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SUMMARY

Hie control of cellular morphogenesis and differentiation at 
the molecular level in Rhodomicrobium vannlelii is investigated by 
biochemical and genetic analysis. Chemical characterization 
indicates that the R.vannlelll gencme is 2.19 x 10^ daltons, and 
is made up of 95 per cent unigue DNA sequence.

Five per cent of the DNA consists of short inverted repeat 
sequences, 400 bp in length. No extrachromoscmal DNA is detectable. 
The DNA from each of the cellular expressions in P.vannielil does 
not show any major differences in sequence composition.

Kinetic analysis of nucleic acid synthesis during the obligate 
differentiation of the swarm cell shows a 'lag' or maturation period 
prior to the onset of DNA replication, whereas no lag occurs in RNA 
synthesis. The initiation of DNA replication during swarm cell 
differentiation occurs towards the completion of stalk synthesis.

Studies with the protein synthesis inhibitor chloramphenicol 
during swarm cell differentiation demonstrate a requirement for 
protein synthesis in the initiation, but not the elongation step 
of DNA replication. Nalidixic acid inhibits DNA synthesis in the 
swarm cell, and although a new daughter cell is produced, cell 
division does not occur. This implies that chromosome replication 
and cell division cure directly linked in a 'dependent pathway' of 
events. Daughter cell synthesis is under the control of the 
mother cell genome, the daughter cell genome becoming metabolically 
active just prior to cell division. Further 'cells' produced in 
nalidixic acid-treated cultures show gross cellular distortion and 
no stalk formation.

The development of a genetic system for R.vannielll is 
discussed. The promiscuous plasmid R.68.45 is transferred by 
conjugation from E.coll to R.vannlelll, where it expresses only 
one of three plasmid-bome antibiotic resistances, but may be 
maintained intact in the bacterium. This plasmid may now be used 
in mapping the R.vannielll chromosome.

Analysis of the R.vannlelli genome by restriction enzyme 
cleavage is described. Restriction fragments containing the 
coding sequences for 16s rRNA and 23s rRNA are Identified by 
'Southern' hybridization, and their sizes estimated. Attempts to 
locate the origin of replication on a single restriction fragment 
are discussed. Preliminary data on the physiology of nitrogen 
fixation in R.vannlelli shows that the enzyme system is inducible.

The potential of this organism as a model system for further 
study on the molecular biology of microbial morphogenesis and 
differentiation is discussed.
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1.1. General Introduction and definition of terms

The nature of the regulation of cellular morphogenesis and 

differentiation Is a major unanswered question In biology. During the 

past ten years, the area has been studied extensively In both prokaryotic 

and eukaryotic systems (Piggott and Coote, 1976; Doi, 1977a; O'Malley 

et al., 1977), and although a vast literature has accumulated, the 

basic regulatory processes remain enigmatic.

In eukaryotes, development is a composite process involving 

cellular morphogenesis and differentiation with subsequent cellular 

interactions in tissues or organs. The mechanisms underlying such 

a complex process are difficult to delineate experimentally. Con­

sequently considerable effort is being directed towards an understand­

ing of the processes involved in morphogenesis and differentiation 

in the less complex prokaryotic systems, not only for their own 

sake, but also in the belief that such knowledge will prove valuable 

in elucidating the regulatory mechanisms in the eukaryote. Recent 

work has demonstrated however, that the molecular biology of higher 

organisms is markedly different from that of prokaryotes.

In eukaryotes, in contrast to prokaryotes, large-scale gene 

amplification is found (Brown and Gurdon, 1964), and many genes con­

tain intervening sequences within the coding regions (Breathnach 

et al., 1977). These 'introns' are transcribed, necessitating a 

processing event by an (as yet) unknown mechanism, which has been 

termed 'splicing' (Crick, 1979), to generate the mature mRNA. No 

prokaryotic genes have been shown to contain intervening sequences. 

Nonetheless, prokaryotic differentiation is an exciting field in its 

own right, encompassing the «ureas of differential gene expression, 

transcriptional and translational control, and post-translational 

processing.
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The aim of this Introduction Is to Illustrate the diversity 

of prokaryotic differentiation. Particular emphasis Is placed on 

certain selected organisms In an effort to review the current 

understanding of the regulatory processes Involved In the expression 

of simple differentiation events In the prokaryotic cell cycle.

It Is necessary, before considering the prokaryotes which have 

been used In the study of differentiation, to define several terms, the 

meanings of which are often confused.

a) Morphogenesis refers to changes in the internal architecture 

and external morphology of the cell during the cell cycle.

b) Differentiation refers to a series of events which are 

initiated by a 'switch' in the cell cycle, leading to the formation 

of a different cell type. Differentiation may be reversible

or permanent.

c) Development is a composite event involving morphogenesis 
and differentiation under intercellular influence.For example, in

some cyanobacteria certain cells (the heterocysts) are modified to 

perform a particular function necessary to the activity of the multi­

cellular complex.

d) 'Monomorphlc vegetative cell cycle type'prokaryotes are 

those in which there is only one morphological growth form under 

normal nutrient conditions, and which always exist in the vegetative 

phase e.g. Escherichia coll.

e) 'Dimorphic cell cycle type' prokaryotes are those which 

at division, produce two cell types which differ from each other 

in size and/or shape. The transition between these two is an 

obligate, irreversible part of the cell cycle, e.g. Caulobacter

crescentus.



f) 'Polymorphic cell cycle type* prokaryotes are those which

show two or more physiologically distinct types of cell, each of 

which undergoes a distinctive and constant cell cycle. Different 

morphological forms may be induced by changes in nutrient conditions 

e.g. Arthrobacter ,Geodermatophilus.

1.2. Morphogenesis and differentiation in prokaryotes - an overview

Many prokaryotes have been used as model systems for the analysis 

of cellular differentiation (Table 1.1). Early studies of differentiat­

ing systems focussed on the gross morphological manifestations of the 

process, which were observed by light microscopy, and more recently by 

electron microscopy (Vatter et al., 1959» Conti and Hirsch, 1965).

In the past ten to fifteen years techniques developed in molecular 

biology have been increasingly applied to studies of cellular morpho­

genesis and differentiation, with considerable success.

Morphogenesis in Geodermatophilus was studied by examining the 

effect of nutrients on the induction of different cell shapes.

Ishiguro and Wolfe (1970) showed that a factor present in tryptose is 

responsible for the induction of differentiation (Fig. 1.1), and 

later showed that mono and divalent cations induce the conversion 

of budding rods to cocci, and maintain the coccoid form (Ishiguro 

and Wolfe, 1974).

Arthrobacter crystallopoietes exhibits a nutritionally induced 

differentiation from sphere to rod, which occurs within a completely 

vegetative cell cycle (Fig. 1.2» Ensign and Wolfe, 1964). The 

transition may be controlled by manipulation of the growth medium, 

but the causative agent remains unknown. The major limitation to a 

comprehensive study of both Arthrobacter and Geodermatophilus is that
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Table 1.1 Prokaryotes which have been used for studies of

cellular morphogenesis and differentiation

Organism Reference

Anabaena cylindrica Adams and Carr (1979)

Arthrobacter Ensign and Wolfe (1964)

Bacillus subtilis Doi (1977b)

Caulobacter crescentus Shapiro (1972)

Chlorogloea fritschii Evans et al., (1976)

Geodermatophilus Ishiguro and Wolfe (1970)

Hyphomicrobium Hirsch (1974)

Myxococcus Wireman and Dworkin (1977)

Phodopseudcnonas palustris Westmacott and Primrose (1976)

Rhodctnicrobium vannielii Whittenbury and Dow (1977)
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Fig. 1.1. The cell cycle of Geodermatophilus strain 22-68*

Growth and cell division in the C-form requires the presence of a 

factor found in tryptose. Absence of this factor induces differentia­

tion to the R-form. Re-addition of tryptose will induce differentiation 

from the R-form to the C-form. Later data (Ishiguro and Wolfe, 1974) 

indicated that mono and divalent cations induced the conversion of 

budding rods to cocci.

* From Ishiguro and Wolfe (1970).
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Fig. 1.2. The morphogenetic cell cycle of Arthrobacter 

The morphogenetic transition occurs in one complete vegetative 

cell cycle. Growth is entirely in the coccoid form when cells are 

grown on glucose and minimal salts. Addition of L-arginine or any 

of a range of amino acids induces rod formation which is maintained 

until the 'inducer' is exhausted.
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the genetic and biochemical knowledge of them is slight.

Both unicellular and multicellular blue-green algae have been 

exploited in studies of cellular differentiation. The unicellular 

Chlorogloea frltschll shows a wide range of phenotypic variations in 

morphology as a result of different environmental stimuli (Fig. 1.3;

Evans et al., 1972). The complexity of this system makes analysis 

of the underlying molecular events extremely difficult.

In the filamentous blue-green alga Anabaena cyllndrlca, the 

formation of heterocysts (cells specialized for nitrogen fixation) 

follows a pattern determined by the surrounding vegetative cells 

(Wilcox et al., 1973a). It was suggested that individual hetero­

cysts produce an inhibitor of further heterocyst development, so 

determining that new heterocysts may only develop at a certain distance 

further down the filament, where the concentration of inhibitor is 

below a critical threshold level. Breakage of the filament near a 

proheterocyst causes it to regress to a vegetative cell, since the 

breakage will allow the accumulation of inhibitor in the prohetero­

cyst (Wilcox et al., 1973b).

Treatment of A.cyllndrlca with specific metabolic inhibitors at 

various times after transfer to ammonia-free medium showed that prohetero­

cyst development occurs in the minimum concentrations of inhibitors 

which prevent mature heterocyst formation (Adams and Carr, 1979).

The inhibitory effect of mitomycin C is mediated earlier in the 

developmental sequence than that of rifampicin. The effects of the 

two inhibitors on proheterocyst and heterocyst development are 

different but parallel, suggesting that at least two separate genes, 

one for proheterocyst, and one for mature heterocyst formation, are 

operating.
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Although studies on the molecular biology and biochemistry of 

A.cyllndrlca are progressing, in general the other systems described 

above suffer from the lack of an adequate biochemical and genetlcal 

background, and the patterns of differentiation are inherently 

extremely complex. Studies of several other organisms have been 

more extensive than those described above, and these will be discussed 

in detail. The rapid progress of research on these other prokaryotes 

was largely due to the biochemical knowledge already in existence. 

E.coll was the first bacterium in which regulatory mechanisms were 

examined in detail.

1.3. A simple monomorphlc cell cycle - Escherichia coll

1.3.1. Growth and cell division. In studies concerned with 

the regulation of the cell cycle, E.coll would be the prokaryote of 

choice, because of the wide knowledge, accrued over the last twenty 

years, of the biochemistry and genetics of this organism. Moreover, 

its rapid growth rate, and the availability of easy culture techniques, 

make it an ideal experimental organism. In terms of cellular morpho­

genesis and differentiation, it possesses a simple morphogenetic cell 

cycle, in which cell division is the only visible morphological event. 

Cell division during the cell cycle is however, an integral part of 

cellular morphogenesis and differentiation, and E.coli has been used 

as a model system to investigate the regulation of cell division at the 

molecular level.

E.coll shows intercalary growth when growing rapidly in a complex 

medium (its generation time is less than 40 minutes) , but when growing 

slowly, growth is polar, that is from one pole only (Fig. 1.4;

Donachie et al.. 1973), This polar growth is the same as the obligate 

polar growth shown by the budding bacteria (Nhittenbury and Dow, 1977),

A



heterotrophic

Fig. 1.3. Morphological variations induced In Chlorogloea_frltschil_ 

by different environmental conditions*

Type A: large granulated cells ( 2 x 3  pm) existing either singly, or as 

clumps containing 2 or 3 cells which arise from division in 1-3 planes. 

Type Bs found in clumps which combine larger groups of cells surrounded 

by a mucilaginous sheath.

Type C: small cells (1 pm) found in filaments.

Type D: cells (1.5 pm) found in filaments in the process of dividing.

* From Evans et al., (1976)
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• Fig. 1.4. Bacterial growth modes*

a) Multiple growth points characteristic of E.coli growing with a 

generation time of less than 40 min.

b) Polar growth shown by E.coli with a generation time in excess 

of 60 min (only one active growth point).

c) Obligate polar growth of a budding bacterium, e.g. Rhodomlcrobium 

vannlelli.

*. From Whittenbury and Dow (1977)
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• Fig. 1.4. Bacterial growth modes*

a) Multiple growth points characteristic of E.coll growing with a 

generation time of less than 40 min.

b) Polar growth shown by E.coll with a generation time in excess 

of 60 min (only one active growth point).

c) Obligate polar growth of a budding bacterium, e.g. Rhodomlcroblum 

vannlelli.

*. From Whittenbury and Dow (1977)

O il



and cell division in both instances is primarily by binary fission, 

plug formation in Rhodomlcroblum vannlelll being the exception.

1.3.2. Relationship between cell division and chromosome 

replication. Early studies were directed towards elucidating the 

timing of DNA replication and cell division in the cell cycle of 

synchronous E.coll cultures, and determining the extent to which 

these two processes are coupled in the cell cycle. It was shown that 

in E.coli, termination of chromosome replication is a necessary pre­

requisite for cell division (Clark, 1968; Helmstetter and Pleruccl, 

1968). Therefore when DNA replication is inhibited in complex 

medium, cell division does not occur.

However, chromosome replication is unlikely to be responsible 

for the precise timing of cell division (Jones and Donachie, 1973), 

and the temporal relationship between cell division and DNA replication 

has been shown not strictly to apply to individual E.coll cells 

(Kubitschek and Newman, 1978), where DNA replication is the most 

tightly controlled event. The rate of DNA replication has no effect 

on cell shape, and the lack of uniform shape demonstrated by thymine- 

starved cells is due to the imbalance of wall components, rather 

than the absence of DNA synthesis (Zaritsky and Woldringh, 1978).

1.3.3. The'dependent pathways'concept. Mltchison (1972)

suggested two possible ways in which the sequence of cell cycle 

events may be fixed relative to one «mother. In the 'dependent 

pathway1 model there is a direct causal connection between each event, 

so that completion of an earlier event is necessary before the next 

can occur. The'independent pathways' model envisages a series of

parallel pathways operating under the control of a'master timer'

(fig, 1.5« Hereford and Hartwell, 1973).
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a) 'Dependent pathway' model

A --- » B --- ) C ----> D --- > E --- > F

A 
B

C

D
E 
F

Fig. 1.5. Two models to account for the ordering of cell 

cycle events

In a) , each event is dependent upon the completion of the previous 

event, whereas in b ) , there is a 'master clock' controlling several 

pathways of events, and each pathway is independent of the others.

b) ' Independent pathways' model
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The use of temperature-sensitive, cell division cycle (cdc) 

mutants has shown that in Saccharomyces cerevisiae, parallel control 

pathways are the most likely (Hartwell et al., 1974),

Jones and Donachie (1973) also proposed a model for E.coll in 

which DNA replication and the synthesis of 'division proteins' are 

in concurrent parallel pathways. The actual mechanism is probably 

one in which several parallel pathways are linked together by an over­

riding mechanism, and within each individual pathway each event is 

dependent upon the completion of the previous one. This would result 

in a fine degree of control over cellular morphogenesis and differentia­

tion.

1.3.4. The control of initiation of chromosome replication. Pro­

tein synthesis is a prerequisite for the initiation of DNA replication 

(Lark et al., 1963) , but recently protein synthesis has also been 

Implicated in chromosome termination (Jones and Donachie, 1973) , and 

in parallel control pathways as indicated above. Jones and Donachie 

found protein synthesis requirements at the point of initiation of 

chromosome replication, during DNA replication and also in a period 

immediately after chromosome termination (Fig. 1.6). These three 

periods of protein synthesis show varying sensitivities to chloramphenicol. 

A contradictory report (Marunouchi and Messer, 1973) suggested that 

protein synthesis is required for replication of a terminal segment 

of the chromosome, and that replication of this segment is necessary 

for cell division. However, Loehr and Hanawalt (1977) could not confirm 

the existence of a unique terminal segment. These workers attributed 

the burst in incorporation of radioisotope seen in the earlier study, 

to a transient increase in the rate of replication fork movement 

induced by the temperature shift, rather than synthesis of a terminal
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Fig. X.6. 
Model of the cell cycle in Escherichia coli
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part of the chromosome in response to the relieving of amino-acid 

starvation.

The initiation of DNA replication may be controlled in a 

positive or a negative manner. Jacob et al., (1963) suggested a 

positive mechanism, whereby an initiation protein would accumulate to 

a threshold level before triggering the onset of replication. The 

negative control mechanism supposes that an inhibitor or repressor 

is present in the cell, and replication only occurs when it is diluted 

below a threshold level by sin increase in cell volume (Pritchard 

et al., 1969). This latter model is substantiated by the observa­

tion that some dnaA mutants show stimulation of initiation immediately 

after protein synthesis is inhibited (Tippe-Schindler et al., 1979).

Messer (1972) found that rifampicin Inhibited initiation of replica­

tion at a time when inhibition of translation was Ineffective. The 

fact that transcribing RNA polymerase is unaffected by rifampicin, allowed 

the size of the RNA species required for initiation to be estimated 

as lOOO nucleotides. RNA polymerase activity is implicated directly 

by the finding that the conversion of single stranded (SS) Ml3 DNA to 

the replicative form (RF) is inhibited by rifampicin, but not by 

chloramphenicol (Brutlag et al.,1971). The RNA species necessary 

for initiation has been isolated and is designated O - RNA (Messer 

et al., 1975).

Tippe-Schindler et al., (1979) have therefore suggested a 

dual mechanism for the control of initiation of replication, 

comprised of one control system for the synthesis of O-RNA, and a 

second for the synthesis of initiation proteins (Fig. 1.7). These 

components then form the ’replication complex* on which DNA replica­

tion may take place. Synthesis of O-RNA itself is under two controls.



dna A
gene
product

synthesis

repressor 
protein

replication
complex

control ?

............ '
specific
proteins

v

initiation
of

replication

Fig. 1.7. Proposed mechanism for the control of Initiation of 

DNA replication in E.coll*
#

A dual mechanism is proposed, in which both the synthesis of O-RNA 

and the synthesis of initiation proteins are regulated. O-RNA synthesis 

is controlled positively by the dnaA gene product and negatively by an 

unknown repressor protein.

k
from TlpRe-Schindler et al. (1979)
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one positively-acting in which the dnaA gene product is directly 

involved, and the second a negatively-acting repressor protein acting 

after the start of transcription. The use of specific merogenotes 

(cells which carry an extra dnaA allele on an episome) has confirmed the 

role of the dnaA gene product in replication as a positively-acting 

control (Zahn and Messer, 1979). The merogenote over-produces O-RNA 

and over-initiates, indicating that the mechanism for positive 

control is gene dosage-dependent, and switch-off occurs under normal 

conditions.

1.3.5. Conclusions. As is apparent, DNA replication mutants 

have been invaluable in helping to elucidate the control of initiation 

of replication. Although there are still many unanswered questions, 

the information from E.coll on the control of DNA replication is 

applicable to many other organisms, in particular those used in 

studies of cellular morphogenesis and differentiation. Although 

E.coll is a very important experimental organism, its usefulness in 

studies of morphogenesis and differentiation is limited, because 

of its vegetative monomorphic cell cycle. It is for this reason, 

that attention has turned to other, more complex differentiating 

prokaryotes, one group of which is the sporulating Bacilli.

1.4. The endospore-forming Bacilli.

1.4.1. General morphology and the differentiation sequence in 

Baci^lui^^ubtili^. The endospore-forming Bacilli are a group of 

Gram-positive, rod-shaped bacteria, which are able to form heat- 

resistant endospores in unfavorable environments. Bacillus subtllls 

has been used for most sporulation studies since the biochemistry, and 

particularly the genetics of this species have been studied in depth.

The process of sporulation is manifested in a series of clearly- 

defined, morphological changes, which have been designated as discrete
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stages in the differentiation sequence (Fig. 1.8). At the end of 

exponential growth, an axial filament of DNA forms parallel to the 

long axis of the cell. A septum forms at right angles to this in an 

asymmetric position, the smaller cell produced by the division being 

termed the prespore. Engulfment of the prespore occurs to form the 

forespore, spore-specific coat materials are laid down, and after a 

period of maturation, the spore is released.

Fundamental control processes may be different in the vegetative 

cells of B.subtills, from those in E.coli, for it has been shown 

that, unlike E.coli, cell division and DNA replication in B.subtills 

are independent of each other (Donachie et al., 1971). When DNA 

synthesis is blocked, cell division continues, and eventually 

enucleate cells are produced. It is possible that in B,subtills 

parallel independent pathways exist without a 'master timer' and 

another process may be the overriding factor in the control of cell 

division. RNA synthesis is required for the initiation of chromosome 

replication (Murakami et al., 1976), as in E.coli. The RNA is 

probably required as a primer for DNA polymerase, in a similar way to 

that in E.coli.

1.4.2. Sporulation mutants. The progress which has been made in 

the understanding of sporulation was possible because many sporulation 

mutants had been isolated and characterized. However, the inherent 

complexity of the system has meant that progress has been slow. The 

major problem is that biochemical changes which are detected on sporula­

tion could be either sporulation-specific changes, or merely a 'shift- 

down' response at the end of exponential growth. In very few cases 

can these be distinguished.
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Fig. 1.8. Stages of sporulation In B .subtilÌ3

Spore stages

0 End of exponential growth

I Axial filament

H a Septum formation

lib Prespore formed

Ilia Engulfment of prespore

m b Fore-spore formed

IV Cortex formation

V Coat deposition

VI Spore maturation

VII Spore release
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In all, several hundred loci for sporulation have been detected 

with the use of asporogenous mutants (Plggott, 1973). The 

sporulation mutants can be divided into early and late mutations, 

depending on the time In sporulation when they block the sequence.

Each Is designated by the latest stage to which It can develop, for 

example a spo II mutant will develop up to stage II.

Most of the early sporulation genes are found to be scattered 

over the chromosome (Doi, 1977b) , but the clustering of genes for 

stages II and III has been reported (Hoch, 1974), Sporulation mutants 

at stage O are often found to have pleiotropic effects. These 

mutations could be mediated through an effect on membrane function, 

and this effect may also be reponsible for the accumulation of DNA-bind- 

lng proteins seen In vegetative cells, as well as In spore stages of spo O 

mutants (Brehm et al., 1975) .

In the later stages of sporulation several biochemical markers 

appear, such as dlpicolinlc acid, alkaline phosphatase, and resistance 

to chemicals and heat. None of the late sporulation gene functions 

have been Identified to date. Mutants which are temperature-sensitive 

for sporulation have also been isolated, and studies of these have 

revealed that synthesis of a gene product may occur long before its 

physiological function is required, for example coat protein may be 

detected antigenically at stage II, but its function is not required 

until stage V (Wood, 1972). The availability of this comprehensive 

array of mutants has enabled an analysis of the biochemistry of 

sporulation to be made, A major problem in the use of spo 

mutants Is that mutations are pleiotropic,indicating that the mutation 

could be in a control region rather than in a structural gene. No 

primary product of a spo locus has as yet been identified (Piggott 

and Coote, 1976),
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1.4.3. Control of sporulation at the molecular level. A final

round of DNA replication and cell division is necessary before 

forespore septum formation (Mandelstam et al., 1971). DNA polymerase 

activities in sporulating B,subtills show marked differences from 

vegetative cells. DNA polymerase I activity increases during the 

early stages of sporulation, and then decreases, whereas the levels of 

DNA polymerases II and III do not change (HonJo et al., 1976) . The 

increased DNA polymerase I activity indicates that the capacity for 

repair synthesis is increased during sporulation. DNA polymerase 

III activity increases significantly on spore activation, prior to the 

onset of replication (Ciarrochi et al., 1977).

With the use of specific inhibitors of transcription it was 

shown that continued transcription is necessary throughout sporulation 

(Leighton and Doi, 1971), Pulse labelling and inhibitor studies 

demonstrated that sporulation mRNA has a short half'■life, and that the 

synthesis of enzymes associated with sporulation is also dependent on 

short-lived mRNA (Linnett and Tipper, 1976), Initiation of sporulation 

is also very sensitive to netropsin, which inhibits RNA synthesis by 

binding to (A-T)-rich regions of the DNA CWartell et al.. 1974).

This observation led to the suggestion that early sporulation genes 

lie in (A-T)-rich regions of the chromosome (Keilman et al., 1975).

When sporulation begins, RNA synthesis drops by 90%, and this is 

followed by fluctuating levels of synthesis throughout sporulation. 

Simultaneously with the drop in RNA synthesis, high concentrations of 

ppGpp and pppGpp (Magic Spots 1 and 2) accumulate rapidly, and then 

decrease equally rapidly (Rhaese et al.. 1975). These highly 

phosphorylated nucleotides (HPN) have been Implicated in the control 

of rRNA synthesis (Van Ooyen et al., 1976) . Rhaese and Groscurth (1974)



found that ppApp and pppApp (HPN I and II) are synthesized by 

B.subtilis ribosomes after glucose depletion or amino-acid starvation.

A third HPN, pppAppp was shown to be synthesized in the membranes, 

and was implicated in the recognition of external conditions (Rhaese and 

Groscurth, 1976).p^Ap^ affects the translational capacity of the ribo­

somes so that P2 a P 2 and p3 A p 2 are made inatead of p2 PP2 and PjGPj. 

p^Ap^ synthetase resides in the membrane, is inhibited by energy 

sources such as glucose, and is coded for by the spoOF gene (Rhaese 

and Groscurth, 1979). Temperature-sensitive mutations in this gene 

cause the abolition of sporulatlon, and they also have a temperature- 

sensitive P3 AP3 synthetase, suggesting that p^Ap^ Is a sensor 

molecule for the initiation of sporulation. Significant levels of 

CAMP have not been observed in most Bacilli tested (Setlow, 1973) , 

but cGMP has been found (Bernlohr et al., 1974) .

Competition DNA-RNA hybridization experiments showed that sporula­

tion- specif ic RNA's are transcribed from both heavy and light strands 

in a sequential manner during sporulation (Dicioccio and Strauss,

1973). However, even at the late stages of sporulation, 60% of mRNA is 

qualitatively vegetative phase mRNA (Linn and Losick, 1976), Inherent 

problems in these mRNA studies are the inability to study a gene- 

specific mRNA, and the lack of quantitation of mRNA species.

There is an increasing body of evidence to suggest some degree 

of control over sporulation exists at the level of translation, but far 

less attention has been paid to it compared with studies of transcriptional 

control. The stability of mRNA during sporulation has important 

implications for the extent of translational control but unfortunately 

the evidence available on this point is conflicting. Some studies 

suggest there are stable mRNA molecules (Steriini and Mandelstam, 1969),
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whereas others find them to be unstable (Leighton, 1974) . Most 

evidence is obtained through the use of RNA synthesis inhibitors, the 

main difference between individual studies being the concentrations 

used. The use of low concentrations suggests that mRNA is stable, but 

these concentrations may allow residual RNA synthesis to occur, 

whereas high inhibitor concentrations suggest that mRNA is unstable, 

but there is evidence that the inhibitor rifampicin, which is most 

commonly used, causes some cell lysis even at low concentration (1 vgml 1) 

(Coote et al., 1973). The use of mutants tends to suggest that mRNA 

is short-lived (Leighton and Doi, 1971).

The demonstration of a change in the specificity of translation 

is necessary to establish the existence of translational control.

In vitro translation experiments showed that 'idling' vegetative ribo­

somes produce the highly phosphorylated nucleotides p2Gp2 and P3Gp2 ' 
whereas ribosomes from sporulating bacteria produce P2AP2 and P3Ap2 

(Rhaese and Groscurth, 1974). This difference may reflect a functional 

change in translation during sporulation. An active in vitro protein 

synthesizing system from B.subtilis was able to translate adequately 

bacteriophage SPO-1 RNA in the presence of initiation factor (IF) from 

vegetative cells, but in the presence of IF from sporulating cells this 

ability was greatly reduced. This effect was a definite change in 

template specificity rather than a general loss of activity (Chambliss 

and Legault-Demare, 1975).

Post-translational control of sporulation has been demonstrated 

in the formation of the spore coat protein. Coat protein is deposited 

at stage V, but Wood (1972) was able to detect the protein immunologically 

as early as stage II. The protein could also be detected in spo mutants 

blocked at stage II. This evidence suggests a specific mechanism is
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operating to control the assembly of accumulated coat proteins into the 

final spore coat. There is some evidence that post-translational 

modification may also occur by limited proteolysis (Sad off et al.,

1970), but the significance of this is unclear.

In summary, it has been shown that differential gene expression 

occurs during sporulation, and control mechanisms are operating primarily 

at the level of transcription, although some translational control can 

be demonstrated.

1.4.4. RNA polymerase and its Involvement in transcriptional 

control. Since transcriptional control plays an Important role in the 

regulation of sporulation, the RNA polymerase enzyme present during 

sporulation has been extensively investigated. The vegetative RNA 

polymerase holoenzyme is made up of 5 polypeptides, a^, B, B' and o, 

to which the smaller polypeptide u is often attached (Berg and Chamberlin, 

1970). The core enzyme of a^BB' is functional in RNA chain elongation, 

but fails to initiate from a natural initiation site.

The initial observation, that RNA polymerase loses its ability to 

transcribe bacteriophage 0e DNA early in sporulation, led to the proposal 

that a change in template specificity of the enzyme occurs at the onset 

of sporulation (Brevet and Sonenshein, 1972). This issue has remained 

controversial, since the change could be a characteristic of stationary 

phase RNA polymerase rather than a reflection of sporulation-specific 

changes (Szulmajster, 1973). The study of functional RNA polymerase 

mutants has complemented biochemical analysis of the enzymes' subunit 

structure.

In a converse approach to the isolation of sporulation mutants, 

specific functional RNA polymerase mutants have been selected. The 

most useful of these are mutants temperature-sensitive at various 

stages of sporulation, which are able to grow and sporulate at the
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permissive temperature, and grow but fail to sporulate at the restrictive 

temperature (Leighton, 1973). The RNA synthesis inhibitor rifampicin 

has been shown to inhibit transcription by binding to the 3-subunit 

of RNA polymerase (Rabussay and Zillig, 1969). The effect of rifampicin 

on RNA polymerase activity in the mutant vegetative cells was different 

from that on the enzyme activity in mutant sporulating cells, suggesting 

that the enzyme was modified during sporulation (Sumida-Yasmumoto and 

Doi, 1977) .

The hypothesis (Losick et al., 1970), that modification of the 

3-subunit occurred on the transition to sporulation, was proved 

incorrect when it was shown that the modification was the result of 

proteolysis during the purification procedure (Linn et al., 1973) . The 

problem of proteolysis has plagued subsequent biochemical investigations 

on the enzyme, resulting in considerable controversy. Early experiments 

reporting alterations in the o-factor were in fact done under conditions 

where proteolysis could occur (Sonenshein and Losick, 1970), and later 

data shows that o-factor from sporulating and vegetative cells, and 

also asporogenous mutants, antigenically cross-react (Duie et al., 1974).

Recently it was found that the core structure of RNA polymerase 

may be modified by association of the core with polypeptides other 

than the o-factor (Fukuda and Doi, 1977). During forespore formation 

two forms of RNA polymerase were identified. One (enzyme I) is 

identical to the holoenzyme from vegetative cells, but the second 

(enzyme II) has a subunit designated 3 instead of o. The new sub­

unit has a molecular weight of 28,000 dal tons. Enzyme I is much less

sensitive to netropsln than enzyme II, suggesting that the enzymes 

have different binding sites on the DNA.

026



Regulatory mechanisms other than RNA polymerase modification may 

be involved in the control of transcription. Transcription of the lac 

operon requires cyclic AMP, cyclic AMP receptor protein and a repressor 

protein in addition to RNA polymerase, for adequate transcription 

(De Crombrugghe et al., 1971). Regulatory attenuator sites which 

regulate the termination of transcription in a region of the operon 

preceeding the structural gene have been identified in the trP » gene 

(Bertrand et al., 1975).

1.4.5. Germination of endospores. In comparison with sporula­

tion, experimental studies on the germination of endospores has been 

neglected. Although much is known about the external factors which 

Influence spore germination, little work has been done on the biochemistry 

of the process. The difference between spore germination and the 

vegetative state is a reflection of the limited classes of protein 

synthesized during germination. Gene position with respect to the 

chromosomal origin does not dictate the time of enzyme synthesis, i.e. 

sequential gene transcription does not occur (Yeh and Steinberg,

1977).

Contradictory reports concerning the nature of RNA synthesized 

during germination have appeared in the literature. Early workers found 

that only rRNA is synthesized early in germination (Armstrong and 

Sueoka, 1968), but their analysis was based on sucrose gradients, 

which do not adequately distinguish mRNA and rRNA populations. Recent 

data shows that pulse labelled RNA from vegetative and germinating 

cells appear quite similar on polyacrylamide gels (Sloma and Smith,

1979), suggesting that there are no transcriptional controls which are 

specific to spore germination. Certain individual RNA transcripts 

however, are unique to the germination process (Margulies et al., 1978).
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1.4,6. Genetic analysis of B_^gubtlllSj. a  ma^or reason for 

the use of B.subtllls as a model for differentiation Is the extensive 

genetlcal background already available. Not only is the range of 

sporulation mutants very extensive, but both transformation and transduc­

tion have been demonstrated in the bacterium, making it amenable to 

genetic manipulation. Genetic analysis has permitted the construction 

of a B.subtllls genetic map, which although not as detailed as that of 

E.coll, has proved to be very useful.

B.subtllls cells become competent for transformation towards the 

end of the exponential growth phase, the competent cells being physio­

logically different from non-competent cells. f*or example,they become 

resistant to penicillin for some time after transformation (Nester,

1964). B.subtllls can take up double-stranded DNA, and also single 

stranded DNA in the presence of EDTA (Chilten and Hall, 1968), and after 

transformation donor DNA can be retrieved in a covalent association 

with recipient DNA (Bodmer and Ganesan, 1964) . Davidoff-Abelson and 

Dubnau (1971) have suggested that the systems utilized in repair and 

recombination and in transformation may be similar, since in rec A 

mutants, the transformation frequency was 10-25* of that in wild type 

cells.

Plasmids have been isolated and characterized from B.Bubtllls 

and B.cereus. with a view to the plasmids' use as potential gene 

cloning vectors (Tanaka et al., 1977; Bernhard et al., 1978). In 

B.cereus. bacteriocin production and tetracycline resistance cam be 

attributed to two pi a an ids, but the B.subtllls plasmids do not show any 

detectable phenotypic traits.

Temperate phage for B.subtills have been investigated, also in 

view of their potential as cloning vectors. The best characterised is
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0105, a lysogenic phage for which there Is a physical genetic map

(Birdsell et al., 1969). A closely related phage pl4 (Dean et al.,

1978) was found to have only one site for the restriction endonuclease 

Bql XX, and therefore has more potential as a cloning vector than 

0105, which has multiple sites for most restriction enzymes. pl4 is 

presently being developed as a cloning vector,

It appears that the range of natural cloning vectors in 

B.subtilis is limited, but it is possible to transfer plasmids from 

Staphylococcus aureus to B.subtilis (Erlich, 1977) . These small 

plasmids are more suitable cloning vectors than the native Bacillus 

plasmids. A hybrid plasmid between pC194 (a Staphylococcus plasmid) 

and the E.coll plasmid pBR322 may be used as a cloning vector in both 

hosts (Erlich et al. , 1978) .

1.4.7. Conclusions. Sporulation in B.subtilis is a good 

system in which to study the control of morphogenesis and differentiation. 

Its major advantages are the multitude of asporogenous mutants which 

have been isolated and characterised, and the availability of a genetic 

map. Investigation of the molecular biology of sporulation has been 

controversial, and has lagged behind genetic studies, primeurily because 

of the most important disadvantage of the system, namely the inability 

to distinguish between biochemical changes due to shift-down at the 

end of exponential growth, and changes which are truly sporulation- 

specific. This problem has hampered research for a long time, and a 

solution to it has not yet been found. Another disadvantage is the 

pleiotropic nature of most sporulation mutants. The application of

DNA cloning techniques to studies of sporulation may allow the expression 

of individual sporulation genes to be examined in isolation (Segall and 

Losick, 1977), and then further progress in this fascinating area may be

made.



Other, less well-known bacteria have been recently used in 

studies of morphogenesis and differentiation, and one of these is the 

prosthecate bacterium Caulobacter crescentus.

1.5. The prosthecate bacterium Caulobacter crescentus

1.5.1. The Caulobacter cell cycle. C.crescentus is a pro­

sthecate bacterium, that is one which possesses a cellular extension, 

the membrane of which is continuous with the cytoplasmic membrane 

of the cell. The prostheca, or stalk, is an integral part of the 

cell,

An exponential culture contains three cell types. These are a 

stalked or 'mother' cell which has a polar prostheca, a swarm or 

'daughter* cell, which has a polar flagellum and pili, and a pre- 

divisional cell with the characteristics of both the swarm cell and 

the stalked cell. The swarm cell differentiates into a stalked cell, 

and then in the pre-divisional cell, swarm cell characteristics 

appear at one pole (Fig. 1.9). Division of the pre-divislonal cell 

is asymmetric, leading to two distinct cell types. The stalked cell, 

immediately after division, can initiate a new round of growth and 

division to produce another swarm cell. The swarm cell however, 

must undergo a period of differentiation to become a stalked cell 

before it can reproduce (Shapiro, 1976),

The distinctive sequential, morphological changes which mark this 

differentiation sequence make this prokaryote an attractive alternative 

for studies of cellular morphogenesis and differentiation. A second 

important advantage of this organism is that populations of synchronous 

cells can be obtained by differential centrifugation (Stove and Stanier, 

1962) , or by adhesion of the cells via a holdfast to petri dishes or 

membranes (Swoboda and Dow, 19791 . In this latter method the membrane



I I ,

B

Fig. 1.9. The dimorphic cell cycle of C.crescentus*

A: the motile swarm cell bearing a single flagellum 

B: the non-motile stalked cell

C: the dividing cell, which possesses a stalk at one pole 

and a flagellum at the other.

Asymmetric cell division gives rise to a swarm cell and a stalked 

cell, the stalked cell proceeding directly to growth and cell division, 

whereas the swarm cell must undergo a period of maturation and 

differentiation to a stalked cell, prior to further reproduction.

* From Degnen and Newton (1972b)
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is washed repeatedly with growth medium, and after several minutes

the only free cells are found to be swarm cells released after division

of the attached stalked cells (Fig. 1.10). These are harvested and
7 -1are usually at a concentration of 10 ml (Table 1.2) . For any bio­

chemical studies of the cell cycle a population of synchronous cells 

is essential, since this allows amplification of the biochemical 

changes occurring in each individual cell, and thus facilitates their 

study.

1.5.2. The kinetics and regulation of macromolecular synthesis 

during the cell cycle. The use of synchronous cultures enabled detailed 

biochemical studies to be undertaken on the C.crescentus differentia­

tion cycle. DNA replication is a characteristic of the stalked cell 

only, with a period (or maturation period) of approximately 65 min. 

in the swarm cell. Replication in the stalked cell shows no such pre­

synthetic gap (Degnen and Newton, 1972b; Fig. 1.11), but recent 

evidence Indicates that there may be a small G^ in the stalked cell 

cycle (Swoboda et al., in press) . Shapiro (1976) suggested that there 

are two programmes for gene expression in C.crescentus; one in the 

stalked cell, and one in the swarm cell to stalked cell transition.

It is possible that these may be mediated by modified RNA polymerases 

as may be the case in B.subtills. but no differences in RNA polymerases 

from each cell type have been found (Bendis and Shapiro, 1973) .

The use of specific DNA synthesis inhibitors such as mitomycin c, 

enabled Degnen and Newton (1972a) to show that cell division was 

dependent upon the completion of DNA replication as for E.coll (Clark, 

1968). It appears that a dependent pathway of cell cycle events 

operates in C .crescentus, in which DNA replication, cell division and 

stalk formation are directly linked (Terrana and Newton, 1976), with
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swarm
cell

released

Fig. 1.10. Successive stages In the life cycle of an 

individual C.crescentus cell attached to a 

membrane filter*

Homogeneous swarm cell populations are selected by filtration, and 

then are allowed to attach by the holdfast to an inverted membrane 

filter. They differentiate to become stalked mother cells and release 

newly formed swarm cells into the medium at regular intervals.

* From Swoboda and. Dow (1979)
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Fig. 1.11. The DNA cycles in «warmer and stalked cells 

of C.crescentus*

Numbers are the average time spent in each phase (min).

* From Degnen and Newton (1972b)
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RNA synthesis a necessary prerequisite for the initiation of DNA 

replication (Newton, 1972). A non-motile, temperature-sensitive 

mutant was used to establish that neither flagellin synthesis nor 

assembly are required for cell division(Olsey and Newton, 1977).

Shapiro (1976) postulated that flaqellin synthesis and flagellar 

assembly form a secondary, ancillary pathway independent of the pro­

gress of the cell cycle.

In C.crescentus, 1% of RNA is polyadenylated with poly A tracts 

of 15-50 nucleotides, but these RNAa are unstable,and are made at all 

stages of differentiation (Ohta et al., 1978). However, they may 

have a role in post-transcriptional control as in eukaryotes (Darnell 

et al., 1974).

Protein synthesis during C.crescentus differentiation was examined 

by pulse labelling synchronous cultures with 35S-methionine, followed 

by analysis using one and two-dimensional polyacrylamide gel electro­

phoresis. Proteins specific to the swarm cell and to the stalked cell 

were identified, indicating that differential gene expression 

operates during differentiation (Cheung and Newton, 19771, Measure­

ments of the absolute rates of protein synthesis and of the half-lives 

of mRNA populations showed that the changes in protein patterns were 

the result of transcriptional control (iba et al., 1978) . This work 

has recently been extended to an examination of the products of cell- 

free, transcription-translation systems using isolated C.crescentus 

nucleoids (Evinger and Agabian, 1977) from different developmental 

stages. The proteins synthesised from mRNA attached to the nucleoid 

at the time of preparation were examined, and stage-specific membrane 

proteins were identified (Evinger and Agabian, 1979).
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Translational studies in C.crescentus have focussed on the

initiation of protein synthesis, using isolated ribosomes and the 

natural mRNAs provided by RNA phage. C.crescentus ribosomes are 

unable to bind and translate mRNA from the coliphage MS2, whereas 

translation of homologous mRNA from the C.crescentus phage 0Cb5 is 

efficient (Leffler and Szer, 1973). This specificity resides in the 

30S subunit. Several initiation factors have been isolated from 

C .crescentus, and all have been found to be interchangeable with E.coli 

initiation factors, and so these aure not species-specific (Leffler 

and Szer, 1974).

1.5.3. Genetic analysis of C.crescentus. c.crescentus has 

proved to be amenable to genetic analysis, increasing its usefulness 

in morphogenesis and differentiation studies. Auxotrophic mutants 

can be obtained and used to demonstrate conjugation and the transfer of 

genetic markers between strains (Newton and Allebach, 1975). Tempera­

ture-sensitive cell cycle mutants have proved useful in the study of 

cell cycle control (Kurn et al., 1974) , as described earlier in the 

elucidation of the relationship between flagellin synthesis and cell 

division (Olsey and Newton, 1977).

Two transducing phage for C.crescentus have been isolated (Ely 

and Johnson, 1977), but unusually, both are virulent and do not 

lysogenize the host. Drug resistance plasmids such as the inc-P 

plasmid RP4 have been transferred to C.crescentus to allow genetic 

analysis (Ely, 1979). The plasmids aure stably maintained and earn be 

used to promote chromosomal exchange between C.crescentus strains.

Use of such plasmids stay also allow the introduction of transposons 

into the chromosome for further genetic analysis.



1.5.4. Conclusions, C.crescentus is a very useful model for

studying morphogenesis and differentiation since it shows an obligate, 

well-defined series of morphological changes, synchronous populations 

of swarm cells may be obtained, and it is amenable to genetic analysis. 

However, it does have limitations. The first is that the normal 

sequence of differentiation is not easily manipulated by external 

factors, which means that controlling the 'switch on-off' of key 

mechanisms is difficult. Nonetheless, the C.crescentus cell does 

have the ability to assess the nutritional status of the environment, 

since a lack of carbon arrests the cells at the pre-divisional stage. 

Cyclic AMP has been implicated in this mechanism (Kurn et al., 1977) , 

but highly phosphorylated nucleotides have not been found. A second 

major disadvantage is that only small volumes of swarm cells may be 

synchronized at one time (25 ml, 10^ ml 1 1 Table 1.2), so that large- 

scale biochemical analyses are difficult.

1.6. The Rhodosplrlllaceae (purple non-sulphur bacteria)

1.6.1. The budding bacteria. Several members of the Rhodo- 

spirillaceae may be classified as 'budding bacteria', and show obvious 

potential for studies of morphogenesis and differentiation. Cell 

separation in the budding bacteria results in two asymmetric cells, 

whereas in E.coll, division results in two symmetrical siblings. In 

both cases however, division is by binary fission.

The budding bacteria show polar growth, irrespective of the 

nutrient conditions, and this can be uni- or bi-directional, and 

from either pole (Fig. 1.4), A consequence of polar growth for 

example in R.vannielll tls that the daughter cell will be composed 

primarily of new cellular material. This introduces the concept of 

aging, since little new material is added to the mother cell with
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successive rounds of division. The process of obligate polar growth 

also confers the capacity for morphogenetic evolution, which is not 

possible in bacteria which grow by intercalary processes, and increas­

ing degrees of morphogenetic complexity can be traced through the budding 

bacteria (Fig. 1.12). The consequent polarization of the cell may 

have resulted in the need for regulation of temporally related morpho­

genetic events, making the budding bacteria an ideal group in which to 

study morphogenesis and differentiation.

1.6.2. The Rhodosplrlllaceae as models for cellular morphogenesis 

and differentiation. The purple non-sulphur bacteria are a group of 

Gram-negative, photosynthetic bacteria which reproduce by a 'budding' 

process. The particular interest in the Rhodospirillaceae lies not 

only in their use in studies of morphogenesis and differentiation, but 

also results from their ability to fix C02 and N2. They may be grown 

photoheterotrophically under anaerobic, light conditions, and chemo- 

heterotrophically in the dark, under aerobic conditions. Members 

of the group have been used in studies of bacterial photosynthesis 

and also nitrogen fixation (e.g. Rhodosplrilium rubrum, Schick, (1971)).

Since the Rhodospirillaceae obtain energy from light, the energy 

status of cultures can be easily regulated during experiments. Photo­

pigments are synthesized de novo in the daughter cells, in response to 

light, and so the organisms are feu: more amenable to physiological 

manipulation than for exeunple, C.crescentus or Hyphomicroblum, 

another budding bacterium.

Two members of the Rhodospirillaceae, Rhodopseudomonas palustrls 

and Rhodomlcroblum vannlelil have been exploited for studies of cellular 

morphogenesis and differentiation. Since R.vannlelll is the subjectof this thesis, it is considered in detail in 1.7



Fig. 1.12. Budding bacteria ordered in degrees of 

morphologlcal/cell cycle complexity*

a. Rhodopseudomonaa acldophlla

b. R.paluatrla/virldla

c. Hyphomicrobium apa

d. Rhodomicrobium vannlelli

In all cases daughter cell synthesis is by obligate polar growth, and 

asymmetric cell division gives rise to an immature daughter cell and a 

mature mother cell.

From Whittenbury and Dow (1977)





Experiments on the cell cycle of R.palustrls showed that DNA 

replication Is a characteristic of the stalked cell only (Westmacott and 

Primrose, 1976; Fig. 1.13). Cell division, flagellum and holdfast 

synthesis are dependent upon the completion of chromosome replica­

tion (Westmacott and Primrose, 1977), indicating a 'dependent pathway' 

method for the regulation of cell cycle events.

R.palustris has two major drawbacks as a model system for morpho­

genesis and differentiation. The first is that synchronous populations 

of swarm cells are selected by sucrose gradient centrifugation, and 

consequently large quantities of cells are difficult to obtain 

(Table 1.2; Westmacott and Primrose, 1976). The second is that the 

cell cycle has only two morphological 'landmark' events - the loss 

of a flagellum, and bud development, making the correlation of 

biochemical events and morphological markers difficult.

1.6.3. Genetics of the Rhodospirillaceae. The genetics of the 

Rhodospirillaceae, except for Rhodopseudomonas capsulata and 

Rhodopseudomonas sphaeroldes, has been neglected. A recent review 

by Saunders (1978) considers the use of mutants in photosynthesis 

research, and the methods of gene transfer in the Rhodospirillaceae.

The importance of work on the genetics of these bacteria cannot be 

overestimated, if the genes responsible for photosynthesis and 

nitrogen fixation are to be identified. Similarly the processes 

controlling morphogenesis and differentiation cam be examined by 

genetic techniques. Mutants of several photosynthetic bacteria 

have helped elucidate a number of metabolic pathways, notably the 

electron transport pathways (Picorel et al., 1977), and bacteriochlorophyll 

synthesis (¿ascelles, 1975).
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-----■ — DNA replication

Fig. 1.13. DNA replication in the cell cycle of Rhodopseudomonas 

palustrle*

The motile 'swarm' cell sheds its flagellum and forms a tube, and the 

daughter cell is synthesised at the end of the tube. Asymmetric cell 

division leads to the formation of a swarm cell and a 'mother' cell. The 

mother cell may immediately initiate a round of cell division, whereas the 

swarm cell first undergoes a period of maturation. DNA replication is a 

characteristic of the 'mother' or stalked cell only.



1.6.3.1. Plasmids and conjugation. Plasmid DNA has been

detected in several photosynthetic bacteria, but no gene functions 

have been assigned to the individual plasmids (Suyama and Gibson,

1966s Saunders et al., 1976), and they cannot promote conjugation.

In contrast, foreign plasmids, notably those of the 'P' incompati­

bility group, have been shown to promote gene transfer between photo­

synthetic bacteria. Miller and Kaplan (1978) demonstrated the transfer 

of RP4 from E.coll to R.sphaeroldes, and showed that the plasmid 

could be stably maintained. R.68.45 (a derivative of RP4 which 

mobilizes chromosomal fragments more efficiently) has been transferred 

to, and maintained in R. sphaeroldes (Sistrom, 1977). In addition 

Tucker and Pemberton (1979a) have been able to transfer an RP4-Mu 

plasmid to R .sphaeroldes, the highly efficient insertion system of 

Mi being used to increase the frequency of transfer by lOO-fold.

The importance of introducing foreign plasmids into the cell is that they 

are then able to mobilize pieces of the host chromosome, allowing 

genetic analysis of the unique characteristics of the organisms.

1.6.3.2. Transformation. There has been no unequivocal 

demonstration of transformation in the photosynthetic bacteria, 

although it has been shown in the cyanobacteria (Herdman and Carr,

1971). Transformation could be unsuccessful because of the pro­

duction of extracellular nucleases by the recipient bacterium, but 

this was shown not to be the case for at least one R .sphaeroldes 

strain (Saunders, 1978). Another explanation for the lack of 

transformation could be that the cell wall is not competent to take 

up DNA. Studies with R plasmid-directed gene transfer and the 'Gene 

Transfer Agent' (1.6.3,3.) indicate that the Rhodospirillaceae are 

recombination-proficient.



1.6.3.3. Transduction and the 'Gene Transfer Agent*. Phage

for the purple non-sulphur bacteria have been described, but bona 

fide transduction has not been demonstrated. The phage are virulent 

but not lysogenic (Mural and Friedman, 1974» Wall et al. , 1975a).

Marrs (1974) described an unusual system of genetic exchange 

In R.capsulata. This Gene Transfer Agent (GTA) Is resistant to RNase 

and DNase, and the gene transfer Is limited to R.capsulata. The GTA 

was Identified as a small icosahedral virus containing DNA of molecular 

weight 3.6 x 106 daltons (Marrs, 1977). The gene transfer process 

resembles that of generalized transduction, although the GTA is much 

smaller than any known transducing phage. The GTA has also been 

used to transfer nitrogenase (nif) and hydrogenase genes from the wild 

type to a nlf mutant of R.capsulata (Wall et al., 1975b). Unfortunately 

only small fragments of DNA may be transferred because of the small 

size of the GTA, and so only fine genetic mapping is possible.

1.6.3.4. Conclusions. Although the use of R.palustrls as a 

model differentiation system has been limited, the Rhodospirillaceae 

as a whole should prove to be very useful in the future. The mechanisms 

for genetic exchange in the Rhodospirillaceae are now being thoroughly 

explored, and will be of immense value in the elucidation of the unusual 

properties of this group of bacteria. The utilization of foreign 

plasmids in conjugation appears to offer the most promise for future 

research, bearing in mind that the GTA is restricted to R .capsulata.

A member of the Rhodospirillaceae which has not been discussed 

above is R.vannielli. The characteristics of this bacterium are 

described in detail in 1.7., but it should be emphasized that R.vannielii 

shows all the advantages of a budding bacterium in terms of morpho­

genesis and differentiation research.



1.7. Rhodomlcrobium vannlelil as a model system for cellular morpho­

genesis and differentiation

1.7.1. Isolation, morphology and the cell cycle. R.vannlelil

is the most advanced of the Rhodospirillaceae, In terms of morphogenetic 

complexity. It was originally Isolated by Duchow and Douglas (1949), 

and the strain used in this work is R.vannlelil strain RM5, isolated 

from freshwater by C.S. Dow.

R, vannlelll has a polymorphic cell cycle, in which four cell 

types may be expressed > depending upon the environmental conditions 

(Fig. 1.14). In exponential batch culture two cell types are found.

The first is motile swarm cells, and the second, 'mother' or stalked 

cells which are linked by cellular filaments, to form microcolonies.

The swarm cell undergoes a period of obligate differentiation to 

become a stalked cell, and further reproduction produces a new micro­

colony. In stationary phase cultures, a third cell type, the angular 

exospore, is expressed. Under conditions of low light and high CÔ 
concentration, the microcolony cell expression is repressed, and the 

cell types present in exponential culture are swarm cells, stalked 

cells, and pre-divisional cells. This type of vegetative cell cycle 

expression has been termed the 'simplified cell cycle' (Dow and 

France, 1980).

1.7.2. Recent research on R.vannle^l. The use of R.vannlelil 

as a model system for cellular morphogenesis and differentiation

has been documented by Whittenbury and Dow (1977). Recent studies 

(Taylor and Dow, 1980) have investigated the photosynthetic capacity 

of R.vannlelll in continuous culture, and elucidated the nature of 

ribulose bisphosphate carboxylase, the primary enzyme in CO, fixation.
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Fig. 1.14. Cellular expressions shown by R.vannlelll in 

response to environmental stimuli 

In exponential batch culture two cell types are present - 'mother' 

cells joined by filaments In a multicellular array or microcolony, and 

motile swarm cells. In conditions of high light and nutrient status, 

the swarm cell undergoes an obligate differentiation to form two cells. 

Under low C02 tension a new multicellular array is then developed. Under 

high C02 tension this cell cycle type is not expressed, and the 'simplified 

cell cycle' occurs. In stationary phase, resistant, angular exospores 

are formed.
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An investigation of the growth characteristics and protein 

synthesis in the 'simplified cell cycle' expression was undertaken 

(France, 1978) with a view to using this simpler system to examine 

morphogenesis and differentiation.

Recent work has been concerned with the control mechanisms 

involved in morphogenesis and differentiation. A particular part 

of the cell cycle, the obligate differentiation of the swarm cell to 

the stalked reproductive 'mother' cell (Figs. 1.15 and 1.16), was 

chosen for more intensive study. The reasons for this were three-fold. 

The swarm cell undergoes a series of well-defined obligate morphological 

changes ('landmark' events) in the differentiation sequence (Fig. 1.17). 

Homogeneous populations of swarm cells can be selected by filtration 

quickly and in large quantities (Fig. 1.18, Table 1.2) Whittenbury 

and Dow, 1977), Thirdly, swarm cell differentiation is dependent on 

the presence of light, and so the onset of the cellular morphogenesis 

and differentiation sequence is easily controlled. It was established 

from kinetic studies of chlorophyll, protein and RNA synthesis that the 

swarm cell is an active metabolic unit (Whittenbury and Dow, 1977), 

Moreover, analysis of proteins from the swarm cell and the stalked 

cell showed proteins which were specific to each cell type (Fig. 1.19; 

Dow and France, unpublished data).

Since transcriptional control is likely to be involved in 

cellular morphogenesis and differentiation in R.vannielii, the role of 

RNA polymerase during swarm cell differentiation has been investigated. 

Growth of the swarm cell is found to be less sensitive to rifampicin 

than growth of the mother cell (Fig. 1.20.; Whittenbury and Dow,

1977). This suggests that modification of the RNA polymerase may be 

part of the mechanism for differential gene expression during swarm
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Fig. 1.15. Light micrographs showing the obligate morphogenesis 

and differentiation sequence of the R.vannlelll swarm 

cell.

Homogeneous populations of swarm cells were selected by 

filtration (2.12), and incubated phototrophically at 30°C. At 

hourly intervals, aliquots were removed and examined in the light 

microscope. Figures represent hours after swarm cell selection.

Magnification ■ V+.OOO X  .





Fig. 1.16. Electron micrographs showing the obligate morphogenesis 

and differentiation sequence of the R.vapnlelll swarm 

cell

Homogeneous populations of swarm cells were selected by 

filtration (2.12), and incubated phototrophically at 30°C. At 

hourly Intervals, aliquots were removed, shadowed with gold- 

palladium wire, and examined in the electron microscope.

Figures represent hours after swarm cell selection.

Magnification ■ 15,0<X) x.



Fig. 1.16. Electron micrographs showing the obligate morphogenesis

and differentiation sequence of the R.yyinlelll swarm 

cell

Homogeneous populations of swarm cells were selected by 

filtration (2.12), and incubated phototrophically at 30°C. At 

hourly Intervals, aliquots were removed, shadowed with gold- 

palladium wire, and examined in the electron microscope.

Figures represent hours after swarm cell selection.

Magnification « 15,OCX} x.
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Fig. 1.17. Swarm cell maturation and differentiation 

In condition» of light and high nutriant status the swarm cell 

undergoes firstly a period of maturation, when the flagellae are 

shed. After 2-3 hours a stalk or filament is produced, and a new 

daughter cell develops at the distal end of the filament. A 

'double cell* is complete after approximately 6 hours.
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A
heterogenous

cu l tu re

Fig. 1.18. Apparatus for the selection of homogeneous

populations of swarm cell» from a heterogeneous 

culture of R.vannlelll

The column Is flushed with nitrogen, and the glass wool Is rinsed 

with sterile phosphate buffer prior to passing the heterogeneous culture 

down the column. Multicellular arrays are held back In the glass wool, 

whilst swarm cells pass through Into the collecting flask. 200 ml - 

15 litres of cells at 107/ml may be obtained.
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Fig. 1.19. Protein synthesis during the obligate morphogenesis 

and differentiation sequence of R.vaimielll^ swarm 

cells (Dow and France, unpublished data)

Homogeneous populations of swarm cells were selected by filtra­

tion (2:12), and at intervals aliquots were pulse-labelled with 35S- 

methionine for 15 min. Soluble proteins were fractionated on a 10-30* 

(w/v) polyacrylamide gel, and the gel was autoradiographed.

The numbers at the head of each track represent the time (min) 

after swarm cell selection when the proteins were pulse labelled. 

Numbers on the right represent molecular weight markers (kilodaltons).

Heavy arrows indicate proteins which appear or disappear during 

the differentiation sequence.
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Fig. 1.20. Effect of varying rlfamplcln concentrations on

the differentiation sequence of R^vannlelll^ swarm 

cells*

Swarm cells were incubated with varying concentrations of rifampicin, 

and after 15 hours the morphology and cell volume distribution of the 

cultures were examined.

* From Whittenbury and Dow (1977)



cell differentiation. In vitro studies of the RNA polymerases from

swarm and stalked cells has shown that they are differentially 

sensitive to rifampicin (Dow and Bennett, 1978). Purification and 

characterization of the RNA polymerases will be necessary before 

any further conclusions can be drawn, but the possibility of proteolysis 

during isolation, as encountered in B.subtills, must be borne in mind.

1.7.3. Alms of this study. R.vannlelli is * useful organism for 

studies of cellular morphogenesis and differentiation since the 

differentiation sequence is obligate and well-defined, and homogeneous 

populations of swarm cells may be obtained in large quantities. A 

disadvantage of the system is that the genetic and biochemical 

knowledge of the organism is slight, compared to some of the bacteria 

mentioned earlier in the review.

The aim of this study was therefore to broaden knowledge of the 

molecular biology of R.vannlelli, so that further progress in the 

understanding of the regulatory mechanisms of differentiation can be 

made. It is clear from the literature review, that there are many 

different experimental approaches available to examine the control of 

differentiation. The methods used in this investigation are mainly 

those which have been applied to other systems, and which often 

required considerable modification for adaptation to R.vannlelll.

Initially experiments were directed towards elucidation of the 

role of the R.vannielli genome, through differential gene expression, in 

morphogenesis and differentiation. Later this approach was broadened 

to include a study of how the genome might be manipulated to enable one 

to answer questions about the control of differentiation at the level 

of the gene. Since little information was available on the R.vannlelll 

genome, it was necessary to characterize its physical and chemical
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properties at the start of the investigation. This knowledge proved 

relevant at later stages of the study.

The role of the genome in one particular part of the whole cell 

cycle, was chosen for study. This part was the obligate differentia­

tion of the motile swarm cell to the mature reproductive mother cell, 

and the subsequent reproduction of the mother cell (Fig, 1.15). This 

sequence was chosen for the reasons outlined earlier, namely the 

swarm cell undergoes a series of well-defined, obligate morphological 

changes during the sequence, homogeneous swarm cell populations can be 

readily obtained in large quantities, and the onset of differentiation 

is easily controlled. Additionally, an accurate swarm cell count can 

be made, whereas this is not possible for microcolonies of cells.

Data were already available on protein and chlorophyll synthesis during 

swarm cell differentiation. The kinetics of macromolecular synthesis 

can be correlated with easily recognisable morphological events in the 

cell cycle.

As the study progressed, it became apparent that the genetic 

background must be developed to complement the biochemical data.

Previous workers had attempted to obtain stable auxotrophic mutants, 

but had been unsuccessful, and furthermore the search for an R.vannlelll 

phage had proved negative. Consequently, attempts were made in this 

study to isolate native plasmids, and conjugation experiments were 

initiated using the promiscuous plasmid R.68.45. Direct analysis 

of the R.vannlelil genome was approached by the use of restriction 

enzymes, and specific gene coding regions were tentatively assigned 

to particular DMA fragments after enzyme digestion.
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CHAPTER 2

Materials and Methods

0.22 9 CaCl.THj©
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Rhodomlcroblum vannlelll strain Rm 6 (Whittenbury and Dow,

1977) was used throughout this Investigation.

Escherichia coll K12 was used In the renaturation experiments.

2.1. Organisms

used as controls in plasmid isolation experiments.

2.2. Media

a) PM medium contained per litre:-

1.5 g sodium hydrogen malate

1.5 g sodium pyruvate

0.5 g NH4C1

0.4 g MgSO . 7 H O  4 *
0.05 g CaCl2. 2 HjO

0.05 g NaCl

The pH was adjusted to 6.8-6.9 with KOH pellets. The medium 

was autoclaved at 121°C for 15 min. On cooling, 50 ml litre 1 sterile 

0.1 M phosphate buffer (0.05 M NaH2P04 .2H20 , 0.05 M Na2HP04 , pH 6.9) 

was added aseptically.

b) L-broth contained per litrei- 

lO g tryptone

5 g yeast extract 

1 g glucose 

8 g NaCl

0.22 g CaC1.2H20

The medium was autoclaved at 121°C for 15 min.

For solid media, 17 g litre1 Difco bacto-agar was added prior

£
HBlOl Str were used in the

conjugation experiments. E.coll HBlOl F+ and E.coli HBlOl F were

to sterilization



2.3. General buffers

a) Lysis buffer

0.1 M Tris-HCl, pH 7.5 

lO mM EDTA

b) Resuspension buffer

lO mM Tris-HCl, pH 7.4 

1 mM EDTA

c) Phenol-chloroform mixture

Redistilled phenol was mixed with chloroform and isoamyl alcohol 

in the ratio 25:24:1 (v/v). The mixture was then saturated with SSC.

d) Standard saline citrate (SSC)

0.15 M NaCl

0.015 M tri-sodium citrate

e) TLES buffer (for sucrose gradients) 

lO mM Tris-HCl, pH 7.5

10O mM lithium chloride

1 mM EDTA 

0.1« SDS

f) Tris-acetate buffer (for horizontal agarose gels)

40 mM Tris-glacial acetic acid pH 8.2.

20 mM sodium acetate

2 mM EDTA

g) 'E' buffer (for vertical agarose gels)

36 mM Tris-HCl, pH 7.7

30 mM NaH„PO„2 4
1 mM EDTA 

2.4. Chemicals

Wherever possible, 'Analar1 grade chemicals were used. Materials 

were obtained from the companies listed below.
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Biorad Labs, Richmond, California, USAi hydroxyapatite 

B.D.H. Chemicals Ltd, Poole, Dorset, UK: caesium chloride for ultra­

centrifugation, caesium chloride analytical grade 

Koch Light Labs Ltd., Colnbrook, Bucks, UK: sodium N-lauroylsarcosinate 

Kodak Ltd, London, UK: Xomat-H X-ray film

Nuclear Enterprises (GB) Ltd., Edinburgh, UK: 2,5 diphenyloxazole 

(PPO) ; 1 ,4-bis-(5-phenyloxazole-2-yl)benzene (POPOP)

Sigma Chemical Co. Ltd., Poole, Dorset, UK: Adenosine, Agarose 

type II, ampicillin, chloramphenicol, Kanomycin sulphate, 

nalidixic acid, streptomycin sulphate, RNase-free sucrose, 

tetracycline, 3 'deoxyadenosine-5'-triphosphate, 2'-deoxycytidine-5 '- 

triphosphate, 2-deoxyguanosine-5'-triphosphate, thymidine-51-tri­

phosphate, p-chloromethylphenylsulphate, n-ethylmaleimide 

Whatman Ltd., Kent, UK: GF/C glass fiber discs, 3 MM filter paper 

L-threo chloramphenicol was a gift from R.J. Ellis, University of 

Warwick.

2.5. Enzymes

Biolabs Ltd., Beverley, Mass. USA, Restriction endonucleases 

EcoRl. Hind III, Bam HI

PL Chemicals Ltd, Milwaukee, Wisconsin, USA: polynucleotide kinase 

Sigma Chemical Co. Ltd.,: proteinase K, RNase A, RNase T1 

Uniscience Ltd., Cambridge, UK: SI nuclease

Worthington Biochemical Corp. New Jersey, USA: alkaline phosphatase

2.6. Radiochemicals

These were obtained from the Radiochemical Centre, Amersham,

Bucks, UK:

^2-3hJ-adenine (15-25 Ci/nmol)

^2-3h] -adenosine (20-25 Ci/mmol)
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adenosine 5' triphosphate, triethylammonium salt (lOOO-

2000 Ci/mmol)

deoxy £g -3h]-adenosine (10 20 Ci/nmol)

£22p) -orthophosphate in dilute HC1 solution (30-100 Ci/mg phosphorus) 

L-[.35s J methionine (200-300 Ci/mmol)

2.7. Antibiotics

Chloramphenicol, kanomycin, and streptomycin were dissolved 

in water and filter-sterilized, while ampicillin and nalidixic acid 

were dissolved in 0.01 M NaOH and filter-sterilized. When these 

antibiotics were added to the culture medium, there was no detectable pH 

change. Rifampicin and tetracycline were dissolved in 50% methanol 

and filter-sterilized. Fresh antibiotic solutions were prepared each 

week.

2.8. Gases

British Oxygen Co. Ltd., London, UKt oxygen-free nitrogen 

Cambrian Chemicals, Croydon, Surrey, UK¡ ethylene,acetylene

2.9. Maintenance of cultures

R. vannielll, E.coll HB101, E.coll K12 and B.coll C [r68.45J were 

each subcultured regularly on PM agar, L-broth agar and L-broth and 

ampicillin (lOO yg ml S  agar, respectively. R.vannlelli was grown in 

anaerobic bags (France, 1978) at 30°C under 2000 lux illumination 

from tungsten lamps. E.coll strains were incubated overnight at 37°C.

2.10. Culture purity

The purity of R.vannlelil cultures was checked by streaking them 

onto nutrient agar plates, and Incubating overnight both anaerobically 

and aerobically at 30°C. Cultures were routinely examined by phase 

contrast microscopy for the presence of contaminants. E.coli strains 

were maintained on selective agar plates to ensure purity.
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2.11. Growth of organisms

R.vannlelll was routinely grown in 250 ml, B19 Erlenmeyer 

flasks sealed with rubber serum caps. The culture volume was 

lOO ml, and a 1% inoculum was used, unless indicated otherwise.

Each flask was flushed for lo min with oxygen-free nitrogen via 

'inlet' and 'outlet' syringe needles inserted through the cap, and 

then incubated on an orbital shaker (L.H. Engineering, Stoke Poges, Bucks, 

UK) at 30°C, and with an incident light intensity of 2000 lux.

For growth curve measurements, R.vannlelli was grown in 1 cm 

cuvettes (volume 3.5-4 ml), which were either filled to the brim and 

capped with a subaseal, or partially filled, and flushed with nitrogen 

for 2 min. The cuvettes were incubated in a constant temperature 

bath with illumination, between readings.

For the large-scale preparation of nucleic acid, R.vannielil 

was grown in 5 1 flat-bottomed culture vessels sealed with rubber 

serum caps and flushed with oxygen-free nitrogen for 20 min. They 

were incubated with stirring at 30°C and with an incident light 

intensity of 2000 lux. When 500-700 ml synchronous swarm cells were 

required, R.vannlelll was grown in 1-2 1 Flow bottles, sealed, flushed, 

and incubated as described above.

E.coll K12 was grown in 2 1 Erlenmeyer flasks for large scale 

nucleic acid preparation. The culture volume was 1 1 and a lO ml 

overnight culture was used as inoculum. Each flask was plugged with 

cotton wool and incubated overnight at 37°C on an orbital shaker.

For conjugation experiments B.coli strains were grown in Universal 

bottles containing a 10 ml culture volume, and incubated at 37°C for 

4 hours on an orbital shaker.



2.12. Selection of swarm cells

Synchronous populations of swans cells were selected as

described by Whlttenbury and Dow (1977). A heterogeneous

R.vannlelll culture was grown to the mid-exponential phase of growth

(A_ . _ -2-2.5) prior to swarm cell selection. The culture was540 nm
filtered through a sterile glass column containing glass wool 

(Fig. 1.18). The column had been washed previously with 500 ml 

sterile phosphate buffer (2.2) , and was flushed continuously with 

oxygen-free nitrogen.

The microcolonies were retained in the glass wool, while the 

swarm cells passed through and were collected in an aluminium foil- 

covered flask. Concentrations of lO^ swarm cells ml 1 were regularly 

obtained, and by changing the column diameter, different volumes of 

culture could be filtered.

The filtrate was then flushed with nitrogen as before, and in­

cubated at 30°C with an incident light intensity of 2000 lux. The 

swarm cells showed 90% synchrony as judged by phase contrast microscopy 

and Coulter counter analysis (2.14). Populations of 'mother cells' 

were obtained by growing homogeneous swarm cell populations for 2-3 

generations, that is about 24 hours.

2.13. Microscopy.

2.13.1. Light microscopy. Phase contrast microscopy was done 

using an Olympus EMT microscope, and photomicrographs were obtained 

with a PMT camera unit and Kodak Panatomic-X film (ASA 32). Films 

were developed in Kodak D19 (3 min at 20°C) and fixed in Kodafix.

2.13.2. Transmission electron microscopy. This was done using 

•ither an AEl Corinth 275 (accelerating voltage 60 Kv), or a Joel 

10OS electron microscope (accelerating voltage 60-80 Kv). Electron
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micrographs obtained with the AEI Corinth were recorded on 70 mm 

Ilford line film N4ESO, developed in Ilford Phenisol (1 pt + 3 pt 

HjO; 4 min at 20°C) and fixed in Kodafix. Those from the Joel were 

recorded on Kodak electron image film 4463, developed in Kodak D19, 

and fixed in Kodafix.

2.14. Coulter counter analysis

Cell counts and volume analysis were done with the aid of a model

ZB1 Coulter counter (Coulter Electronics Ltd, Dunstable, Beds), fitted

with a Coulter Channelyser CIOOO and XY Recorder II. Each sample was

diluted in a known volume of 'Isoton' (Coulter Electronics Ltd) which

had been filtered through a 0.22 iim filter (Millipore Ltd) .

Total particle counts were made with either a 20 pm or 30 pm

orifice tube. Frequency distributions of particle volumes were

obtained from the Channelyser. Particle counts were expressed as

counts ml and volumes were converted to pm'* by the formula:-

V (pm^) « (^(channel no. x window width) + B.C.T. 1 x T-
lOO

where B.C.T. m base channel threshold

Tf “ threshold factor

Latex particles of 0.807 pm and 1.15 pm diameter were used as standards.

2.15. Spectrophotometry

Measurement of culture absorbance (A_._ ) and protein determina-540 ranape «.Vr »fV. •+* m ew .
tions were done in a Pye-Unicam SP500A Cuvette culture absorbances

(A,...__) were measured in a Pye-Unicam SP 1800 recording spectro-540 ran
photometer fitted with a constant temperature cuvette housing. Absorbance 

of nucleic acid preparations (260 nm) were determined in a Pye-Unicam 

SP800A.

2.16. Protein determination

The protein concentration of cell-free extracts was determined 

by the method of Lowry et al.. (1951). For whole cell determinations.
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ocells were treated with 1 M NaOH at lOO C for 5 min, before the concentra­

tion of protein was determined as above. Dried crystalline bovine 

plasma albumin (BSA) was used as a standard.

For a crude approximation of protein concentration, absorbance 

at 280 nm was measured.

2.17. Nucleic acid determination

The DNA content of whole cells was determined by the dlphenyla- 

mLne method of Burton (1956) , and calf thymus DNA was used as a 

standard. RNA and DNA concentrations were measured by absorbance 

at 260 nm and the amount of protein contamination was estimated by 

measuring the absorbance at 280 nm.

2.18. Nltrogenase enzyme assay

Nitrogenase activity was assayed by the acetylene reduction 

method (Bergersen, 1970). A 10 ml sub-culture of R.vannlelil 

was incubated in a 25 ml flask overnight prior to assay. 1 ml air was 

removed and replaced with 1 ml acetylene. Gas samples (lOO pi) were 

removed immediately and at suitable time intervals for up to 40 mins, 

and analysed using a Pye-Unicam GCV chromatograph with a flame ionisa­

tion detector, a 1.6 cm x 6 m m  column of Poropak R at 60°C, and a 

nitrogen carrier gas flow of 40 ml min-1. The amount of ethylene 

formed was calculated from a standard curve constructed by using 

suitably diluted ethylene. The height of the acetylene peak on 

injection was monitored as an internal standard So sslvna sf j»s

2.19. Liquid scintillation counting

Radioactivity was counted on a Packard Tri-Carb Liquid 

Scintillation Spectrometer model 3320. The scintillation fluid used 

throughout contained:-
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toluene 6 1

Triton-X-lOO 3 1

PPO 36 g

POPOP 0.45 g

ÎO ml of scintillation fluid was completely miscible with 1 ml of 

water.

The following average counting efficiencies were determined :-

a) 33P in liquid 45«

b) 32_P on filters 44«

c) 3H in liquid 29«

d) 3H on filters 24«

e) 35S in liquid 48«

f) 35S on filters 46«

2.20. Lysis of cells

R.vannielii cells were harvested by centrifugation at 10,000 g 

for 15 min, and resuspended in lysis buffer (2.3). Cells were 

incubated at 37°C with 1 mg ml 1 of lysozyme for 30 min, and lysed 

in 1% (w/v) sodium dodecyl sulphate (SDS) at 65°C for lo min, or 1% (w/v) 

sodium n-lauroylsarcosinate (sarkosyl) at room temperature. The 

former was used for DNA, and the latter for DNA or RNA.

E.coll cells were harvested by centrifugation as above and 

incubated with 1 mg ml 1 lysozyme at 37°C for 15-30 min. The cells 

were lysed with 1% SDS at roam temperature.

2.21. Purification of DNA

Three methods for the purification of DNA were used.

2.21.1. DMA for renaturation studies. Protein was removed from 

the cell lysate by incubation with 50 ug ml 1 proteinase K for 1 hour 

at 37°C, followed by extraction with an equal volume of the phenol- 

chloroform-isoamyl alcohol mixture (2.3). After centrifugation at

3,000 g for lO min, the aqueous phase was recovered and re-extracted
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twice more with the phenol mixture. The aqueous phase was then 

extracted twice with chloroform-isoamyl alcohol (24:1) , and nucleic 

acid was precipitated from the aqueous phase by the addition of 2

presence of 0.3 M NaCl.

Nucleic acid was resuspended in resuspension buffer (2.3) and

re-precipitated with ethanol. The pellet was resuspended in resuspen­

27G syringe needle, and further purified by absorption to hydroxyapatite 

(Britten et al., 1974). The DNA was eluted from the hydroxyapatite 

column in 0.3 M phosphate buffer (equimolar Na^HPO^/NaH^PO^, pH 7.0).

2.21.2. Preparation of high molecular weight DNA for restriction 

endonuclease analysis. The DNA was phenol extracted by the method 

described above and dialysed against 10 mM Tris-HCl, pH 8 containing 

1 mM EDTA, for 3 hours before ethanol precipitation overnight at 

-20°C in the presence of 0.3 M NaCl. The resultant pellet was 

resuspended in one tenth strength SSC (0.1 x SSC).

The nucleic acid was incubated with 50 yg ml 1 heat-treated 

RNase A for 1 hour at 37°C, followed by a further hour with 20 yg ml 

T1 RNase. The DNA was then re-extracted and dialysed as described 

above. This preparation was either stored in 10 mM Tris-HCl, pH 

7.4 containing 1 mM EDTA at 4°C, or further purified on a caesium 

chloride density gradient.

2.21.3. Density gradient centrifugation of DNA. Cleared 

cell lysates or phenol-extracted DNA preparations were layered onto

volumes of ethanol, followed by incubation at -20°C overnight in the

incubated with 50 yg ml 1 RNase A (previously boiled for 3 min) at 

37°C for 60 min. The DNA was re-extracted as described above, and

sion buffer, sheared to a size of lO6 daltons by passage through a

A
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caesium chloride solutions of average density 1.71 g ml and centrifuged

at 120,000 g for 36 hours at 10°C in an M.S.E. 65 high speed centrifuge.

Gradients were harvested either from the bottom of the tube, or by

upward displacement with an ISCO fractionator model 640, and DNA

absorbance at 260 nm was monitored. Fractions containing DNA were

pooled, and dialysed against lo mM Tris-HCl pH 7.4, containing 1 mM 
oEDTA, overnight at 4 C. DNA preparations were stored in the above 

buffer at 4°C under a drop of chloroform to prevent bacterial growth.

2.22. Purification of ribosoma1 RNA (rRNA)

All glassware used was washed in chromic acid or autoclaved.

Unless stated otherwise, all procedures were carried out at 0°C.

Nucleic acid was extracted from a cell lysate as described (2.21.1).

The ethanol-precipitated pellet was washed with 70* (v/v) ethanol 

containing 0.3 M NaCl, and resuspended in TLES buffer (2.3). Linear 

5-20* (w/v) RNase-free sucrose gradients were formed in TLES buffer 

with an M.S.E. gradient maker and a Pharmacia P3 pump. Samples 

were layered gently onto the surface of the gradients, and these were 

centrifuged at 190,000 g for 6 hours at 4°C in the 6 x 14 swing- 

out rotor of an M.S.E. 65 centrifuge.

Fractionation of the gradients was achieved with an ISCO 

density gradient fractionator. Fractions containing 16S rRNA and 

23S rRNA from several gradients were pooled and re-precipitated with 

2 volumes of ethanol at -20°C overnight. Precipitated material was 

resuspended in TLES buffer, and re-centrifuged on 5-20* (w/v) sucrose 

gradients, from which the required fractions were pooled, dialysed 

and re-precipitated. The rRNA was stored at -20°C in TLES buffer.

2.23. Thermal denaturatlon and reassoclation of DNA

2.23.1.. DNA shearing. Ice-cooled DNA (-lOO jig ml-1) was 

sheared by sonicating for five one-minute periods at 1.5 amps using



a Dawe Soniprobe (20 khz). For electron microscope preparations 

DNA was sheared by three passages through a 25 G syringe needle,

2.23.2. Thermal dénaturation of DNA. Unsheared DNA (*100 yg ml-1) 

was melted in 0.12 M phosphate buffer (0.06 M NajHPO^, 0.06 M NaH2P04 ,

pH 7). The melting characteristics of the sample were determined by 

monitoring the increase in absorbance at 260 nm, with increasing tempera­

ture, on a Gilford recording spectrophotometer fitted with a reference 

compensator. The DNA base composition (mol % QC) was estimated 

from the thermal dénaturation temperature (Tm ), the temperature at 

which the DNA is 50% denatured, using the formula

T « 69.3 + 0.41 (GC) (Handel and Marmur, 1968). m
This formula applies to DNA renatured in 0.2 M Na+ , but the 

Na+ concentration used here (0.18 M) does not significantly alter 

the calculation (Mandel and Marmur, 1968) R.J. Avery, personal 

communication.

2.23.3. Thermal reassociation of DNA. Sheared DNA (lOO yg ml 1)

was denatured at 100°C in phosphate buffer as above, and then allowed to

renature at (T - 25)°C, that is 68°C in this instance. Decreasing in
absorbance at 260 nm with time was monitored in the Gilford recording 

spectrophotometer. The kinetics of the reaction were expressed by 

calculating the Cot (concentration x time [moles of nucleotides x 

seconds/litre] ) required for *i the DNA to reassociate (Cot^: Britten 

and Kohne, 1968).

2.24. Spreading of DNA for electron microscopy

Sheared or unsheared DNA ('v.lOO yg ml-1) in 10 mM Tris-HCl, 

pH 7.4, containing 1 mM EDTA was spread for electron microscopy by the 

aqueous technique of Davis et al., (1971). Grids were coated with

parlodion (3.5% (w/v) in amyl acetate), and carbon-coated for 15



seconds in the vacuum coating unit.

The hypophase, of either 0.25 M ammonium acetate or distilled 

water, was contained in a 9 cm petri dish. A chromic acid-washed, 

ammonium acetate-rinsed microscope slide was placed in the hypophase 

with one end resting on the edge of the petri dish. Spreading solu­

tion (50 yl) , containing 1 yg ml 1 ONA, and 0.1 mg ml 1 cytochrome c 

in 0.5 M NH4 acetate, 1 mM EDTA, pH 7.5, was applied slowly to the 

microscope slide just above the hypophase surface. The spreading 

solution ran down the slide, and formed a film over the surface of 

the hypophase. Grids were touched to the film at approximately 

one grids width from the interface, stained in fresh uranyl acetate 

(5 x lO 5 Ml for 30 seconds, rinsed in 2-methylbutane for 10 seconds 

and then dried in air. The dried grids were then rotary shadowed 

with palladium-platinum wire at an angle of 10° in the vacuum coating 

unit.

2.25. Plasmid isolation

Attempts were made to isolate a putative native plasmid (si 

from R.vannielii by two different methods.

2.25.1. A modified 'cleared lysate* procedure (Clewell and 

Helinskl, 1969) . Cells (250 ml) were harvested by centrifugation, 

resuspended in 0,1 M Tris-HCl,pH 8.0 containing 10 mM EDTA, and incubated 

with 1 mg ml_1 lysozyme for 1 hour at 37°C, Lysis was achieved by 

treatment with 1* (w/vl SDS for 10 min at 65°C, and the resultant cell 

lysate was centrifuged at 10,000 g for 20 min, the supernatant being 

retained.

This 'cleared cell lysate' was phenol-chloroform extracted, and 

treated with RNase (2.21). After ethanol precipitation, the DNA 

was resuspended in 10 mM Tris-HCl, pH 8.0, containing 1 mM EDTA, and 

analysed on 1% (w/v) agarose gels (2,29.1.).
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2.25.2. A modified Currier and Nester (1976) technique for the

Isolation of large plasmids. This method depends on a procedure

which selectively denatures chromosomal DNA, leaving covalently closed

circular (CCC) DNA intact. Chromosomal DNA was sheared, denatured

with alkali, and extracted with phenol. The denatured chromosomal

DNA entered the phenol phase, leaving native plasmid DNA in the

aqueous phase. dna from the aqueous phase was centrifuged in a

caesium chloride-ethidium bromide density gradient at 120,000 g for 60 
ohours at 15 C.

The published procedure (Currier and Nester, 1976) was used 

except that a different method for cell lysate preparation was used (2.20). 

The volume of cell lysate was 50 ml, and so chromosomal DNA was sheared 

by passing the lysate through an 18G syringe needle 6 times by applica­

tion of a 1 Kg weight to the syringe. The refractive index and radio­

activity of each of the gradient fractions was measured.

2.26, MIA polymerase assay

DNA polymerase activities I, II, III (Goss and Cozzarelli,

1973) were assayed by the method developed by Honjo et al., (1976) 

from the original procedure of Okasaki and Kornberg (1964). The assay 

mixture (total volume 250 yl) contained: 0.05 H Tris-HCl, pH 8.0,

5 mM MgClj, lO yM deoxythymidine-5-triphosphate (dTTP) , deoxyadenosine- 

5'-triphosphate, deoxycytidine-5'-triphosphate, and deoxyguanosine-5'- 

triphosphate, all at 50 yM, 0.5 y d  3H dTTP, 25 yl 'activated* calf 

thymus DNA, and 25 yl cell lysate.

Calf thymus DNA was activated in a 20 ml reaction mixture con­

taining 50 mM Tris-HCl, pH 7.5, 5 mM MgClj, 3 mM DNA, and 2 yg deoxy­

ribonuclease I. The mixture was incubated at 37°C for 30 min, and then 

the reaction was stopped by heating at 77°C for 5 min. The cell lysate



was prepared as described in 2.20 with the omission of detergent.

To distinguish each individual DNA polymerase activity, the sulfhydryl 

blocking agents p-chloromercuriphenylsulphate (pCMS) (0.4 mM) , or 

N-ethylmaleimide (n e m ) (2.0 mM) , were added to the assay mixture 

(Kornberg and Gefter, 1972).

After incubation at 37°C for 30 min the assay mixture was chilled 

on ice, and 0.5 ml cold 10% (w/v) trichloroacetic acid (T.C.A.), 

containing 0.1 M sodium pyrophosphate was added. T.C.A.-preclpitable

material was filtered onto Whatman GF/C filter discs, washed with 5% 

(w/v) T.C.A., dried and the radioactivity was measured.

2.27. Culture sampling for the measurement of radioisotope incorpora­

tion into macromolecules

Samples were withdrawn from cultures either using a syringe,

or via a tap if the culture vessel was an aspirator bottle. This
3 32section applies to the incorporation of H-adenosine and P-ortho- 

phosphate into nucleic acids, and to the incorporation of ^S-methionine 

into proteins. In pulse-labelling experiments, incorporation of radio­

isotope was chased by the addition of buffer containing cold isotope.

Where 'T.C.A.-precipitable counts' is stated, 10% (w/v) T.C.A. was
32used. For rapid estimates of P-radiolabel, 'Cerenkov' counting 

(Clausen, 1968) without scintillant was used.

2.27.1. Incorporation into DMA. Aliquots (1-10 ml) were removed 

and incubated with an equal volume of 10% (w/v) T.C.A. for 1 hour at 

0°C. After centrifugation at 3,000 g for 5 min, samples were re­

suspended in 1 M NaOH and incubated at 37°C overnight. The samples 

were reprecipitated with 10% (w/vl T.C.A. and filtered onto GF/C filter 

discs. These were washed in 5* (w/v) T.C.A. containing 50 yg ml 1 of 

the cold isotope (1,e. adenosine or sodium pyrophosphate), followed by
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ethanol, and finally ethanol-ether (50:50). The discs were dried at

60°C for 1 hour, and the radioactivity was counted in 3 ml triton- 

toluene scintillant (2.19).

2.27.2. Incorporation Into RNA. Aliquots (0.2-5 ml) were 

removed, incubated with an equal volume of 10* (w/v) T.C.A. at 0°C 

for 1 hour, and filtered onto GF/C filter discs. These were washed, 

dried and counted as described above. This procedure gave the total 

counts incorporated into nucleic acid, from which counts attributable 

to DNA were subtracted, leaving those due to RNA.

2.27.3. Incorporation into protein. Aliquots (1-5 ml) were 

removed, incubated with an equal volume of 10* (w/v) T.C.A. at 0°C for 

1 hour, and filtered onto GF/c filter discs, These were washed, dried 

and counted as described above.

For rapid, crude estimates of radioactivity in a sample, aliquots 

(10-50 pi) were spotted onto small squares of Whatman 3 MM filter paper, 

dried and counted.

2.28. Restriction endonuclease digestion of DNA

High molecular weight DNA (2.21.2) was digested with three 

separate restriction endonucleases. The initial DNA concentration 

was usually 300-400 pg ml A diluted solution (2 units pi 'S of

each enzyme was prepared in the respective storage buffer (see below), 

and stored at -20°C. One unit of a restriction enzyme is the amount 

required to completely digest 1 pg X DNA at 37°C in 1 hour.

Bach assay mixture contained in 30-50 pi total volume:- 

2~5 pg DNA in lo mM Tris-HCl, pH 7.4 containing 1 mM EDTA,

1-2 units restriction enzyme

3-5 pi lo x assay buffer (see below)
The assay volume was made up with sterile water. The mixtures were

07?



*



2.29. Agarose gel electrophoresis

2.29.1. Horizontal agarose gels. Agarose gels (0.8-1.5* w/v)

were cast on a horizontal glass plate (20 x 15 cm) bounded by

Sellotape to retain the agarose on the plate until it had set (Shinnick

et al., 1975). The agarose was dissolved in Tris-acetate buffer (2.3),
oby heating to boiling point, and was allowed to cool to 60 C before 

it was poured onto the plate. Slot formers were 3 mm x 7 mm in 

size, and the gels were allowed to stabilize for 2-3 hours before the 

DNA was loaded.

Gels were held in a horizontal tank with a central divide and 

surrounded with Tris-acetate buffer in both wells up to the top sur­

face of the gel. Buffer was pipetted into each slot before loading 

the samples. Samples (up to 40 pi) were loaded using an Eppendorf 

pipette, and electrophoresed towards the anode at 75 v for 3-4 hours, 

or at 20 v overnight.

2.29.2. Vertical agarose gels. Vertical gels were used to 

obtain better resolution of complex restriction digests. The gels 

were cast between two glass plates (25 x 20 cm) separated by perspex 

spacers (2 mm wide), and the bottom edge of the plates was sealed with 

several layers of insulation tape. The lower part of the gel was cast 

with 1.5% Cw/vl agarose in 'E' buffer (2.3; Loening, 1969). The 

agarose mixture (20 ml) was dissolved and cooled to 83°C before pouring 

between the warmed plates. The separating gel consisted of 0.6%

(w/v) agarose in 'E' buffer, and was poured at 65°C after the previous 

gel had set. The more concentrated agarose gel prevents the separating 

gel from slipping during electrophoresis.

When the gel had formed the insulation tape was removed and 

the gel was held in place with a piece of fine nylon mesh taped to the 

glass plates. The gels were held upright in a vertical tank with ’E'
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buffer in both reservoirs. Samples (up to 60 yl) were loaded with a 

loo ul Hamilton syringe, and electrophoresed at 35 v overnight.

2.29.3. Molecular weight markers for agarose gels. The follow­

ing molecular weight markers were used:-

a) X dna digested with EcoRl. Six fragments are produced: 20.7,

7.18, 5.65, 5.27, 4.57 and 3.22 Kbp (Thomas and Davis, 1975).

b) XDNA digested with both EcoRl and Hind III. Thirteen fragments 

are produced: 20.09, 5.02, 4.84, 4.19, 3.49, 2,00, 1.91, 1.58,

1.35, 0.88, 0.70, 0,50, and 0.14 Kbp (Murray and Murray, 1975).

c) 4 markers (gift of P.G. Boseley) : 13.1, 8.78, 6.63, and 4.54

Kbp.

2.29.4. Staining and photography of agarose gels. DNA in 

agarose gels was stained for 10 min with a solution of 5 yg ml  ̂

ethidium bromide in gel running buffer. The DNA was visualized by 

illumination on a U.V. transilluminator model C62 (U.V. Products Inc., 

San Gabriel, California). Photographs were taken on a Polaroid 

camera with a Polaroid film 665 using an orange filter, or a SMC 

Pentax M camera with an orange filter and Ilford HS23 Type J500 film. 

Film was developed in Phenisol (1 pt and 3 pts H^O, 4 min at 20°C) , 

and fixed in Kodafix,

2.29.5. Fluorography of gels containing 3H-labelled DNA fragments. 

After staining, gels containing 3H-labelled fragments were fixed in 5% 

(v/v) acetic acid for 1 hour. Dehydration of the gel was achieved

over 1 hour with three changes of ethanol. The gel was immersed in 

ethanol containing 3% (w/v) ppo for three hours (Bonner and Laskey,

1974). After washing in water for 45 min, the gel was dried onto 

Whatman 3MM filter paper at 50°C under vacuum.
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2.29.6. Transfer of DNA fragments from agarose gels to nltro-

cellulose filters. DNA fragments were transferred to nitrocellulose 

filters by the method of Southern (1975) with minor modifications. 

Strips of gel were immersed in 0.5 M NaOH containing 1.5 M NaCl for 

15 min, followed by 0.5 M Tris-HCl pH 7.0 containing 3 M NaCl for 

15 min. A piece of cellulose nitrate paper (Millipore HAWP OOOIO,

0.45 pm pore size) longer than the gel strip was pre-soaked in 

2 x SSC. A large piece of 3 m  filter paper was soaked in 20 x SSC 

and laid on a glass plate inside a large shallow tray (Fig. 2.1).

All air bubbles were excluded from underneath the paper. The gel 

strip and the nitrocellulose filter were laid over the 3 MM filter 

paper as indicated in the figure, and the whole gel was surrounded by 

20 x SSC, Transfer of the fragments was allowed to proceed overnight.

After marking the position of the gel, the filter was removed, 

washed in 2 x SSC for 20 min, and baked at SO°C for 2 hours. The 

dried filter may then be stored indefinitely until required.

2.30. 5' end labelling of RNA

16S or 23S rRNA was resuspended in 200 pi 0.5 M Tris pH 8.0 

and incubated with 5 pi alkaline phosphatase (60 units ml 1) for 

30 min at 37°C, to remove the terminal phosphate groups from the RNA. 

10% (w/v) T.C.A, neutralized with NaOH was added to a final concentra­

tion of 250 mM, followed by 300 pi 0.3 M NaCl in 10 mM Tris-HCl, pH

8.0 containing 1 mM EDTA. The mixture was extracted with phenol- 

chloroform and the RNA from the aqueous layer was ethanol-precipitated 

for 2 hours at -2 0 °C.

The pellet was resuspended in 5 mM Tris-HCl, pH 7.4 containing 

0.01 mM EDTA and 1 mM spermidine, and heated at SO°C for 3 min. RNA,

it
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in 50 mM Tris-HCl, pH 7.6 containing lo mM HgCl2 , 0.1 M sodium

fluoride, 0.125 M NaCl, 5 mM DTT and 1 mM spermidine, was Incubated
32with 1 unit of polynucleotide kinase and lo pCi y P-ATP (^5 nmol) 

for 30 min at 37°C (Maizels, 1976). The mixture was extracted with

phenol-chloroform and ethanol precipitated several times to remove
32excess y P-ATP.

2.31. Hybridization of radioactive rRNA to DNA fragments immobilized 

on nitrocellulose

2.31.1. Hybridization. Nitrocellulose filters were pre­

hybridized with 0.5 mg ml 1  carrier (yeast) RNA in 6  x SSC containing 

0.5% SDS, at 70°C overnight. The filters were removed from the 

bags, washed in 2 x SSC four times and then incubated with 20 pg ml 1  

RNase in 2 x SSC at 30°C for 45 min. After further washings in 2 x SSC,

the filters were air-dried.

2.31.2. Autoradiography. All autoradiography was done with 

Kodak Xomat-H X-ray film and exposure times of 2 days - several weeks, 

depending upon the amount of radioactivity input. X-ray film for use

with 3H was pre-exposed to 1  ms light before autoradiography (Laskey
32and Mills, 1975). Dupont intensifying screens were used with P 

radiolabel. Autoradiographs were developed in Kodak DX-SO developer, 

and fixed in Kodak FX-40.

2.32. Conjugation of g_1coli (̂R6 8 .453 and R.vannlelll.

The efficiencies of several conjugation methods were assessed.

The terms 'conjugation' and 'mating' were used interchangeably.

2.32.1. Conjugation in liquid culture. Cells were harvested
8  - 1when the concentration reached lO cells ml , washed, and resuspended 

9 —1to lO cells ml . Equivalent volumes of R.vannlelll and E.coll were

mixed, and the mixture was Incubated for a specific time, either
oanaerobically or aerobically without shaking at 30 C. Serial dilutions



were made and the cells were allowed to recover on PM agar for 12 

hours before plating onto selective media e.g. PM + ampicillin (loo 

jig ml 1) .

2.32.2. Conjugation on agar.

a) Agar mating on 9 cm dla. plates (Sistrom, 1977). Cells 

were mixed as described in 2.32.1., and then serial dilutions were 

made. Aliquots (20 til) were spotted onto the centre of each plate, 

which was then incubated anaerobically or aerobically at 30°C for 

the desired mating time. The cells were spread with 50 pi phosphate 

buffer (2 .2 ) and the plates were then overlayed with selective agar, 

and re-incubated anaerobically at 30°C with 2,000 lux light intensity.

b) Agar mating on 3 cm dla. plates or in Bijou bottles. Cells 

were mixed as described in 2.32.1., and 20 yl aliquots were incubated 

directly on either 3 cm dia. plates, or on agar in Bijou bottles.

After the desired conjugation time the cells were harvested in 200

yl phosphate buffer (2.2), allowed to recover in PM medium for 12 hours, 

and then serially diluted. The cells (100 yl) were then spread 

directly onto selective plates and incubated anaerobically at 30°C 

with 2 , 0 0 0  lux light intensity.

2.33. Selection of antibiotic-resistant mutants of H^vannlelli^

2.33.1. Selection. A culture containing 10^ cells ml * was 

serially diluted and plated onto selective plates containing one 

of the following antibiotics>-

a) rifampicin, 1 0 - 1 0 0  yg ml 1

b) streptomycin, "

c) nalidixic acid, *

The plates were incubated anaerobically at 30°C with 2,000 lux 

Light intensity. Colonies which arose were re-streaked onto the 

selective media on which they occurred. Mutant colonies were then
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inoculated into a small volume of (PM + antibiotic) liquid medium

and cultured for use in the conjugation experiments.

2.33.2. N.T.G. mutagenesis. The mutagen N-methyl-n^nitro-N-

nitrosoguanidine (N.T.G.) was used to increase the frequency of

antibiotic-resistant mutants. R.vannlelll cells were grown to a 
8 —Iconcentration of 10 cells ml , harvested and resuspended in 'T'

buffer (50 mM Trls-HCl, pH 7.6 containing 8 mM NaCl) to a concentra-
8 -1 -1 tion of 5 x lO cells ml . The cells were incubated with lOO pg ml

N.T.G. for 20 min at 30°C, harvested, washed in *T* buffer and resuspended 
8  —Xto 8  x 10 cells ml . Serial dilutions were plated onto selective 

plates and incubated as above.



CHAPTER 3

Characterization of the R.vannlelll Genome
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3.1. Introduction

A pre-requisite for the study of the molecular basis of 

regulation of differentiation in R.vannielii is an understanding 

of the organisms' genetic complexity. Consequently the work 

described in this chapter is concerned with the physical character­

istics of the genome, for example the size, base composition and 

genetic complexity of the DNA. These were determined by the use 

of methods which have been successfully applied to both prokaryotic 

and eukaryotic genomes (Britten and Kohne, 1966) . Purified DNA 

is required for these studies, and the purification of DMA from 

R.vannielii is discussed before describing the biochemical analysis 

of the genome.

3.2. Preparation of R^vannlelil^ DNA

3.2.1. Optimisation of the cell lysis procedure. Lysis of 

R.vannielii cells proved to be more difficult than, for example, the 

lysis of E.coll cells, since R.vannielii was found to be less 

susceptible to lysozyme treatment than is E.coll.

The effectiveness of several lysis procedures was examined by 

measuring the decrease in absorbance at 450nm (A4 5 0nm  ̂ following the 

lysis treatment. The A4 50nm gave a measure of the degree of cell 

lysis, since lysed cells cause less scattering of light than do 

intact cells. A young heterogeneous R.vannielii culture l*450nln 

<\0 .8 -1 .0 ) was used, ensuring that the number of clumped cells in the 

culture would be minimal. The results (Fig. 3.1) show that treatment 

with lysozyme for 30 min. was necessary for complete cell lysis, and 

that neither lysozyme nor detergent alone induced complete lysis. 

Sarkosyl treatment was slightly more effective than SDS at room 

temperature.
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Fig. 3.1. Effect of lysis regime on the efficiency of lysis of 

heterogeneous R.vannlelll cells

lysis regime

• 1 mg ml" 1 lysozyme, 37°C, 30 min + 1 % SDS

o 1 mg ml - 1 lysozyme, 37°C, lo min + 1 % sarkosyl

▲ 1 mg ml" 1 lysozyme, 37°C, 30 min + 1 % sarkosyl

A 1 mg ml - 1 lysozyme, 37°C, 30 min

An early exponential culture was treated with lysozyme for the

times indicated above, and then lysed with detergent at time 0 .

Decreasing absorbance at 450nm (A___. ) was measured with time.
4 sonm

Relative A ^jg^ 1 8  the amount of remaining absorbance at that particular 

time relative to the absorbance at time O.
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These results can be compared with those for E.coll (Xorch

et al., 1976) and C.crescentus (Fvinger and Agabian, 1977) where the 

reduction in *4 5 0 ,^ upon lysis was much greater. The reduced 

efficiency of lysis in R.vannielll could be ascribed to the con­

formation of the cells within the microcolony, which may afford 

protection from the lytic agent. Another reason could be the 

differences in cell wall structure between R.vannielll and E.coll.

The methods of choice for cell lysis were either incubation 

with lysozyme (1 mg ml )̂ for 30 min. at 37°C, followed by lysis 

with 1% (w/v) sarkosyl (for RNA or DNA preparation), or Incubation 

with lysozyme (1 mg ml )̂ for 30 min. at 37°C, followed by lysis 

using 1% (w/v) SDS and heating at 60°C for 10 min. (for DNA preparation 

only).

3.2.2. Purification of DNA from the cell lysate. Once lysis 

was achieved, the lysate was incubated with 50 yg ml * proteinase K 

for 1 hr. at 37°C. Protein was extracted from the lysate with an equal 

volume of the phenol-chloroform mixture (2.3.c) and the DNA purification 

procedure was as described in 2.21.1. Contamination of DNA preparations 

with protein was estimated by determining the absorbance of preparations

at 260nm and 280nm. Most DNA samples had an A... of 2.7-3.0.ZfeO
280

3.3. Thermal denaturatlon of DNA

DNA from all three R.vannlelil cell expressions, and from E.coll 

K12 was denatured by heat in a recording spectrophotometer. The 

melting curve for each DNA was obtained by plotting the increase in 

*260nm a9a^nst time. Fig. 3.2. shows the melting curves of R.vannielll 

'simplifled cell cycle' DNA and E.coli DNA, while DNA from the other 

R.vannielll cell types gave melting curves Identical to that shown for 

the ' simplif led cell cycle* culture. Tl\e relatively Uvo Uer««*ei<* 

•WsvrW»*c.e (  n iu e A ly  We A*»e t »  tW* ^ r « S « A C *

srcte 'io  •» J » \ y * a c c W * r i J e  •* ^ 1 *  S e i* » jl* .
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1-3

Fig. 3.2. Thermal melting profile of R.vannlelll. 'simplified cell 

cell cycle' DNA, with that of E-coll K12 DNA

▲  R.vannlelll DNA 

A  E.coll DNA

DNA from both R.vannlelll and E.coll was Isolated by phenol- 

chloroform extraction (2 .2 1 .2 ), and thermally denatured in 0 . 1 2  M 

phosphate buffer (2.23.2). The increase In *260nm with temperature 

was monitored In a Gilford recording spéctrpphotometer.
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Hie temperature at which half the DNA is denatured (Tm) is

related to the base composition of the DNA, and therefore the

mol % GC can be calculated from the formula :

T * 69.3 + 0.41 (mol * GC) (Marmur and Doty, 1962) m
This formula applies when DNA is denatured in 0.2 M Na+ , and although

the Na+ concentration used here was 0.18 M, this not affect the

formula significantly (Marmur and Doty, 1962» Avery, unpublished

observations). The T and mol % GC for each DNA are shown in m
Table 3.1. The average mol % GC of 62.3% compares favourably with 

that obtained by analytical ultracentrifugation in a caesium 

chloride density gradient (62.5%; Dow, 1972) .

3.4. Thermal reassoclatlon of DNA

Sonication (2.23.1) of R.vannielll DNA in phosphate buffer

(2.23.2) produced fragments of approximately lOOO base pairs (bp)

as determined by agarose gel electrophoresis (Fig. 3.3). The

figure also shows that shearing with a syringe needle was less

effective than sonication, resulting in a fragment size of 20 Kb.

Molecular weights were determined by comparison with the E ■coRl

restriction fragments of XDNA (Thomas and Davis, 1975, 2.29.3).

Sheared DNA was denatured (3.3) and allowed to renature at

T_-25°C i.e. 72?C, and the decrease in A_,__ with time was m 260nm
monitored in the spectrophotometer. The kinetics of the reaction 

were expressed by calculation of the Cot (concentration x time; 

moles of nucleotides x seconds litre *) required for reaction 

(Oot^; Britten and Kohne, 1968). The % single stranded DNA 

remaining was calculated from the hyperchr ami city remaining at time 

t as a % of the total hyperchromicity.

In Fig. 3.4. the reassociation kinetics of R.vannielll 'mother
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Table 3.1. Mean DNA base composition of P.vannlelll

cell expressions.

Cell type T-m- ln 0.18 M Na+
(fç) mol * GC

R.vannlelll 95.0 62.3

swarm cell

R.vannlelll 97.2 61.8

'mother' cell

R.vannlelll 97.0 62.7

'simplified cell cycle'

E.coli 89.5 50

DNA was thermally denatured ln 0.12 M phosphate buffer

(2.23.2), and the T , the temperature at which 50% of the DNA m
was denatured, was measured. DNA base composition was calculated

from the formula T « 69.3 + 0.41 (GC) (Marmur and Doty, 1962). in
"Tm valves a re  the average e f  three measurement'».
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Fig. 3.3. Gel electrophoresis of sheared B_,vaimlelll DNA

R.vannielll DNA was sheared by either sonication or passage 

through a 25G syringe needle (2.14), and approximately 4 yg DNA 

per sample was electrophoresed through 1* (w/v) agarose at 30 V 

overnight. The gel was stained with 0.5 yg ml 1  ethidium bromide 

and examined with U.V. illumination.

1. X DNA restricted with EcoRl 2. sonicated R .vannlelll DNA 

3. needle-sheared R.vannielll DNA 4. native, unsheared R.vannlelil 

DMA.
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* 2 0 kb

◄ 1 kb

Fiq. 3.3. Gel electrothcresis sheared P . var.rie 1 ij. H7-

P.vannielii was sheared hy either sonicat.ien cr rassaae

throuah a 25G syrinae needle (2.14) , and approximately 4 i.o PI ? 

per sample was electrophoresed throuah 1? (w/v) aaarose at 3p V

overniqht. The ael was stained with P.r uCT ml  ̂ ethidium, bromide 

ar.d examined with P.V. illumination.

1. X DM?- restricted v:ith FcoPl 2. sonicated P .var.niel i i PN£

3. needle-sheared P . vanni e 1 i i PF/- 4. native, unsheared P . uar.n: e . :
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cell' DNA are compared with those of E.coll DNA. Reassociation

of DNA from the other R.vannlelll cell types was identical to the 

example shown. The bulk of R.vannielll DNA reassociated with simple 

second order kinetics indicating that the DNA was comprised of 

mainly unique sequences, and contained no large proportion of 

repeated sequences. In instances where the DNA is mainly comprised 

of unique sequences, Cot^ is proportional to genome size (Britten
gand Kohne, 1968). Knowing the size of the E.coll genome (2.7 x 10 

daltons; Klotz and Zimm, 1972), the Cot^ values for R.vannlelll 

and E.coll DNA were used to calculate the genome size of R.vannlelil 

(Table 3.2).

One unusual feature of the reassociation data is the large 

initial drop at the start of renaturation (Fig. 3.4). In E.coll 

this 'collapse hypochromicity' represents approximately 1 1 % of the 

genome, and is due to the re-stacking of bases in a non-random 

fashion when the temperature falls (Britten et al., 1974). This 

phenomenon is found in all DNA molecules, and always accounts for 

approximately 10% of the genome. In R.vannlelil however, the total 

drop accounted for about 16% of the genome, suggesting that 5% of the 

genome was reassociating extremely rapidly. The rate of reassociation 

of the fraction did not vary over a lO-fold concentration range of 

DNA, and the renaturation may thus be due to intra-molecular 

reannealing.

3.5. Chemical determination of the genome size

The amount of DNA in a known number of R.vannlelll swarm cells 

was measured by the colorimetric diphenylamine method (Burton, 1956) 

to confirm the estimate of genome size obtained by reassociation 

kinetics. A standard curve was constructed using known amounts of
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Fig. 3.4 Reassoclatlon of R^vannlel^l 'mother cell' DNA with that

of E.coli DNA

• R.vannlelll DNA 

O E.COll DNA

a - collapse hypochromicity 

b - rapidly renaturlng component

DNA from both R.vannlelll and F ■ coll was isolated by phenol- 

chloroform extraction (2.21.1), resuspended in phosphate buffer (2.23.2) 

to 100 yg ml ^, and denatured at 100°C. DNA was allowed to renature 

at y£c, and the decreasing absorbance at 260nm with time was measured 
in a Gilford recording spectrophotometer (2.23.3).

'* single stranded DNA remaining' was calculated frcm the hyper- 

chromiclty remaining at time t, expressed as a % of the total hyper- 

chromic ity.



Fig. 3.4 Reassociation of Rjvannielll 'mother cell' PNB with that

of E.coll DNA

• R.vannlelll DNA 

O E.coll DNA

a - collapse hypochromicity 

b - rapidly renaturlng component

DNA from both R.vannlelll and F.coll was Isolated by phenol- 

chloroform extraction (2.21.1), resuspended in phosphate buffer (2.23.2) 

to lOO pg ml 1, and denatured at 100°C. DNA was allowed to renature 

at 7̂C, and the decreasing absorbance at 2 6 0 nm with time was measured 

In a Gilford recording spectrophotometer (2.23.3).

'% single stranded DNA remaining' was calculated from the hyper­

chromie! ty remaining at time t, expressed as a % of the total hyper-

chromicity



Fig. 3.4. Reassociation of R^janniglli. 'mother cell' DNA with that

of E.coll DNS

• R.vannlelll DNA 

O E.coll DNS

a - collapse hypochromicity 

b - rapidly renaturing component

DNS from both R.vannlelll and F.coll was isolated by phenol- 

chloroform extraction (2.21.1), resuspended in phosphate buffer (2.23.2) 

to lOO pg ml-1, and denatured at 100°C. DNA was allowed to renature 

at 7 ^*0 , and the decreasing absorbance at 2 6 0 nm with time was measured 

in a Gilford recording spectrophotometer (2.23.3).

'% single stranded DNA remaining' was calculated from the hyper- 

chromicity remaining at time t, expressed as a % of the total hyper-

chromicity





Table 3.2. Génome size of R.vannlelll cell expressions

çot^ Genome size (daltons)

by reassociation 
kinetics

by the diphenyl- 
amine method

R.vannlelll 4.7 2 . 1 6 x l 0 9 ±0.2 2.13 x 109  + 0.3

swarm cell

9R.vannlelll 4.5 2.10 X 10 ±0.2 ND

■mother' cell

R.vannlelll 4.3 1.98 x 109  ±0.1 ND

'simplified 
cell cycle'

gE.coli 6.4 2.7 x IO

ND = no data (see 3.5) a » Klotz and Zlmm (1972)

Standard errors of the means where shown, are where n - 2-4mcast/re/nents.

Cot^ values fthe Cot (concentration x time; moles of nucleotides 

x seconds litre 1) required for ^ reaction^ were calculated from the 

reassociation data (2.23.2). Since Cot^ is proportional to genome 

size, the genome size of R.vannlelli could be calculated. A second esti­

mate was obtained by the dlphenylamine colorimetric method (2.17).
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calf thymus DNA. The close correlation between the two sets of data 

Is indicated in Table 3.2. Estimation of the DNA content by the 

chemical method was possible only with swarm cells, since accurate 

counts of either 'mother cell' or 'simplified cell cycle' cell 

expressions are not feasible. Since no DNA replication occurs in 

the swarm cell (4.3.1.), the amount of DNA per swarm cell can be 

taken as the haploid genome size.

3.6. Attempted plasmid isolation

The fast-renaturing component in R.vannlelll DNA could be due 

to the presence of a native plasmid. Previous attempts to isolate 

plasmids by analytical centrifugation followed by agarose gel 

electrophoresis had been unsuccessful (Dow, 1972), but two alternative 

methods were tried in the present study. These were the 'cleared 

lysate* procedure (Clewell and Helinski, 1969), and a method for the 

isolation of large plasmids (Currier and Nester, 1976).

3.6.1. The 'cleared lysate' procedure. Cell lysates of 

1) heterogeneous R.vannlelil, 2) E.coll HBlOl F+ , and 

3) E.coll HBlOl F were prepared (2.25.1). The E.coll strain 

carrying the sex factor F was used to examine the efficiency of the 

method. All the lysates were phenol-chloroform extracted and the 

DNA was precipitated with ethanol at -20°C (2.21.2). Resuspended 

DNA was analysed on horizontal 1* (w/v) agarose gels electrophoresed 

for 4 hr. at 7$ v (2.29.1). A typical gel is shown in Fig. 3.5.

No plasmid was visible in the R.vannlelll DNA (lanes 1 and 4) , 

although this technique detected the F factor in E.coll HBlOl F+

(lanes 3 and 6 ). -p is" vei’/ difFvcoVt to s't.4 on hw. #̂.1-

The use of a 0.4% (w/v) agarose gel also failed to detect 

an R.vannlelll plasmid, indicating that chromosomal DNA had not
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Fig. 3.5 Gel electrophoresis of cleared cell lysates from

R.vannlelll and E.coll

Cleared cell lysates (2.25.1) were prepared from R.vannlelll, 

E.coll HB101F+ and E.coll HBIOIF cultures. Each lysate was 

extracted with phenol-chloroform, and DNA from the aqueous layer 

was precipitated with 2 volumes of ethanol at -20°C overnight

(2.21.2). DNA was resuspended in lo mM Tris-HCl pH 7.5 con­

taining 1 mM EDTA, and electrophoresed on a horizontal 1% (w/v) 

agarose gel for 4 hr at 75 V. The gel was stained with 0.5 pg ml 1  

ethidium bromide and examined with U.V. illumination.

1 and 4 R.vannlelll DNA

2 and 5 E.coll HB101 F~ DNA

3 and 6  E.coli HB101 F+ DNA





masked the presence of a very large plasmid on the previous gel.

3.6.2. Method for the isolation of large plasmids. This method
g

was developed to isolate large plasmids ( 1 0  daltons) from

Agrobacterium tumefaclens (Currier and Nester, 1976). Heterogeneous
32R.vannlelii cultures were labelled with P -orthophosphate for 

several generations before harvesting. Hie principle of the method 

is outlined here, and the experimental details are described in

2.25.2.

Chromosomal DNA was sheared and denatured in alkali in order 

to enrich for plasmid DNA in the aqueous phase on phenol-chloroform 

extraction, since most denatured chromosomal DNA enters the phenol 

phase. Covalently closed circular (ccc) DNA is not denatured by 

alkali. Hie aqueous phase was fractionated on caesium chloride- 

ethidium bromide density gradients (2.25.2) in an MSB 65 centrifuge. 

Fractions from the gradient were collected, and the radioactivity 

in each fraction was plotted against fraction number (Fig. 3.6).

A peak of radioactivity was found near the top of the gradient, 

while RNA was concentrated at the bottom.

Since closed circular DNA binds less ethidium bromide than 

chromosomal DNA, it will band at a greater density in caesium 

chloride than will chromosomal DNA. Hie peak in fraction 3 

could be plasmid DNA with chromosomal contamination or chromosomal 

DNA itself. DNA from the peak fraction was therefore examined in 

the electron microscope, but no circular molecules were observed.

Peak fraction DNA also failed to band as a plasmid molecule on a 

1 % (w/v) agarose gel. Ihe. W # « )

It was concluded that R.vannlelii did not contain 

extrachromosomal DNA of between 5 and lOO megadaltons in size.

It is possible that a very large plasmid is present, which breaks
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Fig. 3.6. Ethldlum bromide - caesium chloride density gradient

fractionation of DNA prepared by the 'Currler-Nester1 technique

8  ml of the DNA sample prepared as described in 2.25.2 was mixed 

with. 8 g CsCl and 0.6 ml ethidium bromide (10 mg ml In a centrifuge 

tube. The tubes were overlaid with liquid paraffin and centrifuged in 

a USE 65 for 60 hours at 40K and 15°C. 30-drop fractions were collected

from the top and 40 U1 aliquots of each fraction were precipitated with 

10% TCA onto GF/C filters, washed, dried and counted.



up during the extraction procedure, although it is unlikely that 

such a plasmid could reassociate as fast as seen in Fig. 3.4.

There is as yet no genetic evidence for the existence of a plasmid 

in R.vannielii.

3.7. Electron microscopy of DNA

Another possible explanation of the fast renaturlng com­

ponent is the presence in the genome of short inverted repeat 

sequences, which on cooling immediately 'snap back' to form double 

stranded structures. Such structures should be visible in the 

electron microscope. To examine this possibility, needle-sheared 

DNA was denatured by boiling, plunged into ice to prevent 

reassociation, and immediately spread for electron microscopy (2.24). 

The molecules observed are shown in Fig. 3.7., alongside the plasmid 

pBR322 (MW - 2.8 x lo6  daltons» Sutcliffe, 1979» derivation,

Bolivar et al., 1977), which was spread under identical conditions, 

and used as a standard for the calibration of DNA length. The 

average length of the inverted repeat units was 400 bp.

3.8. Conclusions

The experiments described in this chapter were concerned 

with the organization of the R.vannielii genome, by measurement of 

the physical characteristics of the DNA (Potts et al., 1980).

In the specific areas considered, there was no significant difference 

between the data obtained for DNA from each of the three cellular 

expressions. This indicates that no large-scale gene amplification 

occurs during differentiation, as in some eukaryotic developmental 

systems (Yao et al., 1974» Wellaur and Reader, 1975» Kaback and 

Halvorson, 1977). Consequently the control of differentiation 

must operate at transcription or translation, or both.
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Fig. 3.7. Electron microscopy of denatured R.vannlelll DNA

R.vannlelll DNA (100 pg ml”1) was sheared by passage through 

a 25G syringe needle three times, denatured in 0.12 M phosphate 

buffer, and quenched on ice. DNA was spread for electron 

microscopy by the aqueous technique (Davis et al., 1971)(ft) .
The plasmid pBR322, spread under Identical conditions, was 

used for calibration

D M f l w a s  w'»VW VC f » '  \
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The DNA base composltion of R.vannlelll is 62.2% GC, which

coop ares favourably with that reported for other members of the

Rhodospirillaceae (Mandel et al.f 1971; Dow, 1972). Hie genome
gsize of R.vannielii was found to be 2 . 1  x 1 0  daltons, which is

2 the size of the E.coli genome.

Although smaller than that of E.coli, the genome of 

R.vannlelll is more complex due to the presence of a rapidly 

renaturing component. Several explanations of this component have 

been considered. Hie rate of renaturatlon of the component was 

independent of concentration, suggesting that intramolecular rather 

than intermolecular hybridization was responsible.

Hie presence of a plasmid can be ruled out, although it may 

be possible to detect plasmids in freshly isolated strains of 

R.vannielii. Plasmids have been isolated from other Rhodospirillaceae 

such as R.sphaeroldes (Saunders et al., 1976) and R.capsulata 

(Hu and Marrs, 1979), but they were not found in C.crescentus which 

also has a rapidly renaturing component in its DNA (Wood et al.,

1976).

Hie electron microscopic evidence suggested that the rapidly 

renaturing component was due to the presence of short inverted repeat 

sequences dispersed along the length of the DNA. When denatured DNA 

was cooled, these sequences were able to 'snap back' very rapidly to 

form duplexes, while the rest of the molecule remained single 

stranded.

Hiese sequences must be adjacent to each other, or separated 

by a very short piece of unique DNA, when they would appear as hairpin 

loops in the electron microscope. Hiey may be a transient feature of 

replication, such as 'knife and fork' structures (Barzilai and
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Thomas, Jr., 1970), but this possibility was excluded in R.vannlelli

since the Inverted repeat sequences were present in swarm cell DNA, 

where no replication occurs (4.3.1). Hie sequences had an average 

length of 400 bp, and represented 5% of the genome, and so it was 

calculated that there were approximately 2 0 0  such units per genome. 

Each sequence would therefore be present on average, every 16 Kb of 

the DNA length, if the sequences were randomly distributed throughout 

the genome. No data is yet available on their actual distribution.

Inverted repeat sequences have been found in both prokaryotic 

and eukaryotic genomes (Davidson et al., 1973; Kopecko and Cohen, 

1975; Schmid et al., 1975), although their length and frequency of 

occurrence varies considerably. In Chlamydomonas chloroplast DNA, 

they represent 4-7% of the DNA and occur between 20 and 45 times 

per genome (Gelvin and Howell, 1979).

In C.crescentus DNA (Wood et al., 1976) inverted repeat 

sequences were found to occur about 300 times per genome and were 

between 100-600 bp in length, but no function has yet been assigned 

to them. Longer inverted repeats in bacteriophage Mu (Hsu and 

Davidson, 1974) and the Rb plasmid (Sharp et al., 1973) have been 

identified as insertion sequences. Sequences about 130 bp in length 

have been implicated in recombination between pSC50 and pSCl.01 

(Kopecko and Cohen, 1975).

Hie function of the inverted repeat sequences found in 

R.vannlelll is unknown but it is possible that they could be 

'hot spots' for recombination events.
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CHAPTER 4

Replication of R.vannlelll DNA

1 0 0



4.1. Introduction

Having examined the basic organization of the R.vannlelll 

genome, this chapter describes and discusses experiments concerned 

with the replication of DNA in this organism. Ibis is of importance, 

since the onset of chromosome replication in R.vannlelll may be a 

key factor in the regulation of cellular differentiation.

The study of replication throughout the whole of the dimorphic 

cell cycle is presently impractical, since there are no meaningful 

parameters, such as cell number, on which to standardize the 

observations. This is a consequence of the complex pattern of 

cellular morphogenesis and differentiation shown by R.vannlelll 

(Fig. 1.14). However, as homogeneous populations of swarm cells can 

be obtained quickly and in quantity, this study considers the 

differentiation of the swarm cell in isolation from the rest of the 

cell cycle. Moreover, accurate swarm cell counts can be obtained, 

and the differentiation sequence is obligate and well-defined.

As measurements of DNA replication are usually based upon the 

temporal incorporation of radioactive DNA precursors, the selection 

of a suitable precursor molecule is discussed, followed by con­

sideration of chromosome replication and of the possible role of the 

DNA polymerase enzymes in the control of differentiation.

4.2. Incorporation of radioactive precursors into R_LvanniejjLi DNA

In most studies of DNA replication, the incorporation of 

(methyl-^H)-thymidine is monitored, since this Isotope is 

preferentially incorporated into DNA, so alleviating the need to 

remove RNA from samples. Unfortunately, (methyl-^H)-thymidine is 

assimilated at only a low level into R.vannlelll DNA (Dow, 1972), and 

this is most probably due to the Induction of a thymidine
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phosphorylase (Bodmer and Grether, 1965). The activity of this 

enzyme in E.coll may be repressed by the addition of uridine

(Budman and Pardee, 1967), but in R.vannlelli uridine had no effect 

on (methyl-3H)-thymidine incorporation (Dow, 1972). Previous 

attempts to isolate a stable thymine-requiring mutant of R.vannlelii 

had been unsuccessful (Day, unpublished observations), and so

alternative precursors were sought.
32The incorporation of P-orthophosphate into DNA with time was 

measured in initial experiments, but since this isotope is incorporated 

into nucleic acids, phospholipids and phosphoproteins, it proved 

difficult to eliminate radioactivity from sources other than DNA. The 

incorporation of 3H-adenine, 3P-adenosine and 3H-deoxyadenosine into 

DNA was examined, as these isotopes will be incorporated only into 

nucleic acid, and radioactive PNA can be readily removed by alkaline 

hydrolysis.

A heterogeneous culture was incubated in the presence of 

3H-adenine (15-25 Ci/mmol), 3H-adenosine (20-25 Ci/mmol), or 

3H-deoxyadenosine (10-20 Cl/mmol), until the A260nm reached 

approximately 3.C. 5 yCiml 1 of radioisotope were used in conjunction

with 5 yM non-radioactive carrier material. Cells were harvested and 

lysed, and the lysate was subjected to caesium chloride density 

gradient centrifugation as described in 2.21.3.

The gradients were fractionated and the density profiles were 

determined by refractive index measurements. After dialysis against 

SSC, the A260nm an<̂  the radioactivity of each fraction was determined 

(Fig. 4.1). The peaks of radioactivity in a) and c) in the figure 

were due to DNA since they occurred at the same position in the density 

gradient as would native R.vannlelli DNA (buoyant density »1.7 22gml 3). 

This was confirmed by treatment of the peak fractions with either DNase,



Fig. 4.1. Incorporation of radioactive DNA precursors Into

▲ Refractive Index at 20°C

• Radioactivity (3H) in acid-precipltable material 

(200 pi sample)

°  A260nm

A heterogeneous culture of R.vannielii was incubated with
3 3 3either a) H-adenosine, b) H-adenine, or c) H-deoxyadenosine

(all at 5 pCi ml-1) in the presence of 5 pH of the respective cold

isotope, until the A260nm reached 3-°* Cells were harvested, lysed,

and the resulting lysate was centrifuged in a caesium chloride density

gradient to equilibrium (40K, 15°C, for 36 hours). The gradients

were fractionated (1 ml fractions) from the bottom, and the refractive

index, and T.C.A.-precipitable radioactivity (200 pi aliquot)ZbOnm
in each fraction was measured.
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RNase, or both, followed by measurement of the TCA-insoluble 

radioactivity remaining. Most of the radioactivity was attributable 

to DNA, while a small amount was associated with RNA, which smeared 

down the gradient (Table 4.1).

It was apparent that 3H-adenine was poorly incorporated into 
3 3DNA, yet both H-adenosine and H-deoxyadenosine were Incorporated 

efficiently, resulting in DNA with specific activities loco c.p.m.ug 3 
and 2500 c.p.m.yg 1 respectively. Despite the more efficient 

Incorporation of ^H-deoxyadenosine, the isotope of choice was 

3H-adenosine, because at the levels used it showed no detectable 

toxic effects on the cells. Also, immediately after this experiment 

was done, 3H-deoxyadenosine became unavailable for an extended period 

of time. Since 3H-adenosine was incorporated into PNA as well as 

DNA, it was necessary to hydrolyse all samples with alkali overnight 

to remove RNA, prior to determining the T.C.A.-precipitable radioactivity 

remaining.

The effect of varying the adenosine pool size was examined, in 

order to optimize the conditions for incorporation of 3H-adenoslne 

into DNA (Table 4.2), and incorporation was most efficient when 

5 yCi ml 1 3H-adenosine were used in conjunction with 5 pM cold 

adenosine. Higher concentrations of adenosine had increasingly toxic 

effects on the cells (Table 4.2). In the following experiments except 

where indicated, the incorporation of 3H-adenosine into alkali-stable, 

TCA-precipitable material was used as a parameter of DNA synthesis.

4.3. DNA replication during swarm cell morphogenesis and differentiation
324.3.1. P-orthophosphate incorporation. Initial experiments

32were undertaken to follow the temporal Incorporation of P- 

orthophosphate into DNA. A volume of between 200-300 ml of homogeneous
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Table 4.1. Analysis of the peaks of radioactivity seen

In Fig. 4.1. a) and c).

Gradient peak C3» l remaining In acld-preclpltable material (cpm)

before FNase DNase FNase/
treatment alone alone DNase

a) -adenosine 30,000 25,000 9,500 2,300

c) -deoxyadenoslne 11,000 10,000 2,500 500

200 yl aliquots of the peak fractions were counted, and then 

Incubated with either FNase (50 yg ml *) , DNase (50 yg ml 1) or both, 

for 1 hour at 37°C. Nucleic acid remaining was precipitated with 

10% T.C.A. onto GF/C filters,washed, dried and counted. The data 

represent an average of three estimates.
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Table 4.1. Analysis of the peaks of radioactivity seen

In Fig. 4.1. a) and c).

Gradient peak remaining In acld-preclpltable material (cpm)

before
treatment

FNase
alone

DNase
alone

FNase/
DNase

a) -adenosine 30,000 25,000 9,500 2,300

c) 3F -deoxyadenosine 11,000 10,000 2,500 500

200 yl aliquots of the peak fractions were counted, and then 

Incubated with either FNase (50 vg ml 1), DNase (50 yg ml 1) or both, 

for 1 hour at 37°C. Nucleic acid remaining was precipitated with 

10% T.C.A. onto GF/C filters,washed, dried and counted. The data 

represent an average of three estimates.
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Table 4.2. Effect of adenosine pool size on the

incorporation of 3P -adenosine into DNA

Concentration 
of adenosine 

(yM)
Increase in A540nJn 
over the period 
of incubation

C H^ln alkali-stable, 
acid-precipitable  ̂
material (cpm x 10 )

0 3.17 40.5
0.5 3.36 43.5
1.0 3.17 52.9
2.0 3.22 55.0
5.0 3.33 65.0
10 3.19 54.5

lOO 3.14 63.4
500 2.24 57.6

’Simplified cell cycle' cultures of R.vannlelll were incubated

with varying concentrations of adenosine, and 5 yCi ml 1

3H -adenosine for 3 days. The A,.,  of the cultures were measured540nm
initially and at the end of the incubation period. Cells (15 ml) 

were harvested, and nucleic acids were precipitated with 10% T.C.A. 

containing 50 yg ml-1 adenosine carrier. After resuspension, the 

samples were incubated with IN\ A/aOK -for iShr at 37°C, and

the remaining acid-precipitable material was filtered onto GF/C 

filters, washed with 5* T.C.A., dried and their radioactivity counted.
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swarm cells was selected (2.12), and Incubated with 3 yCi ml
32P-orthophosphate (50 Ci/mg phosphorus). Each time swarm cell 

populations were selected, an aliquot was withdrawn for a cell count 

and cell volume analysis in the Coulter counter and channelyzer (2.14).

The swarm cell count was always between 1-2 x 107/ml, and a representative 

cell volume profile is shown in Fig. 4.2. Copltcr analysis -u>s wsei To 

cVvetU. on Vn«. urutormit^ of cel) populations .

Samples were taken at regular intervals, and total TCA-precipitable,

and alkali-stable TCA-precipltable radioactivity was measured. At

each time point the culture was examined microscopically, and the

A_. was measured (Fig. 4.3.a). b4Qnm
The increase in A540nm demonstrated three phases of swarm cell

differentiation; in the first stage the flagellae were shed, and a small

increase in A „ o c c u r r e d ;  during the second stage (stalk synthesis), o4onm
little increase in A , t o o k  place; and in the third stage, when b4onm
daughter cell formation occurred, a large increase in A540nm was observed.

32There was no incorporation of P into DNA during the first 

three hours, but considerable incorporation took place during the 

3-5 hour period thereafter (Fig. 4.3.b). This period of incorporation 

corresponded with the conclusion of stalk synthesis and the onset of 

bud formation. There was no DNA replication in the swarm cell prior to 

differentiation, initiation of replication occurring at or around the 

completion of stalk synthesis.

Further similar experiments, and several pulse-labelling
32experiments were undertaken using P -orthophosphate, but the 

reproducibility between and within experiments was poor. Therefore 

the incorporation of 3H-adenosine into DNA was measured in all sub­

sequent studies concerned with the kinetics of nucleic acid synthesis.
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4.3.2 3 3. H-adenoslne Incorporation. Incorporation of H-

adenosine into the DNA of differentiating swarm cells (Fig. 4.4.a)
32followed the same pattern as the Incorporation of P -orthophosphate. 

There was no incorporation of radioactivity for the first two hours, 

followed by a significant rise in incorporation once daughter cell 

synthesis was initiated. The onset of DNA replication was again 

correlated with the completion of stalk synthesis.

Fig. 4.4.b. illustrates the Incorporation of 3H-adenosine into 

the DNA of an exponentially growing 'simplified cell cycle' culture.

This served as a control since in this cellular expression asynchronous 

cell division occurs throughout exponential growth (France, 1978).

The 'simplified cell cycle' culture was passed through a synchronization 

unit* so that it was prepared under the same conditions as the swarm 

cell culture. The incorporation of 3H-adenosine was constant throughout 

the time course and did not show reduced Incorporation during the first 

two hours, indicating that the 'lag' in incorporation shown by 

homogeneous swarm cell populations was peculiar to the swarm cell, and 

not due to physiological shock imposed by the synchronization technique.

4.3.3. Pulse labelling of swarm cell DNA with 3P-adenoslne.

Swarm cell DNA was pulse-labelled with 3H-adenosine to determine the 

lengths of the S and periods during the cell cycle (Fig. 4.5).

The experiment was continued for 20 hours (approximately 3 generation 

times), and the length of the pulse label was 2 hours.

DNA replication was not discontinuous, since after the completion 

of the first cell division, incorporation continues to increase. 

Consequently it was difficult to estimate the length of the S phase. 

However, if one assumed a decrease in incorporation after the mid-point 

of DNA synthesis symmetrical with the increase, then the duration of 

S phase was l*i hours, and of 4-5 hours. The could be reduced to
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Fig. 4.3 Growth rate and DNA replication during swarm cell

morphogenesis and differentiation.

A homogeneous population of swarm cells was selected by

filtration (2.12), and then incubated in the presence of 3 pCi ml
32P -orthophosphate. Growth rate of the culture was measured by 

the increase in *540nn) with time. 0.1 ml aliquots were withdrawn 

at intervals, and incorporation was stopped by the addition of 10%

T.C.A. containing 0.1 M sodium pyrophosphate. After hydrolysis in 

1 M NaOH overnight at 37°C, T.C.A. precipitable material was 

collected on GF/C filters, which were then washed, dried and their 

radioactivity measured.

T.C.A. precipitable radioactivity remaining after alkaline 

hydrolysis is attributable to radioactivity incorporated into DNA, 

there being 1% of the radioactivity incorporated into macro­

molecules other than nucleic acids
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Fig. 4.4. DNA replication during swarm cell morphogenesis and 

differentiation, and In exponential cells from the 

'simplified cell cycle'.

Homogeneous swarm cell populations (a), or early exponential 

cells from the 'simplified cell cycle' (b), were incubated with 

lO pCi ml 1 -adenosine, and 5 pM adenosine carrier. At 

intervals, samples £"(a) 10 ml; (b) 1 ml ] were withdrawn, and

incorporation was stopped by the addition of 10% T.C.A. containing 

50 pg ml 1 adenosine. After hydrolysis in 1 M NaOH overnight at 

37°C, the remaining T.C.A.-precipitable material was collected on 

GF/C filters, which were washed, dried and their radioactivity

measured (2.27.1)
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2-3 hours, under different environmental conditions, e.g. higher 

light intensity, and also depending on the 'energy status’ of the 

cell. This is a poorly understood phenomenon which may arise from 

the fact that when swarm cells are selected from a culture, they vary in 

age both within and between cultures, depending on how long they were 

present in the culture prior to selection. Consequently the or 

'lag' period may vary.

After the first synchronous cell division, further divisions 

were asynchronous, and therefore it was not possible to follow the 

pattern of DNA replication in subsequent cell divisions. Nevertheless 

since incorporation did not fall after the first division, it appeared 

that no ’maturation period' was necessary in the stalked cell, and 

that DNA replication was continuous (see discussion).

No further pulse labelling experiments were done, since it 

was decided to pursue a different line of investigation. However 

other pulse labelling experiments would be of use if they employed a 

much shorter labelling period and more radioactive label.

4.3.4. Effect of light on nucleic acid synthesis and differentiation 

in the swarm cell. When a homogeneous population of swarm cells was 

kept in the dark, no differentiation occurred, but the swarm cells 

remained viable for at least 15 hours. Ihus, swarm cell development 

was dependent on light, and consequently nucleic acid synthesis was 

compared between cells grown in the light and cells grown in the dark.

Homogeneous swarm cell populations were incubated in the light 

or the dark, and the incorporation of ^H-adenosine into DNA and FNA was 

measured at regular intervals. A 'simplified cell cycle' culture 

served as a control. Hie incorporation of ^H-adenosine into the DNA 

of all three populations is shown in Fig. 4. £ - Swarm cells in the
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Fig. 4.5. Pulse labelling of DNfl during swarm cell morphogenesis 

and differentiation

A homogeneous population of R.vannlelll swarm cells was selected 

by filtration (2.12) and incubated phototrophically at 30°C. 15 ml

aliquots were withdrawn at intervals and pulse labelled for 2 hours 

with lO pCi ml-1 3H -adenosine, in the presence of 5 pH adenosine 

carrier. Incorporation was stopped by the addition of 10« T.C.A. 

containing 50 pg ml-3 adenosine carrier. Precipitated material was

hydrolysed in 1 M NaOH overnight at 37°C, and then T . C . A . -precipitated 
onto GF/C filters. The filters were washed,,dflfd and their radioactivity 
counted (2,27,1),

H
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light showed the characteristic 'lag' period before the onset of 

DNA replication, whereas the 'simplified cell cycle' control cells 

did not. Swarm cells incubated in the dark however, showed little 

DNA synthesis. Hie small amount of incorporation in these cultures 

was due to replication in the small proportion of cells which continued 

to develop in the absence of light; 90% of the swarm cells remained 

motile in the dark.

Hie incorporation of ^H-adenosine into total RNA is shown in 

Fig. 4.7. In the light-incubated swarm cells RNA synthesis proceeded 

continuously, with the rate increasing significantly during daughter 

cell synthesis. No 'lag' period was seen at the start of the experiment, 

as with DNA. The early RNA synthesis seen in the swarm cell may be the 

result of synthesis of mRNA for swarm cell-specific proteins (Fig. 1.19). 

In dark-incubated cells there was little RNA synthesis initially, but 

after 3-4 hours some synthesis did occur. Hiis could have been due to 

RNA synthesis in the few cells which initiated development in the dark, 

or to RNA synthesis associated with maintenance functions. Swarm cells 

retained their ability to differentiate after IS hours in the dark, 

perhaps indicating that they were able to switch to fermentative 

metabolism (Uffen and Wolfe, 1970).

4.4 DNA polymerase activity during swarm cell morphogenesis and 

differentiation

4.4.1. Introduction. DNA polymerases catalyse the

addition of mononucleotides from deoxynucleoside-5'-triphosphates to 

the 3'-hydroxyl terminus of a DNA primer. As these enzymes have been 

implicated in the regulation of DNA replication in the cell (Ciarrochi 

et al., 1977), the activities of DNA polymerases during swarm cell 

morphogenesis and differentiation were investigated.
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Fig. 4.6. Effect of light on DNA synthesis during swarm cell 

morphogenesis and differentiation.

• Homogeneous swarm cells incubated in the light

O  " « " " " " darJc

A  cells from the 'simplified cell cycle' in the light (control) 

Homogeneous swarm cell populations were incubated anaerobically 

either in the dark or the light at 30°C, and at intervals 5 ml samples 

(control - 1 ml) were withdrawn, and incorporation was stopped by the 

addition o f -5% T.C.A. containing SO pg ml-1 adenosine carrier. Samples 

were hydrolysed in 1MNaOH overnight, and 10% T.C.A. precipltable 

material was collected on GF/C filters. The filters were washed, dried 

and counted (2.27.1).

• 1 16



Pig. 4.7. Effect of light on RNA synthesis during swarm cell 

morphogenesis and differentiation 

• swarm cells Incubated In the light 

O « « » " « dark

A  cells from the 'simplified cell cycle'. In the light 

Homogeneous swarm cell populations were incubated anaerobically 

either in the dark or in the light at 30°C, and at intervals 1 ml 

samples (control - 0.2 ml) were withdrawn and precipitated with lot 

T.C.A. containing SO yg ml-1 adenosine carrier. Total acid- j

precipitable material was filtered onto GF/C filters, washed, dried and i

counted (2.27.2) . Counts attributable to DNA were subtracted from the |

total T.C,A,-precipitable counts to give the counts due to RNA. 1 1 7  jl

1 1



In E.coll and B.subtllls, three DNA polymerase enzymes have

been identified. DNA polymerase I is associated with repair synthesis 

(e.g. of UV-induced damage) and discontinuous strand replication 

(Kelly et al., 1969), DNA polymerase II, whose physiological role is 

unknown (Wickner et al., 1972), and DNA polymerase III is responsible 

for replication itself (Otto et al., 1973). The isolation and 

characterization of DNA polymerases from R.vannlelil was not attempted, 

but DNA polymerase activity was assayed during swarm cell differentiation, 

exploiting the observation that individual DNA polymerase activities 

may be distinguished by the use of specific inhibitors (sulfhydryl 

blocking agents) in the assay mixture (Kornberg and Gefter, 1972).

4.4.2. Effect of primer DNA and swarm cell concentration on the 

efficiency of the DNA polymerase assay. Lysozyme becomes ineffective 

as a lytic agent at high cell concentrations, and since it alone was 

used in cell lysate preparation, it was necessary to determine the 

optimum cell concentra "fcion for the assay (2.26 ). Table 4.3. shows 

the effect of swarm cell concentration on total assayable DNA polymerase 

activity, measured as the average (methyl-^H)-thymidine incorporated 

into TCA-precipitable material per 250 pi assay volume. DNA polymerase 

activity was not proportional to the cell concentration, suggesting

that lysozyme was limited in its effectiveness at higher cell concen-
0

trations. Consequently approximately 5 x 10 cells were used in all 

further assays.

The effect of primer DNA concentration on DNA polymerase activity 

is shown in Fig. 4.8. At the lower concentrations of primer, a small 

increase in concentration had a large effect on incorporation, but 

above 60 pg ml 1 (incubation mixture), the system became saturated 

and further increases in primer incorporation did not stimulate

incorporation
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Fig. 4.8. Hie effect of primer DNA concentration on total DNA

polymerase activity in the swarm cell
8A swarm cell lysate (from a. lo cells) was prepared (2.26), 

and Incubated in the ENA polymerase assay mixture with varying 

amounts of 'activated' calf thymus primer DNA. Hie primer was activated • 

by incubation with 0.1 yg/ml deoxyribonuclease I for- 30 min at 37°C, 

and the reaction stopped by heating at 70°C.

Hie assay mixture was incubated at 37°C for 30 min, and incorporation 

was stopped by the addition of 10% TCA containing 0.1 N sodium pyro­

phosphate. T.C.A.-precipitable material was filtered onto CtF/C filters, 
which were then washed, dried and counted.



Table 4.3 . Effect of R . swarm cell concentration 
*

on total DNA polymerase actlvlty

Swarm cell number 
per ml.

£ 3H7ln acid-précipitable 
material (cp lO min)

2 x 107 866
4 x 107 1510

4.3 x lO8 3349
8.6 x 108 4060

2 x 109 1933
4 x lO9 2064

The DNA polymerase activity in a 250 pi cell lysate was assayed 

as described in 2.26., and was measured as the radioactivity 

incorporated into T.C.A.-precipitable material at the end of the 

incubation period. A constant amount of primer DNA (0.5 yg) was used.

total - the total activity attributable to all DNA polymerase 

enzymes in the cell
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4.4.3. PNR polymerase activity during swarm cell morphogenesis

and differentiation. DNA polymerase activity during swarm cell 

differentiation was measured as described in 2.26 ., and the results 

are shown in Fig. 4.9. Total polymerase activity was low during swarm 

cell maturation, but on stalk development a large increase in activity 

was observed. This could be correlated with the onset of DNA synthesis 

(4.21.

Table 4.4. shows the effect of sulfhydryl blocking agents on 

the radioactivity incorporated into TCA-precipitable material. Use of 

these agents allows the individual DNA polymerase activities to be 

distinguished in E.coli (Komberg and Gefter, 1972), and by analogy 

should do the same in R.vannlelll. The activities of both DNA 

polymerase I and III Increased during swarm cell morphogenesis and 

differentiation. DNA polymerase II activity also appeared to increase.

The •h'Wiaai are n»t reV>«bte, tV* aot- repeofeS, tVs. (sethoJ

(f-O '-. H«V^1 -«A 4<r««A^ noVtbMiriM.T«. «fpWwdrUA of h\iigeneral +o
V b e t » r <  »Wt».«e4 .

4.5. Conclusions

The results presented in this chapter have provided information 

concerning DNA replication during swarm cell morphogenesis and 

differentiation in R.vannlelli. ^H-adenosine proved to be the most 

convenient isotope with which to monitor DNA replication.

Several important results have emerged from these studies. The 

first was that the time of initiation of DNA replication could be 

pinpointed to a period of approximately 20 minutes within a cell cycle 

of 6 hours (Fig. 4.3). Initiation was concomitant with the completion 

of stalk development, thus correlating an important biochemical event 

with a visible morphological 'landmark' event in the cell cycle.

Having located the time of initiation of replication it Bhould now be
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Fig. 4.9. Total DNA polymerase activity during swarm cell

m o rp h o g e n e sis  and d i f f e r e n t i a t i o n  

O  grow th <A54CWn)

•  total DNA polymerase activity/lOO yl mlx/30 min 

Homogeneous swarm cell populations were selected (2.12) and 

incubated phototrophically at 30°C. At intervals lO ml samples 

were withdrawn, centrifuged, 1 ml cell lysates prepared, and the 

total DNA polymerase activity in each extract ClOO yl) was assayed 

(2.26). Growth rate and morphology of the culture were also examined.
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possible to preferentially label the origin of replication, leading 

subsequently to its isolation and characterization (7.4) . DNA synthesis 

appeared to be continuous after the first division, but since division 

rapidly became asynchronous, this cannot be substantiated.

The second important point that emerged from the above study 

was that there was no DNA synthesis in the swarm cell. There was a 

period of swarm cell maturation (Fig. 4.3) during which no DNA 

replication occurred, and when reorganization essential for further 

development took place. DNA synthesis was repressed in the swarm cell, 

perhaps by the low levels of DNA polymerase enzymes, or due to the 

configuration of DNA.

Thirdly, DNA polymerase levels of activity were low in the swarm 

cell (Fig. 4.8). This could be due to either repression of the enzyme 

activity, for example by steric hindrance, or the presence of a small 

amount of enzyme, giving rise to the need for further de novo synthesis 

for increased activity. These possibilities cannot be distinguished with­

out measuring the absolute amount of enzyme after purification, or 

without a knowledge of the specific mRNA molecules for DNA polymerases.

The level of DNA polymerase activity • «9 likely to be important 

in the repression of DNA synthesis in the swarm cell. It may form part 

of the control mechanism which ensures that DNA replication does not 

occur until the stalked cell is about to bud. In B,subtills, DNA 

polymerase III activity increases when spores are activated to germinate, 

which led to the speculation that the enzyme is involved in the control 

of DNA replication (Ciarrochi et al., 1977). fwtW worW .* 1VW ere* it fleeced.

The fourth main point to be taken from these results is that RNA 

synthesis did occur in swarm cells which were inhibited in their 

differentiation by the lack of light. The inhibitory effect was



powerful, and ensured that 90% of the swarm cells remained in the 

motile phase. Nonetheless, once morphogenesis and differentiation 

were initiated, the swarm cell was able to progress through the whole 

sequence, indicating that the light-dependent step(s) were at the 

transition from the motile swarm cell to the stationary cell (Potts 

and Dow, 1979).

Since metabolic activity in the inhibited swarm cell was low, 

it may be assumed that little rRNA synthesis was occurring. Swarm 

cell-specific soluble proteins have been detected by ^S-methionine 

pulse labelling and polyacrylamide gel electrophoresis (France and 

Dow, unpublished data; Fig. 1.19), indicating that several high 

molecular weight proteins disappear as differentiation proceeds.

One may suggest that the RNA synthesized during swarm cell inhibition 

may contain a high proportion of mRNA for swarm cell-specific proteins, 

and that synthesis of these proteins is required for subsequent swarm 

cell differentiation. It would be interesting to determine whether 

these proteins are still made in the swarm cell after prolonged 

incubation in the dark. RNA specific to either cell type, and RNA 

common to both, should be detectable by separate hybridization of 

swarm cell RNA and mother cell RNA to swarm cell DNA.

Although R.vannlelli is similar to C.crescentus (Degnen and 

Newton, 1972b) and R.palustrlB (Westmacott and Primrose, 1977) in 

that DNA synthesis is a characteristic of the stalked cell only, 

it has more potential than either of these as a model for 

differentiation. R.vannlelll shows a clearly defined differentiation 

sequence which can be completely Inhibited by the absence of light, 

and so can be easily manipulated experimentally. Initial biochemical 

studies have revealed complex mechanisms of regulation, which may now 

be investigated more fully by modern biological techniques.
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CHAPTER 5

Tiie effect of metabolic Inhibitors on swarm

cell morphogenesis and differentiation
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5.1. Introduction

Studies of the kinetics of nucleic acid synthesis during swarm 

cell morphogenesis and differentiation revealed interesting facts 

about the role of the swarm cell in these processes. Moreover, they 

indicated that a complex set of regulatory mechanisms operates 

during the swarm cell differentiation sequence. This chapter describes 

work in which the effect of specific metabolic inhibitors on the 

ensuing morphogenesis and differentiation was examined.

Metabolic inhibitors have been used by other workers in the 

elucidation of the regulation of cell cycle events in F.coll (Ward and 

Glaser, 1970; Doudney, 1978), C.crescentus (Degnen and Newton, 1972b), 

Myxococcus (Kimichi and Rosenberg, 1976) and R.palustrls (Westmacott 

and Primrose, 1977). The rationale behind most of these experiments 

was to inhibit one specific function in the bacterium, such as DNA 

synthesis, and then to examine the effect of this on other measurable 

biochemical parameters, and on the morphological 'landmarks' in the 

cell cycle. This was the method used to establish that cell division 

was dependent upon the completion of chromosome replication in 

C.crescentus (Degnen and Newton, 1972b).

Many metabolic inhibitors are known and used in biochemical 

research, but the mode of action of seme, particularly inhibitors of 

nucleic acid synthesis, is uncertain (Kersten and Kersten, 1974).

In this study, the effects of two metabolic Inhibitors, namely 

nalidixic acid (a DNA synthesis Inhibitor) and chloramphenicol 

(a protein synthesis inhibitor), on swarm cell morphogenesis and 

differentiation, were examined.
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5.2. Effect of nalidixic acid on swarm cell morphogenesis and

differentiation

5.2.1. Introduction. Nalidixic acid was chosen to examine 

the relationship between DNA replication and cell division in 

R.vannlelll. The drug is an inhibitor of DNA synthesis (Goss et al., 

1965) but at high concentrations it may also affect RNA synthesis 

(Javor, 1974). Recent workers detected a mutation in the nal A 

gene, which results in a mutant DNA gyrase enzyme. This enzyme is 

responsible for the supercoiling of DNA in E.coll, and acts by 

introducing negative superhelical turns in an ATP-dependent reaction 

(Gellert et al., 1976). The fact that the nal A gene is involved in 

the production of this enzyme suggests that nalidixic acid acts by 

inhibiting the nlcking-closlng activity of the enzyme (Sugino et al., 

1977, Gellert et al.. 1977).

5.2.2. Effect of nalidixic acid on swarm cell growth and 

morphology. Homogeneous populations of swarm cells were obtained

by selection (2.12), incubated for 16 hours with varying concentrations 

of nalidixic acid, and then examined by phase contrast microscopy and 

electron microscopy. The cell volume distribution of each culture was 

determined using a Coulter counter and channelyser (2.14).

The effect of nalidixic acid on the morphology of the developing 

swarm cell is shown in Figs. 5.1 and 5.2. Below 20 yg ml 1, 

nalidixic acid had little effect on morphology, but at higher 

concentrations an increasing proportion of the cells became elongated 

and distorted in shape. There was no cell division, as indicated by 

a lack of plug formation in these distorted cells. The proportion of 

cells which appeared elongated increased with the concentration of 

nalidixic acid (Table 5.1). Daughter cells formed but these also 

became elongated.
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Fig. 5.1. Light micrographs of nalidixic acid-treated swarm

cells.

Homogeneous swarm cells were incubated phototrpphlcally 

at 30°C with varying concentrations of nalidixic acid for 

16 hours, and then examined by phase contrast microscopy.

Magnification 6 o o o k .





Fig. 5.2. Electron micrographs of nalidixic acid-treated swarm

cells.

Homogeneous swarm cells were incubated phototrophically at 

30°C with varying concentrations of nalidixic acid for 16 hours. 

Cell samples were shadcwed with gold-palladium, and examined in 

the electron microscope.

Magnif ication 8 0 0 0  X .





Table 5.1 Effect of nalidixic acid concentration on the proportion

of elongated cells at 16 hr. 'end point analysis

Nalidixic acid % elongated cells

concentration in culture after 15 hrs.

O O

10 15

30 46

50 60

70 75

90 80

lOO 92

Homogeneous swarm cells were selected by filtration (2.12), and 

incubated phototrophically at 30°C with varying concentrations of 

nalidixic acid for 16 hours. Hie cultures were then examined 

by phase contrast microscopy. Percentages recorded are an 

average of three estimations.
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At concentrations greater than 150 yg ml *, swarm cell 

differentiation was arrested at the stage of stalk synthesis, 

indicating that at these concentrations nalidixic acid affects other 

metabolic processes as well as those responsible for cell growth 

and elongation. The electron micrographs (Fig. 5.2) show that 

plug formation was inhibited by nalidixic acid, and so there was no 

physiological separation of mother and daughter cell.

An analysis of the cell volume distribution confirmed that 

the major effect of nalidixic acid was to cause gross morphological 

distortion and cell enlargement. Fig. 5.3 shows the cell volume 

distribution profiles of nalidixic acid-treated cells compared with 

control cells, indicating a progressive shift in average cell volume 

with increasing concentrations of the drug.

The effect of nalidixic acid on the growth of homogeneous 

swarm cell populations in a cuvette culture system (2.11) is shown 

in Fig. 5.4. Growth of the control culture was stepwise for 20 hours, 

and then became exponential. This was because the second and third 

rounds of division retained some degree of synchrony from the first, 

but as the number of divisions increased, the culture became 

completely asynchronous, and exponential growth ensued.

The absolute effect of nalidixic acid on the growth rate was 

not very marked, but the growth characteristics of the swarm cell 

were altered. At 50 yg ml-1 nalidixic acid, there was some inhibition 

of growth, while at 100 yg ml 1 there was a marked inhibition after 

20 hours. A plateau was observed during the mid exponential phase of 

growth, unlike the stepwise increase seen in the control population. 

These results indicated that protein synthesis continued in 

nalidixic acid-treated cells, but some processes were affected which
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b) 25 ug ml-1 NAL

Fig. 5.3. Cell volume distribution of swarm cells Incubated

with nalidixic acid.

Aliquots from swarm cell populations which had been incubated 

phototrophically at 30°C with varying concentrations of nalidixic 

acid for 16 hours were diluted and their cell volume distribution was

determined in the Coulter counter and channelyzer (2.14).
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Fig. 5.4. Effect of nalidixic acid on the growth of homogeneous

swarm cells of R.vannlelll.

▲ o ug ml nalidixic acid

• 50 n N

o 100 " ii II

Homogeneous populations of swarm cells (1.5 x 10 /ml) were 

selected by filtration (2.12), and incubated phototrophically at 

30°C with O, 50 or lOO jig ml 1 nalidixic acid, in 1 cm cuvettes.

Hie A_. of each culture was measured at intervals for 28 hours. 540nm





altered the metabolic behaviour of the cells, and led to cell 

distortion and an abnormal growth pattern.

5.2.3. Effect of nalidixic acid on nucleic acid and protein 

synthesis during swarm cell morphogenesis and differentiation. 

Homogeneous swarm cell populations were incubated with 0, 50 or 

100 pg ml 1 nalidixic acid, and nucleic acid synthesis was measured 

by following cellular Incorporation of exogenous 3H-adenosine (2.27). 

Protein synthesis was followed by measuring the cellular incorporation 

of 33S-methionine (2.27.3). The results are presented in Fig. 5.5.

In control cultures, incorporation of radiolabel into nucleic acids 

followed the same pattern as observed earlier (4.3.2), but the onset 

of DNA synthesis occurred after 4 hours, rather than after 2 hours 

as found previously. This was probably a result of the difference 

in physiological state of the cells at the time of selection.

Although swarm cells are selected at approximately the same time in 

each experiment, some populations may be younger than others in terms 

of membrane biogenesis, for example, and so a longer period of 

maturation may elapse, after initiation of differentiation, before 

DNA synthesis commences.

At 50 pg ml nalidixic acid inhibited DNA replication, whilst 

having no effect on protein and RNA synthesis, but at 100 pg ml 3 the 

drug inhibited DNA, RNA and protein synthesis. Both RNA and protein 

synthesis were inhibited only after 3-4 hours' incubation, since 

initially incorporation of the radiolabelled precursors was the same 

as in the control culture.

5.2.4. Discussion. The treatment of homogeneous swarm cell 

populations of R.vannielli with 50 pg ml ^ nalidixic acid had three 

marked effects s-
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Fig. 5.5. Effect of nalidixic acid on nucleic acid and protein

synthesis during swarm cell morphogenesis and 

differentiation.

▲  O yg ml 1 nalidixic acid 

• 50 " " "

O lOO " " "

A homogeneous population of swarm cells was selected by fil­

tration (2.12), and incubated phototrophically at 30°C with

O, 50 or lOO ug ml 1 nalidixic acid. Nucleic acids in the
-1 3cultures were radiolabelled by incubation with 5 p Ci ml H- 

adenosine in 5 VM adenosine carrier, and proteins by 0.1 pCi ml ^ 

^S-methionine in 0.0 3mM methionine. At 30 min. intervals,

15 ml of each culture was withdrawn and split into two equal 

amounts. Incorporation in both was stopped by the addition of 

5% TCA. One sample was hydrolysed in 1 M NaOH overnight at 37°C, 

and TCA-precipitable material remaining was collected on GF/C 

filters for an estimate of incorporation into DNA. TCA- 

precipitable material in the other sample was collected on 

GF/C filters, for an estimate of incorporation into protein and 

RNA (2.27). Counts attributable to DNA were subtracted from the 

total acid-precipitable [ count, to give those counts due to

RNA.

Standard amounts of £ ^H^and C 1 were counted before and 
after mixing, to estimate the amount of 'spill-over' into each 

channel from each isotope. All counts were adjusted accordingly.
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a) DNA re p lic a t io n  was c o m p le te ly  in h ib it e d ,

b) cell division was inhibited,

and c) cell growth continued, but was distorted.

At higher concentrations (M.OO yg ml 1) the antibiotic also caused 

some Inhibition of RNA and protein synthesis, but the development of 

grossly distorted cells was still possible (Fig. 5.2). Since nalidixic 

acid inhibits both DNA and RNA synthesis, the DNA gyrase enzyme, which 

it has been shown to affect, may have a role in transcription, as well 

as in DNA replication.

Although 50 yg ml 1 nalidixic acid inhibited DNA synthesis, 

daughter cells were produced, indicating that the initiation of 

daughter cell formation was under the control of the mother cell 

genome. DNA replication was required for cell division, since cross 

walls were not formed between mother and daughter cells after nalidixic 

acid treatment. Cross wall formation was therefore under the direct 

control of the daughter cell genome.

This suggestion was made previously by Whittenbury and Dow (1977), 

based on the evidence that whatever the nutrient conditions, cross 

walls were always formed at the same distance from the daughter cell, 

the distance from cross wall to mother cell varying widely. The above 

evidence substantiates this suggestion.

The distortion seen in nalidixic acid-treated cells could be 

due to uncontrolled growth t orti growth

becomes increasingly haphazard. Thus one could postulate that growth 

is initiated by the mother cell genome, but is ultimately subject to 

control by the daughter cell genome. In the absence of a daughter 

cell genome, the daughter cell becomes distorted, due to uncontrolled 

protein synthesis.

139



Hie completion of chromosome replication is a necessary pre­

requisite for cell division in E.coli (Helmstetter and Pierucci, 

1968), C.crescentus (Degnen and Newton, 1972b) and B.palustrls 

(Westmacott and Primrose, 1977). In B.subtills however, cell 

division may continue in the absence of protein synthesis, to 

produce «nucleate cells (Donachie et al., 1971). This variation 

may reflect a fundamental difference between Gram-positive and 

Gram-negative bacteria, as it has been shown that R.vannlelll follows 

the Gram-negative pattern.

These data show that in R.vannlelll a 'dependent pathway' 

control mechanism is operating, in which chromosome replication is 

required for cell division. Since chromosome replication always 

follows stalk formation these events can be linked in a dependent 

pathway (Fig. 5.6). As yet, no information is available regarding 

the involvement of other processes, e.g. flagella assembly or 

membrane biogenesis, in this pathway or in other ancillary pathways.

Future experiments with nalidixic acid should examine the 

effect of the antibiotic at different stages in swarm cell 

morphogenesis and differentiation. Since the effects of nalidixic 

acid are reversible it would be possible to investigate the effect of 

removing the drug during the differentiation sequence. Other DNA 

synthesis inhibitors such as hydroxyurea and mitomycin C may help 

elucidate the regulation of differentiation.
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Fig. 5.6. Linkage of cell cycle events in a 'dependent pathway' 

in F.vannlelll.
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5.3. Effect of chloramphenicol on DNA replication In B^vamilelll.

5.3.1. Introduction. The observation (4.3.2) that there is a 

lag period in the swarm cell differentiation sequence, when no DNA 

replication occurs, suggests that essential requirements for 

replication are synthesized during this time. Protein synthesis may 

be essential during this period, and so the dependence of nucleic 

acid synthesis on protein synthesis was examined with the use of a 

protein synthesis inhibitor.

Many inhibitors of protein synthesis are known, but 

chloramphenicol was chosen for these experiments since a) it has a 

powerful inhibitory effect in prokaryotes, and b) its mode of action 

is well established. Chloramphenicol inhibits translation by inter­

acting with the 5Os subunit of the prokaryotic ribosome (Vasquez, 

1964). It is ineffective in the eukaryotic cell nucleus.

5.3.2. Effect of chloramphenicol on growth rate, and on 

nucleic acid and protein synthesis, in an exponential 'simplified 

cell cycle' culture of R.vannlelll. An exponentially growing culture 

was used in the initial experiments to establish that chloramphenicol 

had an effect on nucleic acid synthesis via its effect on protein 

synthesis, and also to allow an estimate of the DNA replication time 

(S period) in R.vannlelll to be made.

It had previously been shown that 15 pg ml 1 chloramphenicol 

inhibits protein synthesis in R.vannlelll immediately and completely 

(C. S. Dow, personal communication). The growth rate (as measured 

by the increase in A540njn with time) of parallel ' simplified cell 

cycle' cultures of R.vannielll was measured, and protein and nucleic 

acid synthesis in both cultures was monitored by measurement of the 

cellular uptake of ^S-methionine and ^H-adenosine respectively.

After 4 hours, chloramphenicol (15 pg ml 1) was added to one culture.



and measurements were continued.

As indicated in Fig. 5.7, when chloramphenicol was added to 

one culture, growth of that culture was halted. Incorporation of 

35S-methionine into protein ceased (Fig. 5.8a), indicating that 

protein synthesis had been completely inhibited. In the control 

culture, both parameters continued to increase exponentially.

The effect of chloramphenicol on nucleic acid synthesis is 

shown in Fig. 5.8 (b) and (c), RNA synthesis continuing for 

1-2 hours before inhibition was observed. Incorporation of 

3H-adenosine into DNA continued for 1 hour after the addition of 

the antibiotic, and then levelled off, indicating that DNA replication 

was able to continue for 1 hour in the presence of chloramphenicol, 

but then ceased.

This result suggested that lack of protein synthesis inhibited 

the initiation of DNA replication, but did not affect the ongoing 

rounds of replication. These were completed, allowing one to estimate 

that the length of DNA replication in R.vannlelll was approximately 

1 hour.

5.3.3. Effect of L-threo chloramphenicol on protein and DNA 

synthesis in an exponential 'simplified cell cycle1 culture. The 

indirect effect of chloramphenicol on DNA synthesis demonstrated above 

could possibly be due, not to the inhibition of protein synthesis, but 

to some other inhibitory effect chloramphenicol might have on membrane 

function. This has been demonstrated in plants, where the photosynthetic 

apparatus was affected, and may also be the case in photosynthetic 

bacteria.

One could explain the results in 5.3.2. by postulating that the 

observed inhibition of DNA replication was due to the alteration of
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Fig. 5.7. Effect of chloramphenicol on the growth rate of a 

•simplified cell cycle’ culture of R.vannielli

• 15 yg ml 1 chloramphenicol added at hour 4

O no chloramphenicol added

Two parallel early-exponential cultures <A5 4 0nm“°-5> were 

incubated phototrophically at 30°C. At regular intervals the 

*540nm °* ®ach culture was measured. After 4 hours incubation, 

15 jig ml * chloramphenicol was added to one of the cultures,

540nmand the measurement of A, from both was continued.
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Tig. 5.8. Effect of chloramphenicol on nucleic acid and

protein synthesis In a 'simplified cell cycle' 

culture of R.vannlelli

• 15 jig ml * chloramphenicol added at hour 4

O no chloramphenicol added

Four parallel early-exponential cultures (A5 4 0nm=0-5) 

were incubated phototrophically at 30°C, two in the presence

of a) 5 jjCi ml  ̂^H-adenosine and 5ji M adenosine, and two in
-1 35the presence of b) 0.1 yCi ml S-methionlne and 0.03 mM 

methionine, to radiolabel nucleic acids and proteins, respect­

ively. Samples (a - 2 ml, b - 1 ml) were withdrawn at regular 

intervals, and incorporation was stopped by the addition of 

5« TCA. Sample a) was split into two, and one was hydrolysed 

in M NaOH overnight at 37°C prior to 10* TCA-precipitation 

onto GF/C filters, the second portion was 10* TCA-precipitated 

Immediately onto GF/C filters. Counts attributable to DNA were 

subtracted from the total to give those due to RNA.

Sample b) was 10* TCA-precipitated onto GF/C filters to 

measure ^’’s -incorporation into protein.

After 4 hours incubation, 15 vg ml 1 chloramphenicol was 
added to two cultures, one from a) and one from b), and sampling

at intervals was resumed.





membrane systems which perhaps changed or prevented the DNA- 

membrane attachment which is necessary for replication. This 

possibility was examined by the use of L-threo chloramphenicol. 

Inhibition of protein synthesis is stereo-specific, and only the 

D-threo isomer is active (Vasquez, 1979). Therefore, the L-threo 

isomer, although affecting membranes in the same way as the 

D-isomer, would not affect protein synthesis.

The experiment described in 5.3.2. was repeated with L-threo

chloramphenicol and the results are shown in Fig. 5.9. Only

p ro te in  and DNA s y n t h e s is  were m o n ito re d . In c o rp o ra t io n  o f

^ ^ E-m e th ion ine  and ^H-adenosine in t o  p ro t e in  and DNA re s p e c t iv e ly

was similar in the control culture and the L-threo chloramphenicol-

treated culture. There was little difference in the final Ac___540nm
of both cultures. Consequently the effects on DNA replication 

described in 5.3.2. can be attributed to the inhibition of protein 

synthesis by chloramphenicol, rather than to any effect on membrane 

transport.

5.3.4. Effect of chloramphenicol on DNA replication during 

swarm cell morphogenesis and differentiation. The idea that ongoing 

rounds of replication are unaffected by chloramphenicol was tested 

by adding the antibiotic at different times during the DNA replication 

cycle. This was done by adding chloramphenicol at specific times 

during the differentiation sequence of homogeneous swarm cell 

populations, since the time of initiation of DNA synthesis has been 

located (4.5).

The e f f e c t  o f  c h lo ra m p h e n ic o l a d d it io n  im m e d ia te ly  b e fo re  

in i t ia t io n  o f  re p l ic a t io n ,  and d u r in g  e lo n g a tio n  o f  the  DNA s t ra n d s ,  

was in v e s t ig a te d ,  the e xp e rim e n ta l p rocedure b e ing  e s s e n t ia l ly  the



Fig. 5.9. Effect of L-threo chloramphenicol on protein and 

DNA synthesis in the 'simplified cell cycle' 

expression of R.vannlelll

• 15 yg ml 3 L-threo chloramphenicol added

at hour 4

O no chloramphenicol added

The experimental procedure in this experiment was the same 

as in Fig. 5.8., except that the culture used was in 

exponential phase (A5 4 0nnl'''2 -0) • 103 0.4 yCi ml 1 35S-methionine 
was used to radiolabel proteins. RNA synthesis was not measured. 

After 4 hours, 15 yg ml 1 L-threo chloramphenicol was added to 

two of the cultures, and sampling at intervals from all cultures 

was resumed.
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same as for the exponential culture, except that a larger sample 

size was used. Protein synthesis in the swarm cell was completely 

inhibited by 15 yg ml * chloramphenicol.

Fig. 5.10. shows that when the antibiotic was added 1*5 hr. 

after selection, that is, before the initiation of replication, no 

DMA synthesis took place. However, when chloramphenicol was added 

later, at hour 3 or 4, DNA synthesis continued for about 1 hour before 

stopping.

Thus, once DNA replication had been initiated, it continued 

until the end of that round of synthesis in the presence of 

chloramphenicol. No further rounds of replication could be initiated, 

and consequently incorporation levelled off. These results show that 

protein synthesis was required for the initiation but not for the 

continuation of DNA replication in R.vannlelll.

5.3.5. Discussion. Use of the specific protein synthesis 

inhibitor chloramphenicol has demonstrated that chromosome replication 

in R.vannlelll has an obligate requirement for protein synthesis.

Once initiation has occurred, completion of DNA replication proceeds 

in the absence of protein synthesis.

It was possible, from the experiments in 5.3.2, to make an 

estimate of the duration of the DNA replication time, i.e. the 

S phase of the cell cycle. Since the round of replication just 

initiated when chloramphenicol was added, finished last, the S period 

was estimated to be approximately 60 min. This was a longer time than 

the corresponding period in E.coll (40 min.) as determined by the 

Helmstetter technique (Cooper and Helmstetter, 1968), but this was to 

be expected since the duration of the cell cycle in R.vannlelll is 

much longer than that in E.coll.
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Fig. 5.10. Effect of chloramphenicol on DNA replication during

swarm cell morphogenesis and differentiation.

O no chloramphenicol added

• 15 yg ml ^ chloramphenicol added at 1.5 hours

A  " " " 3 hours

A  " " * 4 hours

A homogeneous population of swarm cells was selected by 

filtration (2.12) and split into 4 smaller cultures. Each was 

incubated phototrophically at 30°C in the presence of 5 yCi ml 

^H-adenosine and 5 yM adenosine. At regular intervals 5 ml 

samples were withdrawn, and incorporation was stopped by the 

addition of 5% TCA. After hydrolysis in 1 M NaOH overnight 

at 37°C, 10% TCA-preclpitable material remaining was collected 

on GF/C filters. These were washed, dried and counted.

15 yg ml 1 chloramphenicol was added to three of the 

cultures at the times indicated above, and sampling was con­

tinued.
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The requirement for protein synthesis in the initiation of

replication during swarm cell morphogenesis and differentiation 

has been located temporally between the loss of flagellae and the 

completion of stalk development (Fig. 5.11). It should be possible 

to detect specific 'initiation proteins' by polyacrylamide gel 

electrophoresis and autoradiography of proteins from different 

stages of swarm cell differentiation. Although preliminary work 

has shown detectable differences in protein patterns (Fig. 1.19»

Dow and France, unpublished observations), no 'initiation proteins' 

have yet been identified.

In C.crescentus, Olsey and Newton (1978) have identified 

a protein synthesis requirement for the initiation of DNA synthesis, 

and have also located a separate temperature-sensitive gene product 

requirement. They find that both of these are necessary for DNA 

replication in both cellular expressions of the bacterium. Protein 

synthesis is required for DNA replication in other bacteria (Lark, 

1969), and in yeast (Hereford and Hartwell, 1973).

It has been suggested that protein synthesis is required for 

the termination of replication (Marunouchi and Messer, 1973), although 

later data do not substantiate this (Loehr and Hanawalt, 1977» 1.3.4).

The results presented here do not suggest a requirement for protein 

synthesis in the termination of replication, although it has not been 

demonstrated directly that the chromosome was completely replicated 

in chloramphenicol-treated cells.
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6.1. Introduction

This chapter is concerned with the development of a genetic 

exchange system in R.vannlelll, to allow fine structure gene 

mapping, and in the long term, the isolation of particular genes 

and regions of the chromosome of Interest. It became clear that 

genetic analysis of the R.vannlelll gencme was crucial to an 

investigation of cellular morphogenesis and differentiation.

The genetics of R.vannlelil had not been thoroughly investigated 

by previous workers. To date, no virulent or temperate phage, 

specific for R.vannlelll has been isolated (C. S. Dow, personal 

communication) . Genetic mapping by transduction analysis is therefore 

not feasible. The possibility of genetic trims formation in R.vannlelll 

has no£ yet been examined, but in the Rhodosplrillaceae as a group, 

transformation has not been demonstrated (Saunders, 1978). Gene 

transfer mediated by the Gene Transfer Agent (GTA) has however been 

reported for R.capsulata (Marrs, 1974).

In plasmid-harbouring Rhodospirillaceae (e.g. P.sphaeroldes) , 

genetic conjugation through native plasmids has not been shown, 

although promiscuous plasmids of the 'P' incompatibility (IncP) 

group may promote conjugation (Sistrom, 1977» Miller and Kaplan,

1978). In R.vannlelll, although no native plasmids have been found 

(3.6), it may be possible to use the IncP plasmids in the development 

of a genetic exchange system.

The multiple drug resistance, IncP plasmid R.68*45 (a derivative 

of RP4), isolated by Haas and Holloway (1976) promotes gene transfer 

between species, and also between genera (Martinez and Clarke, 1975» 

Sistrom, 1977). The plasmid integrates at multiple sites in the 

chromosome, and so cannot be used for conventional marker mapping.
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However, RP4-prime plasmids, containing fragments of E.coli DNA

inserted in vitro, have been constructed, and these promote polarized 

chromosome transfer, perhaps due to the region of hcmology between 

the plasmid and the chromosome (Barth, 1979» Juillot and Boistard,

1979). Conventional gene mapping is then possible.

The transfer of R.68-45 from E.coli to R.vannlelll was attempted 

with the aim of developing a genetic transfer system which would allow 

detailed analysis of the genome. The regions of the genome coding for 

nitrogen fixation or parts of the photosynthetic pathway and the genes 

involved in morphogenesis and differentiation, could be identified by 

this system, and then investigated in detail.

6.2. The occurrence of spontaneous antibiotic-resistant mutants in 

R.vannielll

Throughout all this work, R.vannielll expressing the 'simplified

cell cycle' was used since cell counts obtained with this cell type were

more accurate than with microcolonies of cells. The R.68-45 plasmid

confers resistance to ampicillin (lOO yg ml , tetracycline (10 yg ml 1)

and kanamycin (40 yg ml *), and so initially the rate of occurrence of

spontaneous resistance of R.vannielll to these antibiotics was tested.

An R.vannielii culture was grown to the late logarithmic phase

^*540nm ^ ceH  count by Coulter counter analysis was found to be
S6 x lo cells ml ). Serial dilutions of the culture were spread onto 

plates containing i) PM alone, ii) PM + ampicillin (100 yg ml 1), 

ill) PM + tetracycline (10 yg ml-1), and iv) PM + kanamycin (40 yg ml 1). 

No colonies appeared on any of the plates containing antibiotic after an

incubation period of 8 days, whereas on PM alone, M.OO colonies grew
“ 6 8 “ 1 a t th e  lO  d ilu t io n ,  c o n firm in g  th a t th e re  were 'V-IO c e lls  m l in  the

Initial c u ltu re . C o n se q ue ntly th e  fre q u e n c y o f sp onta neous re s is ta n c e
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to any one of the antibiotics was less than 10 .̂
Polydiscs showed that R.vannlelll was resistant to a low 

concentration of clindamycin and trimethoprim, and F.coll was 

sensitive to trimethoprim but resistant to clindamycin. A more 

precise experiment was undertaken to test the trimethoprim 

resistance of both bacteria. This showed that F.coll was sufficiently 

resistant to trimethoprim, at the concentration at which R.vannlelll 

was resistant, to prevent the use of trimethoprim as a counter­

selection against F.coll in conjugation experiments.

6.3. Isolation of antibiotic-resistant mutants of

6.3.1. Selection. Selection of an antibiotic-resistant mutant
8 9was achieved by spreading a dense culture of R.vannlelll (10 -10 

cells) onto PM agar plates containing the particular antibiotic.

Assuming that the mutation occurs with a frequency of 10 6 or lower, 

mutamts should occur a few times on the plates with the highest cell 

density. The antibiotics used were nalidixic acid, rifampicin and 

streptomycin, over a concentration range of lo, 50 and 10O yg ml-1.

Serial dilutions of R.vannlelll (5 x 10^° cells ml were spread onto 

the antibiotic plates, and duplicate plates were incubated 

anaerobically in the light (phototrophically) or aerobically in the 

dark (chemoheterotrophically). The results are shown in Table 6.1.

No mutants arose on any of the plates incubated chemoheterotrophically, 

after an incubation of 8 days. The mutants obtained on phototrophically- 

lncubated plates were maintained on selective agar plates. E.coll 

containing R.68-45 showed no spontaneous resistance to streptomycin 

at 50 yg ml 1, so the streptomycin-resistant mutant of R.vannlelll 

became the mutant of choice for conjugation experiments. The other 

mutants which were isolated may prove useful for later studies.
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Table 6.1 Selection of antibiotic resistant mutants of

R.vannlelll in phototrophic culture

Antibiotic Colony number at each dilution Mutation
concentration lO"1 10“2 lo-^ frequency

rifampicin >100 6 - 1.2 x 10
lO pg ml-1

nalidixic acid > lOO ^60
lO yg ml-1

1.2 x 10

streptomycin >100 17 - 3.5 x lO
lO Vg ml-*-

streptomycin 
50 Vg ml-*

24 1 2 x 10

Original cell number « 5 x 10^° cells ml ^

No mutants were detected which were resistant to rifampicin and 

nalidixic acid at 50 and lOO Vg ml 1, or streptomycin at lOO yg ml 1.
A dense culture (5 x lO10 cells ml 1) of the 'simplified cell 

cycle' expression, was serially diluted and plated onto PM agar plates 

containing each antibiotic, and incubated phototrophically (results 

above). Plates incubated chemoheterotrpphically failed to develop 

distinct colonies. After 7 days' incubation the plates were scored 

for the appearance of antibiotic-resistant colonies, ttiese were 

restreaked onto selective plates, and finally grown in liquid culture.
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6.3.2. Mutagenesis. R.vannielll was treated with N-methyl- 

n -nltro-N-nltrosoguanidlne (NTG) to Increase the frequency of

mutation, using the method described by fViUcr ani Kopl«* (1978).
8 —1A culture containing 2 x 10 cells ml was incubated with 

100 yg ml ^ NTG for 20 min. at 3C°C. After washing, the cells were 

serially diluted, spread onto selective plates, and Incubated 

phototrophically for 8 days. No colonies arose on any of the 

plates. It is possible that the conditions of Incubation with NTG, 

while satisfactory for R .sphaeroldes, were lethal for R.vannielll. 

Optimisation of the conditions for mutagenesis of R.vannielll could 

have been explored, but since mutants had been obtained by selection, 

this approach was not pursued.

6.4. Transfer of R.68.45 from E. *££iL to R .vannlel.il (wild type)
p

and R.vannielll str

Initial conjugation experiments were done using wild type 

R.vannielll since the streptomycin-resistant mutant had not been 

isolated at that time. The strain E.coll C met (r .68-45^ was used 

throughout the experiments. The literature records several procedures 

for bacterial conjugation. These include liquid mating (Miller and 

Kaplan, 1978), mating on solid media (Sistrom, 1977), patch mating 

on solid media (Tucker and Pemberton, 1979b) and filtration onto a 

filter followed by incubation on solid media (Fly, 1979). In this 

investigation the efficiencies of liquid and solid media matings 

were compared, and various modifications to the solid media mating 

technique were devised.

6.4.1. Liquid mating. In an initial conjugation in liquid

culture, E.coll and R.vannielll cells were grown until the cell density
8 —1of both cultures reached lo cells ml . The cell volume distribution
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of R.vannlelll shows the predominance of two cell types: the motile

swarm cell and the double cell (Fig. 6.1). Hie cells were then
9 -1harvested by centrifugation, washed and resuspended to lo cells ml 

Equivalent amounts of each species were mixed and incubated for 

5 hours at 30°C without shaking. Portions of the conjugation mixture 

were incubated phototrophically and chemoheterotrophically. Cultures 

were then serially diluted, plated onto non-selective PM medium and 

incubated for 18 hours, before the plates were overlaid with agar 

containing ampicillin (IOC yg ml ^). After incubation for 4 days,

examination of the plates revealed the growth of red colonies at
-1 -2 -310 and 10 dilutions, but none at lO . The growth was spread

evenly over the plate rather than being in distinct colonies.

Moreover, growth was directed into the agar, away from the surface,

perhaps to maintain an anaerobic environment. Growth from these

plates was streaked onto PM plus ampicillin (lOO yg ml *) plates.

Restreaked colonies from the anaerobic set of matings showed no

growth after 4 days incubation on the selective plates. Three of

the four aerobic matings showed R.vannlelll growth as well as some

residual E.coll growth.

Restreaked R.vannlelll transcipient colonies were tested for 

resistance to the non-selected antibiotics by plating on PM plus 

kanamycin or tetracycline. N4ne of the colonies showed resistance 

to kanamycin or tetracycline, even though ampicillin resistance was 

maintained. Pure colonies of the R.vannlelll ex conjugante were 

difficult to obtain since there was often contamination with residual 

E.coll. However, repeated restreaking onto PM plus ampicillin plates 

was successful in producing pure cultures.

This liquid mating experiment showed that transfer of R.68*45 

to R.vannlelli did occur, but it was not possible to quantitate the

158



a) E.coll

b) R.vannlelli 'simplified cell cycle'

Fig. 6.1. Cell volume distribution of E.coli and R.vannlelii 

'simplified cell cycle' cells used in conjugation 

experiments.
8 —1After growth to lo cells ml , cell cultures were diluted in 

'Isoton' and analysed in the Coulter counter and channelyser (2.14).



a) E.coli

b) R.vannielll 'simplified cell cycle'

Fig. 6.1. Cell volume distribution of E.coli and R.vannlelii 

'simplified cell cycle' cells used in conjugation 

experiments.
8After growth to 10 cells ml , cell cultures were diluted in 

'Isoton' and analysed in the Coulter counter and channelyzer (2.14).



frequency of transfer. Aerobic mating was more efficient than 

anaerobic, and kanamycin and tetracycline resistances were not 

expressed in ampicillin-resistant exconjugants of F.vannielil.

This last point merits further investigation.

A second liquid conjugation experiment showed that equivalent 

numbers of donor and recipient cells promoted more efficient transfer 

than did either a or rat*-° donor to recipient cell 

(Table 6.2). A further experiment in which kanamycin resistance was 

used as the selected marker, failed to detect any R.vannlelll ex­

conjugants, again suggesting that kanamycin resistance may not be 

expressed. The possibility that exconjugant R.vannlelll becomes 

resistant to lower concentrations of antibiotic than E.coll has not 

yet been tested.

In order to test whether the whole of plasmid R.68-45, or just 

a part containing the ampicillln resistance gene was transferred to 

R.vannlelll, a back-transfer experiment from R.vannlelll [presumed 

R.68-45J to E.coll HB101 was designed. Conjugation was attempted in 

liquid medium, and equivalent and — cone. R.vannlelll cells were 

used. Since E.coll HB101 carries chromosomal resistance to 

streptomycin, streptomycin resistance could be used as a counter 

selection against R.vannielll. Table 6.3. shows that transfer of 

R.68-45 from R.vannlelll to E.coll occurred at a higher frequency 

than transfer from E.coll to R.vannlelll. The aerobic mating was 

slightly more efficient, but not significantly so. A V l O  donor to 

recipient ratio increased the frequency of marker transfer in contrast 

to what was found for transfer in the reverse direction. Transfer 

of the complete plasmid occurred on average in 47% of the ex­

conjugants carrying ampiclllin resistance, implying that the plasmid
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Table 6.2 Effect of donor cell number on the efficiency of

plasmid transfer

Initial donor cell 
concn * (cells ml- )̂

Frequency of selected marker 
transfer per donor cell

1.7 x lO9

1.7 x lO8

1.7 x 107

Recipient cell concentration

2.05 x lO 

1.3 x lo“5

7.0 x lO-5 

2.4 x 109 cells ml

1 ml of both donor and recipient cells were mixed and Incubated 

aerobically at 30°C for 5 hours. After recovery in PM medium for 

5 hours,serial dilutions were plated onto selective media 

(PM + lOO jig ml 1 ampicillin) , and the plates were incubated 

phototrophically for 5 days.
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Table 6.3 Efficiency of back transfer of R.68.45 from R.vannlelil

to E.coll HB101 str

Mating
mixture

Frequency of phenotype per donor cell
_R R , R R __R Ramp str kan ,tet , amp ,str

A
N
A
E
R
0
B
I
C

equivalent cell 
numbers

1
lo donor cell cone.

5.5 x 10

3.8 x 10

3.5 x 10

8.8 x 10

A equivalent cell
E numbers
R
0

lO donor cell cone.

8.8 x IO

5.1 x 10

6.4 x 10

1.6 x 10
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may fragment on transfer. R.vannlelll can maintain the intact plasmid

but fails to express kanamycin and tetracycline resistance. 

fl»rt ividtacfc woJ' SGwjhf for the ability of R.vannlelll to harbour an

intact R.68-45 plasmid Vy the demonstration that plasmid DNA isolated 

from both E.coll £r .68.453 and R.vannlelll ampR could be detected on 

a 0.8% agarose gel (Fig. 6.2). The R.vannielli plasmid band is very 

faint and slightly above that of E.coll, but fcoHv .XfaclOS sV»o
: nicking of the plasmid. Further purification of the plasmid was 

unsuccessful, and so there is not conclusive evidence that the whole 

of R.68-45 was transferred into R.vannlelll cells.

6.4.2. Mating on a solid medium. Initially, the solid mating

technique described by Sistrom (1977) was attempted. Donor and
9 -1recipient cells were mixed at a density of lo ml , and 20 yl 

aliquots were spotted onto PM agar plates. After incubation (either 

phototrophically or chemoheterotrophically) at 30°C for 5 hours, the 

cells were harvested in phosphate buffer (2.2), allowed to recover in 

PM media for 8 hours, and spread on PM plus amplcillin (10O yg ml *) 

plates. After 8 days' incubation no red exconjugants were found on 

the plates. Yellowed growth of R.vannlelll was observed, but when 

this was restreaked onto selective plates, the cells failed to grow 

well. Consequently this method of conjugation could not be used for 

R.vannlelil. This could be because conjugation did not occur, or 

because of technical difficulties such as the inefficiency of cell 

harvesting.

The difficulty in ensuring R.vannielli exconjugants were free 

of residual E.coli contamination highlighted the usefulness of 

R.vannlelll mutants carrying a chromosomal antibiotic resistance 

which could be used in counter-selection against E.coll. Other
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because of technical difficulties such as the inefficiency of cell 

harvesting.

Hie difficulty in ensuring R.vannielii exconjugants were free 
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3 2 1

Fig. 6.2. Gel electrophoresis of plasmid DNA from E.coliand 

and R.vannielll after conjugation experiments

Plasmid DNA was isolated frost E.coll C r .68.45^ and 
£

R.vannielll amp cells by the cleared lysate procedure (2.25.1).

DNA was electrpphoresed in 0.8% (w/v) agarose at 35 v overnight.

1. E.coll C r .68.45~)
H2. R.vannielll Amp

3. X DNA restricted with BcoRl and Hlndlll

R. Wave. k a r\o+r 111« +«p o f N»e gal.
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possible ways of eliminating E.coll are treatment with OftVibVoi'ic.s

in conditions which allow the growth of E.coll but not R.vannlelli, 

or the use of an E.coil-specific virulent phage which does not 

affect R.vannlelll. A streptomycin resistant mutant of R.vannlelll 

(resistant to 50 pg ml 1 streptomycin) was obtained by selection 

(6.3.1), and was used in all further conjugation experiments.

Since the mating on solid medium had been unsuccessful with 

wild type R.vannlelli, the technique was modified for conjugation 

experiments with the streptomycin resistant mutant. In the method 

of Slstrom (1977), 20 pi aliquots had been spotted onto a 9 cm 

petri dish, and cells were harvested in buffer after the incubation 

period. Since a large volume (1 ml) of buffer was required to 

recover the cells from the dish, the initial dilution factor was 

already 50. Moreover this method did not allow consistent recovery 

of the cells from the dish.

Two alternative methods were devised

a) PM agar was cast into Bijou bottles (5 ml), to provide a 

horizontal surface,

b) PM agar was cast in 3 cm petri dishes.

In both these cases 20 pi aliquots of conjugation mixture was 

applied. Cells were harvested in 200 pi of buffer, which ensured 

only a 10 fold dilution, and recovery of the cells was more efficient 

since the total surface area of agar to be harvested was less than in 

the larger petri dish. The same cell cultures were allowed to con­

jugate in liquid medium so that the efficiencies of the methods 

could be compared. After a 5 hour incubation, followed by a recovery 

period, serial dilutions of the exconjugants were spread onto PM 

plus ampicillin (lOO pg ml )̂ plates. The results are shown in
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Table 6.4. The small petri dish method proved to be the more 

efficient by a factor of lOO over the Bijou bottle technique.

Although this particular liquid mating was not very successful, 

when the solid mating on a petri dish was compared to previous 

matings in liquid, they were still marginally more efficient.

Another important factor was the ease of manipulations with the 

small petri dish compared with the Bijou bottle. This latter 

method was less efficient due to the poor recovery of cells in the 

buffer. The method of choice in all future solid medium conjugation 

experiments is the one employing the small petri dish.

6.5. The effect of the length of conjugation time on the frequency 

of transfer of amplclllln resistance from E.coll^ [r .68»45~} to 

R.vannlelii strR

The mating was done aerobically on solid medium in a small 

petri dish, and a slightly different method was used for assessing 

the results. To minimize the number of plates required, 20 yl of 

each serial dilution were spotted onto a single selective plate 

(PM plus ampicillin lOO pg ml ^), so that the whole concentration 

range of one test was on one plate. After incubation at 30°C under 

phototrophic conditions for 4-7 days, microcolonies in each spot 

were counted. This method did not prove to be efficient for 

R.vannlelll. since often the cells were grouped in a thick ring 

around the edge of the spot, and were difficult to count. The 

results are shown in Table 6.5. A 10 hour conjugation time seems 

to be the most efficient since the frequency of marker transfer 

decreases on either side of this time. However a large, significant 

difference in efficiency between the various conjugation times was 

not apparent. Further experiments are necessary to investigate the 

least conjugation time required, since fasuUi obtained here, are

vary variab le .
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Table 6.4. Efficiency of selected marker transfer under 

different mating regimes.

Mating 
method

liquid medium

solid medium 
(Bijou bottle)

solid medium 
(3 cm petrl dish)

Initial concentration E.coll 

" " R.vannlelli

Equivalent volumes of donor and recipient cells were mixed. Liquid 

matings were incubated aerobically at 30°C. For solid medium 

conjugation, 20 pi mating mixture was spotted onto PM agar either 

in a Bijou bottle, or in a 3 cm petri dish. These were incubated 

aerobically at 30°C. After incubation for 5 hours cells were 

harvested in 200 yl buffer, allowed to recover in PM media for 

8 hours, and serially diluted onto selective plates. Ampicillin 

resistance was the selected marker.

Frequency of selected marker 
transfer per donor cell

<1.0 x lO-5

3.2 x lO-5

3.2 x lO-3

- 6 x lO® cells ml 3

- 2.3 x 109 cells ml-1
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Table 6.5
pmarker transfer from E.coll P.68.45 to &1X.

Effect of conjugation time on the frequency of selected

Conjugation 
time (hrs.)

Frequency of marker 
transfer per donor cell

5 5 x lO

lO

20

1.86 x 10 

5 x lO-6

24 1.25 x lO

Initial concentration E.coll 

" " R.vannlelil

8 x 

2.5 x

lO8 cells ml 
8lO cells ml

Equivalent numbers of donor and recipient cells were mixed, and 

20 yl was spotted onto PM agar in a 3 cm petri dish and 

incubated aerobically at 30°C. After the conjugation time, cells 

were harvested in 200 yl buffer, allowed to recover in PM media 

for 8 hours, and serially diluted. 20 yl of each dilution was 

spotted onto a selective plate (PM plus ampicillin 100 yg ml * 

and streptomycin 50 yg ml”*’) , and microcolonies were counted 

after 4-7 days.
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Transfer of the R.68*45 (Inc P group) plasmid from E .coll to 

R.vannlelll has been clearly demonstrated, since the frequency of 

transfer of antibiotic resistance associated with the plasmid is 

too high to be explained by bacterial or plasmid mutation. Con­

sequently, conjugation offers the best opportunity for In vivo 

genetic manipulation in R,vannlelll, although chromosomal 

mobilization has not yet been demonstrated.

The initial problem associated with the elimination of E.coll 

after conjugation was effectively overcome by the use of a 

chromosomal streptomycin-resistant mutant of R.vannlelll. Aerobic 

matings were more efficient than anaerobic, perhaps because of a 

requirement for E.coll growth In conjugation. Under anaerobic 

conditions conjugation did occur, although at a reduced frequency. 

This is in contrast to the findings of Miller and Kaplan (1978), 

who showed with R.sphaeroldes that no conjugation occurred under 

phototrophic conditions. The plasmid RP4 has been transferred to 

anaerobic Bacteroldes spp (Burt and Hoods, 1976), indicating that 

E.coll can express transfer functions under anaerobic conditions.

In early experiments the liquid mating technique proved to 

be more efficient than mating on a solid medium, contrary to the 

findings of both Miller and Kaplan (1978) and Slstrom (1977), 

that in R.sphaeroides conjugation on agar was far more efficient.

In later experiments with R.vannlelil, when the solid medium method 

was modified, a marked improvement in the efficiency of conjugation 

was obtained, and this modified method should be employed in further 

experiments.

Ampicillln resistance was the only plasmid-borne marker to be

6.6. Discussion.
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expressed in R.vannielll, even although the entire plasmid had

been transfer md. Complete transfer was demonstrated by the ability

resistance«back into E.coli, although confirmation of this by the 

comigration in an agarose gel of plasmid DNA from R.vannielil 

with that from E.coli was not conclusive. The activity of 

6-lactamase (the enzyme involved in ampicillin resistance) should

has not yet been tested.

The inability of tetracycline and kanamycin resistance to be 

expressed in R.vannielii reflects seme inherent physiological 

property of the R.vannielll cell. Miller and Kaplan (1978) have 

found that R.sphaeroldes transcipients carrying RP4 did not express 

ampicillin resistance whereas they expressed and maintained tetracycline 

and kanamycin resistance. C.crescentus carrying R.68-45 expressed 

kanamycin and tetracycline resistances but whether or not plasmid- 

borne ampicillin resistance was expressed could not be determined 

since wild type C.crescentus was ampicillin resistant (Ely, 1979).

Future work with R.vannielil should be directed towards 

determining whether or not R.68-45 is able to mobilize the R.vannielll 

chromosome. To do this, chromosomal markers, usually auxotrophic 

markers, are required. Previous workers have experienced difficulty 

in isolating stable auxotrophic mutants of R.vannielll, and so at 

the present time it is not possible to test if chromosomal mobil­

ization occurs.

Since R.68-45 has multiple insertion points on the chromosome, 

its usefulness in genetic transfer experiments with R.vannielll is 

limited. However structural modifications to the plasmid may over­

come this problem. Denarie et al■ (1977) have examined the potential

of R.vannielll (r .68-453 to transfer all three plasmid-borne

wild type, but this
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for genetic analysis of incP plasmids carrying the tenperate 

bacteriophage Mu. Mu has a powerful insertion system, but un­

fortunately it has a restricted host range, being limited to the 

Enterobacteriaceae. However, if inserted into the IncP plasmids 

its host range is greatly extended. Hie insertion of RP4-Mu plasmids 

into Rhizobium and Pseudomonas has been demonstrated (Faelen et al., 1977). 

Since it has been shown that R.68*45 can be maintained in R.vannielii 

it should be possible in future genetic studies to use the RP4:Mu 

plasmid as a tool in the genetic analysis of this organism.

Another modification of incP plasmids was that of Barth (1979) 

and Juillot and Boistard (1979) which was mentioned in 6.1. They 

inserted a restriction fragment of E.coll DNA into the plasmid by 

ligation, and selected for a plasmid with the insert, which had 

lost resistance to one of the antibiotics. This recombinant plasmid 

was then transformed into E.coll and conjugated into other strains. 

Chromosomal mobilization was found to be polarized, presumably 

because of the region of homology now present between chromosome and 

plasmid. Ibis technique could be adapted to R.vannielii since 

restriction analysis of the genome has been developed alongside this 

work (Chapter 7). This technique could allow analysis of specific 

genes such as those for nitrogen fixation, and those involved in the 

control of morphogenesis and differentiation.
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7.1. Introduction

The development of a genetic system by conjugation In 

R.vannlelll is potentially useful for future genetic analysis of 

the bacterium. However, as well as traditional genetic mapping, 

new techniques are now available as a result of the recent develop­

ments of recombinant DNA construction and gene cloning (Helling 

and Lomax, 1978). Restriction endonuclease mapping has been 

successfully applied to the analysis of many genomes, particularly 

those of viral origin, e.g. SV40 (Danna et al., 1973), and more 

recently has been used to 'fingerprint' Rhlzobium mutants (Mielenz 

et al., 1979).

The construction of recombinant DNA molecules made up of the 

DNA sequence of Interest and a plasmid or phage 'vector' DNA, and 

subsequent transformation of E.coll cells (Taketo, 1972), allows 

the expression of that sequence in E.coli, and amplification of the 

gene product(s) involved (see for example Cohen, 1975). This basic 

technology has been used to great effect with both prokaryotic and 

eukaryotic gene sequences (e.g. the mammalian growth hormone gene, 

Seeburg et al., 1978), enabling both the gene in question and its 

regulation to be examined in detail.

The applicability of these methods to the study of R.vannielii 

is twofold. Hie first approach utilizes existing E.coli strains as 

cloning vehicles in which to study the expression of specific 

R.vannielii genes. This would involve the preparation of specific 

radioactive 'probes' (mRNA or cDNA of a particular sequence) with 

which to screen colonies resulting from the cloning of total DNA 

fragments from R.vannielii in E.coli. Colonies showing hybridization

with the radioactive probes would be selected, and grown in quantity



allowing the amplification of the selected sequence for studies of 

its structure and function. This method of gene analysis would be useful 

for studying the ribosomal RNA genes, nitrogen fixation genes, the genes 

for RuBP carboxylase enzyme,or flagellin protein, and the origin of 

replication. Genes of particular interest in R.vannlelll are those 

involved in the regulation of morphogenesis and differentiation, but 

the genes mentioned above are more immediately amenable to study, and 

consequently have been examined Initially.

The second possible approach is to use R.vannlelll itself as a 

cloning vehicle, and amplify specific homologous gene sequences carried 

on a plasmid or phage. This is an attractive proposition since it is 

better to study the regulation of a gene in its ' usual1 environment, 

that is, an R.vannlelll gene in R.vannlelll, rather than in F.coll.

A fundamental requirement is for a phage or plasmid vector DNA into 

which the particular gene of interest may be inserted. As mentioned 

in the introduction (1.7) and in the previous chapter, this requirement 

is difficult to fulfil at the present time, as no suitable vectors for 

R.vannlelll have been described.

The studies described in this chapter utilized the first approach 

described above, and although the work is still in its preliminary 

stages, it is anticipated that these experiments will lay the foundation 

for a more detailed genetic analysis of P.vannielli. Three specific 

regions of the genome were chosen:- the riboscmal RNA genes, the origin 

of replication, and the nitrogen fixation genes. Each of these will be 

considered individually, after a discussion on the use of restriction 

enzyme digestion in the analysis of the R.vannlalll genome.



7.2. Restriction endonuclease mapping of the R.vannlelll genome

7.2.1. Introduction. Hie discovery of restriction endonucleases 

has revolutionised molecular biology on an unprecedented scale 

(Smith, 1979) , and has led to exciting discoveries in recent years 

(Jeffreys and Flavell, 1977). Restriction endonucleases are enzymes 

which cleave double-stranded DNA at specific sites. Type I enzymes 

recognize a particular DNA seguence and cleave the DNA elsewhere, 

whereas Type II enzymes recognize and cleave at the same site, and 

so the latter have the greater potential for the manipulation of 

DNA. Restriction enzymes may recognize sequences 4 or 6 nucleotides 

in length, and within that sequence each base may be specific or 

only a purine or pyrimidine base may be required (Nathans and 

Smith, 1975).

In this study, enzymes which recognize hexanucleotide sequences 

were used, since it was likely that these would occur less frequently 

in the DNA, and hence less fragments would be generated, making 

analysis easier. Hiree enzymes only were chosen, since further 

experiments utilising the resulting DNA fragments were planned.

Hie enzymes were : -
. ia) Eco R1 which cleaves at 5 G A A T T C  3

(Old et al., 1975)
J,c) Bam El which cleaves at G G A T C C

(Roberts et al., 1977)

7.2.2. Isolation of high molecular weight DNA. Hie DNA prepared 

for restriction enzyme analysis should have a high molecular weight, 

since the presence of random breaks in DNA leads to a heterogeneous 

mixture of fragments after enzyme digestion. It is difficult to

(Hedgepeth et al., 1972)

b) Hln dill which cleaves at 5 1 A^A G C T T 3'



avoid some shearing in large-scale preparations of DNA, but 

precautions were taken to reduce this to a minimum.

The DNA was extracted from large-scale (2-5 litres) cultures 

of cells in the exponential phase of growth (fl5 40nm ^ 2.0-2.8), by 

the method described in 2.21.2., and was extensively dialysed 

against 10 mM TRIS-HC1, pH 8 containing 1 mM EDTA. The resulting 

high molecular weight DNA was difficult to redissolve, since it 

did not rehydrate readily, and often gentle resuspension overnight 

was necessary.

An estimate of the size of the DNA preparations was made on 

a 0.6%(w/v) agarose gel (Fig. 7.1). Phage lambda (X) DNA digested 

with Eco R1 and Hln dill and undigested X DNA were used as molecular 

weight markers (2.29.3). The average size of the DNA was 125 Kb, 

although some smaller fragments were also present. A more accurate 

estimate of the very high molecular weight DNA which did not enter 

the gel could be made by alkaline sucrose density-gradient centrifugation. 

This was thought to be unnecessary, since a gualitative estimate was 

sufficient.

7.2.3. Restriction endonuclease digestion of F^varmiellJ. DNA.

For all restriction enzyme assays, DNA was resuspended in 10 mM TRIS 

pH 7.4 containing 1 mM EDTA. Hie assay mixture was prepared as 

described in 2.28, with approximately 5 yg DNA per assay. Digestion 

usually proceeded overnight at 37°C, to minimize the amount of enzyme 

required, and to ensure complete digestion. Hie reaction was stopped 

by heating the sample at 65°C for 5 min., and the DNA fragments were 

separated by electrophoresis on agarose gels, alongside molecular weight 

markers (2.29.3).

A representative Eco R1 restriction of R.vannlelll DNA is shown in



Fig. 7.1. Gel electrophoresis of high molecular weight R j a a n i e U X  

DNA prepared for restriction enzyme analysis.

DNA was prepared as described in 2.21.2., and electrophoresed 

through 0.6% (w/v) agarose at 35 v overnight.

1. X DNA restricted with EcoRl and Hlndlll

2. intact X DNA 

3.-5. R.vannielll DNA
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Fig. 7.2. Gel electrophoresis of EcoRl-restrlcted R.vannielll 

DNA

R.vannielll DNA was restricted with EcoRl overnight at 

37°C (2.28), and the resulting fragments were electrophoresed 

in 1.5* (w/v) agarose at 75 v for 4 hours. A - EcoRl restriction 

fragments were used as molecular weight markers.

1. X DNA (1 yg) , undigested

2. X DNA restricted with EcoRl

3. R.vannielll DNA (2 yg), undigested

4. R.vannielll DNA (3 yg) restricted with EcoRl

5. R.vannlelli DNA (5 yg) restricted with EcoRl

6. R.vannielll DNA (3 yg) and X DNA (1 yg)

restricted with EcoRl
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Fig. 7.2. Approximately 20 clear bands were seen in the digest, 

but others were present that were indistinguishable. The molecular 

weights of some fragments were determined by comparison with the 

Eco R1 fragments of X DNA. X DNA restricted within the R.vannlelll 

DNA sample showed the 6-band pattern which is characteristic of a 

complete X digest (Thomas and Davis, 1975) , indicating that the 

R.vannlelll DNA was also completely digested.

Fig. 7.3. shows the results of a Hin dill restriction of 

R.vannlelli DNA, electrophoresed through 0.6% (w/v) agarose using 

the vertical gel system (2.29.2). The use of a vertical gel and a 

lower agarose concentration gave better resolution of the many bands 

seen in the Hln dill digestion. The major fragments in the Hln dill 

digest were assigned molecular weights (Fig. 7.3) .

An attempted Bam HI restriction of F.vannlelll DNA was 

electrophoresed in 1.5% (w/v) agarose using the horizontal gel system 

and the result is shown in Fig. 7.4. Although there was overloading of 

DNA on this gel, there was no restriction of the R.vannlelil DNA.

X DNA included in the R.vannlelli DNA restriction mixture (lane 6) 

showed the same fragments as the X control (lane 3), suggesting that 

the activity of Bam HI was not inhibited by factors in the R.vannlelll 

DNA preparation. This lack of cleavage of R.vannlelll DNA with Bam HI 

was found in 6 separate enzyme assays.

7.2.4. Conclusions. Digestion of R.vannlelll DNA with either 

Eco R1 or Hln dill gave rise to definite patterns of restriction 

fragments, although the fragments were too many in number to classify 

each individually. Nonetheless the restriction patterns were of great 

use for in vitro hybridization studies, enabling specific fragments

to be identified and later isolated for further investigation



Fig. 7.3 Gel electrophoresis of R.vannlelii DNA restricted

with Hindlll

DNA was restricted with Hindlll overnight at 37°C (2.28), 

and the resulting fragments were electrophoresed in 0.6% (w/v) 

agarose at 35 v overnight.

1. R.vannielil DNA (2 yg) restricted with Hindlll

2. " " (4 pg) "

3. X DNA (2 pg) " " "
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Fig. 7.4. Gel electrophoresis of Bam Hl-restrlcted R^vannielil^

DNA.

R.vaimlelll DNA was restricted with Bam HI overnight at 37°C 

(2.28) and the resulting fragments electrophoresed in 1.5* (w/v) 

agarose at 75 v for 4 hours.

1. X DNA (l wg)

to native R.vannielii DNA (3pg)

3. X DNA restricted with Bam HI
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Hie fact that Bam HI did not cleave P.vannlelll DNA can be 

interpreted in one of two ways. Hie first possibility is that there

are no Bam HI sites on R.vannielii DNA. Hiis seems highly unlikely
gin view of the large size of the genome (2.1 x lO daltons), and the 

enzymes' GC-rich recognition site.

An alternative explanation is that Bam HI recognition sites 

are present on the DNA, but they are modified in some way to prevent 

restriction. Hie most usual modification is méthylation of certain 

bases in the recognition seguence, protecting the DNA from restriction 

(Arber, 1974). Hiis alternative is very likely, but conclusive 

evidence of méthylation in R.vannielii DNA has not yet been obtained.
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7.3. The rlbosomal RNA genes

7.3.1. Introduction. The absence of viable mutants in the 

ribosomal RNA (rRNA) genes of E .coll made early studies of the genes 

difficult, but the development of merogenotes allowed the effects of 

gene dosage to be examined. Subsequently, rRNA became the subject of 

Intensive investigation with the advent of sophisticated DNA-RNA 

hybridization technology. The main reason for this was the fact that 

rRNA comprises more than 90% of total cellular RNA, and so large 

quantities of RNA may be prepared easily. On the other hand, most 

individual mRNA molecules represent less than 0.1% of total PNA, 

making their purification very difficult. A secondary reason for 

studying rRNA is that it provides a useful model system for the 

investigation of transcriptional control of gene function. Most 

bacterial RNA consists of two molecules which are distinguished by 

their sedimentation properties: the first is 16s rRNA (MW 0.36 X 10^ 

daltons) and the second is 23s rRNA (MW 1.1 X lO6 daltons) . Fowever, 

Marrs and Kaplan (1977) demonstrated that in R.sphaeroldes, 23s rRNA 

is a precursor to the stable 16s and 14s rRNA molecules, suggesting 

that the 23s rRNA molecule may not be required intact for ribosome 

function.

Data is already available on the rRNA genes of many organisms, 

particularly E.coll (Pace, 1973» Nomura et al., 1977). The rRNA 

genes in E.coll are present in multiple copies (Yankofsky and 

Spiegelman, 1962), this redundancy presumably having arisen to supply 

a large quantity of rRNA to rapidly-growing cells. The basic structure 

of the rRNA operon was shown to consist of

promoter - 16s rRNA gene - spacer - tRNA gene(s) - 23s rRNA gene - 

5s RNA gene - distal tRNA gene(s) (Lund et al., 1976).

The aim of the present study was to locate the specific DNA
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fragments which contained the rPNA genes in order to establish the 

distribution of these genes in the genome. The technique used was 

that developed by Southern (1975) which involves the hybridization 

of radioactive rPNA 'probes' to DNA fragments immobilized on a 

nitrocellulose filter. The method had been previously shown to be 

sensitive and accurate in detecting gene sequences in many biological

7.3.2. Preparation of radioactive 16s rPNA and 23s rPNA 

'probes'. Hybridization experiments require PNA of high specific

material. Consequently, cellular rPNA was first purified, and then

kinase (Naizels, 1976; 2.30).

One litre of 'simplified cell cycle' P.vannlelll cells were

Nucleic acids were extracted (2.21.1) , and fractionated on 5-20% (w/v) 

neutral sucrose gradients in an MSP 65 centrifuge for 6 hr. at

190,000 g (2.22). The gradients were analysed in an Isco density 

gradient fractionator, and a representative profile is shown in 

Fig. 7.5. The peak of 23s rRNA should be greater than that for 

16s rPNA if the proportions of the two rRNA's are similar in R.vannlelll 

and E.coll. This discrepancy could be due in part to breakdown of the 

23s rPNA.

Peak fractions from the gradient were pooled, and precipitated 

with 2 volumes of ethanol. Resuspended FNA was further purified by 

re-centrifugation in 5-20% (w/v) neutral sucrose gradients as described

systems.

activity (lo^ cpm yg ^), and it was found that in vivo labelling of 
32cellular RNA with P-orthophosphate failed to provide such active

labelled at the 5' end with y-^2P-ATP, using the enzyme polynucleotide

grown to an A,‘540nm of 3.5, and then harvested by centrifugation

above. The A,26Cnm profile of these gradients is shown in Fig. 7.6



Fig. 7.5. iy,e0r|||| profile of total nucleic acid from R .vannlelii

fractionated on a sucrose gradient.

Sedimentation was from left to right. Units of absorbance 

are relative to a base line of 0.1 units/ml.

Total nucleic acids were fractionated on a 5-20% neutral 

sucrose gradient in TLES buffer. (2.3.e)) , for 6 hours at

190,000 g (2.22). Fractions (0.6 ml) were collected in an 

Isco density gradient fractionator.
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Fig. 7.6 ^CCO.x. prof^ e purified 16b rRNA and 23s rRNA 

and 23s rRNA fractionated on sucrose gradients

Sedimentation was from left to right. Units of absor­

bance were relative to a base line of 0.2 units/ml.

Similar fractions from several gradients like the one 

shown in Fig. 7.5. were pooled, concentrated, and then 

purified by further fractionation on 5-20% sucrose gradients. 

Peak fractions were again pooled and concentrated.

a) Purification of 16s rRNA

b) Purification of 23s rRNA





It can be seen that the 23s rRNA peak was more contaminated with 

16s rRNA than vice versa. Peak fractions were again pooled and 

reprecipitated with ethanol.

After repeated phenol extraction and ethanol precipitation to

remove unbound ATP, the probes had a specific activity of 105 cpm pi 1,

which was suitable for hybridization.

7.3.3. Transfer of DKA fragments from agarose gels to 

nitrocellulose filters. P.vannlelll DNA Fco Rl-restriction fragments 

in an agarose gel were transferred to nitrocellulose by the method 

of Southern (1975) . Minor modifications made to the procedure are 

described in 2.29.6. The filters were baked at 80°C for 2 hours to 

ensure that the DMA was firmly bound to the nitrocellulose. Over- 

baking of filters leads to their becoming very brittle and breaking 

up on further handling. Baked filters may be stored indefinitely 

before use.

7.3.4. Hybridization of radioactive rPNA to Fco Fl-restrlctlon 

fragments of DNA. After pre-hybridization of the filter with yeast 

RNA, both rFNA probes were hybridized separately to Fco PI restriction 

fragments of R.vannlelll DNA (2.31.1). Hybridization occurred over­

night at 70°C, and after thorough washing and RNase treatment, the 

filters were air-dried and autoradiographed. The autoradiographs and 

corresponding gel are shown in Fig. 7.7.

The autoradiographs show discrete bands of radioactivity 

indicating hybridization of RNA to specific DNA fragments. The 

molecular weights of these fragments are shown in the figure. The 

hybridization pattern implies that the rFNA genes are not randomly

Both ribosomal RNAs were labelled at their 5' ends with the
32aid of the enzyme T1 polynucleotide kinase and y P-ATP (2.30).



Fig. 7.7 Location of DNA restriction fragments containing 16s

and 23s rRNA genes of R.vannlelll

EcoRl-restrlcted R.vannlelll DNA was electrophoresed in 

0.6* (w/v) agarose, and then transferred to nitrocellulose 

(2.29.6; Southern, 1975). Radioactive 16s and 23s rRNA probes 

were hybridized to the filter overnight at 70°C (2.31.1), and 

the washed filter was autoradiographed for 4 days at -70°C. 1 2 3 4

1. x DMA restricted with EcoRl and Hlndlll

2. R.vannielll DNA restricted with EcoRl

3. Autoradiograph of the hybridization of a 16s rRNA 

probe to EcoRl-restrlcted R.vannielli DNA

4. Autoradiograph of the hybridization of a 23s rRNA 

probe to EcoRl restricted R.vannielll DN A .







distributed over the entire genome, but are confined to certain 

regions. Both the 16s and 23s rRNA probes showed a most intense 

hybridization to bands of 3.23 Kb and 3.54 Kb respectively. A lower 

amount of hybridization was also seen to several other distinct 

fragments, especially with the 23s rRNA probe (Fig. 7.7).

7.3.5. Conclusions. The finding that each of the rRNA probes 

hybridized to several unique DNA restriction fragments Indicated 

that multiple copies of the rPNA genes were present in P.vannlelll 

DNA. The 16s rRNA and 23s rRNA genes may be clustered on the 

chromosome, but they must be separated by a spacer region in which 

there is an Eco R1 restriction site. This experiment gives no 

information as to how close together they actually are. The evidence 

suggests that they were not distributed randomly over the entire 

chromosome. In view of the need for coordinated transcription of the 

genes, it seems unlikely that they will be widely separated in the 

genome. Further restriction enzyme analysis, and the use of double 

enzyme digestions are necessary to order the genes on the chromosome.

The genes coding for rRNA may be identified and amplified by 

cloning in E.coll. This would be done by ligating restriction fragments 

of R.vannlelli DNA to a plasmid cloning vector and transforming F.coll. 

Clones carrying the rRNA gene sequence would be selected by colony 

hybridization to radioactive rRNA probes made as described above 

(Kennerley et al., 1977). Further studies would then be directed

towards the organisation of transcription of the rRNA genes



7.4. The origin of replication.

7.4.1. Introduction. As the origin of replication is an 

important marker, it would be useful to locate this on the F.vannlelll 

chromosome. It is not possible at the present time to map the origin 

with respect to other genetic markers as in E.coll (Hiraga, 1976), 

but an alternative method developed for E.coll by Marsh and Vtorcel 

(1977) was adapted for use with R.vannlelll. These workers were

able to locate a specific 38 Kb DNA fragment which contained the 

origin of replication. Pulse-labelled DMA from a synchronous cell 

culture was digested with Eco PI, and the resulting fragments were 

separated on an agarose gel. After autoradiography the fragments 

into which label was first incorporated were visualized. A similar 

experiment was undertaken in P.vannlelll, with a major modification 

being in the choice of radioisotope. As discussed earlier (4.2) 

(methyl-3E) -thymidine is not incorporated into R.vannlelll DNA and 

so alternative radioisotopes were used.

7.4.2. Attempts to locate the origin of replication. The 

following experimental approach to locate the origin was largely 

unsuccessful. However the experimental design is sound, and the 

experiments are described here, with possible reasons for their 

failure.

Since 3H-adenosine was incorporated efficiently into DNA

(4.2) it was used in the initial experiments. A homogeneous 

population of swarm cells was selected (2.12) and aliquots were 

pulse-labelled for lo min. periods with 3H-adenoslne at intervals 

following the loss of flagellae from the swarm cells (2.27). This 

ensured that certain cells would be pulse-labelled at the onset of 

DNA synthesis. DNA was extracted from the cells, restricted with



Eco R1 and the resulting fragments were electrophoresed on a 

vertical 0.6% (w/v) agarose gel (2.29.2) . DNA fragments were visible 

on the gel after staining, and the gel was fluorographed (Bonner and 

Laskey, 1974; 2.29.5), and then autoradiographed after pre-exposing

the X-ray film to 1 ms light (Laskey and Mills, 1975) . However, 

several autoradiographs were developed, and the whole experiment was 

repeated on three occasions, but no radioactivity was detected.

Possible reasons for this were that there was insufficient radioactivity 

present, i.e. the pulse label time was too short to allow sufficient 

label to enter the pool, or the method of fluorography was unsuccessful.

Consequently, to avoid the use of fluorography, labelling the
32origin of replication was attempted with P-orthophosphate. The 

experimental procedure was the same as described above except that 

the pulse label time was 15 min., and the swarm cells were concentrated 

by centrifugation immediately after selection, to increase the specific 

activity of phosphate in the exogenous phosphate pool. Autoradiography 

of the resulting gel produced only one clear band, but this was a 

high molecular weight fragment labelled with the last pulse, that is 

towards the end of DMA replication. This result is difficult to 

interpret, and was not repeatable. A problem which may arise is that 

the pulse label time was too short to allow equilibration of the
32exogenous and endogenous phosphate pools, and so Incorporation of P 

into DNA was low. It was not feasible to lower the exogenous phosphate 

concentration, since the swarm cells fail to differentiate in low 

phosphate concentrations, and consequently fail to replicate the DNA.

To circumvent the problem of the low specific activity of 

endogenous phosphate pools, a homogeneous swarm cell population was 

harvested by centrifugation, resuspended in phosphate-free medium, and



-1 32incubated in the dark for 1 hour with 2 yCi ml P-orthophosphate,

to pre-label the endogenous phosphate pool. After this period the

cells were transferred to the light and phosphate buffer containing 
32a further 1 mCi P-orthophosphate was added. The swarm cells 

developed normally, and samples were taken at regular Intervals after 

the loss of flagellae. Subsequent manipulations were as described 

above and the autoradiograph showed that the DNA was successfully 

labelled, but no clear bands were distinguishable, and most fragments 

were labelled to some extent. In this experiment, since the radiolabel 

was present throughout, the pulse-labelling effect was lost. If many 

more samples were to be taken durlna the period when DNA replication 

was initiated, it may be possible to locate the first fragments to 

be labelled.

7.4.3. Conclusions. Hie results of this series of experiments 

are very Inconclusive, and suggest that the experimental protocol 

needs further modification before meaningful data can be obtained.

Marsh and Warcel (1977) had more success, perhaps because they were 

able to use greater numbers of synchronous cells, and the radioisotope 

they used radiolabelled DNA specifically,ensuring that DNA of high 

specific activity was extracted.

Hie number of swarm cells used in the experiment could be increased, 

but this would necessitate using very much more isotope. The swarm 

cells may not be concentrated more than 10 fold, since they begin to 

show abnormal development. Hie use of ^H-adenosine and an improved 

fluorography technique appear to offer the best prospects for further 

research in this area.

An alternative way of Identifying the origin of replication 

would be to insert random R.vannielii DNA fragments into a vector
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plasmid (e.g. pBR322 containing an auxotrophic marker) and use the 

hybrid plasmid to transform E.coli. Plasmids containing the origin

should show a higher transformation efficiency, and in this way the 

fragment containing the replication origin may be located and 

analyzed further.
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7.5. The nitrogen fixation genes.

7.5.1. Introduction. In the absence of fixed nitrogen, 

purple non-sulphur bacteria are able to fix atmospheric nitrogen. 

Nitrogen fixation is of great Interest and importance to the 

world economy. Hie purple non-sulphur bacteria and the blue-green 

algae offer a unique opportunity for the study of both photosynthesis 

and nitrogen fixation in relatively simple organisms. Consequently 

both the biochemistry and genetics of nitrogen fixation have been 

studied intensively in recent years (Dalton and Mortenson, 1972; 

Stewart, 1973; Brill, 1975). Nitrogen fixation in F.vannlelll 

was investigated for several reasons. At the start of this work 

difficulty was experienced in radloactively labelling DNA for kinetic 

experiments, and so the feasibility of density labelling the DNA 

with the heavy isotope of nitrogen (*5N) was explored. Analytical 

ultracentrifugation of labelled DNA (Meselson and Stahl, 1958) 

could be used to detect density changes in the sample, and hence 

indicate when DNA replication was initiated. The extent to which 

R.vannlelll cells were able to fix atmospheric nitrogen in the presence 

of a small amount of fixed 15N nitrogen was relevant to this study.

The analytical work was halted when suitable radioisotopes for the 

labelling of DNA were identified (4.2) .

The development of a genetic system for R.vannlelll by the use 

of the plasmid R.68.45 (Chapter 6) facilitates the transfer and 

isolation of the nitrogen fixation (nlf) genes, enabling molecular 

studies on their expression to be undertaken. The Gene Transfer 

Agent of R.capsulata (Marrs, 1974) was shown to mobilize nlf genes 

accompanied by hydrogenase activity, indicating that the two 

functions are closely linked (Nall et al., 1975b), since the ’GTA'



can only mobilize short pieces of the chromosome.

If the level of nitrogenase activity is dependent upon 

nutrient conditions, then nitrogen fixation may be an inducible 

system, in which nitrogenase mPNA(s) are synthesized when required. 

If this is the case, the system will be useful in the investigation 

of transcriptional control and the regulation of mRNA synthesis.

Nitrogen fixation genes from rlehsiella pneumoniae have been 

cloned (Riedel et al., 1977) along with a his D+ allele in a 

pMB9 vector, and used to transform E.coli. Since nif+ clones were 

difficult to detect in recombinants, the his allele, adjacent to 

nlf, was included to facilitate selection of nif+ colonies. This 

procedure led to the demonstration that two competing controlling 

elements for nlf transcription are operating in K,pneumoniae.

With the development of a genetic system for R.vannielll, 

similar experiments should be possible to examine the expression of 

the nlf genes in the bacterium. Hie inducihillty of the nitrogenase 

enzyme system was investigated with this aim in mind, and the 

preliminary data obtained are discussed.

7.5.2. Effect of fixed nitrogen (ammonia) concentration on

nitrogen fixation. A series of experiments was designed to examine

the effect on nitrogen fixation of reducing the ammonium chloride

(NH.C1) concentration in the culture medium. Since ^ N  in the form 4
of 15NH4 d  I s  very expensive, it was necessary to keep the con­

centration of 15NH.C1 at the minimum possible without reducing the 4
growth rate.

The growth rate and nitrogenase activity of cultures at 

different concentrations of NH^Cl, and grown under either argon or 

nitrogen gas, were examined. Growth rates were measured over an 

8-day period (Pig. 7.8) . With the usual NF^Cl concentration



Fig. 7.8. Effect of NH Ĉl concentration on the growth rate 

of R.vannlelll

▲ O jjg ml 1 NH^Cl

o 50 •» W
A 200 n «
• 500 n ••

R.vannielil (heterogeneous culture) was incubated with

varying concentrations of NH4C1, and incubated phototrophically

at 30°C either a) under nitrogen, or b) under argon. Growth

(A..._) was measured with time (days).540nm



b)under Argon



(500 yg ml *), growth was exponential until day 6 and then began 

to level off, whereas at lower concentrations growth was inhibited 

earlier, indicating that NH4+ ions were limiting. There was little 

significant growth in an argon-flushed culture with no fixed nitrogen, 

but the corresponding culture under nitrogen showed a growth rate 

which was almost indistinguishable from that of the 'normal' culture. 

Consequently in this culture the nitrogen fixation genes were fully 

induced.

The nitrogenase activity in each culture was measured at 

day 5, by subjecting a sub-culture to the acetylene reduction test 

(Bergersen, 1970; 2.18). Fig. 7.9. shows a comparison of the rates

of acetylene reduction (i.e. nitrogenase activity) in each of the 

cultures. It was apparent that at low concentrations of fixed nitrogen, 

nitrogenase activity was increased. Nitrogenase activity was highest 

in the absence of anmonia and in the presence of nitrogen, but some 

nitrogenase activity was detected in the argon-flushed culture.

An absolute estimate of nitrogenase activity (Table 7.4) was 

obtained by relating the rate of acetylene reduction to the amount 

of protein per culture, as estimated by the method of Lowry et al.

(1951) (2.16). Absolute nitrogenase activity was highest in the 

argon-flushed culture with no fixed nitrogen, since growth was most 

inhibited, and hence the cell number was low. Cells in this culture 

showed longer cellular filaments than usual, suggesting that stalk 

extension may be part of a mechanism for scavenging NH4+ ions. 

Nitrogenase activity was least in those cultures with 500 yg ml * 

fixed nitrogen, but it was not completely absent.

The activity of nitrogenase was dependent on NH4+ ion 

concentration (Fig. 7.10). When the NH4+ was reduced, nitrogenase 

activity increased exponentially.
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Fig. 7.9. Effect of NH.Cl concentration on the rate of -----------------------------------  4  .............

ethylene production in the nltrogenase assay by 

R.vannielii.

A O lig ml ^ NH^d

O 50 It II

A 200 If II

• 500 II It

Nitrogenase activity in R.vannielii incubated photo- 

trophically at 30°C with varying concentrations of NH4C1 and 

under a) nitrogen or b) argon, was measured by the acetylene 

reduction test (2.18) at day 5. Data were assessed by com­

parison of the rates of ethylene production, as measured by the 

increase in ethylene peak height.



a) under Nitrogen

b) under Argon
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Fig. 7.10. Effect of NH^Cl concentration on nltrogenase activity 

in^R^vannie^^

Absolute nitrogenase activity in R.vannlelil under different 

NH^+ regimes was compared by relating the amount of ethylene 

produced in the acetylene reduction test to the protein concentration 

of each culture.
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7.5.3. Conclusions and potential. Initial experiments 

on the regulation of nitrogen fixation in R.vannlelll yielded 

promising results. A reduction in the concentration of NH^Cl in 

the culture medium caused a reduction in the growth rate of 

F.vannlelll cells, and an exponential Increase in the activity of 

nitrogenase, although nitrogenase activity was not completely 

missing in cultures grown at the 'usual1 concentration (500 yg ml 1

NH Cl).4
Nitrogenase activity was not regulated by substrate con­

centration, since its activity was detectable in the absence of 

nitrogen, in the argon-flushed cultures. On the contrary, 

nitrogenase activity was regulated by amnonlum ion concentration 

in the culture medium.

Increased nitrogenase activity in conditions where fixed 

nitrogen was low or absent, indicated that an inducible system 

was present. Consequently the nitrogenase enzyme(s) have great 

potential for studies of mRNA regulation and transcriptional control. 

The plasmid R.68-45 could be used to mobilize the nlf genes from the 

wild type to complement nlf mutants of R.vannlelil. This would 

facilitate isolation of the nlf genes for further characterization

and studies on their expression



7.6. Conclusion.

Although the results presented in this chapter are 

preliminary and are far from complete, they serve to convey the 

Idea that the recently developed hybridization and recombinant 

DNA techniques can be applied to understanding the regulatory 

mechanisms in organisms without a comprehensive biochemical and 

genetic background. These methods will be increasingly used in 

the study of morphogenesis and differentiation in both R.vannlelll 

and other prokaryotic organisms. The future potential of these 

studies will be discussed in more detail in the final chapter.
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The aim of this thesis was to carry out a substantial

investigation into the molecular biology of R.vannlelll, in view 

of its potential for studies of microbial morphogenesis and 

differentiation. Particular attention was paid to the metabolism 

of DNA during the life cycle of the organism. The work described 

falls into two distinct categories. The first examines the control 

of cellular morphogenesis and differentiation at the molecular 

level in R.vannlelll, and the second is an analysis of the genetics 

of the organism.

An initial study of the physical characteristics of R.vannlelll 

DNA was made. The data described in Chapter 3 showed that DNA from 

all R.vannlelil cellular expressions was similar in its melting and 

renaturation characteristics, and the lack of any significant 

difference in the frequency of repeated sequences implied that no 

permanent large scale gene amplification or other major alteration 

of the genome, occurred during cellular morphogenesis and 

differentiation. Short inverted repeat sequences, the only class 

of repeated DNA sequences found in R.vannlelli, were common to all 

three cell types tested, so they are not implicated in any control 

mechanism. A recent report (Nisen et al., 1979) Indicates that 

similar sequences in C.crescentus move around the genome during the 

cell cycle. In view of this it would be interesting to examine the 

distribution of the Inverted repeats in the P.vannielll genome.

The major part of the work was centred on one particular part 

of the R.vannielil life cycle, namely swarm cell morphogenesis and 

differentiation. Differential gene expression must occur during 

this developmental sequence since different classes of protein appear 

and disappear during the period (Fig. 1J9) . Regulation of gene



expression can occur at both the transcriptional and translational 

level, and studies are in progress to examine these processes in 

R.vannlelli. The work in this thesis aimed to examine the inter­

relationship between DNA replication and other recognizable events 

or 'landmarks' in the cell cycle.

Radiolabelling experiments and specific metabolic inhibitors 

were used to investigate the relationship between DNA replication 

and other biochemical and morphological events in the obligate 

differentiation of swarm cell to mother cell. Treatment of swarm 

cells with nalidixic acid Indicated a 'dependent pathway' of cell 

cycle events, consisting of stalk synthesis, genome replication and 

cell division. This is apparent because cell division was absent, 

and stalk formation in the second cell cycle was much reduced when 

nalidixic acid was used to inhibit DNA replication. It may not be 

concluded that stalk synthesis is a prerequisite for DNA replication, 

since this has not been shown. However, this is probably the case 

since development of the stalk is necessary for the correct 

partitioning of the newly replicated gencoe into the daughter cell.

DNA replication was a prerequisite for cell separation. Cell division 

itself was controlled by the daughter cell genome, as it did not 

occur in nalidixic acid-treated cells. This conclusion is supported 

by the finding that the 'plug' between cells always forms at a 

constant distance frcm the daughter cell, but its distance from the 

mother cell may vary.

Since a new daughter cell develops in the absence of DNA 

replication, the mother cell genome must remain transcriptionally 

active under nalidixic acid inhibition. In some cases the daughter 

cell is grossly distorted suggesting that under normal circumstances
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the daughter cell genome exerts control over the pattern of protein 

synthesis. Since there is no data available about the half-lives of 

mRNA populations in R.vannlelli cells, inferences concerning the origin 

of message for further cell development in nalidixic acid-treated 

cultures cannot be made.

The use of chloramphenicol as an inhibitor of protein synthesis 

enabled the relationship between protein synthesis and DNA replication 

to be examined. Labelling experiments (4.3) had shown that DNA 

replication in the uninhibited swarm cell was not initiated until 

near completion of stalk synthesis. There was a 'lag' or maturation 

period during which the flagellae were shed, and stalk formation began. 

Protein and RNA synthesis was detected during this period. The use 

of chloramphenicol demonstrated that the initiation of DNA replication 

had an absolute requirement for protein synthesis, whilst completion 

of ongoing rounds of replication continued in the absence of protein 

synthesis. This implies that the synthesis of specific initiation 

protein(s) is required prior to the onset of replication. Potential 

candidates for such proteins may be identified on SDS-polyacrylamide 

gels of proteins synthesized in cells at various stages in the 

differentiation sequence (Fig. 1.19). The putative 'initiation 

proteins' may be necessary for the formation of a replication complex 

on which faithful DNA replication can take place. There may also be 

a requirement for the synthesis of structural proteins involved in 

the stalk formation which is necessary prior to DNA replication.

The studies with chloramphenicol suggest a mechanism by which 

newly replicated DNA is transported into the daughter cell at the end 

of the stalk. One explanation of this process (Whittenbury and Dow, 

1977), supposes that the growth point of the stalk and the point of



attachment of DNA to the membrane are one and the same, and that 

DNA replication occurs at the attachment point. Thus, as the stalk 

is synthesized, DNA replication occurs and one DNA molecule is 

'dragged' into the stalk, and ultimately into the daughter cell.

The other molecule remains in the mother cell (Fig. 8.1a).

However, the finding that DNA replication does not commence 

until some time after initiation of stalk synthesis suggests an 

alternative model. The DNA attachment site may be at the growth 

point of the stalk, but replication is delayed until after the stalk 

has reached a critical size, or another prerequisite biochemical 

event has been completed. As replication occurs, the daughter 

chromosome is segregated into the new cell, and the mother cell 

chromosome detaches from the membrane (Fig. 8.1.b). Reattachment 

of the genome at another site on the membrane is necessary prior to 

the development of a second stalk. Although DNA has never been 

visualized within the stalk, it may now be possible with electron 

microscope autoradiography. The purification of bacterial nucleoids 

(Evinger and Agabian, 1977) in which cells are gently lysed in order 

to isolate the chromosome along with associated cell membrane proteins, 

may indicate whether or not the chromosome remains attached to the 

cell membrane throughout the cell cycle. Another more exacting 

test of the two models described above would be to examine DNA 

replication in temperature-sensitive mutants, which at the restrictive 

temperature are able to make a stalk, but are unable to bud a daughter 

cell. Such mutants are not available at the present time.

In parallel with the biochemical studies, genetic analysis of 

R.vannlelll was started, as it is only with an understanding of the 

genetics of the organism that a detailed analysis of the control of
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Fig. 8.1. Models of daughter cell genome segregation In

RjVannie^^

In model a) stalk formation and DNA replication are 

concurrent. Division of the growth point and replicon 

segregation occur simultaneously, the mother cell genome 

remaining in the stalk.

In model b) DNA replication commences towards the end 

of stalk formation. The DNA attachment point need not necessarily 

be at the growth point of the daughter cell.

Upon replicon separation, the mother cell genome remains in

the mother cell



MODEL a).
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DNA replication
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MODEL b ) ■
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DNA re p lic a t io n
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differentiation can be undertaken. Prior to this investigation very 

little was known about the genetics of R.vannlelii. Bacteriophages 

specific for R.vannlelil had not been isolated, and neither 

conjugation nor the presence of pili had been demonstrated. Attempts 

to detect a native plasmid in R.vannielii were, surprisingly, 

unsuccessful in view of the ubiquity of plasmids among bacteria.

The evidence seems to suggest that genetic exchange is a rare event 

in R.vannielii, yet the genome Itself contains inverted repeat sequences 

which may act as foci for recombination, or points of excission and 

integration for transposons.

It is apparent from the data presented in Chapter 6 that genetic 

exchange can occur between R.vannielii and other bacteria by the 

demonstration of the transfer of the plasmid R.68.45 frcm E.coll to 

R.vannielii, other members of the Rhodospirillaceae have been shown 

to transfer and maintain plasmids of the same incompatibility group.

The use of R.68.45 offers a new and premising approach to the genetic 

analysis of R.vannielii, once stable auxotrophic mutants are obtained. 

Complex genetic systems such as those controlling morphogenesis and 

differentiation in R.vannielii should be amenable to study by using 

R.68.45 and related plasmids.

In addition to conjugation studies, the recently developed 

techniques of molecular genetics were applied to an analysis of the 

R.vannielii genome (Chapter 7). These methods have been used in­

creasingly for the analysis of a wide range of problems in biology 

with dramatic success. Restriction enzyme cleavage of R.vannielii DNA 

allowed the reduction of a large genome to smaller, manageable pieces 

more amenable to study. The enzyme Bam HI did not cleave the genome 

at all, suggesting that all the sites for the enzyme in the genome are



methylated, although methylation of the DNA has not been directly 

demonstrated. The reduction of the genome to smaller segments 

allows the identification of specific coding regions, exemplified 

by the location of the ribosomal FNA cistrons (7.3). Further 

analysis of the ribosomal FNA genes would involve the purification 

and cloning of those fragments which hybridized to the ribosomal 

RNA probe. Although the FNA cistrons may be located by hybridization 

of rFNA directly to the recombinant colonies, for other less well- 

characterized genes this is not the case. However, it should be 

possible in the future to isolate by methods similar to that 

described above, genes such as those involved in nitrogen fixation 

or photosynthesis (with the use of mutants) and, more interestingly, 

those genes involved in the control of morphogenesis and differentiation. 

The initial investigation into the physiology of nitrogen fixation in 

H.vannlelll (7.5) was directed towards this end.

Attempts to locate the origin of replication on a specific 

restriction fragment were unsuccessful. Perhaps the specific activity 

of the labelled fragment was below the level of detection. Alternatively, 

synchronization of the initiation of replication itself may not have 

been sufficient to permit the preferential labelling of the origin.

Since the E.coll replication origin has now been cloned, it may be 

possible to locate the R.vannlelll origin by hybridization to the 

E.coll origin if the two origins show sane homology.

Although this work has been concerned primarily with the obligate 

differentiation of the swarm cell to the mother cell, it is apparent 

that the rest of the R.vannlelli life cycle has interesting possibilities 

and potential for the study of morphogenesis and differentiation. The 

regulatory mechanisms implicit in the nature of swarm cell production 

during exponential growth may also be amenable to Investigation.



The mechanism of microcolony production introduces the phenomenon 

of ageing in a bacterial system since a mother cell produces a 

limited number of daughter cells before reproduction ceases. In 

this instance a transcriptional switch may be involved, leading to 

(perhaps) an irreversible ’turn-off' of the replication machinery. 

Alternatively, ageing mother cell DNA may have accumulated too many 

errors, or be altered in some way such as in the pattern of methylatlon, 

and consequently not function in further rounds of replication.

Merny of the problems discussed above are not easy to approach 

by conventional means at the present time. Nevertheless, the recent 

advances in molecular biology now make possible direct experimental 

approaches to these problems, although new questions concerning 

morphogenesis and differentiation must be formulated. A major 

obstacle to the progress of research in this field is the absence of 

mutants of all kinds. A wide range of auxotrophic mutants is needed 

for the preparation of a genetic map. This may be obtained by using 

the conjugation system described in Chapter 6.

The isolation of temperature-sensitive, cell cycle and motility 

mutants is an essential next step in the elucidation of the control 

mechanisms in morphogenesis and differentiation. These would be of 

use in any future application of recombinant DNA technology in this 

area. Consequently, it is imperative that problems in the mutagenesis 

of H.vannielll be circumvented, so that many mutants may be isolated 

and characterized.

In summary, this work has illuminated the relationship between 

DNA replication and other biochemical and morphological events in the 

cell cycle, and progress has been made towards a genetic analysis of 

the organism. These approaches have been complementary in furthering 

the knowledge of this fascinating area of microbial morphogenesis and 

differentiation.



REFERENCES

ADAMS, D.G. and CARR, N.G. (1979). The control of heterocyst

development and spacing in Anabaena cyllndrlca. Ill Int. Symp. 

Photosynthetic Prokaryotes. Ed. J.M. Nichols, Oxford.

ARMSTRONG, R.L. and SUEOKA, N. (1968). Phase transitions in RNA 

synthesis during germination of Bacillus subtills spores.

Proc. Natl. Acad. Sci. U.S.A., 59, 153-160.

BARTH, P.T. (1979). Plasmid RP4, with E.coll DNA inserted in vitro, 

mediates chromosomal transfer. Plasmid, 2_, 130-136.
BARZILAI, R. and THOMAS, Jr. C.A. (1970). Spontaneous renaturation 

of newly synthesized bacteriophage T7 DNA. J. Mol. Biol., 51,

145-155.

BENDIS, I.K. and SHAPIRO, L. (1973). DNA dependent RNA polymerase 

of Caulobacter crescentus. J. Bacterlol., 115, 848-857.

BERG, D. and CHAMBERLIN, M. (1970). Physical studies on RNA polymerase 

from E.coll B. Biochemistry, 9_, 5055-5064.
BERGERSEN, F.J. (1970). The quantitative relationship between nitrogen 

fixation and the acetylene-reduction assay. Aust. J. Biol. Sci.,

23, 1015-1025.

BERNHARD, K., SCHREMPF, H. and GOEBEL, W. (1978). Bacteriocin

and antibiotic resistance plasmids in Bacillus cereus and Bacillus 

subtllis. J. Bacterlol., 133, 897-903.

BERNLOHR, R.W., HADDOX, M.K. and GOLDBERG, N.D. (1974). Cyclic guanosine- 

3 5 ' -monophosphate in E.coli and B.lichenlformls. J. Biol. Chem.,

249, 4329-4331.

BERTRAND, K., KORN, L., LEE, F., PLATT, T., SQUIRES, C.L., SQUIRES, C. 

and YANOFSKY, C. (1975). New features of the regulation of the 

tryptophan operon. Science, 189, 22-26.



BIRDSELL, D.C., HATHAWAY, G.M. and RUTBERG, L. (1969). Characterization 

of temperate Bacillus bacteriophage ‘f 105. J. Virol., 4_, 264-270.

BODMER, W.F• and GANESAN, A.T. (1964). Biochemical and genetic studies 

of integration and recombination in Bacillus subtilis transformation. 

Genetics, 50, 717-738.

BODMER, W.F. and GREFTER, S. (1965). Uptake and incorporation of 

thymine, thymidine,uracil and 5-fluorouracll into the nucleic acids 

of Bacillus subtilis. J. Bacteriol., 89, 1011-1014.

BOLIVAR, F., RODRIGUEZ, R.L., GREENE, P.J. , BETLACH, M.C., HEYNEKER, H.L. , 

BOYER, H.W., CROSA, J.H. and FALKOW, S. (1977). Construction and 

characterization of new cloning vehicles. II. A multipurpose 

cloning system. Gene, 2, 95-113.
BONNER, W.M. and LASKEY, R.A. (1974). A film detection method for 

trltiumrlabelled proteins and nucleic acids in polyacrylamide gels.

Eur. J. Biochem., 46, 83-88.

BREATHNACH, R., MANDEL, J.L. and CHAMBON, P. (1977). Ovalbumin gene is 

split in chicken DNA. Nature, 270, 314-319.

BREHM, S.P., LeHEGARAT, F. and HOCH, J.A. (1975). DNA binding proteins 

in vegetative Bacillus subtilis; alterations caused by stage 0 

sporulation mutants. J. Bacteriol., 124, 977-984.

BREVET, J. and SONENSHEIN, A.L. (1972). Template specificity of RNA

polymerase in asporogenous mutants of Bacillus subtills. J . Bacteriol., 

112, 1270-1274.

BRILL, W.J. (1975). Regulation and genetics of bacterial nitrogen 

fixation. Ann. Rev. Microbiol., 29, 109-129.

BRITTEN, R.J. and KOHNE, D.E. (1968). Repeated sequences in DNA.

Science, 161, 529-540.

213



BRITTEN, R.J., GRAHAM, D.E. and NEUFELD, B.R. (1974), Analysis of repeating 

DNA sequences by reassociation. Methods in Enzymol., 29, 363-406.

BROWN, D.D. and GURDON, J.B. (1964). Absence of rRNA synthesis in the 

anucleolate mutant of Xenopus laevls. Proc. Natl. Acad. Sci. U.S.A.,

51, 139-146.

BRUTLAG, D., SC HERMAN, R. and KORNBERG, A. (1971). A possible role for 

RNA polymerase in the initiation of M13 DNA synthesis. Proc. Natl.

Acad. Sci. U.S.A., 68, 2826-2829.

BUDMAN, D.R. and PARDEE, A.B. (1967). Thymidine and thymine incorporation 

into DNA: inhibition and repression by uridine of thymidine phosphorylase 

of Escherichia coll. J. Bacteriol., 9£, 1546-1550.

BURT, S.J. and WOODS, D.R. (1976). R factor transfer to obligate 

anaerobes from E. coli. J. Gen. Microbiol., 93, 405-409.

BURTON, K. (1956). A study of the conditions and mechanism of the 

diphenylamine reaction for the colorimetric estimation of DNA.

Biochemical J., 62, 315-323.

CHAMBLISS, G.H. and LEGAULT-DEMARE, L. (1975). Template discrimination 

by the initiation factor fraction from the ribosomes of sporulating 

Bacillus subtills cells. Spores VI, 314-317. Ed. Gerhardt, P.,

Costilow, R.N., Sadoff, H.L.

CHEUNG, K.K. and NEWTON, A. (1977). Patterns of protein synthesis during 

development in Caulobacter crescentus. Dev. Biol., 56, 417-425.

CHILTON, M.D. and HALL, B. (1968). Transforming activity in single 

stranded DNA from Bacillus subtills. J. Mol. Biol., 34, 439-451.

CIARROCCHI, G., ATTOLINI, C., COBIANCHI, F., RIVA, S. and FALASCHI, A.

(1977). Modulation of DNA polymerase III level during the life cycle 

of Bacillus subtills. J. Bacteriol., 131, 776-783.

CLARK, D.J. (1968). The regulation of DNA replication and cell division in 

E.coll B/r. Cold Spring Harbor Symp. Quant. Biol., 33, 823-838.



CLAUSEN, T. (1968). Measurement of P activity in a liquid

scintillation counter without the use of scintillator. Anal. Biochem., 

22, 70-73.

CLAYTON, R.K. (1966). The bacterial photosynthetic reaction centre. 

Brookhaven Symp. Biol., 19, 62

CLEWELL, D.B. and HELINSKI, D.R. (1969). Supercoiled circular DNA— 

protein complex in E.coll: purification and induced conversion to 

an open circular DNA form. Proc. Natl. Acad. Sci. U.S.A., 62, 

1159-1166.

COHEN, S.N. (1975). The manipulation of genes. Scientific American,

233, 24-33.

CONTI, S.F. and HIRSCH, P. (1965). Biology of the budding bacteria.

III. Fine structure of Rhodomlcroblum and Hyphomlcroblum spp 

J. Bacteriol., 89, 503-512.

COOPER, S. and HELMSTETTER, C.E. (1968). Chromosome replication and the 

division cycle of E.coll B/r. J. Mol. Biol., 31, 519-540.

COOTE, J.G., WOOD, D.A. and MENDELSTAM, J. (1973). Lethal effect of 

rifampicin in Bacillus subtills as a complicating factor in the 

assessment of the lifetime of mRNA. Biochem. J., 134, 263-270.

CRICK, F. (1979). Split genes and RNA splicing. Science, 204,

264-271.

CURRIER, T.C. and NESTER, E.W. (1976). Isolation of covalently closed 

circular DNA of high molecular weight from bacteria. Anal. Biochem., 

76, 431-441.

DALTON, H. and MORTENSON, L.E. (1972). Dinitrogen (Nj) fixation (with a 

biochemical emphasis). Bact. Rev., 36, 231-260.

DANNA, K.J., SACK, Jr. G.B. and NATHANS, D. (1973). Studies of simian 

virus 40 DNA. VII. A cleavage map of the SV40 genome. J. Mol. Biol., 

78, 363-376.

32

21b



DARNELL, J.E., JELINEK, H.R. and MOLLOY, G.R. (1974). Biogenesis of 

mRNA: genetic regulation in mammalian cells. Science, 181,

1215-1221.

DAVIDOFF-ABELSON, R. and DUBNAU, D. (1971). Fate of transforming DNA 

after uptake by competent Bacillus subtills; failure of donor 

DNA to replicate in a recombination-deficient recipient. Proc. Natl. 

Acad. Sci. U.S.A., 6£, 1070-1074.

DAVIDSON, E.H., HOUGH, B.R., AMENSON, C.S. and BRITTEN, R.J. (1973). 

General interspersion of repetitive with non-repetltive elements in 

the DNA of Xenopus. J. Mol. Biol., 77, 1-23.

DAVIS, R.W., SIMON, M. and DAVIDSON, N. (1971). Electron microscopy

heteroduplex methods for mapping regions of base sequence homology in 

nucleic acids. Methods in Enzymol., 21, 413-428.

DEAN, D.H., PERKINS, J.B., ZARLEY, C.D. (1978). Potential temperate

bacteriophage molecular vehicle for Bacillus subtills. In'Spore VII' 

ed. Chambliss, G. and Vary, J.C. pp 144-149.

DE CROMBRUGGHE, B., CHEN, B., ANDERSON, W., NISSLEY, P., GOTTESMAN, M., 

PAST AN, I. and PERLMAN, R. (1971). Lac DNA, RNA polymerase and cyclic 

AMP receptor protein, cyclic AMP, lac repressor and inducer are the 

essential elements for controlled lac transcription. Nature New Biol., 

231, 139-142.

DEGNEN, S.T. and NEWTON, A. (1972a). Dependence of cell division on the 

completion of chromosome replication in Caulobacter crescentus.

J. Bacteriol., H O , 852-856.

DEGNEN, S.T. and NEWTON, A. (1972b). Chromosome replication during 

development in Caulobacter crescentus. J. Mol. Biol., 64, 671-680.



DENAIRE, J., ROSENBERG, C., BERGERON, B., BOUCHER, C., MICHEL, M. 

and BARATE DE BERTAMIO, M. (1979). Potential of RP4-MU plasmids 

for In vivo genetic engineering of gram-negative bacteria, 

in 'DNA insertion elements, plasmids and episomes'.

Ed. C.S.H.L., pp 507-520.

DICIOCCIO, R.A. and STRAUSS, N. (1973). Patterns of transcription in 

Bacillus subtills during sporulation. J. Mol. Biol., 77, 325-336.

DOI, R.H. (1977a). Role of RNA polymerase in gene selection in 

prokaryotes. Bacteriol. Revs., 41, 568-594.

DOI, R.H. (1977b). Genetic control of sporulation. Ann. Rev. Genet.,

11, 29-48.

DONACHIE, H.D., MARTIN, D.T.M. and BEGG, K.J. (1971). Independence of 

cell division and DNA replication in Bacillus subtills. Nature New 

Biol., 231, 274-276.

DONACHIE, H.D., JONES, N.C. and TEATHER, R.R. (1973). The bacterial cell 

cycle. In 'Microbial differentiation', Symp. Soc. Gen. Microbiol.,

23, 9-44. Ed. J. M. Ashworth and J.E. Smith, Camb. Uni. Press.

DOUDNEY, C.O. (1978). Rlfampicin and chloramphenicol effects on DNA 

replication in thymine-prestarved E .coll B/r WP2 thy tr».

Biochim. Biophys. Acta, 521, 111-116.

DOW, C.S. (1972). Morphology and physiology of morphologically unusual 

bacteria. Ph.D. thesis, University of Warwick.

DOW, C.S. and BENNETT, J. (1978). Control of cellular expression in 

Rhodomlcroblum vannlelil. Proc. Soc. Gen. Microbiol., 5, (2), 47.

DOW, C.S. and FRANCE, A.D. (1980). Simplified vegetative cell cycle of 

Rhodomlcroblum vannielil. J. Gen. Microbiol., 117, 47-55^

DUCHOW, E. and DOUGLAS, H.C. (1949). Rhodomlcroblum v a n n ie l i l , a new 

p h o to h e te ro tro p h lc  b a c te riu m . J. B a c t e r io l . ,  58, 409-416.

217



DUIE, P., KAMINSKI, M. and SZULMAJSTER, J. (1974). Immunological studies 

on the sigma subunit of the RNA polymerase from vegetative and 

sporulating cells of Bacillus subtills. FEBS Letts., 48, 214-217.

ELY, B. (1979). Transfer of drug resistance factors to the dimorphic 

bacterium Caulobacter crescentus. Genetics, 91, 371-380.

ELY, B. and JOHNSON, R.C. (1977). Generalized transduction in Caulobacter 

crescentus. Genetics, 87, 391-399.

ENSIGN, J.C. and WOLFE, R.S. (1964). Nutritional control of morphogenesis 

in Arthrobacter. J. Bacteriol., 87, 924-932.

ERLICH, S.D. (1977). Replication and expression of plasmids from

Staphylococcus aureus in Bacillus subtills. Proc. Natl. Acad. Scl.

U.S.A., T±> 1680-1682.
ERLICH, S.D., JUPP, S., NIAUDET, B. and GOZE, A. (1978). Bacillus 

subtilis as a host for DNA cloning. In 'Genetic Engineering'.

Eds. Boyer, H.W. and Nicosia, S. pp 25-32. Elsevier/North 

Holland Biomedical Press.

EVANS, E.H., FOULDS, I. and CARR, N.G. (1976). Environmental 

conditions and morphological variation in the blue-green alga 

Chlorogloea frltschil. j. Gen. Microbiol., 92, 147-155.

EVINGER, M. and AGABIAN, N. (1977). Envelope-associated nucleoid 

from Caulobacter crescentus stalked and swarmer cells.

J. Bacteriol., 132, 294-301.

EVINGER, M. and AGABIAN, N. (1979). Caulobacter crescentus nucleoid: 

analysis of sedimentation behaviour and protein composition during 

the cell cycle. Proc. Natl. Acad. Sci. U.S.A., 76, 175-178.



FAELEN, M., TOUSSAINT, A., VAN MONTAGU, M., VAN DER ELSACKER, S.,

ENGLER, G. and SCHELL, J. (1977) . In vivo genetic engineering:

The Mu-mediated transposition of chromosomal DNA segments onto 

transmissible plasmids. In 'DNA insertion elements, plasmids and 

episomes'. Eds. Bukari, A.I., Shapiro, J.A. and Adhya, S.L. 

pp 521-530. Cold Spring Harbor Laboratory.

FRANCE, A.D. (1978). Morphogenesis and differentiation in Rhodomlcroblum. 

Ph.D. thesis. University of Warwick.

FUKUDA, R. and DOI, R.H. (1977). Two polypeptides associated with the 

RNA polymerase core of Bacillus subtills during sporulation.

J. Bacteriol., 129, 422-432.

GELLERT, M., O'DEA, M.H., ITOH, T. and TOMIZAWA, J. (1976). Novobiocin 

and coumermycln inhibit DNA supercoiling catalysed by DNA gyrase.

Proc. Nat. Acad. Sci. U.S.A., 73, 4474-4478.

GELLERT, M. , MIZUUCHI, K. , O'DEA, M.H., ITOH, T. and TOMIZAWA, J. (1977). 

Nalidixic acid resistance : a second genetic character involved in 

DNA gyrase activity. Proc. Natl. Acad. Sci. U.S.A., 74, 4772-4776.

GELVIN, S.B. and HOWELL, S.H. (1979). Small repeated sequences in the 

chloroplast genome of Chlamydomonas relnhardll. Mol. Gen. Genet.,

173, 315-322.

GOSS, K.B. and COZZARELLI, N.R. (1973). Further genetic and

enzymological characterization of the three Bacillus subtills DNA 

polymerases. J. Biol. Chem., 248, 7688-7700.

GOSS, W.A., DEITZ, W.H. and COOK, T.M. (1965). Mechanism of action 

of nalidixic acid on E .coll. II.. Inhibition of DNA synthesis.

J. Bacteriol., 8£, 1068-1074.

HAAS, D. and HOLLOWAY, B.W. (1976). R factor variants with enhanced 

sex factor activity in Pseudomonas aeruginosa. Mol. Gen. Genet.,



HARTWELL, L.H., CULOTTI, J., PRINGLE, J.R. and REID, B.J. (1974).

Genetic control of the cell division cycle in yeast. Science,

183, 46-51.

HEDGEPETH, J., GOODMAN, H.M. and BOYER, H.W. (1972). DNA nucleotide 

sequence restricted by the R1 endonuclease. Proc. Natl. Acad. Sei. 

Ü.S.A., 69, 3448-3452.

HELLING, R.B. and LOMAX, M.I. (1978). The molecular cloning of genes - 

general procedures, in 'Genetic Engineering'. pp 1-30,

C.R.C. Press Inc.

HELMSTETTER, C.E. and PIERUCCI, 0. (1968). Cell division during

inhibition of DNA synthesis in E .coli. J. Bacteriol., 95, 1627-1633. 

HERDMAN, M. and CARR, N.G. (1971). Recombination in Anacystis nidulans 

mediated by an extracellular DNA/RNA complex. J. Gen. Microbiol.,

68, xiv-xv.

HEREFORD, L.M. and HARTWELL, L.H. (1973). Role of protein synthesis in 

the replication of yeast DNA. Nature New Biol., 244, 129-131.

HIRAGA, S. (1976). Novel F prime factors able to replicate in E.coli 

Hfr strains. Proc. Natl. Acad. Sei. U.S.A., 73, 198-202.

HIRSCH, P. (1974). Genus Hyphomlcroblum. Stutzer and Hartleb 1898.

In Bergey's manual of determinative bacteriology 8th ed.

Eds. Buchanan, E. and Gibbons, N.E. The Williams and Wilkins Co., 

Baltimore.

HOCH, J.A. (1974). Genetics of bacterial sporulation. Adv. Genet.,

18, 69-98.

HONJO, M., SHIBANO, Y. and KOMANO, T. (1976). Changes in DNA polymerase 

activities and synthesis of DNA during sporulation of Bacillus subtills. 

J. Bacteriol., 128, 221-227.

2 2 0



HSU, M.T. and DAVIDSON, N. (1974). Electron microscope heteroduplex 

study of the heterogeneity of Mu phage and prophage DNA.

Virology, 58, 229-239.

HU, N.T. and MARRS, B.L. (1979). Characterization of the plasmid

DNAs of Rhodopseudomonas capsulata. Arch. Microbiol., 121, 61-69.

IBA, H., FUKUDA, A. and OKADA, Y. (1978). Rate of major protein

synthesis during the cell cycle of Caulobacter crescentus. J. Bacteriol., 

135, 647-655.

ISHIGURO, E.E. and WOLFE, R.S. (1970). Control of morphogenesis in 

Geodermatophilus: ultrastructural studies. J. Bacteriol., 104,

566-580.

ISHIGURO, E.E. and WOLFE, R.S. (1974). Induction of morphogenesis in 

Geodermatophllus by inorganic cations and by organic nitrogeneous 

cations. J. Bacteriol., 117, 189-195.

JACOB, F., BRENNER, S. and CUZIN, F. (1963). On the regulation of

DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol.,

28, 329-348.

JAVOR, G.J. (1974). Inhibition of RNA synthesis by nalidixic acid in 

E.coll. J. Bacteriol., 120, 282-286.

JEFFREYS, A.J. and FLAVELL, R.A. (1977). The rabbit/$ -globin gene

contains a large insert in the coding sequence. Cell, 12, 1097-1108.

JONES, N.C. and DONACHIE, N.D. (1973). Chromosome replication,

transcription and control of cell division in E.coll. Nature New 

Biol., 243, 100-103.

JULLIOT, J.S. and BOISTARD, P. (1979). Use of RP4-prime plasmids

constructed in vitro to promote a polarized transfer of the chromosome 

in E.coli and Rhizobium mellloti. Mol. Gen. Genet., 173, 289-298.

22\

\



KABACK, D.B. and HALVORSON, H.O. (1977). Magnification of genes

coding for ribosomal RNA in Saccharomyces cerevlslae. Proc. Natl. 

Acad. Sci. U.S.A., 74, 1177-1180.

KEILMAN, G.R., TANIMOTO, B. and DOI, R.R. (1975). Selective inhibition 

of sporulation of Bacillus subtills by netropsin. Biochem. Biophys. 

Res. Commun., 67, 414-420.

KELLY, R.B., ATKINSON, M.R., HUBERMAN, J.A. and KORNBERG, A. (1969). 

Excission of thymine dimers and other mismatched sequences by 

DNA polymerase of E.coll. Nature, 224, 495-501.

KENNERLEY, M.E., MORGAN, E.A. , POST, L., LINDAHL, L. and NOMURA, M. 

(1977). Characterization of hybrid plasmids carrying individual 

ribosomal RNA transcription units of E.coll. j. Bacteriol.,

132, 931-949.

KERSTEN, H. and KERSTEN, H. (1974). Inhibitors of nucleic acid 

synthesis - biophysical and biochemical aspects, p 184,

Springer Verlag, New York.

KIMICHI, A. and ROSENBERG, E. (1976). Linkages between DNA synthesis 

and cell division in Myxococcus xanthus. J. Bacteriol., 128,

69-79.

KLOTZ, L.C. and ZIMM, B.H. (1972). Size of DNA determined by 

viscoelastic measurements: results on bacteriophages Bacillus 

subtills and Escherichia coll. J. Mol. Biol., 72, 779-800.

KOPECKO, D.J. and COHEN, S.N. (1975). Site-specific rec A independent 

recombination between bacterial plasmids: involvement of palin­

dromes at the recombinational loci. Proc. Natl. Acad. Scl. U.S.A., 

72, 1373-1377.

KORCH, C., 0VREB0 S. and KLEPPE, K. (1976). Envelope-associated folded 

chromosomes from E.coll i variations tinder different physiological 

conditions. J. Bacteriol., 127, 904-916.

2 2 2



KORNBERG, T. and GETTER, M.L. (1972). DNA synthesis in cell-free 

extracts. IV. Purification and catalytic properties of DNA 

polymerase III. J. Biol. Chem., 247, 5369-5375.

KUBITSCHEK, H.E. and NEWMAN, C.N. (1978). Chromosome replication

during the division cycle in slowly growing, steady-state cultures 

of three E.coli B/r strains. J. Bacteriol., 136, 179-190.

KURN, N., AMMER, S. and SHAPIRO, L. (1974). A pleiotropic mutation 

affecting expression of polar development events in Caulobacter 

crescentus. Proc. Natl. Acad. Sci. U.S.A., 71, 3157-3161.

KURN, N., SHAPIRO, L. and AGABIAN, N. (1977). Effect of carbon source 

and the role of cyclic adenosine-3 '-5 ' -monophosphate on the Caulobacter 

cell cycle. J. Bacteriol., 131, 951-959.

LARK, K.G., REPKO, T. and HOFFMAN, E.J. (1963). The effect of amino 

acid deprivation on subsequent DNA replication. Biochim. Biophys. 

Acta., 7£, 9-24.

LASCELLES, J. (1975). The regulation of heme and chlorophyll synthesis 

in bacteria. Ann. N.Y. Acad. Sci., 244, 334-347.

LASKEY, R.A. and MILLS, A.D. (1975). Quantitative film detection of 
3 14H and C in polyacrylamide gels by fluorography. Eur. J. Biochem., 

56, 335-341.

LEFFLER, S. and SZER, W. (1973). Messenger selection by bacterial 

ribosomes. Proc. Natl. Acad. Sci. U.S.A., 70, 2364-2368.

LEFFLER, S. and SZER, W. (1974). Purification and properties of

initiation factor IF-3 from Caulobacter crescentua. J. Biol. Chem., 

249, 1458-1464.

LEIGHTON, T.J. (1973). An RNA polymerase mutation causing temperature- 

sensitive sporulation in Bacillus subtllis. Proc. Natl. Acad. Sci. 

U.S.A., 70, 1179-1183.

2 2 3



LEIGHTON, T.J. (1974). Further studies on the stability of sporulation 

messenger RNA in Bacillus subtilis. J. Biol. Chem., 249, 7808-7812.

LEIGHTON, T.J. and DOI, R.H. (1971). The stability of messenger 

ribonucleic acid during sporulation in Bacillus subtills.

J. Biol. Chem., 246, 3189-3195.

LINN, T.G., GREENLEAF, A.L., SHORENSTEIN, R.G. and LOSICK, R. (1973).

Loss of the sigma activity of RNA polymerase of Bacillus subtills 

during sporulation. Proc. Natl. Acad. Sel. U.S.A., 70, 1865-1869.

LINN, T.G. and LOSICK, R. (1976). The program of protein synthesis during 

sporulation in Bacillus subtills. Cell, 103-114.

LINNETT, P.E. and TIPPER, D.J. (1976). Transcriptional control of 

peptidoglycan precursor synthesis during sporulation in Bacillus 

sphaericus. J. Bacterid., 125, 565-574.

LOEHR, J. and HANAWALT, P. (1977). On the termination of the DNA 

replication cycle in E.coll. J. Mol. Biol., 117, 85-94.

LOENING, U.E. (1969). The determination of the molecular weight of 

RNA by polyacrylamide-gel electrophoresis. The effects of changes of 

conformation. Biochemical J., 113, 131-138.

LOSICK, R., SHORENSTEIN, R.G. and SONENSHEIN, A.L. (1970). Structural 

alteration of RNA polymerase during sporulation. Nature, 227, 910-913.

LOWRY, D.H., ROSEBROUGH, N. J., FARR, A.L. and RANDALL, R.J. (1951).

Protein measurement with the Folin phenol reagent. J. Biol. Chem.,

193. 265-275.

LUND, E., DAHLBERG, J.E., LINDAHL, L., JASKUNAS, S.R., DENNIS, P.P. 

and NOMURA, M. (1976). Transfer RNA genes between 16s and 23s rRNA 

genes in rRNA transcriptional units of E.coli. Cell, 7, 165-177.

MAIZELS, N. (1976). Dlctyostellum 17s, 25s and 5s rDNAs lie within a

38,000 base pair repeated unit. Cell, 9_, 431-438.



HANDEL, M., LEADBETTER, E.R., PFENNIG, N. and TRUPER, H.G. (1971).

DNA base composition of phototrophic bacteria. Int. J. Syst. Bacteriol., 

21, 222-230.

MANDEL, M. and MARMUR, J. (1968). Use of U.V. absorbance - temperature profile 

for determining the guanine plus cytosine content of DNA. Methods 

in Enzymol., 12̂  (B), 195-206.

MANDELSTAM, J., STERLINI, J.M. and KAY, D. (1971). Sporulation in 

Bacillus subtilis. Effect of medium on the form of chromosome 

replication and on initiation to sporulation in Bacillus subtilis.

Biochem. J., 125, 635-641.

MARGULIES, L., SETOGUCHI, Y. and RUDNER, R. (1978). Asymmetric

transcription during post-germinative development of Bacillus subtllis 

spores. Biochim. Biophys. Acta., 521, 708-718.

MARMUR, J. and DOTY, P. (1962). Determination of the base composition of 

DNA from its thermal dénaturation temperature. J. Mol. Biol., 5,

109-118.

MARRS, B.L. (1974). Genetic recombination in Rhodopseudomonas capsulata. 

Proc. Natl. Acad. Sei. U.S.A., 71̂ , 971-973.

MARRS, B.L. (1977). Genetics and bacteriophage. In 'The photosynthetic 

bacteria'. Ed. Clayton, R.K. and Sistrom, W.R. Plenum Pub. Co.

MARRS, B. and KAPLAN, S. (1970). 23s precursor rXMA of Rhodopseudomonas

sphaeroldes. J. Mol. Biol., 49, 297-317.

MARSH, R.C. and WORCEL, L.A. (1977). A DNA fragment containing the origin 

of replication of the E.coli chromosome. Proc. Hatl. Acad. Sei. U.S.A., 

74, 2720-2724.

MARTINEZ, J. and CLARKE, P.H. (1975). R factor mediated gene transfer 

in Pseudomonas putida. Proc. Soc. Gen. Microbiol., 3_, 51-52.



MARUNOUCHI, T. and MESSER, W. (1973). Replication of a specific terminal 

chromosome segment in E.coll which is required for cell division.

J. Mol. Biol., 78, 211-228.

MESELSON, M. and STAHL, F.W. (1958). The replication of DNA in E.coll.

Proc. Natl. Acad. Sci. U.S.A., 44, 671-682.

MESSER, W. (1972). Initiation of DNA replication in E.coll B/r:

Chronology of events and transcriptional control of initiation.

J. Bacteriol., 112, 7-12.

MESSER, W., DANKWORTH, L. , TIPPE-SCHINDLER, R., WOMACK, J.E. and

ZAHN, G. (1975). Regulation of the initiation of DNA replication in 

E.coll. Isolation of O-RNA and the control of O-RNA synthesis.

ICN-UCLA Symp. Mol. Cell. Biol., Ill, 602-617.

MIELENZ, J.R., JACKSON, L.E., O'GARA, E. and SHANMUGAM, K.T. (1979).

Fingerprinting bacterial chromosomal DNA with restriction endonuclease 

EcoRli comparison of Rhlzobium spp. and identification of mutants.

Can. J. Microbiol., 25, 803-807.

MILLER, L. and KAPLAN, S. (1978). Plasmid transfer and expression in 

Rhodopseudomonas sphaeroldes. Arch. Biochem. Biophys., 187, 229-234. 

MITCHISON, J.M. (1972). The biology of the cell cycle. Camb. Uni. Press. 

MITCHISON, J.M. and VINCENT, W.S. (1965). Preparation of synchronous 

cell cultures by sedimentation. Nature, 205, 987-989.

MOORE, R.L. and HIRSCH, P. (1973). First generation synchrony of 

isolated Hyphomicrobium swarmer populations. B. Bacteriol., 116, 
418-423.

MURAKAMI, S., INUZUKA, N., YAMAGUCHI, M., YAMAGUCHI, K. and YOSHIKAWA, H. 

(1976). Initiation of DNA replication in Bacillus subtllis.

III. Analysis of molecular events involved in initiation using a 

temperature sensitive dna mutant. J. Mol. Biol., 108, 683-704.

22G



MURAL, R.J. and FRIEDMAN, D.I. (1974). Isolation and characterization 

of a temperate bacteriophage specific for Rhodopseudomonas 

sphaeroides. J. Virol., 14, 1288-1292.

MURRAY, K. and MURRAY, N.E. (1975). Phage lambda receptor chromosomes 

for DNA fragments made with restriction endonuclease 1H of 

Haemophilus Influenzae and restriction endonuclease 1 of E .coll.

J. Mol. Biol., 98, 551-564.

NATHANS, D. and SMITH, H.O. (1975). Restriction endonucleases in the 

analysis and restructuring of DNA molecules. Ann. Rev. Biochem.,

44, 273-293.

NESTER, E.W. (1964). Penicillin resistance of competent cells in

DNA trimsformation of Bacillus subtllis. J. Bacteriol., 87, 867-875

NEWTON, A. (1972). Role of transcription in the temporal control of 

development in Caulobacter crescentus. Proc. Natl. Acad. Sci. U.S.A 

69, 447r451.

NEWTON, A. and ALLEBACH, E. (1975). Gene transfer in Caulobacter 

crescentus; polarized inheritance of genetic markers. Genetics,

80, 1-11.

NISEN, P., MEDFORD, R., MANSOUR, J., PURUCKER, M., SKALKA, A. and

SHAPIRO, L. (1979). Cell-cycle associated rearrangement of inverted 

repeat DNA sequences. Proc. Natl. Acad. Sci. U.S.A., 76, 6240-6244.

NOMURA, M., MORGAN, E.A. and JASKUNAS, S.R. (1977). Genetics of 

bacterial ribosomes. Ann. Rev. Genet., 11, 297-347.

OHTA, N., SANDERS, M. and NEWTON, A. (1978). Characterization of 

unstable poly A RNA in Caulobacter crescentus. Biochem. Biophys. 

Acta., 517, 65-75.

OKASAKI, T. and KORNBERG, A. (1964). Enzymatic synthesis of DNA

XV Purification properties of a polymerase from Bacillus subtills. 

J. Biol. Chem., 239, 259-268.

227



OLD, R., MURRAY, K. and ROIZES, G. (1975). Recognition sequence of 

restriction endonuclease III from Hemophilus Influenzae.

J. Mol. Biol., 92_, 331-339.

O'MALLEY, B.W., TOWLE, H.C. and SCHWARTZ, R.J. (1977). Regulation of 

gene expression in eukaryotes. Ann. Rev. Genet., 11, 239-275.

OSLEY, M.A. and NEWTON, A. (1977) . Mutational analysis of developmental 

control in Caulobacter crescentus. Proc. Natl. Acad. Sci. U.S.A.,

74, 124-128.

OTTO, B., BONHOEFFER, F. and SCHALLER, H. (1973). Purification and 

properties of DNA polymerase III. Eur. J. Biochem., 34, 440-447.

PACE, N.R. (1973). Structure and synthesis of the ribosomal RNA of 

prokaryotes. Bact. Revs., 37, 562-603.

PICOREL, R., del VALLE-TASCON, S. and RAMIREZ, J.M. (1977). Isolation 

of a photosynthetic strain of Rhodosplrlllum rubrum with an altered 

reaction center. Arch. Biochem. Biophys., 181, 665-670.

PIGGOTT, P.J. (1973). Mapping of asporogenous mutations of Bacillus 

subtills: A minimum estimate of the number of sporulation opérons.

J. Bacteriol., 114, 1241-1253.

PIGGOTT, P.J. and COOTE, J.G. (1976). Genetic aspects of bacterial 

endospore formation. Bacteriol. Revs., 40, 908-962.

POTTS, L.E. and DOW, C.S. (1979). Nucleic a d d  synthesis during the 

developmental cycle of the Rhodomlcrobium vannielil swarm cell.

FEMS Microbiol. Letts., 6, 393-395.

POTTS, L.E., DOW, C.S. and AVERY, R.J. (1980). The genome of 

Rhodomicroblum vannielil, a polymorphic prosthecate bacterium.

J. Gen. Microbiol., 117, 501-507.

PRITCHARD, R.H., BARTH, P.T. and COLLINS, J. (1969). Control of DNA 

synthesis in bacteria. Symp. Soc. Gen. Microbiol., 19, 263-297.

228



RABUSSAY, D. and ZILLIG, H. (1969). A rifampicin-resistant RNA 

polymerase from E.coli altered In the B-subunit. FEBS Letts.,

5_, 104-106.

RHAESE, H.J., DICHTELMULLER, H. and GRADE, R. (1975). Studies on the 

control of development. Accumulation of guanosine tetraphosphate 

and pentaphosphate in response to Inhibition of protein synthesis in 

Bacillus subtilis. Eur. J. Biochem., 56, 385-392.

RHAESE, H.J. and GROSCURTH, R. (1974). Studies on the control of 

development. In vitro synthesis of HPN and MS nucleotides by 

ribosomes from either sporulating or vegetative cells of Bacillus 

subtills. FEBS Letts., 4£, 87-93.

RHAESE, H.J.and GROSCURTH, R. (1976). Control of development: role of 

regulatory nucleotides synthesized by membranes of Bacillus subtills 

in initiation of sporulation. Proc. Natl. Acad. Sci. U.S.A., 73, 

331-335.

RHAESE, H.J. and GROSCURTH, R. (1979). Apparent dependence of sporulation 

on synthesis of highly phosphorylated nucleotides in Bacillus subtilis. 

Proc. Natl. Acad. Sci. U.S.A., 76, 842-846.

RIEDEL, G., MARGOLSKEE, R., CANNON, F., PESKIN, A. and AUSUBEL, F. (1977). 

The nitrogen fixation (nlf) operon of Klebsiella pneumoniae: cloning 

nlf genes and the Isolation of nif control mutants. Miami Winter 

Symposium 13, 'Molecular Cloning of Recombinant DNA'. pp 115-132.

Acad. Press Inc.

ROBERTS,: R.J., WILSON, G.A. and YOUNG, F.E. (1977). Recognition

sequence of specific endonuclease Bam HI from Bacillus smyloliquefaciens 

H. Nature, 265, 82-84.

SADOFF, H.L., CELIKKOL, E. and ENGELBRECHT, H.L. (1970). Conversion of 

bacterial aldolase from vegetative to spore form by a sporulation- 

specific protease. Proc. Natl. Acad. Sci. U.S.A., 66, 844-849.

22S



SARGENT, M.G. (1973). Synchronous cultures of Bacillus subtills

obtained by filtration with glass fiber filters. J. Bacteriol.,

116, 736-740.

SAUNDERS, V.A. (1978). Genetics of Rhodospirillaceae. Microbiol.

Rev., 42, 357-384.

SAUNDERS, V.A., SAUNDERS, J.R. and BENNETT, P.M. (1976). Extrachromosomal 

DNA in wild-type and photoeynthetically incompetent strains of 

Rhodopseudoinonas sphaeroldes. J. Bacteriol., 125, 1180-1187.

SCHAFFNER, W., GROSS, K. , TELFORD, J. and BIRNSTIEL, M. (1976).

Molecular analysis of the histone gene cluster of Psamnechinus miliaria 

IZ. The arrangement of the 5 histone coding and spacing sequences. 

Cell, 8, 471-478.

SCHICK, H.J. (1971). Inter-relationship of nitrogen fixation, hydrogen 

evolution and photoreduction in Rhodosplrlllum rubrum. Arch.

Microbiol., 75, 89.

SCHMID, C.W., MANNING, J.E. and DAVIDSON, N. (1975). Inverted repeat 

sequences in the Drosophila genome. Cell, 5_, 159-172.

SEEBURG, P.H., SHINE, J., MARTIAL, J.A., IVARIE, R.D., MORRIS, J.A., 

ULLRICH, A., BAXTER, J.D. and GOODMAN, H. (1978). Synthesis of 

growth hormone by bacteria. Nature, 276, 795-798.

SEGALL, J. and LOSICK, R. (1977). Cloned Bacillus subtllis DNA containing 

a gene that is activated early during sporulation. Cell, 11,

751-761.

SETLOW, P. (1973). Inability to detect cyclic AMP in vegetative or

dormartspores of Bacillua megaterlum. Biochem. Biophys. Res. Conmun., 

52, 365-372.

SHAPIRO, L. (1976). Differentiation in the Caulobacter cell cycle.

Ann. Rev. Microbiol., 30, 377-407.

2 3 0



SHARP, P.A., COHEN, S.N. and DAVIDSON, N. (1973). Electron microscopic 

heteroduplex studies of sequence relations among plasmids of 

Escherichia coll. II. Structure of drug resistance (R) factors 

and F factors. J. Mol. Biol., 75, 235-255.

SHINNICK, T.M., LUND, E., SMITHIES, O. and BLATTNER, F.R. (1975). 

Hybridization of labelled RNA to DNA in agarose gels. Nucleic 

Acids Res., £, 1911-1928.

S ISTRO M , W.R. (1977). Transfer of chromosomal genes mediated by plasmid 

R68.45 in Rhodopseudomonas sphaeroldes. J. Bacteriol., 131, 526-532.

SLOMA, A. and SMITH, I. (1979). RNA synthesis during spore germination 

in Bacillus subtills. Mol. Gen. Genet.,175, 113-120.

SMITH, H.O. (1979). Nucleotide sequence specificity of restriction 

endonucleases. Science, 205, 455-462.

SONENSHEIN, A.L. and LOSICK, R. (1970) . RNA polymerase mutants blocked 

in sporulation. Nature, 227, 906-909.

SOUTHERN, E.M. (1975). Detection of specific sequences among DNA 

fragments separated by gel electrophoresis. J. Mol. Biol., 98, 

503-517.

STERLINI, J.M. and MANDELSTAM, J. (1969). Commitment to sporulation in 

Bacillus subtills and its relationship to the development of 

actinomycin resistance. Biochem. J., 113, 29-37.

STEWART, W.D.P. (1973). Nitrogen fixation by photosynthetic micro­

organisms. Ann. Rev. Microbiol., 27, 283-316.

STOVE, J.L. and STANIER, R.Y. (1962). Cellular differentiation in 

stalked bacteria. Nature, 196, 1189-1192.

SUGINO, A., PEEBLES, C.L., KREUZER, K.N. and COZZARELLI, N.R. (1977). 

Mechanism of action of nalidixic acid: purification of E.coll 

nal A gene product and its relationship to DNA gyrase and a novel 

nicking closing enzyme. Proc. Natl. Acad. Sci. U.S.A., 74, 4767-4771.



SUMIDA-YASUMOTO, C. and D O I, R .H .  (1977). RNA po lym erase m uta nts o f  

B a c i l lu s  s u b t l l i s  c o n d it io n a lly  tem peratu re  s e n s it iv e  a t v a r io u s  

sta g e s o f  s p o ru la t io n .  J. B a c t e r io l . ,  129, 433-444.

S U T C L IF F E , J .G . ,  (1978). pBR322 restriction map derived from the 

DMA sequence: accurate DNA size markers up to 4361 nucleotide 

pairs long. Nuc. Acids. Res., 5_, 2721-2728.

SUYAMA, Y . and GIBSON, J. (1966). S a t e l l i t e  DNA in  p h o to sy n th e t ic  

b a c te ria . Biochem . B io p h y s . R e s. Commun., 24, 549-553.

SWOBODA, U. and DOW, C.S. (1979). The study of homogeneous populations 

of Caulobacter stalked (mother) cells. J. Gen. Microbiol., 112,

235-239.

SWOBODA, U.K., DOW, C.S. and VITKOVIC, L. Nucleoids of C .crescentus 

CB15 and their use in in vitro transcription studies. Submitted 

for publication.

SZULM A JSTER, J .  (1973). Bacillus subtills RNA polymerase from vegetative 

and sporulating cells and from dormant spores: hypotheses and realities. 

Colloquium Int. C .N .R .S .  Paris, 227, 47-53.

TAXETO, A. (1972). Sensitivity of E.coll to viral nucleic acid.

V. Competence of calclun-treated cells. J. Biochem., 72, 973-979.

TANAKA, T., KURODA, M. and SAKAGUCHI, K. (1977). Isolation and

c h a ra c te r iz a t io n  o f  fo u r  p la sm id s fro m  B a c i l lu s  s u b t i l l s . J .  B a c t e r io l . ,  

129, 1487-1494.

TAYLOR, S.C. and DOW, C.S. (1980). Ribulose-l,5-bisphosphate carboxylase 

from Rhodomicroblum vannielii. J. Gen. Microbiol., 116, 81-87.

TERRANA, B. and NEWTON, A. (1976). Requirement of a cell division step 

for stalk formation in Caulobacter crescentus. J. Bacteriol.,

128, 456-462.

THOMAS, M. and DAVIS, R.W. (1975). Studied on the cleavage of phage X  

DNA with E.coll restriction endonuclease. J. Mol. Biol., 91, 315-328.

2 3 1



the initiation of DNA replication in E.coll. 1. Negative control 

of initiation. Mol. Gen. Genet., 168, 185-195.

TUCKER, W.T. and PEMBERTON, J.M. (1979a). The introduction of RP4:

Mucts 62 into Rhodopseudomonas sphaeroides. FEBS Letts., 215-217.

TUCKER, W.T. and PEMBERTON, J.M. (1979b). Conjugation and chromosome 

transfer in Rhodopseudomonas sphaeroides mediated by W and P group 

plasmids. FEMS Microbiol. Letts., 5_, 173-176.
UFFEN, R.L. and WOLFE, R.S. (1970). Anaerobic growth of purple 

non sulphur bacteria under dark conditions. J. Bacteriol., 104, 

462-472.

VAN OOYEN, A.J.J., GRUBER, M. and JORGENSEN, P. (1976). The mechanism of 

action of ppGpp on rRNA synthesis in vitro. Cell, 8, 123-128.

VATTER, A.E., DOUGLAS, H.C. and WOLFE, R.S. (1959). Structure of 

Rhodomlcroblum vannlelli. J. Bacteriol., 77, 812-813.

VAZQUEZ, D. (1964). The binding of chloramphenicol by ribosomes from 

Bacillus megaterlum. Biochem. Biophys. Res. Conmun., 15, 464-468.

VAZQUEZ, D. (1979). 'Inhibitors of protein synthesis', in Molecular 

Biology, Biochemistry and Biophysics 30. Springer Verlag, Berlin.

WALL, J.D., WEAVER, P.F. and GEST, H. (1975a). Gene transfer agents, 

bacteriophage, and bacteriocins of Rhodopseudomonas capsulata.

Arch. Microbiol., 105, 217-224.

WALL, J.D., WEAVER, P.F. and GEST, H. (1975b). Genetic transfer of 

nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata.

Nature, 258, 630-631.

WARD, C.B. and GLASER, D.A. (1970). Control of initiation of DNA

synthesis in E.coll B/r. Proc. Natl. Acad. Sci. U.S.A., 67, 255-262.

TIPPE-SCHINDLER, R., ZAHN, G. and MESSER, W. (1979). Control of

233



the initiation of DNA replication in E.coli. 1. Negative control 

of initiation. Mol. Gen. Genet., 168, 185-195.

TUCKER, W.T. and PEMBERTON, J.M. (1979a). The introduction of RP4:

Mucts 62 into Rhodopeeudomonas sphaeroides. FEBS Letts., 5_, 215-217.

TUCKER, W.T. and PEMBERTON, J.M. (1979b). Conjugation and chromosome 

transfer in Rhodopseudomonas sphaeroides mediated by W and P group 

plasmids. FEMS Microbiol. Letts., 5, 173-176.

UFFEN, R.L. and WOLFE, R.S. (1970). Anaerobic growth of purple

non sulphur bacteria under dark conditions. J. Bacteriol., 104, 

462-472.

VAN OOYEN, A.J.J., GRUBER, M. and JORGENSEN, P. (1976). The mechanism of 

action of ppGpp on rRNA synthesis in vitro. Cell, Q_, 123-128.
VATTER, A.E., DOUGLAS, H.C. and WOLFE, R.S. (1959). Structure of 

Rhodomlcroblum vannlelil. J. Bacteriol., J2.' 812-813.
VAZQUEZ, D. (1964). The binding of chloramphenicol by ribosomes from 

Bacillus megaterium. Biochem. Biophys. Res. Commun., 15, 464-468.

VAZQUEZ, D. (1979). 'Inhibitors of protein synthesis', in Molecular 

Biology, Biochemistry and Biophysics 30. Springer Verlag, Berlin.

WALL, J.D., WEAVER, P.F. and GEST, H. (1975a). Gene transfer agents, 

bacteriophage, and bacteriocins of Rhodopseudomonas capsulata.

Arch. Microbiol., 105, 217-224.

WALL, J.D., WEAVER, P.F. and GEST, H. (1975b). Genetic transfer of 

nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata.

Nature, 258, 630-631.

WARD, C.B. and GLASER, D.A. (1970). Control of initiation of DNA

synthesis in E.coli B/r. Proc. Natl. Acad. Sci. U.S.A., 67, 255-262.

TIPPE-SCHINDLER, R., ZAHN, G. and MESSER, W. (1979). Control of

2 3 3



KARTELL/ R.M. , LARSON, J.E. and HELLS, R.D. (1974). Netropsin.

A specific probe for A-T of duplex DNA. J. Biol. Chem., 249,

6719-6731.

WELLAUR, P.K. and REEDER, R.H. (1975). A comparison of the structural 

organization of amplified ribosomal DNA from Xenopus mullerl and 

Xenopus laevis. J. Mol. Biol., 94, 151-161.

WESTMACOTT, D. and PRIMROSE, S.B. (1976). Synchronous growth of

Rhodopseudomonas palustris from the swarmer phase. J. Gen. Microbiol.,

94, 117-125.

WESTMACOTT, D. and PRIMROSE, S.B. (1977). The effect of nalidixic acid 

on the cell cycle of synchronous Rhodopseudomonas palustris cultures.

J. Gen. Microbiol., 9£, 155-166.

WHITTENBURY, R. and DOW, C.S. (1977). Morphogenesis and differentiation in 

Rhodomlcrobium vannlelll and other budding and prosthecate bacteria. 

Bacteriol. Revs., 41, 754-808.

WICKNER, R.B., GINSBERG, B. and HURWITZ, J. (1972). DNA polymerase II of 

E.coll. II. Studies of the template requirements and the structure 

of the DNA product. J. Biol. Chem., 247, 498-504.

WILCOX, M., MITCHISON, G.J. and SMITH, R.J. (1973a). Pattern formation 

in the blue-green alga Anabaena. I. Basic Mechanisms. J. Cell Sci.,

12, 707-723.

WILCOX, M., MITCHISON, G.J. and SMITH, R.J. (1973b). Pattern formation

in the blue-green alga Anabaena. XI. Controlled proheterocyst regression. 

J. Cell Sci., 13_, 637-649.

WIREMAN, J.W. and DWORKIN, M. (1975). Morphogenesis and developmental 

interactions in Myxobacteria. Science, 189, 516-523.

WOOD, D.A. (1972). Sporulation in Bacillus subtllis. Properties and time 

of synthesis of alkali-soluble protein of the spore coat. Biochem. J.,

130, 505-514.

23  If



WOOD, N.B., RAKE, A.V. and SHAPIRO, L. (1976). Structure of 

Caulobacter DNA. J. Bacteriol., 126, 1305-1315.

YANKDFSKY, S.A. and SPIEGELMAN, S. (1962). The identification of the 

ribosomal RNA cistron by sequence complementarity. II. Saturation 

of and competitive interaction at the RNA cistron. Proc. Natl. Acad. 

Sci. U.S.A., 48, 1466-1472.

YAO, M., KIMMEL, A.R. and GOROVSKY, M.A. (1974). A small number of 

cistrons for ribosomal RNA in the germinal nucleus of a eukaryote 

Tetrahymena pyrlformls. Proc. Natl. Acad. Sci. U.S.A., 71, 3082-3086.

YEH, E.C. and STEINBERG, W. (1977). Gene expression during outgrowth 

of Bacillus subtllis spores: influence of gene position, gene 

dosage, and DNA repair functions. In Spores VII. Ed. Chambliss, G. 

and Vary, J.C. pp 164-170.

YEN, H.C. and MARRS, B. (1976). Map of genes for carotenoid and 

bacteriophyll biosynthesis in Rhodopseudomonas capsulata.

J. Bacteriol., 126, 619-629.

ZAHN, G. and MESSER, W. (1979). Control of the initiation of DNA 

replication in E.coll. II. Function of the dnaA product.

Mol. Gen. Genet., 168, 197-209.

ZARITSKY, A. and WOLDRINGH, C.L. (1978). Chromosome replication rate 

and cell shape in E.coli: lack of coupling. J. Bacteriol., 135, 

581-587.

2 3 5



The base composition of Rhodom icrobium  vannielii DNA was found to be 62 -2 % GC, and 
the genome size was 21 x 10* daltons. There was no detectable difference between DNA 
from each of the three cell expressions examined. Reassociation kinetics indicated that no 
large group of repeated sequences was present, but that 5 %  of the genome was composed 
of extremely rapidly reassociating sequences. No plasmids were detected. Electron micro­
scopic examination showed that R . vannielii D N A  contained short inverted repeat sequences 
on average 400 base pairs long. The possible function of these sequences is discussed.

I N T R O D U C T I O N

Rhodom icrobium  vannielii (strain RM5), a member of the Rhodospirillaceae, exhibits a 
complex polymorphic cell cycle (Whittenbury & Dow, 1977; Fig. 1). Exponential growth 
is characterized by ovoid cells linked by cellular filaments or prosthecae (Staley, 1968), 
which may be branched, giving rise to multicellular arrays and to peritrichously flagel­
lated swarm cells. The latter undergo an obligate, well-defined differentiation sequence 
which leads ultimately to the generation of a multicellular array. There are two types of 
cell division in R. vannielii, one in which cells in the multicellular array are separated by 
plugs within the prosthecae, and the second in which swarm cells are formed from the 
prosthecal tips by division indistinguishable from binary fission.
Homogeneous swarm cell populations can be obtained quickly and in quantity by the 

glass wool column technique of Whittenbury &  Dow (1977). Such populations undergo 
synchronous, obligate cellular morphogenesis and differentiation and provide an attractive 
model system for the study of the regulation of these processes. Homogeneous populations 
of multicellular arrays (cells remain attached, and cell division is by plug formation) can be 
obtained by permitting swarm cell populations to grow for three generations, at which 
stage no motile cells are present. When R. vannielii is cultured under high CO, tensions (Dow 
& France, 1980) a ‘simplified’ cell cycle expression is induced. This vegetative cell cycle is 
essentially one of constitutive swarm cell formation, i.e. multicellular arrays are not formed, 
and cell division is exclusively by binary fission.
The control of cell morphogenesis and differentiation in R . vannielii presents many interest­

ing questions. This paper describes the structure and organization of the R . vannielii 
genome, as a basis for further study on the molecular biology of these processes.

METHODS
Organism and culture conditions. Rhodomicrobium vannielii strain RMS, isolated from freshwater by 

C. S. Dow, was used throughout. Liquid cultures were grown in pyruvate/malate (PM) medium (Whitten­
bury A  Dow, 1977) and incubated anaerobically with shaking at 30 C and an incident light intensity of
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Fig. 1. The polymorphic cell cycle of Rhodomicrobium vannielii. There are three cell expressions:
(a) multicellular arrays of ‘mother’ cells joined by prosthecae; (b) motile swarm cells; (c) ‘simpli­
fied’ cell cycle of swarm cells and stalked cells only arising under conditions of high CO, tension. Fig. 2. Melting curves

from the simplified

2000 lx. Cultures were incubated to the mid-exponential phase o f growth M m* about 2-5) prior to swarm cell 
selection.

Homogeneous populations of swarm cells were selected by filtration through a sterile glass column 
containing glass wool and beads (Whittenbury & Dow, 1977). These swarm cell populations showed 90 °0 
synchrony and had a generation time of about 6 h ; 107 swarm cells ml-1 were routinely obtained.

Multicellular arrays, consisting predominantly of ‘m other’ cells, were obtained by allowing growth of 
homogeneous swarm cell populations for three generations. Cells showing the ‘simplified’ cell cycle were 
also used.

Preparation o f DNA. All steps were carried out at 0 to 4 °C, unless otherwise stated. Cells were harvested 
by centrifugation at 5000 £  for 15 min and washed in buffer (0-5 M-NaCl, lOmM-EDTA, 0 1 M-Tris/HClf 
pH  7-1). After resuspension in this buffer, lysozyme (Sigma) was added to a  concentration of 500 Mi ml-1’ 
and the cells were incubated a t 37 °C for 1 h. Lysis was achieved by the addition of Sarkosyl (Koch Light;
1 %, w/v) and incubation at 65 °C for 10 min. Pronase (Sigma; 50 Mg ml-1; previously autodigested for 2 h 
a t 37 °C) was added and incubated overnight a t room temperature.

Nucleic acids were purified from the cell lysate by two extractions with 1 vol. phenol/chloroform/isoamyl 
alcohol (25:24:1, by vol.), saturated with SSC (015 M-NaCI, 0 015 M-trisodium citrate, pH, 7 0). After a 
final extraction with 1 vol. chloroform/isoamyl alcohol (24:1, v/v) the aqueous phase was precipitated with
2 vol. ethanol overnight at —20 °C. The precipitate was resuspended in 0*1 x SSC and digested with heat- 
treated RNAase (Sigma; 50 Mi ml“1) for 2 h at 37 °C. The DNA was then re-extracted as above.

Thermal denaturation. The DNA was further purified by hydroxyapatite chromatography (Britten e t aI., 
1974) and denatured by heat a t a concentration of lOO/igml-* in phosphate buffer (0 06 M-Na*HP04/  
0*06 M-NaHjP04). Hyperchromicity at 260 nm with increasing temperature was monitored in a  Gilford 
recording spectrophotometer fitted with a reference compensator. The DNA base composition (mol % G O  
was estimated from the measured Tm (i.e. the temperature a t which half of the DNA was denatured), 
using the formula Tm =  69-3+0-41 (mol % GC), determined by Marmur & Doty (1962) for 0-2 M-Na+. 
The effect of changing the Na+ concentration from 0*2 to 0 18 m on the parameters o f the formula for Tm 
is not significant (Marmur & Doty, 1962; our unpublished observations).

Reassociation kinetics. DNA (100 Mg ml"1) in phosphate buffer a t 4 °C was sheared to a  size of 1000 base 
pairs by sonication (5x1  min a t 20 kHz and 1*5 A with a  Dawe Soniprobe), prior to heat denaturation at 
100 °C. This material was allowed to renature a t {Tm- 25) °C, i.c. 68 °C, and the decrease in A „  with time 
was measured. The kinetics of the reaction were expressed by calculation of the C«f (concentration x time, 
expressed as mol nucleotides s l-1) required for half the reaction (C , / j ; Britten & Kohne, 1968). Genome 
sizes were estimated relative to Escherichia coli K12 DNA (2*7 x 10# daltons; Klotz & Zimm, 1972) renatured 
under identical conditions, since in the absence o f a large proportion of repeated sequences C ,/j  is propor­
tional to genome size.

Chemical estimation o f the swarm cell DNA content. The DNA content of homogeneous swarm cells was 
determined by the modified diphenylamine method of Burton (1956), using calf thymus DNA (Sigma) as 
standard. Swarm cell numbers were determined on an electronic particle counter (Coulter Electronics, 
model ZBI).
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Fig. 2. Melting curves o f R . vannielii DNA ( • )  and, for comparison, E. coli K12 DNA (O ). DNA 
from the simplified cell cycle was isolated and thermally denatured as described in Methods.
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Electron microscopy. Ethanol-precipitated D NA was resuspended in 1 mM-EDTA, 10 mM-Tris/HCI, 
pH 7-5. Part of each sample was sheared to a  size of 20 kilobases by three passages through a 19 gauge 
needle, and both this and unsheared DNA were examined. The DNA was denatured by boiling for 10 min, 
then quenched on ice to prevent renaturation, and spread immediately by the aqueous technique o f Davise/ al. 
(1971). The concentration o f D NA in the spreading solution was 1 fig  ml-1 and the hypophase was 0-25 m- 
ammonium acetate, pH 7-5. Grids were stained with uranyl acetate (5 x 10~‘ m), rotary shadowed with 
palladium/platinum wire, and examined in an AEI Corinth 275 electron microscope.

Size estimates were obtained by comparison with the double-stranded plasmid pBR322 (2-8 x 10* daltons; 
Sutcliffe, 1978: derivation, Bolivar et al., 1977) spread under identical conditions.

Attem pted plasmid isolation. [“ PJOrthophosphate (The Radiochemical Centre, Amersham) labelled 
cleared cell lysates (Clewell & Helinski, 1969) were banded in caesium chloride-ethidium bromide density 
gradients, as described by Radloff et al. (1967). The gradients were fractionated from the bottom and the 
fractions were precipitated with 10% (w/v) trichloroacetic acid on to Whatman glass fibre filters. The 
filters were washed, dried and counted in Triton/toluene scintillant in a Packard scintillation counter. 
The method of Currier & Nester (1976), for the isolation o f large plasmids, was also used, involving selec­
tive chromosomal shearing and  alkaline denaturation. Fractions from caesium chloride-ethidium bromide 
density gradients of preparations enriched for plasmids were collected and precipitated on to filters as 
described above.

RESULTS

This report describes the characteristics of DNA from Rhodom icrobium  vannielii. In 
all the studies presented here DNA from swarm cells, multicellular arrays (predominantly 
‘mother* cells) and cells from the ‘simplified* cell cycle were used.

T herm al denaturation

Figure 2 shows a melting profile of D N A  from a simplified cell cycle culture, which has 
the characteristic shape of native double-stranded DNA. Melting curves of both swarm cell 
and mother cell DNA were identical to that shown. Tm values determined from the melting 
curves are shown in Table 1, along with the base compositions calculated from them. 
The average base composition value of 62*2 mol %  GC from these denaturation studies 
compares well with the average value obtained for all three cell types by analytical centri­
fugation in a caesium chloride density gradient (62-5 mol %  GC; Dow, 1972).
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Table 1. C haracterization  o f  D N A  fro m  Rhodom icrobium  vannielii cell 
expressions and Escherichia c o li K12

R. vannielii

Mother cell Swarm cell
Simplified 
cell cycle E. coli

(°c) 97-2 950 970 89-5
mol % GC 618 62 3 62-7 50
C ,( | (mol s | - ‘) 4-5 4-7 4-3 64

C0t

Fig. 3. Reassociation of R. vannielii DNA (# )a n d , for comparison, E. coU K12 DNA (O). DNA 
from mother cells was isolated, denatured and allowed to reassociate as described in Methods.
The percentage of single-stranded DNA remaining was calculated from thehyperchromicity remain­
ing a t time r, expressed as a percentage of the total hyperchromicity. a represents the collapse 
hypochromicity and b the rapidly renaturing component.

Therm al reassociation

Figure 3 shows the reassociation kinetics of R . vannielii multicellular array (mother cell) 
DNA, compared with that of E. co li K12 DNA. DNA from both swarm cells and cells from 
the simplified cycle renatured in exactly the same manner. The shape of the curve indicates 
that R. vannielii contains no large proportion of repeated sequences in any of its cell types, 
and in this respect has a genome resembling other prokaryotes.
The C0fi values determined from the reassociation curves of all three cell types are shown 

in Table 1, along with that determined for E. coli. An estimate of the genome size of 
R. vannielii may be obtained, as outlined in Methods, by comparing its C0/j with that of 
E. coli; the genome sizes obtained in this way for the three R . vannielii cell expressions were 
the same (Table 2). The genome size of swarm cell D N A  was also determined chemically 
by the diphenylamine reaction (Burton, 1956). Only swarm cell DNA was examined by this 
method, since a reliable cell count can only be obtained from a homogeneous swarm cell 
population. The chemical determination confirmed the value obtained by reassociation 
kinetics (Table 2). Thus R . vannielii has a genome size of about 2-1 x 10*daltons, i.e. 
about two-thirds of the size of the E. co li genome.
The initial reduction in absorbance shown by E. c o li DNA is termed collapse hypo­

chromicity (Britten e t a t., 1974) and is due to the restacking of bases on cooling. This well 
known phenomenon is shown by all DNAs when they are allowed to renature and accounts 
for approximately 10% of the hyperchromicity. In R . vannielii DNA there is an initial 
very rapid reduction in hyperchromicity of approximately 15%, i.e. more than can be

Table 2. Gena 
Values given (±  i

Cell
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Mother cell ] 
Swarm cell 
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cell cycle

Fig. 4. Electron micrographs |  
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Table 2. Genom e size  o f  Rhodom icrobium  vannielii ce ll expressions  
Values given (±  standard errors) are the means of two to four determinations.

Genome size (daltons)

Cell
expression 
M other cell 
Swarm cell 
Simplif.ed 

cell cycle

Reassociation 
kinetics 

2-IO x  l0*±0-2  
2 - l6 x  10*±0-2 
1 98 x I0 * ± 0  l

Chemical
determination

ND
2 l 3 x  10*±0-3

ND
nd. Not determined (see text).

505

Fig. 4. Electron micrographs of (a) inverted repeat regions in R vannielii DNA and (b) the plasmid 
pBR322 used for calibration. DNA was spread by the aqueous technique of Davis et al. (1971). 
Bar markers represent 01  /tm.

ascribed to collapse hypochromicity. The 5% difference can be attributed to the presence 
of very rapidly reannealing DNA sequences of a kind not present in E. coli DNA. These 
sequences were found in DNA from all three cell expressions. The rate of reassociation of 
the sequences did not alter over a 10-fold DNA concentration range, suggesting that they 
were forming intramolecular hybrids.

Electron m icroscopy o f  D N A
Sheared D N A  (from all three cell expressions) was denatured by boiling and then quenched 

immediately on ice to prevent renaturation. Figure 4 shows an example of the DNA 
molecules seen in the electron microscope and the pBR322 plasmid DN A used for calibration. 
Short regions of double-stranded DNA can be seen along the single-stranded R . vannielii 
DNA molecule. The size of these regions was estimated to be 400 base pairs long ( ± 100 
base pairs) by comparison with the plasmid (2*8 x 10* daltons) spread under identical 
conditions. Approximately 30 grids were examined.

D I S C U S S IO N

The DNA base composition determined for R . vannielii is similar to those found for 
other members of the R hodospirillaceae (Mandel e t a l., 1971; Dow, 1972). Also, the kinetic
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complexity measured for R. vannielii is comparable with that obtained for other bacteria. 
There appears to be no detectable difference between the genomes of the three cell expres­
sions shown by R. vannielii, indicating that no large-scale gene amplification occurs during 
the differentiation process. An unusual feature of R . vannielii DNA is that about 5 %  of it 
is present as a rapidly renaturing component. This component is present in all three cell 
types.
The rapidly renaturing component could be a transient feature of replication, i.e. a 

‘knife and fork’ structure (Barzilai & Thomas, 1970). However, since it was found in 
swarm cell DNA, where no DNA synthesis occurs (Whittenbury & Dow, 1977; L. E. Potts, 
unpublished results), and also in stationary phase cells, this possibility can be excluded.
An alternative explanation of the rapidly renaturing component is the presence of extra- 

chromosomal DNA in the cell. However, we have been unable to detect plasmids in 
R . vannielii cells (results not shown; Dow, 1972), and there is no genetic evidence to suggest 
a plasmid is present. Similarly Wood e l al. (1976) concluded that plasmids were absent 
from C aulobacter crescentus, a prosthecate bacterium, which also has an obligate dimorphic 
cell oycle.
The rapidly reassociating fraction formed hybrids at a rate independent of concentration, 

suggesting that intramolecular hybridization was occurring. This was confirmed by electron 
microscopic examination of heat-denatured, rapidly cooled DNA, which showed that 
adjacent short inverted repeats have reassociated, leaving the rest of the molecule single- 
stranded. Sequences similar to these have been found in both prokaryotic and eukaryotic 
genomes (Davidson e t a l., 1973; Kopecko& Cohen, 1975; Schmid e ta ! ., 1975), although their 
length and frequency varies. In C. crescentus they were found to occur approximately 
300 times per genome and have an average length of 500 base pairs (Wood e t a l., 1976). In 
R . vannielii they have an average length of400 base pairs and it is assumed they represent the 
whole of the rapidly reassociating fraction of the genome, i.e. approximately 5%. Thus, 
they may occur approximately 200 times per genome, but at present nothing can be con­
cluded about their distribution.
Inverted repeat sequences of about 130 base pairs in length have been implicated in 

recombination between plasmids pSC50 and pSClOl (Kopecko & Cohen, 1975). One can 
speculate that the inverted repeat sequences in bacteria may be ‘hot spots’ for recombination 
events.
Although the sequence complexity of R . vannielii is no greater than that of other bacteria, 

it does contain short inverted repeat sequences. The function of these sequences is unknown 
but they may be involved in recombination, or rearrangement of genetic material.

This work was funded through an S.R.C. Studentship to Linda E. Potts. We thank 
Mrs J. Jones for her excellent technical assistance, Dr J. H. Parish and Mrs V. Virrankoski- 
Castrodeza for help with the DN A  spreading technique, and Dr P. G. Boseley for the gift 
of pBR322.
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