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Abstract9

The problem of detecting network structures plays a central role in distributed computing. One10

of the fundamental problems studied in this area is to determine whether for a given graph H,11

the input network contains a subgraph isomorphic to H or not. We investigate this problem12

for H being a clique K` in the classical distributed CONGEST model, where the communication13

topology is the same as the topology of the underlying network, and with limited communication14

bandwidth on the links.15

Our first and main result is a lower bound, showing that detecting K` requires Ω(
√
n/b)16

communication rounds, for every 4 ≤ ` ≤
√
n, and Ω(n/(`b)) rounds for every ` ≥

√
n, where17

b is the bandwidth of the communication links. This result is obtained by using a reduction18

to the set disjointness problem in the framework of two-party communication complexity. We19

complement our lower bound with a two-party communication protocol for listing all cliques in20

the input graph, which up to constant factors communicates the same number of bits as our lower21

bound for K4 detection. This demonstrates that our lower bound cannot be improved using the22

two-party communication framework.23
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1 Introduction29

We study the problem of detecting network structures in a distributed environment, which30

is a fundamental problem in modern computing. Our focus is on the subgraph detection31

problem, in which for a given graph H, one wants to determine whether the network graph32

G contains a subgraph isomorphic to H or not. We investigate this problem for H being a33

clique K` for ` ≥ 4.34

The nowadays classical distributed CONGEST model (see, e.g., [18]) is a variant of the35

classical LOCAL model of distributed computation (where in each round network nodes36

can send through all incident links messages of unrestricted size) with limited communi-37

cation bandwidth. The distributed system is represented as a network (undirected graph)38
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16:2 Detecting cliques in CONGEST networks

G = (V,E) with n = |V | nodes, where network nodes execute distributed algorithms in syn-39

chronous rounds, and the nodes collaborate to solve a graph problem with input G. Each40

node is assumed to have a unique identifier from {0, . . . ,poly(n)}. In any single round, all41

nodes can:42

(i) perform an unlimited amount of local computation,43

(ii) send a possibly different b-bit message to each of their neighbors, and44

(iii) receive all messages sent to them.45

We measure the complexity of an algorithms by the number of synchronous rounds required.46

In accordance with the standard terminology in the literature, we assume b = O(logn);47

we note though that our analysis generalizes to other settings of b in a straightforward48

manner. (We note that in our lower bound for detecting K4 and K` in Section 2, to ensure49

full generality of presentation, we will make the analysis parametrized by the message size50

b, in which case we will refer to such model of distributed computation as CONGESTb, the51

CONGEST model with messages of size b.)52

Our goal is, for a given network G = (V,E) and ` ≥ 4, to solve the subgraph detection53

problem for a clique K`, that is, to design an algorithm in the CONGEST model such that54

(i) if G contains a copy of K`, then with probability ≥ 2
3 at least one node outputs 1, and55

(ii) if G does not contain a copy of K`, then with probability ≥ 2
3 no node outputs 1.56

The subgraph detection problem is a local problem: it can be solved efficiently solely on57

the basis of local information. In particular, in the CONGEST model, the problem of finding58

K` in a graph can be trivially solved in O(n) rounds, or in fact, in O(maxu∈V degG(u))59

rounds, where degG(u) denotes the degree of node u in G. Indeed, if each node sends its60

entire neighborhood to all its neighbors, then afterwards, each node will be aware of all its61

neighbors and of their neighbors. Therefore, in particular, each node will be able to detect62

all cliques it belongs to. Since for each node u, the task of sending its entire neighborhood63

to all its neighbors can be performed in O(degG(u)) rounds in the CONGEST model, the64

total number of rounds for the entire network is O(maxu∈V degG(u)) = O(n) rounds. In65

view of this simple observation, the main challenge in the clique K` detection problem is66

whether this task can be performed in a sublinear number of rounds.67

1.1 Our results68

In this paper, we give the first non-trivial lower bound for the complexity of detecting a clique69

K` in the CONGESTb model, for ` ≥ 4. In Theorem 5, we prove that every algorithm in the70

CONGESTb model that with probability at least 2
3 detects K`, for ` ≥ 4 and ` = O(

√
n),71

requires Ω(
√
n/b) rounds. Further, if ` = ω(

√
n), then Ω(n/(` b)) rounds are required. We72

are not aware of any other non-trivial (super-constant) lower bound for this problem in the73

CONGESTb model.74

We complement our lower bound with a two-party communication protocol for listing all75

cliques in the input graph (see Theorem 10), which up to constant factors communicates the76

same number of bits as our lower bound for K4 detection. This demonstrates that our lower77

bound is essentially tight in this framework, and cannot be improved using the two-party78

communication approach.79

1.2 Techniques: Framework of two-party communication complexity80

Our main results, the lower bound of clique detection in Theorem 5 and the upper bound81

in Theorem 10, rely on the two-party communication complexity framework and the use of82
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a tight lower bound for the set disjointness problem in this framework.83

We consider the classical two-party communication complexity setting (cf. [16]) in which84

two players, Alice and Bob, each have some private input X and Y . The players’ goal is to85

compute a joint function f(X,Y ), and the complexity measure used is the number of bits86

Alice and Bob must exchange to compute f(X,Y ). In the two-party communication problem87

of set disjointness, Alice’s input is X ∈ {0, 1}n and Bob holds Y ∈ {0, 1}n, and their goal88

is to compute DISJn(X,Y ) :=
∨n

i=1Xi ∧ Yi. In a seminal work, Kalyanasundaram and89

Schnitger [14] showed that in any randomized communication protocol, the players must90

exchange Ω(n) bits to solve the set disjointness problem with constant success probability.91

I Theorem 1 ([14]). The randomized two-party communication complexity of set disjoint-92

ness is Ω(n). That is, for any constant p > 0, any randomized two-party communication93

protocol that computes DISJn(X,Y ) with probability at least p, has two-party communication94

complexity Ω(n).95

Our main result, the lower bound for detecting K` in the CONGEST model, relies on96

a reduction from the two-party communication problem of set disjointness. The two-party97

communication framework, and, in particular, the two-party set disjointness problem, have98

been frequently used in the past to construct lower bounds for the CONGEST model, see, e.g.,99

[4, 7, 9, 11, 15]. A typical approach relies on a construction of a special graph G = (V,E)100

with some fixed edges and some edges depending on the input of Alice and Bob. One101

partitions the nodes of G into two disjoint sets VA and VB . Let C be the (VA, VB)-cut, that102

is, the set of edges in G with one endpoint in VA and one endpoint in VB . Let EA be the edge103

set of G[VA] (subset of E on vertex set VA) and EB be the edge set of G[VB ]. We consider104

a scenario where Alice’s input is represented by the subgraph GA = (V,EA ∪ C) ⊆ G and105

Bob’s input is represented by GB = (V,EB ∪ C) ⊆ G. (We denote this way of distributing106

the vertex and edge sets as the vertex partition model.) In order to learn any information107

about the structure of G[A] \ C and G[B] \ C, and hence about the input of the other player,108

Alice and Bob must communicate through the edges of the cut C. Therefore, in order to109

obtain a lower bound for a problem in the CONGESTb model, one wants to construct G110

to ensure that it has some property (in our case, contains a copy of K`) if and only if the111

corresponding instance of set disjointness is such that DISJn(X,Y ) = 1, and in order to112

determine the required property, one has to communicate a large part of (essentially the113

entire graph) G[A] through C. With this approach, if the cut C has size |C|, and the private114

inputs of Alice and Bob (edges in G[A] \ C or G[B] \ C) are of size s, one can apply Theorem115

1 to argue that the round complexity of any distributed algorithm in the CONGESTb model116

for a given problem is Ω( s
|C|·b ). The central challenge is to ensure that for the encoded set117

disjointness instance of size s and the cut of size |C|, the ratio s
|C| is as large as possible.118

For example, Drucker et al. [7] incorporated a similar approach to obtain a lower bound119

for the subgraph detection problem in a broadcast variant of the CONGESTb model (in fact,120

even for a (stronger) broadcast variant of the CONGESTED CLIQUE model), where nodes121

are required to send the same message through all their incident edges. The lower bound122

construction requires sending Ω(n2) bits through the cut of size O(n2), but the fact that123

in the broadcast variant of the CONGESTb model every node is required to send the same124

message via all incident edges, at most O(n b) bits can be transmitted through the cut,125

yielding a lower bound of Ω( n
b ). (In particular, for the broadcast variant of the CONGESTb126

model, Drucker et al. [7, Theorem 15] proved that detecting a cliqueK`, ` ≥ 4, requires Ω( n
b )127

rounds.) Note however that in the (non-broadcast) CONGESTb model, this construction does128

not give any not-trivial bound, since s
|C| = O(1).129
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Our main building block for our lower bound is the construction of (Ω(n2),O(n3/2))-130

lower-bound graphs (see Section 3.1 for the precise definition) that can be used to encode131

a set disjointness instance of size s = Ω(n2) such that the cut is of size |C| = O(n3/2). By132

incorporating these bounds in the framework described above, this construction leads to the133

first non-trivial lower bound of Ω(
√

n
b ) for the subgraph detection problem in the CONGESTb134

model for the clique K4. This construction can also be extended to detect larger cliques,135

yielding the lower bound of Ω( n
(`+
√

n) b ) for detecting any K` with ` ≥ 4.136

Since these are the first superconstant lower bounds for detecting a clique in the CON-137

GEST model and since the best upper bound for these problems is still O(n), the next goal138

is to understand to what extent these bounds could be improved and whether the existing139

approach could be used for that task. Do we need Ω(
√

n
b ) communication rounds to detect140

any clique K` (with ` ≥ 4, ` = O(
√
n)) in the CONGESTb model, or maybe we need as141

many as a linear number of rounds? While we do not know the answer to this question,142

and in fact, this question is the main open problem left by this paper, we can prove that143

any better lower bound would require a significantly different approach, going beyond the144

two-party communication framework in the vertex partition model.145

Indeed, let us consider the vertex partition model in the two-party communication frame-146

work, as defined above. The input consists of an undirected G = (V,E) with an arbitrary147

vertex partition V = VA ∪̇ VB . We consider a scenario where Alice is given the subgraph148

GA = (V,EA ∪C) ⊆ G and Bob is given GB = (V,EB ∪C) ⊆ G, where C is the (VA, VB)-cut149

in G. The arguments in our construction of lower-bound graphs in Theorem 9 imply that150

for some inputs, any two-party communication protocol in the vertex partition model for151

the problem of listing all cliques in a given graph with n nodes requires communication of152

Ω(
√
n |C|) bits between Alice and Bob. We will prove in Section 4 (Theorem 10) that this153

lower bound is asymptotically tight in the two-party communication framework in the vertex154

partition model. We show that there is a two-party communication protocol in the vertex155

partition model for listing all cliques that uses O(
√
n |C|) communication rounds, where C is156

the set of shared edges between Alice and Bob. This shows that we cannot obtain stronger157

lower bounds for the K`-detection problem, for ` = O(
√
n), in the CONGEST model using158

the two-party communication framework in the vertex partition model.159

1.3 Related works160

As a fundamental primitive, subgraph detection and listing in the CONGEST model has161

been recently receiving attention from multiple authors, focusing mainly on randomized162

complexity. However, despite major efforts, for the CONGEST model, relatively little is163

known about the complexity of the subgraph detection problem.164

Prior to our work, no non-trivial results about the complexity of clique K` (` ≥ 4)165

detection in the CONGEST model have been known. While there is a trivial lower bound of166

a constant number of rounds, and as we mentioned earlier, one can easily solve the problem167

in O(n) rounds in the CONGEST model, no sublinear upper bounds nor superconstant lower168

bounds have been known.169

In a recent breakthrough in this area, Izumi and Le Gall [12] raised some hopes that170

maybe these problems could be solved in a sublinear number of rounds in the CONGEST171

model. They considered the subgraph detection problem for the smallest interesting sub-172

graph H, the triangle K3, and presented a very clever algorithm that detects a triangle in173

Õ(n2/3) rounds. Further, they also showed that the related problem of finding all triangles174

(triangle listing) can be solved in Õ(n3/4) rounds. Very recently, these results were im-175

proved by Chang et al. [5], who showed that both triangle detection and enumeration can176
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be solved in Õ(
√
n) rounds in the CONGEST model. There is no non-trivial lower bound177

for the triangle detection problem, though it is known (cf. [12, 17]) that the more complex178

triangle listing problem requires Ω(n1/3/ logn) rounds, even in the CONGESTED CLIQUE179

model. It can also be shown that the problem of listing all triangles such that each node180

v learns all triangles that it is part of significantly harder than the general triangle listing181

problem and requires Ω(n/ logn) rounds [12, Proposition 4.4]. While rather disappointingly,182

we do not know how to extend any of these upper bounds to other cliques K` with ` ≥ 4,183

the previously mentioned works for triangle detection raise hope that detecting cliques K`184

could potentially be solved in a sublinear number of rounds. In fact, even for K3, we do185

not even know whether detecting a triangle K3 can be solved in a polylogarithmic or even186

a constant number of rounds in the CONGEST model (the lower bound of Ω(n1/3/ logn)187

rounds in the CONGESTED CLIQUE model (cf. [12, 17]) holds only for a more complex188

problem of detecting all triangles).189

Even et al. [8] noted that the problem of detecting trees is significantly simpler and190

designed a randomized color-coding algorithm that detects any constant-size tree on ` nodes191

in O(``) rounds.192

As for lower bounds for the subgraph detection problem in the CONGEST model, until193

very recently, the only hardness results known in the literature have been for cycles. For194

any fixed ` ≥ 4, there is a polynomial lower bound for detecting the `-cycle C` in the195

CONGEST model [7], where it has been shown that detecting C` requires Ω(ex(n,C`)/ logn)196

rounds, where ex(n,C`) is the Turán number for cycles, that is, the largest possible number197

of edges in a C`-free graph over n vertices. In particular, for odd-length cycles (of length198

5 or more), the lower bound of [7] is Ω(n/ logn), and it is Ω(
√
n/ logn) for ` = 4. Very199

recently, Korhonen and Rybicki [15] improved the lower bound for all even-length cycles to200

Ω(
√
n/ logn). Further, Gonen and Oshman [11] extended these lower bounds for C`-freeness201

to some related classes of graphs, though still with some cyclic underlying structure. (As202

mentioned above, we note that Drucker et al. [7] presented lower bounds for other graphs,203

but this was in a broadcast variant of the CONGESTED CLIQUE model, where nodes are204

required to send the same message on all their edges. In particular, for the broadcast variant205

of the CONGESTED CLIQUE model, Drucker et al. [7] proved that detecting a clique K`,206

` ≥ 4, requires Ω(n/ logn) rounds.)207

The only lower bound for the subgraph detection problem for H significantly other than208

cycles, is a very recent work of Fischer et al. [9], who demonstrated that the subgraph209

detection problem is hard even for some subgraphs H of constant size. In particular, for any210

constant ` ≥ 2, there is a graph H with a constant number of vertices and edges such that211

the problem of finding H in a network of size n requires time Ω(n2− 1
` /b) in the CONGEST212

model, where b is the bandwidth of each communication links.213

There has also been some recent research for the deterministic subgraph detection prob-214

lem in the CONGEST model. For example, Drucker et al. [7] designed an O(
√
n) round215

algorithm for C4 detection, and Even et al. [8] and Korhonen and Rybicki [15] obtained216

path and tree detection algorithms requiring only a constant number of rounds. Korhonen217

and Rybicki [15] considered also deterministic subgraph detection (for paths, cycles, trees,218

pseudotrees, and on d-degenerate graphs) in the weaker broadcast CONGEST model, where219

nodes send the same message to all neighbors in each communication round. In the CON-220

GESTED CLIQUE model, deterministic subgraph detection algorithms were given by Dolev221

et al. [6] and Censor-Hillel et al. [3].222

We summarize earlier results together with our new results in Table 1.223

DISC 2018



16:6 Detecting cliques in CONGEST networks

Paper Time bound Problem Model

[8] O(``) Detecting a tree on ` nodes CONGEST
folklore O(n) Detecting K`, ` ≥ 3 CONGEST

[5] Õ(
√

n) Detecting triangle K3 CONGEST
[5] Õ(

√
n) Triangle listing CONGEST

[9] Ω(n2− 1
` / log n) Detecting some H of size O(`) CONGEST

[7] Ω(n/ log n) Detecting C`, ` ≥ 5, ` odd CONGEST
[7, 15] Ω(

√
n/ log n) Detecting C`, ` ≥ 4, ` even CONGEST

[12, 17] Ω(n1/3/poly-log(n)) Triangle listing CONGESTED CLIQUE
[7] Ω(n/ log n) Detecting K` for ` ≥ 4 br. CONGESTED CLIQUE

Thm. 4 Ω(
√

n/ log n) Detecting K4 CONGEST
Thm. 5 Ω(

√
n/(` log n)) Detecting K` for ` ≥ 4 CONGEST

Table 1 Prior (randomized) results for the problem of detecting a given subgraph H, or for
listing all copies of H, in the CONGEST model (less relevant results (upper bounds) for the CON-
GESTED CLIQUE model are omitted; note that lower bounds for CONGESTED CLIQUE hold also for
CONGEST and lower bounds for broadcast CONGESTED CLIQUE, abbreviated by br. CONGESTED
CLIQUE in the table, do not imply any bounds for CONGEST).

1.3.1 Property testing of H-freeness224

Since there have been so few positive results for the original subgraph detection problem,225

recently there have been some advances in a relaxation of this problem, a closely related226

(and significantly simpler) problem of testing subgraphs freeness in the framework of property227

testing for distributed computations (see, e.g., [1, 8]). In the property testing setting, an228

algorithm has to decide, with probability at least 2
3 , if the input graph is (a) H-free (i.e.,229

does not contain a subgraph isomorphic to H) or (b) ε-far from being H-free (that is, the230

goal is to distinguish whether the input graph G is H-free or one needs to modify more than231

ε|E(G)| edges of G to obtain a graph that is H-free); in the intermediate case, the algorithm232

can perform arbitrarily (see e.g., [3, 8] for more details). Property testing of H-freeness in233

the CONGEST model has received a lot of attention lately (see, e.g., [1, 2, 8, 9, 10]). In234

particular, it has been shown [8] that testing H-freeness can be done in O(1/ε) round in235

the CONGEST model for any constant-size graph H containing an edge (x, y) such that any236

cycle in H contains at least one of x, y. This implies testing in O(1/ε) rounds of any cycle237

Ck, and of any subgraph H on five (or less) vertices except K5. Further, for any ` ≥ 5,238

K`-freeness can be tested in O((ε · |E(G)|)
1
2−

1
`−2 /ε) rounds [8]. For trees, Even et al. [8]239

show that testing if the input graph is T -free for a tree T on ` vertices can be done in240

O(`1+`2
/ε`) rounds the CONGEST model.241

2 Lower bound results: Detecting a clique requires Ω̃(
√

n) rounds242

In this section we prove our hardness results showing that any algorithm in the CONGESTb243

model that detects a K` with probability at least 2
3 requires Ω(

√
n/b) rounds, for every244

` = O(
√
n) and ` ≥ 4, and requires Ω( n

`b ) rounds if ` = ω(
√
n) (Theorems 4 and 5);245

or in short, Ω( n
(`+
√

n) b ) rounds, for every ` ≥ 4. Our lower bound for the complexity of246

detecting K` in the CONGEST model relies on a reduction to the two-party communication247
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HA G HB G′ G′

a1 b1

a2 b2

a3 b3

a4 b4

x1 y1

x4 x2 y2 y4

x3 y3

Figure 1 Left: Example of a (4, 12)-lower-bound graph G = (A, B, E). The dotted edges are the
edges of the associated graphs HA and HB (observe that HA and HB form cycles of length 4, which
are bipartite). For 1 ≤ i ≤ 4, let Ei be the edge set of subgraph G[{ai, a(i mod 4)+1, bi, b(i mod 4)+1}].
Observe that E =

⋃
i≤4 Ei, and, for every i, G[Ei] is isomorphic to K2,2. Observe further that for

i 6= j, G[A(Ei)∪B(Ej)] is not isomorphic to K2,2. Center: Graph G′ as in the proof of Theorem 3
obtained from the set disjointness instance with X = (1, 0, 0, 1) and Y = (0, 1, 1, 1). Graph G′

contains a K4 if and only if the set disjointness instance evaluates to 1. Right: The highlighted
edges form a K4.

complexity lower bound for the set disjointness problem (cf. Theorem 1 in Section 1.2),248

which we implement with the help of lower-bound graphs (cf. Section 2.1).249

2.1 Lower-bound graphs250

Our reduction to the two-party communication complexity lower bound for the set disjoint-251

ness problem relies on a notion of a lower-bound graph (cf. Figure 1).252

I Definition 2. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n and let k,m be253

integers. Then G is called a (k,m)-lower-bound graph if:254

1. |E| ≤ m.255

2. The edge set E is the union of (not necessarily disjoint) sets E1, E2, . . . , Ek such that, for256

every i, 1 ≤ i ≤ k, the edge-induced subgraph G[Ei] is isomorphic to K2,2.257

3. For every i, j, 1 ≤ i, j ≤ k, i 6= j, the vertex-induced subgraph G[A(Ei) ∪ B(Ej)] is not258

isomorphic to K2,2 (For a set of edges E′ ⊆ E we denote the set of incident A-vertices259

by A(E′). The set B(E′) is defined similarly.).260

4. Define two graphs associated with G, HA = (A,EA) and HB = (B,EB). HA is the graph261

on vertex set A, where a1, a2 ∈ A are adjacent if and only if there exists an index i262

with A(Ei) = {a1, a2}. Similarly, HB is the graph on vertex set B, where b1, b2 ∈ B are263

adjacent if and only if there exists an index j with B(Ej) = {b1, b2}. Then, we require264

that HA and HB are bipartite.265

2.2 Using lower-bound graphs and set disjointness to prove the266

hardness of clique detection267

With the notion of lower-bound graphs at hand, we can formalize our reduction to the two-268

party communication complexity lower bound for set disjointness to obtain the following269

central theorem.270

DISC 2018



16:8 Detecting cliques in CONGEST networks

I Theorem 3. Let G be a (k,m)-lower-bound graph. Then, detecting a K4 in the CONGESTb271

model with probability at least 2
3 requires Ω

(
k

mb

)
rounds.272

Proof. Let A be an algorithm in the CONGESTb model for K4 detection, that is, such that273

with probability at least 2
3 , if G contains a K4 then at least one node outputs 1 and if G274

contains no copy of K4 then no node outputs 1. We will show that A can be used to solve275

the two-party set disjointness problem for instances of size k.276

Consider a set disjointness instance (X,Y ) of size k. Let G = (A,B,E) be a (k,m)-lower-277

bound graph, let E1, E2, . . . , Ek be the edge partition as in Item 2 of Definition 2, and let278

HA = (A,EA) and HB = (B,EB) be the graphs associated with G (Item 4 in Definition 2).279

Alice constructs the set E′A ⊆ EA such that for every i with Xi = 1, the edge between A(Ei)280

is included in E′A. Similarly, Bob constructs the set E′B ⊆ EB such that for every i with281

Yi = 1, the edge between B(Ei) is included in E′B .282

We first show that the graph G′ := G ∪ (E′A ∪ E′B) contains a K4 if and only if283

DISJn(X,Y ) = 1. Indeed, since by Item 4 of Definition 2, the graphs HA and HB are284

bipartite (and thus the subgraphs G′[A] and G′[B] are bipartite too), any copy of K4 in285

G′ must consist of two vertices from A and two vertices from B. Let a1, a2 be any pair286

of distinct vertices in A and b1, b2 be any pair of distinct vertices in B. Observe that if287

there is no Ei such that {a1, a2} = A(Ei) or there is no Ei such that {b1, b2} = B(Ei) then288

it is impossible for the nodes a1, a2, b1, b2 to form a K4, since this would imply that either289

a1a2 /∈ E′A or b1b2 /∈ E′B . Assume therefore that {a1, a2} = A(Ei) and {b1, b2} = B(Ej), for290

some i, j. Next, suppose that i 6= j. Then G[{a1, a2, b1, b2}] is not isomorphic to K2,2, by291

Item 3 of Definition 2. Hence, assume that i = j. Then G[{a1, a2, b1, b2}] forms a K2,2 if292

and only if Xi = Yi = 1, which in turn implies DISJn(X,Y ) = 1.293

The simulation of A on G′ is executed as follows. Suppose that A runs in r rounds. Alice294

simulates vertices A and Bob simulates vertices B. In round i, Alice sends all messages from295

A with destinations in B to Bob, and Bob sends all messages from B with destinations in A296

to Alice. Since the cut between A and B is of size m, Alice and Bob exchange messages with297

overall mb bits per round. Thus, overall they communicate rmb bits. Since the algorithm298

allows them to solve set disjointness, by Theorem 1, we have rmb = Ω(k). Thus, A requires299

Ω( k
mb ) rounds. J300

In Theorem 9 in Section 3, we prove the existence of a (Ω(n2),O(n3/2))-lower-bound301

graph. By combining Theorem 9 with Theorem 3, we obtain the following main result.302

I Theorem 4. Every algorithm in the CONGESTb model that detects a K4 with probability303

at least 2
3 requires Ω(

√
n/b) rounds.304

2.3 Detection of K` for ` ≥ 5305

The lower bound construction given in Theorem 3 can be extended to the task of detecting306

K`, for ` ≥ 5 (see also Figure 2). To this end, we add a clique on `− 4 new nodes to graph307

G′ (from the proof of Theorem 3) and connect each of these nodes to every vertex in A∪B.308

Observe that this increases the cut between A and B by n(` − 4) edges. For ` = O(
√
n),309

there are only O(n3/2) additional edges, which implies that the same lower bound as for310

K4 holds. If ` = ω(
√
n), then the number of additional edges is significant, since the size311

of the cut increases by more than a constant factor. In this case, the round complexity is312

Ω( n2

n(`−4) b ) = Ω( n
` b ). Similarly as before, the encoded set disjointness instance evaluates to313

1 if and only if G′ contains a clique of size `. We thus conclude with the following theorem.314



A. Czumaj and C. Konrad 16:9

K`−4

xi yi

HA HB

G′

Figure 2 Extension of our lower bound for K4 detection to K` detection, for ` ≥ 5. We add a
clique K`−4 on ` − 4 new vertices to the graph G′ and connect every vertex of the clique to every
other vertex of G′. Then the resulting graph contains a clique on ` vertices if and only if the encoded
set disjointness instance evaluates to 1, i.e., xi = yi = 1, for some i.

I Theorem 5. Every algorithm in the CONGESTb model that detects K`, for ` ≥ 4 and315

` = O(
√
n), with probability at least 2

3 requires Ω(
√
n/b) rounds. If ` = ω(

√
n), then316

Ω(n/(` b)) rounds are required.317

3 Lower-bound graph construction318

In this section, we prove the existence of a (Ω(n2),O(n3/2))-lower-bound graph (see Defi-319

nition 2), which is our main technical tool. We will show in Theorem 9 that Algorithm 1320

below constructs a (Ω(n2),O(n3/2))-lower-bound graph with high probability (observe that321

a non-zero probability already suffices to prove the existence of such a graph).322

3.1 Construction of a (Ω(n2),O(n3/2))-lower-bound graph323

We proceed as follows. We start our construction with a bipartite random graph G =324

(A,B,E) with |A| = |B| = n, where every potential edge ab between a ∈ A and b ∈ B is325

included with probability p = 1√
n
. Observe that for any a1, a2 ∈ A (a1 6= a2) and b1, b2 ∈ B326

(b1 6= b2), the probability that G[{a1, a2, b1, b2}] is isomorphic to a K2,2 is p4. We therefore327

expect G to contain
(

n
2
)2
p4 copies of K2,2, and we prove in Lemma 6 below that, with328

high probability, the actual number of copies of K2,2 does not deviate significantly from its329

expectation. Let K denote the set of copies of K2,2 in G.330

In the peeling phase, we greedily compute a subset H ⊆ K such that at the end, the331

graph induced by the edges of H is a (Ω(n2),O(n3/2))-lower bound graph. When inserting332

a set K = {a1, a2, b1, b2} ∈ K into H, we make sure that the following three properties are333

fulfilled:334

1. We ensure that later on we will never add a K ′ = {a′1, a′2, b′1, b′2} such that either335

{a1, a2, b
′
1, b
′
2} or {a′1, a′2, b1, b2} form a K2,2. To this end, when inserting K into H,336

for every K ′ ∈ K that contains the same pair of A-vertices (or B-vertices), we add its337

pair of B vertices (resp. pair of A vertices) to set FB (resp. FA), indicating that this is338
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Algorithm 1. Construction of a (Ω(n2),O(n3/2))-lower-bound graph:

Input: Integer n, let p = 1√
n
.

1. Random Graph:
Let G = (A,B,E) with |A| = |B| = n be the bipartite random graph where

for every a ∈ A, b ∈ B the edge ab is included in E with probability p.
Let K be the family of sets {a1, a2, b1, b2} with a1, a2 ∈ A, a1 6= a2, b1, b2 ∈ B, b1 6= b2

and G[{a1, a2, b1, b2}] isomorphic to K2,2.
For S ⊆ A ∪B, let K(S) := {K ∈ K : S ⊆ K}.

2. Peeling Process:
Let A′ ⊆ A and B′ ⊆ B be a uniform random sample of A and B, respectively,

where every vertex is included with probability 1
2 .

H ← {}, FA ← {}, FB ← {}.
for every K = {a1, a2, b1, b2} ∈ K do

if |K({a1, a2})| ≤ 6 and |K({b1, b2})| ≤ 6 and |{a1, a2} ∩ A′| = |{b1, b2} ∩ B′| = 1
and

{a1, a2} /∈ FA and {b1, b2} /∈ FB then
H ← H∪K.
For every {a1, a2, b3, b4} ∈ K({a1, a2}), add {b3, b4} to FB .
For every {a3, a4, b1, b2} ∈ K({b1, b2}), add {a3, a4} to FA.

end if
end for

3. Lower Bound Graph H:
For K = {a1, a2, b1, b2} ∈ H, let EK be the edge set {a1b1, a1b2, a2b1, a2b2}.
return H := (A,B,

⋃
K∈HEK).

a forbidden pair. Then, when inserting an element of K into H, we make sure that its339

pairs of A and B vertices are not forbidden.340

2. We make sure that the insertion of K will not prevent too many other sets K ′ from being341

inserted into H. To this end, we guarantee that there are at most six other sets in K342

that share the same pair of A vertices and at most six other sets that share the same343

pair of B vertices. We prove in Lemma 7 that most K ∈ K fulfill this property.344

3. It is required that the graphs GA and GB as defined in Item 4 of Definition 2 are bipartite.345

We therefore partition the sets A and B randomly into subsets A′ and A \ A′, and B′346

and B \ B′, and only add K to H if exactly one of its A vertices is in A′ and one of its347

B vertices is in B′.348

In the last step of the algorithm, we assemble graphH as the union of the edges contained349

in the copies of K2,2 in H.350

3.2 Analysis of Algorithm 1351

Our analysis relies on some basic properties of the structure of subgraphs of random graphs352

(for a more complete treatment of related problems, see, e.g., [13, Chapter 3]). We prove353

three high probability claims about the construction in Algorithm 1: that the random graph354

G contains many copies of K2,2 (Lemma 6), that only a small fraction of pairs of A vertices355

are contained in more than six copies of K2,2 (Lemma 7), and finally that the resulting356
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graph H contains Ω(n2) copies of K2,2 (Lemma 8). With these three claims at hand, we357

will complete the analysis to prove in Theorem 9 that with high probability, the output of358

Algorithm 1 is a (Ω(n2),O(n3/2))-lower-bound graph.359

We begin with a proof that in Algorithm 1, the random graph G contains many copies360

of K2,2.361

I Lemma 6. Suppose that p ≥ 1
n . Then there is a constant C such that362

P

[
|K| ≤ 9

10

(
n

2

)2
p4

]
≤ C · 1

n2p
.363

Proof. We will compute the expectation and the variance of |K| and then use Chebyshev’s364

inequality to bound the probability that |K| deviates substantially from its expectation.365

Let X be the family of all sets {a1, a2, b1, b2} with a1, a2 ∈ A, a1 6= a2, b1, b2 ∈ B,366

b1 6= b2, and for X ∈ X let χ(X) be the indicator variable of the event “G[X] is isomorphic367

to K2,2”. Then:368

E|K| =
∑

X∈X
P [χ(X) = 1] = |X |p4 =

(
n

2

)2
p4 ,369

since K2,2 contains 4 edges. To bound the variance V|K|, we use the identity V|K| =370

E|K|2 − (E|K|)2:371

E|K|2 = E

(∑
X∈X

χ(X)
)2

= E
∑

X,Y ∈X
χ(X) · χ(Y ) =

∑
X,Y ∈X

E(χ(X) · χ(Y )) .372

We distinguish the following cases:373

|X ∩ Y | = 0. Then, E(χ(X) · χ(Y )) = p8. Observe that there are t0 =
(

n
2
)2(n−2

2
)2 such374

pairs.375

|X ∩ Y | = 1. Then, E(χ(X) · χ(Y )) = p8. There are t1 = 4
(

n
2
)2(n−2

2
)(

n−2
1
)
such pairs.376

|X ∩ Y | = 2 and the intersection consists of either two A-vertices or two B-vertices.377

Then, E(χ(X) · χ(Y )) = p8 and there are t2,1 = 2 ·
(

n
2
)2(n−2

2
)
such pairs.378

|X ∩ Y | = 2 and the intersection consists of one A-vertex and one B-vertex. Then,379

E(χ(X) · χ(Y )) = p7 and there are t2,2 = 4 ·
(

n
2
)2 · (n− 2)2 such pairs.380

|X ∩ Y | = 3. Then, E(χ(X) · χ(Y )) = p6. There are t3 = 4 ·
(

n
2
)2 · (n− 2) such pairs.381

|X ∩ Y | = 4. Then, E(χ(X) · χ(Y )) = p4. There are t4 =
(

n
2
)2 such pairs.382

A quick sanity check shows that t0 + t1 + t21 + t22 + t3 + t4 =
(

n
2
)4. We thus obtain:383

V|K| = E|K|2 − (E|K|)2 = p8(t0 + t1 + t2,1) + p7t2,2 + p6t3 + p4t4 −
(
n

2

)4
p8

384

≤ p7t2,2 + p6t3 + p4t4 = O(p7n6) ,385
386

where the last equality holds for every p ≥ 1
n . We apply Chebyshev’s inequality and obtain:387

P
[∣∣∣|K| − E|K|

∣∣∣ ≥ 1
10E|K|

]
≤ 100V|K|

(E|K|)2 = C · 1
n2p

,388

for some constant C. J389
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Next, we prove that only a small fraction of pairs of A vertices are contained in more390

than six copies of K2,2.391

I Lemma 7. Let p = 1√
n

. For every constant δ > 0, with high probability, there are at most392

(1 + δ)n2/10 pairs of distinct vertices a1, a2 ∈ A with |K({a1, a2})| > 6.393

Proof. Let a1, a2 ∈ A, a1 6= a2 be arbitrary vertices. Let B({a1, a2}) ⊆ B be the set of394

vertices b such that a1b, a2b ∈ E. Observe that |K({a1, a2})| =
(|B({a1,a2})|

2
)
. By linearity of395

expectation, E|B({a1, a2})| = np2 = 1.396

Let X be the family of all sets of vertices {a1, a2} ⊆ A with a1 6= a2. Partition now X397

into disjoint subsets such that X = X1 ∪ X2 ∪ · · · ∪ Xn−1, where |Xi| = n/2 and, for every398

1 ≤ i ≤ n − 1, all elements of Xi are pairwise disjoint (such a partitioning corresponds to399

partitioning the complete graph Kn into n − 1 perfect matchings). For a pair of vertices400

P ∈ X , let χ(P ) be the indicator variable of the event “|B(P )| ≥ 5”. Recall that E|B(P )| =401

np2 = 1 (since p = 1/
√
n). Hence, by Markov’s inequality, we have P[χ(P ) = 1] ≤ 1

5 .402

For every 1 ≤ i ≤ n − 1 we have E
∑

P∈Xi
χ(P ) ≤ 1

5
n
2 = n

10 . Observe further that for403

every P,Q ∈ Xi, P 6= Q, the random variables B(P ) and B(Q) are independent. Thus, by404

a Chernoff bound (for µ = n
10 ):405

P

[
|
∑

S∈Xi

χ(S)− µ| ≥ δµ
]
≤ 2 exp

(
−µδ2/3

)
= e−Θ(n) ,406

for any constant δ. Thus, applying the union bound for every 1 ≤ i ≤ n − 1, with high407

probability, at most (1 + δ) n
10 · (n− 1) ≤ (1 + δ)n2/10 pairs of vertices are both connected408

to at least 5 vertices of B. Hence, at most (1 + δ)n2/10 pairs of vertices {a1, a2} are such409

that K({a1, a2}) >
(4

2
)

= 6. J410

In the next lemma, we show that our resulting graph H contains Ω(n2) copies of K2,2.411

I Lemma 8. With high probability, the number of copies of K2,2 in H is |H| = Ω(n2).412

Proof. By Lemma 6, we have |K| ≥ 9
40 (n − 1)2 with high probability. Let K′ ⊆ K be the413

subset of sets {a1, a2, b1, b2} with K({a1, a2}) ≤ 6 and K({b1, b2}) ≤ 6. By Lemma 7, with414

high probability, |K′| ≥ |K| − 2 · (1 + δ)n2/10, for any small constant δ.415

Let K′′ ⊆ K′ be the subset of sets {a1, a2, b1, b2} with |{a1, a2}∩A′| = |{b1, b2}∩B′| = 1.416

Observe that every set X ∈ K′ is included in K′′ with probability 1
4 . Thus, by a Chernoff417

bound, |K′′| ≥ |K′|/8 with high probability.418

We argue next that the insertion of any set K ∈ K′ can block at most 2 · 62 = 72 other419

sets of K′ from being inserted into H. Consider thus a set K = {a1, a2, b1, b2} ∈ K′ that is420

added to H. This inserts at most six pairs {a3, a4} into FA and six pairs {b3, b4} into FB ,421

since K({a1, a2}) ≤ 6 and K({b1, b2}) ≤ 6. Since each pair in FA or in FB can block at most422

another six sets of K′, overall at most 2 · 62 = 72 sets of K′ can be blocked by the insertion423

of K into H.424

Hence:425

|H| ≥ |K
′′|

72 ≥
|K′|

8 · 72 ≥
(|K| − 2 · (1 + δ)n2/10)

8 · 72 ≥
( 9

40 (n− 1)2 − (1 + δ)n2/5)
8 · 72 = Ω(n2) ,426

427

for δ < 1
8 . J428

With Lemmas 6–8 at hand, we are now ready to complete the analysis and show that429

the graph H fulfills Definition 2 of a lower bound graph.430
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I Theorem 9. With high probability, the output of Algorithm 1 is a (Ω(n2),O(n3/2))-lower-431

bound graph. In particular, for every natural n, there exists a (Ω(n2),O(n3/2))-lower-bound432

graph.433

Proof. We need to check that all items of Definition 2 are fulfilled with p = 1√
n
. Concerning434

Item 1, observe that graph G has O(n2p) = O(n3/2) edges with high probability (by a435

Chernoff bound).436

For each K ∈ H, let EK denote the edge set added to graph H as in Step 3 of the437

algorithm. Item 2 holds, since E(H) =
⋃

K∈HEK , and H[EK ] is isomorphic to K2,2, for438

every K, and by Lemma 8.439

Concerning Item 3, observe that when K = {a1, a2, b1, b2} is inserted into H, then every440

{a1, a2, b3, b4} such that G[{a1, a2, b3, b4}] is isomorphic to K2,2 will not be inserted at a441

later stage, since {b3, b4} is inserted into FB . For the same reason, every {a3, a4, b1, b2} such442

that G[{a3, a4, b1, b2}] is isomorphic to K2,2 will not be inserted into H. This proves Item 3.443

Concerning Item 4, observe that for every {a1, a2, b1, b2} that is included in H, we have444

|{a1, a2}∩A′| = |{b1, b2}∩B′| = 1. Hence, HA and HB as defined in Item 4 are bipartite. J445

4 Two-party communication protocol for listing all cliques446

We consider a two-party communication protocol in the vertex partition model for listing all447

cliques (of all sizes) in a given graph. The input consists of an undirected graph G = (V,E)448

with an arbitrary vertex partition V = VA ∪̇ VB . Let C be the (VA, VB)-cut, EA be the edge449

set of G[VA], and EB be the edge set of G[VB ]. We consider a scenario where Alice is given450

the subgraph GA = (V,EA∪C) ⊆ G and Bob is given GB = (V,EB ∪C) ⊆ G. The objective451

is for Alice and Bob to detect all cliques (of all sizes) of G and to minimize the number of452

bits communicated.453

We show that in such framework, there is a two-party communication protocol for listing454

all cliques (of all sizes) that uses O(
√
n |C|) bits of communication, where C are the edges455

shared by Alice and Bob. This shows that we cannot improve our lower bounds for the456

K`-detection problem, for ` = O(
√
n), in the CONGEST model (cf. Theorem 5) using the457

two-party communication framework in the vertex partition model.458

Observe that without any communication between the two players, Alice can detect every459

clique that contains at most one vertex of VB , and, similarly, Bob can detect every clique460

that contains at most one vertex of VA (in particular, listing all triangles does not require461

any communication). Our task is hence to detect every clique consisting of at least two VA462

vertices and at least two VB vertices. We consider two cases:463

1. Suppose that |C| ≥ n3/2. Then Alice sends all edges EA to Bob by encoding all entries464

in the adjacency matrix of G[VA], which requires at most n2 ≤
√
n|C| bits. Since Bob465

then knows the entire graph G, he can detect all cliques.466

2. Suppose that |C| < n3/2. For any vertex v ∈ V , let dv be the number of edges of C467

incident to v, let V≤√n ⊆ {v ∈ VA : dv ≤
√
n}, and let V>

√
n = VA \ V≤√n. We first468

show how to detect every clique that contains at least one vertex of V≤√n. Then, we469

show how to detect every clique that does not contain any vertex of V≤√n.470

a. For every v ∈ V≤√n, Bob sends the induced subgraph GB [ΓG(v)∩ VB ] (its adjacency471

matrix) to Alice (observe that Bob knows the set V≤√n without communication). This472

requires at most
√
n |C| bits, since473 ∑

v∈V≤
√

n

d2
v ≤
√
n
∑

v∈V≤
√

n

dv ≤
√
n |C| .474
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Alice can thus detect any clique that contains at least one vertex of V≤√n.475

b. Observe that |V>
√

n| ≤
|C|√

n
. Alice sends the entire subgraph GA[V>

√
n] (again, its476

adjacency matrix) to Bob. This requires at most
√
n |C| bits, since477

|V>
√

n|2 ≤
(
|C|√
n

)2
≤ |C| · |C|

n
≤
√
n|C| ,478

using the assumption |C| ≤ n3/2. Bob can thus detect every clique that does not479

contain any vertex of V≤√n.480

We thus obtain the following theorem:481

I Theorem 10. There is a two-party communication protocol in the vertex partition model482

for listing all cliques (of all sizes) that uses O(
√
n |C|) communication rounds, where C is483

the set of shared edges between Alice and Bob.484

5 Conclusions485

In this paper, we give the first non-trivial lower bound for the problem of detecting a clique486

K`, for ` ≥ 4, in the classical distributed CONGEST model. We show that detecting K`487

requires Ω( n
(`+
√

n) b ) communication rounds, for every ` ≥ 4, where b is the bandwidth of488

the communication links. Our lower bound is complemented by a matching upper bound489

obtained by a two-party communication protocol in the vertex partition model for listing490

all cliques of all sizes. This demonstrates that our lower bound cannot be improved using491

the two-party communication framework.492

We leave as a great open question whether the complexity of clique detection in the493

CONGEST model is sublinear, or one needs Θ̃(n) communication rounds to detect even a494

copy of K4. Since the two-party communication approach used in our lower bound cannot495

be improved further, we do not have any intuition whether the lower bound is tight, or496

could be improved significantly. On the other hand, the very recent Õ(
√
n)-communication497

rounds algorithm for detecting a triangle [5] raises some hopes that maybe also K4 could be498

detected in a sublinear number of rounds.499
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