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Abstract

The purpose or objective of thisresearch wasto study the behaviour of athermal store
for integration with a heat pump. Two different types of heat exchanger, plate heat
exchanger (PHE) and serpentine heat exchanger (SHE), were designed and modular
units built in the workshop at the University of Warwick. Both heat exchangers were
used to study the effect of the mass flow rate, inlet heat transfer fluid temperature,
thickness of phase change material (PCM), thermal properties of the PCM etc. on the
behaviour of the thermal energy storage (TES). The PCMs selected for this research
had phase change temperatures in the range of 50°C-60°C. Thermophysical properties
of four different PCMswere determined in the laboratory. PCMsincluding RT 52, RT
58, Climsel C58 and a eutectic mix of magnesium hexahydrate and ammonium nitrate
that are suitable for use with heat pumps were studied using the differential scanning
calorimeter (DSC) and hot disk to determine their thermal behaviour when compared
to manufactures data.

The modular units were charged and discharged at different inlet heat transfer fluid
temperatures. The PHE experiment was carried out using both RT 52 and RT 58, while
the SHE experiments were carried out using RT 52 only. The heat transfer fluid used
in the experiments was water. The PHE was made from polypropylene sheet (a
polymer material), with channelsthat carry the water in and out of the store. The SHE
was based on a shell and tube concept, designed and used as a thermal store.

A MATLAB model was developed based on the enthalpy method using finite
difference to study and compare the temperature profile, charge rate and energy stored
in the PHE using the thermal properties of RT 52 or RT58 as PCMs suitable for this
thermal energy storage application. The MATLAB model was validated for both the
charge process and discharge process, with the inlet HTF temperature from the
experiment. Experimental results from the SHE experiment are presented for RT 52.

The charge rate and energy stored during charging and discharging processes were
analysed for different thicknesses of PCM around each PHE module. Results showed
that the greater the PCM thickness, the higher the amount of energy stored in the PHE
module and the slower it isfor the module to charge or discharge. The model was used
to evaluate the performance for when the store was fully charged and half charged and
the results presented. To increase the capacity of the store for effective use with a
domestic heat pump for a specified period of charging during off-peak tariff periods,
a thermal store design using 30mm PCM thickness is proposed. With this PCM
thickness, a 32kWh thermal store would require about twenty polypropylene sheets.
Twenty-two (22) polypropylene sheets arranged in parallel could be charged at
8.89kW, alowing the store to work in conjunction with an 8kW heat pump. Thistype
of PHE storage module could be installed in suitable locations in the home, such as
beneath kitchen cabinets or within ceiling voids, which would accommodate the
dimensions of the plate heat exchanger. The sheet capacity and number of sheets
required for a store of 32kWh was determined for six different PCM thickness using
RT 52.

A plot of sheet charge rate or store charge rate against the reciprocal of the thickness
was produced that can be used to determine the thickness or charge rate is presented.
This enables the required store characteristics (PCM thickness and number of sheets)
to be determined quickly and easily from the plot or fitted equation.
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1 Introduction

1.1 Background

A Thermal energy store is a means of storing and releasing renewable heat till it is
required. It could be used for heating, cooling or power generation. Thermal energy
storage is useful in cases where the electricity cost is high during peak periods; costs
can be reduced by using thermal energy storage: charging the unit during off-peak
periods when electricity is cheaper and recovering the energy when the unit discharges
at times of higher energy costs. Several countries utilise this technology to shift the
peak load to off-peak periods. There are various forms of thermal energy storage
process, namely thermo-chemical storage, latent heat storage and sensible heat
storage. Latent heat storage is used to store thermal energy through change of phase
when amaterial is charged or discharged. The material used for this purposeis called
Phase Change Materia (PCM). PCMs possess a unique property of high storage
density at small temperature change. For this research, attention will be centered on
the Latent heat thermal energy storage (LHTES).

Most of the world's energy comes from fossil fuels, but due to their harmful
environment effect on the atmosphere, there is a demand for renewable energy
sources. A latent heat thermal energy system is useful because it provides high
capacity storage with the use of PCMs. Various researchers have carried out

experiment and numerical analysis using this type of thermal energy storage.

The project is based on designing thermal stores using a plate heat exchanger and a
shell and tube exchanger embedded with PCM. The work is divided into two phases
of experiment using existing hardware in the laboratory. The first phase involves the
use of measuring devices; differential scanning calorimeter and hot disk to determine
the suitable phase change material for optimal thermal efficiency and a heat transfer
simulation model in MATLAB (Conduction only). The second phase entails adetailed

heat/mass transfer program and builds a lab scale heat source, sink and store.

The thermo physical properties of the phase change material, type of store geometry
and numerical model used are key factors that determine the thermal efficiency of a
thermal energy system and its optimisation. Cylindrical geometries are the most

commonly used geometry for commercia heat exchanger. This is because of their
1



capability to achieve ahuge efficiency in asmall volume. Variousresearchersusethis
geometry for LHTES, occupying the tube or shell with PCM. This research looks at
using both a plate heat exchanger concept using polypropylene material and shell and
tube geometry concept (serpentine heat exchanger) to investigate the therma

behaviour of athermal store.

1.1.1 Aim and Objectives of the Study
The project looks at feasibility of compact heat storage materias (using PCM in this

case) as an effective means to aleviate strain on the eectricity grid from increasing
load from heat pumps. An advantage of plate and serpentine heat exchanger compared
to others, isagreater ratio of phase change material (PCM) to water within the thermal
store, thusreducing volume and at the sametime, improving heat transfer. The purpose
of this project is to develop alow weight and easy to install thermal storage system
with effective heat transfer.

Knowing the energy performance, degradation of performance over time, cost, and
flexibility to enable load shifting over a range of hours would be of great benefit to
thisretrofit application.

The objectives of this study are to:

1. Investigate the optimum phase change materia that would improve heat transfer and
storage capacity, whilst reducing volume within the thermal store using a plate heat
exchanger (polymer extrusion).

2. Experimentaly investigate the thermal behaviour of a therma store using a plate
heat exchanger design (Polymer extrusion) and a shell and tube heat exchanger
geometry concept. The ideais to ascertain that both exchanger design concepts for
thermal energy storage can be efficient and beneficial.

3. Contribute to the body of knowledge of utilizing the properties of PCM to balance
load on the electricity grid in a thermal energy storage system in domestic heat
pumps.

4. Develop aheat transfer model that optimizes the temperature time relationship and
amount of energy that could be absorbed and released from the PCM in a thermal

store.



1.1.2 ThesisOutline

The outline of thisthesis consists of twelve chapterswith Chapter 1 asan introduction
to thermal energy storage and the theory on which it is based. Each chapter has a
summary of the content in that chapter. Chapter 2 comprises of the literature review
which looks at past and current research with regardsto LHTES. Chapter 3 comprises
of the description of PCM and its properties. The differences between subcooling and
hysteresis in PCMs are compared. Heat transfer in PCMs is discussed and various
numerical methods used to solve heat transfer problemsin PCMs. Chapter 4 focuses
on the thermal behaviour of PCMs and how the differential scanning calorimeter
(DSC) and hot disk devices are used to determine the PCM thermal properties. Also
different PCMs used in the research were investigated and data obtained was
compared with manufacturers' data. Chapter 5, discusses the results obtained from
the experimental analysis done in Chapter 4. It aso highlights the concern of sub
cooling present in some PCMs, thus comparing the advantage of using organic and
inorganic PCM as probable PCMs for this research. Chapter 6 focuses on one of the
heat exchanger designs. the plate heat exchanger used for this research. Two heat
exchangers were used for this research: a plate heat exchanger and a serpentine heat
exchange based on a shell and tube concept. The experimental setup of the PHE is
explained in detail as well as the materials and apparatus used. The charging and
discharge process is discussed. The chapter also looks at the statistical analysis done
and uncertainty in the experiment. Chapter 7 discusses the design and experimental
setup of the thermal store using a serpentine heat exchanger (SHE), which is the
second heat exchanger used in this research. Charging and discharging process are
explained in detail. Chapter 8 comprises of the experimental resultsfor the PHE using
two different PCMs; RT52 and RT 58. The latter is the first PCM used to commence
the research before replacing with RT 52. Chapter 9 deals with the experimental
results for the SHE. Discussions on the thermal behaviour of the thermal store when
such parameters asflow rate, inlet HTF temperature are varied are discussed in detail.
Chapter 10 discusses the model of the PCM for the plate heat exchanger thermal
store. Chapter 11 deals with the conclusion and further work associated with the

research. Chapter 12 comprises of the references of all sources used in the research.



The appendix consists of figures and other relevant information; references are made

to them within the thesis.

1.2 Thermal Energy Storage (TES)

Thermal energy stores utilizing phase change material are widely accepted and various
researches carried out on how heat transfer can be enhanced. Based on the plans to
reduce the emission of greenhouse gases, of which most of the carbon emissions can
be linked to burning of fossil fuels, the need of latent heat thermal energy storage
(LHTES) cannot be overemphasised .The built environment emits about 30-40% of
carbon emissions in the UK (Whiffen and Riffat (2012)). Domestic heating and hot
water systems consume about 50% of the energy required in a building during the cold
season. In the UK homes, heat pumps are regarded as a proven energy efficient space
device (Huang and Hewitt (2011). The advantage of high energy storage density per
unit volume that thermal energy storage provides using PCM has been keenly studied
over the last three decades. The benefits of using PCM storage system as a component
of a heating system are in areas of; reduction of energy cost, peak energy saving,
reduction in equipment size and enhanced system operation (ASHRAE (2003).
Photovoltaic and solar are expensive when compared to fossil fuel, however the
sustainability of the energy source and its impact on the environment cannot be
overlooked, thus thermal storage provides a safer and cheaper benefits (Nallusamy
(2016).

Thermal energy storage system prolongs the life time of the heat pump by reducing
the start and stop times of the heat pump; and reduces demand on the electricity grid
by utilising PCMs ability to absorb and release heat during change of phase.

TES is needed when the energy available does not coincide in time or meet up with
the process demand. Thisis dueto discrepancy between supply of energy and demand.
TES isessential for energy efficiency (Nallusamy (2016).

The application of latent heat storage energy systems improves thermal efficiency in
buildings and a so balances |oad on the electricity grid. In domestic buildingsit can be
used to reduce electricity cost by utilising the electricity reduction tariff plans
(economy 7, economy 10 etc.) from providers, when working with domestic heat
pumps. The thermal store could be charged during off peak periods and the heat
recovered during peak periods. It is important that the charge cycle is completed
during the off peak period and the operation of the heat pump and efficiency of the
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thermal storage system plays a vital role in achieving this. Economy 7 provides
cheaper electricity rate for seven hours, mostly at night (12am to 7am). This is
dependent on the energy providers, for the time for off peak periods could vary.
Considering Economy 10 tariff, it provides ten hours of cheap electricity at three
different periods during the day. Table 1.1 shows the difference between the Economy
7 and 10 tariffs.

Table 1:1: Difference between Economy 7 and Economy 10 tariff.

7 hours of cheap electricity 10 hours of cheaper e ectricity

Off peak periods at night Off peak periods at three different times
during the day;
3 hours off peak-- afternoon
2 hours off peak-- evening
5 hours off peak-- night
Higher cost during the day and evening  Higher cost outside the off peak time
(peak periods).

periods

Charging time for the thermal energy storage is based on off peak electricity using
Economy 7(E7) or economy 10 (E10) tariff, whereit is possible to charge the thermal
store during off peak period. Off peak period for economy 7(E7) is seven hours
(between 1la.m to 8a.m) and for economy 10(E10), ten hours off peak (between 1pm
to 4pm; 8pm to 10pm and 12 a.m. to 5a.m). These times do vary, depending on the
energy provider and region within the United Kingdom. In this research, the design of
the thermal store was based on utilizing the periods to charge and discharge the
thermal store. Charging of the thermal store was done to absorb the heat and
discharging of the thermal store, to recover the heat when required. The thermal store
works in conjunction with a heat pump. The thermal store is charged with the aid of
the heat pump during off peak periods, when the eectricity tariff is cheap. The
advantage of a heat pump working with a thermal energy storage helps to prevent
continuous cycle (on/off or start/stop) action termed as short cycling, when the demand
for heat islow.



Leonhardt C (2009) carried out simulation, using plate heat exchanger to design a
LHTES and warm water storage (buffer storage) incorporated with a heat pump
system. A paraffin with melting temperature of 47°C and latent heat of 180kJkg was
used. It was discovered that the LHTES improves the performance of the heat pump
when compared to the use of the warm water storage. Also the LHTES reduces the on

and off sequence of the heat pump during operation.

The analysis of this research is based on the plan to take advantage of the off-peak
electricity using economy 7(7 hours). Based on active occupancy, a period of four
hours was chosen for the design of the PCM store. The design was based on using a
8kW heat pump with four hours off peak electricity tariff. This gives atotal capacity
of 32kWh (8kW x 4hrs). During the charging mode, the store was charged at an inlet
HTF temperature (60-70°C) to completely melt the PCM and in the process latent heat
was stored. The inlet HTF temperature was carefully chosen for this LHTES, taking
into consideration the concern of the growth of Legionella bacteria in storage tanks.
To prevent growth of Legionellabacteria, the temperature of the hot water tank is kept
at 60°C (HSE Publications (2013) . The store can be charged during the off peak
period when the heat pump is switched on. During the discharge mode, the heat pump
is switched off during peak periods. The store is discharged at 40°C by the action of
the HTF flowing through the PCM thermal store. Water Temperature of a typica
shower for domestic use is 40°C (Lawrence and Bull (1976).

For example, Moreno et al. (2014) carried out experiments using two different PCMs;
S10 and $46, which stored cold and heat respectively. The PCMswerein encapsul ated
plastic slabs (FlatlCE) with a dimension of 500 mm x 250 mm x 32 mm. The PCM
dabs are arranged in two columns of six (6) slabswith aslab spacing of 1cm. Thedlab
spacing acts as the HTF channel. The experiment comprised two TES tanks coupled
with a heat pump (4.2kW for cooling and 5.2kW for heating) to simulate summer
conditionsto cool asmall house (2.4mx2.4mx2.4m). The slab spacing provides ashort
conduction length between the HTF, PCM and the plastic for effective heat transfer.
During the charging mode, the hot tank was charged with hot HTF(55-58°C) from the
heat pump and cool HTF(2-5°C) from the evaporator to the cold tank during the off
peak period . During the discharge mode, the heat pump is switched off during evening
peak periods with the energy demand coming from the cold tank.



Huang et al. (2004) stated that there have been no detailed investigations into the
modification resulting from using PCM for thermal storage system for heat pump
application, however some research has been done to improve heat transfer and rapid
charging of the system. Huang et al. (2004) investigated the performance of thermal
regulation by PCM for building integrated photovoltaics. The experiment and
simulation results showed how heat transfer (conduction and natural convection) of
the melting process in the thermal storage unit was enhanced by fins in contact with
the PCM. Understanding the thermo physical properties of the PCM and design of the
thermal store are essential in taking advantage of off peak eectricity tariffs as an
avenue to reducing heat pump operation costs for the consumer and utility company.

Heat energy can be stored as sensible or latent heat; this is discussed in detail in the

sub-sections bel ow.

121 Sensbleheat
Sensible heat is the heat that causes change in temperature in a body. It could be

defined as the storage of thermal energy by raising the temperature of amedium (solid
or liquid). Mathematically, the amount of thermal energy stored in the form of sensible
heat can be expressed as in Equation 1.1 and Equation 1.2.

Q=mC, AT 11

Te
Q= I mC,_.dT 1.2
Tini
Q is the amount of thermal energy stored or released in the form of sensible heat
(Joules), misthe mass of the material (kg), Tini, Tr aretheinitia and final temperature

respectively. Cp isthe specific heat capacity of the material (J/kg K).

It is evident that the amount of thermal energy stored in this form depends on the
specific heat, mass and difference in temperature. The relationship between

temperature and amount of heat stored is described in Figure 1:1.

Sensible heat storage is the most common thermal energy storage. Examples of

sensible heat storage are solids such as stones and bricks or liquids such as water or
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oil. Domestic water heating in most homes is based on the sensible heat storage
principle. Water is regarded as one of the best materials to be used to store energy in
the form of sensible heat for it has a high specific heat capacity when compared to
others. Table 1:2 shows other materials used for sensible heat storage. The difference
between sensible and latent heat storageis highlighted in Table 1:3.

temperature =
- > sensible

stored heat

Figure 1:1 Plot showing relationship between sensible heat and temperature.

Table 1:2: Properties of some materials used for sensible heat storage.Sharmaet al.
(2009)

Medium Fluid type Temperature range ("C) Density (kg!mj) Specific heat (J/kg K)
Rock 20 2560 879
Brick 20 1600 840
Concrete 20 1900-2300 880
Water 0-100 1000 4190
Caloriea HT43 il 12-260 867 2200
Engine oil Oil Up to 160 888 1880
Ethanol Organic liquid Up to 78 790 2400
Proponal Organic liquid Up to 97 800 2500
Butanol Organic liquid Upto 118 809 2400
Isotunaol Organic liquid Up to 100 808 3000
Isopentanol Organic liquid Up to 148 831 2200
Octane Organic liquid Up to 126 704 2400

Table 1:3: Comparison of thermal energy storage form.Gang Li (2016)

Water, soil, pebble, Organic, Inorganic PCM

gravel

Cheap, simple High storage density,
isothermal temperature

Low energy density, Corrosion, sub-cooling,
toxicity

Large scale Laboratory-scale

demonstration plants. prototypes & early stage
Hot water tanks, Electric  -gmmercidisation.PCM

storage heaters and plasterboards(KNAUF),
Thermal mass of e
buildings. et battery (SUNAMP).

Ice store system(Viessman)



1.2.2 Latent heat
Latent heat is the heat that causes the change of state of a body or object without any

change in temperature. Latent heat storage makes use of the latent heat of the material
to storethermal energy. It isthe heat absorbed or heat rel eased during change of phase;
from solid to liquid phase or vice-versa. Latent heat is also termed ‘ hidden heat’. This
is the latent heat of fusion, measured in Joules per kilogram (Jkg). Thisis a vita
property of any PCM, which determinesthe effectiveness of its usefor energy storage.
The amount of thermal energy stored in the form of latent heat is expressed as in
Equation 1.3.

Q istheamount of thermal energy stored or released in the form of latent heat (Joules),
m is the mass of the materia (kg), and L isthe latent heat of fusion or vaporisation of
the materia (Jkg). Water is regarded as the best known PCM and has been used for

cold storage for centuries.

Heat can be stored in the form of latent heat of vaporisation or latent of fusion;
measured in Joules/kilogram. For the case of PCMs, we are concerned with the latter.
Figure 1:2 shows the relationship between sensible and latent heat with regards to
stored heat.

| .

A temperature

-
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temperature of - ‘sensible

phase change -

7~
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//
/ - latent sensible

~
~
Z
5

P
_“sensible
P,

\J

stored heat

Figure 1:2 Relationships between the latent and sensible heat.Mehling and Cabeza
(2008)



Table 1:4 shows the storage densities (MJ m3) of different types of thermal energy
storage. It shows the storage density of latent heat thermal storage is higher when

compared to the sensible storage.

Table 1:4: Storage densities of different energy storage. Mehling and Cabeza (2008)

Energy Storage MJIm? kJkg Comment

Sensible Heat

Granite 50 17 dT=20°C

Water 84 84 dT=20°C

L atent Heat

Water 306 330 Melting temp 0°C
Paraffin 180 200 Melting temp 5-130°C
Salt Hydrates 300 200 Melting temp 5-130°C
Salts 600-1500 | 300-700 | Melting temp 300-800°C

1.2.3 Application of TES
Thermal energy storage (TES) has application in diverse fields. It can be used as a

means of storing energy in concentrating solar power (CSP) due to its ability to make
available continuous operation for the entire period. It can increase output of the CSP
plant and increase value of energy sold as studied by Mao (2016). TES can aso be
integrated in buildings, clothing, industrial applications, domestic application etc.
Pielichowska and Pielichowski (2014) explained that these storage systems are either
passive or active storage systems. The passive systems are unmanaged and are used to
regul ate temperature without active control. An active system requires some form of
subsidiary system for control to determine when heat is put into a store or taken out of
it. D.A (1989) mentioned that PCM's have been used for thermal storage in buildings
from 1980; they are used in the interior components of building materials. It is also
used for safety; temperature maintenance in rooms with computers or electrica

appliances.

Saman et a. (2005) mentioned that with regards to space heating and cooling of
buildings; increasing cost of fossil fuels and environmental concerns emanating from
pollution from carbon dioxide has made thermal energy storage relevant. Building

temperature and energy can be controlled by PCMs as they absorb and release heat
10



based on environmental conditions. Aigbotsua (2011) carried out research on thermal
energy storage incorporated with a solar heat source and found it useful in preserving

agricultural products which require a constant temperature for a certain periods.

1.3 Typesof geometriesfor TES
Thermal energy storage systems consist of three major components or parts,

e Storage medium
e Heat transfer fluid

e Container system

The storage medium describes the type of storage material used, whether it is a
sensible or latent storage material. For this research, the storage medium used is PCM.
The heat transfer fluids mostly used are water, air, steam and thermal oil. The container

system describes the type of geometry used for the thermal energy storage unit.

Various geometries are used for thermal energy storage, they include: Shell and tube
geometry, rectangular geometry, spherical geometry. The geometries have PCM or
HTF flowing through the tubes as shown in Figure 1:3. Figure 1:3(a) showsthe HTF
flowing through the tubes and the space within the main shell filled by PCM. Figure
1:3(b) describes a case where the PCM iswithin the tube and the space within the shell
isfilled by the HTF. Also, it may flow through channels that have arectangular cross-
section (e.g. plates). Wang et al. (2015b) carried out research which involved the HTF
flowing through zigzag channels and Kurnia et al. (2013) carried out computational
fluid dynamics analysis on research using serpentine tubes. Other geometries used
include; straight tubes, pipes, rectangular channels etc. Much research has been done
with various geometries as shown in Figure 1:4, different arrangements of the PCM
and HTF.

Qianjun (2016) mentioned that the tube in shell is the most commonly used storage
tank in CSP plants. Several researchers utilise the shell and tube geometry, it is aso
the most applied in industry. To enhance heat transfer, some applications use finned
tube in shell. There is also rectangular shaped system, though often popular for use
with sensible heat storage.

11
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Figure 1:3: Tubein shell arrangement. Qianjun (2016)
Liu (2012) mentioned that the material used for the compartment containing the PCM
should a'so be taken into consideration since it should be compatible (chemically and
mechanically) with the PCM being used; for instance the container should be resistant
to the corrosive nature of the PCM. Dincer and Rosen (2011) cited an example of the
tendencies of paraffin based PCM to soften some plastics, but are compatible with
most metals. However, metal containers may easily corrode when exposed to salt
hydrates. Containers a so have to be capabl e of withstanding the expansion of the PCM

when it melts and the commensurate reduction in volume when it solidifies.

Trp (2005) carried out experimental and numerical investigation of transient behaviour
of PCMs in a shell and tube LHS. The model developed was based on enthalpy
formulation for non-isothermal behaviour of PCM. The results were validated with
paraffin used as the PCM. Ismail and Henriquez (2002) used a numerical model to
simulate heat transfer in a LHS, using ethylene glycol asits heat transfer fluid and a
packed bed of spherical capsules filled with water asthe PCM. The effect of varying
the HTF inlet temperature, massflow rate, material used for the spherical capsule were
investigated experimentally and numerically to understand their effect on the storage
unit’s overall heat transfer performance. Barba and Spiga (2003) used three different
geometries for the PCM container to analyse the behaviour of encapsulated salt
hydrates (PCM) in a domestic hot water tank. Their findings showed the spherical
geometry showed better response time in charging and discharging when compared to
the tray and cylindrical geometry. The spherical geometry also produced the largest
energy density when compared to the others. Belleci and Conti (1993) used the
enthalpy method to numericaly study the behaviour of PCM solar shell and tube
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energy storage system. Esen et al (1998) studied the behaviour of solar water heating
systems incorporated with alatent heat system with a cylindrical geometry. Different
PCMs were anaysed using the same geometry.
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Figure 1:4: Different types of PCM storage geometries D’ Avignon (2015).
The thermal behaviour of the phase change material and type of geometry used as a
heat exchanger isvita to the performance of the thermal energy storage. The charging
and discharging is highly affected by these factors. Thus it is important that the heat
exchanger used should have alarge surface areafor effective heat transfer between the
storage material, geometry used and the heat transfer fluid (Abhat (1980).

Campos-Celador et al. (2014) compared a conventional 500 litre hot water tank used
for domestic application with arectangular finned plate heat exchanger and discovered
that the plate heat exchanger alows the required volume to be reduced to half of the
conventional hot water tank. Also, the advantage of producing the plate heat exchanger
using a simple manufacturing process, high modularity, high surface to volume ratio
and the ability to easily integrate the rectangular shaped plate heat exchanger in spaces
within domestic homes makes them suitable over conventional cylindrical shaped heat
storage sources. Flat plate heat exchangers can easily be integrated in structures of the
building and, with the concerns of space in residential homes, it provides a good
advantage over other types of geometry used to produce heat exchangers. Due to the
modular nature of the plates, it is possible to arrange the plates in paralel or in series
based on the kind of arrangement desired. Liu et al. (2014) concluded that flat plate
LHTES systems are adaptable and heat enhancement structures can easily be
integrated. Polymers are suitable for use with PCMs because they do not react with
the PCM and are resistant to pitting, bubbling and precipitation (Dinker et al. (2017).
Based on such findings, the polypropylene plate heat exchanger was studied in this
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research. The PP sheet with a thin walled plate spacing of 4mm and narrow channels
which allows HTF to flow through is used to construct the PHE thermal store. This
allowsfor effective heat transfer between the wall of the PP sheet, HTF and PCM. The
modular nature of the PP sheet makes it possible to arrange them in series or parallel.
Stacks of the PP sheet can be arranged to obtain the required capacity from the PHE
store. Parameters such as PCM thickness, flow rate and thermal properties of the PCM

are analysed in thisthesis.

14 Heat transfer

Heat transfer can be defined as the movement of thermal energy between two or more
systems as a result of difference in temperature. Heat transfer is the flow of energy
from aregion of higher temperature to a lower temperature. There is no heat transfer
if both media exist at the same temperature. Heat can be transferred in three ways,
namely: conduction, convection and radiation. A short description is made for each
process. For this research, radiation is not applicable; hence it will not be discussed in
detail in thisthesis.

1.4.1 Conduction
Conduction can be described as the transfer of heat through or via vibration of

molecules in a solid body or fluid. Due to the arrangement of the molecules, often
close together, heat is transferred from contact source to other parts of the body. For
example, heating one end of ametal bar resultsin transfer of heat across other parts of
the bar after a specified time. Metals are very good conductors of heat, whereas air,
wood and cloths are poor conductors of heat. Materials that are poor conductors of
heat are referred to as insulators. The thickness and thermal conductivity of the
material determines the rate of heat transfer per unit area. The rate of heat transfer is
also dependent on the temperature difference across the medium and the type of
geometry. The rate of heat conduction though a plane layer is proportional to the area
and temperature difference across the plane, but inversely proportional to the thickness
of the plane Cengdl and Ghgjar (2011).

The equation used for conduction is based on Fourier's law, mathematically it is
expressed as shown in Equation 1.4:

Q INCLEYA 1.4
cond OX
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Figure 1.5 : Conduction in awall. Cengel and Ghajar (2011)
The heat flux is rate of heat transfer per unit area normal to the direction to the
direction of heat flow. Equation 1.5 expresses this relationship.

Heat conduction equation can be expressed for two dimensional cases for rectangular
and cylindrical coordinates. It is assumed that the thermal conductivity is constant.
Equation 1.6 and Equation 1.7 shows the heat conduction equation for rectangular and
cylindrical co-ordinates respectively.

STk {azT GZT}
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For both cases, thermal diffusivity is expressed as, a:k—c. The thermal
Pp

conductivity expresses how quickly heat travels through any chosen materia. For
example, the thermal conductivity of copper (400 W/mK) is greater than that of
aluminium (205 W/mK). Based on this, the rate of heat transfer in copper is higher
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than aluminium. Thus, the higher the thermal conductivity value of any material, the
higher the rate of heat transfer.

1.4.2 Convection
This mode of heat transfer is described as the mode of transfer of energy between a

solid surface and the fluid adjacent that is in motion; it involves the combination of
conduction and motion in the fluid Cengel and Ghajar (2011). When there isno fluid
motion, heat transfer between a solid surface and adjacent fluid is solely by
conduction. The rate of convection heat transfer is proportiona to the temperature

difference, expressed in Equation 1.8 as:

Qconv - hA% (TS _Too) (W ) 1.8

15 Summary

This chapter describesthe varioustypes of thermal energy storage and the applications
where TES is used are discussed in detail. The various modes of heat transfer are
discussed except for radiation, as thisis not applicable to this thesis. The governing
equation that describe the conduction and convection heat transfer modes are
highlighted.

An overview of the objective of this research and the thesis outline is discussed.
Sensible and latent heat are explained with detailed examples of each given. The
equation that describes this type of heat is highlighted as it concerns thermal energy
storage. Various types of geometries and arrangement used for thermal energy storage
are discussed.
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2 Literaturereview

2.1 Latent Heat Thermal Energy storage

2.1.1 Phasechange Material

Phase change materials are classified as organic or inorganic materials. PCMs are
availablefor arange of different phase change temperatures. Organic PCMsarefurther
divided into paraffins and non-paraffins. Figure 2:1 shows the classification of PCMs.

Phase Change Material

Paraffin compounds
» Organic <
Non-Paraffin compounds

Salt hydrate

Y

Inorganic

Metallics

Organic-organic

Eutectic

A 4

Inorganic-inorganic

Inorganic-organic

Figure 2:1: Classification of PCM. Sharmaet al. (2009)

2.1.2 Classification of PCM.

Organic PCM such as fat and paraffin have been shown to be thermally stable after
several cycles using the DSC(differential scanning calorimeter), showing little or no
degradation of the latent heat and phase change temperature range Zalba B (2003).
Sharma et a. (2009) mentioned that organic PCMs are regarded as PCMs with “poor
thermal conductivity” and not ideal for effective thermal energy storage. However the
advantage they provide with thier unique ability to undergo congruent melting, non-
toxic nature, self-nucleating (ability to form structures or crystalize on its own)
properties has made this class of PCM useful or relevant in latent heat thermal energy
storage. Pure paraffin is known to belong to the family of saturated hydrocarbons,

which means they contain only carbon and hydrogen of a general formula G H,.,
.The number of carbon atomsin the chain determinesthe melting point of the paraffin;
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paraffin with values of n between 5 and 15 are regarded as liquid paraffin at room
temperature. Also the longer the carbon chain, the higher the melting temperature and
latent heat of fusion of the PCM Sharma et a. (2005). Lane (1989) mentioned that
paraffin is known to be the most utilized viable heat storage PCM and in terms of cost,
paraffins are regarded to be cheaper when compared to inorganic PCM.

Inorganic PCMs, include salt hydrates which possess good thermal conductivity when
compared to organic PCM. The composition of elements that make up inorganic
PCMs are different from organic PCMs. A Eutectic is a homogeneous mixture of
substances that freezes at atemperature lower than that of the individual components.
The configuration of the eutectic mix is a ratio or percentage of the constituent
substances that has a lower melting point than any other composition of those
substances Kotzé (2014). An example of an eutectic is calcium chloride hexahydrate
and Magnesium chloride hexahydrate, having an individual melting point of 29.54°C
and 117°C respectively, but at a percentage or ratio of 66.6% and 33.3%, they melt at
atemperature of 25°C. The melting temperature is called the eutectic temperature. A
eutectic system may comprise of anumber of substances, most often binary or ternary.
They have higher volumetric thermal storage density. However, Abhat (1983)
observed that they are corrosive and possess poor nucleating properties which results
in subcooling of the liquid PCM before solidifying. Subcooling is a phenomenon
whereby a PCM only startsto crystallize at atemperature lower than the phase change
temperature (melting point). Sub cooling delays the commencement of solidification
in phase change material and this inhibits good thermal storage. It is significant in
most inorganic phase change material Mehling and Cabeza (2008).In some
application, Farid et a. (2004) stated that a small amount of subcooling might be
insignificant, however a large amount of subcooling would hamper the performance
of the thermal energy storage. Ataer (2006) mentioned that it isimportant to consider
the following when designing a latent heat thermal energy system; a PCM with a
desired phase change temperature, storage medium for the PCM and an effective heat
transfer fluid which can transfer heat effectively. The selection of a PCM was based
on the PCM melting temperature, chosen at atemperature interval below the operating
temperature of the application (heat pump). Lane (1989) proposed an interval lessthan
5°C to prevent excessive degradation of heat within the system and reduction of

efficiency. The latent heat, thermal conductivity and phase change temperature of the
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PCM play avita role in determining the size of the heat exchanger. The choice of
paraffin for this research was based on cost, non-toxicity and its stability over a

number of cycles of charging and discharging.

2.1.3 PCM Selection
Or6 et a. (2013) stated that the selection of the suitable PCM required in any

applicationisvital, asit playsanimportant role with regardsto cost, thermal efficiency
and utility of the thermal energy storage. PCM undergo several cycles of melting and
freezing as they are charged and discharged respectively, hence it isimportant to take
into cognisance, thermal cycling stability, based on the PCMs properties. It is aso
important for the PCM not to exhibit phase segregation, sub cooling and their thermal
properties should be constant over along period. Requirements of properties of desired
PCM has been debated by several researchers, Mehling and Cabeza (2008) mentioned
that two key requirements for a PCM to be used in any TES are a high latent heat of
fusion and suitable phase change temperature, while Zhou et al. (2012) stated that
three key properties are essentia in determining the PCM to use for any system:
suitable melting temperature, high heat of fusion and thermal conductivity Some
researchers have grouped requirements for selecting PCM as; Physical, Technical and
Economical. Table 2.1 describestheway the requirementsare grouped . The properties
of PCM required were explicitly discussed by various researchers.(Sharma et al.
(2009), Zdba et al. (2003), Lane (1989)). Differential scanning calorimeters (DSC)
has been used by various researchers to determine their thermo physical properties.
Commercial PCM is available from Rubitherm, Cristopia, Climator, TEAP and some
can be prepared using reagents from chemical companies. From the list of
commercially available PCM and those identified by other researchers, Agyenim and
Hewitt (2012) stated that a selection of PCM in the temperature range of 50-60°C are
regarded suitable for hot side of avapour compression heat pump. The choice of the
PCM is determined by the application or operating temperature.

Organic PCMs have low conductivity, which require heat enhancement to be used in
thermal storage. The choice of selection of a PCM is based on the PCM melting
temperature. It should be chosen at a temperature interval below the operating
temperature of the application (heat pump). Klimeset al. (2012) stated that the thermal
properties of PCM are vital for numerical modelling because they affect the numerical

simulation. Esen et a. (1998) mentioned that the thermo physical properties and
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geometry design of the store are to be considered together in designing a thermal
energy storage system. Thiswas evident in Esen et a. (1998) experiments using four
different phase change materials (Calcium chloride hexahydrate (CCHH), Paraffin,
Sodium sulphate decahydrate (SSDH) and Paraffin wax). CCHH stored heat energy
faster than the other three PCM, because it has the highest conductivity. Also, the PCM
melting time for smaller radii geometry was better than larger radii. This is because
the thicker the PCM mass the lower the temperature gradient, the slower the heat
transfer and the longer it takes to melt.

Table 2:1: Required properties of PCM. Dincer and Rosen (2011)

Melting temperaturein High Completely Low cost
desired range nucleation reversible
rate

High latent heat of fusion  High rate of Chemical stability Availability

per unit mass crystal growth

High thermal conductivity Non corrosive

High specific heat and High freeze/melt

high density stability

Small volume changes on Non-toxic, non-

phase transition flammable and
non-explosive
material.

Complete melting
Small vapour pressure at

operating temperatures

Based on the aforementioned, the research commenced with determining the thermal

and physical properties of the PCM available.

2.2 Enhancing thermal conductivity of PCM.
PCMs with low thermal conductivity are not adequate for latent heat thermal energy
storage (LHTES),this prolongs the charging and discharging time (Tian and Zhao
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(2009), Chiu (2011)) .The higher the thermal conductivity, the higher the heat transfer
in the medium which reduces the charging and discharging period. To enhance their
thermal conductivity various methods have been utilized by researchers; Colellaet al.
(2012) added naturally expanded graphite matrix to paraffin (RT 100) to achieve the
heat fluxes needed for a medium scale LHTES for district heating systems. Heat
transfer enhancement is dependent on the type of application. Velrg et a. (1999)
stated that in an application, such aswater heat recovery which involves a process that
IS intermittent; for heat to be recovered in a short time, heat transfer enhancement
required is for charging. If the application involves a case where the heat is available
at a constant rate for alonger period of time and needed to be released quickly asin
the case of a solar domestic hot water application, then heat transfer enhancement
required is for solidification.

Weinstein et a. (2008) mentioned that the effect of the low thermal conductivity of
PCMs reduces their effectivenessin a TES application with large volumes by creating
larger thermal differences within the PCM. Weinstein et al. (2008) used graphite
nanofibers (GNF) to enhance the thermal conductivity of the PCM with aphase change
temperature of 56°C. The thermal performance was found to be dependent on the GNF
loading. As the GNF weight loading increased, the thermal response increases
initially, but at high GNF loading the effect on the thermal response is negligible.
However, it was discovered that certain portion of the PCM did not undergo phase
change, which means the latent heat of fusion was not fully utilized in the LHTES.
Arasu and Mujumdar (2012) reported that by adding a certain amount of alumina
particles to paraffin wax, the therma conductivity could be increased. (Halawa
(2005), Farid (1990)) proposed ensuring minimal distance between PCM and fins of
heat exchangers or pipes, which requires using thin plate arrangement to enhance heat
transfer. Shatikian et al. (2005) carried out a numerical study using fin spacing of 0.5
to 4 mm. The fins were made from aluminium with athickness of 0.15 mmto 1.2 mm.
Fins are mostly made from copper, steel, aluminium or magnesium. They are used to
enhance the thermal conductivity into and out of the PCM. High thermal conductivity
of the fins and large surface area help to enhance the performance of a latent heat
thermal energy storage. Frazzicaet al. (2017) compared two different heat exchangers
based on the latent heat storage concept. The heat exchangers were an asymmetric
plate heat exchanger and afin and tube heat exchanger. The plate spacing for the plate

heat exchanger was 3 mm and fin spacing was 5 mm. Frazzicaet al. (2017) mentioned
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that the spacing dimensions were chosen in order to have an effective heat transfer
between the heat exchangers and PCM. The fin and tube heat exchanger with welded
fins performed better than the plate heat exchanger in terms of heat transfer. Thisis
attributed to the presence of fins, which enhance heat transfer between the heat
exchanger and the PCM. ACT (2018) stated that an optimal fin spacing of 1.27mm to
2.54 mm was used for a PCM heat sink for advanced cooling technique (ACT). It is
observed that it takes ashorter time for the PCM to melt when there are morefins, and
it takes alonger time for the PCM with the same volume to melt, when there are fewer

fins.

For this research, the choice of using aplate heat exchanger made from polypropylene
with a plate spacing of 4mm on the water side is based on the fact that an effective
heat transfer would exist between the heat exchanger and water. The PP sheet as shown
in Figure 6.4 provides athin walled structure (0.3mm) which is suitable for effective
heat transfer between the HTF, wall and PCM on top of the PP sheet during charging
and discharging process. PP sheet ischemically resistant to attack from PCMs and due
to the thin walls, it will be useful as an effective PHE.

There have been reports by some researchers that heat transfer could be increased by
addition of nanoparticle copper to the PCM (nano fluid). Elgafy and Lafdi (2005)
used carbon nano fibres (CNF) to enhance the thermal conductivity of a paraffin wax
with a melting temperature of 67°C. Reddy (2007) used different number of fins
attached to the PCM-water system to enhance heat transfer of a solar-integrated
collector storage water heating system with PCM. However Chiu (2011) stated in his
thesis that having larger number of fins to enhance thermal conductivity of PCM,
could lead to reducing the IPF(lce packing factor) of the PCM, which in turn reduces
the energy storage capacity. The increase in cost of fabricating fins and difficulty of
filling the PCM in the system prompted Chiu to state that the storage designisvital in
improving the thermal performance of the PCM used. Dutil et al. (2011) stated that
more fins also decreases the volume of PCM. This research looks at using low cost
plate heat exchanger concept using polypropylene sheet with channels and a

serpentine heat exchanger to enhance heat transfer in the thermal store.

Hassan (2014) studied three different models with pipes that have no fins, four fins

and eight fins. He discovered the heat transfer was enhanced for the pipes with fins
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compared to the pipe without fins as shown in Figure 2:2. Also, using multiple loop
arrangement of pipes with different pipe diameters (40mm, 42.4mm and 46.64mm) in
a3D moddl, it was discovered that the largest pipe melted faster compared to the other
two. Hassan's simulations are not backed up with experiments. He claims the only
way to improve the heat transfer of a PCM with low therma conductivity was by

increasing the heat transfer area. Increasing the HTF inlet temperature, varying the

mass flow rate, geometry etc. was not considered in hisanalysis.

Figure 2:2: Melting phase comparison for the different models.Hassan (2014)
The type of geometry has been known to affect the overall heat transfer performance
of a thermal storage unit. Various types of geometries exist such as plate heat
exchanger, shell and tube heat exchanger, U-tube, U-tube with inlinefins, U tube with
staggered finsand festoon design etc. Figure 2:3 shows an image of various geometries
used for thermal storage.
The melting time of each of these designs for thermal energy storage varies. Kurnia et
al. (2013) concluded that the serpentine design shown in Figure 2:2 (d) offers the best
heat transfer when compared to other geometrical design; U-tube, U-tube with inline
fins, U tube with staggered fins. Paraffin wax was used for the study and the
mathematical model was based on conjugate heat transfer between the heat transfer
fluid (water) and PCM. The U tube with fins shown in Figure 2:2(c) improved heat
transfer compared to the U tube without fins shown in Figure 2:2(a), which fortifies
the advantages the use of fins brings to a TES. The addition of fins enhances the heat
transfer surface, thus improving heat transfer. However, the conclusion by Kurnia
cannot be validated because it was based on computational analysis and without any

experimental analysis.
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Figure 2:3: Schematic drawing of a) U-tube, b) U-tube with fins, c) U-tube with
staggered fins and d) festoon design. Kurnia et a. (2013)

2.3 Modelling Of PCM

Itisdifficult to analyse the behaviour of phase change systems due to its non-linearity
at moving boundary problem. The analytical method is complex but applicable to one
dimensional case and physical situationswith simple geometries. A numerical method
of solving phase change material behaviour is better than the analytical method (Al-
abidi et a. (2013). Duitil et a. (2011) and Vermaet al. (2008)) described explicitly the
various mathematical and numerical methods used by researchersintheir reviews. The
effect of different geometry and application, mathematical fundamentals of PCM were
determined. Dutil et al. (2011) stated that predicting the behaviour of PCM is complex
because of its non-linear nature at moving interfaces by which the displacement rate
iscontrolled by latent heat |oss. Sharmaet a. (2009) describes that numerical method
using finite element and finite difference method could be used for various
applications, thus mostly used for practical application involving phase change. The

most suitable and mostly used method for solving phase change problems is the
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enthal py method (Dutil et a. (2011), Alexiades (1993)). The enthal py method isbased
on the energy equation which has temperature as the only dependent variable (Sharma
et al. (2009). This solution is based on weak solution of partial differential equation
(Lamberg et al. (2004), Hu and Argyropoul os (1996)).

The variation of the enthalpy with temperature can be illustrated in Figure 2:4

AT

Figure 2:4: Enthalpy as a function of temperature. Mehling and Cabeza (2008)

Scrinivas (2006) discovered better convergence using the enthalpy method in his
design of a transient heat conduction of a passive cooling device to model phase
change of a heat sink made with aluminium and paraffin, utilizing MATLAB and
COMSOL Multiphysics. Chiu (2011) mentioned that his heat transfer model was also
created using MATLAB and COMSOL. The model was based on 2-D fixed grid finite
difference enthalpy based simulation. A gelled salt hydrate was used in his
experimental rig using afinned shell and the result was validated. A numerical model
of anindustria tank filled with encapsulated PCM was studied by Bedecarrats (2009).

Several anaytical and numerica methods have been developed to describe the
behaviour of PCM in a geometry. Some researchers have been able to validate their
findings, while others simply carried out experiments or simulations, without any
validation of their study.

Recent approach by researchersinvolves using computational fluid dynamics software
to simulate melting and solidification. Such software include: Fluent software by
ANSYS, COMSOL multiphysics and Star-CMM+. Self-developed programs using
Matlab, Fortran, C++ Al-abidi et al. (2013). Fluent program is mentioned to be the

most frequent used. The fluent software uses a model that can simulate engineering
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problems such as casting, melting and solidification, crystal growth. For the self-
developed programs, various discretization methods are used; Finite difference
method (FDM); Finite element method (FEM) and Finite volume method (FVM).

In most heat transfer simulation involving phase change, sub cooling is often ignored.
Mehling and Cabeza (2008) stated that subcooling is evident during recovering of
heat; when thelatent heat isnot rel eased having attai ned the phase change temperature.
The effect of sub cooling makes it important to reduce the temperature below the
melting temperature so as to commence crystal growth or crystallization and to release
the latent heat stored. The effect of subcooling in a thermal store could hamper the
overdl efficiency of the thermal store, because if thereis no latent heat, then the store
will be storing only sensible energy. Bony and Citherlet's (2007) research on
simulation of heat transfer in phase change considered the effect of both hysteresis and
subcooling on the model. They concluded that the hysteresis effect takes place during
cooling of the PCM and that it delays the phase change process.

2.4 Research on Thermal Storage Using PCM

Kurklt et al. (1996) developed a model which was validated with an experiment to
predict the thermal performance of a square-section PCM store based on conservation
of energy. He used Sodium sulphate, sodium chloride with other additives asthe PCM
and air asthe heat transfer fluid. He discovered that asthe air mass flow rate increased,
there is a corresponding decrease in the phase change time of the PCM (complete
freezing). Nallusamy (2016) carried out experiment based research and observed that
astheflow rateincreases, the time required for complete charging reduces. Using flow
ratesof 2, 4 and 6 kg/min; he discovered charging time was smaller at 6kg/min. This
is because when the flow rateincreases, it resultsin an increase in surface heat transfer
coefficient between the HTF and the PCM. This means the flow rate has an effect
when charging and discharging.

Esen et a. (1998) investigated the performance of a solar assisted cylindrical energy
storage tank which is part of a domestic heating system. For his model, he used the
enthapy method, solving by Gaus-sieldel iteration process. He discovered the
cylindrical wall material and radius of tank were not appropriate due to the size of the
cylinder. He recommended smaller radii and higher thermal conductivity material
which would increase PCM melting time. The effect of the mass flow rate at a given
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time affects the amount of stored energy. This is because more heat is removed from
HTF, consequently more heat stored in the PCM.

(Agyenim and Hewitt (2012), Agyenim and Hewitt (2010)) carried out an experiment
similar to thisresearch using RT58 asthe PCM. They used afinned longitudinal shell
and tube heat exchanger because of the low thermal conductivity of RT 58 and the
advantage of preventing sub-cooling of PCM through nucleation. From his
experiment, as the temperature of the inlet HTF temperature increases, so does the
heat transfer and the amount of heat energy charged. They increased the inlet HTF
from 62.9°C to 76.7°C and concluded that full melting of the PCM occurred at 71°C
and 76.7°C and that any temperature below that means complete melting did not take
place. Agyenim’'s experiment had a bypass valve connected to the hot water bath
which is PID controlled, so asto have aset value of inlet temperature before charging

starts. Thiswas utilised in this research’s experimental work.

Agyenim and Hewitt (2012) discovered that when RT58 PCM is charged it cannot be
melted (has not even reached its phase change zone) within four (4) hours at any value
of inlet HTF temperature. He recommends twenty-four (24) hours of charging, ie. a
whole day to complete heating of the system. This means the maximum time of
charging under economy 7 cannot be achieved; hence it's important to design an
advanced heat exchanger system whereby the PCM can be charged within the period
of electricity tariff reduction.

In thermal storage using phase change material, using multiple PCMs (m-PCM) has
enhanced the performance of the storage unit compared with using only asingle PCM.
The arrangement of multiple PCMs in decreasing order of their melting temperature
during charging results in higher heat transfer rate. Various researchers have
experimentally tested the performance. Tian et al. (2012) arrangement of the multiple
PCM wasinincreasing order of melting during charging as shown in Figure 2:5, which
is adifferent approach to other researchers as shown in Figure 2:6. This arrangement
would decrease the heat transfer rate when HTF flows from aPCM with alow melting
point to one with a higher melting point. Tian's arrangement will be useful for the
discharging process but not the charging process. Tian's arrangement is not ideal,
because the PCM melting temperature was not considered for the cascading storage.
It is not possible to have an effective heat transfer with that storage. The right order
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should be PCM3, PCM 2 and PCM1 in order to maintain similar temperature
differences between the PCMs and HTF.
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Figure 2:5: Cascaded thermal storage unit with thermal properties. Tian et a. (2012)
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Figure 2:6: Cascaded thermal storage unit. Horst Michels and Pitz-Paal (2006)

Wang et al. (2015a) carried out anumerical simulation using three (3) PCMs contained
between zig-zag configuration plates as shown in Figure 2:7. The arrangement of the
PCM are in the order of PCM1, PCM 2and PCM 3 in the flow direction of the heat
transfer fluid with decreasing order of their phase change temperature(PCM-1>PCM-
2>PCM-3). A similar arrangement was investigated by Jegadheeswaran and Pohekar
(2009) as shown in Figure 2:8, who used five different PCMsin a shell and tube heat

exchanger.
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Figure 2:7: : Schematic representation of the zigzag configuration.Wang et al.
(2015a).

PCM 1 PCM 2 PCM 3 PCM 4 PCM 5
Tmi Tm2 Tm3 Tma Tms
HTF flow Huring charging HTF flow dluring discharging
——— — 1
. 227 7L 8 7 xS
PCM 1 PCM 2 PCM 3 PCM 4 PCM 5

Tm1>Tyo >Tm3 >Tmd >Tms
Tm - Melting point

Figure 2:8:Multiple PCM arrangement in a shell and tube exchanger.Jegadheeswaran
and Pohekar (2009).

25 Summary

The classification of PCMs and the advantages they possess over each other is
discussed in detail. The mode of selection of PCM is discussed and their properties
required for various TES application. The types of PCM and geometry used by other
researchers are discussed. The various ways PCM can be enhanced by cascading,
modifying the geometry (use of fins) and encapsulation is discussed in this chapter.
The cascading method is used to give a more uniform temperature difference between
HTF and store such that a more constant heat (charge rate) is maintained and as much
energy extracted from the HTF as possible as it applies to enhancing the properties of
the PCM as the various types of PCM are arranged according to their thermal
properties (with the PCM with the highest melting point arranged in descending

order).

The various modelling methods used by other researchers are discussed and the
advantages they possess over each other are explained. The type of software used to
solve the modelling problem is mentioned. V arious ways in which the performance of
TES can be enhanced are discussed, with mention of cascading and how to improve

the thermal conductivity in PCMs with low thermal conductivity (Paraffins).
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3 Phasechange materials

3.1 Classification of PCM.
Phase change materials can be classified as organic or inorganic material. They
possess the ability to absorb or release energy during change of process. Figure 3:1

shows the phase change cycle undergone by the PCM asiit is heated or cooled.

PCM @
Solid Phase
Energy Release - Energy In
Freezing Meltmg
@ TOOI'IMI'I! @ TCOIIStIrIt
Energy Release /,—\ Energyln
PCM @
Liquid Phase
\. J

Figure 3:1: Phase change process. Al-Hallg) and Kizilel (2012).

3.2 Phase change material selection

Choosing the right PCM for the desired application or operating range is vita to the
efficiency of the TES. The following criteria are considered when choosing a phase
change material. For effective use in application, some properties are desirable. They

have certain physical, thermal and chemical properties Sharmaet al. (2009);

Physical Properties

Small volume change

L ow vapour pressure

High density

Good phase change equilibrium
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Thermal properties
e High thermal conductivity
e High latent heat of fusion

e Suitable phase change temperature

Chemical properties
e Nontoxic
e compatible with heat exchanger geometry
e stable after undergoing several cycles

e Inflammable

3.3 Subcooling

Subcooling is aphenomenon where the PCM startsto crystallize only at atemperature
lower than the phase change temperature (melting point) as shown in Figure 3:2.
Latent heat is only released during energy recovery or discharge process. The
temperature must be below the phase change temperature for crystallization to
commence. During the recovery of energy (discharge process), the effect of
subcooling of the PCM affects the overall performance of the latent heat thermal
energy storage. It is important to reduce or eliminate subcooling, for it affects the
overal performance of the latent heat therma energy store Mehling and Cabeza
(2008).

Subcooling delays the commencement of solidification in phase change material and
this inhibits good thermal storage. It is significant in most inorganic phase change
material Mehling and Cabeza (2008). Farid et al. (2004) stated that in some
application, a small amount of subcooling might be insignificant; however large
amount of subcooling would hamper the performance of the thermal energy storage.
Lane (1989) mentioned that the selection of a PCM was based on the PCM melting
temperature, chosen at a temperature interval below the operating temperature of the
application (heat pump). An interval less than 5°C has been proposed to prevent
excessive degradation of heat within the system and reduction of efficiency. The latent
heat, thermal conductivity and phase change temperature of the PCM play avital role
in determining the size of the heat exchanger. The choice of paraffin for this research
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was based on cost, non-toxicity and its stability over a number of cycles of charging

and discharging.
A
< heating > < cooling >
Toof ===
subcooling
sensible

time

Figure 3:2: Investigation of subcooling. Mehling and Cabeza (2008).
In most heat transfer simulation involving phase change, subcooling is often ignored.
Mehling and Cabeza (2008) stated that subcooling is evident during recovering of
heat; when the latent heat is not rel eased having attai ned the phase change temperature.
The effect of sub cooling makes it important to reduce the temperature below the
melting temperature so as to commence crystallization or crystal growth and to release
the latent heat stored. Subcooling can be prevented by the use of nucleating agents,
which have a crystal structure similar to that of the parent substance. Other means of
eliminating or reducing subcooling involve the use of metalic heat exchanging
surfaces in contact with PCM to promote heterogeneous nucleation, mechanical

stirring, cold finger technique and PCM encapsulation. Mehling and Cabeza (2008).

The effect of subcooling in athermal store could hamper the overal efficiency of the
thermal store, because if the latent heat cannot be recovered, then the store will be
storing only sensible energy. Thereis often some confusion between subcooling effect
and thermal hysteresis. Thermal hysteresis is defined as the deviation in temperature
between the heating and cooling temperature corresponding to the heating and cooling
curve from the enthalpy-temperature graph. Figure 3:3a and Figure 3:3b; show the
effect of both subcooling and thermal hysteresis respectively on a PCM (SP21EK), a
Rubitherm product which has melting temperature of 21°C. The PCM has a
subcooling temperature of 0.8°C and hysteresis of about 1.2°C. The pink colour line
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on Figure 3.3 a, shows the plot of temperature against time, from which the enthal py
measurement was obtained, (Figure 3.3b). Figure 3.3a shows the temperature
difference between melting and solidification area of the PCM; SP21EK, (22-20.8)°C
=1.2°C, which is termed as hysteresis. The subcooling effect is observed on the
solidification area, between 20.8°C and 20°C, where the PCM temperature drops to

20°C, before the solidification process commences.

,—f'”\_ RUBIHERM N subcool
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=
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Figure 3:3: Temperature profile showing subcooling and hysteresis. Rubitherm
(2017).

Theresult obtained from measured heating and cooling enthal py curves could indicate
both curves are far apart. This could be attributed to the presence of subcooling or
thermal hysteresis. This effect could be checked by running the DSC measurement at
different heating and cooling rate or step method. Guinther et al. (2005) proposed three
different methods could be used to confirm or produce aresult with high accuracy for
the thermal properties of PCM; using the DSC, T-history method and air flow
apparatus.

3.4 Mathematical and Numerical analysis of latent heat thermal energy
storage.

This chapter gives an overview of modelling of PCM in alatent heat thermal energy

storage (LHTES). Numerical methods are used to solve phase change; they are

discussed in detail in this chapter.
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Modelling of PCM is based on a transient, non-linear phenomenon with a moving
solid-liquid interface, which is called moving boundary problem. Over the years,
severa solutions to phase change have been proffered. Anaytical method is not used
due to moving boundary problem and can only be used to solve one dimensional case
and simple geometries, thus numerical method has been regarded as the best solution
to phase change problem. Several researchers have used this method for different

geometry and storage applications.

3.4.1 Stefan Problem
Stefan problem is atype of boundary value problem for a partial differential equation

with regards to solidification and melting in a phase change medium. Phase change
material behaviour when it solidifies or melts is an example of a boundary value
problem. Jozef Stefan, a physicist, was accredited with providing a general class for
such problems in 1889. The Stefan problem is the most utilised solution for one
dimensional moving boundary problem and simple geometries. However due to
complex geometries and boundary conditions, varying thermo physical properties
various transport mechanism (conduction, convection) within a domain, numerical
methods are used for solving moving boundary problem that relates to phase change
Hu and Argyropoul os (1996).

The problem when the PCM startsto melt isthat it consists of a mixture of liquid and

solid phase, which is regarded as the mushy region, of which they are separated by a
moving interface. The non-linearity of the equation makes it difficult to solve
analytically, hence a numerical method is developed to solveit. (Vermaet al. (2008),
Voller (1997), Dincer and Rosen (2002)) have undertaken reviews of the general
numerical methods for solving phase change problems.
There have been severa numerical methods used to solve the problem of phase
change; effective capacity method, enthalpy method etc. The enthalpy method is the
most commonly used numerical method. Figure 3:4 shows the relationships between
these solutions.
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Figure 3:4: Relationship with Stefan problem. Iten and Liu (2014).

3.4.2 Effective heat capacity method
Effective heat capacity method involves the energy equation in terms of heat capacity.

The method utilises the behaviour of the PCM into the heat capacity calculation. The
heat capacity represents the quantity of heat required to raise the temperature of the
PCM. The result from the differential scanning calorimeter is useful in solving the
phase change problem. The latent heat of melting is key to this solution. This method
is expressed with Equation 3.1. Based on this, there is only one unknown parameter,

temperature.

pC, o=V (kV°T) 31

p

Thereisasimilarity between the effective heat capacity and enthal py method, however
for the enthalpy method; there are two unknown variables; enthalpy and temperature.
Figure 3:5 shows the relationship between both methods.
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Figure 3:5: Relationship between the enthal py and effective heat capacity
method. Klimes et a. (2012).

3.4.3 Enthalpy method

The enthalpy method is used in solving non-linear heat equations in phase change
problems which involve a moving boundary. The relationship between temperature
and enthalpy is used to solve the phase change problem. The enthalpy method was
developed by Voller (1997) and it isone of the most utilised methods for the treatment
of phase change boundary. The method involves an entha py—temperature relationship
of the phase change material expressed in Equation 3.2.

SH
p?=V(kV2T) 3.2

The solution to Equation 3.2 is based on the enthal py-temperature relationship. Both
variables are combined together through their relationship which is obtained from the
DSC. The entha py method assumes the enthal py into the energy equation of sensible
and latent heat. Enthalpy is the summation of the sensible heat and latent heat of the
phase change as shown in Equation 3.3 to Equation 3.5.

H (T) = sensible heat + |latent heat
H(T) =h(T)+ pLf(T) 33

]
h(T) = | pC,dT 34
T,
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;
H(T)= j pC,dT + pLf, (T) 35
Il

Theliquid fraction is expressed as shown in Equation 3.6 for solid, mushy and liquid

phase respectively
0 T<T,
T-T,
f(T)= s T.<T<T,
(T) o1 . 3.6
1 T>T

The enthalpy method can be applied directly to the three phases (solid, liquid and
mushy phase). The liquid fraction represents the state of the PCM at the nodes based
on the temperature of the PCM; solid ( f,(T) = 0); Mushy region (0< f,(T)<1 )and

liquid ( f,(T) =1).

Klimes et a. (2012) stated that different numerical methods such as finite difference,
finite volume method, and finite element method can be used to solve this method.
Most researcher model latent heat thermal energy storage with severa tubes as one
tubein order to save computation time. The energy stored by the system is the product
of the number of tubesin the storage and energy stored in one of the unit that has been
modelled. This is applicable in both shell and tube geometry as well as flat plate
geometry.

3.5 Summary

The chapter deals with PCM s based on their classification, selection process of usein
thermal storages. The selection of aPCM was based on the PCM melting temperature,
chosen at a temperature interval below the operating temperature of the application
(heat pump). The key properties that are desirable for PCMs to be used are discussed
in detail. The effect of subcooling on the performance of thermal energy storage and
its difference to hysteresis are mentioned using a case study of a PCM tested in the
laboratory by Rubitherm. Knowing the difference between subcooling and hysteresis
from results obtained from the differential scanning calorimeter is key to
understanding the nature of the PCM and accuracy of the result obtained from the
DSC. Thedifferent methods (Enthal py, effective heat capacity) used for solving phase
change problems are discussed. The Stefan problem is discussed and the various
mathematical and numerica methods explained. The problem that phase change
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problem are restricted in analytical solutions is explained. Most solutions are simple
geometry and one dimensional. Hence the need to use numerical methods to solve
phase change problem. Finite difference, finite element and finite volume method

were some of the methods used to solve phase change problems.
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4 Experimental Thermal Material Analysis

4.1 Introduction

For this research, thermal analysis test of the phase change material (PCMs) was
carried out using the hot disk and differential scanning calorimeter (DSC). Thisisto
study the thermophysical properties of the PCMs, which is essential in the design of
the thermal store to optimise performance. This chapter covers this thermal
measurement and how the PCMs were prepared for testing, while chapter 5 and
chapter 6 contain details of the resultsfrom the thermal measurement and experimental
setup using the chosen PCM based on the thermal analysis of the modular design of a
polypropylene sheet based plate heat exchanger concept in the laboratory respectively.

4.2 Thermophysical properties of PCM

The importance of the thermophysical properties of the phase change material cannot
be overlooked, hence this research commenced with determining the thermal
properties of the four different phase change materials. They are, Paraffin RT 52,
Paraffin RT 58, Climsel C58 and aeutectic mix of magnesium nitrate hexahydrate and
ammonium nitrate (Mg(NOs)2.6H20 + NH4NOz). Paraffin RT 52 and 58 are classified
as organic PCM, while the Climsel C58 and eutectic mix are classified as inorganic
PCM. They were chosen because their melting point is in the range of the design
temperature of the thermal store for domestic home application. The thermal
conductivity of each PCM was determined using the hot disk instrument, whilst the
differential scanning calorimeter (DSC) was used to determine its thermal behaviour
(melting point, enthal py, specific heat capacity etc.). The determination of the thermo-
properties of the aforementioned PCMs helps in the experimental investigation of the
use of the PCM with a polypropylene sheet based on a plate heat exchanger design
concept and on the serpentine heat exchanger, based on ashell and tube heat exchanger
concept. Water is used as the heat transfer fluid because of its high heat capacity and
low viscosity, which makesit easy to pump.

4.3 DSC/Hot Disk measurement

The paucity of fully reliable data on thermophysical properties from manufacturers
prompted the process of conducting tests on four different phase change materials. The
phase change materials include Paraffin RT 52, Paraffin RT 58, Climsel C58 and a
Eutectic mix (Mg(NOz)2.6H20 & NH4NOz). Both paraffins (RT 52 & RT58) were
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procured from Rubitherm Company. The eutectic mix was prepared in the laboratory
using 61.5% of magnesium nitrate hexahydrate Mg(NO3)2.6H20 and 38.5% of
ammonium nitrate (NH4NOs). Both chemical components were procured from Fischer
chemicals. Climsel C58 is a salt hydrate based PCM procured from Climator Ltd. It
comprises of sodium acetate, water and additives. Climsel C58 is stored in aluminium
pouches and based on the instructions from the material safety data sheet (MSDS),
they are difficult to handle. The thermophysical properties of the PCMs was analysed
by using the DSC. Each PCM was heated and cooled at a cooling rate of 2°C/min. At
the end of this thermal testing, the thermophysical properties of the PCMs were
considered for usein the thermal store and results obtained from the instruments were

compared to values from literature and results validated.

4.3.1 Differential scanning calorimeter
The differential scanning calorimeter (DSC) is a device that is used to determine the

phase change temperature or melting temperature, heat of fusion, crystallization
temperature of the material placed in its crucible. The measurements are carried out
under a controlled heating or cooling rate. The process measures the temperature and
heat flow (mW or W/g) corresponding to the thermal performance of the sample, asa
function of temperature and time. DSC provides quantitative and qualitative
information on melting and solidification processes of the material that is sampled.
Figure 4:1 shows an image of the SENSY S Differential scanning calorimeter device
available at the University of Warwick and used to carry out these measurements.

Figure 4:1: SENSY S Differential scanning calorimeter. Setaram (2005).
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The DSC consist of the following parts; furnace, reference sample, material sample
pan, thermoel ectric sensor. The way the measurement istaken using the DSC involves
the use of two pans; one holds the sample material, while the other pan is used as the
reference. The heat flux between the reference and sample pan is measured. Thisis
done by mounting the pans on separate thermoel ectric sensor platform surrounded by
afurnace. Asthe temperature of the furnace increases, heat is transferred to both pans
through the thermoelectric platform they are mounted on. It should be noted that the
DSC does not measure the temperature of the material. There is a sharp peak on the
thermogram (heat flow against temperature plot) and deviation from the steady state
profile. The latent heat of fusion is obtained from the area under the curve. A
heating/cooling rate is chosen for the analysis. It isimportant to choose an appropriate
rate, as it affects the result of the analysis. The mass of the sampleis recorded before

thetest is carried out for quantitative analysis.

The heating or cooling rate affects the accuracy or deviation in DSC measurement. It
was observed that at a higher heating or cooling rate, the DSC result was over
predicted. To prevent this, DSC measurements are carried out at low heating and
cooling rate (Gunther et al. (2005). Guinther et al. (2009) recommended using aheating
or cooling rate in the range of 2 to 10°C/minute. The heating rate affects the point at
which the phase change temperature peaks. Phase change shifts to a higher
temperature, when heating rate increases. The higher the heating rate, the larger the
melting peak.Drissi et a. (2015). Accuracy of the DSC measurement is dominated by
the heating rate and sample size. Ginther et al. (2005)

Araljo et a. (2010) carried out measurement on the DSC to determine the effect of
heating or cooling rate. The result obtained from the DSC was evaulated using a
sample mass of 2milligrammes. Zidovudine (AZT) was used as the sample material
tested in the DSC. Figure 4:2 shows a DSC measurement carried out at different rates
(1, 2,5,10 and 15°C/min. It was observed that the melting point was over predicted as
the heating or cooling rate increases. From Figure 4:2, it was observed that at 5 to
15°C/min, the melting point of the sample was over predicted. At lower rates (1 to
2°C/min), the melting point are more accurate when compared to results obtained at
higher heating or cooling rate. Based on DSC analysis carried out by various
researchers, It was recommended that tests carried out using the DSC should be carried

out at alower heating or cooling rate.
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Figure 4:2: DSC curves of AZT at different heating rate;1,2,5,10,15°C(Araljo et al.,
2010)

Figure 4:3 shows the calorimetric result using the dynamic mode on the DSC. The test
was carried out at different heating rates (0.5 K/min, 1K/min and 2K/min) and using
two different sample sizes (Sample A= 13mg and Sample B= 22mg). From the resullt,
it is noticeable that the sample size and heating rate affects the peak temperature
(melting temperature). As the sample size and heating rate increases, the peak was
moved towards a higher temperatures. For example, the melting temperature of
Sample B at heating rate of 2K/min was more than that of Sample A, at the same

heating rate. Thiseffect wasasaresult of anincreasein thermal gradient in the sample.
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Figure 4:3: Dynamic mode DSC measurement at different heating rates and sample
size. (Gunther et al., 2009)

Another challenge faced using the DSC is that the temperature of the sensor was
measured, not the sample. Due to the nature of PCM, sample temperature can be
overestimated. PCMs are known to possess higher thermal storage capacity and in
view of this, the amount of heat absorbed per volume is high Gunther et al. (2009).

Caorimetry test using the DSC is carried out using either the dynamic mode or
isothermal step mode. Gunther et a. (2009) mentioned that the dynamic mode is not
ideal to determine the enthalpy of PCMs, and proposed that the isothermal step mode
be used since it offers better precision. All measurement carried out on the DSC for

the aforementioned PCM s were carried out using the isothermal step mode.

Small sample geometry, low heating and cooling rates are recommended to minimise
the thermal gradient during calorimetric measurement. Carrying out DSC
measurement at low heating and cooling rates increases the duration in which the
measurement is done. Using the step method reduces the duration of test on the DSC.
GUnther et al. (2005) stated that using the step method to test the PCMs offers the
same precision for all sample materials without long duration of testing. Based on
comparison of result obtained from the DSC for thefour different PCM with literature,
it can be deduced that the type of method, type of calorimetry device (DSC, T-history
and air flow apparatus) affect the outcome of the result. When compared to other
methods, the DSC can only measure afew milligrams of PCM for cal orimetric testing.
For example, Rathgeber et al. (2014b) carried out calorimetric test on a PCM;
Pinacone hexahydrate using two different calorimetric test; DSC and T-history. The
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result concluded that subcooling is highly reduced when measuring larger samples.
Using the DSC resulted in huge subcooling due to the limitation of the sample
size(small) permitted for testing, while larger sample size are possible using the T-
history device.

The thermal behaviour of the PCM in application where tons of PCMs are required
differs in reality to the result obtained by measuring only a small amount of PCM
using the DSC. Effect such as crystal growth, phase separation need to be studied in
sample of similar size to the application it is to be used. The T-history method was
recommended based on the ability to measure large sample size and better precision.
Gunther et al. (2009).

4.3.2 Hot disk thermal conductivity instrument.
The Hot disk instrument measures the thermal conductivity of solid materials at

ambient condition using atransient method. Thermal conductivity test was carried out
on four different phase change materials (PCMs) using the hot disk TPS 2500S. TPS
means transient plane source. Thisthermal constant analyser from hot Disk instrument
is used to measure thermos-physical properties of solid, liquids, paste and powders.
This instrument is also capable of testing the thermal diffusivity and specific heat
capacity of various samples. The TPS 2500 meets I1SO standard: 1SO/DIS 22007-2.2.
Figure 4:4 and Table 4:1 shows the image and specification of the hot disk device
respectively.



Figure 4:4: Hot disk Transient Plane Source TPS 2500S.
Table 4:1: Table showing the specification of the TPS 2500.

Thermal Diffusivity 0.1 to 100(mm?/s)

Specific heat Capacity up to 5MJ/m3K

Measurement time 1 to 1280 seconds
Reproducibility Typically, better than 1%
Accuracy Better than 5% Standard; ambient

(room temperature only)

Smallest sample 0.5mm high,2mm diameter
dimensions

Sensors types available Kapton and Mica

Sensor design 5465 (3.189mm radius)

The TPS sensor acts as a resistance thermometer for recording the time dependent
temperature increase and also as a heat generating source; to increase the temperature
of the sample. It operates by having a constant current pass through the probe of the
TPS sensor, which generates aresistance hence, increases the temperature of the spiral
probe. The probe also serves as a temperature sensor Manzello S (2008). The TPS

probe consists of a sensor as shown on Figure 4:5. TPS sensor is made of nickel metal
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double spiral with designed dimensions of the width, radii and number of windings.
The nickel metal double spiral is encapsulated by either kapton or mica, which helps
to increase the sensor mechanical strength, protect its shape and ensureit’selectrically
insulated. Kapton has a temperature range of -160°C to 300°C, while mica has an
upper limit of 1000°C. For this measurement, kapton insulated TPS sensor was used
with aradius of 3.189 mm. Figure 4.6 shows the setup of the hot disk sample holder
with TPS sensor and cover.

Figure 4:5: Typical image of the TPS sensor. KTH (2010).

Figure 4:6: Hot disk sample holder with TPS sensor and cover.

4.4 Preparation of phase change material for measur ement

The thermal properties of RT 52, RT 58, Climsal C58 and magnesium nitrate
hexahydrate and ammonium nitrate are characterised at room temperature. Thermal
conductivity was determined at room temperature using the hot disk. Preparation of
the samplefor the thermal conductivity test was done by melting the paraffin wax; RT
52, RT 58 and Eutectic PCM; 61.5% magnesium nitrate hexahydrate
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(Mg(NO3)2.6H20) and 38.5% ammonium nitrate (NH4NOs) in a uminium moulds and
silicon mould respectively. The aluminium mould has a truncated cone shape, while
the silicon mould is around-shaped moulds. The moulds provide a contact surface that
Is flat for the measurement to be successful. Each PCM was heated in the oven to
59°C; the temperature at which the solid PCM does change to its liquid phase. The
phase change temperature of each PCM was considered to set the temperature within
the oven. The mould was alowed to cool before proceeding with test on the hot disk,
TPS 2500S. The PCMs were alowed to cool for over 24 hours. Thisis to ensure the
PCM are at room temperature and to prevent inaccuracy in data obtained from the hot
disk measurement. For the Climsel C58, lumpswith flat surface were used to measure
its thermal conductivity. Thisis due to the nature of Climsel C58, which isadifficult
sample to work with. The eutectic mix of 61.5% magnesium nitrate hexahydrate
(Mg(NO3)2.6H20) and 38.5% ammonium nitrate (NHsNOs) was prepared by mixing
the aforementioned chemical compounds at stated weigh percentage. Each chemical
compound has a melting point of 89°C and 169.6°C respectively. Mixing each
chemical compound in the stated proportion produces a congruent melt within a

temperature range of 50-60°C. The result isa PCM produced in the laboratory.

To mount the sample PCM for measurement, the TPS sensor is sandwiched or placed
between two layers of the samples as shown in Figure 4:7. The arrangement of the
PCM (RT58) sample on the hot disk sample holder before the test is shown in Figure
4:8. The same arrangement applies to the other three phase change materias. It is
essential that the cover for the hot disk sample holder unit is placed on the sample and
sensor before commencing the test. Sufficient time interval between each experiment

isimportant to allow the sample to be isothermal before the next measurement.
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Figure 4:7: Schematic arrangement of sample on hot disk TPS 2500. KTH (2010).

TPS
Sensor
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Figure 4:8: Arrangement of PCM before measurement.

45 Summary

This chapter looked at the devices used to determine the thermal properties of the
various PCM s used for thisresearch, the hot disk and Differential scanning calorimeter
(DSC) are the devices used to test each PCM. The method used to carry out the test is

discussed in details. The precautions taken to obtain good data are discussed as well
in this chapter.



Four different PCMs (two organic and two inorganic PCM) were tested, they have a
phase change temperature range between 50 to 60°C. In the laboratory, a eutectic mix
of magnesium nitrate hexahydrate (Mg (NOg3)2.6H20) and ammonium nitrate
(NH4NOs) was prepared successfully and its thermal behaviour tested alongside the
other PCM s procured from manufacturers. Chapter 5 gives adetailed result of the test

carried out on each PCM.
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5 Thermal material analysisresult and discussions

5.1 Experimental investigation of thermophysical results.

This chapter presents results from the therma measurement done using the DSC and
hot disk to measure the thermal properties of four different PCMs. Two organic PCMs
(RT 52 and RT 58), which are paraffins made up of carbon and hydrogen atoms only
(CnoH2no+2) and two inorganic PCMs (Eutectic mix; 61.5% (Mg(NQOs)2.6H20) &
38.5% (NH4NOg3) produced in the laboratory and Climsel C58). The results were

compared to data obtai nable from manufacturer and other researchers.

5.1.1 Thermal conductivity result
From the result of the test on the hot disk, RT 58 and RT52 had the lowest thermal

conductivity intherange of 0.22- 0.24W/m K and 0.22-0.23 W/mK respectively, while
the eutectic mix has the highest values of thermal conductivity 0.56 - 0.73 W/m K.
Climsel C58 vaue of therma conductivity ranges from 0.51 to 0.55W/m K. The
average of the values of thermal conductivity was estimated has shown in Table 5:1,
for measurements taken for each phase change material.

The software of the hot disk thermal constant analyser also provides checksto indicate
if data obtained from the measurement can be accepted or not. Total characteristic

time (T, ) should be in the region of 0.3 to 1.0. Appendix A shows the procedure in

which the PCM’ s thermal conductivity was carried out using the hot disk . Equation
5.1 describes the relationship between the thermal diffusivity, time and radius of the
sensor. Also thetotal temperatureincrease should belessthan 2°C. Total characteristic

timeis dimensionless.

ot
Te=— 5.1

r TPS

Figure 5:1 shows a bar chart comparing the thermal conductivity of the PCMs. It
shows the inorganic PCM have higher thermal conductivity than the organic PCM.
The eutectic mix possesses the highest thermal conductivity of the PCMs tested. The
thermal conductivity of the inorganic PCMs is amost three times the organic PCM
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(RT 52 and RT 58). As discussed in Chapter three of this thesis, inorganic PCM
possesses high thermal conductivity when compared to inorganic PCM, however its
disadvantagesin terms of toxicity, subcooling issues etc. hampersitsusein latent heat
thermal storage applications. Comparing the values of thermal conductivity from the
hot disk TPS 2500S measurement, it is within the range specified in literatures and

manufacturers data as shown on Table 5:2.

Table 5:1: Results from the Hot disk TPS 2500S.

PCM: Eutectic mix
1 0.56 1.98 1.47
2 0.66 1.13 0.35
3 0.73 1.93 0.90
Average 0.65
PCM: Climsd C58 Therma Conductivity Temperature  Tota to
(W/m K) increase(K) characteristic
time
1 0.55 1.34 0.64
2 0.54 2.34 0.48
3 0.51 2.31 0.35
Average 0.54
PCM: RT58 Therma Conductivity = Temperature  Total to
(W/m K) increase(K) characteristic
time
1 0.22 2.00 131
2 0.23 1.95 0.78
3 0.24 1.83 0.80
Average 0.23
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PCM: RT52 Therma Conductivity  Temperature  Total to
(W/m K) increase(K) characteristic
time
1 0.23 1.88 1.22
2 0.22 1.72 0.99
3 0.22 1.92 1.80
Average 0.22

Thermal conductivity of PCM samples

0.7
0.6 A
0.5 A
0.4 -
0.3 A
0.2 -
0.1 -

Eutectic mix Climsel C58 RT 58 RT 52

B Thermal conductivity (W/mK)

Figure 5:1: Thermal conductivity of the PCMs.
Table 5:2: Comparing hot disk measurement to values from other literatures.

PCM Hot Disk M easurement Literature values
Eutectic mix 0.65 0.55. G.A.Lane (1980)
Climsel C58 0.54 0.50-0.70

(Pér Johansson (2015), Climator
(2016))
RT 52 and 0.22 and 0.23 0.20 Rubitherm (2013)
RT 58
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Based on the result from the hot disk measurement, it shows good agreement with that
from literature and manufacture’s data, except for the eutectic mix which shows a
difference of about 0.0962W/mK (approximately 15%).

5.1.2 Enthalpy.
Thethermo-physical properties of the PCMswere anal ysed using aheat flux type DSC

which uses Nitrogen as the purge gas. Each PCM was heated and cooled at a cooling
rate of 2°C/min. Figure 5:2 (a-c) describesthe specific heat input into the PCM s during
heating and cooling phases for Climsel C58, eutectic mix and paraffin RT 58
respectively. Heat flow into the sample isindicated by positive values of the heat flux
during the heating phase, phase change occurs, thus energy is stored by the PCM. Heat
flow out of the sampleisindicated by negative values of the heat flux during cooling
process, thus energy is released by the PCM and the phase change is reversed.

Figure 5:2 @) and b) indicates that the inorganic PCMs (both Climsel C58 and eutectic
mix) have a phase change occurring within a small temperature range. There is a
difference the temperature at which heat is absorbed and released in the inorganic
PCMs. The heat isreleased at temperatures | ess than they were absorbed. The eutectic
mix has a difference of 6°C between the temperature at which heat was released and
temperature at which heat isabsorbed, while the Climsel C58 hasadifference of 10°C.
Based on this difference, there was need to check if the difference in the temperature
at which heat was absorbed and released could be asaresult of hysteresisor aproblem
of subcooling. For the RT 58, the heat is recovered at a similar temperature at which
it was put in as shown in Figure 5:2c). RT 58 releases and absorbs heat put in over a
wider range of temperatures when compared with the aforementioned inorganic
PCMs.
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Figure 5:2: Specific heat input to sample PCMs.
Figure 5:3(a-d) showsthe change in enthalpy in the PCM s during heating and cooling.
It shows a cumulative curve of the heat fluxes in Climsel C58, eutectic mix, RT 58
and RT 52 respectively. Figure 5:3a) shows the change in enthalpy for Climsel C58
and it isobserved that not all the heat put into melting the PCM was recovered. Though
Climsel C58 shows promising thermal properties, it was difficult getting good results
from the DSC. The tests of Climsel C58 using the DSC and hot disk provided some
challenges due to the nature of the sample. For example, when the sample of C58 was
prepared to be moulded, the sample did not melt in the oven, despite setting the oven
to 60°C, which was above the PCM’s melting point (52°C). Though the sample came
in a sealed container, the additives of the PCM might have been affected over time as
it was stored in asealed container (loss of water from the sample). Another reason for
the behaviour of this PCM could be as a result of some undisclosed additive present
in the sample as delivered from Climator. Climsel C58 shows promising properties
when compared to the other three PCMs, however, measures need to be taken to
reduce the large subcooling required to initiate the phase change. From the specific
heat capacity-temperature plot for Climsel C58 , it shows that there is a significant
difference between the temperature at which heat is released and absorbed. The heat
is released by these samples at temperatures below that at which the heat is absorbed.
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For Climsel C58, the heat is released 10°C below the temperature at which it was
absorbed. The DSC results show that not all the heat put into melting the Climsel C58
sample was recovered. During the calorimetric test, the sample temperature was taken
above the optimum temperature specified by the manufacture. This affected the
chemical composition of the material and affected its ability to return to the original
state. During preparation of samples for the thermal conductivity test, there was
difficulty in melting the sample to form the mould required for the test on the hot disk.
The PCM shows promising properties but more work needs to be carried out in
devel oping an effective way of reducing or minimise subcooling.

The behaviour of the eutectic mix made in the laboratory was different. It exhibits a
sharp phase change, despite the presence of hysteresis in the heating and cooling
curves. The material was selected based on its phase change temperature of 52°C,
however from the test it shows heat was recovered at 44°C. This would make it
unsuitable for the application intended. Figure 5:3c) shows the enthalpy change in the
RT 58, it can be seen there is little hysteresis and there is no noticeable subcooling
required to initiate phase change. From the low value of specific heat flux as observed
from Figure 5:3c), the energy stored (140 kJ/kg) over the region of phase change (54-
62°C) is similar to the eutectic mix. Difference between the charging and discharging
temperatures exhibited by both salt hydrates could cause a significant problem running
athermal store, RT 58 does not exhibit such a problem; however, it does not have a
sharp phase transition compared to the salt hydrates and has alow thermal conductivity
(0.23 W/m K). For the RT 52, described in Figure 5:3 (d), it shows the energy stored
(153 kJ/kg) over the region of phase change (51-55°C). The result shows that not all
the heat was recovered as the PCM solidified. This can be attributed to hysteresis.

However, the result obtained is comparable to manufacturer’ s data.
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Figure 5:3: Enthalphy change in the PCMs.

Based on the result from the hot disk and DSC measurements, Table 5:3 shows an

overview of the results. It shows the eutectic mix has the highest thermal
conductivty,whileRT 52 and RT 58 havethelowest. Also, Climsel C58 hasthe highest
enthal phy change within its phase change temperature.
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Table 5:3: Properties of sample PCM.

Phase change 44 — 52 48-60 51-55 54-62
temperature (°C)

Enthalpy (kJ/kg) 150 240 153 140

Thermal conductivity 0.65 0.54 0.22 0.23

(W/mK)

In this research, it was observed that the paraffin and the eutectic mix behaved
differently during the thermophysical test of the PCM using the DSC as described in
Figure 5:3, which shows the enthal py-temperature curve for both PCM; often times,
researchers claim it is hysteresis that occur as the PCM is subjected to the process of
charging and discharging on the DSC, where the amount of heat absorbed during
change of phase differs from the heat recovery process, while others claim it is
subcooling effect that takes place in the PCM.

It is difficult to establish whether the behaviour of the eutectic mix is actually sub
cooling or hysteresis (See Figure 3:3b). Subcooling would hamper the performance of
the thermal store, because it delays the commencement of solidification in the PCM.
Hence, the reason why the organic PCMs (RT 52 and RT 58) are used for the

experiments and simulation of the thermal store in this research.

Table 5:4: Comparision of DSC result with literature (Latent heat).

PCM DSC M easurement Literaturevalues
Eutectic mix 150 kJkg 126 kJkg Sharmaet al. (2009)
(44-52°C) 131 kJkg Krane (2009)
Climsel C58 240 kJkg 260 kJkg Shinet d. (2017)
(48-60°C) 260 kJkg(55-58°C) Climator (2017)
RT 52 153 kJkg 167 kJkg Rubitherm (2013)
(51-55°C) 173kJkg Huang and Hewitt (2011)
RT 58 140 kJkg 160 kJkg (50-65°C) Rubitherm (2013)
(58-62°C)
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Table 5:4 comparesthe latent heat of the PCM s tested using the DSC in the laboratory
with values from literature. Based on the DSC result, it shows good agreement with
valuesfrom literature and manufacturers’ data, except for the eutectic mix which gave
a 14-19% difference. The difference in values of the latent heat can be attributed to
the conditions in which the test were carried out by different researchers and
manufacturers. The phase change temperature range and the type of device used to
carry out the thermophysical properties of the PCM were different to those used in the
literature. The magority of the calorimetric results presented in literature or by
manufacturers do not have full details of the temperature range used to determine the
enthal py change , DSC method used or sample size etc. Rathgeber et al. (2014a) stated
that it is difficult to compare calorimetric results of PCM from different laboratories
due to deviations in purity of the samples and measuring accuracy. Results from T-
history are mostly carried based on self-built instruments, thus difficult to compare
result obtained from it with DSC results. Calorimetric test done on nine different
samples by Rathgeber et al. (20144) using both DSC and T-history method showed
that measured melting temperatures agreed with literature and manufacturers.

52 Summary

From the DSC results, both inorganic PCMs, which are also salt hydrates, released
their stored heat at temperatures below the temperature at which it was absorbed. This
difference between the charging and discharging temperatures could cause a
significant problem running athermal store with these salt hydrates. RT 52 and RT 58
do not exhibit such aproblem; however, paraffin does not have asharp phasetransition
compared to the salt hydrates and has low thermal conductivity. Both organic PCMs
are chosen based on the fact that they do not show any hysteresis and heat is stored
and rel eased at the sametemperature. This makesthemidea PCM to usein thethermal
store, since their behaviour is easier to control.

The results from the DSC and hot disk device were compared to manufacturer’ s data,
and they show good agreement with the obtained results. Several researchers ((Antony
Aroul Rg and Verg (2011), Lin Qiu and Min Yan, 2012, Celador et a., 2013)
considered the thermal conductivity of the solid and liquid phase of the PCM to be
constant. To ssimplify the model for the PHE store, the thermal conductivity of the
organic PCMs (RT 52 and RT 58) were assumed to be constant for both solid and
liquid phase.
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6 Experimental setup of Plate heat exchanger thermal store.

The experiments and simulation in this research involve two different types of heat
exchangers, the plate heat exchanger and serpentine heat exchanger (based on a shell
and tube concept). Chapter 6 highlights the experimental setup of the modular design
using polypropylene sheet based on a plate heat exchanger as athermal store; to study
the behaviour of the chosen PCMs (RT 52 and RT 58) and the next chapter; chapter 7
deals with the experimental study of a modular design of a serpentine heat exchanger
based on shell and tube concept. Based on the results from the hot disk and DSC
measurement, the aforementioned PCMs are used for both experiments due to the
advantages they possess over the inorganic PCM as discussed in the earlier chapter.
The materials and apparatus used for this experiment are also discussed in detail in
this chapter.

6.1 Material

6.1.1 Heat transfer fluid (HTF)
Water was used as the heat transfer fluid (HTF) dueto itsthermal properties. Water is

cheap and readily available. It does exhibit excellent heat transfer properties.
The important properties are:

e Density

e Thermal conductivity
e Viscosity

e Specific heat capacity.
e Latent heat of fusion

The properties of water vary with temperature. It is essential to utilize the properties
based on its temperature, thus al ssmulation and calculation involved in this research
was based on the corresponding temperature with reference to the properties. In some
research, water is used as a PCM. This means water could be used as a heat transfer
fluid or phase change material. The reason why water is not often used as a PCM is
dueto its melting and freezing temperature despite the fact that it has ahigh latent heat
of about 330kJ/kg. Itisusedinair conditioning systems but the temperatureisdightly

too low and causes condensation of water from the air.
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6.1.2 Phasechange material (PCM) properties
Based on the design of the thermal store, the operating range of the phase change

material studied ranges from 44 to 58°C. The selection of a PCM was based on the
PCM melting temperature, chosen a a temperature interval below the operating
temperature of the application (heat pump). An interval less than 5°C has been
proposed to prevent excessive degradation of heat within the system and reduction of
efficiency Lane (1989). Organic PCMs, RT 58 and RT 52 and inorganic PCMs;
Climsel C58 and eutectic mix of magnesium hexahydrate and ammonium nitrate were
tested on the DSC and hot disk. The aforementioned PCMs have their phase change
temperature within a suitable range for domestic heat pump applications. For the
experiment and simulation of the thermal store for this research, RT 58 and RT 52
were used. Various thermal parameters were taken into consideration, which include:

e Latent heat

e Density

e Melting temperature range

e Specific heat capacity

e Thermal conductivity

e Enthalpy-Temperature relationship.

6.2 Apparatus

6.21 Water bath
The water bath (Polystat R6L) designed by Cole Parmer was used to pump the water

at the required temperature to the thermal store. The bath is proportional-intergral -
derivative (PID) controlled, it uses a programmable controller. It allows for aset point
temperatureto be set asit heats or cools. Animage of thewater bath isshownin Figure
6:1.
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Figure 6:1: Hot water bath (Cole Palmer Polystat R6L).

The device possesses an ability to heat or cool the fluid,however the system does not
provide cooling over the full range of temperatures. The cooling system commences
for set pointslessthan 35°C ColePalmer (2016). Thusadrain valve had to be provided
to release hot fluid as cold water is poured into the bath to aid cooling. Thisis because
experiments in this research were al above the set point temperature that allows for
cooling. Table 6.1 shows the specification of the Polystat R6L hot water bath or
circulating bath. More information on the bath is available in Appendix D.

Table 6:1: Specification of circulating Bath(Polystat R6L). ColePalmer (2016)

Technical Data

Bath volume 6litres

Temperature range -20t0 200 °C

Heating power 1kw

Cooling power @20 °C 0.29 kw

Pump delivery 151/min

Electrical requirement 230VAC, 50Hz, 10 Amps.
Overdl dimension 0.25x 0.55x 0.4m
Refrigerant R134A

6.2.2 Dataacquisition (DAQ)
Temperature data were logged using TC-08 Thermocouple data logger. This device

has a USB interface. It is an eight (8) channel temperature logger; as shown in Figure
6.2.
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Key attributes of the TCO8

e Measure from 1 to 8 thermocouples

e Measures from-270to +1820 °C

e Automatic cold junction compensation

e Highresolution- 20 bits

e Temperature accuracy- Sum of £0.2% of reading and £0.5 °C
e Fast sampling rate — up to 10 measurements per second

e USB interface

Figure 6:2: Pico temperature logger TC-08. Picotech (2014).
Appendix B has adescription of the specification of the USB TC-08 used for the plate

heat exchanger experiment to record and save temeprature records.

6.2.3 Thermocouples
Thermocouples were used for measuring the temperatures. K-type thermocouples

were used for the experiment to take temperature at different locations. They are
connected to the temperature logger; TC-08. Two types of type K thermocouples were
used, and they are shown in Figure 6:3.

o Q-

(@TypeK Stainless Steel Shim Labfacility leaf thermocouple
(b)Type K Probe Thermocouple; 1mm diameter.

Figure 6:3: Different types of K type thermocouples used.
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Appendix C shows the locations where the Type K Stainless Steel Shim Labfacility
leaf and Type K Probe thermocouple were placed on the PP (polypropylene) sheet to
monitor the temperature of the PCM , HTF(heat transfer fluid) and room temperature

during the experiment.

6.2.4 Polypropylene/Acrylic
The polypropylene (PP) sheet used was procured from Twinplast Company. The sheet

has a layout of channels that could be used as a heat exchanger for this chosen
application; thermal energy storage. Figure 6:4 shows the channels on the PP sheet.
Efforts were made to weld the PP sheet, but it was not possible to find anyone capable
of welding it. There were concerns about the thickness of the sheet being too thin to
weld; however, it can be bonded using adhesives. Severa adhesives were tested, to
confirm which was well suited to bond the sheet to the PV C pipe required for inlet and

outlet flow of water on therig. The following adhesives were used in the final design.

1. DP 8005, procured from 3M Products
2. Ultimate instant grab: thisis used on the inner part of the wood in
contact with the hot surface.
3. All in one sealant, adhesive and filler MS polymer. Used on the
exterior part of the wood.
4. Araldite.
Further experiment involved the replacement of the wooden frame with PV C strips
of 30cm width. DP 8005 was used to bond the PV C strips on to the polypropylene

surface. It was discovered that this bonding was better than using wood strips.

Channd

Figure 6:4: Polypropylene sheet with channels.
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6.2.5 Electric wax heater:
The wax heater was used to melt the solid PCM on to the thermal store. It has a

temperature range up to 200°C. It has a control switch which is used to set the desired
temperature to heat the material or sample. This device isonly used for heating; it is
not designed for cooling the material. Figure 6:5 shows the electric wax heater unit

and an image of paraffin wax melting in it.

Figure 6:5: Electric wax heater.

6.2.6 Coriolismassflow meter
The mass flow rate of the fluid flow for the experiment was monitored by a Coriolis

flow meter manufactured by Emerson (Micro Motion Inc.). The flow meter can
measure fluid flow up to atemperature of 200°C. The Coriolis mass flow meter hasa
flow range of 2g/sto 100g/s. It comprises of aflow transmitter and mass flow sensor;

shown in Figure 6.6.
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(eyFlow transimitler (b) Mess Mow sensor

Figure 6:6: Coriolis mass flow meter. Emerson (2017)

The flow meter operates based on the “Coriolis principle’” where the change in
frequency or amplitude as a result of the fluid flowing through the vibrating tubesis
produces a linear flow signal. When there is no fluid flow, the tubes within the unit
oscillate at the same frequency. However as flow passes through the unit, there is a
phase difference in the frequency. The signal from the sensors mounted on the tube at
the inlet, middle and outlet of the unit with the aid of the transmitter gives the mass
flow of the fluid travelling through it Emerson (2017). This device can aso determine
the density of the fluid passing through it. Coriolis meter accuracies for mass flow is
+ 0.10% of the flow rate. Emerson (2018)

6.3 Statistical analysis

The mean, standard deviation and standard deviation mean of the measurement from
the thermocouples, Platinum RTD and coriolis mass flow meter were estimated.
Equation 6.1 to Equation 6.3 shows the relationship between the mean, standard
deviation and standard deviation mean. Table 6:2 show the results of the calculation
for each measurement.

Mean,

: 6.1
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Standard deviation,

o %)

Standard deviation mean,

6.3

Table 6:2: Statistiscal parameters of measured instrument.

Thermocouples | RTD | Flow meter
Parameter (°O) (°C) (g9/9)
Standard deviation 0.795 0.02 0.5
Variance 0.632 0.0004 0.25
Standard deviation
mean 0.459 0.0133 0.177

From Table 6:2, the uncertainty for the thermocouples, RTD and flow meter are
determined. The deviation amongst the K-type thermocouples used for the plate heat
exchanger experiment was lessthan 1°C. K-type thermocouples were used with aPico
logger data logger. The uncertainty in the thermocouples used for the plate heat
exchanger (PHE) are determined as +0.795°C. The uncertainty of the resistance
temperature detector (RTD) is 0.02°C. The uncertainty in the flowmeter was
determined by taking the standard deviation of the flow. The uncertainty of the coriolis

flow meter is+0.5 g/s.
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6.4 Experimental setup plate heat exchanger (Polypropylene sheet)

6.4.1 Charging
The assembly of the rig using the polypropylene (PP) sheet based on plate heat

exchanger concept consists of an acrylonitrile butadiene styrene (ABS) pipe at each
end of the PP sheet and a rectangular frame to act as containment for the PCM. The
rectangular frame was changed from wood to polyvinyl chloride (PVC), when the
adhesion between the wooden frame and PP sheet failed. The PV C frame was bonded
to the PP sheet with 3M Scotch-weld DP 8005(Acrylic structural adhesive). The
internal part of the frame was sealed with silicone sealant to improve the seal and
eliminate little holes that could be present in the DP8005. High temperature adhesive
(Polycarbonate) was applied, due to close contact with the PCM during charging and
to prevent any reaction that could occur. The exterior part of the frame was sealed with
a sealant (instant Grab). Before bonding the frame to the PP sheet and pouring in the
PCM, proper levelling of frame and PP sheet was done. Figure 6:8 shows the layout
of where the adhesives are applied to the PP sheet for bonding.

For the flow of HTF in and out of therig, an ABS pipe was used and bonded to the PP
sheet using solvent weld. Prior to bonding the ABS pipeto the PP sheet, strips of ABS
were bonded to the PP sheet using super glue, thisis to provide arigid layer for the
ABS pipe to be bonded onto the PP sheet . Two pipes of same diameter were fixed at
each end of the PP sheet. Each pipe had a slot to accommodate the channels of the PP
sheet before bonding the sheet, a picture of this assembly is shown in Figure 6:7.
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Figure 6:7: Imaging showing how the pipe is bonded to PP sheet.
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PVC to hold PCM in place

: Phase change material (PCM) Ni\h\:

lies on top of polypropylene — >

Pipe for inlet of water to the channels
described in Figure above

Figure 6:8: Drawing of the assembly of the polypropylene sheet.

The set up for the charging process involves the arrangement of the pipe lines from
the water bath to the polypropylene sheet. The initial arrangement of the rig involved
aconnection to theinlet and outlet of the polypropylene sheet from the hot water bath.
At the commencement of the charging process, it was observed that the desired HTF
temperature at the inlet was not reached, but water flowed through the PP sheet
channel causing the PCM to be heated before the desired inlet temperature is attained.
Thus, modification was made to the flow from the circulating water bath to the rig by
fixing a three-way valve on the inlet bath side. This facilitates recirculation of water
from the bath inlet to its outlet until the desired HTF temperature is achieved. Upon
achieving this temperature, the position of the handle on the three-way valve is
changed, thus directing water to the inlet pipe of the polypropylene sheet and then
through the channels to the entire length of the sheet. The water flows to the outlet
pipe mounted on the outlet end of the rig and back to the bath. Figure 6:9 shows the
layout, where the 3-way valve is mounted. The water flow through the sheet isinaZ-
arrangement, in order to give auniform flow across the sheet.

The setup of the experimental rig as shown in Figure 6:9 and Figure 6:10 consists of
a horizontally positioned flat sheet made up of 4 mm thick polypropylene with a

channel width and height of 3.6 mm and 3.3 mm respectively. From literature,
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researchers designed plate heat exchanger using metals, with a plate spacing of 3mm
(Frazzica et a.(2017)), 0.5 to 4mm (Shatikian et a(2005)) to promote effective heat
transfer. This research made use of polymer material, polypropylene to design and
build a PCM thermal store using a plate spacing of 4mm. Appendix K shows the
design calculations done prior to construction of the PHE store. The dimension of the
material is1900 x 400 mm. Table 6:3 shows an overview of the dimension of the PHE,
including the mass of PCM used and insulation. Water was used as the HTF from a
water bath that was PID controlled. A layer of the PCM (RT 52 or RT 58) with amean
depth of 10mm was contained on top of the sheet and Celotex insulation board (brand
name is Celotex) used to cover the test rig to prevent heat loss. The insulation board
ismade from Polyisocyanurate (PIR), procured from Wickes. For this experiment, two
different PCMs were used. Using RT 58, the experiment was carried out at high flow
only. Thiswas dueto the fact that the initial experimental set up was designed for only
asingle flow, this was modified to accommodate different flows when using RT 52,
which possesses a higher latent heat than RT 58. For the experiments done using RT
52, modification was made by installing a gate valve on the inlet side of the water
bath, allowing experiments to be done at three different flows (low, medium and high
flow). Figure 6:9 shows a schematic representation of therig. The PCM islocated on
top of the PP sheet (between the PP sheet and celotex insulation). The PCM
temperatures are monitored using T3, T4 (inlet region), T5 and T6 (outlet region)

thermocoupl es.

Table 6:3: Dimensions of the polypropylene sheet and other parameters.

Polypropylene sheet width [mm] 400
Polypropylene sheet length [mm] 1900
PV C thickness [mm] 30
Mass of PCM [kg] 6.7
Channel width [mm] 3.3
Channel length [mm] 3.6
Celotex insulation [W/m.K] 0.44
Insulation thickness [mm] 50
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Using RT 58, the HTF temperature was set to 65°C and pumped through the channels
(111) within the sheet to melt the RT 58. The temperature of the inlet and outlet water
from the sheet was recorded as well as the temperature of the phase change materid

at four points.

Using RT 52, the HTF temperature was set to 60°C and experiment carried out at
350/s, 47g/sand 65¢/s, termed low, medium and high flow respectively. Thiswasdone

for charging and discharging processes.

The measured experimental inlet water temperature was used in the numerical
simulation in order to compare the water outlet temperature with measured
experimental values. This was done to validate the heat transfer model for the system
written in MATLAB.

T3, T4 T5,T6
o <4—  Thermocouples ——p o

T2

Inlet

¥

Flowmeter

2 4

Gate valve .

Figure 6:9: Schematic representation of therig.
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Figure 6:10: Schematic respresentation and picture of the experimental bench top
testrig.

Figure 6:11 (a-c) showstheimage of the plastic heat exchanger with the phase change
material melting asthe heat transfer fluid flows through the channels. Figure 6:11 (a)
shows the paraffin in granules before melting starts, while Figure 6:11 (b) shows the
deformation of the solid granules with a mushy look as meltinng commences across
therig. The paraffinisfully melted as shown in Figure 6:11 (c), where thereisaclear

liquid acrosstherig.

(a) Before melting (b) Melting starts (c) Complete melting

Figure 6:11: PCM Images on the plate heat exchanger.
Figure 6:12, showsthe thermal image of the rig during melting without insulation. The
Image was taken by an infra-red camera. Thereis anoticeable bright patch asthe PCM
was heated. Thisis due to thinner layer of PCM in those areas, as aresult of the wave-
like deformation of the PP sheet. Thefigure also showsdark streaks on the plate, which
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indicates blocked channels. Dark streaks on the sheet indicate low flow in channels
which were partially blocked during fabrication by adhesive used in bonding. Software
was used to interpret the temperature from the infrared cameraimage taken during the
experiment. It also shows thereislittle variation of temperature across the plate.

a) Hotter pools of wax indicate thinner area where the PP sheet has deformed in a
wave pattern b) view of water channel from beneath.

Figure 6:12: Thermal image of the rig during melting.

Parameters used for calculation and simulation of the experimental results obtained
include;

Hydraulic diameter, D, for the rectangular cross-section of the channel (fully

filled). Equation 6.4 to Equation 6.7 shows how the hydraulic diameter is calcul ated.

a
b
D, =2 6.4
P
A =ab 6.5
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P=2(a+b) 6.6

_ 2ab
" (a+h) 6.7

The Reynolds number which isthe ratio of the inertiato the viscous force is
expressed in Equation 6.8 as;

Reynolds Number, Re

pVDy,

Re= 6.8
y7i
Equation 6.9 relates the velocity of flow and mass flow rate,
r.n = pVA 6.9
Thus,
% m 6.10

p—l p_A
Substituting Equation 6.7 and Equation 6.10 into Equation 6.8, Reynolds number can
be expressed as described in Equation 6.11; as a function of the mass flow rate,

dynamic viscosity, width and height of the rectangular duct (non-circular pipe).

__2m 6.11
(a+b)u

The Reynolds number of the flow in arectangular duct is calculated based on using
Equation 6.11.

However for the PP sheet, the mass flow rate measured by the Coriolis flow meter is
for the flow through the width and length of the PP sheet, thus the Reynolds number
was calculated based on flow per channel. The width of the sheet is 400mm, within
this span; there are anumber of channels, (N =111). Equation 6.12 to Equation 6.16 is
used to calculate the velocity and Reynolds number of the flow through a channel.
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The volumetric flow rate, V isrelated to the mass flow rate by Equation 6.12

m=pV 6.12

Equation 6.13 expresses the volumetric flow rate per channel as,

m 6.13
oN

Thus from Equation 6.13, the velocity of flow through the channel is expressed by
Equation 6.14 as:

y=_m_ 6.14
A.pN

The Reynolds number for the flow through the channel is calculated using Equation
6.15 or Equation 6.16.

om |
PUAPN | 6.15
Re=——— 2
u
Re= mAbDlh\l 6.16
u

The result obtained from cal culating the Reynolds number using Equation 6.16 is
presented on Table 6:4

Table 6:4: Reynolds number results.

Reynolds Number
Inlet HTF
Temperature (°C) L ow flow Medium flow High flow
60 193 259 359
65 n.a n.a 386
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Thetype of flow is determined based on the range of the Reynolds number using Table
6:5. This describes the type of flow; whether it is laminar ,transitiona or turbulent

flow. Based on the Reynolds number calculations, the flow in the channelsis Laminar.

Table 6:5: Flow regimes

Laminar flow Re<2300
Transitional flow 2300<Re<4000
Turbulent flow Re>4000

The charge and dischargeraterate are calculated from the result obtained from the
experiment using Equation 6.17 and Equation 6.18 respecively.

Q-mCp(T, ~T,.) 6.17

Q-mCp(T,, T, 6.18

6.4.2 Discharging
When the PCM is fully melted, the discharging process is started by dropping the

temperature in the bath gradually to 20°C. This is achieved by adjusting the
temperature controller mounted on the bath to the aforementioned temperature.
However, the cooling mode does not start until the temperature of the water in the bath
isless than 35°C. To achieve this, the drain line on the outlet is opened and hot HTF
released to a bucket as cold water is poured into the bath. When the set temperature of
35°C isreached the bath starts the cooling process. As the HTF of lower temperature
flows through the polypropylene channels, heat transfer between the HTF and PCM
causes the PCM to start to release its energy, hence solidification process begins. The
circulation of HTF continues until al the PCM is solidified. Temperature readings are
recorded with the aid of the temperature data logger. The store is discharged at

different temperatures but kept at the same flow rate it was charged.
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6.5 Summary

The materials and apparatus used for the experiment are discussed, stating the
specification of each apparatus and properties of the materials used for the experiment
using the polypropylene sheet (Plate heat exchanger). The advantages of using water
over other types of heat transfer fluid (HTF) are also highlighted. The reason why the
K-type thermocouple was chosen as the suitable thermocouple for this experiment is
based on its temperature range and availability in abundance, in the workshop.

The experiment methodology using RT 52 and RT 58 as the suitable PCM on the PP
sheet for the charging and discharging processis discussed in detail. The properties of
the polypropylene sheet, hot water bath etc. used for the experiment are presented in
detail in this chapter. The advantage of identifying the thermophysical properties of
the PCM was vital in order to determine the PCM used. The thermal behaviour of RT
52 and RT 58 in the experimenta rig demonstrates the potential for a plastic heat
exchanger to be used for thermal energy storage. The plate heat exchanger concept
used, allows a higher ratio of PCM to water within the store. The PCM thickness can
be optimized for the anticipated charge/discharge rate and required storage density.
The size of the channels also has an effect on heat transfer. The use of small channels
allows good heat transfer at low flow rates and with a low pressure drop (small

pumping power).

The work has demonstrated that an effective thermal store can be constructed from
polypropylene. The plate heat exchanger design and heat transfer characteristics of the
mini channels allow the store to be charged with only a small (<5°C) temperature

difference.
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7 Serpentine heat exchanger storedesign

7.1 Introduction

Serpentine heat exchanger (SHE) based on a shell and tube concept was designed and
used as a therma store. The purpose of this was to compare heat transfer
characteristics of the plate heat exchanger and the serpentine heat exchanger in their

use as alatent heat thermal energy storage device.

For this experiment, the apparatus used for theflat plate heat exchanger were also used
for the serpentinerig. The difference in the set-up between the two heat exchangersis
the type of heat exchanger used. Basically, from Figure 6:9, the PP sheet is replaced
by the modular SHE. Another type of temperature logger; M&C USB 1616HS logger
was used for the experiment on the shell and tube design based concept. This is
because the Pico temperature logger had only eight(8) channels to measure
temeperature ,while fourteeen (14) channels were required for the aforementioned
shell and tube rig. The temperature logger; USB 1616HS, produced by M&C
computing. MCCDAQ (2016) is used alongside the Picotech temperature logger for
obtaining temperature data from the experiment. The Picotech temperature logger is
used for only taking room temperature, whilethe USB 1616HS is used to measure the
HTF at the inlet and outlet of the rig and the PCM temperatures at different locations.
Details of the USB 1616HS logger are described below.

711 M&C computing USB-1616HS
The USB 1616HS logger isamultifunctional measuring and control board device built

for the USB bus. It is supported by Microsoft Windows operating system. The USB
1616HS provides eight differential or sixteen single ended analog inputs with 16bit
resolution. Eight of the analog inputs can be configured as differential thermocouple
(TC) inputs. It has a built in cold junction sensors for each of the screw-terminal
connections, which makes it possible for any TC to be easily attached to the eight
thermocouple channels. Figure 7:1 shows the M& C computing USB-1616HS logger,
it has a provision for two loggers to be connected as shown, thus providing more
measuring channels. An analog input expansion module (Al-EXP48) which connects
directly to the logger can increase the inputs to twenty-four (24) differential or forty-

eight (48) single-end inputs to the logger.

80



- SNILAND

16HS

-

NN I T ) A

e

Figure 7:1: Image of the Measurement computing USB-1616HS.
Signal lines are connected to the logger’'s removable screw terminal blocks. The
connections could be either voltage or thermocouple signals. Figure 7:2 shows a
detailed description of these connections. Voltage connections (V1 and V2) aresingle
ended or differential connections. Thermocouple signals are differential connection
used in this research for obtaining temperature measurement. The negative (red line)
connects to the channels LO connection, and the positive (blue line) connects to the
HI connector. It is important to select the option to use differential input mode for

thermocoupl e connections when using the software.
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Figure 7:2: Voltage connections and differential thermocouple connections.
MCCDAQ (2016).
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The logger is calibrated at the factory using a digital NIST traceable calibration
method. The NIST traceable calibration method works by using a correction factor for
each range on the unit at time of calibration. Software called INSTACAL can aso be
used to calibrate the device without the need of an external instrument or device.
INSTACAL was installed and used to calibrate this logger before commencement of
experiment. It worksin conjunction with aLabVIEW and MATLAB softwareto store

and retrieve temperature data.

For thermocouple measurements, the logger can operate in an averaging mode, taking
several readings on each channel, applying digital filtering and cold-junction
compensation, and converts to readings in temperature. For the experiment with
serpentine rig, the Picotech temperature logger was only used to take and monitor
room temperature, while the M&C computing data logger was used to monitor
temperature of the heat transfer fluid and phase change material on therig. Table 7.1
gives adetailed description of the logger’ s specification.

To ensure accurate reading using this logger, the following precautions were taken:

e TheUSB 1616HS and thermocouples wire were allowed to warm up before
commencing the experiment to ensure thermal stability.

e Shielded thermocouples are used, to reduce noise.

e Room temperature should be thermally stable, within the range of 20°C to
30°C.

e TheUSB 1616HS logger is mounted on an even surface.

Table 7:1: USB 1616 HS logger specification.

USB-devicetype USB 2.0 high speed mode (480M bps)

Operating temperaturerange -30°Cto +70°C

Storagetemperaturerange -40°C to +80°C

Dimensions 0.269m x 0.092m x 0.045m

Connector type Screw terminal

Compatible expansion product Al-EXP 48 expansion module with screw terminals
Power range 6to16 VDC

Weight 0.431 kg
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7.2 Experimental Procedure (Serpentine heat exchanger)

Two different compact latent heat storage modules were developed in the laboratory
based on plate heat exchanger and a serpentine heat exchanger (shell and tube
concept). This chapter discusses the latter. The store arrangement comprises of a
rectangular tray made from 3mm auminium sheet. Thisisthe tray in which the PCM
iscontained asillustrated in  Figure 7:4. Copper pipes run across the width of the
rectangular aluminium tray. The dimension of the tray is 1970 x 620 x 50mm. The
inner diameter of the copper pipe is 6.27mm and the outer diameter is 8.22mm. The
dimensions of the serpentine rig were chosen, so that the layout would be identical to
that of the plate heat exchanger (PHE). Thiswould allow the experiments resultsto be
comparable. The pitch was chosen (500mm) because the copper pipe could not be bent
further to prevent kink, which could hinder flow of fluid during experiment. The jig
fabricated in the workshop to aid the bending of the copper pipe was designed to
accommodate the pitch desired. A minimum bending radius is required to ensure that
the copper pipe was not damaged when it was bent. In the case of the copper pipes
used for the serpentine heat exchanger, the minimum bending radius was 50mm.
(Kragbaek and Reinholdt (2011)) proposed that a certain minimum bending radiusis
needed during construction of heat exchanger pipes with fins for a concentrated solar
power plant. Thisis to prevent damage to the pipe during bending. A bending radius
of 20mm was used for a pipe with outside diameter of 20mm. Kragbaek and Reinholdt
proposed that the bending radius be equal to the pipes outside diameter. However this
isdifficult to obtain in constructing in the workshop, since preventing kinksin the pipe

can be quite challenging, thus ajig was used.

Appendix | shows the solidworks drawing of the SHE arrangement. The copper pipe
runslike acoil (serpentine pattern) across the entire width of thetray, similar to ashell
and tube arrangement. During fabrication of the serpentine heat exchanger, kinkswere
avoided by using a bending jig, produced in the workshop. The presence of kinks
causes flow rate restriction in this type of heat exchanger. The jig also ensures that a
uniform spacing of 100mm between pipes is maintained throughout the entire length
of the heat exchanger. The overall length of the pipeis 10200mm. Water is used asthe
heat transfer fluid, while the PCM (RT 52) occupies the spaces around the pipe within

the rectangular tray. The store dimensions are shown on Table 7.2.
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Table 7:2: Store dimensions from experimental work.

PCM tray width [mm] 620
PCM tray length [mm] 1970
PCM tray height [mm] 50
Volume|[L] 60
Copper Coil length [mm] 10200
Copper Tube OD (ID) [mm] 8.22
(6.27)
PCM fraction [%] >90
Polystyreneinsulation [W/m.K] 0.038
Insulation thickness [mm] 100

The rig was connected to the hot water bath with the outlet and inlet of the rig
connected to the inlet and outlet of the bath. A 3-way valve is mounted on the inlet
side of thewater bath as described for the PHE. Theflow rate wasvaried using avalve.
Thermocouples were positioned at the inlet and outlet of HTF to the SHE; this was to
monitor and record temperature of the HTF during the experiment. Figure 7:3 shows

the schematic drawing of therig.
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Figure 7:3: Schematic drawing of the serpentinerig.
The thermocouples were made in the laboratory using a 2-core screened PVC
thermocouple cable (0.2mm) of a length of 25m. To make each thermocouple, the
cable was cut to the desired length and welded. The other end was connected to the
USB1616HS logger. The k-type probe (1Imm) was used for monitoring the HTF
temperature. These thermocouples are positioned at the inlet and outlet of the copper
pipe. The eight thermocouples made in the laboratory were used to monition the PCM
temperature. As shown in Figure 7:4, the thermocouples are positioned between two
copper pipes. They are located on the same axis at six different locations; A1-A3; B1-
B3 and C1-C3. Two thermocouples are placed at D1 and D2; to measure the PCM
temperature at the regions where there are no copper pipes. The ambient temperature

is also monitored by connecting the thermocouple to the TC-08 logger.

The PCM temperature is monitored using thermocouples mounted or positioned at
A3BC3, A2B2C2 and A1BI1C1. Figure 7:4 shows how the thermocouples are
positioned radially and axially across the rig. A1B1C1, A2B2C2 and A3B3C3 are
regarded as the axia positioning of the thermocouples, while A1A2A3, B1B2B3 and
C1C2C3 are regarded as radial positioning of the thermocouples. The thermocouples

are kept at a distance of 750mm apart from one another as shown in Figure 7:4. The
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PCM thermocouples are inserted from above the insulation. Each thermocouple is
placed in the middle of two copper pipes, which have a pitch distance of 100mm. The
thermocoupl es positioned closeto theinlet are A3SB3C3, whilethose closeto the outlet
of the rig are A1B1C1. Thermocouple positions, A2B2C2 are thermocouples in the
middle of the serpentine heat exchanger. Thermocouples at D1 and D2 monitor PCM
temperature at the front and rear of the aluminum tray, where the copper pipes are not
present. The positioning of the thermocouples was based on the orientation from the
copper pipe. The flow of the HTF through the pipe and the heat transfer to the PCM

relates to the axial and radial term used for positioning of the thermocouples.

The experiment looked at comparing the PCM temperatures at the radial and axia
position of the thermocouples along the copper pipe. It aso looked at comparing the
temperature drop, charge rate and energy stored with the PHE result. In Chapter nine,
the results and discussion will be based on different inlet HTF temperatures (60, 65
and 70°C), different flow rates (7, 15 and 30g/s) regarded as low flow, medium flow
and high flow respectively, and, different position acrosstherig (axially and radialy).
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Figure 7:4: Position of thermocouples on the serpentinerig.

The copper tube coil arrangement is positioned at mid-depth of the PCM tray to ensure
the same amount or even distribution of PCM above and beneath it. The rig is well
insulated using polystyrene board, which has a thermal conductivity of 0.038W/mK.
The polystyrene board has a thickness of 100mm to prevent heat loss to the
surrounding. The Polystyrene board is placed above and beneath the Aluminium tray.
The entire SHE thermal store module was placed horizontally and supported by a
frame. Figure shows layout of the rig after being insulated. It shows the insulation
above and beneath the therma store module to prevent heat loss during the

experiment.
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During the experiment using the serpentine rig, there was a need to repeat al the
experiment because it was observed that the sample reading stopped after 25,000
samples, meaning no temperature was logged after the maximum sample value set as
25000. This caused an abrupt end to the data logging as soon as the maximum sample
is reached. The effect of this is that the experiment was still running, while data
logging has stopped. New experiment was done and the sample maximum increased
to 250,000 at a samplerate of 2 Hz.

Figure 7:5: Experimental rig after being insul ated.
Before the commencement of the experiment, the HTF was pumped through the entire
length of the copper pipes with the aid of the hot water bath, to check for leakages
along the soldered joints on the pipes. Also, the tray was filled with water to check for
leakages from the welding points of the Aluminium tray fabricated in the workshop.
Figure 7:6 shows the rig being tested for leaks.

Figure 7:6: Water |eakage test on Serpentinerig.

For the PCM, thermocouples are fixed at different length of the tank to monitor the
temperature of the PCM during charging and discharging. The mass flow rate is
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monitored by the Coriolis flow meter. The paraffin wax (RT 52) used was procured
from Rubitherm. The mass of PCM used was 28.5kg. Figure 7:7 showstherig filled
up with the PCM before commencement of the charging process.

HTF Outlet to thermal bhath

HTF inlef

Figure 7:7: PCM filled rig.

Figure 7:8 (@) shows the image of the rig with the paraffin amost fully melted. The
image shows the inlet and outlet of the rig, with the PCM on the inlet side almost
melted, while in comparison the outlet has more PCM to melt. Figure 7:8 (a) also
shows that the PCM around the serpentine melts faster, compared to regions without
the copper pipes. This foremost section of the rig relies on the heat transfer from the
aready melted PCM to commence or be fully melted. This shows the importance of
positioning the heat transfer pipes (copper pipes) for effective heat transfer. It takes a
longer time for PCM further from the pipes to melt. Figure 7:8(b) showsimage of the
rig after complete melting.
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(a) (b)

Figure 7:8: Image of the rig during charging.

The experiment is carried out in two modes,; charging and discharging. For the
charging mode; the initial state of the PCM was solid before the commencement of
the experiment, basically at room temperature. The experiment was done at different
inlet HTF temperatures and flow rates. The heat transfer fluid (HTF) was pumped with
the aid of the hot water bath through the copper pipes at a set temperature within the
range of 60-70°C.The experiment for the charging process was carried out at three
different inlet HTF temperatures; 60, 65 and 70°C. This was done at different flows;
low flow, medium flow and high flow. However for an inlet HTF of 60°C, only the
charging and discharging result for high flow is presented due to the length of time
required to charge the store at low and medium flow. As the water flows through the
copper pipes, heat transfer via conduction takes place in the PCM. The charging was
regarded as completed when al the PCM in the tray was fully melted. Temperature
readings are taken every minute with the aid of the temperature logger.

For the discharging mode; the temperature of the HTF is dropped to a temperature
below the melting point of RT 52. The HTF flows through the pipe to recover the heat
stored in the PCM. Discharging process is carried out at 30°C for all flows.
Temperature reading is also taken, until the entire PCM on therig is solidified.

Table 7:3 shows the description of the flow term, position of the valve and flow rate

at the aforementioned flows for the inlet, into the serpentine heat exchanger.
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Table 7:3: Description of flow in the serpentine heat exchanger

Position of valve Flow rate vaue (g/s)
High flow Fully opened 30
Medium Flow Half opening of the valve 15
Low flow Lowest possible opening 7

Reynolds number for a circular pipe is expressed using Equation 7.1;

Re=3\’—p?—h 71

Equation 7.2 to Equation 7.4 describes the relationship between the mass flow rate

and the hydraulic diameter for acircular pipe, with inner diameter, D.

m= PVA 7.2
2
A:”E 73

Thus substituting Equation 7.3 into Equation 7.2, velocity can be expressed as shown
in Equation 7.4.

4m

V= .
prD,

(D=D,) 7.4

Hence, substituting Equation 7.4 into Equation 7.1, Reynolds number can expressed
as shown in Equation 7.5 for a pipe.

4m
Mz D,
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The Reynolds number is calculated for each flow at different HTF temperatures. Thus
the viscosity of water at these temperatures is used in the Reynolds number
calculations. The specific heat capacity and viscosity at 60°C, 65 °C and 70°C are
obtained from tables. The calculation result for the Reynolds number is presented in
Table 7:5. The viscosity and specific heat capacity of heat transfer fluid is shown in
Table 7:4.

Table 7:4: Heat transfer fluid thermal properties
HTF Temperature  60°C 65°C 70°C

viscosity ( Ns/m?)  0.000467 0.000436 0.000404
Spexific heat 4185  4.187 4.19

capacity(kJ/kgK)

Hydraulic diameter, D, for acircular pipeis calculated using Equation 7.6 to
Equation 7.8;

D, =24 76

P

2
A =nr? = ”Z) (D=2r) 77
P=2zr =nD 7.8

Thus, Equation 7.9 gives the hydraulic diameter as;

% D?
X 5 7.9
% D

h =




The hydraulic diameter is substituted into Equation 7.5 to obtain the Reynolds

number.

Table 7:5: Reynolds number at different flow rate

Reynolds
Number
Inlet HTF Low flow Medium flow High flow
temperature
60°C 3043 6522 13043
65°C 3260 6985 13971
70°C 3518 7539 15077

The Reynolds number of the flow calculated based on Equation 7.5 through the pipe
determines what type of flow regime goes through the tubes. Table 7:6 shows the

regionsthat determinewhether aflow isturbulent, laminar or in thetransitional region.

Table 7:6: Flow regime for circular pipes

Laminar flow Re<2300
Transitional flow 2300<Re<4000
Turbulent flow Re>4000

Based on the cal culation of the Reynolds number, the flow through the serpentine tube
is transitional for low flow and turbulent for medium and high flow. The flows have
an increment of about twice the flow, from the low flow to the high flow.

7.3 Calibration of Thermocouples

The thermocouples used for this research are type-K chrome thermocouples. Thirteen
thermocouples were used on the rig, positioned at different location on the rig. All
thermocouples were calibrated with the aid of a platinum resistance temperature
device (RTD). The hot water bath in conjunction with the RTD and thermocouples
were used for the calibration. The water bath was heated gradually to a temperature
range of 11-70°C. All thermocouples were placed in the hot water bath as the
temperature was varied within the working range of the planned experiment. The
micro computing data logger was used to record the temperature data. Table 7:7
presents the results from the calibration.
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Table 7:7: Calibration of the thermocouples.

Platinum RTD reading (°C) 10.73 14.66 19.58 29.39 39.93 49.80 59.66 69.63
Inlet water Thermocouple(°C) 10.64 14.71 19.63 29.36 39.86 50.00 59.52 69.64
Outlet water Thermocouple (°C|  10.54 14.64 19.75 29.45 39.85 49.96 59.71 69.49
A1l Thermocouple (°C) 10.62 14.58 19.56 29.64 39.92 49.82 59.78 69.44
A2 Thermocouple (°C) 10.61 14.46 19.77 29.39 40.09 50.05 59.56 69.46
A3 Thermocouple (°C) 10.43 14.90 19.55 29.48 39.90 49.76 59.99 69.34
B1 Thermocouple (°C) 10.77 14.71 19.35 29.37 40.02 49.90 59.87 69.38
B2 Thermocouple (°C) 10.22 14.69 19.59 29.92 40.10 49.80 59.83 69.23
B3 Thermocouple (°C) 10.65 14.51 19.76 29.69 39.84 49.43 59.88 69.62
C1 Thermocouple (°C) 10.68 14.59 19.58 29.57 39.84 49.83 59.56 69.69
C2 Thermocouple (°C) 10.63 14.57 19.51 29.50 40.18 50.15 59.22 69.61
C3 Thermocouple (°C) 10.82 14.69 19.73 29.18 39.90 49.68 59.37 70.00
M aximum deviation(°C) 0.50 0.25 0.23 0.53 0.25 0.36 0.44 0.40

Each of the thermocouple result was plotted against the measurement of the Platinum
RTD and acalibration curve developed. A linear trend was applied to the plot of each
thermocouple reading against the RTD temperatures. The reading was adjusted
according to the result obtained from the curve and compared with the Platinum RTD
readings. The maximum deviation (0.53°C) of the thermocouple reading when
compared to the RTD was taken as the uncertainty of the thermocouple readings. A
linear fit was applied to the result for the different temperature points and R-squared
(R?) between the range of 0.998 and 1 was obtained. R-squared is a statistical measure
of how near the data points are to the fitted regression line. Figure 7:9 shows one of
the plots used for calibration, in particular, the inlet HTF thermocouple. The same

analysis was done for the remaining ten (10) thermocouples.
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Platinium RTD vs Inlet HTF Thermocouple
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Figure 7:9: Cdlibration curve for inlet HTF thermocouple.
74 Summary

This chapter discussed the serpentine heat exchanger (SHE) and the additional devices
used to carry out the experiment. A different logger (Picotech logger) from the
previous experiment with the plate heat exchanger is used. The USB 1616 replaced
the pico logger used in the previous experiment to record the temperature values. The
charging and discharging experiment are discussed in details, where the charging
processis carried out at three different inlet HTF temperatures (60, 65 and 70°C). The
experiment was also carried out at three different flow rates (7, 15, and 30 g/s), which
are expressed as low, medium and high flow. The discharging process was carried out
at a constant HTF inlet temperature of 30°C. Experiment with the SHE was carried
out using similar dimensions as the PHE .
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8 Experimental result from the PHE thermal store.

8.1 Charging experiment (PHE)

Experimental results from the charging and discharging of the thermal store made
from polypropylene using two different PCMs; RT 52 and RT 58 are presented in this
section. The results for RT52 are discussed in detail and the results compared to the
SHE thermal store comprising a serpentine heat exchanger with the same PCM. The
inlet and outlet heat transfer fluid temperature, phase change material temperatures at
the inlet and outlet of the rig are discussed in the experiment analysis. The result for
RT58 are presented first as this was the first PCM used in the polypropylene PHE test
rig before it was changed to RT 52, based on the phase change temperature and
application in domestic homes. For the RT 58, there was no variation of flow rate, but
the experiment was carried out at maximum opening of the valve and at an inlet
temperature of 65°C. Experimental results for RT 58 are discussed using Figure 8:1,
while experimenta results for RT 52 are discussed using Figure 8:5 to Figure 8:7.
Results are presented at different flow rate for the RT52 using plots of temperature

against time.

Experiment results for RT 58 are discussed using Figure 8:1 which describes the
temperature profile of the inlet and outlet HTF temperatures and PCM temperatures
for the charging process. The temperature profile of the inlet and outlet HTF
temperatures from the rig are studied and compared. Both profiles show similar
pattern, with the inlet HTF temperature having a higher temperature profile, when
compared to the HTF outlet temperature. The temperature drop of the heat exchanger
Islessthan 3°C, thisis because thereis an effective heat transfer between the HTF and
the PCM asit flows from inlet to the outlet of the heat exchanger. The PHE provides
good surface area contact between the PCM and the HTF, thus facilitating good heat
transfer. The conduction length is also shortened, because the PP sheet has avery thin
wall thickness. Figure 8:1 shows the temperature -time graph of the HTF and PCM
temperature at the inlet and outlet of the heat exchanger.
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PCM and HTF temperature profile (RT 58)
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Figure 8:1: Plot of experimental result for inlet and outlet HTF and PCM
temperatures.

Figure 8:1 showsthat at the start of the experiment, the PCM temperaturerisesdirectly
with time at the outlet zone and inlet zone. This region means the PCM is solid as
sensible heating is experienced as heat transfer occurs between the PCM and HTF. On
further heating, the PCM starts to melt, in the temperature region of 48-60°C; this
region is regarded as the latent heat zone. PCM temperature rises further after 60°C,
which means the entire PCM is fully melted. The more the PCM melts, the lesser the
temperature drops across the store (between the inlet and outlet HTF temperature).
The PCM behaviour on the rig during the charging process shows atransition of the
temperature profile expected for the RT 58,however the PCM temperature at the inlet
and outlet zone are different based on the positioning of the thermocouples on therig.

The experimental results for RT 58 were used for initial validation of the model.

The temperature drop using the PHE shows small variations between the inlet and
outlet HTF temperature. Table 8:1 and Figure 8:2 shows the trend of the charge rate
every half an hour from beginning to the end of the charging process. The results show

the store is charged within 2.5 hours.
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Table 8:1: Temperature drop and heating rate during the charging process.

Time(seconds) | Temperature drop(°C) | Heating rate(W)
900 1.69 459.72
1800 1.69 459.72
3600 0.81 220.34
7200 0.58 157.77
9140 0.40 108.81
Charge rate of the PHE store using RT 58
% 350
% 300
3
5 250
200
150
100 -
Time(seconds)
—— High flow (65 g/s)

Figure 8:2. Charge rate from experimental result.

The power density of the plate heat exchanger thermal store using RT 58 was
compared at different temperature difference. From Figure 8:3, it is observed that as
the temperature drop increases, the power density increases. The power density is

obtained by dividing the charge rate by the volume of the plate heat exchanger store.
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Power density against temperature drop
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Figure 8:3: Power density of the PHE store using RT 58.

8.2 Experimental result using RT 52 on the plate heat exchanger.

The phase change material (RT 58) was replaced with another PCM (RT 52) and this
PCM was used for the remaining part of the research for the plate heat exchanger and
the serpentine heat exchanger. Using the same design of rig (plate heat exchanger), a
new heat exchanger was made in the workshop for the RT52, with the same
dimensions used for the previous one (RT58). The phase change material, RT 52 was
filled onto therig. It was easy tofill it onto therig, because it came in spherical beads
from the manufacturers, Rubitherm compared to the RT 58, which came in blocks of
solidified PCM. RT 58 had to be cut into pieces and melted using the electric heater
mentioned in Chapter 6. The experiment using RT52 commenced with varying the
mass flow rate at a constant inlet HTF temperature of 60°C. The temperature profile
for each massflow rateisdiscussed for the charging process using Figure 8:6 to Figure

8:7, and for the discharging process, using Figure 8:10 to Figure 8:11.

8.2.1 Effect of varying massflow rate
The experiment was carried out by varying the flow rateinto therig. Thiswas achieved

by varying the position of the valve to obtain high flow (65g/s), medium flow (47g/s)
and low flow (35g/s) into the polypropylene rig (PHE), a a constant inlet HTF
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temperature of 60°C. All experiments commenced with the PCM at room temperature.
The experiment result in which the flow rate of the heat transfer fluid was varied and
compared to the experiment using the polypropylene rig. The inlet HTF temperature
at different flow ratesis described in Figure 8:5.

Table 8:2: Description of flow in the PHE.

Flow type Position of valve Flow rate value (g/s)
High flow Fully opened 65
Medium Flow Half opening of the valve 47
Low flow Lowest possible opening 35

Inlet side
Flow in
Inlet
) 0
Thermocouple
locators
o o
OQutlet thermocouple Flow out
2 Outlet side
a) Thermocouple position b) Z flow arrangement of PHE

Figure 8:4: Position of thermocouples on polypropylene sheet.

Figure 8:4 shows the position of the thermocouples on the rig. Thermocouples A and
B are the probe type thermocouples(1mm), while thermocouples C and D are steel
shim as described in Figure 6:3. The thermocouples at the inlet are A and C, while
thermocouples B and D are at the outlet of the rig. The thermocouple at point A
(located at a distance of 418mm from the inlet end of the rig, while the thermocouple
at B (located at adistance of 488mm from the outlet end of therig). Both thermocouple
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A and B are positioned along the channel flow path axis from the inlet to the outlet of

the rig. The probe type thermocouples A and B are positioned at a depth of 5mm into
the PCM.

Figure 8:5 (a-c) shows the temperature profile of the experiment during the charging
process using RT 52 at different flow rates (low(35g/s), medium(47g/s) and high
flow(65g/9)), it take alonger time for the PCM to melt at low flow compared with the
other two types of flow. The temperature drop of the HTF at low flow is more than at
medium and high flow before the PCM melts and even after the PCM is melted. The
temperature profile of the HTF and PCM follow similar pattern for the different flows,

though thereisadifferencein the temperature drop and the rate of melting of the PCM.

The PCM at the outlet zone of the thermal store meltsfaster in comparison to the PCM
at theinlet zonefor all the different flow rates used during the experiment. This result
is not expected and could be attributed to the depth at which the thermocouples are
located. Thermocouple at outlet (B and D) could be closer the PCM at the PP sheet
surface during melting. Also, the PP sheet experienced deformation in a wave pattern
as shown in Figure 6:12, this pattern is observed at the outlet side of the store. The
wax is thin wax at this thermocouple locations, which explains the reason why the
PCM temperature at the outlet end is higher than at theinlet end of the PHE.

PCM and HTF temperature profile( RT 52)
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PCM and HTF temperature profile (RT 52)
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(b) Medium flow (47g/s)

PCM and HTF temperature profile(RT 52)
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Figure 8:5: Charging process result for RT 52.

Comparing the temperature profile plots for each flow rates showing the HTF outlet
temperature, PCM inlet and outlet temperature against time, thereisasimilar trend for
all cases (65, 47 and 35 g/s).
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With reference to results from Figure 8:5 (a-c), which showsthereisavariationin the
temperature difference between the HTF outlet and PCM temperatures, it can be
observed that at higher flow rate of 65g/s, the temperatures are closer together, but at
alower flow rate of 35¢/s, they are farther apart. This can be based on the rate of heat
transfer that exists between the PCM and HTF's flow rate. The PCM inlet and PCM
outlet thermocouples are on the same axis on the plate heat exchanger during the
experiment, apictoria view isavailablein Figure 8:4. Figure 8:6 and Figure 8.7 shows
the temperature profile considering only the HTF inlet and outlet temperature

respectively.
HTF Inlet temperature
60
’.'“’ll¢‘l_)uw_.w~‘-h‘~*.ﬂw‘-(l.-
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EJ/ 54 ,’ .
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= 48 Ly
46
44
0 1000 2000 3000 4000 5000 6000 7000
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«= « HTFINLET(35G/S) = = =HTF INLET(47G/S) HTF INLET(65G/S)

Figure 8:6: Charging RT 52, HTF inlet temperature at different flow rate.

Figure 8:6 shows the temperature profile during the charging process at each flow rate.
The plot describesthe inlet HTF temperature into the rig over aperiod of time. Thisis
affected by the outlet HTF temperature from the rig based on the heat transfer between
the PCM and HTF along the path of the heat exchanger, from the inlet to the outlet of
the rig. The outlet HTF temperature is a'so changing based on heat transfer between
the PCM, fluid and heat exchanger as shown in Figure 8:7. From Figure 8:6, there is
anoticeable drop in temperature at the beginning of the experiment; this was because
of the presence of alower HTF temperature in the polypropylene channels before the

start of experiment. The temperature drop was further enhanced as heat transfer occurs
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between the PCM, which was at room temperature and the plate heat exchanger.
Figure 8:6 shows the temperature rises till the 2000™"second, and then a constant
temperature throughout the remaining part of the experiment as the thermal store
becomes thermally stable. The rise in temperature is as a result of heat gained as the
PCM starts to melt. Comparing the HTF inlet and outlet temperatures, it can be
observed that they both exhibit similar temperatures after 2000 seconds. The
temperature-time plot at different flow rates for the HTF inlet are close but for the
HTF outlet; there is anoticeable difference in the temperature profile for the different

flow rates.

Figure 8:7 shows the result obtained for the heat transfer fluid outlet temperature
during the charging process of the PCM at different flow rate. The plot shows that the
temperature-time for the three different flow ratesfollow asimilar trend, with the flow
rate of 35g/s (low flow) having the lowest temperature amongst the three flow rates
temperature profile. The experiment was carried out at an inlet HTF temperature of
60°C. Theeffect of the heat transfer between the phase change material, polypropylene
heat exchanger and heat transfer fluid can be seen on the temperature profile at the
outlet of the rig. It is observed that the flow rate has little effect on the outlet HTF
temperature from the rig. The result shows that at alower flow rate of 35 g/s, thereis
bigger temperature drop dueto longer residencetime. Smaller temperature drops occur
at medium and full flow when compared to low flow as shown in Table 8:3 to Table
8:5. Heat transfer is dominated by conduction through the PCM, so flow rate hasllittle
effect on hest transfer.
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Comparing HTF outlet temperatures at different flow rates.
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Figure 8:7: Charging RT 52, HTF outlet temperature at different flow rate.

With reference to the charge rate at different flow rate (low, medium and high flow)
the power density of the PHE thermal store using the RT 52 was compared at different
temperature difference. As shown in Figure 8:8, it is observed that as the temperature
difference increases, the power density increases. Also the power density at high flow
islarger when compared to the low and medium flow. It was observed that the power
density at high flow for the experiment using RT 52 and RT 58, shows that the store’s
power density using RT 52 is higher than the store' s power density using RT 58. This
can be attributed to the latent heat of RT 52 being higher than RT 58 and a higher
temperature difference(dT) using RT 52.
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Power density of the PHE store at different flow
8000

T000

~ 6000 A
= 5000
ES
Z 4000
= 3000 =
AE S [
= 2000 i
pe
1000
0
0 0.5 1 1.5 2 25 3 35
Temperature drop (°C)
~o—Low Flow —e—Medium flow High flow

Figure 8:8: Power density at different flow rates using RT 52.

8.3 Discharging Experiment (PHE)

The discharging result for the RT58 is discussed first. The experiment using RT 58
was carried out without provision for varying the flow rate. For subsequent
experiments using RT 52, the rig was modified by installing avalve, which allowsthe
flow rateto be varied, varying the flow rate at three different flows; low, medium and
high flows. The result for the discharge process from the experiment using RT 58 is
presented in Figure 8:9. The temperature profile for the discharge process shows a
spike at 2000 seconds for the HTF outlet temperature; this could be attributed to error
in the thermocoupl e reading at that time. Comparing the PCM temperature (inlet and
outlet) and HTF temperature (inlet and outlet) during the discharge process, it can be
seen that the spike in temperature occurs at the same point or time the PCM reaches
its phase change temperature (58°C). This can be attributed to latent heat release
during solidification. During the discharging process, heat isgained by theHTF. There
Is a similar occurrence with RT 52 during discharging where the spike in HTF
temperature occurs at the point RT 52 reaches its phase change temperature (52°C)
during discharging. The melting or solidification temperature of each PCM (RT 52
and RT 58) is the point at which the latent heat is released as the PCM melts or
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solidifies. However, after release of its latent heat, it shows a similar pattern with the
HTF inlet temperature afterwards. Also, the PCM temperatures at the inlet and outlet
zone of the PHE were also monitored as shown in Figure 8:9. During discharging, it
shows that the PCM at the inlet zone has a higher temperature when compared to the
PCM at the outlet zone. There was a drop in temperature, and then it plateaued and
drops further with time as the rig is discharged at 20°C. The experiment using RT 58
was the first experiment done on the rig before modifications were made to study its
behaviour at different flows as well as change the PCM to RT 52.

Discharge Process (RT58) Discharge Process{RT58)

Temperature“C)

0 1000 2000 3000 4000 SM0 GO OO0 BOOO %000 100
0 100 MO0 MO0 400 000 eM0D OO B0 WOD 100D

Time{seconds)

—HTFTaket —HTF Ouilet wevos PCMUTEMPAINLET) oo FOM TEMP(OUTLET)

Time{seconds)

Figure 8:9: Discharge process result using RT 58.

8.3.1 Effect of varying massflow rate.
Discharge process using RT 52 was done at the same flow rate as the charging process

for each flow rate. The discharge process was done at different heat transfer fluid
temperatures. Discharge process commences immediately the entire PCM on the heat
exchanger is totally melted. The discharge of the thermal store ends when the entire
PCM is solidified. The discharging process for the three flow rates were done at
different temperature. The store was discharged at different HTF temperatures. For the
flow rate of 47¢g/s, the thermal store was discharged at a temperature of 47°C, while
for the flow rate of 35g/s it was discharged at a temperature of 40°C. The high flow
(65g/s) was discharged without the use of the hot water bath. This effect was
noticeable by the temperature of the PCM during discharging.
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PCM Temperatureat inlet of thethermal store
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Figure 8:10: Discharging RT 52, PCM temperature at inlet of therig at different flow
rate.

Figure 8:10 shows the temperature profile for the phase change materia situated at the
inlet end of therig, where athermocoupl e positioned in that |ocation takes temperature
measurement. The temperature profile shows that the PCM temperature drops rapidly
at flow rates of 65¢/s and 47 g/s, however at lower flow rate of 35¢g/s, the store
maintains a temperature of about 38°C. The rapid drop in the PCM temperature for
medium and high flow could be as aresult of the discharge temperature being different

for each flow rate.
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PCM temperature at Outlet of the thermal store
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Figure 8:11: Discharging RT 52, PCM temperature at outlet of therig at different
flow rate.

Figure 8:11 showsthe temperature profile for the phase change materia situated at the
outlet end of the rig. Figure 8:10 and Figure 8:11 shows that at the end of the
experiment, the temperature of the PCM at aflow rate of 35¢/sis higher than at 65g/s
and 47g/s at the end of the experiment. However, the temperature at the PCM was
consistently higher throughout the duration of the discharging process at a higher flow
rate of 65g/s, when compared to the flow rate of 47g/s and 35¢/s. The temperature of
the PCM starts to drop at the end of the experiment due to the discharging inlet

temperature into therig.

The results from the experiment were used in a model. The model was written in
MATLAB to optimize the thermal store in such away that the flow rate, thickness of
PCM, PCM thermal properties and size of the channels can be varied. Theaim isto
study the response of the store to the changes, which in turn determines the right
parameters for the thermal store that would give the best thermal performance. The

experiment is also used to validate the model result where the inlet temperature from
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the experiment is used to predict the heat transfer fluid temperature at the outlet of the
rg.

The heating or charge rate was calculated from the experimental results at different
flow rates. Table 8:3 to Table 8:5 shows the values of the heating rate from different

flow rates. The results show that the heating rate is higher at high flow rate compared
to the other two flow rates.

Table 8:3: Temperature drop and heating rates (low flow).

Time(seconds) | Temperature drop (°C) | Heating rate(W)
900 3.43 502.41
1800 2.86 418.92
3600 1.70 249.01
7200 1.25 183.09
9800 0.91 133.29
14400 0.85 124.50
18000 0.83 121.57
21600 0.77 112.79

Table 8:4: Temperature drop and heating rates (medium flow).

Time(seconds) | Temperature drop (°C) | Heating rate(W)
900 2.42 476.00
1800 2.04 401.26
3600 1.23 241.93
7200 0.73 143.59
9800 0.63 123.92
14400 0.60 118.02
18000 0.52 102.28
21600 0.52 102.28

Table 8:5: Temperature drop and heating rates (high flow).

Time(seconds) | Temperature drop (°C) | Heating rate(W)
900 2.08 565.81
1800 1.62 440.68
3600 1.05 285.63
7200 0.54 146.89
9800 0.48 130.57
14400 0.47 127.85
18000 0.45 122.41
21600 0.42 114.25
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Figure 8:12 shows the relationship between the charge rate and mass flow rate of the
store. It showsthat at the start of the charge process, the higher the mass flow rate, the
higher the chargerate. Generally for al flow rates, asthe temperature gradient reduces,
the effect of mass flow rate becomes negligible as the PCM melts. The result shows
that the charge rate of the low flow is higher than the medium flow, which is not
expected. The closeness of the low and medium flow could account for this behaviour.
The difference between the flow ratesis close (47-35=12¢g/s). Figure 8:12 shows that
the charge rate stays at 100W, this can be attributed to heat 1oss to the ambient viathe
celotex insulation placed at the bottom and top of the PHE store.

Charge rate of the PHE thermal store using RT 52
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Figure 8:12: Charging rate of the store using RT 52

Figure 8:13 (a-c) shows the temperature profile for both the HTF and PCM during the
discharging process at different flow rates. The store was discharged at different
temperature; for the low flow (38°C), medium flow (47°C) and for Figure 8:13(c ),
the store was allowed to discharge without use of the hot water bath. At low flow,
there is a fluctuation in both the inlet and outlet HTF; this can be attributed to the
interchange from the charging to the discharging process. A similar pattern is evident
in medium flow, where the processis being stabilised after changing temperature from
60°C to the discharging temperature of 47°C.
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Figure 8:13(c), shows that it is evident that it will take a long time for the PCM to
solidify as there is no flow through the channels to facilitate heat transfer quicker on
the rig. The temperature difference between the PCM and HTF is huge.
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Figure 8:13: Temperature profile for the discharge process at different flows.

Table 8:6 and Table 8:7 shows a summary of the temperature drop and cooling rate
(Watts) at specified periods. The temperature drops for the low flow result are higher
than that for the medium flow at the same time, though the thermal storeis discharged
at different inlet HTF; 40°C and 46°C respectively. The results show that as the flow

rate increases, the temperature drop decreases.

Table 8:6: Temperature drop and cooling rate(Low flow)

Time(seconds) | Temperature drop | Cooling rate(W)
900 1.05°C 153.58
1800 0.65°C 95.07
3600 0.40°C 58.51
7200 0.02°C 2.93

Table 8:7: Temperature drop and cooling rate(Medium flow)

Time(seconds) Temperature drop | Cooling rate(W)
900 0.39°C 76.60
1800 0.33°C 64.82
3600 0.22°C 43.21
7200 0.00°C 0.00
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84 Summary

Plate heat exchanger was used in the experiment using two different PCMs, RT 58 and
RT 52. Thiswasto facilitate and compare experimental and modelling results. Results
obtained from the experiments shows that the use of this type of modular design of a
plate heat exchanger could be beneficial and suitable for domestic application in
conjunction with the heat pump. Three different flow rates (low, medium and high)
were studied from the experiment and the effect on the heat transfer of the store. The
experimental results for the charging and discharging processes show that the flow
rate has little effect on the heat transfer during charging and discharging. Increasing
the Inlet temperature of the HTF improves heat transfer. Also the power density of the
plate heat exchanger thermal store increases with increase in temperature difference.
The effect of varying the flow rate of the PHE store using RT 52 shows that the power
density increases with increase in flow. The next chapter(Chapter 9) will look at the
experimental result obtained by varying the inlet HTF temperature and flow rate to
study the effect it has on adifferent kind of heat exchanger; serpentine heat exchanger.
Chapter 10 focuses on the numerical model of the PHE store, where the experimental
result for charging and discharging are validated.
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9 Resultsfrom serpentine heat exchanger experiment.

9.1 Design of flow in serpentine heat exchanger

The result obtained from the experiment using the serpentine heat exchanger is
discussed for both charging and discharging process. Similar flow terms as the plate
heat exchanger are used; there are three flow terms, high flow, medium flow and low
flow. Theflow istermed “high flow” when the valve is fully opened; “medium flow”
is aflow in the intermediate while “low flow” is the lowest possible flow allowable

for therig to operate.

The Reynolds number was calculated for each flow at different HTF temperatures.
The viscosity of water at these temperatures was used in the Reynolds number
calculations. Theresult of the calculation of the Reynolds number ispresented in Table
9.1

Table 9:1: Reynolds number at different flow rate and inlet HTF temperature.

Reynolds
Number
Inlet HTF Low flow Medium High
temperature
60°C 3043 6522 13043
65°C 3260 6985 13971
70°C 3518 7539 15077

Based on the Reynolds number cal culations, the medium and high flows are regarded
asturbulent flow, whilethelow flow isatransition flow. The Nusselt number and heat
transfer coefficient can be determined based on Nusselt correlation. The heat transfer
coefficient is calculated using Equation 9.1 and Equation 9.2.

Nu:h—Eh 9.1
C
pr:%‘ 9.2



The Dittus-Boelter Nusselt Correlation (Equation 9.3) was used for the turbulent flow
while Gnielinski correlation (Equation 9.4 and Equation 9.5) used for the low flow,
becauseit fallswithin the transition flow regime. Cengel and Ghajar (2011) stated that
the Gnielinski correlation could be used as rough estimates of the friction factor and
heat transfer coefficient in the transition region. Kakag et al. (1987) mentioned that,
based on the range of the Reynolds numbers and Prandtl number, that the Nusselt
correlation by Gnielinski could be used in the fully developed transition region. It is
assumed the copper pipe used for the SHE are smooth pipes; thus friction factor (f)
based on Gnielinski correlation was applied.

Nu = 0.023Re”® Pr"™  (n*=0.4 for heating) 9.3
(n* = 0.3 for cooling) '

For the Dittus-Boleter correlation to be used The following conditions needs to be met;

Reynolds number should be greater than or equal to 10000(Re>10000) and the

Prandtl number should bein the range of; 0.7 < Pr<160.

Gnielinski correlation is expressed as shown in Equation 9.4. Equation 9.5 is used to
calculate the friction factor (f) based on the assumption that the serpentine pipe is
smooth. The Reynolds number and Prandtl number should be in the range of
3x10°<Re<5x10° and 0.5< Pr <2000 respectively for the Gnielinski correlation to
be used.

(;j (Re-1000) Pr
Nu: f E . 94
2 3
1+12.7(j (Pr —1J
8
f =(0.790InRe-1.64) 9.5

The results of the calculation are presented using Table 9:2 to Table 9:4. Both
correlations were used to calculate the Nusselt number and heat transfer coefficient

for the transition flow.
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Table 9:2: Gnielinski correlation result (Low flow)

Gnielinski correlation |Gnielinski correlation
Flow type|Temperature(°C) |Prandtl Number|Frictional coefficient(f) Nusselt Number h(W/mzK)
Low 65 2.77 0.04 18.01 1892.76
Low 70 2.55 0.04 19.12 2022.18

Table 9:3: Dittus-Boelter correlation result (Low flow)

Dittus-Boetler correlation |Dittus-Boetler correlation
Flow type|Temperature(°C) [Prandtl Number, Nusselt Number h(W/m°K)
Low 65 2.77 22.35 2349.21
Low 70 2.55 22.99 2431.33

Table 9:4: Dittus-Boelter correlation result (Medium and high flow).

Flow type | Temperature(°C) |Prandtl Number [ Nusselt Number (Nu) h(W/m?K)
High 60 2.99 69.86 7286.41
High 65 2.77 71.60 7525.40
High 70 2.55 73.66 7788.58

M edium 65 2.77 41.12 4321.96

M edium 70 2.55 42.31 4473.60

Figure 9:1 shows the relationship between the Reynolds number and Nusselt number
from the SHE experiment using both correlations. It shows that as the Reynolds
number increases, so does the Nusselt number. Based on Equation 9.1, the Nusselt
number is directly proportional to the heat transfer coefficient, thus as the Nusselt
number increases, so does the heat transfer coefficient. The higher the Nusselt number
or heat transfer coefficient, the more the dominance of convection in the heat transfer.
Based on caculations considering the Dittus-Boelter and Gnielinski correlation,
Figure 9:1 shows that there is deviation in the Nusselt number considering each
correlation. The results show that at lower flow (Re<9000), the Nusselt number is
overestimated if Dittus-Boelter correlation is used. However at higher flow
(Re>9000), the Nusselt number is underestimated. From the calculation of the Nusselt
number and heat transfer coefficient using Gnielinski and Dittus-Boelter correlation
for the transition flow as shown in Table 9:2 and Table 9:3, it was observed that there
isapercentage difference of 21.52% and 18.37% at 65°C and 70°C fluid temperatures
respectively. This difference is significant, thus it is important to use the appropriate
correlation for each flow regime. Table 9:4 shows the result obtained for the medium

and high flow using Dittus-Boleter correlation. It was observed that the heat transfer
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coefficient at the same inlet HTF temperature, but different flow rate differs. Heat

transfer coefficient is higher at high flow when compared to the medium flow.

Nusselt number vs Reynolds number
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Figure 9:1: Plot of Nusselt number and Reynolds number.

9.2 Charging experiment (SHE).

The charging process is discussed based on the temperature drop, charge rate and
amount of energy given by the HTF during charging. Figure E1 to Figure E7 shows
the temperature drop that occurs over time, as aresult of the heat transfer between the
PCM and HTF flowing through the copper pipes. Appendix G shows the room
temperature at which each experiment was carried out. The temperature drop is the
difference between the inlet HTF temperature and the outlet HTF temperature. The
discussion of the charging process is based on the effect of varying flow rates (low,
medium and high flow), inlet HTF temperatures (60, 65 and 70°C) and comparing the
temperature drop between theinlet HTF and outlet HTF temperature. The storeisfully
charged when the PCM temperatures exceeds its melting temperature of 52°C. This
was observed from the temperature readings of the nine thermocouples located at Al
to C3, which measured the PCM temperature on therig.

9.2.1 Effect of varying massflow rate.
For this research, the mass flow rate was changed thrice by changing the valve's

positions; to obtain high (30g/s), medium (15g¢/s), and low flow (7g/s). Thisisto study
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the effect of the mass flow rate on the thermal behaviour of the PCM on therig and its
rate of melting as the HTF flows through the copper pipe. The temperature drop
throughout the charging process is described using Figure E1 to Figure E7 and Table
9:6. Low and medium flows were charged at two different inlet HTF temperatures; 65
and 70°C. Resultsfor high flow involve three different inlet HTF temperatures (60, 65
and 70°C). Table 9:5 shows an overview of the mass flow rate and inlet HTF
temperatures used for the charging process.

Table 9:5: Overview of charging process

Flow type Flow rate vaue (g/s) Inlet HTF temperatures
Low flow 7 65 and 70°C
Medium Flow 15 65 and 70°C
High flow 30 60,65 and 70°C

The concept of using an inlet heat transfer temperature of 60°C was discontinued at
lower flow rates (15¢/s and 7g/s), because the time of melting resulted into long hours
of constant charging for the store to be fully charged. As the concept is to melt the
PCM quickly and recover the energy at alower cost of electricity, experimentsat HTF
inlet temperature of 60°C were discontinued for low and medium flows. The
temperature difference between the phase change temperature and the inlet HTF at
60°C is about 8°C (60-52=8°C), which could have accounted for the long melting
time. Heat loss could also be a contributing factor to the lengthy charging time.
Experiment at inlet HTF temperature of 60°C was only done with the valve fully
opened (high flow).

9.2.2 Temperaturedrop during charging process.
Figure E1 to Figure E2 shows the temperature drop that occurs at a flow rate of 7g/s

(low flow) for two different inlet HTF temperatures (65°C and 70°C). The temperature
drop at inlet HTF temperature of 70°C ismore than at inlet HTF temperature of 65°C.
Both figures show a similar pattern in the temperature-time graph; where thereis an
initial huge temperature difference and as the PCM melts, the temperature drop
reduces towards the end of the experiment. Figure E2 shows that the melting timeis

shorter for an inlet HTF temperature of 70°C when compared to Figure E1 for aninlet
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HTF temperature of 65°C at the same flow rate. This is due to the time it takes the
PCM to attain its melting temperature as shown in Figure 9:15, Figure E18 and Figure
E19 for inlet HTF temperature of 65°C and Figure 9:16, Figure E20 and Figure E21
for inlet HTF temperature of 70°C .

The temperature profiles (Figure E1 to Figure E7) shows that the temperature drop at
the start of the experiment is larger than at the end of the experiment. This can be
attributed to the fact that at the beginning of the experiment, the PCM starts to melt
gradualy as the hot fluid flows through the copper pipes. Once the PCM starts to
change phase (from solid to liquid), the HTF loses more heat to the PCM, hence the
difference in the temperature drop at the start and end of the experiment. It is aso
noticeable at inlet HTF temperature of 60°C and 65°C, the temperature drop at the end
is much smaller when compared to inlet HTF temperature of 70°C.It is observed that
as the temperature of the PCM increases, the temperature difference between the inlet

HTF and outlet HTF decreases for all experiment at this flow.

Rate of melting was faster at higher inlet HTF temperature. The greater the
temperature difference between the PCM melting temperature and inlet HTF
temperature, the faster it takes the PCM to melt. Table 9:6 shows the change of

temperature drop at different times during the charging process.

Table 9:6: Overview of the temperature drop for the charge process.

L ow Flow

Charging 3600sec. | 10000sec. | 20000sec. | 300000sec. | 40000sec.
temperature (2hour) | (2.7hours) (5.6hours) (8.3hours) | (11.1hours)
65°C 10.66°C | 8.33°C 6.08°C 5.70°C 5.26°C
70°C 12.58°C | 10.62°C 10.11°C 10.03°C 8.91°C

Medium Flow
Charging 3600sec. | 10000sec. | 20000sec. | 250000sec.
temperature (2hour) | (2.7hours) (5.6hours) (6.9hours)
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65°C 4.32°C 4.49°C 3.77°C 1.28°C
70°C 6.29°C | 6.12°C 4.32°C 3.75°C
High Flow

Charging 3600sec. | 10000sec. 20000sec. 30000sec.
temperature | poury | 27hours) | (5.6hours) | (8.3hours)
60°C 1.85°C 1.61°C 1.55°C 1.40°C
65°C 2.52°C 2.59°C 2.20°C 1.75°C
70°C 3.68°C | 3.51°C 2.84°C Fully melted

From Table 9:6, the highest inlet HTF temperature, 70°C possess the highest
temperature drop, when compared to that at 60°C and 65°C at different flow rates. The
charging time is affected by the inlet HTF temperature. The higher the inlet HTF
temperatures, the quicker the charging time. For example, at flow rate of 30g/s, the
charging time is longer for inlet HTF temperature of 60°C when compared to the
charging time at 65°C and 70°C. Figure E5 shows the charging time to be 79,200
seconds (22 hours); this was due to the time it took for the store to be fully charged as
shown in the PCM temperatures in Figure 9:10, Figure E8 and Figure E9. Figure E6
shows the charging time for an inlet HTF temperature of 65°C to be 39,600 seconds
(11 hours) based on the PCM temperature on Figure 9:11, Figure E10 and Figure E11.
Figure E6 shows the charging time for the highest inlet HTF temperature, 70°C to be
21,600 seconds (6 hours), sincethe PCM temperature melts quicker as shown in Figure
9:12, Figure E12 and Figure E13. For low flow, the charging time for inlet HTF
temperature of 65°C is 79,200 seconds (22 hours) based on the PCM temperature as
shown in Figure 9:15, Figure E18 and Figure E19. The charging time at the same flow
rate for inlet HTF temperature of 70°C is 50,400 seconds (14 hours). The PCM
temperatures are presented in Figure 9:16, Figure E20 and Figure E21. The charging
timefor inlet HTF temperature of 65°C and 70°C at flow rate of 15¢/s (medium flow)
are twenty-two and seven (7) hours respectively. Figure 9:13, Figure E14, Figure E15
and Figure 9:14, Figure E16 and Figure E17 showsthe PCM temperature for each inlet
HTF temperature. Based on the charging time to melt the PCM, it shows that the rate

121




of melting is higher at higher inlet HTF temperature. Also, the temperature difference

between the inlet and outlet HTF temperature at high flow is smaller when compared
to low and medium flow.

Figure 9:2 and Figure 9:3 are used to compare outlet HTF temperature profile at same
inlet HTF temperature, but different flow rate. The experimental result of the outlet
HTF temperature from Figure E1 to Figure E7 are compared using Figure 9:2 and
Figure 9:3 for two different inlet HTF temperatures (65°C and 70°C) at varying mass
flow rate. It shows that the highest outlet HTF temperature is at high flow, whilst the
least outlet HTF temperature is obtained at low flow for both cases.

Outlet temperature at charging temperature of 65°C(different flow rates)
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Figure 9:2: Outlet HTF temperature at different flow rate (inlet HTF 65°C).
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Figure 9:3: Outlet HTF temperature at different flow rate (inlet HTF 70°C).
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9.2.3 Effect of thevaryinginlet HTF temperature and flow rate on the
chargerate and energy.
Varying the HTF inlet temperature has a corresponding effect on the HTF outlet

temperature, charge rate and amount of energy stored as the fluid flows through the
serpentine rig. The heat transfer via conduction between the HTF within the copper
pipesand the PCM caused the temperature change acrosstherig. Figure 9:4 and Figure
9:5 shows that the charge rate of the SHE at different flow rate for inlet HTF
temperatures of 65°C and 70°C respectively. It shows that at the start of the charging
process, the higher the mass flow rate, the higher the charge rate. However, as the
charging process continued, the thermal gradient between the PCM and the HTF
reduces and the effect of the mass flow rate becomes negligible. This effect is
noticeable more at inlet HTF temperature of 65°C compared to inlet HTF temperature
of 70°C. The charge rate at inlet HTF temperature of 70°C is higher than at an inlet
HTF temperature of 65°C, as shown on Figure 9:4 and Figure 9:5.

Charge rate at different flow rates . Inlet HTF temperature (65°C)

1000

900

800

700

600

500

400

Charge rate (Watt)

300

200

100

0 10000 20000 30000 40000 50000 60000 70000 80000
Time (seconds)

Low flow Medium flow =—High flow

Figure 9:4: Charge rate at inlet HTF temperature of 65°C
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Charge rate at different flow rates. Inlet HTF temperature (70°C)
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Figure 9:5: Charge rate at inlet HTF temperature of 70°C
Figure 9:6 to Figure 9:8 shows the effect of varying the HTF inlet temperature on the
charge rate of the store. The length of time to charge the thermal store is different for
each inlet HTF temperature. Figure 9:8 shows a shorter charging time during the
charging process at inlet HTF temperature of 70°C when compared to results at inlet
HTF temperature of 60°C and 65°C.

For the charge rate at low flow, medium flow and high flow, shown in Figure 9:6,
Figure 9:7 and Figure 9:8 respectively, the charge rate increases as the inlet HTF
temperature increases. The charge rate at inlet HTF temperature of 70°C is greater
than at an inlet HTF temperature of 60°C and 65°C. The results show that the inlet
HTF temperature variation has a significant effect on the charging process. Overall
the higher the mass flow rate and inlet HTF temperature, the higher the charge rate as

shown in the aforementioned figures.
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Charge rate at different inlet HTF temperature (low flow)
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Figure 9:6: Charge rate at different HTF temperature (Low flow).

Charge rate at different HTF temperature(Medium flow)

1000

9200

800

700

600

500

400

Charge rate(Watt)

300

200

100

0 10000 20000 30000 40000 50000 60000 70000 80000
Time(seconds)

—  65°C — 70°C

Figure 9:7: Charge rate at diffeent HTF temperature (Medium flow).
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Charge rate at different inlet HTF temperature (High Flow)
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Figure 9:8: Charge rate at different inlet HTF temperature(High flow).
Figure 9:9 shows the amount of energy stored at high flow, when the store is charged
at threedifferent inlet HTF temperatures, 60°C, 65°C and 70°C. The amount of energy
stored during the charging process at high flow shows that the higher the inlet HTF
temperature, the higher the amount of energy stored. The results show that increasing
theinlet HTF temperature, the time need to charge the store decreases. This is useful
for determining the temperature at which the store can be charged within off peak

electricity time.
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Amount of Energy at different inlet HTF temperature (High flow)
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Figure 9:9: Amount of energy stored at different inlet HTF temeprature.

9.2.4 PCM temperature acrosstherig during the charge process.
Based on the result from the experiment using the serpentine heat exchanger, the phase

change temperature across the rig was monitored using thermocouples positioned at
different locations. The design of the rig and layout of how the thermocouples are
positioned is presented in Figure 7:4. Figure 7:4 shows that the melting commences at
theinlet side of the serpentine heat exchanger, as this has the highest temperature from
the hot water bath. The thermal behavior of the PCM isdiscussed asit affectsthe HTF
temperature during the experiment. The PCM temperature was monitored during
charging and discharging process.Figure 9:10 to Figure 9:16 describes the thermal
behavior of the PCM as the HTF flows through the copper pipes during the charging
process. Also, the result from the experiment is discussed using Figures E1 to Figures
E21 in Appendix E. The PCM temperatures at thermocouple positions; A2B2C2 and
C1C2C3 are discussed in detail as well as references made to the figures in Appendix
E.

Figure 9:10 to Figure 9:12 and Figure E8 to Figure E13 in Appendix E describes the
PCM temperatures at high flow for different charging temperatures; 60°C, 65°C and
70°C. Figure 9:10 shows that the charging time at inlet HTF temperature of 60°C has
thelongest charging time, while Figure 9:12 shows that the charging timeat inlet HTF
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of 70°C is the shortest. Figure 9:11 shows the charging time at inlet HTF of 65°C is
an intermediary between the aforementioned inlet HTFs. The PCM temperature at
position C3 rises fastest when compared to A3 and B3 (see Figure E9, Figure E11 and
Figure E13). This is unexpected, as A3 is expected to be the point with the highest
temperature as result of its position, being the first point of heat transfer within therig.
However C3 has the highest temperature considering the pipe orientation (axialy).
This could be attributed to the position of the thermocouple into the PCM from the top
of thethermal store. PCM at position A2B2C2 shownin Figure 9:11 exhibit adifferent
trend as the thermocouples B2 and C2 have the highest temperature; although thereis
a small temperature change as the temperature of the PCM rises over time. PCM at
A1B1C1 show a similar trend to the PCM at A3B3C3.The PCM temperature at C1
has the highest temperature when compared to B1 and A1 (See Figure E9).

PCM Temperatute C1C2C3 at inlet HTF 60°C(High flow) PCM Temperature AZB2C2 at inlet HTF 60°C(High flow)

= &
=

<)
%=
= = L~ =

Temperature(®C)

=

Cl ==(l ==(} e

0 200 Ao 6000 o0 0 0000 4000 000 80000
Time{seconds) Time(seconds)

Figure 9:10: PCM temperature at radial (C1C2C3) and axial points (A2B2C2) at 60°C
(high flow).

With reference to Figure 9:10, the radial effect of the heat transfer from the HTF to
the pipe to the PCM outwardly, shows that the PCM at thermocouple position, C3 got
completely melted before C1 and C2. This can be attributed to the position of the
thermocouples at C1, C2, and C3 close to the inlet of the rig. The PCM close to the
inlet has a higher temperature than other points as the PCM starts to melt within the
rig. Radial positions, A1A2A3, B1B2B3 (see Figure E8) shows adifferent temperature
trend, where the thermocouples located at the middle of therig (B2, A2), PCM at this
location behaves differently to the PCM s from the region of C1C2C3, result showsthe
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PCM temperature at A2 and B2 are greater than other radial pointsaround it. Thiscan
be attributed to heat loss from edges of the tray due to the location of the PCM as

shown in position of the thermocouple on the SHE(see Figure 7:4).

It is noticeable from Figure E8, that it takes alonger time for the PCM at A1-A3 and
B1-B3 to reach its melting point of 52°C. The results show that having run the
experiment for 80,000seconds (22hours), the entire PCM intheregion A1-A3 and B1-
B3 are not completely melted for the case of charging the store at 60°C (high flow).

Charging the thermal store at 65°C (high flow) as shown in Figure 9:11 shows that the
PCM temperature profile is similar to the profile at C1-C3 (see Figure 9:10) for
charging at 60°C. The result for charging the store at 65°C shows that PCM
temperature at C3>C2>C1. Theresult also showsthat the PCM temperature at A2 and
B2 starts off being of a higher temperature than other radia points. The PCM melts
faster while charging the store at 65°C than at 60°C. Figure 9:11 shows that all the
PCM at the radia points; C1C2C3 and axia point; A2B2C2 respectively are fully
melted with C3 and C2, the quickest to be melted. The PCM temperature along the
path of the HTF flow (axially) shows that A1, A2, A3 have the lowest temperature
profile (see Appendix E). From Figure 9:11, Figure E10 and Figure E11, it is
noticeable that the PCM temperature at A1B1C1, A2B2C2, A3B3C3, rises in the
following sequence; C3>B3>A3; C2>B2>A2 but for the PCM temperature at
A1B1C1, it shows that the thermocouple at C1 rises rapidly but afterward plateaued.
The PCM temperature at A3B3C3 has the highest temperature point as C3, followed
by B3 and A3. Figure 9:11 shows that the PCM temperature at A2B2C2, B2 has the
highest temperature, while the other points (A2 and C2) are closely packed with

regards to temperature difference.

The results show that there are changes in the pattern at which the PCM temperature
increases for al flows at different charging temperatures of 60°C, 65°C and 70°C.
Considering the axial positions, where the thermocouples are positioned, to measure
the PCM temperature; Figures E9, E11, E13, E15.E17, E19 and E21 from Appendix
E shows that the PCM temperature at this thermocouple positions A3B3C3 for al
three flows (low, medium and high), follow this sequence; C3>B3>A3.
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PCM Temperature CLCIC3 at et HTF 63°C(High flow) PCM Temperature A2B2C2 at inlet HTF 65°C(High flow)
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Figure 9:11: PCM temperature at radial (C1C2C3) and axial points (A2B2C2) at 65°C
(high flow).

Figure 9:12 shows that the PCM has fully melted at 20,000seconds for charging the
storeat 70°C. The melting time for charging the store at 65°C as shown in Figure 9:11
was at 40,000seconds, while the longest charging time (80,000seconds) as shown in
Figure 9:10 was at charging the store at 60°C. This shows that for high flow, the time
of melting isincreased, as the inlet HTF temperature decreases.

PCM Temperature C1C2C3 at inlet HTF 70°C(High flow) PCM Temperature A2B2C2 at inlet HTF 70°C(High flow)
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Figure 9:12: PCM temperature at radial (C1C2C3) and axial (A2B2C2) points at
70°C (high flow).
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Figure 9:13 to Figure 9:14 and Figure E14 to Figure E17 in Appendix E, shows the
experimental result from the medium flow when the storeis charged at 65°C and 70°C,
the charging time are 80000 and 25000seconds respectively. Based on this result, it
means the experiment duration for charging PCM at medium flow was more than at

charging the PCM at high flow for the same charging temperature.

PCM temperature CLC2C3 at inlet HTF 65°C(medium flow) PCM Temperature A2B2C2 atinlet HTF 85°C{medium flow)
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Figure 9:13: PCM Temperature for radial (C1C2C3) and axial (A2B2C2) points at
65°C (medium flow).
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Figure 9:14: PCM Temperature for radia (C1C2C3) and axial (A2B2C2) points at
70°C (medium flow).
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Figure 9:15 to Figure 9:16 and Figures E18 to Figure E21 in Appendix E, shows the
PCM temperature from the experiment at low flow, when the storeis charged at 65°C
and 70°C.It is observed that the charging time when the store is charged at 65°C
(80,000seconds) is more than when the store is charged at 70°C (45,000 seconds).

Figure 9:16 shows the PCM temperature when the store is charged at 70°C for the
radial positioning of the PCM thermocouple vary, the highest PCM temperature are at
C3, which isthe closest to the inlet side of hot fluid entering the rig. The figure shows
that C3>C2>C1, while Figures E16 shows the temperature profile at A3>A2>A1 and
B3>B2>B1.

Considering the axial positioning of the thermocouple using Figure E21, it shows that
the PCM temperature at thermocouple positions A1B1C1 increase in the order;
C1>A1B1. PCM temperature at A1 and B1 are close together as they rise in
temperature. Figure 9:16 shows the result that the PCM temperatures at A2B2C2 are
close together as the temperature rises with C2 greater than A2 and B2 at the end of
the charging process, though initially B2 was greater than A2C2 at the beginning of
the charging process. Figure E21 shows that the heat transfer in thisregion isthe first
contact of the PCM with the hot fluid flowing from the bath. Thus, there is a faster
response to melting of the PCM as C3 has a quicker rise in temperature when
compared to B3 and A3. This region of the rig has the fastest response to the heat
transfer between the HTF and the PCM.

PCM temperature C1C2C3 at inlet HTF 65°C(Low flow) PCM Temperature A2B2C2 at inlet HTF
& 05°C(Low flow)
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Figure 9:15: PCM Temperature for radia (C1C2C3) and axial (A2B2C2) points at
65°C (low flow).
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Figure 9:16: PCM Temperature for radial (C1C2C3) and axial (A2B2C2) points at
70°C (low flow) .

In general, the result for the PCM temperature at the thermocoupl e positioned axially
at A1B1C1, A2B2C2 and A3B3C3 show that the PCM temperatureat A1, A2 and A3
are theleast. Considering the thermocouples positioned radially at A1A2A3, B1B2B3
and C1C2C3, it showsthat A1, B1 and C1 hastheleast temperature profiletrend. This
means that the hottest zone on the rig (inlet) possesses the highest PCM temperature.
The PCM temperature reduces radially away from the inlet to the outlet of the thermal
store. The result shows that the entire PCM at different locations on the rig was fully
melted; this can be verified by the PCM temperature at different thermocouple
positions. The temperature must exceed the phase change melting temperature of the
RT52, which is 52°C to be completely melted. However not all the points reach the
PCM melting point when the store was charged at 60°C.

9.3 Discharging Experiment (SHE)

9.3.1 Effect of varying massflow rate
The store was discharged at the same mass flow rate used in charging the store (same

position of the valve on the valve). The discharge process was carried out at the same
HTF inlet temperature or discharge temperature of 30°C in all cases. Figure F1 to
Figure F7 shows the temperature drop at different flows (Low, medium and high).The
figures show that discharge process at low flow has the highest temperature drop,
while discharge process at high flow hastheleast. Thismeansthat during the discharge
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or heat recovery process, the high flow resultsin a quick loss of heat within the store,

when compared to other flows.

Results from the temperature drop within the thermal store at different flow rate,
shows that the higher the flow rate, the higher the temperature drop (low temperature
difference) that exist between the inlet and outlet HTF temperatures. The lowest
temperature drops (high temperature difference) are obtained at the low flow, while
the high flow has the highest temperature drop (low temperature difference). Table 9:7
shows the temperature drop at different times during the discharging process.

Table 9:7: Overview of the temperature drop for the discharge process.

L ow Flow
Discharging | 3600sec. | 10000sec. 20000sec. 300000sec. | 40000sec.
temperature (Zhour) | (2.7hours) | (5.6hours) | (8.3hours) | (11.1hours)
65°C 4.20°C 3.21°C 2.29°C 1.29°C 0.60°C
70°C 511°C | 3.90°C 2.88°C 1.42°C 0.55°C
Medium Flow
Discharging | 3600sec. | 10000sec. 20000sec. 300000sec. | 40000sec.
temperature (Zhour) | (2.7hours) | (5.6hours) | (8.3hours) | (11.1hours)
65°C 2.59°C 191°C 143°C 0.97°C 0.22°C
70°C 2.52°C 1.88°C 157°C 0.36°C 0.13°C
High Flow
Discharging | 3600sec. | 10000sec. 20000sec. 30000sec.
temperature | poury | 27hours) | (5.6hours) | (8.3hours)
60°C 1.18°C | 1.11°C 0.57°C 0.29°C
65°C 1.67°C 1.17°C 0.79°C 0.28°C
70°C 1.22°C | 0.99°C 0.53°C 0.30°C
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Figure 9:17 and Figure 9:18 comprises of the outlet HTF temperatures result as the
thermal storeisdischarged from 60°C,65°C and 70°C for different flows. Figure 9:17
shows the outlet HTF temperature at low flow from discharging the store from
charging temperature of 65°C reduces to the set discharging inlet HTF temperature of
30°C at alonger time when compared to the other flows. The high flow isthe quickest

to drop in temperature.

Figure 9:18 shows a similar relationship with the result from Figure 9:17, where the
results show that from discharging the store from 70°C. At high flow, the outlet HTF
temperature drops quicker, when compared to the other flows. The storeis discharged
a inlet HTF temperature of 30°C. It also shows the store is discharged at a shorter
time at high flow. Figure 9:18 shows the outlet temperature at low flow reducesto the
set discharging inlet HTF temperature of 30°C at alonger time when compared to the
medium and high flow. The therma store discharges quicker at a higher flow
compared to the low and medium flow results from the experiments. At low and
medium flows, the thermal store gradually recovers heat from the PCM, as the HTF

temperature slowly drops.

HTF Outlet temperature at different flow rate(from charging at 65°C)
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Figure 9:17: HTF outlet temperature during discharge at different flows from
charging at inlet HTF temperature of 65°C.
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HTF Outlet temperature at different flow rate ( from charging at 70°C)
50

£
=

Temperature(°C)
b

1N -

30

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Time (seconds)

——Low flow Mediumflow ——High flow

Figure 9:18: HTF outlet temperature during discharge at different flows from
charging at inlet HTF temperature of 70°C.

Figure 9:19 and Figure 9:20 show the discharge rate at different mass flow rate. The
results show that the discharge rate isfaster at low flow when compared to the medium
flow and high flow for both cases. The difference in discharge rateis not as significant
asit showed for the charge rate with the same scenario (see Figure 9:4 and Figure 9:5).
Experimental results showed that increasing the mass flow rate reduces the
discharging time.
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Discharge rate at different flow rates (from Inlet HTF temperature of 70°C)
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Figure 9:19: Discharge rate at different flow rate. (from charging at 70°C).
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Figure 9:20:Discharge rate at different flow rate(from charging at 65°C).
Figure 9:21 shows the relationship between the discharge rate and time as the store
was discharged at an inlet HTF temperature at 30°C. The store was discharged from
the different charge processes; from charging inlet HTF temperatures of 60°C, 65°C
and 70°C. Theresult showsthat the least discharge rate was from discharging the store
frominlet HTF of 70°C.
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Figure 9:21: Discharge rate (High flow).

9.3.2 PCM temperature acrosstherig during discharge process.
This section discusses the PCM temperature across the rig. The thermocouples

positioned axialy and radially along the path of the copper pipe on the thermal store
measures the PCM temperature as aforementioned for the charging process. For each
figure, it shows that the PCM temperature is high at the start of the discharge process
and the PCM isin itsliquid state. The store is fully discharged when the difference
between the inlet and outlet HTF temperature is zero and when the PCM is solid(less
than 51°C based on result from the DSC.

Figure 9:24 to Figure 9:28 shows the outlet HTF temperature and PCM temperatures
a A2B2C2 and C1C2C3 obtained from discharging the store at an inlet HTF
temperature of 30°C for different flow rates. The figures compare the PCM
temperatures at these points and the HTF outlet temperature during the discharging
process. Appendix F showsfurther result for axial pointsA1B1C1, A3B3C3 andradial
points A1A2A3 and B1B2B3 from the thermal store experiment result. Axia points
A2B2C2 and radia point C1C2C3 are discussed using Figure 9:24 to Figure 9:28 to
describe the discharging process. At the commencement of the discharging process,
there is a noticeable trend for the PCM temperatures at the thermocoupl es positioned

axialy aong the copper length. The PCM temperature shows that B2>C2>A2 from

138



discharging the store from charging temperatures of 65°C and 70°C(low flow) as
described using Figure 9:24 and Figure 9:25 respectively. The PCM temperature at B2
is far apart from the PCM temperature at A2 and C2 from the commencement of the
discharge till the outlet HTF temperatures match or reach the discharge temperature
of 30°C. Figure 9:24 and Figure 9:25 shows the PCM temperatures of thermocouples
positioned axially(A2B2C2) and radially(C1C2C3) along the path of the copper length
to measure the PCM temperature from discharging the store from charging
temperatures of 65°C and 70°C respectively at medium flow. The PCM temperature
showsthat C1>C3>C2 from discharging the store from charging temperatures of 65°C
and 70°C. Based on the layout of the thermocouples on the thermal store, C1 is
positioned farthest from the inlet of the heat transfer fluid into the store, thus it is
expected to have PCM that are still molten or at a higher temperature when compared
to C2 and C3. The PCM closest to theinlet, C3 and C2 are expected to solidify before
C1 as shown in both Figure 9:24 and Figure 9:25.

PCM temperatureat A282C2{low flow) PCM temperatureat C1C2C3{low flow)
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Figure 9:22: Discharging result from charging the store at 65°C; axial (A2B2C2)
&radia (C1C2C3) points (low flow).
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Figure 9:23: Discharging result from charging the store at 70°C; axial (A2B2C2)
&radia (C1C2C3) points (low flow).
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Figure 9:24: Discharging result from charging the store at 65°C; axial (A2B2C2)
&radia (C1C2C3) points (medium flow).
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Figure 9:25: Discharging result from charging the store at 70°C; axial (A2B2C2)
&radia (C1C2C3) points (medium flow).

The result obtained from the medium flow as the thermal store was discharged from
65°C and 70°C is similar a high flow as shown in Figure 9:26 to Figure 9:28.
However, the discharging time is faster at high flow when compared to the medium
flow. From Figure 9:27 and Figure 9:28, the results for the temperature of the PCM at
thermocouples positions A2B2C2 (axial) shows similar trend, where B2>C2>A2 in
both cases but at the end of the experiment in Figure 9:27 the temperature of the PCM
is about 32°C and the other two points, A2 and C2 are less than 30°C. However from
Figure 9:28; the PCM temperature at B2 was till at atemperature of 36°C while the
other two points; A2 and C2 are close to the HTF outlet temperature of 30°C at the
end of the experiment.

Considering the radial points, C1C2C3 in Figure 9:26 to Figure 9:28 for discharge
result from discharging the store at 60°C, 65°C and 70°C respectively, the results
shows that PCM temperature at C1 is greater than C2 and C3. The position of the
thermocoupl es shows the temperature difference across these points. This means the
PCM temperature at C1 solidifies after C2 and C3.

Appendix F comprises of the resultsfor the other thermocouple positions that measure
the PCM temperatures on the SHE. The results show that for axial and radial positions
the PCM temperature followed this pattern; the PCM temperatures increase in this
order for radia points (A1>A3>A2 and B2>B1>B3) as shown in Figure F8, Figure
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F10, Figure F12, Figure F14, Figure F16, Figure F19 and Figure F20. The results show
that the PCM temperature closest to the outlet of the rig has the highest PCM
temperature as they solidify when compared to the other points. For radial points,
B1B2B3, the result for all flows, show that B3, which is closer to the inlet of therig
solidifies quickly and has a temperature difference far apart from B1 and B2. For the
PCM temperatures at the axial points, they follow this temperature pattern
(C1>B1>A1 and C3>B3>A3) as shown in Figure F9, Figure F11, Figure F13, Figure
F15, Figure F17, Figure F18 and Figure F21.

Based on the discharging result, it shows radially, A1 and C1; solidify slowly when
compared to the other radial points. The case is different when considering the axial
point; the PCM temperatures are closer to each other when compared to the radia
points. Based on the result from this experiment, it shows that for the charging and
discharging process, theinlet HTF temperature and mass flow rate affects the charging

(melting) and discharging (solidification) time.
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Figure 9:26: Discharging result from charging the store at 60°C; axial (A2B2C2) &
radial (C1C2C3) points (high flow).
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PCM temperature at A2B2C2(high flow) PCM temperature at C1C2C3(high flow)
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Figure 9:27: Discharging result from charging the store at 65°C; axial (A2B2C2) &
radial (C1C2C3) points (high flow).
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Figure 9:28: Discharging result from charging the store at 70°C; axial (A2B2C2)
&radia points (C1C2C3) (high flow).

9.3.3 Comparison result of both geometries.

The experimental result using the PHE and SHE at |ow, medium and high flow showed
that it takes a longer time to charge the thermal store using the SHE. Both heat
exchangers used in this research are compared at high flow rate at the sameinlet HTF
temperature of 60°C using RT 52. The experiment using PHE was carried out at only
oneinlet HTF temperature (60°C), while the SHE arrangement was carried out at three
different inlet HTF temperatures(60°C, 65°C and 70°C) . Similar dimensions were
used for the design and construction of both bench test rig. The results obtained when
the polypropylene sheet was used as the plate heat exchanger and the serpentine heat
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exchanger, with the use of copper pipes are discussed. The result shows that the PCM
melted faster at high flow rate using the plate heat exchanger when compared with the
result from the serpentine heat exchanger at high flow. At inlet HTF temperature of
60°C, for the PHE, the entire PCM was melted between 4000-6000 seconds, while for
the SHE, the PCM at thermocouple positions B1, B2 and C1-C3 were melted but the
PCM at A1-A3 were not fully melted. This means there was an even distribution of
heat between the PCM and HTF via the thin walls across the polypropylene sheet as
the HTF flows through the channel running across the length of the sheet. This proves
that the surface areaand conduction path length in PCM are critical. For the SHE, only
the PCM close to the pipe melt quickly and PCM farther way from the pipes takes a
longer time for the PCM to melt, thus the charging time longer than the PHE. The
quantity of PCM used for both heat exchangers differs. The PHE experiment was
carried out using 6.7kg of RT 52, while 28.5 kg of the same PCM was used for SHE.
The quantity of PCM affects the charging or discharging time, this depends on the
surface area and conduction path length. The more the quantity of PCM, the longer
the charging or discharging time. Varying the mass flow rate influences heat transfer
to the store with the SHE arrangement. For the PHE rig, the type of flow is laminar
for all cases, while for the SHE, the type of flow is transition and turbulent. The heat
transfer coefficient for the PHE is 577 W/m?K, while the heat transfer coefficient for
the SHE arrangement is within the range of; 1890< h >7788 W/m?K.

The temperature drop of the SHE is greater than the PHE at high flow. After charging
the store for an hour, the temperature drop for the PHE is 1.05°C, while for the SHE,
the temperature drop is 1.84°C. At the end of the of six(6) hours of charging, the
temperature drop for PHE is 0.42°C and 1.49°C for the SHE. It was observed that the
charging process for the PHE at high flow was carried out for 20000 seconds (5.5
hours), though the entire PCM has melted at 6000 seconds(1.7 hours), while for the
SHE was charged for 82,915 seconds (23 hours) at the same inlet HTF temperature
and flow rate. Thetime it takes to charge the store and fully melt the PCM at an inlet
HTF temperature of 60°C using the SHE is long, thus for faster charging time, it
needed to be charged at a higher inlet HTF temperatures (65°C or 70°C). The inlet
HTF temperature and flow rate can be varied to increase or decrease the time at which
the thermal store is charged or discharged, though the mass flow rate has little effect
on the heat transfer between the HTF and the PCM. The temperature drop at medium
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and low flow for the SHE is greater than at the high flow as shown in Table 9:6. The
same applies to the PHE at the two different flows as shown in Table 8:3 and Table
8:4.

For the discharge process, the PHE was discharged at different inlet HTF temperature.
The SHE was discharged at 30°C for all the three different flows. The temperature
drop for the PHE and SHE shows that the lower the flow rate; the higher the
temperature drop asshownin Table 8:6, Table 8:7 and Table 9:7. Thisissimilar to the
trend observed during the charging process. For the SHE, the temperature drop for the
low flow is higher than a medium and high flow. The high flow has the lowest
temperature drop as shown in Table 9:7.

Theresultsfor the discharge process using the SHE arrangement showed that the PCM
temperature goes below the inlet and outlet HTF temperature. This is not expected,
sincean inlet HTF temperature of 30°C is maintained throughout the experiment. Due
to the difficulty in modeling such an action, numerical analysis was only done for the
plate heat exchanger arrangement in Chapter 10. Also, the length of time to charge
and discharge the SHE arrangement, when compared to the PHE arrangement
prompted the decision to choose the PHE as the heat exchanger to be used for the
purpose of this research.

9.34 Thermal Imaging of the serpentinerig
Thermal images were taken using the infrared camera (FLIR Camera) during the

experiment. The thermal images are shown in Figure 9:29, which shows the changes
that occur from the room temperature of the phase change material to when it was
completely melted asthe heat transfer fluid flows through the copper pipes. Theimage
shows the temperature across the rig at different duration during the charging period.
The first image is the temperature condition at the beginning of the experiment with
the PCM at room temperature. The subsequent images show the image taken as the
PCM melts gradually. Theimages show that the PCM in theinlet zone melt faster than
at the outlet of therig. It also shows PCM around the copper pipes melt faster when
compared to other points on the rig. The melting involves heat transfer radially from

the copper pipes to the surrounding PCM.

There are noticeable grey patches close to the copper pipes carrying the hot HTF, this
indicates the PCM that is not fully melted yet which means the temperature at that
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region is less, when compared with the PCM temperature around the copper pipes.
The region on the rig without copper pipes melt slowly and depends on heat
distribution from the PCM melted close to the heat exchanger.

$FLIR J $FLIR

Dist = 0.4 Trefl = 22.0 = = 0.98 18.0 Dist = 0.4 Trefl = 22.0 £ = 0.98

Figure 9:29: Thermal image of therig at start and end of experiment.

Figure 9:30 shows these pockets of PCM in between the copper pipes that are not
totally melted, however observing the thermal image; it is noticeable that PCM at the
centre of two copper pipes shows PCM yet to melt fully. The highest temperature
captured by theinfrared camerausing the ‘ spot’ option which give a point temperature
at alocation, give atemperature higher than 50 °C and the phase change temperature
of the PCM is52°C.These thermal images give an overview of the temperature pattern
acrosstherig and also confirm the PCM temperature obtained from the thermocouples
measurement. Appendix H shows the pictoria view and thermal image of the entire
rig during the charge process.
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Figure 9:30: Thermal images showing the grey patches of PCM.

94 Summary

The experiment using serpentine heat exchanger as athermal store and using RT 52
as the phase change material shows the thermal behaviour over time. The experiment
looked at varying the mass flow rate and inlet heat transfer fluid temperature to study
the effect on the behaviour of the thermal store during the charging and discharging
processes. The thermal image of the serpentine heat exchanger was discussed at the
beginning and end of the experiment. The HTF temperature profile of al figures shows
that at the temperature drop at the start of the experiment is larger than at the end of
the experiment. This can be attributed to the fact that at the beginning of the
experiment, the PCM starts to melt as the hot fluid flows through the copper pipes but
much heat is not lost by the HTF to the PCM, but once the PCM starts to change phase
(from solid to liquid), the HTF loses more heat to the PCM, hence the difference in
the temperature drop at the start and end of the experiment. The proposed use of the
serpentine heat exchanger was discontinued due to the following reasons. Lengths of
time required to charge and discharge the SHE thermal store and due to large
conduction length using this arrangement. Plate heat exchanger (PHE) was modelled
as discussed in Chapter 10; because it has a small conduction length and the store can

be charged quickly as shown from the experiment result.
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10 Modédlingthe PHE thermal store.

10.1 Description of Model

The model written in MATLAB is based on flow of the HTF, heat transfer to the
polypropylene sheet, conduction through the wall of the polypropylene sheet and
conduction through the PCM using enthal py method. The simplifying assumptionsthe
model relies on include; laminar flow and heat transfer in the HTF, zero span-wise
heat transfer (2-D model), natural convection in the liquid phase of the PCM is
negligible; and the PCM is homogenous and isotropic within each cell (at each node).
The effect of natural convection in the PCM is neglected to simplify the model and
also because the sheet has thin walls, making the conduction Iength the dominant heat
path within the PCM.

The governing equations for the transient analysis of heat transfer in phase change
material (solid-liquid PCMs) comprises of the Navier stokes equation, mass
conservation equation and energy conservation equation. The energy equation is used
for analysis of PCMs, because the Navier-stokes and mass conservation eguation can
be neglected as the convective term is negligible in the PCMs. Numerically, the
transient partial differential equation representing heat transfer in PCMs is expressed

thus,

M vk 10.1
ot

The type of phase change determines the nature of the relationship between the
temperature and enthalpy using Equation 10.1. The boundary conditions used in the
heat transfer equation over arange of temperature employing the enthalpy method are
expressed using Equation 10.2.

H=CT T<T,
T-T

H=CT+ = .L T, <T<T, 10.2
I~ s

H=CT+L T>T,
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where, C, is the specific heat, L is the latent heat, Ts and T, are the temperatures at
which melting or freezingisinitiated in the PCM whenit issolid or liquid respectively.

The computational domain is discretized using nine (9) elementsin the axial direction
and twelve (12) elements in the y-direction. The enthalpy and temperature was
determined in each node in the model built. The thermal resistance and temperature
within the PCM was a so considered in the simulation. Figure 10:1 describes the node
distribution of the 2D model. The x-direction and y-direction are represented by m, n
across the element to indicate position of the nodes. The time step of the simulation is
represented by i (current time step) and the new time step by i+1.

U-value= 0.44W/m2K
(Insulation)

I

Line of symmetry

Figure 10:1: Schematic drawing of the rig showing the module
The following assumptions were made for this analysis:

e PCM initidly at solid state for charging case.

e 2-D model

¢ Finite difference method

e Natural convection inside the PCM liquid phase is not considered.

e Enthalpy method isimplemented.

e |sotropic case for solid and liquid PCM except the specific heat, which
depends on the PCM temperature based on the DSC resullt.

e HTF thermal properties at specified temperatures are used.

e Flow isfully developed.
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The thickness of the PCM used for the experiment is 10mm; same thickness is used
for the validation of the MATLAB model. The store dimensions of the plate heat
exchanger used for the experiment and modelling parameters is presented in Table
10:1.

Table 10:1: Store dimension used in the modelling

Polypropylene Sheet length [mm] 1900
Polypropylene Sheet width [mm] 400
PCM slab thickness [mm] 10
Area(m’) 0.76
Volume [L] 7.6
Channel width(mm) 3.6
Channel length (mm) 3.3
PIR Insulation board [W/m.K] 0.022
R-value(m’K /W) 2.25
I nsulation thickness [mm] 50

The flowing HTF exchanges heat with the PCM via the wall of the polypropylene
sheet. The wall thickness is small, however it is considered in the modelling of the
store. The advantage of having a small wall thickness is that it allows heat to be
transferred from the HTF to the PCM quickly. The axia direction (numx) is elements
across the HTF in the channel and the numy is the elements through the PCM (y-
direction) as heat transfer occurs from the HTF flowing the channels via the thin layer
layered walls to the PCM. In order to reduce the computation time, the nodes were
carefully selected. The domain is discretised aong the x-axis of the polypropylene
sheet in such away that the PCM nodes along the x-axis and y-axis are equal. Thisis
to ensure the PCM temperature across the sheet is well monitored to ascertain the heat
transfer present between the PCM nodes due to the heat transfer (conduction) from the
HTF and the wall of the sheet. The first two nodes along the y-axis are for the heat
transfer fluid and the wall of the polypropylene sheet. Equation 10.3 expresses the
number of element in the x-direction, while Equation 10.4 expresses the number of
elementsin they-direction. For the simulation, the distance step in HTF flow direction;
dx, istaken as 0.2. The distance steps in the PCM; dy is taken as 0.001.The length of
the sheet; Lx spans across the x-direction; for they direction; the n nodes are described
thus; thefirst node isthe HTF; n=1(HTF); the second node is the pol ypropylene wall;

n=2(polypropylene wall) and the remaining nodes which describes the PCM domain
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from n=3 to numy (n=3:12). For the m nodes; which covers the length of the channel
(numx=1:9) for the HTF, wall and PCM.

nUMX = B 10.3
dx
numy = feou , 5 10.4
dy

The Nusselt number is based on laminar flow in rectangular channels with a channel
width ratio; 0 to 1. The channel width ratio of the geometry used for the PHE is
determined using Equation 10.5.

channel width b

channel height a 105

Channel width ratio= 2™ _1 09

3.3mm

The Reynolds number for the flow in the channel is calculated as shown in Chapter 6
(Equation 6.16) and the flow was discovered to be laminar for al the different flow
rates used during the experiment. Therefore based on the channel width ratio, the
Nusselt number at constant surface temperature was used. The internal convection for
fully developed laminar flow at constant surface temperature for a channel width ratio
of 1 hasaNusselt number of 2.98 (Nu=2.98) Kays and Crawford (1993).

The hydraulic diameter (Dn) of the channel is used to calculate the heat transfer
coefficient (W/m?K) from water to the channel wall. Equation 6.7 is used to calculate
the hydraulic diameter based on the wetted perimeter and the cross-sectional area of
the closed channel. The Nusselt number is expressed as a function of the hydraulic
diameter (Dn), thermal conductivity (k) and heat transfer coefficient (h); as shown in
Equation 10.6 to Equation 10.7.

h.D,
K

Nu = 10.6
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The heat transfer coefficient (W/m?K) is expressed using Equation 10.7.

_ Nuk
Dh

h 10.7

Nuk,  2.98x0.6587

Thus; for heat transfer fluid; h, =
D, 0.0034

=577.52 W/m?K

The PCM properties are included in the model based on result from the differential
scanning calorimeter. The liquid fraction, which describes the state of the PCM, is

expressed as shown in Equation 10.8:

X _T(mn)-T,

T T 10.8

X>1=X=1  (liquid)
X<0=>X=0 (solid)
0<X <1 (Mushy)

The value of X, is defined as solid when X= 0; and 1, when it is liquid. The value of
the liquid fraction between 0 and 1 is regarded as the mushy region. The specific heat
capacity of the PCM is expressed based on the liquid fraction as shown in Equation
10.10; an additional specific heat capacity isadded to consider the melting of the PCM
as expressed in Equation 10.9.

L
C,  =Cy = — 109
pp(m ) pp( dt) 'rl _TS

Cppmyn =X* (Cpp(liquid) - Cpp(solid)) + Cpp(solid) 10.10
If the liquid fraction isin the mushy region; if 0<X <1;, the specific heat is
expressed as shown in Equation 10.11

Cppm,n - Cppm,n + Cp p(mdt) 1011
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During the charging and discharging process, thethermal resistanceto the heat transfer
within the PCM is considered. North, south, west and east thermal resistance for the
PCM is expressed using Figure 10:2.

Rs--& _, @
2 2k,
Ll L (n=other nodes)
IS =T nn
RS =04 ]
n==num
TS =20°C v
South
RW = infinity(Adiabatic) RE =infinity(Adiabatic)
(m==1) - (m==numx)
TW=1 TE=1
West T East
. dbe dx mn
RW = 2k 2% dx dx
(m=other nodes) m-ln “man RE =
TW=T,, 2‘?‘7’«:71 n 2km_ya (m=other nodes)
' TE=T,,,
North
wt dy
= + (n==3)
2km.n—1 kan
RN = d}’ n dj’ (n=other nodes)
2k 2k

Figure 10:2: Schematic of the PCM nodes, showing the thermal resistance.
The thermal resistance for a rectangular or Cartesian coordinate is expressed as
described in Equation 10.12.

_ thickness

= 10.12
Ry =

The thermal resistance, is used in the model; which is defined as a measure of the
material resistance to conductive heat flow; the higher the thermal resistance, the more

resistanceit isto transfer heat.

thickness(m)

: (M2K/W)
thermal conductivty(W / mK)

R-value =

The U-value is used in the simulation, considering the effect of the insulation on the
heat transfer. The south resistance considers heat |ossfrom the top of therig asaresult
to the Celotex insulation and room temperature. The U-value of the Celotex insulation

is used to determine the measure of heat loss. The R-value of the 50mm thickness
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Celotex insulation board is 2.25m?K/W, thus the U-value can be calcul ated as shown
in Equation 10.13.

1
(M?WI/K) 10.13
R-value
_1_ 1
R 225
U =0.44W / m*K

This U-value is used in the model, including a heat loss of 20°C. Two cases are
considered with the Matlab model, case 1 is based on the experiment as shown in

Figure 10:3a; case 2 is based on having multiple sheets as shown in Figure 10:3b.

Wall of PP sheet Wall of PP sheet

Inulation /
\ ol \ \ PCN |
HEiet wa | e ot ikt e | | m—pHTF ot
Insuaton “ a “
(@ Casel (b) Case 2

Figure 10:3: Arrangement of the store modelled.
The modelling of the PHE commenced with the consideration of case 1; where the PP
sheet has insulation above and beneath it. This was verified with the experiment data.
The Matlab model showed good agreement with the experiment result, where the
experimental outlet HTF temperature was compared to the simulated outlet HTF
temperature from the model. The model was used to study the behaviour of the store,
when various parameters such as flow rate, latent heat capacity, thickness of the PCM
and type of material used for the heat exchanger are varied. Figure 10:10 to Figure

10:13 describes the behaviour of the store when these parameters are varied.

10.2 Numerical analysisfor the plate heat exchanger (PHE)
The explicit finite difference equations are derived for a transient case using energy
balance. Equation 10.14 to Equation 10.16 shows the energy balance equation used

for the analysis.
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T,

AII%desQ = Poenen G At 1014
Ve = OXdy 10.15
. i+l i
Y Q = paxdyc, m_Im 10.16
Al sides At

For each € ement or node, the mass of the water, mass of wall and mass of PCM in
an element is described as shown in Equation 10.17 to Equation 10.19 respectively.

My =M, =adxady,; .oy 10.17
M, =M, =dXwWt.p 10.18
M o =M, =dXxdy .0, 10.19

The energy balance equation on the element for the HTF is related by Equation
10.20

Ein - Eout + EgeneraIed = Eaccumulated 10.20
Energy into the element is expressed as shown in Equation 10.21

E,=mC, T|,=mC, T 10.21

The energy out of the element, considering the convection between the HTF and wall
Is expressed in Equation 10.22 as,

. . 5T
Epw =MC, T+ A(T, -T,)=mC,, (T + anj +h, A(T, -T,) 1022

The accumulated energy on the content of the element is shown in Equation 10.23

oT
Eaccumulated = pVCpf E 10.23

For this case, thereis no heat generation; E 0

generated =
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Therefore, total energy on the element based on Equation 10.20 is expressed using
Equation 10.24;

5T - 6T
PANKC, = AN, (T,-T,)-mC,, S 1024

Applying finite difference, explicit scheme; Equation 10.24 becomes Equation 10.25

T =Toa+ i,

Ath o dx i !
ch:pf(-r w -T f )_M_f m+1,n _Tm—l,n) 10.25

Rearranging Equation 10.25, the new temperature is expressed as Equation 10.26

(T -T', )+r::‘/|‘—gt(Ti

m-1,n
Pt f

Ath, dx

Toin = T +
"M, C

~Tha,) 1026

The first node of the HTF; T, is expressed using Equation 10.27,

TI+1 =-I-I +—
11 11 Mf [

h, dx
C

Pt

(Til,z —Ti1,1)+ m Tin Tl,l)J 10.27

The remaining node (m=2: numx-1) across the HTF considers heat |oss to ambient
and expressed as described in Equation 10.28; (U=0.44W/m?K)

1 i At | hodx, i . i At 0.44dx i
Tm,l _Tm,l +|V|_f{ Cf: (T m-11 -T m,1)+ m-1,1 _Tm,l) + Cp, |V|f C (ZO_T 1,1) 10.28

Pt Ps

Equation 10.29 describes the last node on the HTF node, which isthe outlet HTF

temperature,

i i At i i . i
Tnuri\x,l = Tnumx,l + C—M ( hf dx (T numx,2 T numx,l) + m(Tnumx 11 Tnumx,l)j 10.29
f

Pt
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For the wall node; the first nodeis T,, (m=1, n=2) as shown in Equation 10.30. The

equation considers the effect of convection between the wall and the HTF nodes;
including the surrounding nodes of the PCM.

Ti+1 _Ti i i V\IKN 2
M,Con = A = =h dX(T il 12) +F (T, —To) + (T —T,,) m 10.30
Ke kg
The temperature at this node is expressed in Equation 10.31 as,
i+ i At i WtKN 2
T, =T, +W—pN hy (T, T 12)+F (T, =Ti,) +X(T, _le)wth—dy 10.31
Ke kg

In the Matlab code, for the other remaining nodes across the length of the sheet, it is
expressed ;( m=2: numx-1).

i+ i At i i WL 2
Tm; :TmZ +— h1 OX(T mi -T mz) +FKN (rwlz +Tm+12 _ZTmz) +dx(Tm3 _TmZ)W

w~pw 4+ 7

Ke  Kong
Equation 10.33 describes the wall temperature at the last node; the equation considers

10.32

the boundary with the PCM at n=3.1t also considers the effect of convection between
thewall and the HTF flow.

L , 2
Time :Tmmz"w;‘ém h d<(Ter<,1 -T mz)‘*% (T2~ i) T s — Tz )W 10.33

—+
K Kumca

The PCM nodes are m=1: numx and n=3: numy. For the phase change material;

thermal resistance is considered across the nodes with PCM. The resistance are
termed; North resistance (RN); South resistance, West resistance and East resistance.

Figure 10:2 shows the conditions across each node.
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The PCM nodes at the first and last nodes on the west and east (RW and RE) are
regarded as adiabatic (no heat 10ss). Also for RS, the last node (n=numy=12) applies
heat | oss conditions at the top of the sheet; also includesthe properties of theinsulation
used.

Applying the PCM conditions based on Cp, X and thermal resistance at the North,
South ((n=3: numy), West and East zone (m=1: numx) of the PCM from nodes.
Equation 10.34 expresses the PCM temperature. The thermal resistance; RS, RN, RE,
RW and temperatures; TS, TN, RE, TW are expressed in Figure 10:2.

T, At (dx dx
p

KN g N, Yoy BTmnj 10.34
C, RN RS~ RE RW ' :

Where B isthe total thermal resistance around the nodes, as shown in Equation10.35

B:ﬂ+%+ﬂ+ﬂ 10.35
RN RS RE RW

The amounts of energy stored and charge rate of the store is obtained from the model
and used for the analysis. The charge rate is expressed as;

mC, (T,-T.) 10.36

10.3 Simulation result and analysisand Validation of model (PHE)

The Matlab model was used to validate the experiment result done using RT 58 and
for RT 52; at different flow rates (low, medium and high flow). The Matlab code use
for the validation of the experiment for both charging and discharging is presented in
Appendix J. Figure 10:4 shows the result for the validation of the model using RT 58
experimental result. Figure 10:5 to Figure 10:7 shows the temperature profile of the
inlet heat transfer fluid and outlet HTF during experiment and the outlet HTF
temperature from the simulation using the MATLAB model for different flows using

RT 52 data. The ssimulation result for the discharging process of RT 52 is presented
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using Figure 10:8 and Figure 10:9. The inlet HTF temperature during the experiment
was used in the simulation to compare the simulation HTF outlet temperature with
measured experimental values. This was done to validate the heat transfer model for
the system written in MATLAB utilising material properties from the DSC and hot
disk instrument, along with properties of polypropylene (PP) sheet from literature. The
results show that the outlet temperature predicted by the smulation is in accordance
with the experimentally measured data, which means the model functions
appropriately. The validated model is used to study the effects of varying the relevant

parameters during charging and discharging.
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Figure 10:4: Temperature profile of validated model for RT 58 experiment.

The model was initially used to validate the charging result using RT 58 as shown in
Figure 10:4, where the experiment was done at high flow only. With modification of
the flow process to facilitate varying flow rates, a valve was installed before the
commencement of the charging process using RT 52. The model was aso used to
validate experiment done using RT 52, which has different thermal properties (specific
heat for when the PCM is solid and liquid, latent heat, melting point etc.), different
flow rate (low, medium and high flow) and at an HTF inlet temperature of 60°C.
Figure 10:5 to Figure 10:7 shows that the model was appropriate for the three different
flow rates using RT 52 as the PCM for the therma store. There is a noticeable
difference between the outlet HTF temperature and the simulation outlet temperature

at the beginning of the simulation for Figure 10:4 to Figure 10:7.
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Temperature profile of thermal store (Low flow) RT 52

Outlet HTF simulation
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Figure 10:5: Temperature profile of the validated model for RT 52 at

low flow rate.

Temperature profile of thermal store (Medium flow) RT 52

60

<
(D,) @4nresadwa |

=3
=3
= T T T T S

S _c I I I I

gES I I I |

Eaoxg

g8 | | | |

L= 2 | | | |

$gE I I I I
T 2% <1
T T B e e oo
EuE | | | I =

I I | | | |

LT @ | | | |

i |
PTS o __l___Jd________1___]18
_ _ | 1 1 1 <

| | | |

| | | | |

| | | | |

| | | | |
| | | | | S
B et it i Bl Rl TS
I I I I I -

| | | | |

| | | | |

| | | | |
| | | | | o
e ) L---48
| | | | | —

| | | | |

| | | | |

| | | | |

| | | | |
\\\\\ o ___l___J________1___]|8
| I 1 1 1 S

| | | | |

| | | | |

| | | | |

| | | | |
| | | | | o
e et e il it -8

| | | | |

| | | | |

| | | | |

| | | | |

| | | | |
Ll ___d____i____ L___18
| | | | | ©

| | | | |

| | | | |

| | | | |

| | | | |
S A Y S IPSp | - {
i T i T 53

| | | |

| | | |

| | | |

| | | |
| | | | o
! B B +---78

| | | | |

| | | | |

| | | | |

L | | | |

) | | | |
L I I I o
Q ) =) ) =) ) =)
') < o™ (3] N N

Time in tens of seconds

Figure 10:6: Temperature profile of the validated model for RT 52 at

medium flow.
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Temperature profile of thermal store (High flow) RT 52
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Figure 10:7: Temperature profile of the validated model for RT 52 at high flow.

For the validation of the discharge process based on experimental data using RT 52,
the low and medium flows are presented for the discharge at different HTF
temperatures; 38°C and 47°C respectively. The discharge process at high flow is not
presented for the discharge was done, without the use of the hot water bath. Figure
10:8 and Figure 10:9 shows the result from the simulation, where the experimental
inlet HTF temperature and outlet HTF temperature are plotted alongside the
simulation outlet HTF temperature. The model does not exactly agree with the
experiment results throughout the duration of the ssmulation. This can be attributed to
the nature of the solidification process, where temperature variations could occur as a

result of PCM forming layers on the heat transfer surface.
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Temperature profile Discharging Process (Low flow) RT 52
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Figure 10:8: Temperature profile of the validated model for RT 52 at

low flow (Discharge Process).

Temperature profile of Discharging Process (Medium flow) RT 52
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Figure 10:9: Temperature profile of the validated model for RT 52 at

medium flow (Discharge process).
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10.3.1 Varyingtheflow rate
Using the model, the properties of the sheet was varied for the RT 52 and RT 58. The

simulation results obtained using RT 58 is presented in this section of the thesis, since
the model works well for both cases. Various parameters such as thickness of PCM,
latent heat, mass flow rateis discussed in this section. The mass flow rateis varied to
study the effect it has on the amount of energy stored and thermal behaviour of therig.
From the result shown in Figure 10:10, it is observed that varying the mass flow rate
has a significant effect on the temperature profile of the model. However, it has no
effect on the amount of energy store profile; Figure 10:11 shows the energy profile.
This agrees with findings from (Mohamed (2011)), which states that the heat transfer
fluid mass flow rate has no significant effect on the accumulated stored energy. It is
observed that when the mass flow rate is increased by a factor of 2 (130g/s), the
simulation HTF outlet temperature trend (green line) moves upwards; away from the
experimental result. However, reducing the mass flow by the same factor (32.59/s),
the simulation outlet temperature trend (green line) moves downwards as shown in
Figure 10:10. The mass flow rate affects the melting time of the rig, because the rate
of heat transfer increases with increase in the mass flow rate. However, increasing the
mass flow rate does not increase the performance of the thermal store with regardsthe
amount of energy stored. Based on the results from the experiment and the smulation
usingthe MATLAB code, it isobserved that it takes alonger timefor the PCM to melt
at low flow compared to the medium and high flow. This means the flow rate can be
adjusted to suite the desired period of charging/discharging, depending on how much
time the store is required to be charged during the off peak periods and how often
charging and discharging is required throughout the day.
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Figure 10:10: Model result increasing and reducing the flow rate.
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Figure 10:11: Energy stored against time for RT 58.

10.3.2 Varying thethickness of the PCM
The thickness of the PCM is varied using the Matlab code to study the effect on the

thermal store performance. The thickness of PCM used for the experiment and to
validate the model is 10mm. The original thickness of the PCM was halved (5mm)
and quadrupled (40mm). Figure 10:12 shows the result of the simulation. Thereisan
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increase in the amount of energy stored when the PCM thickness isincreased by four
times (quadrupled) the original value as shown in Figure 10:12 a). However, thereis
no change in the temperature profile. This was observed a so, when the thickness of
the PCM was halved. At haf of the original thickness of the PCM, the amount of
energy obtainable from the thermal store was less when compared to the origina
thickness of the PCM (see Figure 10:12 b)). The volume of PCM will result in an
increase in the amount of energy obtainable from the thermal store. The result shows
that when the thickness of PCM isincreased by four times the original value, thereis
a corresponding increase in the energy obtainable from the therma store, when
compared to amount of energy stored when the thickness of PCM is halved. This
means that the PHE thermal store output can be varied by changing the thickness.
However, it was observed that the time it takes to run the smulation increases as the
thickness of the PCM isincreased; thisis as aresult of more simulation time required

to melt the layers of PCM with respect to the thickness of the PCM in the thermal
store.

12

it GRAPH OF ENERGY STOREDAGAINST THE X H].G GRAPHOFENERGY STOREDAGAINST THE

10

Joules stored
Joules stored

T T O T S S
2{l 100 20 300 400 500 600 VMO G0 M 00 0 M MW A 0 G TH D MO0 10M
Time intens of seconds Time in ns of seconds

§ |

a)40mm thickness b)5mm thickness
Figure 10:12: Effect on varying the thickness of the PCM.

10.3.3 Varying latent heat of PCM used for experiment.
The latent heat of the PCM was doubled and halved to find out the effect on the

performance of the store. From the DSC result for RT 58, the value of the latent heat

is 140kJkg. Thiswas doubled (280kJkg) and halved (70kJ/kg) to study the effect on
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the thermal store using the model. Figure 10:13 b) shows the energy of the store rose
up to 10MJ using a PCM with a latent heat of 280kJ/kg, while using a PCM with a
latent heat of 70kJ/kg (see Figure 10:13 @) resulted in about 8MJ of energy from the
thermal store. The same result experienced with varying the thickness of the PCM was
applicable to when the latent heat of the PCM was varied. Using a PCM with a higher
latent heat, it would result in a higher amount of energy from the store, though other
factors that determine selection of PCM needs to be considered. The temperature
profile of the model was also not affected by varying the latent heat of the PCM in the

simulation.
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Figure 10:13: Effect of varying the latent heat of the PCM.

10.4 Design Optimization

With the Matlab model verified, using the resultsfrom the experimentsfor both PCMs,
further analysis was done using the model. The Matlab model was updated using Case
2 from Figure 10:3 to simulate another scenario, where the thermal store could
accommodate stacks or layers of sheet to obtain the required power or capacity
required for the PHE thermal store. The following changes were made to the mode!:

*Insulation top and bottom is neglected, heat 1oss to ambient is negligible.

*The thermal resistance is updated to meet the new conditions. South thermal

resistance is updated to simulate an adiabatic case.
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RS = infinity(Adiabatic)
TS=1

*The experimental result is not used for this case, since the model has been validated.
Real life scenarios where studied, where a constant inlet HTF temperature and initial
temperature of the store can be varied.

* The specific heat capacity of water was halved to simulate that just half of the PP
sheet is modelled to obtain the desired results for having the sheet with PCM at the

top and bottom.

Based on the updated Matlab model, the charge rate and energy values obtained from
the ssimulation are for a single sheet. This means if more than one sheet is considered
in astack, the corresponding charge rate or energy from the store should be multiplied
by the desired number of sheets. The Matlab model was used to simulate different
scenarios where the PCM thickness, flow rate, thermal properties are varied and the
effect on the thermal store determined. PCM thickness was simulated based on 10mm,
20mm and 40mm thickness of wax for RT 58 and six different PCM thicknesses for
RT 52 (10mm to 60mm). The application for this is that the capacity of the thermal
store can be increased by the number of sheets. Thisisto help facilitate the design of
an effective store for use in domestic application during off peak electricity periods. It
would enable the thermal store to be charged during the off-peak periods with the use
of aheat pump of 8kW capacity.

For the modelling, a single sheet was considered and half of the water channel (line of
symmetry) used to simulate the behaviour of the store. There is a thickness of PCM
above and below the sheet, so more heat or power is generated within the store. The
melting point of RT 58 based on result from the DSC is 58°C, whileit is52°C for the
PCM RT 52. The temperature difference between the inlet HTF temperature for RT
52 and RT58 are 8°C and 7°C respectively. Thus the charge rate of the store with a
constant inlet HTF temperature (65°C) can be calculated using Equation 10.37

(°g =h, AAT 10.37

For the RT 58 PCM, the charge rate is calculated thus
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Q =577.52* 0.76* (65-58)
Q=3.1kW

For the RT 52 PCM, the charge rate is calculated thus;

Q= 577.52* 0.76* (60— 52)
Q= 3.5kW

Based on this, the thickness of the PCM on the sheet, flow rate and other parameters
was varied to determine the optimal performance of the store. The time of melting the
store was taken into consideration as the advantage of utilizing the store during off-
peak periods as economy 7 tariffs, where cheaper electricity is targeted. The ideawas
to charge the store during off peak periods and recover the heat during peak periods
for the domestic application.

The result from the DSC was used for the modelling of each PCM. Table 10:2 shows
the thermal behaviour of the PCMs.

Table 10:2: Overview of the PCM thermal properties

Phase change
Thermal temperature Specific heat Specific heat
PCM | Conductivity range Latent heat | capacity(solid) |capacity(liquid)
W/mK (°C) kJ/kg kJ/kgK kJ/kgK
RT 52 0.22 51-55 153 6.8 5.0
RT 58 0.23 54-62 140 5.7 2.3

10.4.1 ChargeProcessusing RT 58
Using RT 58 for the charge process, the initial condition of the store was set at 50°C,

while a constant inlet HTF temperature of 65°C wasinputted in the model. The charge
process and energy results are presented using Figure 10:14 and Figure 10:15
respectively. The PCM thickness was varied during the simulation for three different
scenarios (10, 20 and 40mm). Figure 10:20 and Figure 10:21 showsthe charge process
result using RT 52, at a constant inlet HTF temperature of 60°C.

Figure 10:14 shows the charge rate of the thermal store at three different thicknesses.
It shows that, the thicker wax has a higher charge rate and it takes the PCM a longer
timeto melt. However, at athickness of 10mm, the PCM melts faster when compared

to the charge rate at 20mm and 40mm. There is a maximum value of power as the heat
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is transferred at the commencement of the charge process. This is due to the thermal
gradient between the HTF and PCM was at maximum at the commencement of the
charge process and the PCM thermal resistanceislow. Asthe PCM starts to melt, the
power reduces significantly due to the increase in PCM thermal resistance and
reduction of the thermal gradient between the PCM and HTF.

Charge rate at different thickness (RT 58)
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Figure 10:14: Charge rate at different thickness(RT 58).

The energy profile shown in Figure 10:15 shows that the thicker wax has the highest
energy, while the thinner wax (10mm) has the least energy when compared to others.
The stored energy is doubled as the wax thicknessis doubled. Figure 10:15 shows the
energy profile of the thermal store at three different thicknesses. As the thermal store
is charged, the energy profile rises directly with time, as the PCM melts, the profile
starts to change. The trend plateaus as soon as the PCM has completely melted and
there is no further increase in energy into the store. This result shows that, the thicker
wax takes a longer time to melt. However at a thickness of 10mm, it shows that the
PCM melts faster, when compared to the charge rate at 20mm and 40mm. The result
obtained from this profile would determine the thickness of wax to use to obtain the

optimal charge rate and energy from the store within the off peak electricity tariff.
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Amount of Energy at different thickness(RT 58)
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Figure 10:15: Energy profile at different thickness (RT 58).

Figure 10:16(a-c) shows the temperature change across the PCM as it melts from the
initial store temperature of 50°C for athickness of 10mm at different times(500,3500
and 4000 seconds). It is observed that the HTF and wall zones are at a higher
temperature at the start of the charging process. The PCM temperature increases as it
gains heat from the HTF viathe wall of the PP sheet.
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Figure 10:16: Colour map showing temperature distribution (charging process).

The profile shows the variation in temperature with time across the store as the PCM
melts. The nodes closer to the HTF nodes melts quicker than the PCM nodes.
Increasing the heat transfer fluid temperature causes the PCM to melt faster due to a
higher temperature difference between the HTF and the PCM.

Figure 10:17 (a-c) and Figure 10:18(a-c) shows the temperature contour map of the
PCM at different thickness, 20 and 40mm respectively, when it is charged at an inlet
HTF temperature of 65°C. The temperature contour map snapshots were taken at the
sametime (500, 3500 and 4000 seconds) asthe 10mm PCM thickness (Figure 10:16(a-
c)). It takes a longer time to charge the PCM with thicknesses of 20mm and 40mm
compared to the PCM with 10mm thickness. For example, at 4000 seconds, the PCM
is entirely melted at 4000 seconds for 10mm thickness(See Figure 10:16¢), while for
20mm and 40mm PCM thickness, melting isincompl ete(See Figure 10:17c and Figure
10:18c respectively). From the temperature contour map, it can be observed that there
was only a small temperature change across the store, and buoyancy forces are

negligible, hence convection is not considered in the model for the thermal store.
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Figure 10:17: Colour map showing temperature distribution at 20mm PCM thickness
(RT 58).
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Figure 10:18: Colour map showing temperature distribution at 40mm PCM thickness
(RT 58).

Using the energy profile of the thermal store, the behaviour of the storewhenitisfully
charged and half charged can be deduced. Figure 10:15 shows when the store is half
and fully charged, the energy of the fully charged store for 10mm, 20mm and 40mm
PCM thickness are 3.4MJ, 6.5MJ and 13MJ respectively. Considering when the store
is half charged, that will be half of the energy evolved when the storeis fully charged
for each PCM thickness. Thetime at which the PCM is half charged islocated and the

corresponding charge rate deduced from the charge rate resullt.

Table 10:3 shows the condition of the thermal store (using RT 58) when it is half
charged for the charging process. Based on the MATLAB model, the charge rate
obtained in Table 10:3 needsto be doubl ed to determine the actual charge rate, because
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the model was done considering only half of the sheet. The results presented are

obtained directly from the plot of the energy stored and charge rate.

Table 10:3: Full and half charge rate using RT 58

Thickness|Full charge|[Half charge|Charge rate
(mm) (MJ) (MJ) (W)
10 3.40 1.70 660
20 6.50 3.25 360
40 13.00 6.50 187

10.4.2 ChargeProcessusing RT 52
The same analysis carried out using the Matlab model for PCM (RT 58) was done for

RT 52, by updating the code with its thermal properties at high flow. The simulation
was carried out at six (6) different PCM thicknesses. The PHE thermal store was
charged at aninlet HTF temperature of 60°C from an initial store temperature of 50°C.
The temperature profile of the PCM and HTF a a PCM thickness of 40mm is
presented in Figure 10:19. It shows the HTF inlet and outlet temperature and PCM
temperature. The result shows that at the start and end of the charging process, the
temperature difference between the inlet and outlet HTF temperature reduces as the
PCM melts. The PCM was completely melted at about 140000 seconds. The melting
timeisinfluenced by the PCM thickness.

HTF and PCM Temperature profile
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—HTF inlet Temperature e HTF outlet Temperature ——PCM Temperature

Figure 10:19: HTF and PCM temperature profile(40mm thickness).
The charge rate and energy stored at the six (6) different thicknesses are presented in
Figure 10:20 and Figure 10:21 respectively. It is observed that the results follow a
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similar trend to the results obtained from the simulation with RT 58. The simulation
results at different thickness (10,20 and 40mm) shows that the energy profile at each
thickness is more than that obtained using the properties of RT 58 at the same high
flow. This could be attributed to the latent heat and specific heat capacities of RT52
being more than the properties of RT 58. Also, the temperature difference between the
HTF and PCM is aso higher; using RT 52 (60-52=8°C) compared to RT 58(65-
58=7°C). Figure 10:20 shows that the rate of melting is faster at low thickness. The
charge rate reduces with increase in PCM thickness.
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Figure 10:20: Charge rate at different thickness using RT 52 (Charging).
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Amount of Energy at different thickness(RT 52)
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Figure 10:21: Energy stored at different thicknesses using RT 52(Charging).

At the same flow, the higher the thickness, the more the energy obtainable from the
store. Table 10:4 shows the result of the thermal store (using RT 52) when it is half
charged and fully charged for the charging process.

Table 10:4: Full and half charge rate using RT 52.

Thickness|Full charge[Half charge|Charge rate
(mm) (MJ) (MJ) (W)
10 3.43 1.72 531
20 6.74 3.37 292
30 10.04 5.02 202
40 13.36 6.68 154
50 16.64 8.32 124
60 19.64 9.82 106

The results show that the store does not need to be fully charged for it to be used, for
a higher charge or discharge rate is obtainable when the store is half charged. Based
on the fact that it takes a longer time for the store to be fully charged, thus the store
can be half charged within the off-peak periods where there is cheap electricity.

The thermal store capacity and charge rate can be increased by having more sheets

combined together in parallel. The results from this modelling and experiment results

can be used to determine the number of sheets that can be incorporated into a PHE

thermal store for domestic heating application. For the required domestic application,

an 8kW heat pump is proposed to operate based on Economy 7 tariff. Based on
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Economy 7, there is about four (4) hours of off-peak electricity (8kWx 4hrs=32kWh).
The thermal store is optimized for this purpose. The result from charging the store

using RT 52 is used for thisanalysis. The sheet capacity Q; ~(MJ) iscalculated using

Equation 10.38 and Equation 10.39. The calculation is done for the six (6) different

thicknesses.

Qr, =Q,+Q +Q, 10.38

T, T o C, 0n
Q, = |mc, +le m,Cy +Mmyhy +TiJ; m; TUFTI MCo 1039

T

ini

where;
T . =50°C

T, =51°C
T =55°C

T, =60°C

T, and T, is the phase change temperature range of RT 52 as shown in Table 10:2.
Theinitial and final temperature of the store are T,; and T respectively. The result
for calculating the sheet capacity of the store based is presented in Table 10:5, which

also compares the result obtained from the model using Table 10:4.

Table 10:5: Comparing Model and anaylitcal result for total sheet capacity.

Analytical M odel
Thickness(mm) |Thickness(m)) Qr(MJ) | Qr(MJ) (% Difference
10 0.01 3.23 3.43 5.74
20 0.02 6.33 6.74 6.13
30 0.03 9.42 10.04 6.17
40 0.04 12.51 13.36 6.33
50 0.05 15.61 16.64 6.21
60 0.06 18.70 19.64 4.78

The results obtained from the model and analytical calculations show a difference of

6% between both analysis. The analytical calculation took into consideration the
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quantity of heat transferred through the water, wall and PCM. For the PCM, the

sensible heat and latent heat were considered.

Based on Table 10:4, the charge rate and energy stored using results from the model
for RT 52 can be used to deduce the total store capacity(MJ) obtainable when certain
number of sheets are used. For example,

For the thickness of 30mm, at full charge, energy = 10.04MJ

Half charge = % =5.02MJ

Using Figure 10:20 and Figure 10:21 , the charge rate at half charge is deduced as
202W. Based on the MATLAB modé for the sheet which comprises of wax at top and
bottom of the sheet, the charge rateis doubled; 2x202W=404W to get the actual charge
rate.

Based on the desired output from the thermal store to be used for economy 7, where
there is cheaper electricity for about 4 hours during the off-peak periods. Running the
heat pump for four hours gives 32kWh. The tota thickness required to deliver this
output is determined using Equation 10.40 and Equation 10.41.

— * * *
Qrc,mput = Ppew * A tocm, hy

10.40
QTOUW =32kWh is converted to Joules (1kWh=3.6MJ) = 115.2 M J.
t _ QTOutpm
et Peew * A* g 10.41
The number of sheets can be calculated using Equation 10.42.
Q.. (MJ)
Qo 10.42

Thetotal charge rate of the PHE thermal storeis calculated using Equation 10.43.
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Qs -Qy*n 10.43

The total PCM thickness (t, =1.126m) required to deliver the required energy
(32kWh) from an 8kW heat pump was obtained using Equation 10.41 . The total store

charge rate; Q'ST (W) is a product of the number of sheets (N) and the sheet charge

rate QS (W) for asingle sheet. Thus, Equation 10.43 is used to calculate the total store

charge rate.
An overview of theresult is shown on Table 10:6, showing the number of sheet, sheet
charge rate and the total charge rate of the PHE store. The result shows that a PCM

thickness of 30mm is suitable for integration with a 8kW heat pump. Using 22 sheets
for acharge rate of 404W gave atotal store charge rate of 8.89kW.

Table 10:6:; Overview of the result

Thickness (m) Thickness(m™) | Sheet charge rate(W) |Number of sheet(N) |Total store charge rate(k W)
0.01 100 1062 66 70.09
0.02 50 584 34 19.86
0.03 33.33 404 22 8.89
0.04 25 308 16 4.93
0.05 20 248 12 2.98
0.06 16.67 212 10 2.12

The relationship between the charge rate and thickness of PCM was ascertained by
plotting the results from the simulation based against the thickness of PCM. Results
obtained from Figure 10:20 and Figure 10:21 were used to acquire this relationship as
shown in Figure 10:22. The results show that as the thickness of the PCM increases,
the charge rate reduces. Thisindicates that the charge rate is inversely proportional to
the PCM thickness. A power fit was applied to the result for the six different points.
Based on thisrelationship, afurther plot of the charge rate and inverse of the thickness
was used to get alinear relationship between both parameters. Figure 10:23 showsthis
linear relationship with a R? of 99.8%. The graph can be used to obtain the required
thickness or charge rate for the thermal store. R-squared is a statistical measure of how

near the data points are to the fitted regression line
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Charge rate relationship with PCM thickness
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Figure 10:22: Relationship of charge rate and thickness of PCM (RT 52).
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Figure 10:23: Single sheet charge rate at different thickness (m).

The total store charge rate is a multiplication of the sheet charge rate and the number
of sheets (N). Figure 10:24 shows the relationship between the total store charge rate
and thickness (m™?) of the PHE thermal store. From this graph, the thickness of |PCM
required to achieve a charge rate of 8kW can be obtained and the number of sheets
determined.
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Store charge rate at different thickness
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Figure 10:24: Store charge rate at different thickness (m').

Based on thisresult, PCM thickness of 30mm will be suitable for the heat pump (8kW)
to produce 32kWh of energy during off peak period with economy 7 tariff. The store
charge rate at the aforementioned PCM thickness is 8.89kW. This can work in
conjunction with a 8kW heat pump for domestic application. This makes it suitable
for the thermal storage, where the energy from the heat pump can be utilized and the
thermal store charged during the off peak period.

For a given store capacity, in this case;32kWh,the ratio of the store charge rate (kW)
and storage capacity (kWh) gives the period (per hour) required to charge the store.
Figure 10:25 shows how long is required to charge the store at a given charge rate for
different thicknesses. The greater the thickness of the store, the lower the charge rate.
From the graph, to charge the store for four hours, you require a period of 0.29 per
hour, thus athickness of 30mm isrequired to achieve atotal store capacity of 32kWh.
The time it takes to charge the store and thickness required can be obtained from
Figure 10:25.
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Figure 10:25: Plot of thickness against ratio of charge rate and store capacity.

10.4.3 Discharge Processusing RT 58
The discharge process using the updated Matlab model was used to simulate the

behaviour of the store when it is discharged from an initial temperature of 65°C to
40°C by setting the inlet HTF temperature to 40°C. Figure 10:26(a-c) shows the PCM

temperature transition from the start of the discharge processtill the store temperature
achieves atemperature of 40°C. Figure 10:26(a-c) shows the temperature contour map
across the element as it is discharged for a PCM thickness of 10mm over time(500,
2000 and 2800 seconds). It shows the region of the wall and HTF cools faster
compared to the PCM zone. The PCM temperature drops gradually as it loses heat to
thewall and HTF, till it solidifies. The store discharges quicker compared to the time

it takesto chargeit.
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Figure 10:26: Temperature contour map showing the discharging process (frominitial
store temperature of 65°C).

The same analysis done for the charge processis carried out for the discharge process.
Figure 10:27 and Figure 10:28 shows the result obtained using the properties of RT
58 during the simulation for energy stored and charge rate respectively. The charge
rate and energy obtained from the discharging process at different thickness (10, 20
and 40mm) showsthe thicker PCM possess more energy when compared to the thinner
PCM (10 and 20mm). However, the problem with thisisthat it takes alonger timeto
discharge the store at thicker PCMs. Based on the objective of this research to study
the behaviour of PCMs in athermal energy storage and optimize the parameters with
integration of domestic heat pump, it is vital to be able to charge and discharge the
store quickly within the off peak periods using economy 7 tariffs.
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Figure 10:27: Energy at different thickness using RT 58.
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Figure 10:28: Discharge rate at different thickness using RT 58.

10.4.4 Discharge processusing RT 52.

Figure 10:29 and Figure 10:30 show the result for discharging the store at different
thickness using the properties of RT 52. Thisis done for six (6) different thicknesses
(10, 20,30,40,50 and 60mm). The results show that the energy from the storeis higher
than when the storeis charged. The results show asimilar trend to when the store was
charged; the higher the PCM thickness, the higher the amount of energy. Also therate

of melting reduces as the PCM thickness increases. It takes alonger timeto discharge

the store as the PCM thickness increases.
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Discharge rate at different thickness(RT 52)
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Figure 10:29: Discharge rate at different thickness using RT 52.
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Figure 10:30: Energy stored at different thickness using RT 52(Discharging).

Table 10:7 and Table 10:8 give the details of the discharge rate of the store when it is
half charged and fully charged for both RT 52 and RT 58.

Table 10:7: Discharge rate for RT 58.

Thickness| Full discharge |Half discharge | Discharge rate
(mm) (MJ) (MJ) (W)
10 4.40 2.20 1244
20 8.50 4.25 673
40 16.50 8.25 355
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Table 10:8: Dischargerate for RT 52.

Thickness| Full discharge| Half discharge| Discharge rate
(mm) (MJ) (MJ) (W)
10 4.64 2.32 941
20 9.03 4,52 512
30 13.42 6.71 353
40 17.63 8.82 272
50 22.10 11.05 218
60 26.15 13.08 185

Table 10:8 shows the discharge rate and energy using RT 52 is greater than the result
obtained using RT 58 at the same thicknesses (10, 20 and 40mm) on Table 10:7. The
thickness of the PCM used results in an increase in energy stored in the store during
the charging process. However, the thicker the PCM, the longer it takes for the PCM
to melt (melting time). Thus for applications in homes, the melting time and amount

of energy required from the store when it isfully or half charged is vital.

K eeping the same number of sheet as the charge cycle, the same analysis done for the
charging process using RT 52 was done for the discharging process. Thisis presented
using Figure 10:31 to Figure 10:34. Table 10:9 gives an overview of the thickness of
the PCM, sheet discharge rate and total store discharge rate based on cal culations done
using Equation 10.40 to Equation 10.43.

Table 10:9: Overview of the result(Discharging)

Thickness(mm)| Thickness (m'l) Sheet discharge rate(W) | Total Store discharge rate(kW)
10 100 941 46.73
20 50 512 13.05
30 33.33 353 6.06
40 25 272 3.55
50 20 218 2.27
60 16.67 185 1.63

The relationship between the discharge rate and thickness of PCM was ascertained by
plotting the results from the simulation based against the PCM thickness. Results
obtained from Figure 10:29 and Figure 10:30 were used to acquire this relationship as
shown in Figure 10:31. The results show that as the thickness of the PCM increases,
the discharge rate reduces. This indicates that the discharge rate is inversely
proportional to the PCM thickness. A power fit was applied to the result for the six

different points. Based on thisrelationship, afurther plot of the chargerate and inverse
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of the thickness was used to get alinear relationship between both parameters. Figure
10:32 shows this linear relationship with a R? of 1. The graph can be used to obtain
the required thickness or discharge rate for the thermal store. R-squared is a statistical

measure of how near the data points are to the fitted regression line.
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Figure 10:31: Relationship of discharge rate and thickness of PCM (RT 52).
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Figure 10:32: Single sheet charge rate at different thickness (m').
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The total store discharge rate is a multiplication of the sheet discharge rate and the
number of sheets (N). Figure 10:33 shows the relationship between the total store
discharge rate and thickness (m™?) of the PHE thermal store.
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Figure 10:33: Store charge rate at different thickness (m™).

Figure 10:34 shows how long is required to discharge the store at a given discharge

rate for different thicknesses. The greater the thickness of the store, the lower the

discharge rate. From the graph, to discharge the store for four hours, you require a

period of 0.18 per hour. The time it takes to charge the store and thickness required
can be obtained from Figure 10:34.
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PCM thickness against discharge time
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Figure 10:34: Plot of thickness against ratio of discharge rate and store capacity.
Based on the economy 7, it isvital that the heat pump is operating during the periods
of cheap electricity. Having a thermal store that can charge quickly within these
periods will be of great advantage. PHE charges under three hours, which makes it
suitable to be used for any of the economy tariffs for cheap electricity. The PCM
thickness of 30mm was chosen as the optimal thickness to be used. Based on the
optimal thickness of 30mm, the sheet chargerateis 8.89kW, and at the same thickness,
sheet discharge rate is 6.06kW. Based on the chosen PCM thickness, the size of the
thermal store with the PCM at the top and bottom for a single sheet, taking into
consideration the height of the sheet is 64mm. Thus for twenty sheets (22), the overall
height is (64mm™*22=1408mm).

The size of the PHE made from polypropylene sheet store can be incorporated into
walls for domestic applications, thus eliminating worries of space for the thermal
energy storage within the house. The dimensions of the PP sheet (1.9mx0.4m) used in
thisresearch are suitable for use in domestic applications. The sheet could be mounted

in the following locations within domestic homes;

e In ceilings, between joints.
e Inwalls, between studworks.
e Underneath kitchen units (600mm deep, plight height=100mm).

e Incorner units (600mm x 600mm x900mm).
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The sheets could be positioned horizontally or verticaly depending on the space
available within the home. To increase the amount of energy required from the storage
and utilise the capacity of the heat pump used for the storage, the number of PP sheets
can be increased to meet up to this demand. The sheets can be stacked or positioned
vertically within the walls. The pipe connections can go through the ceiling of the
home for pipes coming from the top of the sheet. The outlet pipe of one sheet would
be the inlet of the corresponding sheet.

10.5 Summary.

This chapter describes the numerical model used to validate the PHE experiment. The
Matlab model validates both experimental results using two different phase change
material (RT 52 and RT 58). Experimental results using RT 58 was done at a single
flow only, however experimental result using RT 52 was done at three different flow
rates (35, 47 and 65 g/s). The simulation results agree with experimental data for both
charging and discharging process. The model was updated and a constant inlet HTF
temperature of 60°C and 65°C for RT 52 and RT 58 respectively was used to simulate
the behaviour of the thermal store at different PCM thickness. It was observed that the
thickness of the PCM affects the charge rate and energy. The greater the PCM

thickness, the longer the time it takes to charge or discharge.

Based on the research done in this thesis, | would recommend a PCM thickness of
30mm, based on the amount of energy required from the store using an 8kW heat
pump for four hours using the economy 7 (32kWh). Economy 7 provides cheaper
electricity rate, mostly at night (12am to 7am). This is dependent on the energy
providers, for the time for off peak periods could vary.

The sheet capacity, number of sheets required for a store of 32kWh was determined
for six different PCM thickness using RT 52. A plot that could be used to determine
the thickness, charge rate and discharge rate was presented. The size of the plate heat
exchanger makes it suitable for use in domestic homes. It is not bulky and fits in
different locations within the home.
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11 Conclusion and further work
11.1 Conclusion

The thermal behaviour of the PCMs; RT 52 and RT 58 used on the experimental rig
shows promise on itssuitability asathermal energy storage. An advantage of thisplate
heat exchanger design using polypropylene sheet is a low fluid volume, ensuring a
higher proportion of PCM thus maximising the storage potential. Heat exchange
between the heat transfer fluid and the phase change material was investigated and
found to give satisfactory performance. Thereis an effective heat transfer between the
plate heat exchanger using the polypropylene sheet and the PCM, based on the large
contact surface area which makes it easy for the store to be charged and discharged
with ashort period of time. The plate heat exchanger concept used, enables usto have
higher ratio of PCM to water within the store. The PCM thickness can be optimized
for the anticipated charge/discharge rate and required storage density.

The work has demonstrated that an effective thermal store can be constructed from
polymer (polypropylene). The plate heat exchanger design and heat transfer
characteristics of the mini channels alow the store to be charged with only a small
(<5°C) temperature difference. The Matlab model developed using the experimental
datawas used to solve the heat transfer problem between the HTF, wall and PCM. The
analysis compared the experimental outlet HTF temperature with the ssmulated outlet
HTF temperature. The performance of the bench top test rig was compared with a
model written in MATLAB, considering conduction only in the PCM and validated.
The validated model is used to study the effects of variation of relevant parameters
during charging and discharging. This shows that the Matlab model is reliable in
studying the behaviour of the thermal store using different PCMs, experiments at
different flow rates etc. HTF flow rate does not significantly affect the performance
of the thermal store. Varying the inlet HTF temperature could be used to increase or
reduce the melting time and solidification time of the thermal store. It can also be used

to increase the energy desirable from the thermal store.

Polypropylene (PP) sheet used for this research is lightweight and resistant to
corrosion, when compared to metals. PP sheet is chemically resistant to attack from
PCMsand dueto thethinwalls, it would be useful as an effective PHE dueto its small
conduction path length. Based on the results from this research, PP sheet exhibited
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good heat transfer and due to their compatibility with PCMs, it can be used asa PCM
heat exchanger. The wall of the sheet are thin walled, which facilitates an effective
heat transfer between the HTF, wall and PCM on top of the PP sheet during charging
and discharging process. The polypropylene sheet can easily beintegrated in structures
in buildings and with the concerns of space, it provides a good advantage over other
types of geometries used as heat exchangers. Also, due to the modular nature of the
sheets, it is possible to arrange the sheets in parallel or in series based on the kind of
space available and energy desired.

The challenges faced using polypropylene as a PCM plate heat exchanger include the
following; deformation of the plastic after several cycles of charging and discharging

and blockage of the channels due to the adhesive used during construction.

Thermo physical properties of four different PCMs, paraffin (RT 52 and RT58) and
two salt hydrates (61.5% Magnesium nitrate hexahydrate + 38.5% Ammonium Nitrate
and Climsel C58) were tested using a differential scanning calorimeter (DSC) and hot
disk instrument. The results from the DSC and hot disk were comparable to data
obtained from manufacturers and other researchers. Theresult highlighted the problem
of using inorganic PCM aforementioned for the thermal energy storage. However,
despite the low thermal conductivity of both organic PCMs, they show good promise
as potential PCMs to be used for this application. RT 52 and RT 58 were used for the
experiment because of its availability, melting temperature range similar or within
domestic application, cost and thermal stability. The salt hydrates showed a degree of
hysteresis from the DSC result. The advantage of identifying the thermo physical
properties of the PCM was vita in order to determine the PCM used. The thermal
behaviour of RT 52 and RT 58 in the experimenta rig demonstrates the potential for
aplastic heat exchanger to be used for thermal energy storage.

The modular design of athermal store using the polypropylene sheet based on aplate
heat exchanger design is more suitable for integration with domestic heat pump
compared to the serpentine heat exchanger. There exists an effective heat transfer
within the PHE, as the store can be charged and discharged quickly. The polymer
(polypropylene) material is compatible with the PCM used. The store can be half or
fully charged within the off-peak period, where cheap el ectricity isavailable. The SHE

requires alonger charging time because of the arrangement of the copper pipeswithin
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the aluminum tray, spacing between the pipes and diameter of the pipe. At same flow
rate, the higher the HTF inlet temperature, the faster the store is charged (higher
temperature difference). At the same HTF inlet temperature, higher flow rate yields
faster charging. This is due to lower temperature drop in HTF temperature, which
yields a higher temperature difference between the HTF and the PCM. Compared to
the polypropylene sheet; the serpentine heat exchanger takes a longer time to charge
and discharge. Varying the mass flow rate can influence heat transfer to the store with
the serpentine heat exchanger arrangement.

The PCM storage can be used to shift the bulk of the heating |oads to off-peak period,
where the cost of electricity is cheaper and stored latent heat in the PCM can be
released during peak time. The selected PCM s were selected for this research to match
the operation of the heat pump and domestic home application. This alows the store
to charge/discharge within the phase change temperature range of the PCM.

The charge rate and energy stored during charge and discharge process for different
thickness of PCM; shows that the higher the PCM thickness, the higher the amount of
energy obtainable from the store and the slower it is for the store to charge or
discharge. Based on the model, the performance for when the store was full charged
and half charged was studied and result presented. To increase the capacity of the store
for effective use with domestic heat pump for a specified period of charging during
off-peak tariff periods, the thermal store design using 30mm PCM thickness is
proposed. Using the aforementioned thickness, the thermal store would require about
twenty-two PP sheets (22). At half charge, the thermal store can be charged for four(4)
hours, which is within the off-peak period using economy 7. This can beinstalled in
suitable location in the home; such as kitchen cabinet, ceiling which would
accommodate the dimensions of the plate heat exchanger. The sheet capacity, number
of sheets required for a store of 32kWh was determined for six different PCM
thickness using RT 52.

A plot of sheet charge rate or store charge rate against the reciprocal of the thickness
was produced that could be used to determine the thickness or charge rate was
presented. Thiswill enable the number of sheets to be used to be configured from the

chart or plot.
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11.2 Further Work

Cascading thermal storage store can be looked into where different PCM can be used
to enhance the thermal performance of the PHE thermal store. The PCM should be
arranged in order of decreasing melting temperature range for the charging process
and reverse order or the discharge process. This may produce a more energy efficient
thermal energy storage. Installing the thermal store in conjunction with a heat pump
in adomestic home to test the performance of the thermal store and study how it helps
provide cheap el ectricity using economy 7 or 10 tariff. The store can be charged during
the off peak periods, thus reducing energy cost. Various sheet length, width and
channel dimensions can be studied using the polypropylene sheet (PHE) and different
type of plastic material or other suitable heat exchanger material can be used to check
the behaviour of the TES. Based on the challenges faced in bonding the PP shest,

applying the technology of 3D printing could overcome such challenges.

For the serpentine heat exchanger, fins could be introduced to enhance the conduction
from the HTF to the PCM. The spacing between the copper pipe and diameter of the
copper pie could be increased to promote a more effective heat transfer. Perspex can
be used to cover the length of the tank, so the PCM melt process can be visible and
monitored. A numerical model written in MATLAB or use of COMSOL or ANSY'S
can be used to vaidate the experiment result obtained using the serpentine heat
exchanger. This will allow the store to be optimized by varying the diameter of the
pipe, pitch between the pipes, introduction of fins etc.

Further calorimetric test could be carried out on different phase change material
(PCM) that could be suitable for the thermal store. Enhancing the properties of PCM
used in the TES could aso be investigated by using metal matrices, graphite etc.
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Appendix A: Hot disk procedureto carry out thermal conductivity test.

Sequence of test on the hot disk device:

A 0D RE

Double Click on the hot disk icon to activate software

Click on ‘New Experiment’ on the File

Enter Parameters for the PCM to be tested. (name of material)

Choose an appropriate value of power output and time. A softwarewizard is
available to do this. The values should not be too high to avoid convection.
Press the single measurement or scheduled measurement to run the
measurement. The scheduled measured runs the experiment at specified time
intervals.

Click on start measurement.

7. Select the analysis tab>Select points from graph.

10.

11.

12.

A graph of temperature increase against time curve is plotted. Having a
smooth curve indicates a successful measurement; el se the experiment needs
to be repeated.

Select “ Calculations from the analysis menu. This gives a plot of temperature
difference against square root of time. A successful plot should show a good
random scatter without presence of a curvature.

The software of the HOT disk thermal constant analyser also provides checks
toindicate if data obtained from the measurement can be accepted or not.
Total characteristic time should be in the region of 0.3to 1.0. Also Total
temperature increase should be less than 2°C.

For a higher accuracy, there is an option in the software to input the value of
known specific heat for a sample. This has a higher accuracy when compared
to astandard calculation.

Disassembl e the sensor from the stainless plate and accessories when the
measurement has been completed. Proper housekeeping is essential on the

TPS sensor and environs to ensure accurate result.
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Appendix B: USB TC-08 Thermocouple data logger specifications

Number of channels (per TC-08)

Maximum number of channels

(using multiple TC-08s)

160

Conversion time

100 ms (thermocouple and cold junction compensation)

Temperature accur acy

Sum of £0.2% of reading and £0.5 °C

Voltage accur acy

Sum of £0.2% of reading and £10 pV

I nput range (voltage) 70 mvV
Resolution 20 bits
Noise free resolution 16.25 hits

Ther mocouple types supported

B,.E,JK,NR, ST

I nput connectors

Miniature thermocouple
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Appendix C: PCM & HTF Thermocouple positions on the PP sheet

Imlet side

- -

N [ =]

(=] [=]

- -

Owutlet side

A=PROBE thermocouple (10mm)
B=PROBE thermocouple (5mm)
C=SHIM thermocouple
D=SHIM thermocouple

EIGHT THERMOCOUPLESWERE USED ON THE POLYPROPYLENE RIG

THERMOCOUPLE (K-TYPE) POSITION

PROBE THERMOCOUPLE(10MM DEPTH)
PROBE THERMOCOUPLE(5MM DEPTH)
SHIM THERMOCOUPLE(INLET)

SHIM THERMOCOUPLE(OUTLET)

PROBE THERMOCOUPLE (INLET)

PROBE THERMOCOUPLE(OUTLET) }
SHIM THERMOCOUPLE } POLY PROPYLENE WALL
TEMPERATURE

8. PROBE THERMOCOUPLE } ROOM TEMPERATURE

PCM (RT 58 & RT 52)

HTF

N o g M~ NP

207



Appendix D: Performance specification for POLYSTAT R6L (Water bath)

R6L |
B-liter cooling/heating

Hessrgtion circulating bath
Reservoir volume B liters (1.5 gallons)
Digital -20 to 150°C
Temperature  4yanced digital —~20to 200°C
range
Programmable —20 to 200°C
Digital +0.05°C
Stability? Advanced digital +1.01°C
Programmable +0.01°C
; 5 BW x6'Hx54"D
Work area dimensions (20 x 15 x 13 cm)
i < 10°W x 21%°H x 15%4°D
Overall dimensions (25 % 55 x 40 cm)
Shipping weight! 79 1b (36 kg)
Heater BOOW 1000 W
At +20°C 350 W 290 W
. .. At0°C 120w 100w
Cooling capacity® & G e e
At=20°C — —
Refrigerant R134A
Pumping capacity® 15 L/min at 0 psig 12 L/min at 0 psig
Drain valve No
Elictieal faduirsaiats 115VAC,60Hz 230 VAC, 50 Hz
15 amps 10 amps
Digital controller Catalog number MK-12122-00 MK-12122-05
Advanced
digital ¢ lley Catalog number MK-12122-10 MK-12122-15
Programmable
satrollns Catalog number MK-12122-20 MK-12122-25
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Appendix E: Experiment result for charging the serpentine thermal store.

Inlet and outlet HTF temperature at 65°C (low flow)

Temperature(®C)

m—|NLET =——=OUTLET

40

0 10000 20000 30000 40000 S0000 HO000 70000 80000
Time(seconds)

FigureE 1: HTF outlet at inlet HTF temperature of 65°C (7¢/s).

Inlet and outlet HTF temperature at 70°C (low flow)
70

«f —
e J

2

Temperature(®C)
& o

e [NLET ==———QUTLET

40

] 10000 20000 30000 40000 S0000
Time(seconds)

Figure E 2: HTF outlet at inlet HTF temperature of 70°C (7g/s).
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Inlet and outlet HTF temperature at 65°C (medium flow)
65

60

55

50

Temperature(°C)

45

wmm INLET w———OQUTLET

40

0 10000 20000 30000 40000 50000 60000 70000 80000
Time(seconds)

Figure E3:HTF outlet at inlet HTF temperature of 65°C (15g/s).

Inlet and outlet HTF temperature at 70°C (medium flow)

70

6

Temperature(°C)
h
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40

0 5000 10000 15000 20000 25000
Time(seconds)

Figure E4: HTF outlet at inlet HTF temperature of 70°C (15¢/s).
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Temperature(°C)

Temperature(°C)

Inlet and outlet HTF temperature at 60°C (full flow)

60
55
50
45
——INLET ——OUTLET
40
0 10000 20000 30000 40000 50000 60000 70000 80000
Time(seconds)
Figure E5S: HTF outlet at inlet HTF temperature of 60°C (30g/s).
Inlet and outlet HTF temperature at 65°C (full flow)
65
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40
0 5000 10000 15000 20000 25000 30000 35000 40000

Time(seconds)

Figure E6: HTF outlet at inlet HTF temperature of 65°C (30g/s).
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Inlet and outlet HTF temperature at 70°C (full flow)
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Figure E7: HTF outlet at inlet HTF temperature of 70°C (30g/s).
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PCM Temperature A1A2A3 at inlet HTF PCM Temperature BI1B2B3 at inlet HTF

60°C(Full flow) 60°C(Full flow)
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Figure E8: PCM temperature at radial points (A1A2A3) and (B1B2B3) at inlet HTF
temperature of 60°C (high flow).
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Figure E9: PCM temperature at axia points (A1B1C1) and (A3B3C3) at inlet HTF
temperature of 60°C (high flow).
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Figure E10: PCM temperature at radial points (A1A2A3) and (B1B2B3) at inlet
HTF temperature of 65°C (high flow).
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Figure E11: PCM temperature at axial points (A1B1C1) and (A3B3C3) at inlet HTF
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Figure E12: PCM temperature at radial points (A1A2A3) and (B1B2B3) at inlet

HTF temperature of 70°C (high flow).
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Figure E13: PCM temperature at axia points (A1B1C1) and axial (A3B3C3) at inlet
HTF temperature of 70°C (high flow).
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PCM Temperature ATA2AS at inlet HTF 65°C(medium flow) PCM Temperﬂture BIB2BS atinlet HTF 65°C(medium fow)
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Figure E14: PCM temperature at radial points (A1A2A3) and (B1B2B3) at inlet
HTF temperature of 65°C (medium flow).
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Figure E15: PCM temperature at axial points (A1B1C1) and (A3B3C3) at inlet HTF
temperature of 65°C (medium flow).
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Figure E16: PCM temperature at radial points (A1A2A3) and (B1B2B3) at inlet
HTF temperature of 70°C (medium flow).
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Figure E17: PCM temperature at axial points (A1B1C1) and (A3B3C3) at inlet HTF
temperature of 70°C (medium flow).
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Figure E18: PCM temperature at radial points (A1A2A3) and (B1B2B3) at inlet
HTF temperature of 65°C (low flow).
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Figure E19: PCM temperature at axial points (A1B1C1) and (A3B3C3) at inlet HTF
temperature of 65°C (low flow).
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Figure E20: PCM temperature at radial points (A1A2A3) and (B1B2B3) at inlet
HTF temperature of 70°C (low flow).
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Figure E21: PCM temperature at axial points (A1B1C1) and (A3B3C3) at inlet HTF
temperature of 70°C (low flow).
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Appendix F: Experiment result for discharging the ser pentine thermal store.

Temperature profile discharging from 65°C (Low flow)
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Figure F1: Temp. profile; discharging from 65°C (Low flow)

Temperature profile,discharging from 65°C (Medium flow)
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Figure F3: Temp. profile; discharging from 65°C (Medium flow)
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Figure F2: Temp. profile; discharging from 70°C (Low flow)
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Figure F4: Temp. profile; discharging from 70°C (medium flow).
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Temperature profile,discharging from 65°C (High flow)
Temperature profile discharging from 60°C (High flow)
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Figure F5: Temp. profile; discharging from 60°C (High flow) Figure F6: Temp. profile; discharging from 65°C (High flow)
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Figure F7: Temp. profile; discharging from 70°C (High flow)
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PCM temperature at A1A2A3 (low flow) PCM temperature at B1B2B3(low flow)
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Figure F8: PCM temperature at radial points (A1A2A3) and (B1B2B3) discharging from inlet HTF temperature of 65°C (low flow).
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Figure F9: PCM temperature at axia points (A1B1C1) and (A3B3C3) discharging from inlet HTF temperature of 65°C (low flow).
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PCM temperature at A1A2A3 (low flow) PCM temperature at B1B2B3 (low flow)
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Figure F10: PCM temperature at radia points (A1A2A3) and (B1B2B3) discharging from inlet HTF temperature of 70°C (low flow).
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Figure F11: PCM temperature at axial points (A1B1C1) and (A3B3C3) discharging from inlet HTF temperature of 70°C (low flow).
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PCM temperature at A1AZA3 (medium flow) PCM temperature at BIBZB3 (medium flow)
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Figure F12: PCM temperature at radia points (A1A2A3) and (B1B2B3) discharging from inlet HTF temperature of 65°C (medium flow).
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Figure F13: PCM temperature at axial points (A1B1C1) and (A3B3C3) discharging from inlet HTF temperature of 65°C (medium flow).
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PCM temperature at A1A2ZA3 (medium flow) PCM temperature at BIB2B3 (medium flow)
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Figure F14: PCM temperature at radial points (A1A2A3) and (B1B2B3) discharging from inlet HTF temperature of 70°C (medium flow).
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Figure F15: PCM temperature at axial points (A1B1C1) and (A3B3C3) discharging from inlet HTF temperature of 70°C (medium flow).

223



PCM temperature at A1A2A3(high flow) PCM temperature B182B3(high flow)
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Figure F16: PCM temperature at radial points (A1A2A3) and (B1B2B3) discharging from inlet HTF temperature of 60°C (high flow).
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Figure F17: PCM temperature at axial points (A1B1C1) and (A3B3C3) discharging from inlet HTF temperature of 60°C (high flow).
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PCM temperature at A1B1C1(high flow)
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Figure F18: PCM temperature at axia points (A1B1C1) and (A3B3C3) discharging from inlet HTF temperature of 65°C (high flow).

PCM temperature at A1A2A3(high flow) PCM temperature at B182B3(high flow)
60

w
w

]
=]

—_ ——OUTLET ——B1 ——B2 ——B3
9‘;— t;_-S-SCI

5 4s E'qs

g £

a0 @ 40

5 :

¥=.35 e

w

=]
w
w

N
wn

i 25
0 5000 10000 15000 20000 25000 30000

0 5000 10000 15000 20000 25000 30000
Time(seconds)

Time(seconds)

Figure F19: PCM temperature at radial points (A1A2A3) and (B1B2B3) discharging from inlet HTF temperature of 65°C (high flow).
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PCM temperature at A1A2A3 (high flow) PCM temperature at B1B2B3(high flow)
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Figure F20: PCM temperature at radial points (A1A2A3) and (B1B2B3) discharging from inlet HTF temperature of 70°C (high flow)
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Figure F21: PCM temperature at axial points (A1B1C1) and (A3B3C3) discharging from inlet HTF temperature of 70°C (high flow).
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Appendix G: Room temperature during the experiment using SHE.

Average room temperature(°C)

Room temperature
19.5

19

® Room temperature
17
16.5 : : :

65°C low flow 70°C low flow 65°C medium flow 70°C medium flow 60°C full flow 65°C full flow 70°C full flow

[y
o
[#]]

—
=]

[y
-1
h

Process

227




Appendix H: Image of the SHE thermal store during Charge Process.

Spot49.7 *CH

Dist = 0.4 Trefl = 22.0 £ =0.98

a)l mage of store during charge process. b) Thermal image of store during charge process.
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Appendix |: Solid works drawing of the SHE.
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Appendix J: Matlab model for Plate heat exchanger thermal store (PHE).

Mai n scri pt
% Definitions of variables
cl ear

| oad(' PCMlat a. mat ')
Tinitial = HeatingTt(1,2) %lnitial tenperature of store (C
ndot w=0. 065* 1000/ 368; % Mass fl ow of water per HALF channel (kg/s)
Cpwat er =4182; % Specific heat of water at mean tenperature (J/kg/K)
dt= 0.01;% Tinme step (s);to make the sinulation faster,
total thot=(1 engt h(Heati ngTt)-1)*20%1800; % Total tine for heat input
hal f cycle sinulation
total tcol d=09%4.800; % Total tinme for heat discharge half cycle
simul ation
nunt hot =t ot al t hot / dt ;
nunt col d=t ot al t col d/ dt;
dx=0.2; % Distance step in water flow direction (n
dy=0.001; % Di stance step in PCM (m
Lx=1.9; % Channel length (m
nunx=r ound(Lx/dx); % nunber of elenments in flow direction
t PCM=0. 01; % hal f thickness of PCMm
nuny=t PCM dy+2; % nunber of elenents in y direction
Ti nhot =709%5; % Hot inlet tenp (C) make f(t) later
Ti ncol d=40; % Col d inlet tenperature - can be nade f(t) later
T=Tini tial *ones(nunx, nuny); % Tenperature array
Tnew=T; % New t enper at ures
B11=0. 0036; % Channel w dth(m
B12=0. 0033; % Channel height (m
aover b=B12/ B11; % A guess at the nonent. Must be 0 to 1.
Nu=9. 4406* (aover b"4) - 28. 322* (aover b~3) +33. 537* (aover b"2) -
19. 209* aover b+. . .
7.5569; % Lanminar flow Nu quartic in channel width ratio 0 to 1.
dh=4*B11*B12/ (2*B12+2*B11); % Hydraul i ¢ di aneter (n)
kwat er =0. 643; % conductivity of water at 50C (W nK)
h=Nu*kwat er/ dh % heat transfer coefficient fromwater to wall Wn'2
/K
Re=ndot w*2/ (B11+B12) / (544e-6) % Reynol ds nunber using viscosity at
50 C.
dywat er =B12; % hal f thi ckness of water channel
M=982* dx* dywat er; % Mass of water in el enment (kg)
rhos=946; % Pol ypr opyl ene wal |l density (kg/ m3)
Cps=1900; % Pol ypropyl ene wall Cp (J/kg/K)
kst eel =0. 158; % pol ypropyl ene wal |l conductivity (W mK)

Ms=r hos*dx*wt; % Mass of wall el enent
%******************************************************************

kkkkkk*

% PCM properties etc.

Ts=54; % Solidus (?) tenperature (C for RT 58

Tl =62; % Li quidus (?) tenperature (O for RT 58

% Ts=51; % Solidus (?) tenperature (O for RT 52

% Tl =55; % Li qui dus (?) tenperature (C) for RT 52
ks=0.23; % Solid conductivity (W nK)

kl =0. 23; % Li quid conductivity (W nK)

% CpPCMs=6837; % Sol id specific heat (J/kg K) for RT 52
% CpPCM =5037; % Li quid specific heat (J/ kg K for RT 52
CpPCMs=5700; % Sol id specific heat (J/kg K) for RT 58
CpPCM =2300; % Liquid specific heat (J/kg K) for RT 58
L=1. 4e5; % Latent heat (J/kg)RT 58

L=1.53e5; % Latent heat (J/kg)RT 52

rho=880; % Noni nal PCM density
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Mpcmedx*dy*r ho; % nmass of PCMin el enent (kg/ m depth)
Conel t=L/(TlI-Ts); %' Additional specific heat' in nmelting

%******************************************************************
kkkkk*k

X=zeros(nunx, nuny); %zero = solid, 1 =1liquid. First two rows not
used.

k=X; % Conductivities. First row not used.

k(:,?2)=ksteel *ones(nunx, 1);

Cp=X; % Specific heats. First two rows not used.
Qune0; % Cunul ative heat in store (J). Zero datumat tine zero.
Qcumarray=zeros(round((total thot+totaltcol d)/10)+1, 1);

Q narray=zeros(round((totalthot+totaltcold)/10)+1,1);
Tarray=zeros(round((totalthot+totaltcol d)/10)+1, nunx, nuny);
Twat er out ex=Qcumarr ay;

Twat er out si m=Qcunarr ay;

Tpcmt enp=CQcunarr ay;

Ti n10=Qcunarr ay;

%Hol d=zer os( nunx, nuny) ;

%-Hnew=zer os( nunx, nuny) ;

%+ nc=zer os(nunx, nuny) ;

%+=0;

% Cal cul ati ons
()/C'—'ARG N(}\'**********************************************************

kkkkk*k

for t=0:dt:totalthot; %time in seconds
t10=t/10; %tine/10 for saving data every 10 seconds.
%-ind Tin
rowl=fl oor(t/20)+1; % ower row
row2=ceil (t/20)+1; %upper row
Ti n= HeatingTt (rowl, 2) +(Heati ngTt (row2, 2)-Heati ngTt (rowl, 2)). ..
*(t/20-rowl+l);
%ol dt ot =H;
% ol d Enthal py array cal culation fromtenperatures
% Cal cul ate total enthal py H

% for i=1:nunx; ¥%Add water and wall val ues

% Hol d(i, 1) =M Cpwat er * Tnew(i , 1) ;

% Hol d(i, 2) =Ms*Cps* Tnew(i , 2);

% end

%

% for i=1:nunx

% for j=3:nuny; % Add PCM

% if X(i,j)==0; HpcmeMocnmrTnew(i,|)*CpPCMs ;

% end

% if(X(i,j)>0 && X(i,j)<1);

% hpcme( Tnew(i,j)-Ts)*( CoPCVs+. .

% (CpPCM - CpPCMs) / 2/ (TI -Ts) *(Tnew(i,j)-
Ts)) +X(i,j)*L..

% +CpPCME* Ts;

% Hpcm=hpcnt Mpcm

% end

% if X(i,j)>=1;

% hpcme( Tl - Ts) * ( CoPCVs+CpPCM ) / 2+. ..

% L+(Tnew(i,j)-Tl)*CpPCM +Ts* CpPCMs;

% Hpcm=hpcnt Mpcm

% end

% Hol d(i,j)=Hpcm

% end

% end% of ol d enthal pi es

T=Tnew
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% cal cul ate properties
for i=1:numx
for j=3:nuny
X(i,)= (T(i,j)-Ts)/(TI-Ts);
X(i, )
if(X(i,j)>1.);X(i,j)=1. ;end
i f(X(i,j)<0.);X(i,j)=0. ;end
kK(i,j)=X(i,j)*(Kkl-ks)+ks;
Cp(i,j)=X(i,j)*(CpPCM - CpPCMs) +CpPCMs;
PE(X(i,j)>0 && X(i,j)<1); Cp(i,j)=Cp(i,j)+Cpnelt;end
end
end
if t==0;% Calculate initial enthal py, zero at 0C datum
HA=MF numx* Cpwat er *Ti ni ti al ;
Hs=Ms* nunx*Cps*Tiniti al ;
i f X(3,3)==0; Hpcm=Mocntnunx*(numy-2)*Tinitial*CpPCMs; end
if(X(3,3)>0 && X(3,3)<1);
hpcme(T(3, 3)-Ts) *( CpPCVs+. . .
(CpPCM - CpPCM5) /1 2/ (TI -TsS) *(T(3,3)-Ts)) +X(3,3)*L. ..

+CpPCMVs* Ts;
Hpcm=hpcnt Mpent nunx* ( nuny- 2) ;
end
if X(3,3)>=1;

hpcme( Tl - Ts) * ( CpPCVs+CpPCM ) / 2+. . .
L+(T(3,3)-Tl)*CpPCM +Ts* CpPClVs;
Hpcm=hpcnt Mpent nunx* ( nuny- 2) ;
end
Hi ni ti al =Hw+Hs+Hpcm
end

% WATER
Tnew( 1, 1) =T(1, 1) +dt/ Mndotw*(Tin-T(1,1))...
+dt / M Cpwat er *h*dx*(T(1,2)-T(1,1)); %first el enent
for i=2:nunx-1,
Tnew(i, 1) =T(i, 1) +dt/ Mndotw(-T(i,1)+T(i-1,1))
+ dt/ M Cpwat er *h*dx* (T(i,2)-T(i,1) )...
+dt/ M Cpwat er *2*dx*(20-T(1,1)); %eat |oss to anbient
h=2W n2K
end
Tnew( nunx, 1) =T( nunx, 1) +dt/ M Cpwat er * ( ndot w* Cpwat er* . ..
(T(nunmx-1, 1) - T(nunx, 1)) +h*dx* ( T( nunx, 2) - T(nunx, 1)));
% | ast el ement

% WALL
Tnew( 1, 2) =T(1, 2) +dt/ Ms/ Cps*(h*dx*(T(1,1)-T(1,2))...
+ksteel *wt /dx*(T(2,2)-T(1,2))...
+dx*(T(1,3)-T(1,2))*2/ (wt/ksteel +dy/ k(1,3)));
for i=2:nunx-1,

Tnew(i, 2)=T(i,2)+dt/ M/ Cps*(h*dx*(T(i,1)-T(i,2))...
+ksteel *wt/dx*(T(i-1,2)+T(i+1,2)-2*T(i,2))...
+dx*(T(i,3)-T(i,2))*2/ (wt/ksteel +dy/ k(i,3)));

end
Tnew( nunx, 2) =T( nunx, 2) +dt/ Ms/ Cps* (h*dx* ( T( nunx, 1) -
T(nunx, 2))...
+kst eel *wt / dx* ( T( nunx- 1, 2) - T(nunx, 2)). ..
+dx* ( T( nunx, 3) - T(nunx, 2) ) *2/ (w / kst eel +dy/ k(nunx, 3)));
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%******************************************************************

* kK%
% PCM
for i=1:nunx;
for j=3: nuny;
% North resistance al ways defi ned:
if j==3;
RN=wt / 2/ k(i,j-1)+dy/ 2/ k(i,j);
el se
RN=dy/ 2/ k(i ,j-1)+dy/ 2/ k(i,j);
end
% South resistance infinity on adiabatic |ine of
symretry:
i f j==nuny;
RS=0.5; %leat loss fromtop of plate
TS=20. ;
el se
RS=dy/ 2/ k(i ,j+1)+dy/ 2/ k(i,j);
TS=T(i,j+1);
end

% West resistance infinity at left wall:
if i==1;
RWEI nf ;
TWEL;
el se
RWedx/ 2/ k(i -1,j)+dx/ 2/ k(i,j);
TWET(i-1,j);
end

% East resistance infinity at right wall:
i f i==nunx;
RE=i nf ;
TE=1.;
el se
RE=dx/ 2/ k(i +1,j)+dx/ 2/ k(i,j);
TE=T(i +1,j);
end
Tnew(i,j)=Tnew(i,]j)+dt/Mecm Cp(i,j)*...
(dx/ RN*T(i,j-1)+dx/ RS*TS. ..
+dy/ RE* TE+dy/ RW TW . .
-T(i,j)*(dx/ RN+dx/ RS+dy/ RE+dy/ RW ) ;
end % of | =3: nuny
end % of i=1:nunx

%******************************************************************

*k Kk Kk Kk

% New Ent hal py array cal cul ation from tenperatures
% Cal cul ate total enthal py H

% for i=1:nunx; ¥%Add water and wall val ues

% Hnew(i, 1) =M Cpwat er * Tnew(i , 1) ;
% Hnew(i , 2) =Ms* Cps* Tnew(i , 2) ;
% end
%
% for i=1:nunx
% for j=3: nuny; % Add PCM
% if X(i,j)==0; HpcmeMocrm Tnew(i,|)*CpPCMVs ;
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% end

% if(X(i,j)>0 && X(i,j)<1);

% hpcme( Tnew(i,j)-Ts)*( CpPCMs+. ..

% (CpPCM - CpPCMs) /1 2/ (TI -Ts) *(Tnew(i,j)-
Ts)) +X(i,j)*L...

% +CpPCME* Ts;

% Hpcm=hpcnt Mpcm

% end

% if X(i,j)>=1;

% hpcme( Tl - Ts) * ( CoPCVs+CpPCM ) / 2+. ..

% L+(Tnew(i,j)-Tl)*CpPCM +Ts* CpPCMs;

% Hpcm=hpcnt Mpcm

% end

% Hnew(i, j)=Hpcm

% end

% end% of new ent hal pi es

% nc=Hnew- Hol d;
Q n=ndot w* Cpwat er *( Ti n- T(nunx, 1)) *dt;
%sumHi nc=sum(sun( Hi nc));
¥%sumHnew=sum( sun( Hnew) ) ;
Cum=QumtQ n;
if floor(t10)==t10; % condition to save all tenperature data
H=0; % Cal cul ate total enthal py H
for i=1:nunx; ¥%Add water and wall val ues
H=H+M Cpwat er * Tnew(i , 1) +Ms* Cps* Tnew(i , 2);
end

for i=1:nunx

for j=3:nuny; % Add PCM
if X(i,j)==0; HpcnmeMocrm Tnew(i,|)*CpPCMs ;
end

if(X(i,j)>0 && X(i,j)<1);
hpcme( Tnew(i,j)-Ts)*( CpPCMs+. ..
(CpPCM - CpPCMB) / 2/ (TI -Ts)*(Tnew(i,j)-
Ts))+X(i,j)*L...
+CpPCMs* Ts;
Hpcm=hpcnt Mpcm
end
if X(i,j)>=1;
hpcme( Tl - Ts) * ( CoPCVs+CpPCM ) / 2+, ..
L+(Tnew(i,j)-Tl)*CpPCM +Ts* CpPCMs;

Hpcm=hpcnt Mpcm
end
H=H+Hpcm
end

end

t

H

% sumHnew

Hinitial

Qcum

Hstore=H-Hiniti al

Qn

% sunHi nc
%-i nd Tout actual val ue

Twat er out ex(t 10+1) = Heati ngTt (rowl, 3) +( Heati ngTt (row2, 3) -
Heat i ngTt (rowl, 3)). ..
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*(t/20-rowl+l);

Twat er out si n{t 10+1) =Tnew nunx, 1) ;

Ti n10(t 10+1) =Tnew(1, 1);
Qcumarray(t10+1) =Qcum
Q narray(t10+1)=Q n;
Tarray(t10+1,:,:)=Tnew,

end
end% of time step

%Reverse bed tenperatures to sinulate flowin reverse direction
Tnew=Tnew( nunx: - 1: 1, 1: nuny);

%

Dl SC'—'ARG N(;\'********************************************************
* *

for t=totalthot+dt:dt:totaltcold+totalthot; %tinme in seconds
t10=t/10; %tine/10 for saving data every 10 seconds.
Ti n=Ti ncol d;
%ol dt ot =H,;
% ol d Enthal py array cal cul ation from tenperatures
% Cal cul ate total enthal py H

% for i=1:nunx; %Add water and wall val ues

% Hol d(i, 1) =M Cpwat er * Tnew(i , 1) ;

% Hol d(i, 2) =Ms*Cps* Tnew(i , 2);

% end

%

% for i=1:numx

% for j=3:nuny; % Add PCM

% if X(i,j)==0; Hpcm=Mocrmt Tnew(i,|)*CpPCMs ;

% end

% if(X(i,j)>0 && X(i,j)<1);

% hpcme( Tnew(i,j)-Ts)*( CpPCNs+. ..

% (CpPCM - CpPCMs) / 2/ (TI -Ts) *(Tnew(i, j)-
Ts))+X(i,j)*L...

% +CpPCNE* Ts;

% Hpcm=hpcnt Mpcm

% end

% if X(i,j)>=1;

% hpcme( Tl - Ts) * ( CpPCVs+CpPCM ) / 2+. . .

% L+(Tnew(i,j)-Tl)*CpPCM +Ts* CpPCM5;

% Hpcm=hpcnt Mpcm

% end

% Hol d(i,j)=Hpcm

% end

% end% of ol d ent hal pi es

T=Tnew;

% cal cul ate properties
for i=1:nunx
for j=3:nuny
X(i,j)= (T(i,j)-Ts)/(TlI-Ts);
if(X(i,j)>1.);X(i,j)=1. ;end
if(X(i,j)<0.);X(i,j)=0. ;end
k(i,j)=X(i,j)*(Kl-ks)+ks;
Cp(i,j)=X(i,j)*(CpPCM - CpPCMs) +CpPCMs;
PE(X(i,j)>0 && X(i,j)<1); Cp(i,j)=Cp(i,j)+Cpnelt;end
end
end
if t==0;% Calculate initial enthal py, zero at OC datum
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HA=MF numx* Cpwat er *Ti ni ti al ;
Hs=Ms* nunx*Cps*Ti ni ti al ;
i f X(3,3)==0; Hpcm=Mocntnunx*(numy-2)*Tinitial*CpPCMs; end
if(X(3,3)>0 && X(3,3)<1);
hpcme(T(3, 3)-Ts) *( CpPCVs+. . .
(CpPCM - CpPCMs) /1 2/ (TI -TS) *(T(3,3)-Ts)) +X(3,3) *L. ..

+CpPCMVs* Ts;
Hpcm=hpcnt Mpent nunx* ( nuny- 2) ;
end
if X(3,3)>=1;

hpcme( Tl - Ts) * ( CoPCVs+CpPCM ) / 2+, ..
L+(T(3,3)-Tl)*CpPCM +Ts* CpPCMb;
Hpcm=hpcnt Mpent nunx* ( nuny- 2) ;
end
Hi ni ti al =Hw+Hs+Hpcm
end

% WATER
Tnew(1, 1) =T(1, 1) +dt/ M mdotw*(Tin-T(1,1))...
+dt / M Cpwat er*h*dx*(T(1,2)-T(1,1)); %first el enent
for i=2:nunx-1,
Tnew(i, 1) =T(i, 1) +dt/ M nmdotwr(-T(i,1)+T(i-1,1))
+ dt/ M Cpwat er*h*dx*(T(i,2)-T(i,1) );
end
Tnew( nunx, 1) =T( numnx, 1) +dt/ M Cpwat er * ( ndot w* Cpwat er* . ..
(T(numx-1, 1) - T(nunx, 1) ) +h*dx* ( T( numnx, 2) - T(nunx, 1)));
% | ast el enent

% WALL
Tnew( 1, 2) =T(1, 2) +dt/ Ms/ Cps*(h*dx*(T(1,1)-T(1,2))...
+ksteel *wt/dx*(T(2,2)-T(1,2))...
+dx*(T(1,3)-T(1,2))*2/ (wt/ksteel +dy/ k(1,3)));
for i=2:nunx-1,

Tnew(i, 2)=T(i,2)+dt/ Ms/ Cps*(h*dx*(T(i,1)-T(i,2))...
+ksteel *wt/dx*(T(i-1,2)+T(i+1,2)-2*T(i,2))...
+dx*(T(i,3)-T(i,2))*2/ (wt/ksteel +dy/ k(i,3)));

end
Tnew( nunx, 2) =T( nunxk, 2) +dt / Ms/ Cps* (h*dx* ( T( nunx, 1) -
T(numk, 2)). ..
+kst eel *wt / dx* ( T( nunx- 1, 2) - T(nunx, 2)). ..
+dx* ( T( nunx, 3) - T(nunx, 2) ) *2/ (wt / kst eel +dy/ k( nunx, 3)));

% PCM
for i=1:nunx;
for j=3:nuny;
% North resistance al ways defi ned:
if j==3;
RN=wt / 2/ k(i ,j-1)+dy/ 2/ k(i,j);
el se
RN=dy/ 2/ k(i ,j-1)+dy/ 2/ k(i,j);
end
% South resistance infinity on adiabatic |ine of
symetry:
i f j==nuny;
RS=0.5; %heat | ocass fromtop of plate
TS=20. ;
el se
RS=dy/ 2/ k(i ,j+1)+dy/ 2/ k(i,j);
TS=T(i,j+1);

236



end

% West resistance infinity at left wall:
if i==1;
RWEi nf ;
TWEL;
el se
RWedx/ 2/ k(i -1,j)+dx/ 2/ k(i,j);
TWET(i-1,j);
end

% East resistance infinity at right wall:
i f i==nunx;
RE=i nf ;
TE=1. ;
el se
RE=dx/ 2/ k(i +1,j)+dx/ 2/ k(i,j);
TE=T(i +1,j);
end
Tnew(i,j)=Tnew(i,j)+dt/Mecm Cp(i,j)*...
(dx/ RN*T(i,j-1)+dx/ RS*TS. ..
+dy/ RE* TE+dy/ RW TW . .
-T(i,j)*(dx/ RN+dx/ RS+dy/ RE+dy/ RW ) ;
end % of | =3: nuny
end % of i =1: nunx

% New Ent hal py array cal cul ation from tenperatures
% Cal cul ate total enthal py H

% for i=1:nunx; ¥%Add water and wall val ues

% Hnew(i, 1) =M Cpwat er * Tnew(i , 1) ;

% Hnew(i, 2) =Ms* Cps* Tnew(i , 2) ;

% end

%

% for i=1:nunx

% for j=3: nuny; % Add PCM

% if X(i,j)==0; Hpcm=MocrmrTnew(i,|)*CpPCMs ;

% end

% if(X(i,j)>0 && X(i,j)<1);

% hpcme( Tnew(i,j)-Ts)*( CpPCMs+. ..

% (CpPCM - CpPCMs) /1 2/ (TI -TS) *(Tnew(i,j)-
Ts)) +X(i,j)*L...

% +CpPCME* Ts;

% Hpcm=hpcnt Mpcm

% end

% if X(i,j)>=1,;

% hpcme( Tl - Ts) * ( CoPCVs+CpPCM ) / 2+. ..

% L+(Tnew(i,j)-Tl)*CpPCM +Ts* CpPCMs;

% Hpcm=hpcnt Mpcm

% end

% Hnew(i, ) =Hpcm

% end

% end% of new ent hal pi es

% nc=Hnew Hol d;

Q n=ndot w* Cpwat er *( Ti n- T(nunx, 1)) *dt; % negati ve
%sumHi nc=sum(sun( Hi nc));

¥%sumHnew=sum( sun( Hnew) ) ;

CumQumtQ n;

if floor(t10)==t10; % condition to save all tenperature data
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H=0; % Cal cul ate total enthalpy H

for i=1:nunx; ¥%Add water and wal |l val ues
H=H+M Cpwat er * Tnew(i , 1) +Ms* Cps* Tnew(i , 2);

end

for i=1:nunx

for j=3:nuny; % Add PCM
if X(i,j)==0; HpcmeMocrmr Tnew(i,|)*CpPCMs ;
end

if(X(i,j)>0 && X(i,j)<1);
hpcme( Tnew(i,j)-Ts)*( CpPCMs+. ..
(CpPCM - CpPCMs) / 2/ (TI -Ts) *(Tnew(i,j)-
Ts)) +X(i,j)*L...
+CpPCME* Ts;
Hpcm=hpcnt Mpcm
end
if X(i,j)>=1;
hpcme( Tl - Ts) * ( CoPCVs+CpPCM ) / 2+, . .
L+(Tnew(i,j)-Tl)*CpPCM +Ts* CpPCMs;

Hpcm=hpcnt Mpcm
end
H=H+Hpcm
end

end

t

H

% sumHnew

Hinitial

Qcum

Hstore=H-Hiniti al

Qn

% sumHi nc

Qumarray(t10+1) =Qcum

Q narray(t10+1)=Q n;

Tarray(t10+1, nunx: -1:1,:)=Tnew,

end

end% of time step
hol d of f
pl ot (Twat eroutex, ' b')
yl abel (' Tenperature in centigrade')
xl abel (' Time in tens of seconds')
hol d on
plot(Tinl0,'r")
%8l ot (Tpcnt enp, ' k')
pl ot (Twat eroutsim'g')
| egend(' Qutl et HTF experinent', 'Inlet HTF experinent', 'Qutlet HTF
simul ation")
figure(2)
pl ot (Qcumar r ay) %9888808808888&ner gy stored(J)
xl abel (' Time in tens of seconds')
yl abel (' Joul es stored')
figure(3)
plot(Q narray, ('b'))%888charge rate during chargi ng(W
xl abel (" Time in tens of seconds')
yl abel (' Charge rate stored')
figure(4)
contourf(T ); colorbar; title(' Tenperature °C)
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Appendix K: Plate heat exchanger design prior to construction

PP sheet

The design of the plate heat exchanger thermal store was based on the desire to use a
plastic (polypropylene) sheet to construct aPCM thermal store that could be retrofitted
in domestic homes. The length and width of the store was based on suitability to mount
the store in homes. In order to design the thermal store that would allow effective heat
transfer aong the store and a short conduction pat length. PP sheet with thin wall
which would alow effective heat transfer between the HTF, wall and PCM was used.

For amass flow rate of 65 g/s at high flow with an inlet HTF temperature of 60°C

Q = me(Tln _Tout)
(Tin _Tout) =5°C
(Q = 0.065x4.185x10° x(5) = 1362 W

The hydraulic diameter is calculated based on the dimensions of the channels of the
PP sheet (a=3.4mm; b=3.6mm)

P

‘ a

b

4
th?pt

A =ab
P=2(a+b)

2ab  2(3.4x10°)(3.6x10°)
(a+b) (3.4x10°+3.6x107)
D, =0.0034m

D, =

Based on the channel width ratio, the Nusselt number at constant surface temperature
was used. Theinternal convection for fully developed laminar flow at constant surface
temperature for a channel width ratio of 1 has a Nusselt number of 2.98 (Nu=2.98)
Kays and Crawford (1993).

The heat transfer coefficient of the HTF is calcul ated thus;

_hb,
Tk

Nu
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_ Nuk, 298x0.6587

h
"D, 0.0034

=577.52

The temperature difference between the inlet HTF temperature for RT 52 and RT58
are 8°C and 7°C respectively. Considering the difference between the temperature of
the HTF and PCM as the log mean temperature, the area of the store with a constant
inlet HTF temperature (65°C) can be calculated as:

O=h, AAT
AT = THTF
__Q

h, AT
A 1362 _
577x8

- TPCM

0.3m?

The area of the plate heat exchanger is calculated as0.3m”. To increase the amount of
energy obtainable from the store and to ensure a fully developed flow, the area of the

PP sheet was increased to 0.76m” . Thus the length of the store was taken as 1.9m and
the width; 0.4m. The PP sheet from the manufacturers are cut to match this
dimensions. The dimensions of the channels results into a laminar flow within the
channels as calculated in Table 6:4.

The number of channels of the PE sheet can be calculated thus;

Width of store
width of channel

Number of channel(N) =

= 400mm =111 channels
mm

(N)
The total mass of PCM required to fill the PP sheet is determined based on the
dimension of the store and the density of the PCM
Mpcv= Volume of PCM x density of PCM= 1.9x0.4x0.01 x 880 = 6.7kg

Estimate of the stored energy can be determined by multiplying the total mass of the
PCM

E = Mpcm X Latent heat = 6.7 x 140kJkg =0.938MJ for RT 58
E = Mpcm X Latent heat = 6.7 x 153kJkg =1.03MJ for RT 52
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Appendix L: Serpentine heat exchanger design prior to construction

SHE

For the serpentine heat exchanger, the design was based on the desire to compare the
thermal behaviour of the thermal store using a plastic (polypropylene) sheet and the
serpentine heat exchanger. Similar length and width to the plate heat exchanger (PHE)
was used to construct the serpentine heat exchanger (SHE) store. Copper pipe with
internal diameter of 6.27mm was utilised for this construction, dueto its availability.

For amass flow rate of 30 g/s at high flow with an inlet HTF temperature of 70°C.
Q = me(Tln _Tout)
(T,-T,)=10°C
Q= 0.03x4.19x10°x(10) =1257 W

Reynolds number is a measure of the ratio of the inertia force to the viscous force of
the HTF. It can be expressed as afunction of the massflow rate and hydraulic diameter
of the pipe.

Re— 4m
M7 Dy,

4x0.03

Re: > 3 :15, 042
7(4.04x10%)(6.27x10°)

Based on the cal culated Reynolds number, the flow isturbulent. Thusto determinethe
Nusset number, Dittus-Boelter correlation is used.

Using Dittus-Boelter correlation, the Nusset number is estimated based on the
Reynolds number and Prandtl number

Nu =0.023Re”® Pr™  (n*=0.4 for heating)
(n* = 0.3 for cooling)

The Nusset number is calculated as 74. The heat transfer coefficient of the fluid can
be determined using this relationship;

The heat transfer coefficient of the HTF is calculated as 7788W/m?K .

The overal heat transfer coefficient taking into consideration the convection in the
HTF, wall and PCM, a vaue of 785W/m?K is assumed. Based on this, the overall
length of the copper pipe required for the SHE thermal store is determined.
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L og mean temperature difference; AT, ., iSthe differencein temperature between the

HTF and the surrounding surface (PCM in this case). The difference between the inlet
HTF temperature and the melting temperature of the PCM (RT 52) is taken asthelog
mean temperature difference. The areaand length of the pipe can be deduced.

Q= UAATLTMD
ATLTMD = THTF _TPCM =60-52=8°C

__Q
UATLTMD
A 1257 _
785%x8
A=7DL
LA 0.2
nD  7(6.27x107%)

0.2m?

=10.16m

The total mass of PCM required to fill the SHE thermal store is determined based on
the dimension of the store and the density of the PCM. The PCM only fills half of the
height of the tank to allow for volume expansion of the PCM. The entire copper pipe
is covered by the PCM

Mpcm= Volume of PCM x density of PCM= 1.97x0.62x0.025 x 880 = 26.8kg

Estimate of the stored energy can be determined by multiplying the total mass of the
PCM

E = Mpcm X Latent heat = 26.8 x 153kJ/kg =4.10MJ for RT 52.
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