

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/107784

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/107784
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Energy-Aware Performance Engineering in

High Performance Computing

by

Stephen Ian Roberts

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

June 2017

Abstract

Advances in processor design have delivered performance improvements for

decades. As physical limits are reached, however, refinements to the same basic

technologies are beginning to yield diminishing returns. Unsustainable increases

in energy consumption are forcing hardware manufacturers to prioritise energy

efficiency in their designs. Research suggests that software modifications will be

needed to exploit the resulting improvements in current and future hardware.

New tools are required to capitalise on this new class of optimisation.

This thesis investigates the field of energy-aware performance engineering.

It begins by examining the current state of the art, which is characterised by ad-

hoc techniques and a lack of standardised metrics. Work in this thesis addresses

these deficiencies and lays stable foundations for others to build on.

The first contribution made includes a set of criteria which define the proper-

ties that energy-aware optimisation metrics should exhibit. These criteria show

that current metrics cannot meaningfully assess the utility of code or correctly

guide its optimisation. New metrics are proposed to address these issues, and

theoretical and empirical proofs of their advantages are given.

This thesis then presents the Power Optimised Software Envelope (POSE)

model, which allows developers to assess whether power optimisation is worth

pursuing for their applications. POSE is used to study the optimisation charac-

teristics of codes from the Mantevo mini-application suite running on a Haswell-

based cluster. The results obtained show that of these codes TeaLeaf has the

most scope for power optimisation while PathFinder has the least.

Finally, POSE modelling techniques are extended to evaluate the system-

wide scope for energy-aware performance optimisation. System Summary POSE

allows developers to assess the scope a system has for energy-aware software

optimisation independent of the code being run.

i

Acknowledgements

I am indebted to many people for their support, guidance and friendship during

my time at the University of Warwick. It gives me great pleasure to acknowledge

a small number of them here.

First and foremost I am grateful to my supervisor, Prof. Stephen Jarvis,

who gave me the opportunity to undertake this research. He has remained a

constant source of advice and encouragement throughout my Ph. D.

I am also extremely grateful to Dr. Suhaib Fahmy for his help and guidance.

Suhaib has always gone the extra mile to help, and my research into optimisation

metrics in particular would not have been possible without his input.

I would like to thank my lab partners and colleagues in the Department of

Computer Science, including Dr. Steven Wright, Dr. Philip Taylor, Dr. Richard

Bunt, Dr. Arshad Jhumka, Dr. Adam Chester, Tim Law, Huanzhou Zhu and

Andrew Owenson. Their perspectives and insights have proven invaluable.

I also wish to thank the Center of Information Services and High Performance

Computing (ZIH) at TU Dresden. Much of this work has benefited from access

to their power instrumented supercomputing hardware. A special vote of thanks

is owed to Thomas Ilsche for his patience and generosity.

Returning to academia from industry was a leap of faith which would not

have been possible without the support of past colleagues. Special thanks in

this regard go to Dr. Enrico Scalavino for our many discussions on the subject.

Thanks also go to Zheng Huang, Nic Quilici and Amaury Chamayou.

Finally, I would like to thank my friends and family for their support and

kindness. Mum, Dad, my cousins David, Dereck and William, my sister Annie

and aunt Ann, and also to my uncle Grahame, who sadly left us before this

work was finished. This thesis is dedicated to them, with love and gratitude.

iii

Declarations

This thesis is submitted to the University of Warwick in support of my appli-

cation for the degree of Doctor of Philosophy. It has been composed by myself

and has not been submitted in any previous application for any degree.

Parts of this thesis have been published by the author:

[104] S. I. Roberts, S. A. Wright, D. Lecomber, C. January, J. Byrd, X. Oró, and

S. A. Jarvis. POSE: A Mathematical and Visual Modelling Tool to Guide

Energy Aware Code Optimisation. In Proceedings of the 6th International

Green and Sustainable Computing Conference (IGSC ’15), December 2015

[105] S. I. Roberts, S. A. Wright, S. A. Fahmy, and S. A. Jarvis. Metrics for

Energy-Aware Software Optimisation. Lecture Notes in Computer Science

(LNCS), 10266:413–430, June 2017

[103] S. I. Roberts, S. A. Wright, S. A. Fahmy, and S. A. Jarvis. The Power-

Optimised Software Envelope. ACM Transactions on Architecture and

Code Optimisation, in preparation

iv

Sponsorship and Grants

The research presented in this thesis was made possible in part by the support

of the following benefactors:

• Technology Strategy Board project number 131197 (Energy-Efficiency Tools

for High-Performance Multi- and Many-core Applications).

v

Abbreviations

ADP Area Delay Product . 50

ALU Arithmetic Logic Unit . 38

ATX Advanced Technology eXtended . 12

CISC Complex Instruction Set Computing . 16

CMOS Complimentary Metal Oxide Semiconductor . 34

CPU Central Processing Unit . 1

CRCW Concurrent Read Concurrent Write . 29

CREW Concurrent Read Exclusive Write .29

DAG Directed Acyclic Graph. .24

DMM Distributed Memory Machine . 8

DVFS Dynamic Voltage and Frequency Scaling . 33

EDD Energy Delay Distance . 60

EDP Energy Delay Product . 48

EDS Energy Delay Sum . 60

ENIAC Electronic Numerical Integrator and Computer 35

ERCW Exclusive Read Concurrent Write .29

EREW Exclusive Read Exclusive Write. .29

FLOPS Floating Point Operations per Second . 17

FoM Figure of Merit . 15

FPE Feasible Performance Envelope . 71

FPGA Field-Programmable Gate Array . 2

GPU Graphics Processing Unit . 2

vi

HDEEM High Density Energy Efficiency Monitoring. .13

HPC High Performance Computing . 1

IBS Instruction Based Sampling . 20

IC Integrated Circuit . 3

ICC Intel C++ Compiler . 66

ILP Instruction Level Parallelism . 26

IPS Instructions Per Second . 16

ITUE Information Technology Power Usage Effectiveness.17

MIMD Multiple Instruction Multiple Data . 8

MISD Multiple Instruction Single Data . 8

MOO Multi-Objective Optimisation. .15

MSR Model Specific Register . 13

MTTF Mean Time To Failure . 4

NASA National Aeronautics and Space Administration 45

NUMA Non-Uniform Memory Access . 9

PDP Power Delay Product . 50

PEBS Precise Event-Based Sampling . 20

POSE Power Optimised Software Envelope . 5

PRAM Parallel Random Access Machine . 28

PUE Power Usage Effectiveness . 17

RAPL Running Average Power Limit . 13

RISC Reduced Instruction Set Computing . 16

SIMD Single Instruction Multiple Data . 3

SISD Single Instruction Single Data . 8

SMM Shared Memory Machine . 8

SMP Symmetric Multiprocessing . 9

SST Structural Simulation Toolkit .31

STFC Science and Technology Facilities Council .118

TCO Total Cost of Ownership . 4

TDP Thermal Design Power . 42

TLP Thread Level Parallelism . 26

Contents

Abstract i

Dedication ii

Acknowledgements iii

Declarations iv

Sponsorship and Grants v

Abbreviations vi

List of Figures xiv

List of Tables xv

1 Introduction 1

1.1 Motivation . 3

1.2 Thesis Contributions . 5

1.3 Thesis Overview . 6

2 Energy-Aware Performance Engineering 8

2.1 Architectures . 8

2.2 Measurement . 10

2.3 Benchmarking . 13

2.4 Metrics . 15

2.4.1 Figure Of Merit Metrics 15

2.4.2 Non-Figure of Merit Metrics 16

2.5 Profiling . 19

2.6 Modelling . 21

ix

2.6.1 Heuristic Modelling . 21

2.6.2 Analytical Modelling . 28

2.6.3 Simulation . 30

2.7 Optimisation . 31

2.7.1 Energy-Aware Optimisation 32

2.8 Summary . 33

3 Energy Efficiency in Computer Systems 34

3.1 Fabrication Technologies . 34

3.2 CMOS Digital Logic . 37

3.2.1 Arithmetic Logic Unit Design 38

3.3 CMOS Power Draw . 40

3.4 Architectural Energy Efficiency Features 42

3.4.1 Multi-core Processors . 43

3.4.2 Clock Gating . 43

3.4.3 Dynamic Voltage and Frequency Scaling 44

3.4.4 Heterogeneous Computing 44

3.5 Energy Efficiency Trends . 45

3.6 Summary . 47

4 Metrics for Energy-Aware Software Optimisation 48

4.1 Delay Product Metrics . 48

4.2 Software Optimisation Metrics 51

4.3 Etn Evaluation . 54

4.3.1 Justification of Etn . 59

4.4 Proposed Metrics . 60

4.4.1 Proposed Metric 1: Energy Delay Sum 60

4.4.2 Proposed Metric 2: Energy Delay Distance 63

4.5 Case Study . 65

4.6 Summary . 68

5 Power Optimised Software Envelope Model 70

5.1 Model Construction . 71

5.1.1 Feasible Performance Envelope 71

5.1.2 Optimisation Bound . 72

5.1.3 Contribution Bound . 74

5.1.4 Optimisation Limit . 77

5.2 POSE Insights . 78

5.3 POSE Models for Novel Metrics 80

5.3.1 Energy Delay Sum POSE 82

5.3.2 Energy Delay Distance POSE 85

5.4 POSE Investigation . 90

5.4.1 Feasible Performance Envelope 91

5.4.2 POSE Models for Code Optimisation 93

5.4.3 POSE Models for Frequency Scaling 95

5.4.4 POSE Models for Distributed Codes 98

5.5 Summary . 99

6 System Summary POSE 101

6.1 System Summary POSE Derivation 101

6.2 System Summary POSE for Novel Metrics 105

6.2.1 Energy Delay Sum System Summary POSE 106

6.2.2 Energy Delay Distance System Summary POSE 107

6.3 System Summary POSE Investigation 108

6.4 Optimisation Study . 110

6.5 Summary . 113

7 Conclusions and Future Work 116

7.1 Thesis Limitations . 118

7.2 Future Work . 119

7.3 Final Remarks . 120

References 122

Appendices 138

A POSE Model Summary for Different Metrics 138

A.1 Etn POSE . 138

A.2 Energy Delay Sum POSE . 138

A.3 Energy Delay Distance POSE . 139

B Mantevo Suite POSE Models 140

C Mantevo Benchmark Input Parameters 144

List of Figures

2.1 Crossbar Network Topology . 9

2.2 PowerMon Current Sense Resistor Circuit 11

2.3 Amdahl’s Law Speed-up Limits 23

2.4 Amdahl’s Law Efficiency Limits 23

2.5 Work, Span and Maximum Cut 25

2.6 Example Roofline Model . 26

2.7 Powerline Model . 27

2.8 PRAM Abstract Machine Model 29

3.1 Power Density Trends, based on data from [22] 36

3.2 Synchronous Sequential Logic . 37

3.3 One Bit ALU Schematic . 38

3.4 Combinatorial ALU . 39

3.5 Sequential ALU . 40

4.1 Design Trade-Off Constraint Diagram 49

4.2 Metric Optimisation Regions . 52

4.3 Etn Metric Fitness Landscapes 53

4.4 Etn Optimisation Instability . 57

4.5 Power-Limited Isometric Lines 60

4.6 Proposed Metrics Fitness Landscapes 61

4.7 Energy Delay Distance Instability 65

5.1 Et2 Power Optimised Software Envelope 72

5.2 Et2 Power Optimised Software Envelope Regions 79

5.3 Etn POSE Model Tunability . 81

5.4 POSE Models for Novel Metrics 82

xiii

5.5 Comparison of POSE Models for Different Metrics 89

5.6 Et2 POSE Comparison of TeaLeaf and PathFinder 96

5.7 Et2 POSE for P-State Optimisation of TeaLeaf and MiniMD . . 97

5.8 Et2 POSE for Multi-Node Runs of TeaLeaf and MiniMD 98

6.1 Et2 System Summary POSE Intuition 102

6.2 Optimisation Limits . 110

6.3 1D Trapezoidal Decomposition 112

6.4 Laplacian Optimisation Progression 114

List of Tables

3.1 Pleiades CPU Upgrades . 46

4.1 Single Node Code Costs . 67

4.2 MiniMD Multi-Node Costs . 67

5.1 Single Node Feasible Performance Envelope Parameters 93

5.2 Code Metrics for S = 2.5 GHz, C = 24 94

5.3 Et2 POSE Model Summaries . 95

5.4 MiniMD POSE Models for Novel Metrics 95

6.1 Optimisation Impact . 113

B.1 Et2 POSE Model Summaries for Remaining Codes 141

B.2 EDS POSE Model Summaries (α = 1, β = 900) 142

B.3 EDD POSE Model Summaries (α = 1, β = 519.615) 143

C.1 Application Run Parameters . 144

xv

CHAPTER 1
Introduction

Scientific computing and numerical simulation have become indispensable tools

in many areas of science and engineering. Simulations allow scientists to test

their theories in domains where physical experimentation would be prohibitively

costly, impractical, or dangerous. As a result, computational methods have

joined theory and experiment as central pillars of scientific investigation [57].

Maximising performance is paramount in scientific computing. Higher per-

formance means more calculations can be carried out, allowing scientists to

increase the size, complexity or resolution of their simulations. This demand

for performance has led to the development of supercomputers, large machines

orders of magnitude more powerful than desktop computers.

Supercomputers are typically constructed by linking many smaller nodes

together to form a cluster. Specialist tools and programming models are then

used to write software that can be run on several nodes in parallel. These nodes

communicate over an interconnect network, collaborating to run simulations

and produce results faster than a single node could manage in isolation.

The field of High Performance Computing (HPC) exists to improve the per-

formance of supercomputers and the software which they run. HPC covers a

broad spectrum of disciplines. At one extreme, domain experts write high-level

simulation software to model phenomena of interest. At the other, hardware

engineers design the processors and other components that make up super-

computers. Performance engineering bridges the gap between these extremes,

seeking ways to optimise software to make better use of the available hardware.

Moore’s law states that transistor density doubles every 18-24 months [93].

This trend has delivered exponential increases in Central Processing Unit (CPU)

1

1. Introduction

performance for decades. Dennard scaling, which states that the power use of

transistors is proportional to their size [28], kept energy consumption in check as

increasing numbers of transistors were packed into CPUs. Together, these laws

led to a period known as the “Free Lunch”, when rising clock speeds delivered

regular performance increases with no additional power cost.

Dennard scaling ended around 2006 [52], and Moore’s law is also show-

ing signs of failure [116]. Refinements to the same underlying technologies are

yielding diminishing returns, and the “Free Lunch” is now over [115]. Energy

consumption is rapidly becoming a limiting factor for continued progress in

scientific computing as a result [109].

The end of Dennard scaling has forced hardware engineers to prioritise en-

ergy efficiency in their designs. This has lead to both modifications in existing

platforms as well as the development of new HPC technologies. Some of these

novel technologies are pre-existing products which have been repurposed for

scientific computing. Examples of this kind include Field-Programmable Gate

Arrays (FPGAs) [29], general purpose Graphics Processing Units (GPUs) [46]

and Intel’s Xeon Phi coprocessors [21]. Others, like NEC’s Aurora Vector En-

gine, were designed specifically for the HPC market.

Performance engineers are also feeling the effects of this drive towards en-

ergy efficiency. One obvious example is the emergence of new programming

models like OpenACC, OpenCL and CUDA which allow developers to target

the novel energy-efficient accelerator technologies listed above. More subtly, re-

search suggests that targeted modifications to existing software will be required

to fully exploit the energy efficiency improvements in modern hardware [111].

New energy-aware performance engineering techniques are being developed to

identify and capitalise on this new class of optimisation.

This work investigates how conventional performance engineering techniques

can be adapted to support energy-aware software optimisation. It highlights

challenges which must be overcome before this new class of optimisation can be

widely exploited. It also seeks to quantify the benefits which can realistically

2

1. Introduction

be expected as a result of energy-aware optimisation.

1.1 Motivation

Moore’s law was first proposed in 1965 and quickly became a self-fulfilling

prophecy as hardware manufacturers were forced to keep up with it or face

being overtaken by their competition. This resulted in a doubling of transistor

density every 18-24 months, fuelled by advances in Integrated Circuit (IC) fab-

rication, circuit design and processor architectures. Moore’s Law has driven the

development of computer hardware in this way for decades.

The area occupied by individual transistors halves with every doubling of

transistor density. Power density (i.e. the rate of power consumption per unit

area) remained constant under Dennard scaling, so the power consumed by

each transistor was also halved. This in turn led to faster clock speeds as the

maximum switching frequency of a transistor is inversely proportional to its

peak power consumption [61].

Clock speeds increased exponentially with each new generation of proces-

sors while Dennard scaling persisted. The “Free Lunch” period resulted from

this link between transistor density and processor speed. The link was broken

when Dennard scaling ended, causing clock speeds to stagnate even as transis-

tor densities continued to rise. Hardware designers now rely on architectural

changes such as vectorisation, superscalar architectures and multiple cores to

deliver performance improvements [95].

Higher clock speeds deliver performance improvements without developer

input, hence the term “Free Lunch”. Conversely, software modifications are

required to take advantage of novel hardware features. New instructions are

needed for Single Instruction Multiple Data (SIMD) vectorisation, for example,

and applications must be parallelised to run on multiple cores. Although com-

pilers can perform some of this work, performance engineers typically have to

rewrite their applications in order to achieve maximum performance [75].

3

1. Introduction

Processor power density has been rising since the end of Dennard scaling.

This trend has been partially offset by one-off advances in fabrication processes

and the use of exotic materials in transistors. Such advances only provide tem-

porary reprieve, however, and the overall trend is expected to continue [37].

Rising power density poses a number of challenges to the field of HPC. First,

energy costs are soaring as increased per-processor power draw is compounded

by the growing number of processors used in modern supercomputers. These

costs already represent a large share of the Total Cost of Ownership (TCO) for

supercomputing systems and are expected to rise still further [108].

Secondly, higher power densities lead to increased operating temperatures,

which can cause problems with hardware reliability [112]. At present, around

20 % of the available compute time on large-scale supercomputers is lost due to

hardware failures [34]. This trend is also exacerbated by high processor counts,

as shortening the Mean Time To Failure (MTTF) of individual processors has

a cumulative effect on the MTTF of machines as a whole.

Finally, power density cannot continue to grow indefinitely. There are limits

to how much power can be delivered to processors and how quickly the resulting

heat can be removed. If performance improvements cannot be decoupled from

increasing power density then these too will come to an end.

Hardware designers are responding to these challenges by prioritising energy

efficiency in their processor designs. Improving energy efficiency through archi-

tectural changes closely parallels the way in which performance improvements

are currently delivered. The expected outcome is also the same; code changes

will be needed in order to maximise the benefits of energy efficient hardware

features. Energy-aware performance engineering techniques will therefore be

required as power becomes a first-class constraint in HPC.

The US Department of Energy has identified energy efficiency as a primary

constraint for exascale systems [109]. New performance engineering approaches

will be required soon if the current rate of progress in HPC is to be maintained.

Fortunately, performance engineers have built up a wealth of tools and experi-

4

1. Introduction

ence adapting software to maximise performance on new hardware. This thesis

aims to show how these existing tools and techniques can be updated to consider

energy as well as runtime.

Energy-aware performance optimisation is still in its infancy, characterised

by ad-hoc techniques and a lack of standardised metrics. This thesis contributes

a set of metrics which are shown to be more suitable for use in guiding energy-

aware optimisation than current alternatives. It also presents a pair of related

approaches for identifying the potential for energy-aware optimisation, one for

individual codes and the other for entire systems.

The techniques described in this thesis are notable for their generality. They

are not platform or application specific and impose very few prerequisites on

their use. Despite this, they are able to provide immediate, actionable insights

to performance engineers and software developers.

1.2 Thesis Contributions

This thesis makes the following specific contributions:

• New metrics are developed to guide and assess energy-aware code optimi-

sations. In the absence of better alternatives, performance engineers have

turned to metrics developed by the hardware community. These hardware

metrics are ill-suited to software optimisation, and the lack of standard-

isation makes comparing results between studies impossible. This thesis

seeks to address both of these shortcomings by introducing a common set

of metrics along with rigorous justification of their utility.

• This thesis presents the Power Optimised Software Envelope (POSE), a

model which helps performance engineers to determine whether energy

or runtime optimisation will provide the greatest benefits for their code.

The POSE model is platform agnostic, meaning it can be applied to any

hardware and at any scale.

5

1. Introduction

• The POSE model is extended to provide a model for system-wide power

optimisation characteristics. System Summary POSE is able to derive

upper limits for the benefit of energy-aware software optimisation on a

given system. This allows developers to determine how amenable a system

is to energy optimisation and hence whether it may be worth pursuing on

their chosen platform in general, independent of any specific codes.

1.3 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2 provides an account of core concepts, techniques and terminology

employed in the field of HPC. Contemporary performance engineering tools and

practices are described, and their suitability for energy-aware software optimi-

sation is assessed. This chapter includes an overview of relevant performance

engineering literature.

Chapter 3 details the evolution of parallel computing hardware with an empha-

sis on energy efficiency. The problems which motivate this work arise because

hardware development is failing to maintain past trends in power consumption.

This chapter provides a generalised model of hardware power consumption, and

introduces features found in modern processors designed to minimise it. A key

aim of this chapter is to highlight various ways in which performance engineers

can influence energy efficiency.

Chapter 4 examines the metrics currently used to guide energy-aware per-

formance optimisation. A good metric should provide meaningful values for a

single experiment, allow fair comparison between experiments, and drive opti-

misation in a sensible direction. This chapter shows that established metrics are

unable to fulfil these basic requirements then proposes new metrics which can.

6

1. Introduction

Chapter 4 concludes with theoretical and empirical proofs of the advantages of

these new metrics over established alternatives.

Chapter 5 introduces the POSE model. POSE serves as a preliminary “first

cut” modelling technique intended to guide energy-aware optimisation efforts.

This model presents an asymptotic analysis of the scope a code has for optim-

sation in both the power and runtime domains. By identifying the limits of

each approach, POSE allows performance engineers to make informed decisions

about where to focus their efforts in order to achieve the best results.

Chapter 6 builds on previous chapters by extending POSE to model system-

wide optimisation criteria. Conventional POSE models use the runtime and

energy costs of a code to calculate the scope that code has for power and run-

time optimisation on a given system. Conversely, System Summary POSE is a

meta-heuristic which determines the range of results POSE models could pro-

duce for a given system. This bound-of-bounds analysis places limits on the

system-wide scope for power optimisation independent of any specific codes.

Chapter 7 concludes this work with a summary of results and contributions

made, and discusses their implications for performance engineers. It also consid-

ers the future direction of energy-aware performance engineering and provides

an overview of ongoing and future research.

7

CHAPTER 2
Energy-Aware Performance Engineering

This chapter introduces core concepts, techniques and terminology in the field

of High Performance Computing (HPC). These topics are divided into seven

areas, namely: Architectures, Measurement, Metrics, Benchmarking, Profiling,

Modelling, and finally Optimisation. Energy-aware performance engineering re-

quires new developments to be made in each of these areas. Recent developments

are discussed, and areas where progress is lacking are highlighted.

2.1 Architectures

In simplest terms, supercomputers are nothing more than large collections of

processing elements working together to solve complex problems [7]. This de-

scription is general enough to encompass the wide range of architectures which

have been used to construct HPC systems over the years.

Flynn’s taxonomy classifies computer architectures based on how many in-

structions and data items they can handle concurrently [39]. In this taxonomy,

Single Instruction Single Data (SISD) architectures are those which do not ex-

hibit any kind of parallelism. Single Instruction Multiple Data (SIMD) archi-

tectures execute their instructions sequentially, but each instruction operates

on multiple data elements in parallel. Multiple Instruction Single Data (MISD)

architectures execute multiple instructions on the same piece of data in paral-

lel. Finally, Multiple Instruction Multiple Data (MIMD) architectures execute

multiple instructions on their own independent data in parallel.

Modern supercomputers predominantly use MIMD architectures [102]. These

systems can be divided into Distributed Memory Machines (DMMs) and Shared

Memory Machines (SMMs), depending on how their memory is organised.

8

2. Energy-Aware Performance Engineering

P1

P2

...

Pn

M1 M2 · · · Mm

Figure 2.1: Crossbar Network Topology

DMMs consist of multiple compute nodes connected to each other through a

shared interconnect. These nodes are independent units with their own proces-

sors, memory and peripherals. Data held by a node in local memory is private

and cannot be accessed directly by other nodes. Explicit message passing pro-

tocols are used to allow groups of nodes to collaborate and share data.

SMMs consist of multiple processors all connected to a large pool of shared

memory made up of many discrete memory modules. A common address space

allows processors to access shared data transparently, regardless of its physical

location. SMMs are further sub-divided into Symmetric Multiprocessing (SMP)

and Non-Uniform Memory Access (NUMA) machines.

Processors in SMP machines have fast access to all areas of shared memory.

Conceptually, all M×N pairs of memory modules and processors are connected

by a flat network topology like the crossbar network shown in Figure 2.1. The

scalability of SMP machines is limited by resource contention and the need for

expensive, densely connected interconnects.

NUMA systems improve scalability by giving processors faster access to their

own local memory. Other machines can still access this memory, however they

must do so over a network. This reduces contention for applications which

9

2. Energy-Aware Performance Engineering

exhibit data locality as only remote memory accesses travel over the network.

Flynn’s taxonomy also applies at the level of individual processors. Mod-

ern CPUs support both SIMD and MIMD operations through vector instruc-

tions and multiple cores respectively. There are no MISD implementations

in widespread use for HPC, however some Field-Programmable Gate Array

(FPGA) design patterns come close [5].

An ongoing trend in HPC is the shift towards heterogeneous computing [77].

In addition to conventional CPUs, heterogeneous systems also incorporate spe-

cialised compute devices called accelerators or coprocessors to handle particular

tasks. Devices like Graphics Processing Units (GPUs), FPGAs and Intel’s Xeon

Phi coprocessors can be used to speed up execution of computationally intensive

codes while also reducing system energy consumption [35].

2.2 Measurement

Accurate measurement is fundamental to performance engineering. Processors

incorporate built-in clocks to maintain synchronisation and schedule interrupts.

Engineers can use these clocks to measure the runtime performance of their code.

Energy monitoring capabilities are also appearing in new processor designs.

Energy is the integral of power over time, or E = P̄ t. Energy consumption

cannot be measured directly as a consequence, and must instead be calculated

from measurements of power draw and time.

Various methods have been used to measure power draw in HPC systems,

both at system and component levels. One approach uses thermal cameras

to measure the temperature of different components and hence estimate their

power draw. This works because the energy used by computers is converted

to waste heat in accordance with the first law of thermodynamics. Mesa-

Martinez et al. used thermal cameras and custom heat sinks to measure Central

Processing Unit (CPU) power consumption [92], while Hackenberg et al. fol-

lowed a similar approach to measure system-wide power consumption [48].

10

2. Energy-Aware Performance Engineering

R (0.1 Ω)

+ −

Vref

V

Vdrop

CPU

Figure 2.2: PowerMon Current Sense Resistor Circuit

The main advantage of this approach is its high spatial resolution; thermal im-

agery is able to show how power draw varies between components, and even

across different areas of the same component. One disadvantage is poor tempo-

ral resolution; materials absorb heat and release it over time, meaning thermal

emissions correspond to a moving average of power consumption. Another dis-

advantage is the requirement for expensive cameras and custom heat sinks,

which makes this approach prohibitively costly when applied at scale.

Higher temporal resolution can be obtained at relatively low cost by in-

strumenting computing platforms with dedicated power sensors. Bedard et al.

developed PowerMon, a scheme for measuring component-level power draw in

commodity systems [10]. PowerMon works by measuring the voltage drop Vdrop

across resistors placed inline between the power supply and other system com-

ponents. These resistors are calibrated to ensure they provide a particular

resistance R (0.1 Ω is typical). Figure 2.2 shows a simplified circuit diagram for

their apparatus.

I =
V

R
(2.1)

PowerMon uses Ohm’s law as stated in Equation 2.1 to calculate current flow

I through a resistor based on Vdrop and R. Resistors used to measure current

11

2. Energy-Aware Performance Engineering

flow in this manner are referred to as ‘sense’ or ‘shunt’ resistors. The same

amount of current flows through both the sense resistor and the component being

measured because current is conserved throughout series circuits. Furthermore,

supply voltage Vref takes on a known value depending on the type of component

being powered. The Advanced Technology eXtended (ATX) standard mandates

power supply output voltages of 12 V, 5 V, 3.3 V and −12 V, for example [23].

Component power draw can then be calculated as the product of I and Vref as

per Equation 2.2.

P = IV (2.2)

Sense resistors have three major drawbacks when used in HPC systems. First,

some energy is lost as heat within the resistor, increasing overall power draw.

Secondly, their resistance varies with temperature, limiting accuracy and in-

troducing non-linearities in their results. Finally, they require direct electrical

connections to the power supply and the component being measured. Any short-

circuits or other manufacturing defects could easily damage sensitive hardware.

An alternative approach to power measurement relies on the magnetic fields

induced when current flows through a wire. Ampere’s law for straight con-

ductors, given by Equation 2.3, states that the magnetic field strength | ~B| at

distance r from the wire is proportional to the original current I. The constant

µ corresponds to the magnetic permiability of air.

| ~B| = µ I

2πr
(2.3)

Hall effect sensors measure magnetic field strength, and can therefore be used to

determine current flow while remaining electrically isolated from the conductor.

Laros et al. developed PowerInsight, a production quality power monitoring

platform which uses Hall effect sensors rather than sense resistors to improve

accuracy and reliability [81]. Equation 2.2 is again used to calculate power

consumption from current measurements.

12

2. Energy-Aware Performance Engineering

Hackenberg et al. instrumented a large HPC cluster called Taurus with com-

mercial power sensors which exploit the Hall effect. The resulting High Density

Energy Efficiency Monitoring (HDEEM) infrastructure can be used to measure

component-level power and energy consumption across large numbers of nodes

at high sample rates [51].

Intel introduced Running Average Power Limit (RAPL) to support power-

aware frequency scaling in their Sandy Bridge Processors [27]. As a side ef-

fect, performance engineers gained access to an interface capable of reporting

CPU power consumption. RAPL exposes a number of Model Specific Regis-

ters (MSRs) which can be read by user code to determine the rate of power

draw. Early versions of RAPL were model based, but more recent processors

incorporate dedicated power sensors.

Other manufacturers have also added power measurement capabilities to

their hardware. AMD added a scheme similar to RAPL with equivalent func-

tionality starting with their Bulldozer CPUs [1]. Similar schemes also exist for

GPUs [18] and Xeon Phi [82] hardware.

HPC Vendors and system integrators are also beginning to include power

monitoring capabilities in their products. Cray’s XC line of supercomputers

expose energy measurements through systems [55]. Similarly, IBM servers in-

corporate current measuring hardware based on sense resistors which can be

read using their Amester tool [16].

2.3 Benchmarking

Modern processors include hardware designed to accelerate specific operations.

Vendors quote peak performance figures which assume that all these hardware

features can be kept fully occupied. In practice, applications only perform a

subset of the relevant operations, and memory bandwidth limits often prevent

those features which are used from achieving maximum throughput.

Benchmarks are programs designed to collect real-world performance data.

13

2. Energy-Aware Performance Engineering

Performance benchmarks serve a dual purpose. First, benchmarks can be used

to measure and compare the performance realistically achievable by different

machines and architectures. Secondly, benchmarks serve as good platforms to

investigate the effects of different optimisations in a controlled manner.

Micro-benchmarks are simple programs designed to target specific aspects of

system performance. Linpack is a well known micro-benchmark which measures

a system’s capacity for sustained floating point throughput [30]. Linpack results

form the basis of the Top500 and Green500 supercomputer rankings [38]. Other

micro-benchmarks include STREAM [90], which measures memory bandwidth;

SKaMPI, which measures network performance [4]; and IOR, which measures

file system performance [110].

Application benchmarks are larger programs which test how well systems

handle complex applications. They are often built from simplified versions of

production applications in order to ensure realistic workloads. The Mantevo

project is a suite of application benchmarks developed at Sandia National Lab-

oratories [56] and used extensively throughout this thesis.

Existing benchmarks can be repurposed for power and energy studies [72],

and dedicated power benchmarks have also started to emerge. One example is

FIRESTARTER [50], a micro-benchmark specifically designed to trigger near-

peak power consumption across a range of x86 64 CPUs and NVIDIA GPUs.

It contains hand optimised assembly routines which raise processor activity

above the level attainable with high level languages. A small assembly micro-

benchmark designed to minimise power consumption while keeping CPUs active

is also described in this thesis.

SPECpower is a commercial benchmarking suite which provides an applica-

tion benchmark called “SPECPower ssj2008” along with a framework for mea-

suring application energy efficiency and performance [79]. The SPECpower

benchmark is a Java program which simulates a transactional workflow running

under varying amounts of load. It is designed to mimic the behaviour of common

enterprise computing applications such as web servers or relational databases

14

2. Energy-Aware Performance Engineering

which must handle bursts in utilization. SPECpower measures performance at

11 different target loads, starting at 100% utilization and reducing this in steps

of 10% until it reaches idle.

2.4 Metrics

Performance engineers use metrics to assess the performance of HPC hardware

and software. Individual metrics capture particular properties of a system under

investigation. Some of these properties can be measured directly, while others

must be derived from multiple observations.

Metrics enable meaningful comparison between different platforms and can

be used to quantify the effects of code changes. They can be divided into two

categories depending on the types of comparison they allow; namely Figure of

Merit (FoM) and Non-FoM metrics.

2.4.1 Figure Of Merit Metrics

Some metrics act as utility functions which measure the cost of running different

programs. These FoM metrics can be used to rank different implementations of

the same algorithm in order to identify valid optimisations [53]. Runtime and

energy consumption are both examples of FoM metrics.

Until recently, runtime optimisation was ubiquitous in HPC while energy

optimisation has been confined to domains like embedded systems and mobile

robotics. Although energy consumption is becoming a constraint for scientific

computing, minimising runtime is still an important optimisation objective.

Optimising software according to multiple properties simultaneously is known

as Multi-Objective Optimisation (MOO). MOO requires FoM metrics that

strike the right balance between the potentially conflicting requirements im-

posed by different optimisation objectives.

Gonzalez et al. proposed Energy Delay Product, a FoM metric which com-

bines the energy and runtime costs incurred by processors [45]. Martin et al.

15

2. Energy-Aware Performance Engineering

generalised this into the Etn family of FoM metrics, with parameters E and t

corresponding to energy and time [88]. They argue that Et2 provides the best

balance for microprocessor design. Srinivasan et al. reached the same conclusion,

although for slightly different reasons [113].

Many authors have adopted these metrics from the hardware community

and applied them to software optimisation problems. Vincent et al. describe

a technique which minimises Et1 using CPU throttling [41]. Bingham and

Greenstreet use Etn metrics to analyse runtime constraints imposed by a fixed

energy budget for various algorithms [12]. Laros et al. use Etn metrics to

assess a number of production applications and state that Et3 strikes the right

balance between runtime and energy for HPC [80]. Et1 has also been used

extensively to quantify the efficiency of resource provisioning and scheduling in

cloud computing environments [107, 122].

Bekas and Curioni further generalised Etn metrics to the form E · f(t), a

product between energy and an application dependent function of time [11].

They argue that this formalisation is able to drive software optimisation, as-

suming an appropriate application specific function f(t) can be identified.

Chapter 4 covers these metrics in more detail. In particular, it shows that

metrics originating from the hardware community are not suitable for measuring

software performance. It goes on to introduce new metrics which are designed

to support energy-aware performance optimisation.

2.4.2 Non-Figure of Merit Metrics

Although FoM metrics are required to identify optimisations, non-FoM metrics

also play an important role in performance engineering.

Instructions Per Second (IPS) was an early measure of processor through-

put. Although it makes intuitive sense, this metric does not allow comparison

between different architectures. Reduced Instruction Set Computing (RISC)

processors may need several instructions to perform the same operation as a

single instruction on a Complex Instruction Set Computing (CISC) processor,

16

2. Energy-Aware Performance Engineering

for example. RISC and CISC processors exhibit different levels of performance

at the same IPS rate [66].

Floating Point Operations per Second (FLOPS) is a metric designed to ad-

dress some of the deficiencies of IPS. It quantifies performance in a portable

manner by counting basic arithmetic operations (addition, subtraction, multipli-

cation, division and the like) rather than platform specific instructions. FLOPS

captures the throughput of arithmetic operations, or equivalently the rate at

which an application converts runtime into floating point results. As a result it

can give a better indication of real world performance than IPS, especially on

the numerically intensive codes common in HPC.

A related metric is FLOPS per Watt, which combines the number of Floating

Point Operations per Second with the rate of power consumption. Despite

its name, this metric is quoted in units of Operations per Joule (1 Joule is

defined as 1 Watt-Second). While conventional FLOPS measures the number of

operations carried out per second elapsed, FLOPS per Watt counts the number

of operations carried out per Joule of energy consumed. In effect, FLOPS per

Watt measures how effective an application is at converting energy into floating

point results.

More recent developments in energy-aware metrics include Power Usage

Effectiveness (PUE) and Information Technology Power Usage Effectiveness

(ITUE). PUE is the ratio of energy used by computer hardware to total fa-

cility energy consumption, which also includes secondary functions like cooling,

lighting and power supply losses [87]. A PUE of one is optimal as this would

suggest that all energy is being used by computer hardware to complete primary

tasks with none being lost to overheads.

A drawback of PUE noted by Patterson et al. is that it treats all energy con-

sumed by computer hardware the same. They contend that this simplification is

problematic for HPC, where large systems typically have extensive cooling and

power delivery subsystems integrated within them. Their solution is to extend

PUE to consider internal subsystems. They call their metric ITUE, which they

17

2. Energy-Aware Performance Engineering

describe as “PUE inside the IT”. ITUE is defined as the ratio of energy used

for compute to total energy use by computer hardware [99].

Metrics are also used to measure the parallel performance and scalability

of code. The speed-up Sn observed by running a program on n processors in

parallel is defined as the ratio between its serial runtime T1 and parallel runtime

Tn as shown by Equation 2.4:

Sn =
T1
Tn

(2.4)

A program that runs n times faster on n processors is said to exhibit linear

speed-up. This is the maximum possible speed-up which can be attributed to

increased processing power. Linear speed-ups are uncommon because they re-

quire a code which can be split into multiple independent tasks without any

additional overhead being introduced.

Super-linear speed-ups sometimes occur when serial runtime is limited by

factors other than processor throughput [120]. A typical example would be a

large simulation exhausting memory and causing thrashing as data is repeatedly

paged out to disk. Adding nodes will increase the available memory and reduce

thrashing, resulting in a super-linear speed-up. It is worth noting that these

super-linear speed-ups will cease once the entire simulation fits into memory.

Parallel efficiency measures how well a code makes use of the available hard-

ware. This metric is calculated by dividing total speed-up by processor count,

and can therefore be interpreted as per-processor speed-up:

En =
Sn
n

=
T1

n · Tn
(2.5)

Most scientific computing workloads require communication and synchroniza-

tion between tasks on different processors. These secondary operations increase

runtime overheads without contributing to the calculation of results. Codes

with low parallel overheads are said to be efficient, while codes which spend

much of their time dealing with these overheads are said to be inefficient. The

maximum value for efficiency is one, which corresponds to a linear speed-up.

18

2. Energy-Aware Performance Engineering

2.5 Profiling

Profilers are tools which measure performance characteristics over one or more

runs of a target application. Software developers use these tools to identify

performance bottlenecks in their code. Profilers are categorized as either event-

based or sampling, depending on their approach to collecting measurements.

Event-based profilers like VampirTrace [96] measure application state each

time a specific event occurs. Samples may be taken when a specific function is

called, or when memory is allocated, for example. Runtimes are calculated from

timestamps within each sample. Additional metrics like performance counter

readings or power consumption may also be recorded.

Profiling events can be specified in several ways. The most direct approach

is for developers to manually instrument their code with profiling hooks. Other

approaches perform instrumentation at compile time, link time, run time, or a

combination of all three.

Event-based profilers take measurements every time a sampling event occurs,

making them excellent for capturing detailed traces. Although they are good

at timing specific functions, they are less useful for identifying which functions

are causing performance issues in the first place. Doing so would require every

function call to be instrumented, but this would severely impact performance

and lead to skewed results [94].

Statistical profilers sample program state at regular intervals to build up a

summary of program behaviour. How often a particular code path is encoun-

tered during sampling reflects its overall contribution to runtime.

The accuracy of statistical profilers depends on their sampling frequency. If

this is set too high then application performance will suffer, invalidating the

results. If it is too low then important details may be missed entirely. It is

also important to prevent sampling periods from becoming synchronized with

periodic events inside an application. One strategy to avoid these aliasing effects

is to offset each sample by a random delay.

19

2. Energy-Aware Performance Engineering

Statistical profiling is not limited to working in the runtime domain. Some

profilers can also operate in periods determined by hardware performance events

like cache misses, instructions retired and memory writes. Tools like Perf-

mon2 [36] can be configured to take samples every time a set number of events

has occurred. Intel and AMD chips include hardware support for this through

their respective Precise Event-Based Sampling (PEBS) and Instruction Based

Sampling (IBS) technologies [117].

The ability to sample in domains other than time allows performance en-

gineers to analyse different aspects of their code’s performance. For example,

samples taken at fixed increments of cache misses will tend to cluster around

code which stresses memory subsystems. If a performance engineer knows their

code is memory bound, they can perform this kind of analysis to find optimisa-

tion targets which would otherwise be missed.

Statistical profilers operating in intervals of energy would be able to produce

a breakdown of energy costs by code path. The PAPI library attempts to provide

this functionality [118]. Because energy cannot be measured directly, however,

this approach requires profilers to repeatedly sample power draw in order to

calculate cumulative energy consumption. This is equivalent to taking samples

at short runtime intervals, and then sub-sampling from these based on estimated

energy consumption.

The sampling distribution observed from such ‘hybrid’ approaches is not

representative of either energy consumption or runtime. Code paths missed by

runtime sampling will never show up in the final results regardless of how much

energy they consume. Higher sampling frequencies would reduce this source of

error, but would increase sampling overhead leading to skewed results.

Stochastic samplers offer a possible solution which avoids the need to calcu-

late energy altogether. Rather than relying on fixed sampling intervals, samples

are taken with probability p < 1 each clock cycle. For fixed p, this scheme

produces a runtime sampler with an average sampling interval of 1/p cycles.

Alternatively, if p was proportional to instantaneous power draw, then the distri-

20

2. Energy-Aware Performance Engineering

bution of samples would correspond to per-instruction power draw. Combining

per-instruction power and runtime figures would produce an accurate picture of

instruction-level energy consumption.

2.6 Modelling

Performance engineers use models to reason about the performance of their

codes in a number of ways. First, they can help developers identify factors

contributing to poor performance. Secondly, they can be used to predict appli-

cation performance and scalability characteristics. Finally, they can be used to

estimate the performance implications of new hardware architectures.

2.6.1 Heuristic Modelling

Heuristic models provide simplified analogies which help developers understand

the performance of their code. This is the most abstract approach to perfor-

mance modelling as no attempt is made to faithfully represent real systems.

Models in this category ignore implementation details in favour of generality,

and usually focus on a single aspect of system behaviour.

Understanding how different factors impact performance is the first step

towards targeted optimisation. Their ability to produce clear insights without

extensive benchmarking or profiling means heuristic models are well suited to

the early stages of optimisation.

Arguably the best known heuristic performance model is Amdahl’s Law [8],

which states that parallelisation gains are limited by the serial portions of a

code. A program’s serial runtime T1 can be broken down into Ws time spent

performing inherently serial work and the remaining Wp time spent performing

work which could be parallelised:

T1 = Ws +Wp (2.6)

21

2. Energy-Aware Performance Engineering

Running a program across n processors in parallel will reduce Wp while leav-

ing Ws unchanged, assuming the program is efficiently parallelisable. Excluding

the possibility of super-linear speed-ups yields the following expression:

Tn ≥Ws +
Wp

n
(2.7)

Amdahl’s law is obtained by substituting Equation 2.6 and Equation 2.7 into

the definition of speed-up given by Equation 2.4 to yield Equation 2.8 below. It

can also be defined in terms of the serial fraction of a code fs, where Ws = fs T1

and Wp = (1− fs)T1, resulting in Equation 2.9:

Sn ≤
Ws +Wp

Ws +Wp/n
(2.8)

⇔ Sn ≤
1

fs + (1− fs)/n
(2.9)

Amdahl’s law states that parallel speed-up is limited for all codes with fs > 0,

even given access to an unlimited number of processors. Figure 2.3 shows how

the speed-ups given by Equation 2.9 quickly reach a plateau even for codes with

relatively tiny (fs = 0.1 %) serial portions.

Figure 2.4 illustrates an important corollary of Amdahl’s law. The parallel

efficiency (given by Equation 2.5) of any code with a serial portion will always

decrease as more processors are added.

Amdahl’s law only takes two parameters, yet despite this simplicity it is able

to provide valuable insights into application scalability. If application perfor-

mance follows Amdahl’s law at high processor counts then serial code is the

biggest barrier to scalability. Conversely, if observed performance is worse than

predicted, then parallel overhead is likely to blame.

Amdahl proposed his law in 1967 to demonstrate “the continued validity of

the single processor approach and of the weaknesses of the multiple processor

approach” [8]. Despite this, the multiple processor approach went on to become

a significant driver of performance improvements in HPC.

22

2. Energy-Aware Performance Engineering

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
1
2
4
8

16
32
64

128
256
512

1024
2048
4096

Processors (n)

S
p
ee
d
-u
p
(S

n
)

Fs = 0.1%

Fs = 1%

Fs = 10%

Figure 2.3: Amdahl’s Law Speed-up Limits

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processors (n)

E
ffi

ci
en

cy
(E

n
)

Fs = 0.1 %

Fs = 1 %

Fs = 10 %

Figure 2.4: Amdahl’s Law Efficiency Limits

23

2. Energy-Aware Performance Engineering

Gustafson resolved this apparent paradox by observing that problem sizes

tend to grow to fill the available computing power [47]. This is because for

many HPC codes larger data sets translate to improved resolution, accuracy

or scale. Scientific computing workloads typically involve a serial setup phase

followed by repeatedly performing the same calculation on each element of a

dataset in parallel [9]. Most of the extra work associated with larger data sets

can be parallelised, meaning Wp increases faster than Ws. A smaller fraction

of runtime is spent on serial code when this observation holds, and speed-ups

improve as a result.

Amdahl’s and Gustafson’s laws are both valid, and the choice of which to use

depends on circumstances. That said, performance engineers are often tasked

with optimising code for a specific platform and problem size. They cannot rely

on arbitrarily large problem sizes and processor counts, and are therefore bound

by the limits of Amdahl’s law in most cases.

Amdahl’s and Gustafson’s laws only consider perfect parallelism, which ap-

plies when tasks can be executed independently and in any order. Imperfect

parallelism happens when dependencies impose partial orderings on the tasks

performed by a parallel algorithm. While tasks in the same sequence must be

executed in order, multiple independent sequences can be processed in parallel.

The work-span model represents algorithms as a set of tasks connected by

their dependencies to form a Directed Acyclic Graph (DAG). Time T1 is called

an algorithm’s work ; the cumulative runtime of all its sub-tasks. Time T∞ is

called an algorithm’s span; the total runtime of its critical path. The critical path

is the longest chain of tasks which must be executed sequentially. Algorithms

can never run faster than T∞, even with access to unlimited processors.

Figure 2.5 shows an example of the work-span model in which all tasks take

unit time. This example does 15 units of work, one for each task, and has a

span of 6, one for each task on the critical path highlighted.

The work-span model provides two bounds on parallel performance. The

24

2. Energy-Aware Performance Engineering

Figure 2.5: Work, Span and Maximum Cut

ratio of T1 and T∞ provide the upper bound to speed-up shown by Equation 2.10:

Sn ≤
T1
T∞

(2.10)

The bound given by Equation 2.11 comes from examining the best case scenario,

that all T1 − T∞ work off the critical path can be perfectly parallelised.

Tn ≥ T∞ +
T1 − T∞

n

⇔ Tn ≥
T1 + (n− 1)T∞

n

∴ Sn ≤
nT1

T1 + (n− 1)T∞
(2.11)

Work span DAGs can also be used to find the maximum degree of parallelism

exhibited by an algorithm. The maximum cut of the DAG (or more precisely

of its conjugate, i.e. cutting across nodes rather than edges) corresponds to the

largest number of tasks which can be executed concurrently. The red dashed

line in Figure 2.5 shows that at most 5 processors can be kept active at any one

time. Any processors added above this limit will remain idle.

Roofline is a more recent heuristic model which frames application perfor-

mance in terms of two system bottlenecks, namely off-chip memory bandwidth

25

2. Energy-Aware Performance Engineering

0.5 1 2 4 8 16 32 64
1

2

4

8

16

32

64

128

Peak FP Performance

TLP + ILP

TLP

P
ea
k
B
an
dw

id
th

H
W

P
re
fe
tc
h

N
o
P
re
fe
tc
h

Operational Intensity (FLOPS/Byte)

P
er
fo
rm

an
ce

(G
F
L
O
P
S
)

Figure 2.6: Example Roofline Model

and floating point performance [121]. Operational intensity, the ratio between

work done and memory traffic, is then used to determine whether a code is

compute or memory bound.

Figure 2.6 shows an example of the Roofline model. Horizontal lines corre-

spond to floating point performance limits and diagonal ones to memory band-

width limits. A Roofline consists of one performance and one memory limit.

Platforms can exhibit many different Rooflines depending on which hardware

performance features can be used.

The Floating Point (FP) limits shown in Figure 2.6 are: Thread Level Par-

allelism (TLP), corresponding to the maximum performance of simple multi-

threaded programs; TLP plus Instruction Level Parallelism (ILP), the maxi-

mum performance of multi-threaded programs which use hardware features like

SIMD vectorization; and peak floating point performance, the maximum perfor-

mance of threaded, vectorised programs with the right instruction mix to keep

CPU functional units fully occupied.

The memory bandwidth limits shown in Figure 2.6 are: no prefetching,

corresponding to random memory access patterns that cannot be predicted;

26

2. Energy-Aware Performance Engineering

0.5 1 2 4 8 16 32
1

2

4

8

16

32

64

128

Operational Intensity (FLOPS/Byte)

P
er

fo
rm

an
ce

(G
F

L
O

P
S

)

0

25

50

75

100

125

150

175

200

225

250

275

P
ow

er
(W

)

Roofline
Powerline

Figure 2.7: Powerline Model

hardware prefetching, whereby hardware is able to predict upcoming memory

accesses and preload the data; and peak bandwidth, the maximum possible

bandwidth attainable with perfect hardware prefetching and optimal memory

layout and access patterns.

Roofline models are able to diagnose performance issues using easily obtain-

able information. Developers identify where their code appears on a Roofline

diagram by measuring its operational intensity and floating point performance.

This allows them to determine which performance limit their code is bounded

by, and hence whether to look for runtime or memory optimisations.

In the example shown by Figure 2.6, improving the memory performance of

codes with operational intensities above eight FLOPS per byte will not reduce

their runtime. Even the lowest bandwidth limit is enough to keep a CPU fully

supplied with data beyond this point. Conversely, memory bandwidth should

be the sole optimisation target for codes with operational intensities under one

FLOPS per byte. Between these limits the best course of action depends on the

level of floating point performance observed.

Choi et al. extended the Roofline model to identify the algorithmic condi-

27

2. Energy-Aware Performance Engineering

tions necessary for trade-offs between runtime and energy [19]. Figure 2.7 shows

the distinctive shape of their ‘Powerline’ model and how it compares to conven-

tional Roofline analysis. In particular, it shows how power consumption peaks

when operational intensity places equal demands on memory and floating point

performance. This is because with both subsystems under equal load, neither

one can become a bottleneck and force the other to enter an idle state waiting

for more work. Idle subsystems draw less power, so power consumption drops

off when either subsytem is forced to spend periods of time idle.

The Power Optimised Software Envelope (POSE) model developed in Chap-

ter 5 is another example of energy-aware heuristic performance modelling.

2.6.2 Analytical Modelling

Analytical models distil the structure and behaviour of a program into a set

of parameterised mathematical expressions. Performance predictions are then

obtained by solving these expressions for the required input parameters. Ana-

lytical models are able to predict the behaviour of real systems in a short amount

of time, making them particularly suitable for parameter studies.

Early analytical modelling approaches created bespoke models specific to

individual machines and applications. These approaches fell out of favour be-

cause of the considerable time and expertise required to model complex systems

accurately. Furthermore, the resulting models were not portable and had to be

completely rebuilt for each new platform. Modern approaches provide gener-

alised model skeletons which can be tailored to individual applications.

The Parallel Random Access Machine (PRAM) framework was one of the

first modelling techniques to produce portable performance models. PRAM

defines an idealised representation of SMP hardware consisting of n processors

with perfectly synchronised clocks [40], as shown in Figure 2.8. Each processor

has its own private memory and can access global shared memory through a

common memory access unit. Processors perform one instruction each clock

cycle, including potentially reading from or writing to shared memory.

28

2. Energy-Aware Performance Engineering

Processor n

...

Processor 2

Processor 1

Memory
Access Unit

(MAU)

Global
Shared
Memory

Figure 2.8: PRAM Abstract Machine Model

Conflict resolution policies define what happens when multiple processors ac-

cess the same memory location simultaneously. There are four policies to

choose from, namely: Exclusive Read Exclusive Write (EREW), Concurrent

Read Exclusive Write (CREW), Exclusive Read Concurrent Write (ERCW),

and Concurrent Read Concurrent Write (CRCW). Both ERCW and CRCW

have sub-policies to determine which concurrent write access succeeds.

The PRAM model assumes that all processors are synchronised and commu-

nication between processors is free. These were reasonable assumptions when

uniform memory access SMP machines were common in HPC. The scalability of

these systems is limited by resource contention, however, and they have largely

been replaced by NUMA and message-passing DMM approaches.

PRAM emphasised the importance of model portability, however its models

are limited to SMP machines. The LogP model was devised to model parallel

applications regardless of the computer architecture used [24].

LogP is named after its four system parameters: L, which models network

latency; o, the overhead of sending and receiving messages; g, the minimum

gap between messages, or equivalently the reciprocal of inter-node bandwidth;

and P , the number of processors or nodes. LogGP extends the original model

with G, a parameter which captures the higher bandwidth available for longer

29

2. Energy-Aware Performance Engineering

messages and bulk transfers on many systems [6].

Some analytical models use hardware performance counters to estimate sys-

tem power consumption. Power usage and performance events are recorded for

a selection of benchmark programs. Regression analysis is then used to derive

power costs for each category of performance event. This approach has been

used to develop power models for components like CPUs [14, 69], GPUs [62],

and Xeon Phi coprocessors [111], as well as entire supercomputer systems [13].

Despite its popularity, this approach has significant limitations. Processors

can only monitor a small number of performance counters simultaneously, so

many events will be missed. Furthermore, processor events are not standard-

ised between processors, limiting the portability of these models. Lively et

al. demonstrated this fact and proposed code-specific power models as a solu-

tion [86]. In effect, they suggested intentionally over-fitting models to particular

target applications and platforms.

2.6.3 Simulation

Analytical performance modelling involves constructing detailed models of ap-

plication behaviour. Every application requires its own customised model, even

with modern frameworks, and these models must be continually updated and

revalidated in response to code changes. Simulators avoid these issues by taking

applications themselves as input, either directly or in the form of profiler traces.

Simulators gather performance data by running some representation of the

target application through a detailed model of a computer system. This shifts

the burden of model construction and verification away from performance engi-

neers and towards simulator designers. Once validated, a simulator can be used

to model the performance of many different applications.

Simulators are categorised based on the granularity of their system models.

Hardware simulators model the low-level operation of computer systems in as

much detail as possible. Cycle-accurate simulators are able to mimic hardware

down to the level of individual clock cycles. This amount of detail is useful when

30

2. Energy-Aware Performance Engineering

designing new hardware or assessing the impact of exotic architectures.

Discrete event simulators operate at a higher level of abstraction, modelling

system behaviour as a sequence of distinct states. State transitions are triggered

by application events like network communications or synchronisation barriers.

Profilers gather event traces for a target application, which are then passed

as input to the simulator. Discrete event simulators are useful for ‘what if’

investigations which assess the likely outcomes of different scenarios.

Simulations are the most detailed approach to performance modelling, but

this detail comes at significant runtime cost. Event-based approaches require

traces to be gathered by running the original application in full. Hardware ap-

proaches take even longer as they run every application instruction through sim-

ulated hardware. Simulators like Sandia’s Structural Simulation Toolkit (SST)

offer a combined approach, providing hardware simulation for key components

and falling back to an event based approach where less detail is required [67].

Hardware simulation is often used to model power consumption. Wattch is

a popular framework for analysing and optimising microprocessor architectures

for reduced power consumption [17]. McPAT is a similar tool which replaces

the linear scaling assumptions in Wattch with non-linear power models, making

it suitable for the post-Dennard era [85].

SST supports system power simulation via its modular architecture [64]. Ex-

isting component-level power simulators like McPAT are used as back-ends to

model the power consumption of individual processors, which SST then aggre-

gates to provide a system-level overview.

2.7 Optimisation

Performance optimisation involves modifying applications to improve properties

like runtime or energy consumption. Algorithmic optimisations lead to more effi-

cient algorithms irrespective of the platform used. Once these optimisations are

exhausted, any further improvements come from tuning applications to better

31

2. Energy-Aware Performance Engineering

exploit the underlying hardware.

Examples in the latter category include: Multi-threading, where multiple

threads are run simultaneously on different CPU cores; cache blocking, where

loop iterations are re-ordered to make more efficient use of the cache hierarchy;

and vectorisation, where SIMD instructions are used to improve floating point

throughput. Hand-optimising code using these techniques can produce large

performance improvements, however the resulting applications are platform-

specific and can be hard to maintain [32].

Performance portability is the idea that optimised code should remain as

general as possible in order to perform well across different platforms. When

following this approach, developers expose opportunities for parallelism within

their code. It is then left for optimising compilers and libraries to map these

opportunities on to specific hardware features [100].

One way to achieve performance portability is to use frameworks which

abstract away details of the underlying platform. OP2 allows users to develop

unstructured grid applications independently of the underlying hardware. Back

ends then translate these high level implementations into low-level code which

targets a specific platform [43, 44]. Other examples of this approach include

Kokkos [32] and Charm++ [71].

Compiler directives offer a more direct approach in which developers an-

notate their source code with additional information and instructions. These

directives expose opportunities for parallelism and allow compilers to use more

aggressive optimisation strategies. OpenMP [26] provides directives to exploit

TLP via the fork-join model, and ILP using SIMD instructions. OpenACC [119]

uses directives to specify functions for offload to GPUs and other accelerators.

2.7.1 Energy-Aware Optimisation

Energy use can be reduced either by shortening runtime or decreasing power

consumption. The runtime optimisations described above are therefore also

capable of reducing energy consumption. Power optimisation is less developed,

32

2. Energy-Aware Performance Engineering

however some progress has been made.

Dynamic Voltage and Frequency Scaling (DVFS) and sleep states are two

hardware features often exploited by power optimisations. Briefly, DVFS allows

processors to run at different clock speeds and supply voltages, while sleep states

allow processors to power down during periods of inactivity.

The work-span model described in Section 2.6 suggests several strategies for

power optimisation. Nodes off the critical path can use DVFS to lower their

clock speeds and reduce power draw [31]. Alternatively, they can temporarily

increase their clock speeds to finish their work quickly before entering into sleep

states [33]. Finally, DVFS-aware scheduling algorithms can be used to pack

applications onto fewer nodes [84].

2.8 Summary

Performance engineering is a complex process during which developers rely on

the tools and techniques listed above. Until recently, minimising runtime has

been the main aim of performance engineering. Current tools share this runtime

focus and must be updated to support the Multi-Objective Optimisation of both

power and runtime as energy consumption becomes a limiting factor.

The next chapter examines hardware power consumption and the ways in

which developers can influence it. Performance engineering tools will be required

to help capitalise on the optimisation opportunities which arise from this ability

to influence power consumption.

33

CHAPTER 3
Energy Efficiency in Computer Systems

Energy-aware performance engineers need to understand the factors which in-

fluence system power consumption. From a hardware perspective, the most

important factors are the technologies used to fabricate digital circuits and the

processor architectures which are built on top of them.

This chapter begins by charting the evolution of processor fabrication, from

early valve-based systems up to the Complimentary Metal Oxide Semiconductor

(CMOS) chips in use today. It then examines the relationship between digital

circuit design and power consumption. This relationship is illustrated with

a simple model of CMOS power draw. Various features of modern computer

architectures are then introduced which performance engineers can leverage to

improve the energy efficiency of their code. This chapter concludes by remarking

on ongoing trends in energy efficient processor design.

3.1 Fabrication Technologies

Digital computers are based on circuits which use different voltage levels to

represent discrete logic states. Binary computers use circuits with only two

states, labelled zero and one. Conceptually, binary circuits take in patterns of

zeros and ones as input, perform some calculations on them, then output new

patterns which encode the result. This process requires the ability to control

output voltages based on the values represented by input voltages.

Thermionic valves were the first practical technology which could be used

to build digital computers. These devices consist of a heated cathode and an

unheated anode sealed inside a vacuum tube. Heating a negatively charged cath-

ode allows electrons to escape from its surface in a process known as thermionic

34

3. Energy Efficiency in Computer Systems

emission. Once free, these negatively charged electrons are repelled by the cath-

ode and attracted towards the more positively charged anode. This results in

a stream of electrons flowing from the cathode to the anode. Current can flow

along this stream, but not in the opposite ‘upstream’ direction. Valves which

allow current to flow in one direction only are known as diodes.

Some valves also contain a third component called the control grid, which is

situated between their anode and cathode elements. Electrons flow through the

holes in this component when it is not electrically charged. When a negative

charge is applied to the grid, however, it repels electrons and blocks current flow.

This type of valve is called a triode, and is a forerunner to modern transistors.

Concerns about system power draw have existed since the dawn of com-

puting, when early valve-based machines consumed as much energy as modern

supercomputers. The Electronic Numerical Integrator and Computer (ENIAC)

was the first electronic stored-program computer built in the US. It contained

approximately 17,500 thermionic valves and weighed thirty tons [58]. When

ENIAC was switched on in 1946 it had a peak power dissipation of 174 kW [89],

a figure which would not look out of place in the current Top 500 list [3].

Thermionic valves were superseded in the 1950s and 60s by bipolar transis-

tors packaged into ICs. ICs are etched onto semiconductor wafers in a process

called photolithography. First, circular wafers are cut from a cylindrical ingot of

monocrystalline silicon up to 30 cm in diameter. Multiple copies of a circuit are

then etched onto the surface of these wafer before they are cut into individual

pieces and packaged into chips.

Although they were slower, bipolar circuits consumed far less energy and

were more reliable than equivalent valve-based designs. This led to the devel-

opment of increasingly complex computers and a dramatic reduction in system

power consumption. Over time, manufacturing improvements delivered ever

smaller transistors, yielding rapid increases in both performance and power

density. Ultimately this resulted in escalating power draw which threatened to

halt the advance of computer technology [70].

35

3. Energy Efficiency in Computer Systems

Figure 3.1: Power Density Trends, based on data from [22]

Bipolar transistors peaked in the early 1990s, before being replaced by the

slower, more efficient CMOS technology in use today. Figure 3.1 shows how

CMOS development is following the same trajectory, with escalating power draw

again threatening to stall advances in High Performance Computing (HPC).

Slower, more energy efficient technologies replacing faster but more power

hungry ones is a recurring theme in processor design. That said, at present

there are no obvious replacements for CMOS as the dominant processor fabri-

cation technology. Until a replacement can be identified, hardware designers are

reliant on incremental improvements in CMOS fabrication and architectural in-

novations to deliver performance improvements. Examples of the former include

the use of exotic high-κ materials [106] and non-planar “3D” transistors [60],

while examples of the latter are presented below.

36

3. Energy Efficiency in Computer Systems

Input 1

State 1

Input 2

State 2Combinatorial Logic

Clock Signal

Sequential Logic · · ·

Figure 3.2: Synchronous Sequential Logic

3.2 CMOS Digital Logic

The remainder of this thesis deals with the energy used by modern computer

hardware based on CMOS technology. CMOS processors are complex circuits

which contain many distinct subsystems, each of which is built out of logic

elements and, ultimately, transistors.

Processors include both combinatorial and sequential circuitry. Combina-

torial circuits consist of many individual logic gates arranged in layers. Input

cascades through each of these layers, changing along the way, before it finally

emerges as output. Combinatorial logic is stateless because it contains no mem-

ory and its output is purely a function of its input.

The time it takes for a circuit to finish updating its output in response to

new input is known as its propagation delay. The length of a propagation delay

depends on how many logic gates are on a circuit’s critical path, and how quickly

the transistors which make up these gates are able to change state.

Sequential circuits augment combinatorial logic with flip-flops which are

components capable of retaining state. This saved state is passed along with

fresh inputs into blocks of combinatorial logic, enabling sequential logic to pro-

duce outputs based on many previous inputs.

The synchronous sequential circuits found in most processors update their

state at discrete times in response to clock signals. The clock period used to

drive these circuits must be longer than the propagation delay of any internal

combinatorial logic; if this logic is not given enough time to reach a stable state

37

3. Energy Efficiency in Computer Systems

Add

OpCinInv

Rout

Cout

\

Xin

Yin

2

M
U
X

M
U
X

(a) One Bit ALU Circuit

Op Inv Operation

00 0 A ∧B
00 1 A ∧ B̄
01 0 A ∨B
01 1 A ∨ B̄
10 0 A + B
10 1 A−B

(b) ALU Control Signals

Figure 3.3: One Bit ALU Schematic

then indeterminate values will be stored in flip-flops, invalidating future results.

A processor’s clock frequency is determined by the longest propagation delay

found within its various subsystems.

Pipelining is a design technique which breaks down large combinatorial logic

circuits into smaller sequential stages separated by flip-flops. This technique is

used to spread complex operations like floating point arithmetic over multiple

clock cycles. While pipelined circuits take a similar amount of time to produce

their final results, each individual stage has a smaller propagation delay and

can therefore operate at higher clock frequencies. Pipelining can also increase

throughput if several stages of the pipeline can be kept active simultaneously.

It is worth noting that although logic pipelining is related to instruction

pipelining, they are distinct concepts. The latter includes speculative execution,

instruction re-ordering and other optimisations on top of basic pipelining.

3.2.1 Arithmetic Logic Unit Design

Arithmetic Logic Units (ALUs) are a type of circuit which can be implemented

using either sequential or combinatorial logic. The process of designing ALUs

is used as a motivating example in the next chapter. This subsection provides

all the necessary background information about their construction.

ALUs perform arithmetic and logical operations on binary data. Figure 3.3

shows the schematic for a single bit ALU which contains three logic gates; AND,

38

3. Energy Efficiency in Computer Systems

D
el
ay

Area

0/1

Y

X

R0

Cin Cout

Rout

Xin Yin

X0 Y0

R1

Cin Cout

Rout

Xin Yin

X1 Y1

R2

Cin Cout

Rout

Xin Yin

X2 Y2

\
\

3

3

Cout

Figure 3.4: Combinatorial ALU

OR and NOT ; and a one bit full adder. This circuit takes in a pair of input

bits, Xin and Yin, passes them to each of its logic elements, then returns one of

their results as output. Control signals Op and Inv are sent to multiplexers to

select which element is connected to the Rout output and whether Yin should be

negated, respectively. Output Cout indicates whether a carry overflow occurred

during binary arithmetic.

Performing operations on individual bits is of limited usefulness. Practical

ALUs handle multiple bits, with the exact number determined by processor

word length. These multi-bit circuits can be constructed by combining single

bit ALUs in several ways, each with its own set of design compromises.

Figure 3.4 shows a combinatorial design for a three-bit ALU in which three

single bit units are chained together in parallel. Each unit processes one pair of

input bits to produce one output bit, with carry bits rippling down the chain

for arithmetic operations. Control signal inputs are omitted from this diagram;

these are connected together and receive the same inputs.

Figure 3.5 shows an alternative, sequential design which reuses the same

ALU three times, with carry outputs persisted in a flip-flop between each stage.

This design exhibits longer delays and slower performance because it produces

output one bit at a time. These disadvantages are offset by comparable reduc-

tions in power consumption and chip area requirements.

Although practical ALUs are more complex than those described above, the

same design trade-offs still apply. For instance, most ALUs use carry lookahead

39

3. Energy Efficiency in Computer Systems

D
el
ay

Area

0/1 Cin Cout

Rout

Xin Yin

R0

X0 Y0

Cin Cout

Rout

Xin Yin

R1

X1 Y1

Cin Cout

Rout

Xin Yin

R2

X2 Y2

C0C0

C1C1

Cout

Figure 3.5: Sequential ALU

rather than ripple carry schemes, which is a further example of time/space

trade-off. It is also possible to combine sequential and combinatorial logic in

different ratios; a sixteen bit ALU may process all bits in parallel, or eight bits

at a time in two stages, or four bits at a time in four stages, and so on.

3.3 CMOS Power Draw

Equation 3.1 describes the sources of power draw in CMOS chips, of which

dynamic and leakage power are the most significant:

Ptot = Pdyn + Pleak + Pother (3.1)

Dynamic power refers to the power consumed when transistors change state as

a processor performs work, while Leakage power is consumed even when gates

remain inactive. Other forms of power dissipation do exist, however their effects

are comparatively minor [73].

Pdyn ∝ CV 2Af (3.2)

40

3. Energy Efficiency in Computer Systems

Equation 3.2 is a common approximation of dynamic power in which C

denotes load capacitance, V the supply voltage, A the activity factor and f the

clock frequency. Each of these factors is covered in more detail below.

Load capacitance (C) is a property of chip architectures which depends on

the length of wires between on-chip structures and the degree of connectivity

between their logic gates. Hardware engineers can minimise this property by

optimising chip layout and favouring small, simple designs which can be packed

more tightly onto chip real-estate.

Supply Voltage (V) is the voltage at which a processor operates. Supply

voltage remains proportional to feature size under Dennard scaling, meaning

this factor was ultimately responsible for the benefits seen during the “Free

Lunch” period [52].

Activity Factor (A) is a scalar value between zero and one which represents

the fraction of logic elements that change state each clock cycle. The exact

value of A changes depending on a processor’s workload.

Clock Frequency (f) is the number of clock cycles which occur in one second.

Clock frequency and supply voltage vary in tandem, taking values from a set of

(frequency, voltage) pairs known in the literature as Power States or P-states.

Leakage power exists because the insulating properties of silicon break down

at very small scales. Quantum tunnelling and other effects allow some current

to flow (or leak) even when gates remain inactive. Leakage accounts for an

increasing proportion of power consumption as transistors continue to shrink.

Pleak = V × Ileak (3.3)

Equation 3.3 is a simplified expression for leakage power which exploits the

fact that leakage current (Ileak) is not related to workload [76]. Leakage current

depends on a number of factors which are outside the control of performance

engineers. These include ambient temperature, the dielectric constant of CMOS

transistors and the threshold voltage separating zero and one states.

41

3. Energy Efficiency in Computer Systems

CMOS power draw is ultimately limited by how quickly power can be de-

livered to a chip and how quickly the resulting heat can be removed from it.

Temperature differentials cause material properties to change and lead to phys-

ical stresses which reduce component lifespan.

Thermal Design Power (TDP) is the maximum power draw that a processor

can sustain for thermally significant periods while running software [101]. This

figure is determined by the maximum rate at which heat can be generated and

dissipated without causing damage to sensitive electronics. Real-world power

consumption often approaches TDP limits because hardware designers have a

strong incentive to maximise the performance of their processors.

3.4 Architectural Energy Efficiency Features

Moore’s law led to rapid increases in the transistor budgets available to hard-

ware designers. During the period of Dennard scaling, these extra transistors

were used to add features to increasingly complex single core processors which

were optimised for high clock speeds and single threaded performance. This is

exemplified by Intel’s Netburst architecture, which was in use between 2000 and

2006 and featured in their Pentium 4 processors [59].

A large proportion of Netburst’s transistor budget went towards creating

highly superscalar processors [78]. These processors featured extremely deep

instruction pipelines up to 36 stages in length, along with extensive hardware

to support the dynamic scheduling, speculative execution and instruction re-

ordering required to keep these pipelines full. This approach became unsustain-

able after Dennard scaling ended in 2006, when thermal problems caused by

high power consumption led to the abandonment of the Netburst architecture

and the end of the Pentium product line [98].

Hardware designers have since developed a number architectural features to

improve the energy efficiency of their processors in the post-Dennard era. Each

of the features listed below seeks to minimise some subset of the parameters in

42

3. Energy Efficiency in Computer Systems

the CMOS power equations listed above.

3.4.1 Multi-core Processors

The most notable change to processor design in recent years has been the in-

troduction of Multi-core Central Processing Units (CPUs). Multi-core architec-

tures replace the monolithic processors of the past with a collection of smaller,

simpler interconnected cores. These cores operate independently while sharing

access to common hardware like last level caches and main memory.

Smaller cores have fewer components and shorter wire lengths, both of which

lead to reduced load capacitance and leakage current. Multiple cores also am-

plify the effects of other energy efficiency features listed below.

Multi-core processors prioritise throughput over single threaded performance.

Performance engineers have to deal with the overhead of parallelising their codes

in order to see the benefit of this architectural approach.

3.4.2 Clock Gating

Of all the subsystems in modern processors, the clock tree has the potential

to be the most power hungry. Clock trees distribute the signal from a central

clock across all areas of a processor, which inevitably means they have long

wire lengths and high load capacitance. Furthermore, their activity factor is

maximal by definition; circuits carrying the clock signal will change state with

every clock cycle.

Clock gating reduces power consumption by disconnecting or gating those

parts of the clock tree which are connected to idle logic. The activity factor of

gated subtrees drops to zero, meaning they only incur leakage power costs.

Performance engineers can maximise the benefit of clock gating by batching

similar operations together. In the case of multi-core processors, similar logic

can also be pinned to particular cores. Both of these approaches result in longer

idle periods for the effected subsystems, increasing the likelihood of clock gating.

43

3. Energy Efficiency in Computer Systems

3.4.3 Dynamic Voltage and Frequency Scaling

Equation 3.2 shows that dynamic power consumption grows quadratically with

supply voltage. Small reductions in supply voltage therefore have the poten-

tial to deliver significant reductions in power consumption. Unfortunately, the

switching speed of transistors also decreases when they operate at lower volt-

ages. This increases the propagation delay of CMOS logic, which can lead to

timing errors if this delay exceeds the clock period.

Dynamic Voltage and Frequency Scaling (DVFS) gets around this issue by

scaling supply voltage and clock frequency in tandem. Lower supply voltages

are paired with slower clock speeds in order to give CMOS logic enough time

to finish operating. These matched supply voltage and clock frequency pairs

are called P-States. DVFS allows processors to choose from a set of predefined

P-States based on their current workload.

DVFS has a cubic relationship with power consumption because clock fre-

quency is also a parameter in Equation 3.2. Its relationship with energy is less

obvious because reduced power consumption can be offset by longer runtimes.

DVFS is most effective when performance does not depend on clock speed; a

processor may enter lower power states while it waits for data, for example.

3.4.4 Heterogeneous Computing

Heterogeneous computing takes two main forms. The first, most common form

of heterogeneity is the inclusion of accelerators or other special purpose hardware

within compute nodes. These accelerators augment the capabilities of general

purpose CPUs by allowing them to offload specific tasks.

A second form of heterogeneity involves building special-purpose compute

cores directly into processors. ARM’s “big.LITTLE” concept is one example of

this kind, in which smaller, more energy efficient cores are twinned with larger,

more performant ones [97]. Work migrates between these cores as required

to meet performance and energy efficiency targets. Advanced energy-aware

44

3. Energy Efficiency in Computer Systems

scheduling techniques are necessary to take advantage of this type of heteroge-

neous architecture [123].

The Green500 list of energy efficient supercomputers is dominated by het-

erogeneous architectures [114]. All but one of the top thirty machines in the

November 2016 list make extensive use of accelerators, while the remaining ma-

chine is based on a custom heterogeneous processor design [2].

3.5 Energy Efficiency Trends

This section charts key trends in processor energy efficiency and design. Many

vendors target the HPC market, and each of them offers a range of products to

target different market segments, operating points and use cases. This makes

it difficult to perform fair comparisons between different hardware generations.

It is more instructive to base such comparisons on specific HPC systems.

Pleiades, a machine operated by the United States National Aeronautics

and Space Administration (NASA), is a particularly good candidate for such

comparisons for a number of reasons. First, it has seen extensive use in many

different scientific investigations. This shows that it is representative of pro-

duction systems and not simply a “stunt machine” designed to score highly in

benchmark tests at the expense of real workloads.

Secondly, a program of incremental upgrades has maintained Pleiades’ po-

sition as one of the world’s fastest supercomputers over nearly a decade of

operation. Pleiades first appeared in third place in the November 2008 Top500

list with a Linpack performance of 4.87× 1014 Floating Point Operations per

Second (FLOPS) and a power consumption of 2090 kW. As of November 2016

it occupies thirteenth place, with performance figures of 5.95× 1015 FLOPS at

4407 kW [3]. This corresponds to more than twelve times the original floating

point performance and approximately twice the power draw.

Thirdly, Pleiades’ long service life and incremental evolution provides an

unbroken record of CPU advances over many years. Until 2016, Intel CPUs

45

3. Energy Efficiency in Computer Systems

Year Codename Model Cores Frequency (GHz) TDP (W) Lithography (nm)

2008 Harpertown E5472 4 3.00 80 45
2009 Nehalem X5570 4 2.93 95 45
2010 Westmere X5670 6 2.93 95 32
2012 Sandy Bridge E5-2670 8 2.60 115 32
2014 Ivy Bridge E5-2680 v2 10 2.80 115 22
2015 Haswell E5-2680 v3 12 2.50 120 22
2016 Broadwell E5-2680 v4 14 2.40 120 14

Table 3.1: Pleiades CPU Upgrades

followed a “Tick-Tock” release model, with roughly 18 months between each

phase. Under this model, each “Tick” represents a shrinking of CMOS feature

sizes and each “Tock” represents the introduction of a new microarchitecture.

Due to its annual update schedule, Pleiades has incorporated new hardware at

every stage of this cycle since 2008.

Finally, Pleiades’ initial design goals prioritised energy efficiency, and this

focus has persisted throughout its many years of service [15]. Coupled with the

annual updates, this has led to Pleiades becoming something of a showcase for

energy efficient processor technologies.

Table 3.1 lists the year in which different processor models were first in-

corporated into Pleiades. Several broad trends can be identified in this table;

core counts and TDP have been rising while feature size and clock frequency

have decreased. Also, although per-processor power consumption has increased,

per-core power consumption decreased over the same period.

In its initial configuration, Pleiades consisted of 100 racks of 64 dual-socket

Harpertown nodes, totalling 12800 processors and 51200 cores. As of 2016, the

machine consists of 161 racks containing a mixture of Broadwell, Haswell, Ivy

Bridge and Sandy Bridge nodes, totalling 22944 processors and 246048 cores. A

further three 32-node Sandy Bridge racks are equipped with accelerators; two

racks with NVIDIA K40 GPUs and one with Intel Xeon Phi 5110P coprocessors.

Pleiades mirrors the trends seen across the wider Top500 list. Rising per-

processor power consumption is being compounded by increasing numbers of

processors. Even more striking is the exponential growth in core count fuelled

46

3. Energy Efficiency in Computer Systems

by ever more cores in ever more processors.

3.6 Summary

Energy-aware performance engineering starts by understanding the factors which

contribute to power consumption. Performance engineers must tune their codes

to take advantage of these factors in order to improve energy efficiency. Current

trends in computer hardware point towards a future of diverse hardware plat-

forms and heterogeneous architectures. New tools and techniques are required

to support energy-aware code optimisation on these new platforms.

The next chapter considers performance metrics which can be used to guide

energy-aware software optimisation. Current metrics were developed by the

hardware community to guide the process of designing energy efficient hard-

ware. These metrics are shown to be inappropriate for software optimisation

and suitable alternatives are proposed.

47

CHAPTER 4
Metrics for Energy-Aware Software Optimisation

Hardware engineers use delay product metrics as guides when designing novel

processor architectures. In particular, the Energy Delay Product (EDP) family

of metrics was created to promote the development of energy efficient processors.

Some members of the performance engineering community have since co-opted

these hardware metrics to guide energy-aware software optimisation.

This chapter begins by examining the rationale behind delay product metrics

in order to explain why they make sense from a hardware design perspective.

It then goes on to show that certain assumptions which underpin these metrics

do not hold for software optimisation. A list of necessary criteria for software

optimisation metrics is proposed which demonstrates the shortcomings of de-

lay product formulations. These criteria are then used to create new metrics

which are more suitable for energy-aware software optimisation. This chapter

concludes with a demonstration of these metrics, studying codes taken from the

Mantevo application suite.

4.1 Delay Product Metrics

Processor designs are subject to a number of physical and technical constraints.

Propagation delay is a technical constraint which determines processor clock

speed and therefore has a strong impact on performance. Physical constraints

include limits to chip area, power draw or energy consumption. Hardware design

involves striking a balance between potentially conflicting design constraints.

Processors consist of many interconnected subsystems operating in tandem.

Ensuring that all of these subsystems can work together without violating any

constraints is a major design challenge. This is made more difficult by the

48

4. Metrics for Energy-Aware Software Optimisation

Constraint A

C
o
n
st
ra
in
t
B

(a) Minimise Constraint A

Constraint A

C
o
n
st
ra
in
t
B

(b) Balanced

Constraint A

C
o
n
st
ra
in
t
B

(c) Minimise Constraint B

Figure 4.1: Design Trade-Off Constraint Diagram

fact that individual subsystems are usually designed in isolation first and then

integrated later on. Hardware engineers must adhere to global constraints when

working on individual subsystems, despite not knowing the overall processor

design. In the absence of global knowledge, the best approach is to choose

whichever design places fewest restrictions on the rest of the processor.

The multi-bit ALUs introduced in Section 3.2.1 are a good example of how

design constraints can often be traded off against each other. Recall that the

combinatorial circuit called for three single bit ALUs operating in parallel, while

the sequential circuit reused the same single bit unit three times. The former

design uses three times more circuit area and power, whereas the propagation

delay of the latter is three times longer.

In cases where direct trade-offs are possible, the least restrictive design is

the one which uses fewest resources overall. The dark blue areas in Figure 4.1

represent three alternative designs which make different trade-offs between two

constraints. Integrating subsystems to create a finished design which satisfies

global constraints can be thought of as trying to “pack” subsystems into one of

these constraint diagrams. The least restrictive design is the one which leaves

the most free space, shown in grey, available for other components.

Delay product metrics embody the possible trade-offs between propagation

delay and other design constraints. Multiplying constraints together is equiv-

alent to calculating how much space a subsystem occupies in a constraint dia-

49

4. Metrics for Energy-Aware Software Optimisation

gram. The key benefit of delay product metrics is that they promote flexibility

by maximising the scope for trade-offs later on in the design process.

Power Delay Product (PDP) and Area Delay Product (ADP) are commonly

used metrics in processor design. Power constraints, in the form of Thermal

Design Power (TDP) limits, are determined by the maximum rate at which

heat can be removed from the processor. Area constraints are largely economic

in origin; smaller designs have higher yields and can be more reliable.

PDP and ADP exhibit two properties which are hallmarks of a meaningful

delay product formulation. First, both area and power can be exchanged for

reduced delay in a relatively linear manner. Secondly, power and area are in

some sense “orthogonal” to delay; different components can be active at the

same time, while the same component can be active at different times. When

one circuit stops drawing power then this power becomes available to other

parts of the processor. Likewise, the same circuit area can be reused at different

times, as seen in the sequential Arithmetic Logic Unit (ALU) design above.

The proliferation of battery powered computing devices led to energy use

becoming a prominent constraint in processor design. Horowitz et al. proposed

EDP, which uses a delay product formulation to measure energy efficiency [63].

They argued that if two circuits produce identical results at different speeds

while consuming the same amount of energy, then the faster circuit has used

its energy more efficiently. PDP does not conform to this definition because it

does not penalise slower designs if energy consumption remains constant.

EDP departs from some of the intuitions behind other delay product metrics.

One example is that Horowitz et al. reinterpret delay, treating it as synonymous

with runtime. Also, while it may be possible to exchange increased energy

consumption for higher performance, this relationship is not straightforward

or linear. Most critically, energy and delay are not orthogonal for two reasons.

First, energy is defined as the product of power and time, and time and delay are

related. Secondly, energy is a consumable resource which can be used only once,

by a single component. Energy cannot be reused, so the concept of “packing”

50

4. Metrics for Energy-Aware Software Optimisation

components to fit within constraints does not apply.

4.2 Software Optimisation Metrics

This section provides formal definitions which underpin later discussions before

outlining the properties a software optimisation metric should exhibit. It begins

by formalising the notion of a code as a repeatable sequence of instructions

which, when executed by a processor, incurs energy and runtime costs.

Definition 1. All processors consume non-zero amounts of time and energy to

run programs. The cost of a code θ is the pair (Eθ, tθ) ∈ R+×R+ corresponding

to the energy and runtime costs incurred by running it on a given platform.

Definition 2. Codes can be composed by concatenating their instruction se-

quences. The composition of codes θ and λ yields the following cost:

θ ◦ λ = (Eθ + Eλ, tθ + tλ)

The goal of energy-aware software optimisation is to minimise the runtime and

energy costs of a given application. Energy-aware optimisation metrics are

functions of energy and time which capture the utility of a code.

Definition 3. An energy-aware optimisation metric is an element-wise mono-

tonic function M which combines energy and runtime costs into a scalar Figure

of Merit (FoM):

M : (E, t) ∈ R+ × R+ → R+

Element-wise monotonicity means that for all fixed E0, t0 ∈ R+, the functions

M(E0, t) and M(E, t0) are monotonic. In other words, increasing one cost

without a corresponding reduction in the other leads to a worse FoM.

Software optimisation can be modelled as a hill-climbing problem [54]. Starting

from an initial code θ, performance engineers make incremental changes and

measure their impact using a FoM metric. Changes which improve performance

51

4. Metrics for Energy-Aware Software Optimisation

θ

λ

optimisation

degradation

Runtime (s)

E
n
er
gy

(J
)

(a) Single Objective Metric (Energy)

θ

λ

optimisation

degradation

Runtime (s)

E
n
er
gy

(J
)

(b) Multi-Objective Metric (Et1)

Figure 4.2: Metric Optimisation Regions

against this metric are kept while those which reduce it are discarded. Whether

a given code change represents an optimisation depends on the metric chosen.

Definition 4. For logically equivalent codes θ and λ, the transformation θ → λ

is an optimisation with respect to metric M iff M(λ) strictly dominates M(θ).

By Definition 3, all valid metrics identify code changes that reduce both energy

and time costs as optimisations. Similarly, all code changes leading to strictly

worse performance in both regards will be treated as performance degradations.

The classification given by energy-aware optimisation metrics only differ in cases

where some degree of energy-time trade-off is possible.

Figure 4.2 shows how valid metrics can disagree on whether the same code

change θ → λ is an optimisation. In these diagrams, the lighter green areas

correspond to performance optimisations and darker red areas to performance

degradations. They are separated by a dashed Isometric line connecting all

points with FoM values equal to M(θ). Both metrics agree on code changes in

the solid shaded regions where costs change in tandem. Energy-time trade-offs

are represented by cross-hatched quadrants. The Multi-Objective Optimisation

(MOO) metric in Figure 4.2b identifies θ → λ as a valid energy-time trade-off,

whereas Figure 4.2a shows it is not an energy optimisation.

52

4. Metrics for Energy-Aware Software Optimisation

Runtime (s)

E
n
er
gy

(J
)

(a) Et1

Runtime (s)

E
n
er
gy

(J
)

(b) Et2

Figure 4.3: Etn Metric Fitness Landscapes

Energy-aware optimisation metrics assign a FoM to all (E, t) cost pairs. Return-

ing to the hill-climbing analogy, optimisation metrics define a fitness landscape

over the energy/time plane. Figure 4.3 shows how plots similar to Figure 4.2

can be used to visualise the fitness landscapes of different metrics.

The isometric lines coloured red in Figure 4.3 connect all points where the

FoM is some multiple of a fixed value. Mathematically these lines represent level

sets of the metric function; intuitively they are contours in the corresponding

fitness landscape. The closeness of these lines corresponds to the gradient of

the fitness landscape.

Isotopic lines run perpendicular to isometric lines, and correspond to the

path of fastest decent (steepest gradient) within the fitness landscape. Mathe-

matically, these lines are orthogonal trajectories of a metric function M . Con-

ceptually, they show the direction in which a metric drives optimisation.

Having formally defined what an energy-aware optimisation metric is and

how it can be visualised, attention now turns to how it should behave. The

goal of an optimisation metric is to condense the utility of an application into a

single, meaningful FoM. The following list enumerates the properties which an

idealised optimisation metric should possess:

53

4. Metrics for Energy-Aware Software Optimisation

1. Bounded: A metric should bound regions of the optimisation space;

2. Directed: drive optimisation efforts in a sensible direction;

3. Additive: remain additive (linear) under code composition;

4. Stable: give a stable definition of optimisation under code composition;

5. Tunable: be tunable to different application domains; and

6. Intuitive: correspond to a tangible and intuitive property of the system.

These properties are explored further in the next section.

4.3 Etn Evaluation

The previous section listed several desirable criteria for energy-aware optimisa-

tion metrics. In this section these criteria are used to evaluate the suitability of

Etn metrics for guiding software optimisation.

Bounded

The first criteria states that energy-aware optimisation metrics should bound

regions of the optimisation space. In other words, a metric should place upper

limits on how much energy or runtime can be consumed under a given FoM.

This requirement is met if the isometric lines described by a metric intercept

both the energy and runtime axes.

Figure 4.3 shows that Etn isometric lines do not intercept either axis. In

theory, codes can be modified to consume an arbitrarily large amount of either

time or energy while still improving their overall performance. Bounded metrics

do not consider such pathological cases to be valid optimisations. Another

benefit of bounded metrics is that they limit the space in which to search for

optimisations; something which Etn cannot do.

54

4. Metrics for Energy-Aware Software Optimisation

Directed

The second criteria requires metrics to guide optimisation in sensible directions.

Intuitively, performance engineers wish to speed up slow codes and reduce the

power consumption of energy intensive ones. On the contrary, Etn dispropor-

tionately rewards speeding up fast codes and saving energy in frugal ones. As

energy consumption increases, Etn gives higher priority to runtime optimisation

and vice versa. This fault was encountered by Hsu et al. when they noted that

Etn metrics are unfairly biased towards massive parallelism in High Performance

Computing (HPC) systems [65].

The first two criteria are linked. It is necessary (but not sufficient) for a

metric to be bounded in order for it to guide optimisation in a sensible direction.

The isometric lines of an unbounded metric never touch either axis, meaning

the corresponding isotopic lines must intersect the axes at right angles. As the

energy or time cost of a code approaches zero, the path of fastest decent therefore

tends exclusively towards further reductions in this already close-to-zero cost.

Additive

The third criteria states that FoM metrics should be additive under code com-

position. Performance engineers focus their attention on expensive procedures

within a code. This involves profiling the code to identify areas causing poor

performance, based on the assumption that the cost of a code is the sum of

the costs of its constituent parts. While true for simple metrics like energy and

time, this is not generally the case for compound metrics.

Definition 5. A metric is additive iff for code segments θ and λ:

M(θ ◦ λ) = M(θ) +M(λ)

Metric functions must be linear in terms of both time and energy in order to

fulfil this requirement. This is not the case for Etn, for which the cost of a

code tends to be much greater than the costs of its constituent parts. Profilers

55

4. Metrics for Energy-Aware Software Optimisation

cannot be relied upon to identify targets for Etn optimisation. Furthermore,

this additional non-local cost depends on total application runtime and energy

consumption. An Etn FoM is therefore meaningless outside the context of a

single fixed application.

Stable

The fourth criteria requires metrics to provide a stable definition for optimisa-

tion. If the same code change alters the cost of two applications by the same

amount, and it is an optimisation with respect to metric M for one of the codes,

then it should count as an optimisation for both of them.

Definition 6. A metric is stable iff for equivalent code segments λ and λ′:

M(λ′) < M(λ) =⇒ M(θ ◦ λ′) < M(θ ◦ λ)

It is worth noting that linear metrics automatically fulfil this requirement. Lin-

ear metrics are inherently stable, however stable non-linear metrics also exist.

Etn is an unstable metric as it does not provide a consistent definition of

optimisation. Whether or not a code change counts as an optimisation under

Etn is context sensitive. Code changes can be counted as optimisations only

when evaluated in the context of the full application. Targeted optimisation

of particular subroutines is impossible, and all past optimisations must be re-

evaluated every time a change is made to the application.

This problem with Etn metrics is best illustrated with an example. Suppose

an application contains a procedure which consumes 10 J over 10 s to produce

some result. This corresponds to an Et1 FoM of 10× 10 = 100. A modification

is made to the procedure, causing it to produce the same result in 11 J and 9 s.

This is a valid optimisation because, although it increases energy consumption,

it reduces Et1 to 11× 9 = 99.

After this procedure terminates, the application gives its user the option

56

4. Metrics for Energy-Aware Software Optimisation

θ ◦ λ

θ ◦ λ′

θ′ ◦ λ

θ′ ◦ λ′

optimisation

degradation

Runtime (s)

E
n
er
gy

(J
)

(a) Context Sensitive Optimisation

θ

optimisation

degradation

indeterminate

indeterminate

Runtime (s)

E
n
er
gy

(J
)

(b) Indeterminate Optimisations

Figure 4.4: Etn Optimisation Instability

to save the results at a cost of (5 J, 10 s). The un-optimised application could

execute both tasks with total energy and runtime costs of 10 + 5 = 15 J and

10 + 10 = 20 s respectively, giving an overall EDP of (10 + 5)× (10 + 10) = 300.

The same sequence of actions in the ‘optimised’ application results in a higher

(worse) EDP of (11+5)×(9+10) = 304. Under Etn metrics, saving the results

of this procedure can somehow retroactively invalidate its optimisation.

Figure 4.4a shows how the same change applied to two codes with the same

starting Etn FoM may be considered either an optimisation or a performance

degradation. Furthermore, Figure 4.4b shows how any energy-time trade-off

can be made to appear as an optimisation or a performance degradation de-

pending on the context. Different ratios of Eθ and tθ can shift the optimisa-

tion/degradation boundary to any point within the indeterminate quadrants.

Mini-applications are powerful tools in scientific computing [56]. They pack-

age relevant features of large production applications into smaller, more man-

ageable codes. Performance engineers use them as test beds to search for op-

timisations which can be ported back to the original application. Sometimes

optimisations which work at small scale will fail to improve the production

application, signalling a discrepancy between the mini and production applica-

57

4. Metrics for Energy-Aware Software Optimisation

tions. Using Etn metrics, however, optimisations to the mini-application may

not count as optimisations to the production code even when they yield iden-

tical cost changes in both cases. This is further evidence that Etn metrics are

incompatible with modern performance engineering techniques.

Tunable

The penultimate criteria is that it should be possible to tune a metric to reflect

the energy and time constraints of different domains by means of an appropriate

parameterization. The Etn metric meets this criteria via its n parameter. This

parameter sets the “exchange rate” at which small changes in runtime and

energy can be traded against each other. This can be shown by equating the

partial derivatives of Etn as shown in Equation 4.1:

∂

∂E
(Etn) = tn and

∂

∂t
(Etn) = nEtn−1

tn · ∂E = nEtn−1 · ∂t
∂E

E
= n

∂t

t
(4.1)

Intuitive

The final and most subjective criteria states that metrics should be intuitive.

In practice, this means a metric should measure some tangible property of a

system, ideally with values measured in meaningful units. Etn does not meet

this requirement.

The costs of an extra Joule or second are not fixed under Etn; in fact, the

cost of increasing each factor depends on the current magnitude of the other.

This implies that a Joule consumed by a long running process somehow costs

more than a Joule consumed by a short-lived one. Furthermore, real systems

impose maximum and minimum rates of power consumption on a code, which

are referred to in this work as Pmax and Pmin. Given that Pmin ·t < E < Pmax ·t,

the growth rate of Etn is Θ(tn+1). The FoM cost of an additional second or

Joule grows polynomially, hindering comparison between different scales.

58

4. Metrics for Energy-Aware Software Optimisation

4.3.1 Justification of Etn

The continued use of Etn metrics despite their flaws is a testament to the need

for standardised energy-aware optimisation metrics. In the absence of better

alternatives, software engineers rely on Etn metrics because of their popularity

and relative ease of use. Etn metrics remain the de-facto standard technique

for combining energy and runtime costs into a single FoM.

One factor which can mask the problems associated with Etn metrics is

the small range of power consumption figures exhibited when running HPC

workloads at small scales. This range is limited by high base power consumption

and marginal differences under load in modern hardware [49].

Figure 4.5a shows isometric lines for Et1 as well as for both the novel metrics

proposed below. It demonstrates how a small [Pmin, Pmax] range (represented

by the central unshaded area) limits the scope for divergence between different

metrics. Although the numeric values of each metric may differ significantly,

there is little scope for metrics to disagree as to which version of a code is

optimal. This effect is more pronounced for smaller [Pmin, Pmax] ranges. In

the extreme case, when Pmin = Pmax, Eθ is a scalar multiple of tθ and all

energy-aware metrics become monotonically increasing functions of time.

The scarcity of power-instrumented hardware means that energy-aware op-

timisation is often attempted at the level of individual nodes. Although single

nodes exhibit narrow [Pmin, Pmax] ranges, multi-node and system-level power

draw is much less constrained. As a consequence, different metrics may disagree

on which is the most optimised version of a code at scale even when they all

agree on a single node.

Figure 4.5b shows two performance envelopes with the larger having Pmin

and Pmax values three times those of the smaller one. This models the effect of

running the same code on a single node and over three nodes in parallel. Even

at this small (3 node) scale the discrepancies between Etn and other metrics

become readily apparent. Similar discrepancies can also occur when running

code across multiple architectures with different power characteristics, such as

59

4. Metrics for Energy-Aware Software Optimisation

Runtime (s)

E
n
er
gy

(J
)

(a) Narrow Range Equivalence

Runtime (s)

E
n
er
gy

(J
)

(b) Discrepancies at Scale

Figure 4.5: Power-Limited Isometric Lines

GPUs and FPGAs.

4.4 Proposed Metrics

Two new FoM metrics for energy-aware software optimisation are proposed in

this section. These metrics have slightly different properties and the choice of

which to use is left to developers. That said, they both significantly outperform

Etn metrics according to the proposed assessment criteria.

The first new metric, Energy Delay Sum (EDS), is a weighted sum of energy

and runtime costs. The second metric, Energy Delay Distance (EDD), measures

the cost of an application in terms of Euclidean distance from an ‘optimal’ point

at the energy/time origin where both costs are zero. Fitness landscapes for both

metrics are shown in Figures 4.6a and 4.6b respectively.

4.4.1 Proposed Metric 1: Energy Delay Sum

Energy and compute time are limited resources which have costs associated

with their consumption. The primary cost of energy consumption is the pur-

chase price of electricity. Environmental impact and other concerns can also be

factored in. Runtime also has a monetary cost – the purchase cost of a machine

60

4. Metrics for Energy-Aware Software Optimisation

Runtime (s)

E
n
er
gy

(J
)

(a) EDS

Runtime (s)

E
n
er
gy

(J
)

(b) EDD

Figure 4.6: Proposed Metrics Fitness Landscapes

amortised over its limited lifespan. Energy and runtime costs are captured by

the α and β parameters in Equation 4.2.

M(θ) = αEθ + βtθ

= (α, β) · (Eθ, tθ)
(4.2)

Bounded

This first criteria requires metrics to bound regions of the energy/time space.

The isometric lines in Figure 4.6a intercept both axes, which is enough to sat-

isfy this criteria. An EDS FoM therefore places upper limits on energy and

runtime costs. The runtime contribution to a metric is maximised when energy

is minimised and vice versa, allowing us to deduce cost limits under a given

FoM:

M(θ) = α · Emax + β · 0

∴ Emax =
M(θ)

α

M(θ) = α · 0 + β · tmax

∴ tmax =
M(θ)

β

61

4. Metrics for Energy-Aware Software Optimisation

Performance engineers need not evaluate code changes with energy costs

greater than Emax, or runtime costs greater than tmax. This is in stark contrast

to the Etn case, where any given energy or runtime cost could be considered an

optimisation under the right circumstances.

Directed

The second criteria requires metrics to guide optimisation in sensible directions.

Fast, energy intensive codes are likely to require different optimisations to slow,

energy efficient ones. As a linear function, EDS does not differentiate between

these cases; the isotopic lines in Figure 4.6a all run in parallel. This metric

still outperforms Etn in this regard however as it does not introduce perverse

optimisation incentives.

Additive and Stable

The third and fourth criteria require metrics to be linear functions of time and

energy and to provide stable definitions of optimisation. The function αE + βt

is linear in both parameters. Linear functions are automatically stable; meaning

this metric fulfils both criteria, providing stable definitions for optimisation and

allowing for meaningful code profiling.

Tunable

The penultimate criteria is that metrics should be tunable to different appli-

cation domains. EDS allows energy and runtime costs to be specified via its

α and β parameters. Unlike the exponential formulation of Etn, it is immedi-

ately apparent how different values will alter the balance between energy and

runtime.

A single scalar parameter would be enough to express any ratio of energy

and time components. One property of this metric is that with appropriate

tuning factors it can be used as a proxy for the monetary cost of running a

code. This use-case is why two tuning parameters are used in this metric, so

62

4. Metrics for Energy-Aware Software Optimisation

that it can provide notional value results.

Intuitive

The final criteria requires metrics to correspond to some meaningful property

of the system. Given appropriate coefficients this metric can report results in

terms of monetary cost. Monetary cost has meaningful units, allows for fair

comparisons to be made between different platforms and architectures, and is

useful during procurement.

Equation 4.2 provides a dot product formulation of the EDS metric which

suggests a second geometric interpretation. Dot products correspond to the

projection of one vector onto another – in this case of (Eλ, tλ) onto (α, β).

4.4.2 Proposed Metric 2: Energy Delay Distance

EDS measures code performance in terms of separable energy and time costs.

This fulfils all but one of the assessment criteria; as a linear function it was not

able to direct the optimisation of codes according to their starting costs. The

EDD metric remedies this by defining the cost of a code as its distance from the

optimum point in the fitness landscape – the origin:

M(θ) =

√
Eθ

2 + (βtθ)
2

EDD can also be expressed as the magnitude of a weighted cost vector:

M(θ) = ‖(Eθ, β · tθ)‖

Bounded

The isometric lines shown in Figure 4.6b follow semi-circular trajectories which

intercept the axes. This is sufficient to satisfy the first criteria, meaning that

EDD limits Emax and tmax for a given FoM. These limits can be derived as

63

4. Metrics for Energy-Aware Software Optimisation

follows:

M(θ) =

√
Emax

2 + β · 0

∴ Emax = M(θ)

M(θ) =

√
0 + β · tmax2

∴ tmax =
M(θ)

β

Directed

The isometric lines for this metric form concentric ellipse segments centred about

the origin. As a result, the corresponding isotopic lines converge on the origin.

Figure 4.6b makes it clear that as a result this metric prioritises optimisations

which minimise whichever cost is greater.

Additive

The formula for EDD is non-linear, meaning the overall FoM of a code is not

equivalent to the sum of its parts. This is an unavoidable consequence of being

a directed metric, and means that EDD is not ideal for accurate code profiling.

Unlike Etn, however, the discrepancy between the sum of component FoMs and

the overall code FoM for EDD is bounded. Because EDD is defined in terms of

vector magnitude it obeys the triangle inequality. As energy and time costs are

always positive, this gives:

√
M(θ)2 +M(λ)2 < M(θ ◦ λ) ≤M(θ) +M(λ)

Stable

EDD does not meet the stability criteria. Figure 4.7 shows a case where M(λ′) <

M(λ), yet M(θ ◦ λ′) > M(θ ◦ λ). The runtime axis is scaled so that isometric

lines remain concentric for all values of β. That said, EDD instability is bounded

64

4. Metrics for Energy-Aware Software Optimisation

θ

λ

λ′

M(θ ◦ λ′)

M(θ ◦ λ)

β×Runtime (s)

E
n
er
gy

(J
)

Figure 4.7: Energy Delay Distance Instability

by M(θ) +M(λ)−M(θ ◦ λ) as this metric obeys the following inequality:

M(λ′) < M(λ) =⇒ M(θ ◦ λ′) < M(θ) +M(λ)

Tunable

This metric is tunable via the β parameter. A single parameter is sufficient to

achieve any ratio of energy to runtime contribution.

Intuitive

This metric has a direct geometric interpretation as the Euclidean distance to

the origin. It does not treat energy and runtime as separate and distinct costs;

in reality they are inseparable. In general, reducing the runtime of a code will

also reduce its energy consumption. EDD defines the cost of a code in terms of

how far away it is from being optimal.

4.5 Case Study

This section investigates the energy-efficiency characteristics of codes in the

Mantevo [56] mini-application benchmark suite. The results found show that

the issues with Etn become more evident at larger scales.

65

4. Metrics for Energy-Aware Software Optimisation

These experiments were carried out on the Taurus system at TU Dresden,

which is equipped with High Density Energy Efficiency Monitoring (HDEEM)

instrumentation [51]. Taurus is a heterogeneous cluster with several classes of

node. This work was carried out on the largest of these classes, with each node

featuring two 12-core Intel Xeon E5-2680 v3 CPUs and 64 GB of memory.

All codes were compiled using Intel C++ Compiler (ICC) version 15.0.3.

Application parameters were based on default values, with problem sizes tuned

where necessary to ensure reasonable run times on single nodes. Values for these

parameters are given in Appendix C. Each application was run fifteen times on

the same node to reduce the impact of random variations in runtime and energy.

Et3 was used in these experiments because Laros et al. found that this strikes

the right balance between runtime and energy for high performance comput-

ing [80]. This implies that a 1% reduction in runtime is approximately three

times more valuable than the same reduction in energy consumption.

In order to facilitate fair comparison, EDS and EDD parameterisations are

based on the same 3:1 ratio. Whereas the Etn parameter operates in a relative

fashion, however, EDS and EDD parameters are based on absolute costs of con-

sumption. The power drawn by active Taurus nodes ranges between 207.68 W

and 345.33 W [104], meaning the magnitude of energy costs will be around 300

times greater than that of runtime. runtime costs must be scaled by a factor of

300 before applying the same 3 : 1 ratio in order to compensate for this effect.

The parameterisation used for EDS is obtained by multiplying the 300 scal-

ing factor and the 3:1 ratio together, resulting in the parameters α = 1 and

β = 3 × 300 = 900. The parameterisation of EDD is very similar, except

that it uses a multiplier of
√

3 rather than 3 to account for the square root

present in the definition of EDD. This results in a parameterisation of α = 1

and β =
√

3× 300 ≈ 519.615.

In practice it would be better to adopt a more fine-grained parameterisation

which reflects real-world costs incurred by HPC systems. That said, exact cost

figures are seldom made available in the public domain.

66

4. Metrics for Energy-Aware Software Optimisation

Table 4.1: Single Node Code Costs

Code Runtime (s) Energy (J) Et3 EDS EDD

TeaLeaf 323.8 99,810.3 3,388,487,549,302 391,230 195,629
PathFinder 337.1 71,943.9 2,755,943,021,015 375,334 189,361
CloverLeaf 214.3 57,861.2 569,447,839,399 250,731 125,489
CloverLeaf 3D 153.1 43,755.9 157,022,610,497 181,546 90,792
MiniMD 125.5 31,162.1 61,596,763,623 144,112 72,275
CoMD 105.6 24,837.8 29,248,586,337 119,878 60,231
MiniFE 36.7 8,465.6 418,461,914 41,496 20,864
HPCCG 36.5 8,059.5 391,910,314 40,910 20,607

Table 4.2: MiniMD Multi-Node Costs

Nodes Runtime (s) Energy (J) Et3 EDS EDD

1 125.5 31,162.1 61,596,763,623 144,112 72,275
2 94.2 44,999.0 37,614,524,063 129,779 66,489
4 66.8 63,166.0 18,828,371,703 123,286 72,075
6 55.2 76,400.0 12,850,220,851 126,080 81,607
8 54.0 99,032.6 15,594,069,326 147,633 102,931

12 44.0 119,008.9 10,137,654,138 158,609 121,185
16 39.8 145,198.3 9,153,996,622 181,018 146,664
18 37.8 152,380.5 8,230,093,967 186,401 153,641
24 36.0 191,056.9 8,913,950,726 223,457 191,970
28 37.2 231,525.5 11,918,666,023 265,006 232,331
32 37.5 258,054.5 13,608,342,773 291,805 258,789
64 39.4 518,748.6 31,728,212,322 554,209 519,152

128 46.2 1,203,476.1 118,676,135,742 1,245,056 1,203,716

The first test carried out measured the runtime and energy consumption of

various codes running on a single node. The results for this test are presented

in Table 4.1.

The first thing to note is that Etn results rapidly become unwieldy even

for relatively short runtimes and low node counts. The runtime of HPCCG

is around 11.4% that of TeaLeaf, and it also exhibits a slightly lower rate of

power draw. This translates to a four orders of magnitude difference in their

Etn values. Adding a single second to the runtime of TeaLeaf would increase

its Et3 cost by over 80 times the total Et3 value of HPCCG.

Another thing to note is that despite large variations in values, all metrics

assign the same efficiency ordering to these codes. As previously mentioned, the

limits of single-node power draw limit the scope for metrics to disagree.

The second test done was to measure the runtime and energy consumption

of MiniMD running at scale. The results for this test are presented in Table 4.2.

These results show how biased Etn metrics are in favour of massive paral-

67

4. Metrics for Energy-Aware Software Optimisation

lelism. The efficiency of MiniMD according to Etn improves as the node count

increases to 18. It is only at the point when adding nodes delivers little or no

reduction in runtime that this trend reverses.

EDS identifies 4 nodes as the optimal node count. This configuration delivers

roughly twice the runtime performance of a single node at the cost of doubling

the energy consumption. Adding nodes beyond this point results in energy costs

increasing faster than runtime performance improves.

EDD identifies two nodes as the optimal node count. The fact this figure is

lower corresponds to the intuition that parallelism introduces overhead. As the

parallel overhead grows, so too does inefficiency as measured by this metric.

Et3 gives the impression that below-linear speed-ups coupled with above-

linear rises in energy consumption represent efficiency gains. Conversely, both

EDS and EDD conform to a more conventional understanding of energy effi-

ciency. They identify optimal configurations which can be justified intuitively.

4.6 Summary

This chapter argues that Etn metrics are not appropriate for energy-aware soft-

ware engineering. Alternative metrics are proposed which can be used to mea-

sure the cost of applications and guide their optimisation. Finally, the per-

formance of these new metrics is compared against established techniques by

studying codes taken from the Mantevo mini-application suite.

This chapter begins by explaining the rationale between delay product met-

rics. It then gives several reasons why Etn metrics are unable to provide mean-

ingful values for individual experiments, cannot be compared between experi-

ments and do not support optimisation efforts. First, improving the Etn FoM of

a section of code can degrade overall performance. Secondly, Etn metrics drive

optimisation efforts in counterproductive directions, encouraging developers to

speed up already fast code and seek energy efficiency gains in energy efficient

codes. Finally, these metrics provide no meaningful definition of an optimisa-

68

4. Metrics for Energy-Aware Software Optimisation

tion. In total, Etn was able to fulfil only one of the seven criteria for software

optimisation metrics outlined in this chapter.

After identifying flaws in existing approaches, this chapter introduces EDS

and EDD, two new metrics which outperform Etn against the proposed assess-

ment criteria. EDS is appropriate for measuring the cost of applications, while

EDD is well suited to guiding application optimisation. Both new metrics fulfil

the majority of the criteria for software optimisation metrics and EDS fulfils

the maximum number possible.

This chapter finishes with a study into the energy-efficiency costs of several

popular applications. This study shows how the flaws of Etn metrics have man-

aged to remain hidden in small-scale optimisation studies. It also demonstrates

how these flaws will prevent Etn metrics from being employed at scale. As a

result, new metrics like EDS and EDD will be required to support performance

engineers as interest in energy optimisation continues to grow.

69

CHAPTER 5
Power Optimised Software Envelope Model

This chapter introduces the Power Optimised Software Envelope (POSE) model.

The energy efficiency of a code can be improved in one of two ways, either by

shortening its runtime or by reducing its power consumption. POSE models

quantify the potential benefits of each approach, allowing developers to focus

their efforts on whichever offers the greatest rewards.

POSE models work by partitioning the energy/runtime plane into areas with

different performance characteristics relative to an unoptimised code θ. Each

of these areas corresponds to a specific optimisation outcome; either power

optimisation, runtime optimisation or reduced code performance. The following

insights are then derived from the relative size and positions of these areas:

1. The maximum possible energy savings from reduced power consumption;

2. The maximum possible improvement in a metric from power optimisation;

3. The minimum speed-up guaranteed to improve performance irrespective

of power draw;

4. The maximum possible slow-down while still improving performance; and

5. The minimum speed-up guaranteed to outperform any power optimisation.

This chapter begins by explaining how POSE models are constructed for the Etn

family of metrics. The various insights provided by POSE are then described

in detail. This process is then repeated for the Energy Delay Sum (EDS) and

Energy Delay Distance (EDD) metrics from the previous chapter, showing that

POSE is metric agnostic. Finally, POSE is demonstrated by performing an

investigation into the energy-aware optimisation characteristics of codes taken

from the Mantevo mini-application suite.

70

5. Power Optimised Software Envelope Model

In contrast to the previous chapter, this work uses Et2 rather than Et3

to illustrate Etn metrics. The reasons for this are twofold. First, Et2 was

used when the POSE model was first published [104] and this chapter adopts

the same convention. Secondly, because Et2 places less emphasis on runtime

optimisation its POSE regions are larger, resulting in clearer diagrams. Despite

this, Et2 and Et3 are both equally suitable for use in conjunction with POSE.

5.1 Model Construction

This section introduces the various bounds which make up a POSE model. It

does so by presenting derivations of these bounds for the Etn family of metrics,

along with the coordinates at which they intersect. Etn metrics are used to

introduce POSE because, despite their flaws, they remain the de-facto standard

metrics for energy-aware software optimisation.

Although this section refers to Etn metrics, POSE is metric agnostic and

can be used in conjunction with any optimisation metric which is a continuous

function of runtime and energy costs. The only other prerequisite when using

POSE is that runtime and energy consumption can be accurately measured or

calculated for the target platform.

All of the definitions introduced by this section apply regardless of the metric

chosen. They are used unmodified in a later section to produce equivalent POSE

derivations for the EDS and EDD metrics. Appendix A summarises the POSE

equation derivations for Etn, EDS and EDD.

5.1.1 Feasible Performance Envelope

POSE models are built around the concept of a Feasible Performance Envelope

(FPE). This envelope is the area between the Pmax and Pmin energy bounds

shown in Figure 5.1. These are lines of gradient Pmax and Pmin respectively,

values which correspond to the maximum and minimum rates of power draw

possible during normal operation of the target platform. As such, the energy

71

5. Power Optimised Software Envelope Model

θ
A

B

C
D

E

Runtime (s)

E
n
er
g
y
(J

)

Pmax Energy Bound
Pmin Energy Bound

B E Optimisation Bound
C θ Contribution Bound
A C Optimisation Limit

Figure 5.1: Et2 Power Optimised Software Envelope

and runtime costs incurred by running any given code θ on this platform must

be represented by a single point (Eθ, tθ) somewhere inside this envelope.

The quantitative insights offered by POSE are calculated from the positions

of the five vertices labelled A – E in Figure 5.1. Four of these vertices lie on

an intersection between the FPE and one of the POSE bounds. The remaining

vertex D lies directly below the initial code θ on the Pmin energy bound at coor-

dinates (Pmin tθ, tθ). This vertex corresponds to the largest possible pure power

optimisation of θ, meaning an optimisation which reduces power consumption

without any change to runtime.

5.1.2 Optimisation Bound

POSE considers the metric used to guide optimisation in order to constrain the

search space for valid optimisations within the FPE.

Definition 7. For logically equivalent codes θ and λ, the transformation θ → λ

is an optimisation with respect to a metric M iff M(λ) dominates M(θ).

The optimisation bound passes through θ, linking all points λ with the same

72

5. Power Optimised Software Envelope Model

metric value as the original code, such that M(λ) = M(θ). This bound is rep-

resented by the curve B — E in Figure 5.1.

Compared to θ, all points below the optimisation bound will have strictly

better performance in terms of metric M , and all points above it will have

strictly worse performance in terms of M . This follows from Definition 7, which

is restated here from the previous chapter. In particular, any optimised versions

of θ must appear below this bound in the direction of the origin.

The equation for the optimisation bound depends on the optimisation met-

ric used. Deriving an equation for the optimisation bound involves finding an

expression for the curve which links all points λ with the same metric value as

θ. Figure 5.1 shows the optimisation bound for Et2 while Equation 5.1 gives a

general expression for the optimisation bound of any Etn metric. The derivation

of Equation 5.1 is as follows:

M(λ) = M(θ)

Eλ tλ
n = Eθ tθ

n

Eλ = Eθ
tθ
n

tλ
n

Eλ = Eθ

(
tθ
tλ

)n
(5.1)

The intersections between the optimisation bound and the FPE determine the

position of vertices B and E in Figure 5.1. Vertex B represents the fastest

possible code within the FPE which shares the same metric value as θ. Any

optimised version of θ with a runtime faster than B is guaranteed to outperform

the original unoptimised code in terms of M . Similarly, vertex E represents

the slowest possible code with the same metric value as θ. By definition, any

optimised version of θ must run faster than E.

Vertex B lies on the intersection between the optimisation and Pmax energy

bounds. As such, its coordinates can be found by calculating the point at which

Equation 5.1 for the optimisation bound intersects with the line Pmax tλ. This

is done by equating the two expressions and re-arranging the result in terms of

73

5. Power Optimised Software Envelope Model

tλ to yield Equation 5.2 as follows:

Pmax tλ = Eθ

(
tθ
tλ

)n
Pmax tλ = Pθ tθ

tθ
n

tλ
n (As Eθ = Pθ tθ)

Pmax tλ
n+1 = Pθ tθ

n+1

tλ
n+1 = tθ

n+1 Pθ
Pmax

tλ = tθ

(
Pθ
Pmax

) 1
n+1

(5.2)

The energy coordinate of vertex B is found by multiplying its runtime coordinate

by Pmax. Equation 5.3 lists the runtime and energy coordinates for vertex B:

tB = tθ

(
Pθ
Pmax

) 1
n+1

EB = Pmax · tB
(5.3)

The derivation for the coordinates of vertex E is identical to Equation 5.2, except

that Pmin replaces Pmax as E lies on the Pmin energy bound. Equation 5.4 lists

the runtime and energy coordinates for vertex E:

tE = tθ

(
Pθ
Pmin

) 1
n+1

EE = Pmin · tE
(5.4)

5.1.3 Contribution Bound

All optimised versions of the initial, unoptimised code θ must appear inside

the FPE in the region below the optimisation bound. The contribution bound

further subdivides this region into runtime and power optimisations.

Performance engineers seek to use the most appropriate tools while searching

for optimisations. Conventional time-based performance engineering techniques

are more appropriate when searching for optimisations which result in large

reductions in runtime, whereas energy-aware techniques are better suited to

74

5. Power Optimised Software Envelope Model

finding optimisations which primarily reduce power consumption. POSE uses

the contribution bound to make this distinction.

Definition 8. An optimisation θ → λ with respect to metric M is considered

to be a power optimisation iff the improvement in terms of M stems primarily

from a reduction in power draw, such that M(Pλtθ, tθ) dominates M(Pθtλ, tλ).

Most optimisations will impact both runtime and power consumption to some

degree. Definition 8 determines which of these impacts causes most improvement

in terms of metric M . It does this by treating them as if they were two seperate

optimisations; a pure power optimisation (Pθtθ, tθ) → (Pλtθ, tθ), and a pure

runtime optimisation (Pθtθ, tθ) → (Pθtλ, tλ), and then comparing them to see

which is most beneficial. Power optimisations are those which derive most of

their benefits from reduced power consumption rather than shorter runtimes,

meaning that M(Pλtθ, tθ) dominates M(Pθtλ, tλ).

Curve C — θ in Figure 5.1 links all points for which power and runtime

factors contribute to M in the same ratio as the original code. By Definition 8,

any power-optimised versions of θ must lie below this contribution bound.

The equation for the contribution bound also depends on the metric chosen.

It obtained by lettingM(Pλtθ, tθ) = M(Pθtλ, tλ), expanding the definition ofM ,

re-arranging to make Pλ the subject, then finally multiplying by tλ to provide a

result in terms of energy. Figure 5.1 shows this bound for Et2 while the general

75

5. Power Optimised Software Envelope Model

form for Etn metrics is derived as follows:

M(Pλ tθ, tθ) = M(Pθ tλ, tλ)

Pλ tθ · tθn = Pθ tλ · tλn

Pλ tθ
n+1 = Pθ tλ

n+1

Pλ = Pθ
tλ
n+1

tθ
n+1

Pλ = Pθ

(
tλ
tθ

)n+1

Eλ = Pθ tλ

(
tλ
tθ

)n+1

(5.5)

The intersection between the contribution and Pmin energy bounds determines

the position of vertex C in Figure 5.1. This vertex represents the fastest possible

code which still meets the criteria to count as a power-optimised version of θ.

Any optimisation which reduces runtime below that of C must have a larger

impact on runtime than on power consumption, and as such would be considered

a runtime optimisation.

Vertex C can also be interpreted as the best possible outcome for power

optimisation. This is because, in addition to having the smallest runtime of any

power optimisation, it also has the lowest possible power draw as it lies on the

Pmin energy bound. As such, it will have the best possible metric value of any

point within the power optimised region.

The coordinates of vertex C can be found by calculating the point at which

Equation 5.5 intersects with the line Pmin tλ. This is done by equating the

two expressions, dividing throughout by common factors, then re-arranging the

76

5. Power Optimised Software Envelope Model

result in terms of tλ to yield Equation 5.6 as follows:

Pmin tλ = Pθ tλ

(
tλ
tθ

)n+1

Pmin = Pθ

(
tλ
tθ

)n+1

Pmin
Pθ

=
tλ
n+1

tθ
n+1

tλ
n+1 = tθ

n+1 Pmin
Pθ

tλ = tθ

(
Pmin
Pθ

) 1
n+1

(5.6)

The energy coordinate of vertex C is found by multiplying its runtime coordinate

by Pmin. Equation 5.7 lists the runtime and energy coordinates for vertex C:

tC = tθ

(
Pmin
Pθ

) 1
n+1

EC = Pmin · tC
(5.7)

5.1.4 Optimisation Limit

The bounds described so far delineate those regions of the energy/runtime plane

in which runtime and power optimised versions of a given code can be found.

The optimisation limit further partitions runtime optimisations into those which

could potentially be outperformed by some hypothetical power optimisation and

those which strictly dominate all possible power optimisations.

As its name suggests, the optimisation limit is closely related to the opti-

misation bound. They both link all points with the same metric value as a

reference code, and as such are both defined by Equation 5.1. The only differ-

ence between them is that the optimisation limit connects all points with the

same metric value as vertex C rather than the original code θ.

Given that vertex C represents the best possible outcome from power opti-

misation, all optimisations which lie below the optimisation limit must strictly

dominate any possible power optimisation.

77

5. Power Optimised Software Envelope Model

Vertex A lies on the intersection between the optimisation limit and the Pmax

energy bound in Figure 5.1. This vertex represents the fastest possible code

with the same metric value as C, which in turn corresponds to the best possible

outcome from power optimisation. As such, any optimisation which results in

a faster code than A will outperform all possible power optimisations.

Because the optimisation bound and the optimisation limit are both based

on Equation 5.1, the expressions for their coordinates are also similar. In par-

ticular, the coordinates of vertex A can be obtained using the same expressions

derived for vertex B in Equation 5.3. The only difference is that C replaces

θ as the reference point used, yielding Equation 5.8. The expression for tC in

Equation 5.7 is then substituted in to give Equation 5.9, an expression for the

coordinate tA in terms of θ, as follows:

tA = tC

(
PC
Pmax

) 1
n+1

(5.8)

tA = tC

(
Pmin
Pmax

) 1
n+1

(As PC = Pmin)

tA = tθ

(
Pmin
Pθ

) 1
n+1

(
Pmin
Pmax

) 1
n+1

(By Equation 5.7)

tA = tθ

(
Pmin

2

Pθ Pmax

) 1
n+1

(5.9)

The energy coordinate of vertex A is found by multiplying its runtime coordinate

by Pmax. Equation 5.10 lists the runtime and energy coordinates for vertex A:

tA = tθ

(
Pmin

2

Pθ Pmax

) 1
n+1

EA = Pmax · tA
(5.10)

5.2 POSE Insights

Figure 5.2 shows how POSE partitions the feasible performance envelope into

four distinct regions, each with different performance characteristics.

Region 1 contains runtime optimisations which dominate the best case power

78

5. Power Optimised Software Envelope Model

θ
A

B

C
D

E

1.

2. 3.

4.

Runtime (s)

E
n
er
g
y
(J

)

Pmax Energy Bound
Pmin Energy Bound

B E Optimisation Bound
C θ Contribution Bound
A C Optimisation Limit

Figure 5.2: Et2 Power Optimised Software Envelope Regions

optimisation in terms of a given metric M (Strong Runtime Optimisation).

Region 2 contains runtime optimisations which dominate θ in terms of M , yet

may be outperformed by some power optimised version of θ (Weak Runtime

Optimisation). Region 3 contains optimisations for which improvements to M

are primarily due to reduced power consumption (Power Optimisation). Finally,

Region 4 corresponds to codes with performance strictly worse than that of θ

(Performance Degradation).

The five vertices labelled A to E correspond to extreme outcomes of energy-

aware optimisation. Comparing these outcomes to the initial performance of

θ provides quantitative insights about the optimisation potential for this code.

These insights fall into two broad categories which together help performance

engineers decide if power optimisation is likely to prove worthwhile.

The first category relates to the potential benefits from power optimisation.

The difference in energy between points θ and D places an upper bound on the

amount of energy which can be saved by reducing power consumption. Similarly,

the difference in value between M(θ) and M(C) gives an upper bound for the

improvement in a metric which can be delivered by power optimisation.

79

5. Power Optimised Software Envelope Model

The second category relates to the scope a code has for power optimisation.

The ratio tθ/tB represents the smallest speed-up which guarantees a code that

outperforms θ with respect to M . The difference in runtime between points E

and θ represents the maximum increase in runtime which could be traded off

to achieve a slower yet more energy efficient code. Finally, tθ/tA is the smallest

speed-up guaranteed to outperform any power optimised version of θ.

POSE results can be given in either relative or absolute forms by taking the

ratio or the difference between values. For example, an optimisation guaranteed

to outperform θ in terms of M must reduce runtime by at least tθ− tB seconds,

or equivalently yield a relative speed-up of tθ/tB times. Expressions for POSE

coordinates are all linear functions in terms of tθ, meaning the ratios between

them remain constant regardless of changes to runtime. This property means

relative results can be used to predict large-scale optimisation characteristics

from tests with shorter runtimes.

The results given by POSE are all bounds, and the true benefits of power

optimisation will be more modest in practice. Even so, these values are useful

as they allow performance engineers to make informed decisions about where

best to focus their optimisation efforts.

One final thing to note is how metric tuning parameters affect POSE models.

Figure 5.3 shows how POSE varies in response to different Etn exponents rang-

ing from Energy (Et0) up to Energy Delay Cubed Product (Et3). Higher values

of n place more emphasis on runtime, resulting in less scope for energy-aware

optimisation. POSE is able to reflect this change through its various insights

and identify exactly how much the opportunity for energy-aware optimisation

has been reduced by.

5.3 POSE Models for Novel Metrics

The previous sections introduced POSE in the context of the Etn family of

metrics. This section demonstrates that POSE is metric agnostic, and therefore

80

5. Power Optimised Software Envelope Model

θ

Runtime (s)

E
n
er
g
y
(J

)

Pmin Energy Bound
Pmax Energy Bound

Et3 POSE

Et2 POSE

Et1 POSE

Et0 (Energy) POSE

Figure 5.3: Etn POSE Model Tunability

more generally applicable, by constructing models for the EDS and EDD metrics

introduced in Chapter 4.

Many elements of POSE model construction are common between different

metrics. The FPE remains the same as it is a property of the system under

investigation. Similarly, vertex D does not move because it only depends on

the FPE and the code being profiled, not the metric chosen. Furthermore, all

POSE models consist of the same set of bounds and coordinates. As a result,

the same insights are provided regardless of the optimisation metric used.

The only things that differ between metrics are the equations for the various

POSE bounds and coordinates. These equations must be derived independently

for each new metric used in conjunction with POSE. That said, these derivations

follow similar patterns and as such are not a significant barrier.

Figure 5.4 displays POSE models for EDS and EDD drawn using the bounds

derived below in this section.

81

5. Power Optimised Software Envelope Model

A

B

C
D

E

θ

Runtime (s)

E
n
er
gy

(J
)

Pmax Energy Bound
Pmin Energy Bound

B E Optimisation Bound
C θ Contribution Bound
A C Optimisation Limit

(a) Energy Delay Sum

A

B

C
D

E

θ

Runtime (s)

E
n
er
gy

(J
)

Pmax Energy Bound
Pmin Energy Bound

B E Optimisation Bound
C θ Contribution Bound
A C Optimisation Limit

(b) Energy Delay Distance

Figure 5.4: POSE Models for Novel Metrics

5.3.1 Energy Delay Sum POSE

The optimisation bound and optimisation limit are both determined by the

same equation, as seen with Equation 5.1 for the Etn metrics. Equation 5.11

links all points λ with the same EDS metric value as a reference code θ. It is

noteworthy that Equation 5.11 is analgous to the point-slope form of the straight

line equation, y − y1 = m(x− x1), with y1 = Eθ, x1 = tθ and m = −β/α.

M(λ) = M(θ)

αEλ + βtλ = αEθ + βtθ

αEλ = αEθ + βtθ − βtλ

Eλ = Eθ +
βtθ − βtλ

α

Eλ = Eθ +
β

α
(tθ − tλ) (5.11)

The process of finding POSE vertex coordinates is also the same for different

metrics. Vertex B lies on the intersection between the optimisation and Pmax

energy bounds, at the point where Equation 5.11 crosses the line Pmax tλ. Its

runtime coordinate is found by equating the two expressions then solving for tλ

82

5. Power Optimised Software Envelope Model

to give Equation 5.12 as follows:

Pmax tλ = Eθ +
β

α
(tθ − tλ)

Pmax tλ = Pθ tθ +
β

α
tθ −

β

α
tλ (As Eθ = Pθ tθ)

Pmax tλ +
β

α
tλ = Pθ tθ +

β

α
tθ

tλ

(
Pmax +

β

α

)
= tθ

(
Pθ +

β

α

)
tλ = tθ

Pθ + β
α

Pmax + β
α

(5.12)

The energy coordinate of vertex B is found by multiplying its runtime coordinate

by Pmax. Equation 5.13 lists the runtime and energy coordinates for vertex B

under EDS:

tB = tθ
Pθ + β

α

Pmax + β
α

EB = Pmax · tB
(5.13)

As before, the derivation for the coordinates of vertex E is identical to Equa-

tion 5.12, except that Pmin replaces Pmax as E lies on the Pmin energy bound.

Equation 5.14 lists the runtime and energy coordinates for vertex E:

tE = tθ
Pθ + β

α

Pmin + β
α

EE = Pmin · tE
(5.14)

The contribution bound links all points λ where power and runtime contribute

to M in the same ratio as the original code. Equation 5.15 shows the derivation

83

5. Power Optimised Software Envelope Model

of this bound for the EDS metric:

M(Pλtθ, tθ) = M(Pθtλ, tλ)

αPλtθ + βtθ = αPθtλ + βtλ

tθ (αPλ + β) = tλ (αPθ + β)

αPλ + β =
tλ
tθ

(αPθ + β)

αPλ =
tλ
tθ

(αPθ + β)− β

Pλ =
tλ
tθ

(
Pθ +

β

α

)
− β

α

Eλ =
tλ

2

tθ

(
Pθ +

β

α

)
− tλ

β

α
(5.15)

Vertex C lies on the intersection between Equation 5.15 and the Pmin energy

bound given by Pmin tλ. The runtime coordinate of C is found by equating

the two expressions and then re-arranging the result in terms of tλ to yield

Equation 5.16 as follows:

Pmin tλ =
tλ

2

tθ

(
Pθ +

β

α

)
− tλ

β

α

Pmin =
tλ
tθ

(
Pθ +

β

α

)
− β

α

Pmin +
β

α
=
tλ
tθ

(
Pθ +

β

α

)
tλ
tθ

=
Pmin + β

α

Pθ + β
α

tλ = tθ
Pmin + β

α

Pθ + β
α

(5.16)

The energy coordinate of vertex C is found by multiplying its runtime coordinate

by Pmin. Equation 5.17 lists the runtime and energy coordinates for vertex C

under EDS:

tC = tθ
Pmin + β

α

Pθ + β
α

EC = Pmax · tC
(5.17)

84

5. Power Optimised Software Envelope Model

Both the contribution bound and contribution limit are defined by the same

equation, but with a different reference point. As such, the coordinates for

vertex A are given by the same equation as vertex B, namely Equation 5.13,

except with C replacing θ to yield Equation 5.18. The expression for tC in Equa-

tion 5.17 is then substituted in and the result rearranged to give Equation 5.19,

an expression for the coordinate TA in terms of θ, as follows:

tA = tC
PC + β

α

Pmax + β
α

(5.18)

tA = tC
Pmin + β

α

Pmax + β
α

(As PC = Pmin)

tA = tθ
Pmin + β

α

Pθ + β
α

· Pmin + β
α

Pmax + β
α

(By Equation 5.17)

tA = tθ

(
Pmin + β

α

)2
(
Pθ + β

α

)(
Pmax + β

α

) (5.19)

The energy coordinate of vertex A is found by multiplying its runtime coordinate

by Pmax. Equation 5.20 lists the runtime and energy coordinates for vertex A:

tA = tθ

(
Pmin + β

α

)2
(
Pθ + β

α

)(
Pmax + β

α

)
EA = Pmax · tA

(5.20)

5.3.2 Energy Delay Distance POSE

The optimisation bound and optimisation limit are both determined by Equa-

tion 5.21, which links all points λ with the same EDD metric value as a reference

85

5. Power Optimised Software Envelope Model

code θ:

M(λ) = M(θ)√
(αEλ)

2
+ (βtλ)

2
=

√
(αEθ)

2
+ (βtθ)

2

(αEλ)
2

+ (βtλ)
2

= (αEθ)
2

+ (βtθ)
2

(αEλ)
2

= (αEθ)
2

+ (βtθ)
2 − (βtλ)

2

Eλ
2 = Eθ

2 +

(
β

α

)2 (
tθ

2 − tλ2
)

Eλ =

√
Eθ

2 +

(
β

α

)2 (
tθ

2 − tλ2
)

(5.21)

Vertex B lies on the intersection between the optimisation and Pmax energy

bounds, at the point where Equation 5.21 crosses the line Pmax tλ. Its runtime

coordinate is found by equating the two expressions then solving for tλ to give

Equation 5.22 as follows. Note that only positive square roots are considered as

runtime and energy costs cannot be negative.

Pmax tλ =

√
Eθ

2 +

(
β

α

)2 (
tθ

2 − tλ2
)

(Pmax tλ)
2

= (Pθ tθ)
2

+

(
β

α

)2 (
tθ

2 − tλ2
)

(As Eθ = Pθ tθ)

(Pmax tλ)
2

+

(
β

α

)2

tλ
2 = (Pθ tθ)

2
+

(
β

α

)2

tθ
2

tλ
2

(
Pmax

2 +

(
β

α

)2
)

= tθ
2

(
Pθ

2 +

(
β

α

)2
)

tλ
2 = tθ

2
Pθ

2 +
(
β
α

)2
Pmax

2 +
(
β
α

)2

tλ = tθ ·

√√√√√√ Pθ
2 +

(
β
α

)2
Pmax

2 +
(
β
α

)2 (5.22)

The energy coordinate of vertex B is found by multiplying its runtime coordinate

by Pmax. Equation 5.23 lists the runtime and energy coordinates for vertex B

86

5. Power Optimised Software Envelope Model

under EDD:

tB = tθ ·

√√√√√√ Pθ
2 +

(
β
α

)2
Pmax

2 +
(
β
α

)2
EB = Pmax · tB

(5.23)

As always, the derivation for the coordinates of vertex E is identical to Equa-

tion 5.22, except that Pmin replaces Pmax as E lies on the Pmin energy bound.

Equation 5.24 lists the runtime and energy coordinates for vertex E:

tE = tθ ·

√√√√√√ Pθ
2 +

(
β
α

)2
Pmin

2 +
(
β
α

)2
EE = Pmin · tE

(5.24)

The contribution bound links all points λ where power and runtime contribute

to M in the same ratio as the original code. Equation 5.25 shows the derivation

of this bound for the EDD metric:

M(Pλtθ, tθ) = M(Pθtλ, tλ)√
(αPλ tθ)

2
+ (βtθ)

2
=

√
(αPθ tλ)

2
+ (βtλ)

2

(αPλ tθ)
2

+ (βtθ)
2

= (αPθ tλ)
2

+ (βtλ)
2

(αPλ tθ)
2

= (αPθ tλ)
2

+ (βtλ)
2 − (βtθ)

2

Pλ
2 =

(
Pθ
tλ
tθ

)2

+

(
β tλ
α tθ

)2

−
(
β

α

)2

Pλ =

√(
Pθ
tλ
tθ

)2

+

(
β tλ
α tθ

)2

−
(
β

α

)2

Eλ = tλ ·
√(

Pθ
tλ
tθ

)2

+

(
β tλ
α tθ

)2

−
(
β

α

)2

(5.25)

Vertex C lies on the intersection between Equation 5.25 and the Pmin energy

bound given by Pmin tλ. The runtime coordinate of C is found by equating

87

5. Power Optimised Software Envelope Model

the two expressions and then re-arranging the result in terms of tλ to yield

Equation 5.26 as follows:

Pmin tλ = tλ ·
√(

Pθ
tλ
tθ

)2

+

(
β tλ
α tθ

)2

−
(
β

α

)2

Pmin =

√(
Pθ
tλ
tθ

)2

+

(
β tλ
α tθ

)2

−
(
β

α

)2

Pmin
2 =

(
Pθ
tλ
tθ

)2

+

(
β tλ
α tθ

)2

−
(
β

α

)2

Pmin
2 +

(
β

α

)2

=
tλ

2

tθ
2

(
Pθ

2 +

(
β

α

)2
)

tλ
2 = tθ

2
Pmin

2 +
(
β
α

)2
Pθ

2 +
(
β
α

)2

tλ = tθ ·

√√√√√√Pmin
2 +

(
β
α

)2
Pθ

2 +
(
β
α

)2 (5.26)

The energy coordinate of vertex C is found by multiplying its runtime coordinate

by Pmin. Equation 5.27 lists the runtime and energy coordinates for vertex C

under EDD:

tC = tθ ·

√√√√√√Pmin
2 +

(
β
α

)2
Pθ

2 +
(
β
α

)2
EC = Pmin · tC

(5.27)

Finally, the coordinate for vertex A is obtained by replacing C for θ in Equa-

tion 5.23 to yield Equation 5.28. The expression for tC in Equation 5.27 is then

substituted in and the result rearranged to give Equation 5.29, an expression

88

5. Power Optimised Software Envelope Model

θ

Runtime (s)

E
n
er
gy

(J
)

Pmax Energy Bound
Pmin Energy Bound

Et2 POSE Model
EDS POSE Model

(a) EDS

θ

Runtime (s)

E
n
er
gy

(J
)

Pmax Energy Bound
Pmin Energy Bound

Et2 POSE Model
EDD POSE Model

(b) EDD

Figure 5.5: Comparison of POSE Models for Different Metrics

for the coordinate tA in terms of θ, as follows:

tA = tC ·

√√√√√√ PC
2 +

(
β
α

)2
Pmax

2 +
(
β
α

)2 (5.28)

tA = tθ ·

√√√√√√Pmin
2 +

(
β
α

)2
Pθ

2 +
(
β
α

)2 ·
√√√√√√Pmin

2 +
(
β
α

)2
Pmax

2 +
(
β
α

)2
tA = tθ ·

Pmin
2 +

(
β
α

)2
√
Pθ

2 +
(
β
α

)2
·
√
Pmax

2 +
(
β
α

)2 (5.29)

The energy coordinate of vertex A is found by multiplying its runtime coordinate

by Pmax. Equation 5.30 lists the runtime and energy coordinates for vertex A:

tA = tθ ·
Pmin

2 +
(
β
α

)2
√
Pθ

2 +
(
β
α

)2
·
√
Pmax

2 +
(
β
α

)2
EA = Pmax · tA

(5.30)

Appendix A summarises all of the POSE equations derived in this chapter.

Figures 5.5a and 5.5b show how POSE models for the EDD and EDS metrics

compare to the same model built for Et2. The parameterisations used for these

89

5. Power Optimised Software Envelope Model

diagrams were based on those from the previous chapter in that values for the

α and β coefficients were chosen to reflect the relative costs of an Etn metric,

in this case Et2. The only difference from the previous chapter is that an Etn

exponent of two was used, meaning that a 2 : 1 ratio was applied instead of the

3 : 1 ratio used in Chapter 4.

Figure 5.5 also highlights an important difference between Etn and the met-

rics introduced in Chapter 4. The parameterisations used for the EDS and EDD

POSE models in this diagram were chosen to mirror the relative energy/time

costs of Et2. As a result, the gradients of their optimisation bounds at point θ

are the same as for Et2. Even so, the optimisation bound for Et2 diverges from

the other metrics, moving further away from the origin and suggesting a larger

scope for energy-aware optimisation.

This divergence happens because Etn metrics produce perverse optimisation

incentives. As discussed in Chapter 4, Etn places more emphasis on energy op-

timisations for efficient codes and on runtime optimisations for fast codes. Any

small optimisation which improves energy efficiency will increase the apparent

benefits of further energy optimisations, leading to the concave curvature of the

optimisation bounds for Etn metrics.

Avoiding perverse optimisation incentives was a key design principle for both

EDS and EDD. They do not over-emphasize energy optimisation for efficient

codes or runtime optimisations for fast ones. As a result, POSE models built

for these metrics will show less opportunity for energy-aware optimisation than

equivalent models built for Etn metrics if eqivalent parameterisations are used.

5.4 POSE Investigation

This section uses POSE to investigate the energy-aware optimisation character-

istics of codes from the Mantevo [56] mini-application benchmark suite. Experi-

ments were carried out on the Taurus system operated by TU Dresden. Results

were gathered using the High Density Energy Efficiency Monitoring (HDEEM)

90

5. Power Optimised Software Envelope Model

instrumentation infrastructure present on Taurus [51].

Taurus is a heterogeneous cluster with several different classes of node. Work

was carried out on the largest of these classes, with each node featuring dual

twelve core Intel Xeon E5-2680 v3 Central Processing Units (CPUs) and 64 GB

of memory. This choice of platform and power measurement technique was

motivated solely by availability as POSE places no restrictions on either.

5.4.1 Feasible Performance Envelope

The first step when applying POSE is to construct a feasible performance enve-

lope. Hardware manufacturers usually publish power dissipation figures for their

systems, however these are estimates which may not be observed in practice.

Thermal Design Power (TDP) figures are widely available but they specify

the upper limits of safe operation; raising power draw above these limits can

cause damage to CPU circuitry. TDP is an upper limit which real-world power

consumption may not be able to match, especially if any safety margins were

built in to the system’s design to improve reliability.

POSE works best when the power bounds are as tight as possible. In the

absence of concrete Pmin and Pmax figures for available hardware, the decision

was taken to determine Pmin and Pmax empirically.

This work follows the convention of specifying power benchmarks using

(S,A,C) tuples, with P-state S, activity factor A and active core count C. These

three components determine the power consumption of Complimentary Metal

Oxide Semiconductor (CMOS) circuitry as explained by Section 3.3. Briefly,

the P-state is a (frequency, voltage) pair selected by Dynamic Voltage and Fre-

quency Scaling (DVFS) logic in order to achieve some performance goal, while

the activity factor is the average fraction of logic elements which change state

on each clock cycle.

Benchmarks for Pmin and Pmax should reflect the full range of values that

the elements of a (S,A,C) tuple could take for a given code θ. This notion is

91

5. Power Optimised Software Envelope Model

formalised by Equation 5.31.

Pmax = (Smax, Amax, Cmax | θ)

Pmin = (Smin, Amin, Cmin | θ)
(5.31)

The values of S, A, and C depend on the code to be optimised and the nature

of the optimisations being considered. POSE models for inherently serial codes

should be constructed using single threaded benchmarks, for example, so that

Cmin = Cmax = 1.

Taurus supports the libcpufreq library, which allows its users to override

DVFS controls and manually set the desired P-state S. The number of ac-

tive cores C was controlled by specifying the number of threads used by the

benchmarking routines and pinning each one to its own core to prevent thread

migration.

Specially chosen benchmark codes were used to reach activity factors Amin

and Amax. Although it is defined as a scalar between zero and one, the range of

values which activity factor can take is more limited in practice. The range of

values which A can take for some fixed S and C can be defined as [α, β] where

0 < α < β < 1.

A custom assembly micro-benchmark was developed for A = α which exe-

cutes a single jmp instruction each clock cycle. This code prevents instruction

pipelining, does not perform any calculations or memory accesses and keeps

control logic to a minimum.

Non-trivial codes perform more work per unit time than this minimal A = α

benchmark. Additional work means more transistors changing state per cycle,

and hence a higher activity factor. The only exception occurs when applications

are blocked for long periods, allowing the processor to enter an idle state. This

can be addressed by adding delays to the benchmark.

FIRESTARTER [50] was used as the benchmark for activity factor β. This

tool is designed to trigger peak power consumption on x86 64 based servers.

It consists of hand optimised assembly routines which raise the activity factor

92

5. Power Optimised Software Envelope Model

Table 5.1: Single Node Feasible Performance Envelope Parameters

Blade Power (W) CPU Power (W)

Frequency (GHz) Pmax Pmin Pmax Pmin

2.5 345.33 207.68 116.44 65.79
2.4 343.24 182.74 116.30 55.97
2.3 341.50 175.40 116.23 51.56
2.2 340.42 169.52 116.13 49.35
2.1 334.84 163.58 113.81 47.84
2.0 325.44 159.20 109.13 44.96
1.9 309.33 153.91 102.95 42.25
1.8 290.65 151.56 95.02 42.24
1.7 278.77 138.96 88.40 36.85
1.6 266.83 136.97 83.36 35.24
1.5 260.57 135.44 76.76 34.65
1.4 256.35 133.61 73.14 34.03
1.3 254.44 132.31 65.20 33.04
1.2 251.31 128.93 61.22 30.80

above the level achievable with high level languages. Prime95 and Linpack were

also evaluated as β benchmarks.

The benchmark parameter space was small enough to measure power draw

for every (S,A,C) configuration. Benchmarking runs lasted for 400 seconds,

allowing sufficient time for power readings to stabilise. Table 5.1 shows the

results for a single fully occupied node (C = 24). This table identifies P-states

by their frequency component.

Having built a Feasible Performance Envelope for Taurus, the next step in

this investigation was to capture energy and runtime figures for real applications.

The Mantevo application suite was chosen because it covers a broad range of

scientific computing workloads.

All codes were compiled with the Intel C++ Compiler (ICC) version 15.0.3.

Application parameters were based on default values, with problem sizes tuned

where necessary to ensure reasonable run times on single nodes. Values for these

parameters are given in Appendix C. Each application was run fifteen times on

the same node to reduce the impact of random variations in runtime and energy.

5.4.2 POSE Models for Code Optimisation

The first experiment carried out investigates single node code performance.

Table 5.2 lists the mean energy and runtime costs incurred by running codes

93

5. Power Optimised Software Envelope Model

Table 5.2: Code Metrics for S = 2.5 GHz, C = 24

Code Runtime (s) Energy (J) Et2 EDS EDD

TeaLeaf 323.8 99,810.3 10,464,754,630 391,230 195,629
PathFinder 337.1 71,943.9 8,175,446,517 375,334 189,361
CloverLeaf 214.3 57,861.2 2,657,246,101 250,731 125,489
CloverLeaf 3D 153.1 43,755.9 1,025,621,231 181,546 90,792
MiniMD 125.5 31,162.1 490,810,866 144,112 72,275
CoMD 105.6 24,837.8 276,975,249 119,878 60,231
MiniFE 36.7 8,465.6 11,402,232 41,496 20,864
HPCCG 36.5 8,059.5 10,737,269 40,910 20,607

from the Mantevo suite. Each of these applications was observed to keep all 24

cores active when run on a single node, and to spend the vast majority of its

runtime operating at the highest available P-State. The decision was taken to

consider optimisations which did not reduce parallelism (C = 24) or decrease

processor throughput (S = 2.5 GHz). This corresponds to the feasible perfor-

mance envelope for Taurus nodes given by Equation 5.32.

Pmax = (2.5 GHz, β, 24) = 345.33 W

Pmin = (2.5 GHz, α, 24) = 207.68 W

(5.32)

The remainder of this section focusses on TeaLeaf, MiniMD and PathFinder.

These codes cover the full range of mini-application power consumption. POSE

models for TeaLeaf and PathFinder are reproduced graphically in Figures 5.6a

and 5.6b respectively, and model summaries are presented in Table 5.3. POSE

results for the remaining codes can be found in Appendix B.

These results show that TeaLeaf is the code most amenable to power optimisa-

tion in terms of both scope and benefit. PathFinder has very little to gain from

such optimisation, as illustrated by the difference in scale between Figure 5.6a

and Figure 5.6b. All other Mantevo applications fall somewhere between these

two extremes.

Table 5.4 shows POSE model summaries for MiniMD built for both the

EDS and EDD metrics introduced in Chapter 4. These results highlight the

fact that these new metrics are less prone to over-emphasize the opportunities

for energy-aware optimisation for already efficient codes.

94

5. Power Optimised Software Envelope Model

Table 5.3: Et2 POSE Model Summaries

TeaLeaf
Maximum Energy Saved by Reduced Power Consumption 32 560 J; 1.48×
Maximum Improvement in Et2 from Power Optimisation 2.2×
Worst Case Slowdown as a result of Power Optimisation 45.55 s; 1.14×
Minimum Speed-up Guaranteed to Outperform θ 12.04 s; 1.04×
Speed-up Required to Dominate Power Optimisation 84.2 s; 1.35×

MiniMD
Maximum Energy Saved by Reduced Power Consumption 4913 J; 1.16×
Maximum Improvement in Et2 from Power Optimisation 1.35×
Worst Case Slowdown as a result of Power Optimisation 7.50 s; 1.05×
Minimum Speed-up Guaranteed to Outperform θ 16.58 s; 1.13×
Speed-up Required to Dominate Power Optimisation 28.93 s; 1.25×

PathFinder
Maximum Energy Saved by Reduced Power Consumption 1928 J; 1.03×
Maximum Improvement in Et2 from Power Optimisation 1.06×
Worst Case Slowdown as a result of Power Optimisation 3.07 s; 1.01×
Minimum Speed-up Guaranteed to Outperform θ 49.98 s; 1.17×
Speed-up Required to Dominate Power Optimisation 55.13 s; 1.20×

Table 5.4: MiniMD POSE Models for Novel Metrics

EDS
Maximum Energy Saved by Reduced Power Consumption 4913 J; 1.16×
Maximum Improvement in E1t2 from Power Optimisation 1.06×
Worst Case Slowdown as a result of Power Optimisation 4.44 s; 1.03×
Minimum Speed-up Guaranteed to Outperform θ 12.29 s; 1.09×
Speed-up Required to Dominate Power Optimisation 20.09 s; 1.16×

EDD
Maximum Energy Saved by Reduced Power Consumption 4913 J; 1.16×
Maximum Improvement in E1t2 from Power Optimisation 1.05×
Worst Case Slowdown as a result of Power Optimisation 3.48 s; 1.02×
Minimum Speed-up Guaranteed to Outperform θ 12.03 s; 1.09×
Speed-up Required to Dominate Power Optimisation 18.19 s; 1.14×

5.4.3 POSE Models for Frequency Scaling

The relationship between P-state and energy consumption is non-linear and

workload dependent [83]. It has been shown that application-aware DVFS can

save energy by selecting the optimal P-state schedule for a given code [20]. This

implies that the reverse also holds; code changes may affect the optimal P-state

95

5. Power Optimised Software Envelope Model

θ

A

B

C
D

E

200 220 240 260 280 300 320 340 360 380 400

0.4

0.6

0.8

1

1.2

1.4

1.6

·105

Runtime (s)

E
n
er
gy

(J
)

(a) TeaLeaf

θ

A B

C D E

280 290 300 310 320 330 340

0.6

0.7

0.8

0.9

1

1.1

1.2

·105

Runtime (s)

E
n
er
gy

(J
)

(b) PathFinder

Figure 5.6: Et2 POSE Comparison of TeaLeaf and PathFinder

assignment. The second experiment was carried out to demonstrate how POSE

can be used to reason about this class of optimisation.

The 2.5 GHz P-state was again used to gather the Pmax baseline because

this is the P-State which Taurus defaults to when running TeaLeaf or MiniMD.

Because this experiment considers changes to P-State, the lowest power draw

P-State of 1.2 GHz was chosen as the Pmin benchmark. Equation 5.33 gives the

corresponding feasible performance envelope.

Pmax = (2.5 GHz, β, 24) = 345.33 W

Pmin = (1.2 GHz, α, 24) = 128.96 W

(5.33)

The runtime and energy consumption of TeaLeaf and MiniMD were measured for

each P-state supported by the Haswell CPUs on Taurus. Figure 5.7 illustrates

how these two codes respond differently to changes in CPU frequency. TeaLeaf

is tightly bound by memory bandwidth, and Figure 5.7a shows how switching

to lower P-States can reduce Et2 for TeaLeaf.

Figure 5.7b shows that MiniMD performance is sensitive to CPU frequency,

with lower frequencies leading to longer runtimes. Despite initial reductions

in energy consumption, the lowest Et2 value for MiniMD occurs at 2.5 GHz,

meaning race-to-halt is the optimal DVFS strategy for this code.

96

5. Power Optimised Software Envelope Model

2.5 GHz

1.2 GHz

200 250 300 350 400 450

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·105

Runtime (s)

E
n
er
gy

(J
)

(a) TeaLeaf

2.5 GHz 1.9 GHz

1.2 GHz

100 120 140 160 180 200 220 240 260 280 300
1

2

3

4

5

6
·104

Runtime (s)

E
n
er
gy

(J
)

(b) MiniMD

Figure 5.7: Et2 POSE for P-State Optimisation of TeaLeaf and MiniMD

While useful, this simple analysis fails to consider co-optimisation of activity

factor and P-state for MiniMD. It is possible that different software optimisa-

tions may be required to achieve optimal performance in different P-states. The

flexibility of POSE allows us to model this scenario by considering optimisations

which can impact P-state as well as activity factor.

If two P-states have overlapping POSE models then it may be possible for

a power optimised version of the code running at the lower frequency P-state

to outperform the original code running at the higher frequency. Conversely, if

their POSE models do not overlap then no amount of power optimisation will

be able to match the benefits of simply switching to the higher performance P-

state. This analysis allows dominated P-States to be excluded from the search

for power optimisations.

For MiniMD, Figure 5.7b shows that the first non-overlapping POSE model

occurs at 1.9 GHz. This means that all power optimised versions of MiniMD

operating at or below 1.9 GHz will have strictly worse performance than the

original, unoptimised code running at 2.5 GHz. Power optimisation is therefore

only worth pursuing at frequencies between 2.5 GHz and 2.0 GHz.

Dynamic Concurrency Throttling has also been proposed as a means to re-

duce energy consumption [25]. POSE could be used to model such optimisations

97

5. Power Optimised Software Envelope Model

1 node

24

6
10

12

16

10 20 40 80 160 320 450
0

0.5

1

1.5

2
·105

Runtime (s)

E
n
er
gy

(J
)

(a) TeaLeaf

1

2

4

6

8 nodes

90 100 110 120 130 140 150 160

0.5

1

1.5

2

·105

Runtime (s)

E
n
er
gy

(J
)

(b) MiniMD

Figure 5.8: Et2 POSE for Multi-Node Runs of TeaLeaf and MiniMD

in a similar manner to the P-state investigation; the only difference being the

parameterisation of the feasible performance envelope (Cmin = 1).

5.4.4 POSE Models for Distributed Codes

Distributing programs across multiple nodes is a common strategy for improving

the throughput of scientific applications. Figure 5.8 shows the results of strong

scaling studies for the TeaLeaf and MiniMD mini-applications. In both cases

distributing the same problem size over progressively more nodes reduces time

to completion as well as the power draw of individual nodes.

The dashed optimisation bounds drawn in Figure 5.8 connect all points which

share the same Et2 values as the scale runs. Figure 5.8a shows that increasing

the number of nodes for TeaLeaf improves Et2 up to between 12 and 16 nodes

for the example problem size. Beyond this point the increase in power draw

from adding extra nodes dominates improvements in runtime.

Figure 5.8b shows that increasing the number of nodes for MiniMD leads

to strictly greater energy consumption. Furthermore, the increase in energy

consumption outpaces improvements in runtime, meaning Et2 performance di-

minishes as nodes are added.

A key observation for both codes is that the baseline rate of power con-

98

5. Power Optimised Software Envelope Model

sumption increases linearly as extra nodes are added, while application power

draw per node shrinks. Consequently, the opportunity for power optimisation

diminishes as the scale at which a code is run increases.

5.5 Summary

This chapter presents POSE, a mathematical and visual modelling tool which

captures the trade off between software power consumption and runtime. POSE

provides insights regarding the scope a code has for power optimisation as well as

the level of improvement which can be expected. These insights help developers

to determine whether power or runtime optimisation is the best approach for

improving the efficiency of a code.

POSE works by partitioning the energy/runtime plane into areas correspond-

ing to runtime and power optimised versions of an initial code with respect to an

optimisation metric. This chapter provides derivations of the POSE boundaries

for Energy Delay Product (Etn) metrics and outlines the various insights these

models provide.

POSE was then demonstrated by modelling the power consumption of codes

taken from the Mantevo mini-application suite running on Taurus. The results

gathered are expected to be of interest to performance engineers and serve to

demonstrate the practical utility of POSE.

The first experiment showed that PathFinder offers the least scope for power

optimisation, with Et2 improvements limited to 1.06×. Runtime optimisation is

therefore the only realistic approach to improving the performance of this code.

TeaLeaf has the most scope for power optimisation, with potential improvements

in the same metric of up to 2.2×. Power optimisation is worth considering for

this code.

The second experiment was carried out to demonstrate how POSE can be

used to reason about application specific and P-state optimisations. This in-

vestigation showed that no power optimised version of MiniMD operating at

99

5. Power Optimised Software Envelope Model

P-states below 2.0 GHz can match the Et2 performance of the original unop-

timised code running at the default 2.5 GHz P-state. TeaLeaf was also found

to be extremely insensitive to CPU frequency, meaning that application-aware

DVFS may deliver significant energy savings for this code.

100

CHAPTER 6
System Summary POSE

Ordinary Power Optimised Software Envelope (POSE) models quantify the

scope which exists for the energy-aware optimisation of a specific code run-

ning on a given system. This chapter introduces System Summary POSE, an

extension of POSE that allows developers to reason about system-wide power

optimisation characteristics without reference to any particular code.

Ordinary POSE models use system Pmax and Pmin energy bounds together

with the energy and runtime costs incurred when running a code to calculate

the scope that code has for power and runtime optimisation. System Summary

POSE is a meta-heuristic which determines the range of results conventional

POSE models could produce for a given system. This “bound-of-bounds” ap-

proach allows developers to understand the scope a system has for energy-aware

software optimisation independent of the code being run.

This chapter begins by introducing System Summary POSE in the context of

the Etn family of metrics. It then shows how they, like ordinary POSE models,

can also be used in conjunction with the novel metrics introduced in Chapter 4.

Finally, System Summary POSE is used to comment on the power optimisation

characteristics of the Taurus supercomputer.

6.1 System Summary POSE Derivation

System Summary POSE examines how the insights provided by POSE models

vary in response to changes in the initial code θ. Increasing the power con-

sumption of a code while keeping its metric value fixed leads to a corresponding

increase in the scope for power optimisation. Figure 6.1 illustrates how such a

change would be reflected in the output of a conventional POSE model.

101

6. System Summary POSE

θ

A

B

C
D

E

Runtime (s)

E
n
er
g
y
(J

)

Pmax Energy Bound
Pmin Energy Bound

B E Optimisation Bound
C θ Contribution Bound
A C Optimisation Limit

Figure 6.1: Et2 System Summary POSE Intuition

System Summary POSE determines which point along the contribution

bound B – E maximises the value of each of the five key insights provided

by POSE models. This maximum value then serves as an upper limit on the

values which the corresponding insight could take for real codes running on the

target system.

In practice, all POSE insights assume their maximum values at either vertex

B or vertex E because these points correspond to extremes of power consump-

tion. As such, another interpretation of System Summary POSE is as a pair of

ordinary POSE models for the Pmin and Pmax energy benchmarks.

Ordinary POSE models require four input parameters; the Pmin and Pmax

values which define a feasible performance envelope and the energy and runtime

costs for a specific code. A key feature of the relative forms of POSE insights

is that their runtime terms always cancel. Furthermore, the power draws at

vertices B and E are by definition Pmin and Pmax respectively. As a result,

System Summary POSE is able to derive system-wide power optimisation limits

from just two unknowns, namely the values for Pmin and Pmax.

The first relative POSE insight, Eθ/ED, places an upper limit on the amount

102

6. System Summary POSE

of energy which can be saved by reducing power consumption. Figure 6.1 makes

it clear that this value is maximised when θ = B and therefore Pθ = Pmax.

Intuitively, the code with the most to gain from energy optimisation is the

one which exhibits the highest rate of power consumption. Substituting in

Pθ = Pmax into the definition of the first insight yields the following expression

for system-wide energy savings:

arg max
θ

Eθ
ED

= B

EB
ED

=
Pmax · tθ
Pmin · tθ

=
Pmax
Pmin

(6.1)

The second relative POSE insight, M(θ)/M(C), limits the maximum improve-

ment in a metric which can be attributed to power optimisation. This value

depends on the metric used, however for any valid metric (a monotonically in-

creasing function of time and energy) this value is again maximised when θ is

at point B. Substituting in Pθ = Pmax and PC = Pmin yields the following

system-wide bound which holds for all Etn metrics:

arg max
θ

M(θ)

M(C)
= B

M(B)

M(C)
=

Eθ tθ
n

EC tC
n

=
Pmax tθ

n+1

Pmin tC
n+1

Equation 5.7 from the previous chapter is then used to express tC in terms of

tθ, yielding:

M(B)

M(C)
=
Pmax

2 tθ
n+1

Pmin
2 tθ

n+1

=

(
Pmax
Pmin

)2

(6.2)

The third relative POSE insight, tθ/tB , represents the smallest speed-up which

103

6. System Summary POSE

guarantees a code that outperforms θ with respect to M . Uniquely, this value is

maximised when θ runs at minimum power, and is therefore located at point E.

This is because any speed-up at all would guarantee an improvement in terms

of M for codes with maximum power consumption Pmax. The derivation of this

system-wide bound for Etn metrics is as follows:

arg max
θ

tθ
tB

= E

tE
tB

=
tθ

(
Pθ
Pmin

) 1
n+1

tθ

(
Pθ
Pmax

) 1
n+1

(By Equations 5.3 and 5.4)

=

(
Pmax
Pmin

) 1
n+1

(6.3)

The fourth relative POSE insight, tE/tθ, represents the maximum slowdown

which could be traded off to achieve a slower yet more energy efficient code.

This insight is maximised at vertex B because this point has the most scope

for power optimisation. As a result, this system-wide bound takes on the same

value as Equation 6.3:

arg max
θ

tE
tθ

= B

tE
tB

=

(
Pmax
Pmin

) 1
n+1

(6.4)

The final relative POSE insight, tθ/tA, represents the smallest speed-up guar-

anteed to outperform any power optimised version of θ. This insight is once

again maximised at vertex B because this point has the most scope for power

optimisations and as such larger runtime optimisations are required in order to

guarantee they outperform all possible power optimsations. The derivation of

104

6. System Summary POSE

this system-wide bound for Etn metrics is as follows:

arg max
θ

tθ
tA

= B

tB
tA

=
tθ

(
Pθ
Pmax

) 1
n+1

tθ

(
Pmin2

Pθ Pmax

) 1
n+1

tB
tA

=
1(

Pmin2

Pmax2

) 1
n+1

(As Pθ = Pmax)

=

(
Pmax
Pmin

) 2
n+1

(6.5)

Equations 6.1 – 6.5 highlight a number of interesting properties. Equation 6.1

does not depend on the metric used, as it deals exclusively with energy savings

and does not consider runtime. Equation 6.2 shows that the runtime expo-

nent n does not influence the degree to which power optimisation can improve

an Etn metric. The fact that Equations 6.3 and 6.4 are identical shows that

the maximum slowdown from power optimisation is the same as the smallest

speed-up which is guaranteed to improve performance in terms of M . Most

significantly, all of these equations only depend on Pmax and Pmin. As a result,

System Summary POSE analysis can be carried out on any system for which

these parameters are known.

6.2 System Summary POSE for Novel Metrics

The previous sections introduced System Summary POSE in the context of the

Etn family of metrics. This section provides similar derivations which allow

System Summary POSE to be used in conjunction with the Energy Delay Sum

(EDS) and Energy Delay Distance (EDD) metrics introduced in Chapter 4.

The first relative POSE insight does not depend on the metric used. There-

fore, the first system-wide bound given by Equation 6.1 also applies to both

EDS and EDD. The following subsections provide derivations for the remaining

four system-wide bounds for use in conjunction with the EDS and EDD metrics.

105

6. System Summary POSE

6.2.1 Energy Delay Sum System Summary POSE

The second relative POSE insight, M(θ)/M(C), is maximised when θ = B,

meaning that Pθ = Pmax. The derivation of its maximum value for EDS is as

follows:

M(θ)

M(C)
=

αEθ + βtθ
αEC + βtC

=
tθ
tC
· Pθ + β

α

Pmin + β
α

=
tθ
tC
· Pmax + β

α

Pmin + β
α

(As Pθ = Pmax)

tθ
tC

=
Pθ + β

α

Pmin + β
α

(By Equation 5.17)

∴
M(θ)

M(C)
=

(
Pmax + β

α

Pmin + β
α

)2

(6.6)

The third relative POSE insight, tθ/tB , is maximised when θ = E, meaning

that Pθ = Pmin. The derivation of its maximum value for EDS is as follows:

tθ
tB

=
tθ

tθ
Pθ+

β
α

Pmax+
β
α

(By Equation 5.13)

=
tθ

tθ
Pmin+

β
α

Pmax+
β
α

(As Pθ = Pmin)

=
Pmax + β

α

Pmin + β
α

(6.7)

The fourth relative POSE insight, tE/tθ, is maximised when θ = B, meaning

that its maximum value for EDS is also given by Equation 6.7.

The final relative POSE insight, tθ/tA, is also maximised when θ = B and

106

6. System Summary POSE

therefore Pθ = Pmax. The derivation of its maximum value for EDS is as follows:

tθ
tA

=
tθ

tθ
(Pmin + β

α)
2

(Pθ+ β
α)(Pmax+ β

α)

(By Equation 5.20)

=
1

(Pmin + β
α)

2

(Pmax+ β
α)

2

(As Pθ = Pmax)

=

(
Pmax + β

α

Pmin + β
α

)2

(6.8)

6.2.2 Energy Delay Distance System Summary POSE

The second relative POSE insight, M(θ)/M(C), is maximised when θ = B,

meaning that Pθ = Pmax. The derivation of its maximum value for EDD is as

follows:

M(θ)

M(C)
=

√
(αEθ)

2
+ (βtθ)

2√
(αEC)

2
+ (βtC)

2

=

√
tθ

2

(
Pθ

2 +
(
β
α

)2)
√
tC

2

(
Pmin

2 +
(
β
α

)2)

=
tθ
tC
·

√√√√√√Pmax
2 +

(
β
α

)2
Pmin

2 +
(
β
α

)2 (As Pθ = Pmax)

tθ
tC

=
tθ

tθ ·
√

Pmin2+(βα)
2

Pθ2+(βα)
2

(By Equation 5.27)

=

√√√√√√Pmax
2 +

(
β
α

)2
Pmin

2 +
(
β
α

)2 (As Pθ = Pmax)

∴
M(θ)

M(C)
=
Pmax

2 +
(
β
α

)2
Pmin

2 +
(
β
α

)2 (6.9)

107

6. System Summary POSE

The third relative POSE insight, tθ/tB , is maximised when θ = E, meaning

that Pθ = Pmin. The derivation of its maximum value for EDD is as follows:

tθ
tB

=
tθ

tθ ·
√

Pθ2+(βα)
2

Pmax2+(βα)
2

(By Equation 5.23)

=
1√

Pmin2+(βα)
2

Pmax2+(βα)
2

(As Pθ = Pmin)

=

√√√√√√Pmax
2 +

(
β
α

)2
Pmin

2 +
(
β
α

)2 (6.10)

The fourth relative POSE insight, tE/tθ, is maximised when θ = B, meaning

that its maximum value for EDD is also given by Equation 6.10.

The final relative POSE insight, tθ/tA, is also maximised when θ = B and

therefore Pθ = Pmax. The derivation of its maximum value for EDD is as

follows:

tθ
tA

=
tθ

tθ ·
Pmin2+(βα)

2√
Pθ2+(βα)

2·
√
Pmax2+(βα)

2

(By Equation 5.30)

=
1(

Pmin2+(βα)
2

Pmax2+(βα)
2

) (As Pθ = Pmax)

=
Pmin

2 +
(
β
α

)2
Pmax

2 +
(
β
α

)2 (6.11)

6.3 System Summary POSE Investigation

This section uses System Summary POSE to investigate the scope for power

optimisation on the Taurus supercomputer. The feasible performance envelope

for a Taurus node with 64 GB of memory is given by Equation 6.12, which is

108

6. System Summary POSE

reproduced from the previous chapter.

Pmax = (2.5 GHz, β, 24) = 345.33 W

Pmin = (2.5 GHz, α, 24) = 207.68 W

(6.12)

Substituting these values into Equations 6.1 – 6.5 shows that power optimisation

can deliver at most a 1.66× reduction in compute node energy consumption, and

improve Et2 by at most 2.76×. Furthermore, a 1.18× reduction in runtime is

guaranteed to lead to a better Et2 performance, and an increase of the same

magnitude is guaranteed to reduce performance by the same metric. Finally, a

1.40× reduction in runtime is guaranteed to beat any power optimisation.

Pmax = (2.5 GHz, α, 24) = 116.44 W

Pmin = (2.5 GHz, α, 24) = 65.79 W

(6.13)

The same analysis can be repeated for individual subsystems as well as entire

nodes. Equation 6.13 gives the feasible performance envelopes for the Intel Xeon

E5-2680 v3 Central Processing Units (CPUs) found in Taurus nodes. Inside this

envelope, power optimisation can deliver at most a 1.77× reduction in CPU

energy consumption, and improve Et2 by at most 3.13×. Furthermore, a 1.21×

reduction in runtime is guaranteed to lead to a better Et2 performance, and

an increase of the same magnitude is guaranteed to reduce performance by the

same metric. Finally, a 1.46× reduction in runtime is guaranteed to beat any

power optimisation in terms of Et2.

CPU energy consumption accounts for a significant portion of the energy

used by high performance systems [42]. It is therefore unsurprising that System

Summary POSE yields similar values for Taurus nodes and the CPUs they

contain. That said, being able to build POSE models for individual components

is useful because the results can be transferred to other machines which contain

the same hardware.

109

6. System Summary POSE

θ

Ru
nti

me O
pti

misat
ion

Power

Optimisation

Runtime (s)

E
n
er
g
y
(J

)

Pmax Energy Bound
Pmin Energy Bound

Figure 6.2: Optimisation Limits

6.4 Optimisation Study

System Summary POSE highlights a fundamental yet often overlooked distinc-

tion between runtime and power optimisation. While conventional optimisation

aims to reduce runtime towards zero, power optimisation is constrained by the

Pmin power limit. Figure 6.2 illustrates this distinction. This section seeks to

investigate how tight the System Summary bounds are in practice.

The lack of a runtime counterpart to the Pmin limit in this diagram sug-

gests that the scope for runtime optimisation will always exceed that for power

optimisation. While this is often the case, it is not true in general because

runtime optimisation also has limits; even the fastest codes require some non-

zero amount of time to finish. The real distinction is that power limits are

system-wide, while runtime limits are application specific.

System Summary POSE has shown that improvements from power optimi-

sation are limited to around 2−3× on Taurus nodes regardless of the code being

optimised. Conversely, while runtime optimisation limits do exist, speed-ups of

100× or more are not unheard of.

An experiment was carried out to illustrate the difference in scope for run-

time and power optimisation. Stencil operations, which are a common pattern

110

6. System Summary POSE

Algorithm 1 Finite Difference Laplacian Diffusion Code

for t = 1 to timesteps do
for k = 1 to kmax-1 do . Z axis

for j = 1 to jmax-1 do . Y axis
for i = 1 to imax-1 do . X axis

Ct
i,j,k = Ct−1

i,j,k

+X
(
Ct−1

i−1,j,k − 2Ct−1
i,j,k + Ct−1

i+1,j,k

)
+Y

(
Ct−1

i,j−1,k − 2Ct−1
i,j,k + Ct−1

i,j+1,k

)
+Z

(
Ct−1

i,j,k−1 − 2Ct−1
i,j,k + Ct−1

i,j,k+1

)
end for

end for
end for
UpdateBoundaries(Ct)

end for

in numerical simulations, form the basis of this study. Algorithm 1 describes a

nine-point stencil code which implements a finite difference scheme to solve the

diffusion equation.

A reference version of the diffusion algorithm in Algorithm 1 was imple-

mented in the C programming language. Reflective boundary conditions were

used as they help with code validation. Conservation laws dictate that, while

the distribution may change, the total amount of a conserved quantity remains

constant in isolated systems. This property acts as a useful sanity check when

developing diffusion solvers.

OpenMP was then used to parallelise the outer spatial (Z axis) loop to

create a baseline parallel version. All codes were compiled using Intel C++

Compiler (ICC) version 15.0.3. with relevant optimisations enabled, including

automatic loop vectorisation. This level of parallelism reflects a typical starting

point for performance engineering as further improvements require more invasive

code changes supported by specialist tools and experience.

Several optimisations were applied to the baseline parallel application in

order to chart the effect these optimisations had on runtime and power con-

sumption. Results were gathered on Taurus, following the same procedure used

in previous experiments. The problem size was configured as a 3D grid of

800× 800× 800 cells, simulated over 600 timesteps.

111

6. System Summary POSE

T
im

es
te
p

Spatial Axis

A A

B B B

C C

D D D

Figure 6.3: 1D Trapezoidal Decomposition

The first successful optimisation was achieved by switching from using the

OpenMP library to Cilk Plus. Cilk Plus is fully integrated into the ICC compiler,

allowing it to avoid the overhead associated with using external libraries.

The second optimisation was achieved by applying loop tiling. Loop tiling

partitions the simulation’s spatial domain into contiguous blocks in order to

improve data locality and caching. It does this by transforming the three

nested spatial loops into three outer and three inner loops. The outer loops

step through blocks, while the inner loops iterate over the cells in each block.

The third optimisation was a switch back to OpenMP. While Cilk Plus has

lower overhead, OpenMP offers more control over loop iteration scheduling,

especially for nested loops. This increased control led to better overall perfor-

mance for the loop tiled version of the sample code.

The fourth optimisation involved implementing a cache-oblivious space-time

decomposition scheme for stencil codes adapted from one proposed by McCool et

al. [91]. This scheme recursively partitions the simulation along its three spa-

tial and one temporal dimensions. The resulting trapezoidal regions are then

distributed across different threads to be processed in parallel.

Figure 6.3 shows the decomposition scheme applied in one spatial and one

temporal dimension. Trapezoids are processed in alphabetical order, meaning

different areas of the simulation domain advance at different times. This scheme

works because each cell only depends on its immediate neighbourhood from

the previous timestep. As the diagram shows, cells within this neighbourhood

112

6. System Summary POSE

Optimisation Description Runtime Power Energy

- Reference 675.3 140.9 95,149.3
1 OMP Parallel 339.9 244.7 83,174.4
2 Cilk Parallel 208.9 255.5 53,379.9
3 Cilk Loop Tiling 162.4 247.0 40,109.3
4 OMP Loop Tiling 156.0 251.9 39,297.1
5 OMP Trapezoid 83.6 265.7 22,202.1
6 Cilk Trapezoid 81.2 268.6 21,811.7

Table 6.1: Optimisation Impact

are either in the same trapezoid as the update cell or in a different trapezoid

which has already been completed. This scheme maximises spatial locality while

minimising inter-thread synchronisation and data dependencies.

The fifth and final optimisation was a switch back to Cilk Plus. Cilk Plus

uses advanced work sharing algorithms which allow it to distribute trapezoids

across threads more efficiently than OpenMP.

Table 6.1lists the costs associated with each version of the application. Over-

all, optimisation achieved a 4.2× reduction in runtime and a 3.81× reduction in

energy consumption. The difference between these figures is due to an increase

in power consumption from 244.7 J to 268.8 J, confirming the intuition that

runtime optimisation negatively impacts power consumption. These runtime

optimisations delivered a 66.8× improvement in Et2; far above the system limit

of 2.76× improvement possible from power optimisation. Figure 6.4 illustrates

the optimisation process in the runtime/energy and runtime/power domains.

6.5 Summary

This chapter introduced System Summary POSE, a bound-of-bounds heuristic

which places upper limits on the benefits which can be expected from power

optimisation. This analysis works by calculating the range of results a conven-

tional POSE model could potentially produce for a target system.

One of the results in this chapter showed that power optimisation could

113

6. System Summary POSE

0 50 100 150 200 250 300 350
0

0.5

1

1.5

·105

1

2

3

4

56

Runtime (s)

E
n
er
g
y
(J
)

Pmax Energy Bound
Pmin Energy Bound

Optimisations

(a) Energy Domain

0 50 100 150 200 250 300 350
0

200

400

600

123

4

5

6

Runtime (s)

P
ow

er
(W

)

Pmax Power Bound
Pmin Power Bound

Optimisations

(b) Power Domain

Figure 6.4: Laplacian Optimisation Progression

reduce the energy consumption of compute nodes by at most 2.76× on the

target platform. Another important result was that a runtime optimisation of

1.18× or greater was guaranteed to outperform any possible power optimisation

in terms of Et2.

This section concludes with an optimisation study into a simple stencil code

in order to provide some context for the System Summary POSE limits. A

stencil code was chosen because this is a very common algorithmic pattern in

numerical simulations, and also because its simplicity allows compilers to apply

some optimisations automatically.

Despite taking every effort to help the compiler, hand-optimising the code

still delivered significant benefits, reducing runtime by 4.2×. As this exceeds the

1.18× limit identified by System Summary POSE, it is possible to categorically

state that the changes made outperform any possible power optimisations on

the target platform. This result highlights the importance of having realistic

expectations about the benefits of energy-aware code optimisation.

While runtime optimisation was the correct strategy for the stencil code

chosen, this is not always going to be the case. Some codes are less amenable to

runtime optimisation than others, especially if they are already highly optimised.

System Summary POSE allows developers to gauge the potential benefits for

power optimisation and, when combined with their experience, choose whether

114

6. System Summary POSE

it is worth pursuing on a given platform.

115

CHAPTER 7
Conclusions and Future Work

Numerical simulations have become indispensable tools in many areas of science

and engineering. Performance engineers optimise these simulations by tuning

them to take advantage of specific hardware. Higher performance means more

calculations can be carried out, which in turn allows domain experts to increase

the size, complexity and resolution of their simulations.

Historically, runtime was the main factor used to define the performance of

High Performance Computing (HPC) applications. More recently, unsustain-

able increases in power draw have led energy consumption to join runtime as a

primary constraint in HPC. Performance engineers are facing a future in which

they must minimise both runtime and energy consumption in tandem. Existing

tools must be updated and new tools must be developed in order to support

this emerging class of optimisation.

The field of energy-aware performance optimisation is still in its infancy,

characterised by ad-hoc techniques and a lack of standardised metrics. The

work in this thesis has attempted to address these issues and provide a stronger

foundation for others to build on.

Chapter 4 proposed new Figure of Merit (FoM) metrics intended to guide

energy-aware software optimisation. The metrics currently used for this purpose

were developed by the hardware community based on assumptions which are

invalid for software optimisation.

Chapter 4 began by outlining desirable criteria for software optimisation

metrics. Current metrics fail on all but one of these criteria, leaving them

unable to drive optimisation in sensible directions or support fair comparison

between different implementations. Worse still, these metrics do not provide a

116

7. Conclusions and Future Work

meaningful definition for code optimisation.

Two new metrics were proposed which address the problems in existing

approaches. The first new metric, Energy Delay Sum (EDS), is a weighted sum

of runtime and energy costs. The second new metric, Energy Delay Distance

(EDD), uses Euclidean distance to define the utility of a code. Both of these

metrics outperform existing alternatives against all of the assessment criteria,

and EDS manages to satisfy the maximum possible number of these criteria.

Chapter 4 concluded by comparing the real-world performance of EDS and

EDD against established Etn metrics. The results confirmed the common criti-

cism that Etn metrics are biased towards extreme parallelism. Conversely, both

EDS and EDD produced results which were intuitively justifiable.

Chapter 5 presented the Power Optimised Software Envelope (POSE) model.

POSE allows developers to compare the potential benefits of energy and runtime

optimisation and determine which approach is most suitable for their code.

POSE models provide insights about the scope a code has for energy-aware

optimisation. These insights are: the maximum amount of energy which can

be saved by reducing power consumption; the maximum improvement in an

energy efficiency metric achievable by energy-aware performance optimisation;

the largest increase in runtime which could be traded off to achieve a slower

yet more energy efficient code; the smallest speed-up guaranteed to improve

code performance irrespective of power draw; and finally, the smallest speed-up

guaranteed to outperform any power optimisation.

Chapter 5 demonstrated the POSE model by studying the optimisation char-

acteristics of codes from the Mantevo mini-application suite. TeaLeaf was found

to have the most scope for single node power optimisation, with potential im-

provements in the Et2 metric of up to 2.2×, equivalent to a 54.6% reduction.

Conversely, PathFinder had the least scope for power optimisation with im-

provements to the same metric limited to 1.06× which is equivalent to a 5.29%

reduction. POSE was also used to explore how the scope for power optimisation

varies in response to changes in clock frequency and node count.

117

7. Conclusions and Future Work

Chapter 6 built on the POSE model by deriving system-wide limits for the

benefits of energy-aware software optimisation. This chapter introduced System

Summary POSE, a meta-heuristic which operates by determining the range

of results that conventional POSE models could produce for a given system.

Performance engineers can use System Summary POSE to compare different

platforms based on the scope they offer for power optimisation.

The results in Chapter 6 showed that, for a particular class of x86 node,

power optimisation is limited to reducing node-level energy consumption by

at most 1.66×. This corresponds to a maximum improvement in Et2 of 2.76×.

These results also showed that speed-ups from conventional optimisation of 1.4×

or more are guaranteed to outperform all possible energy-aware optimisations on

the target platform. Results like these are useful because they allow performance

engineers to focus their efforts where they will yield the greatest return.

Work in this thesis has been shared and used in a variety of contexts. Both

the POSE model and the novel metrics work has been presented to researchers

and developers at the Science and Technology Facilities Council (STFC) Hartree

Centre and ARM. The novel metrics work in Chapter 4 is also due to be pre-

sented at a forthcoming workshop at Lawrence Berkeley National Laboratory.

In at least one case POSE has lead to the early abandonment of work because

the potential benefits from power optimisation were smaller than anticipated.

It is also currently being engineered for inclusion into Allinea MAP [68], a

well-known state of the art application analytics tool for HPC clusters and

applications. The metrics work has also gained some attention from the open

source compiler community.

7.1 Thesis Limitations

This thesis focussed on the energy consumed by compute nodes in the course

of running simulations. Supercomputers also expend large amounts of energy

on secondary functions, most notably cooling. A common rule of thumb is

118

7. Conclusions and Future Work

that each Watt used by compute resources translates into an additional Watt

lost to power supply inefficiencies and a further Watt required for cooling [74].

The methods used in this thesis are suitable for whole-system power analysis,

however power figures for secondary subsystems are hard to come by.

Another limitation of this thesis is that it only considers a narrow range of

platforms based on Intel x86 processors. This is due to the scarcity of power-

instrumented supercomputing hardware. Care has been taken to ensure that

the techniques presented are as general as possible in order to mitigate this

limitation. The methods described in this thesis do not depend on any particular

hardware platform, and empirical results have been backed up by algebraic

proofs where possible.

A further limitation concerns the parameterisations used for the EDS and

EDD metrics. The values used in this thesis were chosen to match the most com-

monly used exponents for Etn metrics in order to facilitate comparison between

these results. That said, it is not clear that these are the best values in practice

and more work is required to determine the most appropriate parameterisations.

7.2 Future Work

Energy-aware performance engineering is a nascent field with much work still

to be done. Many platforms do not report energy figures as standard, or do so

at temporal resolutions too low to be useful for performance engineering. These

limitations must be addressed before energy-aware performance optimisation

can become widespread.

Work is also needed to adapt existing performance engineering tools to take

energy into account. Energy-aware profilers and performance models are re-

quired to identify suitable optimisation opportunities. New classes of optimisa-

tion will be required to take advantage of future developments in energy-efficient

hardware architectures.

The metrics introduced in Chapter 4 are well suited to comparing codes

119

7. Conclusions and Future Work

running at different scales and on different architectures. The quantitative na-

ture of POSE models also makes them particularly suitable for comparison

studies. Ongoing work at Warwick uses EDS and EDD metrics in conjunc-

tion with POSE models to investigate the power optimisation characteristics

of various codes running on several different accelerator-based technologies, in-

cluding Field-Programmable Gate Arrays (FPGAs), general purpose Graphics

Processing Units (GPUs), and new ARM platforms for HPC.

Producing POSE models for novel platforms will show how suitable each

of these platforms are for power optimisation. This work is also expected to

demonstrate how POSE models may be used to identify specific optimisations.

This will involve developing feasible performance envelopes for individual sub-

systems as well as for different types of kernel. Doing so would allow POSE

to highlight optimisation opportunities at a per-kernel and per-subsystem level

and hence facilitate targeted optimisation.

7.3 Final Remarks

Energy-aware performance optimisation has received much attention in recent

times. Despite this, the field is still in its infancy and many fundamental is-

sues remain to be addressed. The work in this thesis has shown that current

optimisation metrics are unable to provide a meaningful definition for code op-

timisation. Furthermore, POSE models show that there are hard limits on how

much energy-aware optimisation can deliver, which is a significant departure

from conventional optimisation. These issues, and others like them, must be

addressed in order for this field to flourish.

Looking forward, novel architectures and hardware/software co-design offer

compelling opportunities to improve the energy efficiency of HPC systems. The

emergence of ARM and other non-traditional vendors of HPC hardware points

to a period of increasing heterogeneity and architectural diversity. New devel-

opments promise to blur the lines between Central Processing Units (CPUs)

120

7. Conclusions and Future Work

and accelerators. Processors featuring on-die FPGA fabrics are in development,

and ARM and other CPU cores are being integrated directly into accelerator

hardware. This diversity is fuelled by energy-efficiency concerns, and in turn

offers a great deal of potential for energy-aware software optimisation.

121

References

[1] Advanced Micro Devices. BIOS and Kernel Developers Guide (BKDG)

for AMD Family 15h Models 00h-0Fh Processors., 2012.

[2] Green500 List, November 2016. Online: https://www.top500.org/

green500/lists/2016/11/ (Accessed 2017-05-28).

[3] Top500 List, November 2016. Online: https://www.top500.org/lists/

2016/11/ (Accessed 2017-05-28).

[4] L. Adhianto and B. Chapman. Performance Modeling of Communication

and Computation in Hybrid MPI and OpenMP Applications. Simulation

Modelling Practice and Theory, 15(4):481–491, 2007.

[5] E. Alba and P. Vidal. Systolic Optimization on GPU Platforms. Computer

Aided Systems Theory, pages 375–383, 2012.

[6] A. Alexandrov, F. I. Mihai, E. S. Klaus, and S. Chris. LogGP: Incorporat-

ing Long Messages into the LogP Model for Parallel Computation. Journal

of Parallel and Distributed Computing (JPDC ’97), 44:71–79, 1997. ISSN

0743-7315.

[7] G. S. Almasi and A. Gottlieb. Highly Parallel Computing. 1988.

[8] G. M. Amdahl. Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. In Proceedings of the 1967 Joint

Computer Conference, pages 483–485. ACM, New York, NY, 1967.

[9] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, and S. W. Williams.

The Landscape of Parallel Computing Research: A View from Berkeley.

Technical report, Technical Report UCB/EECS-2006-183, EECS Depart-

ment, University of California, Berkeley, 2006.

122

https://www.top500.org/green500/lists/2016/11/
https://www.top500.org/green500/lists/2016/11/
https://www.top500.org/lists/2016/11/
https://www.top500.org/lists/2016/11/

REFERENCES

[10] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield. Powermon: Fine-

Grained and Integrated Power Monitoring for Commodity Computer Sys-

tems. In Proceedings of the 2010 IEEE SoutheastCon (SoutheastCon ’10),

pages 479–484. IEEE, 2010.

[11] C. Bekas and A. Curioni. A New Energy Aware Performance Metric.

Computer Science-Research and Development, 25(3-4):187–195, 2010.

[12] B. D. Bingham and M. R. Greenstreet. Computation with Energy-Time

Trade-Offs: Models, Algorithms and Lower Bounds. In IEEE Interna-

tional Symposium on Parallel and Distributed Processing with Applica-

tions, pages 143–152, 2008.

[13] W. L. Bircher and L. K. John. Complete System Power Estimation: A

Trickle-Down Approach Based on Performance Events. In International

Symposium on Performance Analysis of Systems and Software (ISPASS

’07), pages 158–168. IEEE, 2007.

[14] W. L. Bircher, M. Valluri, J. Law, and L. K. John. Runtime Identifica-

tion of Microprocessor Energy Saving Opportunities. In Proceedings of

the 2005 International Symposium on Low Power Electronics and Design

(ISLPED ’05), pages 275–280. IEEE, 2005.

[15] R. Biswas, W. Thigpen, R. Ciotti, P. Mehrotra, C. Henze, J. Parks,

B. Biegel, and R. Hood. Pleiades: NASA’s First Petascale Supercom-

puter. In Contemporary High Performance Computing: From Petascale

toward Exascale, chapter 12, pages 309–338. Chapman and Hall, 2013.

[16] L. Brochard, R. Panda, D. DeSota, F. Thomas, and R. H. Bell. Power

and Energy-Aware Processor Scheduling. In ACM SIGSOFT Software

Engineering Notes, volume 36, pages 227–234. ACM, 2011.

[17] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for

Architectural-level Power Analysis and Optimizations. In Proceedings

123

REFERENCES

of the 27th Annual International Symposium on Computer Architecture

(ISCA’00), pages 83–94. ACM, New York, NY, June 2000.

[18] M. Burtscher, I. Zecena, and Z. Zong. Measuring GPU Power with the

K20 Built-In Sensor. In Proceedings of Workshop on General Purpose

Processing Using GPUs, page 28. ACM, 2014.

[19] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. A Roofline Model of

Energy. In Proceedings of the IEEE International Symposium on Parallel

& Distributed Processing (IPDPS), pages 661–672, May 2013.

[20] K. Choi, R. Soma, and M. Pedram. Dynamic Voltage and Frequency

Scaling Based on Workload Decomposition. In Proceedings of the Inter-

national Symposium on Low Power Electronics and Design (IPSLED’04),

pages 174–179. ACM, New York, NY, August 2004.

[21] G. Chrysos. Intel Xeon Phi Coprocessor (codename Knights Corner). In

Proceedings of the 20th IEEE Hot Chips Symposium (HCS ’12), pages

1–31. IEEE, 2012.

[22] R. C. Chu, R. E. Simons, and G. M. Chrysler. Experimental Investi-

gation of an Enhanced Thermosyphon Heat Loop for Cooling of a High

Performance Electronics Module. In IEEE Semiconductor Thermal Mea-

surement and Management Symposium, pages 1–9. IEEE, 1999.

[23] Z. Cui, Y. Zhu, Y. Bao, and M. Chen. A Fine-Grained Component-

Level Power Measurement Method. In International Green Computing

Conference (IGCC ’11), pages 1–6. IEEE, 2011.

[24] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model of

Parallel Computation. In Proceedings of the Fourth ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming (PPOPP’93),

pages 1–12. ACM, New York, NY, May 1993.

124

REFERENCES

[25] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopou-

los. Online Strategies for High-performance Power-aware Thread Exe-

cution on Emerging Multiprocessors. In Proceedings of the 20th Inter-

national Conference on Parallel and Distributed Processing (IPDPS’06),

pages 298–298, IPDPS, Rhodes Island, Greece, April 2006. IEEE Com-

puter Society, Washington, DC.

[26] L. Dagum and R. Menon. OpenMP: an Industry Standard API for Shared-

Memory Programming. IEEE Computational Science and Engineering, 5

(1):46–55, 1998.

[27] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. RAPL:

Memory Power Estimation and Capping. In Proceedings of the Interna-

tional Symposium on Low-Power Electronics and Design (ISLPED ’10),

pages 189–194. IEEE, August 2010.

[28] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Physical

Dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[29] R. Dimond, S. Racaniere, and O. Pell. Accelerating large-scale HPC Ap-

plications using FPGAs. In Proceedings of the 20th IEEE Symposium on

Computer Arithmetic (ARITH ’11), pages 191–192. IEEE, 2011.

[30] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark:

Past, Present and Future. Concurrency and Computation: Practice and

Experience, 15(9):803–820, 2003.

[31] J. Eastep, S. Sylvester, C. Cantalupo, F. Ardanaz, B. Geltz, A. Al-Rawi,

F. Keceli, and K. Livingston. Global Extensible Open Power Manager:

A Vehicle for HPC Community Collaboration Toward Co-Designed En-

ergy Management Solutions. In International Workshop on Performance

Modeling, Benchmarking and Simulation of High Performance Computer

Systems, 2016.

125

REFERENCES

[32] H. C. Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling Many-

core Performance Portability through Polymorphic Memory Access Pat-

terns. Journal of Parallel and Distributed Computing, 74(12):3202–3216,

2014.

[33] R. Efraim, R. Ginosar, C. Weiser, and A. Mendelson. Energy Aware Race

To Halt: A Down to EARTH Approach for Platform Energy Management.

IEEE Computer Architecture Letters, 13(1):25–28, 2014.

[34] E. N. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. Godfrey,

A. Hoisie, K. McKinley, R. Melhem, J. Plank, P. Ranganathan, and J. Si-

mons. System Resilience at Extreme Scale. Defense Advanced Research

Project Agency (DARPA) Tech. Rep, 2008.

[35] J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kin-

dratenko, J. E. Stone, and J. C. Phillips. Quantifying the Impact of GPUs

on Performance and Energy Efficiency in HPC Clusters. In Proceedings

of the 2010 International Green Computing Conference (IGC ’10), pages

317–324. IEEE, 2010.

[36] S. Eranian. Perfmon2: a Flexible Performance Monitoring Interface for

Linux. In Proceedings of the 2006 Ottawa Linux Symposium, pages 269–

288. Citeseer, 2006.

[37] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and

D. Burger. Dark Silicon and the End of Multicore Scaling. In Proceedings

of the 38th Annual International Symposium on Computer Architecture

(ISCA ’11), pages 365–376. IEEE, 2011.

[38] W. Feng and K. Cameron. The Green500 List: Encouraging Sustainable

Supercomputing. Computer, 40(12), 2007.

[39] M. J. Flynn. Some Computer Organizations and their Effectiveness. IEEE

Transactions on Computers, 100(9):948–960, 1972.

126

REFERENCES

[40] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Pro-

ceedings of the Tenth Annual ACM Symposium on Theory of Computing,

pages 114–118. ACM, 1978.

[41] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer, B. L.

Rountree, and M. E. Femal. Analyzing the Energy-Time trade-off in High-

Performance Computing Applications. IEEE Transactions on Parallel and

Distributed Systems, 18(6):835–848, 2007.

[42] R. Ge, X. Feng, S. Song, H. Chang, D. Li, and K. W. Cameron. Pow-

erPack: Energy Profiling and Analysis of High-Performance Systems and

Applications. IEEE Transactions on Parallel and Distributed Systems, 21

(5):658–671, May 2010.

[43] M. B. Giles, G. R. Mudalige, Z. Sharif, G. Markall, and P. Kelly. Per-

formance Analysis of the OP2 Framework on Many-Core Architectures.

ACM SIGMETRICS Performance Evaluation Review, 38(4):9–15, 2011.

[44] M. B. Giles, G. R. Mudalige, B. Spencer, C. Bertolli, and I. Reguly. De-

signing OP2 for GPU Architectures. Journal of Parallel and Distributed

Computing, 73(11):1451–1460, 2013.

[45] R. Gonzales and M. Horowitz. Energy Dissipation in General Purpose

Processors. IEEE Journal of Solid State Circuits, 31:1277–1284, Septem-

ber 1996.

[46] N. Goswami, R. Shankar, M. Joshi, and T. Li. Exploring GPGPU Work-

loads: Characterization Methodology, Analysis and Microarchitecture

Evaluation Implications. In Proceedings of the IEEE International Sym-

posium on Workload Characterization (IISWC ’10), pages 1–10. IEEE,

2010.

[47] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the

ACM, 31(5):532–533, 1988.

127

REFERENCES

[48] D. Hackenberg and M. K. Patterson. Evaluation of a new data center

air-cooling architecture: The down-flow Plenum. In Proceedings of the

2016 IEEE Conference on Thermal and Thermomechanical Phenomena

in Electronic Systems (ITherm ’16), pages 395–403. IEEE, 2016.

[49] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E.

Nagel. Power Measurement Techniques on Standard Compute Nodes: A

Quantitative Comparison. Proceedings of the IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS), pages

194–204, March 2013.

[50] D. Hackenberg, R. Oldenburg, D. Molka, and R. Schöne. Introducing

FIRESTARTER: A Processor Stress Test Utility. In International Green

Computing Conference (IGCC ’13), pages 1–9, June 2013.

[51] D. Hackenberg, T. Ilsche, J. Schuchart, R. Schöne, W. E. Nagel, M. Simon,

and Y. Georgiou. HDEEM: High Definition Energy Efficiency Monitoring.

In Energy Efficient Supercomputing Workshop (E2SC), 2014, pages 1–10,

November 2014.

[52] W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon, A. Bryant,

O. H. Dokumaci, A. Kumar, X. Wang, J. B. Johnson, and M. V. Fischetti.

Silicon CMOS Devices Beyond Scaling. IBM Journal of Research and

Development, 50(4.5):339–361, 2006.

[53] M. Harman and J. Clark. Metrics are Fitness Functions Too. In Proceed-

ings of the International Symposium on Software Metrics, pages 58–69,

September 2004.

[54] M. Harman and B. F. Jones. Search-Based Software Engineering. Infor-

mation and Software Technology, 43(14):833 – 839, 2001. ISSN 0950-5849.

[55] A. Hart, H. Richardson, J. Doleschal, T. Ilsche, M. Bielert, and M. Kappel.

User-Level Power Monitoring and Application Performance on Cray XC30

128

REFERENCES

Supercomputers. Proceedings of the 2014 Cray User Group (CUG ’14),

2014.

[56] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.

Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and

R. W. Numrich. Improving Performance via Mini-Applications. SNL

Tech. Rep SAND2009-5574, 2009.

[57] T. Hey, S. Tansley, and K. Tolle. The Fourth Paradigm: Data-Intensive

Scientific Discovery. Microsoft Research, 2009.

[58] T. Hey, A. JG Hey, and G. Pápay. The Computing Universe: A Journey

Through a Revolution. Cambridge University Press, 2014.

[59] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and

P. Roussel. The Microarchitecture of the Pentium R© 4 Processor. In Intel

Technology Journal. Citeseer, 2001.

[60] D. Hisamoto, W. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo,

E. Anderson, T. King, J. Bokor, and C. Hu. FinFET - A Self-Aligned

Double-Gate MOSFET Scalable To 20nm. IEEE Transactions on Electron

Devices, 47(12):2320–2325, 2000.

[61] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power

Optimization of Variable-Voltage Core-Based Systems. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 18

(12):1702–1714, 1999.

[62] S. Hong and H. Kim. An Integrated GPU Power and Performance Model.

In ACM SIGARCH Computer Architecture News, volume 38, pages 280–

289. ACM, 2010.

[63] M. Horowitz, T. Indermaur, and R. Gonzales. Low-Power Digital De-

sign. In Proceedings of the Symposium on Low Power Electronics. IEEE

Computer Society, Los Alamos, CA, 1994.

129

REFERENCES

[64] M. Hsieh, A. Rodrigues, R. Riesen, K. Thompson, and W. Song. A Frame-

work for Architecture-Level Power, Area, and Thermal Simulation and its

Application to Network-On-Chip Design Exploration. ACM SIGMET-

RICS Performance Evaluation Review, 38(4):63–68, 2011.

[65] C. H. Hsu, W. C. Feng, and J. S. Archuleta. Towards Efficient Super-

computing: A Quest for the Right Metric. In Proceedings of the IEEE

International Parallel and Distributed Processing Symposium, 2005.

[66] T. Jamil. RISC versus CISC: Why Less is More. Ieee Potentials, 14(3):

13–16, 1995.

[67] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A.

Evensky, and J. Mayo. A Simulator for Large-Scale Parallel Computer Ar-

chitectures. Technology Integration Advancements in Distributed Systems

and Computing, 179, 2012.

[68] C. January, J. Byrd, X. Oró, and M. O’Connor. Allinea MAP: Adding En-

ergy and OpenMP Profiling Without Increasing Overhead. In Proceedings

of the 8th International Workshop on Parallel Tools for High Performance

Computing, pages 25–35, October 2014.

[69] R. Joseph and M. Martonosi. Run-Time Power Estimation in High Per-

formance Microprocessors. In Proceedings of the 2001 International Sym-

posium on Low Power Electronics and Design (ISLPED), pages 135–140.

ACM, 2001.

[70] N. P. Jouppi, P. Boyle, and J. S. Fitch. Designing, Packaging, and Testing

a 300-MHz, 115W ECL Microprocessor. IEEE Micro, 14(2):50–58, April

1994.

[71] L. V. Kale and S. Krishnan. CHARM++: A Portable Concurrent Object

Oriented System Based on C++. In ACM Sigplan Notices, volume 28,

pages 91–108. ACM, 1993.

130

REFERENCES

[72] S. Kamil, J. Shalf, and E. Strohmaier. Power Efficiency in High Perfor-

mance Computing. In Parallel and Distributed Processing, 2008. IPDPS

2008. IEEE International Symposium on, pages 1–8. IEEE, 2008.

[73] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for

Power-Efficiency. Morgan and Claypool Publishers, 1st edition, 2008.

[74] S. Kaxiras and M. Martonosi. Computer Architecture Techniques for

Power-Efficiency. Morgan and Claypool Publishers, 1st edition, 2008.

[75] C. Kessler, U. Dastgeer, S. Thibault, R. Namyst, A. Richards, U. Dolinsky,

S. Benkner, J. L. Träff, and S. Pllana. Programmability and Performance

Portability Aspects of Heterogeneous Multi-/Manycore Systems. In Pro-

ceedings of the Conference on Design, Automation and Test in Europe,

pages 1403–1408. EDA Consortium, 2012.

[76] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.

Irwin, M. Kandemir, and V. Narayanan. Leakage Current: Moore’s Law

Meets Static Power. Computer, 36:68–75, 2003.

[77] V. Kindratenko and P. Trancoso. Trends in High-Performance Computing.

Computing in Science & Engineering, 13(3):92–95, 2011.

[78] D. Koufaty and D. T. Marr. Hyperthreading Technology in the Netburst

Microarchitecture. IEEE Micro, 23(2):56–65, March 2003.

[79] K. D. Lange. Identifying Shades of Green: The SPECpower Benchmarks.

Computer, 42(3):95–97, March 2009.

[80] J. H. Laros, K. Pedretti, S. M. Kelly, Wei Shu, K. Ferreira, J. Vandyke,

and C. Vaughan. Energy Delay Product. In Energy-Efficient High Per-

formance Computing: Measurement and Tuning, pages 51–55. Springer,

2013.

131

REFERENCES

[81] J. H. Laros, P. Pokorny, and D. DeBonis. PowerInsight - A Commod-

ity Power Measurement Capability. In International Green Computing

Conference (IGCC ’13), pages 1–6. IEEE, 2013.

[82] G. Lawson, V. Sundriyal, M. Sosonkina, and Y. Shen. Modeling Per-

formance and Energy for Applications Offloaded to Intel Xeon Phi. In

Proceedings of the 2nd International Workshop on Hardware-Software Co-

Design for High Performance Computing, page 7. ACM, 2015.

[83] E. Le Sueur and G. Heiser. Dynamic Voltage and Frequency Scaling: The

Laws of Diminishing Returns. In Proceedings of the 2010 International

Conference on Power Aware Computing and Systems (HotPower’10),

pages 1–8. USENIX Association, October 2010.

[84] W. Y. Lee. Energy-Saving DVFS Scheduling of Multiple Periodic Real-

Time Tasks on Multi-Core Processors. In Proceedings of the 2009 13th

IEEE/ACM International Symposium on Distributed Simulation and Real

Time Applications, pages 216–223. IEEE Computer Society, 2009.

[85] S. Li, J. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling

Framework for Multicore and Manycore Architectures. In Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO-42), pages 469–480, December 2009.

[86] C. Lively, X. Wu, V. Taylor, S. Moore, H. Chang, C. Su, and K. Cameron.

Power-aware Predictive Models of Hybrid (MPI/OpenMP) Scientific Ap-

plications on Multicore Systems. Computer Science-Research and Devel-

opment, 27(4):245–253, 2012.

[87] C. Malone and C. Belady. Metrics to Characterize Data Center & IT

Equipment Energy Use. In Proceedings of the 2006 Digital Power Forum,

September 2006.

132

REFERENCES

[88] A. J. Martin, M. Nyström, and P. I. Pénzes. ET 2: A Metric for Time and

Energy Efficiency of Computation. In Power Aware Computing, pages

293–315. Springer, 2002.

[89] C. D. Martin. ENIAC: The Press Conference That Shook the World.

IEEE Technology and Society Magazine, 14(4):3–10, 1995.

[90] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current

High Performance Computers. IEEE Computer Society Technical Com-

mittee on Computer Architecture (TCCA) Newsletter, pages 19–25, De-

cember 1995.

[91] M. D. McCool, A. D. Robison, and J. Reinders. Structured Parallel Pro-

gramming: Patterns for Efficient Computation. Elsevier, 2012.

[92] F. J. Mesa-Martinez, M. Brown, J. Nayfach-Battilana, and J. Renau.

Measuring Performance, Power, and Temperature from Real Processors.

In Proceedings of the 2007 workshop on Experimental computer science,

page 16. ACM, 2007.

[93] G. E. Moore. Cramming More Components onto Integrated Circuits.

Proceedings of the IEEE, 86(1):82–85, 1998.

[94] S. V. Moore. A Comparison of Counting and Sampling Modes of Using

Performance Monitoring Hardware. In Sloot, P. M. A. and Hoekstra,

A. G. and Tan, K. C. J. and Dongarra, J. J., editor, Proceedings of the

2002 International Conference on Computational Science, pages 904–912.

Springer Berlin Heidelberg, 2002.

[95] T. Mudge. Power: A First-Class Architectural Design Constraint. Com-

puter, 34(4):52–58, April 2001.

[96] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,

and W. E. Nagel. Developing Scalable Applications with Vampir, Vam-

133

REFERENCES

pirServer and VampirTrace. In PARCO, volume 15, pages 637–644. Cite-

seer, 2007.

[97] E. L. Padoin, L. L. Pilla, M. Castro, F. Z. Boito, P. O. Navaux, and

J. Méhaut. Performance/energy trade-off in scientific computing: The

case of arm big.little and intel sandy bridge. IET Computers & Digital

Techniques, 9(1):27–35, 2014.

[98] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface. Newnes, 2013.

[99] M. K. Patterson, S. W. Poole, C. Hsu, D. Maxwell, W. Tschudi, H. Coles,

D. J. Martinez, and N Bates. TUE, a New Energy-Efficiency Metric

Applied at ORNLs Jaguar. In Supercomputing, pages 372–382. Springer,

2013.

[100] S. J. Pennycook, J. Sewall, and V. Lee. Implications of a Metric for Per-

formance Portability. Future Generation Computer Systems (In Press),

2017.

[101] L. Ponciano and F. Brasileiro. On the Impact of Energy-Saving Strategies

in Opportunistic Grids. In Proceedings of the 2010 IEEE/ACM Interna-

tional Conference on Grid Computing (ICGC ’10), pages 282–289, Oct

2010.

[102] T. Rauber and G. Rünger. Parallel Programming for Multicore and Clus-

ter Systems. Springer Science & Business Media, 2013.

[103] S. I. Roberts, S. A. Wright, S. A. Fahmy, and S. A. Jarvis. The Power-

Optimised Software Envelope. ACM Transactions on Architecture and

Code Optimisation, in preparation.

[104] S. I. Roberts, S. A. Wright, D. Lecomber, C. January, J. Byrd, X. Oró,

and S. A. Jarvis. POSE: A Mathematical and Visual Modelling Tool

to Guide Energy Aware Code Optimisation. In Proceedings of the 6th

134

REFERENCES

International Green and Sustainable Computing Conference (IGSC ’15),

December 2015.

[105] S. I. Roberts, S. A. Wright, S. A. Fahmy, and S. A. Jarvis. Metrics for

Energy-Aware Software Optimisation. Lecture Notes in Computer Science

(LNCS), 10266:413–430, June 2017.

[106] J. Robertson. High Dielectric Constant Gate Oxides for Metal Oxide Si

Transistors. Reports on Progress in Physics, 69(2):327, 2005.

[107] I. Rodero, H. Viswanathan, E. K. Lee, M. Gamell, D. Pompili, and

M. Parashar. Energy-Efficient Thermal-Aware Autonomic Management

of Virtualized HPC Cloud Infrastructure. Journal of Grid Computing, 10

(3):447–473, 2012.

[108] R. Schöne, J. Treibig, M. F. Dolz, C. Guillen, C. Navarrete, M. Knobloch,

and B. Rountree. Tools and Methods for Measuring and Tuning the En-

ergy Efficiency of HPC Systems. Scientific Programming, 22(4):273–283,

2014.

[109] J. Shalf, S. Dosanjh, and J. Morrison. Exascale Computing Technology

Challenges. In High Performance Computing for Computational Science

(VECPAR 2010), volume 6449 of LNCS, pages 1–25. Springer Berlin Hei-

delberg, June 2011.

[110] H. Shan, K. Antypas, and J. Shalf. Characterizing and Predicting the

I/O Performance of HPC Applications Using a Parameterized Synthetic

Benchmark. In Proceedings of the 2008 ACM/IEEE conference on Super-

computing, page 42. IEEE, 2008.

[111] Y. S. Shao and D. Brooks. Energy Characterization and Instruction-

Level Energy Model of Intel’s Xeon Phi Processor. In Proceedings of the

International Symposium on Low Power Electronics and Design (ISLPED

’13), pages 389–394. IEEE, September 2013.

135

REFERENCES

[112] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,

and D. Tarjan. Temperature-Aware Microarchitecture. In Proceedings

of the 30th Annual International Symposium on Computer Architecture,

pages 2–13. IEEE, 2003.

[113] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Stren-

ski, and P. G. Emma. Optimizing Pipelines for Power and Performance.

In Proceedings of the International Symposium on Microarchitecture (MI-

CRO), pages 333–344, 2002.

[114] B. Subramaniam, W. Saunders, T. Scogland, and W. Feng. Trends in

Energy-Efficient Computing: A Perspective from the Green500. In 2013

International Green Computing Conference (IGCC ’13), pages 1–8. IEEE,

2013.

[115] H. Sutter. The Free Lunch is Over: A Fundamental Turn Toward Con-

currency in Software. Dr. Dobb’s Journal, 30(3):202–210, March 2005.

[116] M. M. Waldrop. The Chips are Down for Moore’s Law. Nature, 530(7589):

144–147, 2016.

[117] V. M. Weaver. Advanced Hardware Profiling and Sampling (PEBS, IBS,

etc.): Creating a New PAPI Sampling Interface. Technical report, De-

partment of Electrical and Computer Engineering, University of Maine,

2016.

[118] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,

D. Terpstra, and S. Moore. Measuring Energy and Power with PAPI.

In International Conference on Parallel Processing Workshops (ICPPW

’12), pages 262–268. IEEE, 2012.

[119] S. Wienke, P. Springer, C. Terboven, and D. Mey. OpenACC First Expe-

riences with Real-World Applications. In European Conference on Parallel

Processing, pages 859–870. Springer, 2012.

136

REFERENCES

[120] B. Wilkinson and M. Allen. Parallel Programming: Techniques and Appli-

cations Using Networked Workstations and Parallel Computers. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 2004. ISBN 0131405632.

[121] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful

Visual Performance Model for Multicore Architectures. Communications

of the ACM, 52(4):65–76, April 2009. ISSN 0001-0782.

[122] S. Yeo and H. Lee. Using Mathematical Modeling in Provisioning a Het-

erogeneous Cloud Computing Environment. Computer, 44(8):55–62, 2011.

[123] Y. Zhu and V. J. Reddi. High Performance and Energy Efficient Mobile

Web Browsing on big.LITTLE Systems. In 2013 International Symposium

on High Performance Computer Architecture (HPCA ’13), pages 13–24.

IEEE, 2013.

137

APPENDIX A
POSE Model Summary for Different Metrics

This appendix summarises the equations derived for the various Power Opti-

mised Software Envelope (POSE) bounds and coordinates in Chapter 5.

A.1 Etn POSE

Eλ = Eθ

(
tθ
tλ

)n
(Optimisation)

Eλ = Pθ tλ

(
tλ
tθ

)n+1

(Contribution)

tA = tθ

(
Pmin

2

Pθ Pmax

) 1
n+1

EA = Pmax · tA (A)

tB = tθ

(
Pθ
Pmax

) 1
n+1

EB = Pmax · tB (B)

tC = tθ

(
Pmin
Pθ

) 1
n+1

EC = Pmin · tC (C)

tD = tθ ED = Pmin · tD (D)

tE = tθ

(
Pθ
Pmin

) 1
n+1

EE = Pmin · tE (E)

A.2 Energy Delay Sum POSE

Eλ = Eθ +
β

α
(tθ − tλ) (Optimisation)

Eλ =
tλ

2

tθ

(
Pθ +

β

α

)
− tλ

β

α
(Contribution)

138

POSE Model Summary for Different Metrics

tA = tθ

(
Pmin + β

α

)2
(
Pθ + β

α

)(
Pmax + β

α

) EA = Pmax · tA (A)

tB = tθ
Pθ + β

α

Pmax + β
α

EB = Pmax · tB (B)

tC = tθ
Pmin + β

α

Pθ + β
α

EC = Pmin · tC (C)

tD = tθ ED = Pmin · tD (D)

tE = tθ
Pθ + β

α

Pmin + β
α

EE = Pmin · tE (E)

A.3 Energy Delay Distance POSE

Eλ =

√
Eθ

2 +

(
β

α

)2 (
tθ

2 − tλ2
)

(Optimisation)

Eλ = tλ ·

√√√√(tλ
tθ

)2
(
Pθ

2 +

(
β

α

)2
)
−
(
β

α

)2

(Contribution)

tA = tθ ·
Pmin

2 +
(
β
α

)2
√
Pθ

2 +
(
β
α

)2
·
√
Pmax

2 +
(
β
α

)2 EA = Pmax · tA (A)

tB = tθ ·

√√√√√√ Pθ
2 +

(
β
α

)2
Pmax

2 +
(
β
α

)2 EB = Pmax · tB (B)

tC = tθ ·

√√√√√√Pmin
2 +

(
β
α

)2
Pθ

2 +
(
β
α

)2 EC = Pmin · tC (C)

tD = tθ ED = Pmin · tD (D)

tE = tθ ·

√√√√√√ Pθ
2 +

(
β
α

)2
Pmin

2 +
(
β
α

)2 EE = Pmin · tE (E)

139

APPENDIX B
Mantevo Suite POSE Models

Table B.1 summarises the results of Et2 POSE models for the remaining codes

documented in Chapter 5. Tables B.2 and B.3 present similar results for the En-

ergy Delay Sum (EDS) and Energy Delay Distance (EDD) metrics respectively.

These results are based on the same metric parameterisations used in chapter 4.

These tables of results were generated automatically using open source tools

produced as part of this work.

140

Mantevo Suite POSE Models

Table B.1: Et2 POSE Model Summaries for Remaining Codes

CloverLeaf 3D
Maximum Energy Saved by Reduced Power Consumption 11 960 J; 1.38×
Maximum Improvement in E1t2 from Power Optimisation 1.89×
Worst Case Slowdown as a result of Power Optimisation 17.19 s; 1.11×
Minimum Speed-up Guaranteed to Outperform θ 9.36 s; 1.07×
Speed-up Required to Dominate Power Optimisation 36.92 s; 1.32×

CloverLeaf
Maximum Energy Saved by Reduced Power Consumption 13 351 J; 1.30×
Maximum Improvement in E1t2 from Power Optimisation 1.69×
Worst Case Slowdown as a result of Power Optimisation 19.58 s; 1.09×
Minimum Speed-up Guaranteed to Outperform θ 16.89 s; 1.09×
Speed-up Required to Dominate Power Optimisation 48.56 s; 1.29×

CoMD
Maximum Energy Saved by Reduced Power Consumption 2916 J; 1.13×
Maximum Improvement in E1t2 from Power Optimisation 1.28×
Worst Case Slowdown as a result of Power Optimisation 4.49 s; 1.04×
Minimum Speed-up Guaranteed to Outperform θ 12.67 s; 1.14×
Speed-up Required to Dominate Power Optimisation 20.09 s; 1.24×

MiniFE
Maximum Energy Saved by Reduced Power Consumption 843 J; 1.11×
Maximum Improvement in E1t2 from Power Optimisation 1.23×
Worst Case Slowdown as a result of Power Optimisation 1.31 s; 1.04×
Minimum Speed-up Guaranteed to Outperform θ 4.62 s; 1.14×
Speed-up Required to Dominate Power Optimisation 6.79 s; 1.23×

HPCCG
Maximum Energy Saved by Reduced Power Consumption 469 J; 1.06×
Maximum Improvement in E1t2 from Power Optimisation 1.13×
Worst Case Slowdown as a result of Power Optimisation 0.74 s; 1.02×
Minimum Speed-up Guaranteed to Outperform θ 5.08 s; 1.16×
Speed-up Required to Dominate Power Optimisation 6.31 s; 1.21×

141

Mantevo Suite POSE Models

Table B.2: EDS POSE Model Summaries (α = 1, β = 900)

TeaLeaf
Maximum Energy Saved by Reduced Power Consumption 32 560 J; 1.48×
Maximum Improvement in E1t2 from Power Optimisation 1.19×
Worst Case Slowdown as a result of Power Optimisation 28.40 s; 1.09×
Minimum Speed-up Guaranteed to Outperform θ 9.65 s; 1.03×
Speed-up Required to Dominate Power Optimisation 59.76 s; 1.23×

CloverLeaf 3D
Maximum Energy Saved by Reduced Power Consumption 11 960 J; 1.38×
Maximum Improvement in E1t2 from Power Optimisation 1.15×
Worst Case Slowdown as a result of Power Optimisation 10.80 s; 1.07×
Minimum Speed-up Guaranteed to Outperform θ 7.32 s; 1.05×
Speed-up Required to Dominate Power Optimisation 25.89 s; 1.20×

CloverLeaf
Maximum Energy Saved by Reduced Power Consumption 13 351 J; 1.30×
Maximum Improvement in E1t2 from Power Optimisation 1.12×
Worst Case Slowdown as a result of Power Optimisation 12.05 s; 1.06×
Minimum Speed-up Guaranteed to Outperform θ 12.97 s; 1.06×
Speed-up Required to Dominate Power Optimisation 33.84 s; 1.19×

CoMD
Maximum Energy Saved by Reduced Power Consumption 2916 J; 1.13×
Maximum Improvement in E1t2 from Power Optimisation 1.05×
Worst Case Slowdown as a result of Power Optimisation 2.63 s; 1.02×
Minimum Speed-up Guaranteed to Outperform θ 9.33 s; 1.10×
Speed-up Required to Dominate Power Optimisation 13.95 s; 1.15×

MiniFE
Maximum Energy Saved by Reduced Power Consumption 843 J; 1.11×
Maximum Improvement in E1t2 from Power Optimisation 1.04×
Worst Case Slowdown as a result of Power Optimisation 0.76 s; 1.02×
Minimum Speed-up Guaranteed to Outperform θ 3.38 s; 1.10×
Speed-up Required to Dominate Power Optimisation 4.72 s; 1.15×

HPCCG
Maximum Energy Saved by Reduced Power Consumption 469 J; 1.06×
Maximum Improvement in E1t2 from Power Optimisation 1.02×
Worst Case Slowdown as a result of Power Optimisation 0.42 s; 1.01×
Minimum Speed-up Guaranteed to Outperform θ 3.66 s; 1.11×
Speed-up Required to Dominate Power Optimisation 4.41 s; 1.14×

PathFinder
Maximum Energy Saved by Reduced Power Consumption 1928 J; 1.03×
Maximum Improvement in E1t2 from Power Optimisation 1.01×
Worst Case Slowdown as a result of Power Optimisation 1.74 s; 1.01×
Minimum Speed-up Guaranteed to Outperform θ 35.71 s; 1.12×
Speed-up Required to Dominate Power Optimisation 38.81 s; 1.13×

142

Mantevo Suite POSE Models

Table B.3: EDD POSE Model Summaries (α = 1, β = 519.615)

TeaLeaf
Maximum Energy Saved by Reduced Power Consumption 32 560 J; 1.48×
Maximum Improvement in E1t2 from Power Optimisation 1.17×
Worst Case Slowdown as a result of Power Optimisation 25.80 s; 1.08×
Minimum Speed-up Guaranteed to Outperform θ 10.248 s; 1.03×
Speed-up Required to Dominate Power Optimisation 54.81 s; 1.20×

CloverLeaf 3D
Maximum Energy Saved by Reduced Power Consumption 11 960 J; 1.38×
Maximum Improvement in E1t2 from Power Optimisation 1.12×
Worst Case Slowdown as a result of Power Optimisation 9.15 s; 1.06×
Minimum Speed-up Guaranteed to Outperform θ 7.576 s; 1.05×
Speed-up Required to Dominate Power Optimisation 23.53 s; 1.18×

CloverLeaf
Maximum Energy Saved by Reduced Power Consumption 13 351 J; 1.30×
Maximum Improvement in E1t2 from Power Optimisation 1.10×
Worst Case Slowdown as a result of Power Optimisation 9.96 s; 1.05×
Minimum Speed-up Guaranteed to Outperform θ 13.17 s; 1.07×
Speed-up Required to Dominate Power Optimisation 30.65 s; 1.17×

CoMD
Maximum Energy Saved by Reduced Power Consumption 2916 J; 1.13×
Maximum Improvement in E1t2 from Power Optimisation 1.04×
Worst Case Slowdown as a result of Power Optimisation 2.04 s; 1.02×
Minimum Speed-up Guaranteed to Outperform θ 9.05 s; 1.09×
Speed-up Required to Dominate Power Optimisation 12.68 s; 1.14×

MiniFE
Maximum Energy Saved by Reduced Power Consumption 843 J; 1.11×
Maximum Improvement in E1t2 from Power Optimisation 1.03×
Worst Case Slowdown as a result of Power Optimisation 0.59 s; 1.02×
Minimum Speed-up Guaranteed to Outperform θ 3.30 s; 1.10×
Speed-up Required to Dominate Power Optimisation 4.30 s; 1.13×

HPCCG
Maximum Energy Saved by Reduced Power Consumption 469 J; 1.06×
Maximum Improvement in E1t2 from Power Optimisation 1.02×
Worst Case Slowdown as a result of Power Optimisation 0.32 s; 1.01×
Minimum Speed-up Guaranteed to Outperform θ 3.48 s; 1.11×
Speed-up Required to Dominate Power Optimisation 4.05 s; 1.12×

PathFinder
Maximum Energy Saved by Reduced Power Consumption 1928 J; 1.03×
Maximum Improvement in E1t2 from Power Optimisation 1.01×
Worst Case Slowdown as a result of Power Optimisation 1.29 s; 1.01×
Minimum Speed-up Guaranteed to Outperform θ 33.60 s; 1.11×
Speed-up Required to Dominate Power Optimisation 35.91 s; 1.12×

143

APPENDIX C
Mantevo Benchmark Input Parameters

Table C.1 lists the parameters used to run applications from the Mantevo suite.

Applications were run with the default configuration given by their documenta-

tion where available. In some cases parameters corresponding to problem size

were altered to produce realistic run times and memory consumption.

Table C.1: Application Run Parameters

Application Parameters

TeaLeaf tea bm16 short.in
CloverLeaf 3D clover bm.in
CloverLeaf clover bm2.in
MiniMD -t 24 -n 15000
CoMD -e -x 90 -y 90 -z 90
MiniFE -nx 256 -ny 256 -nz 256
HPCCG 256 256 256
PathFinder -x medium test.adj list

144

