chapter 3 Ph.D. Thesis
software stack and that malware can be injected or propagated using a single
vulnerability at any layer. The actual exploit code however will be different for each
unique vulnerability discovered. Secondly, vulnerabilities described here are
referenced later in the chapter. A full description of the vulnerabilities and their

location is included in the study [2].

Several of those listed relate to buffer or memory vulnerabilities (nos.
3,12,14,17,18) which can occur at any layer of the software stack and lead to the
execution of malware. For example a buffer copy without checking the size of the input
(no.3) often leads to the classic buffer overflow attack where the attacker writes data
outside the bounds of the buffer to an adjacent location. This can change the
behaviour of the program, overwrite local variables or a function pointer, or change

a return address to point to malware.

In contrast, the leading vulnerability, improper neutralization of inputs during web
page generation (no. 1) only affects Web applications but can lead to a range of
attacks including an ideal entry point for malware. It occurs when untrusted inputs
are not mitigated against. The most common attack method is via script injection,
often called cross-site-scripting, where attackers inject JavaScript or other content
into a web page that the web server application generates. The web page can then

be accessed by other users, whose browsers execute the malicious script.

Code injection attacks often target online SQL databases by modifying
improperly checked SQL queries (no. 2). Additionally they can be used in
conjunction with memory corruption to redirect execution to the injected code, for

example for malware, by modifying a code pointer in memory. Code reuse attacks

Jennifer Jackson 60 of 357 May 2017

Chapter 3 Ph.D. Thesis
can also be used, where instead of injecting new code small sections of legitimate

code called gadgets are chained together to execute the exploit instead.

Other vulnerabilities that improperly deal with external inputs (nos. 4,6,7,9,15,16)
can allow an attacker to by-pass security mechanisms. Cross-site request forgery
(no.4) for example occurs when a web application insufficiently verifies requests by
the user allowing an attacker to trick a user into making an unintentional request to
the web server which is then treated as authentic. Other errors leading to security
mechanisms being bypassed, include the setting of improper access, restrictions and
permissions (nos. 5,8,19,20,21,22,25) and can lead to code execution for the

propagation of malware.

2010 MITRE/SANS top 25 vulnerability list

1 Improper Neutralization of Input During Web Page Generation

— . : Applications
2 Improper Neutralization of Special Elements used in an SQL Command
3 Buffer Copy without Checking Size of Input Web Database Other
4 Cross-Site Request Forgery 1_25 2,3,5,6, 3’7’11,12,
S Improper Authorisation 10_12 14_19
’ ’
6 Reliance on Untrusted Inputs in a Security Decision
7 Improper Limitation of a Pathname to a Restricted Directory 14-19' 21 '22’24
8 Unrestricted Upload of File with Dangerous Type 21 ’22’25
9 Improper Neutralization of Special Elements used in an OS Command
10 Missing Encryption of Sensitive Data

11 Use of Hard-coded Credentials

Application services (OS System)
3,11,12,14-18,20-22,24,25

12 Buffer Access with Incorrect Length Value

13 Improper Control of Filename for Include/Require Statement in PHP Program

14 Improper validation of arrayindex

15 Improper Check for Unusual or Exceptional Conditions
16 Information Exposure Through an Error Message Core OS libraries
17 Integer Overflow or Wraparound 3,1 1 ,12’ 14-1 8,21 ,22,24

18 Incorrect Calculation of Buffer Size

19 Missing Authentication for Critical Function

20 Download of Code Without Integrity Check .
21 Incorrect Permission Assignment for Critical Resource Igiryﬁlz(?f 1D8n2v1e;sz)

22 Allocation of Resources Without Limits or Throttling
23 URL Redirection to Untrusted Site

24 Use of a Broken or Risky Cryptographic Algorithm

25 Race Condition

Figure 3-9 —Location of vulnerabilities in the software stack [162] [2]

Jennifer Jackson 61 of 357 May 2017

Chapter 3 Ph.D. Thesis

3.4 Diversity

3.4.1 Diversity as a Security Mechanism

In the 1970s, N-version programming was proposed within the field of fault
tolerance to increase the reliability of systems that used software [28]. It was known
that identical software running on independent systems would fail in exactly the
same way with the same inputs, so the idea was therefore to create N-versions of the
software. Since then the concept of diversity within computer networks has
expanded, with the majority of research focused upon applications such as
improving communications [163-165], avoiding security attacks [35, 37, 39, 166, 167]
[168], designing fault tolerant systems for harsh environments [169-172] improving
test simulations [173], and in developing enabling technologies to support such
concepts [127]. Interest in the use of diversity as a security mechanism within
computing developed as computers became ubiquitous, attacks became more
common, and the risks of a software monoculture were acknowledged [19], [18]. A
biological perspective on diversity as a security mechanism was touched upon by
Forrest [174] who recognised that diversity is an important source of robustness in
biological systems, and its beneficial effects in computing systems should be
investigated. Later, Crandall highlighted that biological diversity for computer
security needed an ecosystem perspective [29]. There has been very little
development in this research area until recently since the development of key
enabling technologies (§3.2.1) such as dynamic software compilation, cloud
computing, and virtualisation is only now making it possible to produce,

disseminate and maintain the different versions of software needed [20].

Jennifer Jackson 62 of 357 May 2017

Chapter 3 Ph.D. Thesis
Consequently there has been a renewed interest around diversifying software [175].
Diversity used as a security mechanism aims to make it more difficult for attackers
to target multiple devices and networks during a single attack. The propagation of
malware relies on being able to exploit the same vulnerability on multiple machines
and so diversity makes attackers target each system individually. Without
knowledge of the programs on a specific computer targeted attacks such as those
using zero-day vulnerabilities become more difficult [14]. Diversity as a security
mechanism is not just applicable to singular computers and their user software but
may also manifest in other areas of defence such as network design [176] and
network defence mechanisms. Diversity of network defensive techniques such as
tirewalls and intrusion detection systems is also related to the notion of defence in
depth [177], which is a multi-layered defence strategy with complementary
techniques to block, detect, monitor and remove suspicious activity to reduce the

probability of a successful attack.

Diversity research relevant to malware and the security of computers, their
interconnected network (as opposed to diverse network defence), and user software

can be broadly partitioned into three categories:

1) Creating diverse code

2) Creating diverse systems

3) Measuring and analysing diversity

Jennifer Jackson 63 of 357 May 2017

Chapter 3 Ph.D. Thesis

3.4.2 Creating Diverse Code

Creating diverse code involves practical code level manipulation techniques such
as obfuscation, insertion, and randomisation of code, data, or binary files to generate
different versions of software with the same functionality. Some techniques have
been designed that can be applied at the source, or compilation and linking stage,
usually prior to software distribution, whilst other techniques have been developed
to be applied after distribution such as during installation, loading, or program
execution [178]. Research has shown that diversifying software is possible using
these techniques. Additionally, larger scale experiments have been carried out
recently that prove diversity can actually be a viable method for wide scale use
[179],[180]. There are some key types of attacks against which code level
diversification is good at guarding. These include information leaks, memory
corruption such as buffer overflows, as well as code injection and code reuse, the
majority of which can allow the propagation of malware [181] [182] [178].

Vulnerabilities allowing these types of attacks are discussed in section 3.3.4.

3.4.2.1 Source Code Transformations

Generating different source code implementations has been widely researched
within the field of fault tolerance, where the idea originated from N-version
programming, and has often been a manual task [178]. Techniques for the automatic
generation of source code are more recent. Source code transformations is a technique
used to automatically create a diverse set of program variants by undergoing
different transformations given a baseline source code. Some of the transformations

are purely random while others involve program analysis [179], and are all based on

Jennifer Jackson 64 of 357 May 2017

Chapter 3 Ph.D. Thesis
removing, adding or replacing statements in source code [180]. This technique has
been demonstrated by performing diversity transformations on the server side of a
client-server network [179]. Multiple cloned copies of the server software stack,
called request handlers are generated to deal with incoming requests. Instead of
using cloned copies, these multiple copies could all be different providing

diversification.

3.4.2.2 Compiler Transformations

Compilers are used to translate high level source code into low-level machine
code automatically. Some diversity techniques take advantage of this process
already in place by extending existing compilers to automatically diversify machine

code.

The NOP insertion technique [33] [34] works by randomly inserting non-
alignment, no operation (NOP) instructions during compile time giving a large
number of program variants. A NOP is an instruction that the processor fetches and
executes without any effect on the processor register or machine memory. Although
adding NOP instructions can positively impact diversity it can also negatively affect

the performance of the generated binary file.

Another proposed method wutilises the compiler optimisation algorithm.
Compilers usually try to find the best binary implementation to give optimum
performance out of numerous possibilities. Instead of choosing the best solution, the
alternative compiler solutions could also be used to generate alternative unique

binaries [110] [183] [20].

Jennifer Jackson 65 of 357 May 2017

Chapter 3 Ph.D. Thesis
3.4.2.3 Address Space Randomisation

Address space randomisation randomises the locations of data and code objects in
memory [184]. Address space layout randomisation (ASLR) is one of the most well
known diversity techniques which randomises the layout of a section of memory for
an executing program. A compiler equips the code for base address randomisation
and then the operating system changes the virtual memory addresses at which the
code is loaded [178]. The idea is to provide some protection from memory
vulnerabilities without needing to remove them from the system such as those
involving code injection buffer overflow attacks (§3.3.4). Since the randomisation on
each machine is different, any exploit that depends on a specific relative memory
address will generally fail. ASLR is in widespread use within operating systems

such as Google Android, Linux, Microsoft Windows, and iOS [185] [186].

3.4.2.4 Data Space Randomisation

Data space randomisation (DSR) [187] is where the representation of different data
objects or code in memory is randomised. Data space randomisation can be
implemented in a variety of ways [185]. One way to modify the data is through
encryption such as to logically XOR each data object in memory with a unique mask
and then decrypt it before it is used. In the case of a memory vulnerability attack for
example using code injection (§3.3.4), the attacker would only be able to write a

random value into memory rather than the intended value [187].

Jennifer Jackson 66 of 357 May 2017

Chapter 3 Ph.D. Thesis
3.4.2.5 Instruction Set Randomisation

Instruction set randomisation (ISR) creates a unique set of synthetic instruction sets
randomly for each computer such as for the Intel x86 machine code [188] [189] [190]
[191]. Translation from the synthetic instruction set to the instruction set of the
actual target computer requires an interpreter or just-in-time compiler. Code
injection attacks utilise the synthetic instruction set and therefore are unable to

penetrate into the system.

3.4.2.6 Executable Code Randomisation

Randomisation techniques such as ASLR and ISR that rely on the 32-bit and 64-
bit architectures can potentially be open to brute force attacks [168] [192] where an
attacker has many attempts with different combinations until successful. Executable
code randomisation is where executable code is broken into many functional blocks
that can be shuffled in memory just before execution [181]. The number of unique
permutations is higher than ASLR. With 500 blocks there are ‘500 factorial’

permutations making a brute force attack difficult.

Another technique named In-place code randomisation [193] is based on the
randomisation of the code sections of binary executable files. Firstly code is
extracted from the executable binaries using a disassembler, and then
transformations are conducted on small sections of code such as substitution with
functionally equivalent alternatives, reordering of instructions, and reordering of

register preservation code.

Jennifer Jackson 67 of 357 May 2017

Chapter 3 Ph.D. Thesis
3.4.3 Creating Diverse Systems

Creating diverse systems, involves the creation of diverse networks or algorithms
at a higher level of abstraction to analyse their behaviour in relation to either
diversity alone, or the effectiveness of diversity against an attack model. There have
been relatively few research papers associated with diversity algorithms to analyse
overall network behaviour. Those that do exist are very wide ranging in their
methodology and are often for a specific topology or purpose making them difficult
to compare. Additionally some are preliminary studies or ideas and therefore have
limited results in which to analyse the effectiveness of diversity adequately. These

diverse systems are described below.

3.4.3.1 Colouring Algorithms

Colouring algorithms, which are widely investigated in graph theory [194]
(§4.2.4), have been proposed [35],[36],[37] to try to minimize the number of
neighbours running the same software package. In this type of algorithm each
colour is assumed to be a different software package where each node in the
network runs a single software package but each can be the same, or different.
Colouring algorithms however tend to require a global perspective of the network,
where knowledge of all the links between nodes are needed in order to assign
colours. In an ad hoc network where, nodes are moving, and links between them are
constantly changing these types of algorithms would not necessarily be practical.
Additionally the compulsory assignment of software packages to nodes would be
difficult in these changing scenarios. Colouring algorithms proposed for software

diversity involve a fixed number of colours, usually 3 or 4 [35],[37] and are based on

Jennifer Jackson 68 of 357 May 2017

Chapter 3 Ph.D. Thesis
network topologies with fixed communication links. O’Donnell [35] used a network
topology generated from email traffic logged over a fixed time period to investigate
4 types of colouring algorithms. The first is where each node randomly chooses a
colour which remains fixed. The second is where each node at random intervals
analyses its neighbours and chooses a new colour for itself if the current one is used
frequently. The third allows pairs of nodes to swap their colours, and the fourth
combines self updating and swapping which was found to produce the best colour
distribution across the network. An attack was simulated by selecting one colour to
be vulnerable with the goal of switching every node in the network to the
vulnerable colour. This was achieved by introducing malicious nodes to lie about
different aspects of the algorithm such as their colour or proposed swap. The
analysis found that the fourth algorithm with the ability to switch between the two
methods made it more difficult for the attacker because it was unclear which
method the targeted node was going to carry out and proposed that diversity

algorithms should contain diversity within them as well.

Yang [37] focused on sensor networks by partitioning sensor nodes into cells of
either tessellating hexagons with three possible colours or squares with four
possible colours (Figure 3-10). The links between sensors were modelled using
graph theory. Each hexagon or square contained sensors with the same colour. Once
a cell colour is compromised more than one sensor is infected, with the intention
that a potential worm attack could be quarantined. A worm attack was simulated
using a standard Susceptible - Infected model (§4.3.2) where each sensor was able to

adopt either of two states: susceptible where it is susceptible to the worm but not yet

Jennifer Jackson 69 of 357 May 2017

Chapter 3 Ph.D. Thesis
infected, and infected where it has been infected by the worm. With four colours
arranged in squares as shown in figure 3-10, the minimum distance between the
same colour is the length of the cell (L). The number of connected sensors (which are
assumed to be fixed in location) with the same colour is dependent upon L and the
transmission range of the sensors R. When R is less than L the infection can be
quarantined to a single cell so that the total number infected is dependent upon the
number in the infected cell and their location of being within transmission range of
each other. For a non-diverse system all sensors could potentially become infected
(assuming R is large enough between individual sensors) since it would be

equivalent to all cells having the same colour.

Sensor location in squares Graph representation

Figure 3-10 — Four colour, colouring algorithm [37]

3.4.3.2 Epidemic Based Attack Models

Epidemic models are widely used within ecology to study the spread of diseases
and have also been used to model the spread of malware in computer networks
(8§4.3). Introducing software diversity into epidemic models has been considered by
Hosseini [195] who used a scale free network topology often considered as a
common structure of the Internet, together with a discrete-time deterministic SEIRS

epidemic model with L diverse software packages. The SEIRS epidemic model has 4

Jennifer Jackson 70 of 357 May 2017

Chapter 3 Ph.D. Thesis
states: Susceptible, Exposed, Infected, and Recovered, where once recovered the
individuals become susceptible again to the same attack. The deterministic
equations are modified such that by applying L diverse software packages, the rate
of infection of propagation A is adjusted to A/L. Another similar model uses
networks and epidemics to model the diversity and malware propagation of nodes
[196]. The assumption is that compilers with “diversity engines” produce many
different executable software variants to generate diverse node types. There are L
node types and N nodes with M malware. For homogeneous mixing networks, the
total number of nodes infected is MN /L. These equations assume that maximum
diversity is being achieved so that the number of different software packages or
node types are equally distributed, thus keeping the equations simplified. The
colouring algorithm used by Yang [37] (§3.4.3.1) also included an epidemic
Susceptible - Infected model to analyse how a worm might propagate in response to

the diversity scheme developed.

3.4.3.3 Biological-Inspired Models

Genetic programming [197] is a large topic of research in which computer
programs are encoded as a set of genes (§2.2.2.1.4) that evolve using an evolutionary
algorithm to find programs that perform well against set criteria. Usually many
programs are tested over lots of generations until a solution converges. It has been
proposed that the parameters used to control how diverse the programs are can be
used to develop a method for generating a pool of diverse programs (rather than
converging to a single solution) [198]. It is unclear from the literature whether this

method has been practically tested.

Jennifer Jackson 71 of 357 May 2017

Chapter 3 Ph.D. Thesis

Holtschulte [199] describes a model inspired by the immune system of how
computers on a network distribute and share patches to repair variants of software
in response to an attack. The diversity being considered here is the diversity of the
software patches generated by each node in response to an attack, rather than the
diversity of the original software in the network which is the same. Nodes attempt
to generate their own repairs or send requests to neighbours for software variants
until a resistant variant is found. The research showed that the network topologies
that allowed the largest amount of software sharing had the least diverse software
variants, but were also the quickest to resist new attacks, presumably because when

a resistant variant was found it could be distributed more quickly.

Another ecosystem related model, but does not fit into the epidemic model
category, is that of Bi-partite relationships (Figure 3-11, individuals categorised into
two sets with relationships between them). These observed relationships within
ecosystems have been used to introduce ecological based diversity ideas into client-
server software architectures where one set represents the servers and the other the
clients connected with relationships as shown in Figure 3-11 [175]. The project
proposed (but not simulated or implemented at the time of this writing) the
definition of evolution rules to generate diversity in the client server networks. They
highlighted that the rules should consider a trade-off between providing more

servers for redundancy and increased cost.
W clients
servers
Figure 3-11 — Client—server bipartite graph

Jennifer Jackson 72 of 357 May 2017

Chapter 3 Ph.D. Thesis

3.4.3.4 Other Models

The problem of deciding which software variants to assign to nodes in a network
has been considered from an optimisation perspective so that the [200] overall
network resiliency is optimised when placing diverse variants at routing nodes
within a cloud based network consisting of routing nodes and client nodes (Figure
3-12). An attack model assigns a probability of an attacker being able to exploit a
vulnerability for a particular variant within a constrained time frame. Subsequently
any routing node in the network with this variant becomes compromised. The
resiliency metric was computed based upon the number of surviving client-to-client

connections offered by the network when under attack.

routers

clients

Figure 3-12 — Diversity assignment within a cloud

Diversity for the prevention of software piracy has also been proposed as an idea
(but not simulated or practically tested) [167]. The model suggests two levels of
diversification. Firstly each distributed copy is different, and secondly each
installation of a specific copy is different. It is proposed that a database keeps track
of the legitimate copies. When a user requests an update, it is tailored to each

unique copy.

Instead of designing networks where devices differ from one another in terms of
software, methods have been proposed to create diverse versions of software

internally on a single device with a monitor analysing the outputs (Figure 3-13).

Jennifer Jackson 73 of 357 May 2017

Chapter 3 Ph.D. Thesis
When the outputs differ an attack is assumed and the variants are reset to
previously known good states. Using redundant programs has been widely studied
within the field of fault tolerance. Using different versions of commercially available
software has been investigated [201] as well as automatically generated software

[202].

Figure 3-13 — Internal device level diversity

The use of virtual machines to create internal device diversity has also been
proposed [203] [204]. A device level system named ChameleonSoft [203] partitions
software programs into small chunks which run within separate capsules. A capsule
is described as a smart micro sandbox/virtual machine encapsulating a single active
code variant as part of a running application. The capsules manually or
automatically use a pre-generated set of functionally equivalent variants which are
intelligently shuffled at runtime to confuse the attacker. Confusing a targeted
attacker can make it difficult to establish what vulnerabilities may be present or

what resources are being used in a specific device at any given time.

3.4.4 Measuring and Analysing Diversity

A broad range of techniques have been proposed for measuring and analysing
diversity of computer networks and are achieved either through the gathering of
data, or through the use of diversity metrics. Some metrics are single statistical

values, whilst others are multi-dimensional. Other techniques do not measure

Jennifer Jackson 74 of 357 May 2017

Chapter 3 Ph.D. Thesis
diversity directly but analyse other important properties such as the commonality of
vulnerabilities between software. Descriptions of the methods used are detailed

below.

3.4.4.1 Shannon Index

The Shannon Index (or Shannon Entropy) is used to measure species and genetic
diversity in natural systems (§2.3.2.2.3). It has also been used for analysing diversity
in a computer network after the response to an attack where diverse software
patches and repairs were generated [199]. It has also been used to measure diversity
(discussed as entropy) of a bipartite graph interconnecting hosts and vulnerabilities

within a game theoretic model [40].

3.4.4.2 Number of Variants

A popular metric is just to simply use the number of different software variants.
Hosseini [195] and Hole [196] both use the parameter L (number of software
variants) within their epidemic models to describe the diversity. This metric is on a
par with diversity richness (species, genotypic, or allelic) which is used as a
diversity measure in natural systems (§2.3). This metric however does not take into

account the distribution and number of each type used.

3.4.4.3 Resiliency

The Diversity Assignment Problem [200] as described in 3.4.3.4 was presented to
specify how to optimize overall network resiliency when placing diverse variants at

routing nodes. The resiliency metric was used as a measure of diversity and was

Jennifer Jackson 75 of 357 May 2017

Chapter 3 Ph.D. Thesis
computed based upon the number of surviving client-to-client connections offered

by the network when under attack.

3.4.4.4 Multi-dimensional Properties

Measuring diversity has also been considered from a multi-dimensional
perspective. It was proposed that diversity should be measured by considering 6
dimensions as shown in Figure 3-14 representing the functional capabilities of the
network architecture [38]. Dimensions proposed were: operating systems,
communications medium, service model, network protocol, transport protocol, and
routing mechanism. The distance between network elements reflects their diversity,
for example the distance between OSs Linux and Windows would be large and the
distance between Network protocols IPv4 and IPv6 would be small. A point in the
multi-dimensional space would be representative of the software stack on a unique
device. Three dimensions have also been proposed representing aspects that are
orthogonal to each other such as hardware, operating system, and application

software.

Unique device
with software stack

Figure 3-14 — Multi-dimensional diversity metric [38]

Jennifer Jackson 76 of 357 May 2017

Chapter 3 Ph.D. Thesis
This is combined with the Shannon Entropy discussed in section 3.4.4.1 above so

that the final entropy measure is the sum of the entropies of each dimension [39].

3.4.4.5 Analysing Software Binary Files

An attempt at measuring the existing diversity of systems has been carried out
by collecting data and analysing variants of software binary files [205]: Three
metrics were proposed to measure diversity; 1) The probability of a successful
targeted attack which is based upon the number of instances of the most frequent
variant of a given file and the total number of instances of that file. 2) The ratio of
the number of variants to the total number of instances of all the variants of a file.
The bigger the ratio, the more variants the file has and subsequently more attacks
are needed to compromise all the instances of the file. 3) The coefficient of variation.
This is the ratio of the standard deviation to the mean. If the ratio is small the

instances are distributed uniformly.

3.4.4.6 Common Vulnerabilities

Another approach to measuring diversity in current software has been through
the analysis of vulnerabilities. One study analysed the commonality of
vulnerabilities of 11 different operating systems over a 15 year period [206]. Data
was extracted from the National Institute of Standards and Technology (NIST)
National Vulnerability Database (NVD). Every pair of OSs were analysed for
common vulnerabilities. Common vulnerabilities were found to exist, and not
surprisingly, there were more common vulnerabilities between different versions of
the same OS such as between Windows 2008 and Windows 2003 than between

completely different OSs. It was also found that one vulnerability affected nine OSs,

Jennifer Jackson 77 of 357 May 2017

Chapter 3 Ph.D. Thesis
which related to a well known problem in the design of the TCP leading to denial of
service problems. This means that vulnerabilities introduced at the design stage can
propagate into the code no matter how it is implemented. In general though the
commonality of vulnerabilities were deemed sufficiently low enough to declare that

building a system with diverse OSs may be a useful security technique.

Another study focused on application software during a one year period [207].
The research highlighted that the majority of the software products, including those
providing the same service and those that ran on multiple operating systems, either
did not have the same vulnerability or cannot be compromised with the same
exploit. However it was noted that although different distributions of the same
product could not be attacked by the same exploit code they had at least an 80%
chance of suffering from the same type of vulnerability. In general, again it was
concluded that using different commercial software applications could be an

effective security technique.

3.4.5 Diversity Open Research

There are currently open research questions regarding where and when diversity
should be introduced [208], or whether it should be applied everywhere at all levels
and layers. There are currently a wide range of ideas and methodologies proposed
for network level diversity often targeted at a specific topology or purpose, however
the majority are limited to conceptual ideas and minimal analysis. Despite the
growing research in this area there is still a large gap in understanding the actual
benefits of diversity as a security mechanism [209], particularly from an ecological

perspective.

Jennifer Jackson 78 of 357 May 2017

Chapter 3 Ph.D. Thesis

There is no well defined metric for measuring diversity within computer
networks. A broad range of techniques have been proposed but none capture both
the granularity of diversity at different layers of a software stack and the
distribution of diversity at the same time. Additionally none consider practical
constraints associated with compatibility issues, user preferences or devices unable

to participate due to hardware limitations.

The tools and technologies enabling wide-spread software diversity to become a
reality are slowing merging together, however many of the methodologies are still
early stage proposals and larger scale experiments analysing their practical

effectiveness are still limited or yet to be undertaken.

3.5 Summary

This chapter discussed three areas of technology and research. The first focused
on the Internet. Software and protocols of the future are likely to remain
modularised, perhaps with even more functionality and choice, particularly with
the continuously evolving open source paradigm. Software stacks can be partitioned
into four main layers, although these layers can be broken down further to define
specific functionality. The modularity of software, together with improved
virtualisation, and better automated software generation and dissemination, could
allow individually tailored software stacks to be dynamically created providing a
powerful tool for enabling diversity. The Internet will comprise different topologies
utilising a multitude of communication protocols depending upon the devices and
their application. There will be more localised peer-to-peer communication, with ad

hoc networks featuring more prominently in the future.

Jennifer Jackson 79 of 357 May 2017

Chapter 3 Ph.D. Thesis

The second section on cyber security focused upon malware which is prolific in
monoculture environments since it can spread over networks taking advantage of
software, such as widely used operating systems with the same vulnerability.
Malware can exploit a multitude of different types of vulnerabilities which can
appear at different layers of the software stack. Publically unknown vulnerabilities
are particularly dangerous as they are used in zero-day attacks, where the damage
can go unnoticed for long periods of time. The use of multiple exploits across layers

poses a significant threat, especially if they are targeting zero-day vulnerabilities.

The third section explored the current state of research of diversity within
computing systems. Diversity as a security mechanism increases the difficulty for
attackers to target multiple devices and networks during a single attack. It prevents
the attacker from having detailed knowledge of each computer, forcing them to be
targeted individually, and in turn increasing the difficulty of propagating malware.
Research has shown that diversifying software is possible through diversification at
the code level. Code level diversification however does not consider the dynamics of
diversity at multiple layers of the stack or the dynamics at a network level in the
face of an attack where it may not be possible for all devices to apply a diversity
technique. Diversity analysis at the network level allows the effects of the creation
and distribution of diverse code to be analysed using different methods, both from
centrally generated sources and via distributed methods. It also enables the
resistance of a network to be simulated under a range of different conditions in the
face of a malware attack. There are currently open research questions regarding

diversity. There is still a large gap in understanding the actual benefits of diversity

Jennifer Jackson 80 of 357 May 2017

Chapter 3 Ph.D. Thesis
as a security mechanism and particularly from an ecological perspective. There is no
well defined metric for measuring diversity within computer networks. Those
proposed do not capture both the granularity of diversity at different layers of a
software stack and the distribution of diversity simultaneously. Additionally none
of the research considers practical constraints associated with compatibility issues or

user preferences.

Jennifer Jackson 81 of 357 May 2017

Chapter 4 Ph.D. Thesis

Chapter 4

Modelling

4.1 Introduction

This chapter details the modelling of peer-to-peer communication networks with
an emphasis on mobile ad hoc networks, highlighting their comparability with
natural systems. Compartmental based methods for modelling the propagation of
malware at a system level are reviewed. These epidemic models are widely used for
modelling the spread of diseases within natural systems. Details regarding the
properties of the deterministic and stochastic SIR (Susceptible, Infected, Recovered)
models are given which are used by development work in later chapters. Agent-
based epidemics are considered for modelling malware at the individual level as
well as infection genetic models where matching algorithms are used to match
pathogens to hosts. These principles are also used by development work in later

chapters.

4.2 Modelling Ad Hoc Networks

Devices utilising direct peer-to-peer communication, particularly those within ad

hoc networks can be compared with natural systems since the devices, for example

Jennifer Jackson 82 of 357 May 2017

Chapter 4 Ph.D. Thesis
mobile phones, interact closely with humans following their mobility and
interaction patterns [210]. Ad hoc networks are expected to become more prominent
in the future Internet either as a separate topology or integrated with sensor and
peer-to-peer overlay networks (§3.2.3), so the focus of this research will be limited to
networks which are ad hoc. There are a number of methodologies for modelling

such networks which are summarised in the following sections.

4.2.1 Mobility Models

Mobility models consider the movement patterns of devices within a mobile
network and can be used to visualise individual or aggregated travel paths. There
are two types of mobility models generally used: traces and synthetic models [211].
Traces are generated from observed data and can provide accurate information
when using large datasets. Synthetic models attempt to represent the mobile
behaviour realistically without the need for trace data. A number of synthetic
models exist for ad hoc networks [211]. One model that is used in many simulation
studies is the Random Waypoint model [212] [213] [214] [215] [216] [217]. It was
developed to represent the mobility patterns of people with mobile devices within a
confined environment such as a room [218]. As pictured in Figure 4-1 each node
starts by remaining stationary for pause time seconds. It then selects a destination
point within a bounded rectangular area. The node then moves to that destination at
a selected speed. Values for the destination, speed and pause time are chosen
independently and at random from uniform distributions between upper and lower
bounds. When the destination is reached the cycle of pause, choosing a destination,

and moving at speed is repeated until the end of the simulation.

Jennifer Jackson 83 of 357 May 2017

Chapter 4 Ph.D. Thesis

Bounded area

Position 4
Pause 4

Position 2
Pause 2

Position 1
Pause 1

Position 3
Pause 3

Figure 4-1 — Random waypoint mobility model

4.2.2 Simulators

Mobility models are often integrated into event-based simulators to allow the
detailed modelling of new or improved protocols such as those necessary to provide
ad hoc routing. Simulators such as Opnet, NS3, and QualNet [219] are used to
model detailed characteristics at different layers of the network stack under realistic
conditions. As well as mobility models the simulators can include other realistic
characteristics such as radio transmission, buffer space for the storage of messages,
and data traffic models. A downside of these simulators is that much effort is
required to learn the details of the simulator architecture and programming
language. These types of simulators can be seen as a type of agent-based model with

very detailed characteristics for the agents (nodes) in the network.

4.2.3 Agent-Based Models

Agent-based Models (ABM) attempt to capture the complexity of individual
behaviour and have been widely used across a growing number of fields [220]. Such

models, however, do not necessarily need the detailed characteristics used within

Jennifer Jackson 84 of 357 May 2017

Chapter 4 Ph.D. Thesis
simulators, and can follow a set of simple rules at a higher level of abstraction,
sometimes generating emergent behaviour [221]. ABMs allow a wide choice of
design parameters and rules making each model different but tailored to each
research question. They have been used for modelling ad hoc networks [219] [222]

[223] and use software such as Netlogo and Matlab to model high level behaviour.

4.2.4 Graph Theory

Graph theory is another technique for modelling communication networks. A
graph is made up of vertices (nodes or points) which are connected by edges (links
or lines). Graph theory is used to measure properties such as the degree distribution
(probability that a vertex chosen uniformly at random has degree k, where degree k
is the number of edges connected to a vertex) or clustering coefficient (measure of
how strongly nodes in a graph cluster together). Graph theory has been used to
study the architecture of the Internet [224] and analyse the behaviour of routing

protocols of ad hoc networks [225] [226].

4.2.5 Homogeneous Mixing Models

When the networks to be analysed are considered to be large, homogeneous
mixing models can be used to model the network as a whole entity. Here it is
assumed the system is the average of the individual nodes where nodes make
contact with each other in a peer-to-peer fashion at random. Such assumptions
originated from the modelling of infectious diseases within human populations
using deterministic and stochastic methods and have since additionally been used
to model the propagation of malware within mobile wireless networks. This is

discussed in more depth in the next section (§4.3).

Jennifer Jackson 85 of 357 May 2017

Chapter 4 Ph.D. Thesis

4.3 Epidemic Modelling of Mobile Malware

4.3.1 Mathematical Models of Epidemics

There are two main types of mathematical models that are used to describe the
spreading characteristics of epidemics: deterministic, and stochastic which can be
used to make system level predictions [227] [228]. The deterministic model always
performs the same way for a given set of initial conditions and is used to model
large populations (or networks), whereas for the stochastic model randomness is
present and the output result is a probability distribution. Stochastic models are able

to model smaller populations and are often considered to be more realistic.

A mechanism that links these models is the concept of compartments where
individuals are assumed to be in one of a number of different compartments (states
or classes) at any given time. These compartments represent the individuals’ health
status with respect to the disease. For example the population could be divided into
those who are Susceptible (S), those who are Infected (I) and those who have
Recovered (R). For both the deterministic and stochastic based models, the number
within each compartment is simulated as the epidemic progresses. Malware epidemic
models have used a multitude of different compartments. The SI variant has been
used for modelling a mobile phone virus using two compartments where there are
no recovery mechanisms [229]. The SEIS model includes an extra Exposed (E)
compartment as there may be an incubation period before the virus attacks [230].
The extra susceptible (S) in the model name denotes the fact that instead of
recovery, the devices become susceptible again. The SEIRD model was proposed to

model virus propagation specifically via Bluetooth and MMS to investigate the

Jennifer Jackson 86 of 357 May 2017

Chapter 4 Ph.D. Thesis
Commwarrior virus [231]. The additional Dormancy (D) compartment represents
the condition when the virus drains the battery by sending out many MMS
messages. The author of this thesis proposed a SEPTICOX model incorporating
conditions where the phones were switched off or offline for Bluetooth based
networks which required a number of additional compartments: Prevented (P),

Treated (T), Contained (C), Offline (O), eXposed off-line (X) [3].

Details regarding the properties of the deterministic and stochastic SIR models
are described in the following text which are used as a reference for development
work in chapter 6 of this thesis. Note that the work assumes that once devices have
fully recovered from a particular malware (through patching or anit-virus tools)
they cannot be re-susceptible to the same malware so that the R' compartment is
designated the end state. Thus the closely related SIRS model [228], where there is
no end state (compartment) and re-susceptibility can occur following recovery, has

not been detailed within the background material (see chapter 6)

4.3.2 The Deterministic SIR Model

In the deterministic SIR [228], where individuals mix homogeneously (§4.2.5),
and the population is considered to be large, the law of mass action is applied to the
rates of transmission between two compartments where the rate of interaction is
proportional to the product of the numbers in each compartment. The transition
rates from one compartment to another are mathematically expressed as

derivatives, hence the model is formulated using differential equations.

Jennifer Jackson 87 of 357 May 2017

Chapter 4 Ph.D. Thesis
4.3.2.1 Model Equations

The basic SIR model was initially developed by Kermack and McKendre [232] and
is comprised of three compartments as shown in Figure 4-2. The S compartment
represents those that are susceptible to a disease or virus but not yet infected, I
represents those that are infected and infectious with the disease, and R represents
those that have recovered from the disease. N defines the total population size and

is assumed to be fixed.

BN v

Figure 4-2 — SIR model

B is known as the infection rate (or effective contact rate) and is defined as [233]:

(4-1)

Where 7 is the probability of an infection given contact between a susceptible and
an infected individual, and c is the average rate of contact between susceptible and
infected individuals. The rate at which those susceptible become infected is
attributed to the proportion of the population who are already infected I/N

multiplied by the infection rate f.
y is the rate of recovery of an individual, and can also be written as:

_1 (4-2)
Y=1q

Where d is the duration of the infection.

Jennifer Jackson 88 of 357 May 2017

Chapter 4 Ph.D. Thesis
The model is described using differential equations, where the transition rates

from one compartment to another are expressed as derivatives:

as _ _BsI (4-3)
dt N
dal BSI (4-4)
a-n ¥
dR (4-5)
— =]
ac 7V

4.3.2.2 Discrete Model

The model can also be represented in discrete form using difference equations,
where the number in each compartment at the next time step (t + 1) is formulated
by the rates and the number in each compartment at the current time step (t). This

approach is convenient for computer simulation of the model:

S(t+1) =5(t) - B—I(?]S(t) (+-6)
I(t+1) =10+ w — yI(b) (47)
R(t+1) =R() + yI(t) (4-8)

The total population size (N) is assumed to be fixed so that:

N =S(@t)+ I(t) +R(b) (4-9)

4.3.2.3 Deterministic Epidemic Example

To illustrate the mathematics an example showing an epidemic following the SIR
equations is given through simulation in Figure 4-3 (a) .When an epidemic occurs
susceptible individuals become infected and move to the infected compartment

faster than infected individuals can recover (where f >7y) creating a peak of

Jennifer Jackson 89 of 357 May 2017

Chapter 4

Ph.D. Thesis

infections. Figure 4-3 (a) shows the number within each compartment as the

epidemic progresses. The SIR model was simulated from difference equations

(§4.3.2.2) using Mathworks Matlab. The number infected I(t) increases and then

falls as recovery takes place. To show an epidemic occurring the condition g >y

needs to occur as stated above. In this example values are chosen to represent this

condition where = 0.3 and y = 0.15. With no recovery, the SIR model reduces to

two states S and I, which is also known as the SI model. Under this condition all of

those susceptible will eventually become infected, and stay infected as shown in

Figure 4-3 (b).

1000
900
800
700
600
500

400

Number of individuals

300

200

100

0

1000

900

800

700

600

500

400

Number of individuals

300

200

100

0 20 40

60 80

100

S(t)
—)

c L

160 180 200

140

: c r r r r
60 80 100 120 140 160 180 200

Timesteps
a) SIR model showing the number in the S, | and R
states where B=0.3,y=0.15. All those susceptible

become infected and eventually recover.

120

o
=)
T

®
o
T

Number of individuals infected I(t)
B (=23
o o
7 T

20

Number of individuals infected I(t)

60 80

100

Timesteps
b) SI model showing the number in the S and |
states only where, $=0.3, y=0 and all those
susceptible eventually become infected.

—&—0.30,Ro=1
—*—0.25, Ro<1

Ro

—&—0.35, Ro>1 16 o

0.8

100 200
Timesteps

0.6

c r c c c c

R 0.2
200 0.1

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Jennifer Jackson

Timesteps
c) SIR model showing the number in infected for
varying values of B.

d) Corresponds to graph c showing values for
the varying values of 8.

Figure 4-3 — Deterministic SIR model using difference equations.

90 of 357

May 2017

Chapter 4 Ph.D. Thesis
4.3.2.4 End Time of the Epidemic

When there is no chance of recovery, the dynamical equations can be simplified
so that Equation (4-4) becomes:

dl _ pSI
dt N’

where N =S +1 (4-10)

where the time at which the epidemic reaches its final state has an analytical
solution. Substituting S = N — I into Equation (4-10) results in a logistic equation for I
[228]:

dl _ pI
dt ~ N

N=D (4-11)

With a solution [228]:

_ 1(0)N (4-12)
~1(0) + (N —1(0))e-Bt

1(t)

The end of the simulation T; is specified to occur when the number infected is

within 1 of its final value I(t) = N — 1 so that Equation (4-12) becomes:

_ I(0)N (4-13)
~ 1(0) + (N —1(0))e~BT

Rearranging for T;:

T, = 1. (N —1)(N —1(0)) (4-14)

B 1(0)

4.3.2.5 The Reproduction Number Ro

A key metric used in epidemiology to determine whether a disease will spread or

not is the reproduction number. It is defined as the number of secondary cases

Jennifer Jackson 91 of 357 May 2017

Chapter 4 Ph.D. Thesis
produced by a single infection within a susceptible population [233]. The
reproduction number can be derived by considering that an epidemic occurs if the

number of infected individuals increases, where:

dl -
4 (4-15)
dt

Substituting in Equation (4-4) becomes:

SI i
% —yI>0 (4-16)
SI)
ﬁT - (4-17)
BS _ (4-18)

Ny

At the outset of an epidemic, where t = 0, everyone except the initial infected
individual is susceptible. At this point S can therefore be approximated to N, and

the equation simplifies to:

Foy (4-19)

The Reproduction Number Rj:=-— (4-20)

For R, values greater than 1 an epidemic occurs, and for R, values equal to or
less than 1, the epidemic dies away. Figure 4-3 (c) shows the number of infected
individuals for varying values of f when y is fixed at 0.3. When Ry > 1 (f > 0.3),
there is an epidemic as the number of infected individuals increases above the initial
value of 1. As the value of f is reduced, the peak value of the infection is reduced,
the time of the peak moves to the right and the spread of the infection increases.

When Ry =1(f =0.3) the epidemic dies away as the number of infected

Jennifer Jackson 92 of 357 May 2017

Chapter 4 Ph.D. Thesis
individuals never goes above 1 as shown by the sub-graph in Figure 4-3 (c). When
Ry <1 (B < 0.3) the infection dies away even faster, with the corresponding curves
reduced to zero very quickly. Figure 4-3 (d) shows the corresponding R,
relationship with f, as f is varied between 0.1 and 0.5 (as given in Figure 4-3 (c)),

additionally showing Ry when 8 = 0.3 for a fixed y = 0.3.

4.3.2.6 The Balance Equation

Another important attribute of an epidemic is its final state, which is the total
fraction of the population that was infected. A balance equation [234] can be derived
that describes the final state of the system when t— oo, by dividing the differential

equations of the SIR model (Equations (4-3) and (4-5)).

ds dR __pSI
T A
s B _ g3 (4-21)
dR Ny ON
This implies the solution:
R
S(t) = S(0)e”NRO (4-22)

During an epidemic those within the infected state will eventually move to the
recovered state, so at the end of the epidemic there will only be those still

susceptible S(o0), or recovered R(0). This means that:
§(0) = N — R() (4-23)

Assuming that at t = 0, no individuals have yet recovered, so that R(0) = 0, then

S§(0) = N —1(0), and Equation (4-22) can be rearranged to:

Jennifer Jackson 93 of 357 May 2017

Chapter 4 Ph.D. Thesis
N = R(e0) = (N — 1(0))e WF(*) (424
which can also be expressed as a fraction of N:
1 —1(00) = (1 —i(0))e Rom(*) (4-25)
Where R() = ()N
Solving for r(e) determines the fraction that were infected at the end of the

epidemic. This equation can be solved numerically using the approximation that

i(0) = 0, and is graphed in Figure 4-4.

09

0.8

0.7

0.6

0.5F

Final Size

0.4

0.3

0.2

0.1

Figure 4-4 — Final size of the epidemic as a fraction of the population size

4.3.3 The Stochastic SIR Model

Stochastic SIR models are often described using discrete or continuous time
Markov chains or stochastic differential equations [235]. A probabilistic model takes
into account that there may be some element of randomness in at least one of the
parameters. Predictions from that model are probability distributions, for example
distributions of the possible numbers of those susceptible, infected or recovered.
The Markovian standard stochastic SIR epidemic model [228] [234] assumes a closed

homogeneous uniformly mixing community just as for the deterministic general

Jennifer Jackson 94 of 357 May 2017

Chapter 4 Ph.D. Thesis
epidemic model (§4.3.2). An important feature of the stochastic model is that due to
the inherent nature of randomness, a major outbreak is not always guaranteed when
Ry > 1. For example, during the initial outbreak the infected individual or a small
number of individuals that have already become infected may recover by chance
before they can infect others. This is termed an initial fade-out [236] or a minor
epidemic outbreak [234]. An overview of the general stochastic SIR model is given
here together with some important properties and approximations that have been
developed in the literature, on the assumption of a large population. These are used

as a reference for the developed model described in chapter 6.

4.3.3.1 Rate of Contact

For a stochastic SIR model the infectious individuals have contact with other
individuals randomly in time at a constant average rate c. Each contact is with an
individual selected uniformly at random from the population. The time between
contacts is described by an exponential distribution which is a type of probability
distribution that describes the time between events in a Poisson process that occur

continuously and independently at a constant average rate.

To coincide with the deterministic model the mean contact period u. is the
reciprocal of the deterministic contact rate ¢, so that the exponential probability

density function (PDF):

PDF: ce™°t, whent >0 (4-26)
0, whent <0

A PDF of a ¢ value of 0.3 is pictured in Figure 4-5.

Jennifer Jackson 95 of 357 May 2017

Chapter 4 Ph.D. Thesis

0.25

0.2~

probability (t)
o
>
T

=]
o
T

0.05-

0 mean 5 10 15
Time

Figure 4-5 — PDF for a c value of 0.3

Mean contact period: b = 1 (4-27)
‘¢

Variance contact period: , 1 (4-28)
O, = C_Z

Standard deviation contact period: 5. = 1 (4-29)
.= =
c

4.3.3.2 Infectious Period

Infected individuals remain infectious for a time period and then recover. As
with the contact rate, the infectious period is described by an exponential
distribution. To coincide with the deterministic model the mean infectious period

is the reciprocal of the deterministic recovery rate y. So that:

Mean infectious period: Uy = l (4-30)
Ty

Variance infectious period: ,_ 1 (4-31)
0-1 —_—)7

Standard deviation infectious period: o = 1 (4-32)
= —
14

Jennifer Jackson 96 of 357 May 2017

Chapter 4 Ph.D. Thesis
4.3.3.3 Discrete Time Markov Model for a Single Compartment

These types of distributions can be modelled using a Markov process [228] which
is used to develop stochastic epidemic models and form approximations of some
important properties. As with the deterministic model, the stochastic Markov model
analyses how the system progresses but will have different sample paths every time

it is run.

A discrete time Markov model is used to illustrate how the stochastic epidemic is
modelled. Suppose an epidemic model has just one compartment, and hence one
Markov process, X(t) representing the number of individuals within that
compartment at time t. For a discrete time model the processes are defined on a
discrete time scale {0,At,2At,..}, and the states, each representing a possible
number of individuals within the compartment, are discrete random variables
{0,1,2, ... N}. The times between successive jumps of the process are exponentially

distributed with parameter a. The rate diagram can be drawn as follows:

“ | @50\‘ /G@ 55@
Figure 4-6 — Rate diagram for a Markov process

Where state i represents the state where there are i individuals within the
compartment (X = i). The rate diagram can be expressed as a rate matrix R whose

elements define the transition rates from one state to another.

Jennifer Jackson 97 of 357 May 2017

Chapter 4 Ph.D. Thesis

state to

R = state from

The probability P that within a small time interval At the number of individuals

X within the compartment has increased by one is given by:
PX(t+At)— X(t) =1) = alt (4-33)

And the complement, where the probability P that within a small time interval At
the number of individuals X within the compartment has remained the same is
given by:

PX(t+At)— X(t) =0) = 1—aAt (4-34)

The time step At is chosen sufficiently small such that the number of infected
individuals changes by at most one during the time interval. This means that the
rate matrix is largely zero valued otherwise it would need to include the rates to
other states where the number of infected could change by more than one. To
ensure that the transition probabilities lie in the time interval, the time step At must

satisfy:
alt <1 (4-35)

The probabilities can be expressed as a probability matrix P whose elements now

define the transition probabilities from one state to another.

Jennifer Jackson 98 of 357 May 2017

Chapter 4 Ph.D. Thesis

state to
[1 — alt alt 0.. 1
| O 1—alAt alAt |
P = state from| 0 0 1-— aAtJ|

The corresponding probability diagram is given:

TEEEE

At 1-aAt 1-aAt 1-aAt

Figure 4-7 — Probability diagram for a discrete Markov process

This process can be coded into software to visualise the different sample paths

every time it is run.

4.3.3.4 Discrete Time Markov Model for a Stochastic SIR

With multiple compartments the Markov process becomes a vector, so that each
Markov state has a vector component for each necessary compartment. With an SIR
model it is considered that only the processes of S and I compartments are needed
since R = N — S — I. Within a small time interval [t,t + At], the probability P of an
infection is given by the simultaneous transitions S — S — 1, where one individual
leaves the S compartment, and [-1+ 1 where one individual enters the I
compartment. Similarly, within a small time interval [t,t + At], the probability P of

recovery is given by the simultaneous transitions I — I — 1, where one individual

Jennifer Jackson 99 of 357 May 2017

Chapter 4 Ph.D. Thesis
leaves the I compartment, and R > R+1=N—S5—1+1, where one individual

enters the R compartment. The probability equations are therefore:

P(S(t+Ab),I(t+At) — S(t),1(t) = (-1,1) = B S(tx(t) At (4-36)
P(S(t+ A0, I(t + AD) — S(©),1(¢) = (0,—1)) = yI(t)At (4-37)
Where 8 = ct is the infection rate and y is the recovery rate.
And the complement:
P(S(t + Ab), I(t + At) — S, I(t) = (0,0)) = 1 — </3 S(t?\ll(t) + yl(t)> ae 439

To ensure that the transition probabilities lie in the time interval, the time step At

must satisfy:

(4-39)

S(t)!
<B ©I(t)

I(t) |At < 1
N +V()>

4.3.3.5 Stochastic Epidemic Example

To illustrate the mathematics an example showing an epidemic following the SIR
Markov process is given through simulation in Figure 4-8 using Mathworks Matlab.
Parameters were set to show a comparison with the deterministic model (§4.3.2.3).
When there is no recovery, y = 0, the SIR behaves as an SI model. For an average
contact rate of 0.3 (¢ =0.3,7 =1, f = 0.3) the mean result of a large number of
runs (1000) is shown in Figure 4-8 (a) together with the deterministic solution. Fifty
of the individual runs for those infected are shown in Figure 4-8 (b). When recovery
is added, where y = 0.15 the mean result of 1000 runs is shown in Figure 4-8 (c).
There is a large difference between the stochastic solution and the deterministic

result. The reason for this can be seen by inspecting individual runs of the recovered

Jennifer Jackson 100 of 357 May 2017

Chapter 4 Ph.D. Thesis
compartment in Figure 4-8 (d), where, for a proportion of the runs there is either
very little or no recovery. These runs account for the condition where minor
outbreaks have occurred and have resulted in the mean being very different from
the deterministic result. Under the SI scenario there is no chance of recovery and so
the possibility of a minor outbreak does not occur. Under these circumstances the

mean of the stochastic SI model is closer to the deterministic SI model.

1000

1000

——s
N H 900

—*—Deterministic | ||

900

800 800

700~ 1 700
600 1 600

500

Infected
s
Infected

500
400 1 400
300 1 300
2001 1 200

100~

50 60 70 80

a) Sl model showing the number in the S and |
states plus a comparison to the equivalent
deterministic | state, where, $=0.3, y=0

1000 F——= : - : . 900 . .
~ ——s
N
900+ N N H 800l
\ —e— Deterministic |
L \ H]

800 AN 700 Major
700 N] outbreaks

N 600~

600 ™~ i

Infected

500 — E

Recovered

400 i
300 b

200 i

100 A , 100
: : 0

L’0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time Time

c) SIR model, showing the number in the S and |
states plus a comparison to the equivalent
deterministic | state.

Minor
outbreaks

d) SIR model showing 50 runs of the R state.

Figure 4-8 — Stochastic SIR model.

4.3.3.6 Important Stochastic SIR Properties

The following summarises some important properties of the stochastic SIR model

which are used during development work in chapters 6 and 8.

Jennifer Jackson 101 of 357 May 2017

Chapter 4 Ph.D. Thesis

Probability of an outbreak, early stage approximation: When the number in the
population is considered to be large, the initial phase of the epidemic can be
approximated by a homogeneous branching process [234], which shows that when
Ry < 1 the final size of the epidemic is bounded in probability and the epidemic will
only be minor. However when R, > 1 the epidemic will have both a minor element,
which is bounded with a probability p, and a major element, which is unbounded
with a probability 1 —p. For a standard stochastic model with a closed
homogeneous uniformly mixing population and one initially infected, (1(0) = 1) the

probabilities can be summarised as:

1 -
There will be a minor epidemic outbreak with probability — (4-40)

1 -
and a major outbreak with the remaining probability 1 — R (4-41)

Final size approximation: The final fraction infected r(oo) are those that end up in
the recovered state at the end of the outbreak. This fraction is a solution to the
balance equation (§4.3.2.6), which is the same equation as for the deterministic
model, except it is assumed that a negligible fraction of the population is initially

infected, so that:
1-— r(oo) = e_ROT(°°) (4_42)

This equation always has the solution r(c0) =0, corresponding to a minor
outbreak, and when R, > 1, there is another unique solution of r (o) between 0 and

1 corresponding to a major outbreak [234] (Figure 4-4).

Jennifer Jackson 102 of 357 May 2017

Chapter 4 Ph.D. Thesis
Final size distribution of a major outbreak: The final size of a major outbreak will be
normally distributed around the final size approximation. The notation for a normal

distribution is defined here as:

Norm (u,0?)

Where Norm denotes a normal distribution, u denotes the mean, and o2 denotes
the variance which is the square of the standard deviation. The threshold theorem [234]

derives the normal distribution of a major outbreak as:

— r(0)(1 = 7(0))(1 +v*(1 —r(0)RF)\ (4-43)
VN (rN(oo) — r(oo)) - Norm <0, (1= (1= ()R,)

Where N is the number of individuals, 7y(0) is the mean final size with N
individuals (excluding initial infectives) and where 7y () — r(o0) so that the mean
¢ becomes zero, and the variance is defined by the second term. v? is the squared

coefficient of variation of the infectious period.

o} (4-44)

1)

(for an exponentially distributed infectious period)

4.3.4 Agent-Based Epidemics

The concept of compartments used in the mathematical models can also be
incorporated into other models such as agent-based models. SI and SIR variants
have been incorporated into mobile phone models [237]. Within agent-based models

nodes are modelled as separate entities so that the result of individual interactions

Jennifer Jackson 103 of 357 May 2017

Chapter 4 Ph.D. Thesis
and their behavioural rules determine the spreading dynamics of the epidemic. As
pictured in Figure 4-9 each node maintains its own health status which can also be
aggregated into a network level perspective depending upon the nature of the
simulation model. Agent-based models tend to be difficult to compare since the
design of agents, their interactions, and behavioural rules depend upon the specifics
of the scenario being modelled. Agent-based models can also have stochastic

elements generating output results that are probability distributions.

Node 1
Node 2
Node 4

Node 3

Figure 4-9 — Epidemic agent-based model

4.4 Infection Genetics

It may not just be individual interactions and behaviours that determine the
spread of diseases. Another set of models that try to mimic infection are those
studied within evolutionary ecology. These types of models attempt to analyse the

mechanics of the infection at the individual scale and assume that individuals differ

Jennifer Jackson 104 of 357 May 2017

Chapter 4 Ph.D. Thesis
in terms of their genetic make-up. Both the individuals (potential hosts of the
disease) and the parasite or pathogen causing the infection are modelled. Matching
algorithms are used to match the pathogens to hosts which subsequently then cause
them to become infected. Two prominent models are gene-for-gene [238] [239] [240]
which is based on plant-pathogen interactions and matching-alleles [239] [241] [240]
[43] [99] based on self/non-self recognition systems in invertebrates. Both models
include a genotype for the host and a genotype for the pathogen or parasite. Figure
4-10 shows host and parasite genotypes with two loci each, where Al and A2
represent two different alleles at locus 1, and, B1 and B2, represent two different
alleles at locus 2. Within the gene-for-gene model the parasite alleles within the
parasite genotype are labelled as either a - avirulent (weakly infectious) or v -
virulent (highly infectious), and the host alleles within the host genotype are
labelled as either s - susceptible or 7 - resistant. A host can resist (R) a parasite if the
host has a resistant allele at any locus for which the parasite has an avirulent allele
at the corresponding locus, otherwise infection occurs (I). For the matching-alleles
model a parasite’s genotype must exactly match a host’s genotype to successfully
infect the host. For example genotype Al, Bl of the host matches genotype Al, B1 of

the parasite.

These general principles of genetic matching are incorporated within
development work of later chapters to model malware propagation in diverse

computing devices and form a novel aspect of the work.

Jennifer Jackson 105 of 357 May 2017

Chapter 4

Parasite genotypes are compared to the host genotype to
determine whether an Infection (1) will be transmitted or
whether it is resisted (R)

Ph.D. Thesis

Host Genotype
locus1 locus2
Al(r) Bl(r)
Al(r) B2(s)
A2(s) B1(r)
A2(s) B2(s)

locus1 locus2 locus1 locus2 locus1 locus2 locusl locus2

Al
(a)

B1
(a)

Parasite Genotype

Al
(a)

B2 A2
(v) (v)

B1
(a)

A2
(v)

B2
(v)

R

R

/

R

/

/

R
R
R

/

R

/

l

/

/

/

a) Gene-for-gene, Al or Bl resistant (2 loci, 2 alleles)

Host Genotype
locus1 locus2
Al B1
Al B2
A2 B1
A2 B2

locusl locus2 locusl locus2 locusl locus2 locusl locus2

Parasite Genotype

Al Bl Al B2 A2 Bl A2 B2
l R R R
R / R R
R R l R
R R R /

b) Matching Alleles (2 loci, 2 alleles)

Figure 4-10 — Two different infection genetic models

4.5 Summary

Ad hoc networks are expected to become more prominent in the future Internet.

They can be compared with natural systems since devices such as mobile phones

interact closely with humans following their mobility and interaction patterns.

Mobility models consider the movement patterns of devices, with one reference

model that is widely used being the Random Waypoint. Mobility can be combined

with simulators or other agent-based models to analyse individual and network

level behaviour. Homogeneous mixing models can be used to model the network as

a whole entity, and have particularly been used within epidemic models to analyse

Jennifer Jackson

106 of 357

May 2017

Chapter 4 Ph.D. Thesis
network level behaviour of malware propagation. These models use compartments
to signify the health status of the network. Properties of the deterministic and
stochastic SIR epidemic models have been reviewed. Compartmental methods can
also be incorporated into agent-based models where the result of individual
interactions and their behavioural rules determine the spreading dynamics of the
malware. Another class of models used to analyse disease spread study the
mechanics of infection at the genetic level. They assume both individuals and
pathogens differ in terms of their genetic make-up. Matching algorithms are used to
match pathogens to hosts which subsequently become infected. These modelling
concepts are used during development work of later chapters. Specifically
homogeneous mixing and the RWP model is integrated together with a
compartmental approach of monitoring device infection status in a high abstract
level ABM. Additionally matching algorithms are used to match malware to device
configurations. Mathematical modelling of malware incorporating both

deterministic and stochastic methods are also used during development work.

Jennifer Jackson 107 of 357 May 2017

Chapter 5 Ph.D. Thesis

Chapter 5

Ecosystem Model of an Ad Hoc
Network

5.1 Introduction

This chapter links the background material presented in chapters 1 to 4 with the

work that follows, and is comprised of two sections:

An Ecosystem Perspective of an Ad Hoc Network Environment: The first section
describes an ad hoc network environment as an ecosystem using comparable
terminology and relationship analogies to natural ecosystems as described within

chapter 2.

A Diverse System Model: The second section firstly outlines the requirements for a
diverse system model applicable to ad hoc networks together with constraints that
highlight the first steps taken in proving the hypothesis of this thesis. Secondly a
threat model of malware utilising multiple exploits across layers of the software
stack is defined. Thirdly an overview of two developed models is described. The
first is based upon the mathematical epidemic approach, and the second is an agent-

based approach.

Jennifer Jackson 108 of 357 May 2017

Chapter 5 Ph.D. Thesis

5.2 An Ecosystem Perspective of an Ad Hoc Network
Environment

Organisms within natural ecosystems (§2) and devices within ad hoc networks
(§83) both interact in a peer-to-peer fashion, are distributed, and self-organise. It is
likely that peer-to-peer wireless networks such as ad hoc networks will become
more mainstream than they are currently and therefore forms the basis of the
network topology in which to investigate diversity (§3.2.2). If an ad hoc network,
together with its users and application environment, is regarded as an ecosystem as
shown in Figure 5-1 then comparable terminology can be defined and relationship
analogies can be made to natural ecosystems. Note that the definition of an
ecosystem here should not be confused with the term ‘software ecosystem’ which
has recently been used to describe the progressive development of a software
product or service incorporating development framework tools, organisations,

external developers and users such as the Android platform [242].

Application
environment

Devices
(ad hoc
network)

Figure 5-1 - Ad hoc network ecosystem

Jennifer Jackson 109 of 357 May 2017

Chapter 5 Ph.D. Thesis

Figure 5-2 shows the ecosystem diagram equivalent to that pictured in Figure 2-1
of Chapter 2, but for an ad hoc network environment, showing its relationships with
software and hardware diversity. Within natural ecosystems, biodiversity is linked
to functions and services and its ability to maintain them when faced with
unwanted disturbances. It is proposed that by applying biodiversity strategies
within an ad hoc network, the destructive effects arising from security attacks can
be counterbalanced with the constructive effects of biodiversity to maintain
ecosystem function and services, and hence benefit overall resistance and resilience.
Although the focus here is on ad hoc networks, many of the principles described are
also applicable to computer networks in general. Analogous relationships between
software and hardware diversity and ad hoc network ecosystem functions and

services are described in the following text.

Measured Diversity Measured outputs
| Genetic diversity Productivity (functional
) performance)
Functional | Species diversity |
diversity Stability |
| Ecosystem diversity
Malware propagation |

Software /
Hardware
Diversity

Security Attack
Disturbances

Network / User

Services

Software /
Hardware
Functions

Figure 5-2 - Diversity relationships in an ad hoc network ecosystem

Jennifer Jackson 110 of 357 May 2017

Chapter 5 Ph.D. Thesis
5.2.1 Scales and Diversity Definitions

An ad hoc network environment can be partitioned into three scales on a par
with those discussed in natural systems: Individual (I), community (C) and
ecosystem (E). The individual scale comprises the independent devices (or nodes)
and includes software stacks, protocol stacks, physical hardware, and individual
behavioural characteristics and constraints. The community scale includes
communities of nodes forming part of a network, or a complete network. This scale
is concerned with topology and node distribution, data flow and community
behaviours. The ecosystem scale incorporates multiple clusters of nodes or multiple
networks and interactions between them, the environment and the users. It also

includes beneficial outputs such as the resulting services.

Many principles of diversity are applicable at multiple scales (§2.2.2), with some
diversity metrics relevant to both species and genotypes (§2.3). Ecologists tend to
describe diversity in relation to species since it is the easiest to measure and
experiment with however there is growing evidence that the same relationships
have been observed at the genotypic level. Partitioning individuals by genotype
composition or common characteristics into species is well defined in natural
systems, however categorising elements of an ad hoc network, in theory can be
conducted on a sliding scale depending upon the chosen granularity. For example a
software program could form a genetic element of an ad hoc device, or it could be
categorised into a species of software. The most important aspect is the relevant
diversity relationships that exist regardless of the scale. For an ad hoc network

ecosystem the definitions of diversity are partitioned as follows, however the

Jennifer Jackson 111 of 357 May 2017

Chapter 5 Ph.D. Thesis
relationships in 5.2.6 are described where they are analogous to that observed in

nature regardless of the partition.

(1) Genetic Diversity: This describes the variance in structural composition of
devices in terms of software and hardware components and is applicable at the
individual scale. There are methods for defining and measuring diversity in terms
of genetics that is applicable to defining and measuring the diversity of software
composition across devices (§2.3) which is discussed further in this chapter (§5.2.6,

§5.3.2) and used in subsequent chapters (§6.3, §7.4).

(2) Species Diversity: Species diversity could potentially have multiple meanings
depending upon the chosen granularity and focus as described above. When
categorising ad hoc devices as complete entities, species could mean a type of
device, such as a local ad hoc router or a gateway to the internet, and would be
applicable at the community scale. Alternatively, when describing software as
individuals from a pool of available programs, species could mean a type of
software program, such as a web browser, or an instant messaging application. This
is because there are analogies between natural species diversity mechanisms and the
way in which software is developed and adopted by users. Relationship analogies

are described further in section 5.2.6.

(3) Ecosystem Diversity: This is the diversity between distinctly separate groups
or networks of devices, or the diversity incorporating both networks and users and
the environment. It is applicable at the ecosystem scale and can be measured in

terms of genetics or species.

Jennifer Jackson 112 of 357 May 2017

Chapter 5 Ph.D. Thesis

(4) Functional Diversity: This is the variance and breadth of functionality and
services, as a result of software, hardware, devices or networks interacting with
their users and the environment. Consequently functional diversity spans

individual, community and ecosystem scales.

5.2.2 Software and Hardware Functions

As with natural ecosystems, an ad hoc network ecosystem is comprised of many
interacting components; not just the devices themselves, but interacting layers of
software and hardware generating a range of processes and functionality at
different scales. For example functions can arise from single or multiple interacting
software and hardware modules, or be generated by single or multiple devices.
Functions can be partitioned into regulating, supporting, and provisioning categories
as they share similar analogies to those described within natural systems (§2.2.1.2).
Table 5-1 gives some examples for each type. Network access, for example, is a
regulating function since it controls how and when the network can be accessed for
data transmission. Data and program storage is a supporting function since it allows
all of the software programs to be stored in memory along with any data that is
generated or shared: without it the devices would not be able to operate as
intended. The sending of text messages is a provisioning function since it can be

viewed as a product that is produced from within the ad hoc network.

5.2.3 Network and User Services

Network and User Services are the beneficial services provided by the interaction
of all the components in the ad hoc network ecosystem, and, like natural systems,

are derived from multiple underlying functions. Services can also be partitioned

Jennifer Jackson 113 of 357 May 2017

Chapter 5 Ph.D. Thesis
into regulating, supporting, and provisioning categories (§2.2.1.3) as shown in Table
5-1. Examples of regulating services include the quality of service of data or
communication traffic, or, in the broadest sense, the control of malware spreading.
Supporting services include distributed data storage and data gathering which is
driven by the natural topology of an ad hoc network. Provisioning services include
the beneficial product outputs such as an electronic health care service, or a

multimedia data streaming service.

Table 5-1 — Ad hoc ecosystem functions and services

Functions Services

Quality of service (data and
Network access communication)

Regulating Routing data Buffering against faults or device
Monitoring data traffic |failures

Controlling malware spreading

Data and program

storage
Supportin gsgput:::gnba;tfgwer Distributed data storage
PP 9 9y ry Sensing and distributed data gathering
management

Display screen and
sensor interfaces

Sending and receiving
text messages
Sending and receiving
media files

Generate images
Produce documents

File sharing

Multimedia data streaming
Communication services
Electronic Health care service
Environmental Monitoring service

Provisioning

5.2.4 Security Attack Disturbances

5.2.4.1 Disturbance Regime vs Disturbance Events

Within the ad hoc network ecosystem it is necessary to distinguish between the
natural disturbance regime and a single disturbance event (§2.2.1.4). The

disturbance regime, on a par with natural ecosystems, shapes an ad hoc network

Jennifer Jackson 114 of 357 May 2017

Chapter 5 Ph.D. Thesis
environment over long time scales such as changes in technological advances,
trends in user habits, business markets, and application areas which will contribute
to evolving functions and services. A single disturbance is an event of intense stress
occurring over a relatively short period of time potentially causing large changes to
the dynamics of the ad hoc network. Security attacks such as malware can be
thought of as single disturbance events creating destructive effects at varying

speeds and severity depending upon the specific attack.

5.2.4.2 Malware Disturbance Events

As with natural ecosystems where diseases can spread quickly in monoculture
populations (§1), so too can malware under similar conditions where there is wide
spread use of identical software (§3). Examples of the effects of different malware on

functions and services [243] [244] [245] [246] at different scales is shown in Table 5-2.

Jennifer Jackson 115 of 357 May 2017

Chapter 5 Ph.D. Thesis

Table 5-2 - Malware effects on functions and services

Effects on Function and Services

Community Ecosystem
Individual Functional Effects Functional Services
Effects Effects

Application or protocol software stops working,

< X <« |Reduced availability for network communication
< K % |Serviceis slow (reduction in Quality of Service)

8
© o
5 £ 2 s £
o © m © ©
c g 3 g £ £
3 =) rué’ ~ t <
(e} ~ (9] a o B o
o c o0] Qo [t 2
2 s 2 £ § 0% g
g o] n c c [J)
© he] °) o °a
- = += = £] S c o
=] © S = £ 5 = =
y 8 © < el = = 7]] 0
2 o - 7] (] = = “ 9}
> = > £ 4 O
[o 8 Il ‘O 2 7] 8 5 o
hel (s} o 2 8 S c > 3 ©
et > @© ke} o
“ £ o] o 5 o o] - 19
o 7} © ot + (%] o])
c o 2 o £ £ o = c
o 2 m
Rel P4 5 v [] - 2 @ 2
5 BLZ &% 2 ¢ & =2 3 A
o =} ke
Malware 5 2 ¢ £ g g © = g >
. o - © S c c S 5
Disturbance O o a o £ £ =)) £ n
Virus v v v v v v v v v v
Worm v v v v v v v v v v
Trojan v v v v v v v v v v
Spyware v
Ransomware 4 v v v v
Adware v

Depending upon the type of malware and the motivation of the attack, effects at
the individual scale can range from slowing down the operation of a device, to
completely shutting down the device. At the community scale, malware such as
some worms and viruses replicate and forward themselves as fast as possible
creating bursts in network traffic or a reduction in network availability for
communication. This may result in either a general reduction in quality of service at
the ecosystem scale such as speed of retrieving data, or no service at all. Other types
of malware such as Trojans, spyware, and adware are often installed by mistake,
hidden within genuine programs and slowly extract personal data without affecting
the functioning of the device or network. Ransomware can restrict access to data,

software or general functionality of the device.

Jennifer Jackson 116 of 357 May 2017

Chapter 5 Ph.D. Thesis

5.2.5 Measured Outputs

Productivity and stability are two important output measurements of natural
ecosystems because they consider the effects on function, and the impact on
resistance and resilience, of disturbance. When the spread of disease is considered,

additional transmission characteristics are also analysed.

Within ad hoc networks, and networks in general, the term productivity is not
discussed directly, instead the overall functional performance of a service, termed
Quality of Service (QoS), is often used [129] [247] [248]. QoS can be considered
through a number of functional outputs associated with performance such as
throughput (amount of data successfully transferred within a fixed time period), bit
error rate (number of transmission bit errors per unit time), and network delay (time
taken for a bit of data to be transferred). It often depends upon the context as to
which is used. Estimation of such characteristics can often be achieved through
network simulators (§4.2.2). Additionally, it would be possible to analyse these
functional outputs in response to malware so that the resistance and resilience of the
network’s quality of service could be inferred and is discussed further in section

6.4.1.

5.2.6 Natural Biodiversity Mechanisms

5.2.6.1 Software at the Individual Scale

In order to form analogies between natural diversity mechanisms and underlying
ad hoc ecosystem functions a device is framed in terms of genetic software

components. This is because genetic diversity can inform the diversity between

Jennifer Jackson 117 of 357 May 2017

Chapter 5 Ph.D. Thesis
individuals, species, or ecosystems (§2.3.1). Additionally, in order to devise
biodiversity strategies based on local interactions and multiple layers of software,
whilst incorporating multi-exploit malware, it is necessary to focus on the
individual scale of a device and its structural composition. Figure 5-3 shows an ad
hoc ecosystem with devices (Figure 5-3 (a)) comprised of individualised software
stacks (Figure 5-3 (b)) generated from a pool of available software (Figure 5-3 (c) and
(d)). This pool of software can be stored locally in whole or in part but is assumed to

be separate from the realised software stack.

The structural composition of each device’s individualised software stack (Figure
5-3 (a)) can be considered from a genetic perspective by representing this structural
composition as a genotype (§2.2.2.1.4). The pool of available software (Figure 5-3 (c))
contains a bounded number of functions and variants with which to configure the
genotype. The genotype is split into four layers representing the four general layers
of the software stack (§3.2.1.3): applications (Layer A), application services (Layer
B), core OS libraries (Layer C), and kernel (Layer D). Each layer is comprised of one
or more software functions representing genes, termed software gene functions (F).

Each function is situated at a specific locus (L) within the software stack.

Software gene functions for example may include web browsing, window
management, graphics rendering, or hard disk interfacing. Each software gene
function can be represented by one of a number of possible software gene variants
(alleles in a biological systems), such as web browser type 1, or web browser type 2.
Here a monoploid set of chromosomes is assumed (§2.2.2.1.4) so that only one

variant is allowed at a locus within a single genotype at any given time.

Jennifer Jackson 118 of 357 May 2017

Chapter 5 Ph.D. Thesis

Environment (d) Application layer showing example
functional niche space and variants
& Z:sirce Available software variants No functional overlap
(a) Ad hoc ‘ gene function (F), (Gene alleles) (Functional
ecosystem at each locus (L) —— com i
ﬁ plementarity)
‘ ‘ Faratl Web I
ATEE AT 1| Browsing I
‘ ocument
Faz at Lz Writing
- ‘ Text
Each device i Fas at Las Messaging
Fi jonal 1
| i ur?ctlona overlap
Behaviours | / | (functional redundancy)
- mobility I |
\j & !
. Example individualised A
(b) Lnec\lll;:::ual software stack Fan at Lan N
(genotype) >
Lat| Web Browser 5 \j Functional niche space of
Laz| Word Processor 2 one software stack layer
|
| \’L
v /1
/ / Single layer
Lp1 Disk Driver 3
/1
Function choice and / /
variant choice //
—_—— T T T T e
—_— -~ <
P - Example Available software =~ ~
- ene gene function (F), Example ~N
L~ Layer 9
s 1 4 functions at each locus (L) variants ~ N
/ Web browsing Fatat Las - — Web Browser \
Application "
[Layer A Document writing ~ Fa at La, - — Word Processor)
\ Text messaging Faz at Las T — Messager
\ ! ! | /
e
~ ~ * * v L L~
(c) Pool of S~ Email Fan at Lan = =V | Email Client.—]
. —
available software | _ "= — _ __ __ __ _ < —
(genotype configuration - - = - —
options) ... Window Management Fg1 at Lg; - —WiﬂdOW Manager
Application |
Services | Fsz at Lsz 7 _
Layer B | ; [
|
T e (DEY-
Graphics rendering Fc1 at Lcy - — Graphics Library
Core OS ! Fe2atLez a7
Libraries : | |
Layer C | * v
Vo el |-
Hard disk interfacing Fo1 at Lot — —»{ Vo | Disk Driver
Kernel : Fp2 at Lpz _I _
Layer D | | |
|
v rde (@A@Y
Variants

Figure 5-3 — Software at the individual scale

Jennifer Jackson 119 of 357 May 2017

Chapter 5 Ph.D. Thesis

Software gene variants are defined from the perspective of propagating malware
and are assumed to be sufficiently different, whilst remaining functionally
equivalent, to warrant the necessity of different exploit code to penetrate the

vulnerability.

In addition to this, each layer has a bounded functional niche space (§2.2.2.1.1) as
shown in Figure 5-3 (d) by a third axis, where the variant axis has been rotated. Each
software gene function has a position within the functional niche space
representative of the functionality of that gene. There may be both overlapping and
non-overlapping functions between loci. For example non-overlapping functions
could be web browsing and document writing, whereas overlapping functions
could be text messaging and email, both of which enable the sending and receiving
of plain text communication. In principle, software genotypes can be of varying
lengths encompassing different functions, allowing functional diversity to exist

within the ad hoc network ecosystem.

Software is defined here in terms of genetics with two components of gene
function and gene variant. However, as mentioned previously biodiversity
mechanisms researched within ecology, predominantly associated with species, are
also relevant at multiple scales, and are particularly relevant from the perspective of

software functionality, and are described below.

5.2.6.2 Niche Differentiation

A niche for a particular software program is defined here by its functionality. As
with natural ecosystems, when software overlaps in terms of functionality,

sometimes competition or temporal conditions can reduce the software’s

Jennifer Jackson 120 of 357 May 2017

Chapter 5 Ph.D. Thesis
fundamental niche to a realised niche (§2.2.2.1.1). For example text messaging and
email overlap in sending text communication. When users have access to both,
competition of usage and adoption by users results in each of the two mechanisms
being better suited under different conditions leading to two different niches. It is
quite possible that text messaging is used for sending short amounts of text because
it is quick and instant, whereas email is used for sending larger amounts of text

often in a more formal manner.

Ecological research suggests that both perfect complementarity (no functional
overlap) and functional redundancy (functional overlap) greatly benefit ecosystems
(8§2.2.2.1.1). If software systems were designed with this in mind then perfect
complementarity would generate greater functionality more rapidly as more
software programs are developed. The downside would be a total dependence on a
specific program to provide a certain function. Malware targeting a specific
program type such as email could therefore cause loss of critical functionality, and
hence redundancy is also needed. Within current software systems, where software
for the user or application is the focus, both perfect complementarity and functional
redundancy exist, but it is not evident from the literature if this has ever been
analysed. Additionally, different software variants providing the same functionality
exist, such as different web browser software or different email software
applications. Functionality of software may not always remain static and could
dynamically change during operation. Self-modifying code such as software
reflection, where software is able to examine its own operation and modify its

functionality at runtime, could potentially cause changes in the realised functional

Jennifer Jackson 121 of 357 May 2017

Chapter 5 Ph.D. Thesis
niche space at a particular locus (figure 5-3 (d)) over time (albeit that this represents
only a part of the larger fundamental niche space to which it has access), which
could also differ on different computers. One question is whether the changes could
significantly impact the overall functional goal of the loci. Small changes may be
beneficial for diversity as it could lead to slightly different approaches, different
ordering of lower level commands and different memory locations of data, whilst
still achieving the same goal. Significant changes however could mean that two
variants at the same locus could no longer be considered as having the same
functionality and would violate the concept of functionally equivalent software

variants.

5.2.6.3 Facilitation

Software programs seldom operate in isolation of each other and facilitation
(§2.2.2.1.2) is a natural process in software systems. Two or more pieces of software
interacting together can cause a positive benefit for at least one of the software
programs. An example would be of two software programs: a scanner driver
software interfacing directly to the scanner hardware, and a software program to
view and save the scanned image. Without the scanner driver, there would be no
scanned image to view. Within ecology, increasing diversity in the presence of
facilitation is thought to increase ecosystem function but the exact mechanisms and
effects, particularly at the genetic level, are largely unknown (§2.2.2.1.2). However
this type of arrangement is normal within software stacks where there are many

dependencies between software functions at different layers.

Jennifer Jackson 122 of 357 May 2017

Chapter 5 Ph.D. Thesis

5.2.6.4 Trophic Levels

The dependence between software functions at different layers of the software
stack can also be viewed as being similar to the interaction between trophic levels of
natural systems (§2.2.2.1.3). Similar to the lowest trophic level, the lowest software
layer contains primary functions that interface to the outside world such as drivers
for hardware and other low level functions (kernel). The next layer (core OS
libraries) is built upon the kernel. The third layer (application services) is built upon
the core OS libraries or sometimes the kernel as well. The top layer (applications)
utilises the lower layers to provide functional software for the user. It is known in
ecology that diversity at lower layers can increase the number of species at higher
layers. In terms of software this would indicate that the more diversity in software
functionality in the kernel, the more diversity there is, or can be at the application
layer. This makes sense since devices with only a disk driver functionality in the
kernel would have very limited application software. On the other hand if the
kernel had drivers for a range of different sensors and actuators then a multitude of
different application software would exist, and this is seen in practice with large
volumes of “Apps’ available in “App Stores” [249] [250]. As well as dependencies
across layers there may be dependencies within layers at a finer level of granularity,
for example between software programs and dynamic libraries. For the scheme
proposed in Figure 5-3 this would mean dependencies between loci. The implication
being that in order for particular loci to be operational, specific lower level loci
would need to be present, limiting genotype configurations. However, a software

program and the dynamic libraries it uses remain decoupled until the program

Jennifer Jackson 123 of 357 May 2017

Chapter 5 Ph.D. Thesis
actually runs. This is beneficial for diversity because patching and updating of the
library can be conducted without recompiling or re-linking the software program,
but more importantly different variants of the same library can be used on different

computers.

5.2.6.5 Genetic Variation

Within ecology, genetic variation is the driving force behind functional
differences between individuals (§2.2.2.1.4). Using the assumption that the software
stack of a device can be represented as a genotype with multiple loci representative
of multiple layers of software as shown in Figure 5-3, then the genetic variation of a
group of ad hoc devices can be defined. The genetic variation is the number and
frequency of different software variants across each locus and the number and
frequency of different software stack genotypes. For one software gene function at a
single locus, as the number of variants increases so too does the possible number of
different genotypes. For example if there are five possible web browser variants,
there are five possible genotypes. Although web browsers are inherently prone to
being an initiating source of an attack (e.g. users unknowingly clicking onto
malicious links), variants are considered to be sufficiently different with respect to
propagating malware to warrant the necessity of different exploit code to penetrate
the vulnerability (§5.2.6.1). As more gene functions are added, and hence more loci,
the possible number of different genotypes increases according to Equation (2-12).
Genetic variation of software variants determines the genetic diversity of the ad hoc

network for which there are numerous measures used within ecology (§2.3.2). These

Jennifer Jackson 124 of 357 May 2017

Chapter 5 Ph.D. Thesis
methods could equally apply to the diversity of software composition across

devices.

5.3 A Diverse System Model
5.3.1 The Requirements for a Diverse System Model

5.3.1.1 Requirements Overview

There is a large gap in understanding the benefits of diversity as a security
mechanism from an ecological perspective (§3.4.5). Additionally there is no well
defined metric for measuring diversity of computing systems. Ad hoc networks will
feature more prominently in the future Internet (§3.2.3) and possess similar
characteristics to natural ecosystems such as localised interactions, distributed
architecture and the production of analogous functions and services to those of
ecosystems. The spread of malware, similar to the spread of diseases, is rife in
monoculture environments (§1.1.2), where it takes advantage of vulnerabilities at

different layers of the software stack.

To investigate the benefits diversity brings against disturbances, such as malware
spreading events within an ecosystem context, a model of a diverse system (§3.4.3) is
required. It will need to simulate the injection of malware events whilst
incorporating multiple layer exploits, diversity schemes based upon local
interactions, mobility, and the peer-to-peer nature of ad hoc networks. It should also
consider practical constraints such as user preferences (§3.4.5) and software
compatibility, where there may be dependencies between specific variants at

different loci (§3.2.1.3). Dependency between the presence of one locus and another,

Jennifer Jackson 125 of 357 May 2017

Chapter 5 Ph.D. Thesis
such as dependency on specific lower layer libraries, is not included (§5.2.6.4)
however the model could be extended to allow different loci, and different numbers
of loci on different computers. It will need to assess important outputs of an
ecosystem such as the quality of service as a measure of productivity, resistance and
resilience components of stability, as well as malware transmission characteristics.
In addition to this, metrics for measuring diversity is required that captures the
granularity of different functions and layers of a software stack and their

distribution across devices in the network.

Most of the diverse system models developed in the literature (§3.4.3) treat each
node as a complete entity. For example, treating nodes as different colours, or
different single variants of software. As a result, and in general, malware modelling
tends to simulate the targeting of single software variants as a complete entity on a
device. The primary contribution of the model is to incorporate diversity whilst
accounting for malware that wuses multiple exploits targeting different
vulnerabilities at different layers of a software stack, which is a growing concern
within cyber security (§3.3). The model also allows the evaluation of different
diversity strategies and is able to compare single and multiple exploit malware

whilst using the same diversity strategy.

5.3.1.2 Model Constraints

The following assumptions and constraints have been applied as a starting point
in modelling such a system, but the model could be extended at a later date to

include further aspects.

Jennifer Jackson 126 of 357 May 2017

Chapter 5 Ph.D. Thesis

e Within the natural biodiversity-ecosystem relationship, biodiversity can both
affect the response to disturbance events, and can be affected by disturbance events
(§2.2.2). This research only focuses on the effect of biodiversity on the response to

disturbance events as a first step in modelling such complex relationships.

e Additionally this research focuses strictly on disturbance events over short
time scales and ignores the effects of natural changes over long time scales caused
by a disturbance regime (§2.2.1.4). This includes considering only closed networks
where the number of nodes remains fixed so that there are no nodes entering or

leaving the network.

* The disturbance event studied is constrained to malware since this is known
to be rife in conditions where there is wide spread use of identical software and is

on a par with disease spread in natural systems.

e The structural composition of each device’s individualised software stack is
considered from a genetic perspective by representing the structural composition as a
genotype. Specific constraints are outlined in section 5.3.1.3 below. Malware and its
exploits are also considered from a genetic perspective with the ability to target one

or more software variants.

* Modelling of behaviours and node interactions remains at a high level of
abstraction so that event based simulators, where data flow and detailed

functionality of software is modelled, is not necessary.

Jennifer Jackson 127 of 357 May 2017

Chapter 5 Ph.D. Thesis
5.3.1.3 Genotype Structure Constraints

To simplify modelling and to demonstrate the concepts of both diversity and
malware targeting multiple layers, one function is included from each of the four
layers of the defined software stack (§3.2.1.3) leading to genotypes with a fixed
length of four loci. It is not necessary to model untargeted loci since they have no
impact on malware propagation at an abstract level. This means that malware
carrying exploits is limited to targeting at most four loci, one per layer, with any
number of software variants being bounded only by the simulation parameters. This
is a reasonable constraint to make since even the well known multi-exploit malware,
Stuxnet (the first to use so many unknown cross-layer exploits §3.3.3), only targeted
as many as four layers of the stack. It is additionally implied that at the time of
initial infection the exploits are unknown and cannot be detected or blocked by anti-
virus software as in the case of a zero day attack (§3.3.3). It demonstrates both the
concept and the applicability of the current practical scenario of four exploits in the
AND configuration. The OR configuration is applied to both cross layer and within
layer and so the total number of exploits modelled can be far greater. Secondly, it is
assumed that every device in the network has the same set of functionality (i.e four
loci)” and this functionality does not change (i.e through self-modifying code) so
that the niche space remains fixed throughout the simulations and the variants at
each locus are considered to be functionally equivalent. Thirdly, it is assumed that
there is no functional overlap between the four chosen loci. Fourthly, although
facilitation and trophic levels are inherent in interacting software programs and

layered software stacks, their interacting mechanisms are not included in the model.

Jennifer Jackson 128 of 357 May 2017

Chapter 5 Ph.D. Thesis

These constraints allow the model to initially focus upon the effects of gene
variation with respect to software variants whilst fixing the number of functions.
This is because individual malware code predominantly targets specific variants
with individualised exploits. With non-overlapping functions and a fixed number of
loci across all genotypes, functional diversity is limited to the definition of the
number of loci representing the different gene functions. However, the model could
be extended at a later date to include the effects of functional variation such as
varying the number of loci and functional overlap, making it additionally possible
to categorise malware into types that target certain functions. Additionally the
model could be extended to include relationships between layers impacting
vulnerability using multi-stage Boolean logic. This will encompass dependencies
between layers that contribute to software becoming vulnerable or not (see future

work §9.3.1.3).

Figure 5-4 shows an example genotype with four loci. The first locus represents
software relating to an application layer functionality such as web browsing. The
second locus represents an application services layer functionality such as window
management, which may be used by the web browser application to manage the
style and position. The third locus represents a core OS library such as graphics
rendering which may be used by the window manager to process 2D and 3D
graphics. The fourth locus represents a kernel layer functionality such as low-level
hard disk interfacing which may be used to manage downloaded files. For every

genotype on every device, each locus can have one of a number of different variants,

Jennifer Jackson 129 of 357 May 2017

Chapter 5 Ph.D. Thesis

so for example locus 1 could have one of a limited number of different web

browsers.
Community of available software
(genotype configuration options)
. . Example
Layer Functions Loci variants Genot}e pe
Atzl)ilt:t'i:n Web browsing Locus 1 | - — Web Browser | Web Browser 5
Application - i
Services Window Management Locus 2 | - —Wlndow Manager Window Manager 2
Layer B LN

_____________________ - ———

Core OS

Libraries Graphics rendering Locus 3 | - — Graphics Library | Graphics Library 1
Layer C

Kernel Hard disk interfacing Locus 4 v| - Disk Driver | Disk Driver 3

Figure 5-4 — Constrained genotype with four loci

The example shows a possible scenario, but equally represents any defined stack
or partial stack at an abstract representation, where it is assumed that the
granularity chosen and the functionality defined is in relation to the attacking
malware. The variants at each locus can be automatically generated variants using
diversity techniques or comprised of already available software (COTS), but are
assumed to be sufficiently different from the perspective of the malware to warrant
the necessity of different exploit code to penetrate the vulnerability (§5.2.6.1). For
example, if the vulnerability lies within the source code implementation or design of
an automated set of diverse binary files then the vulnerability may exist in all files,
but the exact exploit code would need to be different for each variant. This is one of
the fundamental benefits of diversity — to prevent vulnerabilities that exist from
being exploited on a wide scale. If variants consist of different COTS software (e.g.
Linux OS, Windows OS) the vulnerabilities are more likely to be different in the

variants. However if the COTS variants were different versions of the same software

Jennifer Jackson 130 of 357 May 2017

Chapter 5 Ph.D. Thesis
(e.g. 10.12.5, 10.12.6) they could still be considered as different if different exploits
are required, even if targeting the same vulnerability. The model takes into account
the ability to infect different versions of the same software by specifying exploits
within a locus (as opposed to across loci). The malware threat model and types are

defined in §5.3.3.

5.3.2 Diversity Measures

There are many diversity measures in the literature for natural systems (§2.3),
several of which have been used in isolation to define diversity in computing
systems, or new multidimensional ones have been defined (§3.4.4). It is proposed
here that diversity of computing systems is not defined by a single measure, but

through several, all providing a different but necessary perspective (§2.3.2.4).

The diversity measures defined here along with the defined genetic composition
of software described above captures the principles of all those proposed in the
literature. For example multidimensional functions (§3.4.4.4) is captured in terms of
software gene functions and functional overlap, where the partitioning of gene
functions into different loci form the dimensions and are only limited by the
granularity of the defined functions. The necessary measures are all currently used
to assess genetic diversity within natural systems and are defined here (in terms of
computing devices and software stack genotypes) for clarity which are used by the
models (§6, §7). Additionally defined is the process for increasing diversity in

relation to the metrics and the definition of maximum diversity.

Jennifer Jackson 131 of 357 May 2017

Chapter 5 Ph.D. Thesis

5.3.2.1 Measures Definition

Genotypic Richness (Gg) — This is the number of different software stack genotypes

currently in use across all devices within the ad hoc ecosystem (§2.3.2.1.1).

Genotypic Diversity (Gg) - This takes into account the frequency of all the different
software stack genotypes across all devices and is calculated using Equation (2-2)

(§2.3.2.1.3).

Number of Variants (v) - This is the number of software gene variants at a

particular locus across all devices.

Variant Richness (Vi) - This is the average number of different software gene
variants per locus across all devices. This is the same as the allelic richness (§2.3.2.2.1)

and is calculated using Equation (2-4).

Variant Diversity (Py) — This takes into account the frequency of software gene
variants across all devices and can be calculated independently at each locus or
averaged across loci. The Nei Genetic Diversity index is used as a measure of variant

diversity as given by Equation (2-8) (§2.3.2.2.2).
5.3.2.2 Increasing Diversity
Diversity at a single locus can be increased in two ways by either:

1) Increasing the number of software gene variants, or

2) Equalising the distribution of variants across all devices

Diversity of multiple loci can be increased in three ways by either:

Jennifer Jackson 132 of 357 May 2017

Chapter 5 Ph.D. Thesis
1) Increasing the number of loci (software gene functions / software stack
layers)
2) Increasing the number of software gene variants at any locus, or

3) Equalising the distribution of either, or both variants and genotypes.

5.3.2.3 Maximum Diversity Definition

Maximum Number of Unique Genotypes: The number of variants at each locus
dictates the maximum possible number of genotypes that could exist (Equation

(2-12)).

Maximum Genotypic Diversity: This is the maximum diversity that can be achieved
for a given set of genotypes, where they are evenly distributed across all devices.
The given set of genotypes does not necessarily have to be the maximum number of

unique genotypes (Equation (2-2)).

Maximum Variant Diversity: This is the maximum diversity of a given set of
variants at a locus where all the available variants are evenly distributed. The Nei
Genetic Diversity index (§2.3.2.2.2), (as well as the Shannon index), assess each locus
independently and so maximum variant diversity at every locus may not
necessarily need to utilise all of the possible unique genotypes. Figure 5-5 shows
two examples where maximum variant diversity is achieved with three variants in
each of the two loci (Al to A3 and B1 to B3). In Figure 5-5 (a) even though only three
genotypes are present in a network with nine devices, the three variants in each
locus are evenly distributed, where each genotype appears three times. Figure 5-5

(b) shows an alternative solution where all the maximum number of nine unique

Jennifer Jackson 133 of 357 May 2017

Chapter 5 Ph.D. Thesis

genotypes are fully utilised and the three variants in each locus are also evenly

distributed.
Device Genotype Device Genotype
Locus 1 | Locus 2 Locus1 | Locus2
Al B1 Al B1
A2 B2 Al B2
A3 B3 Al B3
Al B1 A2 B1
A2 B2 A2 B2
A3 B3 A2 B3
Al B1 A3 B1
A2 B2 A3 B2
A3 B3 A3 B3
a) 3 Genotypes used b) 9 Genotypes used
to achieve maximum to achieve maximum
variant diversity at variant diversity at
each locus each locus

Figure 5-5 - Maximum variant diversity with nine devices and three variants

Absolute Maximum Diversity: To guarantee absolute maximum diversity within an

ad hoc ecosystem there are four conditions that need to be fulfilled.

1) For a given number of variants and loci there exists a maximum number of
unique genotypes, all of which need to be utilised across the devices of the ad hoc

ecosystem.

2) The maximum number of unique genotypes needs to be evenly distributed so

that maximum Genotypic Diversity occurs.

3) It follows that if the maximum number of unique genotypes are evenly
distributed so too are the variants within each locus so that maximum Variant

Diversity is also achieved.

Jennifer Jackson 134 of 357 May 2017

Chapter 5 Ph.D. Thesis
4) To allow absolute maximum diversity to be achieved practically, the minimum
number of ad hoc devices needs to be equal to the maximum number of unique genotypes,

or a multiple of, to achieve an even distribution.

5.3.3 Malware Threat Model

The malware threat model is defined at an abstract level and depicts a theoretical
representation regarding the way in which malware uses exploits to target different
layers of the software stack to infect and propagate. The threat model is based upon
the background research of malware (§3.3) applied to the previously defined

software stack genotype (§5.2.6).

Within this threat model, malware is defined by three parameters:

1) The number of exploits targeting different software variants at each locus (e:

to er).

2) The number of different loci targeted by the exploits (L).

3) The logic function defining the relationships of the exploits in order to carry

out its malicious intention (AND, OR).

The malware representation is shown in Figure 5-6 showing exploits, loci and the
logic function block. A single exploit is assumed to only be able to penetrate a single
software variant. In practical terms this means that if an exploit is capable of
penetrating two non-identical but similar software program stacks with common
components, then they would be considered as being the same variant at the loci of
the common components where the exploit is targeting. If different exploit code is

needed then they would be considered as being different variants. It is possible for

Jennifer Jackson 135 of 357 May 2017

Chapter 5 Ph.D. Thesis
malware to carry multiple exploits at each loci to enable it to penetrate different
variants of the same function. The number of loci defines the number of different
software stack layer functions targeted by the malware in order to successfully carry
out its malicious intention. The logic function defines the relationship of the exploits
across the loci and is based upon two types: the logical AND type and the logical OR
type. The AND and OR logical functions (together with inversion) form the basic
blocks for which all other logical functions can be created and has therefore initially

been limited to these two types.

Malware represented by the exploits it uses targeting
different layers of the software stack (Loci)

Loci exploits
Locus 1 | —— | >
Locus 2 - _ gl Infect

Logic i‘> o
function
Locus 3 | - — | > propagate

Locus L v| __ | w

Figure 5-6 — Malware threat model

The logical AND type, is representative of malware that uses one or more exploits
across loci to infect and propagate, and thus creating an AND relationship across
these loci. In this case at least one of the variants in each of the loci targeted by the
exploits must be present on a device to cause an infection. This means that the AND
malware type only targets loci for which it has an exploit for. All other loci are not

affected.

Jennifer Jackson 136 of 357 May 2017

Chapter 5 Ph.D. Thesis

As an example the AND malware type is mapped to the Pegasus malware
(§3.3.3) that targeted iPhone devices in 2016 and is shown in Figure 5-7. Here three
exploits are used in an AND relationship across loci, where all three software
vulnerabilities have to be present in order for the malware to be successful. Other
multi-exploit AND malware exist, for example the self-propagating Stuxnet worm
(§3.3.3) requires four separate exploits to infect and propagate. Although these
malware do not have the capability to propagate over peer to peer wireless
connections (e.g like the Cabir worm over Bluetooth [156], it does demonstrate the
principles of using multiple exploits in an AND relationship. As the rise in mobile
malware continues, multiple exploits are likely to become equally applicable to ad
hoc networks with propagation over peer to peer wireless connections.
Additionally, these malware examples only targeted one variant at each of the loci
but it could have been theoretically possible to have used alternative exploits
targeting different variants at the same locus if it was deemed worthwhile by the
attackers, and suitable vulnerabilities were found. In 2017 for example at least eight
vulnerabilities were identified across different OS implementations (potential
variants) of the Bluetooth software stack [251] (at the Kernel layer) potentially
leading to the automated spread of malware over peer to peer Bluetooth
connections without being detected. It is just a matter of time before these are

exploited by malware in unpatched versions of operating systems.

Jennifer Jackson 137 of 357 May 2017

Chapter 5 Ph.D. Thesis

Applications

Safari web kit exploit

Locus 1

Three exploits

across three loci
Application

Locus 2 services

Core OS AND

libraries function Infect
Kernel mapping

Locus 3

exploit

Kernel
Locus 4 Kernel memory

exploit

Figure 5-7 — Pegasus malware AND threat representation

Using alternative exploits to target old and new versions of software is becoming
increasingly common as many users infrequently install updates or not at all. The
CopyCat malware [252] for example iterates through six exploits, mostly at the
kernel level, using several well-known Android vulnerabilities in order to gain
access to root privileges of a device. When these alternative exploits target different
functionality at different loci, an OR relationship is created. This can include
malware with the ability to infect and propagate via alternative mechanisms. The
logical OR type, is representative of malware that needs only one exploit to infect and
propagate, but carries multiple exploits which are available for use. With the
CopyCat malware for example, exploits targeted vulnerabilities in the camera
driver, the IPV4 communications function, and user calls in the API library. Figure
5-8 shows an example based upon three exploits of the CopyCat malware showing a

comparative OR threat representation to the Pegasus AND malware.

Jennifer Jackson 138 of 357 May 2017

Chapter 5 Ph.D. Thesis

Camera
Locus 1 interf'flce
function Three alternative
Camera driver exploit exploits across
three loci in the
Locus 2 Other k_ernel Kernel layer D
function
Internet
Locus 3 Protocol OR. Infect
function function
IPV4 exploit
API
Locus 4 functions
User call exploit

Figure 5-8 — OR threat representation example based upon the CopyCat malware

The reviewed epidemic models of computer security (§3.4.3.2) perceive malware
as a single entity attacking a particular type of device. In comparison with the
malware threat model this would be equivalent to a single locus without any logic

function block, and is compared mathematically in chapter 6 (§6.3.2).

The threat model is currently scoped only for single stage logic using the two
AND and OR functions, but could be extended to include multi stage logic to model
more complex malware exploit functions. For example a first stage AND function of
two loci, and a second stage OR function with a third locus. This could be used to
represent a case where malware may propagate using two exploits at different loci,
or using a single exploit at a third locus. Although not all of these combinations
have been seen in practice, the threat model could allow scenarios to be portrayed

that may happen in the future allowing their impact to be determined.

Additionally, the threat model is abstractly representative of any malware with

exploits targeting software vulnerabilities and is applicable to any computer system

Jennifer Jackson 139 of 357 May 2017

Chapter 5

Ph.D. Thesis

that can be partitioned into layers of functions. However within this research it is

applied only to the ad hoc network environment under the assumption that the

malware is capable of propagating via peer to peer connections as shown by the

malware data flow in Figure 5-9. This is representative of current and future real

world scenarios such as those described in §3.2.2, where examples include moving

inter vehicular communications, mobile sensor networks and other mobile devices.

Device

Peer to peer
connection

Malware
propagation
route

SW stack
genotype

Applications

Application
services

Core OS
libraries

Kernel

Device

SW stack

genotype
Applications

Application
services

Core OS
libraries

Kernel

Peer to peer
connection

Malware propagation route

Malware
propagation
route

B T

Peer to peer
connection

Device

SW stack
genotype

Applications

Application
services

Core OS
libraries

Kernel

Figure 5-9 — Malware data flow in an ad hoc peer to peer environment

Jennifer Jackson

140 of 357

May 2017

Chapter 5 Ph.D. Thesis

5.3.4 Diverse System Model Overview

5.3.4.1 General Overview

This section describes the general architecture at a high-level of two diverse
system models that have been developed to incorporate software diversity and
malware at the genetic level of an ad hoc network ecosystem. The intention of the
overview is to highlight the key differences between the models and what each
method offers. The mathematical content and simulation processes are detailed
within the individual chapters for each model (§6,7). The model with the greatest
flexibility to incorporate distributed dynamic diversity algorithms, realistic features
and constraints follows an agent-based approach (§4.3.4). The model is
predominantly simulation based following defined processes that are applied to
each and every individual. Under certain constraints this model is comparable to an
enhanced mathematical epidemic model, which has also been developed to
incorporate software diversity and malware at the genetic level. The epidemic
model is predominantly derived and calculated mathematically at a system level
without knowledge or control of individual behaviour, and is a key difference
between the two models. The epidemic model also provides a means for
comparison against standard epidemic models (§4.3.1) as well as the agent model.
The two models are outlined below with details of their design and implementation
documented in chapter 6 for the epidemic based model and chapter 7 for the agent-

based model.

Jennifer Jackson 141 of 357 May 2017

Chapter 5 Ph.D. Thesis

5.3.4.2 Constrained Diverse System Model: Mathematical
Epidemic

The mathematical based approach is comprised of a network model, a

susceptibility model and a malware model as shown in Figure 5-10 and represents a

system level view of the whole network.

,,,,,,, \/,,,,,,,,,,,,,,,,‘ o \/ e
Software genotype pool in network | § Malware Exploits |
Locus 1
| ()]
I =
System J\ | s Locus2 /1* System
Diversity . ﬁ—*‘ 1 g c: Variant 3 exploit Malware
Generator o Generator
= Locus 3
c
[0}
< Locus 4
| Susceptibility Model

</Iq

System SIR (Mathematical)

Malware Model

Measured Diversity Measured outputs

Figure 5-10 — Architecture of the epidemic based diverse system model

Network model: The network model assumes wireless communication protocols
are employed utilising peer-to-peer communication with ad hoc devices that move
around with their users. Devices can have the same or different software stack

genotypes leading to diversity in the network. It is assumed the functionality of the

Jennifer Jackson 142 of 357 May 2017

Chapter 5 Ph.D. Thesis
devices combine to produce the ecosystems network and user services. At least one
wireless access point is assumed to be present providing a connection to the Internet
and an entry point for malware. The inherent nature of a mathematical approach
assumes homogeneous mixing of devices and so does not offer the flexibility of the
agent-based approach which can incorporate mobility modelling with geographic
waypoint information and location based constraints. This highlights another key
difference between the two models. However, with the epidemic approach, an
analytical result can be achieved under the assumption of average system level

conditions.

Susceptibility model: The susceptibility model mathematically derives the
susceptibility of the network for a given diversity and malware configuration. The
diversity of the network is set or derived at a system level (unlike the agent model
where genotypes are individually set at each device). Malware with multi-locus
exploits, as defined by the threat model (§5.3.3), is assumed to be capable of
spreading within the network. The example malware in Figure 5-10 shows a single
exploit targeting variant 3 at locus 2, but could consist of any number of exploits at
different loci. The diversity and exploits are used to mathematically determine the
proportion of devices that are susceptible to a pre-defined malware. The diversity of
the network within a given time frame is constrained to being static so that once a
diversity-malware configuration has been created it does not change throughout the
dynamics of a simulation (unlike the agent model where the genotype
configurations and hence diversity can change). This follows the assumptions made

by currently proposed mathematical epidemic models involving diversity (§3.4.3.2).

Jennifer Jackson 143 of 357 May 2017

Chapter 5 Ph.D. Thesis
The difference in this proposed model is that a genetic approach is taken to include
different software functions at different layers of the stack together with malware
utilising multiple exploits. Current methods assume each node comprises a single
software variant and additionally malware targets a single software variant. The
principles of genetic matching between exploits and genotypes is similar to the
ideas used within infection genetic models (§4.4), but is matched through analytical
calculations and is targeted specifically for the malware types defined by the threat
model (§5.3.3). With static genotypes, the susceptibility of the network and the
average rate of contact (§4.3) between those that are susceptible is pre-calculated

before applying the malware model.

Malware model: Parameters generated from the susceptibility model are fed into
the malware model to obtain simulated ecosystem outputs. The mathematical
malware model can be either deterministically or stochastically based and currently
supports either the SI or SIR compartmental models (§4.3). This approach is
different to the agent model where individual devices keep track of their own health
status which is determined by the dynamics of the individual simulation (rather

than the mathematical equations).

The mathematics of the epidemic model is detailed in chapter 6.

The constrained epidemic model offers a method of:

(a) Comparing the proposed genotype structure which consists of software gene
variants at different loci that can be targeted by multi-exploit malware with current
epidemic models of diversity, where a genotype or node is considered as a complete

entity. The model developed can additionally simulate non-maximally diverse

Jennifer Jackson 144 of 357 May 2017

Chapter 5 Ph.D. Thesis
scenarios (not considered by other diversity based epidemic malware models
§3.4.3.2), allowing the diversity of current networks or networks with domineering
software variants, to be analysed in response to malware and compared to the

maximally diverse case.

(b) Verifying the agent-based model under homogeneous mixing and static

diversity constraints.

(c) Comparing the mathematical model with the agent-based model, which can
include additional features such as dynamic diversity, additional security

mechanisms, geographic mobility and realistic constraints.

(d) Modelling abstract ecosystem outputs of resistance and resilience and
maintaining functional performance (Quality of Service) in response to diversity

and specific types of malware attacks.

5.3.4.3 Diverse System Model: Agent-Based

Unlike the epidemic approach where the general architecture (Figure 5-10) is
representative of the whole network at a system level, the general architecture of the
agent-based approach as shown in Figure 5-11 (of the diversity and malware
interaction) represents a single device, and is the same for every device. The agent-
based approach is comprised of a network model, a diversity model and a malware

model.

Jennifer Jackson 145 of 357 May 2017

Chapter 5 Ph.D. Thesis

Malware source

QY
IR

influence Network Model

Device Software Genotype Receiving Malware Exploits
Locus 1 — Application
Web Browser o LosE |
C
Device _,\ Locus 2 — App. Service S Locus 2
Diversity Windows Manager g | Variant 3 exploit
controller Locus 3 — Core OS Lib. ol
. : = Locus 3
Graphics Library o
[
Locus 4 — Kernel O
Disk Driver I

Diversity Model

"

Device SIR (Internal state)

Malware Model

Device

Measured Diversity Measured Outputs

Figure 5-11 — Architecture of the agent-based diverse system model

Network model: Each agent represents an ad hoc device with software variants
performing functions that contribute to the ecosystem’s network and user services.
As with the epidemic approach, the network model assumes wireless peer-to-peer
communication with at least one entry point for malware. With the agent approach
however, location based mobility can be modelled. An additional feature, that is not
possible with the epidemic approach, is that during local encounters (contact
between devices) it is possible to exchange with the contact both genotype
information and malware, if it is present. Users may also influence the mobility
pattern of devices, or place constraints on the use of certain software variants. The

agent-based approach can be additionally constrained to model homogeneous

Jennifer Jackson 146 of 357 May 2017

Chapter 5 Ph.D. Thesis
mixing of devices so that verification and comparisons can be made to the epidemic

model (§7).

Diversity model: The diversity model uses the genotype structure outlined in
section 5.3.1.3 to represent the software composition of a device. The diversity of the
network within a given time frame can be either described as static like the
epidemic model, where the genotypes remain fixed in each device, or dynamic,
where the genotypes may change based upon device level decisions from
information obtained during local encounters and is described further in §7. The
software genotype on each device is self determined by the diversity model. The
diversity controller within each device has its own perspective on the diversity of
the network based upon its local encounters, and in response, determines what
software genotype should be chosen in order to maximise diversity, subject to any
constraints. Practical constraints can be applied together with additional security
mechanisms to explore the effectiveness of diversity as an integrated security
approach. Whilst the concept of static diversity assignment and dynamic diversity
assignment are similar to ideas proposed by colouring algorithms for diversity
(§3.4.3.1), the colouring algorithms have been fixed to 3 or 4 colours (software
programs) and are simulated on networks with fixed communication links. The
algorithms developed here are for ad hoc networks with continuously changing
communication links, are multi-layered, and are unbounded in the number of

potential software programs.

Malware model: Devices keep track of their own health status which may be

susceptible, infected or recovered following the basic SIR epidemic compartments

Jennifer Jackson 147 of 357 May 2017

Chapter 5 Ph.D. Thesis
(§4.3.4), but does not follow the mathematical equations like the epidemic model.
Successful genetic matching between the device’s own genotype and exploits only
occurs if malware is received by the device and the exploits match to vulnerable
software components. The malware model uses computational genetic matching
between the device’s own genotype and a propagating piece of malware, which also
takes into account the malware’s logical function as defined by the threat model
(85.3.3). If a match occurs the device is deemed to have become infected, and this in
turn can change the internal state of the device from susceptible (S) to infected (I).
An aggregation of the states of the individual devices provides the system level
perspective. These computational matching methods are similar to those used
within infection genetic models (§4.4), but as with the epidemic model, is tailored
specifically for the defined malware types (§5.3.3). As a result of the interaction of
the devices, incorporating genotypes and malware, diversity is measured along

with ecosystem outputs such as resistance and resilience.
The agent model offers a method of:

(a) Exploring diversity and malware beyond the limitations of the epidemic
approach, through dynamic diversity based on local interactions, user influence and

constraints, additional security mechanisms, and geographic mobility.

5.3.4.4 Modelling Environment

The modelling environment used for both models is Mathworks Matlab since it
provides a computational environment for modelling the high level abstraction of
device behaviours, as well as matrix manipulation for performing simultaneous

device operations. Its ability to aid in the generation of GUI’s is useful for creating

Jennifer Jackson 148 of 357 May 2017

Chapter 5 Ph.D. Thesis
fast modelling interfaces for retrieving, generating and saving settings and
simulation data. The built-in libraries help reduce the need to spend time debugging
low level code which could otherwise be needed. Disadvantages however are the
simulation times and memory usage when simulating large networks. To improve
this, manipulation of data types and controlled saving of data during simulations is

required.

5.4 Summary

This chapter has presented an ecosystem model for an ad hoc network, making
analogies between natural biodiversity mechanisms relating to functionality within
ecosystems, and natural diversity mechanisms relating to functionality within ad
hoc networks. Malware can be thought of as destructive disturbance events
affecting the function and stability of the ad hoc environment. Although the focus
here is on ad hoc networks, many of the principles described are also applicable to
computer networks in general. In an ad hoc network ecosystem, functionality is
predominantly generated by underlying software and hardware components which
can be captured in terms of genetics at the individual scale of devices. There are two
key components of software at the genetic level affecting ecosystem functionality:
That is software gene function and software gene variant. The analogous
relationships described imply that the fundamental enabling mechanisms for
enhancing diversity already exist within the current structure of software and ad
hoc networks. There are methods for measuring diversity at the genetic level that

could equally apply to the diversity of software composition across devices.

Jennifer Jackson 149 of 357 May 2017

Chapter 5 Ph.D. Thesis

A diverse system model is required to simulate these mechanisms where
individualised software stacks can be represented as genotypes. Some constraints
have been applied such as limiting the number of loci to four, with one non-
overlapping function being represented from each of the four layers of the software
stack. This allows the model to focus upon the effects of gene variation with respect
to software variants and malware targeting specific variants with individualised
exploits. Single measures of diversity in computing systems have been defined in
the literature; however it is proposed here that several metrics are necessary to
define computing diversity at the genetic level, all of which provide a different but
necessary perspective. A threat model has been defined, focussing upon two types
of malware; the logical AND and the logical OR which are representative of
malware using multiple exploits to gain entry and propagate. Two system models
have been proposed: the mathematical epidemic model, which is detailed within

chapter 6, and the agent model which is detailed within chapter 7.

Jennifer Jackson 150 of 357 May 2017

Chapter 6 Ph.D. Thesis

Chapter 6

Constrained Diverse System Model:
Epidemic Based

6.1 Introduction

This chapter details the architecture and mathematical derivation of the
constrained diverse system model. The constraints as a result of using an epidemic
model are described, together with some fundamental questions that the model can
address under these constraints. The main aspect is the susceptibility model which
generates both diversity and malware and subsequent analytical genetic matching.
Two types of malware as defined in the previous chapter have been incorporated,
each with varying numbers of exploits. Susceptibility equations are derived for the
two types of malware for software stack genotypes having up to four loci. Outputs
of the model are defined including resistance and resilience components of stability,
along with input constraints so that an optimum diversity can be calculated to either

tolerate or prevent a specific type of malware attack.

Jennifer Jackson 151 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.2 System Model Overview

6.2.1 Overview and Constraints

The constrained diverse system model builds upon the basic mathematical SIR
epidemic model (§4.3.1) to investigate diversity and malware propagation at the

genetic level. The mathematical approach is constrained by four key aspects:

1) Homogeneous mixing, where the system is the average of the individual

devices (§4.2.5).

2) Static diversity, where the genotypes present on each device remain fixed

throughout a malware epidemic.

3) Software functions are assumed to be compatible with each other so there are

no constraints regarding genotype configurations.

4) Individual users have no influence over the choice of genotypes which are

predetermined by a centralised source.

Despite these constraints some key mathematical results have been established to

answer the following questions under the given constraints:
1) What security protection or mitigation is offered by biodiversity?

2) How much biodiversity is needed to overcome specific attacks and is there

an optimum biodiversity level?

A key feature of this mathematical approach is the susceptibility model which
defines the diversity and the malware, and subsequently the susceptibility.
Additionally, to incorporate diversity into the SIR an equivalent malware model is

defined and is described below.

Jennifer Jackson 152 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.2.2 Equivalent Epidemic Model with Diversity
6.2.2.1 Without Diversity

Using the SIR as the underlying model (either deterministic or stochastic), it is
assumed that a large number of ad hoc devices (N,,) exist, and the devices mix
homogeneously where they make wireless contact with each other at an average

rate (c,), as shown in Figure 6-1 (a).

Network Model Malware Model
Devices in network (Ny) Susceptible devices (N,)
Average contact rate (c,) [T === |
Susceptible devices (N,) F— : :
Fm———— == - I
I ® o I I |
;@ () i [o L |
ey e - & i b
| ® o [] o] .. @
| N [N,=S+I+R
1@ @ PY L : Br=cnt
N) o0 o o0
00 00 oo o
0% ~ 0% o
a) No diversity - Basic SIR epidemic malware model
Network Model Malware Model
Devices in network (N) Susceptible devices (Ns)

Average contact rate (c,) |

Immune devices ! !
Susceptible devices (Ns) (No— Ny) : :
[|)
| | Immune devices
| | (Ne=Ny)
| |
| |

N,=S+I[+R+Z

b) Static diversity - SIR malware model with extra immune compartment

Network Model Equivalent Malware Model

Devices in network (Ny)
Average contact rate (c,)

Immune devices : :
Susceptible devices (Ns) (N = Ns) (——— Susceptible devices (Ns)_ _ _ |

Susceptibility Model Malware Model

O Ns = Sp Ny Ns, cs ! !
c.=S, ¢ | |

o O T LN |

o- O N;= (1SN, L __ 2
o O O O Ny=S+/+R

T Bs=cst

[

L L N,=S+I[+R+N;

o ©®

c) Static diversity - SIR malware model with an added susceptibility model, where only a proportion of the
network is susceptible and the infection rate is also proportionally reduced

Figure 6-1 - Equivalent epidemic model

Jennifer Jackson 153 of 357 May 2017

Chapter 6 Ph.D. Thesis

For a basic SIR model as shown in Figure 6-1 (a), where there is no diversity
between devices, the entire network is assumed to be susceptible to the malware so
that the number of devices (N,) within the network equates to the number of
susceptible devices. During an epidemic simulation, which is modelled by the SIR
equations (§4.3.2.1), those susceptible may become infected, before recovering
through various mechanisms, if they are available, such as malware detection and
removal after antivirus updates. The sum of the devices within the S, I and R
compartments equate to the number of devices within the network (N,) which
remains fixed throughout an epidemic simulation. The rate of infection (f,) is the

product of the contact rate (c,) and the probability of transmission (7).

6.2.2.2 With Static Diversity

6.2.2.2.1 Extra Immune Compartment

For a network where there is static diversity, only a proportion of the network
(Ng) is susceptible, since only those genotypes with exploit matched vulnerable
software variants can ever become infected. The remaining devices are considered
immune as shown in Figure 6-1 (b). The malware model could be extended so that
those devices that are immune could be given another compartment labelled as ‘Z’,
where the sum of the devices within the S, I, R and Z compartments equate to the
number of devices within the network (Ns). However, since the rate of entering or
leaving the compartment is zero for each specific malware attack, the Z
compartment is fully detached from the SIR compartments. This results in those that
are immune not participating in the dynamics of the epidemic spread, and leaving

only those susceptible (S,) being included.

Jennifer Jackson 154 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.2.2.2.2 Equivalent Model

An equivalent malware model as shown in Figure 6-1 (c) can be defined with the
inclusion of a susceptibility model to calculate the proportion of devices that are
susceptible (S,) given a specific type of malware attack and diversity scenario. This
can then be used to identify the number of susceptible devices (N;) participating in
the spreading dynamics of a known model. The number of susceptible devices

within the network (N;) can be defined as:
Ng = SpNy (6-1)
And those immune (N;) as:
N; = (1 —-S,)N, (6-2)

Additionally, assuming that the density of the network, and hence the contact
rate of the network (c,) remains unchanged, it follows that the average rate of
contact between only those that are susceptible (c;), is also a proportion (S,), but of

the total network contact rate (c;,) so that:
¢ = Spen (6-3)
Resulting in a modified infection rate (f;):
Bs = csT (6-4)

These results can then be fed into the standard SIR model to simulate the output

dynamics.

Jennifer Jackson 155 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.3 Susceptibility Model

6.3.1 Overview

Susceptibility is described here as either the proportion (S,) or number of devices
(Ns) which could potentially become infected by a particular malware. The
susceptibility model calculates the susceptibility for a given diversity and malware
scenario. It is assumed there is a statically diverse network so that pre-computing
the susceptibility in this way is valid for the constrained diverse system model. The
susceptibility, as shown in Figure 6-2, will depend upon both the diversity of the
software gene pool generated by the system diversity generator, and the malware
generated by the system malware generator. The term system is prefixed here to signify
that the diversity and malware are generated and controlled at the system level for
the constrained epidemic model. The diversity of the software gene pool depends
upon several parameters including the number of loci, which has been limited to a
maximum of four (§5.3.1.3), the number and frequency of software gene variants at
each locus, and hence the number of possible unique genotypes (§2.3.2.3). The
specific type of malware attack generated depends upon the number of exploits, the
targeted loci and variants, and one of two types of malware which are defined in the
malware threat model(§5.3.3). The example malware in Figure 6-2 shows a single
exploit targeting variant three at locus two, but could consist of any number of
exploits at different loci. Genetic matching between these two aspects determines

the susceptibility, for which an analytical result has been derived (§6.3.2).

Jennifer Jackson 156 of 357 May 2017

Chapter 6 Ph.D. Thesis

Number of devices (N,)
Devices contact rate (c,)

- L
| Software genotype pool in network | | Malware Exploits |
Locus 1
| D
I =
System J\ |8 Locus2 /1* System
Diversity > d"" ‘) = C: Variant 3 exploit Malware
Generator o Generator
= Locus 3
=
[0}
= Locus 4
| | Susceptibility Model
Diversity Number of susceptible devices (N;)

Susceptible contact rate (cs)
Figure 6-2 — Susceptibility model
6.3.2 Analytical Result of Susceptibility

The remainder of this section describes an analytical derivation of the
susceptibility of the network based upon the previously described diversity (§5.3.2)

and malware threat model definitions (§5.3.3).

6.3.2.1 One Locus Model

When software stack genotypes are comprised of a single locus as shown in
Figure 6-3, the maximum number of unique genotypes available is equivalent to the
number of possible software variants at that single locus. All the reviewed epidemic
based diversity models of security (§3.4.3.2) perceive diversity as a single dimension
in this way such as the number of possible software packages or node types (L) so
that for a single exploit (see Figure 5-6 Malware threat model) or malware there is

only ever one susceptible genotype (software package or node type). The total

Jennifer Jackson 157 of 357 May 2017

Chapter 6 Ph.D. Thesis
number of susceptible devices is then equivalent to the number of times the
susceptible genotype (software package or node type) occurs within the network
(N). Additionally the security models either assume each device has a unique
genotype, or the genotypes are equally distributed so that maximum diversity is

assumed, thus equating the susceptibility with one exploit to a value of N/L.

The definition used by Lively [43] for a non-computing genetic diversity
epidemic model defines the number susceptible in terms of susceptible genotype
frequencies so that maximum diversity is not necessarily assumed. Using this
definition the number of devices susceptible in the network (N;) for a single locus

and a single exploit can instead be defined as:

Ny = giNy (6-5)

Where g; is the frequency of the ith genotype that is susceptible and N,, is the
total number of devices in the network. The single layer models will subsequently
be referred to as the ‘one locus model” since they are equivalent to a software stack

genotype model with one locus.

For software stack genotypes with multiple loci, together with viruses using
multiple exploits (within or across loci for the AND and OR types) the above

equation will not hold since more than one genotype may become susceptible.

Pool of available software
(genotype configuration options)

Example
Layer Functions Loci variants Genotype
A';’_’;')i:‘:t:’" Web browsing Locus 1 | - — Web Browser | — N\ Web Browser 5

Figure 6-3 - Single locus genotypes — one locus model

Jennifer Jackson 158 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.3.2.2 Multiple Loci and Multiple Exploits (Genotypic
Perspective)

The remainder of this analytical result describes new work that has been
developed. To consider multiple loci and multiple exploits, firstly consider
susceptibility from a purely genotypic perspective. Figure 6-4 shows genotypes with
multiple loci (up to a maximum of four) with upper bounds on the number of
software gene variants at each locus. The number of genotypes (G) is the product of
the number of software variants at each locus (§2.3.2.3), which are all assumed to be

used in the network.

Community of available software
(genotype configuration options)

. . i Example
Layer Functions Loci variants Genotype
Application .
T;yer A Web browsing Locus 1 | - — Web Browser | Web Browser 5
Application
Services Window Management Locus 2 | - —Window Manager| Window Manager 2
Layer B \
Core OS .
Libraries Graphics rendering Locus 3 | - — Graphics Library | Graphics Library 1
Layer C ____
Ig??rellj Hard disk interfacing Locus 4 v| - — Disk Driver | Disk Driver 3

Figure 6-4 - Multiple locus genotypes

The single locus Equation (6-5) can be rewritten for malware with multiple
exploits in a multiple locus network. The number of susceptible devices N; is now
the sum of the frequencies of all the susceptible genotypes h (genotypes that match
to an exploit) multiplied by the total number of devices in the network. Note that h,
which is the number of susceptible genotypes and determined by the number and
targeting location of exploits, should not be confused with G, the total number of

possible genotypes which can be derived from v and the number of loci.

Jennifer Jackson 159 of 357 May 2017

Chapter 6 Ph.D. Thesis

General case: i=h (6-6)

In a static network that is at absolute maximum diversity (§5.3.2), the frequency of

all the genotypes will be equal and the equation simplifies to:

Maximum diversity case: (6-7)

h
NS = ENn

Where h is the number of susceptible genotypes, and G is the maximum number of

unique genotypes.

Both Equations (6-6) and (6-7) follow the general Equation (6-1) of the
susceptibility model where
Ng = SN, (6-8)
i=h b
where S, = Zgi (general case), or S, = C (maximally diverse case)
i=1

This gives a general result for the proportion susceptible S, in terms of
susceptible genotypes where S, is the sum of the frequencies of the susceptible
genotypes in the general case or the ratio of % for the maximally diverse case. The
proportion susceptible S, however can be defined more specifically in terms of loci,
variants, and exploits so that for a given malware and diversity scenario the
susceptibility can be calculated. The equation for S, will also change depending
upon which of the two, logical AND, or logical OR, malware types is being
considered. These equations are derived as follows and forms the analytical method

of genetic matching.

Jennifer Jackson 160 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.3.2.3 Sp for Multiple Loci and Multiple Exploits (Logical AND
type)

Figure 6-5 gives examples of susceptibility for the AND case when there are three
software variant choices at each of two loci (A1 to A3 and B1 to B3). In all examples
there are nine (3 x 3) possible genotypes. As shown in Figure 6-5 (a), when an
exploit targets one software variant on one locus (A1), the proportion of nodes that
become susceptible is the frequency (a;) of Al. Under maximum diversity this
equates to 3/9ths (1/3) since it is assumed that the frequency of all genotypes is
equal. When two variants are targeted by two exploits (Al or A2) at the same locus
(either of the two variants need to be present in the genotype, equating to both
being susceptible), as shown in Figure 6-5 (b), the susceptibility increases to
(a; + ay) or 6/9ths (2/3). However, when one variant is targeted on each of the two
loci (A1l and B1), as shown in Figure 6-5 (c), the susceptibility changes to (a;b,) or
1/9th (1/3 X 1/3), since both variants must be present to become susceptible. As
shown in Figure 6-5 (d) when either of two variants on both loci are targeted, the

susceptibility increases to (a; + a,)(b; + b,), or 4/9ths (2/3 X 2/3).

Jennifer Jackson 161 of 357 May 2017

Chapter 6 Ph.D. Thesis

Max proportion Max proportion Max proportion Max proportion
susceptible: susceptible: susceptible: susceptible:
3/9 6/9 1/9 4/9
Host Genotype Host Genotype Host Genotype Host Genotype
Locus1 | Locus2 Locus1 | Locus2 Locus1 | Locus?2 Locus 1 | Locus 2
MRS LRI R e
: Al : B2 : Al : B2 Al B2 |r__A_1_ _|__§2__T
L_AL_} B | [_AL_| B3 AL | e || a1 | B3
A2 B1 | A2 | B1 A2 B |!_A2 | 81 |
A2 B2 |1 A2 I B2 A2 B2 |1__A2 | B2 |
A2 B3 I _A2 : B3 A2 B3 A2 B3
A3 B1 A3 B1 A3 B1 A3 B1
A3 B2 A3 B2 A3 B2 A3 B2
A3 B3 A3 B3 A3 B3 A3 B3
a) Exploit match: b) Exploit'match: c) Exploit match: d) Exploit'match:
Al A10RA2 A1ANDB1 (A1 ORA2) AND (B1OR B2)
1variant at 1 locus 2variantsat 1locus 1variantat 2loci 2 variants at 2 loci

Figure 6-5 - Examples of susceptible genotypes for the AND type

This methodology of exploit matching to genotypes is similar to gene matching
algorithms used in ecology (§4.4) where parasite genotypes are matched to host
genotypes. However there is a difference in the matching pattern for computer
malware. In the ecology algorithms the parasite genotype is limited so that it can
only have one exploiting allele (variant) choice per locus to match the host
genotype. Specifically, for the matching alleles algorithm [239], this is a limited version
of the AND case described here and would equate to Figure 6-5 (c) where the
exploit is matched to one variant on each of the two loci. A single malware however
could potentially use a different exploit on a different device, especially if it is

targeting a similar vulnerability when the variants are closely related.

One Locus: The general equation for the AND case can be derived using
probability theory [253] since each locus is independent of the others and therefore

whenever one or more exploits target a locus, this can be considered as an

Jennifer Jackson 162 of 357 May 2017

Jennifer Jackson

Chapter 6 Ph.D. Thesis

independent event. Additionally the proportion susceptible at each locus for a given

exploit scenario defines the probability of those susceptible.

The probability (P) of one independent event occurring on one locus j is

therefore given by

General case: k=x;

(6-9)
PR =) a
k=1
. . .) X;
Maximum diversity case: P(DNmax = v_j (6-10)

Where a is the frequency of variant k of those susceptible, x; is the number of

exploits targeting locus j, and v; is the number of variants in locus j.

Multiple Loci: For multiple independent events occurring (multiple loci targeted

by exploits) the probability AND rule (multiplication rule) given in Equation (6-11)

can be applied

P(and,j = 1to)) = P(j=1)P(=2)...P(=))

j=
[[r0
j=1

Where] is the number of loci targeted by an exploit.

(6-11)

This equation defines S, for the AND type and holds for any number of loci.
Logical AND type

S, = P(j) (6-12)
Multiple Loci:

163 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.3.2.4 Sp for Multiple Loci and Multiple Exploits (Logical OR
type)

Figure 6-6 give examples of susceptibility for the OR case. When an exploit
targets one or more software variants on one locus, the OR case is identical to the
AND case as shown on Figure 6-6 (a) and (b). For multiple loci the two cases
become different. When an exploit targets one variant on either of the two loci (Al
or B1) as shown in Figure 6-6 (c) the susceptibility becomes (a; + b; — a;b;), where
the subtraction accounts for the genotype that is double accounted for in the
summation. Maximum diversity is 5/9ths (1/3 + 1/3 — 1/9). As shown in Figure 6-6
(d) the susceptibility increases to (a; + a,) + (by + by) — (a; + a,)(by+by), or 8/9ths

(2/3 + 2/3 -4/9) when two variants on either of the loci are targeted (Al or A2, or Bl

or B2).
Max proportion Max proportion Max proportion Max proportion
susceptible: susceptible: susceptible: susceptible:
3/9 6/9 5/9 8/9
Host Genotype Host Genotype Host Genotype Host Genotype
| Locus1 | locus2 | | Locus [locus2 | | Locus1 | Llocus2 | | Locus1 | Locus? |
I Al 1 Bl I Al 1 Bl | Al 1 Bl 11 Al I Bl 1|
: Al : B2 : Al : B2 : Al r B2 : Al :__EZ__T
L_AL_} 83 || _AL_; B3 |} AL | B3 || Al | 83 |
A2 B1 I A2 1 Bl A2 L _B1_11 A2 1 _B1 |
A2 B2 I A2 1 B2 A2 B2 I A2 1 B2 |
A2 B3 I _A2 : B3 A2 _B3 :__A_Z_ :__23__
A3 B1 A3 B1 A3 _B1_ A3 | __Bl
A3 B2 A3 B2 A3 B2 A3 I B2 |
A3 B3 A3 B3 A3 B3 A3 | B3 |
a) Exploit match: b) Exploit match: c) Exploit match: d) Exploit match:
Al A10RA2 A10RB1 (A1ORA2) OR(B1ORB2)
1variant at 1 locus 2variantsat 1locus 1variantat 2loci 2 variants at 2 loci

Figure 6-6 - Examples of susceptible genotypes for the OR type

Jennifer Jackson 164 of 357 May 2017

Chapter 6 Ph.D. Thesis
Unlike the logical AND type where equation (6-12) holds for any number of loci,
the analytical derivation of the OR type results in different equations for different

number of lodi.

One Locus: The OR case can also be derived using probability theory. For one

locus the OR case is identical to the AND case.

The probability (P) of one independent event occurring on one locus j is given by

General case: k=x; (6-13)
P(=)
k=1
Maximum diversity case: P(Dmax = Xj (6-14)
v.

J
Where qy is the frequency of variant k, x; is the number of exploits targeting

locus j, and v; is the number of variants in locus j.
Logical OR type:
Sy, = P(@) (6-15)

(one locus)

Two Loci: For two independent events occurring (two loci targeted by exploits)
the probability OR rule (General Addition Rule) can be applied as given in Equation
(6-16).

PG=1lorj=2)=P(=1) +P(=2)—PG=1DP(G=2) (6-16)

And therefore the proportion susceptible S, for a two locus network becomes

Logical OR type: j=2 j=2

Sp = P(j) — P(j) (6-17)
(two loci) j=1 =1

Jennifer Jackson 165 of 357 May 2017

Chapter 6 Ph.D. Thesis

For multiple independent events (multiple loci targeted by exploits) the OR rule
can be generally applied iteratively based on the number of loci. The three and four
locus derivations are documented in Appendix A (A.1) and (A.2). The result for the
four locus is used extensively and referenced within the results (chapter 8) since the

underlying model is based upon a software stack genotype with four loci.

6.4 Outputs

6.4.1 Outputs of Current Epidemic Models

Whilst mathematical models of epidemics focus on transmission characteristics
and epidemic thresholds, they rarely consider or link these to ecological
productivity and stability directly. Also, terminology used within the literature in
reference to ecosystems such as stability and resistance has different meanings for
epidemic models. For example Stability analysis of epidemic models investigates the
reaction of the system to small perturbations around equilibrium points (fixed
points) determined from the actual equations of the system model [254]. The
analysis determines if the points are stable (system moves towards the point) or
unstable (system moves away from the point). The term resistance either means drug
resistance which develops when micro-organisms no longer respond to a drug to
which they were previously susceptible [255], or host resistance which describes how
susceptible a particular host is to a particular disease or pathogen [256] [257]. These
two aspects are both incorporated within the equations or design of epidemic
models so that transmission characteristics and resultant effects can be analysed at

the system level.

Jennifer Jackson 166 of 357 May 2017

Chapter 6 Ph.D. Thesis

However, it is possible to infer ecological outputs from epidemic models in some
cases. For example the final size of an epidemic (§4.3.2.6) describes the system level
perspective of the total proportion of individuals that were infected [234]. If instead,
the total proportion of individuals that were not infected is considered, then this can
be used as a measure of system level resistance. Some models inherently incorporate
recovery parameters such as the classic SIR model (§4.3.1) for which system
recovery times, usually discussed as the duration of the epidemic [234] or the
extinction time of the epidemic [258], can be simulated under different conditions.
The duration of the epidemic can be used to infer engineering resilience since it
indicates how quickly the system can recover from a given scenario. An advantage
is that these stability parameters can be measured at a high level of abstraction

without the need to simulate user data flow to measure functional performance.

6.4.2 Outputs Overview of the Developed Model

This section defines the outputs from the model using the high level abstraction
described above for the two key components of ecosystem stability: resistance and
resilience (§2.2.2.2.2, §5.2.5). An overview of the outputs is shown in Figure 6-7. The
resistance component (Mp) can be calculated and constrained analytically, and
compared to the simulated output. The resilience component (M,) is determined
from simulation since it has no analytical solution (§4.3.2.4), and is described further
in §6.4.5.2. However when there are no recovery mechanisms for the malware, the
peak infection time (T;) can be calculated for the deterministic SI case. Additionally,
an optimum diversity can be determined for a specific type of malware attack given

one of two constraints. The first constraint relates to the maintenance of ecosystem

Jennifer Jackson 167 of 357 May 2017

Chapter 6 Ph.D. Thesis
function when faced with malware so that an acceptable Quality of Service (QoS) is
still guaranteed (§5.2.5). A QoS Tolerance (Qr) is used to determine a required
malware resistance from which an optimum diversity can be determined. The
second constraint which is only applicable when recovery mechanisms are in place
is to determine the optimum diversity to prevent a major outbreak of the malware.
This occurs when the reproduction number is below the critical threshold (R, = 1)
(8§4.3.2.5). The calculated optimum diversity necessary to tolerate or overcome a
specific malware attack also leads to the quantification of the minimum number of

devices required to uphold this optimum diversity requirement.

Analytical Outputs

Ns. B Swel Peak Infection
_ time (T) Constraints
With no recovery | T
»| Reproduction
- Rom i Mamper)
Nn 3 NI -
Network Susceptibility P Resistance to » Quality of
Model L T Malware (Mg) Service
Tolerance | |
Ns, .
) Fs Ps Simulated Outputs
/ / - Resilience to
Malware (ML)
,,,,,,,,,,, A
' Optimum diversity | Malware L»
| for a specific type | Model Mr
i of malware attack. | -
| i T
- Minimum network | >
size

Figure 6-7 - Overview of outputs, constraints and optimum diversity

6.4.2.1 Malware with No Recovery (SI)

Malware can spread in a short space of time relative to the period of recovery.
This may be particularly true with zero day exploits where at the time of the attack

there is no known patch or even detection mechanism. When there is no chance of

Jennifer Jackson 168 of 357 May 2017

Chapter 6 Ph.D. Thesis
recovery in the timescale of the epidemic, the SIR model reduces to an SI model
(§4.3.1). The resistance (M) of the ad hoc ecosystem to the malware becomes
critical, where there may be a tolerance (Qr), below which ecosystem functions and
services become severely degraded (§2.2.2.2.2). The time taken to reach the

maximum degradation in services can also be calculated (T;).

6.4.2.2 Malware with Recovery (SIR)

When recovery mechanisms for malware are available within the timescales of
the epidemic such as software patching or antivirus signature detection to remove
and recover the infected devices, resilience (M;) as well as resistance (My) becomes
important. As well as using diversity to maintain QoS, it can also be used to
maintain the reproduction number below the critical threshold (R, = 1) and prevent

a major epidemic outbreak.

The analytical calculations and optimisation methods to determine the necessary
diversity to tolerate or mitigate an attack are described in the remainder of this

section.

6.4.3 Resistance to Malware (MRg)

6.4.3.1 Resistance to Malware (Mr) with no recovery (SI)

As shown in Figure 6-8 (a), without recovery (SI model), all of the susceptible
devices (Ng) will eventually become infected over time and the resistance (Mp) is
the number that do not become infected out of a total number (N,,), or the number
immune (N;), so that for a deterministic or stochastic SI model the malware

resistance is defined as:

Jennifer Jackson 169 of 357 May 2017

Chapter 6 Ph.D. Thesis

Mp =N, — N, = N, (6-18)

6.4.3.2 Resistance to Malware (Mr) with recovery (SIR)

Resistance to malware with recovery is defined in the same way as no recovery:
as the number that do not become infected. However with recovery mechanisms in
place, resistance is not just attributed to by those immune. The rate of infection and
the rate of recovery that make up the reproduction number (R,), have an effect on
the final size of the epidemic (§4.3.2.6 , §4.3.3.6), and hence those that do not become
infected. This reproduction number relationship (note the difference in the axis
between Figure 6-8 (a) and (b)), as pictured in Figure 6-8 (b) is shown in relation to
the final size of an epidemic R(o0) and the total network size N,. The malware

resistance for a deterministic model and approximated for the stochastic model is

defined as:
Mg = Ny — R() (6-19)
|- Nn
Nn
N Mg = N, - R(inf)
MR = Nn Ns
L QN
QN, L
N A
L v R(inf) = N n —
Ns
= r AN, r(infj=1
2 [S, bound
8 & <® s -1
£ oy @ »
5 _E L R(inf) r(inf) bound Rinf) 1
Qo w
€
2 L
c r
0 R,=1 Ry=R
Time ° o Reproduction Number R0
a) Resistance with no recovery (SI) b) Resistance with recovery (SIR)

Figure 6-8 - Resistance to malware (Mr) with and without recovery

Sections 6.4.3.3 and 6.4.4 further describe the mathematics of Figure 6-8.

Jennifer Jackson 170 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.4.3.3 Quality of Service Tolerance (Qr)

As discussed within section 5.2.5 the overall functional performance of services
generated by an ad hoc network ecosystem is termed Quality of Service (QoS). In
the absence of network simulators to measure specific functional outputs associated
with QoS, the best the epidemic model can do is to assume that an infected device
has a defined amount of impact on functional performance which in turn degrades
the overall QoS. This can be considered particularly true for malware such as
viruses, worms, and Trojans (§5.2.4). In the simplest case it can be assumed that
infected devices contribute nothing to the overall QoS, whereas uninfected devices
contribute fully. This means that once a device has become infected it looses normal
functionality, and is only left with the ability to re-transmit the malware to other
devices. An infected device degrades QoS in proportion to the number of devices in
the network. If only a single device is infected there will only be a small impact, and
if all devices in the network are infected the QoS becomes zero. Under this
assumption the QoS is represented by the network level output of resistance to
malware. However the model could be extended to incorporate the general case
where the contribution to QoS is dependent upon the defined specifics of the
malware, including both the damage caused, and the mechanisms by which
propagation occurs (§5.2.5). The models have not been designed to depict behaviour
of the network fabric, however improved techniques for measuring QoS using

network simulators is discussed in §9.3.1.2.

The Quality of Service Tolerance (Qr) is defined here as the required resistance

level in order to maintain an acceptable QoS for an ad hoc ecosystem when faced

Jennifer Jackson 171 of 357 May 2017

Chapter 6 Ph.D. Thesis
with a malware attack. The QoS, or functional performance of the ad hoc ecosystem
may become severely impacted below this resistance level. For example, a Q of 0.8
would imply that the ad hoc ecosystem needs to be at least 80% resistant to the

malware to maintain an acceptable QoS.

Qr is the proportional tolerance level of resistance as shown in Figure 6-8 so that

when constrained:
Mg = QrNy (6-20)

6.4.4 Optimum Diversity for a Specific Malware Attack

For a specific malware attack it is possible to determine the optimum diversity in
terms of the number of software gene variants required at each locus for either a
specified Quality of Service Tolerance level (Qr), or the reproduction number
threshold (Ry < 1) to prevent a major malware outbreak. Firstly it is required to
determine the resultant constrained susceptibility (S,), given a specified @y, which
can subsequently be used with the AND type S, or the OR type S, equations (§6.3.2)

to find the optimum diversity (§6.4.4).

6.4.4.1 Constrained Sy With no Recovery (SI) and specified Qr

For a constrained @ with no recovery the constrained susceptibility S, can be

determined as follows.

Jennifer Jackson 172 of 357 May 2017

Chapter 6 Ph.D. Thesis

Using the constraint (6-21)

Mg = QrN, = N — N
Substitute in Ny = S, N,

QrNp = Ny — S, Ny,
Divide through by N, and rearrange for S,
Sp=1-0Qr
6.4.4.2 Constrained Sy With Recovery (SIR) and specified Qr

For a constrained Qr with recovery the constrained S, can also be determined.
Using the constraint (6-22)

Mg = QrNyp = Ny — R()
Substitute in R() = r()N; = r()S, N, (from Equation (4-25))

QrNn = Ny —1(0)Sp Ny,
Divide through by N,

Qr =1—1()S,

Rearrange for (o)

1—
) SpQT
Substitute (o) into the final size Equation (4-25): (6-23)

1—7(0) = (1 —i(0))e Ror(*)

Jennifer Jackson 173 of 357 May 2017

Chapter 6 Ph.D. Thesis

And substitute Ry = % = %

(55

Sp

Rearranging for Sp

Sy assuming i(0) = 0

_ (1-0Qr)
- . _(ﬂn(l—QT)) ’
1- [(1 —i(0))e v]

This gives the required proportion susceptible S, for a specified Qr and B, /y .

There are however three bounds as shown in Figure 6-8 (b). The asymptotic
bound (A) occurs for high values of R, where the final size of the epidemic
approaches all those devices in the network that are susceptible where r(o) = 1 in
relation to N;. This will happen when the recovery rate is very small relative to the

infection rate and resembles the SI model where there is no recovery.

Rearranging Equation (6-22) for S,

Bound A as shown in Figure 6-8 (b) (6-24)
1-0r
P ()

=1—-Qrwhenr(wo) =1
At this point S, is defined as its lowest possible value to maintain the specified

tolerance. The resultant diversity required to maintain this S, will be at its highest.

The bound (B) occurs when S, = 1. At this point the rate of recovery is so high

relative to the infection rate that all of the devices can be susceptible and the

Jennifer Jackson 174 of 357 May 2017

Chapter 6 Ph.D. Thesis
required tolerance can still be achieved. The resultant diversity will be at its lowest

for a specific type of attack. Using Equation (6-22)

Bound B as shown in Figure 6-8 (b) (6-25)

1-0r
Sp

T(OO) =

=1-0Qr, WhenSp =1

The bound (C) is a critical value of Ry (R.), which must not be exceeded when all
devices are susceptible to maintain at least a specified QoS to keep within the
bounds of A and B for a specified quality of service. Using the final size Equation

(4-25) with the approximation that I(0) = 0, and substituting in the bound B for
r(00):
Bound C - R, as shown in Figure 6-8 (b) (6-26)
1—171(0) = e Ro™(®) wherer(w) =1-Qr
Rearranging for R,
1-(1-Qr)=e Roll70n)
Qr = e Ro(1-0r)

_ —In(Qr)

Re=Ro=0—0p

Additionally when S, = 1 (6-27)

Ry = pTﬁn, where Sp=1

Jennifer Jackson 175 of 357 May 2017

Chapter 6 Ph.D. Thesis

Therefore

It is also worth noting that when all devices are susceptible the model reduces to
a standard SIR model so that when R, is reduced further beyond R, to below a
value of 1 a major malware epidemic will be prevented. For a specified Q7 therefore
there is a trade off between the speed of recovery and diversity. The faster the
recovery (lower R, value), the higher the tolerated susceptibility and hence less
diversity is required. At the bounds B/C (the critical value of Ry (R.)) the minimum
amount of diversity is required, whilst at the bound A, the maximum amount of
diversity is required. Figure 6-9 shows the relationship between @y and R.. When
Qr is 100%, maximum resistance is specified which can only be achieved when
either the susceptibility (S,) is zero, or when Ry, <1 to prevent a major malware

epidemic (§6.4.4.3).

R critical Rc

r r r r r r r r
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
QT

Figure 6-9 - Critical value R. for a specified Quality of Service Tolerance

Jennifer Jackson 176 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.4.4.3 Constrained Sp With Recovery (SIR) and specified Ro<1

To mitigate a specific malware attack by preventing a major outbreak the
reproduction number must be less than 1. Again this can be used to constrain the

susceptibility S, and optimise the diversity.

Using (6-28)

Rearranging for S,

6.4.4.4 Optimisation of Diversity

To optimise diversity three assumptions are made:

1) Variants are evenly distributed amongst devices for all loci so that in order to
achieve the Quality of Service Tolerance level or reproduction threshold it is
assumed absolute maximum diversity can be achieved with the calculated optimum

number of variants.

2) The number of variants at each locus has a minimum bound such that the
number must be equal to or greater than the number of exploits, since without the

least number of variants present the exploit would not exist.

3) The optimum number of variants is defined as the minimum number needed

such that variant richness is minimised:

Jennifer Jackson 177 of 357 May 2017

Chapter 6 Ph.D. Thesis

= (6-29)
minimise (Vg = 72 ;)
j=1
The resultant number of genotypes necessary is
=) (6-30)
G = v
j=1

6.4.4.4.1 For the AND malware type (General)

Assuming maximum diversity can be achieved for a given number of loci and

variants then using Equations (6-10) and (6-12) where

Jj=] .
S, < Hp(]) Xp X2 X (6-31)
b —= . max — vy 172."”17]
Jj=1
Rearranging, and assuming S,, is constrained
Xq Xg e X]
V) Vg V) 2L, where vy 2 Xy, Uy 2 Xy, V) 2 X (6-32)

Sp

The product of the number of variants at each locus equates to the maximum
number of unique genotypes (or genotypic richness) (§2.3.2.3, §5.3.2). The number of
variants at each locus that satisfies this number of genotypes and minimum bounds,
can have multiple solutions (§2.3.2.3). The optimum solutions for a given malware

and QoS tolerance, can be defined from the minimisation of the variant richness

(Vr).

Jennifer Jackson 178 of 357 May 2017

Chapter 6 Ph.D. Thesis

Worked example for two loci AND, with no recovery:

Suppose x; = 2,x, = 4,07 = 0.8,

X2

X
so that v v, = 1 i = 40 genotypes,and v{ = 2,v, = 4

T

The potential solutions for v1 and v2 are given in Table 6-1 and Figure 6-10 (a)
showing the bounds of the solutions. The optimum solutions are shown by the
shading in Table 6-1 with a value of 6.5 and in Figure 6-10 (b) by the minimum of

the curve of the variant richness solutions.

Table 6-1 - Worked example for the two locus AND type

240
Vi V2 VR
genotypes
2 (min) 20 40 11.0
3 14 42 8.5
4 10 40 7.0
5 8 40 6.5
6 7 42 6.5
7 6 42 6.5
8 5 40 6.5
9 5 45 7.0
10 4 (min) 40 7.0

40 22

351 20
30 181

251 16+

Variant Richness

S 20 14
15 12+
10 10~ optimum
5r 8l solutions
2=x2 |
0 6
0 2 4 6 8 10 12 0 2 4 6 8 10 12
vi=x1 vl v
a) Number of variants — different solutions b) Variant richness — optimum solutions

Figure 6-10 - Diversity optimisation example for the two locus AND type

Jennifer Jackson 179 of 357 May 2017

Chapter 6 Ph.D. Thesis

The computational result of an example where there are no malware recovery
mechanisms with two loci is given below (results for four loci are given in §8.2.2).
Malware is specified with two exploits at locus one, and four at locus 2, with a
Quality of Service tolerance of 80%. The result indicates a number of possible
optimum solutions with an average of 6.5 variants required. With 40 genotypes, the
minimum number of ad hoc devices participating in the network would also need

to be 40 in order to satisfy absolute maximum diversity.

6.4.4.4.2 For the AND malware type (Average)

For a practical system it may not be possible to specify the exact number of
exploits at each individual locus that the network must tolerate or mitigate, instead
it may be possible to specify an average number of exploits to obtain an average
number of variants at each locus (variant richness). Assuming the number of
exploits and variants are the same in each locus, so that x; = x; ... = xj,and v, =

vy ... = v}, then Equation (6-32) can be simplified to:

Variant Richness: 71t (6-33)

VR=UZ -
Sp

For the average equation there is only one solution and so minimisation is not
required.
6.4.4.4.3 For the OR malware type (General and Average)

The OR malware type has been defined for up to four loci. Assuming the
absolute maximum diversity can be achieved for a given number of loci and

variants then the following optimisations can be defined.

Jennifer Jackson 180 of 357 May 2017

Chapter 6 Ph.D. Thesis

Single locus:

The result for the single locus case is identical to the AND malware type but has
been included here for clarity and completeness. Using Equation (6-15) for one locus

where
x
SP < P(Dmax = v_i (6-34)

Then by rearranging for v;and assuming S, is constrained the number of

variants required can be easily solved for a fixed number of exploits and tolerance.

X
vy = 5—1, where vy = x4 (6-35)

p

The result gives one possible solution for v;.
Two Loci:
Using Equation (6-17) for 2 loci where

(6-36)

2
= (])max 1_[P(Dmax = [z_i + %] _ [xlxz]

j
p <
2 U1V,
j

Rearranging the equation for v, and assuming S, is constrained. The general

equation is:

(xllsz _ Xz) (6-37)
vy = xi—,where vy = xq,and v, = x5
(5= 5)

This will give different solutions for v, when v, is varied above the minimum of

x1, with the optimum solutions satisfying the minimum variant richness (V).

The computational result of an example with no malware recovery mechanisms

with two loci is given below (results for four loci are given in §8.2.2). Malware is

Jennifer Jackson 181 of 357 May 2017

Chapter 6 Ph.D. Thesis
specified with two exploits at locus one, and four at locus 2, with a Quality of
Service tolerance of 80%. As with the two locus AND example, the result has a
number of possible optimum solutions with an average of 28 variants required

generating 720 to 780 genotypes.

Worked example for the two locus OR:

Suppose x; = 2,x, = 4,07 = 0.8,

sothat v; = 2,v, = 4

X1X)
—x
(v, 2

(% ~5,)

The minimum bounds for the number of variants are shown in Figure 6-11 (a)

1722

leaving only valid solutions in the top right quadrant, with optimum solutions

being the minimum variant richness as shown in Figure 6-11 (b).

200 T T - 100
150
50
100 »
valid 3
501 solutions % <—>
Q Er: (U optimum
Vv2=x2 0 S solutions
&
-50 7 50F
-100
150 5 5 5 100 r r r r r r r
0 10 20 30 40 0 5 10 15 20 25 30 35 40
vi=x1 v
\
a) Number of variants — different solutions b) Variant richness — optimum solutions

Figure 6-11 - Diversity optimisation example for the two locus OR type

Variant Richness (average number of variants for an average number of exploits): As

with the AND type, when an average number of exploits are specified, the number

Jennifer Jackson 182 of 357 May 2017

Chapter 6 Ph.D. Thesis
of exploits and variants are assumed to be the same in each locus, so that x; =

X, and vy = v,, then equation (6-36) can be reduced giving the average equation:

2x x? ;
P (6-38)

Which can be solved numerically for v.

A similar derivation for the general and average equations can be shown for
three and four loci, and is documented within Appendix A (A.3) and (A.4). The
determination of the exact number of variants can be solved computationally,

results of which are documented in chapter 8 (§8.2.2).

6.4.4.4.4 For the OR malware type (Approximation)

When the number of variants (v) at each locus becomes large relative to the
number of exploits (x) at each locus, then the summation term dominates the
resultant susceptibility (S,). So that for relatively large values of v or correspondingly

small values of S,,, the OR susceptibility equations can be approximated by:

" % % (6-39)

j=J
Sp(approx) < Z P(j)max = [_
j=1

)’

(2 V)

where vy > X1, Uy > Xg, ... V) D X

For given values of x4, x5, ... x; and S,,, v; can be computed for a range of v;to v;_4

values to find the valid solutions satisfying the minimum variant richness (V).

Variant Richness (average number of variants for an average number of exploits): If the
number of exploits and variants are assumed to be the same in each locus, Equation

(6-39) can be simplified to:

Jennifer Jackson 183 of 357 May 2017

Chapter 6 Ph.D. Thesis

5, < Jx (6-40)

Giving:

Approximations and exact solutions for up to four loci are compared in Figure
6-12 for one exploit per locus (Figure 6-12 (a)) and eight exploits per locus (Figure
6-12 (b)) when all loci have the same number of variants. The graphs show the
example when a specified QoS tolerance of 80% with no recovery equates to a small
value of susceptibility with a large variant richness. In this region the exact solutions

are close to the approximated solutions (dashed lines).

0.8 0.8

0.6 0.6

Sp
Sp

0.4 0.4

80% 0.2
Quality off
Senice

80% 0.2H—
Quality of
Senice

0

0 : : : : :
° 5 oo 15 20 % 30 3% 40 0 50 100 150 200 250 300
Variant Richness (v1,12,18,4) Variant Richness (v1,v2,V3,v4)

a) Up to 4 loci OR 1 exploit per locus b) Up to 4 loci OR — 8 exploits per locus

Figure 6-12 - Exact and approximation curves for the OR malware type

Minimum Network Size: When the summation term dominates the resultant
susceptibility, all genotypes accounted for more than once in the equations are
ignored (Equation (6-39)), thereby eliminating any overlapping relations between
loci. Subsequently an even distribution of genotypes no longer matters, only an

even distribution of variants to achieve maximum diversity (maximum variant

Jennifer Jackson 184 of 357 May 2017

Chapter 6 Ph.D. Thesis
diversity). The required minimum network size to achieve the required constraint is
therefore no longer governed by the number of genotypes, but the variant richness
so that a smaller number of devices are needed to achieve the required constraint

such as QoS Tolerance.

6.4.5 Resilience to Malware (ML)

For a malware model with no recovery, there is no resilience component;
however the time at which the peak infection occurs can be calculated. For a
malware model with recovery the resilience can be measured under differing

scenarios.

6.4.5.1 Peak Infection Time T1 of Malware with No Recovery (SI)

For an SI deterministic model the time T; at which the infection peaks has an
exact solution, when the number infected gets to within 1 of its final value. Equation

(4-14) in section 4.3.2.4 defines T; as:

1 (N =1V - 1(0)) (6-41)
h=3 rl(10) >

For a partially susceptible network with static diversity, the equation becomes:

1 (Ns — 1)(N; — 1(0)) (6-42)

substitute for Ny = SpNy, and Bg = ¢;T = ST

Ty

_ b (el = D)(SpNa — 1(0)
B SpenT n(1(0) >

Jennifer Jackson 185 of 357 May 2017

Chapter 6 Ph.D. Thesis

6.4.5.2 Resilience to Malware with Recovery (SIR)

For an SIR model, the reciprocal of the time at which the epidemic ends and all
devices have recovered to their original operational state signifies the system level
rate of recovery, or resilience M;. However, there is no analytical solution for the
end time (§4.3.2.4), but can be measured from the SIR simulation when the number

recovered is within 1 of its final value. Equation (6-43) defines M, as:

1 (6-43)

M = TR =R = 1) =T(0)

6.5 Summary

This chapter describes a mathematical epidemic approach to a diverse system
model that has been developed to incorporate software diversity and malware at the
genetic level of an ad hoc network ecosystem. The mathematical approach is
constrained by four key aspects: 1) homogeneous mixing, 2) static diversity, 3)
compatible software functions, and 4) non-influential users. Despite these
constraints some key mathematical equations and methods have been established to
investigate the security protection or mitigation offered by diversity and how much
diversity is needed to tolerate or overcome specific attacks under these constraints.
The mathematical approach has been developed with the standard SI/SIR epidemic

models and can be used with both deterministic and stochastic methods.

A key feature of this mathematical approach is the susceptibility model which
defines the diversity and the malware, and subsequently the susceptibility. Two

types of malware have been incorporated; the logical AND and the logical OR

Jennifer Jackson 186 of 357 May 2017

Chapter 6 Ph.D. Thesis
which are representative of malware using multiple exploits to gain entry and
propagate. Equations have been derived using probability theory for the
susceptibility of both the AND and OR types for multiple exploits, loci, and
software gene variants. The AND and OR methodology of matching exploits to
genotypes is different from the standard gene matching algorithms used in ecology
since the method used here is more appropriate to malware and the different types.
It is more generalised but can also be constrained for specific malware and diversity
scenarios. Under any specific malware and diversity scenario the resulting epidemic
can be simulated. Current epidemic based malware models of diversity have been
referred to as the ‘one locus model” since they are equivalent in this model to a

software stack genotype with one locus.

Outputs from the model developed by this work include the two key
components of ecosystem stability: resistance and resilience. An optimum diversity
can be determined to either tolerate a specific malware attack given a specified QoS
tolerance, or overcome an attack when recovery mechanisms such as software
patching and antivirus detection are in place. For a specified QoS tolerance there is a
trade off between the speed of recovery and diversity. The faster the recovery, the
higher the tolerated susceptibility and hence less diversity is required. Under certain
constraints approximations can be used to simplify, yet still determine, the optimum
diversity required. Worked examples are included showing how diversity
optimisation can be computationally determined. The calculated optimum diversity

necessary to tolerate or overcome a specific malware attack informs upon the

Jennifer Jackson 187 of 357 May 2017

Chapter 6 Ph.D. Thesis
minimum number of devices required to uphold this optimum diversity

requirement.

In relation to the hypothesis (§1.2), the development of the epidemic model gives
some insight into how incorporating biodiversity concepts into computer networks,
specifically ad hoc networks, can make them more resistant to cyber attacks. The
model can inform the amount of security protection offered by biodiversity in the
form of either tolerance to a specific type of attack, or mitigation to a specific type of
attack when recovery mechanisms are available. Under such scenarios the optimum
level of diversity necessary to provide the required security protection can be

determined.

Jennifer Jackson 188 of 357 May 2017

Chapter 7 Ph.D. Thesis

Chapter 7

Diverse System Model: Agent-Based

7.1 Introduction

This chapter describes the architecture of the agent-based diverse system model.
Firstly an overview of the system is given, highlighting which aspects are comparable
to the epidemic model. Each of its three components; network model, diversity model,
and malware model are then described over several sections detailing their design and
modes of operation. A section on outputs describes a number of measured properties
including resistance and resilience and how an optimum diversity can be measured

for a given scenario. Finally a description of the implementation framework is given.

7.2 System Model Overview

The agent-based diverse system model has been designed with greater flexibility
than the epidemic based method (§6) with the inclusion of dynamic genotype
configuration, geographical location, integration with some existing security
mechanisms, and realistic constraints associated with software configuration
limitations as a result of users, hardware, or compatibility. However, it is also

capable of simulating the same conditions as the epidemic model to allow the

Jennifer Jackson 189 of 357 May 2017

Chapter 7 Ph.D. Thesis
comparison of results between the diversity methods and for the comparison of

results where the inclusion of additional mechanisms is made.

The agent model has several modes of operation as shown in Figure 7-1 which
can be described by the selection of a network model, a diversity model, and a malware
model. Selection of those circled by a dashed line indicates the modes that are

comparable to the epidemic approach.

As with the epidemic approach, the network model assumes that ad hoc devices
move around with their users. Devices have the same or different software stack
genotypes that, in this agent-based approach, are either fixed for a period of time or
are dynamically changed in response to new information. Additionally in the agent
approach it is possible for devices to exchange genotype information upon contact
with each other (In the sense of observation of software configuration on the
contacted device). A malware source initially infects one device which can then lead

to malware propagating within the ad hoc network.

In the agent-based approach there are two choices of network model. The first uses
the homogeneous mixing assumption (§4.2.5) where random encounters are
generated between devices. The second uses the random waypoint (§4.2.1) approach
to inform the physical locations of devices to determine which, when, and for how
long nearby devices are in range. The network model is further described in section

7.3.

There are two types of diversity model, static diversity where the genotypes present

on each device remain fixed throughout a malware epidemic simulation, and

Jennifer Jackson 190 of 357 May 2017

Chapter 7 Ph.D. Thesis
dynamic diversity where the genotypes may change in response to information. The

two models are described further in sections 7.4 to 7.6.

The malware model is responsible for the generation of malware exploits, genetic
matching, and the monitoring of health states. It has two modes of operation, one in
which it is assumed there are no recovery mechanisms in place for the malware. In
this case each device has two health states of susceptible or infected (SI), which is
comparable with the SI compartments of the epidemic model (§6.4.2.1). The second
mode of operation is when there are recovery mechanisms in place where each
device has an additional recovered (R) state, which is comparable with the SIR
compartments of the epidemic model (§6.4.2.2). The inclusion of additional security
mechanisms alters the dynamics between states and is described further in section

7.7. Outputs from the model are covered in section 7.8.

Network Model Diversity Model Malware Model
- /Random Encounters\ NN T T -~ -7 T
/\ -) C Static Diversity N s Sl N
\(homogeneous mixing) _ -—_ T // \
SN~ - P S \
or / Or / \\ Or)
. . . N /
Random Waypoint Dynamic Diversity ~o_ S_lli 7

The dashed ovals indicate the modes comparable to the mathematical approach

Figure 7-1 — Agent-based diverse system model showing modes of operation

7.3 Network Model

The network model has two modes of operation: random encounters and random
waypoint, both of which result in a non deterministic pattern of encounters and are

described as follows.

Jennifer Jackson 191 of 357 May 2017

Chapter 7 Ph.D. Thesis
7.3.1 Random Encounters

The random encounters method of homogeneous mixing uses randomisation of
encounters between devices that is comparable to the stochastic epidemic model.
This network model has been implemented to enable direct comparisons between
the epidemic approach and the agent approach with the same input conditions.
Additionally, at the same time it incorporates an element of realism that stochastic
models try to represent (§4.3.3). The flow chart is given in Figure 7-2. The
encounters occur stochastically with an average rate of contact ¢ to model the
Poisson process (§4.3.3.1). A random number is chosen for each device from a
uniform distribution with a value between 0 and 1. This is used within an inequality
equation to validate an encounter against the contact rate ¢ at each time step. The
binary result determines whether an encounter has occurred (encounter flag). The
number of the randomly encountered device is selected from a uniform distribution
of those devices in the network. The randomly chosen device is selected such that it
cannot be itself. On a successful encounter it is assumed that both genotype
information and malware, if it is present, are transmitted, so that the probability of
transmission T = 1. With the random encounter method there is no consideration to
the locality of devices, or the length of time taken to transmit the genotype or

malware data. This is inherent in the specified average rate of successful contact.

Jennifer Jackson 192 of 357 May 2017

Chapter 7 Ph.D. Thesis

Set the contact rate ¢

-
-

¥ On each time step

Choose a random
number

A

If random number <
contact rate ¢
Set encounter flag

A

Choose a random
node to encounter with
but must not be itself

Figure 7-2 - Random Encounters implementation
7.3.2 Random Waypoint

7.3.2.1 Calculation of Waypoints

The random waypoint algorithm has been implemented as described in section
4.2.1 to model the mobility of devices within a confined rectangular area where the
selected destination, speed and a stationary time period (pause) of each device is
chosen randomly from a uniform distribution. The result is a set of waypoints (x
and y coordinates) defining the location of every device at every time step of the
simulation. The flow chart of the implementation is given in Figure 7-3. During the
calculation process there are small differences between the randomly selected
destinations and the actual destinations during each segment of a devices travel
path. This is due to integer rounding of the incremental x and y coordinates (delta x

and delta y) and therefore the true destination, distance and angle are recalculated.

Jennifer Jackson 193 of 357 May 2017

Chapter 7

Jennifer Jackson

Set the bounds of
area, speed, and
pause

‘On each time step

Do
need a new
destination and
ause?

Select a pause, speed

and destination at

random from within
the bounds

Y

Calculate the new
distance using
Pythagoras, and the
new angle

v

Calculate the number
of integer time steps
needed

v

Calculate the delta x
and delta 'y
coordinates per time
step

v

Recalculate the actual
destination, distance
and angle due to
integer rounding of
timesteps

Do
need to pause?

Move delta x and delta
y coordinate

Figure 7-3 - Random Waypoint implementation

194 of 357

Ph.D. Thesis

May 2017

Chapter 7 Ph.D. Thesis

The random waypoint model has the flexibility to be extended to include other
geographically shaped areas of interest or modified to incorporate non-random
waypoints. Additionally the random waypoint algorithm could be replaced with
real waypoint data of mobility patterns and is therefore a first step toward

modelling geographical location of devices.

7.3.2.2 Selection of Devices in Range

Communication between devices in practical ad hoc networks is controlled
through routing protocols (§3.2.3), which form part of a larger network protocol
stack (§3.2.1.3). There may be several factors that determine which devices exchange
data, and when this occurs, including the requirement to be in range, availability to
provide the necessary bandwidth, link strength and link duration. Routing
protocols store routing information in routing tables to instruct where particular
data is to be sent. In the absence of a simulator (§4.2.2) to model realistic network
traffic and routing a more abstract approach is taken based upon several relevant

factors as described below.

To model a successful encounter between devices they must be within
communication range, a parameter which can be configured for the simulation run,
for a period of time long enough to transmit genotype information and malware.
The method for selection of devices in range has been modelled as one of the

following (pictured in Figure 7-4).

1. Nearest in range
2. Random in range

3. Available in range

Jennifer Jackson 195 of 357 May 2017

Chapter 7 Ph.D. Thesis

2. Random
o 1 in range
‘ /// | /\\

\\ %a“ge
L

[./
! 1. Nearest
in range

0’ 3. Available

in range

Figure 7-4 — Selection of devices in range

The first two selection methods account for those cases where a device can
communicate with another device, if it is in range, at any point in time. This results
in devices receiving data from only one other device at a time, but allows them to
send data (and potentially malware) to more than one device at a time. This is
directly physically possible in a multi-user (MU) communication system such as the
Multi-User Multiple Input Multiple Output (MU-MIMO) method [259] where there
can be separate communication channels between devices. Even protocols with
single user (SU) communications can appear to communicate simultaneously by
utilising multiplexing techniques, although the transfer speeds of genotype and
malware data would be comparably slower. The random in range selection method
allows for comparison with the random encounter model representative of a
homogeneous mixing system (§4.2.5) where a device can be selected randomly by
more than one other device at any point in time. The nearest in range selection
method is an alternative where the likelihood of better link strength and link

duration is favoured by the model for the transmission of data.

Jennifer Jackson 196 of 357 May 2017

Chapter 7 Ph.D. Thesis

The third selection method only selects devices that are both in range and are
available to provide the maximum link bandwidth since they are not currently
communicating with any other device. This could represent a routing protocol

where the availability of a device is a favoured factor.

7.3.2.3 Successful Data Transmission

Successful data transmission between a pair of devices can only be achieved if
the communication link can be maintained long enough. In this model it is assumed
that the genotype data and malware are transmitted in an order consistent with a
hierarchical network protocol stack (§3.2.1.3), where the malware cannot be sent
prior to link establishment; moreover it is assumed that the entirety of the
packetised genotype or malware data must be communicated for successful receipt.
The transmission of data between devices is modelled using a tagging system where
the selected device in range is tagged to signify the start of data transmission. The
tag is released if the device goes out of range or if the data is transferred
successfully. The implementation method that determines which devices are in
range and when they are tagged is given in the flowchart of Figure 7-5 (a). Euclidian
distances between devices are calculated using their x and y coordinate positions to
determine if they are in range. The tagging process is described using the state
diagram pictured in Figure 7-5 (b). The time required to successfully transmit
genotype data and the time required to successfully transmit the malware exploit
are two parameters that can be set in the model. When the device is tagged the end
times of successful transmissions of genotype (genotype end time) and exploit data

(exploit end time) are calculated. If there is no malware then the tag is released at the

Jennifer Jackson 197 of 357 May 2017

Chapter 7 Ph.D. Thesis
end of the genotype data transmission (state 3: Transmit genotype). If the tagged
device goes out of range before one of the end times then the tag is released and the
transmission of related data is unsuccessful. Since it is assumed that the genotype
data is transmitted before the malware, it may be possible to successfully transmit

genotype data, but not the malware.

Set the
communication range

On each time step

-

Y

Get device x, y,
coordinate positions

'

Calculate which
devices are in range
using Euclidian
distance

Y

Check which devices
are currently tagged

Set genotype end time
Set exploit end time

Tagged node
out of range
Release tag

>=
genotype
end time

Set genotype time out

Genotype encounter

Y

3

Is tagged Tagged node out of Trin?mlt Outputs
device still in range and rangé;a /I no malware genovpe
not yet fully elease tag -
transmitted? exploit)
end time Exploit encounter >
4
lect ice if th i : i
Selec zz;eRv;::grﬁ?nl raner: is one Tagged node Transln_wtut
2) Nearest in range out of range / e
Finished comms
3) Available in range — exclude devices Release tag
that are currently tagged
(a) Selection and tagging of devices flow chart (b) Tagging of devices for successful data transmission

Figure 7-5 - Successful data transmission implementation

The resultant output of the Matlab function to the wider model is two single flags
per time-step, where one determines if genotype data is successfully transmitted
(Genotype encounter), and the other determines if the exploit data is successfully

transmitted (Exploit encounter). A genotype time out period is defined to allow a

Jennifer Jackson 198 of 357 May 2017

Chapter 7 Ph.D. Thesis
minimum time before genotype information is captured again from the same device
(genotype time out). This prevents repeated data capture of the same genotype
information in a slow moving scenario. However, if a repeatedly encountered
device becomes newly infected, the infection is transmitted assuming it remains in

range for long enough.

7.4 Diversity Model - Measuring and Calculating
Diversity

7.4.1 Achieving Maximum Diversity in a Practical Ad hoc
Network

It is recognised that the more software gene variants and loci there are within a
system, the greater the number of possible genotype configurations there are, which
could become large (§2.3.2.3, Figure 2-10). It quickly becomes impractical to model
network sizes capable of achieving absolute maximum diversity for one instance of a
network. Additionally, network sizes in practice may range from being very small
to very large. When simulating malware propagation, it is sufficient to only include
enough genotypes to adequately model the proportion susceptible. Since it is only
those susceptible that can ever become infected (§7.5.1).A condition of maximum
diversity is that all variants are distributed evenly at each locus (§5.3.2.1). The
measured distribution of variants is incorporated into the Nei diversity index
calculation (§2.3.2.2.2) and is referred to as wvariant diversity within this research
(85.3.2.1). To achieve maximum variant diversity at a single locus there needs to be
sufficient devices (N,) to represent all of the available variants (v). When the

number of devices is large enough that all possible genotypes can be evenly

Jennifer Jackson 199 of 357 May 2017

Chapter 7 Ph.D. Thesis
represented as well then the absolute maximum diversity condition can also be
achieved. The agent-based model therefore aims to maximise diversity by
maximising variant diversity at each locus independently, regardless of the network

size.

7.4.2 Calculating the Maximum Obtainable Variant Diversity

The maximum value of the Nei Genetic Diversity for the monoploid genotype
case (§5.6.2.1) occurs at one locus when the number of devices (N,) is the same as
the number of available variants (v) such that every variant is only used once. This
leads to the frequency of each variant being Nin The maximum diversity index of 1
(§2.3.2.2.2) however is only achievable for large network sizes (and a
correspondingly large number of variants), where, using the substitution for the
number of different alleles (a) with the number of variants (v) in equation (2-7) of
the Nei diversity Index gives:

= (7-1)
Pa=1-) ()%
i=1

1
where f; = N—at maximum diversity

()]

Substitute in v = N,,, to give the Nei diversity as

szl—

1
P;=1- [N—], where N, » 0 for P; = 1
n

However, for the ad hoc network being modelled, the number of devices is likely

to be greater than the number of variants available at a locus, which may be few in

Jennifer Jackson 200 of 357 May 2017

Chapter 7 Ph.D. Thesis
number for practical reasons. In this case the maximum obtainable diversity will be less
than the maximum diversity (given a fixed network size) and less than 1. At the
maximum obtainable diversity the variants are evenly distributed across the
devices, so that the frequency of each variant is 1/v resulting in the probability (Nei

diversity) at a single locus as:

. [v y (%)2] (7-2)

1
=1- [—] where N, = v

For example when the number of variants is only two, the maximum obtainable
variant diversity is 0.5, regardless of how many devices (subject to a minimum of
two) are present in the network which means that half of the devices will have one
variant and the other half will have another variant. When v = N,,, equations (7-2)
and (7-1) are equivalent. This calculable value provides a reference as to the level of
diversity that can be achieved given a finite number of variants under ideal

conditions.

7.4.3 Practical Constraints Limiting Variant Diversity

In an ideal scenario it is assumed that all devices are able, and all users are
willing, to use any of the different versions of software available at every locus.
Additionally, the ideal scenario assumes that software across loci is compatible,
such that any genotype can be possible given a fixed number of variants at each
locus. In practice however, generating the ideal scenario may be difficult. For
example if diversity is achieved through readily available versions of software

programs providing the same functionality (§3.2.1.3) they may not be compatible

Jennifer Jackson 201 of 357 May 2017

Chapter 7 Ph.D. Thesis
across loci (e.g. operational only with a specific operating system), they may differ
in terms of quality and efficiency, and both user desirabilities and hardware
limitations may have an influence over which ones are chosen for a specific device.
Additionally user desirabilities may differ, depending upon whether they are
imposed at a community scale, such as from an IT department where groups of
devices may be constrained, or at an individual scale through personal preferences.
Additionally, producing automated diverse versions of software or binary files is
still in its infancy (§3.2.1.1), and even when implemented there may still be
problems interfacing between the different products. These practical constraints
could lead to variant or genotype configurations that are unusable or unfavourable,
which will influence diversity patterns in the network. The inclusion of constraints

in the agent model is detailed in sections 7.6.1.1, 7.6.2.2, and 7.6.2.4.

7.5 Diversity Model - Static Diversity

7.5.1 Distribution of Software Gene Variants

The diversity model has two modes of operation, the first of which is static
diversity. Static diversity can either be fixed for all runs of a simulation with a pre-
computed data set to achieve a specific distribution of variants and hence
genotypes, or the variants can be assigned randomly at the start of every run. The
random assignment of variants is used to achieve the maximum diversity possible
for a given number of devices, loci and variants. At the start of each simulation run,
each device chooses a software variant from the available pool at each locus using a
uniform random distribution so that on average the software variants are

distributed evenly across devices independently at each locus. This method of

Jennifer Jackson 202 of 357 May 2017

Chapter 7 Ph.D. Thesis
random assignment is comparable to the epidemic model of static diversity under
maximum conditions (§6.3.2.2). Figure 7-6 (a) shows the measured variant diversity
from simulation against the calculated maximum obtainable under ideal conditions
(§7.4.2) for a given variant richness with four loci and 1000 devices averaged over 10
runs. The maximum genotypic richness (number of genotypes) (§5.3.2) and
genotypic diversity (§5.3.2) that can be achieved is 1000, as shown in Figure 7-6 (b),

which is as expected with 1000 devices.

The maximum number of unique genotypes (§5.3.2) surpasses this when V; = 5,
however when simulated with enough devices, or averaged over a sufficient
number of runs, all unique genotypes will be utilised with equal probability. For a
large variant richness a sufficient number of devices or runs become impractical to
simulate as described in section 7.4.1, so that a proportion of genotypes will not be
represented. However when simulating malware propagation, it is sufficient to only
include enough genotypes to adequately model the proportion susceptible. The
proportion susceptible is determined by the malware defined. If 50% of the
genotypes are susceptible then a network size capable of adequately simulating this
could be smaller than if only 1% are susceptible. If only 1% are susceptible the
network would need to be relatively bigger (or more runs would be needed) so that
on average the susceptibility is adequately represented. In practice for such a
scheme it may be both true that there are more genotypes available than currently
being used in the network of interest, or less genotypes available than the number of
devices. For example ten variants at each of the four loci would generate 10,000

genotypes. For a small network it may be true that only a subset of these are realised

Jennifer Jackson 203 of 357 May 2017

Chapter 7 Ph.D. Thesis
at any given time. For static diversity simulated over a number of runs (or different
network instances, where genotypes are assigned randomly) would average out so

that all genotypes are equally used, even though in a single instance not all would

be used.
0.9 10000
0.8 9000 | —+— Genotypic Diversity (simulated)
Maximum number of unique genotypes
Ll —o—
0.7 8000 (calculated)
= 7000 - | —5— Genotypic Richness (simulated)
2 06 o
> 2 6000
® 0.5- g
g S 5000
8 04 I
_E -g 4000 [-
S 0.3 a
> 3000 -~
0.2r 2000
01k —*— Maximum obtainable (calculated) | |
’ —©— Variant Diversity (simulated) 1000 - P
0 : : : : 0 : c
0 2 4 6 8 10 0 2 4 6 8 10
Variant Richness (VR) Variant Richness (VR)
a) Variant Diversity (Nei) at each locus with 1000 b) Genotypic measures for 4 loci with 1000 devices,
devices, over 10 runs over 10 runs

Figure 7-6 - Diversity measures in static diversity mode

7.5.2 Susceptibility

For the agent-based model the health status of every device is initially set to
susceptible (§7.7.1) at the start of a simulation run regardless of genotype
configuration. However the true susceptibility of the network can be measured
under static diversity conditions by matching the generated genotypes against a
specific malware attack type, and summing all those that match. Whilst the
susceptibility should closely match the result of the epidemic model, under the
same diversity and malware conditions, the dynamics of the infection and specific
parameters will depend upon the network model. For the random encounter
network model, the dynamics of the infection should closely match the epidemic

model with the same input parameters.

Jennifer Jackson 204 of 357 May 2017

Chapter 7 Ph.D. Thesis
7.6 Diversity Model — Dynamic Diversity

This section describes two dynamic diversity algorithms, both of which aim to
maximise variant diversity given a fixed number of variants, devices and loci. The
first is based upon the random selection of available variants and is an extension to
the static case that forms a baseline in which to make comparisons. The second
algorithm allows individual devices to select variants based upon information
obtained during local encounters with other devices and incorporates the
geographical locality of devices. The flow charts for the two algorithms are given in

Figure 7-7, with the differences highlighted by the double-lined boxes.

The literature suggests that a degree of dynamism in a diversity scheme can be
beneficial to confuse a targeted attacker (§3.4.3.1 and §3.4.3.4), however in a moving
network where communication links are continuously changing, and in a future
Internet where software and malware can rapidly evolve, together with access to
vast quantities of data affecting local decisions, the need to be real-time dynamic

may be essential.

The algorithms can optionally incorporate two additional mechanisms, as
indicated by the dashed lines, of current technology to explore the benefits of a
dynamic scheme when integrated with existing security mechanisms such as
vulnerability data and virtualisation (VM update). These are in addition to the
standard recovery mechanisms included by the epidemic model (§6.4.2.2) and
implemented by the agent model (§7.7.3.2). In addition, practical constraints, as

indicated by the dotted lines, such as software compatibility and user influence can

Jennifer Jackson 205 of 357 May 2017

Chapter 7 Ph.D. Thesis
be switched on to see the effects a realistic scenario may have. The algorithms and

the additional mechanisms are further described below.

Initial Initial
genotype genotype
e |

Is there a successful
genotype encounter?

Is there a successful
genotype encounter?

Y
- \J
sa T T lsa s Store the
e recovery \\\ -~ recovery > genotype
“._ mechanism -~ “~_ mechanism -~
. available?, -~ ~. available? -~ v

s Gpdate time (RV-T)__ N s Has N
" vulnerability data™~ / number of encounters >—— _ - vulnerability data™~ number of encounters
~_ (for blacklisting) _ - (RV-E) (FavScore; “._ (for blacklisting) -~ Reached?
. available?, - ", available? -~
7 S
! Y ‘r Y
1 I
! ! Calculate Calcu\a(e local
! 1 diversity variant
I ! diversity and
| metric
| ! std.
| 1 i T
|
v Y Do
Select random | |
i p|variantateach| || === »-| Fa i
L Variant pool varian i ! = Variant pool »
- ! ! -
\oc‘u;from — W vm - score
; : available pool ! Update | } :
: ? Gorians L ; ‘o] o
[|
[! 1
Probabilistic variant ! |
a- ! !
... .choices | ! u\ﬂ:(el
‘Compatibility fitering’ | up }
4444444444 L
: | ;
[> S——
! Y ! - Stop trigger
Has stop N Has stop N
up|d_ating t;even updating been
riggered? triggered?
System Trigger System Trigger | Restart trigger
(new variants, constraints, (new variants, constraints, }
vulnerability data, vulnerability data, v

a) Random Variant Selection (RV) b) Favourability Score (FS)
Figure 7-7 - Dynamic diversity algorithms

7.6.1 Dynamic Diversity Algorithm— Random Selection of
Variants (RV)

The most simplistic dynamic algorithm, the random variant (RV), attempts to
maximise variant diversity by randomly selecting a variant for each locus. This is
similar to the static case, except that genotypes on each device can be reselected in
response to input triggers such as time (RV-T), encounters with other devices (RV-
E), or other system triggers. The flow chart for the random variant algorithm is
given in Figure 7-7 (a). Only constraints (§7.6.1.1) or vulnerability data (§7.6.3) can

vary the restriction of variant choices at each device.

Jennifer Jackson 206 of 357 May 2017

Chapter 7 Ph.D. Thesis

7.6.1.1 Constraints — User Influence

User constraints can be applied to both algorithms, but differ in the flexibility of
the constraints that can be applied. For the RV algorithm, variants are constrained
such that they are either available or not available for selection. This coincides with
the way in which variants are selected randomly from those available without any
bias. For example individual constraints such as physical hardware restrictions or
user software preferences may limit those available for selection. When a device is
constrained, such that only one variant can be selected, the result is a device with
static diversity. Incorporating constraints into the dynamic model will limit the
achievable variant diversity (§7.4.3) that the ad hoc ecosystem can achieve when

maximisation is being sought.

7.6.2 Dynamic Diversity Algorithm- Favourability Score (FS)

The favourability score algorithm (FS) attempts to maximise diversity by
allowing each device to make variant choices based upon local encounters with
other devices and exchanging genotype information. Each device independently
maintains its own perspective on the local distribution of software variants and
variant diversity, and adjusts its own genotype accordingly. The agent model in
dynamic diversity mode assumes that the genotype information of encountered
devices is visible. For the scheme to become practically viable both a discovery
protocol and a trust model would need to be developed to provide the necessary
reliable information. There are many discovery protocols in existence for the
automatic detection of devices, their services and parameters to connect them. The

Bluetooth service discovery protocol for example determines which Bluetooth

Jennifer Jackson 207 of 357 May 2017

Chapter 7 Ph.D. Thesis
profiles are supported to determine compatibility [260]. A discovery protocol for the
exchange of genotype information would discover software variants rather than
profiles. Additionally a trust model would be needed to establish trust relationships
between devices to both authenticate the validity of the genotype information, and
maintain privacy between trustees. Trust models for ad hoc networks determine
trustworthiness of other devices without central authorities [261] allowing devices
to participate in various protocols, for example determining trustworthy routes for
forwarding data packets [262]. The work in the thesis does not develop a discovery
protocol or evaluate trust models for the exchange of genotype information; instead
the research firstly considers whether allowing software variant information to be
visible upon contact would be of benefit to both diversity and security against
existing forms of malware propagation. It also considers whether there are
advantages of dynamic diversity using this methodology over static diversity or

random assignments of variants.

The flow chart for the FS algorithm is shown in Figure 7-7 (b). During the
diversity maximisation period, as each device encounters another device
successfully, the genotypes of the encountered devices are recorded. When enough
encounters have been made, a parameter which can be set, a diversity metric
(§7.6.2.1), is calculated based upon the genotypes of the encounters. If necessary the
device will adjust the genotype to a different software variant configuration in an
attempt to improve diversity within the network (§7.6.2.3, §7.6.2.4). If restrictions
are set such as through vulnerability data (§7.6.3), software compatibility (§7.6.2.4),

or user constraints (§7.6.2.2), this will affect the chosen genotype.

Jennifer Jackson 208 of 357 May 2017

Chapter 7 Ph.D. Thesis

7.6.2.1 Calculating the Diversity Metric

The diversity metric (dm) is formed independently by every device and indicates
which variants could be chosen to improve diversity. Firstly, genotype data is
stored by every device in a running buffer with a first in — first out (FIFO)
arrangement, the depth of which can be set. The frequency of each recorded
software variant (f,) at every locus is calculated by summing the occurrence of each
variant stored in the buffer and dividing by the number of encounters. This
indicates how many of each variant is being used locally. To obtain a metric
indicating which variants could be chosen to even out their distribution, the
frequency is subtracted from unity and then normalized across each locus to 1. This
results in variants used frequently being assigned a low metric value and variants

used infrequently being assigned a high metric value up to a maximum of 1.
dm, =1- f,, 0<dm,<1 (7-3)

It is assumed that each device only stores the most recent genotype information
so that the diversity metric is calculated from only those stored in the buffer. If all
genotypes were stored and used, the data would not be representative of the current
local network since both network and software stack configurations will change

over time.

7.6.2.2 Constraints - Individual and Community User
Desirabilities

The application of user constraints is more flexible in the FS algorithm, than the
RV algorithm, but can also be limited to match the RV case. The constraints are

based around two aspects that limit the maximum obtainable variant diversity

Jennifer Jackson 209 of 357 May 2017

Chapter 7 Ph.D. Thesis
(§7.4.3); a) community scale desirabilities, and b) individual scale desirabilities. The
levels assigned are used to influence the software choices of the algorithm when
selecting genotype configurations. Unlike the binary constraints of the RV
algorithm, here the constraints are applied in the range 0 to 100. Table 7-1 shows an

example of how these two aspects could be initialized.

Community scale desirabilities (D.) — Each software variant has a community scale
desirability level, which could be based on the specification of an IT department, or
accommodate realistic data for a network such as 70% of users prefer, in an indirect
sense, the Google Android core OS library. A number is assigned for each software
variant in the range 0 to 100, where the sum of these desirabilities totals 100 for each
locus. The community scale desirabilities impose a system level constraint without
attributing software to specific individuals. This means that the variant diversity
level will be maintained, even though devices are making individual and local

decisions.

Individual scale desirabilities (D;) — The individual scale desirabilities are attributed
to specific individuals. There is no difference in dynamic variant diversity levels
from the community scale desirabilities when the same aggregated percentage of
software is set. However, differences in the dynamics of the malware propagation
will occur when specific individuals are constrained, for example, to never select the
vulnerable software variants. Additionally, differences will occur when either
location based constraints are imposed on specific individuals or devices move in
non-random mobility patterns. Each software package has an individual desirability

level based on the current user’s desirability for the software. For example the user

Jennifer Jackson 210 of 357 May 2017

Chapter 7 Ph.D. Thesis
desirability may be to use the software represented by variant 1 of locus 1 most of
the time, but with a willingness to switch to variant 2, 3, or 4 if necessary.
Additionally users may have specific requirements relating to specialised software
in order to efficiently perform their responsibilities. In this case it is possible to
constrain specific individuals to use a fixed (static) software variant or variants,
whilst the remainder of the network tries to maximise diversity. It is important that
the diversity scheme does not negatively impact the user experience and so there
may be the need to maintain a proportion of specific individual desirabilities whilst
maximising diversity of the ad hoc ecosystem. The desirability value is also a
number between 0 and 100 for each software package, but may be different within

each device. The sum of these desirabilities totals 100 for each locus.

The constraints of user and community desirability data cannot be applied in the
same way to the RV algorithm as the FS algorithm due to the random selection of
variants. A configuration comparable to the RV constraints would be to apply a
desirability value of zero to those variants that are unwanted and apply equal
values to those variants wanted. When a device is constrained in the FS algorithm
such that only one variant can be selected, the result, as with the RV algorithm, is a

device with static diversity.

Jennifer Jackson 211 of 357 May 2017

Chapter 7

Table 7-1 - Setting desirability values example

Community
Desirabilities | Individual Desirabilities
Variant
Number Dc Di1 DIN
Locus 1 1 20 80 80
2 20 10 15
3 20 5 3
4 20 3
5 20 2 1
Locus 2 1 10 20 25
2 20 20 25
3 10 20 10
4 10 20 30
5 50 20 10
Locus 3 1 70 70 10
2 25 20 10
3 2 5 70
4 2 3 5
5 1 2 5
Locus 4 1 20 50 5
2 20 20 5
3 20 10 50
4 20 10 20
5 20 10 20

7.6.2.3 Favourability Score

Ph.D. Thesis

The favourability score (F) combines the diversity metric (§7.6.2.1), the

constraints (§7.6.2.2), and the vulnerability data (§7.6.3). The equation given in (7-4)

is termed the favourability score because it ‘favours’ rather than determines

particular software choices.

F = (wdmdm + wp, D + WDID,)B

(7-4)

Where dm is the diversity metric, D, and D; are constraints (§7.6.2.2), and wg,,

wp,, Wp,, are weighting factors to weight the importance or inclusion of each

Jennifer Jackson

212 of 357

May 2017

Chapter 7 Ph.D. Thesis
summation term. For example to perform diversity maximisation only, both w,_and
wp, are set to zero. B is a binary matrix of vulnerability data (further described in
§7.6.3) with a ‘0" representing variants that should be blacklisted, and a ‘1’
representing variants that are deemed low risk and safe to use. The binary matrix is
used to completely mask out unsafe variants from the list. The model currently
assumes that each device has knowledge of the variants available to it to make an
informed choice (§5.2.6.1). In practice however different devices may have
knowledge of different variants, depending upon how they are generated and
stored. For example all devices may have knowledge of COTS variants such as
alternative commercial software or open source software modules (§3.2.1.3) as they
would be readily accessible, however variants generated via automated code

diversification techniques (§3.4.2) may not necessarily be widely available.

7.6.2.4 Probabilistic Variant Choice and Compatibility Filtering

The chosen variant at each locus of the genotype is selected probabilistically and
independently based upon the favourability score where a higher score results in a
higher probability that it will be chosen. This prevents all devices from choosing the
same solution if there is a ‘best’ option. In an ideal scenario where all variants are
compatible across loci this selection method is capable of always choosing
operational genotypes. In a realistic scenario however, not all configurations of
software may be compatible and so the option of compatibility filtering can also be
included. The four steps involved in the decision process for updating a genotype
with compatibility filtering are shown in Figure 7-8. In general it is often the

operating system that dictates compatibility (§3.2.1.3) and so the core OS library is

Jennifer Jackson 213 of 357 May 2017

Chapter 7 Ph.D. Thesis
used as the reference locus in this example, however it could be applied to any
locus. Firstly the software variant choices are split into subsets where a mask is
created for every OS core library variant to identify compatible software. In the
second step an OS core library variant is chosen probabilistically from the OS core
library locus using the favourability score. The third step applies the mask of the
chosen OS to obtain a filtered favourability score. In the fourth step the remaining
locus variants are chosen from the filtered favourability score using the same

probabilistic approach.

1. Mask of compatible 2. Choose 1 OS 3. Masked favourability 4. Choose variants from
SW for each OS variant based on the score for chosen OS the remaining 3 loci
0S1 OS2 favourability score 0S1
mask mask F F mask Fost F-os1
1 10 1 —
locus1| 1| |0 1
1 |0 1
0] |1 . 0] |]
o |1 0
locus2| 9| |1 * * X o =
1] 10| -— 11 L |
locus3 0 1 0
110 o 1 L |
o |1 0
locus4| 1 0 1
o L] o L L

Figure 7-8 - Updating a genotype with software compatibility filtering

7.6.3 Using Vulnerability Data - Blacklisting of Vulnerable
Variants

Using diversity as a stand-alone security mechanism is probably unlikely in
practice, and so making use of already available, but untapped security data as part
of an integrated approach could better support the benefits of a dynamic diversity
scheme. When vulnerabilities and corresponding exploits are first publically

declared there is often a race between cyber attackers to further exploit the

Jennifer Jackson 214 of 357 May 2017

Chapter 7 Ph.D. Thesis
vulnerability and antivirus/software companies to produce antivirus signatures and
software patches (§3.3.3). The level of threat perceived by the disclosed vulnerability
dictates the amount of time, effort and speed in which antivirus signatures and
software patches are released. Even the fastest developed patches may not be
enough to prevent a surge in attacks which can occur within a few hours of
disclosure (§3.3.3). With dynamic diversity it is possible to temporarily prevent
software variants perceived as a security risk due to exposed vulnerabilities from
being chosen as a valid variant solution. The term blacklisting is used here to denote
the mechanism of preventing specific vulnerable variants from being chosen.
Software vulnerability information is currently stored in publically accessible
databases such as the NIST National Vulnerability Database (§3.4.4.6), or the CVE
database (§1.1.2). The automated dissemination of vulnerability information could
be released as soon as it becomes available and this would be a lot sooner than the
corresponding antivirus signature and software patch, and more importantly,
potentially faster than the response from cyber attackers (assuming users allow the

diversity scheme to act upon the vulnerability data).

Blacklisting is introduced into the model stochastically with an average rate k at
which the blacklisting information is disseminated. This can be set as an
independent rate, or a rate dependent upon the contact rate between devices. For
example it can be set such that an average of 1 in 10 contacts made are with an
access point capable of providing updated blacklisting information. Blacklisting of
software variants within the model is undertaken by all devices in the network,

however it is acknowledged that in practice some users may wish to avoid changing

Jennifer Jackson 215 of 357 May 2017

Chapter 7 Ph.D. Thesis
configurations, for example due to compatibility implications. As shown in Figure
7-7, for both algorithms, as soon as new vulnerability data becomes available it is
applied immediately by constraining the choice of variants and re-updating (§7.6.4)
the internal genotype. For those that are still susceptible, blacklisting provides a
temporary immunity until new antivirus signatures or patching is applied. The

effects of blacklisting on the malware model are detailed in section 7.7.3.

7.6.4 Stopping and Starting the Genotype Update Process

The genotype update process is required to make an intelligent genotype
selection in order to maximise the variant diversity of the network, subject to the
available variants and applied constraints. Whilst frequent changes of variants at
some loci may be hidden and go unnoticed by the user, others may disrupt the user
experience. Additionally if there is malware already propagating in the network, the
act of switching to a vulnerable genotype could spread the malware even further.
Therefore once diversity is maximised it may then be beneficial to update genotypes
less often, such as only updating when there are new constraints, variants, or other
information as shown in the flow chart of Figure 7-7. The start-stop state diagrams
for the update process of the RV algorithm and the FS algorithm are shown in

Figure 7-9 (a) and (b) respectively.

For the RV algorithm, the local genotype information is not collected and so the
only triggers for stopping the update process as shown in Figure 7-9 (a) is either time
based, or encounter based. For example it can be possible to select the genotype once
in a single update cycle and then remain static by not updating until a system trigger

occurs for the device such as the availability of new variants, different constraints,

Jennifer Jackson 216 of 357 May 2017

Chapter 7 Ph.D. Thesis
or vulnerability data allowing temporary blacklisting. For the FS algorithm the
decision to stop updating is based upon each device’s individual perception of the
optimisation of the locally measured variant diversity. The local measurements are
calculated using the Nei Index equation (2-8) from the recorded genotypes stored in
the buffer as shown in the flow chart of Figure 7-7 (b). The running standard
deviations of these measurements are calculated over a number of samples to
determine how much the diversity level is changing; when optimised there is very
little change. As shown in Figure 7-9 (b) when there is at least a sufficient number of
samples and the standard deviation has progressed below a minimum threshold, a local
minimum is found by comparing the previous standard deviation value to the
current value before stopping the update process. If the standard deviation goes
above a maximum threshold due to changes in the network by other devices, or a

system trigger occurs, then the device restarts updating its own genotype again.

Sufficient number of samples
AND
Standard Deviation < min threshold
AND
Standard Deviation local minimum

DO

Time / Encounter Trigger

System Trigger System Trigger
(new variants, constraints, vulnerability data, (new variants, constraints, vulnerability data,
recovery) recovery)
OR

Standard Deviation > max threshold

a) Stop-start genotype update process for the b) Stop-start genotype update process for the
RV dynamic diversity algorithm FS dynamic diversity algorithm

Figure 7-9 - Stop-start update states for the RV and FS algorithms

Jennifer Jackson 217 of 357 May 2017

Chapter 7 Ph.D. Thesis

The time evolution of a stop-start update sequence from one device using the FS
algorithm is shown in Figure 7-10. The variant choice for a single locus, the standard
deviation of the locally measured diversity (Std.) and relevant trigger signals are
shown. Firstly the data buffer fills with variant diversity measurements (Buffer full)
which are used to calculate the running standard deviation. During this period
variant choices are being selected as part of the update process. When the local
minimum is found below the minimum threshold the device is triggered to stop
updating (1. Stop updating). At this point variant number one is chosen. Sometime
later an encounter is made with a device with vulnerability data which triggers the
blacklisting of vulnerable variants. This also provides a system trigger to re-start the
update process, which then halts when the stop conditions are true (2. Blacklisting
and update). In this scenario variant one is blacklisted and therefore becomes
unselected. When a new patch for the vulnerable variant is installed (Patch
download), the device stops blacklisting and re-starts the update process where any
of the variants can be selected (3. Patch and update). In this scenario the device had
become infected prior to blacklisting and subsequently moves to the recovered state

(Recovery).

Jennifer Jackson 218 of 357 May 2017

Chapter 7 Ph.D. Thesis

Variant choice

2 J 4
H ‘ \ I 3. Patch and

update -

Minimum

threshold - .

resnol~ 1. Stop updating 2. Blacklisting and
update

Signals: » —— Y

Buffer full (high) ! / * *
S “
I A

L]
k
|

Stop updating (high)

Vulnerability data (high)

Blacklisting (high)

Patch download (high)

Recovery (high)

r r r r r r r r rl
0 100 200 30