
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/107519/

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Translating
Lucid Data Flow

into
m essage Passing Victors

by

Paul Theo Pilgram

Tin inaugural dissertation
submitted Tor the degree o!

Doctor o! Philosophy.

Department ol Computer Science
University ol Warwich

Coventry
England

October 1983

Contents • 1

Table of Contents

CHAPTER I: Introduction.. I • 1

1.1 Aims and Objectives ... 1« 1
1.1.1 The Title .. 1*1
1.1.2 The Method .. 1-2
1.13 Concurrency... I «5
1.1.4 Efficiency ... I«6

1.2 Survey of Previous Work by Others ... I • 7

1.3 The Notation Used .. I «11

CHAPTER II: Lucid and Data Flow ... II • 1

2.1 The Lucid Syntax.. II« 1
2.1.1 Definitions (Assertions) ... II • 1
2.1.2 Expressions ... II • 2
2.1.3 WHERE clauses .. II «4
2.1.4 Function Definitions and UDFs .. II «6
2.1.5 Environments and Scope Rules ... 11« 7
2 1 6 Program Transformations .. II • 8

Unique Identifiers
Monomeric Programs
Global Variables in Functions
COPY definitions

2 2 Graph Lucid... II« 11

2 3 The Lucid Algebra ... II • 13
2.3.1 Analogy.. 11« 13
2.3 2 Datons and Histories ... II« 14
2 3 3 The Operators .. II« 18
2.3.3.1 The Pointwise Operators .. 11« 16
2.3 3 2 The FBY Operator .. 11« 17
2 3.33 The FIRST Operator ... 11« 19
2 3.3.4 The NEXT Operator .. 11« 19
2 3.35 The UPON Operator ... II« 20
2.3 3.6 The WVR Operator.. II « 21
2.3 3.7 The ASA Operator ... II «22

2.4 The Semantics .. II «22

2 5 Program Execution .. II «23
Data Driven DF
Demand Driven DF and Lazy Evaluation

2.6 Deadlock ... II «25

Contents • 2

CHAPTER III: Imperative Programs and Message Passing

3.0 Introduction.. I ll« 1
Historical Review (sketched)
Criteria for the Implementation Language
Structure of this Chapter

3.1 The von Neumann Machine ... Ill • 4
3.1.1 Flow of Control in von Neumann Architecture Ill • 4
3.1.2 Handling of Datons in von Neumann Architecture Ill «5

3.2 Message Passing Actors .. Ill • 6
3.2 0 Introduction.. Ill • 6
3.2.1 Acts, and Actor Creation ... Ill • 0

Analogy (Food for Thought)
Acts vs Actors
Actor Creation
Actor Head
Root Actor
Miscellany Concerning Actor Creation

3.2 2 SEND and RECEIVE ... Ill • 13
3.2 3 Contentious Points with Message Passing .. I ll« 16
3 2 4 Variations of Message Passing ... I ll« 16

Example (Act_Guardian—) unbuffered mossg passg
Semaphores

3.2.5 Concurrency Methods other than MPA.. Ill« ’ 8

3.3 Hoare's CSP.. Ill« 20

3.4 The Language LUX... Ill «22
3.4.1 The Extensions of PASCAL ... Ill «22
3 4 2 The Exception Feature ... Ill «23

What is Nullification0
Technicalities
Doors
The Implicit RECEIVE

3.4 3 Procedures ..Ill «27
3 4.4 Example Act (Act_Scale_) Ill «29

3 5 Summary of Chapterlll ... Ill «31

CHAPTER IV: The Translation

4.0 Introduction.. IV« 1

4 1 Node Actors, Protocols and Requests .. IV • 2
Node Actors
Protocols
Requests and Requesting
General Pattern of Node Acts

Contents ■ 3

4.2 Protocol Specification... IV" 5
Motivation
The Protocol as a Diagram
The Protocol Requests
Request propagation
Closing Remarks

4.3 The Translation Proper ... IV» 11
4.3.1 Programs without Recursive UDFs ... IV" 12

Example (Fibonacci)
The Node Numbering Rule
Outlook

4.3 2 Abstraction and Expansion (UDFs and Subnets) IV» 16
4.3.2.1 AE in equational Lucid ... IV» 16

Subexpressions and UDFs
4 3.2 2 AE in Graph Lucid.. IV« 18
4.3.3 Application of Abstraction and Expansion in LUX IV« 19
4.3.3 1 Programs with Recursive UDFs .. IV« 19

Example (Sieve): Lucid program and graph
The Finite Program vs. the Unbounded Net
Delayed Net Expansion
UDF Acts
Example (Sieve) UDF act
Initial ADVANCE requests
Example (Sieve) root act
Interlude

4.3 3.2 Further Applications of AE in LUX .. IV* 28
Making Subexpressions into UDFs

4.3.4 Summary of Translation Proper IV«30
The Translation Strategy
Representation for Graph Lucid
The Translation Program

4.3.5 Concluding Remarks about the Graph Translation....................... IV• 36

4 4 Memory in Node A ctors... IV" 37

4 5 Node Acts .. IV «38
4.5.1 Function GetDaton .. 1V"40
452 Acts which Request their Operands Sequentially IV»41

Example (Act_Plus_)
4.5.3 Acts which Request their Operands Concurrently IV" 44

Example (Act_JOr_)
Generating a NULL1IT

4.5.4 The WRITE A c t... IV. 47
4 5 5 The Daton Sink Act IV* 48
4 5.6 The FBY Act ... IV. 49
4 5.7 The NEXT A c t IV. 51
4.5 B The IF Act .. IV . 52
4 5 9 The Constant Act IV* 53
4 5.10 The READ Act .. IV «54
4.5 11 Exceptions in Primitive Acts 1V*55

Contents • 4

4.6 The COPY Act .. IV. 56
4.6.0 Introduction... IV« 56
4.6.1 Daton Buffers ... IV «56
4.6.2 Protection by Semaphores... IV« 59
4 6 3 Data Structures and Initialisation of COPY IV »60
4.6.4 Request Propagation, and Voting ... IV • 62
4.6.5 Despair and the "Trojan Horse" ... IV« 63
4 6 6 An Invariant... IV« 64
4 6.7 Procedures for COPY Out port Act ... IV • 65
4.6 8 COPY Outport Act .. IV. 67
4 6.9 COPY Outport Exception Handling .. IV« 69
4.6.10 Procedure for COPY Inport Act ... IV « 70
4 6.11 COPY Inport A c t.. IV. 71
4.6.12 Exceptions Sent by COPY Inport ... IV. 73
4.6.13 Concurrency in COPY .. IV* 74
4 6.14 Summary of COPY Act .. IV* 75

4.7 Priority Scheduling ... IV* 76
4.7.0 Introduction... IV» 76
4.7.1 Analogies .. IV« 77
4.7 2 Our scheduling rule ... IV• 79
4.7.3 Discussion of Scheduling Rule .. IV* 81

4.8 Actual Implementation ... IV« B2

4 9 Closing Remarks .. IV* 83

CHAPTER V: Checking the Correctness of the Acts

5.0 Introduction.. V « 1

5.1 The Testbed ... V «2

5.2 Program Analysis .. V * 3

5.3 Message Passing Behaviour ... V « 3
5 3.1 Message Passing State, and State Transitions V «4
53 2 Protocol Execution and Message Labels ... V «5
5 3.3 Execution in Ultra Priority V «7
5 3 4 Actions of a Demander .. V • 8
5 3 5 Actions of a Supplier.. V «8

5 4 Checking Node Actors other than COPY............... V «9
Example (EBY node actor)
Example (constants, READ, identity operator)
Example (WRITE)
Example (concurrent binary pointtvise operator)

Contents ■ 5

5 5 Checking the COPY Node Actors ... V» 15
5 5.1 Message Passing States of COPY Node Actors V*16
5.5.2 The Actions of the Participants .. V*17
5.5.2.1 Action by the COPY Inport... V* 18
5.5 2.2 Action by a COPY Outport.. V » 19
5.5 3 Simplifications .. V» 20
5.5.4 Single—outport COPY .. V*21
5.5.5 Twin-outport COPY .. V» 24

5.6 Discussion of the State Transition Tables .. V» 25
Foolish States
Execution Logs
Example (Despair)
Example (Trojan Horse)
States of UDFs
Example (FIRST node actor)

5.7 Example (Sieve): the execution lo g ... V*30
Log of Main Program
Log of Sieve
Discussion

CHAPTER VI: Ways of Improving Efficiency

6 O Introduction.. VI ■ 1

6.1 Queuing Analysis .. VI • 1
Index Offset and Offset Matrix
Intuitive Meaning of Index Offsets
Net Construction
Example (Sieve main program)
Offset Matrices of UDFs
Example (FIRST)

6 2 Act Expansion, and Node Condensing.. VI* 10
Example (Sieve main program)

6 3 Enriching the Protocol... VI* '.9
CONSTANT, operand redirection.
AUGMENT, LENGTH,
QUEUE, RESTART, KILL

6 4 Tailoi—made COPY acts ... VI *24

6.5 Tagged Data Flow .. VI • 27

Contents • 6

6 6 Code Optimisation ... VI « 29
Concurrent IF
IF with Computed Constants
Tail Recursion for Lucid UDFs
Example (Act_JUpon_)
Example (Act_Wvr_)

6.7 Discussion ... VI « 35
Example (Sieve): final result

CHAPTER VII: Areas of Further Research

7.0 Introduction..VII »1

7.1 Other Operational Models .. VII« 2

7.2 Language Extensions for Lucid ...VII «2

SUMMARY .. VIII. 1

BIBLIOGRAPHY

APPENDICES

A) Lucid Syntax.. A « 1
B) "Currenting”, the Lucid Approach to Embedded Iteration

B 0 Introduction H • 1
B.t Structured Lucid B • 3
13 2 Present Lucid B « 4
B.3 Currenting Expressed by Recursion .. B«7

Example (running moment around average)
B 4 Efficiency .. B « lt

Example (LUX code for Igloo)
C) UDF Translation Program....... ... C* 1
D) OCCAM Node Processes ... 0* 1
E) State Transition Table of Twin Outport COPY' .. E* 1

Author's long-term address
Paul Th. Pilgram
Roonstr 3
D - 4800 Bielefeld 1
West Germany

If it was common practice to have a thesis derated because it had been written

under too ideal working conditions, I had a lot to fear

My supervisor Bill Wadge deserves first mention. His informal guidance, his

continuous attention and support, and the many discussions with him have paved my

way throughout the Ph D. course.

But my gratitude extends to all members of the Warwick Denotational Semantics

Group: Pete Cameron. Toni Faustim, Forouzan Golsham, Steve Matthews, and All

Yaghi. The atmosphere, there, of permanent debate and learning from each other

was hard to better. The same can be said about the Warwick Department of

Computer Science altogether, which has been a friendly place and a pleasant

environment to work in

Financial support by the DAAD (German Academic Exchange Service, Bonn) for a

considerable period of the Ph D course is gratefully acknowledged

Also my thanks to the authors of UNIX® (the famous trademark of Bell

Laboratories) The production of this thesis has been helped a lot by UNIX® UNIX®

YACC and C are also the basis for "our" (i e OstrunVs fOsta'l) experimental pLucid

system, parts of which are re—used in this thesis

Throughout my studies many friends and relatives have given me their moral

support and lent me a patient ear This has meant a lot to me. especially when the

going was hard

1 wish to dedicate this thesis to my mother.

Acknowledgements

Declaration

The work described in this thesis, except where stated explicitly in the text, is the

result of my own original research.

Chapter 11 mainly sums up the language Lucid, developed by E.A. Ashcroft and

W.W. Wadge. That chapter and appendix A use some material from the pLucid manual

[FMY83],

Further, this dissertation is not substantially the same as any that I have

submitted Tor a degree or diploma or any other qualification at any other University.

No part of this thesis has already been or is being concurrently submitted for any

such degree, diploma or other qualification.

Translating Lucid Data Flow into Message Passing Actors

P. 77i Pxlgram

Department of Computer Science
University of Warwick

Coventry CV4 7A1.
England

ABSTRACT

This thesis is the first translation of fu ll I.ucid into code for von Neumann
machines ("im perative code") It demonstrates that it is possible to produce
efficient code even in the presence of advanced features such as "currenting",
recursive fu nctions or operators whose semantics favour concurrency Earlier
compiled implementations stopped well short of this.

Lucid is a family of non-procedural programming languages, invented by Wadge
and Ashcroft Lucid is neither tied to any particular data algebra, nor to a particular
implementation technique. However. Data Flow (with its variants) lends itself
particularly well to the implementation of Lucid

Message Passing Actcrs is an imperative programming technique which leaves
scope for cooperating concurrency. This benefits hardware (multi—computers,
transputers'') and software technology alike In this thesis, LUX. a PASCAL-hke

language with Message Passing Actors, has been chosen as the target language
It is shown that there is a subset of Lucid (a "nucleus") which has the same

expressive capacity as full Lucid The nucleus is easier to implement than full Lucid
As a prerequisite for the translation, a LUX actor equivalent is formulated for each
operator of the nucleus, once and for all. The design of these operator—actors is
strongly guided by the execution strategy of demand driven Data Flow (''lazy
evaluation") Their data storage is based on FIFO queues ("p ipelines"). The actors
operate concurrently, but they harmonise their actions by exchanging messages
which follow an agreed protocol

The translation is carried out in successive stages First the Lucid program is
transformed to make it lie entirely within the nucleus The program is then mapped
into LUX, where each operator is represented by an operatoi—actor and the
references to the variables are manifested in the environment setup of these actors
Finally, the LUX code is made more efficient by the application of a variety of
analysis and optimisation methods

Lucid programs can be analysed for various properties, and the resulting
information can assist the code optimisation (while also revealing program errors).
Particularly important among these program analyses is a queue length
determination based on Wadge’s Cycle Sum Test

Keywords : non—procedural languages, Lucid, recursive functions, cycle sum
test, program transformation, dataflow, lasy evaluation, message
passing, concurrency, transputers. Occam

I - 1

CHAPTER I: Introduction

1.1 Aims and Objoctivas

This thesis is the first translation of fu ll Lucid [AsWQO, AsW83] into code for von

Neumann machines ("imperative code", t 3.1). It demonstrates that it is possible to

produce efficient code even in the presence of advanced features such as

’’currenting", recursive /unctions or operators whose semantics favours

concurrency Earlier compiled implementations stopped well short of this Up to

now, Lucid had all the benefits inherent in non—procedural languages, but its

implementations were lacking in efficiency and in means for concurrency.

Let me explain the title of the thesis, its method of investigation, and then make

some general remarks. Up-arrows * will quote the sections where full detail can be

found

1.1.1 Tha Title

Lucid is a family of non-procedural programming languages, invented by W IV

Wadge and E A. Ashcroft. Such languages make a significant contribution to the

advancement of software technology This thesis treats Lucid rather as a "given”, so

there is little need to point out its specific attractions (t 3.5) Every Lucid program

consists only of assertions: each assertion defines a variable or a function Every

Lucid variable symbolises an infinite sequence of data objects, called a "history

Lucid is neither tied to any particular data algebra, nor to a particular

implementation technique However, Data Flow (with its variants) lends itself

particularly well to the implementation of Lucid. Throughout this thesis, the term

Data Flow ("OF”, r 2.5) comprises the data drlvan as well as the demand driven [lazy

evaluation" [IleM70, FrW76j) variant. The method presented in this thesis extends to

Data Flow languages in general

1.1.1

I • 2

The syntax of Lucid has been revised a few times over the years, but the

concepts behind Lucid have remained untouched. This thesis refers (r 8.1)

essentially to the version described in the book on Lucid [AsW83, also FMY83]; this

version is much more usable than earlier ones Substantial programs have been

written in this version of Lucid (e g. a screen editor), and Lucid can thus no longer be

called an academic plaything.

Message Passing Actors (r 3.2) is an imperative programming technique which

leaves scope for cooperating concurrency. In this thesis, the target language is LUX,

a PASCAL—like language with Message Passing Actors LUX (* 3.4) has been designed

so as to facilitate the translation into any given concurrent language. LUX contains,

among others, a special message passing technique ('’exceptions", * 3 4 2) which

supports control of concurrent computations without burdening program execution

and without disturbing the program's overall design

1.1.2 Th« Method

It is shown that there is a subset of Lucid (a nucleus ’) which has the same

expressive capacity as full Lucid The nucleus is easier to implement than full Lucid

As a prerequisite for the translation, a LUX actor equivalent is formulated for each

operator of the nucleus, once and for all (* 4 b f). The design of these

operator—actors is strongly guided by the execution strategy of demand driven OF

Their data storage is based on FIFO queues ('pipelines , t 4.6.1) The actors operate

concurrently, but they harmonise their actions by exchanging messages which follow

an agreed protocol (t 4.2)

The translation is carried out in successive stages First the Lucid program is

transformed to make It lie entirely within the nucleus Next, it is transliterated Into

Graph, Lucid In Graph Lucid, each operator is represented by a node, and directed

arcs express the references to the variables The graph is then mapped (* 4 3) into

1.1.2

1- 3

LUX, where each node corresponds to an operator—actor and the arcs are manifested

in the environment setup of these actors Finally (r 6 0 ff), the LUX code is made

more efficient by the application of a variety of analysis and optimisation methods

Wadge and Ashcroft outline in their article [AsW77a] three approaches for

implementing Lucid:

(1) translation into a conventional language,

(2) use of data driven Data Flow.

(3) use of a demand driven interpreter,

and, according to [AsW77a] only approach (3) is able to correctly compute the least

fixed point of arbitrary Lucid programs The first stage of the implementation

proper is easy: the Graph Lucid program is re—interpreted as the block diagram" of

a multi—computer system, every Lucid node being bijected to a processing unit (= an

actor). Next, we have to decide how the actors operate (i.e their internal behaviour)

and cooperate (i.e. how information is passed between them) Our long-term

perspective is to execute Lucid programs efficiently on available hardware As a first

step towards this aim, we furnish the actors with characteristics for which good code

fo r conventional computers can be form ulated The emerging multi—actor code is

subsequently tuned for the target machine

The method described in this thesis avoids the rigid commitment to any single

approach, and is thus able to enjoy the advantages of all of them. In spite of

belonging to group (1), it does not hide its demand driven origins (3), but it can even

employ data driven techniques (2) where indicated This flexibility can be achieved

by picking the most suitable act in each case Program analysis can lead to further

advice which specialised act to choose (r 6 4, 6 6)

The data storage in DF can be arranged in, mainly, either of two ways pipelines

(= FIFO queues) or tagged store. In the tagged method, the data are stored and

1 1.2

1-4

retrieved in any order; all the data are held in an associative store, with tags

indicating the identity of each data item. The tagged method is clearly very

un—restrictive, but it requires quite a sophisticated control mechanism. The

behaviour of the tagged store differs widely from the one inherent in conventional

computers; it would therefore be hard to establish a correspondence between the

two On the other hand, almost every pipeline can be handled by a few simple

machine instructions In pipeline DF. histories can only be evaluated in a restricted

sequence. There are, unfortunately, Lucid programs which are computable in

tagged DF but not in pipeline DF. Occasionally, pipeline DF can even cause wasteful

computations However, we choose pipeline DF as the main method, because of its

greater machine affinity, and treat tagged DF only as an emergency choice. Anyway,

a totally general tagged DF implementation requires the program to be held in a

special internal representation (data dependency graph) for which corresponding

conventional code can be found only in some lucky cases

Conventional computers offer no abundance of processing power, and mere

small-scale concurrency is provided only at high cost Data driven DF implies very

high concurrency, but it has little concern for efficiency, it produces masses of

computation results in the hope that some of them will eventually be of use In our

context, this would be suitable only in select cases On the other hand, demand

driven DF is efficient, and requires little or no concurrency, this is therefore our

prime choice

The translation generates by default code with high, concurrency (one actor per

node) Even before their translation, Lucid programs can be analysed tor various

properties, and the resulting information can assist the code optimisation, while also

revealing program errors (* 6 0 ff). Particularly important among these program

analyses is a queue length determination based on Wadge's Cycle Sum Test (’ Wad79],

t 6 1). The optimisation can be dirocted to minimis« or to maximise concurrency as

1.1 2

1 - 5

far as reasonable.

1.1.3 Concurrency

In sequential implementations, operators evaluate their operand usually from left to

right If the left operand of an operator like ¡OR] happens to get into an endless

computation, the ¡OR] will never yield its result, even if its right operand is ¡TrUZI- This

is not in accord with the generally accepted mathematical meaning of ¡OR]. One

would expect the following equations to hold

a OR b = b OR a (conmutat iv i ty)
TRUE OR UNDEFINED = TRUE

UNDEFINED OR TRUE = TRUE

One can therefore say that only a concurrent iOR̂ (t 4 5 3) adheres to the

mathematical definition.

A further argument in favour of concurrency comes from the hardware arena

In the pursuit of ever increasing computing power, hardware designers have turned

their attention to concurrent machines (multi-computers, "transputers"), sharing

the computing load among many arithmetic units The traditional programming

languages were deliberately designed around mono-processors, and it is very hard to

extract chances for concurrent evaluation from such programs. Lucid is not

committed to any particular degree of concurrency, bo it high or low, and it leaves

therefore more scope to progress in the computer field than many of the old

favourites

Concurrency combines curse with benefit On most present-day computers,

concurrency can be achieved (simulated) only at considerable cost; it must therefore

be minimised and reserved for those cases where there is no way around It.

Programmers have developed a sense for avoiding concurrency, even for managing

without it altogether. There are, however, significant programming tasks which are

most naturally solved In a concurrent manner (e g breadth-first evaluations)

1.1.3

1-5

far as reasonable.

1.1.3 Concurrency

In sequential implementations, operators evaluate their operand usually from left to

right If the left operand of an operator like [OR] happens to get into an endless

computation, the [OR] will never yield its result, even if its right operand is ¡TRUE]. This

is not in accord with the generally accepted mathematical meaning of ¡OR]. One

would expect the following equations to hold

a OR b = b OR a (coranutat i v i ty)
TRUE OR UNDEFINED = TRUE

UNDEFINED OR TRUE = TRUE

One can therefore say that only a concurrent |0R| (t 4 5 3) adheres to the

mathematical definition.

A further argument in favour of concur rency comes from the hardware arena.

In the pursuit of ever increasing computing power, hardware designers have turned

their attention to concurrent machines (multi—computers, "transputers"), sharing

the computing load among many arithmetic units The traditional programming

languages were deliberately designed around mono-processors, and it is very hard to

extract chances for concurrent evaluation from such programs Lucid is not

committed to any particular degree of concurrency, be it high or low, and it leaves

therefore more scope to progress in the computer field than many of the old

favourites

Concurrency combines curse with benefit On most present-day computers,

concurrency can be achieved (simulated) only at considerable co3t; it must therefore

be minimised and reserved for those cases where there is no way around it.

Programmers have developed a sense for avoiding conciirroncy, even for managing

without it altogether There are, however, significant programming tasks which are

most naturally solved in a concurrent manner (e g breadth-first evaluations).

1 1.3

Software technology would therefore benefit if concurrency no longer had to be

circumvented at all cost (A reasonable compromise would be to annotate each

instance where an operator con be. but does not need to be, executed concurrently.

Operator variants ! A SPA ISO 1 and !OREI.SEl can indicate those cases where concurrency is

dispensable.)

This thesis uses concurrency load to mean the number of actors which are at a

particular moment ready to execute (i.e. actors which are not "hung" waiting for

inputs). An excessive number of hung actors indicates often a design deficiency.

This number can be reduced by combining particular actors into one In a well tuned

computer system the concurrency load is usually roughly equal to its number of

CPUs.

Concurrent programs are executed non—deterministically, given the total state

of a concurrent machine, one can generally not predict its next state with certainty.

(In the absence of a system—wide universal time it would even be impossible to

determine the total state [Lam7d|) However, Lucid is a fu nctiona l programming

language; all its operators are such that the computation result of any Lucid

program depends only on the program inputs, without any effect from the order of

evaluation, i.e it is deterministic

1.1.4 Efficiency

The most heard objection against functional programming languages is their

alleged inherent inefficiency This thesis (like others before it) provides ample

evidence that Lucid can be lifted to any level of efficiency it all depends on the

amount of optimisation. The conventional programming languages, on the other

hand, are tailored for von Neumann monoprocessors, and a great effort is required to

make them run efficiently on a machine with high concurrency, rlenotational

programming languages (like Lucid) are superior in this respect.

¡■6

1.1.4

p

1.2 Survey of Previous Work by Others

Quite a number of people have put a lot of effort into implementing Lucid Some

of these implementations were never completed, many were of unsatisfactory

efficiency or covered only a subset of Lucid In its early versions, Lucid was neither

very powerful nor practical in actual use, and this hindered its wider acceptance.

The syntax of Lucid has changed considerably over the years, and Lucid has now

become quite a respectable language. Exotic constructs were abolished

(e g. function freezing) and useful ones were added All this depreciated the older

implementations, since they refer now to defunct languages. This problem (and the

whoLe problem of language implementation) has been greatly alleviated with the

invention of compile!—compilers, where a syntax change is so easily put into effect.

The following four versions of Lucid mark its main development stages:

— Basic Lucid ("BL", no connection to the language BASIC) is the oldest published

version [AsW77a, AsW76], It has assertions merely for variables, nested iteration

is achieved by means of the intrinsic function "latest” , but there are no user

defined functions

— We use the name Clause Lucid ("CL”) [AsW77b] for a revised and extended

version of BL; it has a block structure (clauses) in four variants which provides a

non—procedural counterpart for procedures and functions, with and without

iteration.

— Structured Lucid ("SL”) [AsWSO], based on USWIM [AsW79a], replaces CL's

unwieldy clause variants by classing global variables as pither elementary or

non-elementary, its uniform [wea* end' phrases provide improved block

structuring

— Lucid 03 [FMY83, AsWB3] puts [where] clauses (ISWIV [Lan66]) in place of SL's 'vaioTl

phrases, and a new technique called "currenting” removes the need for

elementary variables

1-7

1.2

1-B

CL, SL and Lucid 83 are of comparable expressive power In terms of these versions

of Lucid, and in terms of the implementation methods (1) , (2) and (3) (r 1.1.2), here

are some stages in the development of Lucid implementations:

(a) M.D. May’s BL interpreter, with arrays, tagged DF, written in BCPL (Warwick,

around 1974), incomplete.

(b) Cargill's [Car76] BL interpreter, tagged DF,

(c) Wadge's BL interpreter, written in FORTRAN (around 1976), incomplete,

(d) Farah [Far77], formally compiling restricted CL into ALGOL.

(e) Hoffmann ^Hof78], compiling restricted BL into ALGOL 60, written starting 1974,

(f) Cardin's [Gar78) CL interpreter, written in recursive FORTRAN/ALGOL,

difficulties with portability,

(a) Bush 'Bus 79], data driven execution of CL on a DF machine,

(h) Wendelborn [WenSO (WenBl)), compiling Lucid-W (restricted CL) into Wirth’s

PL/O,

(i) Wendclbcrn's [WenBO, WenB2] data driven Data Flow interpreter for Lucid-W,

CJ) Ostrum's [OstBl] "Luthid’’ interpreter (SL, written in C),

(k) Finch [Find1.], study of translating SL into Message Passing [KocBO),

(m) Sargeant]Sar82], demand driven execution of SL on a DF machine,

(n) Faustini's refinement of Ostrum's system (Lucid 03, "pLucid" [FMY03]),

(P) Denbaum (Den83], compiling AN'PL (=CL) into the coroutine language ACL,

tagged DF,

(q) This thesis, compiling Lucid 03 into the Message Passing language LL'X,

pipeline DF,

(r) Yaghi [Yag83], study of translating Lucid 03 into modal logic

1.2

I • 9

Each of these implementations is, in its way, a valuable contribution to functional

programming and Lucid, but space considerations keep us from discussing each of

them in the deserved length. The achievement of many of them lies in an area

undisputed by this thesis anyway. For example, the formal studies underpinned that

Lucid is indeed a formal system for proving program correctness: (d), (k), [AsW76],

[Fau82], (r) On the other hand, the early proper implementations gave people a

means to gather "hands on” experience with the language, if nothing else iNew

implementations profited from their predecessors' achievements and mistakes.

All Lucid implementations comprise inevitably a front end which translates given

Lucid programs into an internal representation where extraneous detail has been

eliminated, this front end may be a UNIX®/iiter This filter consists of a lexical and

a syntax analyser, two well known techniques of little new scientific challenge The

differences between CL, SL and Lucid 83 are largely neutralised in the output of this

filter, so that, from this point on. we need no longer distinguish between the Lucid

versions. The filter output is essentially a directed graph equivalent to the original

Lucid program: every operator is mapped into a node, and arcs express the way in

which node inports “feed" from node outports The direction of the arcs is the

direction in which the computation results flow, and the arcs are labelled by

identifiers of Lucid variables The filter output can appropriately be called Graph

Lucid (t 2 2) The machine internal representation of the graph is usually tailored for

the subsequent stages (either forward or back pointers).

The remaining stages reflect the chosen implementation technique, and are

therefore very dissimilar Data driven Data Flow is almost impossible to implement

without purpose made hardware, whereas demand driven Data Flow is the method

commonly used in Lucid interpreters. The Lucid graph serves, in both cases, to

direct the initiation of computing action

1.2

I -10

Data driven DF (2): whenever data become available, the graph indicates which

further computations could benefit from these data Still, the strategy for injecting

data into the computation decides which Lucid programs are computable It was

mainly the need for special hardware which kept (i) from progressing beyond the

paper study. A Lucid compiler (1) can occasionally employ techniques akin to data

driven DF Genuine data driven hardware was employed by (g) and (m), they found

that Lucid execution on such a machine requires not only abundant computing power

but also abundant store.

Demand driven DF (3): whenever data are requested, the graph indicates which

other data are prerequired before the request can be fulfilled Its prudent avoidance

of waste and its easy sequential execution made demand driven DF the method used

in all known Lucid interpreters ((■), (b), (c), (f) (j). (n)) Such interpreters are

ideally suited to using a tagged store, whereby they may even correctly execute

arbitrary Lucid programs.

The compiling implementations, the type (1), are here of greatest interest,

since this thesis (q) is most closely related to them These implementations use the

graph less directly They analyze it for various properties (?6.i, 6.6), and use this

information to generate code for the given machine Many properties can bo found

only by such a global analysis. — Most code generators model the action of an

interpreter, like (J) They produce a linear sequence of instructions by "tree

walking" the Lucid graph whenever a new node is encountered they generate

equivalent code Compared to an interpreter, the compilation can anticipate some of

the administration, once and for all.

Most of the older compiling implementations (viz (d), (•) and (h)) manage only

to compile a severely restricted Lucid into imperative code. The problems in

compiling full Lucid arise, since it is impossible to tell in general which parts of a

history must be retained for succeeding computations Wendelborn, for example,

1.2

I ' l l

resolves this by permitting only single application of the | VSXT1 operator [Wen80], or

by requiring assisting information [WenB2] (the programmer has to state the

maximum buffer length). The former restricts the expressive power of Lucid quite

severely, and the latter is rather against the spirit of Lucid

We must analyze Denbaum's thesis (p) a bit more deeply, since its aims and

achievements are harder to distinguish from those of this thesis, after all, (p) as well

as (q) produce code in a "concurrent language". Denbaum claims even to implement

totally unrestricted Lucid. However, (p) provides no control mechanism for

concurrent operators (e g. concurrent ¡OH]), and the target language ACL treats

coroutines merely as a programming technique; its concurrency load is always 1,

from which a multi—computer would hardly benefit By contrast, both are clearly

provided in (q), its execution control mechanism, concurrent or not, is even rather

central (Efficiency is also largely neglected in (p) No hints are provided how to

evolve the method of (p) into a serious system)

Already Farah [FarBO] and Finch (k) point out the relevance of concurrency to

Lucid implementations, and they see that concurrency is not easy to tackle But (q)

is the first to describe a technique for handling concurrent operators, and to achieve

a concurrency load greater than 1.

1.3 Tho Notation Uaad

This thesis follows a rather informal style, it contains no high powered

mathematics or elaborate proofs An attempt has been made to illustrate every

explanation with at least one example All diagrams are placed in the text right

where they are used, which makes the reading easier Figures have a box drawn

around them if they represent programs or excerpts from programs (in whatever

language)

1 3

1 -1 2

Further conventions throughout this thesis:

— Objects are printed in bold in their definition. In all these cases there is

therefore no point in searching further up for a better definition. Bold printing

is also used in introductions for highlighting very central terms One—letter

identifiers are usually emboldened in explanations to make them stand out.

— Objects are printed in a [box! if they refer to objects from a program. Where

appropriate, boxing is combined with bolding Single—letter identifiers are

usually not boxed but printed in bold. Boxing had to be omitted in drawings

(due to problems in the printer software).

— Italics are used to give words a slight stress within the text, and also for quoting

mathematical expressions (e g variables)

— The up-arrow (?...) hints at chapters or figures where further detail can be

found

Various brackets are used in their habitual meaning

[1 bibliography references ,
() function argiments, subscription or j us t conment s ,
1 i s e ts ,
< > sequences, or BNF e n t it ie s ,

genuine quotations, or "w e ird ” ways of pu tting things

Simple conventions apply to identifiers in programs:

variables are written in lower case,

keywords are written in upper case (except in PASCAL programs, where this

violates the standard),

procedure names are written in lower case but with the initial in capitals

Page numbers are printed in the top corner of every page, whereas the current

section number is quoted in the bottom corner

1.3

I I - 1

CHAPTER II: Lucid and Data Flow

2.1 Tha Lucid Syntax

This section describes the version of Lucid used in this thesis. This version is

essentially the same as the subject of [FMYB3, AsW83], only embellishments (e g lists

and strings) have been omitted for the sake of clarity.

The programming language Lucid has little substance in common with languages

like BASIC or PASCAL. The syntax of many programming languages resembles

mathematical notation, but Lucid programs go much further: every Lucid program

makes mathematical sense, it is the definition of the computation result written in

mathematical notation. Just the same, Lucid is not difficult to grasp, knowledge of

heavy maths is not required for understanding Lucid, instead, most of Lucid is clear

once a few facts are understood.

Lucid is best understood as the combination of two things:

— the Lucid syntax (the notation for Lucid programs) and

— the Lucid algebra (the objects symbolised by Lucid variables, and also the

operators on them)

We will first introduce the Lucid syntax rather informally, then the Lucid algebra

(t 2 3), and show eventually how the two are brought together in the formulation of

relevant computations. The Lucid syntax is described more formally in appendix A.

The ultimate and authoritative description of Lucid is found in [AsW83] and [FMY83]

2.1.1 Definition* (Assertions)

The syntax of Lucid comprises only few constructs, which makes it very easy to

learn. Atypical Lucid program, the computation of the running average of x, looks

as follows

2.1.1

II • 2

sim / n WHERE
n = 1 F9Y n+1 ;
sum = z ♦ (0 FBY sum) ;

END

Between the keywords j WHERE] and]ENDI you see two lines of text, the one going In - ... ;|

the other ¡sum - ... ;|. Both are simple definitions, and exemplify as such the most

central construct of Lucid

Every definition states that the object on the left hand side of "=" is forever

identical to the object on the right hand side, the definiens

Definitions (also called assertions) can be either simple definitions or function

definitions (̂ 2.1.4). The left hand side of a simple definition is just an identifier, the

name of a Lucid variable being defined; the right hand side is an expression telling

what is symbolised by the variable. The definition causes the Ihs and the rhs to be

totally equivalent so that, in expressions, the reference to a variable may be replaced

by its definiens, without any effect on the computation result

Adjacent definitions may be swapped, i.e it is irrelevant in which sequence

definitions are written There must never be more than one definition for the same

variable

These rules highlight that definitions are quite unlike the assignments in

imperative languages Every definition states the nature of an object, and it is valid

once and for all. just as in mathematics

2.1.2 Expressions

The rhs of every definition is an expression, for example pf F3Y nVil Indeed, every

Lucid program has the form of an expression The Lucid rules for expressions are

quite like those rules in most higher programming languages An expression consists

in the simplest case of a constant or of a variable A constent is either an integer, or

one of the special keywords iTft'Jfil, P̂ AtSEl or iERSOftl A variable can be denoted by any

2 12

II - 3

identifier (a letter followed by any number of letters or digits), for example Iciipo]

or [n]. Certain sequences of letters are reserved as keyw ords, and are therefore not

eligible as identifiers; they are:

AND ASA CURRENT ELSE END EQ ERROR FALSE FBY FI FIRST GE GT I
IF IS LE LT HOD NE NEXT NOT OR THEN TRUE UPON WHERE WVR * I

(fEQl [NS] ¡LEl j ll l [GEl ¡GT] are the relational operators for comparing data, ¡AND] ¡OR] |NOT)

are the Boolean operators, HOD' is the division remainder, |asa ! [FBYj 1 FIRST) [NEXT! ¡UPONI

|wvr[are special functions of the Lucid algebra (* 2.3), while jIF THEN EPSETfT! ¡where END]

and ¡IS CURRENT! have other uses)

Complicated expressions can be built out of simpler ones: a prefix operator (Q

I NOT| I FIRST] I NEXTl) can be put in front of an expression, or an in fix operator can be

placed between two expressions, the outcome is a bigger expression in either case

Ambiguities can be resolved by enclosing an expression in brackets before building

such a bigger expression. In most cases, however, brackets are unnecessary since a

precedence is defined among the operators:

(strongest b inding)
10 FIRST NEXT
9 * / MOD
8 + —

7 EQ NE LT LE GT GE < <= > >=
6 NOT
5 AND
4 OR
3 FBY
2 ASA UPON WVR
1 WHERE

(weakest binding)
The precedence is the "relative binding force" of the operators. What is meant is

this: any operator with a high precedence (strong binding force) can "grab hold of its

operands" before an operator with a lower precedence (weaker binding force) can

try. In the expression TTHYaTi] the variable n has an infix operator on either side,

and we can read from the precedence table that + binds more strongly than !FBYl

The + operator will therefore win over [F3Vl in claiming n as operand, thus making the

2 1 2

II »4

whole expression equivalent to [i F3Y (n +1)1 The binding is le ft associative among

operators of equal precedence, except for |FBY| where it is right associative, so that:

I a —b —c —d » ((a — bl — e) — dj

whereas

'« F3Y b F3Y c F3Y d - a F3Y (o F3Y (c~ F3Y d))|

Certain operators (viz, the comparison operators) do not associate at all,

i.e separating two such operators only by an operand makes no sense in Lucid:

0 < a AND n < 1000 // is a le ga l exp ress ion ,
0 < n < 1000 // is in c o rre c t .

I________________________ _______________________ I
[IF c TH5N t 5LSE e FI] is an If-expression with c, t and a being expressions; the condition

operand c selects whether the result of the ¡JFj is taken from t or from • (? 2.3 3. l).

Expressions can also contain function references, such as or iimtp»i+3, k»])1.

Every function reference starts with the function identifier, followed by the actual

parameters in brackets Each actual parameter is an expression A definition of the

function (i.e. with the same identifier, t 2.1.4) must be provided in a suitable position

(scope rules: t 2.1 5).

[WMF35; clauses are a further construct permitted in expressions, a construct so

crucial to deserve its own section

2.1.3 [WHERE] clauses

In our Lucid example program, a [where clausa constituted the top level

structure. This is perfectly legal, since [ff:i£itc!! clauses constitute expressions, and

only expressions constitute Lucid programs. The BNF (* appendix A) of a

clause is:

2 1.3

n-5

j < « * f r « M l i » >
WHERE

< c u r r «n l ing> // any nurrber o f these
< d «/ in i t io n >

END
// any number o f these

Everything between the jWHERE] and its corresponding [fgB] is called the [where] body,

while the ¡where] expression is the expression on the left of |WHERE]. Right after the

keyword I WHERE] is the only place where currentings are permitted. A currenting

(T appendix B) has the BNF:

i<vartablg> IS CURRENT <9xprw9sion> ;]

and it defines the <variable> to be, in a special way, equal to the <expr»ssion>;

incidentally, this expression is evaluated outside the ¡where] clause. Currenting is

quite an involved matter, so that appendix B should be read only after completion of

this entire chapter.

We are now able to present a program which contains all the syntactic features of

Lucid:

1 s+l ASA s EQ l
WHERE

* IS CURRENT x— 1
y IS CURRENT z-1
C = 1
. = x FBY chop (s , t)
chop (a , b) = a MOD (b + c) // f z . . 4

t = y FBY chop (t , s)
END

Each definition or currenting in the [where1 body attaches a meaning to an identifier,

be it a variable or a function. The [WHERE] expression (here: f » » i ASA » KQ tl), and the

expressions within the [WHERE] definitions, will usually refer to identifiers (of variables

and functions). In order to determine the identity of the variable or function, the

compiler performs a search, first among the definitions in the [where] body and then

outward through the syntactic structures which enclose the ¡WHERE] clause. (There is

none of the latter in our example) If no match is found, variables are assumed to be

Input variables, x and x in our example, whereas for functions an error must be

reported

2 1.3

II* 6

2.1 .4 Function Dofinitions and UDFs

Lucid programmers can also define functions of their own design; such functions

are called UOFs, U«ar Defined Functions. (Mathematically speaking, all Lucid

operators are "functions") The latter example program contains a definition of the

function [chop!, and there are two references to that function. A function definition

looks rather the same as a simple definition, except that on the left of the ”=” sign

we have the function name, followed by the formal parameters, in brackets. For

example:

ch op (a .b) = a MOD (b + c) ;

This defines a UDF ichop], of two parameters, to be forever identical to the expression

on the right hand side (the definiens). The definition declares also the formal

parameters a and b; formal parameters must never share the same identifier Each

formal parameter is bound to its corresponding actual parameter in the function

reference. Global variables (i.e. variables which are not formal parameters) are

permitted in the definiens, like c in the example. We illustrate the use of UDFs by

studying the function reference in:

Is - »~F3V chop(«,t771

The definiens of [chop! has free variables (a, b and c), and the function reference

makes sense only after all the free variables have been bound properly. For this

purpose an outward search is conducted, through all the structures which

syntactically enclose the definiens. The first enclosing structure is the function

definition, and the variables a and b are defined there as formal parameters. Formal

parameter a is in this case bound to actual parameter •, and b is bound to t. It is in

this case possible simply to rename the formal parameters, there being no clash of

Identifiers, and to substitute (macro expand) the function reference, giving:

2.1,4

II »7

1» = x FBY « W>0 (t*c)7!

Variable c is still free; it is bound only in the next enclosing structure, the jWHEREI

clause, where we find its definition |c = l ;l.

2.1.5 Environment* and Scope Rules

All function definitions appear in ¡WHERE! bodies, and ¡WHERE! clauses can appear

in the defimens of a function. Both constructs can thus be arbitrarily nested, and

either construct declares variables (or functions or formal parameters) to which

reference can be made from inside the construct. The rule for identifier look—up has

just been described once for ¡WHEREI clauses and separately again for function

definitions. The compiler, however, uses in reality one and the same mechanism for

both look-ups. Each function definition and every where" clause constitutes an

environment, and each environment gives a meaning to some particular identifiers.

Environments form a hierarchy (a tree) The input variables are contributed by the

outermost environment. If an environment gives a new meaning to an identifier, this

has the effect of locally superseding (making inaccessible) any meaning which that

identifier may have had outside that environment

We can draw the environments as dotted lines into our example program That

program contains three environments: the environment around the function

definition, defining a and b, one around ¡WHERE! clause (with the currenting half

sticking out), defining x, y, c, s, ¡chop! and t, and the outermost environment, defining

x and x. The superseding applies here only to x

2 1.5

II »8

■4-1 ASA i EQ t
WHERE :

* IS CURRENT : a-1
J IS CURRENT : * - l
c = 1 ;
* = z FBY chop (» , t)

chop : (a ,b) = a MOD (b-t-c)

t = j FBY chop (t . a)
. .END...

2.1.6 Program Transformations

Those readers who aim primarily to learn the language Lucid are advised to

continue at section 2.3. The Lucid syntax comprises constructs which are "luxury"

since they express, concisely, something that could also be expressed through the

basic outfit, though at extra length. This luxury is perfectly justified in the

programming language, since it helps to keep programs legible However, when it

comes to translating Lucid into some other code, a language is desirable with only a

minimal spectrum of constructs, since obviously every construct requires its specific

translation rule The elimination of cur-ranting is described in appendix B. This

section presents methods for eliminating four things: identifier clashes,

multi—operand expressions, global variables in functions, and multiple references to

variables. All these eliminations can be done in separate compilation passes

(e g. UNIX® filters), in the sequence just mentioned. It does no harm if this

pre—translation reduces the aesthetics of the program, since no human eye will read

the program in this intermediate form anyway.

Unique Identifiers

Different environments may attach different meanings to the same identifier, by

means of currentings, definitions or formal parameters However, the later

translation stages would benefit if all identifiers had a unique meaning This state of

2 18

I I -9

affairs can be established by substituting identifiers by unique ones; this task is not

hard since every program contains only finitely many identifiers. One might choose

[at] (i = 0. 1, 2....) as the substituting identifiers, though omitting the initial segment

[55! ... [*] if the original program contains [3j] as identifier.

Monomaric Programs

Every definition has on the right of "=" an expression, and Lucid permits all

expressions to contain many operators, by way of sub—expressions. The later stages

or our translation, however, become particularly easy if only a single operator is

permitted in any expression, and if every jWHEREI expression and every actual

function parameter is required to be just a variable, if not a constant. In this way,

the result of every operator can be associated with a variable ("Operator" is here

meant in this most general sense which includes not only the prefix and infix

operators, but also [!?[and all UDFs) Vie call programs monomeric if they have been

transformed in this way Vade monomeric, our example program looks as follows:

h0 WHERE
;

X IS CURRENT x-1 , 1

y IS CURRENT z-1 ; 1
c * 1 ;
chop (a. b) = h5 WHERE

h6 = b + c ;
h5 “ a MOD h6 ,

END ;
s = x F8Y h4 ; h4 = chop (s . t) ;
t s y FBY h3 ; h3 = chop (t . ») ;
hO = hi ASA h2 ; hi - sM h2 ■* a EQ t ;

END

The example demonstrates how easily the aim can be achieved: a definition for an

auxiliary variable is inserted, where required, with the sub-expression serving as

definiens. The auxiliary variables are named [hi] (t = 0, t, 2, .), though omitting i

values which would clash with pre-existing identifiers;

2 16

Il-IO

If the definiens for a function needs to be broken into smaller expressions,

a ¡WHERE! clause must first be put around the definiens We apply the rule that every

<«xpr«ssfen> can be blown up into:

|h WHERE h ~ Kmxprearion > , END!

Global Varlablaa in Function«

Global variables in functions are sometimes convenient for the programmer, but

subsequent translation stages would come to grief with them. Global variables are

easy to eliminate: they are simply added as extra actual and formal parameters both

to the function definition and to each function reference (identifiers assumed to be

unique). The respective lines in our example would change into:

| s = x F3Y chop (s . t .c) ;
chop(a.b.c) = a MOD (b+c) ;

' * _ n _ l__ _ _\

[copy) definition«

We know that expressions can contain references to variables; this is the one

and only way in which variables interconnect and eventually combine into the

program. A variable may have more than one expression referring to it.

No substantial program can do without such multiple references.

Since any operator may occur in a definition, every operator must be able to

cope with multiple references In a naive approach, one might implement each

operator so that it can handle multiple references Instead, we pretend that Lucid

has an extra construct, namely the ¡copy! operator and the ¡COPY! definition

(<var> |,<var>|) ■* COPY (<var>) ; // BNF

(*. y . *) = COPY (a) ; // example

2 16

11*11

ICOPYl is a unary multi-valued function; in the example, x. y and z refer to exactly the

same variable a. Any number of <var>'s is permitted on the left hand side.

The entire problem of multiple references is now concentrated in the IcoPYl

operator, all other operators will now have single references. (Note: The Lucid

programmer is not allowed to use jCOPY] definitions.)

Lucid programs before and after all these transformations are shown in

sections 4.3.3.1.

2.2 Graph Lucid

Before we turn to the Lucid algebra, let us use the occasion for introducing an

entirely different program transformation, namely the one into Graph Lucid Graph

Lucid is not another programming language but only a different representation for

Lucid programs, it serves mainly as a particularly suggestive illustration aid in our

later explanations. The subject of section 3.1 might, in contrast, be called equational

Lucid

Given a Lucid program which has been conditioned according to appendix B and

section 3 1 6, the translation into Graph Lucid is quite easy. In Graph Lucid, each

operator is represented by a nod», and directed arcs express the references to the

variables Let us study this in greater detail

Every operator is mapped into a node In our diagrams, nodes are drawn as

boxes with the node type written inside Every monomeric expression defines a

result; correspondingly, every node has a point, called its outport, from where an arc

springs. Generally, every operator has operands, correspondingly, every node has

points, its Inports, where arcs end. By convention, the outport is placed on the

bottom line of the box, and inports are placed at the top or at either side The

sequence of the operands is reflected in the left-to-right sequence of the node

lnports; for example:

3 3

II «12

1» = IF c THEN t ELSE a FTTI

may map into:

c t
4 4

-I----------------- +
I IF | ♦- e
H---------1------- +

4
X

Matters are hardly different with COPY! nodes; they differ only in so far as they have

more than one outport. To limit the clutter in our diagrams, ICOPYI nodes are

symbolised by a plain letter C, and the node box is omitted.

Lucid programs express input and output implicitly, namely by means of the

outermost environment (input) and by the overall result of the program (output).

Graph Lucid requires one explicit 'read; node for each input variable, one ; write' node

for the program result, and one ’constamt! node for each constant.

Expressions can contain references to variables and constants Each referer.ee

is mapped, in Graph Lucid, into a directed arc Every arc leads from an outport to an

inport, i.e this is the direction of the arrow on the arc Every arc can be

unambiguously labelled with (the identifier of) a variable, often an auxiliary variable

We will occasionally speak of the downstream direction when we mean the arrowed

direction of the arcs; upstream is the opposite, of course.

The translation of UDFs into Graph Lucid is described in section 4.3.2.2; until

then, it is sufficient to know that every UDF is an operator, and the LDF parameters

are its operands.

Tho beginning of section 4 3.3.1 shows how the example program [Sieve! would

look when transformed into Graph Lucid. Labels mt and st are used for auxiliary

variables; the numbering is incidental, for the time being - In the diagram, one

¡COW node («2) is split up into three separate [COPY! nodes. Strictly speaking, this

not perfectly legal, it has been used merely to keep the graph legible - The letter N

2 2

Il *13

In the graph marks the point which corresponds to the variable N in the program.

The graph on the left contains a cycle: we can run down the arcs from the iPLUSl node

to Iran, then to [COPY] (C), and arrive again at ¡plus!. In Lucid programs, every cyclical

definition needs to involve at least one variable; in the graph, the cycle can be

broken at the point corresponding to this variable. This point is therefore called a

outpoint, and it is marked * in the graph. It coincides in our example with the

variable N.

Any of our graphs is called a net if it has no open inports and outports (e.g. the

left part of the ; Sieve! graph), while a subnet is a graph with an open inport or outport

(e g the right part). UDFs map into subnets, and the main program maps into a net.

2.3 T h * Lucid Algebra

2.3.1 Analogy

Lucid graphs are excellent for illustrating the Lucid concept. One can imagine

the arcs were pipes, and there were plastic balls rushing down the pipes. Each ball

contains an item of information, say, written on note paper Instead of balls we

speak of datons, and the information contained inside is called the daton value Each

pipe transports datons from a node outport to a node inport.

The nodes are machines, connected by the pipes in accordance with the

program. The outports and inports resemble sockets with pipes attached. A node

can check each of its inports whether it is f illtd , i.e. whether a daton is ready to be

consumed When given a daton at an inport, the node can take the daton, inspect its

daton value, and take the appropriate action. The node produces datons with

suitable value, and feeds them into the outport pipe.

Let us take for example the ÌAÒDl node. It has two inports and one outport.

Whenever each inport is filled, the node removes both datons, computes the sum of

23.1

I I - 14

their values, and feeds a daton with the sum value into the outport.

On the other hand, the ¡COPY) node has one inport and at least one outport.

Whenever the inport is filled, the node removes the daton, and feeds a copy of this

daton into each of its outports.

Any network of nodes and pipes can be built up out of these components, and

the computations take the form of daton processing and of pushing datons through

the pipework Looking at any point in the network of pipes and nodes, we see a

stream of datons passing by (as long as the computation does not come to a halt).

One can record the values of all the datons passing through a pipe, and one can say

"this arc has thi3 sequence of data associated” .

If the program runs forever, it should compute an in fin ite sequence of data.

Of course, only fin ite ly many datons can be computed in finite time

The analogy of the plastic balls has its limitations, it is merely meant as a rough

guide. (It modelled the data driven version of pipeline Data Flow, * 2 5. We use the

UNIX® term pipelino" for FIFO queues in general.) Datons are in reality mere

conceptual objects, and they can be produced and consumed without regard to any

conservation law, as the description of the ,ADt)l and ¡COPY] nodes showed

2.3.2 Datons and Hiatorlas

Datons are conceptual data particles, whereas in conventional programming

languages a data item is a mere contents of a storage cell. We confine the daton

values to integers, |T3t'Ei or I FALSE!, or Rsaftoal. Lucid allows, in principle, a much wider

range of data, but the full generality would distract from the important points of this

thesis.

We know that every variable of the Lucid program maps Into an arc in the graph,

and that every arc has a sequence (finite or infinite) of data associated We call a

finite or infinite sequence of data a history Taken together, every Lucid variable has

33 2

II «15

a history associated. Here are a Few examples of histories:

index = < 0. 1. 2. 3, 4, 5. 6. 7. 8. 9. 10. . . . >
squares = < 0. 1. 4. 9. 16, 25, 36. 48. 84, 81. 100.
primes = < 2. 3. 5. 7. 11. 13. 17. 19, 23. 29. 31. . . . >
chance = < 46, -5, 0, 1537, 400, -34. -34. 1 . 147, . . . >

(Warning: the sequence notation is only an aid for our discussion, it is not Lucid

syntax) The variable |tnd»x[is indeed predefined with the history shown above,

because of its great practical use (i.e. It is known to Lucid even if the user does not

define it).

The datons are by convention numbered from 0 up. This "serial number" is

called the index of the daton. The daton with the index 0 is the initial daton ("first"

could be misleading) We denote an individual daton of a history by writing its index

as a subscript after the name of the history. The Lucid variable fjide»! is special in

that for each daton the value is exactly its index (ii = |0, 1, 2, ... j)

index« = i V < e u

2.3.3 The Operator«

The algebra is the specification both of the data objects and of the operations on

them Indeed, histories are the only Lucid data objects; every variable has a history

associated. The daton values have their own algebra; this algebra is employed to

generate a good part of the Lucid algebra. Here are the two algebras

— The algebra of the daton values: its data objects are the integers. ¡FAlSEI

and ¡ERROR!. its operators are the conventional operators (viz : * — • / ;¥Ó5i (IFl

ÍAÑ31 fORl ÍÑOTj [LT¡ ¡LE¡ [GT¡ ¡GE¡ [|§¡ (NEj),

— The Lucid algebra: its data objects are infinite sequences of datons, its operators

are the special Lucid operators (|W3Cfl ¡É9Y] I HRSfl ¡UPON! jWVftl ;XsXl) as well as the

pointwise extensions of the conventional operators.

2.3.3

11*18

We explain now the operators: first the extension ("lucidisatxon") of the conventional

operators, then the special Lucid operators, starting with the very important !F3Yl

andlNEXTi and followed by the more exotic operators.

2.3.3.1 Tha Pokitwisa Operators

All conventional operators can be extended pointwist (= indtx—wist)', such

extended operators are pointwisa operators. This operator extension is defined as

follows: given a conventional operator ifr and given two histories a and b, the history

(a “V* •>) is obtained by applying individually to the operand datons:

(a uii b)t = a« V b< V t € u.

For example, a Lucid program may contain the simple definition:

sum = a + b ; // "+■’ is here j

This corresponds to the following equalities for individual datons

sum* = a* b, V i e «

This is indeed the Lucid [ADal operator described in the analogy, above Lucid

operators yield an1 ERRORi daton whenever a proper result is barred by an error in the

computation (e g. a division by 0 is attempted). This is the most elegant and safe way

of drawing attention to meaningless computation results

Here is another simple definition:

| pleasure ~ IF cond THEN music ELSE p lants FI ;

The operand icondl is Boolean, i.e each of its datons is either [TRUEI or ¡FALSE]. Index by

index, each daton of history [pleasure! is the corresponding I music! daton if the

corresponding fcondl daton is PHUSI, otherwise it is the IplanTJ daton

2. 3. 3.1

11-17

planta = <Rose, Tulip, L ily , Fern, Poppy, Crass, Fig, T r iffid , ... >
nusic = <9ach, Elvis, Ella, Duke, Holst, Haydn, Weill, C lif f , ... >
cond = <7RUE, FALSE, TRUE, TRUE, FALSE, FALSE. TRUE. FALSE, . . . >

pleasure - <3ach, Tulip, Ella, Duke, Poppy, Grass, Weill, T r iffid , ... >

Two points about [IF] must be highlighted:

— The result of the [IF] is obtained by inspecting the datons of its three operands at

exactly the same index positions as the result, nothing needs to be known about

datons at earlier or later index positions. Such operators are called polntwise

(The operators introduced in the remainder of this section 2.3.3 are not

polntwise.)

— Dependent on the daton in the jcond! operand either the daton of the ITHSNl or the

¡ELSE1 operand is chosen for the result history This means also that the value of

the other daton is ignored; the effort for its evaluation, if any, has been in vain.

2.3.3.2 Th* ;FBY] Operator

Suppose, we have to write a Lucid program which generates the following history (the

sequence notation is not permitted in Lucid)

h = < 1, 2, 3, 4, 5. 6, 7, 8, 9, 10.
11. 12, 13, 14. 15, 16, 17, 18, 19, >

A proper definition of h can be based on its two characteristics

— the history starts with a 1 and

— the history proceeds in incremental steps of +1 .

The variable h can be defined by a recursive simple definition using the [rivl operator

(¡FBYj stands for "followed by").

h * 1 F B Y h ♦ 1 ;
/ / t t t t t t

l j i
«< art i u c c « i « o r

The result of 1FBYI is the history produced by taking the initial daton from the left

operand (Ir.art!) and by inserting it ahead of the history of the right operand

2 33 2

II «10

([successor!).

Any expression can be put at Istertl. not merely our constant history of infinitely

many 1—datons. Only the initial daton of Istartl matters, it constitutes the initial

daton of the result.

Any expression can be put at [successor], and it constitutes the result from the

daton hi on. One effect is that, comparing daton by daton the 1FBY1 result with its

I successor! operand, the latter is always ahead by a single daton. Note the reference to

h in [successor!: the definition is recursive. The following diagram illustrates how h is

generated:

1 < , 1. i , 1. 1, 1, 1. 1. 1, i , 1. 1. 1, 1. 1 . 1 .

h - <1 . 2, 3. 4, 5. 6. 7. 8. 9. 10. 11. 12, 13, 14. 15 .
1 - <1 . 1. 1. 1. 1 . 1. 1 . 1, 1. 1. 1. 1, 1, 1 . 1 .

4 * 4 4 4 4 4 4 1 4 4 4 4 4 4

h-M <2. 3. 4 , 5. 6. 7 . 8, 9 , 10. 11 , 12. 13. 14, 15. 1 6 .
4 1 4 4 4 4 4 4 t 4 4 4 4 4 4

FBV h+1 = <1 , 2 . 3. 4. 5. 6 . 7. 8. 9. t o . 11 . 12. 13. 14. 1ft. 16 .

h * <1 . 2 , 3, 4, f t , 6 . 7 . 8. 9. 10, 11. 12. 13. 14. 1ft. 16 .

The exact definition of ;"3V,' is

(aFBYb)o = a0

(aFBYb)i*, = b, v t e u

The following L'DF, .Coxt.t!, demonstrates the combined use of j]F] and rpiv!. It yields a

running count of datons (Count?! is a filter)

CountT (it) * s
WHERE

s = 0 F3Y IF it THEN s + 1 ELSE s FI ;
END ;

a. 3.3 2

2.3.3.3 Th* !FIRST! Operator

IFBY1 provides also a simple way to extract the initial daton from a history,

deliberately discarding the rest of the history. This is achieved by:

■ = fancy FBY s ;

All datons of variable • are equal to the initial daton of 1 fancy I. It is also common to

write:

■ = FIRST fancy ;

which means exactly the same, but is more convenient to write — The exact

definition of the IfihstI operator is:

(FIRST a)t = ao V i e w

I I -19

I FIRST! is semantically equivalent to the UDF:

F i r s t (a) = p WHERE p = a FBY p END

2.3.3.4 The NEXT] Operator

The ¡next; operator is in a sense the inverse of ■FBY1. The exact definition of [next] is:

(NEXT a)(— a**./ ^ i €

Here is an example where j NEXT' is applied to a variable h

n = NEXT h ; j

According to this definition, n is the history obtained by removing the initial daton

from h. If h is defined as in the example above, we obtain:

n = < 2 , 3, 4, S, 6, 7, 0, 9 , 1 0 , 1 1 ,
12, 13, 14, 15, 16, 17. 18, 19, . . . >

Comparing, daton by daton. the iX53Cr! result with its operand, the former is always

ahead by a single daton. — [vSXTl is not the exact complement of !fb¥1. The

application of ¡NEXT] re-creates the successor] operand of iFfPl, in other words

c * NEXT (a FBY h) H

2.3.3.4

II *20

gives e the history of b; a is irrecoverably ignored c gets also the history of b in the

following:

"~c = b FBY NEXT b

Let us study a simple example involving 1FIRST1 and; NEXT!:

deviation = NEXT (r - FIRST r) ;

We choose a random history for r and play the example through:

r = <400, 970, 566, 946, 264, 640, 638, 117, 396, 743, 256, ... >
FIRST r = <400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, . . . »
r - FIRST r * < 0, 570, 186, 546,-136, 240, 238,-286, -4, 343,-144, .. . >
NEXT (") = <570, 166, 546,-138, 240, 238,-286, -4, 343,-144, .. . >

The following UDF, IIndexT , is a more elaborate application of ¡NEXT]; it searches its

Boolean operand k for a (TRUE] daton and returns its index position. Its integer

operand I (l e w) specifies which occurrence of 1TRUEI is wanted: I = 0 requests the

earliest occurrence

IndexT (k, i) = IF NOT k
THEN IndexT (NEXT k, i) •*■ 1
ELSE IF i > 0

THEN IndexT (NEXT k, i-1) 1 j
ELSE 0

FI FI ;

2.3.3.5 The UPON] Operator

The operators described in the remainder of this section 2.3.3 may look

somewhat "artificial", but they are almost indispensable in any substantial Lucid

program

The lüëôwl operator is of great use when we try to build a node which consumes

datons (at an inport) at a slower pace than it produces them (at the outport).

— Using the UDF1 [CountTl from above, the exact definition of [UFOS! is:

(a UPON k)4 = *(CountT(k)t)

2.3 3 5

II >21

The initial result daton of la UPON kl is ao- Subsequently, if the operand k yields a

I FALSE! daton, the current daton of a is repeated once more; otherwise, the next daton

of a is chosen for the result. — The I UPON! operator is semantically equivalent to the

following UDF:

Upon (a, k) = a FBY Upon (p, NEXT k)
WHERE p = IF FIRST k

THEN NEXT a
ELSE a FI ;

END ;

As a typical use of luPON'i, here is the UDF 1 My merge I which merges two histories x

and y, under control of a Boolean I condl, without losing any daton of x or y:

Myme rge (cond, s f, J f) =
IF cond THEN z UPON cond

ELSE y UPON NOT cond FI ;

2.3.3.6 The ;w v b| Operator

The |wvw| operator y’whtnsver") helps when we try to build a node which consumes

datons at a/aster pace than it produces them. — Using the UDF [indexT] from above,

the exact definition of ,wyr; is:

(a WVK k), = aIndex7(kii) V i e «

IWVR1 consumes both its operands synchronously. It scans its rhs. operand k until a

ITRUff daton is found, and it picks then the daton of a with the same index. The latter

daton forms the result daton of IwVRj. To obtain the next result daton, the scanning of

the operands continues from the index where the previous evaluation left off

The |Wff! operator is semantically equivalent to the following UDF:

Wvr (• , k) * IF FIRST k THEN p ELSE q FI
WHERE p ™ a FBY q ;

q - Wvr (NEXT a. NEXT k) ;
ENO ;

2.3 3 0

II -22

As a typical use of ¡WVR1, here is the UDF I Oa.il which filters out any immediate

repetitions of datons:

Clean (a) = a WVR (TRUE F3Y (a NE NEXT a)) ;

2.3.3.7 The |asa [Operator

The |a« a ¡ operator ("os soon as”) is semantically equivalent to the following UDF:

Asa (a. k) = FIRST (a WVR k) ;

iASAi consumes both its operands synchronously. It scans its rhs. operand k for the

earliest ITRUEI daton, and it picks then the daton of a with the same index. The result

of 1ASAI is a constant history generated from the latter daton.

The exact definition of iASAi is obtained by applying FiRSTI to ¡wvr¡:

(a ASA k\ = a[rdexT(k.C) V i e w

2.4 The Semantics

So fau-. this chapter has taught us how tc write meaningful Lucid programs

Thanks to the analogy of the plastic balls, we can even imagine how our programs

might be executed. We must be careful not to overrate this analogy; it is by no

means the authoritative definition of the Lucid semantics The analogy extends to a

further point, still: any of our plastic balls can be empty, in which case it provides no

inform ation. (The reason why the Information is missing is another matter.) Such

"no information" datons are called bottom, the symbol is 4_ Correspondingly,

a history can have .¡.components. A bottom daton carries loss information than a

proper daton; we say it is lees defined Based on this loss da f in ta ordering, a partial

order is defined among histories (the history consisting only of bottoms takes

obviously the lowest place).

2 4

II «2 3

Lucid can be understood as a single—assignment language: one history is

assigned to each variable, once and for ever. The Lucid semantics is defined as

follows:

The result of a Lucid program is the (east Sized point history satisfying all the

definitions in the program [AsW79a, AsW80], (Least fixed point means here: the

minimum history with regard to the partial order.)

It is common to define variables recursively:

q = Func (q) ;

There may be a history q, so that iFunc (q)i is more de/tned than q (with regard to tne

partial order). This history q is unique If such a history does not exist, q is J_

throughout. - For example:

|h - 1 F3Y h+1

•»0 is evidently defined: whenever h is defined up to an index t, it is also defined up to

the index i-*- 1 V i e u By induction, h is therefore defined everywhere

This variable h is actually an example for a special case where a particularly

convenient translation (viz. p ip « l in t) is possible no daton value of h is defined in

terms of its own successor datons

2.5 Program Execution

The term Data Flow designates the description of computations through datons

moving through a net; we abbreviate Data Flow into OF. Histories are infinite objects,

though no computer is able to operate directly on infinite objects We have to

re—organise the computations so that we need to operate only on individual datons.

one after another. Let us now study the two strategics in which a DF program can be

executed

2 6

II *24

Data Driven DF

The strategy described in our analogy is called data driven DF (most researchers

mean specifically data driven DF when they say "Data Flow"). The image of datons

streaming down the arcs is particularly appropriate for data driven DF. I CONSTANT]

and I BEAD! nodes are the original sources of datons, and they are eagerly feeding

datons into the net. As soon as the required operand datons are available for a node,

it is free to compute and produce its result. Such data driven nodes can, in general,

not influence the arrival rate of their operand datons The [write] node has no

dominance over other nodes, but simply writes out the datons which happen to

arrive. Anode may discard operand values (Tend of 2.3.3.1), their evaluation was

pointless, in retrospect. Data driven DF is inherently wasteful in this sense.

Damand Driven DF and Lazy Evaluation

Demand driven DF is a refinement of data driven DF. designed to be less wasteful

than the latter Further to the datons, demand driven DF has particles called sltons

(fr ;T « = I request). Sitons travel upstream along the arcs, and each of them

expresses the request for one daton The [WBiTE] node is the ultimate origin of all

sitons; iWRITE! alternately issues a siton and receives a result daton. A [CONSTANT; or

IrSaj] node produces a daton only upon receipt of a siton. All other node retain their

daton handling capacity; however, they can now receive sitons at their outports and

emit sitons from their inports, if appropriate Sitons contain information about the

nature of the request ("give me a daton with/without value"), and the nodes react

accordingly. Unnecessary daton evaluation can be avoided in nearly all cases (t 5 6).

Once an evaluation has been instigated, by a siton. it may turn out that the

daton value is not needed after all. In this case, alethon is sent upstream to

counteract the siton. Lethons (Lat. lethum = death) are close relatives of sitons;

a lethon can be issued right after a siton, but before receipt of the response daton

2.5

11-25

The nodes propagate lethons like sitons.

Demand driven nodes have considerable control over the producers of their

operand datons; the ¡writs; node has absolute dominance over all other nodes.

At present, most computers are von Neumann machines. Data Flow

computations of either type can only be emulated on such a machine. A demand

driven evaluator can be matched very closely to von Neumann machines, and it is

possible to formulate this evaluator in quite acceptable von Neumann code. This is

indeed what this thesis aims to achieve. — A form of demand driven evaluation has

been used on von Neumann machines for a long time. It is widely known as lazy

•valuation [HeM78], and it was first employed in LISP systems.

Even Data Flow machines do not contain moving streams of particles. They use

in reality also an emulation, implemented in tailor made hardware instead of

software. It is not very difficult to emulate demand drive on a data driven Data Flow

machine [Sar82].

2.6 Daadlock

Every Lucid program produces an endless stream of datons, and nothing but a

lack of input datons should be able to halt it. However, Lucid programs can contain

faults which make them stop yielding results, permanently Deadlock and livelock

are such errors

Deadlock is a type of programming error which re—emerges in almost all forms of

programming State a is a daadlock state if:

— state a can be left only if condition r is TREE, and

— condition r is FALSE during state a.

2.6

II *26

Section 2.4 stated which recursive definitions are constructive. Here is a

pathological program, and its graph:

x WHERE H------- --
x = x ;

END •— * C
x *

One could say, the program defines x to be "whatever it happens to be” .

Consequently x is bottom throughout, due to the fixed point semantics. When this

program is executed, an attempt is made to obtain the value of a daton xi. Because

of the cycle, a daton x* can be evaluated only if x* is known btfonhand, this is a

deadlock (see also Cycle Sum Test, r 6.1).

Another programming error is the livelock; tivelocks are those computations

which never deliver a result. In the following pathological example, ¡odd; contains only

odd numbers, and the UDFiSvenl is a filter for even numbers. [Sven! applied to [odd] can

never yield a result. Consequently, the result is bottom throughout:

Even (odd) WHERE
Even (x) = x WVR ((x MOD 2) * 0) ;
odd = 1 F3Y (3 ♦ odd)

END

2 6

in -1

CHAPTER HI: Imperativa Program* and Meaaage Passing

3.0 Introduction

Whenever a program is executed on a digital computer, this is done in the form

of numerous elementary operations (= computation steps, actions). The executing

computer is characterised by the method in which the operations are set in motion,

and each of these methods represents a computer architecture

Historical Review (sketched)

John von Neumann developed the original stored program computer

architecture (Moore school, EDVAC, 1945). But people tried immediately to make

their machine even more productive, for example by allowing I/O transfers while the

machine was busy computing the next result. This was achieved through ingenious

technical fixes, which in turn provided a base for the invention of (pseudo—)

concurrent computation. A computer system computes concurrently when it is

simultaneously handling more than one computation Later, after the dramatic

growth in the number of computers, techniques were developed to link computers

together. In this thesis we will give only little thought to the difference between real

and pseudo concurrency.

Changes in hardware motivated the development of software, i.e. hardware took

an active role, software a passive role. Uultiprocs ssing operating systems were a

reaction to the introduction of concurrent computation. Even today, designers of

computer systems rarely pass the benefits of concurrent computation on to the

applications programmer. The area has the reputation of being for experts only.

This is in essence not justified, in fact the reputation stems largely from the use of

unwieldy programming languages

3.0

III. 2

Nevertheless, programming techniques and languages for cooperating

concurrent computations have been developed, mostly by academics. Every

language reflects the priorities its inventor gave to the various aspects of

concurrency. The various concurrent programming methods are best compared by

discriminating between (A) how they set up concurrency and (B) how their

concurrent units communicate. Early on, people were satisfied to have any provision

for concurrency at all. Leaving genuine concurrency aside, we would place the

UNtX^lforkl primitive under (A) in this era in history. Similarly under (B), one would

place in this era shared use of global variables. There are methods which are more

refined. Message passing is the natural choice of communication method for

concurrent systems with separate memories

In message passing, the computing agents communicate solely by sending and

receiving msssagss. each message being a sequence of data. (We call each

computing agent an "actor'', am actor is almost the same as a von Neumann machine.

Full detail in 3.2.1.) The inherent modularity of message passing makes it attractive

for quite general application.

Other concurrent programming concepts cater for aspects which are relevant in

special situations Making the data machine independent, for example, is of great

importance in inhomogeneous computer networks (Data Abstraction, CLU [Us74]).

Other researchers have at the same time tried to design languages which are much

more amenable to analytic methods, and thus make program proofing a realistic

idea Most of these languages are built on very concise sets of fundamental

constructs. Hoare's CSP [Hoa78], Brinch Hansen's EDISON and, in a different sense,

Lucid belong to this category.

3 0

Ill >3

Criteria for tha Implamantation Languaga

On present-day computers, which language would be a suitable vehicle for

implementing Lucid? Here are a few simple guidelines to aid us in our search for an

appropriate language:

— Is the language comprehensive enough for the task in hand?

— Are the resulting programs easy to read? This thesis is meant to convince the

reader that the translation is meaningful and correct, and a well readable

language would support this aim. The "production" implementation language, on

the other hand, may be arbitrarily cryptic

— Is the language available on many computer systems? If not, would it be easy to

implement, possibly by modification of an existing system? Programs written in

a good popular language are easiest to understand and translate.

— Last, and least: are the language features a reasonable reflection of the way in

which present-day computers work? Optimisation becomes unnecessarily

difficult if this aspect is ignored.

Clearly, many candidates pass these simple guidelines equally well We will see

that Message Passing Actors (MPA, t 3 2.1) support modular program design The

author had advance experience with MPA, and there was therefore a certain

sympathy for MPA languages There is little doubt that valid arguments can be

brought in favour of other programming styles with cooperative concurrency

Various programming languages have been looked at and a decision for MPA has

finally been taken.

We chose to design directly the language most convenient for our purpose This

language is called LUX. LUX has been developed to suit the translation algorithm

Various versions of LUX, each with its matching translation algorithm, have been

tried out. We present here only the design which eventually seemed best

3.0

in «4

Structure of this Chapter

In this chapter we look first at the von Neumann machine, the archetypal

imperative computer. After that we introduce the crucial elements of any MPA

language, namely actor creation and the primitives |SE?Q1 and I RECEIVE!. We look at

variations of. and alternatives to, message passing actors. We look then at CSP as an

instance of a MPA language, and we discuss its properties. (A variant of CSP has, for

a while, been the candidate as target language. We show why it was found

unsuitable.) We present finally the language LUX in full.

3.1 The von Neumann Machine

Most computers these days (1983) have essentially a von Neumann architecture.

Von Neumann machines are saguantial computers. There, only ont operation can

usually be active at any single moment. Although every pure von Neumann machine

is sequential (non—concurrent) by nature, a certain degree of cooperating

concurrency can be achieved, simulated or genuine, but only at rather high cost

We discuss von Neumann machines here only as far as relevant for implementing

Lucid.

3.1.1 Flow of Control in von Neumann Architecture

The program (code) for a von Neumann machine is a directed graph, with

Instructions as nodes. Programs for von Neumann machines are called sequential or

Imperative programs. A classic von Neumann machine executes non—imperative

programs either inefficiently or indirectly, through compilation Lucid is a

non-imperative programming language

The flew of control formalism models the execution of a sequential program

The formalism assumes that per actor there is one token of computing activity, (An

actor is something rather like a sequential program, *32.1.) The token is usually

3.1.1

I l l -5

called the PC, for "program con tro l". The PC moves along the arcs In the arrowed

direction, with a defined starting point. Every instruction type is the encoding of an

operator; the respective operation is performed when the PC reaches the instruction

(= node). In other words: sequential programs state explicitly the sequence in which

the operations are carried out

The classic von Neumann machine has only one PC, and it can therefore only

perform a single succession of operations. This can be expanded into concurrent

computations by putting von Neumann machines side—by—side. The same effect can

be approximated by switching one von Neumann machine between a number of

actors; this is pstxido-concurrency Finally, cooperating concurrent computations

are obtained by adding a means of com m unication to concurrent computations

3.1.2 Handling of Datons in von Neumann Architactura

In von Neumann machines all the memory takes effectively the form of storage

colls (traditionally and misleadingly said to be variables) The contents of some

storage cells change in the course of instruction execution.

The concept of histories is not all that alien to von Neumann machines The

values, successively held in a storage cell, can indeed be viewed as components of a

history . One could, for example, associate a "write" counter to each storage cell, and

increment it whenever a new value is written into the cell; the counter would

obviously tell the "daton index" of the currently stored value This comparison

presupposes that all Lucid nodes evaluate their histories in the order of increasing

index ["m onotonically"). Such nodes are, indeed, particularly easy to implement,

viz. using pipelines Some nodes, however, can leave the order of daton evaluation

unspecified, namely when each of their evaluations is independent from all previous

evaluations The order of daton evaluation needs careful supervision only In nodes

with memory, nodes which are not primitive.

3.1 2

I l l -6

3.2 Passing Actors

3.2.0 Introduction

As stated before, message passing is the natural choice of communication

method among separate computers. Hewitt et al [HBS77] proposed its use in a much

more comprehensive context. Message passing enforces a high degree of modularity,

and this is one of its strongest attractions. The term "actor" is due to Hewitt; actors

will be explained in 3.2.1. There is great divergence of terminology in this field.

Common terms in place of actor are virtual processor, process, task, and job. MPA is

short for Message Passing Actors.

C.A.R. Hoare presented his Communicating Sequential Processes (CSP) in his

report [Hoa78]. Combining pre-existing techniques in a new and rather elegant style

is the main achievement of CSP. CSP is a semi—formal language, and message

passing is one of its central primitives (t 3.3).

The Experimental Programming Language EPL [MaT79] was devised and

implemented by the Warwick Distributed Computing Project Group EPL was

developed at roughly the same time as CSP, and it owes CSP more than Hewitt's

actors EPL is a bar« bones language in the spirit of BCPL It has been implemented

on two different machines, and it was meant for experimenting with message passing.

Atypical EPL program would contain substantial lengths of code where only

conventional computations are carried out without messages being passed

The language OCCAM [Inm82] might be a candidate as the true implementation

language; OCCAM is a descendant of CSP and EPL The inventors of OCCAM see it as a

new breed of assembler language, particularly suited for multiprocessor systems.

The OCCAM actor creation and message passing are both etotic, which makes them

too inflexible for what our translation requires. Lucid programs without recursive

VDFt could be translated into OCCAM without too much difficulty Appendix D shows

3.2.0

Ill « 7

an example of what would come out if our translation algorithm generated OCCAM

code (unoptimised).

In this thesis we will extensively use a purpose built language named LUX. The

MPA side of LUX has been strongly inspired by GPL. LUX will even be used as the

yardstick in all our explanations and comparisons. This is intended only to avoid a

flood of insubstantial definitions, and it must not be understood as a denigration of

other languages. LUX itself is hardly free from imperfections, but it is very suitable

for the task in hand. In the following all MPA examples will present the LUX case,

unless otherwise stated.

Why do we invent yet another language instead of using an existing one? The

language LUX has been designed for the sole purpose of legibly formulating the Lucid

node acts. There are many other languages in which this could have been done.

However, the truly popular languages contain generally no primitives for the kind of

concurrency we need (LUX "exceptions" resemble the interrupts of assembler

languages, and "doors" are the LUX device for exception handling Ordinary

languages comprise no obvious elegant equivalent for LUX doors)

The very popular language PASCAL [Wir71] forms the syntactic backbone of LUX

LUX has been obtained simply by enriching PASCAL with a number of extra features

There are two simple extensions right at the start:

- the underline character is allowed in identifiers (it can make identifiers

more readable),

- the special symbol ¡ACT! occurs in some places where In ordinary PASCAL one

would write [PROCEDURE].

Here is a simple but complete LUX program . The program emulates the

children's game with a triangular inequality: a stone (0) defeats scissors, it makes

them blunt, paper (l) defeats the stone, it wraps it up, and scissors (2) defeat paper,

they cut it.

3.2 0

in -a

ACT Act_Root_ ;
VAR a. b ; ACTOR ; r i , rb. win : INTEGER ;
BEGIN

a : » CREATE (Act_Player_) ;
b :* CREATE (A c t_P l«y «r_) ;
REPEAT

(. ra) ;* RECEIVE FROM (a) ;
(, rb) :* RECEIVE FROM (b) ;
win : = (3 ra — rb) MOD 3 ;
IF win > 0
THEN writaln ('P o in t for p la ye r ', win) ;

UNTIL FALSE ;
END j

ACT Act_Player_ ;
BEGIN REPEAT

SEND ChoiceOlZ TO (Creator) ;
UNTIL FALSE ;

END ;

(Both players' choices are taken and compared. Each player is free to base his

choice on a long term analysis of the other player's behaviour. In the program, this

decision taking is hidden in the parameterless function Choice012, which returns 0, 1

or 2)

3.2.1 Acts, and Actor Creation

Acts, actors, and the creation and initialisation of actors will be introduced in this

section.

Analogy (Food for Thought)

Every act is somewhat like a cooking recipe. Actor creation and initialisation

corresponds to the preparations for cooking a meal (buying the ingredients),

program execution is the cooking itself, and the program output is the meal. The

actor is the combination of the ingredients, in their current state of processing, and

of a bookmark pointing to the line in the recipe to which the cooking has progressed.

Many meals can be cooked from the same recipe, even simultaneously. These meals

will be of separate identity but of equivalent nature

3.2 l

HI «9

Acts vs Actors

Every program with Message Passing Actors is written as a collection of acts,

every act being a piece of sequential code. Every act definition has exactly the

syntax of a PASCAL procedure declaration, only with the keyword ¡PROCEDURE]

replaced by ¡ACTI. Acts are the largest building blocks of such a program. Here is a

typical act definition:

ACT Act_xyz
BEGIN

END ;
(• The body of the act. •)

An actor is the sole framework in which computing action can take place, where

computing action is meant to cover all CPU action in general Actors are activations

(= mstanciations) of acts. Let me repeat that acts are mere descriptions of

computing action. Many people have great difficulty in distinguishing between acts

and actors, though they are in essence different kinds of objects Executing an act

would be as pointless as boiling a recipe, in our analogy If you are hungry, it is not

enough to buy a cookery book (set of acts), you need the ingredients as well Only

the synthesis of the two (the actor) can eventually give you a meal (computation

result).

Every act is a global constant in LUX The identifier of an act must only occur in

[CR5AT&1 instructions, but never in assignments or messages. Actor names, on the

other hand, are not constants but are data values of type ACTOR]; there are no extra

restrictions to their use. Our translation requires no nested act definitions.

Actor Creation

A LUX program, a set of acts, is like the definition of a set of mathematical

functions. A definition on its own can not yield a result A mathematical function

yields its result only when applied to a sequence of operands. The actor creation is

32 1

Ill «10

the corresponding operation which sets computing action in motion. Every actor is

generated by applying the |CREATE! operation to an act. Each actor has its individual

actor name. which is something rather like an address. If |Act_xyg| is an act. and if

Ipqr-actorl is a storage cell which can hold the name of an actor, then

p q r_a c to r := CREATE (A c t _xy z , hO, h i) ;

creates a new actor from lAct_xyzl, and stores the name of this new actor in the

storage cell lpqr_aci.o.-j. Actually, an actor can carry out its computations even if its

name is not known to any actor. However, the name of an actor is needed when it

communicates with other actors (f 3.2.2). Numerous actors can stem from (can be

created from) the same act

The act specifies the operations which are carried out by the actor, with

execution starting at the beginning of the act. Every actor starts acting

(i.e. computing) at the moment of its creation. An actor terminates forever once

execution reaches the end of the act (where PASCAL procedures would instead do a

"call return”).

In the [CREATE! instruction, further actual operands may be appended after the

act specification ([hO] and [hi] m our example above) These extra operands are

passed to the actor like procedure parameters They re-emerge, completely

untouched, as values Tor the formal operands (example: *3.4.4). In our translation,

these extra operands are always constants. Names of communication partners

(operand actors) are never passed in this way, but only via the actor initialisation

(t 4. l).

Actors have no particular representation within the Ll.'X syntax, since they are

not syntactic objects; they can only be characterised by the operations applicable to

them. The only possible operations on an actor are: its own creation, sending a

message to it, receiving a message from it, and assigning its name to a storage cell.

3.2.1

I l l - 11

Each actor is characterised by the pair <aet, mamory>. An actor cam share its amt

with other actors, but every actor has its dedicated memory (i.e. actors can be

"brothers").

Actor Hoad

All actors run under a runtime system which takes care of actor creation,

scheduling, message passing and further administration. In the course of actor

creation, the supervisor allocates a record (i.e some storage space) called the actor

head. The actor head holds Information about the particular actor. The contents of

the actor head changes during execution.

We are only interested in very few items within the actor head, and it is

sufficient to assume that actor heads are pre—declared as follows:

TYP3

WBOTV« = (DATON, READY, COMPUTE, NULLIFY, ADVANCE) ;

ACTOR = ** AC TOIL-HEAD ; (• a po ss i b l e def n o f ACTOR •)
ACTOR_HEAD = record

eras ter : ACTOR : I
xr «q u «s t . MSGTYPE ; (• p res to red with READY •)
x Index : INTEGER ;
(• There are various fu r ther p ie c e s o f informât i on •)
(• which are used fo r ad m in is tra t ion *)
(• (but which are in a cc e s s ib le to the u s e r) : *)
f schedu ling s ts tu e , i n t r i n s i c p r i o r i t y , actus 1 pr i or i t y , *>
(• program counter, stack p o in t e r (f o r procedur e b ind ing) •)

END ;

Some special/unction* arc provided through which each actor can obtain useful

Information about Itself. These functions are all paramatariass, and their result is

actor »pacific. For example, the function !Mviiëïfl yields the actor name of this actor

Itself, ¡Crsstsr] yields the name of the actor which crsatset this actor, and rWeve«î1 is a

multivalued function yielding the entire message of the last exception, i.e.

Isrsqusst, »Ind'cxl. If used as a single valued function, lit«»««:! yields just the contents of

Isrsquestl. Through these functions, the actor can get access to the Information in the

3.8.1

Ill ■ IS

actor head. Actors are neither capable to explicitly change any actor head nor to

inspect heads of other actors.

Throughout this thesis, the leftm ost component of every message (t 3.2.2) is of

type iMSGTYPE] and indicates the nature of the message The message is a request if

that component is COMPUTE!, 1 NULLIFY! or [ADVANCE]; it is an exception request if that

component is 1 NULLIFY or [ADVANCE!. Daton valuta are passed around by messages

whose first component is ¡DATONl. The message type could be indicated in other ways

than via the first component, but this method has the advantage that every message

is easy to identify (* 5.3.2).

I HEADY does not occur in messages, but the cell fsrequestl in the actor head can be

set to 1 READY, thus indicating a particular actor status (!»request] is initially set to

IreapY).

As we said above, the act may have formal operands, and they are prestored

with the extra operands from the ¡CREATE] instruction

Root Actor

We are now in a chicken—and—egg situation ¡CREATE] is an operator, and

operators occur only in acts However, the execution of any operator (such as

[CREATE!) must be preceded by the creation of the actor in whose act it occurs. This

problem is easily solved, the LUX program execution is set running by the im p lic it

execution of:

r « « t _ a e t * r . = CREATE (A c t_R oo t_) ,

The LUX program must therefore contain a definition of the [ActlRooiZI. The !7oot_actor1

creates further actors, ail computing action has its ultimate origin in this actor.

Incidentally, the storage cell 1 root—actor] is not accessible from anywhere, there was

■imply no need to make it accessible. Unlike PASCAL programs, there is no main

program section in LUX programs: lAcOtooU takes this role Instead.

3.2.1

Ill -13

Miscellany Concerning Actor Creation

So far we have described dynamic actor creation, i.e. actor creation through a

run time operation. The alternative is static actor creation, where actors are

pre—created before computing action has started anywhere in the program. Static

actor creation can be simulated by dynamic actor creation, whereas the inverse is

not possible In this thesis we need dynamic actor creation for the implementation

of recursive Lucid UDFs.

Actor initialisation is usually the first thing to follow right after an actor has been

created. In the initialisation, the new actor is provided (through messages, mostly

from its creator) with various information which it needs to go about its job. Among

this information will normally be the names of the communication partners Some

actors (e.g. l,-oot_actof]) contain nothing which needs to be initialised.

3 .2 .2 [SlNDl and [RECEIVE]

The LUX inter—actor communication method is unbuffered message pessing

between pairs of actors. A message is any sequence of data items Unbuffered

means that the message is passed if one actor wants to [SEND; and if at the same time

the other actor wants to [RbceIveI. Furthermore, if the [SESDl or [RKCErVE; instruction

names a particular message sender or receiver, the actors involved must match what

is asked for. If an actor comes to a ¡SEND] or iRECErvf' instruction, it waits until all the

preconditions for communication (just mentioned) are satisfied Once the message

has then been transferred, the sender and the receiver can both resume execution.

The instructions iSTNOi and iRFCEiVEl are the message passing primitives They

''dictate'' to the system that a message shall be sent or received At any single

moment an actor can either be computing, waiting to IsEMb!, or waiting to ¡itifcEiVEl.

The primitives have in general the following form

32 2

111*14

— the Isctcj instruction states what the message is, and to which actor(s) the

message shall be sent,

— the 'receive: instruction states which actors are eligible as message senders, and

where the message shall be stored.

For example, LUX has three message passing instructions:

SEND *o> *i> ••• e„ TO (r ece i v e ro , r e c e i v e r , , r e c e i v e r ,) ;

This instruction specifies a transfer of the message ([ejj], [ej, ... [ej, where each

fejp is an expression) to a set of receiving actors: brackets may enclose the

message. Any number (minimum is one) of receivers is permitted; in our

example there are 3 of them. The receivers must exist while the ¡SEND! is in

execution. The execution of the iSESDi instruction is complete when the message

has been accepted by each of the quoted receiving actors. The quoted receiving

actors must all be different.

(l e n d e r , cp, c, . ca, . . . ca) := RECEIVE () ; j

This is the instruction for an undirected 1 itECSIVEl It is best understood as a

m ultip it assignmtnt, like from a multivalued function. (The storage cells on the

left of :■ must have been declared elsewhere) It means: as soon as a message

arrives, from any actor, it is stored in the n+ l storage cells ¡cj. [c|], .. ¡ĉ J (word

by word, progressing from [ĉ] to [jjj; how many values are stored is determined

by the I t f t hand side). If the receiving instruction asks for f tw t r message

components than provided in the Isend! instruction, the remaining components

of the message will be lost. If the receiving instruction asks for mors message

components than provided in the rSEN? instruction, the remaining storage cells

on the receiving side will be filled with unpredictable mat tr ia l — The sending

actor's name is stored in the leftmost storage cell (here: [sender]), 1 e it is "stuck

In front" of the message If more than one sender is simultaneously ready to

32 2

Ill «15

■end, one sender Is chosen at random, and all other senders continue waiting

until successful at some later time. Any message component cam be ignored by

leaving its field empty in the assignment (but not omitting the comma), as in:

ITT, components) .= RECEIVE Q ;1

(«ender, c0, ct , .. . cn) ;= RECEIVE FROM (»endcrp, sender,)

This is the directed ¡RECEIVE! instruction. The message can come only from any

leenderl actor specified after the I FROM!. There can be any number

(minimum: one) of sending actors. These senders must exist while the ¡RECEIVE!

is in execution. Everything else is exactly as in the undirected 'RECEIVE!

instruction.

In LUX, messages can consist of values of arbitrary type, and even actor names au"e

allowed. Pointers, arrays, or names of procedures, function, or acts are not allowed

as messages components LUX requests are particular messages, they are of

importance in translated Lucid (explanation: t 4.2). Section 3 4 2 describes the LUX

mechanism for passing "exception” messages

Every act is a global constant in LUX Every act is therefore permanently known

to every actor, whereas it is not permitted to make an act known to another actor by

transferring it in a message In LUX, the use of global objects other than constants is

generally frowned upon, actor names are clearly not constants.

The situation can arise where a number of actors try simultaneously to rSESTT to

the same [RECEIVE!, i.e. all these senders fulfill equally the preconditions for a message

transfer. It has been stated above that in such a situation one of the senders is

chosen at random, and the remaining senders keep waiting for further .'ftECEIVtfl. LUX

does not specify any order (e g. "first come first serve") because that would in

general not be enforceable [1,am7B].

3 2 2

I ll • 16

3.2.3 Contantious Points with Msssags Passing

Message passing can give problems in typed languages, because the words in the

different possible messages can be of n on -un iform type; this problem did not exist

in GPL since it is type—less. In LUX, we glance over this problem by assuming that

the types of the message and of the left-hand side of the 1 RECEIVE] instruction do

match. This can be ensured by run time checks.

Our translation process generates code in which type clash errors cannot occur.

If one wished to change LUX into a general-purpose programming language, one

could define: every iRECETVEj instruction assigns an entire structure, where the

structure can be of union type

Deadlock (t 3.6) is another problem area for message passing, and for

concurrent programs in general. (Our translation algorithm generates

deadlock—free code, as long as the Lucid program is flawless.)

3.2.4 Variation* of M***aga Passing

Message passing, as presented so far, can obviously be varied in a number of ways

We study only substantial variations

The addressing of senders and receivers is a rich field for variation

Broadcasting is of particular interest, i.e. the simultaneous sending to all receivers.

(The [SEND] instruction of LUX allows sending to a set of actors) If broadcasting Is

done in unbuffered message passing, it3 effect must be defined on receivers which

are currently not waiting (will the sender wait for them all?). — There are also uses

for a "lottery ISENfti", which sends to a set of receivers, but eventually gives the

message to only one of them.

Non—datarminacy can go further than merely leaving it open from which actor to

receive a message. It has been said in 3 2 3: at any single moment an actor can

either be purely computing, waiting to [SEN51, or waiting to IrTccEIveI . There are

3,2.4

Ill -17

relevant applications which would benefit if more than on• of these were

simultaneously possible. A p rio r ity rule might be provided for the case where ISEND1

and 1 RECEIVE! become simultaneously enabled. Obviously, pure computing must get

the lowest priority since it is permanently enabled.

We could redefine the measures taken if one actor wants to send a message

without the target actor being ready to receive it. Instead of letting the sender wait,

the receiving actor could buffer the message, and let the sender proceed

immediately. To be general, the buffer should be unbounded. — Obviously, this

6uffo rod mtssagt passing is much more complex to implement than the unbuffered

variety, and its fundamental operations are less directly related to the "inborn"

operations of conventional computers. The extra luxury in the buffering must

usually be weighed against some extra cost. Often enough this luxury is not even

wanted As an example for the latter, here is a piece of LL’X code with a useful effect

which would be much harder to achieve if message passing was buffered:

Example (1 Act_6uardlahHV unbuffered message passing

ACT A c t - 0uard l « n _ ;
VAR sen der ! , sender? : ACTOR ;
BEGIN'

REPEAT
senderi :* RECEIVE () ;

(• No o t h er message sender can now get in. •)
sender? :* RECEIVE FROM (s e n d e r !) ,

UNTIL FALSE ;
END i

VAR g u a r d i a n - a c t o r : ACTOR ; (• must appear in the d e c l a r a t i o n s •)
g u a r d i a n - a c t o r - CREATE (A c t _ C u a r d i a n _)

This Isuard.an—actor! toggles between its two statss every time it has received a

message. Initially, It waits for a message from anywhere; the message could be

produced by:

3.2.4

Ill • IB

ISEND 0 TO (guardian-actor) ;|

Once the initial message has been received, a second message is expected from the

same sender (viz. fromlienderH) If other actors try to send to the Iguardian-actorl while

it is in this state, they are forced to waif at least until it has returned to the initial

state. The Iguardian-actorl returns to the initial state once the second message has

been received. The message itself is ignored throughout, only the event of the

message matters.

Semaphore«

Actors created from [Act-Guardianj can ensure that a certain access right is given

to only one actor at any single moment. For example, they can be used to prevent

multiple simultaneous alteration of shared memory (disastrous!). If a number of

actors want to eat biscuits from a common box of biscuits, this would be safe if each

of them followed the pattern:

| SEND 0 TO (guardian_actor) ;
TF any biscuits left?

| THEN eat one biscuit ;
I SEND 0 TO (guardian-actor) ;

The [guardian-actor] is an MPA style implementation of semaphores (t 3.2.5)

3.2.6 Concurrency Methods other than Message Passing Actors

Concurrent computations can communicate through means other than message

passing. We ignore here concurrent computing on specialist computers (CRAY,

vector processors) altogether.

We mentioned before that the most straight-forward and simple-minded

communication method is the use of shared memory segments This method can be

hazardous when used carelessly, for example when two actors change shared

memory in a time overlap. This can be brought under control by the use of

3.2.8

Ill ■ IB

ISEND 0 TO (auardian_actor) ;l

Once the initial message has been received, a second message is expected from the

same sender (viz. from Uendcril) If other actors try to send to the!guard:an-actorl while

it is in this state, they are forced to wait at least until it has returned to the initial

state. The [guardian-ac*.orl returns to the initial state once the second message has

been received. The message itself is ignored throughout, only the event of the

message matters.

Semaphore«

Actors created from [Act-Guardian—1 can ensure that a certain access right is given

to only one actor at any single moment. For example, they can be used to prevent

multiple simultaneous alteration of shared memory (disastrous!) If a number of

actors want to eat biscuits from a common box of biscuits, this would be safe if each

of them followed the pattern:

i SEND 0 TO (guardian_actor) ;
TF any biscuits left?

| THEN eat one biscuit ;
j SEND 0 TO (guardiai_actor) ;

The ,guardian-actor! is an MPA style implementation of semaphores (? 3.3 5)

3.2.6 Concurrency Methods othor than Message Passing Actors

Concurrent computations can communicate through means other than message

passing. We ignore here concurrent computing on specialist computers (CRAY,

vector processors) altogether.

We mentioned before that the most straight-forward and simple-minded

communication method is the use of shared memory segments This method can be

hazardous when used carelessly, for example when two actors change shared

memory in a time overlap. This can be brought under control by the use of

3.2.»

Ill ■ 19

semaphores or capabilities ([Fab80, Wil72]); there, any actor must hold (like a token)

the exclusive access right to the shared memory while changing it (protected

regions, MODULA [Wir75]). — Programs using shared memory may be very efficient

(fast), but the method is not applicable in all distributed computer systems. Anyway,

shared memory must never be used in other than a very disciplined manner [WuS73].

Some languages enforce such discipline through special constructs, such as the

modules [Hoa74] in MODL'LA and the clusters in CLU [Lis74].

Coroutines are in effect a subset of message passing actors, though, historically

speaking, coroutines are of independent origin. Terms like "coroutine

technique/method/style" are often used in the rather general sense of "multi-actor

technique/method/style”.

A computer with one architecture can acquire the outer appearance of a

computer with totally different architecture either through some form of translation

or through an interpreter (program). — There is reason to assume that user—specific

microcodes will be commonplace in the next computer generation. It will then be

possible to choose the most suitable architecture for each computation, and to

emulate that architecture through a tailor-made micro—coded interpreter. Once

the Lucid machine, say, has been implemented well, one will no longer have to worry

about optimal translation into imperative code Through the microcode, the

interpreters will also be able to make full use of advanced computer hardware, for

example, of associativa memory

It can be shown that all communicating concurrent programming methods are

essentially of equal power, i.e each method can be simulated within each other

method

32 b

Ill • 20

3.3 Hoar«'« CSP

With his Communicating Sequential Processes (CSP, [Hoa78]), C.A.R. Hoare

introduced a concise notation which made message passing more amenable to

scientific study. The merit of CSP lies in the achievement of great computational

power from a small set of primitives. (CSP has similarities with Hewitt's

PLANNER—73.) Hoare's paper [Hoa78] deserves praise for openly anticipating

practically all points of criticism of CSP. Hoare disclaims expressly that CSP is

meant to be a "production" programming language

CSP programs are based on fixed sets or actors. There is no recursion, nor are

actor names allowed as data values Each ISBND] or ,~3ECH:iVgi operation must explicitly

quote exactly one communication partner (actor). The CSP message passing is

unbuffered.

The difference between acts and actor3 is not very prominent in CSP. CSP has

means to make sequences of instructions (i.e. acts) into actors or even arrays of

actors. CSP uses a very concise notation, all operators are denoted by short

symbols Here are the most essential primitives (merely an approximation; CSP

message passing refers in reality to channels, not to actors):

fXTg

This is the receive instruction, X specifies the sender (actor), e is the storage

cell in which the message will be placed The receive instruction provides

simultaneously a test (the input guard) whether input is currently available.

An undirected receive instruction is not provided

This is the send instruction, Y specifies the receiver (actor), m is the message

(an expression).

3.3

111*21

5 U

This expresses endless rop ttition of instruction •.

iiq j p H

This expresses the creation and concurrent execution of two actors, where *i

and *2 are the respective acts (more precisely: ai and »2 are the actual pieces

of code).

1i& l -» » I ill &2 -» »2 J]

This is the a lttm a tiv t command, the 0 separates the alternatives, gi and 02 are

guards, s1 and S2 are sequences of instructions. Each guard ft is essentially a

boolean expression [Dij75]. All the guards ft in the alternative command are

evaluated, and the 8| of all thost alternatives are shortlisted whose guards

evaluate to iTRCSl. One of the shortlisted alternatives is then chosen

non -d t ttrm in is tic ally. and it is executed.

Some instructions yield a truth value, telling whether the instruction has been

executed successfully or not For this reason, it is possible and meaningful to place

such an instruction as a guard

The lack of certain facilities in CSP makes it virtually useless for the

implementation of full Lucid. CSP has no dynamic actor creation, and this rules out

the translation of recursive Lucid UDFs Even the mere creation of numerous actors

from the tarn* act can only be done within a very rigid pattern. This would be an

unjustified burden for our translation process.

Neither multiple [SEND;, nor undirected ;HSCErVEl or multiple directed iRECErvsl

exist in CSP. They can, however, be laboriously constructed out of the given

primitives. The lack of these facilities can thus be overcome, at a price.

Taken together, CSP is rather unsuitable as the target language for the

translation of Lucid, since important facilities arc not provided. Moreover, certain

3 3

Ill • 22

very common operations can be expressed only indirectly, by means of extra actors.

The use of CSP might lead to illegible code.

3.4 The Language LUX

All the imperative code in this thesis is formulated in the language LUX. LUX is

solely meant as the vehicle for expressing the result of our translation. Clearly, LUX

must not be seen as a proposed new programming language, in competition with

SIMULA 67 [DMN68], Concurrent PASCAL [BrH75], MODULA [Wir?5], ADA etc. We allow

therefore aesthetic imperfections in the language, as long as they bring advantages

In other respects.

The provisions for noix-datarminacy in existing languages force the programmer

into formulations which are often remote from the way in which computers work.

For example, there is usually no proper counterpart for interrupts or exceptions

(exceptions are CPU—internal interrupts, e g. "division by aero attempted'') This will

be put right in LUX.

The syntax of LUX is exactly that of PASCAL [Wir7';], albeit with a few extensions.

PASCAL has been chosen because of its current wide spread popularity. The reader's

familiarity with PASCAL is taken for granted The extensions aim to provide the type

of concurrency which can be very easily transferred into reasonably efficient code on

any present computer. The extensions have furthermore been designed to have the

least damaging effect on program size and leg ib ility It is rather obvious that the

translation algorithm of this thesis will in most instances be implemented in

languages other than LUX.

3.4

I l l -22.5

3.4.1 Th* Extensions of PASCAL

A few superficial extensions have been mentioned in 3.2.0, they are:

— the underline character is allowed in identifiers,

— the special symbol 1ACT| occurs in some places where in ordinary PASCAL one

would write iprocedure! (see also f 3.4.3),

— I Act itoot_j replaces the role of the PASCAL main program section,

— ¡wcturwI stands for a I GOTO] to the end of the act.

The substantial extensions can be grouped into the following topic areas.

concurrency: ICREATEl, acts, actors, initialisations,

cooperation: ISEVOj, ¡RECEIVE],

exceptions: ¡EXCEPTION], doors, !Revealj, 1 RESET].

The first two have already been dealt with exhaustively It remains only to explain

the last point, exceptions.

3.4.1

Ill • 23

3.4.2 Til« Exception Feature

What le Nullification?

In multi-process operating systems like UNIX®, the user can concurrently

execute a number of programs, for example: edit one program to/iite another

program is being compiled. The user can also instruct the operating system to

discontinue one of its current activities (the user might suddenly have found a

reason why the whole compilation is pointless). Such a termination entails usually

some form of clean—up phase, in which all perfunctory resources are released, for

example: files are closed, memory is de-allocated.

As a variation of termination, one could think of a request which tells an actor to

nullify an ongoing computation, i.e to go back to a particular previous state. Some

clean—up may be necessary for undoing modifications which have meanwhile been

carried out, due to computing action. irreversible state changes are carried out only

right after the result acknowledgement; then, nullification is immaterial

Situations similar to nullification appear in the LUX code for Lucid programs.

For example, each instance of the [OR] operator requires the concurrent evaluation of

the [OR] operands. As soon as the evaluation of either operand yields ¡TRUf], the other

operand is no longer needed, and its evaluation will be nullified Again, the

nullification can entail a clean-up phase, since inferior actors may have to be

nullified, and memory must be put into a coherent state. In LLX, nullification (t 4.2)

is the most important instance of an exception. Nullification is clearly different from

actor termination: nullification merely puts the actor into a particular state (which

is defined in the act) but does not eradicate the actor. (A further point regarding

1 NULLIFY! will be discussed in section 4.7.)

3 4 2

Ill -2 4

TeehelceH tlee

E x c e p t i o n s make sense only «nth actors which stand for Lucid nodes (we will call

such actors nod* actors). Every actor has in its actor head a cell lxrequ«»tl. in which

its exception state is recorded. The actor creation stores ¡beady! in this cell. "The

a c t o r is in exception mode" is synonymous with:

xrequeit <> READY

In the act, however, the actor head can be inspected only via the !Reveal! function

(t 3.2.1), and the same test would thus be written as:

IF Reveal <> READY THEN . . .

In the following, the syntax and meaning of LUX exceptions will be explained,

applications of exceptions will be mainly presented in the next chapter. Exceptions

may be an important feature of LUX but, after all, actors run most of the time

without getting exceptions. It is therefore even more important that the ordinary

(not—nullified) program execution in LUX does not suffer from an over-emphasis on

exceptions. A special notation and execution mechanism has therefore been

developed which keeps both the program legible and allows perfectly efficient

program execution, both in the nullified and in the non—nullified case

Doors

A trapdoor in a fairy tale castle can be blocked or active If it is blocked, its

presence is hardly noticeable when one walks over it. but if it is active the effect may

be dramatic. There are quite similar doors in LUX, and they are used for the

handling of exceptions. Here is an instruction with a door,

i : = i ♦ 1 ; ■ S

The Qo] in this example is the door Remember that in LUX (as in RASCAL) all labels

have the form of unsigned integers, and the num lir on the door (we call it the door

target) refers to such a label. Every door operates like a conditional iGOTOi

3 4 2

Ill ■ 25

Instruction. If |«rcgucstl is ¡READYI, the door is to be ignored: it has no effect. If I «request 1

is not ¡READY] while the PC passes over the door, the door has the effect of a IGOTOI

(i.e. ¡GOTO si in our example).

Matters are slightly different if the door is immediately followed (dynamically)

by a slow instruction. A slow instruction is any instruction whose execution may take

a long time, like [RECEIVE!. ISEWDl. ICREATE1 or a procedure cadi (t 3.4.3) An actor can

spend a long time working on a slow instruction, and during this time ¡«request! can

cease being ¡READY]. due to an exception. The actor will therefore check concurrently

whether [«request I is no longer I READY! or whether the slow instruction has been

completed, whichever occurs first. A [GOTO ...] is carried out if the •x c tp t io n occurs

first, and the slow instruction is of such design that its effects are nullified. There is

no e//«ct if the slow instruction succeeds first.

Every door is thus a shorthand for:

REPEAT
IF Reveal <> READY
THEM GOTO d o o r - ta rg e t ; (• d o o r - ta rg e t is 5 in our example •)

| UNTIL the subsequent in s t ru c t io n has been executed eorrqj'.etely

(In a proper implementation one would not use busy wait for such a wait—door.) All

f a » t instructions (assign, add, multiply etc.) are permanently ready anyway, and the

loop would in those cases be unnecessary.

It is sometimes required that a group of instructions be executed as an

unbreakable •n t ity . This can be achieved simply by not placing doors inside the

group

The Implicit iRgCHVgl

We stilt have to define clearly how r«rcquc«t| changes value. Abovo (»3.2 1 "Actor

Head") we have defined actor heads, and IttscfYTE!

3.4 2

111*26

TYPE
HSGTYPE = (DATON, READY, COMPUTE, NULLIFY, ADVANCE) ;
ACTOR_HEAD record

creator ACTOR ;
srequeet HSGTYPE ; (• preetored with READY •)
xindex INTEGER ;
(• ate etc *)

END ;

Only messages whose first component is I NULLIFY! or Ia d v a n c e] are exceptions, which is

why we call them exception request*. Exception requests are issued by the

instruction:

EXCEPTION eo. e i, . . . e „ TO (r e c e iv e r o . r e c e iv e r !) ;

which differs from the ordinary I SEND I instruction (t 3.2 2) only in the new keyword

I exception! The messages from EXCEPTION1 instructions are not received by ordinary

I RECEIVE] instructions in the receiving actor, but use a portion of the actor head as a

one—message buffer. They can be retrieved from there via the ¡Reveal] function.

In detail:

An actor can receive an exception only while its x.-c-quert] is PËÀDŸ:. This rule

ensures that no exception is accidentally lost. Every actor is readily equipped with

special code for accepting and handling of exception messages (this code forms part

of the Ll.'X system "behind the scenes", not part of the act) For an actor Y this code

goes as follows:

IF («request * READY) AND
(actor X wants to issue an EXCEPT TON to ac to r V >
(• The a c to r Y "g e ts an exc ep t ion " ; *)

THEN (. x requ ea t , x index) : » EXCEPTIONRECEIVE ()
(• EXCEPT[ONHECEIVE ha* the obvioux meaning. •)

ELSE (put the excep t ion sender X on a w a it in g queue.
try again after acto r V has executed a RESET > *

W* have defined that the actor is in exception mode exactly iff:

sr*qu**t <> READY

3.4 2

111*27

Since [«3. the first component of the exception message, is either I NULLIFY) or

(ADVANCE], receipt of an exception will necessarily place the actor in exception mode.

The actor is permitted to set its own Irrequeatl to 1 ready) (i.e. it declares itself ready to

accept a new exception request) only by executing the instruction:

RESET ;

3.4.3 Procedures

PASCAL—like procedures (function procedures as well as ordinary procedures)

are allowed in LUX, too; they are not superseded by acts and actors. In the MPA

framework, function procedures resemble actors which exist merely during the

handling of every single request. Procedures have no memory. However, the calling

actor can take care of the memory, and "import" it into the procedure with each

call.

LUX deals with procedures as if they were to be macro—expanded In terms of

message passing, the procedure underlies the control of the actor which called the

procedure. The name of that actor is used for all message passing during procedure

execution, and there is only one common exception mechanism per actor When we

say "the procedure gets an exception" we mean that its actor gets an exception

during procedure execution. The procedure can access items of the actor head

([creatorI. [xrcqjaav and ixindex)) as usual via the special functions [Creator! and [Reveal)

(f 3.2 1).

[TrI, a special kind of a door, is provided for procedures. When such a door is

encountered while 1»request) is not) RfcADY], a return is made from the procedure, and

execution proceeds in the calling program as 1/ execution had got hung up in the

procedure call. Execution continues in this case at (the target of) the door which

directly precedes the procedure call Exception handling is inhibited during any

procedure call which is not directly preceded by a door During the execution of

34 3

HI - 28

such door—less calls, the system pretends ¡rregueitl was ; READY]. Procedures must be

designed so that they nullify all their effects before using a [Jt] door.

Example for a function procedure with Hr] doors:

FUNCTION SatDaton (index : INTEGER ; operand : ACTOR) : ANYTYPE ;
LAB E L 1 ;

BEGIN
(• P o s s ib ly hang up in SEND (u n l ik e l y though): •) ¡A

SEND (COMPUTE, index) TO (operand) ;

(• P o s s ib ly hang up in RECEIVE: •) : l
(, , GetDaton) := RECEIVE FROM (operand) ;

RETURN ; (• normal RETURN even i f ex cep t ion occurred. •)

1: EXCEPTION (NULLIFY, index) TO (operand) ; i A
END ;

This very useful procedure sends a particular message to the operand actor, and

awaits then the arrived of a reply. If an exception occurs before the reply has been

received, the exception request will be propagated to the operand actor, followed by

an exception return from the procedure. There is no special procedure action if the

exception occurs after the reply has been received (we might wish to preserve the

daton value) This function procedure will play an important role later on

34 3

3.4.4 Example Act

Here is a typical example of an act:

III ■ 29

ACT A c t -S c a le _ (t e a l in g _ fa c to r : REAL) ;
(* This node ac to r m i l t i p l i e s each operand •)
(• daton with the constant s ca l in g fa c to r . •)

LABEL 1 ;
VAR

operand, superior
request
index
dston—value , r esu lt

BEGIN
(, , operand) := RECEIVE FROM (C rea to r) ;

(* End of i n i t i a l i s a t i o n , beginning of ac t ion . •)

REPEAT
WHILE TRUE
DO BEGIN ; 1

(• W e say the actor is "dormant" while i t •)
(• is waiting here, i t is "busy" otherwise. •)

(superior, request, index) : = RECEIVE () ;

(• Possibly hang up in "GetDaton” :
da ton-value : = GetDaton (index, ope-and) i

resul t := daton—value • scal ing_f a c t o r ,

(• Possibly hang up in SEND: •) . I
SEND (DATON, r e s u l t) TO (superior) ;

END ;

(• Code for the exception handling: •)
1: (request , index) : = Reveal ;

IF request = ADVANCE
THEN EXCEPTION (request, index) TO (operand) ;
RESET ;

UNTIL FALSE ;
END ,

Assume furthermore, that [AcOlooiZl contains:

aoala_aatar * CREATE (A c t -S ca le —, 9 .0) , (• 9 0 - scaling f a c t o r •) I
SEND (DATON, an o lh e r_ac to r) TO (s c a l e - a c t o r) ; (• I n i t i a l i s a t i o n •) I

Let us first study the IscaTê actorl in the absence of exceptions. In the

initialisatioa the fscalelactorl is provided with the name of another actor to which it

will send messages later on. The sender of the initialisation and the first message

•) 1
I
li

ACTOR ;
MSGTYPE ,
INTEGER ,
REAL ;

3.4 4

Ill >30

component (IdatonQ are known anyway, and can therefore be ignored.

After the initialisation, the I »cal«-actor] gets hung up in an undirected IRECEIVEI

where it awaits a request, i.e. a message telling it what to do. When the I»cale-actor]

receives a 1 COMPUTE] request (i.e. a message whose first component is IcoMPUTEl), it will

first call IGetDatonl. This will in effect propagat• the message unchanged to the

operand actor (lanottier-actor!), and will then await the delivery of the operand daton

value. Once the operand daton value has been delivered, the Iacale-actor] computes

the result daton value by multiplying the operand daton value with the seeding factor,

and this result is then sent back to the actor which issued the jCOMPUTE] request in the

first place. Once that has been completed, the ricale-actorl resumes awaiting another

request.

Whenever an exception occurs, the ;»cal«_actor1 abandons what it is doing at that

moment. This particular example contains nothing which needs to be cleared up.

Instead the actor can directly proceed to propagating the unchanged exception

request to the operand actor There is never a reply to an exception message, which

is why no [RECEIVE; instruction follows after [EXCEPTION;. Since nothing else needs doing,

the exception state is ended with a |RESET] and the jicSelkeTor] loops back to await the

next request. The Iscnle-actor] can accept an exception even in the dormant state,

i.e. the exception may occur even while the actor is not "busy" with work. We can

state in general: for efficiency, exceptions should always be propagated at the

earliest possible moment.

Note that a door is placed before each,'SEND] or ¡RECEIVE] (actually, it is at the end

of the preceding line). Some groups of instructions have to be executed as an

unbreakable entity, and a door is placed only after the last instruction of the group.

Clearly every instruction has been furnished, where advisable, with an "escape route"

(viz. a door) for the event of an exception

3.4 4

Ill • 31

Note that a door is placed before each ¡SEND] or jHECSrvEl (actually, it is at the end

of the preceding line). Some groups of instructions have to be executed as an

unbreakable entity, and a door is placed only after the last instruction of the group.

Clearly every instruction has been furnished, where advisable, with an "escape route”

(viz. a door) for the event of an exception.

3.6 Summary of Chaptar III

The popular cooperative concurrent programming methods are mere extensions

of sequential programming The extension has been achieved by "bolting on extra

features". Hardware aspects of inter—actor communication dominate these

languages, and the programmer is forced to bear these aspects constantly in mind.

The worst deficiency of programs in these languages is their inherent illegib ility .

Good programs are generally written as sets of modules, where each module is

dedicated to a sub-problem, most problems can be broken into sub—problems.

Actors are the modules in the above languages It is rarely possible to confine each

sub-problem to exactly one actor. One is forced to disect sub-problems into more

or less mysterious code fragments which are then strategically placed in numerous

acts. Given a non-trivial program written in one of these languages, only an expert

can recognise what the program computes, and it is extremely hard to locate

intricate programming errors.

The advantages of imperative programming languages can be noticed when

trying to implement such a language on a conventional computer. All their

advantages stem from their greater affinity to the von Neumann architecture

— the languages are easy to implement, and

— efficient execution is easily achieved.

3 S

111*32

It has already been said in the introduction that the choice of implt mentation

language for Lucid is not very critical. Message Passing Actors have been chosen as

the target of our translation because they are stylistically not worse than the other

concurrent programming methods, they are modular in a beneficial way. it is easy to

implement them well, and they have already been tried exhaustively in substantial

programming tasks.

3 5

IV *1

CHAPTER IVt Tha Translation

4.0 Introduction

This chapter deals with the translation of a Graph. Lucid program into an

equivalent structure In UPA style, which is the central issue of the thesis.

"Equ iva lent" means that both structures represent the same input/output function

Our translation is carried out in two stages:

Stage one consist in designing for each individual node type an equivalent act,

a node act. The example of a LUX act (t 3.4.4) was indeed such an act, and the

reader is advised to use that example, for the time being, as the model of a node act

Ready made acts will be presented for most of the fundamental operators of Lucid

(f 4.5.4 ff), and a comprehensive description will be given how to construct the act

for the other operators (t 4.5.2, 4.5.3, but also 4.3). The full description of the node

acts is very technical; this is why we shelve it for a while and present it rather late, in

sections 4.5 f.

In stage two, the translation proper, an arbitrary Graph Lucid program is

re—formulated entirely in terms of the acts from stage one. Stage two is very

straight forward We explain this stage of the translation before stage one (t 4.3).

Graphs contain nodes, but nodes can themselves be graphs. These amazing

nodes are the UDF nodes, of course, they break out of our two—stage classification

The construction rule for UDF acts can be obtained from the translation rule for

programs, with only a little adaptation This is why section 4.3 contributes to both

stages one and two.

Nod* actor«, requests, and the protocol are central in our further deliberations

Acts are just one way of, statically, encoding the computing action, which is a

dynamic object. Acts rarely provide a good picture of the dynamics, i.e. of the

underlying execution strategy The protocol is such a strategy with regard to the

4 0

IV « 2

Inter-actor communication. The functioning of actor nets is widely determined by

the protocol. The chapter starts therefore with a conceptual description of node

actors and requests (section 4.1). and this is followed (in section 4.2) by the protocol

specification

4.1 Nod* Actors, Protocols and Requests

Mods Actors

When we speak of node actors, we mean actors which emulate Lucid nodes.

Every node actor behaves like a demand driven computing station Usually, node

actors form part of a net of cooperating node actors.

Protocols

Let us assume that such a net of node actors is given (construction algorithm:

T 4.3). Each of the node actors can be viewed as an autonomous computing station

We are left with the task of making these autonomous units coopsrate, with the

ultimate aim of producing a result. This can be achieved with the aid of a protocol

A protocol is a pattern of message exchanges between actors, i.e. a governing

macroscopic pattern. The protocol serves to control the flow of information and also

the execution of computations Section 4.2 specifies the protocol to be used

throughout this thesis. The design of this protocol will be aimed at dsmand drivsn

evaluation (t 2.5); this will be generally assumed without further mention. The use of

a universal protocol, among all node actors, is an essential precondition for the

modularity of our translation algorithm. Every node actor adheres to this protocol;

therefore, node actors need to know nothing specific about their communication

partners.

4.1

IV « 3

A request is just a particular message, and requests can be of various request

types. The request type is, by convention, indicated by the first message component

(t 3.2.1, "Actor Hoad"). Requests serve in general for dictating to a node actor which

action it shall carry out. A reply (a message in the reverse direction) is given only to

tom e request.

As stated in 2 5, demand driven means that the driving force for computing

action emanates from the program output, in our case from the actor. The

iWRITE! actor sends a particular request to another node actor e, hereby stimulating e

into some particular action; the action varies with the requests. In order to satisfy

the request, • in turn may need to request from further node actors

This pattern of one node actor requesting from another can reappear down to

any depth. While a computation is in progress, some actors are dormant while

others are busy with computing action. Consequently, a momentary hierarchy exists

among the busy actors; this hierarchy is constantly changing in the course of daton

evaluation. The hierarchy is throughout built up oT pairs of actors, namely superiors

which issue requests, and Inferiors which accept requests and "do their best” that the

requests be ultimately fulfilled An inferior can simultaneously be in the role of

superior in a subordinate request. Obviously, the [WRITE] actor takes the top rank in

the hierarchy (we assume throughout that there is only one rW nT node) Constant,

IREA3I and [COPY] outports rank lowest. Multi—inport superiors can have more than one

inferior, any 1 COPY] node actors can have more than one superior.

Requests end Requesting

4.1

IV. 4

General Pattern of Mode Acte

Most node acts have the following overall layout (this is a simplification):

ACT Act_Exan$>le ;
VAR

inport ARRAY [0 . . 9] OF ACTOR ;
superior ACTOR ; (• t 4.1 *)
request MSGTYPE ; (• t 4 .2 •)
index INTECER ; (• t 4 .2 •)
resul t ANYTYPE ; (» » 4 . 6 . 1 •)

BEGIN C I n i t i s 11ss t Ion o f th is a c to r (t 4 . 3 . 1) : *)
(. . in p o r t [0] , in p o r t [1] , . . .) := RECEIVE FROM (C re a to r) ;

(• Due to i t s low in t r in s i c p r i o r i t y (t 4 7) the node *)
(• actor w i l l wait here u n t i l the f i r s t request a r r i v e s . *)

c The X—p art must be in se r ted here. ♦)
c I t i s executed only once, a t the beginning . •)
(*"•

REPEAT 1
WHILE
BEGIN

TRUE DO ;

(••
C The node ac to r is dormant e x a c t l y wh ile •)
C i t i s hung in the f o l lo w in g RECEIVE: •) i
(t#

(super i o r , request , index) RECEIVE () ,

C The V—p a r t muil be in se r ted here. •)
C It i s executed once per request . •)
C •)
C con ta in s at the end: *)
C IF requeat « COMPUTE •)
C THEN SEND (DATON, r e s u l t) TO (s u p e r io r) ; ♦)
(*•

END ;

1 . i * * !
C The ■ « c a p t io n part is p laced here. ')
(• *

RESET ;
UNTIL FALSE ;

END ;

(Due to the nature of Lucid, this layout is almost identical to the one Independently

discovered by Finch [Fin81].) The eternal I while] loop in this layout reflects the fact

4.1

I V . 5

that all node actors operate like endlessly running computing stations. Certain

preparing actions may have to be carried out before the loop is entered. Such

instructions are placed in the X—part of the node act. The X—part contains the loop

initialisation, but it can even contain, for example, request IHECBIVEI instructions. The

[WHILEI loop starts with the acceptance of an order for new work (by receiving a

request). This work is then carried out; the pertaining instructions are contained in

the Y—part. The Y—part may include the eventual giving back of the result to the

superior (the reply). Some actors need to rtta in information from preceding loop

passes, others do not. In the latter case it is common to say that the actor has

no memory (intended meaning: it has no long term memory).

In the event of an exception, a jump is made to the exception part. After some

appropriate measures have been taken, the exception state is cleared by]RESET1;. and

the eternal I REPEAT] loop takes us back to the dormant state

Theoretically, there is little need for actor torm ination in an endlessly running

program. Actors need to terminate only for efficiency reasons; termination sets

storage free for reuse in other actors Section 6 3 deals with actor termination (llCLLi

request).

4.2 Protocol Specification

Motivation

Before we study the protocol, let us identify what shall be achieved by our

protocol. In a rather primitive implementation of Lucid there would be merely one

request:

"Start evaluating one daton, and deliver the daton value to me." This request

will ultimately be followed by that value being sent in the reverse direction. The

next request will automatically relate to the next daton.

4.2

IV * 8

However, apart from being hopelessly inefficient, there are perfectly meaningful

programs which would not be executable under this rudimentary protocol (e g. any

program with a concurrent [03] in it, t 1.1.3 and 4.5.3). We will not contemplate such

a primitive implementation any further but aim for a protocol which is more refined

in two respects. On top of the above request, we want to be able to do either of the

following (Warning: don t take this as a definitive list of request types):

— Skip one daton. This is the same as asking for a daton without being interested

in the actual daton value. Such a request is essential for any serious

implementation of the Lucid ¡Tf] in pipeline DF.

— Once the computation of a daton value has been requested, one may suddenly

want to nullify (annul, undo) that request for some good reason. Such a 1 NULLIFY!

request is essential for the implementation of non—deterministic Lucid

operators.

Furthermore, the protocol must take into account that any request can cause

arbitrary subordinate requests Higher-ranking evaluations can progress even while

subordinate evaluations are under way. Higher—ranking Si.'-LTfy requests must be

able to take proper effect on subordinate daton evaluations

The Protocol •• a Diagram

Let us now set out to answer the question: "in which sequence is the protocol

executed, and where are variations possible?" Our range of requests is [COMPUT?!,

[NULLIFY- and , ADVANCE), and the following flowchart helps answering the question by

■howing the various possible ways in which the protocol can unfold:

4.2

IV • 7

START (re ad y f o r next requ es t)
\

/ 4 \
/ \

O ' COMPUTE \
/ \

/
/ \

/
4 /

t \
NULLIFY

* -» t

•+
(r e p ly) resu lt

(* s
•+

ADVANCE loop counters
i * i

(The paths marked (*) are never actually employed) The symbol "* -»t" in this

diagram indicates that a message is passed from the Superior to the inferior.

Execution starts at START, and the inferior is at this point assumed to be dormant

It is furthermore assumed that both superior and inferior know constantly the index

of the next daton to be computed. Both keep track of the current daton index, by a

dedicated storage cell or similar means.

The flowchart makes no mention of the action itself. Each request has some

action as consequence, e g. evaluation of the daton value. This action starts with the

reception of the request. START can be reached again once the action is complete.

4 3

IV « B

Tit« Protocol Requests

| ADVANCEj

This request asks the inferior to advance the index counter by one (usually),

namely to the successor daton. The previous daton will never again be asked

for, it can be abandoned — There is no reply to [advance] requests.

ICOMIPUTEi

This request asks the inferior to evaluate the current daton (l.e. determine the

value of the daton which is currently "due to come off the production line”). The

Inferior will take the measures necessary to obtain the daton value, at the end of

which it offers to send this daton value to the superior Under normal

circumstances, the |CQMPL’~e: is followed by the value delivery, and that is

followed by an ¡ADVANCE! request There are. however, situations where the

superior ignores the offer of the daten value and issues another overriding

request (viz. [NULLIFY:). However, even aiter the daton value has been delivered

there may be a renewed request for exactly the same daton. (This is why no

automatic I ADVANCE] request is incorporated in the! COMPUTE] request)

(nullify]

This request asks the inferior to ca n ce l any daton evaluation which may be

currently going on in it (due to a ¡COMPUTE] request). The state must be restored

which existed before the evaluation of the current daton was requested. In our

particle jargon, NULLIFY fires off a "kill token" (”le th o n ") which counteracts the

preceding "s ito n " (r 2.5) - The I NULLIFY! request is issued if the superior comes

to a point where the daton value is no longer needed. Example: as soon as one

operand of an[oS] operation yields IfftUEl, evaluation of the other operand can be

nullified. - There is no reply to ¡NTr.LlFYi requests. We could even define ¡NULLIFY!

In detail, the requests are (all sent from a superior to an inferior):

4.2

IV - 9

to have no effect on a dormant node actor, but instead we construct the acts

■uch that I NULLIFY! requests are never sent to a dormant actor.

Every request quotes, as its second message component, the index of the current

daton. The initial index is 0, and the index must be changed only through! advance!

requests. It has been said, the index grows by on« with every 1 ADVANCE! exception.

There is, however, the special index value which indicates that no further

daton will ever be requested from the inferior. |fin«linde»| is a special constant, the

infinitely large index °°.

The index is at every moment equal to the number of preceding [ADVANCE!

requests, it would therefore be dispensable in the requests. Nevertheless,

incorporating the index in each request offers a number of advantages:

— it can indicate the end of demand for a history, via [fnalndex!,

— nodes like !"3Y! can derive their state from the index, which relieves them from

having memory,

- interfacing to tagged DF (r 6.5) becomes much easier,

- the index supports runtime checking and system error tracing

If the inferior gets a I NULLIFY! request while it is busy with I COMPUTE] action

(i.e. evaluation of a daton value) that action will be aborted As specified in

section 3 4.2. [ADVANCE] and iNULLIFY! requests arc exceptions (unlike [COMPUTE]), and all

evaluations are inhibited while any exception remains unresolved. From the

superior’s point of view, the action for [ADVANC. or XUlTIFT: is indivisibly tied to the

request, i.e. it would be pointless to delay the exception handling

In a computation where successive daton values are needed, the normal cycle of

operations is: [COMPUTE! request, daton value delivery, [ADVANCE1, request. However, if a

daton shall be consumed without its value being of relevance, the [ADVANCE] request is

issued directly without the preceding [COMPUTE We call such a request a bare

4 2

IV -10

A I NULLIFY] request will usually stop and make null and void any daton evaluation

which may have taken place after the last I ADVANCE i (or after initialisation, if there

has been no I ADVANCE! yet). If a | COMPUTE! request follows directly after the | NULLIFY!

(i.e. without an 1 ADVANCE! in between) the inferior will set out to compute the value of

the same daton as for the previous 1 COMPUTE] request. A singls-outport jCOPYl node

may be inserted in the arc wherever the re-computation of intermediary results

shall be avoided.

An actively computing inferior may in turn have issued a subordinate iCOMPUTE!

request (i.e. it is a subordinate superior) If such a sub—superior gets a iNULLIFY!

request, it will halt its current computation, do the necessary clear—up (like

propagating the ¡NULLIFY] request to the sub—inferiors), and it will then await the next

request.

Most inferiors have inports. If such an inferior gets an !ADVANCE] request, it will

first do the same as in a !NULLIFY! request, it will then propagate the 'ADVANCE] request

to the inports, and it will Increment its own index counter by one It will finally await

the next request, I.e. it will enter the dormant state

Roquoat Propagation

Two diametrically opposed strategies govern the propagation of requests, though

both aim towards efficiency. (These request propagation strategies are also

reflected in the priority scheduling, t 4.7.)

I COMPUTE! requests cause daton evaluations, and daton evaluations tend to be

sxpsnsiua. [COMMUTE1 requests are therefore issued as sparingly as possible, and they

are withdrawn (by iNULLIFVl) as soon as It becomes certain that the evaluation result

is not needed

I ao vance! request; all others are proper [advance 1 requests.

4.2

I V - 11

Excaptions, on the other hand, are propagated at the aarliast possible moment.

We do so because, in general, exceptions are capable of ralaosing computing

resources further upstream. Exceptions usually trigger some administration, but

even that is considered to be "well spent". Exceptions must never cause in fin ite

looping or ¡COMPUTE! requests Care must be taken in the act design to ensure that

this rule is not violated This is not always trivial; for example, computations can be

accidentally caused if a bareiADVANCE] is issued to a poorly designed;WV3| actor.

Closing Remark«

Various other protocols were tried out, and the above design proved best for

implementation. Among the worst of the alternatives was the one which combined

I COMPUTE! and [ADVANCE] into a single request (i beginning of 4.3). In order to permit

(NULLirrl requests in that design, even the simplest actor had to be provided with

memory in which computed values could be saved

Node actor initialisation is part of the protocol, in the wider sense. We chose,

however, to describe actor initialisation in connection with actor creation in section

4.3.1 (B)

4.3 Tha Translation Propar

This section presents the method for translating any Lucid graph into its LUX

equivalent, namely a net of initialised node actors This side of the translation

algorithm is independent from the particular design of the node acts. (Our quiet

assumption of demand driven evaluation, though, has a certain bearing on this

section.) We pretend for the remainder of this section that a suitable act has already

been defined for each node type. There is no danger that this assumption leads us

into a vicious circle.

4.3

IV«11

Excaptions, on the other hand, are propagated at the earliest possible moment.

We do so because, in general, exceptions are capable of releasing computing

resources further upstream. Exceptions usually trigger some administration, but

even that is considered to be "well spent". Excaptions must never cause in fin ite

looping or jCOHPUTSI requests Care must be taken in the act design to ensure that

this rule is not violated. This is not always trivial; for example, computations can be

accidentally caused if a bare ¡ADVANCE! is issued to a poorly designed |WV3| actor.

Closing Remarks

Various other protocols were tried out, and the above design proved best for

implementation. Among the worst of the alternatives was the one which combined

¡COMPUTE! and ¡ADVANCE! into a single request (? beginning of 4.2) In order to permit

I NULLIFY! requests in that design, even the simplest actor had to be provided with

memory in which computed values could be saved

Node actor initialisation is part of the protocol, in the wider sense We chose,

however, to describe actor initialisation in connection with actor creation in section

4.3.1 (B)

4.3 Tha Translation Propar

This section presents the method for translating any Lucid graph into its LUX

equivalent, namely a net of initialised node actors This side of the translation

algorithm is independent from the particular design of the node acts. (Our quiet

assumption of demand driven evaluation, though, has a certain bearing on this

section.) We pretend for the remainder of this section that a suitable act has already

been defined for each node type. There is no danger that this assumption leads us

Into a vicious circle.

4.3

IV- 12

Every Graph Lucid program consists of nodes and arcs, and its translation can

correspondingly be described in two parts:

(A) the translation of the nodes and

(B) the translation of the arcs.

First (section 4.3.1) we are going to present the translation algorithm for programs

•without recursive UDFs. Before progressing to an algorithm for programs with

recursive UDFs (section 4.3.3) we will study UDFs and related topics (section 4.3.2).

4.3.1 Program« without Racursiva UDFs

Let us first deal with the translation of particularly simple Lucid programs,

namely those without recursive UDFs. More precisely, this section describes only the

translation of programs without UDFs altogether However, section 4.3.2 will show

how to remove non—recursive UDFs (viz. UDF expansion), a process which can be

easily carried out before applying the algorithm of this section.

Under this restriction the nodes in the Lucid graph can be labelltd with natural

numbers, with a known finite bound (see also Fibonacci example, two pages below)

The root act establishes the LUX counterpart for the graph by (A) first creating

exactly one actor for each individual node in the graph. The choice of act is

determined by the node type, of course While the root actor creates the actors (in

the sequence of the labelling number) it enters the name of each now actor into a

table. [COPY! node actors (* 4.8) are special in having a separate actor name for each

outport (1, 9 and 10 in the Fibonacci example), in addition to the name of the [COPY]

node actor itself (inport, labelled 1 in the example). Immediately after creating a

(COPY! node actor, the creator gets back from that actor a few messages, each telling

the name of one [CopYI outport actor.

4 3.1

IV . 12

Every Graph Lucid program consists of nodes and arcs, and its translation can

correspondingly be described in two parts:

(A) the translation of the nodes and

(B) the translation of the arcs.

First (section 4.3.1) we are going to present the translation algorithm Tor programs

without recursive UDFs. Before progressing to an algorithm for programs with

recursive UDFs (section 4.3.3) we will study UDFs and related topics (section 4.3.2).

4.3.1 Programs without Recursive UDFs

Let us first deal with the translation of particularly simple Lucid programs,

namely those without recursive UDFs. More precisely, this section describes only the

translation of programs without UDFs altogether However, section 4.3 2 will show

how to remove non—recursive UDFs (viz. UDF expansion), a process which can be

easily carried out before applying the algorithm of this section

Under this restriction the nodes in the Lucid graph can be labelltd with natural

numbers, with a known finite bound (see also Fibonacci example, two pages below)

The root act establishes the LUX counterpart for the graph by (A) first creating

exactly one actor for each individual node in the graph. The choice of act is

determined by the node type, of course While the root actor creates the actors (in

the sequence of the labelling number) it enters the name of each new actor into a

table. IcOPY] node actors (* 4.6) are special in having a separate actor name Tor each

outport (1.9 and 10 in the Fibonacci example), in addition to the name of the iCOPYl

node actor itself (inport, labelled 1 in the example). Immediately after creating a

fCOPYl node actor, the creator gets back from that actor a few messages, each telling

the name of one IdOPYl outport actor.

4 3.1

I V - 13

In the graph, arcs connect the nodes. Correspondingly, there must be

connections between the node actors. After the creation of all the actors, the root

actor establishes these connections in <B) the in itia lisation of all the actors.

It informs each actor of the names of the actors at its inports (i.e the node actors

which produce the operand daton values). Since we deal with a demand driven

implementation, each actor takes a dominant role over the actors at its inports and

it takes a strvils role with regard to the actor at its outport. Operand actors are

therefore called Inferior*, and the requesting actor is called the superior. At the

program start, each actor needs to know only the names of its in/sriors.

In the translation stage (B), an initialisation message with the names of the

inferiors is sent to each node actor The initialisation message is the sequence:

<DATON, neons o. name j , nomeg. . . .>
Each nam«i appears at the index position corresponding to its inport subscript i.

The component DATON is due to our message convention (* 3 3 .".). We use the

convention that actors for nodes with no inport (constant and 31.0 nodes) get no

initialisation. The lW3ifE] node must be the last to be initialised, this makes sure that

requests are not sent to nodes which are still waiting to be initialised The reason lies

in|W3iTSj being top in the request hierarchy.

It has been said before that every node actor can be initialised only by its

creator. In our special case (all UDFs fully expanded) the root actor is the creator of

all node actors.

Example (Fibonacci)

Let us apply these rules to a simple example program (t chapter I) which computes

the Fibonacci scries:

4 3 1

IV . 14

f ib WHERE
f ib * 1 FBY (1 FBY ((NEXT f i b) ♦ f ib)) j

END

Here is its corresponding graph, with the nodes labelled by numbers (* 2 2 and 4.3 1):

1--------h B
| NEXT | *---------+ 9

t ■ C—
| 10 | 2

4 4 t

■+
I
4

| FBY
4- f

•+ 3
I
■+

H-------
| FBY
-I---- b-

■+ 5 +
| PLUS

+ 7
I
+

* i ------- h i «— +

H---------- 0
| WRITE j

f i b •------------------------ ■----------------------------------■----------------------- +

Every Lucid program is an expression which yields a result (here fib), and this result

flows obviously into a I WRITS] node. Here is the [Act_Root_i which would generate the net

of actors-

4 3 1

IV « 15

ACT A c t_R oo t_ ; (• Root a c t (o r F ibonacci example. *)
VAR

node : ARRAY [0 . . 1 0] OF ACTOR ;

(* Furthermore, th ere mixt be ACT d e c l a r a t i o n ! (o r : *)
(• Constant, NEXT. COPY. FRY, PLUS and WRITE. •)

BEGIN (• A c t_R oo t_ haa no i n i t i a l i x a t i o n . *)
node[0] : = CREATE (A c t _] f r i t e _ " c o n s o l e ") ;
node[2] : * CREATE (Act_Copy_ . 3) ; (• 3 ou tporta •)
(. , node [1]) : * RECEIVE FROM (n o d e [2]) ,
(, . node [9]) := RECEIVE FROM (n o d e [2]) .
(. , node[1 0]) := RECEIVE FROM (n o d e [2 J) ;
node[3] := CREATE (A c t_F by_) ;
node[4] := CREATE (A c t_C on a t_ 1) ;
node[3] := CREATE (Ac t_Fby_) ;
node [8] ;= CREATE (A c t _ C o n t t _ 1) ;
node[7] : * CREATE (A c t_P lu x _) ;
node[B] := CREATE (A c t_N ex t_) ;
S e t - P r i o r i t y (n o d e [0] , t o p - p r i o r i t y) ;

SEND (DATON, n o d e [9]) TO (n o d e { 8]) ;
SEND (DATON, node [B] , n ode [10]) TO (n o d e [7]) ;
SEND (DATON. n o d e [6] , node [7]) TO (n o d e (5]) ;
SEND (DATON, n o d e [4) , node [5]) TO (n o d e [3]) ;
SEND (DATON. n o d e [3]) TO (n o d e [2]) ;
SEND (DATON, n o d e [l]) TO (nodeLO]) ;

END ;

i Act—Root—; has no exception part, since it gets no exceptions. The root actor

terminates itself. After the root actor is gone, all the "driving force" for

computations will emanate from the 1 WRITE] actor, 'nodeioll

The Nod* Numbering Rule

You may have guessed that the numbering of the nodes follows not just a whim

but a rule, yet to be explained To begin with, the lowest label numbers arc given to

the nodes which generate the ultimate driving fo rca for computation. We deal here

with demand driven DF, and we attach label 0 to our PwRlTFl node, the ultimate

demander. Many nodes force other nodes into action. In demand driven DF, nodes

tend to propagate requests to the nodes at their inports, and thus the driving force

flows upstream. We number the nodes in such a way that every node requests only

from nodes with, higher label numbora. The node numbers increase therefore in the

4.3.1

I V - 16

upstream direction. Nodes are created and initialised in the order of dtcrtcu ing

label number. — This numbering rule caters even for subnets with many outports,

and can be adapted for input driven DF. The numbering rule ensures that each

operand actor is itself readily initialised before its name is passed around to other

actors (consequence: requests cannot be sent to yet uninitialised actors).

Outlook

Scheduling and priorities will be discussed in section 4.7. They are

indispensable for correct and efficient program execution.

It is advisable in the first reading pass to skip the remainder of this section 4.3,

to continue this chapter from 4.4, and then to re-read the entire chapter without

omissions. — Before we can go on to Lucid programs in general, a review of UDFs and

subnets is in place.

4.3.2 Abstraction and Expansion (UDFs and Subnets)

4.3.2.1 A+€ in Equatlonal Lucid

Abstraction lies at the root of many programming techniques UDFs, subnets

(t 2.2) in Graph Lucid, and subnets of actors are the kind of abstractions which

interest us here. For any particular abstraction there is always one definition and an

arbitrary number of references References are just the means for making use of

definitions. The definition of abstraction XYZ states "here is the shape of the object

you may substitute for the reference if you want to obtain a result from XYZ". The

Rewrite Rule characterises the meaning of abstractions more precisely: if we take

any structure 5, and substitute in S each reference to XYZ by the object specified in

the definition of XYZ. the outcome S' will behave the same as the original structure

S. - In the abstraction, the formal operands, if there are any, stand as symbols

(place holders) for the actual operands quoted in each reference. It is common to

4.3 2.1

IV . 17

call the ensemble of the actual operands the anvirommnt of the reference

(remember we have eliminated all global variables).

The actual replacing of the reference by its true essence (as given In the

defin ition) is called expansion. In the expansion, each occurrence of a formal

operand is substituted by its corresponding actual operand. We will see that, in some

situations, a high degree of abstraction is favoured while in some other situations one

should aim for expansion.

Here is an example of a UDF ([cf], @ andjyf] are Formal operands whereas [ca]. [sal

and f t a l are Actual operands)

// d e f i n i t i o n .
Mymerge (c f . x f . y f) = IF c f THEN I f UPON c f

ELSE y f UPON NOT c f Ft .

// re f e rence (assume p, sa and ta have been de f in ed e l sewhere) :
m = Mymerge (0 .5 < p, sa, ta) ;

Expansion of this UDF reference yields:

ca = 0.5 < Pi
m * IF ca THEN sa UPON ca

!
ELSE ta UPON NOT ca Ft ;

Abstraction is promoted in Software Engineering since it makes programs easier

to understand and maintain. Whenever we analyse any substantial Lucid program, we

are almost bound to find particular substructures re-occurring in many places, the

more so if we make provisions for minor variations. As we know from Software

Engineering, this is almost unavoidable with any substantial program We are advised

to formulate one abstraction for each substructure, and to replace each instance of

the substructure by a reference to that abstraction. Software engineering teaches,

furthermore, that it is a good idea to subdivide (to "structure") programs into

purpose rotated units, and to abstract each unit.

43 2 1

IV -10

Subexpressions and UDFs

Our translation algorithm presupposes that the Lucid program is in monomeric

form (r 2.1.6 and 4.3.3.1): there is at most one operator in each definition. Each UDF

is an operator, and the monomeric form permits only variables and constants as

actual operands, t.e. only ultra-simple expressions are allowed. We will come back to

this point later on (t 4.3.3.2. Making Subexpressions into UDFs).

4.3.2.2 A+E In Graph LucM

All this applies equally to Graph Lucid, since Graph Lucid is a bijection of

equational Lucid. Like programs, any Lucid graph can be subdivided into segments.

Each of these segments is a subnet (t 2.2). Again, there will often be great similarity

among the subnets. This suggests the definition of classes (= abstractions) of

subnets. Subnet classes are the exact counterpart for UDFs We use in the following

subnet often in the meaning of subnet class

Every UDF node represents two kinds of structure, and its great power results

from its mediating between the two. Its outside structure is that cf a single node

(the UDF node), while its inside structure reveals a subnet composed of numerous

nodes.

Each subnet has open arcs, i.e it has outport (and inport) arcs which are not

connected to any node, but instead are connected to an interface. Such an Intarfac*

is a combined array of plugs (open inport arcs) and sockets (open outport arcs)

which will eventually link up with complementary sockets and plugs The inports and

outports of every subnet reference must match the requirements of its abstraction,

■o that plugs and sockets can be paired

4 3 2 2

IV» 19

Here Is the Illy merge I example from above, this time as a Lucid graph:

P
0 .6 I

I *
■»------- 1-
I < I
H---H— +

■a ta

1
n

) t)—+
) e)--
) r) ---
: f :
(a (--

8 7
—C--- I NOT I

+-H---- ►

-+ 3 -+ 5
UPON

•+—t-
| UPON I
H---1------ +

4
m

reference eide

c : reeult
e : I IF ... THEN ... ELSE ...

-+ 0

abstraction side

(Ignore the numbering of the subnet nodes, for the time being.) On the left is the UDF

reference, and on the right we see an instance of the subnet for jMyrr.erge!, both

connected by an interface. The picture is a snapshot of the state of affairs when

expansion is half complete. Before the expansion, the subnet on the right is only

conceptually present, symbolised by a 1 My merge] node At least in some

implementations, expansion goes one step further than shown above: it replaces the

interface by direct through connections (t 6,3, operand redirection).

Each UDF reference divides the Lucid graph into tuio subnets, the subnet for the

abstracted side, and the subnet for the referencing side.

Abstraction and expansion have counterparts in subnets of actors, and with the

aid of these counterparts even programs with recursive UDFs can be implemented in

LUX

4.3.3 Application of Abstraction and Expansion in LUX

4.3.3.1 Programs with Recursive UDPs

Lucid programs with recursive UDFs are only slightly more complicated to translate

than the simple programs considered in section 4.3.1.

4.3,3 1

IV -20

Example (|siavi): Lucid program and graph

The prime numbers can be computed by an algorithm known as the "Sieve of

Eratosthenes", and this algorithm can be elegantly described by a Lucid program

with a recursive UDF (original program due to Gilles Kahn). We start here with the

Lucid program, we will present all the translation steps, and we will present all the

various acts required for it, including the translation program. In chapter V, the

dynamics of program execution will be illustrated, using the jSievel program as the

example. Here is its Lucid program:

S ie v e (N)
WHERE

N = 2 FBY N-M ;
S i e v e (i) = i FBY

S ieve (i WVR ((i MOD FIRST i) NE 0)) :
END

Let us make the program monomeric:

ml WHERE
S i e v e (i) = -0 WHERE

(s i , s5 ,sB .s lO) = COPY (i) :
sO = FIRST 310 ;
17 = 30 MOD 39 ;
i t a >7 NE 0 ;
s4 = s5 WVR 30 ;
s3 = S ie ve (s4) ;
sO — al FBY s3 ;

END ;

mfl * mfl ♦ 1
N ss 2 FBY mfl
(m2, mfl) ss COPY (N)
ml S ieve (m2)

END

4.3.3.1

I V - 21

It Is now quite easy to generate the corresponding Lucid graphs, with labelled nodes

(the labels in the main p rogra m have been prefixed m, and those in the ¡Sicval have

been prefixed s):

The Finite Program va. the Unbounded Nat

The graph of the main program on the loft contains a reference to the UDF

I Sieve], and the graph of ¡Sieve] itself, right, contains a further reference to ¡sieve). Any

reference to a UDF is treated the same as the reference to any operator The only

difference is that there must be a definition for each UDF, whereas all other

operators are readily defined

The graph on the right reveals the true nature of the UDF Outwardly it is just a

node, but inside it contains a whole subnet. This subnet comprises another reference

S ie v e :

•+ itfi
| PLUS | .----+ »2 | slO

C--------
•+ *9

I FiaST I

I "2- |nfi | MOO | .-------1
80 H--

H------ -t- 80
| M E | .---- +

| FBY |
* H— -i— +

| WVR | .------+

el | Sieve |s3 ! • •
C------------------+

------- | F 9 V |
*0

rrJ
| S ieve | I I !

*
■i-----

4 33 1

IV. 22

to jSiewI. which symbolises a further subnet. The program specifies effectively an

inftn ite nesting of UDFs (in Graph Lucid terms: an infinite net), rather like:

mainprog (
. . . S i eve (

. . . S i eve (
. .. S ieve (

. . . S i eve (
end so on ad in f in i tum

)
> . . .

) ■
) . . .

)

Lucid programs can be analysed in a rather static {“denotational") manner.

However, when we discuss their execution, we cannot avoid thinking in terms of

execution time {operationally, dynamically). Programs are executed in a succession

of fundamental operations, computation steps. In this thesis, we call IF3Y:, |NEXT|,

IlF—THEN—ELSE! and the usual pointwise operators (addition etc) primitive operators,

more about them in section 4.4 In LUX, the fundamental operators are (create!.

[SEND], IRECEIVSi, [EXCEPTION!, the system functions, the primitive operators, but not

UDFs. 1 FIRST!, [Upon! and [WVR1, are counted as UDFs.

Delayed Net Expansion

Every abstraction reference needs to be expanded (into a set of actors) before it

can truly take part in a computation However, if all expansion had to be carried out

at the start of program execution, a disaster might occur, since every reference to a

recursive UDF would generate in fin ite ly many actors. The site of a net with

recursive UDFs can not be pre—determined in general, it may even be unbounded

This size problem can be resolved by delaying the UDF expansion. During

program execution, there is for every instruction (and that includes any UDF

reference) a moment where it is used for the first time. In demand driven

evaluation, this moment is the one where the firs t request arrives. (For some

43 3 1

IV« 23

instructions this moment may never arrive.) A request, directed to the UDF, can be

serviced only by the expanded UDF, but expansion can be delayed up to this moment.

Up to that moment, the abstraction is kept in a preliminary state where the actor

subnet has not actually been expanded, although all the information necessary for

expansion is at hand (i.e. actor initialisation complete). This method has the

attraction that only/intieiy many actors exist at any moment.

If expansion is delayed up to the last moment, we speak of a lazy expansion. Its

obvious opposite is eager expansion, where the subnet is expanded a good while

before its first use. The extreme of eager expansion is the expansion before the start

of program execution (t 4.3.1); this is called static expansion. We will come back to

eager and lazy expansion when we discuss act expansion (* 6 2)

UDF Acts

UOF acts are the LUX counterpart for UDFs Every single UDF actor (outside

structure) stands for a subnet of actors (inside structure) UDF references (code for

Issuing requests) have the same form as any other node actor reference, since we

agreed on a uniform protocol.

In the framework of node actors, the word abstraction means "yet unexpanded

subnet of actors", and every UDF actor has therefore two states (similar to a finite

state machine):

— the abstracted state (the preliminary state), and

— the expanded state (the state during execution).

Speaking in implementation terms, every UDF actor contains, right after its own

initialisation, code which (A) creates all the actors in the subnet and then (B)

initialises them. Both (A) and (B) are carried out very much in the way described in

sections 4.1 and 4.3.1, but with the difference that now the UDF actor is the creator

and initialiser.

4.3 3.1

I V - 24

Example (1 Slavi); UDF act

Here is the 1 Act-Sievei which would generate the appropriate actor subnet (node

numbers same as in the graph):

ACT Ac t -S i ev e ; (* Act f o r UDF Steve . *)
LABEL 1 ;
VAR

node : ARRAY [0 . . 1 1] OF ACTOR ;

inport : ARRAY [0 . . 0] OF ACTOR ;
skip : INTEGER ;

(* Furthermore, there must be ACT d e c l a ra t i o n s f o r ; *)
(• COPY, NOT, UPON and IF. •)

BEGIN (♦ I n i t i a l i s a t i o n : •)
skip := 0 ;
(, . i np o r t (O j) : * RECEIVE FROM (C re a to r) ,

(• Due to i t s low i n t r i n s i c p r i o r i t y (t 4.7) the node •)
(• ac to r w i l l wait here un t i l the f i r s t request a r r i v e s . •)

(• Below i t w i l l be shown that some fur ther code must •)
(» be inser ted here (i n t e r c e p t i n g ADVANCE except i ons) . •)

(• The X - p a r l : ♦)
node (0] : * CREATE (A c t _ F b y _) ;
node [2] ;= CREATE (A c t _ C o p y _ 4) ; (• 4 outpor ts •)
(. . node [1]) ;w RECEIVE FROM (,node[2)) ;
(, . node [5]) ; * RECEIVE FROM (n o d e [2]) ,
(, , node (8]) ;= RECEIVE FROM (node[2J) ;
(. . node[1 0]) ;= RECEIVE FROM (node[21) ;
node (3] := CREATE (A c t —Sieve) ; (♦ the recursion •)
node (4] := CREATE (A c t J T v r -) ,
node (0] : » CREATE (A c t _ N e _) ;
node [7] : * CREATE (Ac t_Mod_) ;
node (9 J := CREATE (A c t _ F i r s t _) ;
n o d e [l t] .= CREATE (A c t _ C o n s t _ 0) ;

SEND (DATON, node [10]) TO (node 191)
SEND (DATON, node L«1 • node [9]) TO (node |7]>
SEND (DATON, node m . node(11]) TO (node 1 9])
SEND (DATON, node [51. node 1« 1) TO (node M l)
SEND (DATON, node [A]) TO (node [3])
SEND (DATON, i npor t ro i) TO (node 121)
SEND (DATON, node H J . node [5]) TO (node [01)

I: Pass—Through (node [0] , sk ip) ;
END ;

4 3.3.1

IV » 25

Every UDF act uses the procedure IPaijrhroushl This procedure contains the Y—part,

and it passes all requests on to Inodefotl. the highest ranking actor within the subnet,

and conversely, it passes all replies back to the superior of the UDF actor.

PROCEDURE P » « *_T h r •ugh (nodeO : ACTOR; sk ip : INTEGER) ;
LABEL 1 ;
VAR

su per io r : ACTOR ; request : MSGTYPE ;
r ep ly : ANYTYPE ; indes : INTEGER ;

BEGIN
FOR index ;= 1 TO skip
DO EXCEPTION (ADVANCE, in d ex) TO (nodeO) ;

REPEAT
WHILE TRUE
DO BEGIN : 1

(s u p e r i o r , request , index) :■ RECEIVE () ; :1

(• The r - p u r t : •) :1
r e p l y := CetDston (in dex , nodeO) ; :1
SEND (DATON, r e p l y) TO (s u p e r i o r) ;

END ;

(• Except ion par t : •)
1: (r eq u es t , index)) := Reveal ;

IP r eques t » ADVANCE
THEN EXCEPTION (r eques t , index) TO (nodeO) ;
RESET ;

UNTIL FALSE ;
END ;

lAct_Sieve| begins with the initialisation of the actor itself The formal operand I from

the Lucid program translates thus into a storage cell which the creator fills with the

name of the actual operand actor. This is followed (X—part) by the expansion proper,

the creation and initialisation of the subnet actors The act ends with a call of the

procedure 1 Paex-Throuih], which contains its Y-parl

The X—part resembles clearly the Si ‘—Root—] from the Fibonacci program

(T 4.3.1). While scheduling will be properly discussed in section 4.7, we briefly

mention here that all node actors (other than ¡WRltEl) have initially an extremely low

scheduling priority. Execution of the X—part of any actor starts only upon arrival of

the first request In the case of UDF actors, this makes sure that the subnet is

created not earlier than really necessary

433 1

IV * 26

The call of the |Paaa-Ihrouah| procedure Is eternal, i.e. the procedure is called

once, and, because of its eternal loop, there is no return from it. The essential part

of the procedure, the eternal loop, has been copied straight from the identity node

(simply remove the scaling from the [Act-Scalcl, t 3.4.4). Since IPaxa-Throush] contains

no computation it is a prime target for optimisation, and we shall indeed discuss

•xpansion o f a UDF rtfo rtn co (t 6.2), optimisation of recursive UDFs by tail

recursion (f 6.6), and operand redirection (t 6.3), all of which are applicable here.

Doors need not be provided in the subnet expansion code (¡CR3AT51 and initialise)

since the superior will be hung in its first request (the one which caused the

expansion) and can therefore not issue a further request during expansion. (One

might consider this approach as crude and replace it by one which has a request

I RECEIVE; before the expansion code. Such a refined version would indeed need doors)

The node numbering rule (from the ~rootlac-o~. * end of 4.3.1) extends unchanged

to UDF actors. Since that rule has certainly been adhered to during the initialisation

of the UDF actor itself, all subnet inports (actors for actual operands) can be

assumed to be ready for use.

Initial [ADVAWCE] Requests

For safety, a piece of extra code must be inserted between initialisation and X-part:

WHILE Reveal = ADVANCE
□0 BEGIN

(req u es t , index) : » Reveal ;
IF index > f in a l index
THEN EXCEPTION (r e q u e i t , index)

TO (i n p o r t (0] , . . . in p o r t [n])
ELSE skip :■* akip + 1 :
RESET ;

END ;

The cell fakipl adds up any bare IADVANCFÜ requests initially sent to the UDF. Only the

first I COMMUTE] request will cause the UDF expansion fXTiVANCf! requests must never

cause "expensive" actions, such as the UDF expansion (Without lekTpl it would be

4.3 3 1

IV . 27

impossible to implement a UDF like [WVR].)

If the first request ever to be sent to the UDF is an [advance, finaiindesl, the request

is propagated to the operand actors and the subnet creation is suppressed. Without

this extra code, recursive UDFs would be liable to deadlock: if i advance, finalindexl was

the first request issued to such a UDF, its actor would settle down to building and

inactivating subnets forever. This matter will be understood more easily once the

IFBYi act has been explained (t 4.5.6). A more radical approach to the whole jfinaiindexl

problem will be presented in 6.3 (the I KILL 1 request).

Example ([sieve]); root act

Here is the ¡Act—3oot_J wh ich would g en era te the m a i n p r o g r a m f or ¡Sieve]:

ACT Ac t —Root— ; (• Root act f o r S i eve exanp’ e. •)
VAR

node : ARRAV [0 .8] OF ACTOR ;
(• Furthermore, th e r e must be ACT d e c la r a t i o n s f o r . •)
(• Constant, COPY, F3Y, PLUS and WRITE. •)

BEGIN (• A c t _ R o o t_ has no i n i t i a l i s a t i o n . •) |
node 10] CREATE (Ac t_Wr i t e _ “ conso le •■) .
node m — CREATE (A c t—S ieve) ;
node 13] - CREATE (Ac t_C opy_ 2) ; (• 2
(. node[2]) .= RECEIVE FROM (node 131) ;
(. node[8]) RECEIVE FROM (n o d e [3]) ,
node l<] = CREATE (A c t_F b y_) ;
node c »] S CREATE (Act_Const_ , 8) !
node 18] 8 CREATE (Ac t _ P 1ua_) ;
node [7] = CREATE (A c t_C o n a t_ i) ;
Set_Pr i or i ty (n o d e [0) , t o p - p r i o r i t y) ;

SEND (DATON, n o d e [7] , n o d e (8]) TO (node i « n
SEND (DATON, n o d e] f t] , n o d e [8]) TO (node i ' l l)
SEND (DATON, n o d e [4]) TO (node 13])
SEND (BATON, n o d e (2]) TO (node 111)
SEND (BATON, n o d e (1]) TO (node 10])

END ;

4.3.3.1

IV . 28

Interhitfc

UDFs, subnets in Lucid graphs, and subnets of initialised actors correspond so

closely to each other that most generalisations about either apply to all three. When

looking at the figure in 4.3.3.1 one is tempted to believe that every instance of I Sieve I

is just a "carbon copy" of the UDF 1 Sieve!. This view is quite in harmony with the

functionality definition ("replacing the UDF reference by the UDF definiens does not

change the computation result"). But the carbon copy approach cannot be

generalised to cover operational objects, like actors. Many node actors have

memory. An abstraction, on the other hand, can not contain memory but can at best

contain information where to allocate storage space, and how much. In the

operational interpretation of DF Lucid graphs, there is a silent understanding that

each arc has initially an empty queue associated.

When implementing recursive UDFs, delayed expansion is the method to choose.

However, implementation of recursive UDFs is merely one application of delayed

expansion. Let us take a short look at the general application area

4.3.3.2 Further Applications of A+E in LUX

Above, in section 4.3.2, we outlined the reasons for abstraction from the

Software Engineering point of view. Quite separately, abstraction offers also

advantages to system implementors They are attracted by its particularly

economical use of storage space: only one copy of the UDF definiens needs to be held

in store, and no actor space is claimed until the first [cSMPUTE] occurs. Abstraction

has one inherent disadvantage: its use incurs some extra administration cost, and

this penalty re-applies normally to each daton evaluation.

For the execution of some Lucid program fragments (subnets) the prediction

can be made that they will go through a protracted in itia l period o f inactivity Store

is used very economically if during this period the subnet is kept in abstracted form

4.3 3.2

I V -29

An optimising compiler might detect such subnets through program analysis. The

above property applies particularly often to actual operand expressions of UDFs.

In many implementations, efficiency is improved by abstracting all but the simplest

(l.e. variables or constants) subnets with the above property.

The author admits freely not to know a universal rule for identifying all subnets

which have such a "protracted initial period of inactivity". Only a few prominent

instances will be presented in this thesis, namely recursive UDFs (f 4.3.3.1), inactive

subnets, andflFl with constant condition (r 6.6)

The optimising compiler may contain a device for expanding some of the

program writer's abstractions, but it may also contain a device for introducing

abstractions of its own making. For the remainder of this section we will, however,

assume that we are not using such an optimising compiler. Suggestions for

optimisation can be found in chapter VI

There is a certain limit, a minimal UDF complexity, from where on abstraction

has only disadvantages, both in execution speed and storage UDF expansion is

indicated if the UDF definiens contains no operator (J (x) - x), and also if it has

merely one operator and is non—recursive (f fe .y)= x ~ y). References to such

ultra—simple UDFs can be eliminated by the compiler

Making Subexpressions into UDFs

Any expression is only as likely to be used as the structure that refers to it.

If this structure is itself inactive for a protracted initial period, it may be advisable

to make the expression into a UDF

For example, an actual operand expression of a UDF is certainly never used

before the UDF itself, and abstraction of the operand expression may be indicated

— Similarly, program fragments like the following are not uncommon in Lucid

programs:

4.3 3 2

IV . 30

• = IF FIRST c
THEN (x+3) • x
ELSE 1 / (1 - x) FI ;

The [Bj condition is evaluated once, and it is constant (* 6.6). This condition selects

either the jTHENi operand or the [ELSE! operand, and the other operand will never be

used. The code for this operand will forever idly waste store. However, the example

can be rewritten into:

ThenFonc (x) = (x+3) • x ;
El.eFunc (x) = 1 ✓ (1- x) ;

• = IF FIRST c
THEN ThenFunc (x)
ELSE ElseFunc (x) FI ;

This has given us two extra UDFs, I ThenFunc] and lElseFunc!. the abstractions of the

original expressions. Only the unexpanded UDF actors (i e. not their subnets) are

created together with the [!f] actor, and only either of them will ever be expanded.

4.3.4 Summary of Translation Propar

We present the algorithm once more, this time in imperative form The program is

first put into a more convenient form through a few transformations:

(a) We make the Lucid program monomrric.

(b) \ cross-reference is generated, covering all identifiers in the Lucid program

(simple as well as /unction definitions) The transitive closure of this

cross-reference is generated. All definitions which are not in the transitive

closure of the program result can be deleted He cursive function definitions can

now be marked as such. (Recursively defined variables constitute cycles, »6.1.)

4.3 4

IV .31

(c) We replace all instances of [FlRSTI, I UPON!, fwva] and i'asaI by their UDF equivalents

(t 4.5). Furthermore, we substitute all instances of currtn ting by suitable Ifriool

functions (t appendix B).

(d) Through the cross-reference we can locate all occurrences of global variables,

and we eliminate them by converting them into extra UDF operands After this

elimination, UDFs acquire all datons as UDF operands and deliver them as UDF

results. As a result, the entire program consists of completely separate

•tgm tn ts , namely one main program (the subnet which contains the iWRITE!

node) and any number of UDFs

(e) Sizeable UDFs should not be expanded ta g tr ly if they have more than on«

reference, Including self—references of recursive UDFs There is no law

forbidding the textual expansion of UDFs with only one reference. We may now

expand certain undesirable UDFs. Conversely, some complicated reason may

persuade us to introduce some new UDFs (t 4.3.3.1 and 6 2)

(f) All m ultip it references to a variable must be resolved by rCO?Y. nodes

The Translation Strategy

We apply the translation program proper first to the Lucid "main program” and

then in turn to each UDF. The translation program Incorporates the nodt numbering

ru lt from section 4.3.1.

Every net or subnet contains one highest ranking node. For the "main program"

this is the 1 Writs! node, while for any UDF this is the node which computes the very

UDF result. According to the Lucid syntax, every program or UDF is an expression,

and there is therefore only one highest ranking node per UDF or per main program.

In order to translate UDFs correctly we must remember that even each formal

operand maps Into a nodt actor which computes that operand The translation

becomes easier if we substitute each formal operand by a subscripted dummy

4 3 4

IV -38

variable Inodef-ili (w ithi ranging over the inport numbers l, 2.. . n).

In the following we analyse Lucid graphs recursively. We start by looking at the

highest ranking node, but before looking at a node itself, we look first at the

producers of its operands (these will be lower ranking node actors) In Lucid graphs,

the arrows indicate the direction of flow of datons. Effectively, we make excursions

upstream along the arcs, and we generate code on the "return travel" downstrtam.

In the course of this process, a number will be attached to each node, and code for

creation and initialisation of the corresponding actor will be generated. It is obvious

that this translation process terminates (i.e. no further recursion) when

encountering the following operators:

— an operator with no operands (constants, R'£A'X) ,

— L’DF inports, or

— any I COPY] node which has already been translated.

Each ¡COPY! node delivers operands to many other nodes, and it will therefore be

reached repeatedly in our translation algorithm But of course, code must be

generated for each ¡COPY! node only once This can be achieved by attaching a

Boolean flag to each ¡COPY! node

R tpriuntatlon for Graph Lucid

Below we will render the translation algorithm as a PASCAL program, which has

been implemented and properly tested (t appendix C) The program presupposes

that the Lucid graph is pregiven, the outcome of the transformations (a) ... (f) just

described The graph is built up from PASCAL rteord t, and here is the definition of

their structured type:

4,3 4

IV -33

type
opranse = 1. . 30 ;
NODE? * - NOOK ; (* node po i n te r •)
NODE = record

ntype (copy, co py t ra ns la ted , inport , o t he r) ;
n labe l in teger ;
n t ex t : a l f a
nn oo f r e f s in teger ; (• number o f r e f e r enc es (COPY) *)
nnoofops : 0 . .30 ; (• number o f operands •)
nop array [oprange] o f NODEP ;
n in i top : array [oprange] o f i n t ege r ;

end ;

Explanation: among the fields of every I NODE! record, the following are readily preset

in the course of the Lucid graph definition:

ntype

ntext

nnoofrefs

nnoofops

nop

set to Icopyl if the node is a ICOPYj node (and it is further changed to

I copytranslaied] in the course of translation), it is set to I inport] if the node

stands for an inport, and it is otherwise set to o-.her!

preset with a string fully specifying the node type,

preset with the number of references (I, 3,),

preset with the number of operands (0, 1, 3,),

preset with pointers to the operand nodes

Every UDF' inport is expressed through a [NODE! record whose]nty?e! is i.nportj, with the

inport number (1. 3, ...) stored in the fn'-abc’.j field The fields inJaael] and ITurFropl convey

node numbers and are essential for the translation.

Tha Translation Program

We will now describe the recursive function lTransTatel, together with a few

assisting routines, which performs the translation.]frTn»Ta-.<T must be applied to one

program segment (one subnet) after another At every translation step we have a

particular Node f/nder Consideration, we call it the "NUC. At the beginning of the

translation of any program segment we choose the highest ranking node as the NUC.

4.3.4

IV» 3*

We attach a label number to each node, and we achieve this by a function

I Next!«bell which delivers successive integers. Our algorithm will ensure that the

highest ranking node gets the "0" label; inferiors get label numbers higher than their

superiors.

func t i on NaxtLabal (var nodenuniber : i n t e g e r) : i n t ege r ;
beg in NestLabel : = nodenxnber ; (• pseudo func t i on *)

nodenutrber : * nodenumber + 1 ;
end ;

The procedure [ScanOgerandal inspects left to right all the operands of the NUC.

It translates each operand appropriately, by recursion to |Translate!, and it encodes in

the Ininitopl field of NUC how each operand will eventually be retrieved in the

initialisation of NUC. Inport nodes do not map into actors; they get therefore

separate treatment which does not involve iTrnnslatel. * I

procedure S c an Op e r a n d s (nuc ; NODEP; v a r nodenumber : i n t e g e r) ;
var i in t e g e r ;

nucop . NODI P ;
beg in w i t h nuc* do

f o r i : = 1 to nnoofops
do begin

nucop := n o p [i] ;
i f nucop*.ntype = o t i n p o r t
then n i n i t o p [i] = — n u c o p * . n ! « b e 1 (• i n p o r t •)
e l s e n i n i t o p f i] : = T r ana I a t e (n u c o p , no den ur r ber)

end end ;
I---1

The procedure fNodeinitiahaationl translates the information from the the !:i;nitop!

field of NUC into the actual instruction for the actor initialisation Use of the in.xtop’

field Is difficult to avoid. For any node actor, all operands must be created and

Initialised before initialisation of the actor itself. A [COTt] node actor must deliver its

own name and also the names of all its outport actors (the references to the iCOPVl)

bafort it can be initialised itself. In the translation of any particular node,

IScanOperandx! is always called in the fi.rat invocation of !?ran»laio1, while ¡NodaTruuailsation!

is called in the lost This first and last invocation are the same for most node actors,

only ICOPVi node actors have more than one reference.

4.3 4

IV -35

procedure Node In11 la 1 l e e t i o n (nuc : NODEP) ;
e a r i : i n t ege r ;
beg in w i t h nuc* do begin

w r i t e (• SEND (DATON, •) i

f o r i : » 1 to nnoofopa
do begin

w r i t e (' n o d e [' , n i n i t o p [i]) ;
i f i < nnoofopa then w r i t e (’] , ') ;
end ;

w r i t e l n (']) TO (n o d e [' , n l a b e l , ']) ; ’) ;
end end ;

The function .'Translate' takes a NUC pointer, and generates the whole crta tion and

in itia lisation code for the corresponding actor It generates that code also for all

node operands. The result of function ¡Trunalate! is the label (subscript i in jnodelili) of

the actor which takes the place of the NUC. Note the split actor labelling In the case

of ICOPYl nodes I COPY! nodes constitute probably the most challenging part of the

translation, and the algorithm contains some extra treatment for the benefit o f;COPY!

nodes. The stages of the translation are always:

a) allocate a label for the new actor

b) (¡COPY]: allocate one more label for the inport actor,)

c) generate a ¡CREATE] for the actor,

d) translate the operands,

e) (iCOPYj: generate an "obtain name of outport actor",)

f) if this has been the last reference, generate the initialisation,

g) return with label of the NUC.

Stages b) to d) are omitted if the NUC is a ¡COPYI which has been touched before.

ffranalatel Is a pstudo function since it changes its operands Here now is the

all-important function iTranalatel (the program in its entirety is listed in appendix C):

4.3 4

IV -36

fu nc t i o n T ranx l a t e (nuc : NODEP; var nodenumber : in teger) : in teger ;
var

t rana l in t eg e r ; (• new node w i l l be n o d e [(t r a n a l)] •)
b e g in
wi th nuc* do begin

t rana l : = NextLabel (nodemcnber) ;
t r a n s l a t e := tranal ; (• the func t i on reau l t •)

i f ntype <> cop y t rans1ated
then begin

i f ntype = copy
then begin ntype := copy t r a m 1 at ed ;

n labe l ; = Next Labe 1(nodenumber) ,
end

e l s e n labe l ; = t ransl ;

w r i t e l n (' n o d e [' , n labe l ,
'] : = CREATE (Act , n tex t , ') ; ') ,

ScanOperands (nuc, nodenuntber) ;
end ;

i f ntype = co py t r a ns la te d
then w r i t e l n (' (, , n o d e [' , t r a n s l ,

')) := RECEIVE FROM (n o d e [' , n i abe l , ']) ;) .

nn o o f r e f s := nn oo f re f s — 1 ;
i f (n n oo f r e f s = 0) and (0 < nnoofops)
then Node I n i t i a l i s a t i o n (nuc) ;

end end ,

4.3.5 Concluding Remarks about tha Luc Id Graph Translation

In Ihe presentation of the un i v t r s a l node a c t (? 4.1) wa have subdivided the LUX code

into two parts:

Y—part which is executed each time a request is sent to the operator actor in

question, and

X-part which is executed once before the first execution of (Y).

A second glance at lAci—ftoot—l and either of the UDF acts might tempt us to g m t r a l i * •

that the Y—part is of considerable size and varies greatly from one program to

another, while the X—part is at best small and of little variation. However, such a

generalisation is true only for code from the translation algorithm described so far.

4.3.»

IV »37

Various code refinement techniques will be presented in chapter VI, and that

observation will no longer be valid.

The LUX code from the above translation (I Act—Rood and UDF acts) has its strong

and its weak sides. Its merits lie in its ease of production, and in its accessibility to

various analyses. We will carry out such analyses in chapter VI. The code is

comprehensible but leaves wishes for elegance unfulfilled. This could be overcome

by a table—driven universal subnet Croatian procedure.

Although the code allows a bearably efficient implementation of concurrency, its

officioncy leaves wishes open. Since we are using a demand driven evaluation

strategy, most of the actors will be dormant for most of the time. In most

implementations, the cost per actor is relatively high. Actors should be reserved for

situations where concurrency is of true benefit, and they should not be kept around

in dormant state. In chapter VI. we will look at ways of improving the efficiency or

certain parts of the code much further, and in particular how to restrict

concurrency to productive roles

4.4 Memory In Nod* Actors

We know that, in demand driven DF. datons are evaluated only upon an explicit

request. This means, whenever a daton appears somewhere, there must have been a

preceding request for its evaluation. We can even state precisely tufioro the daton

queues build up:

Theorem' In demand driven DF, daton quouos need to be
permitted only at the outports o f COPY nodes.

This is a strong claim, but it is easy to prove A long-term daton queue will certainly

not build up at an inport of a node, since once a node (superior) issues a daton

request to another node (inferior), the superior will consume the daton as soon as

the inferior can deliver. For the same reason, a long-term daton queue will not build

4.4

IV -38

up at the outport of a node with only on* outport. The node (with the one outport)

will have produced the daton only in response to a request, and the superior will

consume that daton as soon as it becomes available. Matters are rather different at

the outport of a lco?Yl node Every 'COPYl node links a number of outports to one

lnport. and a request on a single outport is enough to cause a request at the ¡COPY'

inport. Therefore, if a daton arrives at the ¡COPY! inport, the iCOPYj node will pass it on

to the requesting outport(s), but it will have to queue it at all other outports.

In this thesis, lF3Yi. IH3X7!, [0 and the usual pointwise operators are called

prim itive operators (t 4.3 3.1). Their acts can be designed so that none of them has

long—term memory. Each of their actors is in exactly the same state whenever it is

dormant; their storage cells hold only short—term information (except for operand

names, which are quasi— constants anyway), nor does the PC hold state information.

Previous requests have no lasting effect on primitive node actors Optimisation can

take advantage of this property (act expansion, T6.2) -O n the other hand, i■■•Her!.

I tippy] and :WVP| certainly have memory, and UDFs are clearly entitled to having

memory. We will indeed implement riasil, ¡UPdN]. and 'WVP (they all have memory)

through UDFs.

4.5 Nod* Acts

The design of the node acts is presented only as late as now since this order of

presentation appears to be the most natural one the underlying concept has been

explained at length, so that the focus can now be shifted to technical points. Some

readers may by now have an inkling what the acts must look like

The complexity varies considerably among the node acts The more inports and

outports a node has, the more protocol states its act must keep in harmony.

We intend to exploit the request protocol to the full, and this makes the node acts

rather complex. Some of the simpler acts have already been explained earlier on,

4.S

IV -39

the more d ifficu lt ones w ill be dealt w ith in the following. S im p les t-to -ha rdes t they

are:

— any node which has only an inport or only an outport (e g. constant. IRBADI, and

I WRITE), t 4.5.4 and 4.5.9 f).

— any node with one outport and one inport (T 3.4.4).

— any node with one outport and more than one inport, with saqutntial acquisition

of its operands (r 4.5.2).

— any node with one outport and more than one inport, with concurrent

acquisition of its operands (r 4.5.3),

— important special nodes (¡IFj, iF3Y!. ¡NEXTi. t 4.5.6 ff).

— [copy! nodes (f 4 6).

Each node act must be able to handle the full request protocol (i.e. [CCMPU'fSi,

i NULLIFY], IAJVA.n'CE). There would be no gain in clarity if we studied nodes which can

handle only a simplified protocol. Appendix D gives some examples of OCCAM

equivalents.

This section will not present acts for [FIEST], 'UPON!. w\R or ¡ASAj. Our translation

does not treat these operators as fundamental operators but as UDFs (f 5.6 and 6.6).

Their function definitions arc

Wvr (a, k) =

Upon (a, k)

IF F i ra t (k) THEN p ELSE
WHERE p * a F3Y q ;

<j ■« Wvr (NEXT a, NEXT k)
END ;

a FBY Upon (p, NEXT k)
WHERE p * IF F i r a t (k)

THEN (NEXT a)
ELSE a FI ;

END ;

Firat (a) * p WHERE p * a FBY p

Aaa (a, k) * Firat (Wvr (a, k)) ;

END

4.5

n r .40

A simple-minded UDF implementation of these functions would be extremely

wasteful, In particular in the case of |wvr|, but these UDFs can be optimised into

perfectly efficient code (r 8.6).

4.5.1 Function iGotDoton]

The explanation of one other thing seems in place before we delve into node

acts. The LUX function iCatPaion! has been presented in section 3 4.3 as illustration

for some aspect of LUX syntax. But that function is of more than mere syntactic

interest; it is actually used in almost every node act. It deserves therefore more

than mere passing mention. We will now explain it formally, but its full importance

will become evident when we study its applications in the subsequent sections. Here

is the function again:

FUNCTION OatOaton (index : INTEGER ; operand ; ACTOR) ; ANYTYPS ; I
LAPEL I ,
BEGIN . R 1

SEND (COMPUTE, index) TO (operand) ; .1
(. , GetPaton) ;= RECEIVE FROM (operand) ;
RETURN ; (• normal RETURN even i f ex c ep t i o n occurred. •)

1: EXCEPTION (NULLIFY, index) TO (operand) ; :R
END ;

I Get Pa ton! sends a ¡COMPUTE] request to the operand actor, and awaits then the arrival of

a the requested daton value. That daton value is eventually returned as the function

result. A typical application would be:

: 7
onedaton ; = CetDaton (th i e i n d e x , op—no de_ac t o r) ;

This LUX instruction requests from 1 op-noda-actor] that the daton at [IhlaTndexi be

evaluated, and once that has been achieved the daton value is stored in ioncdatonl.

If an exception occurs, the outcome depends on how far we got in the function

execution:

+.5 1

IV-41

— If the exception occurs b tfo r t the operand daton has been requested

(|SENT> COMPUTE ...|). a special return is made right away, namely through the door

(Ft!) immediately b tfo r t the function call. (Program execution continues at

label ¡7~, not shown in the example).

— No special action is taken if the exception occurs a fttr the operand daton has

been received. Instead, normal execution continues and an ordinary return is

made (i.e. no door is used). This gives us a chance to p r ts tr v t th t daton value.

This course of action is appropriate: the purpose of ¡NULLIFY! exceptions was the

abortion of over-long computations, but after the receipt of the result daton

this purpose has lost its urgency.

— If, however, the exception occurs after the |COMPUTE] request but b tfo r t the

arrival of the daton, a [NULLIFYI exception is sent to fop—lode-actor], followed by a

special return using the door (E) before the function call. The ¡NULLIFY]

exception nullifies the daton evaluation in the inferior

The node acts and the request protocol have been designed under the guideline that,

once a node actor has received an exception, it must not carry out any further

computation, except for some concluding administration. In general, it is hard to

tell which intermediary result is so valuable as to deserve preservation (there is

scope for an optimiser).

4.5.2 Act« which Request their Operands Sequentially

When implementing the operators of a programming language, one is tempted to

contemplate two kinds of variant* of each operator:

(a) variants which make better use of the computer resources (faster execution or

lower store requirements),

4.8.8

IV -42

(b) variants which maximise the output history of the program (some operators

cause subnets to produce shorter output histories than one might expect).

This thesis is not much concerned with category (a) of variants ("local

optim isation "). For example, once it has been specified that a von Neumann

monoprocessor is the computer to be used, there is hardly any scope left for

improvements in category (a) Section 4.5.3 will show that some progress can be

made in category (b). For example, once either operand of [o5¡ yields ITR'JS!. the

other operand's daton value is no longer required This can be exploited by

concurrent operand evaluation. (Pseudo—) Concurrency is rather costly on von

Neumann monoprocessors, and should be reserved for special cases.

For most operators, such refinement is impossible anyway Most operators

cannot dispense with any of their operand datons; sequential operand evaluation

(1 e. one operation after another) is therefore the appropriate method when dealing

with von Neumann monoprocessors.

Example (|Act_Phi«_J)

The following act implements an operator which acquires its operands in

sequential order. The example describes the binary operator, but ail those

pointuiise operators which unconditionally need alt their operands (e g relational)

have very similar acts.

4.5.2

IV . 43

ACT A e t - P lu a — ; (• 5 . f i i . n l (a t Pi!/J •)
LABEL 1 ;
VAR

dvalO, d v a l l , r e s u l t : REAL ; (* or whatever the d a t o n type *)
superior , pO, p i : ACTOR
request : USGTYPE ;
index : INTEGER ;

BEGIN (* pO and p i are the operand a c t o r s . *)
(, , pO, p i) : « RECEIVE FROM (C re a t o r) ;

(• ■■■ k w l l S i n f S l e e k I : atari l eap — •)
REPEAT

WHILE TRUE DO
BEGIN : l

(super io r , r equest , index) := RECEIVE () ;

(• -------- S w i l d i n f S l a c k 2 ; pal » p a r e n t --------------------------------------- •)

(• Pos s ib l y hang up in CetOaton. *) :1
dvalO : = GetDaton (index, pO) ; (• Get 1st operand. •)

(• ---------- bui ld ing Slock 2- g o t o p e r a n d -- •)
: 1

dv a l l := CetDaton (index, p i) ; (• Get 2nd operand. •)

— b u i l d i n g b l o c k 3 sand the r e s u l t and and 1 o 0 P ------------ — •)
: 1

•)r esu l t ; = dvalO + d v a l l ; (• node dapand ant
(• P o s s ib l y hang up in SEND. •) ;1

SEND (DATON, r e s u l t) TO (s u p e r i o r)
END ; (• End of inner e t e rna l loop. •)

1: (r equest , index) ; = Reveal ; (• Except ion par t . •)
IF request = ADVANCE
THEN EXCEPTION (r eques t , index) TO (pO, p i) ,
RESET ;

UNTIL FALSE ; (* End o f outer e t e rna l loop. *)
END ; (• End o f A c t - P l u s - . •)

In the Initialisation, the node actor learns who its operand actors are. After that, the

node actor enters an eternal loop in which it successively processes requests. The

act Is easier to understand if we pretend first that there are no exceptions: we can

ignore all doors and the exception part Upon arrival of a fcOMPUTSI request, the

operand datons are acquired one after the other, the result value is computed, and

the result is then sent back to the superior After that, the node actor is ready to

accept the next request.

4.5 2

IV -44

However, a 1 NULLIFY) or an 1 ADVANCEi exception can occur anywhere within that

loop. If this happens while an operand daton is under way (requested but not yet

obtained), the inferior computation is aborted by giving a [NULLIFY! exception to the

operand actor (t explanation in 4.5.1). As soon as we reach a door we break out of

the usual order of instruction execution and proceed with the excoption part If the

exception was an I ADVANCE], the | ADVANCE] is propagated to all the operand actors. The

exception handling ends with executing iRESET]. After that, the node actor is ready to

accept the next request.

Acts for deterministic (i.e. avoidably concurrent) pointwise operators with other

than two operands can be built up from the building blocks of ¡Act_Piu>I]. In particular

block 2, acquisition of an operand, can be reduplicated for the acquisition of any

number of operands. "Hie beginnings and endings of the act propers are practically

identical (Exercise for the reader: write the act for a constant, solution in 4 5.9.)

Clearly every instruction has, where possible, been furnished with an "escape

route" (viz. a door) for the event of an exception The computation proper [r e m i t I

has, in our example, been very simple and inexpensive, its escape route was

therefore dispensable

4.6.3 Acts which Request their Operende Concurrently

We sketched above (also T 1.1.3) the benefits of certain concurrent

computations. In^computers where concurrency is cheap (e g transputers) it would

even be etdvisable to implement most operators with as much concurrency as

possible We study in this section how to design node acts which acquire their

operand datons concurrently

In mathematics, the sequencing of the operands has no bearing on the result of

a commutative operator, by definition Implementations of many programming

languages, however, treat operators lik e [OR] and and] as non—commutative. One of

4.5 3

I V - 45

the aims of Lucid is to bring mathematics and programming closer together.

Concurrency can help us in this pursuit (t 1.1.3).

Example (|Act_Or_J)

The following act implements a binary operator using concurrent acquisition of

the operand datons. The example represents the ¡OR] operator, but every other

binary pointwise operator whose result may be determined by the daton arriving first

(e.g. lAMDj. multiply with *ero test) would have a very similar act.

ACT A c t_ 0 r _ ; (• Cancurr.nl OR •)
LABEL 1 ;
VAR

superio r , pO, p i , o ther, sender : ACTOR ;
request MSG TYPE ;
index : INTEGER ;
dvalue : BOOLEAN ;

BEGIN (• pO and p i are the operand ac to rs . •)
(. . pO. p i) .= RECEIVE FROM (C re a to r) ,

REPEAT
WHILE TRUE DO
BEGIN ; l

(su pe r io r , request, index) .= RECEIVE () , .1

SEND (COMPUTE, index) TO (pO, p i) ; ; t
(sender, , dvalue) := RECEIVE FROM (pO, p i) ; : l
IF sender = pO THEN other ; = pi ELSE other ;= pO ; :1

IF dvalue (• Inspect what has been obtained so fa r . •) .1
(• * * * * * * node dependent •)

THEN EXCEPTION (NULLIFY, index) TO (o th e r)
ELSE (, , dvalue) ; * RECEIVE FROM (o t h e r) ;

: 1
SEND (DATON, dvalue) TO (s u p e r io r) ;

END ;

1: (request , Index) := Reveal ; (• Exception part . •)
EXCEPTION (request , index) TO (?0 . p i) ;
RESET ;

UNTIL FALSE ;
END ; (• End o f A c t_O r_ . •)

For the Fan51 and super-multiply act, practically all lines involving [dvalue! must be

reformulated, of course, but the overall structure will remain unchanged

4.5.3

I V - 46

There are considerable commonalities between the iAct-Pr_l and the |Act_P lu aJ ,

the differences lie in the code which deals with the operand acquisition. The !G«tOatonl

function cannot be used here since it has been tailored for acquiring datons

sequentially.

The initialisation (unchanged) i9 still followed by an eternal loop in which the

node actor successively processes all requests. First, let us again pretend that there

are no exceptions. Upon arrival of a I COMPUTE] request, that request is propagated to

both operand actors at the same time. After that, a reply is awaited from either

operand actor. (A random pick is taken if both replies become available at the same

moment.) Once the first reply has been received, the remaining operand actor is

due to be dealt with; a quick test works out its actor name ¡other .- .7]. The value of

the f irs t reply decides over the next action. The !other] operand is sent a ¡NULLIFY! iff

its daton value is now irrelevant (that |NULLIFY] is the same no matter whether that

daton's evaluation is complete, or whether it is still under way). Otherwise, the

completion of the ¡other! operand evaluation is awaited Either way, once both

operand actors are dormant again, the overall result value is worked out and is sent

back to the superior. After that, the node actor is ready to accept the next request.

A I MU m ni or an ¡ADVANCE; exception can occur anywhere within that loop If this

happens while any operand daton is still under way (requested but not yet obtained),

any inferior computation must be aborted by sending [NULLIFY! exceptions to the

operand actors. Whenever an exception occurs, it is propagated unchanged to both

operand actors. The exception handling ends with executing lESEt; After that, the

node actor is ready to accept the next request.

¡Act—OiJ uses a somewhat crude method of exception propagation (¡'nulLifYI

requests are propagated unconditionally), but this degrades the efficiency of

program execution only very little Luckily, sending a I NULLIFY] to a dormant node

actor causes only negligible extra work. It is easy to extend the code of [AcUrU,

4.5.3

IV »47

making it propagate |NULLIFY! only to those operand actors which are busy with work.

Generating a |mullifv|

This section has introduced one new concept, namely nullify ing a computation

after it has been set in motion. It must be born in mind that this mechanism can be

used simultaneously on numerous levels. Take, for example, a Lucid expression with

an ¡031 in it, of which either operand is a subexpression with a further [03] (or [AND]) in

it. Such nestings can be constructed to any depth. During the evaluation of such an

expression, any ¡OR] node actor may decide to nullify the evaluation of its operands.

This will nullify all inferior evaluations.

4.5.4 The]WRITE] Act

As far as act construction is concerned, we have learnt how to build UDF acts

and how to build the acts for the simpler operators In both cases the end product

could be built by applying a few simple rules to a few standard building blocks.

We will now have a look at individual acts, and in particular at acts which do not fit

readily into the general pattern fWRlTEi and ;3EA3i, the Lucid specific operators I,"3Y!

and ¡NEXT], and last not least ¡COPY] are among them.

A program without any jWRlfc: node would be pointless. In demand driven

evaluation, the driving fo rce for all computations stems ultimately from a fwRiTEI

node. Here is the jVRlTEl act:

4 5 4

IV . 48

ACT A c tJA fr i «a _ (f i len am e : ALFA) ;
VAR

index : INTEGER ;
pO : ACTOR ;

BEGIN
(. . pO) := RECEIVE FROM (C r e a to r) ;
index ; * 0 ;
OPEN (f i len am e . WRITBnode) ;

(* WRITBnode is a system co n s ta n t . •)
REPEA T

WRITE (f i len am e , CetDaton (in d e x , pO)) ;
index : = index 1 ,
EXCEPTION (ADVANCE, index) TO (pO) ;

UNTIL FALSE ; (* End o f e te rn a l loop . *)

END ;

The lAct-JfriteJ does not receive any requests, and needs therefore no exception

handling. — During program execution masses of requests (including exceptions)

pulsate through the net of node actors; it is interesting to note that the origin of

most! COMPUTE: and 1 ADVANCE I requests can be traced back to I Act_Writ.eJ. — The special

role of I WRITE' actors has repercussions on their scheduling priority (t 4.7).

4.5.5 The Daton Sink Act

ACT Ac t_D* ton_S lnd_ ;
VAR

pO ACTOR ;
BEGIN

(. , p0) ;= RECEIVE FROM (C re a to r) ;
EXCSPTION (ADVANCE, f in a l index) TO (pO) ;
C Th is act needs no e te rn a l loop. •)

END .

The act of the cfaton sink nod« is presented here for dramatic relief This node is the

poor relative of the I WRITE! node, all comments about exceptions and scheduling apply

correspondingly. Its effect is like writing to a null device, and its only foreseeable

application is with multi-valued UDFs, although such UDFs can not be expressed in

present Lucid.

4 5 4

IV « 49

The I Ac t—Daton-Sinx-J generates only one request ever, namely the special request

IADVANCE, fj&ILndei! (|ftn««nd»Kl is a special constant, not a natural number). This

request states that there will be no requests for further datons ever. Considering

that we are dealing with a demand driven evaluation scheme, this is the ultimate

non-demand. More on this in section 4.5.6.

4.8.6 The fray] Act

I plus ! and ¡55] are both pointwise nodes (consequence: whenever, say, |Act_PluaJ

propagates a request to one of its operand actors, this request goes with, i te index

unchanged from the original request; the request index is described in T 4.2).

Neither IF BY nor j XEXTl is pointwise; their acts propagate a modified request index.

This makes their acts only slightly more complicated. At certain index values some

special action is required, most of it in the exception handling Here is the act for

the ¡ F 3 Y i node

4.6 6

IV -50

ACT A o t _ F k y _ ;
LABEL 1 ;
VAR

super io r , pO, p i ; ACTOR ;
request : 1ISGTYPE ; index : INTEGER ; r e s u l t : ANYTYPS

BEGIN
(. . pO, p i) := RECEIVE FROM (C r e a t o r) ;

REPEAT
WHILE TRUE DO
BEGIN

(s u p e r io r , request, in d e i) := RECEIVE () ;

IF index = 0
THEN

r e s u l t ; = GetDaton (in d ex , pO)
ELSE

r e s u l t : = GetDaton (in d e x —1, p i) ;

SEND (DATON, resu lt) TO (su per io r) ;
END ; (• End o f inner eternal loop. ♦)

: 1

: 1

: 1

: 1

(request, index) := Reveal ;
IF request = ADVANCE
THEN BEGIN

IF index = 1
THEN EXCEPTION (request, f ina l index) TO (pO)
ELSE IF index = f ina l index

THEN EXCEPTION (raquest, index) TO (pO,
ELSE EXCEPTION (request, index-1) TO

END ;
RESET :

UNTIL FALSE ; (• End of outer eternal loop. •)
END ; (• End of Act_Fby_ . •)

Pi)
(pl)

The iFBYl node has one peculiarity, and this is reflected in the [FBY] act. At best, just

ont daton (viz the initial daton) is acquired from operand actor fpOl. After that, the

operand actor for [¿o] is notified that no further daton will svsr be requested This is

expressed by the request [ADVANCE, finai.ndex . Without the latter request, immense

qrususs might build up inside any ¡COPT; node involved in tho evaluation of operand ~po!

The reason is easy to see Assume the ¡ADVANCE, finalT-idex! request did not exist, and

consider a [COPY! node which has not received any request on outport X for a long

time, while at the same time outport Y has delivered many datons. The icopT! would

not be able to decide whether outport X has actually died, It will never request again

Instead the I COPY] would have to stay ready (and retain all the daton values) for an

4 5 8

IV -51

eventual ICOHPUTEl request on outport X.

The special [ADVANCE] request solves this problem by providing extra information.

As a penalty, the exception handling becomes more difficult. Instead of the [ADVANCE!

request with a special index value we could have added a new request type ¡LAStl with

the same effect, although that would have increased the code of all node acts. More

on this topic in the discussion of the ¡.KILLI request (t 6.3).

4.5.7 The |MEXT| Act

ACT Act_Next_ .
LABEL 1 ,
VAR

pO, superior ; ACTOR ; request : MSGTYPE ;
index : INTEGER ; result ; ANYTYPE ,

BEGIN
(. , pO) := RECEIVE FROM (Creator) ;

EXCEPTION (ADVANCE, 1) TO (pO) ;

REPEAT
WHILE TRUE DO
BEGIN . 1

(superior, request, index) ;= RECEIVE () .
: 1

result :=CetDaton (index+1, pO) ; . 1
SEND (DATON, resu lt) TO (superior) ;

END ; (• End of inner eternal loop. •)

1: (request, index) ;= Reveal ;
IF request = ADVANCE
THEN BEGIN

IF index * f ina l index
THEN EXCEPTION (request. Index) TO (pO)
ELSE EXCEPTION (request, I + index) TO (pO) ;

END ,
RESET ;

UNTIL FALSE ; (* End of outer eternal loop. •)
END ; (• End of Act_Next_ . •)

The ¡nSXT! node actor issues one bare [advance] request before propagating its initial

request. (Any bar» [advance] originates from Isaffi or from Qg.) Moreover, the index is

increased by one in all propagated requests In all other respects. [NEXT] resembles

closely a pass-through node

4.57

IV -5 1

eventual ICOMPUTE! request on outport X.

The special [ADVANCE! request solves this problem by providing extra information.

As a penalty, the exception handling becomes more difficult. Instead of the I ADVANCE!

request with a special index value we could have added a new request type ¡LAST] with

the same effect, although that would have increased the code of all node acts. More

on this topic in the discussion of the ¡KILLI request (t 6.3).

4.5.7 The [NEXT] Act

ACT Act_N»xt_ ,
LABEL 1 i
VAR

pO, superior : ACTOR ; request ; MSCTYPE ;
index : INTEGER ; result ; ANYTYPE ,

BEGIN
(. . pO) : * RECEIVE FROM (Creator) ;

EXCEPTION (ADVANCE, 1) TO (pO) ;

REPEAT
WHILE TRUE DO
BEGIN

(superior, request, index) ;= RECEIVE () ;

result ;= GetDaton (:ndex4-l, pO)
SEND (DATON, r e s u l t) TO (superior) ;

END ; (* End o f inner eternal loop.

1; (request, index) := Reveal ;
IF request * ADVANCE
THEN BEGIN

IF index * f ina l index
THEN EXCEPTION (request. index) TO (pO)
ELSE EXCEPTION (request, 1 + index) TO (pO) ;

END ;
RESET ;

UNTIL FALSE ; (• End o f outer eternal loop. •)
END , (* End of Act_Next_ . •)

The iNSXTl node actor issues one bare [ADVANCE] request before propagating its initial

request. (Any bare ¡ADVANCE! originates from 1 NEXT] or from Qg.) Moreover, the index is

increased by one in all propagated requests. In all other respects, iNEjc! resembles

closely a pass-through node.

4.5 7

IV. 52

We know that the fundamental acts other than I copy! have no memory. This is

little surprise in the case of pointwise operators like [!f]. However, one would expect

that IF3Y1 and INEXTI differentiate at least between an in itia l state and a continuation

state. However, |Act—NextJ progresses right after initialisation to its continuation

state, whereas |Act_FbyJ deduces the state from the index in the request.

The daton index changes only in the course of ! advance I requests, and each

IadvanceI comes normally with its index one greater than the previous index.

IA3VANCE, finalindexj is the only exception to this rule Only ¡WRITE;, [READj and ¡COPY] node

actors need to remember which daton is next in line

4.5.8 The [p] Act

ACT Ac t _ l t o _ ; (• I F - T H E N - E L S E •)

LABEL 1 ;
VAR

superior, pO, p i , pZ ACTOR ; request MSGTYPE ;
index : INTEGER ; condi : BOOLEAN ; result : ANYTYPE .

BEGIN
(, , pO, p i . p2) : * RECEIVE FROM (Creator) ;

REPEAT
WHILE TRUE DO
BEGIN : 1

(superior, request. Index) : * RECEIVE () ; :1
condi : = GetDaton (index, pO) ;

IF condi
THEN (• EXCEPTION (ADVANCE, lndex+1) TO (p2) •) .1

resu lt : * GetDaton (index, p i)
ELSE (♦ EXCEPTION (ADVANCE, indexf-1) TO (p i) •) : 1

resu lt : * CetDaton (index, p 2) ,
: 1

SEND (DATON, resu lt) TO (superior) ;
END ; (• End o f inner eternal loop. •)

1: (request, index) :■ Reveal ;
IF request • ADVANCE
THEN EXCEPTION (request, Index) TO (pO, pi, p2) ;
RESET ;

UNTIL FALSE ; (• End of outer eternal lo o p . •)
END ; (• End of A c t_ I te _ . •)

4.5 a

IV » 53

In the eternal loop, the [If] node actor interrogates first the operand [p51. the HfI

condition. Dependent on the value of that daton, either the ITHEN1 operand [¿T] or the

I ELSE) operand'll] is selected to constitute the overall result. — This ¡Act_lteJ contains

nothing which exceeds the general construction pattern from section 4 5 2; chapter

VI will give hints how to refine]]|] (constant condition and concurrent ¡If]). A possible

refinement has been sketched; the [a d v a n c e ! exception can be issued to the rejected

operand at a very early time. However, to implement this properly requires some

adjustments: either successive ! ADVANCE! requests with the same index must be

permitted, or the | condi I value must be retained in memory.

4.5.9 The Constant Act

Every program must get data from somewhere, be it data read from a /tie, or

constants I READ' and the constants are the two fundamental nodes which have only

an outport. Obviously, the act of neither needs initialisation. Here is the act for a

constant delivering node:

ACT Act_Conat_ (conata : ANYTYPE) ; !
LABEL 1 ;
VAR

1

superior : ACTOR ; request : MSGTYPE ; index . INTEGER ;
BECIN (• act has no in i t i a l i s a t io n . *)

REPEAT
WHILE TRUE DO
BECIN : >

(superior, request, index) : ■* RECEIVE () ; ; 1
SEND (DATON, cons ta) TO (super io r) ;

END , (• End of Inner eternal 1 oop. *)

1: RESET ;
UNTIL FALSE ;

END ;
(• End of outer eternal 1 oop. •)

Each jAcLJConetantJ actor gets a kind of initialisation during its own creation: the value

of the constant itself. There is nothing else to explain in this act. The IftEAD! act is

similar, except that everything is much more complicated:

4 . 5 9

IV -54

4.5.10 The | READ I Act

ACT Aet_ftaad_ (f i len am e : ALFA) ;
LABEL 1 ;
VAR

superior : ACTOR ; index INTEGER ;
request : USGTYPE ; index2 : INTEGER ; r esu lt : ANYTYPE ;

BEGIN (• There is no i n i t i a l i s a t i o n message from the c rea to r . *)
OPEN (f i len am e , READmode) i (• REAHnode is a system con s tan t . •)
indexS : « 0 |

REPEAT
WHILE TRUE 00
BEGIN : t

(su p e r io r , request, index) := RECEIVE () ; :1

(• IF index <> index2 THEN ReportError ; •)
: I

r esu lt ; = READ (f i len a m e , index2) ; 1
SEND (DATON, r e s u l t) TO (s u p e r io r) ;

END ; (• End o f inner e te rn a l loop. •)

1: (request , index) : = Reveal ;
IF request = ADVANCE (• th is tes t can be om itted. •)
THEN BEGIN

IF index = f in a l index
THEN CLOSE (f i l en a m e)
ELSE index2 : * index2 + 1 ,

(• IF index <> index2 THEN ReportError ; •)
END .

RESET ;
UNTIL FALSE ; (• End o f outer e te rn a l loop. •)
END ; (• End o f Act_Read_ . •)

The !index21 in the instruction ¡READ (... ¡ndcx2)1 refers to the running index of the daton

In the file. This makes it possible to deliver the same daton upon successive ¡cO M PU T f,

requests of identical index, as required by the protocol In any implementation,

¡Act—ReadJ is likely to have memory of some form (viz character buffers etc), but

this memory contains only quasi—constants

Every request quotes a particular index The index can only be advanced by

IajvanceI requests, and every ordinary I advance] request brings an increment of one

The iRfiADl node (and similarly ICO??1) needs the index information only to identify the

special ¡ADVANCE, fmaiindexl requests The index information can, however, be used to

supervise the correct functioning of the system, a running check like "parity". The

4.&.I0

IV* 55

total reliance on local counting (lindex2j) creates an opportunity for optimisation

(implicit INEXTI andiFBYl, t8.2)

Virtually all operating systems are data driven, and data are usually accessed

sequentially, i.e. in a pipeline fashion. [WRiTEl and [read] actor3 interface to the

operating system, and its characteristics shape, obviously, the design of the IWRITSI

and ¡READ1 acts. A demand driven lAct_Read_~ for reading interactively from terminals

is a realistic proposition, and is quite easy to write. The ¡Acu-WriteZ! would also look

quite different in a "tagged" DF operating system.

4.6.11 Exception« in Primitive Acts

The description of the doors (t 3.4.2) may have appeared disproportionally

complicated, considering their unsophisticated application in all the acts so far.

Apparently, there was simply a door after almost every instruction, and the target

was always the same. However, this looked so simple merely because all the difficult

work has been shifted from the proper computing node actors to the COPY! node

actors. In particular, most p rim itive nodes are without long-term memory. The

exception handling of a primitive node is trivial:

1) it simply abandons its current work,

2) it propagates the exception to the operand actors (if appropriate),

3) it executes a ¡RESET!, and

4) it enters finally the dormant state.

This simple pattern would be totally inadequate for [copy!, as we shall see Even the

action of UDFs (which can contain ¡COPY] nodes) in the event of exceptions is much

more complex; however, their exception action takes place within their internal node

actors, and its complexity is therefore invisible

4.8.11

IV -56

4.6 The [COPY| Act

4.6.0 Introduction

This section describes a jcQPYl act which imposes very few restrictions on its use.

The only restriction is due to pipeline DF: datons must be requested in the order of

increasing index. The maximum overall queue length (buffer size) is limited only by

the machine size.

It is possible to implement each I COPY] node as a single actor. However, such an

actor would have to distinguish between a very large number of states, due to the

many states each of its ports can be in (cross product). We choose a rather different

approach, where each outport is implemented by its dedicated actor, with one

further common actor for the inport. The ¡COPY! inport actor is mainly concerned

with the administration of the daton buffer. This design is modular, each outport has

only very little concern with the other outports. " ¡ c o p y node actor" i s u s e d meaning

"all the actors which together implement the ¡COPY! node”.

The description of the [COPY! node actor starts with general considerations, it

explains then the outport act, and finally the inport act. The specific procedures are

presented before each act.

4.6.1 Daton Buff or a

The buffers are implemented as chain* (= linked lists) with reference counts.

In a ¡COPY, with many outports, each outport buffer is organised as one linear linked

list, with each outport "hooked in" at the appropriate place The list store makes use

of a pregiven store manager routine with explicit return of disused store space (the

same store manager might also allocate all the actor space). The terms "queue",

"bu ffer" and "chain" reflect merely different views of the same thing

4 8 1

IV -5 7

The following figure shows a daton chain of five buffer cells:

(e a r ly) (l a t e)
in_indez=t t-3 t-4 t-3 t—2 t-1

value | I i j «• 1 i R ! | o j j Y !
refcount ! 2 | ! 3 1 ! 8 i i ̂ | i 71
1i nkege i i— H ! 1 — 1 i A----

i 1 J | f * 1 * J I r

ta i 1
outport■ tt t ttt t

Every chain element can be referenced by any number of outports. The reference

count states cumulatively the number of direct and indirect references. The

uparrows in the bottom row symbolise those places where I COPY! outports are hooked

into the chain. The arrow on the very right symbolises an outport referring to a

fu tv r* daton. while the buffer caters for past datons. That outport could be, for

example, in the finalindex-state (i.e. referring to the "most distant” future daton).

A ¡COPY; outport which, at a particular moment, refers to a queued daton cAn find V i«

successor daton by following the link pointer. If the pointer is jS1L1, the next daton

value needs to be evaluated beforehand and a new cell with that value appended to

the chain. (The pointer value ¡nil; means "pointing n ow h trt" .) If required, the

outport can eventually be ADVANCEd to the successor daton through "stepping

forward" by means of the pointer, with the old reference count being decremented

accordingly. Tho old cell can be released (given back to the store manager) once its

reference count has dropped to zero.

We declare the buffer cells as follows:

4.6.1

IV. 58

TYPE
CELLP = * CELL ; C B u f fe r c e l l p o in te r . •)

CELL = RECORD C Store f o r one daton va lue . *)
value : ANYTYPE ; C The daton va lue. •)
count ; INTEGER ; (• Re fe rence count. •)
l ink : CELLP ; C P o in te r to next l a t e r c e l l . •)

END ;

The existence of a universal daton type is an illusion, of course; a string can hardly

be stored in the same way as a Boolean. But implementors can find ways around

that. For simplicity, we pretend from now on that all our data objects are of the

hypothetical type IanytvpeI, and that they can all be held in storage cells of uniform

size. We communicate with the store manager through two pregiven routines. Buffer

cells are obtained by calling the parameterless function Qetc.il, and they are

released by calling the procedure >r««c«n;. A simple minded program would go:

VAR nnyce \ 1 : CELLP ;
BEGIN

m yce ll = GetC e l l ;

F re eC e l1 (rryce 1 1) ;
END ;

The chaining of the daton buffer cells brings considerable efficiency since with it3 aid

the outports can share every buffer cell. This efficiency is sabotaged in a program

with onelCQPYl node feeding directly into another IcoPYi node; such a construct should

only be chosen in very select cases.

So far we have paid little attention to outports in off-chain state, i.e. outports

which refer to fu tu re datons. Outports are put into that state by the receipt of

numerous bare ¡ADVANCE! requests (* 4 .2) or bv iTDVANCS.luialindeil Off-chain outports

are not handled by the daton buffer but by a mechanism which will be described in

section 4.6.4 (request propagation).

4.6 1

IV* 59

4.6.2 Protection by Semaphore«

Whenever we access a stored data object, we trust In its consistency. (The data

object may comprise many interrelated pieces of information) For example, the

number held in a reference counter is assumed to be equal, at any moment, to the

factual number of references. Occasionally, however, data need to be changed, and

inconsistent data may be unavoidable wh.il« the alteration is being carried out. The

phase between the removal of a reference and the decrementing of the reference

counter would be an example. The data should not be accessed "by the public"

during such phases of inconsistency, and conversely, any interfering access must be

locked out during phases of use. We need an "access token", where the holder of the

token has the exclusive right o f access to the data

We use a semaphore to manage such an exclusive access right. It has been

demonstrated in section 3.2.4 that semaphores can be implemented through

message passing (IAct-jCja.-ditt.i-Zi). We will use that method here even though it may

not be ideal in efficiency terms The use of semaphores is easy. One semaphore is

needed for each data object which needs protection at any moment. We create one

semaphore by:

VAR semaphore : ACTOR ;

semaphore : * CREATE (Act_Guardian_) ,
(• The semaphore is i n i t i a l l y set to " i k i i i is p u b l i c " . •)

and, whenever necessary, we call:

MakeExc1usive (semaphore) ;

MakePub I : c (semaphore) ;

where iMakeExciueive! and 1 HakePubhc: are procedures which change the access status of

the data object. While one actor upholds its claim to the data object (i.e in the

interval between iMakeExclusTve] and iMakePubicl) any other actor calling I MakeExc'uivel

gets hung up until its turn has arrived. In our particular case both procedures are

4 0 2

IV* 59

4.0.2 Protection by Semaphore«

Whenever we access a stored data object, we trust in its consistency, (The data

object may comprise many interrelated pieces of information) For example, the

number held in a reference counter is assumed to be equal, at any moment, to the

factual number of references Occasionally, however, data need to be changed, and

inconsistent data may be unavoidable while the alteration is being carried out. The

phase between the removal of a reference and the decrementing of the reference

counter would be an example. The data should not be accessed "by the public"

during such phases of inconsistency, and conversely, any interfering access must be

locked out during phases of use. We need an "access token", where the holder of the

token has the exclusive right o f access to the data.

We use a semaphore to manage such an exclusive access right. It has been

demonstrated in section 3.2.4 that semaphores can be implemented through

message passing (;Act-jGja.-dian_i). We will use that method here even though it may

not be ideal in efficiency terms. The use of semaphores is easy. One semaphore is

needed for each data object which needs protection at any moment. We create one

semaphore by:

VAR semaphore : ACTOR ;

semaphore ;= CREATE (A c t -G u a rd ia n —) ;
(• The semaphore is i n i t i a l l y se t to "acc««y is p u b l i c " •)

and, whenever necessary, we call:

MakeEsc1 us ive (semaphore) ,

MakaPublic (semaphore) ;

where 1 Make Exclusive! and IMak ¿Public] are procedures which change the access status of

the data object. While one actor upholds its claim to the data object (i.e in the

interval between ¡MakeKiclusTve] and iMakePubicl) any other actor calling ! Make Esc'luiyel

gets hung up until its turn has arrived In our particular case both procedures are

4.6 2

IV .80

actually identical; they treat the semaphore like a toggle switch, and we have to be

careful not to call either ¡HakcEschisivel or IHakePublicj twice in succession (one would

use safer procedures in the real implementation). The procedures are:

PROCEDURE MksExc l u . l v . (semaphore : ACTOR) ;
BEGIN :R !

SEND DATON TO (semaphore) ; END ;

PROCEDURE
BEGIN

M k sP u b l ie (semaphore ACTOR) ;
: R !

SEND DATON TO (semaphore) ; END ;
!

4.6.3 Data Structuras and Initialisation of fcOPYl

A sizeable bank of information is accessed by the inport and each outport of

[COPY, and by procedures within them. Most of the state information of the inport

and each outport can be grouped into data records (PASCAL'S device for constructing

data structures), which we call descriptors. This makes in particular the parameter

passing much simpler. Here is the type declaration for our descriptors

4 8 3

I V . 81

TYPE
OUTPORTSTRUCT = RECORD (* There ia one o f theee per COPY ou tport. •)

oactor ACTOR (• Ac to r name o f th is ou tpor t . *)
b u f f e r CE LLP (* Daton b u f f e r p o in te r . •)
novalue* INTEGER (• How many lead ing datons sh a l l be ignored •)
o i nde s INTEGER (• Current daton index (f r o m la s t ADVANCE). *)
w a it ing

END ;
BOOLEAN (* S ta te in d ica to r fo r in p o r t . •)

INPORTSTRUCT = RECORD (• Inport d e s c r ip to r : ♦)
ia c to r ACTOR (• Ac to r name of th is in port . *)
t a i l c e l l CELLP (* P o in te r to t a i l o f daton b u f f e r . •)
i index INTEGER (• Current daton index. •)

(* i index = index o f next daton to be r ece iv ed . *)
C = indexai o f daton in t a i l c e l l . *)

a c t i v e INTEGER (• Number o f outports not f i n a l index *)
p ro f i t ing INTEGER (• Number o f outports w ith novalues=0 •)
customers INTEGER (* Number o f ou tport* w ith : •)

(• o u tp o o l [i] w a it ing = TRUE *)
pO ACTOR (• Operand ac to r . •)
semaphore ACTOR
noutports INTEGER (• Number o f outports . »)
outpool

END ;
ARRAY [1 ■noutport»] OF OUTPORTSTRUCT ;

The current /nport index [Undexl refers to the daton presently due to reach the inport,

the current Outport index ¿¡index] refers to the daton presently due to come out of the

respective outport. (A real programming language would hardly permit a dynamic

array as an element of a data record, such as foutpooll above However, every

implementor knows alternative ways for achieving the same effect.) In procedure

headings, we will repeatedly encounter formal parameters of the kind:

[VAR outport : OUTPORTSTRUCTj

When looking up the corresponding actual parameters it will always turn out that

[outportI is merely an alias for ioutpooiltll, which m turn is an array element within

lINPORTSTRiXTl, i is outport dependent.

The ftNPORTSTftUCTl and all the various ioir?0R::lsrRDcfl of the entire Ico'PYl node

actor get initialised when the inport actor calls the procedure ilmtmliaeCoprl:

4.8 3

IV . 62

PROCEDURE I n i t i a l I » .Copy (n e tc r e a to r : ACTOR ;
VAR inport : INPORTSTRUCT) ;

VAR i : INTEGER ;
BEGIN WITH inport DO
BEGIN

p r o f i t i n g ;= noutports ; customers := 0 ;
a c t i v e : « noutports ; i index := 0 ;
t a i l c e l l : = NIL ;
semaphore := CREATE (Act.Guard ian_) ;

FOR i : = l TO noutports
DO WITH o u t p o o l [i] DO

BEGIN
oactor := CREATE (Act_CopyOutport_ ,

in po rt , o u t p o o l [i]) ;
SEND (DATON, o a c to r) TO (n e t c r e a to r) ;
b u f fe r ; * NIL i oindex : = 0 ;
w a it ing = FALSE ; novalues 0 ;

END ;

(, , pO) ;= RECEIVE FROM (n e t c r e a to r) ;
END END ; (• I n i t i a 1iseCopy •)

4.6.4 Raquict Propagation, and Voting

We mentioned in section 4.2 the two diam etrically opposed strategies which

govern the propagation of requests. I COPY; issues a [COMPUTE; request whenever any of

its outports needs the daton value without the daton having b een buffered yet. A fter

the ¡COMPU~£|. a counteracting ! NULLIFY! may be sent if the daton evaluation proves

superfluous. ICOPYl sends an iADVANCE] as soon as it has accep ted the daton value for

the daton buffer.

On the other hand, an outport can get many bare ADVANCE requests in a row.

Such requests may eventually put the outport into the o ff-ch a in state. Wo like to

propagate 'ADVANCE! requests, in general, at the earliest possible moment, since they

are capable of releasing buffer space in fcoPVl nodes "further upstream" in the Lucid

graph. However, any I ADVANCE I can be propagated only if there will be definitely no

subsequent demand for the current daton. jcoEVI can therefore propagate I advance]

only when (the daton buffer is empty and) each outport has surrendered its claim for

the current daton. Each time [COPY! obtains a new daton (and its cell has been

4 8 4

IV . 63

appended to the tail end of the chain) it checks whether the chain has now caught up

with any of the off-chain outports If appropriate, the outport is then hooktd in at

the chain tail.

Every ¡ADVANCE, flaaliadesl puts the outport into flnaiindex-stafte, and the

finalindex-state implies off—chain state. Once an outport enters the

finalindex—state it withdraws all further claims to datons. All the rules about

I ADVANCE! have to be extended accordingly to this special ¡ADVANCE!. The effect of ;CODV|

receiving an I ADVANCE, finalindeil is usually tantamount to receiving infinitely many bare

IADVANCE1. Occasionally, it may lead to the propagation of many I ADVANCE! requests;

this would be due to the WHILE! loop in! [ncrerrentNovaiueal.

The jADVANCE! propagation is implemented in ¡COPY; by what is essentially a vote

counting where all decisions have to be unanimous. Each outport records in a cell

(named nov.iu««;) by how many datons it has advanced beyond the current inport

daton. The inport records in a cell ¡profiling! how many of its outports might benefit

from knowing the value of the current daton, I.e. how many of its outports have

Inovaiu«»! as 0. So, ¡prof, ting I is decremented whenever an outport increases its j novaHe»!

from 0 to 1, and vice versa. Once all |novaiue«ii are greater than zero (i.e. once

[profiting! = 0) an I ADVANCE! can be propagated to the operand actor After every

Increment of 'iindegj, like now, all positive Inovaiue»! can be decremented Most of what

is described in this paragraph is carried out by the procedure Hnt-rementNovaluci]

(t 4.8 7) The procedure IbecrementNoraiuei] performs obviously the inverse task

4.6.6 Despair and the ‘Trojan Horsa"

The ¡COPY! node actor propagates, by design, only the l*a »t txptnsiv* request for

getting the job done. However, situations can arise where wasteful computations are

hard to avoid in pipeline DF. l,et us consider a ¡COPY! node with 2 active outports

named X and Y. and we are at the beginning of program execution. Outport Y

4.8.S

IV -64

receives a bare I ADVANCE!. but outport X receives no request yet. The lnovalu—1 of Y is

now 1, the lnovalue-1 of X remains 0. Next, Y gets a [COMPUTE! request. We cannot

simply skip the daton at index 0 and evaluate daton 1, since we do not know whether

X will eventually ask for the value of daton 0. and pipeline DF allows only the daton

evaluation in the order of increasing index. Out of "despair", we have to evaluate

daton 0 and queue it in outport X. The evaluation of daton 0 will have been in vain if

X then chooses to start with a bare [ADVANCEI request. Such a situation would be

handled much more efficiently in a tagged DF implementation

We can give this example a different twist. We can assume that the evaluation of

daton 0 takes a day (or it may take forever), and that X gets a bare [ADVANCE! after

the f irs t second into this evaluation. The operand actor must immediately be given a

I NULLIFY!, since the evaluation is now clearly unwanted. This means that even if only

lADVANCEl and [COMPUTE1 requests are ever issued to the [COPY! node actor it must be

permitted to generate I NULLIFY! requests of its own accord In other words, the

implementation (pipeline DF) would be incomplete without ¡NULLITY;

This constellation of requests is about the evaluation of a daton which no outport

really wants, the daton is a "Trojan Horse". We will come back to it when studying the

inport act.

4.6.S An Invariant

Using ql to denote the queue length (the number of buffer cells on the tail side of the

buffer pointer), the following holds for every outport

as long as oindex <> f inal index then:
0 = ql — novalues + oindex — 1 index (in v a r i a n t)
0 = ql • nova lues

q l , nova lues, oindex and iindex are a l l
non—negat ive integers .

4.6 6

IV -85

4.6.7 Procedures for |CQPV| Outport Act

The concepts underlying the procedures I DecrementNovaiuesI and I incrementNovaluesI have

been explained in the subsection vaguest propagation above.

PROCEDURE OeerementNovalues (VAR inport INPORTSTRUCT ;
VAR outport OUTPORTSTRUCT) ;

BEGIN WITH inport ou tport DO BEGIN
novalues = novalues - 1 ;

IF novalues = 0
THEN p r o f i t i n g - p ro f i t ing ♦ 1 ;

END END ;

PROCEDURE IneremantNovalues (VAR inport : INPORTSTRUCT ,
VAR outport ; OUTPORTSTRUCT) ,

VAR i : INTEGER ;
BEGIN VITH inport , ou tport DO
BEGIN

IF novalues * 0
THEN p r o f i t i n g := p r o f i t ing - 1 ;
nova l ues ;= novalues + 1 ;

WHILE p ro f i t ing - 0
DO BEGIN

EXCEPTION ADVANCE TO (i a c t o r) ;
FOR i ; = l TO noutports
DO IF o u tp o o l [i] . oindex <> f in a l index

THEN DecrementNova1ues (In p o r t , o u tp o o l [i |)
END ;

END END ;

The procedure i AdvanccBufferPointerl, below, advances (by one daton) the buffer pointer

of an outport. The re/erence count allows us to decide when a buffer cell can be

freed. The cell can be freed only if it is certain that the daton value will never be

needed again (old reference count = 1).

PROCEDURE Ad vaneeBuf fer Po in te r (VAR outport ; OUTPORTSTRUCT) .
VAR

o 1 d e e 1 : CELLP . h : INTEGER ,
BEGIN

o ld c e l l .= o u tp o r t . b u f fe r ;
h ; • o 1 dee 11 - , count ;
o u tp o r t .b u f f e r ; - o l d c e l 1“ .1 ink ; (• T h i - can be NIL. •)
IF h » I
THEN F reeC e l1 (o l d c e l l)
EL8E o l d c e l 1“ . count :■ h — 1 ;

END ;

4 6 7

IV. 66

The procedure [AdvanceOutportl takes care of the entire 1 ADVANCE I handling of the ICOPYl

outport. It resolves every ordinary 1 ADVANCE I request by calling either

I IncrementNovaluei] Or I Ad vanceBuf ferPointer I. However, the full [ADVANCE! handling requires

more than that An I ADVANCE, finalindezl request puts one outport into the

finalindex—state (|oinde»[= lfinalind<t[). We must in this case check first if there is an

outport left which is not in finalindex—state. This check is done by a vote counting.

The inport records in a cell, named [activel, how many of its outports are still ready to

transport datons, i.e not in finalindex-state Once all outports are Ifinaijdexl

(i.e. once [activel = 0). an I ADVANCE, finalindexl can be propagated to the operand actor.

However, if there are active outports left, rncrementNovalueaj must be carried out even

upon the arrival of an [ADVANCE, finalindex! request at the outport.

48 7

PROCEDURE AdvanceOutport (VAR in p o r t : INPORTSTRUCT ;
VAR ou tp o r t : OUTPORTSTRUCT) ;

VAR request : HSGTYPE ; index : INTEGER ;
BEGIN WITH inport , ou tport DO
BEGIN

MakeExclusive (semaphore) ;
(r e q u e s t , index) : = Reveal ;

IF index = f in a l in d e x
THEN BEGIN

oindex : = f in a l in d e x ;

WHILE b u f fe r <> NIL
DO AdvanceB u ffe rPo in ter (o u tp o r t) ;

a c t i v e := a c t i v e — 1 ;
IF a c t iv e = 0

(• There is no need to bother the inport a c to r . •)
(• i in d ex := f in a l in d e x ; not e s s e n t ia l •)

THEN EXCEPTION (ADVANCE, f in a l in d e x) TO (pO)
ELSE IncrementNova 1ues (i n p o r t , o u tp o r t) ;

END

ELSE BEGIN
oindex : = oindex 4-] ,
(• IF o index <> index THEN ReportError ; •)

IF b u f fe r = NIL
THEN IncrementNova!ues (i n p o r t , o u tp o r t)
ELSE A dvanceB u ffe rPo in ter (o u tp o r t) ;

END ;

MekePublic (semaphore) ;
END END ; (• End o f AdvanceOutport •)

4.6.8 |COPY) Outport Act

Here is the act of a single IcOPV' outport:

ACT A e t_C o p y O u « » « r t_ (VAR inport : INPORTSTRUCT ,
VAR ou tport : OUTPORTSTRUCT) ;

LABEL 1. 2, 3. 4. 8, fl ;
VAR sender ; ACTOR ; (• Temporary v a r ia b le . •)

dvalue : ANYTYPE ; (• Reply daton va lue . •)
super io r : ACTOR ; (• Request sender. *)
request : MSGTYPE ; (* Incoming request . *)
index INTEGER . (* Index in the inconning request . •)

BEGIN WITH Inpor t , ou tport DO
BEGIN

REPEAT
WHILE TRUE DO
BEGIN : •

(s u p e r io r , request , index) : = RECEIVE () ;
(• IF index <> oindex THEN ReportError ; •)

:•
MakeSxclusive (semaphore) ; :S
IF b u f f e r <> NIL :5
THEN MakePublic (semaphore) (• i . e . go r i g h t ahead. •)

ELSE BEGIN
w a i t in g := TRUE ; :4
IF c u s tome rs = 0 THEN .3

SEND COMPUTE TO (i a c t o r) ; (• A c t i v a t e . •)
customers : = customers + 1 , 2
MakePublic (semaphore) ; .1
sender ;= RECEIVE FROM (i a c t o r) . (• Wait. •)

END ;
: 0

dvalue : = b u f f e r ~ . value ; 8
SEND (DATON, dva lue) TO (s u p e r io r) ;

END ; (* End o f the inner e te rn a l loop *)

(• Exception p a r t ; •)
1: MakeExc1 u s ive (semaphore) ;

IF w a it in g
THEN BEGIN

2: customers ; «■ customers — 1 ;
IF customers * 0
THEN

3: EXCEPTION NULLIFY TO (i a c t o r) ;
4: w a it in g ; * FALSE i

END i
8: MakePublic (semaphore) ;

t: IF Reveal a ADVANCE
THEN AdvanceOuiport (in p o r t , ou tpor t) :
RESET ;

UNTIL FALSE ;
END END i

(• End o f the excep t ion handling loop.
(' End o f Act-CopyOutport_ .

•)
•)

iv. ee
ACT A et_C opyO utpor t _ (VAR inport INPORTSTRUCT ;

VAR outport : OUTPORTSTRUCT) ;
LABEL 1. 2. 3. 4, s , a ;
VAR sender ACTOR ; (• Tenporary v a r ia b l e . •)

dva lue ANYTYPE ; (• Reply daton va lue. *)
su p e r io r : ACTOR ; (• Request sender. •)
request HSGTYPE ; C Incoming r eq u es t . *)
index INTEGER ; (• Index in the incoming request . ♦)

BEGIN WITH in p o r t , ou tport DO
BEC [N

REPEAT
WHILE TRUE DO
BEGIN : 6

(s u p e r io r , r eq u est , index) : = RECEIVE () ;
(• I F index <> oindex THEN ReportError ; •)

: 6
Mak e S x c lu s iv e (semaphore) ; : 0
IF b u f f e r <> NIL :9
THEN MekePublic (semaphore) (• i . e . go r i g h t ahead, •)

ELSE BEGIN
w a i t in g := TRUE ;
IF customers = 0 THEN

SEND COMPUTE TO (i a c t o r) , (• A c t i v a t e ,
customers := customers + 1 ,
MakePublic (semaphore)
sender := RECEIVE FROM (i a c t o r) (» W a i t .

END ;

d va 'u e := b u f f e r “ . value ;
SEND (DATON, d va lu e) TO (s u p e r io r) ;

END ; (• End o f the inner e t e rn a l loop.

(• Except ion p a r t :
1 : MakeExc1 us ive (semaphore) ;

IF wai t i ng
THEN BEGIN

2 customers ; “ customers — 1 ;
IF customers
THEN

•s 0

3: EXCEPTION NULLIFY TO (i a c t o r)
4: w a i t in g ; = FALSE ;

END ;
9 : MakePublic (semaphore) ;

• : IF Reveal * ADVANCE
THEN AdvanceOutport (in p o r t , ou tp o r t) ;
RESET ;

UNTIL FALSE ; (* End o f the excep t ion handling loop. *)
END END ; (• End o f Ac t_C opyOutport_ . •)

4.6 8

IV. 69

The IcOPYl out port actor enters an eternal loop right away. Each loop pass starts with

the acceptance of a 1C0MPUTEI request. The validity of the daton index can be checked

here, an error would be a system error. [COMPUTE! is trivial to handle if the wanted

daton is ready waiting in the buffer; the daton is simply taken from the buffer and

sent to the superior. If, however, the buffer is found empty, the daton evaluation

must be instigated, its outcome must be waited for, and only then can the reply be

given to the superior.

Further vote counting is used to control the inport. The cell Icuitomer»] states

how many outports are hung up waiting for the arrival of the next daton. Outports

increment this cell when appropriate, and ssnd an activating signal to the inport

whenever incrementing I customer?] from 0 to 1. Further increments require no

signalling to the inport since it is already busy with the evaluation. However,

outports are free to withdraw their demands at any time, and they do this by

docromonting i customers!. A I NULLIFY] is sent to the inport actor right after ^customers!

has been decremented to 0.

Before an outport gets hung up waiting for the daton, it sets furthermore its

Iwsitins! flag. The inport is thus able to identify every demanding outport. When the

daton arrives (vtaiGctDaion!), the ICOPYl Inport sends a releasing signal to each w aiting

outport. (The execution of faulty Lucid programs can easily seiie up in a Deadlock,

T 2.6 and 8.1. In such a case, the outport actor will hang up waiting fo ro v tr for the

daton. This error can be detected automatically by the message passing

mechanism.)

4.9.9 [COPY] Outport Exception Handling

The action in the event of a iNULLirVl exception depends on the stage the daton

evaluation has reached. If the iNUlLifY] occurs a fttr the arrival of the daton at the

outport actor, the exception has no genuine effect. However, the shorter the

4.6 9

IV . 70

exception occurs b tfo rt that moment, the more preparations (or the daton delivery

have been undertaken, each of them needing to be reversed. The code (or handling

1 NULLIFY! exceptions is therefore almost a mirror-image of the preceding code. Upon

exception, execution jumps from one instruction to its counterpart and reverses

each preparation in turn. The I NULLIFY! request sent to the inport actor counteracts

its preceding ! COMPUTE1.

I ADVANCE! can be described as an •xtansion of this I NULLIFY!. If an 1 ADVANCE!

exception did occur during daton evaluation it would have to start with the action for

a I NULLIFY! exception (In real life, I advance! exceptions do not occur while the outport

is waiting for a daton) lADVANCEl exceptions are handled by the procedure

¡AdvanceOutportl (f 4.6.7).

We turn our attention now from the CQr’YI outport to the icoPYj inport

4.6.10 Procedure for ICOPYl Inport Act

Before we deal with fAct-XopyJj (the rcopY! inport act) we study its special

procedure !L.pd«-.eOu-.po.-t»l. Whenever the inport receives a daton value (via 'Get3a-on!),

it puts it into the daton buffer. This puts the outports into a totally new situation,

even the invariant is corrupted, and corrective action is necessary for most outports

The procedure UpdaieOutport»! contains all this action.

Let us assume, a daton had just arrived Outports in finalindex-state require no

action, nor do outports with datons queued Outports with inovalue.l > 0 have to

decrement it by one (!D.crcmentNova':uc»1 takes care of this). All remaining outports

must be linked to the tail of the daton chain Every w aiting outport among them

needs an update of rea.tom«r»l and iwaitirial, and a reactivating signal must also be sent

to it.

4.6 10

IV-71

PROCEDURE UpdataO u tporta (VAR inport . INPORTSTRUCT) ,
VAR i : INTEGER .
BEGIN WITH inport DO
BEGIN
FOR i : = l TO noutporta DO
WITH out p o o I [i] DO

IF (o in d ez <> f in a l index) AND (b u f f e r = N IL) THEN
BEGIN
IF 0 < novaIuea
THEN DecrementNovaluea (in p o r t , o u t p o o l [i])
ELSE BEGIN

b u f f e r ;= t a i l c e l l ;
buf fa r * . count := b u f f e r ~ . count 4- 1 ;
IF w a it in g
THEN BEGIN (• r e a c t i v a t e ou tport :

customers : = cu ito m er i — 1 .
w a i t in g := FALSE ;
SEND DATON TO (o a c t o r) ; (* Release.

END END END
END END ; (• End o f UpdateOutporta .

♦)

*)

4.6.11 jCOPYl Inport Act

In our l Sieve I example (section 4.3.3.1, ’Act-Sieve!), a ’COPY; node actor with 4 outports is

set up by the LUX instructions:

node [2] ;= CREATE (Act_Copy— , 4)
(. , node [1]) ;= RECEIVE FROM (n ode [2]) ;
(. , node [5]) ;■ RECEIVE FROM (n ode [2]) ;
(. , node [8]) :w RECEIVE FROM (node [2 J) ;
(. , n ode [10]) : * RECEIVE FROM (n o d e [2]) ;

SEND (DATON, operand-ac to r) TO (node [2]) ;

Wa created only the inport actor of [COPY! (i.e. InodeliT), and it created the outport

actors of its own accord, though telling us their actor names We sent the

initialisation to the inport; the inport itself looked after its linkage with the outports,

and t/uir initialisation.

So, here is the LUX code for the universal multi—outport ¡copy ! node (using

pipeline demand driven DF) or just the [coPy ! inport act, depending on your point of

view:

4.8 11

IV -78

ACT A «t_C o#y_ (n : INTEGER) ;
LABEL 1 ; c
VAR

newcell CELLP c
sender ACTOR c
dvalue ANYTYPE c
inport INPORTSTRUCT ; c

BECIN WITH inport DO
BECIN

ia c to r ; = M yse l f ; noutport 9

REPEAT
WHILE TRUE DO
BECIN

IF c u i t a r a r i = 0 THEN
sender := RECEIVE () ;

dvalue : = CetDaton (i i n d e z ,

n evce l l := GetCell ,
newcel1*.1 ink := NIL ;
newce l1 * . va lue ; * dvalue ;

n—ou tp o r t COPY node (i n p o r t) . *)

Tenporary v a r ia b le . *)
Tenporary v a r ia b l e . •)
Daton v a lu e re c e iv ed from operand. •)
C h a r a c t e r i s a t io n of th is in p o r t . •)

= n ; I n i t i a l i s e C o p y (C re a to r , in p o r t) ;

(• W a it fo r A c t i v a t i o n . •)

pO) ;

(• G e tC e l l can take long. •)

HakeExclusive (semaphore) ; (• A pp l ied as l a t e as p o s s ib l e . •)

IF Reveal = ADVANCE (• T es t fo r "T ro ja n Horse ". •)
THEN F re eC e l1 (n e w c e l l)
ELSE BEGIN

i index : ” i index + 1 ;
EXCEPTION (ADVANCE, i n d e x) TO (pO) ;

IF t a i I c e ! 1 * NIL
THEN newce11“ . count : = 0
ELSE BEGIN

newce11“ . count ; = t a i 1 ce 11 •*. coun t ;
t a i 1c e 11“ .1 ink : = newcell ;

END ;
t a i1ce 11 := n ew ce l1 ;

UpdateOutports (i n p o r t) ;
END ;

MakePublic (semaphore) ;
END ; (• End o f the e te rn a l loop. •)

(• Exception h a n d l in g : •)
1: IF Reveal -> ADVANCE

THEN BEGIN
iindex ;w i i n d e x * l ; EXCEPTION (ADVANCE, i in d e x) TO (pO) ;

END :
RESET ;
UNTIL FALSE i (* End o f the ex c ep t io n handling loop. •)

END END ; (* End o f A c t -£ o p y _ . *)

4 6.11

IV -73

The [COPY] inport actor is not a node actor, i.e. it does not accept request*.

It exchanges merely signalling msssagts with each outport (however, the

communication with its opsrand adheres entirely to the request protocol). Every

signal from the inport to an outport is of message type IDAT0N1. just as an indication

that this is neither a request nor an exception.

The inport actor owns (declares) and initialises all the descriptors relating to

this [CO PY]. The |inportl descriptor contains all the 1 o u tp o rt 1 descriptors. [In it ia l« C o p y]

contains almost all the initialising action. It passes the names of all the outport

actors to the creator of the computing net, and it acquires finally the name of the

operand actor.

After the initialisation, the inport actor enters an eternal loop. The loop starts

with a ¡RSCgrVEl. which serves a sim ilar purpose as the request IftSCKlVEi in node actors.

As long as no outport is waiting for a daton, the inport actor becomes dormant until

an outport spurs it into action by sending a signal This signal means invariably

"evaluate the current daton". The daton value is acquired from the operand actor

(via GeOa-.un!), an ADVANCE] is issued to the operand actor right away, and the daton is

appended to the daton chain The full benefit of the new daton is then given to the

outports through calling iU p d a ie O u tp o rtu

4.6.12 Exceptions Sent by [COPY] Inport

In their internal communication, the [COP?! inport and its outports do not view

each other as nods actors, and do therefore not follow the universal protocol.

However, we employ most of the exception mechanism even then; the !index! field is

not used. The exception part of the inport act is simple

Let us first concentrate on [NULl.trVl exceptions Above, we have described the

Icustomeril voting mechanism. The inport gets the |Ni:~tUFV1 exception whenever

Icustomiril drops from 1 to 0, The fcetjeloni propagates fSuu.iHVl exceptions to the

4.8 18

IV -74

operand actor If necessary. If the exception arrives a jtu r the daton has arrived in

|C«tP«tonl. the inport will at first not react to the exception but will buffer the daton

properly. Wasteful re—computation of the daton is avoided by this «agsr bu ff •ring

It has been mentioned that an acknowledging ¡advance! is automatically issued by

the inport actor right a fttr the acceptance of each daton value. Whenever the inport

gets an IadvanceI exception, this can only be due to a bare 1 ADVANCE!, or to

I ADVANCE, fmalindex] at one of the outports. The propagation of a bare I advance! is the

aim in either case. However, a daton evaluation may be under way (in the operand

actor) while the exception occurs, i.e. we find ourselves in the " Trojan H o rs »"

situation. The evaluation must in this case be nullified. If the daton has already been

accepted, there is no point in buffering it. Finally, an 'ADVANCE! is propagated.

Usually, it is the inport actor of ICOPYI which issues the requests to the operand

actor. However, ¡ADVANCE, r.nalind«»! is different in being issued directly by a ¡COPY;

outport actor. This cannot lead to a collision with requests from the inport actor,

since (as a precondition) all outports will be in finalindex-state anyway, and the

inport will therefore be dormant. The semaphore keeps the outports from issuing

colliding requests. The inport circumvention is therefore permissible in this case

4.6.13 Concurrency In fCQPYl

One might ask what gives us the right to call this ¡COPY' act concurrent.

Restrictions of concurrency are hard to accept if no valid reasons can be given.

Concurrency means simultaneous action in various places. During the

execution of a Lucid program we associate computing action with every node in the

Lucid graph In demand driven evaluation, this action is restricted to those nodes

whose output is essentia!/or the result prssontty due We chose a version of demand

driven evaluation where, at any time, solely the current result daton is in evaluation

(or contributing datons) The alternative, "bulk demand" (e g. "give me the next 100

4 6 13

IV* 74

operand actor If necessary. If the exception arrives after the daton has arrived in

l<l»«tDatonl. the inport will at first not react to the exception but will buffer the daton

properly. Wasteful re—computation of the daton is avoided by this •agar buff »r in g

It has been mentioned that an acknowledging ¡ADVANCEI is automatically issued by

the inport actor right a fter the acceptance of each daton value. Whenever the inport

gets an I ADVANCE I exception, this can only be due to a bare [advance:, or to

[ADVANCE, finalindexl at one of the outports. The propagation of a bare I ADVANCE I is the

aim in either case. However, a daton evaluation may be under way (in the operand

actor) while the exception occurs, i.e. we find ourselves in the "Trojan Hart* "

situation. The evaluation must in this case be nullified If the daton has already been

accepted, there is no point in buffering it. Finally, a n [a d v a n c e ! i s propagated.

Usually, it is the inport actor of ¡COPY] which issues the requests to the operand

actor. However, ¡ADVANCE, fmalindci] is different in being issued directly by a ¡COPY;

outport actor. This cannot lead to a collision with requests from the inport actor,

since (as a precondition) all outports will be in finalindex—state anyway, and the

inport will therefore be dormant. The semaphore keeps the outports from issuing

colliding requests. The inport circumvention is therefore permissible in this case

4.6.13 Concurrency In [COPY]

One might ask what gives us the right to call this [COPY! act concurrent

Restrictions of concurrency are hard to accept if no valid reasons can be given.

Concurrency means simultaneous action in various placos. During the

execution of a Lucid program we associate computing action with every node in the

Lucid graph In demand driven evaluation, this action is restricted to those nodes

whose output is ossontial fo r tho result prosontly duo We chose a version of demand

driven evaluation where, at any time, solely the current result daton is in evaluation

(or contributing datons) The alternative, "bulk demand" (e g "give me the next 100

4 6 13

IV« 75

datons"), is at present too hard to solve in general. Once committed to the

daton—by—daton approach, our sequential request protocol brings no new

restriction.

Whenever a I COMPUTE] request is sent to a ICOPY! outport, the daton delivery may

be held up until the daton value has arrived at the ¡COPY] inport. This restriction

comes from causality, it cannot be defeated. All other requests are accepted and

handled without major delay Occasionally, a |C0PY] outport may be shortly hung

waiting for the completion of action by other actors; IGetCeilj is probably the worst

source of delay. The semaphore, in particular, forces potentially conflicting actions

into sequential order. Each ¡copy! outport can handle any request which satisfies the

protocol (t 5 5). Its freedom of choice is never dependent on states of other

outports.

4.6.14 Summary of jCQPYl Act

What we have just described is the universal XOPV! act. It is so complicated

because it caters for every possible situation (within demand driven pipeline DF).

Whenever more is known about the way in which the [COPY] node actor is to be used,

this extra information can be put to good use. In such cases, it may be possible to

use a much simpler |C0PY; act. Is anything known about the order in which the

requests arrive at the outports? Is anything known about the maximum queue

length? Do we really ever request concurrently? Chapter VI, "E fficU n cy ", will

present specialised versions of rCQPYl. Before that, chapter V will show a method for

checking the correctness of the COPY] act. In doing this, chapter V will also give a

second description of how.'COPYl works; this may help to clear up remaining points of

uncertainty.

40 14

IV -76

4.7 Priority Scheduling

4.7.0 Introduction

So far, we have learnt how to translate a Lucid program into message passing

actors. Every instance of an operator (including any UDF) maps into an actor The

resulting number of actors is extremely high, judging by the standards of current

multi—process operating systems. Highly concurrent computation in many actors,

however, is just the thing which the newest generation of computers (vast numbers of

physical processors) is best suited for. This thesis will not even try to answer the

specific questions coming with m u lti-processor implementations of Lucid, such as:

— What is the best strategy for allocating and scheduling the multitude of actors

on a smaller number of processors?

— For recursive (dynamically expanding) L'DFs, how and where are the new actors

allocated?

The answers to these questions depend much on properties of the given hardware

the store structure (shared or dedicated), availability of virtual store, availability of

runtime load. etc.

On the other hand, readers who wish to do a serious implementation of Lucid on

a conventional computer (von Neumann monoprocessor) will bo relieved to hear that

chapter VI will show how the number of actors can be reduced towards more

acceptable bounds. There is no reason why it should be impossible to compile into a

tingle actor any Lucid program without concurrent operators (parallel [OS], etc) and

without recursive UDFs, i.e. compile it into a conventional sequential program

However, the general algorithm for that reduction is yet to be invented. At least up

to that day, we need a rule for scheduling the actors (At any moment, only one

actor can be in actual execution. The aehadullng rule states which actor to execute,

and/or how tong.)

4 70

IV« 77

We present in this section an actor scheduling rule based on priorities. The rule

may be far from optimal, but it will be sufficient to achieve a reasonably well

balanced program execution. (The rule is aimed at granting, to an evaluation,

resources in proportion to the relevance of its result.) This topic will not be treated

exhaustively in this thesis; merely a few guidelines will be presented.

4.7.1 Analogies

We can draw a parallel between the execution of a program lLaproel and the

running of a (somewhat strange) firm for technical developments. "Luprox Ltd".

Some company workers develop one entire product after smother, while others carry

out only partial production steps and have to cooperate with others. Occasionally,

the manager chooses to let separate (groups of) workers develop competing

products. Sometimes he uses everything that emerges from this concurrency.

In some cases a production order is cancelled or a product is thrown away because it

has become superfluous Each department is run as an autonomous unit, but the

management policy is identical on each level. The investment policy is somewhat

simple minded: whenever concurrent developments are instigated, each development

gets an equal share of the departmental resources.

If any department requires two equal ranking concurrent sub-developments,

the department dedicates half of its capacity to each of them. If either of the

resulting sub-departments needs to break its work into 3 sub-sub—developments,

the capacity of the sub—department is split into three equal parts, and each of the

sub—sub-departments gets 1/6 of the original capacity. — On the other hand, if a

department works for a number of other departments (as in the case of the hardware

store, or catering) it has the turn of its user's allocations as funds

It has been decided that a more refined management policy would require an

Inappropriately expensive case analysis. Indeed, there Is only one manager in the

4.7.1

IV« 78

company, and each department calls him in for administration. Worse even, the

company is a one-man business where one man is playing all the roles in turn, be it

manager or be it any worker. He is obviously not ready to spend much time on

administration.

The management policy (scheduling, resource allocation) must be applied with

flexibility, since the assumptions on which it is based are so imprecise. It is mainly

designed to make sure that all the work will eventually be done, and that not too

much of the resources are wasted on work of low importance.

This management policy may be bearable for the one man business, but it is

really too vague for a company with many workers. For example, for which job shall

each worker be trained? Moreover, the manager insists on maintaining the correct

sequence of product delivery purely by the sequence of the work pieces on the

conveyer belts (pipeline DF). Workers must therefore never share jobs

We could even link this analogy with our earlier analogy in chapter III. The

example above might describe the management policy of a restaurant " Che* Lucian"

which is run by one man alone: waiter, cook and manager in one person. The

scheduling rule tells him, for example, in which order to prepare the meals for his

customers, even in which order to bother about courses and parts of each course

Now replace CPU for our busy Jack of all trades, runtim e system or scheduler

for manager, and actor for department or sub*-department. The company carries

out computations to order; the products (developments) of the company are the

datons of the program's result. The total production capacity of the company is

determined by the power of the given CPU

4,7.1

IV «79

Our scheduling rule deals only with one computing resource, namely C P U time.

We aim to be reasonably (air in sharing out the available computing capacity, and we

use the s u b d i v i d i n g r u l s just described. If we define the total available computing

capacity as "1", we can use f r a c t i o n s to express how big a " c a p a c i t y s t i e s " each actor

gets, i.e. the priority of each actor. An actor which has 1/2 of the capacity allocated

obviously gets through its work more rapidly than an actor with 1/9.

Our scheduling rule distinguishes different kinds of priority. Every actor has its

specific priorities (stored within the actor head, T 3.2.1), and the really decisive one

among them is the a c t u a l p r i o r i t y . The actual priority is calculated, among other

things, from the intrinsic p r i o r i t y . The intrinsic priority is, generally speaking, an

actor specific constant:

4.7.2 Our Scheduling Rule

actor

root actor
WRITE node actor
a l l other node actors

i n t r in s i c p r l o r I t y

“ "ultra"
1.0 top (i s exp l ic i t ly set by creator)
0.0 zero (defau lt, meaning ¡»N 'T EXECUTE)

The actor's actual priority fluctuates with its message passing state, in detail:

a c t u a l _ p r i o r i t y ; *
IF xrequest <> READY
THEM u l t r a - p r i o r i t y
ELSE IF (some actors are hung t r y in g to send

to th is one, or to r e c e i v e from i t)
THEM (sum o f th e i r shsrsd o u t ac tua l p r i o r i t i e s)
ELSE in t r i n s i c - p r i o r i t y ;

The scheduler has (at least) t w o queues for actors: the ultra quaua of actors with

ultra priority and the normal quauo for all remaining actors with actual priority not

zero. Actors in the normal queue are executed only if the ultra queue is empty.

" F i r s t c o r n s f i r s t s s r v s " and "round robin" apply inside each queue Actors in the

ultra queue are executed to exhaustion, i.e. control is taken from them only as late

as possible. If not in ultra priority, an actor is treated as normal. The normal actors

■hare the computing resources (mainly: the t i m s spent in execution) in proportion to

4.7 2

IV . 80

their actual priority** An actor is suspended from execution while hung waiting for

message passing, of course.

By "sharing out" we mean: if an actor is hung trying to [SEND! to, or to I RECEIVE!

from, a set of actors, it shares its own actual priority out in equal parts among the

actors it wants to communicate with. However, I ultra! divided by any number is still

lultral, and I ultra! plus anything is lultral.

When determining the actual priority of node actor Z we may have to form the

sum of some shared out priorities. In this sum, we must exclude any contribution

which is due to Z its*If (indirectly). — Such a "priority sum" needs to be formed only

if Z is a IcopyI node actor: without this exclusion rule, cycles could "hype up” their

own priority. The scheduler should even issue a ¡NULLIFY! request to the ¡COFYI inport

actor whenever the actual priority of the I COPY] falls to zero. The scheduler

introduces thus a measure of global control, which would be impossible to achieve by

the request protocol alone (we will touch a similar point at the end of 6.3)

Equivalent to the if—then-else rule above, an actor’s actual priority can be

calculated as the maximum of:

(1) Its intrinsic priority,

(2) |ultra! priority while its ¡«request! <> 3EADY1.

(3) the sum of the sharsd out actual priorities of all actors which are currently hung

up watting for communication with the actor in question (iSENDl to it or [RECEIVa!:

from it).

The following can be deduced from the scheduling rule

— The actual priority of a 'C03V' inport actor is the sum of the actual priorities of

its waiting outports (though not forgetting the exclusion rule)

— An inferior will not be executed unless its superior gets hung up.

4.7 2

IV»B1

4.7.3 Discussion of Scheduling Rule

The scheduling rule contains nothing to prevent an actor from live locking

(t 2 8). A livelocking actor with Iultra! priority would be total disaster since it would

never surrender its execution right. Our design of the individual acts, however,

makes sure that only/tntts computations are ever undertaken in ¡ultra! priority. The

I ultra! priority has actually been invented exclusively for urgent administration and

for nullification of unwanted evaluations.

Also by design, there are very few instances where an actor has more than one

actor trying to communicate with it (semaphores, and arrival of concurrently

evaluated datons are obvious instances). The FCFS strategy and, if necessary,

random sequence are sufficient to ensure correct behaviour. (Easy evaluations will

usually succeed before elaborate ones, this is important for concurrent [o§j etc. Our

scheduling rule executes concurrent operations in the "breadth f i r s t " strategy.)

The design of the UDF actors is particularly tuned for this priority mechanism.

UDF actors have an intrinsic priority of zero, and this makes sure that execution of

the l!DF pauses before the subnet creation (= expansion) The expansion is carried

out once the L'DF gets its first request; this is la ty expansion. In effect, the subnet

actors are created as late as possible. Initial |ADVANCE! or i ADVANCE! i nalindexi requests

needed special treatment; this ensures that only short administration is ever

undertaken in ¡ultra! priority (but not proper computation, or even subnet creation).

Our scheduling rule is open to much criticism For example, we assumed that

the subcomputations of one computation are equivalent, which can be easily

disproved by counter examples However, our rule is reasonable and cheap Indeed,

a better rule can not be provided if nothing is known about internals of the actors

(e g. if it unknown how important a particular computation is). — We have already

stated that the priority concept provides only an Incomplete answer for

multiprocessor implementations

4.7.3

IV -82

Chapter VI will show how to improve the efficiency of the acts, and most of these

improvements will bank on insights obtained by program analysis Such insights can

also help to improve the scheduling rule. It would, for example, be wise to favour

(give a higher priority to) any node actor whose activation leads to a docrtas» in total

store requirements (e g. queue lengths).

4.8 Actual Implementation

The translation has now been completely described; the remaining chapters merely

round the picture off with checking and optimising methods

The next step would be the actual implementation of the whole matter on a

computer. A Lucid system, based on an interpreter, is already available [OstSl,

FMY83], and the first compiler passes of that system could be re—used directly for

this task. The remaining task would be of the calibre of an M Sc. project, less than a

year's work.

Couldn't we find a simplified version of this translation which would be then

easier to implement? First, one would contemplate the omission of bar» ¡AJVAXCBl.

However, such an implementation would be so hopelessly inefficient as to make the

whole exercise pointless. Then, how about omitting ¡NULLIFY' requests? Their

importance stems mainly from their vital role in concurrent operators and a simple

implementation could do without the latter One of the main achievements of this

thesis has been precisely not to rule out concurrency Omitting concurrency means

talking about a much simpler task, disregarding the heart of this thesis Our

protocol is optimised towards concurrency, It look3 somewhat clumsy in applications

without concurrency Actually, section 4 6 5 showed ("Trojan Horse") that a iCOPYl

node actor may fiav» to produce rSPU.rfYl requests even if only [COMPUTE! and lADVANCEl

requests are ever sent to it. The protocol would be incomplete without [NliLtlEV!.

4 8

IV . 82

Chapter VI will show how to improve the efficiency of the acts, and most of these

improvements will bank on insights obtained by propram analysis. Such insights can

also help to improve the scheduling rule. It would, for example, be wise to favour

(give a higher priority to) any node actor whose activation leads to a dacraasa in total

store requirements (e g. queue lengths).

4.S Actual Implementation

The translation has now been completely described; the remaining chapters merely

round the picture off with checking and optimising methods.

The next step would be the actual implementation of the whole matter on a

computer. A Lucid system, based on an interpreter, is already available [0st81,

FVY83], and the first compiler passes of that system could be re—used directly for

this task. The remaining task would be of the calibre of an M Sc. project, less than a

year's work.

Couldn’t we find a simplified version of this translation which would be then

easier to implement? First, one would contemplate the omission of bare [AJVAN'CBl.

However, such an implementation would be so hopelessly inefficient as to make the

whole exercise pointless. Then, how about omitting I NULLIFY! requests? Their

importance stems mainly from their vital role in concurrent operators and a simple

implementation could do without the latter One of the main achievements of this

thesis has been precisely not to rule out concurrency. Omitting concurrency means

talking about a much simpler task, disregarding the heart of this thesis. Our

protocol is optimised towards concurrency, it looks somewhat clumsy in applications

without concurrency. Actually, section 4 6 5 showed ("Trojan Horse") that a fCQPYl

node actor may hava to produce Inullify! requests even if only jcoMPUTEl and [ADVANCE!

requests are ever sent to it. The protocol would be incomplete without [NULLIFY!.

48

IV -83

4.9 Closing Remarks

Every language implementation assumes a particular machine as given. The

interpreter based Lucid implementation [OstSl, FMY83] simulates a hypothetical

Lucid machine, and the interpreter works hard to keep that illusion up. This thesis

describes an MPA based Lucid implementation. MPA corresponds closely to the

architecture of multi—processors; the main difficulties are in this case hardware

specific; how to make the processors communicate, how to allocate actors, how to

load the acts. However, it is not very difficult to make even a single physical

processor appear like an array of processors, and this is probably the best way of

implementing Lucid until multi—processors become more widely available.

4 9

V - l

CHAPTER V< Checking the Correctness of the Acts

5.0 Introduction

Much care has been put into the design of the acts, and we have good reason to

believe they are mostly correct. This should not keep us from scrutinizing them over

and over again. A working implementation would certainly be the most Impressive

proof of success. But for the time being we rely on fo rm a l checking methods The

aim of this chapter is to fortify the reader’s trust into our design.

If there was a serious flaw in our acts, it would most likely lie in the most

complex part of our design, namely the synchronisation of the actors by the

protocol. We will therefore design a framework (a testbed) in which we can examine

the message passing behaviour of actors. We will determine all the message passing

states for every actor; its message passing behaviour is, at every moment, mostly

determined by its current message passing state. The possible state transitions can

be summed up instate transition tables, this will be illustrated by various examples

The state transitions of a UDF, or any net of actors, can be elaborated from the

transitions of its components Execution logs are of great help in modelling the

actions of an actor, or of a not. This will finally be demonstrated by modelling the

entire execution of the ISievej program.

As regards difficulty, a big difference must be made between the I COPY] act and

all other acts (t beginning of 4.5). The ¡COPY! act is a great deal more complicated

than all the other node acts, which makes checking the icdPY, act the most

demanding part of this chapter. We will see that even a rather simple IcoFTl (viz. the

twin outported one) has an impressive number of states This is why we have to

continually look out for simplifications which keep the number of states low; without

them, matters are in danger of becoming unmanageable The correctness of the

other acts is by comparison quite obvious, and we discuss them briefly before the

IcopyI act.

5.0

V » 2

6.1 Th* Tastbed

In preparation for our discussion, let us introduce some terms which will play an

Important role throughout this chapter. We intend to check the correct behaviour of

a node actor, and we achieve this by placing the actor in a testbed (environm ent)

which will confront the actor with all the situations permitted within the protocol

(such as all possible sequences of requests and replies, see also [Fau82]).

Let • be the node actor under examination. Each outport of • is individually

connected to a domander (labelled g, like "greedy"), and each inport of • is

connected to the pertaining supplier (labelled p, like "parameter "). This entire setup

(g and e and p) is called a testbed for the actor e. The following Lucid graph

represents a testbed:

The actor e is, of course, in a state at every moment, and we shall see that some kind

outport. In our implementation, there is no queuing on the arc3 (all the queuing

takes place in the [COPY] node actors) and the ports at both ends of an arc have thus

the same state. The state of a demander or supplier is exactly the state of its port

The state of the actor • and the state of the testbed are therefore one and the same

When talking about the message passing at an arbitrary actor port, we will go on

using the terminology of superiors and in feriors (The arrows in Lucid graphs point

always from inferiors to superiors) In the testbed, g can be superior and • inferior,

or ■ can be superior and p inferior.

-I--------------------------1- H---------------------------
| superior ■ | *------ ► in fe r io r I
I— ■ I I I

(outport
s ta te)

(inport
s ta te)

- + ++■ + + H-------------------- (-
| derrander g | « — 1 node actor • + supp iler p j

■i--1-+

of sub—state (a message passing state) can be ascribed to each mport and to each

S.l

V -3

6.2 Program Analysis

A proper mathematical proof of correctness (termination and partial

correctness) would require us to analyse every act in depth, instruction by

instruction. That task alone would double the size, and exceed the aims, of this

thesis. Such a proof would certainly be meritable, but it has to be left to the future.

However, some techniques can be readily taken over from proofing, such as

invariants and loop term ination conditions. We can indicate only the general

approach (l.e. detailed rules will not be given); matters vary greatly among the acts.

Most acts are utterly simple, which means there is very little to be analysed.

Most loops in our node acts are stsm al, i.e. altogether without termination.

Often, no memory is retained from one loop pass to the next, so there are no loop

invariants to worry about. Almost every actor • is a mediator between its demander

S and its supplier p: usually, any message from g is propagated in some form to p, or

vice versa. This message is either a request (message flow: g p) or a reply

(p g). One can analyse how • transforms the message; one should check, in

particular, that invariants are not violated For example, when • receives a request,

the same daton index must be re—used in the propagated request (while some nodes

introduce a fixed index offset); this is all very node sensitive

5.3 M tm g t Passing Behaviour

In another check, we treat the actor like a black box, and examine merely what

goes on at its inports and outports, its message passing behaviour If the black box

behaves incorrectly, though, one has to take the lid off and put matters right.

The message passing behaviour of an actor can be described by a state

transition table, and such a table can reveal where the actor violates design criteria.

Let us first took more closely at state transitions, and then recast the protocol into a

form convenient for state transition tables

S 3

V - *

5.3.1 M t i u g i Passing Stats, and Stats Transitions

For an actor, each action can be viewed as a state transition, and all the

permitted state transitions can be presented as a table (a relation maps the states

to their permitted successor states). Such a table is very useful:

— It reveals the actions which the actor can perform,

— It permits a study of concurrent actions,

— it enables us to check whether inports and outports adhere to the request

protocol,

— It can be used to exercise a given implementation of the actor. The

Implementation is correct if the actor can execute each of the listed transitions,

and if it never steps outside the alternatives listed.

Such a table can be produced for any act: we will give examples for some node

actors. We will see that the rule for the table generation corresponds closely to the

act, both are similar pieces of code. Transition by transition, each table entry (the

intended behaviour) can be compared with the true behaviour of the actor. This

reveals unwanted state transitions in faulty acts It would oven be possible to do

some of these checks automatically

State transitions can be n on -d * t* rm in is tic , i.e. an actor can sometimes choose

between a number of next states. Furthermore, there is always the extra choice of

carrying out only pari of what is possible, or of even doing nothing (successor state

being equal to the present state). Such transitions have obviously a delaying effect.

The act design is such that the overall computation result (of the Lucid program) is

deterministic even though the execution may be non—deterministic

Since we are only trying to model the message passing behaviour, we can often

ignore those parts of the actor state which have no direct effect on that behaviour

We call the resulting state the message passing state (which is a function of the total

S.3.1

V-5

state of the actor). As far as message passing is concerned, the choice o f successor

state is narrowed down by:

(1) the present message passing state of the actor •,

(2) the action of the demander(s) g.

(3) the action of the supplier (s) p.

The message passing state of an actor is made up of the states of its outports,

possibly an internal state, and the states of its inports. Different formats are used

for the message passing state of the various node types: there is no universal pattern

suitable for all actors. There is one general rule: in all message passing states, the

state of each inport or outport is always expressed through a message label (t 5.3.2).

An example message passing state is (explained in 5.3.1):

Dl. .2. A

5.3.2 Protocol Execution and Massage Labels

In section 4 2 we have agreed on a universal protocol Every node actor port is

at every moment in a particular state of protocol execution (a port state), and the

protocol permits only select successor states. The port state is determined by the

lost message which traversed the port The message passing partners have no

"knowledge" of the interned state of one another. It is therefore appropriate to

denote their states in a format which gives the port states particular prominence

If two ports are connects* by an arc their states are unavoidably identical.

We abridge each port state into a single character, called a message label, according

to:

N NULLIFY (requ est, flow ing upstream g -» • -• p)
C COMPUTE
A ADVANCE
K ADVANCE, fin a l index "
0 DATON (r e p ly . flow ing downstream P * * -• g)

5.3 2

V-5

state of the actor). As far as message passing is concerned, the choice of successor

state is narrowed down by:

(X) the present message passing state of the actor e,

(2) the action of the demander(s) a,

(3) the action of the supplier(s) p.

The message passing state of an actor is made up of the states of its outports,

possibly an internal state, and the states of its inports. Different formats are used

for the message passing state of the various node types; there is no universal pattern

suitable for all actors. There is one general rule: in all message passing states, the

state of each inport or outport is always expressed through a message label (t 5.3.2).

An example message passing state is (explained in 5.5.1):

Dl. .2. A

6.3.2 Protocol Execution and Massage Labels

In section 4.2 we have agreed on a universal protocol Every node actor port is

at every moment in a particular state of protocol execution (a port state), and the

protocol permits only select successor states. The port stats is determined by the

last message which traversed the port. The message passing partners have no

"knowledge" of the internal state of one another It is therefore appropriate to

denote their states in a format which gives the port states particular prominence

If two ports are connected by an arc their states are unavoidably identical

We abridge each port state into a single character, called a massage label, according

to:

N NULLIFY (requ est, f 1owi ng upstream g -• • -• P)
C COMPUTE H
A ADVANCE
K ADVANCE, fin a l index "

p •• a -* g)0 DATON (r e p ly , flow i ng downstream

8.3 2

V - 6

We have to keep the number of port states low since the state tables would

otherwise become unmanageable. N doubles up as the universal Indicator for

"the Inferior is dormant”, and it is thus the initial state (whenever an actor is

dormant we pretend that it has just received a I NULLIFY] request N). C doubles up as

indicator for "a [COHPUTEI request has just been sent". These two states (C and N) are

special in that the inferior can leave them only with the cooperation and initiative of

its superior The protocol boils down to:

message
label next poss ib le action :

(we w i l l always p rin t N as
N the superior can change i t to C, A or K,
C the superior can change i t to N or
C the in fe r io r can change i t to 0 (whichever is f i r s t) ,
A the in fe r io r can change i t to N.
K no change poss ib le ,
D the superior can change i t to N

Explanation: if the protocol execution has reached the point where the inferior is

dormant (N), it is the superior's turn to issue a C, A or K request; without this,

nothing can happen If the superior requests A, the inferior accepts it, and becomes

dormant The latter action is expressed in a state change to N The inferior takes

also further appropriate measures, of course, but they are invisible as we

concentrate on the messages traversing the port The message passing reaches its

term inal stats once the superior issues a K request; no further message will ever go

through that port.

On the other hand, after the superior has issued a C request, the superior is free

to nu llify (W) that request again; alternatively, the superior can wait until the

inferior is ready to deliver the daton value (D). There is even a third possibility: even

while the inferior is ready to deliver the daton value, the superior is free to delay as

long as it likes before it decides either for D or M (such delay transitions will usually

not be shown in our tables).

5.3.2

V - 7

The last paragraph glanced over an important point by making a quiet

assumption. Whenever a superior nullifies a C request, it changes the port state to N,

and this means that the inferior is now in the dormant state. But the superior can

hardly fo re * its inferior straight from C into the dormant state. Instead, the inferior

must first accept the I NULLIFY! request M. take appropriate action (which might

include request propagation), and it goes dormant only then. We would have to

extend our acts slightly if we wanted them to handle this revised protocol. On the

other hand, this simplified protocol has its advantages avoidable states are a real

nuisance in our later discussion, and the simplified protocol is very e ffic ie n t in

execution. We will not detail the changes which have to be made either to the code,

or to our modelling of the message passing.

We will print the protocol state N in our tables always as full stop ("."); we use

this character generally for states of the nature "nothing special to report". Tables

are easier to read this way: unusual states become much more conspicuous

5.3.3 Execution in Ultra Priority

The scheduler (t 4.7) gives to actors in ultra priority pre-emption over the ones

in normal priority. Each act lays down which actions take place in which priority.

(The exception handling code is executed strictly in ultra priority, and the acts must

be of such design that the expensive proper computations are not carried out in

ultra prtority.) The testbed is in normal priority as long as none of the participants is

ready to do any exception action. For fundamental operators this reads: execution is

in normal priority as long as

- the outport state is not A or K, and

— no inport state is A, and

S3 3

— the outport state Is not while an inport state is C.

The formula is more complicated for IC0PY1 node actors (f 5 5.2).

V» B

In the following description, we assume as given a global variable 1 norm«it«] which

Is IT8UE1 only during execution in normal priority. (In the state transition tables,

below, states whose transitions take place in u ltra priority are marked »4)

At the first reading, you may pretend execution were always in normal priority.

The ultra mechanism is meant only to inhibit wasteful state transitions, and it had to

be mentioned here because we will refer to it in the following.

6.3.4 Actions of • Demander

There is one demander (g) per outport of actor e A demander is only able to

inspect and change the respective outport state of e It can issue C, A or K requests

if that outport state is N, it can revoke C requests (change that outport state from C

to N). or it can accept daton values (change from D to M)

begin
OS ; = the r e s p e c t i v e outpor t s t a t e ;
ML := the message label i n OS ,

i f ML * N (i . e . th i s outpor t dormant)
then begin

the message label in OS may be changed to A , or
the message label in OS may be changed to K , or

i f norma 1Fx then
the message label in OS may be changed to C ;

end ;

i f ML. * C or (ML * D and normal Ex)
then the message label in OS may be changed to N ,

end ;

6.3.6 Action* of • Supplier

There it one supplier (p) per inport of actor a. The supplier accepts any

request; as response, it con merely Inspect and change the respective inport state

of *. — The supplier acknowledges A requests by changing the inport state to N,

S.3.S

V* 9

whereas there is no acknowledging action (or K nor (or N requests. It the inport state

is C (i.e. atter a C request), the supplier can respond with sending a daton value (O)

as reply.

b e g i n
ML the r e s p e c t i v e inport e ta t e ;

i f ML - A
then the inport s ta te may be changed to N ;

i f (ML = C) and normalEx
then the inport s ta te may be changed to D ;

end ;

6.4 Checking Node Actors other than [c o p y]

It is not difficult to check that the node acts (t 4.5) conform to the protocol.

Most node actors propagato each request and reply via their own opposite ports,

possibly with changes to the message content but rarely with a changed message

typo. Such actors will leave everything intact provided the original requests and

replies are given correctly. — A mere glance shows that the actors for fWRff?], j3EAD1

and constant (which have only on« communication partner) generate correct

requests or replies, respectively.

Alter the actor ■ has received a ¡NLLLlrVl or ¡ADVANCE! request, it takes the

appropriate measures and becomes eventually dormant; similar action is taken after

each delivery ot a daton value. All this is in sympathy with the protocol. Most of our

actors become dormant even after lADVANCEr'finalindesl. but in doing so they are only

"overfulfilling" their task, which has no bad consequence

Our simplification of the protocol permits issuing a new request right after a

iNULlIftl, even boforo the inferior has reacted upon the [NULLIFY] . Our acts would not

handle this (but can be modified to handle it), but require the superior to be bold up

(delayed) until the inferior has taken the necessary steps.

5 4

V-10

Most acts use the procedure IGetDaton] for the acquisition of daton values.

IC etD a to nl implements the rule that C can only be followed by N (from the superior)

or 0 (from the inferior), and it is not hard to see that !O tD at.on| performs this task

correctly.

little new can be 3aid about |Act_Root-J and the UDF acts. The Lucid graph and

the net of actors are related through a bijactxon, and incorrectness could only be due

to an error in the translation (but the translator program has been carefully tested,

t appendix C). — The UDF subnet creation is transparent to requests (except for

initial I ADVANCE] exceptions), and the UDF actor enters eventually the procedure

iP a s a -Jh ro u g h l. That procedure was designed to be transparent to all messages (i.e all

messages are passed on without change), and it is easily inspected for correctness

— Every UDF subnet is composed of fundamental operators and again of UDFs, and

the correctness of the UDF depends on the correctness of these constittiants, of

course.

Example ([FBY] actor)

The message passing state of a jr~3Y! actor can be characterised by:

<g. p . P> where
g = a message label representing the outport state

p = a message label fo r the s ta te o f the l a f t inport
P = a message label " " r ig h t inport

< > Is the in i t ia l sta te

We write the states throughout in an order such that oulports are on the la f t and

inports on the right; requests flow therefore left-to-right, replies flow right-to—left.

In our tables, the message passing states are written without the angle brackets and

without the commas, and the identity transitions (i.e. delay, no change) are not

shown at all

6 4

V - l l

The state transitions of [FBŸ] are then:

30 sta tes (out o f 125), 63 tra n s ition s

The table lists all the states which can be reached from the initial state The states

are numbered (no) from O to 29, with the Initial state at number O, and with the

terminal state at the end. The possible successor states are listed on the right of the

} sign. If there is a u to the left of the | sign, it indicates execution being in ultra

priority. No further state change is possible once alt input states have become K

6.4

V » 12

(l.e. identity is the only transition possible). For convenience, both the successor

state and its number are given, and in the w h y column some letters (g, e, p, P)

indicate which actor was the cause for the transition (g = demander, a = IFBY1 actor,

p = left supplier, P = right supplier). The upper half of the ;F3Y1 table are those states

where the left 1 Fgy; operand p is still under consideration; in the lower half all datons

come from the right operand P.

Example (constan ts , [BEAD], Id sn tity O psrator)

Here is another example, the state transitions of the constant or the jf tEADj actor:

no state | no state why no sta te why no sta te why

0 (1 C g 3 A g 4 K g
1 C 2 D e
2 D 0 g
3 A u 0 e
4 K nothing

5 states (out of 5), 6 tran s ition s

This table has moreover a second use if we take an empty testbed and connect

the supplier directly to the demander (i.e. merely with an arc in between), the table

would describe the behaviour of the resulting system (substitute p for s).

Example ([WRITE])

The table is even simpler for

no state | no state why
---------------- 1----------------------

0
1 c
2 D
3 A u

1 C
2 0
3 A
O P

e
P
e

5.4

V « 13

Example (concurrent binary pointwise operator)

The third example are the state transitions of a concurrent binary pointwise

commutative operator, such as concurrent PLUS. The behaviour of concurrent

operators like [53] is more difficult to model, since their choice of transition is data

sensitive; they have a few more states, as indicated in the table

In this example, the states can be written in the same format as in the IF3Y1

example above. We can however, take advantage of the commutativity, which means

that the suppliers p and P are intarcKangaabla Many states of our actor come in

pairs, where each state results from the other by swapping the inports; our table

contains an entry only for either (it is immaterial by which rule we choose either

state). Whenever a transition leads to the swappad counterpart of a state x, we

indicate this in our table by priming (x1) the state number. There are even cases

where both state x and state x' are among the possible outcomes of transitions.

In such cases the state number is printed with a double prime (x"), with the why field

telling only either story.

» 4

Here is the table of state transitions:

no state 1 no state why no state why no state why

0 » B C. . « 16 A. . 8 25 K. . 8
1 . .C u) 0 . . . e 16 A. . 8e 25 K. . 8e
") 17 A C 8 26 K.C 8
2 . .D o e 16 A. . 8e 25 K . 8<s
- 1 16 A.D 8 27 K.D 8
3 . .A U» 0 p 16 A. . ep 25 K. . «P
" » 19 A A 6 28 K. A 8
4 .CC U» O e 16 A. . 8« 25 K. . ge
N » 21 ACC 8 30 KCC 8
5 .CD 0 e 16 A. . 8e 25 K. . ge
99 » 22 ACD 8 31 KCD 8
6 ,DD ul O e 16 A . . 8« 25 K. . ge
99 » 23 ADD 8 32 KDD 8
7 .AA u} 0 pp 16 A. . SP? 25 K. . gpP

» 3" . .A p 19 " A A 8P 28 ' K A 8P
" » 20 AAA 8 34 KAA 8
8 C. . » 0 8 11 CCC e 4 .CC ge
S C.C » 1 . C 8 10 CD p 2 . .D 8?

10 CD » 14 D. . e 2 . .D 8
11 CCC » 4 .CC 8 5” .CD g? S .DD gpP
M » 12" CCD 8? 13 CDD gpP

12 CCD) 5 .CD 8 13 CDD P 6 .DD 8P
" » 10 ' CD. *P 2 • D. geo

» 9 ' CC. e 1 ■ C. ge
" » 14 D. . e 15 DD e?

13 CDD » e • DD 8 14 Û. . e
14 D. . » 0 8
IS D.D » 2 . .D 8 14 D. . e 0 G*
is A. . U) 7 AA e
17 A C U> 16 A. e
18 A.D ul 7 .AA e
19 A A u) 16 A. . p
20 AAA U» 1 9 " A.A ? 16 A . ? p
21 ACC U» 16 A. . e

22 ACD u) 16 A. . e
23 ADD U» 7 .AA e

24 ADA 19 A. A e 18' AD. p 16 A. « P

28 K. . U> 36 KKK e

28 K.C U» 2 9 ' KK. •

27 K.D u) 36 KKK •

28 K. A U» 3S ' KKA e 28 K . . p 29 KK. eP
29 K.K .36 KKK •

30 KCC U» 20 K. . e

31 KCD U» 29 K.K e 32 KDD p 33 KDK ep

32 KDD U» 36 KKK e

33 KDK U> 36 KKK •

34 KAA U| 2 8 " K A p 20 K. . pp
3 » KAK U> 29 K.K p
3 « KKK » nothing

03/AND only

03/AND only

V • IS

37 states (out of 129), 07 trans it ions .

The state transition tables so far were all prepared by hand, and though the

greatest care has been taken they may contain a slip or two. The examples were

meant mainly to illustrate how to describe the behaviour of an actor by a table The

state transition tables for the 1CQPY] node actors (t 5 5.4 f) are generated by program,

and high expectations for their correctness are justified.

5.S Checking the |COPV| Node Actors

Modelling the message passing behaviour of the Icopy! node actors, and thus showing

the correctness of the jcoPYl acts, is more difficult.

In our checking of ICOPY!, we re—use the terminology of queues, ql and inovaiueal

(T 4.6.4 and 4 6.6). We continue having separate actors for the ¡COPY] inport and

outports, but we leave open how !CQPY| manages the buffers When modelling the

behaviour of the COPY) node actor and its environment, we are dealing with the

participants shown in the following Lucid graph (here: twin outport COPY)

The I COPY! inport (I) is in communication with its supplier (p like "param eter"), and'

each iCOPYl outport (o) is in communication with its specific demander (g like

"greedy"). In order to differentiate both outports, we label the left side with lower

case letters and the right with upper case.

COPY

•+

H------h + +-+

+ O
4--- ■+

65

V » 16

S.S.1 Massaga Passing Statas of Icopvj Nod a Actors

The universal I copy! act has an arbitrary number of outports, specified only in

the [COPY] node actor creation. The daton queue in each lCOPY! outport can hold an

arbitrary number of datons (of type ¡ANYtYPE;). We shall now try to condense the

state of the ICOPYi node actor into a manageable form.

For our modelling, it is sufficient to characterise the state of each ¡copy! outport

actor by a triplet:

4n, v> where
m i s

9 is
1? i s

(1* v are

I* I
v
v

i s

the daton queue at th is ou tport,

the "novalues" o f th is outport, such that
O

Such a icopyj outsort actor state is clearly not one of the outport states (* 5.3.3);

a 'COPY! outport actor consists of more things than just an outport This clash of

terms is regrettable, but one can live with it

The initial state of every |corjY! outport actor is <iV,bottom, 0 > The state of the

ICOPYI inport actor is just a message label, and it is initially N. The state of a complete

ICOPYi node actor Is the sequence of the states of its cutport actors and of its inport:

« n , q ,v> , i > s ta te o f the s in g le—outport COPY,
<Gn, g ,v> , <k,p,w >, <> sta te o f the twin—outport COPY,
<00, o/, . . . o„_j, t> in general (n = number o f outports) .

We intend to model only the message passing behaviour, and we can therefore go

one step further. We need to incorporate merely the queue lengths in the outport

actor states, Instead of the queues themselves. More precisely, this modified I COPY]

state is then its massaga passing stata (but we omit the words "message passing"

most of the time). In our tables, we will print the message passing states of CQPYl in

the order shown above, albeit again without the commas and the angle brackets.

An example of a fcSpYl message passing state is (twin outport iCQPY!):

5.6. 1

V ■ 17

Dl. .2. A

Here, the left IcoPYl outport actor has one daton queued; it has just delivered the

value of that daton. and its demander still has to confirm the acceptance. The right

I COPY! outport actor has two datons queued, but it is otherwise inactive. The ¡COPY]

lnport has just issued an A request.

An intermediary state of the ¡COPY] node actor is any state in which this actor is

enabled for further state changes w ithout requiring a state change in any demander.

A theorem can be formulated: if k is th e minimum of the Inovalucal of all outports of a

ICOPYI node actor C. then k can be non—ze ro only in interm ediary states of C.

5.5.2 The Actions of the Participants

How many actors take part in our modelling of COPY!, and what is each of them

allowed to do? We call an agent any actor which might change the 'COPY! state.

As 3tated before, we have four kinds of agents: the demanders, the outport actors,

the inport actor, and the supplier If n is the number of ¡COPY] outports, there are

altogether 2 * (n*-1) agents In every state of I COPY] at least one agent is enabled for

a state change, unless there is a deadlock Indeed, any number of agents may be

enabled for any number of state changes Each agent carries out at most one

transition in a single go, but different agents are permitted to ' fire" simultaneously

The rule for Ino. -ma(* 4.7 and 5.3.1) must be slightly extended Our model for

the ¡COPY, node actor Is in normal priority if simultaneously

— none of the message labels (inport o r outport) is A,

— the I novalue»! is ¡finalbiil«' at each ¡COPY outport whose message label is K,

— the ¡COPY! inport state is C only if at least one ¡COPY] outport is currently

interested in the daton value to come

5 5 2

V-10

Section 5.3.4 f stated already the actions of the demanders and of the supplier,

but it remains to sum up the actions of the I COPY! inport actor and of the ¡COPY]

outport actors. These code fragments are closely related to the core of the I COPY]

act, and they were used almost directly to produce the state tables.

5.6.2.1 Action by the IcQPVl Inport

The jcQPYl Inport actor (I) is capable of examining and changing any part of the

[COPYI state (though it would not alter any outport message label). The inport actor

does all those tasks which concern more than one outport, and it communicates with

the outports mainly through the , . n o v e l u e » i and the queues. The actions of the inport

are essentially:

5 5.2.1

V » 19

begin
I : * the in po rt s ta te , be ing a message labe l ;

acond := true i f a l l the "n ova lues ” a re non—zero ;

ccond := true i f f o r at l e a s t one o u tp o r t :
the message labe l i s C and
no daton is queued f o r tha t outport ;

i f (I *=
and

c)

(acond or not ccond)
then the inport s ta te may be changed to N ;

i f the nova lues in a l l outport a c t o r s t a t e s are f i n a l i n d e x
then begin

i f (I O C) and (I <> K) end acond
then the inport s t a t e may be changed to K ;

end

e l s e begin
i f I = H
then begin

i f acond
then the inport s ta t e may be changed to A

but then a l so
must each novalues be decremented by one

e l sc i f ccond and normal Ex
then the inport s t a t e may be changed to C ;

end ;

i f I = D
. then beg i n (one may do the f o l l o w i n g , a l l in one g o ;)

fo r each outport
do i f i t s novalucs i s g r e a t e r ze ro

then reduce i t s nova lues by one,
e l s e append the da to n to i t s daton queue ;

but then also
set the inport s ta te t o A ;

end end end ;

5.5.2.2 Action by a [CQPVl Outport

There Is one ICOPYl outport actor for each [COPY] outport. An outport actor (o) is

capable of examining and changing any part of the fCQPV] state (though the only

message label It would alter Is its own one). Each outport cooperates, of course,

5 5 2 2

y «2 o

closely with the inport. The actions of an outport are essentially:

b e g in
OS : « the r e sp ec t iv e ou tport ac to r s t a t e ;
ML :■ the message labe l in OS ;

i f HL » C and normalEa
and a daton is queued at t h i s outport

then the message labe l in OS may be changed to O ,

i t ML s K
then the novalues in OS may be changed to f in a l index ,

i f ML 3 A
then begin (one may do the f o l l o w in g , a l l in one g o : }

i f a daton is queued at t h i s outport
then pop the o ld e s t daton o f f that queue
e lse increment by one the novalues in OS ;

but then a lso
change the message label in OS to N ,

end ;
end ;

6.5.3 Simplifications

The message passing state of the fcOPYl node actor has been presented above,

and it was obtained by pruning the total state of 'cOTVi. Refore we generate the state

transition table of a iCOPVi node actor, we apply the following simplifications to bound

and reduce the number of states.

1) We pretend that the fCOPY, node actor memorises only the diffaranca between

lnport index and outport index It is easy to see that the actor handles the

absolute inport index correctly

2) We ignore the detailed contents of the daton queues: after all, even the [co?Yl

node actor does not analyse the daton values. We trust that the actor makes no

mistake in appending every new daton at the tail of the queue, and popping

datons off the head of the queue We memorise the langth. of the daton queue.

ft ft 3

V*20

closely with the inport. The actions of an outport are essentially:

b eg in
O S := the r e sp ec t iv e ou tport ac to r s ta te ;
UL : » the msssage labe l in OS ;

I f ML * C and normal Ex
and a daton is queued at th i s ou tp o r t

then the message labe l in OS may be changed to 0 ,

i f ML = It
then the novalues in OS may be changed t o f in a l inde i ;

i f ML = A
then begin (one may do the fo l l o w in g , a l l in one g o ;)

i f a daton is queued at th is ou tp o r t
then pop the o ld e s t daton o f f tha t queue
e ls e increment by one the nova lues in OS ;

but then a lso
change the message labe l in OS to N ;

end ;
end ;

5.5.3 Simplifications

The message passing state of the fco^Y] node actor has been presented above,

and it was obtained by pruning the total state of I'CQTYi. Before we generate the state

transition table of a COFVi node actor, we apply the following simplifications to bound

and reduce the number of states

1) We pretend that the iCOTVi node actor memorises only the dijjaranca between

Inport index and outport index It is easy to see that the actor handles the

abaoluta inport index correctly.

2) We ignore the detailed contents of the daton queues; after all, even the |co?Vi

node actor does not analyse the daton values. We trust that the actor makes no

mistake in appending every new daton at the tail of the queue, and popping

datons off the head of the queue We memorise the length of the daton queue.

S 53

V-21

3) Our [COPYj node actor is demand driven; only the arrival of a request (at an

outport), or the arrival of a daton value (at the inport), can cause a state

transition. We omit in our tables extra states which are due to delays inside

[COPY]. We assume instead "if !COFYj can act, it will".

4) We shall study only the jCOPY! node actor with one outport, and the jCOPYl node

actor with two outports. Any I COPY] with more outports can be built from the

latter.

In the outport actor state, queue length = 0 and I upvalues! = 0 are both printed as

dot and novaluea = -m’.mdex1 prints like jnovalues] — 1.

5.5.4 Single outport |COPV~l

We study first the single—outport ¡C O P Y ! node actor. Such a C O P Y ! node actor can

at best have one daton queued (in pipeline ddDF without bulk requests), and its

InovaLjg»! is non—zero only in intermediary states The state table is therefore

reasonably small

b . S . 4

V ■ 22

25 s ta les (out o f 75), 50 tran s ition s

The table shows all the states which can be reached from the initial state The states

are numbered (no) from 0 to 24; their order is due to a hash function (not to be

explained here). For further detail refer to the explanations after the iF3Yl table

(T 5.4). In the why column some letters (g. o, I, p) indicate which actor caused the

transition (g = demander, o = outport actor, I = inport actor, p = supplier) The

message passing states are written in the format defined in section 5 5.1:

(com ponents;)
(represen t 'n .)
(exsnple:)

' ■ ■ outport actor » t e t e ,
outport » t e t e , queue length,
masase label, Integer,

N 0

novaluee
Integer

0

inport actor state:
inport state
message label

N

5.5 4

V * 23

The message label N, as well as queue lengths or ha value»! of 0, are all printed as dot

(for exampleis the initial state N00 N). Let us study, as an example, one line of

the table:

7 C. D 6 D g 17 C l. A i#» f 18 D1. A oi

It shows state number 7. which has 4 successors to choose from; execution is in

normal priority. At the outset, the queue length and !novalue»; are both zero, the

demander is waiting for a daton from [COPY! (it has set the outport message label

to C), and the supplier has just delivered a daton to ¡COPY! (setting the inport state

to D). Incidentally, there is just one reference to state 7, but other states have up to

5 references (e.g. state 24).

A transition is made to state 6 if the demander nullifies the C. State 17 results if

the ¡COPY! inport queues the daton. also issuing an A to the supplier (the two go always

together). ¡COPYI gets into state 16 if the demander and the inport happen to act

(as described) at the same time On the other hand, immediately after the inport

has queued the daton, and has issued A, the outport may send that daton to the

demander, thus setting the outport message label to D This puts the fCOPYl into

state 18. This action by the outport (changing to D the message label in the outport

actor state) would of course be irreconcilable with a nullification by the demander

(as in states 6 or 16, changing that label to N) If these opposed intentions collide

during program execution, the message passing mechanism will take a

non—deterministic choice. Both choices give ultimately the same affect (due to the

design of the acts, look at [u«-.3a-.on!). it would have been wrong to resolve this

situation by priorities.

8.5 4

V -2 4

5.6.6 Twin outport I COPY |

The first thing one notices when comparing the twin—outport ¡COPY] node actor to

the single—outported one is the far larger number of states. With every new outport

the number of states grows by a factor of about 15, since only few symmetries cam be

exploited to reduce the table size. The transition table for the twin—outported jCQPYi

node actor has 304 states with altogether 1619 transitions. Because of its 3ize, the

complete table has been put into appendix E. we give here only the necessary

explanations, and discuss a few example transitions.

Two further simplifications have been employed in the state transition table for

the twin—outport 1C0PY1:

5) Our state transition table comprises queues only up to a finite maximum length,

Bind we choose this maximum to be two Our checking method resembles

mathematical induction, and this requires one proof for a starting value and one

proof for the induction step To be correct we would have to demonstrate both

the increase and the reduction of the queue, and we would have to do this both

for the minimum queue and for an arbitrary queue However, since queues have

a linear law of growth and shrinkage, we outstretch nobody's trust when

demonstrating the growing and shrinking of queues only up to a queue length of

two

6) Similarly, the table comprises inovaiue«1 only up to a finite maximum value, and

we choose this maximum to be two

The table lists only current states with queues of a length limited to one, and

with its i novel ae»! also limited to one. If one of the successor states has a queue length

or a Inovalaee] greater one, the successor state number is followed by a minus

It is irrelevant which way round the outports are numbered; if two states result

from each other by permuting (swapping) the outports, we can avoid printing table

entries for both (it is immaterial by which rule we choose either state), Whenever a

b 5 b

V-25

transition leads to the swapped counterpart of a state x, we indicate this in our table

by priming (x1) the state number. There are even cases where both state x and state

x' are among the possible outcomes of transitions. In such cases the state number is

printed with a double prime (x"), with the why field telling only either story.

For example, here are the transitions for one state:

This example for state 1 shows 15 successor states (the double primed state counts

double). Together with the idontity transition, there are 16 (= 4*4) successor states,

since either outport can end up in the state M, C, A or K

6.6 Discussion of tho State Transition Tablas

Foolish States

The transition tables contain a fair number of "foolish" states, i e. states which

appear somehow unreasonable. Look for example at state 70 (A . . Cl . C): the ICOPYl

inport requests a daton (from the operand actor p) though the daton is not required

by either IcopyI outport. It is the purpose of execution in ultra priority to get actors

as quickly as possible out of such foolish states; it minimises also their chance of

getting into such a state, in the first place.

Execution Logs

A particular sequence of requests has been discussed in section 4.8.5, where a

fCOPYl node actor is forced into requesting the evaluation of a daton even though

5 6

V-28

neither outport has expressed a wish for that daton (we called it despair). The

situation was saved when, in the middle of the daton evaluation, an A request was

received whereupon the evaluation could be nullified. We have in the meantime

obtained the tools to express this whole scenario much more clearly: we simply write

down the ! COPTI states in the sequence in which they are encountered. This is the

simplest form of an execution log, a graphic representation of how a computation

progresses. The vertical axis is the time coordinate.

Example (Despair)

COPT state
(in it ia l s ta te)

A. . demander g issues bare A
. . 1 COPY reso lves A
C. 1 demander g issues C
C. 1 C COPY issues C out o f despair
C. 1 A C derrander G issues bare A
C. 1 . . 1 COPY n u l l i f ie s the C request
c . . A COPY propagates A
c . . supplier reso lves A
c . . C COPY propagates the o r ig in a l C
c . . D supplier d e liv e rs D
D1. . 1. A COPY accepts D, and generates A
D1. . 1. supplier reso lves A
A l . . 1. demander g accepts D, and generates A

. 1. COPY resolves A
Al. demander G issues bare A

COPY resolves A

Note that jCOPVl issues a IMULJFYl request after C) to the supplier although neither

of the ICOPYl outports received a [NUtLlfrVI request This shows that this Lucid

Implementation (with concurrency) would be incomplete without iNUt/ulrY] requests.

5 8

The Trojan Horsa situation (t 4.8.5) can be expressed with similar ease:

Example (Trojan Horse)

V -2 7

COPT state
(in i t i a l s ta te)

A. . demander g Issues A
. . 1 COPT reso lves A
C. 1 demander g issues C
C. 1 C COPY issues C out o f despair
C. 1 D supplier d e liv e rs D
c . . . 1. A COPY accepts D, and generates A
c . . .1. supplier reso lves A
c . . . 1. C COPY propagates the o r ig in a l C
c . . . 1. D supplier d e liv e rs D
Dl. .2. A COPY accepts D. and generates A
Dl. .2. supplier reso lves A
A l . .2. demander g accepts D, and generates A

.2. COPY reso lves A
A2. dermnder G issues bare A
. 1. COPY resolves A (Tro jan Horse is d iscarded)
A l . demander G issues bare A
. . . COPY resolves A

States of UDFs

The state transition table for a UDF can be obtained by first generating the

cross product of the tables of the components, and by then eliminating incoharant

states. A UDF state is incoherent if the UDF contains anywhere an outport state

whose message label differs in the inport it is connected to. Equivalent states

(states which cannot be distinguished from outside) have to be eliminated, too.

— This method is altogether rather laborious, and we will not deal with it further than

this.

Alternatively, we can place the UDF in a testbed, "play through" all the possible

request sequences, and write down the emerging successor states of the UDF

5 6

The UDF1 FIRST! is defined (in terms of fundam ent operators):

FIRST (a) * p WHERE p = a FBY p END ;

A I FIRST! act can thus be built from |F3Yl and I COPY!. The state transition table of ! FIRST!

can be generated from those of |FBY| and the twin—outport [coPYl. For this, we make a

table with one row for the state of each actor. We label each arc (with letters a ... d),

and since certain portions in each actor state correspond to that arc (viz. the port

states) we can write the appropriate letter also into the message passing state of the

actor (we use "7" as placeholders for miscellanies).

V-28

Example ([first] actor)

»

act ident i t ies i n i t i a l l y

COPY a?? d?? c
FBY cbd • • •

FIRST a(> • •

4.

We transpose the table, above, and write successive states on successive lines, so

that the vertical axis represents time. In this way we get again an execution log, now

for a system of two actors. Let us play through an example where we send A and

then C to the IFIRSTl actor:

6.8

The UDF¡FIRST] is defined (in terms of fundamental operators):

Example ([first] actor)

V-28

FIRST (a) = p WHERE p * a FBY p END ;

A If ir s t] act can thus be built from |F3Y] and 1C0PY1. The state transition table of I FIRST]

can be generated from those of IFBYI and the twm-outport IC0PY1. For this, we make a

table with one row for the state of each actor. We label each arc (with letters o ... d),

and since certain portions in each actor state correspond to that arc (viz. the port

states) we can write the appropriate letter also into the message passing state of the

actor (we use ”7" as placeholders for miscellanies).

act

COPY
FBY
FIRST

«---------- s ta te s ---------■*
ident i t ies] i n i t i a l l y

■i-------------------- -----------------
i a?? d?? c
I c bd • • •
ja b

We transpose the table, above, and write successive states on successive lines, so

that the vertical axis represents time. In this way we get again an execution log, now

for a system of two actors. Let us play through an example where we send A and

then C to the ¡FIRST] actor:

6,8

V ■ 29

copy, FBY (a c ts) FIRST s ta te
•?? d?? c , còd (id e n t i t ie s) (see ta b le below)

(°) (i n i t i a l s ta te) 0
(1) À. ! demander issues A 6

.. l COPY reso lves A O
(2) C. 1 demander issues 1st C 3

C. 1 C c! ! COPY (despera te) issues C to FBY 3
C. 1 C cc. FBY propagates C to FIRST’ S supp lier 4
C. 1 C CD. supp lier d e liv e rs D 5
C. 1 D D. . FBY passes D back to COPY —
c . . . i . A A. . COPY accepts D, and generates A —
c . . . 1. K. FBY reso lves A, FIRST'S supplier " d ie s ’ —

(3) c . . . 1. C CK. COPY propagates C to FBY —
c . . C l. c CKC FBY propagates C to r igh t COPY outport —
c . . Dl. c CKD righ t COPY outport d e liv e rs D —
c . . . 1. D DK. FBY passes back D —
D1. . 2 . A AK. COPY accepts D, and generates A 14
D1. A2. KA FBY propagates A 14
D1. . 1 . K. COPY reso lves A (r ig h t outport) 14
A l . . 1. .K. demander accepts D, and generates A 15

. 1. K. COPY reso lves A (l e f t ou tport) 12
C . . 1. K demander issues C 13
jurp to (3)

Every actor starts in its initial state, of course At the beginning, the demander

of ¡FIRST! (being also the superior of the left I COPY" outport) i3 alone able to change

state. Moving step by step from this point, we earn work out all the other relevant

states of ¡FIRST!. We end up with a table with a certain amount of redundancy:

— non—deterministic state changes inside the UDF are of no interest any longer,

since we want to model only the message passing behaviour of the UDF as a

whole,

certain components within the actor states change always togtthar, and we can

condense this repeated information to the essential minimum. (The

corresponding state numbers in the state transition table have been printed on

the right of the execution log. We see that some successive steps in the log

collapse into merely one step in the table, and some intermediary steps have no

counterpart In the table at a ll)

s.e

V-30

By playing through all the possible request sequences we get the following state

transition table of IFIRST1 (w ith reference to the idtntitias, above, the state of I FIRST!

is ob, where • is the ou tport state and b is the inport state):

17 sta tes (out o f 25), 33 tran s ition s.

5.7 Example (sieve])! the execu tion log

Using the iSievel example as illustration, we shall now discuss how the messages

pass through the net of actors, and how this yields the computation result. These

actions will be presented in form of the execution logs introduced earlier in this

chapter. There will be one log for the main program, and a second log specifically for

the rS if ve' UDF

The logs represent the state of large composites (e g main program and UDF

actor) through the states of their components Earlier in this chapter, the possible

state transitions have been listed for most of the components which occur in the

example (11185], fsS], 'PLL'él may be instances of the concurrent binary operator).

They have not been described for !W t]. iwvfi] is a good deal more complicated than

B .7

V »3 1

|F1RST|. Its message passing behaviour depends on its earlier actions (the same is true

for the |Sieve,'). We will, nevertheless, write the state of jwvRj as if it was a point-wist

binary operator (l.e. "oti"), and the reader is asked to take its transitions in the log

as correct. .'WVR! and I FIRST! are both UDFs; whatever we learn about the ISievel UDF can

benefit our comprehension of these other UDFs. To keep the discussion simple, we

treat [FIRST1 and;WVR! like p rtd tf in td operators, non—UDFs

The ;Sieve; state will be written "oxi". where x is either V or "1". indicating

unexpanded or expanded state. Here is the graph of the ISievel program again

(T 4.3.3.1):

*
4 * " 4 * r r f J
| PLJS i — 4-

4--- •— -

+ -m
I rev !
+ 4---- *■

I
•N

rrfl | rri3
C---- - 4-

rr£ |
t

+ — i ml
| Sieve |

*

S i eve ;

a Z \ »10
C------

-4- s9
--------- « | FIRST |

■7 4----- 4-----4- ------ h
» Z | 4------- K | j-O” jail

C----. ; M O D 1 ------4- 4-4-4.| M O D
s8 fr +— ■■

sG
NE

wZ I 4-------4- »4 I
C---- ► | W V H | .------ 4-

s5 t) -4-

9 1 | Sieve ¡93
«----4-

I P3V |
4— 4--- 1-

-4- >0

♦ i nO
| WRiTE |
4--------1

To avoid confusion, the actors in the main propram have their numbers prefixed with

an m, while the actors within the fsicve! get an e.

5.7

V « 31

1FERSTI. its message passing behaviour depends on its earlier actions (the same is true

for the ! Sieve V We will, nevertheless, write the state of IWVR! as if it was a point w ist

binary operator (i.e. "ott"). and the reader is asked to take its transitions in the log

as correct. ;wVR| and iFiRSTl are both UDFs; whatever we learn about the ISievel UDF can

benefit our comprehension of these other UDFs. To keep the discussion simple, we

treat [FIRST1 and.WVR' like predefined operators, non—UDFs

The ;Sieve: state will be written "oxi", where x is either 'V or "1", indicating

unexpanded or expanded state. Here is the graph of the 'Sieve! program again

(T 4.3.3.1):

1
S i eve.

H------- + n6
| plus ; — +
■i— '—-

I"*" l " « !l

I
4 4

I F3Y |

•N
rifl | rrfi

C---- --------+
nfi |

4
» ■ ■ ■ i ml
| Sieve |

4
♦ i rrO
| WRITS i

+ +

To avoid confusion, the actors in the m ain program have their numbers prefixed with

an m, while the actors within the 'sieve! get an a

s 3 [» 1 0
C-------

+- s9
----------- » | FIRST |

* 7 H---------- -t---------- + ------------- *■

* z ' -i---------t- 1 |,,0 " ! » n

| a8
MCD

I
— s6

I NE | •
■f— t— I-

»2 — f s4
C------ | WVH | ■

» 5 I — I ■ "" - f

el | Sieve |s3
4— 4— >

30

I F3V \

5.7

V » 32

Only the actors mO.mB exist at the very beginning of program execution. They

have been created by the root actor (which itself has terminated), and each actor is

in its initial state. The I Sieve I actor ml is a UDF actor, and it is yet unexpanded. The

state is thus:

acts actors ident i t ie s in i t ia l s ta tes

WRITE rrO a
Sieve ml a?b . . .
COPT rr£ ,mB ,m0 6?? g?? c , .
FBY mi cd t . . .
2 irf> d
+ rr£ • fa . . .
1 nit f

The state of the main program is the ensemble of the states of its components;

an example is the entire entry below the heading "initial states".

Initially, all the actors have xtro priority , except for the |writei actor; its priority

is one. IWRrfgj is therefore the one to take action: it issues a ¡COMPUTE! request (C) to

the ¡Sieve! ml, and starts waiting for the delivery of a daton value In doing 30, ;w3:te!

becomes suspended, and the actual priority of the S w 1 ml rises to one Working

out the actual priorities for the remainder of the log might be an interesting

exercise

The | Sieve I UDF must be expanded (i.e the subnet of actors sO stl must be

created, initialised and bound to the environment) as soon as the attempt is made to

send the first ¡COMPUTE] request to the ¡Sieve] ml. This whole process is invisible in the

logs. This newly created subnet has things in common with the product of the root

actor: all the subnet actors are in their initial states, the ¡Sieve] UDF s3 is yet

unexpanded. — Everything that is said about the ¡Sieve! ml applies correspondingly to

¡Sieve! s3, and to the ¡Sieve! inside s3, etc

5.7

V *3 3

Log of 1 Slava | Main Program

The table, above, can also be transposed (and some superfluous detail can be

omitted), and the resulting execution log for the] Sieve I main program goes as follows:

(0)

(1)

(2)

(3)

Sieve COPT FBY PLUS (a c ts)
m l, mB.mB.nfl, m4. rr6 (a c to rs)
a? 6, 6?? g?*> c , c d e , • f a (ident i t ies)

(in i t ia l s ta te)
C. . WRITE requests C
C1C c . . S ieve s3 expands, and propagates C
C1C c . . c C. . COPY propagates C
C1C c . . c CC. FBY propagates C
C1C c . . c CD. constant d e liv e rs D
C1C c . . D D FBY passes D back
C1D D1 . . i . A A. . COPY passes D back, generating A
C1D D1. . i . K FBY propagates A, constant "d ie s "

D1A A1 . . i . .K. Sieve passes D back, generating A
D1 . . i . .K. COPY reso lves A
A1. . i . K. WRITE accepts D. and requests A
. 1. . i . K. S ieve reso lves A, cy c le fin ished

C l. . i . .K. WRITE requests C
C1C C . . i . K S ieve propagates C
C1C c . . . i . C CK COPY propagates C
C1C c . . . i . C CKC c . FBY propagates C
C1C c . . Cl . C CKC ccc PLUS propagates C
C1C c . . D1 . c CKC CDD constant and COPY d e liv e r D
C1C c . . . 1 . c CKD D PLUS passes D back
C1C c . . . 1 . D DK. FBY passes D back
C1D D1 . .2 A AK COPY passes D back, generating A
C1D D1 . 2 .KA A. . FBY propagates A
C1D D1 . A2 . K AA PLUS propagates A
C1D D1 . . 1 . .K COPY and constant reso lve A
i f Sieve ml finds the daton to be prime, i irrp to (1), e ls e :
CIA A1 . . i . . K. Sieve generates A (t o get next daton)
C l . . i . K COPY reso lves A
C1C C. . . i . , K. S ieve generates renewed C
jutp to (3)

57

V-34

Log of jStavl

Obviously, there is more to the state of the [Slew] than described by "a?b". As with

the main program, we can log the state transitions during execution of the 1 Sieve I

(a and b are retained as its outport/inport labels):

FBY
»0,

copy
■1,s5 ,iB ,*10,s2,

Sieve WVR
■3. s4,

NE
s6,

MOD
s7,

FIRST (acte)
s9 (actors)

•>* i f ? n?? r?? 1?? * k?m rrwip pqu qra at (id en t i t ie s)
(4)

(i n i t i a l s ta te)
C. . derrander issues 1st C
cc. C. . FBY propagates C
cc. C. . C COPY propagates C
cc. C. . D supplier de l ive rs D
CD. Dl. , i . .1. , i . A COPY accepts D. issues A
CD. Dl. .1. . i . .1. supplier reso lves A
D. . . 1 . .1. .1. .1. FBY passes back D
A. . . 1 . . 1. . 1. . 1. dermnde’- accepts D, issues A
. K. Kl. .1. .1. .1. FBY transforms A into K
■ K. K. 1 .1. .1. .1. COPY resolves K

(5)
CK. X l .1. .1. . 1 . demander issues 2nd C
CKC K. 1 .1. .1. .1. c . . FBY propagates C
CKC K. 1 .1. .1. .1. C1C C. . Sieve s3 propagates C
CKC K. 1 .1. .1. .1. C1C C.C c . . WVR propagates C
CKC K 1 .1. .1. .1. CIC c .c CCC c. COPY de l ive rs ; NE prop C
CKC K. 1 .1. Cl. .1. C1C c .c CCD CCC C. const de l iv ; MOO prop C
CKC K. 1 .1. Dl. Cl. CIC c .c cc. CDC cc COPY de! -.v; FIRST prop C
CKC K. 1 .1. .1. Dl. CIC c .c cc C.C CD COPY de l ivers D
CKC K. 1 . 1. . 1. K l . CIC c .c cc. C.D DK FIRST passes back D
CKC K. 1 .1. .1. K.l etc c .c CD. D. . .K COPY res K; MOD pass bk D
CKC K. 1 .1. .1 K.l CIC C.D D. . K NE passes back D (FALSE)

(«)
CKC K. 1 Al. .1. K.l CIC CAA A. . • K WVH asks for next daton
CKC K. 11. K.l . CIC c . . . AA A. . .K COPY res A, WVR prop A
CKC K. 1 . . . Al. K.l CIC c . AA AK const res A; NE prop A
CKC K. 1K.l CIC c . . .K COPY+FIRST res A

(7)
CKC K 1K.l CIC c .c c . . K WVR prop C
CKC K. 1 K.l CIC C c CCC c . K NE prop C
CKC K. I . . . C.. K.l CIC c .c CCD CCC CK MOD prop C; const d s l iv 0
CKC K. 1 . . . C.. K.l C CIC c .c CC. CCD DK COPY prop C; FIRST d e l iv D
CKC K.l . . . C . . K.l D CIC c .c cc CC. . K supplier d e l i v D
CKC K.l .1. Dl. K.l A CIC c .c cc. CD. . K COPY pess bk D
CKC K.l .1. .1. K.l CIC C.C CD. D. . .K MOO pass bk 0; supplier res A
CKC K. 1 .1. .1. K.l CIC C.D D. . K NE passes back D

i f NE de l ivers the datori velue FALSE j jti|) to (6) , e lse J xrp .0 (0):
— continued —

5.7

V.35

— cont i nued —

F3Y COPY Sieve WVR NE MOD FI3ST (s e ts)
sO. ■1 sS.sS.slO.s2, ■3. «4. S0, ■7, sS (actors)
• ih

(•)
i»ff r f ? I f f 6 *fm imp p q u • 1 (id en t i t ie s)

CKC K.l Cl. .1. K.l C1C CC. K WVR requests C from l e f t op
CKC K.l Dl. . 1. K.l ClC CD. K COPY de livers D
CKC K.l .1. . 1. K.l C1D D. K WVR passes back D

i f Sieve s3 finds the daton to be prime jurp to (9) , else:
CKC K.l .1. .1. K.l ClA A. . .K Sieve asks for next daton
CKC K.l Al. .1. K.l . C l . . AA A . . K WVR prop A
CKC K.l1. K.l C l. .AA A. . K NE prop A; COPY res A
CKC K.l Al K.l . C l . .AA AK MOD prop A; const res A
CKC K. 1 . . .

jimp to (7)
(9)

K.l ClC C. K COPYfFIRST res A; Sieve prop

CKD K.l .1. .1. K. 1 DIA A. . K Sieve s3 pass bk D, gen A
CKD K.l Al. . 1 . K. 1 D l . .AA A. . • K WVR prop A
CKD K.l .1. K. 1 D l . . AA A. . ■ K NE prop A; COPY res A
CKD K.l Al. K. 1 Dl . AA AK MOD prop A, const res A
CKD K. 1 K. 1 Dl . K COPY-t-FIRS? res A
DK. K. 1 K. 1 . 1. K FRY passes back D
AK. K.l K. 1 . 1 . K demander accepts D, gen A

KA K.l K 1 Al . K FRY propagates A
• K. K.l

(iO)
K. 1 . 1 . K Sieve s3 resolves A

CK. K. 1 K. 1 . 1 . .K demander issues C
CKC K.l K. 1 C l . K FRY propagates C
CKC K. t

jisip to (7)
K. 1 ClC C. . K Sieve prop C

Discussion

These substantial logs demonstrate a number of things quite clearly:

We see how the requests (C and A) ripple upstream. They appear as lines fa lling

from It f t to right, since the outports and high ranking actors are on the left and the

inports and low ranking actors are on the right. Similarly one can see how replies (0)

flow downstream; they form lines fa lling from right to l i f t

The log gives numerous illustrations for the behaviour of [COPY] node actors.

Whenever a daton value (D) is accepted by a ¡COPY] node actor, [c o p y ! queues it at all

Its outports. and sends an [ADVANCE] request (A) upstream Once a daton has been

queued at IcoPVj it can be obtained from there, any number of times. The main

8.7

V-38

program log shows furthermore how [COPY] can satisfy one outport xuh.il« another

ICOPYI outport is hung waiting for a new daton. (Our main program contains a cycle,

cycles are always "tapped" by a ¡COPY). and every cycle—tapping I COPY] must handle

such interlaced requests.)

The log quotes the ttngth o f «vary qu«ua at every moment. In our LUX

implementation, we used a shared queue with reference counts. This shared queue is

at every moment equal to the longest of all the individual queues.

We see how IF3Y1, upon receiving its first proper A request, abandons (K) its left

operand and switches over to its right operand. 1 FIRST I goes even further: it abandons

its operand upon arrival of the first daton.

The work of the ¡write) actor mO consists obviously in repeatedly

(1) issuing a C request to the jSieve! ml,

(2) awaiting daton delivery.

(.3) printing the daton value,

(4) issuing am A request.

Hypothetically, if ¡WRITE! chose to skip (4) it would get exactly the previous daton

again, IwaiTEi can get at the next daton in the history (the next prime number) only

after sending an [ADVANCE) request (A) to the [Sieve! ml. Upon this A request, a

clean—up is carried out. The log shows how A is propagated upstream, but shows also

that jCOPYl does not propagate the A further. (COPY! had anticipated this A already

upon receipt of the daton The [sieve] (having a lcQPYl at its inport) behaves likewise

Whenever a ¡COPY) node actor issues a C request, it does this in response to the

arrival of aC request at an outport. (Not every C request at an outport is propagated

by [COPY]) This outport is then called the driving outport In the [Sieve! main program,

for example, the left ¡COPY! outport is always the driving one However, the role of

driving outport need not always fall to the same outport. In the ¡Sieve! UDF, for

6.7

V«37

example, this role is first taken by [COPY] outport si and later by sB. While an outport

is driving, its queue can only be empty or of length one.

Focussing more specifically on the jSieyel UDF, a few points deserve mention:

One can formulate an obvious theorem: "the computation of any daton must be

carried out in a fin ite number of steps: otherwise the computation is in a livelock".

This implies that one daton must require only finitely many UDF expansions. The

ISievej UDF satisfies this clearly: the newly expanded jSievcl computes its first daton

without expanding any further fSievel, and after that, exactly one new ¡SieveI is created

whenever a new prime (= result daton) has been found.

The log reveals also that, before the ¡SieveI can deliver a daton, it must consume

at least one daton from its supplier. One can trace daton deliveries simply by

scanning down a log column until one comes to a point where it changes from C to D

and then to A. In the case of the ¡Sieve! UDF, the outport is labelled a and its inport b,

these are therefore the log columns of interest

The example demonstrates hardly any "tricky" situations there are only few

bare lADWVCK! requests, and no iCOiiiPUfEl request is nullified The example appears

even to be deterministic, but this is not the case The log shows the states as if every

transition was made at the earliest possible moment In reality, however, each actor

is free to delay its action for any period The log would be of enormous size if all the

possible alternatives had been included in it

6 7

v i . 1

CHAPTER Vit Ways of Improving Efficiency

•.O Introduction

Any Lucid program can be built up node by node, starting at the Iwritei node.

During this construction, each intermediary structure can be examined for specific

properties. This chapter will show that, under various conditions, structures can be

replaced by simpler ones. Simplicity means often smaller overheads, less

administration (though on cost of generality), and less administration means in most

cases faster execution.

We shall look in this chapter at various code improvement techniques:

— Queuing analysis (Cycle Sum Test),

— Node condensing (act expansion).

— Enriching the protocol,

— Tailoring IcQPYj acts,

— Tagged Data Flow, and

— "Box of tricks" for the compilation

Beginning with this chapter, matters will be treated less formally: the general

method will be sketched while the detail will be left to later research.

6.1 Queuing Analysis

It is characteristic of our (demand driven) implementation that all the daton

buffering is done by ICOPYI node actors. However, the 1C0PŸ1 act (t 4.6.7 ff) makes only

too clear how much administration is entailed even in very simple operations. There

are enough situations where a much sim pler [COW! node actor would suffice:

6.1

VI • 8

— there may be an upper bound for the queue length.

— the offset between the outport indices may be invariant (and the driving outport

may be always the same).

— the buffering may be unnecessary altogether.

Sections 8.4 and 8.5 outline I COPY! acts which can exploit such special conditions. The

log of the |S:evel program (r 5.7) illustrated the growing and shrinking of the queues

quite vividly. One could now extend the Lucid compiler by a simulation phase which

generates logs, and which detects the queuing behaviour in this way. Such a device

would provide the optimiser with all imaginable facts, but it would be a very complex

program (also very slow in execution) Anyway, there is a much simpler method

which provides almost the same answers. The method is the index of/sot method

(derived from Wadge’s Cycla Sum T#»t [Wad79]) which will be described now.

Indax Offset and Offset Matrix

Focussing on a particular port of an actor, it is possible, at every moment of

program execution, to state the index of the daton currently due to traverse that

port (say, upon a ICOMPUTEI request). Initially, every index is zero. As program

execution progresses, the index increases by 1 with every [advance! request traversing

the port. Input histories are gradually consumed and output histories are produced,

and we see the indices at inports and outports grow, more or less synchronously. For

example, in a pointwist node actor (e g. I Plus 1 or j]F¡) the index is the same on all

ports (if we ignore intermediary states). However, at [Pa?! actors the index at the

right inport lags by 1 behind the outport:

FBY p o r ts Daton index -ft t ¡me

o u tp o r t Q 0 1 2 3 4 5 8 ...
in p o r t p 0 - no no <30 ao on , , ,
in p o r t P 0 0 1 2 3 4 5 ...

6.1

VI ■ 3

The left |FBY1 inport "dies" at the first | advance I request, Its index jumps to IfinaUnde»! (we

write With I NEXT] it is the other way round, its tnport is one ahead of the outport:

NEXT ports

outport s
inport p

Daton index -• t ime

0 0 1 2 3 4 5
0 1 2 3 4 5 6

These tables for 1FBY1 and INEXTI suggest how to characterise the behaviour of the port

indices. We use a m atrix with as many rows as the node has outports, and as many

columns as the node has inports. Each component of this matrix i3 called sin index

offset, and it is defined:

index o f fs e t = MINIMUM (ou tport index — inport index)
a l l indices

Included in this minimum are only the situations where datons actually traverse both

the inport and the outport (the 0 -0 of [next! is thus omitted) At least for the

fundamental operators, except ¡COPY!, such an offset matrix is easy to write. Each

component of the matrix is either an integer or A component of value

marks those inports from which an outport is totally independent

Most nodes have only one outport, and the matrix has only one single row there

The matrices for constant, 'READ! and iWRITEi nodes have no components. The matrices

for pointwf*« nodes have only components of value O The matrices for;E3Y~] and iNEXtl

are:

FBY: | 0 -1 NEXT: | t-1

There is no corresponding easy rule for the indices at Ico^Yl. Its inport index is

usually the maximum of its outport indices, but this rule does not apply strictly.

(The strict rule goes as follows, we mark a I COPY; outport a s 6a r« whenever it gets a

bare IaSvancS! request or an 1 A D V A N C E , f tn tth n d «« ! Initially, and after a proper I a d v a n c e],

this mark is cleared. The inport index is the maximum of the unmarked outport

indices, i f any. otherwise it is the maximum of alt outport indices) However, there

0 1

VI ■ 4

are other ways of finding out the jCOPYl inport indices. Every COPVI node actor is

connected to other node actors, and from the indices of these other actors one can

derive the indices at the I COPY! itself. We can provisionally assume that the outports

of IC0PY1 never go bare, and apply a strict maximum rule for its inport index;

consequently, all its index offsets will come out as non-negative. At every moment,

one component of the ICOFYI offset matrix is usually zero (viz. the one of the driving

outport).

Intuitive Meaning of Index Offsets

The meaning of index offsets has not been made clear yet. There are, however, many

analogies at hand for illustrating it.

Data Flow computations are organised a bit like the work on a production line

(in a somewhat old—fashioned factory): the components are accepted from preceding

production processes, operations are applied to these components, and the resulting

item is passed on further down the line

Our old analogy of the small restaurant "Chez Lucien" can help; after all,

restaurants produce meals. Pots and pans are needed for the cooking, but our cook

has only few of them. The cooking of a meed can begin only after the pots and pans

from an earlier meal have been washed up. For the f ir s t meal(s), however, the pots

and pans are taken straight from the shelves One can say, the pots and pans are

"injected Into the production cycle" to start things up

In Data Row, as well as in these analogies, work can go on only If all the

prerequisites are available There can never be too many prerequisites, i e. it does

not Interfere if the prerequisites for later work queue up, as this creates merely

some “alack" in the schedule If there are many kinds of prerequisites, the supply

with the least slack determines whether production goes on or not. Stack matters

most in cyclical production processes, i e. where the supply for a production process

e.i

V I -5

is somehow conditional on earlier output of the same process (like re-using pots and

pans). Indeed, work can go on only if there is a modicum of slack: each production

step takes the prerequisites [rsm ovts one unit of slack), manipulates them, and

outputs them (restores one unit of slack).

Every iFBYj node creates slack, it injects one daton into the stream flowing from

its righ t inport to its outport (no extra 3lack on its left inport). Every I NEXT] node

removes slack, it eliminates one daton from the stream. The offset matrices express

the provision or removal of slack on the stream flowing from an inport to an outport.

Nsgativs index offsets indicate the provision of slack, and vice versa. (This definition

is now standard, for mathematical reasons [AsW83]. Early publications [Wad79] used

the opposite definition.)

At some moments, however, there may be more slack than busy nodes to use

it up. This means the slack has to be accommodated somewhere else, namely in a

ICOPYl node. Its buffer queue takes up the remaining slack, and the queue length is

therefore less or equal the (inverse of the) index offset XOTY; nodes provide no cure

if there is insufficient slack.

Wadge's [Wad?9] Cycle Sum Test states (in essence) that every cycle is certainly

free from deadlock if it has slack of at least one daton. A cycle with fewer ?NEXT;s than

|F3Yls passes the Cycle Sum Test. The Cycle Sum Test gives merely a worst cos*

analysis (the rule is sufficient, but not necessary), whereas log3 give the whole

answer (only: to produce the complete tog may take very long, possibly forever).

Further below we will see how particular constellations of nodes permit a relaxation

of the rule - The Cycle Sum Test determines the minimum queue length, and

requires it to be at least one However, in order .to optimise fcopYl (t 0 4), one needs

to know the mosimum queue length This can. still, be found by index offset methods

(t "iteration", below).

6.1

VI • 6

Any serious computation involves a large number of nodes, and one would wish

to know how much slack there is in such a large composite. This can be achieved by

matrix operations, to be described now.

Nat Construction

An arbitrary Lucid graph (a net or a subnet) may be constructed using merely

two tools: juxtaposition and iteration (see also [Fau82], pages 140 ff). At each

construction step, we can determine the offset matrix of the object built up so far.

node 0 node 1
4—— i-+

0 1
1 2

4 4

,r
node

Ju x ta p o s it io n I t e r a t i o n

Juxtaposition is the operation which takes two arbitrary nodes, and places them

side—by—side. Iteration is the operation which takes an arbitrary node, and connects

a particular inport to a particular outport. Both operations re-index the inports and

outports in the obvious way

The number of inports of the juxtapositioned super-node is the sum of inports

of its inner nodes, and the same is valid for the outports. The offset matrix of the

super—node is obtained by placing the offset matrices along the main diagonal, and

by padding the remainder with For the example above (let a, 6, c, d be

offsets):

8.1

VI • 7

node 0 :
d-----------
I • *

node 1 :

c
d

uxtapos i t ion :

a 6 —

The number of inports of the i t t ra t id super—node is one less than that of its

inner node, and the same is valid for the outports. The offset matrix of the

super—node is obtained by forming the muimum of the index offsets along the paths

which connect the new outport to the new inport. The matrix component for the

inport and outport to be connected must be < 0 (otherwise the net may deadlock).

For the example above:

inner node
H----------
[a 6
I c d

i te ra t i on :

max (a-t-d, b j
(e m ist be < 0
s = la+d — max

= I a~d - b
+ ¡6 — max I

)

The condition "e < 0 " is due to the Cycle Sum Test; "s" expresses how much total

slack there is on the node-internal paths

Example (ISieve! main program)i offaat matrix

We are now able to apply this method, for example, to a subnet which occurred in the

main program for the !s->ve|:

1----+ I-----------1
"1"H----- * PLUS I *■----- h

4----+ H------ 1— +

4

We want to work out the queue lengths m the iCQPVI node at the bottom. The offset

matrix of the l PLUS] node consists only of zeros, and the matrix of the I PLUS! node

compounded with the "1" is just a zero. The matrix of the i PaY! compounded with the

6.1

VI ■ 8

"2 " is just a -1 , and the entity consisting of "21', [f§yJ. ” 1" and I PLUS! gives therefore an

offset matrix of just a —1. Yet, we know nothing about the matrix of our jCQPYl.

We connect (= iterate) the outport of the compound to the ¡copy! inport, and get:

and connect the outport of the whole thing to the right [COPY] outport. This leads to a

matrix without any columns (since there are no inports), but there is also the

condition "d—l < O". This condition states that the ¡copy! node must provide buffer

space for (up to) one daton on its right outport. The left ¡COPY] outport is the only

subnet outport (it must be therefore the driving outport for the whole subnet), and

its queue length is therefore taro

But this is not all The queue lengths were calculated under the assumption that

we are not in an intarmadiary state In other words, it describes the state where the

daton delivery has been acknowledged by an [ADVANCE1 request. During the evaluation

of a daton the I COPY! queues can swell to a length which is one greater than calculated

above. In our example, above, the left iCOPYi outport must thus provide a buffer for

one daton. and the right COPY outport must provide space for two, and this is indeed

in harmony with the log (t 5.7).

Offaot Matrices of UDFa

The offset matrix of a non-reeur*iv« UDF can be determined just by applying

juxtaposition and Iteration, as described

2 FBY 1 + ... COPY : u xtaposition :

I " I c
d c

d

I c—1
| d — l

6.1

VI-9

Matters are more difficult for a recursive UDF, since its offset matrix is defined

in terms o fitss lf. It is nevertheless quite straight forward to compute. We apply our

usual construction process (juxtaposition and iteration), though using a matrix of

unknowns for the recursive UDF. Once the construction is done, we can equate the

resulting offset matrix with the matrix used at the outset, and we are left with a

system of linear equations or inequalities. The solution of this system is the offset

matrix.

Example flfirst])

This process can be illustrated using a recursive definition of jFIRS';::

FIRST a a a FBY (FIRST a) ;

The corresponding Lucid graph is (ignore the offset matrices for a moment):

4
t-

H-------1- COPT
i--------

4

\ F1F
------1-
1ST j

— •
/ -I

The offset matrix o f FIRST] has only ono component, namely/, the subnet o f ! fb Yi and

I FIRST] (framed in dots in the drawing) has the offset matrix <0, /-/>. We iterate this

subnet with the [coftTl node, and have to form the maximum of the offset matrix above

(the offset matrix of our IcopV! node is yet unknown). The end result is a 1FIRSTI node

again, and we equate therefore that maximum with / itself'

/ = max | 0, /-1 j

6.1

VI «10

The solution is / * O. which means the sole component of the offset matrix for the

UDF IFrBSTI is zero. We conclude that our COPY has the offset matrix <0, 7>T. as

shown. It has therefore buffer space for one extra daton on the right outport and

none on the left (actually one more each, to allow for Intermediary states).

The same process can be applied to the recursive UDF |wvaj, and we would find

that both components of its offset matrix are —. The sole component of the offset

matrix of the recursive UDF I Sieve] is also «. This means that, in either UDF, the

inport indices may be arbitrarily far ahead of the outport index, and its actor might

therefore have unbounded buffering needs. We know from the log, however, that tach

invocation of the [Sieve! retains one daton; there is one invocation per prime. If we

made a log of Iwvr!, we would find that the top invocation retains one daton whereas

all earlier invocations have no memory. - By the way. the offset matrix of IUPO.M is

<0, -1 > and, again, the top invocation retains one daton whereas all earlier

invocations have no memory

6.2 Act Expansion, and Node Condensing

The translation process described in chapter IV leaves us with a large number of

actors (viz. one actor per node). This is exactly what is needed for a computer of the

latest design, many cheap processors closely coupled together In traditional

computer systems, however, concurrency must be restricted to those cases where it

is essential; some uses of the concurrent OR are such essential cases (Real time

requirements provide an unending supply of further examples, but that topic goes

beyond this thesis.) We turn our attention in this section to an optimisation for a

setting where concurrency must be minimal. The optimisation technique of this

section is not applicable where the superior is a concurrent operator or where the

Inferior has more than one reference K copy]) - We prepare the program for this

optimisation by replacing concurrent operators by their non-concurrent

0 2

V l - U

counterparts wherever possible (i.e. wherever that is not against the idea of the

program).

As far as this section is concerned, three parts of every node act (t end of 4.1)

are particularly relevant: X-part, Y—part and exception part. The X -part is

executed only once at the beginning (the actor initialisation is part of this), the

Y-part is executed in every loop pass, and the exception port is executed in the

event of an exception.

When a node actor gets a [COMPUTE] or [ADVANCE! request, it resolves It within

exactly one loop pass, i.e. by executing the Y—part or the exception part.

An undirected IreceiveI is the first instruction in the Y—part, and this is exactly where

the actor accepts all ICOHPUTEj requests Some acts ("/tnito stato m achinot". such as

!F3Y| or INEXTI) do not fit into this layout right away, but they can be brought into the

universal shape with the help of 'CASE! statements.

On the side of the superior, a mere two pieces of code produce the requests.

The daton value is acquired Trom the operand actor by calling ^Ge-.Pa-.onl (which issues

also 1 NULLIFY!, if required), and an !EXCEPTION7ADVANC~~| does the rest (Concurrent

acts use generally means other than lc«tDaton!, which is why our optimisation

mechanism cannot be applied there.)

The optimisation is easily carried out: just append the inferior X-part to the

X—part of the superior, substitute the call to rca-.Datonl by the inferior Y-part, and

substitute the 1 EXCEPtlON a d v a n c e - 7 by the inferior exception part. — Clearly, this

transformation is an expansion (* 4.3.2). It has no effect on the computations, but it

reduces the number of actors and the amount of message passing The expansion is,

of course, hardly possible If the inferior has more than one reference (sole example

iCOPYl inport actor). It goes without say that no law forbids the expansion of

expanded code; expansion may indeed be re-applied up to any finite depth

6 2

v i. 12

The code of a UDF act U s tlf (t 4.3.3.1) can be put in place of the UDF reference

(i.e. expanded), but the instructions inside the UDF act (ICRSATSI etc.) must clearly

not be expanded (tosy «sponsion must be maintained, T 4.3.3. l). UDF actors are, like

all node actors, usually accessed from more than one point (at least from 10.tD.tonl

and from [EXCEPTION ADVANCE~1). The UDF expansion must be programmed with care

so that one UDF subnet is not created more them once. — If a UDF is unlikely ever to

get a lC0kPUTE| request, it can be advantageous to leave it unaxpandtd, even if the

UDF is non—recursive. It will use hetrdly any space until it gets its first [COMPUTE]

request.

Act expansion has its drawbacks. Without it. the program would use mainly the

standard acts (t 4.5), and only ine UDF acts would have to be defined and compiled

Individually. The thartd use of (standard) acts keeps the memory requirements low.

As soon as one standard acts is expanded and integrated into another standard act,

we end up with one act more, which has its price. One has to weigh the number of

actors against the number of acts. Generally, act expansion is indicated if it greatly

reduces the number of actors It is of real benefit only if applied to a depth much

greater than one.

6.2

v i. 13

Exampl* fl Slavi main program): «e t axpanaion

The subnet from the I Sieve I main program is well suited to demonstrate act expansion.

Here is the subnet once more:

---------h x 5
'T 'H -----

H-----+

H-----1- x3
I "2"H-------
H-----1-

x8

■+

We start our analysis at the subnet outport (as did the translation algorithm of

section 4.3.4), namely the outport actor ¡*0] of [COPVj. Its inferior ¡71] cannot be

expanded (at least not straight forward) since it has two superiors: we leave fxO]

unchanged for the time being and move on to its inferior¡7j]. Its inferior ¡72], the |F3Yl

actor, can be expanded. The relevant portions in actor ¡77; are:

(* Declarations: V i r i i t n 0 •)
LABEL 1 ;
VAR request : MSGTYPE ; inde » ; INTEGER ;

* 2 : ACTOR ; r e s u l t : ANYTYPE ;

(• X—part and i n i t i a l i s a t i o n : •)
(, , « *) : = RECEIVE "ROM (C re a to r) :

(• Y-part: •) 1
result : r O s t D it a n («2 index) i

(* Exception part: *)
1: (request, index) Reveal i

IF request * ADVANCE
THEN E X C E P TIO N (request, index) TO (xS) ;
RESET ;

6.2

VI • 14

We expand the iFflVl actor [52] and obtain a rather clumsy piece of code (this is

essentially |Act_Fby_l):

(• Declarations: Ksrsien / ♦)
LABEL 1 ;
VAR request : 1ISGTYPE ; index : INTEGER ;

*3 . s4 : ACTOR ; r e s u l t : ANYTYPE ;

(* X—part and in itia lisat ion : *)
(, . « 3 . * 4) := RECEIVE FROM (C re a to r) ;

(• Y—part :
IF index = 0
THEN

result := GetDaton (in d ex , *3)
ELSE

result := GetDaton (in d ex—1, x4) ;

(• Exception part: *)
1: (request, index) : = Reveal :

IF request = ADVANCE
THEN BEGIN

IF index = 1
THEN EXCEPTION (r eq u es t , f in a l index) TO (x 3)
ELSE I F index ’ f in a l index

THEN EXCEPTION (r e q u e s t , index) TO (« S , x4)
ELSE EXCEPTION (r e q u e s t , index - 1) TO (x4) ;

END ;
RESET ;

8 2

VI • 15

The Left operand of the I Fay; is a constant, and our code becomes a good deal simpler

by expanding lAct-C onata iO

LABEL 1 ; (• D ec la ra t ion * . Version * •)
VAR requeat : HSGTYPE ; index : INTEGER ;

*4 : ACTOR ; r e e u l t : ANYTYPE ;

(• X —part and i n i t i a l i e a t i o n : •)
(. , * 4) :■ RECEIVE FROM (C re a to r) ;

IF index = 0 (• Y -p a r t . •)
THEN r e s u l t «■ 2
ELSE : l

r e s u l t := CetDaton (in d ex -1 , x4) ;

1: (r eq u ea t , index) : = Reveal ; (• Exception par t . *)
IF (requeat - ADVANCE) AND (1 <> Index)
THEN BEGIN

IF index = f in a l index
THEN EXCEPTION (req u ea t , index) TO (x4)
ELSE EXCEPTION (r eq u es t , index-1) TO (x4) ;

END ;
RESET ;

It is also easy to expand the right operand of IF9Y1, the :PLuS, node. The "index fiddle"

of iFBYi carries through to the operands of I PLUS]. We expand the left operand jtb] as we

did before with[x3], and we get

LABEL 1 ; (• D e c l .
VAR requeat ; HSGTYPE ; index

xS : ACTOR ; reau lt

Version 3 •)
INTEGER ,
ANYTYPE ;

(• X -par t and i n i t i a l i s a t i o n .
(, . a «) ; « RECEIVE FROM (C re a to r) ;

IF index = 0 (• Y -pa r t .
THEN r e s u l t ; « 2
ELSE

r e s u l t ; * 1 ♦ GetDaton (in dex -1 , xS) ;

*)

I : (r eq u ea t , index) ;= Reveal ; (• Exception part. •)
IF (requeat •» ADVANCE) AND (I <> index)
THEN BEGIN

IF index = f in a l index
THEN EXCEPTION (r eq u ea t . index) TO (x «)
ELSE EXCEPTION (requ ea t , in d e x - !) TO (x i) ;

END i
RESET ;

8.2

VI ■ 16

The next step would be to expand the ICQPYi outport actor fx8l, but we hesitate here.

Firstly, the code of [5s| Is too massive to benefit when expanded; secondly, we cannot

apply expansion any further because of [¡T] having two superiors. Thirdly, if we did

nevertheless expand [xb] and integrate it in [xTJ. the jCOPYl inport would end up trying

to request from itself. However, LUX actors cannot exchange messages with

themselves. On the other hand, we found in section 5.7 that ¡xo] is always the driving

outport, and that the queue length on the right inport is one. This is why [xe] need

never exchange messages with [xT], and expanding [55] would therefore not cause any

problem.

To bring the example to a conclusion, let me anticipate a tailor-made ICQPVl act

with just the right properties (with a "cyclic" buffer of size one) which will be

presented in section 6 4. Special attention has been paid to making sure the act can

handle bare I ADVANCE! requests properly. We expand the constituents of that Ic o p v !

act, and get one node act for the tn tira subnet:

6 2

VI • 17

ACT Act^lO ; Kartton 4

LABEL 1 ; (• D ec la ra t ion * •)
VAR su per io r : ACTOR ; request : MSGTYPE ;

now. index : INTEGER ; r e s u l t : ANYTYPE ;

BEGIN
new i * 1 ; (• X -part •)

REPEAT
WHILE TRUE DO
BEGIN ; i

(su p e r io r , request , index) := RECEIVE () ;

(• Y—p a r t : •)
WHILE new < Index
DO BEGIN : 1

new ; = new ♦ 1
IF now = 0
THEN resu l t := 2
ELSE r e s u l t r e s u l t ♦ t ;

END ;
: 1

SEND (DATON, r e s u l t) TO (s u p e r i o r) ;
END ; (• End o f inner e t e rna l loop. •)

1: RESET ; (• Except ion par t . •)
UNTIL FALSE ; (• End o f outer e t e rna l loop. •)
END ;

The cell ¡now retains the last index for which the [result! has been computed, and the

evaluation does some "catching up" (¡WHILE nw~Qndex!) when required This elaborate

mechanism has been inherited from the tailor-made [copy1 act; it needed this

mechanism for handling bare iADVANCE! exceptions correctly.

An optimising compiler could go a step further. It has been mentioned that

some acts must be conditioned to be suitable for expansion (* beginning of 6 2,

"f in ite state machine") However, once expansion has been carried out to

exhaustion, the reverse conditioning can be attempted If the Y-part handles the

evaluation of Its in itia l daton differently from the rest, It may help to unwind this

in itia l loop pass (make a copy of the loop body, specialise it for one index value), and

to place It before the loop (l.e. append it to the X-part). This process may be applied

repeatedly.

6 2

VI ■ IB

One loop pass (vtz. setting of the starting value) can be unwound in our example.

Very little computation is actually carried out from one index value to the next, and

the computation could therefore be done in the exception part. Some reorganisation

of the program results in:

A ct_*0 ; V e r s i o n 5

LABEL 1 ; (* D ec la ra t ion s •)
VAR superio r ;: ACTOR ; request : MSGTYPE ;

Index : INTEGER ; r e su l t : ANYTYPE ;

BEGIN
r e s u l t i* 2 ; (• X-part ')

REPEAT
WHILE TRUE DO
BEGIV :1 |

(su p e r io r , r equest , index) := RECEIVE () ;

(• Y -part i s empty •)

SEND (DATON, r e s u l t) TO (s u p e r io r) ;
END . (• End o f inner e te rn a l 1 oop . •)

1 : IE Reveal s ADVANCE (• Exception part . •)
THEN r e s u l t
RESET ;

: * rasu 1 » ♦ 1 ;

UNTIL FALSE . (• End o f outer e te rn a l 1 oop . •)
END .

6 2

VI-19

Even better, the compiler might detect and exploit that the result is a linear function

of the daton index:

ACT Act-JiO ; Vara ion 6

LABEL 1 ; (• D ec la ra t io n s •)
VAR superior : ACTOR ; request : H8GTYPE ;

index : INTEGER ; r e s u l t : ANYTYPE ;
BEGIN (• X—part la empty •)

REPEAT
WHILE TRUE DO
BEGIN ; I

(s u p e r io r , request , index) . •= RECEIVE () ;

(• V—p a r t : •)
r a a u l t i - Index ♦ Z ;
(• := index • increment * s t a r t •)

: 1
SEND (DATON, r e s u l t) TO (s u p e r io r) ;

END ; (• End o f inner e te rn a l loop. •)

1: RESET ; (• Exception p o r t . •)
UNTIL FALSE , (• End o f ou ter e te rn a l loop. •)
END ;

Actors created from this act have no memory, and the act is therefore as easy to

expand as ;Ac:_ConstZ!.

6.3 Enriching the Protocol

The universal protocol (T4.2) has proved just right for all the explanations

so far; a more refined protocol might well have blurred the relevant issues. But we

shall now study some protocol extensions, most of them aimed at making better use

of the [¿OPY, node actors.

All replies were so far of message type! 3AT0N'!. A reply of the alternative message

type ICON»TAMf] could imply that all later replies will have the same value, gF] and

[c5PY|, even i Nf i t f l and IfbVL could take advantage of this extra information. It is

unfortunately not easy to recognise all structures which deliver constants

— Occasionally, actors have to switch into the "through." mode, where all subsequent

requests and replies are passed on unchanged This situation could be optimised by

6 3

V I. 20

operand redirection, i.e. by extra Information in the reply telling "substitute this

operand from now on by actor xy*

Here are some extended requests (all directed at actor e):

[AUGMENT?!: (e = IC0PY1 outport) create a further iCQPYl outport actor,

I LENGTH? I: (e = I COPY! outport) enquire for current queue length,

IQUSUEdl: (e = I COPY! inport) append daton d to the queue.

[RESTART!: reset o as if it had just been created and initialised,

I KILL!: eradicate o and its dedicated inferiors.

Only the first two requests get replies The requests are listed in the order of

Increasing relevance, and difficulty. The list is anything but complete (further

suggestions: "bulk demand" *4.6.13, and a special ¡BARS] exception in place of the

bare ¡ADVANCE!). Let us study the extensions one by one.

Ia u g m e n t !

If one 'COPY) node actcr feeds d irte tly into another [COPY] node actor, some

wasteful buffering of datons can occur (duplication, ? 4.0.1). Such a

configuration can occur in perfectly meaningful programs. In the [Sieve! program

(? 5.7), for example, the COPY: in the main program feeds straight into the jCOPY!

of the UDF. This situation can be saved by the request [AUGMENT!. Issued to a

ICOPYj outport«, I AUGMENT would cause • to create a further [COPY] outport

actor E, with E initially referring to the same daton a s « (i e E starts from the

present state of •). Upon the [AUGMENT] request. • gives the actor name of E as

reply

lUaWTHl

There are numerous applications for a request [LENGTH] which helps to find out

the current gueue length, of a iCOPYl outport actor (or a lftEA&| actor) It is almost

Indispensable in the interface from a demand driven to a data driven evaluation.

6 3

VI «21

A mixed Lucid implementation with provisions (or data driven

evaluation has its attractions, it can use the idle time of the processor

(e.g. waiting for inputs from the user) for some "compute ahead", especially if

this does not increase total store requirements.

[QUEUE d|

The IQUEUB el request is similarly important for the interface from a data driven

to the demand driven evaluation. That request, when issued to a IcoPYI inport

actor •, appends daton d to the buffer queue of •. (The [COPY! inport act of

section 4.6.11 would need modification to accept requests.) — This enhancement

permits a IFBY1 optimisation: every [F3T] node inserts "slack" into the daton

stream and, with the help of [QUEUE <t\. one would be able to "push" this daton

downstream before the program start. The corresponding optimisation or TSEXIi

requires no special means, merely a 6art [ADVANCE: must be passed upstream

before the program start.

[restart;

Some recursive UDFs cause an unending need for the creation of new actors,

while at the same time shedding defunct actors (see I Kit/-! request, best

example: !igloo! function t appendix B) It is often possible (Lucid ta il recursion,

t 6.6) to immediately assign a new role to a actor •, instead of letting it die.

This is achieved with the help of the [RESTART1 request, which makes • pretend it

had just been created and initialised. Actors propagate TresTaRT] requests to

their Inferiors

E

We have so far used ! AJVANCfe, filt̂ indeiil to tell actor • that its services are no

longer needed. Upon lA^VANCOnaiindVsl, actor • does a "last clean—up" and goes

then into eternal hibernation (i e it does not terminate its existence; it may be

followed by a TRESfARf! request). The IkiLl! exception exceeds the effect of

0.3

VI «2 2

1 ADVANCE, fin«iinde»| in that it do«* terminate the existence of • (and a IRESTARTI is

then impossible). Actors propagats ItctLl exceptions to their inferiors in the

course of the clean—up. After the IKtlLI. the entire subnet is eradicated. Once an

actor has received a I KILL! no further messages must ever be sent to it. since

"messages must only be sent to » l is t in g actors" (f 3 2.2. IsENDI). - fifflxl

improves efficiency, obviously, since it releases resources for re—use.

When tracing upstream through the subnet, we may come to a ICOPYi node actor

which is not entirety dedicated to the subnet. If • is a I COPY! outport actor, a 1KILL1

exception will certainly terminate •, but it will terminate the pertaining ICOPYi inport

actor only if no other outport actors remain. This is controlled by the [activel voting

mechanism (t 4.6.7) in procedure jAdvanceOutportl.

The (revised) exception part in the !F3YI act is the ultimate source of most jiCLLi

exceptions (another source is ¡TfJ with computed constants, t 6 6). The revised code

would look roughly like this:

1: (r eq u es t , index) : = Reveal ;
CASE request OF

ADVANCE: IF
THEN
ELSE

index - 1
EXCEPTION
EXCEPTION

(KILL, f in a l in d e x)
(ADVANCE, index—1)

TO
TO

(pO)
(P i) ,

KILL: IF
THEN

index * 1
EXCEPTION (KILL, f i n a l i ndex) TO (pO, Pi)

NULLIFY:
ELSE EXCEPTION (KILL, index-1) TO (p l)

END ;
RESET i (• There should r e a l l y be no RESET a f t e r KILL •)
. . . (• (a c to r might ge t suspended b e fo re i t s d ea th) . •)

The acts would have to be modified to make them handle ikiLLl exceptions

appropriately. For example, the eternal outer loop would change into:

REPEAT

UNTIL Reveal » KILL ;

Obviously, an actor with on« outport must die as soon as a ftcHI request arrives

Correspondingly, a FcopTI node dies after sach outport has got a IkFClI. But in esrtain

6 3

VI-23

cycles, the entire |C0PY1 node actor should die even when only some outports have got

a Ikhli. Consider for example the simple cycle:

This I COPY! depends on itself. According to the simple rule, the right I COPY! outport

will never get a ?KILL! request, and the IcOPYl will therefore never die We must take a

more global approach: we must view the subnet (consisting of :COa V ', |F3Y;. and left

IFBY1 operand) as an entity, with the left [COPY! outport as the subnet outport. The

rule would then be: "the subnet dies once each of its outports has got a j kill I

request." — One might be tempted into using a "trick", using a modified ~COPYl which

dies upon a single I KILL! request on one outport But such a [copy! would be useless in

a slightly more complicated subnet (a combined vote of all subnet outports is

needed, t end of 4.7 2):

It must be clear by now why we printed K for TADVANC~,~7ina;.nd«!«: in the state

transition tables and logs. Indeed, 1 ADVANCE,'finalmdei! can be substituted by [KILL! in

our universal protocol, the difference lies outside the message passing behaviour.

b = a FBY b
. . = b

a

COPY } same e f f e c t as: b = FIRST a
■+

4

, . = c

6.3

VI «2 4

6.4 Tailor mad« |copyj acta

The ICOPYI act offers many chances for optimisation: most applications do not

need the generality of our universal icoPYl act (r 4.8), and such restrictions can often

be traded In for reductions in administration. Our ¡COPY! act is very liberal in two

respects:

— it imposes no maximum queue length,

— the relative "timing" between the different outports is unrestricted (i.e. index

offsets between outports, and which outport is driving).

Sections 5 6 and 8.1 presented program analysis techniques for either property. This

section provides shortcuts mainly for those cases where a maximum queue length is

known. Our list of techniques is far from complete. — For the remainder or this

section we use n to denote the number of ¡COPYj outports

Cyclic buffara are generally used when a maximum queue length is known.

Such a buffer consists of an array 2 length 2], a pointer FpTt1 which remembers

where it last wrote into the at ray, and pointers "TeiltH which remember where to read

the array llgetltH is dedicated to 'COPY' outport t, i= / .. n). The general idea is then:

6 4

VI «25

CONST
Rl *4711 C Maximum queue length . *)
q l l * q l - I
n = 3 ; C Number o f COPY ou tports . *)

VAR
ptetrp ; ANYTYPE ; C The value to be put. •)
gterrp : ANYTYPE . C The obtained va lue. •)
V : ARRAY [0. . q l l] OF ANYTYPE ; (• B u f fe r *)
« • t : ARRAY [1. • nj OF INTEGER ;
put, i . j , k : INTEGER ;

BEGIN
put : » -1 ;
FOR j := 1 TO n DO g e t [j] := 0 ;
REPEAT

(* Putt ing data into b u f f e r . *)
p temp : s . . . ,
put ;= put + 1 ;
FOR) ; * I TOn
DO IF g e t [j] + q l l < put THEN r e p o r t - e r r o r ;
k : * put MOD ql ; (• wrap—around •)
y[kJ ; * ptemp ;

(• Assume outport « is not d r iv in g ; •)
(• Getting data m i a J b u f fe r : •) ,
IF put < g e t [i] THEN rep o r t—e rro r ;
J : = g e t [i] MOD ql ; (• wrap—around •)
gtemp := v [j j
. . . := g t emp ;
g e t [i] : = g e 1 1 i] * 1 ; (♦ ADVANCE •)
. . .

UNTIL FALSE ;
END ;

(The division remainder !~M0D! helps to achieve a w rap-around effect: once the

buffering has reached the end of array 3 '*• “Jumps" back to the beginning) This

code can be simplified a good deal in specific cases:

6.4

V I-86

If 13] — 2, the buffer consists only of |v[ol! and [vf ill. All the pointers toggle merely

between 0 and 1:

put := 1 ; g e t := 0 ;

(• P u tt in g data in to b u f f e r : •)
put := 1—put ;
v fp u t] := ptenp ;

(• R e t r ie v in g data from b u f f e r ; •)
gtemp := v [g e t] ;
g e t := 1-get ; (• ADVANCE •)

— In a two—outport ICOPYi, where the non—driving outport always lags two datons

behind the driving one, we can even do without pointers altogether (swapping

buffer):

[VAR vO, v l ; ANYTYPE ;
. . .

j (• Pu tt in g data in to b u f fe r ; •)
i v l := vO ;
I vO := ptemp ;

(• R e t r ie v in g data from b u f f e r : •)
! g t emp ;= v 1 ;

l__ I

— Only on« buffer cell 0 is needed in a two—outport ¡COPY] if the non-driving

outport lags only on« daton behind the driving one (t Version 4 in 6.2):

| VAR v ; ANYTYPE ;
. . .

I (• P u t t in g data in to b u f f e r ; •)
I v : * p t enp ;

j (• R e t r ie v in g data from b u f fe r ; •)
gtenp : « v ;

6.4

VI »27

On the other hand, if the maximum queue length is known and if the entire

history must be preserved (as in some versions of the !Sieve! UDF), an array is

most appropriate as buffer (just take the cyclic buffer and remove its

wrap-around). Arrays are appropriate even if the queue length is unbounded:

it is best in that case to subdivide the available storage space Into arrays

according to the growth rate of the respective queues. The program collapsot

anyway once the buffer space is exhausted.

A two—outport 1C0PV1 can be implemented altogether without a queue, as long as

either outport disclaims the daton value early enough. Assume, the IC0PY1

outports o and O progress in such a way that O gets a bare |ADVANCE! always

boforo o is requested [COMPUTE] for the same daton index. The role of the

outports may be swapped after each episode. This situation can arise if a

variable x has two references of the kind:

H-----------
| COPY

i i
i-------------------K H--------------f
| FIRST | | NEXT
I -------- + H---------H

FIRST x
NEXT x

IF . . . THEN x / 2
ELSE x * 9 FI

1.S Tagged Data Flow

Our IcOPY' act (t 4.8) is restrictive in one respect: it handles datons only in the

sequence of increasing index (l.e monotonicalty. tend of 3.1.2). This restriction is

commonly made In Data Flow. We noticed, however, that acts without memory

permit requests for datons in any sequence (t 4 5.7). A technique named "Tagged

Data Flow" permits such random index computations. It is moderately difficult to

change our implementation into tagged Data How; a redesign is required mainly for

the actors with memory: T c p p y i . iREAPl. f w f t t f S I and UDFs.

8 5

Vl-28

In tagged DF, all ICOPYI node actors share one "daton poo l" (faintly resembling a

data base). Whenever a daton arrives at a ICOPYI inport, a bucket" (a data record) is

deposited in the pool, stating the value and the identity of the daton. The name of

the ICOPYI inport actor can serve as identity tag. Whenever a ICOPYI outport gets a

I COMPUTE] request, It searches first the pool for the daton in question (using the daton

index and ICOFYI inport name as search keys). If the search fails, the ¡copy] instructs

its operand to determine the daton value. At suitable moments, the daton pool is

cleared of defunct datons; reference counts or statistical methods (the "rotirom ont

•chomo" [FaW83]) are used to identify defunctness. Tagged IREA31 works quite like

tagged ICOPY], except that its datons remain permanently in the daton pool.

However, the tagged implementation becomes much more complicated once we

allow recursive UDFs. While a node actor is trying to evaluate one daton of a history,

the system must be able to create another actor which evaluates another daton of

the tamo history. Such a multi-level action is occasionally required for evaluating

recursive Lucid definitions. All tagged DF implementations of Lucid use therefore a

technique rather different from the one described in this thesis Each of their node

actors computes only a single daton, and dies then. The resulting high rate of actor

creation and termination can be partly compensated by highly optimising the actor

creation.

Generating good equivalent imperative code for tagged DF is very hard The

|WRiTE!| act and our protocol can remain essentially unaltered. Only a UDF nesting

control needs to be added; Ostrum/Wadge call this the "plact tag". — Ostrum's Lucid

interpreter [OstBl] is based on tagged Data Flow; it stores even all intermediary

results (i e not only the ¡COPY] queues) due to a present lack of program analysis

Denbaum's thesis [Den83] demonstrates how to compile Lagged DF for a subset of

Lucid, but with rather unsatisfactory code as result

6 5

VI «29

Why Is the chapter on tffic io n cy the place to discuss tagged Data Flow? The

daton evaluation out of "despair" (t 4.6.5 and 5.8) can be completely avoided in

tagged DF: its daton evaluation is free to skip index values since it can always come

back to them. Tagged DF handles this situation clearly most efficiently. Pipeline DF

excels in the simplicity o f daton acctss, where tagged DF needs an associative

memory search. Moreover, the discarding of supposedly defunct datons occasionally

forces tagged DF to re-evaluate datons

6.6 Cod« Optimisation

There is a virtually unfathomable "box of tricks" for improving the efficiency of

the generated code even further; quite important ones have already been presented

earlier in this chapter. Here are three further tricks (in reverse order of difficulty):

Concur rant J f]

It is easy to refine the operator so that it doe3 not evaluate the condition

operand c if the I THEN; operand x and the [ElSEl operand y deliver equal values

anyway. Instances of:

HFc THEN« ELSEy FH

are simply substituted by:

IfF c OW («■ ») tHEN » ELSE r l ? .

In general, this concurrent |6ftl performs very poorly on von Neumann

mono—processors, and It performs best if c is much more difficult to evaluate than x

and y.

Trl with Computed Constanta

Recursive UDFs, in particular, tend to contain expressions like:

6.6

VI *30

IF FIRST expression THEN z ELSE y FI
IF indez < t THEN z ELSE j FI // with constant t

The [if] switches in both cases, from a certain index on, to either choice;

* re—evaluation of the condition will be unnecessary from then on. At that point can

a net sim plifica tion (1KILL1 requests, operand redirection) be applied to the

unsuccessful operand. The "arms” of the [|[] do often contain a UDF recursion. Such

a net simplification may prevent a UDF from inflating beyond all bounds.

TaH Recursion for Lucid UDFe

Recursive L'DFs correspond to in fin its nets (t 2.2), and the storage

requirements of recursive UDFs increase whenever a new UDF is invoked. It is,

however, occasionally possible to formulate acts for recursive UDFs so that they use

tail recursion (or something resembling it), and they can lose their progressive

storage requirements in this way.

Let ¡X] be an actor for a recursive UDF, and let lYrT. ... [Ŷ I be the operand actors

of jx]. The optimisation is only possible if all the actual operands in the recursion

of ¡x] are particularly simple, i.e. if they are either identical to certain formal

operands of ¡X], if they are fC0?Y| nodes, or if they deliver invariants (constant or

Ifirst ...|). They may even, and this is the most complicated case, deliver a formal

operand p of [x] with a simple m odification (namely: p m ultiplied with an invariant,

p with an invariant added, OKed or ANOed, or index of p with an invariant added).

We exploit the fact that the effects of such operations can be accumulated in one

storage cell

This transformation generates a nstw UDF from the given UDF, so that the new

UDF can do all the work of the given UDF, though without the growth in store

Further to the transformation of the actual operands and of the result, above,

a subnet transform ation may have to be carried out The subnet transformation is

6 8

VI »31

done as follows (before the translation): starting from the subnet outport we move

upstream and mark every node of [x] (including those in operand subnets) which

contributes to the computation of the "current" daton with an index offset greater or

equal zero. This marking requires that inner UDFs be expanded, in the worst case as

often as there are [NEXT! nodes in the UDF. The marking stops when each node of ¡X],

ignoring the invocation level, has been marked at least once (the transformation

fa ils if a node needs to be marked more than once). The new UDF is then written so

that it contains all the marked nodes, crossing invocation levels wherever needed. —

The full description of the transformation will be the subject of a future paper.

A recursive UDF may be expanded (t 6 2) once it has been transformed in this way

Example ([Act_JL)pon_])

It depends on the right IUPON': operand value, how the operands (of the "current”

activation) are transformed into the operands (of the ' inner" activation). The result

of the inner activation is transformed into invariants fTT?iON' was originally defined as

the UDF:

UPON (a . k) = a FBY UPON (p. NEXT k)
WHERE p = IF (FIRST k) THEN

ELSE
END ;

NEXT a

a F!

____________ I
The transformation yields a new UDF.

NEWPON (a , k) » VALOF
d = NEXT k ;
b -«IF FIRST d THEN NEXT a

ELSE a FI ,

■o that:

raau lt ■» b FBY NEWPON
END :

(b , d) :

UPON (*, y) ’ x FBY NEWPON (x , 0 FBY y)

|NEWTON! contains a tail recursion, and only I NEXT] operations have to be accumulated

The resulting (non-recursive) code for iNftwftON] can be merged with the ¡UP0N1

adaptation into a reasonably short piece of code (it would be hard to explain the

0.6

entire translation):

ACT Act_Dpon_ ;
LABEL 1 ;
VAR

su p er io r , pO. p i : ACTOR
index, count, now : INTEGER
r e s u l t : ANYTYPE

BECIN
(. . pO. p i) := RECEIVE FROM (C re a to r) ;
count 0 ; now ;= —1 ; condi . “ TRUE ; errpty

request ; MSGTYPE ;
cond i, enpty : BOOLEAN ;

TRUE

REPEAT
WHILE TRUE DO BEGIN

(su p e r io r , request , index) .= RECEIVE ()

WHILE now < index (• Catching up:
DO BEGIN

IF 0 <■= now
THEN BEGIN

condi := CetOaton (now+1, p i)
EXCEPTION (ADVANCE, now+2) TO (p i)

END ;
now := now + 1 ;

IF condi
THEN BEGIN count count «■ 1 ;

IF errp t y
THEN EXCEPTION (ADVANCE, count) TO (?0)
ELSE etrpty . TRUE ;

END END ;

IF etrpty (• Re luc tan t e va lu a t ion .
THEN BEGIN

resu l t := GetDaton (count, pO)
EXCEPTION (ADVANCE, count«- !) TO (pO)
errpty ;= FALSE ;

END ;

*)

SEND (DATON, r e s u l t) TO (s u p e r io r) ;
END ; (• End o f inner e te rn a l loop.

(• Exception par t . •)(r eq u es t , index) Reveal ;
IF (request * ADVANCE) AND

(index * f in a l index)
THEN EXCEPTION (r eq u es t , index) TO (pO, p i) ;
RESET ,

UNTIL FALSE ; (• End o f ou ter e te rn a l loop
END ; (• End o f Act_Upon_ .

VI «33

The example shows a further application of the "catching up” mechanism (t 8.2,

Version 4), it uses the | FIRST! /jMEXTI optimisation of 1C0PY1 (for the variable [d]). the

invariant [IF]. and UDF tail recursion with accumulation of IMEXTi. The lUPOW) actors do

not build up internal queues. — Similar methods are applied to obtain the WVR act:

8 6

Example (|Act_WvrZl)
V I * 34

ACT A c t j f v r - ;
LABEL 1 ;
VAR

su p er io r , pO, p i : ACTOR ; request : MSGTYPE ;
r e s u l t : ANYTYPE ; condì, empty : BOOLEAN ;
index, count, 1 count, now : INTEGER ;

BEGIN
count := 0 ; 1 count : = 0 ; now ;= —1 ; empty := TRUE ;
C . . pO, p i) := RECEIVE FROM (C re a to r) ;

REPEAT
WHILE TRUE DO BEGIN : l

(su p e r io r , request , index) := RECEIVE () ;

WHILE now < index DO
BEGIN REPEAT ; 1

IF l c o u n t < c o u n t
T H E N E X C E P T I O N (A D V A N C E , c o u n t) T O (pO) ;

: 1
c o n d i G e t D a t o n (cou n t , pi) ;
c o u n t : = c o u n t + 1 ;
E X C E P T I O N (A D V A N C E , c o u n t) T O (pi) ;

U N T I L condi ;
n o w ; = n o w +• 1 ;

E N D ;
lcount c o u n t — 1 ;

IF errpty (• R e l u c t a n t e v a l u a t i o n ; •)
T H E N B E G I N

r e s u l t ;w G e t D a t o n (l count, pO) ;
l c o u n t :» l c o u n t *■ 1 ; e m p t y F A L S E ;
E X C E P T I O N (A D V A N C E , lcou.nt) TO (pO) ;

E N D ;

S E N D (DA T O N , r e s u l t) T O (s u p e r i o r) ;
E N D ; (• E n d of i n n e r e t e r n a l loop. •)

1: (r e q u e s t , i n d e x) := R e v e a l ; (• E x c e p t i o n part. •)
IF r e q u e s t = A D V A N C E T H E N

BEGIN IF index = f i na l Index
T H E N E X C E P T I O N (r e q u e s t , index) T O (pO, pi)
ELSE IF enpty T H E N

B E G I N 1 c o u n t := lcount 1 ,
E X C E P T I O N (r e q u e s t . I c o u n t) T O (pO) ;

E N D ;
enqit y : * TRUE ;

END ;
R E S E T i

UNTIL FALSE ; (* End o f ou ter e te rn a l loop. •)
e n d j (* End o f Act_W vr_ . •)

8 8

v i . 35

•.7 Discussion

The purpose of this chapter was to destroy the myth that Lucid programs are

inherently inefficient. It gave only an idea of possible optimisation techniques. The

chapter has been somewhat vague concerning when and how to apply each

optimisation, it has been merely a fairly unsystematic collection of "tricks''. A closed

and comprehensive theory of optimisation would be desirable, and such work is

under way in a number of places. — Most of the optimisations techniques in this

chapter were aimed at a von Neumann mono—processor. If we applied them to our

ISievel program we would end up with a single actor, created from the following act:

Example (1 Sievel): final result

ACT Act_pr ime* _ ;

LABEL 1, 2 ;
VAR

index, r esu lt , t , i INTEGER ,
primes . ARRAY [1 .2000] OF INTEGER ;

BEGIN'
index : = 0 ; : * 0

REPEAT
reau lt : = index ♦ 2 . C r 6.2, Ver s i on 6. •)

2: FOR i := 1 TO t
□0 IF (r e s u l t M03 pri me* l i]) = 0 THEN GOTO l ;

WRITE [r ea u lt) t : * t> l ; p r i mes[t] ;= r e a u l t ,
GOTO 2 i

1 : i ndex : « index ♦ 1 :
UNTIL t * 2000 ; (• End of e ternal loop •)

END ;

But what is the ICOTOa! doing there'1 The program would only gain if that instruction

was omitted - This is a very interesting point The translation of the Lucid program

really yields the program as shown, with the TSSToSI in it, though the Lucid program

is easily corrected. Is the Lucid program meant to specify the operations which shall

be carried out, or is it just a mathematical definition of the result history? There is

6 7

VI- 30

no universally accepted answer to this question. One might give the Lucid compiler

an option stating the approach favoured by the user. (The former view might be

most suited during program development.)

8.7

v u . 1

CHAPTER Vlfc Area« of Furthar Rasaareh

7 .0 Introduction

Quite a few aspect* of implementing Lucid have been omitted in this thesis. This

omission was sometimes deliberate, sometimes not. Some explanations would have

distracted from the true issue of the thesis, they would have overloaded the thesis.

For some topics, simply too little is presently known, so that answers could not be

based on well founded knowledge. Some areas where further research is indicated

have already been mentioned in the pertaining chapters:

— Obviously, the next action now due is the implementation, on real machines, of

the essence of this thesis. A working system is always the most credible

demonstration of success. Quite commonly, such a system sparks off a wealth of

new ideas: the use of our pLucid system [FMY63] has very much had this effect.

Only the most essential parts of this thesis have so far been implemented, since

it was felt that an emphasis should be put on careful planning and on scientific

analysis.

— Scheduling strategies need to be developed (a) for a revised Lucid with more

than one IW3TTE1, and (b) for running Lucid on a multiprocessor network. Ideally,

an operating system should be developed which takes into account the demand

driven and potentially concurrent nature of Lucid.

— The efficiency of the Lucid system can be Improved by protocol extensions, by

the provision of further highly adapted acts, and by further program analysis

methods. Provisions for actor termination fall also into this category. The long

term Is clearly the development of a systematic and comprehensive theory

of optimisation superseding the present patchy approach.

_ Th, specific advantages of tagged DF and pipeline DF have been contrasted

(t 6.8). Lucid programs with reverse dependencies are not pipeline computable

TO

VII-8

without major rewriting. Is there a general algorithm (or making all Lucid

programs monotonic, so they can run in pipeline DP?

7.1 Othor Operational Models

In our translation, the underlying execution strategy has been demand driven DF

with pipelines as buffers. Chapter I gave the reasons for this particular choice.

However, there are situations where one of the other strategies would be more

appropriate.

Lucid implementations have been done for the Manchester Data Flow machine

[Bus79, Sar82], that machine is truely data driven and leans in a direction rather

opposite to the one taken by this thesis. Our translation generates very efficiency

conscious code: an evaluation is initiated only when its result is needed However,

generosity can suit even a miser: some premature evaluations are cheaper than the

administration for their delay. We should therefore investigate where data drive

would improve our code.

Especially our l WRITE I act (r 4.5.4) reflects the data driven and pipeline oriented

nature of the operating system. However, a demand driven system (like pLucid)

comes really into its own when put together with other demand driven systems, such

as data base query systems. A demand driven operating system exists already, as an

academic exercise, but the relevance of this topic has not been fully appreciated,

yet.

7.2 Un|uags Extensions for LuoM

Even though Lucid is already highly developed, various extensions would make It even

more usable: arrays, types, higher order functions (functions operating on

functions), and time dependent functions. Many extensions are a mere question of

sweat, but time dependent functions ask for a major re-think of Lucid altogether,

7.8

vu ■ 3

including Its Implementation technique:

D«t« Flow» is a restriction of Data Flow under which only fu n c tion a l

operators are permitted. An operator is functional if its result is entirely determined

by the values of its operands. An operator whose result depends on the "wall clock”

time o f execu tion is clearly non—functional. We have so far only bothered about

Lucid as a functianm l programming language (f chapter 11), i.e. the version of Lucid

where all the operators are functional. Lucid has originally been designed to be a

functional language, and an interface to the operational domain is bound to produce

problems.

There sire a few situations which require non—functional means; for example,

the operating system must be able to test whether the user has struck a key, or to

ask for the time of the day. One might simply try to enrich Lucid by new functions

IBuffer-FuS] and ITime-Wowl. This approach is inappropriate in many situations It may,

in tagged Data Flow in particular, lead to the queuing a vast numbers of irrelevant

data. Wadge suggested another method by introducing hiatons (the Greek word

M a tu e means "pause"), special data items indicating “no daton a v a ila b le " . The use

of hiatons makes a total redesign of the Lucid system necessary, even the language

itself may need a few extensions. Hiatons can occur anywhere in a history, they

don't occupy daton positions in the history, and it is therefore possible to f i lte r all

the hiatons out of the history (to "d e -h ia ton iee the h ie to r y "). Hiatons have

implications on many aspects of Lucid, and further research is needed before

conclusive answers can be given.

7.8

vm * 1

Summary

The thesis has described a complete implementation method for Lucid, based on

Message Passing. The description has been presented step by step, starting with a

"conditioning" stage, followed by the main translation, and ending with code

optimisation. All the essential items of code are readily contained in the text. The

thesis can thus be used directly as a guide for the implementation on any computer

system with Message Passing. Due to its modularity, universal components can be

easily replaced by optimised ones. The modularity makes it also easy to check the

correctness of every stage. The correct execution has been illustrated by special

diagrams, execution logs, which highlight particularly the sequence of events in the

case of concurrent execution.

S.0

Bibliography • 1

Bibliography

AaW78 Ashcroft E.A. & Wadge W.W., "LUCID,
a Formal System for Writing and Proving Programs",
Theory of Computation Report No.4. 35 pages,
Univ.of Warwick, January 1976

AsW77a Ashcroft E.A. It Wadge W.W..
"LUCID, a Nonprocedural Language with Iteration”,
p.519...526, CACM 20. No.7, July 1977

AsW77b Ashcroft E.A. It Wadge W.W..
"Scope structures and defined functions in LUCID",
Theory of Computation Report No. 21, 41 pages,
Univ.of Warwick, October 1977

AsW79a Ashcroft E.A. It Wadge W.W.,
"A Logical Programming Language",
Report No CS—79-20, 57 pages,
Univ.of Waterloo/Canada, June 1979,
(revised March I960)

AsWSO Ashcroft E.A. It Wadge W.W .
"Structured LUCID",
Theory of Computation Report No. 33,
54 pages. Univ.of Warwick, March 1980
also: report CS—79—21. Comp.Sci., Univ.of Waterloo

AsW83 Ashcroft E.A. It Wadge W.W..
"Lucid, the Dataflow Programming Language",
Academic Press, 300 pages approx, to be published 1983,

BrHTS Brinch Hansen P., "Concurrent Pascal Report",
California Inst, of Technology, June 1975

Bus79 Bush V.J., "A Data Flow Implementation of Lucid",
M.Sc. dissertation, Univ.of Manchester, October 1979

Car76 Cargill T.A.,
"Deterministic Operational Semantics for Lucid",
Report CS—76—10, Univ.of Waterloo, June 1976

DenB3 Denbaum C., "A Demand-Driven Coroutine-Based
Implementation of a Non-Procedural Language",
Ph.D. thesis, 231 pages, Univ of Iowa, May 1983

Dij75

DMN88

Fab68

Far77

FarBO

FauB2

FaW83

FlnBl

FMY83

FrW78

Dijkstra E.W.,
"Guarded Commands, Nondeterminacy and
Formal Derivation of Programs",
p.453...457, CACM, Vol. IB. No. 8 (August 1975)

Dahl O.— J.. My hr ha ug B.. Nygaard K.,
"The SIMULA 87 Common Base Language”,
Norwegian Comp. Center. Oslo 1968.

Fabry R.S., "Preliminary description of a supervisor
for a computer organised around capabilities".
Quart. Prog. Report No 18, Sect. II A.
Inst.Comp.Res.. Univ. Chicago

FarahM..
"Correct Compilation of a Useful Subset of LUCID",
159 pages. Ph D. Thesis, Waterloo, Ontario/CAN 1977

Farah M.. "Correctness of a Lucid Interpreter
Based on linked Forst Manipulation Systems",
p.3...26. Intern. J. Computer Math., Section A8, 1980

Faustinl A.A.,
"The Equivalence of an Operational and
a Denotational Semantics for Pure Dataflow",
Ph.D. thesis, 191 pages, Univ.of Warwick, M»rch 1982

Faustini A.A. It Wadge W.W.,
"The pLucld Interpreter and its Retirement Scheme",
talk at "Swedish Workshop", Brighton. June 1983,
Report (in preparation)

Finch B., "An Operational View of Lucid",
Research Report CS-81—37, Computer Science,
Univ.of Waterloo/Canada, 33 pages, December 1981,

Faustinl A.A., Matthews S.G. It Yaghi A.AG.,
"The pLucld Programming Manual",
Distributed Computing Project Report No. 4,
60 pages, Univ.of Warwick, April 1983

Friedman D.P. It Wise D.S.,
"CONS should not evaluate its arguments",
in: MlchaelsonS. It Milner R. (Eds.), p.257-284,

3rd Int'l Coll, on Automata, Languages and Prog.,
Edinburgh Univ. Press, Edlnb. 1978

Bibliography • 3

Gar 78

HBS77

HeM78

Hoa74

Hoa78

Hof78

Inm82

KocBO

Lam78

Lan66

lis 74

MaT79

Gardln P., "Une implementation de Lucid”, M.Sc. Thesis,
09 pages, Notre—Dame University Namur/Belgium, 1978

Hewitt C , Bishop P. Sc Steiger R,
"A Universal Modular ACTOR Formalism”,
Proceedings, Formalisms for AI. Session 8,
p.235. .245, probably 1973

Henderson P. Sc Morris J., "A Lazy Evaluator”,
Record 3rd SIGPLAN-S1GACT Symp. on Principles of Prog.
Lang. (Atlanta, Jan 1978), p.95—118, ACM, New York 1976

Hoare C A R.,
"Monitors, an Operating System Structuring Concept",
p.549...557, CACM, Vol.12, No 10 (October 1974)

Hoare C.A.R., "Communicating Sequential Processes",
p. 868...877, CACM, Vol.21, No 8 (August 1970)

Hoffmann C M., "Design and Correctness of
a Compiler for a Nonprocedural Language",
p.217...241. Acta Inf. 9, 3 (1970)

1NM0S, "OCCAM”, (company publication), 45 pages,
INMOS Ltd., Whitefriars, Lewins Mead.
Bristol BS1 2NP, U K. (1982)

Koch A.. "MENYMA,
Design and Impl. of a Message Oriented Language",
Master's Thesis, Computer Science,
Univ.of Waterloo/Canada, December 1980,

Lamport L,
"Time, Clocks, and the Ordering of Events in a
Distributed System",
p.550. 585, CACM Vol.21, No.7 (July 1978)

Landin P.J., "The Next 700 Programming Languages",
p.157.,.186, CACM Vol.9. No 3 (March 1966)

Llskov B H , "A Note on CLU".
Computation Structures Group Memo. 112, M.I.T,
Cambridge, Mass., 1974

May M.D. It Taylor R.J.B., "The EPL programming manual",
Distributed Computing Project Report No. 1,
16 pages, Univ.of Warwick, May 1979

ostai

Sar82

Wad79

WenSO

WeaSl

WenB2

Wlr71

Wlrfl9

Wlr75

WU72

WuS73

YagB3

Bibliography ■ 4

Ostrum C.B.,
"LUTHID 0.0 Preliminary Reference Manual and Report”,
Dept, of Computer Science, University of Waterloo,
22 pages. Waterloo/Ontario, Canada, 1961

Sergeant J , "Implementation of
Structured Lucid on a Data Flow Computer",
M.Sc. dissertation, Univ. of Manchester, October 1982

Wadge W.W., "An Extensional Treatment of Dataflow Deadlock",
Theory of Computation Report No. 2B,
Unlv.of Warwick, April 1979, IS pages
also: Springer Notes on Comp. Science #70, p 285 ..299.
(Conference on "Semantics of Concurrent Computation",
Evian/France, July 1979)

Wendelbom A.L.,
"The Implementation of a Simple Non—Procedural Language",
TR 80—4, 26 pages, Univ.of Adelaide. 1980

Wendelborn A.L.,
"Implementing a Lucid—like Program mming Language",
Australian Computer Science Communications, Vol 3, No 1,
p.211—221, May 1981

Wendelborn A.L.,
"A Data Flow Implementation of a Lucid-like Prog Language".
TR 82-06, 36 pages, Univ of Adelaide, 1982

Wirth N.. "The Programming Language PASCAL"
Acta Informatica 1, 35—63—1971

Wirth N., "How to Live without Interrupts" or similar.
p.489...498, CACM Vol. 12 No 9 (Sept. 1969)

Wirth N.. "MODULA, a Language for Modular Programming",
Bericht 18, Inst, fuer Informatik, ETH, CH-8092 Zuerich,
Zuerich 1975 (?)

Wilkes M.V., "Time-sharing Computer Systems",
2nd edition, Macdonald/Elsevier London 1972

Wulf W. ft Shaw M., "Global Variable Considered Harmful",
Carnegle-Mellon Univ., Pittsburgh PA, S1GPLAN Bulletin 1973

faghl A.AG.,
'An lntenslonal Impl Technique for Functional Languages",
wrsonal communication, PhD. thesis (In preparation),
)ept. of Computer Science, Unlv.of Warwick,

A» 1

Appendix At The BNF of Lucid

Here is the BNF of Lucid, the way it is used throughout this thesis. This is a

subset of the language pLucid [FMY83]. The algebra of pLucid comprises lists (as in

POP—2 or LISP) and the pertaining operators. Lists are a completely separate topic

area; they have been omitted in this thesis for the sake of clarity, but they can be

added any time without necessitating a revision of the thesis. We go even further, we

use a minimal algebra which comprises only TRUE, FALSE, ERROR and all the

integers. Examples may occur in this thesis which exceed this minimal algebra

(using real 3.14159 or a string like "Hello there"); the reader Is asked to take the BNF

as suitably extended.

In the BNF formalism we use the following notation:

< > every meta term is enclosed in angle brackets,

:: = reads as <meta term > is defined by <meta expression>,

| reads as <meta expressian> or <m tta expression>,

(| denotes possible repetition zero or more times of the enclosed <meta

expression>,

/ / precedes comments

The Lucid syntax is defined by the following BNF:

«progranfr «expression»

«expression» «primary»
«prefix operator» «primary»
«prirrary» «in fix operator» «primary»
«where clause»

«primary» «constant»
<vari>
« i f expression»
«function re f»
(«expression»)

«expression» // precedence permitting

A O

A • 2

«constan t»

<n u n rlc constant»: ; «

«miner ic constant»
TRUE | FALSE | ERROR

« d ig i t » | « d i g i t » |
— «rn raric constant»

« d i g i t »

« l e t t e r » ::■

«alphanumeric»

« id e n t i f i e r »

«▼ a rt »

«p r e f ix operator»

« in f i x operator»

o | i | 2 | s | 4 | a | e | ? | a | 9

A B C 0 E F G H I J K L
N 0 P Q R S T U V W X Y
a b c d • f 8 h i J k 1
n o P 4 r s t u V w X y

M
Z
m
z

* « d i g i t » | « l e t t e r »

= « l e t t e r » | «alphanumeric» |

• « i d e n t i f i e r » / / nans of a var iab le

= - I NOT I FIRST I NEXT

a —

LE LT

<= <
AND OR
FRY WVR

CT
>

/ MOD
CT I NE | EC
>-

ASA I UPON

« i f expression» ; ; 2 IF «expression» THEN «expression»
ELSE «expression» Ft

«where clause» ; ; - «expression» WHERE «body» END

«body» ; ; s f «currenting> | («defin ition» |

«current ing» ; ; 52 <var'» IS CURRENT «expression» ;

<de f i n i t ion» ; ; 52
1

«sinple def»
«function def»

«sinple def> • ; a <varl» - «dcfiniens» ;

«function def» ; ; s <func» («fortnals») ” «definiens» ;

<deflniens» «expression»

<func» ; ; a «iden tifie r» // function name

«formali> ;* <varl» | , <varl> |

«function ref» ; ; * <func» («actuals»)

«actuals» ; ; a «expression» | , «expression» |

A.O

A - 3

Note: Throughout pLucid ~ is used instead of — .

<curren ting> is described in appendix B.

Lucid program s can contain com m ents d irected solely a t the human

reader: the com piler ignores double backslashes / / and everything on th e ir

r ig h t hand side w ith in the line.

The follow ing iden tifie rs are reserved as keywords:

AND ASA CURRENT ELSE END EQ ERROR FALSE FBY F I FIRST GE GT
IF IS LE LT MOD NE NEXT NOT OR THEN TRUE UPON WHERE WVR

(Throughout th is thesis, keywords are w ritte n in capita ls and variables in lower case.

However, th a t ru le is not p a rt of real Lucid but intended to im prove le g ib ility)

Here is a short descrip tion o f the operators of our algebra:

p re f ix op.

NOT
FIRST
NEXT

I manina

Arithnetic inverse, the operand • (-1)
Boolean negation.
In f in i t e extension of in i t ia l daton.
Op history with in i t ia l daton removed.

in f ix op. I meaning (T * TRUE , F - FALSE)
+■

MDD
AND
Ok
GT >
CE >*
LT <
LE <*
BQ
NE
FBY
UPON
WVR
ASA

Stxn of the two operands.
Result of subtracting the r ight op from the l e f t one.
Product of the two operands.
Quotient from d iv id ing the l e f t op by the r ight one
without remainder (13 DIV 7 * 1 , (-13) DiV 7 = —1).
Remainder from dividing the l e f t op by the r ight one.
T i f both ops are T, F otherwise.
F i f both ops are F, T otherwise.
T i f l e f t op Greater Than right op, F otherwise.
T i f l e f t op Greater or Equal r ight op, F otherwise.
T i f l e f t op Less Than r ight op, F otherwise.
T i f l e f t op Less or Equal r ight op, F otherwise.
T i f l e f t op QQual to r igh t op, F otherwise.
T i f l e f t op Not Equal to r igh t op. F otnerwlsa.
In i t i a l daton o f l e f t hist prepended to r ight h ist.
Repeats l e f t daton while r ight daton is FALSE.
Ignores l e f t daton whenever r ight daton FALSE.
F irs t l e f t daton whose right daton is TRUE.

Im possible com putations, like a division by zero, y ie ld ÎERRÔft]. This is a special value

ind icating "som ething went wrong in the com putation of th is daton". It is impossible

to guarantee the ind ication o f every e rro r (ha lting problem !)

AO

A - 4

The BNF defines expressions in te rm s of p rim arie s , w hich are m erely

p a rticu la rly "well m annered" expressions. A ll p rim aries are the re fo re expressions.

Just a variable o r a constan t is a p rim ary Enclosing an expression in b rackets

prom otes it to a p rim ary. The construct I IF c THEN » ELSE y Fit is a p rim a ry , where [c] [5]

and Q are expressions. Lastly, any function reference is also a p rim ary. Any

expression is e ithe r ju s t a prim ary, or a p rim ary w ith a p re fix ope ra to r put in fron t,

o r two prim aries w ith an in fix operator between them

The precedence rules and the association rules permit the omission of brackets

in many cases. These rules have been detailed in section 2.1.2.

AO

Appendix l i "Currontlng", fh* Lucid Approach to

B.O hi «reduction

added Iteration

B«1

I t la generally accepted to r im perative program m ing languagee th a t ite ra tio n la

the cona tru c t w hich increases th e ir expreaalve power moat decisively. Ite ra tio n cornea

to fu ll fru itio n if I t la embedded In some larger com putation (embedded ite ra tio n).

In c ide n ta lly , i t is well known th a t im perative ite ra tion can be sim ulated by recursion.

In com m on com puter jargon, ite ra tio n means repetition, and the te rm ia commonly

applied in two contexts: m athem atical ite ra tio n (as in the Newton—Raphsen a lgorithm

fo r logrti) on the one hand, and m u ltip le application on the o ther (like se tting an a rray

to zero). Both are bulk com putations in a sense. The te rm ite ra tio n is. s tr ic tly

speaking, no t applicable to a non—im perative language like Lucid, b u t one would

expect Lucid to com prise a denotations! counterpart to ite ra tion . Confusion can

re su lt fro m the fa c t th a t already a ting i t Lucid assertion can represent a bulk

com putation, since i t expresses a whole stream of data objects (due to the Lucid

algebra).

In less opera tiona l te rm s, any substantia l program m ing language m ust satisfy the

follow ing requirem ents:

(1) I t should provide means fo r the de fin ition (and app lica tion) of new operators.

An operator is a generalised (abstracted) instruction , l.e. its actual operands are

specified only in the app lica tion stage. A set of fundam ental operators is usually

pre—given. The d e fin itio n of any new operator is achieved by abstrac tly stating

the actions sym bolised by the operator. An operator is recursive if i t refsrences

Its e lf (in its d e fin itio n), and th is Includes any in d ire c t se lf-re fe rence. In a broad

sense, every subprogram is among the operators, as is the body of any [55] loop

o r IWHERE1 clause. (According to our defin ition, the te rm "ope ra to r” includes

fu n c tio n subprogram s. The te rm "function" has a specific m athem atical

m eaning which m igh t in te rfe re in th is context.)

B»2

(2) Every programming language should provide a m ethod fo r apeclfylng the

application o f any operator to a co llection of operands. (In ALGOL th is m ay be an

a rray o r may be the successive values held in a storage celL in Lucid th is m ay be

the datons of a h istory.) Such a m ultiple appNcetlon may w ell produce a com bined

re su lt (e.g. the com putation of an average value w ith in the co llection).

(3) There should furtherm ore be a provision fo r taking the combined resu lt o f such a

m u ltip le application, and fo r delivering i t as a single value to the larger

com putation (in which the m u ltip le app lica tion is embedded).

Lucid satisfies requirem ent (1), the whole language is designed around opera tor

defin itions. Every Lucid assertion is an opera tor defin ition . A demand fo r the

program 's resu lt is, operationally speaking, the cause fo r a ll com putations.

Requirem ent (2) is satisfied since every variable stands fo r a sequence of data objects.

Future versions of Lucid which have arrays (and operators on arrays) o ffe r a fu rth e r

m ethod of satisfying th is requirem ent. But a t the th is po int in the discussion we do

not seem to have anything fittin g requirem ent (3).

A combined resu lt of m u ltip le operator app lica tion, requirem ent (2), can be

form ed by use of IKEXTI and fFBYl. Here is fo r example the running to ta l o f h is to ry X:

Sum = X ♦ (0 FBY Sin) ;

Every daton value o f tSum] is based on an en tire in itia l segment o f X.

■09 = Sisn ASA ln4«s * 00 ;

means therefore th e t many com putations are Involved in the production of one resu lt.

The assertion fo r [Se] has the drawback th a t i t asserts ju s t one constant value. There

should be a way for executing numerous low ranking com putations which, taken

together, deliver a single fin a l r tru lt daton (a b it like [Soj) to a MpAer ranking

assertion. This should be followed by renewed low ranking com putations which in tu rn

produce the next resu lt daton.

B-3

Iteration without a means for such embedding (l.e. without sub—computations) Is

of limited use. We shall see that Lucid achieves embedding In a rather natural way.

•.1 Structured LucM

Early In the development of Lucid [AbW?6], certain mathematical concepts were

identified, and were then chosen as the foundations of the language A suitable syntax

was then worked out. The syntax has Indeed been subject to refinement up to the

present day. Valuable Insights Into the underlying concept can be gained from looking

at the earlier development stages of Lucid, though only few traces bear witness In the

present form.

Ashcroft and Wadge describe In th e ir paper "S tructu red Lucid" [AsWSO] how a

technique called "cu rre nK ng " equips Lucid w ith embedded ite ra tion . They show how

Lucid is conceptually derived from the languages USW1M [AsW79a] (which itse lf is a

derivative o f Landin's I SWIM [Lanfld]) and Basic Lucid [AsW77a]. The language ULU is

obtained when the USW1M structures (IWHERE1 clauses and functions) are b u ilt on top

o f the Basic Lucid objects (In fin ite h is to ries). On the o ther hand, p u ttin g Basic Lucid

on top o f USWIM yie lds the language LU8WM Both languages have exactly the same

syntax. But they d iffe r in semantics, in p a rtic u la r in the e ffect w hich structu res (

IWHEREl clauses) have on variables (h is to ries). Lucid is an amalgamation of LUSWIM and

ULU, and the divergence in sem antics has been resolved by declaring each variable

e ith e r as curranted o r uncurrented. (In [AsWBO] a d iffe ren t term inology was used, and

the typa/met of each variab le ind icated its cu r ren ting status. However, th is d is tin c tion

by typeface proved ra th e r im p rac tica l.)

It was later decided to consider any variable by default as uncurrented, and to

gtate explicitly when the variable was meant to be currented instead. Uncurrented

variables are the easiest to understand, since their entire histories are imported into

clauses without any change. The declaration isiacuRREittrl in a lufUMi) clauseUi! L'.i

B* 4

Indicates that the new variable x is the currented version of the variable y, where y

refers to a variable y defined outside the jwhere! clause. Currenting is occasionally

also called "free ring ", since the enclosing environment is held in an invariant state, as

if it was frozen. While [AsWBO] introduces currenting denotationally, we will use the

operational point of view throughout our explanation, since this seems easier to

understand.

It will be shown below that currenting can be expressed entirely in ULU terms,

and consequently LUSWIM can be viewed as a special case of ULU. In other words,

every Lucid program can be expressed in terms of ULU alone. (Not all Lucid programs

can be expressed in terms of LUSWIM alone.) Incidentally, ULU is essentially the

language presented in chapter I.

B.2 Present Lucid

Global variables ("imported" variables) have been defined in the description of

Lucid (t chapter 1). Any global variable y can be currented by placing at the beginning

cf the [wherS] clause the declaration

x IS CURRENT y ; I
I___________________ I
(The expression on the right (here: y) is evaluated in the environment which encloses

the ¡WHERE] clause, x and y can therefore even be identical identifiers) The following

assertion might occur in a program:

r e s u l t * f (x , i) I t 1 9 an a r b i t r a r y function,
WHERE » X i 9 the cur rent ing of

x IS CURRENT y ; » the g i oba 1 vari ab 1e y ,
END i » 1 is an uncurrented g l ob a l .

The variable x is the currented version of y, where y is a global variable. To function f,

x will appear like a constant, all its components are equal. The history of y is mapped

into a sequence of histones x, where thek-th subhistory x consists throughout of

B-5

components Identical to , where y^ Is variable y at Index k. The function f la

applied individually to each (constant) subhistory, and consequently there Is a

sequence of result histories of function f . The result of the IWHEBEI clause Is the

sequence of the n—th components of the application of # to the n—th subhistory x, with

n ranging from 0 to Infinity. (Note that, naturally, the computation restarts from

Index 0 for each single Invocation of f .) The Index progresses inside the I there I clause

thus In the following triangular pattern:

—* index of the global to be currented,
• index ««la ide the THERE clause.

indices for which
the subhistories
(tnsida the THERE-clause)
ere coiputed;
only the last value is taken.

index of the result

f i g . SSi the triangular execution pattern

We have not yet mentioned the other operand of f . namely i. Each Invocation of f gets

the entire history of I, since I is not currented in any way. Because of functionality. It

does not matter whether I is re—computed each time or whether I is computed once

only with copies being given to each invocation of f. (Repeated evaluation of a function

yields the same result as long as all operands remain identical.) The same would apply

to any other uncurrented variable occurring in the ITHEREI clause. Below we will study

another w««mpla program with a ITHEttEI clause which contains both a currented and

an uncurrented global variable.

It Is particularly Interesting to study an unusual ITHEREl clause which has

currented aa well as uncurrented global variables, but where none of the currented

variables Is actually used. Is the result really invariant to the addition of these

B • 8

superfluous variables? Instead of computing the result In a straight tour through the

indices (0, 1, 2....) the currented variables enforce the repetitive triangular pattern of

figure B2. Because of this considerably changed execution pattern some effect on the

result would not come as a surprise. But since all operators are functions, and all

operands are either local or uncurrented global variables the result is indeed

invariant. It can not be distinguished whether any Intermediary value has been

computed anew, or whether a value from a previous computation has been re-used.

Structured Lucid allows even the currenting of (non-nullary) functions. This

means effectively the currenting of all global variables which occur in the definition of

that function. This currenting of functions has been abolished in the latest versions of

Lucid, to keep matters simple. There is hardly any ustful function where both

versions (the currented and the uncurrented one) are equally needed. The currenting

of the global variables can therefore be carried out inside the function definition itself,

which is better style anyway (in the software engineering sense).

If we have another look at the figure above, it is evident that the "daton

production rato" of the computation inside the I WHERE] clause is greater or equal the

rate in the environment. In other words, we have some form of embedded iteration

No proof will be given here that currenting is a comprehensive technique for

embedded iteration, or in other words, that point (3) is satisfied in every respect. One

might even be led to believe that the triangular pattern (t fig. B2) restricts the range

of application to those very few situations where the number of computations Inside

the clause grows exactly with indeed/. However, this restriction can be

overridden by enclosing the iwher^ i expression (preceding the keyword]wherei , for

example t fig. Bl) in an [aSa] with an appropriate terminating condition, like:

(f(S . i) ASA oondi tion(•))
WHERE .. . IS CURRENT .. . END

Since this expression contains the [BX) operator, it may appear strange, at first

glance, that this IWHBlgl expression does net necessarily yield a constant history. The

B-7

1*3*1 inside s INHERE! expression with currenting, which means that only a single

result da ton is picked out. For each pass of this IWHEREI clause, the 1ASAI expression is

computed anew with fresh currented values, which may produce a totally different

lASAI result in every pass.

One last remark. It has been described in chapter I that assertions can be freely

moved into and out of IWHEREI clauses as long as certain syntactic rules (identifier

clashes) are not violated. Matters are different if a IWHEftEl clause has a global

variable, and if that variable is currented in the IWHEREI clause. In such a case the

assertion for the variable can not in general be moved across the IWHEREI . This is

possible only if the operators in that assertion commute with currenting. A discussion

of this is found in [AsWBO].

B.3 Currenting Expressed by Recursion

Can currenting be expressed purely by the means described in chapter 1?

The triangle (r fig. B2) shows that the result history is constructed out of separate

invocations of the function f , one for each result daton. The result is composed of the

initial daton of the initial function invocation, followed by the daton at index 1 of the

next invocation, followed by the daton at index 2 of the function invocation after that,

etc. Regarding function parameters, each function invocation has fu ll access to any

uncurrented parameter. For eurrented parameters, on the other hand, the initial

function invocation obtains a constant history which consists purely of copies of the

daton of the parameter. The next invocation obtains the constant history

generated from the daton at index 1, and so on.

Taksn together, tbs same result as in fig. B1 would be computed by:

B -8

index
FIRST x, i) FRY # 0

• FIRST NEXT x. i) FBY # I
FIRST NEXT NEXT x, i) FBY # 2

FIRST NEXT NEXT NEXT x, i) FBY § 3
FIRST NEXT NEXT NEXT NEXT x. i) FBY #4

NEXT NEXT NEXT NEXT NEXT f (FIRST NEXT NEXT NEXT NEXT NEXT x, 1) FBT # S

eto etc

This can be expressed by a recursive function. We call this function Rxlool . since

currenting has the effect of permitting live computations in a frontn environment.

Obviously, nothing special needs to be done about the un— cur rented parameter I; it is

passed untouched to each new Invocation of f , and its history restarts therefore always

right from the beginning. The currented parameter x is not difficult to express either.

With each "round trip" of the recursion one more initial element is stripped off. the

resulting history is made into a constant by the application of |FIRSTI, and this is then

passed to f as a parameter. Hie llxlool function must therefore have an appearance

like:

result » f (
NEXT f (

NEXT NEXT f (
NEXT NEXT NEXT f (

NEXT NEXT NEXT NEXT f (

I g lo o (. . , news) = f unc
FBI

(FIRST news, i)
I g lo o (. . . , NEXT nowx):

r e s u l t * I g lo o (. . .. x) ;

Here, [fimcl is related to f , but it is identical to f only for the initial result daton. One

further [NEXT! must be applied to f for each successive result daton, i.e. one per

recursion of [Bool . One feels tempted to generate the new function, in each "round

trip" of the recursion by competing ("•”) a INEXTI with the old function; the starting

"value" would be the plain function f . To do this, we would need a function parameter

in llxlool, like:

Igloo (funetlon, •■•) ■ FBY Ig loo (NEXT • function , . . .) i
result • Igloo (f . ■••) i

Sadly, function parameters are presently not allowed in Lucid. The multiple

application of [WHTI must therefore be simulated otherwise. &it even that problem

can be overcame. Remember that, for any constant n,

B-9

• i p r t i i l « WB (» * lndas)

has tha same effect as applying INEXTI n times to the expression. The complete Hxiool

function (for the function f from fig. B l) has therefore the form:

Igloo—f (t . news) ■ f (FIRST news, i) WVR (t ■ index)
FBT Igloo—f (t+1. NEXT news) ;

result * Igloo-f (0, s) ;

A few remarks need to be made:

(a) Because of the non-existence of function parameters, a separate Igloo function

must presently be written for each occurrence of cur renting.

(b) Currenting automatically applies to the [WHERE! expression a fWV51 of the kind:

[espr WVR (t » index) WHERE t IS CURRENT index . ENDI

Recall that for any constant expression c:

KcWVRd) = c § it 4 over becomes TRUE.I

The [WVRI can therefore be omitted in the llalool function in any instance where

the expression s spr carrier an I ASA! on the outermost level.

As an example, take the function (from a famous Lucid prime program):

checkprime(n) = (n < p*p ASA con d ltion (p, n))
WHERE

a IS CURRENT n ;
END ;

According to the described method, this translates into:

ohspri(k) » (k < p»p ASA condltlon(p. k)) ;

ehsekprlme(h) « chopri(FIRST h) FRY eheckprlme(NEXT h) ;
this is ths slnpliflsd Igloo.

This can be simplified into:

ohookprimo(a) - (k < p»p ASA oonditlon(p, k))
WHERE

k • FIRST a:
END FBY ohookpr lit» (NEXT a).

End o f example.

B-10

(c) If a [WHEREI expression (here: f) has more than one currented variable, there Is no

need to nest Itslool functions. Instead all these variables can be currented

together. For example:

Example (translation of currontlng Into the I igloo I form)

The following example is presented on page 28 of [AsW80]:

mom
WHERE

Av* (») = (■ / (in dex+1))
WHERE ■ = v + (0 FRY ■) ; END ;

m * A*I (» } .

mom * Avg ((x-m) • (x-m))
WHERE m IS CURRENT m ; END ;

END

The Imoml in this example is the running moment (around the running average) of a

given history x (there are more efficient ways of computing this). Using the llxlool

function, the example can be re-formulated, so that it contains no more

"IS CURRENT’:

B« 11

ran
WHERE

Avg(v) SB (• / (ind«s+l))

m rr
WHERE s * v ♦ (0 F B Y s) i END ;
Avg (a);

Body (m) s Avg ((z-m) • (s-m)) ;

mom s [(lo o (0, m) ;

¡« lo o (t , k) -

tha n l iU a ■ Is now eurrontcd

(Body (FIRST k) WVR (indoi * t))

END

FRY
Igloo (to*. NEXT k) ;

B.4 Efficiency

Some people argue that the simulation of iteration by recursion leads to very

inefficient code (i.e. many unnecessary computation steps will be carried out).

However, as has been said before, such a claim can be invalidated by a good optimising

compiler. The lialool function is indeed easily optimised by applying some of the rules

from chapter VI.

Because of the iFBYl, each new Invocation of Itslool serves for the computation of

one result daton. From a certain index on, all the results of the invocation will be

determined by its toner re-invocation of lialool with slightly changed parameters.

Once the computation has progressed to the recursive re—Invocation of lialool (right

operand of [PBV1), the whole left operand of ITBYl is superseded (l.e. not needed any

longer). The actual parameters in the recursive call are simple modifications of the

formal parameters: the storage cell for the constant t is simply Incremented by one,

and the index for the history k is advanced once (such operations can be

accumulated).

Taken together, rECT can be Implemented by tail recursion Lucid-style (t 6.6).

During the computation of any result daton (loft operand of IFHYl) the index of history

k Is hold constant, It Is not affected by the computation inside». Only a

B-12

iln|l(-outport |COPY] node la therefore required aa buffer for It (the buffer prevents

the repeated evaluation of the same daton). Aa an example, the tranalation of fig. B1

(an arbitrary function whose operand 0 la currented whereas operand 1 is no*

currented) yields the following LUX code:

ACT A e t_ la le e .^ u a e ;
LABEL 1 ;
VAR

su per io r , fune, pO, p i , p p l , p l i , p l o : ACTOR ;
request : MSGTYPE ; index, 1 : INTEGER .
c rea ted : BOOLEAN ; r e su l t : ANYTYPE ;

BEGIN
crea ted :■ FALSE ;
(, , pO, p i) : « RECEIVE FROM (C rea to r) ;

p l i : = CREATE (Act_COPY_ 1) ;
(, p l o) : * RECEIVE (p l i) ;
SEND (DATON, p i) TO (p l i) ;

REPEAT
WHILE TRUE DO
BEGIN : 1

(s u p e r io r , request , index) : = RECEIVE () ; : 1

valueO := CetDaton (index , pO)
c rea ted TRUE
funo : » CREATE (Act-Func)
SEND (DATON. valueO, p lo) TO (fu n c)

: 1

FOR i := 1 TO index : 1
DO EXCEPTION (ADVANCE, i) TO (fu n c) ; ; |

r e s u l t ;■ GetDeton (index , func)
EXCEPTION (ADVANCE, f in a l in d e x) TO (fu n c) i
c rea ted :<• FALSE
SEND (DATON, r e s u l t) TO (s u p e r io r)

• : 1

END ;

1: (r eq u es t , index) ;■ Reveal ;
EXCEPTION (request , index) TO (pO) ;
IF orea ted
THEN EXCEPTION (ADVANCE, f in a l in d e x) TO (fu n o) i

o rea ted : « FALSE ;
RESET ;

UNTIL index • f in a l in d ex

EXCEPTION (request , indea) TO (pie) i
BND ; (• End o f A e t - I f loo-Func . •)

In LUX it Is eVon permitted to pass the aot for « aa a parameter to 'g '~ » —1 (Uk*

B - 13

[procedural or [functionl parameters In PASCAL); this relieves us from having a separate

llslool for every Instance of currenting. The function f itself is translated into:

ACT A* t_ f HC ;
LABEL 1 ;
VAR

superior, p i, ppl : ACTOR request : HSGTYPE ;
valuoO, valuel, result : ANYTYPE ; index : INTEGER ;

BEGIN
(, , valueO, p i) :■ RECEIVE FROM (Creator) ;
ppl :* SEND (AUGMENT) TO (p i) (• f S.S •)

REPEAT
WHILE TRUE DO
BEGIN :1

(superior, request, index) :* RECEIVE () ; :1

valuel :* GetDaton (index, p p l) :1
result :* . . . valueO . . . valuel . . . ; :1
SEND (DATON. resu lt) TO (superior) ;

END ; (* End of inner eternal loop. *)

1: (request, index) ;= Reveal ;
EXCEPTION (request, index) TO (ppl) ;
RESET ;

UNTIL FALSE ; (• End of outer eternal loop. •)
END ; (• End of Act_Func . •)

+--------------------
! A p p e n dix C - 1 j
+----------------------- +

Complete l i s t i n g o f the program which t r a n s l a t e s any n e t o r subnet
from graph L u c id i n t o LUX (f o r f u r t h e r d e t a i l see s e c t i o n 4 . 3 . 4) .
The program "S ie v e " has been chosen f o r i l l u s t r a t i o n .

program S i e v e T r a n s l a t io n (o u t p u t)

co n s t

typ e
UDFops ■ 30 ;

oprange - 1. . UDFops ;
(* a l f a

NODEP
NODE

n type
n l a b e l
n t e x t
nr .o o fre fs
nr.oofops
r.op
n i n i top

end :

packed a r r a y [l . . 1 0] o f c h a r 5 *)
NODE ; (* node p o i n t e r *)

record
s (o t c o p y , o t c o p y t r a n s l a t e d , o t i n p o r t , o t o t n e r)
: i n t e g e r

a l f a
i n t e g e r
0 . .UDFops

(* number o f node r e f e r e n c e s (C O P Y !) *)
(* number o f node operands *)

a r r a y f oprange] o f NODEP
a r r a y [oprange] o f i n t e g e r

f u n c t io n N extLabel (v a r nodenumber : i n t e g e r) : i n t e g e r ;
b egin N extLabel : « nodenumber ; (* pseudo f u n c t io n *)

noder.umber :■ nodenumber ♦ 1 ;
end ;

f u n c t io n T r a n s la t e (nuc : NODEP} v a r nodenumber ! i n t e g e r) s i n t e g e r ;
fo rw ard }

p rocedure SeanOperands (nuc : NODEP: v a r nodenumber : i n t e g e r) ;
v a r i : i n t e g e r ;

nucop 1 NODEP ;
b e g in w ith r.uc* do

f o r i :■ 1 to nr.oofops
do b egin

nucop j - r .o p [i] 1
i f nucop*.ntype • o t i n p o r t
then begin n i n i t o p f i] :■ -r.ueop* .r . la b e l ;

d isp o se (n u co p) :
end

e ls e n i n i t o p [i] t* T r a r .s la t e (n u c o p , noder.umber) 1
end end } (* End o f procedure 'S ca n O p e ra n d s* . *)

! Appendix C - 2 !
♦------------ - - - - ----+

procedure N o d e l n i t i a l i s a t i o n (n u c s NODEP) ;
v a r i i I n t e g e r ;
b egin w i t h nuc* do b e g in

w r i t e (* SEND (DATON, ') j

f o r i :* 1 to nnoofops
do b e gin

w r i t e (' n o d e [* , n i n i t o p [i] s 2) ;
i f i < nnoofops th e n w r i t e ('] , ') ;
end ;

w r i t e l n (’]) TO (n o d e [' , n l a b e l s 2 t ']) ; (* ' ,
n t e x t , ’ *) ') ;

end end ; (* End o f p ro ced u re ' N o d e l n i t i a l i s a t i o n ' . *)

f u n c t io n T r a n s l a t e ; (* pseudo f u n c t i o n *)
(* The r e s u l t o f f u n c t io n ' T r a n s l a t e ' i s the s u b s c r i p t (l a b e l) o f the

node which w i l l d e l i v e r the o p e ra n d . Note the s p l i t node l a b e l l i n g
i n the case o f COPY no d e s. *)

v a r
t r a n s l s i n t e g e r 5 (# new node w i l l be node[(t r a n s l)] *)

b egin w i t h nuc* do b e gin

t r a n s l :■ N extLa b ei(n o d e n um b e r) ;
T r a n s l a t e : » t r a n s l ; (* the f u n c t io n r e s u l t ! *)

(* a v o id in g repeated COPY t r a n s l a t i o n : *)
i f ntyp e <> o t c o p y t r a n s ia t e d
then b e g in

i f ntype ■ o tc o p y
then b e gin n type : « o t c o p y t r a n s la t e d ;

n l a b e l :■ N e xtLa b ei(nodenum ber) j
end

e ls e n l a b e l :■ t r a n s l ;

w r i t e l n (' n o d e [’ , n l a b e l : 2 ,
'] C R E A T E (A c t _ ' , n t e x t , ') j ') »

ScanOperands (n u c , nodenumber) j
end;

i f n typ e ■ o t c o p y t r a n a la t e d
then w r i t e l n (' (, , n o d e [' , t r a n s i : 2 ,

']) RECEIVE FROM (n o d e [' f n i a b e l ; 2 , ']) ; ') ;
continued ■

>------ — ------------- ♦
! Appendix C - 3 !

c o n tin u e d
n n o o fre fs :■ n n o o fre fs - 1 }

i f n n o o fre fs - 0
th e n b e gin

i f nnoofops > 0 then N o d e l n i t i a l i s a t i o n (n u c) ;
d isp o se (n u c) ;

end end end ; (* End o f f u n c t io n ' t r a n s l a t e ' . *)

p ro ce d u re Segm e n tTran sla te (nuc s NODEP ;
name s a l f a ;
nodes s i n t e g e r ;
i n p o r t s s i n t e g e r) ;

v a r
nodenumber : i n t e g e r ;
i : i n t e g e r ;

b e g in
v r i t e i n (' A C T A c t _ ' , name, ' ; ') ;

i f i n p o r t s > 0
then w r i t e i n (' LABEL 1 ; ') ;

w r i t e i n (’ VAR’) ;
v r i t e i n (' node ! ARRAY [' , - i n p o r t s s O ,

n o d e s -1 : 0 , ' 1 OF ACTOR ; ') ;

i f
then
e ls e

<-
(’

C
C
C
C

i n p o r t s
w r i t e i n
begin
w r i t e i n
w r i t e i n
w r i t e i n
w r i t e
f o r i s “ t to
w r i t e i n (')
w r i t e i n 5
w r i t e i n
w r l t e l n
w r i t e i n
w r i t e i n
w r i t e
f o r i :■ 1
do begin

C
C
C
C

MSGTYPE ; in d e x , s k ip : INTEGER ; ')

B E G IN ')

request s
BEGIN*) 5
s k ip :• 0 ;
(. ’) »
in p o r t s do

! - RECEIVE FROM (C r e a t o r)

ADVANCE’)

)

w r it e (' nod e^"1
')

-1:0, '] ')

WHILE Reveal
DO BEGIN’) ;

(r e q u e s t , index) Reveal ; ') ;
I F index ■ f i n a l i n d e x ') ;
THEN EXCEPTION (r e q u e s t , in d e x) TO (') ;

to in p o r t s
w r i t e (' n o d e f ' , - I t O) ;
i f i < in p o r t s then w r i t e ('] , ') ;

end ;
c o n tin ue d ■■■

c o n tin u e d ■■■
w r i t e l n (']) ’)
w r i t e l n ('
w r i t e l n (*
w r i t e l n ('
w r i t e l n ;
end ;

! Appendix C - 4
♦

i
*

ELSE s k i p »■ s k ip ♦ 1 } *) 5
RESET j ' 5 }

END j ’) f

nodenumber :■ 0 ;
i !■ T r a n s l a t e (n u c , nodenumber) ; (* always y i e l d s ze ro *)

i f i n p o r t s < 1
th e n w r i t e l n (' S e t _ P r i o r i t y (n o d e [o] , t o p _ p r i o r i t y) } ')
e l s e b e gin

w r i t e l n ('
w r i t e l n (’ I s Pass_Through (n o d e [o] , s k i p) ; ') s
end ;

* 1 *) »

w r i t e l n (' END ; ’) ;
w r i t e l n }
w r i t e l n ;

end ; (* End o f pro ced u re ' S e g m e n t T r a n s la t e ' . *)

p ro c e d u re NodeDecl
b e g in

new (g i n) ;
w i t h gin* do
b e g in

n te x t
i f nops < 0
th e n begin

ntype
nnoofops
n n o o fre fs
end

e l s e b egin
ntype
nnoofops
n n o o fre fs
end

v a r g i n s NODEP; r.tx

: » ntx

:• o tco p y ;
1 ;

s - -n o p s ;

:• o t o t h o r ;
:■ nops s
:• 1 ;

a l f a s nops s i n t e g e r) ;

end
end ; (* End of procedure 'NodeDecl'. •)

+ ---------- - - --- -— - - - ♦

! Appendix C - 5 !
♦ - - - --------------- - -♦

(* here starts the application «■•*■ »•«■•»■»•••■■• *)

(* 'RootDefine' and 'S ieveDefine' place the Lucid graph o f the
en tire Sieve program in store, ready fo r translation. *)

function RootDefine (i s in teger) s NODEP
var

u s array [1 . . 7] o f NODEP j
begin

i s- i

(* a pseudo-function *)

— - »
NodeDecl (u ‘ 1 * 'Const , 1 ’ , 0)
NodeDecl (u ’ 2 9 'P lus_' 9 2)
NodeDecl (u .3 9 'Const , 2’ , 0)
NodeDecl (u .4 9 ' Fby~' f 2)
NodeDecl (u .5 9 ’ Copy , 2' , -2)
NodeDecl (u 6 9 'S ieve 9 1)
NodeDecl (u [7 9 ' Write_' 9 1)
RootDe fine

(* 'W rite_, "conso le"', *)
(* highest ranking node *)

u^J .nop
u f4 .* .nop
ul5, *.nop_11
ufé “ .nopM
u[7J*.

end t
.nop[1 .

u

:• u
:■ u
: ■ u
End

1
“ 1.3 J

4
5
6
of

u[2l*.nop[2l ui?] j
u[4J*.nopl.2J u[2] ;

function 'RootDefine'. *)

function SieveDefine (i ! in teger) : NODSP
var

u s array [1 . . 9] o f NODEP ;
begin

i 1
-4) ;
1) *
2)
0)
2)
2)
1)
2)
0)

i «■ i 5
NodeDecl (u , 'Copy_, 4'
NodeDecl (u ’ 2 , 'F irs t '
NodeDecl (u ,3 , 'Mod“ '
NodeDecl (u , 'Const , O'
NodeDeci (u .5 , ’ Ne“ '
NodeDecl (u , ' Wv r '
NodeDecl (u .7 , 'S ieve
NodeDecl (u S ' « ' Fby- ’ , .NodeDecl (u !9 , (lnportl

SieveDefine

00■

u [9 l * . r
u [9]‘ .r

ntype ¡ « otinport
nlabel »■ 1 ;

(# highest ranking node *)

continued ■

COat: nued ■ •a
Ux \nop V :• uy .
u 2 *.nop ,1, :■ u.1.
u .3. *.nop i s * u 1
u.5. *.nop .1, «• u.3.
u 6 * «nop .1. :• u 1
uy * .nop 1 :• u 6
u.8. * .nop 1 s ■ u.1.

end ; (* End o f

■f—
! Appendix C -

6 !

t
t U y . * .nop .2, 2* U 2
i U,5. * .nop 2 : • u,4 .
; U-6 J* .nop ’2' 2 ■ u . 5

; u [8]*.nop[2] u[7] ;
function 'S ieveD efin e '. *)

begin
writeln ;
writeln (' (* LUX code fo r sieve" example: *) ') }
writeln ;
irriteln j
SegmentTransIate (S ieveD e fin e (o), 'S ie v e ', 12, 1) ;

(* the "number o f nodes" is equal to the number o f nodes
in the Lucid graph segment, except inport nodes,
including COPY nodes, plus a l l COPY references. *)

SegmentTransIate (RootD efine(o), 'R oo t_ ', 9, 0) ;
end (* End o f main program. *)

This program produces the fo llow ing output:

(* LUX code fo r "S ieve” example: *)

ACT Act Sieve
LABEL 1 ;
VAR

node ARRAY [-1
request : MSCTYPE ;

BEGIN

.11] OP ACTOR ;
index, skip : INTEGER

skip :■ 0 :
, node[-1]) RECEIVE FROM (Creator) ;

WHILE Reveal ■ ADVANCE
DO BEGIN

(request, index) :■ Reveal »
IF index ■ finalindex
THEN EXCEPTION (request, index) TO (n o d e [- l])
ELSE skip
RESET t

END {
continued

«■ skip ♦ 1 1

♦------------------ ♦
! Appendix C - 7 !

■ continued ■
nodeT o l : «
node[2 j I*
(, . node[
nodef 3] «■
nodeT 4] *■
(, . node[
nodeT 6] 2"
nodeT 7] :*
(, , node[
node[9] 2-
(, , nade[l
SEND (DATON,
SEND (DATON,
SEND (DATON,
n od e [ll] s•
SEND (DATON,
SEND (DATON,
SEND (DATON,
SEND (DATON,

CREATE(Ac t_Fby_
CREATE(Act_Copjr_, 4
1J) i - RECEIVE FROM
CREATE(Act_Sieve
CREATE(Ac t_Wv r_
5]) RECEIVE FROM
CREATE(Act_Ne_
CREATE(Ac t_Mod_
8]) 2- RECEIVE FROM
CREATE(Act_First_
O]) ! - RECEIVE FROM
node,-1 () TO (node(
node ,10,) TO (nodef
node[8J, node[9])

CREATE(Aot Const , 0
node, 7
node, 5
node, 4 ,
node[1

"nodef 111)
node[6] j
TO (nodef
node[3])

> 1

(node[2])
) 5
) ;

(node[2])
) 1
) 5

(node[2])
) ;

(nodef 2])
2]> i
9 l) 1
TO (nodel
) i ;
TO (node^
TO (node'
3J) i
TO (node[

Pass_Through (node[o], skio)
END 5

7]) 1

6 l) j
4 j) ;

0]) ;
• 1

(* Copy_, 4 *)
(* First •)
(* Mod_ ~ •)

(* Ne *)
(* Vvr_ •)
(* Sieve *)
(* Fby_ *)

ACT Act_Root
VAR

node
BEGIN
node(0]
node'
node£
node1
nodei
node ̂ o, i -
node[7J 2“ CREATE(Act Conet , 1
(‘ " - - - - - - - - - - -

1 S"
1 ! * I 2*

■i *"
1 : ■

ARRAY [0 . . 8] OF ACTOR

CP.EATE(Ac t_Wr i te_
CREATE(Act_Sieve
CREATE(Act Copy_, 2
CREATE(Act~Fby_
CREATE(Act_Const_, 2
CREATE(Act Plus

node[8]) 2- RECEIVE FROM (node[3]
) TO (node'
) TO (node

l 6]]
{ 4])

SEND (DATON, nodei 7] , nodei 8
SEND (DATON, node[5J, node[6 j , w v . ,
(, , node[2]) 2- RECEIVE FROM (node[3]) 1
SEND (DATON, nodef 4]) TO (node, 3 ,) »
SEND (DATON, nodef 2 j) TO (nodef 1 ,) j
SEND (DATON, node[1 j) TO (node[O j) |
Set P r io r ity (nodeTo
END- 1

top_priority) j

(* Pius *)
(# Fby_~ *)

(* Copy , 2 *)
(* Sieve *)
(* Write *)

! Appendix D — 1 {

OCCAM im p le m e n ta t io n (u n t e s t e d) o f some Lu c id o p e ra to rs

F i r s t the d e c l a r a t i o n o f some c o n s ta n ts :

DEF
OTHERWISE - TR U E ,
NULLIFY - 0 ,
COMPUTE - 1 ,
ADVANCE - 2 :

The f o l l o w i n g "PROC a c ce p t" should r e a l l y be d e c la re d where i n d i c t e d
i n th e "PROC b o o l o r " , b u t has been p u l le d o u t f o r e a s i e r p r i n t i n g :

PROC a cce p t (V A L U E i) *
I F

d t n [l - i] — in s p e c t daton v a lu e

OTHERWISE
ALT

excg ? r e q u e s t : xindex
e x c [i] ! N ULLIFY ; index

f l a g [l] 4
r p i g ! d tn [i] :

The "PROC b o o l o r " i s the c o u n t e r p a r t f o r a LUX ACT. Here a re f i r s t a
few comments e x p l a i n i n g th e para m e ters:

— CHAN e x e g , g - > b o o lo r : e x c e p tio n s

PAR
e x c [i] ! N ULLIFY ; index
r p l g ! TRUE

cmpg,
r p i « r .

g - > b o o lo r : COMPUTE requests
b o o l o r - > g : r e p l i e s (d a to n v a lu e s)
b o o l o r - > pO: e x c e p tio n s
b o o lo r - > pO: COMPUTE requ e sts
pO - > b o o lo r : r e p l i e s
dto f o r pi

♦------------------------- -
! Appendix D - 2 !
♦---------------------- +

PROC boolor (CHAR excg, cmpg, rp l* . — concurrent OR
exc[J, cmp[J, rp l[J) •

VAR fla g [l] , dtn[l] :
PAR

PAR k - [o FOR 1]
WHILE TRUE

SEQ
rp l[k] ? dtn[k]
f la g [k] TRUE

WHILE TRUE
VAR request, index, xindex
SEQ

ALT
excg ? request}

SKIP
cmpg ? index

SEQ
flag!"o] s- FALSE
f la g i1J s- FALSE
PAR

xindex

request :* COMPUTE
cmpTo, ! index
cmpTl ! index

! PROC accept (VALUE l) ■ '
4 - - . . - __ .

ALT
flag[0] a

accept(1)
f 1 ag[1 J a

accept(O)
excg ? request} xindex

PAR J - [0 FOR 1]
e x c [j] ! NULLIFY} index

IF request - ADVANCE — exception handling
PAR 1 ■ [0 FOR l]

e x c [i] ! request} xindex

: — End of PROC boolor

♦---------- -----------♦
! Appendix D - 3 !
♦------------------------

PROC w rite (CHAN excp, cmpp, rplp) ■

— CHAN excp, write -> p: exceptions
— cmpp, write -> p: COMPUTE requests
— rplp: p -> w rite : rep lies
— a channel output is assumed as predefined.

VAR index, resu lt :
SEQ

index : « 0

WHILE TRUE
SEQ

cmpp ! index
rplp ? result
output ! result
index index ♦ 1
excp ! ADVANCE; index

: — End o f PROC w rite

PROC constant (CHAN excg, cmpg, rp lg , VALUE const) ■

- - CHAN excg, g -> constant: exceptions
— cmpg, g -> constant: COMPUTE requests
— rplg: constant -> g: rep lies (daton values)
— DEP const • 4711 : the value o f the constant

WHILE TRUE
VAR request, index, xindex :
ALT

excg ? request; xindex
SKIP

cmpg ? index
rplg ! const

: — End of PROC constant

♦
II
♦

— ----------------- ♦
Appendix D - 4 !
--------- —-------- +

— Ocean implementation o f the Lucid program:
— TRUE or FALSE
— main program;

CHAN excg, empg, rplg, e x c f l] , cmp[l], r p l [1]
PAR

w rite (excg, empg, rplg)
boolor (excg, empg, rplg,

, eX<7 cmp. rpl)
constant (exdO, , empio], rp iro l, TRUE)
constant (exe [l , cmp[l], rp l[l J, FALSE)

- - End o f example

There is a trade-o ff between the reduced number o f request types in the
Occam implementation o f Lucid, and the lower number o f channels in the
LUX one (Occam channels are rather r e s tr ic t iv e) . The pattern matching
o f the LUX exception RECEIVE is replaced in the Occam implementation by
ALTernative inputting through separate channels fo r (1) COMPUTE requests
and (2) fo r a l l other requests. The absence in Occam o f a counterpart
fo r LUX doors makes i t necessary to place exception inputs a ll over the
process. Furthermore, Occam output statements cannot serve as guards
(indeed, the general provision o f such a mechanism is not t r iv ia l) ; this
d ictates a rather d ifferen t result delivery strategy (channel " rp l") in
Occam than in LUX.

The optimal scheduling, g iving higher p r io r ity to exceptions, is not
implied in the "boolor" example, above; i t has to be resolved by means
beyond present Occam. Anyway, Occam has u ltim ately been designed for
fo r execution on a multiprocessor (an array o f 'transpu ters"), and
scheduling is o f minor importance in such a se tt in g .

f*pp«ndlx E - 2 I

% « Z Z O -H •Ho 'te te «i o p .
o.
z s

—

; ; • O CJ * O • O o o o

■< * " -• £ ^ £ *¡ o £ ^ •; z.

û £ £ £ ô ô ô £ £ £ ô ô ! ó

47 54 S K S 3 3 tr 0> ir t~- te iri© tr vo cd P 3

M » ftC . ° . J •H 'Ho te a s ^ l o t e t e t e t e t e t e o t e O O te
•H
S

•H
s

* * * * * . . . o o o • • • o o * o o o * o o o o o • .

o £ E S 5 £ £ o £ 5 o £ £ £ £ E ~ S 5 £ £ o £ E S E £ £
j j î * * • • • • • • X- X- . . .

o < o £ £ £ £ o * o • • £ < « £ £ £ £ £ £ £ • O Ò * • £
S K v© vO x-te ir ir t"~ Xi ir KNir ir xr v© ì© Z » CDCM K K P S P P P S S e 3 * 5 K 8<M CM

tete * » %
•H <H
S S s OO • a » a - a s « <3 P.£

•rt
S

x4
S

O o • * • o o * o o o • o o O O O • •
"• £ O O ~ £ £ £ £ e •: £ = ~ £ £ o ~ S £ £ E £ *• o ~ £ £

O te U K < < < • • • • ; £ < . £ £ £ £ £ £ • • o o • £
5 cm te ir ir ir cr> xj ir te CM Q KMV ir tr te i© X- O'vo ir rj<\j

teCMrg
^ « M f - O x ^ ^ c g o r w tev©f-irr~r--t~-rrv© co 3£P E<M 3CM

te o te'te o o o •Hte o o o O o S Ï - W S Î i S S f s z & „ te O o o O o
< • • • • * • U . . • * . «O «O * * . O P o o o o O o • • • •
£ £ o £ • • Ò • £ < o E £ £ « ô « o £ £ * ’• '• u o * £ £ r> £ e " £ £ ~ o ^ o
r. : : : -, -, -, •;■ < W (j X O • O »ou
(M r o œ »o tr cm rg o or *«r te <m <m ^ r\O «f ir tr ^ ir V cm te te> vr te te «f »f C »-fr x- x- CM CM

K v œ ^ O 'O v o K N C K f M o g j ^ s ^ cm cm V f te ir t*~ te t-* ir im « œ co «o cC«a « ♦ O •

f o te te o te te te te te te ö tete O te o á G Go s S a - S t t S » « 8 á ' » t » o S o S G Go
l

.................... * • • o o * • o o * * • • • * O «o * * 0 0 0 0 0 0 0 o o o • o •

£ £ Ti £ S 5 *• . E u T £ G S • £ £ "• E *• £ £ £ o *¡ 5 ¡ E o T £ EE5 ! £ £ * • ¿ r
£ £ £ £

cm rg cr> r- X- X- teCT *M f lí' *t IT «iCM
(MiOOOM^Ox V co rr V ir te m v© tete x k m t o CM » E P S $ K ' ' ‘ P 8 P E 8 S 5 c R P g 00 CM

^ CM

•i Q. OZ Z u ve mo te tecsu V V V u u 00*000 ooOfdvSuu-HO te te o u % tete öS t e o o o o o o o o o ?
> o o

® ! E o E o " * o * * o ! E "i E u *• *• p » £ 5
« !

! K • Ü M • < • K ! •» • J U • • O • • < <

o . * < . o «te

u • o • « o o o o o o o o o o o o • • • o o • • •

5 ’“• 'iS Î E ^ E o ^ o ^ S ! E £ *1 o • £ £ "• o • w

• te <

ana ana 9
< • . • O O O O O O O o O O O O O O O O O O O O

£ ^ C E £ £ •í e s £ £ *• ¿ ¿ s £ *T¡ o S £ £ -i ¿ E S C " • s E f i T u E E £ T G E £ f i

; J : i o o £ te £ £ £££££*■? i • • • O o ó o o £ £ £ £ £ £ £ £ £ £
00 OM ■ tr KV O*te te CMteirteV IT S© • te te r en t"te xt -i O — CMir ir ir tr te ir se f- CD ir ir ir ir ir ir O'*ir ■ $• X- CM tr te ■ ■l© VO SO i© ir ■ «o 3* E S S P p P P P P P P P

•t
at

e
!

nr

st
at
e

sh
y

!
nr

st
at
e

sh
y

'
nr

st
at
e

sh
y

•H O O 4) 4>
• o ”

í

C
Gi

!

■c •
. . : : 4 • ;

O 4 4 4 O ó u

JQ K> «- KN KN 4- m <r»CM KN CT'K\

S S •HtO 4>
• o

» o S
• «o

45
O

Âppendi»
Oto to

P>
S S o o. AO S S « w S « S

• o u a O A A 4 4 A A A -< A
•; •; •J • ••-•-«- . «.
4 • • • ■< • • 0 4 4 ¡ 4 Ó •

4 4 4 4 Ó o O 0 4 ¡ 4 4 O M

? 2
r* cr 4 ir. *- ifs-4 IT. 15

5 ¡n V» m <n mo •- ininw m <r> o ir\

o &c ou o 4: o

: o 4: o

i T f k \ cm k s r<"\

Su M((S WMÛ I So
• O O O A O U I) A P

«ÒÒ < M Ó W O
< • « <0 K K Ô ¡ ¡
« M Ç O « » v i) f f ' O O • » CMeviro ir «u n « m <r m »n

Go
l

Go
l

s L s s •H «
• • 4 <4 A A A < A

4 M 0 4 0 4 0 o o

• 4 *• 4 ¡ 0 4 *• o

28
7 81CM

4 CM CM 00 4o •- m m i o V VO o ir\

« S S S O4)
•H

a s O4) o
•HOO

A•H O O O 4)0 4) te te O o 43 4) 4) 4)
A
a Co

i

* * • O • • o O • ■< • O O O A o O O A A •

• 4 • 4$ < • 4 4 • 4 4 • • ^ M ht 4 •

O 4 < ó 4 ; ; ; - 4 «i • 4! *4 O 4 4 t . : :
m o>CM CM t- CT> CM K-N F. cvj r>- C) fT\ u>fr, p) P n- N o> m mCM H> 4 ■■» ITN m>o ® m4 *1- K\ lí> u> *CM

■asas. %%
444PP 4P

ht CJ ht o M ht o

o o o p *h o b 'HO O O 4) 4) 4) '>H 4) 4) 4) 4i 4) O O •H O O >H O O •H *H O O •H O A Ö -H p p" A O 4' 454>A4>4)4>4>4>00 O A O O 0 0 ■H -H O O O 4) O 4) 4 4)
4 4 • • • « O O * • 'O O • 0 0 4 • «C 4 • • O O P P • • O A P O O A • • • • < < < A A < A A

• 4:4:04:00 o 44:404: • • 4S 4í • ¡ 0 4:i4 • U U U > 4 4 0 4 ! • • 4 « O • 0 • 4 4 0 4 • «Ó

4:4: • 4 4: o . 4: < 4: • • u u O U t «< 4 4 • 4 4 U *4:4:4$ • t O O O O • • 4 4 4 *¡ 4 Ó 4 4 ¡ 4
O' CM CM 00 WW'CODff' W f ' C C M m 'COCMCMmMrwnjfC'. lymn c M <A CM K t— K, 4 KN CM V CM >■0 r- cM«fn-onif^>*r-<Mq5<n rj k> «fnimflrKMnininif' ¿SUS KSCM CM s s t » a cm — «r0 ir.

0" <o o k SSu S S u S ku 4) *4 í¿ o o o o uSSS u SS'SÍSmu M s wo u o 5 «S M mS % m
• •• • • • O O • • to O • 0 0 4 4

CM •- • •

!m 4 ! 4 • • • ¡ 4Í O ! 4 O • M 4 0

W W • 4 K O • K 4 4 • •

* W G l * - r “ K M r ' ^ f ‘ t ^ O O t f ' » - P l A OD CM -cm O' cm cm k> f? k> k\

• • O O P P • < O P P O U P O

4 4 M * ! ! *Mt> ¡ 4 0 4 M M

4 4 4 P P

¡ O M ¡ 4 ¡ O

0 4 0 0 4 O 4 >

O © -H

5 £ r ? £ ? £ ? * £ £ ? E2ri5 l § i ? S ? ? ?

) WO W WO *4 WO O S A W WO O OOO O O O tl S o u S S u w w! P, 0 ,0 *4; f¿ O 4> £i o W WO O W-H W W O tí o Ö O O Ò b tH 4)
I , , • . , . . o • • • t U • o • t < 4 4 4 • 14 4 • • O O O P • « O O P O P O O O O • • O O • « 4 4 4 P P P 4 4 P
! . 'i Pî^ ";''. ^ r *; *; ^ *: ; !
! 4 4 0 4 1) ¡ O O I 4 ¡4 Ò ¡ 0 4 4 • ¡ ¡ 4 4 ¡ ¡ 4 ¡ ¡ 4 ¡O O • 4 » 4 0 • O • M
I
4 4 • O 4 • 4 • I U • O O • o 14 4 4 • 4¡ ^ I O U • o

• > 4 4 • • M > 0 4 4 0 4 ‘O O

4 ¡ ¡ M M 4 4 *¡ 4 *¡ ¡ 4 4 * ¡ 4 4

í R S 8 5 « í » 3 ¿ « í « S e ' S R a R R G * R ^ g í P . « g S S ¿ » R a i * R # ¿ R « © j 5 g 5 5 | j ¡ S | 2 * S S * | S

3 3 3 3 3 0 0 0 0 0
.o

4 4 ¡ 0 4 4 ¡ 0 4 4 ¡

O Ó o 4 4 4 4 4 l i 4 4

0 0 0 0 0 0 0 0 0
O O O O O O O O O O O P

o ^ ht t u 4 4 > 0 4 4

O O O <4 <4 « >4 4¡ M >4 4

b I n œ f f j « » •
I *- ; a se* • r 1 *■ * ■ s* * 5 ! 5 2 5 5 5 ? ? ? í2 ‘ ’

D
gG

st
a

te

w
hy

,

n
r

st
a

te

|App«ndl» g - s J
p.
S >0 p.te P.U te p.o p.o % te te
• te • * te • • • • •

S4 i te Sí 4 ; X O s

te «c o : *• X o o 5

r p
KVKV

5 ? 2(VJ h(M

t
So a ç

s a ,
•Hte te O u O

•H
á

P.
S o o o p. te te te te u o s o S u o s s s . « ste PS PS o PS < • < te • te te • te «c te <4 te te • * . .

*- • *- *- *- <M • - • - • - •- (VJ •- •- *- •- . • . .
S¿ • X * X te te te te ¡ 4 ¿ 4 M • te te te te te *“. 5 5 te te

O • ó Ò te te 4 • te te te te ú o ; < J te te O te teu te te
te
R 15

1
15

8
15

5 (VJvp P cr> cr.(NJ Vp
1

g 17
5

29
9 S Pi

t

! g 8 « *(vj coov (VJ •- <M

R E

sse.

S - o u m u 1 O.bou S E S bo P.U P. u u » á % s s s

0*9 Ote te te PS « o te • te te • te te • te * te te te te • • • • • • •

• te te teu te te • te t e t e * te l te te te te te te u • is -! te te 5

te *• P o I te te te • te te te te U U ü te • te te u 5 5 S te te 5

27
8

27
1 50 r- r\j

»- ST> uv 5 P R S t~ 05 *Pr- (vj r- P K P 1C ? »*- (VJ E » 18
4 a s e 19
1

22
4

18
8

o te u o m o o u o o
te PS te p) P) -t; te Pt te te

P. O* O* P .O O P. p. O P. O U p o o o w tu mm m to m o b o o o o o u o o o o t o o b o t o to o o m «o o

* - c\j p j * - * -

i.: y • ¡ < ¡«i X « ’ m ^

< te te • < •
*- •- c\j «- • • • • • • f • • • •-

: te •
! 5 ^ 5 * í o

t/v f-I «- «- «- •- OJ KV IP O I

í § ? 8

E R RR saRäsBRsEa B i s s a i s e s a s
• - - - C g C g C g . - Í M C V j K V * - » - . - . - ' * - (Vi « - * - « - <\J

O MO MOO* O U u í* 5" p . o. o' £“ bót¿ P .* > S iw te £ i p . o á o o o u o o o ï ï e e w «e to o o «> «o

se u:

U*N CM »O te vP O' f- <\J «“ « ffivfl vfi o iro veh K M íV SPVO

S ¡ k S

S **t

k e é r p r r S k sREaERReaaas iBS a p a s s é e

te te í*: te • se te te te í*: te te • te te te
• tete «tete • • • O < Sí S í S í S í • « I U 4 U te X » O Ü

t • • •

O U P. te

8 » 8 f c

< US í o • o

r - (VI (Vj C\J . - (V j (\ J Í \ J * - * - * - * - w - * - * - * “ (VJ «

á o o o u o o p- £> *¿ <§” o p . be to *1 o S p. â P, P. p.cS P. p .u *¿0 *2)0 « o s ^ S S s S o o o ? O f t ü á ' ü
M « a < e

! ! ! ! M * < < m ! ¿ 4 m u 4*>S*<S ’ S • fi "• • « • x s • 4 • •

(J ! < ! < < ¿ M W m ' * 4

V) be no o te o te te 'o
P P < t e ß P < < « I < Ö R < S í
«. «. ■- • «■ • *- f> •
4 W M ! te ! te te ! !

: X X • X < « t e » • • •

s s g s RsRJRR6S«SggÎF ,? ié»r6 i^«Kjg ÇRRgR;8»Ç§PaR8fPf ?!BP580 agPfeP*
— 3 3 3 0 3 3 3 3 3

PS PS PS » PS PS PS p p P p p P p te te te te te te te te te te
0)♦» te te *;

û t e t e ! U te te ! U te te te te ! te M • t e t e ! tete"* G 5 S C C E S 5 R 5 5 5 5 5 ' " " c

• J_J U U O te te te te te te te te
J 1 • u u u te te te te m m "* *• • " * " * U U U u 5 5 5 t e t e t e • •;

i ? ? ’ » • » E S S S S S E 3 S « t- iVP • $ • ?E‘ P ' P P * EE?' p p p - g * B ’ a B a e s B E S s a f a e * ’

»t
at

«
!

nr

»t
at
«

wh
y

!
n

r

st
at
e

»h
y

'
nr

st
at
e

sh
y

|

te O p.
< • •

• à S

£ G G

S g *» - <M r-

2, ç» O M -H te tete tete o o 5
*< • • • o • • o

* £ : : : £ i 1

*• o £ C 5 G S S

P £ » S 5 t S RfM N <M CM CM CM CM CM

ri p p
S t e S S S S
• O O P • P

£ • • • £ •

£ £ £ £ G G

M «• t r » vo On CM te- tete »- .4
<M CM CM CM CM CM

m o tete tete te o â o e s t e o O S o te te te te te o o o o
te te te te te te • • • • • O • • • O « O • • • ü O O P o o « O O P

S • £ £ £ G S te ô t e ô ô à O t e ó ô ô £ £ £ £ £ ô ô £ £ £ £ ô ô

£ £ £ £ £ ^ G *-> o £ £ G £ u p p S G £ te £ G s £ o te te G G S S

g a s s e * sCM *- CM CM CM *- «- £ : s a » i : r s s s rCM CMCM N N CM CMCMCM CMCM
«fCM
CM

ooCM
CM R P C S S ? : Ï S ï i R R RCM CM CM CM (M (M CM CM CM CM CM

« O V U M « O f * S S ï S ï à i % £ O O te o U te te te te -H o o o
te te te te te te te • • • • o • • • o • o • * • O O O P O O « O O P

S 1 5 £ £ G ! te • < ¡ I ! E < ! te • £ £ ! £ £ ! ! £ £ • £ • •

5 G 5 5 5 G G

*3 à » 6 8 * 8CM N N N V •-

G G £ £ G £ G S S G G
CM *~|r\ IT\ (M O r - CM 0>
*“ *-(M N|r\ N ^ f - K N «“ CM
CM CMCM CMCM CM CMCMCM CMCM

£

K>
CMCM

£

CM

£ G £ £ G £ £ G G S S

CM CM CM CM CM CM CM CM CM CM CM

P. O O. P . O
t t t t l M W O P . te («
• • • • < • a <

te p. o p P ? o te te te -h te te te te o o o te o
< ... • •

S u Û O
te •

o te tete p Si te S S S o p te
• • o O P p • • • o o p o

à •< w à u p • £ £ £ £ t e t e t e o £ ô o o < t e t e o » > < • te • te • t et e • O O O • M te M « Ot e

£ £ £ £ • o • • • G G £ £ £ • «r £ G • £ £ te • n G G • «

ÇC O' f - *- ÇMÇMfMCM00-«fQ'.Of«-\C0*-Cn^K' •- r»
ch è b r - O ' c y ' O — cmcm— »J^*tcM C M * -* -* - - - *- •-*- *-CM*-»-K>CMCMCMCMCMCM«MCMCMCMCMCM cm cm

r s

CM G »- CM

tete

e s

• te te o • te te te • • o ò *

S S « y g a S S ^ K R S i K
CM CM CM CM CM CM CM CM CM N N CM CM

s f s s f 8*>.ê p oo^ocToteteteo'äteteVSjoteteote te 5 o
«H
Ô O â £ « « s - § § a 2 s . . £ s

S • £ £ £ G G •
• • — • * - * - — * - * - * - * - » - C M « ~ ' - ~ - * - * - « - * -

£ ! £ ! £ £ £ ! £ ! î î * £ ô î ô £ £ o o £ ô
• •

£ ô

££££ £ GGG G o 5 ! I à G 5 5 G G C 5 < G 5 G G 5 • • • • £ £
• • • *
O ' N r - N f f l Q t f ' O CE «t 0> 0s CM O) 00 «f
•- « - •- CM —

r~ V p o . c M \ - r - t ' r M 7 ' u ' * î - M O f ' ü » - o o * o CD O N C > ' O f f ' r . f ' i N * - N M N N * - » - * - » - N j -
«• »• CM .-CMCMCMCMCMCMCMCMCMCMCMCMCMCMfM cm ë e

*- r - «■K><T'»r'*i-te«-*-Ç>K\K>
G cm cmcmcmcmcmcmG cmcmcmG

P O P * P M M 5) *> * te o pò p f f p o te te o teteo^e t̂eteoVo-H o te o S o o o o o s - - a « « « s s - S u S s S

»•CM**«-' - — CM * - » - * - CM » *- •- ^ « i t. (. N ' « > ' t - ' N
S ¡5 E a G o ! £ £ £ S • te • £ £ ô £ ô • ô ô •£ • £ • •£ •£ • ô • M • • •M • • •M • • -te « O O * M • • • o •

G G G G S G G G G GGSSS • ! £ G G E G £ îj G G G G G GG G SG 5 « G ! ! ! • £ £ £ t eGCSGCSGGGGGGG

s f e a s 8 £ 5 ' R | B g j 5 g * s » g s s g i s 8 É 3 5 8 2 g É g f i 8 S e î i 21 îi> ¿
N N E » » S S ÿ î S R S S 8 f i S a é 2 8 f i S 8 S

S S S CSS £ 5555EE J
G G G o o G 5 o S < < í •

?r ?• nr r ms g es
ótete • o M M > U 4 M * o e a

Goon S 5 5 5 5 S S 5 5 55*

o o o o o

g g c o
• • o» • *■ cm i ^ t r « v o « - » oo b

G G G G N NN N «NZ ' î z r ^ S ä S S S I S S S S a * • ß ‘ ' B B S ' 5 ‘ £

a s p
CM f\J CM

|App»m>li g - 7 I

ir» ir\
U*N VO
CVJ CM

A
M & M s

M • • M M
* ; *1 • J « -

• m M 5 M

5 M O • : :

£ 2
2

7

2
1

6

g
$

A
O M C3 G

o
i

O O O •

M Ô M M

O M M

S S
CM CM 2

4
4

&
CM

• ^ -< • <<
^ M M ¡ < M < M !

<^E5£5uo^

I CM CM CM
ir vo ®
CM CM CM S 3 * R p B R S » B S P ¿ R 8 8

^ N W (M (M N (M (M (M M C M < M (M » -C M

Sáá
OOP»

O *•

crv ctn

CM CM

5

KN

CM

M

S.
CM

G < 5

KV KV *-
Ifs vo vo
CM CM CM

M "• O O

ir> cm CT' t~
VO U M M fi
CM CM CM CM

CM
u
CM

M

K\
VO
CM

IC O U G
e

i
1

G

•H «H
O o u S S « , U 10 K O O O % o S C9

0 * 0 • o p n o o P P P P P P

CM
O P O O

S o m m m M r u a

«< >M<M<UUO

es o u

£ s £ 8 P c 8 £ PW (MN(MMMMNN CM CM • - CM

m o u: o

85 £8
CM CM

" l ï ï u ï î '• O o O • o

CM CM CO KN CD •“ (C K ' • - t~
lO vO VO U*> VO ' S ITv IT' U> IfN tr> IT>
CM CM CM CM CM CM CM CM CM CM CM CM

PS
CM CM

& § «£ . . 8 § ï& , S 0 5 o p.».
• > 4 • 4 • M • M • • • •

• - • - • - C V j * - * - * - * - C M CM
M M • ¡ M M M M * M M * M M < M

* IE2S52,‘*^ ü ' 5 5 î 555
SS e s P S ^ p Ì f 8¿ «SRS
CM CM CM CM CM CM CM CM CM CM CM CM • - CM CM CM

►*

f i g
ì

:

« S O o S o t o u w M AO M O IC U O U M O o o S Ä S S - . S 8 S S 8 » . ó * I s s

• • o • CJ O • o o o o P P P P P P P P O O A o o

S

S
E 5 o -C O IC t « < • « < • • M O • O < M O O M O M • < ■< M < • M M M M M M M M 4 •

n

G 5 ' • • E E ' 5 E G M < ' » o ' » ' » o " * *■ • J m M ' E 5 ' < 5 ' ' ' G a a • 5 •

Ë
vo cr» cj>

CM CM CM
R » S B
* - « - CM CM

ir> vo vo »fi
CM CM CM CM CMCMCMCMCMCMCMCM g

Kv CM
ir> tr» S R

CM CM
r R 8 - ¿ S = P r £ ï î
CMCMCMCMCMCMCMCMCM CM CM CM

R R È i
- CM »

►*
C s - S p . s -

•H O <5 »H O
O Ö O O U U o O O « i ' ¿ O M O M M C 3 M M M M O S o M o S o

O •ri
O O C9 O O A £>\2> O O A M M M O M A & A O A O *

• « O O • • • O • • O CJ • » A A O A A A P A O O A A A A A O O O A P A O O O M • • M • M • • M •
. - _ _ _ C M _ . - , - C M . - . - . - C M - . - . - - . - . - C M . - . - . - - < M . - - — . - r M . - ~ . - C M - - . - « - C M » - . - . - . ^ C M C M . - . - . - f M C M « - ^ C M . - * - . - C M . -

M • l e í • M • • « M M • • M t> M Ô • O • M • M • • M • M • • M • • • M M • • M • • ^ • • M » • • • M » » M « • • M

1 o ' H P O • • ' J E C m M * » O M * » M * * o ' o • • • • (A • O • • • • » M M M M • W M • • • • • « O • A A S • M • •

O O O b b u o u u b u u o A o o A A O O A O

S
:

M ’ t î M M • O M M • Ó M M ! ô M M • O M M •

n

O O O P P M M M m M M M M ^ • i G O O O O

M S k R *
CM CM CM

OV O * - C M O O M lT iV O r-O O C T '»
K V «» • t ' C ' f v f v C v f ' * « » ' »
CMCMCMCMCMCMCMCMCMCMCM

* S 1
CM

•- cm r> •
i r ir> î t
CM CM CM ¿ U S

• O M M • O M M M M * ^ M î M là ! *

*i ' u u E5 555 55

I Appendix E - 8*J

'¿S 60 60 60 60

60

A
O
60 O

O • - «

— — CM

6 Í •
* - * -

•* » :
* «

1S
(NJ CM CM

60 S C3 A
60 60

■4 *

Attention is drawn to the fact that the
• copyright o f this thesis rests with its author.

This copy of the thesis has been supplied
on condition that anyone who consults i$ is
understood to recognise that its copyright rests
with its author and that no quotation from
the thesis and no information derived from it
may be published without the author’s prior

»

written consent.
«

»

i ?

D520

D5208I t

