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Optomechanical sensors involving multiple optical carriers can experience mechanically medi-
ated interactions causing multi-mode correlations across the optical fields. One instance is laser-
interferometric gravitational wave detectors which introduce multiple carrier frequencies for classical
sensing and control purposes. An outstanding question is whether such multi-carrier optomechanical
sensors outperform their single-carrier counterpart in terms of quantum-limited sensitivity. We show
that the best precision is achieved by a single-carrier instance of the sensor.

Introduction.—The use of quantum-mechanical systems
and non-classical properties for high-precision estima-
tion tasks has attracted interest in a number of sensing
schemes, including in laser-interferometric gravitational
wave (GW) detectors [1–5] and related problems [6, 7],
magnetometry [8, 9], and atomic clocks [10, 11]. Direct de-
tection of GWs was one of the earliest problems to demand
such analysis [12], suggesting use of non-classical light—
squeezed vacuum states—to improve precision [1, 13].

Sensing mechanical displacements optically, such as
in laser-interferometric GW detectors [14, 15], relies on
interactions between optical and mechanical degrees of
freedom is the domain of optomechanical [16, 17] sen-
sors. Light incident on a mechanical oscillator causes
the mechanical oscillator to act as an active element
which produces squeezing of optical modes [2, 18]—the so-
called ponderomotive squeezing. Such squeezing acts as a
noise source constraining the current generation of laser-
interferometric GW detectors [2, 14] due to anti-squeezing
of the quadrature in which the signal is encoded which
manifests as a measurement backaction, with techniques
to avoid such backaction drawing significant interest [19–
21]. The same effect has been demonstrated as a squeezed
light source [22–24], which can potentially improve sen-
sors’ precision [1, 2, 13].

The extension to multi-mode optomechanical systems
has proven fruitful in both the many mechanical [25] and
optical [26, 27] mode scenarios, as well as for optical fre-
quency conversion [28, 29]. This includes sensors such
as laser-interferometric GW detectors, particularly those
encompassing modifications which utilise multiple laser
frequencies: so-called multi-carrier interferometers. Origi-
nally implemented in Advanced LIGO for classical sensing
and control purposes [30, 31], a second carrier can improve
the low-frequency sensitivity by partially cancelling the
strong backaction of the main carrier [32, 33]. Multiple
carriers can provide a means to enhance the sensitivity
and surpass the standard quantum limit (SQL) [14] by
using the optical spring effect, while not suffering from
the instabilities associated with the single-carrier case and
allowing for some shaping of the sensitivty curves [34, 35].
The value of multiple carriers in improving the sensors’

fundamental quantum limit, which is more stringent than
the SQL, remains open.
In this Letter we provide the fundamental quantum

limits on the precision of multi-carrier optomechanical sen-
sors, including laser-interferometric GW detectors, using
quantum metrology techniques. These limits are imposed
by the classical and quantum Fisher information—via the
Cramér-Rao bound (CRB) on precision of an estimator—
from quantum estimation theory [36–41]. Our multimode
analysis includes optical loss at the output and squeezed
light injection; as well as the optomechanical interaction—
the ponderomotive squeezing effect.

Multi-mode quantum states have been studied in quan-
tum metrology [42–46]. By including a noise source
which itself introduces multi-mode correlations, pondero-
motive squeezing, for the first time we show that for a
large class of optomechanical sensors multiple carriers
are no better than single carriers. Hitherto neglected in
estimation-theoretic quantum metrology studies of GW
detectors [4, 7] ponderomotive squeezing dominates the
low-frequency quantum noise of GW detectors [2] as well
as smaller optomechanical systems [47–49]. We bridge this
gap, providing analytical expressions for the fundamental
quantum limits of multi-mode optomechanical sensors
featuring ponderomotive squeezing. This should guide
the development of novel optomechanical sensors and the
improvement of existing ones. Our large complement of
results can be navigated using Table I.
Framework.—We describe the optical part of our op-

tomechanical sensor with a linear input-output relation

b̂(Ω) =M(Ω)â(Ω) + h(Ω)~V(Ω), (1)

where M(Ω) is a complex matrix which determines a
Bogoliubov transformation between the incoming and
outgoing fields, and h(Ω)~V(Ω) is a displacement vector
which encodes the parameter h(Ω). Such input-output re-
lations are typically expressed in terms of the two-photon
formalism [50, 51], using the two operators â(ω)

1 = (âω+Ω+

â†ω−Ω)/
√

2, and â(ω)
2 = −i(âω+Ω − â†ω−Ω)/

√
2. We intro-

duce d pairs of such operators {â(ω1)
1 , â

(ω1)
2 , · · · , â(ωd)

2 }
to describe the electromagnetic fields in an interfer-
ometer driven by light of multiple carrier frequencies
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Input & output Fundamental limit Freq. dependent homodyne Signal quadrature homodyne
Squeezed & lossy Eq. (12) Eq. (13) Eq. (14)

Identically squeezed & lossy Eq. (16) Eq. (16)a Eq. (18)
Unsqueezed & lossy Eq. (20) Eq. (20)a Eq. (21)
Squeezed & lossless Eq. (22) Eq. (22)b Eq. (F9)

a Attainable through the homodyne angle given by Eq. (17), otherwise for general homodyne angles these are found as limits of Eq. (13) or
in App. F.

b Attainable through the homodyne angle given by Eq. (23), otherwise for general homodyne angles these are given in App. F.

TABLE I. Expressions for precision of various interferometer limits. The unsqueezed and lossless case can be most readily
recognised from the lossy and unsqueezed case with limit η = 1. We provide some discussion of these results in the context of
LIGO detector in App. H.

Laser

External
squeezer

|~α〉

|0; ξ〉

âb̂

Bright
port

Dark
port

FIG. 1. An instance of an optomechanical sensor—a laser-
interferometric gravitational wave detector with multiple dif-
ferent frequency carrier-modes. Circulating light couples to
the mechanical motion of the mirrors inside the interferometer
arms. â and b̂ describe the field of the carrier-mode sidebands,
entering and exiting the interferometer respectively at the
dark port.

{ω1, ω2, · · · , ωd}. From these creation/annihilation oper-
ators, we can form hermitian position (x̂(ω)

1,2 ) and momen-
tum (p̂(ω)

1,2 ) operators, spanning the same phase space and
obeying suitable commutation relations (see App. A).

Suppressing the Ω argument for brevity; we focus on the
case where we wish to estimate the size of the displacement
h, withM and V consisting of the 2×2 and 2×1 blocks [33,
34], see also App. B

Mjk = ei(βj+βk)

(
δjk 0

−χ√κjκk δjk

)
,

Vj =
eiβj

hSQL

(
0

χ
√

2κj

)
,

(2)

where δij is the Kronecker delta, βi are phases, κi ≥ 0.
χ ∈ {−1, 1} is the sign of the mechanical response and can
be taken to be positive, since one with a negative response
is identical to one with a positive χ with a fixed phase
shift preceding and succeeding it, which can be captured
by rotating input squeezing and output homodyne angles
respectively. The attainable precisions are thus directly

related; see App. B. The presence of the √κjκk term on
the off-diagonals produces a multi-mode squeezing across
all the optical modes, which is ponderomotive in origin.
The ponderomotive squeezing introduced with a single op-
tical mode—with frequency ω—is itself multi-mode with
correlations between the ω+Ω and ω−Ω. When multiple
optical fields are used they each affect the mechanical mo-
tion and in turn the mechanical motion causes squeezing
of each optical mode leading to entanglement between
ωj + Ω and ωk + Ω optical modes.

In the case of a multi-carrier laser-interferometric GW
detector as in Fig. 1 in the tuned configuration, κi is the
normalised intensity of the i-th carrier

κi =
16Iiωiγi

mcLΩ2 (γ2
i + Ω2)

, hSQL =

√
8~

mΩ2L2
, (3)

where Ii is the arm cavity power of the ith mode, ωi the fre-
quency of the ith mode, γi the arm cavity half-bandwidth
of the ith mode, m the test mass, and L the interferome-
ter arm length [15]. The signal-recycling mirror [52–54]
introduces more involved input-output relations but at
low-frequencies where radiation-pressure dominates the
quantum noise they can be approximated with the same
form of Eq. (2) [55]. Interferometer modifications such as
the quantum speed meter [15, 54, 56] also have the same
form of input-output relations as Eq. (2) and our results
can be applied directly with appropriate definition of κi.
As Eq. (1) is a linear mapping between creation oper-

ators, the optical fields through the sensor evolve under
a Gaussian unitary [57]. Common input states such as
(squeezed) vacuum are themselves Gaussian [1–3], there-
fore the output state can be taken as Gaussian for relevant
cases. From the evolution of the quadrature operators

x̂′ =
Mâ +M∗â† + h~V + h∗~V∗√

2
,

p̂′ =
Mâ−M∗â† + h~V − h∗~V∗

i
√

2
,

(4)

we can extract the displacement and symplectic operators

~dV =
√

2

(
<[h~V]

=[h~V]

)
, SM =

(
<M −=M
=M <M

)
, (5)
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where < and = denote the real and imaginary parts. The
first- and second-order moments ~dIn and σIn of a Gaussian
input evolve through the sensor as

~dOut = ~dIn + ~dV , σOut = SMσInSTM. (6)

Quantum estimation.—The CRB and quantum Cramér-
Rao bound (QCRB) are successive lower bounds on the
variance (∆h̃)2 = E[h̃2]− E[h̃]2 of an unbiased estimator
h̃ for a parameter h which parameterises some probability
distribution P (~x|h) and in turn some state ρ(h) which is
given by

(∆h̃)2 ≥ 1

F (h)
≥ 1

H(h)
, (7)

where F (h) is the classical Fisher information (CFI) and
H(h) the quantum Fisher information (QFI). The CFI
depends on the sampled probability distribution as [37–41]

F (h) =
∑
{~x}

1

P (~x|h)

(
∂P (~x|h)

∂h

)2

, (8)

and the QFI can be derived from the fidelity as [37–41]

H(h) = −4 lim
dh→0

{
∂2

∂(dh)2
F(ρh, ρh+dh)

}
, (9)

where the fidelity is F(ρ1, ρ2) = Tr
[√√

ρ1ρ2
√
ρ1

]
. For

single-parameter estimation there always exists some pos-
itive operator valued measurement for which the second
inequality of Eq. (7) is saturated [37, 39].
For a parameter encoded only in the displacements of

a Gaussian state the QFI is [42, 58–60]

H(h) = 2(∂h~d)Tσ−1(∂h~d), (10)

where ~d and σ are the displacement vector and covariance
matrix of the Gaussian state respectively.
M and ~V can be expressed asM = BMB and ~V = B~V ,

where B = diag
(
eiβ112×2, · · · , eiβd12×2

)
, and M and ~V

are real for all cases given by Eq. (2). With an input
state that can be written as σIn = σ0 ⊕ σ0, the QFI for
the parameter |h| is then (see App. C) given by

H(|h|) = 4~V T
(
Mσ0M

T
)−1 ~V . (11)

As Eq. (11) is independent of arg(h) we henceforth take
h to be real and positive.
To compare with the spectral noise density which is

typically used to describe the sensitivity of sensors [2,
14, 33] the CRBs should be multiplied by 4 as Sn(Ω) =
4/F (h), see App. D. Our bounds therefore have a pre-
factor h2

SQL/8 in comparison to results using the single-
sided spectral density where the equivalent pre-factor is
h2

SQL/2 [2, 33].
Sensor scheme.—From Eq. (2) the optical modes are

coupled through a multi-mode squeezing, which are

weighted through the optical intensities of each mode.
We model optical loss at the detector by mixing the out-
going modes b̂ with a (Gaussian) enviromnent at a beam
splitter with transmittivity η as b̂ → √ηĉ +

√
1− ηn̂,

with reflected light dumped in a set of modes n̂ which are
traced out from the final state leaving only the measurable
modes ĉ accessible. The effect on the final state is

~d→ √η~d, σ → ησ + (1− η)σLoss,

where we will take the input from the environment to be
pure vacumm, namely σLoss = 1.
Externally squeezed light inputs can enhance preci-

sion [1–3] and has already been demonstrated in current
GW detectors [3, 61]. With multi-mode interferometers
one feasible generalisation is to have parallel squeezing
for the sidebands of each carrier frequency, with some
squeezing ξj = rje

iφj in the x̂(j)
1 and x̂(j)

2 modes.
Our main result is the fundamental quantum limit to

the precision of the interferometer scheme described—
with arbitrary intensity and external squeezing in each
mode—which is

(∆h)
2 ≥

h2
SQL

8

{
[1− (1− η)η〈SΓ〉]2

η [(1− η)〈Γ〉+ η〈QΓ〉]
+ (1− η)〈PΓ〉

}
,

(12)
where we define the diagonal matrices Qii =
(cosh 2ri + sinh 2ri cos 2φi), Sii = sinh 2ri sin 2φi, Γii ={[

(1− η)2 + η2
]

+ 2η(1− η) cosh 2ri
}−1, P = η1 + (1−

η)Q, and 〈A〉 is defined as
d∑

i,j=1

√
κiκjAij . The depen-

dency on carrier mode intensity is a function of sum-
mations over κi weighted by various functions of the
squeezing magnitude and angle in the respective mode.

Attainability of quantum-limited precision requires the
application of specific measurement schemes on the quan-
tum system. Homodyne detection covers both mea-
surement of the signal quadrature which is in active
use [2, 15, 62, 63] and the more general frequency-
dependent homodyne [2, 15, 33, 54] that measures along
a different quadrature for each frequency mode Ω of the
signal. Both of these can be modelled by performing homo-
dyne detection on some quadrature sin θix̂

(i)
1 + cos θix̂

(i)
2

for each carrier mode, in which θi can be frequency de-
pendent. This provides a precision of

(∆h)
2 ≥

h2
SQL

8

{[
1− η

(
〈G2Y −1S〉+ 〈FGY −1Q〉

)]2
η〈G2Y −1〉

+ (1− η)〈QY −1〉+ η〈G2Y −1〉

}
, (13)

where we further define the diagonal matrices Fii = sin θi,
Gii = cos θi, and Yii = 1−η+η[cosh 2ri−sinh 2ri cos(2φi+
2θi)].
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For measurements along the signal quadrature, F = 0,
G = 1, Y = T in Eq. (13) and the precision reduces to

(∆h)
2 ≥

h2
SQL

8

[(
1− η〈ST−1〉

)2
η〈T−1〉

+ 〈PT−1〉

]
, (14)

where T is the diagonal matrix Tii = 1 − η +
η (cosh 2ri − sinh 2ri cos 2φi).

The bounds in Eqns. (12)–(14) all take the form

(
1−

∑
i

c
(i)
1 κi

)2

∑
i

c
(i)
2 κi

+
∑
i

c
(i)
3 κi, (15)

for any given input squeezing configuration, with c(i)2 > 0

and c
(i)
3 ≥ 0 with the equality c

(i)
3 = 0 only holding if

η = 1 which we consider explicitly as a special case later.
When c(i)2 > 0 and c(i)3 > 0, namely for η < 1, Eq. (15)
is always minimised (though not necessarily uniquely)

over {κi} ∈ [0,∞] by some κj = 1/

√
(c

(j)
1 )2 + c

(j)
2 c

(j)
3

and κk = 0,∀k 6= j. See App. G for the complete proof.
This establishes our main conclusion that multi-carrier
optomechanical sensors are fundamentally no better than
their single carrier counterparts.
Special cases.—With an identical external squeezing

of reiφ in each mode, the fundamental quantum limit in
Eq. (12) becomes

(∆h)
2 ≥

h2
SQL

8

η2 + (1− η)
[
(1− η) + 2η cosh 2r − 2ηκTot sinh 2r sin 2φ+ ηκ2

Tot (cosh 2r + sinh 2r sin 2φ)
]

ηκTot [(1− η) + η (cosh 2r + sinh 2r sin 2φ)]
, (16)

where κTot =
d∑
i=1

κi is the sole κ-dependent term. In this case the fundamental quantum limit given in Eq. (16) can be

saturated with frequency-dependent homodyne using a homodyne angle of

θi = arctan

(
η
κTot (cosh 2r + sinh 2r cosh 2φ)− sinh 2r sin 2φ

1− η + η (cosh 2r + sinh 2r cos 2φ)

)
,∀i. (17)

Measurement along the signal quadrature in this identical squeezing regime yields a precision of

(∆h)
2 ≥

h2
SQL

8

[
1− η + η (cosh 2r − sinh 2r cos 2φ)

ηκTot
+ κTot (cosh 2r + sinh 2r cos 2φ)− 2 sinh 2r sin 2φ

]
, (18)

which can be optimised by a frequency-dependent squeez-
ing angle φ = arctanκTot, to give a precision

(∆h)
2 ≥

h2
SQL

8

[
1− η + ηe−2r

ηκTot
+ e−2rκTot

]
. (19)

In the limit of zero squeezing, the fundamental quantum
limit reduces to

(∆h)
2 ≥

h2
SQL

8

[
1

ηκTot
+ (1− η)κTot

]
. (20)

This takes the same form as the single-mode limit [2, 33]
with κTot taking the place of the single carrier κ.

Using the frequency-dependent homodyne angle given
by Eq. (17), this precision can be attained with the homo-
dyne angle arctan (ηκTot). Considering homodyne along
the signal quadrature instead, the precision given by
Eq. (14) reduces to

(∆h)
2 ≥

h2
SQL

8

[
1

ηκTot
+ κTot

]
. (21)

In the lossless limit η = 1 with squeezings not necessar-
ily identical across the carriers, the fundamental quantum

limit is

(∆h)
2 ≥

h2
SQL

8

1

KTot
, (22)

where we define KTot as KTot =
d∑
i=1

κi (cosh 2ri + sinh 2ri cos 2φi), annd the bound

displays shot-noise behaviour, being minimised as
κi → ∞. This bound is attained by the frequency-
dependent homodyne angle

θi = arctan

(
KTot − sinh 2ri sin 2φi

cosh 2ri + sinh 2ri cos 2φi

)
,∀i, (23)

while a squeezing angle φi = 0,∀i optimises the precision.
Conclusions and discussions.—We have shown that no

improvement is afforded in the fundamental sensitivity
bound in a large class of optomechanical sensors by simul-
taneous use of multiple carrier modes, including under
the effect of optical loss. With identical squeezing in each
mode the precision is determined solely by κTot and no
other properties of the distribution of {κi}. Introducing
squeezing with different magnitudes of angles breaks this
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symmetry but the optimum interferometer configuration
is not enhanced by the presence of multiple carriers.
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Appendix A: Phase space with respect to the two-photon formalism

From the two-photon operators

â1 =
âω+Ω + â†ω−Ω√

2
, â2 =

âω+Ω − â†ω−Ω

i
√

2
, (A1)

one can construct hermitian position and momentum operators from â1 and â2 as

x̂1 =
â1 + â†1√

2
=
â+ + â†− + â†+ + â−

2
=
x̂+ + x̂−√

2
, (A2)

x̂2 =
â2 + â†2√

2
=
â+ − â†− − â

†
+ + â−

2i
=
p̂+ + p̂−√

2
, (A3)

p̂1 =
â1 − â†1
i
√

2
=
â+ + â†− − â

†
+ − â−

2i
=
p̂+ − p̂−√

2
, (A4)

p̂2 =
â2 − â†2
i
√

2
=
−â+ + â†− − â

†
+ + â−

2
=
−x̂+ + x̂−√

2
, (A5)

where we adopt â± as shorthand for âω±Ω, x̂± for x̂ω±Ω, and p̂± for p̂ω±Ω. We can recognise from this that the position
and momentum operators of the two-photon creation/annihilation operators correspond to a rotation of the sideband
frequency creation/annihilation operators. Thus we shall express states as a function of the {x̂1, x̂2, p̂1, p̂2} operators
which we see is equivalent to the use of the {x̂+, p̂+, x̂−, p̂−} operators through a simple change of basis. Here the
non-zero commutators, [x̂+(ΩA), p̂+(ΩB)] = [x̂−(ΩA), p̂−(ΩB)] = iδ(ΩA − ΩB) in terms of the frequency quadratures,
have become [x̂1(ΩA), x̂2(ΩB)] = [p̂1(ΩA), p̂2(ΩB)] = iδ(ΩA − ΩB).

Appendix B: Input-output relations for a gravitational-wave interferometer

Optical interferometers typically require mirrors to redirect light back to a common point in order to generate
interference. When the motion of the mirrors are disturbed by the reflected light a squeezing of the optical fields is
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produced through the interaction between optical and mechanical modes. This optomechanical effect is particularly
apparent in systems used to resolve the displacement of the mechanical system such as laser-interferometric gravitational
wave (GW) detectors.

For the tuned interferometer optical fields evolve through the interferometer as [64]

b̂
(j)
1 (t) = â

(j)
1 (t− 2τ), (B1)

b̂
(j)
2 (t) = â

(j)
2 (t− 2τ) +

√
2Ij
~ωj

ωj
c
x̂d(t− τ), (B2)

where x̂d is the differential motion of the two mirrors and common to all optical modes. The signal to sense h(t) acts
on the mechanical part of the optomechanical sensor as a force causing the interferometer arm lengths to vary. In the
tuned configuration differential motion of the mirrors is thus

m¨̂xd(t) +mΩpx̂d(t) = 4
∑
i

√
2~ωiIi
c2

â
(i)
1 (t− τ) +mLḧ(t). (B3)

Translating the optical field evolution to the frequency domain Eqs. (B1) and (B2) become

b̂
(j)
1 (Ω) = e2iΩτj â

(j)
1 (Ω), (B4)

b̂
(j)
2 (Ω) = e2iΩτj â

(j)
2 (Ω)− eiΩτj

m(Ω2 − Ω2
p)

√
2Ij
~ωj

ωj
c

[∑
i

4eiΩτi

√
2~ωiIi
c2

â
(i)
1 (Ω)−mLΩ2h(Ω)

]
, (B5)

where the 1/
(
Ω2 − Ω2

p

)
term produces a resonance at Ω = Ωp.

From this we derive the expressions for multi-mode input-output relations (Eq. (2) in the main text)

Mjk = ei(βj+βk)

(
δjk 0

−χ√κjκk δjk

)
, Vj = χ

eiβj

hSQL

(
0√
2κj

)
. (B6)

where

χ = sign
(
Ω2 − Ω2

p

)
κi =

∣∣∣∣∣ 2
√

2Iiωi

mc2
(
Ω2 − Ω2

p

) ∣∣∣∣∣ βi = Ωτi hSQL =

√
4~

mL2Ω2
(B7)

give the input-output relations for a simplified interferometer, accounting for the cavity modes retrieves the form given
in Eq. (3) in the main text [64]. In the tuned configuration the pendulum response can typically be found around
∼1 Hz [55, 65] which lies below the principal frequency range of advanced LIGO [65] and so it is sufficient to take
Ωp � Ω and consider χ = 1 and drop the Ωp from the definition of κi.
Through the signal-recycling mirror [52, 66] the mechanical response is modified to exhibit a spring-like reaction

at some higher frequency Θ which does appear at larger frequencies. While the input-output relations are generally
more complicated than those of Eq. (B6) in the low-frequency regime—where radiation pressure dominates—the
input-output relations can be reduced to follow the form of Eq. (B6) [55]. In the low-frequency domain, with mirror
motion well below the cavity bandwidth (Ω� γi) the signal-recycling mirror configuration reduces to the same form
of input-output relations as Eq. (B6) with the optomechanical couplings κi being proportional to 1/

(
Ω2 −Θ2

)
and

χ = sign(Ω2 −Θ2).

The two cases χ = 1 and χ = −1 can be related through the phase shift D =
d⊕
i=1

(
1 0
0 χ

)
and so the χ = 1 response

is equivalent to an interferometer with negative response which undergoes a π phase shift acting on x̂2 and p̂2 before
the initial state is input to the sensor and after the state is output from the sensor.

Specifically for a squeezed vacuum input such as in Eq. (E1)

σ =

2⊕
i=1

 d⊕
j=1

(
cosh 2rj + sinh 2rj cos 2φj sinh 2rj sin 2φj

sinh 2rj sin 2φj cosh 2rj − sinh 2rj cos 2φj

) ,
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if then followed by a phase shift D which acts as (D ⊕D)σ(D ⊕D) leaving the squeezing maginitudes unchanged and
negates the squeezing angles

(D ⊕D)σ(r1, φ1, · · · , rd, φd)(D ⊕D)

= (D ⊕D)


2⊕
i=1

 d⊕
j=1

(
cosh 2rj + sinh 2rj cos 2φj − sinh 2rj sin 2φj
− sinh 2rj sin 2φj cosh 2rj − sinh 2rj cos 2φj

) (D ⊕D)

= σ(r1,−φ1, · · · , rd,−φd),

the squeezing angles {φi} when χ = −1 give the same sensitivity as the squeezing angles {−φi} in the absence of the
phase shift. Similarly performing a rotation θi between x̂

(i)
1 and x̂(i)

2 as done to model homodyne detection in App. F
after the phase operation D is equivalent to performing the rotation −θi without the phase shift. This allows us to
recover sensitivities for the χ = −1 response from the expressions for the χ = 1 response and apply our conclusions to
either sign of the response.

Appendix C: Quantum Cramér-Rao bound for estimating a displacement from input-output relations

For a Gaussian input state whose covariance matrix is block-diagonal, namely σdark = σ0 ⊕ σ0, and has an
input-output relation of the form

b̂(Ω) = BMBâ(Ω) + h(Ω)B~V (Ω), (C1)

where M ∈ R2d×2d and ~V ∈ R2d, and B = diag(eiβ1 , eiβ1 , eiβ2 , eiβ2 , · · · , eiβd , eiβd).
The evolved state is given by

~d =
√

2SB
(
<[h]~V

=[h]~V

)
, σ = SB

(
M (<[B]σ0<[B] + =[B]σ0=[B])MT 0

0 M (<[B]σ0<[B] + =[B]σ0=[B])MT

)
STB .

(C2)
The quantum Fisher information (QFI) for the magnitude of any signal |h| =

√
(<h)2 + (=h)2 is given by

H(|h|) = 2(∂|h| ~d)Tσ−1(∂|h| ~d), (C3)

which for ~d and σ of form

~d = S
(
<[h] ~W

=[h] ~W

)
, σ = S

(
σN 0
0 σN

)
ST , (C4)

is

H(|h|) = 2
[
(∂|h|<h)2 + (∂|h|=h)2

]
~WTσ−1

N
~W, (C5)

as (∂|h|<h)2 + (∂|h|=h)2 = 1 the QFI can thus be reduced to

H(|h|) = 2 ~WTσ−1
N

~W, (C6)

which is equivalent to the QFI obtained by taking the signal to be real.
The ideal state in Eq. (C2) is of the form of Eq. (C4) and remains such under mixture with any Gaussian

state of the same form, including thermal states which have a diagonal covariance matrix, producing a state
η (<[B]σ0<[B] + =[B]σ0=[B]) + (1− η)σ1.

H(|h|) = 4~V T
[
ηM (<[B]σ0<[B] + =[B]σ0=[B])MT + (1− η)σ1

]−1 ~V , (C7)

Thus taking h ∈ R allows us to consider only the x̂ modes as the state has a covariance matrix with block form
σ0 ⊕ σ0 it is separable between the x̂ and p̂ modes; with the latter modes contain no parameter dependence and
being uncorrelated with any of the modes which have a parameter-dependence the p̂ modes can be discarded from our
analysis.
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If the input covariance matrix σ0 and the covariance matrix the state is mixed with at the output σ1 are block-diagonal
with block size n and B is of the form

⊕
j e
iβj1n×n, then this simplifies through <[B]σ0<[B] + =[B]σ0=[B] = σ0 and

<[B]σ1<[B] + =[B]σ1=[B] = σ1.

H(|h|) = 4~V T
(
ηMσ0M

T + (1− η)σ1

)−1 ~V . (C8)

This is the case for systems considered in Apps. E and F where the externally input squeezing is localised to a carrier
and so σ0 is block-diagonal with 2×2 blocks.

Appendix D: Relation between the Cramér-Rao bound and spectral density for a signal with white Gaussian
noise

For estimating a signal h(t) from a measured signal y(t) = h(t) + w(t), which is a stationary process, the sensitivity
can be measured by the single-sided spectral density [14, 67]

S(Ω) = 2

∞∫
−∞

dτ Cw(τ) cos(Ωτ), (D1)

where Cw(τ) is the autocorrelation function

Cw(τ) = lim
T→∞

1

2T

T∫
−T

dt [w(t)− w̄][w(t+ τ)− w̄], (D2)

where w̄ is the time-average of w. For a white Gaussian noise process Cw(τ) = υδ(τ), this is simply

S(Ω) = 2υ. (D3)

For the same signal y(t) = h(t) + w(t) the precision of any estimator of a parameter g of the signal is [68]

(∆h)2 ≥ υ

E

[(
∂h(t)
∂g

)2
] . (D4)

The equivalent case of interest to the spectral noise density is the amplitude of the frequency modes h(Ω), for which
the relevant derivative is

∂h(t)

∂|h(Ω)|
=

∂

∂|h(Ω)|

∞∫
−∞

dΩ′ h(Ω′)eiΩ
′t

=

∞∫
−∞

dΩ′
[
δ(Ω− Ω′)ei arg(h(Ω′)) + δ(Ω + Ω′)ei arg(h(Ω′))

]
eiΩ
′t

= 2 cos [Ωt+ arg(h(Ω))] ,

(D5)

where the derivative yields two terms due to the Fourier transform property h(−Ω) = h(Ω)†. The expectation of the
square of ∂|h(Ω)|h(t) is then simply 2 giving a Cramér-Rao bound (CRB) of

(∆|h(Ω)|)2 ≥ υ

2
, (D6)

showing a proportionality constant of 4 relating these two methods of calculating sensitivities given by Eqs. (D3)
and (D6).



10

Appendix E: Quantum Cramér-Rao bound for a lossy interferometer with squeezed vacuum input

Parallel squeezing corresponds to the covariance matrix of the x̂ operators on the input dark port being

σdark =

d⊕
i=1

(
cosh 2ri + sinh 2ri cos 2φi sinh 2ri sin 2φi

sinh 2ri sin 2φi cosh 2ri − sinh 2ri cos 2φi

)
, (E1)

which evolves through the interferometer to

σij =

(
δij(cosh 2ri + sinh 2ri cos 2φi)

δij sinh 2ri sin 2φi −
√
κiκj(cosh 2rj + sinh 2rj cos 2φj)

δij sinh 2ri sin 2φi −
√
κiκj(cosh 2ri + sinh 2ri cos 2φi)

δij(cosh 2ri − sinh 2ri cos 2φi)−
√
κiκj (sinh 2ri sin 2φi + sinh 2rj sin 2φj −KTot)

) (E2)

where each mode has a squeezing ξk = rke
iφk , and

KTot =

d∑
k=1

κk (cosh 2rk + sinh 2rk cos 2φk) ,

represents a squeezed version of κTot.
The effect of loss on σ is to mix the matrix with the state σLoss, which we will take to be the vacuum state, under

σ → ησ + (1− η)σLoss,

produces the Gaussian state on the x̂ modes

σij = δij

(
η (cosh 2ri + sinh 2ri cos 2φi) + (1− η) η sinh 2ri sin 2φi

η sinh 2ri sin 2φi η (cosh 2ri − sinh 2ri cos 2φi) + (1− η)

)
− η√κiκj

(
0 cosh 2ri + sinh 2ri cos 2φi

cosh 2rj + sinh 2rj cos 2φj sinh 2ri sin 2φi + sinh 2rj sin 2φj −KTot

)
.

(E3)

This covariance matrix has no obvious inverse, however we can rearrange σ in block form such that the top left quarter
is the covariances of the x̂

(ωi)
1 operators and observe that this can be rewritten in terms of the matrices Q, R, S, and

L where

Qij = δij (cosh 2ri + sinh 2ri cos 2φi) ,

Rij = δij (cosh 2ri − sinh 2ri cos 2φi) ,

Sij = δij sinh 2ri sin 2φi,

Lij = ~k~kT =
√
κiκj ,

(E4)

such that

σ =

(
(1− η)1 + ηQ η (S −QL)
η (S − LQ) (1− η)1 + η (R− SL− LS +KTotL)

)
, (E5)

the inverse can then be found, with all blocks being invertible with the Woodbury matrix identity

(A+ UCV )
−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1, (E6)

The parameter information is encoded in the {x̂(ωi)
2 } modes and so calculation of the quantum Cramér-Rao bound

(QCRB) requires the lower right quarter of the inverse. For a block matrix, the inverse is(
A B
C D

)−1

=

( (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

)
.

The relevant inverses are given—using Eq. (E6)—by

D−1 = T−1 − η

α
T−1

(
~k S~k

)(KTot − η〈ST−1S〉 −1 + η〈T−1S〉
−1 + η〈T−1S〉 −η〈T−1〉

)(
~kT

~kTS

)
T−1, (E7)
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where we introduce the definitions 〈Z〉 = Tr [LZ], and can thus rewrite KTot as 〈Q〉, and define T = (1− η)1 + ηR
and α = 1 + η

[
KTot〈T−1〉 − 2〈ST−1S〉+ η

(
〈ST−1〉2 − 〈T−1〉〈ST−1S〉

)]
. As well as

(
A−BD−1C

)−1
= W−1 −W−1

(
ST−1~k U~k

)
X−1

(
~kTT−1S
~kTU

)
W−1, (E8)

where U =
(
Q− ηST−1S

)
, W = (1− η)1 + ηQ− η2ST−1S, and

X =

(
〈T−1〉
η2 + 〈T−1SW−1ST−1〉 1−η〈ST−1〉

η2 + 〈T−1SW−1U〉
1−η〈ST−1〉

η2 + 〈T−1SW−1U〉 −〈Q〉+η〈ST
−1S〉

η + 〈UW−1U〉

)
.

From this the QFI can be evaluated with

H(h) =
8η

h2
SQL

d∑
i,j=1

√
κiκj

(
σ−1

)
d+i,d+j

.

From these expressions we can (after much simplification) construct the QFI

H(h) =
8η

h2
SQL

(1− η)〈Γ〉+ η〈QΓ〉
1− (1− η)η {〈SΓ〉 [2− (1− η)η〈SΓ〉]− [η〈Γ〉+ (1− η)〈QΓ〉] [(1− η)〈Γ〉+ η〈QΓ〉]}

, (E9)

where

Γ = T−1W−1 =
{[

(1− η)2 + η2
]

1 + η(1− η) (Q+R)
}−1

,

from which the QCRB is given by

(∆h)
2 ≥

h2
SQL

8

{
1

η(1− η)〈Γ〉+ η2〈QΓ〉
−(1−η)

[
2

〈SΓ〉
(1− η)〈Γ〉+ η〈QΓ〉

−η(1−η)
〈SΓ〉2

(1− η)〈Γ〉+ η〈QΓ〉
−(η〈Γ〉+ (1− η)〈QΓ〉)

]}
.

(E10)
If we assume an equal squeezing mode and angle in each mode this QCRB reduces to

(∆h)
2 ≥

h2
SQL

8

{
1 + 2η(1− η) (cosh 2r − 1)− 2η(1− η)κTot sinh 2r sin 2φ+ η(1− η)κTotKTot

η [(1− η)κTot + ηKTot]

}
. (E11)

Appendix F: Cramér-Rao bounds for a lossy interferometer with squeezed vacuum input under homodyne
detection

The results of homodyne measurement are given by the marginal distribution of the Wigner function consisting of a
set of commuting quadratures [57]. Homodyne measurement local to each carrier-mode would consist of performing
homodyne read-out with some angle θi between the two {x̂(ωi)

1 , x̂
(ωi)
2 } modes, where we omit the p̂ modes by takin

h to be real and thus leaving the statistics of these modes independent of h. Providing this angle is equivalent to
performing a rotation θi between the x̂(i)

1 and x̂(i)
2 modes

SHom.(~θ) =


cos θ1 − sin θ1 · · · 0 0
sin θ1 cos θ1 · · · 0 0

...
...

. . .
...

...
0 0 · · · cos θd − sin θd
0 0 · · · sin θd cos θd

 (F1)

and then measuring the x̂(i)
2 quadratures. The resultant probability distributions are Gaussian with first-order moments

~w =
2h

hSQL


√
κ1 cos θ1√
κ2 cos θ2

...√
κd cos θd

 , (F2)
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and the second-order moments are given by

Σ = (1− η)1 + η (FQF + FSG+GSF +GRG− (GS + FQ)LG−GL (SG+QF ) +KTotGLG) , (F3)

where Gij = δij cos θi, and Fij = δij sin θi. The classical Fisher information (CFI) of a Gaussian probability distribution
can similarly be evaluated in terms of its moments as [68]

I(h) = 2
∂ ~wT

∂h
Σ−1 ∂ ~w

∂h
+

1

2
Tr

[(
∂Σ

∂h
Σ−1

)2
]
, (F4)

where our definition of the covariance matrix σ differs from that of Ref. [68] by a factor of 2, leading to the extra
factor in the first term of Eq. (F4). The CFI is then given by

I(h) =
8η

h2
SQL

∑
i

cos θi cos θj
√
κiκj

(
Σ−1

)
ij

=
8η

h2
SQL
〈G2Σ−1〉,

where Σ−1 can be calculated with Eq. (E6) to be

Σ−1 = Y −1

− Y −1
(
G~k (GS + FQ)~k

)( 〈G2Y −1〉 − 1
η + 〈GY −1 (GS + FQ)〉

− 1
η + 〈GY −1 (GS + FQ)〉 − (1−η)

η 〈QY
−1〉 − 〈G2Y −1〉

)−1(
~kTG

~kT (SG+QF )

)
Y −1,

(F5)
where Y = (1− η)1 + η

(
F 2Q+ 2FGS +G2R

)
. Thus I is given by

I(h) =
8η

h2
SQL
〈G2Σ−1〉

=
8η

h2
SQL

[
〈G2Y −1〉 −

(
〈G2Y −1〉 〈GY −1 (GS + FQ)〉

)
(

〈G2Y −1〉 − 1
η + 〈GY −1 (GS + FQ)〉

− 1
η + 〈GY −1 (GS + FQ)〉 − (1−η)

η 〈QY
−1〉 − 〈G2Y −1〉

)−1(
〈G2Y −1〉

〈GY −1 (GS + FQ)〉

)]

=
8η

h2
SQL

〈G2Y −1〉
[1− η〈GY −1(GS + FQ)〉]2 + η〈G2Y −1〉 [(1− η)〈QY −1〉+ η〈G2Y −1〉]

.

(F6)

which gives a CRB of

(∆h)
2 ≥

h2
SQL

8

{[
1− η

(
〈G2Y −1S〉+ 〈FGY −1Q〉

)]2
η〈G2Y −1〉

+ (1− η)〈QY −1〉+ η〈G2Y −1〉

}
. (F7)

1. Cramér-Rao bounds for measurement along the signal quadratures

For homodyne measurements along the signal quadrature Eq. (F6) reduces to

I =
8η

h2
SQL
〈Σ−1〉

=
8η

h2
SQL

〈T−1〉 −
(
〈T−1〉 〈T−1S〉

)( 〈T−1〉 − 1
η + 〈T−1S〉

− 1
η + 〈T−1S〉 −KTot

η + 〈ST−1S〉

)−1(
〈T−1〉
〈T−1S〉

)
=

8η

h2
SQL

〈T−1〉
(1− η〈T−1S〉)2

+ η〈T−1〉 (〈Q〉 − η〈ST−1S〉)
,

(F8)

where the limit is given by θi = 0,∀i, which implies F = 0, G = 1, and Y = T . With CRB

(∆h)
2 ≥

h2
SQL

8

[
(1− η〈T−1S〉)2

η〈T−1〉
+ 〈Q〉 − η〈ST−1S〉

]
(F9)
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In the lossless regime the bound becomes

(∆h)2 ≥
h2

SQL

8

[(
1− 〈R−1S〉

)2
〈R−1〉

+ 〈R−1〉

]
. (F10)

2. Cramér-Rao bounds for measurement along the optimal quadrature

In the limit ri = r, ∀i, φi = φ, ∀i, and θi = θ,∀i; Eq. (F7) reduces to

(∆h)
2 ≥

h2
SQL

8η

[
(1− η) sec2 θ + η

(
cosh 2r − sinh 2r cos 2φ+ 2 sinh 2r sin 2φ tan θ + (cosh 2r + sinh 2r cos 2φ) tan2 θ

)
κTot

+ η (KTot − 2 (sinh 2r sin 2φ+ (cosh 2r + sinh 2r cos 2φ) tan θ))

]
.

(F11)
The optimal homodyne angle for this case is given by

θ = arctan

(
η

KTot − sinh 2r sin 2φ

1− η + η(cosh 2r + sinh 2r cos 2φ)

)
, (F12)

at which homodyne angle the CRB becomes

(∆h)
2 ≥

h2
SQL

8η

η2 + (1− η) [(1− η) + 2η cosh 2r − 2κTot sinh 2r sin 2φ+ ηκTotKTot]

(1− η)κTot + ηKTot
, (F13)

attaining the QCRB given in Eq. (E11).
In the lossless limit η → 1 (with squeezings unconstrained) the CRB becomes

(∆h)
2 ≥

h2
SQL

8

{[
1−

(
〈G2Z−1S〉+ 〈FGZ−1Q〉

)]2
〈G2Z−1〉

+ 〈G2Z−1〉

}
, (F14)

where Z = F 2Q+ 2FGS +G2R. The homodyne angle

θi = arctan

(
KTot − sinh 2ri sin 2φi

cosh 2ri + sinh 2ri cos 2φi

)
, (F15)

then attains the QCRB of

(∆h)
2 ≥

h2
SQL

8

1

KTot
. (F16)

Appendix G: Multi-carrier optimum sensitivity

The Cramér-Rao bounds Eqs. (E10), (F7), and (F9) all have form

8

h2
SQL

(∆h)
2 ≥ B(κ1, · · · , κd) =

(
1−

∑
i

c
(i)
1 κi

)2

∑
i

c
(i)
2 κi

+
∑
i

c
(i)
3 κi, (G1)

with c(i)2 ≥ 0 and c(i)3 ≥ 0 with equality only holding only (but not necessarily) if η = 1.
The optimum sensitivity is achieved by minimising B which—unlike typical interferometry cases—generally does

not find maximum at κi →∞ as c(i)3 > 0 means B diverges when any κi →∞ and similarly at κi = 0,∀i B diverges.
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The derivatives and Hessian of Eq. (G1) are

∂B

∂κj
= −c(j)2

1−
∑
i

c
(i)
1 κi∑

i

c
(i)
2 κi


2

− 2c
(j)
1

1−
∑
i

c
(i)
1 κi∑

i

c
(i)
2 κi

+ c
(j)
3 , (G2)

∂2B

∂κj∂κk
=

2∑
i

c
(i)
2 κi

c(j)1 + c
(j)
2

1−
∑
i

c
(i)
1 κi∑

i

c
(i)
2 κi



c(k)

1 + c
(k)
2

1−
∑
i

c
(i)
1 κi∑

i

c
(i)
2 κi


 , (G3)

which being positive semi-definite for
∑
i

c
(i)
2 κi > 0 identifies B as convex.

Solving for roots of Eq. (G2) we find

1−
∑
i

c
(i)
1 κi∑

i

c
(i)
2 κi

= −c
(j)
1

c
(j)
2

±

√√√√(c(j)1

c
(j)
2

)2

+
c
(j)
3

c
(j)
2

, (G4)

where the + and − solutions are valid for
∑
i

c
(i)
1 κi < 1 and

∑
i

c
(i)
1 κi > 1 respectively; and are always positive and

negative respectively. This indicates that a solution to ∂κ1B = · · · = ∂κd
B = 0 cannot be found unless

− c
(j)
1

c
(j)
2

+

√√√√(c(j)1

c
(j)
2

)2

+
c
(j)
3

c
(j)
2

= −c
(k)
1

c
(k)
2

+

√√√√(c(k)
1

c
(k)
2

)2

+
c
(k)
3

c
(k)
2

, (G5)

for all j and k; or

− c
(j)
1

c
(j)
2

−

√√√√(c(j)1

c
(j)
2

)2

+
c
(j)
3

c
(j)
2

= −c
(k)
1

c
(k)
2

−

√√√√(c(k)
1

c
(k)
2

)2

+
c
(k)
3

c
(k)
2

, (G6)

for all j and k.
Considering first the case when neither Eq. (G5) nor Eq. (G6) hold for any j or k. As κi = 0,∀i and ∃i|κi = ∞

lead B to diverge, B must be extremised for κi ∈ [0,∞) with
∑
i

κi ∈ (0,∞). If ∂κiB = 0 and ∂κjB = 0 cannot

be simultaneously satisfied then we find instead a set of possible minima {κi|κj = 0,∀j 6= k} where κk is such that
∂κk

B = 0. These solutions are exactly the single-carrier configurations for the interferometer, which have optimal
precision at

κi = ± 1√
(c

(i)
1 )2 + c

(i)
2 c

(i)
3

, (G7)

where the − solution can be discarded as unphysical. The overall optimum sensitivity is thus

min
i

−2
c
(i)
1

c
(i)
2

+ 2

√√√√(c(i)1

c
(i)
2

)2

+
c
(i)
3

c
(i)
2

 , (G8)

which is obtained using the carrier l where

l = argmin
i

−2
c
(i)
1

c
(i)
2

+ 2

√√√√(c(i)1

c
(i)
2

)2

+
c
(i)
3

c
(i)
2

 . (G9)

When the solutions to ∂κi
B = 0 and ∂κj

B = 0 are compatible with one another then a family of potential solutions
exist satisfying

1−
∑
i∈A±j

c
(i)
1 κi

∑
i∈A±j

c
(i)
2 κi

= −c
(i)
1

c
(i)
2

±

√√√√(c(i)1

c
(i)
2

)2

+
c
(i)
3

c
(i)
2

, (G10)
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which reduces to ∑
i∈A±|

√
(c

(j)
1 )2 + c

(j)
2 c

(j)
3 κj = ±1, (G11)

where

A±j =

i
∣∣∣∣∣∣∣−
c
(j)
1

c
(j)
2

±

√√√√(c(j)1

c
(j)
2

)2

+
c
(j)
3

c
(j)
2

= −c
(i)
1

c
(i)
2

±

√√√√(c(i)1

c
(i)
2

)2

+
c
(i)
3

c
(i)
2

 . (G12)

The − solutions again require some κi < 0 which is unphysical and so we can consider only the positive solutions.
When solutions {κi} satisfy Eq. (G11) the precision attained is

− 2
c
(i)
1

c
(i)
2

+ 2

√√√√(c(i)1

c
(i)
2

)2

+
c
(i)
3

c
(i)
2

, (G13)

which is identical for all i ∈ A+
j . For a set of configurations of which the minimum and maximum κTot cases are

single-carrier configurations.

Appendix H: Applications to LIGO

In the absence of external squeezing the fundamental limit (Eq. (20) in the main text) is minimised by κTot =

[(1− η)η]
− 1

2 while optimising the precision of measurement along the signal quadrature (Eq. (21) in the main
text) requires κTot = η−

1
2 . The latter limit is already achieved by the current LIGO interferometer around Ω =

2π × 90 s−1 [69], while the introduction of frequency-dependent homodyne detection would increase the required
intensity by 1/

√
1− η which for η ≤ 0.99 is no more than an order of magnitude increase in the circulating power.
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a Plots are for the given equation in the η = 1 limit

FIG. 2. Plots of precision attainable unsqueezed and lossless, squeezed and lossless, and unsqueezed and lossy interferometers.
Values based on LIGO setup [15, 69] in the κTot ≈ gITot regime, detector loss of 0.05 (η = 0.95) and an equal squeezing
amplitude e−2r = 0.1 in each mode is used. Bounds on 2∆h are plotted to give equivalent values to the spectral noise density.
Equation numbers refer to the main text.

For the tuned gravitational-wave detector these sensitivity plots are given for identical squeezing in Fig. 2, the case
of zero external squeezing, zero loss, and zero loss and zero squeezing simultaneously with the optimal squeezing angle.
Values used are ITot = 840 kW, L = 4 km, M = 40 kg, γi ≈ γ = 2π × 500 s−1, ωi ≈ ω = 2π × 2.82× 1014 s−1
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