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ABSTRACT

This thesis is the first translation of fu ll I.ucid into code for von Neumann 
machines ("im perative code") It demonstrates that it is possible to produce 
efficient code even in the presence of advanced features such as "currenting", 
recursive fu nctions  or operators whose semantics favour concurrency Earlier 
compiled implementations stopped well short of this.

Lucid is a family of non-procedural programming languages, invented by Wadge 
and Ashcroft Lucid is neither tied to any particular data algebra, nor to a particular 
implementation technique. However. Data Flow (with its variants) lends itself 
particularly well to the implementation of Lucid

Message Passing Actcrs is an imperative programming technique which leaves 
scope for cooperating concurrency. This benefits hardware (multi—computers, 
transputers'') and software technology alike In this thesis, LUX. a PASCAL-hke 

language with Message Passing Actors, has been chosen as the target language
It is shown that there is a subset of Lucid (a "nucleus") which has the same 

expressive capacity as full Lucid The nucleus is easier to implement than full Lucid 
As a prerequisite for the translation, a LUX actor equivalent is formulated for each 
operator of the nucleus, once and for all. The design of these operator—actors is 
strongly guided by the execution strategy of demand driven Data Flow (''lazy 
evaluation") Their data storage is based on FIFO queues ("p ipelines"). The actors 
operate concurrently, but they harmonise their actions by exchanging messages 
which follow an agreed protocol

The translation is carried out in successive stages First the Lucid program is 
transformed to make it lie entirely within the nucleus The program is then mapped 
into LUX, where each operator is represented by an operatoi—actor and the 
references to the variables are manifested in the environment setup of these actors 
Finally, the LUX code is made more efficient by the application of a variety of 
analysis and optimisation methods

Lucid programs can be analysed for various properties, and the resulting 
information can assist the code optimisation (while also revealing program errors). 
Particularly important among these program analyses is a queue length 
determination based on Wadge’s Cycle Sum Test

Keywords : non—procedural languages, Lucid, recursive functions, cycle sum 
test, program transformation, dataflow, lasy evaluation, message 
passing, concurrency, transputers. Occam
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CHAPTER I: Introduction

1.1 Aims and Objoctivas

This thesis is the first translation of fu ll Lucid [AsWQO, AsW83] into code for von 

Neumann machines ("imperative code", t 3.1). It demonstrates that it is possible to 

produce efficient code even in the presence of advanced features such as 

’’currenting", recursive /unctions or operators whose semantics favours 

concurrency Earlier compiled implementations stopped well short of this Up to 

now, Lucid had all the benefits inherent in non—procedural languages, but its 

implementations were lacking in efficiency  and in means for concurrency.

Let me explain the title of the thesis, its method of investigation, and then make 

some general remarks. Up-arrows * will quote the sections where full detail can be 

found

1.1.1 Tha Title

Lucid is a family of non-procedural programming languages, invented by W IV 

Wadge and E A. Ashcroft. Such languages make a significant contribution to the 

advancement of software technology This thesis treats Lucid rather as a "given”, so 

there is little need to point out its specific attractions (t 3.5) Every Lucid program 

consists only of assertions: each assertion defines a variable or a function Every 

Lucid variable symbolises an infinite sequence of data objects, called a "history

Lucid is neither tied to any particular data algebra, nor to a particular 

implementation technique However, Data Flow (with its variants) lends itself 

particularly well to the implementation of Lucid. Throughout this thesis, the term 

Data Flow ("OF”, r 2.5) comprises the data drlvan as well as the demand driven [ lazy 

evaluation" [IleM70, FrW76j) variant. The method presented in this thesis extends to 

Data Flow languages in general

1.1.1
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The syntax of Lucid has been revised a few times over the years, but the 

concepts behind Lucid have remained untouched. This thesis refers (r 8.1) 

essentially to the version described in the book on Lucid [AsW83, also FMY83]; this 

version is much more usable than earlier ones Substantial programs have been 

written in this version of Lucid (e g. a screen editor), and Lucid can thus no longer be 

called an academic plaything.

Message Passing Actors (r 3.2) is an imperative programming technique which 

leaves scope for cooperating concurrency. In this thesis, the target language is LUX, 

a PASCAL—like language with Message Passing Actors LUX (* 3.4) has been designed 

so as to facilitate the translation into any given concurrent language. LUX contains, 

among others, a special message passing technique ('’exceptions", * 3 4 2) which 

supports control of concurrent computations without burdening program execution 

and without disturbing the program's overall design

1.1.2 Th« Method

It is shown that there is a subset of Lucid (a nucleus ’) which has the same 

expressive capacity as full Lucid The nucleus is easier to implement than full Lucid 

As a prerequisite for the translation, a LUX actor equivalent is formulated for each 

operator of the nucleus, once and for all (* 4 b f). The design of these 

operator—actors is strongly guided by the execution strategy of demand driven OF 

Their data storage is based on FIFO queues ( 'pipelines , t 4.6.1) The actors operate 

concurrently, but they harmonise their actions by exchanging messages which follow 

an agreed protocol (t 4.2)

The translation is carried out in successive stages First the Lucid program is 

transformed to make It lie entirely within the nucleus Next, it is transliterated Into 

Graph, Lucid In Graph Lucid, each operator is represented by a node, and directed 

arcs express the references to the variables The graph is then mapped (* 4 3) into

1.1.2
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LUX, where each node corresponds to an operator—actor and the arcs are manifested 

in the environment setup of these actors Finally (r 6 0 ff), the LUX code is made 

more efficient by the application of a variety of analysis and optimisation methods 

Wadge and Ashcroft outline in their article [AsW77a] three approaches for 

implementing Lucid:

(1) translation into a conventional language,

(2 ) use of data driven Data Flow.

( 3) use of a demand driven interpreter,

and, according to [AsW77a] only approach ( 3 )  is able to correctly compute the least 

fixed point of arbitrary Lucid programs The first stage of the implementation 

proper is easy: the Graph Lucid program is re—interpreted as the block diagram" of 

a multi—computer system, every Lucid node being bijected to a processing unit ( = an 

actor). Next, we have to decide how the actors operate (i.e their internal behaviour) 

and cooperate (i.e. how information is passed between them) Our long-term 

perspective is to execute Lucid programs efficiently on available hardware As a first 

step towards this aim, we furnish the actors with characteristics for which good code 

fo r  conventional computers can be form ulated  The emerging multi—actor code is 

subsequently tuned for the target machine

The method described in this thesis avoids the rigid commitment to any single 

approach, and is thus able to enjoy the advantages of all of them. In spite of 

belonging to group ( 1), it does not hide its demand driven origins ( 3), but it can even 

employ data driven techniques ( 2) where indicated This flexibility can be achieved 

by picking the most suitable act in each case Program analysis can lead to further 

advice which specialised act to choose (r 6 4, 6 6)

The data storage in DF can be arranged in, mainly, either of two ways pipelines 

(= FIFO queues) or tagged store. In the tagged method, the data are stored and

1 1.2
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retrieved in any order; all the data are held in an associative store, with tags 

indicating the identity of each data item. The tagged method is clearly very 

un—restrictive, but it requires quite a sophisticated control mechanism. The 

behaviour of the tagged store differs widely from the one inherent in conventional 

computers; it would therefore be hard to establish a correspondence between the 

two On the other hand, almost every pipeline can be handled by a few simple 

machine instructions In pipeline DF. histories can only be evaluated in a restricted 

sequence. There are, unfortunately, Lucid programs which are computable in 

tagged DF but not in pipeline DF. Occasionally, pipeline DF can even cause wasteful 

computations However, we choose pipeline DF as the main method, because of its 

greater machine affinity, and treat tagged DF only as an emergency choice. Anyway, 

a totally general tagged DF implementation requires the program to be held in a 

special internal representation (data dependency graph) for which corresponding 

conventional code can be found only in some lucky cases

Conventional computers offer no abundance of processing power, and mere 

small-scale concurrency is provided only at high cost Data driven DF implies very 

high concurrency, but it has little concern for efficiency, it produces masses of 

computation results in the hope that some of them will eventually be of use In our 

context, this would be suitable only in select cases On the other hand, demand 

driven DF is efficient, and requires little or no concurrency, this is therefore our 

prime choice

The translation generates by default code with high, concurrency (one actor per 

node) Even before their translation, Lucid programs can be analysed tor various 

properties, and the resulting information can assist the code optimisation, while also 

revealing program errors (* 6 0 ff). Particularly important among these program 

analyses is a queue length determination based on Wadge's Cycle Sum Test ( ’ Wad79], 

t 6 1). The optimisation can be dirocted to minimis« or to maximise concurrency as

1.1 2
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far as reasonable.

1.1.3 Concurrency

In sequential implementations, operators evaluate their operand usually from left to 

right If the left operand of an operator like ¡OR] happens to get into an endless 

computation, the ¡OR] will never yield its result, even if its right operand is ¡TrUZI- This 

is not in accord with the generally accepted mathematical meaning of ¡OR]. One 

would expect the following equations to hold

a OR b = b OR a (conmutat iv i ty )
TRUE OR UNDEFINED = TRUE

UNDEFINED OR TRUE = TRUE

One can therefore say that only a concurrent iOR̂  ( t 4 5 3) adheres to the 

mathematical definition.

A further argument in favour of concurrency comes from the hardware arena 

In the pursuit of ever increasing computing power, hardware designers have turned 

their attention to concurrent machines (multi-computers, "transputers"), sharing 

the computing load among many arithmetic units The traditional programming 

languages were deliberately designed around mono-processors, and it is very hard to 

extract chances for concurrent evaluation from such programs. Lucid is not 

committed to any particular degree of concurrency, bo it high or low, and it leaves 

therefore more scope to progress in the computer field than many of the old 

favourites

Concurrency combines curse with benefit On most present-day computers, 

concurrency can be achieved (simulated) only at considerable cost; it must therefore 

be minimised and reserved for those cases where there is no way around It. 

Programmers have developed a sense for avoiding concurrency, even for managing 

without it altogether. There are, however, significant programming tasks which are 

most naturally solved In a concurrent manner (e g breadth-first evaluations)

1.1.3
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Software technology would therefore benefit if concurrency no longer had to be 

circumvented at all cost (A reasonable compromise would be to annotate each 

instance where an operator con be. but does not need to be, executed concurrently. 

Operator variants ! A SPA ISO 1 and !OREI.SEl can indicate those cases where concurrency is 

dispensable.)

This thesis uses concurrency load to mean the number of actors which are at a 

particular moment ready to execute (i.e. actors which are not "hung" waiting for 

inputs). An excessive number of hung actors indicates often a design deficiency. 

This number can be reduced by combining particular actors into one In a well tuned 

computer system the concurrency load is usually roughly equal to its number of 

CPUs.

Concurrent programs are executed non—deterministically, given the total state 

of a concurrent machine, one can generally not predict its next state with certainty. 

(In the absence of a system—wide universal time it would even be impossible to 

determine the total state [Lam7d| ) However, Lucid is a fu nctiona l programming 

language; all its operators are such that the computation result of any Lucid 

program depends only on the program inputs, without any effect from the order of 

evaluation, i.e it is deterministic

1.1.4 Efficiency

The most heard objection against functional programming languages is their 

alleged inherent inefficiency This thesis (like others before it) provides ample 

evidence that Lucid can be lifted to any level of efficiency it all depends on the 

amount of optimisation. The conventional programming languages, on the other 

hand, are tailored for von Neumann monoprocessors, and a great effort is required to 

make them run efficiently on a machine with high concurrency, rlenotational 

programming languages (like Lucid) are superior in this respect.

¡■6
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1.2 Survey of Previous Work by Others

Quite a number of people have put a lot of effort into implementing Lucid Some 

of these implementations were never completed, many were of unsatisfactory 

efficiency or covered only a subset of Lucid In its early versions, Lucid was neither 

very powerful nor practical in actual use, and this hindered its wider acceptance. 

The syntax of Lucid has changed considerably over the years, and Lucid has now 

become quite a respectable language. Exotic constructs were abolished 

(e g. function freezing) and useful ones were added All this depreciated the older 

implementations, since they refer now to defunct languages. This problem (and the 

whoLe problem of language implementation) has been greatly alleviated with the 

invention of compile!—compilers, where a syntax change is so easily put into effect. 

The following four versions of Lucid mark its main development stages:

— Basic Lucid ("BL", no connection to the language BASIC) is the oldest published 

version [AsW77a, AsW76], It has assertions merely for variables, nested iteration 

is achieved by means of the intrinsic function "latest” , but there are no user 

defined functions

— We use the name Clause Lucid ("CL”) [AsW77b] for a revised and extended 

version of BL; it has a block structure (clauses) in four variants which provides a 

non—procedural counterpart for procedures and functions, with and without 

iteration.

— Structured Lucid ("SL”) [AsWSO], based on USWIM [AsW79a], replaces CL's 

unwieldy clause variants by classing global variables as pither elementary or 

non-elementary, its uniform [wea* end' phrases provide improved block 

structuring

— Lucid 03 [FMY83, AsWB3] puts [where] clauses (ISWIV [Lan66]) in place of SL's 'vaioTl 

phrases, and a new technique called "currenting” removes the need for 

elementary variables

1-7
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CL, SL and Lucid 83 are of comparable expressive power In terms of these versions 

of Lucid, and in terms of the implementation methods ( 1) , ( 2 )  and ( 3)  (r  1.1.2), here 

are some stages in the development of Lucid implementations:

(a ) M.D. May’s BL interpreter, with arrays, tagged DF, written in BCPL (Warwick, 

around 1974), incomplete.

(b ) Cargill's [Car76] BL interpreter, tagged DF,

(c ) Wadge's BL interpreter, written in FORTRAN (around 1976), incomplete,

(d) Farah [Far77], formally compiling restricted CL into ALGOL.

(e ) Hoffmann ^Hof78], compiling restricted BL into ALGOL 60, written starting 1974,

( f )  Cardin's [Gar78) CL interpreter, written in recursive FORTRAN/ALGOL, 

difficulties with portability,

(a) Bush 'Bus 79], data driven execution of CL on a DF machine,

(h) Wendelborn [WenSO (WenBl)), compiling Lucid-W (restricted  CL) into Wirth’s 

PL/O,

(i) Wendclbcrn's [WenBO, WenB2] data driven Data Flow interpreter for Lucid-W,

CJ) Ostrum's [OstBl] "Luthid’’ interpreter (SL, written in C),

(k) Finch [Find1.], study of translating SL into Message Passing [KocBO),

(m) Sargeant ]Sar82], demand driven execution of SL on a DF machine,

(n ) Faustini's refinement of Ostrum's system (Lucid 03, "pLucid" [FMY03]),

(P)  Denbaum (Den83], compiling AN'PL (=CL) into the coroutine language ACL, 

tagged DF,

(q) This thesis, compiling Lucid 03 into the Message Passing language LL'X, 

pipeline DF,

( r )  Yaghi [Yag83], study of translating Lucid 03 into modal logic

1.2
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Each of these implementations is, in its way, a valuable contribution to functional 

programming and Lucid, but space considerations keep us from discussing each of 

them in the deserved length. The achievement of many of them lies in an area 

undisputed by this thesis anyway. For example, the formal studies underpinned that 

Lucid is indeed a formal system for proving program correctness: (d), (k), [AsW76], 

[Fau82], (r )  On the other hand, the early proper implementations gave people a 

means to gather "hands on” experience with the language, if nothing else iNew 

implementations profited from their predecessors' achievements and mistakes.

All Lucid implementations comprise inevitably a front end which translates given 

Lucid programs into an internal representation where extraneous detail has been 

eliminated, this front end may be a UNIX®/iiter This filter consists of a lexical and 

a syntax analyser, two well known techniques of little new scientific challenge The 

differences between CL, SL and Lucid 83 are largely neutralised in the output of this 

filter, so that, from this point on. we need no longer distinguish between the Lucid 

versions. The filter output is essentially a directed graph equivalent to the original 

Lucid program: every operator is mapped into a node, and arcs express the way in 

which node inports “feed" from node outports The direction of the arcs is the 

direction in which the computation results flow, and the arcs are labelled by 

identifiers of Lucid variables The filter output can appropriately be called Graph 

Lucid (t 2 2) The machine internal representation of the graph is usually tailored for 

the subsequent stages (either forward or back pointers).

The remaining stages reflect the chosen implementation technique, and are 

therefore very dissimilar Data driven Data Flow is almost impossible to implement 

without purpose made hardware, whereas demand driven Data Flow is the method 

commonly used in Lucid interpreters. The Lucid graph serves, in both cases, to 

direct the initiation of computing action
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Data driven DF (2): whenever data become available, the graph indicates which 

further computations could benefit from these data Still, the strategy for injecting 

data into the computation decides which Lucid programs are computable It was 

mainly the need for special hardware which kept (i) from progressing beyond the 

paper study. A Lucid compiler (1 ) can occasionally employ techniques akin to data 

driven DF Genuine data driven hardware was employed by (g) and (m), they found 

that Lucid execution on such a machine requires not only abundant computing power 

but also abundant store.

Demand driven DF (3): whenever data are requested, the graph indicates which 

other data are prerequired before the request can be fulfilled Its prudent avoidance 

of waste and its easy sequential execution made demand driven DF the method used 

in all known Lucid interpreters ((■), (b), (c), ( f )  (j). (n )) Such interpreters are 

ideally suited to using a tagged store, whereby they may even correctly execute 

arbitrary Lucid programs.

The compiling implementations, the type (1), are here of greatest interest, 

since this thesis (q) is most closely related to them These implementations use the 

graph less directly They analyze it for various properties (?6.i, 6.6), and use this 

information to generate code for the given machine Many properties can bo found 

only by such a global analysis. — Most code generators model the action of an 

interpreter, like (J) They produce a linear sequence of instructions by "tree 

walking" the Lucid graph whenever a new node is encountered they generate 

equivalent code Compared to an interpreter, the compilation can anticipate some of 

the administration, once and for all.

Most of the older compiling implementations (viz (d), (• )  and (h)) manage only 

to compile a severely restricted Lucid into imperative code. The problems in 

compiling full Lucid arise, since it is impossible to tell in general which parts of a 

history must be retained for succeeding computations Wendelborn, for example,
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resolves this by permitting only single application of the | VSXT1 operator [Wen80], or 

by requiring assisting information [WenB2] (the programmer has to state the 

maximum buffer length). The former restricts the expressive power of Lucid quite 

severely, and the latter is rather against the spirit of Lucid

We must analyze Denbaum's thesis (p) a bit more deeply, since its aims and 

achievements are harder to distinguish from those of this thesis, after all, (p) as well 

as (q) produce code in a "concurrent language". Denbaum claims even to implement 

totally unrestricted Lucid. However, (p) provides no control mechanism for 

concurrent operators (e g. concurrent ¡OH]), and the target language ACL treats 

coroutines merely as a programming technique; its concurrency load is always 1, 

from which a multi—computer would hardly benefit By contrast, both are clearly 

provided in (q), its execution control mechanism, concurrent or not, is even rather 

central (Efficiency is also largely neglected in (p) No hints are provided how to 

evolve the method of (p) into a serious system )

Already Farah [FarBO] and Finch (k) point out the relevance of concurrency to 

Lucid implementations, and they see that concurrency is not easy to tackle But (q) 

is the first to describe a technique for handling concurrent operators, and to achieve 

a concurrency load greater than 1.

1.3 Tho Notation Uaad

This thesis follows a rather informal style, it contains no high powered 

mathematics or elaborate proofs An attempt has been made to illustrate every 

explanation with at least one example All diagrams are placed in the text right 

where they are used, which makes the reading easier Figures have a box drawn 

around them if they represent programs or excerpts from programs (in whatever 

language)

1 3



1 -1 2

Further conventions throughout this thesis:

— Objects are printed in bold in their definition. In all these cases there is 

therefore no point in searching further up for a better definition. Bold printing 

is also used in introductions for highlighting very central terms One—letter 

identifiers are usually emboldened in explanations to make them stand out.

— Objects are printed in a [box! if they refer to objects from a program. Where

appropriate, boxing is combined with bolding Single—letter identifiers are

usually not boxed but printed in bold. Boxing had to be omitted in drawings 

(due to problems in the printer software).

— Italics are used to give words a slight stress within the text, and also for quoting 

mathematical expressions (e g variables)

— The up-arrow (?...) hints at chapters or figures where further detail can be 

found

Various brackets are used in their habitual meaning

[ 1 bibliography references ,
( ) function argiments, subscription  or j us t conment s ,
1 i s e ts ,
< > sequences, or BNF e n t it ie s ,  

genuine quotations, or "w e ird ” ways of pu tting things

Simple conventions apply to identifiers in programs: 

variables are written in lower case,

keywords are written in upper case (except in PASCAL programs, where this

violates the standard),

procedure names are written in lower case but with the initial in capitals

Page numbers are printed in the top corner of every page, whereas the current

section number is quoted in the bottom corner

1.3
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CHAPTER II: Lucid and Data Flow

2.1 Tha Lucid Syntax

This section describes the version of Lucid used in this thesis. This version is 

essentially the same as the subject of [FMYB3, AsW83], only embellishments (e g lists 

and strings) have been omitted for the sake of clarity.

The programming language Lucid has little substance in common with languages 

like BASIC or PASCAL. The syntax of many programming languages resembles 

mathematical notation, but Lucid programs go much further: every Lucid program 

makes mathematical sense, it is the definition of the computation result written in 

mathematical notation. Just the same, Lucid is not difficult to grasp, knowledge of 

heavy maths is not required for understanding Lucid, instead, most of Lucid is clear 

once a few facts are understood.

Lucid is best understood as the combination of two things:

— the Lucid syntax (the notation for Lucid programs) and

— the Lucid algebra (the objects symbolised by Lucid variables, and also the 

operators on them)

We will first introduce the Lucid syntax rather informally, then the Lucid algebra 

(t 2 3), and show eventually how the two are brought together in the formulation of 

relevant computations. The Lucid syntax is described more formally in appendix A. 

The ultimate and authoritative description of Lucid is found in [AsW83] and [FMY83]

2.1.1 Definition* (Assertions)

The syntax of Lucid comprises only few constructs, which makes it very easy to 

learn. Atypical Lucid program, the computation of the running average of x, looks 

as follows

2.1.1
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sim / n WHERE
n = 1 F9Y n+1 ;
sum = z ♦  (0  FBY sum) ;

END

Between the keywords j WHERE] and ]ENDI you see two lines of text, the one going In - ... ;| 

the other ¡sum - ... ;|. Both are simple definitions, and exemplify as such the most 

central construct of Lucid

Every definition states that the object on the left hand side of "=" is forever 

identical to the object on the right hand side, the definiens

Definitions (also called assertions) can be either simple definitions or function 

definitions (̂  2.1.4). The left hand side of a simple definition is just an identifier, the 

name of a Lucid variable being defined; the right hand side is an expression telling 

what is symbolised by the variable. The definition causes the Ihs and the rhs to be 

totally equivalent so that, in expressions, the reference to a variable may be replaced 

by its definiens, without any effect on the computation result

Adjacent definitions may be swapped, i.e it is irrelevant in which sequence 

definitions are written There must never be more than one definition for the same 

variable

These rules highlight that definitions are quite unlike the assignments in 

imperative languages Every definition states the nature of an object, and it is valid 

once and for all. just as in mathematics

2.1.2 Expressions

The rhs of every definition is an expression, for example pf F3Y nVil Indeed, every 

Lucid program has the form of an expression The Lucid rules for expressions are 

quite like those rules in most higher programming languages An expression consists 

in the simplest case of a constant or of a variable A constent is either an integer, or 

one of the special keywords iTft'Jfil, P̂ AtSEl or iERSOftl A variable can be denoted by any

2 12



II - 3

identifier (a letter followed by any number of letters or digits), for example Iciipo] 

or [n]. Certain sequences of letters are reserved as keyw ords, and are therefore not 

eligible as identifiers; they are:

AND ASA CURRENT ELSE END EQ ERROR FALSE FBY FI FIRST GE GT I 
IF IS LE LT HOD NE NEXT NOT OR THEN TRUE UPON WHERE WVR * I

( fEQl [NS] ¡LEl j ll l [GEl ¡GT] are the relational operators for comparing data, ¡AND] ¡OR] |NOT) 

are the Boolean operators, HOD' is the division remainder, |asa ! [FBYj 1 FIRST) [NEXT! ¡UPONI 

|wvr[ are special functions of the Lucid algebra (* 2.3), while jIF THEN EPSETfT! ¡where END] 

and ¡IS CURRENT! have other uses )

Complicated expressions can be built out of simpler ones: a prefix  operator (Q

I NOT| I FIRST] I NEXTl) can be put in front of an expression, or an in fix  operator can be 

placed between two expressions, the outcome is a bigger expression in either case 

Ambiguities can be resolved by enclosing an expression in brackets before building 

such a bigger expression. In most cases, however, brackets are unnecessary since a 

precedence is defined among the operators:

(strongest b inding)
10 FIRST NEXT
9 * / MOD
8 +  —

7 EQ NE LT LE GT GE < <= > >=
6 NOT
5 AND
4 OR
3 FBY
2 ASA UPON WVR 
1 WHERE

(weakest binding)
The precedence is the "relative binding force" of the operators. What is meant is 

this: any operator with a high precedence (strong binding force) can "grab hold of its 

operands" before an operator with a lower precedence (weaker binding force) can 

try. In the expression TTHYaTi] the variable n has an infix operator on either side, 

and we can read from the precedence table that + binds more strongly than !FBYl 

The + operator will therefore win over [F3Vl in claiming n as operand, thus making the
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whole expression equivalent to [ i F3Y (n +1)1 The binding is le ft associative among 

operators of equal precedence, except for |FBY| where it is right associative, so that:

I a —b —c —d »  ((a — bl — e) — dj 

whereas

'«  F3Y b F3Y c F3Y d -  a F3Y (o F3Y (c~ F3Y d))|

Certain operators (viz, the comparison operators) do not associate at all,

i.e separating two such operators only by an operand makes no sense in Lucid:

0 < a AND n < 1000 // is  a le ga l exp ress ion ,
0 < n < 1000 // is  in c o rre c t .

I________________________ _______________________ I
[IF c TH5N t 5LSE e FI] is an If-expression with c, t and a being expressions; the condition 

operand c selects whether the result of the ¡JFj is taken from t or from • (? 2.3 3. l).

Expressions can also contain function references, such as or iimtp»i+3, k»])1. 

Every function reference starts with the function identifier, followed by the actual 

parameters in brackets Each actual parameter is an expression A definition of the 

function (i.e. with the same identifier, t 2.1.4) must be provided in a suitable position 

(scope rules: t 2.1 5).

[WMF35; clauses are a further construct permitted in expressions, a construct so 

crucial to deserve its own section

2.1.3 [WHERE] clauses

In our Lucid example program, a [where clausa constituted the top level 

structure. This is perfectly legal, since [ff:i£itc!! clauses constitute expressions, and 

only expressions constitute Lucid programs. The BNF (* appendix A) of a 

clause is:
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j  < « * f r « M l i » >  
WHERE

< c u r r «n l ing> // any nurrber o f these
< d «/ in i t io n >

END
// any number o f these

Everything between the jWHERE] and its corresponding [fgB] is called the [where] body, 

while the ¡where] expression is the expression on the left of |WHERE]. Right after the 

keyword I WHERE] is the only place where currentings are permitted. A currenting 

(T appendix B) has the BNF:

i<vartablg> IS CURRENT <9xprw9sion> ;]

and it defines the <variable> to be, in a special way, equal to the <expr»ssion>; 

incidentally, this expression is evaluated outside the ¡where] clause. Currenting is 

quite an involved matter, so that appendix B should be read only after completion of 

this entire chapter.

We are now able to present a program which contains all the syntactic features of 

Lucid:

1 s+l ASA s EQ l
WHERE

* IS CURRENT x— 1
y IS CURRENT z-1
C = 1
. = x FBY chop ( s , t )
chop ( a , b ) = a MOD (b + c ) // f  z . . 4

t = y FBY chop ( t , s )
END

Each definition or currenting in the [where1 body attaches a meaning to an identifier, 

be it a variable or a function. The [WHERE] expression (here: f » » i  ASA » KQ tl), and the 

expressions within the [WHERE] definitions, will usually refer to identifiers (of variables 

and functions). In order to determine the identity of the variable or function, the 

compiler performs a search, first among the definitions in the [where] body and then 

outward through the syntactic structures which enclose the ¡WHERE] clause. (There is 

none of the latter in our example ) If no match is found, variables are assumed to be 

Input variables, x and x  in our example, whereas for functions an error must be 

reported
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2.1 .4  Function Dofinitions and UDFs

Lucid programmers can also define functions of their own design; such functions 

are called UOFs, U«ar Defined Functions. (Mathematically speaking, all Lucid 

operators are "functions" ) The latter example program contains a definition of the 

function [chop!, and there are two references to that function. A function definition 

looks rather the same as a simple definition, except that on the left of the ”=” sign 

we have the function name, followed by the formal parameters, in brackets. For 

example:

ch op (a .b ) = a MOD (b + c ) ;

This defines a UDF ichop], of two parameters, to be forever identical to the expression 

on the right hand side (the definiens). The definition declares also the formal 

parameters a and b; formal parameters must never share the same identifier Each 

formal parameter is bound to its corresponding actual parameter in the function 

reference. Global variables (i.e. variables which are not formal parameters) are 

permitted in the definiens, like c in the example. We illustrate the use of UDFs by 

studying the function reference in:

Is -  »~F3V chop(«,t771

The definiens of [chop! has free variables (a, b and c), and the function reference 

makes sense only after all the free variables have been bound properly. For this 

purpose an outward search is conducted, through all the structures which 

syntactically enclose the definiens. The first enclosing structure is the function 

definition, and the variables a and b are defined there as formal parameters. Formal 

parameter a is in this case bound to actual parameter •, and b is bound to t. It is in 

this case possible simply to rename the formal parameters, there being no clash of 

Identifiers, and to substitute (macro expand) the function reference, giving:
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1» = x FBY « W>0 (t*c)7!

Variable c is still free; it is bound only in the next enclosing structure, the jWHEREI 

clause, where we find its definition |c = l ;l.

2.1.5 Environment* and Scope Rules

All function definitions appear in ¡WHERE! bodies, and ¡WHERE! clauses can appear 

in the defimens of a function. Both constructs can thus be arbitrarily nested, and 

either construct declares variables (or functions or formal parameters) to which 

reference can be made from inside the construct. The rule for identifier look—up has 

just been described once for ¡WHEREI clauses and separately again for function 

definitions. The compiler, however, uses in reality one and the same mechanism for 

both look-ups. Each function definition and every where" clause constitutes an 

environment, and each environment gives a meaning to some particular identifiers. 

Environments form a hierarchy (a tree) The input variables are contributed by the 

outermost environment. If an environment gives a new meaning to an identifier, this 

has the effect of locally superseding (making inaccessible) any meaning which that 

identifier may have had outside that environment

We can draw the environments as dotted lines into our example program That 

program contains three environments: the environment around the function 

definition, defining a and b, one around ¡WHERE! clause (with the currenting half 

sticking out), defining x, y, c, s, ¡chop! and t, and the outermost environment, defining 

x and x. The superseding applies here only to x
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■4-1 ASA i  EQ t
WHERE :

*  IS CURRENT : a-1
J IS CURRENT : * - l
c = 1 ;
* = z FBY chop ( » , t )

chop : (a ,b )  = a MOD (b-t-c)

t = j  FBY chop ( t . a )
. .END.......................................................

2.1.6 Program Transformations

Those readers who aim primarily to learn the language Lucid are advised to 

continue at section 2.3. The Lucid syntax comprises constructs which are "luxury" 

since they express, concisely, something that could also be expressed through the 

basic outfit, though at extra length. This luxury is perfectly justified in the 

programming language, since it helps to keep programs legible However, when it 

comes to translating Lucid into some other code, a language is desirable with only a 

minimal spectrum of constructs, since obviously every construct requires its specific 

translation rule The elimination of cur-ranting is described in appendix B. This 

section presents methods for eliminating four things: identifier clashes, 

multi—operand expressions, global variables in functions, and multiple references to 

variables. All these eliminations can be done in separate compilation passes 

(e g. UNIX® filters), in the sequence just mentioned. It does no harm if this 

pre—translation reduces the aesthetics of the program, since no human eye will read 

the program in this intermediate form anyway.

Unique Identifiers

Different environments may attach different meanings to the same identifier, by 

means of currentings, definitions or formal parameters However, the later 

translation stages would benefit if all identifiers had a unique meaning This state of
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affairs can be established by substituting identifiers by unique ones; this task is not 

hard since every program contains only finitely many identifiers. One might choose 

[at] (i = 0. 1, 2....) as the substituting identifiers, though omitting the initial segment 

[55! ... [* ] if the original program contains [3j] as identifier.

Monomaric Programs

Every definition has on the right of "=" an expression, and Lucid permits all 

expressions to contain many operators, by way of sub—expressions. The later stages 

or our translation, however, become particularly easy if only a single operator is 

permitted in any expression, and if every jWHEREI expression and every actual 

function parameter is required to be just a variable, if not a constant. In this way, 

the result of every operator can be associated with a variable ("Operator" is here 

meant in this most general sense which includes not only the prefix and infix 

operators, but also [!?[ and all UDFs ) Vie call programs monomeric if they have been 

transformed in this way Vade monomeric, our example program looks as follows:

h0 WHERE
;

X IS CURRENT x-1 , 1

y IS CURRENT z-1 ; 1
c * 1 ;
chop ( a. b) = h5 WHERE

h6 = b + c ;
h5 “ a MOD h6 ,

END ;
s = x F8Y h4 ; h4 = chop ( s . t )  ;
t s y FBY h3 ; h3 = chop ( t . » )  ;
hO = hi ASA h2 ; hi - sM h2 ■* a EQ t ;

END

The example demonstrates how easily the aim can be achieved: a definition for an 

auxiliary variable is inserted, where required, with the sub-expression serving as 

definiens. The auxiliary variables are named [hi] (t = 0, t, 2, .), though omitting i  

values which would clash with pre-existing identifiers;
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If the definiens for a function needs to be broken into smaller expressions, 

a ¡WHERE! clause must first be put around the definiens We apply the rule that every 

<«xpr«ssfen> can be blown up into:

|h WHERE h ~ Kmxprearion > , END!

Global Varlablaa in Function«

Global variables in functions are sometimes convenient for the programmer, but

subsequent translation stages would come to grief with them. Global variables are

easy to eliminate: they are simply added as extra actual and formal parameters both

to the function definition and to each function reference (identifiers assumed to be

unique). The respective lines in our example would change into:

| s = x F3Y chop (s . t .c )  ;
chop(a.b.c) = a MOD (b+c) ;

' * _ n _ l__ _ _\

[copy) definition«

We know that expressions can contain references to variables; this is the one 

and only way in which variables interconnect and eventually combine into the 

program. A variable may have more than one expression referring to it. 

No substantial program can do without such multiple references.

Since any operator may occur in a definition, every operator must be able to 

cope with multiple references In a naive approach, one might implement each 

operator so that it can handle multiple references Instead, we pretend that Lucid 

has an extra construct, namely the ¡copy! operator and the ¡COPY! definition

( <var> |,<var>| ) ■* COPY ( <var> ) ; // BNF

(*. y .  *) = COPY (a) ; // example
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ICOPYl is a unary multi-valued function; in the example, x. y  and z refer to exactly the 

same variable a. Any number of <var>'s is permitted on the left hand side.

The entire problem of multiple references is now concentrated in the IcoPYl 

operator, all other operators will now have single references. (Note: The Lucid 

programmer is not allowed to use jCOPY] definitions.)

Lucid programs before and after all these transformations are shown in 

sections 4.3.3.1.

2.2 Graph Lucid

Before we turn to the Lucid algebra, let us use the occasion for introducing an 

entirely different program transformation, namely the one into Graph Lucid Graph 

Lucid is not another programming language but only a different representation for 

Lucid programs, it serves mainly as a particularly suggestive illustration aid in our 

later explanations. The subject of section 3.1 might, in contrast, be called equational 

Lucid

Given a Lucid program which has been conditioned according to appendix B and 

section 3 1 6, the translation into Graph Lucid is quite easy. In Graph Lucid, each 

operator is represented by a nod», and directed arcs express the references to the 

variables Let us study this in greater detail

Every operator is mapped into a node In our diagrams, nodes are drawn as 

boxes with the node type written inside Every monomeric expression defines a 

result; correspondingly, every node has a point, called its outport, from where an arc 

springs. Generally, every operator has operands, correspondingly, every node has 

points, its Inports, where arcs end. By convention, the outport is placed on the 

bottom line of the box, and inports are placed at the top or at either side The 

sequence of the operands is reflected in the left-to-right sequence of the node 

lnports; for example:
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1» = IF c THEN t ELSE a FTTI 

may map into:

c t
4 4

-I----------------- +
I IF | ♦- e
H---------1------- +

4
X

Matters are hardly different with COPY! nodes; they differ only in so far as they have 

more than one outport. To limit the clutter in our diagrams, ICOPYI nodes are 

symbolised by a plain letter C, and the node box is omitted.

Lucid programs express input and output implicitly, namely by means of the 

outermost environment (input) and by the overall result of the program (output). 

Graph Lucid requires one explicit 'read; node for each input variable, one ; write'  node 

for the program result, and one ’constamt! node for each constant.

Expressions can contain references to variables and constants Each referer.ee 

is mapped, in Graph Lucid, into a directed arc Every arc leads from an outport to an 

inport, i.e this is the direction of the arrow on the arc Every arc can be 

unambiguously labelled with (the identifier of) a variable, often an auxiliary variable 

We will occasionally speak of the downstream direction when we mean the arrowed 

direction of the arcs; upstream is the opposite, of course.

The translation of UDFs into Graph Lucid is described in section 4.3.2.2; until 

then, it is sufficient to know that every UDF is an operator, and the LDF parameters 

are its operands.

Tho beginning of section 4 3.3.1 shows how the example program [Sieve! would 

look when transformed into Graph Lucid. Labels mt and st are used for auxiliary 

variables; the numbering is incidental, for the time being -  In the diagram, one 

¡COW node («2 ) is split up into three separate [COPY! nodes. Strictly speaking, this 

not perfectly legal, it has been used merely to keep the graph legible -  The letter N
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In the graph marks the point which corresponds to the variable N in the program. 

The graph on the left contains a cycle: we can run down the arcs from the iPLUSl node 

to Iran, then to [COPY] (C), and arrive again at ¡plus!. In Lucid programs, every cyclical 

definition needs to involve at least one variable; in the graph, the cycle can be 

broken at the point corresponding to this variable. This point is therefore called a 

outpoint, and it is marked * in the graph. It coincides in our example with the 

variable N.

Any of our graphs is called a net if it has no open inports and outports (e.g. the 

left part of the ; Sieve! graph), while a subnet is a graph with an open inport or outport 

(e g the right part). UDFs map into subnets, and the main program maps into a net.

2.3 T h *  Lucid Algebra

2.3.1 Analogy

Lucid graphs are excellent for illustrating the Lucid concept. One can imagine 

the arcs were pipes, and there were plastic balls rushing down the pipes. Each ball 

contains an item of information, say, written on note paper Instead of balls we 

speak of datons, and the information contained inside is called the daton value Each 

pipe transports datons from a node outport to a node inport.

The nodes are machines, connected by the pipes in accordance with the 

program. The outports and inports resemble sockets with pipes attached. A node 

can check each of its inports whether it is f illtd , i.e. whether a daton is ready to be 

consumed When given a daton at an inport, the node can take the daton, inspect its 

daton value, and take the appropriate action. The node produces datons with 

suitable value, and feeds them into the outport pipe.

Let us take for example the ÌAÒDl node. It has two inports and one outport. 

Whenever each inport is filled, the node removes both datons, computes the sum of
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their values, and feeds a daton with the sum value into the outport.

On the other hand, the ¡COPY) node has one inport and at least one outport. 

Whenever the inport is filled, the node removes the daton, and feeds a copy of this 

daton into each of its outports.

Any network of nodes and pipes can be built up out of these components, and 

the computations take the form of daton processing and of pushing datons through 

the pipework Looking at any point in the network of pipes and nodes, we see a 

stream of datons passing by (as long as the computation does not come to a halt). 

One can record the values of all the datons passing through a pipe, and one can say 

"this arc has thi3 sequence of data associated” .

If the program runs forever, it should compute an in fin ite  sequence of data. 

Of course, only fin ite ly  many datons can be computed in finite time

The analogy of the plastic balls has its limitations, it is merely meant as a rough 

guide. (It modelled the data driven version of pipeline Data Flow, * 2 5. We use the 

UNIX® term pipelino" for FIFO queues in general.) Datons are in reality mere 

conceptual objects, and they can be produced and consumed without regard to any 

conservation law, as the description of the ,ADt)l and ¡COPY] nodes showed

2.3.2 Datons and Hiatorlas

Datons are conceptual data particles, whereas in conventional programming 

languages a data item is a mere contents of a storage cell. We confine the daton 

values to integers, |T3t'Ei or I FALSE!, or Rsaftoal. Lucid allows, in principle, a much wider 

range of data, but the full generality would distract from the important points of this 

thesis.

We know that every variable of the Lucid program maps Into an arc in the graph, 

and that every arc has a sequence (finite or infinite) of data associated We call a 

finite or infinite sequence of data a history Taken together, every Lucid variable has
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a history associated. Here are a Few examples of histories:

index = < 0. 1. 2. 3, 4, 5. 6. 7. 8. 9. 10. . . . >
squares = < 0. 1. 4. 9. 16, 25, 36. 48. 84, 81. 100.
primes = < 2. 3. 5. 7. 11. 13. 17. 19, 23. 29. 31. . . . >
chance = < 46, -5, 0, 1537, 400, -34. -34. 1 . 147, . . . >

(Warning: the sequence notation is only an aid for our discussion, it is not Lucid 

syntax) The variable |tnd»x[ is indeed predefined with the history shown above, 

because of its great practical use (i.e. It is known to Lucid even if the user does not 

define it).

The datons are by convention numbered from 0 up. This "serial number" is 

called the index of the daton. The daton with the index 0 is the initial daton ("first" 

could be misleading) We denote an individual daton of a history by writing its index 

as a subscript after the name of the history. The Lucid variable fjide»! is special in 

that for each daton the value is exactly its index (ii = |0, 1, 2, ... j) 

index« = i  V  < e u

2.3.3 The Operator«

The algebra is the specification both of the data objects and of the operations on 

them Indeed, histories are the only Lucid data objects; every variable has a history 

associated. The daton values have their own algebra; this algebra is employed to 

generate a good part of the Lucid algebra. Here are the two algebras

— The algebra of the daton values: its data objects are the integers. ¡FAlSEI

and ¡ERROR!. its operators are the conventional operators (viz : *  — • / ;¥Ó5i (IFl 

ÍAÑ31 fORl ÍÑOTj [LT¡ ¡LE¡ [GT¡ ¡GE¡ [|§¡ (NEj),

— The Lucid algebra: its data objects are infinite sequences of datons, its operators 

are the special Lucid operators ( |W3Cfl ¡É9Y] I HRSfl ¡UPON! jWVftl ;XsXl) as well as the 

pointwise extensions of the conventional operators.
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We explain now the operators: first the extension ("lucidisatxon") of the conventional 

operators, then the special Lucid operators, starting with the very important !F3Yl 

andlNEXTi and followed by the more exotic operators.

2.3.3.1 Tha Pokitwisa Operators

All conventional operators can be extended pointwist (= indtx—wist)', such 

extended operators are pointwisa operators. This operator extension is defined as 

follows: given a conventional operator ifr and given two histories a and b, the history 

(a “V* •>) is obtained by applying individually to the operand datons:

(a uii b)t = a« V b< V  t € u.

For example, a Lucid program may contain the simple definition: 

sum = a + b ; // "+■’ is  here j

This corresponds to the following equalities for individual datons 

sum* = a* b, V i e «

This is indeed the Lucid [ADal operator described in the analogy, above Lucid 

operators yield an1 ERRORi daton whenever a proper result is barred by an error in the 

computation (e g. a division by 0 is attempted). This is the most elegant and safe way 

of drawing attention to meaningless computation results 

Here is another simple definition:

| pleasure ~ IF cond THEN music ELSE p lants  FI ;

The operand icondl is Boolean, i.e each of its datons is either [TRUEI or ¡FALSE]. Index by 

index, each daton of history [pleasure! is the corresponding I music! daton if the 

corresponding fcondl daton is PHUSI, otherwise it is the IplanTJ daton

2. 3. 3.1
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planta = <Rose, Tulip, L ily , Fern, Poppy, Crass, Fig, T r iffid , ... >
nusic = <9ach, Elvis, Ella, Duke, Holst, Haydn, Weill, C lif f ,  ... >
cond = <7RUE, FALSE, TRUE, TRUE, FALSE, FALSE. TRUE. FALSE, . . .  >

pleasure - <3ach, Tulip, Ella, Duke, Poppy, Grass, Weill, T r iffid , ... >

Two points about [IF] must be highlighted:

— The result of the [IF] is obtained by inspecting the datons of its three operands at 

exactly the same index positions as the result, nothing needs to be known about 

datons at earlier or later index positions. Such operators are called polntwise 

(The operators introduced in the remainder of this section 2.3.3 are not 

polntwise.)

— Dependent on the daton in the jcond! operand either the daton of the ITHSNl or the 

¡ELSE1 operand is chosen for the result history This means also that the value of 

the other daton is ignored; the effort for its evaluation, if any, has been in vain.

2.3.3.2 Th* ;FBY] Operator

Suppose, we have to write a Lucid program which generates the following history (the 

sequence notation is not permitted in Lucid)

h = < 1, 2, 3, 4, 5. 6, 7, 8, 9, 10.
11. 12, 13, 14. 15, 16, 17, 18, 19, >

A proper definition of h can be based on its two characteristics

— the history starts with a 1 and

— the history proceeds in incremental steps of +1 .

The variable h can be defined by a recursive simple definition using the [rivl operator 

(¡FBYj stands for "followed by").

h * 1 F B Y h  ♦ 1 ;
/ / t t t t t t

l j i
«< art i u c c « i « o r

The result of 1FBYI is the history produced by taking the initial daton from the left 

operand ( Ir.art!) and by inserting it ahead of the history of the right operand
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( [successor!).

Any expression can be put at Istertl. not merely our constant history of infinitely 

many 1—datons. Only the initial daton of Istartl matters, it constitutes the initial 

daton of the result.

Any expression can be put at [successor], and it constitutes the result from the 

daton hi on. One effect is that, comparing daton by daton the 1FBY1 result with its 

I successor! operand, the latter is always ahead by a single daton. Note the reference to 

h in [successor!: the definition is recursive. The following diagram illustrates how h is 

generated:

1 < , 1. i , 1. 1, 1, 1. 1. 1, i , 1. 1. 1, 1. 1 . 1 .

h - <1 . 2, 3. 4, 5. 6. 7. 8. 9. 10. 11. 12, 13, 14. 15 .
1 - <1 . 1. 1. 1. 1 . 1. 1 . 1, 1. 1. 1. 1, 1, 1 . 1 .

4 * 4 4 4 4 4 4 1 4 4 4 4 4 4

h-M <2. 3. 4 , 5. 6. 7 . 8, 9 , 10. 11 , 12. 13. 14, 15. 1 6 .
4 1 4 4 4 4 4 4 t 4 4 4 4 4 4

FBV h+1 = <1 , 2 . 3. 4. 5. 6 . 7. 8. 9. t o . 11 . 12. 13. 14. 1ft. 16 .

h * <1 . 2 , 3, 4, f t , 6 . 7 . 8. 9. 10, 11. 12. 13. 14. 1ft. 16 .

The exact definition of ;"3V,' is

(aFBYb)o = a0 

(aFBYb)i*, = b, v  t e u

The following L'DF, .Coxt.t!, demonstrates the combined use of j]F] and rpiv!. It yields a

running count of datons ( Count?! is a filter)

CountT (it) *  s 
WHERE

s = 0 F3Y IF it THEN s + 1 ELSE s FI ;
END ;
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2.3.3.3 Th* !FIRST! Operator

IFBY1 provides also a simple way to extract the initial daton from a history, 

deliberately discarding the rest of the history. This is achieved by:

■ = fancy FBY s ;

All datons of variable • are equal to the initial daton of 1 fancy I. It is also common to 

write:

■ = FIRST fancy ;

which means exactly the same, but is more convenient to write — The exact 

definition of the IfihstI operator is:

(FIRST a)t = ao V i e w

I I -19

I FIRST! is semantically equivalent to the UDF:

F i r s t  (a )  = p WHERE p = a FBY p END

2.3.3.4 The NEXT] Operator

The ¡next; operator is in a sense the inverse of ■FBY1. The exact definition of [next] is: 

(NEXT a)( — a**./ ^  i  €

Here is an example where j NEXT' is applied to a variable h

n = NEXT h ; j

According to this definition, n is the history obtained by removing the initial daton 

from h. If h is defined as in the example above, we obtain:

n =  < 2 ,  3, 4, S, 6, 7, 0, 9 , 1 0 , 1 1 ,
12, 13, 14, 15, 16, 17. 18, 19, . . .  >

Comparing, daton by daton. the iX53Cr! result with its operand, the former is always

ahead by a single daton. — [vSXTl is not the exact complement of !fb¥1. The

application of ¡NEXT] re-creates the successor] operand of iFfPl, in other words

c *  NEXT ( a FBY h ) H

2.3.3.4
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gives e the history of b; a is irrecoverably ignored c gets also the history of b in the 

following:

"~c = b FBY NEXT b

Let us study a simple example involving 1FIRST1 and; NEXT!:

deviation = NEXT ( r -  FIRST r ) ;

We choose a random history for r  and play the example through:

r = <400, 970, 566, 946, 264, 640, 638, 117, 396, 743, 256, ... >
FIRST r = <400, 400, 400, 400, 400, 400, 400, 400, 400, 400, 400, . . . »
r -  FIRST r * < 0, 570, 186, 546,-136, 240, 238,-286, -4, 343,-144, .. .  >
NEXT ( " ) = <570, 166, 546,-138, 240, 238,-286, -4, 343,-144, .. .  >

The following UDF, IIndexT , is a more elaborate application of ¡NEXT]; it searches its

Boolean operand k for a (TRUE] daton and returns its index position. Its integer

operand I ( l e w )  specifies which occurrence of 1TRUEI is wanted: I = 0 requests the

earliest occurrence

IndexT (k, i )  = IF NOT k
THEN IndexT (NEXT k, i ) •*■ 1 
ELSE IF i > 0

THEN IndexT (NEXT k, i-1 ) 1 j
ELSE 0 

FI FI ;

2.3.3.5 The UPON] Operator

The operators described in the remainder of this section 2.3.3 may look 

somewhat "artificial", but they are almost indispensable in any substantial Lucid 

program

The lüëôwl operator is of great use when we try to build a node which consumes 

datons (at an inport) at a slower pace than it produces them (at the outport). 

— Using the UDF1 [CountTl from above, the exact definition of [UFOS! is:

(a UPON k)4 = *(CountT(k)t)
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The initial result daton of la UPON kl is ao- Subsequently, if the operand k yields a 

I FALSE! daton, the current daton of a is repeated once more; otherwise, the next daton 

of a is chosen for the result. — The I UPON! operator is semantically equivalent to the

following UDF:

Upon (a, k) = a FBY Upon (p, NEXT k)
WHERE p = IF FIRST k

THEN NEXT a
ELSE a FI ;

END ;

As a typical use of luPON'i, here is the UDF 1 My merge I which merges two histories x 

and y, under control of a Boolean I condl, without losing any daton of x or y:

Myme rge (cond, s f, J f) =
IF cond THEN z UPON cond

ELSE y UPON NOT cond FI ;

2.3.3.6 The ;w v b| Operator

The |wvw| operator y’whtnsver") helps when we try to build a node which consumes 

datons at a/aster pace than it produces them. — Using the UDF [indexT] from above, 

the exact definition of ,wyr; is:

(a WVK k), = aIndex7(kii) V i e «

IWVR1 consumes both its operands synchronously. It scans its rhs. operand k until a

ITRUff daton is found, and it picks then the daton of a with the same index. The latter

daton forms the result daton of IwVRj. To obtain the next result daton, the scanning of

the operands continues from the index where the previous evaluation left off

The |Wff! operator is semantically equivalent to the following UDF:

Wvr (• , k) * IF FIRST k THEN p ELSE q FI 
WHERE p ™ a FBY q ;

q -  Wvr (NEXT a. NEXT k) ;
ENO ;
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As a typical use of ¡WVR1, here is the UDF I Oa.il which filters out any immediate 

repetitions of datons:

Clean ( a ) = a WVR (TRUE F3Y (a NE NEXT a )) ;

2.3.3.7 The |asa [ Operator

The |a« a ¡ operator ("os soon as”) is semantically equivalent to the following UDF:

Asa (a. k) = FIRST (a WVR k) ;

iASAi consumes both its operands synchronously. It scans its rhs. operand k for the 

earliest ITRUEI daton, and it picks then the daton of a with the same index. The result 

of 1ASAI is a constant history generated from the latter daton.

The exact definition of iASAi is obtained by applying FiRSTI to ¡wvr¡:

(a ASA k\  = a[rdexT(k.C) V i e w

2.4 The Semantics

So fau-. this chapter has taught us how tc write meaningful Lucid programs 

Thanks to the analogy of the plastic balls, we can even imagine how our programs 

might be executed. We must be careful not to overrate this analogy; it is by no 

means the authoritative definition of the Lucid semantics The analogy extends to a 

further point, still: any of our plastic balls can be empty, in which case it provides no 

inform ation. (The reason why the Information is missing is another matter.) Such 

"no information" datons are called bottom, the symbol is 4_ Correspondingly, 

a history can have .¡.components. A bottom daton carries loss information than a 

proper daton; we say it is lees defined Based on this loss da f in ta  ordering, a partial 

order is defined among histories (the history consisting only of bottoms takes 

obviously the lowest place).
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Lucid can be understood as a single—assignment language: one history is 

assigned to each variable, once and for ever. The Lucid semantics is defined as 

follows:

The result of a Lucid program is the (east Sized point history satisfying all the 

definitions in the program [AsW79a, AsW80], (Least fixed point means here: the 

minimum history with regard to the partial order.)

It is common to define variables recursively: 

q = Func (q ) ;

There may be a history q, so that iFunc (q)i is more de/tned than q (with regard to tne 

partial order). This history q is unique If such a history does not exist, q is J_ 

throughout. -  For example:

|h - 1 F3Y h+1

•»0 is evidently defined: whenever h is defined up to an index t, it is also defined up to 

the index i-*- 1 V  i e u By induction, h is therefore defined everywhere

This variable h is actually an example for a special case where a particularly 

convenient translation (viz. p ip « l in t ) is possible no daton value of h is defined in 

terms of its own successor datons

2.5 Program Execution

The term Data Flow designates the description of computations through datons 

moving through a net; we abbreviate Data Flow into OF. Histories are infinite objects, 

though no computer is able to operate directly on infinite objects We have to 

re—organise the computations so that we need to operate only on individual datons. 

one after another. Let us now study the two strategics in which a DF program can be 

executed

2 6
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Data Driven DF

The strategy described in our analogy is called data driven DF (most researchers 

mean specifically data driven DF when they say "Data Flow"). The image of datons 

streaming down the arcs is particularly appropriate for data driven DF. I CONSTANT] 

and I BEAD! nodes are the original sources of datons, and they are eagerly feeding 

datons into the net. As soon as the required operand datons are available for a node, 

it is free to compute and produce its result. Such data driven nodes can, in general, 

not influence the arrival rate of their operand datons The [write] node has no 

dominance over other nodes, but simply writes out the datons which happen to 

arrive. Anode may discard operand values (Tend of 2.3.3.1), their evaluation was 

pointless, in retrospect. Data driven DF is inherently wasteful in this sense.

Damand Driven DF and Lazy Evaluation

Demand driven DF is a refinement of data driven DF. designed to be less wasteful 

than the latter Further to the datons, demand driven DF has particles called sltons 

(fr ;T « = I request). Sitons travel upstream along the arcs, and each of them 

expresses the request for one daton The [WBiTE] node is the ultimate origin of all 

sitons; iWRITE! alternately issues a siton and receives a result daton. A [CONSTANT; or 

IrSaj] node produces a daton only upon receipt of a siton. All other node retain their 

daton handling capacity; however, they can now receive sitons at their outports and 

emit sitons from their inports, if appropriate Sitons contain information about the 

nature of the request ("give me a daton with/without value"), and the nodes react 

accordingly. Unnecessary daton evaluation can be avoided in nearly all cases (t 5 6).

Once an evaluation has been instigated, by a siton. it may turn out that the 

daton value is not needed after all. In this case, alethon is sent upstream to 

counteract the siton. Lethons (Lat. lethum = death) are close relatives of sitons; 

a lethon can be issued right after a siton, but before receipt of the response daton

2.5
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The nodes propagate lethons like sitons.

Demand driven nodes have considerable control over the producers of their 

operand datons; the ¡writs; node has absolute dominance over all other nodes.

At present, most computers are von Neumann machines. Data Flow 

computations of either type can only be emulated on such a machine. A demand 

driven evaluator can be matched very closely to von Neumann machines, and it is 

possible to formulate this evaluator in quite acceptable von Neumann code. This is 

indeed what this thesis aims to achieve. — A form of demand driven evaluation has 

been used on von Neumann machines for a long time. It is widely known as lazy 

•valuation [HeM78], and it was first employed in LISP systems.

Even Data Flow machines do not contain moving streams of particles. They use 

in reality also an emulation, implemented in tailor made hardware instead of 

software. It is not very difficult to emulate demand drive on a data driven Data Flow 

machine [Sar82].

2.6 Daadlock

Every Lucid program produces an endless stream of datons, and nothing but a 

lack of input datons should be able to halt it. However, Lucid programs can contain 

faults which make them stop yielding results, permanently Deadlock and livelock 

are such errors

Deadlock is a type of programming error which re—emerges in almost all forms of 

programming State a is a daadlock state if:

— state a can be left only if condition r  is TREE, and

— condition r  is FALSE during state a.
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Section 2.4 stated which recursive definitions are constructive. Here is a

pathological program, and its graph:

x WHERE H------- --
x = x ;

END •— * C
x *

One could say, the program defines x to be "whatever it happens to be” . 

Consequently x is bottom throughout, due to the fixed point semantics. When this 

program is executed, an attempt is made to obtain the value of a daton xi. Because 

of the cycle, a daton x* can be evaluated only if x* is known btfonhand, this is a 

deadlock (see also Cycle Sum Test, r 6.1).

Another programming error is the livelock; tivelocks are those computations 

which never deliver a result. In the following pathological example, ¡odd; contains only 

odd numbers, and the UDFiSvenl is a filter for even numbers. [Sven! applied to [odd] can 

never yield a result. Consequently, the result is bottom throughout:

Even (odd) WHERE
Even (x) = x WVR ((x  MOD 2) * 0) ; 
odd = 1 F3Y (3 ♦ odd)

END
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CHAPTER HI: Imperativa Program* and Meaaage Passing

3.0 Introduction

Whenever a program is executed on a digital computer, this is done in the form 

of numerous elementary operations (= computation steps, actions). The executing 

computer is characterised by the method in which the operations are set in motion, 

and each of these methods represents a computer architecture

Historical Review (sketched)

John von Neumann developed the original stored program computer 

architecture (Moore school, EDVAC, 1945). But people tried immediately to make 

their machine even more productive, for example by allowing I/O transfers while the 

machine was busy computing the next result. This was achieved through ingenious 

technical fixes, which in turn provided a base for the invention of (pseudo—) 

concurrent computation. A computer system computes concurrently when it is 

simultaneously handling more than one computation Later, after the dramatic 

growth in the number of computers, techniques were developed to link computers 

together. In this thesis we will give only little thought to the difference between real 

and pseudo concurrency.

Changes in hardware motivated the development of software, i.e. hardware took 

an active role, software a passive role. Uultiprocs ssing operating systems were a 

reaction to the introduction of concurrent computation. Even today, designers of 

computer systems rarely pass the benefits of concurrent computation on to the 

applications programmer. The area has the reputation of being for experts only. 

This is in essence not justified, in fact the reputation stems largely from the use of 

unwieldy programming languages
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Nevertheless, programming techniques and languages for cooperating 

concurrent computations have been developed, mostly by academics. Every 

language reflects the priorities its inventor gave to the various aspects of 

concurrency. The various concurrent programming methods are best compared by 

discriminating between (A) how they set up concurrency and (B) how their 

concurrent units communicate. Early on, people were satisfied to have any provision 

for concurrency at all. Leaving genuine concurrency aside, we would place the 

UNtX^lforkl primitive under (A) in this era in history. Similarly under (B), one would 

place in this era shared use of global variables. There are methods which are more 

refined. Message passing is the natural choice of communication method for 

concurrent systems with separate memories

In message passing, the computing agents communicate solely by sending and 

receiving msssagss. each message being a sequence of data. (We call each 

computing agent an "actor'', am actor is almost the same as a von Neumann machine. 

Full detail in 3.2.1.) The inherent modularity of message passing makes it attractive 

for quite general application.

Other concurrent programming concepts cater for aspects which are relevant in 

special situations Making the data machine independent, for example, is of great 

importance in inhomogeneous computer networks (Data Abstraction, CLU [Us74]). 

Other researchers have at the same time tried to design languages which are much 

more amenable to analytic methods, and thus make program proofing a realistic 

idea Most of these languages are built on very concise sets of fundamental 

constructs. Hoare's CSP [Hoa78], Brinch Hansen's EDISON and, in a different sense, 

Lucid belong to this category.
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Criteria for tha Implamantation Languaga

On present-day computers, which language would be a suitable vehicle for 

implementing Lucid? Here are a few simple guidelines to aid us in our search for an 

appropriate language:

— Is the language comprehensive enough for the task in hand?

— Are the resulting programs easy to read? This thesis is meant to convince the 

reader that the translation is meaningful and correct, and a well readable 

language would support this aim. The "production" implementation language, on 

the other hand, may be arbitrarily cryptic

— Is the language available on many computer systems? If not, would it be easy to 

implement, possibly by modification of an existing system? Programs written in 

a good popular language are easiest to understand and translate.

— Last, and least: are the language features a reasonable reflection of the way in 

which present-day computers work? Optimisation becomes unnecessarily 

difficult if this aspect is ignored.

Clearly, many candidates pass these simple guidelines equally well We will see 

that Message Passing Actors (MPA, t 3 2.1) support modular program design The 

author had advance experience with MPA, and there was therefore a certain 

sympathy for MPA languages There is little doubt that valid arguments can be 

brought in favour of other programming styles with cooperative concurrency 

Various programming languages have been looked at and a decision for MPA has 

finally been taken.

We chose to design directly the language most convenient for our purpose This 

language is called LUX. LUX has been developed to suit the translation algorithm 

Various versions of LUX, each with its matching translation algorithm, have been 

tried out. We present here only the design which eventually seemed best
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Structure of this Chapter

In this chapter we look first at the von Neumann machine, the archetypal 

imperative computer. After that we introduce the crucial elements of any MPA 

language, namely actor creation and the primitives |SE?Q1 and I RECEIVE!. We look at 

variations of. and alternatives to, message passing actors. We look then at CSP as an 

instance of a MPA language, and we discuss its properties. (A variant of CSP has, for 

a while, been the candidate as target language. We show why it was found 

unsuitable.) We present finally the language LUX in full.

3.1 The von Neumann Machine

Most computers these days (1983) have essentially a von Neumann architecture. 

Von Neumann machines are saguantial computers. There, only ont operation can 

usually be active at any single moment. Although every pure von Neumann machine 

is sequential (non—concurrent) by nature, a certain degree of cooperating 

concurrency can be achieved, simulated or genuine, but only at rather high cost 

We discuss von Neumann machines here only as far as relevant for implementing 

Lucid.

3.1.1 Flow of Control in von Neumann Architecture

The program (code) for a von Neumann machine is a directed graph, with 

Instructions as nodes. Programs for von Neumann machines are called sequential or 

Imperative programs. A classic von Neumann machine executes non—imperative 

programs either inefficiently or indirectly, through compilation Lucid is a 

non-imperative programming language

The flew of control formalism models the execution of a sequential program 

The formalism assumes that per actor there is one token of computing activity, (An 

actor is something rather like a sequential program, *32.1.) The token is usually

3.1.1
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called the PC, for "program con tro l". The PC moves along the arcs In the arrowed 

direction, with a defined starting point. Every instruction type is the encoding of an 

operator; the respective operation is performed when the PC reaches the instruction 

(=  node). In other words: sequential programs state explicitly the sequence in which 

the operations are carried out

The classic von Neumann machine has only one PC, and it can therefore only 

perform a single succession of operations. This can be expanded into concurrent 

computations by putting von Neumann machines side—by—side. The same effect can 

be approximated by switching one von Neumann machine between a number of 

actors; this is pstxido-concurrency Finally, cooperating concurrent computations 

are obtained by adding a means of com m unication  to concurrent computations

3.1.2 Handling of Datons in von Neumann Architactura

In von Neumann machines all the memory takes effectively the form of storage 

colls (traditionally and misleadingly said to be variables) The contents of some 

storage cells change in the course of instruction execution.

The concept of histories is not all that alien to von Neumann machines The 

values, successively held in a storage cell, can indeed be viewed as components of a 

history . One could, for example, associate a "write" counter to each storage cell, and 

increment it whenever a new value is written into the cell; the counter would 

obviously tell the "daton index" of the currently stored value This comparison 

presupposes that all Lucid nodes evaluate their histories in the order of increasing 

index ["m onotonically"). Such nodes are, indeed, particularly easy to implement, 

viz. using pipelines Some nodes, however, can leave the order of daton evaluation 

unspecified, namely when each of their evaluations is independent from all previous 

evaluations The order of daton evaluation needs careful supervision only In nodes 

with memory, nodes which are not primitive.

3.1 2
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3.2 Passing Actors

3.2.0 Introduction

As stated before, message passing is the natural choice of communication 

method among separate computers. Hewitt et al [HBS77] proposed its use in a much 

more comprehensive context. Message passing enforces a high degree of modularity, 

and this is one of its strongest attractions. The term "actor" is due to Hewitt; actors 

will be explained in 3.2.1. There is great divergence of terminology in this field. 

Common terms in place of actor are virtual processor, process, task, and job. MPA is 

short for Message Passing Actors.

C.A.R. Hoare presented his Communicating Sequential Processes (CSP) in his 

report [Hoa78]. Combining pre-existing techniques in a new and rather elegant style 

is the main achievement of CSP. CSP is a semi—formal language, and message 

passing is one of its central primitives (t 3.3).

The Experimental Programming Language EPL [MaT79] was devised and 

implemented by the Warwick Distributed Computing Project Group EPL was 

developed at roughly the same time as CSP, and it owes CSP more than Hewitt's 

actors EPL is a bar« bones language in the spirit of BCPL It has been implemented 

on two different machines, and it was meant for experimenting with message passing. 

Atypical EPL program would contain substantial lengths of code where only 

conventional computations are carried out without messages being passed

The language OCCAM [Inm82] might be a candidate as the true implementation 

language; OCCAM is a descendant of CSP and EPL The inventors of OCCAM see it as a 

new breed of assembler language, particularly suited for multiprocessor systems. 

The OCCAM actor creation and message passing are both etotic, which makes them 

too inflexible for what our translation requires. Lucid programs without recursive 

VDFt could be translated into OCCAM without too much difficulty Appendix D shows
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an example of what would come out if our translation algorithm generated OCCAM 

code (unoptimised).

In this thesis we will extensively use a purpose built language named LUX. The 

MPA side of LUX has been strongly inspired by GPL. LUX will even be used as the 

yardstick in all our explanations and comparisons. This is intended only to avoid a 

flood of insubstantial definitions, and it must not be understood as a denigration of 

other languages. LUX itself is hardly free from imperfections, but it is very suitable 

for the task in hand. In the following all MPA examples will present the LUX case, 

unless otherwise stated.

Why do we invent yet another language instead of using an existing one? The 

language LUX has been designed for the sole purpose of legibly formulating the Lucid 

node acts. There are many other languages in which this could have been done. 

However, the truly popular languages contain generally no primitives for the kind of 

concurrency we need (LUX "exceptions" resemble the interrupts of assembler 

languages, and "doors" are the LUX device for exception handling Ordinary 

languages comprise no obvious elegant equivalent for LUX doors )

The very popular language PASCAL [Wir71] forms the syntactic backbone of LUX 

LUX has been obtained simply by enriching PASCAL with a number of extra features 

There are two simple extensions right at the start:

-  the underline character is allowed in identifiers (it can make identifiers 

more readable),

-  the special symbol ¡ACT! occurs in some places where In ordinary PASCAL one 

would write [PROCEDURE].

Here is a simple but complete LUX program . The program emulates the 

children's game with a triangular inequality: a stone (0) defeats scissors, it makes 

them blunt, paper ( l )  defeats the stone, it wraps it up, and scissors (2) defeat paper, 

they cut it.

3.2 0
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ACT Act_Root_ ;
VAR a. b ; ACTOR ; r i ,  rb. win : INTEGER ; 
BEGIN

a : »  CREATE (Act_Player_) ; 
b :*  CREATE (A c t_P l«y «r_ ) ;
REPEAT

( . ra) ;*  RECEIVE FROM (a ) ;
( , rb) :*  RECEIVE FROM (b ) ;
win : = (3 ra — rb) MOD 3 ;
IF win > 0
THEN writaln ( 'P o in t  for p la ye r ', win) ; 

UNTIL FALSE ;
END j

ACT Act_Player_ ;
BEGIN REPEAT

SEND ChoiceOlZ TO (Creator) ; 
UNTIL FALSE ;

END ;

(Both players' choices are taken and compared. Each player is free to base his 

choice on a long term analysis of the other player's behaviour. In the program, this 

decision taking is hidden in the parameterless function Choice012, which returns 0, 1 

or 2 )

3.2.1 Acts, and Actor Creation

Acts, actors, and the creation and initialisation of actors will be introduced in this 

section.

Analogy (Food for Thought)

Every act is somewhat like a cooking recipe. Actor creation and initialisation 

corresponds to the preparations for cooking a meal (buying the ingredients), 

program execution is the cooking itself, and the program output is the meal. The 

actor is the combination of the ingredients, in their current state of processing, and 

of a bookmark pointing to the line in the recipe to which the cooking has progressed. 

Many meals can be cooked from the same recipe, even simultaneously. These meals 

will be of separate identity but of equivalent nature

3.2 l
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Acts vs Actors

Every program with Message Passing Actors is written as a collection of acts, 

every act being a piece of sequential code. Every act definition has exactly the 

syntax of a PASCAL procedure declaration, only with the keyword ¡PROCEDURE] 

replaced by ¡ACTI. Acts are the largest building blocks of such a program. Here is a 

typical act definition:

ACT Act_xyz 
BEGIN

END ;
(•  The body of the act. •)

An actor is the sole framework in which computing action can take place, where 

computing action is meant to cover all CPU action in general Actors are activations 

(= mstanciations) of acts. Let me repeat that acts are mere descriptions of 

computing action. Many people have great difficulty in distinguishing between acts 

and actors, though they are in essence different kinds of objects Executing an act 

would be as pointless as boiling a recipe, in our analogy If you are hungry, it is not 

enough to buy a cookery book (set of acts), you need the ingredients as well Only 

the synthesis of the two (the actor) can eventually give you a meal (computation 

result).

Every act is a global constant in LUX The identifier of an act must only occur in 

[CR5AT&1 instructions, but never in assignments or messages. Actor names, on the 

other hand, are not constants but are data values of type ACTOR]; there are no extra 

restrictions to their use. Our translation requires no nested act definitions.

Actor Creation

A LUX program, a set of acts, is like the definition of a set of mathematical 

functions. A definition on its own can not yield a result A mathematical function 

yields its result only when applied to a sequence of operands. The actor creation is

32 1
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the corresponding operation which sets computing action in motion. Every actor is 

generated by applying the |CREATE! operation to an act. Each actor has its individual 

actor name. which is something rather like an address. If |Act_xyg| is an act. and if 

Ipqr-actorl is a storage cell which can hold the name of an actor, then

p q r_a c to r  := CREATE ( A c t _xy z ,  hO, h i )  ; 

creates a new actor from lAct_xyzl, and stores the name of this new actor in the 

storage cell lpqr_aci.o.-j. Actually, an actor can carry out its computations even if its 

name is not known to any actor. However, the name of an actor is needed when it 

communicates with other actors ( f  3.2.2). Numerous actors can stem from (can be 

created from) the same act

The act specifies the operations which are carried out by the actor, with 

execution starting at the beginning of the act. Every actor starts acting 

(i.e. computing) at the moment of its creation. An actor terminates forever once 

execution reaches the end of the act (where PASCAL procedures would instead do a 

"call return”).

In the [CREATE! instruction, further actual operands may be appended after the 

act specification ([hO] and [hi] m our example above) These extra operands are 

passed to the actor like procedure parameters They re-emerge, completely 

untouched, as values Tor the formal operands (example: *3.4.4). In our translation, 

these extra operands are always constants. Names of communication partners 

(operand actors) are never passed in this way, but only via the actor initialisation 

(t  4. l).

Actors have no particular representation within the Ll.'X syntax, since they are 

not syntactic objects; they can only be characterised by the operations applicable to 

them. The only possible operations on an actor are: its own creation, sending a 

message to it, receiving a message from it, and assigning its name to a storage cell.

3.2.1
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Each actor is characterised by the pair <aet, mamory>. An actor cam share its amt 

with other actors, but every actor has its dedicated memory (i.e. actors can be 

"brothers").

Actor Hoad

All actors run under a runtime system which takes care of actor creation, 

scheduling, message passing and further administration. In the course of actor 

creation, the supervisor allocates a record (i.e some storage space) called the actor 

head. The actor head holds Information about the particular actor. The contents of 

the actor head changes during execution.

We are only interested in very few items within the actor head, and it is

sufficient to assume that actor heads are pre—declared as follows:

TYP3

WBOTV« = (DATON, READY, COMPUTE, NULLIFY, ADVANCE) ;

ACTOR = ** AC TOIL-HEAD ; ( •  a po ss i b l e  def n o f  ACTOR •)
ACTOR_HEAD = record

eras ter : ACTOR : I
xr «q u «s  t . MSGTYPE ; ( •  p res to red with READY •)
x Index : INTEGER ;
(•  There are various fu r ther  p ie c e s  o f  informât i on • )
( • which are used fo r  ad m in is tra t ion * )
(•  (but which are in a cc e s s ib le  to  the u s e r ) : * )
f  schedu ling  s ts tu e ,  i n t r i n s i c  p r i o r i t y ,  actus 1 pr i or i t y , *>
(•  program counter, stack p o in t e r  ( f o r  procedur e b ind ing ) •)

END ;

Some special/unction* arc provided through which each actor can obtain useful 

Information about Itself. These functions are all paramatariass, and their result is 

actor »pacific. For example, the function !Mviiëïfl yields the actor name of this actor 

Itself, ¡Crsstsr] yields the name of the actor which crsatset this actor, and rWeve«î1 is a 

multivalued function yielding the entire message of the last exception, i.e. 

Isrsqusst, »Ind'cxl. If used as a single valued function, lit«»««:! yields just the contents of 

Isrsquestl. Through these functions, the actor can get access to the Information in the

3.8.1
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actor head. Actors are neither capable to explicitly change any actor head nor to 

inspect heads of other actors.

Throughout this thesis, the leftm ost component of every message (t 3.2.2) is of 

type iMSGTYPE] and indicates the nature of the message The message is a request if 

that component is COMPUTE!, 1 NULLIFY! or [ADVANCE]; it is an exception request if that 

component is 1 NULLIFY or [ADVANCE!. Daton valuta are passed around by messages 

whose first component is ¡DATONl. The message type could be indicated in other ways 

than via the first component, but this method has the advantage that every message 

is easy to identify (* 5.3.2).

I HEADY does not occur in messages, but the cell fsrequestl in the actor head can be 

set to 1 READY, thus indicating a particular actor status ( !»request] is initially set to

IreapY ).

As we said above, the act may have formal operands, and they are prestored 

with the extra operands from the ¡CREATE] instruction

Root Actor

We are now in a chicken—and—egg situation ¡CREATE] is an operator, and 

operators occur only in acts However, the execution of any operator (such as 

[CREATE!)  must be preceded by the creation of the actor in whose act it occurs. This 

problem is easily solved, the LUX program execution is set running by the im p lic it 

execution of:

r « « t _ a e t * r  . = CREATE (A c t_R oo t_ )  ,

The LUX program must therefore contain a definition of the [ActlRooiZI. The !7oot_actor1 

creates further actors, ail computing action has its ultimate origin in this actor. 

Incidentally, the storage cell 1 root—actor] is not accessible from anywhere, there was 

■imply no need to make it accessible. Unlike PASCAL programs, there is no main 

program section in LUX programs: lAcOtooU takes this role Instead.

3.2.1
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Miscellany Concerning Actor Creation

So far we have described dynamic actor creation, i.e. actor creation through a 

run time operation. The alternative is static actor creation, where actors are 

pre—created before computing action has started anywhere in the program. Static 

actor creation can be simulated by dynamic actor creation, whereas the inverse is 

not possible In this thesis we need dynamic actor creation for the implementation 

of recursive Lucid UDFs.

Actor initialisation is usually the first thing to follow right after an actor has been 

created. In the initialisation, the new actor is provided (through messages, mostly 

from its creator) with various information which it needs to go about its job. Among 

this information will normally be the names of the communication partners Some 

actors (e.g. l,-oot_actof]) contain nothing which needs to be initialised.

3 .2 .2  [SlNDl and [RECEIVE]

The LUX inter—actor communication method is unbuffered message pessing 

between pairs of actors. A message is any sequence of data items Unbuffered 

means that the message is passed if one actor wants to [SEND; and if at the same time 

the other actor wants to [RbceIveI. Furthermore, if the [SESDl or [RKCErVE; instruction 

names a particular message sender or receiver, the actors involved must match what 

is asked for. If an actor comes to a ¡SEND] or iRECErvf' instruction, it waits until all the 

preconditions for communication (just mentioned) are satisfied Once the message 

has then been transferred, the sender and the receiver can both resume execution.

The instructions iSTNOi and iRFCEiVEl are the message passing primitives They 

''dictate'' to the system that a message shall be sent or received At any single 

moment an actor can either be computing, waiting to IsEMb!, or waiting to ¡itifcEiVEl. 

The primitives have in general the following form

32 2
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— the Isctcj instruction states what the message is, and to which actor(s) the 

message shall be sent,

— the 'receive: instruction states which actors are eligible as message senders, and 

where the message shall be stored.

For example, LUX has three message passing instructions:

SEND *o> *i> ••• e„ TO ( r ece i v e ro ,  r e c e i v e r , ,  r e c e i v e r ,  ) ;

This instruction specifies a transfer of the message ([ejj], [ej, ... [ej, where each 

fejp is an expression) to a set of receiving actors: brackets may enclose the 

message. Any number (minimum is one) of receivers is permitted; in our 

example there are 3 of them. The receivers must exist while the ¡SEND! is in 

execution. The execution of the iSESDi instruction is complete when the message 

has been accepted by each of the quoted receiving actors. The quoted receiving 

actors must all be different.

( l e n d e r ,  cp, c, .  ca, . . . ca) := RECEIVE ( )  ; j

This is the instruction for an undirected 1 itECSIVEl It is best understood as a 

m ultip it assignmtnt, like from a multivalued function. (The storage cells on the 

left of :■ must have been declared elsewhere ) It means: as soon as a message 

arrives, from any actor, it is stored in the n+ l storage cells ¡cj. [c|], .. ¡ĉ J (word 

by word, progressing from [ĉ ] to [jjj; how many values are stored is determined 

by the I t f t  hand side). If the receiving instruction asks for f tw t r  message 

components than provided in the Isend! instruction, the remaining components 

of the message will be lost. If the receiving instruction asks for mors message 

components than provided in the rSEN? instruction, the remaining storage cells 

on the receiving side will be filled with unpredictable mat tr ia l — The sending 

actor's name is stored in the leftmost storage cell (here: [sender]), 1 e it is "stuck 

In front" of the message If more than one sender is simultaneously ready to
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■end, one sender Is chosen at random, and all other senders continue waiting 

until successful at some later time. Any message component cam be ignored by 

leaving its field empty in the assignment (but not omitting the comma), as in:

ITT, components) .= RECEIVE Q ;1

(«ender, c0, ct , .. . cn) ;= RECEIVE FROM ( »endcrp, sender, )

This is the directed ¡RECEIVE! instruction. The message can come only from any 

leenderl actor specified after the I FROM!. There can be any number

(minimum: one) of sending actors. These senders must exist while the ¡RECEIVE! 

is in execution. Everything else is exactly as in the undirected 'RECEIVE! 

instruction.

In LUX, messages can consist of values of arbitrary type, and even actor names au"e 

allowed. Pointers, arrays, or names of procedures, function, or acts are not allowed 

as messages components LUX requests are particular messages, they are of 

importance in translated Lucid (explanation: t 4.2). Section 3 4 2 describes the LUX 

mechanism for passing "exception” messages

Every act is a global constant in LUX Every act is therefore permanently known 

to every actor, whereas it is not permitted to make an act known to another actor by 

transferring it in a message In LUX, the use of global objects other than constants is 

generally frowned upon, actor names are clearly not constants.

The situation can arise where a number of actors try simultaneously to rSESTT to 

the same [RECEIVE!, i.e. all these senders fulfill equally the preconditions for a message 

transfer. It has been stated above that in such a situation one of the senders is 

chosen at random, and the remaining senders keep waiting for further .'ftECEIVtfl. LUX 

does not specify any order (e g. "first come first serve") because that would in 

general not be enforceable [1,am7B].

3 2 2
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3.2.3 Contantious Points with Msssags Passing

Message passing can give problems in typed languages, because the words in the 

different possible messages can be of n on -un iform  type; this problem did not exist 

in GPL since it is type—less. In LUX, we glance over this problem by assuming that 

the types of the message and of the left-hand side of the 1 RECEIVE] instruction do 

match. This can be ensured by run time checks.

Our translation process generates code in which type clash errors cannot occur. 

If one wished to change LUX into a general-purpose programming language, one 

could define: every iRECETVEj instruction assigns an entire structure, where the 

structure can be of union type

Deadlock (t 3.6) is another problem area for message passing, and for 

concurrent programs in general. (Our translation algorithm generates 

deadlock—free code, as long as the Lucid program is flawless.)

3.2.4 Variation* of M***aga Passing

Message passing, as presented so far, can obviously be varied in a number of ways 

We study only substantial variations

The addressing of senders and receivers is a rich field for variation 

Broadcasting is of particular interest, i.e. the simultaneous sending to all receivers. 

(The [SEND] instruction of LUX allows sending to a set of actors ) If broadcasting Is 

done in unbuffered message passing, it3 effect must be defined on receivers which 

are currently not waiting (will the sender wait for them all?). — There are also uses 

for a "lottery ISENfti", which sends to a set of receivers, but eventually gives the 

message to only one of them.

Non—datarminacy can go further than merely leaving it open from which actor to 

receive a message. It has been said in 3 2 3: at any single moment an actor can 

either be purely computing, waiting to [SEN51, or waiting to IrTccEIveI . There are

3,2.4
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relevant applications which would benefit if more than on• of these were 

simultaneously possible. A p rio r ity  rule might be provided for the case where ISEND1 

and 1 RECEIVE! become simultaneously enabled. Obviously, pure computing must get 

the lowest priority since it is permanently enabled.

We could redefine the measures taken if one actor wants to send a message 

without the target actor being ready to receive it. Instead of letting the sender wait, 

the receiving actor could buffer the message, and let the sender proceed 

immediately. To be general, the buffer should be unbounded. — Obviously, this 

6uffo rod  mtssagt passing is much more complex to implement than the unbuffered 

variety, and its fundamental operations are less directly related to the "inborn" 

operations of conventional computers. The extra luxury in the buffering must 

usually be weighed against some extra cost. Often enough this luxury is not even 

wanted As an example for the latter, here is a piece of LL’X code with a useful effect 

which would be much harder to achieve if message passing was buffered:

Example ( 1 Act_6uardlahHV unbuffered message passing

ACT A c t - 0uard l « n _  ;
VAR sen der ! ,  sender? : ACTOR ;
BEGIN'

REPEAT
senderi :*  RECEIVE ( )  ;

(• No o t h er  message sender can now get in.  •)
sender? :*  RECEIVE FROM ( s e n d e r ! )  ,

UNTIL FALSE ;
END i

VAR g u a r d i a n - a c t o r  : ACTOR ; (• must appear in the d e c l a r a t i o n s  •)
g u a r d i a n - a c t o r  -  CREATE ( A c t _ C u a r d i a n _ )

This Isuard.an—actor! toggles between its two statss every time it has received a 

message. Initially, It waits for a message from anywhere; the message could be 

produced by:

3.2.4
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ISEND 0 TO (guardian-actor) ;|

Once the initial message has been received, a second message is expected from the 

same sender (viz. fromlienderH) If other actors try to send to the Iguardian-actorl while 

it is in this state, they are forced to waif at least until it has returned to the initial 

state. The Iguardian-actorl returns to the initial state once the second message has 

been received. The message itself is ignored throughout, only the event of the 

message matters.

Semaphore«

Actors created from [Act-Guardianj can ensure that a certain access right is given

to only one actor at any single moment. For example, they can be used to prevent

multiple simultaneous alteration of shared memory (disastrous!). If a number of

actors want to eat biscuits from a common box of biscuits, this would be safe if each

of them followed the pattern:

| SEND 0 TO (guardian_actor) ;
TF any biscuits left?

| THEN eat one biscuit ;
I SEND 0 TO (guardian-actor) ;

The [guardian-actor] is an MPA style implementation of semaphores (t 3.2.5)

3.2.6 Concurrency Methods other than Message Passing Actors

Concurrent computations can communicate through means other than message 

passing. We ignore here concurrent computing on specialist computers (CRAY, 

vector processors) altogether.

We mentioned before that the most straight-forward and simple-minded 

communication method is the use of shared memory segments This method can be 

hazardous when used carelessly, for example when two actors change shared 

memory in a time overlap. This can be brought under control by the use of

3.2.8
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ISEND 0 TO (auardian_actor) ;l

Once the initial message has been received, a second message is expected from the 

same sender (viz. from Uendcril) If other actors try to send to the!guard:an-actorl while 

it is in this state, they are forced to wait at least until it has returned to the initial 

state. The [guardian-ac*.orl returns to the initial state once the second message has 

been received. The message itself is ignored throughout, only the event of the 

message matters.

Semaphore«

Actors created from [Act-Guardian—1 can ensure that a certain access right is given

to only one actor at any single moment. For example, they can be used to prevent

multiple simultaneous alteration of shared memory (disastrous!) If a number of

actors want to eat biscuits from a common box of biscuits, this would be safe if each

of them followed the pattern:

i SEND 0 TO (guardian_actor) ;
TF any biscuits left?

| THEN eat one biscuit ; 
j SEND 0 TO (guardiai_actor) ;

The ,guardian-actor! is an MPA style implementation of semaphores (? 3.3 5)

3.2.6 Concurrency Methods othor than Message Passing Actors

Concurrent computations can communicate through means other than message 

passing. We ignore here concurrent computing on specialist computers (CRAY, 

vector processors) altogether.

We mentioned before that the most straight-forward and simple-minded 

communication method is the use of shared memory segments This method can be 

hazardous when used carelessly, for example when two actors change shared 

memory in a time overlap. This can be brought under control by the use of
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semaphores or capabilities ([Fab80, Wil72]); there, any actor must hold (like a token) 

the exclusive access right to the shared memory while changing it (protected 

regions, MODULA [Wir75]). — Programs using shared memory may be very efficient 

(fast), but the method is not applicable in all distributed computer systems. Anyway, 

shared memory must never be used in other than a very disciplined manner [WuS73]. 

Some languages enforce such discipline through special constructs, such as the 

modules [Hoa74] in MODL'LA and the clusters in CLU [Lis74].

Coroutines are in effect a subset of message passing actors, though, historically 

speaking, coroutines are of independent origin. Terms like "coroutine 

technique/method/style" are often used in the rather general sense of "multi-actor 

technique/method/style”.

A computer with one architecture can acquire the outer appearance of a 

computer with totally different architecture either through some form of translation 

or through an interpreter (program). — There is reason to assume that user—specific 

microcodes will be commonplace in the next computer generation. It will then be 

possible to choose the most suitable architecture for each computation, and to 

emulate that architecture through a tailor-made micro—coded interpreter. Once 

the Lucid machine, say, has been implemented well, one will no longer have to worry 

about optimal translation into imperative code Through the microcode, the 

interpreters will also be able to make full use of advanced computer hardware, for 

example, of associativa memory

It can be shown that all communicating concurrent programming methods are 

essentially of equal power, i.e each method can be simulated within each other 

method
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3.3 Hoar«'« CSP

With his Communicating Sequential Processes (CSP, [Hoa78]), C.A.R. Hoare 

introduced a concise notation which made message passing more amenable to 

scientific study. The merit of CSP lies in the achievement of great computational 

power from a small set of primitives. (CSP has similarities with Hewitt's 

PLANNER—73.) Hoare's paper [Hoa78] deserves praise for openly anticipating 

practically all points of criticism of CSP. Hoare disclaims expressly that CSP is 

meant to be a "production" programming language

CSP programs are based on fixed sets or actors. There is no recursion, nor are 

actor names allowed as data values Each ISBND] or ,~3ECH:iVgi operation must explicitly 

quote exactly one communication partner (actor). The CSP message passing is 

unbuffered.

The difference between acts and actor3 is not very prominent in CSP. CSP has 

means to make sequences of instructions (i.e. acts) into actors or even arrays of 

actors. CSP uses a very concise notation, all operators are denoted by short 

symbols Here are the most essential primitives (merely an approximation; CSP 

message passing refers in reality to channels, not to actors):

fXTg

This is the receive instruction, X specifies the sender (actor), e is the storage 

cell in which the message will be placed The receive instruction provides 

simultaneously a test (the input guard) whether input is currently available. 

An undirected receive instruction is not provided

This is the send instruction, Y specifies the receiver (actor), m is the message 

(an expression).

3.3
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5 U

This expresses endless rop ttition  of instruction •.

iiq j p H

This expresses the creation and concurrent execution of two actors, where *i 

and *2 are the respective acts (more precisely: ai and »2 are the actual pieces 

of code).

1i& l  -» » I ill &2 -» »2 J]

This is the a lttm a tiv t command, the 0 separates the alternatives, gi and 02 are 

guards, s1 and S2 are sequences of instructions. Each guard ft is essentially a 

boolean expression [Dij75]. All the guards ft in the alternative command are 

evaluated, and the 8| of all thost alternatives are shortlisted whose guards 

evaluate to iTRCSl. One of the shortlisted alternatives is then chosen 

non -d t ttrm in is tic ally. and it is executed.

Some instructions yield a truth value, telling whether the instruction has been 

executed successfully or not For this reason, it is possible and meaningful to place 

such an instruction as a guard

The lack of certain facilities in CSP makes it virtually useless for the 

implementation of full Lucid. CSP has no dynamic actor creation, and this rules out 

the translation of recursive Lucid UDFs Even the mere creation of numerous actors 

from the tarn* act can only be done within a very rigid pattern. This would be an 

unjustified burden for our translation process.

Neither multiple [SEND;, nor undirected ;HSCErVEl or multiple directed iRECErvsl 

exist in CSP. They can, however, be laboriously constructed out of the given 

primitives. The lack of these facilities can thus be overcome, at a price.

Taken together, CSP is rather unsuitable as the target language for the 

translation of Lucid, since important facilities arc not provided. Moreover, certain

3 3
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very common operations can be expressed only indirectly, by means of extra actors. 

The use of CSP might lead to illegible code.

3.4 The Language LUX

All the imperative code in this thesis is formulated in the language LUX. LUX is 

solely meant as the vehicle for expressing the result of our translation. Clearly, LUX 

must not be seen as a proposed new programming language, in competition with 

SIMULA 67 [DMN68], Concurrent PASCAL [BrH75], MODULA [Wir?5], ADA etc. We allow 

therefore aesthetic imperfections in the language, as long as they bring advantages 

In other respects.

The provisions for noix-datarminacy in existing languages force the programmer 

into formulations which are often remote from the way in which computers work. 

For example, there is usually no proper counterpart for interrupts or exceptions 

(exceptions are CPU—internal interrupts, e g. "division by aero attempted'') This will 

be put right in LUX.

The syntax of LUX is exactly that of PASCAL [Wir7';], albeit with a few extensions. 

PASCAL has been chosen because of its current wide spread popularity. The reader's 

familiarity with PASCAL is taken for granted The extensions aim to provide the type 

of concurrency which can be very easily transferred into reasonably efficient code on 

any present computer. The extensions have furthermore been designed to have the 

least damaging effect on program size and leg ib ility  It is rather obvious that the 

translation algorithm of this thesis will in most instances be implemented in 

languages other than LUX.

3.4
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3.4.1 Th* Extensions of PASCAL

A few superficial extensions have been mentioned in 3.2.0, they are:

— the underline character is allowed in identifiers,

— the special symbol 1ACT| occurs in some places where in ordinary PASCAL one 

would write iprocedure! (see also f  3.4.3),

— I Act itoot_j replaces the role of the PASCAL main program  section,

— ¡wcturwI stands for a I GOTO] to the end of the act.

The substantial extensions can be grouped into the following topic areas.

concurrency: ICREATEl, acts, actors, initialisations,

cooperation: ISEVOj, ¡RECEIVE],

exceptions: ¡EXCEPTION], doors, !Revealj, 1 RESET].

The first two have already been dealt with exhaustively It remains only to explain 

the last point, exceptions.

3.4.1
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3.4.2 Til« Exception Feature 

What le Nullification?

In multi-process operating systems like UNIX®, the user can concurrently 

execute a number of programs, for example: edit one program to/iite another 

program is being compiled. The user can also instruct the operating system to 

discontinue one of its current activities (the user might suddenly have found a 

reason why the whole compilation is pointless). Such a termination entails usually 

some form of clean—up phase, in which all perfunctory resources are released, for 

example: files are closed, memory is de-allocated.

As a variation of termination, one could think of a request which tells an actor to 

nullify an ongoing computation, i.e to go back to a particular previous state. Some 

clean—up may be necessary for undoing modifications which have meanwhile been 

carried out, due to computing action. irreversible state changes are carried out only 

right after the result acknowledgement; then, nullification is immaterial

Situations similar to nullification appear in the LUX code for Lucid programs. 

For example, each instance of the [OR] operator requires the concurrent evaluation of 

the [OR] operands. As soon as the evaluation of either operand yields ¡TRUf], the other 

operand is no longer needed, and its evaluation will be nullified Again, the 

nullification can entail a clean-up phase, since inferior actors may have to be 

nullified, and memory must be put into a coherent state. In LLX, nullification (t 4.2) 

is the most important instance of an exception. Nullification is clearly different from 

actor termination: nullification merely puts the actor into a particular state (which 

is defined in the act) but does not eradicate the actor. (A further point regarding 

1 NULLIFY! will be discussed in section 4.7.)

3 4 2
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TeehelceH tlee

E x c e p t i o n s  make sense only «nth actors which stand for Lucid nodes (we will call 

such actors nod* actors). Every actor has in its actor head a cell lxrequ«»tl. in which 

its exception state is recorded. The actor creation stores ¡beady! in this cell. "The 

a c t o r  is in exception mode" is synonymous with: 

xrequeit <> READY

In the act, however, the actor head can be inspected only via the !Reveal! function 

(t 3.2.1), and the same test would thus be written as:

IF Reveal <> READY THEN . . .

In the following, the syntax and meaning of LUX exceptions will be explained, 

applications of exceptions will be mainly presented in the next chapter. Exceptions 

may be an important feature of LUX but, after all, actors run most of the time 

without getting exceptions. It is therefore even more important that the ordinary 

(not—nullified) program execution in LUX does not suffer from an over-emphasis on 

exceptions. A special notation and execution mechanism has therefore been 

developed which keeps both the program legible and allows perfectly efficient 

program execution, both in the nullified and in the non—nullified case

Doors

A trapdoor in a fairy tale castle can be blocked or active If it is blocked, its 

presence is hardly noticeable when one walks over it. but if it is active the effect may 

be dramatic. There are quite similar doors in LUX, and they are used for the 

handling of exceptions. Here is an instruction with a door, 

i : = i ♦ 1 ; ■ S

The Qo] in this example is the door Remember that in LUX (as in RASCAL) all labels 

have the form of unsigned integers, and the num lir on the door (we call it the door 

target) refers to such a label. Every door operates like a conditional iGOTOi
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Ill ■ 25

Instruction. If |«rcgucstl is ¡READYI, the door is to be ignored: it has no effect. If I «request 1 

is not ¡READY] while the PC passes over the door, the door has the effect of a IGOTOI 

(i.e. ¡GOTO si in our example).

Matters are slightly different if the door is immediately followed (dynamically) 

by a slow instruction. A slow instruction is any instruction whose execution may take 

a long time, like [RECEIVE!. ISEWDl. ICREATE1 or a procedure cadi (t 3.4.3) An actor can 

spend a long time working on a slow instruction, and during this time ¡«request! can 

cease being ¡READY]. due to an exception. The actor will therefore check concurrently 

whether [«request I is no longer I READY! or whether the slow instruction has been 

completed, whichever occurs first. A [GOTO ...] is carried out if the •x c tp t io n  occurs 

first, and the slow instruction is of such design that its effects are nullified. There is 

no e//«ct if the slow instruction succeeds first.

Every door is thus a shorthand for:

REPEAT
IF Reveal <> READY
THEM GOTO d o o r - ta rg e t  ; ( •  d o o r - ta rg e t  is 5 in our example • )

| UNTIL the subsequent in s t ru c t io n  has been executed eorrqj'.etely

(In a proper implementation one would not use busy wait for such a wait—door.) All

f a » t  instructions (assign, add, multiply etc.) are permanently ready anyway, and the

loop would in those cases be unnecessary.

It is sometimes required that a group of instructions be executed as an

unbreakable •n t ity . This can be achieved simply by not placing doors inside the

group

The Implicit iRgCHVgl

We stilt have to define clearly how r«rcquc«t| changes value. Abovo (»3.2 1 "Actor 

Head") we have defined actor heads, and IttscfYTE!
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TYPE
HSGTYPE = (DATON, READY, COMPUTE, NULLIFY, ADVANCE) ;
ACTOR_HEAD record

creator ACTOR ;
srequeet HSGTYPE ; (•  preetored with READY •)
xindex INTEGER ;
(• ate etc *)

END ;

Only messages whose first component is I NULLIFY! or Ia d v a n c e ] are exceptions, which is 

why we call them exception request*. Exception requests are issued by the 

instruction:

EXCEPTION eo. e i,  . . .  e „ TO ( r e c e iv e r o . r e c e iv e r !  ) ; 

which differs from the ordinary I SEND I instruction ( t 3.2 2) only in the new keyword 

I exception! The messages from EXCEPTION1 instructions are not received by ordinary 

I RECEIVE] instructions in the receiving actor, but use a portion of the actor head as a 

one—message buffer. They can be retrieved from there via the ¡Reveal] function. 

In detail:

An actor can receive an exception only while its x.-c-quert] is PËÀDŸ:. This rule 

ensures that no exception is accidentally lost. Every actor is readily equipped with 

special code for accepting and handling of exception messages (this code forms part 

of the Ll.'X system "behind the scenes", not part of the act) For an actor Y this code 

goes as follows:

IF ( «request *  READY ) AND
( actor X wants to issue an EXCEPT TON to ac to r  V >
( •  The a c to r  Y "g e ts  an exc ep t ion " ; *)

THEN ( . x requ ea t , x index) : »  EXCEPTIONRECEIVE ( )  
( •  EXCEPT[ONHECEIVE ha* the obvioux meaning. •)

ELSE ( put the excep t ion  sender X on a w a it in g  queue.
try again after acto r  V has executed a RESET > *

W* have defined that the actor is in exception mode exactly iff:

sr*qu**t <> READY

3.4 2



111*27

Since [«3. the first component of the exception message, is either I NULLIFY) or 

(ADVANCE], receipt of an exception will necessarily place the actor in exception mode. 

The actor is permitted to set its own Irrequeatl to 1 ready) (i.e. it declares itself ready to 

accept a new exception request) only by executing the instruction:

RESET ;

3.4.3 Procedures

PASCAL—like procedures (function procedures as well as ordinary procedures) 

are allowed in LUX, too; they are not superseded by acts and actors. In the MPA 

framework, function procedures resemble actors which exist merely during the 

handling of every single request. Procedures have no memory. However, the calling 

actor can take care of the memory, and "import" it into the procedure with each 

call.

LUX deals with procedures as if they were to be macro—expanded In terms of 

message passing, the procedure underlies the control of the actor which called the 

procedure. The name of that actor is used for all message passing during procedure 

execution, and there is only one common exception mechanism per actor When we 

say "the procedure gets an exception" we mean that its actor gets an exception 

during procedure execution. The procedure can access items of the actor head 

( [creatorI. [xrcqjaav and ixindex)) as usual via the special functions [Creator! and [Reveal) 

( f  3.2 1).

[TrI, a special kind of a door, is provided for procedures. When such a door is 

encountered while 1»request) is not) RfcADY], a return is made from the procedure, and 

execution proceeds in the calling program as 1/ execution had got hung up in the 

procedure call. Execution continues in this case at (the target of) the door which 

directly precedes the procedure call Exception handling is inhibited  during any 

procedure call which is not directly preceded by a door During the execution of
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such door—less calls, the system pretends ¡rregueitl was ; READY]. Procedures must be 

designed so that they nullify all their effects before using a [Jt] door.

Example for a function procedure with Hr] doors:

FUNCTION SatDaton ( index  : INTEGER ; operand : ACTOR) : ANYTYPE ;
LAB E L 1 ;

BEGIN
( •  P o s s ib ly  hang up in SEND (u n l ik e l y  though): •) ¡A

SEND (COMPUTE, index) TO (operand) ;

( •  P o s s ib ly  hang up in RECEIVE: •) : l
( , , GetDaton) :=  RECEIVE FROM (operand) ;

RETURN ; ( •  normal RETURN even i f  ex cep t ion  occurred. •)

1: EXCEPTION (NULLIFY, index) TO (operand) ; i A
END ;

This very useful procedure sends a particular message to the operand actor, and 

awaits then the arrived of a reply. If an exception occurs before the reply has been 

received, the exception request will be propagated to the operand actor, followed by 

an exception return from the procedure. There is no special procedure action if the 

exception occurs after the reply has been received (we might wish to preserve the 

daton value) This function procedure will play an important role later on
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Here is a typical example of an act:
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ACT A c t -S c a le _  ( t e a l  in g _ fa c to r  : REAL) ;
( *  This node ac to r  m i l t i p l i e s  each operand •)
( •  daton with the constant s ca l in g  fa c to r .  •)

LABEL 1 ;
VAR

operand, superior  
request 
index
dston—value , r esu lt  

BEGIN
( , , operand) := RECEIVE FROM (C rea to r )  ;

( *  End of i n i t i a l i s a t i o n ,  beginning of ac t ion .  •)

REPEAT
WHILE TRUE
DO BEGIN ; 1

( • W e  say the actor is "dormant" while i t  •)
( •  is  waiting here, i t  is "busy" otherwise. •)

(superior,  request, index) : = RECEIVE ( )  ;

( •  Possibly hang up in "GetDaton” : 
da ton-value : = GetDaton (index, ope-and) i

resul t := daton—value • scal ing_f a c t o r  ,

( •  Possibly hang up in SEND: •) . I
SEND (DATON, r e s u l t )  TO (superior)  ;

END ;

( •  Code for the exception handling: •)
1: (request ,  index) : = Reveal ;

IF request = ADVANCE
THEN EXCEPTION (request, index) TO (operand) ;
RESET ;

UNTIL FALSE ;
END ,

Assume furthermore, that [AcOlooiZl contains:

aoala_aatar * CREATE (A c t -S ca le —, 9 .0 )  , ( •  9 0 -  scaling f a c t o r  •) I
SEND (DATON, an o lh e r_ac to r ) TO ( s c a l e - a c t o r )  ; ( •  I n i t i a l i s a t i o n  •) I

Let us first study the IscaTê actorl in the absence of exceptions. In the 

initialisatioa the fscalelactorl is provided with the name of another actor to which it 

will send messages later on. The sender of the initialisation and the first message

•) 1
I
li

ACTOR ; 
MSGTYPE , 
INTEGER , 
REAL ;
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component ( IdatonQ are known anyway, and can therefore be ignored.

After the initialisation, the I »cal«-actor] gets hung up in an undirected IRECEIVEI 

where it awaits a request, i.e. a message telling it what to do. When the I»cale-actor] 

receives a 1 COMPUTE] request (i.e. a message whose first component is IcoMPUTEl), it will 

first call IGetDatonl. This will in effect propagat• the message unchanged to the 

operand actor ( lanottier-actor!), and will then await the delivery of the operand daton 

value. Once the operand daton value has been delivered, the Iacale-actor] computes 

the result daton value by multiplying the operand daton value with the seeding factor, 

and this result is then sent back to the actor which issued the jCOMPUTE] request in the 

first place. Once that has been completed, the ricale-actorl resumes awaiting another 

request.

Whenever an exception occurs, the ;»cal«_actor1 abandons what it is doing at that 

moment. This particular example contains nothing which needs to be cleared up. 

Instead the actor can directly proceed to propagating the unchanged exception 

request to the operand actor There is never a reply to an exception message, which 

is why no [RECEIVE; instruction follows after [EXCEPTION;. Since nothing else needs doing, 

the exception state is ended with a |RESET] and the jicSelkeTor] loops back to await the 

next request. The Iscnle-actor] can accept an exception even in the dormant state, 

i.e. the exception may occur even while the actor is not "busy" with work. We can 

state in general: for efficiency, exceptions should always be propagated at the 

earliest possible moment.

Note that a door is placed before each,'SEND] or ¡RECEIVE] (actually, it is at the end 

of the preceding line). Some groups of instructions have to be executed as an 

unbreakable entity, and a door is placed only after the last instruction of the group. 

Clearly every instruction has been furnished, where advisable, with an "escape route" 

(viz. a door) for the event of an exception
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Note that a door is placed before each ¡SEND] or jHECSrvEl (actually, it is at the end 

of the preceding line). Some groups of instructions have to be executed as an 

unbreakable entity, and a door is placed only after the last instruction of the group. 

Clearly every instruction has been furnished, where advisable, with an "escape route” 

(viz. a door) for the event of an exception.

3.6 Summary of Chaptar III

The popular cooperative concurrent programming methods are mere extensions 

of sequential programming The extension has been achieved by "bolting on extra 

features". Hardware aspects of inter—actor communication dominate these 

languages, and the programmer is forced to bear these aspects constantly in mind.

The worst deficiency of programs in these languages is their inherent illegib ility . 

Good programs are generally written as sets of modules, where each module is 

dedicated to a sub-problem, most problems can be broken into sub—problems. 

Actors are the modules in the above languages It is rarely possible to confine each 

sub-problem to exactly one actor. One is forced to disect sub-problems into more 

or less mysterious code fragments which are then strategically placed in numerous 

acts. Given a non-trivial program written in one of these languages, only an expert 

can recognise what the program computes, and it is extremely hard to locate 

intricate programming errors.

The advantages of imperative programming languages can be noticed when 

trying to implement such a language on a conventional computer. All their 

advantages stem from their greater affinity to the von Neumann architecture

— the languages are easy to implement, and

— efficient execution is easily achieved.
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It has already been said in the introduction that the choice of implt mentation 

language for Lucid is not very critical. Message Passing Actors have been chosen as 

the target of our translation because they are stylistically not worse than the other 

concurrent programming methods, they are modular in a beneficial way. it is easy to 

implement them well, and they have already been tried exhaustively in substantial 

programming tasks.
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CHAPTER IVt Tha Translation

4.0 Introduction

This chapter deals with the translation of a Graph. Lucid program into an 

equivalent structure In UPA style, which is the central issue of the thesis. 

"Equ iva lent" means that both structures represent the same input/output function 

Our translation is carried out in two stages:

Stage one consist in designing for each individual node type an equivalent act, 

a node act. The example of a LUX act (t  3.4.4) was indeed such an act, and the 

reader is advised to use that example, for the time being, as the model of a node act 

Ready made acts will be presented for most of the fundamental operators of Lucid 

(f 4.5.4 ff), and a comprehensive description will be given how to construct the act 

for the other operators (t 4.5.2, 4.5.3, but also 4.3). The full description of the node 

acts is very technical; this is why we shelve it for a while and present it rather late, in 

sections 4.5 f.

In stage two, the translation proper, an arbitrary Graph Lucid program is 

re—formulated entirely in terms of the acts from stage one. Stage two is very 

straight forward We explain this stage of the translation before stage one (t 4.3).

Graphs contain nodes, but nodes can themselves be graphs. These amazing 

nodes are the UDF nodes, of course, they break out of our two—stage classification 

The construction rule for UDF acts can be obtained from the translation rule for 

programs, with only a little adaptation This is why section 4.3 contributes to both 

stages one and two.

Nod* actor«, requests, and the protocol are central in our further deliberations 

Acts are just one way of, statically, encoding the computing action, which is a 

dynamic object. Acts rarely provide a good picture of the dynamics, i.e. of the 

underlying execution strategy The protocol is such a strategy with regard to the
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Inter-actor communication. The functioning of actor nets is widely determined by 

the protocol. The chapter starts therefore with a conceptual description of node 

actors and requests (section 4.1). and this is followed (in section 4.2) by the protocol 

specification

4.1 Nod* Actors, Protocols and Requests 

Mods Actors

When we speak of node actors, we mean actors which emulate Lucid nodes. 

Every node actor behaves like a demand driven computing station Usually, node 

actors form part of a net of cooperating node actors.

Protocols

Let us assume that such a net of node actors is given (construction algorithm: 

T 4.3). Each of the node actors can be viewed as an autonomous computing station 

We are left with the task of making these autonomous units coopsrate, with the 

ultimate aim of producing a result. This can be achieved with the aid of a protocol 

A protocol is a pattern of message exchanges between actors, i.e. a governing 

macroscopic pattern. The protocol serves to control the flow of information and also 

the execution of computations Section 4.2 specifies the protocol to be used 

throughout this thesis. The design of this protocol will be aimed at dsmand drivsn 

evaluation (t 2.5); this will be generally assumed without further mention. The use of 

a universal protocol, among all node actors, is an essential precondition for the 

modularity of our translation algorithm. Every node actor adheres to this protocol; 

therefore, node actors need to know nothing specific about their communication 

partners.
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A request is just a particular message, and requests can be of various request 

types. The request type is, by convention, indicated by the first message component 

(t  3.2.1, "Actor Hoad"). Requests serve in general for dictating to a node actor which 

action it shall carry out. A reply (a message in the reverse direction) is given only to 

tom e  request.

As stated in 2 5, demand driven means that the driving force  for computing 

action emanates from the program output, in our case from the actor. The

iWRITE! actor sends a particular request to another node actor e, hereby stimulating e 

into some particular action; the action varies with the requests. In order to satisfy 

the request, •  in turn may need to request from further node actors

This pattern of one node actor requesting from another can reappear down to 

any depth. While a computation is in progress, some actors are dormant while 

others are busy with computing action. Consequently, a momentary hierarchy exists 

among the busy actors; this hierarchy is constantly changing in the course of daton 

evaluation. The hierarchy is throughout built up oT pairs of actors, namely superiors 

which issue requests, and Inferiors which accept requests and "do their best” that the 

requests be ultimately fulfilled An inferior can simultaneously be in the role of 

superior in a subordinate request. Obviously, the [WRITE] actor takes the top rank in 

the hierarchy (we assume throughout that there is only one rW nT node) Constant, 

IREA3I and [COPY] outports rank lowest. Multi—inport superiors can have more than one 

inferior, any 1 COPY] node actors can have more than one superior.

Requests end Requesting
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General Pattern of Mode Acte

Most node acts have the following overall layout (this is a simplification):

ACT Act_Exan$>le ;
VAR

inport ARRAY [ 0 . . 9 ]  OF ACTOR ;
superior ACTOR ; ( •  t 4.1 * )
request MSGTYPE ; ( •  t  4 .2 • )
index INTECER ; ( •  t  4 .2 • )
resul t ANYTYPE ; ( » » 4 . 6 . 1 • )

BEGIN C I n i t i s  11ss t Ion  o f  th is  a c to r  ( t  4 . 3 . 1 ) : * )
( . . in p o r t [ 0 ] ,  in p o r t [ 1 ] ,  . . . )  :=  RECEIVE FROM (C re a to r )  ;

( • Due to i t s  low in t r in s i c  p r i o r i t y  ( t  4 7 )  the node * )
( •  actor  w i l l  wait here u n t i l  the f i r s t  request a r r i v e s . * )

c The X—p art  must be in se r ted  here. ♦)
c I t  i s  executed only once, a t  the beginning . •)
(*"•

REPEAT 1
WHILE
BEGIN

TRUE DO ;

( ••
C The node ac to r  is  dormant e x a c t l y  wh ile  •)
C i t  i s  hung in the f o l lo w in g  RECEIVE: •) i
( t#

(super i o r , request ,  index) RECEIVE ( )  ,

C The V—p a r t  muil be in se r ted  here. •)
C It  i s  executed once per request .  •)
C • )
C con ta in s  at the end: * )
C IF requeat «  COMPUTE •)
C THEN SEND (DATON, r e s u l t )  TO (s u p e r io r )  ; ♦)
( *•

END ;

1 . i * * !
C The ■ « c a p t io n  part is  p laced  here. ' )
( • *

RESET ;
UNTIL FALSE ;

END ;

(Due to the nature of Lucid, this layout is almost identical to the one Independently 

discovered by Finch [Fin81].) The eternal I while] loop in this layout reflects the fact
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that all node actors operate like endlessly running computing stations. Certain 

preparing actions may have to be carried out before the loop is entered. Such 

instructions are placed in the X—part of the node act. The X—part contains the loop 

initialisation, but it can even contain, for example, request IHECBIVEI instructions. The 

[WHILEI loop starts with the acceptance of an order for new work (by receiving a 

request). This work is then carried out; the pertaining instructions are contained in 

the Y—part. The Y—part may include the eventual giving back of the result to the 

superior (the reply). Some actors need to rtta in  information from preceding loop 

passes, others do not. In the latter case it is common to say that the actor has 

no memory (intended meaning: it has no long term memory).

In the event of an exception, a jump is made to the exception part. After some 

appropriate measures have been taken, the exception state is cleared by ]RESET1;. and 

the eternal I REPEAT] loop takes us back to the dormant state

Theoretically, there is little need for actor torm ination in an endlessly running 

program. Actors need to terminate only for efficiency reasons; termination sets 

storage free for reuse in other actors Section 6 3 deals with actor termination ( llCLLi 

request).

4.2 Protocol Specification 

Motivation

Before we study the protocol, let us identify what shall be achieved by our 

protocol. In a rather primitive implementation of Lucid there would be merely one 

request:

"Start evaluating one daton, and deliver the daton value to me." This request 

will ultimately be followed by that value being sent in the reverse direction. The 

next request will automatically relate to the next daton.

4.2
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However, apart from being hopelessly inefficient, there are perfectly meaningful 

programs which would not be executable under this rudimentary protocol (e g. any 

program with a concurrent [03] in it, t 1.1.3 and 4.5.3). We will not contemplate such 

a primitive implementation any further but aim for a protocol which is more refined 

in two respects. On top of the above request, we want to be able to do either of the 

following (Warning: don t take this as a definitive list of request types):

— Skip one daton. This is the same as asking for a daton without being interested 

in the actual daton value. Such a request is essential for any serious 

implementation of the Lucid ¡Tf] in pipeline DF.

— Once the computation of a daton value has been requested, one may suddenly 

want to nullify  (annul, undo) that request for some good reason. Such a 1 NULLIFY! 

request is essential for the implementation of non—deterministic Lucid 

operators.

Furthermore, the protocol must take into account that any request can cause 

arbitrary subordinate requests Higher-ranking evaluations can progress even while 

subordinate evaluations are under way. Higher—ranking Si.'-LTfy requests must be 

able to take proper effect on subordinate daton evaluations

The Protocol •• a Diagram

Let us now set out to answer the question: "in which sequence is the protocol 

executed, and where are variations possible?" Our range of requests is [COMPUT?!, 

[NULLIFY- and , ADVANCE), and the following flowchart helps answering the question by 

■howing the various possible ways in which the protocol can unfold:

4.2
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START (re ad y  f o r  next requ es t )
\

/ 4 \
/ \

O ' COMPUTE \
/ \

/
/ \

/
4 /

t \
NULLIFY 

* -» t

•+
(r e p ly ) resu lt

(  * s
•+

ADVANCE loop counters
i  * i

(The paths marked ( * )  are never actually employed) The symbol "* -»t" in this 

diagram indicates that a message is passed from the Superior to the inferior. 

Execution starts at START, and the inferior is at this point assumed to be dormant 

It is furthermore assumed that both superior and inferior know constantly the index 

of the next daton to be computed. Both keep track of the current daton index, by a 

dedicated storage cell or similar means.

The flowchart makes no mention of the action itself. Each request has some 

action as consequence, e g. evaluation of the daton value. This action starts with the 

reception of the request. START can be reached again once the action is complete.

4 3
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Tit« Protocol Requests

| ADVANCEj

This request asks the inferior to advance the index counter by one (usually), 

namely to the successor daton. The previous daton will never again be asked 

for, it can be abandoned — There is no reply to [advance] requests.

ICOMIPUTEi

This request asks the inferior to evaluate the current daton (l.e. determine the 

value of the daton which is currently "due to come off the production line”). The 

Inferior will take the measures necessary to obtain the daton value, at the end of 

which it offers to send this daton value to the superior Under normal 

circumstances, the |CQMPL’~e: is followed by the value delivery, and that is 

followed by an ¡ADVANCE! request There are. however, situations where the 

superior ignores the offer of the daten value and issues another overriding 

request (viz. [NULLIFY:). However, even aiter the daton value has been delivered 

there may be a renewed request for exactly the same daton. (This is why no 

automatic I ADVANCE] request is incorporated in the! COMPUTE] request )

(nullify]

This request asks the inferior to ca n ce l any daton evaluation which may be 

currently going on in it (due to a ¡COMPUTE] request). The state must be restored 

which existed before the evaluation of the current daton was requested. In our 

particle jargon, NULLIFY fires off a "kill token" (”le th o n ") which counteracts the 

preceding "s ito n "  (r 2.5) -  The I NULLIFY! request is issued if the superior comes 

to a point where the daton value is no longer needed. Example: as soon as one 

operand of an[oS] operation yields IfftUEl, evaluation of the other operand can be 

nullified. -  There is no reply to ¡NTr.LlFYi requests. We could even define ¡NULLIFY!

In detail, the requests are (all sent from a superior to an inferior):

4.2
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to have no effect on a dormant node actor, but instead we construct the acts 

■uch that I NULLIFY! requests are never sent to a dormant actor.

Every request quotes, as its second message component, the index of the current 

daton. The initial index is 0, and the index must be changed only through! advance! 

requests. It has been said, the index grows by on« with every 1 ADVANCE! exception. 

There is, however, the special index value which indicates that no further

daton will ever be requested from the inferior. |fin«linde»| is a special constant, the 

infinitely large index °°.

The index is at every moment equal to the number of preceding [ADVANCE! 

requests, it would therefore be dispensable in the requests. Nevertheless, 

incorporating the index in each request offers a number of advantages:

— it can indicate the end of demand for a history, via [ fnalndex!,

— nodes like !"3Y! can derive their state from the index, which relieves them from 

having memory,

-  interfacing to tagged DF (r 6.5) becomes much easier,

-  the index supports runtime checking and system error tracing

If the inferior gets a I NULLIFY! request while it is busy with I COMPUTE] action 

(i.e. evaluation of a daton value) that action will be aborted As specified in 

section 3 4.2. [ADVANCE] and iNULLIFY! requests arc exceptions (unlike [COMPUTE]), and all 

evaluations are inhibited while any exception remains unresolved. From the 

superior’s point of view, the action for [ADVANC. or XUlTIFT: is indivisibly tied to the 

request, i.e. it would be pointless to delay the exception handling

In a computation where successive daton values are needed, the normal cycle of 

operations is: [COMPUTE! request, daton value delivery, [ADVANCE1, request. However, if a 

daton shall be consumed without its value being of relevance, the [ADVANCE] request is 

issued directly without the preceding [COMPUTE We call such a request a bare

4 2
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A I NULLIFY] request will usually stop and make null and void any daton evaluation 

which may have taken place after the last I ADVANCE i (or after initialisation, if there 

has been no I ADVANCE! yet). If a | COMPUTE! request follows directly after the | NULLIFY! 

(i.e. without an 1 ADVANCE! in between) the inferior will set out to compute the value of 

the same daton as for the previous 1 COMPUTE] request. A singls-outport jCOPYl node 

may be inserted in the arc wherever the re-computation of intermediary results 

shall be avoided.

An actively computing inferior may in turn have issued a subordinate iCOMPUTE! 

request (i.e. it is a subordinate superior) If such a sub—superior gets a iNULLIFY! 

request, it will halt its current computation, do the necessary clear—up (like 

propagating the ¡NULLIFY] request to the sub—inferiors), and it will then await the next 

request.

Most inferiors have inports. If such an inferior gets an !ADVANCE] request, it will 

first do the same as in a !NULLIFY! request, it will then propagate the 'ADVANCE] request 

to the inports, and it will Increment its own index counter by one It will finally await 

the next request, I.e. it will enter the dormant state

Roquoat Propagation

Two diametrically opposed strategies govern the propagation of requests, though 

both aim towards efficiency. (These request propagation strategies are also 

reflected in the priority scheduling, t 4.7.)

I COMPUTE! requests cause daton evaluations, and daton evaluations tend to be 

sxpsnsiua. [COMMUTE1 requests are therefore issued as sparingly as possible, and they 

are withdrawn (by iNULLIFVl) as soon as It becomes certain that the evaluation result 

is not needed

I ao vance! request; all others are proper [advance 1 requests.

4.2
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Excaptions, on the other hand, are propagated at the aarliast possible moment. 

We do so because, in general, exceptions are capable of ralaosing computing 

resources further upstream. Exceptions usually trigger some administration, but 

even that is considered to be "well spent". Exceptions must never cause in fin ite  

looping or ¡COMPUTE! requests Care must be taken in the act design to ensure that 

this rule is not violated This is not always trivial; for example, computations can be 

accidentally caused if a bareiADVANCE] is issued to a poorly designed;WV3| actor.

Closing Remark«

Various other protocols were tried out, and the above design proved best for 

implementation. Among the worst of the alternatives was the one which combined 

I COMPUTE! and [ADVANCE] into a single request ( i  beginning of 4.3). In order to permit 

(NULLirrl requests in that design, even the simplest actor had to be provided with 

memory in which computed values could be saved

Node actor initialisation  is part of the protocol, in the wider sense. We chose, 

however, to describe actor initialisation in connection with actor creation in section

4.3.1 (B)

4.3 Tha Translation Propar

This section presents the method for translating any Lucid graph into its LUX 

equivalent, namely a net of initialised node actors This side of the translation 

algorithm is independent from the particular design of the node acts. (Our quiet 

assumption of demand driven evaluation, though, has a certain bearing on this 

section.) We pretend for the remainder of this section that a suitable act has already 

been defined for each node type. There is no danger that this assumption leads us 

into a vicious circle.

4.3
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Excaptions, on the other hand, are propagated at the earliest possible moment. 

We do so because, in general, exceptions are capable of releasing computing 

resources further upstream. Exceptions usually trigger some administration, but 

even that is considered to be "well spent". Excaptions must never cause in fin ite  

looping or jCOHPUTSI requests Care must be taken in the act design to ensure that 

this rule is not violated. This is not always trivial; for example, computations can be 

accidentally caused if a bare ¡ADVANCE! is issued to a poorly designed |WV3| actor.

Closing Remarks

Various other protocols were tried out, and the above design proved best for 

implementation. Among the worst of the alternatives was the one which combined 

¡COMPUTE! and ¡ADVANCE! into a single request (? beginning of 4.2) In order to permit 

I NULLIFY! requests in that design, even the simplest actor had to be provided with 

memory in which computed values could be saved

Node actor initialisation is part of the protocol, in the wider sense We chose, 

however, to describe actor initialisation in connection with actor creation in section

4.3.1 (B)

4.3 Tha Translation Propar

This section presents the method for translating any Lucid graph into its LUX 

equivalent, namely a net of initialised node actors This side of the translation 

algorithm is independent from the particular design of the node acts. (Our quiet 

assumption of demand driven evaluation, though, has a certain bearing on this 

section.) We pretend for the remainder of this section that a suitable act has already 

been defined for each node type. There is no danger that this assumption leads us 

Into a vicious circle.
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Every Graph Lucid program consists of nodes and arcs, and its translation can 

correspondingly be described in two parts:

(A ) the translation of the nodes and

(B) the translation of the arcs.

First (section 4.3.1) we are going to present the translation algorithm for programs 

•without recursive UDFs. Before progressing to an algorithm for programs with 

recursive UDFs (section 4.3.3) we will study UDFs and related topics (section 4.3.2).

4.3.1 Program« without Racursiva UDFs

Let us first deal with the translation of particularly simple Lucid programs, 

namely those without recursive UDFs. More precisely, this section describes only the 

translation of programs without UDFs altogether However, section 4.3.2 will show 

how to remove non—recursive UDFs (viz. UDF expansion), a process which can be 

easily carried out before applying the algorithm of this section.

Under this restriction the nodes in the Lucid graph can be labelltd with natural 

numbers, with a known finite bound (see also Fibonacci example, two pages below) 

The root act establishes the LUX counterpart for the graph by (A) first creating 

exactly one actor for each individual node in the graph. The choice of act is 

determined by the node type, of course While the root actor creates the actors (in 

the sequence of the labelling number) it enters the name of each now actor into a 

table. [COPY! node actors (* 4.8) are special in having a separate actor name for each 

outport (1, 9 and 10 in the Fibonacci example), in addition to the name of the [COPY] 

node actor itself (inport, labelled 1 in the example). Immediately after creating a 

(COPY! node actor, the creator gets back from that actor a few messages, each telling 

the name of one [CopYI outport actor.

4 3.1
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Every Graph Lucid program consists of nodes and arcs, and its translation can 

correspondingly be described in two parts:

(A ) the translation of the nodes and

(B) the translation of the arcs.

First (section 4.3.1) we are going to present the translation algorithm Tor programs 

without recursive UDFs. Before progressing to an algorithm for programs with 

recursive UDFs (section 4.3.3) we will study UDFs and related topics (section 4.3.2).

4.3.1 Programs without Recursive UDFs

Let us first deal with the translation of particularly simple Lucid programs, 

namely those without recursive UDFs. More precisely, this section describes only the 

translation of programs without UDFs altogether However, section 4.3 2 will show 

how to remove non—recursive UDFs (viz. UDF expansion), a process which can be 

easily carried out before applying the algorithm of this section

Under this restriction the nodes in the Lucid graph can be labelltd with natural 

numbers, with a known finite bound (see also Fibonacci example, two pages below) 

The root act establishes the LUX counterpart for the graph by (A) first creating 

exactly one actor for each individual node in the graph. The choice of act is 

determined by the node type, of course While the root actor creates the actors (in 

the sequence of the labelling number) it enters the name of each new actor into a 

table. IcOPY] node actors (* 4.6) are special in having a separate actor name Tor each 

outport (1.9 and 10 in the Fibonacci example), in addition to the name of the iCOPYl 

node actor itself (inport, labelled 1 in the example). Immediately after creating a 

fCOPYl node actor, the creator gets back from that actor a few messages, each telling 

the name of one IdOPYl outport actor.
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In the graph, arcs connect the nodes. Correspondingly, there must be 

connections between the node actors. After the creation of all the actors, the root 

actor establishes these connections in <B) the in itia lisation  of all the actors. 

It informs each actor of the names of the actors at its inports (i.e the node actors 

which produce the operand daton values). Since we deal with a demand driven 

implementation, each actor takes a dominant role over the actors at its inports and 

it takes a strvils  role with regard to the actor at its outport. Operand actors are 

therefore called Inferior*, and the requesting actor is called the superior. At the 

program start, each actor needs to know only the names of its in/sriors.

In the translation stage (B), an initialisation message with the names of the 

inferiors is sent to each node actor The initialisation message is the sequence:

<DATON, neons o. name j , nomeg. . . .>
Each nam«i appears at the index position corresponding to its inport subscript i. 

The component DATON is due to our message convention (* 3 3 .".). We use the 

convention that actors for nodes with no inport (constant and 31.0 nodes) get no 

initialisation. The lW3ifE] node must be the last to be initialised, this makes sure that 

requests are not sent to nodes which are still waiting to be initialised The reason lies 

in|W3iTSj being top in the request hierarchy.

It has been said before that every node actor can be initialised only by its 

creator. In our special case (all UDFs fully expanded) the root actor is the creator of 

all node actors.

Example (Fibonacci)

Let us apply these rules to a simple example program (t chapter I) which computes 

the Fibonacci scries:

4 3  1
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f ib  WHERE
f ib  *  1 FBY ( 1 FBY ( (NEXT f i b )  ♦ f ib  ) ) j 

END

Here is its corresponding graph, with the nodes labelled by numbers (* 2 2 and 4.3 1):

1--------h B
| NEXT | *---------+ 9

t ■ C—  
| 10 | 2 

4 4 t

■+
I
4

| FBY 
4- f

•+ 3
I
■+

H-------
| FBY 
-I---- b-

■+ 5 +
| PLUS

+ 7
I
+

* i ------- h i «— +

H---------- 0
| WRITE j

f i b  •------------------------ ■----------------------------------■----------------------- +

Every Lucid program is an expression which yields a result (here fib ), and this result 

flows obviously into a I WRITS] node. Here is the [Act_Root_i which would generate the net 

of actors-
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ACT A c t_R oo t_  ; ( •  Root a c t  ( o r  F ibonacci example. * )
VAR

node : ARRAY [ 0 . . 1 0 ]  OF ACTOR ;

( *  Furthermore, th ere  mixt be ACT d e c l a r a t i o n !  ( o r :  * )
( •  Constant, NEXT. COPY. FRY, PLUS and WRITE. • )

BEGIN ( •  A c t_R oo t_  haa no i n i t i a l i x a t i o n .  * )
node[0 ] : = CREATE (A c t _ ] f r i t e _  " c o n s o l e " )  ;
node[2 ]  : *  CREATE (Act_Copy_  . 3 )  ; ( •  3 ou tporta  •)
( . , node [ 1 ] )  : *  RECEIVE FROM (n o d e [2 ] )  ,
(  , . node [ 9 ] )  := RECEIVE FROM (n o d e [2 ] )  .
( . , node[1 0 ] )  := RECEIVE FROM (n o d e [2 J )  ;
node[3 ]  := CREATE (A c t_F by_  ) ;
node[4 ] := CREATE (A c t_C on a t_  1) ;
node[3 ]  := CREATE (Ac t_Fby_  ) ;
node [8 ]  ;= CREATE (A c t _ C o n t t _  1) ;
node[7 ]  : *  CREATE (A c t_P lu x _  ) ;
node[B] := CREATE (A c t_N ex t_  ) ;
S e t - P r i o r i t y  (n o d e [0 ] ,  t o p - p r i o r i t y )  ;

SEND (DATON, n o d e [9 ] )  TO (n o d e { 8 ] )  ;
SEND (DATON, node [B ] ,  n ode [10 ] )  TO (n o d e [7 ] )  ;
SEND (DATON. n o d e [6 ] ,  node [ 7 ] )  TO (n o d e (5 ] )  ;
SEND (DATON, n o d e [4 ) ,  node [ 5 ] )  TO (n o d e [3 ] )  ;
SEND (DATON. n o d e [3 ] )  TO (n o d e [2 ] )  ;
SEND (DATON, n o d e [ l ] )  TO (nodeLO ])  ;

END ;

i Act—Root—; has no exception part, since it gets no exceptions. The root actor 

terminates itself. After the root actor is gone, all the "driving force" for 

computations will emanate from the 1 WRITE] actor, 'nodeioll

The Nod* Numbering Rule

You may have guessed that the numbering of the nodes follows not just a whim 

but a rule, yet to be explained To begin with, the lowest label numbers arc given to 

the nodes which generate the ultimate driving fo rca  for computation. We deal here 

with demand driven DF, and we attach label 0 to our PwRlTFl node, the ultimate 

demander. Many nodes force other nodes into action. In demand driven DF, nodes 

tend to propagate requests to the nodes at their inports, and thus the driving force 

flows upstream. We number the nodes in such a way that every node requests only 

from  nodes with, higher label numbora. The node numbers increase therefore in the

4.3.1
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upstream direction. Nodes are created and initialised in the order of dtcrtcu ing  

label number. — This numbering rule caters even for subnets with many outports, 

and can be adapted for input driven DF. The numbering rule ensures that each 

operand actor is itself readily initialised before its name is passed around to other 

actors (consequence: requests cannot be sent to yet uninitialised actors).

Outlook

Scheduling and priorities will be discussed in section 4.7. They are 

indispensable for correct and efficient program execution.

It is advisable in the first reading pass to skip the remainder of this section 4.3, 

to continue this chapter from 4.4, and then to re-read the entire chapter without 

omissions. — Before we can go on to Lucid programs in general, a review of UDFs and 

subnets is in place.

4.3.2 Abstraction and Expansion (UDFs and Subnets)

4.3.2.1 A+€ in Equatlonal Lucid

Abstraction lies at the root of many programming techniques UDFs, subnets 

(t 2.2) in Graph Lucid, and subnets of actors are the kind of abstractions which 

interest us here. For any particular abstraction there is always one definition and an 

arbitrary number of references References are just the means for making use of 

definitions. The definition of abstraction XYZ states "here is the shape of the object 

you may substitute for the reference if you want to obtain a result from XYZ". The 

Rewrite Rule characterises the meaning of abstractions more precisely: if we take 

any structure 5, and substitute in S each reference to XYZ by the object specified in 

the definition of XYZ. the outcome S' will behave the same as the original structure 

S. -  In the abstraction, the formal operands, if there are any, stand as symbols 

(place holders) for the actual operands quoted in each reference. It is common to

4.3 2.1



IV .  17

call the ensemble of the actual operands the anvirommnt of the reference 

(remember we have eliminated all global variables).

The actual replacing of the reference by its true essence (as given In the 

defin ition ) is called expansion. In the expansion, each occurrence of a formal 

operand is substituted by its corresponding actual operand. We will see that, in some 

situations, a high degree of abstraction is favoured while in some other situations one 

should aim for expansion.

Here is an example of a UDF ([cf], @  andjyf] are Formal operands whereas [ca]. [sal 

and f t a l  are Actual operands)

// d e f i n i t i o n .
Mymerge ( c f . x f . y f ) = IF c f THEN I f UPON c f

ELSE y f UPON NOT c f  Ft .

// re f e rence  (assume p, sa and ta have been de f in ed  e l sewhere ) :
m = Mymerge (0 .5 < p, sa, ta )  ;

Expansion of this UDF reference yields:

ca = 0.5 < Pi
m *  IF ca THEN sa UPON ca

!
ELSE ta UPON NOT ca Ft ;

Abstraction is promoted in Software Engineering since it makes programs easier 

to understand and maintain. Whenever we analyse any substantial Lucid program, we 

are almost bound to find particular substructures re-occurring in many places, the 

more so if we make provisions for minor variations. As we know from Software 

Engineering, this is almost unavoidable with any substantial program We are advised 

to formulate one abstraction for each substructure, and to replace each instance of 

the substructure by a reference to that abstraction. Software engineering teaches, 

furthermore, that it is a good idea to subdivide (to "structure") programs into 

purpose rotated units, and to abstract each unit.

43 2  1
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Subexpressions and UDFs

Our translation algorithm presupposes that the Lucid program is in monomeric 

form (r 2.1.6 and 4.3.3.1): there is at most one operator in each definition. Each UDF 

is an operator, and the monomeric form permits only variables and constants as 

actual operands, t.e. only ultra-simple expressions are allowed. We will come back to 

this point later on (t 4.3.3.2. Making Subexpressions into UDFs).

4.3.2.2 A+E In Graph LucM

All this applies equally to Graph Lucid, since Graph Lucid is a bijection of 

equational Lucid. Like programs, any Lucid graph can be subdivided into segments. 

Each of these segments is a subnet (t 2.2). Again, there will often be great similarity 

among the subnets. This suggests the definition of classes ( = abstractions) of 

subnets. Subnet classes are the exact counterpart for UDFs We use in the following 

subnet often in the meaning of subnet class

Every UDF node represents two kinds of structure, and its great power results 

from its mediating between the two. Its outside structure is that cf a single node 

(the UDF node), while its inside structure reveals a subnet composed of numerous 

nodes.

Each subnet has open arcs, i.e it has outport (and inport) arcs which are not 

connected to any node, but instead are connected to an interface. Such an Intarfac* 

is a combined array of plugs (open inport arcs) and sockets (open outport arcs) 

which will eventually link up with complementary sockets and plugs The inports and 

outports of every subnet reference must match the requirements of its abstraction, 

■o that plugs and sockets can be paired

4 3 2  2
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Here Is the Illy merge I example from above, this time as a Lucid graph:
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4
m

reference eide

c : reeult 
e : I IF ... THEN ... ELSE ...

-+ 0

abstraction side

(Ignore the numbering of the subnet nodes, for the time being.) On the left is the UDF 

reference, and on the right we see an instance of the subnet for jMyrr.erge!, both 

connected by an interface. The picture is a snapshot of the state of affairs when 

expansion is half complete. Before the expansion, the subnet on the right is only 

conceptually present, symbolised by a 1 My merge] node At least in some 

implementations, expansion goes one step further than shown above: it replaces the 

interface by direct through connections (t 6,3, operand redirection).

Each UDF reference divides the Lucid graph into tuio subnets, the subnet for the 

abstracted side, and the subnet for the referencing side.

Abstraction and expansion have counterparts in subnets of actors, and with the 

aid of these counterparts even programs with recursive UDFs can be implemented in 

LUX

4.3.3 Application of Abstraction and Expansion in LUX

4.3.3.1 Programs with Recursive UDPs

Lucid programs with recursive UDFs are only slightly more complicated to translate 

than the simple programs considered in section 4.3.1.

4.3,3 1
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Example ( |siavi): Lucid program and graph

The prime numbers can be computed by an algorithm known as the "Sieve of 

Eratosthenes", and this algorithm can be elegantly described by a Lucid program 

with a recursive UDF (original program due to Gilles Kahn). We start here with the 

Lucid program, we will present all the translation steps, and we will present all the 

various acts required for it, including the translation program. In chapter V, the 

dynamics of program execution will be illustrated, using the jSievel program as the

example. Here is its Lucid program:

S ie v e (N )
WHERE

N = 2 FBY N-M ;
S i e v e ( i ) = i FBY

S ieve  ( i  WVR ( ( i  MOD FIRST i )  NE 0 ) )  :
END

Let us make the program monomeric:

ml WHERE
S i e v e ( i )  = -0 WHERE

( s i , s5 ,sB .s lO )  = COPY ( i )  : 
sO = FIRST 310 ;
17 = 30 MOD 39 ;
i t  a >7 NE 0 ;
s4 = s5 WVR 30 ;
s3 = S ie ve  (s4 )  ;
sO — al FBY s3 ;

END ;

mfl * mfl ♦ 1
N ss 2 FBY mfl
(m2, mfl) ss COPY (N  )
ml S ieve (m2)

END

4.3.3.1
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It Is now quite easy to generate the corresponding Lucid graphs, with labelled nodes 

(the labels in the main p rogra m  have been prefixed m, and those in the ¡Sicval have 

been prefixed s):

The Finite Program va. the Unbounded Nat

The graph of the main program on the loft contains a reference to the UDF 

I Sieve], and the graph of ¡Sieve] itself, right, contains a further reference to ¡sieve). Any 

reference to a UDF is treated the same as the reference to any operator The only 

difference is that there must be a definition for each UDF, whereas all other 

operators are readily defined

The graph on the right reveals the true nature of the UDF Outwardly it is just a 

node, but inside it contains a whole subnet. This subnet comprises another reference

S ie v e :

•+ itfi
| PLUS | .----+ »2 | slO 

C--------
•+ *9

I FiaST I

I "2- |nfi | MOO | .-------1
80 H--

H------ -t- 80
| M E  | .---- +

| FBY |
* H— -i— +

| WVR | .------+

el | Sieve |s3 ! • •
C------------------+

------- | F 9 V  |
*0

rrJ
| S ieve  | I I !

*
■i-----
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to jSiewI. which symbolises a further subnet. The program specifies effectively an 

inftn ite  nesting of UDFs (in Graph Lucid terms: an infinite net), rather like:

mainprog (
. . . S i eve  (

. . .  S i eve  (
. ..  S ieve  ( 

. . .  S i eve (
end so on ad in f in i tum

)
> . . .

) ■
) . . .

)

Lucid programs can be analysed in a rather static {“denotational") manner. 

However, when we discuss their execution, we cannot avoid thinking in terms of 

execution time {operationally, dynamically). Programs are executed in a succession 

of fundamental operations, computation steps. In this thesis, we call IF3Y:, |NEXT|, 

IlF—THEN—ELSE! and the usual pointwise operators (addition etc ) primitive operators, 

more about them in section 4.4 In LUX, the fundamental operators are (create!. 

[SEND], IRECEIVSi, [EXCEPTION!, the system functions, the primitive operators, but not 

UDFs. 1 FIRST!, [Upon! and [WVR1, are counted as UDFs.

Delayed Net Expansion

Every abstraction reference needs to be expanded (into a set of actors) before it 

can truly take part in a computation However, if all expansion had to be carried out 

at the start of program execution, a disaster might occur, since every reference to a 

recursive UDF would generate in fin ite ly  many actors. The site of a net with 

recursive UDFs can not be pre—determined in general, it may even be unbounded

This size problem can be resolved by delaying the UDF expansion. During 

program execution, there is for every instruction (and that includes any UDF 

reference) a moment where it is used for the first time. In demand driven 

evaluation, this moment is the one where the firs t request arrives. (For some
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instructions this moment may never arrive.) A request, directed to the UDF, can be 

serviced only by the expanded UDF, but expansion can be delayed up to this moment. 

Up to that moment, the abstraction is kept in a preliminary state where the actor 

subnet has not actually been expanded, although all the information necessary for 

expansion is at hand (i.e. actor initialisation complete). This method has the 

attraction that only/intieiy many actors exist at any moment.

If expansion is delayed up to the last moment, we speak of a lazy expansion. Its 

obvious opposite is eager expansion, where the subnet is expanded a good while 

before its first use. The extreme of eager expansion is the expansion before the start 

of program execution (t 4.3.1); this is called static expansion. We will come back to 

eager and lazy expansion when we discuss act expansion (* 6 2)

UDF Acts

UOF acts are the LUX counterpart for UDFs Every single UDF actor (outside 

structure) stands for a subnet of actors (inside structure) UDF references (code for 

Issuing requests) have the same form as any other node actor reference, since we 

agreed on a uniform protocol.

In the framework of node actors, the word abstraction means "yet unexpanded 

subnet of actors", and every UDF actor has therefore two states (similar to a finite 

state machine):

— the abstracted state (the preliminary state), and

— the expanded state (the state during execution).

Speaking in implementation terms, every UDF actor contains, right after its own 

initialisation, code which (A ) creates all the actors in the subnet and then (B) 

initialises them. Both (A ) and (B) are carried out very much in the way described in 

sections 4.1 and 4.3.1, but with the difference that now the UDF actor is the creator 

and initialiser.

4.3 3.1
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Example ( 1 Slavi); UDF act

Here is the 1 Act-Sievei which would generate the appropriate actor subnet (node 

numbers same as in the graph):

ACT Ac t -S i ev e  ; ( *  Act f o r  UDF Steve .  *)
LABEL 1 ;
VAR

node : ARRAY [ 0 . . 1 1 ]  OF ACTOR ; 

inport  : ARRAY [ 0 . . 0 ]  OF ACTOR ; 
skip : INTEGER ;

( *  Furthermore, there must be ACT d e c l a ra t i o n s  f o r ;  * )
( •  COPY, NOT, UPON and IF. •)

BEGIN ( ♦  I n i t i a l i s a t i o n :  •)
skip := 0 ;
( , . i np o r t (O j )  : *  RECEIVE FROM (C re a to r )  ,

( •  Due to i t s  low i n t r i n s i c  p r i o r i t y  ( t  4.7) the node •)
( •  ac to r  w i l l  wait here un t i l  the f i r s t  request a r r i v e s .  •)

( •  Below i t  w i l l  be shown that some fur ther  code must •)
( »  be inser ted here ( i n t e r c e p t i n g  ADVANCE except i ons ) .  •)

( •  The X - p a r l : ♦)
node (0 ]  : *  CREATE (A c t _ F b y _  ) ;
node [2 ]  ;= CREATE (A c t _ C o p y _  4) ; ( •  4 outpor ts  •)
( . . node [ 1 ] )  ;w RECEIVE FROM ( ,node[2) )  ;
( , . node [ 5 ] )  ; *  RECEIVE FROM ( n o d e [2 ] )  ,
(  , , node ( 8 ] )  ;= RECEIVE FROM (node[2J)  ;
( . . node[ 1 0 ] )  ;= RECEIVE FROM (node[21 )  ;
node (3 ]  := CREATE ( A c t —Sieve  ) ; ( ♦  the recursion •)
node (4 ]  := CREATE ( A c t J T v r -  ) ,
node (0 ]  : »  CREATE (A c t _ N e _  ) ;
node [7 ]  : *  CREATE (Ac t_Mod_  ) ;
node ( 9 J := CREATE ( A c t _ F i r s t _  ) ;
n o d e [ l t ]  .= CREATE ( A c t _ C o n s t _  0) ;

SEND (DATON, node [10] ) TO ( node 191)
SEND (DATON, node L«1 • node [ 9 ] ) TO ( node |7]>
SEND (DATON, node m . node( 11]) TO ( node 1 9 ] )
SEND (DATON, node [51. node 1« 1 ) TO ( node M l )
SEND (DATON, node [ A ] ) TO (node [ 3 ] )
SEND (DATON, i npor t ro i ) TO (node 121)
SEND (DATON, node H J . node [ 5 ] ) TO (node [01)

I:  Pass—Through ( node [ 0 ] ,  sk ip)  ;
END ;
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Every UDF act uses the procedure IPaijrhroushl This procedure contains the Y—part, 

and it passes all requests on to Inodefotl. the highest ranking actor within the subnet, 

and conversely, it passes all replies back to the superior of the UDF actor.

PROCEDURE P » « *_T h r  •ugh (nodeO : ACTOR; sk ip  : INTEGER) ; 
LABEL 1 ;
VAR

su per io r  : ACTOR ; request  : MSGTYPE ; 
r ep ly  : ANYTYPE ; indes : INTEGER ;

BEGIN
FOR index ;=  1 TO skip
DO EXCEPTION (ADVANCE, in d ex )  TO (nodeO) ;

REPEAT
WHILE TRUE
DO BEGIN : 1

( s u p e r i o r ,  request ,  index)  :■ RECEIVE ( )  ; :1

( •  The r - p u r t  : • )  :1
r e p l y  := CetDston ( in dex ,  nodeO) ; :1
SEND (DATON, r e p l y )  TO ( s u p e r i o r )  ;

END ;

(• Except ion par t : •)
1: ( r eq u es t ,  index) )  := Reveal  ;

IP r eques t  »  ADVANCE
THEN EXCEPTION ( r eques t ,  index)  TO (nodeO) ; 
RESET ;

UNTIL FALSE ;
END ;

lAct_Sieve| begins with the initialisation of the actor itself The formal operand I from 

the Lucid program translates thus into a storage cell which the creator fills with the 

name of the actual operand actor. This is followed (X—part) by the expansion proper, 

the creation and initialisation of the subnet actors The act ends with a call of the 

procedure 1 Paex-Throuih], which contains its Y-parl

The X—part resembles clearly the Si ‘—Root—] from the Fibonacci program 

(T 4.3.1). While scheduling will be properly discussed in section 4.7, we briefly 

mention here that all node actors (other than ¡WRltEl) have initially an extremely low 

scheduling priority. Execution of the X—part of any actor starts only upon arrival of 

the first request In the case of UDF actors, this makes sure that the subnet is 

created not earlier than really necessary
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The call of the |Paaa-Ihrouah| procedure Is eternal, i.e. the procedure is called 

once, and, because of its eternal loop, there is no return from it. The essential part 

of the procedure, the eternal loop, has been copied straight from the identity node 

(simply remove the scaling from the [Act-Scalcl, t 3.4.4). Since IPaxa-Throush] contains 

no computation it is a prime target for optimisation, and we shall indeed discuss 

•xpansion o f a UDF rtfo rtn co  (t 6.2), optimisation of recursive UDFs by tail 

recursion (f 6.6), and operand redirection (t 6.3), all of which are applicable here.

Doors need not be provided in the subnet expansion code ( ¡CR3AT51 and initialise) 

since the superior will be hung in its first request (the one which caused the 

expansion) and can therefore not issue a further request during expansion. (One 

might consider this approach as crude and replace it by one which has a request 

I RECEIVE; before the expansion code. Such a refined version would indeed need doors ) 

The node numbering rule (from the ~rootlac-o~. * end of 4.3.1) extends unchanged 

to UDF actors. Since that rule has certainly been adhered to during the initialisation 

of the UDF actor itself, all subnet inports (actors for actual operands) can be 

assumed to be ready for use.

Initial [ADVAWCE] Requests

For safety, a piece of extra code must be inserted between initialisation and X-part:

WHILE Reveal = ADVANCE 
□0 BEGIN

(req u es t ,  index) : »  Reveal ;
IF index > f in a l  index
THEN EXCEPTION ( r e q u e i t ,  index)

TO ( i n p o r t ( 0 ] ,  . . .  in p o r t [n ] )  
ELSE skip :■* akip + 1 :
RESET ;

END ;

The cell fakipl adds up any bare IADVANCFÜ requests initially sent to the UDF. Only the 

first I COMMUTE] request will cause the UDF expansion fXTiVANCf! requests must never 

cause "expensive" actions, such as the UDF expansion (Without lekTpl it would be
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impossible to implement a UDF like [WVR].)

If the first request ever to be sent to the UDF is an [advance, finaiindesl, the request 

is propagated to the operand actors and the subnet creation is suppressed. Without 

this extra code, recursive UDFs would be liable to deadlock: if i advance, finalindexl was 

the first request issued to such a UDF, its actor would settle down to building and 

inactivating subnets forever. This matter will be understood more easily once the 

IFBYi act has been explained (t 4.5.6). A more radical approach to the whole jfinaiindexl 

problem will be presented in 6.3 (the I KILL 1 request).

Example ( [sieve]); root act

Here  is the ¡Act—3oot_J wh ich  would g en era te  the m a i n  p r o g r a m  f or  ¡Sieve]:

ACT Ac t —Root— ; ( •  Root act f o r  S i eve  exanp’ e. •)
VAR

node : ARRAV [0  .8]  OF ACTOR ;
( •  Furthermore, th e r e  must be ACT d e c la r a t i o n s  f o r .  •)
( •  Constant,  COPY, F3Y, PLUS and WRITE. •)

BEGIN ( •  A c t _ R o o t_  has no i n i t i a l i s a t i o n .  •) |
node 10] CREATE ( Ac t_Wr i t e _ “ conso le •■) .
node m — CREATE (A c t—S ieve ) ;
node 13] - CREATE (Ac t_C opy_ 2) ; ( • 2
(  . node[ 2 ] )  .= RECEIVE FROM (node 131) ;
( . node[ 8 ] )  RECEIVE FROM (n o d e [3 ] ) ,
node l< ] = CREATE (A c t_F b y_ ) ;
node c » ] S CREATE (Act_Const_ , 8) !
node 18] 8 CREATE ( Ac t _ P 1ua_ ) ;
node [7 ] = CREATE (A c t_C o n a t_ i )  ;
Set_Pr  i or i ty (n o d e [0 ) ,  t o p - p r i o r i t y )  ;

SEND (DATON, n o d e [7 ] ,  n o d e (8 ] ) TO (node i « n
SEND (DATON, n o d e ] f t ] , n o d e [8 ] ) TO (node i ' l l )
SEND (DATON, n o d e [4 ] ) TO (node 13])
SEND (BATON, n o d e (2 ] ) TO (node 111)
SEND (BATON, n o d e (1 ] ) TO (node 10])

END ;
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Interhitfc

UDFs, subnets in Lucid graphs, and subnets of initialised actors correspond so 

closely to each other that most generalisations about either apply to all three. When 

looking at the figure in 4.3.3.1 one is tempted to believe that every instance of I Sieve I 

is just a "carbon copy" of the UDF 1 Sieve!. This view is quite in harmony with the 

functionality definition ("replacing the UDF reference by the UDF definiens does not 

change the computation result"). But the carbon copy approach cannot be 

generalised to cover operational objects, like actors. Many node actors have 

memory. An abstraction, on the other hand, can not contain memory but can at best 

contain information where to allocate storage space, and how much. In the 

operational interpretation of DF Lucid graphs, there is a silent understanding that 

each arc has initially an empty queue associated.

When implementing recursive UDFs, delayed expansion is the method to choose. 

However, implementation of recursive UDFs is merely one application of delayed 

expansion. Let us take a short look at the general application area

4.3.3.2 Further Applications of A+E in LUX

Above, in section 4.3.2, we outlined the reasons for abstraction from the 

Software Engineering point of view. Quite separately, abstraction offers also 

advantages to system implementors They are attracted by its particularly 

economical use of storage space: only one copy of the UDF definiens needs to be held 

in store, and no actor space is claimed until the first [cSMPUTE] occurs. Abstraction 

has one inherent disadvantage: its use incurs some extra administration cost, and 

this penalty re-applies normally to each daton evaluation.

For the execution of some Lucid program fragments (subnets) the prediction 

can be made that they will go through a protracted in itia l period o f inactivity  Store 

is used very economically if during this period the subnet is kept in abstracted form
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An optimising compiler might detect such subnets through program analysis. The 

above property applies particularly often to actual operand expressions of UDFs. 

In many implementations, efficiency is improved by abstracting all but the simplest 

(l.e. variables or constants) subnets with the above property.

The author admits freely not to know a universal rule for identifying all subnets 

which have such a "protracted initial period of inactivity". Only a few prominent 

instances will be presented in this thesis, namely recursive UDFs (f 4.3.3.1), inactive 

subnets, andflFl with constant condition (r 6.6)

The optimising compiler may contain a device for expanding some of the 

program writer's abstractions, but it may also contain a device for introducing 

abstractions of its own making. For the remainder of this section we will, however, 

assume that we are not using such an optimising compiler. Suggestions for 

optimisation can be found in chapter VI

There is a certain limit, a minimal UDF complexity, from where on abstraction 

has only disadvantages, both in execution speed and storage UDF expansion is 

indicated if the UDF definiens contains no operator ( J (x ) - x  ), and also if it has 

merely one operator and is non—recursive ( f fe .y )= x ~ y ). References to such 

ultra—simple UDFs can be eliminated by the compiler

Making Subexpressions into UDFs

Any expression is only as likely to be used as the structure that refers to it. 

If this structure is itself inactive for a protracted initial period, it may be advisable 

to make the expression into a UDF

For example, an actual operand expression of a UDF is certainly never used 

before the UDF itself, and abstraction of the operand expression may be indicated 

— Similarly, program fragments like the following are not uncommon in Lucid 

programs:
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• = IF FIRST c
THEN ( x+3) • x
ELSE 1 / ( 1 - x )  FI ;

The [Bj condition is evaluated once, and it is constant (* 6.6). This condition selects 

either the jTHENi operand or the [ELSE! operand, and the other operand will never be 

used. The code for this operand will forever idly waste store. However, the example 

can be rewritten into:

ThenFonc ( x )  =  (x+3) • x ;
El.eFunc ( x )  = 1 ✓  ( 1- x )  ;

• = IF FIRST c
THEN ThenFunc ( x )
ELSE ElseFunc ( x )  FI ;

This has given us two extra UDFs, I ThenFunc] and lElseFunc!. the abstractions of the 

original expressions. Only the unexpanded UDF actors (i e. not their subnets) are 

created together with the [!f] actor, and only either of them will ever be expanded.

4.3.4 Summary of Translation Propar

We present the algorithm once more, this time in imperative form The program is 

first put into a more convenient form through a few transformations:

(a) We make the Lucid program monomrric.

(b) \ cross-reference is generated, covering all identifiers in the Lucid program 

(simple as well as /unction definitions) The transitive closure of this 

cross-reference is generated. All definitions which are not in the transitive 

closure of the program result can be deleted He cursive function definitions can 

now be marked as such. (Recursively defined variables constitute cycles, »6.1.)
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(c) We replace all instances of [FlRSTI, I UPON!, fwva] and i'asaI by their UDF equivalents 

(t 4.5). Furthermore, we substitute all instances of currtn ting  by suitable Ifriool 

functions (t appendix B).

(d) Through the cross-reference we can locate all occurrences of global variables, 

and we eliminate them by converting them into extra UDF operands After this 

elimination, UDFs acquire all datons as UDF operands and deliver them as UDF 

results. As a result, the entire program consists of completely separate 

•tgm tn ts , namely one main program  (the subnet which contains the iWRITE! 

node) and any number of UDFs

(e) Sizeable UDFs should not be expanded ta g tr ly  if they have more than on« 

reference, Including self—references of recursive UDFs There is no law 

forbidding the textual expansion of UDFs with only one reference. We may now 

expand certain undesirable UDFs. Conversely, some complicated reason may 

persuade us to introduce some new UDFs (t 4.3.3.1 and 6 2)

(f) All m ultip it references to a variable must be resolved by rCO?Y. nodes

The Translation Strategy

We apply the translation program proper first to the Lucid "main program” and 

then in turn to each UDF. The translation program Incorporates the nodt numbering 

ru lt from section 4.3.1.

Every net or subnet contains one highest ranking node. For the "main program" 

this is the 1 Writs! node, while for any UDF this is the node which computes the very 

UDF result. According to the Lucid syntax, every program or UDF is an expression, 

and there is therefore only one highest ranking node per UDF or per main program. 

In order to translate UDFs correctly we must remember that even each formal 

operand maps Into a nodt actor which computes that operand The translation 

becomes easier if we substitute each formal operand by a subscripted dummy
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variable Inodef-ili (w ithi ranging over the inport numbers l, 2.. . n).

In the following we analyse Lucid graphs recursively. We start by looking at the 

highest ranking node, but before looking at a node itself, we look first at the 

producers of its operands (these will be lower ranking node actors) In Lucid graphs, 

the arrows indicate the direction of flow of datons. Effectively, we make excursions 

upstream along the arcs, and we generate code on the "return travel" downstrtam. 

In the course of this process, a number will be attached to each node, and code for 

creation and initialisation of the corresponding actor will be generated. It is obvious 

that this translation process terminates (i.e. no further recursion) when 

encountering the following operators:

— an operator with no operands (constants, R'£A'X) ,

— L’DF inports, or

— any I COPY] node which has already been translated.

Each ¡COPY! node delivers operands to many other nodes, and it will therefore be 

reached repeatedly in our translation algorithm But of course, code must be 

generated for each ¡COPY! node only once This can be achieved by attaching a 

Boolean flag to each ¡COPY! node

R tpriuntatlon for Graph Lucid

Below we will render the translation algorithm as a PASCAL program, which has 

been implemented and properly tested (t appendix C) The program presupposes 

that the Lucid graph is pregiven, the outcome of the transformations (a) ... (f) just 

described The graph is built up from PASCAL rteord t, and here is the definition of 

their structured type:
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type
opranse = 1. . 30 ;
NODE? *  - NOOK ; ( *  node po i n te r • )
NODE = record

ntype (copy,  co py t ra ns la ted ,  inport ,  o t he r )  ;
n labe l in teger  ;
n t ex t : a l f a
nn oo f r e f s in teger  ; ( •  number o f  r e f e r enc es  (COPY) *)
nnoofops : 0 . .30  ; ( •  number o f  operands •)
nop array [oprange]  o f  NODEP ;
n in i  top : array [oprange]  o f  i n t ege r  ;

end ;

Explanation: among the fields of every I NODE! record, the following are readily preset 

in the course of the Lucid graph definition:

ntype

ntext

nnoofrefs

nnoofops

nop

set to Icopyl if the node is a ICOPYj node (and it is further changed to 

I copytranslaied ] in the course of translation), it is set to I inport] if the node 

stands for an inport, and it is otherwise set to o-.her!

preset with a string fully specifying the node type, 

preset with the number of references (I, 3, ),

preset with the number of operands (0, 1, 3, ),

preset with pointers to the operand nodes

Every UDF' inport is expressed through a [NODE! record whose ]nty?e! is i.nportj, with the 

inport number (1. 3, ...) stored in the fn'-abc’.j field The fields inJaael] and ITurFropl convey 

node numbers and are essential for the translation.

Tha Translation Program

We will now describe the recursive function lTransTatel, together with a few 

assisting routines, which performs the translation. ]frTn»Ta-.<T must be applied to one 

program segment (one subnet) after another At every translation step we have a 

particular Node f/nder Consideration, we call it the "NUC. At the beginning of the 

translation of any program segment we choose the highest ranking node as the NUC.
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We attach a label number to each node, and we achieve this by a function 

I Next!«bell which delivers successive integers. Our algorithm will ensure that the 

highest ranking node gets the "0" label; inferiors get label numbers higher than their 

superiors.

func t i on  NaxtLabal ( var  nodenuniber : i n t e g e r )  : i n t ege r  ;
beg in NestLabel  : = nodenxnber ; ( •  pseudo func t i on *)

nodenutrber : *  nodenumber + 1 ;
end ;

The procedure [ScanOgerandal inspects left to right all the operands of the NUC. 

It translates each operand appropriately, by recursion to |Translate!, and it encodes in 

the Ininitopl field of NUC how each operand will eventually be retrieved in the 

initialisation of NUC. Inport nodes do not map into actors; they get therefore 

separate treatment which does not involve iTrnnslatel. * I

procedure S c an Op e r a n d s  (nuc ; NODEP;  v a r  nodenumber : i n t e g e r )  ; 
var i in t e g e r  ;

nucop . NODI P ; 
beg in w i t h  nuc* do

f o r  i : = 1 to nnoofops 
do begin

nucop := n o p [ i ] ; 
i f  nucop*.ntype = o t i n p o r t
then n i n i t o p [ i ]  = — n u c o p * . n ! « b e  1 (• i n p o r t  •)
e l s e  n i n i t o p f i ]  : =  T r  ana I a t e  ( n u c o p  , no den ur r ber )  

end end ;
I---------------------------------------------------------------------------------------------1

The procedure fNodeinitiahaationl translates the information from the the !:i;nitop! 

field of NUC into the actual instruction for the actor initialisation Use of the in.xtop’ 

field Is difficult to avoid. For any node actor, all operands must be created and 

Initialised before initialisation of the actor itself. A [COTt ] node actor must deliver its 

own name and also the names of all its outport actors (the references to the iCOPVl)  

bafort it can be initialised itself. In the translation of any particular node, 

IScanOperandx! is always called in the fi.rat invocation of !?ran»laio1, while ¡NodaTruuailsation! 

is called in the lost This first and last invocation are the same for most node actors, 

only ICOPVi node actors have more than one reference.
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procedure Node In11 la  1 l e e t i o n (nuc : NODEP) ;
e a r  i : i n t ege r  ;
beg in  w i t h  nuc* do begin

w r i t e  ( •  SEND (DATON, •)  i

f o r  i : »  1 to nnoofopa
do begin

w r i t e  ( ' n o d e [ ' ,  n i n i t o p [ i ] )  ;
i f  i < nnoofopa then w r i t e  ( ’ ] ,  ' )  ;
end ;

w r i t e l n  ( ' ] )  TO (n o d e [ ' , n l a b e l , ' ]  )  ; ’ )  ;
end end ;

The function .'Translate' takes a NUC pointer, and generates the whole crta tion  and 

in itia lisation  code for the corresponding actor It generates that code also for all 

node operands. The result of function ¡Trunalate! is the label (subscript i in jnodelili) of 

the actor which takes the place of the NUC. Note the split actor labelling In the case 

of ICOPYl nodes I COPY! nodes constitute probably the most challenging part of the 

translation, and the algorithm contains some extra treatment for the benefit o f;COPY! 

nodes. The stages of the translation are always:

a) allocate a label for the new actor

b) ( ¡COPY]: allocate one more label for the inport actor,)

c) generate a ¡CREATE] for the actor,

d) translate the operands,

e) ( iCOPYj: generate an "obtain name of outport actor",)

f) if this has been the last reference, generate the initialisation,

g) return with label of the NUC.

Stages b) to d) are omitted if the NUC is a ¡COPYI which has been touched before. 

ffranalatel Is a pstudo function since it changes its operands Here now is the 

all-important function iTranalatel (the program in its entirety is listed in appendix C):
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fu nc t i o n  T ranx l a t e  (nuc : NODEP; var nodenumber : in teger  ) : in teger  ; 
var

t rana l  in t eg e r  ; ( •  new node w i l l  be n o d e [ ( t r a n a l ) ]  • )
b e g in
wi th nuc* do begin

t rana l  : = NextLabel  (nodemcnber) ;
t r a n s l a t e  := tranal  ; ( •  the func t i on  reau l t  • )

i f  ntype <> cop y t rans1ated 
then begin

i f ntype = copy
then begin ntype := copy t r a m  1 at ed ;

n labe l  ; = Next Labe 1(nodenumber) ,
end

e l s e  n labe l  ; =  t ransl  ;

w r i t e l n  ( '  n o d e [ ' ,  n labe l ,
' ] : = CREATE (Act , n tex t ,  ' )  ; ' )  ,

ScanOperands (nuc, nodenuntber) ; 
end ;

i f  ntype = co py t r a ns la te d
then w r i t e l n  ( '  ( , , n o d e [ ' ,  t r a n s l ,

' ) )  := RECEIVE FROM ( n o d e [ ' ,  n i abe l ,  ' ] )  ; )  .

nn o o f r e f s  := nn oo f re f s  — 1 ; 
i f  (n n oo f r e f s  = 0) and (0 < nnoofops)  
then Node I n i t i a l i s a t i o n  (nuc) ;

end end ,

4.3.5 Concluding Remarks about tha Luc Id Graph Translation

In Ihe presentation of the un i v t r s a l  node a c t  (? 4.1) wa have subdivided the LUX code 

into two parts:

Y—part which is executed each time a request is sent to the operator actor in

question, and

X-part which is executed once before the first execution of (Y).

A second glance at lAci—ftoot—l and either of the UDF acts might tempt us to g m t r a l i * • 

that the Y—part is of considerable size and varies greatly from one program to 

another, while the X—part is at best small and of little variation. However, such a 

generalisation is true only for code from the translation algorithm described so far.
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Various code refinement techniques will be presented in chapter VI, and that 

observation will no longer be valid.

The LUX code from the above translation (I Act—Rood and UDF acts) has its strong 

and its weak sides. Its merits lie in its ease of production, and in its accessibility to 

various analyses. We will carry out such analyses in chapter VI. The code is 

comprehensible but leaves wishes for elegance unfulfilled. This could be overcome 

by a table—driven universal subnet Croatian procedure.

Although the code allows a bearably efficient implementation of concurrency, its 

officioncy  leaves wishes open. Since we are using a demand driven evaluation 

strategy, most of the actors will be dormant for most of the time. In most 

implementations, the cost per actor is relatively high. Actors should be reserved for 

situations where concurrency is of true benefit, and they should not be kept around 

in dormant state. In chapter VI. we will look at ways of improving the efficiency or 

certain parts of the code much further, and in particular how to restrict 

concurrency to productive roles

4.4 Memory In Nod* Actors

We know that, in demand driven DF. datons are evaluated only upon an explicit 

request. This means, whenever a daton appears somewhere, there must have been a 

preceding request for its evaluation. We can even state precisely tufioro the daton 

queues build up:

Theorem' In demand driven DF, daton quouos  need to be 
permitted only at the outports o f COPY nodes.

This is a strong claim, but it is easy to prove A long-term daton queue will certainly

not build up at an inport of a node, since once a node (superior) issues a daton

request to another node (inferior), the superior will consume the daton as soon as

the inferior can deliver. For the same reason, a long-term daton queue will not build
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up at the outport of a node with only on* outport. The node (with the one outport) 

will have produced the daton only in response to a request, and the superior will 

consume that daton as soon as it becomes available. Matters are rather different at 

the outport of a lco?Yl node Every 'COPYl node links a number of outports to one 

lnport. and a request on a single outport is enough to cause a request at the ¡COPY' 

inport. Therefore, if a daton arrives at the ¡COPY! inport, the iCOPYj node will pass it on 

to the requesting outport(s), but it will have to queue it at all other outports.

In this thesis, lF3Yi. IH3X7!, [0  and the usual pointwise operators are called 

prim itive  operators (t 4.3 3.1). Their acts can be designed so that none of them has 

long—term memory. Each of their actors is in exactly the same state whenever it is 

dormant; their storage cells hold only short—term information (except for operand 

names, which are quasi— constants anyway), nor does the PC hold state information. 

Previous requests have no lasting effect on primitive node actors Optimisation can 

take advantage of this property (act expansion, T6.2) -O n  the other hand, i■■•Her!.

I tippy] and :WVP| certainly have memory, and UDFs are clearly entitled to having 

memory. We will indeed implement riasil, ¡UPdN]. and 'WVP (they all have memory) 

through UDFs.

4.5 Nod* Acts

The design of the node acts is presented only as late as now since this order of 

presentation appears to be the most natural one the underlying concept has been 

explained at length, so that the focus can now be shifted to technical points. Some 

readers may by now have an inkling what the acts must look like

The complexity varies considerably among the node acts The more inports and 

outports a node has, the more protocol states its act must keep in harmony. 

We intend to exploit the request protocol to the full, and this makes the node acts 

rather complex. Some of the simpler acts have already been explained earlier on,
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the more d ifficu lt ones w ill be dealt w ith in  the following. S im p les t-to -ha rdes t they 

are:

— any node which has only an inport or only an outport (e g. constant. IRBADI, and 

I WRITE), t 4.5.4 and 4.5.9 f).

— any node with one outport and one inport (T 3.4.4).

— any node with one outport and more than one inport, with saqutntial acquisition 

of its operands (r 4.5.2).

— any node with one outport and more than one inport, with concurrent 

acquisition of its operands (r 4.5.3),

— important special nodes (¡IFj, iF3Y!. ¡NEXTi. t 4.5.6 ff).

— [copy! nodes (f 4 6).

Each node act must be able to handle the full request protocol (i.e. [CCMPU'fSi, 

i NULLIFY], IAJVA.n'CE ). There would be no gain in clarity if we studied nodes which can 

handle only a simplified protocol. Appendix D gives some examples of OCCAM 

equivalents.

This section will not present acts for [FIEST], 'UPON!. w\R or ¡ASAj. Our translation 

does not treat these operators as fundamental operators but as UDFs (f 5.6 and 6.6). 

Their function definitions arc

Wvr (a,  k) =

Upon (a,  k)

IF F i ra t  (k )  THEN p ELSE 
WHERE p *  a F3Y q ;

<j ■« Wvr  (NEXT a, NEXT k)
END ;

a FBY Upon (p,  NEXT k)
WHERE p *  IF F i r a t  (k )

THEN (NEXT a)
ELSE a FI ;

END ;

Firat (a) * p WHERE p * a FBY p

Aaa (a, k) * Firat (Wvr (a,  k ) )  ;

END
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A simple-minded UDF implementation of these functions would be extremely 

wasteful, In particular in the case of |wvr|, but these UDFs can be optimised into 

perfectly efficient code (r 8.6).

4.5.1 Function iGotDoton]

The explanation of one other thing seems in place before we delve into node 

acts. The LUX function iCatPaion! has been presented in section 3 4.3 as illustration 

for some aspect of LUX syntax. But that function is of more than mere syntactic 

interest; it is actually used in almost every node act. It deserves therefore more 

than mere passing mention. We will now explain it formally, but its full importance 

will become evident when we study its applications in the subsequent sections. Here 

is the function again:

FUNCTION OatOaton ( index : INTEGER ; operand ; ACTOR) ; ANYTYPS ; I 
LAPEL I ,
BEGIN . R 1

SEND (COMPUTE, index)  TO ( operand )  ; .1
( . , GetPaton)  ;= RECEIVE FROM (operand)  ;
RETURN ; ( •  normal RETURN even i f  ex c ep t i o n  occurred.  • )

1: EXCEPTION (NULLIFY, index)  TO ( operand)  ; :R
END ;

I Get Pa ton! sends a ¡COMPUTE] request to the operand actor, and awaits then the arrival of 

a the requested daton value. That daton value is eventually returned as the function 

result. A typical application would be:

: 7
onedaton ; = CetDaton ( th i e i n d e x ,  op—no de_ac t o r ) ;

This LUX instruction requests from 1 op-noda-actor] that the daton at [IhlaTndexi be 

evaluated, and once that has been achieved the daton value is stored in ioncdatonl. 

If an exception occurs, the outcome depends on how far we got in the function 

execution:
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— If the exception occurs b tfo r t the operand daton has been requested 

(|SENT> COMPUTE ...|). a special return is made right away, namely through the door 

(Ft!) immediately b tfo r t the function call. (Program execution continues at 

label ¡7~, not shown in the example).

— No special action is taken if the exception occurs a fttr  the operand daton has 

been received. Instead, normal execution continues and an ordinary return is 

made (i.e. no door is used). This gives us a chance to p r ts tr v t  th t daton value. 

This course of action is appropriate: the purpose of ¡NULLIFY! exceptions was the 

abortion of over-long computations, but after the receipt of the result daton 

this purpose has lost its urgency.

— If, however, the exception occurs after the |COMPUTE] request but b tfo r t the 

arrival of the daton, a [NULLIFYI exception is sent to fop—lode-actor], followed by a 

special return using the door ( E )  before the function call. The ¡NULLIFY] 

exception nullifies the daton evaluation in the inferior

The node acts and the request protocol have been designed under the guideline that, 

once a node actor has received an exception, it must not carry out any further 

computation, except for some concluding administration. In general, it is hard to 

tell which intermediary result is so valuable as to deserve preservation (there is 

scope for an optimiser).

4.5.2 Act« which Request their Operands Sequentially

When implementing the operators of a programming language, one is tempted to 

contemplate two kinds of variant* of each operator:

(a) variants which make better use of the computer resources (faster execution or 

lower store requirements),
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(b) variants which maximise the output history of the program (some operators

cause subnets to produce shorter output histories than one might expect).

This thesis is not much concerned with category (a) of variants ("local 

optim isation "). For example, once it has been specified that a von Neumann 

monoprocessor is the computer to be used, there is hardly any scope left for 

improvements in category (a) Section 4.5.3 will show that some progress can be 

made in category (b). For example, once either operand of [o5¡ yields ITR'JS!. the 

other operand's daton value is no longer required This can be exploited by 

concurrent operand evaluation. (Pseudo—) Concurrency is rather costly on von 

Neumann monoprocessors, and should be reserved for special cases.

For most operators, such refinement is impossible anyway Most operators 

cannot dispense with any of their operand datons; sequential operand evaluation 

(1 e. one operation after another) is therefore the appropriate method when dealing 

with von Neumann monoprocessors.

Example ( |Act_Phi«_J)

The following act implements an operator which acquires its operands in 

sequential order. The example describes the binary operator, but ail those 

pointuiise operators which unconditionally need alt their operands (e g relational) 

have very similar acts.
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ACT A e t - P lu a — ; ( •  5 . f i i . n l  ( a t  Pi!/J • )
LABEL 1 ;
VAR

dvalO, d v a l l ,  r e s u l t  : REAL ; ( *  or whatever the d a t o n  type * )  
superior ,  pO, p i  : ACTOR
request : USGTYPE ;
index : INTEGER ;

BEGIN ( *  pO and p i  are the operand a c t o r s .  * )
(  , , pO, p i )  : «  RECEIVE FROM (C re a t o r )  ;

(• ■■■ k w l l S i n f  S l e e k  I :  atari l eap — .......  •)
REPEAT

WHILE TRUE DO
BEGIN : l

( super io r ,  r equest ,  index)  := RECEIVE ( )  ;

(• --------  S w i l d i n f  S l a c k  2 ;  pal » p a r e n t  --------------------------------------- •)

( •  Pos s ib l y  hang up in CetOaton. * )  :1
dvalO : = GetDaton ( index,  pO) ; ( •  Get 1st operand.  • )

( •  ---------- bui ld ing  Slock 2-  g o t  o p e r a n d ------------------------------------------------ •)
: 1

dv a l l  := CetDaton ( index,  p i )  ; ( •  Get 2nd operand.  •)

— b u i l d i n g  b l o c k  3 sand the r e s u l t and and 1 o 0 P ------------ —  •)
: 1

•)r esu l t  ; = dvalO + d v a l l  ; ( • node dapand ant
( •  P o s s ib l y  hang up in SEND. •)  ;1

SEND (DATON, r e s u l t )  TO ( s u p e r i o r )
END ; ( •  End of  inner e t e rna l  loop. •)

1: ( r equest ,  index)  ; = Reveal ; ( •  Except ion par t .  •)
IF request = ADVANCE
THEN EXCEPTION ( r eques t ,  index)  TO (pO, p i )  ,
RESET ;

UNTIL FALSE ; ( *  End o f  outer e t e rna l  loop. *)
END ; ( •  End o f  A c t - P l u s -  . •)

In the Initialisation, the node actor learns who its operand actors are. After that, the 

node actor enters an eternal loop in which it successively processes requests. The 

act Is easier to understand if we pretend first that there are no exceptions: we can 

ignore all doors and the exception part Upon arrival of a fcOMPUTSI request, the 

operand datons are acquired one after the other, the result value is computed, and 

the result is then sent back to the superior After that, the node actor is ready to 

accept the next request.
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However, a 1 NULLIFY) or an 1 ADVANCEi exception can occur anywhere within that 

loop. If this happens while an operand daton is under way (requested but not yet 

obtained), the inferior computation is aborted by giving a [NULLIFY! exception to the 

operand actor (t explanation in 4.5.1). As soon as we reach a door we break out of 

the usual order of instruction execution and proceed with the excoption part If the 

exception was an I ADVANCE], the | ADVANCE] is propagated to all the operand actors. The 

exception handling ends with executing iRESET]. After that, the node actor is ready to 

accept the next request.

Acts for deterministic (i.e. avoidably concurrent) pointwise operators with other 

than two operands can be built up from the building blocks of ¡Act_Piu>I]. In particular 

block 2, acquisition of an operand, can be reduplicated for the acquisition of any 

number of operands. "Hie beginnings and endings of the act propers are practically 

identical (Exercise for the reader: write the act for a constant, solution in 4 5.9.)

Clearly every instruction has, where possible, been furnished with an "escape 

route" (viz. a door) for the event of an exception The computation proper [ r e m i t I  

has, in our example, been very simple and inexpensive, its escape route was 

therefore dispensable

4.6.3 Acts which Request their Operende Concurrently

We sketched above (also T 1.1.3) the benefits of certain concurrent 

computations. In^computers where concurrency is cheap (e g transputers) it would 

even be etdvisable to implement most operators with as much concurrency as 

possible We study in this section how to design node acts which acquire their 

operand datons concurrently

In mathematics, the sequencing of the operands has no bearing on the result of 

a commutative operator, by definition Implementations of many programming 

languages, however, treat operators lik e  [OR] and and ] as non—commutative. One of
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the aims of Lucid is to bring mathematics and programming closer together. 

Concurrency can help us in this pursuit (t 1.1.3).

Example ( |Act_Or_J)

The following act implements a binary operator using concurrent acquisition of 

the operand datons. The example represents the ¡OR] operator, but every other 

binary pointwise operator whose result may be determined by the daton arriving first 

(e.g. lAMDj. multiply with *ero test) would have a very similar act.

ACT A c t_ 0 r _  ; ( •  Cancurr.nl OR • )
LABEL 1 ;
VAR

superio r ,  pO, p i ,  o ther,  sender : ACTOR ; 
request MSG TYPE ; 
index : INTEGER ; 
dvalue : BOOLEAN ;

BEGIN ( •  pO and p i are the operand ac to rs .  •)
( . . pO. p i )  .= RECEIVE FROM (C re a to r )  ,

REPEAT
WHILE TRUE DO
BEGIN ; l

(su pe r io r ,  request, index) .= RECEIVE ( )  , .1

SEND (COMPUTE, index) TO (pO, p i )  ; ; t
(sender, , dvalue) := RECEIVE FROM (pO, p i )  ; : l
IF sender = pO THEN other  ; = pi ELSE other ;= pO ; :1

IF dvalue (•  Inspect what has been obtained so fa r .  • )  .1
( •  * * * * * *  node dependent •)

THEN EXCEPTION (NULLIFY, index) TO (o th e r )
ELSE ( , , dvalue) ; *  RECEIVE FROM (o t h e r )  ;

: 1
SEND (DATON, dvalue) TO ( s u p e r io r )  ;

END ;

1: (request ,  Index) := Reveal ; ( •  Exception part .  • )
EXCEPTION (request ,  index) TO (?0 . p i )  ;
RESET ;

UNTIL FALSE ;
END ; ( •  End o f  A c t_O r_  . • )

For the Fan51 and super-multiply act, practically all lines involving [dvalue! must be 

reformulated, of course, but the overall structure will remain unchanged
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There are considerable commonalities between the iAct-Pr_l and the |Act_P lu aJ , 

the differences lie in the code which deals with the operand acquisition. The !G«tOatonl 

function cannot be used here since it has been tailored for acquiring datons 

sequentially.

The initialisation (unchanged) i9 still followed by an eternal loop in which the 

node actor successively processes all requests. First, let us again pretend that there 

are no exceptions. Upon arrival of a I COMPUTE] request, that request is propagated to 

both operand actors at the same time. After that, a reply is awaited from either 

operand actor. (A random pick is taken if both replies become available at the same 

moment.) Once the first reply has been received, the remaining operand actor is 

due to be dealt with; a quick test works out its actor name ¡other .- .7]. The value of 

the f irs t  reply decides over the next action. The !other] operand is sent a ¡NULLIFY! iff 

its daton value is now irrelevant (that |NULLIFY] is the same no matter whether that 

daton's evaluation is complete, or whether it is still under way). Otherwise, the 

completion of the ¡other! operand evaluation is awaited Either way, once both 

operand actors are dormant again, the overall result value is worked out and is sent 

back to the superior. After that, the node actor is ready to accept the next request.

A I MU m ni or an ¡ADVANCE; exception can occur anywhere within that loop If this 

happens while any operand daton is still under way (requested but not yet obtained), 

any inferior computation must be aborted by sending [NULLIFY! exceptions to the 

operand actors. Whenever an exception occurs, it is propagated unchanged to both 

operand actors. The exception handling ends with executing lESEt; After that, the 

node actor is ready to accept the next request.

¡Act—OiJ uses a somewhat crude method of exception propagation ( ¡'nulLifYI 

requests are propagated unconditionally), but this degrades the efficiency of 

program execution only very little Luckily, sending a I NULLIFY] to a dormant node 

actor causes only negligible extra work. It is easy to extend the code of [AcUrU,
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making it propagate |NULLIFY! only to those operand actors which are busy with work.

Generating a |mullifv|

This section has introduced one new concept, namely nullify ing  a computation 

after it has been set in motion. It must be born in mind that this mechanism can be 

used simultaneously on numerous levels. Take, for example, a Lucid expression with 

an ¡031 in it, of which either operand is a subexpression with a further [03] (or [AND]) in 

it. Such nestings can be constructed to any depth. During the evaluation of such an 

expression, any ¡OR] node actor may decide to nullify the evaluation of its operands. 

This will nullify all inferior evaluations.

4.5.4 The ]WRITE] Act

As far as act construction is concerned, we have learnt how to build UDF acts 

and how to build the acts for the simpler operators In both cases the end product 

could be built by applying a few simple rules to a few standard building blocks. 

We will now have a look at individual acts, and in particular at acts which do not fit 

readily into the general pattern fWRlTEi and ;3EA3i, the Lucid specific operators I,"3Y! 

and ¡NEXT], and last not least ¡COPY] are among them.

A program without any jWRlfc: node would be pointless. In demand driven 

evaluation, the driving fo rce  for all computations stems ultimately from a fwRiTEI 

node. Here is the jVRlTEl act:
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ACT A c tJA fr i «a _  ( f i len am e  : ALFA) ;
VAR

index : INTEGER ; 
pO : ACTOR ;

BEGIN
( . . pO) := RECEIVE FROM (C r e a to r )  ; 
index ; *  0 ;
OPEN ( f i len am e .  WRITBnode) ;

( *  WRITBnode is  a system  co n s ta n t . • )
REPEA T

WRITE ( f i len am e ,  CetDaton ( in d e x ,  pO) ) ; 
index  : = index 1 ,
EXCEPTION (ADVANCE, index) TO (pO) ;

UNTIL FALSE ; ( *  End o f  e te rn a l  loop .  * )

END ;

The lAct-JfriteJ does not receive any requests, and needs therefore no exception 

handling. — During program execution masses of requests (including exceptions) 

pulsate through the net of node actors; it is interesting to note that the origin of 

most! COMPUTE: and 1 ADVANCE I requests can be traced back to I Act_Writ.eJ. — The special 

role of I WRITE' actors has repercussions on their scheduling priority (t 4.7).

4.5.5 The Daton Sink Act

ACT Ac t_D* ton_S  lnd_ ;
VAR

pO ACTOR ;
BEGIN

( . , p0) ;= RECEIVE FROM (C re a to r )  ;
EXCSPTION (ADVANCE, f in a l  index) TO (pO) ;
C Th is  act needs no e te rn a l  loop. •)

END .

The act of the cfaton sink nod« is presented here for dramatic relief This node is the 

poor relative of the I WRITE! node, all comments about exceptions and scheduling apply 

correspondingly. Its effect is like writing to a null device, and its only foreseeable 

application is with multi-valued UDFs, although such UDFs can not be expressed in 

present Lucid.

4 5 4



IV « 49

The I Ac t—Daton-Sinx-J generates only one request ever, namely the special request 

IADVANCE, fj&ILndei! (|ftn««nd»Kl is a special constant, not a natural number). This 

request states that there will be no requests for further datons ever. Considering 

that we are dealing with a demand driven evaluation scheme, this is the ultimate 

non-demand. More on this in section 4.5.6.

4.8.6 The fray] Act

I plus ! and ¡55] are both pointwise nodes (consequence: whenever, say, |Act_PluaJ 

propagates a request to one of its operand actors, this request goes with, i te index 

unchanged from the original request; the request index is described in T 4.2). 

Neither IF BY nor j XEXTl is pointwise; their acts propagate a modified request index. 

This makes their acts only slightly more complicated. At certain index values some 

special action is required, most of it in the exception handling Here is the act for 

the ¡ F 3 Y i  node
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ACT A o t _ F k y _  ;
LABEL 1 ;
VAR

super io r ,  pO, p i ; ACTOR ;
request : 1ISGTYPE ; index : INTEGER ; r e s u l t  : ANYTYPS 

BEGIN
( . . pO, p i )  := RECEIVE FROM (C r e a t o r )  ;

REPEAT
WHILE TRUE DO 
BEGIN

( s u p e r io r ,  request,  in d e i )  := RECEIVE ( )  ;

IF index = 0 
THEN

r e s u l t  ; = GetDaton ( in d ex ,  pO)
ELSE

r e s u l t  : = GetDaton ( in d e x —1, p i )  ;

SEND (DATON, resu lt )  TO (su per io r )  ;
END ; (• End o f  inner eternal loop. ♦)

: 1

: 1 

: 1 

: 1

(request, index) := Reveal ;
IF request = ADVANCE 
THEN BEGIN

IF index = 1
THEN EXCEPTION (request,  f ina l index) TO (pO)
ELSE IF index = f ina l index

THEN EXCEPTION (raquest, index ) TO (pO,
ELSE EXCEPTION (request,  index-1 ) TO

END ;
RESET :

UNTIL FALSE ; (•  End of outer eternal loop. •)
END ; ( • End of Act_Fby_ . •)

Pi  )
(pl )

The iFBYl node has one peculiarity, and this is reflected in the [FBY] act. At best, just 

ont daton (viz the initial daton) is acquired from operand actor fpOl. After that, the 

operand actor for [¿o] is notified that no further daton will svsr be requested This is 

expressed by the request [ADVANCE, finai.ndex . Without the latter request, immense

qrususs might build up inside any ¡COPT; node involved in tho evaluation of operand ~po! 

The reason is easy to see Assume the ¡ADVANCE, finalT-idex! request did not exist, and 

consider a [COPY! node which has not received any request on outport X for a long 

time, while at the same time outport Y has delivered many datons. The icopT! would

not be able to decide whether outport X has actually died, It will never request again 

Instead the I COPY] would have to stay ready (and retain all the daton values) for an
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eventual ICOHPUTEl request on outport X.

The special [ADVANCE] request solves this problem by providing extra information. 

As a penalty, the exception handling becomes more difficult. Instead of the [ADVANCE! 

request with a special index value we could have added a new request type ¡LAStl with 

the same effect, although that would have increased the code of all node acts. More 

on this topic in the discussion of the ¡.KILLI request ( t  6.3).

4.5.7 The |MEXT| Act

ACT Act_Next_ .
LABEL 1 ,
VAR

pO, superior ; ACTOR ; request : MSGTYPE ;
index : INTEGER ; result ; ANYTYPE ,

BEGIN
( . , pO) := RECEIVE FROM (Creator) ;

EXCEPTION (ADVANCE, 1) TO (pO) ;

REPEAT
WHILE TRUE DO
BEGIN . 1

(superior, request, index) ;= RECEIVE ( )  .
: 1

result :=CetDaton (index+1, pO) ; . 1
SEND (DATON, resu lt )  TO (superior) ;

END ; ( •  End of inner eternal loop. •)

1: (request, index) ;= Reveal ;
IF request = ADVANCE
THEN BEGIN

IF index * f ina l index
THEN EXCEPTION (request. Index) TO (pO)
ELSE EXCEPTION (request, I + index) TO (pO) ;

END ,
RESET ;

UNTIL FALSE ; ( *  End of outer eternal loop. •)
END ; ( •  End of Act_Next_ . •)

The ¡nSXT! node actor issues one bare [advance] request before propagating its initial 

request. (Any bar» [advance] originates from Isaffi or from Qg.) Moreover, the index is 

increased by one in all propagated requests In all other respects. [NEXT] resembles 

closely a pass-through node
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eventual ICOMPUTE! request on outport X.

The special [ADVANCE! request solves this problem by providing extra information. 

As a penalty, the exception handling becomes more difficult. Instead of the I ADVANCE! 

request with a special index value we could have added a new request type ¡LAST] with 

the same effect, although that would have increased the code of all node acts. More 

on this topic in the discussion of the ¡KILLI request (t 6.3).

4.5.7 The [NEXT] Act

ACT Act_N»xt_ ,
LABEL 1 i 
VAR

pO, superior : ACTOR ; request ; MSCTYPE ;
index : INTEGER ; result ; ANYTYPE ,

BEGIN
( . . pO) : *  RECEIVE FROM (Creator) ;

EXCEPTION (ADVANCE, 1) TO (pO) ;

REPEAT
WHILE TRUE DO 
BEGIN

(superior, request, index) ;= RECEIVE ( )  ;

result ;= GetDaton (:ndex4-l, pO)
SEND (DATON, r e s u l t )  TO (superior) ;

END ; ( *  End o f inner eternal loop.

1; (request, index) := Reveal ;
IF request * ADVANCE
THEN BEGIN

IF index *  f ina l index 
THEN EXCEPTION (request. index) TO (pO)
ELSE EXCEPTION (request, 1 + index) TO (pO) ; 

END ;
RESET ;

UNTIL FALSE ; ( •  End o f outer eternal loop. •)
END , ( *  End of Act_Next_ . •)

The iNSXTl node actor issues one bare [ADVANCE] request before propagating its initial 

request. (Any bare ¡ADVANCE! originates from 1 NEXT] or from Qg.) Moreover, the index is 

increased by one in all propagated requests. In all other respects, iNEjc! resembles 

closely a pass-through node.
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We know that the fundamental acts other than I copy! have no memory. This is 

little surprise in the case of pointwise operators like [!f]. However, one would expect 

that IF3Y1 and INEXTI differentiate at least between an in itia l state and a continuation 

state. However, |Act—NextJ progresses right after initialisation to its continuation 

state, whereas |Act_FbyJ deduces the state from the index in the request.

The daton index changes only in the course of ! advance I requests, and each 

IadvanceI comes normally with its index one greater than the previous index. 

IA3VANCE, finalindexj is the only exception to this rule Only ¡WRITE;, [READj and ¡COPY] node 

actors need to remember which daton is next in line

4.5.8 The [p] Act

ACT Ac t _ l  t o _  ; (• I F -  T H E N -  E L S E  • )

LABEL 1 ;
VAR

superior, pO, p i ,  pZ ACTOR ; request MSGTYPE ;
index : INTEGER ; condi : BOOLEAN ; result : ANYTYPE . 

BEGIN
( , , pO, p i .  p2 ) : *  RECEIVE FROM (Creator) ;

REPEAT
WHILE TRUE DO
BEGIN : 1

(superior, request. Index) : *  RECEIVE ( )  ; :1
condi : = GetDaton (index, pO) ;

IF condi
THEN (•  EXCEPTION (ADVANCE, lndex+1) TO (p2) •) .1

resu lt : *  GetDaton ( index, p i )
ELSE (♦ EXCEPTION (ADVANCE, indexf-1) TO (p i )  •) : 1

resu lt : *  CetDaton ( index, p 2 )  ,
: 1

SEND (DATON, resu lt ) TO (superior) ;
END ; (• End o f inner eternal loop. •)

1: (request, index) :■ Reveal ;
IF request •  ADVANCE
THEN EXCEPTION (request, Index) TO (pO, pi, p2) ;
RESET ;

UNTIL FALSE ; (• End of outer eternal lo o p . •)
END ; (• End of A c t_ I te _  . •)
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In the eternal loop, the [If] node actor interrogates first the operand [p51. the HfI 

condition. Dependent on the value of that daton, either the ITHEN1 operand [¿T] or the 

I ELSE) operand'll] is selected to constitute the overall result. — This ¡Act_lteJ contains 

nothing which exceeds the general construction pattern from section 4 5 2; chapter 

VI will give hints how to refine ]]| ] (constant condition and concurrent ¡If]). A possible 

refinement has been sketched; the [a d v a n c e ! exception can be issued to the rejected 

operand at a very early time. However, to implement this properly requires some 

adjustments: either successive ! ADVANCE! requests with the same index must be 

permitted, or the | condi I value must be retained in memory.

4.5.9 The Constant Act

Every program must get data from somewhere, be it data read from a /tie, or 

constants I READ' and the constants are the two fundamental nodes which have only 

an outport. Obviously, the act of neither needs initialisation. Here is the act for a

constant delivering node:

ACT Act_Conat_ (conata : ANYTYPE) ; !
LABEL 1 ; 
VAR

1

superior : ACTOR ; request : MSGTYPE ; index . INTEGER ;
BECIN ( • act has no in i t i a l i s a t io n . *)

REPEAT
WHILE TRUE DO 
BECIN : >

(superior, request, index) : ■* RECEIVE ( )  ; ; 1
SEND (DATON, cons ta )  TO (super io r )  ;

END , (•  End of Inner eternal 1 oop. *)

1: RESET ;
UNTIL FALSE ; 

END ;
( •  End of outer eternal 1 oop. •)

Each jAcLJConetantJ actor gets a kind of initialisation during its own creation: the value 

of the constant itself. There is nothing else to explain in this act. The IftEAD! act is 

similar, except that everything is much more complicated:
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4.5.10 The | READ I Act

ACT Aet_ftaad_ ( f i len am e  : ALFA) ;
LABEL 1 ;
VAR

superior  : ACTOR ; index INTEGER ;
request : USGTYPE ; index2 : INTEGER ; r esu lt  : ANYTYPE ;

BEGIN ( •  There is  no i n i t i a l i s a t i o n  message from the c rea to r .  * ) 
OPEN ( f i len am e ,  READmode) i ( •  REAHnode is  a system con s tan t . • )  
indexS : «  0 |

REPEAT
WHILE TRUE 00
BEGIN : t

( su p e r io r ,  request, index ) := RECEIVE ( )  ; :1

( •  IF index <> index2 THEN ReportError ; •)
: I

r esu lt  ; = READ ( f i len a m e ,  index2) ; 1
SEND (DATON, r e s u l t )  TO (s u p e r io r )  ;

END ; ( •  End o f  inner e te rn a l  loop. •)

1: (request ,  index) : = Reveal ;
IF request = ADVANCE ( •  th is  tes t  can be om itted. •)
THEN BEGIN

IF index = f in a l  index 
THEN CLOSE ( f i l en a m e )
ELSE index2 : *  index2 + 1 ,

( •  IF index <> index2 THEN ReportError ; •)
END .

RESET ;
UNTIL FALSE ; ( •  End o f  outer e te rn a l  loop. •)
END ; ( •  End o f  Act_Read_ . •)

The !index21 in the instruction ¡READ (... ¡ndcx2)1 refers to the running index of the daton 

In the file. This makes it possible to deliver the same daton upon successive ¡cO M PU T f, 

requests of identical index, as required by the protocol In any implementation, 

¡Act—ReadJ is likely to have memory of some form (viz character buffers etc ), but 

this memory contains only quasi—constants

Every request quotes a particular index The index can only be advanced by 

IajvanceI requests, and every ordinary I advance] request brings an increment of one 

The iRfiADl node (and similarly ICO??1) needs the index information only to identify the 

special ¡ADVANCE, fmaiindexl requests The index information can, however, be used to 

supervise the correct functioning of the system, a running check like "parity". The
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total reliance on local counting ( lindex2j)  creates an opportunity for optimisation 

(implicit INEXTI andiFBYl, t8.2)

Virtually all operating systems are data driven, and data are usually accessed 

sequentially, i.e. in a pipeline fashion. [WRiTEl and [read] actor3 interface to the 

operating system, and its characteristics shape, obviously, the design of the IWRITSI 

and ¡READ1 acts. A demand driven lAct_Read_~ for reading interactively from terminals 

is a realistic proposition, and is quite easy to write. The ¡Acu-WriteZ! would also look 

quite different in a "tagged" DF operating system.

4.6.11 Exception« in Primitive Acts

The description of the doors (t 3.4.2) may have appeared disproportionally 

complicated, considering their unsophisticated application in all the acts so far. 

Apparently, there was simply a door after almost every instruction, and the target 

was always the same. However, this looked so simple merely because all the difficult 

work has been shifted from the proper computing node actors to the COPY! node 

actors. In particular, most p rim itive  nodes are without long-term memory. The 

exception handling of a primitive node is trivial:

1) it simply abandons its current work,

2) it propagates the exception to the operand actors (if appropriate),

3) it executes a ¡RESET!, and

4) it enters finally the dormant state.

This simple pattern would be totally inadequate for [copy!, as we shall see Even the 

action of UDFs (which can contain ¡COPY] nodes) in the event of exceptions is much 

more complex; however, their exception action takes place within their internal node 

actors, and its complexity is therefore invisible
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4.6 The [COPY| Act

4.6.0 Introduction

This section describes a jcQPYl act which imposes very few restrictions on its use. 

The only restriction is due to pipeline DF: datons must be requested in the order of 

increasing index. The maximum overall queue length (buffer size) is limited only by 

the machine size.

It is possible to implement each I COPY] node as a single actor. However, such an 

actor would have to distinguish between a very large number of states, due to the 

many states each of its ports can be in (cross product). We choose a rather different 

approach, where each outport is implemented by its dedicated actor, with one 

further common actor for the inport. The ¡COPY! inport actor is mainly concerned 

with the administration of the daton buffer. This design is modular, each outport has 

only very little concern with the other outports. " ¡ c o p y  node actor" i s  u s e d  meaning 

"all the actors which together implement the ¡COPY! node”.

The description of the [COPY! node actor starts with general considerations, it 

explains then the outport act, and finally the inport act. The specific procedures are 

presented before each act.

4.6.1 Daton Buff or a

The buffers are implemented as chain* (=  linked lists) with reference counts. 

In a ¡COPY, with many outports, each outport buffer is organised as one linear linked 

list, with each outport "hooked in" at the appropriate place The list store makes use 

of a pregiven store manager routine with explicit return  of disused store space (the 

same store manager might also allocate all the actor space). The terms "queue", 

"bu ffer" and "chain" reflect merely different views of the same thing
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The following figure shows a daton chain of five buffer cells:

(e a r ly ) ( l a t e )
in_indez=t t-3 t-4 t-3 t—2 t-1

value | I i j «• 1 i R ! | o j j Y  !
refcount ! 2 | ! 3 1 ! 8 i i  ̂ | i 71
1i nkege i i— H ! 1 — 1 i A----

i 1 J | f *  1 * J I r

ta i 1
outport■ tt t ttt t

Every chain element can be referenced by any number of outports. The reference 

count states cumulatively the number of direct and indirect references. The 

uparrows in the bottom row symbolise those places where I COPY! outports are hooked 

into the chain. The arrow on the very right symbolises an outport referring to a 

fu tv r*  daton. while the buffer caters for past datons. That outport could be, for 

example, in the finalindex-state (i.e. referring to the "most distant” future daton). 

A ¡COPY; outport which, at a particular moment, refers to a queued daton cAn find  V i« 

successor daton by following the link pointer. If the pointer is jS1L1, the next daton 

value needs to be evaluated beforehand and a new cell with that value appended to 

the chain. (The pointer value ¡nil; means "pointing n ow h trt" . )  If required, the 

outport can eventually be ADVANCEd to the successor daton through "stepping 

forward" by means of the pointer, with the old reference count being decremented 

accordingly. Tho old cell can be released (given back to the store manager) once its 

reference count has dropped to zero.

We declare the buffer cells as follows:
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TYPE
CELLP = *  CELL ; C B u f fe r  c e l l  p o in te r . • )

CELL = RECORD C Store  f o r  one daton va lue . * )
value : ANYTYPE ; C The daton va lue. • )
count ; INTEGER ; ( • Re fe rence  count. •)
l ink : CELLP ; C P o in te r  to next l a t e r  c e l l . •)

END ;

The existence of a universal daton type is an illusion, of course; a string can hardly 

be stored in the same way as a Boolean. But implementors can find ways around 

that. For simplicity, we pretend from now on that all our data objects are of the 

hypothetical type IanytvpeI, and that they can all be held in storage cells of uniform 

size. We communicate with the store manager through two pregiven routines. Buffer 

cells are obtained by calling the parameterless function Qetc.il, and they are 

released by calling the procedure >r««c«n;. A simple minded program would go:

VAR nnyce \ 1 : CELLP ;
BEGIN

m yce ll = GetC e l l  ;

F re eC e l1 (rryce 1 1 ) ;
END ;

The chaining of the daton buffer cells brings considerable efficiency since with it3 aid 

the outports can share every buffer cell. This efficiency is sabotaged in a program 

with onelCQPYl node feeding directly into another IcoPYi node; such a construct should 

only be chosen in very select cases.

So far we have paid little attention to outports in off-chain state, i.e. outports 

which refer to fu tu re  datons. Outports are put into that state by the receipt of 

numerous bare ¡ADVANCE! requests ( * 4 .2 )  or bv iTDVANCS.luialindeil Off-chain outports 

are not handled by the daton buffer but by a mechanism which will be described in 

section 4.6.4 (request propagation).
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4.6.2 Protection by Semaphore«

Whenever we access a stored data object, we trust In its consistency. (The data 

object may comprise many interrelated pieces of information) For example, the 

number held in a reference counter is assumed to be equal, at any moment, to the 

factual number of references. Occasionally, however, data need to be changed, and 

inconsistent data may be unavoidable wh.il«  the alteration is being carried out. The 

phase between the removal of a reference and the decrementing of the reference 

counter would be an example. The data should not be accessed "by the public" 

during such phases of inconsistency, and conversely, any interfering access must be 

locked out during phases of use. We need an "access token", where the holder of the 

token has the exclusive right o f access to the data

We use a semaphore to manage such an exclusive access right. It has been 

demonstrated in section 3.2.4 that semaphores can be implemented through 

message passing ( IAct-jCja.-ditt.i-Zi). We will use that method here even though it may 

not be ideal in efficiency terms The use of semaphores is easy. One semaphore is 

needed for each data object which needs protection at any moment. We create one 

semaphore by:

VAR semaphore : ACTOR ;

semaphore : *  CREATE (Act_Guardian_) ,
( •  The semaphore is  i n i t i a l l y  set to " i k i i i  is p u b l i c " .  • )  

and, whenever necessary, we call:

MakeExc1usive (semaphore) ;

MakePub I : c  (semaphore) ;

where iMakeExciueive! and 1 HakePubhc: are procedures which change the access status of 

the data object. While one actor upholds its claim to the data object (i.e in the 

interval between iMakeExclusTve] and iMakePubicl)  any other actor calling I MakeExc'uivel 

gets hung up until its turn has arrived. In our particular case both procedures are
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4.0.2 Protection by Semaphore«

Whenever we access a stored data object, we trust in its consistency, (The data 

object may comprise many interrelated pieces of information) For example, the 

number held in a reference counter is assumed to be equal, at any moment, to the 

factual number of references Occasionally, however, data need to be changed, and 

inconsistent data may be unavoidable while the alteration is being carried out. The 

phase between the removal of a reference and the decrementing of the reference 

counter would be an example. The data should not be accessed "by the public" 

during such phases of inconsistency, and conversely, any interfering access must be 

locked out during phases of use. We need an "access token", where the holder of the 

token has the exclusive right o f access to the data.

We use a semaphore to manage such an exclusive access right. It has been 

demonstrated in section 3.2.4 that semaphores can be implemented through 

message passing ( ;Act-jGja.-dian_i). We will use that method here even though it may 

not be ideal in efficiency terms. The use of semaphores is easy. One semaphore is 

needed for each data object which needs protection at any moment. We create one 

semaphore by:

VAR semaphore : ACTOR ;

semaphore ;= CREATE (A c t -G u a rd ia n —) ;
(• The semaphore is  i n i t i a l l y  se t to "acc««y is p u b l i c " •)

and, whenever necessary, we call:

MakeEsc1 us ive (semaphore) , 

MakaPublic (semaphore) ;

where 1 Make Exclusive! and IMak ¿Public] are procedures which change the access status of 

the data object. While one actor upholds its claim to the data object (i.e in the 

interval between ¡MakeKiclusTve] and iMakePubicl)  any other actor calling ! Make Esc'luiyel 

gets hung up until its turn has arrived In our particular case both procedures are
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actually identical; they treat the semaphore like a toggle switch, and we have to be 

careful not to call either ¡HakcEschisivel or IHakePublicj twice in succession (one would 

use safer procedures in the real implementation). The procedures are:

PROCEDURE MksExc l u . l v .  (semaphore : ACTOR) ;
BEGIN :R !

SEND DATON TO (semaphore) ; END ;

PROCEDURE
BEGIN

M k sP u b l ie  (semaphore ACTOR) ;
: R !

SEND DATON TO (semaphore) ; END ;
!

4.6.3 Data Structuras and Initialisation of fcOPYl

A sizeable bank of information is accessed by the inport and each outport of 

[COPY, and by procedures within them. Most of the state information of the inport 

and each outport can be grouped into data records (PASCAL'S device for constructing 

data structures), which we call descriptors. This makes in particular the parameter 

passing much simpler. Here is the type declaration for our descriptors
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TYPE
OUTPORTSTRUCT = RECORD ( *  There ia  one o f  theee per COPY ou tport. • )

oactor ACTOR ( •  Ac to r  name o f  th is  ou tpor t . * )
b u f f e r CE LLP ( *  Daton b u f f e r  p o in te r . • )
novalue* INTEGER (•  How many lead ing  datons sh a l l  be ignored • )
o i nde s INTEGER (•  Current daton index ( f r o m  la s t  ADVANCE). * )
w a it ing  

END ;
BOOLEAN ( *  S ta te  in d ica to r  fo r  in p o r t . • )

INPORTSTRUCT = RECORD (•  Inport d e s c r ip to r : ♦)
ia c to r ACTOR ( •  Ac to r  name of th is  in port . * )
t a i l c e l l CELLP ( *  P o in te r  to  t a i l  o f  daton b u f f e r . •)
i index INTEGER (•  Current daton index. •)

( *  i index  = index o f  next daton to  be r ece iv ed . * )
C = indexai o f  daton in t a i l c e l l . * )

a c t i v e INTEGER ( •  Number o f  outports  not f i n a l  index * )
p ro f  i t ing INTEGER (•  Number o f  outports  w ith  novalues=0 • )
customers INTEGER ( *  Number o f  ou tport*  w ith : • )

( •  o u tp o o l [ i ] w a it ing  = TRUE *)
pO ACTOR ( •  Operand ac to r . •)
semaphore ACTOR
noutports INTEGER (•  Number o f  outports . » )
outpool

END ;
ARRAY [1 ■noutport» ]  OF OUTPORTSTRUCT ;

The current /nport index [Undexl refers to the daton presently due to reach the inport,

the current Outport index ¿¡index] refers to the daton presently due to come out of the 

respective outport. (A real programming language would hardly permit a dynamic 

array as an element of a data record, such as foutpooll above However, every 

implementor knows alternative ways for achieving the same effect.) In procedure 

headings, we will repeatedly encounter formal parameters of the kind:

[VAR outport : OUTPORTSTRUCTj

When looking up the corresponding actual parameters it will always turn out that 

[outportI is merely an alias for ioutpooiltll, which m turn is an array element within 

lINPORTSTRiXTl, i is outport dependent.

The ftNPORTSTftUCTl and all the various ioir?0R::lsrRDcfl of the entire Ico'PYl node 

actor get initialised when the inport actor calls the procedure ilmtmliaeCoprl:
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PROCEDURE I n i t i a l  I » .Copy (n e tc r e a to r  : ACTOR ;
VAR inport : INPORTSTRUCT) ;

VAR i : INTEGER ;
BEGIN WITH inport DO 
BEGIN

p r o f i t i n g  ;= noutports ; customers := 0 ;
a c t i v e  : «  noutports ; i index  :=  0 ;
t a i l c e l l  : = NIL ;
semaphore := CREATE (Act.Guard ian_ ) ;

FOR i : = l  TO noutports 
DO WITH o u t p o o l [ i ]  DO 

BEGIN
oactor  := CREATE (Act_CopyOutport_  ,

in po rt ,  o u t p o o l [ i ] )  ;
SEND (DATON, o a c to r )  TO (n e t c r e a to r )  ; 
b u f fe r  ; *  NIL i oindex : = 0 ;
w a it ing  = FALSE ; novalues 0 ;

END ;

( , , pO) ;= RECEIVE FROM (n e t c r e a to r )  ;
END END ; ( •  I n i t i a  1iseCopy •)

4.6.4 Raquict Propagation, and Voting

We mentioned in section 4.2 the two diam etrically opposed strategies which 

govern the propagation of requests. I COPY; issues a [COMPUTE; request whenever any of 

its outports needs the daton value without the daton having b een  buffered yet. A fter 

the ¡COMPU~£|. a counteracting ! NULLIFY! may be sent if the daton evaluation proves 

superfluous. ICOPYl sends an iADVANCE] as soon as it has accep ted  the daton value for 

the daton buffer.

On the other hand, an outport can get many bare ADVANCE requests in a row. 

Such requests may eventually put the outport into the o ff-ch a in  state. Wo like to 

propagate 'ADVANCE! requests, in general, at the earliest possible moment, since they 

are capable of releasing buffer space in fcoPVl nodes "further upstream" in the Lucid 

graph. However, any I ADVANCE I can be propagated only if there will be definitely no 

subsequent demand for the current daton. jcoEVI can therefore propagate I advance] 

only when (the daton buffer is empty and) each outport has surrendered its claim for 

the current daton. Each time [COPY! obtains a new daton (and its cell has been
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appended to the tail end of the chain) it checks whether the chain has now caught up 

with any of the off-chain outports If appropriate, the outport is then hooktd in  at 

the chain tail.

Every ¡ADVANCE, flaaliadesl puts the outport into flnaiindex-stafte, and the 

finalindex-state implies off—chain state. Once an outport enters the 

finalindex—state it withdraws all further claims to datons. All the rules about 

I ADVANCE! have to be extended accordingly to this special ¡ADVANCE!. The effect of ;CODV| 

receiving an I ADVANCE, finalindeil is usually tantamount to receiving infinitely many bare 

IADVANCE1. Occasionally, it may lead to the propagation of many I ADVANCE! requests; 

this would be due to the WHILE! loop in! [ncrerrentNovaiueal.

The jADVANCE! propagation is implemented in ¡COPY; by what is essentially a vote 

counting where all decisions have to be unanimous. Each outport records in a cell 

(named nov.iu««;) by how many datons it has advanced beyond the current inport 

daton. The inport records in a cell ¡profiling! how many of its outports might benefit 

from knowing the value of the current daton, I.e. how many of its outports have 

Inovaiu«»! as 0. So, ¡prof, ting I is decremented whenever an outport increases its j novaHe»! 

from 0 to 1, and vice versa. Once all |novaiue«ii are greater than zero (i.e. once 

[profiting! = 0) an I ADVANCE! can be propagated to the operand actor After every 

Increment of 'iindegj, like now, all positive Inovaiue»! can be decremented Most of what 

is described in this paragraph is carried out by the procedure Hnt-rementNovaluci] 

(t 4.8 7) The procedure IbecrementNoraiuei] performs obviously the inverse task

4.6.6 Despair and the ‘Trojan Horsa"

The ¡COPY! node actor propagates, by design, only the l*a »t txptnsiv* request for 

getting the job done. However, situations can arise where wasteful computations are 

hard to avoid in pipeline DF. l,et us consider a ¡COPY! node with 2 active outports 

named X and Y. and we are at the beginning of program execution. Outport Y
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receives a bare I ADVANCE!. but outport X  receives no request yet. The lnovalu—1 of Y is 

now 1, the lnovalue-1 of X  remains 0. Next, Y gets a [COMPUTE! request. We cannot 

simply skip the daton at index 0 and evaluate daton 1, since we do not know whether 

X  will eventually ask for the value of daton 0. and pipeline DF allows only the daton 

evaluation in the order of increasing index. Out of "despair", we have to evaluate 

daton 0 and queue it in outport X. The evaluation of daton 0 will have been in vain if 

X  then chooses to start with a bare [ADVANCEI request. Such a situation would be 

handled much more efficiently in a tagged DF implementation

We can give this example a different twist. We can assume that the evaluation of 

daton 0 takes a day (or it may take forever), and that X gets a bare [ADVANCE! after 

the f irs t second into this evaluation. The operand actor must immediately be given a 

I NULLIFY!, since the evaluation is now clearly unwanted. This means that even if only 

lADVANCEl and [COMPUTE1 requests are ever issued to the [COPY! node actor it must be 

permitted to generate I NULLIFY! requests of its own accord In other words, the 

implementation (pipeline DF) would be incomplete without ¡NULLITY;

This constellation of requests is about the evaluation of a daton which no outport 

really wants, the daton is a "Trojan Horse". We will come back to it when studying the 

inport act.

4.6.S An Invariant

Using ql to denote the queue length (the number of buffer cells on the tail side of the 

buffer pointer), the following holds for every outport

as long as oindex <> f inal  index then:
0 = ql — novalues + oindex — 1 index ( in v a r i a n t )
0 = ql • nova lues

q l , nova lues, oindex and iindex are a l l
non—negat ive integers .
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4.6.7 Procedures for |CQPV| Outport Act

The concepts underlying the procedures I DecrementNovaiuesI and I incrementNovaluesI have

been explained in the subsection vaguest propagation above.

PROCEDURE OeerementNovalues (VAR inport INPORTSTRUCT ;
VAR outport OUTPORTSTRUCT ) ;

BEGIN WITH inport ou tport  DO BEGIN
novalues = novalues -  1 ;

IF novalues = 0
THEN p r o f i t i n g - p ro f  i t ing ♦  1 ;

END END ;

PROCEDURE IneremantNovalues (VAR inport : INPORTSTRUCT ,
VAR outport ; OUTPORTSTRUCT ) ,

VAR i : INTEGER ;
BEGIN VITH inport , ou tport  DO
BEGIN

IF novalues *  0
THEN p r o f i t i n g :=  p r o f i  t ing  -  1 ;
nova l ues ;= novalues + 1 ;

WHILE p ro f  i t ing -  0
DO BEGIN

EXCEPTION ADVANCE TO ( i a c t o r )  ;
FOR i ; = l TO noutports
DO IF o u tp o o l [ i ] . oindex <> f in a l  index

THEN DecrementNova1ues ( In p o r t ,  o u tp o o l [ i | )
END ;

END END ;

The procedure i AdvanccBufferPointerl, below, advances (by one daton) the buffer pointer 

of an outport. The re/erence count allows us to decide when a buffer cell can be 

freed. The cell can be freed only if it is certain that the daton value will never be 

needed again (old reference count = 1).

PROCEDURE Ad vaneeBuf fer  Po in te r  (VAR outport ; OUTPORTSTRUCT) . 
VAR

o 1 d e e 1 : CELLP . h : INTEGER ,
BEGIN

o ld c e l l  .= o u tp o r t . b u f fe r  ;
h ; •  o 1 dee 11 - ,  count ;
o u tp o r t .b u f f e r  ; -  o l d c e l 1“ .1 ink ; ( •  T h i -  can be NIL. •)
IF h »  I
THEN F reeC e l1 ( o l d c e l l )
EL8E o l d c e l 1“ . count :■ h — 1 ; 

END ;
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The procedure [AdvanceOutportl takes care of the entire 1 ADVANCE I handling of the ICOPYl 

outport. It resolves every ordinary 1 ADVANCE I request by calling either 

I IncrementNovaluei] Or I Ad vanceBuf ferPointer I. However, the full [ADVANCE! handling requires 

more than that An I ADVANCE, finalindezl request puts one outport into the 

finalindex—state (|oinde»[ = lfinalind<t[). We must in this case check first if there is an 

outport left which is not in finalindex—state. This check is done by a vote counting. 

The inport records in a cell, named [activel, how many of its outports are still ready to 

transport datons, i.e not in finalindex-state Once all outports are Ifinaijdexl 

(i.e. once [activel = 0). an I ADVANCE, finalindexl can be propagated to the operand actor. 

However, if there are active outports left, rncrementNovalueaj must be carried out even 

upon the arrival of an [ADVANCE, finalindex! request at the outport.
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PROCEDURE AdvanceOutport (VAR in p o r t  : INPORTSTRUCT ;
VAR ou tp o r t  : OUTPORTSTRUCT ) ;

VAR request : HSGTYPE ; index : INTEGER ;
BEGIN WITH inport ,  ou tport  DO 
BEGIN

MakeExclusive (semaphore) ;
( r e q u e s t ,  index) : = Reveal ;

IF index = f in a l in d e x  
THEN BEGIN

oindex  : = f in a l in d e x  ;

WHILE b u f fe r  <> NIL
DO AdvanceB u ffe rPo in ter  (o u tp o r t )  ;

a c t i v e  := a c t i v e  — 1 ;
IF a c t iv e  = 0

( •  There is  no need to bother  the inport  a c to r .  •) 
( •  i in d ex  := f in a l in d e x  ; not e s s e n t ia l  •)

THEN EXCEPTION (ADVANCE, f in a l in d e x )  TO (pO)
ELSE IncrementNova 1ues ( i n p o r t ,  o u tp o r t )  ;

END

ELSE BEGIN
oindex  : = oindex 4- ] ,
( •  IF o index <> index THEN ReportError  ; •)

IF b u f fe r  = NIL
THEN IncrementNova!ues ( i n p o r t ,  o u tp o r t )
ELSE A dvanceB u ffe rPo in ter  (o u tp o r t )  ;

END ;

MekePublic (semaphore) ;
END END ; ( •  End o f  AdvanceOutport •)

4.6.8 |COPY) Outport Act

Here is the act of a single IcOPV' outport:



ACT A e t_C o p y O u « » « r t_  (VAR inport  : INPORTSTRUCT ,
VAR ou tport : OUTPORTSTRUCT ) ;

LABEL 1. 2, 3. 4. 8, fl ;
VAR sender ; ACTOR ; ( •  Temporary v a r ia b le .  • )

dvalue : ANYTYPE ; ( •  Reply daton va lue . • )
super io r  : ACTOR ; ( •  Request sender. * )
request : MSGTYPE ; ( *  Incoming request .  * )
index INTEGER . ( *  Index in the inconning request .  • )

BEGIN WITH Inpor t ,  ou tport DO 
BEGIN

REPEAT
WHILE TRUE DO
BEGIN : •

( s u p e r io r ,  request ,  index) : = RECEIVE ( )  ;
( •  IF index <> oindex THEN ReportError ; • )

:•
MakeSxclusive (semaphore) ; :S
IF b u f f e r  <> NIL :5
THEN MakePublic (semaphore) ( •  i . e .  go r i g h t  ahead. • )

ELSE BEGIN
w a i t in g  := TRUE ; :4
IF c u s tome rs = 0 THEN .3

SEND COMPUTE TO ( i a c t o r )  ; ( •  A c t i v a t e .  •)
customers : = customers + 1 , 2
MakePublic (semaphore) ; .1
sender ;= RECEIVE FROM ( i a c t o r )  . ( •  Wait. •)

END ;
: 0

dvalue : = b u f f e r ~ . value ; 8
SEND (DATON, dva lue )  TO (s u p e r io r )  ;

END ; ( *  End o f  the inner e te rn a l  loop * )

( •  Exception p a r t ;  • )
1: MakeExc1 u s ive  (semaphore) ;

IF w a it in g  
THEN BEGIN

2: customers ; «■ customers — 1 ;
IF customers *  0 
THEN

3: EXCEPTION NULLIFY TO ( i a c t o r )  ;
4: w a it in g  ; *  FALSE i

END i
8: MakePublic (semaphore) ;

t: IF Reveal a ADVANCE
THEN AdvanceOuiport ( in p o r t ,  ou tpor t )  :
RESET ;

UNTIL FALSE ;
END END i

(•  End o f  the excep t ion  handling loop. 
( '  End o f  Act-CopyOutport_  .

•)
•)
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ACT A et_C opyO utpor  t _  (VAR inport INPORTSTRUCT ;

VAR outport : OUTPORTSTRUCT ) ;
LABEL 1. 2. 3. 4, s ,  a ;
VAR sender ACTOR ; ( • Tenporary v a r ia b l e . • )

dva lue ANYTYPE ; ( • Reply daton va lue. * )
su p e r io r  : ACTOR ; ( • Request sender. •)
request HSGTYPE ; C Incoming r eq u es t . * )
index INTEGER ; ( • Index in the incoming request . ♦)

BEGIN WITH in p o r t ,  ou tport  DO
BEC [N

REPEAT
WHILE TRUE DO
BEGIN : 6

(s u p e r io r ,  r eq u est ,  index ) : = RECEIVE ( )  ;
( • I F  index <> oindex THEN ReportError  ; •)

: 6
Mak e S x c lu s iv e  (semaphore) ; : 0
IF b u f f e r  <> NIL :9
THEN MekePublic (semaphore) ( •  i . e .  go r i g h t  ahead, •)

ELSE BEGIN
w a i t in g  := TRUE ;
IF customers = 0 THEN

SEND COMPUTE TO ( i a c t o r )  , ( •  A c t i v a t e ,
customers := customers + 1 ,
MakePublic (semaphore)
sender := RECEIVE FROM ( i a c t o r )  ( » W a i t .

END ;

d va 'u e  := b u f f e r “ . value ;
SEND (DATON, d va lu e )  TO (s u p e r io r )  ;

END ; ( •  End o f  the inner e t e rn a l  loop.

( •  Except ion p a r t :
1 : MakeExc1 us ive  (semaphore) ;

IF wai t i ng 
THEN BEGIN

2 customers ; “ customers — 1 ;
IF customers 
THEN

•s 0

3: EXCEPTION NULLIFY TO ( i a c t o r )
4: w a i t in g  ; = FALSE ;

END ;
9 : MakePublic (semaphore) ;

• :  IF Reveal *  ADVANCE
THEN AdvanceOutport ( in p o r t ,  ou tp o r t )  ;
RESET ;

UNTIL FALSE ; ( *  End o f  the excep t ion  handling loop. * )
END END ; ( •  End o f  Ac t_C opyOutport_  . •)
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The IcOPYl out port actor enters an eternal loop right away. Each loop pass starts with 

the acceptance of a 1C0MPUTEI request. The validity of the daton index can be checked 

here, an error would be a system error. [COMPUTE! is trivial to handle if the wanted 

daton is ready waiting in the buffer; the daton is simply taken from the buffer and 

sent to the superior. If, however, the buffer is found empty, the daton evaluation 

must be instigated, its outcome must be waited for, and only then can the reply be 

given to the superior.

Further vote counting is used to control the inport. The cell Icuitomer»] states 

how many outports are hung up waiting for the arrival of the next daton. Outports 

increment this cell when appropriate, and ssnd an activating signal to the inport 

whenever incrementing I customer?] from 0 to 1. Further increments require no 

signalling to the inport since it is already busy with the evaluation. However, 

outports are free to withdraw their demands at any time, and they do this by 

docromonting i customers!. A I NULLIFY] is sent to the inport actor right after ^customers! 

has been decremented to 0.

Before an outport gets hung up waiting for the daton, it sets furthermore its 

Iwsitins! flag. The inport is thus able to identify every demanding outport. When the 

daton arrives (vtaiGctDaion!), the ICOPYl Inport sends a releasing signal to each w aiting  

outport. (The execution of faulty Lucid programs can easily seiie up in a Deadlock, 

T 2.6 and 8.1. In such a case, the outport actor will hang up waiting fo ro v tr  for the 

daton. This error can be detected automatically by the message passing 

mechanism.)

4.9.9 [COPY] Outport Exception Handling

The action in the event of a iNULLirVl exception depends on the stage the daton 

evaluation has reached. If the iNUlLifY] occurs a fttr  the arrival of the daton at the 

outport actor, the exception has no genuine effect. However, the shorter the
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exception occurs b tfo rt that moment, the more preparations (or the daton delivery 

have been undertaken, each of them needing to be reversed. The code (or handling 

1 NULLIFY! exceptions is therefore almost a mirror-image of the preceding code. Upon 

exception, execution jumps from one instruction to its counterpart and reverses 

each preparation in turn. The I NULLIFY! request sent to the inport actor counteracts 

its preceding ! COMPUTE1.

I ADVANCE! can be described as an •xtansion of this I NULLIFY!. If an 1 ADVANCE! 

exception did occur during daton evaluation it would have to start with the action for 

a I NULLIFY! exception (In real life, I advance! exceptions do not occur while the outport 

is waiting for a daton) lADVANCEl exceptions are handled by the procedure

¡AdvanceOutportl ( f  4.6.7).

We turn our attention now from the CQr’YI outport to the icoPYj inport

4.6.10 Procedure for ICOPYl Inport Act

Before we deal with fAct-XopyJj (the rcopY! inport act) we study its special 

procedure !L.pd«-.eOu-.po.-t»l. Whenever the inport receives a daton value (via 'Get3a-on!), 

it puts it into the daton buffer. This puts the outports into a totally new situation, 

even the invariant is corrupted, and corrective action is necessary for most outports 

The procedure UpdaieOutport»! contains all this action.

Let us assume, a daton had just arrived Outports in finalindex-state require no 

action, nor do outports with datons queued Outports with inovalue.l > 0 have to 

decrement it by one ( !D.crcmentNova':uc»1 takes care of this). All remaining outports 

must be linked to the tail of the daton chain Every w aiting outport among them 

needs an update of rea.tom«r»l and iwaitirial, and a reactivating signal must also be sent 

to it.
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PROCEDURE UpdataO u tporta  (VAR inport . INPORTSTRUCT) ,
VAR i : INTEGER .
BEGIN WITH inport  DO
BEGIN
FOR i : = l  TO noutporta DO
WITH out p o o I [ i ] DO

IF (o in d ez  <> f in a l  index) AND (b u f f e r  = N IL )  THEN 
BEGIN
IF 0 < novaIuea
THEN DecrementNovaluea ( in p o r t ,  o u t p o o l [ i ] )
ELSE BEGIN

b u f f e r  ;=  t a i l c e l l  ;
buf fa r * .  count := b u f f e r ~ . count 4- 1 ;
IF w a it in g
THEN BEGIN ( •  r e a c t i v a t e  ou tport :

customers : = cu ito m er i  — 1 .
w a i t in g  := FALSE ;
SEND DATON TO (o a c t o r )  ; ( *  Release.

END END END
END END ; ( •  End o f  UpdateOutporta .

♦)

*)

4.6.11 jCOPYl Inport Act

In our l Sieve I example (section 4.3.3.1, ’Act-Sieve!), a ’COPY; node actor with 4 outports is 

set up by the LUX instructions:

node [2 ]  ;= CREATE (Act_Copy— , 4)
( . , node [ 1 ] ) ;= RECEIVE FROM (n ode [ 2 ] )  ;
( . , node [ 5 ] ) ;■  RECEIVE FROM (n ode [ 2 ] )  ;
( . , node [ 8 ] ) :w RECEIVE FROM (node [2  J) ;
( . , n ode [10 ] ) : *  RECEIVE FROM (n o d e [2 ] )  ;

SEND (DATON, operand-ac to r )  TO (node [ 2 ] )  ;

Wa created only the inport actor of [COPY! (i.e. InodeliT), and it created the outport 

actors of its own accord, though telling us their actor names We sent the 

initialisation to the inport; the inport itself looked after its linkage with the outports, 

and t/uir initialisation.

So, here is the LUX code for the universal multi—outport ¡copy ! node (using 

pipeline demand driven DF) or just the [coPy ! inport act, depending on your point of 

view:
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ACT A «t_C o#y_  (n : INTEGER) ;
LABEL 1 ; c
VAR

newcell CELLP c
sender ACTOR c
dvalue ANYTYPE c
inport INPORTSTRUCT ; c

BECIN WITH inport  DO
BECIN

ia c to r  ; = M yse l f  ; noutport 9

REPEAT
WHILE TRUE DO 
BECIN

IF c u i t a r a r i  =  0 THEN 
sender :=  RECEIVE ( )  ;

dvalue : = CetDaton ( i i n d e z ,

n evce l l  :=  GetCell  ,
newcel1*.1 ink := NIL ;
newce l1 * . va lue  ; *  dvalue ;

n—ou tp o r t  COPY node ( i n p o r t ) . * )

Tenporary v a r ia b le . * )
Tenporary v a r ia b l e . • )
Daton v a lu e  re c e iv ed from operand. • )
C h a r a c t e r i s a t io n  of th is  in p o r t . • )

= n ; I n i t i a l i s e C o p y  (C re a to r ,  in p o r t )  ;

( •  W a it  fo r  A c t i v a t i o n .  • )

pO) ;

( •  G e tC e l l  can take long. •)

HakeExclusive (semaphore) ; ( •  A pp l ied  as l a t e  as p o s s ib l e .  •)

IF Reveal =  ADVANCE ( •  T es t  fo r  "T ro ja n  Horse ".  •)
THEN F re eC e l1 (n e w c e l l )
ELSE BEGIN

i index : ”  i index + 1 ;
EXCEPTION (ADVANCE, i n d e x )  TO (pO) ;

IF t a i I c e ! 1 *  NIL
THEN newce11“ . count : = 0
ELSE BEGIN

newce11“ . count ; = t a i 1 ce 11 •*. coun t ; 
t a i 1c e 11“ .1 ink : = newcell  ;

END ;
t a i1ce  11 := n ew ce l1 ;

UpdateOutports ( i n p o r t )  ;
END ;

MakePublic (semaphore) ;
END ; ( •  End o f  the e te rn a l  loop. •)

( •  Exception h a n d l in g :  •)
1: IF Reveal -> ADVANCE

THEN BEGIN
iindex  ;w i i n d e x * l  ; EXCEPTION (ADVANCE, i in d e x )  TO (pO) ; 

END :
RESET ;
UNTIL FALSE i ( *  End o f  the ex c ep t io n  handling loop. •)

END END ; ( *  End o f  A c t -£ o p y _  . * )
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The [COPY] inport actor is not a node actor, i.e. it does not accept request*. 

It exchanges merely signalling msssagts with each outport (however, the 

communication with its opsrand adheres entirely to the request protocol). Every 

signal from the inport to an outport is of message type IDAT0N1. just as an indication 

that this is neither a request nor an exception.

The inport actor owns (declares) and initialises all the descriptors relating to 

this [CO PY]. The |inportl descriptor contains all the 1 o u tp o rt 1 descriptors. [In it ia l« C o p y ] 

contains almost all the initialising action. It passes the names of all the outport 

actors to the creator of the computing net, and it acquires finally the name of the 

operand actor.

After the initialisation, the inport actor enters an eternal loop. The loop starts 

with a ¡RSCgrVEl. which serves a sim ilar purpose as the request IftSCKlVEi in node actors. 

As long as no outport is waiting for a daton, the inport actor becomes dormant until 

an outport spurs it into action by sending a signal This signal means invariably 

"evaluate the current daton". The daton value is acquired from the operand actor 

(via GeOa-.un!), an ADVANCE] is issued to the operand actor right away, and the daton is 

appended to the daton chain The full benefit of the new daton is then given to the 

outports through calling iU p d a ie O u tp o rtu

4.6.12 Exceptions Sent by [COPY] Inport

In their internal communication, the [COP?! inport and its outports do not view 

each other as nods actors, and do therefore not follow the universal protocol. 

However, we employ most of the exception mechanism even then; the !index! field is 

not used. The exception part of the inport act is simple

Let us first concentrate on [NULl.trVl exceptions Above, we have described the 

Icustomeril voting mechanism. The inport gets the |Ni:~tUFV1 exception whenever 

Icustomiril drops from 1 to 0, The fcetjeloni propagates fSuu.iHVl exceptions to the
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operand actor If necessary. If the exception arrives a jtu r the daton has arrived in 

|C«tP«tonl. the inport will at first not react to the exception but will buffer the daton 

properly. Wasteful re—computation of the daton is avoided by this «agsr bu ff •ring

It has been mentioned that an acknowledging ¡advance! is automatically issued by 

the inport actor right a fttr  the acceptance of each daton value. Whenever the inport 

gets an IadvanceI exception, this can only be due to a bare 1 ADVANCE!, or to 

I ADVANCE, fmalindex] at one of the outports. The propagation of a bare I advance! is the 

aim in either case. However, a daton evaluation may be under way (in the operand 

actor) while the exception occurs, i.e. we find ourselves in the " Trojan H o rs »"  

situation. The evaluation must in this case be nullified. If the daton has already been 

accepted, there is no point in buffering it. Finally, an 'ADVANCE! is propagated.

Usually, it is the inport actor of ICOPYI which issues the requests to the operand 

actor. However, ¡ADVANCE, r.nalind«»! is different in being issued directly by a ¡COPY; 

outport actor. This cannot lead to a collision  with requests from the inport actor, 

since (as a precondition) all outports will be in finalindex-state anyway, and the 

inport will therefore be dormant. The semaphore keeps the outports from issuing 

colliding requests. The inport circumvention is therefore permissible in this case

4.6.13 Concurrency In fCQPYl

One might ask what gives us the right to call this ¡COPY' act concurrent. 

Restrictions of concurrency are hard to accept if no valid reasons can be given.

Concurrency means simultaneous action in various places. During the 

execution of a Lucid program we associate computing action with every node in the 

Lucid graph In demand driven evaluation, this action is restricted to those nodes 

whose output is essentia!/or the result prssontty due We chose a version of demand 

driven evaluation where, at any time, solely the current result daton is in evaluation 

(or contributing datons) The alternative, "bulk demand" (e g. "give me the next 100
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operand actor If necessary. If the exception arrives after the daton has arrived in 

l<l»«tDatonl. the inport will at first not react to the exception but will buffer the daton 

properly. Wasteful re—computation of the daton is avoided by this •agar buff »r in g

It has been mentioned that an acknowledging ¡ADVANCEI is automatically issued by 

the inport actor right a fter the acceptance of each daton value. Whenever the inport 

gets an I ADVANCE I exception, this can only be due to a bare [advance:, or to 

[ADVANCE, finalindexl at one of the outports. The propagation of a bare I ADVANCE I is the 

aim in either case. However, a daton evaluation may be under way (in the operand 

actor) while the exception occurs, i.e. we find ourselves in the "Trojan Hart* " 

situation. The evaluation must in this case be nullified If the daton has already been 

accepted, there is no point in buffering it. Finally, a n  [ a d v a n c e ! i s  propagated.

Usually, it is the inport actor of ¡COPY] which issues the requests to the operand 

actor. However, ¡ADVANCE, fmalindci] is different in being issued directly by a ¡COPY; 

outport actor. This cannot lead to a collision  with requests from the inport actor, 

since (as a precondition) all outports will be in finalindex—state anyway, and the 

inport will therefore be dormant. The semaphore keeps the outports from issuing 

colliding requests. The inport circumvention is therefore permissible in this case

4.6.13 Concurrency In [COPY]

One might ask what gives us the right to call this [COPY! act concurrent 

Restrictions of concurrency are hard to accept if no valid reasons can be given.

Concurrency means simultaneous action in various placos. During the 

execution of a Lucid program we associate computing action with every node in the 

Lucid graph In demand driven evaluation, this action is restricted to those nodes 

whose output is ossontial fo r  tho result prosontly duo We chose a version of demand 

driven evaluation where, at any time, solely the current result daton is in evaluation 

(or contributing datons) The alternative, "bulk demand" (e g "give me the next 100
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datons"), is at present too hard to solve in general. Once committed to the 

daton—by—daton approach, our sequential request protocol brings no new 

restriction.

Whenever a I COMPUTE] request is sent to a ICOPY! outport, the daton delivery may 

be held up until the daton value has arrived at the ¡COPY] inport. This restriction 

comes from causality, it cannot be defeated. All other requests are accepted and 

handled without major delay Occasionally, a |C0PY] outport may be shortly hung 

waiting for the completion of action by other actors; IGetCeilj is probably the worst 

source of delay. The semaphore, in particular, forces potentially conflicting actions 

into sequential order. Each ¡copy! outport can handle any request which satisfies the 

protocol (t 5 5). Its freedom of choice is never dependent on states of other 

outports.

4.6.14 Summary of jCQPYl Act

What we have just described is the universal XOPV! act. It is so complicated 

because it caters for every possible situation (within demand driven pipeline DF). 

Whenever more is known about the way in which the [COPY] node actor is to be used, 

this extra information can be put to good use. In such cases, it may be possible to 

use a much simpler |C0PY; act. Is anything known about the order in which the 

requests arrive at the outports? Is anything known about the maximum queue 

length? Do we really ever request concurrently? Chapter VI, "E fficU n cy ", will 

present specialised versions of rCQPYl. Before that, chapter V will show a method for 

checking the correctness of the COPY] act. In doing this, chapter V will also give a 

second description of how.'COPYl works; this may help to clear up remaining points of 

uncertainty.
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4.7 Priority Scheduling

4.7.0 Introduction

So far, we have learnt how to translate a Lucid program into message passing 

actors. Every instance of an operator (including any UDF) maps into an actor The 

resulting number of actors is extremely high, judging by the standards of current 

multi—process operating systems. Highly concurrent computation in many actors, 

however, is just the thing which the newest generation of computers (vast numbers of 

physical processors) is best suited for. This thesis will not even try to answer the 

specific questions coming with m u lti-processor implementations of Lucid, such as:

— What is the best strategy for allocating and scheduling the multitude of actors

on a smaller number of processors?

— For recursive (dynamically expanding) L'DFs, how and where are the new actors

allocated?

The answers to these questions depend much on properties of the given hardware 

the store structure (shared or dedicated), availability of virtual store, availability of 

runtime load. etc.

On the other hand, readers who wish to do a serious implementation of Lucid on 

a conventional computer (von Neumann monoprocessor) will bo relieved to hear that 

chapter VI will show how the number of actors can be reduced towards more 

acceptable bounds. There is no reason why it should be impossible to compile into a 

tingle actor any Lucid program without concurrent operators (parallel [OS], etc ) and 

without recursive UDFs, i.e. compile it into a conventional sequential program 

However, the general algorithm for that reduction is yet to be invented. At least up 

to that day, we need a rule for scheduling the actors (At any moment, only one 

actor can be in actual execution. The aehadullng rule states which actor to execute, 

and/or how tong.)

4 70



IV« 77

We present in this section an actor scheduling rule based on priorities. The rule 

may be far from optimal, but it will be sufficient to achieve a reasonably well 

balanced program execution. (The rule is aimed at granting, to an evaluation, 

resources in proportion to the relevance of its result.) This topic will not be treated 

exhaustively in this thesis; merely a few guidelines will be presented.

4.7.1 Analogies

We can draw a parallel between the execution of a program lLaproel and the 

running of a (somewhat strange) firm for technical developments. "Luprox Ltd". 

Some company workers develop one entire product after smother, while others carry 

out only partial production steps and have to cooperate with others. Occasionally, 

the manager chooses to let separate (groups of) workers develop competing 

products. Sometimes he uses everything that emerges from this concurrency. 

In some cases a production order is cancelled or a product is thrown away because it 

has become superfluous Each department is run as an autonomous unit, but the 

management policy is identical on each level. The investment policy is somewhat 

simple minded: whenever concurrent developments are instigated, each development 

gets an equal share of the departmental resources.

If any department requires two equal ranking concurrent sub-developments, 

the department dedicates half of its capacity to each of them. If either of the 

resulting sub-departments needs to break its work into 3 sub-sub—developments, 

the capacity of the sub—department is split into three equal parts, and each of the 

sub—sub-departments gets 1/6 of the original capacity. — On the other hand, if a 

department works for a number of other departments (as in the case of the hardware 

store, or catering) it has the turn of its user's allocations as funds

It has been decided that a more refined management policy would require an 

Inappropriately expensive case analysis. Indeed, there Is only one manager in the
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company, and each department calls him in for administration. Worse even, the 

company is a one-man business where one man is playing all the roles in turn, be it 

manager or be it any worker. He is obviously not ready to spend much time on 

administration.

The management policy (scheduling, resource allocation) must be applied with 

flexibility, since the assumptions on which it is based are so imprecise. It is mainly 

designed to make sure that all the work will eventually be done, and that not too 

much of the resources are wasted on work of low importance.

This management policy may be bearable for the one man business, but it is 

really too vague for a company with many workers. For example, for which job shall 

each worker be trained? Moreover, the manager insists on maintaining the correct 

sequence of product delivery purely by the sequence of the work pieces on the 

conveyer belts (pipeline DF). Workers must therefore never share jobs

We could even link this analogy with our earlier analogy in chapter III. The 

example above might describe the management policy of a restaurant " Che* Lucian" 

which is run by one man alone: waiter, cook and manager in one person. The 

scheduling rule tells him, for example, in which order to prepare the meals for his 

customers, even in which order to bother about courses and parts of each course

Now replace CPU for our busy Jack of all trades, runtim e system or scheduler 

for manager, and actor for department or sub*-department. The company carries 

out computations to order; the products (developments) of the company are the 

datons of the program's result. The total production capacity of the company is 

determined by the power of the given CPU
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Our scheduling rule deals only with one computing resource, namely C P U  time. 

We aim to be reasonably (air in sharing out the available computing capacity, and we 

use the s u b d i v i d i n g  r u l s  just described. If we define the total available computing 

capacity as "1", we can use f r a c t i o n s  to express how big a " c a p a c i t y  s t i e s  " each actor 

gets, i.e. the priority of each actor. An actor which has 1/2 of the capacity allocated 

obviously gets through its work more rapidly than an actor with 1/9.

Our scheduling rule distinguishes different kinds of priority. Every actor has its 

specific priorities (stored within the actor head, T 3.2.1), and the really decisive one 

among them is the a c t u a l  p r i o r i t y .  The actual priority is calculated, among other 

things, from the intrinsic p r i o r i t y .  The intrinsic priority is, generally speaking, an 

actor specific constant:

4.7.2 Our Scheduling Rule

actor

root actor
WRITE node actor
a l l  other node actors

i n t r in s i c  p r l o r  I t y

“  "ultra"
1.0 top ( i s  exp l ic i t ly  set by creator)
0.0 zero (defau lt, meaning ¡»N 'T  EXECUTE)

The actor's actual priority fluctuates with its message passing state, in detail:

a c t u a l _ p r i o r i t y  ; *
IF xrequest <> READY
THEM u l t r a - p r i o r i t y
ELSE IF ( some actors  are hung t r y in g  to send 

to th is  one, or to r e c e i v e  from i t  )
THEM ( sum o f  th e i r  shsrsd o u t  ac tua l  p r i o r i t i e s  ) 
ELSE in t r i n s i c - p r i o r i t y  ;

The scheduler has (at least) t w o  queues for actors: the ultra quaua of actors with

ultra priority and the normal quauo for all remaining actors with actual priority not

zero. Actors in the normal queue are executed only if the ultra queue is empty. 

" F i r s t  c o r n s  f i r s t  s s r v s "  and "round robin" apply inside each queue Actors in the 

ultra queue are executed to exhaustion, i.e. control is taken from them only as late 

as possible. If not in ultra priority, an actor is treated as normal. The normal actors 

■hare the computing resources (mainly: the t i m s  spent in execution) in proportion to
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their actual priority** An actor is suspended from execution while hung waiting for 

message passing, of course.

By "sharing out" we mean: if an actor is hung trying to [SEND! to, or to I RECEIVE! 

from, a set of actors, it shares its own actual priority out in equal parts among the 

actors it wants to communicate with. However, I ultra! divided by any number is still 

lultral, and I ultra! plus anything is lultral.

When determining the actual priority of node actor Z  we may have to form the 

sum of some shared out priorities. In this sum, we must exclude any contribution 

which is due to Z its*If (indirectly). — Such a "priority sum" needs to be formed only 

if Z  is a IcopyI node actor: without this exclusion rule, cycles could "hype up” their 

own priority. The scheduler should even issue a ¡NULLIFY! request to the ¡COFYI inport 

actor whenever the actual priority of the I COPY] falls to zero. The scheduler 

introduces thus a measure of global control, which would be impossible to achieve by 

the request protocol alone (we will touch a similar point at the end of 6.3)

Equivalent to the if—then-else rule above, an actor’s actual priority can be 

calculated as the maximum of:

(1) Its intrinsic priority,

(2) |ultra! priority while its ¡«request! <> 3EADY1.

(3) the sum of the sharsd out actual priorities of all actors which are currently hung 

up watting for communication with the actor in question ( iSENDl to it or [RECEIVa!: 

from it).

The following can be deduced from the scheduling rule

— The actual priority of a 'C03V' inport actor is the sum of the actual priorities of 

its waiting outports (though not forgetting the exclusion rule)

— An inferior will not be executed unless its superior gets hung up.
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4.7.3 Discussion of Scheduling Rule

The scheduling rule contains nothing to prevent an actor from live locking  

(t 2 8). A livelocking actor with Iultra! priority would be total disaster since it would 

never surrender its execution right. Our design of the individual acts, however, 

makes sure that only/tntts computations are ever undertaken in ¡ultra! priority. The 

I ultra! priority has actually been invented exclusively for urgent administration and 

for nullification of unwanted evaluations.

Also by design, there are very few instances where an actor has more than one 

actor trying to communicate with it (semaphores, and arrival of concurrently 

evaluated datons are obvious instances). The FCFS strategy and, if necessary, 

random sequence are sufficient to ensure correct behaviour. (Easy evaluations will 

usually succeed before elaborate ones, this is important for concurrent [o§j etc. Our 

scheduling rule executes concurrent operations in the "breadth f i r s t "  strategy.)

The design of the UDF actors is particularly tuned for this priority mechanism. 

UDF actors have an intrinsic priority of zero, and this makes sure that execution of 

the l!DF pauses before the subnet creation (= expansion) The expansion is carried 

out once the L'DF gets its first request; this is la ty  expansion. In effect, the subnet 

actors are created as late as possible. Initial |ADVANCE! or i ADVANCE! i nalindexi requests 

needed special treatment; this ensures that only short administration is ever 

undertaken in ¡ultra! priority (but not proper computation, or even subnet creation).

Our scheduling rule is open to much criticism For example, we assumed that 

the subcomputations of one computation are equivalent, which can be easily 

disproved by counter examples However, our rule is reasonable and cheap Indeed, 

a better rule can not be provided if nothing is known about internals of the actors 

(e g. if it unknown how important a particular computation is). — We have already 

stated that the priority concept provides only an Incomplete answer for 

multiprocessor implementations
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Chapter VI will show how to improve the efficiency of the acts, and most of these 

improvements will bank on insights obtained by program analysis Such insights can 

also help to improve the scheduling rule. It would, for example, be wise to favour 

(give a higher priority to) any node actor whose activation leads to a docrtas» in total 

store requirements (e g. queue lengths).

4.8 Actual Implementation

The translation has now been completely described; the remaining chapters merely 

round the picture off with checking and optimising methods

The next step would be the actual implementation of the whole matter on a 

computer. A Lucid system, based on an interpreter, is already available [OstSl, 

FMY83], and the first compiler passes of that system could be re—used directly for 

this task. The remaining task would be of the calibre of an M Sc. project, less than a 

year's work.

Couldn't we find a simplified version of this translation which would be then 

easier to implement? First, one would contemplate the omission of bar» ¡AJVAXCBl. 

However, such an implementation would be so hopelessly inefficient as to make the 

whole exercise pointless. Then, how about omitting ¡NULLIFY' requests? Their 

importance stems mainly from their vital role in concurrent operators and a simple 

implementation could do without the latter One of the main achievements of this 

thesis has been precisely not to rule out concurrency Omitting concurrency means 

talking about a much simpler task, disregarding the heart of this thesis Our 

protocol is optimised towards concurrency, It look3 somewhat clumsy in applications 

without concurrency Actually, section 4 6 5 showed ("Trojan Horse") that a iCOPYl 

node actor may fiav» to produce rSPU.rfYl requests even if only [COMPUTE! and lADVANCEl 

requests are ever sent to it. The protocol would be incomplete without [NliLtlEV!.

4 8
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4.9 Closing Remarks

Every language implementation assumes a particular machine as given. The 

interpreter based Lucid implementation [OstSl, FMY83] simulates a hypothetical 

Lucid machine, and the interpreter works hard to keep that illusion up. This thesis 

describes an MPA based Lucid implementation. MPA corresponds closely to the 

architecture of multi—processors; the main difficulties are in this case hardware 

specific; how to make the processors communicate, how to allocate actors, how to 

load the acts. However, it is not very difficult to make even a single physical 

processor appear like an array of processors, and this is probably the best way of 

implementing Lucid until multi—processors become more widely available.

4 9
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CHAPTER V< Checking the Correctness of the Acts

5.0 Introduction

Much care has been put into the design of the acts, and we have good reason to 

believe they are mostly correct. This should not keep us from scrutinizing them over 

and over again. A working implementation would certainly be the most Impressive 

proof of success. But for the time being we rely on fo rm a l checking methods The 

aim of this chapter is to fortify the reader’s trust into our design.

If there was a serious flaw in our acts, it would most likely lie in the most 

complex part of our design, namely the synchronisation of the actors by the 

protocol. We will therefore design a framework (a testbed) in which we can examine 

the message passing behaviour of actors. We will determine all the message passing 

states for every actor; its message passing behaviour is, at every moment, mostly 

determined by its current message passing state. The possible state transitions can 

be summed up instate transition tables, this will be illustrated by various examples 

The state transitions of a UDF, or any net of actors, can be elaborated from the 

transitions of its components Execution logs are of great help in modelling the 

actions of an actor, or of a not. This will finally be demonstrated by modelling the 

entire execution of the ISievej program.

As regards difficulty, a big difference must be made between the I COPY] act and 

all other acts (t beginning of 4.5). The ¡COPY! act is a great deal more complicated 

than all the other node acts, which makes checking the icdPY, act the most 

demanding part of this chapter. We will see that even a rather simple IcoFTl (viz. the 

twin outported one) has an impressive number of states This is why we have to 

continually look out for simplifications which keep the number of states low; without 

them, matters are in danger of becoming unmanageable The correctness of the 

other acts is by comparison quite obvious, and we discuss them briefly before the 

IcopyI act.
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6.1 Th* Tastbed

In preparation for our discussion, let us introduce some terms which will play an 

Important role throughout this chapter. We intend to check the correct behaviour of 

a node actor, and we achieve this by placing the actor in a testbed (environm ent)  

which will confront the actor with all the situations permitted within the protocol 

(such as all possible sequences of requests and replies, see also [Fau82]).

Let •  be the node actor under examination. Each outport of •  is individually 

connected to a domander (labelled g, like "greedy"), and each inport of •  is 

connected to the pertaining supplier (labelled p, like "parameter "). This entire setup 

(g and e and p) is called a testbed for the actor e. The following Lucid graph 

represents a testbed:

The actor e is, of course, in a state at every moment, and we shall see that some kind

outport. In our implementation, there is no queuing on the arc3 (all the queuing

takes place in the [COPY] node actors) and the ports at both ends of an arc have thus

the same state. The state of a demander or supplier is exactly the state of its port

The state of the actor •  and the state of the testbed are therefore one and the same

When talking about the message passing at an arbitrary actor port, we will go on

using the terminology of superiors and in feriors  (The arrows in Lucid graphs point

always from inferiors to superiors ) In the testbed, g can be superior and •  inferior,

or ■ can be superior and p inferior.

-I--------------------------1- H---------------------------
| superior ■ | *------ ► in fe r io r  I
I—  ■ I I ...................... I

( outport 
s ta te  )

( inport 
s ta te ) 

- +  ++■ +  + H-------------------- (-
| derrander g | « —  1 node actor • + supp iler p j 

■i--------------------------------------------1-+

of sub—state (a message passing state) can be ascribed to each mport and to each

S.l
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6.2 Program Analysis

A proper mathematical proof of correctness (termination and partial 

correctness) would require us to analyse every act in depth, instruction by 

instruction. That task alone would double the size, and exceed the aims, of this 

thesis. Such a proof would certainly be meritable, but it has to be left to the future.

However, some techniques can be readily taken over from proofing, such as 

invariants and loop term ination conditions. We can indicate only the general 

approach (l.e. detailed rules will not be given); matters vary greatly among the acts. 

Most acts are utterly simple, which means there is very little to be analysed.

Most loops in our node acts are stsm al, i.e. altogether without termination. 

Often, no memory is retained from one loop pass to the next, so there are no loop 

invariants to worry about. Almost every actor • is a mediator between its demander 

S and its supplier p: usually, any message from g is propagated in some form to p, or 

vice versa. This message is either a request (message flow: g p) or a reply

(p g). One can analyse how •  transforms the message; one should check, in

particular, that invariants are not violated For example, when • receives a request, 

the same daton index must be re—used in the propagated request (while some nodes 

introduce a fixed index offset); this is all very node sensitive

5.3 M tm g t  Passing Behaviour

In another check, we treat the actor like a black box, and examine merely what 

goes on at its inports and outports, its message passing behaviour If the black box 

behaves incorrectly, though, one has to take the lid off and put matters right.

The message passing behaviour of an actor can be described by a state 

transition table, and such a table can reveal where the actor violates design criteria. 

Let us first took more closely at state transitions, and then recast the protocol into a 

form convenient for state transition tables

S 3
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5.3.1 M t i u g i  Passing Stats, and Stats Transitions

For an actor, each action can be viewed as a state transition, and all the 

permitted state transitions can be presented as a table (a relation maps the states 

to their permitted successor states). Such a table is very useful:

— It reveals the actions which the actor can perform,

— It permits a study of concurrent actions,

— it enables us to check whether inports and outports adhere to the request 

protocol,

— It can be used to exercise a given implementation of the actor. The 

Implementation is correct if the actor can execute each of the listed transitions, 

and if it never steps outside the alternatives listed.

Such a table can be produced for any act: we will give examples for some node 

actors. We will see that the rule for the table generation corresponds closely to the 

act, both are similar pieces of code. Transition by transition, each table entry (the 

intended behaviour) can be compared with the true behaviour of the actor. This 

reveals unwanted state transitions in faulty acts It would oven be possible to do 

some of these checks automatically

State transitions can be n on -d * t* rm in is tic , i.e. an actor can sometimes choose 

between a number of next states. Furthermore, there is always the extra choice of 

carrying out only pari of what is possible, or of even doing nothing (successor state 

being equal to the present state). Such transitions have obviously a delaying effect. 

The act design is such that the overall computation result (of the Lucid program) is 

deterministic even though the execution may be non—deterministic

Since we are only trying to model the message passing behaviour, we can often 

ignore those parts of the actor state which have no direct effect on that behaviour 

We call the resulting state the message passing state (which is a function  of the total

S.3.1
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state of the actor). As far as message passing is concerned, the choice o f successor 

state is narrowed down by:

(1) the present message passing state of the actor •,

(2) the action of the demander(s) g.

(3) the action of the supplier (s) p.

The message passing state of an actor is made up of the states of its outports, 

possibly an internal state, and the states of its inports. Different formats are used 

for the message passing state of the various node types: there is no universal pattern 

suitable for all actors. There is one general rule: in all message passing states, the 

state of each inport or outport is always expressed through a message label (t 5.3.2). 

An example message passing state is (explained in 5.3.1):

Dl. .2. A

5.3.2 Protocol Execution and Massage Labels

In section 4 2 we have agreed on a universal protocol Every node actor port is 

at every moment in a particular state of protocol execution (a port state), and the 

protocol permits only select successor states. The port state is determined by the 

lost message which traversed the port The message passing partners have no 

"knowledge" of the interned state of one another. It is therefore appropriate to 

denote their states in a format which gives the port states particular prominence 

If two ports are connects* by an arc their states are unavoidably identical. 

We abridge each port state into a single character, called a message label, according 

to:

N NULLIFY (requ est, flow ing upstream g -» • -• p )
C COMPUTE
A  ADVANCE
K ADVANCE, fin a l index "
0  DATON (r e p ly . flow ing downstream P * * -• g )

5.3 2
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We have to keep the number of port states low since the state tables would 

otherwise become unmanageable. N doubles up as the universal Indicator for 

"the Inferior is dormant”, and it is thus the initial state (whenever an actor is 

dormant we pretend that it has just received a I NULLIFY] request N). C doubles up as 

indicator for "a [COHPUTEI request has just been sent". These two states (C and N) are 

special in that the inferior can leave them only with the cooperation and initiative of 

its superior The protocol boils down to:

message
label next poss ib le  action :

# (we w i l l  always p rin t N as
N the superior can change i t to C, A or K,
C the superior can change i t to N or
C the in fe r io r  can change i t to 0 (whichever is f i r s t ) ,
A the in fe r io r  can change i t to N.
K no change poss ib le ,
D the superior can change i t to N

Explanation: if the protocol execution has reached the point where the inferior is 

dormant (N), it is the superior's turn to issue a C, A or K request; without this, 

nothing can happen If the superior requests A, the inferior accepts it, and becomes 

dormant The latter action is expressed in a state change to N The inferior takes 

also further appropriate measures, of course, but they are invisible as we 

concentrate on the messages traversing the port The message passing reaches its 

term inal stats once the superior issues a K request; no further message will ever go 

through that port.

On the other hand, after the superior has issued a C request, the superior is free 

to nu llify  (W) that request again; alternatively, the superior can wait until the 

inferior is ready to deliver the daton value (D). There is even a third possibility: even 

while the inferior is ready to deliver the daton value, the superior is free to delay as 

long as it likes before it decides either for D or M (such delay transitions will usually 

not be shown in our tables).

5.3.2
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The last paragraph glanced over an important point by making a quiet 

assumption. Whenever a superior nullifies a C request, it changes the port state to N, 

and this means that the inferior is now in the dormant state. But the superior can 

hardly fo re *  its inferior straight from C into the dormant state. Instead, the inferior 

must first accept the I NULLIFY! request M. take appropriate action (which might 

include request propagation), and it goes dormant only then. We would have to 

extend our acts slightly if we wanted them to handle this revised protocol. On the 

other hand, this simplified protocol has its advantages avoidable states are a real 

nuisance in our later discussion, and the simplified protocol is very e ffic ie n t in 

execution. We will not detail the changes which have to be made either to the code, 

or to our modelling of the message passing.

We will print the protocol state N in our tables always as full stop ("."); we use 

this character generally for states of the nature "nothing special to report". Tables 

are easier to read this way: unusual states become much more conspicuous

5.3.3 Execution in Ultra Priority

The scheduler (t 4.7) gives to actors in ultra priority pre-emption over the ones 

in normal priority. Each act lays down which actions take place in which priority. 

(The exception handling code is executed strictly in ultra priority, and the acts must 

be of such design that the expensive proper computations are not carried out in 

ultra prtority.) The testbed is in normal priority as long as none of the participants is 

ready to do any exception action. For fundamental operators this reads: execution is 

in normal priority as long as

-  the outport state is not A or K, and

— no inport state is A, and

S3 3



— the outport state Is not while an inport state is C.

The formula is more complicated for IC0PY1 node actors ( f  5 5.2).

V» B

In the following description, we assume as given a global variable 1 norm«it«] which 

Is IT8UE1 only during execution in normal priority. (In the state transition tables, 

below, states whose transitions take place in u ltra  priority are marked »4 )

At the first reading, you may pretend execution were always in normal priority. 

The ultra mechanism is meant only to inhibit wasteful state transitions, and it had to 

be mentioned here because we will refer to it in the following.

6.3.4 Actions of • Demander

There is one demander (g) per outport of actor e A demander is only able to 

inspect and change the respective outport state of e It can issue C, A or K requests 

if that outport state is N, it can revoke C requests (change that outport state from C 

to N). or it can accept daton values (change from D to M)

begin
OS ; = the r e s p e c t i v e  outpor t  s t a t e  ;
ML := the message label  i n OS ,

i f  ML *  N ( i . e .  th i s  outpor t  dormant)
then begin

the message label  in OS may be changed to A , or 
the message label  in OS may be changed to K , or 

i f  norma 1Fx then
the message label  in OS may be changed to C ; 

end ;

i f  ML. * C or (ML * D and normal Ex) 
then the message label  in OS may be changed to N , 

end ;

6.3.6 Action* of • Supplier

There it one supplier (p) per inport of actor a. The supplier accepts any 

request; as response, it con merely Inspect and change the respective inport state 

of *. — The supplier acknowledges A requests by changing the inport state to N,

S.3.S
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whereas there is no acknowledging action (or K nor (or N requests. It the inport state 

is C (i.e. atter a C request), the supplier can respond with sending a daton value (O)

as reply.

b e g i n
ML the r e s p e c t i v e  inport e ta t e  ;

i f ML -  A
then the inport  s ta te may be changed to N ;

i f  ( ML = C ) and normalEx
then the inport  s ta te may be changed to D ;

end ;

6.4 Checking Node Actors other than [c o p y ]

It is not difficult to check that the node acts (t 4.5) conform to the protocol. 

Most node actors propagato each request and reply via their own opposite ports, 

possibly with changes to the message content but rarely with a changed message 

typo. Such actors will leave everything intact provided the original requests and 

replies are given correctly. — A mere glance shows that the actors for fWRff?], j3EAD1 

and constant (which have only on« communication partner) generate correct 

requests or replies, respectively.

Alter the actor ■ has received a ¡NLLLlrVl or ¡ADVANCE! request, it takes the 

appropriate measures and becomes eventually dormant; similar action is taken after 

each delivery ot a daton value. All this is in sympathy with the protocol. Most of our 

actors become dormant even after lADVANCEr'finalindesl. but in doing so they are only 

"overfulfilling" their task, which has no bad consequence

Our simplification of the protocol permits issuing a new request right after a 

iNULlIftl, even boforo the inferior has reacted upon the [NULLIFY] . Our acts would not 

handle this (but can be modified to handle it), but require the superior to be bold up 

(delayed) until the inferior has taken the necessary steps.

5 4
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Most acts use the procedure IGetDaton] for the acquisition of daton values. 

IC etD a to nl implements the rule that C can only be followed by N (from the superior) 

or 0 (from the inferior), and it is not hard to see that !O tD at.on| performs this task 

correctly.

little  new can be 3aid about |Act_Root-J and the UDF acts. The Lucid graph and 

the net of actors are related through a bijactxon, and incorrectness could only be due 

to an error in the translation (but the translator program has been carefully tested, 

t appendix C). — The UDF subnet creation is transparent to requests (except for 

initial I ADVANCE] exceptions), and the UDF actor enters eventually the procedure 

iP a s a -Jh ro u g h l. That procedure was designed to be transparent to all messages (i.e all 

messages are passed on without change), and it is easily inspected for correctness 

— Every UDF subnet is composed of fundamental operators and again of UDFs, and 

the correctness of the UDF depends on the correctness of these constittiants, of 

course.

Example ( [FBY] actor)

The message passing state of a jr~3Y! actor can be characterised by:

<g. p . P> where
g = a message label representing the outport state

p  = a message label fo r the s ta te  o f the l a f t  inport
P  = a message label " " .... r ig h t  inport

< ............ > Is the in i t ia l  sta te

We write the states throughout in an order such that oulports are on the la f t  and 

inports on the right; requests flow therefore left-to-right, replies flow right-to—left. 

In our tables, the message passing states are written without the angle brackets and 

without the commas, and the identity transitions (i.e. delay, no change) are not 

shown at all

6 4
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The state transitions of [FBŸ] are then:

30 sta tes  (out o f 125), 63 tra n s ition s  

The table lists all the states which can be reached from the initial state The states 

are numbered (no) from O to 29, with the Initial state at number O, and with the 

terminal state at the end. The possible successor states are listed on the right of the 

} sign. If there is a u to the left of the | sign, it indicates execution being in ultra 

priority. No further state change is possible once alt input states have become K

6.4
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(l.e. identity is the only transition possible). For convenience, both the successor 

state and its number are given, and in the w h y column some letters (g, e, p, P) 

indicate which actor was the cause for the transition (g = demander, a = IFBY1 actor, 

p = left supplier, P = right supplier). The upper half of the ;F3Y1 table are those states 

where the left 1 Fgy; operand p is still under consideration; in the lower half all datons 

come from the right operand P.

Example (constan ts , [BEAD], Id sn tity  O psrator)

Here is another example, the state transitions of the constant or the jf tEADj actor:

no state | no state why no sta te  why no sta te  why

0 ( 1 C g 3 A g 4 K g
1 C 2 D e
2 D 0 g
3 A u 0 e
4 K nothing

5 states (out of 5 ), 6 tran s ition s

This table has moreover a second use if we take an empty testbed and connect 

the supplier directly to the demander (i.e. merely with an arc in between), the table 

would describe the behaviour of the resulting system (substitute p for s).

Example ( [WRITE])

The table is even simpler for

no state | no state why 
---------------- 1----------------------

0
1 c
2 D
3 A u

1 C
2 0 
3 A 
O P

e
P
e

5.4
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Example (concurrent binary pointwise operator)

The third example are the state transitions of a concurrent binary pointwise 

commutative operator, such as concurrent PLUS. The behaviour of concurrent 

operators like [53] is more difficult to model, since their choice of transition is data 

sensitive; they have a few more states, as indicated in the table

In this example, the states can be written in the same format as in the IF3Y1 

example above. We can however, take advantage of the commutativity, which means 

that the suppliers p and P are intarcKangaabla Many states of our actor come in 

pairs, where each state results from the other by swapping the inports; our table 

contains an entry only for either (it is immaterial by which rule we choose either 

state). Whenever a transition leads to the swappad counterpart of a state x, we 

indicate this in our table by priming (x1) the state number. There are even cases 

where both state x and state x' are among the possible outcomes of transitions. 

In such cases the state number is printed with a double prime (x"), with the why field 

telling only either story.

» 4



Here is the table of state transitions:

no state 1 no state why no state why no state why

0 » B C. . « 16 A. . 8 25 K. . 8
1 . .C u) 0 . . . e 16 A. . 8e 25 K. . 8e
" ) 17 A C 8 26 K.C 8
2 . .D o e 16 A. . 8e 25 K . 8<s
- 1 16 A.D 8 27 K.D 8
3 . .A U» 0 p 16 A. . ep 25 K. . «P
" » 19 A A 6 28 K. A 8
4 .CC U» O e 16 A. . 8« 25 K. . ge
N » 21 ACC 8 30 KCC 8
5 .CD 0 e 16 A. . 8e 25 K. . ge
99 » 22 ACD 8 31 KCD 8
6 ,DD ul O e 16 A . . 8« 25 K. . ge
99 » 23 ADD 8 32 KDD 8
7 .AA u} 0 pp 16 A. . SP? 25 K. . gpP

» 3" . .A p 19 " A A 8P 28 ' K A 8P
" » 20 AAA 8 34 KAA 8
8 C. . » 0 8 11 CCC e 4 .CC ge
S C.C » 1 . C 8 10 CD p 2 . .D 8?

10 CD » 14 D. . e 2 . .D 8
11 CCC » 4 .CC 8 5” .CD g? S .DD gpP
M » 12" CCD 8? 13 CDD gpP

12 CCD ) 5 .CD 8 13 CDD P 6 .DD 8P
" » 10 ' CD. *P 2 • D. geo

» 9 ' CC. e 1 ■ C. ge
" » 14 D. . e 15 DD e?

13 CDD » e • DD 8 14 Û. . e
14 D. . » 0 8
IS D.D » 2 . .D 8 14 D. . e 0 G*
is A. . U) 7 AA e
17 A C U> 16 A. e
18 A.D ul 7 .AA e
19 A A u) 16 A. . p
20 AAA U» 1 9 " A.A ? 16 A . ? p
21 ACC U» 16 A. . e

22 ACD u) 16 A. . e
23 ADD U» 7 .AA e

24 ADA 19 A. A e 18' AD. p 16 A. « P

28 K. . U> 36 KKK e

28 K.C U» 2 9 ' KK. •

27 K.D u) 36 KKK •

28 K. A U» 3S  ' KKA e 28 K . . p 29 KK. eP
29 K.K .36 KKK •

30 KCC U» 20 K. . e

31 KCD U» 29 K.K e 32 KDD p 33 KDK ep

32 KDD U» 36 KKK e

33 KDK U> 36 KKK •

34 KAA U| 2 8 " K A p 20 K. . pp
3 » KAK U> 29 K.K p
3 « KKK » nothing

03/AND only 

03/AND only
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37 states (out of 129), 07 trans it ions .

The state transition tables so far were all prepared by hand, and though the 

greatest care has been taken they may contain a slip or two. The examples were 

meant mainly to illustrate how to describe the behaviour of an actor by a table The 

state transition tables for the 1CQPY] node actors (t 5 5.4 f) are generated by program, 

and high expectations for their correctness are justified.

5.S Checking the |COPV| Node Actors

Modelling the message passing behaviour of the Icopy! node actors, and thus showing 

the correctness of the jcoPYl acts, is more difficult.

In our checking of ICOPY!, we re—use the terminology of queues, ql and inovaiueal 

(T 4.6.4 and 4 6.6). We continue having separate actors for the ¡COPY] inport and 

outports, but we leave open how !CQPY| manages the buffers When modelling the 

behaviour of the COPY) node actor and its environment, we are dealing with the 

participants shown in the following Lucid graph (here: twin outport COPY )

The I COPY! inport (I) is in communication with its supplier (p like "param eter"), and' 

each iCOPYl outport (o) is in communication with its specific demander (g like 

"greedy"). In order to differentiate both outports, we label the left side with lower 

case letters and the right with upper case.

COPY

•+

H------h + +-+

+  O
4--- ■+

65
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S.S.1 Massaga Passing Statas of Icopvj Nod a Actors

The universal I copy! act has an arbitrary number of outports, specified only in 

the [COPY] node actor creation. The daton queue in each lCOPY! outport can hold an 

arbitrary number of datons (of type ¡ANYtYPE;). We shall now try to condense the 

state of the ICOPYi node actor into a manageable form.

For our modelling, it is sufficient to characterise the state of each ¡copy! outport 

actor by a triplet:

4n, v> where
m i s

9 is
1? i s

( 1* v are

I* I
v
v

i s

the daton queue at th is ou tport,

the "novalues" o f th is  outport, such that 
O

Such a icopyj outsort actor state is clearly not one of the outport states (* 5.3.3); 

a 'COPY! outport actor consists of more things than just an outport This clash of 

terms is regrettable, but one can live with it

The initial state of every |corjY! outport actor is <iV,bottom, 0 > The state of the 

ICOPYI inport actor is just a message label, and it is initially N. The state of a complete 

ICOPYi node actor Is the sequence of the states of its cutport actors and of its inport:

« n ,  q ,v> , i >  s ta te  o f the s in g le—outport COPY,
<Gn, g ,v> , <k,p,w >, <> sta te  o f the twin—outport COPY,
<00, o/, . . .  o„_j, t>  in general (n = number o f outports) .

We intend to model only the message passing behaviour, and we can therefore go 

one step further. We need to incorporate merely the queue lengths in the outport 

actor states, Instead of the queues themselves. More precisely, this modified I COPY] 

state is then its massaga passing stata (but we omit the words "message passing" 

most of the time). In our tables, we will print the message passing states of CQPYl in 

the order shown above, albeit again without the commas and the angle brackets. 

An example of a fcSpYl message passing state is (twin outport iCQPY!):

5.6. 1
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Dl. .2. A

Here, the left IcoPYl outport actor has one daton queued; it has just delivered the 

value of that daton. and its demander still has to confirm the acceptance. The right 

I COPY! outport actor has two datons queued, but it is otherwise inactive. The ¡COPY] 

lnport has just issued an A request.

An intermediary state of the ¡COPY] node actor is any state in which this actor is 

enabled for further state changes w ithout requiring a state change in any demander. 

A theorem  can be formulated: if k is th e  minimum of the Inovalucal of all outports of a 

ICOPYI node actor C. then k can be non—ze ro  only in interm ediary  states of C.

5.5.2 The Actions of the Participants

How many actors take part in our modelling of COPY!, and what is each of them 

allowed to do? We call an agent any actor which might change the 'COPY! state. 

As 3tated before, we have four kinds of agents: the demanders, the outport actors, 

the inport actor, and the supplier If n is the number of ¡COPY] outports, there are 

altogether 2 * (n*-1) agents In every state of I COPY] at least one agent is enabled for 

a state change, unless there is a deadlock Indeed, any number of agents may be 

enabled for any number of state changes Each agent carries out at most one 

transition in a single go, but different agents are permitted to ' fire" simultaneously 

The rule for Ino. -ma(* 4.7 and 5.3.1) must be slightly extended Our model for 

the ¡COPY, node actor Is in normal priority if simultaneously

— none of the message labels (inport o r  outport) is A,

— the I novalue»! is ¡finalbiil«' at each ¡COPY outport whose message label is K,

— the ¡COPY! inport state is C only if at least one ¡COPY] outport is currently 

interested in the daton value to come

5 5 2
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Section 5.3.4 f stated already the actions of the demanders and of the supplier, 

but it remains to sum up the actions of the I COPY! inport actor and of the ¡COPY] 

outport actors. These code fragments are closely related to the core of the I COPY] 

act, and they were used almost directly to produce the state tables.

5.6.2.1 Action by the IcQPVl Inport

The jcQPYl Inport actor (I) is capable of examining and changing any part of the 

[COPYI state (though it would not alter any outport message label). The inport actor 

does all those tasks which concern more than one outport, and it communicates with 

the outports mainly through the ,  . n o v e l  u e » i  and the queues. The actions of the inport 

are essentially:

5 5.2.1
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begin
I : *  the in po rt  s ta te ,  be ing a message labe l  ;

acond := true i f a l l  the "n ova lues ” a re  non—zero  ;

ccond := true i f f o r  at l e a s t  one o u tp o r t :
the message labe l i s  C and
no daton is  queued f o r  tha t  outport  ;

i f ( I *=
and

c )

(acond or not  ccond)
then the inport s ta te  may be changed to N ;

i f the nova lues in a l l  outport  a c t o r  s t a t e s  are f i n a l i n d e x
then begin

i f ( I O C )  and ( I <> K ) end acond
then the inport  s t a t e  may be changed to K ;

end

e l s e begin
i f I = H
then begin

i f acond
then the inport  s ta t e  may be changed to A

but then a l so
must each novalues be decremented by one

e l sc i f  ccond and normal Ex
then the inport s t a t e  may be changed to C ;

end ;

i f I = D
. then beg i n (one may do the f o l l o w i n g ,  a l l  in one g o ; )

fo r each outport
do i f  i t s  novalucs i s  g r e a t e r  ze ro

then reduce i t s  nova lues  by one,
e l s e  append the da to n  to i t s  daton queue ;

but then also
set the inport  s ta te  t o  A ;

end end end ;

5.5.2.2 Action by a [CQPVl Outport

There Is one ICOPYl outport actor for each [COPY] outport. An outport actor (o) is 

capable of examining and changing any part of the fCQPV] state (though the only 

message label It would alter Is its own one). Each outport cooperates, of course,

5 5 2 2
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closely with the inport. The actions of an outport are essentially: 

b e g in
OS : «  the r e sp ec t iv e  ou tport  ac to r  s t a t e  ;
ML :■  the message labe l  in  OS ;

i f  HL »  C and normalEa
and a daton is  queued at t h i s  outport 

then the message labe l  in  OS may be changed to O ,

i t  ML s K
then the novalues in OS may be changed to f in a l  index , 

i f  ML 3  A
then begin (one may do the f o l l o w in g ,  a l l  in one g o : }

i f  a daton is  queued at t h i s  outport 
then pop the o ld e s t  daton o f f  that queue 
e lse  increment by one the novalues in OS ;

but then a lso
change the message label  in OS to N , 

end ;
end ;

6.5.3 Simplifications

The message passing state of the fcOPYl node actor has been presented above, 

and it was obtained by pruning the total state of 'cOTVi. Refore we generate the state 

transition table of a iCOPVi node actor, we apply the following simplifications to bound 

and reduce the number of states.

1) We pretend that the fCOPY, node actor memorises only the diffaranca between 

lnport index and outport index It is easy to see that the actor handles the 

absolute inport index correctly

2) We ignore the detailed contents of the daton queues: after all, even the [co?Yl 

node actor does not analyse the daton values. We trust that the actor makes no 

mistake in appending every new daton at the tail of the queue, and popping 

datons off the head of the queue We memorise the langth. of the daton queue.

ft ft 3
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closely with the inport. The actions of an outport are essentially:

b eg in
O S  := the r e sp ec t iv e  ou tport ac to r  s ta te  ;
UL : »  the msssage labe l  in OS ;

I f  ML *  C and normal Ex
and a daton is  queued at th i s  ou tp o r t  

then the message labe l  in OS may be changed to  0 ,

i f  ML = It
then the novalues in OS may be changed t o  f in a l  inde i  ; 

i f  ML =  A
then begin  (one may do the fo l l o w in g ,  a l l  in one g o ; )

i f  a daton is  queued at th is  ou tp o r t  
then pop the o ld e s t  daton o f f  tha t  queue 
e ls e  increment by one the nova lues in OS ;

but then a lso
change the message labe l in OS to N ; 

end ;
end ;

5.5.3 Simplifications

The message passing state of the fco^Y] node actor has been presented above, 

and it was obtained by pruning the total state of I'CQTYi. Before we generate the state 

transition table of a COFVi node actor, we apply the following simplifications to bound 

and reduce the number of states

1) We pretend that the iCOTVi node actor memorises only the dijjaranca between 

Inport index and outport index It is easy to see that the actor handles the 

abaoluta inport index correctly.

2) We ignore the detailed contents of the daton queues; after all, even the |co?Vi 

node actor does not analyse the daton values. We trust that the actor makes no 

mistake in appending every new daton at the tail of the queue, and popping 

datons off the head of the queue We memorise the length of the daton queue.

S 53
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3) Our [COPYj node actor is demand driven; only the arrival of a request (at an 

outport), or the arrival of a daton value (at the inport), can cause a state 

transition. We omit in our tables extra states which are due to delays inside 

[COPY]. We assume instead "if !COFYj can act, it will".

4) We shall study only the jCOPY! node actor with one outport, and the jCOPYl node 

actor with two outports. Any I COPY] with more outports can be built from the 

latter.

In the outport actor state, queue length = 0 and I upvalues! = 0 are both printed as 

dot and novaluea = -m’.mdex1 prints like jnovalues] —  1.

5.5.4 Single outport |COPV~l

We study first the single—outport ¡C O P Y ! node actor. Such a C O P Y ! node actor can 

at best have one daton queued (in pipeline ddDF without bulk requests), and its 

InovaLjg»! is non—zero only in intermediary states The state table is therefore 

reasonably small

b . S . 4
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25 s ta les  (out o f 75), 50 tran s ition s  

The table shows all the states which can be reached from the initial state The states 

are numbered (no) from 0 to 24; their order is due to a hash function (not to be 

explained here). For further detail refer to the explanations after the iF3Yl table 

(T 5.4). In the why column some letters (g. o, I, p) indicate which actor caused the 

transition (g = demander, o = outport actor, I = inport actor, p = supplier) The 

message passing states are written in the format defined in section 5 5.1:

(com ponents;)
( represen t 'n . ) 
(exsnple:)

' ■ ■ outport actor » t e t e ,  
outport » t e t e ,  queue length, 
masase label, Integer,

N 0

novaluee
Integer

0

inport actor state: 
inport state 
message label 

N

5.5 4
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The message label N, as well as queue lengths or ha value»! of 0, are all printed as dot 

(for example . . .  .is  the initial state N00 N). Let us study, as an example, one line of 

the table:

7 C. D 6 D g 17 C l. A i#» f 18 D1. A oi

It shows state number 7. which has 4 successors to choose from; execution is in 

normal priority. At the outset, the queue length and !novalue»; are both zero, the 

demander is waiting for a daton from [COPY! (it has set the outport message label 

to C), and the supplier has just delivered a daton to ¡COPY! (setting the inport state 

to D). Incidentally, there is just one reference to state 7, but other states have up to 

5 references (e.g. state 24).

A transition is made to state 6 if the demander nullifies the C. State 17 results if 

the ¡COPY! inport queues the daton. also issuing an A to the supplier (the two go always 

together). ¡COPYI gets into state 16 if the demander and the inport happen to act 

(as described) at the same time On the other hand, immediately after the inport 

has queued the daton, and has issued A, the outport may send that daton to the 

demander, thus setting the outport message label to D This puts the fCOPYl into 

state 18. This action by the outport (changing to D the message label in the outport 

actor state) would of course be irreconcilable with a nullification by the demander 

(as in states 6 or 16, changing that label to N) If these opposed intentions collide 

during program execution, the message passing mechanism will take a 

non—deterministic choice. Both choices give ultimately the same affect (due to the 

design of the acts, look at [u«-.3a-.on!). it would have been wrong to resolve this 

situation by priorities.

8.5 4
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5.6.6 Twin outport I COPY |

The first thing one notices when comparing the twin—outport ¡COPY] node actor to 

the single—outported one is the far larger number of states. With every new outport 

the number of states grows by a factor of about 15, since only few symmetries cam be 

exploited to reduce the table size. The transition table for the twin—outported jCQPYi 

node actor has 304 states with altogether 1619 transitions. Because of its 3ize, the 

complete table has been put into appendix E. we give here only the necessary 

explanations, and discuss a few example transitions.

Two further simplifications have been employed in the state transition table for 

the twin—outport 1C0PY1:

5) Our state transition table comprises queues only up to a finite maximum length, 

Bind we choose this maximum to be two Our checking method resembles 

mathematical induction, and this requires one proof for a starting value and one 

proof for the induction step To be correct we would have to demonstrate both 

the increase and the reduction of the queue, and we would have to do this both 

for the minimum queue and for an arbitrary queue However, since queues have 

a linear law of growth and shrinkage, we outstretch nobody's trust when 

demonstrating the growing and shrinking of queues only up to a queue length of 

two

6) Similarly, the table comprises inovaiue«1 only up to a finite maximum value, and 

we choose this maximum to be two

The table lists only current states with queues of a length limited to one, and 

with its i novel ae»! also limited to one. If one of the successor states has a queue length 

or a Inovalaee] greater one, the successor state number is followed by a minus

It is irrelevant which way round the outports are numbered; if two states result 

from each other by permuting (swapping) the outports, we can avoid printing table 

entries for both (it is immaterial by which rule we choose either state), Whenever a

b 5 b
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transition leads to the swapped counterpart of a state x, we indicate this in our table 

by priming (x1) the state number. There are even cases where both state x and state 

x' are among the possible outcomes of transitions. In such cases the state number is 

printed with a double prime (x"), with the why field telling only either story.

For example, here are the transitions for one state:

This example for state 1 shows 15 successor states (the double primed state counts 

double). Together with the idontity transition, there are 16 ( = 4*4) successor states, 

since either outport can end up in the state M, C, A or K

6.6 Discussion of tho State Transition Tablas 

Foolish States

The transition tables contain a fair number of "foolish" states, i e. states which 

appear somehow unreasonable. Look for example at state 70 (A . . Cl . C): the ICOPYl 

inport requests a daton (from the operand actor p) though the daton is not required 

by either IcopyI outport. It is the purpose of execution in ultra priority to get actors 

as quickly as possible out of such foolish states; it minimises also their chance of 

getting into such a state, in the first place.

Execution Logs

A particular sequence of requests has been discussed in section 4.8.5, where a 

fCOPYl node actor is forced into requesting the evaluation of a daton even though

5 6
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neither outport has expressed a wish for that daton (we called it despair). The 

situation was saved when, in the middle of the daton evaluation, an A request was 

received whereupon the evaluation could be nullified. We have in the meantime 

obtained the tools to express this whole scenario much more clearly: we simply write 

down the ! COPTI states in the sequence in which they are encountered. This is the 

simplest form of an execution log, a graphic representation of how a computation 

progresses. The vertical axis is the time coordinate.

Example (Despair)

COPT state
( in it  ia l s ta te )

A. . demander g issues bare A
. . 1 COPY reso lves A
C. 1 demander g issues C
C. 1 C COPY issues C out o f despair
C. 1 A C derrander G issues bare A
C. 1 . . 1 COPY n u l l i f ie s  the C request
c . . A COPY propagates A
c . . supplier reso lves  A
c . . C COPY propagates the o r ig in a l C
c . . D supplier d e liv e rs  D
D1. . 1. A COPY accepts D, and generates A
D1. . 1. supplier reso lves  A
A l . . 1. demander g accepts D, and generates A

. 1. COPY resolves A
Al. demander G issues bare A

COPY resolves A

Note that jCOPVl issues a IMULJFYl request after C) to the supplier although neither 

of the ICOPYl outports received a [NUtLlfrVI request This shows that this Lucid 

Implementation (with concurrency) would be incomplete without iNUt/ulrY] requests.
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The Trojan Horsa situation (t 4.8.5) can be expressed with similar ease:

Example (Trojan Horse)

V -2 7

COPT state
( in i t i a l  s ta te )

A. . demander g Issues A
. . 1 COPT reso lves A
C. 1 demander g issues C
C. 1 C COPY issues C out o f despair
C. 1 D supplier d e liv e rs  D
c . . . 1. A COPY accepts D, and generates A
c . . .1. supplier reso lves  A
c . . . 1. C COPY propagates the o r ig in a l C
c . . . 1. D supplier d e liv e rs  D
Dl. .2. A COPY accepts D. and generates A
Dl. .2. supplier reso lves  A
A l . .2. demander g accepts D, and generates A

.2. COPY reso lves A
A2. dermnder G issues bare A
. 1. COPY resolves A (Tro jan  Horse is d iscarded )
A l . demander G issues bare A
. . . COPY resolves A

States of UDFs

The state transition table for a UDF can be obtained by first generating the 

cross product of the tables of the components, and by then eliminating incoharant 

states. A UDF state is incoherent if the UDF contains anywhere an outport state 

whose message label differs in the inport it is connected to. Equivalent states 

(states which cannot be distinguished from outside) have to be eliminated, too. 

— This method is altogether rather laborious, and we will not deal with it further than 

this.

Alternatively, we can place the UDF in a testbed, "play through" all the possible 

request sequences, and write down the emerging successor states of the UDF

5 6



The UDF1 FIRST! is defined (in terms of fundam ent operators):

FIRST (a) * p WHERE p = a FBY p END ;

A I FIRST! act can thus be built from |F3Yl and I COPY!. The state transition table of ! FIRST! 

can be generated from those of |FBY| and the twin—outport [coPYl. For this, we make a 

table with one row for the state of each actor. We label each arc (with letters a ... d ), 

and since certain portions in each actor state correspond to that arc (viz. the port 

states) we can write the appropriate letter also into the message passing state of the 

actor (we use "7" as placeholders for miscellanies).

V-28

Example ( [first] actor)

»

act ident i t ies i n i t i a l l y

COPY a?? d?? c
FBY cbd • • •

FIRST a(> • •

4.

We transpose the table, above, and write successive states on successive lines, so 

that the vertical axis represents time. In this way we get again an execution log, now 

for a system of two actors. Let us play through an example where we send A and 

then C to the IFIRSTl actor:

6.8



The UDF¡FIRST] is defined (in terms of fundamental operators):

Example ( [first] actor)

V-28

FIRST (a )  = p WHERE p *  a FBY p END ;

A If ir s t ] act can thus be built from |F3Y] and 1C0PY1. The state transition table of I FIRST] 

can be generated from those of IFBYI and the twm-outport IC0PY1. For this, we make a 

table with one row for the state of each actor. We label each arc (with letters o ... d), 

and since certain portions in each actor state correspond to that arc (viz. the port 

states) we can write the appropriate letter also into the message passing state of the 

actor (we use ”7" as placeholders for miscellanies).

act

COPY
FBY
FIRST

«----------  s ta te s  ---------■*
ident i t ies ] i n i t i a l l y

■i-------------------- -----------------
i a?? d?? c ................
I c bd • • •
ja b

We transpose the table, above, and write successive states on successive lines, so 

that the vertical axis represents time. In this way we get again an execution log, now 

for a system of two actors. Let us play through an example where we send A and 

then C to the ¡FIRST] actor:
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copy, FBY (a c ts ) FIRST s ta te
•?? d?? c , còd ( id e n t i t ie s )  (see ta b le  below )

( ° ) ( i n i t i a l  s ta te ) 0
(1 ) À. ! demander issues A 6

.. l COPY reso lves  A O
(2) C. 1 demander issues 1st C 3

C. 1 C c! ! COPY (despera te ) issues C to FBY 3
C. 1 C cc. FBY propagates C to FIRST’ S supp lier 4
C. 1 C CD. supp lier d e liv e rs  D 5
C. 1 D D. . FBY passes D back to COPY —
c . . . i . A A. . COPY accepts D, and generates A —
c . . . 1. K. FBY reso lves  A, FIRST'S supplier " d ie s ’ —

(3 ) c . . . 1. C CK. COPY propagates C to FBY —
c . . C l. c CKC FBY propagates C to r igh t COPY outport —
c . . Dl. c CKD righ t COPY outport d e liv e rs  D —
c . . . 1. D DK. FBY passes back D —
D1. . 2 . A AK. COPY accepts D, and generates A 14
D1. A2. KA FBY propagates A 14
D1. . 1 . K. COPY reso lves  A (r ig h t  outport) 14
A l . . 1. .K. demander accepts D, and generates A 15

. 1. K. COPY reso lves  A ( l e f t  ou tport) 12
C . . 1. K demander issues C 13
jurp to (3 )

Every actor starts in its initial state, of course At the beginning, the demander 

of ¡FIRST! (being also the superior of the left I COPY" outport) i3 alone able to change 

state. Moving step by step from this point, we earn work out all the other relevant 

states of ¡FIRST!. We end up with a table with a certain amount of redundancy:

— non—deterministic state changes inside the UDF are of no interest any longer,

since we want to model only the message passing behaviour of the UDF as a 

whole,

certain components within the actor states change always togtthar, and we can 

condense this repeated information to the essential minimum. (The 

corresponding state numbers in the state transition table have been printed on 

the right of the execution log. We see that some successive steps in the log 

collapse into merely one step in the table, and some intermediary steps have no 

counterpart In the table at a ll)
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By playing through all the possible request sequences we get the following state 

transition  table of IFIRST1 (w ith reference to the idtntitias, above, the state of I FIRST! 

is ob, where •  is the ou tport state and b is the inport state):

17 sta tes  (out o f 25), 33 tran s ition s.

5.7 Example (  sieve])!  the execu tion  log

Using the iSievel example as illustration, we shall now discuss how the messages 

pass through the net of actors, and how this yields the computation result. These 

actions will be presented in form of the execution logs introduced earlier in this 

chapter. There will be one log for the main program, and a second log specifically for 

the rS if ve' UDF

The logs represent the state of large composites (e g main program and UDF 

actor) through the states of their components Earlier in this chapter, the possible 

state transitions have been listed for most of the components which occur in the 

example (11185], fsS], 'PLL'él may be instances of the concurrent binary operator). 

They have not been described for !W t]. iwvfi] is a good deal more complicated than
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|F1RST|. Its message passing behaviour depends on its earlier actions (the same is true 

for the |Sieve,'). We will, nevertheless, write the state of jwvRj as if it was a point-wist 

binary operator (l.e. "oti"), and the reader is asked to take its transitions in the log 

as correct. .'WVR! and I FIRST! are both UDFs; whatever we learn about the ISievel UDF can 

benefit our comprehension of these other UDFs. To keep the discussion simple, we 

treat [FIRST1 and;WVR! like p rtd tf in td  operators, non—UDFs

The ;Sieve; state will be written "oxi". where x is either V  or "1". indicating 

unexpanded or expanded state. Here is the graph of the ISievel program again 

(T 4.3.3.1):

*
4 *  " 4 *  r r f J
| PLJS i — 4-

4--- •— -

+ .... . -m
I rev !
+ 4---- *■

I
•N

rrfl | rri3
C---- - 4-
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t

+  — i ml
| Sieve |

*

S i eve ;

a Z \  »10 
C------

-4- s9
--------- « | FIRST |

■7 4----- 4-----4- ------ h
» Z  | 4------- K | j-O” jail

C----. ; M O D  1  ------4- 4-4-4.| M O D  
s8 fr +—  ■■

sG
NE

wZ I 4-------4- »4 I
C---- ► | W V H  | .------ 4-

s5 t ) -4-
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4— 4--- 1-
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♦ i nO
| WRiTE |
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To avoid confusion, the actors in the main propram have their numbers prefixed with 

an m, while the actors within the fsicve! get an e.
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1FERSTI. its message passing behaviour depends on its earlier actions (the same is true 

for the ! Sieve V We will, nevertheless, write the state of IWVR! as if it was a point w ist 

binary operator (i.e. "ott"). and the reader is asked to take its transitions in the log 

as correct. ;wVR| and iFiRSTl are both UDFs; whatever we learn about the ISievel UDF can 

benefit our comprehension of these other UDFs. To keep the discussion simple, we 

treat [FIRST1 and.WVR' like predefined operators, non—UDFs

The ;Sieve: state will be written "oxi", where x is either 'V  or "1", indicating 

unexpanded or expanded state. Here is the graph of the 'Sieve! program again 

(T 4.3.3.1):

1
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H------- + n6
| plus ; — +
■i— '—-

I"*" l " « !l

I
4 4

I F3Y |

•N
rifl | rrfi
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| Sieve |
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To avoid confusion, the actors in the m ain program  have their numbers prefixed with 

an m, while the actors within the 'sieve! get an a
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Only the actors mO.mB exist at the very beginning of program execution. They 

have been created by the root actor (which itself has terminated), and each actor is 

in its initial state. The I Sieve I actor ml is a UDF actor, and it is yet unexpanded. The 

state is thus:

acts actors ident i t ie s in i t ia l  s ta tes

WRITE rrO a
Sieve ml a?b . . .
COPT rr£ ,mB ,m0 6?? g?? c . . .  . . , .
FBY mi cd t . . .
2 irf> d
+ rr£ • fa . . .
1 nit f

The state of the main program is the ensemble of the states of its components; 

an example is the entire entry below the heading "initial states".

Initially, all the actors have xtro priority , except for the |writei actor; its priority 

is one. IWRrfgj is therefore the one to take action: it issues a ¡COMPUTE! request (C) to 

the ¡Sieve! ml, and starts waiting for the delivery of a daton value In doing 30, ;w3:te! 

becomes suspended, and the actual priority of the S w 1 ml rises to one Working 

out the actual priorities for the remainder of the log might be an interesting 

exercise

The | Sieve I UDF must be expanded (i.e the subnet of actors sO stl must be 

created, initialised and bound to the environment) as soon as the attempt is made to 

send the first ¡COMPUTE] request to the ¡Sieve] ml. This whole process is invisible in the 

logs. This newly created subnet has things in common with the product of the root 

actor: all the subnet actors are in their initial states, the ¡Sieve] UDF s3 is yet 

unexpanded. — Everything that is said about the ¡Sieve! ml applies correspondingly to 

¡Sieve! s3, and to the ¡Sieve! inside s3, etc
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Log of 1 Slava | Main Program

The table, above, can also be transposed (and some superfluous detail can be 

omitted), and the resulting execution log for the] Sieve I main program goes as follows:

(0)

( 1)

( 2)

(3)

Sieve COPT FBY PLUS (a c ts )
m l, mB.mB.nfl, m4. rr6 (a c to rs )
a? 6, 6?? g?*> c , c d e  , • f a ( ident i t ies )

( in i t ia l  s ta te )
C. . WRITE requests C
C1C c . . S ieve s3 expands, and propagates C
C1C c . . c C. . COPY propagates C
C1C c . . c CC. FBY propagates C
C1C c . . c CD. constant d e liv e rs  D
C1C c . . D D FBY passes D back
C1D D1 . . i . A A. . COPY passes D back, generating A
C1D D1. . i . K FBY propagates A, constant "d ie s "

D1A A1 . . i . .K. Sieve passes D back, generating A
D1 . . i . .K. COPY reso lves  A
A1. . i . K. WRITE accepts D. and requests A
. 1. . i . K. S ieve reso lves  A, cy c le  fin ished

C l. . i . .K. WRITE requests C
C1C C . . i . K S ieve propagates C
C1C c . . . i . C CK COPY propagates C
C1C c . . . i . C CKC c  . FBY propagates C
C1C c . . Cl . C CKC ccc PLUS propagates C
C1C c . . D1 . c CKC CDD constant and COPY d e liv e r  D
C1C c . . . 1 . c CKD D PLUS passes D back
C1C c . . . 1 . D DK. FBY passes D back
C1D D1 . .2 A AK COPY passes D back, generating A
C1D D1 . 2 .KA A. . FBY propagates A
C1D D1 . A2 . K AA PLUS propagates A
C1D D1 . . 1 . .K COPY and constant reso lve  A
i f  Sieve ml finds the daton to be prime, i irrp to (1 ),  e ls e :
CIA A1 . . i . . K. Sieve generates A (t o  get next daton)
C l . . i . K COPY reso lves  A
C1C C. . . i . , K. S ieve generates renewed C
jutp to (3 )
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Log of jStavl

Obviously, there is more to the state of the [Slew] than described by "a?b". As with 

the main program, we can log the state transitions during execution of the 1 Sieve I 

(a and b are retained as its outport/inport labels):

FBY
»0,

copy
■1,s5 ,iB ,*10,s2,

Sieve WVR 
■3. s4,

NE 
s6,

MOD
s7,

FIRST (acte )  
s9 (actors )

•>* i f ? n?? r?? 1?? * k?m rrwip pqu qra at ( id en t i t ie s )
(4 )

( i n i t i a l  s ta te )
C. . derrander issues 1st C
cc. C. . FBY propagates C
cc. C. . C COPY propagates C
cc. C. . D supplier de l ive rs  D
CD. Dl. , i .  .1. , i . A COPY accepts D. issues A
CD. Dl. .1. . i .  .1. supplier reso lves A
D. . . 1 . .1. .1. .1. FBY passes back D
A. . . 1 . . 1. . 1. . 1. dermnde’- accepts D, issues A
. K. Kl. .1. .1. .1. FBY transforms A into K
■ K. K. 1 .1. .1. .1. COPY resolves K

(5)
CK. X l .1. .1. . 1 . demander issues 2nd C
CKC K. 1 .1. .1. .1. c . . FBY propagates C
CKC K. 1 .1. .1. .1. C1C C. . Sieve s3 propagates C
CKC K. 1 .1. .1. .1. C1C C.C c . . WVR propagates C
CKC K 1 .1. .1. .1. CIC c .c CCC c. COPY de l ive rs ;  NE prop C
CKC K. 1 .1. Cl. .1. C1C c .c CCD CCC C. const de l iv ;  MOO prop C
CKC K. 1 .1. Dl. Cl. CIC c .c cc. CDC cc COPY de! -.v; FIRST prop C
CKC K. 1 .1. .1. Dl. CIC c .c cc C.C CD COPY de l ivers  D
CKC K. 1 . 1. . 1. K l . CIC c .c cc. C.D DK FIRST passes back D
CKC K. 1 .1. .1. K.l etc c .c CD. D. . .K COPY res K; MOD pass bk D
CKC K. 1 .1. .1 K.l CIC C.D D. . K NE passes back D (FALSE)

( « )
CKC K. 1 Al. .1. K.l CIC CAA A. . • K WVH asks for next daton
CKC K. 1 . . .  .1. K.l . CIC c . . . AA A. . .K COPY res A, WVR prop A
CKC K. 1 . . .  Al. K.l CIC c . AA AK const res A; NE prop A
CKC K. 1 ............K.l CIC c . . .K COPY+FIRST res A

(7)
CKC K 1 ............K.l CIC c .c c . . K WVR prop C
CKC K. 1 ........... K.l CIC C c CCC c . K NE prop C
CKC K. I . . .  C.. K.l CIC c .c CCD CCC CK MOD prop C; const d s l iv  0
CKC K. 1 . . .  C.. K.l C CIC c .c CC. CCD DK COPY prop C; FIRST d e l iv  D
CKC K.l . . .  C . . K.l D CIC c .c cc CC. . K supplier d e l i v  D
CKC K.l .1. Dl. K.l A CIC c .c cc. CD. . K COPY pess bk D
CKC K.l .1. .1. K.l CIC C.C CD. D. . .K MOO pass bk 0; supplier res A
CKC K. 1 .1. .1. K.l CIC C.D D. . K NE passes back D

i f NE de l ivers  the datori velue FALSE j jti|) to (6 ) ,  e lse  J xrp .0  (0 ):
— continued —
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— cont i nued —

F3Y COPY Sieve WVR NE MOD FI3ST (s e ts )
sO. ■1 sS.sS.slO.s2, ■3. «4. S0, ■7, sS (actors )
• ih

( • )
i»ff r f  ? I f f 6 *fm imp p q u • 1 ( id en t i t ie s )

CKC K.l Cl. .1. K.l C1C CC. K WVR requests C from l e f t  op
CKC K.l Dl. . 1. K.l ClC CD. K COPY de livers  D
CKC K.l .1. . 1. K.l C1D D. . . . . K WVR passes back D

i f Sieve s3 finds the daton to be prime jurp to (9 ) ,  else:
CKC K.l .1. .1. K.l ClA A. . .K Sieve asks for next daton
CKC K.l Al. .1. K.l . C l . . AA A . . K WVR prop A
CKC K.l ... .1. K.l C l. .AA A. . K NE prop A; COPY res A
CKC K.l Al K.l . C l . .AA AK MOD prop A; const res A
CKC K. 1 . . .  

jimp to (7) 
(9)

K.l ClC C. . . . . K COPYfFIRST res A; Sieve prop

CKD K.l .1. .1. K. 1 DIA A. . K Sieve s3 pass bk D, gen A
CKD K.l Al. . 1 . K. 1 D l . .AA A. . • K WVR prop A
CKD K.l .1. K. 1 D l . . AA A. . ■ K NE prop A; COPY res A
CKD K.l Al. K. 1 Dl . AA AK MOD prop A, const res A
CKD K. 1 K. 1 Dl . K COPY-t-FIRS? res A
DK. K. 1 K. 1 . 1. K FRY passes back D
AK. K.l K. 1 . 1 . K demander accepts D, gen A

KA K.l K 1 Al . K FRY propagates A
• K. K.l 

( iO )
K. 1 . 1 . K Sieve s3 resolves A

CK. K. 1 K. 1 . 1 . .K demander issues C
CKC K.l K. 1 C l . K FRY propagates C
CKC K. t

jisip to (7)
K. 1 ClC C. . K Sieve prop C

Discussion

These substantial logs demonstrate a number of things quite clearly:

We see how the requests (C and A) ripple upstream. They appear as lines fa lling  

from  It f t  to right, since the outports and high ranking actors are on the left and the 

inports and low ranking actors are on the right. Similarly one can see how replies (0) 

flow downstream; they form lines fa lling  from  right to l i f t

The log gives numerous illustrations for the behaviour of [COPY] node actors. 

Whenever a daton value (D) is accepted by a ¡COPY] node actor, [c o p y ! queues it at all 

Its outports. and sends an [ADVANCE] request (A) upstream Once a daton has been 

queued at IcoPVj it can be obtained from there, any number of times. The main
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program log shows furthermore how [COPY] can satisfy one outport xuh.il« another 

ICOPYI outport is hung waiting for a new daton. (Our main program contains a cycle, 

cycles are always "tapped" by a ¡COPY). and every cycle—tapping I COPY] must handle 

such interlaced requests.)

The log quotes the ttngth  o f «vary qu«ua at every moment. In our LUX 

implementation, we used a shared queue with reference counts. This shared queue is 

at every moment equal to the longest of all the individual queues.

We see how IF3Y1, upon receiving its first proper A request, abandons (K) its left 

operand and switches over to its right operand. 1 FIRST I goes even further: it abandons 

its operand upon arrival of the first daton.

The work of the ¡write) actor mO consists obviously in repeatedly

(1) issuing a C request to the jSieve! ml,

(2) awaiting daton delivery.

(.3) printing the daton value,

(4) issuing am A request.

Hypothetically, if ¡WRITE! chose to skip (4) it would get exactly the previous daton 

again, IwaiTEi can get at the next daton in the history (the next prime number) only 

after sending an [ADVANCE) request (A) to the [Sieve! ml. Upon this A request, a 

clean—up is carried out. The log shows how A is propagated upstream, but shows also 

that jCOPYl does not propagate the A further. (COPY! had anticipated this A already 

upon receipt of the daton The [sieve] (having a lcQPYl at its inport) behaves likewise 

Whenever a ¡COPY) node actor issues a C request, it does this in response to the 

arrival of aC request at an outport. (Not every C request at an outport is propagated 

by [COPY] )  This outport is then called the driving outport In the [Sieve! main program, 

for example, the left ¡COPY! outport is always the driving one However, the role of 

driving outport need not always fall to the same outport. In the ¡Sieve! UDF, for
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example, this role is first taken by [COPY] outport si and later by sB. While an outport 

is driving, its queue can only be empty or of length one.

Focussing more specifically on the jSieyel UDF, a few points deserve mention:

One can formulate an obvious theorem: "the computation of any daton must be 

carried out in a fin ite  number of steps: otherwise the computation is in a livelock". 

This implies that one daton must require only finitely many UDF expansions. The 

ISievej UDF satisfies this clearly: the newly expanded jSievcl computes its first daton 

without expanding any further fSievel, and after that, exactly one new ¡SieveI is created 

whenever a new prime (= result daton) has been found.

The log reveals also that, before the ¡SieveI can deliver a daton, it must consume 

at least one daton from its supplier. One can trace daton deliveries simply by 

scanning down a log column until one comes to a point where it changes from C to D 

and then to A. In the case of the ¡Sieve! UDF, the outport is labelled a and its inport b, 

these are therefore the log columns of interest

The example demonstrates hardly any "tricky" situations there are only few 

bare lADWVCK! requests, and no iCOiiiPUfEl request is nullified The example appears 

even to be deterministic, but this is not the case The log shows the states as if every 

transition was made at the earliest possible moment In reality, however, each actor 

is free to delay its action for any period The log would be of enormous size if all the 

possible alternatives had been included in it
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CHAPTER Vit Ways of Improving Efficiency 

•.O Introduction

Any Lucid program can be built up node by node, starting at the Iwritei node. 

During this construction, each intermediary structure can be examined for specific 

properties. This chapter will show that, under various conditions, structures can be 

replaced by simpler ones. Simplicity means often smaller overheads, less 

administration (though on cost of generality), and less administration means in most 

cases faster execution.

We shall look in this chapter at various code improvement techniques:

— Queuing analysis (Cycle Sum Test),

— Node condensing (act expansion).

— Enriching the protocol,

— Tailoring IcQPYj acts,

— Tagged Data Flow, and

— "Box of tricks" for the compilation

Beginning with this chapter, matters will be treated less formally: the general 

method will be sketched while the detail will be left to later research.

6.1 Queuing Analysis

It is characteristic of our (demand driven) implementation that all the daton 

buffering is done by ICOPYI node actors. However, the 1C0PŸ1 act (t 4.6.7 ff) makes only 

too clear how much administration is entailed even in very simple operations. There 

are enough situations where a much sim pler [COW! node actor would suffice:
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— there may be an upper bound for the queue length.

— the offset between the outport indices may be invariant (and the driving outport 

may be always the same).

— the buffering may be unnecessary altogether.

Sections 8.4 and 8.5 outline I COPY! acts which can exploit such special conditions. The 

log of the |S:evel program (r 5.7) illustrated the growing and shrinking of the queues 

quite vividly. One could now extend the Lucid compiler by a simulation phase which 

generates logs, and which detects the queuing behaviour in this way. Such a device 

would provide the optimiser with all imaginable facts, but it would be a very complex 

program (also very slow in execution) Anyway, there is a much simpler method 

which provides almost the same answers. The method is the index of/sot method 

(derived from Wadge’s Cycla Sum T#»t [Wad79]) which will be described now.

Indax Offset and Offset Matrix

Focussing on a particular port of an actor, it is possible, at every moment of 

program execution, to state the index of the daton currently due to traverse that 

port (say, upon a ICOMPUTEI request). Initially, every index is zero. As program 

execution progresses, the index increases by 1 with every [advance! request traversing 

the port. Input histories are gradually consumed and output histories are produced, 

and we see the indices at inports and outports grow, more or less synchronously. For 

example, in a pointwist node actor (e g. I Plus 1 or j]F¡) the index is the same on all 

ports (if we ignore intermediary states). However, at [Pa?! actors the index at the 

right inport lags by 1 behind the outport:

FBY p o r ts Daton index -ft t  ¡me

o u tp o r t  Q 0 1 2 3 4 5 8 ...
in p o r t  p 0 - no no <30 ao on , , ,
in p o r t  P 0 0 1 2 3 4 5 ...

6.1
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The left |FBY1 inport "dies" at the first | advance I request, Its index jumps to IfinaUnde»! (we 

write With I NEXT] it is the other way round, its tnport is one ahead of the outport:

NEXT ports

outport s 
inport p

Daton index -• t ime

0 0 1 2 3 4 5
0 1 2 3 4 5 6

These tables for 1FBY1 and INEXTI suggest how to characterise the behaviour of the port 

indices. We use a m atrix  with as many rows as the node has outports, and as many 

columns as the node has inports. Each component of this matrix i3 called sin index 

offset, and it is defined:

index o f fs e t  = MINIMUM (ou tport index — inport index) 
a l l  indices

Included in this minimum are only the situations where datons actually traverse both 

the inport and the outport (the 0 -0  of [next! is thus omitted) At least for the 

fundamental operators, except ¡COPY!, such an offset matrix is easy to write. Each 

component of the matrix is either an integer or A component of value

marks those inports from which an outport is totally independent

Most nodes have only one outport, and the matrix has only one single row there 

The matrices for constant, 'READ! and iWRITEi nodes have no components. The matrices 

for pointwf*« nodes have only components of value O The matrices for;E3Y~] and iNEXtl 

are:

FBY: | 0  -1  NEXT: | t-1

There is no corresponding easy rule for the indices at Ico^Yl. Its inport index is 

usually the maximum of its outport indices, but this rule does not apply strictly. 

(The strict rule goes as follows, we mark a I COPY; outport a s  6a r« whenever it gets a 

bare IaSvancS! request or an 1 A D V A N C E , f tn tth n d «« !  Initially, and after a  proper I a d v a n c e ], 

this mark is cleared. The inport index is  the maximum of the unmarked outport 

indices, i f  any. otherwise it is the maximum of alt outport indices ) However, there

0 1
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are other ways of finding out the jCOPYl inport indices. Every COPVI node actor is 

connected to other node actors, and from the indices of these other actors one can 

derive the indices at the I COPY! itself. We can provisionally assume that the outports 

of IC0PY1 never go bare, and apply a strict maximum rule for its inport index; 

consequently, all its index offsets will come out as non-negative. At every moment, 

one component of the ICOFYI offset matrix is usually zero (viz. the one of the driving 

outport).

Intuitive Meaning of Index Offsets

The meaning of index offsets has not been made clear yet. There are, however, many 

analogies at hand for illustrating it.

Data Flow computations are organised a bit like the work on a production line 

(in a somewhat old—fashioned factory): the components are accepted from preceding 

production processes, operations are applied to these components, and the resulting 

item is passed on further down the line

Our old analogy of the small restaurant "Chez Lucien" can help; after all, 

restaurants produce meals. Pots and pans are needed for the cooking, but our cook 

has only few of them. The cooking of a meed can begin only after the pots and pans 

from an earlier meal have been washed up. For the f ir s t  meal(s), however, the pots 

and pans are taken straight from the shelves One can say, the pots and pans are 

"injected  Into the production cycle" to start things up

In Data Row, as well as in these analogies, work can go on only If all the 

prerequisites are available There can never be too many prerequisites, i e. it does 

not Interfere if the prerequisites for later work queue up, as this creates merely 

some “alack" in the schedule If there are many kinds of prerequisites, the supply 

with the least slack determines whether production goes on or not. Stack matters 

most in cyclical production processes, i e. where the supply for a production process

e.i
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is somehow conditional on earlier output of the same process (like re-using pots and 

pans). Indeed, work can go on only if there is a modicum of slack: each production 

step takes the prerequisites [rsm ovts  one unit of slack), manipulates them, and 

outputs them (restores one unit of slack).

Every iFBYj node creates slack, it injects one daton into the stream flowing from 

its righ t inport to its outport (no extra 3lack on its left inport). Every I NEXT] node 

removes slack, it eliminates one daton from the stream. The offset matrices express 

the provision or removal of slack on the stream flowing from an inport to an outport. 

Nsgativs index offsets indicate the provision  of slack, and vice versa. (This definition 

is now standard, for mathematical reasons [AsW83]. Early publications [Wad79] used 

the opposite definition.)

At some moments, however, there may be more slack than busy nodes to use 

it up. This means the slack has to be accommodated somewhere else, namely in a 

ICOPYl node. Its buffer queue takes up the remaining slack, and the queue length is 

therefore less or equal the (inverse of the) index offset XOTY; nodes provide no cure 

if there is insufficient slack.

Wadge's [Wad?9] Cycle Sum Test states (in essence) that every cycle is certainly 

free from deadlock if it has slack of at least one daton. A cycle with fewer ?NEXT;s than 

|F3Yls passes the Cycle Sum Test. The Cycle Sum Test gives merely a worst cos* 

analysis (the rule is sufficient, but not necessary), whereas log3 give the whole 

answer (only: to produce the complete tog may take very long, possibly forever). 

Further below we will see how particular constellations of nodes permit a relaxation 

of the rule -  The Cycle Sum Test determines the minimum queue length, and 

requires it to be at least one However, in order .to optimise fcopYl (t 0 4), one needs 

to know the mosimum queue length This can. still, be found by index offset methods 

(t  "iteration", below).
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Any serious computation involves a large number of nodes, and one would wish 

to know how much slack there is in such a large composite. This can be achieved by 

matrix operations, to be described now.

Nat Construction

An arbitrary Lucid graph (a net or a subnet) may be constructed using merely 

two tools: juxtaposition  and iteration (see also [Fau82], pages 140 ff). At each 

construction step, we can determine the offset matrix of the object built up so far.

node 0 node 1
4—— i-+

0 1
1 2

4 4

,r
node

Ju x ta p o s it io n  I t e r a t i o n

Juxtaposition is the operation which takes two arbitrary nodes, and places them 

side—by—side. Iteration is the operation which takes an arbitrary node, and connects 

a particular inport to a particular outport. Both operations re-index the inports and 

outports in the obvious way

The number of inports of the juxtapositioned super-node is the sum of inports 

of its inner nodes, and the same is valid for the outports. The offset matrix of the 

super—node is obtained by placing the offset matrices along the main diagonal, and 

by padding the remainder with For the example above (let a, 6, c, d be

offsets):

8.1
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node 0 : 
d-----------
I •  *

node 1 :

c
d

uxtapos i t ion :

a 6 —

The number of inports of the i t t ra t id  super—node is one less than that of its 

inner node, and the same is valid for the outports. The offset matrix of the 

super—node is obtained by forming the muimum of the index offsets along the paths 

which connect the new outport to the new inport. The matrix component for the 

inport and outport to be connected must be < 0 (otherwise the net may deadlock). 

For the example above:

inner node
H----------
[ a 6
I c d

i te ra t i on :

max (a-t-d, b j 
(e m ist be < 0 
s = la+d — max 

= I a~d -  b
+ ¡6 — max I

)

The condition "e < 0 " is due to the Cycle Sum Test; "s" expresses how much total

slack there is on the node-internal paths

Example (ISieve! main program)i offaat matrix

We are now able to apply this method, for example, to a subnet which occurred in the 

main program for the !s->ve|:

1----+  I-----------1
"1"H----- * PLUS I *■----- h

4----+  H------ 1— +

4

We want to work out the queue lengths m the iCQPVI node at the bottom. The offset 

matrix of the l PLUS] node consists only of zeros, and the matrix of the I PLUS! node 

compounded with the "1" is just a zero. The matrix of the i PaY! compounded with the

6.1
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"2 " is just a -1 , and the entity consisting of "21', [f§yJ. ” 1" and I PLUS! gives therefore an 

offset matrix of just a —1. Yet, we know nothing about the matrix of our jCQPYl.

We connect (=  iterate) the outport of the compound to the ¡copy! inport, and get:

and connect the outport of the whole thing to the right [COPY] outport. This leads to a 

matrix without any columns (since there are no inports), but there is also the 

condition "d—l < O". This condition states that the ¡copy! node must provide buffer 

space for (up to) one daton on its right outport. The left ¡COPY] outport is the only 

subnet outport (it must be therefore the driving outport for the whole subnet), and 

its queue length is therefore taro

But this is not all The queue lengths were calculated under the assumption that 

we are not in an intarmadiary state In other words, it describes the state where the 

daton delivery has been acknowledged by an [ADVANCE1 request. During the evaluation 

of a daton the I COPY! queues can swell to a length which is one greater than calculated 

above. In our example, above, the left iCOPYi outport must thus provide a buffer for 

one daton. and the right COPY outport must provide space for two, and this is indeed 

in harmony with the log (t 5.7).

Offaot Matrices of UDFa

The offset matrix of a non-reeur*iv« UDF can be determined just by applying 

juxtaposition and Iteration, as described

2 FBY 1 + ... COPY : u xtaposition :

I " I c
d c

d

I c—1 
| d — l

6.1



VI-9

Matters are more difficult for a recursive UDF, since its offset matrix is defined 

in terms o fitss lf. It is nevertheless quite straight forward to compute. We apply our 

usual construction process (juxtaposition and iteration), though using a matrix of 

unknowns for the recursive UDF. Once the construction is done, we can equate the 

resulting offset matrix with the matrix used at the outset, and we are left with a 

system of linear equations or inequalities. The solution of this system is the offset 

matrix.

Example flfirst])

This process can be illustrated using a recursive definition of jFIRS';::

FIRST a a a FBY (FIRST a ) ;

The corresponding Lucid graph is (ignore the offset matrices for a moment):

4
t-

H-------1- COPT
i--------

4

\ F1F
------1-
1ST j

— •
/ -I

The offset matrix o f FIRST] has only ono component, namely/, the subnet o f ! fb Yi and 

I FIRST] (framed in dots in the drawing) has the offset matrix <0, /-/>. We iterate this 

subnet with the [coftTl node, and have to form the maximum of the offset matrix above 

(the offset matrix of our IcopV! node is yet unknown). The end result is a 1FIRSTI node 

again, and we equate therefore that maximum with / itself'

/ = max | 0, /-1 j

6.1
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The solution is / *  O. which means the sole component of the offset matrix for the 

UDF IFrBSTI is zero. We conclude that our COPY has the offset matrix <0, 7>T. as 

shown. It has therefore buffer space for one extra daton on the right outport and 

none on the left (actually one more each, to allow for Intermediary states).

The same process can be applied to the recursive UDF |wvaj, and we would find 

that both components of its offset matrix are —. The sole component of the offset 

matrix of the recursive UDF I Sieve] is also «. This means that, in either UDF, the 

inport indices may be arbitrarily far ahead of the outport index, and its actor might 

therefore have unbounded buffering needs. We know from the log, however, that tach  

invocation  of the [Sieve! retains one daton; there is one invocation per prime. If we 

made a log of Iwvr!, we would find that the top invocation retains one daton whereas 

all earlier invocations have no memory. -  By the way. the offset matrix of IUPO.M is 

<0, -1  > and, again, the top invocation retains one daton whereas all earlier 

invocations have no memory

6.2 Act Expansion, and Node Condensing

The translation process described in chapter IV leaves us with a large number of 

actors (viz. one actor per node). This is exactly what is needed for a computer of the 

latest design, many cheap processors closely coupled together In traditional 

computer systems, however, concurrency must be restricted to those cases where it 

is essential; some uses of the concurrent OR are such essential cases (Real time 

requirements provide an unending supply of further examples, but that topic goes 

beyond this thesis.) We turn our attention in this section to an optimisation for a 

setting where concurrency must be minimal. The optimisation technique of this 

section is not applicable where the superior is a concurrent operator or where the 

Inferior has more than one reference K copy]) -  We prepare the program for this 

optimisation by replacing concurrent operators by their non-concurrent

0 2
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counterparts wherever possible (i.e. wherever that is not against the idea of the 

program).

As far as this section is concerned, three parts of every node act (t end of 4.1) 

are particularly relevant: X-part, Y—part and exception part. The X -part is 

executed only once at the beginning (the actor initialisation is part of this), the 

Y-part is executed in every loop pass, and the exception port is executed in the 

event of an exception.

When a node actor gets a [COMPUTE] or [ADVANCE! request, it resolves It within 

exactly one loop pass, i.e. by executing the Y—part or the exception part. 

An undirected IreceiveI is the first instruction in the Y—part, and this is exactly where 

the actor accepts all ICOHPUTEj requests Some acts ("/tnito stato m achinot". such as 

!F3Y| or INEXTI)  do not fit into this layout right away, but they can be brought into the 

universal shape with the help of 'CASE! statements.

On the side of the superior, a mere two pieces of code produce the requests. 

The daton value is acquired Trom the operand actor by calling ^Ge-.Pa-.onl (which issues 

also 1 NULLIFY!, if required), and an !EXCEPTION7ADVANC~~| does the rest (Concurrent 

acts use generally means other than lc«tDaton!, which is why our optimisation 

mechanism cannot be applied there.)

The optimisation is easily carried out: just append the inferior X-part to the 

X—part of the superior, substitute the call to rca-.Datonl by the inferior Y-part, and 

substitute the 1 EXCEPtlON a d v a n c e -  7 by the inferior exception part. — Clearly, this 

transformation is an expansion (* 4.3.2). It has no effect on the computations, but it 

reduces the number of actors and the amount of message passing The expansion is, 

of course, hardly possible If the inferior has more than one reference (sole example 

iCOPYl inport actor). It goes without say that no law forbids the expansion of 

expanded code; expansion may indeed be re-applied up to any finite depth
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The code of a UDF act U s tlf  (t 4.3.3.1) can be put in place of the UDF reference 

(i.e. expanded), but the instructions inside the UDF act (ICRSATSI etc.) must clearly 

not be expanded (tosy «sponsion must be maintained, T 4.3.3. l). UDF actors are, like 

all node actors, usually accessed from more than one point (at least from 10.tD.tonl 

and from [EXCEPTION ADVANCE~1). The UDF expansion must be programmed with care 

so that one UDF subnet is not created more them once. — If a UDF is unlikely ever to 

get a lC0kPUTE| request, it can be advantageous to leave it unaxpandtd, even if the 

UDF is non—recursive. It will use hetrdly any space until it gets its first [COMPUTE] 

request.

Act expansion has its drawbacks. Without it. the program would use mainly the 

standard acts (t 4.5), and only ine UDF acts would have to be defined and compiled 

Individually. The thartd  use of (standard) acts keeps the memory requirements low. 

As soon as one standard acts is expanded and integrated into another standard act, 

we end up with one act more, which has its price. One has to weigh the number of 

actors against the number of acts. Generally, act expansion is indicated if it greatly 

reduces the number of actors It is of real benefit only if applied to a depth much 

greater than one.
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Exampl* fl Slavi main program): «e t  axpanaion

The subnet from the I Sieve I main program is well suited to demonstrate act expansion. 

Here is the subnet once more:

---------h x 5
'T 'H -----

H-----+

H-----1- x3
I "2"H-------
H-----1-

x8

■+

We start our analysis at the subnet outport (as did the translation algorithm of

section 4.3.4), namely the outport actor ¡*0] of [COPVj. Its inferior ¡71] cannot be 

expanded (at least not straight forward) since it has two superiors: we leave fxO] 

unchanged for the time being and move on to its inferior¡7j]. Its inferior ¡72], the |F3Yl 

actor, can be expanded. The relevant portions in actor ¡77; are:

( *  Declarations: V i r i i t n  0  •)
LABEL 1 ;
VAR request : MSGTYPE ; inde »  ; INTEGER ;

* 2  : ACTOR ; r e s u l t  : ANYTYPE ;

( •  X—part and i n i t i a l i s a t i o n :  •)
( , , « * ) : =  RECEIVE "ROM (C re a to r )  :

( •  Y-part: •) 1
result : r  O s t D it a n  ( «2  index) i

( *  Exception part: *)
1: (request, index) Reveal i 

IF request *  ADVANCE
THEN E X C E P TIO N  (request, index) TO (xS) ;
RESET ;
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We expand the iFflVl actor [52] and obtain a rather clumsy piece of code (this is 

essentially |Act_Fby_l):

( •  Declarations: Ksrsien / ♦)
LABEL 1 ;
VAR request : 1ISGTYPE ; index : INTEGER ;

*3 . s4 : ACTOR ; r e s u l t  : ANYTYPE ;

( *  X—part and in itia lisat ion : *)
( , . « 3 .  * 4 )  := RECEIVE FROM (C re a to r )  ;

( •  Y—part :
IF index = 0 
THEN

result := GetDaton ( in d ex ,  *3)
ELSE

result := GetDaton ( in d ex—1, x4) ;

(•  Exception part: *)
1: (request, index) : = Reveal :

IF request = ADVANCE 
THEN BEGIN

IF index = 1
THEN EXCEPTION ( r eq u es t ,  f in a l  index) TO ( x 3 )
ELSE I F  index ’  f in a l  index

THEN EXCEPTION (r e q u e s t ,  index ) TO ( « S ,  x4)
ELSE EXCEPTION (r e q u e s t ,  index -  1 ) TO (x4 )  ;

END ;
RESET ;
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The Left operand of the I Fay; is a constant, and our code becomes a good deal simpler 

by expanding lAct-C onata iO

LABEL 1 ; ( •  D ec la ra t ion * .  Version *  • )
VAR requeat : HSGTYPE ; index : INTEGER ;

*4 : ACTOR ; r e e u l t  : ANYTYPE ;

( • X —part and i n i t i a l i e a t i o n :  • )
( . , * 4 )  :■ RECEIVE FROM (C re a to r )  ;

IF index = 0  (•  Y -p a r t .  • )
THEN r e s u l t  «■ 2
ELSE : l

r e s u l t  := CetDaton ( in d ex -1 ,  x4) ;

1: (r eq u ea t ,  index) : = Reveal ; ( •  Exception par t .  * )
IF (requeat -  ADVANCE) AND (1 <> Index)
THEN BEGIN

IF index = f in a l  index
THEN EXCEPTION (req u ea t ,  index ) TO (x4 )
ELSE EXCEPTION (r eq u es t ,  index-1 )  TO (x4 )  ;

END ;
RESET ;

It is also easy to expand the right operand of IF9Y1, the :PLuS, node. The "index fiddle"

of iFBYi carries through to the operands of I PLUS]. We expand the left operand jtb] as we

did before with[x3], and we get

LABEL 1 ; ( •  D e c l .
VAR requeat ; HSGTYPE ; index

xS : ACTOR ; reau lt

Version 3 • )
INTEGER , 
ANYTYPE ;

( •  X -par t  and i n i t i a l i s a t i o n .
( , . a « )  ; «  RECEIVE FROM (C re a to r )  ;

IF index = 0  ( •  Y -pa r t .
THEN r e s u l t  ; «  2 
ELSE

r e s u l t  ; *  1 ♦  GetDaton ( in dex -1 ,  xS)  ;

*)

I :  ( r eq u ea t ,  index) ;= Reveal ; ( •  Exception part.  • )
IF ( requeat •» ADVANCE) AND ( I  <> index)
THEN BEGIN

IF index = f in a l  index
THEN EXCEPTION ( r eq u ea t .  index )  TO ( x « )  
ELSE EXCEPTION (requ ea t ,  in d e x - ! )  TO ( x i )  ; 

END i 
RESET ;
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The next step would be to expand the ICQPYi outport actor fx8l, but we hesitate here. 

Firstly, the code of [5s| Is too massive to benefit when expanded; secondly, we cannot 

apply expansion any further because of [¡T] having two superiors. Thirdly, if we did 

nevertheless expand [xb] and integrate it in [xTJ. the jCOPYl inport would end up trying 

to request from itself. However, LUX actors cannot exchange messages with 

themselves. On the other hand, we found in section 5.7 that ¡xo] is always the driving 

outport, and that the queue length on the right inport is one. This is why [xe] need 

never exchange messages with [xT], and expanding [55] would therefore not cause any 

problem.

To bring the example to a conclusion, let me anticipate a tailor-made ICQPVl act 

with just the right properties (with a "cyclic" buffer of size one) which will be 

presented in section 6 4. Special attention has been paid to making sure the act can 

handle bare I ADVANCE! requests properly. We expand the constituents of that Ic o p v ! 

act, and get one node act for the tn tira  subnet:

6 2
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ACT Act^lO ; Kartton 4

LABEL 1 ; ( •  D ec la ra t ion *  •)
VAR su per io r  : ACTOR ; request : MSGTYPE ;

now. index : INTEGER ; r e s u l t  : ANYTYPE ;

BEGIN
new i * 1 ;  ( •  X -part  •)

REPEAT
WHILE TRUE DO
BEGIN ; i

(su p e r io r ,  request ,  index)  := RECEIVE ( )  ;

( •  Y—p a r t : •)
WHILE new < Index
DO BEGIN : 1

new ; = new ♦  1
IF now = 0
THEN resu l t  := 2
ELSE r e s u l t  r e s u l t  ♦ t ;

END ;
: 1

SEND (DATON, r e s u l t )  TO ( s u p e r i o r )  ;
END ; ( •  End o f  inner e t e rna l  loop.  •)

1: RESET ; ( •  Except ion par t .  •)
UNTIL FALSE ; ( •  End o f  outer  e t e rna l  loop.  •)
END ;

The cell ¡now retains the last index for which the [result! has been computed, and the 

evaluation does some "catching up" (¡WHILE nw~Qndex!) when required This elaborate 

mechanism has been inherited from the tailor-made [copy1 act; it needed this 

mechanism for handling bare iADVANCE! exceptions correctly.

An optimising compiler could go a step further. It has been mentioned that 

some acts must be conditioned to be suitable for expansion (* beginning of 6 2, 

"f in ite  state machine") However, once expansion has been carried out to 

exhaustion, the reverse conditioning can be attempted If the Y-part handles the 

evaluation of Its in itia l daton differently from the rest, It may help to unwind this 

in itia l loop pass (make a copy of the loop body, specialise it for one index value), and 

to place It before the loop (l.e. append it to the X-part). This process may be applied 

repeatedly.
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One loop pass (vtz. setting of the starting value) can be unwound in our example. 

Very little computation is actually carried out from one index value to the next, and 

the computation could therefore be done in the exception part. Some reorganisation 

of the program results in:

A ct_*0  ; V e r s i o n  5

LABEL 1 ; ( *  D ec la ra t ion s •)
VAR superio r  ;: ACTOR ; request : MSGTYPE ;

Index : INTEGER ; r e su l t : ANYTYPE ;

BEGIN
r e s u l t  i*  2 ; ( •  X-part ' )

REPEAT
WHILE TRUE DO
BEGIV :1 |

(su p e r io r ,  r equest ,  index) := RECEIVE ( )  ;

( • Y -part i s empty •)

SEND (DATON, r e s u l t )  TO (s u p e r io r )  ;
END . ( •  End o f  inner e te rn a l 1 oop . •)

1 : IE Reveal s ADVANCE ( •  Exception part  . •)
THEN r e s u l t
RESET ;

: * rasu 1 » ♦  1 ;

UNTIL FALSE . ( •  End o f  outer e te rn a l 1 oop . •)
END .
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Even better, the compiler might detect and exploit that the result is a linear function 

of the daton index:

ACT Act-JiO ; Vara ion 6

LABEL 1 ; ( •  D ec la ra t io n s  •)
VAR superior  : ACTOR ; request  : H8GTYPE ;

index : INTEGER ; r e s u l t  : ANYTYPE ;
BEGIN ( •  X—part  la  empty •)

REPEAT
WHILE TRUE DO
BEGIN ; I

( s u p e r io r ,  request ,  index ) . •= RECEIVE ( )  ;

( •  V—p a r t : • )
r a a u l t  i - Index ♦  Z ;
( •  := index • increment * s t a r t  •)

: 1
SEND (DATON, r e s u l t )  TO ( s u p e r io r )  ;

END ; ( •  End o f  inner e te rn a l  loop. •)

1: RESET ; ( •  Exception p o r t .  •)
UNTIL FALSE , (•  End o f  ou ter  e te rn a l  loop. •)
END ;

Actors created from this act have no memory, and the act is therefore as easy to 

expand as ;Ac:_ConstZ!.

6.3 Enriching the Protocol

The universal protocol (T4.2) has proved just right for all the explanations 

so far; a more refined protocol might well have blurred the relevant issues. But we 

shall now study some protocol extensions, most of them aimed at making better use 

of the [¿OPY, node actors.

All replies were so far of message type! 3AT0N'!. A reply of the alternative message 

type ICON»TAMf] could imply that all later replies will have the same value, gF] and 

[c5PY|, even i Nf i t f l  and IfbVL could take advantage of this extra information. It is 

unfortunately not easy to recognise all structures which deliver constants 

— Occasionally, actors have to switch into the "through." mode, where all subsequent 

requests and replies are passed on unchanged This situation could be optimised by
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operand redirection, i.e. by extra Information in the reply telling "substitute this 

operand from now on by actor xy*

Here are some extended requests (all directed at actor e):

[AUGMENT?!: (e = IC0PY1 outport) create a further iCQPYl outport actor,

I LENGTH? I: (e = I COPY! outport) enquire for current queue length,

IQUSUEdl: (e = I COPY! inport) append daton d to the queue.

[RESTART!: reset o as if it had just been created and initialised,

I KILL!: eradicate o and its dedicated inferiors.

Only the first two requests get replies The requests are listed in the order of 

Increasing relevance, and difficulty. The list is anything but complete (further 

suggestions: "bulk demand" *4.6.13, and a special ¡BARS] exception in place of the 

bare ¡ADVANCE!). Let us study the extensions one by one.

Ia u g m e n t !

If one 'COPY) node actcr feeds d irte tly  into another [COPY] node actor, some 

wasteful buffering of datons can occur (duplication, ? 4.0.1). Such a 

configuration can occur in perfectly meaningful programs. In the [Sieve! program 

(? 5.7), for example, the COPY: in the main program feeds straight into the jCOPY! 

of the UDF. This situation can be saved by the request [AUGMENT!. Issued to a 

ICOPYj outport«, I AUGMENT would cause •  to create a further [COPY] outport 

actor E, with E initially referring to the same daton a s « (i e E starts from the 

present state of •). Upon the [AUGMENT] request. •  gives the actor name of E as 

reply 

lUaWTHl

There are numerous applications for a request [LENGTH] which helps to find out 

the current gueue length, of a iCOPYl outport actor (or a lftEA&| actor) It is almost 

Indispensable in the interface from a demand driven to a data driven evaluation.
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A mixed Lucid implementation with provisions (or data driven 

evaluation has its attractions, it can use the idle time of the processor 

(e.g. waiting for inputs from the user) for some "compute ahead", especially if 

this does not increase total store requirements.

[QUEUE d|

The IQUEUB el request is similarly important for the interface from  a data driven 

to the demand driven evaluation. That request, when issued to a IcoPYI inport 

actor •, appends daton d to the buffer queue of •. (The [COPY! inport act of 

section 4.6.11 would need modification to accept requests.) — This enhancement 

permits a IFBY1 optimisation: every [F3T] node inserts "slack" into the daton 

stream and, with the help of [QUEUE <t\. one would be able to "push" this daton 

downstream before the program start. The corresponding optimisation or TSEXIi 

requires no special means, merely a 6art [ADVANCE: must be passed upstream 

before the program start.

[restart;

Some recursive UDFs cause an unending need for the creation of new actors, 

while at the same time shedding defunct actors (see I Kit/-! request, best 

example: !igloo! function t appendix B) It is often possible (Lucid ta il recursion, 

t 6.6) to immediately assign a new role to a actor •, instead of letting it die. 

This is achieved with the help of the [RESTART1 request, which makes •  pretend it 

had just been created and initialised. Actors propagate TresTaRT] requests to 

their Inferiors

E

We have so far used ! AJVANCfe, filt̂ indeiil to tell actor •  that its services are no 

longer needed. Upon lA^VANCOnaiindVsl, actor •  does a "last clean—up" and goes 

then into eternal hibernation (i e it does not terminate its existence; it may be 

followed by a TRESfARf! request). The IkiLl! exception exceeds the effect of
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1 ADVANCE, fin«iinde»| in that it do«* terminate the existence of •  (and a IRESTARTI is 

then impossible). Actors propagats ItctLl exceptions to their inferiors in the 

course of the clean—up. After the IKtlLI. the entire subnet is eradicated. Once an 

actor has received a I KILL! no further messages must ever be sent to it. since 

"messages must only be sent to » l is t in g  actors" ( f  3 2.2. IsENDI). -  fifflxl 

improves efficiency, obviously, since it releases resources for re—use.

When tracing upstream through the subnet, we may come to a ICOPYi node actor 

which is not entirety dedicated to the subnet. If •  is a I COPY! outport actor, a 1KILL1 

exception will certainly terminate •, but it will terminate the pertaining ICOPYi inport 

actor only if no other outport actors remain. This is controlled by the [activel voting 

mechanism (t 4.6.7) in procedure jAdvanceOutportl.

The (revised) exception part in the !F3YI act is the ultimate source of most jiCLLi 

exceptions (another source is ¡TfJ with computed constants, t 6 6). The revised code 

would look roughly like this:

1: ( r eq u es t ,  index) : = Reveal ;
CASE request OF

ADVANCE: IF
THEN
ELSE

index -  1
EXCEPTION
EXCEPTION

(KILL, f in a l in d e x )  
(ADVANCE, index—1)

TO
TO

(pO)
( P i ) ,

KILL: IF
THEN

index *  1
EXCEPTION (KILL, f i n a l i  ndex) TO (pO, Pi )

NULLIFY:
ELSE EXCEPTION (KILL, index-1 ) TO ( p l )

END ;
RESET i ( •  There should r e a l l y  be no RESET a f t e r  KILL •)
. . .  ( •  (a c to r  might ge t  suspended b e fo re  i t s  d ea th ) .  •)

The acts would have to be modified to make them handle ikiLLl exceptions 

appropriately. For example, the eternal outer loop would change into:

REPEAT

UNTIL Reveal »  KILL ;

Obviously, an actor with on« outport must die as soon as a ftcHI request arrives 

Correspondingly, a FcopTI node dies after sach outport has got a IkFClI. But in esrtain
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cycles, the entire |C0PY1 node actor should die even when only some outports have got 

a Ikhli. Consider for example the simple cycle:

This I COPY! depends on itself. According to the simple rule, the right I COPY! outport 

will never get a ?KILL! request, and the IcOPYl will therefore never die We must take a

more global approach: we must view the subnet (consisting of :COa V ', |F3Y;. and left 

IFBY1 operand) as an entity, with the left [COPY! outport as the subnet outport. The 

rule would then be: "the subnet dies once each of its outports has got a j kill I 

request." — One might be tempted into using a "trick", using a modified ~COPYl which 

dies upon a single I KILL! request on one outport But such a [copy! would be useless in 

a slightly more complicated subnet (a combined vote of all subnet outports is 

needed, t end of 4.7 2):

It must be clear by now why we printed K for TADVANC~,~7ina;.nd«!«: in the state 

transition tables and logs. Indeed, 1 ADVANCE,'finalmdei! can be substituted by [KILL! in 

our universal protocol, the difference lies outside the message passing behaviour.

b = a FBY b 
. . = b

a

COPY } same e f f e c t  as: b = FIRST a
■+

4

, . = c
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6.4 Tailor mad« |copyj acta

The ICOPYI act offers many chances for optimisation: most applications do not 

need the generality of our universal icoPYl act (r 4.8), and such restrictions can often 

be traded In for reductions in administration. Our ¡COPY! act is very liberal in two 

respects:

— it imposes no maximum queue length,

— the relative "timing" between the different outports is unrestricted (i.e. index 

offsets between outports, and which outport is driving).

Sections 5 6 and 8.1 presented program analysis techniques for either property. This 

section provides shortcuts mainly for those cases where a maximum queue length is 

known. Our list of techniques is far from complete. — For the remainder or this 

section we use n to denote the number of ¡COPYj outports

Cyclic buffara are generally used when a maximum queue length is known. 

Such a buffer consists of an array 2  length 2 ], a pointer FpTt1 which remembers 

where it last wrote into the at ray, and pointers "TeiltH which remember where to read 

the array llgetltH is dedicated to 'COPY' outport t, i= / .. n). The general idea is then:
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CONST
Rl *4711 C Maximum queue length . * )
q l l *  q l - I
n = 3  ; C Number o f  COPY ou tports . * )

VAR
ptetrp ; ANYTYPE ; C The value to  be put. • )
gterrp : ANYTYPE . C The obtained va lue. • )
V : ARRAY [0. . q l l ] OF ANYTYPE ; ( •  B u f fe r * )
« • t : ARRAY [1. • nj OF INTEGER ;
put, i .  j ,  k : INTEGER ;

BEGIN
put : »  -1 ;
FOR j :=  1 TO n DO g e t [ j ]  := 0 ;
REPEAT

( *  Putt ing  data into b u f f e r .  * )
p temp : s . . . ,
put ;= put + 1 ;
FOR ) ; *  I TOn
DO IF g e t [ j ]  + q l l  < put THEN r e p o r t - e r r o r  ; 
k : *  put MOD ql ; ( •  wrap—around •)
y[kJ ; *  ptemp ;

( •  Assume outport « is  not d r iv in g ;  • )
( •  Getting data m i  a J  b u f fe r :  • )  ,
IF put < g e t [ i ]  THEN rep o r t—e rro r  ;
J : = g e t [ i ]  MOD ql ; ( •  wrap—around •)
gtemp := v [ j  j
. . .  := g t emp ;
g e t [ i ] : = g e 1 1 i ] * 1  ; (♦  ADVANCE • )
. .  .

UNTIL FALSE ;
END ;

(The division remainder !~M0D! helps to achieve a w rap-around effect: once the 

buffering has reached the end of array 3  '*• “Jumps" back to the beginning ) This 

code can be simplified a good deal in specific cases:
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If 13] — 2, the buffer consists only of |v[ol! and [vf ill. All the pointers toggle merely 

between 0 and 1:

put :=  1 ; g e t  := 0 ;

( •  P u tt in g  data in to  b u f f e r :  • )
put :=  1—put ; 
v fp u t ]  := ptenp ;

( •  R e t r ie v in g  data from b u f f e r ;  • )
gtemp := v [ g e t ]  ;
g e t  :=  1-get ; ( •  ADVANCE • )

— In a two—outport ICOPYi, where the non—driving outport always lags two datons 

behind the driving one, we can even do without pointers altogether (swapping 

buffer):

[ VAR vO, v l  ; ANYTYPE ;
. . .

j ( •  Pu tt in g  data in to  b u f fe r ;  • )  
i v l  := vO ;
I vO := ptemp ;

( •  R e t r ie v in g  data from b u f f e r :  • )
! g t emp ;= v 1 ;

l__________________________________________ I

— Only on« buffer cell 0  is needed in a two—outport ¡COPY] if the non-driving 

outport lags only on« daton behind the driving one (t Version 4  in 6.2):

| VAR v ; ANYTYPE ;
. . .

I ( •  P u t t in g  data in to  b u f f e r ;  • )  
I v : *  p t enp ;

j ( •  R e t r ie v in g  data from b u f fe r ;  •) 
gtenp : «  v ;
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On the other hand, if the maximum queue length is known and if the entire 

history must be preserved (as in some versions of the !Sieve! UDF), an array is 

most appropriate as buffer (just take the cyclic buffer and remove its 

wrap-around). Arrays are appropriate even if the queue length is unbounded: 

it is best in that case to subdivide the available storage space Into arrays 

according to the growth rate of the respective queues. The program collapsot 

anyway once the buffer space is exhausted.

A two—outport 1C0PV1 can be implemented altogether without a queue, as long as 

either outport disclaims the daton value early enough. Assume, the IC0PY1 

outports o and O progress in such a way that O gets a bare |ADVANCE! always 

boforo o is requested [COMPUTE] for the same daton index. The role of the 

outports may be swapped after each episode. This situation can arise if a 

variable x has two references of the kind:

H-----------
| COPY

i  i
i-------------------K H--------------f
| FIRST | | NEXT
I -------- + H---------H

FIRST x 
NEXT x

IF . . .  THEN x / 2
ELSE x *  9 FI

1.S Tagged Data Flow

Our IcOPY' act (t 4.8) is restrictive in one respect: it handles datons only in the 

sequence of increasing index (l.e monotonicalty. tend of 3.1.2). This restriction is 

commonly made In Data Flow. We noticed, however, that acts without memory 

permit requests for datons in any sequence (t 4 5.7). A technique named "Tagged 

Data Flow" permits such random index computations. It is moderately difficult to 

change our implementation into tagged Data How; a redesign is required mainly for 

the actors with memory: T c p p y i .  iREAPl. f w f t t f S I  and UDFs.
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In tagged DF, all ICOPYI node actors share one "daton poo l" (faintly resembling a 

data base). Whenever a daton arrives at a ICOPYI inport, a bucket" (a data record) is 

deposited in the pool, stating the value and the identity of the daton. The name of 

the ICOPYI inport actor can serve as identity tag. Whenever a ICOPYI outport gets a 

I COMPUTE] request, It searches first the pool for the daton in question (using the daton 

index and ICOFYI inport name as search keys). If the search fails, the ¡copy] instructs 

its operand to determine the daton value. At suitable moments, the daton pool is 

cleared of defunct datons; reference counts or statistical methods (the "rotirom ont 

•chomo" [FaW83]) are used to identify defunctness. Tagged IREA31 works quite like 

tagged ICOPY], except that its datons remain permanently in the daton pool.

However, the tagged implementation becomes much more complicated once we 

allow recursive UDFs. While a node actor is trying to evaluate one daton of a history, 

the system must be able to create another actor which evaluates another daton of 

the tamo history. Such a multi-level action is occasionally required for evaluating 

recursive Lucid definitions. All tagged DF implementations of Lucid use therefore a 

technique rather different from the one described in this thesis Each of their node 

actors computes only a single daton, and dies then. The resulting high rate of actor 

creation and termination can be partly compensated by highly optimising the actor 

creation.

Generating good equivalent imperative code for tagged DF is very hard The 

|WRiTE!| act and our protocol can remain essentially unaltered. Only a UDF nesting 

control needs to be added; Ostrum/Wadge call this the "plact tag". — Ostrum's Lucid 

interpreter [OstBl] is based on tagged Data Flow; it stores even all intermediary 

results (i e not only the ¡COPY] queues) due to a present lack of program analysis 

Denbaum's thesis [Den83] demonstrates how to compile Lagged DF for a subset of 

Lucid, but with rather unsatisfactory code as result
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Why Is the chapter on tffic io n cy  the place to discuss tagged Data Flow? The 

daton evaluation out of "despair" ( t  4.6.5 and 5.8) can be completely avoided in 

tagged DF: its daton evaluation is free to skip index values since it can always come 

back to them. Tagged DF handles this situation clearly most efficiently. Pipeline DF 

excels in the simplicity o f daton acctss, where tagged DF needs an associative 

memory search. Moreover, the discarding of supposedly defunct datons occasionally 

forces tagged DF to re-evaluate datons

6.6 Cod« Optimisation

There is a virtually unfathomable "box of tricks" for improving the efficiency of 

the generated code even further; quite important ones have already been presented 

earlier in this chapter. Here are three further tricks (in reverse order of difficulty):

Concur rant J f]

It is easy to refine the operator so that it doe3 not evaluate the condition 

operand c if the I THEN; operand x and the [ElSEl operand y deliver equal values 

anyway. Instances of:

HFc THEN« ELSEy FH

are simply substituted by:

IfF c OW («■ ») tHEN »  ELSE r l ? .

In general, this concurrent |6ftl performs very poorly on von Neumann 

mono—processors, and It performs best if c is much more difficult to evaluate than x 

and y.

Trl with Computed Constanta

Recursive UDFs, in particular, tend to contain expressions like:
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IF FIRST expression THEN z ELSE y FI
IF indez < t THEN z ELSE j  FI // with constant t

The [if] switches in both cases, from a certain index on, to either choice; 

*  re—evaluation of the condition will be unnecessary from then on. At that point can 

a net sim plifica tion  (1KILL1 requests, operand redirection) be applied to the 

unsuccessful operand. The "arms” of the [|[] do often contain a UDF recursion. Such 

a net simplification may prevent a UDF from inflating beyond all bounds.

TaH Recursion for Lucid UDFe

Recursive L'DFs correspond to in fin its  nets (t 2.2), and the storage 

requirements of recursive UDFs increase whenever a new UDF is invoked. It is, 

however, occasionally possible to formulate acts for recursive UDFs so that they use 

tail recursion (or something resembling it), and they can lose their progressive 

storage requirements in this way.

Let ¡X] be an actor for a recursive UDF, and let lYrT. ... [Ŷ I be the operand actors 

of jx]. The optimisation is only possible if all the actual operands in the recursion 

of ¡x] are particularly simple, i.e. if they are either identical to certain formal 

operands of ¡X], if they are fC0?Y| nodes, or if they deliver invariants (constant or 

Ifirst ...|). They may even, and this is the most complicated case, deliver a formal 

operand p of [x] with a simple m odification  (namely: p m ultiplied  with an invariant, 

p  with an invariant added, OKed or ANOed, or index of p with an invariant added). 

We exploit the fact that the effects of such operations can be accumulated in one 

storage cell

This transformation generates a nstw UDF from the given UDF, so that the new 

UDF can do all the work of the given UDF, though without the growth in store 

Further to the transformation of the actual operands and of the result, above, 

a subnet transform ation  may have to be carried out The subnet transformation is
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done as follows (before the translation): starting from the subnet outport we move 

upstream and mark every node of [x] (including those in operand subnets) which 

contributes to the computation of the "current" daton with an index offset greater or 

equal zero. This marking requires that inner UDFs be expanded, in the worst case as 

often as there are [NEXT! nodes in the UDF. The marking stops when each node of ¡X], 

ignoring  the invocation level, has been marked at least once (the transformation 

fa ils  if a node needs to be marked more than once). The new UDF is then written so 

that it contains all the marked nodes, crossing invocation levels wherever needed. — 

The full description of the transformation will be the subject of a future paper. 

A recursive UDF may be expanded (t 6 2) once it has been transformed in this way

Example (  [Act_JL)pon_])

It depends on the right IUPON': operand value, how the operands (of the "current” 

activation) are transformed into the operands (of the ' inner" activation). The result 

of the inner activation is transformed into invariants fTT?iON' was originally defined as 

the UDF:

UPON (a . k) = a FBY UPON ( p. NEXT k ) 
WHERE p = IF (FIRST k )  THEN

ELSE
END ;

NEXT a

a F!

____________ I
The transformation yields a new UDF.

NEWPON (a , k) » VALOF
d = NEXT k ;
b -«IF  FIRST d THEN NEXT a 

ELSE a FI ,

■o that:

raau lt  ■» b FBY NEWPON 
END :

(b ,  d) :

UPON (*, y) ’ x FBY NEWPON (x ,  0 FBY y)

|NEWTON! contains a tail recursion, and only I NEXT] operations have to be accumulated 

The resulting (non-recursive) code for iNftwftON] can be merged with the ¡UP0N1 

adaptation into a reasonably short piece of code (it would be hard to explain the
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entire translation):

ACT Act_Dpon_ ;
LABEL 1 ;
VAR

su p er io r ,  pO. p i  : ACTOR 
index, count, now : INTEGER 
r e s u l t  : ANYTYPE

BECIN
( . . pO. p i )  :=  RECEIVE FROM (C re a to r )  ; 
count 0 ; now ;= —1 ; condi . “  TRUE ; errpty

request ; MSGTYPE ;
cond i,  enpty : BOOLEAN ;

TRUE

REPEAT
WHILE TRUE DO BEGIN

(su p e r io r ,  request ,  index ) .= RECEIVE ( )

WHILE now < index ( •  Catching up:
DO BEGIN

IF 0 <■= now 
THEN BEGIN

condi := CetOaton (now+1, p i )
EXCEPTION (ADVANCE, now+2) TO ( p i )  

END ;
now := now + 1 ;

IF condi
THEN BEGIN count count «■ 1 ;

IF  errp t y
THEN EXCEPTION (ADVANCE, count) TO (?0 )  
ELSE etrpty . TRUE ;

END END ;

IF etrpty ( •  Re luc tan t e va lu a t ion .
THEN BEGIN

resu l t  := GetDaton (count, pO)
EXCEPTION (ADVANCE, count«- ! )  TO (pO) 
errpty ;= FALSE ;

END ;

*)

SEND (DATON, r e s u l t )  TO (s u p e r io r )  ;
END ; ( •  End o f  inner e te rn a l  loop.

( •  Exception par t .  •)( r eq u es t ,  index) Reveal ;
IF (request *  ADVANCE ) AND 

( index *  f in a l  index)
THEN EXCEPTION ( r eq u es t ,  index ) TO (pO, p i )  ; 
RESET ,

UNTIL FALSE ; ( •  End o f  ou ter  e te rn a l  loop
END ; ( •  End o f  Act_Upon_ .
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The example shows a further application of the "catching up” mechanism (t 8.2, 

Version 4), it uses the | FIRST! /jMEXTI optimisation of 1C0PY1 (for the variable [d]). the 

invariant [IF]. and UDF tail recursion with accumulation of IMEXTi. The lUPOW) actors do 

not build up internal queues. — Similar methods are applied to obtain the WVR act:
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ACT A c t j f v r -  ;
LABEL 1 ;
VAR

su p er io r ,  pO, p i  : ACTOR ; request : MSGTYPE ;
r e s u l t  : ANYTYPE ; condì,  empty : BOOLEAN ;
index, count, 1 count, now : INTEGER ;

BEGIN
count := 0 ; 1 count : = 0 ; now ;=  —1 ; empty := TRUE ;
C . . pO, p i )  :=  RECEIVE FROM (C re a to r )  ;

REPEAT
WHILE TRUE DO BEGIN : l

( su p e r io r ,  request ,  index) := RECEIVE ( )  ;

WHILE now < index DO
BEGIN REPEAT ; 1

IF l c o u n t  < c o u n t
T H E N  E X C E P T I O N  ( A D V A N C E ,  c o u n t )  T O  (pO) ;

: 1
c o n d i  G e t D a t o n  ( cou n t ,  pi) ;
c o u n t  : = c o u n t  +  1 ;
E X C E P T I O N  ( A D V A N C E ,  c o u n t )  T O  (pi) ;

U N T I L  condi ; 
n o w  ; = n o w  +• 1 ;

E N D  ;
lcount c o u n t  —  1 ;

IF errpty (• R e l u c t a n t  e v a l u a t i o n ;  •)
T H E N  B E G I N

r e s u l t  ;w G e t D a t o n  ( l count, pO) ;
l c o u n t  :» l c o u n t  *■ 1 ; e m p t y  F A L S E  ;
E X C E P T I O N  ( A D V A N C E ,  lcou.nt) TO (pO) ;

E N D  ;

S E N D  (DA T O N ,  r e s u l t )  T O  ( s u p e r i o r )  ;
E N D  ; (• E n d  of i n n e r  e t e r n a l  loop. •)

1: ( r e q u e s t ,  i n d e x )  := R e v e a l  ; (• E x c e p t i o n  part. •)
IF r e q u e s t  = A D V A N C E  T H E N

BEGIN IF index = f i na l  Index
T H E N  E X C E P T I O N  (r e q u e s t ,  index) T O  (pO, pi)
ELSE IF enpty T H E N

B E G I N  1 c o u n t  := lcount 1 ,
E X C E P T I O N  (r e q u e s t .  I c o u n t )  T O  (pO) ;

E N D  ;
enqit y : *  TRUE ;

END ;
R E S E T  i

UNTIL FALSE ; (* End o f  ou ter  e te rn a l  loop. •)
e n d  j ( *  End o f  Act_W vr_ . •)
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•.7 Discussion

The purpose of this chapter was to destroy the myth that Lucid programs are 

inherently inefficient. It gave only an idea of possible optimisation techniques. The 

chapter has been somewhat vague concerning when and how to apply each 

optimisation, it has been merely a fairly unsystematic collection of "tricks''. A closed 

and comprehensive theory of optimisation would be desirable, and such work is 

under way in a number of places. — Most of the optimisations techniques in this 

chapter were aimed at a von Neumann mono—processor. If we applied them to our 

ISievel program we would end up with a single actor, created from the following act:

Example (1 Sievel): final result

ACT Act_pr ime* _ ;

LABEL 1, 2 ;
VAR

index, r esu lt ,  t , i INTEGER ,
primes . ARRAY [ 1 .2000] OF INTEGER ;

BEGIN'
index : = 0 ; : *  0

REPEAT
reau lt : = index ♦ 2 . C r 6.2, Ver s i on 6. • )

2: FOR i := 1 TO t
□0 IF ( r e s u l t M03 pri me* l i ] )  = 0 THEN GOTO l ;

WRITE [r ea u lt ) t : * t> l ; p r i mes[ t ] ;= r e a u l t  ,
GOTO 2 i

1 : i ndex : «  index ♦ 1 :
UNTIL t * 2000 ; ( •  End of e ternal loop •)

END ;

But what is the ICOTOa! doing there'1 The program would only gain if that instruction 

was omitted -  This is a very interesting point The translation of the Lucid program 

really yields the program as shown, with the TSSToSI in it, though the Lucid program 

is easily corrected. Is the Lucid program meant to specify the operations which shall 

be carried out, or is it just a mathematical definition of the result history? There is

6 7
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no universally accepted answer to this question. One might give the Lucid compiler 

an option stating the approach favoured by the user. (The former view might be 

most suited during program development.)

8.7
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CHAPTER Vlfc Area« of Furthar Rasaareh 

7 .0  Introduction

Quite a few aspect* of implementing Lucid have been omitted in this thesis. This 

omission was sometimes deliberate, sometimes not. Some explanations would have 

distracted from the true issue of the thesis, they would have overloaded the thesis. 

For some topics, simply too little is presently known, so that answers could not be 

based on well founded knowledge. Some areas where further research is indicated 

have already been mentioned in the pertaining chapters:

— Obviously, the next action now due is the implementation, on real machines, of 

the essence of this thesis. A working system is always the most credible 

demonstration of success. Quite commonly, such a system sparks off a wealth of 

new ideas: the use of our pLucid system [FMY63] has very much had this effect. 

Only the most essential parts of this thesis have so far been implemented, since 

it was felt that an emphasis should be put on careful planning and on scientific 

analysis.

— Scheduling strategies need to be developed (a) for a revised Lucid with more 

than one IW3TTE1, and (b) for running Lucid on a multiprocessor network. Ideally, 

an operating system should be developed which takes into account the demand 

driven and potentially concurrent nature of Lucid.

— The efficiency of the Lucid system can be Improved by protocol extensions, by 

the provision of further highly adapted acts, and by further program analysis 

methods. Provisions for actor termination fall also into this category. The long 

term Is clearly the development of a systematic and comprehensive theory 

of optimisation superseding the present patchy approach.

_  Th, specific advantages of tagged DF and pipeline DF have been contrasted 

(t  6.8). Lucid programs with reverse dependencies are not pipeline computable

TO
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without major rewriting. Is there a general algorithm (or making all Lucid 

programs monotonic, so they can run in pipeline DP?

7.1 Othor Operational Models

In our translation, the underlying execution strategy has been demand driven DF 

with pipelines as buffers. Chapter I gave the reasons for this particular choice. 

However, there are situations where one of the other strategies would be more 

appropriate.

Lucid implementations have been done for the Manchester Data Flow machine 

[Bus79, Sar82], that machine is truely data driven and leans in a direction rather 

opposite to the one taken by this thesis. Our translation generates very efficiency 

conscious code: an evaluation is initiated only when its result is needed However, 

generosity can suit even a miser: some premature evaluations are cheaper than the 

administration for their delay. We should therefore investigate where data drive 

would improve our code.

Especially our l WRITE I act (r 4.5.4) reflects the data driven and pipeline oriented 

nature of the operating system. However, a demand driven system (like pLucid) 

comes really into its own when put together with other demand driven systems, such 

as data base query systems. A demand driven operating system exists already, as an 

academic exercise, but the relevance of this topic has not been fully appreciated, 

yet.

7.2 Un|uags Extensions for LuoM

Even though Lucid is already highly developed, various extensions would make It even 

more usable: arrays, types, higher order functions (functions operating on 

functions), and time dependent functions. Many extensions are a mere question of 

sweat, but time dependent functions ask for a major re-think of Lucid altogether,

7.8
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including Its Implementation technique:

D«t« Flow» is a restriction of Data Flow under which only fu n c tion a l  

operators are permitted. An operator is functional if its result is entirely determined 

by the values of its operands. An operator whose result depends on the "wall clock” 

time o f  execu tion  is clearly non—functional. We have so far only bothered about 

Lucid as a functianm l programming language (f chapter 11), i.e. the version of Lucid 

where all the operators are functional. Lucid has originally been designed to be a 

functional language, and an interface to the operational domain is bound to produce 

problems.

There sire a few situations which require non—functional means; for example, 

the operating system must be able to test whether the user has struck a key, or to 

ask for the time of the day. One might simply try to enrich Lucid by new functions 

IBuffer-FuS] and ITime-Wowl. This approach is inappropriate in many situations It may, 

in tagged Data Flow in particular, lead to the queuing a vast numbers of irrelevant 

data. Wadge suggested another method by introducing hiatons (the Greek word 

M a tu e  means "pause"), special data items indicating “no daton a v a ila b le " . The use 

of hiatons makes a total redesign of the Lucid system necessary, even the language 

itself may need a few extensions. Hiatons can occur anywhere in a history, they 

don't occupy daton positions in the history, and it is therefore possible to f i lte r  all 

the hiatons out of the history (to "d e -h ia ton iee  the h ie to r y " ). Hiatons have 

implications on many aspects of Lucid, and further research is needed before 

conclusive answers can be given.

7.8
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Summary

The thesis has described a complete implementation method for Lucid, based on 

Message Passing. The description has been presented step by step, starting with a 

"conditioning" stage, followed by the main translation, and ending with code 

optimisation. All the essential items of code are readily contained in the text. The 

thesis can thus be used directly as a guide for the implementation on any computer 

system with Message Passing. Due to its modularity, universal components can be 

easily replaced by optimised ones. The modularity makes it also easy to check the 

correctness of every stage. The correct execution has been illustrated by special 

diagrams, execution logs, which highlight particularly the sequence of events in the 

case of concurrent execution.
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Appendix At The BNF of Lucid

Here is the BNF of Lucid, the way it is used throughout this thesis. This is a 

subset of the language pLucid [FMY83]. The algebra of pLucid comprises lists (as in 

POP—2 or LISP) and the pertaining operators. Lists are a completely separate topic 

area; they have been omitted in this thesis for the sake of clarity, but they can be 

added any time without necessitating a revision of the thesis. We go even further, we 

use a minimal algebra which comprises only TRUE, FALSE, ERROR and all the 

integers. Examples may occur in this thesis which exceed this minimal algebra 

(using real 3.14159 or a string like "Hello there"); the reader Is asked to take the BNF 

as suitably extended.

In the BNF formalism we use the following notation:

< > every meta term is enclosed in angle brackets,

:: = reads as <meta term > is defined by <meta expression>,

| reads as <meta expressian> or <m tta  expression>,

( | denotes possible repetition zero or more times of the enclosed <meta

expression>,

/ /  precedes comments

The Lucid syntax is defined by the following BNF:

«progranfr «expression»

«expression» «primary»
«prefix operator» «primary»
«prirrary» «in fix  operator» «primary»
«where clause»

«primary» «constant»
<vari>
« i f  expression»
«function re f»
( «expression» )

«expression» // precedence permitting

A O
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«constan t»

<n u n rlc  constant»: ; «

«miner ic  constant» 
TRUE | FALSE | ERROR

« d ig i t »  | « d i g i t »  |
— «rn raric  constant»

« d i g i t »  

« l e t t e r »  ::■

«alphanumeric»

« id e n t i f i e r »

«▼ a rt »

«p r e f ix  operator» 

« in f i x  operator»

o | i | 2 | s | 4 | a | e | ? | a | 9

A B C 0 E F G H I J K L
N 0 P Q R S T U V W X Y
a b c d • f 8 h i J k 1
n o P 4 r s t u V w X y

M
Z
m
z

*  « d i g i t »  | « l e t t e r »

= « l e t t e r »  | «alphanumeric» |

•  « i d e n t i f i e r »  / /  nans of a var iab le

= -  I NOT I FIRST I NEXT

a —

LE LT

<= <
AND OR
FRY WVR

CT
>

/ MOD
CT I NE | EC 
>-

ASA I UPON

« i f  expression» ; ; 2 IF «expression» THEN «expression»
ELSE «expression» Ft

«where clause» ; ; - «expression» WHERE «body» END

«body» ; ; s f «currenting> | ( «defin ition» |

«current ing» ; ; 52 <var'» IS CURRENT «expression» ;

<de f i n i t ion» ; ; 52
1

«sinple def» 
«function def»

«sinple def> • ; a <varl» - «dcfiniens» ;

«function def» ; ; s <func» ( «fortnals» ) ”  «definiens» ;

<deflniens» «expression»

<func» ; ; a «iden tifie r» // function name

«formali> ;* <varl» | , <varl> |

«function ref» ; ; * <func» ( «actuals» )

«actuals» ; ; a «expression» | , «expression» |

A.O
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Note: Throughout pLucid ~ is used instead of — .

<curren ting>  is described in  appendix B.

Lucid  program s can contain com m ents d irected  solely a t the human 

reader: the com piler ignores double backslashes / /  and everything on th e ir 

r ig h t hand side w ith in  the line.

The follow ing iden tifie rs  are reserved as keywords:

AND ASA CURRENT ELSE END EQ ERROR FALSE FBY F I FIRST GE GT 
IF  IS  LE LT MOD NE NEXT NOT OR THEN TRUE UPON WHERE WVR

(Throughout th is  thesis, keywords are w ritte n  in  capita ls and variables in lower case.

However, th a t ru le  is not p a rt of real Lucid but intended to  im prove le g ib ility )

Here is a short descrip tion o f the operators of our algebra:

p re f ix  op.

NOT
FIRST
NEXT

I manina

Arithnetic  inverse, the operand • ( -1 )  
Boolean negation.
In f in i t e  extension of in i t ia l  daton.
Op history with in i t ia l  daton removed.

in f ix  op. I meaning (T *  TRUE , F -  FALSE)
+■

MDD
AND
Ok
GT >
CE >*
LT <
LE <*
BQ
NE
FBY
UPON
WVR
ASA

Stxn of the two operands.
Result of subtracting the r ight op from the l e f t  one. 
Product of the two operands.
Quotient from d iv id ing the l e f t  op by the r ight one 
without remainder ( 13 DIV 7 * 1 ,  (-13 ) DiV 7 = —1 ).
Remainder from dividing the l e f t  op by the r ight one.
T i f  both ops are T, F otherwise.
F i f  both ops are F, T otherwise.
T i f  l e f t  op Greater Than right op, F otherwise.
T i f  l e f t  op Greater or Equal r ight op, F otherwise.
T i f  l e f t  op Less Than r ight op, F otherwise.
T i f  l e f t  op Less or Equal r ight op, F otherwise.
T i f  l e f t  op QQual to r igh t op, F otherwise.
T i f  l e f t  op Not Equal to r igh t op. F otnerwlsa.
In i t i a l  daton o f  l e f t  hist prepended to r ight h ist. 
Repeats l e f t  daton while r ight daton is FALSE.
Ignores l e f t  daton whenever r ight daton FALSE.
F irs t  l e f t  daton whose right daton is TRUE.

Im possible com putations, like  a division by zero, y ie ld  ÎERRÔft]. This is a special value

ind icating  "som ething went wrong in the com putation of th is daton". It is impossible 

to  guarantee the ind ication o f every e rro r (ha lting  problem !)

AO
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The BNF defines expressions in  te rm s of p rim arie s , w hich are m erely 

p a rticu la rly  "well m annered" expressions. A ll p rim aries are the re fo re  expressions. 

Just a variable o r a constan t is a p rim ary Enclosing an expression in  b rackets 

prom otes it  to  a p rim ary. The construct I IF c THEN »  ELSE y Fit is a p rim a ry , where [c] [5] 

and Q are expressions. Lastly, any function  reference is also a p rim ary. Any 

expression is e ithe r ju s t a  prim ary, or a p rim ary w ith  a p re fix  ope ra to r put in  fron t, 

o r two prim aries w ith  an in fix  operator between them

The precedence rules and the association rules permit the omission of brackets 

in many cases. These rules have been detailed in section 2.1.2.

AO



Appendix l i  "Currontlng", fh* Lucid Approach to 

B.O hi «reduction

added Iteration

B«1

I t  la generally accepted to r im perative program m ing languagee th a t ite ra tio n  la 

the cona tru c t w hich increases th e ir expreaalve power moat decisively. Ite ra tio n  cornea 

to  fu ll fru itio n  if  I t  la embedded In  some larger com putation (embedded ite ra tio n ). 

In c ide n ta lly , i t  is well known th a t im perative  ite ra tion  can be sim ulated by recursion. 

In  com m on com puter jargon, ite ra tio n  means repetition, and the te rm  ia commonly 

applied in  two contexts: m athem atical ite ra tio n  (as in  the Newton—Raphsen a lgorithm  

fo r logrti)  on the one hand, and m u ltip le  application on the o ther (like  se tting  an a rray 

to  zero). Both are bulk com putations in a sense. The te rm  ite ra tio n  is. s tr ic tly  

speaking, no t applicable to  a non—im perative language like  Lucid, b u t one would 

expect Lucid  to  com prise a denotations! counterpart to  ite ra tion . Confusion can 

re su lt fro m  the fa c t th a t already a ting i t  Lucid assertion can represent a  bulk 

com putation, since i t  expresses a whole stream  of data objects (due to  the Lucid 

algebra).

In  less opera tiona l te rm s, any substantia l program m ing language m ust satisfy the 

follow ing requirem ents:

(1) I t  should provide means fo r the de fin ition  (and app lica tion) of new operators. 

An operator is a generalised (abstracted) instruction , l.e. its  actual operands are 

specified only in  the  app lica tion  stage. A set of fundam ental operators is usually 

pre—given. The d e fin itio n  of any new operator is achieved by abstrac tly  stating 

the actions sym bolised by the  operator. An operator is recursive if  i t  refsrences 

Its e lf (in  its  d e fin itio n ), and th is  Includes any in d ire c t se lf-re fe rence. In  a broad 

sense, every subprogram  is among the operators, as is the body of any [55] loop 

o r IWHERE1 clause. (According to  our defin ition, the te rm  "ope ra to r”  includes 

fu n c tio n  subprogram s. The te rm  "function" has a specific m athem atical 

m eaning which m igh t in te rfe re  in  th is  context.)



B»2

(2) Every programming language should provide a m ethod fo r apeclfylng the 

application o f any operator to  a co llection  of operands. (In  ALGOL th is  m ay be an 

a rray o r may be the successive values held in  a storage celL in  Lucid th is  m ay be 

the datons of a h istory.) Such a m ultiple appNcetlon may w ell produce a com bined 

re su lt (e.g. the com putation of an average value w ith in  the co llection).

(3) There should furtherm ore be a provision fo r taking  the combined resu lt o f such a 

m u ltip le  application, and fo r delivering i t  as a single value to  the  larger 

com putation (in  which the m u ltip le  app lica tion is embedded).

Lucid satisfies requirem ent (1), the whole language is designed around opera tor 

defin itions. Every Lucid assertion is an opera tor defin ition . A demand fo r the 

program 's resu lt is, operationally speaking, the cause fo r a ll com putations. 

Requirem ent (2) is satisfied since every variable stands fo r a sequence of data objects. 

Future versions of Lucid which have arrays (and operators on arrays) o ffe r a fu rth e r 

m ethod of satisfying th is requirem ent. But a t the th is  po int in  the discussion we do 

not seem to  have anything fittin g  requirem ent (3).

A combined resu lt of m u ltip le  operator app lica tion, requirem ent (2), can be 

form ed by use of IKEXTI and fFBYl. Here is fo r example the running to ta l o f h is to ry  X:

Sum = X ♦ (0 FBY Sin) ;

Every daton value o f tSum] is based on an en tire  in itia l segment o f X.

■09 = Sisn ASA ln4«s * 00 ;

means therefore th e t many com putations are Involved in  the production of one resu lt. 

The assertion fo r [Se] has the drawback th a t i t  asserts ju s t one constant value. There 

should be a way for executing numerous low  ranking com putations which, taken 

together, deliver a single fin a l r tru lt  daton (a b it like  [Soj ) to  a MpAer ranking 

assertion. This should be followed by renewed low ranking  com putations which in  tu rn  

produce the next resu lt daton.
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Iteration without a means for such embedding (l.e. without sub—computations) Is 

of limited use. We shall see that Lucid achieves embedding In a rather natural way.

•.1 Structured LucM

Early In the development of Lucid [AbW?6], certain mathematical concepts were 

identified, and were then chosen as the foundations of the language A suitable syntax 

was then worked out. The syntax has Indeed been subject to refinement up to the 

present day. Valuable Insights Into the underlying concept can be gained from looking 

at the earlier development stages of Lucid, though only few traces bear witness In the 

present form.

Ashcroft and Wadge describe In  th e ir paper "S tructu red  Lucid" [AsWSO] how a 

technique called "cu rre nK ng " equips Lucid w ith  embedded ite ra tion . They show how 

Lucid  is conceptually derived from  the  languages USW1M [AsW79a] (which itse lf is a 

derivative  o f Landin's I SWIM [Lanfld]) and Basic Lucid [AsW77a]. The language ULU is 

obtained when the USW1M structures ( IWHERE1 clauses and functions) are b u ilt on top 

o f the Basic Lucid objects (In fin ite  h is to ries). On the o ther hand, p u ttin g  Basic Lucid 

on top  o f USWIM yie lds the language LU8WM Both languages have exactly the same 

syntax. But they d iffe r in  semantics, in  p a rtic u la r in  the e ffect w hich structu res ( 

IWHEREl clauses) have on variables (h is to ries). Lucid is an amalgamation of LUSWIM and 

ULU, and the divergence in  sem antics has been resolved by declaring each variable 

e ith e r as curranted o r uncurrented. (In  [AsWBO] a d iffe ren t term inology was used, and 

the typa/met of each variab le ind icated  its  cu r ren ting  status. However, th is  d is tin c tion  

by typeface proved ra th e r im p rac tica l.)

It was later decided to consider any variable by default as uncurrented, and to 

gtate explicitly when the variable was meant to be currented instead. Uncurrented 

variables are the easiest to understand, since their entire histories are imported into 

clauses without any change. The declaration isiacuRREittrl in a lufUMi) clauseUi! L'.i
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Indicates that the new variable x is the currented version of the variable y, where y 

refers to a variable y defined outside the jwhere! clause. Currenting is occasionally 

also called "free ring  ", since the enclosing environment is held in an invariant state, as 

if it was frozen. While [AsWBO] introduces currenting denotationally, we will use the 

operational point of view throughout our explanation, since this seems easier to 

understand.

It will be shown below that currenting can be expressed entirely in ULU terms, 

and consequently LUSWIM can be viewed as a special case of ULU. In other words, 

every Lucid program can be expressed in terms of ULU alone. (Not all Lucid programs 

can be expressed in terms of LUSWIM alone.) Incidentally, ULU is essentially the 

language presented in chapter I.

B.2 Present Lucid

Global variables ("imported" variables) have been defined in the description of 

Lucid ( t  chapter 1). Any global variable y can be currented by placing at the beginning 

cf the [wherS] clause the declaration

x IS CURRENT y ; I
I___________________ I
(The expression on the right (here: y ) is evaluated in the environment which encloses 

the ¡WHERE] clause, x and y can therefore even be identical identifiers ) The following 

assertion might occur in a program:

r e s u l t *  f ( x ,  i ) I t  1 9 an a r b i t r a r y  function,
WHERE » X i 9 the cur rent ing  of

x  IS CURRENT y ; » the g i oba 1 vari ab 1e y ,
END i » 1 is an uncurrented g l ob a l .

The variable x is the currented version of y, where y is a global variable. To function f, 

x will appear like a constant, all its components are equal. The history of y is mapped 

into a sequence of histones x, where thek-th  subhistory x consists throughout of
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components Identical to , where y^ Is variable y at Index k. The function f  la 

applied individually to each (constant) subhistory, and consequently there Is a 

sequence of result histories of function f .  The result of the IWHEBEI clause Is the 

sequence of the n—th components of the application of # to the n—th subhistory x, with 

n ranging from 0 to Infinity. (Note that, naturally, the computation restarts from 

Index 0 for each single Invocation of f .) The Index progresses inside the I there I clause 

thus In the following triangular pattern:

—*  index of the global to be currented, 
•  index ««la ide the THERE clause.

indices for which 
the subhistories 
(tnsida the THERE-clause) 
ere coiputed;
only the last value is taken.

index of the result

f i g .  SSi the triangular execution pattern

We have not yet mentioned the other operand of f . namely i. Each Invocation of f  gets 

the entire history of I, since I is not currented in any way. Because of functionality. It 

does not matter whether I is re—computed each time or whether I is computed once 

only with copies being given to each invocation of f. (Repeated evaluation of a function 

yields the same result as long as all operands remain identical.) The same would apply 

to any other uncurrented variable occurring in the ITHEREI clause. Below we will study 

another w««mpla program with a ITHEttEI clause which contains both a currented and 

an uncurrented global variable.

It Is particularly Interesting to study an unusual ITHEREl clause which has 

currented aa well as uncurrented global variables, but where none of the currented 

variables Is actually used. Is the result really invariant to the addition of these
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superfluous variables? Instead of computing the result In a straight tour through the 

indices (0, 1, 2....) the currented variables enforce the repetitive triangular pattern of 

figure B2. Because of this considerably changed execution pattern some effect on the 

result would not come as a surprise. But since all operators are functions, and all 

operands are either local or uncurrented global variables the result is indeed 

invariant. It can not be distinguished whether any Intermediary value has been 

computed anew, or whether a value from a previous computation has been re-used.

Structured Lucid allows even the currenting of (non-nullary) functions. This 

means effectively the currenting of all global variables which occur in the definition of 

that function. This currenting of functions has been abolished in the latest versions of 

Lucid, to keep matters simple. There is hardly any ustful function where both 

versions (the currented and the uncurrented one) are equally needed. The currenting 

of the global variables can therefore be carried out inside the function definition itself, 

which is better style anyway (in the software engineering sense).

If we have another look at the figure above, it is evident that the "daton 

production rato" of the computation inside the I WHERE] clause is greater or equal the 

rate in the environment. In other words, we have some form of embedded iteration 

No proof will be given here that currenting is a comprehensive technique for 

embedded iteration, or in other words, that point (3) is satisfied in every respect. One 

might even be led to believe that the triangular pattern (t fig. B2) restricts the range 

of application to those very few situations where the number of computations Inside 

the clause grows exactly with indeed/. However, this restriction can be

overridden by enclosing the iwher^ i expression (preceding the keyword ]wherei , for 

example t fig. Bl) in an [aSa] with an appropriate terminating condition, like:

( f(S . i ) ASA oondi tion( • ) )
WHERE .. . IS CURRENT .. . END

Since this expression contains the [BX) operator, it may appear strange, at first 

glance, that this IWHBlgl expression does net necessarily yield a constant history. The



B-7

1*3*1 inside s INHERE! expression with currenting, which means that only a single 

result da ton is picked out. For each pass of this IWHEREI clause, the 1ASAI expression is 

computed anew with fresh currented values, which may produce a totally different 

lASAI result in every pass.

One last remark. It has been described in chapter I that assertions can be freely 

moved into and out of IWHEREI clauses as long as certain syntactic rules (identifier 

clashes) are not violated. Matters are different if a IWHEftEl clause has a global 

variable, and if that variable is currented in the IWHEREI clause. In such a case the 

assertion for the variable can not in general be moved across the IWHEREI . This is 

possible only if the operators in that assertion commute with currenting. A discussion 

of this is found in [AsWBO].

B.3 Currenting Expressed by Recursion

Can currenting be expressed purely by the means described in chapter 1?

The triangle (r fig. B2) shows that the result history is constructed out of separate 

invocations of the function f , one for each result daton. The result is composed of the 

initial daton of the initial function invocation, followed by the daton at index 1 of the 

next invocation, followed by the daton at index 2 of the function invocation after that, 

etc. Regarding function parameters, each function invocation has fu ll access to any 

uncurrented parameter. For eurrented parameters, on the other hand, the initial 

function invocation obtains a constant history which consists purely of copies of the 

daton of the parameter. The next invocation obtains the constant history 

generated from the daton at index 1, and so on.

Taksn together, tbs same result as in fig. B1 would be computed by:
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# index
FIRST x, i) FRY # 0  

• FIRST NEXT x. i )  FBY # I
FIRST NEXT NEXT x, i) FBY # 2

FIRST NEXT NEXT NEXT x, i )  FBY § 3
FIRST NEXT NEXT NEXT NEXT x. i )  FBY #4

NEXT NEXT NEXT NEXT NEXT f (FIRST NEXT NEXT NEXT NEXT NEXT x, 1) FBT # S

eto etc

This can be expressed by a recursive function. We call this function Rxlool . since 

currenting has the effect of permitting live computations in a frontn  environment. 

Obviously, nothing special needs to be done about the un— cur rented parameter I; it is 

passed untouched to each new Invocation of f , and its history restarts therefore always 

right from the beginning. The currented parameter x is not difficult to express either. 

With each "round trip" of the recursion one more initial element is stripped off. the 

resulting history is made into a constant by the application of |FIRSTI, and this is then 

passed to f as a parameter. Hie llxlool function must therefore have an appearance 

like:

result »  f  (
NEXT f (

NEXT NEXT f (
NEXT NEXT NEXT f (

NEXT NEXT NEXT NEXT f (

I g lo o  ( . . ,  news) = f unc 
FBI

(FIRST news, i )
I g lo o  ( .  . . , NEXT nowx):

r e s u l t  * I g lo o  ( . . .. x) ;

Here, [fimcl is related to f , but it is identical to f only for the initial result daton. One 

further [NEXT! must be applied to f for each successive result daton, i.e. one per 

recursion of [Bool . One feels tempted to generate the new function, in each "round 

trip" of the recursion by competing ("•”) a INEXTI with the old function; the starting 

"value" would be the plain function f . To do this, we would need a function parameter 

in llxlool, like:

Igloo (funetlon, •■•) ■ FBY Ig loo  ( NEXT • function , . . . )  i
result •  Igloo ( f .  ■••) i

Sadly, function parameters are presently not allowed in Lucid. The multiple 

application of [WHTI must therefore be simulated otherwise. &it even that problem 

can be overcame. Remember that, for any constant n,
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• i p r t i i l «  WB (» *  lndas)

has tha same effect as applying INEXTI n times to the expression. The complete Hxiool

function (for the function f  from fig. B l) has therefore the form:

Igloo—f (t . news) ■ f (FIRST news, i )  WVR ( t  ■ index)
FBT Igloo—f (t+1. NEXT news) ; 

result *  Igloo-f (0, s) ;

A few remarks need to be made:

(a) Because of the non-existence of function parameters, a separate Igloo function 

must presently be written for each occurrence of cur renting.

(b) Currenting automatically applies to the [WHERE! expression a fWV51 of the kind: 

[espr WVR (t »  index) WHERE t IS CURRENT index . ENDI

Recall that for any constant expression c:

KcWVRd) = c § it 4  over becomes TRUE.I

The [WVRI can therefore be omitted in the llalool function in any instance where 

the expression s spr carrier an I ASA! on the outermost level.

As an example, take the function (from a famous Lucid prime program):

checkprime( n ) = ( n < p*p ASA con d ltion ( p, n ) ) 
WHERE

a IS CURRENT n ;
END ;

According to the described method, this translates into:

ohspri( k ) »  ( k < p»p ASA condltlon( p. k ) ) ;

ehsekprlme( h ) «  chopri( FIRST h ) FRY eheckprlme( NEXT h ) ;
# this is ths slnpliflsd Igloo.

This can be simplified into:

ohookprimo( a ) -  (k < p»p ASA oonditlon( p, k ) ) 
WHERE

k • FIRST a:
END FBY ohookpr lit» ( NEXT a ).

End o f example.
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(c) If a [WHEREI expression (here: f) has more than one currented variable, there Is no 

need to nest Itslool functions. Instead all these variables can be currented 

together. For example:

Example (translation of currontlng Into the I igloo I form)

The following example is presented on page 28 of [AsW80]:

mom
WHERE

Av* ( » ) = (■ / ( in dex+1 ) )
WHERE ■ = v + (0 FRY ■) ; END ;

m *  A*I ( » } .

mom *  Avg ( (x-m) • (x-m) )
WHERE m IS CURRENT m ; END ;

END

The Imoml in this example is the running moment (around the running average) of a 

given history x (there are more efficient ways of computing this). Using the llxlool 

function, the example can be re-formulated, so that it contains no more 

"IS CURRENT’:
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ran
WHERE

Avg(v) SB (•  / ( ind«s+l) )

m rr
WHERE s *  v ♦ (0 F B Y  s ) i END ; 
Avg (a );

Body (m) s Avg ( (z-m) • (s-m) ) ;

mom s [(lo o  (0, m) ;

¡« lo o  ( t , k) -

# tha n l iU a  ■ Is now eurrontcd 

( Body (FIRST k) WVR (indoi *  t )  )

END

FRY
Igloo (to*. NEXT k) ;

B.4 Efficiency

Some people argue that the simulation of iteration by recursion leads to very 

inefficient code (i.e. many unnecessary computation steps will be carried out). 

However, as has been said before, such a claim can be invalidated by a good optimising 

compiler. The lialool function is indeed easily optimised by applying some of the rules 

from chapter VI.

Because of the iFBYl, each new Invocation of Itslool serves for the computation of 

one result daton. From a certain index on, all the results of the invocation will be 

determined by its toner re-invocation of lialool with slightly changed parameters. 

Once the computation has progressed to the recursive re—Invocation of lialool (right 

operand of [PBV1), the whole left operand of ITBYl is superseded (l.e. not needed any 

longer). The actual parameters in the recursive call are simple modifications of the 

formal parameters: the storage cell for the constant t is simply Incremented by one, 

and the index for the history k is advanced once (such operations can be 

accumulated).

Taken together, rECT can be Implemented by tail recursion Lucid-style (t 6.6). 

During the computation of any result daton (loft operand of IFHYl) the index of history 

k Is hold constant, It Is not affected by the computation inside». Only a
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iln|l(-outport |COPY] node la therefore required aa buffer for It (the buffer prevents 

the repeated evaluation of the same daton). Aa an example, the tranalation of fig. B1 

(an arbitrary function whose operand 0 la currented whereas operand 1 is no* 

currented) yields the following LUX code:

ACT A e t_ la le e .^ u a e  ;
LABEL 1 ;
VAR

su per io r ,  fune, pO, p i ,  p p l ,  p l i ,  p l o  : ACTOR ;
request : MSGTYPE ; index, 1 : INTEGER .
c rea ted  : BOOLEAN ; r e su l t  : ANYTYPE ;

BEGIN
crea ted  :■ FALSE ;
( , , pO, p i )  : «  RECEIVE FROM (C rea to r )  ;

p l i  : = CREATE (Act_COPY_ 1) ;
( , p l o )  : *  RECEIVE ( p l i )  ;
SEND (DATON, p i )  TO ( p l i )  ;

REPEAT
WHILE TRUE DO
BEGIN : 1

(s u p e r io r ,  request ,  index) : = RECEIVE ( )  ; : 1

valueO := CetDaton ( index ,  pO)
c rea ted  TRUE
funo : »  CREATE (Act-Func)
SEND (DATON. valueO, p lo )  TO ( fu n c )

: 1

FOR i := 1 TO index : 1
DO EXCEPTION (ADVANCE, i )  TO ( fu n c ) ; ; |

r e s u l t  ;■ GetDeton ( index ,  func) 
EXCEPTION (ADVANCE, f in a l in d e x )  TO ( fu n c )  i
c rea ted  :<• FALSE
SEND (DATON, r e s u l t )  TO (s u p e r io r )

• : 1

END ;

1: ( r eq u es t ,  index) ;■ Reveal ;
EXCEPTION (request ,  index) TO (pO )  ;
IF orea ted
THEN EXCEPTION (ADVANCE, f in a l in d e x )  TO ( fu n o )  i 

o rea ted  : «  FALSE ;
RESET ;

UNTIL index •  f in a l in d ex

EXCEPTION (request ,  indea) TO (pie ) i
BND ; ( •  End o f  A e t - I f loo-Func . • )

In LUX it Is eVon permitted to pass the aot for «  aa a parameter to 'g '~ » —1 (Uk*
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[procedural or [functionl parameters In PASCAL); this relieves us from having a separate 

llslool for every Instance of currenting. The function f  itself is translated into:

ACT A* t_ f HC ;
LABEL 1 ;
VAR

superior, p i, ppl : ACTOR request : HSGTYPE ;
valuoO, valuel, result : ANYTYPE ; index : INTEGER ; 

BEGIN
( , , valueO, p i )  :■ RECEIVE FROM (Creator) ; 
ppl :*  SEND (AUGMENT) TO (p i) (•  f S.S •)

REPEAT
WHILE TRUE DO
BEGIN :1

(superior, request, index) :*  RECEIVE ( )  ; :1

valuel :*  GetDaton (index, p p l) :1
result :*  . . .  valueO . . .  valuel . . .  ; :1
SEND (DATON. resu lt) TO (superior) ;

END ; (*  End of inner eternal loop. *)

1: (request, index) ;= Reveal ;
EXCEPTION (request, index) TO (ppl )  ;
RESET ;

UNTIL FALSE ; (•  End of outer eternal loop. •)
END ; (•  End of Act_Func . •)



+--------------------
! A p p e n dix  C -  1 j 
+----------------------- +

Complete l i s t i n g  o f  the program which t r a n s l a t e s  any n e t  o r  subnet 
from graph L u c id  i n t o  LUX ( f o r  f u r t h e r  d e t a i l  see s e c t i o n  4 . 3 . 4 ) .  
The program "S ie v e "  has been chosen f o r  i l l u s t r a t i o n .

program S i e v e T r a n s l a t io n  (o u t p u t )

co n s t

typ e
UDFops ■ 30 ; 

oprange -  1. . UDFops ;
( *  a l f a

NODEP 
NODE 

n type 
n l a b e l  
n t e x t  
nr .o o fre fs  
nr.oofops 
r.op
n i n i top 

end :

packed a r r a y  [ l . . 1 0 ]  o f  c h a r  5 * )
NODE ; ( *  node p o i n t e r  * )

record
s (o t c o p y ,  o t c o p y t r a n s l a t e d , o t i n p o r t ,  o t o t n e r )  
: i n t e g e r

a l f a  
i n t e g e r  
0 . .UDFops

( *  number o f  node r e f e r e n c e s  (C O P Y !)  * )  
( *  number o f  node operands * )

a r r a y  f oprange] o f  NODEP 
a r r a y  [ oprange] o f  i n t e g e r

f u n c t io n  N extLabel ( v a r  nodenumber : i n t e g e r )  : i n t e g e r  ;
b egin  N extLabel : «  nodenumber ; ( *  pseudo f u n c t io n  * )

noder.umber :■ nodenumber ♦ 1 ;
end ;

f u n c t io n  T r a n s la t e  (nuc : NODEP} v a r  nodenumber ! i n t e g e r  ) s i n t e g e r  ; 
fo rw ard  }

p rocedure  SeanOperands (nuc  : NODEP: v a r  nodenumber : i n t e g e r )  ; 
v a r  i  : i n t e g e r  ;

nucop 1 NODEP ; 
b e g in  w ith  r.uc* do

f o r  i  :■  1 to  nr.oofops 
do b egin

nucop j -  r .o p [ i ]  1 
i f  nucop*.ntype • o t i n p o r t  
then begin n i n i t o p f i ]  :■  -r.ueop* .r . la b e l  ; 

d isp o se  (n u co p )  :
end

e ls e  n i n i t o p [ i ]  t* T r a r .s la t e (n u c o p ,  noder.umber) 1 
end end } (*  End o f  procedure  'S ca n O p e ra n d s* . * )
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procedure N o d e l n i t i a l i s a t i o n  (n u c  s NODEP) ; 
v a r  i  i I n t e g e r  ; 
b egin  w i t h  nuc* do b e g in

w r i t e  (* SEND (DATON, ' )  j

f o r  i  :*  1 to  nnoofops 
do b e gin

w r i t e  ( ' n o d e [* , n i n i t o p [ i ] s 2 )  ; 
i f  i  < nnoofops th e n  w r i t e  ( ' ] ,  ' )  ; 
end ;

w r i t e l n  ( ’ ] )  TO ( n o d e [ ' ,  n l a b e l s 2 t ' ] )  ; ( *  ' ,
n t e x t ,  ’ * ) ' ) ;

end end ; ( *  End o f  p ro ced u re  ' N o d e l n i t i a l i s a t i o n ' . * )

f u n c t io n  T r a n s l a t e  ; ( *  pseudo f u n c t i o n  * )
( *  The r e s u l t  o f  f u n c t io n  ' T r a n s l a t e '  i s  the s u b s c r i p t  ( l a b e l )  o f  the 

node which w i l l  d e l i v e r  the o p e ra n d . Note the s p l i t  node l a b e l l i n g  
i n  the case o f  COPY no d e s. * )

v a r
t r a n s l  s i n t e g e r  5 ( # new node w i l l  be node[ ( t r a n s l )  ]  * )

b egin  w i t h  nuc* do b e gin

t r a n s l  :■ N extLa b ei(n o d e n um b e r) ;
T r a n s l a t e  : »  t r a n s l  ; ( *  the f u n c t io n  r e s u l t !  * )

( *  a v o id in g  repeated COPY t r a n s l a t i o n :  * )  
i f  ntyp e  <> o t c o p y t r a n s ia t e d  
then b e g in

i f  ntype ■ o tc o p y
then b e gin  n type : «  o t c o p y t r a n s la t e d  ;

n l a b e l  :■ N e xtLa b ei(nodenum ber) j
end

e ls e  n l a b e l  :■  t r a n s l  ;

w r i t e l n  ( '  n o d e [ ’ , n l a b e l : 2 ,
' ]  C R E A T E ( A c t _ ' , n t e x t ,  ' )  j ' )  »

ScanOperands ( n u c ,  nodenumber) j 
end;

i f  n typ e  ■ o t c o p y t r a n a la t e d
then w r i t e l n  ( '  (  , , n o d e [ ' ,  t r a n s i : 2 ,

' ] )  RECEIVE FROM ( n o d e [ ' f n i a b e l ; 2 , ' ] )  ; ' )  ;
continued ■
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! Appendix  C -  3 !

c o n tin u e d
n n o o fre fs  :■ n n o o fre fs  -  1 } 

i f  n n o o fre fs  -  0 
th e n  b e gin

i f  nnoofops > 0  then N o d e l n i t i a l i s a t i o n  ( n u c ) ;  
d isp o se  (n u c )  ;

end end end ; (*  End o f  f u n c t io n  ' t r a n s l a t e ' .  * )

p ro ce d u re  Segm e n tTran sla te  (nuc  s NODEP ;
name s a l f a  ;
nodes s i n t e g e r ;
i n p o r t s  s i n t e g e r )  ;

v a r
nodenumber : i n t e g e r  ; 
i  : i n t e g e r  ;

b e g in
v r i t e i n  ( ' A C T  A c t _ ' , name, ' ; ' )  ;

i f  i n p o r t s  > 0
then w r i t e i n  ( '  LABEL 1 ; ' )  ;

w r i t e i n  ( ’ VAR’ ) ;
v r i t e i n  ( '  node ! ARRAY [ ' ,  - i n p o r t s s O ,  

n o d e s -1 : 0 , ' 1  OF ACTOR ; ' )  ;

i f
then
e ls e

<-
( ’

C
C
C
C

i n p o r t s  
w r i t e i n  
begin 
w r i t e i n  
w r i t e i n  
w r i t e i n  
w r i t e  
f o r  i s “ t to 
w r i t e i n  (  ' ) 
w r i t e i n  5 
w r i t e i n  
w r l t e l n  
w r i t e i n  
w r i t e i n  
w r i t e  
f o r  i  :■ 1 
do begin

C
C
C
C

MSGTYPE ; in d e x ,  s k ip  : INTEGER ; ' )

B E G IN ' )

request s 
BEGIN*) 5 
s k ip  :• 0 ;
(  . ’ )  » 
in p o r t s  do 

! -  RECEIVE FROM ( C r e a t o r )

ADVANCE’ )

)

w r it e  ( ' nod e^"1 
' )

-1:0, ' ] ' )

WHILE Reveal 
DO BEGIN’ ) ;

( r e q u e s t ,  index) Reveal ; ' )  ;
I F  index ■ f i n a l i n d e x '  ) ;
THEN EXCEPTION ( r e q u e s t ,  in d e x ) TO  ( ' )  ; 

to  in p o r t s
w r i t e  ( ' n o d e f ' ,  - I t O )  ;
i f  i  < in p o r t s  then w r i t e  ( ' ] ,  ' )  ;

end ; 
c o n tin ue d  ■■■



c o n tin u e d  ■■■
w r i t e l n  ( ' ] ) ’ ) 
w r i t e l n  ( '  
w r i t e l n  (* 
w r i t e l n  (  ' 
w r i t e l n  ; 
end ;

! Appendix  C -  4
♦

i
*

ELSE s k i p  »■ s k ip  ♦ 1 } * )  5 
RESET j ' 5  }

END j ’ )  f

nodenumber :■  0 ;
i  !■ T r a n s l a t e  ( n u c ,  nodenumber) ; (*  always y i e l d s  ze ro  * )

i f  i n p o r t s  < 1
th e n  w r i t e l n  ( '  S e t _ P r i o r i t y  ( n o d e [ o ] ,  t o p _ p r i o r i t y )  } ' )  
e l s e  b e gin

w r i t e l n  ( '
w r i t e l n  ( ’ I s  Pass_Through ( n o d e [ o ] ,  s k i p )  ; ' )  s 
end ;

* 1 * ) »

w r i t e l n  ( '  END ; ’ )  ; 
w r i t e l n  } 
w r i t e l n  ;

end ; ( *  End o f  pro ced u re  ' S e g m e n t T r a n s la t e ' . * )

p ro c e d u re  NodeDecl 
b e g in

new ( g i n )  ; 
w i t h  gin* do 
b e g in

n te x t
i f  nops < 0 
th e n  begin 

ntype 
nnoofops 
n n o o fre fs  
end

e l s e  b egin  
ntype 
nnoofops 
n n o o fre fs  
end

v a r  g i n  s NODEP; r.tx

: »  ntx

:• o tco p y  ; 
1 ; 

s -  -n o p s  ;

:• o t o t h o r  ; 
:■  nops s 
:• 1 ;

a l f a s  nops s i n t e g e r )  ;

end 
end ; (* End of procedure 'NodeDecl'. •)



+ ---------- - - --- -— - - - ♦

! Appendix C - 5 !
♦ - - - --------------- - -♦

( *  here starts  the application «■•*■ »•«■•»■»•••■■• * )

( *  'RootDefine' and 'S ieveDefine' place the Lucid graph o f the 
en tire  Sieve program in store, ready fo r translation. * )

function RootDefine ( i  s in teger) s NODEP 
var

u s array [ 1 . . 7 ] o f NODEP j 
begin 

i  s- i

(*  a pseudo-function * )

— - » 
NodeDecl (u ‘ 1 * 'Const , 1 ’ , 0)
NodeDecl (u ’ 2 9 'P lus_' 9 2)
NodeDecl (u .3 9 'Const , 2’ , 0)
NodeDecl (u .4 9 ' Fby~' f 2)
NodeDecl (u .5 9 ’ Copy , 2' , -2)
NodeDecl (u 6 9 'S ieve 9 1)
NodeDecl (u [7 9 ' Write_' 9 1)
RootDe fine

(*  'W rite_, "conso le"', * )  
(*  highest ranking node * )

u^J .nop 
u f4 .* .nop 
ul5, *.nop_11 
ufé “ .nopM 
u[7J*. 

end t
.nop[ 1 .

u

:• u 
:■ u 
: ■ u 
End

1
“ 1.3 J

4
5
6
of

u[2l*.nop[2l ui?] j
u[4J*.nopl.2J u[2] ;

function 'RootDefine'. * )

function SieveDefine ( i  ! in teger) : NODSP 
var

u s array [ 1 . . 9 ] o f NODEP ; 
begin

i  1
-4) ;
1) *
2 )
0 )
2 )
2 )
1 )
2 )
0)

i  «■ i  5
NodeDecl (u , 'Copy_, 4'
NodeDecl (u ’ 2 , 'F irs t  '
NodeDecl (u ,3 , 'Mod“ '
NodeDecl (u , 'Const , O'
NodeDeci (u .5 , ’ Ne“ '
NodeDecl (u , ' Wv r '
NodeDecl (u .7 , 'S ieve
NodeDecl (u S ' « ' Fby- ’ , .NodeDecl (u !9 , ( lnportl

SieveDefine

00■

u [ 9 l * . r
u [9 ]‘ .r

ntype ¡ «  otinport 
nlabel »■ 1 ;

( # highest ranking node * )

continued ■



COat: nued ■ •a
Ux \nop V :• uy .
u 2 *.nop ,1, :■ u.1.
u .3. *.nop i s * u 1
u.5. *.nop .1, «• u.3.
u 6 * «nop .1. :• u 1
uy * .nop 1 :• u 6
u.8. * .nop 1 s ■ u.1.

end ; ( *  End o f

■f—
! Appendix C - 
_______________

6 !

t
t U y . * .nop .2, 2* U 2
i U,5. * .nop 2 : • u,4 .
; U-6 J* .nop ’2' 2 ■ u . 5

; u [8 ]*.nop[2 ] u[7] ;
function 'S ieveD efin e '. * )

begin
writeln ;
writeln ( ' ( *  LUX code fo r  sieve" example: * ) ' )  } 
writeln ; 
irriteln  j
SegmentTransIate (S ieveD e fin e (o ), 'S ie v e ',  12, 1) ;

( *  the "number o f  nodes" is  equal to the number o f nodes 
in  the Lucid graph segment, except inport nodes, 
including COPY nodes, plus a l l  COPY references. * )  

SegmentTransIate ( RootD efine(o), 'R oo t_ ', 9, 0 )  ; 
end ( *  End o f main program. * )

This program produces the fo llow ing output:

( *  LUX code fo r  "S ieve” example: * )

ACT Act Sieve 
LABEL 1 ; 
VAR 

node ARRAY [-1
request : MSCTYPE ; 

BEGIN

.11] OP ACTOR ; 
index, skip : INTEGER

skip :■ 0 :
, node[-1 ] ) RECEIVE FROM (Creator) ;

WHILE Reveal ■ ADVANCE 
DO BEGIN

(request, index) :■ Reveal »
IF index ■ finalindex
THEN EXCEPTION (request, index) TO (n o d e [- l])
ELSE skip 
RESET t 

END { 
continued

«■ skip ♦ 1 1



♦------------------ ♦
! Appendix C - 7 !

■ continued ■ 
nodeT o l : «  
node[ 2 j I*  
( , . node[ 
nodef 3 ]  «■ 
nodeT 4 ]  *■
( , . node[ 
nodeT 6] 2"  
nodeT 7] :*
( , , node[ 
node[ 9 ] 2-  
( , , nade[l 
SEND (DATON, 
SEND (DATON, 
SEND (DATON, 
n od e [ll] s• 
SEND (DATON, 
SEND (DATON, 
SEND (DATON, 
SEND (DATON,

CREATE( Ac t_Fby_ 
CREATE(Act_Copjr_, 4 
1J) i -  RECEIVE FROM 
CREATE(Act_Sieve 
CREATE( Ac t_Wv r_
5 ] )  RECEIVE FROM 
CREATE(Act_Ne_ 
CREATE( Ac t_Mod_
8 ] )  2-  RECEIVE FROM 
CREATE( Act_First_ 
O ]) ! -  RECEIVE FROM 
node,-1 ( ) TO (node( 
node ,10, ) TO (nodef 
node[ 8J, node[ 9 ] )  

CREATE(Aot Const , 0
node, 7 
node, 5 
node, 4 , 
node[ 1

"nodef 111) 
node[ 6 ] j  
TO (nodef 
node[ 3 ] )

> 1

( node[ 2 ] )
) 5
) ;

(node[ 2 ] )  
) 1 
) 5

( node[ 2 ] )
) ;

(nodef 2 ] )
2]> i
9 l )  1 
TO (nodel 
) i ;
TO (node^ 
TO (node' 
3J) i 
TO (node[

Pass_Through (node[o], skio) 
END 5

7 ] )  1

6 l )  j
4 j)  ;

0 ] )  ;
• 1

(*  Copy_, 4 * ) 
(*  First • ) 
(*  Mod_ ~  • )

( *  Ne * )
(*  Vvr_ •) 
(*  Sieve * ) 
(*  Fby_ * )

ACT Act_Root 
VAR 

node 
BEGIN 
node( 0 ] 
node' 
node£ 
node1 
nodei
node  ̂ o, i - 
node[ 7J 2“ CREATE(Act Conet , 1
( ‘ " -  - - -  -  - -  - - -  -

1 S"
1 ! * I 2*

■i *" 
1 : ■

ARRAY [ 0 . . 8 ] OF ACTOR

CP.EATE( Ac t_Wr i  te_ 
CREATE(Act_Sieve 
CREATE(Act Copy_, 2 
CREATE(Act~Fby_ 
CREATE(Act_Const_, 2 
CREATE(Act Plus

node[ 8 ] )  2- RECEIVE FROM (node[ 3 ]
) TO (node' 
) TO (node

l  6 ]]
{  4 ])

SEND (DATON, nodei 7 ] ,  nodei 8 
SEND (DATON, node[ 5J, node[ 6 j ,  w  v . ,  
( , , node[ 2 ] )  2-  RECEIVE FROM (node[ 3 ] )  1
SEND (DATON, nodef 4 ] )  TO (node, 3 , )  »
SEND (DATON, nodef 2 j) TO (nodef 1 ,) j
SEND (DATON, node[ 1 j) TO (node[ O j) |
Set P r io r ity  (nodeTo 
END- 1

top_priority ) j

( *  Pius * )
(# Fby_~ * )

(*  Copy , 2 * ) 
(*  Sieve * )
(*  Write * )



! Appendix  D — 1 {

OCCAM im p le m e n ta t io n  ( u n t e s t e d )  o f  some Lu c id  o p e ra to rs  

F i r s t  the d e c l a r a t i o n  o f  some c o n s ta n ts :

DEF
OTHERWISE -  TR U E ,
NULLIFY  -  0  ,
COMPUTE -  1 ,
ADVANCE -  2 :

The f o l l o w i n g  "PROC a c ce p t"  should r e a l l y  be d e c la re d  where i n d i c t e d  
i n  th e  "PROC b o o l o r " ,  b u t  has been p u l le d  o u t f o r  e a s i e r  p r i n t i n g :

PROC a cce p t (V A L U E  i )  *
I F

d t n [ l - i ]  —  in s p e c t  daton v a lu e

OTHERWISE
ALT

excg ? r e q u e s t :  xindex 
e x c [ i ]  ! N ULLIFY ; index 

f l a g [ l ]  4
r p i g  ! d tn [  i ]  :

The "PROC b o o l o r "  i s  the c o u n t e r p a r t  f o r  a LUX ACT. Here a re  f i r s t  a 
few comments e x p l a i n i n g  th e  para m e ters:

—  CHAN e x e g ,  g - >  b o o lo r :  e x c e p tio n s

PAR
e x c [ i ]  ! N ULLIFY ; index
r p l g  ! TRUE

cmpg,
r p i « r .

g - >  b o o lo r :  COMPUTE requests  
b o o l o r  - >  g :  r e p l i e s  (d a to n  v a lu e s )  
b o o l o r  - >  pO: e x c e p tio n s  
b o o lo r  - >  pO: COMPUTE requ e sts  
pO - >  b o o lo r :  r e p l i e s  
dto  f o r  pi



♦------------------------- -
! Appendix D - 2 ! 
♦---------------------- +

PROC boolor (CHAR excg, cmpg, rp l* . — concurrent OR 
exc[J, cmp[ J, rp l[ J ) •

VAR fla g  [ l  ] ,  dtn[l ] :
PAR

PAR k -  [o  FOR 1]
WHILE TRUE 

SEQ
rp l[k ] ? dtn[k] 
f la g [k ] TRUE

WHILE TRUE
VAR request, index, xindex 
SEQ 

ALT
excg ? request}

SKIP
cmpg ? index

SEQ
flag!"o] s- FALSE 
f la g i1J s- FALSE 
PAR

xindex

request :* COMPUTE 
cmpTo, ! index 
cmpTl ! index

! PROC accept (VALUE l )  ■ '
4 - - . . - ________________________________________________ .

ALT
flag[0 ] a

accept( 1 ) 
f  1 ag[ 1 J a

accept(O)
excg ? request} xindex

PAR J - [0 FOR 1]
e x c [j ]  ! NULLIFY} index

IF request -  ADVANCE — exception handling 
PAR 1 ■ [0 FOR l ]

e x c [i] ! request} xindex

: — End of PROC boolor



♦---------- -----------♦
! Appendix D - 3 ! 
♦------------------------

PROC w rite (CHAN excp, cmpp, rplp ) ■

— CHAN excp, write -> p: exceptions
— cmpp, write -> p: COMPUTE requests
— rplp: p -> w rite : rep lies
— a channel output is  assumed as predefined.

VAR index, resu lt :
SEQ

index : «  0

WHILE TRUE 
SEQ

cmpp ! index
rplp ? result
output ! result
index index ♦ 1 
excp ! ADVANCE; index

: — End o f  PROC w rite

PROC constant (CHAN excg, cmpg, rp lg , VALUE const) ■

- -  CHAN excg, g -> constant: exceptions
— cmpg, g -> constant: COMPUTE requests
— rplg: constant -> g: rep lies (daton values)
— DEP const • 4711 : the value o f  the constant

WHILE TRUE
VAR request, index, xindex :
ALT

excg ? request; xindex 
SKIP

cmpg ? index 
rplg ! const

: —  End of PROC constant



♦
II
♦

— ----------------- ♦
Appendix D - 4 ! 
--------- —-------- +

— Ocean implementation o f the Lucid program:
— TRUE or FALSE
— main program;

CHAN excg, empg, rplg, e x c f l ] ,  cmp[l], r p l [1 ]
PAR

w rite (excg, empg, rplg)
boolor (excg, empg, rplg,

, eX<7 cmp. rpl)
constant (exdO, , empio], rp iro l, TRUE)
constant (exe [l , cmp[l], rp l[l J, FALSE)

- -  End o f example

There is  a trade-o ff between the reduced number o f request types in the 
Occam implementation o f Lucid, and the lower number o f channels in the 
LUX one (Occam channels are rather r e s tr ic t iv e ) . The pattern matching 
o f the LUX exception RECEIVE is  replaced in the Occam implementation by 
ALTernative inputting through separate channels fo r  (1 ) COMPUTE requests 
and (2 ) fo r a l l  other requests. The absence in  Occam o f a counterpart 
fo r  LUX doors makes i t  necessary to place exception inputs a ll over the 
process. Furthermore, Occam output statements cannot serve as guards 
(indeed, the general provision o f such a mechanism is not t r iv ia l ) ;  this 
d ictates a rather d ifferen t result delivery strategy (channel " rp l" ) in 
Occam than in LUX.

The optimal scheduling, g iving higher p r io r ity  to exceptions, is  not 
implied in the "boolor" example, above; i t  has to be resolved by means 
beyond present Occam. Anyway, Occam has u ltim ately  been designed for 
fo r  execution on a multiprocessor (an array o f  'transpu ters"), and 
scheduling is  o f  minor importance in such a se tt in g .
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