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Abstract
The TCL1 mouse model is widely used to study pathophysiology, clonal evolution, and drug sensitivity or resistance of
chronic lymphocytic leukemia (CLL). By performing whole exome sequencing, we present the genetic landscape of primary
tumors from TCL1 mice and of TCL1 tumors serially transplanted into wild-type recipients to mimic clonal evolution. We
show that similar to CLL patients, mutations in mice are frequently subclonal and heterogenous among different primary
TCL1 mice. We further describe that this molecular heterogeneity mirrors heterogenous disease characteristics such as organ
infiltration or CLL dependent T cell skewing. Similar to human CLL, we further observed the occurrence of novel mutations
and structural variations during clonal evolution and found plasticity in the expansion of B cell receptor specific subclones.
Thus, our results uncover that the genetic complexity, pathway dependence and clonal dynamics in mouse CLL are in
relevant agreement to human CLL, and they are important to consider in future research using the TCL1 mouse for studying
CLL.

Introduction

Recent high throughput sequencing approaches revealed
complex genetic landscapes in multiple human cancer
entities [1]. In the two largest studies, a panel of 38 genes
was found to be recurrently mutated in chronic lymphocytic
leukemia (CLL) (most genes at frequencies of < 10%), with

SF3B1, TP53, and NOTCH1 being among the pre-
dominantly mutated genes [2, 3]. The Tcl1 transgenic
(TCL1) mouse is the most widely used model to study
biology, pathophysiology and treatment response of CLL,
however, information on mutations in this mouse is still
absent [4–7]. Importantly, primary tumors from back-
crossed leukemic TCL1 mice can be transplanted onto
congenic wild-type recipient mice, allowing the investiga-
tion of clonal tumor evolution in a fully immune competent
environment [8–10]. Leukemic clones from TCL1 mice
showed primarily unmutated IGHV genes (UM), making
this mouse an ideal model to study the aggressive form of
CLL [5, 11]. In addition, TCL1 mice also exhibit typical T
cell skewing associated with CLL development, which is
the emergence of TCR-Vβ specific T cell clones and a shift
towards effector memory T cells [8, 12–14]. It is currently
unknown whether specified IGHV rearrangement on the
background of TCL1 overexpression is sufficient for leu-
kemogenesis or if additional mutations are acquired during
the preleukemic latency period.

To decipher the genetic landscape in TCL1 mice, we
performed whole exome sequencing (WES) of highly pur-
ified primary TCL1 tumors from leukemic TCL1 mice and
of tumors arising upon transplantation into congenic,
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immune competent wild-type animals. We found clonal and
subclonal mutations, as well as recurrent structural varia-
tions (SV) and describe acquisition of mutations/SV and
outgrowth of subclones during transplantation of tumors.
Similar to human CLL, our results reveal a high genetic
complexity of TCL1-driven mouse CLL and uncover high
molecular dynamics during clonal evolution.

Methods

Mice

Genotyping of TCL1 transgenic mice (C57BL/6J) was
performed as previously described [4]. Experiments were
performed under approval from the Austrian animal ethics
committee (BMWF 66.012/0009-II/3b/2012 and 20901-
TGV/52/11-2012). Mice were followed for signs of illness

and killed when moribund by CO2 suffocation at humane
endpoints. Intraperitoneal transfer of murine tumor cells
from spleens into two months old congenic immune com-
petent wild-type C57BL/6J recipient mice was performed as
previously described [8].

Source of DNA for sequencing and DNA library
preparation

CD5/CD19 positive CLL cells were sorted (FACS Aria III,
Becton Dickinson) from splenocytes either of original
TCL1 mice or of WT mice intraperitoneally transplanted
with CLL cells. Germline DNA was extracted from either
tail tips, ear clips, sorted CD5/CD19 negative splenocytes
or sorted hepatocytes using DNeasy Blood and Tissue kit
including RNaseA digestion (Qiagen, West Sussex, UK).
DNA was subjected to whole exome library generation
(Agilent SureSelect Mouse All Exon Kit; 49.6 megabases),

Fig. 1 BCR analysis of TCL1 tumors. a Overall survival of seven
primary TCL1 mice. b Schematic representation of the rearranged IgH
and primers (arrows) used for PCR amplification and sequencing. c Pie
charts show the frequency of specific CDR3 VDJ-H usage of seven
primary TCL1 tumors. Segment size corresponds to relative occur-
rence of a particular VDJ-H sequence. The translated CDR3 amino

acid sequences of the major and second major clone exceeding 0.3%
frequency are depicted next to each segment. The remaining unmu-
tated clones are summarized as miscellaneous unmutated BCRs (misc
UM). Numbers in the center of the pie show the total number of
sequences analyzed and numbers next to each CDR3 amino acid
sequence indicates the percentage of the respective BCR clone
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which were sequenced on the Illumina platform High-
Seq2500 using 100 bp paired-end reads with a mean cov-
erage depth of 100x. WES data were deposited in Sequence
Read Archive, NCBI, NIH (SRA accession code
SRP150049).

Results

TCL1 mice have BCR-specific subclones

For our analysis, we used a cohort of seven TCL1 mice that
had developed high tumor loads of CD5/CD19 double
positive CLL cells (mean 86.9% ± 6.1%; Supplement
Table 1). The mice were sacrificed at humane endpoints
with an overall survival between 245 and 434 days, which is
comparable to previously reported data on the TCL1 mouse
model on a mixed genetic background [4, 8] (Fig. 1a). We
first performed next generation sequencing (NGS) of rear-
ranged IgH-VDJ sequences from genomic DNA of highly
purified CLL cells (purity > 98.5%; Fig. 1b and Supplement
Table 2) to determine the frequencies of independent B cell
clones. In all primary TCL1 tumors analyzed, we observed
one predominant unmutated BCR clone with a maximum
productive frequency from 88.7 to 99.5%. However, we
also observed several minor unmutated clones at fre-
quencies of up to 9.4%, revealing the presence of BCR-
specific subclones (Fig. 1c, Supplement Table 3). Interest-
ingly, the TCL1 mice D22 and 221 share an identical pre-
dominant BCR CDR3 clone (CMRYSNYWYFDVW;
93.6% and 99.3%, respectively; (Fig. 1c, Supplement
Table 3) supporting a concept of BCR stereotypy also in
mice as was reported previously [5].

WES reveals tumor heterogeneity in TCL1 mice

We performed WES on purified CLL cells as well as on
matched germline samples with an average sequencing
depth of ~100x. We used the variant caller VarScan2 [15]
to detect somatic variations present at allelic frequencies
of ≥ 10% in CLL cells. Overall, we identified a total of
76 somatic mutations in seven TCL1 mice. This corre-
sponds to a mutation rate of 0.2 ± 0.05 per megabase,
which is similar to the mutation rate reported for human
CLL (0.6 ± 0.28 per megabase with a range from 0.03 to
2.3) [2]. From these 76 somatic mutations, 49 (including 1
indel) affected protein coding sequences, nine affected 5′ or
3′ untranslated regions (UTR), four interfered with RNA
splicing and two mutations affected exonic non-coding
RNA (Fig. 2, Supplement Table 4). We detected only 12
exonic, synonymous mutations, pointing to non-random
selection of non-synonymously mutated clones during
disease development. Five non-synonymous mutations
were located in genes described as tumor drivers in the
COSMIC Cancer Gene Census (CGC) database [16],
namely Pten, Pik3r1, Pik3ca, Med12, and Kras. In addi-
tion, we found two different Robo1 mutations in mouse
C25 and two different Traf3 mutations in two different
TCL1 mice (Fig. 2), one non-frameshift insertion of a
leucine encoding triplet near the C-terminus of TRAF3
(mouse E31) and one affecting splicing of exons 5 and 6
(mouse D22; Supplement Table 4). Overall, the mutations
we identified had allelic frequencies between 10.8 and
100%, indicating presence of clonal mutations but also
heterogeneous cancer subclones in TCL1 mice. Of note,
from our set of 76 somatic mutations, only two genes had
previously been described as drivers in CLL (Med12 and

Fig. 2 Clonal and subclonal mutations in TCL1 tumors. Heat map of
all somatic mutations (non-synonymous SNVs, indels, splicing sites,
UTRs, ncRNAs) found by WES. Color spectrum (white to red)

corresponds to allelic frequencies of mutations. Green box: mutated
COSMIC-CGC genes; blue box: genes that are mutated in more than
one primary TCL1 mouse
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Kras). Traf3 mutations had been discerned in CLL, but had
not reached significance in regard to the detection of
recurrence in those databases [2]. Mutations in genes most

commonly mutated in human CLL samples such as ATM,
TP53, or NOTCH1 were not detected in our cohort of seven
TCL1 mice.
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TCL1 mice show heterogeneous disease
characteristics

Aside from high molecular heterogeneity, we also observed
diverse disease characteristics in our TCL1 mouse cohort,
which is in line with previous reports [10]. We noticed
exceptionally high infiltration of mesenteric lymph nodes in
TCL1 mouse C25 (Fig. 3a) and liver infiltration in TCL1
mouse D22 (Fig. 3b, Supplement Table 5). Spleen weight
and size were very variable, ranging from 0.5 g/22 mm
(TCL1 347) to 1.9 g/38 mm (TCL1 D22; Fig. 3c), which is
comparable to published data on TCL1 mice [12]. Apart
from the typical skewing towards memory T cells in TCL1
mice [8] and in line with our previous observation [12] we
observed overrepresented CD4/CD8 double negative T cells
(DN T cells) in splenocytes from TCL1 mouse E31, with
96% of them expressing the NKT cell specific TCR Vβ7
(DN T cells E31: 54.0%; mean TCL1 mice: 12.7%; SD ±
20.6; mean WT mice: 6.4% SD ± 0.8; Fig. 3d, Supplement
Table 6). As TCL1 mouse E31 harbored a clonal Traf3
mutation (leucine-insertion at aa478) and TRAF3 was
recently shown to be important for NKT cell development
[17], we suspected that this mutation might also be found in
the expanded TCR-Vβ7 DN T cell population, driving its
expansion. However, using Sanger sequencing of sorted
T cells, we found that the Traf3 mutation was confined to
CLL cells and was not present in TCR-Vβ7 DN T cells or
other blood cells sorted from the mouse (Fig. 3e). None-
theless, we found that the Traf3 mutation in E31 led to
increased protein levels of TRAF3 in the leukemic cells
compared to a Traf3 non-mutated tumor (line C25). Con-
current with TRAF3 described as a signaling inhibitor [18,
19], E31 showed a lower NFkB signaling (phosphorylation
of p65 and IkBα) and lower ERK and STAT3 phosphor-
ylation (Fig. 3f). In contrast, leukemic cells from D22
(Traf3 splicing mutation) revealed decreased full-length
isoforms of TRAF3 protein and correspondingly, increased

NFkB signaling. However, ERK and STAT3 phosphoryla-
tion was also reduced in D22 (Supplement Fig. 1).

BCR-specific CLL clones can differentially expand
and obscure clonal evolution and clonal switching
upon serial transplantation

In previous experiments it was shown that tumors from
TCL1 mice are transplantable into congenic immune com-
petent wild-type recipient mice [8]. This transplantation
results in a shortened preleukemic phase and in accelerated
tumor development in recipients. As we detected minor
BCR-specific subclones in primary TCL1 tumors, we first
wanted to analyze clonal dynamics of B cell receptor usage
of the individual tumors upon serial transplantation of tumor
cells into WT recipients (Fig. 4a). Therefore, we performed
IGHV characterization of sorted CLL cells on four ran-
domly selected lines of serial transplants (1st, 3rd, and 7th
transplantation from primary tumor D22, 1st, 5th, and 6th
transplantation from primary tumor C25, 1st and 2nd
transplantation from primary tumor E31 and 1st transplan-
tation from primary tumor 347) isolated from spleens of
visibly ill recipients and compared BCR usage with mat-
ched original primary tumors. In all nine transplanted
tumors analyzed (P43, R62, Q76, O9, 642, Q67, CD95,
Q82, 702) we detected one predominant unmutated BCR
clone (maximum productive frequencies: from 55.8 to
99.9%) with several minor unmutated clones (highest fre-
quency of 31.6%; Fig. 4b, Supplement Table 3). In trans-
plants from TCL1 mouse D22 and 347, we observed a
preserved major BCR clone, with expansion of one minor
BCR clone from 0.5% in the primary tumor D22 to 21.3%
in the 7th transplant (Fig. 4c, Supplement Table 3). Sur-
prisingly, in transplants from primary tumors C25 and E31,
we observed dramatic shifts from one major BCR clone to a
completely different clone (Fig. 4d, Supplement Table 3).
These clonal dynamics are also recapitulated when tumors
are transplanted in parallel into two recipients, leading to
outgrowth of different clones in some cases (Supplement
Fig. 2). This demonstrates an evolutionary advantage of
initially minor clones in the competitive repopulation of the
transplant environment. Importantly, we also found subtle
differences in organ specific distributions of BCR-specific
subclones (Supplement Fig. 3).

WES shows clonal evolution upon transplantation of
tumors

To assess whether the observed BCR dynamics upon tumor
transplantation are also associated with clonal evolution of
somatic mutations, we performed WES of serially trans-
planted tumors R62, Q76, Q67, and Q82 and compared
mutation profiles with matched original primary tumors. In

Fig. 3 Disease characteristics of TCL1 mice. Infiltration of mesenteric
lymph nodes (a) and liver (b) of TCL1 mice C25 and D22 with CD5/
CD19 positive CLL cells. FACS plots show CD5/CD19 stains of
cell suspensions of the respective organ pregated for lymphocytes.
c Spleen size variability shown by two spleens from mouse 347 and
D22. d Skewing towards Vβ7+DN T cells in TCL1 mouse E31. FACS
plots show CD4/CD8 distribution in CD3+ cells (left) and Vβ7 usage
in DN CD3+ cells (right). e Sanger sequencing of Traf3 on DNA from
the respective sorted splenocyte subset and germline (CD5CD19
negative hepatocytes) control from E31. Insertion (Ins) of leucine (L)
at position 477 is indicated in blue. Protein domains of TRAF3 are
depicted on top (adapted from Xie [36]. f Immunoblots from lysates of
leukemic cells from CLL line C25 (Traf3 unmutated) and line E31
(Traf3 mutated) upon stimulation with the respective agents. Full
length (~62 kD) and a shorter splice variant (~55 kD) are marked with
arrows. (rm: recombinant mouse; p- means phosphorylated protein).
(See also Supplement Figure S1 for detailed information)

Exome sequencing of the TCL1 mouse model for CLL reveals genetic heterogeneity and dynamics during. . .



Fig. 4 BCR analysis of transplanted TCL1 tumors. a Transplantation
scheme of TCL1 tumors. b Pie charts show the frequency of specific
CDR3 VDJ-H usage of nine transplanted TCL1 tumors as in Fig. 1c.

c Diagrams show the dynamics of BCR-specific clones during trans-
plantations. (Tx: transplant)
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transplants descending from TCL1 mouse D22, we found
the occurrence of additional mutations with increasing
transplantation rounds, indicating significant clonal evolu-
tion within the original BCR clone during tumor growth in
recipients (Fig. 5). By contrast, in the 6th transplant Q67

from TCL1 mouse C25 only two of eight original mutations
were discerned, while 24 novel mutations were detected in
the transplant (Fig. 5). This finding was not unexpected as
this transplant had also shown a severe change in BCR
clonality (Fig. 4d), suggesting the observed complete

Fig. 5 Clonal and subclonal mutations in serially transplanted TCL1
tumors. a Heat map of all functional somatic mutations from three
tumor lines found by WES. Color spectrum (white to red) corresponds
to allelic frequencies of mutations. The total numbers of mutations are
depicted as bar graphs next to the heat maps. b Graph shows survival
of primary TCL1 mice and of tumor-transplant recipients (d: days).
c Allelic frequencies of all functional mutations are shown as dot plots.
d Allelic frequencies of all functional somatic mutations in the two
analyzed transplant lines (D22 and C25) are shown as dot plots.

Within each graph, the horizontal dotted lines indicate expected allelic
frequencies of clonal heterozygous somatic mutations within the
respective BCR-specific subclones (major clone: BCR #1; most fre-
quent minor clone: BCR #2). Red dots represent mutated genes with
allelic frequencies ≥ 75%. Yellow dots represent mutated genes that
roughly correspond to clonal heterozygous somatic mutations within
BCR-specific subclone #2. e Same analysis as (d) with primary TCL1
mice
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change in clonal architecture was due to the switch of
individual clones observed on the level of BCR rearrange-
ment. Similarly, in transplant Q82 (2nd transplant from
TCL1 mouse E31), the mutation profile changed completely
and none of the mutations from the primary tumor could be
detected in the transplant, where only novel gene mutations
were discerned (Fig. 5a, Supplement Table 4). Of note,
some of the conserved mutations were identified only upon
selective manual search for primary tumor- or transplant-
specific mutations, leading to annotation of additional
mutations with low allelic frequencies or low read counts in
primary tumors compared to results from Fig. 2 (Supple-
ment Table 4). Although the primary tumor in TCL1 mouse
E31 had a clonal Traf3 mutation, this mutation was not
detectable in the tumor from recipient Q82 (Supplement
Table 4). Notably, also the severe T cell skewing described
for TCL1 mouse E31 was absent from wild-type recipient
Q82 (5.2% DN T cells). In all three transplantation lines, we
observed an increase in the total number of mutations upon
transplantation (D22-Q76: from 13 to 22 mutations; C25-
Q67: 8 to 26 mutations; E31-Q82: 12 to 16 mutations;
Fig. 5a). We also noticed a shortened overall survival
(Fig. 5b) and a slight increase of mean allelic frequencies
upon serial transplantation (Fig. 5c). Analysis of allelic
frequencies of mutations in regard to BCR clonality
revealed that some somatic mutations are likely confined to
distinct BCR-specific subclones (e.g., mutated 5′UTR of
Hjurp in Q76 or 3′UTR of Npm1 in C25), while most of the

mutations are subclonal within the major BCR-specific CLL
clone (Fig. 5d, e). In two transplantation lines (descending
from C25 and E31) we observed the occurrence of new
mutations in genes described as cancer drivers in COSMIC-
CGC database [16], which are Rhoh, Npm1, Elf4, Ikbkb,
and Nutm1 (Fig. 5a).

In addition to the annotation of single mutations, we
mapped non-synonymously mutated genes to biological
pathways, revealing BCR signaling, inflammatory stimuli,
growth factors and integrin signaling to be implicated in
CLL development of TCL1 mice and WT transplanted mice
(Fig. 6a). Pathways affected in individual mouse tumors by
these mutated genes are shown in Fig. 6b. All mice, with the
exception of TCL1 mouse C25 had at least one gene
mutated in these pathways.

Murine CLL shows evolution of recurrent structural
chromosomal variations

We screened the WES data for large structural chromoso-
mal variations (SV). In all mice analyzed, we could detect
several chromosomal deletions and amplifications (Fig. 7,
Supplement Table 7 and 8). We found highly recurrent
complete or partial trisomy 15 (10 of 11 mice) as well as
deletions on chromosome 12q (5 of 11 mice; Fig. 7, Sup-
plement Table 7 and 8). To determine which COSMIC-
CGC cancer genes are affected in our mice by the deletions
and amplifications of the respective chromosomes (Fig. 7)

Fig. 6 Biological pathways associated with non-synonymously muta-
ted genes in TCL1 mice. a Mutated genes are shown in red, TCL1 in
blue, COSMIC-CGC genes in italic. b Table showing mutated genes
from (a) affecting different biological pathways in primary and

transplanted TCL1 mice. Boxes on the y-axis represent sequential
transplantation. Mapping of mutated genes to biological pathways was
performed using Ingenuity Pathway Analysis tool, IPA (QIAGEN)
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we used the NCBI homology maps. A list of all COSMIC-
CGC cancer genes affected including the Traf3 gene (which
is monoallelically deleted in all Traf3 mutated cases except
for TCL1 mouse D22, whereby only mutated Traf3 is
expressed) on chromosome 12 are shown in Supplement
Table 9. Furthermore, we could detect a subclonal translo-
cation t(12:17) in sample Q67 (chr12:69701036;

chr17:56593781; Supplement Table 7). Concurrent with our
data from IGHV and mutation analyses, we not only
observed the acquisition of additional SVs upon tumor
transplantation (tumor line from D22: acquisition of SVs on
chr5, chr9, chr15, chr17 and chrY), but also complete
changes in SV patterns in those tumors in which we also
noticed expansion of IGHV specific subclones upon

Fig. 7 Large structural variations in TCL1 mice. Deletions (red) and
amplifications (green) of genomic regions (>5Mb SV from Supple-
ment Table 7) of the respective chromosomes are indicated as bars for
individual mice. Bar length corresponds to length of the SV. Order and
sex (m/f) of mouse 1–11 on the x-axis: F3 (m), 212 (m), 347 (m), 221
(m), C25 (f), Q67 (f), D22 (m), R62 (m), Q76 (m), E31 (f), and Q82

(f). Colored horizontal bars above the x-axis represent individual pri-
mary TCL1 mice (blue) and individual transplantation lines (orange
(C25, Q67), yellow (D22, R62, Q76), purple (E31, Q82)). Ideograms
are adapted from Dr David Adler (University of Washington, Seattle,
http://www.pathology.washington.edu/research/cytopages/idiograms/
mouse/)
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transplantation (tumor line from C25: disappearance of del
chr12 and gain of amplifications on chr10, chr17, chr18 and
tumor line E31: disappearance of del chr12, del chr14 upon
transplantation; Fig. 7, Supplement Table 7 and 8).

Discussion

In this study we performed WES on primary CLL samples
from TCL1 mice and found a striking genetic inter- and
intratumoral heterogeneity, which is somewhat similar to
human CLL and exceeds that described for other recently
sequenced murine leukemia models [20]. This hetero-
geneity was not necessarily expected as expression of the
strong oncogene TCL1 itself could suffice as possible driver
for CLL in this mouse model. As may be expected, muta-
tions complementing TCL1, a driver not universally
accepted to be important in human CLL, were detected in
genes that have not been described in human CLL. How-
ever, these mutations interestingly mapped to similar bio-
logical pathways, indicating similar dependency on core
signals that contribute to CLL growth and survival when
comparing human and murine CLL, which is in line with
previous reports [7]. In primary TCL1 mice, these pathways
primarily comprise BCR, growth factor and inflammatory
signaling via MAPK, NFκB, and mTOR. Many mutated
genes from transplanted tumors encode proteins important
for cell adhesion and transcription, among them the
COSMIC-CGC cancer drivers Npm1, Nutm1, and Elf4 [21,
22]. Of note, in addition to a mutation in the cancer driver
Kras [23] we detected two mutations in PI3K subunits
Pik3r1 and Pik3ca and a deactivating stop-gain mutation of
tumor suppressor Pten, which regulates PI3K by depho-
sphorylating the lipid signaling intermediate PIP3 to PIP2
[24]. We also detected a mutation in Rhoh in a transplanted
tumor, which was previously reported to be important for
CLL development in TCL1 mice [25, 26]. As the only
recurrently affected gene in our cohort, two mutations were
observed in Traf3, which—in accordance with our data—
was shown to be a negative regulator of NFκB and MAPK
signaling [18, 19]. Interestingly, the Traf3 mutations we
identified had two opposing effects on NFkB and MAPK
signaling. However, although Traf3 has been described as a
tumor suppressor and loss of Traf3 was found in a subset of
multiple myeloma patients [27, 28], increased levels of
TRAF3 in Traf3 transgenic mice also promoted auto-
immunity, inflammation, and cancer [29].

Aside from somatic mutations, our data revealed many
SVs. While human CLL frequently harbors deletion 11q,
deletion 13q, deletion 17p and trisomy 12 [30], we recur-
rently found trisomy 15 and deletion 12q in mouse CLL. In
this regard it is interesting to note that comparative genome
mapping revealed partially conserved synteny between

human chromosome 12 and mouse chromosome 15, sug-
gesting that trisomy 15 in mouse might at least partially
correspond to trisomy 12 in CLL patients [31]. Strikingly,
although two of three tumor lines analyzed showed com-
plete change in clonality in regard to IGHV and mutations
and SVs upon transplantation (tumor lines from original
tumors C25 and E31), these tumors shared a common
trisomy 15, pointing to trisomy 15 being possibly acquired
prior VDJ rearrangement, which could prime for CLL
development. Interestingly, among the COSMIC-CGC dri-
ver genes, the protooncogene Myc is encoded on chr15,
which is implicated in many hematological malignancies
[32]. Deleted regions on 12q affected mostly genes located
proximal to variable elements on the IgH locus (e.g., Traf3),
suggesting that deletions were likely generated by illegiti-
mate VDJ recombination [33]. This is particularly inter-
esting, as it has been proposed that CLL in TCL1 mice
could develop based on failure to successfully edit auto-
reactive BCR specificity by secondary VDJ recombination
[34]. Hence, it is conceivable that collateral damage during
primary or secondary VDJ recombination on the inactive
allele could cause large deletions on chromosome 12q,
which could thus be an initializing event for mouse CLL.

Importantly, our NGS analysis on IGHV expression in
CLL tumors revealed a striking plasticity and clonal
dynamics. In all cases, independent BCR-specific subclones
could be detected, and more strikingly, upon transplantation
of tumors, we observed some expansion of initial minor
subclones in recipient mice. The existence of multiple
productive rearrangements in CLL was recently also noticed
in a subset of human CLL and concurring with our mouse
data, the expansion of minor clones could also be observed
in some of these patients during natural clonal evolution or
treatment [35]. Hence, the TCL1 mouse model is ideal for
investigating clonal dynamics by analyzing transplanted
tumors in recipients with altered microenvironmental
backgrounds or with a particular immune-compromisation
to draw light on evolutionary pressures exerted by tumor-
microenvironment and tumor-immune interactions and
immune niches. In this regard, our data are also important to
be considered for preclinical treatment studies on TCL1
mice, as clonal evolution, dynamics in subclonal hetero-
geneity and finally overall treatment responses will certainly
depend on the particular mutation profile of the respective
mouse tumor, particularly as even transplanted tumors
descending from the same primary tumor can exhibit dra-
matically different genetic profiles and may even represent
different individually derived clones.
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