Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Structure of the R. vannielii genome

Tools
- Tools
+ Tools

Potts, Linda Elizabeth (1980) Structure of the R. vannielii genome. PhD thesis, University of Warwick.

[img]
Preview
PDF
WRAP_Theses_Potts_1980.pdf - Submitted Version - Requires a PDF viewer.

Download (11Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b3216363~S15

Request Changes to record.

Abstract

The control of cellular morphogenesis and differentiation at the molecular level in Rhodomicrobium vannlelii is investigated by biochemical and genetic analysis. Chemical characterization indicates that the R.vannlelll genome is 2.19 x 109 daltons, and is made up of 95 per cent unique DNA sequence.

Five per cent of the DNA consists of short inverted repeat sequences, 400 bp in length. No extrachromoscmal DNA is detectable. The DNA from each of the cellular expressions in R.vannielil does not show any major differences in sequence composition.

Kinetic analysis of nucleic acid synthesis during the obligate differentiation of the swarm cell shows a 'lag' or maturation period prior to the onset of DNA replication, whereas no lag occurs in RNA synthesis. The initiation of DNA replication during swarm cell differentiation occurs towards the completion of stalk synthesis.

Studies with the protein synthesis inhibitor chloramphenicol during swarm cell differentiation demonstrate a requirement for protein synthesis in the initiation, but not the elongation step of DNA replication. Nalidixic acid inhibits DNA synthesis in the swarm cell, and although a new daughter cell is produced, cell division does not occur. This implies that chromosome replication and cell division cure directly linked in a 'dependent pathway' of events. Daughter cell synthesis is under the control of the mother cell genome, the daughter cell genome becoming metabolically active just prior to cell division. Further 'cells' produced in nalidixic acid-treated cultures show gross cellular distortion and no stalk formation.

The development of a genetic system for R.vannielll is discussed. The promiscuous plasmid R.68.45 is transferred by conjugation from E.coll to R.vannlelll, where it expresses only one of three plasmid-bome antibiotic resistances, but may be maintained intact in the bacterium. This plasmid may now be used in mapping the R.vannielll chromosome.

Analysis of the R.vannlelli genome by restriction enzyme cleavage is described. Restriction fragments containing the coding sequences for 16s rRNA and 23s rRNA are Identified by 'Southern' hybridization, and their sizes estimated. Attempts to locate the origin of replication on a single restriction fragment are discussed. Preliminary data on the physiology of nitrogen fixation in R.vannlelli shows that the enzyme system is inducible.

The potential of this organism as a model system for further study on the molecular biology of microbial morphogenesis and differentiation is discussed.

Item Type: Thesis (PhD)
Subjects: Q Science > QH Natural history > QH426 Genetics
Q Science > QR Microbiology
Library of Congress Subject Headings (LCSH): Heterotrophic bacteria -- Genetics, Phototropism, DNA replication, Molecular biology
Official Date: 1980
Dates:
DateEvent
1980UNSPECIFIED
Institution: University of Warwick
Theses Department: Department of Biological Sciences
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Dow, Crawford S.
Sponsors: Science Research Council (Great Britain)
Extent: x, 236 leaves : charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us