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ABSTRACT

The Boltzmann equation is modified to examine the effects of a range of 
scattering mechanisms on the DC conductivity of semiconductor material in the 
form of thin sheets and fine wires.

This is solved exactly for elastic scattering mechanisms by introducing a set of 
momentum relaxation times which are relevant to the occupied sub-bands. These 
times are calculated for alloy scattering, surface roughness scattering and the 
acoustic phonon mechanisms at high temperatures.

At low temperatures the inelasticity of the acoustic phonon mechanisms is taken 
into account and a variational method is employed. At very low temperatures we 
show that the acoustic deformation potential gives rise to a mobility which 
varies at T-5.

We use an iterative method to examine the strongly inelastic polar optic phonon 
scattering mechanism in a wire. Ridley has suggested that the momentum 
relaxation time may be negative in this system. We introduce a time relevant to 
transport measurements and this is found to be positive. It is shown that the 
time derived by Ridley may be of relevance to time resolved transport 
measurements.
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CHAPTER 1

INTRODUCTION

In bulk semiconductors, when the de Broglie wavelength Xg is much smaller 

than the size of the sample, the electron is considered to behave as a 

classical particle and the transport properties of the material are normally 

calculated with the Boltzmann transport equation (Butcher (1973))*

Reasonable agreement is obtained with experiment (Rode (1975))- However, 

classical arguments are not valid if the de Broglie wavelength is no longer 

small when compared to some typical constraining dimension. For example, 

when xB becomes large when compared to a cyclotron orbit in a material it is 

necessary to modify the Boltzmann equation (Bridges (1980)) to explain 

experimental data.

In this thesis we consider a similar problem although the dimensional 

constraint does not arise from the application of a field but from the 

structure of the material. Advanced fabrication techniques, eg 

molecular beam epitaxy (MBE) and metal organic chemical vapor 

deposition (MOCVD) can produce samples in which one or more dimensions are 

comparable with the electron wavelength. The scale of these systems means 

that the bandstructure is no longer just a function of the material but it 

is also dependent on the device dimensions. This has given rise to a new 

branch of technology termed "bandstructure engineering". Esaki and Chang 

exploited this with their pioneering work on superlattices (1971*). It was 

found that these devices possessed some unusual properties by virtue of 

their regularity and scale. Transport measurements perpendicular to the 

layers which make up the superlattice are difficult. Attention has been 

focussed on the motion of the electrons parallel to the interfaces in thin 

films an(i also in fine semiconductor wires. Typical examples include the 

MOSFET (see Figure 1.1a) and quantum well (see Figure (1.2). In both of

1



FI
G 

1.1
(d)

these examples the electrons behave as if they are dynamically two- 

dimensional. We concentrate on the parallel transport problem in this 

thesis.

Historically, the MOSFET has an importance which ranks it alongside the

bipolar transistor, indeed Shockley and Pearson produced the first patents

(Ando (1982)) and this device can now possess extremely large electronic 
6 2mobilities (~10 cm /Vsec, Di Lorenzo (1982)). It also lends itself to 

planar integration and research in this area has increased because of the 

drive to large scale integration. Experimentally it is interesting because 

the areal electron density can be varied at will by the application of a 

gate voltage to the surface plane of the device, enabling a range of 

experiments to' be carried out on one sample, removing uncertainties in 

device reproducibility which arise when measurements are taken from a device 

batch.

When a positive gate voltage is applied to a p-type MOSFET (see Figure 1.1), 

electrons are drawn through the p-type semiconductor and are held at the 

oxide/semiconductor interface, where they neutralise the holes, giving rise 

to a depletion region. Eventually enough electrons reside near the surface 

to neutralise the holes completely in a narrow region. The p-type 

semiconductor then begins to behave as if it had an n-type surface and an 

inversion layer is formed. Classically, we would expect the charge density 

to decay exponentially as we move away from the semiconductor/insulator 

surface. However the length scale of this decay is so 6hort that quantum 

effects are important and a proper description of the problem involves a 

self-consistent solution of the Shroedinger and Poisson equations 

(Ando (1982)).
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The applied gate voltage can also be considered to bend the bandstructure of 

the semiconductor near the interface. In figure 1.1b we see the situation 

when the gate voltage is zero. As it is increased the conduction band edge 

can be considered to bend towards the Fermi-level which still lies in the 

band-gap (Figure 1.1c). Eventually the band is bent to such an extent that 

it dips below the Fermi level (Figure 1 Id) and electrons can travel freely 

in a direction parallel to the surface, but motion away from the surface is 

inhibited by the transverse potential well. This is the inverted state.

As well as producing a two-dimensional electron gas by applying an electric 

field to a material it is also possible to produce a quantum well by 

introducing an artificial conduction band edge discontinuity. The classic 

example is thè GaAs/AljjGa^^s quantum well, see Figure 1.2. The similarity 

in atomic size between Ga and Al makes it possible to fabricate high purity 

quantum wells which are relatively free from surface strain fields (Adachi 

(1985)). In this case the materials have different band gaps and it is now 

well known that when the materials are in close electronic contact the 

conduction band edges align in such a way that an electron residing in the 

GaAs sees a potential barrier as it tunnels into the AlxGa1_xAs and this is 

typically equal to 831xmeV (Okumura (1985)). If the well is narrow enough 

then electrons with energies lower than this will behave as a two- 

dimensional electron gas (2-DEG).

Work is also being carried out on quantum well wires which can be produced 

in free standing form (Kelly (I98U)). In this case both of the wires 

dimensions (they usually have rectangular cross-section) are small enough 

for the electrons to behave as a one-dimensional electron gas (l-DEG). The 

finite (but small) dimensions of both types of system (l-DEG and 2-DEG) 

means that they are, 6trictly speaking, quasi-one-dimensional and quasi-two- 

dimensional, it is often this feature which gives rise to the major effects

3



considered in this thesis.

In Chapter 2 we show that the energy eigenstates in these systems can be 

described in terms of two-dimensional and one-dimensional bandstructures.

The dimensional constraints split the usual three-dimensional bands into 

two-dimensional bands (Ridley (1982)) and one-dimensional bands which are 

usually termed sub-bands, and this has severe consequences for the transport 

coefficients. In the case of the 2-DEG we introduce a two-dimensional 

Boltzmann equation for each sub-band (Chapter 3). These are subsequently 

coupled together by inter-sub-band scattering off impurities and 

imperfections. These ideas naturally extend to the one-dimensional systems. 

In using the Boltzmann equation we neglect localisation effects which have 

excited a great deal of interest in recent years (Lee and Ramakrishnan 

(1985)). Nevertheless,theseeffects appear as small corrections to the 

Boltzmann conductivity and it is therefore important to appreciate the 

magnitude of the latter before any estimate of the localisation effects can 

be obtained from the experimental data.

Similar problems have been considered by previous authors. The earliest 

examples stem from conductivity measurements on thin films of Bismuth 

(Ogrin (1966)). Ogrin observed a non-monatonic resistivity variation with 

film thickness and this was explained by Freeman et al (1977) in terms of 

the quantum confinement of the electrons. As the films get thicker it is 

possible for the electrons to occupy more than one sub-band and inter-sub- 

band scattering also becomes possible. This drastically reduces the 

mobility and this manifests itself in conductivity dips: the so called 

quantum size effects.

It was only recently that MBE and MOCVD have made it possible to construct
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semiconductor devices in which these effects are easily seen (Stormer 

(1981)). This has led to a detailed theoretical investigation in two- 

dimensions and one-dimension of the relative importance of the scattering 

mechanisms which are known to be important in bulk semiconductors. Ridley 

(1982, 1983, see also Fiddoch (1985)) has provided an insight into these 

problems with the aid of his scattering rate formulae and he has considered 

various mechanisms including the acoustic deformation potential, 

piezoelectric and polar optic phonon scattering in both one and two- 

dimensional systems. Johnson and Vassell (1984) have adopted a similar 

approach in 1-DEG's. Basu and Nag (1981) have looked at the extreme quantum 

limit when only one sub-band is occupied and have considered a strictly two- 

dimensional system.

Siggia and Kwok (1970) solved the Boltzmann equation exactly for elastic 

scattering in two-dimensional systems using a relaxation time approach. The 

solution was presented as a formal framework and the equations were not 

applied to specific scattering mechanisms. We use the equations of Siggia 

and Kwok to reconsider acoustic phonon scattering, alloy scattering and 

surface roughness scattering in 2-DEG's. The model for the rough interface was 

suggested by Bruce Joyce (Philips, Redhill) and is considered in detail in 

section 5.2.3. This is an improvement on previous attempts which used 

simple Gaussian autocorrelation models for the interface (Ando (1982)). A 

set of relaxation times similar to those of Siggia and Kwok are derived for 

one-dimensional systems and these are applied to the acoustic phonon 

mechanisms. The effects of inter-sub-band scattering are found to be 

particularly important in one-dimension.
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The Siggia and Kwok equations are only valid for elastic scattering 

mechanisms. They fail for inelastic mechanisms but approximate solutions 

may be found using a variational method (see Chapter 6). This is applied to 

the acoustic phonon mechanism at low temperatures in both one and two- 

dimensional systems. This method should be of general applicability to 

inelastic mechanisms but it is not applied to the polar optic phonon 

mechanism in two-dimensions as Vinter (I98U) presents an exact solution 

using an iterative approach (see Rode (1970)). The iterative approach is 

extended to the 1-DEG and an effective relaxation time is derived for polar 

optic phonon scattering. This is compared to the momentum relaxation rate 

due to Ridley (1983), which was derived by weighting the scattering rate by 

the fractional change in electron momentum. Ridley's approach neglects the 

electron statistics and predicts that in some circumstances the momentum 

relaxation time may be negative. We find that our effective relaxation time 

is positive.

In Chapter 2 we discuss the form of the wavefunctions in one and two- 

dimensional electron gases, and the concept of a sub-band structure is 

introduced. Chapter 3 is devoted to the transport equations describing the 

dynamics of the electrons. The behaviour of the electrons under the 

influence of elastic points scatterers is considered in Chapter 4. In 

Chapter 5 we derive momentum relaxation times for extended defect 

scatterers. In Chapter 6 we introduce a variational method to describe the 

effects of inelasticity. The transformation between elastic scattering and 

inelastic scattering is considered and the equations are applied to the 

acoustic phonon mechanisms at low temperatures. An analytic form for the 

low temperature phonon limited mobility is derived in both one and two- 

dimensions. In Chapter 7 we use an exact method to look at momentum 

relaxation in a 1-DEG when only one sub-band is occupied and the dominant 

scattering mechanism is due to polar optic phonons. In Chapter 8 we

6



consider approximations involved in the Boltzmann equation and, in 

particular, consider ways in which lifetime broadening and screening effects 

may be included in the analysis. The structure of the potential responsible 

for alloy scattering is also considered in some detail.
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CHAPTER 2

SMALL SYSTEMS WITHOUT SCATTERING 

2.1 Wavefunctions

In this chapter we consider the form of the wavefunctions in small scale 

systems. We do not look at the details but use approximations which make 

the calculations simpler whilst still embodying the physics. In solving 

these problems it is usual to use the effective mass approximation (see 

Ridley (1982), Okumura (1985), Warren (1S86) and Appendix 1). We consider 

the simplest case where we have a thin sheet of semiconducting material 

containing the electrons. We suppose that the electrons in the layer behave 

as if they have a scalar effective mass m* which is taken to have the same 

value as in bulk GaAs (0.066-Rode (1975)). The electrons are strongly 

confined in the semiconductor layer and we approximate this potential by an 

infinitely deep square potential well. The effective mass Schroedinger 

equation can then be written as (Collins (1985))

cfi2 2-1 .V*n + v*„ - «n*D
2 “ *  ( 2 . 1)

where V is the square potential

V(l,r) - 0 0 < z < L
-  a» z < 0 , z )L ( 2 . 2 )

with r = (x,y) and L is the thickness of the sheet.

Hence we may write,

*B(k) - e b + *(k) ( 2 . 3 )
where

a n d  * ( k )  -  t l 2k 2 
2m* ( 2 . 4 )
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Where is the energy marking the bottom of the n'th sub-band and e(k) 

defines the two-dimensional sub-band parabolas. The sub-band wavefunctions 

have the form

*B(k.x.z) Z l^sin nirz 
V I L (2.5)

where k is a two-dimensional wave-vector and V is the volume of the electron 

cavity. Throughout we shall assume that periodic boundary conditions apply 

in the plane of the layer, restricting the values of k in a square of 

semiconductor of area to

k - 2 n n,2 me
. B B . ( 2 . 6 )

where n and m are integers. The energies in 2.3 can be plotted to give a 

sub-band ladder (see Figure 2.1). We shall see later that the sub-band 

structure has severe consequences for the transport properties of small 

devices.

By analogy with the two-dimensional result the electrons confined in one

dimensional wire with rectangular cross-section (width a, depth b) will have 

eigenvalues given by

*..<k) i 22a*
k* +

(2.7)

where n and m are sub-band labels and k is a one-dimensional wavenumber. 

The sub-band wavefunctions being given by (Ridley (1983))

^„(k.x.y.z) - 2 sin nwx sin nnrv «tk» 
y k a b ( 2 . 8 )

9



If we allow the wavefunctions to leak out of a two-dimensional well, then a 

solution of the Schroedinger equation may still be effected using the

separation of variables method, but care must be taken in conserving the 

quantum-mechanical current at the boundary and this results in matching m* —  *  

and ii (Collins (1985)). In a one-dimensional system, however, this 

requirement at the comers of any square-well model means that the 

separation of variables method is no longer useful and the wavefunctions for 

the system are complicated. Throughout we shall use sinusoidal 

wavefunctions in order to discuss phonon scattering and the leaky 

wavefunctions when we are considering surface roughness and alloy scattering 

in two-dimensional systems. This choice reflects the symmetry of the 

situation in a quantum well but may not accurately represent the 

wavefunctions in a heterojunction or a MOSFET. Here the situation is 

inherently asymmetric because of the presence of only one material 

interface. The other potential barrier is due either to the application of 

a gate voltage in the case of a MOSFET (Ando (1982)) or to the electrostatic 

attraction of the carriers for the donors in the case of a heterojunction.

A full treatment of this problem involves the self-consistent solution of 

the Schroedinger and the Poisson equation,(Ando (1982), Vinter (1984) and 

Bastard (1983)). The numerical methods which this necessitates tend to 

obscure the physics of the problem. Fang and Howard (1966) appreciated this 

point and proposed a form for the wavefunction in the lowest sub-band.

z > 0rx(*) -
[ *3]
- 0 z < 0 (2 . 9 )

where b is determined by a variational calculation. This functional form is 

expected to represent the wavefunction in a MOSFET fairly accurately. It 

vanishes at z=0 (the oxide/semiconductor interface) and tends to zero as z 

tends to infinity. The form (2.9) is only useful when electrons are in the 

lowest sub—band and is not useful for treating inter—sub-band scattering,

10



which we discuss in Chapter 3. Most of the structure in the transport 

coefficients involves inter—sub-band scattering and sinusoidal sub-band 

wavefunctions provide a convenient first approach to calculating the sort 

of structure that may be expected to arise.

2.2 Density of States in Reduced Dimensionality Systems

In three dimensions the density of states is defined a6 the number of 6tates 

in k space per unit energy range per unit volume. In three dimensions this 

vanishes for t < 0  and is proportional to for e>0. In two dimensions the 

density of states per unit area for the lowest sub-band can be written as

D ( « )  -

KK 2

(2»r)2

»(«-Ej)

x 2irkdls 
d«

( 2 . 10)

where we have included 6pin degeneracy and the sub-band has been assumed to 

be "circular and parabolic". When more than one 6ub-band is occupied the 

density of states is

D( <)  -  z  m£ _ » ( « - E „)
n *Ti2 (2.11)

where 8 denotes the unit step function. The main difference between three- 

dimensional and two-dimensional systems is seen in this functional form. In 

three dimensions the density of states is a continuous function of energy.

In two dimensions it 16 constant over a range of energies but it possesses 

abrupt step-like discontinuities (see Figure 2.1). The envelope of this 

staircase increases as and this is an indication that these systems 

behave with a three-dimensional character when a large number of sub-bands 

are occupied.

Scattering can smooth out the discontinuities in the density of states (see

11



Cantrell and Butcher (1985) and Chapter 8). This Is a second order effect 

due to the finite lifetime of the carriers which we neglect here. This 

approach is the only one which is viable if realistic scattering mechanisms 

are to be included. So far as we are aware smoothing has only been taken 

into account for delta function scattering centres.

In one-dimensional systems the density of states has the form (see Figure

2 .1 )

( 2 . 12)

and shows square—root singularities at the sub-band energies, consequently 

inter-sub-band scattering is particularly important in this case (see 
Chapter 1*).

12



CHAPTER 3

SYSTEMS WITH SCATTERING 

3-1 Introduction

Throughout we shall work within the Boltzmann framework. We shall not be 

concerned with the detailed behaviour of the individual electrons in the 

system but with macroscopic averages over their phase space trajectories.

We shall be satisfied with determining the average density of electrons in 

the phase space of each sub-band and to do this we modify the three- 

dimensional Boltzmann equation to take account of the sub-band structure.

3-2 The Boltzmann Equation in Two-Dimensional Systems 

We introduce a distribution function f(k,n,r,t) which is defined as the 

probability of finding an electron in sub-band n with momentum k at time t 

with spin up. This concept violates the uncertainty principle but if we 

assume r is known to an accuracy Ar and the electron wavepacket has momentum 

k with a spread Ak such that ArAk , then this specification is

correct within Ar and Ak and is sufficient for our needs (Butcher (1973)).

Since electrons are conserved we can equate the increase of f(k,n,r,t) to 

the four-dimensional divergence plus a term which corresponds to the 

rate of increase of f due to collisions (see Rode (1975) for three- 

dimensional arguments).

where we have used the shorthand notation fn « f(k,n,r,t) and Ji” is the 

velocity of an electron in sub-band n with momentum k.

M n
3t ( 3 . 1 )

Fj is defined as

( 3 . 2 )

13



Equation (3.1) is very similar to the usual three-dimensional Boltzmann 

equation except that this takes scattering between bands into account. 

Inter-band scattering is usually neglected in elementary treatments of 

electron transport in three-dimensions. It is important in the conduction 

bands of Silicon and Germanium which have several equivalent minima (Ando 

(1982)), and it is important in GaAs at fields which are high enough for the 

electrons to transfer to satellite valleys (Rldlty •> Waticta* (1961)). In. our two- 

dimensional problem we shall see that the scattering of electrons between 

sub-bands is very important. Transport in each sub-band is described by a 

separate Boltzmann equation (3-1) and these are coupled together by inter

sub-band scattering terms in 

in detail.

3f
it

Let us look at the form of 3f
. 3t .

We consider our two-dimensional semiconducting layer to have a surface area 

A. The number of electrons which may be scattered per unit time from dk 

around k in sub-band n to dk' around kj_ in sub-band m is given by

2 f(k.n,£, t) [1-fQs' .m.X.t) J POs.n.k’.nOdkdk'
(3.3)

where we are assuming that the spin of the electrons remains unchanged in 

the collision process and P(k,n;kJ_,m) is the transition rate. The reverse 

process is also possible so the rate of increase of the number of electrons 

in dk, around k per unit area of sub-band n is

2w2 4w2 ^  [ftt.n, £.t)[l-f(]j'1m,iIt)]P(Js,n,]s'1m)

* £(k' .m.X.t) [1-f (k,n,£,t)]P(li' ,m,ls,n) Jdkdk' (3.4)

14



All transitions are assumed to take place instantaneously and as we are not 

applying a magnetic field the distribution function is independent of 

electron spin. The scattering rate is given by

p 1 V I Jf (k.n.r. t) [l-f (k’ .m.x.t) ]P(k,n;ls' ,m)il(k,n,x.t ) - >at J. l -,J C*\ j -f(k'.ni,r.t)[l-f(ls,n,jc.t)]P(Is;m;is ,n) 1 dk

The Boltzmann equations for the sub-bands form a set of coupled integro-

differential equations which can only be solved approximately. If we assume

the scattering rates P(k,n;k^,m) and P(k^,m;k,n) correspond to the energies c (k)n
and c ^ k ' )  then detailed balance implies that (Butcher (1973))

PGs.n'.k’ ,m)exp -E„(lç) - P(k'nr.k,n)exp - (Js)
KbT (3.6)

where Kg is Boltzmann's constant and T is the temperature. In the absence 

of applied fields in equilibrium the integrand in (3.5) must be zero. Hence

_L_ exp t 
1-f K„T

Both sides of (3*7) must equal a constant which gives

(3.7)

f f =o e<c-eF>
_1______
/kgT + 1 (3.8)

The Fermi-Dirac function is the zeroth order solution to the Boltzmann 

equation. This solution is only the solution if there exists some inelastic 

mechanism for which E^«' . We assume the Fermi-Dirac distribution function 

has been established and we look at small deviations away from this due to

15



the application of an electric field to an homogeneous system. We consider

the electric field to be small so that the new distribution function is only 

slightly different from f0 . We write

After some manipulation we find that, in the absence of magnetic fields, the 

linearised steady state Boltzmann equation reads

The value of f determined from (3.11) can be used to determine the low 

field transport coefficients relevant to two-dimensional systems. We define 

a current flux per unit length ^  which describes the flow of electrons 

in the channel. This current is carried by the electrons in the different 

sub-bands, to obtain the value of we must sum over all these contribution

f(k) - f0(i.(k)) + £1“(k) ( 3 . 9 )
where f."1 is of first order in smallness. If we substitute (3-9) into (3-5)

we find that to first order the collision term may be written in the

linearised form

j[l-fo U n (k) )] P(k
>]

A d2k ' 
4ir2

(3.10)

(3 .1 1 )
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so that, taking spin degeneracy into account,

f "  ( k ) v p  Q c )d 2k

n (3 .1 2 )
where is the velocity of an electron in the n ’th sub-band with wave-

vector k. Now, f^ is of even parity in k and _Vn (k) is odd, so to first 

order

f 1 n ( k ) v n (]c)d2k

n (3 .1 3)

Now that we have laid the framework we have to consider how specific

mechanisms influence the value of +, to limit the conductivity of the 2-DEG. 

We could solve equations (3-10) and (3.1) exactly with an iterative method 

(Rode (1975), Fletcher and Butcher (1972)) for all mechanisms, but it 

transpires that these equations can be solved exactly for elastic mechanisms 

(Siggia and Kwok (1970)) and approximate solutions may be found for quasi

elastic ones (Milsom and Butcher (1986)).

3.2.1 Isotropic Elastic Scattering

We have considered our sub-bands to be "circular and parabolic", if there 

exists some elastic scattering mechanism, then we may define a relaxation 

time for each sub-band (Siggia and Kwok (1970)). These relaxation times can 

be shown to be a function of energy and sub-band number alone. As we can 

only scatter to states with the same energy we see from (3.6) that

p (ls'  .m-.Js.n) -  P ( k , n ; k ' .0) (3 .1 4 )
(3 *10) then reduces to

[ f 1" ( k ' ) - f 1n ( k ) ] P ( k , n : i s ' . m )  _A_ d 2k '
4*2

(3 .1 5 )
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The perturbed part of the distribution function, f n decays away in each 

sub-band when the electric field is turned off and this process will have 

some characteristic time-r^e). We model this process by writing

- - f^Ckl
“  ’ ‘„ ( c 0 ( k ) ) (3 .16)

which implies from (3•1)

c (3 .1 7)

we assume that this is true when the electric field is present and we find 

from (3-11) that

f ! n ( k )  -  £  £ * 2 k f 0 (* n ( ]c ) )T n

e £ -V n ( k ) d f 0 T b 
d  e (3 .1 8)

If we substitute (3.ie) into (3-15) divide through by ^"(k) and substitute 

the expression for f n , we find that

£ .  V"T 
E-V"T P ( k '  , m ; k . n ) - P ( k '  . m i l s . n ) A d 2k* 

U r2

(3 .19)

In the case of circular band the quotient in0.19)may be reduced to coseIK I
where © is the angle between k/_ and k. Hence multiplying 0.19)through by>fn
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we find that

P(k'.m;]c,n)_A_ d2k'- 
4ir2

Ik*I cosgP(k',m;k.n) A d2k'TEl A*2m

(3.20)

These are the equations first derived by Siggia and Kwok (1970). Their

solution exactly satisfies the linearised Boltzmann equation for elastic

scattering mechanisms. We see that the guess for the form of the relaxation

(3-l6) is exact as the relaxation times derived from (3.20) are dependent

on the sub-band number and electronic energy alone. The coupled equations

(3-20) are independent of the distribution function f ", this is ao
peculiarity of elastic scattering, however the statistics do come into the 

expression for the conductivity. In the extreme quantum limit when only one 

sub-band is occupied it is only necessary to calculate one relaxation time 

"T 1 . This is given by

1_  -  ( 1 - c o s t f )  P ( k ' . m l k . n )  _A_ d 2k '
Tj ) 4w2 (3.21)

which is the two-dimensional analogue of the usual three-dimensional result. 

To evaluate the electrical conductivity o we substitute (3.18) into (3.13)
to obtain

n (3 .2 2 )
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where

o i J - e2 n d£. t b (c) v/d^k

*» (3.23)

The cylindrical symmetry of the system under consideration implies that

where Nn is the areal electron density in sub-band n. At finite 

temperatures the conductivity is equal to the expression for the low 

temperature conductivity multiplied by dfc/di and integrated over energy, 

ie

Together equations (3-26) and (3.20) give the low field Boltzmann 

conductivity in a 2-DEG when the dominant scattering mechanism is elastic.

We can derive similar equations for a 1-DEG.

3•3 One-Dimensional Systems (isotropic elastic scattering)

Johnson and Vassell (1984) and Ridley (1983) have considered conduction in 

one-dimensional wires, both used a relaxation time which was sub-band number 

independent. We have seen that this is insufficient in two dimensions and 

the same is true in one-dimensional systems. In one dimension we can write

c = O and o = a Hencexx o

a o

n (3.24)

at low temperatures this reduces to

n (3.25)

(3.26)
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the linearised steady 6tate Boltzmann equation as

■i£ E d f 0 — [af,n"00 1
•K T k  \ j t -----  I

c (3.27)

where E is the electric field directed along the wire which defines the z- 

axis, K is the wavenumber describing the free electron motion along the 

length of the wire and

c
n'm'

(k')^[l-fo(enol(k))]P(k1n.m;k' ,n' ,m') 

+fo(<n„(k))P(V,n-,m';k,n,m)l

-fl»*<k) ^"[l-f0(tB ,B , (]ç ' ) 5jP(k ' ,n'm' ;k,n,m) 

+ (k'))P(k.n.m-.k' ,n* .m' )jj x _L dk’ 
2n

(3.28)

where L is the length of the wire and the P(k,n,m;k',n•,m1) give the 

transition probabilities. The equivalent to a current flux per unit area in 

three dimensions auid a current flux per unit length in two dimensions is 

simply a current in one dimension. Here

3 f1°"(k)Vn“(k)dk

nm (3.29)
In the elastic scattering approximation we can define a relaxation time by

"“(k)
(3 .3 0 )
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The Boltzmann equation in one dimension can be solved exactly with the 

techniques used above for two dimensions and we find that the relaxation

times are given by a set of coupled algebraic equations similar to those of 

Siggia and Kwok, ie

and at low temperatures the conductivity of this system is given by the 

expected form

3. 4 Changes in Dimensionality

Now that we have looked at the conductivity in 1-DEG's and 2-DEG's (in the 

elastic scattering approximation) it is natural to ask how the various 

relaxation time formulae transform into one another as the constraining 

dimensions are increased in size.

The one-dimensional conductivity must transform into the two-dimensional 

form in the limit of large width. This two-dimensional result must reduce 

to the three-dimensional form in the limit of large channel depth. Each 

transition to higher dimensionality results in the bunching of the sub-bands 

until in the three-dimensional limit they are all quasi-continuous. Thi6 

degeneracy in sub-band structure makes the *T n m or the ~Tn independent of 

one of their subscripts. We look at a one to two-dimensional transition due

P(k' ,n'm';k,n,m. ) Ldk' 
2*

(3.31)

nm (3.32)
and at finite temperatures

<7(T) go ( O df„ ded e (3.33)
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to the conducting wire becoming wide in the y direction, ky then becomes a 

good quantum number and we can convert the 6um over m to an integral over 

ky. If we convert to cylindrical polars we can transform equation (3.31) to 

the Siggia and Kwok two-dimensional result.

When we expand our conducting channel in the x-direction and perform a 

similar co-ordinate transformation we obtain the three-dimensional result.

In our case the "Tin's are equal and we may take them outside the summation 

to obtain

In the two-dimensional formalism 3  was introduced as a current flux per 

unit length, to obtain the three-dimensional current flux per unit area we 

divide by the well width to obtain

173D - ntilm*

where n is the number of electrons per unit volume.
(3 .3 8 )

T.n P(k.nils' .rn) A d2k* - rr 
4 x2 m

cosiPQs.nils' ,m) A d2k ’ - 1 
4»r2

(3.34)

1
T (3.35)

Which is the result for a single three-dimensional band (Mott (1936)). Here 0 

is the angle between the wavevectors in question. Thus the relaxation times 

carry smoothly over into one another. The expressions for the conductivity 

change in a similar way. In two dimensions we had

o

m (3.36)

a

(3.37)
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CHAPTER 4

ELASTIC SCATTERING BY POINT DEFECTS

We turn now to a discussion of the transition rates P(k,n;k,m). These are 

usually evaluated in a Golden Rule Calculation (Butcher (1973)» Nag (1972))

Plk.n:k'.m)- 2a |<n,k|Vp |]c',n»|2i(cillial-*liiltlil) (4.1)

where Vp is the perturbing potential, due to deviations away from the 

perfect periodic system, and initial and cfinal are the initial and final 

electron state energies. In three dimensions the evaluation of expression 

(4.1) yields the Fourier transform of the scattering potential. In one and 

two dimensions however this is modified because of the standing wave 

components of the wavefunction. Whereas crystal momentum conservation is a 

good concept in three-dimensional systems, it is no longer good to think in 

these terms for reduced dimensionality systems and "momentum" conservation 

is fuzzy in the constrained dimensions (Ridley (1982)). The simplest 

scattering potential that we can substitute into (4.1) to reveal the 

properties of the relaxation time formulae is the delta function. This 

makes the integrals particularly easy to perform.

4.1 Delta function scattering in two-dimensional systems

We can represent a sharply confined potential, or potential spike by a delta 

function and obtain reasonable results out of the Siggia and Kwok equations 

(3*20) if the range of the potential is small compared to the reciprocal of the 

Fermi momentum, ie, if the wavefunctions (2.5) change little over the total 

extent of the scattering potential Vp (Rode and Fedders (1983))* If these 

delta scatterers are arranged at random and their density is sufficiently 

low, then we may express the scattering effect of the ensemble as the sum of 

the scattering from all the individuals (Kearney (1986)).
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We consider one & -scatterer of strength V 0) at position (r0,z0), ie

Vp " V0i(z-zo)i(i-Io) (4.2)
where 6 is the Dirac delta function. The probability per unit time that an 

electron will scatter from a state |k,n^ to a state |k_^,m^ is obtained by 

substituting (U.2) into (U.l) giving

PQ . n ; k > )  - 2 I I V ,  I2«(‘n(l£)-‘D(1S')) (4.3)

Where the 3n(*0 are the localised wavefunctions in the quantum well.

The total transition rate PxoT(k>n jk*m ) tie due to a sum over all

scatterers. If we define a density of scatterers p which is taken to be 

independent of r and z then we find

PfOT /m ) lin(Zo)Cm(2o)|2*(i«(k)-«1,Qc'))

(4.4)

now if we take C (z ) from equation (2.5) we have n o

PIOlQ£.n;k>) - 2m V„2p 
-ft A

4 sin2 nmz„ sin2 mmz i(t_(k)-f (k')) dz

2m V j f i  (2-f-i„ .)i(<B(k)-<_(k'))
fT” A 2L (4.5)

(see Arora and Awad (1981))

where 4nim is the Kronecker delta, so the inter-sub-band scattering rate is 

o f the intra-sub-band rate. It is also worth noting that both intra and 

the inter-sub-band scattering rates are independent of the sub-band indices.
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As the density of states is flat the Siggia and Kwok momentum relaxation 

time equations now take a particularly simple form. The second integral in

(3.20) is zero and we obtain

m (4.6)

The Siggia and Kwok equations decouple and we are left with a momentum 

relaxation time which is identical to the scattering rate. Inserting (1*.5) 

into (U.6) we find, finally

[2+i„ I t f i t - E . )

m (A.7)

The V n take the staircase form shown in Figure U.l. The are also

independent of n, but they possess step-like discontinuités due to the

staircase nature of the density of states. The n independence is an

artifact of the sinusoidal wavefunctions in general the'f can be n

dependent for «function scatterers. The discontinuities in the'T producen
sudden drops in 6  (see equation (3.25)).

U.2 Delta function scatterers (one-dimensional systems)

In a one-dimensional wire we can carry out the same procedure as that in U.l 

and we find

P I 0 I ( k , n . m ; k ' , n ' , m ’ ) - 2s [ 2 +5 .  , . ] [ 2 + i n rf] « ( « „ < k >  - c . / k '  ) )
h  4 A L  ( A . 8 a)

when n ’=n and m'=m the product of the square brackets is 9. Relaxing one of 

these conditions gives 6 and relaxing both gives U. The distinction between 

the inter and intra-sub-band scattering rates is not as clear as it is in 

two dimensions as three numbers are needed to define the problem. If (U.8a)
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is substituted into (3-3 1) we find that the relaxation times are different 

for different sub-bands because the density of states in one-dimensional 

systems is not constant. A set of curves representative of delta function 

scattering in one-dimensional wires are shown in Figure 5-5- Again we see 

from the scattering rate formula (U.8) that the transition rate and hence 

the mobility can be engineered by changing the characteristic dimensions of 

these low dimensionality systems. The singularity in the density of states 

also results in singular scattering rates and infinite momentum relaxation 

rates, consequently the conductivity will drop to zero for all well 

dimensions when the Fermi energy corresponds to a sub-band energy

Scattering by ionised impurities (two-dimensional systems)

In an extrinsic bulk semiconductor the dopants increase the conductivity by 

supplying carriers but reduce the mobility by acting as scattering centres. 

In the bulk the two effects are inseparable, and the carriers are always 

influenced by this scattering mechanism. In a two-dimensional system where 

the electrons are confined to a thin conducting channel it is always 

possible to introduce carriers from remote dopants, by doping the material 

surrounding the quantum well (Stormer (1979))- It is energetically 

favourable for electrons to fall into the well where they are held in the 

quantum levels described in Chapter 2, very little charge extends beyond the 

walls of the channel and so the scattering is drastically reduced. With 

this "modulation doping" technique (Dohler (1983)) it is also possible to 

introduce a large number of carriers to the system so that many of the 

states in the sub-bands are filled, the system can then behave as a 

degenerate electron gas. This is better able to screen the impurities that 

may be lying in the channel. The scattering efficiency of the ionised 

impurities i6 also dependent on the speed of the impacting carriers and this 

leads to an additional reduction in the scattering because the only 

important velocity in the system is the Fermi velocity which can be
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FIG 4.2
Momentum relaxation times for ionised 
impurity scattering as a function of the 
well width (after Sernelius(1985)).

controlled and made to be large (N Apsley (1986)).

The mobility in modulation doped systems can increase in consequence of all 

these factors. Sernelius, Bergrenn and Tomak (1985) have looked at ionised 

impurity scattering in some depth, but instead of looking at modulation 

doped structures they considered scattering off ionised impurities in the 

well. The impurities were distributed at random across the well and 

correlation effects were ignored. Their treatment includes the effects of 

screening and inter-sub-band scattering using the Siggia and Kwok equations. 

This approach is correct within the Boltzmann framework. The results are 

shown in Figure k . 2 . The matrix element for scattering off unscreened 

ionised impurities has a l/Q dependence, where Q is the change in 

electronic momentum. When the energy being considered lies at the bottom of 

the sub-band only small values of q are needed to scatter the electron right 

around the sub-band and consequently the momentum relaxation rate is large, 

(and may be singular when c=en).

Sernelius et al report experiments on a GaAs FET in which these predicted 

effects did not appear. As we discuss in the final chapter this is due to 

level broadening by the large density of scatterers present.

Alloy Scattering (two-dimensional systems)

Non-lattice matched quantum well systems are prone to dislocations which 

appear to relieve the strain. They act as scattering centres. A simple way 

to avoid them is to match the lattice spacing of the two materials in the 

structure. The similarity in size between Ga and Al atoms permits such a 

match between Gallium Arsenide (GaAs) and the AlJ,Ga1_xAs ternary alloy 

(Adachi (1986)). Ue consider the scattering process due to the 

disordered nature of the alloy in a Quantum well. The other mechanisms 

responsible for limiting the conductivity in these systems are due either to
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phonons or surface roughness and impurity scattering all of which can be 

controlled. Alloy scattering is intrinsic to the materials used. The study 

of this mechanism is therefore particularly important as it limits the 

mobility (Ten in an ideal system.

Alloy scattering has been well researched in the bulk (Basu et al (1986), 

Rode and Fedders (1983), Harrison and Hauser (1975), Hall (1959)), but has 

not received enough attention in the quantum well. Two formulae have 

recently been proposed (Basu and Nag (1983), G Bastard (1983)). Both of 

these formulae were relevant to the extreme quantum limit. The formula due 

to Basu deals with a potential resembling a pill-box whereas the formula due 

to Bastard was relevant to a more realistic confined spherical potential.

In our treatment we adopt the second approach and consider the effect of 

inter-sub-band scattering due to alloy disorder when more than one sub-band 

is occupied. Throughout we consider the potential difference between a 

Gallium atom and an -Aluminium atom to be confined to the unit cell, and we 

suppose that the effective mass envelope function is slowly varying on this 

length scale.

The first step in the calculation involves determining the wavefunctions for 

the quantum well, this has been done in the effective mass approximation 

(see appendix 1) taking into account the varying effective mass in the two 

materials but not the differing Bloch states at the bottom of each r valley. 

The r valley and the L valley of AlxGa^_xAs cross when x-'O.U so that only 

the r valley needs to be taken into account when x=0.3. Bulk A1 Gax As 

has a conduction band minimum above that of GaAs. We treat this conduction 

band offset energy as the potential which confines the 2-DEG in the quantum 

well. The band structures are taken to align as shown in Figure 1.2.

Okumura (1985) suggested that the conduction band offset, aEc, is equal to 

0.62 of the difference in band gap energies of the GaAs and the Al^a^^ ^As
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and this figure is taken to be independent of the alloy composition.

We work in the virtual crystal approximation (Nordheim (1931), Hall (1959)) 

and imagine that there is some average potential 1>Av (B) and the true 

potential. U(R) is to be treated as a perturbation about this. We write the 

true potential U(R) as

U(E) " H UGa(E-^a) +1_ Ua‘
Ga atoms A1 atoms

(B-Ta .) 
As atoms (A.8b)

where, it will be remembered that, R=(r,z) is the three-dimensional position

vector of an electron, with r=(x,y) denoting the projection of R onto the

plane of the quantum well, Tea a n d d e n o t e  position vectors of Ga and A1

atoms and U.(R-Y') is the potential due to atom i at location*T.. The l - -t . — i
average potential is given by 

cationic

UAv <B> [(i-x)uG.(E-,i )  + xUAi (£-?)]
T

anionic

where the summations are over cationic and anionic sites respectively. The 

average potential determines the alloy bandstructure. The irregular 

deviation from (R) will result in scattering and is given by the 

difference between formulae (U.8) and (U.9). Within the well, the average 

potential is the true potential and consequently this contributes nothing to 

the scattering. We also consider the two confining half—space scattering 

potentials to be uncorrelated. The total alloy scattering in this symmetric 

well is then equal to twice the scattering due to one half-space. We can 

rewrite the potential in one of the alloy half-spaces as (neglecting the 

anionic sites)



U(E) - Z Q ,  Ug .(R-Y) + (1-C^)Ua i (R-V)

T , < o (4.10)

where Cx = 1 if a Ga atom is at

= 0 if an Al atom is at T  

The scattering potential is therefore

AU(B) - X (Of-x)UG,(B-'f) + (x-CT)UA1(E-'t)

(4.11)

where T is the z component of and is negative in the alloy. 

Hence

AU(E) - SC^. Udlff(E-'T)

'T.cO

where

C-t - V x and E Ug .ì s-'IJ-Ua i CB-'T)

(4.12)

We can now construct the matrix element M of AU. We have
m e < ^ E ’|£ Ql Udicf<ft-*>l‘.k >-

f , < 0

2 C V U dlff(E-'T)5I1(z)C111(z)e1<t-lL’ >*idzd2r
' T  X -

'T.<0 (4.13)

Let R = r+zk and * 'C0 *'f"z where lies in the (x,y) plane and we perform
-2

the co-ordinate transformation z’=z-'Tz and r ’=r-T?- Then M reduces to

M " (( * _£.n uditfU'.*) cB(*'+,r.)e.(z'+YE)e <k k } <£ +- 2}
>> -  A ~ dz’d2r '

.<0 (4.14)
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i ( k - k ' ) h T ,  (( i ( k - k ' ) * £ '

l i  X + X  II d z ' d 2r '

*T .<0

(4.15)

with the assumption that U^iff is sharply confined to the unit cell whereas 

C n (z) is slowly varying, then we may remove i and from the integral 

evaluating them at‘1'z, to obtain

K k - k ' ) - T
M £  CV ^  6  " 5n^,)C.(T.) (\Ud l f i (£' .z')

T  <0

i(k-k')-£'»
d z ' d2r '

(4.16)

which we rewrite as

V ~  c ' ifl .T
M e " J in^,)CB Cr, )S (a )

' l l
r.< 0 (4.17)

where

q -  k k '  and S(a)  -  ^  Ud t f f  ( £ '  , z^e1*'-«-' dzd2r '

We are concerned with |MI 2: we see that

(4.18)

IMI2= Z C V T z  e i 3 ‘‘r * l n (1 z ) i , M i )I C Y / I z  e ^ X  C f t - ) C  CT •) S 2n z m z (q)
' f  < 0z T  *<0 1 z

(4.19)

- s  2 iBCT,H 11('r.)cBCT,*Klttt,')2: Z C*T1+T.C,'ti-ga+'ri'a1a.’"J

*T.<0 T  '<0 s2(a)

(4 .20)
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Now if the system is uniformly random (see Hall (1959))

2  C V  + T ,  CiT - N - + T , ’ — 2 ” - 2 * - 1
r ,

0 when N.rt or ** '*T
(A.21)

The system is thus self averaging. When N =0 and *T •_'f we find
- 2  - z  - z

2  I C Y  + T .  | 2 -  N x ( l - x )
__ ~  » ~

*T A- 2 (A.22)

where N is the number of cation sites per unit area in any one layer. Thus, 

finally, we have

m2 -  x rcnCt,)t .cr , ) | 2 b x( i-x)s 2 (a)
A

T t<0 (A.23)

and the scattering rate is

POc.n;*» - 2 2  |M| 2 j(en (]c) - em(]c' ))
(A.24)

To convert the summation in (A.23) to an integral we write a for thez
lattice constant in z direction so that (4.2U) becomes

,°
P( )S.n ; lc ;m)  -  2 2  ( d s  [ C „ ( z ) c . ( z )  ] 2S 2 (a ) I ? x < l - x ) * ( *n ( fc) - ,  ( ]s ' ) )

\ S• CO (A.25)

n=N/az is the density of cationic sites per unit volume. Since the



scattering potential is sharp on the atomic scale, S (a) is independent of q 

for the values of £ with which we are concerned. If we insert (U.25) into 

the Siggia and Kwok equations (3-20) the cos © integral is zero because of 

the delta function like 3 independence of the scattering potential. The 

tail of the wavefunction in the alloy possesses the form

where the values of * and An are given in Figure A. 3. The relaxation time n
equations again decouple and we find that

In this result we have introduced an additional factor of 2 to account for 

the alloy scattering from both sides of the quantum well. This expression 

is similar to that of Bastard's except that expression (i*.2T) can be used 

when more than one sub-band is occupied. The derivation here may be useful 

in the situation where the alloy is not uniformly random and it could be 

applied in the treatment of alloy clustering, see equation (A.20). It only 

remains for us to determine the nature of the scattering potential U

The expression S(o) arising in equation (A.27) is simply the volume integral

A.A.l The scattering potential

Several authors have considered the nature of the scattering potential in 

alloy systems. Mott (1936) suggested that the potential in a metal alloy 

should be treated as uniform and extending over the cell of the scatterer. 

More recently authors have been interested in alloy scattering in 

semiconductor systems (Harrison and Hauser (1975), Rode and Fedders(1983), 

Fedders and Myles (1983)) and there is some disagreement over the magnitude

(A.26)

m* n x ( l - x )  [AnAB ] 2

m (A.27)

diff

of Udiff(!>-

34



of the potential that should be employed. Many authors (Littlejohn (1978), 

Saxena (1985)) have considered the scattering potential to be strongly 

related to atomic properties of the elements involved, rather than a 

function of the material in which the element resides. It has been 

suggested that U,jiff ehould be equal to the difference in (i) band-gaps 

(Glicksmann (1974)), and (ii) electron affinities (Harrison (1975)), (iii) 

electronegativities (see Littlejohn (1978)), with no clear agreement as to 

which should be used. Experiments have been carried out to try to determine 

U diff by examinin6 alloy samples with varying compositions (Basu (1986), 

Saxena (1984)). Although the different suggestions are not self-consistent 

they usually roughly correspond to the values of calculated from

experimental data, however they can vary over orders of magnitude (see 

Littlejohn (1978)). Stringfellow (1979) suggested that the alloy scattering 

potential should be treated as the energy separation between the direct 

energy conduction band edges of the unalloyed components. This suggestion 

is the closest to the truth and we present a justification for this below.

If we consider a superlattice structure (eg Gs^(s/AlJ.Ga1_xAs) it is usual 

when calculating a miniband structure to model the potential seen by the 

conduction band electrons with a regular set of Kronig-Penney type barriers. 

The height of these barriers is taken to be equal to the conduction band 

offset (Warren (1986)) which can be measured by capacitance-voltage 

profiling (Okumura (1985)). In the absence of band-bending due to charged 

impurities or carriers this is an accurate model for even small well widths. 

We can use this information to treat the randomised alloy system. In this 

model we consider the conduction band electrons to see the conduction band 

offset potential as they traverse the unit cell of a scatterer. To approach 

this problem we consider the form of the matrix element for alloy scattering 

in the bulk.
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We suppose that the perturbation from the periodic virtual crystal 

approximation to the alloy is small. We write

V0. - U(B)-ivG.

VA1 - U(£)+iVAl (4.28)
where U(R) is the average potential given by equation (4.9). Now let us V
consider the conduction band offset in these two cases.

where n is the total volume of the bulk crystal and is the Bloch function 

at the bottom of the conduction band. The difference is

Udiff(R)is difference of atomic potentials introduced in equation (4.12) 

withT=o. Since (R) is, by hypothesis, confined within the unit cell

we may replace nc by fl in (4.30). Solving for the matrix element which 

arises in bulk alloy scattering, we find

This is the result for one scattering centre. If we consider an ensemble of 

scatterers then the total matrix element squared is

(4.29)

(4.30)

where N = is the number of unit cells, n,c is the unit cell volume, and

M *\ |*J 2Udiff(£)d3R - AErg‘/A1 AEcb »/a 1O c
(1 TT (4.31)

(4 .3 2 )
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where Ns is the number of cationic sites per unit volume. With this method 

we can identify S(o) in equation (4.17) with |AEc°a/A1 £J j

We present values of the alloy scattering momentum relaxation rates in 

Figure it.3.



CHAPTER 5

SCATTERING FROM EXTENDED DEFECTS

In this chapter we continue to work in the elastic scattering regime using 

the equations of Siggia and Kwok and we look at the effect of extended 

defects on the momentum relaxation rates of Quasi-One and Quasi-Two 

dimensional systems. Throughout we consider the quantum well to be buried 

in a material which possesses similar acoustic properties, but different 

electronic properties so that the electrons are confined to the well, whilst 

the phonons can be considered as three-dimensional.

Extended defects can be due to phonons? they can also arise if the confining 

material/channel is rough. In 5*1 we consider the electron/acoustic phonon 

interaction mediated by the deformation potential, in 5.2 we consider the 

piezoelectric interaction and in 5»2.3 we consider the effect of a rough 

material interface on a two-dimensional electron gas.

5.1 The Elastic Scattering Approximation for Acoustic Phonons 

The linearised scattering rate equation (3.10) may be rewritten as
r —
1 V(k,n;k',m)

l-f„(k.n)
[f ! (k.n) -f j (Jt ’ ,m) ] A d V

4ir

(5.1)
where we have used the detailed balance relationship and V(k,n' k',m) is the 

equilibrium transition rate, given by

VCk.njk'm) - f„ (k,n) [l-fo (Jj* im) ]p(jj>n.jj* iB) (5 2)

Consider the large square brackets in 5.1. When the mechanism is perfectly 

elastic f0 (k’,m)=fQ(k,n) the momentum relaxation times which can be 

defined are independent of the distribution function fQ(k,n) and the 
brackets equal 1.
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If however the mechanism is quasi-elastic we cam still define a set of 

momentum relaxation times if fc(k',m) and f0(k,n) are both much less than 1 

or if this is not the case they must be approximately equal to one another, 

hence

|*(k.n)-«(]c\i»)|«kIT (5.3)
ie if

■tlw„<<kBT

We assume that this holds. This not only allows us to use the relaxation 

time formulae but it also permits us to simplify the scattering rate 

obtained by using the equipartition limit of the Bose-Einstein distribution, 

which is the case considered by Ridley (1982.). The effect of inelastic 

scattering will be considered in detail in Chapter 6.

5.2 Two-Dimensional Systems

5.2.1 Deformation Potential Scattering ( Acoustic Phonons )

The deformation potential was first considered by Bardeen and Shockley 

(1951). They noted that the band-gap of a material is related to the 

separation of its constituent atoms and because a phonon is a lattice 

distortion this will be responsible for a local change in band-gac. They 

showed that this effect was proportional to the dilation and in cubic 

Gallium Arsenide the coefficient of proportionality is a scalar called the 

deformation potential E^^.. The additional term on the electronic 

Hamiltonian is given by

Hep - Ed.f 2-U (5.A)

Where _U is the acoustic phonon displacement. U can be expressed in second 

quantised form (Butcher (1973)) as

- / 2“nPV —
(«♦e1**-*£ V ( 5 .5 )



where the phonon has a wavevector Q and a frequency u, c Is the density of 

the medium, V is the total volume of the bulk crystal in which the channel 

is embedded a n d i s  the polarisation vector. If we substitute (5-5) into 

(5-**) and approximate by assuming that perfectly longitudinal and transverse 

waves exist in the bulk cube we find that

Hep J  2 <*>„/>V —
0 (a e^'i-a4 9 (5.6)

We now calculate the matrix element between an electronic state k in sub

band n with phonon configuration s and a state with momentum k' in sub-band 

m with phonon configuration s'. We look at the contribution from the 

annihilation operation first, we define

H*Bn _  * d . f  /  •*» C - g  * i e i a *J
•p ~  aI 2pu0\  -  * (5.7)

and

H*»'
ann

< s ; k , n | H  Im. k ' s  ’>

” Ed.fi2 /̂ ô  O H  ( sin ro*z sin nirz
V j 2 p U()V -  ) e L L Siq*Z dz

e4 > •£. e ig. r

where N is the equilibrium Bose occupation factor 
0

d2r

(5.8)

N
Q ha)e 0/k T -1 (5.9)

3 is the component or Q in the (x,y) plane and q z is the projection of Q on 

the z-axis. The integral over r results in a two-dimensional momentum 

conserving Kronecker delta because of the periodic boundary conditions that 

have been assumed to hold in the plane. The z integral gives rise to the 

Gnir,(qz> function used by Ridley (1982) (see appendix 2).

U 0



Defining

-E‘~y fi___  r -Q (a*ie‘a-£.)
2P"0V —  S

we find

Mc 1 * ■ < S ; k . n | H . p >

(5.10)

- - Ed . f i  V 1 /  *  C »Q G* ( q . )  « k - k ' + q
,7 2p«QV ran (5.11)

The transition rate can then be expressed as

P(k .n.k'm) -  I  2 ;  [ | M " ‘ | 2f (*„ (k) - . . (fc' ) -fiuQ)+ |M*nn | 2S («„ (k) - « . (k '  )+«■ >„) 1 
0 *»r (5. 12)

We see immediately that only longitudinal phonons contribute to the 

scattering as _£_.Q is zero for transverse phonons. We split the summation over 

0 into a summation over ^  and a summation over 3 . The Kronecker deltas 

in | M cre | 2 and JM ann|2 then pick out the terms for which =k_’-k_ and 

=k-W respectively. We convert the summation over q to an integral and 

introduce a one-dimensional density of states D/2*-, where D is length of the 

edge of the phonon cube. Hence

P ( k . n ; k \ " 0  -  I d q , D  [ | H“  • | 2i  ( c B ( k )  - * . ( k '  ) -*><•><,) +  |H*°" | 2S ( « „  ( k )  - ( k '  >+fi«0 )]
1 fi (5.13)

where H Cre and H ann are equal to MCre and M8" 0 with the Kronecker delta 

removed. When these are squared and substituted into (5.13)only |£| is 

inportant and it is understood that |q | =|k-k,’|. if we apply the 

equipartition inequality (5*3) and if the phonon energy is much less than the
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typical electron energy then we can write

P(k.n;k*.“ ) ” dq.xD x |HtotI i(«n(k)-‘B(k')> (5.14)

where

lHiotI 2 _
KbTE^^IQI2 G2 (qt)

wz pV (5.15)

We are considering the scattering of electrons around a small fermi circle
pwhich will necessarily involve small values of q . The function G (q ) isnm z

also insignificant for large q^ . With these observations we may use a 

linear dispersion relationship for the acoustic phonons with little error, 

ie
“ q “ vilQJ (5.16)

where is the longitudinal velocity of sound. Hence we find that

2 ( 2
P(lS.n;l£'.m) - K„T DEd>1|Gnm (q, )i (cn Qc) - 1 . (fc' ) ) dc,2

#>wt2 (5.17)

As the function G n m (qz) is sharply peaked we may also extend the range of 

integration from the zone edge to infinity with little error. Following the 

treatment of Arora and Awad (1981) 5.17 gives

K TE p
P(k.n;k'.m)------x w (2+«„ „) S (t „ (Is) - t a Os' ) )

p W t2 L
(5.18)

This expression is independent of Q and consequently the Siggia and Kwok

equations again decouple and we are left with the simple result 
1

-----  - 2 ---
T  „(€> rn Ti3

■* K»TE2d.f (2

PV t* 2L
*(€-<„)

( 5 .1 9 )
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The final formula (5*19) for 'T 1(e) shows a similar staircase structure ton
the density of state (Ridley (1982)), see Figure 5.1.

5-2.1.1 The Conductivity

We saw that the finite temperature conductivity could be written as 

(equation 3•33)

- f
<7(T)

where o_(£) is given by

ao<*> 4£a_ 
dt

df

m __________
m*

where Nm was the areal electron density due to sub-band m. The

discontinuity in the relaxation times in (5 -19) is due to the onset of

inter-sub-band scattering giving rise to the sharp quantum size effects in

Figure 5.2 shows as a function of the total areal electron density

and the smooth curve in the same figure shows the effect of finite temperature

(200X), which results in the smoothing out of the quantum size effects

at the sub-band discontinuities. In between the two sub-band origins, the

true conductivity o(T) is matched by o , because o changes linearly over ano o
energy range of k T. Similar effects have been observed by Stormer (1981)G
although he associates the smoothing of his quantum size effects with the 

lifetime broadening of the sub-band energy states, see the final chapter.

5.2.2 Piezoelectric Scattering

The unit cell in GaAs does not possess a centre of symmetry and atoms are 

partially ionised. When an acoustic phonon disturbs the atomic positions it 

sets up a dipole moment which couples the phonons to the conduction 

electrons. We may write the components of the displacement vector D. as
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( 5 . 2 0 )
D i -  =  * U  «J +  =  e l k l ® k 1 J k, 1

where and are components of the electric field and strain tensor 

respectively, whilst^  ̂ and e ^ ^  are the permittivity and piezoelectric 

tensors. If we assume that the displacement of the electrons is small 

compared to that of the ions we may put Dj=0 and hence we find that (Seeger 

(1973), Zook (196U))

^ —  * i j  CJ "  e i k l S k l
J w.t (5 .21)

where for cubic symmetry

C1J “  *  V ‘ 1 (5.22)
where 2  is the relative permittivity. The strain tensor Skl may be expanded 

in terms of the phonon displacement (Nye (1967)).

♦ i l l
( 5 . 2 3 )

We notice that Skl is symmetric under the interchange of k and 1. In second 

quantised notation we write,

u l ( 2 )  -  /  e (a  ■V'.fi.-H + a e 1*-* .)
1 9 9 ' ( 5 . 2 4 )

where 1,2 and 3 label the the co-ordinate axes. Hence,

- ’41 / *  UjQi + CiQzH-a ♦e-'fl.-JL + ae1*«*]
a/ 2o>n„V * 9 ( 5 . 2 5 )

If we consider a quantum well made of GaAs (which possesses the zinc blende 

structure) then in reduced notation (Nye (1967))
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( 5 . 2 6 )e l »  “  * 2 5  “  * 3 8

Moreover, if 0 denotes the scalar potential we have

V.e - -V20

Hence from (5.27), (5.21), (5.22), (5.25) and (5.26) we find

1 *,** I

k*» Q* J":2u p~ 1(C*Q ’Q* + ÇîQ3Q i + 5 3QiQ2)(-aa*e-‘Ä-B. +

( 5 . 2 8 )
When we introduce direction cosines

we find from equation (5.28) that

. p  “  — 1  * i * *  /  *  Hlißi+Ufv+H-ß) ( - a - 0 e";f l .- ^ a 0 e ‘ a.-£.)
1 ‘0 W  2u>0pV Ä 2

(5 .2 9)

for a longitudinal mode 6̂  = “, t2=8. C.= Ts. Hence

H 1 “ —— ——  ex*e / j  , » M )
1« //2«0pV **■ S<- (5 .3 0 )

and

Mj ■  < s ;n , ] ç| H ' | k ' , n i ; s > ( 5 . 3 1 )

where it should be remembered that a and a + are the phonon annhialation
Si fit

and creation operators for longitudinal acoustic modes. For transverse 

modes we can think of (Q3Q 2e1+(53Q 1C2+ Q i n  eciuati°n (5 -28) as being the
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dot product of ¿with a vector Q .Q^+Q.Q^+Q^^t. The result (3-6<)2 in 

equation (5-30) was obtained by aligning the polarisation with Q. The 

contribution due to the transverse modes is found by taking the squared 

length of the vector R-Q^i+Q-QjJ+Q^gk and subtracting the result (3-B*)2. 

Hence for transverse modes we have

ee14 / "IT
|M | 2 -  < a 2/)2+0 2 Y2+ t 2« 2 - < 3=c/ïtf)2 ) | < s ; n . l <; |  r -------/ ---------  f a  * e " ^ * ?

1&< - J  2u,pV S t
R i0< R . . 2+a£ te -- ) |k_ m;s>|

( 5 . 3 2 )

These matrix elements were calculated with one propagation direction in 

mind. If we average over all possible propagation directions we find (Ridley 

(1982b)).

whe re

s ■ *-!s '+a
and A is the area of the device. By substituting this result into the 

Siggia and Kwok equations (3.20) we may calculate the relaxation times 

numerically. Results are given in Figure 5-3- Unlike the deformation 

potential the piezoelectric relaxation times are different for each sub-band 

at high temperatures. This is because of the Q dependence of the piezoelectric 

mechanism, which is also responsible for the divergences at the sub-band minima.
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The relative importance of the two mechanisms is critically dependent on the 

carrier density. When the Fermi energy lies at the bottom of a sub-band, 

the divergence in the piezoelectric scattering momentum relaxation rate and 

the constant nature of the deformation potential scattering rate implies 

that the former dominates. However as the Fermi energy is increased the 

importance of the mechanisms switches. We return to the importance of 

screening in this problem in the final chapter. However, Figures 5-1 and 

5-2 indicate that for realistic carrier densities even ignoring screening 

the deformation potential will dominate over the piezoelectric scattering 

mechanism.

5-2.3 Scattering by Monatomic Circular Islands

Joyce (1986) has suggested a model for the state of the GaAs/Al Ga Asx 1—x
interface in a quantum well, arising from the MBE preparation technique. In 

his model, deduced from electron diffraction measurements, the interface is 

not smooth but possesses an island structure. The characteristic size of 

these circular islands depends on whether the GaAs is depositing on a 

AlxGa^_^As layer or vice-versa. In the former case the radius of the islands is 

of the order of 35A and in the latter 250A. With no additional information 

available we suppose that these islands are uncorrelated in position. We 

look at this problem in a formal way and neglect the atomic structure by 

representing the islands as thin cylinders of known potential V , which will 

be taken to be small. We assume that our wavefunction can leak out of the 

well, and the confining potential is taken to be so small that it changes the 

wavefunction only slightly allowing us to work in the effective mass 

approximation. To be definite we consider the GaAs/AlxGa1_xAs system and 

treat the alloy potential in the virtual crystal approximation. Then the 

scattering potential of each island takes the form
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V(r,z) = -h<z<0f;
[ Z 7 0 , l <  

IL^fc
-V (5.35)

where rQ is the radius and h is the height of the cylinder. The matrix 

element responsible for the scattering is given by

Mr ■ <n.k|V(i.z)Ik’,m>

-h r r o ^2n

dz \ fdr \ dtf cD( z )  tB ( z ) e ‘ It-f I rcos e ^
(5.36)

where 8 is the angle between |J<— | and r. Since the ^n(z) are assumed to 

be slowly varying over the range 0 to -h we can take them outside the 

integral and evaluate them at 0. Then we have

,9rc

Mr "  \ t > t 1 ( 0 ) l 1 ( ° ) * I 2w"3 (x)xdx

° (5.37)
where q= |gk-k_' | and we have performed the © integration. It is a property 
of Bessel functions that lAbramowitz and Stegun)

3 , - 1  (x) - in 3. (x) + 3  ’„(x) 
x

we can t6£ this property to integrate (5-37) to obtain 

V_h2irr_
- t„(0)t.(0) S ^ q r J / q

(5.38)

(5.39).

Equation (5-39) is the result for a single isolated island in a quantum well. 

With more than one island present we have to carry out an appropriate 

average. When many islands are present so that they fit together to form a 

continuous layer the scattering rate reduces to zero. Consequently, the 

averaging problem is then the same as that which arises in alloy scattering 

where a virtual crystal approximation was also used, except that now we have 

some short-range correlation. By defining an average potential for the 

layer and assuming that all the islands are of the same radius, rQ , we
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obtain the following approximate expression

I * -
Nfd-f) |r 

A L
IVoh2'ro ]Cll(0)c.(0)31(qr(>)

n 2

(5.40)

where N is the maximum possible number of scatterers per unit area and f is 

the fraction of the surface covered by the cylinders. This scattering 

mechanism is elastic and hence the transition rate,

P(k,n;k',m) = —  |M |^i(e (k)-c (k'))
r " ‘ m “ (5.41)

may be inserted into (3.20) to give the momentum relaxation rates. The

magnitude of the relaxation times is principally determined by the value of

the N. In all cases we have taken the surface of the quantum well to be 50%

covered by the scatterers, the difference between the curves is then mainly

due to the size of the islands. The values of r were given by Joyce and

the value of h was taken as 3X which is approximately the thickness of one

atomic layer. We have plotted the relaxation times for both r = 250? and

r = 35I in Figure 5.L. For small qij - qrQ/2 and the scattering

mechanism is q independent. In this case the relaxation time curves have

the familiar staircase form, see Figure 5-^a. For larger islands see Figure

oscillates and this is reflected in the oscillatory nature of

the relaxation times. In reality we would expect there to be some spread in

the radius, shape and orientation of these islands and this would smear out

the oscillations. For larger islands inter-sub-band scattering is less

marked. This is easily explained, there is a minimum value of q,q . neededmin
for an inter-sub-band transition to take place. For larger islands where 

ro*1/kF l (qro ^ q Tails off with q, hence when r^fcl/q^^ inter-sub-band 

transitions are less probable. The curves then decouple to a large extent. 

The relaxation times are almost continuous functions of energy and the QSE 

disappear.
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The origin of surface roughness scattering is the same as that of alloy 

scattering and the two could be described together if the autocorrelation 

function in equation (4.20) was known exactly. However with the 

approximations made here we find on referring to Figures 4.3 and 5.4 that 

the alloy scattering momentum relaxation rates are in general larger for 

Al^Ga^ ^As and this will dominate. It is also worth noting that as x is 

increased the hidden composition dependence in the quantum-well wavefunction 

results in smaller alloy scattering relaxation rates even before x=0 .3 (see 

Figure 4.3 for x=0.3). This is primarily due to rapid decay of the wave- 

function in the alloy.

5.3 High Temperature Phonon Scattering in Quasi-One-Dimensional Wires 

In this section we apply the set of coupled equations (3.31) derived in 

Chapter 3 to a one-dimensional wire with a rectangular cross-section of 

dimensions axb. We make the same assumptions as we did for the two- 

dimensional channel and consider the wire to sit in a three-dimensional cube 

of volume D 1. We look at scattering due to the piezoelectric and 

deformation potential mechanisms.

Johnson and Vassell (1984) have looked at this problem. However, they used 

an expression for a single momentum relaxation rate which neglected the 

coupling of the one-dimensional Boltzmann equations. Their expression was of 

the form

|<n,,l',k'|Vq(x,y,z)|k,l,n> |2

k'.q

X ( l - k V k ) « ( c n l < 1 , ( k ' ) - C n <1 ( k ) - 4 E 9 ) ( 5 . 4 2 )

We would expect this value of T  to depend on the choice of n and 1 and we 

would also expect it to change discontinuously as another sub-band becomes
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occupied, but this feature is absent from their graphs. In general a 

solution of the linearised Boltzmann equation must be effected by using the 

coupled relaxation time equations (3 .3 1) which take full account of inter- 

sub-band scattering. The coupled equations have the form

L
27 dk L

( k, n , m ; k\ n\ m')— dk ' 2» « 1

with the conductivity given by

ran m* (5.44)

In one-dimension only a discrete set of k vectors are involved in the 

scattering process and these are defined by the endpoints of the Fermi-lines 

in each occupied sub-band. From now on we work with the notation that k=| k | 

and we introduce the sign of the k's explicitly. The delta-function in the 

expression for P(k,n,m k',n',m') means that the integral over k' results in 

two terms one for +k and one for -k. We split the summations up to bring 

this out. Hence equation (5.!*3) gives

L
P(k,n,m;k’,n’fm') — dk'

2ir
k* >0

P ( k , n , m ; -k‘, n't m1)
L

2it
dk '

k ' <0

(5.46)

where

P(k.n,m;K'.n',m') — 2 * . \l|<s',k’,n'1m'|H |m,n, k;s>| 2 A dq dq
*  z z 7 * y

6 <«n..(K)-€D...(k')) (5.47)
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and AsD* the area of a side of the phonon block. Once again we expect the 

elastic approximation to be useful at high temperatures when equipartition 

is valid.

5-3-1 Deformation Potential Scattering

For deformation potential scattering and the infinite rectangular well 

wavefunctions (2.5) we find

P ( k , n l B ; k ^ n ' , a '  )
k BTE2d . r  F ( a ) F ( b ) 4 ( e BB( k ) - t B , B> ( k ’ ) )  

•fis2pD2* (5.48)

where

dx
2
d(?x,S

( 5 . 4 9 )

where the integral over qx is taken to extend to ». The integrations can be 

performed to give

P(k,n,m;k',n',m')
k TE2 »2

1 — I— —  * -- <2+4 nn')(2+S- •■•) 4-fis2gD2x ab n,n
(5.50)

which is similar to the result obtained for 6-function scatterers. The 

coupled equations (5.**6) can be rewritten to separate intra from inter-sub- 
band scattering, giving

k ’X>
P ( k , n . m ; k ; n ' /i i r)  £ _ d k '  + Y ,

2» ^ I 
k'<o

P ( k , n , m ; - k ' , n ' , m ' ) E _ d k '  
2 *

‘ 2 'Tn «- (  k ! P ( k tn , m ; k \ n ' , m ’ )Edk'+Z' *r B. B. f k '
l > o  ^  Jk

+ 2^ (

”  Jk'<o

P ( k . n . m ; - k * . n . m ) D  dk* -  12«r
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where
2 ’ - 2n'm’(n,m)rf(n',m')

When we are considering the extreme quantum limit the summations are all 

zero and we are left with a momentum relaxation rate which is equal to twice 

the scattering rate.

----L- " 2 ( p<k.i.1;-k\iii)D_dk-
n l . l (°  J 2*

k ’<o

Hie factor of two arises because the change in momentum is equal to 2k when 

an electron scatterers across the one-dimensional sub-band. We have solved 

the algebraic equations (5-51) for the deformation potential and the results 

are shown in Figure 5*5* The T n m are all different at a particular energy 

and their shape is dominated by the singular one-dimensional density of 

states (c.f. the two-dimensional case). When « corresponds to a sub—band 

energy both intra and inter-sub-band scattering rates are singular and all 

the momentum relaxation times are zero. One—dimensional systems should 

therefore exhibit extremely pronounced QSE.

5-3-2 Piezoelectric Scattering

Following the procedure given in section 5.2.2 for piezoelectric scattering 

in two-dimensional systems we find that the same method gives rise to a 

scattering rate

(5 .5 2 )
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2 2 2 2 2where 0 «[k-k1] ♦q^q^ and is the function given by Ridley (see

appendix 2). The relaxation time equations have been solved and the 

results are shown in Figure 5.6. The curves are again singular at the 

sub-band origins.

When the energy is well away from the sub-band bottom the momentum 

relaxation rates are small because the value q needed to effect scattering 

across a sub-band is large and this is prohibited by the I/O2 dependence of 

the scattering rate. The deformation potential on the other hand was 0 

independent at high temperatures and consequently we would expect this to 

be the dominant mechanism in one-dimensional systems at high temperatures 

and large Fermi energies.
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CHAPTER 6

INELASTIC SCATTERING

6.1 Introduction

We mentioned in Chapter 5 that the elastic scattering approximation is only

valid for acoustic phonons when the characteristic energies involved in the

scattering are much less than the thermal excitation energies. Here we

consider what happens when this criterion is no longer valid and we develop

an approximate scheme for solving the problem. In 6.2 we consider the

effect of inelasticity on the momentum relaxation rates of two-dimensional

systems. In three-dimensional metallic systems these considerations lead to a
-5conductivity which varies as T at very low temperatures (Butcher (1973)).

We investigate this Bloch-Gruneisen law in two-dimensional and one

dimensional systems.

We start by reconsidering the phonon absorption and emission processes. We 

imagine an electron to start at energy e and to finish at energy e+û(£) 

sifter absorbing a phonon of energy û (Q_). The scattering rate due to phonon 

absorption is proportional to the Bose factor

No
1

e6£ <£>-1 ( 6 . 1 )

At low temperatures the probability of such a transition is small and 

consequently the momentum relaxation rate due to this route is also low. On 

the other hand, we may consider the phonon emission process which is 

proportional to (Nq +1). At very low temperatures this factor is equal to 1. 

If we were to place our faith in the elastic scattering approximation and 

the equations of Siggia and Kwok we might expect there to be a finite 

contribution to the DC resistance of the 2-DEG due to acoustic phonon 

emission even at absolute zero. This argument is clearly wrong, if we were
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to continuously emit phonons, would grow, the temperature would rise and

the steady-state would be destroyed.

The solution of this dilemma involves rejecting the elastic scattering 

approximation. The equations of Siggia and Kwok (3-20) are independent of 

the electronic statistics and this is what is causing the problem. In order 

to proceeed we must first reject the relaxation time approximation which is 

exact for elastic mechanisms and develop a variational principle for quasi— 

two-dimensional systems. An effective relaxation time will be reintroduced 

later in the application of the variational principle.

6.2 Inelastic Scattering in Two-Dimensional Systems

The variational form of the three-dimensional Boltzmann equation was first 

introduced by Kohler and was used by Sondheimer and Howarth (1953) in

their treatment of polar optic phonon scattering in bulk semiconductors.

This approach is particularly useful because the iterative approach(Rode

involved in a variational calculation is under the control of the user, '«faen 

linearised the Boltzmann equation may be written in the form

extensive use of a computer, whereas the amount of work

zD - C*D(k)
( 6 . 2 )

where

Z" - E3f„
-h “sir

Jit
(6.3)

and

a f , ” (ls)
c*n<k)

at
coll

(6 .4 )
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we shall call C the collision operator. The low-field conductivity of the 

2-DEG is given by

-----  r  f f " ( k ) v  “ ( k ) d 2k
a  J (6.5)

where v" (k) is the x component of the electron velocity in sub-band n and 

the summation is over all sub-bands. In first order equation (6.5) reduces 

to

a z V n(k)d2k
( 6 . 6 )

Alternatively, we can use the Boltzmann equation (6.2) and write

a -------  £
2x 2(E,)2 n

* n (k)Ct fD( l t ) d 2K
(6.7)

To develop the variational method we first need to look at the symmetry 

properties of the operator C.

6.2.1 Symmetry Properties of the Collision Operator

Using the equilibrium electron transfer rate (5.2), consider the expression

E £
n

gQc,n)Ch(k.n)d2k

d 2k £  g ( k , n ) V ( k , n ; J s ' , m ) [ h ( k ' , m ) - h ( l s . n ) ] _ A _ d 2k '  
a ) 4ir2

ßZ d 2k £  \ gOs',m)V(k' , a ; k . n )  [ h ( k ,n )  - h Q s ’ ,m) 1 A d 2k* 
n  J m ) ~  Un2 ( 6 . 8 )
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In the second line we have used equation (6.U). In the third line we have 

interchanged k and k'.

If we add the last two expressions and divide by two we find

Hence C is symmetrical. Inserting equation (6.9) into (6.7) we find that

which, we note, is positive definite.

6.2.2 A Variational Principle

Using the result (6 .9) and the expressions (6.6) and (6.7) we can write down 

an expression for the conductivity which hasunextremum in space when the 

Boltzmann equation is satisfied:

To prove that (6.11) i6 stationary we consider a trial function 0 (k) which isn —
expressed as the true solution'!' (k) plus a small deviation (k) and we look

(g(k.n)-g(k' ,m) ]V(Jc' .o;k,n)[h(k.n)-h(k' ] a d2k'
4tr2

t
e r

2 n

fo(e„(k))[l-f<,(iB (k')))P(l£ln;k' ,m)

x [*.(k’)-*n(k)]2x A d2k-
( 6 . 10 )

a - [
( 6 . 1 1 )

n n
at the first order deviation from the true conductivity ô, obtained from 

l (k). Hencen

The interchange of g and h leaves the equality intact
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6o+oz
-e2

* 2 ( E , ) 2
2n^„(k)d2k + r

n
I z " i ^ n (fc )d 2k

- r
n
ji*D(k)CV<0(k)d2k Ì  * | \ » n (k )C 0 n (]i ) d I k

]

Hence

So
*2(E„2)

£
n

i \ i n ( k ) [ z n -C 0 n ] d 2k -  0
( 6 . 12 )

w hen t h e  B o ltzm a n n  e q u a t i o n  i s  s a t i s f i e d .  We c a n  u s e  t h i s  v a r i a t i o n a l  
p r i n c i p l e  t o  o b t a i n  a  b e s t  e s t i m a t e  o f  t h e  c o n d u c t i v i t y  f o r  a  g iv e n  
f u n c t i o n a l  fo rm i> n ( k ) .  S o n d h e im e r  an d  H o w arth  (1 9 5 3 )  e x p a n d e d  t h e i r  s i n g l e  
b a n d  t r i a l  f u n c t i o n  i n  t e r m s  o f  a  c o m p le te  s e t  o f  f u n c t i o n s  o f  e n e r g y .  I n  
p r i n c i p l e  an  e x a c t  v a lu e  f o r  t h e  B o ltz m a n n  c o n d u c t i v i t y  may b e  o b t a i n e d  by  
u s i n g  t h i s  a p p r o a c h ,  h o w ev er i t  i s  n e c e s s a r y  t o  t r u n c a t e  t h e  s e r i e s  
e x p a n s io n  a t  some p o i n t .  We u s e  t h e  s i m p l e s t  e x p a n s io n ,  a  c o n s t a n t ,  w h ich  
may d e p en d  on F erm i l e v e l  p o s i t i o n i n g  b u t  n o t  on  e n e r g y .  T he a im  i s  t o  s e e  
how t h e  r e l a x a t i o n  t im e  e x p r e s s i o n  w h ich  i s  e x a c t  f o r  e l a s t i c  s c a t t e r i n g  i s  
m o d i f i e d  a s  t h e  t e m p e r a tu r e  i s  l o w e r e d .  T hus we u s e  t h e  a n s a t z

®n - W .  (6.13)
w h e r e i s  a  c o n s t a n t  in d e p e n d e n t  o f  e n e r g y  f o r  a  g iv e n  v a l u e  o f  t p , t h e  
F e r m i E n e rg y .

6 . 2 . 3  D e fo rm a tio n  P o t e n t i a l  S c a t t e r i n g  a t  Low T e m p e ra tu re s
We c o n s i d e r  t h e  p h y s i c a l  c o n f i g u r a t i o n  d i s c u s s e d  in  C h a p te r  5 ,  w h e re  we u s e d  
t h e  e l a s t i c  s c a t t e r i n g  a p p r o x im a t io n  t o  o b t a i n  R i d l e y 's  s c a t t e r i n g  r a t e
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formula for deformation potential scattering. We noted that this approach 

was valid if the typical values of phonon energy ¿(0) arising in the 

integrals were much less than the thermal energy. The deformation mechanism 

has no Q dependence and a typical value of Q may be taken as 2k^ . The 

maximum value for k in a single sub-band in the square well approximation 

i6 2»/L. The elastic scattering approximation will be valid if 

T>VLxAm «  kgT

where L is the width. For a hoR well the temperature must be greater than 

about 100k, at temperatures lower them this the effects of inelasticity will 

be important.

The transition probability due to the absorption of acoustic phonons through 

the deformation potential is given by

where A(Q) is the energy of a phonon with wavevector Q. Let e and 6 ’ denote

L
ie if T »  -£4*

“» L

p.b,(lS.n;l£' .n) - - N0G2n-(q,)IQIS(‘n(k)-fB(]i,)+A(Q))dqi

(6.14)

the angles between k and k' and the x-axis and replace En ()0 by c and cn (k')

by c’; then equation (6.11) yields

(6 .1 5 )
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where Q«|g| and Fabs (n,m ,q ,Q) is defined as

F . k . ( n . - ; q , . Q ) --------- I H  o ^ i , , ) ©
fi'J.

( 6 .1 6 )
The only rabidly varying function of energy in (6.15) is then f (c '-6(0))(1-f fcVo o
which peaks at . We integrate this and treat the other functions as 

constants, evaluating them at cp . Now

f 0 ( * - M Q ) ) ( l - f 0 ( 0 ) d «  -
A(Q)

l - e x p ( - 0 A ( Q ) ) (6 . 1 7 )
' o

so that
. 2 *  2n +o>

£*2 [ [ / V m* A(Q)
------- 22 \ d f ' \ dM  ---  d<5 . - r - ------------ F(n,m;qE ,Q)

4 w 2 run Sir3 -S'2 1-exp ( -0A(Q) )
o J o

x (•cr"c°s# 'Tw -kpBcosiYn ) ‘‘ ( 6 .1 8 )
where k is the Fermi radius in sub-band m.

The alternative expression for the conductivity (6.6) gives

a - Z
Nb eV„

n m* ( 6 .1 9 )
construct the variational

to
/,2n

0m*
----T  T 1 A v
f>2 * n '

1 8'3) o 1 .

~ d<J.G.b.<r .n;q.fl)

r 2*
0m*
--- 2■K2 n 8 *

“  dqM -  cos=cG.bi(r.n;qE,Q)

( 6 . 20 )
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where

G.b.<r .n :q,.Q>
A(Q)

-----------  F.b.(r.n:q,.Q)l-exp(-/9A(Q))

ana we have usea the identity
( 6 . 21)

F.b.(r.n;q,.Q) - F.b.Cn.r;qt,Q) ( 6 . 22 )

The inclusion of the emission process is straightforward because of detailed 

balance which implies

£
n *»<k>c.b.*n(k)d2k -  £ |  *.<k>c..*ll<k>d*k

(6 .2 3 )

with Cabs and Cem denoting the collision operators involving absorption and 

emission processes respectively. Hence we only need to double each of the 

integrals in (6.20) to include both processes. The coupled equations (6.20) 

have been solved numerically for a range of temperatures (see Figures 

6.1(a), (b) and (c). We note that even at ■‘VOX the inelasticity is evident 

and at lower temperatures there are significant deviations away from Ridley's 

scattering rate result (see equation (5.1S)). In the high temperature 

limit 6 tends to zero and the Siggia and Kwok equations (3.20) are recovered 

from (6.20). In this regime the elastic scattering limit is a good 

approximation, equipartition holds and F(n,r;q ,Q) is independent of Q. The 

second integral in (6.21) is identically zero and Ridley's scattering rate 

formula i6 exact. As the temperature is lowered both the equipartition 

limit and the elastic scattering approximation are invalid.

6.2.3.1 Discussion of the Deformation Potential Relaxation Time Curves 

Figure 6.2 shows a transition between k and k' in the lowest sub-band by the



emission of an acoustic phonon. The electron changes its momentum state and 

at the same time loses energy to the phonon. At low temperatures the Fermi 

sea will have a sharp boundary curve and consequently momentum changes which 

involve the emission of a phonon with energy much greater than k T are 

blocked by the Pauli principle. Hence only small angle scattering is 

allowed at low temperatures. There is also a minimum phonon wavevector 

required for an inter-sub-band transition and a corresponding minimum phonon 

energy. So at very low temperatures, when the phonon occupancy is small, 

inter-sub-band transitions due to phonon absorption are improbable and 

transitions due to phonon emission are unlikely. This suggests an 

approximate sub-band decoupling scheme at low temperatures with the momentum 

relaxing by small angle intra-sub-band scattering. This effect is seen in 

the relaxation time curves Figure 6.1. At high temperatures a large change 

in the relaxation time occurs when another sub-band is becoming occupied.

At lower temperatures the electrons in one sub-band see less of the states 

in the other sub-bands and the relaxation time discontinuities are less 

marked. At very low temperatures the QSE are frozen out completely.

6.2.3.2 Limiting Temperature Dependence in 2-DEG's due to Three-Dimensional

Phonons

Three-dimensional metallic systems have a phonon-scattering limited 

resistivity which is proportional to T 5 at low temperatures (see Ziman 

(i960)). We may now consider the limiting temperature dependence in a 2- 

DEG. At low temperatures we know that inter-sub-band transitions are not 

permitted and only small angle intra—sub-band transitions are allowed. 

Hence, from (6.20)
r2 n  ,  +00

1

n

fim*

Ü 2 8«r* l-exp(0hVLQ)
(l-cosoc)F(n,n;qt ,Q)dq

(6 .2 4 )



where

Q -  (4kr 2s l n 2 (t<x)+ql 2)^ ( 6 .2 5 )

We insert the full expression for F(n,n,q ,Q) equation (6.l6) to obtainz

2n
1 fim* 

*1* ■ * 2
doc

dq, -RVl Q
8*3 l - e xp( -0 hV ,Q  )

*E2d.fQ 1( l - C O S a c ) ----------------  X -------------------  G2(qi)
pV L exp(/5T>VLQ ) - l

( 6 .2 6 )
Now, for small angles, q=2k_sin0$«/~k « and as q is taken to be small wer r z
know

Gn. »<<!.) " 1
qz-*°

we change the'integral variable * to q so that (6.26) yields

™ lQ2 q2 xE2d.f

( 6 .2 7 )

T . ' ?  A Wr f i A  s i n h 2 ( /»VLQ/2) 2kr 2 p

( 6 . 2 8 )

Finally by introducing polar co-ordinates in the (q ,q ) plane, we find thatz
the angular integration is elementary and yields

1 pm* * *  E2„.f [* 1

.6
[

ti2 kr3* 32 /9fiVL .
1

4 s i n h 2 (x) dx

( 6 . 2 9 )
where x = efiVLQ/2 . We see by inspection that'T is proportional to T5. 

Vinter (1986) has suggested that the electronic mobility should vary as T_1 

at low temperatures. This is true at moderately low temperatures when 

Ridley’s scattering-rate formula is approximately valid (Ridley (1982)) and 

the Fermi surface is fairly sharp. It fails at very low temperatures and 

the T -5 law holds.
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6.2.1* Piezoelectric Scattering at Low Temperatures

We can now examine low temperature piezoelectric scattering in 2-DEGs. The 

full inelastic transition rate takes the form

P ( k . n : k - . . )  —  « ( . . C k i - . l k - H M O , ) ,

i(«D (iS)-€B(k')-At(Qt))

2n 'e i * e |
n >•. J

4 (Ng»+D
35 Vt

3 »01

3 (N01+l) 1

35 V,

G2 (q ) L „ nm z x -------  —  dq z
Q 2* ( 6 . 3 0 )

This can be included in the equations (6.20), again we find that the

absorption and emission processes contribute equally to the conductivity.

The equations now take a similar form to the ones for deformation potential

scattering, but now we replace 
A (0 )

!-----;-------  x F.b. (r .n;q ,Q)l-exp(£A (Q ))
fey terms, one for the longitudinal phonons and one for transverse phonons

At (Qt )
---  x F_*_ ir.nra .O^ -- 4- -____________  \ absl-exp(-^At(Qt>) 35 l-exp(-0Ax(Qx))P l - 0 S  ( r * n î V 0 )  § 5

where

t/i ir r.14.-| n ,

P [ k e j  V
q t A  Gr,n«l.)

t/1 IQI ( 6 . 3 1 )
where N, t /I is the Bose factor, and V t ^  the velocity of the

transverse/longitudinal modes. These equations have been used to calculate
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the results shown in Figure 6.3 which are for T-40, lOK.Ihe qualitative behavior 

is similar to that found in section 6.2.3 for deformation potential 

scattering, but we see on referring to Figure 5.3 , for high 

temperature piezoelectric scattering that a large amount of sub-band 

decoupling is already present because of the 1/Q2 dependence of the 

mechanism and the finite q necessary for the transition. We note that the 

deformation potential dominates over the piezoelectric mechanism even at low 

temperatures, even before screening is included.

6.2.5 Low Temperature Conduction in One-Dimensional Wires

We now address the inelasticity problem in one-dimensional systems. In the

elastic approximation electrons have to scatter across the sub-band to

relax momentum, this may involve acoustic phonons which have energies large

compared to k T and consequently we can expect the effects of inelasticity B
to be important. If this were the only way of relaxing momentum we would 

expect the conductivity to increase rapidly when kBT<2hVLkF . To study this 

problem we modify the approach of sections (6.2.1-6.2.4). Thus, we write 

the linearised one-dimensional Boltzmann equations (3.27) in the form 

zn“ - c j)nm ) (6 33)

where

C^n"
at.

at ”  ^  i f . < ‘ n » 0 0 >  [  l-f0(«B.,.<k'))] P(k>n,n.;lc\n\m')

x [f5n ' - ' (le'> J JIT dk'
(6 .34)
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and

znm
d c (6.35)

The collision operator here again possesses the symmetry property 

£  \ h ( k ,n ,n i ) C g ( k ,n ,n i ) d k  -  Z l g ik .n .n O C M k .n .n O d kJ nmj
and the one-dimensional conductivity takes the form

fa o - ---- 2 1 ^n“>c^n“dk
irE2 nm ]

which can be rewritten in the familiar form

0e2 ( f

(6.36)

(6.37)

2wE2 \  f o ( £n » ( k ) ) [ l - f 0 ( ‘ n m ( k' ) ) ] P ( k . n . n i ; k ' >n' . i t f )« ' m ' rt m 1n'm’n m

x [0n '“ '(k’)-0"“ (k)]2 2 *  dk'dk

(6.38)

The expression 

-2e2

wE2 ns
2  j  z»"^""dk + -----  z j ^  f n“C^n“dk

(6.39)

has a minimum in 0nm space when the one-dimensional Boltzmann equation is 

satisfied. We shall use this result to look at conduction at moderately low
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(kBT-2riVLkF ) and very low temperatures (kBT«2hVLkf ).

6 . 2 , 6  Transport in One—Dimension at Moderately Low Temperatures 

Consider Figure 6.4, this shows the four classes of scattering process that 

an electron can be involved in, in one-dimension . Two of these processes 

change the electrons momentum by a large amount. The other two leave the 

electron on the same side of the sub—band and hardly change its momentum at 

all. In this section we consider the across sub-band transitions to be the 

important ones. When kgTitEJiv^kj. these transitions will be prohibited and 

the other two need to be considered in detail, this is done in section 

6.2.7- We inspect the expression

K ■ 2 ( ^nn>C^"“dk
nB ) (6.40)

and convert the integrals over k to integrals over energy. Thus, we have 

from (6.38), (6 .37) and (2 .7 )

K - - ft / . 2 a ( e  ,n,m)
r  d c *

£ \ --- lafi'.n'.m1
n'm’j Ti

)

x V ( * , n , m ; € ' , n ' , m ' ) [ 0 ( < ' , n ' , m ' ) - 0 ( e  , n, m)

(6.41)

where

(6.42)
V( t,n,m’,c’,n’m) is the equilibrium transition rate with the energies 

substituted for the k's. We introduce the ansatz

^n“ — - v n“ E“Tn (6.43)
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Momentum relaxation rates for deforma
tion potential scattering in a 1-D.E.G. 
at moderately low temperatures. T=40K 
cross-section= (10nm,12nm).

where again'f,nn> is taken to be independent of the electron energy for a 

particular value of the chemical potential, but dependent on the sub-band 
number, we find that

K -
- 0 E 2

2

d<
T  2  Z —  X c . n . n i ) f 0 ( O [ l - f 0 ( * - A ( Q ) ) ]Q run n ’ m* ti

L 1
x —  —  Da(«-A(Q) ,n,m)

2 *  -ft (6.44)

where W(k,k’,Q,n,m ',n' ,m' ) is the expression arising from a Fermi Gold Rule 

calculation. The only rapidly varying function is fQ(c)[l-fq(e-4(Q))] and 

we treat the rest of the integrand as constants evaluated at the Fermi 

level. For the intermediate temperature range we make the assumption that 

Vnm(cF ) - Vnm(c F-û (Q) ). With this assumption, the only contribution to Tt 

from intra-sub-band scattering comes from the scattering of electrons across 

a sub-band. The expression (6.37) for the conductivity is then given by

<*„ -
*E2 (6.45)

The alternative expression

( n“ 2 " " d k
nzn (6.46)

reduces to

a o
•  V „ .  X 2kr n-

£ ----  ----
run m* n (6.47)
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where k f is the length of the Fermi line in each occupied sub-band. We

now proceed as in section 6.2.2 constructing the variational form (6.39) and
3o

writing down the variation equation oTrp = 0 - After some manipulation we 

find that the coupled equations take the expected form

0A nm rp
T r p  2  l l -----------  W(kF ,kp,Q,r,p;n' , m ' )  ------ d q d q

n'm'l I l-e‘64 y

- £  T  . .n ’ ■ *
Í II U1

P ii nm r p  k r

7 j AW(kf . k r . Q . r . p ; n ' . m ' )  — ^ d q z d q y -  1

(6

• 48)

With the aid of these equations we have calculated the relaxation times T nm
for both the deformation and piezoelectric mechanisms for a range of low 

temperatures, see Figures 6.5 and 6.6, in which W is multiplied by two to 

allow for phonon emission.

6.2.7 Phonon Scattering at Very Low Temperatures in 1-DEG’s 

We now consider the situation where the temperature is very low and 

kj£T<<2h\/k'p. In this case only low momentum phonon modes are excited and 

scattering across the one-dimensional sub-bands or between sub-bands is 

highly improbable. The most probable transitions are between k states in 

the same sub-band on the same side of the sub-band (see Figure 6.4). We 

drop the assumption that V(tp)~ V(cf-A(Q)), and we look at expressions 

(6.44) and (6.45) in the case where only one sub-band is occupied. In this 

case
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t

■i r
i >

£ l l
2w l-e-8û

1 1  V
-  — [ - V ( t -A (Q ))+ V (O J *  7 7rr 8*3

x W(kr ,kf'jQ, 1,1 ; 1.l)d<JEdqy (6 .4 9)

To make progress with the evaluation of <5Lwe consider the requirements of

energy and momentum conservation. For scattering from a state k to a state

k ’ by phonon absorption, energy conservation gives

■h2k2 ft2k'2
---- + A(Q) - -----

2m 2nT

Hence
-ff2

Q - A(Q) - --  (k+k'Hk'-k ) - --  (k+k')q
2m* 2m*

( 6 .5 0 )

where we have made use of momentum conservation along the length of the 

wire. For a transition between k states on the same side of the sub-band 

k ~ k ' ~ k F and hence we find that 

V. Q
qx -  -------- = Qcos'f*

V r  ( 6 . 5 1 )
where is the fermi velocity and hence we conclude

cosifi ~ Vt/Vr

Only phonons propagating on or close to this angle can scatter electrons 

in the wire. We can now rewrite the expression for the conductivity as

* * i f  v wE2d.f m* q
\\ dq dqy --- In(0.Q,VL)------ Q —

2* pVt 2‘f 2m*
T  2

( 6 . 5 2 )
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where

BTiVlQ
In (B.Q.V, )

L> ” [l-e-^L5'] [ » V - l ]
(6.53)

and we have inserted the expression for w(kF>kF',Q) used the results that 

-1 and ¿(Qj^hv^Q. We convert to circular polar co-ordinates
q —»0y
in y space and use result (6.51)

.2*r * tQdQsin2^
2n 8jt3

»E*d.f m* cos2ii*r2d&In(^,Q,Vt) -----  Q2 —  -------
pVL 2 t T (2m* ) 2

(6.54)

Finally we make the substitution x=hVLQ and perform the 6 integral to obtain

* X 2 l x  I1 x2cos2^sin2\> m*T2 <rE2 ,a • i
2*  ) (0fiVL)5 4*2 [1-e'*] [e*-l] (2m*)2 2c, pVL

dx

(6.55)

When the alternative expression for the conductivity (6.1*7) and (6.55) are 

combined in the variational form (6.39) and operated on by 3/0̂  they give 

an expression for T  which varies as B5 and hence the resistivity again obeys 

a Bloch-Gruneisen T5 law. The angle V may only be defined for reasonable 

densities. At low densities the assumption that only the transitions on the 

same side of the sub-band are important breaks down and a more elaborate 
theory would be needed.

Conclusions

We have seen that the elastic approximation breaks down for acoustic phonon
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mechanisms at low temperatures in both two-dimensional and one-dimensional

systems. At very low temperatures we have a resistivity which obeys a
5Bloch-Gruneisen type T law. Energy and momentum conservation along with

inelasticity considerations in one-dimension predict that at very low

temperatures only three-dimensional phonons propagating on or close to an

angle of cos1(VL/VF ) to the axis of the wire may interact strongly with the

electrons. This analysis assumes that v <v which is unlikely to be violatedL F
in most experimental situations. The inelasticity also has the effect of 

decoupling the sub-bands in two-dimensions at low temperatures and freezing 

out any Quantum Size Effects. In one—dimensional systems the singularity in 

the density of states means that total decoupling of the Boltzmann equations 

is not possible when the Fermi energy is aligned at a sub-band origin. At 

any other position the decoupling concept is accurate provided a 

sufficiently low temperature is chosen.
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CHAPTER T

POLAR OPTIC PHONON SCATTERING IN QUASI ONE-DIMENSIONAL WELLS

We saw in Chapter 3 that we were able to define a characteristic relaxation 

time for both elastic and quasi-elastic mechanisms. In both cases this has 

a simple interpretation as the time which enters into the conductivity 

expression

Ne2 T

°‘U ) =  b f l -  ~sub-bands

In this section we look at a scattering mechanism which changes the electron 

energy by a large amount when compared to a typical Fermi Energy: polar 

optic phonon scattering. This scattering mechanism is strongly inelastic 

and in GaAs, for example, an electron will change its energy state by 35meV 

(Fletcher and Butcher (1972)). The Boltzmann equation has been used to 

treat optical phonon scattering in bulk materials (Rode (1970), Fletcher and 

Butcher (1972)) and in inversion layers (Vinter (198L)). All of these 

authors use an iterative approach although Sondheimer and Howarth (1953) 

have obtained approximate solutions in three-dimensions using a variational 

approach. The aim of this chapter is to discover an effective relaxation 

time for one-dimensional systems. We adopt the iterative approach, because 

this generates the exact electron distribution function whereas the 

variational method generates a good estimate for the Boltzmann conductivity 

but not necessarily a good value for f x . It is only in the limit of low 

temperatures (where the optical phonon scattering mechanism is unimportant) 

that we expect the two approaches to give the same relaxation time.

Polar-optic phonon scattering has been considered in one-dimensior.al wires 

using a relaxation time formalism (Ridley (1983)). This approach was
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expected to give a good first estimate of the importance of the mechanism. 

However it suggested that for some well sizes and electron energies the 

momentum relaxation time may be negative and as the conductivity is usually 

related to this time we would expect the system to have some unusual 

properties! We show that the effects of the electron statistics (ignored in 

Ridley's model) are important and we calculate an effective relaxation time 

which is positive. In section 7*1 we present the arguments giving rise to 

the negative relaxation time and introduce the effect of the electron 

statistics in a simple way. In 7 .2  we calculate the perturbed part of the 

distribution function and derive an effective relaxation time relevant to 

transport measurments.

7•1 Polar Optic Phonon Scattering and the Approach to Equilibrium 

To explain the negative time we consider an electron lying low down in a 

one-dimensional sub-band with an energy less than that of a polar optic 

phonon, see Figure 7-1* Then a L.O. phonon cannot be emitted. A phonon 

absorption process can take the electron to one of two positions in the sub

band marked 1 and 2. Now the polar optic phonon transition rate 

has a l/Q dependence. Hence, scattering to position 1 is therefore more 

probable than scattering to position 2, indicating that the electron 

momentum will be increased on average so that the momentum relaxation time 

is negative.

To consider this problem further, we use the Boltzmann equation and we look 

at the behaviour of the electrons in a one-dimensional wire starting with a 

particular momentum. Throughout we consider the phonons to be monoenergetic 

with energy-ttuo and we consider the sub-bands to be separated by many 

optical phonon energies. In this regime we may confine our attention to the 

lowest sub-band permitting a simple discussion of Ridley's result.
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Vhen the electron energy is greater than ttuo, the emission process is 

allowed and there are another two states associated with this as shown 

in Figure 7.1.

We consider a homogeneous system which is in thermodynamic equilibrium. The 

occupation of the states is described by the Fermi-Dirac distribution 

function

1
fe' ( 0 -------------------

exp( 0 ( c - y ) )  + 1
(7.1)

where^ ' is the chemical potential and e is the energy of the electron.

At time t=0 we inject a small packet of electrons with momentum k close to 

k0. The system will eventually redistribute this additional momentum so 

that thermal equilibrium is again reached with the new distribution 

function,

e x p ( / S ( i - ^ ) )  + l ~ f o ' U ) -  S e p d ï * (7.2)

w h e r e + Sc^ is the new value of the chemical potential corresponding to 

the new electron density

f (c)dk
(7.3)

In the absence of applied fields
at (k.t) 

at

at (k.t) 

at
coll (7.4)

- \ dk’ V(k.k’)
f ^ k ’.t) f^k.t)

(7.5)
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(7 .6 )
In this equation

V(k.k') - f0(0[l-f0(e')]P(k.k')

where P(k,k‘) is the intra-band transition rate and V(k,k') is the 

equilibrium transition rate (see Chapter 5).

The average momentum of the system is

_  \f(k,t)kdk
k(t) - 1— ---------

l fdk

In the present case

df.iey.)
f(k,o) - S ( T ---- + »rio^iCk-k,,)1 de

( 7 . 7 )

(7 . 8 )

where \ is the fractional change in electron density due to the injection

of the electrons. We substitute (7.8) into (7.7) and remember that f is ano
even function of k. Hence 

k(o) - Ak ( 7 . 9 )
Our main interest lies in the momentum relaxation rate at time t=0. Now 

using ( 7 . 8 ) ,  ( 7 - 7 )  and ( 7 .5 )  we see that

( p _
dk(t) 1 (_ ___  \ HlrV 3 f x (k,o)

dt
\ OKK

*"o J at
t-0 '

j dk'V(k.k')[B(k')-B(k)J (7 .1 0)

where

B(k')
S <, df ( E ' )

Ai(k’-k0) + t t

(7 .1 1)
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Hence

f d k ( t ) ' (  d k V ( k 0 . k ) 1 - k  "
L dt ) f „ < « M l - f 0( c ) ]t - 0  ■>

V ( 7 . 1 2 )

Since the terms involving SEp cancel out. Hence we may write 

dk(o)

d t
°> /  _ /
/  - * A —

whe re

1 A'n dkP(k ,k) l-f„(t(k)) fl-k 1

l-f0(‘(k0)) I kc J
This quantity may be negative.

( 7 . 1 3 )

(7.14)

For non-degenerate statistics f0« l  and expression (7.1h) is identical to 

the conventional formula for the momentum relaxation time (Ridley (1982)). 

However the initial relaxation rate doee not determine the conductivity 

of the system to which we now turn attention.

7.2 Steady State Transport

In the absence of screening the polar optic phonon gives rise to a 

potential given by (Butcher (1986))

U (R) - -i
■fta>

2 Ve
1 1

ic „ 9

* Y ~  a*e -iO*R

Q Q q
( 7 . 1 5 )

Where « «. and are the high and low frequency relative dielectric 

constants, whilst a^ and a^ are phonon creation and annhialation operators 

respectively (as in Chapter 5). We work uith the hypothetical model in 

which there is only one sub-band uhose wavefunction is given by

78



^ (k) L ^c(x){(y)eikz
(7.16)

where

( 7 . 1 7 )
We consider the matrix element (taking the annhialation operator first)

M .nn = < t(x)c(y)k'|-e U ,nn(R)|kc(y)C(x)>

- f ^ ie r1 i ‘

2Vce K - K

where

N -■

Vo.

G(q,)G(q )

n“o/kBT_i and Q2 ~ ((k-k* ) 2 + q ^  + qjr2}

( 7 . 1 8 )

(7.1&)

Squaring and integrating over q and q we find

- Ne2
TOT

i 1 1
2to I * -  K 0 .

G2(qx)G2(qy) 1 dqrdqy 

) | k - k ' | 2+ q i 2 + q  2 L 4w2

( 7 .2 0 )
The matrix element for the creation operator takes a similar form except

that N is replaced by N+l. The q^ integration can be performed

analytically (see appendix 3) and hence the scattering probability, due to

absorption/emission is found to be 
- +0»

a b s
Pe„(k.k') - F

a b s
em 2m(l-exp(-ba)) 2tr

.... . ij ■
G (q )dq
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where
abs 
era

F — rt( N+'

a - A* . b

* < t > —  f i  . 1 1
'. I X- K.J

«(e(k)-e(k' )+Tî 0)

((k-k*)2 + q l A'ly /
abs

The expression for P was evaluated numerically and was substituted into 

equation (T.lU) to give the relaxation time approximation (see Figure 7.2).

7.2.1 The Iterative Solution of the Steady State Boltzmann Equation

In the steady state, the linearised one—dimensional Boltzmann equation reads

~  -  [ - 13k I. at J

-e  g at.

coll (7 .2 2 )
and the right hand side is given by (7.5) and (7.6). These equations can be 
rearranged to give

f , (k) -

where

z(k’,k)

«z(k’,k) + if 3k 

Y(k',k) (7.23)

“ ^[f. (k' )[l-f0(k)]P(k',k)+fo(k)f,(k')P(k,k')] -- dk'
2 n

and
Y(k MO -   ̂ [U -f0(k>]p(k .k ')+f0(k')P(k\k)] —  dk'

2 n

(7 .2 4 )
where P(k,k’) is given by (7-21). Equation (7.23) can be iterated until 

convergence to obtain an accurate value of f,(k). With this method the 

electron statistics are treated exactly.

The terms Involving P(k’,k) describe the scattering of electrons into state 

k whereas P(k,k') are the outscattering terms. To evaluate the integrals in 

(7.2h) it is useful to keep this distinction in mind. For example, the first 

term in Z(k’,k) is an inscattering process. We can go from klab to k by the
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emission of a polar optic phonon, hence

f *Jz-rr
where

f ,  ( k ' ) [ l - f 0 (k ) ]P *“ (k '  ,k )  -M(«,Tiu.0 ) N*m(k)
zrr

L I  / m*
M(*,15«0) - f. (<+*«„ >[l-f0(€)]-----

2ir "Ti W  2(«+Thj )
( 7 .2 5 )

and

N*"(k) - W
k *k k -*klab 2ab

k -»klab
function removed and k and k are given by the two roots of1 ab 2ab

1i2k'2 T»2k2
------  - tiu0 + -----

2m* 2m* ( 7 .2 6 )

We can make a transition from k to k by phonon absorption if e>fiwlem o
and we find

f,(k')[l-f0(k)]P*b(k'.k) —  dk' - M(i .-*<*>) N,b (k) ©(í -Tíw,,)
2 *

( 7 . 2 7 )

The other terms in (7-2U) can be treated in the same way. We find that most 

of the terms on the right hand side of (7.2L) involve f, ( e+fiUo) and 

f, (E-4iu0) and we see that each part of the distribution function is coupled 

to the next. Using numerically determined values for P(k*,k) we iterated 

this equation to find f,(k). We found that convergence was usually reached 

after about 10 iterations. To compare the results with those of the 

previous section for the initial momentum relaxation time we follow Fletcher 

and Butcher (1972) and introduce an effective relaxation time ̂ "eff defined 
by

*f, 0 0

t . ff(€(k))

-e af„00

8k ( 7 . 2 8 )
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We have plotted^eff as a function of energy for a range of chemical 

potentials at room temperature (300k) (see Figure 7.2). The discontinuities 

at integral numbers of f iu 0 are well understood. The discontinuity at e=;Ti“o 

is due to the onset of the emission process. The other discontinuities are 

due to the coupling of the distribution function at c to the distribution 

function at e+tio>0, and £--fiw0 by the inelasticity of the process. 

Nevertheless, in the high temperature and large electronic energy regime the 

iterative procedure duplicates the momentum relaxation time given in 

equation (7.1k). It is interesting to note that the relaxation time 

equation (7 .1 k) is non-zero as k—)0, even though we may expect an equal 

amount of forward and backward scattering at this point (Ridley (1985)). On 

evaluating the expression (7 .1k) in the limit k -*0 we find

mom
2W(k-»k(ib)

(l-f0(t(k^))

(l-f0(t(ko)))

m*

* 2kwvb (7.29)

which is positive and non-zero. So we expect the relaxation time (7.1k) to 

be negative over some energy range but positive at the origin. The details 

of the change from positive T  to negative near the origin are not shown in 

the Figures simply because of the large amount of computer time required.

The value of calculated from (7.29) will be small on the scale used in the 

graphs and hence we find the curve approximately goes through the origin.

7-3 Discussion

In section 7-2 we gave an interpretation of the relaxation time formula for 

one-dimensional systems in the presence of polar mode scattering. It is 

strictly valid when the electrons obey Boltzmann statistics and it describes 

the initial behaviour of the average wavenumber k(t) following the 

injection of a small number of electrons with wavenumber kD. The negative 

values which arise at low energies mean that initially k(t) increases above 

kQ . Ultimately, however, k(t) must reach a peak and then decay to zero
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because the electrons eventually achieve a new equilibrium distribution 

function with the chemical potential shifted to be consistent with the 

number of electrons after injection. Both before injection and a long time 

after injection the mean wavenumber vanishes because equilibrium 

distribution functions depend only on the electron energy which is an even 

function of k.

It would be possible to calculate k(t) by numerical solution of equation 

(7-5) subject to the boundary condition (7.8). However, the general 

features of the behaviour of k(t) are clear from the physical arguments 

given here and detailed calculations are premature in the absence of time 

resolved experimental data.
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CHAPTER 8

CONCLUSION AND DISCUSSION

Our aim in the work described in this thesis has been to study the effects

of a range of scattering mechanisms on the conductivity of two-dimensional

and one-dimensional electron gases in the Boltzmann regime. We have

extended earlier work in the field by emphasising the effects of inter-sub-

band coupling and electron statistics. In Chapter 3 we saw that it was

necessary to define a characteristic scattering time for each sub-band that

is occupied by electrons. Some authors have used only one relaxation time

(Johnson (I98U), Ridley (1982)). However, we have seen (by using the

equations of Siggia and Kwok for two-dimensional systems and by developing

our own for one-dimension) that the single relaxation time approximation is

only correct in the extreme quantum limit when only one sub-band is

occupied. We have shown in Chapter 6 that the Siggia and Kwok equations

form a useful framework for quasi-elastic mechanisms at temperatures when

the thermal energy k T is greater than the characteristic change in electron B
energy. At lower temperatures (about 100 K for typical well dimensions) we 

modified these equations to take account of the electron statistics because 

some states are full and not all transitions are allowed. The relaxation 

times derived in this way show why the quantum size effects predicted by 

Siggia and Kwok are frozen out for inelastic scattering mechanisms at very 

low temperatures. The sub-band decoupling effect associated with this is 

particularly apparent in the deformation potential curves in two dimensions. 

The relaxation times for piezoelectric scattering do not show any drastic 

change in shape as the temperature is lowered because there is already some 

decoupling due to the Q dependence of the scattering potential. It is also 

Interesting to note that the singular one-dimensional density of states has 

s-n effect on the sub-band coupling even at very low temperatures. However, 

we would expect thi6 to be removed by the lifetime broadening of the sub-
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F I G  8.1
T h e '’id e a l"an d  lifetim e b ro ad en ed  density  
of s ta te s .

band states, as we discuss in the next section.

The aim of this chapter is to discuss how the theory we have developed is 

deficient and to suggest possible methods of improvement. In 8.1 we look at the 

Boltzmann equation and consider the effect of the uncertainty principle on 

the transport times. In 8.2 we consider how realistic potential wells may 

affect the relaxation times which were derived from our simple sinusoidal 

wavefunctions. In 8.3 we discuss the problem of screening the various 

interactions with a dielectric function relevant to 2-DEG's. In 8.U we 

reconsider alloy scattering theory and look at a first principles 

calculation for the scattering strength s(o).

8.1 Lifetime Broadening

In this section we ask how accurately does the Boltzmann conductivity relate 

to the true conductivity. Sernelius and Bergrenn (1985) suggest that the 

Boltzmann equation is inadequate in that it fails to duplicate experimental 

results. Cantrell and Butcher (1985) explain this in terms of the finite 

lifetime of the electron states. We give a simple explanation of their 

argument in terms of the Boltzmann equation and the Heisenberg uncertainty 

principle. To be definite we concentrate on the two-dimensional case.

The Boltzmann equation treats the time evolution of the distribution 

function f(k,n,r^ t) for a set of extended states. The density of states 

calculated from these is step-like and gives rise to the quantum size 

effects. These effects have been observed by some authors, Stormer et al 

(1982), and not by others Bergrenn et al (1985). This is because the 

finite scattering limited lifetime of the electron smooths out the sharp 

staircase density of states by introducing an uncertainty in the electron 

energy, the form of this is shown schematically in Figure 8.1. Inter-sub- 

band scattering will now be switched on more slowly when the electron energy
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is raised and the abrupt quantum size effects will be smoothed out to some 

extent. Stormer (1982) observed this smoothing and he was able to attribute 

it to an energy uncertainty of •fi/T where T  was a characteristic lifetime of 

the carriers. To explain this with the Boltzmann equation we make the 

assumption that it is only the modification to the density of states which 

is important and scattering probabilities can still be evaluated accurately 

with unperturbed plane waves.

In the absence of scattering we can write the density of states in two-

dimensions as
D2D(0

as
m*

- z _  —  »(«-« . )irTi2

n

(8 . 1)

( 8 . 2)

In the presence of scatterers the i functions are broadened out to produce

an area preserving line shape which is usually approximated by a Lorentzian, 

so that the new density of states is given by

(8.3)

where is related through the uncertainty principle to an energy or order 

scattering rate for sub-band n. The integral in (8.3) can be performed 

to give
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F o r  lo w  v a lu e s  o f  r n  when t - e  > > r t h e  e x p r e s s i o n  r e d u c e s  t o  t h e  
e x p r e s s i o n  g iv e n  by ( 8 . 2 ) .  We now m o d ify  t h e  S i g g i a  and  Kwok e q u a t i o n s  by 
r e p l a c i n g  t h e  d e n s i t y  o f  s t a t e s  te r m  w h ich  a r i s e s  in  t h e  su m m atio n s  o v e r  k 
s t a t e s  by  t h e  new b r o a d e n e d  d e n s i t y  o f  s t a t e s .  W ith  t h i s  m e th o d  we c a n  
a l lo w  t h e  s t e p s  t o  s w i t c h  on m ore s lo w ly  a l t e r i n g  t h e  r e l a x a t i o n  t im e s ,  
h e n c e  t h e  S ig g ia  a n d  Kwok e q u a t i o n s  becom e

m
P(k,n;k',m)D (Qd<d6 

scat ITT

—  c o s0  P ( k , n ; k ' , m )  
k

m
D (i)dtde

s c a t  17*"
( 8 . 5 )

F o r  d e l t a  f u n c t i o n  s c a t t e r e r s  t h e  s e c o n d  i n t e g r a l  r e d u c e s  t o  z e r o  and  tn e  
r e l a x a t i o n  t im e s  d e c o u p le  t o  le a v e

( 8 . 6 )

F o r  d e l t a  f u n c t i o n  s c a t t e r e r s  P ( k ,n  -,k' ,m) i s  k  in d e p e n d e n t  a n d  we h a v e  
w r i t t e n  t h i s  a s  P ( n ,m ) .  In  t h i s  c a s e  t h e  momentum r e l a x a t i o n  r a t e  i s  
i d e n t i c a l l y  e q u a l  t o  2  r  m/fi an d  h e n c e  we h a v e

( 8 . 7)

w h ich  may b e  s o lv e d  i t e r a t i v e l y .

The a rg u m e n t  p r e s e n t e d  h e r e  i s  s im p le ,  C a n t r e l l  an d  B u tc h e r  (1 9 8 5 )  show in  
r i g o r o u s  a p p ro a c h  t h a t  f o r  d e l t a  f u n c t i o n  s c a t t e r e r s T n =*fi/2rn . 
U n f o r t u n a t e l y  t h e i r  m e th o d  i s  u n a b le  t o  t r e a t  r e a l i s t i c  s c a t t e r i n g  
m e c h a n ism s . The c o r r e s p o n d e n c e  b e tw e e n  (8.7) a n d  t h e i r  e q u a t i o n s  i n d i c a t e s



that equation ( 8 . 5 )  may be a  best first guess for a solution to the 
transport problem with level broadening for realistic mechanisms.

The density of the scatterers reduces as the temperature is lowered and so 

will the level broadening. So, at very low temperatures in pure systems the 

QSE should be observable and due to static impurity scattering (see Stormer 

et al (1982)). Sernelius failed to see these features because their sub

band energies were very close together, due to their large well width.

Their systems were severely disordered with the reciprocal of its mean free
k

path (ie the uncertainty in k)~2. Consequently both level broadening and 

thermal smoothing could be held responsible for removing the quantum size 

effects here.

At present an exact solution for the transport problem including lifetime 

broadening and realistic scattering mechanisms is intractable and the 

Boltzmann approach adopted here should serve as a useful tool in relatively 

pure systems. However, even these results are in need of some modification 

because they will be screened by the electrons in the 2-DEG.

8.2 Screening in 2-DEG's

The lack of three-dimensional translational invariance, and the resulting 

sub-band structure, complicate the screening of impurities in 2-DEG's and 

1-DEG's. We have omitted this screening effect from our calculations. 

Screening in 2-DEG’s is considered by Ando et al (1982) who examined a 

strictly two-dimensional system in the Thomas-Fermi approximation. They 

treat the charge 6heet as having infinitesmal thickness and write the 

induced charge in the form

P (r) - -e[N.(^)-Ní(0)]í(z)
l n d  ( 8 . 8 )

Here: N s("0) is the areal electron density due to the application of a 

potential 0=0(r,o) the value of the electrostatic potential at the 2-DEG
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layer. The screened potential 0 must satisfy Poisson's equation

7.(k2^)
- p

( 8 . 9 )
wherep -  P ^+P. . , with P t denoting the external charge due to theI ext ind ext
impurities. In the Thomas-Fermi approximation we consider the potential (p to 

change the energy levels in the quantum well by an amount -e0 and the

separation of the Fermi energy Ep from the bottom of the conduction band by

eF . The potential is assumed to be weak and we linearise the expression

f o r  Pin(j to give
_ dNs

^indCr) - -e0(r) --- i(z)
dp

_  dN,
- -e2ji(r) --- S (z)

d t F
Poisson's equation then becomes (Ando (1982))

V.- (kv/;

where

k -

with

q". ■

) - 2 k q , ? ( r ) 5 ( z )  -  - p „ t A ,

K .c + kin.

( 8 . 1 0 )

( 8 . 11)

-e2 dN.
( 8 . 12)

d‘F

To solve (8.10) Ando used a Bessel function expansion for the potential

0 ( £ ,Z )  -  \  qAq ( z ) l 0 (q

The value of the coefficient Aq(0) is given by 

ze eq*o
Aa ( 0 )  -  —

q+q.

(8 .1 3 )

(8 .1 4)
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For large r the average potential falls off as r3

(r)~
ze(l+q.zc)

k q,2r3 (8.15)

which is not so strongly screened as the Yukawa potential found for screened 

impurities in three-dimensional systems.

Unfortunately, this approach is only useful for treating the single sub-band 

case. The most interesting features which arise in quantum well transport 

are due to the switching on of new states when a new sub-band becomes 

occupied (Ogrin et al (1966)). Sernelius et al (1985) address this problem 

using perturbation theory. They consider a GaAs FET and equate the induced 

charge with an expression derived from first order perturbation theory to 

obtain

<’ind(* >
2 y  fo (Jj.n) [l-fjk' ,m)]

£n Us)-Vkl) n|Vi l- ,m>'rn.kYm,k’(£ ) + c -c<n ,k 
m,k ’

( 8 . 1 6 )

where Wi  is the impurity potential and c.c. stands for the complex conjugate. 

If we Fourier expand the induced charge density and the perturbing potential 

V., we find that

ind<R> “ V'1̂ ^^>lnd(£,qjexp(iqtz+iq.r) 

a*q»
PlBd(Q> " n,(n,n> ;jj)<n|exp( iqtz) |m>

(8.17)

nm

X <m|exp(ipJz) Ir^Vj^ip, ,q)

P, (8 . 18)
where L2 is the macroscopic width of the system in the z-direction. The

quantity < n|exp(ipzz)) |m> is the equivalent to Ridley's (1982) G nm(pz)

an arbitrary confining potential and
for
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(8.19)
2Tn (n.m.q)--- i __ f0(Js-n>-fo (Jt+q.m)

—  A k ‘■.(^•«»(k+q)

Poisson's equation again relates the induced potential to the induced 

charge, hence

v “ini
ki.

giving
*e v ~■Q2̂ indQ) “ ----/ no(n,m;q)<n|exp(-iqtz) |m>
kt *--

( 8 . 2 0 )

Æ
x ---/ <m|exp(iplz)|n>Vi(p q)

L,
P, (8.21)

for the Fourier transform of Q^n(j(5^- To make our argument self-consistent

we must include this induced potential as part of the perturbation. Hence

following Sernelius, we have

Vi(Q) = V0(Q) ♦ v(0^JIo(n.ir.;q)<n|exp(-iqzz)|m>

m|exp( ipzz) |n> Vi(p2 ,q_)

( 8 . 2 2 )

The true impurity potential is made up of the potential from the bare 

impurity plus a contribution to the potential from the screening electrons 

which move in response to the screened impurity potential. In equation 

( 8 . 22 )

.2
V (Q) -

kt0Q 2 (8.23)

The inversion of the three-dimensional equivalent of (8.22) results in the 

Lindhard dielectric function. The inversion of (8.22) however results in a
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matrix equation

v q (q ) - i_1(q) Vo (q)%.
where 

« (q)■-i'q.'P.. " Sqz ,pz
i V “

v(û) ---- /  n (n,m;a)
L. L--

x < n | e x p ( - q zz ) ) m x m | e x p ( i p l z )  | n >  ( 8 . 2 4 )
In principle we could have included the screening in our calculations but 

the computational effort involved is excessive, Sernelius includes the 

influence of the five lowest sub-bands to calculate the screening of the 

impurity potential before calculating the conductivity of the lowest sub

band. In the absence of refined experimental data, these considerations 

appear to be premature. The extension of Sernelius’ screening theory to 

one-dimensional systems is straightforward although we consider the

implementation to involve substantial computational effort. We find that 
^ind^x ’̂ y »q*) “ e y  no (n.n' .m.in* ; qt )<n | exp( - iqxx) )n *>

n.n*
m.m*

x  < m | e x p ( - i q yy ) | m ’>

i E <m- | e x p ( i P i x )  | m x n -  | e x p ( i p yy )  | n >  Vi ( p x , p y , P i )

Pz>P>
leading to

‘(q.) qz .Px ;qy .Py *'<2.)
1 V. 0) —  /  n o ( n , n ' ; m , m ' , q 1 )
A L-----

n ' n '
m,m'

x  < n |  e x p ( - i q xx )  | n ' X m |  e x p ( - i q yy )  | m ’>

x  < n ’ | e x p ( i p xx )  | n x m ' | e x p ( i p yy )  |m> ( 8 . 2 5 )
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We shall return to the screening problem in our discusssion of alloy 

scattering, section 8.U.

8.3 Realistic Potential Wells

The sinusoidal wavefunctions used throughout our calculations are extremely

useful in simplifying quantum well calculations, this is why we use them.

Of course, in doing so we ignore complicated many body effects (Ando

(1982)). The quantum well is usually embedded in a material with a

different dielectric constant and we really should include the coulomb

interaction with image charges. If we consider the presence of only one

material interface and two electrons we obtain an expression for the

electrostatic potential given by the standard result (Jackson (1962)). 
e2 -v

V(r-r’;z,z') — ---- [(r-r/ )2 + (z-z’)2] *■

[(r-r' ) 2 + (z*z')2) ( 8 . 26 )

k.e<k.c+kin.>‘oWith two snarp interfaces arranged parallel to one another the problem 

becomes more complicated with multiple image charges and the evaluation of 

some kind of Madelung sum is necessary before the potential is obtained.

The potential in the well must also be solved for self-consistently, taking 

full account of the quantum nature of the well and the Poisson equation. In 

performing these calculations it is usual to work in the Hartree 

approximation and to use the one electron Schroedinger equation and a self- 

consistent potential, which is usually expressed as the sum of the potential 

due to electrons, the donors and the image potentials. Self-consistent 

solutions have been attempted, Vinter (1982^ Stern (1972). These results 

compare well with Ando (1982) and with the results of variational 

calculations (Fang and Howard (1966)), indicating that the use of elementary 

wavefunctions may be Justified.
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Here we have adopted the philosophy that, while the effects predicted from 

our over-simplified wavefunctions will not be correct in detail, they serve 

as a useful basis for preliminary calculations and give a good indication of 

what can be expected in realisable experimental situations. The precise 

details of the wavefunctions will change the magnitudes of the relaxation 

times and quantum size effects but we expect the shape of the curves to 

remain substantially unchanged.

8.4 Alloy Scattering

In 4.4 we considered alloy scattering in GaAs/Al Ga As quantum wells andx 1—x
we noted that there was still controversy in the literature over the nature 

of the scattering potential. We suggested that the conduction band offset 

was responsible for the scattering (fortunately this is known for 

GaAs/AlxGa1_xAs) and we went on to show that this should be expressible in 

terms of suitably screened atomic pseudopotentials, in this section we probe 

this statement further.

The basic theory of pseudopotentials is presented in appendix 4, and model 

potentials are plotted in Figures 8.2(a),(b) and (c). In transport theory 

we usually treat the electron wavefunctions as being plane waves and 

consequently when we are looking at the scattering of electrons by lattice 

imperfections it is natural to think of the pseudopotential as the element 

responsible for the scattering (Harrison (1965)). As pseudopotentials are 

available for all the elements (Heine and Abarenkov (1964), Bachelot, Hamann 

and Schluter (1982)), whilst data for the conduction band offsets are 

available only in special cases, it is natural to attempt a pseudopotential 

approach. This would allow us to evaluate the barrier heights for a large 

range of quantum wells and it would allow us to calculate the alloy 

scattering in each case. In this section we outline an attempt to do this.
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Alloy scattering has been examined in metals with the pseudopotential method 

(Harrison (1965)). He obtained a relaxation time suitable for a three- 

dimensional system given by

1 Vkrm* 

2wTi3 |<k+Q|W|k>|2(l-cos0)sinede

(8 .2 7)
where W is the difference between the pseudopotentials of the individual 

atoms involved. He treated a range of binary alloys, but the agreement of 

experiment was not very good, the experimental resistivity sometimes 

differing by as much as five times from the theoretical values. We should 

note at this point that no data was presented for the Gallium/Aluminium 

alloy.

In Harrison's case he treats impurities which are not always isoelectronic 

(for example Zn/Al) and the pseudopotential difference contains a large 

coulombic tail which was screened with the Lindhard metallic dielectric 

function. In our case the impurities are isoelectronic, consequently any 

pseudopotential difference is due to the difference between the small scale 

atomic cores. The other major difference is in the size of the Fermi 

wavevectors. In Harrison's case these are large and the Fourier transform 

which arises in (8.27) cannot be approximated to a potential strength. The 

essence of our calculation is simple: we are concerned with the scattering 

strength s(o) (see chapter k ) . Hence we only have to take the 

pseudopotential differences, integrate them over space and divide them by 

q=0 component of a suitable dielectric screening function. This has been 

done for Ga/Al. For the Animalu-Heine (1965) pseudopotentials we find that

s ( o ) iV(R)d*R 1 . 41x10"28eVm3 (8 .2 8)
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and for the Hamann pseudopotentials we find that

s(o) - 2.78x10”2 9eVm3 (8.29)

When screened s(0) should be comparable with conduction band offset if the 

theory is correct. If we take Okumura's (1985) model and assume linear 

interpolation we find

AEC(GaAs/AlAs) - 831meV (8.30)

The volume of the scattering potential must be taken as the size of the 

elemental GaAs unit, which is 

V c - 4.52x10'2 Bm3

Hence the scattering strength in this model is 

s(o) - AEcVc - 3.75x10*2 9eVm3

which lies above the values of s(0) calculated from the unscreened 

pseudopotential approach. Fedders (198U) has carried out an independent 

tight-binding calculation for the effect of the alloy scattering potential. 

By correlating his result with our approach we find that the potential 

strength used in his calculation is

s(o) — 1.62x10'2®eVmi

However, the tight-binding method is an involved calculation while the 

conduction band offset method only relies on experimental C-V profiling.

The pseudopotential approach has none of these drawbacks, but to assess its 

usefulness we must consider the screening problem.

It seems that without screening we are close to an acceptable answer,

(recent experimental work by Saxena (1985) has suggested a value of 
-293-52x10 eVm for the scattering strength). However, the screening of the 

pseudopotential is non-trivial. The first step is to associate the
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screening in the pseudopotential model with the screening encountered in the

true semiconductor. The next step is to consider the scale of the 

scattering pseudopotential. This is plotted in Figure 8.2(c) and is sharply 

confined to the unit cell and this will be screened by the valence band 

electrons which must be considered to be distributed inhomogeneously on this 

length scale. The real problem is then to evaluate the screened potential 

and to consider how the conduction electrons are scattered off this. 

Baldereschi and Hopfield (1970) encountered a similar problem when they 

considered the binding of electrons to isoelectronic impurities, producing 

shallow states within the band-gap. Experimental data suggests that an 

electron can be bound to such an impurity only if its electronegativity is 

larger than that of the host atom which it replaces. They consider the 

unscreened binding potential to be due to the difference of the 

pseudopotential and they screen this with a dielectric function which was 

adapted from Penn's (1962) empirical ideas. Penn's static dielectric 

function is of the form

where u>p is the plasma frequency due to a uniform electron gas with a 

density given by the average valence electron density. Eg was fitted by 

setting e ( o )  equal to its observed value. Penn's full expression then gave 

the Q dependence of e(Q). Baldereschi (1972) proposed a model for the 

sharp impurity potential. The average electron density in (8.31) has very 

little meaning on the scale of the pseudopotential differences under 

consideration here. Baldereschi suggests that it is more reasonable to work 

in terms of a local average electron density, whilst still retaining the 

value of Eg he modified u>p. With this adjustment he was able to predict 

with some degree of accuracy whether the impurity would bind an electron.

« (o)
( 8 . 31 )



Our problem is similar, the matrix element arising in our scattering rates 

is the Q=0 component of the 1=0 pseudopotential. Whereas the full screened 

potential in the inhomogeneous medium involves the use of a dielectric 

matrix Baldereschi (1979, 1978), Adler (1962) in which all Q components must 

be taken into account. In three-dimensions the screened potential i(Q+G) is 

related to the unscreened potential 0o (Q+G) by the dielectric matrix, 

through the relation

where Q is inside the Brillouin zone and G and G_̂  are reciprocal lattice

of its properties.

If we let f(R-H' ,R' ) denote the screened potential at R produced by a delta- 

function bare potential at RJ_. Then with R-RJ_ fixed, F(R-R ' ,R' ) is periodic 

in R_|_. Hence we may write

we consider the screened potential produced by a plane-wave of the form

G' ( 8 . 32)

vectors. Before we proceed we consider the meaning of e-1 and examine some

G' (8. 33)

and Fç, (R-R1) may be Fourier expanded to give

(8.3A)

we substitute (8.3I4) into (8.33) to obtain

ei <jg«o • ). ji dR* i  (R-R’)e1 <3*2.' >•■£.'
( 8 . 36)
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as the systemNow F(R-R',R') describes the response due to a delta-function, 

is linear we find.

/(R) ~ I dR’F(R-R̂ ',R_> )e1 tQ»S.')• R •

which from (8.34) gives

0(R) -  j d R ' F ( R - R '  , R '  ) e 1 '2*®.'  >• R'

dQ' ^
----- fG . (Q')e*2’-£
(2ir) 3 ~ “

dR'ei(G"-a'+Q*G).R’

- ^__ f dQ' fG-(.Q’)el9.'-S. 8>(Q' -Q-G-G")
G" )

-E v((J+G+G'^e1 <0 + g + G”>. r

-E t ■ 1 (Q+G , Q+G"‘) e 1 R

where we have made the identification

«’1(Q+G,Q+G") - f^..fi(2+G")

We are concerned with the volume integral of the potential which 

approximation we say is a delta function situated at the Gallium

d3RF(R-R'.\R'> dQ' 5 -
n • '

(Q.)el(G>-2- R. ^ (Q>)

where we have used (8.35). Hence 

d3

i
d3RF(R-R',R') - ^  “fg . (o)e‘£'- £'

G'

(8.37)

(8.38)

(8.39)

to a first 

site, ie

(8.40)

(8.41)
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From (8.39) with G"-G=G'

d3RF(R-R’,R’) f G. ( o ) e l S10** R '
G

( 8 . 42)

where we have taken the Q-»0 limit.

Baldereschi (1979) presents values for |Q+G|c-1(Q+G,Q)/|Q|for

Q—»0. The G=0 element is the reciprocal of the macroscopic dielectric 

constant and all the other elements are finite for G^O hence

G=0 and zero for C/tO. The summation in (8.U2) is then equal to e0-1 and the 

Q=0 component of the delta function potential is to be screened with the 

large scale macroscopic dielectric constant even though the potential is such 

a microscopic scattering centre. This result is contrary to that obtained 
by Baldereschi using the local Penn method and has been confirmed by Tosatti 

(198b) leaving us with a dilemma. if ue are to screen the scattering 

strength obtained we will decrease its value by a factor of about 13 (12*91 

is the dielectric constant relevant to GaAs (Rode (1975)). Such a reduction 

will give resistivities in GaAs/Al^Ga^^As quantum wells which are about two 

orders of magnitude down on experimentally determined resistivities and band 

offsets. Clearly there is a problem with this approach, and we must re

examine the steps that have been taken.

The pseudopotential method has been used by Walter and Cohen (1971) to 

determine the band structure in GaAs. The basic method involves inputting 

the atomic positions and pseudopotentials. The charge density, 

wavefunctions and eigenvalues in the system are then determined self- 

consistently. We could envisage doing this for the A1 Ga As system in the

virtual crystal approximation (see Andreoni and Car (1980)). The difference 

in pseudopotentials must then be responsible for the scattering.

c „ (Q+G.Q) is equal to the inverse macroscopic dielectric constant whenIV U

X 1 -X
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We must now ask whether it is viable to change our pseudopotential 

difference by a factor of 10 and still have a sensible form for the 

pseudopotentials of both of our elements. To examine this question we look 

at the Animalu-Heine pseudopotentials. If we were to change the value of A 

for the two elements so that the resistivity matched experimental data we 

would have to alter them so much that they would break out of the periodic 

trend which is evident in these tables and this is clearly unsatisfactory.

At least for the Animalu potentials the values of A^ (see appendix 4 ) were 

calculated at the Fermi energies of the elements and consequently it may be 

inappropriate to apply them here. The Bachelot pseudopotentials however 

were devised for maximum transferability and the authors claim that they can 

be used to "accurately reproduce the results of all electron calculations 

for the self-consistent electronic structure of atoms, molecules and 

solids". The accuracy of these calculations is impressive for some atoms, 

for instance they reproduce the band energies of silicon with errors in the 

range of 0.05eV (Bachelot et al). For the more exotic elements (for example 

Nb and CsAu) the errors are in the range of 0.1-0.2eV (Bachelot et al) 

although it is not clear in which part of the tandstructure. If the GaAs 

and AlAs band-structures both had an accuracy on the limit of this range 

then a 0.4eV shift in the band-gap would still be half the amount necessary 

to give the correct magnitude for the resistivity.

Our conclusion is that the attractiveness of atomic pseudopotentials for 

alloy scattering calculations is illusory. It appears that they are not 

known with sufficient accuracy in the core region (see also Andreoni and Car 

(1980)) and the theory of inhomogeneous screening of tightly confined 

potentials is not sufficiently well developed to yield reliable results for 

a property as sensitive as 6(0). It is preferable to proceed semi- 

empirically by using measured band offsets as has been done in Chapter 4 

where the results are closer to what one would expect from resistivity
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measurements. Andreoni and Car (1980) also noticed a problem with the 

screened Ga/Al pseudopotential difference. They note that the results of 

several authors range over at least one order of magnitude; confirming 
our beliefs.
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APPENDIX 1

EFFECTIVE MASS THEORY

The potential in a bulk semiconductor is strongly dependent on position but 

is periodic. The wavefunctions satisfy the time-independent Schroedinger 

equation and Bloch's Theorem is valid. The eigenvalues are a function of a 

continuous variable k and a band index n. Once the bandstructure has been 

calculated for a given material it is natural to ask how the system behaves 

when impurities are present or when an external field is applied. Luttinger 

and Kohn (1955) considered this problem in a rigorous fashion and put 

effective mass theory which had been used for many years (Frohlich (1937)) 

on a firm footing. They proved that once the bandstructure of a pure 

crystal was known it is a simple matter to calculate the response of the 

electrons in the crystal to slowly varying potentials without referring to 

the details of the unperturbed wavefunctions. We give an account of the 

theory in simplified and less rigorous terms. Following the approach of 

Smith et al (1967). In the absence of impurities or external potentials we 

may write the eigenvalues for a periodic three-dimensional system as

**n, k Un,k(5>*
ik.R 1

where n is a band-index and k is a wavevector. The U , (R) are determined~ n , k —
from the Schroedinger equation.

1 ,k £ (k)«> un - n,k 2

where H q is the unperturbed Hamiltonian for the semiconductor and cn(k) are 

the energy eigenvalues giving the bandstructure. If the perturbation 

applied to the crystal is small so that transitions between bands can be 

neglected, then the motion of an electron in a band can be described in 

terms of a wavepacket constructed from the basis states in that band. Hence
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rapid oscillations in R space. The usual effective mass equation describes

the envelope behaviour of the wavefunction. To develop this we suppose that

the coefficient a(k,t) is large only for k near k 0, the wavevector marking

the bottom of the band. The periodic part of the Bloch function is usually

a relatively weak function of k. If k is near k then
—  —  — o

.(H) = exp(ik-R)Un k (R) - exp(ik*R)Un k (R) n , K —  ” — 11 o

= exp [i(k-k0 )‘R] *_ . (R)n ' K0

we can re-express the wavefunction as

V = F(R,t)V . (R)11 ' "o

where

F(fî,t) = ^ a(k.t)exp [i(kk-k0)- R]

It can be shown that

c (-i£)* = * . (R)c (k -iV)F(R,t )n n , Kq — n * o — —

which allows us to rewrite the effective mass equation (6) in the form

le (Jio-i2) * V (R ) ] F(R,t) in 3F
TT

where F(R,t) is the envelope function. If we apply (9) to an arbitrary 

potential and find that F(Rst)does not vary appreciably with distance then 

we can take it that\?F is a small quantity and the assumption that a(k,t) is 

large only near k is a valid one. The wavefunction for the system is then 

described accurately by expression (8). So long as the function F(R,t) is a 

slowly varying function of R the potential can vary rapidly and the 

effective mass representation is still valid.

The effective mass equation allows us to leave out the details of the atomic
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potential and model the motion of an electron by a free particle of mass m*. 

This quantity may vary with the direction of motion and in general an 

effective mass tensor is needed, but in GaAs where the conduction band 

minimum is spherical and parabolic only a scalar is needed, as is assumed 

in this thesis.

Wavefunctions in a Quantum Well

Suppose that V(R) in equation (9) is a function of z only, taking the form 

of a square well with V=0 inside and V=AEC outside. Then the effective 

mass equation (9) has steady state solutions of the type

F(R.t) -iEt/W iJs.£ e e C (z)

where c(z) and the relation between E and k remains to be determined. The

equations for c(z) can be written immediately both inside and outside the

well. There are sinusoidal solutions inside which must be properly matched

to damped solutions outside the well. The quantitites which must be matched

up at the edges of the well are <p(z) and (m* ) -1 ^  Collins (1985)) and

this has been neglected by some authors, Marsh (198U). In the case of

interest to us m* changes from 0.067m inside to 0.075m outside the well.

This small change complicates the solution of the eigenvalue problem. We

have taken it into account in our calculations of the sub-band energies and

wavefunctions when k=0 (see Figure 4.3). When kjiO we have simplified the

problem by assuming that m* has the value m* appropriate to AlxGax xAs

everywhere (Palmer (1982)). We write ? ( z) for the wavefunction in sub-bandn
n and en for its minimum energy. With this approximation the energy in sub

band n is
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APPENDIX 2
n*z mnzlG(q, |2 - |i\ e1 qz* sin --- sin --- dz I2
L L

1

4

let kE - ns, k ' - nur 
L L~

- (kE' - k l ) ]L/2
t q * " ( k , ' *kE) ] L / 2

sin[qE+(kE'-kE)]L/2

[qI+(k,'-kE)]L/2

sin[qE-(kE'+kE)]L/2 2 sin[qE+(kE’+kE)]L/2"
[qI-(kE'+kE)]L/2 [qI+(kE'+kE)]L/2

sin[qE-(kE'-kE)]L/2 sin [qE+(kE'-kE)]L/2 

[qE-(kE'-kE)]L/2 [q,+(kE'-kE)]L/2
2cos[(kE'-kE)L]

sin[qE-(kE'-kE)JL/2 sin[qE-(kE '+kE)]L/2

[q,-(kE'-kE)JV2 [qt-(kE'+k,)]L/2
2cos(kEL)

sln[qE-(k,'*kE)]L/2 sin [qE + (kE'+kE)]L/2

[q.-(kE'-kE)]L/2

sin[qE+(kE'-kt)]L/2

[q,+0cE'-kE)]L/2

sin[qE+(k,'-kE)]L/2

[q,+<V-kE)]L/2

2cos(kE'L)
[ql+(kI'+kE )] L/2

sin[q1-(kE'+kE)]L/2 2cos(kE'L) 

[qE-(kt'+kE)]L/2

sin[q,+(kE’+k,)]L/2 2cos(k,L) 

[q,+(kE'+kE)]L/2
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EVALUATION OF TOE TRANSITION RATE FOR POLAR OPTIC PHONON SCATTERING

APPENDIX 3

In this appendix we evaluate the qx integral in equation (7.20). It is 

easily shown that

g 2 (qx ) = — sin iqvx . e Mx dx F T sin2 1

2 2 a qx

(7.20) then takes the form

h*- Hi2 ] 2

Ne*

L4n*

K =

o I
3|C 

| 'l 1
x M

2 e o k. kQ la J

is given by

sin2(qxa/2) G2(qy ) d q x

q x 2 f q x 2 - m 2 % .2 +fa2]

T 4 4 k

with

b = I k - k ' I 2 + q 2y

We can perform the qx integration

(eit,a- l ) (e- iqa- l ) dq

F ^ ]

(l-e-iqa)dq

« Y -  i?]2]2 M r P - H T P * 1]
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By changing the variable of integration from q to -q' in the second 

integration we see that both integrals are the same. We look at the second 

integral in the upper half complex plane. The integrand has poles at q=0, 

q= and q= ±ib. We complete the contour in the upper half complex plane 

as eiQL— >o  as q-»i«» , satisfying Jordan’s Lemma. This contour A, takes 

the form

The integral around the contour A

f
0 (l-eiqa)

= 2ui Res 
A

( H T  J

-[=. -ba 1 L-e J

4bJ j
[A m 2 ] 2

q=ib

We split the contour up into it's constituent elements. Schematically

a

n o



we look at the contribution from the poles at q=0, 

The residue at the zero pole is

4b

2* —2*and the residue at q= -- is equal to the residue at q= ---a a

16

Hence we find that the q integration remaining in (3) reduces to
1

k =

I , -ba. -n(1-e )

2b3(b2+ p ] 2 ) 2

ira ! a_- - -  12n J
2b

- 1 **

■ *  i H
* .  [gij* : y

G <9y>dtly

This integral has been evaluated numerically. The results have been checked 

against an analytic time for large k—k' and found to be accurate.

Ill



APPENDIX U

THEORY OF PSEUDOPOTENTIALS 

Introduction

Pseudopotentials were originally developed because experimental evidence 

indicated that conduction band electrons in some metals only interacted 

weakly with the ion cores. It was usually argued that the low resistivity 

of metals was due to the periodic nature of the lattice, which allowed Bloch 

6tates to exist. In some liquid metals however the resistivity is only 

increased by 20-30% from the value in its crystalline counterpart (Harrison 

(1965)) indicating a weak electron ion scattering coefficient.

With this knowledge it is natural to attempt a solution of the Schroedinger 

equation in terms of a simple set of free electron eigenstates. Herring 

(1958) gave an explanation of this based on orthogonalised plane waves. If 

V (R) is the total self-consistent field seen by each electron then

H0, - (T+V(R))0i - 1

where T is the kinetic energy, -n2k2/2m and E A is the total energy of the 

i’th state. Now the core states which we label with « satisfy the same 

equation

(T+V(R))0.= e , 0« 2

The conduction band states need to have a plane wave type character away 

from the core and they must be orthogonal to the core states. Herring 

expands the conduction band wavefunction in terms of a set of orthogonalised 

plane waves. These are simply plane waves which have been made orthogonal 

to all the core states, |«>:

3
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where P is the projection operator

OC

Expanding the conduction-band eigenstates in terms of a general linear 

combination of OPWs

when this is substituted into the Schroedinger equation (1) we obtain

Equation (7) is an effective Shroedinger equation which has the same 

eigenvalues as the true equation.

Atomic Pseudopotentials

It is usual to represent W by a sum of pseudopotentials associated with the 

ions in the solid. Animalu and Heine (1965) give a simple model potential 

for an ion which is fitted to spectroscopic data. It has the expected

5

q q 6

If we take the terms involving P to the left hand side we have

+ W > k - Ek̂ k
7

where W is the pseudopotential defined by

W

and is the pseudowavefunction
8

q 9
The true wavefunction is related to the pseudowavefunction by

- a - r X 10
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coulombic tail at large distances and inside some critical radius F c , the 

potential was taken to be constant, removing the coulombic singularity of 

the true ionic potential. The depth of the well inside the radius R c was 

dependent on the angular momentum quantum number , and it was also taken to

have an energy dependence. The potential takes the form,
V(R) - . ^ A  P w , R < R e

. R>R, 11
4»€0R

where PL is the projection operator of the l'th angular momentum component. 

The radial Schroedinger equation takes the form

dR2

(R) r 2a ^ 1

R2 IT) 2z/4*fc„R
-2E x (R) - 0

12

The At were adjusted to fit known specroscopic values. More recently 

Bachelot, Hamann and Schluter have derived a set of pseudopotentials which 

are transferable between systems (Si molecules, Northrup E., Ihm J. and 

Cohen M. L. (1981) and phonon frequencies in Ge, Yin M. T. and Cohen M. L. 

(1980)). The Bachelot, Hamann and Schluter pseudopotentials have several 

advantages over the Animalu potentials. They generate the true valence 

wavefunction beyond some core radius and secondly inside some core radius 

they duplicate the scattering property of the true potential. As we are 

discussing electron scattering this is Just what is needed.

Scattering from an Impurity Atom

The time independent pseudo-Schroedinger equation may be written as

i*a*k
<T+V(R))* k --------

at 13
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If V(R) is periodic then the eigenstates will be Bloch functions, but 

because V(R) is weak these will approximate to plane waves to first order. 

These must have eigenvalues given by 
•ft2k2«00 -  ------------
2m*

where m* is the effective mass of the electrons. We consider the scattering 

by a single impurity atom, which changes the pseudopotential by 4V(R). To 

look at the scattering probability between eigenstate ljS^> 31,(1 we

use the time-dependent perturbation theory result.

2x
P ( k , k + q )  -  ----- | < k | A V ( R ) | k + q > | 2 6( « ( k ) - « ( k + q ) )

-ft
15

We are particularly interested in the scattering of electrons off 

isoelectronic substitutional impurities in particular aluminium in the GaAs 

crystal. To evaluate (15) with 1 dependent pseudopotentials we expand the 

plane-wavefunctions in terms of spherical harmonics (Harrison (1965)),

e4£ £ (2l+l)i''Jt (kR)PJcos0l)

1 -0 16 

where *1 is the angle between k and R. The matrix element for the Animalu- 

Heine pseudopotentials is given by

<k+ QIV _Ik> 4ir
(21+1)A.P. (cos&) V j^(|k+q|R)j^(|k|R)R2dR

4 »  2 e 2c o s q R n 

V 4>rt q2 17

where 0 is now the angle between k and k+<j . The matrix element due to 

the substitution of an aluminium ion onto a Gallium 6ite is given by
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Al Ca
■ <k+cll VAH * VAH \* >

- — )  (2U1)PV (cos&)

Ca

Al 
• Rm

Al 1
J (|k+q|R)jJk|R)R2 JR

Ga
-A  ̂ \ jJ|k+q|R)jJ|k|R)R2dR

Vc q2

Ga Al Ga Al
q(Rm +Rm ) q(Ra -R. )

-2sin ----------  sin ---------- -

18

If the arguments of the Eessel functions are small then as

(2l +1) ! !
p-»0

we find that only the 1=0 component contributes to the summation (18). This 

type of sharply confined potential is sometimes termed an s-wave scatterer 

(Sernelius et al (1985)). We find

«AH -
Air
V

Al
R=

Ga

Al Ga
R2dR - A„ R2dR

Al 2 Ga 2
R_ - R.

vc.

116



The value of M AH is Just equal to the volume integral of the difference 

between the two 1=0 pseudopotentials. The values of AQ were taken from 

Harrison's book (Harrison (1965)).

The pseudopotentials due to Bachelot et al are expected to give better 

results. The 1=0 pseudopotential components for Gallium and Aluminium are 

plotted in Figure 8.2 with the difference shown in Figure 8.2c. These 

graphs were obtained from a slightly modified version of a program supplied 

by Dr B Holland and data from Bachelot's paper. The results of the program 

were checked against Bachelot's silicon data. The volume integral under the 

difference curve was obtained numerically.
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