

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/106820

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/106820
mailto:wrap@warwick.ac.uk

A Biodiversity Approach

to Cyber Security

by

Jennifer Tracy Jackson

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Centre for Complexity Science

May 2017

Front Matter Ph.D. Thesis

Jennifer Jackson ii of xv May 2017

Contents

Contents ii

Figures viii

Tables x

Acknowledgements xi

Declaration xii

Preface xiv

Abstract xv

1 Introduction 1

1.1 Motivation 2

1.1.1 The Changing Cyber Threat Landscape 2

1.1.2 The Risks of Computing Monocultures 2

1.1.3 Agricultural Monocultures and Biodiversity within Natural Systems 5

1.2 Hypothesis 6

1.3 Contributions to Research 7

1.4 Thesis Structure 11

1.5 Summary 13

2 Ecology and Biodiversity in Natural Systems 14

2.1 Introduction 14

2.2 The Biodiversity and Ecosystem Relationship 15

2.2.1 Biodiversity within Ecosystems 15

2.2.1.1 Biodiversity 16

2.2.1.2 Ecosystem Functions 17

2.2.1.3 Ecosystem Services 18

2.2.1.4 Disturbances 18

2.2.1.5 Measured Outputs 19

2.2.1.6 Relationships 19

2.2.2 Biodiversity Relationships 20

2.2.2.1 Biodiversity Mechanisms Underlying Ecosystem Function 20

2.2.2.2 The affects of Biodiversity on Limiting Disturbance Severity 26

2.3 Measuring Biodiversity 30

2.3.1 Introduction 30

2.3.2 Genetic Diversity 30

2.3.2.1 Genotypic Measures 31

2.3.2.2 Allelic Measures 32

2.3.2.3 Maximum Number of Unique Genotypes 36

2.3.2.4 Comparison of Measures 37

2.4 Summary 40

3 Cyber Security and Diversity in Computing Systems 42

3.1 Introduction 42

3.2 Computing Systems 43

3.2.1 Enabling Technologies 43

3.2.1.1 Automated Software 43

3.2.1.2 Virtualisation 44

3.2.1.3 Software as a Modular Structure 46

Front Matter Ph.D. Thesis

Jennifer Jackson iii of xv May 2017

3.2.2 The Future Topology of Connected Devices 50

3.2.3 Peer-to-Peer, Ad hoc, and Sensor Networks 51

3.3 Cyber Security 55

3.3.1 Malware in a Monoculture Environment 55

3.3.2 Successful Malware Attacks 56

3.3.3 Multiple Exploits and Zero-day Attacks 56

3.3.4 Location of Vulnerabilities in the Software Stack 59

3.4 Diversity 62

3.4.1 Diversity as a Security Mechanism 62

3.4.2 Creating Diverse Code 64

3.4.2.1 Source Code Transformations 64

3.4.2.2 Compiler Transformations 65

3.4.2.3 Address Space Randomisation 66

3.4.2.4 Data Space Randomisation 66

3.4.2.5 Instruction Set Randomisation 67

3.4.2.6 Executable Code Randomisation 67

3.4.3 Creating Diverse Systems 68

3.4.3.1 Colouring Algorithms 68

3.4.3.2 Epidemic Based Attack Models 70

3.4.3.3 Biological-Inspired Models 71

3.4.3.4 Other Models 73

3.4.4 Measuring and Analysing Diversity 74

3.4.4.1 Shannon Index 75

3.4.4.2 Number of Variants 75

3.4.4.3 Resiliency 75

3.4.4.4 Multi-dimensional Properties 76

3.4.4.5 Analysing Software Binary Files 77

3.4.4.6 Common Vulnerabilities 77

3.4.5 Diversity Open Research 78

3.5 Summary 79

4 Modelling 82

4.1 Introduction 82

4.2 Modelling Ad Hoc Networks 82

4.2.1 Mobility Models 83

4.2.2 Simulators 84

4.2.3 Agent-Based Models 84

4.2.4 Graph Theory 85

4.2.5 Homogeneous Mixing Models 85

4.3 Epidemic Modelling of Mobile Malware 86

4.3.1 Mathematical Models of Epidemics 86

4.3.2 The Deterministic SIR Model 87

4.3.2.1 Model Equations 88

4.3.2.2 Discrete Model 89

4.3.2.3 Deterministic Epidemic Example 89

4.3.2.4 End Time of the Epidemic 91

4.3.2.5 The Reproduction Number R0 91

4.3.2.6 The Balance Equation 93

Front Matter Ph.D. Thesis

Jennifer Jackson iv of xv May 2017

4.3.3 The Stochastic SIR Model 94

4.3.3.1 Rate of Contact 95

4.3.3.2 Infectious Period 96

4.3.3.3 Discrete Time Markov Model for a Single Compartment 97

4.3.3.4 Discrete Time Markov Model for a Stochastic SIR 99

4.3.3.5 Stochastic Epidemic Example 100

4.3.3.6 Important Stochastic SIR Properties 101

4.3.4 Agent-Based Epidemics 103

4.4 Infection Genetics 104

4.5 Summary 106

5 Ecosystem Model of an Ad Hoc Network 108

5.1 Introduction 108

5.2 An Ecosystem Perspective of an Ad Hoc Network Environment 109

5.2.1 Scales and Diversity Definitions 111

5.2.2 Software and Hardware Functions 113

5.2.3 Network and User Services 113

5.2.4 Security Attack Disturbances 114

5.2.4.1 Disturbance Regime vs Disturbance Events 114

5.2.4.2 Malware Disturbance Events 115

5.2.5 Measured Outputs 117

5.2.6 Natural Biodiversity Mechanisms 117

5.2.6.1 Software at the Individual Scale 117

5.2.6.2 Niche Differentiation 120

5.2.6.3 Facilitation 122

5.2.6.4 Trophic Levels 123

5.2.6.5 Genetic Variation 124

5.3 A Diverse System Model 125

5.3.1 The Requirements for a Diverse System Model 125

5.3.1.1 Requirements Overview 125

5.3.1.2 Model Constraints 126

5.3.1.3 Genotype Structure Constraints 128

5.3.2 Diversity Measures 131

5.3.2.1 Measures Definition 132

5.3.2.2 Increasing Diversity 132

5.3.2.3 Maximum Diversity Definition 133

5.3.3 Malware Threat Model 135

5.3.4 Diverse System Model Overview 141

5.3.4.1 General Overview 141

5.3.4.2 Constrained Diverse System Model: Mathematical Epidemic 142

5.3.4.3 Diverse System Model: Agent-Based 145

5.3.4.4 Modelling Environment 148

5.4 Summary 149

6 Constrained Diverse System Model: Epidemic Based 151

6.1 Introduction 151

6.2 System Model Overview 152

6.2.1 Overview and Constraints 152

6.2.2 Equivalent Epidemic Model with Diversity 153

Front Matter Ph.D. Thesis

Jennifer Jackson v of xv May 2017

6.2.2.1 Without Diversity 153

6.2.2.2 With Static Diversity 154

6.3 Susceptibility Model 156

6.3.1 Overview 156

6.3.2 Analytical Result of Susceptibility 157

6.3.2.1 One Locus Model 157

6.3.2.2 Multiple Loci and Multiple Exploits (Genotypic Perspective) 159

6.3.2.3 Sp for Multiple Loci and Multiple Exploits (Logical AND type) 161

6.3.2.4 Sp for Multiple Loci and Multiple Exploits (Logical OR type) 164

6.4 Outputs 166

6.4.1 Outputs of Current Epidemic Models 166

6.4.2 Outputs Overview of the Developed Model 167

6.4.2.1 Malware with No Recovery (SI) 168

6.4.2.2 Malware with Recovery (SIR) 169

6.4.3 Resistance to Malware (MR) 169

6.4.3.1 Resistance to Malware (MR) with no recovery (SI) 169

6.4.3.2 Resistance to Malware (MR) with recovery (SIR) 170

6.4.3.3 Quality of Service Tolerance (QT) 171

6.4.4 Optimum Diversity for a Specific Malware Attack 172

6.4.4.1 Constrained Sp With no Recovery (SI) and specified QT 172

6.4.4.2 Constrained Sp With Recovery (SIR) and specified QT 173

6.4.4.3 Constrained Sp With Recovery (SIR) and specified R0<1 177

6.4.4.4 Optimisation of Diversity 177

6.4.5 Resilience to Malware (ML) 185

6.4.5.1 Peak Infection Time T1 of Malware with No Recovery (SI) 185

6.4.5.2 Resilience to Malware with Recovery (SIR) 186

6.5 Summary 186

7 Diverse System Model: Agent-Based 189

7.1 Introduction 189

7.2 System Model Overview 189

7.3 Network Model 191

7.3.1 Random Encounters 192

7.3.2 Random Waypoint 193

7.3.2.1 Calculation of Waypoints 193

7.3.2.2 Selection of Devices in Range 195

7.3.2.3 Successful Data Transmission 197

7.4 Diversity Model - Measuring and Calculating Diversity 199

7.4.1 Achieving Maximum Diversity in a Practical Ad hoc Network 199

7.4.2 Calculating the Maximum Obtainable Variant Diversity 200

7.4.3 Practical Constraints Limiting Variant Diversity 201

7.5 Diversity Model - Static Diversity 202

7.5.1 Distribution of Software Gene Variants 202

7.5.2 Susceptibility 204

7.6 Diversity Model – Dynamic Diversity 205

7.6.1 Dynamic Diversity Algorithm– Random Selection of Variants (RV) 206

7.6.1.1 Constraints – User Influence 207

7.6.2 Dynamic Diversity Algorithm– Favourability Score (FS) 207

Front Matter Ph.D. Thesis

Jennifer Jackson vi of xv May 2017

7.6.2.1 Calculating the Diversity Metric 209

7.6.2.2 Constraints - Individual and Community User Desirabilities 209

7.6.2.3 Favourability Score 212

7.6.2.4 Probabilistic Variant Choice and Compatibility Filtering 213

7.6.3 Using Vulnerability Data - Blacklisting of Vulnerable Variants 214

7.6.4 Stopping and Starting the Genotype Update Process 216

7.6.5 Virtualisation – Deleting Infected Genotypes 219

7.7 Malware Model 220

7.7.1 Susceptibility 221

7.7.2 Contact Rate and Probability of Infection 221

7.7.3 SIR Compartments 222

7.7.3.1 Genetic Matching and Malware Exploit Data 223

7.7.3.2 Recovery Mechanisms 224

7.7.3.3 The Effects of Blacklisting 225

7.7.3.4 The Effects of Virtualisation and Deleting Infected Genotypes 225

7.8 Outputs 226

7.8.1 Analytical Outputs 227

7.8.2 Simulated Outputs 228

7.8.3 Implication of Outputs 229

7.9 Matlab Implementation 229

7.10 Summary 233

8 Results and Analysis 234

8.1 Introduction 234

8.2 Constrained Diverse System Model: Epidemic Based 236

8.2.1 Susceptibility Relationships for Static Diversity 236

8.2.1.1 The One Locus Model with Increasing Variant Diversity 236

8.2.1.2 Multiple Loci at Absolute Maximum Diversity 238

8.2.2 Optimum Diversity to Tolerate or Mitigate a Malware Attack 241

8.2.2.1 Optimisation and Simulation Process 241

8.2.2.2 Tolerance of a Specific Attack with no Recovery (SI) 243

8.2.2.3 Peak Infection Time with No Recovery (SI) 248

8.2.2.4 Tolerance of a Specific Attack with Recovery (SIR) 251

8.2.2.5 Mitigation of an Attack with Recovery (SIR) 255

8.2.2.6 Simulated Resistance and Resilience to Mitigate an Attack 258

8.2.3 Section Summary 262

8.3 Diverse System Model: Agent-Based 264

8.3.1 Constrained Agent System Model as an Epidemic Model 264

8.3.1.1 Susceptibility Relationships: Agent vs. Epidemic 264

8.3.1.2 Comparative Mitigation of an Attack 266

8.3.2 Dynamic Diversity Performance with the RE Network Model 274

8.3.2.1 Ideal Scenario 274

8.3.2.2 The Constrained Scenario 276

8.3.3 Malware Attack within an RE Network with Continuous Updating 278

8.3.3.1 With no Recovery (SI) 278

8.3.3.2 With Recovery (SIR) 281

8.3.4 Malware Attack in an RE Network with Additional Mechanisms 284

8.3.5 Malware Attack in an RE Network with Constraints 291

Front Matter Ph.D. Thesis

Jennifer Jackson vii of xv May 2017

8.3.5.1 Constraints with Single Locus Malware and Recovery (SIR) 291

8.3.5.2 FS Constraints with Multi Locus Malware 293

8.3.6 Dynamic Diversity Performance with the RWP Network Model 296

8.3.7 Spatial Constraints with Multi Locus Malware (RWP) 299

8.3.8 Section Summary 305

8.4 Summary 308

9 Conclusion and Future Work 310

9.1 Introduction 310

9.2 Conclusion 310

9.2.1 Motivation 310

9.2.2 Research 311

9.2.3 Results and Analysis 314

9.3 Future Work 317

9.3.1 Additional Functionality 317

9.3.1.1 Specific to the Mathematical Epidemic Model 317

9.3.1.2 Specific to the Agent Model 319

9.3.1.3 General Functionality 321

9.3.2 Practical Considerations 323

9.3.2.1 Practical Generation, Dissemination and Storage of Variants 323

9.3.2.2 Security of Genotype Exchange for the Distributed Algorithm 325

9.3.2.3 Vulnerability Data and Blacklisting 325

9.3.2.4 Virtualisation 326

A Constrained Diverse System Model: Epidemic Equation Derivations 329

A.1 Susceptibility Derivation: Three Locus Logical OR Malware Type 329

A.2 Susceptibility Derivation: Four Locus Logical OR Malware Type 330

A.3 Diversity Optimisation Derivation: Three Locus OR Malware Type 332

A.4 Diversity Optimisation Derivation: Four Locus OR Malware Type 333

B Optimum Diversity and Peak Infection Times for Two and Three Loci 335

B.1 AND Malware Type 336

B.2 OR Malware Type 337

Abbreviations 338

Trademarks 340

References 343

Front Matter Ph.D. Thesis

Jennifer Jackson viii of xv May 2017

Figures

Figure 1-1 – Thesis structure .. 12

Figure 2-1 – Biodiversity and ecosystem relationship ... 15

Figure 2-2 – Biodiversity mechanisms linking ecosystem function 20

Figure 2-3 – Fundamental and realised niches of coexisting species 21

Figure 2-4 – Relationship between species diversity and ecosystem function [22] ... 22

Figure 2-5 – The trophic pyramid ... 24

Figure 2-6 – Chromosome pair with multiple loci and alleles 25

Figure 2-7 – The effect of biodiversity on limiting disturbance severity 26

Figure 2-8 – Methods of measuring ecosystem stability ... 28

Figure 2-9 – Maximum number of unique genotypes ... 36

Figure 2-10 - Comparison of genetic diversity measures .. 38

Figure 3-1 – Virtualisation scenarios .. 46

Figure 3-2 – Comparing different operating system software stacks 48

Figure 3-3 – Topology of the future Internet ... 51

Figure 3-4 – Network topologies .. 53

Figure 3-5 – Sensor network configurations ... 54

Figure 3-6 – Steps of a successful malware attack .. 56

Figure 3-7 – Zero-day attack time line adapted from [15] and [14] 58

Figure 3-8 – Vulnerabilities in the software stack targeted by Pegasus exploits 59

Figure 3-9 –Location of vulnerabilities in the software stack [162] [2] 61

Figure 3-10 – Four colour, colouring algorithm [37] .. 70

Figure 3-11 – Client–server bipartite graph ... 72

Figure 3-12 – Diversity assignment within a cloud .. 73

Figure 3-13 – Internal device level diversity ... 74

Figure 3-14 – Multi-dimensional diversity metric [38] .. 76

Figure 4-1 – Random waypoint mobility model ... 84

Figure 4-2 – SIR model ... 88

Figure 4-3 – Deterministic SIR model using difference equations. 90

Figure 4-4 – Final size of the epidemic as a fraction of the population size 94

Figure 4-5 – PDF for a c value of 0.3 ... 96

Figure 4-6 – Rate diagram for a Markov process .. 97

Figure 4-7 – Probability diagram for a discrete Markov process 99

Figure 4-8 – Stochastic SIR model. .. 101

Figure 4-9 – Epidemic agent-based model .. 104

Figure 4-10 – Two different infection genetic models .. 106

Figure 5-1 - Ad hoc network ecosystem ... 109

Figure 5-2 - Diversity relationships in an ad hoc network ecosystem 110

Figure 5-3 – Software at the individual scale .. 119

Figure 5-4 – Constrained genotype with four loci .. 130

Figure 5-5 - Maximum variant diversity with nine devices and three variants 134

Figure 5-6 – Malware threat model .. 136

Figure 5-7 – Pegasus malware AND threat representation .. 138

Figure 5-8 – OR threat representation example based upon the CopyCat malware 139

Front Matter Ph.D. Thesis

Jennifer Jackson ix of xv May 2017

Figure 5-9 – Malware data flow in an ad hoc peer to peer environment 140

Figure 5-10 – Architecture of the epidemic based diverse system model 142

Figure 5-11 – Architecture of the agent-based diverse system model 146

Figure 6-1 - Equivalent epidemic model .. 153

Figure 6-2 – Susceptibility model .. 157

Figure 6-3 - Single locus genotypes – one locus model ... 158

Figure 6-4 - Multiple locus genotypes .. 159

Figure 6-5 - Examples of susceptible genotypes for the AND type 162

Figure 6-6 - Examples of susceptible genotypes for the OR type 164

Figure 6-7 - Overview of outputs, constraints and optimum diversity 168

Figure 6-8 - Resistance to malware (MR) with and without recovery 170

Figure 6-9 - Critical value Rc for a specified Quality of Service Tolerance 176

Figure 6-10 - Diversity optimisation example for the two locus AND type 179

Figure 6-11 - Diversity optimisation example for the two locus OR type................. 182

Figure 6-12 - Exact and approximation curves for the OR malware type 184

Figure 7-1 – Agent-based diverse system model showing modes of operation 191

Figure 7-2 - Random Encounters implementation ... 193

Figure 7-3 - Random Waypoint implementation .. 194

Figure 7-4 – Selection of devices in range .. 196

Figure 7-5 - Successful data transmission implementation ... 198

Figure 7-6 - Diversity measures in static diversity mode .. 204

Figure 7-7 - Dynamic diversity algorithms ... 206

Figure 7-8 - Updating a genotype with software compatibility filtering 214

Figure 7-9 - Stop-start update states for the RV and FS algorithms 217

Figure 7-10 - Time evolution of a stop-start update sequence from one device 219

Figure 7-11 - Flow sequence of the SIR compartments in the agent-based model .. 223

Figure 7-12 - Genetic matching flow chart .. 224

Figure 7-13 - Outputs and optimum diversity for the agent-based model 227

Figure 7-14 - Main GUI window of the Matlab implementation 230

Figure 7-15 - Matlab software implementation flow.. 232

Figure 8-1 – Susceptibility relationship with increasing variant diversity 237

Figure 8-2 - Susceptibility relationships at absolute maximum diversity 239

Figure 8-3 - Process for optimising diversity and simulating the malware model . 242

Figure 8-4 - Optimum diversity (variants at each locus) to tolerate an attack 245

Figure 8-5 - Optimum diversity (variant richness) to tolerate an attack 247

Figure 8-6 - Calculated and simulated peak infection times 249

Figure 8-7 - Calculated peak infection times with no recovery 251

Figure 8-8 - Optimum diversity to tolerate an attack with recovery. 253

Figure 8-9 - Optimum diversity to mitigate an attack with recovery 256

Figure 8-10 – Malware mitigation of a practical scenario ... 257

Figure 8-11 – Simulated resistance and resilience to mitigate an attack 260

Figure 8-12 – Susceptibility: agent model vs. epidemic model 265

Figure 8-13 - One locus model: agent vs. stochastic and deterministic 271

Figure 8-14 – Four locus AND malware: agent vs. stochastic and deterministic 272

Figure 8-15 – Four locus OR Malware: agent vs. stochastic and deterministic 273

Figure 8-16 - Dynamic diversity performance: random encounters 275

Figure 8-17 - Malware epidemic comparing different diversity schemes 280

Front Matter Ph.D. Thesis

Jennifer Jackson x of xv May 2017

Figure 8-18 – Malware resistance with recovery – one locus 282

Figure 8-19 – Malware resistance with recovery – AND / OR 283

Figure 8-20 - Malware epidemic with additional mechanisms 285

Figure 8-21 – Comparative malware resistance with security mechanisms 288

Figure 8-22 – Comparative resistance and epidemic times with different malware 290

Figure 8-23 – One locus SIR with generic constraints .. 292

Figure 8-24 – Four locus malware with FS algorithm specific constraints (SI) 294

Figure 8-25 – Random waypoint variant diversity relationships 298

Figure 8-26 – Dynamic diversity performance: random waypoint 299

Figure 8-27 – Random waypoint constraints .. 301

Figure 8-28 – Effects of spatial constraints on malware types – moving devices 302

Figure 8-29 – Effects of spatial constraints on malware types – stationary devices 303

Figure 9-1 - Possible virtualisation architecture to support dynamic diversity 328

Appendix Figure B-1 – AND malware type .. 336

Appendix Figure B-2 – OR malware type ... 337

Tables

Table 5-1 – Ad hoc ecosystem functions and services ... 114

Table 5-2 - Malware effects on functions and services... 116

Table 6-1 - Worked example for the two locus AND type .. 179

Table 7-1 - Setting desirability values example .. 212

Table 8-1 – Specific AND and OR malware examples ... 244

Table 8-2 – Peak infection time parameters ... 249

Table 8-3 – Critical Rc values for a given QT .. 252

Table 8-4 - Calculated variant richness to mitigate an attack 266

Front Matter Ph.D. Thesis

Jennifer Jackson xi of xv May 2017

Acknowledgements

I thank my supervisors Mark Leeson and Sadie Creese for their support in

allowing me to pursue my own research subject and directions. A particular thanks

to Mark who provided words of encouragement and support during difficult times.

Many thanks to all those that run the Centre for Complexity Science who, have

not only given me the opportunity to undertake this research, but have also been

patient in awaiting its completion.

Thank you to my husband for his unconditional support, and without whom, I

would not have been able to undertake this quest. Also I would like to acknowledge

his assistance in creating a suitably formatted word document thesis template.

Thank you to my Mum and Dad for always being there and having faith in

everything I do.

Finally thank you to my three amazing children who did not exist when I started,

but have somehow kept me sane.

Front Matter Ph.D. Thesis

Jennifer Jackson xii of xv May 2017

Declaration

I declare that this thesis and the work presented within is my own except where

explicitly acknowledged. This thesis is submitted for the degree of Doctor of

Philosophy from the University of Warwick, United Kingdom. No part of the work

presented in this thesis has been submitted in support of an application for another

degree or qualification of this, or any other, university or institute of learning.

Some aspects are adapted from reports or publications written by the author

during the course of this work as follows:

Parts of the text within chapter 3 (§3.4), and parts of the text and general concepts

within chapter 5 have been adapted from the following publication:

(1) J. Jackson, S. Creese, and M. S. Leeson, ȃ”iodiversity: “ security approach

for ad hoc networks,Ȅ in IEEE Symposium on Computational Intelligence in Cyber

Security, Paris, France, 2011 [1].

Parts of the text within chapter 3 (§3.3.4) have been taken from a report published

on-line within the Warwick Research Archive Portal (WRAP):

(2) Jackson, Jennifer (published 2017, created 2011) ȃMulti-scale location analysis

of vulnerabilities and their link to disturbances within digital ecosystemsȄ.

Coventry: University of Warwick, Warwick Research Archive Portal.

http://wrap.warwick.ac.uk/86134/ [2]

A number of references have been made to an epidemic malware model that was

developed during a prior Complexity Science MSc, for which the design has not

been included as part of this thesis. However further simulation work investigating

http://wrap.warwick.ac.uk/86134/

Front Matter Ph.D. Thesis

Jennifer Jackson xiii of xv May 2017

realistic scenarios using the model was conducted during the PhD period and the

resulting journal paper has been listed here as a contribution to the research. The

work is referenced within chapter 4 (§4.3) and some research aspects regarding

antivirus response times, malware transmission times, and Bluetooth transmission

characteristics are used during simulation of results within chapter 8 (sections

8.2.2.5 and 8.3.6):

(3) J. T. Jackson, and S. Creese, ȃVirus propagation in heterogeneous bluetooth

networks with human behaviors,Ȅ IEEE Transactions on Dependable and Secure

Computing, vol. 9, no. 6, 2012 [3].

Jennifer Tracy Jackson

Front Matter Ph.D. Thesis

Jennifer Jackson xiv of xv May 2017

Preface

The Centre for Complexity Science seeks to develop the knowledge to

understand, control and design complex systems, providing break-throughs in new

applications of complexity science with solutions for society and real-world

problems.

The Centre incorporates the earlier EPSRC Doctoral Training Centre in

Complexity Science and now forms part of the wider MathSys Centre for Doctoral

Training within the Faculty of Science at the University of Warwick.

This document is a thesis following a period of Ph.D. research. The work was

supported through funding from the Engineering and Physical Sciences Research

Council (EPSRC).

The text of this thesis was prepared using Microsoft Word 2007 and set in 11pt

Palatino Linotype. The figures and tables were produced using Microsoft Visio

2007, and Microsoft Excel 2007. The references were managed by Thomson ISI

ResearchSoft EndNote X2.0.4.

Pages: 372

Total Words: 76934

Excluding: -6962

Qualifying: 69972

Qualifying word count excludes Appendix, Abbreviations, Trademarks and

References.

Original submission: May 2017

Final submission: May 2018

Front Matter Ph.D. Thesis

Jennifer Jackson xv of xv May 2017

Abstract

Cyber crime is a significant threat to modern society that will continue to grow as

technology is integrated further into our lives. Cyber attackers can exploit

vulnerabilities to access computing systems and propagate malware. Of growing

concern is the use of multiple exploits across layers of the software stack, plus faster

criminal response times to newly disclosed vulnerabilities creating surges in attacks

before signature-based malware protection can take effect. The wide scale adoption

of few software systems fuels the problem, allowing identical vulnerabilities to be

exploited across networks to maximise infection in a single attack. This requires new

perspectives to tackle the threat. Biodiversity is critical in the functioning of healthy

ecosystems. Whilst the idea of diversity benefiting computer security is not new,

there are still gaps in understanding its advantages.

A mathematical and an agent-based model have been developed using the

ecosystem as a framework. Biodiversity is generated by individualised software

stacks defined as genotypes with multiple loci. The models allow the protection

offered by diversity to be quantified for ad hoc networks which are expected to

become prevalent in the future by specifying how much diversity is needed to

tolerate or mitigate two abstract representations of malware encompassing different

ways multiple exploits target software stack layers. Outputs include the key

components of ecosystem stability: resistance and resilience. Results show that

diversity by itself can reduce susceptibility, increase resistance, and increase the

time taken for malware to spread, thereby allowing networks to tolerate malware

and maintain Quality of Service. When dynamic diversity is used as part of a multi-

layered defence strategy with additional mechanisms such as blacklisting,

virtualisation, and recovery through patching and signature based protection,

diversity becomes more effective since the power of dynamic software updating can

be utilised to mitigate attacks whilst maintaining network operations.

Chapter 1 Ph.D. Thesis

Jennifer Jackson 1 of 357 May 2017

1 Introduction

Chapter 1

Introduction

This chapter establishes the motivation, hypothesis, research contributions, and

structure for the work presented within this thesis. The motivation and rationale

behind the consideration of biodiversity in the context of cyber security stems from

both a) the impact that wide-scale cyber attacks such as those caused by malware

can have when systems use the same non-diverse software or underlying

technology, and b) the benefit biodiversity can have within a natural ecosystem in

providing resistance against attack from disease and pests.

Included is an introduction to the concept of biodiversity for cyber security through

several motivating factors. These include an ever-changing cyber threat landscape

fuelled by advancements in technology, risks associated with computing

monocultures, and the range of benefits provided by biodiversity within natural

systems. Gaps in current research knowledge are highlighted together with an

emphasis on wireless mobile computing such as ad hoc networks which are

predicted to become more prevalent in the future. Understanding the benefits and

mechanisms of biodiversity underlying natural systems and applying them to this

digital wireless domain may enhance cyber security against such malware attacks.

Chapter 1 Ph.D. Thesis

Jennifer Jackson 2 of 357 May 2017

1.1 Motivation

1.1.1 The Changing Cyber Threat Landscape

One of the biggest security problems modern society currently faces is the

growing threat from cyber attacks. Cybercrime is estimated to cost the global

economy US$575 billion annually [4], and maintaining an adequate level of security

is a co-evolving process between improved defensive techniques and ever more

sophisticated attack methods. Advancements in technology fuel this process but

also simultaneously change the threat landscape. The world purchased more than

1.4 billion smartphones in 2015 [5] and it is predicted there will be 50 to 200 billion

total connected devices by 2020 [6] [7] [8]. This has the potential for them to be

integrated into every aspect of our lives creating an attractive target for online

criminals. Cyber attackers exploit vulnerabilities within the software, firmware or

underlying fabric of the devices, as well as the user to gain access to important data,

deny the use of services, spy, control systems, spread viruses, and sometimes cause

irreversible damage. Worryingly it has been estimated that up to 70% of attacks go

undetected [4]. Most software programs have vulnerabilities and since it is difficult

to remove all vulnerabilities, the problem is likely to become worse as the use of

wireless supported mobile computing and the Internet of Things (IoT) continues to

grow and change the threat landscape.

1.1.2 The Risks of Computing Monocultures

The increased use of computing devices and wide scale adoption of few

operating systems (OS) and common protocols continues to pose a significant

threat. Computing monocultures refers to the widespread use of the same

Chapter 1 Ph.D. Thesis

Jennifer Jackson 3 of 357 May 2017

hardware, firmware, or software. Although different patching habits of individuals

can create some level of diversity between devices using the same firmware or

software, the diversity is restricted to the locality and functionality of the patch.

Similarly different versions of the same software, for example different versions of

operating systems, may utilise much of the same underlying libraries. Therefore

large commonality of code described in this way adds to the monoculture

argument. For example of the 1.4 billion smartphones purchased in 2015 98 percent

were dominated by two operating systems: five out of six ran the Android OS, and

one in seven ran “ppleȂs iOS [5]. This made Android devices the most targeted by

attackers [9] [10] [5], a trend that has been on-going for several years [11]. A similar

scenario is seen with desktop personal computers (PCs) where Microsoft Windows

dominates the OS market, and it is predicted that over the next five years leading-

edge IoT devices will experience the same scenario [7]. Having a small number of

different operating systems or application software is more economically efficient

because of the ease of maintenance and compatibility. It also has greater user appeal

because of the need to learn only a few different types of applications and systems.

However, much effort is spent protecting the resultant computer networks from

attacks and malware, which in some cases can spread to a large number of devices

in a matter of minutes [12] [13]. In ŘŖŗś Symantec reported that ȃ“ttackers “re

Moving Faster, Defenses “re NotȄ [14] in response to attackers exploiting zero-day

(publically unknown) vulnerabilities much faster than vendors could create and roll

out patches. Patch times can range from a day [5] to several months [14], however

even generating patches within a few hours may not be fast enough to stop the short

term spread. Additionally, it has been reported that zero-day attacks can last up to

Chapter 1 Ph.D. Thesis

Jennifer Jackson 4 of 357 May 2017

30 months before the vulnerability is even disclosed [15]. The number of new mobile

vulnerabilities being discovered is increasing every year, with the Common

Vulnerabilities and Exposures (CVE) database reported that vulnerabilities with

Android in 2016 were estimated to be twice that of 2015 (131) [16]. Current security

solutions for mobile devices remain limited in their ability to protect, particularly

against zero-day attacks, with manufacturers being slow to address fundamental

security issues for IoT devices. Additionally it is predicted that over the next five

years attackers will not just be targeting applications and operating systems but will

look for additional vulnerabilities at layers lower down the software stack

independent of operating systems [7] such as low level drivers and protocols. The

use of multiple exploits (code or data directed at a specific vulnerability) across

layers of the software stack will pose a significant threat, especially if they are

targeting zero-day vulnerabilities. The 2010 Stuxnet worm for example is known to

have used four separate zero-day exploits [17].

The risk associated with software monocultures has long been recognised within

the computing industry [18] [19], however the physical technology and

infrastructure to produce, and maintain alternative versions of software is only now

becoming possible [20]. As the number of devices and vulnerabilities grow,

traditional security methods will become less effective. To keep up with the

sophistication of attack methods there will need to be greater automation of

defences and new paradigms of defence mechanisms including those to alleviate the

monoculture risks.

Chapter 1 Ph.D. Thesis

Jennifer Jackson 5 of 357 May 2017

1.1.3 Agricultural Monocultures and Biodiversity within

Natural Systems

The risks of monocultures are well known within the agricultural industry which

has experienced the resultant problems first hand. A single species is often selected

for its productivity or disease resistance properties and is grown over a large area

for economic efficiency [21]. But this efficiency creates risks: Land cultivated in this

way removes the naturally diverse communities, reduces the soil quality, and

results in the need for fertilizers to protect crops from pests and diseases.

The range of plants, animals, insects and other organisms living within an

ecosystem is termed biodiversity. Biodiversity is linked to the stability and

productivity of ecosystems buffering them from pest invasions, disease epidemics

and extreme environmental events [22]. Biodiversity is also critical to the

functioning of such ecosystems and the services they provide. The agricultural

industry is now becoming more appreciative of the essential benefits biodiversity

brings and is slowly changing its habits through modernisation of traditional

methods such as crop diversification and crop rotation [23] to help reduce

infestations of pests in the soil. The benefit of biodiversity has also been evinced in

other areas of natural systems. It has been shown to reduce the spread of diseases

between animals such as Lyme disease [24], and the hantavirus affecting deer mice

[25]. High levels of biodiversity have also been found to increase resistance against

extreme climate events, which are now becoming more frequent world-wide [26]

[27].

Chapter 1 Ph.D. Thesis

Jennifer Jackson 6 of 357 May 2017

1.2 Hypothesis

The intuition that diversity might be desirable has existed within the security

profession for many years. In the 1970s N-version programming [28] was proposed

within the field of fault tolerance to increase the reliability of systems that used

software. It was known that identical software running on independent systems

would fail in exactly the same way with the same inputs. Interest in this approach as

a security mechanism grew as computers became ubiquitous, attacks became more

common, and the risks of a software monoculture was acknowledged [19] [18]. A

biological perspective on diversity as a security mechanism however has largely

been overlooked and requires an understanding of ecological processes and

interactions, and their effects on the system [29]. Current research is mainly focused

at point solutions for creating diverse software [30] [31] [32] [33] [34], although there

has been some work on creating diverse networks [35] [36] [37] and measuring

diversity within networks [38] [39] [40]. Despite the recently growing research in

this area there is still a large gap in understanding the actual benefits of diversity as

a security mechanism, particularly from an ecological perspective, even whilst

evidence surrounding the benefits of biodiversity in natural systems is continuously

growing.

It is expected that peer-to-peer wireless networks such as ad hoc networks will

become more mainstream than they are currently. This drive will be as a result of

billions more connected devices such as through the evolving IoT [8], and

developing protocols such as fifth generation (5G), which supports direct device to

device communication [41]. Such topologies are decentralised, rely on physical

Chapter 1 Ph.D. Thesis

Jennifer Jackson 7 of 357 May 2017

locality to form local communication links, and may change due to the mobility of

devices.

Creating diversity of software to the benefit of security within such topologies

has largely been unexplored, let alone from an ecological perspective. There are

similarities between peer-to-peer mobile wireless networks and natural

communities due to their movement and short range communication patterns

making them a good candidate for studying the effects of biodiversity as a security

mechanism. Additionally, the modelling of multi-exploit malware propagation

targeting vulnerabilities across layers of a software stack has so far been neglected

in the literature.

The focus of this research combines these two domains where the hypothesis for

this work is therefore:

“Incorporating biodiversity within peer-to-peer mobile

wireless computer networks makes them more resistant

to multi-exploit malware propagation.”

1.3 Contributions to Research

The original and significant contributions of this thesis are:

 Definition of an Ecosystem model of an ad hoc network (§5).

Aspects published in the conference proceedings of the IEEE Symposium

on Computational Intelligence in Cyber Security, 2011 [1]. The model

proposes that by applying biodiversity strategies at different scales of a

Chapter 1 Ph.D. Thesis

Jennifer Jackson 8 of 357 May 2017

network, the destructive effects arising from security attacks can be

counterbalanced with the constructive effects of biodiversity to maintain

ecosystem function and services, and hence benefit overall resistance and

resilience.

 Modelling of multi-layer multi-exploit malware within diverse computing

systems which includes (§6, §7):

o Representations, including analytical, of malware types with

multiple exploits targeting multiple software layers with two

different (logical AND and OR) relationships (§6).

o Genetic matching of malware types to devices forms part of the

novel approach of simulating malware propagation in diverse

computing devices (§6, §7).

The representations allow the susceptibility of a network to be determined,

and allow simulation of such malware in a network where the diversity

remains static (§6, §7) (the software on each device remains fixed during the

simulation scenario) or is dynamic (the software on each device can change

during the simulation according to the rules of the diversity algorithm) (§7).

 Definition of metrics to measure the diversity of any computing network (§5, §6,

§7).

Single measures of diversity in computing systems have been defined in

the literature; however several metrics are necessary to define diversity of

multi-layer software stacks across a network, including those to define the

Chapter 1 Ph.D. Thesis

Jennifer Jackson 9 of 357 May 2017

software stack granularity, the number of different software, their

distribution, and their structural composition. A genetic approach is used

where several definitions from ecology have been adopted. The Nei genetic

diversity index [42], which has not been used previously, has been adopted in

its monoploid form to measure the distribution of different software. It is

very rarely stressed in the literature that it can be applied to any number of

chromosome sets since most studies focus on diploid chromosomes of

animals and plants. It is used here to measure the global performance of the

dynamic diversity algorithm and calculate theoretical maximum diversity

values for a given network configuration.

 Development of a mathematical epidemic model which includes (§6):

o Enhancements to the compartmental (applicable to both

deterministic and stochastic) SI/SIR models to incorporate malware

types with multiple exploits across multiple software layers in a

wireless peer-to-peer ad hoc network where the diversity remains

static.

o A method has been developed to calculate optimum amounts of

diversity necessary to tolerate or mitigate different types of multi-

exploit, multi-layer malware.

o Ecosystem outputs including resistance and resilience.

Note that enhancement of the SIR model to incorporate static diversity for an

exploit targeting only single software configurations has already been proposed in

the literature [43].

Chapter 1 Ph.D. Thesis

Jennifer Jackson 10 of 357 May 2017

 Development of an agent-based simulation framework within the Mathworks

Matlab environment to understand how biodiversity can make wireless

peer-to-peer computer networks more resistant to malware (§7). The

source code for the model is available at the permanent link :

http://wrap.warwick.ac.uk/98458.

The simulation framework allows the diversity of networks to either

remain static, or be modified dynamically. It allows for testing, simulating

and experimenting with different diversity algorithms, networks, attacks, and

additional security mechanisms to prove and explore the hypothesis. The

simulation framework incorporates the following aspects:

o A mobility model controlling how and when individual devices

communicate with one another. The following standard models

have been used:

 Uniformly distributed random encounter.

 Random Waypoint which has been further developed to

model the selection of devices to form a communication

link with and the successful data transmission.

o A diversity model controlling what software is installed on each

device and when. Within this a dynamic diversity algorithm has been

developed based upon local information. The algorithm can incorporate

optional security mechanisms to enhance the effectiveness of

diversity, and constraints that may limit the diversity achievable.

Chapter 1 Ph.D. Thesis

Jennifer Jackson 11 of 357 May 2017

o A malware model to inject malware into the network at a predefined

time and monitor the health of each device as the simulation

progresses. The SI/SIR compartments have been used.

o Metrics including biodiversity levels as the simulation progresses,

and ecosystem outputs including resistance and resilience.

Further contributions of note include:

 A comprehensive review covering how biodiversity works in nature and where

lessons can be learned and applied to ad hoc networks (§2, §5, and work

published in [1]).

 A comprehensive review of current research associated with diversity as a

security mechanism (§3.4).

 A comprehensive review of the location of vulnerabilities at different scales of

an ad hoc network and their link to undesirable security events

(disturbances) (§3). A self contained study is published online [2].

 Simulations of malware propagation with different spreading mechanisms in

Bluetooth peer-to-peer networks. Published aspects included within the

thesis are documented within the Declaration. Work published in the

journal paper [3].

1.4 Thesis Structure

This chapter has given an introduction to the concept of biodiversity for cyber

security. The next three chapters provide a comprehensive background that directly

supports the work in the remainder of this thesis. Chapter 2 details the link between

Chapter 1 Ph.D. Thesis

Jennifer Jackson 12 of 357 May 2017

biodiversity and ecosystems in natural systems, and how biodiversity is critical to

the functioning of such ecosystems and the services they provide. Chapter 3

explores computer security in detail, the extent of current diversity research, and the

enabling technologies that may allow the diversity of computing and software

possible. Chapter 4 details methods of modelling mobile networks, malware and

epidemiology. Chapter 5 draws on the background material and presents an

ecosystem model of an ad hoc network. Chapters 6 and 7 present the two different

diverse system models developed and Chapter 8 details their results and analysis.

Chapter 9 draws together the conclusions by summarising the work presented, and

providing ideas for future work.

Figure 1-1 provides a graphical representation of the thesis structure:

Figure 1-1 – Thesis structure

1Introduction

32
Ecology and

Biodiversity in

Natural Systems

Cyber Security and

Diversity in

Computing Systems

5Ecosystem Model

of an Ad Hoc Network

6 7
Constrained Diverse

System Model:

Epidemic Based

Diverse System

Model: Agent Based

8Results and

Analysis

Conclusion and

Future Work
9

Introduction

Fields of research

Background

chapters

My own work

Conclusion

4Modelling

Chapter 1 Ph.D. Thesis

Jennifer Jackson 13 of 357 May 2017

1.5 Summary

This introduction has established the concept of biodiversity for cyber security.

The focus of the biodiversity inspired security research is wireless peer-to-peer

mobile networks since they are predicted to become prevalent in the future

computing market. The hypothesis given for this work is that incorporating

biodiversity within peer-to-peer mobile wireless computer networks makes them

more resistant to multi-exploit malware propagation. The final sections of this

chapter outlined the contributions made by this work and the structure of the thesis.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 14 of 357 May 2017

2 Ecology and Biodiversity in Natural Systems

Chapter 2

Ecology and Biodiversity in Natural

Systems

2.1 Introduction

Understanding biodiversity from an ecological perspective, its relationships, and

how its effectiveness is measured against external inputs is important for

considering analogous relationships and measures of diversity within mobile

wireless peer-to-peer networks and its effectiveness against malware. This chapter is

split into two sections:

The Biodiversity and Ecosystem Relationship: The first section discusses biodiversity

and its relationship with other components of an ecosystem. It discusses how

biodiversity links to ecosystem functionality, how biodiversity is affected by

external disturbances, and how the effect of biodiversity on limiting the severity of

disturbances is measured.

Measuring Biodiversity: The second section details the metrics for measuring

biodiversity at the genetic level only, which are referenced during later chapters of

the thesis.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 15 of 357 May 2017

2.2 The Biodiversity and Ecosystem Relationship

2.2.1 Biodiversity within Ecosystems

An ecosystem is comprised of interacting organisms such as plants, animals,

insects etc and their physical environment. The global behaviour of an ecosystem is

the result of local peer-to-peer interactions of such organisms and with their

environment resulting in distributed (sharing of tasks), self-organising (global

coordination from local interactions), and emergent (collective behaviour or

property) properties. Biodiversity encompasses the variety of genes, species, or

functional traits within an ecosystem and is critical to the functioning of such

ecosystems and the emergent services they provide. External influences can impact on

biodiversity and function and affect these services. Ecosystem health, and in

particular its relationship with biodiversity, is often assessed by looking at the

outputs of ecosystem functions and services where productivity, stability, and disease

transmission are measures often used within field studies and theoretical models.

Figure 2-1 – Biodiversity and ecosystem relationship

Biodiversity

Ecosystem

Functions

Ecosystem

Services
Disturbances

Measured outputs

Productivity

Stability

Measured Biodiversity

Genetic diversity

Ecosystem diversity

Species diversity
Functional

diversity

Disease transmission

Chapter 2 Ph.D. Thesis

Jennifer Jackson 16 of 357 May 2017

2.2.1.1 Biodiversity

There are generally three levels of biodiversity defined in the literature: genetic

diversity, species diversity, and ecosystem diversity. Most theoretical and experimental

studies focus on the species level when considering ecological consequences of

biodiversity because it is easier to work with and measure [22], however

biodiversity is hierarchical and over the past decade there has been a steadily

growing interest in the genetic level, with research suggesting that genetic diversity

can also have significant effects on ecological processes [44]. In addition to these

three levels another dimension of diversity is often discussed, especially in relation

to ecosystem function, and that is functional diversity. This encompasses functional

traits at all three levels of diversity but research is again often focused at the species

level.

(1) Genetic diversity is the variety of differences between the genetic makeup of

individuals. It is often measured within species at an individual scale but does not

necessarily have to be limited to that. Genotypes determine the actual set of genes

carried by an individual and phenotypes are the observable characteristics and traits

coded for by those genes.

(2) Species diversity is usually measured within a geographical region or

ecosystem at a community scale by quantifying the number of different species and

their distribution. It is different to genetic diversity in that groups of individuals

with the same characteristics are divided into distinct groups which are usually well

known and documented. The classification of species is usually via a taxonomy

Chapter 2 Ph.D. Thesis

Jennifer Jackson 17 of 357 May 2017

approach using a hierarchical branching structure with various kingdoms defining

the top level, such as the animal kingdom.

(3) Ecosystem diversity includes the measurement of diversity of communities,

geographical regions or complete ecosystems. For example species diversity can be

measured at and between different scales of geographical areas [45].

 (4) Functional diversity is about differences in functional traits. Ecosystem

function depends on functional diversity more than on the number of different

species alone. For example, species may have the same role creating redundancy but

low functionality; alternatively, species may have different roles creating low

redundancy but high functionality.

2.2.1.2 Ecosystem Functions

Ecosystem functions are the ecological processes that take place within an

ecosystem as a result of environmental factors and individual functionality, in

particular the interaction of the individual with others and the environment. They

have been categorised in different ways such as in terms of material, energy and

information flow [46], or broken down into categories such as regulating functions

(e.g. water and nutrient regulation, pollination), supporting functions (e.g. soil

formation such as chemical weathering of rocks), and provisioning functions (e.g. raw

materials such as biomass and plant production) [47]. Biodiversity has a strong

influence over ecosystem function and is discussed further in section 2.2.2.1.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 18 of 357 May 2017

2.2.1.3 Ecosystem Services

Ecosystem services are the benefits that ecosystems provide to humanity and are

derived from the many functions operating within an ecosystem. They are of a

particular concern to ecologists since their demise or loss can be devastating [48]

[49] [50]. Services can also be broken down into regulating services (e.g. air and water

quality, buffering against extreme natural events such as drought, controlling pests

and diseases), provisioning services (e.g. food products such as fish, crops and

livestock, water, fuels such as wood and gas) [50], and sometimes additionally

cultural services (e.g. providing iconic landscapes and recreational opportunities) [47]

and further supporting services (e.g. crop pollination) [46] [51].

2.2.1.4 Disturbances

Disturbances are influences on an ecosystem which can be both natural and

artificial such as rain or human interaction, and can also be severe such as a flood or

a drought. Disturbances can impact biodiversity which in turn affects functions and

services. There are two aspects of disturbances: disturbance events and the natural

disturbance regime [52].

(1) A disturbance event is an incident that disrupts an ecosystem usually over a

relatively short period of time. Disruptions can include the spread of a disease,

changes in the physical environment or resources.

(2) The natural disturbance regime shapes an ecosystem over long time scales

and includes many disturbances with varying intensities at different spatial and

temporal scales such as changing temperatures and seasons [53] [54] [55]. This

Chapter 2 Ph.D. Thesis

Jennifer Jackson 19 of 357 May 2017

generates natural levels of biodiversity by varying the conditions in which different

species can operate.

2.2.1.5 Measured Outputs

Productivity and stability (including resistance and resilience), are often measured

to assess the output of an ecosystem and how well it can cope with the effects of

disturbances and changes in biodiversity. Often in the literature function and

productivity are grouped together. For example the function of producing biomass

often leads to assessing biomass productivity. Stability is about assessing how well

the ecosystem can cope under different scenarios, such as how the productivity

changes and how quickly the ecosystem recovers from a disturbance like a disease

epidemic [56]. Productivity, stability and disease transmission are discussed further

in section 2.2.2.2.

2.2.1.6 Relationships

There are relationships between disturbance, biodiversity, and ecosystem

function. Within the literature some studies focus on just disturbance and its effect

on species diversity [57] [53] [58] [59] [60] or genetic diversity [61] [62] [63], some

consider the relationship between biodiversity and ecosystem function (§2.2.2.1) [64]

[22] [65] [46], whilst others consider the effects of disturbance severity on the

measured outputs as a result of species [66] [67] [27] or genetic [68] [44] [69]

diversity (§2.2.2.2). The latter two relationships are discussed further in the next

section since these both consider biodiversity as a controlling mechanism on the

output of an ecosystem.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 20 of 357 May 2017

2.2.2 Biodiversity Relationships

2.2.2.1 Biodiversity Mechanisms Underlying Ecosystem Function

Biodiversity has a large influence on ecosystem function and since the measured

outputs of an ecosystem are based upon the productivity and stability of functions

and services, this section details the mechanisms (as pictured in Figure 2-2) that link

biodiversity to ecosystem function. This includes Niche differentiation (§2.2.2.1.1),

facilitation (§2.2.2.1.2), multiple trophic levels (§2.2.2.1.3), and genetic variation

(§2.2.2.1.4).

Figure 2-2 – Biodiversity mechanisms linking ecosystem function

2.2.2.1.1 Niche Differentiation and Functional Complementarity

A niche is multidimensional and describes both the place and role in which an

individual or species lives. The full range of possible conditions and resources that a

species can occupy and use is called the fundamental niche (Figure 2-3 (a)) [70]. When

Mechanisms linking biodiversity

to ecosystem function

Niche differentiation Facilitation

Resource partitioning Temporal niche differentiation

(conditional differentiation,

storage effect)

Spatial resource

partitioning
Temporal resource

partitioning

Niche

complementarity

(morphological

differentiation)

Functional

complementarity

Trophic levelsGenetic variation

Chapter 2 Ph.D. Thesis

Jennifer Jackson 21 of 357 May 2017

a species interacts with another species there may be some overlap in one or more

dimensions (Figure 2-3 (b)) creating competition of resources. The niche space then

becomes restricted due to the competition (Figure 2-3 (c)) and this is called the

realised niche. Niche overlap determines how strongly two species might compete

with each other. If species are too similar the lesser competitor will either be

excluded from an area or go extinct ǻGauseȂs exclusion principleǼ [71]. When species

coexist, competition can drive them into different niches. This process is called niche

differentiation of which there are several types (Figure 2-2). One of the most

discussed is resource partitioning where species divide up a resource such as food at

different places (spatial resource partitioning), at different times (temporal resource

partitioning), or in different ways (niche complementarity, or morphological

differentiation). Often temporal resource partitioning is discussed as a separate form

of niche differentiation and is referred to as temporal niche differentiation, conditional

differentiation or the storage effect [72] where species have different competitive

abilities under different environmental conditions. The mechanisms of niche

differentiation is not just limited to species, niche complementarity has also been

found during various genotypic diversity experiments [73] [69] [74].

Figure 2-3 – Fundamental and realised niches of coexisting species

Fundamental

niche of

species 1

Fundamental

niche of

species 1

Fundamental

niche of

species 2

overlap

(a) Niche of one species (b) overlapping niches of two species

creates competition

Realised

niche of

species 1

Realised

niche of

species 2

(c) Realised niches of two species

Chapter 2 Ph.D. Thesis

Jennifer Jackson 22 of 357 May 2017

Additionally, functional complementarity has been discussed in the literature as a

specific type of niche complementarity where different species occupy different

functionally distinct niches, benefiting ecosystem function [65] [22] and providing an

important link between biodiversity and productivity [65] [75]. With negligible

niche overlap, termed perfect complementarity, more of the total niche space is used,

increasing ecosystem functioning but causing fragility due to the dependence on

specific species. With large niche overlap there is large ecosystem function, but this

quickly saturates as species diversity increases making them functionally redundant

(Figure 2-4) [22]. Redundancy can improve the stability of the ecosystem if species

are lost, but can competition between species when the resource is limited [65]. This

suggests that both functional redundancy and functional complementarity are

needed to benefit ecosystem services rather than just the number of different

species.

Species diversity

F
u

n
c
ti
o

n
in

g

Functionally

redundant

Perfect

complementarity

Figure 2-4 – Relationship between species diversity and ecosystem function [22]

Functional complementarity also occurs at the genetic level. Whilst genes can

provide unique functionality, functional redundancy can also occur during the

evolutionary process producing genes with overlapping functionality. The most

common method is through direct gene duplication [76] caused by errors during

Chapter 2 Ph.D. Thesis

Jennifer Jackson 23 of 357 May 2017

DNA replication such as through reproduction. Another method is through natural

selection where previously dissimilar genes evolve to provide similar functionality

through partial functional overlap [77].

2.2.2.1.2 Facilitation

Facilitation describes interactions between species or individuals, but can also

apply at the genetic level [78] [79] [44], creating positive benefits for at least one

without causing harm to the other. Facilitation can be either mutual where both

species benefit, or commensal where only one species benefits. Increasing species

diversity in the presence of facilitation can lead to increased ecosystem functioning

[80] [81].

2.2.2.1.3 Multiple Trophic Levels

Many of the experimental studies have involved plant or microbial populations,

often within a single trophic level (hierarchical level in an ecosystem such as the

position in the food chain) [22] [82] [50] however it has been recognised that

diversity across multiple trophic levels has the potential to impact ecosystem functions

even more strongly [50]. The levels (Figure 2-5) consist of primary producers, at the

bottom, followed by primary consumers, secondary consumers, and tertiary consumers,

which consume species within the levels below them. There are also decomposers that

break down dead or dying tissue from other species at different levels. The trophic

pyramid however is often a very simplified picture of reality, where interactions

between levels are very complex.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 24 of 357 May 2017

Primary Producers

(plants)

Primary Consumers

(herbivores)

Secondary Consumers

(carnivores)

Tertiary

Consumers

(carnivores,

omnivores)

D
ecom

posers

Figure 2-5 – The trophic pyramid

2.2.2.1.4 Genetic Variation

Whilst there is evidence that the previous mechanisms are relevant at both the

species and genetic levels [44], genetic variation appears only at the genetic level.

Genetic variation is the variation of genes within a population and is the driving

force behind functional differences between individuals and species. It is also a

prominent component of evolutionary change and determines genetic diversity [83]

[44] (§2.3.2).

Chromosomes are located within every cell but the number of sets can vary

between species. There can be one set (monoploid), two sets (diploid), three sets

(triploid) and more than three sets (polyploid). Animals and plants have two sets of

chromosomes and are therefore diploid as shown in Figure 2-6. Each chromosome

pair contains genes, representing short sections of DNA, which are located at a

specific site called a locus [84].

Chapter 2 Ph.D. Thesis

Jennifer Jackson 25 of 357 May 2017

Figure 2-6 – Chromosome pair with multiple loci and alleles

Simplistically, loci determine traits or functions. Single genes can determine

discrete traits such as eye colour, whereas the additive effect of multiple genes can

determine continuous traits such as height. Genes may come in several different

variants called Alleles. When both of the chromosome copies within the pair contain

the same allele this is called homozygous and when they are different they are called

heterozygous. A genotype represents the actual genes found within an individualȂs

chromosome. Differences between alleles and genotypes, and their frequencies in a

population, signifies the amount of genetic variation.

Genetic variation is caused by multiple factors. If two or more alleles coexist in

the population at a specific locus, this is termed genetic polymorphism. Many species

have genetic polymorphism at different loci [83]. Reproduction processes such as

crossover (DNA exchange by parents) and mutation (random change, potentially

creating a new allele) as well as the migration of individuals and genetic drift

(occurrence of alleles randomly fluctuate over time) [85], can change the frequency

and distribution of alleles, and introduce different combinations of genes leading to

individualised genotypes.

A

B

C

D

a

b

c

d

Locus1

Locus2

Locus3

Locus4

Allele

Chapter 2 Ph.D. Thesis

Jennifer Jackson 26 of 357 May 2017

2.2.2.2 The affects of Biodiversity on Limiting Disturbance

Severity

There are two outputs of ecosystems that are commonly measured in relation to

the effects of biodiversity on limiting disturbance severity. These are productivity

and stability [64] [22] [86] [27] (see Figure 2-7). When disturbances occur, the

productivity and stability can be affected in different ways depending upon the

disturbance severity and the level of biodiversity within the ecosystem. When

disease spread is considered as a disturbance event, such as in the case of an

epidemic, properties involving the dynamics around disease transmission is also

analysed.

Figure 2-7 – The effect of biodiversity on limiting disturbance severity

2.2.2.2.1 Productivity

Productivity is about the efficient use of input resources to generate outputs. It is

a measure of how much and how quickly something is being produced.

Productivity has been used to measure how well a particular ecosystem function is

performing under different conditions in relation to diversity [87], and within

ecological studies it is generally measured by the rate of increase in the total

Outputs measuring the effect of

biodiversity on limiting disturbance

severity

Productivity

(closely linked to

ecosystem function)

Stability

Temporal

stability
Resistance Resilience

Engineering

resilience

Ecological

resilience

Disease spread

Transmission

properties

Chapter 2 Ph.D. Thesis

Jennifer Jackson 27 of 357 May 2017

community biomass (total mass of living matter) in an area [66]. Changes in

productivity in relation to disturbances or biodiversity change can be measured

over time to assess ecosystem stability (§2.2.2.2.2) [88] [27].

2.2.2.2.2 Stability

Stability in relation to ecosystems can have two meanings, either the

measurement of the temporal variability of an ecosystem property (temporal

stability), or the measurement of an ecosystemȂs ability to defy change such as that

from disturbances [89] [90] [22] [27]. Often the temporal attribute measured is the

variance in population densities, or changes in productivity, such as that of biomass,

over time (see Figure 2-8 (a)) since most biodiversity and ecosystem functioning

studies focus on plants or microbial communities [88] [90] [22] [27]. There may also

be a tolerance threshold, below which ecosystem functions and services become so

degraded that it impacts the ability of the ecosystem to survive or recover. When the

stability of a system is a measure of its ability to return to equilibrium following

disturbance, two dimensions of stability are used, termed resistance (sometimes

persistence) and resilience [22].

(1) Resistance describes how much of an ecosystem property changes in

response to disturbance. The less the property changes the more resistant it is (see

Figure 2-8 (b)). For example the resistance of productivity to climate events has been

studied in grasslands in relation to diversity [27], as well as resistance of

productivity to plant invasions where the invading plant biomass [91], and the

invading plant cover [92] were measured in relation to biodiversity with the studies

showing that biodiversity can act as a good barrier.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 28 of 357 May 2017

(2) Resilience, more specifically Engineering resilience [93] assumes that stable

ecological systems operate at a single global equilibrium (one stable state) so that

the resilience is a measure of the time taken to return to this global equilibrium

following a disturbance (see Figure 2-8 (b)). The faster the ecosystem can recover,

the more resilient it is [21] [27]. Ecosystems may react differently to different types

of disturbances in which case the resilient and resistant characteristics will change.

Figure 2-8 – Methods of measuring ecosystem stability

2.2.2.2.3 The Case of Disease Spreading

The spread of a disease is considered as a disturbance event [55] especially if it

turns into an epidemic. Controlling the spread of diseases is often defined as a

regulating service offered by ecosystems (§2.2.1.3) [50], and therefore has been used

Time

Function

Disturbance

R
e
s
is

te
n
c
e

Resilience

Time

Productivity

(Total biomass)

a) Temporal

variability

b) Engineering

resilience

(and resistence)

Tolerance threshold

Tolerance threshold

Chapter 2 Ph.D. Thesis

Jennifer Jackson 29 of 357 May 2017

as another output component of assessing ecosystem health. Whilst some studies in

relation to disease spread and biodiversity examine stability components, such as

that involving species diversity and productivity changes [94] or resistance of alleles

(§2.2.2.1.4) against pathogens in genetic studies [95], others instead focus on changes

in actual disease transmission of a population [56]. Experimental research suggests

that the effect of biodiversity loss on the spread of diseases can have two outcomes;

either it can decrease, or increase (majority of cases) transmission [56]. This can be

linked to two theories regarding biodiversity and disease spread: The Dilution Effect

and the Amplification Effect:

(1) The Dilution Effect [24] [96] [97] [56], is any factor that causes a relative

reduction in: the number of individuals that are susceptible to the disease and can

pass it on (suitable hosts) relative to the total number of individuals, or their

encounter rates, which can decrease the transmission of disease. For example a

decrease in the relative number of those susceptible through an increase in the

number of different species.

(2) The Amplification Effect [98] [97] [56] is caused by factors that cause a

relative increase in: the number of individuals that are susceptible to the disease and

can pass it on (suitable hosts), or their encounter rates, which can increase the

transmission of disease, for example an increase in the number of susceptible

individuals when species that are added to increase diversity are also susceptible.

For genetic diversity studies, disease transmission is studied in relation to genetic

variation (§2.2.2.1.4), both in terms of genotypes and alleles. There is a general

consensus that genetically homogenous populations are more vulnerable to disease

Chapter 2 Ph.D. Thesis

Jennifer Jackson 30 of 357 May 2017

transmission than genetically diverse populations [99] [100], which has been seen in

agriculture where disease epidemics have destroyed monocultured crops [101]

(§1.1.3). Studies also suggest that genotypes with high allelic diversity are needed

in a population to constrain transmission [102] [103] [99] particularly when exposed

to multiple parasites [103] [99].

2.3 Measuring Biodiversity

2.3.1 Introduction

As outlined in section 2.2.1.1 genetic, species, and functional diversity measures

are used to describe biodiversity in ecosystems. The majority of practical studies

focus on species diversity because it is easier to measure than genetic diversity [104]

[44]. However, measurement at the genetic level can determine diversity within and

between the species of whole ecosystems by considering differences in genotypic

structure at the individual scale. This section reviews biodiversity measures at the

genetic level only, these being referenced during later chapters.

2.3.2 Genetic Diversity

When analysing genetic diversity in relation to genotypes (§2.2.2.1.4) there are

two types of measures: those based directly upon genotypes as a whole entity, and

those based upon alleles which make up the genotypes. These two aspects are

reviewed below.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 31 of 357 May 2017

2.3.2.1 Genotypic Measures

Genotypic measures focus directly on the genotype and ignore its allelic

construction. A selection of measures described below is used in the literature to

assess diversity.

2.3.2.1.1 Genotypic Richness

Genotypic richness is the number of different genotypes that has been

measured within a population. Observational studies can count the number of

genotypes, whilst experimental studies can create the required number of genotypes

using clonal species [44].

2.3.2.1.2 The Proportion of Different Genotypes

The proportion of different genotypes within a population of size is defined in

Equation (2-1) [105] as the genotypic richness per population. It has a maximum

value of 1 when all individuals within the population have a unique genotype and

approaches 0 when there are very few genotypes.

(2-1)

2.3.2.1.3 Genotypic Diversity

Genotypic diversity [106] [105] takes into account the frequency of all the

different genotypes , where is the frequency of the th genotype, as shown in

Equation (2-2) giving an indication as to how the genotypes are distributed across

the population. It has a minimum value of 1 when there is only one genotype

present in the population, and a value of when multiple genotypes are present

Chapter 2 Ph.D. Thesis

Jennifer Jackson 32 of 357 May 2017

and are evenly distributed, up to a maximum value of when all individuals

have a unique genotype.

(2-2)

2.3.2.1.4 Genotypic Evenness

Genotypic evenness [105] as given in (2-3) specifies how evenly or dominantly

the genotypes are distributed amongst the population. When a single genotype

dominates, providing that there is more than one genotype present in the

population, the evenness approaches 0. When the genotypes are evenly distributed,

the evenness has a maximum value of 1.

(2-3)

2.3.2.2 Allelic Measures

Allelic measures concentrate on the genetic variation of alleles across a

population where alleles are positioned at different loci within a genotype

(§2.2.2.1.4). A selection of measures described below is used in the literature to

assess diversity.

2.3.2.2.1 Allelic Richness

Allelic richness [44] is the average number of different alleles per locus that

has been measured across a population. It is on a par with genotypic richness but is

now focused at the allelic level. Similar to genotypic richness it does not consider

Chapter 2 Ph.D. Thesis

Jennifer Jackson 33 of 357 May 2017

how many instances of each allele are present. As shown in Equation (2-4) The

number of different alleles at each locus is summed and then divided by the

total number of loci .

(2-4)

2.3.2.2.2 The Nei Genetic Diversity

The Nei Genetic Diversity [42] is defined as the probability that at a single

locus any two alleles chosen at random from the population are different to each

other. This principle applies for monoploid (haploid), diploid and any other

polyploidy chromosome sets (§2.2.2.1.4) but is very rarely stressed in the

literature [42] [107] since most studies measuring genetic diversity in this way

focus on diploid chromosome sets of animals and plants. For diploid

chromosome sets the genetic diversity measure for a single locus is referred to as

the expected heterozygosity which is a measure of how different the two allele

pairs are (§2.2.2.1.4). For monoploids the terminology of heterozygosity cannot

be applied but the Nei Genetic Diversity is still valid since it assumes that any

two alleles chosen at random can be from different individuals. The frequency of each different allele at each locus can be calculated using Equation

(2-5) as the number of times the allele is present divided by the total number

of alleles across the population. The value is equivalent to the

population size for monoploids and twice the population size for

diploids since a diploid has two alleles for each gene.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 34 of 357 May 2017

 (2-5)

The probability that two alleles chosen at random will be the same is given

by Equation (2-6) and is also a measure of homozygosity (§2.2.2.1.4) for a population

with diploid chromosomes. This is summed over all the different allele possibilities (Not to be confused with A which is the total number of alleles across a

population, for which the same allele may occur multiple times).

(2-6)

Subtracting this from unity gives the probability that two alleles chosen at

random will be different and denotes the genetic diversity at a single locus ,

which is given in Equation (2-7). For a population with diploid chromosomes this

will be a measure of heterozygosity.

(2-7)

The final diversity index is usually calculated by averaging the diversity

across all loci (L) as given in Equation (2-8). The genetic diversity index has values

between 0 where every individual in the population has the same set of alleles, and

1 if every individual has a different allele at every locus.

(2-8)

Chapter 2 Ph.D. Thesis

Jennifer Jackson 35 of 357 May 2017

2.3.2.2.3 The Shannon Diversity Index

The Shannon Diversity Index [108] (Shannon entropy) was originally used to

quantify the uncertainty of information content in strings of text. The greater the

numbers of different letters, and the more equal their frequency within the text, the

more difficult it is to correctly predict which letter will come next. The same concept

can be applied to alleles where the more alleles there are at a locus and the more

equal their distribution amongst the population, the more diverse the population

becomes [44]. The Shannon entropy for a given locus is given in Equation (2-9),

and is firstly calculated in a similar manner to the Nei Genetic Diversity by

measuring the frequency of each different allele at the locus. Different

logarithmic bases have been used for the index such as the natural logarithm, and

the base 2 logarithm [109]. The equation is summed over all the different alleles

possibilities .

(2-9)

Similar to the Nei Genetic Diversity measure, the Shannon entropy can be

averaged across all loci as given in Equation (2-10).

(2-10)

The maximum diversity occurs when all alleles are equal in frequency. The upper

limit for a single locus is governed by the number of different allele possibilities at

that locus and can be simplified to Equation (2-11).

Chapter 2 Ph.D. Thesis

Jennifer Jackson 36 of 357 May 2017

 (2-11)

2.3.2.3 Maximum Number of Unique Genotypes

For a monoploid set of chromosomes, the maximum number of unique

genotypes that can be created is the product of the number of different

allele possibilities at each of the loci as given in Equation (2-12).

(2-12)

Where is the total number of loci. Figure 2-9 (a) shows the number of unique

genotypes for two loci having up to 10 alleles, and Figure 2-9 (b) shows the number

of unique genotypes for four loci with the same number of alleles at each locus.

From the opposite perspective, the number of loci and alleles needed to represent at

least a specific number of genotypes will in general have a number of solutions.

Figure 2-9 – Maximum number of unique genotypes

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 15 18 21 24 27 30

4 4 8 12 16 20 24 28 32 36 40

5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60

7 7 14 21 28 35 42 49 56 63 70

8 8 16 24 32 40 48 56 64 72 80

9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

1 2 3 4

1 1 1 1 1

2 2 4 8 16

3 3 9 27 81

4 4 16 64 256

5 5 25 125 625

6 6 36 216 1296

7 7 49 343 2401

8 8 64 512 4096

9 9 81 729 6561

10 10 100 1000 10000

N
u

m
b
e
r

o
f
p
o

s
s
ib

le
 a

lle
le

 c
h
o
ic

e
s
 a

t
e
a
c
h
 l
o
c
u
s

L
o
c
i
2
 –

 N
u
m

b
e
r

o
f
a
lle

le
s

Loci 1 – Number of alleles

b) Varying the number of loci and

alleles at each locus
a) Varying the number of alleles across 2 loci

Number of loci

Chapter 2 Ph.D. Thesis

Jennifer Jackson 37 of 357 May 2017

For example, to generate at least 50 genotypes, there needs to be at least 2 loci

with 7 and 8 alleles (Figure 2-9 (a)) or 4 loci and 3 alleles in each (Figure 2-9 (b)).

2.3.2.4 Comparison of Measures

Figure 2-10 (a) and (b) show comparisons of the genotypic and allelic measures of

diversity for a simulated population having genotypes comprising a single locus

and four loci respectively. It is an illustration to support the mathematical equations

highlighting differences between what they show. The number of different allele

possibilities is the same at each locus and is varied between 1 and 10. The

population size of 20,000 has been chosen such that it is twice the maximum

number of possible genotypes from a four locus, 10 allele combination. This

is to allow the simulation of genotypes to occur at least twice and be evenly spread

across the population so that maximum diversity is achieved and can be observed in

Figure 2-10 (a) and (b). For a single locus as shown in Figure 2-10 (a), the Genotypic and Allelic Richness increase together linearly with the number of alleles

since a single locus with one allele can have only one possible genotype, two alleles

can have two genotypes, and so on. The Genotypic Diversity also follows the

same relationship, since when the genotypes are evenly distributed, its value is

equal to the Genotypic Richness. It also follows from even distribution that the

Genotypic Evenness measure is flat at unity across any number of alleles. The

Nei and Shannon measures both show the maximum allelic diversity values that

can be achieved when the alleles, and hence genotypes are evenly distributed. The

difference between the measures being that the Nei Genetic Diversity

Chapter 2 Ph.D. Thesis

Jennifer Jackson 38 of 357 May 2017

asymptotically approaches unity as the number of alleles increases whereas the

Shannon Index increases with the number of alleles.

Figure 2-10 - Comparison of genetic diversity measures

The Proportion of Genotypes measure remains low for any number of

alleles up to 10, indicating that although the alleles and genotypes are evenly

distributed leading to maximum diversity under these constraints, the number of

unique genotypes in comparison to population size is very small.

With four loci as shown in Figure 2-10 (b) the averaged allelic measures across all

loci are the same as that for a single locus since the chosen population size is large

enough to achieve even distribution and maximum diversity given the locus and

allele constraints. Differences are seen in the increased Genotypic Richness ,

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Number of alleles

D
iv

e
rs

it
y
 m

e
a
s
u
re

Genotypic Richness

Proportion Genotypes

Genotypic Diversity

Genotypic Evenness

Allelic Richness

Nei Genetic Diversity

Shannon Index

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Number of alleles in each locus

D
iv

e
rs

it
y
 m

e
a
s
u
re

Genotypic Richness

Proportion Genotypes

Genotypic Diversity

Genotypic Evenness

Allelic Richness

Nei Genetic Diversity

Shannon Index

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Number of alleles in each locus

D
iv

e
rs

it
y
 m

e
a
s
u
re

Genotypic Richness

Proportion Genotypes

Genotypic Diversity

Genotypic Evenness

Allelic Richness

Nei Genetic Diversity

Shannon Index

(a) Diversity measures with a single

locus and a population size of 20,000

(c) Diversity measures with four loci

and a population size of 100

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Number of alleles in each locus

D
iv

e
rs

it
y
 m

e
a
s
u
re

Nei Genetic Diversity

Shannon Index

Locus 1 and 2

Locus 3

Locus 4

(b) Diversity measures with four loci

and a population size of 20,000

(d) Nei and Shannon diversity measures for each of

the four separate loci and a population size of 100

Chapter 2 Ph.D. Thesis

Jennifer Jackson 39 of 357 May 2017

Genotypic Diversity , and hence the Proportion of Genotypes in

comparison to population size which reaches a half when four loci with ten alleles

are used.

Figure 2-10 (c) shows the same measures for four loci but with a limited

population size of 100. Figure 2-10 (d) shows the Nei and Shannon measures

separated out for each individual locus. The genotype assignment to individuals

within the population is set so that the minimum number of alleles are used to

achieve the maximum number of genotypes.

As shown in Figure 2-10 (d) when there are up to three alleles within each locus,

the population size is greater than the potential number of genotypes (see Figure 2-9

(b)) and so all alleles occur within the population and are distributed as evenly as

possible. Additionally, the Genotypic Richness is limited by the number of loci

and alleles. When there are four or more alleles in each locus the population size

becomes smaller than the potential number of genotypes. Under this condition the

Genotypic Richness is limited by the population size. The actual genotypes of

the population are a subset of those available for which there could be many

different subsets, with potentially some alleles either not being expressed, or

dominating at a particular loci. This means that even when every individual in the

population has a different genotype, the allelic diversity (Nei and Shannon) may not

necessarily be maximal. This is illustrated in Figure 2-10 (d) when only a minimum

number of alleles are used to achieve richness. Domineering alleles in loci three and

four reduce the diversity to zero at these particular loci when the number of alleles

in loci one and two is increased to maintain genotypic richness. This thereby

Chapter 2 Ph.D. Thesis

Jennifer Jackson 40 of 357 May 2017

reduces the overall allelic diversity measures of Nei, Shannon, and Allelic Richness

as shown in Figure 2-10 (c). This example provides a key illustration of the

differences between genotypic measures and allelic measures, where it may be

possible to maximise genotypic richness and diversity without fully exploiting the

potential allelic richness and diversity. This makes the use of both types of

measures important for assessing genetic diversity.

2.4 Summary

An ecosystem comprises interacting organisms and their physical environment,

resulting in distributed, self-organising, and emergent properties. Biodiversity

encompasses the variety of genes, species, or functional traits within an ecosystem

and is critical to the functioning of such ecosystems and the emergent services they

provide. Ecosystem functions are the ecological processes that take place and the

ecosystem services are the benefits provided to humanity. External influences,

termed disturbances, can impact on biodiversity and function and affect these

services. There are several mechanisms that link biodiversity to ecosystem function

including niche differentiation (particularly functional complementarity),

facilitation, interactions between trophic levels, and genetic variation. Ecosystem

health, and in particular its relationship with biodiversity, is often assessed by

looking at the outputs of ecosystem functions and services where productivity,

stability, and disease transmission are measures often used within studies. Stability

can have multiple meanings such as the variance of an attribute, or the ability to

defy change in which the two dimensions resistance and resilience are often used.

Chapter 2 Ph.D. Thesis

Jennifer Jackson 41 of 357 May 2017

The literature suggests that biodiversity loss can cause either dilution or

amplification of susceptible individuals and thereby reducing or increasing disease

transmission. These ecological concepts are mapped onto peer-to-peer networks in

the form of an ecosystem model of an ad hoc network and are described in chapter

5. Security attacks such as malware forms unwanted disturbances to the ecosystem

model.

Diversity measured at the genetic level can determine diversity within and

between the species of whole ecosystems by considering differences in genotypic

structure at the individual scale. There are two types of genetic diversity measures:

those based directly upon genotypes as a whole entity, and those based upon alleles

which make up the genotypes. Whilst genotypic measures are useful in identifying

the uniqueness of the population and the distribution of genotypes, allelic measures

can additionally show the distribution of alleles which can be analysed either

independently at each locus or as an average across the whole genotype. When the

measures are analysed together they provide a useful picture of the genetic diversity

of the population from both genotypic and allelic aspects. The following measures

are used as metrics in the measurement of diversity within the ecosystem model of

an ad hoc network (defined in 5.3.2.1): Genotypic Richness, Genotypic Diversity,

Allelic Richness, and Nei Genetic Diversity Index. The Genotypic Richness, Allelic

Richness and the Shannon Index are referenced in section 3.4.4 during a review of

diversity measures of computing systems for security.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 42 of 357 May 2017

3 Cyber Security and Diversity in Computing Systems

Chapter 3

Cyber Security and Diversity in

Computing Systems

3.1 Introduction

The purpose of this chapter is to introduce the background material associated

with: the practical viability of diversity, how greater numbers of connected devices

is driving more peer-to-peer wireless networks, how malware and vulnerabilities

are associated with different layers of the software stack, and what gaps there are in

this field of research. This chapter is split into three sections:

Computing Systems: The first section discusses enabling technologies of future

computing systems that have the potential to aid in the realisation of biodiversity as

a security mechanism. These include automated software generation and

dissemination, virtualisation and hardware support, and the modularity of software

stacks. Topology is considered with a focus on networks conducting peer-to-peer

communication.

Cyber Security: The second section on cyber security predominantly discusses

malware, which is a form of cyber attack rife in monoculture software

Chapter 3 Ph.D. Thesis

Jennifer Jackson 43 of 357 May 2017

environments. It summarises the different types of malware along with the stages of

a successful malware attack. The location and types of vulnerabilities exploited by

malware within the software stack are discussed. The implications of attacks using

multiple and publically unknown exploits are highlighted.

Diversity: The third section explores the literature on the current state of research

associated with diversity within computing systems. Three main areas of research

are reviewed including the diversification of software at the code level,

diversification at the network level and the metrics used to evaluate diversity within

such systems. This section concludes with an evaluation of the open areas of

research within this field.

3.2 Computing Systems

3.2.1 Enabling Technologies

The future of computing systems lies within a globally connected world of

devices and people, and will combine advancements in enabling technologies to

provide access anywhere and at anytime. Some of these enabling technologies could

also be utilised to realise diversity. Particular attention is given to automated

software generation, including dissemination and updating, virtualisation and

hardware support, and the modularity of software stacks.

3.2.1.1 Automated Software

The dissemination of software traditionally involved a pre-installation on a new

device, or through the purchase of a disk. Nowadays software can be readily

downloaded via the Internet, updates are often automated, and users can choose

Chapter 3 Ph.D. Thesis

Jennifer Jackson 44 of 357 May 2017

from a broad range of application software. Franz [110] identifies one of the

fundamental enablers of diversity to be the ease of obtaining software, making it

possible to distribute and patch unique versions. The advancement of dynamic

software compilation and cloud computing could be harnessed to provide the necessary

computing power to generate large volumes of these unique versions as and when

required. In addition to this, efforts are being sought to prevent the need to restart

software or computers when patches are applied. Much research has been

conducted around dynamic software updating (DSU) which would allow the unique

versions to be updated or modified without affecting functionality or run-time

performance [111] [112].

3.2.1.2 Virtualisation

Virtualisation is seen as one of the key enabling technologies for the future

Internet. It is the artificial creation of a resource such as a hardware platform,

storage device or server by combining or partitioning physical hardware or software

and isolating it from the rest of the system [113]. For example the resources of a

single computer could be partitioned so it appears there are two isolated computers

available instead of one. Virtualisation has grown rapidly because of its use in cloud

computing [114] and Bring Your Own Devices (BYODs) [115]. It has been used for

many years in desktop computers, but more recently in mobile devices with

software such as ȁHorizon MobileȂ by VMware [116], and open source software led

by the Xen project and backed by AMD and Google [117]. Virtualisation has use in

networks [118] [119], servers, services [120] [121], physical objects [122] [123], and devices

Chapter 3 Ph.D. Thesis

Jennifer Jackson 45 of 357 May 2017

(embedded) [113], increasing hardware utilisation, security, and efficient

administration [124].

Virtualisation within devices could prove to be a useful tool in the realisation of

software diversity due to its ability to switch between isolated software programs,

operating systems, or entire software stacks, and could provide an alternative to, or

complement the research field of dynamic software updating. Devices could be pre-

installed with only a low level virtualisation and management layer, so that the

enabling technologies of dynamic software compilation and cloud computing could

be used to provide hardware-independent functionality and individually tailored

operating systems and drivers as and when required [113]. Virtualisation can also

isolate malware prone applications by providing some protection against known

and unknown viruses through protecting the disk and files. If an infection occurs

software can be reloaded to its original, known good state and thus remove the

malware. Virtualisation can be partial, for example through sandboxing (Figure 3-1

(a)) of malware prone applications such as web browsers. Sandboxes examine

certain system calls for malicious behaviour, then rewrite or block them as

appropriate. Virtualisation can also be full using virtual machines (VMs) (Figure 3-1

(b)) to isolate whole operating systems [125]. VMs are created and managed by

Hypervisors [126] which either sit directly on top of the physical hardware (type 1

hypervisor) or sit on top of the host operating system (type 2 hypervisor). Although

virtualisation has the potential to aid diversity, there are a number of design issues

that would need to be addressed before it can be practically used (§9.3.2.4.)

Chapter 3 Ph.D. Thesis

Jennifer Jackson 46 of 357 May 2017

Figure 3-1 – Virtualisation scenarios

It is not just virtualisation however that could support diverse software, hardware

enabling technologies could also be important for the successful deployment of

diversity. Chip designs made up of small processors for parallel software tasks

could have the potential to accommodate diverse software onto a single chip [127]

[128].

3.2.1.3 Software as a Modular Structure

All computing devices are equipped with an underlying hardware and software

architecture. The latter is comprised of numerous software components organised

into layers that perform specific functions and is called a software stack.

Complementary to the software stack is the network protocol stack, which is also

comprised of layers, but contains protocols defining the communication from one

device to another within the network [129]. Operating Systems have well defined

software stacks and adhere to the relevant network protocol stacks to communicate

across the network.

Within the future it is likely that this modularity will remain, but with increased

functionality. There has already been an explosion of functionality of user software

Type 1 hypervisor

Host Hardware

Hypervisor

Type 2 hypervisor

Host Hardware

Host OS

Hypervisor

Sandboxing

Host Hardware

Host OS

Apps

OS
App

1

App

2

App

3

App

4

sandbox VM1

Apps

OS

VM2

Apps

OS

VM3
Apps

OS

VM1

Apps

OS

VM2

Apps

OS

VM3

a) Partial virtualisation b) Full virtualisation

Chapter 3 Ph.D. Thesis

Jennifer Jackson 47 of 357 May 2017

with the introduction of ȁ“pp storesȂ but the increase in functionality is likely to

extend to other layers of the stack as more emerging products enter the IoT. The

ability to partition software into layers and functionality, whether source code or

binary files, could be beneficial for creating diverse computing systems where

alternative versions can be generated with the same functionality using the same or

different techniques at each layer of the stack.

Four different software stacks supporting computing devices are described here

and shown in Figure 3-2 to illustrate the similarities between them in terms of

software layers and functionality. The first three software stacks: the Android [130]

[131], iOS [132] [133] and Windows 8 [134] [135] are all distinct operating systems

that can be used with mobile devices. The Windows 8 architecture has a split

software stack with a shared kernel. One half caters for a modern ȁStyleȂ with touch

screen capability and the other half encompasses the old classic desktop structure.

The fourth software stack: the generic open source Linux OS [136] [137] is designed

as a modular structure so that different distributions such as Ubuntu or Debian can

be used with the same underlying core libraries, with a pick and mix of different

software packages and versions. Although the layers and software components

across all four operating systems are named and partitioned differently, the general

functionality remains consistent across the architectures. The layers can be

partitioned into four main categories. Starting from the lowest layer that sits just

above the hardware, the categories are: kernel, core OS libraries, application

services, and applications.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 48 of 357 May 2017

Figure 3-2 – Comparing different operating system software stacks

• The kernel layer contains the low level functions such as device drivers that

interact directly with the hardware such as the specific camera built into the device,

the graphics card, and USB ports. There is also: low level networking functionality

such as for a WiFi card, power management, memory management and file

management as well as inter-process communication and threads between

communicating software components. The Android operating system uses the open

source Linux kernel [138] as the basis for its low level functions.

• The core OS libraries layer contains a multitude of libraries performing

numerous functions supported by different programming languages. For example a

library supporting graphics functions both feeds into the application services layer

Desktop (classic)

Applications

Browser (android browser)

Email (GMail,Outlook,Molto

etc)

Word processor (officeSuite

Pro, Google docs, etc)

Android Windows 8

Style (modern)

Activity Manager

Window Manager

Package Manager

Resource Manager

Location Manager

Telephony Manager

Notification Manager

Internet messaging (XMPP)

User Interface:

Languages and

API:

Applications:

Window

management

(Windows

Forms),

Media streaming

(Silverlight),

Graphics

(GDI/GDI+)

 user interface,

User interface

Language

support,

Network,

Storage,

Media,

Security

Runtime lib,

Database (SQL)

H/W accelerator

(Open GL)

...

Languages:

C,C++,VB, .NET

etc,

Runtime libs,

Win32 API,

Database (SQL)

H/W accelerator

(Open GL)

Device drivers e.g camera

/ USB / display

WiFi / Bluetooth etc,

Low level networking,

Power management,

Memory management,

File management,

Synchronisation,

Inter-process communication

Android core libraries &

Dalvik Virtual Machine,

Web kit,

Graphics (SGL)

Security (SSL)

H/W accelerator (Open GL)

C language library (Libc)

Media framework

Surface manager

Database(SQLite),

Applications:

Application Framework:

Libraries and runtime:

Core OS kernel drivers:Linux Kernel:

Device drivers e.g camera /

USB / display

WiFi / Bluetooth etc,

Low level networking,

Power management,

Memory management,

File management,

Synchronisation

Inter-process communication

Kernel

Core OS

libraries

Application

services

Languages and

runtime APIs:

Browser (Safari)

Email (iOS mail, Boxer etc)

Word processor (Quickoffice,

elements)

iOS

Apple Apps

User interface framework,

Multitasking,

High level system services,

System level services e.g

networking, data, media,

system configuration

Database (SQLite)

Media:

Core services:

Core OS:

Device drivers e.g camera

/ USB / display

WiFi / Bluetooth etc,

Low level networking,

Power management,

Memory management,

File management,

Synchronisation,

Inter-process communication

hardware accelerator

Security framework

Cocoa Touch:

Multimedia streaming,

Graphics & audio & video

management, Text kit,

H/W accelerator (Open GL)

Browser

(iexplorer)

Email (Outlook)

Word processor

(MS word)

Browser

(iexplorer)

Email (Outlook)

Word processor

(MS word)

Browser (Firefox, Opera etc)

Email (Thunderbird, Opera

mail etc)

Word processor (Apache,

OpenOffice)

Linux
Eg. Ubuntu / Linux Mint /

Debian / Fedora etc

Applications:

Desktops (KDE, GNOME,

LXDE, XFLE, Cinnamon,

MATE, LXQt, Budgie, etc)

Gui interface/graphics

(FLTK,GNUstep, GTK+)

Window Manager(EFL)

Windowing (X11,Wayland)

Gaming (SFML)

GNU open source packages

Linux Kernel:

Device drivers e.g camera /

USB / display

WiFi / Bluetooth etc,

Low level networking,

Power management,

Memory management,

File management,

Synchronisation

Inter-process communication

Security (SELinux, TOMOYO)

GNU desktops & interfaces

Media library (SDL)

Database (MySQL)

Web server (Apache)

System (systemd,runit)

Software management (APT)

Graphics (Mesa, AMD

Catalyst, Synaptic)

Web scripting (PHP)

C language library (glibc)

Chapter 3 Ph.D. Thesis

Jennifer Jackson 49 of 357 May 2017

to support the drawing of graphical user interface (GUI) windows, and

communicates with the graphics card device driver in the kernel. Other notable

libraries at this layer include networking and web support, database functions such

as support for the Structured Query Language (SQL), media support such as

multimedia streaming, video and audio capabilities including CODECs (Coder

Decoder: coding and decoding of media files), and security such as Secure Sockets

Layer (SSL) for establishing encrypted links between web servers and browsers.

• The application services layer is the level at which application frameworks are

created, with functionality such as window managers that control the position, style

and timing of windows drawn on the display screen. The open source Linux

software stack has separate windows managers and desktop software packages. The

GNOME desktop, for example, uses the GTK+ toolkit containing a collection of

applications to form a graphical environment which itself uses the X11 windowing

application program interface (API). The multimedia streaming package in

Windows 8 (Silverlight) is an application framework for browser multimedia

applications and is used by Netflix for streaming films and television programs. The

Android application framework is comprised of a number of managers controlling

different aspects.

• The applications layer is where all the user software is found. Applications

utilise the application services layer of an operating system, and sometimes libraries

in lower layers to create interactive user software. Internet browsers for example sit

at this layer for which there can be different products that are compatible with the

same operating system such as Firefox and Opera (plus others) for Linux, or

Chapter 3 Ph.D. Thesis

Jennifer Jackson 50 of 357 May 2017

different versions of a product across operating systems such as Firefox for Linux or

Firefox for Windows.

There are compatibility issues between different software stacks due to

dependencies on lower layer libraries, with often only one choice available for a

specific function. It is only at the application layer where there tends to be more

choice of software, particularly with the introduction of ȁ“pp storesȂ. The evolving

suite of open source Linux software modules however at lower layers provides a

wider choice of functions that can be mixed and matched as appropriate with the

added benefit of being compatible. The development of open source software within

the IoT is also growing [139] [140] [141] [142] [143] [144] [145]. This increased use of

open source could provide a natural method of software diversity since there can

often be alternative choices of modules providing similar functionality. Additionally

open source is constantly under scrutiny meaning bugs tend to be fixed quickly, and

it costs less in monetary terms for the end user than proprietary counterparts

making it a cost effective way of introducing diversity and fixing vulnerabilities.

3.2.2 The Future Topology of Connected Devices

In the past, society has seen the integration of mobile phone networks and the

Internet using smartphone devices, third generation (3G) networks and protocols,

local wireless access points using WiFi and wireless peer-to-peer communication

using Bluetooth [146]. In the future, the IoT will combine enabling technologies with

many different types of objects, for a vast range of applications requiring

improvements in networks and services [8] [6] [147] (Figure 3-3). Traditional

internet networks are based upon the application layer client-server model [129]. In

Chapter 3 Ph.D. Thesis

Jennifer Jackson 51 of 357 May 2017

the future, the IoT is likely to be constructed from different topologies utilising a

multitude of communication protocols, depending upon the connected devices and

their application (Figure 3-3). There will be more localised peer-to-peer communication

such as device to device (D2D) or machine to machine (M2M) making more use of

protocols such as Bluetooth, or the fourth generation (4G) WiFi Direct and LTE

Direct, or their fifth generation (5G) equivalents when they are released [146]. They

may also be connected in an ad hoc fashion, as and when the services are required,

such as in the case of moving phones or vehicles creating localised ad hoc networks

[148].

Figure 3-3 – Topology of the future Internet

3.2.3 Peer-to-Peer, Ad hoc, and Sensor Networks

Localised Peer-to-peer communication describes the direct communication between

one device and another. This section describes different types of peer-to-peer

networks and where mobile ad hoc networks fit in. Several networks communicate

in a peer-to-peer fashion, although the underlying mechanisms and network

topology may be different.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 52 of 357 May 2017

A peer-to-peer overlay network has a distributed architecture and generally operates

at the application layer of a network protocol stack (§3.2.1.3) using the Internet as

the underlying network and can operate over wired or wireless connections [149]. In

a traditional client-server model, shown simplistically in Figure 3-4 (a) without

including network detail, a user will communicate with a single server to transfer a

whole file. By contrast, in a peer-to-peer overlay network (Figure 3-4 (b))

connections with multiple hosts are made with many small data requests to each.

The peer-to-peer client then combines the data to recreate the file. BitTorrent is one

of the most popular peer-to-peer file sharing protocols and is often used for

downloading films [150].

Whilst peer-to-peer overlay networks provide logical peer-to-peer

communication, ad hoc networks provide physical peer-to-peer connections. They are

formed at the lower network layer of a network protocol stack (§3.2.1.3). They also

have a distributed architecture, but devices used within ad hoc networks tend to

interact closely with humans often following human mobility patterns (§4.2). Each

node in the network acts as a router and a host which self-configure to form an

arbitrary topology [151] (Figure 3-4 (c)). Nodes communicate through single-hop

and multi-hop paths to each other in a peer-to-peer fashion. For nodes that are both

mobile and wireless with multi-hop functionality, they are generally referred to as

Mobile “d hoc NETworks ǻM“NETȂsǼ [148] [152].

Chapter 3 Ph.D. Thesis

Jennifer Jackson 53 of 357 May 2017

Figure 3-4 – Network topologies

Mobile phones equipped with Bluetooth currently use single hop communication

for transferring files directly between devices. In the future wireless communication

standards will incorporate multi-hop functionality [153] allowing the creation of

mobile ad hoc networks. It is likely that most ad hoc networks will not operate in

isolation, requiring some kind of gateway to the Internet. Mesh networks (Figure 3-4

(d)) may provide this, where ad hoc devices collaborate with fixed infrastructure to

enable access to the Internet [153]. Ad hoc networks are beneficial for temporary

server

client

client

client

client
client

client

client

peer

peer

peer

peer

peer

peer

peer

mobile

mobile

mobile

mobile

mobile

mobile

mobile

mobile

mobile

mobile

mobile

mobile

mobile

mobile

router

a) Client/server (star topology) b) Peer-to-peer network

c) Wireless mobile ad hoc network

connected in a

peer-to-peer fashion

d) wireless mesh network, where an ad

hoc network collaborates with the fixed

infrastructure to communicate with the

internet

router

Wired backbone

Chapter 3 Ph.D. Thesis

Jennifer Jackson 54 of 357 May 2017

scenarios such as mobile phone communication, rescue operations, health care, and

much more [154].

Sensor networks are sometimes discussed in the literature as a type of ad hoc

network, but they can also be considered different from ad hoc networks [154]

depending upon the type of network topology and application areas that are being

considered [155]. Devices contain sensors and actuators and collaborate between

themselves using wired and wireless technologies which may be static or mobile.

They normally have a central device responsible for gathering sensed data called the

sink or master and interact more closely with the environment for applications such

as machine surveillance, tracking of goods, and precision agriculture [154]. The

three most common topologies are mesh, star and tree (Figure 3-5), where the mesh

topology could incorporate an ad hoc network if required for a specific application

[155].

Figure 3-5 – Sensor network configurations

a) mesh

b) star

c) tree

To Internet

or local

network

master

slave

slave

slave

slave
slave

slave

slavemaster

slave

router

slave slaveslaveslave

router

slave

slave

slave

slave

master

slave

slave

Chapter 3 Ph.D. Thesis

Jennifer Jackson 55 of 357 May 2017

3.3 Cyber Security

3.3.1 Malware in a Monoculture Environment

The increased use of computing devices and wide scale adoption of a limited

number of operating systems (OS) and common protocols continues to pose a

significant software monoculture threat. Malware is prolific in monoculture

environments since it can spread over networks taking advantage of software, such

as widely used operating systems, that all have the same vulnerability. Malware is

any malicious software used to interfere with computer operations, access private

data and systems, or display unwanted advertising. It can infect or delete files, deny

services by flooding the network, enable remote access to control devices, modify

system applications, prevent functions from working or even turn off security

features such as antivirus tools. The main types of malware include:

 Viruses: Attach to other programs to spread, and self-replicate when

executed.

 Worms: self-replicate without needing other programs to spread.

Sometimes require user interaction to initiate the spread (e.g. Cabir Worm

[156]).

 Trojans: Appear as legitimate software (e.g. hidden within ȁ“pp storesȂ

[157]) and can harbour spyware, ransomware, or adware.

 Spyware: Capture sensitive data or key presses to obtain login details.

 Ransomware: Extract money by encrypting files or locking the device until

a ransom is paid (ransomeware targeting mobile users is increasing [157]).

 Adware: Launches unwanted advertisements.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 56 of 357 May 2017

3.3.2 Successful Malware Attacks

Malware takes advantage of vulnerabilities unintentionally (mostly) created in

the design and implementation of software code. Exploit code is written and used

within malware to exploit a vulnerability. The exploit code can comprise a small

piece of software, a block of data or a chain of commands. A successful malware

attack requires several steps as shown in Figure 3-6. The first is an entry point for an

exploit utilising a vulnerability through which there is redirection of control on the

target computer to download a payload. The payload could be the malware itself,

or a downloader which then creates a backdoor for other types of malware to be

installed. Malware then carries out its intended execution such as stealing data, or

causing damage. If the malware has avoided detection and has been programmed to

spread over the network, it will then start infecting other computers, either straight

away, or after a trigger. Sometimes exploit kits are used which include pre-written

exploit code targeting vulnerabilities in unpatched software. Some exploit kits run

on web servers, with the purpose of identifying software vulnerabilities in client

machines so that malware can be executed.

Figure 3-6 – Steps of a successful malware attack

3.3.3 Multiple Exploits and Zero-day Attacks

The use of multiple exploits could pose a significant threat in the future. Exploit

kits contain multiple exploits targeting known vulnerabilities to gain entry to a

computer, usually these kits only need to use one exploit to succeed but have a pool

Exploit entry point
Redirection of

control
Download payload Execution Spread

Chapter 3 Ph.D. Thesis

Jennifer Jackson 57 of 357 May 2017

to choose from. For example the ŘŖŗś mobile ȁGodlessȂ malware contains multiple

exploits that can gain root access to various versions of Android-based devices.

Once the malware has achieved root access it can receive remote instructions to

download other malicious software [158].

Some attackers however use exploits to target publically unknown

vulnerabilities. These types of attacks are called zero-day and are growing more

common. They can last up to 30 months [15] before the vulnerability is publically

disclosed (Figure 3-7), and are often targeted at specific organisations such as the

government. Additionally, these types of attacks can use multiple zero-day exploits

to gain entry to the network, access information, propagate to other devices and

perform malicious tasks. The 2010 Stuxnet worm for example used four separate

zero-day exploits to gain entry and cause disruption to an Iranian nuclear power

plant [17]. The first exploit targeted an automatic file execution vulnerability in a file

shortcut of Microsoft Windows OS which was used to inject the worm via USB

sticks into a computer system. The second targeted a shared print-spooler

vulnerability using remote code execution (§3.3.4) which was subsequently used to

spread the worm. The third and fourth targeted system-level privileges to gain

control even when computers had been locked down to only allow specified

software to run. This was the first threat to use so many publically unknown

vulnerabilities.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 58 of 357 May 2017

Figure 3-7 – Zero-day attack time line adapted from [15] and [14]

A more recent example in 2016 was a piece of malware named Trident [159]

incorporated into the Pegasus spyware, which used three zero-day exploits to target

iPhone devices. As shown in Figure 3-8 the first exploit targeted a vulnerability in

the Safari WebKit at the application layer leading to memory corruption allowing

the device to be infected when the user clicked onto a link. The second exploit

targeted a kernel mapping vulnerability of the iOS at the core OS layer that leaked

information allowing the attacker to calculate the kernelȂs location in memory. The

third exploit targeted a vulnerability at the kernel layer that caused kernel memory

corruption allowing the device to be silently jailbreaked so that surveillance

software could be installed. The three exploits targeted different layers of the

software stack (§3.2.1.3), and all three vulnerabilities needed to be exploited for the

malware to be successful.

The damage caused by zero-day attacks does not stop at the original target. After

a zero-day vulnerability is publicly disclosed, there can be a surge of attacks (Figure

3-7) within a few hours as other cybercriminals race to exploit the vulnerability

before it can be blocked or patched by antivirus vendors. For example, shortly after

Example

surge

in attacks

V
u

ln
e

ra
b

ili
ty

 f
o

u
n

d

V
u

ln
e

ra
b

ili
ty

 d
is

c
lo

s
e

d

Time (not to scale)

S
ig

n
a

tu
re

s
 r

e
le

a
s
e

d

P
a

tc
h

 r
e

le
a

s
e

d

P
a

tc
h

 d
e

p
lo

y
e

d

E
x
p

lo
it
 r

e
le

a
s
e

d

Zero day attack Follow on attacks

Chapter 3 Ph.D. Thesis

Jennifer Jackson 59 of 357 May 2017

the ȁHeartbleedȂ and ȁShellShockȂ zero-day vulnerabilities were disclosed in 2014,

between thirty and thirty five thousand follow on attacks were recorded [14] (Figure

3-7). A surge in attacks does not always happen this quickly but usually faster than

vendors can deploy patches. Trident for example was patched in 10 days after it was

disclosed [160], but many people still use old software that is no longer supported

through patches such as Windows XP which accounts for around 18% of infections

[161].

Figure 3-8 – Vulnerabilities in the software stack targeted by Pegasus exploits

3.3.4 Location of Vulnerabilities in the Software Stack

An analysis of the location of vulnerabilities within the software stack was

included as part of an on-line published study by the author [2]. The 2010 top 25

most dangerous software errors reported by MITRE and the SANS institute was

used during the study [162]. Figure 3-9 lists the vulnerability types and their

location within the software stack. The purpose is twofold, firstly to stress the

important fact that many types of vulnerabilities can affect multiple layers of the

Applications
(1. Safari web kit

vulnerability)

Kernel
(3. Kernel memory

vulnerability)

Core OS

libraries
(2. Kernel mapping

vulnerability)

Application

services

Chapter 3 Ph.D. Thesis

Jennifer Jackson 60 of 357 May 2017

software stack and that malware can be injected or propagated using a single

vulnerability at any layer. The actual exploit code however will be different for each

unique vulnerability discovered. Secondly, vulnerabilities described here are

referenced later in the chapter. A full description of the vulnerabilities and their

location is included in the study [2].

Several of those listed relate to buffer or memory vulnerabilities (nos.

3,12,14,17,18) which can occur at any layer of the software stack and lead to the

execution of malware. For example a buffer copy without checking the size of the input

(no.3) often leads to the classic buffer overflow attack where the attacker writes data

outside the bounds of the buffer to an adjacent location. This can change the

behaviour of the program, overwrite local variables or a function pointer, or change

a return address to point to malware.

In contrast, the leading vulnerability, improper neutralization of inputs during web

page generation (no. 1) only affects Web applications but can lead to a range of

attacks including an ideal entry point for malware. It occurs when untrusted inputs

are not mitigated against. The most common attack method is via script injection,

often called cross-site-scripting, where attackers inject JavaScript or other content

into a web page that the web server application generates. The web page can then

be accessed by other users, whose browsers execute the malicious script.

Code injection attacks often target online SQL databases by modifying

improperly checked SQL queries (no. 2). Additionally they can be used in

conjunction with memory corruption to redirect execution to the injected code, for

example for malware, by modifying a code pointer in memory. Code reuse attacks

Chapter 3 Ph.D. Thesis

Jennifer Jackson 61 of 357 May 2017

can also be used, where instead of injecting new code small sections of legitimate

code called gadgets are chained together to execute the exploit instead.

Other vulnerabilities that improperly deal with external inputs (nos. 4,6,7,9,15,16)

can allow an attacker to by-pass security mechanisms. Cross-site request forgery

(no.4) for example occurs when a web application insufficiently verifies requests by

the user allowing an attacker to trick a user into making an unintentional request to

the web server which is then treated as authentic. Other errors leading to security

mechanisms being bypassed, include the setting of improper access, restrictions and

permissions (nos. 5,8,19,20,21,22,25) and can lead to code execution for the

propagation of malware.

Figure 3-9 –Location of vulnerabilities in the software stack [162] [2]

1 Improper Neutra l i zation of Input During Web Page Generation

2 Improper Neutra l i zation of Specia l Elements used in an SQL Command

3 Buffer Copy without Checking Size of Input

4 Cross-Si te Request Forgery

5 Improper Authorisation

6 Rel iance on Untrusted Inputs in a Securi ty Decis ion

7 Improper Limitation of a Pathname to a Restricted Directory

8 Unrestricted Upload of Fi le with Dangerous Type

9 Improper Neutra l i zation of Specia l Elements used in an OS Command

10 Miss ing Encryption of Sens i tive Data

11 Use of Hard-coded Credentia ls

12 Buffer Access with Incorrect Length Value

13 Improper Control of Fi lename for Include/Require Statement in PHP Program

14 Improper va l idation of array index

15 Improper Check for Unusual or Exceptional Conditions

16 Information Exposure Through an Error Message

17 Integer Overflow or Wraparound

18 Incorrect Ca lculation of Buffer Size

19 Miss ing Authentication for Cri tica l Function

20 Download of Code Without Integri ty Check

21 Incorrect Permiss ion Ass ignment for Cri tica l Resource

22 Al location of Resources Without Limits or Throttl ing

23 URL Redirection to Untrusted Si te

24 Use of a Broken or Risky Cryptographic Algori thm

25 Race Condition

Applications

Kernel (OS Drivers)

3,11,12,14-18,21,22

Core OS libraries

3,11,12,14-18,21,22,24

Application services (OS System)

3,11,12,14-18,20-22,24,25

Web

1-25

Database

2,3,5,6,

10-12,

14-19,

21,22,25

Other

3,7,11,12,

14-19,

21,22,24

2010 MITRE/SANS top 25 vulnerability list

Chapter 3 Ph.D. Thesis

Jennifer Jackson 62 of 357 May 2017

3.4 Diversity

3.4.1 Diversity as a Security Mechanism

In the 1970s, N-version programming was proposed within the field of fault

tolerance to increase the reliability of systems that used software [28]. It was known

that identical software running on independent systems would fail in exactly the

same way with the same inputs, so the idea was therefore to create N-versions of the

software. Since then the concept of diversity within computer networks has

expanded, with the majority of research focused upon applications such as

improving communications [163-165], avoiding security attacks [35, 37, 39, 166, 167]

[168], designing fault tolerant systems for harsh environments [169-172] improving

test simulations [173], and in developing enabling technologies to support such

concepts [127]. Interest in the use of diversity as a security mechanism within

computing developed as computers became ubiquitous, attacks became more

common, and the risks of a software monoculture were acknowledged [19], [18]. A

biological perspective on diversity as a security mechanism was touched upon by

Forrest [174] who recognised that diversity is an important source of robustness in

biological systems, and its beneficial effects in computing systems should be

investigated. Later, Crandall highlighted that biological diversity for computer

security needed an ecosystem perspective [29]. There has been very little

development in this research area until recently since the development of key

enabling technologies (§3.2.1) such as dynamic software compilation, cloud

computing, and virtualisation is only now making it possible to produce,

disseminate and maintain the different versions of software needed [20].

Chapter 3 Ph.D. Thesis

Jennifer Jackson 63 of 357 May 2017

Consequently there has been a renewed interest around diversifying software [175].

Diversity used as a security mechanism aims to make it more difficult for attackers

to target multiple devices and networks during a single attack. The propagation of

malware relies on being able to exploit the same vulnerability on multiple machines

and so diversity makes attackers target each system individually. Without

knowledge of the programs on a specific computer targeted attacks such as those

using zero-day vulnerabilities become more difficult [14]. Diversity as a security

mechanism is not just applicable to singular computers and their user software but

may also manifest in other areas of defence such as network design [176] and

network defence mechanisms. Diversity of network defensive techniques such as

firewalls and intrusion detection systems is also related to the notion of defence in

depth [177], which is a multi-layered defence strategy with complementary

techniques to block, detect, monitor and remove suspicious activity to reduce the

probability of a successful attack.

Diversity research relevant to malware and the security of computers, their

interconnected network (as opposed to diverse network defence), and user software

can be broadly partitioned into three categories:

1) Creating diverse code

2) Creating diverse systems

3) Measuring and analysing diversity

Chapter 3 Ph.D. Thesis

Jennifer Jackson 64 of 357 May 2017

3.4.2 Creating Diverse Code

Creating diverse code involves practical code level manipulation techniques such

as obfuscation, insertion, and randomisation of code, data, or binary files to generate

different versions of software with the same functionality. Some techniques have

been designed that can be applied at the source, or compilation and linking stage,

usually prior to software distribution, whilst other techniques have been developed

to be applied after distribution such as during installation, loading, or program

execution [178]. Research has shown that diversifying software is possible using

these techniques. Additionally, larger scale experiments have been carried out

recently that prove diversity can actually be a viable method for wide scale use

[179],[180]. There are some key types of attacks against which code level

diversification is good at guarding. These include information leaks, memory

corruption such as buffer overflows, as well as code injection and code reuse, the

majority of which can allow the propagation of malware [181] [182] [178].

Vulnerabilities allowing these types of attacks are discussed in section 3.3.4.

3.4.2.1 Source Code Transformations

Generating different source code implementations has been widely researched

within the field of fault tolerance, where the idea originated from N-version

programming, and has often been a manual task [178]. Techniques for the automatic

generation of source code are more recent. Source code transformations is a technique

used to automatically create a diverse set of program variants by undergoing

different transformations given a baseline source code. Some of the transformations

are purely random while others involve program analysis [179], and are all based on

Chapter 3 Ph.D. Thesis

Jennifer Jackson 65 of 357 May 2017

removing, adding or replacing statements in source code [180]. This technique has

been demonstrated by performing diversity transformations on the server side of a

client-server network [179]. Multiple cloned copies of the server software stack,

called request handlers are generated to deal with incoming requests. Instead of

using cloned copies, these multiple copies could all be different providing

diversification.

3.4.2.2 Compiler Transformations

Compilers are used to translate high level source code into low-level machine

code automatically. Some diversity techniques take advantage of this process

already in place by extending existing compilers to automatically diversify machine

code.

The NOP insertion technique [33] [34] works by randomly inserting non-

alignment, no operation (NOP) instructions during compile time giving a large

number of program variants. A NOP is an instruction that the processor fetches and

executes without any effect on the processor register or machine memory. Although

adding NOP instructions can positively impact diversity it can also negatively affect

the performance of the generated binary file.

Another proposed method utilises the compiler optimisation algorithm.

Compilers usually try to find the best binary implementation to give optimum

performance out of numerous possibilities. Instead of choosing the best solution, the

alternative compiler solutions could also be used to generate alternative unique

binaries [110] [183] [20].

Chapter 3 Ph.D. Thesis

Jennifer Jackson 66 of 357 May 2017

3.4.2.3 Address Space Randomisation

Address space randomisation randomises the locations of data and code objects in

memory [184]. Address space layout randomisation (ASLR) is one of the most well

known diversity techniques which randomises the layout of a section of memory for

an executing program. A compiler equips the code for base address randomisation

and then the operating system changes the virtual memory addresses at which the

code is loaded [178]. The idea is to provide some protection from memory

vulnerabilities without needing to remove them from the system such as those

involving code injection buffer overflow attacks (§3.3.4). Since the randomisation on

each machine is different, any exploit that depends on a specific relative memory

address will generally fail. ASLR is in widespread use within operating systems

such as Google Android, Linux, Microsoft Windows, and iOS [185] [186].

3.4.2.4 Data Space Randomisation

Data space randomisation (DSR) [187] is where the representation of different data

objects or code in memory is randomised. Data space randomisation can be

implemented in a variety of ways [185]. One way to modify the data is through

encryption such as to logically XOR each data object in memory with a unique mask

and then decrypt it before it is used. In the case of a memory vulnerability attack for

example using code injection (§3.3.4), the attacker would only be able to write a

random value into memory rather than the intended value [187].

Chapter 3 Ph.D. Thesis

Jennifer Jackson 67 of 357 May 2017

3.4.2.5 Instruction Set Randomisation

Instruction set randomisation (ISR) creates a unique set of synthetic instruction sets

randomly for each computer such as for the Intel x86 machine code [188] [189] [190]

[191]. Translation from the synthetic instruction set to the instruction set of the

actual target computer requires an interpreter or just-in-time compiler. Code

injection attacks utilise the synthetic instruction set and therefore are unable to

penetrate into the system.

3.4.2.6 Executable Code Randomisation

Randomisation techniques such as ASLR and ISR that rely on the 32-bit and 64-

bit architectures can potentially be open to brute force attacks [168] [192] where an

attacker has many attempts with different combinations until successful. Executable

code randomisation is where executable code is broken into many functional blocks

that can be shuffled in memory just before execution [181]. The number of unique

permutations is higher than ASLR. With 5ŖŖ blocks there are ȁśŖŖ factorialȂ

permutations making a brute force attack difficult.

Another technique named In-place code randomisation [193] is based on the

randomisation of the code sections of binary executable files. Firstly code is

extracted from the executable binaries using a disassembler, and then

transformations are conducted on small sections of code such as substitution with

functionally equivalent alternatives, reordering of instructions, and reordering of

register preservation code.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 68 of 357 May 2017

3.4.3 Creating Diverse Systems

Creating diverse systems, involves the creation of diverse networks or algorithms

at a higher level of abstraction to analyse their behaviour in relation to either

diversity alone, or the effectiveness of diversity against an attack model. There have

been relatively few research papers associated with diversity algorithms to analyse

overall network behaviour. Those that do exist are very wide ranging in their

methodology and are often for a specific topology or purpose making them difficult

to compare. Additionally some are preliminary studies or ideas and therefore have

limited results in which to analyse the effectiveness of diversity adequately. These

diverse systems are described below.

3.4.3.1 Colouring Algorithms

Colouring algorithms, which are widely investigated in graph theory [194]

(§4.2.4), have been proposed [35],[36],[37] to try to minimize the number of

neighbours running the same software package. In this type of algorithm each

colour is assumed to be a different software package where each node in the

network runs a single software package but each can be the same, or different.

Colouring algorithms however tend to require a global perspective of the network,

where knowledge of all the links between nodes are needed in order to assign

colours. In an ad hoc network where, nodes are moving, and links between them are

constantly changing these types of algorithms would not necessarily be practical.

Additionally the compulsory assignment of software packages to nodes would be

difficult in these changing scenarios. Colouring algorithms proposed for software

diversity involve a fixed number of colours, usually 3 or 4 [35],[37] and are based on

Chapter 3 Ph.D. Thesis

Jennifer Jackson 69 of 357 May 2017

network topologies with fixed communication links. OȂDonnell [35] used a network

topology generated from email traffic logged over a fixed time period to investigate

4 types of colouring algorithms. The first is where each node randomly chooses a

colour which remains fixed. The second is where each node at random intervals

analyses its neighbours and chooses a new colour for itself if the current one is used

frequently. The third allows pairs of nodes to swap their colours, and the fourth

combines self updating and swapping which was found to produce the best colour

distribution across the network. An attack was simulated by selecting one colour to

be vulnerable with the goal of switching every node in the network to the

vulnerable colour. This was achieved by introducing malicious nodes to lie about

different aspects of the algorithm such as their colour or proposed swap. The

analysis found that the fourth algorithm with the ability to switch between the two

methods made it more difficult for the attacker because it was unclear which

method the targeted node was going to carry out and proposed that diversity

algorithms should contain diversity within them as well.

Yang [37] focused on sensor networks by partitioning sensor nodes into cells of

either tessellating hexagons with three possible colours or squares with four

possible colours (Figure 3-10). The links between sensors were modelled using

graph theory. Each hexagon or square contained sensors with the same colour. Once

a cell colour is compromised more than one sensor is infected, with the intention

that a potential worm attack could be quarantined. A worm attack was simulated

using a standard Susceptible - Infected model (§4.3.2) where each sensor was able to

adopt either of two states: susceptible where it is susceptible to the worm but not yet

Chapter 3 Ph.D. Thesis

Jennifer Jackson 70 of 357 May 2017

infected, and infected where it has been infected by the worm. With four colours

arranged in squares as shown in figure 3-10, the minimum distance between the

same colour is the length of the cell (L). The number of connected sensors (which are

assumed to be fixed in location) with the same colour is dependent upon L and the

transmission range of the sensors R. When R is less than L the infection can be

quarantined to a single cell so that the total number infected is dependent upon the

number in the infected cell and their location of being within transmission range of

each other. For a non-diverse system all sensors could potentially become infected

(assuming R is large enough between individual sensors) since it would be

equivalent to all cells having the same colour.

Figure 3-10 – Four colour, colouring algorithm [37]

3.4.3.2 Epidemic Based Attack Models

Epidemic models are widely used within ecology to study the spread of diseases

and have also been used to model the spread of malware in computer networks

(§4.3). Introducing software diversity into epidemic models has been considered by

Hosseini [195] who used a scale free network topology often considered as a

common structure of the Internet, together with a discrete-time deterministic SEIRS

epidemic model with diverse software packages. The SEIRS epidemic model has 4

Sensor location in squares Graph representation

Chapter 3 Ph.D. Thesis

Jennifer Jackson 71 of 357 May 2017

states: Susceptible, Exposed, Infected, and Recovered, where once recovered the

individuals become susceptible again to the same attack. The deterministic

equations are modified such that by applying diverse software packages, the rate

of infection of propagation is adjusted to . Another similar model uses

networks and epidemics to model the diversity and malware propagation of nodes

[196]. The assumption is that compilers with ȃdiversity enginesȄ produce many

different executable software variants to generate diverse node types. There are

node types and nodes with malware. For homogeneous mixing networks, the

total number of nodes infected is . These equations assume that maximum

diversity is being achieved so that the number of different software packages or

node types are equally distributed, thus keeping the equations simplified. The

colouring algorithm used by Yang [37] (§3.4.3.1) also included an epidemic

Susceptible - Infected model to analyse how a worm might propagate in response to

the diversity scheme developed.

3.4.3.3 Biological-Inspired Models

Genetic programming [197] is a large topic of research in which computer

programs are encoded as a set of genes (§2.2.2.1.4) that evolve using an evolutionary

algorithm to find programs that perform well against set criteria. Usually many

programs are tested over lots of generations until a solution converges. It has been

proposed that the parameters used to control how diverse the programs are can be

used to develop a method for generating a pool of diverse programs (rather than

converging to a single solution) [198]. It is unclear from the literature whether this

method has been practically tested.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 72 of 357 May 2017

Holtschulte [199] describes a model inspired by the immune system of how

computers on a network distribute and share patches to repair variants of software

in response to an attack. The diversity being considered here is the diversity of the

software patches generated by each node in response to an attack, rather than the

diversity of the original software in the network which is the same. Nodes attempt

to generate their own repairs or send requests to neighbours for software variants

until a resistant variant is found. The research showed that the network topologies

that allowed the largest amount of software sharing had the least diverse software

variants, but were also the quickest to resist new attacks, presumably because when

a resistant variant was found it could be distributed more quickly.

 Another ecosystem related model, but does not fit into the epidemic model

category, is that of Bi-partite relationships (Figure 3-11, individuals categorised into

two sets with relationships between them). These observed relationships within

ecosystems have been used to introduce ecological based diversity ideas into client-

server software architectures where one set represents the servers and the other the

clients connected with relationships as shown in Figure 3-11 [175]. The project

proposed (but not simulated or implemented at the time of this writing) the

definition of evolution rules to generate diversity in the client server networks. They

highlighted that the rules should consider a trade-off between providing more

servers for redundancy and increased cost.

Figure 3-11 – Client–server bipartite graph

clients

servers

Chapter 3 Ph.D. Thesis

Jennifer Jackson 73 of 357 May 2017

3.4.3.4 Other Models

The problem of deciding which software variants to assign to nodes in a network

has been considered from an optimisation perspective so that the [200] overall

network resiliency is optimised when placing diverse variants at routing nodes

within a cloud based network consisting of routing nodes and client nodes (Figure

3-12). An attack model assigns a probability of an attacker being able to exploit a

vulnerability for a particular variant within a constrained time frame. Subsequently

any routing node in the network with this variant becomes compromised. The

resiliency metric was computed based upon the number of surviving client-to-client

connections offered by the network when under attack.

Figure 3-12 – Diversity assignment within a cloud

Diversity for the prevention of software piracy has also been proposed as an idea

(but not simulated or practically tested) [167]. The model suggests two levels of

diversification. Firstly each distributed copy is different, and secondly each

installation of a specific copy is different. It is proposed that a database keeps track

of the legitimate copies. When a user requests an update, it is tailored to each

unique copy.

Instead of designing networks where devices differ from one another in terms of

software, methods have been proposed to create diverse versions of software

internally on a single device with a monitor analysing the outputs (Figure 3-13).

routers

clients

Chapter 3 Ph.D. Thesis

Jennifer Jackson 74 of 357 May 2017

When the outputs differ an attack is assumed and the variants are reset to

previously known good states. Using redundant programs has been widely studied

within the field of fault tolerance. Using different versions of commercially available

software has been investigated [201] as well as automatically generated software

[202].

Figure 3-13 – Internal device level diversity

The use of virtual machines to create internal device diversity has also been

proposed [203] [204]. A device level system named ChameleonSoft [203] partitions

software programs into small chunks which run within separate capsules. A capsule

is described as a smart micro sandbox/virtual machine encapsulating a single active

code variant as part of a running application. The capsules manually or

automatically use a pre-generated set of functionally equivalent variants which are

intelligently shuffled at runtime to confuse the attacker. Confusing a targeted

attacker can make it difficult to establish what vulnerabilities may be present or

what resources are being used in a specific device at any given time.

3.4.4 Measuring and Analysing Diversity

A broad range of techniques have been proposed for measuring and analysing

diversity of computer networks and are achieved either through the gathering of

data, or through the use of diversity metrics. Some metrics are single statistical

values, whilst others are multi-dimensional. Other techniques do not measure

Variant 1 Variant 2

Monitor

Chapter 3 Ph.D. Thesis

Jennifer Jackson 75 of 357 May 2017

diversity directly but analyse other important properties such as the commonality of

vulnerabilities between software. Descriptions of the methods used are detailed

below.

3.4.4.1 Shannon Index

The Shannon Index (or Shannon Entropy) is used to measure species and genetic

diversity in natural systems (§2.3.2.2.3). It has also been used for analysing diversity

in a computer network after the response to an attack where diverse software

patches and repairs were generated [199]. It has also been used to measure diversity

(discussed as entropy) of a bipartite graph interconnecting hosts and vulnerabilities

within a game theoretic model [40].

3.4.4.2 Number of Variants

A popular metric is just to simply use the number of different software variants.

Hosseini [195] and Hole [196] both use the parameter (number of software

variants) within their epidemic models to describe the diversity. This metric is on a

par with diversity richness (species, genotypic, or allelic) which is used as a

diversity measure in natural systems (§2.3). This metric however does not take into

account the distribution and number of each type used.

3.4.4.3 Resiliency

The Diversity Assignment Problem [200] as described in 3.4.3.4 was presented to

specify how to optimize overall network resiliency when placing diverse variants at

routing nodes. The resiliency metric was used as a measure of diversity and was

Chapter 3 Ph.D. Thesis

Jennifer Jackson 76 of 357 May 2017

computed based upon the number of surviving client-to-client connections offered

by the network when under attack.

3.4.4.4 Multi-dimensional Properties

Measuring diversity has also been considered from a multi-dimensional

perspective. It was proposed that diversity should be measured by considering 6

dimensions as shown in Figure 3-14 representing the functional capabilities of the

network architecture [38]. Dimensions proposed were: operating systems,

communications medium, service model, network protocol, transport protocol, and

routing mechanism. The distance between network elements reflects their diversity,

for example the distance between OSs Linux and Windows would be large and the

distance between Network protocols IPv4 and IPv6 would be small. A point in the

multi-dimensional space would be representative of the software stack on a unique

device. Three dimensions have also been proposed representing aspects that are

orthogonal to each other such as hardware, operating system, and application

software.

Figure 3-14 – Multi-dimensional diversity metric [38]

Operatin
g S

ystem

C
o
m

m
u
n
ica

tio
n
 m

e
d
iu

m

S
e
rv

ic
e
 M

o
d
e
l

Network Protocol

Transport Protocol
R
outing M

echanism

Unique device

with software stack

Chapter 3 Ph.D. Thesis

Jennifer Jackson 77 of 357 May 2017

This is combined with the Shannon Entropy discussed in section 3.4.4.1 above so

that the final entropy measure is the sum of the entropies of each dimension [39].

3.4.4.5 Analysing Software Binary Files

An attempt at measuring the existing diversity of systems has been carried out

by collecting data and analysing variants of software binary files [205]: Three

metrics were proposed to measure diversity; 1) The probability of a successful

targeted attack which is based upon the number of instances of the most frequent

variant of a given file and the total number of instances of that file. 2) The ratio of

the number of variants to the total number of instances of all the variants of a file.

The bigger the ratio, the more variants the file has and subsequently more attacks

are needed to compromise all the instances of the file. 3) The coefficient of variation.

This is the ratio of the standard deviation to the mean. If the ratio is small the

instances are distributed uniformly.

3.4.4.6 Common Vulnerabilities

Another approach to measuring diversity in current software has been through

the analysis of vulnerabilities. One study analysed the commonality of

vulnerabilities of 11 different operating systems over a 15 year period [206]. Data

was extracted from the National Institute of Standards and Technology (NIST)

National Vulnerability Database (NVD). Every pair of OSs were analysed for

common vulnerabilities. Common vulnerabilities were found to exist, and not

surprisingly, there were more common vulnerabilities between different versions of

the same OS such as between Windows 2008 and Windows 2003 than between

completely different OSs. It was also found that one vulnerability affected nine OSs,

Chapter 3 Ph.D. Thesis

Jennifer Jackson 78 of 357 May 2017

which related to a well known problem in the design of the TCP leading to denial of

service problems. This means that vulnerabilities introduced at the design stage can

propagate into the code no matter how it is implemented. In general though the

commonality of vulnerabilities were deemed sufficiently low enough to declare that

building a system with diverse OSs may be a useful security technique.

Another study focused on application software during a one year period [207].

The research highlighted that the majority of the software products, including those

providing the same service and those that ran on multiple operating systems, either

did not have the same vulnerability or cannot be compromised with the same

exploit. However it was noted that although different distributions of the same

product could not be attacked by the same exploit code they had at least an 80%

chance of suffering from the same type of vulnerability. In general, again it was

concluded that using different commercial software applications could be an

effective security technique.

3.4.5 Diversity Open Research

There are currently open research questions regarding where and when diversity

should be introduced [208], or whether it should be applied everywhere at all levels

and layers. There are currently a wide range of ideas and methodologies proposed

for network level diversity often targeted at a specific topology or purpose, however

the majority are limited to conceptual ideas and minimal analysis. Despite the

growing research in this area there is still a large gap in understanding the actual

benefits of diversity as a security mechanism [209], particularly from an ecological

perspective.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 79 of 357 May 2017

There is no well defined metric for measuring diversity within computer

networks. A broad range of techniques have been proposed but none capture both

the granularity of diversity at different layers of a software stack and the

distribution of diversity at the same time. Additionally none consider practical

constraints associated with compatibility issues, user preferences or devices unable

to participate due to hardware limitations.

The tools and technologies enabling wide-spread software diversity to become a

reality are slowing merging together, however many of the methodologies are still

early stage proposals and larger scale experiments analysing their practical

effectiveness are still limited or yet to be undertaken.

3.5 Summary

This chapter discussed three areas of technology and research. The first focused

on the Internet. Software and protocols of the future are likely to remain

modularised, perhaps with even more functionality and choice, particularly with

the continuously evolving open source paradigm. Software stacks can be partitioned

into four main layers, although these layers can be broken down further to define

specific functionality. The modularity of software, together with improved

virtualisation, and better automated software generation and dissemination, could

allow individually tailored software stacks to be dynamically created providing a

powerful tool for enabling diversity. The Internet will comprise different topologies

utilising a multitude of communication protocols depending upon the devices and

their application. There will be more localised peer-to-peer communication, with ad

hoc networks featuring more prominently in the future.

Chapter 3 Ph.D. Thesis

Jennifer Jackson 80 of 357 May 2017

The second section on cyber security focused upon malware which is prolific in

monoculture environments since it can spread over networks taking advantage of

software, such as widely used operating systems with the same vulnerability.

Malware can exploit a multitude of different types of vulnerabilities which can

appear at different layers of the software stack. Publically unknown vulnerabilities

are particularly dangerous as they are used in zero-day attacks, where the damage

can go unnoticed for long periods of time. The use of multiple exploits across layers

poses a significant threat, especially if they are targeting zero-day vulnerabilities.

The third section explored the current state of research of diversity within

computing systems. Diversity as a security mechanism increases the difficulty for

attackers to target multiple devices and networks during a single attack. It prevents

the attacker from having detailed knowledge of each computer, forcing them to be

targeted individually, and in turn increasing the difficulty of propagating malware.

Research has shown that diversifying software is possible through diversification at

the code level. Code level diversification however does not consider the dynamics of

diversity at multiple layers of the stack or the dynamics at a network level in the

face of an attack where it may not be possible for all devices to apply a diversity

technique. Diversity analysis at the network level allows the effects of the creation

and distribution of diverse code to be analysed using different methods, both from

centrally generated sources and via distributed methods. It also enables the

resistance of a network to be simulated under a range of different conditions in the

face of a malware attack. There are currently open research questions regarding

diversity. There is still a large gap in understanding the actual benefits of diversity

Chapter 3 Ph.D. Thesis

Jennifer Jackson 81 of 357 May 2017

as a security mechanism and particularly from an ecological perspective. There is no

well defined metric for measuring diversity within computer networks. Those

proposed do not capture both the granularity of diversity at different layers of a

software stack and the distribution of diversity simultaneously. Additionally none

of the research considers practical constraints associated with compatibility issues or

user preferences.

Chapter 4 Ph.D. Thesis

Jennifer Jackson 82 of 357 May 2017

4 Modelling

Chapter 4

Modelling

4.1 Introduction

This chapter details the modelling of peer-to-peer communication networks with

an emphasis on mobile ad hoc networks, highlighting their comparability with

natural systems. Compartmental based methods for modelling the propagation of

malware at a system level are reviewed. These epidemic models are widely used for

modelling the spread of diseases within natural systems. Details regarding the

properties of the deterministic and stochastic SIR (Susceptible, Infected, Recovered)

models are given which are used by development work in later chapters. Agent-

based epidemics are considered for modelling malware at the individual level as

well as infection genetic models where matching algorithms are used to match

pathogens to hosts. These principles are also used by development work in later

chapters.

4.2 Modelling Ad Hoc Networks

Devices utilising direct peer-to-peer communication, particularly those within ad

hoc networks can be compared with natural systems since the devices, for example

Chapter 4 Ph.D. Thesis

Jennifer Jackson 83 of 357 May 2017

mobile phones, interact closely with humans following their mobility and

interaction patterns [210]. Ad hoc networks are expected to become more prominent

in the future Internet either as a separate topology or integrated with sensor and

peer-to-peer overlay networks (§3.2.3), so the focus of this research will be limited to

networks which are ad hoc. There are a number of methodologies for modelling

such networks which are summarised in the following sections.

4.2.1 Mobility Models

Mobility models consider the movement patterns of devices within a mobile

network and can be used to visualise individual or aggregated travel paths. There

are two types of mobility models generally used: traces and synthetic models [211].

Traces are generated from observed data and can provide accurate information

when using large datasets. Synthetic models attempt to represent the mobile

behaviour realistically without the need for trace data. A number of synthetic

models exist for ad hoc networks [211]. One model that is used in many simulation

studies is the Random Waypoint model [212] [213] [214] [215] [216] [217]. It was

developed to represent the mobility patterns of people with mobile devices within a

confined environment such as a room [218]. As pictured in Figure 4-1 each node

starts by remaining stationary for pause time seconds. It then selects a destination

point within a bounded rectangular area. The node then moves to that destination at

a selected speed. Values for the destination, speed and pause time are chosen

independently and at random from uniform distributions between upper and lower

bounds. When the destination is reached the cycle of pause, choosing a destination,

and moving at speed is repeated until the end of the simulation.

Chapter 4 Ph.D. Thesis

Jennifer Jackson 84 of 357 May 2017

Figure 4-1 – Random waypoint mobility model

4.2.2 Simulators

Mobility models are often integrated into event-based simulators to allow the

detailed modelling of new or improved protocols such as those necessary to provide

ad hoc routing. Simulators such as Opnet, NS3, and QualNet [219] are used to

model detailed characteristics at different layers of the network stack under realistic

conditions. As well as mobility models the simulators can include other realistic

characteristics such as radio transmission, buffer space for the storage of messages,

and data traffic models. A downside of these simulators is that much effort is

required to learn the details of the simulator architecture and programming

language. These types of simulators can be seen as a type of agent-based model with

very detailed characteristics for the agents (nodes) in the network.

4.2.3 Agent-Based Models

Agent-based Models (ABM) attempt to capture the complexity of individual

behaviour and have been widely used across a growing number of fields [220]. Such

models, however, do not necessarily need the detailed characteristics used within

Position 1

Pause 1

Position 2

Pause 2

Bounded area

Move with speed

Position 3

Pause 3

Position 4

Pause 4

Chapter 4 Ph.D. Thesis

Jennifer Jackson 85 of 357 May 2017

simulators, and can follow a set of simple rules at a higher level of abstraction,

sometimes generating emergent behaviour [221]. ABMs allow a wide choice of

design parameters and rules making each model different but tailored to each

research question. They have been used for modelling ad hoc networks [219] [222]

[223] and use software such as Netlogo and Matlab to model high level behaviour.

4.2.4 Graph Theory

Graph theory is another technique for modelling communication networks. A

graph is made up of vertices (nodes or points) which are connected by edges (links

or lines). Graph theory is used to measure properties such as the degree distribution

(probability that a vertex chosen uniformly at random has degree k, where degree k

is the number of edges connected to a vertex) or clustering coefficient (measure of

how strongly nodes in a graph cluster together). Graph theory has been used to

study the architecture of the Internet [224] and analyse the behaviour of routing

protocols of ad hoc networks [225] [226].

4.2.5 Homogeneous Mixing Models

When the networks to be analysed are considered to be large, homogeneous

mixing models can be used to model the network as a whole entity. Here it is

assumed the system is the average of the individual nodes where nodes make

contact with each other in a peer-to-peer fashion at random. Such assumptions

originated from the modelling of infectious diseases within human populations

using deterministic and stochastic methods and have since additionally been used

to model the propagation of malware within mobile wireless networks. This is

discussed in more depth in the next section (§4.3).

Chapter 4 Ph.D. Thesis

Jennifer Jackson 86 of 357 May 2017

4.3 Epidemic Modelling of Mobile Malware

4.3.1 Mathematical Models of Epidemics

There are two main types of mathematical models that are used to describe the

spreading characteristics of epidemics: deterministic, and stochastic which can be

used to make system level predictions [227] [228]. The deterministic model always

performs the same way for a given set of initial conditions and is used to model

large populations (or networks), whereas for the stochastic model randomness is

present and the output result is a probability distribution. Stochastic models are able

to model smaller populations and are often considered to be more realistic.

A mechanism that links these models is the concept of compartments where

individuals are assumed to be in one of a number of different compartments (states

or classes) at any given time. These compartments represent the individualsȂ health

status with respect to the disease. For example the population could be divided into

those who are Susceptible (S), those who are Infected (I) and those who have

Recovered (R). For both the deterministic and stochastic based models, the number

within each compartment is simulated as the epidemic progresses. Malware epidemic

models have used a multitude of different compartments. The SI variant has been

used for modelling a mobile phone virus using two compartments where there are

no recovery mechanisms [229]. The SEIS model includes an extra Exposed (E)

compartment as there may be an incubation period before the virus attacks [230].

The extra susceptible (S) in the model name denotes the fact that instead of

recovery, the devices become susceptible again. The SEIRD model was proposed to

model virus propagation specifically via Bluetooth and MMS to investigate the

Chapter 4 Ph.D. Thesis

Jennifer Jackson 87 of 357 May 2017

Commwarrior virus [231]. The additional Dormancy (D) compartment represents

the condition when the virus drains the battery by sending out many MMS

messages. The author of this thesis proposed a SEPTICOX model incorporating

conditions where the phones were switched off or offline for Bluetooth based

networks which required a number of additional compartments: Prevented (P),

Treated (T), Contained (C), Offline (O), eXposed off-line (X) [3].

Details regarding the properties of the deterministic and stochastic SIR models

are described in the following text which are used as a reference for development

work in chapter 6 of this thesis. Note that the work assumes that once devices have

fully recovered from a particular malware (through patching or anit-virus tools)

they cannot be re-susceptible to the same malware so that the 'R' compartment is

designated the end state. Thus the closely related SIRS model [228], where there is

no end state (compartment) and re-susceptibility can occur following recovery, has

not been detailed within the background material (see chapter 6)

4.3.2 The Deterministic SIR Model

In the deterministic SIR [228], where individuals mix homogeneously (§4.2.5),

and the population is considered to be large, the law of mass action is applied to the

rates of transmission between two compartments where the rate of interaction is

proportional to the product of the numbers in each compartment. The transition

rates from one compartment to another are mathematically expressed as

derivatives, hence the model is formulated using differential equations.

Chapter 4 Ph.D. Thesis

Jennifer Jackson 88 of 357 May 2017

4.3.2.1 Model Equations

The basic SIR model was initially developed by Kermack and McKendre [232] and

is comprised of three compartments as shown in Figure 4-2. The compartment

represents those that are susceptible to a disease or virus but not yet infected,

represents those that are infected and infectious with the disease, and represents

those that have recovered from the disease. defines the total population size and

is assumed to be fixed.

Figure 4-2 – SIR model

 is known as the infection rate (or effective contact rate) and is defined as [233]:

(4-1)

Where is the probability of an infection given contact between a susceptible and

an infected individual, and is the average rate of contact between susceptible and

infected individuals. The rate at which those susceptible become infected is

attributed to the proportion of the population who are already infected

multiplied by the infection rate .

 is the rate of recovery of an individual, and can also be written as:

(4-2)

Where is the duration of the infection.

S I R

βI/N γ

Chapter 4 Ph.D. Thesis

Jennifer Jackson 89 of 357 May 2017

The model is described using differential equations, where the transition rates

from one compartment to another are expressed as derivatives:

(4-3)

(4-4)

 (4-5)

4.3.2.2 Discrete Model

The model can also be represented in discrete form using difference equations,

where the number in each compartment at the next time step is formulated

by the rates and the number in each compartment at the current time step . This

approach is convenient for computer simulation of the model:

(4-6)

(4-7)

 (4-8)

The total population size is assumed to be fixed so that:

 (4-9)

4.3.2.3 Deterministic Epidemic Example

To illustrate the mathematics an example showing an epidemic following the SIR

equations is given through simulation in Figure 4-3 (a) .When an epidemic occurs

susceptible individuals become infected and move to the infected compartment

faster than infected individuals can recover (where creating a peak of

Chapter 4 Ph.D. Thesis

Jennifer Jackson 90 of 357 May 2017

infections. Figure 4-3 (a) shows the number within each compartment as the

epidemic progresses. The SIR model was simulated from difference equations

(§4.3.2.2) using Mathworks Matlab. The number infected increases and then

falls as recovery takes place. To show an epidemic occurring the condition

needs to occur as stated above. In this example values are chosen to represent this

condition where and . With no recovery, the SIR model reduces to

two states and , which is also known as the SI model. Under this condition all of

those susceptible will eventually become infected, and stay infected as shown in

Figure 4-3 (b).

Figure 4-3 – Deterministic SIR model using difference equations.

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Timesteps

N
u
m

b
e
r

o
f

in
d
iv

id
u
a
ls

a) SIR - beta = 0.3, gamma = 0.15

S(t)

I(t)

R(t)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

Timesteps

N
u
m

b
e
r

o
f

in
d
iv

id
u
a
ls

 i
n
fe

c
te

d
 I

(t
)

c) SIR - gamma = 0.3

0.5

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

beta

R
o

d) SIR - R0, gamma = 0.3

0 50 100 150 200
0

2

4

6

8

10

12

Timesteps

N
u
m

b
e
r

o
f

in
d
iv

id
u
a
ls

 i
n
fe

c
te

d
 I

(t
)

0.35, Ro>1

0.30, Ro = 1

0.25, Ro<1

c) SIR model showing the number in infected for

varying values of ȕ.

d) Corresponds to graph c showing values for

the varying values of ȕ.

ȕ

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Timesteps

N
u
m

b
e
r

o
f

in
d
iv

id
u
a
ls

b) SI - beta = 0.3, gamma = 0

S(t)

I(t)

b) SI model showing the number in the S and I

states only where, ȕ=0.3, Ȗ=0 and all those

susceptible eventually become infected.

a) SIR model showing the number in the S, I and R

states where ȕ=0.3,Ȗ=0.15. All those susceptible

become infected and eventually recover.

Chapter 4 Ph.D. Thesis

Jennifer Jackson 91 of 357 May 2017

4.3.2.4 End Time of the Epidemic

When there is no chance of recovery, the dynamical equations can be simplified

so that Equation (4-4) becomes:

 (4-10)

where the time at which the epidemic reaches its final state has an analytical

solution. Substituting into Equation (4-10) results in a logistic equation for I

[228]:

(4-11)

With a solution [228]:

 (4-12)

The end of the simulation is specified to occur when the number infected is

within 1 of its final value so that Equation (4-12) becomes:

(4-13)

Rearranging for :

 (4-14)

4.3.2.5 The Reproduction Number R0

A key metric used in epidemiology to determine whether a disease will spread or

not is the reproduction number. It is defined as the number of secondary cases

Chapter 4 Ph.D. Thesis

Jennifer Jackson 92 of 357 May 2017

produced by a single infection within a susceptible population [233]. The

reproduction number can be derived by considering that an epidemic occurs if the

number of infected individuals increases, where:

(4-15)

Substituting in Equation (4-4) becomes:

(4-16)

 (4-17)

(4-18)

At the outset of an epidemic, where , everyone except the initial infected

individual is susceptible. At this point can therefore be approximated to , and

the equation simplifies to:

(4-19)

 (4-20)

For values greater than 1 an epidemic occurs, and for values equal to or

less than 1, the epidemic dies away. Figure 4-3 (c) shows the number of infected

individuals for varying values of when is fixed at 0.3. When ,
there is an epidemic as the number of infected individuals increases above the initial

value of 1. As the value of is reduced, the peak value of the infection is reduced,

the time of the peak moves to the right and the spread of the infection increases.

When the epidemic dies away as the number of infected

Chapter 4 Ph.D. Thesis

Jennifer Jackson 93 of 357 May 2017

individuals never goes above 1 as shown by the sub-graph in Figure 4-3 (c). When the infection dies away even faster, with the corresponding curves

reduced to zero very quickly. Figure 4-3 (d) shows the corresponding

relationship with , as is varied between 0.1 and 0.5 (as given in Figure 4-3 (c)),

additionally showing when for a fixed .

4.3.2.6 The Balance Equation

Another important attribute of an epidemic is its final state, which is the total

fraction of the population that was infected. A balance equation [234] can be derived

that describes the final state of the system when t→ ∞, by dividing the differential

equations of the SIR model (Equations (4-3) and (4-5)).

(4-21)

This implies the solution:

 (4-22)

During an epidemic those within the infected state will eventually move to the

recovered state, so at the end of the epidemic there will only be those still

susceptible , or recovered . This means that:

 (4-23)

Assuming that at , no individuals have yet recovered, so that , then , and Equation (4-22) can be rearranged to:

Chapter 4 Ph.D. Thesis

Jennifer Jackson 94 of 357 May 2017

 (4-24)

which can also be expressed as a fraction of :

Where

(4-25)

Solving for determines the fraction that were infected at the end of the

epidemic. This equation can be solved numerically using the approximation that and is graphed in Figure 4-4.

Figure 4-4 – Final size of the epidemic as a fraction of the population size

4.3.3 The Stochastic SIR Model

Stochastic SIR models are often described using discrete or continuous time

Markov chains or stochastic differential equations [235]. A probabilistic model takes

into account that there may be some element of randomness in at least one of the

parameters. Predictions from that model are probability distributions, for example

distributions of the possible numbers of those susceptible, infected or recovered.

The Markovian standard stochastic SIR epidemic model [228] [234] assumes a closed

homogeneous uniformly mixing community just as for the deterministic general

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ro

F
in

a
l
S

iz
e

Chapter 4 Ph.D. Thesis

Jennifer Jackson 95 of 357 May 2017

epidemic model (§4.3.2). An important feature of the stochastic model is that due to

the inherent nature of randomness, a major outbreak is not always guaranteed when . For example, during the initial outbreak the infected individual or a small

number of individuals that have already become infected may recover by chance

before they can infect others. This is termed an initial fade-out [236] or a minor

epidemic outbreak [234]. An overview of the general stochastic SIR model is given

here together with some important properties and approximations that have been

developed in the literature, on the assumption of a large population. These are used

as a reference for the developed model described in chapter 6.

4.3.3.1 Rate of Contact

For a stochastic SIR model the infectious individuals have contact with other

individuals randomly in time at a constant average rate . Each contact is with an

individual selected uniformly at random from the population. The time between

contacts is described by an exponential distribution which is a type of probability

distribution that describes the time between events in a Poisson process that occur

continuously and independently at a constant average rate.

To coincide with the deterministic model the mean contact period is the

reciprocal of the deterministic contact rate , so that the exponential probability

density function (PDF):

 :

(4-26)

A PDF of a value of 0.3 is pictured in Figure 4-5.

Chapter 4 Ph.D. Thesis

Jennifer Jackson 96 of 357 May 2017

Figure 4-5 – PDF for a c value of 0.3

(4-27)

(4-28)

(4-29)

4.3.3.2 Infectious Period

Infected individuals remain infectious for a time period and then recover. As

with the contact rate, the infectious period is described by an exponential

distribution. To coincide with the deterministic model the mean infectious period
is the reciprocal of the deterministic recovery rate . So that:

(4-30)

(4-31)

(4-32)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Time

p
ro

b
a
b
ili

ty
 (

t)

mean

Chapter 4 Ph.D. Thesis

Jennifer Jackson 97 of 357 May 2017

4.3.3.3 Discrete Time Markov Model for a Single Compartment

These types of distributions can be modelled using a Markov process [228] which

is used to develop stochastic epidemic models and form approximations of some

important properties. As with the deterministic model, the stochastic Markov model

analyses how the system progresses but will have different sample paths every time

it is run.

A discrete time Markov model is used to illustrate how the stochastic epidemic is

modelled. Suppose an epidemic model has just one compartment, and hence one

Markov process, representing the number of individuals within that

compartment at time . For a discrete time model the processes are defined on a

discrete time scale and the states, each representing a possible

number of individuals within the compartment, are discrete random variables The times between successive jumps of the process are exponentially

distributed with parameter . The rate diagram can be drawn as follows:

Figure 4-6 – Rate diagram for a Markov process

Where state represents the state where there are individuals within the

compartment . The rate diagram can be expressed as a rate matrix whose

elements define the transition rates from one state to another.

0 1 i-1 i i+1 N

α α α

Chapter 4 Ph.D. Thesis

Jennifer Jackson 98 of 357 May 2017

The probability that within a small time interval the number of individuals within the compartment has increased by one is given by:

 (4-33)

And the complement, where the probability that within a small time interval

the number of individuals within the compartment has remained the same is

given by:

 (4-34)

The time step is chosen sufficiently small such that the number of infected

individuals changes by at most one during the time interval. This means that the

rate matrix is largely zero valued otherwise it would need to include the rates to

other states where the number of infected could change by more than one. To

ensure that the transition probabilities lie in the time interval, the time step must

satisfy:

 (4-35)

The probabilities can be expressed as a probability matrix whose elements now

define the transition probabilities from one state to another.

Chapter 4 Ph.D. Thesis

Jennifer Jackson 99 of 357 May 2017

The corresponding probability diagram is given:

Figure 4-7 – Probability diagram for a discrete Markov process

This process can be coded into software to visualise the different sample paths

every time it is run.

4.3.3.4 Discrete Time Markov Model for a Stochastic SIR

With multiple compartments the Markov process becomes a vector, so that each

Markov state has a vector component for each necessary compartment. With an SIR

model it is considered that only the processes of and compartments are needed

since . Within a small time interval , the probability of an

infection is given by the simultaneous transitions , where one individual

leaves the compartment, and where one individual enters the

compartment. Similarly, within a small time interval , the probability of

recovery is given by the simultaneous transitions , where one individual

0 1 i-1 i i+1 N

αΔt

1-αΔt 1-αΔt 1-αΔt 1-αΔt 1-αΔt 1-αΔt

αΔt αΔt

Chapter 4 Ph.D. Thesis

Jennifer Jackson 100 of 357 May 2017

leaves the compartment, and , where one individual

enters the compartment. The probability equations are therefore:

(4-36)

Where is the infection rate and is the recovery rate.

(4-37)

And the complement:

(4-38)

To ensure that the transition probabilities lie in the time interval, the time step

must satisfy:

(4-39)

4.3.3.5 Stochastic Epidemic Example

To illustrate the mathematics an example showing an epidemic following the SIR

Markov process is given through simulation in Figure 4-8 using Mathworks Matlab.

Parameters were set to show a comparison with the deterministic model (§4.3.2.3).

When there is no recovery, , the SIR behaves as an SI model. For an average

contact rate of 0.3 the mean result of a large number of

runs (1000) is shown in Figure 4-8 (a) together with the deterministic solution. Fifty

of the individual runs for those infected are shown in Figure 4-8 (b). When recovery

is added, where the mean result of 1000 runs is shown in Figure 4-8 (c).

There is a large difference between the stochastic solution and the deterministic

result. The reason for this can be seen by inspecting individual runs of the recovered

Chapter 4 Ph.D. Thesis

Jennifer Jackson 101 of 357 May 2017

compartment in Figure 4-8 (d), where, for a proportion of the runs there is either

very little or no recovery. These runs account for the condition where minor

outbreaks have occurred and have resulted in the mean being very different from

the deterministic result. Under the SI scenario there is no chance of recovery and so

the possibility of a minor outbreak does not occur. Under these circumstances the

mean of the stochastic SI model is closer to the deterministic SI model.

Figure 4-8 – Stochastic SIR model.

4.3.3.6 Important Stochastic SIR Properties

The following summarises some important properties of the stochastic SIR model

which are used during development work in chapters 6 and 8.

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

1000

Time

In
fe

c
te

d

a) SI - beta = 0.3, gamma = 0

S

I

Deterministic I

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

900

1000

Time

In
fe

c
te

d

b) SI - 50 runs showing I

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

1000

Time

In
fe

c
te

d

c) SIR - beta=0.3, gamma = 0.15

S

I

Deterministic I

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

Time

R
e
c
o
v
e
re

d

d) SIR - 50 runs showing R

a) SI model showing the number in the S and I

states plus a comparison to the equivalent

deterministic I state, where, ȕ=0.3, Ȗ=0

b) SI model showing 50 runs of the I state

c) SIR model, showing the number in the S and I

states plus a comparison to the equivalent

deterministic I state.

d) SIR model showing 50 runs of the R state.

Major

outbreaks

Minor

outbreaks

Chapter 4 Ph.D. Thesis

Jennifer Jackson 102 of 357 May 2017

Probability of an outbreak, early stage approximation: When the number in the

population is considered to be large, the initial phase of the epidemic can be

approximated by a homogeneous branching process [234], which shows that when the final size of the epidemic is bounded in probability and the epidemic will

only be minor. However when the epidemic will have both a minor element,

which is bounded with a probability , and a major element, which is unbounded

with a probability . For a standard stochastic model with a closed

homogeneous uniformly mixing population and one initially infected, the

probabilities can be summarised as:

(4-40)

(4-41)

Final size approximation: The final fraction infected are those that end up in

the recovered state at the end of the outbreak. This fraction is a solution to the

balance equation (§4.3.2.6), which is the same equation as for the deterministic

model, except it is assumed that a negligible fraction of the population is initially

infected, so that:

 (4-42)

This equation always has the solution , corresponding to a minor

outbreak, and when , there is another unique solution of between 0 and

1 corresponding to a major outbreak [234] (Figure 4-4).

Chapter 4 Ph.D. Thesis

Jennifer Jackson 103 of 357 May 2017

Final size distribution of a major outbreak: The final size of a major outbreak will be

normally distributed around the final size approximation. The notation for a normal

distribution is defined here as:

Where denotes a normal distribution, denotes the mean, and denotes

the variance which is the square of the standard deviation. The threshold theorem [234]

derives the normal distribution of a major outbreak as:

(4-43)

Where is the number of individuals, is the mean final size with

individuals (excluding initial infectives) and where so that the mean becomes zero, and the variance is defined by the second term. is the squared

coefficient of variation of the infectious period.

(4-44)

4.3.4 Agent-Based Epidemics

The concept of compartments used in the mathematical models can also be

incorporated into other models such as agent-based models. SI and SIR variants

have been incorporated into mobile phone models [237]. Within agent-based models

nodes are modelled as separate entities so that the result of individual interactions

Chapter 4 Ph.D. Thesis

Jennifer Jackson 104 of 357 May 2017

and their behavioural rules determine the spreading dynamics of the epidemic. As

pictured in Figure 4-9 each node maintains its own health status which can also be

aggregated into a network level perspective depending upon the nature of the

simulation model. Agent-based models tend to be difficult to compare since the

design of agents, their interactions, and behavioural rules depend upon the specifics

of the scenario being modelled. Agent-based models can also have stochastic

elements generating output results that are probability distributions.

Figure 4-9 – Epidemic agent-based model

4.4 Infection Genetics

It may not just be individual interactions and behaviours that determine the

spread of diseases. Another set of models that try to mimic infection are those

studied within evolutionary ecology. These types of models attempt to analyse the

mechanics of the infection at the individual scale and assume that individuals differ

S I R

Node 1

S I R

Node 2

S I R

Node 3

S I R

Node 4

Chapter 4 Ph.D. Thesis

Jennifer Jackson 105 of 357 May 2017

in terms of their genetic make-up. Both the individuals (potential hosts of the

disease) and the parasite or pathogen causing the infection are modelled. Matching

algorithms are used to match the pathogens to hosts which subsequently then cause

them to become infected. Two prominent models are gene-for-gene [238] [239] [240]

which is based on plant-pathogen interactions and matching-alleles [239] [241] [240]

[43] [99] based on self/non-self recognition systems in invertebrates. Both models

include a genotype for the host and a genotype for the pathogen or parasite. Figure

4-10 shows host and parasite genotypes with two loci each, where A1 and A2

represent two different alleles at locus 1, and, B1 and B2, represent two different

alleles at locus 2. Within the gene-for-gene model the parasite alleles within the

parasite genotype are labelled as either a - avirulent (weakly infectious) or v -

virulent (highly infectious), and the host alleles within the host genotype are

labelled as either s - susceptible or r - resistant. A host can resist (R) a parasite if the

host has a resistant allele at any locus for which the parasite has an avirulent allele

at the corresponding locus, otherwise infection occurs (I). For the matching-alleles

model a parasiteȂs genotype must exactly match a hostȂs genotype to successfully

infect the host. For example genotype A1, B1 of the host matches genotype A1, B1 of

the parasite.

These general principles of genetic matching are incorporated within

development work of later chapters to model malware propagation in diverse

computing devices and form a novel aspect of the work.

Chapter 4 Ph.D. Thesis

Jennifer Jackson 106 of 357 May 2017

Figure 4-10 – Two different infection genetic models

4.5 Summary

Ad hoc networks are expected to become more prominent in the future Internet.

They can be compared with natural systems since devices such as mobile phones

interact closely with humans following their mobility and interaction patterns.

Mobility models consider the movement patterns of devices, with one reference

model that is widely used being the Random Waypoint. Mobility can be combined

with simulators or other agent-based models to analyse individual and network

level behaviour. Homogeneous mixing models can be used to model the network as

a whole entity, and have particularly been used within epidemic models to analyse

Parasite genotypes are compared to the host genotype to

determine whether an Infection (I) will be transmitted or

whether it is resisted (R)

locus1 locus2 locus1 locus2 locus1 locus2 locus1 locus2

locus1 locus2
A1

(a)

B1

(a)

A1

(a)

B2

(v)

A2

(v)

B1

(a)

A2

(v)

B2

(v)

A1 (r) B1 (r)

A1 (r) B2 (s)

A2 (s) B1 (r)

A2 (s) B2 (s)

a) Gene-for-gene, A1 or B1 resistant (2 loci, 2 alleles)

locus1 locus2 locus1 locus2 locus1 locus2 locus1 locus2

locus1 locus2 A1 B1 A1 B2 A2 B1 A2 B2

A1 B1

A1 B2

A2 B1

A2 B2

b) Matching Alleles (2 loci, 2 alleles)

R R R I

R I R R

R R I R

Parasite Genotype

Host Genotype

I R R R

Host Genotype

Parasite Genotype

I

R

I

I

I

R

I

R R R I

R

R

I

I

I

Chapter 4 Ph.D. Thesis

Jennifer Jackson 107 of 357 May 2017

network level behaviour of malware propagation. These models use compartments

to signify the health status of the network. Properties of the deterministic and

stochastic SIR epidemic models have been reviewed. Compartmental methods can

also be incorporated into agent-based models where the result of individual

interactions and their behavioural rules determine the spreading dynamics of the

malware. Another class of models used to analyse disease spread study the

mechanics of infection at the genetic level. They assume both individuals and

pathogens differ in terms of their genetic make-up. Matching algorithms are used to

match pathogens to hosts which subsequently become infected. These modelling

concepts are used during development work of later chapters. Specifically

homogeneous mixing and the RWP model is integrated together with a

compartmental approach of monitoring device infection status in a high abstract

level ABM. Additionally matching algorithms are used to match malware to device

configurations. Mathematical modelling of malware incorporating both

deterministic and stochastic methods are also used during development work.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 108 of 357 May 2017

5 Ecosystem Model of an Ad Hoc Network

Chapter 5

Ecosystem Model of an Ad Hoc

Network

5.1 Introduction

This chapter links the background material presented in chapters 1 to 4 with the

work that follows, and is comprised of two sections:

An Ecosystem Perspective of an Ad Hoc Network Environment: The first section

describes an ad hoc network environment as an ecosystem using comparable

terminology and relationship analogies to natural ecosystems as described within

chapter 2.

A Diverse System Model: The second section firstly outlines the requirements for a

diverse system model applicable to ad hoc networks together with constraints that

highlight the first steps taken in proving the hypothesis of this thesis. Secondly a

threat model of malware utilising multiple exploits across layers of the software

stack is defined. Thirdly an overview of two developed models is described. The

first is based upon the mathematical epidemic approach, and the second is an agent-

based approach.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 109 of 357 May 2017

5.2 An Ecosystem Perspective of an Ad Hoc Network

Environment

Organisms within natural ecosystems (§2) and devices within ad hoc networks

(§3) both interact in a peer-to-peer fashion, are distributed, and self-organise. It is

likely that peer-to-peer wireless networks such as ad hoc networks will become

more mainstream than they are currently and therefore forms the basis of the

network topology in which to investigate diversity (§3.2.2). If an ad hoc network,

together with its users and application environment, is regarded as an ecosystem as

shown in Figure 5-1 then comparable terminology can be defined and relationship

analogies can be made to natural ecosystems. Note that the definition of an

ecosystem here should not be confused with the term ȁsoftware ecosystemȂ which

has recently been used to describe the progressive development of a software

product or service incorporating development framework tools, organisations,

external developers and users such as the Android platform [242].

Figure 5-1 - Ad hoc network ecosystem

Devices

(ad hoc

network)

Application

environment
Users

Chapter 5 Ph.D. Thesis

Jennifer Jackson 110 of 357 May 2017

Figure 5-2 shows the ecosystem diagram equivalent to that pictured in Figure 2-1

of Chapter 2, but for an ad hoc network environment, showing its relationships with

software and hardware diversity. Within natural ecosystems, biodiversity is linked

to functions and services and its ability to maintain them when faced with

unwanted disturbances. It is proposed that by applying biodiversity strategies

within an ad hoc network, the destructive effects arising from security attacks can

be counterbalanced with the constructive effects of biodiversity to maintain

ecosystem function and services, and hence benefit overall resistance and resilience.

Although the focus here is on ad hoc networks, many of the principles described are

also applicable to computer networks in general. Analogous relationships between

software and hardware diversity and ad hoc network ecosystem functions and

services are described in the following text.

Figure 5-2 - Diversity relationships in an ad hoc network ecosystem

Software /

Hardware

Diversity

Software /

Hardware

Functions

Network / User

Services

Security Attack

Disturbances

Measured outputs

Productivity (functional

performance)

Malware propagation

Stability

Measured Diversity

Genetic diversity

Ecosystem diversity

Species diversityFunctional

diversity

Chapter 5 Ph.D. Thesis

Jennifer Jackson 111 of 357 May 2017

5.2.1 Scales and Diversity Definitions

An ad hoc network environment can be partitioned into three scales on a par

with those discussed in natural systems: Individual (I), community (C) and

ecosystem (E). The individual scale comprises the independent devices (or nodes)

and includes software stacks, protocol stacks, physical hardware, and individual

behavioural characteristics and constraints. The community scale includes

communities of nodes forming part of a network, or a complete network. This scale

is concerned with topology and node distribution, data flow and community

behaviours. The ecosystem scale incorporates multiple clusters of nodes or multiple

networks and interactions between them, the environment and the users. It also

includes beneficial outputs such as the resulting services.

Many principles of diversity are applicable at multiple scales (§2.2.2), with some

diversity metrics relevant to both species and genotypes (§2.3). Ecologists tend to

describe diversity in relation to species since it is the easiest to measure and

experiment with however there is growing evidence that the same relationships

have been observed at the genotypic level. Partitioning individuals by genotype

composition or common characteristics into species is well defined in natural

systems, however categorising elements of an ad hoc network, in theory can be

conducted on a sliding scale depending upon the chosen granularity. For example a

software program could form a genetic element of an ad hoc device, or it could be

categorised into a species of software. The most important aspect is the relevant

diversity relationships that exist regardless of the scale. For an ad hoc network

ecosystem the definitions of diversity are partitioned as follows, however the

Chapter 5 Ph.D. Thesis

Jennifer Jackson 112 of 357 May 2017

relationships in 5.2.6 are described where they are analogous to that observed in

nature regardless of the partition.

(1) Genetic Diversity: This describes the variance in structural composition of

devices in terms of software and hardware components and is applicable at the

individual scale. There are methods for defining and measuring diversity in terms

of genetics that is applicable to defining and measuring the diversity of software

composition across devices (§2.3) which is discussed further in this chapter (§5.2.6,

§5.3.2) and used in subsequent chapters (§6.3, §7.4).

(2) Species Diversity: Species diversity could potentially have multiple meanings

depending upon the chosen granularity and focus as described above. When

categorising ad hoc devices as complete entities, species could mean a type of

device, such as a local ad hoc router or a gateway to the internet, and would be

applicable at the community scale. Alternatively, when describing software as

individuals from a pool of available programs, species could mean a type of

software program, such as a web browser, or an instant messaging application. This

is because there are analogies between natural species diversity mechanisms and the

way in which software is developed and adopted by users. Relationship analogies

are described further in section 5.2.6.

(3) Ecosystem Diversity: This is the diversity between distinctly separate groups

or networks of devices, or the diversity incorporating both networks and users and

the environment. It is applicable at the ecosystem scale and can be measured in

terms of genetics or species.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 113 of 357 May 2017

(4) Functional Diversity: This is the variance and breadth of functionality and

services, as a result of software, hardware, devices or networks interacting with

their users and the environment. Consequently functional diversity spans

individual, community and ecosystem scales.

5.2.2 Software and Hardware Functions

As with natural ecosystems, an ad hoc network ecosystem is comprised of many

interacting components; not just the devices themselves, but interacting layers of

software and hardware generating a range of processes and functionality at

different scales. For example functions can arise from single or multiple interacting

software and hardware modules, or be generated by single or multiple devices.

Functions can be partitioned into regulating, supporting, and provisioning categories

as they share similar analogies to those described within natural systems (§2.2.1.2).

Table 5-1 gives some examples for each type. Network access, for example, is a

regulating function since it controls how and when the network can be accessed for

data transmission. Data and program storage is a supporting function since it allows

all of the software programs to be stored in memory along with any data that is

generated or shared: without it the devices would not be able to operate as

intended. The sending of text messages is a provisioning function since it can be

viewed as a product that is produced from within the ad hoc network.

5.2.3 Network and User Services

Network and User Services are the beneficial services provided by the interaction

of all the components in the ad hoc network ecosystem, and, like natural systems,

are derived from multiple underlying functions. Services can also be partitioned

Chapter 5 Ph.D. Thesis

Jennifer Jackson 114 of 357 May 2017

into regulating, supporting, and provisioning categories (§2.2.1.3) as shown in Table

5-1. Examples of regulating services include the quality of service of data or

communication traffic, or, in the broadest sense, the control of malware spreading.

Supporting services include distributed data storage and data gathering which is

driven by the natural topology of an ad hoc network. Provisioning services include

the beneficial product outputs such as an electronic health care service, or a

multimedia data streaming service.

Table 5-1 – Ad hoc ecosystem functions and services

5.2.4 Security Attack Disturbances

5.2.4.1 Disturbance Regime vs Disturbance Events

Within the ad hoc network ecosystem it is necessary to distinguish between the

natural disturbance regime and a single disturbance event (§2.2.1.4). The

disturbance regime, on a par with natural ecosystems, shapes an ad hoc network

Regulating

Supporting

Provisioning

Functions Services

Network access

Routing data

Monitoring data traffic

Quality of service (data and

communication)

Buffering against faults or device

failures

Controlling malware spreading

Data and program

storage

Computational power

Energy and battery

management

Display screen and

sensor interfaces

Distributed data storage

Sensing and distributed data gathering

Sending and receiving

text messages

Sending and receiving

media files

Generate images

Produce documents

File sharing

Multimedia data streaming

Communication services

Electronic Health care service

Environmental Monitoring service

Chapter 5 Ph.D. Thesis

Jennifer Jackson 115 of 357 May 2017

environment over long time scales such as changes in technological advances,

trends in user habits, business markets, and application areas which will contribute

to evolving functions and services. A single disturbance is an event of intense stress

occurring over a relatively short period of time potentially causing large changes to

the dynamics of the ad hoc network. Security attacks such as malware can be

thought of as single disturbance events creating destructive effects at varying

speeds and severity depending upon the specific attack.

5.2.4.2 Malware Disturbance Events

As with natural ecosystems where diseases can spread quickly in monoculture

populations (§1), so too can malware under similar conditions where there is wide

spread use of identical software (§3). Examples of the effects of different malware on

functions and services [243] [244] [245] [246] at different scales is shown in Table 5-2.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 116 of 357 May 2017

Table 5-2 - Malware effects on functions and services

Depending upon the type of malware and the motivation of the attack, effects at

the individual scale can range from slowing down the operation of a device, to

completely shutting down the device. At the community scale, malware such as

some worms and viruses replicate and forward themselves as fast as possible

creating bursts in network traffic or a reduction in network availability for

communication. This may result in either a general reduction in quality of service at

the ecosystem scale such as speed of retrieving data, or no service at all. Other types

of malware such as Trojans, spyware, and adware are often installed by mistake,

hidden within genuine programs and slowly extract personal data without affecting

the functioning of the device or network. Ransomware can restrict access to data,

software or general functionality of the device.

O
p

e
ra

ti
o

n
 o

f
d

e
v

ic
e

 s
lo

w
s

d
o

w
n

A
p

p
lic

a
ti

o
n

 o
r

p
ro

to
co

l s
o

ft
w

a
re

 s
to

p
s

w
o

rk
in

g
,

o
r

b
e

h
a

v
e

s
in

co
rr

e
ct

ly

D
a

m
a

g
e

 t
o

 s
to

re
d

 d
a

ta

C
o

m
p

le
te

 d
e

v
ic

e
 s

h
u

td
o

w
n

 /
 r

e
b

o
o

t

In
cr

e
a

se
 in

 r
e

ce
iv

e
d

 m
e

ss
a

g
e

s
/

d
a

ta

In
cr

e
a

se
 in

 t
ra

n
sm

it
te

d
 m

e
ss

a
g

e
s

/
d

a
ta

U
n

a
b

le
 t

o
 t

ra
n

sm
it

 m
e

ss
a

g
e

s
/

d
a

ta

U
n

a
u

th
o

ri
se

d
 c

o
lle

ct
io

n
 o

f
d

a
ta

R
e

d
u

ce
d

 a
v

a
ila

b
ili

ty
 f

o
r

n
e

tw
o

rk
 c

o
m

m
u

n
ic

a
ti

o
n

In
cr

e
a

se
d

 o
r

b
u

rs
ts

 in
 n

e
tw

o
rk

 t
ra

ff
ic

S
e

rv
ic

e
 is

 n
o

t
a

cc
e

ss
ib

le

S
e

rv
ic

e
 is

 s
lo

w
 (

re
d

u
ct

io
n

 in
 Q

u
a

lit
y

 o
f

S
e

rv
ic

e
)

Virus            
Worm            
Trojan            
Spyware 
Ransomware     
Adware 

Individual Functional Effects

Community

Functional

Effects

Ecosystem

Services

Effects

Effects on Function and Services

Malware

Disturbance

Chapter 5 Ph.D. Thesis

Jennifer Jackson 117 of 357 May 2017

5.2.5 Measured Outputs

Productivity and stability are two important output measurements of natural

ecosystems because they consider the effects on function, and the impact on

resistance and resilience, of disturbance. When the spread of disease is considered,

additional transmission characteristics are also analysed.

Within ad hoc networks, and networks in general, the term productivity is not

discussed directly, instead the overall functional performance of a service, termed

Quality of Service (QoS), is often used [129] [247] [248]. QoS can be considered

through a number of functional outputs associated with performance such as

throughput (amount of data successfully transferred within a fixed time period), bit

error rate (number of transmission bit errors per unit time), and network delay (time

taken for a bit of data to be transferred). It often depends upon the context as to

which is used. Estimation of such characteristics can often be achieved through

network simulators (§4.2.2). Additionally, it would be possible to analyse these

functional outputs in response to malware so that the resistance and resilience of the

networkȂs quality of service could be inferred and is discussed further in section

6.4.1.

5.2.6 Natural Biodiversity Mechanisms

5.2.6.1 Software at the Individual Scale

In order to form analogies between natural diversity mechanisms and underlying

ad hoc ecosystem functions a device is framed in terms of genetic software

components. This is because genetic diversity can inform the diversity between

Chapter 5 Ph.D. Thesis

Jennifer Jackson 118 of 357 May 2017

individuals, species, or ecosystems (§2.3.1). Additionally, in order to devise

biodiversity strategies based on local interactions and multiple layers of software,

whilst incorporating multi-exploit malware, it is necessary to focus on the

individual scale of a device and its structural composition. Figure 5-3 shows an ad

hoc ecosystem with devices (Figure 5-3 (a)) comprised of individualised software

stacks (Figure 5-3 (b)) generated from a pool of available software (Figure 5-3 (c) and

(d)). This pool of software can be stored locally in whole or in part but is assumed to

be separate from the realised software stack.

The structural composition of each deviceȂs individualised software stack (Figure

5-3 (a)) can be considered from a genetic perspective by representing this structural

composition as a genotype (§2.2.2.1.4). The pool of available software (Figure 5-3 (c))

contains a bounded number of functions and variants with which to configure the

genotype. The genotype is split into four layers representing the four general layers

of the software stack (§3.2.1.3): applications (Layer A), application services (Layer

B), core OS libraries (Layer C), and kernel (Layer D). Each layer is comprised of one

or more software functions representing genes, termed software gene functions (F).

Each function is situated at a specific locus (L) within the software stack.

Software gene functions for example may include web browsing, window

management, graphics rendering, or hard disk interfacing. Each software gene

function can be represented by one of a number of possible software gene variants

(alleles in a biological systems), such as web browser type 1, or web browser type 2.

Here a monoploid set of chromosomes is assumed (§2.2.2.1.4) so that only one

variant is allowed at a locus within a single genotype at any given time.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 119 of 357 May 2017

Figure 5-3 – Software at the individual scale

(c) Pool of

available software
(genotype configuration

options)

(d) Application layer showing example

functional niche space and variants
User

& device

Environment

(a) Ad hoc

ecosystem

(b) Individual

device

1 VA12 Web Browser

1 VA22 Word Processor

1 VA32 Messager

1 VAn2 Email Client

Application

Layer A

1 VB12 Window Manager

1 VB22

1 VBn2

Application

Services

Layer B

1 VC12 Graphics Library

1 VC22

1 VCn2

Core OS

Libraries

Layer C

1 VD12 Disk Driver

1 VD22

1 VDn2

Kernel

Layer D

Web

Browsing

Functional niche space of

one software stack layer

Variants

(Gene alleles)

Functional overlap

(functional redundancy)

Document

Writing

No functional overlap

(Functional

complementarity)

Var
ia

nts

Text

Messaging

Email

Behaviours

- mobility

Web Browser 5

Disk Driver 3

Example individualised

software stack

(genotype)

Function choice and

variant choice

Single layer

Each device

FA1 at LA1

Available software

gene function (F),

at each locus (L)

FA2 at LA2

FA3 at LA3

FAn at LAn

Web browsing

Document writing

Text messaging

Email

Example

gene

functions
Layer

Window Management

Graphics rendering

Hard disk interfacing

FC1 at LC1

FC2 at LC2

FCn at LCn

FB1 at LB1

FB2 at LB2

FBn at LBn

FD1 at LD1

FD2 at LD2

FDn at LDn

FA1 at LA1

FA2 at LA2

FA3 at LA3

FAn at LAn

Available software

gene function (F),

at each locus (L)

LA1

LD1

Word Processor 2LA2

Example

variants

Variants

Chapter 5 Ph.D. Thesis

Jennifer Jackson 120 of 357 May 2017

Software gene variants are defined from the perspective of propagating malware

and are assumed to be sufficiently different, whilst remaining functionally

equivalent, to warrant the necessity of different exploit code to penetrate the

vulnerability.

In addition to this, each layer has a bounded functional niche space (§2.2.2.1.1) as

shown in Figure 5-3 (d) by a third axis, where the variant axis has been rotated. Each

software gene function has a position within the functional niche space

representative of the functionality of that gene. There may be both overlapping and

non-overlapping functions between loci. For example non-overlapping functions

could be web browsing and document writing, whereas overlapping functions

could be text messaging and email, both of which enable the sending and receiving

of plain text communication. In principle, software genotypes can be of varying

lengths encompassing different functions, allowing functional diversity to exist

within the ad hoc network ecosystem.

Software is defined here in terms of genetics with two components of gene

function and gene variant. However, as mentioned previously biodiversity

mechanisms researched within ecology, predominantly associated with species, are

also relevant at multiple scales, and are particularly relevant from the perspective of

software functionality, and are described below.

5.2.6.2 Niche Differentiation

A niche for a particular software program is defined here by its functionality. As

with natural ecosystems, when software overlaps in terms of functionality,

sometimes competition or temporal conditions can reduce the softwareȂs

Chapter 5 Ph.D. Thesis

Jennifer Jackson 121 of 357 May 2017

fundamental niche to a realised niche (§2.2.2.1.1). For example text messaging and

email overlap in sending text communication. When users have access to both,

competition of usage and adoption by users results in each of the two mechanisms

being better suited under different conditions leading to two different niches. It is

quite possible that text messaging is used for sending short amounts of text because

it is quick and instant, whereas email is used for sending larger amounts of text

often in a more formal manner.

Ecological research suggests that both perfect complementarity (no functional

overlap) and functional redundancy (functional overlap) greatly benefit ecosystems

(§2.2.2.1.1). If software systems were designed with this in mind then perfect

complementarity would generate greater functionality more rapidly as more

software programs are developed. The downside would be a total dependence on a

specific program to provide a certain function. Malware targeting a specific

program type such as email could therefore cause loss of critical functionality, and

hence redundancy is also needed. Within current software systems, where software

for the user or application is the focus, both perfect complementarity and functional

redundancy exist, but it is not evident from the literature if this has ever been

analysed. Additionally, different software variants providing the same functionality

exist, such as different web browser software or different email software

applications. Functionality of software may not always remain static and could

dynamically change during operation. Self-modifying code such as software

reflection, where software is able to examine its own operation and modify its

functionality at runtime, could potentially cause changes in the realised functional

Chapter 5 Ph.D. Thesis

Jennifer Jackson 122 of 357 May 2017

niche space at a particular locus (figure 5-3 (d)) over time (albeit that this represents

only a part of the larger fundamental niche space to which it has access), which

could also differ on different computers. One question is whether the changes could

significantly impact the overall functional goal of the loci. Small changes may be

beneficial for diversity as it could lead to slightly different approaches, different

ordering of lower level commands and different memory locations of data, whilst

still achieving the same goal. Significant changes however could mean that two

variants at the same locus could no longer be considered as having the same

functionality and would violate the concept of functionally equivalent software

variants.

5.2.6.3 Facilitation

Software programs seldom operate in isolation of each other and facilitation

(§2.2.2.1.2) is a natural process in software systems. Two or more pieces of software

interacting together can cause a positive benefit for at least one of the software

programs. An example would be of two software programs: a scanner driver

software interfacing directly to the scanner hardware, and a software program to

view and save the scanned image. Without the scanner driver, there would be no

scanned image to view. Within ecology, increasing diversity in the presence of

facilitation is thought to increase ecosystem function but the exact mechanisms and

effects, particularly at the genetic level, are largely unknown (§2.2.2.1.2). However

this type of arrangement is normal within software stacks where there are many

dependencies between software functions at different layers.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 123 of 357 May 2017

5.2.6.4 Trophic Levels

The dependence between software functions at different layers of the software

stack can also be viewed as being similar to the interaction between trophic levels of

natural systems (§2.2.2.1.3). Similar to the lowest trophic level, the lowest software

layer contains primary functions that interface to the outside world such as drivers

for hardware and other low level functions (kernel). The next layer (core OS

libraries) is built upon the kernel. The third layer (application services) is built upon

the core OS libraries or sometimes the kernel as well. The top layer (applications)

utilises the lower layers to provide functional software for the user. It is known in

ecology that diversity at lower layers can increase the number of species at higher

layers. In terms of software this would indicate that the more diversity in software

functionality in the kernel, the more diversity there is, or can be at the application

layer. This makes sense since devices with only a disk driver functionality in the

kernel would have very limited application software. On the other hand if the

kernel had drivers for a range of different sensors and actuators then a multitude of

different application software would exist, and this is seen in practice with large

volumes of ȁ“ppsȂ available in ȁApp StoresȂ [249] [250]. As well as dependencies

across layers there may be dependencies within layers at a finer level of granularity,

for example between software programs and dynamic libraries. For the scheme

proposed in Figure 5-3 this would mean dependencies between loci. The implication

being that in order for particular loci to be operational, specific lower level loci

would need to be present, limiting genotype configurations. However, a software

program and the dynamic libraries it uses remain decoupled until the program

Chapter 5 Ph.D. Thesis

Jennifer Jackson 124 of 357 May 2017

actually runs. This is beneficial for diversity because patching and updating of the

library can be conducted without recompiling or re-linking the software program,

but more importantly different variants of the same library can be used on different

computers.

5.2.6.5 Genetic Variation

Within ecology, genetic variation is the driving force behind functional

differences between individuals (§2.2.2.1.4). Using the assumption that the software

stack of a device can be represented as a genotype with multiple loci representative

of multiple layers of software as shown in Figure 5-3, then the genetic variation of a

group of ad hoc devices can be defined. The genetic variation is the number and

frequency of different software variants across each locus and the number and

frequency of different software stack genotypes. For one software gene function at a

single locus, as the number of variants increases so too does the possible number of

different genotypes. For example if there are five possible web browser variants,

there are five possible genotypes. Although web browsers are inherently prone to

being an initiating source of an attack (e.g. users unknowingly clicking onto

malicious links), variants are considered to be sufficiently different with respect to

propagating malware to warrant the necessity of different exploit code to penetrate

the vulnerability (§5.2.6.1). As more gene functions are added, and hence more loci,

the possible number of different genotypes increases according to Equation (2-12).

Genetic variation of software variants determines the genetic diversity of the ad hoc

network for which there are numerous measures used within ecology (§2.3.2). These

Chapter 5 Ph.D. Thesis

Jennifer Jackson 125 of 357 May 2017

methods could equally apply to the diversity of software composition across

devices.

5.3 A Diverse System Model

5.3.1 The Requirements for a Diverse System Model

5.3.1.1 Requirements Overview

There is a large gap in understanding the benefits of diversity as a security

mechanism from an ecological perspective (§3.4.5). Additionally there is no well

defined metric for measuring diversity of computing systems. Ad hoc networks will

feature more prominently in the future Internet (§3.2.3) and possess similar

characteristics to natural ecosystems such as localised interactions, distributed

architecture and the production of analogous functions and services to those of

ecosystems. The spread of malware, similar to the spread of diseases, is rife in

monoculture environments (§1.1.2), where it takes advantage of vulnerabilities at

different layers of the software stack.

To investigate the benefits diversity brings against disturbances, such as malware

spreading events within an ecosystem context, a model of a diverse system (§3.4.3) is

required. It will need to simulate the injection of malware events whilst

incorporating multiple layer exploits, diversity schemes based upon local

interactions, mobility, and the peer-to-peer nature of ad hoc networks. It should also

consider practical constraints such as user preferences (§3.4.5) and software

compatibility, where there may be dependencies between specific variants at

different loci (§3.2.1.3). Dependency between the presence of one locus and another,

Chapter 5 Ph.D. Thesis

Jennifer Jackson 126 of 357 May 2017

such as dependency on specific lower layer libraries, is not included (§5.2.6.4)

however the model could be extended to allow different loci, and different numbers

of loci on different computers. It will need to assess important outputs of an

ecosystem such as the quality of service as a measure of productivity, resistance and

resilience components of stability, as well as malware transmission characteristics.

In addition to this, metrics for measuring diversity is required that captures the

granularity of different functions and layers of a software stack and their

distribution across devices in the network.

Most of the diverse system models developed in the literature (§3.4.3) treat each

node as a complete entity. For example, treating nodes as different colours, or

different single variants of software. As a result, and in general, malware modelling

tends to simulate the targeting of single software variants as a complete entity on a

device. The primary contribution of the model is to incorporate diversity whilst

accounting for malware that uses multiple exploits targeting different

vulnerabilities at different layers of a software stack, which is a growing concern

within cyber security (§3.3). The model also allows the evaluation of different

diversity strategies and is able to compare single and multiple exploit malware

whilst using the same diversity strategy.

5.3.1.2 Model Constraints

The following assumptions and constraints have been applied as a starting point

in modelling such a system, but the model could be extended at a later date to

include further aspects.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 127 of 357 May 2017

• Within the natural biodiversity-ecosystem relationship, biodiversity can both

affect the response to disturbance events, and can be affected by disturbance events

(§2.2.2). This research only focuses on the effect of biodiversity on the response to

disturbance events as a first step in modelling such complex relationships.

• Additionally this research focuses strictly on disturbance events over short

time scales and ignores the effects of natural changes over long time scales caused

by a disturbance regime (§2.2.1.4). This includes considering only closed networks

where the number of nodes remains fixed so that there are no nodes entering or

leaving the network.

• The disturbance event studied is constrained to malware since this is known

to be rife in conditions where there is wide spread use of identical software and is

on a par with disease spread in natural systems.

• The structural composition of each deviceȂs individualised software stack is

considered from a genetic perspective by representing the structural composition as a

genotype. Specific constraints are outlined in section 5.3.1.3 below. Malware and its

exploits are also considered from a genetic perspective with the ability to target one

or more software variants.

• Modelling of behaviours and node interactions remains at a high level of

abstraction so that event based simulators, where data flow and detailed

functionality of software is modelled, is not necessary.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 128 of 357 May 2017

5.3.1.3 Genotype Structure Constraints

To simplify modelling and to demonstrate the concepts of both diversity and

malware targeting multiple layers, one function is included from each of the four

layers of the defined software stack (§3.2.1.3) leading to genotypes with a fixed

length of four loci. It is not necessary to model untargeted loci since they have no

impact on malware propagation at an abstract level. This means that malware

carrying exploits is limited to targeting at most four loci, one per layer, with any

number of software variants being bounded only by the simulation parameters. This

is a reasonable constraint to make since even the well known multi-exploit malware,

Stuxnet (the first to use so many unknown cross-layer exploits §3.3.3), only targeted

as many as four layers of the stack. It is additionally implied that at the time of

initial infection the exploits are unknown and cannot be detected or blocked by anti-

virus software as in the case of a zero day attack (§3.3.3). It demonstrates both the

concept and the applicability of the current practical scenario of four exploits in the

AND configuration. The OR configuration is applied to both cross layer and within

layer and so the total number of exploits modelled can be far greater. Secondly, it is

assumed that every device in the network has the same set of functionality (i.e four

lociǼȄ and this functionality does not change ǻi.e through self-modifying code) so

that the niche space remains fixed throughout the simulations and the variants at

each locus are considered to be functionally equivalent. Thirdly, it is assumed that

there is no functional overlap between the four chosen loci. Fourthly, although

facilitation and trophic levels are inherent in interacting software programs and

layered software stacks, their interacting mechanisms are not included in the model.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 129 of 357 May 2017

These constraints allow the model to initially focus upon the effects of gene

variation with respect to software variants whilst fixing the number of functions.

This is because individual malware code predominantly targets specific variants

with individualised exploits. With non-overlapping functions and a fixed number of

loci across all genotypes, functional diversity is limited to the definition of the

number of loci representing the different gene functions. However, the model could

be extended at a later date to include the effects of functional variation such as

varying the number of loci and functional overlap, making it additionally possible

to categorise malware into types that target certain functions. Additionally the

model could be extended to include relationships between layers impacting

vulnerability using multi-stage Boolean logic. This will encompass dependencies

between layers that contribute to software becoming vulnerable or not (see future

work §9.3.1.3).

 Figure 5-4 shows an example genotype with four loci. The first locus represents

software relating to an application layer functionality such as web browsing. The

second locus represents an application services layer functionality such as window

management, which may be used by the web browser application to manage the

style and position. The third locus represents a core OS library such as graphics

rendering which may be used by the window manager to process 2D and 3D

graphics. The fourth locus represents a kernel layer functionality such as low-level

hard disk interfacing which may be used to manage downloaded files. For every

genotype on every device, each locus can have one of a number of different variants,

Chapter 5 Ph.D. Thesis

Jennifer Jackson 130 of 357 May 2017

so for example locus 1 could have one of a limited number of different web

browsers.

Figure 5-4 – Constrained genotype with four loci

The example shows a possible scenario, but equally represents any defined stack

or partial stack at an abstract representation, where it is assumed that the

granularity chosen and the functionality defined is in relation to the attacking

malware. The variants at each locus can be automatically generated variants using

diversity techniques or comprised of already available software (COTS), but are

assumed to be sufficiently different from the perspective of the malware to warrant

the necessity of different exploit code to penetrate the vulnerability (§5.2.6.1). For

example, if the vulnerability lies within the source code implementation or design of

an automated set of diverse binary files then the vulnerability may exist in all files,

but the exact exploit code would need to be different for each variant. This is one of

the fundamental benefits of diversity – to prevent vulnerabilities that exist from

being exploited on a wide scale. If variants consist of different COTS software (e.g.

Linux OS, Windows OS) the vulnerabilities are more likely to be different in the

variants. However if the COTS variants were different versions of the same software

1 VA12 Web BrowserApplication

Layer A

1 VB12 Window Manager
Application

Services

Layer B

1 VC12 Graphics Library
Core OS

Libraries

Layer C

1 VD12 Disk DriverKernel

Layer D

Locus 1

Loci

Web browsing

FunctionsLayer

Window Management

Graphics rendering

Hard disk interfacing

 variants

Locus 2

Locus 3

Locus 4

Web Browser 5

Window Manager 2

Graphics Library 1

Disk Driver 3

Example

Genotype

Community of available software

(genotype configuration options)

Chapter 5 Ph.D. Thesis

Jennifer Jackson 131 of 357 May 2017

(e.g. 10.12.5, 10.12.6) they could still be considered as different if different exploits

are required, even if targeting the same vulnerability. The model takes into account

the ability to infect different versions of the same software by specifying exploits

within a locus (as opposed to across loci). The malware threat model and types are

defined in §5.3.3.

5.3.2 Diversity Measures

There are many diversity measures in the literature for natural systems (§2.3),

several of which have been used in isolation to define diversity in computing

systems, or new multidimensional ones have been defined (§3.4.4). It is proposed

here that diversity of computing systems is not defined by a single measure, but

through several, all providing a different but necessary perspective (§2.3.2.4).

The diversity measures defined here along with the defined genetic composition

of software described above captures the principles of all those proposed in the

literature. For example multidimensional functions (§3.4.4.4) is captured in terms of

software gene functions and functional overlap, where the partitioning of gene

functions into different loci form the dimensions and are only limited by the

granularity of the defined functions. The necessary measures are all currently used

to assess genetic diversity within natural systems and are defined here (in terms of

computing devices and software stack genotypes) for clarity which are used by the

models (§6, §7). Additionally defined is the process for increasing diversity in

relation to the metrics and the definition of maximum diversity.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 132 of 357 May 2017

5.3.2.1 Measures Definition

Genotypic Richness – This is the number of different software stack genotypes

currently in use across all devices within the ad hoc ecosystem (§2.3.2.1.1).

Genotypic Diversity - This takes into account the frequency of all the different

software stack genotypes across all devices and is calculated using Equation (2-2)

(§2.3.2.1.3).

Number of Variants - This is the number of software gene variants at a

particular locus across all devices.

Variant Richness - This is the average number of different software gene

variants per locus across all devices. This is the same as the allelic richness (§2.3.2.2.1)

and is calculated using Equation (2-4).

Variant Diversity – This takes into account the frequency of software gene

variants across all devices and can be calculated independently at each locus or

averaged across loci. The Nei Genetic Diversity index is used as a measure of variant

diversity as given by Equation (2-8) (§2.3.2.2.2).

5.3.2.2 Increasing Diversity

Diversity at a single locus can be increased in two ways by either:

1) Increasing the number of software gene variants, or

2) Equalising the distribution of variants across all devices

Diversity of multiple loci can be increased in three ways by either:

Chapter 5 Ph.D. Thesis

Jennifer Jackson 133 of 357 May 2017

1) Increasing the number of loci (software gene functions / software stack

layers)

2) Increasing the number of software gene variants at any locus, or

3) Equalising the distribution of either, or both variants and genotypes.

5.3.2.3 Maximum Diversity Definition

Maximum Number of Unique Genotypes: The number of variants at each locus

dictates the maximum possible number of genotypes that could exist (Equation

(2-12)).

Maximum Genotypic Diversity: This is the maximum diversity that can be achieved

for a given set of genotypes, where they are evenly distributed across all devices.

The given set of genotypes does not necessarily have to be the maximum number of

unique genotypes (Equation (2-2)).

Maximum Variant Diversity: This is the maximum diversity of a given set of

variants at a locus where all the available variants are evenly distributed. The Nei

Genetic Diversity index (§2.3.2.2.2), (as well as the Shannon index), assess each locus

independently and so maximum variant diversity at every locus may not

necessarily need to utilise all of the possible unique genotypes. Figure 5-5 shows

two examples where maximum variant diversity is achieved with three variants in

each of the two loci (A1 to A3 and B1 to B3). In Figure 5-5 (a) even though only three

genotypes are present in a network with nine devices, the three variants in each

locus are evenly distributed, where each genotype appears three times. Figure 5-5

(b) shows an alternative solution where all the maximum number of nine unique

Chapter 5 Ph.D. Thesis

Jennifer Jackson 134 of 357 May 2017

genotypes are fully utilised and the three variants in each locus are also evenly

distributed.

Figure 5-5 - Maximum variant diversity with nine devices and three variants

Absolute Maximum Diversity: To guarantee absolute maximum diversity within an

ad hoc ecosystem there are four conditions that need to be fulfilled.

1) For a given number of variants and loci there exists a maximum number of

unique genotypes, all of which need to be utilised across the devices of the ad hoc

ecosystem.

2) The maximum number of unique genotypes needs to be evenly distributed so

that maximum Genotypic Diversity occurs.

3) It follows that if the maximum number of unique genotypes are evenly

distributed so too are the variants within each locus so that maximum Variant

Diversity is also achieved.

Locus 1 Locus 2 Locus 1 Locus 2

A1 B1 A1 B1

A2 B2 A1 B2

A3 B3 A1 B3

A1 B1 A2 B1

A2 B2 A2 B2

A3 B3 A2 B3

A1 B1 A3 B1

A2 B2 A3 B2

A3 B3 A3 B3

Device Genotype Device Genotype

a) 3 Genotypes used

to achieve maximum

variant diversity at

each locus

b) 9 Genotypes used

to achieve maximum

variant diversity at

each locus

Chapter 5 Ph.D. Thesis

Jennifer Jackson 135 of 357 May 2017

4) To allow absolute maximum diversity to be achieved practically, the minimum

number of ad hoc devices needs to be equal to the maximum number of unique genotypes,

or a multiple of, to achieve an even distribution.

5.3.3 Malware Threat Model

The malware threat model is defined at an abstract level and depicts a theoretical

representation regarding the way in which malware uses exploits to target different

layers of the software stack to infect and propagate. The threat model is based upon

the background research of malware (§3.3) applied to the previously defined

software stack genotype (§5.2.6).

Within this threat model, malware is defined by three parameters:

1) The number of exploits targeting different software variants at each locus (e1

to eL).

2) The number of different loci targeted by the exploits (L).

3) The logic function defining the relationships of the exploits in order to carry

out its malicious intention (AND, OR).

The malware representation is shown in Figure 5-6 showing exploits, loci and the

logic function block. A single exploit is assumed to only be able to penetrate a single

software variant. In practical terms this means that if an exploit is capable of

penetrating two non-identical but similar software program stacks with common

components, then they would be considered as being the same variant at the loci of

the common components where the exploit is targeting. If different exploit code is

needed then they would be considered as being different variants. It is possible for

Chapter 5 Ph.D. Thesis

Jennifer Jackson 136 of 357 May 2017

malware to carry multiple exploits at each loci to enable it to penetrate different

variants of the same function. The number of loci defines the number of different

software stack layer functions targeted by the malware in order to successfully carry

out its malicious intention. The logic function defines the relationship of the exploits

across the loci and is based upon two types: the logical AND type and the logical OR

type. The AND and OR logical functions (together with inversion) form the basic

blocks for which all other logical functions can be created and has therefore initially

been limited to these two types.

Figure 5-6 – Malware threat model

The logical AND type, is representative of malware that uses one or more exploits

across loci to infect and propagate, and thus creating an AND relationship across

these loci. In this case at least one of the variants in each of the loci targeted by the

exploits must be present on a device to cause an infection. This means that the AND

malware type only targets loci for which it has an exploit for. All other loci are not

affected.

1 e12

1 e22

1 e32

1 eL2

Locus 1

Loci exploits

Locus 2

Locus 3

Locus L

Logic

function

Malware represented by the exploits it uses targeting

different layers of the software stack (Loci)

Infect

&

propagate

Chapter 5 Ph.D. Thesis

Jennifer Jackson 137 of 357 May 2017

As an example the AND malware type is mapped to the Pegasus malware

(§3.3.3) that targeted iPhone devices in 2016 and is shown in Figure 5-7. Here three

exploits are used in an AND relationship across loci, where all three software

vulnerabilities have to be present in order for the malware to be successful. Other

multi-exploit AND malware exist, for example the self-propagating Stuxnet worm

(§3.3.3) requires four separate exploits to infect and propagate. Although these

malware do not have the capability to propagate over peer to peer wireless

connections (e.g like the Cabir worm over Bluetooth [156], it does demonstrate the

principles of using multiple exploits in an AND relationship. As the rise in mobile

malware continues, multiple exploits are likely to become equally applicable to ad

hoc networks with propagation over peer to peer wireless connections.

Additionally, these malware examples only targeted one variant at each of the loci

but it could have been theoretically possible to have used alternative exploits

targeting different variants at the same locus if it was deemed worthwhile by the

attackers, and suitable vulnerabilities were found. In 2017 for example at least eight

vulnerabilities were identified across different OS implementations (potential

variants) of the Bluetooth software stack [251] (at the Kernel layer) potentially

leading to the automated spread of malware over peer to peer Bluetooth

connections without being detected. It is just a matter of time before these are

exploited by malware in unpatched versions of operating systems.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 138 of 357 May 2017

Figure 5-7 – Pegasus malware AND threat representation

Using alternative exploits to target old and new versions of software is becoming

increasingly common as many users infrequently install updates or not at all. The

CopyCat malware [252] for example iterates through six exploits, mostly at the

kernel level, using several well-known Android vulnerabilities in order to gain

access to root privileges of a device. When these alternative exploits target different

functionality at different loci, an OR relationship is created. This can include

malware with the ability to infect and propagate via alternative mechanisms. The

logical OR type, is representative of malware that needs only one exploit to infect and

propagate, but carries multiple exploits which are available for use. With the

CopyCat malware for example, exploits targeted vulnerabilities in the camera

driver, the IPV4 communications function, and user calls in the API library. Figure

5-8 shows an example based upon three exploits of the CopyCat malware showing a

comparative OR threat representation to the Pegasus AND malware.

Applications

Safari web kit exploit

Kernel
Kernel memory

exploit

Core OS

libraries
Kernel mapping

exploit

Application

services

Infect

Locus 1

Locus 2

Locus 3

Locus 4

Three exploits

across three loci

AND

function

Chapter 5 Ph.D. Thesis

Jennifer Jackson 139 of 357 May 2017

Figure 5-8 – OR threat representation example based upon the CopyCat malware

The reviewed epidemic models of computer security (§3.4.3.2) perceive malware

as a single entity attacking a particular type of device. In comparison with the

malware threat model this would be equivalent to a single locus without any logic

function block, and is compared mathematically in chapter 6 (§6.3.2).

The threat model is currently scoped only for single stage logic using the two

AND and OR functions, but could be extended to include multi stage logic to model

more complex malware exploit functions. For example a first stage AND function of

two loci, and a second stage OR function with a third locus. This could be used to

represent a case where malware may propagate using two exploits at different loci,

or using a single exploit at a third locus. Although not all of these combinations

have been seen in practice, the threat model could allow scenarios to be portrayed

that may happen in the future allowing their impact to be determined.

Additionally, the threat model is abstractly representative of any malware with

exploits targeting software vulnerabilities and is applicable to any computer system

Camera

interface

function

Camera driver exploit

API

functions

User call exploit

Internet

Protocol

function

IPV4 exploit

Other kernel

function

Infect

Locus 1

Locus 2

Locus 3

Locus 4

Three alternative

exploits across

three loci in the

Kernel layer D

OR

 function

Chapter 5 Ph.D. Thesis

Jennifer Jackson 140 of 357 May 2017

that can be partitioned into layers of functions. However within this research it is

applied only to the ad hoc network environment under the assumption that the

malware is capable of propagating via peer to peer connections as shown by the

malware data flow in Figure 5-9. This is representative of current and future real

world scenarios such as those described in §3.2.2, where examples include moving

inter vehicular communications, mobile sensor networks and other mobile devices.

Figure 5-9 – Malware data flow in an ad hoc peer to peer environment

Applications

Kernel

Core OS

libraries

Application

services

SW stack

genotype

Device

Applications

Kernel

Core OS

libraries

Application

services

SW stack

genotype

Device

Applications

Kernel

Core OS

libraries

Application

services

SW stack

genotype

Device

Peer to peer

connection Peer to peer

connection

Peer to peer

connection

Malware propagation route

Malware

propagation

route

Malware

propagation

route

Chapter 5 Ph.D. Thesis

Jennifer Jackson 141 of 357 May 2017

5.3.4 Diverse System Model Overview

5.3.4.1 General Overview

This section describes the general architecture at a high-level of two diverse

system models that have been developed to incorporate software diversity and

malware at the genetic level of an ad hoc network ecosystem. The intention of the

overview is to highlight the key differences between the models and what each

method offers. The mathematical content and simulation processes are detailed

within the individual chapters for each model (§6,7). The model with the greatest

flexibility to incorporate distributed dynamic diversity algorithms, realistic features

and constraints follows an agent-based approach (§4.3.4). The model is

predominantly simulation based following defined processes that are applied to

each and every individual. Under certain constraints this model is comparable to an

enhanced mathematical epidemic model, which has also been developed to

incorporate software diversity and malware at the genetic level. The epidemic

model is predominantly derived and calculated mathematically at a system level

without knowledge or control of individual behaviour, and is a key difference

between the two models. The epidemic model also provides a means for

comparison against standard epidemic models (§4.3.1) as well as the agent model.

The two models are outlined below with details of their design and implementation

documented in chapter 6 for the epidemic based model and chapter 7 for the agent-

based model.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 142 of 357 May 2017

5.3.4.2 Constrained Diverse System Model: Mathematical

Epidemic

The mathematical based approach is comprised of a network model, a

susceptibility model and a malware model as shown in Figure 5-10 and represents a

system level view of the whole network.

Figure 5-10 – Architecture of the epidemic based diverse system model

Network model: The network model assumes wireless communication protocols

are employed utilising peer-to-peer communication with ad hoc devices that move

around with their users. Devices can have the same or different software stack

genotypes leading to diversity in the network. It is assumed the functionality of the

Susceptibility Model

Software genotype pool in network

System

Diversity

Generator

Malware Exploits

G
e
n
e
ti
c
 m

a
tc

h
in

g

Locus 1

Locus 2

Variant 3 exploit

Locus 3

Locus 4

System

Malware

Generator

System SIR (Mathematical)

Network model

Measured Diversity

Malware source

Malware Model

Measured outputs

Chapter 5 Ph.D. Thesis

Jennifer Jackson 143 of 357 May 2017

devices combine to produce the ecosystems network and user services. At least one

wireless access point is assumed to be present providing a connection to the Internet

and an entry point for malware. The inherent nature of a mathematical approach

assumes homogeneous mixing of devices and so does not offer the flexibility of the

agent-based approach which can incorporate mobility modelling with geographic

waypoint information and location based constraints. This highlights another key

difference between the two models. However, with the epidemic approach, an

analytical result can be achieved under the assumption of average system level

conditions.

Susceptibility model: The susceptibility model mathematically derives the

susceptibility of the network for a given diversity and malware configuration. The

diversity of the network is set or derived at a system level (unlike the agent model

where genotypes are individually set at each device). Malware with multi-locus

exploits, as defined by the threat model (§5.3.3), is assumed to be capable of

spreading within the network. The example malware in Figure 5-10 shows a single

exploit targeting variant 3 at locus 2, but could consist of any number of exploits at

different loci. The diversity and exploits are used to mathematically determine the

proportion of devices that are susceptible to a pre-defined malware. The diversity of

the network within a given time frame is constrained to being static so that once a

diversity-malware configuration has been created it does not change throughout the

dynamics of a simulation (unlike the agent model where the genotype

configurations and hence diversity can change). This follows the assumptions made

by currently proposed mathematical epidemic models involving diversity (§3.4.3.2).

Chapter 5 Ph.D. Thesis

Jennifer Jackson 144 of 357 May 2017

The difference in this proposed model is that a genetic approach is taken to include

different software functions at different layers of the stack together with malware

utilising multiple exploits. Current methods assume each node comprises a single

software variant and additionally malware targets a single software variant. The

principles of genetic matching between exploits and genotypes is similar to the

ideas used within infection genetic models (§4.4), but is matched through analytical

calculations and is targeted specifically for the malware types defined by the threat

model (§5.3.3). With static genotypes, the susceptibility of the network and the

average rate of contact (§4.3) between those that are susceptible is pre-calculated

before applying the malware model.

Malware model: Parameters generated from the susceptibility model are fed into

the malware model to obtain simulated ecosystem outputs. The mathematical

malware model can be either deterministically or stochastically based and currently

supports either the SI or SIR compartmental models (§4.3). This approach is

different to the agent model where individual devices keep track of their own health

status which is determined by the dynamics of the individual simulation (rather

than the mathematical equations).

The mathematics of the epidemic model is detailed in chapter 6.

The constrained epidemic model offers a method of:

(a) Comparing the proposed genotype structure which consists of software gene

variants at different loci that can be targeted by multi-exploit malware with current

epidemic models of diversity, where a genotype or node is considered as a complete

entity. The model developed can additionally simulate non-maximally diverse

Chapter 5 Ph.D. Thesis

Jennifer Jackson 145 of 357 May 2017

scenarios (not considered by other diversity based epidemic malware models

§3.4.3.2), allowing the diversity of current networks or networks with domineering

software variants, to be analysed in response to malware and compared to the

maximally diverse case.

(b) Verifying the agent-based model under homogeneous mixing and static

diversity constraints.

(c) Comparing the mathematical model with the agent-based model, which can

include additional features such as dynamic diversity, additional security

mechanisms, geographic mobility and realistic constraints.

(d) Modelling abstract ecosystem outputs of resistance and resilience and

maintaining functional performance (Quality of Service) in response to diversity

and specific types of malware attacks.

5.3.4.3 Diverse System Model: Agent-Based

Unlike the epidemic approach where the general architecture (Figure 5-10) is

representative of the whole network at a system level, the general architecture of the

agent-based approach as shown in Figure 5-11 (of the diversity and malware

interaction) represents a single device, and is the same for every device. The agent-

based approach is comprised of a network model, a diversity model and a malware

model.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 146 of 357 May 2017

Figure 5-11 – Architecture of the agent-based diverse system model

Network model: Each agent represents an ad hoc device with software variants

performing functions that contribute to the ecosystemȂs network and user services.

As with the epidemic approach, the network model assumes wireless peer-to-peer

communication with at least one entry point for malware. With the agent approach

however, location based mobility can be modelled. An additional feature, that is not

possible with the epidemic approach, is that during local encounters (contact

between devices) it is possible to exchange with the contact both genotype

information and malware, if it is present. Users may also influence the mobility

pattern of devices, or place constraints on the use of certain software variants. The

agent-based approach can be additionally constrained to model homogeneous

Network Model

Malware source

Device Software Genotype

Device

Diversity

controller

Receiving Malware Exploits

G
e
n
e
ti
c
 m

a
tc

h
in

g

Measured Outputs

Diversity Model

Malware Model

Locus 1

Locus 2

Variant 3 exploit

Locus 3

Locus 4

Locus 1 – Application

Web Browser

Locus 2 – App. Service

Windows Manager

Locus 3 – Core OS Lib.

Graphics Library

Locus 4 – Kernel

Disk Driver

Device SIR (Internal state)

Measured Diversity

User

influence

Device

Chapter 5 Ph.D. Thesis

Jennifer Jackson 147 of 357 May 2017

mixing of devices so that verification and comparisons can be made to the epidemic

model (§7).

Diversity model: The diversity model uses the genotype structure outlined in

section 5.3.1.3 to represent the software composition of a device. The diversity of the

network within a given time frame can be either described as static like the

epidemic model, where the genotypes remain fixed in each device, or dynamic,

where the genotypes may change based upon device level decisions from

information obtained during local encounters and is described further in §7. The

software genotype on each device is self determined by the diversity model. The

diversity controller within each device has its own perspective on the diversity of

the network based upon its local encounters, and in response, determines what

software genotype should be chosen in order to maximise diversity, subject to any

constraints. Practical constraints can be applied together with additional security

mechanisms to explore the effectiveness of diversity as an integrated security

approach. Whilst the concept of static diversity assignment and dynamic diversity

assignment are similar to ideas proposed by colouring algorithms for diversity

(§3.4.3.1), the colouring algorithms have been fixed to 3 or 4 colours (software

programs) and are simulated on networks with fixed communication links. The

algorithms developed here are for ad hoc networks with continuously changing

communication links, are multi-layered, and are unbounded in the number of

potential software programs.

Malware model: Devices keep track of their own health status which may be

susceptible, infected or recovered following the basic SIR epidemic compartments

Chapter 5 Ph.D. Thesis

Jennifer Jackson 148 of 357 May 2017

(§4.3.4), but does not follow the mathematical equations like the epidemic model.

Successful genetic matching between the deviceȂs own genotype and exploits only

occurs if malware is received by the device and the exploits match to vulnerable

software components. The malware model uses computational genetic matching

between the deviceȂs own genotype and a propagating piece of malware, which also

takes into account the malwareȂs logical function as defined by the threat model

(§5.3.3). If a match occurs the device is deemed to have become infected, and this in

turn can change the internal state of the device from susceptible (S) to infected (I).

An aggregation of the states of the individual devices provides the system level

perspective. These computational matching methods are similar to those used

within infection genetic models (§4.4), but as with the epidemic model, is tailored

specifically for the defined malware types (§5.3.3). As a result of the interaction of

the devices, incorporating genotypes and malware, diversity is measured along

with ecosystem outputs such as resistance and resilience.

The agent model offers a method of:

(a) Exploring diversity and malware beyond the limitations of the epidemic

approach, through dynamic diversity based on local interactions, user influence and

constraints, additional security mechanisms, and geographic mobility.

5.3.4.4 Modelling Environment

The modelling environment used for both models is Mathworks Matlab since it

provides a computational environment for modelling the high level abstraction of

device behaviours, as well as matrix manipulation for performing simultaneous

device operations. Its ability to aid in the generation of GUIȂs is useful for creating

Chapter 5 Ph.D. Thesis

Jennifer Jackson 149 of 357 May 2017

fast modelling interfaces for retrieving, generating and saving settings and

simulation data. The built-in libraries help reduce the need to spend time debugging

low level code which could otherwise be needed. Disadvantages however are the

simulation times and memory usage when simulating large networks. To improve

this, manipulation of data types and controlled saving of data during simulations is

required.

5.4 Summary

This chapter has presented an ecosystem model for an ad hoc network, making

analogies between natural biodiversity mechanisms relating to functionality within

ecosystems, and natural diversity mechanisms relating to functionality within ad

hoc networks. Malware can be thought of as destructive disturbance events

affecting the function and stability of the ad hoc environment. Although the focus

here is on ad hoc networks, many of the principles described are also applicable to

computer networks in general. In an ad hoc network ecosystem, functionality is

predominantly generated by underlying software and hardware components which

can be captured in terms of genetics at the individual scale of devices. There are two

key components of software at the genetic level affecting ecosystem functionality:

That is software gene function and software gene variant. The analogous

relationships described imply that the fundamental enabling mechanisms for

enhancing diversity already exist within the current structure of software and ad

hoc networks. There are methods for measuring diversity at the genetic level that

could equally apply to the diversity of software composition across devices.

Chapter 5 Ph.D. Thesis

Jennifer Jackson 150 of 357 May 2017

A diverse system model is required to simulate these mechanisms where

individualised software stacks can be represented as genotypes. Some constraints

have been applied such as limiting the number of loci to four, with one non-

overlapping function being represented from each of the four layers of the software

stack. This allows the model to focus upon the effects of gene variation with respect

to software variants and malware targeting specific variants with individualised

exploits. Single measures of diversity in computing systems have been defined in

the literature; however it is proposed here that several metrics are necessary to

define computing diversity at the genetic level, all of which provide a different but

necessary perspective. A threat model has been defined, focussing upon two types

of malware; the logical AND and the logical OR which are representative of

malware using multiple exploits to gain entry and propagate. Two system models

have been proposed: the mathematical epidemic model, which is detailed within

chapter 6, and the agent model which is detailed within chapter 7.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 151 of 357 May 2017

6 Constrained Diverse System Model: Epidemic Based

Chapter 6

Constrained Diverse System Model:

Epidemic Based

6.1 Introduction

This chapter details the architecture and mathematical derivation of the

constrained diverse system model. The constraints as a result of using an epidemic

model are described, together with some fundamental questions that the model can

address under these constraints. The main aspect is the susceptibility model which

generates both diversity and malware and subsequent analytical genetic matching.

Two types of malware as defined in the previous chapter have been incorporated,

each with varying numbers of exploits. Susceptibility equations are derived for the

two types of malware for software stack genotypes having up to four loci. Outputs

of the model are defined including resistance and resilience components of stability,

along with input constraints so that an optimum diversity can be calculated to either

tolerate or prevent a specific type of malware attack.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 152 of 357 May 2017

6.2 System Model Overview

6.2.1 Overview and Constraints

The constrained diverse system model builds upon the basic mathematical SIR

epidemic model (§4.3.1) to investigate diversity and malware propagation at the

genetic level. The mathematical approach is constrained by four key aspects:

1) Homogeneous mixing, where the system is the average of the individual

devices (§4.2.5).

2) Static diversity, where the genotypes present on each device remain fixed

throughout a malware epidemic.

3) Software functions are assumed to be compatible with each other so there are

no constraints regarding genotype configurations.

4) Individual users have no influence over the choice of genotypes which are

predetermined by a centralised source.

Despite these constraints some key mathematical results have been established to

answer the following questions under the given constraints:

1) What security protection or mitigation is offered by biodiversity?

2) How much biodiversity is needed to overcome specific attacks and is there

an optimum biodiversity level?

A key feature of this mathematical approach is the susceptibility model which

defines the diversity and the malware, and subsequently the susceptibility.

Additionally, to incorporate diversity into the SIR an equivalent malware model is

defined and is described below.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 153 of 357 May 2017

6.2.2 Equivalent Epidemic Model with Diversity

6.2.2.1 Without Diversity

Using the SIR as the underlying model (either deterministic or stochastic), it is

assumed that a large number of ad hoc devices exist, and the devices mix

homogeneously where they make wireless contact with each other at an average

rate , as shown in Figure 6-1 (a).

Figure 6-1 - Equivalent epidemic model

S I R

Z

Susceptible devices (Ns)

Immune devices

(Nn – Ns)

Susceptible devices (Nn)
S I R

Susceptible devices (Nn)

Nn = S + I + R

βn = cn t

Devices in network (Nn)

Average contact rate (cn)

Nn = S + I + R + Z

a) No diversity - Basic SIR epidemic malware model

b) Static diversity - SIR malware model with extra immune compartment

Susceptible devices (Ns)
Immune devices

(Nn – Ns)

Devices in network (Nn)

Average contact rate (cn)

S I R

Susceptible devices (Ns)

Ns = S + I + R

βs = cs t

c) Static diversity - SIR malware model with an added susceptibility model, where only a proportion of the

network is susceptible and the infection rate is also proportionally reduced

Susceptible devices (Ns)
Immune devices

(Nn – Ns)

Devices in network (Nn)

Average contact rate (cn)

Ns = Sp Nn

cs = Sp cn

Ni = (1-Sp)Nn

Network Model Malware Model

Network Model Malware Model

Network Model

Malware ModelSusceptibility Model

Equivalent Malware Model

Ns , cs

Nn = S + I + R + Ni

Chapter 6 Ph.D. Thesis

Jennifer Jackson 154 of 357 May 2017

For a basic SIR model as shown in Figure 6-1 (a), where there is no diversity

between devices, the entire network is assumed to be susceptible to the malware so

that the number of devices within the network equates to the number of

susceptible devices. During an epidemic simulation, which is modelled by the SIR

equations (§4.3.2.1), those susceptible may become infected, before recovering

through various mechanisms, if they are available, such as malware detection and

removal after antivirus updates. The sum of the devices within the S, I and R

compartments equate to the number of devices within the network which

remains fixed throughout an epidemic simulation. The rate of infection is the

product of the contact rate and the probability of transmission .
6.2.2.2 With Static Diversity

6.2.2.2.1 Extra Immune Compartment

For a network where there is static diversity, only a proportion of the network is susceptible, since only those genotypes with exploit matched vulnerable

software variants can ever become infected. The remaining devices are considered

immune as shown in Figure 6-1 (b). The malware model could be extended so that

those devices that are immune could be given another compartment labelled as ȁZȂ,

where the sum of the devices within the S, I, R and Z compartments equate to the

number of devices within the network However, since the rate of entering or

leaving the compartment is zero for each specific malware attack, the Z

compartment is fully detached from the SIR compartments. This results in those that

are immune not participating in the dynamics of the epidemic spread, and leaving

only those susceptible being included.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 155 of 357 May 2017

6.2.2.2.2 Equivalent Model

An equivalent malware model as shown in Figure 6-1 (c) can be defined with the

inclusion of a susceptibility model to calculate the proportion of devices that are

susceptible given a specific type of malware attack and diversity scenario. This

can then be used to identify the number of susceptible devices participating in

the spreading dynamics of a known model. The number of susceptible devices

within the network can be defined as:

 (6-1)

And those immune as:

 (6-2)

Additionally, assuming that the density of the network, and hence the contact

rate of the network remains unchanged, it follows that the average rate of

contact between only those that are susceptible , is also a proportion , but of

the total network contact rate so that:

 (6-3)

Resulting in a modified infection rate :

 (6-4)

These results can then be fed into the standard SIR model to simulate the output

dynamics.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 156 of 357 May 2017

6.3 Susceptibility Model

6.3.1 Overview

Susceptibility is described here as either the proportion or number of devices which could potentially become infected by a particular malware. The

susceptibility model calculates the susceptibility for a given diversity and malware

scenario. It is assumed there is a statically diverse network so that pre-computing

the susceptibility in this way is valid for the constrained diverse system model. The

susceptibility, as shown in Figure 6-2, will depend upon both the diversity of the

software gene pool generated by the system diversity generator, and the malware

generated by the system malware generator. The term system is prefixed here to signify

that the diversity and malware are generated and controlled at the system level for

the constrained epidemic model. The diversity of the software gene pool depends

upon several parameters including the number of loci, which has been limited to a

maximum of four (§5.3.1.3), the number and frequency of software gene variants at

each locus, and hence the number of possible unique genotypes (§2.3.2.3). The

specific type of malware attack generated depends upon the number of exploits, the

targeted loci and variants, and one of two types of malware which are defined in the

malware threat model(§5.3.3). The example malware in Figure 6-2 shows a single

exploit targeting variant three at locus two, but could consist of any number of

exploits at different loci. Genetic matching between these two aspects determines

the susceptibility, for which an analytical result has been derived (§6.3.2).

Chapter 6 Ph.D. Thesis

Jennifer Jackson 157 of 357 May 2017

Figure 6-2 – Susceptibility model

6.3.2 Analytical Result of Susceptibility

The remainder of this section describes an analytical derivation of the

susceptibility of the network based upon the previously described diversity (§5.3.2)

and malware threat model definitions (§5.3.3).

6.3.2.1 One Locus Model

When software stack genotypes are comprised of a single locus as shown in

Figure 6-3, the maximum number of unique genotypes available is equivalent to the

number of possible software variants at that single locus. All the reviewed epidemic

based diversity models of security (§3.4.3.2) perceive diversity as a single dimension

in this way such as the number of possible software packages or node types so

that for a single exploit (see Figure 5-6 Malware threat model) or malware there is

only ever one susceptible genotype (software package or node type). The total

Susceptibility Model

Software genotype pool in network

System

Diversity

Generator

Malware Exploits

Diversity

G
e
n
e
ti
c
 m

a
tc

h
in

g

Locus 1

Locus 2

Variant 3 exploit

Locus 3

Locus 4

Number of susceptible devices (Ns)

Susceptible contact rate (cs)

Number of devices (Nn)

Devices contact rate (cn)

System

Malware

Generator

Chapter 6 Ph.D. Thesis

Jennifer Jackson 158 of 357 May 2017

number of susceptible devices is then equivalent to the number of times the

susceptible genotype (software package or node type) occurs within the network . Additionally the security models either assume each device has a unique

genotype, or the genotypes are equally distributed so that maximum diversity is

assumed, thus equating the susceptibility with one exploit to a value of .

The definition used by Lively [43] for a non-computing genetic diversity

epidemic model defines the number susceptible in terms of susceptible genotype

frequencies so that maximum diversity is not necessarily assumed. Using this

definition the number of devices susceptible in the network for a single locus

and a single exploit can instead be defined as:

 (6-5)

Where is the frequency of the th genotype that is susceptible and is the

total number of devices in the network. The single layer models will subsequently

be referred to as the ȁone locus modelȂ since they are equivalent to a software stack

genotype model with one locus.

For software stack genotypes with multiple loci, together with viruses using

multiple exploits (within or across loci for the AND and OR types) the above

equation will not hold since more than one genotype may become susceptible.

Figure 6-3 - Single locus genotypes – one locus model

1 v2 Web BrowserApplication

Layer A
Locus 1

Loci

Web browsing

FunctionsLayer variants

Web Browser 5

Example

Genotype

Pool of available software

(genotype configuration options)

Chapter 6 Ph.D. Thesis

Jennifer Jackson 159 of 357 May 2017

6.3.2.2 Multiple Loci and Multiple Exploits (Genotypic

Perspective)

The remainder of this analytical result describes new work that has been

developed. To consider multiple loci and multiple exploits, firstly consider

susceptibility from a purely genotypic perspective. Figure 6-4 shows genotypes with

multiple loci (up to a maximum of four) with upper bounds on the number of

software gene variants at each locus. The number of genotypes is the product of

the number of software variants at each locus (§2.3.2.3), which are all assumed to be

used in the network.

Figure 6-4 - Multiple locus genotypes

The single locus Equation (6-5) can be rewritten for malware with multiple

exploits in a multiple locus network. The number of susceptible devices is now

the sum of the frequencies of all the susceptible genotypes (genotypes that match

to an exploit) multiplied by the total number of devices in the network. Note that h,

which is the number of susceptible genotypes and determined by the number and

targeting location of exploits, should not be confused with G, the total number of

possible genotypes which can be derived from v and the number of loci.

1 VA12 Web BrowserApplication

Layer A

1 VB12 Window Manager
Application

Services

Layer B

1 VC12 Graphics Library
Core OS

Libraries

Layer C

1 VD12 Disk DriverKernel

Layer D

Locus 1

Loci

Web browsing

FunctionsLayer

Window Management

Graphics rendering

Hard disk interfacing

 variants

Locus 2

Locus 3

Locus 4

Web Browser 5

Window Manager 2

Graphics Library 1

Disk Driver 3

Example

Genotype

Community of available software

(genotype configuration options)

Chapter 6 Ph.D. Thesis

Jennifer Jackson 160 of 357 May 2017

(6-6)

In a static network that is at absolute maximum diversity (§5.3.2), the frequency of

all the genotypes will be equal and the equation simplifies to:

(6-7)

Where is the number of susceptible genotypes, and is the maximum number of

unique genotypes.

Both Equations (6-6) and (6-7) follow the general Equation (6-1) of the

susceptibility model where

(6-8)

This gives a general result for the proportion susceptible in terms of

susceptible genotypes where is the sum of the frequencies of the susceptible

genotypes in the general case or the ratio of
 for the maximally diverse case. The

proportion susceptible however can be defined more specifically in terms of loci,

variants, and exploits so that for a given malware and diversity scenario the

susceptibility can be calculated. The equation for will also change depending

upon which of the two, logical AND, or logical OR, malware types is being

considered. These equations are derived as follows and forms the analytical method

of genetic matching.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 161 of 357 May 2017

6.3.2.3 Sp for Multiple Loci and Multiple Exploits (Logical AND

type)

Figure 6-5 gives examples of susceptibility for the AND case when there are three

software variant choices at each of two loci (A1 to A3 and B1 to B3). In all examples

there are nine (3 x 3) possible genotypes. As shown in Figure 6-5 (a), when an

exploit targets one software variant on one locus (A1), the proportion of nodes that

become susceptible is the frequency of A1. Under maximum diversity this

equates to 3/9ths (1/3) since it is assumed that the frequency of all genotypes is

equal. When two variants are targeted by two exploits (A1 or A2) at the same locus

(either of the two variants need to be present in the genotype, equating to both

being susceptible), as shown in Figure 6-5 (b), the susceptibility increases to or 6/9ths (2/3). However, when one variant is targeted on each of the two

loci (A1 and B1), as shown in Figure 6-5 (c), the susceptibility changes to or

1/9th (1/3 X 1/3), since both variants must be present to become susceptible. As

shown in Figure 6-5 (d) when either of two variants on both loci are targeted, the

susceptibility increases to , or 4/9ths (2/3 X 2/3).

Chapter 6 Ph.D. Thesis

Jennifer Jackson 162 of 357 May 2017

Figure 6-5 - Examples of susceptible genotypes for the AND type

This methodology of exploit matching to genotypes is similar to gene matching

algorithms used in ecology (§4.4) where parasite genotypes are matched to host

genotypes. However there is a difference in the matching pattern for computer

malware. In the ecology algorithms the parasite genotype is limited so that it can

only have one exploiting allele (variant) choice per locus to match the host

genotype. Specifically, for the matching alleles algorithm [239], this is a limited version

of the AND case described here and would equate to Figure 6-5 (c) where the

exploit is matched to one variant on each of the two loci. A single malware however

could potentially use a different exploit on a different device, especially if it is

targeting a similar vulnerability when the variants are closely related.

One Locus: The general equation for the AND case can be derived using

probability theory [253] since each locus is independent of the others and therefore

whenever one or more exploits target a locus, this can be considered as an

Locus 1 Locus 2 Locus 1 Locus 2 Locus 1 Locus 2 Locus 1 Locus 2

A1 B1 A1 B1 A1 B1 A1 B1

A1 B2 A1 B2 A1 B2 A1 B2

A1 B3 A1 B3 A1 B3 A1 B3

A2 B1 A2 B1 A2 B1 A2 B1

A2 B2 A2 B2 A2 B2 A2 B2

A2 B3 A2 B3 A2 B3 A2 B3

A3 B1 A3 B1 A3 B1 A3 B1

A3 B2 A3 B2 A3 B2 A3 B2

A3 B3 A3 B3 A3 B3 A3 B3

a) Exploit match: b) Exploit match: c) Exploit match: d) Exploit match:

A1 A1 OR A2 A1 AND B1 (A1 OR A2) AND (B1 OR B2)

1 variant at 1 locus 2 variants at 1 locus 1 variant at 2 loci 2 variants at 2 loci

Max proportion

susceptible:

1/9

Max proportion

susceptible:

4/9

Max proportion

susceptible:

3/9

Max proportion

susceptible:

6/9

Host Genotype Host Genotype Host Genotype Host Genotype

Chapter 6 Ph.D. Thesis

Jennifer Jackson 163 of 357 May 2017

independent event. Additionally the proportion susceptible at each locus for a given

exploit scenario defines the probability of those susceptible.

The probability of one independent event occurring on one locus is

therefore given by

(6-9)

 (6-10)

Where is the frequency of variant of those susceptible, is the number of

exploits targeting locus , and is the number of variants in locus .
Multiple Loci: For multiple independent events occurring (multiple loci targeted

by exploits) the probability AND rule (multiplication rule) given in Equation (6-11)

can be applied

(6-11)

Where is the number of loci targeted by an exploit.

This equation defines for the AND type and holds for any number of loci.

Logical AND type

Multiple Loci:

 (6-12)

Chapter 6 Ph.D. Thesis

Jennifer Jackson 164 of 357 May 2017

6.3.2.4 Sp for Multiple Loci and Multiple Exploits (Logical OR

type)

Figure 6-6 give examples of susceptibility for the OR case. When an exploit

targets one or more software variants on one locus, the OR case is identical to the

AND case as shown on Figure 6-6 (a) and (b). For multiple loci the two cases

become different. When an exploit targets one variant on either of the two loci (A1

or B1) as shown in Figure 6-6 (c) the susceptibility becomes , where

the subtraction accounts for the genotype that is double accounted for in the

summation. Maximum diversity is 5/9ths (1/3 + 1/3 – 1/9). As shown in Figure 6-6

(d) the susceptibility increases to , or 8/9ths

(2/3 + 2/3 -4/9) when two variants on either of the loci are targeted (A1 or A2, or B1

or B2).

Figure 6-6 - Examples of susceptible genotypes for the OR type

Locus 1 Locus 2 Locus 1 Locus 2 Locus 1 Locus 2 Locus 1 Locus 2

A1 B1 A1 B1 A1 B1 A1 B1

A1 B2 A1 B2 A1 B2 A1 B2

A1 B3 A1 B3 A1 B3 A1 B3

A2 B1 A2 B1 A2 B1 A2 B1

A2 B2 A2 B2 A2 B2 A2 B2

A2 B3 A2 B3 A2 B3 A2 B3

A3 B1 A3 B1 A3 B1 A3 B1

A3 B2 A3 B2 A3 B2 A3 B2

A3 B3 A3 B3 A3 B3 A3 B3

a) Exploit match: b) Exploit match: c) Exploit match: d) Exploit match:

A1 A1 OR A2 A1 OR B1 (A1 OR A2) OR (B1 OR B2)

1 variant at 1 locus 2 variants at 1 locus 1 variant at 2 loci 2 variants at 2 loci

Max proportion

susceptible:

3/9

Max proportion

susceptible:

6/9

Max proportion

susceptible:

5/9

Max proportion

susceptible:

8/9

Host Genotype Host Genotype Host Genotype Host Genotype

Chapter 6 Ph.D. Thesis

Jennifer Jackson 165 of 357 May 2017

Unlike the logical AND type where equation (6-12) holds for any number of loci,

the analytical derivation of the OR type results in different equations for different

number of loci.

One Locus: The OR case can also be derived using probability theory. For one

locus the OR case is identical to the AND case.

The probability of one independent event occurring on one locus is given by

(6-13)

 (6-14)

Where is the frequency of variant , is the number of exploits targeting

locus , and is the number of variants in locus .
Logical OR type:

(one locus)

 (6-15)

Two Loci: For two independent events occurring (two loci targeted by exploits)

the probability OR rule (General Addition Rule) can be applied as given in Equation

(6-16).

 (6-16)

And therefore the proportion susceptible for a two locus network becomes

Logical OR type:

(two loci)

 (6-17)

Chapter 6 Ph.D. Thesis

Jennifer Jackson 166 of 357 May 2017

For multiple independent events (multiple loci targeted by exploits) the OR rule

can be generally applied iteratively based on the number of loci. The three and four

locus derivations are documented in Appendix A (A.1) and (A.2). The result for the

four locus is used extensively and referenced within the results (chapter 8) since the

underlying model is based upon a software stack genotype with four loci.

6.4 Outputs

6.4.1 Outputs of Current Epidemic Models

Whilst mathematical models of epidemics focus on transmission characteristics

and epidemic thresholds, they rarely consider or link these to ecological

productivity and stability directly. Also, terminology used within the literature in

reference to ecosystems such as stability and resistance has different meanings for

epidemic models. For example Stability analysis of epidemic models investigates the

reaction of the system to small perturbations around equilibrium points (fixed

points) determined from the actual equations of the system model [254]. The

analysis determines if the points are stable (system moves towards the point) or

unstable (system moves away from the point). The term resistance either means drug

resistance which develops when micro-organisms no longer respond to a drug to

which they were previously susceptible [255], or host resistance which describes how

susceptible a particular host is to a particular disease or pathogen [256] [257]. These

two aspects are both incorporated within the equations or design of epidemic

models so that transmission characteristics and resultant effects can be analysed at

the system level.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 167 of 357 May 2017

However, it is possible to infer ecological outputs from epidemic models in some

cases. For example the final size of an epidemic (§4.3.2.6) describes the system level

perspective of the total proportion of individuals that were infected [234]. If instead,

the total proportion of individuals that were not infected is considered, then this can

be used as a measure of system level resistance. Some models inherently incorporate

recovery parameters such as the classic SIR model (§4.3.1) for which system

recovery times, usually discussed as the duration of the epidemic [234] or the

extinction time of the epidemic [258], can be simulated under different conditions.

The duration of the epidemic can be used to infer engineering resilience since it

indicates how quickly the system can recover from a given scenario. An advantage

is that these stability parameters can be measured at a high level of abstraction

without the need to simulate user data flow to measure functional performance.

6.4.2 Outputs Overview of the Developed Model

This section defines the outputs from the model using the high level abstraction

described above for the two key components of ecosystem stability: resistance and

resilience (§2.2.2.2.2, §5.2.5). An overview of the outputs is shown in Figure 6-7. The

resistance component can be calculated and constrained analytically, and

compared to the simulated output. The resilience component is determined

from simulation since it has no analytical solution (§4.3.2.4), and is described further

in §6.4.5.2. However when there are no recovery mechanisms for the malware, the

peak infection time can be calculated for the deterministic SI case. Additionally,

an optimum diversity can be determined for a specific type of malware attack given

one of two constraints. The first constraint relates to the maintenance of ecosystem

Chapter 6 Ph.D. Thesis

Jennifer Jackson 168 of 357 May 2017

function when faced with malware so that an acceptable Quality of Service (QoS) is

still guaranteed (§5.2.5). A QoS Tolerance is used to determine a required

malware resistance from which an optimum diversity can be determined. The

second constraint which is only applicable when recovery mechanisms are in place

is to determine the optimum diversity to prevent a major outbreak of the malware.

This occurs when the reproduction number is below the critical threshold
(§4.3.2.5). The calculated optimum diversity necessary to tolerate or overcome a

specific malware attack also leads to the quantification of the minimum number of

devices required to uphold this optimum diversity requirement.

Figure 6-7 - Overview of outputs, constraints and optimum diversity

6.4.2.1 Malware with No Recovery (SI)

Malware can spread in a short space of time relative to the period of recovery.

This may be particularly true with zero day exploits where at the time of the attack

there is no known patch or even detection mechanism. When there is no chance of

Network

Model

Susceptibility

Model

Malware

Model

Analytical Outputs

Resistance to

Malware (MR)

Nn , Ni

Constraints

Quality of

Service
Tolerance

(QT)

Optimum diversity

for a specific type

of malware attack.

Minimum network

size

Peak Infection

time (T1)

With no recovery

Ns , bs

Simulated Outputs

MR

T1

R()

Ns , bs

Resilience to

Malware (ML)

Reproduction

Number (R0)R0 = 1

It

Chapter 6 Ph.D. Thesis

Jennifer Jackson 169 of 357 May 2017

recovery in the timescale of the epidemic, the SIR model reduces to an SI model

(§4.3.1). The resistance of the ad hoc ecosystem to the malware becomes

critical, where there may be a tolerance , below which ecosystem functions and

services become severely degraded (§2.2.2.2.2). The time taken to reach the

maximum degradation in services can also be calculated .
6.4.2.2 Malware with Recovery (SIR)

When recovery mechanisms for malware are available within the timescales of

the epidemic such as software patching or antivirus signature detection to remove

and recover the infected devices, resilience as well as resistance becomes

important. As well as using diversity to maintain QoS, it can also be used to

maintain the reproduction number below the critical threshold and prevent

a major epidemic outbreak.

The analytical calculations and optimisation methods to determine the necessary

diversity to tolerate or mitigate an attack are described in the remainder of this

section.

6.4.3 Resistance to Malware (MR)

6.4.3.1 Resistance to Malware (MR) with no recovery (SI)

As shown in Figure 6-8 (a), without recovery (SI model), all of the susceptible

devices will eventually become infected over time and the resistance is

the number that do not become infected out of a total number , or the number

immune , so that for a deterministic or stochastic SI model the malware

resistance is defined as:

Chapter 6 Ph.D. Thesis

Jennifer Jackson 170 of 357 May 2017

 (6-18)

6.4.3.2 Resistance to Malware (MR) with recovery (SIR)

Resistance to malware with recovery is defined in the same way as no recovery:

as the number that do not become infected. However with recovery mechanisms in

place, resistance is not just attributed to by those immune. The rate of infection and

the rate of recovery that make up the reproduction number , have an effect on

the final size of the epidemic (§4.3.2.6 , §4.3.3.6), and hence those that do not become

infected. This reproduction number relationship (note the difference in the axis

between Figure 6-8 (a) and (b)), as pictured in Figure 6-8 (b) is shown in relation to

the final size of an epidemic and the total network size . The malware

resistance for a deterministic model and approximated for the stochastic model is

defined as:

 (6-19)

Figure 6-8 - Resistance to malware (MR) with and without recovery

Sections 6.4.3.3 and 6.4.4 further describe the mathematics of Figure 6-8.

Nn

Time

N
u
m

b
e
r

 i
n
fe

c
te

d
 -

 I
t

Ns

M
R
 = N

n
 - N

s

Q
T
 N

n

a) Resistance with no recovery (SI) b) Resistance with recovery (SIR)

0

Reproduction Number R
0

F
in

a
l
S

iz
e

A

Q
T
 N

n

R(inf) = N
s

r(inf)=1
S

p
 bound

R(inf)

M
R
 = N

n
 - R(inf)

Q
T
 N

n

C

R
0
=1 R

0
=R

c

R(inf)

B

N
n

N
n

S
p
 = 1

r(inf) bound

Chapter 6 Ph.D. Thesis

Jennifer Jackson 171 of 357 May 2017

6.4.3.3 Quality of Service Tolerance (QT)

As discussed within section 5.2.5 the overall functional performance of services

generated by an ad hoc network ecosystem is termed Quality of Service (QoS). In

the absence of network simulators to measure specific functional outputs associated

with QoS, the best the epidemic model can do is to assume that an infected device

has a defined amount of impact on functional performance which in turn degrades

the overall QoS. This can be considered particularly true for malware such as

viruses, worms, and Trojans (§5.2.4). In the simplest case it can be assumed that

infected devices contribute nothing to the overall QoS, whereas uninfected devices

contribute fully. This means that once a device has become infected it looses normal

functionality, and is only left with the ability to re-transmit the malware to other

devices. An infected device degrades QoS in proportion to the number of devices in

the network. If only a single device is infected there will only be a small impact, and

if all devices in the network are infected the QoS becomes zero. Under this

assumption the QoS is represented by the network level output of resistance to

malware. However the model could be extended to incorporate the general case

where the contribution to QoS is dependent upon the defined specifics of the

malware, including both the damage caused, and the mechanisms by which

propagation occurs (§5.2.5). The models have not been designed to depict behaviour

of the network fabric, however improved techniques for measuring QoS using

network simulators is discussed in §9.3.1.2.

The Quality of Service Tolerance is defined here as the required resistance

level in order to maintain an acceptable QoS for an ad hoc ecosystem when faced

Chapter 6 Ph.D. Thesis

Jennifer Jackson 172 of 357 May 2017

with a malware attack. The QoS, or functional performance of the ad hoc ecosystem

may become severely impacted below this resistance level. For example, a of 0.8

would imply that the ad hoc ecosystem needs to be at least 80% resistant to the

malware to maintain an acceptable QoS.

 is the proportional tolerance level of resistance as shown in Figure 6-8 so that

when constrained:

 (6-20)

6.4.4 Optimum Diversity for a Specific Malware Attack

For a specific malware attack it is possible to determine the optimum diversity in

terms of the number of software gene variants required at each locus for either a

specified Quality of Service Tolerance level , or the reproduction number

threshold to prevent a major malware outbreak. Firstly it is required to

determine the resultant constrained susceptibility , given a specified , which

can subsequently be used with the AND type or the OR type equations (§6.3.2)

to find the optimum diversity (§6.4.4).

6.4.4.1 Constrained Sp With no Recovery (SI) and specified QT

For a constrained with no recovery the constrained susceptibility can be

determined as follows.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 173 of 357 May 2017

Using the constraint

Substitute in

Divide through by and rearrange for

(6-21)

6.4.4.2 Constrained Sp With Recovery (SIR) and specified QT

For a constrained with recovery the constrained can also be determined.

Using the constraint

Substitute in (from Equation (4-25))

Divide through by

Rearrange for

(6-22)

Substitute into the final size Equation (4-25):

(6-23)

Chapter 6 Ph.D. Thesis

Jennifer Jackson 174 of 357 May 2017

And substitute

Rearranging for

This gives the required proportion susceptible for a specified and .

There are however three bounds as shown in Figure 6-8 (b). The asymptotic

bound (A) occurs for high values of where the final size of the epidemic

approaches all those devices in the network that are susceptible where in

relation to . This will happen when the recovery rate is very small relative to the

infection rate and resembles the SI model where there is no recovery.

Rearranging Equation (6-22) for

Bound A as shown in Figure 6-8 (b)

(6-24)

At this point is defined as its lowest possible value to maintain the specified

tolerance. The resultant diversity required to maintain this will be at its highest.

The bound (B) occurs when . At this point the rate of recovery is so high

relative to the infection rate that all of the devices can be susceptible and the

Chapter 6 Ph.D. Thesis

Jennifer Jackson 175 of 357 May 2017

required tolerance can still be achieved. The resultant diversity will be at its lowest

for a specific type of attack. Using Equation (6-22)

Bound B as shown in Figure 6-8 (b)

(6-25)

The bound (C) is a critical value of , which must not be exceeded when all

devices are susceptible to maintain at least a specified QoS to keep within the

bounds of A and B for a specified quality of service. Using the final size Equation

(4-25) with the approximation that , and substituting in the bound B for :

Bound C - as shown in Figure 6-8 (b)

Rearranging for

(6-26)

Additionally

(6-27)

Chapter 6 Ph.D. Thesis

Jennifer Jackson 176 of 357 May 2017

Therefore

It is also worth noting that when all devices are susceptible the model reduces to

a standard SIR model so that when is reduced further beyond to below a

value of 1 a major malware epidemic will be prevented. For a specified therefore

there is a trade off between the speed of recovery and diversity. The faster the

recovery (lower value), the higher the tolerated susceptibility and hence less

diversity is required. At the bounds B/C (the critical value of) the minimum

amount of diversity is required, whilst at the bound A, the maximum amount of

diversity is required. Figure 6-9 shows the relationship between and . When is 100%, maximum resistance is specified which can only be achieved when

either the susceptibility is zero, or when to prevent a major malware

epidemic (§6.4.4.3).

Figure 6-9 - Critical value Rc for a specified Quality of Service Tolerance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

QT

R
 c

ri
ti
c
a
l
R

c

Chapter 6 Ph.D. Thesis

Jennifer Jackson 177 of 357 May 2017

6.4.4.3 Constrained Sp With Recovery (SIR) and specified R0<1

To mitigate a specific malware attack by preventing a major outbreak the

reproduction number must be less than 1. Again this can be used to constrain the

susceptibility and optimise the diversity.

Using

Rearranging for

(6-28)

6.4.4.4 Optimisation of Diversity

To optimise diversity three assumptions are made:

1) Variants are evenly distributed amongst devices for all loci so that in order to

achieve the Quality of Service Tolerance level or reproduction threshold it is

assumed absolute maximum diversity can be achieved with the calculated optimum

number of variants.

2) The number of variants at each locus has a minimum bound such that the

number must be equal to or greater than the number of exploits, since without the

least number of variants present the exploit would not exist.

3) The optimum number of variants is defined as the minimum number needed

such that variant richness is minimised:

Chapter 6 Ph.D. Thesis

Jennifer Jackson 178 of 357 May 2017

(6-29)

The resultant number of genotypes necessary is

(6-30)

6.4.4.4.1 For the AND malware type (General)

Assuming maximum diversity can be achieved for a given number of loci and

variants then using Equations (6-10) and (6-12) where

(6-31)

Rearranging, and assuming is constrained

 (6-32)

The product of the number of variants at each locus equates to the maximum

number of unique genotypes (or genotypic richness) (§2.3.2.3, §5.3.2). The number of

variants at each locus that satisfies this number of genotypes and minimum bounds,

can have multiple solutions (§2.3.2.3). The optimum solutions for a given malware

and QoS tolerance, can be defined from the minimisation of the variant richness .

Chapter 6 Ph.D. Thesis

Jennifer Jackson 179 of 357 May 2017

Worked example for two loci AND, with no recovery:

The potential solutions for v1 and v2 are given in Table 6-1 and Figure 6-10 (a)

showing the bounds of the solutions. The optimum solutions are shown by the

shading in Table 6-1 with a value of 6.5 and in Figure 6-10 (b) by the minimum of

the curve of the variant richness solutions.

Table 6-1 - Worked example for the two locus AND type

Figure 6-10 - Diversity optimisation example for the two locus AND type

V1 V2
≥ 40

genotypes
VR

2 (min) 20 40 11.0

3 14 42 8.5

4 10 40 7.0

5 8 40 6.5

6 7 42 6.5

7 6 42 6.5

8 5 40 6.5

9 5 45 7.0

10 4 (min) 40 7.0

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

v1

v
2 bounds

of

solutions

v1=x1

v2=x2

a) Number of variants – different solutions b) Variant richness – optimum solutions

0 2 4 6 8 10 12
6

8

10

12

14

16

18

20

22

v1

V
a
ri
a
n
t

R
ic

h
n
e
s
s

optimum

solutions

Chapter 6 Ph.D. Thesis

Jennifer Jackson 180 of 357 May 2017

The computational result of an example where there are no malware recovery

mechanisms with two loci is given below (results for four loci are given in §8.2.2).

Malware is specified with two exploits at locus one, and four at locus 2, with a

Quality of Service tolerance of 80%. The result indicates a number of possible

optimum solutions with an average of 6.5 variants required. With 40 genotypes, the

minimum number of ad hoc devices participating in the network would also need

to be 40 in order to satisfy absolute maximum diversity.

6.4.4.4.2 For the AND malware type (Average)

For a practical system it may not be possible to specify the exact number of

exploits at each individual locus that the network must tolerate or mitigate, instead

it may be possible to specify an average number of exploits to obtain an average

number of variants at each locus (variant richness). Assuming the number of

exploits and variants are the same in each locus, so that then Equation (6-32) can be simplified to:

Variant Richness:

(6-33)

For the average equation there is only one solution and so minimisation is not

required.

6.4.4.4.3 For the OR malware type (General and Average)

The OR malware type has been defined for up to four loci. Assuming the

absolute maximum diversity can be achieved for a given number of loci and

variants then the following optimisations can be defined.

Chapter 6 Ph.D. Thesis

Jennifer Jackson 181 of 357 May 2017

Single locus:

The result for the single locus case is identical to the AND malware type but has

been included here for clarity and completeness. Using Equation (6-15) for one locus

where

 (6-34)

Then by rearranging for and assuming is constrained the number of

variants required can be easily solved for a fixed number of exploits and tolerance.

 (6-35)

The result gives one possible solution for .

Two Loci:

Using Equation (6-17) for 2 loci where

(6-36)

Rearranging the equation for and assuming is constrained. The general

equation is:

(6-37)

This will give different solutions for when is varied above the minimum of , with the optimum solutions satisfying the minimum variant richness .
The computational result of an example with no malware recovery mechanisms

with two loci is given below (results for four loci are given in §8.2.2). Malware is

Chapter 6 Ph.D. Thesis

Jennifer Jackson 182 of 357 May 2017

specified with two exploits at locus one, and four at locus 2, with a Quality of

Service tolerance of 80%. As with the two locus AND example, the result has a

number of possible optimum solutions with an average of 28 variants required

generating 720 to 780 genotypes.

Worked example for the two locus OR:

The minimum bounds for the number of variants are shown in Figure 6-11 (a)

leaving only valid solutions in the top right quadrant, with optimum solutions

being the minimum variant richness as shown in Figure 6-11 (b).

Figure 6-11 - Diversity optimisation example for the two locus OR type

Variant Richness (average number of variants for an average number of exploits): As

with the AND type, when an average number of exploits are specified, the number

a) Number of variants – different solutions b) Variant richness – optimum solutions

0 10 20 30 40
-150

-100

-50

0

50

100

150

200

v1

v
2

valid

solutions

v1=x1

v2=x2

0 5 10 15 20 25 30 35 40
-100

-50

0

50

100

v1

V
a
ri
a
n
t

R
ic

h
n
e
s
s

optimum

solutions

Chapter 6 Ph.D. Thesis

Jennifer Jackson 183 of 357 May 2017

of exploits and variants are assumed to be the same in each locus, so that then equation (6-36) can be reduced giving the average equation:

(6-38)

Which can be solved numerically for .

A similar derivation for the general and average equations can be shown for

three and four loci, and is documented within Appendix A (A.3) and (A.4). The

determination of the exact number of variants can be solved computationally,

results of which are documented in chapter 8 (§8.2.2).

6.4.4.4.4 For the OR malware type (Approximation)

When the number of variants at each locus becomes large relative to the

number of exploits at each locus, then the summation term dominates the

resultant susceptibility . So that for relatively large values of or correspondingly

small values of , the OR susceptibility equations can be approximated by:

(6-39)

For given values of and , can be computed for a range of

values to find the valid solutions satisfying the minimum variant richness .
Variant Richness (average number of variants for an average number of exploits): If the

number of exploits and variants are assumed to be the same in each locus, Equation

(6-39) can be simplified to:

Chapter 6 Ph.D. Thesis

Jennifer Jackson 184 of 357 May 2017

Giving:

(6-40)

Approximations and exact solutions for up to four loci are compared in Figure

6-12 for one exploit per locus (Figure 6-12 (a)) and eight exploits per locus (Figure

6-12 (b)) when all loci have the same number of variants. The graphs show the

example when a specified QoS tolerance of 80% with no recovery equates to a small

value of susceptibility with a large variant richness. In this region the exact solutions

are close to the approximated solutions (dashed lines).

Figure 6-12 - Exact and approximation curves for the OR malware type

Minimum Network Size: When the summation term dominates the resultant

susceptibility, all genotypes accounted for more than once in the equations are

ignored (Equation (6-39)), thereby eliminating any overlapping relations between

loci. Subsequently an even distribution of genotypes no longer matters, only an

even distribution of variants to achieve maximum diversity (maximum variant

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Variant Richness (v1,v2,v3,v4)

S
p

Exact

Approx

1 locus

2 loci

3 loci

4 loci

80%

Quality of

Service

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Variant Richness (v1,v2,v3,v4)

S
p

Exact

Approx

1 locus

2 loci

3 loci

4 loci

80%

Quality of

Service

a) Up to 4 loci OR 1 exploit per locus b) Up to 4 loci OR – 8 exploits per locus

Chapter 6 Ph.D. Thesis

Jennifer Jackson 185 of 357 May 2017

diversity). The required minimum network size to achieve the required constraint is

therefore no longer governed by the number of genotypes, but the variant richness

so that a smaller number of devices are needed to achieve the required constraint

such as QoS Tolerance.

6.4.5 Resilience to Malware (ML)

For a malware model with no recovery, there is no resilience component;

however the time at which the peak infection occurs can be calculated. For a

malware model with recovery the resilience can be measured under differing

scenarios.

6.4.5.1 Peak Infection Time T1 of Malware with No Recovery (SI)

For an SI deterministic model the time at which the infection peaks has an

exact solution, when the number infected gets to within 1 of its final value. Equation

(4-14) in section 4.3.2.4 defines as:

(6-41)

For a partially susceptible network with static diversity, the equation becomes:

(6-42)

Chapter 6 Ph.D. Thesis

Jennifer Jackson 186 of 357 May 2017

6.4.5.2 Resilience to Malware with Recovery (SIR)

For an SIR model, the reciprocal of the time at which the epidemic ends and all

devices have recovered to their original operational state signifies the system level

rate of recovery, or resilience . However, there is no analytical solution for the

end time (§4.3.2.4), but can be measured from the SIR simulation when the number

recovered is within 1 of its final value. Equation (6-43) defines as:

(6-43)

6.5 Summary

This chapter describes a mathematical epidemic approach to a diverse system

model that has been developed to incorporate software diversity and malware at the

genetic level of an ad hoc network ecosystem. The mathematical approach is

constrained by four key aspects: 1) homogeneous mixing, 2) static diversity, 3)

compatible software functions, and 4) non–influential users. Despite these

constraints some key mathematical equations and methods have been established to

investigate the security protection or mitigation offered by diversity and how much

diversity is needed to tolerate or overcome specific attacks under these constraints.

The mathematical approach has been developed with the standard SI/SIR epidemic

models and can be used with both deterministic and stochastic methods.

A key feature of this mathematical approach is the susceptibility model which

defines the diversity and the malware, and subsequently the susceptibility. Two

types of malware have been incorporated; the logical AND and the logical OR

Chapter 6 Ph.D. Thesis

Jennifer Jackson 187 of 357 May 2017

which are representative of malware using multiple exploits to gain entry and

propagate. Equations have been derived using probability theory for the

susceptibility of both the AND and OR types for multiple exploits, loci, and

software gene variants. The AND and OR methodology of matching exploits to

genotypes is different from the standard gene matching algorithms used in ecology

since the method used here is more appropriate to malware and the different types.

It is more generalised but can also be constrained for specific malware and diversity

scenarios. Under any specific malware and diversity scenario the resulting epidemic

can be simulated. Current epidemic based malware models of diversity have been

referred to as the ȁone locus modelȂ since they are equivalent in this model to a

software stack genotype with one locus.

Outputs from the model developed by this work include the two key

components of ecosystem stability: resistance and resilience. An optimum diversity

can be determined to either tolerate a specific malware attack given a specified QoS

tolerance, or overcome an attack when recovery mechanisms such as software

patching and antivirus detection are in place. For a specified QoS tolerance there is a

trade off between the speed of recovery and diversity. The faster the recovery, the

higher the tolerated susceptibility and hence less diversity is required. Under certain

constraints approximations can be used to simplify, yet still determine, the optimum

diversity required. Worked examples are included showing how diversity

optimisation can be computationally determined. The calculated optimum diversity

necessary to tolerate or overcome a specific malware attack informs upon the

Chapter 6 Ph.D. Thesis

Jennifer Jackson 188 of 357 May 2017

minimum number of devices required to uphold this optimum diversity

requirement.

In relation to the hypothesis (§1.2), the development of the epidemic model gives

some insight into how incorporating biodiversity concepts into computer networks,

specifically ad hoc networks, can make them more resistant to cyber attacks. The

model can inform the amount of security protection offered by biodiversity in the

form of either tolerance to a specific type of attack, or mitigation to a specific type of

attack when recovery mechanisms are available. Under such scenarios the optimum

level of diversity necessary to provide the required security protection can be

determined.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 189 of 357 May 2017

7 Diverse System Model: Agent-Based

Chapter 7

Diverse System Model: Agent-Based

7.1 Introduction

This chapter describes the architecture of the agent-based diverse system model.

Firstly an overview of the system is given, highlighting which aspects are comparable

to the epidemic model. Each of its three components; network model, diversity model,

and malware model are then described over several sections detailing their design and

modes of operation. A section on outputs describes a number of measured properties

including resistance and resilience and how an optimum diversity can be measured

for a given scenario. Finally a description of the implementation framework is given.

7.2 System Model Overview

The agent-based diverse system model has been designed with greater flexibility

than the epidemic based method (§6) with the inclusion of dynamic genotype

configuration, geographical location, integration with some existing security

mechanisms, and realistic constraints associated with software configuration

limitations as a result of users, hardware, or compatibility. However, it is also

capable of simulating the same conditions as the epidemic model to allow the

Chapter 7 Ph.D. Thesis

Jennifer Jackson 190 of 357 May 2017

comparison of results between the diversity methods and for the comparison of

results where the inclusion of additional mechanisms is made.

The agent model has several modes of operation as shown in Figure 7-1 which

can be described by the selection of a network model, a diversity model, and a malware

model. Selection of those circled by a dashed line indicates the modes that are

comparable to the epidemic approach.

As with the epidemic approach, the network model assumes that ad hoc devices

move around with their users. Devices have the same or different software stack

genotypes that, in this agent-based approach, are either fixed for a period of time or

are dynamically changed in response to new information. Additionally in the agent

approach it is possible for devices to exchange genotype information upon contact

with each other (In the sense of observation of software configuration on the

contacted device). A malware source initially infects one device which can then lead

to malware propagating within the ad hoc network.

In the agent-based approach there are two choices of network model. The first uses

the homogeneous mixing assumption (§4.2.5) where random encounters are

generated between devices. The second uses the random waypoint (§4.2.1) approach

to inform the physical locations of devices to determine which, when, and for how

long nearby devices are in range. The network model is further described in section

7.3.

There are two types of diversity model, static diversity where the genotypes present

on each device remain fixed throughout a malware epidemic simulation, and

Chapter 7 Ph.D. Thesis

Jennifer Jackson 191 of 357 May 2017

dynamic diversity where the genotypes may change in response to information. The

two models are described further in sections 7.4 to 7.6.

The malware model is responsible for the generation of malware exploits, genetic

matching, and the monitoring of health states. It has two modes of operation, one in

which it is assumed there are no recovery mechanisms in place for the malware. In

this case each device has two health states of susceptible or infected (SI), which is

comparable with the SI compartments of the epidemic model (§6.4.2.1). The second

mode of operation is when there are recovery mechanisms in place where each

device has an additional recovered (R) state, which is comparable with the SIR

compartments of the epidemic model (§6.4.2.2). The inclusion of additional security

mechanisms alters the dynamics between states and is described further in section

7.7. Outputs from the model are covered in section 7.8.

Figure 7-1 – Agent-based diverse system model showing modes of operation

7.3 Network Model

The network model has two modes of operation: random encounters and random

waypoint, both of which result in a non deterministic pattern of encounters and are

described as follows.

Random Encounters

(homogeneous mixing)

Or

Random Waypoint

Network Model

Static Diversity

Or

Dynamic Diversity

Diversity Model

SI

Or

SIR

Malware Model

The dashed ovals indicate the modes comparable to the mathematical approach

Chapter 7 Ph.D. Thesis

Jennifer Jackson 192 of 357 May 2017

7.3.1 Random Encounters

The random encounters method of homogeneous mixing uses randomisation of

encounters between devices that is comparable to the stochastic epidemic model.

This network model has been implemented to enable direct comparisons between

the epidemic approach and the agent approach with the same input conditions.

Additionally, at the same time it incorporates an element of realism that stochastic

models try to represent (§4.3.3). The flow chart is given in Figure 7-2. The

encounters occur stochastically with an average rate of contact to model the

Poisson process (§4.3.3.1). A random number is chosen for each device from a

uniform distribution with a value between 0 and 1. This is used within an inequality

equation to validate an encounter against the contact rate at each time step. The

binary result determines whether an encounter has occurred (encounter flag). The

number of the randomly encountered device is selected from a uniform distribution

of those devices in the network. The randomly chosen device is selected such that it

cannot be itself. On a successful encounter it is assumed that both genotype

information and malware, if it is present, are transmitted, so that the probability of

transmission . With the random encounter method there is no consideration to

the locality of devices, or the length of time taken to transmit the genotype or

malware data. This is inherent in the specified average rate of successful contact.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 193 of 357 May 2017

Figure 7-2 - Random Encounters implementation

7.3.2 Random Waypoint

7.3.2.1 Calculation of Waypoints

The random waypoint algorithm has been implemented as described in section

4.2.1 to model the mobility of devices within a confined rectangular area where the

selected destination, speed and a stationary time period (pause) of each device is

chosen randomly from a uniform distribution. The result is a set of waypoints (x

and y coordinates) defining the location of every device at every time step of the

simulation. The flow chart of the implementation is given in Figure 7-3. During the

calculation process there are small differences between the randomly selected

destinations and the actual destinations during each segment of a devices travel

path. This is due to integer rounding of the incremental x and y coordinates (delta x

and delta y) and therefore the true destination, distance and angle are recalculated.

Set the contact rate c

Choose a random

number

On each time step

If random number <

contact rate c

Set encounter flag

Choose a random

node to encounter with

but must not be itself

Chapter 7 Ph.D. Thesis

Jennifer Jackson 194 of 357 May 2017

Figure 7-3 - Random Waypoint implementation

Set the bounds of

area, speed, and

pause

On each time step

Do

need a new

destination and

pause?

Select a pause, speed

and destination at

random from within

the bounds

Calculate the new

distance using

Pythagoras, and the

new angle

Calculate the number

of integer time steps

needed

Calculate the delta x

and delta y

coordinates per time

step

Recalculate the actual

destination, distance

and angle due to

integer rounding of

timesteps

Move delta x and delta

y coordinate

Y

N

Do

need to pause?

Y

N

Chapter 7 Ph.D. Thesis

Jennifer Jackson 195 of 357 May 2017

The random waypoint model has the flexibility to be extended to include other

geographically shaped areas of interest or modified to incorporate non-random

waypoints. Additionally the random waypoint algorithm could be replaced with

real waypoint data of mobility patterns and is therefore a first step toward

modelling geographical location of devices.

7.3.2.2 Selection of Devices in Range

Communication between devices in practical ad hoc networks is controlled

through routing protocols (§3.2.3), which form part of a larger network protocol

stack (§3.2.1.3). There may be several factors that determine which devices exchange

data, and when this occurs, including the requirement to be in range, availability to

provide the necessary bandwidth, link strength and link duration. Routing

protocols store routing information in routing tables to instruct where particular

data is to be sent. In the absence of a simulator (§4.2.2) to model realistic network

traffic and routing a more abstract approach is taken based upon several relevant

factors as described below.

To model a successful encounter between devices they must be within

communication range, a parameter which can be configured for the simulation run,

for a period of time long enough to transmit genotype information and malware.

The method for selection of devices in range has been modelled as one of the

following (pictured in Figure 7-4).

1. Nearest in range

2. Random in range

3. Available in range

Chapter 7 Ph.D. Thesis

Jennifer Jackson 196 of 357 May 2017

Figure 7-4 – Selection of devices in range

The first two selection methods account for those cases where a device can

communicate with another device, if it is in range, at any point in time. This results

in devices receiving data from only one other device at a time, but allows them to

send data (and potentially malware) to more than one device at a time. This is

directly physically possible in a multi-user (MU) communication system such as the

Multi-User Multiple Input Multiple Output (MU-MIMO) method [259] where there

can be separate communication channels between devices. Even protocols with

single user (SU) communications can appear to communicate simultaneously by

utilising multiplexing techniques, although the transfer speeds of genotype and

malware data would be comparably slower. The random in range selection method

allows for comparison with the random encounter model representative of a

homogeneous mixing system (§4.2.5) where a device can be selected randomly by

more than one other device at any point in time. The nearest in range selection

method is an alternative where the likelihood of better link strength and link

duration is favoured by the model for the transmission of data.

Range

1. Nearest

in range

2. Random

in range

3. Available

in range

Comms.

Comms.

Comms.

No comms.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 197 of 357 May 2017

The third selection method only selects devices that are both in range and are

available to provide the maximum link bandwidth since they are not currently

communicating with any other device. This could represent a routing protocol

where the availability of a device is a favoured factor.

7.3.2.3 Successful Data Transmission

Successful data transmission between a pair of devices can only be achieved if

the communication link can be maintained long enough. In this model it is assumed

that the genotype data and malware are transmitted in an order consistent with a

hierarchical network protocol stack (§3.2.1.3), where the malware cannot be sent

prior to link establishment; moreover it is assumed that the entirety of the

packetised genotype or malware data must be communicated for successful receipt.

The transmission of data between devices is modelled using a tagging system where

the selected device in range is tagged to signify the start of data transmission. The

tag is released if the device goes out of range or if the data is transferred

successfully. The implementation method that determines which devices are in

range and when they are tagged is given in the flowchart of Figure 7-5 (a). Euclidian

distances between devices are calculated using their x and y coordinate positions to

determine if they are in range. The tagging process is described using the state

diagram pictured in Figure 7-5 (b). The time required to successfully transmit

genotype data and the time required to successfully transmit the malware exploit

are two parameters that can be set in the model. When the device is tagged the end

times of successful transmissions of genotype (genotype end time) and exploit data

(exploit end time) are calculated. If there is no malware then the tag is released at the

Chapter 7 Ph.D. Thesis

Jennifer Jackson 198 of 357 May 2017

end of the genotype data transmission (state 3: Transmit genotype). If the tagged

device goes out of range before one of the end times then the tag is released and the

transmission of related data is unsuccessful. Since it is assumed that the genotype

data is transmitted before the malware, it may be possible to successfully transmit

genotype data, but not the malware.

Figure 7-5 - Successful data transmission implementation

The resultant output of the Matlab function to the wider model is two single flags

per time-step, where one determines if genotype data is successfully transmitted

(Genotype encounter), and the other determines if the exploit data is successfully

transmitted (Exploit encounter). A genotype time out period is defined to allow a

1

Not

Tagged

2

Tagged

3

Transmit

genotype

4

Transmit

 exploit

>=

genotype

end time

>=

exploit

end time

Tagged node

out of range /

Finished comms

Release tag

Tagged node

out of range

Release tag

Tagged node out of

range / no malware

Release tag

Set the

communication range

On each time step

Is tagged

device still in range and

not yet fully

transmitted?

Select a new device if there is one:

1) Random in range

2) Nearest in range

3) Available in range – exclude devices

that are currently tagged

Y

Get device x, y,

coordinate positions

Calculate which

devices are in range

using Euclidian

distance

Check which devices

are currently tagged

Set genotype end time

Set exploit end time

Exploit encounter

Genotype encounter

Set genotype time out

Outputs

(a) Selection and tagging of devices flow chart (b) Tagging of devices for successful data transmission

N

Chapter 7 Ph.D. Thesis

Jennifer Jackson 199 of 357 May 2017

minimum time before genotype information is captured again from the same device

(genotype time out). This prevents repeated data capture of the same genotype

information in a slow moving scenario. However, if a repeatedly encountered

device becomes newly infected, the infection is transmitted assuming it remains in

range for long enough.

7.4 Diversity Model - Measuring and Calculating

Diversity

7.4.1 Achieving Maximum Diversity in a Practical Ad hoc

Network

It is recognised that the more software gene variants and loci there are within a

system, the greater the number of possible genotype configurations there are, which

could become large (§2.3.2.3, Figure 2-10). It quickly becomes impractical to model

network sizes capable of achieving absolute maximum diversity for one instance of a

network. Additionally, network sizes in practice may range from being very small

to very large. When simulating malware propagation, it is sufficient to only include

enough genotypes to adequately model the proportion susceptible. Since it is only

those susceptible that can ever become infected (§7.5.1).A condition of maximum

diversity is that all variants are distributed evenly at each locus (§5.3.2.1). The

measured distribution of variants is incorporated into the Nei diversity index

calculation (§2.3.2.2.2) and is referred to as variant diversity within this research

(§5.3.2.1). To achieve maximum variant diversity at a single locus there needs to be

sufficient devices to represent all of the available variants . When the

number of devices is large enough that all possible genotypes can be evenly

Chapter 7 Ph.D. Thesis

Jennifer Jackson 200 of 357 May 2017

represented as well then the absolute maximum diversity condition can also be

achieved. The agent-based model therefore aims to maximise diversity by

maximising variant diversity at each locus independently, regardless of the network

size.

7.4.2 Calculating the Maximum Obtainable Variant Diversity

The maximum value of the Nei Genetic Diversity for the monoploid genotype

case (§5.6.2.1) occurs at one locus when the number of devices is the same as

the number of available variants such that every variant is only used once. This

leads to the frequency of each variant being
 . The maximum diversity index of 1

(§2.3.2.2.2) however is only achievable for large network sizes (and a

correspondingly large number of variants), where, using the substitution for the

number of different alleles with the number of variants in equation (2-7) of

the Nei diversity Index gives:

Substitute in , to give the Nei diversity as

(7-1)

However, for the ad hoc network being modelled, the number of devices is likely

to be greater than the number of variants available at a locus, which may be few in

Chapter 7 Ph.D. Thesis

Jennifer Jackson 201 of 357 May 2017

number for practical reasons. In this case the maximum obtainable diversity will be less

than the maximum diversity (given a fixed network size) and less than 1. At the

maximum obtainable diversity the variants are evenly distributed across the

devices, so that the frequency of each variant is resulting in the probability (Nei

diversity) at a single locus as:

(7-2)

For example when the number of variants is only two, the maximum obtainable

variant diversity is 0.5, regardless of how many devices (subject to a minimum of

two) are present in the network which means that half of the devices will have one

variant and the other half will have another variant. When , equations (7-2)

and (7-1) are equivalent. This calculable value provides a reference as to the level of

diversity that can be achieved given a finite number of variants under ideal

conditions.

7.4.3 Practical Constraints Limiting Variant Diversity

In an ideal scenario it is assumed that all devices are able, and all users are

willing, to use any of the different versions of software available at every locus.

Additionally, the ideal scenario assumes that software across loci is compatible,

such that any genotype can be possible given a fixed number of variants at each

locus. In practice however, generating the ideal scenario may be difficult. For

example if diversity is achieved through readily available versions of software

programs providing the same functionality (§3.2.1.3) they may not be compatible

Chapter 7 Ph.D. Thesis

Jennifer Jackson 202 of 357 May 2017

across loci (e.g. operational only with a specific operating system), they may differ

in terms of quality and efficiency, and both user desirabilities and hardware

limitations may have an influence over which ones are chosen for a specific device.

Additionally user desirabilities may differ, depending upon whether they are

imposed at a community scale, such as from an IT department where groups of

devices may be constrained, or at an individual scale through personal preferences.

Additionally, producing automated diverse versions of software or binary files is

still in its infancy (§3.2.1.1), and even when implemented there may still be

problems interfacing between the different products. These practical constraints

could lead to variant or genotype configurations that are unusable or unfavourable,

which will influence diversity patterns in the network. The inclusion of constraints

in the agent model is detailed in sections 7.6.1.1, 7.6.2.2, and 7.6.2.4.

7.5 Diversity Model - Static Diversity

7.5.1 Distribution of Software Gene Variants

The diversity model has two modes of operation, the first of which is static

diversity. Static diversity can either be fixed for all runs of a simulation with a pre-

computed data set to achieve a specific distribution of variants and hence

genotypes, or the variants can be assigned randomly at the start of every run. The

random assignment of variants is used to achieve the maximum diversity possible

for a given number of devices, loci and variants. At the start of each simulation run,

each device chooses a software variant from the available pool at each locus using a

uniform random distribution so that on average the software variants are

distributed evenly across devices independently at each locus. This method of

Chapter 7 Ph.D. Thesis

Jennifer Jackson 203 of 357 May 2017

random assignment is comparable to the epidemic model of static diversity under

maximum conditions (§6.3.2.2). Figure 7-6 (a) shows the measured variant diversity

from simulation against the calculated maximum obtainable under ideal conditions

(§7.4.2) for a given variant richness with four loci and 1000 devices averaged over 10

runs. The maximum genotypic richness (number of genotypes) (§5.3.2) and

genotypic diversity (§5.3.2) that can be achieved is 1000, as shown in Figure 7-6 (b),

which is as expected with 1000 devices.

The maximum number of unique genotypes (§5.3.2) surpasses this when ,

however when simulated with enough devices, or averaged over a sufficient

number of runs, all unique genotypes will be utilised with equal probability. For a

large variant richness a sufficient number of devices or runs become impractical to

simulate as described in section 7.4.1, so that a proportion of genotypes will not be

represented. However when simulating malware propagation, it is sufficient to only

include enough genotypes to adequately model the proportion susceptible. The

proportion susceptible is determined by the malware defined. If 50% of the

genotypes are susceptible then a network size capable of adequately simulating this

could be smaller than if only 1% are susceptible. If only 1% are susceptible the

network would need to be relatively bigger (or more runs would be needed) so that

on average the susceptibility is adequately represented. In practice for such a

scheme it may be both true that there are more genotypes available than currently

being used in the network of interest, or less genotypes available than the number of

devices. For example ten variants at each of the four loci would generate 10,000

genotypes. For a small network it may be true that only a subset of these are realised

Chapter 7 Ph.D. Thesis

Jennifer Jackson 204 of 357 May 2017

at any given time. For static diversity simulated over a number of runs (or different

network instances, where genotypes are assigned randomly) would average out so

that all genotypes are equally used, even though in a single instance not all would

be used.

Figure 7-6 - Diversity measures in static diversity mode

7.5.2 Susceptibility

For the agent-based model the health status of every device is initially set to

susceptible (§7.7.1) at the start of a simulation run regardless of genotype

configuration. However the true susceptibility of the network can be measured

under static diversity conditions by matching the generated genotypes against a

specific malware attack type, and summing all those that match. Whilst the

susceptibility should closely match the result of the epidemic model, under the

same diversity and malware conditions, the dynamics of the infection and specific

parameters will depend upon the network model. For the random encounter

network model, the dynamics of the infection should closely match the epidemic

model with the same input parameters.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Variant Richness (V
R
)

V
a
ri
a
n
t

D
iv

e
rs

it
y
 (

N
e
i)

Maximum obtainable (calculated)

Variant Diversity (simulated)

a) Variant Diversity (Nei) at each locus with 1000

devices, over 10 runs
b) Genotypic measures for 4 loci with 1000 devices,

over 10 runs

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Variant Richness (V
R
)

D
iv

e
rs

it
y
 m

e
a
s
u
re

Genotypic Diversity (simulated)

Maximum number of unique genotypes

 (calculated)

Genotypic Richness (simulated)

Chapter 7 Ph.D. Thesis

Jennifer Jackson 205 of 357 May 2017

7.6 Diversity Model – Dynamic Diversity

This section describes two dynamic diversity algorithms, both of which aim to

maximise variant diversity given a fixed number of variants, devices and loci. The

first is based upon the random selection of available variants and is an extension to

the static case that forms a baseline in which to make comparisons. The second

algorithm allows individual devices to select variants based upon information

obtained during local encounters with other devices and incorporates the

geographical locality of devices. The flow charts for the two algorithms are given in

Figure 7-7, with the differences highlighted by the double-lined boxes.

The literature suggests that a degree of dynamism in a diversity scheme can be

beneficial to confuse a targeted attacker (§3.4.3.1 and §3.4.3.4), however in a moving

network where communication links are continuously changing, and in a future

Internet where software and malware can rapidly evolve, together with access to

vast quantities of data affecting local decisions, the need to be real-time dynamic

may be essential.

The algorithms can optionally incorporate two additional mechanisms, as

indicated by the dashed lines, of current technology to explore the benefits of a

dynamic scheme when integrated with existing security mechanisms such as

vulnerability data and virtualisation (VM update). These are in addition to the

standard recovery mechanisms included by the epidemic model (§6.4.2.2) and

implemented by the agent model (§7.7.3.2). In addition, practical constraints, as

indicated by the dotted lines, such as software compatibility and user influence can

Chapter 7 Ph.D. Thesis

Jennifer Jackson 206 of 357 May 2017

be switched on to see the effects a realistic scenario may have. The algorithms and

the additional mechanisms are further described below.

Figure 7-7 - Dynamic diversity algorithms

7.6.1 Dynamic Diversity Algorithm– Random Selection of

Variants (RV)

The most simplistic dynamic algorithm, the random variant (RV), attempts to

maximise variant diversity by randomly selecting a variant for each locus. This is

similar to the static case, except that genotypes on each device can be reselected in

response to input triggers such as time (RV-T), encounters with other devices (RV-

E), or other system triggers. The flow chart for the random variant algorithm is

given in Figure 7-7 (a). Only constraints (§7.6.1.1) or vulnerability data (§7.6.3) can

vary the restriction of variant choices at each device.

Initial

genotype

Has

update time (RV-T)

 / number of encounters

(RV-E) (FavScore)

Reached?

Is

vulnerability data

(for blacklisting)

available?

Variant pool

Select random

variant at each

locus from

available pool

Has stop

updating been

triggered?

Stop
Restart update

VM

Update

Initial

genotype

Has

number of encounters

Reached?

Is

vulnerability data

(for blacklisting)

available?

Store the

genotype

Variant pool

Probabilistic variant

choices

Compatibility filtering

Has stop

updating been

triggered?

Stop

Restart trigger

VM

update

Calculate

diversity

metric

Favourability

score

Y
Y

Y

N

N

Y

Y

Y

N

N

a) Random Variant Selection (RV) b) Favourability Score (FS)

Constraints

System Trigger
(new variants, constraints,

vulnerability data,

recovery)

System Trigger
(new variants, constraints,

vulnerability data,

recovery)

Calculate local

variant

diversity and

std.

Stop trigger

Is there a successful

genotype encounter?

Is there a successful

genotype encounter?

RV-T

Y

N

Y

N

Restart update

Constraints

Is a

recovery

mechanism

available?

Is a

recovery

mechanism

available?

Y Y

Chapter 7 Ph.D. Thesis

Jennifer Jackson 207 of 357 May 2017

7.6.1.1 Constraints – User Influence

User constraints can be applied to both algorithms, but differ in the flexibility of

the constraints that can be applied. For the RV algorithm, variants are constrained

such that they are either available or not available for selection. This coincides with

the way in which variants are selected randomly from those available without any

bias. For example individual constraints such as physical hardware restrictions or

user software preferences may limit those available for selection. When a device is

constrained, such that only one variant can be selected, the result is a device with

static diversity. Incorporating constraints into the dynamic model will limit the

achievable variant diversity (§7.4.3) that the ad hoc ecosystem can achieve when

maximisation is being sought.

7.6.2 Dynamic Diversity Algorithm– Favourability Score (FS)

The favourability score algorithm (FS) attempts to maximise diversity by

allowing each device to make variant choices based upon local encounters with

other devices and exchanging genotype information. Each device independently

maintains its own perspective on the local distribution of software variants and

variant diversity, and adjusts its own genotype accordingly. The agent model in

dynamic diversity mode assumes that the genotype information of encountered

devices is visible. For the scheme to become practically viable both a discovery

protocol and a trust model would need to be developed to provide the necessary

reliable information. There are many discovery protocols in existence for the

automatic detection of devices, their services and parameters to connect them. The

Bluetooth service discovery protocol for example determines which Bluetooth

Chapter 7 Ph.D. Thesis

Jennifer Jackson 208 of 357 May 2017

profiles are supported to determine compatibility [260]. A discovery protocol for the

exchange of genotype information would discover software variants rather than

profiles. Additionally a trust model would be needed to establish trust relationships

between devices to both authenticate the validity of the genotype information, and

maintain privacy between trustees. Trust models for ad hoc networks determine

trustworthiness of other devices without central authorities [261] allowing devices

to participate in various protocols, for example determining trustworthy routes for

forwarding data packets [262]. The work in the thesis does not develop a discovery

protocol or evaluate trust models for the exchange of genotype information; instead

the research firstly considers whether allowing software variant information to be

visible upon contact would be of benefit to both diversity and security against

existing forms of malware propagation. It also considers whether there are

advantages of dynamic diversity using this methodology over static diversity or

random assignments of variants.

The flow chart for the FS algorithm is shown in Figure 7-7 (b). During the

diversity maximisation period, as each device encounters another device

successfully, the genotypes of the encountered devices are recorded. When enough

encounters have been made, a parameter which can be set, a diversity metric

(§7.6.2.1), is calculated based upon the genotypes of the encounters. If necessary the

device will adjust the genotype to a different software variant configuration in an

attempt to improve diversity within the network (§7.6.2.3, §7.6.2.4). If restrictions

are set such as through vulnerability data (§7.6.3), software compatibility (§7.6.2.4),

or user constraints (§7.6.2.2), this will affect the chosen genotype.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 209 of 357 May 2017

7.6.2.1 Calculating the Diversity Metric

The diversity metric (dm) is formed independently by every device and indicates

which variants could be chosen to improve diversity. Firstly, genotype data is

stored by every device in a running buffer with a first in – first out (FIFO)

arrangement, the depth of which can be set. The frequency of each recorded

software variant at every locus is calculated by summing the occurrence of each

variant stored in the buffer and dividing by the number of encounters. This

indicates how many of each variant is being used locally. To obtain a metric

indicating which variants could be chosen to even out their distribution, the

frequency is subtracted from unity and then normalized across each locus to 1. This

results in variants used frequently being assigned a low metric value and variants

used infrequently being assigned a high metric value up to a maximum of 1.

 (7-3)

It is assumed that each device only stores the most recent genotype information

so that the diversity metric is calculated from only those stored in the buffer. If all

genotypes were stored and used, the data would not be representative of the current

local network since both network and software stack configurations will change

over time.

7.6.2.2 Constraints - Individual and Community User

Desirabilities

The application of user constraints is more flexible in the FS algorithm, than the

RV algorithm, but can also be limited to match the RV case. The constraints are

based around two aspects that limit the maximum obtainable variant diversity

Chapter 7 Ph.D. Thesis

Jennifer Jackson 210 of 357 May 2017

(§7.4.3); a) community scale desirabilities, and b) individual scale desirabilities. The

levels assigned are used to influence the software choices of the algorithm when

selecting genotype configurations. Unlike the binary constraints of the RV

algorithm, here the constraints are applied in the range 0 to 100. Table 7-1 shows an

example of how these two aspects could be initialized.

Community scale desirabilities – Each software variant has a community scale

desirability level, which could be based on the specification of an IT department, or

accommodate realistic data for a network such as 70% of users prefer, in an indirect

sense, the Google Android core OS library. A number is assigned for each software

variant in the range 0 to 100, where the sum of these desirabilities totals 100 for each

locus. The community scale desirabilities impose a system level constraint without

attributing software to specific individuals. This means that the variant diversity

level will be maintained, even though devices are making individual and local

decisions.

Individual scale desirabilities – The individual scale desirabilities are attributed

to specific individuals. There is no difference in dynamic variant diversity levels

from the community scale desirabilities when the same aggregated percentage of

software is set. However, differences in the dynamics of the malware propagation

will occur when specific individuals are constrained, for example, to never select the

vulnerable software variants. Additionally, differences will occur when either

location based constraints are imposed on specific individuals or devices move in

non-random mobility patterns. Each software package has an individual desirability

level based on the current userȂs desirability for the software. For example the user

Chapter 7 Ph.D. Thesis

Jennifer Jackson 211 of 357 May 2017

desirability may be to use the software represented by variant 1 of locus 1 most of

the time, but with a willingness to switch to variant 2, 3, or 4 if necessary.

Additionally users may have specific requirements relating to specialised software

in order to efficiently perform their responsibilities. In this case it is possible to

constrain specific individuals to use a fixed (static) software variant or variants,

whilst the remainder of the network tries to maximise diversity. It is important that

the diversity scheme does not negatively impact the user experience and so there

may be the need to maintain a proportion of specific individual desirabilities whilst

maximising diversity of the ad hoc ecosystem. The desirability value is also a

number between 0 and 100 for each software package, but may be different within

each device. The sum of these desirabilities totals 100 for each locus.

The constraints of user and community desirability data cannot be applied in the

same way to the RV algorithm as the FS algorithm due to the random selection of

variants. A configuration comparable to the RV constraints would be to apply a

desirability value of zero to those variants that are unwanted and apply equal

values to those variants wanted. When a device is constrained in the FS algorithm

such that only one variant can be selected, the result, as with the RV algorithm, is a

device with static diversity.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 212 of 357 May 2017

Table 7-1 - Setting desirability values example

7.6.2.3 Favourability Score

The favourability score combines the diversity metric (§7.6.2.1), the

constraints (§7.6.2.2), and the vulnerability data (§7.6.3). The equation given in (7-4)

is termed the favourability score because it ȁfavoursȂ rather than determines

particular software choices.

 (7-4)

Where is the diversity metric, and are constraints (§7.6.2.2), and are weighting factors to weight the importance or inclusion of each

Community

Desirabilities

Variant

Number Dc DI1 ... DIN

Locus 1 1 20 80 80

2 20 10 15

3 20 5 3

4 20 3 1

5 20 2 1

Locus 2 1 10 20 25

2 20 20 25

3 10 20 10

4 10 20 30

5 50 20 10

Locus 3 1 70 70 10

2 25 20 10

3 2 5 70

4 2 3 5

5 1 2 5

Locus 4 1 20 50 5

2 20 20 5

3 20 10 50

4 20 10 20

5 20 10 20

Individual Desirabilities

Chapter 7 Ph.D. Thesis

Jennifer Jackson 213 of 357 May 2017

summation term. For example to perform diversity maximisation only, both and are set to zero. is a binary matrix of vulnerability data (further described in

§7.6.3) with a ȁŖȂ representing variants that should be blacklisted, and a ȁŗȂ

representing variants that are deemed low risk and safe to use. The binary matrix is

used to completely mask out unsafe variants from the list. The model currently

assumes that each device has knowledge of the variants available to it to make an

informed choice (§5.2.6.1). In practice however different devices may have

knowledge of different variants, depending upon how they are generated and

stored. For example all devices may have knowledge of COTS variants such as

alternative commercial software or open source software modules (§3.2.1.3) as they

would be readily accessible, however variants generated via automated code

diversification techniques (§3.4.2) may not necessarily be widely available.

7.6.2.4 Probabilistic Variant Choice and Compatibility Filtering

The chosen variant at each locus of the genotype is selected probabilistically and

independently based upon the favourability score where a higher score results in a

higher probability that it will be chosen. This prevents all devices from choosing the

same solution if there is a ȁbestȂ option. In an ideal scenario where all variants are

compatible across loci this selection method is capable of always choosing

operational genotypes. In a realistic scenario however, not all configurations of

software may be compatible and so the option of compatibility filtering can also be

included. The four steps involved in the decision process for updating a genotype

with compatibility filtering are shown in Figure 7-8. In general it is often the

operating system that dictates compatibility (§3.2.1.3) and so the core OS library is

Chapter 7 Ph.D. Thesis

Jennifer Jackson 214 of 357 May 2017

used as the reference locus in this example, however it could be applied to any

locus. Firstly the software variant choices are split into subsets where a mask is

created for every OS core library variant to identify compatible software. In the

second step an OS core library variant is chosen probabilistically from the OS core

library locus using the favourability score. The third step applies the mask of the

chosen OS to obtain a filtered favourability score. In the fourth step the remaining

locus variants are chosen from the filtered favourability score using the same

probabilistic approach.

Figure 7-8 - Updating a genotype with software compatibility filtering

7.6.3 Using Vulnerability Data - Blacklisting of Vulnerable

Variants

Using diversity as a stand-alone security mechanism is probably unlikely in

practice, and so making use of already available, but untapped security data as part

of an integrated approach could better support the benefits of a dynamic diversity

scheme. When vulnerabilities and corresponding exploits are first publically

declared there is often a race between cyber attackers to further exploit the

0

0

0

1

1

1

0

1

0

1

0

1

1

1

1

0

0

0

1

0

1

0

1

0

OS1

mask

OS2

mask

locus1

locus2

locus3

locus4

1. Mask of compatible

SW for each OS

F

x

1

1

1

0

0

0

1

0

1

0

1

0

OS1

mask

=

F-OS1

3. Masked favourability

score for chosen OS

F

2. Choose 1 OS

variant based on the

favourability score

F-OS1

4. Choose variants from

the remaining 3 loci

Chapter 7 Ph.D. Thesis

Jennifer Jackson 215 of 357 May 2017

vulnerability and antivirus/software companies to produce antivirus signatures and

software patches (§3.3.3). The level of threat perceived by the disclosed vulnerability

dictates the amount of time, effort and speed in which antivirus signatures and

software patches are released. Even the fastest developed patches may not be

enough to prevent a surge in attacks which can occur within a few hours of

disclosure (§3.3.3). With dynamic diversity it is possible to temporarily prevent

software variants perceived as a security risk due to exposed vulnerabilities from

being chosen as a valid variant solution. The term blacklisting is used here to denote

the mechanism of preventing specific vulnerable variants from being chosen.

Software vulnerability information is currently stored in publically accessible

databases such as the NIST National Vulnerability Database (§3.4.4.6), or the CVE

database (§1.1.2). The automated dissemination of vulnerability information could

be released as soon as it becomes available and this would be a lot sooner than the

corresponding antivirus signature and software patch, and more importantly,

potentially faster than the response from cyber attackers (assuming users allow the

diversity scheme to act upon the vulnerability data).

Blacklisting is introduced into the model stochastically with an average rate at

which the blacklisting information is disseminated. This can be set as an

independent rate, or a rate dependent upon the contact rate between devices. For

example it can be set such that an average of 1 in 10 contacts made are with an

access point capable of providing updated blacklisting information. Blacklisting of

software variants within the model is undertaken by all devices in the network,

however it is acknowledged that in practice some users may wish to avoid changing

Chapter 7 Ph.D. Thesis

Jennifer Jackson 216 of 357 May 2017

configurations, for example due to compatibility implications. As shown in Figure

7-7, for both algorithms, as soon as new vulnerability data becomes available it is

applied immediately by constraining the choice of variants and re-updating (§7.6.4)

the internal genotype. For those that are still susceptible, blacklisting provides a

temporary immunity until new antivirus signatures or patching is applied. The

effects of blacklisting on the malware model are detailed in section 7.7.3.

7.6.4 Stopping and Starting the Genotype Update Process

The genotype update process is required to make an intelligent genotype

selection in order to maximise the variant diversity of the network, subject to the

available variants and applied constraints. Whilst frequent changes of variants at

some loci may be hidden and go unnoticed by the user, others may disrupt the user

experience. Additionally if there is malware already propagating in the network, the

act of switching to a vulnerable genotype could spread the malware even further.

Therefore once diversity is maximised it may then be beneficial to update genotypes

less often, such as only updating when there are new constraints, variants, or other

information as shown in the flow chart of Figure 7-7. The start-stop state diagrams

for the update process of the RV algorithm and the FS algorithm are shown in

Figure 7-9 (a) and (b) respectively.

For the RV algorithm, the local genotype information is not collected and so the

only triggers for stopping the update process as shown in Figure 7-9 (a) is either time

based, or encounter based. For example it can be possible to select the genotype once

in a single update cycle and then remain static by not updating until a system trigger

occurs for the device such as the availability of new variants, different constraints,

Chapter 7 Ph.D. Thesis

Jennifer Jackson 217 of 357 May 2017

or vulnerability data allowing temporary blacklisting. For the FS algorithm the

decision to stop updating is based upon each deviceȂs individual perception of the

optimisation of the locally measured variant diversity. The local measurements are

calculated using the Nei Index equation (2-8) from the recorded genotypes stored in

the buffer as shown in the flow chart of Figure 7-7 (b). The running standard

deviations of these measurements are calculated over a number of samples to

determine how much the diversity level is changing; when optimised there is very

little change. As shown in Figure 7-9 (b) when there is at least a sufficient number of

samples and the standard deviation has progressed below a minimum threshold, a local

minimum is found by comparing the previous standard deviation value to the

current value before stopping the update process. If the standard deviation goes

above a maximum threshold due to changes in the network by other devices, or a

system trigger occurs, then the device restarts updating its own genotype again.

Figure 7-9 - Stop-start update states for the RV and FS algorithms

Start Stop

Time / Encounter Trigger

System Trigger
(new variants, constraints, vulnerability data,

recovery)

Start Stop

Sufficient number of samples

AND

Standard Deviation < min threshold

AND

Standard Deviation local minimum

System Trigger
(new variants, constraints, vulnerability data,

recovery)

OR

Standard Deviation > max threshold

a) Stop-start genotype update process for the

RV dynamic diversity algorithm

b) Stop-start genotype update process for the

FS dynamic diversity algorithm

Chapter 7 Ph.D. Thesis

Jennifer Jackson 218 of 357 May 2017

The time evolution of a stop-start update sequence from one device using the FS

algorithm is shown in Figure 7-10. The variant choice for a single locus, the standard

deviation of the locally measured diversity (Std.) and relevant trigger signals are

shown. Firstly the data buffer fills with variant diversity measurements (Buffer full)

which are used to calculate the running standard deviation. During this period

variant choices are being selected as part of the update process. When the local

minimum is found below the minimum threshold the device is triggered to stop

updating (1. Stop updating). At this point variant number one is chosen. Sometime

later an encounter is made with a device with vulnerability data which triggers the

blacklisting of vulnerable variants. This also provides a system trigger to re-start the

update process, which then halts when the stop conditions are true (2. Blacklisting

and update). In this scenario variant one is blacklisted and therefore becomes

unselected. When a new patch for the vulnerable variant is installed (Patch

download), the device stops blacklisting and re-starts the update process where any

of the variants can be selected (3. Patch and update). In this scenario the device had

become infected prior to blacklisting and subsequently moves to the recovered state

(Recovery).

Chapter 7 Ph.D. Thesis

Jennifer Jackson 219 of 357 May 2017

Figure 7-10 - Time evolution of a stop-start update sequence from one device

7.6.5 Virtualisation – Deleting Infected Genotypes

Virtualisation is seen as one of the key enabling technologies for the future

Internet (§3.2.1.2). It also has the potential to become a practical platform for the

realisation of dynamic diversity, particularly through the use of virtual machines

(VMs). Its two key attributes are: firstly the ability to isolate a full or partial software

stack from the rest of the deviceȂs computer system and data memory; secondly, it is

able to run more than one isolated software stack at a time. These two aspects

together mean that VMs can be used to configure software genotypes dynamically

in the background before swapping with the current configuration. Because each

VM is treated as a separate isolated entity, the destruction of an out-of-date VM will

also destroy (most) malware since it will be contained within the VM. This is also

based on the assumption that new VMs are always created from known malware free

sources. This is currently the case since known good versions are usually stored by

0 100 200 300 400 500 600 700 800 900

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Time (seconds)

S

td

 V
a
ri
a
n
t

c
h
o
ic

e

1. Stop updating

Buffer full (high)

Stop updating (high)

Blacklisting (high)

Patch download (high)

Recovery (high)

Signals:

Vulnerability data (high)

2. Blacklisting and

update

3. Patch and

update
Minimum

threshold

Chapter 7 Ph.D. Thesis

Jennifer Jackson 220 of 357 May 2017

the virtualisation tools which can be reloaded at any specified time (§3.2.1.2). Using

virtualisation to swap small chunks of functionally equivalent software has been

practically tested (§3.4.3.4) by one research group proving that the concept is

feasible, however using virtualisation to manage complete software stacks

seamlessly would require further development of the technology and is discussed in

future work (§9.3.2.4).

On the assumption that VM technology could provide a practical platform, the

dynamic model also incorporates an optional element which, when enabled, models

that every time a genotype is updated, any malware present in the current

configuration is also deleted. Unlike blacklisting, this does not make the device,

temporarily immune: It could still become infected in the future with the same

malware. The effects of virtualisation on the malware model are detailed in section

7.7.3.

7.7 Malware Model

The malware model generates the exploits, genetically matches them to

genotypes and monitors the health state of each device at every time step of the

simulation using the SIR compartments. The health states are aggregated and used

to assess the malware attack as it propagates through the network. Unlike the

epidemic model, in the agent model the malware can be introduced at any time in

the simulation, so that it may be introduced before, during, or after specific

mechanisms have been introduced.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 221 of 357 May 2017

7.7.1 Susceptibility

In the agent model all devices are assumed to be initially susceptible. This is

different from the epidemic model which requires that the susceptibility is pre-

computed (which remains fixed) in order to assess the dynamics of the malware.

This is because within a dynamically diverse network all of the devices are

potentially susceptible to any specific malware attack, since any device is capable of

adopting any possible genotype. However, in the agent model the time window in

which each device is truly susceptible will be variable and dependent upon local

information, individual decisions and the constrained choice of different variants. It

is not necessary to compute this true instantaneous susceptibility to progress the

dynamics of the simulation since the mechanism of genetic matching accounts for

this by only allowing those instantaneously susceptible (those currently with a

vulnerable genotype) to become infected given a successful malware encounter.

7.7.2 Contact Rate and Probability of Infection

For the agent-based model the contact rate is determined by the network

model. For the random encounters approach (§7.3.1) the contact rate can be set and

is comparable to the epidemic model. It is assumed that once an encounter has been

made with an infected device there is a successful transmission of the infection so

that For the random waypoint approach there are several parameters that

determine the contact dynamics and successful transmission of the malware (§7.3.2).

Regardless of the network model, it is assumed that once the propagating malware

has successfully entered into a device and has been matched to a deviceȂs genotype,

the infection is transmitted. This can happen if there are either no antivirus

Chapter 7 Ph.D. Thesis

Jennifer Jackson 222 of 357 May 2017

mechanisms in place to detect or block the malware, or the malware is unknown

such as in the case of a Zero-day attack.

7.7.3 SIR Compartments

Each device is accountable for its own SIR state. The transitions between the

states on any particular device are determined by the interaction of the devices in

the network, the diversity of the genotypes, the malware exploit data, and the

instantaneous rate values. The flow sequence of the SIR state machine for each

device is shown in Figure 7-11. There are four mechanisms that determine the

movement between states. The first two mechanisms of genetic matching and

recovery are present in the epidemic model. In the agent model however, genetic

matching can be influenced by more than just the exploits and contact rate.

Additional mechanisms such as changing genotypes, data transmission times, and

device locality will also cause an effect, and increasing the realism of the model. The

dotted lines represent additional flow mechanisms that are not present within the

epidemic model and include the effects from both blacklisting and virtualisation

when in dynamic diversity mode. The effects of these four mechanisms are further

described below.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 223 of 357 May 2017

Figure 7-11 - Flow sequence of the SIR compartments in the agent-based model

7.7.3.1 Genetic Matching and Malware Exploit Data

The malware exploit data is constructed in a similar arrangement to the software

stack genotype (§5.3.1.3) and is comprised of loci that map to the corresponding loci

of the software genotype. The type of malware can either be a logical AND or a

logical OR, both of which were fully defined in the malware threat model (§5.3.3).

As shown in the flow chart of Figure 7-12, genetic matching between incoming

malware and the software stack genotype determines if the device can become

infected. For the random encounter network model (§7.3.1), a successful malware

encounter happens at the same time as a successful genotype encounter since both

data are assumed to be transmitted instantaneously upon a single successful

encounter. With the random waypoint model (§7.3.2) it is possible to independently

define the time taken to transmit the genotype and the time taken to transmit the

exploit data so that a successful malware encounter only occurs if the encountered

device is infected and has been in range for the defined length of time.

S

I

1. Genetic matching:

Exploit matched to

genotype

R

2. Recovery mechanism:

Patching or anti-virus

signature detection

Temporary

Immunity

3. Blacklisting:

Exclusion of vulnerable

variants

4. Virtualisation:

Genotype -VM update

S’

Chapter 7 Ph.D. Thesis

Jennifer Jackson 224 of 357 May 2017

Figure 7-12 - Genetic matching flow chart

7.7.3.2 Recovery Mechanisms

As with the epidemic model recovery mechanisms are assumed to occur at a

recovery rate after infection. Such mechanisms include patching or antivirus

signature detection to remove malware that was previously unknown at the time of

the initial outbreak. When no recovery mechanisms are included for the duration of

the epidemic, only the susceptible (S) and infected (I) states can be reached. When

recovery mechanisms are included a recovery rate can be set for each device. This

type of recovery mimics the epidemic model when they are all set to the same value

and initialised at the start of the initial malware outbreak. Similar to the generation

of the contact rate in the Random Encounter model, the recovery of the devices

occurs stochastically with an average rate of recovery to model the Poisson

process. A random number is chosen for each device from a uniform distribution

Initial SIR

state

Genetic matching

between exploit data

and genotype

Is there a successful

malware encounter?

Y

N

Matched result output

to SIR

Chapter 7 Ph.D. Thesis

Jennifer Jackson 225 of 357 May 2017

with a value between ȁ0Ȃ and ȁ1Ȃ and is used within an inequality equation to

validate the recovery against the recovery rate at each time step.

7.7.3.3 The Effects of Blacklisting

Blacklisting is applied to any device regardless of which state it is in (since the

device itself cannot detect an infection in this model §9.3.1.2), however it is only of

use when devices are still susceptible and would be equivalent to an extra temporary

immunity state as that pictured in Figure 7-11, where the device is prevented from

becoming infected. The SȂ state denotes that the actual effect of blacklisting for those

that become temporarily immune is to remain in the susceptible state. The start of

blacklisting information dissemination may be at the point of initial malware

infection if the vulnerability has just been disclosed but could equally have been at

some point in the past if prior knowledge of a potential threat was received, or

further in the future if it models a zero day attack where the vulnerability and

knowledge of an exploit is still unknown. For those already infected blacklisting

offers no protection and it is assumed these devices remain infectious, even though

the vulnerable variant is no longer used. When the signatures or software patches

are released to detect and remove the malware, the infected devices can recover and

the temporary blacklisting can be removed.

7.7.3.4 The Effects of Virtualisation and Deleting Infected

Genotypes

Like blacklisting, the use of VMȂs to create and destroy genotypes, is applied to

every device regardless of what state it is in, but is only of use when devices are

actually infected since it removes undetected malware. During a genotype - VM

Chapter 7 Ph.D. Thesis

Jennifer Jackson 226 of 357 May 2017

update cycle, if the device is infected it will move back to the susceptible state as

shown in Figure 7-11. Simulations and analysis involving virtualisation are

conducted in conjunction with blacklisting (§8.3.4).

7.8 Outputs

This section defines the outputs from the agent model as shown in Figure 7-13,

most of which are comparable to the epidemic model. Only two analytical outputs

are defined for the agent model, all other outputs are determined from simulation

including the two key components of stability: resistance and resilience. A key

benefit of the epidemic model is its analytical solutions. This enables an optimum

diversity to be calculated in terms of the number of variants at each locus to tolerate

or mitigate a specific type of attack for a given scenario. In constrained mode, the

agent model is comparable to the epidemic model and therefore simulated outputs

are compared to those calculated. Beyond the bounds of the epidemic model, with

the inclusion of dynamic diversity, device geographical location, blacklisting,

virtualisation and practical constraints, the results are analysed purely through

simulation and comparisons with the epidemic based results. The outputs are

summarised as follows.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 227 of 357 May 2017

Figure 7-13 - Outputs and optimum diversity for the agent-based model

7.8.1 Analytical Outputs

The two analytical outputs are defined as:

Maximum obtainable variant diversity (§7.4.2): This calculated value is the

maximum that can be achieved for the whole ad hoc ecosystem when there are no

constraints on variant selection such as through user desirabilities, blacklisting, and

software compatibility. Its calculation is defined in equation (7-2).

Network

Model

Diversity

Model

Malware

Model

Analytical Outputs

Resistance to

Malware (MR)

Peak Infection

time (T1)

With no recovery

Simulated Outputs

Resilience to

Malware (ML)

Infection

Dynamics (It)

Implication of Outputs

Quality of Service

(QoS / QT)

Optimum diversity (VR)

to either tolerate or

mitigate a specific

malware attack

Specified VR for a

specific malware

attack and scenario

configuration

Maximum obtainable

Variant Diversity

of the network (Pdmax)

Minimum network size

for absolute maximum

diversity Nnmin

Variant Diversity

of the network

(PdNn)

Local Variant

Diversity

measured by each

device (Pdl)

Blacklisting

Dynamics (Bt)

Virtualisation

Dynamics (Ut)

Chapter 7 Ph.D. Thesis

Jennifer Jackson 228 of 357 May 2017

The minimum network size (minimum number of ad hoc devices) to achieve absolute

maximum diversity (§5.3.2.3): This is the minimum number of ad hoc devices

necessary to utilise every possible genotype configuration for one run instance of a

simulation and is calculated using equation (2-12).

7.8.2 Simulated Outputs

Variant Diversity of the network : This is the measured instantaneous variant

diversity from the simulation across all devices in the network calculated using the

Nei diversity index equation (2-8).

Local Variant Diversity measured by each device): This is the measured

instantaneous variant diversity from the simulation across all local encounters

stored in the genotype buffer calculated using the Nei diversity index equation (2-8).

Blacklisting Dynamics : This is the instantaneously measured number of

devices that are currently blacklisting variants.

Virtualisation Dynamics : This is the instantaneously measured number of

devices performing VM updates.

Infection Dynamics : This is the instantaneously measured number of devices

infected.

Resistance to Malware : As per the epidemic model, this is the measured

number of devices that do not become infected at the end of the epidemic. For the

agent model, with or without recovery mechanisms, this equates to the number of

devices in the S ǻor SȂǼ state at the end of the epidemic ǻmajor outbreakǼ simulation

since all devices initially start in the S ǻor SȂǼ state.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 229 of 357 May 2017

(7-5)

Resilience to Malware : This is the reciprocal of the measured time when the

number recovered is within 1 of its final value.

Peak Infection Time (no recovery): This is the time at which the number

infected is within 1 of its final value.

7.8.3 Implication of Outputs

Optimisation of Diversity: For the agent model optimisation of diversity is

measured through simulation across a parameter range to either tolerate or mitigate

a specific attack. Unlike the epidemic model where optimisation can be calculated,

for the agent model the point of desired tolerance, or mitigation is the measured

point of the optimised diversity.

Quality of Service Tolerance : This is the measured resistance that will inform

the Quality of Service for a particular scenario and malware type. When resistance is

measured over a varying parameter, the value of the parameter at the required

can be found.

7.9 Matlab Implementation

This section provides a brief overview of the Matlab implementation of the

agent-based diverse system model.

The initial implementation of the agent model was created as a distributed

architecture in a modular structure. A frame work has been developed with a user

Chapter 7 Ph.D. Thesis

Jennifer Jackson 230 of 357 May 2017

interface to allow further network models, diversity algorithms and attack models

to be added. The model can be run from the user interface where settings files can

be created, saved and run, multiple simulations can be run sequentially, and output

files can be saved or loaded into the display. The model can also be run in batch mode

where a sequence of tests is left to run in order, each providing input to the main

GUI window, which is pictured in Figure 7-14.

Figure 7-14 - Main GUI window of the Matlab implementation

A more abstract and efficient implementation was also created which captured

the individuality of the devices whilst making use of the software tool in a single

software program environment to utilise global parameters. For example the

malware exploit data can be stored as a global variable and matched to genotypes

individually, producing the same result as if the exploit data had been transmitted,

received and stored individually. This implementation improved simulation speed

by an order of magnitude and has been used as the basis for the results.

Chapter 7 Ph.D. Thesis

Jennifer Jackson 231 of 357 May 2017

A flow chart describing the implementation flow of the software is given in

Figure 7-15. Where relevant the individual components are referenced to their

appropriate section or figure number describing the process in more depth. The

source code for the Matlab implementation of the models can be found at the

permanent link: http://wrap.warwick.ac.uk/98458.

http://wrap.warwick.ac.uk/98458

Chapter 7 Ph.D. Thesis

Jennifer Jackson 232 of 357 May 2017

Figure 7-15 - Matlab software implementation flow

Test Files:

-Simulation scenarios

-Parameter set up

-Process individual run data

Save / Load

data
Plot data

Agent Model

Model set up:

-Initialise malware model (§7.7)

-Initialise selected network model (§7.3)

-Initialise genotypes (including constraints and static diversity mode §7.5,7.6)

-Initialise selected diversity algorithm (§7.6)

If virtualisation mode selected:

Sum those that get infected at least once over the whole simulation (§7.6.5)

If plotting selected:

Plot selected data

Save data

Log files

If start time of virus reached:

-Set initial malware outbreak (§7.7)

Gather performance measurements of the whole network

-Variant diversity (§2.3.2.2.2, 7.4.2)

-Number of devices blacklisting (§7.6.3)

-Number of devices stopped updating (§7.6.4)

-Number of devices in S compartment (§7.7)

-Number of devices in I compartment (§7.7)

-Number of devices in R compartment (§7.7)

-Distance spread by the malware (Random Waypoint §7.3.2)

If Random Encounter network model selected

-Perform random encounter (Figure 7-2)

-(Including the transmission of genotype information and malware)

If Random Waypoint network model selected

-Perform random waypoint movement of devices (Figure 7-3)

-Selection and tagging of devices in range (Figure 7-5)

-Buffer genotype data (§7.3.2.3)

-(Including the transmission of genotype information and malware)

If Recovery selected

-Choose those to receive recovery mechanism (§7.7.3.2 , input to

Figure7-7)

If Blacklisting selected

-Choose those to receive vulnerability data (§7.6.3, §7.7.3.3 , input

to Figure7-7)

Genetic matching

-Between exploit data and genotype (Figure7-12)

Determine the next state of each device

SIR compartments (Figure7-11)

Update genotypes: If RV dynamic diversity algorithm selected

-Perform random variant selection (§7.6, Figure7-7a)

Update genotypes: If FS dynamic diversity algorithm selected

-Perform favourability score algorithm (§7.6, Figure7-7b)

Do every time step

Do every run of the model

Chapter 7 Ph.D. Thesis

Jennifer Jackson 233 of 357 May 2017

7.10 Summary

This chapter describes an agent-based simulation approach to a diverse system

model that, like the epidemic model, has been developed to incorporate software

diversity and malware at the genetic level of an ad hoc network ecosystem. The

chapter predominantly describes the design of the model and, unlike the epidemic

model, the outputs of the agent model are analysed purely through simulation. The

agent-based diverse system model is comprised of three components; a network

model, a diversity model, and a malware model. It has been designed with greater

flexibility than the epidemic based method with the inclusion of dynamic genotype

configuration, device geographical location, and practical constraints. In the agent

model, diversity does not remain as a stand-alone security strategy. The dynamic

approach is exploited through the integration with other security mechanisms such

as publically available vulnerability data and virtualisation technology to enhance

its effectiveness. However, it is also capable of simulating the same conditions as the

epidemic model to allow the comparison of results between diversity methods and

for the comparison of results where the inclusion of additional mechanisms is made.

Optimisation of diversity is measured through simulation across a parameter range

to either tolerate or mitigate a specific attack.

The development of the agent model provides a simulation framework for

incorporating biodiversity concepts and algorithms, different network models and

malware models, and integrating them with other security mechanisms. In relation

to the hypothesis, the framework provides a method for analysing how diversity

can make ad hoc networks more resistant to cyber security attacks.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 234 of 357 May 2017

8 Results and Analysis

Chapter 8

Results and Analysis

8.1 Introduction

The purpose of this chapter is to demonstrate through mathematical modelling

and simulation the hypothesis that Incorporating biodiversity within peer-to-peer mobile

wireless computer networks makes them more resistant to multi-exploit malware

propagation. This is achieved using the two models developed and detailed in

chapterȂs Ŝ and ŝ. This chapter is split into two sections:

Constrained Diverse System Model: Epidemic Based - This section details the results

of the epidemic based system model (§6). It firstly looks at the susceptibility

relationship with diversity and malware types, since for the epidemic model, this

can inform on the extent of the malware attack when there are no recovery

mechanisms. Secondly it looks at the optimisation of diversity in order to predict

how much is needed to either tolerate different malware in order to maintain

Quality of Service, or mitigate malware when recovery mechanisms are present.

Thirdly it looks at the resistance and resilience outputs of the ad hoc network

ecosystem to show the relationship with diversity in relation to different types of

malware attacks.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 235 of 357 May 2017

Diverse System Model: Agent-Based- This section details the results of the agent-

based system model (§7). It firstly compares the agent model to the epidemic model

under the same input conditions, specifically comparing the amount of static

diversity needed to mitigate different types of malware. The purpose of which is to

verify functionality of the agent model. Secondly the performances of the dynamic

algorithms are assessed in reaching the maximum diversity level, both under ideal

conditions, and when generic constraints are applied. The aim is to compare

random with intelligent decisions, and compare the maximum achievable diversity

with the actual diversity achieved. Thirdly the different modes of operation are

analysed using the random encounter network model, including dynamic diversity

as a standalone approach, and then with the additional security mechanisms in

order to assess their beneficial impact. The effect of constraints on resisting the

different malware types are considered including spatially constraints which are

analysed using the Random Waypoint (RWP) network model. Unless explicitly

stated, results are given for the one locus malware and the four locus malware

configurations which cover the two extreme cases over the range considered. The

results compare, for example a 4 exploit cross layer malware such as Stuxnet in the

AND scenario (but in an ad hoc network), with the equivalent OR scenario and with

malware targeting a single locus (which by its definition, additionally compares

other epidemic malware models which consider malware and devices as single

entities (§6.3.2.1). As previously stated susceptibility relationships are important for

the static diversity case because they directly impact the magnitude of the malware

attack. Here the implication of other loci configurations are also discussed (§8.2.1).

Chapter 8 Ph.D. Thesis

Jennifer Jackson 236 of 357 May 2017

8.2 Constrained Diverse System Model: Epidemic

Based

8.2.1 Susceptibility Relationships for Static Diversity

Devices that are susceptible to a specific instance of malware are at risk from

being attacked. When diversity remains static for a period of time, so too does the

susceptibility, allowing epidemic based models to predict the extent of the malware

attack. The question is whether increasing static diversity can reduce the

susceptibility of the ad hoc ecosystem, and lower the security risk.

The answer to this question depends upon several factors including the type of

malware, the number of exploits and the variants they target, the initial diversity of

the ad hoc ecosystem, and how diversity is increased (§5.3.2.2).

8.2.1.1 The One Locus Model with Increasing Variant Diversity

When the initial diversity is realised from an unequal distribution of software

variants there are many solutions for increasing diversity from a minimum (single

variant dominance) to a maximum (evenly distributed variants). Figure 8-1 gives

two examples for a single locus, equivalent to the one locus model, with a maximum

of eight possible variants being used (v1 to v8). For both examples, at minimum

variant diversity ǻȁminȂ columnǼ only one variant is utilised with the highest

possible frequency. “t maximum variant diversity ǻȁmaxȂ columnǼ all eight variants

are evenly distributed with identical frequencies. The two examples differ in that

the first has one dominating variant that becomes less dominant as diversity is

increased, by use of the other variants in a minimal way, whilst the second example

maintains an even distribution of variants as more are utilised.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 237 of 357 May 2017

Figure 8-1 – Susceptibility relationship with increasing variant diversity

For the one locus model, the AND and OR malware types are identical and

therefore it is the number of exploits that characterise the malware. In both

examples, when a malware instance, labelled as A, with one exploit, targets variant

1 (v1) (Figure 8-1 (a) and (b)), the resulting susceptibility (Figure 8-1 (c) and (d)),

reduces as variant diversity is increased as measured by Nei Genetic Diversity. If

instead a second malware instance labelled as B, also with a single exploit, targets

variant 8 (v8) the resulting susceptibility increases, at the point where the variant

becomes utilised as diversity is increased. As more exploits are added to each

malware instance, more variants become susceptible (e.g. malware A with 2 exploits

targets variant v1 and v2, and malware B with 2 exploits targets variant v8 and v7,

and so on). Increasing variant diversity can therefore either reduce susceptibility, as

More exploits

More exploits

More exploits

More exploits

min max min max

variants Frequency of variant variants Frequency of variant

malware A --> v1 1 7/8 6/8 5/8 4/8 3/8 2/8 1/8 A --> v1 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8

v2 0 1/8 1/8 1/8 1/8 1/8 1/8 1/8 v2 0 1/2 1/3 1/4 1/5 1/6 1/7 1/8

v3 0 0 1/8 1/8 1/8 1/8 1/8 1/8 v3 0 0 1/3 1/4 1/5 1/6 1/7 1/8

v4 0 0 0 1/8 1/8 1/8 1/8 1/8 v4 0 0 0 1/4 1/5 1/6 1/7 1/8

v5 0 0 0 0 1/8 1/8 1/8 1/8 v5 0 0 0 0 1/5 1/6 1/7 1/8

v6 0 0 0 0 0 1/8 1/8 1/8 v6 0 0 0 0 0 1/6 1/7 1/8

v7 0 0 0 0 0 0 1/8 1/8 v7 0 0 0 0 0 0 1/7 1/8

malware B --> v8 0 0 0 0 0 0 0 1/8 B --> v8 0 0 0 0 0 0 0 1/8

a) Example 1 - Single dominant b) Example 2 - Even distribution

c) Example 1 – Single dominant

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s
 s

u
s
c
e
p
ti
b
le

 (
S

p
)

Nei Genetic Diversity

Increasing exploits

starting at variant1

(susceptibility reduces

with diversity)

 A
7

B

1

Increasing exploits

starting at variant 8

(susceptibility increases

with diversity) 7

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s
 s

u
s
c
e
p
ti
b
le

 (
S

p
)

Nei Genetic Diversity

Increasing exploits

starting at variant 8

(susceptibility increases

with diversity)

Increasing exploits

starting at variants 1

(susceptibility reduces

with diversity)

A

B

7

1

1

7

Malware

Malware

Malware

Malware B

Min

(single variant

dominance)

d) Example 2 – Even distribution

Min

(single variant

dominance)

Max

(even

distribution)

Max

(even

distribution)

1

Chapter 8 Ph.D. Thesis

Jennifer Jackson 238 of 357 May 2017

in the case of malware A, or increase susceptibility, as in the case of malware B. This

result has been seen within natural systems and is explained by the dilution effect

(§2.2.2.2.3) where increasing diversity dilutes the proportion of susceptible variants,

and the amplification effect whereby increasing diversity increases the representation

of susceptible variants. This result is intuitively expected in a static diversity

scenario and confirms that exploits targeting higher frequency variants result in a

more susceptible ad hoc ecosystem, and pose a higher security risk. The modelling

of non-maximally diverse scenarios is not considered by other malware models, but

it can allow the effects from the diversity of current networks to be analysed in

response to different malware types, assuming the necessary data can be collected

for each analysed layer of the software stack (§9.3).

8.2.1.2 Multiple Loci at Absolute Maximum Diversity

When a fixed number of software variants are evenly distributed, susceptibility is

no longer dependent on which variant the malware is targeting at a given locus: The

malware could target any single variant and the susceptibility would be the same.

The susceptibility is now dependent upon the malware type and the number of

exploits targeting the variants at each locus. Two malware types have been defined,

the logical AND, and the logical OR (§5.3.3). The difference in their susceptibility

relationships with varying numbers of exploits (exploit richness) for a fixed variant

richness of 8 is shown in Figure 8-2 (a) and (b) respectively. The relationships in

these graphs show the condition of absolute maximum diversity (§5.3.2) where the

maximum number of unique genotypes are utilised and equally distributed in addition

to variants at each locus being equally distributed. The relationships follow the

Chapter 8 Ph.D. Thesis

Jennifer Jackson 239 of 357 May 2017

susceptibility equations for the logical AND and logical OR types (§6.3.2), and allow

comparisons between multiple loci and the ȁone locus modelȂ (single locus, §6.3.2.1).

Figure 8-2 - Susceptibility relationships at absolute maximum diversity

For the one locus model the AND and OR relationships are identical where the

susceptibility increases linearly with the number of exploits until there is an exploit

for each of the 8 variants. This identical relationship is as expected and was derived

by equations (6-12) and (6-15). For the AND malware type the susceptibility

decreases with the number of loci, for a given exploit and variant richness. This is

because of the nature of the AND relationship where increasing the number of loci

means additional specific variants need to be present in a single genotype before it

can be infected by malware, hence reducing the scope of those susceptible.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s
 s

u
s
c
e
p
ti
b
le

 (
S

p
)

1 locus (one locus model)

4 loci OR

1 exploit

at one locus

1 exploit at

each of the 4

 loci

3 exploits at each

of the 4 loci

12 exploits

at one

 locus

4 exploits

at one

 locus

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

Variant Richness

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s
 s

u
s
c
e
p
ti
b
le

 (
S

p
)

4 loci AND

1 exploit at

each of the

4 loci

3 exploits at

each of the

4 loci

d) One locus model and 4 locus OR malware typec) 4 locus AND malware type

b) OR malware type– up to 4 loci with a variant richness of 8

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s
 s

u
s
c
e
p
ti
b
le

 (
S

p
)

Exploit Richness

1 locus (one locus model)

2 loci

3 loci

4 loci

Increasing

loci

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s
 s

u
s
c
e
p
ti
b
le

 (
S

p
)

Exploit Richness

1 locus (one locus model)

2 loci

3 loci

4 loci

Increasing

loci

a) AND malware type – up to 4 loci with a variant richness of 8

Chapter 8 Ph.D. Thesis

Jennifer Jackson 240 of 357 May 2017

Understanding susceptibility relationships is important because it defines the

magnitude of the malware attack when there are no recovery mechanisms in place.

Particularly when considering homogeneous mixing models where devices are

assumed to make contact with each other at random which forms an underlying

assumption of the mathematical epidemic model (§4.2.5). When there are recovery

mechanisms the reproduction number (§4.3.2.5) additionally contributes to the

extent of the malware attack.

For a fixed exploit and variant richness (as shown in Figure 8-2 (a)) increasing the

number of loci in which the AND malware type targets not only reduces the

susceptibility but the reduction in susceptibility also becomes less. This means that

in practice it is beneficial from a security perspective to ȁencourageȂ malware to

ȁhaveȂ to use multiple exploits across layers to infect and propagate, for example

designing loci divisions that make it difficult for malware to spread using only one

exploit. Although, the benefit of malware using an increasing number of cross layer

exploits diminishes. For the OR malware type the susceptibility increases with the

number of loci, for a given exploit and variant richness. This is because the more

exploits there are available, which increase with the number of loci in this example,

the greater number of genotypes there are that will be susceptible, making this type

of malware a high security risk. However, opposite to the AND scenario, for a fixed

exploit and variant richness (as shown in Figure 8-2 (b)) increasing the number of

loci in which the OR malware type targets not only increases the susceptibility but

this increase diminishes as more cross layer exploits are added.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 241 of 357 May 2017

However increasing diversity through variant richness for either of the malware

types, under absolute maximum diversity conditions, reduces the susceptibility as

shown in Figure 8-2 (c) and (d). The difference being in the gradients of their

reduction. For the AND malware type, every increase in variant richness produces a

large reduction in the proportion of susceptible devices. For an exploit richness of

one the proportion of devices susceptible becomes very small by the time a variant

richness of ten is reached. For the OR malware type the reduction is smaller, and

when the variant richness is large relative to the total number of exploits, the

susceptibility can be approximated by the one locus model with the same total

number of exploits (§6.4.4.4.4). As shown by the curves, the equivalent one locus

model (with the same total number of exploits) has either the same or a higher

susceptibility, and therefore malware writers with OR capability wishing to inflict

maximum damage regardless of the variant richness could better do so by targeting

any single locus with multiple exploits (see Figure 5-6 Malware threat model) rather

than spreading the exploits across loci.

8.2.2 Optimum Diversity to Tolerate or Mitigate a Malware

Attack

8.2.2.1 Optimisation and Simulation Process

This section considers how much diversity is needed to tolerate or mitigate a

specific type of malware attack (§6.4.4). When tolerance is required to maintain

a specific QoS for the ad hoc network ecosystem, or mitigation is required to

prevent a major outbreak (reproduction number), the diversity optimisation

process follows that pictured in Figure 8-3. Firstly the specified constraint is used to

Chapter 8 Ph.D. Thesis

Jennifer Jackson 242 of 357 May 2017

calculate the necessary susceptibility using equations (6-21), (6-23), and (6-28)

defined in section 6.4.4. The calculated is then used to determine the diversity in

terms of the optimum number of variants needed per locus to tolerate or mitigate a

specific malware attack (§6.4.4.4) using equations (6-32),(6-33) for the AND malware

and (A-7),(A-8) for the OR malware. To simulate and verify the calculated

predictions using a malware model, the value is recalculated using the

discretised optimum number of variants. This is used to calculate susceptible

infection rate and the number of susceptible devices for input in to the

malware model. Running the deterministic or stochastic malware model (§4.3.1,

§6.4.2) can be used to measure peak infection times, resistance or resilience, for

either optimum diversity conditions, or other specified diversity levels for a specific

malware attack.

Figure 8-3 - Process for optimising diversity and simulating the malware model

Specify QT

Calculate Sp

Calculate diversity for

a specific malware

attack

(number of variants)

Recalculate Sp

With discrete variant

values

Calculate true peak

infection times T1

Optimise diversity

Peak infection time for

specified malware and

diversity

Calculate estimated

peak infection times

T1 for a specified Sp

Specify R0

Calculate βs and Ns

Run SI/SIR model

Measure peak

infection times T1

Measure resistance

MR

Measure resilience

ML

Run malware model

Specified diversity for

a specific malware

attack

Chapter 8 Ph.D. Thesis

Jennifer Jackson 243 of 357 May 2017

8.2.2.2 Tolerance of a Specific Attack with no Recovery (SI)

When there are no recovery mechanisms, tolerance of a security attack is critical

in maintaining QoS. It is presumed that high QoS levels are required to maintain

adequate functioning of an ad hoc ecosystem. However 100% tolerance is likely to

be difficult to achieve in practice since the susceptibility asymptotically approaches

zero as the variant richness increases producing diminishing benefits. A tolerance

below this may be sufficient to maintain an adequate QoS for the network. QoS

Tolerances of 80%, 90% and 95% are used to compare and determine the required

diversity in terms of the optimum number of software gene variants at each of the

four loci to tolerate a specific attack. Capturing the exact tolerance requirement for

real networks is difficult in the absence of data, or event based simulators which

have the ability to model lower levels of abstraction such as traffic generation and

communication protocols (see §9.3.1.2).

8.2.2.2.1 Optimum Diversity (General)

In the first instance the general equations are used (§6.4.4.4.1, §6.4.4.4.4) to

calculate the exact number of variants necessary to tolerate a specific number of

exploits targeting each of the four loci in the modelled software stack (§5.3.1.3,

Figure 5-5). A range of exploits are demonstrated for both the AND and OR

malware types up to a maximum of eight per locus. Table 8-1 shows the exact

number of exploits used and Figure 8-4 shows the calculated results.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 244 of 357 May 2017

Table 8-1 – Specific AND and OR malware examples

The optimum number of variants for the four locus AND and OR malware types

are computed using the general equation (6-32) and the general approximation

(because a high tolerance equates to a low) equation (6-39) respectively, together

with the minimisation equation (6-29) (§6.4.4.4) where the first computed optimum

solution is used as the final result. Optimum diversity results for the AND and OR

malware types for the three selected tolerance levels are given in Figure 8-4. To

show the results graphically the total number of exploits used by each malware is

on the x axis of the graphs. The required number of variants for each locus

(v1,v2,v3,v4) to tolerate each malware is shown in each vertical set on the graphs as

numbered. For the AND malware type fewer than 20 variants are needed per locus

to maintain a QoS Tolerance between 80% and 95% for up to eight exploits at each

locus. For the OR malware type however, up to 160 variants are needed for an 80%

tolerance rising to over 600 to maintain a 95% tolerance.

Malware Number

AND / OR x1 x2 x3 x4

1 2 3 2 4

2 4 3 5 4

3 5 4 6 5

4 6 4 6 7

5 6 5 8 7

6 8 5 8 8

7 8 8 7 8

8 8 8 8 8

Number of exploits (x) at each locus

Chapter 8 Ph.D. Thesis

Jennifer Jackson 245 of 357 May 2017

Figure 8-4 - Optimum diversity (variants at each locus) to tolerate an attack

10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

Total number of exploits

N
u
m

b
e
r

o
f

v
a
ri
a
n
ts

v1

v2

v3

v4

10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Total number of exploits

N
u
m

b
e
r

o
f

v
a
ri
a
n
ts

v1

v2

v3

v4

10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Total number of exploits

N
u
m

b
e
r

o
f

v
a
ri
a
n
ts

v1

v2

v3

v4

a) 80% Tolerance – 4 locus AND

d) 80% Tolerance – 4 locus OR e) 90% Tolerance – 4 locus OR f) 95% Tolerance – 4 locus OR

AND

80%

OR

80%

10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Total number of exploits

N
u
m

b
e
r

o
f

v
a
ri
a
n
ts

v1

v2

v3

v4

b) 90% Tolerance – 4 locus AND c) 95% Tolerance – 4 locus AND

AND

95%
AND

90%

10 15 20 25 30
0

50

100

150

200

250

300

350

Total number of exploits

N
u
m

b
e
r

o
f

v
a
ri
a
n
ts

v1

v2

v3

v4

10 15 20 25 30
0

100

200

300

400

500

600

Total number of exploits

N
u
m

b
e
r

o
f

v
a
ri
a
n
ts

v1

v2

v3

v4

OR

90%

OR

95%

1

2

3

4 5

6 7

8

1

2
3

4

5

6

7

8

1

2

3 4 5

6

7

8

1

2

3 4

5

6

7

8

1

2

3 4

5
6

7

8

1

2

3 4

5
6

7

8

Chapter 8 Ph.D. Thesis

Jennifer Jackson 246 of 357 May 2017

The advantage of the general method is that there can be several optimum

solutions from which to choose. This could be particularly useful for the AND

malware type where there are relations across loci, even for a large number of

variants. For example if there are an abundance of variants available at one locus,

but the variants are restricted at another, the QoS could be maintained by allocating

an alternative valid solution, aiming to comply with the variant restrictions. One

realistic example could be a limited number of available core OS library variants

balanced by having a greater number of application service variants (§3.2.1.3).

8.2.2.2.2 Optimum Diversity (Average)

In situations when the exact security risk at each locus is not clear, an average

number of exploits (exploit richness) can instead be specified resulting in a diversity

optimisation of an average number of variants (variant richness). Here there is only

one diversity solution and no minimisation is required. The one locus model is

compared to the four locus genotype model with the AND malware type using the

variant richness equation (6-33), and the OR malware type using the approximation

equation (6-40). The results are shown in Figure 8-5 for the three specific values.

Results for two and three loci are given in Appendix B.

The variant richness follows a linear relationship with the exploit richness. The

non-exact linear relationship for the four locus AND case (Figure 8-5 (c)) is due to

rounding when calculating an exact integer number of variants. For the AND

malware type, as more exploits are added across loci (e.g across four loci compared

to one locus) to propagate the malware and act out its malicious intent, the less

variant richness is required to achieve the same QoS Tolerance. However the

Chapter 8 Ph.D. Thesis

Jennifer Jackson 247 of 357 May 2017

resultant number of unique genotypes is very large as shown in Figure 8-5 (d) and

hence the minimum network size to achieve the required tolerance, under

maximum diversity conditions is also very large. For smaller network sizes the

number of genotypes present will equal the number of devices so that not all of

those possible genotypes will be utilised. This may alter the susceptibility and hence

the QoS. For the OR malware type (Figure 8-5 (b)), more variant richness is required

to achieve the same QoS tolerance, however under approximation conditions

(§6.4.4.4.4), the variant richness can also be used to define the minimum network

size which is considerably less than for the AND type. For the one locus model, the

resultant number of genotypes is the same as the variant richness.

Figure 8-5 - Optimum diversity (variant richness) to tolerate an attack

1 2 3 4 5 6 7 8
2

4

6

8

10

12

14

16

18

Exploit Richness

 V
a
ri
a
n
t

R
ic

h
n
e
s
s

80% Tolerance

90% Tolerance

95% Tolerance

a) One locus model b) 4 locus OR

c) Variant Richness 4 locus AND d) Genotypes 4 locus AND

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

M
a
x
im

u
m

 n
u
m

b
e
r

o
f

u
n
iq

u
e
 g

e
n
o
ty

p
e
s

80% Tolerance

90% Tolerance

95% Tolerance

1 2 3 4 5 6 7 8
10

4

10
6

10
8

10
10

10
12

Exploit Richness

M
a
x
im

u
m

 n
u
m

b
e
r

o
f

u
n
iq

u
e
 g

e
n
o
ty

p
e
s

(l
o
g
 s

c
a
le

)

80% Tolerance

90% Tolerance

95% Tolerance

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

80% Tolerance

90% Tolerance

95% Tolerance

Chapter 8 Ph.D. Thesis

Jennifer Jackson 248 of 357 May 2017

An example of a four locus – four exploit AND malware type is the Stuxnet

worm (§3.3.4). The worm caused the disruption of a nuclear facility, but closely

related versions, were later found propagating elsewhere [17]. To tolerate such a

worm at a network level where 95% of QoS is maintained, only three variants at

each of the four loci would have been needed. For an equivalent OR malware type,

such as those generated using exploit kits (§3.3) 80 variants would be needed.

8.2.2.3 Peak Infection Time with No Recovery (SI)

For a fixed number of devices and contact rate the peak

infection time can either be estimated by calculation (for the deterministic model

§6.4.5.1) for a specified QoS Tolerance (results given in §8.2.2.3.1) or calculated

from a specific malware attack with a specified (results given in §8.2.2.3.2) following

the process in Figure 8-3. In the first calculation no knowledge of the specific

malware attack or diversity is used. For a specified , equation (6-21) is used to

calculate and then substituted in equation (6-42) to calculate the peak time . For

a more accurate result diversity is firstly optimised for a specific malware attack to

account for the discrete values needed for the number of variants at each locus

(§6.4.4). This information is then used to recalculate the susceptibility for a

specific attack where the true peak infection times, using equation (6-42), can be

calculated.

8.2.2.3.1 Specified QoS Tolerance

Figure 8-6 (a) shows the calculated time of peak infection for a specified QoS

Tolerance (80%, 90% and 95%), whilst Figure 8-6 (b) shows the simulated time

(measured from simulation) for both the deterministic and stochastic SI models. The

Chapter 8 Ph.D. Thesis

Jennifer Jackson 249 of 357 May 2017

total network size was made large (20,000) so that even after reduction to those

susceptible, the simulated network was still considered large. The peak infection

time parameters are given in Table 8-2. The stochastic simulation was averaged over

500 runs, with the standard deviation bar as shown. As predicted, the simulated

deterministic result agrees with the calculated deterministic result. The difference

between the deterministic and stochastic curves is known as the stochastic lag [228].

The higher the specified QoS tolerance the fewer the number of devices that become

infected overall. Also the time to reach the peak of infection takes longer giving

more time available to react to the malware if intervention mechanisms such as

detection or recovery are present.

Figure 8-6 - Calculated and simulated peak infection times

Table 8-2 – Peak infection time parameters

78 80 82 84 86 88 90 92 94 96
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Quality of Service Tolerance

T
im

e
 o

f
p
e
a
k
 i
n
fe

c
ti
o
n
 (

H
o
u
rs

)

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time (Hours)

N
u
m

b
e
r

In
fe

c
te

d
 (

It
)

Deterministic It

Stochastic It

Deterministic T1

Stochastic T1

Calculated T1

a) Calculated peak infection time for a

specified QoS tolerance with no recovery

b) Simulated peak infection time for the

deterministic and stochastic SI models,

showing the standard deviation bars

80% Tolerance

90% Tolerance

95% Tolerance

Tolerance Sp Nn Ns βn βs
80% 0.2 20000 4000 0.02 0.004

90% 0.1 20000 2000 0.02 0.002

95% 0.05 20000 1000 0.02 0.001

Chapter 8 Ph.D. Thesis

Jennifer Jackson 250 of 357 May 2017

8.2.2.3.2 Specific Malware Attack with QoS Tolerance

Figure 8-7 show the corresponding calculated peak infection times for the

optimum variant richness given in Figure 8-5 for the three specified values. For

the one locus model and the OR type, the peak infection times in this scenario are

the same as those calculated and shown in Figure 8-6 (a) since the calculation

resulted in an integer number of variants for the values specified, although this

is not generally the case for all values. For the AND malware type there is a

difference due to both the power terms in the average variant richness equation

(6-33) and integer rounding. As an example, for the four locus AND type with one

exploit per locus, the true peak infection time is calculated to be over twelve hours

for 95% tolerance instead of just under four hours as previously estimated from

calculation, and thereby lengthening the time window of performance degradation

and hence increasing the reaction time for intervention. Results for two and three

loci are given in Appendix B and show similar differences in the peak infection

times for the AND case.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 251 of 357 May 2017

Figure 8-7 - Calculated peak infection times with no recovery

8.2.2.4 Tolerance of a Specific Attack with Recovery (SIR)

When recovery mechanisms are introduced at a rate of , rearrangement of the

final size equation for the SIR model defines the susceptibility for a specified QoS

tolerance (Equation (6-23)) (§6.4.4.2). Figure 8-8 (a) shows the relationship

between and where the ratio varies between and a large number (100)

for the three fixed values of . The large number represents the case where the

infection is so high, or the recovery is so low that it becomes representative of the SI

model with no recovery. In this case levels out to a value corresponding to the

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

Number of exploits per locus

P
e
a
k
 I

n
fe

c
ti
o
n
 T

im
e
 (

H
o
u
rs

)

80% Tolerance

90% Tolerance

95% Tolerance

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Number of exploits per locus

P
e
a
k
 I

n
fe

c
ti
o
n
 T

im
e
 (

H
o
u
rs

)

80% Tolerance

90% Tolerance

95% Tolerance

a) Peak Infection Time – one locus model

b) Peak Infection Time – 4 locus AND

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Number of exploits per locus

P
e
a
k
 I

n
fe

c
ti
o
n
 T

im
e
 (

H
o
u
rs

)

80% Tolerance

90% Tolerance

95% Tolerance

c) Peak Infection Time – 4 locus OR

Chapter 8 Ph.D. Thesis

Jennifer Jackson 252 of 357 May 2017

specified . The three critical values of are calculated and shown in Table 8-3

using the Bound C equation (6-26).

Table 8-3 – Critical Rc values for a given QT

Small values indicate either a low infection rate or a high recovery rate.

Under this condition, a high proportion of devices can become susceptible whilst

the QoS is still maintained.

Optimisation of diversity for a fixed of 0.8 (80%) with recovery is shown for

the one locus model (Figure 8-8 (b)), the four locus AND malware type (Figure

8-8(c)), and the four locus OR malware type (Figure 8-8 (d)). Malware types with up

to eight exploits at each locus are calculated. Four fixed values of the ratio are

used between the upper and lower bounds, where (bound A) and (bound B) (§6.4.4.2). For the one locus case as shown in Figure 8-8 (b), the

required variant richness (varies between 8 and 40 for 8 exploits. The required

upper limit of 40 equates to the result when there is a very low recovery rate or a

high infection rate since this is representative of when for the non recovery

scenario. The lower limit of 8 equates to the result where where all devices

are susceptible and so the number of variants equates to the minimum number

imposed to accommodate 8 exploits. This equates to the result when there is a high

recovery rate or a low infection rate.

QT RC

0.8 (80%) 1.1157

0.9 (90%) 1.0536

0.95(95%) 1.0259

Chapter 8 Ph.D. Thesis

Jennifer Jackson 253 of 357 May 2017

Figure 8-8 - Optimum diversity to tolerate an attack with recovery.

A similar relationship can be seen for the four locus AND shown in Figure 8-8

(c), except the variant richness range is smaller, and varies between 8 and 12 for 8

exploits. For the four locus OR case shown in Figure 8-8 (d), the variant richness

range is bigger and varies between 8 and 148 for the exact solution, and up to 160

for the approximate solution. The upper limit of the approximate solution equates to

the non recovery scenario. As shown in the graph using the OR approximation for

high values does not give an accurate result and so the full exact equation should

be used. High rates of recovery relative to the rate of infection can have a large

impact on the number of variants required for the OR malware type at each locus to

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

bn/y=Rc (Sp=1)

bn/y=2

bn/y=4

bn/y=100 (Sp=0.2)

Approx solutions (dotted lines)

Exact solutions

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

bn/y=Rc (Sp=1)

bn/y=2

bn/y=4

bn/y=100 (Sp=0.2)

c) Diversity optimisation for the AND

malware type with a 4 locus genotype

d) Diversity optimisation for the OR

malware type with a 4 locus genotype,

showing exact and approximate solutions

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

bn/y=Rc (Sp=1)

bn/y=2

bn/y=4

bn/y=100 (Sp=0.2)

b) Diversity optimisation for the one locus model

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

beta
n
/gamma

P
ro

p
o
rt

io
n
 s

u
s
c
e
p
ti
b
le

 S
p

80% Tolerance

90% Tolerance

95% Tolerance

R
c

Range for 8

exploits

High infection /

low recovery

Low infection /

high recovery0.2 (80%)

0.1 (90%)
0.05 (95%)

a) Susceptibility with recovery with varied

βn/Ȗ for three values of QT

Low infection /

high recovery

High infection /

low recovery

AND

80%

OR

80%

ONE

LOCUS

80%

Chapter 8 Ph.D. Thesis

Jennifer Jackson 254 of 357 May 2017

maintain an acceptable QoS. There is therefore a trade off between maintaining QoS,

the speed of recovery, and the variant richness.

The ability to recover quickly through patching in a system with diversity will

depend upon the way in which variants are generated and the way in which

variants are stored, and maintained. When variants are generated by COTS software

the total number of different patches required to maintain them will be higher than

a non-diverse system as there will be more underlying software. When comparing

patching against malware only however, the same number of different fixes will be

required in a non-diverse system as a diverse system to recover from the same

number of different malware. Even if the malware is comprised of multiple exploits,

each of the targeted vulnerabilities would need to be fixed in the software in both a

non-diverse and diverse system. In practice however for a non-diverse system

multiple fixes may be combined into a single patch, but would need to be

distributed to all devices. For a statically diverse system a smaller number of

devices would require patching. However the fixes may need to be spread over

several individual patches to be applied in parallel to different variants at different

loci. For the AND malware type, recovery would begin the moment the first patch is

applied due to the dependent relationship across loci. In a dynamically diverse

system the distribution of patches will depend upon how variants are stored. If

variants are stored in a globally accessible pool, patches would be applied to the

pool so that when they are next downloaded the patched versions are retrieved.

However if variants are stored locally, a single patch would need to be disseminated

to all devices with the vulnerable variant. When variants are generated using

Chapter 8 Ph.D. Thesis

Jennifer Jackson 255 of 357 May 2017

automated techniques, the amount of patching may depend upon the source of the

vulnerability. If an exploit attacked a single variant where the vulnerability source

was in the software code then all associated variants may need to be recompiled and

patched to avoid similar exploits attacking the same vulnerability in different

variants. If the vulnerability is associated with a single variant, only that would

need to be patched or replaced.

8.2.2.5 Mitigation of an Attack with Recovery (SIR)

To prevent a major outbreak of a specific malware type the reproduction number must be less than 1, where, using equation (6-28) must be less than the ratio . Figure 8-9 shows the relationship in terms of variant richness necessary to

mitigate an attack for a range of ratios with varying exploit richness. The one

locus model is compared to the four locus genotype for both the AND and OR

malware types. For example, for a ratio of 0.2, the one locus model would

require 20 software variants to mitigate a malware attack with 4 exploits. A four

locus AND malware attack with 4 exploits, each targeting a different locus (exploit

richness of one) would required a variant richness of 2 to mitigate the attack. A four

locus OR malware attack with the same exploit richness would require 19 variants.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 256 of 357 May 2017

Figure 8-9 - Optimum diversity to mitigate an attack with recovery

Practical recovery times in a network can vary widely. Antivirus response times

can range from around two hours upwards [3], and full software patching can take

several months [14]. With a minimum recovery time of two hours the

necessary diversity in terms of variant richness to mitigate an attack is calculated

where the average time between contacts is varied between 1 second and

10 minutes . The result for malware with an exploit richness of 1 is

given in Figure 8-10. Experimental data suggests that malware propagated over

wireless communication protocols such as Bluetooth could take in the order of 10

seconds, with most of this time spent setting up the communication link [263] [3]. In

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

y/bn=1.0

y/bn=0.8

y/bn=0.4

y/bn=0.2

y/bn=0.1

y/bn=0.08

R
0
 = 1 in all cases

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

y/bn=1.0

y/bn=0.8

y/bn=0.4

y/bn=0.2

y/bn=0.1

y/bn=0.08

R
0
 = 1 in all cases

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

y/bn=1.0

y/bn=0.8

y/bn=0.4

y/bn=0.2

y/bn=0.1

y/bn=0.08

R
0
 = 1 in all cases

Exact solutions

Approx solutions

(dashed lines)

a) 4 locus – AND malware type with up to 8 exploits b) 4 locus – OR malware type with up to 8 exploits

c) 1 locus model with up to 8 exploits

Chapter 8 Ph.D. Thesis

Jennifer Jackson 257 of 357 May 2017

a densely populated area where there may be many ad hoc devices, the average

time between successful contacts may therefore be around 10 seconds. With this

contact rate, the four locus AND malware type would only require a variant

richness of 6 to mitigate the attack, the one locus model would require 720 variants

and the four locus OR malware type would require a very large variant richness of

2,879 before preventing the spread.

Figure 8-10 – Malware mitigation of a practical scenario

This practical scenario re-iterates the danger of the OR malware type. Within a

designed software stack genotype it is assumed that the granularity and the

functionality is carefully defined in relation to potential malware (§5.3.1.3). Defining

a single locus as a complete operating system (including services, libraries and

kernel) would be a very course coarse grained approach with the possibility that

diversity applied in this way would be insufficient to reduce the susceptibility to

that of a potential AND malware type. It would be beneficial to apply granularity

and diversity of variants to ȁencourageȂ malware to be represented as being of the

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

one locus model

4 loci AND

4 loci OR

1 sec. 10 sec. 1 min. 10 min.

Average time between contacts

V
a

ri
a

n
t
R

ic
h

n
e

s
s

7200

720

120

12
10

6

4

2

28,799

2879

479

47

2 hour recovery time

Chapter 8 Ph.D. Thesis

Jennifer Jackson 258 of 357 May 2017

AND type leading it to span true ȁmulti-lociȂ since the generated genotype

configurations (assuming they encompass the separate locations at which the

malware targets) will reduce the susceptibility (§8.2.1.2). Equally there needs to be

consideration of the OR malware type which increases susceptibility as the number

of exploits across loci increases (§8.2.1.2). If the granularity and functionality

definition of the software stack genotypes is ill-considered for potential OR cases, it

may not improve the security benefit against these types of malware.

8.2.2.6 Simulated Resistance and Resilience to Mitigate an Attack

The resistance and resilience outputs of the ad hoc network ecosystem are used

to show their relationship with diversity in a constrained diverse system model. The

four locus AND and OR malware types are simulated using the deterministic

malware model (stochastic results are shown in §8.3.1.2) to measure the resistance

and resilience properties for mitigating a specific attack. A fixed ratio of 0.2 is

used to show the relationship. For example, from inspection of Figure 8-9 (a),

mitigation of the four locus AND type, with an exploit richness of one should occur

at a variant richness of two. values are calculated for a specified diversity and

malware attack using the process pictured in Figure 8-3. The diversity is varied

over a range to include the calculated optimum diversity points given by the lines in Figure 8-9. The deterministic malware model is run for a fixed

network size of 1000 devices with those calculated to be susceptible as at an

infection rate of using equations (6-1),(6-3),(6-4). Both the resistance and resilience

parameters are measured from the output of the simulations, where 100% resistance

equates to the point at which there is no malware outbreak. The calculated

Chapter 8 Ph.D. Thesis

Jennifer Jackson 259 of 357 May 2017

susceptibility values for specific AND and OR malware attacks are shown in

Figure 8-11 (a) and (b) respectively. The dashed lines are representative of an

value of 1 for an exploit richness of 1, and correspond to the calculated non

discretised values. Figure 8-11 (c) and (d) show the simulated number infected

for the AND and OR malware types, each with one exploit, respectively for above

and below the critical threshold. Variant richness values corresponding to show a clear malware outbreak with devices being infected. Variant richness

values corresponding to show the single infection dying away.

Figure 8-11 (e) and (f) show the simulated resistance from the deterministic

malware model for the AND and OR malware types respectively by measuring the

final size of the epidemic simulated and using the resistance equation (6-19) to

determine the resistance. For each specific malware simulated, as diversity increases

so too does the resistance, until it asymptotically approaches 100% past the critical

variant richness value where . The calculated points for the single exploit case

are indicated as dashed lines. The result is as expected and matches the variant

richness values calculated in Figure 8-9. With recovery mechanisms in place

therefore it is possible to determine from the simulated resistance, the variant

richness required to mitigate against specific malware types.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 260 of 357 May 2017

Figure 8-11 – Simulated resistance and resilience to mitigate an attack

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Variant Richness (diversity)

M
e
a
s
u
re

d
 R

e
s
is

ta
n
c
e
 M

R

x=1

x=2to8

R
0
 > 1

R
0
 < 1

Increasing

exploits

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

Time (Hours)

N
u
m

b
e
r

In
fe

c
te

d
 I

t

VR=2

VR=1

R
0
 < 1

R
0
 > 1

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness (diversity)

R
e
c
a
lc

u
la

te
d
 S

u
s
c
e
p
ti
b
ili

ty
 S

p

x=1

x=2to8

R
0
 < 1

R
0
 > 1

Increasing

exploits

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness (diversity)

R
e
c
a
lc

u
la

te
d
 S

u
s
c
e
p
ti
b
ili

ty
 S

p

x=1

x=2to8

R
0
 > 1

R
0
 < 1

Increasing

exploits

a) Recalculated Susceptibility of the 4 locus

AND type, with R0=1 located at Sp=0.2

c) Number infected above and below R0 =1

using the deterministic malware model with 4

locus AND type, and an exploit richness of 1,

h) Simulated Resilience using the deterministic

malware model with 4 locus OR type

g) Simulated Resilience using the deterministic

malware model with 4 locus AND type

0 0.5 1 1.5 2
0

5

10

15

20

Time (Hours)

N
u
m

b
e
r

In
fe

c
te

d
 I

t

VR=39

VR=21

VR=19

VR=12, R
0
 > 1

R
0
 < 1

b) Recalculated Susceptibility of the 4 locus

OR type, with R0=1 located at Sp=0.2

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Variant Richness (diversity)

M
e
a
s
u
re

d
 R

e
s
is

ta
n
c
e
 M

R

x=1

x=2to8

Increasing

exploits

R
0
 < 1

R
0
 > 1

d) Number infected above and below R0 =1

using the deterministic malware model with 4

locus OR type, and an exploit richness of 1,

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

-3

Variant Richness (diversity)

M
e
a
s
u
re

d
 R

e
s
ili

e
n
c
e
 M

L

x=1

x=2to8
R

0
 > 1

R
0
 < 1

Increasing

exploits

e) Simulated Resistance using the deterministic

malware model with 4 locus AND type

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

Variant Richness (diversity)

M
e
a
s
u
re

d
 R

e
s
ili

e
n
c
e
 M

L

x=1

x=2to8

Increasing

exploitsR
0
 < 1

R
0
 > 1

f) Simulated Resistance using the deterministic

malware model with 4 locus OR type

Graphs show calculated optimum diversity and simulated resistance and

resilience outputs from the deterministic malware model

Chapter 8 Ph.D. Thesis

Jennifer Jackson 261 of 357 May 2017

Figure 8-11 (g) and (h) show the measured resilience for the OR and AND

malware types respectively by recording the reciprocal of the time in which the

number recovered settles to within 1 device of the final value (§6.4.5.2). As diversity

increases towards the point of mitigation, the resilience actually worsens. The

reason for this can be explained: As diversity increases, fewer devices are

susceptible to the malware but the overall density of the devices remains the same.

This results in the malware taking longer to spread since it will take longer for a

susceptible device to come into contact with an infected device. Consequently this

means longer to recover from the point of initial infection (the infection curves

become shallower and more spread out). This has the result of reducing the

resilience until it reaches a minimum at the point. As diversity is increased

further beyond this point resilience rapidly increases as the malware infection dies

away faster. This result indicates that for the SIR epidemic model, an increase in

diversity can either reduce or increase resilience depending upon which side of the line it sits. However the model assumes that recovery can only occur after

infection has already taken place, since this is what happens in a biological system

where the recovery rate indicates the average time in which an individual remains

unwell before recovering. In a practical computing network patching and antivirus

updates now tend to occur at regular intervals regardless of whether a device is

infected and recovery could occur whilst still susceptible potentially changing the

resilience response to diversity and the point of mitigation and is discussed further

in future work (§9.3.1.3).

Chapter 8 Ph.D. Thesis

Jennifer Jackson 262 of 357 May 2017

8.2.3 Section Summary

This first section detailed the results of the epidemic based constrained diverse

system model. Despite its constraints it is able to model some general diversity

principles in relation to an ad hoc network ecosystem. The OR malware type poses a

higher security risk over the AND malware type since the more exploits there are

available, the greater the overall susceptibility. Additionally, malware with multiple

exploits targeting the same locus is a greater threat than those targeting multiple

loci with the same number of multiple exploits. Increasing static diversity in terms

of variant diversity in the ad hoc ecosystem can either increase or decrease

susceptibility of the devices depending upon which variants the malware is

targeting and the starting point of diversity in terms of variant frequencies. When

absolute maximum diversity is already achieved in an ad hoc ecosystem for a fixed

number of loci and variants, increasing diversity further in terms of variant richness

reduces the susceptibility and hence the security risk for both the OR and AND

malware types.

When there are no recovery measures in place the susceptibility defines how

resistant the ad hoc ecosystem is since all those susceptible eventually become

infected with the malware. With no recovery, static diversity can be optimised to

tolerate a specific type of attack in order to maintain a specified quality of service.

The process of diversity optimisation can be used to inform the minimum number

of software gene variants required at each locus of a software stack genotype. The

general method of diversity optimisation can be used to choose from several

solutions, which could benefit situations where there are a limited number of

variants available at one particular locus, such as a limited number of operating

Chapter 8 Ph.D. Thesis

Jennifer Jackson 263 of 357 May 2017

system core library variants, and an abundance of variants at another. This could be

particularly useful for guarding against the AND malware type where there are

relations across loci. The time taken for the malware to fully spread, denoted as the

peak infection time, can be calculated from a specified quality of service tolerance or

a specific type of attack.

When there are recovery measures in place such as through the release of

antivirus signatures and software patches it may be possible to have a higher level

of susceptibility whilst maintaining an adequate quality of service. There is a trade

off between optimising diversity, maintaining quality of service, and the speed of

recovery. Additionally, when there is recovery, diversity can be used to not only

tolerate, but also mitigate against a specific attack. The minimum variant richness is

calculated to prevent the spread of specific malware types which occurs when the

reproduction number is less than unity. For the four locus AND malware type, such

as a Bluetooth version of the Stuxnet worm, mitigation of the attack at the network

level could have occurred with a variant richness of 6 assuming it could be detected

and patched within a couple of hours.

 Ecosystem resistance and resilience can be measured from the malware model

given a constrained set of input parameters. Resistance to malware increases with

static diversity, which asymptotically approaches 100% once past the critical

mitigation point. Simulated resistance can therefore also be used to determine the

necessary diversity needed to mitigate an attack. Static diversity can both reduce

and increase resilience depending upon which side of the mitigation point it sits. As

diversity increases fewer devices are susceptible resulting in the malware taking

Chapter 8 Ph.D. Thesis

Jennifer Jackson 264 of 357 May 2017

longer to spread and consequently longer to recover (since the model assumes

recovery only takes place after an infection), and hence reducing the resilience until

mitigation occurs. As diversity is increased further beyond this point resilience

rapidly increases as the malware infection dies away faster.

8.3 Diverse System Model: Agent-Based

8.3.1 Constrained Agent System Model as an Epidemic Model

Firstly, the agent model is constrained by the random encounter (RE) network

model, static diversity, and the SIR malware model as detailed in chapter 7, and

compared to the epidemic model by measuring susceptibility and simulating the

mitigation of the different malware attack types. The purpose is to verify and

baseline the agent model to allow further comparisons with additional and dynamic

mechanisms. All simulations are conducted at maximum variant diversity for a

given number of variants.

8.3.1.1 Susceptibility Relationships: Agent vs. Epidemic

The proportion of devices susceptible to a particular malware type within a static

diversity system of the agent model is compared to that calculated using the

epidemic model equations (§6.3.2) and is given in Figure 8-12. The initial diversity

conditions are generated using the static diversity random assignment (§7.5.1),

which when matched directly with malware gives the initial susceptibility of the

network. The network was simulated with 1000 nodes over 10 runs (although the

same accuracy can be achieved with 10 nodes over 1000 runs). The susceptibility

influences how many and how quickly the devices become infected and the result is

Chapter 8 Ph.D. Thesis

Jennifer Jackson 265 of 357 May 2017

generated from the combination of diversity and malware type. For the epidemic

model only those susceptible are simulated in a malware attack. For the agent

model, all devices are simulated, however it is necessary to ensure that the number

susceptible can be adequately represented within the population to achieve an

accurate result without requiring the full calculated minimum network size (§7.8.1).

Figure 8-12 – Susceptibility: agent model vs. epidemic model

The simulation includes the variant richness parameter range used in subsequent

results to capture the point of mitigation for the examples modelled (Upper bound

of 10 for the 1 locus malware, 30 for the 4 locus OR malware, 5 for the 4 locus AND

malware). Figure 8-12 confirms how the simulated agent model susceptibility result

a) 1 locus model – 1000 devices, 10 runs

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

S
u
s
c
e
p
ti
b
ili

ty
 (

m
e
a
n
)

Agent (simulated)

Calculated (exact)

1

exploit

Increasing Exploits

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

 S
u
s
c
e
p
ti
b
ili

ty
 (

m
e
a
n
)

Agent (simulated)

Calculated (exact)

Increasing Exploit Richness

1

exploit

per

locus

b) 4 locus AND – 1000 devices, 10 runs

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

S
u
s
c
e
p
ti
b
ili

ty
 (

m
e
a
n
)

Agent (simulated)

Calculated (exact)

Calculated (approximated)

1

exploit

per

locus

Increasing Exploit Richness

c) 4 locus OR – 1000 devices, 10 runs

Chapter 8 Ph.D. Thesis

Jennifer Jackson 266 of 357 May 2017

is closely aligned to the calculated epidemic model result for the static diversity

scenario averaged over the 10 runs.

8.3.1.2 Comparative Mitigation of an Attack

For the epidemic model, the mitigation point of an attack where 100% resistance

occurs, for a given exploit richness and malware type can be calculated to determine

the necessary variant richness and is previously shown in section 8.2.2.5, for fixed ratios. The constrained agent model behaves as a stochastic epidemic model

(§7) and so the resistance and resilience output measurements of the deterministic

example along with the approximation properties of the stochastic SIR (§4.3.3.6) are

used to predict the measured agent result. As with the deterministic epidemic

model example a fixed ratio of 0.2 is used where .

Comparisons are conducted for an exploit richness of one so that the calculated

variant richness , using equations (6-33) and (A-8), to mitigate an attack under

absolute maximum diversity (§5.3.2.3) conditions is estimated for the agent result as

given in Table 8-4. Results from the agent model are shown with an exploit richness

of one, to focus upon additional aspects that the mathematical model does not

simulate. Increasing the exploit richness will follow the relationships already shown

by the mathematical model with the same input conditions (§8.2).

Table 8-4 - Calculated variant richness to mitigate an attack

Malware type

Exploit

Richness

(ER)

Calculated

mitigation point:

Variant Richness

Discrete

mitigation point:

Variant Richness (VR)

One locus model 1 5.00 5

4 loci AND 1 1.50 2

4 loci OR 1 18.43 19

Chapter 8 Ph.D. Thesis

Jennifer Jackson 267 of 357 May 2017

Simulations are conducted with 1000 devices. For the stochastic and agent

models each data point is averaged over 100 runs. Statistical properties of the output

simulations are graphically compared, in Figure 8-13 to Figure 8-15, to the

approximation calculations of the stochastic SIR (§4.3.3.6) to confirm accuracy of the

results. These properties include the proportion of major outbreaks (Equation 4-41),

the mean resistance (determined from the mean of the final size – Equation 4-42),

and the standard deviation (Equation 4-43) of the output distributions over the

variant richness range of interest.

8.3.1.2.1 One Locus Model

The results for the one locus model are given in Figure 8-13 with the compared

resistance and resilience given in (a) and (b) respectively. The dashed lines represent

the calculated mitigation point before rounding to the nearest whole

number (note for the one locus model produces an exact of 5). The

measured resistance of the simulated agent and stochastic models are derived from

the mean of the final size of the major outbreak distribution, which is shown for the

agent model in Figure 8-13 (c) and (d) for two different values. Figure 8-13 (c)

shows the result when . Under this condition and the minor and

major outbreak distributions are far apart. The measured proportion of major

outbreaks for each of the agent and stochastic models is given in Figure 8-13 (e)

and is closely comparable to the stochastic approximation calculation ((4-42). The

infection curves for the simulated outputs are given in Figure 8-13 (f) showing the

resultant mean of only the major epidemics against the deterministic model.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 268 of 357 May 2017

Outputs for are clearly visible and closely resemble the deterministic

result.

As approaches 1, the minor and major distributions merge together as shown

in Figure 8-13 (d) for a of 5 at the calculated mitigation point , thus

making it difficult to distinguish the separation between the two distributions.

When major outbreaks are no longer detected (determined by a specified cut off

point between the two distributions) only minor outbreaks remain. At this point the

simulated is assumed to be the point of malware mitigation.

Due to the stochastic nature of the modelȂs output around the mitigation point

major outbreaks may still be occurring: It depends on how close the point is to

the mitigation point. In the case of the one locus model the point of 5 sits exactly

at the mitigation point. For the agent model some major outbreaks will still occur

due to the way in which the software variants are assigned randomly from a

uniform distribution. The measured susceptibility distribution of the agent

model at is shown in Figure 8-13 (h). The calculated at is 0.2

equating to 200 devices. The distribution sits around this point leading to some runs

with major outbreaks (those above 200 susceptible devices). By the time only

minor outbreaks are detected and the resistance for both stochastic and agent

models is measured as 100%. Both the stochastic and agent models have therefore

detected the mitigation point to be located at .

The resilience measured by both the stochastic and agent models as shown in

Figure 8-13 (b) reduces with variant richness to a minimum at the mitigation point

due to the infection taking longer to spread and hence longer to recover before

Chapter 8 Ph.D. Thesis

Jennifer Jackson 269 of 357 May 2017

jumping to maximum resilience where no major outbreaks occur. The deterministic

model however rises comparatively slower as there is no distinction between minor

and major epidemics, with the infection dying away faster as diversity increases

(§8.2.2.6).

8.3.1.2.2 Multiple Loci

Results for the four locus AND and OR malware types are given in Figure 8-14

and Figure 8-15 respectively. For the AND result both the agent and stochastic

models measure the mitigation point correctly as due to three factors. Firstly,

the true calculated mitigation point lies under and is shown by the dashed

line in Figure 8-14 (a), (b), and (e) so that when there is already no trace of

major outbreaks occurring. Secondly, Figure 8-2 of section 8.2.1.2 shows the

relationship between and for the different malware types. The AND malware

type shows a steep gradient so that when is increased from 1 to 2 there is a large

change in (shifts from 1 to 0.0625) which corresponds to . This

gives the clear simulated result of the mitigation point. Thirdly the approximated

standard deviation is very small for a low-valued and so the error will be very

small over 100 runs. This can be seen in Figure 8-14 (g) where the measured

standard deviation is very close to the approximated value.

For the OR result as shown in Figure 8-15 there is a larger difference between the

measured and calculated result for the opposite reasons to the AND case. The

steepness of the versus gradient at the critical value of 0.2 is much

shallower than the AND case and also more shallow than in the one locus model.

Therefore, several of the points lie very close to the critical value with the

Chapter 8 Ph.D. Thesis

Jennifer Jackson 270 of 357 May 2017

susceptibility distributions overlapping the mitigation point. The approximated

standard deviation of the distribution is very large as shown in Figure 8-15 (g),

causing the minor and major outbreaks to merge together and making it difficult to

establish a cut off point between the two distributions. This larger standard

deviation increases the uncertainty of the mitigation point which must then be

extended to a point where no major outbreaks are detected, which occurs after the

calculated point. For the agent model this is measured as and in

the stochastic model measured as .

In conclusion therefore the constrained agent model is representative of the

stochastic model, however there may be differences in the measured point of

mitigation. The stochastic and agent models may show a higher diversity

requirement to mitigate an attack than the approximated or deterministic result.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 271 of 357 May 2017

Figure 8-13 - One locus model: agent vs. stochastic and deterministic

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Variant Richness

P
ro

p
o
rt

io
n
 o

f
m

a
jo

r
o
u
tb

re
a
k
s

Agent (simulated)

Stochastic (simulated)

Stochastic (approximated)

R
0
 < 1

R
0
 > 1 agent / stochastic

measured
R

0
=1 at V

R
 = 6

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

R
e
s
is

ta
n
c
e
 M

R

Agent (simulated)

Deterministic (simulated)

Stochastic (simulated)

Stochastic (approximated)

R
0
 < 1

R
0
 > 1

calculated R
0
=1

at V
R
=5

agent/stochastic

measured
R

0
=1 at V

R
 = 6

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

R
e
s
ili

e
n
c
e
 M

L

Agent

(simulated)

Deterministic

(simulated)

Stochastic

(simulated)

calculated
 R

0
=1

at V
R
=5

R
0
 < 1

R
0
 > 1

agent/stochastic

measured
R

0
=1 at V

R
 = 6

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Variant Richness

S
ta

n
d
a
rd

 D
e
v
ia

tio
n

Agent (simulated)

Stochastic (simulated)

Stochastic (approximated)

50 100 150 200 250 300 350
0

5

10

15

20

measured susceptibility

N
u
m

b
e
r

o
f
ru

n
s

S
p
=0.2 at R

0
=1

mean at 200 devices

V
R
=5

b) Resilience of the one locus malware type with an

exploit richness ER=1 for a fixed βn/Ȗ for varying VR.

e) Probability of a major outbreak f) Mean of the major outbreaks

0 100 200 300 400 500
0

10

20

30

40

50

60

Final size (Recovered)

N
u
m

b
e
r

o
f
ru

n
s

Minor outbreaks

Major outbreaks

0 100 200 300 400 500
0

10

20

30

40

50

60

Final size (Recovered)

N
u
m

b
e
r

o
f
ru

n
s

Minor and major outbreak distributions
begin to merge around V

R
 = 5

a) Resistance to the one locus malware type with an

exploit richness ER=1 for a fixed βn/Ȗ for varying VR.

Shows the amount of VR needed to mitigate the attack.

c) Histogram showing the final size distribution of the

agent model when VR = 2. The minor and major outbreak

distributions are clearly separate.

d) Histogram showing the final size distribution of the

agent model when VR = 5 at the calculated R0=1 point.

h) Measured susceptibility of the agent model at VR=5g) Standard deviation of the major distribution

2 4 6 8
0

5

10

x 10
-4

Variant Richness

R
e
s
ili

e
n
c
e
 M

L

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

500

Time (seconds)

N
u
m

b
e
r

o
f
in

d
iv

id
u
a
ls

 in
fe

c
te

d
 I
(t

)

Agent (simulated)

Deterministic

Stochastic (simulated)

V
R
 = 2

V
R
 = 3

V
R
 = 1

Chapter 8 Ph.D. Thesis

Jennifer Jackson 272 of 357 May 2017

Figure 8-14 – Four locus AND malware: agent vs. stochastic and deterministic

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Variant Richness

P
ro

p
o
rt

io
n
 o

f
m

a
jo

r
o
u
tb

re
a
k
s

Agent (simulated)

Stochastic (simulated)

Stochastic (approximated)

R
0

 > 1 R
0
 < 1

measured and
calculated R

0
=1

at V
R
 = 2

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Variant Richness

R
e
s
is

ta
n
c
e
 M

R

Agent (simulated)

Deterministic (simulated)

Stochastic (approximated)

Stochastic (simulated)

R
0

 > 1 R
0
 < 1

measured and
calculated R

0
=1

at V
R
 = 2

a) Resistance to the 4 locus AND malware type with an

exploit richness ER=1 for a fixed βn/Ȗ for varying VR.

Shows the amount of VR needed to mitigate the attack.

b) Resilience of the 4 locus AND malware type with an

exploit richness ER=1 for a fixed βn/Ȗ for varying VR.

e) Probability of a major outbreak f) Mean of the major outbreaks

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

Final size (Recovered)

N
u
m

b
e
r

o
f
ru

n
s

Major outbreaks

Minor outbreaks

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

Final size (Recovered)

N
u
m

b
e
r

o
f
ru

n
s

Minor outbreaks only

c) Histogram showing the final size distribution of the

agent model when VR = 1. The minor and major outbreak

distributions are clearly separate.

d) Histogram showing the final size distribution of the

agent model when VR = 2 where only minor outbreaks

occur.

g) Standard deviation of the major distribution

0 500 1000 1500 2000
0

100

200

300

400

500

Time (seconds)

N
u
m

b
e
r

o
f
in

d
iv

id
u
a
ls

 in
fe

c
te

d
 I
(t

)

Agent (simulated)

Deterministic (simulated)

Stochastic (simulated)

V
R
=1

V
R
=2

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Variant Richness

S
ta

n
d
a
rd

 d
e
v
ia

tio
n

Agent (simulated)

Stochastic (simulated)

Stochastic (approximated)

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Variant Richness

R
e
s
ili

e
n
c
e
 M

L

Agent (simulated)

Deterministic (simulated)

Stochastic (simulated)

Deterministic result

 includes time of initial

 infection to die away

R
0

 > 1
R

0
 < 1

measured R
0
=1

at V
R
 = 2

Chapter 8 Ph.D. Thesis

Jennifer Jackson 273 of 357 May 2017

Figure 8-15 – Four locus OR Malware: agent vs. stochastic and deterministic

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Variant Richness

R
e
s
is

ta
n
c
e
 M

R

Agent (simulated)

 Deterministic (simulated)

Stochastic (simulated)

Stochastic (approximated)

R
0
 > 1

R
0
 < 1

calculated R
0
=1

at V
R
=19

agent measured
 R

0
=1

at V
R
 = 24

stochastic measured
at V

R
=23

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Variant Richness

P
ro

p
o
rt

io
n
 o

f
m

a
jo

r
o
u
tb

re
a
k
s

Agent (simulated)

Stochastic (simulated)

Stochastic (approximated)

R
0
 > 1

R
0
 < 1

agent measured
 R

0
=1

at V
R
 = 24

stochastic measured
at V

R
=23

b) Resilience of the 4 locus OR malware type with an

exploit richness ER=1for a fixed βn/Ȗ for varying VR.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

Final size (Recovered)

N
u
m

b
e
r

o
f
ru

n
s

Minor outbreaks

Major outbreaks

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

Final size (Recovered)

N
u
m

b
e
r

o
f
ru

n
s

Minor and major outbreak distributions
merge together around R

0
 =1

e) Probability of a major outbreak f) Mean of the major outbreaks

c) Histogram showing the final size distribution of the

agent model when VR = 5. The minor and major outbreak

distributions are clearly separate.

d) Histogram showing the final size distribution of the

agent model when VR = 19 close to the calculated

R0=1 point.

a) Resistance to the 4 locus OR malware type with an

exploit richness ER=1 for a fixed βn/Ȗ for varying VR.

Shows the amount of VR needed to mitigate the attack.

g) Standard deviation of the major distribution

0 200 400 600 800 1000
0

100

200

300

400

500

600

Time (seconds)

N
u
m

b
e
r

o
f
in

d
iv

id
u
a
ls

 in
fe

c
te

d
 I
(t

)

Agent

(simulated)

Deterministic

(simulated)

Stochastic

(simulated)

V
R
=1

V
R
=3

V
R
=5

V
R
=7

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Variant Richness

S
ta

n
d
a
rd

 d
e
v
ia

tio
n

Agent (simulated)

Stochastic (simulated)

Stochastic (approximated)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Variant Richness

R
e
s
ili

e
n
c
e
 M

L

Agent (simulated)

Deterministic (simulated)

Stochastic (simulated)

R
0
 > 1

R
0
 < 1

agent

measured
 R

0
=1

at V
R
 = 24

stochastic

measured
at V

R
=23

Chapter 8 Ph.D. Thesis

Jennifer Jackson 274 of 357 May 2017

8.3.2 Dynamic Diversity Performance with the RE Network

Model

For the static diversity case modelled by the constrained mode of operation,

maximum diversity is already achieved through the uniformly distributed pre-

assignment of variants. In a practical ad hoc network diversity may not be pre-

assigned, or the starting condition may have no diversity at all in a worst case

scenario. In order to achieve maximum diversity and be able to adapt to changing

information and constraints, diversity is assigned dynamically using continuous

dynamic updating (§7.6). The performance of the random variant (RV) algorithm,

which can be seen as an extension to the static case, and the Favourability Score (FS)

algorithm, which assumes distributed knowledge, in reaching the maximum

obtainable variant diversity is compared with the random encounter (RE) network

model (see §8.3.6 for the random waypoint (RWP) network model).

8.3.2.1 Ideal Scenario

The maximum variant diversity that can be achieved in an ideal scenario where

there are no practical constraints is limited by the number of variants and can be

calculated using equation (7-2). The time taken to achieve this limited maximum

variant diversity, given a fixed contact rate, from a starting point where all devices

have the same set of variants and hence genotypes (i.e no diversity), is dependent

upon how often the devices are updated. Figure 8-16 (a) shows the time evolution of

the network in reaching maximum diversity for four different update rates (number

of encounters before an update) when the variant richness . The linear

Chapter 8 Ph.D. Thesis

Jennifer Jackson 275 of 357 May 2017

relationship with time is shown in Figure 8-16 (b) where it tapers towards a point

when updates are performed at every encounter.

Figure 8-16 - Dynamic diversity performance: random encounters

The difference between the random variant algorithm (RV-E) and the

favourability score (FS) algorithm is additionally shown in Figure 8-16 (b), but is

better seen in Figure 8-16 (c) as is varied. The contact rate is fixed at 0.02 and the

network size is fixed at 1000 devices to be consistent with previous results (§8.3.1.2).

The contact rate is fixed to compare the mean time to reach maximum diversity

(Figure 8-16) for the two different algorithms. The FS algorithm has a fixed buffer

size of 10 genotypes representing a 1% view of the network at any point in time. For

a changing network, recording too many genotypes will capture too much historical

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

V
a
ri
a
n
t

D
iv

e
rs

it
y

RV-E

FS

Increasing number

of encounters

before an update

20

1
10

50

Calculated maximum

V
R
=5

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

Number of encounters before an update

M
e
a
n
 t
im

e
 t
o
 r

e
a
c
h
 m

a
x
im

u
m

 d
iv

e
rs

ity

RV-E

FS

Increasing V
R

Increasing encounters

before an update

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

Variant Richness

M
e
a
n
 t
im

e
 t
o
 r

e
a
c
h
 m

a
x
im

u
m

 d
iv

e
rs

ity

RV-E

FS

Increasing encounters

before an update

10

20

50

1

b) Relationship between genotype updates and the

time to achieve maximum variant diversity

c) Relationship between variant richness and the time

to achieve maximum variant diversity

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness (V
R
)

V
a
ri
a
n
t

D
iv

e
rs

it
y

(m
e
a
n
 a

c
ro

s
s
 t

im
e
 a

ft
e
r

m
a
x
im

u
m

 r
e
a
c
h
e
d
)

RV-E

FS

Calculated maximum

no constraints

1/4 constrained to the same variant

1/2 constrained to the same variant

3/4 constrained to the same variant

Random Encounter

Network Model

d) Measured variant diversity when constraints are

applied to random devices

a) Time evolution to reach maximum diversity for a VR=5,

for varying number of encounters before an update

Chapter 8 Ph.D. Thesis

Jennifer Jackson 276 of 357 May 2017

data and will be unrepresentative of local genotype configurations both in terms of

physical locality and time. A buffer size of 10 is chosen to perform decisions based

upon the most recently encountered devices and their configurations. For small

values, which would be likely in practice if commercial off the shelf (COTS)

software programs are utilised to generate the different variants (§3.2.1.3,3.4.4.6), the

FS algorithm is faster at reaching maximum diversity. This can be explained by

considering the initial conditions. When the initial point of diversity is at a

minimum (all devices have the same dominating variant), the dominating variant

has an equal probability of being picked again for the RV-E algorithm relative to the

other variants, whereas it is less likely to be chosen initially by the FS algorithm

since it is already being used with a high frequency. The probability of picking the

dominating variant reduces as the variant richness increases hence the time to reach

maximum diversity in this case is approximately the same for both algorithms. For

the RV algorithm that is dependent upon time only (RV-T), maximum diversity can

be reached in one time interval (not shown in the graphs) when the update rate is

set to one time interval. The fastest way to achieve maximum diversity for the

distributed algorithm is to perform updates at every successful encounter where

new genotype information is available.

8.3.2.2 The Constrained Scenario

For a generically constrained scenario, the calculated maximum obtainable

variant diversity (§7.4.2) can no longer be reached, instead the actual diversity

achieved can be measured and is compared between the RV-E and FS algorithms. A

generically constrained scenario refers to anything in the ad hoc ecosystem

Chapter 8 Ph.D. Thesis

Jennifer Jackson 277 of 357 May 2017

constraining the availability of, or reducing the use of variants, and thus limiting the

variant diversity (§7.4.3). For example those caused by user desirabilities or

hardware constraints, the blacklisting of variants, or software incompatibilities.

Constraints are applied to both algorithms such that a proportion of devices (¼ , ½,

¾) are limited to having a selection choice of the same single variant at a single

locus such that for the constrained devices they appear to have no diversity between

them which remains static over time. The remaining devices continue to have a

choice of all variants.

Figure 8-16 (d) shows the resultant variant diversity of the network as is

varied for a single locus. The differences between the achievable diversity reached

by the two algorithms can be explained. For lower values, the FS algorithm can

obtain a higher diversity since it will avoid using the constrained variant whereas

the RV algorithm continues to assign the constrained variant using the same

uniform distribution. This also accounts for the larger difference when more devices

are constrained. For a large , there is less difference in achievable diversity

between the two algorithms, since there are more variants to choose from and the

likelihood of choosing the constrained variant diminishes.

In an ideal scenario therefore both the RV and FS dynamic diversity algorithms

can achieve maximum diversity, with the FS algorithm performing faster with the

same input conditions. When a realistic scenario is simulated where there are likely

to be constraints imposed on a proportion of the devices, the distributed FS

algorithm can have an advantage over the RV algorithm by achieving a higher

Chapter 8 Ph.D. Thesis

Jennifer Jackson 278 of 357 May 2017

variant diversity level. The impact of constraints and differences in variant diversity

on malware propagation is considered in section 8.3.5.

8.3.3 Malware Attack within an RE Network with Continuous

Updating

8.3.3.1 With no Recovery (SI)

During continuous dynamic updating, the dynamic diversity algorithms aim to

maximise diversity, and if left, continue to update and maintain the required

diversity level responding to encounters with other devices and changes in the

network. Constantly changing configurations can confuse a targeted attacker

(§3.4.3.4), but its effect on the spread of malware, when configurations are selected

from a common pool is shown in Figure 8-17. Figure 8-17 (a) shows the averaged

time evolution of a malware epidemic using the different static and dynamic

diversity schemes, with the dynamic algorithms using continuous dynamic updates.

No additional security mechanisms or constraints are used. Under this

configuration the malware model has two states: S and I, and the FS and RV

algorithms perform equally following the same curves. The dynamic algorithms are

compared to both the static case with the same variant richness of five, and the case

of no diversity. The contact rate is fixed at 0.02, since when there is no recovery,

there is no reproduction number and varying the contact rate does not change the

magnitude of the final state, only the speed at which it happens. It is the impact of

diversity that is the focus, not the changing timescales. The malware epidemic is

initiated after the dynamic algorithms have reached their maximum diversity level.

As shown in Figure 8-17 (a), for such a dynamic diversity scheme eventually all

Chapter 8 Ph.D. Thesis

Jennifer Jackson 279 of 357 May 2017

devices become infected over time, and this is unlike the static case which protects a

proportion of devices from becoming infected (for a single malware). The reason

being is that as devices randomly interact within a closed space, at some point in

time an infected device will still come into contact with a susceptible device. The

result of continuous dynamic updating from the same pool of software is that the

final size of the epidemic is as bad as the non-diverse case so that the resistance is

zero. However, the infection process is slowed down by dynamic diversity and the

linear relationship between time and the number of variants is shown in Figure 8-17

(c) and (d). The time taken for the whole network to become infected is also

dependent on the contact rate of devices and hence the update rate of genotypes as

shown in Figure 8-17 (b) since the malware can only spread at the rate of susceptible

contact. Attempting genotype update rates more often than every encounter has no

further impact on the network infection time, which can be seen where the RV-T

(update rate of one time interval) and the RV-E (update rate of one encounter)

follow the same curve.

This suggests that although the continuous dynamic mechanism lengthens the

time taken to reach the peak of infection in comparison to no diversity at all, it

would be more beneficial to employ static diversity when there are no additional

security mechanisms in place to minimise the final size of the epidemic. Static

diversity however can be open to targeted attacks on specific devices if their

configurations remain fixed and become known for a sufficient amount of time.

Additionally, devices in reality do not move in random patterns. For example if

moving devices with common vulnerable variants congregate, malware may spread

Chapter 8 Ph.D. Thesis

Jennifer Jackson 280 of 357 May 2017

quickly in these areas when configurations cannot be changed. Thus the optimum

solution would be to maximise diversity as quickly as possible in a changing

network and then remain static for as long as possible, particularly during a

malware epidemic. The results also suggest that whilst distributed analysis of local

diversity could be beneficial for maximising network variant diversity in a

practically constrained scenario (§8.3.2), allowing all devices access to all software

may not be effective. Restricting software access would not be realistic when

variants are provided by COTS software programs, however automated software

generation using the techniques described in section 3.4.2 could be used to locally

generate variants from established sources with restrictions on their distribution.

Figure 8-17 - Malware epidemic comparing different diversity schemes

0 0.5 1 1.5 2 2.5 3

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time (seconds)

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s
 in

fe
c
te

d

No diversity

Static

RV-T (delta t)

RV-E

FS

1

10
20

50

100

V
R
=5

Increasing number of

encounters before an

update

1000 2000 3000 4000 5000 6000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s
 i
n
fe

c
te

d

1
2

4

6
8

10

Increasing number of
variants, V

R

a) Epidemic evolution with continuous dynamic updating and

varying update rate, 1000 devices over 20 runs
b) Peak infection time with continuous dynamic updating and

varying update rate

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

Variant Richness

T
im

e
 t

o
 r

e
a
c
h
 p

e
a
k
 i
n
fe

c
ti
o
n

 FS
 FS

c) Epidemic evolution with continuous dynamic updating and

increasing variant richness

d) Peak infection time with continuous dynamic updating

(performed every encounter) and increasing variant richness

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8
x 10

4

Number of encounters before an update

P
e
a
k
 I
n
fe

c
tio

n
 T

im
e
 (

T
1
)

No diversity

Static

RV-T (delta t)

RV-E

FS

V
R
=5

Chapter 8 Ph.D. Thesis

Jennifer Jackson 281 of 357 May 2017

8.3.3.2 With Recovery (SIR)

When recovery mechanisms are available to remove malware from infected

devices and prevent re-infection, diversity can be used to mitigate an attack even

when performing continuous dynamic updates. In fact, the same mitigation point is

observed for both static and dynamic diversity as shown in Figure 8-18 for the one

locus, and Figure 8-19 for the four locus AND and OR malware types. The

proportion of major outbreaks quickly diminishes to zero past the mitigation point.

Results are shown for malware with an exploit richness of one. For values less

than the mitigation point, the resistance to the malware can be much less for

continuous dynamic updating, depending upon the update rate. For the single locus

case and the OR type it can be seen that the faster the update rate (small number of

encounters), the lower the resistance, until the point where the amount of

variant richness is sufficient to prevent further malware outbreaks. The reduction in

resistance due to the dynamic algorithms is not apparent for the AND case shown

since for a of 1 all devices are susceptible so there is no diversity, and for a of

2, the point has already been surpassed, showing no differences in the

outcome between static and dynamic diversity.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 282 of 357 May 2017

Figure 8-18 – Malware resistance with recovery – one locus

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
s
is

ta
n
c
e

Variant Richness

Stochastic Approx - static

Agent static

Agent RV-T

Agent Continuous update

50

Increasing

number of

encounters

before an

update

10
20

1

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
m

a
jo

r
o
u
tb

re
a
k
s

Variant Richness

Stochastic Approx - static

Agent Continuous update 1

Agent Continuous update 10

Agent Continuous update 20

Agent Continuous update 50

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 F

in
a
l
S

iz
e

Variant Richness

Stochastic Approx - static

Agent Continuous update 1

Agent Continuous update 10

Agent Continuous update 20

Agent Continuous update 50

a) 1 locus - Resistance with continuous update

1000 devices averaged over 100 runs

b) 1 locus - Proportion of major outbreaks

1000 devices averaged over 100 runs

c) 1 locus - Standard Deviation

1000 devices averaged over 100 runs

Chapter 8 Ph.D. Thesis

Jennifer Jackson 283 of 357 May 2017

Figure 8-19 – Malware resistance with recovery – AND / OR

In a fast changing network therefore, where it may be necessary to perform

regular updates to maintain maximum diversity or confuse targeted attackers,

malware mitigation can still be achieved if there are enough variants available for a

given speed of recovery. Below the mitigation point there is a trade off between the

update rate to achieve and maintain maximum diversity, and lowering the

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
s
is

ta
n
c
e

Variant Richness

Stochastic Approx - static

Agent static

Agent RV-T

Agent Continuous update

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
m

a
jo

r
o
u
tb

re
a
k
s

Variant Richness

Stochastic Approx - static

Agent Continuous update 1

Agent Continuous update 10

Agent Continuous update 20

Agent Continuous update 50

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 F

in
a
l
S

iz
e

Variant Richness

Stochastic Approx - static

Agent Continuous update 1

Agent Continuous update 10

Agent Continuous update 20

Agent Continuous update 50

a) 4 locus AND - Resistance with continuous update

1000 devices averaged over 100 runs

b) 4 locus AND - Proportion of major outbreaks

1000 devices averaged over 100 runs

c) 4 locus AND - Standard Deviation

1000 devices averaged over 100 runs

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
s
is

ta
n
c
e

Variant Richness

Stochastic Approx - static

Agent static

Agent RV-T

Agent Continuous update

10
1

20

50

Increasing

number of

encounters

before an

update

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o
rt

io
n
 o

f
m

a
jo

r
o
u
tb

re
a
k
s

Variant Richness

Stochastic Approx - static

Agent Continuous update 1

Agent Continuous update 10

Agent Continuous update 20

Agent Continuous update 50

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 F

in
a
l
S

iz
e

Variant Richness

Stochastic Approx - static

Agent Continuous update 1

Agent Continuous update 10

Agent Continuous update 20

Agent Continuous update 50

d) 4 locus OR - Resistance with continuous update

1000 devices averaged over 100 runs

e) 4 locus OR - Proportion of major outbreaks

1000 devices averaged over 100 runs

f) 4 locus OR - Standard Deviation

1000 devices averaged over 100 runs

Chapter 8 Ph.D. Thesis

Jennifer Jackson 284 of 357 May 2017

resistance to malware. A low resistance to malware will lead to a poorer quality of

service for the network as a whole (§6.4.3.3).

8.3.4 Malware Attack in an RE Network with Additional

Mechanisms

The agent model includes the option to stop updating software stack genotypes

once variant diversity has been maximised, only resuming the update process if a

defined trigger occurs (§7.6.4). Thus, effectively becoming equivalent to the static

case if malware is initiated during the static period. This section considers the effect

of diversity when additional security mechanisms are present during a malware

attack within the static period and how this compares to post infection recovery

mechanisms. The additional security mechanisms include blacklisting (§7.6.3) of

known vulnerable variants, which is only possible when alternative variants are

dynamically available, and the effects from the utilisation of a virtualisation platform

(§7.6.5). The time evolution effects from blacklisting and virtualisation are firstly

analysed before considering the comparative resistance and epidemic timescales.

The time evolution of a one locus malware epidemic with blacklisting is shown in

Figure 8-20 (a) for the FS algorithm. is fixed at 0.02 as with previous examples,

and the variant diversity is firstly maximised with a . The number of devices

that have stopped updating, and the number that are performing blacklisting are

measured throughout the simulation and are shown in the graph. After all devices

in the network have stopped updating malware is then injected into the system. It is

assumed that at the point of injection, the vulnerability has just been publically

disclosed and the blacklisting data begins to be disseminated.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 285 of 357 May 2017

Figure 8-20 - Malware epidemic with additional mechanisms

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time (seconds)

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s

Susceptible

Infected

Variant Diversity

Blacklisting

Stopped updating

VM update

calculated maximum diversity

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time (seconds)

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s

Susceptible

Infected

Variant Diversity

Blacklisting

Stopped Updating

VM update

calculated maximum diversity

Malware injected

Vulnerability data released

VR=5

Variant diversity lowered

as a result of blacklisting

V
a
ri
a

n
t

d
iv

e
rs

it
y

0.8

Malware injected

Vulnerability data released

a) Epidemic evolution with ‘stop updating’ and blacklisting
for the FS algorithm

b) Epidemic evolution with Stop updating, blacklisting, and

virtualisation (VM updating) for the FS algorithm

VR=5

V
a
ri
a
n
t

d
iv

e
rs

it
y

0.8

Network stopped updating
Updates due to periodic

vulnerability data

Variant diversity lowered

as a result of blacklisting

Chapter 8 Ph.D. Thesis

Jennifer Jackson 286 of 357 May 2017

Malware attacks like this can happen as part of a surge in follow on attacks after

a zero-day vulnerability has been announced (§3.3.3) and before a patch or antivirus

signature has yet to be released. On reception of blacklisting information, devices

restart the genotype update process to enable vulnerable variants to be temporarily

deselected (§7.6.3) resulting in a drop in the variant diversity of the network. In this

scenario the act of reducing diversity has made the network less susceptible to a

specific malware attack by reducing the representation of those with vulnerable

variants resulting in the dilution effect (§2.2.2.2.3).

The time evolution of a one locus epidemic with blacklisting plus the additional

effects from virtualisation (VM update) is shown in Figure 8-20 (b) where an

infection is removed if it is present during a genotype update cycle. This happens

during the period of static diversity when a trigger occurs to restart the update

process such as new vulnerability data becoming available. In the specific time

evolution shown this has had the effect of the final state of all devices returning to

or remaining in the susceptible compartment, and in effect recovering the network

from the epidemic.

Figure 8-21 (a) shows the comparative relationship between recovery,

blacklisting, and blacklisting with virtualisation for the one locus model, against

malware resistance for four values of variant richness . The recovery and

blacklisting rates are varied over the same range, with the infection rate fixed at

0.02 as in previous examples. Unlike the recovery mechanism, blacklisting does not

result in minor and major outbreaks (Figure 8-21 (e)), instead it results in a single

distribution of the final number left in the susceptible state corresponding to the

Chapter 8 Ph.D. Thesis

Jennifer Jackson 287 of 357 May 2017

resistance. The reason being is that blacklisting impacts only those still susceptible

and cannot remove an infection once it is present. Two example distributions at

different blacklisting rates for are shown in Figure 8-21 (b) to illustrate this.

Resistance to malware is measured by the proportion that does not become infected

(§6.4.3). When virtualisation is included it is measured by firstly counting the

number of devices that have been infected at least once during the epidemic (since a

single device may become infected multiple times), and then subtracting this from

the network size. For all security mechanisms the minimum resistance is dictated by

the variant richness, since at the lowest rate where the mechanisms do not exist, it is

only the effects from static diversity that persist. Comparative results show that

blacklisting is more effective at resisting malware when applied at the same rate.

This is because recovery mechanisms are applied after infection has already

occurred and blacklisting can be effective before infection occurs. However, the

mitigation point is the same for blacklisting as it is for recovery, and occurs when

the rate increases beyond the rate of new infectives . So that the point of

mitigation occurs when , where is defined by the malware and

variant richness (§6.3.2). For dissemination rates of blacklisting below the mitigation

point, variant richness becomes effective at increasing the resistance. Similar to the

recovery mechanism, there is a trade off between the speed of dissemination,

diversity, and resistance. Figure 8-21 (c) shows the effect of blacklisting during

continuous dynamic updating, where although the resistance against malware is

very poor for low blacklisting rates, the approach can still very quickly outperform

the recovery mechanism.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 288 of 357 May 2017

Figure 8-21 – Comparative malware resistance with security mechanisms

2 4 6 8 10 12 14 16 18

x 10
-3

10

20

30

40

50

60

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 F

in
a
l
S

iz
e

Blacklisting / Recovery rate

Recovery

Blacklisting only

Blacklisting/VM update

Increasing

variant richness

V
R
=2

V
R

=5

V
R

=4

V
R
=3

2 4 6 8 10 12 14 16 18

x 10
-3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
ro

p
o
rt

io
n
 o

f
m

a
jo

r
o
u
tb

re
a
k
s

Blacklisting / Recovery rate

Recovery

Blacklisting onlyBlacklisting/VM update

Increasing

variant

richness

V
R
=2

V
R
=3

V
R
=4

V
R
=5

0 2 4 6 8 10 12 14 16 18

x 10
-3

0.5

0.6

0.7

0.8

0.9

1

Blacklisting / Recovery rate

R
e
s
is

ta
n
c
e

Recovery

Blacklisting only

Blacklisting/VM update

V
R
=3

V
R
=4

V
R
=5

Increasing

variant richness

V
R
=2

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
-3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

blacklisting rate

R
e
s
is

ta
n
c
e

VR=5

VR=4

VR=3

VR=2

0 20 40 60 80 100
0

5

10

15

Final value of S (%)

N
u
m

b
e
r

o
f
ru

n
s

0 20 40 60 80 100

2

4

6

8

10

12

14

Final value of S (%)

N
u
m

b
e
r

o
f
ru

n
s

VR=2

VR=2

a) Comparing recovery with blacklisting and virtualisation -

showing the relationship with resistance for fixed VR values for

the one locus model, 1000 devices averaged over 100 runs

βn Sp = rate

(VR=5)

βn Sp = rate

(VR=4)

βn Sp = rate

(VR=3)

βn Sp = rate

(VR=2)

c) Continuous update

(Blacklisting only)

b) Susceptibility distributions

R
e

s
is

ta
n

c
e

Blacklisting rate

d) Standard Deviation of the final size

e) Proportion of major outbreaks

A

A

B

B

Chapter 8 Ph.D. Thesis

Jennifer Jackson 289 of 357 May 2017

The effect of adding virtualisation marginally increases the resistance, but, as

stated previously, has the benefit of recovering the network without requiring

signature based protection or patching. However without these signature or

patching mechanisms the network is open to a repeat attack from the same

malware.

Figure 8-22 shows the comparative resistance and epidemic times for the

different security mechanisms for the specific one locus, four locus AND, and the

four locus OR examples. The variant richness is varied for the two dynamic

algorithms at maximum variant diversity. The contact rate and hence is fixed at

0.02, the recovery rate is fixed at 0.004, resulting in a ratio of 0.2 as per

previous examples. The blacklisting rate is fixed at the same rate as the recovery to

compare resistive performance. For the recovery scenario the end of the epidemic

time occurs when, after a major outbreak, all devices have recovered and is

equivalent to the resilience time. During blacklisting, devices that become infected

before they have received the necessary vulnerability data do not recover and

therefore the end time of the epidemic occurs when the peak infection occurs. With

additional virtualisation, and assuming the malware cannot escape outside the VM

isolation (§7.6.5), individual recovery occurs when a VM is deleted and recreated

during the update process. The device however does not become immune, only re-

susceptible and therefore the time to the end of the epidemic is measured when the

infected state reaches a minimum after the initial infection has started (such as that

shown in Figure 8-20 (b)). When there is no diversity blacklisting and

hence VM updating does not occur and therefore devices do not return to the

Chapter 8 Ph.D. Thesis

Jennifer Jackson 290 of 357 May 2017

susceptible state, and time in this case is not measured. All times are measured

when the system is within one of its final value.

Figure 8-22 – Comparative resistance and epidemic times with different malware

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

R
e
s
is

ta
n
c
e

FS recovery

RV recovery

FS blacklisting

RV blacklisting

FS blacklisting/VM update

RV blacklisting/VM update

R
0
 < 1

R
0
 > 1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

R
e
s
is

ta
n
c
e

FS recovery

RV recovery

FS blacklisting

RV blacklisting

FS blacklisting/VM update

RV blacklisting/VM update

R
0
 < 1

R
0
 > 1

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

R
e
s
is

ta
n
c
e

FS recovery

RV recovery

FS blacklisting

RV blacklisting

FS blacklisting/VM update

RV blacklisting/VM update

R
0
 < 1

R
0
 > 1

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

Variant Richness

T
im

e
 t

o
 e

n
d
 o

f
e
p
id

e
m

ic

FS recovery

RV recovery

FS blacklisting

RV blacklisting

FS blacklisting/VM update

RV blacklisting/VM update

R
0
 > 1

R
0
 < 1

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

Variant Richness

T
im

e
 t

o
 e

n
d
 o

f
e
p
id

e
m

ic

FS recovery

RV recovery

FS blacklisting

RV blacklisting

FS blacklisting/VM update

RV blacklisting/VM update

R
0
 > 1

R
0
 < 1

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

Variant Richness

T
im

e
 t

o
 e

n
d
 o

f
e
p
id

e
m

ic

FS recovery

RV recovery

FS blacklisting

RV blacklisting

FS blacklisting/VM update

RV blacklisting/VM update

R
0
 > 1

R
0
 < 1

RE network

RE network
RE network

RE network

RE network

RE network

b) 1 locus - time to the end of the epidemica) 1 locus - Resistance

d) 4 locus AND - time to the end of the epidemicc) 4 locus AND - Resistance

f) 4 locus OR - time to the end of the epidemice) 4 locus OR - Resistance

Chapter 8 Ph.D. Thesis

Jennifer Jackson 291 of 357 May 2017

All dashed lines within Figure 8-22 represent the point of mitigation. For the

comparatively chosen blacklisting rate (0.004), the resultant resistance is very high

for all malware types regardless of the variant richness (as can also be seen in Figure

8-21 (a)). When virtualisation is added to additionally recover those infected

resistance is increased further and in the scenario simulated has increased the

resistance against all malware types to 100%. As shown by the graphs in Figure 8-22

(b), (d) and (f) the additional mechanisms correspondingly reduce the end time of

the epidemic.

8.3.5 Malware Attack in an RE Network with Constraints

This section analyses the effects of diversity on the resistance and resilience to

malware when different constraints are applied. Firstly the effects of generic

constraints are considered for both the dynamic algorithms in relation to the

diversity performance analysed in 8.3.2.2. Secondly the effects of user desirabilities

and software compatibility on malware resistance and peak infection times are

considered for the FS diversity algorithm.

8.3.5.1 Constraints with Single Locus Malware and Recovery

(SIR)

Figure 8-23 shows what happens to malware resistance and resilience when the

generic constraints are applied (§8.3.2.2), where ¼, ½, and ¾ of devices are limited

to one variant. The resultant variant diversity achieved by the FS and RV algorithms

for such constraints were previously shown in Figure 8-16 where the FS algorithm is

able to achieve a higher variant diversity level for small variant richness values. This

result is reflected in the achieved resistance against malware as shown in Figure

Chapter 8 Ph.D. Thesis

Jennifer Jackson 292 of 357 May 2017

8-23 where the FS algorithm is able achieve a higher resistance for small variant

richness values. For this scenario recovery mechanisms are in place where malware

mitigation for the one locus model () is indicated by a dashed line in Figure

8-23 (a). When ¼ are constrained to the same variant the susceptibility becomes

 , where is fixed at one since there is only one variant

and can vary along the variant richness axis. When is set very large the first

term approximates zero so that , meaning that the mitigation susceptibility

of 0.2 can never be reached. The resistance therefore levels out as variant richness is

increased, and so too does the resilience as shown in Figure 8-23 (b).

Figure 8-23 – One locus SIR with generic constraints

The maximum fraction of constrained devices that can be tolerated to enable

malware mitigation is 1/5th which will occur when is large where ,

otherwise the speed of recovery would need to be increased to improve the

ratio. In a practical system therefore consideration needs to be given to devices that

are not participating in the diversity scheme and subsequently become vulnerable,

since it may not be possible to mitigate the malware in the network through

2 3 4 5 6 7 8 9 10
2.5

3

3.5

4

4.5

x 10
-4

Variant Richness

R
e
s
ili

e
n
c
e
 -

 S
IR

FS

RV

3/4 constrained to the same variant

1/2 constrained to the same variant

1/4 constrained to the same variant

no constraints

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

R
e
s
is

ta
n
c
e
 -

 S
IR

FS

RV

3/4 constrained to the same variant

1/2 constrained to the same variant

1/4 constrained to the same variant

no constraints

b) 1 locus - Resilience with constraintsa) 1 locus - Resistance with constraints

(VR1)
(VR1)

Chapter 8 Ph.D. Thesis

Jennifer Jackson 293 of 357 May 2017

increasing the variant richness of the remaining devices without improving

recovery times.

8.3.5.2 FS Constraints with Multi Locus Malware

The distributed FS algorithm is able to model additional multi-locus constraints

including user desirabilities and software compatibility across loci (§7.6.2.2). Results

are shown in Figure 8-24 for the four locus AND and OR malware types when there

are no additional security mechanisms in place and devices have stopped updating.

The resistance and peak infection times are shown for four scenarios: 1. Without

constraints, 2. With user desirability constraints, 3. With software compatibility

filtering, and 4. With user desirabilities and compatibility filtering. is fixed at 0.02

as previous examples.

User desirability constraints can be set based upon the data from real networks if

it is available to gain an understanding with regard to their vulnerability to different

malware types relative to a network with maximum diversity. Here constraints are

set at the community scale to represent a plausible scenario where a favoured

variant from each locus has 84% usage, equivalent to a market share held by

Android during the first quarter of 2016 as reported by Gartner [264]. The remaining

variants are favoured with equal probability. The malware is set so that the

favoured variant at each locus is targeted by an exploit. The resultant effect of the

four locus AND malware type on resistance is shown in Figure 8-24 (a) where it is

reduced to 0.5 from almost 1 with no constraints, and correspondingly reducing the

peak infection time as shown in Figure 8-24 (b).

Chapter 8 Ph.D. Thesis

Jennifer Jackson 294 of 357 May 2017

Figure 8-24 – Four locus malware with FS algorithm specific constraints (SI)

This can be explained mathematically since without any additional security

mechanisms the resistance for an SI model is (Equation (6-18))

since all those susceptible become infected. Equation (6-12) defines the susceptibility

for the four locus AND malware type where , resulting in . In

this constrained scenario the susceptibility value is the same regardless of the

b) 4 locus AND - Peak Infection Timea) 4 locus AND - Resistance with constraints

d) 4 locus OR - Peak Infection Timec) 4 locus OR - Resistance with constraints

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (seconds)

V
a
ri
a
n
t

D
iv

e
rs

it
y

No constraints

User desirabilities 84%

Filtering

User desirabilities & filtering

e) Variant Diversity under constraints

VR=5

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness V
R

R
e
s
is

ta
n
c
e

No constraints

User desirability 84%

Filtering

User desirability & filtering

0 5 10 15 20 25 30 35
500

1000

1500

2000

2500

3000

3500

4000

Variant Richness V
R

P
e
a
k
 T

im
e
 -

 S
I

No constraints

User desirability 84%

Filtering

User desirability & filtering

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness V
R

R
e
s
is

ta
n
c
e

No constraints

User desirability 84%

Filtering

User desirability & filtering

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

Variant Richness V
R

P
e
a
k
 T

im
e
 -

 S
I

No constraints

User desirability 84%

Filtering

User desirability & filtering

1 2 3 4Locus 1:

Locus 2:

Locus 3:

Locus 4:

1 2 3 4

1 2 3 4

1 2 3 4

Vulnerable variants
Compatible variants

f) The effect of software compatibility filtering

Filtered against this

variant (OS core

library)

Chapter 8 Ph.D. Thesis

Jennifer Jackson 295 of 357 May 2017

number of variants (greater than one) since the same variants are always susceptible

by the same percentage, hence giving the flat line. The resultant effect of the four

locus OR malware type on resistance and peak infection time is shown in Figure

8-24 (c) and (d) respectively where the four locus OR susceptibility Equation (A-4)

results in hence the measured resistance is zero, also with a flat line across

all variant richness values.

Software compatibility filtering is constrained such that each OS core library

variant is compatible with only two variants at each of the other loci. Variants are

chosen such that the compatible variant number is the same in each of the other loci,

plus the next one, if it exists, otherwise it is wrapped around as shown in Figure

8-24 (f). This configuration is representative of software that is dependent upon

other software at different layers with some overlap that may occur through

compatibility with closely related versions of the same program. The resultant effect

is a reduction in the number of genotypes, however the variant diversity remains

maximised as shown in Figure 8-24 (e) (filtering) since the variants themselves

remain equally distributed (§5.3.2). As shown in Figure 8-24 (a) the effect of

compatibility filtering has reduced the resistance against the AND type only when

user desirabilities are additionally assigned, but interestingly has increased the

resistance against the OR type as shown in Figure 8-24 (c) when used both stand

alone and with user desirabilities. This is because the act of forcing only specific

variants across loci to be compatible introduces an AND relationship in the

genotypes. For the OR case the resulting reduction in genotypes from filtering

means that a higher proportion of the genotypes available to use are without a

Chapter 8 Ph.D. Thesis

Jennifer Jackson 296 of 357 May 2017

vulnerable variant. For the AND case little difference is seen since there is already

an AND relationship across the loci, unless the user desirabilities are set, where the

resistance reduces because a higher proportion of devices (84%) has the vulnerable

genotype (variant 1 in each locus). This results in the amplification effect (§2.2.2.2.3)

where the representation of those vulnerable is increased. Although only one

specific example is given here for compatibility filtering, it highlights its effect on

constraining genotypes and introducing an AND relationship for the OR malware

type which could occur for any combination of compatibility filtering across loci,

although the exact result would vary depending upon the filter applied.

8.3.6 Dynamic Diversity Performance with the RWP Network

Model

For the RWP network model, when devices move around randomly in a closed

space the resultant diversity and resistance relationships that appear at the network

level are similar to those of the RE model. This is because the random movement of

devices results in all devices eventually coming into contact with each other.

Differences arise in terms of time scales, where for the RWP model, the contact rate

is determined by several parameters (§7.3.2). Additionally it is possible to introduce

spatial effects into the RWP model that the RE model cannot analyse.

For example when generic constraints (¼, ½, and ¾ of devices are constrained to

the same variant) are applied to a random selection of devices, a similar relationship

is observed between the RWP as shown in Figure 8-25 (a) and the RE network

(Figure 8-16 (d) §8.3.2.2) models. Simulations were run with 1000 devices, and a

fixed FS buffer size of 10 genotypes as per previous results (§8.3.2) where the buffer

Chapter 8 Ph.D. Thesis

Jennifer Jackson 297 of 357 May 2017

size represents the most recently encountered devices and their configurations. The

device selection method chosen is random in range comparative to the RE network

model, although the selection method does not affect the final variant diversity

obtained. Updates occurred every encounter once the data buffer was full, together

with a genotype time out period of 10 seconds and a 1 second genotype data

transmission window so that the maximum variant diversity was achieved as fast as

possible. For randomly moving devices, their average speed, transmission range,

and bounded area does not affect the final variant diversity obtained, only the time

at which it is achieved. It is difficult to compare the two network models directly

since the successful contact rate of the RWP model is determined by these additional

parameters, rather than being specified directly. A fixed wireless transmission range

of 10m equivalent to a standard Bluetooth connection [3], a bounded area of 600m

by 600m (the size of a large park, or small campus facility), and an average walking

speed of 1.4ms-1 was modelled. The mean time to reach maximum diversity when

there are no constraints was measured for each of the three device selection

methods (available in range, random in range, nearest in range) as the time required

to transmit data between devices was varied. The result is shown in Figure 8-25 (b),

where for high data transmission times the available in range selection method is

shown to marginally (in this scenario) take longer to reach maximum diversity since

the devices have to wait longer between communications.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 298 of 357 May 2017

Figure 8-25 – Random waypoint variant diversity relationships

With the RWP model, additional spatial effects that are likely to occur in practice

can be included that are not modelled, or cannot be visualised with the RE model

such as spatially located constraints affecting spatial diversity patterns and the

distance and speed at which malware spreads. With the FS algorithm it is possible

to pictorially visualise the local diversity as measured by each device, and which

variants are chosen, and where, as the simulation runs. Figure 8-26 shows the time

evolution of the variant diversity of a one locus model as it is being maximised from a

starting point where there is no diversity by the FS algorithm. The network is

confined to an area of 30m by 30m, equivalent to a medium sized conference room

or sports hall. Additionally shown is the local diversity measured by 50 devices,

along with the selected variant at each device for a fixed variant richness of five.

Two local perspectives are given for a point in time when firstly the variant

diversity is being maximised but still at a low level, and secondly when

maximisation has been reached and devices have stopped updating. The

transmission range was fixed at 10m, the time to successfully transmit genotype

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness (V
R
)

V
a
ri
a
n
t

D
iv

e
rs

it
y

 (
m

e
a
n
 a

c
ro

s
s
 t

im
e
 a

ft
e
r

m
a
x
im

u
m

 r
e
a
c
h
e
d
)

RV-E

FS

Calculated maximum

no constraints

1/4 constrained to the same variant

1/2 constrained to the same variant

3/4 constrained to the same variant

Random Waypoint

Network Model

a) Random Waypoint network model (RWP): Measured variant

diversity in a constrained scenario, when constraints are

applied to random devices

b) Random Waypoint network model (RWP): Measured time to

reach maximum diversity without constraints for different

device selection methods as the time to transmit data between

devices is varied

0 5 10 15 20
0

100

200

300

400

500

600

700

800

Time to transmit data (genotype)

M
e
a
n
 t

im
e
 t

o
 r

e
a
c
h
 m

a
x
im

u
m

 d
iv

e
rs

it
y

Available in range - RV-E

Available in range - FS

Random in range - RV-E

Random in range - FS

Nearest in range - RV-E

Nearest in range - FS

Chapter 8 Ph.D. Thesis

Jennifer Jackson 299 of 357 May 2017

data was set at two seconds and the devices were limited to a slow walking pace of

1ms-1. As shown, when the network variant diversity is low, the locally measured

diversity by the devices is also low, with some devices measuring 0.2, and others

0.4, with a majority of the devices operating with variant 1. When variant diversity

of the network is at its maximum level, the local variant diversity measured by each

device is also at a maximum where in the majority of cases different variants are

located adjacent to each other.

Figure 8-26 – Dynamic diversity performance: random waypoint

8.3.7 Spatial Constraints with Multi Locus Malware (RWP)

As discussed previously the RWP network model can be used to analyse effects

such as spatial constraints which are likely in a practical ad hoc network. Three

scenarios are modelled: Malware attacks with 1) no constraints, 2) randomly placed

generic constraints, and 3) location based generic constraints (room or building).

The scenarios are simulated and compared for both moving and stationary devices,

and for single locus, four locus AND, and four locus OR malware types. No

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Time (seconds)

V
a
ri
a
n
t

D
iv

e
rs

it
y
 (

n
e
tw

o
rk

)

P
e
rc

e
n
ta

g
e
 s

to
p
p
e
d
 u

p
d
a
ti
n
g

Variant Diversity

Stopped updating

maximum obtainable

Local Diversity

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

5

4

3

2

1

5

4

3

2

1

Variant number

Variant number

Variant diversity

Variant diversity

Local Variant

Chapter 8 Ph.D. Thesis

Jennifer Jackson 300 of 357 May 2017

additional security mechanisms are applied. Due to simulation times, in the order of

a day per simulation set, a small network size of 100 devices was modelled with a

genotype and virus transmission time of 1 second and averaged over 100 runs for

each data point.

The two generically constrained scenarios are pictured in Figure 8-27, where (a)

shows the random assignment of constraints, and (b) shows the location based

constraints (such a room or office). Constraints are applied such that ¼ of the

devices are constrained to using the same single variant at each locus, equivalent to

devices using the same software stack. The location constrained devices are

bounded spatially to an area ¼ the size of the simulation area, whilst those

remaining are free to move or be positioned anywhere in the bounded simulation

space. This could be representative of a work place with devices that have no

diversity, surrounded by devices that employ the dynamic diversity scheme, some

of which may also enter the work place and then leave again, for example customers

visiting a shop, a tourist attraction, or a public service. The network is simulated

until it becomes maximally diverse and the devices have stopped updating before

malware is released. The source of malware is modelled so that it is always initiated

from the device closest to the origin. The resistance to malware is measured, along

with the peak infection times, and the average distance the malware travelled from

its origin.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 301 of 357 May 2017

Figure 8-27 – Random waypoint constraints

Results are pictured in Figure 8-28 and Figure 8-29. For moving devices,

constraints reduce the resistance to malware as expected (§8.3.5) and as is shown in

Figure 8-28 (a) with no differing effect between randomly placed and location

placed constraints. This is because eventually all susceptible devices come into

contact and become infected. However, the peak infection times as shown in Figure

8-28 (b) differ as a result of the locality of constraints relative to the source of

malware. For all malware types the room-constrained scenario results in a faster

infection time than randomly placed constraints since those vulnerable are more

concentrated near the source of the outbreak. This would mean that a faster

recovery time would be required to achieve the same malware mitigation point

through variant richness. The AND malware type reaches its peak the fastest since

this has the least susceptibility, followed by the one locus, and then the OR type.

Increasing diversity in terms of variant richness has less effect on the peak infection

time for the constrained scenarios since the constraints create a minimum bound on

the number susceptible, and hence time to infect them. Figure 8-28 (c) shows the

distance travelled by the malware from its origin. For moving devices, the distance

5 10 15 20 25 30

5

10

15

20

25

30

Distance (metres)

D
is

ta
n
c
e
 (

m
e
tr

e
s
)

Constrained

Not constrained

Malware source (nearest origin)

5 10 15 20 25 30

5

10

15

20

25

30

Distance (metres)

D
is

ta
n
c
e
 (

m
e
tr

e
s
)

Constrained

Not constrained

Malware source (nearest origin)

a) Constraints applied randomly b) Constraints applied spatially within a fixed area

Chapter 8 Ph.D. Thesis

Jennifer Jackson 302 of 357 May 2017

travelled is skewed by their random movement such that for a single infected

device, its final location reflects the distance even if it has not infected any other

devices.

Figure 8-28 – Effects of spatial constraints on malware types – moving devices

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Variant Richness

P
e
a
k
 i
n
fe

c
ti
o
n
 t

im
e

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

Variant Richness

M
e
a
n
 d

is
ta

n
c
e
 m

a
lw

a
re

 t
ra

v
e
lle

d
 f

ro
m

 s
o
u
rc

e

1.No constraints - one locus

2.Random constraints - one locus

3.Room constraints - one locus

1.No constraints - 4 loci AND

2.Random constraints - 4 loci AND

3.Room constraints - 4 loci AND

1.No constraints - 4 loci OR

2.Random constraints - 4 loci OR

3.Room constraints - 4 loci OR

b) Moving devices – peak infection time, 10m range

a) Moving devices – resistance, all range

e) Moving devices – peak infection time, standard deviation

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

R
e
s
is

ta
n
c
e

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

Variant Richness

M
e
a
n
 d

is
ta

n
c
e
 m

a
lw

a
re

 t
ra

v
e
lle

d
 f

ro
m

 s
o
u
rc

e

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Variant Richness

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 r

e
s
is

ta
n
c
e

d) Moving devices – resistance standard deviation

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

Variant Richness

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 p

e
a
k
 i
n
fe

c
ti
o
n
 t

im
e

0 5 10 15 20 25 30 35
0

5

10

15

Variant Richness

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 d

is
ta

n
c
e

f) Moving devices – distance malware travelled, standard

deviation

c) Moving devices – measured mean distance malware

travelled, all range

Chapter 8 Ph.D. Thesis

Jennifer Jackson 303 of 357 May 2017

Figure 8-29 – Effects of spatial constraints on malware types – stationary devices

Malware travels furthest for the randomly placed constraints since they start and

remain spread out, and increasing variant richness only causes a small reduction in

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

Variant Richness

M
e
a
n
 d

is
ta

n
c
e
 m

a
lw

a
re

 t
ra

v
e
lle

d
 f

ro
m

 s
o
u
rc

e

1.No constraints - one locus

2.Random constraints - one locus

3.Room constraints - one locus

1.No constraints - 4 loci AND

2.Random constraints - 4 loci AND

3.Room constraints - 4 loci AND

1.No constraints - 4 loci OR

2.Random constraints - 4 loci OR

3.Room constraints - 4 loci OR

b) Stationary devices – peak infection time, 10m range e) Stationary devices – peak infection time, standard deviation

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Variant Richness

R
e
s
is

ta
n
c
e

a) Stationary devices – resistance, all range

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

Variant Richness

P
e
a
k
 i
n
fe

c
ti
o
n
 t

im
e

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

Variant Richness

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 p

e
a
k
 i
n
fe

c
ti
o
n
 t

im
e

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

Variant Richness

M
e
a
n
 d

is
ta

n
c
e
 m

a
lw

a
re

 t
ra

v
e
lle

d
 f

ro
m

 s
o
u
rc

e

c) Stationary devices – measured mean distance malware

travelled, all range

0 5 10 15 20 25 30 35
0

5

10

15

Variant Richness

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 d

is
ta

n
c
e

f) Stationary devices – distance malware travelled, standard

deviation

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Variant Richness

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
th

e
 r

e
s
is

ta
n
c
e

d) Stationary devices – resistance standard deviation

Chapter 8 Ph.D. Thesis

Jennifer Jackson 304 of 357 May 2017

its distance. Room placed constraints result in the least travelled malware with an

increasing variant richness reducing the distance further, particularly for the AND

malware type which was reduced to approximately the diagonal length of the room

indicating it had been spatially contained for only a handful of variants.

For stationary devices, the transmission range relative to the density and location

of those susceptible impacts upon the resistance, the peak infection time, and the

distance malware travels. For small transmission ranges, such as 1m, the malware

does not travel at all even when there is no diversity since devices are too far apart

to communicate (not shown). As the transmission range increases, the network

becomes less resistant and malware travels further on average. When the

transmission range is set at 10m, the resistance relationship with diversity is

comparable to the moving case as shown in Figure 8-29 (a) and Figure 8-28 (a).

However the peak infection times as shown in Figure 8-29 (b) are higher and there is

a larger difference between the three constrained scenarios. Stationary devices

therefore can tolerate longer recovery times to achieve the same mitigation point.

For stationary devices malware travels the least when there are no constraints (as

expected), and the most for randomly placed constraints as shown in Figure 8-29 (c).

Similar to the moving devices result, the four locus AND malware type is shown to

be confined within the constrained area by relatively few variants. Further increases

in variant richness will eventually confine the one locus and the four locus OR

malware types preventing further spatial spread.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 305 of 357 May 2017

8.3.8 Section Summary

This second chapter section detailed the results of the agent-based diverse system

model. In constrained static diversity mode, the agent model performs as a

stochastic epidemic model where there may be differences in the measured malware

mitigation point from the approximated or deterministic result due to the rate of

change of the variant richness versus susceptibility relationship for specific malware

types. Static diversity however can lead to targeted attacks on specific devices if

their configurations remain fixed and become known. Also real devices do not move

in random patterns and therefore random static assignment of software may not be

the best distribution for a particular scenario where there may be continuous

changes in the network topology or influences from constraints.

Incorporating dynamic diversity allows software stacks to be changed in

response to network conditions, new information, or to confuse a targeted attacker.

The fastest way to achieve maximum diversity from a starting point of no diversity

is to perform update decisions at every successful encounter. The FS algorithm can

be faster than the RV algorithm at reaching maximum variant diversity for the same

input conditions, and can also achieve a higher diversity level when practical

constraints are applied and few variants are available, which may be likely in

practice. This is reflected in the amount of resistance provided by the two

algorithms during a malware attack, with the RV algorithm requiring a faster

recovery rate to achieve the same variant richness mitigation point. If any malware

type is released during continuous updating of genotypes (from the same pool)

without security measures, eventually all devices become infected resulting in no

Chapter 8 Ph.D. Thesis

Jennifer Jackson 306 of 357 May 2017

resistance. The time to reach the peak infection however in comparison to no

diversity is lengthened because of dynamic updating which is dependent on either

reducing the update rate or increasing the variant richness. Without any mechanism

for recovery the optimum solution to preserve resistance against malware is to

maximise diversity as quickly as possible and then remain static for as long as

possible. When recovery mechanisms are applied at a fixed rate, the same

mitigation point is observed for both static and continuous dynamic diversity for

each malware type, meaning constantly changing configurations, for example to

confuse a targeted attacker can be tolerated if the variant richness is high enough.

Operating with a variant richness that is below the mitigation point may give a

lower resistance for continuous updating depending upon the malware type and

relative recovery rate.

As well as responding to changing network conditions, dynamic diversity allows

integration with potentially more effective security mechanisms that can be applied

sooner than antivirus signatures or patching. When compared to recovery

mechanisms, blacklisting can be more effective at increasing resistance and reducing

the duration of the epidemic, even at the same rate since it can be applied before an

infection occurs. Similar to the recovery mechanism there is a trade off between

dissemination speeds, diversity and resistance. When a virtualisation platform is

added where infections are removed during blacklisting updates, resistance is

increased even further. In the scenario simulated this resulted in the mitigation of all

malware types with an exploit richness of one as soon as a second variant became

available at each locus.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 307 of 357 May 2017

Desirability constraints can be set for the FS algorithm to reflect the diversity of

real networks. An example has been shown to reflect the market share of the

currently dominating mobile phone operating system and its impact on the

resistance to the different malware types comparative to maximum diversity. For an

84% dominance at each locus of the vulnerable variant, the resistance against the

four locus AND type is halved, and the resistance against the four locus OR type is

reduced to zero, rendering any remaining diversity ineffective. Introducing

software compatibility to reflect problems arising from the use of COTS software as

diverse variants can result in a reduction of the number of available genotypes,

whilst maintaining variant diversity. This can have the effect of introducing an

AND relationship across loci, reducing the number of genotypes with vulnerable

variants, and increasing the resistance against the OR malware type. For the AND

malware type there is already an AND relationship so this has little effect, unless the

genotypes are not equally distributed where the vulnerable genotype has a greater

representation resulting in the amplification affect and reduced resistance.

Introducing spatially located constraints modelled by the RWP network model

can change peak infection times, and the average distance travelled by different

malware types, in comparison to randomly located constraints. Increasing variant

richness in the remaining unconstrained network can contain the spread of the

malware such as preventing its spread beyond a vulnerable office with little

diversity. Differences in peak infection times however will require differing rates of

recovery to achieve mitigation of malware for a given variant richness.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 308 of 357 May 2017

8.4 Summary

The results from two different, but closely related, diverse system models have

been analysed. Under static diversity conditions, and within an ideal scenario, the

epidemic model can predict the diversity requirement needed to tolerate or mitigate

specific types of malware attacks. The agent model can simulate the same conditions

as the epidemic model (albeit with much longer simulation times) and subject to

some differences in the results due to its stochastic nature. When recovery is

included it resembles the stochastic epidemic model. Predictions from the epidemic

model can be used by the agent model to make comparative measures against

dynamic diversity algorithms, practically constrained scenarios, or the inclusion of

additional security mechanisms.

The combined results show that resistance to multi-locus malware within an ad

hoc network ecosystem can be improved by maximising variant diversity and

increasing the number of variants at each locus, with the additional effect of

lengthening the time at which the peak infection is reached. When recovery

mechanisms are in place there is a trade off between optimising diversity,

maintaining quality of service or mitigation, and the speed of recovery. The exact

diversity requirements can be calculated by the epidemic model or simulated by the

agent model. The multi-locus OR malware type poses a higher security risk than the

AND malware type and consequently requires considerably more software variants

to tolerate or mitigate against the malware for the same number of exploits.

The results confirm the hypothesis (§1.2) that incorporating biodiversity concepts

within computer networks can make them more resistant to cyber security attacks.

Chapter 8 Ph.D. Thesis

Jennifer Jackson 309 of 357 May 2017

When diversity becomes dynamic and integrated with other security mechanisms it

can become even more effective. When compared to recovery mechanisms for

example, blacklisting can be more effective at increasing resistance and reducing the

duration of the epidemic since it can be applied before an infection occurs, helping

to alleviate surges in attacks from newly disclosed vulnerabilities.

Simulating constrained scenarios can aid in understanding the impact of

diversity on current networks, or where practical limitations may affect the

outcome. Software compatibility, for example, may be beneficial in increasing the

resistance against the multi-locus OR malware type due to the effect of introducing

an AND relationship across loci. Spatially located constraints modelled through the

RWP network model have shown that diversity can be used to contain malware

outbreaks to local areas, when there is both very little diversity and susceptible

configurations within these areas.

Chapter 9 Ph.D. Thesis

Jennifer Jackson 310 of 357 May 2017

9 Conclusion and Future Work

Chapter 9

Conclusion and Future Work

9.1 Introduction

This chapter is split into two sections. The first section summarises the

motivation for the work performed, the research carried out, and the conclusions

from the results and analysis. The second section outlines some practical limitations

of the models and provides some suggestions for further work.

9.2 Conclusion

9.2.1 Motivation

Motivation behind the work in this thesis has been inspired through a number of

topics including malware epidemics exasperated through monoculture software

and criminals responding faster to new vulnerabilities, multiple exploits targeting

different layers of the software stack, the benefits and relationships of biodiversity

in natural ecosystems, and future trends in the growth of ad hoc networks and peer-

to-peer connections.

Although diversity for cyber security is already considered as a beneficial

mechanism, it has yet to be fully quantified. A diverse system model incorporating

Chapter 9 Ph.D. Thesis

Jennifer Jackson 311 of 357 May 2017

ecosystem concepts, the modularity of software stacks, potential diversity enabling

technologies, and practical constraints, together with cross layer multiple exploit

malware propagating within ad hoc networks, provides a method for analysing the

benefits of diversity and how much is required to tolerate or mitigate specific types

of attacks. In creating the model, metrics for the diversity of computing systems

have been defined.

9.2.2 Research

Using the ecosystem as a framework, together with the mechanisms that link

biodiversity to functionality, relevant analogies were made to define an ad hoc

network ecosystem. Although the focus is on ad hoc networks, many of the

principles described are also applicable to computer networks in general. The

biodiversity functionality is generated by software and hardware components

where individualised software stacks are defined as genotypes with multiple loci.

Some constraints were applied to limit the size of genotypes and focus on software

gene variation, as oppose to software gene functionality, and incorporate malware

with cross layer multiple exploits. A threat model has been defined with two types

of malware: the logical AND and the logical OR, which are representative of

malware using multiple exploits in different ways to gain entry and propagate

(chapter 5). The AND and OR types are limited to a single stage logical function, but

there may be other types of malware exploit relationships such as both OR and

AND across loci requiring multi-stage logic. However, the AND and OR logical

functions (together with inversion) form the basic blocks for which all other logical

functions can be created (see future work §9.3.1.3).The number of loci was limited to

Chapter 9 Ph.D. Thesis

Jennifer Jackson 312 of 357 May 2017

four to both represent one function from each of the broad layers of the software

stack (§3.2.1.3), and to correspond with real malware using up to 4 exploits targeting

different layers (§3.3.3). This limitation on the number of loci still allows diversity

and multi-loci malware concepts to be modelled, when there are no dependencies

between functionality such as lower level libraries, however in practice there would

be many loci, with differing amounts on different computers with many

dependencies.

Two diverse system models have been developed to incorporate software

diversity and malware at the genetic level utilising the ad hoc network ecosystem

concept. The first is a constrained system level mathematical model, and the second

is an agent-based model.

The constrained diverse system model builds upon the traditional mathematical

SIR epidemic model and is comprised of a network model, a susceptibility model

and a malware model. The mathematical approach is constrained by assuming

homogeneous mixing, static diversity, compatible software functions, and non–

influential users. Despite these constraints some key mathematical results have been

established to investigate the security protection offered by diversity and how much

diversity is needed to tolerate or mitigate against specific types of attacks.

Additionally the mathematical model provides a stepping stone between, and a

method of comparing, an existing one locus model to the multiple locus method and

the agent model developed here (chapter 6).

The agent-based diverse system model is able to simulate the same conditions as

the epidemic model, but additionally incorporates dynamic genotype configuration

Chapter 9 Ph.D. Thesis

Jennifer Jackson 313 of 357 May 2017

which can be based on local interaction, user mobility and practical constraints. The

dynamic approach is further exploited through the integration with other security

mechanisms such as publically available vulnerability data, and virtualisation

technology to enhance its effectiveness. This allows the exploration of dynamic

diversity and malware propagation beyond the constraints of the epidemic

approach. The agent-based approach is comprised of a network model, a diversity

model and a malware model. Optimisation of diversity is measured through

simulation across a parameter range to either tolerate or mitigate a specific attack.

Although simulation times are much longer for this model, its development

provides a simulation framework for incorporating additional biodiversity

algorithms, network models and malware models, as well as integrating them with

other security mechanisms as part of an integrated security approach (chapter 7).

Single measures of diversity in computing systems have been defined in the

literature, however several metrics are necessary to define diversity at the genetic

level of computing systems such as ad hoc networks, all of which provide a

different, but important perspective. The number of software variants at each locus

of the software stack, termed variant richness when the quantity is the same,

indicates the amount of variation at the locus level. However it is also necessary to

understand variant distribution in order to maximise the diversity for a given set of

variants and hence a measure of variant diversity is needed. The number of variants

and their distribution determines the number of unique genotypes in the network

which can be limited by the number of devices. For multiple locus malware,

maximising the utilisation of the different genotypes keeps susceptibility at a

Chapter 9 Ph.D. Thesis

Jennifer Jackson 314 of 357 May 2017

minimum. Outputs from the two models include the two key components of

ecosystem stability: resistance and resilience (chapter 6 and 7).

9.2.3 Results and Analysis

Results from the epidemic and agent models have shown that biodiversity

applied within a simulated ad hoc network ecosystem can provide tolerance against

multi-locus malware, or provide improved mitigation when recovery mechanisms

are in place. This has the overall effect of improving the resistance against such

attacks and benefiting cyber defence. The exact diversity requirements needed to

tolerate or mitigate malware can be calculated by the epidemic model or simulated

by the agent model. Predictions from the epidemic model can additionally be used

by the agent model to make comparative measures against dynamic diversity

algorithms, practically constrained scenarios, or the inclusion of additional security

mechanisms. The results are limited in that they show malware that can only target

up to four loci in a single targeted attack. In a real system there may be multiple

malware targeting different combinations of loci with varying dependencies.

The epidemic model showed that few software variants are needed to drastically

reduce the susceptibility and increase resistance of the overall network, with

differences depending upon the type of malware attack. The logical AND malware

type with multiple exploits spread across layers of the software stack poses the least

risk and can be tolerated or mitigated with very few software variants. The OR

malware type poses a higher security risk since the more exploits the malware has

available, the greater the overall susceptibility. In a practical system therefore it is

not necessary for every device to have a different software variant installed at every

Chapter 9 Ph.D. Thesis

Jennifer Jackson 315 of 357 May 2017

locus to adequately tolerate or mitigate different types of malware. For the epidemic

model it is possible to quantify through calculation, an optimum diversity, given a

specified quality of service that will tolerate, or mitigate an attack for the two

different types of malware. The optimum diversity calculated assumes the diversity

of the devices remain static (i.e. unchanged) for a period of time equal to or longer

than the duration of the epidemic. When recovery mechanisms are in place there is a

trade off between optimising diversity, maintaining quality of service or mitigation,

and the speed of recovery. The faster the recovery, the higher the tolerated

susceptibility and hence less diversity is required. Modelling static diversity can

allow epidemic based models to predict the extent of a malware attack under such

conditions. Static diversity however can lead to targeted attacks on specific devices.

Additionally real devices do not move in random patterns and therefore random

static assignment of software may not be the best distribution for a changing

network topology with user influences and constraints.

The flexibility of the agent model allows both static and dynamic diversity to be

modelled whereby software stacks are able to be dynamically modified in response

to changing network conditions, new information, or as a response to additional

security mechanisms. However simulation times are much longer, with large

networks and a large variant richness or long timescales becoming impractical to

simulate. The distributed favourability score diversity algorithm can be beneficial

over the random variant algorithm when there are few variants (likely to occur in

practice with COTS software) by achieving a higher variant diversity, more quickly

under the same input conditions and constraints. This is reflected in a higher

Chapter 9 Ph.D. Thesis

Jennifer Jackson 316 of 357 May 2017

resistance provided by the distributed algorithm during a malware attack. The

concept of dynamic diversity is based upon the assumption that it is possible to

change variants without disrupting the user experience or device operations. It is

also a mechanism for confusing a targeted attacker regarding existence of

vulnerabilities at a particular device. In continuous updating mode dynamic

diversity can linearly extend the peak infection time as the number of variants, or

the time between updates, increases, but without recovery or intervention

mechanisms in place the entire network can become infected, when the same set of

variants are available to every device (e.g. when standard commercial software is

available as variants). Static diversity therefore is necessary to maintain long term

resistance in the absence of recovery or intervention. For a dynamic scheme it is

beneficial to maximise diversity as quickly as possible and then remain static for as

long as possible. When recovery is available at a fixed rate, the same mitigation

point, in terms of variant richness, is observed for both static and dynamic diversity

meaning that constantly changing configurations, for example to confuse a targeted

attacker, can be tolerated if the variant richness is high enough. When dynamic

diversity is integrated with other security mechanisms it can become even more

effective: In comparison with recovery mechanisms for example, blacklisting can be

more effective at increasing resistance and reducing the duration of the epidemic,

even if at the same rate, since it can be applied before an infection occurs helping to

alleviate surges in attacks from newly disclosed vulnerabilities. Similar to the

recovery mechanism there is a trade off between dissemination speeds, diversity

and resistance. When a virtualisation platform is added to allow infections to be

removed during blacklisting updates, resistance is increased even further.

Chapter 9 Ph.D. Thesis

Jennifer Jackson 317 of 357 May 2017

Simulating constrained scenarios can help to understand the diversity impact of

current networks, or where practical limitations may affect the overall resistive

outcome of a diversity scheme. Software compatibility for example may be

beneficial in increasing the resistance against the multi-locus OR malware type due

to the effect of introducing an AND relationship across loci. Spatially located

constraints modelled by the RWP network model can change peak infection times in

comparison to those of a random placement, requiring differing rates of recovery to

achieve mitigation for a given variant richness. Additionally, increasing the variant

richness of the unconstrained devices in these scenarios can contain malware

outbreaks to local areas, such as a vulnerable office, where diversity maybe lower.

The combined results confirm the hypothesis that incorporating biodiversity

concepts within ad hoc networks, a form of peer-to-peer mobile wireless network,

can make them more resistant to cyber security attacks (chapter 8). The

contributions of the research are listed in §1.3.

9.3 Future Work

This section considers a number of parallel avenues that are necessary to take the

research further including additional functionality, improved modelling

approaches, real world scenarios, and practical considerations.

9.3.1 Additional Functionality

9.3.1.1 Specific to the Mathematical Epidemic Model

The epidemic model is much faster computationally than the agent model in

predicting diversity requirements and resistance to different malware types.

Remaining statically diverse during a malware epidemic has resistive benefits and

Chapter 9 Ph.D. Thesis

Jennifer Jackson 318 of 357 May 2017

modelling such a scenario can be representative of a time window of a dynamic

scheme, or a situation where it may not be practical or desirable to keep changing

software configurations. However the epidemic model is currently limited in terms

of functionality where the specified contact rate alone defines how quickly the

malware can spread. In a practical ad hoc network, wireless transmission

characteristics and the time taken to transfer malware contribute to a successful

contact. These aspects have been incorporated into the agent-based model on top of

the random waypoint mobility algorithm, but simulation times are very long. A

mathematical network model of moving devices has been incorporated into the

deterministic Bluetooth malware epidemic model previously developed by the

author [3]. It includes additional states to simulate different malware spreading

mechanisms. The research focus was on diversity, but a next step for the epidemic

model would be to integrate these aspects together with diversity, multilayer

software stacks and logical malware types, as well as the additional security

mechanisms such as blacklisting and virtualisation to generate a more functional

and representative mathematical model. Blacklisting can be added through the

inclusion of an additional state which will have the effect of removing susceptible

devices causing them to become temporary immune at a specified rate.

Virtualisation causes feedback from the infected state into the susceptible state, and

both of these two additional mechanisms will change the dynamical equations of

the malware model. This will provide results faster than the agent model with the

benefit of being able to simulate networks with a large variant richness over long

timescales.

Chapter 9 Ph.D. Thesis

Jennifer Jackson 319 of 357 May 2017

9.3.1.2 Specific to the Agent Model

A benefit of the agent model is in its flexibility to add functionality without the

requirement to describe the process mathematically meaning additional concepts

that are difficult or impossible to model using the epidemic method can still be

incorporated. For example diversity through evolutionary principles (§3.4.3.3)

alongside multiple and mutating malware, locally generated variants, or limiting

variant choices at each device rather than allowing selection from a pre-existing

software pool. This may be feasible when variants are generated as different

binaries from the same source code. Modelling malware with the potential to attack

the diversity concept could also be investigated.

A simple example has been demonstrated in the results to highlight the effect of

user influence on diversity patterns and hence malware resistance. Collected data of

computer configurations from a medium sized network could give a more realistic

insight into the current diversity of software stacks and their variation at different

layers. This data could be fed into the agent-based model to analyse its current

resistance to different multi-exploit malware. The concept of blacklisting and

resetting of software stacks through virtualisation could be integrated with heuristic

methods used by antivirus software of malware detection to provide a model of

detection, removal, and temporary immunity. A reflection on the expectation of

homogeneous mixing within ad hoc networks and whether this is realistic would

depend upon the scenario under which it is being considered. A market, science

fair, careers event, conference, or other clearly defined area where devices may

move around with users could be considered representative. However in many

Chapter 9 Ph.D. Thesis

Jennifer Jackson 320 of 357 May 2017

cases particular patterns of mobility may occur, for example people and cars

travelling along repeated routes. This will alter the assumption of random contact

into non-random, with some cars or people never coming into local contact with

each other at all. It should also be noted however that although homogeneous

mixing is not realistic in many cases it does however form a baseline for which

many models and research is based. Additionally the random waypoint model has

the flexibility to be extended to include other geographically shaped areas of interest

with different spatial effects, or modified to incorporate non-random waypoints

such as movement patterns of devices travelling between non-random destinations.

Alternatively the random waypoint algorithm could be replaced with real waypoint

trace data of mobility patterns providing true movement of devices and resulting in

more realistic diversity and malware relationships. The modelling approach used to

represent an ad hoc network has been from a high level abstract perspective. Lower

levels of abstractions are necessary to capture the true dynamics of an ad hoc

network and how malware or other types of attack may interfere with operations. It

would be beneficial to incorporate routing algorithms, traffic generation models and

emulate true multilayer software stacks using event based simulation. This will

better inform on the effect of diversity and malware propagation on the measurable

quality of service parameters such as throughput, latency, and end user impact. For

the simulation scenarios diversity optimisation results were obtained for QoS

tolerances between 80% and 95% resulting in a large range in diversity requirement

(Figure 8-5). The measurable QoS parameters listed above will aid in the

assessment of more realistic QoS requirements in order to define the optimal

diversity necessary. Finally, the agent-based model as currently implemented takes

Chapter 9 Ph.D. Thesis

Jennifer Jackson 321 of 357 May 2017

a significant time to execute a scenario, in the order of a day to run a small

simulation set across a parameter range, with even longer times prevailing when the

random waypoint network model is used. More efficient coding techniques or a

different language, such as C++, could be used to accelerate processor intensive

functions.

9.3.1.3 General Functionality

Recovery mechanisms integrated into the SIR epidemic model assume antivirus

or patching occurs after malware infection has already taken place, since this is

what happens in a biological system where the recovery rate indicates the average

time in which an individual remains unwell before recovering. In a practical

computing network patching and antivirus updates now tend to occur at regular

intervals regardless of whether a device is infected; if a patch is developed in time

recovery could effectively occur whilst some devices are still susceptible, potentially

changing the resistance and resilience response to diversity and the point of

mitigation. Future work could include the modelling of more realistic patching to

account for regular updates. Additionally, in practice not all users patch their

software, for example to avoid potential conflicts between components or across a

network, and so future work could analyse this aspect and include it in the model.

The way in which malware targets exploits at multiple layers of the software

stack is defined by the logical AND and OR types applied as a single stage logical

function. The AND and OR logical functions (together with inversion) form the

basic blocks for which all other logical functions can be created. The model could be

extended to include multi stage logic to model more complex malware exploit

Chapter 9 Ph.D. Thesis

Jennifer Jackson 322 of 357 May 2017

functions (§5.3.3) or relationships between layers impacting whether software

becomes vulnerable or not (§5.3.1.3).

Both diverse system models are limited such that each device can only utilise one

variant per locus at a time leading to monoploid genotypes. In practice, for some

users, it may be necessary to have the use of more than one variant from the same

locus for example if incompatible software programs are used as variants where

access to different files and data are needed. The models could therefore be

extended to include multiple variant selections. Finally, the biodiversity concepts

explored here are also applicable to other types of computer networks, the exact

mechanisms will differ due to how and when connections are made and differences

between distributed and centralised architectures. The work focuses on ad hoc

networks and is bounded by the characteristics of such a topology (which will

inherently be different to other topologies). Ad hoc networks by themselves, for

example, do not scale easily due to excessive protocol overhead and tend to be

limited to small geographical regions. The lack of scale however does not

necessarily have an adverse impact on the effectiveness of a biodiversity scheme.

The principle of software variants at different layers of a software stack applies to

both small and large networks. The physical separation of different ad hoc networks

may actually prove to be advantageous, by helping to contain malware to localised

regions. Additionally global connectivity can be achieved through access points to

the internet such as in the case of mesh networks (§3.2.3) allowing new variants and

vulnerability data to be accessed. Future work could explore the effects on different

network models.

Chapter 9 Ph.D. Thesis

Jennifer Jackson 323 of 357 May 2017

9.3.2 Practical Considerations

9.3.2.1 Practical Generation, Dissemination and Storage of

Variants

There are still remaining questions regarding what should be made diverse, for

example results suggest that only a handful of variants may be necessary at each

software layer to mitigate against a single exploit four locus AND malware attack

such as Stuxnet. In this case it may be practically viable to have a small number of

different software programs available at each stack layer. On the other hand to

mitigate a four locus OR malware type of attack, several hundred, or even

thousands of variants may be necessary in which case the automated generation of

software variants from a limited source of software programs would be required to

generate the large volumes of variants required. The practicability in disseminating

and maintaining large volumes of different software variants still needs to be

addressed. Creation and dissemination methodologies still remain at the concept

stage within the literature and further practical trials are needed [179]. For example,

there is suggestion that compiler generated software originating from single source

code (§3.4.3), potentially conducted within the cloud (§3.2.1.1), could provide the

necessary functionally equivalent variants when requested by users [110]. Such

concepts could be embedded within current software download areas, for example

ȁ“ppȂ stores, requiring no additional user input. This suggests the generation of

automated variants could be via a centralised source, but the option of generating

variants locally and dynamically from known good raw software sources has

largely been unexplored. Within a distributed network such as an ad hoc network it

Chapter 9 Ph.D. Thesis

Jennifer Jackson 324 of 357 May 2017

may be advantageous to be able to both download variants at relatively slow

timescales, and generate or swap in new ones locally on faster timescales to be able

to adapt to local situations. Generating diversity at the compiler stage is only one

approach to generating diverse software (§3.4.3), other techniques can be applied

after distribution such as during installation, loading or program execution [178].

These techniques for example could be adopted locally. In practice only a small

number of variants may be able to be stored locally due to limitations in memory,

and therefore techniques for local and dynamic generation within ad hoc networks

would be advantageous. If the concept of blacklisting is to be made viable, fast

access to alternative variants are necessary such as alternative choices stored locally.

Results showed that regular changing of genotypes to confuse a targeted attacker

from the same global pool of software could lead to the entire network becoming

infected. Additionally, results showed that limiting variant choices through

compatibility filtering can actually reduce the spread of malware, and therefore

limiting variant choices by each device and self generation of variants should be

explored further. When diversity is generated from independent software programs

it may result in a greater difficulty of maintenance, a larger range in their quality

since the diverse variants both within and across loci may come from many

different sources. Even those that do come from the same source such as through

the diversification of binary files or memory allocation may differ in terms of

efficiency of resources, and speed. The quality however may only become a problem

if it starts to noticeably impact the end user. Finally, as with any software

distribution method, there is the possibility of variants being generated from

Chapter 9 Ph.D. Thesis

Jennifer Jackson 325 of 357 May 2017

unauthenticated sources containing hidden malicious code, and careful

management of distribution is also required.

9.3.2.2 Security of Genotype Exchange for the Distributed

Algorithm

With the distributed favourability score algorithm where genotype information is

exchanged, careful attention is needed towards the secure sharing of information

during the communication link set up and the authenticity of the data since ill-

informed genotype information could result in variant choices to the advantage of

the attacker. As discussed in §7.6.2 In order for the scheme to become practically

viable both a discovery protocol to determine software variant information, and a

trust model to authenticate and maintain privacy of the genotype information

between trustees would need to be developed.

9.3.2.3 Vulnerability Data and Blacklisting

Software vulnerability information is currently stored in publically accessible

databases (§3.4.4.6). In order for blacklisting as described within this thesis to

become viable, the speed of dissemination will be critical in preventing infections.

There is a trade off between the speed of blacklisting and variant richness to obtain

the necessary resistance for the specified malware type. Antivirus companies are

best placed to assess vulnerability data, and disseminate blacklisting information as

a precursor to disseminating updated signature databases to detect and block the

malware. This is because they already have the expertise in understanding the

vulnerabilities, their perceived threat, and the necessary infrastructure to

disseminate the data using authentication and integrity checks during downloads.

Chapter 9 Ph.D. Thesis

Jennifer Jackson 326 of 357 May 2017

Antivirus companies can already block access to certain websites and terminate

suspicious activity, and therefore processing vulnerability data would be an

additional capability integrated into a multi-layered security approach. Careful

consideration will be necessary to the perceived level of threat since it would be

undesirable for many variants to be simultaneously blacklisted as this will reduce

the diversity of the network, increasing the susceptibility to other potential attacks.

Additionally there may be the need for the recipient to be involved in the

blacklisting decision process if the inconvenience of an unusable variant out-weighs

the risk of infection. The automated dissemination of vulnerability information

could be released as soon as it becomes available and would be more timely than

the corresponding antivirus signature and software patch, and more importantly

potentially faster than the response from cyber attackers.

9.3.2.4 Virtualisation

Dynamically changing software stacks, or parts of software stacks on devices,

including through blacklisting can only be viable, if it is physically and succinctly

possible to do so without affecting the user experience and interrupting network

operations, such as without having to reboot devices. Virtualisation could

potentially provide a mechanism for this. Using virtualisation to swap chunks of

functionally equivalent software in an attempt to confuse a targeted attacker has

been investigated in the literature (§3.4.3.4) highlighting that the concept is possible.

However, there are currently practical limitations that need to be overcome before

virtualisation technology can be fully used for dynamic diversity. For example in

order for a dynamic strategy to utilise virtualisation, a diversity hypervisor or a

Chapter 9 Ph.D. Thesis

Jennifer Jackson 327 of 357 May 2017

hypervisor extension supporting diversity would need to be developed. This would

need to automate and manage the usage of virtual machines to create, back-up, and

destroy genotypes on-the-fly and enable security loop holes to be evaded until a

patch is created. Hiding diversity to maintain an adequate user experience from the

device requires additional complexity. A possible solution is given in Figure 9-1.

Although the bulk of the software would be embedded within the VM Genotypes it

is proposed in the first instance that standard clients together with user selected

(constrained) software are run on the user VM with what appears to look like

relevant proxies on a VM Genotype. These clients would use data protocols with

network traffic such as email, and web access. This would allow client software

preferred by the user to remain constant whilst allowing the underlying software to

be made diverse using VM Genotypes. The proxies would carry out additional

security tasks, above normal servicing requests, such as rendering and recoding of

the data before returning it back to the client. This would help prevent malicious

exploits from penetrating through to the client. Development of proxies capable of

supporting the clients would be complex and made difficult by secure network

protocols. An alternative solution would be to construct a specific framework of thin

or zero client [265] software for the biodiversity scheme to replace the standard set

of clients and provide front ends to common applications such as word processing.

The thin client would be a translated ȁimageȂ of the software running on the VM,

similar to those used for cloud computing, except it would be tailored to the user

and would remain constant unless changed by the user, regardless of the diverse

software running on the VM genotype. The functionality of the standard client

Chapter 9 Ph.D. Thesis

Jennifer Jackson 328 of 357 May 2017

would then be encompassed back into the VM genotype giving more control over

the diversity of components, with the associated greater security benefits.

Figure 9-1 - Possible virtualisation architecture to support dynamic diversity

proxy 1

proxy 2

SW 1

SW 2

OS 1

VM1

VM Genotypes

Hypervisor – Type I

plus diversity extension

proxy 1

proxy 2

SW 1

SW 2

OS 1

VM2

proxy 1

proxy 2

SW 1

SW 2

OS 1

VM3

Hardware

client 1

client 2

SW 1

SW 2

OS

VMU

VM User

Appendix A Ph.D. Thesis

Jennifer Jackson 329 of 357 May 2017

A Constrained Diverse System Model: Epidemic

Equation Derivations

Appendix A

Constrained Diverse System Model:

Epidemic Equation Derivations

A.1 Susceptibility Derivation: Three Locus Logical OR

Malware Type

Three Loci: For three independent events the probability OR rule (General

Addition Rule) can be applied iteratively using the two locus result .

(A-1)

And therefore the proportion susceptible for a three locus network becomes

Appendix A Ph.D. Thesis

Jennifer Jackson 330 of 357 May 2017

Logical OR type:

(three loci)

(A-2)

A.2 Susceptibility Derivation: Four Locus Logical OR

Malware Type

Four Loci: For four independent events the probability OR rule (General

Addition Rule) can be applied iteratively.

(A-3)

Appendix A Ph.D. Thesis

Jennifer Jackson 331 of 357 May 2017

Therefore the proportion susceptible for a four locus network

becomes:

Logical

OR type:

(four loci)

(A-4)

Appendix A Ph.D. Thesis

Jennifer Jackson 332 of 357 May 2017

A.3 Diversity Optimisation Derivation: Three Locus OR

Malware Type

General Equation:

Using Equation (A-2) for 3 loci where

(A-5)

For a given value, and , can be solved computationally for a range

of and values to find the valid solutions satisfying the minimum variant

richness . Where the valid solutions are positive and non imaginary, and must be

greater than the number of exploits.

Average Equation:

Variant Richness (average number of variants for an average number of exploits):

Assuming the number of exploits and variants are the same in each loci, the

equation can be simplified to:

(A-6)

Which can be solved numerically for .

Appendix A Ph.D. Thesis

Jennifer Jackson 333 of 357 May 2017

A.4 Diversity Optimisation Derivation: Four Locus OR

Malware Type

General Equation:

Using Equation (A-4) for 4 loci where

(A-7)

For a given value, and , can be solved numerically for a range of and values to find the valid solutions satisfying the minimum variant

richness . Where the valid solutions are positive and non imaginary, and must be

greater than the number of exploits.

Appendix A Ph.D. Thesis

Jennifer Jackson 334 of 357 May 2017

Average Equation:

Variant Richness (average number of variants for an average number of exploits):

Assuming the number of exploits and variants are the same in each locus, the

equation can be simplified to:

(A-8)

Which can be solved numerically for .

Appendix B Ph.D. Thesis

Jennifer Jackson 335 of 357 May 2017

B Optimum Diversity and Peak Infection Times for

Two and Three Loci

Appendix B

Optimum Diversity and Peak

Infection Times for Two and Three

Loci

Appendix B Ph.D. Thesis

Jennifer Jackson 336 of 357 May 2017

B.1 AND Malware Type

Appendix Figure B-1 – AND malware type

a) Variant Richness - 2 loci AND

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

Exploit Richness

 V
a
ri
a
n
t

R
ic

h
n
e
s
s

80% Tolerance

90% Tolerance

95% Tolerance

1 2 3 4 5 6 7 8
0

5

10

15

20

25

ExploitRichness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

80% Tolerance

90% Tolerance

95% Tolerance

c) Variant Richness - 3 loci AND

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5

Number of exploits per locus

P
e
a
k
 I

n
fe

c
ti
o
n
 T

im
e
 (

H
o
u
rs

)

80% Tolerance

90% Tolerance

95% Tolerance

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

5

Number of exploits per locus

P
e
a
k
 I

n
fe

c
ti
o
n
 T

im
e
 (

H
o
u
rs

)

80% Tolerance

90% Tolerance

95% Tolerance

b) Peak Infection Time - 2 loci AND

d) Peak Infection Time – 3 loci AND

Appendix B Ph.D. Thesis

Jennifer Jackson 337 of 357 May 2017

B.2 OR Malware Type

Appendix Figure B-2 – OR malware type

a) Variant Richness - 2 loci OR

c) Variant Richness - 3 loci OR

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

80% Tolerance

90% Tolerance

95% Tolerance

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

450

500

Exploit Richness

V
a
ri
a
n
t

R
ic

h
n
e
s
s

80% Tolerance

90% Tolerance

95% Tolerance

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Number of exploits per locus

P
e
a
k
 I

n
fe

c
ti
o
n
 T

im
e
 (

H
o
u
rs

)

80% Tolerance

90% Tolerance

95% Tolerance

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Number of exploits per locus

P
e
a
k
 I

n
fe

c
ti
o
n
 T

im
e
 (

H
o
u
rs

)

80% Tolerance

90% Tolerance

95% Tolerance

b) Peak Infection Time – 2 loci OR

d) Peak Infection Time – 3 loci OR type

End Matter Ph.D. Thesis

Jennifer Jackson 338 of 357 May 2017

Abbreviations

3G Third Generation

4G Fourth Generation

5G Fifth Generation

ABM Agent-Based Models

AMD Advanced Micro Devices, Inc

API Application Program Interface

ASLR Address Space Layout Randomisation

BYOD Bring Your Own Devices

CODEC COder-DECoder

COTS Commercial Off The Shelf

CVE Common Vulnerabilities and Exposures

D2D Device-to-Device

DNA DeoxyriboNucleic Acid

DNS Domain Name Server

DSR Data Space Randomisation

DSU Dynamic Software Updating

FIFO First-In First-Out

FS Favourability Score

GIMP GNU Image Manipulation Program

GNOME GNU Network Object Model Environment

GNU GNU's Not Unix!

GPU Graphics Accelerator Card

GTK+ Object-oriented GIMP ToolKit

GUI Graphical User Interface

ICMP Internet Control Message Protocol

IoT Internet of Things

IP Internet Protocol

ISR Instruction Set Randomisation

IT Information Technology

KDE K Desktop Environment

LTE Long Term Evolution

LXDE Lightweight X11 Desktop Environment

M2M Machine to Machine

MANETs Mobile Ad hoc NETworks

MIMO Multiple Input Multiple Output

MITRE The Mitre Corporation

MMS Multimedia Messaging Service

MU Multi-User

NIST National Institute of Standards and Technology

NOP No Operation (computer instruction)

NVD National Vulnerability Database

OS Operating System

OSI Open Systems Interconnection

PAN Personal Area Network

End Matter Ph.D. Thesis

Jennifer Jackson 339 of 357 May 2017

PC Personal Computer

PDF Probability Density Function

PHP PHP Hypertext Preprocessor

QoS Quality of Service

RFID Radio Frequency Identification Device

RE Random Encounter

RV Random Variant

RV-T Random Variant – Time

RV-E Random Variant – Encounter

RWP Random WayPoint

SANS SysAdmin, Audit, Network and Security (Escal Institute of

Advanced Technology)

SEIRD Susceptible Exposed Infected Recovered Dormancy

SEIRS Susceptible Exposed Infected Recovered Susceptible

SEIS Susceptible Exposed Infected Susceptible

SEPTICOX Susceptible Exposed Prevented Treated Infected Contained

Offline eXposed-offline

SI Susceptible Infected (epidemic model)

SIR Susceptible Infected Recovered (epidemic model)

SMTP Simple Mail Transfer Protocol (email)

SQL Structured Query Language

SSH Secure Socket Shell (secure remote login)

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

VM Virtual Machine

WiFi Wireless Fidelity

X11 X window system (protocol version 11)

XFCE XForms Common Environment

XOR eXclusive-OR

End Matter Ph.D. Thesis

Jennifer Jackson 340 of 357 May 2017

Trademarks

The following are presented in the text and have, or assert to have, status as

(registered) trademarks:

Apache Software Foundation

Apache®

Apple Inc.

Apple®, Cocoa Touch®, iPhone®, Safari®

BitTorrent, Inc.

BITTORRENT®

Bluetooth SIG, Inc.

Bluetooth®

Canonical Limited

U”UNTU™

Cisco Systems, Inc.

iOS® (licensed to Apple Inc.)

Eclipse Foundation, Inc.

Eclipse®

Google Inc.

Google™, “ndroid™, Gmail™

Intel Corporation

Intel™

End Matter Ph.D. Thesis

Jennifer Jackson 341 of 357 May 2017

Kai Kreuzer (openHAB Foundation e.V)

OpenHAB®

Linux Mark Institute

Linux®

MathWorks, Inc.

M“TL“”®, ThingSpeak™

Microsoft Corporation

Internet Explorer™, Microsoft™, Outlook™, Silverlight™, Visual ”asic™,
Windows™, Visio™

MITRE Corporation

MITRE®

Mozilla Foundation

Mozilla®, Firefox®

MySQL AB

MySQL®

Netflix, Inc.

NETFLIX®

Opera Software AS

Opera®

Oracle Corporation

Oracle®, Java®, JavaScript™

SCALABLE Network Technologies, Inc.

QualNet®

End Matter Ph.D. Thesis

Jennifer Jackson 342 of 357 May 2017

Silicon Graphics, Inc.

OpenGL®

Software in the Public Interest, Inc.

Debian®

Symantec Corporation

Symantec™

Riverbed Technology, Inc.

OPNET®

Velcro Industries B.V.

Velcro®

Wi-Fi Alliance

Wi-Fi®

End Matter Ph.D. Thesis

Jennifer Jackson 343 of 357 May 2017

References

[ŗ] J. Jackson, S. creese, and M. S. Leeson, ȃ”iodiversity: “ security approach for ad
hoc networks,Ȅ in IEEE Symposium on Computational Intelligence in Cyber

Security, Paris, France, 2011.

[2] J. Jackson, Multi-scale location analysis of vulnerabilities and their link to disturbances

within digital ecosystems, University of Warwick, 2017.

[ř] J. T. Jackson, and S. Creese, ȃVirus propagation in heterogeneous bluetooth
networks with human behaviors,Ȅ IEEE Transactions on Dependable and Secure

Computing, vol. 9, no. 6, 2012.

[4] Bank of America Merrill Lynch, Bofaml's transforming world atlas investment

themes illustrated by maps, 2016.

[5] Symantec, Internet security threat report, 2016.

[Ŝ] C. Perera, “. Zaslavsky, P. Christen, and D. Georgakopoulos, ȃContext aware
computing for the internet of things: “ survey,Ȅ IEEE Communications &

Tutorials, vol. 16, no. 1, 2014.

[7] McAfee Labs, 2016 threats predictions, 2016.

[8] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,

ȃInternet of things: “ survey on enabling technologies, protocols, and
applications,Ȅ IEEE Communication Surveys & Tutorials, vol. 17, no. 4, pp.

2347-2376, 2015.

[ş] Dell, ȃDell security annual threat report,Ȅ ŘŖŗŜ.
[10] Kaspersky, Kaspersky security bulletin 2015, 2015.

[11] F-Secure Labs, Mobile threat report q1 2014, 2014.

[12] D. Moore, V. Paxson, S. Savage et al., ȃInside the slammer worm,Ȅ IEEE Security

& Privacy, vol. July/August, pp. P 33-39, 2003.

[ŗř] C. Shannon, and D. Moore, ȃThe spread of the witty worm,Ȅ IEEE Security &

Privacy, vol. July/August 2004, 2004.

[14] Symantec, Internet security threat report, vol. 20, 2015.

[ŗś] L. ”ilge, and T. Dumitras, ȃ”efore we knew it, an emperical study of zero-day

attacks in the real world,Ȅ in Proceedings of the ŘŖŗŘ “CM conference on
Computer and Communications Security, 2012, pp. 833-844.

[16] MITRE. "Common vulnerabilities and exposures," MITRE, http://cve.mitre.org,

https://www.cvedetails.com.

[ŗŝ] D. Kushner, ȃThe real story of stuxnet,Ȅ IEEE Spectrum, vol. 50, no. 3, pp. 48-53,

2013.

[ŗŞ] M. Stamp, ȃRisks of monoculture,Ȅ Communications of the ACM, vol. 47, no. 3,

pp. 120, 2004.

[ŗş] J. E. Just, and M. Cornwell, ȃReview and analysis of synthetic diversity for
breaking monocultures,Ȅ in WORM, ŘŖŖŚ.

[2Ŗ] P. Larsen, S. ”runthaler, and M. Franz, ȃSecurity through diversity: “re we
there yet?,Ȅ IEEE Security & Privacy, vol. 12, no. 2, pp. 28-35, 2014.

[21] A. M. Jones, Environmental biology: Routledge, 1997.

[22] A. Wilby, and A. Hector, "The role of biodiversity," Encyclopedia of life sciences:

John Wiley & Sons Ltd, 2008.

http://cve.mitre.org/
http://www.cvedetails.com/

End Matter Ph.D. Thesis

Jennifer Jackson 344 of 357 May 2017

[Řř] ”. ”. Lin, ȃResilience in agriculture through crop diversification: “daptive
management for environmental change,Ȅ BioScience, vol. 61, no. 3, 2011.

[24] R. S. Ostfeld, and F. Keesing, ȃ”iodiversity and disease risk: The case of lyme
disease,Ȅ Conservation Biology, vol. 14, no. 3, pp. 722-728, 2000.

[Řś] D. Mackenzie, ȃDisease runs riot as species disappear,Ȅ New Scientist, no. 2715,

2009.

[ŘŜ] D. Tilman, and J. “. Downing, ȃ”iodiversity and stability in grasslands,Ȅ
Nature, vol. 367, no. January, pp. 363-365, 1994.

[27] F. Isbell, D. Craven, J. Connolly et al., ȃ”iodiversity increases the resistance of
ecosystem productivity to climate extremes,Ȅ Nature, vol. 526, pp. 574-577,

2015.

[ŘŞ] L. Chen, and “. “vizienis, ȃN-version programming: A fault-tolerance

approach to reliability of software operation,Ȅ in International Symposium
on Fault-Tolerant Computing, 1978, pp. 3-9.

[Řş] J. R. Crandall, R. Ensafi, and S. Forrest, ȃThe ecology of malware,Ȅ in NSPW,
2008, pp. 99-106.

[řŖ] R. C. Linger, ȃSystematic generation of stochastic diversity as an intrusion
barrier in survivable systems software,Ȅ in řŘnd Hawaii International
Conference on System Sciences, 1999.

[31] M. C. Mont, A. Baldwin, Y. Beres et al., ȃReducing risks of widespread faults
and attacks for commercial software applications: Towards diversity of

software components,Ȅ in ŘŜth “nnual International Computer Software and
Applications Conference, 2002.

[32] A. Alarifi, and W. Du, ȃDiversify sensor nodes to improve resilience against
node compromise,Ȅ in The Fourth “CM Workshop on Security of “d Hoc
and Sensor Networks, 2006.

[33] T. Jackson, A. Homescu, S. Crane et al., "Diversifying the software stack using

randomized nop insertion," Moving target defense ii, pp. 151-173: Springer,

2013.

[řŚ] “. Homescu, S. Neisius, P. Larsen, S. ”runthaler, and M. Franz, ȃProfile-guided

automated software diversity,Ȅ in International Symposium on Code
Generation and Optimization, 2013.

[řś] “. J. O'Donnell, and H. Sethu, ȃOn achieving software diversity for improved
network security using distributed coloring algorithms,Ȅ in CCS, ŘŖŖŚ.

[řŜ] “. J. O'Donnell, and H. Sethu, ȃSoftware diversity as a defense against viral
propagation: Models and simulations,Ȅ in Principles of “dvanced and
Distributed Simulation, 2005.

[řŝ] Y. Yang, S. Zhu, and G. Cao, ȃImproving sensor network immunity under
worm attacks: “ software diversity approach,Ȅ in MobiHoc, ŘŖŖŞ.

[38] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao, ȃHeterogeneous networking:
“ new survivability paradigm,Ȅ in Proceedings of the ŘŖŖŗ “CM workshop
on New Security Paradigms, 2001.

[řş] M. G. ”ailey, ȃMalware resistant networking using system diversity,Ȅ in
SIGITE, 2005.

[40] S. Neti, “. Somayaji, and M. Locasto, ȃSoftware diversity: Security, entropy
and game theory,Ȅ in HotSec'ŗŘ, ŘŖŗŘ.

End Matter Ph.D. Thesis

Jennifer Jackson 345 of 357 May 2017

[Śŗ] ”. ”angerter, S. Talwar, R. “refi, and K. Stewart, ȃNetworks and devices for the
śg era,Ȅ IEEE Communications Magazine, no. 2, 2014.

[ŚŘ] M. Nei, ȃ“nalysis of gene diversity in subdivided populations,Ȅ Proceedings of

the National Academy of Sciences, vol. 70, no. 12, pp. 3321-3323, 1973.

[Śř] C. M. Lively, ȃThe effect of host genetic diversity on disease spread Ȅ The

American Naturalist, vol. 175, no. 6, pp. E149-E152, 2010.

[44] A. R. Hughes, B. D. Inouye, M. T. J. Johnson, N. Underwood, and M. Vellend,

ȃEcological consequences of genetic diversity,Ȅ Ecology Letters, vol. 11, pp.

609-623, 2008.

[Śś] R. J. Whittaker, ȃEvolution and measurement of species diversity,Ȅ Taxon, vol.

21, 1972.

[ŚŜ] Y. Song, P. Wang, G. Li, and D. Zhou, ȃRelationships between functional
diversity and ecosystem functioning: “ review,Ȅ Acta Ecological Sinica, vol.

34, pp. 85-91, 2014.

[47] M. Petter, S. Mooney, S. M. Maynard et al., ȃ“ methodology to map ecosystem
functions to support ecosystem services assessments,Ȅ Ecology and Society,

vol. 18, no. 1, 2013.

[48] D. U. Hooper, F. S. Chapin III, J. J. Ewel et al., ȃEsa report: Effects of
biodiversity on ecosystem functioning: “ consensus of current knowledge,Ȅ
Ecological Monographs, vol. 75, no. 1, pp. 3-35, 2005.

[Śş] S. Diaz, J. Fargione, F. S. Chapin III, and D. Tilman, ȃ”iodiversity loss threatens
human well-being,Ȅ PLoS Biology, vol. 4, no. 8, 2006.

[50] B. J. Cardinale, J. E. Duffy, A. Gonzalez et al., ȃ”iodiversity loss and its impact
on humanity,Ȅ Nature, vol. 486, pp. 59-67, 2012.

[51] P. A. Harrison, P. M. Berry, G. Simpson et al., ȃLinkages between biodiversity
attributes and ecosystem services: “ systematic review,Ȅ Ecosystem Services,

vol. 9, 2014.

[52] S. T. A. Pickett, and P. S. White, The ecology of natural disturbance and patch

dynamics: Academic Press, 1985.

[śř] W. P. Sousa, ȃThe role of disturbance in natural communities,Ȅ Annual Review

of Ecology and Systematics, vol. 15, pp. 353-391, 1984.

[54] P. S. White, J. Harrod, W. H. Romme, and J. Betancourt, "Disturbance and

temporal dynamics," Ecological stewardship, 1999.

[55] R. Keane, "Disturbance regimes and the historical range of variation in

terrestrial ecosystems," The Encyclopedia of Biodiversity, Elselvier, 2013.

[56] F. Keesing, L. K. Belden, P. Daszak et al., ȃImpacts of biodiversity on the
emergence and transmission of infectious diseases,Ȅ Nature, vol. 468, pp. 647-

652, 2010.

[śŝ] S. “. Levin, and R. T. Paine, ȃDisturbance, patch formation, and community
structure,Ȅ PNAS, vol. 71, no. 7, pp. 2744-2747, 1974.

[śŞ] R. L. Mackey, and D. J. Currie, ȃThe diversity-disturbance relationship: Is it

generally strong and peaked?,Ȅ Ecology, vol. 82, no. 12, pp. 3479-3492, 2001.

[śş] “. D. Miller, S. H. Roxburgh, and K. Shea, ȃHow frequency and intensity shape
diversity-disturbance relationships,Ȅ PNAS, vol. 108, no. 14, 2011.

[ŜŖ] K. ”ohn, R. Pavlick, ”. Reu, and “. Kleidon, ȃThe strengths of r- and k-selection

shape diversity-disturbance relationships,Ȅ PLOS ONE, 2014.

End Matter Ph.D. Thesis

Jennifer Jackson 346 of 357 May 2017

[Ŝŗ] W. R., W. S. Ho, K. S. Lee, and L. C. T., ȃImpact of disturbance on population
and genetic structure of tropical forest trees,Ȅ Forest Genetics, vol. 11, pp. 193-

201, 2004.

[ŜŘ] W. Silke, W. H. H., R. Holderegger, and J. M. Kalwij, ȃEffect of disturbances on
the genetic diversity of an old-forest associated lichen,Ȅ Molecular Ecology,

vol. 15, pp. 911-921, 2006.

[63] N. Farwig, C. Braun, and K. Bohning-Gaese, ȃHuman disturbance reduces
genetic diversity of an endangered tropical tree, prunus africana ǻrosaceaeǼ,Ȅ
Conservation genetics, vol. 9, no. 2, pp. 317-326, 2008.

[64] A. J. Symstad, F. S. Chapin III, D. H. Wall et al., ȃLong-term and large-scale

perspectives on the relationship between biodiversity and ecosystem

functioning,Ȅ BioScience, vol. 53, no. 1, 2003.

[65] N. Bluthgen, and A.-M. Klein, ȃFunctional complementarity and specialisation:
The role of biodiversity in plant-pollinator interactions,Ȅ Basic and Applied

Ecology, vol. 12, no. 4, 2011.

[ŜŜ] D. Tilman, ȃ”iodiversity: Population versus ecosystem stability,Ȅ Ecology

Letters, vol. 77, pp. 350-363, 1996.

[Ŝŝ] G. “llison, ȃThe influence of species diversity and stress intensity on

community resistance and resilience,Ȅ Ecological Monographs, vol. 74, no. 1,

pp. 117-134, 2004.

[ŜŞ] “. R. Hughes, and J. J. Stachowicz, ȃGenetic diversity enhances the resistance
of a seagrass ecosystem to disturbance,Ȅ Proceedings of the National Academy of

Sciences of the United States of America, vol. 102, pp. 8998-9002, 2004.

[Ŝş] “. R. Hughes, and J. J. Stachowicz, ȃSeagrass genotypic diversity increases
disturbance response via complementarity and dominance,Ȅ Journal of

Ecology, vol. 99, pp. 445-453, 2011.

[ŝŖ] G. E. Hutchinson, ȃConcluding remarks,Ȅ Cold Spring Harbor Symposia on

Quantitative Biology, vol. 22, pp. 415-427, 1957.

[71] G. F. Gause, The struggle for existence, Baltimore: The Williams & Wilkins

Company, 1934.

[ŝŘ] P. “. “brams, C. M. Tucker, and ”. Gilbert, ȃEvolution of the storage effect,Ȅ
Evolution, vol. 67, no. 2, pp. 315-327, 2012.

[ŝř] T. ”. H. Reusch, “. Ehlers, “. Haemmerli, and ”. Worm, ȃEcosystem recovery
after climatic extremes enhanced by genotypic diversity.,Ȅ Proceedings of the

National Academy of Sciences of the United States of America, vol. 102, pp. 2826-

2831, 2005.

[74] S. C. Cook-Patton, S. H. McArt, A. L. Parachnowitsch, J. S. Thaler, and A. A.

“grawal, ȃ“ direct comparison of the consequences of plant genotypic and

species diversity on communities and ecosystem function,Ȅ Ecology, vol. 92,

no. 4, pp. 915-923, 2011.

[ŝś] J. Frund, C. F. Dormann, “. Holzschuh, and T. Tscharntke, ȃ”ee diversity
effects on pollination depend on functional complementarity and niche

shifts,Ȅ Ecology, vol. 94, no. 9, 2013.

[ŝŜ] R. Kafri, M. Springer, and Y. Pilpel, ȃGenetic redundancy: New tricks for old
genes,Ȅ Cell, vol. 136, no. 3, pp. 389-392, 2009.

[ŝŝ] “. Wagner, ȃRedundant gene functions and natural selection,Ȅ Journal of

Evolutionary Biology, vol. 12, pp. 1-16, 1999.

End Matter Ph.D. Thesis

Jennifer Jackson 347 of 357 May 2017

[ŝŞ] J. Ellers, S. Rog, ”. C, and ”. M. P., ȃGenotypic richness and phenotypic
dissimilarity enhance population performance,Ȅ Ecology, vol. 92, no. 8, pp.

1605-1615, 2011.

[79] C. E. Proffitt, R. L. Chiasson, “. ”. Owens, and S. E. Travis, ȃSpartina
alterniflora genotype influences facilitation and suppression of high marsh

species colonizing an early successional salt marsh,Ȅ Journal of Ecology, vol.

93, no. 2, pp. 404-416, 2005.

[80] J. Vandermeer, The ecology of intercropping: Cambridge University Press,

Cambridge, UK, 1989.

[81] A. Kahmen, and N. Buchmann, "Chapter 22: Addressing the functional value of

biodiversity for ecosystem functioning using stable isotopes," Stable isotopes

as indicators of ecological change: Elsevier, 2007.

[82] P. Balvanera, A. B. Pfisterer, N. Buchmann et al., ȃQuantifying the evidence for
biodiversity effects on ecosystem functioning and services,Ȅ Ecology Letters,

vol. 9, pp. 1146-1156, 2006.

[83] B. K. Hall, Evolution: Principles and processes: Jones and Bartlett Publishers, 2011.

[84] J. Adds, E. Larkcom, and R. Miller, Genetics, evolution and biodiversity: Nelson

Thornes Ltd, 2004.

[85] A. F. Wright, "Genetic variation: Polymorphisms and mutations," Encyclopedia

of life sciences: John Wiley & Sons, 2005.

[ŞŜ] “. R. Hughes, ȃDisturbance and diversity: “n ecological chicken and egg
problem,Ȅ Nature Education Knowledge, vol. 3, no. 10, 2010.

[87] P. J. Morin, Community ecology (second edition): Wiley-Blackwell, 2011.

[ŞŞ] C. L. Lehman, and D. Tilman, ȃ”iodiversity, stability, and productivity in
competitive communities,Ȅ The American Naturalist, vol. 156, no. 5, 2000.

[89] K. S. McCann, ȃThe diversity-stability debate,Ȅ Nature, vol. 405, 2000.

[şŖ] D. Tilman, P. ”. Reich, and J. M. H. Knops, ȃ”iodiversity and ecosystem
stability in a decade-long grassland experiment,Ȅ Nature, vol. 441, pp. 629-

632, 2006.

[91] G. M. Crutsinger, L. Souza, and N. J. Sanders, ȃIntraspecific diversity and
dominant genotypes resist plant invasions,Ȅ Ecology Letters, vol. 10, 2007.

[92] T. A. Kennedy, S. Naeem, K. M. Howe et al., ȃ”iodiversity as a barrier to
ecological invasion,Ȅ Nature - Letter, vol. 417, pp. 636-638, 2002.

[93] L. Gunderson, C. S. Holling, L. Pritchard, and G. D. Peterson, "Resilience,"

Encyclopedia of global environmental change, 2002.

[şŚ] H. E. Creissen, T. H. Jorgensen, and J. K. ”rown, ȃImpact of disease on
diversity and productivity of plant populations,Ȅ Functional Ecology, vol. 30,

no. 4, pp. 649-657, 2016.

[şś] D. Spielman, ”. W. ”rook, D. “. ”riscoe, and R. Frankham, ȃDoes inbreeding
and loss of genetic diversity increase disease resistance?,Ȅ Conservation

Genetics, vol. 5, pp. 439-448, 2004.

[şŜ] K. “. Schmidt, and R. S. Ostfeld, ȃ”iodiversity and the dilution effect in disease
ecology,Ȅ Ecology, vol. 82, no. 3, 2001.

[97] I. Pagan, P. Gonzalez-Jara, A. Moreno-Letelier et al., ȃEffect of biodiversity
changes in disease risk: Exploring disease emergence in a plant-virus

system,Ȅ PLoS Pathogens, 2012.

End Matter Ph.D. Thesis

Jennifer Jackson 348 of 357 May 2017

[şŞ] U. R. Zargar, M. Z. Chrishti, F. “hmad, and M. I. Rather, ȃDoes alteration in
biodiversity really affect disease outcome? - a debate is brewing,Ȅ Saudi

Journal of Biological Sciences, vol. 22, no. 1, pp. 14-18, 2015.

[şş] K. C. King, and C. M. Lively, ȃDoes genetic diversity limit disease spread in
natural host populations?,Ȅ Heredity, vol. 109, pp. 199-203, 2012.

[ŗŖŖ] J. F. Tooker, and S. D. Frank, ȃGenotypically diverse cultivar mixtures for

insect pest management and increased crop yields,Ȅ Journal of Applied

Ecology, vol. 49, no. 5, pp. 974-985, 2012.

[101] Y. Zhu, H. Chen, F. Jinghua et al., ȃGenetic diversity and disease control in
rice,Ȅ Nature, vol. 406, no. 718-722, 2000.

[ŗŖŘ] F. “ltermatt, and D. Ebert, ȃGenetic diversity of daphnia magna populations
enhances resistance to parasites,Ȅ Ecology Letters, vol. 11, pp. 918-928, 2008.

[ŗŖř] H. H. Ganz, and D. Ebert, ȃ”enefits of host genetic diversity for resistance to

infection depend on parasite diversity,Ȅ Ecology, vol. 91, pp. 1263-1268, 2010.

[104] A. E. Magurran, Measuring biological diversity: Blackwell, 2003.

[ŗŖś] K. Van Doninck, I. Schon, K. Martens, and T. ”ackeljau, ȃClonal diversity in
the ancient asexual ostracod darwinula stevensoni assessed by rapd-pcr,Ȅ
Heredity, vol. 93, pp. 154-160, 2004.

[ŗŖŜ] J. “. Stoddart, ȃ“ genotypic diversity measure,Ȅ Journal of Heredity, vol. 74, pp.

489-490, 1983.

[107] D. L. Hawksworth, Biodiversity measurement and estimation: Springer, 2009.

[ŗŖŞ] C. E. Shannon, ȃ“ mathematical theory of communication,Ȅ Bell System

Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.

[109] A. Lowe, S. Harris, and P. Ashton, Ecological genetics, design analysis and

apllication: Blackwell Publishing, 2004.

[ŗŗŖ] M. Franz, ȃE unibus pluram: Massive-scale software diversity as a defense

mechanism,Ȅ in Proceedings of the ŘŖŗŖ workshop on New security

paradigms, 2010.

[ŗŗŗ] K. Makris, and R. “. ”azzi, ȃImmediate multi-threaded dynamic software

updates using stack reconstruction,Ȅ in USENIX “nnual technical
conference, 2009.

[112] G. Chen, H. Jin, D. Zou et al., ȃ“ framework for practical dynamic software

updating,Ȅ IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 4,

2016.

[113] Wind River, White paper: Virtualization and the internet of things, 2014.

[ŗŗŚ] T. Sridhar, ȃCloud computing: “ primer, part ŗ: Models and technologies,Ȅ
The Internet Protocol Journal, vol. 12, no. 3, 2009.

[115] A. Armando, G. Costa, L. Verderame, and “. Merlo, ȃSecuring the "”ring your
own device" Paradigm,Ȅ IEEE Computer, vol. 47, no. 6, 2014.

[116] "Horizon mobile secure workplace." www.vmware.com.

[117] "The xen project." http://www.xenproject.org/.

[ŗŗŞ] G. Merlino, D. ”runeo, S. Distefano, F. Longo, and “. Puliafito, ȃEnabling
mechanisms for cloud-based network virtualization in iot,Ȅ in IEEE Řnd
World Forum on Internet of Things, 2015, pp. 268-273.

[ŗŗş] F. Ramalho, and “. Neto, ȃVirtualization at the network edge: A performance

comparison,Ȅ in IEEE International Symposium on “ World of Wireless,
Mobile and Multimedia Networks, 2016, pp. 1-6.

http://www.vmware.com/
http://www.xenproject.org/

End Matter Ph.D. Thesis

Jennifer Jackson 349 of 357 May 2017

[ŗŘŖ] K. S. Dar, “. Taherkordi, and F. Eliassen, ȃEnhancing dependability of cloud-

based iot services through virtualization,Ȅ in IEEE First International
Conference on Internet-of-things Design and Implementation, 2016, pp. 106-

116.

[ŗŘŗ] H. Ko, J. Jin, and S. L. Keoh, ȃSecure service virtualization in iot by dynamic
service dependency verification,Ȅ IEEE Internet of Things Journal, no. 99, 2016.

[122] D. Kelaidonis, A. Somov, V. Foteinos et al., ȃVirtualization and cognitive

management of real world objects in the internet of things,Ȅ in IEEE
International Conference on Green Computing and Communications, 2012,

pp. 187-194.

[123] N. L. S. da Fonseca, and R. Boutaba, "Virtualization in the cloud," Cloud

services, networking, and management: Wiley-IEEE Press eBook Chapters, 2015.

[124] Internet of things - converging technologies for smart environments and integrated

ecosystems: River Publishers, 2013.

[ŗŘś] C. Greamo, and “. Ghosh, ȃSandboxing and virtualization, modern tools for

combating malware,Ȅ IEEE Security & Privacy, vol. March/April, pp. 79-82,

2011.

[126] A. J. Younge, R. Henschel, J. T. Brown et al., ȃ“nalysis of virtualization
technologies for high performance computing environments,Ȅ in IEEE
International Conference on Cloud Computing, 2011, pp. 9-16.

[ŗŘŝ] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, ȃCore fusion:
“ccommodating software diversity in chip multiprocessors,Ȅ in ISC“, ŘŖŖŝ.

[ŗŘŞ] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, ȃ“ reconfigurable chip

multiprocessor architecture to accommodate software diversity,Ȅ in Parallel
and Distributed Processing, 2007.

[129] A. S. Tanenbaum, Computer networks - fourth edition: Pearson Education

International, 2003.

[130] Google. "Android," https://www.android.com/.

[ŗřŗ] S. Khan, M. Nauman, “. T. Othman, and S. Musa, ȃHow secure is your
smartphone: “n analysis of smartphone security mechanisms,Ȅ in IEEE
International Conference on Cyber Security, Cyber Warfare and Digital

Forensic (CyberSec), 2012.

[132] Apple. "Ios," http://www.apple.com/uk/.

[133] N. Smyth, Ios 7 app development essentials: Developing ios 7 iphone and ipad apps

with xcode 5: eBookFrenzy, 2013.

[134] Microsoft. "Windows 8," https://www.microsoft.com/.

[135] I. Novaik, Z. Arvai, G. Balaissy, and D. Fulop, Beginning windows 8 application

development: John Wiley & Sons, 2012.

[136] Linux. "Linux," https://www.linux.com/.

[137] M. Helmke, Ubuntu unleashed 2016 edition: Covering 15.10 and 16.04: Sams

Publishing, 2015.

[138] D. P. Bovet, and M. Cesati, Understanding the linux kernel: O'reilly, 2006.

[139] North Bridge and Black Duck, 2015 future of open source survey,

www.slideshare.net/North_Bridge/2015-future-of-open-source-study, 2015.

[140] "Physical web." https://google.github.io/physical-web/.

[141] "Lelylan." http://www.lelylan.com/.

[142] "Thing speak." https://thingspeak.com/.

http://www.android.com/
http://www.apple.com/uk/
http://www.microsoft.com/
http://www.linux.com/
http://www.slideshare.net/North_Bridge/2015-future-of-open-source-study
http://www.lelylan.com/

End Matter Ph.D. Thesis

Jennifer Jackson 350 of 357 May 2017

[143] "Bug labs." http://buglabs.net/.

[144] "The thing system." http://thethingsystem.com/things/index.html.

[145] "Open remote." http://www.openremote.org/display/HOME/OpenRemote.

[146] A. Gupta, and R. Kumar JH“, ȃ“ survey of śg network: “rchitecture and
emerging technologies,Ȅ IEEE Access: Special Section on Recent Advances in

Software Defined Networking for 5G Networks, vol. 3, pp. 1206-1232, 2015.

[ŗŚŝ] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, ȃFuture internet: The internet of

things architecture, possible applications and key challenges,Ȅ in ŗŖth IEEE
International Conference on Frontiers of Information Technology, 2012.

[148] S. K. Sarkar, T. G. Basavaraju, and C. Puttamadappa, Ad hoc mobile wireless

networks: Principles, protocols, and applications, second edition: CRC Press, 2013.

[149] L. Yan, "Can p2p benefit from manet? Performance evaluation from users'

perspective," Mobile ad-hoc and sensor networks: First international conference,

msn 2005, Lecture notes in computer science 3794, pp. 1026-1035: Springer

Berlin Heidelberg, 2005.

[ŗśŖ] J. Chandra, S. Delitzscher, N. Ganguly, and “. Jhunjhunwala, ȃOptimizing
topology in bit torrent based networks,Ȅ in IEEE Computer Communications
Workshops, 2011.

[ŗśŗ] R. Ramanathan, and J. Redi, ȃ“ brief overview of ad hoc networks: Challenges
and directions,Ȅ IEEE Communications Magazine, vol. 40, no. 5, pp. 20-22,

2002.

[ŗśŘ] R. Schollmeier, I. Gruber, and M. Finkenzeller, ȃRouting in mobile ad hoc and
peer-to-peer networks. “ comparison,Ȅ in International workshop on Peer-

to-peer Computing. In networking, 2002.

[ŗśř] R. ”runo, M. Conti, and E. Gregori, ȃMesh networks: Commodity multihop,Ȅ
IEEE Communications Magazine, vol. 43, no. 3, 2005.

[154] D. G. Reina, S. L. Toral, F. Barrero, N. Bessis, and E. Asimakopoulou, "The role

of ad hoc networks in the internet of things: A case scenario for smart

environments," Internet of things and inter-cooperative computational technologies

for collective intelligence, Studies in Computational Intelligence, pp. 89-113:

Springer-Verlag Berlin Heidelberg, 2013.

[155] J. Loo, J. L. Mauri, and J. H. Ortiz, Mobile ad hoc networks: Current status and

future trends: CRC Press, 2016.

[156] "Mobile malware evolution: An overview, part 1." Kaspersky,

http://www.viruslist.com/en/analysis?pubid=200119916#fams.

[157] Securelist. "Mobile malware evolution 2015," 9th September 2016,

https://securelist.com/analysis/kaspersky-security-bulletin/73839/mobile-

malware-evolution-2015/.

[158] V. Zhang. "'godless' mobile malware uses multiple exploits to root devices,"

1st September 2016, 2016, TrendLabs Security Intelligence Blog, Trend Micro,

http://blog.trendmicro.com/trendlabs-security-intelligence/godless-mobile-

malware-uses-multiple-exploits-root-devices/.

[159] Lookout and Citizen Lab. "Sophisticated, persistent mobile attack against

high-value targets on ios," 1st September 2016,

https://blog.lookout.com/blog/2016/08/25/trident-pegasus/.

http://buglabs.net/
http://thethingsystem.com/things/index.html
http://www.openremote.org/display/HOME/OpenRemote
http://www.viruslist.com/en/analysis?pubid=200119916#fams
http://blog.trendmicro.com/trendlabs-security-intelligence/godless-mobile-malware-uses-multiple-exploits-root-devices/
http://blog.trendmicro.com/trendlabs-security-intelligence/godless-mobile-malware-uses-multiple-exploits-root-devices/

End Matter Ph.D. Thesis

Jennifer Jackson 351 of 357 May 2017

[160] L. H. Newman. "A hacking group is selling iphone spyware to governments,"

2nd September 2016, Wired, https://www.wired.com/2016/08/hacking-

group-selling-ios-vulnerabilities-state-actors/.

[161] Kaspersky, Kaspersky security bulletin 2014, 2014.

[162] S. Christey, "2010 cwe/sans top 25 most dangerous software errors," MITRE &

SANS, 2010.

[ŗŜř] S. Jain, and S. R. Das, ȃExploiting path diversity in the link layer in wireless ad
hoc networks,Ȅ Ad Hoc Networks, vol. 6, no. 5, pp. 805-825, 2008.

[ŗŜŚ] T. Issariyakul, and V. Krishnamurthy, ȃ“mplify-and-forward cooperative

diversity wireless networks: Model, analysis, and monotonicity properties,Ȅ
IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 225-238, 2009.

[165] H. Lim, C. Lim, and J. C. Hou, ȃ“ coordinate-based approach for exploiting

temporal-spatial diversity in wireless mesh networks,Ȅ in MobiCom, ŘŖŖŜ.
[166] Y. Zhou, Z.-F. Wu, H. Wang et al., ȃ”reaking monocultures in pŘp networks

for worm prevention,Ȅ in Machine Learning and Cybernetics, 2006.

[ŗŜŝ] ”. “nckaert, ”. De Sutter, and K. De ”osschere, ȃSoftware piracy prevention
through diversity,Ȅ in DRM, ŘŖŖŚ.

[168] H. Shacham, M. Page, B. Pfaff et al., ȃOn the effectiveness of address-space

randomization,Ȅ in ŗŗth “CM Conference on Computing Communication

Security, 2004, pp. 298-307.

[ŗŜş] N. L. Hung, “. R. Jacob, and S. E. Makris, ȃ“lternatives to achieve software
diversity in common channel signaling networks,Ȅ IEEE Journal on Selected

Areas in Communications, vol. 12, no. 3, pp. 533-538, 1994.

[ŗŝŖ] ”. Littlewood, P. Popov, and L. Strigini, ȃModeling software design diversity -
a review,Ȅ ACM Computing Surveys, vol. 33, no. 2, pp. 177-208, 2001.

[ŗŝŗ] G. Gaiswinkler, and “. Gerstinger, ȃ“utomated software diversity for
hardware fault detection,Ȅ in Emerging Technologies & Factory “utomation,
2009.

[172] M. R. Lyu, J.-H. Chen, and “. “vizienis, ȃSoftware diversity metrics and
measurements,Ȅ in Computer Software and “pplications Conference, ŗşşŘ.

[ŗŝř] ”. Nikolik, ȃTest diversity,Ȅ Information and Software Technology, vol. 48, no. 11,

pp. 1083-1094, 2006.

[ŗŝŚ] S. Forrest, “. Somayaji, and D. H. “ckley, ȃ”uilding diverse computer
systems,Ȅ in Workshop on Hot Topics in Operating Systems, ŗşşŝ.

[175] B. Baudry, M. Monperrus, C. Mony, F. Chauvel, and S. Clarke, ȃDiversify -

ecology-inspired software evolution for diversity emergence,Ȅ in
International Conference on Software Maintenance and Reengineering

(CSMR), 2014.

[176] S. Shetty, X. Yuchi, and M. Song, "Scalable network diversity modeling for

assessing threats in cloud networks," Moving target defense for distributed

systems. Wireless networks: Springer Verlag, 2016.

[ŗŝŝ] C. L. Smith, ȃUnderstanding concepts in the defence in depth strategy,Ȅ in
IEEE 37th Annual International Carnahan Conference on Security

Technology, 2003.

[ŗŝŞ] P. Larsen, “. Homescu, S. ”runthaler, and M. Franz, ȃSok: “utomated
software diversity,Ȅ in IEEE Symposium on Security and Privacy, Ř014, pp.

276-291.

http://www.wired.com/2016/08/hacking-group-selling-ios-vulnerabilities-state-actors/
http://www.wired.com/2016/08/hacking-group-selling-ios-vulnerabilities-state-actors/

End Matter Ph.D. Thesis

Jennifer Jackson 352 of 357 May 2017

[ŗŝş] S. “llier, O. ”arais, and e. al, ȃMulti-tier diversification in web-based software

applications,Ȅ IEEE Software, vol. 32, no. 1, pp. 83-90, 2015.

[ŗŞŖ] ”. ”audry, S. “llier, and M. Monperrus, ȃTailored source code
transformations to synthesize computationally diverse program variants,Ȅ in
International Symposium on Software Testing and Analysis, 2014.

[ŗŞŗ] “. Gupta, J. Habibi, M. S. Kirkpatrick, and E. ”ertino, ȃMarlin: Mitigating
code reuse attacks using code randomization,Ȅ IEEE Transactions on

Dependable and Secure Computing, vol. 12, no. 3, 2015.

[ŗŞŘ] M. Murphy, P. Larsen, S. ”runthaler, and M. Franz, ȃSoftware profiling
options and their effects on security based diversification Ȅ in First “CM
workshop on Moving Target Defense, 2014.

[183] T. Jackson, B. Salamat, A. Homescu et al., "Compiler-generated software

diversity," Moving target defense, Advances in information security, pp. 77-98:

Springer New York, 2011.

[ŗŞŚ] S. ”hatkar, D. C. DuVarney, and R. Sekar, ȃ“ddress obfuscation: An efficient

approach to combat a broad range of memory error exploits,Ȅ in ŗŘth
Conference on USENIX Security Symposium, 2003.

[185] J. C. Knight, "Diversity," Dependable and historic computing, Lecture notes in

computer science, pp. 298-312: Springer Berlin Heidelberg, 2011.

[ŗŞŜ] D. H. “ristizabal, D. M. Rodriguez, and R. Y. Guevara, ȃMeasuring aslr
implementations on modern operating systems,Ȅ in IEEE International
Carnahan Conference on Security Technology, 2013, pp. 1-6.

[187] S. Bhatkar, and R. Sekar, "Data space randomization," Detection of intrusions

and malware, and vulnerability assessment, Lecture notes in computer science,

pp. 1-22: Springer Berlin Heidelberg, 2008.

[188] S. W. Boyd, G. S. Kc, M. E. Locasto, A. Keromytis, and V. Prevelakis, ȃOn the
general applicability of instruction-set randomization,Ȅ IEEE Transactions on

Dependable and Secure Computing, vol. 7, no. 3, pp. 255-270, 2010.

[189] Z. Liang, B. Liang, L. Li et al., ȃ“gainst code injection with system call
randomization,Ȅ in IEEE International Conference on Networks Security,
Wireless Communications and Trusted Computing, 2009.

[190] E. G. Barrantes, D. H. Ackley, S. Forrest, D. Stefanovic, and D. D. Zovi,

ȃRandomized instruction set emulation to disrupt binary code injection

attacks,Ȅ in “CM Transactions on Information and System Security, ŘŖŖś.
[ŗşŗ] G. S. Kc, “. D. Keromytis, and V. Prevelakis, ȃCountering code-injection

attacks with instruction-set randomization,Ȅ in ŗŖth “CM Conference on
Computer and Communications Security, 2003, pp. 272-280.

[ŗşŘ] “. N. Sovarel, D. Evans, and N. Paul, ȃWhere's the feeb? The effectiveness of
instruction set randomization,Ȅ in ŗŚth Conference on USENIX Security
Symposium, 2005, pp. 10.

[193] V. Pappas, M. Polychronakis, and A. D. Keromytis, "Practical software

diversification using in-place code randomization," Moving target defense ii,

pp. 175-202: Springer New York, 2013.

[194] T. R. Jenson, and B. Toft, Graph coloring problems: John Wiley & Sons, 1995.

[195] S. Hosseini, M. “. “zgomi, and “. T. Rahmani, ȃ“ malware propagation
model considering software diversity,Ȅ in ŗŗth International ISC Conference
on Information Security and Cryptology, 2014.

End Matter Ph.D. Thesis

Jennifer Jackson 353 of 357 May 2017

[ŗşŜ] K. Hole, ȃDiversity reduces the impact of malware,Ȅ IEEE Security & Privacy,

vol. 99, 2013.

[197] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic programming -

an introduction: Morgan Kaufmann Publishers, Inc, 1998.

[ŗşŞ] R. Feldt, ȃGenerating diverse software versions with genetic programming,Ȅ
in IEEE proceedings-Software, 1998.

[ŗşş] N. Holtschulte, and M. Moses, ȃDiversity and resistance in a model network
with adaptive software,Ȅ Security Informatics - a SpringerOpen Journal, vol. 1,

no. 19, Nov 2012.

[200] A. Newell, D. Obenshain, T. Tantillo, Nita-Rotaru, and “. Yair, ȃIncreasing
network resiliency by optimally assigning diverse variants to routing

nodes,Ȅ in IEEE/IFIP International Conference on Dependable Systems and
Networks, 2013.

[201] E. Totel, F. Majorczyk, and L. Me, "Cots diversity based intrusion detection

and application to web servers," Recent advances in intrusion detection, Lecture

notes in computer science: Springer Berlin Heidelberg, 2006.

[202] B. Cox, D. Evans, A. Filipi et al., ȃN-variant systems a secretless framework for

security through diversity,Ȅ in ŗśth USENIX security Symposium, ŘŖŖŜ.
[ŘŖř] M. “zab, ȃMultidimensional diversity employment for software behaviour

encryption,Ȅ in Ŝth International Conference on New Technologies, Mobility
and Security, 2014.

[204] H. Wang, D. Fang, G. Li et al., ȃTdvmp: Improved virtual machine-based

software protection with time diversity,Ȅ in “CM SIGPL“N on Program
Protection and Reverse Engineering, 2014.

[ŘŖś] K. Kravvaritis, D. Mitropoulos, and D. Spinellis, ȃCyberdiversity: Measures

and initial results,Ȅ in ŗŚth Panhellenic Conference on Informatics, ŘŖŗŖ.
[ŘŖŜ] M. Garcia, “. ”essani, I. Gashi, N. Neves, and R. Obelheiro, ȃOs diversity for

intrusion tolerance: Myth or reality?,Ȅ in IEEE/IFIP International conference
on Dependable Systems and Networks, 2011.

[207] J. Han, D. Gao, and R. H. Deng, "On the effectiveness of software diversity: A

systematic study on real-world vulnerabilities," Detection of intrusions and

malware, and vulnerability assessment, Lecture notes in computer science 5587,

pp. 127-146: Springer Berlin Heidelberg, 2009.

[208] R. Khoury, Hamou-Lhadj, and M. Couture, ȃTowards a formal framework for
evaluating the effectiveness of system diversity when applied to security,Ȅ in
IEEE Symposium on Computational Intelligence for Security and Defence

Applications, 2012.

[209] C. Taylor, and J. Alves-Foss, ȃDiversity as a computer defense mechanism a
panel,Ȅ in NSPW, ŘŖŖŜ.

[210] M. C. Gonzalez, C. A. Hidalgo, and A.-L. ”arabasi, ȃUnderstanding
individual human mobility patterns,Ȅ Nature, vol. 453, pp. 779-782, 2008.

[Řŗŗ] T. Camp, J. ”oleng, and V. Davies, ȃ“ survey of mobility models for ad hoc
network research,Ȅ Wireless Communications & Mobile Computing: Special issue

on Mobile Ad Hoc Networking: Research, Trends and Applications, 2002.

[212] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, ȃ“ performance
comparison of multi-hop wireless ad hoc network routing protocols,Ȅ in

End Matter Ph.D. Thesis

Jennifer Jackson 354 of 357 May 2017

ACM/IEEE International Conference on Mobile Computing and

Networking, 1998, pp. 85-97.

[213] G. Yan, L. Cuellar, S. Eidenbenz et al., ȃ”luetooth worm propagation: Mobility
pattern matters!,Ȅ in “CM symposium on Information, computer and
communications security, 2007, pp. 32-44.

[ŘŗŚ] H. Xiang, J. Liu, and J. Kuang, ȃMinimum node degree and connectivity of

two-dimensional manets under random waypoint mobility model,Ȅ in IEEE
10th International Conference on Computer and Information Technology,

2010.

[Řŗś] T. “nouari, and “. Haqiq, ȃPerformance analysis of routing protocols in
wimax using random waypoint model,Ȅ in IEEE ŘŖth International
Conference on Telecommunications, 2013, pp. 1-5.

[ŘŗŜ] “. Roy, P. ”ijan, and S. K. Paul, ȃVanet topology based routing protocols &
performance of aodv, dsr routing protocols in random waypoint scenarios,Ȅ
in IEEE 1st International Conference on Computer & Information

Engineering, 2015.

[Řŗŝ] L. Irio, and R. Oliveira, ȃInterference estimation in wireless mobile random
waypoint networks,Ȅ in IEEE Řřrd Telecommunications forum, ŘŖŗś.

[218] D. B. Johnson, and D. A. Maltz, "Dynamic source routing in ad hoc wireless

networks," Mobile computing, Tomasz Imielinski and Hank Korth, ed., pp.

153-181: Kluwer Academic Publishers, 1996.

[Řŗş] M. Niazi, and “. Hussain, ȃ“gent-based tools for modeling and simulation of

self-organization in peer-to-peer, ad hoc, and other complex networks,Ȅ IEEE

Communications Magazine, vol. 47, no. 3, pp. 166-173, 2009.

[ŘŘŖ] H. “lharbi, and “. Hussain, ȃ“n agent-based approach for modelling peer to

peer networks,Ȅ in ŗŝth UKSIM-AMSS International Conference on

Modelling and Simulation, 2015.

[221] S. Johnson, Emergence: Penguin Books, 2002.

[222] A. Pramanik, B. Choudhury, T. S. Choudhury, and W. A. Mehedi, J.,

ȃSimulative study of random waypoint mobility model for mobile ad hoc

networks,Ȅ in IEEE Global Conference on Communication Technologies,
2015, pp. 112-116.

[ŘŘř] M. ”abis, and P. Magula, ȃNetlogo - an alternative way of simulating mobile

ad hoc networks,Ȅ in śth Joint IFIP Wireless and Mobile Networking
Conference, 2012, pp. 122-125.

[ŘŘŚ] M. E. J. Newman, ȃThe structure and function of complex networks,Ȅ SIAM

Review, vol. 45, no. 2, pp. 167-256, 2003.

[ŘŘś] T. Tyrakowski, and Z. Palka, ȃ“ random graph model of mobile wireless
networks,Ȅ Electronic Notes in Discrete Mathematics, vol. 22, pp. 311-314, 2005.

[ŘŘŜ] H. Kawahigashi, Y. Terashima, N. Miyauchi, and T. Nakakawaji, ȃModeling
ad hoc sensor networks using random graph theory,Ȅ in Řnd IEEE Consumer
Communications and Networking Conference, 2005.

[227] M. J. Keeling, and P. Rohani, Modeling infectious diseases in humans and animals:

Princeton University Press, 2008.

[228] D. J. Daley, and J. Gani, Epidemic modelling: An introduction, 1999.

[ŘŘş] H. Zheng, D. Li, and Z. Gao, ȃ“n epidemic model of mobile phone virus,Ȅ in
Symposium on Pervasive Computing and Applications, 2006, pp. 1-5.

End Matter Ph.D. Thesis

Jennifer Jackson 355 of 357 May 2017

[ŘřŖ] R. W. Thommes, and M. J. Coates, ȃModeling virus propagation in peer-to-

peer networks,Ȅ in Conference on Information, Communications and Signal
Processing, 2005.

[231] W. Xia, Z. Li, Z. Chen, and Z. Yuan, ȃDynamic epidemic model of smart
phone virus propagated through bluetooth and mms,Ȅ in IET Conference on
Wireless, Mobile and Sensor Networks, 2007, pp. 948-953.

[ŘřŘ] W. O. Kermack, and “. G. McKendrick, ȃ“ contribution to the mathematical

theory of epidemics,Ȅ Proceedings of the Royal Society of London. Series A,

Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772,

pp. 700-721, 1927.

[233] J. Jones, Holland, Notes on r0, Department of Anthropological Sciences,

Stanford University, 2007.

[ŘřŚ] T. ”ritton, ȃStochastic epidemic models: “ survey,Ȅ Mathematical Biosciences,

vol. 225, no. 1, pp. 24-35, 2010.

[Řřś] L. J. “llen, ȃ“n introduction to stochastic epidemic models,Ȅ Mathematical

Epidemiology, Springer Berlin Heidelberg, pp. 81-130, 2008.

[ŘřŜ] M. ”aruch, and P. V. Sasorov, ȃWkb theory of epidemic fade-out in stochastic

populations,Ȅ Physical Review, vol. 80, no. 4, 2009.

[Řřŝ] M. “deel, and L. N. Tokarchuk, ȃ“nalysis of mobile pŘp malware detection

through cabir & commwarrior families,Ȅ in IEEE Third international
Conference on Privacy, Security, Risk and Trust, and IEEE Third

international Conference on Social Computing, 2011, pp. 1335-1343.

[ŘřŞ] H. H. Flor, ȃThe complementary genetic systems in flax and flax rust,Ȅ
Advances in Genetics, vol. 8, pp. 29-54, 1956.

[Řřş] S. P. Otto, and Y. Michalakis, ȃThe evolution of recombination in changing
environments,Ȅ Trends in Ecology and Evolution, vol. 13, pp. 145-151, 1998.

[240] A. Agrawal, and C. M. Lively, ȃInfection genetics: Gene-for-gene versus

matching-alleles models and all points in between,Ȅ Evolutionary Ecology

Research, vol. 4, pp. 79-90, 2002.

[ŘŚŗ] R. K. Grosberg, and M. W. Hart, ȃMate selection and the evolution of highly
polymorphic self/nonself recognition genes,Ȅ Science, vol. 289, pp. 2111-2114,

2000.

[ŘŚŘ] H. b. Christensen, K. M. Hansen, M. Kyng, and K. Manikas, ȃ“nalysis and
design of software ecosystem architectures - towards the 4s telemedicine

ecosystem,Ȅ Information and Software Technology, Special issue on Software

Ecosystems, vol. 56, no. 11, pp. 1476-1492, 2014.

[243] Kaspersky. "Internet security threats," http://www.kaspersky.co.uk/internet-

security-center/threats.

[ŘŚŚ] M. Hypponen, ȃMalware goes mobile,Ȅ Scientific American, November, 2006.

[245] S. Abu-Nimeh, M. Becher, S. Fogie et al., Mobile malware attacks and defense:

Syngress Publishing, 2009.

[ŘŚŜ] M. Yesilyurt, and Y. Yalman, ȃSecurity threats on mobile devices and their
effects: Estimations for the future,Ȅ International Journal of Security and Its

Applications, vol. 10, no. 2, pp. 13-26, 2016.

[247] T. Bheemarjuna Reddy, I. Karthigeyan, B. S. Manoj, and C. Siva Ram Murthy,

ȃQuality of service provisioning in ad hoc wireless networks: “ survey of
issues and solutions,Ȅ Ad Hoc Networks, vol. 4, pp. 83-124, 2006.

http://www.kaspersky.co.uk/internet-security-center/threats
http://www.kaspersky.co.uk/internet-security-center/threats

End Matter Ph.D. Thesis

Jennifer Jackson 356 of 357 May 2017

[ŘŚŞ] M. “sif, S. Khan, R. “hmad, and M. Sohail, ȃQuality of service of routing
protocols in wireless sensor networks: “ review,Ȅ IEEE Access, vol. 5, 2017.

[249] Apple. "Use the app store on your ios devices, apple tv, or computer,"

https://support.apple.com/en-gb/HT204266.

[250] Google. "Google play - apps," https://play.google.com/store/apps.

[251] Blueborne technical report, Armis Labs, https://www.armis.com/blueborne/,

2017.

[252] Copycat - an in-depth analysis of the copycat android malware campaign, Check

Point Software Technologies Ltd,

https://www.checkpoint.com/downloads/resources/copycat-research-

report.pdf, 2017.

[253] G. Geoffrey, and S. David, Probability and random processes, third edition: Oxford

University Press, 2008.

[ŘśŚ] H. W. Hethcote, ȃThe mathematics of infectious diseases,Ȅ SIAM Review, vol.

42, no. 4, pp. 599-653, 2000.

[Řśś] I. H. Spicknall, ”. Foxman, C. F. Marrs, and J. N. S. Eisenberg, ȃ“ modelling
framework for the evolution and spread of antibiotic resistance: Literature

review and model categorization,Ȅ American Journal of Epidemiology, vol. 178,

no. 4, pp. 508-520, 2013.

[ŘśŜ] J. C. Detilleux, ȃEffectiveness analysis of resistance and tolerance to infection,Ȅ
Genetics Selection Evolution, vol. 43, no. 9, 2011.

[257] J. C. De Roode, C. L. De Castillejo, Fernandez, T. Faits, and S. Alizon,

ȃVirulence evolution in response to anti-infection resistance: Toxic food

plants can select for virulent parasites of monarch butterflies,Ȅ Journal of

Evolutionary Biology, vol. 24, pp. 712-722, 2011.

[ŘśŞ] P. Holme, ȃExtinction times of epidemic outbreaks in networks,Ȅ PLOS ONE,

vol. 8, no. 12, 2013.

[Řśş] Q. H. Spencer, C. ”. Peel, “. L. Swindlehurst, and M. Haardt, ȃ“n
introduction to the multi-user mimo downlink,Ȅ IEEE Communications

Magazine, vol. 42, no. 10, pp. 60-67, 2004.

[260] Bluetooth core specification v5.0, Bluetooth SIG, https://www.bluetooth.com,

2016.

[ŘŜŗ] Y. Sun, W. Yu, Z. Han, and K. J. Ray Liu, ȃTrust modeling and evaluation in
ad hoc networks,Ȅ in IEEE Globecom, ŘŖŖś.

[ŘŜŘ] G. Theodorakopoulos, and J. S. ”aras, ȃOn trust models and trust evaluation
metrics for ad hoc networks,Ȅ IEEE Journal on Selected Areas in

Communications, vol. 24, no. 2, 2006.

[263] J. Su, and K. K. W. Chan, ȃ“ preliminary investigation of worm infections in a
bluetooth environment,Ȅ in WORM, ŘŖŖŜ.

[264] Gartner. "Worldwide smartphone sales to end users by operating system in

1q16," http://www.gartner.com/newsroom/id/3323017.

[265] Zero-client computing, white paper, www.digi.com, 2006.

http://www.armis.com/blueborne/
http://www.checkpoint.com/downloads/resources/copycat-research-report.pdf
http://www.checkpoint.com/downloads/resources/copycat-research-report.pdf
http://www.bluetooth.com/
http://www.gartner.com/newsroom/id/3323017
http://www.digi.com/

End Matter Ph.D. Thesis

Jennifer Jackson 357 of 357 May 2017

This page intentionally left blank

