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Translating Lucid Data Flow into Message Passing Actors

P. 771 Pxlgram

Department of Computer Science
University of Warwick
Coventry CV4 7AL
England

ABSTRACT

This thesis is the first translation of full l.ucid into code for von Neumann
machines ("imperative code") It demonstrates that it is possible to produce
efficient code even in the presence of advanced features such as "currenting",
recursive functions or operators whose semantics favour concurrency Earlier
compiled implementations stopped well short of this.

Lucid is a family of non-procedural programming languages, invented by Wadge
and Ashcroft Lucid is neither tied to any particular data algebra, nor to a particular
implementation technique. However. Data Flow (with its variants) lends itself
particularly well to the implementation of Lucid

Message Passing Actcrs is an imperative programming technique which leaves
scope for cooperating concurrency. This benefits hardware (multi—eomputers,
transputers”) and software technology alike In this thesis, LUX. a PASCAL-hke
language with Message Passing Actors, has been chosen as the target language

It is shown that there is a subset of Lucid (a "nucleus") which has the same
expressive capacity as full Lucid The nucleus is easier to implement than full Lucid
As a prerequisite for the translation, a LUX actor equivalent is formulated for each
operator of the nucleus, once and for all. The design of these operator—actors is
strongly guided by the execution strategy of demand driven Data Flow ("lazy
evaluation") Their data storage is based on FIFO queues ("pipelines"). The actors
operate concurrently, but they harmonise their actions by exchanging messages
which follow an agreed protocol

The translation is carried out in successive stages First the Lucid program is
transformed to make it lie entirely within the nucleus The program is then mapped
into LUX, where each operator is represented by an operatoi—actor and the
references to the variables are manifested in the environment setup of these actors
Finally, the LUX code is made more efficient by the application of a variety of
analysis and optimisation methods

Lucid programs can be analysed for various properties, and the resulting
information can assist the code optimisation (while also revealing program errors).
Particularly important among these program analyses is a queue length
determination based on Wadge’s Cycle Sum Test

Keywords: non—procedural languages, Lucid, recursive functions, cycle sum
test, program transformation, dataflow, lasy evaluation, message
passing, concurrency, transputers. Occam



CHAPTER I: Introduction

1.1 Aims and Objoctivas

This thesis is the first translation of full Lucid [AsSWQO, AsW83] into code for von
Neumann machines ("imperative code", t 3.1). It demonstrates that it is possible to
produce efficient code even in the presence of advanced features such as
“"currenting"”, recursive /unctions or operators whose semantics favours
concurrency Earlier compiled implementations stopped well short of this Up to
now, Lucid had all the benefits inherent in non—procedural languages, but its

implementations were lacking in efficiency and in means for concurrency.

Let me explain the title of the thesis, its method of investigation, and then make
some general remarks. Up-arrows * will quote the sections where full detail can be

found

1.1.1 Tha Title

Lucid is a family of non-procedural programming languages, invented by WN
Wadge and E A Ashcroft. Such languages make a significant contribution to the
advancement of software technology This thesis treats Lucid rather as a "given”, so
there is little need to point out its specific attractions (t 3.5) Every Lucid program
consists only of assertions: each assertion defines a variable or a function Every
Lucid variable symbolises an infinite sequence of data objects, called a "history

Lucid is neither tied to any particular data algebra, nor to a particular
implementation technique However, Data Flow (with its variants) lends itself
particularly well to the implementation of Lucid. Throughout this thesis, the term
Data Flow ("OF”, r 2.5) comprises the data drlvan as well as the demand driven [ lazy
evaluation" [lleM70, FrW76j) variant. The method presented in this thesis extends to

Data Flow languages in general

111
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The syntax of Lucid has been revised a few times over the years, but the
concepts behind Lucid have remained untouched. This thesis refers (r 8.1)
essentially to the version described in the book on Lucid [AsW83, also FMY83]; this
version is much more usable than earlier ones Substantial programs have been
written in this version of Lucid (e g. a screen editor), and Lucid can thus no longer be
called an academic plaything.

Message Passing Actors (r 3.2) is an imperative programming technique which
leaves scope for cooperating concurrency. In this thesis, the target language is LUX,
a PASCALike language with Message Passing Actors LUX (* 3.4) has been designed
so as to facilitate the translation into any given concurrent language. LUX contains,
among others, a special message passing technique ("exceptions", * 3 42) which
supports control of concurrent computations without burdening program execution

and without disturbing the program's overall design

1.1.2 Th« Method

It is shown that there is a subset of Lucid (a nucleus ) which has the same
expressive capacity as full Lucid The nucleus is easier to implement than full Lucid
As a prerequisite for the translation, a LUX actor equivalent is formulated for each
operator of the nucleus, once and for all (*4bf). The design of these
operator—actors is strongly guided by the execution strategy of demand driven OF
Their data storage is based on FIFO queues ( 'pipelines , t 4.6.1) The actors operate
concurrently, but they harmonise their actions by exchanging messages which follow
an agreed protocol (t 4.2)

The translation is carried out in successive stages First the Lucid program is
transformed to make It lie entirely within the nucleus Next, it is transliterated Into
Graph, Lucid In Graph Lucid, each operator is represented by a node, and directed

arcs express the references to the variables The graph is then mapped (* 4 3) into

1.1.2
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LUX, where each node corresponds to an operator—actor and the arcs are manifested
in the environment setup of these actors Finally (r 6 O ff), the LUX code is made

more efficient by the application of avariety of analysis and optimisation methods
Wadge and Ashcroft outline in their article [AsW77a] three approaches for

implementing Lucid:

(1) translation into a conventional language,

(2) use of data driven Data Flow.

(3) use of ademand driven interpreter,

and, according to [AsW77a] only approach (3) is able to correctly compute the least
fixed point of arbitrary Lucid programs The first stage of the implementation
proper is easy: the Graph Lucid program is re—interpreted as the block diagram" of
a multi—eomputer system, every Lucid node being bijected to a processing unit (= an
actor). Next, we have to decide how the actors operate (i.e their internal behaviour)
and cooperate (i.e. how information is passed between them) Our long-term
perspective is to execute Lucid programs efficiently on available hardware As a first
step towards this aim, we furnish the actors with characteristics for which good code
for conventional computers can be formulated The emerging multi—actor code is

subsequently tuned for the target machine

The method described in this thesis avoids the rigid commitment to any single
approach, and is thus able to enjoy the advantages of all of them. In spite of
belonging to group (1), it does not hide its demand driven origins (3), but it can even
employ data driven techniques (2) where indicated This flexibility can be achieved
by picking the most suitable act in each case Program analysis can lead to further
advice which specialised act to choose (r 6 4, 6 6)

The data storage in DF can be arranged in, mainly, either of two ways pipelines

(= FIFO queues) or tagged store. In the tagged method, the data are stored and
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retrieved in any order; all the data are held in an associative store, with tags
indicating the identity of each data item. The tagged method is clearly very
un—estrictive, but it requires quite a sophisticated control mechanism. The
behaviour of the tagged store differs widely from the one inherent in conventional
computers; it would therefore be hard to establish a correspondence between the
two Onthe other hand, almost every pipeline can be handled by a few simple
machine instructions In pipeline DF. histories can only be evaluated in a restricted
sequence. There are, unfortunately, Lucid programs which are computable in
tagged DF but not in pipeline DF. Occasionally, pipeline DF can even cause wasteful
computations However, we choose pipeline DF as the main method, because of its
greater machine affinity, and treat tagged DF only as an emergency choice. Anyway,
a totally general tagged DF implementation requires the program to be held in a
special internal representation (data dependency graph) for which corresponding

conventional code can be found only in some lucky cases

Conventional computers offer no abundance of processing power, and mere
small-scale concurrency is provided only at high cost Data driven DF implies very
high concurrency, but it has little concern for efficiency, it produces masses of
computation results in the hope that some of them will eventually be of use In our
context, this would be suitable only in select cases On the other hand, demand
driven DF is efficient, and requires little or no concurrency, this is therefore our
prime choice

The translation generates by default code with high, concurrency (one actor per
node) Even before their translation, Lucid programs can be analysed tor various
properties, and the resulting information can assist the code optimisation, while also
revealing program errors (* 6 0 ff). Particularly important among these program
analyses is a queue length determination based on Wadge's Cycle Sum Test (' Wad79],

t 6 1). The optimisation can be dirocted to minimis« or to maximise concurrency as

112



far as reasonable.

1.1.3 Concurrency

In sequential implementations, operators evaluate their operand usually from left to
right If the left operand of an operator like {OR happens to get into an endless
computation, the jOR will never yield its result, even if its right operand isiTrUZI- This
is not in accord with the generally accepted mathematical meaning of jOR. One

would expect the following equations to hold

a OR b = b OR a (conmutat ivi ty)
TRUE OR UNDEFINED = TRUE
UNDEFINED OR TRUE = TRUE

One can therefore say that only a concurrent ICR* (t453) adheres to the
mathematical definition.

A further argument in favour of concurrency comes from the hardware arena
In the pursuit of ever increasing computing power, hardware designers have turned
their attention to concurrent machines (multi-computers, "transputers"), sharing
the computing load among many arithmetic units The traditional programming
languages were deliberately designed around mono-processors, and it is very hard to
extract chances for concurrent evaluation from such programs. Lucid is not
committed to any particular degree of concurrency, bo it high or low, and it leaves
therefore more scope to progress in the computer field than many of the old
favourites

Concurrency combines curse with benefit On most present-day computers,
concurrency can be achieved (simulated) only at considerable cost; it must therefore
be minimised and reserved for those cases where there is no way around It
Programmers have developed a sense for avoiding concurrency, even for managing
without it altogether. There are, however, significant programming tasks which are

most naturally solved In a concurrent manner (e g breadth-first evaluations)
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Software technology would therefore benefit if concurrency no longer had to be
circumvented at all cost (A reasonable compromise would be to annotate each
instance where an operator con be. but does not need to be, executed concurrently.
Operator variants !ASPAISOland !IORA.SH can indicate those cases where concurrency is

dispensable.)

This thesis uses concurrency load to mean the number of actors which are at a
particular moment ready to execute (i.e. actors which are not "hung" waiting for
inputs). An excessive number of hung actors indicates often a design deficiency.
This number can be reduced by combining particular actors into one Ina well tuned
computer system the concurrency load is usually roughly equal to its number of
CPUs.

Concurrent programs are executed non—deterministically, given the total state
of a concurrent machine, one can generally not predict its next state with certainty.
(In the absence of a system—wide universal time it would even be impossible to
determine the total state [Lam7d] ) However, Lucid is a functional programming
language; all its operators are such that the computation result of any Lucid
program depends only on the program inputs, without any effect from the order of

evaluation, i.e it is deterministic

1.1.4 Efficiency

The most heard objection against functional programming languages is their
alleged inherent inefficiency This thesis (like others before it) provides ample
evidence that Lucid can be lifted to any level of efficiency it all depends on the
amount of optimisation. The conventional programming languages, on the other
hand, are tailored for von Neumann monoprocessors, and a great effort is required to
make them run efficiently on a machine with high concurrency, rlenotational

programming languages (like Lucid) are superior in this respect.
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1.2 Survey of Previous Work by Others

Quite a number of people have put a lot of effort into implementing Lucid Some
of these implementations were never completed, many were of unsatisfactory
efficiency or covered only a subset of Lucid In its early versions, Lucid was neither
very powerful nor practical in actual use, and this hindered its wider acceptance.
The syntax of Lucid has changed considerably over the years, and Lucid has now
become quite a respectable language. Exotic constructs were abolished
(e g. function freezing) and useful ones were added All this depreciated the older
implementations, since they refer now to defunct languages. This problem (and the
whoLe problem of language implementation) has been greatly alleviated with the
invention of compilel—compilers, where a syntax change is so easily put into effect.

The following four versions of Lucid mark its main development stages:

— Basic Lucid ("BL", no connection to the language BASIC) is the oldest published
version [AsW77a, AsW76], It has assertions merely for variables, nested iteration
is achieved by means of the intrinsic function "latest”, but there are no user
defined functions

— Wk use the name Clause Lucid ("CL”) [AsW77b] for a revised and extended
version of BL; it has a block structure (clauses) in four variants which provides a
non—procedural counterpart for procedures and functions, with and without
iteration.

—  Structured Lucid ("SL”) [AsWSO], based on USWIM [AsW79a], replaces CL's
unwieldy clause variants by classing global variables as pither elementary or
non-elementary, its uniform [wea* end phrases provide improved block
structuring

—  Lucid 03 [FMY83, AsWB3] puts [where] clauses (ISWIV [Lan66]) in place of SL's ‘vaioll
phrases, and a new technique called "currenting” removes the need for

elementary variables
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CL, SL and Lucid 83 are of comparable expressive power Interms of these versions

of Lucid, and in terms of the implementation methods (1), (2) and (3) (r 1.1.2), here

are some stages in the development of Lucid implementations:

(a)

(r)

MD. May's BL interpreter, with arrays, tagged DF, written in BCPL (Warwick,

around 1974), incomplete.

Cargill's [Car76] BL interpreter, tagged DF,

Wadge's BL interpreter, written in FORTRAN (around 1976), incomplete,

Farah [Far77], formally compiling restricted CL into ALGOL.

Hoffmann ~Hof78], compiling restricted BL into ALGOL 60, written starting 1974,
Cardin's [Gar78) CL interpreter, written in recursive FORTRAN/ALGOL,
difficulties with portability,

Bush 'Bus79], data driven execution of CL on a DF machine,

Wendelborn [WenSO (WenBl)), compiling Lucid-W (restricted CL) into Wirth's

PL/O,

Wendclbcrn's [WenBO, WenB2] data driven Data Flow interpreter for Lucid-W,
Ostrum's [OstBI] "Luthid” interpreter (SL, written in C),

Finch [Find1], study of translating SL into Message Passing [KocBO),

Sargeant ]Sar82], demand driven execution of SL on a DF machine,

Faustini's refinement of Ostrum's system (Lucid 03, "pLucid" [FMYO03]),

Denbaum (Den83], compiling ANPL (=CL) into the coroutine language ACL,
tagged DF,

This thesis, compiling Lucid 03 into the Message Passing language LL'X,
pipeline DF,

Yaghi [Yag83], study of translating Lucid 03 into modal logic
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Each of these implementations is, in its way, a valuable contribution to functional
programming and Lucid, but space considerations keep us from discussing each of
them in the deserved length. The achievement of many of them lies in an area
undisputed by this thesis anyway. For example, the formal studies underpinned that
Lucid is indeed a formal system for proving program correctness: (d), (k), [AsW76],
[Fau82], (r) Onthe other hand, the early proper implementations gave people a
means to gather "hands on” experience with the language, if nothing else iNew

implementations profited from their predecessors' achievements and mistakes.

All Lucid implementations comprise inevitably a front end which translates given
Lucid programs into an internal representation where extraneous detail has been
eliminated, this front end may be a UNIX®/iiter This filter consists of a lexical and
a syntax analyser, two well known techniques of little new scientific challenge The
differences between CL, SL and Lucid 83 are largely neutralised in the output of this
filter, so that, from this point on. we need no longer distinguish between the Lucid
versions. The filter output is essentially a directed graph equivalent to the original
Lucid program: every operator is mapped into a node, and arcs express the way in
which node inports “feed" from node outports The direction of the arcs is the
direction in which the computation results flow, and the arcs are labelled by
identifiers of Lucid variables The filter output can appropriately be called Graph
Lucid (t 22) The machine internal representation of the graph is usually tailored for

the subsequent stages (either forward or back pointers).

The remaining stages reflect the chosen implementation technique, and are
therefore very dissimilar Data driven Data Flow is almost impossible to implement
without purpose made hardware, whereas demand driven Data Flow is the method
commonly used in Lucid interpreters. The Lucid graph serves, in both cases, to

direct the initiation of computing action
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Data driven DF (2): whenever data become available, the graph indicates which
further computations could benefit from these data Still, the strategy for injecting
data into the computation decides which Lucid programs are computable It was
mainly the need for special hardware which kept (i) from progressing beyond the
paper study. A Lucid compiler (1) can occasionally employ techniques akin to data
driven DF Genuine data driven hardware was employed by (g) and (m), they found
that Lucid execution on such a machine requires not only abundant computing power

but also abundant store.

Demand driven DF (3): whenever data are requested, the graph indicates which
other data are prerequired before the request can be fulfilled Its prudent avoidance
of waste and its easy sequential execution made demand driven DF the method used
in all known Lucid interpreters ((m), (b), (c), (f) (j). (n)) Such interpreters are
ideally suited to using a tagged store, whereby they may even correctly execute

arbitrary Lucid programs.

The compiling implementations, the type (1), are here of greatest interest,
since this thesis (q) is most closely related to them These implementations use the
graph less directly They analyze it for various properties (?6.i, 6.6), and use this
information to generate code for the given machine Many properties can bo found
only by such a global analysis. —Most code generators model the action of an
interpreter, like (J) They produce a linear sequence of instructions by "tree
walking" the Lucid graph whenever a new node is encountered they generate
equivalent code Compared to an interpreter, the compilation can anticipate some of
the administration, once and for all.

Most of the older compiling implementations (viz (d), (¢) and (h)) manage only
to compile a severely restricted Lucid into imperative code. The problems in
compiling full Lucid arise, since it is impossible to tell in general which parts of a

history must be retained for succeeding computations Wendelborn, for example,
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resolves this by permitting only single application of the NVSXT1 operator [Wen80], or
by requiring assisting information [WenB2] (the programmer has to state the
maximum buffer length). The former restricts the expressive power of Lucid quite

severely, and the latter is rather against the spirit of Lucid

We must analyze Denbaum's thesis (p) a bit more deeply, since its aims and
achievements are harder to distinguish from those of this thesis, after all, (p) as well
as (q) produce code in a "concurrent language". Denbaum claims even to implement
totally unrestricted Lucid. However, (p) provides no control mechanism for
concurrent operators (e g. concurrent jOH]), and the target language ACL treats
coroutines merely as a programming technique; its concurrency load is always 1,
from which a multi—computer would hardly benefit By contrast, both are clearly
provided in (q), its execution control mechanism, concurrent or not, is even rather
central (Efficiency is also largely neglected in (p) No hints are provided how to
evolve the method of (p) into a serious system )

Already Farah [FarBO] and Finch (K) point out the relevance of concurrency to
Lucid implementations, and they see that concurrency is not easy to tackle But (q)
is the first to describe a technique for handling concurrent operators, and to achieve

a concurrency load greater than 1

1.3 Tho Notation Uaad

This thesis follows a rather informal style, it contains no high powered
mathematics or elaborate proofs Anattempt has been made to illustrate every
explanation with at least one example All diagrams are placed in the text right
where they are used, which makes the reading easier Figures have a box drawn
around them if they represent programs or excerpts from programs (in whatever

language)
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Further conventions throughout this thesis:

Objects are printed in bold in their definition. In all these cases there is
therefore no point in searching further up for a better definition. Bold printing
is also used in introductions for highlighting very central terms One—letter
identifiers are usually emboldened in explanations to make them stand out.
Objects are printed in a [box! if they refer to objects from a program. Where
appropriate, boxing is combined with bolding Single—etter identifiers are
usually not boxed but printed in bold. Boxing had to be omitted in drawings
(due to problems in the printer software).

Italics are used to give words a slight stress within the text, and also for quoting
mathematical expressions (e g variables)

The up-arrow (?...) hints at chapters or figures where further detail can be

found

Various brackets are used in their habitual meaning

Ap— —

bibliography references,

function argiments, subscription or just conments,
sets,

sequences, or BNF entities,

genuine quotations, or "weird” ways of putting things

V=1

Simple conventions apply to identifiers in programs:

variables are written in lower case,

keywords are written in upper case (except in PASCAL programs, where this

violates the standard),

procedure names are written in lower case but with the initial in capitals

Page numbers are printed in the top corner of every page, whereas the current

section number is quoted in the bottom corner
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CHAPTER II: Lucid and Data Flow

2.1 Tha Lucid Syntax

This section describes the version of Lucid used in this thesis. This version is
essentially the same as the subject of [FMYB3, AsW83], only embellishments (e g lists
and strings) have been omitted for the sake of clarity.

The programming language Lucid has little substance in common with languages
like BASIC or PASCAL. The syntax of many programming languages resembles
mathematical notation, but Lucid programs go much further: every Lucid program
makes mathematical sense, it is the definition of the computation result written in
mathematical notation. Just the same, Lucid is not difficult to grasp, knowledge of
heavy maths is not required for understanding Lucid, instead, most of Lucid is clear
once a few facts are understood.

Lucid is best understood as the combination of two things:

— the Lucid syntax (the notation for Lucid programs) and

— the Lucid algebra (the objects symbolised by Lucid variables, and also the
operators on them)

We will first introduce the Lucid syntax rather informally, then the Lucid algebra

(t 2 3), and show eventually how the two are brought together in the formulation of

relevant computations. The Lucid syntax is described more formally in appendix A

The ultimate and authoritative description of Lucid is found in [AsW83] and [FMY83]

2.1.1 Definition* (Assertions)

The syntax of Lucid comprises only few constructs, which makes it very easy to
learn. Atypical Lucid program, the computation of the running average of X, looks

as follows
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sim / n WHERE
n

sum
END

1 F9Y n+l1 ;
z ¢ (0O FBY sum) ;

Between the keywords jWHERH and ]B\D you see two lines of text, the one going In - ... ;]
the other jsum- ..;]. Both are simple definitions, and exemplify as such the most

central construct of Lucid

Every definition states that the object on the left hand side of "=" is forever

identical to the object on the right hand side, the definiens

Definitions (also called assertions) can be either simple definitions or function
definitions (™ 2.1.4). The left hand side of a simple definition is just an identifier, the
name of a Lucid variable being defined; the right hand side is an expression telling
what is symbolised by the variable. The definition causes the Ihs and the rhs to be
totally equivalent so that, in expressions, the reference to a variable may be replaced
by its definiens, without any effect on the computation result

Adjacent definitions may be swapped, i.e it is irrelevant in which sequence
definitions are written There must never be more than one definition for the same
variable

These rules highlight that definitions are quite unlike the assignments in
imperative languages Every definition states the nature of an object, and it is valid

once and for all. just as in mathematics

2.1.2 Expressions

The rhs of every definition is an expression, for example pf F3Y nVil Indeed, every
Lucid program has the form of an expression The Lucid rules for expressions are
quite like those rules in most higher programming languages An expression consists
in the simplest case of a constant or of a variable A constent is either an integer, or

one of the special keywords iTit Jfil, PY4SH or iERSOfl A variable can be denoted by any
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identifier (a letter followed by any number of letters or digits), for example Icipo]
or [n.. Certain sequences of letters are reserved as keywords, and are therefore not
eligible as identifiers; they are:

AND ASA CURRENT ELSE END EQ ERROR FALSE FBY FI FIRST GE GT |
IF IS LE LT HOD NE NEXT NOT OR THEN TRUE UPON WHERE VWWWRF

(fEQI [NS] iLEI jlII [GEI iGT] are the relational operators for comparing data, jAND] jOR] |NOT)
are the Boolean operators, HOD is the division remainder, ksa! [FBYj FIRST) [NEXT! jUPONI
Wwvr[ are special functions of the Lucid algebra (* 2.3), while jIF THEN EPSETFT! jwhere END]|

and IS CURRENT! have other uses)

Complicated expressions can be built out of simpler ones: aprefix operator (Q
INoT] IFIRST] INEXTI) can be put in front of an expression, or an infix operator can be
placed between two expressions, the outcome is a bigger expression in either case
Ambiguities can be resolved by enclosing an expression in brackets before building
such a bigger expression. In most cases, however, brackets are unnecessary since a

precedence is defined among the operators:

(strongest binding)
10 FIRST NEXT
* / MOD

EQ NE LT LE GT GE < <= > >=
NOT

AND

OR

FBY

ASA UPON WAR

WHERE

(weakest binding)

The precedence is the "relative binding force" of the operators. What is meant is

RPNWAOOIO N O

this: any operator with a high precedence (strong binding force) can "grab hold of its
operands" before an operator with a lower precedence (weaker binding force) can
try. Inthe expression TTHYaTi] the variable n has an infix operator on either side,
and we can read from the precedence table that + binds more strongly than !FBYl

The + operator will therefore win over [F3V in claiming n as operand, thus making the
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whole expression equivalent to [i F3Y (n +1)1 The binding is left associative among
operators of equal precedence, except for |mBY] where it is right associative, so that:

| a—b—c—d » ((a—bl—e)—dj

whereas

"« F3YbF3Yc F3Yd - aF3Y (o F3Y -F3Yd)|

Certain operators (viz, the comparison operators) do not associate at all,
i.e separating two such operators only by an operand makes no sense in Lucid:

a AND n < 1000 // is a legal expression,
n < 1000 // is incorrect.

| |
[IFc TH5N t 5LSE e FI] is an If-expression with ¢, t and a being expressions; the condition

operand c selects whether the result of the j{Jj is taken from t or from « (? 2.3 3.1).
Expressions can also contain function references, such as or iimpi+3, k»])L
Every function reference starts with the function identifier, followed by the actual
parameters in brackets Each actual parameter is an expression A definition of the
function (i.e. with the same identifier, t 2.1.4) must be provided in a suitable position
(scope rules: t 2.1 5).
MMVE35; clauses are a further construct permitted in expressions, a construct so

crucial to deserve its own section

2.1.3 [WHERE] clauses

In our Lucid example program, a [where clausa constituted the top level
structure. This is perfectly legal, since [ffiifitc!! clauses constitute expressions, and
only expressions constitute Lucid programs. The BNF (* appendix A) of a

clause is:
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WHERE
<curr«nling> // any nurrber of these
<d«/inition> // any number of these
END

Everything between the ])AHERE] and its corresponding [fgB] is called the [where] body,
while the jwhere] expression is the expression on the left of WHERE]. Right after the
keyword MHERF is the only place where currentings are permitted. A currenting
(T appendix B) has the BNF:

i<vartablg> IS CURRENT <9xprw9sion> ;]

and it defines the <variable> to be, in a special way, equal to the <expr»ssion>;
incidentally, this expression is evaluated outside the jwhere] clause. Currenting is
quite an involved matter, so that appendix B should be read only after completion of

this entire chapter.

We are now able to present a program which contains all the syntactic features of

Lucid:
1s+l ASA s EQ I
WHERE
* IS CURRENT x—1
y IS CURRENT z-1
C =1
. = x FBY chop (s,t)
chop (a,b) = a MOD (b+c) /7 f oz a4
t =y FBY chop (t,s)
END

Each definition or currenting in the [wherelbody attaches a meaning to an identifier,
be it a variable or a function. The WHERE] expression (here: f»»i ASA » KQtl), and the
expressions within the M\WHERF definitions, will usually refer to identifiers (of variables
and functions). In order to determine the identity of the variable or function, the
compiler performs a search, first among the definitions in the [where] body and then
outward through the syntactic structures which enclose the ;wHERE] clause. (There is
none of the latter in our example ) If no match is found, variables are assumed to be
Input variables, x and x in our example, whereas for functions an error must be

reported

213



11* 6

2.1.4 Function Dofinitions and UDFs

Lucid programmers can also define functions of their own design; such functions
are called UOFs, U«ar Defined Functions. (Mathematically speaking, all Lucid
operators are "functions") The latter example program contains a definition of the
function [chop!, and there are two references to that function. A function definition
looks rather the same as a simple definition, except that on the left of the "=" sign
we have the function name, followed by the formal parameters, in brackets. For
example:

chop(a.b) = a MOD (b+c) ;

This defines a UDF ichop], of two parameters, to be forever identical to the expression
on the right hand side (the definiens). The definition declares also the formal
parameters a and b; formal parameters must never share the same identifier Each
formal parameter is bound to its corresponding actual parameter in the function
reference. Global variables (i.e. variables which are not formal parameters) are
permitted in the definiens, like ¢ in the example. We illustrate the use of UDFs by
studying the function reference in:

Is - »F3Vchop(t771

The definiens of [chop! has free variables (a, b and c), and the function reference
makes sense only after all the free variables have been bound properly. For this
purpose an outward search is conducted, through all the structures which
syntactically enclose the definiens. The first enclosing structure is the function
definition, and the variables a and b are defined there as formal parameters. Formal
parameter a is in this case bound to actual parameter e, and b is bound to t. Itis in
this case possible simply to rename the formal parameters, there being no clash of

Identifiers, and to substitute (macro expand) the function reference, giving:
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b = x FBY « W0 (t*c)7!
Variable C is still free; it is bound only in the next enclosing structure, the WHERH

clause, where we find its definition [c=1;l.

2.1.5 Environment* and Scope Rules

All function definitions appear in \WHERE! bodies, and \WHERE! clauses can appear
in the defimens of a function. Both constructs can thus be arbitrarily nested, and
either construct declares variables (or functions or formal parameters) to which
reference can be made from inside the construct. The rule for identifier look—up has
just been described once for wWwHEREI clauses and separately again for function
definitions. The compiler, however, uses in reality one and the same mechanism for
both look-ups. Each function definition and every where" clause constitutes an
environment, and each environment gives a meaning to some particular identifiers.
Environments form a hierarchy (a tree) The input variables are contributed by the
outermost environment. If an environment gives a new meaning to an identifier, this
has the effect of locally superseding (making inaccessible) any meaning which that

identifier may have had outside that environment

We can draw the environments as dotted lines into our example program That
program contains three environments: the environment around the function
definition, defining a and b, one around WHERE! clause (with the currenting half
sticking out), defining X, ¥, C, S, ichop! and t, and the outermost environment, defining

X and x. The superseding applies here only to X
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M1 ASA i EQt

WHERE :
* IS CURRENT T a-1
J IS CURRENT x-l
Cc =1 ;
*

= z FBY chop (»,t)
chop : (a,b) = a MOD (b-t-c)

FBY chop (t.a)

2.1.6 Program Transformations

Those readers who aim primarily to learn the language Lucid are advised to
continue at section 2.3. The Lucid syntax comprises constructs which are "luxury"
since they express, concisely, something that could also be expressed through the
basic outfit, though at extra length. This luxury is perfectly justified in the
programming language, since it helps to keep programs legible However, when it
comes to translating Lucid into some other code, a language is desirable with only a
minimal spectrum of constructs, since obviously every construct requires its specific
translation rule The elimination of cur-ranting is described in appendix B. This
section presents methods for eliminating four things: identifier clashes,
multi—eperand expressions, global variables in functions, and multiple references to
variables. All these eliminations can be done in separate compilation passes
(e g. UNIX® filters), in the sequence just mentioned. Itdoes no harm if this
pre—translation reduces the aesthetics of the program, since no human eye will read

the program in this intermediate form anyway.

Unique Identifiers

Different environments may attach different meanings to the same identifier, by
means of currentings, definitions or formal parameters However, the later

translation stages would benefit if all identifiers had a unique meaning This state of
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affairs can be established by substituting identifiers by unique ones; this task is not
hard since every program contains only finitely many identifiers. One might choose
[ (i = 0. 1, 2....) as the substituting identifiers, though omitting the initial segment

[ ... [*] if the original program contains [3j] as identifier.

Monomaric Programs

Every definition has on the right of "=" an expression, and Lucid permits all
expressions to contain many operators, by way of sub—expressions. The later stages
or our translation, however, become particularly easy if only a single operator is
permitted in any expression, and if every ]WHHERH expression and every actual
function parameter is required to be just a variable, if not a constant. In this way,
the result of every operator can be associated with a variable ("Operator” is here
meant in this most general sense which includes not only the prefix and infix
operators, but also [ and all UDFs) Vie call programs monomeric if they have been
transformed in this way Vade monomeric, our example program looks as follows:

hO WHERE

X IS CURRENT x-1 , 1
y IS CURRENT z-1 ; 1
c * 1;
chop(a.b) = h5 WHERE

h6 = b + ¢ ;

h5 “ a MD h6 |,

END ;
s = X F8Y h4 ; h4 = chop (s.t) ;
t s y FBY h3 ; h3 =chop (t.») ;
hO = hi ASA h2 ; hi - sM h2 # a EQt ;
END

The example demonstrates how easily the aim can be achieved: a definition for an
auxiliary variable is inserted, where required, with the sub-expression serving as
definiens. The auxiliary variables are named [hi] (t =0, t, 2, .), though omitting i

values which would clash with pre-existing identifiers;
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If the definiens for a function needs to be broken into smaller expressions,
a WHBRE clause must first be put around the definiens We apply the rule that every
<«xpr«ssfen> can be blown up into:

IhNWHERE h ~ Kmxprearion > , END!

Global Varlablaa in Function«

Global variables in functions are sometimes convenient for the programmer, but
subsequent translation stages would come to grief with them. Global variables are
easy to eliminate: they are simply added as extra actual and formal parameters both
to the function definition and to each function reference (identifiers assumed to be
unique). The respective lines in our example would change into:

=x F3Y chop (s.t.c) ;

,l ;hop(a.b.c) j a M:D (P_+Cz A ;

[copy) definition«

We know that expressions can contain references to variables; this is the one
and only way in which variables interconnect and eventually combine into the
program. Avariable may have more than one expression referring to it

No substantial program can do without such multiple references.

Since any operator may occur in a definition, every operator must be able to
cope with multiple references Ina naive approach, one might implement each
operator so that it can handle multiple references Instead, we pretend that Lucid
has an extra construct, namely the jcopy! operator and the jGOPY! definition

( <var> |,<var>] ) o COPY ( <var> ) ; /7 B\F
*. y. ¥ = QOPY (a) // example
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ICOPY1 is a unary multi-valued function; in the example, x. y and z refer to exactly the

same variable a. Any number of <var>'s is permitted on the left hand side.

The entire problem of multiple references is now concentrated in the IcoPYI
operator, all other operators will now have single references. (Note: The Lucid
programmer is not allowed to use jOOPY] definitions.)

Lucid programs before and after all these transformations are shown in

sections 4.3.3.1.

2.2 Graph Lucid

Before we turn to the Lucid algebra, let us use the occasion for introducing an
entirely different program transformation, namely the one into Graph Lucid Graph
Lucid is not another programming language but only a different representation for
Lucid programs, it serves mainly as a particularly suggestive illustration aid in our
later explanations. The subject of section 3.1 might, in contrast, be called equational
Lucid

Given a Lucid program which has been conditioned according to appendix B and
section 3 16, the translation into Graph Lucid is quite easy. In Graph Lucid, each
operator is represented by a nod», and directed arcs express the references to the
variables Let us study this in greater detail

Every operator is mapped into a node In our diagrams, nodes are drawn as
boxes with the node type written inside Every monomeric expression defines a
result; correspondingly, every node has a point, called its outport, from where an arc
springs. Generally, every operator has operands, correspondingly, every node has
points, its Inports, where arcs end. By convention, the outport is placed on the
bottom line of the box, and inports are placed at the top or at either side The
sequence of the operands is reflected in the left-to-right sequence of the node

Inports; for example:
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D = IFc THENt ELSEaFIT

may map into:

c t
4 4
T +
I IF l+e
[ T g M— +
4
X

Matters are hardly different with QOPY! nodes; they differ only in so far as they have
more than one outport. To limit the clutter in our diagrams, IOOPYI nodes are

symbolised by a plain letter C, and the node box is omitted.

Lucid programs express input and output implicitly, namely by means of the
outermost environment (input) and by the overall result of the program (output).
Graph Lucid requires one explicit 'read; node for each input variable, one write' node

for the program result, and one 'constamt! node for each constant.

Expressions can contain references to variables and constants Each referer.ee
is mapped, in Graph Lucid, into a directed arc Every arc leads from an outport to an
inport, i.e this is the direction of the arrow on the arc Every arc can be
unambiguously labelled with (the identifier of) a variable, often an auxiliary variable
We will occasionally speak of the downstream direction when we mean the arrowed
direction of the arcs; upstream is the opposite, of course.

The translation of UDFs into Graph Lucid is described in section 4.3.2.2; until
then, it is sufficient to know that every UDF is an operator, and the LDF parameters
are its operands.

Tho beginning of section 4 3.3.1 shows how the example program [Sieve! would
look when transformed into Graph Lucid. Labels mt and st are used for auxiliary
variables; the numbering is incidental, for the time being - In the diagram, one
iCOW node («2) is split up into three separate [QOPY! nodes. Strictly speaking, this

not perfectly legal, it has been used merely to keep the graph legible - The letter N
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In the graph marks the point which corresponds to the variable N in the program.
The graph on the left contains a cycle: we can run down the arcs from the iPLUS node
to Iran, then to [OCPY] (C), and arrive again atijplus!. In Lucid programs, every cyclical
definition needs to involve at least one variable; in the graph, the cycle can be
broken at the point corresponding to this variable. This point is therefore called a
outpoint, and it is marked * in the graph. It coincides in our example with the

variable N.

Any of our graphs is called a net if it has no open inports and outports (e.g. the
left part of the ;Siewe! graph), while a subnet is a graph with an open inport or outport

(e g the right part). UDFs map into subnets, and the main program maps into a net.

2.3 Th* Lucid Algebra

2.3.1 Analogy

Lucid graphs are excellent for illustrating the Lucid concept. One can imagine
the arcs were pipes, and there were plastic balls rushing down the pipes. Each ball
contains an item of information, say, written on note paper Instead of balls we
speak of datons, and the information contained inside is called the daton value Each

pipe transports datons from a node outport to a node inport.

The nodes are machines, connected by the pipes in accordance with the
program. The outports and inports resemble sockets with pipes attached. A node
can check each of its inports whether it is filltd, i.e. whether a daton is ready to be
consumed When given a daton at an inport, the node can take the daton, inspect its
daton value, and take the appropriate action. The node produces datons with
suitable value, and feeds them into the outport pipe.

Let us take for example the 1A00 node. It has two inports and one outport.

Whenever each inport is filled, the node removes both datons, computes the sum of
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their values, and feeds a daton with the sum value into the outport.

On the other hand, the jOOPY) node has one inport and at least one outport.
Whenever the inport is filled, the node removes the daton, and feeds a copy of this
daton into each of its outports.

Any network of nodes and pipes can be built up out of these components, and
the computations take the form of daton processing and of pushing datons through
the pipework Looking at any point in the network of pipes and nodes, we see a
stream of datons passing by (as long as the computation does not come to a halt).
One can record the values of all the datons passing through a pipe, and one can say
"this arc has thi3 sequence of data associated”.

If the program runs forever, it should compute an infinite sequence of data.

Of course, only finitely many datons can be computed in finite time

The analogy of the plastic balls has its limitations, it is merely meant as a rough
guide. (It modelled the data driven version of pipeline Data Flow, *2 5. We use the
UNIX® term pipelino" for FIFO queues in general.) Datons are in reality mere
conceptual objects, and they can be produced and consumed without regard to any

conservation law, as the description of the ,ADt)l and jGOPY] nodes showed

2.3.2 Datons and Hiatorlas

Datons are conceptual data particles, whereas in conventional programming
languages a data item is a mere contents of a storage cell. We confine the daton
values to integers, |T3tE or IFALSH, or Rsaftoal. Lucid allows, in principle, a much wider
range of data, but the full generality would distract from the important points of this
thesis.

We know that every variable of the Lucid program maps Into an arc in the graph,
and that every arc has a sequence (finite or infinite) of data associated We call a

finite or infinite sequence of data a history Taken together, every Lucid variable has

332



11«15

a history associated. Here are a Few examples of histories:

index = <0. 1. 2. 3, 4, 5 6. 7. 8. 9. 10. ... >
squares = < 0. 1. 4. 9. 16, 25, 36. 48. 84, 81. 100.

primes = < 2. 3. 5. 7. 11. 13. 17. 19, 23. 29. 31. ... >
chance = < 46, -5, 0, 1537, 400, -34. -34. 1. 147, L. >

(Warning: the sequence notation is only an aid for our discussion, it is not Lucid
syntax) The variable |td¥ is indeed predefined with the history shown above,
because of its great practical use (i.e. It is known to Lucid even if the user does not
define it).

The datons are by convention numbered from O up. This "serial number" is
called the index of the daton. The daton with the index O is the initial daton (“first"
could be misleading) We denote an individual daton of a history by writing its index
as a subscript after the name of the history. The Lucid variable fjide»! is special in

that for each daton the value is exactly its index (ii = |0, 1, 2 ... j)

indexx=i V <ewu

2.3.3 The Operator«

The algebra is the specification both of the data objects and of the operations on

them Indeed, histories are the only Lucid data objects; every variable has a history

associated. The daton values have their own algebra; this algebra is employed to

generate a good part of the Lucid algebra. Here are the two algebras

— The algebra of the daton values: its data objects are the integers. iFAISE
and jERROR!. its operators are the conventional operators (viz : * —e / X056 (IH
IANBL fCR INOT] LT iLE; [GTi iGE [18i (NE)),

— The Lucid algebra: its data objects are infinite sequences of datons, its operators
are the special Lucid operators ( W8 jE9Y] IHRSfl jUPON! jWiitl ;XsXI) as well as the

pointwise extensions of the conventional operators.
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We explain now the operators: first the extension ("lucidisatxon") of the conventional
operators, then the special Lucid operators, starting with the very important !F3vi

andINEXTi and followed by the more exotic operators.

2.3.3.1 Tha Pokitwisa Operators

All conventional operators can be extended pointwist (= indtx—wist), such
extended operators are pointwisa operators. This operator extension is defined as
follows: given a conventional operator ifr and given two histories a and b, the history
(a “\* ) is obtained by applying individually to the operand datons:

(@uiib)t = a«Vbs V t€u
For example, a Lucid program may contain the simple definition:

sum = a + b ; // "+w is here j

This corresponds to the following equalities for individual datons

sum* = a* b, Viec
This is indeed the Lucid [ADal operator described in the analogy, above Lucid
operators yield an HRRCR daton whenever a proper result is barred by an error in the
computation (e g. a division by 0 is attempted). This is the most elegant and safe way
of drawing attention to meaningless computation results
Here is another simple definition:
| pleasure ~ IF cond THEN music ELSE plants FlI ;
The operand icondl is Boolean, i.e each of its datons is either [TRUEI or jFALSE]. Index by

index, each daton of history [pleasure! is the corresponding Imusict daton if the

corresponding foondl daton is PHUSI, otherwise it is the IplanTJ daton
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planta = <Rose, Tulip, Lily, Fern, Poppy, Crass, Fig, Triffid, ... >
nusic = <9ach, Elvis, Ella, Duke, Holst, Haydn, Weill, CIiff, ... >
cond = <7RUE, FALSE, TRUE, TRUE FALSE, FALSE TRUE FALSE, >
pleasure- <3ach, Tulip, Ella, Duke, Poppy, Grass, Weill, Triffid, ... >

Two points about [IFf must be highlighted:

— The result of the [IF] is obtained by inspecting the datons of its three operands at
exactly the same index positions as the result, nothing needs to be known about
datons at earlier or later index positions. Such operators are called polntwise
(The operators introduced in the remainder of this section 2.3.3 are not
polntwise.)

— Dependent on the daton in the joond! operand either the daton of the ITHSN or the
iELSE1 operand is chosen for the result history This means also that the value of

the other daton isignored; the effort for its evaluation, if any, has been in vain.

2.3.3.2 Th* ;FBY] Operator
Suppose, we have to write a Lucid program which generates the following history (the

sequence notation is not permitted in Lucid)

h = <1, 2 3, 4, 5 6, 7, 8, 9, 10.
11. 12, 13, 14. 15, 16, 17, 18, 19, >

A proper definition of h can be based on its two characteristics
— the history starts with a 1and
— the history proceeds in incremental steps of +1 .

The variable h can be defined by a recursive simple definition using the [rivl operator

(iFBY] stands for "followed by").

h * 1 FBY h ¢ 1
11 t ttttt
«<art iucc«i«or

Lji
The result of 1M1 is the history produced by taking the initial daton from the left

operand (Ir.art) and by inserting it ahead of the history of the right operand
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Any expression can be put at Istertl. not merely our constant history of infinitely

many l—datons.

daton of the result.

Only the initial daton of Istartl matters, it constitutes the initial

Any expression can be put at [successor], and it constitutes the result from the

daton hi on. One effect is that, comparing daton by daton the 1FBY1lresult with its

Isuccessor! operand, the latter is always ahead by a single daton. Note the reference to

h in [successor!: the definition is recursive.

generated:

1 < 1. i

h - <1. 2

- <1.

4 *

h-M <2. 3

4 1

FBV h+l = <1, 2. 3.
*

h <1. 2, 3,

4,

. 6.

The exact definition of ;"3V is

(aFBYb)o = a0

(aFBYb)i*, = b,

Vv teu

The following diagram illustrates how h is

= ©

10.

to.

10,

10.

11,

11.

11.

11.

12.

12.

12.

12,

13.

13.

13.

13,

14,

14.

14.

1ft.

1ft.

16.

16.

16.

The following L'DF, .Coxt.t!, demonstrates the combined use of jJH{ and rpiv!. It yields a

running count of

CountT (it) * s
WHERE
S =
END ;

0 F3Y

IF it THEN

datons ( Count? is a filter)

s+1 ELSE s FI
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2.3.3.3 Th* IFIRST! Operator

IBYlL provides also a simple way to extract the initial daton from a history,
deliberately discarding the rest of the history. This is achieved by:

m = fancy FBY s ;

All datons of variable  are equal to the initial daton of Xancyl. It is also common to

write:
m = FIRST fancy
which means exactly the same, but is more convenient to write —The exact

definition of the Ifihstl operator is:
(FIRSTat = a0 View

IHRST! is semantically equivalent to the UDF:

First (a) = p WHERE p = a FBY p END

2.3.3.4 The NEXT] Operator
The jnext; operator is in a sense the inverse of #BYL The exact definition of [next] is:
(NEXTa)( —a*/ ~ i€
Here is an example where jNEXT is applied to a variable h
n = NBXTh ; j
According to this definition, nis the history obtained by removing the initial daton

from h. If his defined as in the example above, we obtain:

n = <2, 3, 4, S, 6, 7, 0, 9,10,11,
12, 13, 14, 15, 16, 17. 18, 19, ... >

Comparing, daton by daton. the &3 result with its operand, the former is always
ahead by a single daton. —[SXTl is not the exact complement of fb¥l The
application of {NEXT] re-creates the successor] operand of iFfPI, in other words

¢ * NEXT (aFBY h) H
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gives e the history of b; a is irrecoverably ignored c gets also the history of b in the
following:
"~ = bFBY NEXTb
Let us study a simple example involving IARSTL and;NEXT:
deviation = NEXT (r - FIRST r ) ;

We choose a random history for r and play the example through:

r = <400, 970, 566,946, 264, 640,638, 117, 396, 743, 256, ... >
FIRST r = <400, 400, 400,400, 400, 400,400, 400, 400, 400, 400, ...»
r - FIRST r* < 0, 570, 186,546,-136, 240, 238,-286, -4, 343,-144, ... >
NEXT (") = <570, 166,546,-138, 240, 238,-286, -4, 343,-144, ... >

The following UDF, lindexT , is a more elaborate application of {NEXT]; it searches its
Boolean operand k for a (TRUF daton and returns its index position. Its integer
operand | (lew) specifies which occurrence of ITRH is wanted: | = 0 requests the

earliest occurrence

IndexT (k, i) = IF  NOT k
THEN IndexT (NEXT k, i) 1
ELSE IF i > 0
THEN IndexT (NEXT k, i-1) 1j
ELSE 0
FI  FI ;

2.3.3.5 The UPON] Operator

The operators described in the remainder of this section 2.3.3 may look
somewhat "artificial", but they are almost indispensable in any substantial Lucid
program

The 10B0W operator is of great use when we try to build a node which consumes
datons (at an inport) at a slower pace than it produces them (at the outport).

—Using the UDF1CountTl from above, the exact definition of [UFCH is:

(a UPON k)4 = *(CountT(k)t)
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The initial result daton of laUPONK is ao- Subsequently, if the operand k yields a
IFALSE! daton, the current daton of a is repeated once more; otherwise, the next daton
of a is chosen for the result. —The IUPON! operator is semantically equivalent to the
following UDF:
Upon (a, k) = a FBY Upon (p, NEXT K)
WHEREp = IF FIRST k
THEN NEXT a
ELSE a Fl
B\D ;
As a typical use of IUPONi, here is the UDF IMmergel which merges two histories x

and y, under control of a Boolean Icondl, without losing any daton of x or y:

Mymerge (cond, sf, Jf)y =
IF cond THEN z UPON cond
ELSE y UPON NOT cond FlI

2.3.3.6 The ;wvb]Operator

The ] operator ywhtnsver”) helps when we try to build a node which consumes
datons at a/aster pace than it produces them. —Using the UDF [indexT] from above,
the exact definition of wwyr; is:

(a WK k), = alndex7(kii) V ie «
IMWRL consumes both its operands synchronously. It scans its rhs. operand k until a
ITRUff daton is found, and it picks then the daton of a with the same index. The latter
daton forms the result daton of WWRj. To obtain the next result daton, the scanning of

the operands continues from the index where the previous evaluation left off

The |WH! operator is semantically equivalent to the following UDF:

Wvr (=, k) * IF FIRST k THEN p ELSE q FH
WHERE p ™a FBY q ;
q - Wir (NEXT a. NEXT k)
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As a typical use of \WWRL, here is the UDF IOa.il which filters out any immediate
repetitions of datons:

Clean (a) = aWR (TRUE F3Y (a NE NEXT a))

2.3.3.7 The psa[ Operator

The p«ajoperator ("os soon as”) is semantically equivalent to the following UDF:

Asa (a. k) = FIRST (a W\R k)

iASAi consumes both its operands synchronously. It scans its rhs. operand k for the
earliest ITRUA daton, and it picks then the daton of a with the same index. The result

of 1ASAl is a constant history generated from the latter daton.
The exact definition of iASA is obtained by applying RRSTI to jwvri:

(aASAK\ = a[rdexT(k.C) View

2.4 The Semantics

So far. this chapter has taught us how tc write meaningful Lucid programs
Thanks to the analogy of the plastic balls, we can even imagine how our programs
might be executed. We must be careful not to overrate this analogy; it is by no
means the authoritative definition of the Lucid semantics The analogy extends to a
further point, still: any of our plastic balls can be empty, in which case it provides no
information. (The reason why the Information is missing is another matter.) Such
"no information" datons are called bottom, the symbol is 4 Correspondingly,
a history can have .j.components. A bottom daton carries loss information than a
proper daton; we say it is lees defined Based on this loss dafinta ordering, a partial
order is defined among histories (the history consisting only of bottoms takes

obviously the lowest place).
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Lucid can be understood as a single—assignment language: one history is
assigned to each variable, once and for ever. The Lucid semantics is defined as
follows:

The result of a Lucid program is the (east Sized point history satisfying all the

definitions in the program [AsW79a, AsW80], (Least fixed point means here: the

minimum history with regard to the partial order.)

It is common to define variables recursively:
g = Func (q)

There may be a history g, so that iFuc (Q)i is more de/tned than q (with regard to tne
partial order). This history ( is unique If such a history does not exist, qis J_
throughout. - For example:
Ih - 1R3Yhtl
«0 is evidently defined: whenever h is defined up to an index t, it is also defined up to
the index i*=1V i e u By induction, his therefore defined everywhere

This variable h is actually an example for a special case where a particularly
convenient translation (viz. pip«lint) is possible no daton value of h is defined in

terms of its own successor datons

2.5 Program Execution

The term Data Flow designates the description of computations through datons
moving through a net; we abbreviate Data Flow into OF. Histories are infinite objects,
though no computer is able to operate directly on infinite objects We have to
re—organise the computations so that we need to operate only on individual datons.
one after another. Let us now study the two strategics in which a DF program can be

executed
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Data Driven DF

The strategy described in our analogy is called data driven DF (most researchers
mean specifically data driven DF when they say "Data Flow"). The image of datons
streaming down the arcs is particularly appropriate for data driven DF. 1GONSTANT]
and IBEAD nodes are the original sources of datons, and they are eagerly feeding
datons into the net. As soon as the required operand datons are available for a node,
it is free to compute and produce its result. Such data driven nodes can, in general,
not influence the arrival rate of their operand datons The [write] node has no
dominance over other nodes, but simply writes out the datons which happen to
arrive. Anode may discard operand values (Tend of 2.3.3.1), their evaluation was

pointless, in retrospect. Data driven DF is inherently wasteful in this sense.

Damand Driven DF and Lazy Evaluation

Demand driven DF is a refinement of data driven DF. designed to be less wasteful
than the latter Further to the datons, demand driven DF has particles called sltons
(fr;T« = lrequest). Sitons travel upstream along the arcs, and each of them
expresses the request for one daton The MBITH node is the ultimate origin of all
sitons; MRITE alternately issues a siton and receives a result daton. A [CONSTANT; or
IrSaj] node produces a daton only upon receipt of a siton. All other node retain their
daton handling capacity; however, they can now receive sitons at their outports and
emit sitons from their inports, if appropriate Sitons contain information about the
nature of the request ("give me a daton with/without value"), and the nodes react

accordingly. Unnecessary daton evaluation can be avoided in nearly all cases (t 5 6).

Once an evaluation has been instigated, by a siton. it may turn out that the
daton value is not needed after all. Inthis case, alethon is sent upstream to
counteract the siton. Lethons (Lat. lethum = death) are close relatives of sitons;

a lethon can be issued right after a siton, but before receipt of the response daton
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The nodes propagate lethons like sitons.

Demand driven nodes have considerable control over the producers of their

operand datons; the jwrits; node has absolute dominance over all other nodes.

At present, most computers are von Neumann machines. Data Flow
computations of either type can only be emulated on such a machine. A demand
driven evaluator can be matched very closely to von Neumann machines, and it is
possible to formulate this evaluator in quite acceptable von Neumann code. This is
indeed what this thesis aims to achieve. —A form of demand driven evaluation has
been used on von Neumann machines for a long time. It is widely known as lazy
evaluation [HeM78], and it was first employed in LISP systems.

Even Data Flow machines do not contain moving streams of particles. They use
in reality also an emulation, implemented in tailor made hardware instead of
software. It is not very difficult to emulate demand drive on a data driven Data Flow

machine [Sar82].

2.6 Daadlock

Every Lucid program produces an endless stream of datons, and nothing but a
lack of input datons should be able to halt it. However, Lucid programs can contain
faults which make them stop yielding results, permanently Deadlock and livelock
are such errors
Deadlock is a type of programming error which re—emerges in almost all forms of
programming State a is a daadlock state if:

— state acan be left only if condition r is TREE, and

— condition r is FALSE during state a.
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Section 2.4 stated which recursive definitions

pathological program, and its graph:

x WHERE H--ee -

X =X ;
END — *C
X *

One could say, the program defines x to be

are

11*26

constructive. Here is a

"whatever it happens to be”.

Consequently x is bottom throughout, due to the fixed point semantics. When this

program is executed, an attempt is made to obtain the value of a daton xi. Because

of the cycle, adaton x* can be evaluated only if x* is known btfonhand, this is a

deadlock (see also Cycle Sum Test, r 6.1).

Another programming error is the livelock; tivelocks are those computations

which never deliver a result. In the following pathological example, jodd; contains only

odd numbers, and the UDFiSvenl is a filter for even numbers. [Sven! applied to [odd] can

never yield a result. Consequently, the result is bottom throughout:

Even (odd) WHERE

BEven (x) = x WR ((x MD 2) * 0)
odd = 1F3Y (3 ¢ odd)
BND
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CHAPTER HI: Imperativa Program* and Meaaage Passing

3.0 Introduction

Whenever a program is executed on a digital computer, this is done in the form
of numerous elementary operations (= computation steps, actions). The executing
computer is characterised by the method in which the operations are set in motion,

and each of these methods represents a computer architecture

Historical Review (sketched)

John von Neumann developed the original stored program computer
architecture (Moore school, EDVAC, 1945). But people tried immediately to make
their machine even more productive, for example by allowing 170 transfers while the
machine was busy computing the next result. This was achieved through ingenious
technical fixes, which in turn provided a base for the invention of (pseudo—)
concurrent computation. A computer system computes concurrently when it is
simultaneously handling more than one computation Later, after the dramatic
growth in the number of computers, techniques were developed to link computers
together. In this thesis we will give only little thought to the difference between real

and pseudo concurrency.

Changes in hardware motivated the development of software, i.e. hardware took
an active role, software a passive role. Uultiprocs ssing operating systems were a
reaction to the introduction of concurrent computation. Even today, designers of
computer systems rarely pass the benefits of concurrent computation on to the
applications programmer. The area has the reputation of being for experts only.
This is in essence not justified, in fact the reputation stems largely from the use of

unwieldy programming languages
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Nevertheless, programming techniques and languages for cooperating
concurrent computations have been developed, mostly by academics. Every
language reflects the priorities its inventor gave to the various aspects of
concurrency. The various concurrent programming methods are best compared by
discriminating between (A) how they set up concurrency and (B) how their
concurrent units communicate. Early on, people were satisfied to have any provision
for concurrency at all. Leaving genuine concurrency aside, we would place the
UNtX~Iforkl primitive under (A) in this era in history. Similarly under (B), one would
place in this era shared use of global variables. There are methods which are more
refined. Message passing is the natural choice of communication method for

concurrent systems with separate memories

In message passing, the computing agents communicate solely by sending and
receiving msssagss. each message being a sequence of data. (We call each
computing agent an "actor"”, amactor is almost the same as a von Neumann machine.
Full detail in 3.2.1.) The inherent modularity of message passing makes it attractive

for quite general application.

Other concurrent programming concepts cater for aspects which are relevant in
special situations Making the data machine independent, for example, is of great
importance in inhomogeneous computer networks (Data Abstraction, CLU [Us74]).
Other researchers have at the same time tried to design languages which are much
more amenable to analytic methods, and thus make program proofing a realistic
idea Most of these languages are built on very concise sets of fundamental
constructs. Hoare's CSP [Hoa78], Brinch Hansen's EDISON and, in a different sense,

Lucid belong to this category.
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Criteria for tha Implamantation Languaga

On present-day computers, which language would be a suitable vehicle for
implementing Lucid? Here are a few simple guidelines to aid us in our search for an
appropriate language:

— Is the language comprehensive enough for the task in hand?

— Are the resulting programs easy to read? This thesis is meant to convince the
reader that the translation is meaningful and correct, and a well readable
language would support this aim. The "production” implementation language, on
the other hand, may be arbitrarily cryptic

— Is the language available on many computer systems? If not, would it be easy to
implement, possibly by modification of an existing system? Programs written in

a good popular language are easiest to understand and translate.

— Last, and least: are the language features a reasonable reflection of the way in
which present-day computers work? Optimisation becomes unnecessarily

difficult if this aspect is ignored.

Clearly, many candidates pass these simple guidelines equally well We will see
that Message Passing Actors (MPA, t 3 2.1) support modular program design The
author had advance experience with MPA, and there was therefore a certain
sympathy for MPA languages There is little doubt that valid arguments can be
brought in favour of other programming styles with cooperative concurrency
Various programming languages have been looked at and a decision for MPA has
finally been taken.

We chose to design directly the language most convenient for our purpose This
language is called LUX. LUX has been developed to suit the translation algorithm
Various versions of LUX, each with its matching translation algorithm, have been

tried out. We present here only the design which eventually seemed best
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Structure of this Chapter

In this chapter we look first at the von Neumann machine, the archetypal
imperative computer. After that we introduce the crucial elements of any MPA
language, namely actor creation and the primitives |EQL and IRECEIVE. We look at
variations of. and alternatives to, message passing actors. We look then at CSP as an
instance of a MPA language, and we discuss its properties. (A variant of CSP has, for
a while, been the candidate as target language. We show why it was found

unsuitable.) We present finally the language LUX in full.

3.1 The von Neumann Machine

Most computers these days (1983) have essentially a von Neumann architecture.
Von Neumann machines are saguantial computers. There, only ont operation can
usually be active at any single moment. Although every pure von Neumann machine
is sequential (non—eoncurrent) by nature, a certain degree of cooperating
concurrency can be achieved, simulated or genuine, but only at rather high cost
We discuss von Neumann machines here only as far as relevant for implementing

Lucid.

3.1.1 Flow of Control in von Neumann Architecture

The program (code) for a von Neumann machine is a directed graph, with
Instructions as nodes. Programs for von Neumann machines are called sequential or
Imperative programs. Aclassic von Neumann machine executes non—imperative
programs either inefficiently or indirectly, through compilation Lucid is a
non-imperative programming language

The flew of control formalism models the execution of a sequential program
The formalism assumes that per actor there is one token of computing activity, (An

actor is something rather like a sequential program, *32.1.) The token is usually
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called the PC, for "program control". The PC moves along the arcs In the arrowed
direction, with a defined starting point. Every instruction type is the encoding of an
operator; the respective operation is performed when the PC reaches the instruction
(= node). Inother words: sequential programs state explicitly the sequence in which

the operations are carried out

The classic von Neumann machine has only one PC, and it can therefore only
perform a single succession of operations. This can be expanded into concurrent
computations by putting von Neumann machines side—by—side. The same effect can
be approximated by switching one von Neumann machine between a number of
actors; this is pstxido-concurrency Finally, cooperating concurrent computations

are obtained by adding a means of communication to concurrent computations

3.1.2 Handling of Datons in von Neumann Architactura

In von Neumann machines all the memory takes effectively the form of storage
colls (traditionally and misleadingly said to be variables) The contents of some

storage cells change in the course of instruction execution.

The concept of histories is not all that alien to von Neumann machines The
values, successively held in a storage cell, can indeed be viewed as components of a
history. One could, for example, associate a "write" counter to each storage cell, and
increment it whenever a new value is written into the cell; the counter would
obviously tell the "daton index" of the currently stored value This comparison
presupposes that all Lucid nodes evaluate their histories in the order of increasing
index ["'monotonically”). Such nodes are, indeed, particularly easy to implement,
viz. using pipelines Some nodes, however, can leave the order of daton evaluation
unspecified, namely when each of their evaluations is independent from all previous
evaluations The order of daton evaluation needs careful supervision only In nodes

with memory, nodes which are not primitive.
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3.2 Passing Actors

3.2.0 Introduction

As stated before, message passing is the natural choice of communication
method among separate computers. Hewitt et al [HBS77] proposed its use in a much
more comprehensive context. Message passing enforces a high degree of modularity,
and this is one of its strongest attractions. The term "actor" is due to Hewitt; actors
will be explained in 3.2.1. There is great divergence of terminology in this field.
Common terms in place of actor are virtual processor, process, task, and job. MPA is

short for Message Passing Actors.

C.AR. Hoare presented his Communicating Sequential Processes (CSP) in his
report [Hoa78]. Combining pre-existing techniques in a new and rather elegant style
is the main achievement of CSP. CSP is a semi—formal language, and message

passing is one of its central primitives (t 3.3).

The Experimental Programming Language EPL [MaT79] was devised and
implemented by the Warwick Distributed Computing Project Group EPL was
developed at roughly the same time as CSP, and it owes CSP more than Hewitt's
actors EPL is a bar« bones language in the spirit of BCPL It has been implemented
on two different machines, and it was meant for experimenting with message passing.
Atypical EPL program would contain substantial lengths of code where only

conventional computations are carried out without messages being passed

The language OCCAM [Inm82] might be a candidate as the true implementation
language; OCCAM is a descendant of CSP and EPL The inventors of OCCAM see it as a
new breed of assembler language, particularly suited for multiprocessor systems.
The OCCAM actor creation and message passing are both etotic, which makes them
too inflexible for what our translation requires. Lucid programs without recursive

VDFt could be translated into OCCAM without too much difficulty Appendix D shows
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an example of what would come out if our translation algorithm generated OCCAM
code (unoptimised).

In this thesis we will extensively use a purpose built language named LUX. The
MPA side of LUX has been strongly inspired by GPL. LUX will even be used as the
yardstick in all our explanations and comparisons. This is intended only to avoid a
flood of insubstantial definitions, and it must not be understood as a denigration of
other languages. LUX itself is hardly free from imperfections, but it is very suitable
for the task in hand. In the following all MPA examples will present the LUX case,
unless otherwise stated.

Why do we invent yet another language instead of using an existing one? The
language LUX has been designed for the sole purpose of legibly formulating the Lucid
node acts. There are many other languages in which this could have been done.
However, the truly popular languages contain generally no primitives for the kind of
concurrency we need (LUX "exceptions" resemble the interrupts of assembler
languages, and "doors" are the LUX device for exception handling Ordinary

languages comprise no obvious elegant equivalent for LUX doors )

The very popular language PASCAL [Wir71] forms the syntactic backbone of LUX
LUX has been obtained simply by enriching PASCAL with a number of extra features
There are two simple extensions right at the start:

- the underline character is allowed in identifiers (it can make identifiers
more readable),

- the special symbol jACT' occurs in some places where In ordinary PASCAL one
would write [PROCEDURE].

Here is a simple but complete LUX program . The program emulates the
children's game with a triangular inequality: a stone (0) defeats scissors, it makes
them blunt, paper (1) defeats the stone, it wraps it up, and scissors (2) defeat paper,

they cut it
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ACT Act_Root_ ;
VAR a. b ; ACTOR ; ri, rb. win : INTEGER ;
BEGIN
a » CREATE (Act_Player_) ;
b :* CREATE (Act_Plcy«r_) ;
REPEAT
( . ra) ;* RECEIVE FROM (a) ;
(, rb) :* RECEIVE FROM (b) ;
win = (3 ra —rb) MDD 3 ;
IF win >0
THEN writaln (‘Point for player', win) ;
UNTIL FALSE ;
END j

ACT Act_Player_ ;
BEGIN REPEAT
SEND ChoiceOlzZ TO (Creator) ;
UNTIL FALSE ;
END ;
(Both players' choices are taken and compared. Each player is free to base his
choice on a long term analysis of the other player's behaviour. In the program, this
decision taking is hidden in the parameterless function Choice012, which returns 0, 1

or2)

3.2.1 Acts, and Actor Creation

Acts, actors, and the creation and initialisation of actors will be introduced in this

section.

Analogy (Food for Thought)

Every act is somewhat like a cooking recipe. Actor creation and initialisation
corresponds to the preparations for cooking a meal (buying the ingredients),
program execution is the cooking itself, and the program output is the meal. The
actor is the combination of the ingredients, in their current state of processing, and
of a bookmark pointing to the line in the recipe to which the cooking has progressed.
Many meals can be cooked from the same recipe, even simultaneously. These meals

will be of separate identity but of equivalent nature
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Acts vs Actors

Every program with Message Passing Actors is written as a collection of acts,
every act being a piece of sequential code. Every act definition has exactly the
syntax of a PASCAL procedure declaration, only with the keyword PROCEDURE]
replaced by jACTI. Acts are the largest building blocks of such a program. Here is a
typical act definition:

ACT Act_xyz
BEGIN
(» The body of the act. o)
END ;

An actor is the sole framework in which computing action can take place, where
computing action is meant to cover all CPU action in general Actors are activations
(= mstanciations) of acts. Let me repeat that acts are mere descriptions of
computing action. Many people have great difficulty in distinguishing between acts
and actors, though they are in essence different kinds of objects Executing an act
would be as pointless as boiling a recipe, in our analogy If you are hungry, it is not
enough to buy a cookery book (set of acts), you need the ingredients as well Only

the synthesis of the two (the actor) can eventually give you a meal (computation
result).

Every act is a global constant in LUX The identifier of an act must only occur in
[OBAT&L instructions, but never in assignments or messages. Actor names, on the
other hand, are not constants but are data values of type ACTOR]; there are no extra

restrictions to their use. Our translation requires no nested act definitions.

Actor Creation

ALUX program, aset of acts, is like the definition of a set of mathematical
functions. A definition on its own can not yield a result A mathematical function

yields its result only when applied to a sequence of operands. The actor creation is

321



11«10

the corresponding operation which sets computing action in motion. Every actor is
generated by applying the |GREATE operation to an act. Each actor has its individual
actor name. which is something rather like an address. If JAct xg| is an act. and if

Ipgr-actorl is a storage cell which can hold the name of an actor, then

pgr_actor := CREATE (Act_xyz, hO, hi) ;
creates a new actor from IAct xyzl, and stores the name of this new actor in the
storage cell Ipgr_aci.o.4. Actually, an actor can carry out its computations even if its
name is not known to any actor. However, the name of an actor is needed when it
communicates with other actors (f 3.2.2). Numerous actors can stem from (can be

created from) the same act

The act specifies the operations which are carried out by the actor, with
execution starting at the beginning of the act. Every actor starts acting
(i.e. computing) at the moment of its creation. An actor terminates forever once
execution reaches the end of the act (where PASCAL procedures would instead do a

"call return”).

In the [CREATE instruction, further actual operands may be appended after the
act specification ([hO] and [hi] m our example above) These extra operands are
passed to the actor like procedure parameters They re-emerge, completely
untouched, as values Tor the formal operands (example: *3.4.4). In our translation,
these extra operands are always constants. Names of communication partners
(operand actors) are never passed in this way, but only via the actor initialisation
(t 4.

Actors have no particular representation within the LL'X syntax, since they are
not syntactic objects; they can only be characterised by the operations applicable to
them. The only possible operations on an actor are: its own creation, sending a

message to it, receiving a message from it, and assigning its name to a storage cell.

321



11-11

Each actor is characterised by the pair <aet, mamory>. An actor cam share its amt
with other actors, but every actor has its dedicated memory (i.e. actors can be

"brothers").

Actor Hoad

All actors run under a runtime system which takes care of actor creation,
scheduling, message passing and further administration. Inthe course of actor
creation, the supervisor allocates a record (i.e some storage space) called the actor
head. The actor head holds Information about the particular actor. The contents of

the actor head changes during execution.

We are only interested in very few items within the actor head, and it is

sufficient to assume that actor heads are pre—declared as follows:

TYP3
WBOTV« = (DATON, READY, COMPUTE, NULLIFY, ADVANCE) ;
ACTOR = * ACTOIL-HEAD ; (+ a possible def n of ACTOR .)
ACTOR_HEAD = record
eras ter : ACTOR : |
xr«qu«¢s t . MSGTYPE ; (+ prestored with READY )
x Index : INTEGER ;
(» There are various further pieces of information )
(* which are used for administration *)
(» (but which are inaccessible to the user): *)
f scheduling ststue, intrinsic priority, actusl priority, =
(» program counter, stack pointer (for procedure binding) )
END ;

Some special/unction* arc provided through which each actor can obtain useful
Information about Itself. These functions are all paramatariass, and their result is
actor »pacific. For example, the function !Mviiéifl yields the actor name of this actor
Itself, iCrsstsr] yields the name of the actor which crsatset this actor, and Maedl is a
multivalued function vyielding the entire message of the last exception, i.e.
Isrsqusst, »Ind'exl.  If used as a single valued function, litwc:! yields just the contents of

Isrsquestl. Through these functions, the actor can get access to the Information in the
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actor head. Actors are neither capable to explicitly change any actor head nor to

inspect heads of other actors.

Throughout this thesis, the leftmost component of every message (t 3.2.2) is of
type iIMSGIYPE and indicates the nature of the message The message is a request if
that component is COMPUTE!, NULLIFY! Or [ADVANCE]; it is an exception request if that
component is INULLIFY or [ADVANCE!. Daton valuta are passed around by messages
whose first component is jDATONI. The message type could be indicated in other ways
than via the first component, but this method has the advantage that every message

is easy to identify (* 5.3.2).

IHEADY does not occur in messages, but the cell fsrequestl in the actor head can be
set to READY, thus indicating a particular actor status (»request] is initially set to
IreapY ).

As we said above, the act may have formal operands, and they are prestored

with the extra operands from the jCREATH instruction

Root Actor

We are now in a chicken—and—egg situation (CREATE] is an operator, and
operators occur only in acts However, the execution of any operator (such as
[CREATE!) must be preceded by the creation of the actor in whose act it occurs. This
problem is easily solved, the LUX program execution is set running by the implicit
execution of:

r««t_aet*r .= CREATE (Act_Root_ ) ,
The LUX program must therefore contain a definition of the [ActlRooiZl. The !7oct actorl
creates further actors, ail computing action has its ultimate origin in this actor.
Incidentally, the storage cell Joot—actor] is not accessible from anywhere, there was
mimply no need to make it accessible. Unlike PASCAL programs, there is no main

program section in LUX programs: IAcOtooU takes this role Instead.
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Miscellany Concerning Actor Creation

So far we have described dynamic actor creation, i.e. actor creation through a
run time operation. The alternative is static actor creation, where actors are
pre—reated before computing action has started anywhere in the program. Static
actor creation can be simulated by dynamic actor creation, whereas the inverse is
not possible In this thesis we need dynamic actor creation for the implementation

of recursive Lucid UDFs.

Actor initialisation is usually the first thing to follow right after an actor has been
created. In the initialisation, the new actor is provided (through messages, mostly
from its creator) with various information which it needs to go about its job. Among
this information will normally be the names of the communication partners Some

actors (e.g. l,-oot actof]) contain nothing which needs to be initialised.

3.2.2 [SINDI and [RECEIVE]

The LUX inter—actor communication method is unbuffered message pessing
between pairs of actors. Amessage is any sequence of data items Unbuffered
means that the message is passed if one actor wants to [SEND; and if at the same time
the other actor wants to [Rocelvel. Furthermore, if the [SES0 or [RKCBVE instruction
names a particular message sender or receiver, the actors involved must match what
is asked for. If an actor comes to aiSENO or iRECEnf instruction, it waits until all the
preconditions for communication (just mentioned) are satisfied Once the message
has then been transferred, the sender and the receiver can both resume execution.

The instructions iSINO and iRFCEVH are the message passing primitives They
"dictate" to the system that a message shall be sent or received Atany single
moment an actor can either be computing, waiting to IsEMbl, or waiting to jitifcEiVEL.

The primitives have in general the following form
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— the lIsctcj instruction states what the message is, and to which actor(s) the

message shall be sent,

— the 'receive: instruction states which actors are eligible as message senders, and

where the message shall be stored.

For example, LUX has three message passing instructions:

SEND *o0> *i> eee e, TO ( receivero, receiver,, receiver, ) ;

This instruction specifies a transfer of the message ([ejj], [e], ..- [ej, where each
fgp is an expression) to a set of receiving actors: brackets may enclose the
message. Any number (minimum is one) of receivers is permitted; in our
example there are 3 of them. The receivers must exist while the {[SBE\ND is in
execution. The execution of the iSESD instruction is complete when the message
has been accepted by each of the quoted receiving actors. The quoted receiving

actors must all be different.

(lender, cp, c,. ca, ... ca) := RECEIVE () ; ]
This is the instruction for an undirected WECIVH It is best understood as a
multipit assignmtnt, like from a multivalued function. (The storage cells on the
left of :m must have been declared elsewhere ) It means: as soon as a message
arrives, from any actor, it is stored in the n+ | storage cells jcj. [c]], . ©J (word
by word, progressing from [ to [jjj; how many values are stored is determined
by the Itft hand side). If the receiving instruction asks for ftw tr message
components than provided in the lsend! instruction, the remaining components
of the message will be lost. If the receiving instruction asks for mors message
components than provided in the ISEN? instruction, the remaining storage cells
on the receiving side will be filled with unpredictable mattrial —The sending
actor's name is stored in the leftmost storage cell (here: [sender]), le it is "stuck

In front" of the message If more than one sender is simultaneously ready to
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mend, one sender Is chosen at random, and all other senders continue waiting
until successful at some later time. Any message component cam be ignored by

leaving its field empty in the assignment (but not omitting the comma), as in:

ITT, comporents) .= RECAVEQ ]1

(«ender, c0, ct, ... cn) ;= RECEIVE FROM ( »endcrp, sender, )

This is the directed jRECEIVE instruction. The message can come only from any
leenderl actor specified after the IFROM. There can be any number
(minimum: one) of sending actors. These senders must exist while the RECAVE
is in execution. Everything else is exactly as in the undirected 'RECAVE

instruction.

In LUX, messages can consist of values of arbitrary type, and even actor names ale
allowed. Pointers, arrays, or names of procedures, function, or acts are not allowed
as messages components LUX requests are particular messages, they are of
importance in translated Lucid (explanation: t 4.2). Section 3 4 2 describes the LUX

mechanism for passing "exception” messages

Every act is aglobal constant in LUX Every act is therefore permanently known
to every actor, whereas it is not permitted to make an act known to another actor by
transferring it in a message In LUX, the use of global objects other than constants is

generally frowned upon, actor names are clearly not constants.

The situation can arise where a number of actors try simultaneously to rESIT to
the same [RECEVE, i.e. all these senders fulfill equally the preconditions for a message
transfer. It has been stated above that in such a situation one of the senders is
chosen at random, and the remaining senders keep waiting for further ."ftECEIVfl. LUX
does not specify any order (e g. "first come first serve") because that would in

general not be enforceable [1,am7B].
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3.2.3 Contantious Points with Msssags Passing

Message passing can give problems in typed languages, because the words in the
different possible messages can be of non-uniform type; this problem did not exist
in GPL since it is type—less. In LUX, we glance over this problem by assuming that
the types of the message and of the left-hand side of the RECHVE instruction do

match. This can be ensured by run time checks.

Our translation process generates code in which type clash errors cannot occur.
If one wished to change LUX into a general-purpose programming language, one
could define: every IRECENG instruction assigns an entire structure, where the

structure can be of union type

Deadlock (t 3.6) is another problem area for message passing, and for
concurrent programs in general. (Our translation algorithm generates

deadlock—free code, as long as the Lucid program is flawless.)

3.2.4 Variation* of M***aga Passing

Message passing, as presented so far, can obviously be varied in a number of ways
We study only substantial variations

The addressing of senders and receivers is a rich field for variation
Broadcasting is of particular interest, i.e. the simultaneous sending to all receivers.
(The [SB\ instruction of LUX allows sending to a set of actors ) If broadcasting Is
done in unbuffered message passing, it3 effect must be defined on receivers which
are currently not waiting (will the sender wait for them all?). —There are also uses
for a "lottery ISENfii", which sends to a set of receivers, but eventually gives the
message to only one of them.

Non—eatarminacy can go further than merely leaving it open from which actor to
receive a message. It has been said in 32 3 at any single moment an actor can

either be purely computing, waiting to [SEN6l, or waiting to IrfacBvel. There are
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relevant applications which would benefit if more than one of these were
simultaneously possible. Apriority rule might be provided for the case where ISE\DL
and FEH\VE become simultaneously enabled. Obviously, pure computing must get

the lowest priority since it is permanently enabled.

We could redefine the measures taken if one actor wants to send a message
without the target actor being ready to receive it. Instead of letting the sender wait,
the receiving actor could buffer the message, and let the sender proceed
immediately. To be general, the buffer should be unbounded. —Obviously, this
6ufforod mtssagt passing is much more complex to implement than the unbuffered
variety, and its fundamental operations are less directly related to the "inborn"
operations of conventional computers. The extra luxury in the buffering must
usually be weighed against some extra cost. Often enough this luxury is not even
wanted As an example for the latter, here is a piece of LL'’X code with a useful effect

which would be much harder to achieve if message passing was buffered:

Example ( Act_6uardlahHV unbuffered message passing

ACT Act-Ouard l«n_ ;
VAR sender!, sender? : ACTOR ;
BEGIN'
REPEAT
senderi :* RECEIVE () ;
(= No other message sender can now get in. =)
sender? :* RECEIVE FROM (sender!)

UNTIL FALSE ;
END i
VAR guardian-actor : ACTOR ; (= must appear in the declarations e)
guardian-actor - CREATE (Act_Cuardian_)

This Isuardan-actor! toggles between its two statss every time it has received a
message. Initially, It waits for a message from anywhere; the message could be

produced by:

3.24



Ile1B

ISBND O TO (guardian-actor) ;|

Once the initial message has been received, a second message is expected from the
same sender (viz. fromlienderH) If other actors try to send to the Iguardian-actorl while
it is in this state, they are forced to waif at least until it has returned to the initial
state. The Iguardian-actorl returns to the initial state once the second message has
been received. The message itself is ignored throughout, only the event of the

message matters.

Semaphore«

Actors created from [Act-Guardianj can ensure that a certain access right is given
to only one actor at any single moment. For example, they can be used to prevent
multiple simultaneous alteration of shared memory (disastrous!). If a number of
actors want to eat biscuits from a common box of biscuits, this would be safe if each
of them followed the pattern:
| SBE\D 0 TO (guardian_actor) ;

TF any biscuits left?

| THEN eat one biscuit ;
| SE\D 0 TO (guardian-actor) ;

The [guardian-actor] is an MPA style implementation of semaphores (t 3.2.5)

3.2.6 Concurrency Methods other than Message Passing Actors

Concurrent computations can communicate through means other than message
passing. We ignore here concurrent computing on specialist computers (CRAY,
vector processors) altogether.

We mentioned before that the most straight-forward and simple-minded
communication method is the use of shared memory segments This method can be
hazardous when used carelessly, for example when two actors change shared

memory in a time overlap. This can be brought under control by the use of

3.2.8



I =miB

ISEND 0 TO (auardian_actor) ;l

Once the initial message has been received, a second message is expected from the
same sender (viz. from Uendcril) If other actors try to send to the!guard:an-actorl while
it is in this state, they are forced to wait at least until it has returned to the initial
state. The [guardianrac*orl returns to the initial state once the second message has
been received. The message itself is ignored throughout, only the event of the

message matters.

Semaphore«

Actors created from [Act-Guardian—Lcan ensure that a certain access right is given
to only one actor at any single moment. For example, they can be used to prevent
multiple simultaneous alteration of shared memory (disastrous!) If a number of
actors want to eat biscuits from a common box of biscuits, this would be safe if each
of them followed the pattern:

i SE\D 0 TO (guardian_actor) ;
TF any biscuits left?

| THEN eat one biscuit ;
j SEND O TO (guardiai_actor) ;

The guardian-actor! is an MPA style implementation of semaphores (? 3.3 5)

3.2.6 Concurrency Methods othor than Message Passing Actors

Concurrent computations can communicate through means other than message
passing. We ignore here concurrent computing on specialist computers (CRAY,
vector processors) altogether.

We mentioned before that the most straight-forward and simple-minded
communication method is the use of shared memory segments This method can be
hazardous when used carelessly, for example when two actors change shared

memory in a time overlap. This can be brought under control by the use of
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semaphores or capabilities ([Fab80, Wil72]); there, any actor must hold (like a token)
the exclusive access right to the shared memory while changing it (protected
regions, MODULA [Wir75]). —Programs using shared memory may be very efficient
(fast), but the method is not applicable in all distributed computer systems. Anyway,
shared memory must never be used in other than a very disciplined manner [WuS73].
Some languages enforce such discipline through special constructs, such as the

modules [Hoa74] in MODL'LA and the clusters in CLU [Lis74].

Coroutines are in effect a subset of message passing actors, though, historically
speaking, coroutines are of independent origin. Terms like "coroutine
technique/method/style" are often used in the rather general sense of "multi-actor
technique/method/style”.

A computer with one architecture can acquire the outer appearance of a
computer with totally different architecture either through some form of translation
or through an interpreter (program). —There is reason to assume that user—specific
microcodes will be commonplace in the next computer generation. It will then be
possible to choose the most suitable architecture for each computation, and to
emulate that architecture through a tailor-made micro—eoded interpreter. Once
the Lucid machine, say, has been implemented well, one will no longer have to worry
about optimal translation into imperative code Through the microcode, the
interpreters will also be able to make full use of advanced computer hardware, for

example, of associativa memory

It can be shown that all communicating concurrent programming methods are
essentially of equal power, i.e each method can be simulated within each other

method
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3.3 Hoar«'« CSP

With his Communicating Sequential Processes (CSP, [Hoa78]), C.AR. Hoare
introduced a concise notation which made message passing more amenable to
scientific study. The merit of CSP lies in the achievement of great computational
power from a small set of primitives. (CSP has similarities with Hewitt's
PLANNER—73.) Hoare's paper [Hoa78] deserves praise for openly anticipating
practically all points of criticism of CSP. Hoare disclaims expressly that CSP is

meant to be a "production” programming language

CSP programs are based on fixed sets or actors. There is no recursion, nor are
actor names allowed as data values Each ISB\O} or ~8Hi\Mj operation must explicitly
quote exactly one communication partner (actor). The CSP message passing is

unbuffered.

The difference between acts and actor3 is not very prominent in CSP. CSP has
means to make sequences of instructions (i.e. acts) into actors or even arrays of
actors. CSP uses a very concise notation, all operators are denoted by short
symbols Here are the most essential primitives (merely an approximation; CSP

message passing refers in reality to channels, not to actors):

fXTg

This is the receive instruction, X specifies the sender (actor), e is the storage
cell in which the message will be placed The receive instruction provides
simultaneously a test (the input guard) whether input is currently available.

An undirected receive instruction is not provided

This is the send instruction, Y specifies the receiver (actor), mis the message

(an expression).
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5U
This expresses endless ropttition of instruction .
iigj p H
This expresses the creation and concurrent execution of two actors, where *i

and *2 are the respective acts (more precisely: ai and »2 are the actual pieces

of code).

1& 1 »»1 il & »»2]]
This is the alttmativt command, the O separates the alternatives, gi and 02 are
guards, sland & are sequences of instructions. Each guard ft is essentially a
boolean expression [Dij75]. All the guards ft in the alternative command are
evaluated, and the 8] of all thost alternatives are shortlisted whose guards
evaluate to iTRCS. One of the shortlisted alternatives is then chosen

non-dtttrministically. and it is executed.

Some instructions yield a truth value, telling whether the instruction has been
executed successfully or not For this reason, it is possible and meaningful to place
such an instruction as aguard

The lack of certain facilities in CSP makes it virtually useless for the
implementation of full Lucid. CSP has no dynamic actor creation, and this rules out
the translation of recursive Lucid UDFs Even the mere creation of numerous actors
from the tarn* act can only be done within a very rigid pattern. This would be an
unjustified burden for our translation process.

Neither multiple [SEND;,, nor undirected ;HSCBVMH or multiple directed iRECENvs
exist in CSP. They can, however, be laboriously constructed out of the given

primitives. The lack of these facilities can thus be overcome, at a price.

Taken together, CSP is rather unsuitable as the target language for the

translation of Lucid, since important facilities arc not provided. Moreover, certain
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very common operations can be expressed only indirectly, by means of extra actors.

The use of CSP might lead to illegible code.

3.4 The Language LUX

All the imperative code in this thesis is formulated in the language LUX. LUX is
solely meant as the vehicle for expressing the result of our translation. Clearly, LUX
must not be seen as a proposed new programming language, in competition with
SIMULA 67 [DMN68], Concurrent PASCAL [BrH75], MODULA [Wir?5], ADA etc. We allow
therefore aesthetic imperfections in the language, as long as they bring advantages
In other respects.

The provisions for noix-datarminacy in existing languages force the programmer
into formulations which are often remote from the way in which computers work.
For example, there is usually no proper counterpart for interrupts or exceptions
(exceptions are CPU—internal interrupts, e g. "division by aero attempted") This will

be put right in LUX.

The syntax of LUX is exactly that of PASCAL [Wir7';], albeit with a few extensions.
PASCAL has been chosen because of its current wide spread popularity. The reader's
familiarity with PASCAL is taken for granted The extensions aim to provide the type
of concurrency which can be very easily transferred into reasonably efficient code on
any present computer. The extensions have furthermore been designed to have the
least damaging effect on program size and legibility It is rather obvious that the
translation algorithm of this thesis will in most instances be implemented in

languages other than LUX.
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3.4.1 Th* Extensions of PASCAL
A few superficial extensions have been mentioned in 3.2.0, they are:
— the underline character is allowed in identifiers,

— the special symbol 100 occurs in some places where in ordinary PASCAL one

would write iprocedure! (see also f 3.4.3),
— lAct itoot j replaces the role of the PASCAL main program section,
— jweturwl stands for a G0 to the end of the act.
The substantial extensions can be grouped into the following topic areas.
concurrency: ICREATH, acts, actors, initialisations,
cooperation: ISEVQ, jRECAIVE],
exceptions: jEXCEPTION|, doors, 'Revealj, RESET].
The first two have already been dealt with exhaustively It remains only to explain

the last point, exceptions.
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3.4.2 Til« Exception Feature

What le Nullification?

In multi-process operating systems like UNIX®, the user can concurrently
execute a number of programs, for example: edit one program to/iite another
program is being compiled. The user can also instruct the operating system to
discontinue one of its current activities (the user might suddenly have found a
reason why the whole compilation is pointless). Such a termination entails usually
some form of clean—up phase, in which all perfunctory resources are released, for

example: files are closed, memory is de-allocated.

As a variation of termination, one could think of a request which tells an actor to
nullify an ongoing computation, i.e to go back to a particular previous state. Some
clean—up may be necessary for undoing modifications which have meanwhile been
carried out, due to computing action. irreversible state changes are carried out only

right after the result acknowledgement; then, nullification is immaterial

Situations similar to nullification appear in the LUX code for Lucid programs.
For example, each instance of the [OR] operator requires the concurrent evaluation of
the [OR operands. As soon as the evaluation of either operand yields {TRUf], the other
operand is no longer needed, and its evaluation will be nullified Again, the
nullification can entail a clean-up phase, since inferior actors may have to be
nullified, and memory must be put into a coherent state. In LLX, nullification (t 4.2)
is the most important instance of an exception. Nullification is clearly different from
actor termination: nullification merely puts the actor into a particular state (which
is defined in the act) but does not eradicate the actor. (A further point regarding

INULLIFY! will be discussed in section 4.7.)
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TeehelceHtlee

Exceptions make sense only «<nth actors which stand for Lucid nodes (we will call
such actors nod* actors). Every actor has in its actor head a cell Ixrequwtl. in which
its exception state is recorded. The actor creation stores jbeady! in this cell. "The
actor is in exception mode" is synonymous with:

Xrequeit < READY

In the act, however, the actor head can be inspected only via the !'Reweal! function
(t 3.2.1), and the same test would thus be written as:

IF Reveal <> READY THEN ...

In the following, the syntax and meaning of LUX exceptions will be explained,
applications of exceptions will be mainly presented in the next chapter. Exceptions
may be an important feature of LUX but, after all, actors run most of the time
without getting exceptions. It is therefore even more important that the ordinary
(not—nullified) program execution in LUX does not suffer from an over-emphasis on
exceptions. A special notation and execution mechanism has therefore been
developed which keeps both the program legible and allows perfectly efficient

program execution, both in the nullified and in the non—nullified case

Doors

A trapdoor in a fairy tale castle can be blocked or active Ifit is blocked, its
presence is hardly noticeable when one walks over it. but if it is active the effect may
be dramatic. There are quite similar doors in LUX, and they are used for the
handling of exceptions. Here is an instruction with a door,

i =ie1; [ S

The Q] in this example is the door Remember that in LUX (as in RASCAL) all labels
have the form of unsigned integers, and the numlir on the door (we call it the door

target) refers to such a label. Every door operates like a conditional iQOG
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Instruction. If J«rcgucst! is jREADYI, the door is to be ignored: it has no effect. If krequestl
is not jREADY] while the PC passes over the door, the door has the effect of a IGOMO
(i.e. {@0M0Osi in our example).

Matters are slightly different if the door is immediately followed (dynamically)
by a slow instruction. Aslow instruction is any instruction whose execution may take
a long time, like [RECEHVE. ISBAD. IGREATEL or a procedure cadi (t 3.4.3) An actor can
spend a long time working on a slow instruction, and during this time j«request! can
cease being jREADY]. due to an exception. The actor will therefore check concurrently
whether [«request]l is no longer IREADY! or whether the slow instruction has been
completed, whichever occurs first. A [GOTO..] is carried out if the exctption occurs
first, and the slow instruction is of such design that its effects are nullified. There is

no e//«ct if the slow instruction succeeds first.

Every door is thus a shorthand for:

REPEAT
IF Reveal <> READY
THEM GOTO door-target ; (» door-target is 5 in our example -«)

] UNTIL the subsequent instruction has been executed eorrqgj'.etely

(In a proper implementation one would not use busy wait for such a wait—door.) All
fa»t instructions (assign, add, multiply etc.) are permanently ready anyway, and the

loop would in those cases be unnecessary.

It is sometimes required that a group of instructions be executed as an
unbreakable -ntity. This can be achieved simply by not placing doors inside the

group

The Implicit iRgCHvgI
We stilt have to define clearly how racguct] changes value. Abovo (»3.2 1 "Actor

Head") we have defined actor heads, and IttscfYTE!
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TYPE
HSGTYPE = (DATON, READY, COMPUTE, NULLIFY, ADVANCE) ;
ACTOR HEAD record
creator ACTOR ;
srequeet HSGTYPE (» preetored with READY )
xindex INTEGER ;
(+ ate etc ¥
B\D ;

Only messages whose first component is NULLIFY! Or kdvance] are exceptions, which is
why we call them exception request*. Exception requests are issued by the

instruction:

EXCEPTION eo. ei, ... e, TO ( receivero. receiver! ) ;
which differs from the ordinary ISENDI instruction (t 3.2 2) only in the new keyword
lexception! The messages from EXCEPTION1 instructions are not received by ordinary
IRECEIVH] instructions in the receiving actor, but use a portion of the actor head as a
one—message buffer. They can be retrieved from there via the jReveal] function.
In detail:

An actor can receive an exception only while its x-cquert] is PEADY:.. This rule
ensures that no exception is accidentally lost. Every actor is readily equipped with
special code for accepting and handling of exception messages (this code forms part
of the LI.'X system "behind the scenes", not part of the act) For an actor Y this code
goes as follows:

IF ( «request * READY ) AND
( actor X wants to issue an EXCEPT TON to actor V >

(» The actor Y "gets an exception"; *)
THEN ( . xrequeat, xindex) :» EXCEPTIONRECEIVE ()
(= EXCEPT[ONHECEIVE ha* the obvioux meaning. )

ELSE ( put the exception sender X on a waiting queue.
try again after actor V has executed a RESET >*

W* have defined that the actor is in exception mode exactly iff:

sr*qu**t <> READY
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Since [«3. the first component of the exception message, is either INULLIFY) or
(ADVANCE], receipt of an exception will necessarily place the actor in exception mode.
The actor is permitted to set its own Irrequeatl to keady) (i.e. it declares itself ready to

accept a new exception request) only by executing the instruction:

RESET ;

3.4.3 Procedures

PASCAL—ike procedures (function procedures as well as ordinary procedures)
are allowed in LUX, too; they are not superseded by acts and actors. In the MPA
framework, function procedures resemble actors which exist merely during the
handling of every single request. Procedures have no memory. However, the calling
actor can take care of the memory, and "import" it into the procedure with each
call.

LUX deals with procedures as if they were to be macro—expanded In terms of
message passing, the procedure underlies the control of the actor which called the
procedure. The name of that actor is used for all message passing during procedure
execution, and there is only one common exception mechanism per actor When we
say "the procedure gets an exception" we mean that its actor gets an exception
during procedure execution. The procedure can access items of the actor head
([creatorl. [xrcgjaav and ixindex)) as usual via the special functions [Creator! and [Reveal)
(f 3.2 1).

[rl, a special kind of a door, is provided for procedures. When such a door is
encountered while Zrequest) is not)RficADY], a return is made from the procedure, and
execution proceeds in the calling program as 1/ execution had got hung up in the
procedure call. Execution continues in this case at (the target of) the door which
directly precedes the procedure call Exception handling is inhibited during any

procedure call which is not directly preceded by a door During the execution of

34 3



HI - 28

such door—less calls, the system pretends irregueitl was ;READY]. Procedures must be

designed so that they nullify all their effects before using a[Jf] door.

Example for a function procedure with H] doors:

FUNCTION SatDaton (index : INTEGER ; operand : ACTOR) : ANYTYPE ;
LABEL 1 ;
BEGIN
(e Possibly hang up in SEND (unlikely though): <) jA
SEND (COMPUTE, index) TO (operand) ;

(» Possibly hang up in RECEIVE: ) :l
( , , GetDaton) := RECEIVE FROM (operand) ;
RETURN ; (= normal RETURN even if exception occurred. )
1: EXCEPTION (NULLIFY, index) TO (operand) ; iA

END ;
This very useful procedure sends a particular message to the operand actor, and
awaits then the arrived of a reply. If an exception occurs before the reply has been
received, the exception request will be propagated to the operand actor, followed by
an exception return from the procedure. There is no special procedure action if the
exception occurs after the reply has been received (we might wish to preserve the

daton value) This function procedure will play an important role later on
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3.4.4 Example Act

Here is a typical example of an act:

ACT Act-Scale_ (teal ing_factor : REAL)

(* This node actor miltiplies each operand )
(= daton with the constant scaling factor. )
LABEL 1 ;
VAR

operand, superior ACTOR ;

request MSGTYPE ,

index INTEGER

dston—value, result REAL

BEGIN
( , , operand) := RECEIVE FROM (Creator) ;
(* End of initialisation, beginning of action. )
REPEAT
WHILE TRUE
Do BEGIN ;1
(*We say the actor is "dormant" while it °)
(eis waiting here, it is "busy" otherwise. )
(superior, request, index) := RECEIVE () ;
(» Possibly hang up in "GetDaton”: ) 1
daton-value := GetDaton (index, ope-and) i I|
result := daton—value -« scaling_fﬁCtOf ,
(* Possibly hang up in SEND: ) .1
SEND (DATON, result) TO (superior) ;
END ;
(» Code for the exception handling: °)
1: (request, index) := Reveal ;

IF request = ADVANCE
THEN EXCEPTION (request, index) TO (operand);
RESET ;
UNTIL FALSE
END ,

Assume furthermore, that [AcOlooiZl contains:

aoala_aatar * CREATE (Act-Scale— 9.0) , (+ 9 0 - scaling factor ) 1
SEND (DATON, anolher_actor) TO (scale-actor) ; (« Initialisation ) 1

Let us first study the Iscale™actorl in the absence of exceptions. Inthe
initialisatioa the fscalelactorl is provided with the name of another actor to which it

will send messages later on. The sender of the initialisation and the first message
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component (ldatonQ are known anyway, and can therefore be ignored.

After the initialisation, the hcal«-actor] gets hung up in an undirected IRECEIVEI
where it awaits a request, i.e. a message telling it what to do. When the Ircale-actor]
receives a DOMPUTH request (i.e. a message whose first component is IcoMPUTHI), it will
first call IGetDatonl. This will in effect propagate the message unchanged to the
operand actor (lanottier-actor!), and will then await the delivery of the operand daton
value. Once the operand daton value has been delivered, the lacale-actor] computes
the result daton value by multiplying the operand daton value with the seeding factor,
and this result is then sent back to the actor which issued the jOOMPUTE request in the
first place. Once that has been completed, the ricale-actorl resumes awaiting another

request.

Whenever an exception occurs, the jcalc_actorl abandons what it is doing at that
moment. This particular example contains nothing which needs to be cleared up.
Instead the actor can directly proceed to propagating the unchanged exception
request to the operand actor There is never areply to an exception message, which
is why no [RECH\E instruction follows after [EXCEPTION. Since nothing else needs doing,
the exception state is ended with a |RESEI] and the jicSelkeTor] loops back to await the
next request. The Iscnle-actor] can accept an exception even in the dormant state,
i.e. the exception may occur even while the actor is not "busy" with work. We can
state in general: for efficiency, exceptions should always be propagated at the

earliest possible moment.

Note that a door is placed before each,SENJ or jRECHVH (actually, it is at the end
of the preceding line). Some groups of instructions have to be executed as an
unbreakable entity, and a door is placed only after the last instruction of the group.
Clearly every instruction has been furnished, where advisable, with an "escape route"

(viz. a door) for the event of an exception
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Note that a door is placed before each SEND] or jHECSrEI (actually, it is at the end
of the preceding line). Some groups of instructions have to be executed as an
unbreakable entity, and a door is placed only after the last instruction of the group.
Clearly every instruction has been furnished, where advisable, with an "escape route”

(viz. a door) for the event of an exception.

3.6 Summary of Chaptar Il

The popular cooperative concurrent programming methods are mere extensions
of sequential programming The extension has been achieved by "bolting on extra
features". Hardware aspects of inter—actor communication dominate these

languages, and the programmer is forced to bear these aspects constantly in mind.

The worst deficiency of programs in these languages is their inherent illegibility.
Good programs are generally written as sets of modules, where each module is
dedicated to a sub-problem, most problems can be broken into sub—problems.
Actors are the modules in the above languages It is rarely possible to confine each
sub-problem to exactly one actor. One is forced to disect sub-problems into more
or less mysterious code fragments which are then strategically placed in numerous
acts. Given a non-trivial program written in one of these languages, only an expert
can recognise what the program computes, and it is extremely hard to locate
intricate programming errors.

The advantages of imperative programming languages can be noticed when
trying to implement such a language on a conventional computer. All their

advantages stem from their greater affinity to the von Neumann architecture
— the languages are easy to implement, and

— efficient execution is easily achieved.
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It has already been said in the introduction that the choice of implt mentation
language for Lucid is not very critical. Message Passing Actors have been chosen as
the target of our translation because they are stylistically not worse than the other
concurrent programming methods, they are modular in a beneficial way. it is easy to
implement them well, and they have already been tried exhaustively in substantial

programming tasks.
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CHAPTER IVt Tha Translation

4.0 Introduction

This chapter deals with the translation of a Graph. Lucid program into an
equivalent structure In UPA style, which is the central issue of the thesis.
"Equivalent" means that both structures represent the same input/output function

Our translation is carried out in two stages:

Stage one consist in designing for each individual node type an equivalent act,
anode act. The example of a LUX act (t 3.4.4) was indeed such an act, and the
reader is advised to use that example, for the time being, as the model of a node act
Ready made acts will be presented for most of the fundamental operators of Lucid
(f 4.5.4 ff), and a comprehensive description will be given how to construct the act
for the other operators (t 4.5.2, 4.5.3, but also 4.3). The full description of the node
acts is very technical; this is why we shelve it for a while and present it rather late, in

sections 4.5 f.

In stage two, the translation proper, an arbitrary Graph Lucid program is
re—formulated entirely in terms of the acts from stage one. Stage two is very

straight forward We explain this stage of the translation before stage one (t 4.3).

Graphs contain nodes, but nodes can themselves be graphs. These amazing
nodes are the UDF nodes, of course, they break out of our two—stage classification
The construction rule for UDF acts can be obtained from the translation rule for
programs, with only a little adaptation This is why section 4.3 contributes to both
stages one and two.

Nod* actor«, requests, and the protocol are central in our further deliberations
Acts are just one way of, statically, encoding the computing action, which is a
dynamic object. Acts rarely provide a good picture of the dynamics, i.e. of the

underlying execution strategy The protocol is such a strategy with regard to the
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Inter-actor communication. The functioning of actor nets is widely determined by
the protocol. The chapter starts therefore with a conceptual description of node
actors and requests (section 4.1). and this is followed (in section 4.2) by the protocol

specification

4.1 Nod* Actors, Protocols and Requests

Mods Actors

When we speak of node actors, we mean actors which emulate Lucid nodes.
Every node actor behaves like a demand driven computing station Usually, node

actors form part of a net of cooperating node actors.

Protocols

Let us assume that such a net of node actors is given (construction algorithm:
T4.3). Each of the node actors can be viewed as an autonomous computing station
We are left with the task of making these autonomous units coopsrate, with the
ultimate aim of producing a result. This can be achieved with the aid of a protocol
A protocol is a pattern of message exchanges between actors, i.e. a governing
macroscopic pattern. The protocol serves to control the flow of information and also
the execution of computations Section 4.2 specifies the protocol to be used
throughout this thesis. The design of this protocol will be aimed at dsmand drivsn
evaluation (t 2.5); this will be generally assumed without further mention. The use of
a universal protocol, among all node actors, is an essential precondition for the
modularity of our translation algorithm. Every node actor adheres to this protocol;
therefore, node actors need to know nothing specific about their communication

partners.
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Requests end Requesting

A request is just a particular message, and requests can be of various request
types. The request type is, by convention, indicated by the first message component
(t 3.2.1, "Actor Hoad"). Requests serve in general for dictating to a node actor which
action it shall carry out. Areply (a message in the reverse direction) is given only to

tome request.

As stated in25, demand driven means that the driving force for computing
action emanates from the program output, in our case from the actor. The
IMRITE actor sends a particular request to another node actor e, hereby stimulating e
into some particular action; the action varies with the requests. Inorder to satisfy

the request, * in turn may need to request from further node actors

This pattern of one node actor requesting from another can reappear down to
any depth. While a computation is in progress, some actors are dormant while
others are busy with computing action. Consequently, a momentary hierarchy exists
among the busy actors; this hierarchy is constantly changing in the course of daton
evaluation. The hierarchy is throughout built up oT pairs of actors, namely superiors
which issue requests, and Inferiors which accept requests and "do their best” that the
requests be ultimately fulfilled An inferior can simultaneously be in the role of
superior in a subordinate request. Obviously, the M\\RITE actor takes the top rank in
the hierarchy (we assume throughout that there is only one WnT node) Constant,
IREA3I and [COPY] outports rank lowest. Multi—inport superiors can have more than one

inferior, any 1orY] node actors can have more than one superior.
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Most node acts have the following overall layout (this is a simplification):

ACT Act_Exan$>le ;

VAR
inport ARRAY [0..9] OF ACTOR ;
superior ACTOR ; (« t 4.1 *)
request MSGTYPE ; (« t 4.2 )
index INTECER ; (« t 4.2 )
resul t ANYTYPE ; (»»4 .6 .1 )
BEGIN c Initis 1l1sstlon of this actor (t 4.3.1): *)
( . . inport[0], inport[1], ...) := RECEIVE FROM (Creator) ;
(e Due to its low intrinsic priority (t 47) the node *)
(= actor will wait here until the first request arrives. *)
c The X—part must be inserted here. +)
c It is executed only once, at the beginning. <)
(e
REPEAT 1
WHILE TRUE DO ;
BEGIN
(o _ _
Cc The node actor is dormant exactly while )
C it is hung in the following RECEIVE: ) i
(t#
(superior, request, index) RECEIVE () ,
c The V—part muil be inserted here. )
C It is executed once per request. )
C )
C contains at the end: *)
C IF requeat « COMPUTE )
Cc THEN SEND (DATON, result) TO (superior) ; )
(*
END ;
1. i** |
C The m«caption part is placed here. ")
o
RESET ;
UNTIL FALSE ;
END ;

(Due to the nature of Lucid, this layout is almost identical to the one Independently

discovered by Finch [Fin81].) The eternal wnite] loop in this layout reflects the fact
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that all node actors operate like endlessly running computing stations. Certain
preparing actions may have to be carried out before the loop is entered. Such
instructions are placed in the X—part of the node act. The X—part contains the loop
initialisation, but it can even contain, for example, request IHHOBIVH instructions. The
MHLE loop starts with the acceptance of an order for new work (by receiving a
request). This work is then carried out; the pertaining instructions are contained in
the Y—part. The Y—part may include the eventual giving back of the result to the
superior (the reply). Some actors need to rttain information from preceding loop
passes, others do not. Inthe latter case it is common to say that the actor has
no memory (intended meaning: it has no long term memory).

In the event of an exception, ajump is made to the exception part. After some
appropriate measures have been taken, the exception state is cleared by |JRESETL and
the eternal IREPEAT] loop takes us back to the dormant state

Theoretically, there is little need for actor tormination in an endlessly running
program. Actors need to terminate only for efficiency reasons; termination sets
storage free for reuse in other actors Section 6 3 deals with actor termination (lICLLi

request).

4.2 Protocol Specification

Motivation

Before we study the protocol, let us identify what shall be achieved by our
protocol. In a rather primitive implementation of Lucid there would be merely one
request:

"Start evaluating one daton, and deliver the daton value to me." This request

will ultimately be followed by that value being sent in the reverse direction. The

next request will automatically relate to the next daton.
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However, apart from being hopelessly inefficient, there are perfectly meaningful
programs which would not be executable under this rudimentary protocol (e g. any
program with a concurrent [03] in it, t 1.1.3 and 4.5.3). We will not contemplate such
a primitive implementation any further but aim for a protocol which is more refined
in two respects. Ontop of the above request, we want to be able to do either of the
following (Warning: don t take this as a definitive list of request types):

— Skip one daton. This is the same as asking for a daton without being interested
in the actual daton value. Such a request is essential for any serious
implementation of the Lucid {Tf] in pipeline DF.

— Once the computation of a daton value has been requested, one may suddenly
want to nullify (annul, undo) that request for some good reason. Such a NULLIFY!
request is essential for the implementation of non—deterministic Lucid
operators.

Furthermore, the protocol must take into account that any request can cause

arbitrary subordinate requests Higher-ranking evaluations can progress even while

subordinate evaluations are under way. Higher—anking Si.-LTfy requests must be

able to take proper effect on subordinate daton evaluations

The Protocol <= a Diagram

Let us now set out to answer the question: "in which sequence is the protocol
executed, and where are variations possible?” Our range of requests is [COVPUT?,
[NULLIFY- and ,ADVANCE), and the following flowchart helps answering the question by

mhowing the various possible ways in which the protocol can unfold:
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\
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/ \
o COMPUTE \
/ \
/
/ \
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4 /
t \
NULLIFY
* ot
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(reply) result
(*s
ot

ADVANCE loop counters
i *i

(The paths marked (*) are never actually employed) The symbol "* -»t" in this
diagram indicates that a message is passed from the Superior to the inferior.
Execution starts at START, and the inferior is at this point assumed to be dormant
It is furthermore assumed that both superior and inferior know constantly the index
of the next daton to be computed. Both keep track of the current daton index, by a
dedicated storage cell or similar means.

The flowchart makes no mention of the action itself. Each request has some
action as consequence, e g. evaluation of the daton value. This action starts with the

reception of the request. START can be reached again once the action is complete.
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Tit« Protocol Requests
In detail, the requests are (all sent from a superior to an inferior):
RDVANCE]

This request asks the inferior to advance the index counter by one (usually),
namely to the successor daton. The previous daton will never again be asked

for, it can be abandoned —There is no reply to [advance] requests.
ICOMIPUTE

This request asks the inferior to evaluate the current daton (l.e. determine the
value of the daton which is currently "due to come off the production line”). The
Inferior will take the measures necessary to obtain the daton value, at the end of
which it offers to send this daton value to the superior Under normal
circumstances, the |QML-~e: is followed by the value delivery, and that is
followed by an jADVANCE request There are. however, situations where the
superior ignores the offer of the daten value and issues another overriding
request (viz. [NULLIFY:). However, even aiter the daton value has been delivered
there may be a renewed request for exactly the same daton. (This is why no

automatic IADVANCH request is incorporated in the!GQOVPUTH request )
(nullify]

This request asks the inferior to cancel any daton evaluation which may be
currently going on in it (due to ajCOMPUTH request). The state must be restored
which existed before the evaluation of the current daton was requested. In our
particle jargon, NULLIFY fires off a "kill token" ("lethon") which counteracts the
preceding "siton" (r 2.5) - The INULLIFY! request is issued if the superior comes
to a point where the daton value is no longer needed. Example: as soon as one
operand of an[oS] operation yields IfftUEl, evaluation of the other operand can be

nullified. - There is no reply to iNTr.UFYi requests. We could even define jNULLIFY!
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to have no effect on a dormant node actor, but instead we construct the acts

much that INULLIFY! requests are never sent to a dormant actor.

Every request quotes, as its second message component, the index of the current
daton. The initial index is 0, and the index must be changed only throughladvance!
requests. It has been said, the index grows by on« with every 2DVANCE exception.
There is, however, the special index value which indicates that no further
daton will ever be requested from the inferior. [findinder] is a special constant, the
infinitely large index .

The index is at every moment equal to the number of preceding [ADVANCE
requests, it would therefore be dispensable in the requests. Nevertheless,
incorporating the index in each request offers a number of advantages:

— it can indicate the end of demand for a history, via [fnalndex!,

— nodes like !"3Y! can derive their state from the index, which relieves them from
having memory,

- interfacing to tagged DF (r 6.5) becomes much easier,

- the index supports runtime checking and system error tracing

If the inferior gets a INULLIFY! request while it is busy with IGCOVPUTH action
(i.e. evaluation of a daton value) that action will be aborted As specified in
section 3 4.2. [ADVANCH and iNULLIFY! requests arc exceptions (unlike [COMPUTH)), and all
evaluations are inhibited while any exception remains unresolved. From the
superior’s point of view, the action for [ADVANC. or XUITIFT: is indivisibly tied to the
request, i.e. it would be pointless to delay the exception handling

In a computation where successive daton values are needed, the normal cycle of
operations is: [QOVMPUTE request, daton value delivery, [ADVANCEL request. However, if a

daton shall be consumed without its value being of relevance, the [ADVANCH request is

issued directly without the preceding [COMPUTE Wk call such a request a bare
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lao \ance! request; all others are proper [advancel requests.

A INLLLIFY] request will usually stop and make null and void any daton evaluation
which may have taken place after the last IADVANCEI (or after initialisation, if there
has been no IADVANCE yet). If a POMPUTE request follows directly after the NULLFY!
(i.e. without an 2DVANCE in between) the inferior will set out to compute the value of
the same daton as for the previous I0OMPUTE request. Asingls-outport jOOPYl node
may be inserted in the arc wherever the re-computation of intermediary results
shall be avoided.

An actively computing inferior may in turn have issued a subordinate iCOVPUTE
request (i.e. it is a subordinate superior) If such a sub—superior gets a iNULLIFY!
request, it will halt its current computation, do the necessary clear—up (like
propagating the jNULLIFY] request to the sub—inferiors), and it will then await the next
request.

Most inferiors have inports. If such an inferior gets an !|ADVANCH request, it will
first do the same as in a INLLIFY! request, it will then propagate the 'ADVANCH request
to the inports, and it will Increment its own index counter by one It will finally await

the next request, l.e. it will enter the dormant state

Roquoat Propagation

Two diametrically opposed strategies govern the propagation of requests, though
both aim towards efficiency. (These request propagation strategies are also
reflected in the priority scheduling, t 4.7.)

ICOMPUTE requests cause daton evaluations, and daton evaluations tend to be

sxpsnsiua. [COMMUTELrequests are therefore issued as sparingly as possible, and they

are withdrawn (by iINULLIPY) as soon as It becomes certain that the evaluation result

is not needed
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Excaptions, on the other hand, are propagated at the aarliast possible moment.
We do so because, in general, exceptions are capable of ralaosing computing
resources further upstream. Exceptions usually trigger some administration, but
even that is considered to be "well spent". Exceptions must never cause infinite
looping or jQOVPUTE requests Care must be taken in the act design to ensure that
this rule is not violated This is not always trivial; for example, computations can be

accidentally caused if a bareiADVANCH is issued to a poorly designed;W3] actor.

Closing Remark

Various other protocols were tried out, and the above design proved best for
implementation. Among the worst of the alternatives was the one which combined
ICOMPUTE and [ADVANCH into a single request (i beginning of 4.3). In order to permit
(NULLirrl requests in that design, even the simplest actor had to be provided with

memory in which computed values could be saved

Node actor initialisation is part of the protocol, in the wider sense. We chose,
however, to describe actor initialisation in connection with actor creation in section

431 (B)

4.3 Tha Translation Propar

This section presents the method for translating any Lucid graph into its LUX
equivalent, namely a net of initialised node actors This side of the translation
algorithm is independent from the particular design of the node acts. (Our quiet
assumption of demand driven evaluation, though, has a certain bearing on this
section.) We pretend for the remainder of this section that a suitable act has already
been defined for each node type. There is no danger that this assumption leads us

into a vicious circle.
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Excaptions, on the other hand, are propagated at the earliest possible moment.
We do so because, in general, exceptions are capable of releasing computing
resources further upstream. Exceptions usually trigger some administration, but
even that is considered to be "well spent". Excaptions must never cause infinite
looping or jJOOHPUTS requests Care must be taken in the act design to ensure that
this rule is not violated. This is not always trivial; for example, computations can be

accidentally caused if a bare jADVANCE is issued to a poorly designed VX8| actor.

Closing Remarks

Various other protocols were tried out, and the above design proved best for
implementation. Among the worst of the alternatives was the one which combined
iQOVPUTE and jADVANCE into a single request (? beginning of 4.2) In order to permit
INULLIFY! requests in that design, even the simplest actor had to be provided with

memory in which computed values could be saved

Node actor initialisation is part of the protocol, in the wider sense We chose,
however, to describe actor initialisation in connection with actor creation in section

431 (B)

4.3 Tha Translation Propar

This section presents the method for translating any Lucid graph into its LUX
equivalent, namely a net of initialised node actors This side of the translation
algorithm is independent from the particular design of the node acts. (Our quiet
assumption of demand driven evaluation, though, has a certain bearing on this
section.) We pretend for the remainder of this section that a suitable act has already
been defined for each node type. There is no danger that this assumption leads us

Into a vicious circle.
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Every Graph Lucid program consists of nodes and arcs, and its translation can

correspondingly be described in two parts:
(A) the translation of the nodes and
(B) the translation of the arcs.

First (section 4.3.1) we are going to present the translation algorithm for programs
ewithout recursive UDFs. Before progressing to an algorithm for programs with

recursive UDFs (section 4.3.3) we will study UDFs and related topics (section 4.3.2).

4.3.1 Program« without Racursiva UDFs

Let us first deal with the translation of particularly simple Lucid programs,
namely those without recursive UDFs. More precisely, this section describes only the
translation of programs without UDFs altogether However, section 4.3.2 will show
how to remove non—ecursive UDFs (viz. UDF expansion), a process which can be

easily carried out before applying the algorithm of this section.

Under this restriction the nodes in the Lucid graph can be labelltd with natural
numbers, with a known finite bound (see also Fibonacci example, two pages below)
The root act establishes the LUX counterpart for the graph by (A) first creating
exactly one actor for each individual node in the graph. The choice of act is
determined by the node type, of course While the root actor creates the actors (in
the sequence of the labelling number) it enters the name of each now actor into a
table. [COPY! node actors (* 4.8) are special in having a separate actor name for each
outport (1, 9 and 10 in the Fibonacci example), in addition to the name of the [COPY]
node actor itself (inport, labelled 1 in the example). Immediately after creating a
(@OPY! node actor, the creator gets back from that actor a few messages, each telling

the name of one [CopYl outport actor.
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Every Graph Lucid program consists of nodes and arcs, and its translation can

correspondingly be described in two parts:
(A) the translation of the nodes and
(B) the translation of the arcs.

First (section 4.3.1) we are going to present the translation algorithm Tor programs
without recursive UDFs. Before progressing to an algorithm for programs with

recursive UDFs (section 4.3.3) we will study UDFs and related topics (section 4.3.2).

4.3.1 Programs without Recursive UDFs

Let us first deal with the translation of particularly simple Lucid programs,
namely those without recursive UDFs. More precisely, this section describes only the
translation of programs without UDFs altogether However, section 4.3 2 will show
how to remove non—recursive UDFs (viz. UDF expansion), a process which can be

easily carried out before applying the algorithm of this section

Under this restriction the nodes in the Lucid graph can be labelltd with natural
numbers, with a known finite bound (see also Fibonacci example, two pages below)
The root act establishes the LUX counterpart for the graph by (A) first creating
exactly one actor for each individual node in the graph. The choice of act is
determined by the node type, of course While the root actor creates the actors (in
the sequence of the labelling number) it enters the name of each new actor into a
table. IcOPY] node actors (* 4.6) are special in having a separate actor name Tor each
outport (1.9 and 10 in the Fibonacci example), in addition to the name of the iCOPYI
node actor itself (inport, labelled 1 in the example). Immediately after creating a
fOOPYl node actor, the creator gets back from that actor a few messages, each telling

the name of one IdOPYl outport actor.
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In the graph, arcs connect the nodes. Correspondingly, there must be
connections between the node actors. After the creation of all the actors, the root
actor establishes these connections in <B) the initialisation of all the actors.
It informs each actor of the names of the actors at its inports (i.e the node actors
which produce the operand daton values). Since we deal with a demand driven
implementation, each actor takes a dominant role over the actors at its inports and
it takes a strvils role with regard to the actor at its outport. Operand actors are
therefore called Inferior*, and the requesting actor is called the superior. At the
program start, each actor needs to know only the names of its in/sriors.

In the translation stage (B), an initialisation message with the names of the
inferiors is sent to each node actor The initialisation message is the sequence:

<DATON, neonso. namej, nomeg. ...>
Each nam«i appears at the index position corresponding to its inport subscript i.
The component DATON is due to our message convention (* 33."). We use the
convention that actors for nodes with no inport (constant and 31.0 nodes) get no
initialisation. The IWBIfE] node must be the last to be initialised, this makes sure that
requests are not sent to nodes which are still waiting to be initialised The reason lies
in [WATY being top in the request hierarchy.

It has been said before that every node actor can be initialised only by its
creator. In our special case (all UDFs fully expanded) the root actor is the creator of

all node actors.

Example (Fibonacci)

Let us apply these rules to a simple example program (t chapter I) which computes

the Fibonacci scries:
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fib  WHERE
fib * 1 FBY ( 1 FBY ( (NEXT fib) ¢ fib ) ) j
END

Here is its corresponding graph, with the nodes labelled by numbers (* 2 2 and 4.3 1):

k- hB
[N G [— +9
t m G- -
| 10 | 2 I
4 t 4
~+3 H---- w5 + +7 [ -0
| FBY | | FBY | PLUS | | WRITE j
4 f m +-—Db- +
* i h i «— +
fib = = » +

Every Lucid program is an expression which yields a result (here fib), and this result
flows obviously into a MRITS] node. Here is the [Act Root i which would generate the net

of actors-
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ACT Act_Root_ ; (» Root act (or Fibonacci example. *)
VAR
node : ARRAY [0..10] OF ACTOR ;

(* Furthermore, there mixt be ACT declaration! (or: *)
(= Constant, NEXT. COPY. FRY, PLUS and WRITE. )
BEGIN (» Act_Root_ haa no initialixation. *)

node[0] := CREATE (Act_]frite_ "console") ;

node[2] :* CREATE (Act_Copy_ . 3) ; (e 3 outporta =)

( .,hode [1]) :* RECEIVE FROM(node[2]) ,

( ,.hode [9]) := RECEIVE FROM(node[2])

( ., nhode[10]) := RECEIVE FROM (node[2J) ;

node[3] := CREATE (Act_Fby_ )

node[4] := CREATE (Act_Conat_ 1) ;

node[3] := CREATE (Act_Fby_ )

node[8] ;= CREATE (Act_Contt_ 1) ;

node[7] :* CREATE (Act_Plux_ )

node[B] := CREATE (Act_Next_ )

Set-Priority (node[0], top-priority) ;

SEND (DATON, node[9]) TO (node{8]) ;
SEND (DATON, node[B], node[10]) TO (node[7]) ;
SEND (DATON. node[6], node [7]) TO (node(5]) ;

SEND (DATON, node[4), node [5]) TO (node[3]) ;
SEND (DATON. node[3]) TO (node[2]) ;
D

SEND (DATON, node[l]) TO (nodeLO
B\D ;

iAcRoot— has no exception part, since it gets no exceptions. The root actor
terminates itself. After the root actor is gone, all the "driving force" for

computations will emanate from the MRTH actor, 'nodeioll

The Nod* Numbering Rule

You may have guessed that the numbering of the nodes follows not just a whim
but a rule, yet to be explained To begin with, the lowest label numbers arc given to
the nodes which generate the ultimate driving forca for computation. We deal here
with demand driven DF, and we attach label O to our PARTH node, the ultimate
demander. Many nodes force other nodes into action. In demand driven DF, nodes
tend to propagate requests to the nodes at their inports, and thus the driving force
flows upstream. We number the nodes in such a way that every node requests only

from nodes with, higher label numbora. The node numbers increase therefore in the
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upstream direction. Nodes are created and initialised in the order of dtcrtcuing
label number. —This numbering rule caters even for subnets with many outports,
and can be adapted for input driven DF. The numbering rule ensures that each
operand actor is itself readily initialised before its name is passed around to other

actors (consequence: requests cannot be sent to yet uninitialised actors).

Outlook
Scheduling and priorities will be discussed in section 47. They are

indispensable for correct and efficient program execution.

It is advisable in the first reading pass to skip the remainder of this section 4.3,
to continue this chapter from 4.4, and then to re-read the entire chapter without

omissions. —Before we can go on to Lucid programs in general, a review of UDFs and

subnets is in place.

4.3.2 Abstraction and Expansion (UDFs and Subnets)

4.3.2.1 A+€£ in Equatlonal Lucid

Abstraction lies at the root of many programming techniques UDFs, subnets
(t2.2) in Graph Lucid, and subnets of actors are the kind of abstractions which
interest us here. For any particular abstraction there is always one definition and an
arbitrary number of references References are just the means for making use of
definitions. The definition of abstraction XYZ states "here is the shape of the object
you may substitute for the reference if you want to obtain a result from XYZzZ". The
Rewrite Rule characterises the meaning of abstractions more precisely: if we take
any structure 5, and substitute in S each reference to XYZ by the object specified in
the definition of XYZ. the outcome S' will behave the same as the original structure
S. - In the abstraction, the formal operands, if there are any, stand as symbols

(place holders) for the actual operands quoted in each reference. Itis common to
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call the ensemble of the actual operands the anvirommnt of the reference
(remember we have eliminated all global variables).

The actual replacing of the reference by its true essence (as given In the
definition) is called expansion. Inthe expansion, each occurrence of a formal
operand is substituted by its corresponding actual operand. We will see that, in some
situations, a high degree of abstraction is favoured while in some other situations one
should aim for expansion.

Here is an example of a UDF ([cf], @ andjyf] are Formal operands whereas [ca]. [sal
and ;1 are Actual operands)

// definition.
Mymerge (cf.xf.yf) = IF cf THEN If UPON cf
ELSE yf UPON NOT cf Ft

// reference (assume p, sa and ta have been defined elsewhere):
m = Mymerge (0.5 < p, sa, ta) ;

Expansion of this UDF reference yields:
ca = 0.5 < pj

m * IF ca THEN sa UPON ca
ELSE ta UPON NOT ca Ft ;

Abstraction is promoted in Software Engineering since it makes programs easier
to understand and maintain. Whenever we analyse any substantial Lucid program, we
are almost bound to find particular substructures re-occurring in many places, the
more so if we make provisions for minor variations. As we know from Software
Engineering, this is almost unavoidable with any substantial program We are advised
to formulate one abstraction for each substructure, and to replace each instance of
the substructure by a reference to that abstraction. Software engineering teaches,
furthermore, that it is a good idea to subdivide (to "structure") programs into

purpose rotated units, and to abstract each unit.
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Subexpressions and UDFs

Our translation algorithm presupposes that the Lucid program is in monomeric
form (r 2.1.6 and 4.3.3.1): there is at most one operator in each definition. Each UDF
is an operator, and the monomeric form permits only variables and constants as
actual operands, t.e. only ultra-simple expressions are allowed. We will come back to

this point later on (t 4.3.3.2. Making Subexpressions into UDFs).

4.3.2.2 A+E In Graph LucM

All this applies equally to Graph Lucid, since Graph Lucid is a bijection of
equational Lucid. Like programs, any Lucid graph can be subdivided into segments.
Each of these segments is a subnet (t 2.2). Again, there will often be great similarity
among the subnets. This suggests the definition of classes (=abstractions) of
subnets. Subnet classes are the exact counterpart for UDFs We use in the following
subnet often in the meaning of subnet class

Every UDF node represents two kinds of structure, and its great power results
from its mediating between the two. Its outside structure is that cf a single node
(the UDF node), while its inside structure reveals a subnet composed of numerous
nodes.

Each subnet has open arcs, i.e it has outport (and inport) arcs which are not
connected to any node, but instead are connected to aninterface. Such an Intarfac*
is a combined array of plugs (open inport arcs) and sockets (open outport arcs)
which will eventually link up with complementary sockets and plugs The inports and
outports of every subnet reference must match the requirements of its abstraction,

mo that plugs and sockets can be paired
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Here Is the lllymergel example from above, this time as a Lucid graph:

P ma ta
0.6 | 8 7
| * —GC— 1 NOT |
- 1 1 +H— >
I < 1 n
H--H—+ ) t)—+ -+ 3 -+ 5
) e)— UPON ] UPON |
) r)— L H--3———- +
f:
( a(—
c :reeult -+ 0
4 e : I IF ... THEN ... BESE ...
m
reference eide abstraction side

(Ignore the numbering of the subnet nodes, for the time being.) On the left is the UDF
reference, and on the right we see an instance of the subnet for jMyrr.erge!, both
connected by an interface. The picture is a snapshot of the state of affairs when
expansion is half complete. Before the expansion, the subnet on the right is only

conceptually present, symbolised by a IMmerge] node At least in some

implementations, expansion goes one step further than shown above: it replaces the

interface by direct through connections (t 6,3, operand redirection).

Each UDF reference divides the Lucid graph into tuio subnets, the subnet for the
abstracted side, and the subnet for the referencing side.

Abstraction and expansion have counterparts in subnets of actors, and with the
aid of these counterparts even programs with recursive UDFs can be implemented in

LUX

4.3.3 Application of Abstraction and Expansion in LUX

4.3.3.1 Programs with Recursive UDPs

Lucid programs with recursive UDFs are only slightly more complicated to translate

than the simple programs considered in section 4.3.1.

4331



1V -20

Example ( [siavi): Lucid program and graph

The prime numbers can be computed by an algorithm known as the "Sieve of
Eratosthenes", and this algorithm can be elegantly described by a Lucid program
with a recursive UDF (original program due to Gilles Kahn). We start here with the
Lucid program, we will present all the translation steps, and we will present all the
various acts required for it, including the translation program. In chapterV, the
dynamics of program execution will be illustrated, using the jSievel program as the

example. Here is its Lucid program:

Sieve(N)
WHERE
N = 2 FBY N-M
Sieve(i) = i FBY
Sieve (i WWR ((i MOD FIRST i) NE 0))
END

Let us make the program monomeric:

ml WHERE

Sieve(i) = -0 WHERE
(si,s5,sB.slO) = COPY (i)
sO = FIRST 310 ;
17 = 30 MOD 39
it a >7NE 0o ;
s4 = s5WWR 30 ;
s3 = Sieve (s4) ;
sO —al FBY s3 ;
END ;

mfl * mfl e 1

N $ 2 FBY mfl

(m2, mfl) s COPY (N

ml Sieve (m2)

END

4.3.3.1
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It Is now quite easy to generate the corresponding Lucid graphs, with labelled nodes
(the labels in the main program have been prefixed m and those in the ;Sicval have

been prefixed s):

Sieve:
o+ itfi
| PLUS | .+ »2 | slo o+ *Q
P | FiaST 1
["2- |rfi | MO | v 1
8 H
H--—- + 80
| ME | ——+
* H—i—+
1 FBY |
|WR | .——---- +
el | Sieve |s3 le-
Commmmmm e +
*0
------- | Fov |
mJ
| Sieve | 1!

The Finite Program va. the Unbounded Nat

The graph of the main program on the loft contains a reference to the UDF
Isieve], and the graph of jSieve] itself, right, contains a further reference to jsieve). Any
reference to a UDF is treated the same as the reference to any operator The only
difference is that there must be a definition for each UDF, whereas all other
operators are readily defined

The graph on the right reveals the true nature of the UDF Outwardly it is just a

node, but inside it contains a whole subnet. This subnet comprises another reference
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to jSiewl. which symbolises a further subnet. The program specifies effectively an
inftnite nesting of UDFs (in Graph Lucid terms: an infinite net), rather like:
mainprog (
. Sieve (
Sieve (
Sieve (

Sieve (
end so on ad infinitum

Lucid programs can be analysed in a rather static {“denotational) manner.
However, when we discuss their execution, we cannot avoid thinking in terms of
execution time {operationally, dynamically). Programs are executed in a succession
of fundamental operations, computation steps. In this thesis, we call IF3Y:, |NEXT],
IIFHEN-EH.SE and the usual pointwise operators (addition etc ) primitive operators,
more about them in section 4.4 InLUX, the fundamental operators are (create!.
[SEND], IRECAIVS, [EXCEPTION, the system functions, the primitive operators, but not

UDFs. HRST, [Wpon! and [WWRLare counted as UDFs.

Delayed Net Expansion

Every abstraction reference needs to be expanded (into a set of actors) before it
can truly take part in a computation However, if all expansion had to be carried out
at the start of program execution, a disaster might occur, since every reference to a
recursive UDF would generate infinitely many actors. The site of a net with
recursive UDFs can not be pre—determined in general, it may even be unbounded

This size problem can be resolved by delaying the UDF expansion. During
program execution, there is for every instruction (and that includes any UDF
reference) a moment where it is used for the first time. Indemand driven

evaluation, this moment is the one where the first request arrives. (For some
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instructions this moment may never arrive.) A request, directed to the UDF, can be
serviced only by the expanded UDF, but expansion can be delayed up to this moment.
Up to that moment, the abstraction is kept in a preliminary state where the actor
subnet has not actually been expanded, although all the information necessary for
expansion is at hand (i.e. actor initialisation complete). This method has the
attraction that only/intieiy many actors exist at any moment.

If expansion is delayed up to the last moment, we speak of a lazy expansion. Its
obvious opposite is eager expansion, where the subnet is expanded a good while
before its first use. The extreme of eager expansion is the expansion before the start
of program execution (t 4.3.1); this is called static expansion. We will come back to

eager and lazy expansion when we discuss act expansion (* 6 2)

UDF Acts

UOF acts are the LUX counterpart for UDFs Every single UDF actor (outside
structure) stands for a subnet of actors (inside structure) UDF references (code for
Issuing requests) have the same form as any other node actor reference, since we
agreed on a uniform protocol.

In the framework of node actors, the word abstraction means "yet unexpanded
subnet of actors", and every UDF actor has therefore two states (similar to a finite
state machine):

— the abstracted state (the preliminary state), and
— the expanded state (the state during execution).
Speaking in implementation terms, every UDF actor contains, right after its own
initialisation, code which (A) creates all the actors in the subnet and then (B)

initialises them. Both (A) and (B) are carried out very much in the way described in

sections 4.1 and 4.3.1, but with the difference that now the UDF actor is the creator

and initialiser.
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Here is the 1ct-Sievei which would generate the appropriate

numbers same as in the graph):

ACT Act
LAB
VAR

(*
(.

-Sieve
EL 1 ;

node

inport

skip

ARRAY [0..11]

: ARRAY [0..0]

INTEGER ;

Furthermore,
COPY, NOT, UPON and IF.

BEGIN (¢
skip = 0 ;
[ inpor
(e Due to

END ;

(e Below it

(» be

inserted here

its
(e actor will

(* Act for UDF Steve

OF ACTOR
OF ACTOR ;

there must be ACT declarations for;

Initialisation:

t(Oj) :* RECEIVE FROM (Creator)

low intrinsic priority
wait here until

(t 4.7)
the first

request arrives.

the node

will be shown that some further code must

( The X-parl
CREATE (Act_Fby_
CREATE (Act_Copy_

[1]) ;wRECEIVE

[5]1) ;* RECEIVE

(81) ;= RECEIVE

0]) ;= RECEIVE

node
node

( ..
node
node
node
node
node

(0]:*
[2];=

. node
. node

node
node[1l
(3]
(4]:=
(O] o
[7]:*
(9=

node[lt] .=

SEND
SEND
SEND
SEND
SEND
SEND
SEND

Pass—Through

:=CREATE(Act—Sieve

CREATE (ActJTvr-

)

4)

—_—— — — —

CREATE (Act_Ne_
CREATE (Act_Mod_
CREATE (Act_First_
CREATE (Act_Const_ 0)
node[10] )
node |1 - node [9])
node , . node( 11])
node [51. node 1« 1)
node [A])
inport roi)
node HJ. node [5])
(node[0], skip) ;

’

TO
TO
TO

(intercepting ADVANCE exceptions).

(e 4 outports
FROM (,node[2)) ;
FROM (node[2]) ,
FROM (node[2J) ;
FROM (node[21) ;
(¢ therecursion

191)
171>
197)
M 1)
[31)
121)
[01)

°)

*)
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actor subnet (node
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Every UDF act uses the procedure IPaijrhroushl This procedure contains the Y—part,
and it passes all requests on to Inodefotl. the highest ranking actor within the subnet,

and conversely, it passes all replies back to the superior of the UDF actor.

PROCEDURE P»«*_Thr eugh (nodeO : ACTOR; skip : INTEGER) ;
LABEL 1 ;
VAR
superior : ACTOR ; request : MSGTYPE ;
reply : ANYTYPE ; indes . INTEGER ;
BEGIN
FOR index ;= 1 TO skip

DO EXCEPTION (ADVANCE, index) TO (nodeO) ;
REPEAT
WHILE TRUE
DO BEGIN 01
(superior, request, index) :m RECEIVE () ; 11
(= The r-purt : ) 1
reply := CetDston (index, nodeO) ; 1
SEND (DATON, reply) TO (superior) ;
END ;
(= Exception part: )
1: (request, index)) := Reveal ;
1P request » ADVANCE
THEN EXCEPTION (request, index) TO (nodeO) ;
RESET ;

UNTIL FALSE ;
END ;

lAct Sieve] begins with the initialisation of the actor itself The formal operand | from
the Lucid program translates thus into a storage cell which the creator fills with the
name of the actual operand actor. This is followed (X—part) by the expansion proper,
the creation and initialisation of the subnet actors The act ends with a call of the

procedure Paex-Throuih], which contains its Y-parl

The X—part resembles clearly the SI—R)ot—} from the Fibonacci program
(T 4.3.1). While scheduling will be properly discussed in section 4.7, we briefly
mention here that all node actors (other than j\WRItEl) have initially an extremely low
scheduling priority. Execution of the X—part of any actor starts only upon arrival of
the first request In the case of UDF actors, this makes sure that the subnet is

created not earlier than really necessary
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The call of the |Pasalhroush] procedure Is eternal, i.e. the procedure is called
once, and, because of its eternal loop, there is no return from it. The essential part
of the procedure, the eternal loop, has been copied straight from the identity node
(simply remove the scaling from the [Act-Scalcl, t 3.4.4). Since IPaxa-Throush] contains
no computation it is a prime target for optimisation, and we shall indeed discuss
expansion of a UDF rtfortnco (t 6.2), optimisation of recursive UDFs by tail

recursion (f 6.6), and operand redirection (t 6.3), all of which are applicable here.

Doors need not be provided in the subnet expansion code (jOR3AT5L and initialise)
since the superior will be hung in its first request (the one which caused the
expansion) and can therefore not issue a further request during expansion. (One
might consider this approach as crude and replace it by one which has a request

IRECEIVE; before the expansion code. Such a refined version would indeed need doors )

The node numbering rule (from the ~rootlac-o~. * end of 4.3.1) extends unchanged
to UDF actors. Since that rule has certainly been adhered to during the initialisation
of the UDF actor itself, all subnet inports (actors for actual operands) can be

assumed to be ready for use.

Initial [ADVAWCE] Requests

For safety, a piece of extra code must be inserted between initialisation and X-part:

WHILE Reveal = ADVANCE
00 BEGIN
(request, index) :» Reveal ;
IF index > final index
THEN EXCEPTION (requeit, index)
TO (inport(0], ... inport[n])
ELSE skip w akip + 1 :
RESET ;
END ;

The cell fakipl adds up any bare 1ADVvANCFU requests initially sent to the UDF. Only the
first IcoMvUTE] request will cause the UDF expansion fXTiVANCH requests must never

cause "expensive" actions, such as the UDF expansion (Without IeKTp it would be
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impossible to implement a UDF like \WWR].)

If the first request ever to be sent to the UDF is an [advance, finaiindesl, the request
is propagated to the operand actors and the subnet creation is suppressed. Without
this extra code, recursive UDFs would be liable to deadlock: if iadvance, finalindexl was
the first request issued to such a UDF, its actor would settle down to building and
inactivating subnets forever. This matter will be understood more easily once the
IFBYi act has been explained (t 4.5.6). A more radical approach to the whole jfinaiindexI

problem will be presented in 6.3 (the IKILL1request).

Example ( [sieve]); root act

Here is the jAct—3oot_J which would generate the main program for Sieve]:

ACT Act—Root— ; (= Root act for Sieve exanp'e. e)

VAR

node : ARRAV [0 .8] OF ACTOR ;
(= Furthermore, there must be ACT declarations for. )
(= Constant, COPY, F3Y, PLUS and WRITE. °)
BEGIN ( Act_Root_ has no initialisation. ) 1

node 10] CREATE (Act_Write_ “console «a)

node m - CREATE (Act-Sieve )

node 13] - CREATE (Act_Copy_ 2) ; (= 2

( . node[2]) .= RECEIVE FROM (node 131) ;

(. node[8]) RECEIVE FROM (node[3]) ,

nod I<] = CREATE (Act_Fby_ )

node ] S CREATE (Act_Const_, 8) !
node 18] 8 CREATE (Act_Plua_ )
node [7] = CREATE (Act_Conat_ i)

Set_Priority (node[0), top-priority) ;

SEND (DATON, node[7], node(8]) TO (node j«n
SEND (DATON, node]ft], node[8]) TO (node j'|)
SEND (DATON, node[4]) TO (node 13))
SEND (BATON, node(2]) TO (node 111)
SEND (BATON, node(1]) TO (node 10])

END ;
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Interhitfc

UDFs, subnets in Lucid graphs, and subnets of initialised actors correspond so
closely to each other that most generalisations about either apply to all three. When
looking at the figure in 4.3.3.1 one is tempted to believe that every instance of ISievel
is just a "carbon copy" of the UDF Eieve!. This view is quite in harmony with the
functionality definition ("replacing the UDF reference by the UDF definiens does not
change the computation result'). But the carbon copy approach cannot be
generalised to cover operational objects, like actors. Many node actors have
memory. An abstraction, on the other hand, can not contain memory but can at best
contain information where to allocate storage space, and how much. Inthe
operational interpretation of DF Lucid graphs, there is a silent understanding that
each arc has initially an empty queue associated.

When implementing recursive UDFs, delayed expansion is the method to choose.
However, implementation of recursive UDFs is merely one application of delayed

expansion. Let us take a short look at the general application area

4.3.3.2 Further Applications of A+E in LUX

Above, in section 4.3.2, we outlined the reasons for abstraction from the
Software Engineering point of view. Quite separately, abstraction offers also
advantages to system implementors They are attracted by its particularly
economical use of storage space: only one copy of the UDF definiens needs to be held
in store, and no actor space is claimed until the first [c(SMPUTE occurs. Abstraction
has one inherent disadvantage: its use incurs some extra administration cost, and
this penalty re-applies normally to each daton evaluation.

For the execution of some Lucid program fragments (subnets) the prediction
can be made that they will go through aprotracted initial period of inactivity Store

is used very economically if during this period the subnet is kept in abstracted form
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An optimising compiler might detect such subnets through program analysis. The
above property applies particularly often to actual operand expressions of UDFs.
In many implementations, efficiency is improved by abstracting all but the simplest

(I.e. variables or constants) subnets with the above property.

The author admits freely not to know a universal rule for identifying all subnets
which have such a "protracted initial period of inactivity". Only a few prominent
instances will be presented in this thesis, namely recursive UDFs (f 4.3.3.1), inactive
subnets, andflFl with constant condition (r 6.6)

The optimising compiler may contain a device for expanding some of the
program writer's abstractions, but it may also contain a device for introducing
abstractions of its own making. For the remainder of this section we will, however,
assume that we are not using such an optimising compiler. Suggestions for
optimisation can be found in chapter VI

There is a certain limit, a minimal UDF complexity, from where on abstraction
has only disadvantages, both in execution speed and storage UDF expansion is
indicated if the UDF definiens contains no operator (J(x)-x ), and also if it has
merely one operator and is non—ecursive (ffe.y)=x~y). References to such

ultra—simple UDFs can be eliminated by the compiler

Making Subexpressions into UDFs

Any expression is only as likely to be used as the structure that refers to it
If this structure is itself inactive for a protracted initial period, it may be advisable
to make the expression into a UDF

For example, an actual operand expression of a UDF is certainly never used
before the UDF itself, and abstraction of the operand expression may be indicated

—Similarly, program fragments like the following are not uncommon in Lucid

programs:
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- = IF FIRST ¢
THEN (x+3) « X
ELSE 1 / (1-x) FI ;
The [Bj condition is evaluated once, and it is constant (* 6.6). This condition selects
either the jTHENi operand or the [ELSE! operand, and the other operand will never be
used. The code for this operand will forever idly waste store. However, the example

can be rewritten into:

ThenFonc (X) = (x+3) = X
El.eFunc (x) = 1 (1-x) ;

e = IF FIRST ¢

THEN ThenFunc (x)
ELSE ElseFunc (x) FI ;

This has given us two extra UDFs, IThenFunc] and IEseFuncl. the abstractions of the
original expressions. Only the unexpanded UDF actors (i e. not their subnets) are

created together with the ['f] actor, and only either of them will ever be expanded.

4.3.4 Summary of Translation Propar

We present the algorithm once more, this time in imperative form The program is

first put into a more convenient form through a few transformations:

(a) We make the Lucid program monomrric.

(b) \cross-reference is generated, covering all identifiers in the Lucid program
(simple as well as Zunction definitions) The transitive closure of this
cross-reference is generated. All definitions which are not in the transitive
closure of the program result can be deleted Hecursive function definitions can

now be marked as such. (Recursively defined variables constitute cycles, »6.1.)
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(c) We replace all instances of [FIRSTI, IUPON!, fwwa] and iasal by their UDF equivalents
(t 4.5). Furthermore, we substitute all instances of currtnting by suitable Ifriool
functions (t appendix B).

(d) Through the cross-reference we can locate all occurrences of global variables,
and we eliminate them by converting them into extra UDF operands After this
elimination, UDFs acquire all datons as UDF operands and deliver them as UDF
results. Asa result, the entire program consists of completely separate
stgmtnts, namely one main program (the subnet which contains the MRTE
node) and any number of UDFs

(e) Sizeable UDFs should not be expanded tagtrly if they have more than on«
reference, Including self—references of recursive UDFs There is no law
forbidding the textual expansion of UDFs with only one reference. We may now
expand certain undesirable UDFs. Conversely, some complicated reason may

persuade us to introduce some new UDFs (t 4.3.3.1 and 6 2)

(f)  All multipit references to a variable must be resolved by 1OQ0?Y. nodes

The Translation Strategy

We apply the translation program proper first to the Lucid "main program” and
then in turn to each UDF. The translation program Incorporates the nodt numbering
rult from section 4.3.1.

Every net or subnet contains one highest ranking node. For the "main program"
this is the Mrits! node, while for any UDF this is the node which computes the very
UDF result. According to the Lucid syntax, every program or UDF is an expression,
and there is therefore only one highest ranking node per UDF or per main program.
Inorder to translate UDFs correctly we must remember that even each formal
operand maps Into a nodt actor which computes that operand The translation

becomes easier if we substitute each formal operand by a subscripted dummy

434



1V -38

variable Inodef-ili (withi ranging over the inport numbers I, 2... n).

In the following we analyse Lucid graphs recursively. We start by looking at the
highest ranking node, but before looking at a node itself, we look first at the
producers of its operands (these will be lower ranking node actors) In Lucid graphs,
the arrows indicate the direction of flow of datons. Effectively, we make excursions
upstream along the arcs, and we generate code on the "return travel" downstrtam.
In the course of this process, a number will be attached to each node, and code for
creation and initialisation of the corresponding actor will be generated. It is obvious
that this translation process terminates (i.e. no further recursion) when
encountering the following operators:

— an operator with no operands (constants, R'£AX),

— LDFinports, or

— any ICOPY] node which has already been translated.

Each jCOPY! node delivers operands to many other nodes, and it will therefore be
reached repeatedly in our translation algorithm But of course, code must be
generated for each jCOPY! node only once This can be achieved by attaching a

Boolean flag to each jCOPY! node

Rtpriuntatlon for Graph Lucid

Below we will render the translation algorithm as a PASCAL program, which has
been implemented and properly tested (t appendix C) The program presupposes
that the Lucid graph is pregiven, the outcome of the transformations (a) ... (f) just
described The graph is built up from PASCAL rteordt, and here is the definition of

their structured type:
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type
opranse = 1. .30 ;
NODE? * - NOOK ; (* node pointer )
NODE = record
ntype (copy, copytranslated, inport, other) ;
nlabel integer ;
ntext : alfa
nnoofrefs integer ; (¢ number of references (COPY) *)
nnoofops : 0..30 ; (= number of operands )
nop array [oprange] of NODEP ;
nini top : array [oprange] of integer ;
end ;

Explanation: among the fields of every INODE! record, the following are readily preset
in the course of the Lucid graph definition:

ntype set to lcopyl if the node is a IOCPY] node (and it is further changed to
Icopytranslaied] in the course of translation), it is set to linport] if the node

stands for an inport, and it is otherwise set to o-het
ntext preset with a string fully specifying the node type,
nnoofrefs  preset with the number of references (I, 3, ),
nnoofops  preset with the number of operands (0, 1 3, ),
nop preset with pointers to the operand nodes

Every UDF inport is expressed through a [NODE record whose Jnty?e! is i.nportj, with the
inport number (1. 3, ...) stored in the fn-abcj field The fields inJagel] and MuFod convey

node numbers and are essential for the translation.

Tha Translation Program

We will now describe the recursive function I[TrarsTatel, together with a few
assisting routines, which performs the translation. IffTTa~<T must be applied to one
program segment (one subnet) after another At every translation step we have a
particular Node f/nder Consideration, we call it the "NUC. At the beginning of the

translation of any program segment we choose the highest ranking node as the NUC.
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We attach a label number to each node, and we achieve this by a function
INextlbell which delivers successive integers. Our algorithm will ensure that the

highest ranking node gets the "0" label; inferiors get label numbers higher than their

superiors.
function NaxtLabal (var nodenuniber : integer) : integer ;
beg in NestLabel := nodenxnber ; (= pseudo function *)
nodenutrber :* nodenumber + 1 ;
end ;

The procedure [ScanOgerandal inspects left to right all the operands of the NUC.
It translates each operand appropriately, by recursion to [Translate!, and it encodes in
the Ininitopl field of NUC how each operand will eventually be retrieved in the
initialisation of NUC. Inport nodes do not map into actors; they get therefore
separate treatment which does not involve iTmnslatel¥
procedure ScanOperands (nuc ; NODEP; var nodenumber : integer) ;
var i integer ;

nucop . NODIP
begin with nuc* do

for i := 1 to nnoofops
do begin
nucop := nopl[i] ;
if nucop*.ntype = otinport
then ninitopl[i] = —nucop*.nl«be 1 (= inport =)
else ninitopfi] := Tranalate (nucop, nodenurrber)
end end ;

I 1
The procedure fNodeinitiahaationl translates the information from the the !i;nitop!

field of NUC into the actual instruction for the actor initialisation Use of the in.xtop’
field Is difficult to avoid. For any node actor, all operands must be created and
Initialised before initialisation of the actor itself. A [0t ] node actor must deliver its
own name and also the names of all its outport actors (the references to the icopvi)
bafort it can be initialised itself. In the translation of any particular node,
IScanOperandx! is always called in the fi.rat invocation of !?ramlaiol, while jNodaTruuailsation!
is called in the lost This first and last invocation are the same for most node actors,

only ICOPVi node actors have more than one reference.
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procedure Nodelnllla lleetion (nuc : NODEP)
ear i : integer
begin with nuc* do begin
write (e SEND (DATON, <) j

for i :» 1 to nnoofopa
do begin
write (‘nodel’, ninitopl[i])
if i < nnoofopa then write ('], ")
end
writeln (']1) TO (node[', nlabel, 1) ;")
end end

The function ."Trarslate’ takes a NUC pointer, and generates the whole crtation and
initialisation code for the corresponding actor It generates that code also for all
node operands. The result of function jTrunalate! is the label (subscript i in jnodelili) of
the actor which takes the place of the NUC. Note the split actor labelling In the case
of ICOPYI nodes ICOPY! nodes constitute probably the most challenging part of the
translation, and the algorithm contains some extra treatment for the benefit of;00PY!
nodes. The stages of the translation are always:

a) allocate a label for the new actor

b) (jCOPY]: allocate one more label for the inport actor,)

c) generate aCREATH for the actor,

d) translate the operands,

e) (iCOPYj: generate an "obtain name of outport actor",)

f) if this has been the last reference, generate the initialisation,
g) return with label of the NUC.

Stages b) to d) are omitted if the NUC is a j00OPYl which has been touched before.
ffranalatel Is a pstudo function since it changes its operands Here now is the

all-important function iTranalatel (the program in its entirety is listed in appendix C):

434



1V -36

function Tranxlate (nuc : NODEP; var nodenumber : integer ) : integer ;
var
tranal integer ; (¢« new node will be node[(tranal)] =)
begin
wi th nuc* do begin
tranal := NextLabel (nodemcnber) ;
translate := tranal ; (= the function reault )

if ntype <> copytranslated
then begin
if ntype = copy

then begin ntype copytram lated ;

nlabel ; Next Labe 1(nodenumber)
end
else nlabel ;= transl ;
writeln (' node[', nlabel,
'] := CREATE (Act , ntext, ') ;') ,

ScanOperands (nuc, nodenuntber) ;
end ;

if ntype = copytranslated
then writeln (' (, , node[', transl,
')) := RECEIVE FROM (node[', niabel, ']) ;)
nnoofrefs := nnoofrefs — 1 ;
if (nnoofrefs = 0) and (0 < nnoofops)
then Node Initialisation (nuc);

end end |,

4.3.5 Concluding Remarks about tha Lucld Graph Translation

In Ihe presentation of the univtrsal node act (? 4.1) wa have subdivided the LUX code

into two parts:

Y—part which is executed each time a request is sent to the operator actor in
question, and

X-part which is executed once before the first execution of (Y).

A second glance at IAci—toot— and either of the UDF acts might tempt ustogmtrali*e
that the Y—part is of considerable size and varies greatly from one program to
another, while the X—part is at best small and of little variation. However, such a

generalisation is true only for code from the translation algorithm described so far.

4.3.»



IV»37

Various code refinement techniques will be presented in chapterVl, and that

observation will no longer be valid.

The LUX code from the above translation (IAct—Rood and UDF acts) has its strong
and its weak sides. Its merits lie in its ease of production, and in its accessibility to
various analyses. We will carry out such analyses in chapter VI. The code is
comprehensible but leaves wishes for elegance unfulfilled. This could be overcome

by a table—driven universal subnet Croatian procedure.

Although the code allows a bearably efficient implementation of concurrency, its
officioncy leaves wishes open. Since we are using a demand driven evaluation
strategy, most of the actors will be dormant for most of the time. In most
implementations, the cost per actor is relatively high. Actors should be reserved for
situations where concurrency is of true benefit, and they should not be kept around
in dormant state. In chapter VI. we will look at ways of improving the efficiency or
certain parts of the code much further, and in particular how to restrict

concurrency to productive roles

4.4 Memory In Nod* Actors

We know that, in demand driven DF. datons are evaluated only upon an explicit
request. This means, whenever a daton appears somewhere, there must have been a
preceding request for its evaluation. We can even state precisely tufioro the daton

queues build up:

Theorem' In demand driven DF, daton quouos need to be
permitted only at the outports of COPY nodes.

This is a strong claim, but it is easy to prove Along-term daton queue will certainly
not build up at an inport of a node, since once a node (superior) issues a daton
request to another node (inferior), the superior will consume the daton as soon as

the inferior can deliver. For the same reason, a long-term daton queue will not build
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up at the outport of a node with only on* outport. The node (with the one outport)
will have produced the daton only in response to a request, and the superior will
consume that daton as soon as it becomes available. Matters are rather different at
the outport of a lco?Yl node Every 'copyl node links a number of outports to one
Inport. and a request on a single outport is enough to cause a request at the jcopy
inport. Therefore, if a daton arrives at the jCcopy! inport, the icopPYj node will pass it on

to the requesting outport(s), but it will have to queue it at all other outports.

In this thesis, IF3Yi. IH3X7, [0 and the usual pointwise operators are called
primitive operators (t 4.3 3.1). Their acts can be designed so that none of them has
long—term memory. Each of their actors is in exactly the same state whenever it is
dormant; their storage cells hold only short—term information (except for operand
names, which are quasi—constants anyway), nor does the PC hold state information.
Previous requests have no lasting effect on primitive node actors Optimisation can
take advantage of this property (act expansion, T6.2) -On the other hand, immeHexl.
Itippy] and WP certainly have memory, and UDFs are clearly entitled to having
memory. We will indeed implement riasil, jUPdN]. and WWP (they all have memory)

through UDFs.

4.5 Nod* Acts

The design of the node acts is presented only as late as now since this order of
presentation appears to be the most natural one the underlying concept has been
explained at length, so that the focus can now be shifted to technical points. Some
readers may by now have an inkling what the acts must look like

The complexity varies considerably among the node acts The more inports and
outports a node has, the more protocol states its act must keep in harmony.
We intend to exploit the request protocol to the full, and this makes the node acts

rather complex. Some of the simpler acts have already been explained earlier on,
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the more difficult ones will be dealt with in the following. Simplest-to-hardest they
are:
— any node which has only an inport or only an outport (e g. constant. IRBADI, and

MRITE), t 4.5.4 and 4.5.9 f).

— any node with one outport and one inport (T 3.4.4).

— any node with one outport and more than one inport, with saqutntial acquisition
of its operands (r 4.5.2).

— any node with one outport and more than one inport, with concurrent

acquisition of its operands (r 4.5.3),
— important special nodes (jlIFj, iF3Y!. jNEXTi. t 4.5.6 ff).
— [copy! nodes (f 4 6).
Each node act must be able to handle the full request protocol (i.e. [CCMPUfSI,
iNULLIFY], 1IA3VARCE ). There would be no gain in clarity if we studied nodes which can
handle only a simplified protocol. Appendix D gives some examples of OCCAM
equivalents.

This section will not present acts for [FIEST], 'UPONl. WAR or jASA.. Our translation
does not treat these operators as fundamental operators but as UDFs (f 5.6 and 6.6).
Their function definitions arc

Wvr (a, k) = IF Firat (k) THEN p ELSE
WHERE p * a F3Y ¢
4 mWvr (NEXT a, NEXT k)
END ;
Upon (a, k) a FBY Upon (p, NEXT k)
WHERE p * IF Firat (k)
THEN (NEXT a)
ELSE a Fl
B\D ;
Firat (a) * p WBHE p*aFBYp END

Aaa (a, k) * Firat (Wvr (a, k)) ;
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A simple-minded UDF implementation of these functions would be extremely
wasteful, In particular in the case of pwr|, but these UDFs can be optimised into

perfectly efficient code (r 8.6).

4.5.1 Function iGotDoton]

The explanation of one other thing seems in place before we delve into node
acts. The LUX function iCatPaion! has been presented in section 3 4.3 as illustration
for some aspect of LUX syntax. But that function is of more than mere syntactic
interest; it is actually used in almost every node act. It deserves therefore more
than mere passing mention. We will now explain it formally, but its full importance
will become evident when we study its applications in the subsequent sections. Here

is the function again:

FUNCTION OatOaton (index : INTEGER ; operand ; ACTOR) ; ANYTYPS ; |
LAPEL | ,
BEGIN .R 1
SEND (COMPUTE, index) TO (operand) ; 1
( . , GetPaton) ;= RECEIVE FROM (operand) ;
RETURN ; (= normal RETURN even if exception occurred. «)
1: EXCEPTION (NULLIFY, index) TO (operand) ; ‘R
END ;

IGetPaton! sends a jCOMPUTE] request to the operand actor, and awaits then the arrival of
a the requested daton value. That daton value is eventually returned as the function

result. A typical application would be:

7

onedaton ;= CetDaton (thieindex, op—node_actor) ;

This LUX instruction requests from Xp-noda-actor] that the daton at [lhalndexd be
evaluated, and once that has been achieved the daton value is stored in ioncdatonl.

If an exception occurs, the outcome depends on how far we got in the function

execution:
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— If the exception occurs btfort the operand daton has been requested
(I|N>COMPUTE ...]). a special return is made right away, namely through the door
(Ft!) immediately btfort the function call. (Program execution continues at
label {7~, not shown in the example).

— No special action is taken if the exception occurs afttr the operand daton has
been received. Instead, normal execution continues and an ordinary return is
made (i.e. no door is used). This gives us a chance to prtstrvt tht daton value.
This course of action is appropriate: the purpose of NULLIFY! exceptions was the
abortion of over-long computations, but after the receipt of the result daton
this purpose has lost its urgency.

— If, however, the exception occurs after the JOGOMPUIH request but btfort the
arrival of the daton, a [NULLIFYl exception is sent to fop—ode-actor], followed by a
special return using the door (E) before the function call. The jNULLFY]

exception nullifies the daton evaluation in the inferior

The node acts and the request protocol have been designed under the guideline that,
once a node actor has received an exception, it must not carry out any further
computation, except for some concluding administration. In general, it is hard to
tell which intermediary result is so valuable as to deserve preservation (there is

scope for an optimiser).

4.5.2 Act« which Request their Operands Sequentially

When implementing the operators of a programming language, one is tempted to

contemplate two kinds of variant* of each operator:

(@) variants which make better use of the computer resources (faster execution or

lower store requirements),
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(b) variants which maximise the output history of the program (some operators

cause subnets to produce shorter output histories than one might expect).

This thesis is not much concerned with category (a) of variants ("local
optimisation"”). For example, once it has been specified that a von Neumann
monoprocessor is the computer to be used, there is hardly any scope left for
improvements in category (a) Section 4.5.3 will show that some progress can be
made in category (b). For example, once either operand of [05; yields ITRJS. the
other operand's daton value is no longer required This can be exploited by
concurrent operand evaluation. (Pseudo— Concurrency is rather costly on von
Neumann monoprocessors, and should be reserved for special cases.

For most operators, such refinement is impossible anyway Most operators
cannot dispense with any of their operand datons; sequential operand evaluation
(1 e. one operation after another) is therefore the appropriate method when dealing

with von Neumann monoprocessors.

Example ( JAct_Phic_J)

The following act implements an operator which acquires its operands in
sequential order. The example describes the binary operator, but ail those
pointuiise operators which unconditionally need alt their operands (e g relational)

have very similar acts.
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ACT Aet-Plua— ; (« 5.fii.nl (at Pil/J »)
LABEL 1 ;
VAR
dvalO, dvall, result : REAL ; (* or whatever the daton type *)
superior, pO, pi : ACTOR
request : USGTYPE ;
index . INTEGER ;
BEGIN (* pO and pi are the operand actors. *)
(, , pO, pi) :« RECEIVE FROM (Creator) ;
(= = kwllSinf Sleek 1: atari leap —....... *)
REPEAT
WHILE TRUE DO
BEGIN Ml
(superior,request, index) := RECEIVE () ;
(s ——— Swildinf Slack 2; pal »parent *)
(» Possibly hang up in CetOaton. *) 1
dvalO :=GetDaton (index, pO) ; (= Get 1st operand. )
(o =mmmmmm—- building Slock 2-got operand )
11
dvall := CetDaton (index, pi) ; (» Get 2nd operand. )
— building block 3 sand the result and and 100P ---------—-- — 9
01
result ;= dvalO + dvall ; (* node dapandant °)
(» Possibly hang up in SEND. ) ;1
SEND (DATON, result) TO (superior)
END ; (» End of inner eternal loop. °)
1: (request, index) ;= Reveal ; (= Exception part. )
IF request = ADVANCE
THEN EXCEPTION (request, index) TO (pO, pi) ,
RESET ;
UNTIL FALSE ; (* End of outer eternal loop. *)
END ; (¢ End of Act-Plus- . )

In the Initialisation, the node actor learns who its operand actors are. After that, the
node actor enters an eternal loop in which it successively processes requests. The
act Is easier to understand if we pretend first that there are no exceptions: we can
ignore all doors and the exception part Upon arrival of a fcOMPUTSI request, the
operand datons are acquired one after the other, the result value is computed, and
the result is then sent back to the superior After that, the node actor is ready to

accept the next request.
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However, a NULLIFY) or an JADVANCEiI exception can occur anywhere within that
loop. If this happens while an operand daton is under way (requested but not yet
obtained), the inferior computation is aborted by giving a [NULLIFY! exception to the
operand actor (t explanation in 4.5.1). As soon as we reach a door we break out of
the usual order of instruction execution and proceed with the excoption part |If the
exception was an IADVANCE], the JADVANCE] is propagated to all the operand actors. The
exception handling ends with executing iRESET]. After that, the node actor is ready to
accept the next request.

Acts for deterministic (i.e. avoidably concurrent) pointwise operators with other
than two operands can be built up from the building blocks of jAct_Piu>I]. In particular
block 2, acquisition of an operand, can be reduplicated for the acquisition of any
number of operands. "Hie beginnings and endings of the act propers are practically
identical (Exercise for the reader: write the act for a constant, solution in 45.9.)

Clearly every instruction has, where possible, been furnished with an "escape
route" (viz. adoor) for the event of an exception The computation proper[remitl
has, in our example, been very simple and inexpensive, its escape route was

therefore dispensable

4.6.3 Acts which Request their Operende Concurrently

We sketched above (also T1.1.3) the benefits of certain concurrent
computations. In~computers where concurrency is cheap (e g transputers) it would
even be etdvisable to implement most operators with as much concurrency as
possible We study in this section how to design node acts which acquire their
operand datons concurrently

In mathematics, the sequencing of the operands has no bearing on the result of
a commutative operator, by definition Implementations of many programming

languages, however, treat operators like [OR] and and] as non—eommutative. One of
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the aims of Lucid is to bring mathematics and programming closer together.

Concurrency can help us in this pursuit (t 1.1.3).

Example ( JAct_Or_J)

The following act implements a binary operator using concurrent acquisition of

the operand datons.

The example represents the jOR] operator, but every other

binary pointwise operator whose result may be determined by the daton arriving first

(e.g. IAVD. multiply with *ero test) would have a very similar act.

ACT Act_Or_ ; (» Cancurr.nl OR
LABEL 1 ;
VAR
superior, pO, pi, other, sender ACTOR ;
request MSGTYPE ;
index INTEGER ;
dvalue BOOLEAN ;
BEGIN (» pO and pi are the operand actors.
(. . pO. pi) .= RECEIVE FROM (Creator) ,
REPEAT
WHILE TRUE DO
BEGIN
(superior, request, index) .= RECEIVE () ,
SEND (COMPUTE, index) TO (pO, pi) ;
(sender, , dvalue) := RECEIVE FROM (pO, pi) ;
IF sender = pO THEN other ;= pi ELSE other ;= pO ;

IF dvalue (= Inspect what has been obtained so far.
(e ****** node dependent

THEN EXCEPTION (NULLIFY, index) TO (other)

ELSE ( , , dvalue) ;* RECEIVE FROM (other) ;

SEND (DATON, dvalue) TO (superior) ;

END ;
1: (request, Index) := Reveal ; (= Exception part.
EXCEPTION (request, index) TO (?0. pi) ;
RESET ;
UNTIL FALSE ;
END ; (» End of Act_Or_ .

*)

*)

°)

For the AnSL and super-multiply act, practically all lines involving [dvalue! must be

reformulated, of course, but the overall structure will remain unchanged
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1V -46

There are considerable commonalities between the iAct-Pr_I and the |Act PluaJ,
the differences lie in the code which deals with the operand acquisition. The !G«tOatonl
function cannot be used here since it has been tailored for acquiring datons

sequentially.

The initialisation (unchanged) i9 still followed by an eternal loop in which the
node actor successively processes all requests. First, let us again pretend that there
are no exceptions. Upon arrival of a ICOMPUTE request, that request is propagated to
both operand actors at the same time. After that, a reply is awaited from either
operand actor. (A random pick is taken if both replies become available at the same
moment.) Once the first reply has been received, the remaining operand actor is
due to be dealt with; a quick test works out its actor name jother .- .7]. The value of
the first reply decides over the next action. The lother] operand is sent a jNULLIFY! iff
its daton value is now irrelevant (that [NUUFY] is the same no matter whether that
daton's evaluation is complete, or whether it is still under way). Otherwise, the
completion of the jother! operand evaluation is awaited Either way, once both
operand actors are dormant again, the overall result value is worked out and is sent

back to the superior. After that, the node actor is ready to accept the next request.

A IMumni or an jADVANCE, exception can occur anywhere within that loop If this
happens while any operand daton is still under way (requested but not yet obtained),
any inferior computation must be aborted by sending [NULLIFY! exceptions to the
operand actors. Whenever an exception occurs, it is propagated unchanged to both
operand actors. The exception handling ends with executing IESEt; After that, the
node actor is ready to accept the next request.

At—OiJ uses a somewhat crude method of exception propagation (jnulLifYl
requests are propagated unconditionally), but this degrades the efficiency of
program execution only very little Luckily, sending a INULLIFY] to a dormant node

actor causes only negligible extra work. Itis easy to extend the code of [AcUruU,
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making it propagate [NULLIFY! only to those operand actors which are busy with work.

Generating a pullifv]

This section has introduced one new concept, namely nullifying a computation
after it has been set in motion. It must be born in mind that this mechanism can be
used simultaneously on numerous levels. Take, for example, a Lucid expression with
an 031 in it, of which either operand is a subexpression with a further [03] (or [AND)) in
it. Such nestings can be constructed to any depth. During the evaluation of such an
expression, any iR node actor may decide to nullify the evaluation of its operands.

This will nullify all inferior evaluations.

4.5.4 The JwriTE] Act

As far as act construction is concerned, we have learnt how to build UDF acts
and how to build the acts for the simpler operators In both cases the end product
could be built by applying a few simple rules to a few standard building blocks.
We will now have a look at individual acts, and in particular at acts which do not fit
readily into the general pattern MRTE and ;3EA3i, the Lucid specific operators [,"3Y!
and jNEXT], and last not least jOOPY] are among them.

A program without any jWRIfc. node would be pointless. Indemand driven
evaluation, the driving force for all computations stems ultimately from a WwRiTEl

node. Here is the jJVRITH act:
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ACT ActJAfrica_ (filename : ALFA) ;

VAR
index : INTEGER ;
pO : ACTOR ;
BEGIN
(. . pO) := RECEIVE FROM (Creator) ;
index * 0
OPEN (filename. WRITBnode) ;
(

WRITBnode is a system constant. e)

REPEAT
WRITE (filename, CetDaton (index, pO) ) ;
index = index 1,
EXCEPTION (ADVANCE, index) TO (pO) ;
UNTIL FALSE ; (* End of eternal loop. *)
END ;

The lAct-Jfrite] does not receive any requests, and needs therefore no exception
handling. —During program execution masses of requests (including exceptions)
pulsate through the net of node actors; it is interesting to note that the origin of
most!COVPUTE and JADVANCEI requests can be traced back to IAct Writ.eJ. —The special

role of MRTE actors has repercussions on their scheduling priority (t 4.7).

4.5.5 The Daton Sink Act

ACT Act_D* ton_S Ind_ ;

VAR
pO ACTOR ;

BEGIN
( . » pO) ;= RECEIVE FROM (Creator) ;
EXCSPTION (ADVANCE, final index) TO (pO) ;
c This act needs no eternal loop. °)

END .

The act of the cfaton sink nod« is presented here for dramatic relief This node is the
poor relative of the MRITE! node, all comments about exceptions and scheduling apply
correspondingly. Its effect is like writing to a null device, and its only foreseeable
application is with multi-valued UDFs, although such UDFs can not be expressed in

present Lucid.
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The Iact-baton-Sinx-J generates only one request ever, namely the special request
IADVANCE, fi&lLndei! ( JftrnddKl is a special constant, not a natural number). This
request states that there will be no requests for further datons ever. Considering
that we are dealing with a demand driven evaluation scheme, this is the ultimate

non-demand. More on this in section 4.5.6.

4.8.6 The fray] Act

lbrus! and {55] are both pointwise nodes (consequence: whenever, say, |Act PluaJ
propagates a request to one of its operand actors, this request goes with, ite index
unchanged from the original request; the request index is described in T4.2).
Neither IFBY nor jxexm is pointwise; their acts propagate a modified request index.
This makes their acts only slightly more complicated. At certain index values some
special action is required, most of it in the exception handling Here is the act for

the 1111 node

4.6 6
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ACT Aot_Fky_ ;
LABEL 1 ;
VAR
superior, pO, pi ; ACTOR ;
request : 1ISGTYPE ; index : INTEGER ; result : ANYTYPS

BEGIN
(. .pO, pi) := RECEIVE FROM (Creator) ;
REPEAT
WHILE TRUE DO
BEGIN A
(superior, request, indei) := RECEIVE () ;
IF index = 0
THEN i1
result ;= GetDaton (index, pO)
ELSE 01
result := GetDaton (index—1, pi) ;
11
SEND (DATON, result) TO (superior) ;
END ; (¢ End of inner eternal loop. +)
(request, index) := Reveal ;
IF request = ADVANCE
THEN BEGIN
IF index = 1
THEN EXCEPTION (request, final index) TO(pO)
ELSE IF index = final index
THEN EXCEPTION (raquest, index ) TO (PO, pPi)
ELSE EXCEPTION (request, index-1 ) TO (p!)
END ;
RESET :
UNTIL FALSE ; (¢ End of outer eternal loop. °)
END ; (e End of Act_Fby_ . °)

The iIMBYl node has one peculiarity, and this is reflected in the [FBY] act. At best, just
ont daton (viz the initial daton) is acquired from operand actor fpd. After that, the
operand actor for [¢0] is notified that no further daton will svsr be requested This is
expressed by the request [ADVANCE finai.ndex . Without the latter request, immense
grususs might build up inside any jOOPT; node involved in tho evaluation of operand ~
The reason is easy to see Assume the jADVANCE, firalT-ideX request did not exist, and
consider a [OOPY! node which has not received any request on outport X for a long
time, while at the same time outport Y has delivered many datons. The icopT would
not be able to decide whether outport X has actually died, It will never request again

Instead the IGCPY] would have to stay ready (and retain all the daton values) for an
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eventual ICOHPUTEl request on outport X.

The special [ADVANCE] request solves this problem by providing extra information.
As a penalty, the exception handling becomes more difficult. Instead of the [ADVANCE!
request with a special index value we could have added a new request type jLAStl with
the same effect, although that would have increased the code of all node acts. More

on this topic in the discussion of the jKILLI request (t 6.3).

4.5.7 The |MEXT] Act

ACT Act_Next_ .

LABEL 1 ,
VAR
pO, superior ; ACTOR ; request : MSGTYPE ;
index : INTEGER ; result ; ANYTYPE |,
BEGIN
(. , pO) := RECEIVE FROM (Creator) ;

EXCEPTION (ADVANCE, 1) TO (pO) ;

REPEAT
WHILE TRUE DO
BEGIN .1
(superior, request, index) ;= RECEIVE ()
01
result :=CetDaton (index+1, pO) ; .1
SEND (DATON, result) TO (superior) ;
END ; (» Endof inner eternal loop. °)
1: (request, index) ;= Reveal ;
IF request = ADVANCE
THEN BEGIN
IF index * final index
THEN EXCEPTION (request. Index) TO (pO)
ELSE EXCEPTION (request, | + index) TO (pO) ;
END ,
RESET ;
UNTIL FALSE ; (* Endof outer eternal loop. °)
END ; (+ Endof Act_Next_ . °)

The inSXT1 node actor issues one bare [advance] request before propagating its initial
request. (Any bar [advance] originates from Isaffi or from Qg.) Moreover, the index is
increased by one in all propagated requests In all other respects. [NEXT] resembles

closely a pass-through node
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eventual ICOVPUTE request on outport X.

The special [ADVANCE! request solves this problem by providing extra information.
As a penalty, the exception handling becomes more difficult. Instead of the IADVANCE
request with a special index value we could have added a new request type |LAST] with
the same effect, although that would have increased the code of all node acts. More

on this topic in the discussion of the jKILLI request (t 6.3).

4.5.7 The [NEXT] Act

ACT Act_N»xt_ ,

LABEL 1 i
VAR
pO, superior : ACTOR : request ; MSCTYPE ;
index : INTEGER ; result ;. ANYTYPE ,
BEGIN
( . . pO) :* RECEIVE FROM (Creator) ;

EXCEPTION (ADVANCE, 1) TO (pO) ;
REPEAT
WHILE TRUE DO
BEGIN
(superior, request, index) ;= RECEIVE () ;
result ;= GetDaton (:ndex4-l, pO)
SEND (DATON, result) TO (superior)

END ; (* End of inner eternal loop.
1; (request, index) := Reveal ;
IF request * ADVANCE
THEN BEGIN
IF index * final index
THEN EXCEPTION (request. index) TO (pO)
ELSE EXCEPTION (request, 1 + index) TO (pO) ;
END ;
RESET ;
UNTIL FALSE ; (» End of outer eternal loop. )
END , (* End of Act_Next_ . °)

The iNSXTI node actor issues one bare [ADVANCE] request before propagating its initial
request. (Any bare jADVANCE originates from INEXT] or from Qg.) Moreover, the index is
increased by one in all propagated requests. In all other respects, iNEjc! resembles

closely a pass-through node.
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We know that the fundamental acts other than lcopy! have no memory. This is
little surprise in the case of pointwise operators like ['f]. However, one would expect
that IF3Y1 and INEXTI differentiate at least between an initial state and a continuation
state. However, JAd—Next] progresses right after initialisation to its continuation

state, whereas |Act FbyJ deduces the state from the index in the request.

The daton index changes only in the course of ladvancel requests, and each
ladvancel comes normally with its index one greater than the previous index.
IA3VANCE, finalindexj is the only exception to this rule Only \WRITE;, [READj and jCOPY] node

actors need to remember which daton is next in line

4.5.8 The [p] Act

ACT Act_lto_ ; (* IF-THEN-ELSE =)
LABEL 1 ;
VAR
superior, pO, pi, pZ ACTOR ; request MSGTYPE ;
index : INTEGER ; condi : BOOLEAN ; result : ANYTYPE .
BEGIN
(., , pO, pi. p2) :* RECEIVE FROM (Creator) ;

REPEAT
WHILE TRUE DO
BEGIN
(superior, request. Index) :* RECEIVE () ;
condi := GetDaton (index, pO) ;

Ll

IF condi

THEN (= EXCEPTION (ADVANCE, Index+1) TO (p2) 9 1
result :* GetDaton ( index, pi)

ELSE (¢ EXCEPTION (ADVANCE, indexf-1) TO (pi) ) :1
result :* CetDaton ( index, p2) ,

SEND (DATON, result) TO (superior) ;
END ; (» End of inner eternal loop. °)

1: (request, index) :m Reveal ;
IF request < ADVANCE
THEN EXCEPTION (request, Index) TO (pO, pi, p2) ;

RESET ;
UNTIL FALSE ; (» End of outer eternal loop. -)
B\D ; (* End of Act_lte_ . °)
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In the eternal loop, the [If] node actor interrogates first the operand [pEl the Hrl
condition. Dependent on the value of that daton, either the ITHEN1 operand [¢T] or the
IELSE) operand'll] is selected to constitute the overall result. —This jAct_IteJ contains
nothing which exceeds the general construction pattern from section 45 2; chapter
VI will give hints how to refine ] ] (constant condition and concurrent jif]). A possible
refinement has been sketched; the [advance! exception can be issued to the rejected
operand at a very early time. However, to implement this properly requires some
adjustments: either successive !ADVANCE! requests with the same index must be

permitted, or the pondil value must be retained in memory.

4.5.9 The Constant Act

Every program must get data from somewhere, be it data read from a /tie, or
constants IREAD and the constants are the two fundamental nodes which have only
an outport. Obviously, the act of neither needs initialisation. Here is the act for a
constant delivering node:

ACT Act_Conat_ (conata : ANYTYPE) ;

LABEL 1 ; 1
VAR
superior : ACTOR ; request : MSGTYPE ; index . INTEGER ;
BECIN (» act has no initialisation. *)
REPEAT
WHILE TRUE DO
BECIN s
(superior, request, index) :w RECEIVE O ; i1
SEND (DATON, consta) TO (superior) ;
BEND |, (» End of Inner eternal 1loop. *)
1: RESET ;
UNTIL FALSE ; (+ End of outer eternal 1loop. )
END ;

Each jAcL.JConetant] actor gets a kind of initialisation during its own creation: the value
of the constant itself. There is nothing else to explain in this act. The FtEAD act is

similar, except that everything is much more complicated:
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4.5.10 The READI Act

ACT Aet_ftaad_ (filename : ALFA) ;

LABEL 1 ;
VAR
superior : ACTOR ;index INTEGER ;
request : USGTYPE ; index2 : INTEGER ; result : ANYTYPE ;

BEGIN ( There is no initialisation message from the creator. ¥*)
OPEN (filename, READmode) i (= REAHnode is a system constant. e)
indexS :« 0 |

REPEAT

WHILE TRUE 00
BEGIN it
(superior, request, index) := RECEIVE () ; 1

(= IF index <> index2 THEN ReportError ; «)

result ;= READ (filename, index2) ; 1
SEND (DATON, result) TO (superior) ;
END ; (» End of inner eternal loop. =«)
1: (request, index) := Reveal ;
IF request = ADVANCE (» this test can be omitted. )
THEN BEGIN
IF index = final index

THEN CLOSE (filename)
ELSE index2 :* index2 + 1 ,

(« IF index <> index2 THEN ReportError ; °)
END .
RESET ;
UNTIL FALSE ; (» End of outer eternal loop. )
END ; (» End of Act_Read_ . )

The lindex21 in the instruction jREAD (... indo@)1 refers to the running index of the daton
In the file. This makes it possible to deliver the same daton upon successive icompuTt,
requests of identical index, as required by the protocol Inany implementation,
jAct—ReadJ is likely to have memory of some form (viz character buffers etc ), but

this memory contains only quasi—onstants

Every request quotes a particular index The index can only be advanced by
lajvancel requests, and every ordinary ladvance] request brings an increment of one
The IRIAD node (and similarly ICO??) needs the index information only to identify the
special jADVANCE, fmaiindexI requests The index information can, however, be used to

supervise the correct functioning of the system, a running check like "parity”. The
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total reliance on local counting (lindex2j) creates an opportunity for optimisation
(implicit INEXTI andiFBV, t8.2)

Virtually all operating systems are data driven, and data are usually accessed
sequentially, i.e. in a pipeline fashion. [WRITEl and [read] actor3 interface to the
operating system, and its characteristics shape, obviously, the design of the MRITSI
and jREADL acts. Ademand driven IAct Read_ ~ for reading interactively from terminals
is a realistic proposition, and is quite easy to write. The jAcu-Writez! would also look

quite different in a "tagged" DF operating system.

4.6.11 Exception« in Primitive Acts

The description of the doors (t 3.4.2) may have appeared disproportionally
complicated, considering their unsophisticated application in all the acts so far.
Apparently, there was simply a door after almost every instruction, and the target
was always the same. However, this looked so simple merely because all the difficult
work has been shifted from the proper computing node actors to the OOPY! node
actors. In particular, most primitive nodes are without long-term memory. The

exception handling of a primitive node is trivial:

1) it simply abandons its current work,

2) it propagates the exception to the operand actors (if appropriate),
3) it executes aRESET, and

4) it enters finally the dormant state.

This simple pattern would be totally inadequate for [copy!, as we shall see Even the
action of UDFs (which can contain jOCOPY] nodes) in the event of exceptions is much
more complex; however, their exception action takes place within their internal node

actors, and its complexity is therefore invisible
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4.6 The [QCPY] Act

4.6.0 Introduction

This section describes ajcQPYl act which imposes very few restrictions on its use.
The only restriction is due to pipeline DF: datons must be requested in the order of
increasing index. The maximum overall queue length (buffer size) is limited only by
the machine size.

It is possible to implement each IGCPY] node as a single actor. However, such an
actor would have to distinguish between a very large number of states, due to the
many states each of its ports can be in (cross product). We choose a rather different
approach, where each outport is implemented by its dedicated actor, with one
further common actor for the inport. The jOOPY! inport actor is mainly concerned
with the administration of the daton buffer. This design is modular, each outport has
only very little concern with the other outports. ' :,, node actor" i; :::: meaning

"all the actors which together implement the jOOPY! node”.
The description of the [OQOPY! node actor starts with general considerations, it
explains then the outport act, and finally the inport act. The specific procedures are

presented before each act.

4.6.1 Daton Buffora

The buffers are implemented as chain* (= linked lists) with reference counts.
In a jOCPY, with many outports, each outport buffer is organised as one linear linked
list, with each outport "hooked in" at the appropriate place The list store makes use
of a pregiven store manager routine with explicit return of disused store space (the
same store manager might also allocate all the actor space). The terms "queue",

"buffer" and "chain" reflect merely different views of the same thing
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The following figure shows a daton chain of five buffer cells:

(early) (late)
in_indez=t t-3 t-4 t-3 t—2 t-1
value l | | l « | R ! /0\ ] Y |
refcount w2 I 3 | 8 i 7t|

1
linkege I l I T S T o R R
tai 1

outportm tt t ttt t

Every chain element can be referenced by any number of outports. The reference
count states cumulatively the number of direct and indirect references. The
uparrows in the bottom row symbolise those places where Icopy! outports are hooked
into the chain. The arrow on the very right symbolises an outport referring to a
futvr* daton. while the buffer caters for past datons. That outport could be, for
example, in the finalindex-state (i.e. referring to the "most distant” future daton).
A icopy; outport which, at a particular moment, refers to a queued daton cAnfind Vi«
successor daton by following the link pointer. If the pointer is jSIL1, the next daton
value needs to be evaluated beforehand and a new cell with that value appended to
the chain. (The pointer value jnil; means "pointing nowhtrt".) If required, the
outport can eventually be ADVANCEd to the successor daton through "stepping
forward" by means of the pointer, with the old reference count being decremented
accordingly. Tho old cell can be released (given back to the store manager) once its

reference count has dropped to zero.

We declare the buffer cells as follows:
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TYPE
CELLP = * CELL ; c Buffer cell pointer. )
CELL = RECORD Cc Store for one daton value. *)
value : ANYTYPE ; c The daton value. .)
count ; INTEGER ; (» Reference count. *)
link : CELLP ; Cc Pointer to next later cell. &)
END ;

The existence of a universal daton type is an illusion, of course; a string can hardly
be stored in the same way as a Boolean. But implementors can find ways around
that. For simplicity, we pretend from now on that all our data objects are of the
hypothetical type |anytvpe|, and that they can all be held in storage cells of uniform
size. We communicate with the store manager through two pregiven routines. Buffer
cells are obtained by calling the parameterless function Qetc.il, and they are
released by calling the procedure >r«c«n;. A simple minded program would go:

VAR nnyce\1l : CELLP ;

BEGIN

mycell = GetCell ;

FreeCell (rryce11) ;
END ;

The chaining of the daton buffer cells brings considerable efficiency since with it3 aid
the outports can share every buffer cell. This efficiency is sabotaged in a program
with onelOQPYl node feeding directly into another IcoPYi node; such a construct should
only be chosen in very select cases.

So far we have paid little attention to outports in off-chain state, i.e. outports
which refer to future datons. Outports are put into that state by the receipt of
numerous bare jADVANCE! requests (*4.2) or bv iTDVANCS.luialindeil Off-chain outports
are not handled by the daton buffer but by a mechanism which will be described in

section 4.6.4 (request propagation).
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4.6.2 Protection by Semaphore«

Whenever we access a stored data object, we trust In its consistency. (The data
object may comprise many interrelated pieces of information) For example, the
number held in a reference counter is assumed to be equal, at any moment, to the
factual number of references. Occasionally, however, data need to be changed, and
inconsistent data may be unavoidable wh.ilkk the alteration is being carried out. The
phase between the removal of a reference and the decrementing of the reference
counter would be an example. The data should not be accessed "by the public"
during such phases of inconsistency, and conversely, any interfering access must be
locked out during phases of use. We need an "access token", where the holder of the

token has the exclusive right of access to the data

We use a semaphore to manage such an exclusive access right. It has been
demonstrated in section 3.2.4 that semaphores can be implemented through
message passing (lAct-jGja.-ditt.i-zi). We will use that method here even though it may
not be ideal in efficiency terms The use of semaphores is easy. One semaphore is
needed for each data object which needs protection at any moment. We create one
semaphore by:

VAR semaphore : ACTOR ;

semaphore :* CREATE (Act_Guardian_) |,
(» The semaphore is initially set to "ik iii 1is public". )

and, whenever necessary, we call:

MakeExclusive (semaphore) ;

MakePub l:c (semaphore) ;
where iMakeExciueive! and MHakePubhc: are procedures which change the access status of
the data object. While one actor upholds its claim to the data object (i.e in the
interval between iMakeExclusTve] and iMakePubicl) any other actor calling IMakeExc'uivel

gets hung up until its turn has arrived. Inour particular case both procedures are
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4.0.2 Protection by Semaphorec«

Whenever we access a stored data object, we trust in its consistency, (The data
object may comprise many interrelated pieces of information) For example, the
number held in a reference counter is assumed to be equal, at any moment, to the
factual number of references Occasionally, however, data need to be changed, and
inconsistent data may be unavoidable while the alteration is being carried out. The
phase between the removal of a reference and the decrementing of the reference
counter would be an example. The data should not be accessed "by the public"
during such phases of inconsistency, and conversely, any interfering access must be
locked out during phases of use. We need an "access token", where the holder of the

token has the exclusive right of access to the data.

We use a semaphore to manage such an exclusive access right. It has been
demonstrated in section 3.2.4 that semaphores can be implemented through
message passing (;Act-jGja.-dian_i). We will use that method here even though it may
not be ideal in efficiency terms. The use of semaphores is easy. One semaphore is
needed for each data object which needs protection at any moment. \We create one
semaphore by:

VAR semaphore : ACTOR ;

semaphore ;= CREATE (Act'Guardian—) ;
(* The semaphore is initially set to "acc«y is public" °)

and, whenever necessary, we call:

MakeEsclusive (semaphore) |,

MakaPublic (semaphore) ;
where MakeExclusive! and IMek¢Public] are procedures which change the access status of
the data object. While one actor upholds its claim to the data object (i.e in the
interval between jMakeKiclusTve] and iMakePubicl) any other actor calling 'MakeEsc'luiyel

gets hung up until its turn has arrived Inour particular case both procedures are

462



1V .80

actually identical; they treat the semaphore like a toggle switch, and we have to be
careful not to call either jHakcEschisivel Or IHakePublicj twice in succession (one would
use safer procedures in the real implementation). The procedures are:

PROCEDURE MksExc lu.lv. (semaphore : ACTOR) ;

BEGIN ‘R !
SEND DATON TO (semaphore) ; END ;

PROCEDURE MksPublie (semaphore ACTOR) ;
BEGIN ‘R !
SEND DATON TO (semaphore) ; END ;

4.6.3 Data Structuras and Initialisation of fcOPYI

A sizeable bank of information is accessed by the inport and each outport of
[copPY, and by procedures within them. Most of the state information of the inport
and each outport can be grouped into data records (PASCAL'S device for constructing
data structures), which we call descriptors. This makes in particular the parameter

passing much simpler. Here is the type declaration for our descriptors
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TYPE

OUTPORTSTRUCT = RECORD (* There ia one of theee per COPY outport. °)
oactor ACTOR (» Actor name of this outport. *)
buffer CELLP (* Daton buffer pointer. )
novalue* INTEGER (+ How many leading datons shall be ignored .)
oindes INTEGER (+ Current daton index (from last ADVANCE). =)
waiting BOOLEAN (* State indicator for inport. )
END ;

INPORTSTRUCT = RECORD (+ Inport descriptor: +)
iactor ACTOR (= Actor name of this inport. *)
tailcell CELLP (* Pointer to tail of daton buffer. )
i index INTEGER (» Current daton index. )

(* iindex = index of next daton to be received. *)
C = indexai of daton in tailcell. *)
active INTEGER (= Number of outports not final index *)
profiting INTEGER (» Number of outports with novalues=0 *)
customers INTEGER (* Number of outport* with: )
(» outpool[i] waiting = TRUE *)
PO ACTOR (e Operand actor. °)
semaphore ACTOR
noutports INTEGER (= Number of outports. »)
outpool ARRAY [1 wmnoutport»] OF OUTPORTSTRUCT ;
END ;

The current /nport index [Unded refers to the daton presently due to reach the inport,
the current Outport index ¢jindex] refers to the daton presently due to come out of the
respective outport. (A real programming language would hardly permit a dynamic
array as an element of a data record, such as foutpooll above However, every
implementor knows alternative ways for achieving the same effect.) In procedure

headings, we will repeatedly encounter formal parameters of the kind:

[VAR outport : OQUTPORTSTRUCT]

When looking up the corresponding actual parameters it will always turn out that
[outportl is merely an alias for ioutpooailtll, which m turn is an array element within
IINPORTSTRIXT1, i is outport dependent.

The ftNPORTSTRUCTI and all the various ioir?0R:krRDcfl of the entire IcoPYl node

actor get initialised when the inport actor calls the procedure ilmtmliaeCoprl:
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PROCEDURE Initial I».Copy (netcreator : ACTOR ;
VAR inport : INPORTSTRUCT) ;

VAR i : INTEGER ;
BEGIN WITH inport DO
BEGIN
profiting ;= noutports ; customers := 0 ;
active I« noutports ; iindex = 0 ;
tailcell = NIL ;
semaphore := CREATE (Act.Guardian_) ;
FOR i:=1 TO noutports
DO WITH outpool[i] DO
BEGIN
oactor := CREATE (Act_CopyOutport_ ,

inport, outpool[i]) ;
SEND (DATON, oactor) TO (netcreator) ;

buffer ;* NIL i oindex =0 ;
waiting = FALSE ; novalues 0 ;
END ;
(, , pO) ;= RECEIVE FROM (netcreator) ;
BEND ; (e Initia liseCopy =)

4.6.4 Raquict Propagation, and Voting

We mentioned in section 4.2 the two diametrically opposed strategies which
govern the propagation of requests. ICOPY; issues a [COMPUTE; request whenever any of
its outports needs the daton value without the daton having been buffered yet. After
the {COMPU-£]. a counteracting !INULLIFY! may be sent if the daton evaluation proves
superfluous. ICOPYl sends an iADVANCE] as soon as it has accepted the daton value for
the daton buffer.

On the other hand, an outport can get many bare ADVANCE requests in a row.
Such requests may eventually put the outport into the off-chain state. Wo like to
propagate 'ADVANCE! requests, in general, at the earliest possible moment, since they
are capable of releasing buffer space in fcoPVI nodes "further upstream" in the Lucid
graph. However, any IADVANCElI can be propagated only if there will be definitely no
subsequent demand for the current daton. jcoEMl can therefore propagate ladvance]
only when (the daton buffer is empty and) each outport has surrendered its claim for

the current daton. Each time [COPY! obtains a new daton (and its cell has been
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appended to the tail end of the chain) it checks whether the chain has now caught up
with any of the off-chain outports If appropriate, the outport is then hooktd in at

the chain tail.

Every jADVANCE, flaaliadesl puts the outport into flnaiindex-stafte, and the
finalindex-state implies off—€hain state. Once an outport enters the
finalindex—state it withdraws all further claims to datons. All the rules about
IADVANCE! have to be extended accordingly to this special jADVANCE!. The effect of ;coDV
receiving an IADVANCE, finalindeil is usually tantamount to receiving infinitely many bare
IADVANCEL. Occasionally, it may lead to the propagation of many IADVANCE! requests;
this would be due to the WHILE! loop in![ncrerrentNovaiueal.

The jADVANCE! propagation is implemented in jcopry; by what is essentially a vote
counting where all decisions have to be unanimous. Each outport records in a cell
(named nov.iu«;) by how many datons it has advanced beyond the current inport
daton. The inport records in a cell jprofiling! how many of its outports might benefit
from knowing the value of the current daton, l.e. how many of its outports have
Inovaiue! & 0. So, jprof,tingl is decremented whenever an outport increases its jnovaHe
from O to 1, and vice versa. Once all Jmovaiwedi are greater than zero (i.e. once
[profiting! = 0) an IADVANCE! can be propagated to the operand actor After every
Increment of 'iindegj, like now, all positive Inovaiue” can be decremented Most of what
is described in this paragraph is carried out by the procedure Hnt-rementNovaluci]

(t 4.87) The procedure lbecrementNoraiuei] performs obviously the inverse task

4.6.6 Despair and the ‘Trojan Horsa"

The jOQOPY! node actor propagates, by design, only the I*a»t txptnsiv* request for
getting the job done. However, situations can arise where wasteful computations are
hard to avoid in pipeline DF. l,et us consider a j{COPY! node with 2 active outports

named X and Y. and we are at the beginning of program execution. Outport Y
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receives a bare IADVANCE!. but outport X receives no request yet. The Inovalu—1o0f Y is
now 1, the Inovalue-1 of X remains 0. Next, Ygets a [COMPUTE! request. We cannot
simply skip the daton at index O and evaluate daton 1, since we do not know whether
X will eventually ask for the value of daton O. and pipeline DF allows only the daton
evaluation in the order of increasing index. Out of "despair”, we have to evaluate
daton O and queue it in outport X. The evaluation of daton O will have been in vain if
X then chooses to start with a bare [ADVANCEI request. Such a situation would be
handled much more efficiently in a tagged DF implementation

We can give this example a different twist. We can assume that the evaluation of
daton O takes a day (or it may take forever), and that X gets a bare [ADVANCE! after
the first second into this evaluation. The operand actor must immediately be given a
INULLIFY!, since the evaluation is now clearly unwanted. This means that even if only
IADVANCE and [COMPUTEL requests are ever issued to the [COPY! node actor it must be
permitted to generate INULLIFY! requests of its own accord In other words, the
implementation (pipeline DF) would be incomplete without jNULLITY;

This constellation of requests is about the evaluation of a daton which no outport
really wants, the daton is a "Trojan Horse". We will come back to it when studying the

inport act.

4.6.S An Invariant

Using gl to denote the queue length (the number of buffer cells on the tail side of the

buffer pointer), the following holds for every outport

as long as oindex <> final index then:
0 = ql —novalues + oindex — lindex (invariant)
0 = gl < novalues

ql, novalues, oindex and iindex are all
non—hegative integers.
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4.6.7 Procedures for |OQPV] Outport Act

The concepts underlying the procedures IDecrementNovaiuesl and lincrementNovaluesl have
been explained in the subsection vaguest propagation above.
PROCEDURE OeerementNovalues (VAR inport INPORTSTRUCT ;

VAR outport OUTPORTSTRUCT ) ;
BEGIN WITH inport outport DO BEGIN

novalues = novalues - 1 ;
IF novalues =0
THEN profiting - profiting ¢ 1 ;
END END ;
PROCEDURE IneremantNovalues (VAR inport : INPORTSTRUCT ,
VAR outport ; OUTPORTSTRUCT )
VAR i : INTEGER ;
BEGIN VITH inport, outport DO
BEGIN
IF novalues * 0
THEN profiting := profiting - 1 ;
nova lues ;= novalues + 1 ;
WHILE profiting - O
DO BEGIN
EXCEPTION ADVANCE TO (iactor) ;
FOR i;=1 TO noutports
Do IF outpool[i].oindex <> final index
THEN DecrementNovalues (Inport, outpool[i])
END ;
END END ;

The procedure iAdvanccBufferPointerl, below, advances (by one daton) the buffer pointer
of an outport. The re/erence count allows us to decide when a buffer cell can be
freed. The cell can be freed only if it is certain that the daton value will never be
needed again (old reference count = 1).

PROCEDURE AdvaneeBuffer Pointer (VAR outport ; OUTPORTSTRUCT)

VAR
oldeel : CELLP . h : INTEGER ,
BEGIN
oldcell .= outport.buffer ;
h ;e 01ldee 11-, count ;
outport.buffer ;- oldcell* .1ink ; (* Thi- can be NIL. *)
IF ho» |

THEN FreeCell (oldcell)
EL8E oldcell* .count :m h — 1 ;
END ;
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The procedure [AdvanceOutportl takes care of the entire 2DVANCEI handling of the IG0PYl
outport. It resolves every ordinary JDVANCEI request by calling either
lincrementNovaluei] Or lAdvanceBufferPointerl. However, the full [ADVANCE handling requires
more than that An IADVANCE finalindezZl request puts one outport into the
finalindex—state (Joinde| = Ifinalind<t). We must in this case check first if there is an
outport left which is not in finalindex—state. This check is done by a vote counting.
The inport records in a cell, named [activel, how many of its outports are still ready to
transport datons, i.e not in finalindex-state Once all outports are Ifinaijdexl
(i.e. once [activel = 0). an IADVANCE, finalindexl can be propagated to the operand actor.
However, if there are active outports left, mcrementNovalueaj must be carried out even

upon the arrival of an [ADVANCE, finalindex! request at the outport.
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PROCEDURE AdvanceOutport (VAR inport : INPORTSTRUCT ;
VAR outport : OUTPORTSTRUCT ) ;
VAR request : HSGTYPE ; index : INTEGER ;
BEGIN WITH inport, outport DO
BEGIN
MakeExclusive (semaphore) ;
(request, index) := Reveal ;

IF index = finalindex
THEN BEGIN
oindex := finalindex ;

WHILE buffer <> NIL
DO AdvanceBufferPointer (outport) ;

active := active — 1 ;
IF active = 0

(» There is no need to bother the inport actor.

(e iindex := finalindex ; not essential
THEN EXCEPTION (ADVANCE, finalindex) TO (pO)
ELSE IncrementNova lues (inport, outport) ;
END

ELSE BEGIN
oindex := oindex 4 ] ,
(¢ IF oindex <> index THEN ReportError ;

IF buffer = NIL

THEN IncrementNovalues (inport, outport)

ELSE AdvanceBufferPointer (outport) ;
END ;

MekePublic (semaphore) ;
END END ; (» End of AdvanceOutport

4.6.8 |COPY) Outport Act

Here is the act of a single IcOPV' outport:

°)
*)

*)



ACT Aet_CopyOuw«rt_ (VAR inport : INPORTSTRUCT |,

VAR outport : OUTPORTSTRUCT ) ;
LABEL 1. 2, 3. 4. 8, fl ;

VAR sender ; ACTOR ; (e Temporary variable.
dvalue : ANYTYPE (= Reply daton value.
superior : ACTOR ; (= Request sender.
request : MSGTYPE ; (* Incoming request.
index INTEGER . (* Index in the inconning request.

BEGIN WITH Inport, outport DO

BEGIN

REPEAT

WHILE TRUE DO

BEGIN
(superior, request, index) := RECEIVE () ;
(« IF index <> oindex THEN ReportError ;

MakeSxclusive (semaphore) ;
IF buffer <> NIL

THEN MakePublic (semaphore) (« i.e. go right ahead.
ELSE BEGIN
waiting = TRUE ;
IF customers = 0 THEN
SEND COMPUTE TO (iactor) ; (= Activate.
customers := customers + 1 ,
MakePublic (semaphore) ;
sender ;= RECEIVE FROM (iactor) . (= Wait.
END ;
dvalue := buffer~.value ;
SEND (DATON, dvalue) TO (superior) ;
END ; (* End of the inner eternal loop

(e Exception part;
MakeExclusive (semaphore) ;
IF waiting

THEN BEGIN
customers ;@ customers — 1 ;
IF customers * 0
THEN

EXCEPTION NULLIFY TO (iactor) ;
waiting ;* FALSE i
END i
MakePublic (semaphore) ;

IF Reveal a ADVANCE
THEN AdvanceOuiport (inport, outport)

RESET ;
UNTIL FALSE ; (» End of the exception handling loop.
END END i (" End of Act-CopyOutport_

°)
*)
*)
*)
*)

°)

°)

*)
°)
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ACT Aet_CopyOutport_ (VAR inport INPORTSTRUCT ;
VAR outport : OUTPORTSTRUCT ) ;

LABEL 1. 2. 3. 4, s, a ;

VAR sender ACTOR (+ Tenporary variable. )
dvalue ANYTYPE (« Reply daton value. *)
superior : ACTOR (= Request sender. D)
request HSGTYPE c Incoming request. *)
index INTEGER (+ Index in the incoming request. )

BEGIN WITH inport, outport DO

BEC[N

REPEAT

WHILE TRUE DO
BEGIN 16
(superior, request, index) := RECEIVE () ;
(e IF index <> oindex THEN ReportError ; )
16
MakeSxclusive(semaphore) ; :0
IF buffer <> NIL 9
THEN MekePublic (semaphore) (e i.e. go right ahead, )
ELSE BEGIN
waiting := TRUE ;
IF customers = 0 THEN
SEND COMPUTE TO (tactor) (= Activate,
customers := customers + 1 ,
MakePublic (semaphore)
sender := RECEIVE FROM (iactor) (»W ait.
END ;
dva'ue := buffer” .value ;
SEND (DATON, dvalue) TO (superior) ;
END ; (» End of the inner eternal loop.

(= Exception part:

1: MakeExclusive (semaphore) ;
IF wai t ing
THEN BEGIN
2 customers ;“ customers — 1
IF customers < 0
THEN
3: EXCEPTION NULLIFY TO (iactor)
4: waiting ;= FALSE ;
END ;
9: MakePublic (semaphore) ;
. IF Reveal * ADVANCE
THEN AdvanceOutport (inport, outport) ;
RESET ;
UNTIL FALSE ; (* End of the exception handling loop. *)
END END ; (« End of Act_CopyOutport_ . °)
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The IcOPYI outport actor enters an eternal loop right away. Each loop pass starts with
the acceptance of a IJQ0VPUTH request. The validity of the daton index can be checked
here, an error would be a system error. [COMPUIE is trivial to handle if the wanted
daton is ready waiting in the buffer; the daton is simply taken from the buffer and
sent to the superior. If, however, the buffer is found empty, the daton evaluation
must be instigated, its outcome must be waited for, and only then can the reply be

given to the superior.

Further vote counting is used to control the inport. The cell Icuitomery] states
how many outports are hung up waiting for the arrival of the next daton. Outports
increment this cell when appropriate, and ssnd an activating signal to the inport
whenever incrementing Icustomer?] from 0 to 1 Further increments require no
signalling to the inport since it is already busy with the evaluation. However,
outports are free to withdraw their demands at any time, and they do this by
docromonting icustomers!. A INULLIFY] is sent to the inport actor right after ~customers!

has been decremented to O.

Before an outport gets hung up waiting for the daton, it sets furthermore its
Iwsitins! flag. The inport is thus able to identify every demanding outport. When the
daton arrives (vtaiCGctDaion!), the ICOPYI Inport sends a releasing signal to each waiting
outport. (The execution of faulty Lucid programs can easily seiie up in a Deadlock,
T2.6 and 8.1. In such a case, the outport actor will hang up waiting forovtr for the
daton. This error can be detected automatically by the message passing

mechanism.)

4.9.9 [COPY] Outport Exception Handling

The action in the event of a iNULLirMl exception depends on the stage the daton
evaluation has reached. If the iNUILifY] occurs afttr the arrival of the daton at the

outport actor, the exception has no genuine effect. However, the shorter the
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exception occurs btfort that moment, the more preparations (or the daton delivery
have been undertaken, each of them needing to be reversed. The code (or handling
MNULLIFY! exceptions is therefore almost a mirror-image of the preceding code. Upon
exception, execution jumps from one instruction to its counterpart and reverses
each preparation in turn. The INULLIFY! request sent to the inport actor counteracts
its preceding 'COVPUTEL

IADVANCE! can be described as an extansion of this INULLIFY!. If an JADVANCE!
exception did occur during daton evaluation it would have to start with the action for
a INuLLIFY! exception (In real life, ladvance! exceptions do not occur while the outport
is waiting for a daton) IADVANCEl exceptions are handled by the procedure

jAdvanceOutportl (f 4.6.7).

We turn our attention now from the Q'Y outport to the icoPYj inport

4.6.10 Procedure for ICOPYI Inport Act

Before we deal with fAct-XopyJj (the rcopY! inport act) we study its special
procedure !L.pd-.eOu-.po.-bl. Whenever the inport receives a daton value (via 'Get3a-on!),
it puts it into the daton buffer. This puts the outports into a totally new situation,
even the invariant is corrupted, and corrective action is necessary for most outports
The procedure UpdaieOutports! contains all this action.

Let us assume, a daton had just arrived Outports in finalindex-state require no
action, nor do outports with datons queued Outports with inovalue.l > 0 have to
decrement it by one (!D.crcmentNova':uc»l takes care of this). All remaining outports
must be linked to the tail of the daton chain Every waiting outport among them
needs an update of ra.tom«r»l and iwaitirial, and a reactivating signal must also be sent

to it.
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PROCEDURE UpdataOutporta (VAR inport . INPORTSTRUCT) |,

VAR i : INTEGER .

BEGIN WITH inport DO

BEGIN

FOR i:=1 TO noutporta DO

WITH outpool[i] DO
IF (oindez <> final index) AND (buffer = NIL) THEN
BEGIN

IF 0 < novaluea
THEN DecrementNovaluea (inport, outpool[i])

ELSE BEGIN
buffer ;= tailcell ;
buf far*. count := buffer~.count 4 1 ;
IF waiting
THEN BEGIN (e reactivateoutport: D]
customers :=cuitomeri — 1
waiting := FALSE ;

SEND DATON TO (oactor) ; (*Reei)ease.
END END END
END END ; (« End of UpdateOutporta

4.6.11 jCOPYI Inport Act

In our Isieve | example (section 4.3.3.1, 'Act-Sieve!), a 'GOPY; node actor with 4 outports is

set up by the LUX instructions:

node [2] ;= CREATE (Act_Copy— , 4)

( . ,» node [1]) ;= RECEIVE FROM (node[2]) ;
., node [5]) ;m RECEIVE FROM (node[2]) ;

( . » node [8]) :w RECEIVE FROM (node[2J) ;

( . , node[10]) :* RECEIVE FROM (node[2]) ;

SEND (DATON, operand-actor) TO (node [2])

Wa created only the inport actor of [OOPY! (i.e. InodeliT), and it created the outport
actors of its own accord, though telling us their actor names We sent the
initialisation to the inport; the inport itself looked after its linkage with the outports,

and t/uir initialisation.

So, here is the LUX code for the universal multi—eutport jcopy! node (using
pipeline demand driven DF) or just the [coPy! inport act, depending on your point of

view:
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ACT Act_Co#y_ (n : INTEGER) ;

LABEL 1 ; ¢ n—outport COPY node (inport). *)
VAR
newcell CELLP ¢ Tenporary variable. *)
sender ACTOR ¢ Tenporary variable. )
dvalue ANYTYPE ¢ Daton value received from operand. )
inport INPORTSTRUCT ; ¢ Characterisation of this inport. )
BECIN WITH inport DO
BECIN
iactor ;= Myself ; noutport9 = n ; InitialiseCopy (Creator, inport) ;
REPEAT
WHILE TRUE DO
BECIN
IF cuitarari = 0 THEN
sender := RECEIVE () ; (» Wait for Activation. )
dvalue := CetDaton (iindez, pO) ;
nevcell = GetCell (¢ GetCell can take long. )

newcell*.1 ink NIL ;
newcell*.value ;* dvalue ;

HakeExclusive (semaphore) ; (» Applied as late as possible. )
IF Reveal = ADVANCE (e Test for "Trojan Horse". °)
THEN FreeCell (newcell)
ELSE BEGIN
iindex :” iindex + 1 ;
EXCEPTION (ADVANCE, index) TO (pO) ;
IF tailce!l * NIL
THEN newcell“ .count := 0
ELSE BEGIN
newcell” .count ;= tailce 11+ count ;
tailcell” .1ink := newcell ;
END ;
tailce 11 := newcell ;
UpdateOutports (inport) ;
END ;

MakePublic (semaphore) ;
END ; (» End of the eternal loop. )

(= Exception handling: )
1. IF Reveal - ADVANCE

THEN BEGIN
ilndex ;w iindex*l ; EXCEPTION (ADVANCE, iindex) TO (pO) ;
END
RESET ;
UNTIL FALSE i (* End of the exception handling loop. )
END END ; (* End of Act-£opy_ . *)
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The [OOPY] inport actor is not a node actor, i.e. it does not accept request*.
It exchanges merely signalling msssagts with each outport (however, the
communication with its opsrand adheres entirely to the request protocol). Every
signal from the inport to an outport is of message type IDATONL just as an indication

that this is neither a request nor an exception.

The inport actor owns (declares) and initialises all the descriptors relating to
this [copv]. The |inport descriptor contains all the hutport 1descriptors. [initialCopy]
contains almost all the initialising action. It passes the names of all the outport
actors to the creator of the computing net, and it acquires finally the name of the
operand actor.

After the initialisation, the inport actor enters an eternal loop. The loop starts
with ajRscgrVEIl. which serves a similar purpose as the request IftSCKIVEi in node actors.
As long as no outport is waiting for a daton, the inport actor becomes dormant until
an outport spurs it into action by sending a signal This signal means invariably
"evaluate the current daton". The daton value is acquired from the operand actor
(via GeQear.un!), an ADVANCH is issued to the operand actor right away, and the daton is
appended to the daton chain The full benefit of the new daton is then given to the

outports through calling iupdaieoutportu

4.6.12 Exceptions Sent by [COPY] Inport

In their internal communication, the [COP? inport and its outports do not view
each other as nods actors, and do therefore not follow the universal protocol.
However, we employ most of the exception mechanism even then; the lindex field is
not used. The exception part of the inport act is simple

Let us first concentrate on [NULLt'M exceptions Above, we have described the
lcustomreril voting mechanism. The inport gets the [N~tUR/ exception whenever

Icustomiril drops from 1 to O, The fcetjeloni propagates fSuu.iHM exceptions to the
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operand actor If necessary. If the exception arrives ajtur the daton has arrived in
|CtP«tonl. the inport will at first not react to the exception but will buffer the daton

properly. Wasteful re—eomputation of the daton is avoided by this «agsr buffering

It has been mentioned that an acknowledging jadvance! is automatically issued by
the inport actor right afttr the acceptance of each daton value. Whenever the inport
gets an ladvancel exception, this can only be due to a bare 1DVANCE!, or to
IADVANCE, fmalindex] at one of the outports. The propagation of a bare ladvance! is the
aim in either case. However, a daton evaluation may be under way (in the operand
actor) while the exception occurs, i.e. we find ourselves in the "Trojan Hors»"
situation. The evaluation must in this case be nullified. If the daton has already been

accepted, there is no point in buffering it. Finally, an 'ADVANCE! is propagated.

Usually, it is the inport actor of icoryl which issues the requests to the operand
actor. However, jADVANCE, r.nalindo! is different in being issued directly by a iCopy;
outport actor. This cannot lead to a collision with requests from the inport actor,
since (as a precondition) all outports will be in finalindex-state anyway, and the
inport will therefore be dormant. The semaphore keeps the outports from issuing

colliding requests. The inport circumvention is therefore permissible in this case

4.6.13 Concurrency In fCQPYI
One might ask what gives us the right to call this jCOPY act concurrent.

Restrictions of concurrency are hard to accept if no valid reasons can be given.

Concurrency means simultaneous action in various places. During the
execution of a Lucid program we associate computing action with every node in the
Lucid graph In demand driven evaluation, this action is restricted to those nodes
whose output is essential/or the result prssontty due We chose a version of demand
driven evaluation where, at any time, solely the current result daton is in evaluation

(or contributing datons) The alternative, "bulk demand" (e g. "give me the next 100
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operand actor If necessary. If the exception arrives after the daton has arrived in
I<dxtDatonl. the inport will at first not react to the exception but will buffer the daton

properly. Wasteful re—computation of the daton is avoided by this eagar buffiring

It has been mentioned that an acknowledging jADVANCH is automatically issued by
the inport actor right after the acceptance of each daton value. Whenever the inport
gets an IADVANCEI exception, this can only be due to a bare [advance:, or to
[ADVANCE, finalindexl at one of the outports. The propagation of a bare IADVANCEI is the
aim in either case. However, a daton evaluation may be under way (in the operand
actor) while the exception occurs, i.e. we find ourselves in the "Trojan Hart*"
situation. The evaluation must in this case be nullified If the daton has already been

accepted, there is no point in buffering it. Finally, an [advance! is propagated.

Usually, it is the inport actor of jCOPY] which issues the requests to the operand
actor. However, jADVANCE, fmalindci] is different in being issued directly by a jCOPY;
outport actor. This cannot lead to a collision with requests from the inport actor,
since (as a precondition) all outports will be in finalindex—state anyway, and the
inport will therefore be dormant. The semaphore keeps the outports from issuing

colliding requests. The inport circumvention is therefore permissible in this case

4.6.13 Concurrency In [COPY]

One might ask what gives us the right to call this [OOPY! act concurrent

Restrictions of concurrency are hard to accept if no valid reasons can be given.

Concurrency means simultaneous action in various placos. During the
execution of a Lucid program we associate computing action with every node in the
Lucid graph In demand driven evaluation, this action is restricted to those nodes
whose output is ossontial for tho result prosontly duo We chose a version of demand
driven evaluation where, at any time, solely the current result daton is in evaluation

(or contributing datons) The alternative, "bulk demand" (e g "give me the next 100
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datons"), is at present too hard to solve in general. Once committed to the
daton—by—daton approach, our sequential request protocol brings no new

restriction.

Whenever a ICOMPUTH request is sent to a ICOPY! outport, the daton delivery may
be held up until the daton value has arrived at the jCOPY] inport. This restriction
comes from causality, it cannot be defeated. All other requests are accepted and
handled without major delay Occasionally, a |OOPY] outport may be shortly hung
waiting for the completion of action by other actors; IGetCeilj is probably the worst
source of delay. The semaphore, in particular, forces potentially conflicting actions
into sequential order. Each jcopy! outport can handle any request which satisfies the
protocol (t55). Its freedom of choice is never dependent on states of other

outports.

4.6.14 Summary of jCQPYl Act

What we have just described is the universal XOPV! act. It is so complicated
because it caters for every possible situation (within demand driven pipeline DF).
Whenever more is known about the way in which the [QOPY] node actor is to be used,
this extra information can be put to good use. In such cases, it may be possible to
use a much simpler JAPY; act. Is anything known about the order in which the
requests arrive at the outports? Isanything known about the maximum queue
length? Dowe really ever request concurrently? Chapter VI, "EfficUncy", will
present specialised versions of ICQPYl. Before that, chapter V will show a method for
checking the correctness of the COPY] act. In doing this, chapter V will also give a
second description of how.'G0PY1 works; this may help to clear up remaining points of

uncertainty.

40 14



IV-76
4.7 Priority Scheduling

4.7.0 Introduction

So far, we have learnt how to translate a Lucid program into message passing
actors. Every instance of an operator (including any UDF) maps into an actor The
resulting number of actors is extremely high, judging by the standards of current
multi—process operating systems. Highly concurrent computation in many actors,
however, is just the thing which the newest generation of computers (vast numbers of
physical processors) is best suited for. This thesis will not even try to answer the

specific questions coming with multi-processor implementations of Lucid, such as:

— What is the best strategy for allocating and scheduling the multitude of actors

on a smaller number of processors?

— For recursive (dynamically expanding) L'DFs, how and where are the new actors

allocated?

The answers to these questions depend much on properties of the given hardware
the store structure (shared or dedicated), availability of virtual store, availability of

runtime load. etc.

On the other hand, readers who wish to do a serious implementation of Lucid on
a conventional computer (von Neumann monoprocessor) will bo relieved to hear that
chapter VI will show how the number of actors can be reduced towards more
acceptable bounds. There is no reason why it should be impossible to compile into a
tingle actor any Lucid program without concurrent operators (parallel [OF, etc ) and
without recursive UDFs, i.e. compile it into a conventional sequential program
However, the general algorithm for that reduction is yet to be invented. At least up
to that day, we need a rule for scheduling the actors (At any moment, only one
actor can be in actual execution. The aehadullng rule states which actor to execute,

and/or how tong.)
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We present in this section an actor scheduling rule based on priorities. The rule
may be far from optimal, but it will be sufficient to achieve a reasonably well
balanced program execution. (The rule is aimed at granting, to an evaluation,
resources in proportion to the relevance of its result.) This topic will not be treated

exhaustively in this thesis; merely a few guidelines will be presented.

4.7.1 Analogies

We can draw a parallel between the execution of a program iLaproel and the
running of a (somewhat strange) firm for technical developments. "Luprox Ltd".
Some company workers develop one entire product after smother, while others carry
out only partial production steps and have to cooperate with others. Occasionally,
the manager chooses to let separate (groups of) workers develop competing
products. Sometimes he uses everything that emerges from this concurrency.
In some cases a production order is cancelled or a product is thrown away because it
has become superfluous Each department is run as an autonomous unit, but the
management policy is identical on each level. The investment policy is somewhat
simple minded: whenever concurrent developments are instigated, each development
gets an equal share of the departmental resources.

If any department requires two equal ranking concurrent sub-developments,
the department dedicates half of its capacity to each of them. If either of the
resulting sub-departments needs to break its work into 3 sub-sub—developments,
the capacity of the sub—department is split into three equal parts, and each of the
sub—sub-departments gets 1/6 of the original capacity. —On the other hand, if a
department works for a number of other departments (as in the case of the hardware
store, or catering) it has the turn of its user's allocations as funds

It has been decided that a more refined management policy would require an

Inappropriately expensive case analysis. Indeed, there Is only one manager in the
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company, and each department calls him in for administration. Worse even, the
company is a one-man business where one man is playing all the roles in turn, be it
manager or be it any worker. He is obviously not ready to spend much time on

administration.

The management policy (scheduling, resource allocation) must be applied with
flexibility, since the assumptions on which it is based are so imprecise. It is mainly
designed to make sure that all the work will eventually be done, and that not too

much of the resources are wasted on work of low importance.

This management policy may be bearable for the one man business, but it is
really too vague for a company with many workers. For example, for which job shall
each worker be trained? Moreover, the manager insists on maintaining the correct
sequence of product delivery purely by the sequence of the work pieces on the

conveyer belts (pipeline DF). Workers must therefore never share jobs

We could even link this analogy with our earlier analogy in chapter Ill. The
example above might describe the management policy of a restaurant "Che* Lucian"
which is run by one man alone: waiter, cook and manager in one person. The
scheduling rule tells him, for example, in which order to prepare the meals for his
customers, even in which order to bother about courses and parts of each course

Now replace CPU for our busy Jack of all trades, runtime system or scheduler
for manager, and actor for department or sub*-department. The company carries
out computations to order; the products (developments) of the company are the
datons of the program's result. The total production capacity of the company is

determined by the power of the given CPU
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4.7.2 Our Scheduling Rule

Our scheduling rule deals only with one computing resource, namely cpu time.
We aim to be reasonably (air in sharing out the available computing capacity, and we
use the subdividing ruls just described. If we define the total available computing
capacity as "1", we can usefractions to express how big a“capacity sties " each actor
gets, i.e. the priority of each actor. Anactor which has 1/2 of the capacity allocated
obviously gets through its work more rapidly than an actor with 1/9.

Our scheduling rule distinguishes different kinds of priority. Every actor has its
specific priorities (stored within the actor head, T3.2.1), and the really decisive one
among them is the actual priority. The actual priority is calculated, among other
things, from the intrinsic priority. The intrinsic priority is, generally speaking, an

actor specific constant:

actor intrinsic prlor Ity
root actor “ "ultra”
WRITE node actor 1.0 top (is explicitly set by creator)

all other node actors 0.0 zero (default, meaning {»N'T EXECUTE)

The actor's actual priority fluctuates with its message passing state, in detail:
actual_priority i *
IF Xrequest <> READY
THEM ultra-priority
ELSE IF ( some actors are hung trying to send
to this one, or to receive from it )

THEM ( sum of their shsrsd out actual priorities )
ELSE intrinsic-priority ;

The scheduler has (at least) two queues for actors: the ultra quaua of actors with
ultra priority and the normal quauo for all remaining actors with actual priority not
zero. Actors in the normal queue are executed only if the ultra queue is empty.
"First corns first ssrvs" and "round robin" apply inside each queue Actors in the
ultra queue are executed to exhaustion, i.e. control is taken from them only as late
as possible. If not in ultra priority, an actor is treated as normal. The normal actors

mhare the computing resources (mainly: the tims spent in execution) in proportion to
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their actual priority** An actor is suspended from execution while hung waiting for
message passing, of course.

By "sharing out" we mean: if an actor is hung trying to [SEN\ND to, or to IRECHVE
from, a set of actors, it shares its own actual priority out in equal parts among the
actors it wants to communicate with. However, witra! divided by any number is still
lultral, and lultra! plus anything is lultral.

When determining the actual priority of node actor Z we may have to form the
sum of some shared out priorities. In this sum, we must exclude any contribution
which is due to Z its*If (indirectly). —Such a "priority sum" needs to be formed only
if Z is a lcopyl node actor: without this exclusion rule, cycles could "hype up” their
own priority. The scheduler should even issue a jNULLIFY! request to the jOOFYl inport
actor whenever the actual priority of the I00PY] falls to zero. The scheduler
introduces thus a measure of global control, which would be impossible to achieve by
the request protocol alone (we will touch a similar point at the end of 6.3)

Equivalent to the if—then-else rule above, an actor’s actual priority can be

calculated as the maximum of:

(1) Its intrinsic priority,

(2) |uta priority while its jarequest! <> 3EADYL

(3) the sum of the sharsd out actual priorities of all actors which are currently hung
up watting for communication with the actor in question (iSEND to it or [RECHVA:
from it).

The following can be deduced from the scheduling rule

— The actual priority of a'CO3V' inport actor is the sum of the actual priorities of

its waiting outports (though not forgetting the exclusion rule)

— Aninferior will not be executed unless its superior gets hung up.
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4.7.3 Discussion of Scheduling Rule

The scheduling rule contains nothing to prevent an actor from livelocking
(t 28). Alivelocking actor with Iultral priority would be total disaster since it would
never surrender its execution right. Our design of the individual acts, however,
makes sure that only/tntts computations are ever undertaken in jultral priority. The
lultral priority has actually been invented exclusively for urgent administration and

for nullification of unwanted evaluations.

Also by design, there are very few instances where an actor has more than one
actor trying to communicate with it (semaphores, and arrival of concurrently
evaluated datons are obvious instances). The FCFS strategy and, if necessary,
random sequence are sufficient to ensure correct behaviour. (Easy evaluations will
usually succeed before elaborate ones, this is important for concurrent [0§j etc. Our

scheduling rule executes concurrent operations in the "breadth first" strategy.)

The design of the UDF actors is particularly tuned for this priority mechanism.
UDF actors have an intrinsic priority of zero, and this makes sure that execution of
the IIDF pauses before the subnet creation (= expansion) The expansion is carried
out once the L'DF gets its first request; this is laty expansion. In effect, the subnet
actors are created as late as possible. Initial JADVANCE or iADVANCE i nalindexi requests
needed special treatment; this ensures that only short administration is ever

undertaken injultral priority (but not proper computation, or even subnet creation).

Our scheduling rule is open to much criticism For example, we assumed that
the subcomputations of one computation are equivalent, which can be easily
disproved by counter examples However, our rule is reasonable and cheap Indeed,
a better rule can not be provided if nothing is known about internals of the actors
(e g. if it unknown how important a particular computation is). —We have already
stated that the priority concept provides only an Incomplete answer for

multiprocessor implementations
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Chapter VI will show how to improve the efficiency of the acts, and most of these
improvements will bank on insights obtained by program analysis Such insights can
also help to improve the scheduling rule. It would, for example, be wise to favour
(give a higher priority to) any node actor whose activation leads to a docrtas» in total

store requirements (e g. queue lengths).

4.8 Actual Implementation

The translation has now been completely described; the remaining chapters merely

round the picture off with checking and optimising methods

The next step would be the actual implementation of the whole matter on a
computer. A Lucid system, based on an interpreter, is already available [OstSl,
FMY83], and the first compiler passes of that system could be re—used directly for
this task. The remaining task would be of the calibre of an M Sc. project, less than a

year's work.

Couldn't we find a simplified version of this translation which would be then
easier to implement? First, one would contemplate the omission of bar» jAJVAXCHI.
However, such an implementation would be so hopelessly inefficient as to make the
whole exercise pointless. Then, how about omitting NULLIFY' requests? Their
importance stems mainly from their vital role in concurrent operators and a simple
implementation could do without the latter One of the main achievements of this
thesis has been precisely not to rule out concurrency Omitting concurrency means
talking about a much simpler task, disregarding the heart of this thesis Our
protocol is optimised towards concurrency, It look3 somewhat clumsy in applications
without concurrency Actually, section 4 6 5 showed ("Trojan Horse") that a iCOPYl
node actor may fiav» to produce rSPU.rfYl requests even if only [COMPUTE! and IADVANCH

requests are ever sent to it. The protocol would be incomplete without [NIiLtIEV!.
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FVY83], and the first compiler passes of that system could be re—used directly for
this task. The remaining task would be of the calibre of an MSc. project, less than a
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However, such an implementation would be so hopelessly inefficient as to make the
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implementation could do without the latter One of the main achievements of this
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requests are ever sent to it. The protocol would be incomplete without [NULLIFY!.
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4.9 Closing Remarks

Every language implementation assumes a particular machine as given. The
interpreter based Lucid implementation [OstSIl, FMY83] simulates a hypothetical
Lucid machine, and the interpreter works hard to keep that illusion up. This thesis
describes an MPA based Lucid implementation. MPA corresponds closely to the
architecture of multi—processors; the main difficulties are in this case hardware
specific; how to make the processors communicate, how to allocate actors, how to
load the acts. However, it is not very difficult to make even a single physical
processor appear like an array of processors, and this is probably the best way of

implementing Lucid until multi—processors become more widely available.
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CHAPTER V< Checking the Correctness of the Acts

5.0 Introduction

Much care has been put into the design of the acts, and we have good reason to
believe they are mostly correct. This should not keep us from scrutinizing them over
and over again. A working implementation would certainly be the most Impressive
proof of success. But for the time being we rely on formal checking methods The

aim of this chapter is to fortify the reader’s trust into our design.

If there was a serious flaw in our acts, it would most likely lie in the most
complex part of our design, namely the synchronisation of the actors by the
protocol. We will therefore design a framework (a testbed) in which we can examine
the message passing behaviour of actors. We will determine all the message passing
states for every actor; its message passing behaviour is, at every moment, mostly
determined by its current message passing state. The possible state transitions can
be summed up instate transition tables, this will be illustrated by various examples
The state transitions of a UDF, or any net of actors, can be elaborated from the
transitions of its components Execution logs are of great help in modelling the
actions of an actor, or of a not. This will finally be demonstrated by modelling the

entire execution of the ISievej program.

As regards difficulty, a big difference must be made between the ICOPY] act and
all other acts (t beginning of 4.5). The jGOPY! act is a great deal more complicated
than all the other node acts, which makes checking the icdPY, act the most
demanding part of this chapter. We will see that even a rather simple IcoFTl (viz. the
twin outported one) has an impressive number of states This is why we have to
continually look out for simplifications which keep the number of states low; without
them, matters are in danger of becoming unmanageable The correctness of the
other acts is by comparison quite obvious, and we discuss them briefly before the

lcopyl act.
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6.1 Th* Tastbed

In preparation for our discussion, let us introduce some terms which will play an
Important role throughout this chapter. We intend to check the correct behaviour of
a node actor, and we achieve this by placing the actor in a testbed (environment)
which will confront the actor with all the situations permitted within the protocol

(such as all possible sequences of requests and replies, see also [Fau82]).

Let « be the node actor under examination. Each outport of < is individually
connected to a domander (labelled g, like "greedy"), and each inport of < is
connected to the pertaining supplier (labelled p, like "parameter"). This entire setup
(gand e and p) is called a testbed for the actore. The following Lucid graph

represents a testbed:

(outport (inport

state ) state)
+a + + -+ H--— -
| derrander g | «— 1 node actor e + suppiler p |
+ M -

The actor e is, of course, in a state at every moment, and we shall see that some kind
of sub—state (a message passing state) can be ascribed to each mport and to each
outport. In our implementation, there is no queuing on the arc3 (all the queuing
takes place in the [OOPY] node actors) and the ports at both ends of an arc have thus
the same state. The state of a demander or supplier is exactly the state of its port

The state of the actor « and the state of the testbed are therefore one and the same

When talking about the message passing at an arbitrary actor port, we will go on
using the terminology of superiors and inferiors (The arrows in Lucid graphs point
always from inferiors to superiors) In the testbed, g can be superior and < inferior,

or m can be superior and p inferior.

U — (R S —

| superior m | *—-- »inferior |
I— m | | TN |
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6.2 Program Analysis

A proper mathematical proof of correctness (termination and partial
correctness) would require us to analyse every act in depth, instruction by
instruction. That task alone would double the size, and exceed the aims, of this

thesis. Such a proof would certainly be meritable, but it has to be left to the future.

However, some techniques can be readily taken over from proofing, such as
invariants and loop termination conditions. We can indicate only the general
approach (l.e. detailed rules will not be given); matters vary greatly among the acts.

Most acts are utterly simple, which means there is very little to be analysed.

Most loops in our node acts are stsmal, i.e. altogether without termination.
Often, no memory is retained from one loop pass to the next, so there are no loop
invariants to worry about. Almost every actor < is a mediator between its demander
S and its supplier p: usually, any message from g is propagated in some form to p, or
vice versa. This message is either a request (message flow: g p) or a reply
(p g). One can analyse how « transforms the message; one should check, in
particular, that invariants are not violated For example, when ¢ receives a request,
the same daton index must be re—used in the propagated request (while some nodes

introduce a fixed index offset); this is all very node sensitive

5.3 Mtm gt Passing Behaviour

In another check, we treat the actor like a black box, and examine merely what
goes on at its inports and outports, its message passing behaviour If the black box

behaves incorrectly, though, one has to take the lid off and put matters right.

The message passing behaviour of an actor can be described by a state
transition table, and such a table can reveal where the actor violates design criteria.
Let us first took more closely at state transitions, and then recast the protocol into a

form convenient for state transition tables
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5.3.1 Mtiugi Passing Stats, and Stats Transitions

For an actor, each action can be viewed as a state transition, and all the
permitted state transitions can be presented as a table (a relation maps the states

to their permitted successor states). Such a table is very useful:
— It reveals the actions which the actor can perform,
— It permits a study of concurrent actions,

— it enables us to check whether inports and outports adhere to the request
protocol,

— It can be used to exercise a given implementation of the actor. The
Implementation is correct if the actor can execute each of the listed transitions,

and if it never steps outside the alternatives listed.

Such a table can be produced for any act: we will give examples for some node
actors. We will see that the rule for the table generation corresponds closely to the
act, both are similar pieces of code. Transition by transition, each table entry (the
intended behaviour) can be compared with the true behaviour of the actor. This
reveals unwanted state transitions in faulty acts It would oven be possible to do

some of these checks automatically

State transitions can be non-d*t*rministic, i.e. an actor can sometimes choose
between a number of next states. Furthermore, there is always the extra choice of
carrying out only pari of what is possible, or of even doing nothing (successor state
being equal to the present state). Such transitions have obviously a delaying effect.
The act design is such that the overall computation result (of the Lucid program) is

deterministic even though the execution may be non—deterministic

Since we are only trying to model the message passing behaviour, we can often
ignore those parts of the actor state which have no direct effect on that behaviour

We call the resulting state the message passing state (which is afunction of the total
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state of the actor). As far as message passing is concerned, the choice of successor

state is narrowed down by:

(1) the present message passing state of the actor e,
(2) the action of the demander(s) g.

(3) the action of the supplier(s) p.

The message passing state of an actor is made up of the states of its outports,
possibly an internal state, and the states of its inports. Different formats are used
for the message passing state of the various node types: there is no universal pattern
suitable for all actors. There is one general rule: in all message passing states, the
state of each inport or outport is always expressed through a message label (t 5.3.2).

An example message passing state is (explained in 5.3.1):

DI. 2. A

5.3.2 Protocol Execution and Massage Labels

In section 42 we have agreed on a universal protocol Every node actor port is
at every moment in a particular state of protocol execution (a port state), and the
protocol permits only select successor states. The port state is determined by the
lost message which traversed the port The message passing partners have no
"knowledge" of the interned state of one another. It is therefore appropriate to
denote their states in a format which gives the port states particular prominence
If two ports are connects* by an arc their states are unavoidably identical.

We abridge each port state into a single character, called a message label, according

to:
N NULLIFY (request, flowing upstream g » = -=p)
C COMPUTE
A ADVANCE
K ADVANCE, final index "
0 DATON (reply. flowing downstream P * * - Q)
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state of the actor). As far as message passing is concerned, the choice of successor

state is narrowed down by:

(X) the present message passing state of the actor e,
(2) the action of the demander(s) a,

(3) the action of the supplier(s) p.

The message passing state of an actor is made up of the states of its outports,
possibly an internal state, and the states of its inports. Different formats are used
for the message passing state of the various node types; there is no universal pattern
suitable for all actors. There is one general rule: in all message passing states, the
state of each inport or outport is always expressed through a message label (t 5.3.2).

An example message passing state is (explained in 5.5.1):

DI. 2. A

6.3.2 Protocol Execution and Massage Labels

In section 4.2 we have agreed on a universal protocol Every node actor port is
at every moment in a particular state of protocol execution (a port state), and the
protocol permits only select successor states. The port stats is determined by the
last message which traversed the port. The message passing partners have no
"knowledge" of the internal state of one another It is therefore appropriate to
denote their states in a format which gives the port states particular prominence
If two ports are connected by an arc their states are unavoidably identical

We abridge each port state into a single character, called a massage label, according

to:
N NULLIFY (request, f lowing upsgream g==-=P)
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A ADVANCE
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0 DATON (reply, flowing downstream p <=a *(g)
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We have to keep the number of port states low since the state tables would
otherwise become unmanageable. Ndoubles up as the universal Indicator for
"the Inferior is dormant”, and it is thus the initial state (whenever an actor is
dormant we pretend that it has just received a INLLIFY] request N). C doubles up as
indicator for "a [OQOHPUTH request has just been sent". These two states (C and N) are
special in that the inferior can leave them only with the cooperation and initiative of

its superior The protocol boils down to:

message
label next possible action:
# (we will always print N as
N the superior can change it to C, A or K,
C the superior can change it to N or
C the inferior can change it to O (whichever is first),
A the inferior can change it to N.
K no change possible,
D the superior can change it to N

Explanation: if the protocol execution has reached the point where the inferior is
dormant (N), it is the superior's turn to issue a C, A or K request; without this,
nothing can happen If the superior requests A, the inferior accepts it, and becomes
dormant The latter action is expressed in a state change to N The inferior takes
also further appropriate measures, of course, but they are invisible as we
concentrate on the messages traversing the port The message passing reaches its
terminal stats once the superior issues a K request; no further message will ever go
through that port.

On the other hand, after the superior has issued a C request, the superior is free
to nullify (W) that request again; alternatively, the superior can wait until the
inferior is ready to deliver the daton value (D). There is even a third possibility: even
while the inferior is ready to deliver the daton value, the superior is free to delay as
long as it likes before it decides either for D or M (such delay transitions will usually

not be shown in our tables).
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The last paragraph glanced over an important point by making a quiet
assumption. Whenever a superior nullifies a C request, it changes the port state to N,
and this means that the inferior is now in the dormant state. But the superior can
hardly fore* its inferior straight from C into the dormant state. Instead, the inferior
must first accept the INULLIFY! request M take appropriate action (which might
include request propagation), and it goes dormant only then. We would have to
extend our acts slightly if we wanted them to handle this revised protocol. On the
other hand, this simplified protocol has its advantages avoidable states are a real
nuisance in our later discussion, and the simplified protocol is very efficient in
execution. We will not detail the changes which have to be made either to the code,

or to our modelling of the message passing.

We will print the protocol state N in our tables always as full stop ("."); we use
this character generally for states of the nature "nothing special to report". Tables

are easier to read this way: unusual states become much more conspicuous

5.3.3 Execution in Ultra Priority

The scheduler (t 4.7) gives to actors in ultra priority pre-emption over the ones
in normal priority. Each act lays down which actions take place in which priority.
(The exception handling code is executed strictly in ultra priority, and the acts must
be of such design that the expensive proper computations are not carried out in
ultra prtority.) The testbed is in normal priority as long as none of the participants is
ready to do any exception action. For fundamental operators this reads: execution is
in normal priority as long as
- the outport state is not A or K, and

— noinport state is A, and
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— the outport state Is not while an inport state is C.
The formula is more complicated for IGPY1 node actors (f 55.2).

In the following description, we assume as given a global variable hormdit«] which
Is ITBUEL only during execution in normal priority. (In the state transition tables,

below, states whose transitions take place inultra priority are marked »4)

At the first reading, you may pretend execution were always in normal priority.
The ultra mechanism is meant only to inhibit wasteful state transitions, and it had to

be mentioned here because we will refer to it in the following.

6.3.4 Actions of « Demander

There is one demander (g) per outport of actor e A demander is only able to
inspect and change the respective outport state of € It can issue C, Aor Krequests
if that outport state is N it can revoke C requests (change that outport state from C

to N). or it can accept daton values (change from Dto M

begin
OS ;= the respective outport state ;
ML := the message label IN oS |
if M. * N (i.e. this outport dormant)
then begin
the message label in OS may be changed to A , or
the message label in OS may be changed to K , or
if normalFx then
the message label in OS may be changed to C ;
end ;
if ML*C or (ML * D and normal Ex)
then the message label in OS may be changed to N ,
end ;

6.3.6 Action* of = Supplier

There it one supplier (p) per inport of actor a. The supplier accepts any
request; as response, it con merely Inspect and change the respective inport state

of *. —The supplier acknowledges A requests by changing the inport state to N,

S.3.8
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whereas there is no acknowledging action (or K nor (or N requests. It the inport state

is C (i.e. atter a C request), the supplier can respond with sending a daton value (O)

as reply.

begin
ML the respective inport etate ;
if ML - A

then the inport state may be changed to N ;
if (M =C) and normalEx

then the inport state may be changed to D ;
end ;

6.4 Checking Node Actors other than [copy]

It is not difficult to check that the node acts (t 4.5) conform to the protocol.
Most node actors propagato each request and reply via their own opposite ports,
possibly with changes to the message content but rarely with a changed message
typo. Such actors will leave everything intact provided the original requests and
replies are given correctly. —A mere glance shows that the actors for fWR(ff?], j3E20L
and constant (which have only on« communication partner) generate correct

requests or replies, respectively.

Alter the actor m has received a jNLLLI'MI or jADVANCE request, it takes the
appropriate measures and becomes eventually dormant; similar action is taken after
each delivery ot a daton value. All this is in sympathy with the protocol. Most of our
actors become dormant even after IADVANCEfinalindesl. but in doing so they are only
"overfulfilling” their task, which has no bad consequence

Our simplification of the protocol permits issuing a new request right after a
iNULLIIftl, even boforo the inferior has reacted upon the [NULLIFY]. Our acts would not
handle this (but can be modified to handle it), but require the superior to be bold up

(delayed) until the inferior has taken the necessary steps.
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Most acts use the procedure icetbaton] for the acquisition of daton values.
icetbatonl implements the rule that C can only be followed by N (from the superior)
or O (from the inferior), and it is not hard to see that 1otpaton] performs this task

correctly.

little new can be 3aid about JAct Root-J and the UDF acts. The Lucid graph and
the net of actors are related through a bijactxon, and incorrectness could only be due
to an error in the translation (but the translator program has been carefully tested,
t appendix C). —The UDF subnet creation is transparent to requests (except for
initial 1IADVANCE] exceptions), and the UDF actor enters eventually the procedure
iPasa-Jhroughl. That procedure was designed to be transparent to all messages (i.e all
messages are passed on without change), and it is easily inspected for correctness
—Every UDF subnet is composed of fundamental operators and again of UDFs, and
the correctness of the UDF depends on the correctness of these constittiants, of

course.

Example ([FBY] actor)

The message passing state of ajr31 actor can be characterised by:

here
a message label representing the outportstate

AN

«

©

T

v
nus

p a message label for the state of the laft inport
P a message label " " ....right inport
<eeeeis > Is the initial state

We write the states throughout in an order such that oulports are on the laft and
inports on the right; requests flow therefore left-to-right, replies flow right-to—eft.
In our tables, the message passing states are written without the angle brackets and
without the commas, and the identity transitions (i.e. delay, no change) are not

shown at all
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The state transitions of [FBY] are then:

30 states (out of 125), 63 transitions

The table lists all the states which can be reached from the initial state The states
are numbered (no) from O to 29, with the Initial state at number O, and with the
terminal state at the end. The possible successor states are listed on the right of the
} sign. If there is a u to the left of the | sign, it indicates execution being in ultra

priority. No further state change is possible once alt input states have become K

6.4
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(I.e. identity is the only transition possible). For convenience, both the successor
state and its number are given, and in the why column some letters (g, e, p, P)
indicate which actor was the cause for the transition (g = demander, a = IFBY1 actor,
p = left supplier, P = right supplier). The upper half of the ;F3¥l table are those states
where the left Fgy; operand p is still under consideration; in the lower half all datons

come from the right operand P.

Example (constants, [BEAD], Idsntity Opsrator)

Here is another example, the state transitions of the constant or the jieapj actor:

no state | no state why no state why no state why

0 (1 C g 3 A g 4 K 9
1 C 2 D e

2 D 0 g

3 A u 0 e

4 K nothing

5 states (out of 5), 6 transitions

This table has moreover a second use if we take an empty testbed and connect
the supplier directly to the demander (i.e. merely with an arc in between), the table

would describe the behaviour of the resulting system (substitute p for s).

Example ( [WRITE])
The table is even simpler for

no state | no state why
1

X

0 1 cC e
1 ¢ 2 0 =
2 D 3 A e
3 A u (0] p
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Example (concurrent binary pointwise operator)

The third example are the state transitions of a concurrent binary pointwise
commutative operator, such as concurrent PLUS. The behaviour of concurrent
operators like [53] is more difficult to model, since their choice of transition is data

sensitive; they have a few more states, as indicated in the table

In this example, the states can be written in the same format as in the IF3YL
example above. We can however, take advantage of the commutativity, which means
that the suppliers p and P are intarcKkangaabla Many states of our actor come in
pairs, where each state results from the other by swapping the inports; our table
contains an entry only for either (it is immaterial by which rule we choose either
state). Whenever a transition leads to the swappad counterpart of a state x, we
indicate this in our table by priming (x1 the state number. There are even cases
where both state x and state x' are among the possible outcomes of transitions.
In such cases the state number is printed with a double prime (x"), with the why field

telling only either story.

» 4



Here is the table of state transitions:

no state

N 80 801 ZA

10
11

12

13
14

is
17
18

20
21
22
23
24
28
28
27
28
29
30
31
32
33

3»
3«

.CC

Cc.C
CD

1 Nno state

»
u)

)

1
W
»

W

NN Oo

16
7
16
19"
16
16
7
19
36
29"
36
3s"
.36
20
29
36
36
28"
29

nothing

C. .

KA
K.K

why

© @™ 0o ™ he

(o]

® ® @ @ ®V T DD DO W O

No state why

16
16
17
16
16
16
19
16
21
16
22
16
23
16
19"
20
11
10
2
5
12"
13
10
9"
14
14

14

16

18'

28

32

20

A. .
A. .
AC

>>§>§>>>>>>>
. .8.).0.

> .

7 "°88888u08%

8

8«

8e

8«

SP?

?p

PP

Nno state

25
25
26
25
27
25
28
25
30
25
31
25
32
25
28"
34

4
2

S
13

B N O

15

16

29

33

K. .
K. .
K.C
K .
K.D
K. .
K. A
K. .
KCC
K. .
KCD
K. .
KDD
K. .
K A
KAA
.CC

D
DD
CDD
.DD
D
iC
CD

why

gpP
8p

ge
8?

gpP
gpP
8P

geo

ge
e?

G*

«P

eP

ep

03/AND only

03/AND only



37 states (out of 129), 07 transitions.

The state transition tables so far were all prepared by hand, and though the
greatest care has been taken they may contain a slip or two. The examples were
meant mainly to illustrate how to describe the behaviour of an actor by a table The
state transition tables for the 10QPY] node actors (t 55.4 f) are generated by program,

and high expectations for their correctness are justified.

5.S Checking the |QOPV] Node Actors

Modelling the message passing behaviour of the lcopy! node actors, and thus showing

the correctness of the jcoPYl acts, is more difficult.

In our checking of Icopy!, we re—use the terminology of queues, gl and inovaiueal
(T4.6.4 and 4 6.6). We continue having separate actors for the jOOPY] inport and
outports, but we leave open how !IGPY] manages the buffers When modelling the
behaviour of the copy) node actor and its environment, we are dealing with the

participants shown in the following Lucid graph (here: twin outport COPY)

COPY
o+
H----- h + +-+
+ 0
4— -

The ICOPY! inport (1) is in communication with its supplier (p like "parameter"), and'
each iQOPYI outport (0) is in communication with its specific demander (g like
"greedy"). Inorder to differentiate both outports, we label the left side with lower

case letters and the right with upper case.
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S.S5.1 Massaga Passing Statas of Icopvj Noda Actors

The universal Icopy! act has an arbitrary number of outports, specified only in
the [QOPY] node actor creation. The daton queue in each ICOPY! outport can hold an
arbitrary number of datons (of type jANYtYPE;). We shall now try to condense the
state of the IQCPYi node actor into a manageable form.
For our modelling, it is sufficient to characterise the state of each jcopy! outport

actor by a triplet:

4n, v> where
m is
9 is the daton queue at this outport,
1? is
( 1* \% are )
\Y is the "novalues" of this outport, such that
1* | \" (@]

Such a icopyj outsort actor state is clearly not one of the outport states (* 5.3.3);
a 'COPY! outport actor consists of more things than just an outport This clash of
terms is regrettable, but one can live with it

The initial state of every JcoY! outport actor is <iV,bottom, 0> The state of the
ICOPYI inport actor is just a message label, and it is initially N. The state of a complete

ICOPYi node actor Is the sequence of the states of its cutport actors and of its inport:

«n., q,v>, i> state of the single—eoutport COPY,
<Gn, g,v>, <k,p,w>, <> state of the twin—eutport COPY,
<00, o/, ... o0,_j, t> in general (n = number of outports).

We intend to model only the message passing behaviour, and we can therefore go
one step further. We need to incorporate merely the queue lengths in the outport
actor states, Instead of the queues themselves. More precisely, this modified Icopy]
state is then its massaga passing stata (but we omit the words "message passing"
most of the time). Inour tables, we will print the message passing states of CQpPvI in
the order shown above, albeit again without the commas and the angle brackets.

An example of afcSpYl message passing state is (twin outport iCQPY!):

56.1
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DI. 2. A

Here, the left IcoPYl outport actor has one daton queued; it has just delivered the
value of that daton. and its demander still has to confirm the acceptance. The right
ICOPY! outport actor has two datons queued, but it is otherwise inactive. The COPY]
Inport has just issued an A request.

An intermediary state of the jCOPY] node actor is any state in which this actor is
enabled for further state changes without requiring a state change in any demander.
A theorem can be formulated: if k is the minimum of the Inovalucal of all outports of a

IGCPYI node actor C. then k can be non—zero only inintermediary states of C

5.5.2 The Actions of the Participants

How many actors take part in our modelling of COPY!, and what is each of them
allowed to do? Wecall an agent any actor which might change the 'COPY! state.
As 3tated before, we have four kinds of agents: the demanders, the outport actors,
the inport actor, and the supplier If n is the number of jOOPY] outports, there are
altogether 2 * (n*-1) agents In every state of ICOPY] at least one agent is enabled for
a state change, unless there is a deadlock Indeed, any number of agents may be
enabled for any number of state changes Each agent carries out at most one
transition in a single go, but different agents are permitted to ' fire" simultaneously

The rule for Ino.-ma(* 4.7 and 5.3.1) must be slightly extended Our model for

the jCOPY, node actor Is in normal priority if simultaneously
— none of the message labels (inport or outport) is A,
— the Inovalue! is jfinalbiil< at each jCOPY outport whose message label is K

— the jcoPY! inport state is C only if at least one {COPY] outport is currently

interested in the daton value to come
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Section 5.3.4 f stated already the actions of the demanders and of the supplier,
but it remains to sum up the actions of the ICOPY! inport actor and of the ;copy]
outport actors. These code fragments are closely related to the core of the Icopy]

act, and they were used almost directly to produce the state tables.

5.6.2.1 Action by the IcQPVI Inport

The jcQPYI Inport actor (l) is capable of examining and changing any part of the
[COPY1 state (though it would not alter any outport message label). The inport actor
does all those tasks which concern more than one outport, and it communicates with
the outports mainly through the .::i:1::i and the queues. The actions of the inport

are essentially:

5521



label ;

are non—zero

begin
| :*  the inport state, being a message
acond := true if all the "novalues”
ccond := true if for at least one outport:
the message label is C and
no daton is queued for

if (1 =c)

that outport ;

and
(acond or not ccond)
then the inport state may be changed to N ;

if the novalues in all outport actor

states are finalindex

acond

must each novalues be decremented by one

normal Ex

in one

is greater zero
its novalues by one,

its daton queue

then begin
if (10C) and (1 <> K) end
then the inport state may be changed to K ;
end
else begin
if I =H
then begin
if acond
then the inport state may be changed to A
but then also
elsc if ccond and
then the
end ;
if Il =D
then begin (one may do the following, all
for each outport
do if its novalucs
then reduce
else append the daton to
but then also
set the inport state to A ;
end end end ;

5.5.2.2 Action by a [CQPVI Outport

inport state may be changed to C ;

go;)

V» 19

There Is one ICOPYI outport actor for each [COPY] outport. An outport actor (0) is

capable of examining and changing any part of the fOQPV] state (though the only

message label It would alter Is its own one).

Each outport cooperates, of course,
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closely with the inport. The actions of an outport are essentially:

begin

OS :« the respective outport actor state ;
ML :m the message label in OS ;

if HL » C and normalEa
and a daton is queued at this outport
then the message label in OS may be changed to O ,

it M s K
then the novalues in OS may be changed to final index ,

if M. 3 A

then begin (one may do the following, all in one go:}
if a daton is queued at this outport
then pop the oldest daton off that queue
else increment by one the novalues in OS ;

but then also
change the message label in OS to N ,
end ;

end ;

6.5.3 Simplifications

The message passing state of the fcOPYl node actor has been presented above,

and it was obtained by pruning the total state of 'cOTVi. Refore we generate the state

transition table of a iOOPVi node actor, we apply the following simplifications to bound

and reduce the number of states.

1)

2)

We pretend that the fOOPY, node actor memorises only the diffaranca between
Inport index and outport index Itis easy to see that the actor handles the
absolute inport index correctly

We ignore the detailed contents of the daton queues: after all, even the [co?YI
node actor does not analyse the daton values. We trust that the actor makes no
mistake in appending every new daton at the tail of the queue, and popping

datons off the head of the queue We memorise the langth. of the daton queue.

ftft3
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closely with the inport. The actions of an outport are essentially:

begin
14 := the respective outport actor state ;
UL :» the msssage label in OS ;
I f ML * C and normal Ex

and a daton is queued at this outport
then the message label in OS may be changed to 0 ,

if ML = It
then the novalues in OS may be changed to final indei ;

if ML = A

then begin (one may do the following, all in one go;)
if a daton is queued at this outport
then pop the oldest daton off that queue
else increment by one the novalues in OS ;

but then also
change the message label in G5 to N ;
end ;

end ;

5.5.3 Simplifications

The message passing state of the fcoY] node actor has been presented above,

and it was obtained by pruning the total state of I'CQTYi. Before we generate the state

transition table of a GOP node actor, we apply the following simplifications to bound

and reduce the number of states

1

We pretend that the iCOTM node actor memorises only the dijjaranca between
Inport index and outport index Itis easy to see that the actor handles the
abaoluta inport index correctly.

We ignore the detailed contents of the daton queues; after all, even the JcoM
node actor does not analyse the daton values. We trust that the actor makes no
mistake in appending every new daton at the tail of the queue, and popping

datons off the head of the queue We memorise the length of the daton queue.
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3) Our [COPY] node actor is demand driven; only the arrival of a request (at an
outport), or the arrival of a daton value (at the inport), can cause a state
transition. We omit in our tables extra states which are due to delays inside
[COPY]. We assume instead "if ICOFYj can act, it will".

4) We shall study only the jcOPY! node actor with one outport, and the jCOPYl node
actor with two outports. Any ICOPY] with more outports can be built from the
latter.

In the outport actor state, queue length = 0 and lupvalues! = O are both printed as

dot and novaluea = -mimdex1 prints like jnovalues] — 1.

5.5.4 Single outport JCOPAH

We study first the single—outport icory: node actor. Such a cory! node actor can
at best have one daton queued (in pipeline ddDF without bulk requests), and its
Inovaljgp! is non—zero only in intermediary states The state table is therefore

reasonably small
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25 stales (out of 75), 50 transitions

The table shows all the states which can be reached from the initial state The states
are numbered (no) from O to 24; their order is due to a hash function (not to be
explained here). For further detail refer to the explanations after the iF3Yl table
(T 5.4). In the why column some letters (g. o, |, p) indicate which actor caused the
transition (g = demander, o = outport actor, | = inport actor, p = supplier) The

message passing states are written in the format defined in section 5 5.1:

' m m outport actor »tete, inport actor state:
(Components;) outport »tete, queue length, novaluee inport state
(represent'n.) masase label, Integer, Integer message label
(exsnple:) N 0 0 N
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The message label N, as well as queue lengths or havalue) of O, are all printed as dot

(for example ... .is the initial state NOO N). Let us study, as an example, one line of
the table:
; C. D 6 Dg 17 Cl. A

f 18 D1. A oi

It shows state number 7. which has 4 successors to choose from; execution is in
normal priority. At the outset, the queue length and !novalue»;, are both zero, the
demander is waiting for a daton from [COPY! (it has set the outport message label
to C), and the supplier has just delivered a daton to jCOPY! (setting the inport state
to D). Incidentally, there is just one reference to state 7, but other states have up to

5 references (e.g. state 24).

A transition is made to state 6 if the demander nullifies the C. State 17 results if
the jOOPY! inport queues the daton. also issuing an A to the supplier (the two go always
together). jOCPY1 gets into state 16 if the demander and the inport happen to act
(as described) at the same time Onthe other hand, immediately after the inport
has queued the daton, and has issued A, the outport may send that daton to the
demander, thus setting the outport message label to D This puts the fOOPY into
state 18. This action by the outport (changing to D the message label in the outport
actor state) would of course be irreconcilable with a nullification by the demander
(as in states 6 or 16, changing that label to N) If these opposed intentions collide
during program execution, the message passing mechanism will take a
non—edeterministic choice. Both choices give ultimately the same affect (due to the
design of the acts, look at [w-.3a.onl). it would have been wrong to resolve this

situation by priorities.
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5.6.6 Twin outport ICOPY|

The first thing one notices when comparing the twin—outport jOOPY] node actor to
the single—outported one is the far larger number of states. With every new outport
the number of states grows by a factor of about 15, since only few symmetries cam be
exploited to reduce the table size. The transition table for the twin—eoutported jOQPYi
node actor has 304 states with altogether 1619 transitions. Because of its 3ize, the
complete table has been put into appendix E we give here only the necessary

explanations, and discuss a few example transitions.

Two further simplifications have been employed in the state transition table for
the twin—outport 100PY1:

5) Our state transition table comprises queues only up to a finite maximum length,
Bind we choose this maximum to be two Our checking method resembles
mathematical induction, and this requires one proof for a starting value and one
proof for the induction step To be correct we would have to demonstrate both
the increase and the reduction of the queue, and we would have to do this both
for the minimum queue and for an arbitrary queue However, since queues have
a linear law of growth and shrinkage, we outstretch nobody's trust when
demonstrating the growing and shrinking of queues only up to a queue length of
two

6) Similarly, the table comprises inovaiue<lonly up to a finite maximum value, and
we choose this maximum to be two
The table lists only current states with queues of a length limited to one, and

with its inovelae»! also limited to one. If one of the successor states has a gueue length

ora Inovalaee] greater one, the successor state number is followed by a minus

It is irrelevant which way round the outports are numbered; if two states result
from each other by permuting (swapping) the outports, we can avoid printing table

entries for both (it is immaterial by which rule we choose either state), Whenever a
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transition leads to the swapped counterpart of a state x, we indicate this in our table
by priming (x3 the state number. There are even cases where both state x and state
X' are among the possible outcomes of transitions. In such cases the state number is

printed with a double prime (x"), with the why field telling only either story.

For example, here are the transitions for one state:

This example for state 1 shows 15 successor states (the double primed state counts
double). Together with the idontity transition, there are 16 (= 4*4) successor states,

since either outport can end up in the state M C, A or K

6.6 Discussion of tho State Transition Tablas

Foolish States

The transition tables contain a fair number of "foolish" states, i e. states which
appear somehow unreasonable. Look for example at state 70 (A .. Cl . C): the ICOPYI
inport requests a daton (from the operand actor p) though the daton is not required
by either Icopyl outport. It is the purpose of execution in ultra priority to get actors
as quickly as possible out of such foolish states; it minimises also their chance of

getting into such a state, in the first place.

Execution Logs

A particular sequence of requests has been discussed in section 4.8.5, where a

icopyl node actor is forced into requesting the evaluation of a daton even though
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neither outport has expressed a wish for that daton (we called it despair). The
situation was saved when, in the middle of the daton evaluation, an A request was
received whereupon the evaluation could be nullified. We have in the meantime
obtained the tools to express this whole scenario much more clearly: we simply write
down the !QCPTI states in the sequence in which they are encountered. This is the
simplest form of an execution log, a graphic representation of how a computation

progresses. The vertical axis is the time coordinate.

Example (Despair)

COPT state
(initial state)
A. . demander g issues bare A
1 COPY resolves A
C. 1 demander g issues C
C. 1 C COPY issues C out of despair
C.1 A C derrander G issues bare A
c.1..1 COPY nullifies the C request
c. A COPY propagates A
c. supplier resolves A
c.. C COPY propagates the original C
Cc.. D supplier delivers D
D1. .1. A COPY accepts D, and generates A
D1. .1 supplier resolves A
Al. .1 demander g accepts D, and generates A
L1 COPY resolves A
Al. demander G issues bare A

COPY resolves A
Note that joOPM issues a IMULIFYl request after C) to the supplier although neither

of the IOOPYI outports received a [NUWLIfr'VI request This shows that this Lucid

Implementation (with concurrency) would be incomplete without iINJX/UrY] requests.
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Example (Trojan Horse)

The Trojan Horsa situation (t 4.8.5) can be expressed with similar ease:

COPT state

(initial state)

demander g Issues A

COPT resolves A

demander g issues C

COPY issues C out of despair

supplier delivers D

COPY accepts D, and generates A
supplier resolves A

COPY propagates the original C
supplier delivers D

COPY accepts D. and generates A
supplier resolves A

demander g accepts D, and generates A
COPY resolves A

dermnder G issues bare A

COPY resolves A (Trojan Horse is discarded)
demander G issues bare A

COPY resolves A

>00°°0°000: »
T RPRR e
>00 >»00

N s

> >
LoPN

States of UDFs

The state transition table for a UDF can be obtained by first generating the
cross product of the tables of the components, and by then eliminating incoharant
states. A UDF state is incoherent if the UDF contains anywhere an outport state
whose message label differs in the inport it is connected to. Equivalent states
(states which cannot be distinguished from outside) have to be eliminated, too.
—This method is altogether rather laborious, and we will not deal with it further than
this.

Alternatively, we can place the UDF in a testbed, "play through" all the possible

request sequences, and write down the emerging successor states of the UDF
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Example ([first] actor)

The UDFHRST is defined (in terms of fundament operators):

FIRST (a) *p WHE p=aFBYp BWD,;
A IARST! act can thus be built from |F3Y and ICOPY!. The state transition table of !FRST!
can be generated from those of |BY] and the twin—eutport [coPYl. For this, we make a
table with one row for the state of each actor. We label each arc (with letters a ... d),
and since certain portions in each actor state correspond to that arc (viz. the port
states) we can write the appropriate letter also into the message passing state of the

actor (we use "7" as placeholders for miscellanies).

act ident ities initially
COPY a?? d?? c

FBY cbd ...
FIRST &> .e

4

We transpose the table, above, and write successive states on successive lines, so
that the vertical axis represents time. In this way we get again an execution log, now
for a system of two actors. Let us play through an example where we send A and

then C to the IARSII actor:
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Example ([first] actor)

The UDFARST] is defined (in terms of fundamental operators):

FIRST (a) =p WHERE p * a FBY p END ;
Alfirst] act can thus be built from |F3Y] and 100PYL The state transition table of IARST]
can be generated from those of IBBYl and the twm-outport ICOPY1. For this, we make a
table with one row for the state of each actor. We label each arc (with letters o ... d),
and since certain portions in each actor state correspond to that arc (viz. the port
states) we can write the appropriate letter also into the message passing state of the

actor (we use "7" as placeholders for miscellanies).

(rmmmmm e states --------- w
act identities ] initially

|
COPY i a?? d?? ¢ .ceeeeenenn.
FBY I cbd cece
FIRST jab

We transpose the table, above, and write successive states on successive lines, so
that the vertical axis represents time. In this way we get again an execution log, now
for a system of two actors. Let us play through an example where we send A and

then C to the jARST] actor:
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copy, FBY (acts) FIRST state
«?? d?? c, cod (identities) (see table below)
°) . (initial state) 0
(1) A.! demander issues A 6
o COPY resolves A 0]
(2y C1 demander issues 1st C 3
C. 1 C c!! COPY (desperate) issues C to FBY 3
C. 1 C cc. FBY propagates C to FIRST'S supplier 4
C.1 C CD. supplier delivers D 5
C. 1 D D.. FBY passes D back to COPY —
c.. .i. A A . COPY accepts D, and generates A —
c.. .1 K. FBY resolves A, FIRST'S supplier "dies’ —
(3) c.. .1 ¢ CK COPY propagates C to FBY —
c.. Cl. ¢ CKC FBY propagates C to right COPY outport —
c.. DI. ¢ CKD right COPY outport delivers D —
c.. .1. D DK FBY passes back D —
D1. 2. A AK. COPY accepts D, and generates A 14
D1. A2. KA FBY propagates A 14
D1. .1. K. COPY resolves A (right outport) 14
Al. .1 K demander accepts D, and generates A 15
1. K. COPY resolves A (left outport) 12
c. .1 K  demander issues C 13
jurp to (3)

Every actor starts in its initial state, of course At the beginning, the demander
of jARST! (being also the superior of the left IGCPY' outport) i3 alone able to change
state. Moving step by step from this point, we eam work out all the other relevant
states of jFIRST.. We end up with a table with a certain amount of redundancy:

— non—deterministic state changes inside the UDF are of no interest any longer,
since we want to model only the message passing behaviour of the UDF as a
whole,
certain components within the actor states change always togtthar, and we can
condense this repeated information to the essential minimum. (The
corresponding state numbers in the state transition table have been printed on
the right of the execution log. We see that some successive steps in the log
collapse into merely one step in the table, and some intermediary steps have no

counterpart In the table at all)

S.e
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By playing through all the possible request sequences we get the following state
transition table of irrsT1 (with reference to the idtntitias, above, the state of irirsT

is ob, where ¢ is the outport state and b is the inport state):

17 states (out of 25), 33 transitions.

5.7 Example ( sieve])! the execution log

Using the isievel example as illustration, we shall now discuss how the messages
pass through the net of actors, and how this yields the computation result. These
actions will be presented in form of the execution logs introduced earlier in this
chapter. There will be one log for the main program, and a second log specifically for
the 1Sifve' UDF

The logs represent the state of large composites (e g main program and UDF
actor) through the states of their components Earlier in this chapter, the possible
state transitions have been listed for most of the components which occur in the

example (11185, fsS], 'PLL'él may be instances of the concurrent binary operator).

They have not been described for 'Wt]. iwfi] is a good deal more complicated than
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|FIRST]. I1ts message passing behaviour depends on its earlier actions (the same is true
for the |Sew)). We will, nevertheless, write the state of jwrj as if it was a point-wist
binary operator (l.e. "oti"), and the reader is asked to take its transitions in the log
as correct. .-wr! and FIrsT! are both UDFs; whatever we learn about the isievet UDF can
benefit our comprehension of these other UDFs. To keep the discussion simple, we

treat [FirsT1 and;WR like prtdtfintd operators, non—UDFs

The jsieve; state will be written "oxi*. where x is either V or ~1. indicating

unexpanded or expanded state. Here is the graph of the isieel program again

(T 4.3.3.1):
Sieve ;
*
{ ol
| PLIS i — 4 az\ »10 -4- s9
4—o—- o « | FIRST |
[y QR S N/ R h
»Z | 4mmn K I j-O” jail
C———. IMOD 1 ---—--—- 4 4-4-4.
s8 f +m
sG
NE
+ !
| rev ! wz | p— 4 »4 1
+ 4—m C———» | WVH | ~————- 4
| s5 t ) -4
o\
rrfl | i3 91 | Sieve {93
C—-- 4 «---4
e | -4- >0
t I P3V |
+ —iml 4 4—%
| Sieve |
*
. i nO
| WRITE |
R 1

To avoid confusion, the actors in the main propram have their numbers prefixed with

an m, while the actors within the fsicve! get ane.
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FERSTI. its message passing behaviour depends on its earlier actions (the same is true
for the !Sieve V. We will, nevertheless, write the state of MR as if it was a pointwist
binary operator (i.e. "ott"). and the reader is asked to take its transitions in the log
as correct. MWR] and iFiRSTI are both UDFs; whatever we learn about the ISievel UDF can
benefit our comprehension of these other UDFs. To keep the discussion simple, we

treat [FIRSTLand WAMR like predefined operators, non—UDFs

The ;Sieve: state will be written "oxi", where x is either 'V or "1", indicating

unexpanded or expanded state. Here is the graph of the 'Sieve! program again

(T 4.3.3.1):
1
Sieve.
H----- + N6
| plus ; — + s3 [ »10 + s9
— - (O » | FIRST |
*7 [T — (S
*z - t 1 1,0 "»n
1" 1" MD
| a8 '
| — s6
4 4 I NE [
—t+
I Ry | »2 -f s4
G----- |]WH | =
»5  I— lw"-f
N
rfl | nfi el | Sieve |s3
C— o+ 4— 4— >
nfi | 30
4 I F3V \
» miml
| Sieve |
4
+ i mo
| WRITS i
+ +

To avoid confusion, the actors in the main program have their numbers prefixed with

an m, while the actors within the 'sieve! get an a
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Only the actors mO.mB exist at the very beginning of program execution. They
have been created by the root actor (which itself has terminated), and each actor is

in its initial state. The ISievel actor ml is a UDF actor, and it is yet unexpanded. The

state is thus:

acts actors identities initial states
WRITE O a

Sieve ml a?b

COPT rr£ ,mB,m0 6?? g?? ¢ can ey

FBY mi cdt

2 ir> d

+ £ -fa

1 nit f

The state of the main program is the ensemble of the states of its components;

an example is the entire entry below the heading "initial states".

Initially, all the actors have xtro priority, except for the ritei actor; its priority
is one. MRy is therefore the one to take action: it issues a jCOMPUTE! request (C) to
the jSieve! ml, and starts waiting for the delivery of a daton value In doing 30, w3:te!
becomes suspended, and the actual priority of the Sw 1ml rises to one Working
out the actual priorities for the remainder of the log might be an interesting
exercise

The kBievel UDF must be expanded (i.e the subnet of actors sO stl must be
created, initialised and bound to the environment) as soon as the attempt is made to
send the first cCOMPUTE] request to the jSieve] ml. This whole process is invisible in the
logs. This newly created subnet has things in common with the product of the root
actor: all the subnet actors are in their initial states, the ;Sieve] UDF s3 is yet
unexpanded. —Everything that is said about the jSieve! m| applies correspondingly to

iSieve! s3, and to the jSieve! inside s3, etc

5.7
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Log of Blava|Main Program

The table, above, can also be transposed (and some superfluous detail can be

omitted), and the resulting execution log for the]Sievel main program goes as follows:

(0)

(1

(3)

Sieve COPT FBY PLUS (acts)
ml, mB.mB.nfl, m4. 6 (actors)
a?6, 67?7 g7> C, cde, .fa (identities)

(initial state)
C WRITE requests C

CiC C.. Sieve s3 expands, and propagates C
CiC cC.. c C COPY propagates C

CiCc cC.. c CC FBY propagates C

Ccic C.. c CD constant delivers D

Ccic cC.. D D FBY passes D back

Cib DL. .i. A A COPY passes D back, generating A
Cib Di1. .i. K FBY propagates A, constant "dies"
D1A Al. .|. K. Sieve passes D back, generating A
DL . . K. COPY resolves A

Al. . K WRITE accepts D. and requests A
L. . K Sieve resolves A, cycle finished
Cl. A K WRITE requests C

CiIcC C . .l. K Sieve propagates C

cic c.. .1. C CK COPY propagates C

Cic C.. .1.C CKC ¢ . FBY propagates C

ClIC C.. Cl. C CKC cCC PLUS propagates C

CIC C.. D1. C CKC CDD constant and COPY deliver D

Cic c.. .1.c ¢ckb D PLUS passes D back

cicC Cc.. .1. b DK FBY passes D back

Cib DL. 2 A A COPY passes D back, generating A
Cib DL. 2 KA A.. FBY propagates A

CiD DL. A2. K AA  PLUS propagates A

Cib DL. .1. K COPY and constant resolve A

if Sieve ml finds the daton to be prime, iirrp to (1), else:
CIA AlL. .i. K Sieve generates A (to get next daton)
Cl. Ji K COPY resolves A

cic C.. .i. , K Sieve generates renewed C

jutp to (3)
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Obviously, there is more to the state of the [Slew] than described by "a?b". As with
the main program, we can log the state transitions during execution of the Biewel

(a and b are retained as its outport/inport labels):

FBY copy Sieve WWR NE MDD FIRST (acte)
»0, ml,s5,iB,*10,s2, m3. s4, s6, s7, s9 (actors)
e>* if? n?? r?? 1?? * k?m mwip pqu qra at (identities)

(4)

(initial state)

C.. derrander issues 1st C
cc. C.. FBY propagates C
cc. C.. C COPY propagates C
cc. C.. D supplier delivers D
CD. DL ,i. .1. ,i. A COPY accepts D. issues A
CD. DI. .1. .i. .1 supplier resolves A
D. . 1. .1 1. .1 FBY passes back D
A 1001 .1 L dermnde’- accepts D, issues A
K Kl .1, 1. .1 FBY transforms A into K
K, K1.1. .1. .1 COPY resolves K

(5)
CK. X1 .1. .1. .1 demander issues 2nd C
CkC K1.1 .1. .1 c.. FBY propagates C
CkKC K1 .1 .1. .1 CiCc C.. Sieve s3 propagates C
CkKC K1 .1 .1. .1. CiC C.C c.. WWR propagates C
CkC K1 .1. .1. .1. CIC c.c CCC c. COPY delivers; NE prop C
CKC K 1.1 Cl. 1 ClIC c.c CCD CCC C. const deliv; MO prop C
CKC K 1 .1. DI. CI CIC c.c cc. CDC cc COPY de! -v; FIRST prop C
CKC K1 .1. .1. DI CIC c.c cc C.C CD COPY delivers D
CKC K1 .1 .1. KI. CIC c.c cc. C.D DK FIRST passes back D
CKC K1 .1 .1. K. etc c.c CD. D. .K COPY res K; MOD pass bk D
CKC K1 .1. .1 K.l CIC CD D.. K NE passes back D (FALSE)

«
CKC) K 1Al .1. K. CIC CAA A K WWH asks for next daton
CKC K1 ... .1. K.I . CIC c.. .AA A .K COPY res A, WVR prop A
CKC K1 ... Al. K. CIC c¢ . AA AK const res A; NE prop A
CKC K1 ... K.l CIC c.. .K  COPY+FIRST res A

(7
CKC K1 ... K.l CIC c.c c.. K WWR prop C
CKC K1 ... K.l CIC Cc CCC c . K NE prop C
CKC K 1 C K.l CIC c.c CCD CCC CK MXID prop C; const dsliv O
CKC K1 C.. K.I C CIC c.c CC. CCD DK COPY prop C; FIRST deliv D
CKC K.I ... C.. K.l D CIC c.c cc CC. .K supplier deliv D
CKC K.l .1. DI. K. A CIC c.c cc. CD. .K COPY pess bk D
CKC K.l .1. .1. K.l CIC CC CD. D.. .K MO pass bk 0; supplier res A
CKC K1 .1 .1. K.l CiC C.D D.. K NE passes back D

if NE delivers the datori velue FALSE jjti]) to (6), else Jxrp .0 (O):

— continued —
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— continued —
F3Y COPY Sieve WWR NE MID FI3ST (sets)
sO. ml sS.sS.sl0.s2, =m3. «4. SO, w7, sS (actors)
eih i>ff rf? I1ff 6 *fm imp pqu el (identities)
(+)
CKC K.l Cl. .1. K.l CiC CcC. K WMR requests C from left op
ckCc k.l pI. .1 K. cilC cD. K COPY delivers D
cke K. .1 .1 k. CiD D.. e K WWR passes back D
if Sieve s3 finds the daton to be prime jurp to (9), else:
CKC K.l .1. .1. K.l CIA A . .K Sieve asks for next daton
CKC K.l Al. 1. K. . Cl. .AA A.. K WWR prop A
CKC K.l | ClI. AA AL K NE prop A; COPY res A
CKC K.I Al K.l Cl. .AA AK MOD prop A; const res A
CKC K1 ... K.l CIC C.. K COPYfFIRST res A; Sieve prop
jimp to (7)
(9)
ckD K. .1 1. k1 DIA A. . K Sieve s3 pass bk D, gen A
CKD K.l Al. .1. K1 DI AA AL *< WAR prop A
CKD K.l 1. K1 DI AAA K NE prop A; COPY res A
CKD K.I Al. K1 DI AA AK MDD prop A, const res A
CKD K 1 K 1 DI . K COPY-t-FIRS? res A
DK K1 K 1 .1 K FRY passes back D
AK. K.l K 1 L K demander accepts D, gen A
KA K.l K1 Al . K FRY propagates A
*«. K.l K 1 L1 K Sieve s3 resolves A
(io)
CK K1 K 1 L1 K demander issues C
CKC K.l K 1 Cl. K FRY propagates C
CKC Kt K1 CiC C. K Sieve prop C
jisip to (7)
Discussion

These substantial logs demonstrate a number of things quite clearly:

We see how the requests (C and A) ripple upstream. They appear as lines falling
from Itft to right, since the outports and high ranking actors are on the left and the
inports and low ranking actors are on the right. Similarly one can see how replies (0)
flow downstream; they form lines falling from right to lift

The log gives numerous illustrations for the behaviour of [cOPY] node actors.
Whenever a daton value (D) is accepted by a jcoPY] node actor, [copy! queues it at all
Its outports. and sends an [ADVANCH request (A) upstream Once a daton has been

queued at IcoPVj it can be obtained from there, any number of times. The main
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program log shows furthermore how [COPY] can satisfy one outport xuh.ik another
IcoPyl outport is hung waiting for a new daton. (Our main program contains a cycle,
cycles are always "tapped" by a jcopy). and every cycle—tapping Icopy] must handle

such interlaced requests.)

The log quotes the ttngth of «wary quwa at every moment. Inour LUX
implementation, we used a shared queue with reference counts. This shared queue is
at every moment equal to the longest of all the individual queues.

We see how IF3Y1, upon receiving its first proper A request, abandons (K) its left
operand and switches over to its right operand. IFIRSTI goes even further: it abandons
its operand upon arrival of the first daton.

The work of the jwrite) actor mO consists obviously in repeatedly

(1) issuing a C request to the jSieve! ml,

(2) awaiting daton delivery.

(.3) printing the daton value,

(4) issuing amA request.

Hypothetically, if \ARTE chose to skip (4) it would get exactly the previous daton
again, MeiTE can get at the next daton in the history (the next prime number) only
after sending an [ADVANCE) request (A) to the [Sieve! ml. Upon this A request, a
clean—up is carried out. The log shows how A is propagated upstream, but shows also
that jcoryl does not propagate the A further. (OOPY! had anticipated this A already
upon receipt of the daton The [sieve] (having a IcQPYI at its inport) behaves likewise

Whenever ajcopy) node actor issues a C request, it does this in response to the
arrival of aC request at an outport. (Not every C request at an outport is propagated
by [copY] ) This outport is then called the driving outport In the [Sieve! main program,
for example, the left jQOPY! outport is always the driving one However, the role of

driving outport need not always fall to the same outport. In the ;Sievet UDF, for

6.7
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example, this role is first taken by [QOPY] outport si and later by sB. While an outport

is driving, its queue can only be empty or of length one.
Focussing more specifically on the jSieyel UDF, a few points deserve mention:

One can formulate an obvious theorem: "the computation of any daton must be
carried out in afinite number of steps: otherwise the computation is in a livelock".
This implies that one daton must require only finitely many UDF expansions. The
ISievej UDF satisfies this clearly: the newly expanded jSievcl computes its first daton
without expanding any further fSievel, and after that, exactly one new jSievel is created
whenever a new prime (= result daton) has been found.

The log reveals also that, before the jSievel can deliver a daton, it must consume
at least one daton from its supplier. One can trace daton deliveries simply by
scanning down a log column until one comes to a point where it changes from C to D
and then to A. In the case of the {Sieve!l UDF, the outport is labelled a and its inport b,
these are therefore the log columns of interest

The example demonstrates hardly any "tricky" situations there are only few
bare IADWMCK! requests, and no iCOiiiPUfEl request is nullified The example appears
even to be deterministic, but this is not the case The log shows the states as if every
transition was made at the earliest possible moment In reality, however, each actor
is free to delay its action for any period The log would be of enormous size if all the

possible alternatives had been included in it
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CHAPTER Vit Ways of Improving Efficiency

«.0 Introduction

Any Lucid program can be built up node by node, starting at the lritei node.
During this construction, each intermediary structure can be examined for specific
properties. This chapter will show that, under various conditions, structures can be
replaced by simpler ones. Simplicity means often smaller overheads, less
administration (though on cost of generality), and less administration means in most
cases faster execution.
We shall look in this chapter at various code improvement techniques:
— Queuing analysis (Cycle Sum Test),
— Node condensing (act expansion).
— Enriching the protocol,
— Tailoring IcQPYj acts,
— Tagged Data Flow, and
— "Box of tricks" for the compilation

Beginning with this chapter, matters will be treated less formally: the general

method will be sketched while the detail will be left to later research.

6.1 Queuing Analysis

It is characteristic of our (demand driven) implementation that all the daton
buffering is done by IGCPYl node actors. However, the 100PY1 act (t 4.6.7 ff) makes only
too clear how much administration is entailed even in very simple operations. There

are enough situations where a much simpler [COM node actor would suffice:
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— there may be an upper bound for the queue length.

— the offset between the outport indices may be invariant (and the driving outport

may be always the same).
— the buffering may be unnecessary altogether.

Sections 8.4 and 8.5 outline ICCOPY! acts which can exploit such special conditions. The
log of the |Sed program (r 5.7) illustrated the growing and shrinking of the queues
quite vividly. One could now extend the Lucid compiler by a simulation phase which
generates logs, and which detects the queuing behaviour in this way. Such a device
would provide the optimiser with all imaginable facts, but it would be a very complex
program (also very slow in execution) Anyway, there is a much simpler method
which provides almost the same answers. The method is the index of/sot method

(derived from Wadge's Cycla Sum T#»t [Wad79]) which will be described now.

Indax Offset and Offset Matrix

Focussing on a particular port of an actor, it is possible, at every moment of
program execution, to state the index of the daton currently due to traverse that
port (say, upon a IGOMPUE request). Initially, every index is zero. As program
execution progresses, the index increases by 1 with every [advance! request traversing
the port. Input histories are gradually consumed and output histories are produced,
and we see the indices at inports and outports grow, more or less synchronously. For
example, in a pointwist node actor (e g. IPluslor j]JFj) the index is the same on all
ports (if we ignore intermediary states). However, at [Pa?! actors the index at the

right inport lags by 1 behind the outport:

FBY ports Daton index ftime
outport Q 0 1 2 3 4 5 8
inport p 0 - m m®m D @ oo ,,,
inport P 0 0 1 2 3 4 5

6.1
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The left |mBriinport "dies" at the first hdvance Irequest, Its index jumps to IfinaUnde»! (we

write With INEXT] it is the other way round, its tnport is one ahead of the outport:
NEXT ports Daton index -~ time
outport S 0O 01 2 3 4 5
inport p 0 12 3 4 5 6

These tables for 1Yl and INEXTI suggest how to characterise the behaviour of the port
indices. We use a matrix with as many rows as the node has outports, and as many
columns as the node has inports. Each component of this matrix i3 called sin index

offset, and it is defined:

index offset = MINIMUM (outport index — inport index)
all indices

Included in this minimum are only the situations where datons actually traverse both
the inport and the outport (the 0-0 of [next! is thus omitted) At least for the
fundamental operators, except jCopY!, such an offset matrix is easy to write. Each
component of the matrix is either an integer or A component of value

marks those inports from which an outport is totally independent

Most nodes have only one outport, and the matrix has only one single row there
The matrices for constant, 'READ and IMRITEH nodes have no components. The matrices
for pointwf*« nodes have only components of value O The matrices for;EBA and iNEXt

are:

FBY: |0 -1 NEXT: | t1
There is no corresponding easy rule for the indices at IcoMYl. Its inport index is
usually the maximum of its outport indices, but this rule does not apply strictly.
(The strict rule goes as follows, we mark a 1QOPY; outport as 6ar« whenever it gets a
bare laSvancS request or an mpvance, ftntthnd«t  INitially, and after a proper ladvancel,
this mark is cleared. The inport index is the maximum of the unmarked outport

indices, if any. otherwise it is the maximum of alt outport indices ) However, there
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are other ways of finding out the jOOPYl inport indices. Every GOPM node actor is
connected to other node actors, and from the indices of these other actors one can
derive the indices at the IQOPY! itself. We can provisionally assume that the outports
of IQPYL never go bare, and apply a strict maximum rule for its inport index;
consequently, all its index offsets will come out as non-negative. At every moment,
one component of the IGO0 offset matrix is usually zero (viz. the one of the driving

outport).

Intuitive Meaning of Index Offsets

The meaning of index offsets has not been made clear yet. There are, however, many
analogies at hand for illustrating it.

Data Flow computations are organised a bit like the work on a production line
(in a somewhat old—fashioned factory): the components are accepted from preceding
production processes, operations are applied to these components, and the resulting

item is passed on further down the line

Our old analogy of the small restaurant "Chez Lucien" can help; after all,
restaurants produce meals. Pots and pans are needed for the cooking, but our cook
has only few of them. The cooking of a meed can begin only after the pots and pans
from an earlier meal have been washed up. For the first meal(s), however, the pots
and pans are taken straight from the shelves One can say, the pots and pans are

"injected Into the production cycle" to start things up

In Data Row, as well as in these analogies, work can go on only If all the
prerequisites are available There can never be too many prerequisites, i e. it does
not Interfere if the prerequisites for later work queue up, as this creates merely
some “alack” in the schedule If there are many kinds of prerequisites, the supply
with the least slack determines whether production goes on or not. Stack matters

most in cyclical production processes, i e. where the supply for a production process
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is somehow conditional on earlier output of the same process (like re-using pots and
pans). Indeed, work can go on only if there is a modicum of slack: each production
step takes the prerequisites [rsmovts one unit of slack), manipulates them, and

outputs them (restores one unit of slack).

Every iFBY] node creates slack, it injects one daton into the stream flowing from
its right inport to its outport (no extra 3lack on its left inport). Every INEXT] node
removes slack, it eliminates one daton from the stream. The offset matrices express
the provision or removal of slack on the stream flowing from an inport to an outport.
Nsgativs index offsets indicate the provision of slack, and vice versa. (This definition
is now standard, for mathematical reasons [AsW83]. Early publications [Wad79] used
the opposite definition.)

At some moments, however, there may be more slack than busy nodes to use
it up. This means the slack has to be accommodated somewhere else, namely in a
icopyl node. Its buffer queue takes up the remaining slack, and the queue length is
therefore less or equal the (inverse of the) index offset XOTY; nodes provide no cure

if there is insufficient slack.

Wadge's [Wad?9] Cycle Sum Test states (in essence) that every cycle is certainly
free from deadlock if it has slack of at least one daton. A cycle with fewer MNEXT;s than
|F3Ms passes the Cycle Sum Test. The Cycle Sum Test gives merely a worst cos*
analysis (the rule is sufficient, but not necessary), whereas log3 give the whole
answer (only: to produce the complete tog may take very long, possibly forever).
Further below we will see how particular constellations of nodes permit a relaxation
of the rule - The Cycle Sum Test determines the minimum queue length, and
requires it to be at least one However, in order .to optimise fcopYl (t 0 4), one needs
to know the mosimum queue length This can. still, be found by index offset methods

(t "iteration", below).
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Any serious computation involves a large number of nodes, and one would wish
to know how much slack there is in such a large composite. This can be achieved by

matrix operations, to be described now.

Nat Construction

An arbitrary Lucid graph (a net or a subnet) may be constructed using merely
two tools: juxtaposition and iteration (see also [Fau82], pages 140 ff). At each

construction step, we can determine the offset matrix of the object built up so far.

1

node O node 1 node
4— i+
0 1
1 2
4 4
Juxtaposition Iteration

Juxtaposition is the operation which takes two arbitrary nodes, and places them
side—by—side. Iteration is the operation which takes an arbitrary node, and connects
a particular inport to a particular outport. Both operations re-index the inports and
outports in the obvious way

The number of inports of the juxtapositioned super-node is the sum of inports
of its inner nodes, and the same is valid for the outports. The offset matrix of the
super—node is obtained by placing the offset matrices along the main diagonal, and
by padding the remainder with For the example above (leta, 6, ¢, d be

offsets):

8.1
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S-Ode 0 : node 1 : uxtaposition:
| o * c a 6 —
d

The number of inports of the ittratid super—node is one less than that of its
inner node, and the same is valid for the outports. The offset matrix of the
super—node is obtained by forming the muimum of the index offsets along the paths
which connect the new outport to the new inport. The matrix component for the
inport and outport to be connected must be < 0 (otherwise the net may deadlock).

For the example above:

inner node iteration:
H---aee——
[ a 6 max (a-t-d, bj
I ¢ d (e mist be < 0
s = latd —max + 6 —max |
= |l a~d - b )

The condition "e < 0" is due to the Cycle Sum Test; "s" expresses how much total

slack there is on the node-internal paths

Example (ISieve! main program)i offaat matrix

We are now able to apply this method, for example, to a subnet which occurred in the

main program for the ls>e|:

4
We want to work out the queue lengths m the iGQPM node at the bottom. The offset

matrix of the IPLUS|] node consists only of zeros, and the matrix of the IPLUS node

compounded with the "1" is just a zero. The matrix of the iPaY! compounded with the

6.1
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"2" is just a -1, and the entity consisting of "21, [f§yJ " 1" and IPLUS! gives therefore an

offset matrix of just a—L Yet, we know nothing about the matrix of our jOQPYL.

2 FBY 1+... COPY : uxtaposition:
"1 c
d c
d

We connect (= iterate) the outport of the compound to the jcopy! inport, and get:

c—1
d—1

|
|
and connect the outport of the whole thing to the right [COPY] outport. This leads to a
matrix without any columns (since there are no inports), but there is also the
condition "d— < 0". This condition states that the jcopy! node must provide buffer
space for (up to) one daton on its right outport. The left jCOPY] outport is the only
subnet outport (it must be therefore the driving outport for the whole subnet), and
its queue length is therefore taro
But this is not all The queue lengths were calculated under the assumption that
we are not in an intarmadiary state In other words, it describes the state where the
daton delivery has been acknowledged by an [ADVANCELrequest. During the evaluation
of a daton the ICOPY! queues can swell to a length which is one greater than calculated
above. Inour example, above, the left iCOPYi outport must thus provide a buffer for

one daton. and the right COPY outport must provide space for two, and this is indeed

in harmony with the log (t 5.7).

Offaot Matrices of UDFa

The offset matrix of a non-reeur*ivek UDF can be determined just by applying

juxtaposition and Iteration, as described

6.1
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Matters are more difficult for a recursive UDF, since its offset matrix is defined
in terms ofitsslf. It is nevertheless quite straight forward to compute. We apply our
usual construction process (juxtaposition and iteration), though using a matrix of
unknowns for the recursive UDF. Once the construction is done, we can equate the
resulting offset matrix with the matrix used at the outset, and we are left with a
system of linear equations or inequalities. The solution of this system is the offset

matrix.

Example flfirst])

This process can be illustrated using a recursive definition of jFIRS;:

FIRST a a a FBY (FIRST a) ;

The corresponding Lucid graph is (ignore the offset matrices for a moment):

4
t_
[N 1 COPT
F——
------ 1
\ FIFIST
/-1
4

The offset matrix o f ARSI] has only ono component, namely/, the subnet o flfbYi and
IARST] (framed in dots in the drawing) has the offset matrix <0, /-/>. We iterate this
subnet with the [(Iffﬂ node, and have to form the maximum of the offset matrix above
(the offset matrix of our IcopV! Node is yet unknown). The end result is a JHRSTl node

again, and we equate therefore that maximum with 7 itself'

/ = max | 0, /-1 j

6.1
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The solution is /7 * O. which means the sole component of the offset matrix for the
UDF IRBST is zero. We conclude that our COPY has the offset matrix <0, 7>T. as
shown. It has therefore buffer space for one extra daton on the right outport and

none on the left (actually one more each, to allow for Intermediary states).

The same process can be applied to the recursive UDF Jwagj, and we would find
that both components of its offset matrix are — The sole component of the offset
matrix of the recursive UDF ISieve] is also «. This means that, in either UDF, the
inport indices may be arbitrarily far ahead of the outport index, and its actor might
therefore have unbounded buffering needs. We know from the log, however, that tach
invocation of the [Sieve! retains one daton; there is one invocation per prime. If we
made a log of \wvr!, we would find that the top invocation retains one daton whereas
all earlier invocations have no memory. - By the way. the offset matrix of ILlPOMis
<0, -1 > and, again, the top invocation retains one daton whereas all earlier

invocations have no memory

6.2 Act Expansion, and Node Condensing

The translation process described in chapter IV leaves us with a large number of
actors (viz. one actor per node). This is exactly what is needed for a computer of the
latest design, many cheap processors closely coupled together In traditional
computer systems, however, concurrency must be restricted to those cases where it
is essential; some uses of the concurrent OR are such essential cases (Real time
requirements provide an unending supply of further examples, but that topic goes
beyond this thesis.) We turn our attention in this section to an optimisation for a
setting where concurrency must be minimal. The optimisation technique of this
section is not applicable where the superior is a concurrent operator or where the
Inferior has more than one reference K copy]) - We prepare the program for this

optimisation by replacing concurrent operators by their non-concurrent
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counterparts wherever possible (i.e. wherever that is not against the idea of the
program).

As far as this section is concerned, three parts of every node act (t end of 4.1)
are particularly relevant: X-part, Y—part and exception part. The X-part is
executed only once at the beginning (the actor initialisation is part of this), the
Y-part is executed in every loop pass, and the exception port is executed in the

event of an exception.

When a node actor gets a [COMPUTE] or [ADVANCE! request, it resolves It within
exactly one loop pass, i.e. by executing the Y—part or the exception part.
An undirected Ireceivel is the first instruction in the Y—part, and this is exactly where
the actor accepts all ICOHPUTEj requests Some acts ("/tnito stato machinot". such as
IF3Y] or INEXTI) do not fit into this layout right away, but they can be brought into the

universal shape with the help of 'CASE statements.

On the side of the superior, a mere two pieces of code produce the requests.
The daton value is acquired Trom the operand actor by calling 7e-.ra-.ont (Which issues
also NULLIFY!, if required), and an 'EXCHPTIONVADVANC—] does the rest (Concurrent
acts use generally means other than IctDaton!, which is why our optimisation

mechanism cannot be applied there.)

The optimisation is easily carried out: just append the inferior X-part to the
X—part of the superior, substitute the call to rca-.Datonl by the inferior Y-part, and
substitute the IEXCEPtIONadvance- 7 by the inferior exception part. —Clearly, this
transformation is an expansion (* 4.3.2). It has no effect on the computations, but it
reduces the number of actors and the amount of message passing The expansion is,
of course, hardly possible If the inferior has more than one reference (sole example
iCOPY1 inport actor). It goes without say that no law forbids the expansion of

expanded code; expansion may indeed be re-applied up to any finite depth
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The code of a UDF act Ustlf (t 4.3.3.1) can be put in place of the UDF reference
(i.e. expanded), but the instructions inside the UDF act (ICRSATSI etc.) must clearly
not be expanded (tosy «sponsion must be maintained, T4.3.3.1). UDF actors are, like
all node actors, usually accessed from more than one point (at least from 10.tD.tonl
and from [EXCEPTIONADVANCE-]). The UDF expansion must be programmed with care
so that one UDF subnet is not created more them once. —If a UDF is unlikely ever to
get a ICQOKPUTE] request, it can be advantageous to leave it unaxpandtd, even if the
UDF is non—recursive. It will use hetrdly any space until it gets its first [COMPUTH
request.

Act expansion has its drawbacks. Without it. the program would use mainly the
standard acts (t 4.5), and only ine UDF acts would have to be defined and compiled
Individually. The thartd use of (standard) acts keeps the memory requirements low.
As soon as one standard acts is expanded and integrated into another standard act,
we end up with one act more, which has its price. One has to weigh the number of
actors against the number of acts. Generally, act expansion is indicated if it greatly
reduces the number of actors It is of real benefit only if applied to a depth much

greater than one.

6.2



Exampl™* flISlavi main program): «et axpanaion

The subnet from the ISievel main program is well suited to demonstrate act expansion.

Here is the subnet once more:

--------- h x5
'T'H-—-- |
H-——-+
H----% x3
1"2"H------
H---—-k

X8

We start our analysis at the subnet outport (as did the translation algorithm of
section 4.3.4), namely the outport actor {*0] of [COPV]. Its inferior {71 cannot be
expanded (at least not straight forward) since it has two superiors: we leave Q
unchanged for the time being and move on to its inferiorj7j]. Its inferior 72, the |F31

actor, can be expanded. The relevant portions in actor 77, are:

(* Declarations: Viriitn o e)
LABEL 1 ;
VAR request : MSGTYPE ; inde» ;. INTEGER ;

*2 . ACTOR ; result : ANYTYPE ;

(» X—part and initialisation: )
(,,«*):= RECEIVE "ROM (Creator)

(* Y-part: °) 1
result :r OstDitan («2 index) i

(* Exception part: *)

1: (request, index) Reveal i

IF request * ADVANCE
THEN EXCEPTION (request, index) TO (xS)
RESET ;

6.2
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We expand the iFIM actor [52] and obtain a rather clumsy piece of code (this is

essentially |Act_Fby I):

(o

(*

—
(]

Declarations: Ksrsien 7/ )
LABEL 1 ;
VAR  request : 1ISGTYPE ; index : INTEGER ;
*3. s4 : ACTOR ; result : ANYTYPE ;
X—part and initialisation: *)
(, . «3. *4) := RECEIVE FROM (Creator) ;
Y—part :
IF index = 0
THEN
result := GetDaton (index, *3)
ELSE
result := GetDaton (index—1, x4) ;
Exception part: *)
(request, index) := Reveal
IF request = ADVANCE
THEN BEGIN
IF index = 1
THEN EXCEPTION (request, finalindex) TO(x3)
ELSE 1F index ' final index
THEN EXCEPTION (request, index ) TO(«S, x4)
ELSE EXCEPTION (request, index - 1) TO (x4)
END ;
RESET ;
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The Left operand of the IFay; is a constant, and our code becomes a good deal simpler

by expanding IAct-Conataio

LABEL 1 ; (» Declaration*. Version *
VAR requeat HSGTYPE ; index INTEGER ;
*4 : ACTOR ; reeult ANYTYPE ;

(«X —part and initialieation:

(. , *4) :m RECEIVE FROM (Creator) ;
IF index =0 (» Y-part.
THEN result «m 2
ELSE
result := CetDaton (index-1, x4) ;

1: (requeat, index) := Reveal ; (e Exception part.
IE (requeat - ADVANCE) AND (1 <> iIndex)
THEN BEGIN

IF index = final index
THEN EXCEPTION (requeat, index ) TO (x4)
ELSE EXCEPTION (request, index-1) TO (x4)
B\D ;
RESET ;

°)

*)

*

It is also easy to expand the right operand of IFov1, the :PLUS, node. The "index fiddle"

of iFBYi carries through to the operands of IPLUS]. We expand the left operand jth] as we

did before with[x3], and we get

LABEL 1 ; (« Decl. Version 3
VAR requeat ; HSGTYPE ; index INTEGER ,
xS ACTOR ; reault ANYTYPE ;

(¢ X-part and initialisation.

(G a«) ;« RECEIVE FROM (Creator) ;
IF index =0 (e Y-part.
THEN result « 2
ELSE
result ;* 1 ¢ GetDaton (index-1, xS) ;

I: (requeat, index) ;= Reveal ; (e Exception part.
IF (requeat < ADVANCE) AND (I <> index)
THEN BEGIN

IF index = final index
THEN EXCEPTION (requeat. index ) TO (x«)
ELSE EXCEPTION (requeat, index-!) TO (xi)
B\D i
RESET ;
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The next step would be to expand the ICQPYi outport actor x8l, but we hesitate here.
Firstly, the code of [5s] Is too massive to benefit when expanded; secondly, we cannot
apply expansion any further because of [[T] having two superiors. Thirdly, if we did
nevertheless expand [xo] and integrate it in [XTJ. the jOOPY inport would end up trying
to request from itself. However, LUX actors cannot exchange messages with
themselves. On the other hand, we found in section 5.7 that jxo] is always the driving
outport, and that the queue length on the right inport is one. This is why [xe] need
never exchange messages with [xT], and expanding [55] would therefore not cause any
problem.

To bring the example to a conclusion, let me anticipate a tailor-made IGQPU act
with just the right properties (with a "cyclic" buffer of size one) which will be
presented in section 6 4. Special attention has been paid to making sure the act can
handle bare 1ADVANCE requests properly. We expand the constituents of that 1copv!

act, and get one node act for the tntira subnet:
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ACT ActMlO Kartton 4
LABEL 1 ; (» Declaration* )
VAR superior : ACTOR ; request : MSGTYPE ;

now. index : INTEGER ; result : ANYTYPE ;
BEGIN
new i * 1 ; (» X-part °)
REPEAT
WHILE TRUE DO
BEGIN i
(superior, request, index) := RECEIVE () ;
(» Y—part: )
WHILE new < Index
DO BEGIN 01
new ;= new ¢ 1
IF now = 0O
THEN result := 2
ELSE result result ¢« t ;
END ;
11
SEND (DATON, result) TO (superior) ;
END ; (« End of inner eternal loop. =«)

1: RESET ; (= Exception part. )
UNTIL FALSE ; (¢ End of outer eternal loop. =«)
END ;

The cell jnow retains the last index for which the [result! has been computed, and the
evaluation does some "catching up" (WHILE nw~Qndex!) when required This elaborate
mechanism has been inherited from the tailor-made [copyl act; it needed this

mechanism for handling bare iADVANCE! exceptions correctly.

An optimising compiler could go a step further. It has been mentioned that
some acts must be conditioned to be suitable for expansion (* beginning of 6 2,
"finite state machine") However, once expansion has been carried out to
exhaustion, the reverse conditioning can be attempted If the Y-part handles the
evaluation of Its initial daton differently from the rest, It may help to unwind this
initial loop pass (make a copy of the loop body, specialise it for one index value), and

to place It before the loop (l.e. append it to the X-part). This process may be applied

repeatedly.
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One loop pass (vtz. setting of the starting value) can be unwound in our example.
Very little computation is actually carried out from one index value to the next, and
the computation could therefore be done in the exception part. Some reorganisation

of the program results in:

Act_*0 ; Version 5
LABEL 1 ; (* Declarations *)
VAR superior ; ACTOR ; request : MSGTYPE ;
Index . INTEGER ; result : ANYTYPE ;
BEGIN
result i* 2 ; (« X-part "
REPEAT
WHILE TRUE DO
BEGIV 1]
(superior, request, index) := RECEIVE () ;
(* Y-part is empty )
SEND (DATON, result) TO (superior) ;
END . (+ End of inner eternal loop. &)
1: IE Reveal S ADVANCE (» Exception part. )
THEN result :* rasul» ¢ 1 ;
RESET ;
UNTIL FALSE . (= End of outer eternal 1loop. )
END

6 2
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Even better, the compiler might detect and exploit that the result is a linear function

of the daton index:

act Act-Ji0 ; Varaion 6
LABEL 1 ; (« Declarations )
VAR superior : ACTOR ; request : H8GTYPE ;

index : INTEGER ; result : ANYTYPE ;
BEGIN (» X—part la empty )
REPEAT
WHILE TRUE DO
BEGIN i

(superior, request, index) .«< RECEIVE () ;

(» V—part: )
raault i- Index ¢ zZ ;
(= := index e increment * start )
11
SEND (DATON, result) TO (superior) ;
END ; (» End of inner eternal loop. =*)
1: RESET ; (» Exception port. )
UNTIL FALSE , (» End of outer eternal loop. =)
END ;

Actors created from this act have no memory, and the act is therefore as easy to

expand as ;Ac:_ConstZ!.

6.3 Enriching the Protocol

The universal protocol (T4.2) has proved just right for all the explanations
so far; amore refined protocol might well have blurred the relevant issues. But we
shall now study some protocol extensions, most of them aimed at making better use

of the [(OPY, node actors.

All replies were so far of message type!3aton!. A reply of the alternative message
type iIcon»TAMf] could imply that all later replies will have the same value, gF] and
[c5PY], even infitfl and /WL could take advantage of this extra information. Itis
unfortunately not easy to recognise all structures which deliver constants
—Occasionally, actors have to switch into the "through." mode, where all subsequent

requests and replies are passed on unchanged This situation could be optimised by
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operand redirection, i.e. by extra Information in the reply telling "substitute this

operand from now on by actor xy*

Here are some extended requests (all directed at actor e):
[AUGVENT?: (e = IQOPY1 outport) create a further iGQPY1 outport actor,
ILENGTH?I: (e = ICOPY! outport) enquire for current queue length,
IQUSUEdI: (e = ICOPY! inport) append daton d to the queue.

[RESTART!: reset O as if it had just been created and initialised,

IKILL!: eradicate O and its dedicated inferiors.

Only the first two requests get replies The requests are listed in the order of
Increasing relevance, and difficulty. The list is anything but complete (further
suggestions: "bulk demand" *4.6.13, and a special jBARS] exception in place of the
bare jADVANCE!. Let us study the extensions one by one.
laugment!
If one 'COPY) node actcr feeds dirtetly into another [COPY] node actor, some
wasteful buffering of datons can occur (duplication, ?4.0.1). Such a
configuration can occur in perfectly meaningful programs. In the [Sewe! program
(? 5.7), for example, the CoPY: in the main program feeds straight into the jcopPY!
of the UDF. This situation can be saved by the request [AUGMENT!. Issued to a
ICOPY] outport«, IAUGMENT would cause < to create a further [COPY] outport
actor E with E initially referring to the same daton as« (i e E starts from the
present state of ¢). Upon the [AUGMENT] request. » gives the actor name of E as
reply
IUaWTHI
There are numerous applications for a request [LENGTH] which helps to find out

the current gueue length, of aiCOPYl outport actor (or alfteA&] actor) It is almost

Indispensable in the interface from a demand driven to a data driven evaluation.
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A mixed Lucid implementation with provisions (or data driven
evaluation has its attractions, itcan use the idle time of the processor
(e.g. waiting for inputs from the user) for some "compute ahead", especially if

this does not increase total store requirements.
[QUEUE d]

The IQUBBel request is similarly important for the interface from a data driven
to the demand driven evaluation. That request, when issued to a IcoPYl inport
actor », appends daton d to the buffer queue of «. (The [COPY! inport act of
section 4.6.11 would need modification to accept requests.) —This enhancement
permits a IFBY1l optimisation: every [F3T] node inserts "slack" into the daton
stream and, with the help of [QUBUE<\ one would be able to "push" this daton
downstream before the program start. The corresponding optimisation or TSEXi
requires no special means, merely a 6art [ADVANCE must be passed upstream
before the program start.
[restart;

Some recursive UDFs cause an unending need for the creation of new actors,
while at the same time shedding defunct actors (see IKit/Z request, best
example: ligloo! function t appendix B) It is often possible (Lucid tail recursion,
t 6.6) to immediately assign a new role to a actor », instead of letting it die.
This is achieved with the help of the [RESTART1request, which makes ¢ pretend it
had just been created and initialised. Actors propagate TresTaRI] requests to

their Inferiors

We have so far used 'ANVANCfe, filtNindeiil to tell actor  that its services are no
longer needed. Upon IAVANCOnNaiindVsl, actor « does a "last clean—up" and goes
then into eternal hibernation (i e it does not terminate its existence; it may be

followed by a TRESARfl request). The IkiLI! exception exceeds the effect of
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PDVANCE, firkiinder] in that it do«* terminate the existence of  (and a IRESTART is
then impossible). Actors propagats ItctLl exceptions to their inferiors in the
course of the clean—up. After the IKtILI. the entire subnet is eradicated. Once an
actor has received a IKILL! no further messages must ever be sent to it. since
"messages must only be sent to »listing actors" (f 32.2. IsBENDI). - fiffixl

improves efficiency, obviously, since it releases resources for re—use.

When tracing upstream through the subnet, we may come to a IOOPYi node actor
which is not entirety dedicated to the subnet. Ife is a IOOPY! outport actor, a IKILL1
exception will certainly terminate , but it will terminate the pertaining ICOPYi inport

actor only if no other outport actors remain. This is controlled by the [activel voting

mechanism (t 4.6.7) in procedure jAdvanceOutportl.
The (revised) exception part in the IF3Yl act is the ultimate source of most jiCLLi

exceptions (another source is frJwith computed constants, t 6 6). The revised code

would look roughly like this:

1: (request, index) := Reveal ;
CASE request OF
ADVANCE: IF index - 1
THEN EXCEPTION (KILL, finalindex) TO (pO)
ELSE EXCEPTION (ADVANCE, index—1) TO (pi)

KILL: IF index * 1
THEN EXCEPTION (KILL, finali ndex) TO (pO, pj)
ELSE EXCEPTION (KILL, index-1) TO (pl)
NULLIFY:
END ;
RESET i (e There should really be no RESET after KILL °)

(e (actor might get suspended before its death). =«)
The acts would have to be modified to make them handle ikiLLI exceptions
appropriately. For example, the eternal outer loop would change into:
REPEAT
UNTIL Reveal » KILL ;
Obviously, an actor with on« outport must die as soon as aftcHI request arrives

Correspondingly, a lkeopTl node dies after sach outport has got a IkFRAIl. But in esrtain
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cycles, the entire |JAPYl node actor should die even when only some outports have got

a Ikhti. Consider for example the simple cycle:

- T
I

a FBY b
b
COPY } same effect as: b = FIRST a

4

This IC0PY! depends on itself. According to the simple rule, the right IGOPY! outport
will never get a KL request, and the IcOPYl will therefore never die We must take a
more global approach: we must view the subnet (consisting of :coav', |F3Y.. and left
IBY1 operand) as an entity, with the left [cory: outport as the subnet outport. The
rule would then be: "the subnet dies once each of its outports has got a jkilll
request." —One might be tempted into using a "trick", using a modified -corvi which
dies upon a single IKILL! request on one outport But such a [copy! would be useless in
a slightly more complicated subnet (a combined vote of all subnet outports is

needed, t end of 4.7 2):

It must be clear by now why we printed K for tabvanc-,-7ina;.nd««c in the state
transition tables and logs. Indeed, kbpvance 'finalmdei! can be substituted by [KILL! in

our universal protocol, the difference lies outside the message passing behaviour.
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6.4 Tailor mad« Joopyj acta

The 1G0PY1 act offers many chances for optimisation: most applications do not
need the generality of our universal icoPYl act (r 4.8), and such restrictions can often
be traded In for reductions in administration. Our jOOPY! act is very liberal in two

respects:
— it imposes no maximum queue length,

— the relative "timing" between the different outports is unrestricted (i.e. index
offsets between outports, and which outport is driving).
Sections 5 6 and 8.1 presented program analysis techniques for either property. This
section provides shortcuts mainly for those cases where a maximum queue length is
known. Our list of techniques is far from complete. —For the remainder or this
section we use n to denote the number of jOOPYj outports
Cyclic buffara are generally used when a maximum queue length is known.
Such a buffer consists of an array 2 length 2], a pointer Fpltlwhich remembers
where it last wrote into the atray, and pointers "TeiltH which remember where to read

the array ligetltH is dedicated to 'COPY' outport t, i= / .. n). The general idea is then:
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CONST
RI *4711 C Maximum queue length. *)
qll * ql-1
n =3 ; Cc Number of COPY outports. *)
VAR
ptetrp ; ANYTYPE ; Cc The value to be put. )
gterrp : ANYTYPE . Cc The obtained value. )
v © ARRAY [0. .qll] OF ANYTYPE ; (- Buffer =)
«et : ARRAY [1. enj OF INTEGER ;
put, i. j, k : INTEGER ;
BEGIN
put ty -1 ;
FOR j (= 1TOnDOget[j] := 0 ;
REPEAT
(* Putting data into buffer. *)
ptemp :s ... ,
put ;= put + 1 ;

FOR );* I TOn

DO IF get[j] + qll < put THEN report-error ;
k :* put MOD gl (» wrap—arounde)
y[kJ  ;* ptemp ;

(¢ Assume outport « is not driving; )

(» Getting data mi aJ buffer: )

IF put <get[i] THEN report—error ;

J = get[i] MOD ql ; (» wrap—around )

gtemp = v[jj

1= gtemp ;

get[i] :=gelli] *1 ; (¢ ADVANCE °)
UNTIL FALSE ;

END ;
(The division remainder MDD helps to achieve a wrap-around effect: once the
buffering has reached the end of array 3 " “Jumps" back to the beginning ) This

code can be simplified a good deal in specific cases:
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If 13] —2, the buffer consists only of Vol and [Mfill. All the pointers toggle merely

between 0 and 1

put = 1 ; get := 0 ;
(» Putting data into buffer: )
put = l—put ;
vfput] := ptenp ;
(» Retrieving data from buffer; «)
gtemp := v[get] ;
get = 1l-get (= ADVANCE )

In a two—eutport 1copryi, where the non—driving outport always lags two datons

behind the driving one, we can even do without pointers altogether (swapping

buffer):

[ VAR vO, vl ; ANYTYPE ;

J
|
|

(» Putting data into buffer; )
vl = vO ;
vO = ptemp ;

(» Retrieving data from buffer: e)
gtemp ;= vl ;

Only on« buffer cell 0 is needed in a two—outport jOOPY] if the non-driving

outport lags only on« daton behind the driving one (t Version 4 in 6.2):

| VAR v ; ANYTYPE ;

(» Putting data into buffer; )
v * ptenp ;

(» Retrieving data from buffer; )
gtenp i« Vv )
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On the other hand, if the maximum queue length is known and if the entire
history must be preserved (as in some versions of the !Sieve! UDF), an array is
most appropriate as buffer (just take the cyclic buffer and remove its
wrap-around). Arrays are appropriate even if the queue length is unbounded:
itis best in that case to subdivide the available storage space Into arrays
according to the growth rate of the respective queues. The program collapsot

anyway once the buffer space is exhausted.

A two—eutport 1copvi can be implemented altogether without a queue, as long as
either outport disclaims the daton value early enough. Assume, the icopy1
outports 0 and O progress in such a way that O gets a bare povancer always
boforo o is requested f[compuTe] for the same daton index. The role of the
outports may be swapped after each episode. This situation can arise if a

variable x has two references of the kind:

H---——--—-
| copy
FIRST x
i i NEXT  x
i K H f
| FIRST | INEXT IF ... THEN x / 2
| + H H ELSE x * 9 FI

1.S Tagged Data Flow

Our IcOPY' act (t 4.8) is restrictive in one respect: it handles datons only in the
sequence of increasing index (l.e monotonicalty. tend of 3.1.2). This restriction is
commonly made In Data Flow. We noticed, however, that acts without memory
permit requests for datons in any sequence (t 4 5.7). A technique named 'Tagged
Data Flow" permits such random index computations. It is moderately difficult to
change our implementation into tagged Data How; a redesign is required mainly for

the actors with memory: 1.y ireapi.tiintiil and UDFs.
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In tagged DF, all ICOPYI node actors share one "daton pool" (faintly resembling a
data base). Whenever a daton arrives at a IOOPYl inport, a bucket" (a data record) is
deposited in the pool, stating the value and the identity of the daton. The name of
the ICOPYI inport actor can serve as identity tag. Whenever a ICCOPYl outport gets a
ICOMPUTH request, It searches first the pool for the daton in question (using the daton
index and IO0OPY inport name as search keys). If the search fails, the jcopy] instructs
its operand to determine the daton value. At suitable moments, the daton pool is
cleared of defunct datons; reference counts or statistical methods (the "rotiromont
echomo" [Faw83]) are used to identify defunctness. Tagged IREA3L works quite like
tagged ICOPY], except that its datons remain permanently in the daton pool.

However, the tagged implementation becomes much more complicated once we
allow recursive UDFs. While a node actor is trying to evaluate one daton of a history,
the system must be able to create another actor which evaluates another daton of
the tamo history. Such a multi-level action is occasionally required for evaluating
recursive Lucid definitions. All tagged DF implementations of Lucid use therefore a
technique rather different from the one described in this thesis Each of their node
actors computes only a single daton, and dies then. The resulting high rate of actor
creation and termination can be partly compensated by highly optimising the actor
creation.

Generating good equivalent imperative code for tagged DF is very hard The
[WRTE] act and our protocol can remain essentially unaltered. Only a UDF nesting
control needs to be added; Ostrum/Wadge call this the "plact tag". —Ostrum's Lucid
interpreter [OstBIl] is based on tagged Data Flow; it stores even all intermediary
results (i e not only the jOCOPY] queues) due to a present lack of program analysis
Denbaum's thesis [Den83] demonstrates how to compile Lagged DF for a subset of

Lucid, but with rather unsatisfactory code as result
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Why Is the chapter on tfficioncy the place to discuss tagged Data Flow? The
daton evaluation out of "despair" (t 4.6.5 and 5.8) can be completely avoided in
tagged DF: its daton evaluation is free to skip index values since it can always come
back to them. Tagged DF handles this situation clearly most efficiently. Pipeline DF
excels in the simplicity of daton acctss, where tagged DF needs an associative
memory search. Moreover, the discarding of supposedly defunct datons occasionally

forces tagged DF to re-evaluate datons

6.6 Cod« Optimisation

There is a virtually unfathomable "box of tricks" for improving the efficiency of
the generated code even further; quite important ones have already been presented

earlier in this chapter. Here are three further tricks (in reverse order of difficulty):

Concurrant J f]

It is easy to refine the operator so that it doe3 not evaluate the condition
operand c if the ITHBN operand x and the [EISEl operand y deliver equal values
anyway. Instances of:

HFc THEN« ELSEy FH
are simply substituted by:

IfF ¢ ON («m») tHEN» ELSETr1?.

In general, this concurrent |6t performs very poorly on von Neumann

mono—processors, and It performs best if ¢ is much more difficult to evaluate than x

andy.

Trl with Computed Constanta

Recursive UDFs, in particular, tend to contain expressions like:
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IF FIRST expression THEN z ELSE y FI
IF indez <t THEN z ELSE j FI // with constant t

The [if] switches in both cases, from a certain index on, to either choice;
* re—evaluation of the condition will be unnecessary from then on. At that point can
a net simplification (1KW1 requests, operand redirection) be applied to the
unsuccessful operand. The "arms” of the []]] do often contain a UDF recursion. Such

a net simplification may prevent a UDF from inflating beyond all bounds.

TaH Recursion for Lucid UDFe

Recursive L'DFs correspond to infinits nets (t2.2), and the storage
requirements of recursive UDFs increase whenever a new UDF is invoked. Itis,
however, occasionally possible to formulate acts for recursive UDFs so that they use
tail recursion (or something resembling it), and they can lose their progressive

storage requirements in this way.

Let i be an actor for a recursive UDF, and let IT. ... [YN be the operand actors
of jX]. The optimisation is only possible if all the actual operands in the recursion
of {{] are particularly simple, i.e. if they are either identical to certain formal
operands of iX], if they are fO0?Y] nodes, or if they deliver invariants (constant or
Ifirst ... They may even, and this is the most complicated case, deliver a formal
operand p of [x] with a simple modification (namely: p multiplied with an invariant,
p with an invariant added, OKed or ANOed, or index of p with an invariant added).
We exploit the fact that the effects of such operations can be accumulated in one
storage cell

This transformation generates a nstw UDF from the given UDF, so that the new
UDF can do all the work of the given UDF, though without the growth in store
Further to the transformation of the actual operands and of the result, above,

a subnet transformation may have to be carried out The subnet transformation is
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done as follows (before the translation): starting from the subnet outport we move
upstream and mark every node of [x] (including those in operand subnets) which
contributes to the computation of the "current" daton with an index offset greater or
equal zero. This marking requires that inner UDFs be expanded, in the worst case as
often as there are [NEXT! nodes in the UDF. The marking stops when each node of jX],
ignoring the invocation level, has been marked at least once (the transformation
fails if a node needs to be marked more than once). The new UDF is then written so
that it contains all the marked nodes, crossing invocation levels wherever needed. —
The full description of the transformation will be the subject of a future paper.

A recursive UDF may be expanded (t 6 2) once it has been transformed in this way

Example ([Act JL)pon_])

It depends on the right ILPON: operand value, how the operands (of the "current”
activation) are transformed into the operands (of the 'inner" activation). The result

of the inner activation is transformed into invariants fITAON was originally defined as

the UDF:
UPON (a. k) = a FBY UPON ( p. NEXT k )
WHERE p = |IF (FIRST k) THEN NEXT a
ELSE a F!
END ;

The transformation yields a new UDF.

NEWPON (a, k) » VALOF

d = NEXT k ;
b -«IF FIRST d THEN NEXT a
ELSE a FI ,
raault ® b FBY NEWPON (b, d) :
END :
mo that:
UPON (*, y) ' X FBY NEWPON (x, 0 FBY vy)

NEWTON contains a tail recursion, and only INEXT] operations have to be accumulated
The resulting (non-recursive) code for INfWitON] can be merged with the jUPONL

adaptation into a reasonably short piece of code (it would be hard to explain the

0.6
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ACT Act_Dpon_ ;
LABEL 1 ;
VAR

superior, pO. pi : ACTOR request

result : ANYTYPE

BECIN
(. . pO. pi) := RECEIVE FROM (Creator)
count 0 ; now ;= —1 ; condi .“ TRUE

REPEAT
WHILE TRUE DO BEGIN
(superior, request, index) .= RECEIVE ()

WHILE now < index (e Catching up:
DO BEGIN
IF 0 <w= now
THEN BEGIN
condi := CetOaton (now+1, pi)
EXCEPTION (ADVANCE, now+2) TO (pi)
END ;

now := now + 1 ;

IF condi
THEN BEGIN count count @ 1
IF  errpty

; MSGTYPE
index, count, now : INTEGER condi, enpty : BOOLEAN

, errpty TRUE

THEN EXCEPTION (ADVANCE, count) TO (?0)

ELSE etrpty . TRUE ;

END END ;
IF etrpty (» Reluctant evaluation.
THEN BEGIN

result := GetDaton (count, pO)

EXCEPTION (ADVANCE, count«-!) TO (pO)
errpty ;= FALSE ;
END ;

SEND (DATON, result) TO (superior) ;
END ; ( End of inner eternal loop.

(request, index) Reveal
IF (request * ADVANCE ) AND
(index * final index)
THEN EXCEPTION (request, index) TO (pO, pi)
RESET
UNTIL FALSE ; (¢ End of outer eternal loop
END ; ( End of Act_Upon_

; (= Exception part.
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The example shows a further application of the "catching up” mechanism (t 8.2,
Version 4), it uses the HRST/JMEXTI optimisation of 10Pyl (for the variable [d]). the
invariant [IF]. and UDF tail recursion with accumulation of IMEXTi. The ILIPOA) actors do

not build up internal queues. —Similar methods are applied to obtain the WMVR act:
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ACT Actjfvr- ;

LABEL 1 ;
VAR
superior, pO, pi : ACTOR ; request . MSGTYPE ;
result : ANYTYPE ; condi, empty : BOOLEAN ;
index, count, I1count, now : INTEGER ;
BEGIN
count := 0 ; 1count := 0 ; now ;= —1 ; empty := TRUE ;
C . . pO, pi) := RECEIVE FROM (Creator) ;
REPEAT
WHILE TRUE DO BEGIN o
(superior, request, index) := RECEIVE () ;

WHILE now < index DO

BEGIN REPEAT 1
IF lIcount < count
THEN EXCEPTION (ADVANCE, count) TO (p0) ;

01
condi GetDaton ( count, pi)
count := count + 1 ;

EXCEPTION (ADVANCE, count) TO (pi) ;
UNTIL condi ;
now ;= now +o 1
END ;

Icount count - 1 ;

IF errpty (= Reluctant evaluation; *)

THEN BEGIN
result ;w GetDaton ( Icount, po0) ;
Icount :» lcount = 1 ; empty FALSE ;
EXCEPTION (ADVANCE, lIcou.nt) TO (p0) ;

END ;

SEND (DATON, result) TO (superior) ;

END ; (= End of inner eternal loop. *)
1: (request, index) := Reveal ; (= Exception part. )
IF request = ADVANCE THEN
BEGIN IF index = final Index

THEN EXCEPTION (request, index) TO (pO, pi)
ELSE IF enpty THEN

BEGIN 1lcount := Ilcount 1,
EXCEPTION (request. lIcount) TO (p0O)
END ;
engity :* TRUE ;
END ;
RESET i
UNTIL FALSE ; (* End of outer eternal 1loop. *)
I | (* End of Act_Wvr_ . )
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«.7 Discussion

The purpose of this chapter was to destroy the myth that Lucid programs are
inherently inefficient. It gave only an idea of possible optimisation techniques. The
chapter has been somewhat vague concerning when and how to apply each
optimisation, it has been merely a fairly unsystematic collection of "tricks". A closed
and comprehensive theory of optimisation would be desirable, and such work is
under way in a number of places. — Most of the optimisations techniques in this
chapter were aimed at a von Neumann mono—processor. If we applied them to our

ISievel program we would end up with a single actor, created from the following act:

Example (1Sievel): final result

ACT Act_prime*_ :

LABEL 1, 2 ;
VAR
index, result, t, i INTEGER ,
primes . ARRAY [1 .2000] OF INTEGER ;
BEGIN'
index := 0 ; * 0
REPEAT
reault := index ¢ 2 . ¢ r 6.2, Version 6. =-)
2: FOR i (= 1 TO t
00 IF (result MO3 prime*|i]) =0 THEN GOTO | ;
WRITE [reault) t:*t>l ; primes[t] ;= reault ,
GOTO 2
1: index :« index ¢ 1 :
UNTIL t * 2000 ; (+ End of eternal loop )
END ;

But what is the I00TCal doing there'l The program would only gain if that instruction
was omitted - This is a very interesting point The translation of the Lucid program
really yields the program as shown, with the TSSToSI in it, though the Lucid program
is easily corrected. Is the Lucid program meant to specify the operations which shall

be carried out, or is it just a mathematical definition of the result history? There is
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no universally accepted answer to this question. One might give the Lucid compiler
an option stating the approach favoured by the user. (The former view might be

most suited during program development.)

8.7



vu. 1

CHAPTER Mfc Area« of Furthar Rasaareh

7.0 Introduction

Quite a few aspect* of implementing Lucid have been omitted in this thesis. This
omission was sometimes deliberate, sometimes not. Some explanations would have
distracted from the true issue of the thesis, they would have overloaded the thesis.
For some topics, simply too little is presently known, so that answers could not be
based on well founded knowledge. Some areas where further research is indicated

have already been mentioned in the pertaining chapters:

— Obviously, the next action now due is the implementation, on real machines, of
the essence of this thesis. A working system is always the most credible
demonstration of success. Quite commonly, such a system sparks off a wealth of
new ideas: the use of our pLucid system [FMY63] has very much had this effect.
Only the most essential parts of this thesis have so far been implemented, since
it was felt that an emphasis should be put on careful planning and on scientific
analysis.

— Scheduling strategies need to be developed (a) for a revised Lucid with more
than one MBTTEL and (b) for running Lucid on a multiprocessor network. Ideally,
an operating system should be developed which takes into account the demand
driven and potentially concurrent nature of Lucid.

— The efficiency of the Lucid system can be Improved by protocol extensions, by

the provision of further highly adapted acts, and by further program analysis

methods. Provisions for actor termination fall also into this category. The long
term IS clearly the development of a systematic and comprehensive theory
of optimisation superseding the present patchy approach.

Th, specific advantages of tagged DF and pipeline DF have been contrasted

(t 6.8). Lucid programs with reverse dependencies are not pipeline computable

TO



VII-8

without major rewriting. Is there a general algorithm (or making all Lucid

programs monotonic, so they can run in pipeline DP?

7.1 Othor Operational Models

In our translation, the underlying execution strategy has been demand driven DF
with pipelines as buffers. Chapter | gave the reasons for this particular choice.
However, there are situations where one of the other strategies would be more
appropriate.

Lucid implementations have been done for the Manchester Data Flow machine
[Bus79, Sar82], that machine is truely data driven and leans in a direction rather
opposite to the one taken by this thesis. Our translation generates very efficiency
conscious code: an evaluation is initiated only when its result is needed However,
generosity can suit even a miser: some premature evaluations are cheaper than the
administration for their delay. We should therefore investigate where data drive

would improve our code.

Especially our MRITEI act (r 4.5.4) reflects the data driven and pipeline oriented
nature of the operating system. However, a demand driven system (like pLucid)
comes really into its own when put together with other demand driven systems, such
as data base query systems. A demand driven operating system exists already, as an

academic exercise, but the relevance of this topic has not been fully appreciated,

yet.

7.2 UnJuags Extensions for LuoM

Even though Lucid is already highly developed, various extensions would make It even
more usable: arrays, types, higher order functions (functions operating on
functions), and time dependent functions. Many extensions are a mere question of

sweat, but time dependent functions ask for a major re-think of Lucid altogether,
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including Its Implementation technique:

D«t« Flows is a restriction of Data Flow under which only functional
operators are permitted. An operator is functional if its result is entirely determined
by the values of its operands. An operator whose result depends on the "wall clock”
time of execution iIs clearly non—functional. We have so far only bothered about
Lucid as afunctianml1 programming language (f chapter 11), i.e. the version of Lucid
where all the operators are functional. Lucid has originally been designed to be a
functional language, and an interface to the operational domain is bound to produce

problems.

There sire a few situations which require non—functional means; for example,
the operating system must be able to test whether the user has struck a key, or to
ask for the time of the day. One might simply try to enrich Lucid by new functions
IBuffer-FuS] and ITimeWowl. This approach is inappropriate in many situations It may,
in tagged Data Flow in particular, lead to the queuing a vast numbers of irrelevant
data. Wadge suggested another method by introducing hiatons (the Greek word
Matue means "pause"), special data items indicating ‘no daton available". The use
of hiatons makes a total redesign of the Lucid system necessary, even the language
itself may need a few extensions. Hiatons can occur anywhere in a history, they
don't occupy daton positions in the history, and it is therefore possible to filter all
the hiatons out of the history (to "de-hiatoniee the hietory”). Hiatons have
implications on many aspects of Lucid, and further research is needed before

conclusive answers can be given.
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Summary

The thesis has described a complete implementation method for Lucid, based on
Message Passing. The description has been presented step by step, starting with a
"conditioning" stage, followed by the main translation, and ending with code
optimisation. All the essential items of code are readily contained in the text. The
thesis can thus be used directly as a guide for the implementation on any computer
system with Message Passing. Due to its modularity, universal components can be
easily replaced by optimised ones. The modularity makes it also easy to check the
correctness of every stage. The correct execution has been illustrated by special
diagrams, execution logs, which highlight particularly the sequence of events in the

case of concurrent execution.
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Appendix At The BNF of Lucid

Here is the BNF of Lucid, the way it is used throughout this thesis. This is a
subset of the language pLucid [FMY83]. The algebra of pLucid comprises lists (as in
POP—2 or LISP) and the pertaining operators. Lists are a completely separate topic
area; they have been omitted in this thesis for the sake of clarity, but they can be
added any time without necessitating a revision of the thesis. We go even further, we
use a minimal algebra which comprises only TRUE, FALSE, ERROR and all the
integers. Examples may occur in this thesis which exceed this minimal algebra
(using real 3.14159 or a string like "Hello there"); the reader Is asked to take the BNF

as suitably extended.

In the BNF formalism we use the following notation:

<> every meta term is enclosed in angle brackets,

= reads as <meta term> is defined by <meta expression>,

| reads as <meta expressian> or <mtta expression>,

(1 denotes possible repetition zero or more times of the enclosed <meta
expression>,

/1 precedes comments

The Lucid syntax is defined by the following BNF:

«progranfr «expression»

«expression» «primary»
«prefix operator» «primary»
«prirrary» «infix operator» «primary»
«where clause»

«primary» «constant»
<vari>
«if expression»
«function ref»
( «expression» )
«expression»  // precedence permitting

AO



«constant» «mineric constant»
TRUE | FALSE | ERROR

<nunrlc constant»: ;« «digit» | «digit» |
—«rnraric constant»

«digit» oli]2]sl4lalel?lal?9
«letter» :m A B C 0O E F G H 1 J K L
N 0 P @ R s T U V W X Y
a b ¢ d « f g h i 3 k 1
n [} P 4 r S t u \Y W x y
«alphanumeric» * «digit» J«letter»
«<identifier» = «letter» | «alphanumeric» |
«vart» e «identifier» // nans of a variable
«prefix operator» = - INOT | FIRST | NEXT
«infix operator» a - / MD
LE LT cr CT IN |E
<= < > >-
AD OR
FRY WWR  ASA | UPON
«if expression» 732 IF «expression» THEN «expression»
ELSE «expression» Ft
«where clause» 13- «expression»y WHERE «body» BND
«body» ;38 f «currenting> | ( «definition» |
«currenting» ;32 <var» IS QURRENT «expression» ;
<definition» ;32 «sinple def»
1«function def»
«sinple def> -;a <varl - «dcfiniens» ;
«function def» vis <func» ( «fortnals» ) ” «definiens» ;
<deflniens» «expression»
<func» ;sa «identifier» /7 function rame
«formali> ¥ <varb |, <varl> |
«function ref» ;3% <funo» ( «actuals» )

«actuals» ;.a «expression» | , «expression» |
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Note: Throughout pLucid ~ is used instead of —.
<currenting> is described in appendix B.

Lucid programs can contain comments directed solely at the human
reader: the compiler ignores double backslashes // and everything on their

right hand side within the line.

The following identifiers are reserved as keywords:

AND ASA CURRENT ELSE END EQ ERROR FALSE FBY FI FIRST GE GT
IF IS LE LT MOD NE NEXT NOT OR THEN TRUE UPON WHERE WMR

(Throughout this thesis, keywords are written in capitals and variables in lower case.

However, that rule is notpart of real Lucid but intended to improve legibility)
Here is a short description of the operators of our algebra:

prefix op. | manina

Arithnetic inverse, the operand < (-1)

NOT Boolean negation.
FIRST Infinite extension of initial daton.
NEXT Op history with initial daton removed.

infix op. | meaning (T * TRUE , F - FALSE)
R
Stxn of the two operands.
Result of subtracting the right op from the left one.
Product of the two operands.
Quotient from dividing the left op by the right one

without remainder ( 13 DIV 7 * 1, (-13) DiVv 7 = —1).
MDD Remainder from dividing the left op by the right one.
AND T if both ops are T, F otherwise.
Ok F if both ops are F, T otherwise.
GT > T if left op Greater Than right op, F otherwise.
CE >* T ifleft op Greater or Equal right op, F otherwise.
LT < T ifleft opLess Than right op, F otherwise.
LE <* T if left op Less or Equal right op, F otherwise.
B0 T if left op QQual to right op, F otherwise.
NE T if left op Not Equal to right op. F otnerwlsa.
FBY Initial daton of left hist prepended to right hist.
UPON Repeats left daton while right daton is FALSE.
WWR Ignores left daton whenever right daton FALSE.
ASA First left daton whose right daton is TRUE.

Impossible computations, like a division by zero, yield TERROf]. This is a special value
indicating "something went wrong in the computation of this daton". It is impossible

to guarantee the indication of every error (halting problem?!)

AO
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The BNF defines expressions in terms of primaries, which are merely
particularly "well mannered" expressions. All primaries are therefore expressions.
Just a variable or a constant is a primary Enclosing an expression in brackets
promotes it to a primary. The construct IIFc THEN» ELSEY Fit is a prim ary, where [c] [5]
and Q are expressions. Lastly, any function reference is also a primary. Any
expression is either just a primary, or a primary with a prefix operator put in front,

or two primaries with an infix operator between them

The precedence rules and the association rules permit the omission of brackets

in many cases. These rules have been detailed in section 2.1.2.

AO
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Appendix |i "Curronting”, fh* Lucid Approach to added Iteration

B.O hikreduction

It la generally accepted tor imperative programming languagee that iteration la
the conatruct which increases their expreaalve power moat decisively. lteration cornea
to full fruition if It la embedded In some larger computation (embedded iteration).
Incidentally, it is well known that imperative iteration can be simulated by recursion.
In common computer jargon, iteration means repetition, and the term ia commonly
applied in two contexts: mathematical iteration (as in the Newton—Raphsen algorithm
for logrti) on the one hand, and multiple application on the other (like setting an array
to zero). Both are bulk computations in a sense. The term iteration is. strictly
speaking, not applicable to a non—mperative language like Lucid, but one would
expect Lucid to comprise a denotations! counterpart to iteration. Confusion can
result from the fact that already a tingit Lucid assertion can represent a bulk
computation, since it expresses a whole stream of data objects (due to the Lucid
algebra).

In less operational terms, any substantial programming language must satisfy the

following requirements:

(1) It should provide means for the definition (and application) of new operators.
An operator is a generalised (abstracted) instruction, l.e. its actual operands are
specified only in the application stage. A set of fundamental operators is usually
pre—given. The definition of any new operator is achieved by abstractly stating
the actions symbolised by the operator. Anoperator is recursive if it refsrences
Itself (in its definition), and this Includes any indirect self-reference. In a broad
sense, every subprogram is among the operators, as is the body of any [55] loop
or MHEREL clause. (According to our definition, the term "operator” includes
function subprograms. The term "function" has a specific mathematical

meaning which might interfere in this context.)
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(2) Every programming language should provide a method for apeclfylng the
application of any operator to a collection of operands. (In ALGOL this may be an
array or may be the successive values held in a storage celL in Lucid this may be
the datons of a history.) Such a multiple appNcetlon may well produce a combined

result (e.g. the computation of an average value within the collection).

(83) There should furthermore be a provision for taking the combined result of such a
multiple application, and for delivering it as a single value to the larger

computation (in which the multiple application is embedded).

Lucid satisfies requirement (1), the whole language is designed around operator
definitions. Every Lucid assertion is an operator definition. Ademand for the
program's result is, operationally speaking, the cause for all computations.
Requirement (2) is satisfied since every variable stands for a sequence of data objects.
Future versions of Lucid which have arrays (and operators on arrays) offer a further
method of satisfying this requirement. But at the this point in the discussion we do
not seem to have anything fitting requirement (3).

Acombined result of multiple operator application, requirement (2), can be
formed by use of IKEXTI and fFBYI. Here is for example the running total of history X:

Sum = X & (0 FBY Sin) ;

Every daton value of tSum| is based on an entire initial segment of X.

m09 = Sisn ASA Ind4«s * 00 ;
means therefore thet many computations are Involved in the production of one result.
The assertion for [Se] has the drawback that it asserts just one constant value. There
should be a way for executing numerous low ranking computations which, taken
together, deliver a single final rtrult daton (abit like [Soj) to a MpAer ranking

assertion. This should be followed by renewed low ranking com putations which in turn

produce the next result daton.
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Iteration without a means for such embedding (l.e. without sub—computations) Is

of limited use. We shall see that Lucid achieves embedding In a rather natural way.

.1 Structured LucM

Early In the development of Lucid [AbW?6], certain mathematical concepts were
identified, and were then chosen as the foundations of the language A suitable syntax
was then worked out. The syntax has Indeed been subject to refinement up to the
present day. Valuable Insights Into the underlying concept can be gained from looking
at the earlier development stages of Lucid, though only few traces bear witness In the
present form.

Ashcroft and Wadge describe In their paper "Structured Lucid" [ASWSO] how a
technique called "currenKng" equips Lucid with embedded iteration. They show how
Lucid is conceptually derived from the languages USWIM [AsW79a] (which itself is a
derivative of Landin's ISWIM [Lanfld]) and Basic Lucid [AsW77a]. The language ULU is
obtained when the USWIM structures (¢ 1wHere1 clauses and functions) are built on top
of the Basic Lucid objects (Infinite histories). On the other hand, putting Basic Lucid
on top of USWIM yields the language LUSBWM Both languages have exactly the same
syntax. But they differ in semantics, in particular in the effect which structures (
IMWHERH clauses) have on variables (histories). Lucid is an amalgamation of LUSWIM and
ULU, and the divergence in semantics has been resolved by declaring each variable
either as curranted or uncurrented. (In [ASWBOQ] a different terminology was used, and
the typa/met of each variable indicated its currenting status. However, this distinction
by typeface proved rather im practical.)

It was later decided to consider any variable by default as uncurrented, and to
gtate explicitly when the variable was meant to be currented instead. Uncurrented
variables are the easiest to understand, since their entire histories are imported into

UilL'j Cclauses without any change. The declaration isiacuRREittrl in a IufUM) clause
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Indicates that the new variable X is the currented version of the variable y, where y
refers to a variable y defined outside the jwhere! clause. Currenting is occasionally
also called "freering ", since the enclosing environment is held in an invariant state, as
if it was frozen. While [AsWBO] introduces currenting denotationally, we will use the
operational point of view throughout our explanation, since this seems easier to
understand.

It will be shown below that currenting can be expressed entirely in ULU terms,
and consequently LUSWIM can be viewed as a special case of ULU. In other words,
every Lucid program can be expressed in terms of ULU alone. (Not all Lucid programs
can be expressed in terms of LUSWIM alone.) Incidentally, ULU is essentially the

language presented in chapter I.

B.2 Present Lucid
Global variables ("imported" variables) have been defined in the description of
Lucid (t chapter 1). Any global variable y can be currented by placing at the beginning
cf the [wherS clause the declaration
x IS CURRENT y ; |

| |
(The expression on the right (here: y) is evaluated in the environment which encloses

the WHERF clause, x and y can therefore even be identical identifiers ) The following

assertion might occur in a program:

result * f(x, i) | t 19 an arbitrary function,
WHERE » X i9 the currenting of
x IS CURRENT y ; » the giobal variable Yy,

END i » 1 is an uncurrented global.

The variable x is the currented version of y, where y is a global variable. To function f,
x will appear like a constant, all its components are equal. The history of y is mapped

into a sequence of histones x, where thek-th subhistory x consists throughout of
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components lIdentical to , where y™ Is variable y at Index k. The function f la
applied individually to each (constant) subhistory, and consequently there Is a
sequence of result histories of function f. The result of the WHEBA clause Is the
sequence of the n—th components of the application of # to the n—th subhistory x, with
n ranging from O to Infinity. (Note that, naturally, the computation restarts from
Index O for each single Invocation of f.) The Index progresses inside the ltherel clause

thus In the following triangular pattern:

— index of the global to be currented,
e index ««laide the THERE clause.

indices for which

the subhistories

(tnsida the THERE-clause)
ere coiputed;

only the last value is taken.

index of the result

fig. SSi the triangular execution pattern

We have not yet mentioned the other operand of f. namely i. Each Invocation of f gets
the entire history of I, since | is not currented in any way. Because of functionality. It
does not matter whether | is re—computed each time or whether | is computed once
only with copies being given to each invocation of f. (Repeated evaluation of a function
yields the same result as long as all operands remain identical.) The same would apply
to any other uncurrented variable occurring in the ITHERElI clause. Below we will study
another w«mpla program with a ITHEtHE clause which contains both a currented and
an uncurrented global variable.

It Is particularly Interesting to study an unusual ITHERH clause which has
currented aa well as uncurrented global variables, but where none of the currented

variables Is actually used. Is the result really invariant to the addition of these
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superfluous variables? Instead of computing the result In a straight tour through the
indices (0, 1, 2....) the currented variables enforce the repetitive triangular pattern of
figure B2. Because of this considerably changed execution pattern some effect on the
result would not come as a surprise. But since all operators are functions, and all
operands are either local or uncurrented global variables the result is indeed
invariant. Itcan not be distinguished whether any Intermediary value has been

computed anew, or whether a value from a previous computation has been re-used.

Structured Lucid allows even the currenting of (non-nullary) functions. This
means effectively the currenting of all global variables which occur in the definition of
that function. This currenting of functions has been abolished in the latest versions of
Lucid, to keep matters simple. There is hardly any ustful function where both
versions (the currented and the uncurrented one) are equally needed. The currenting
of the global variables can therefore be carried out inside the function definition itself,

which is better style anyway (in the software engineering sense).

If we have another look at the figure above, it is evident that the "daton
production rato" of the computation inside the MHERE clause is greater or equal the
rate in the environment. In other words, we have some form of embedded iteration
No proof will be given here that currenting is a comprehensive technique for
embedded iteration, or in other words, that point (3) is satisfied in every respect. One
might even be led to believe that the triangular pattern (t fig. B2) restricts the range
of application to those very few situations where the number of computations Inside
the clause grows exactly with indeed/. However, this restriction can be
overridden by enclosing the iwher~i expression (preceding the keyword Jwherei , for
example t fig. BI) inan [aSa] with an appropriate terminating condition, like:

( f(S. i) ASA oondition( - )
WHERE .. . IS ORRENT ...

Since this expression contains the [BX) operator, it may appear strange, at first

glance, that this IWHBIgl expression does net necessarily yield a constant history. The
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131 inside s INHEREl expression with currenting, which means that only a single
result daton is picked out. For each pass of this WHERE clause, the 1ASA expression is
computed anew with fresh currented values, which may produce a totally different

IASAl result in every pass.

One last remark. It has been described in chapter | that assertions can be freely
moved into and out of WHEREl clauses as long as certain syntactic rules (identifier
clashes) are not violated. Matters are different if a MHEtH clause has a global
variable, and if that variable is currented in the MWHERA clause. In such a case the
assertion for the variable can not in general be moved across the MWHERE . This is
possible only if the operators in that assertion commute with currenting. A discussion

of this is found in [ASWBQO].

B.3 Currenting Expressed by Recursion
Can currenting be expressed purely by the means described in chapter 1?

The triangle (r fig. B2) shows that the result history is constructed out of separate
invocations of the function f, one for each result daton. The result is composed of the
initial daton of the initial function invocation, followed by the daton at index 1 of the
next invocation, followed by the daton at index 2 of the function invocation after that,
etc. Regarding function parameters, each function invocation has full access to any
uncurrented parameter. For eurrented parameters, on the other hand, the initial
function invocation obtains a constant history which consists purely of copies of the

daton of the parameter. The next invocation obtains the constant history

generated from the daton at index 1, and so on.

Taksn together, tbs same result as in fig. B1 would be computed by:



result » FIRST x, i) FRY #0

f(
NEXT f ( e  FIRST NEXT x.i)  FBY #l
NEXT NEXT f ( FIRST NEXTNEXT x,i) FBY #2
NEXT NEXT NEXT f ( FIRST NEXT NEXTNEXT x,i) FBY &3

NEXT NEXT NEXT NEXT f ( FIRST NEXTNEXT NEXTNEXT X. i) FBY #4
NEXT NEXT NEXT NEXT NEXT f (FIRST NEXT NEXTNEXT NEXTNEXT x,1) FBT #S

eto etc

This can be expressed by a recursive function. We call this function Rdod . since
currenting has the effect of permitting live computations in a frontn environment.
Obviously, nothing special needs to be done about the un—eurrented parameter |[; it is
passed untouched to each new Invocation of f, and its history restarts therefore always
right from the beginning. The currented parameter x is not difficult to express either.
With each "round trip" of the recursion one more initial element is stripped off. the
resulting history is made into a constant by the application of |FRSTI, and this is then

passed to f as a parameter. Hie IIMod function must therefore have an appearance

like:
Igloo (. ., news) = func (FIRST news, i)

FBI Igloo (. .., NEXT nowx):
result * Igloo (.. .. X) ;

Here, [find is related to f, but it is identical to f only for the initial result daton. One
further [NEXT must be applied to f for each successive result daton, i.e. one per
recursion of [Bool . One feels tempted to generate the new function, in each "round
trip" of the recursion by competing (") a INEXTI with the old function; the starting
"value" would be the plain functionf. To do this, we would need a function parameter

in lixlool, like:

Igloo (funetlon, eme) = FBY Igloo ( NEXT e function , ...) i
result « Igloo (f. mee) i

Sadly, function parameters are presently not allowed in Lucid. The multiple
application of (MWHTI must therefore be simulated otherwise. &it even that problem

can be overcame. Remember that, for any constant n,
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has tha same effect as applying INEXTI n times to the expression. The complete Hxiool
function (for the functionf from fig. BI) has therefore the form:
Igloo—f (t. news) m f (FIRST news, i) WWR (t m index)
FBT Igloo—f (t+1. NEXT news) ;
result * Igloo-f (0, s) ;

A few remarks need to be made:

(a) Because of the non-existence of function parameters, a separate Igloo function

must presently be written for each occurrence of currenting.

(b) Currenting automatically applies to the M\WHERE expression a WAL of the kind:
[espr WIR (t » index) WHERE t ISCURRENTindex . BENOI
Recall that for any constant expression c:
KcWVRd) = ¢ § it 4 over becomes TRUE.|
The [WwRI can therefore be omitted in the llalool function in any instance where

the expression sspr carrier an IASAl on the outermost level.

As an example, take the function (from a famous Lucid prime program):

checkprime( n ) = ( n<p* ASA condltion( p, n) )
WHERE
a IS CURRENT n ;
BE\D ;

According to the described method, this translates into:
ohspri( k) » ( k< pp ASA condltlon( p. k) ) ;

ehsekprime( h) « chopri( FIRST h ) FRY eheckprime( NEXT h) ;
# this is ths slnpliflsd Igloo.

This can be simplified into:

ohookprimo( a ) - (k < pop ASA oonditlon( p, k) )
WHERE
k  FIRST a:

BEND FBY ohookpr lit»( NEXT a ).

End of example.
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(c) Ifa WHERA expression (here: f) has more than one currented variable, there Is no
need to nest Hdod functions. Instead all these variables can be currented

together. For example:

Example (translation of curronting Into the liglool form)

The following example is presented on page 28 of [AsW80]:

mom
WHERE
Av* (») = (m / (index+1))
WHERE ® = v + (0 FRY m) END ;
m * A*l (»}.
mom * Avg ( (X-m) < (x-m) )

WHERE m IS CURRENT m ; END ;
END
The Imom in this example is the running moment (around the running average) of a

given history x (there are more efficient ways of computing this). Using the IiXod

function, the example can be re-formulated, so that it contains no more

"IS CURRENT™:
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ran
WHERE
Avg(v) = (¢ / (indes+l))
WHERE s *v e (0Ofi1 s) i BD;
m T Avg (a);
Body (m) s Avg ( (z-m) = (s-m) );
mom s [(loo (0, m);
# tha nliUa m Is now eurrontcd
i«loo (t, k) - ( Body (FIRST k)  WWR (indoi * t) )
FRY
Igloo (to*. NEXT k)
BEND

B.4 Efficiency

Some people argue that the simulation of iteration by recursion leads to very
inefficient code (i.e. many unnecessary computation steps will be carried out).
However, as has been said before, such a claim can be invalidated by a good optimising
compiler. The lialod function is indeed easily optimised by applying some of the rules
from chapter VI.

Because of the iFBYI, each new Invocation of Itslod serves for the computation of
one result daton. From a certain index on, all the results of the invocation will be
determined by its toner re-invocation of lidlool with slightly changed parameters.
Once the computation has progressed to the recursive re—nvocation of lidlod (right
operand of [PBV1), the whole left operand of ITBY is superseded (l.e. not needed any
longer). The actual parameters in the recursive call are simple modifications of the
formal parameters: the storage cell for the constant t is simply Incremented by one,

and the index for the history k is advanced once (such operations can be

accumulated).
Taken together, rECT can be Implemented by tail recursion Lucid-style (t 6.6).
During the computation of any result daton (loft operand of IFHYI) the index of history

K Is hold constant, It Is not affected by the computation inside». Only a
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iln]I(-outport |copPy] node la therefore required aa buffer for It (the buffer prevents
the repeated evaluation of the same daton). Aa an example, the tranalation of fig. B1L
(an arbitrary function whose operand O la currented whereas operand 1 is no*
currented) yields the following LUX code:

ACT Aet_lalee.Nuae ;

LABEL 1 ;
VAR
superior, fune, pO, pi, ppl, pli, plo :ACTOR ;
request . MSGTYPE ; index, 1 :INTEGER
created : BOOLEAN ; result :ANYTYPE ;
BEGIN
created :m FALSE ;
(, , pO, pi) :« RECEIVE FROM (Creator) ;
pli := CREATE (Act_COPY_ 1) ;

( , plo) :* RECEIVE (pli) ;
SEND (DATON, pi) TO (pli) ;

REPEAT
WHILE TRUE DO
BEGIN t1
(superior, request, index) := RECEIVE () ; i1
valueO := CetDaton (index, pO) 01
created TRUE
funo :» CREATE (Act-Func)

SEND (DATON. valueO, plo) TO (func)

FOR i := 1 TO index 1
DO EXCEPTION (ADVANCE, i) TO (func)

result | GetDeton (index, func)
EXCEPTION (ADVANCE, finalindex) TO (func) i
created :< FALSE . 11
SEND (DATON, result) TO (superior)
END ;
1: (request, index) ;m Reveal ;
EXCEPTION (request, index) TO (pO ) ;

IF oreated
THEN EXCEPTION (ADVANCE, finalindex) TO (funo) i

oreated :« FALSE ;
RESET ;
UNTIL index < finalindex
EXCEPTION (request, indea) TO (pie ) I
BND ; (¢ End of Aet-1floo-Func . °)

In LUX it Is eVon permitted to pass the aot for « aa a parameter to 'g'~ » —1 (Uk*
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[procedural or [functionl parameters In PASCAL); this relieves us from having a separate

lislool for every Instance of currenting. The function f itself is translated into:

ACT A*t_fHC ;
LABEL 1 ;
VAR
superior, pi, ppl : ACTOR request : HSGTYPE ;
valuoO, valuel, result : ANYTYPE ; index . INTEGER ;
BEGIN
(, , valueO, pi) :m RECEIVE FROM (Creator) ;
ppl :* SEND (AUGMENT) TO (pi) (« f S.S )
REPEAT
WHILE TRUE DO
BEGIN 1
(superior, request, index) :* RECEIVE () ; 1
valuel :* GetDaton (index, ppl) 1
result :* ... valueO ... valuel ... ; 1
SEND (DATON. result) TO (superior) ;
B\D ; (* BEnd of inner eternal loop. *)
1 (request, index) ;= Reveal ;
EXCEPTION (request, index) TO (ppl) ;
RESET ;
UNTIL FALSE ; (» BEnd of outer eternal loop. )

B\D ; (» BEnd of Act_Func . )
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+ +

Complete listing of the program which translates any net or subnet
from graph Lucid into LUX (for further detail see section 4.3.4).
The program "Sieve" has been chosen for illustration.

program SieveTranslation (output)

const
UDFops = 30 ;
type
oprange - 1..UDFops ;
(* alfa packed array [I..10] of char 5 *)
NODEP NODE ; (* node pointer *)
NODE record
ntype s (otcopy, otcopytranslated, otinport, ototner)
nlabel . integer
ntext alfa
nr.oofrefs integer (* number of node references (COPY!) *)
nr.oofops 0. .UDFops (* number of node operands *)
r.op array foprange] of NODEP
ninitop array [oprange] of integer
end
function NextLabel (var nodenumber : integer) : integer ;
begin NextLabel :« nodenumber ; (* pseudo function *)
noder.umber :m nodenumber ¢ 1 ;
end ;
function Translate (nuc : NODEP} var nodenumber ! integer ) s integer ;
forward }
procedure SeanOperands (nuc : NODEP: var nodenumber : integer) ;
var i ;. integer ;

nucop 1 NODEP ;
begin with r.uc* do

for i :m 1 to nr.oofops
do begin
nucop j- r.op[i] 1
if nucop*.ntype < otinport

then begin ninitopfi] :m -r.ueop* .r.label ;
dispose (nucop)
end
else ninitop[i] t* Trar.slate(nucop, noder.umber) 1
end end } (* End of procedure 'ScanOperands*. *)
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S B
procedure Nodelnitialisation (nuc s NODEP) ;
var i i Integer ;
begin with nuc* do begin
write (* SEND (DATON, ‘') j
for i :* 1 to nnoofops
do begin
write ('node[*, ninitopl[i]ls2) ;
if i < nnoofops then write ('], ")
end ;
writeln (’]) TO (node[', nlabels2t ']) ; (G
ntext, '*)');
end end ; (* End of procedure 'Nodelnitialisation'. *)
function Translate ; (* pseudo function *)
(* The result of function 'Translate' is the subscript (label) of the

node which will deliver
in the case of COPY nodes.

var
transl s integer 5
begin with nuc* do begin

transl

Translate :» transl ;

(* avoiding

the operand.

*)

repeated COPY translation:

Note the split node labelling

(# new node will be node[(transl)] *)

:m NextLabei(nodenumber) ;

the function result! *)

(*
*)

if ntype <> otcopytransiated
then begin
if ntype m otcopy
then begin ntype :« otcopytranslated ;
nlabel :m NextLabei(nodenumber) j
end
else nlabel :m transl ;
writeln (' node[', nlabel:2,
1 CREATE(Act_', ntext, ') j') »
ScanOperands (nuc, nodenumber) j
end;
if ntype m otcopytranalated
then writeln (' (, , node[', transi:2,

1
continued =

RECEIVE FROM (node['f niabel;2,

) s
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continued
nnoofrefs :m nnoofrefs - 1 }
if nnoofrefs - 0
then begin
if nnoofops > 0 then Nodelnitialisation (nuc);
dispose (nuc) ;
end end end ; (* End of function 'translate’'. *)
procedure SegmentTranslate (nuc s NODEP  ;
name s alfa :
nodes sinteger;
inports s integer) ;
var
nodenumber : integer ;
i :integer ;
begin
vritein (‘ACT Act_', name, ' ;') ;
if inports > 0
then writein(' LABEL1 ;') ;
writein (’ VAR") ;
vritein (' node ! ARRAY [', -inportssO,
nodes-1:0, 'l OF ACTOR ;') ;
if inports <-
then writein (’ BEGIN")
else begin
writein C request s MSGTYPE ; index, skip : INTEGER ;')

writein C BEGIN*) 5
writein C skip = 0 ; )

write C (. ") »

for is“t to Inports do write (* node™l -1:0, ']")
writein (') !'- RECEIVE FROM (Creator) ')

writein 5

writein WHILE Reveal ADVANCE")

writeln C DO BEGIN’) ;

writein C (request, index) Reveal ;') ;
writein C IF index m finalindex') ;

write C THEN EXCEPTION (request, index) TO (') ;
for i :m 1 to inports

do begin write ("nodef', -1t0O) ;

if i < inports then write "1, ")
end ;
continued mmm
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continued mmm

writeln ('])")
writeln (' ELSE skip »m skip ¢ 1 }*) 5
writeln (* RESET j'5 }
writeln (° END j') f
writeln ;
end ;
nodenumber :m 0 ;
i !m Translate (nuc, nodenumber) ; (* always yields zero *)
if inports < 1
then writeln (' Set_Priority (node[o], top_priority) }")
else begin
writeln (' *1%) »
writeln (’ls Pass_Through (node[o], skip) ;') s
end ;
writeln ( END ;)
writeln }
writeln ;
end ; (* End of procedure 'SegmentTranslate’. *)

procedure NodeDecl var gin s NODEP; r.tx alfas nops s integer) ;

begin

new (gin) ;

with gin* do

begin
ntext » o ntx

if nops < 0

then begin
ntype ;= otcopy ;
nnoofops 1 :
nnoofrefs s- -nops :
end

else begin
ntype := otothor ;
nnoofops :® nops S
nnoofrefs :e 1 ;

end end

end (* End of procedure "NodeDecl®™. <)
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(* here starts the application <me*myecmermrecomme *)

(* 'RootDefine' and 'SieveDefine' place the Lucid graph of the
entire Sieve program in store, ready for translation. *)

function RootDefine (i s integer) s NODEP (* a pseudo-function *)

var
u sarray [1..7] of NODEP j

begin
—s- i »
NodeDecl (u‘1 * 'Const , 1', 0)
NodeDecl (u'2 g9 'Plus_ ' 9 2)
NodeDecl (u.3 g 'Const , 2, 0)
NodeDecl (u.4 g9 'Fby~ f 2)
NodeDecl (u.5 g 'Copy , 2', -2)
NodeDecl (u 6 9 'Sieve 9 1)
NodeDecl (u[7 9 'Write_' 9 1) (* 'Write_, "console"', *)
RootDe fine (* highest ranking node *)
un™J .nop ul ul21*.nop[2] ui?] j
ufd.*.nop “13J u[4J*.nopl.2J ul2] ;
ul5, *.nop_11 :» u 4
ufé “.nopM = us5
u[7J*.nop[1l. :m U6

end t End of function 'RootDefine'. *)

function SieveDefine (i ! integer) : NODSP

var
u s array [1..9] of NODEP ;

begin
i @l b
NodeDecl (u , 'Copy_, 4" -4) ;
NodeDecl (u'2 , 'First ' 1) *
NodeDecl (u,3 , ‘Mod" 2)
NodeDecl (u , 'Const , O 0)
NodeDeci (u.5 , TNet 2)
NodeDecl (u ) "Wor 2)
NodeDecl (u.7 , 'Sieve 1)
NodeDecl (u S , \ , 2)
NodeDecl (u19 , (I6P6rtt - 0)  u[91*.mtype i« otinport

ul[9]* .nlabel »m 1 ;

SieveDefine | =] (# highest ranking node *)

continued m
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QDat: nued Eea
uX \nopV e uy.

u?2 *nop,, = ui t
usz *nopi s* ul t Uy *.nop.2, 2* U2
ub. *nop.1, (. U3 j UG *.nop 2 :e u,a.
ub *«nop.1. e ul : U-6J*.nop’2" 2m us
u *nop 1 :e u6
ud.*.nop 1 sm u.l. ; u[8]*.nop[2] ul7] ;
end (* BEnd of function 'SieveDefine'. *)
begin
writeln ;
writeln ('(* LUX code for sieve" example: *)') }
writeln ;
irriteln j

SegmentTranslate (SieveDefine(o), 'Sieve', 12, 1) ;

(* the "number of nodes" is equal to the number of nodes
in the Lucid graph segment, except inport nodes,
including COPY nodes, plus all COPY references. *)

SegmentTranslate ( RootDefine(o), 'Root_', 9, 0)
end (* End of main program. *)

This program produces the following output:

(* LUX code for "Sieve” example: *)

ACT Act Sieve

LABEL 1 ;
VAR
node ARRAY [-1 .11] OP ACIOR ;
request : MSCTYPE ; index, skip : INTEGER
BEGIN
skip =m0 :
, node[-11]) RECEIVE FROM (Creator) ;
WHILE Reveal m ADVANCE
DO BEGIN
(request, index) :m Reveal »
IF index = finalindex

THEN EXCEPTION (request, index) TO (nodel[-1])
ELSE skip «m skip ¢ 11
RESET t
B\D {
continued
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m continued m

nodeT ol :« CREATE(Act_Fby_ > 1
node[ 2j I* CREATE(Act Copjr_, 4

(, . node[ 1J) i- RECEIVE FROM (node[ 2])
nodef 3] «m CREATE(Act_Sieve ) 5
nodeT 4] *m CREATE(Act Wvr_ )

( , . node[ 57) RECEIVE FROM (node[ 2])
nodeT 6] 2" CREATE(Act Ne_ )
nodeT 7] :* CREATE(Act Mod_ )
( ., , node[ 8]) 2- RECEIVE FROM (n
node[ 9] 2- CREATE(Act_First_ )

(., , nade[l0]) !- RECEIVE FROM (nodef 2])

SEND (DATON, node,-1 () TO (node( 21> j (* Copy_, 4 *)
SEND (DATON, node,10, ) TO (nodef g1) 1 (* First o)
SEND (DATON, node[ 8J, node[ 9]) TO (nodel 7D 1 (* Mod_~ )
node[ll] s CREATE(Aot Const ,0 i

SEND (DATON, node, 7 "nodef111l) TO (node"‘ 61) j (* Ne *)
SEND (DATON, node, 5 node[ 6]j TO (node' 4j) ; (* Vvr_ °)
SEND (DATON, node, 4, TO (nodef 3J) i (* Sieve *)
SEND (DATON, node[ 1 node[ 3]) TO (node[ o)) ; (* Fby_ *)
1
Pass_Through (node[o], skio)
BEND 5
ACT Act_Root

VAR

node ARRAY [0..8] OF ACTCOR
BEGIN
node( O!L ~ CP.EATE(Act Wri te_
node' S’ CREATE(Act_Sieve
nodef 1} Y CREATE(Act Copy , 2
nodel . = CREATE(Act~Fby_
nodei ™ *' CREATE(Act Const_, 2
node™ o, i® CREATE(Act Plus
node[ 7J 2° CREATE(Act Conet , 1

node[ 8]) 2- RECEIVE FROM (node[ 3]

SEND (DATON, nodei 7], nodei 8 ) TO (nodel 6]] (* Pius *)
SEND (DATON, node[ 5J, node[ 6j) WD (nodg 41]) (# Foy~ %)
(, , node[ 2]) 2- RECEIVE FROMnode[ 3]) 1
SEND (DATON, nodef4]) TO(node,3,)» (* Copy , 2 %)
SEND (DATON, nodef 2j) TO(nodef1,)j (* Sieve *)
SEND (DATON, node[ 1j) TO(node[O]) ] (* Write *)

Set Priority (nodeTo top_priority) j
D 1
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OCCAM implementation (untested) of some Lucid operators

First the declaration of some constants:

DEF
OTHERWISE - TRUE,
NULLIFY -0 ,
COMPUTE -1 ,
ADVANCE -2 :

The following "PROC accept" should really be declared where indicted
in the "PROC boolor", but has been pulled out for easier printing:

PROC accept (VALUE i) *

IF
dtn[l-i] — inspect daton value
PAR
excli] ! NULLIFY; index
rplg I TRUE
OTHERWISE
ALT
excg ? request: xindex
excl[i] ! NULLIFY; index
flag[l] 4
rpig ! dtn[i]

The "PROC boolor" is the counterpart for a LUX ACT. Here are first a
few comments explaining the parameters:

— CHAN exeg, g -> boolor: exceptions
cmpg, g -> boolor: COMPUTE requests
rpicr. boolor -> g: replies (daton values)

boolor -> pO: exceptions
boolor -> pO: COMPUTE requests
pO -> boolor: replies

dto for pi
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PROC boolor (CHAR excg, cmpg, rpl*. — concurrent CR

exc[d, cmp[Jd, rpl[ J) -
VAR flag [l ], dtn[l]
PAR

PAR k - [0 FOR 1]
WHILE TRUE

rpl[k] ? dtn[k]
flag[k] TRUE

WHILE TRUE
VAR request, index, Xxindex
SEQ
ALT
excg ? request} xindex
SKIP
cmpg ? index

flag!"o] s- FALSE
flagild s- FALSE

PAR
request :* COVPUTE
cmpTo, ! index
cmpTl ! index

I PROC accept (VALUE |) =
4 --. .-

ALT
flag[lo] a
accept(1)
flag[1J a
accept(O)
excg ? request} xindex
PAR J - [0 FOR 1]
exc[j] ! NULLIFY} index

IF  request - ADVANCE — exception handling
PAR 1 m [0 FOR I]
exc[i] ! request} xindex

— Bd of PROC boolor

+
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PROC write (CHAN excp, cmpp, rplp) =

— CHAN excp, write -> p:
— cmpp,
— rplp: p-> write:

exceptions

write -> p: COVPUTE requests

replies

— a channel output is assumed as predefined.

VAR index, result

index :« O
WHILE TRUE
SEQ )

cmpp lindex
rplp ?result
output !'result
index index ¢ 1
excp ! ADVANCE; index

— End of PROC write

PROC constant (CHAN excg, cmpg,

-- CHAN excg,
— cmpg,
— rplg:
— DEP const « 4711

WHILE TRUE

VAR request, index, xindex

ALT

excg ? request; xindex

SKIP
cmpg  ? index
rplg ! const

— End of PROC constant

rplg, VALUE const) m

g -> constant: exceptions

g -> constant: COMPUIE requests
constant -> g: replies (daton values)
the value of the constant
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— Ocean implementation of the Lucid program:
— TRUE or FALSE
— main program,;

CHAN excg, empg, rplg, excfl], cmp[l], rpl[1]
PAR

write (excg, empg, rplg)
boolor (excyg, empg, rplg,
cmp. rpl)
constant (85870, , empio], rpirol, TRUE)
constant (exe[l , cmp]l], rpl[l 3, FALSE)

-- End of example

There is a trade-off between the reduced number of request types in the
Occam implementation of Lucid, and the lower number of channels in the
LUX one (Occam channels are rather restrictive) . The pattern matching
of the LUX exception RECEIVE is replaced in the Occam implementation by
ALTernative inputting through separate channels for (1) OOMPUTE requests
and (2) for all other requests. The absence in Occam of a counterpart
for LUX doors makes it necessary to place exception inputs all over the
process. Furthermore, Occam output statements cannot serve as guards
(indeed, the general provision of such a mechanism is not trivial); this
dictates a rather different result delivery strategy (channel "rpl") in
Occam than in LUX

The optimal scheduling, giving higher priority to exceptions, is not
implied in the "boolor" example, above; it has to be resolved by means
beyond present Occam. Anyway, Occam has ultimately been designed for
for execution on a multiprocessor (an array of 'transputers"), and
scheduling is of minor importance in such a setting.
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Attention is drawn to the fact that the
 copyright of this thesis rests with its author.

This copy of the thesis has been supplied
on condition that anyone who consults i$ is
understood to recognise that its copyright rests
with its author and that no quotation from
the thesis and no information derived from it
may be published without the author’s prior
written consent.
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