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Abstract

DNA methylation is an evolutionary ancient epigenetic modification that is phylogenetically widespread. Comparative studies

of the methylome across a diverse range of non-conventional and conventional model organisms is expected to help reveal

how the landscape of DNA methylation and its functions have evolved. Here, we explore the DNA methylation profile of two

species of the crustacean Daphnia using whole genome bisulfite sequencing. We then compare our data with the methylomes

of two insects and two mammals to achieve a better understanding of the function of DNA methylation in Daphnia. Using

RNA-sequencing data for all six species, we investigate the correlation between DNA methylation and gene expression. DNA

methylation in Daphnia is mainly enriched within the coding regions of genes, with the highest methylation levels observed at

exons 2–4. In contrast, vertebrate genomes are globally methylated, and increase towards the highest methylation levels

observed at exon 2, and maintained across the rest of the gene body. Although DNA methylation patterns differ among all

species, their methylation profiles share a bimodal distribution across the genomes. Genes with low levels of CpG methylation

and gene expression are mainly enriched for species specific genes. In contrast, genes associated with high methylated CpG

sites are highly transcribed and evolutionary conserved across all species. Finally, the positive correlation between internal

exons and gene expression potentially points to an evolutionary conserved mechanism, whereas the negative regulation of

gene expression via methylation of promoters and exon 1 is potentially a secondary mechanism that has been evolved in

vertebrates.
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Introduction

DNA methylation is an evolutionary ancient epigenetic mod-

ification of DNA. It is phylogenetically widespread and is be-

lieved to have an integral role in diverse biological processes

and species diversity, such as regulation of temporal and spa-

tial gene expression and the development of condition-

dependent phenotypic traits (Roberts and Gavery 2012;

Sarda et al. 2012). Although DNA methylation mostly occurs

at CpG dinucleotide sites across the animal taxa the actual

patterns of genomic DNA methylation are highly variable,

especially between vertebrates and invertebrates (Feng et al.

2010; Zemach et al. 2010; Keller et al. 2016). DNA methyla-

tion pattern can be divided into two main categories, based

on distribution and frequency of methylated CpG sites. 1)

Vertebrate genomes are globally and heavily methylated at

CpG sites, except at putative regulatory regions such as pro-

moters and enhancers. 2) In contrast, invertebrate genomes

tend to be sparsely methylated in a mosaic pattern, with the

majority of their genomes deprived of methylation, even at

promoter regions, which are typically not enriched for CpG
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dinucleotides compared to the rest of the genome (Feng et al.

2010; Zemach et al. 2010; Jiang et al. 2014; Keller et al.

2016). DNA methylation in invertebrate genomes (Lyko

et al. 2010; Xiang et al. 2010; Bonasio et al. 2012; Wang

et al. 2013; Song et al. 2017) is predominantly targeted at

CpG sites within exons and introns of certain genes (gene

bodies). However, it appears that the function of DNA meth-

ylation within internal exons is evolutionary conserved. In both

vertebrates and invertebrates, gene bodies with substantially

enriched DNA methylation are positively correlated with the

level of gene transcription (gene expression), suggesting that

methylation at these regions has a positive role in gene reg-

ulation in both vertebrates and invertebrates. This indicates

that the gene body methylation may be an ancient system of

gene regulation that evolved prior to when invertebrates and

vertebrates diverged, while promoter methylation is a derived

system of gene regulation of the vertebrate lineage (Sarda

et al. 2012; Keller et al. 2016; Song et al. 2017). However,

the evolutionary steps leading to the differentiation of inver-

tebrate and vertebrate genomic DNA methylation remain

unresolved.

Evidence that active methyltransferase enzymes and meth-

ylated genes are phylogenetically conserved among verte-

brates and invertebrates has heightened people’s interest in

the diversification of these gene families (Lyko et al. 2010;

Xiang et al. 2010; Bonasio et al. 2012; Wang et al. 2013;

Song et al. 2017), especially within newly sequenced

genomes representing distinct branches of the animal phylog-

eny. This gene annotation effort has progressed an under-

standing of the role of DNA methylation in invertebrates,

including the first crustacean to have a draft genome assem-

bly, Daphnia (Vandegehuchte et al. 2009a, 2009b, 2010a,

2010b; Asselman et al. 2016, 2017). Daphnia spp. are

fresh-water branchiopods and a recognized model organism

by the U.S. National Institutes of Health (Colbourne et al.

2011). It has served as a model organism in various fields of

research, including ecotoxicology, ecology, and population

genetics for over a century and grows in importance for mo-

lecular studies involving neurobiology (McCoole et al. 2012;

Toyota et al. 2015; Weiss et al. 2015) and the biology of

ageing (Pietrzak et al. 2010; Latta et al. 2011; Dudycha and

Hassel 2013; Lohr et al. 2014; Schumpert et al. 2015). Thus,

the interest in the methylome of Daphnia partly arises from its

diverse use as a model organism in a range of research areas,

as well as its unique characteristics as a model organism for

DNA methylation studies, such as its cyclic parthenogenesis

mode of reproduction (Harris et al. 2012). This life history

allows the maintenance of large populations of isogenic indi-

viduals within the laboratory, providing a unique setup for

delineating genetic and epigenetic factors in an experiment.

Therefore, Daphnia spp. are valuable models for studying the

functional effects of DNA methylation in relation to various

fields of research. In this study, we provide a comprehensive

genome-wide methylation profile for two species of Daphnia,

which are likely to have diverged for over 200 million years

(Colbourne and Hebert 1996). Daphnia magna is a member

of the subgenus Ctenodaphnia, while Daphnia pulex is the

nominal species of the subgenus Daphnia. Observations are

made between different strains and genotypes of Daphnia

and under intrinsic (ageing) and extrinsic factors; exposure

to environmentally relevant concentrations of arsenic, 5-aza-

cytidine (positive control), hyperoxia, and hypoxia.

Furthermore, our aim was to achieve an overview of an evo-

lutionary positioning of DNA methylation pattern and func-

tion in Daphnia. Therefore, we compared the methylome of

Daphnia with the well-characterized methylomes of two rep-

resentatives for each of the insecta (Nasonia vitripennis, Apis

mellifera) and mammalia (Mus musculus and Homo sapiens)

classes, representing the two known patterns of DNA meth-

ylation in animals (Ball et al. 2009; Lyko et al. 2010; Wang

et al. 2013; Ziller et al. 2013; Li and Zhang 2014; Denas et al.

2015; Bewick et al. 2017). This resulted in achieving a better

understanding of the potential function of DNA methylation

in Daphnia spp. across multiple genomic features. Finally, we

provide evidence in support of the existence of a set of evo-

lutionarily conserved genes in Daphnia that are potentially

under DNA methylation regulation.

Materials and Methods

Daphnia Culturing and Exposure Setup

Cultures of D. magna Bham2 strain (originally obtained from

the University of Reading, Heckmann et al. 2006) and D. pulex

Eloise Butler strain (genotypes EB31 and EB45, originally sam-

pled from Eloise Butler pond in Minnesota, Yampolsky et al.

2014) were maintained in HH COMBO and standard COMBO

media, respectively as previously described (Kilham et al.

1998; Athanasio et al. 2016). The exposure design followed

the OECD guidelines for assessment of chronic toxicity with

some modifications (OECD 2012). Briefly, less than 24 h old D.

magna Bham2 strain were randomly assigned to either con-

trol (n¼ 3 replicates, 5 Daphnia per replicate) or exposure

groups (n¼ 4 replicates, 5 Daphnia per replicate).

Treatments consisted of 5 days of exposure to 5-azacytidine

(3.7 mg L�1) with age matched controls (5 days old) or

14 days of exposure to either arsenic (100mg L�1), hypoxia

(2 mg L�1), or hyperoxia (8 mg L�1), all with aged matched

controls (14 days old). Daphnia in the control groups were

maintained under normal laboratory conditions (oxygen con-

centration: 6 mg L�1). Hypoxic and hyperoxic conditions were

generated by continuous aeration of the media with 4% and

20% oxygen balanced with nitrogen, respectively. Oxygen

concentrations were continuously monitored using an oxygen

sensor (Unisense microrespiration system, Denmark). Daphnia

pulex EB45 and EB31 samples consisted of a pool of 3, 8, and

15 days old Daphnia maintained under normal laboratory

conditions (n¼ 3 replicates per genotype).
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DNA Extraction and Sequencing

Genomic DNA was extracted from the samples using

MasterPure DNA purification kit (Epicentre, USA) following

Athanasio et al. (2016). Illumina sequencing library prepara-

tion was performed at the Environmental Omics Facility,

University of Birmingham, UK. The sequencing libraries were

generated using the EpiGenome Methyl-Seq kit (Epicentre,

USA), according to the manufacture’s guideline. Non-

bisulfite treated Daphnia DNA samples (20 ng) as well as

bisulfite-treated DNA samples (50 ng) were used for library

preparation to calculate the bisulfite conversion efficiency as

well as strain and genotype specific variant calling. Daphnia

magna and D. pulex DNA libraries were quantified using

KAPA Library Quantification Kit (Illumina), quality checked

using TapeStation (Agilent), and sequenced using Illumina

HiSeq-2500 platform at the Environmental Omics Facility,

University of Birmingham, and Illumina NextSeq 500 plat-

form at the Centre for Genomics and Bioinformatics,

Indiana University, respectively. The sequencing run was

performed using a rapid run flow cell with paired end and

read length of 151 bp for the bisulfite-treated D. magna

samples (HiSeq), and 80 bp for the non-bisulfite-treated

samples and the bisulfite-treated D. pulex samples

(NextSeq). This project has been deposited at NCBI GEO

under accession GSE103939.

Pre-processing, Mapping, Variant, and Methylation Calling

Illumina adapters (using core sequence: AGATCGGAAGAGC)

and nucleotides with low quality (Phred score< 20) were re-

moved with cutadapt (v.1.11; Martin 2011) while processing

both read pairs at the same time. The filtered reads [average

number of read pairs before and after filtering respectively

were 12.73 and 12.68 million for the WGBS (n¼ 28) and

24.14 and 23.27 million for the non-bisulfite converted refer-

ence DNA (n¼ 7)] were mapped to the reference genomes of

D. magna Xinb3 (GCA_001632505.1; Orsini et al. 2016) and

D. pulex PA42 (GCA_900092285.1; Ye et al. 2017) using

BWA Meth (v.0.10; Pedersen et al. 2014) for the bisulfite-

treated samples (with an average of 95.35% mapping rate,

resulting in 11� coverage) and BWA-MEM (v.0.7.15-r1140; Li

and Durbin 2009) for non-bisulfite-treated samples (with an

average of 92.53% mapping rate, resulting in 17.93 cover-

age), with default settings. Strain and genotype specific single

nucleotide polymorphisms (SNPs) were identified in the non-

bisulfite-treated samples with SAMtools mpileup and

BCFtools (v.0.1.19; Li 2011). Genome wide SNPs and read

depths were identified per sample, with minimum MAPQ

score set to 10, without discarding anomalous read pairs as

the Daphnia genomes are quite fragmented. SNPs that con-

tained indels or had nucleotides other than A/T/C/G in the

reference were excluded. SNP calls that had less than 8 reads

per sample, or had low confidence (Phred-scaled probability

of all samples being homozygous reference < 900) were also

removed. In both data sets the filtering resulted in SNP

calls that were identical among biological replicates in

more than 99% of the cases (99.72% in D. magna and

99.97% in D. pulex). Furthermore, CpG sites with poten-

tial SNPs (with quality score >50) were excluded from the

methylation analysis. The genome wide SNP calls and

SNPs detected at CpG sites are deposited in NCBI GEO

under reference GSE103939.

After removing potential SNP containing CpG sites, meth-

ylated CpG sites were called from mapped reads using

MethylDackel (v.0.2.1; github.com/dpryan79/MethylDackel).

Both uniquely mapped (MAPQ> 10) singletons and dis-

cordant reads were retained, while reads with low map-

ping quality (MAPQ< 10) and nucleotides with low base

calling quality (Phred< 30) were excluded. Seven base

pairs from both ends of the reads were also excluded, as

they showed an excessive amount of methylation poten-

tially due to adapter contamination. The bisulfite conver-

sion rate was calculated from the non-CpG cytosines (�20

million CHHs) that did not overlap with variable sites iden-

tified in the non-bisulfite treated reference samples (n¼ 3

for D. magna, n¼ 4 for D. pulex). The average bisulfite

conversion rate was 99.36% (defined as read count of

cytosines converted to thymine/total read count in CHH

* 100) (supplementary table S1, Supplementary Material

online contains information on read coverage, mapping

rate, and bisulfite conversion rate for each sample).

Differential Methylation Analysis

Differential methylation analysis was performed for des-

tranded CpGs using methylKit (v.1.3.0; Akalin et al. 2012).

Daphnia spp. have high level of genome duplication

(Colbourne et al. 2011) as well as strain specific copy number

variation (Keith et al. 2016). Therefore, it is necessary to ex-

clude duplicated regions. This was achieved by excluding CpG

sites demostrating coverage greater than 2-fold the standard

deviation of the coverage in at least half of the analyzed

samples (11/22 for D. magna and 3/6 for D. pulex; see sup-

plementary fig. S1, Supplementary Material online for an ex-

ample of excessive coverage) (Scheinin et al. 2014).

Furthermore, CpG sites with low coverage (<3 reads) were

also excluded from the analysis. To generate a final list of

reliable filtered methylated CpG sites for differential methyl-

ation analysis, all CpG sites that were saturated (all samples

had 100% methylation level), not covered in all samples or

had zero or extremely low methylation in most samples (more

than half of the samples had<2 methylated reads at the site)

were excluded from the analysis. Logistic regression was used

to analyze differential methylation between exposure (n¼ 4

replicates per treatment) and control samples (n¼ 3 replicates

per corresponding controls). The Q-values were adjusted us-

ing the SLIM method (Wang et al. 2011).
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Comparative Methylomics and Pathway Enrichment
Analysis

Publicly available data sets of DNA methylation profiles

(WGBS) for H. sapiens, M. musculus, A. mellifera, N. vitripen-

nis, and D. magna Xinb3 were obtained from GEO (Edgar

et al. 2002), the ENCODE project (ENCODE Project

Consortium 2012), and the Hymenoptera Genome

Database (Elsik et al. 2016) (See supplementary table S1,

Supplementary Material online for detailed description of

the samples, including accession numbers, tissue type, age,

gender and treatment group). Methylation levels were calcu-

lated for genomic features, 1000 bp upstream from the first

exon, each exon and intron, and 1000 bp downstream from

the last exon. For genome wide methylation profiling, each

feature was scaled to the same relative size, by breaking the

features to 101 bins. The methylation level was then averaged

across genes for CpG sites with the same relative distance to

the start of each feature. CpG sites with zero methylation calls

were excluded. CpG densities and clustering were analyzed

with CpGcluster, using median distance and P value < 1e�5

(Hackenberg et al. 2006). OrthoFinder (Emms and Kelly 2015)

was used to identify orthologous gene groups using all avail-

able protein sequences (supplementary table S2,

Supplementary Material online) for all of the compared spe-

cies. Orthogroups were assigned to categories (species spe-

cific, Daphnia/hymenoptera specific, arthropod/mammal

specific or common) based on the phylogenetic division in

conservation. For the common orthogroups, the methylation

levels for each species were calculated by averaging the meth-

ylation level of either exons 2–4 (arthoropods), or exon 1

(mammals) for each gene and then taking the mean across

all genes in the same orthogroup. Furthermore, to conduct

pathway enrichment analysis using Reactome pathways

(Fabregat et al. 2016), methylated CpG sites were analyzed

at the gene level with ClusterProfiler (Yu et al. 2012). As most

arthropod species are not annotated in Reactome, protein

blast was used (with e-value < 1e�20) to find orthologous

genes in humans. The reference genes (universe) for the en-

richment analysis were limited to only those human genes

that were identified by blast.

In addition to species level comparison of DNA methylation

and gene expression, a separate more detailed analysis of the

DNA methylation similarities and differences among the

Daphnia “control” samples was conducted. Instead of using

orthogroup averages in methylation, homologous genes

(10,101 genes) identified with direct reciprocal blastp (with

e-value < 1e�20) were used. The genes were ranked based

on the maximum methylation levels of CpGs located within

unique exons. CpGs that overlapped with multiple genes (in-

cluding 1 kb upstream and downstream regions) were ex-

cluded as well as CpGs that were not covered in all

samples, with at least 3 reads. The genes were clustered

based on the ranked methylation levels. In addition, sub-

clusters, identified with cutree (R Core Team 2018), that

showed the most or least similarities between the two species

were analyzed for pathway enrichment using Reactome as

described above.

Phylogeny of DNA Methyltransferases

The phylogenetic analysis was done for all six species (H. sa-

piens, M. musculus, A. mellifera, N. vitripennis, and D. magna

Xinb3 and D. pulex PA42) with all of the protein sequences

identified as orthologous to the human DNA methyltransfer-

ase (DNMT) genes in the OrthoFinder analysis (supplementary

table S2, Supplementary Material online). A maximum likeli-

hood phylogeny was constructed for the DNMT-proteins us-

ing the Phylogeny.fr pipeline with the default settings

(Dereeper et al. 2008), without using the conserved domain

selection with Gblocks (v.0.91b; Talavera et al. 2007). Briefly,

the sequences for each DNMT gene (supplementary file S1,

Supplementary Material online) were aligned using MUSCLE

(v.3.8.31; R. C. Edgar 2004), the phylogenies were con-

structed using PhyML (v.3.1; Guindon et al. 2010) and the

trees were rendered with TreeDyn (v.198.3; Chevenet et al.

2006) and modified in TreeGraph (v.2.14.0; Stöver and Müller

2010). The Arabidopsis thaliana MET1 gene was used as an

outgroup.

Gene Expression Analysis of D. pulex Eloise Butler and D.
magna Bham2

RNA was extracted from the same D. pulex and D. magna

(5 days old) samples used in the WGBS analysis using RNeasy

micro kit (Qiagen) according to the manufactures protocol.

Sequencing libraries were prepared using the Illumina TruSeq

stranded mRNA kit and sequenced using Illumina NextSeq

500 and HiSeq-2500 platforms at the Centre for Genomics

and Bioinformatics, Indiana University and Environmental

Omics Sequencing Facility, University of Birmingham, UK,

for D. pulex and D. magna, respectively. Single end 85 bp

RNA-seq reads for D. pulex and paired end 150 bp RNA-seq

reads for D. magna were filtered with cutadapt (v.1.11;

Martin 2011) the same way as the WGBS reads and mapped

to the reference genomes of D. pulex PA42

(GCA_900092285.1; Ye et al. 2017) and D. magna Xinb3

(GCA_001632505.1; Orsini et al. 2016) using TopHat2

(v.2.1.0; D. Kim et al. 2013). The read counts for genes

were extracted with HTSeq (v.0.9.1; Anders et al. 2015) using

unstranded union mode for genes. Gene expression in D.

magna Bham2 samples were compared to age matched con-

trol samples in D. magna Xinb3 obtained from an indepen-

dent study (Orsini et al. 2016), using DESeq2 (Love et al.

2014). As the gene expression estimates for Xinb3 are based

on transcriptome models, RNA-seq reads mapping to over-

lapping genes are potentially counted more than once,

whereas genome mapping and read counting with HTSeq

excludes this category of reads entirely. For this reason we

removed overlapping genes (7,033/21,293 genes with
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overlapping exons) from the gene expression comparisons.

The read counts were converted to FPKM values for gene

expression and DNA methylation comparisons (Trapnell

et al. 2010). The data generated for this study have been

deposited to NCBI GEO under reference GSE103939.

Correlation of Gene Expression and DNA Methylation Data

Publicly available RNA-seq data, matching to the WGBS data,

for H. sapiens, M. musculus, A. mellifera, N. vitripennis, and

D. magna Xinb3 were obtained from GEO (Edgar et al. 2002),

the ENCODE project (ENCODE Project Consortium 2012), and

the Hymenoptera Genome Database (Elsik et al. 2016) (sup-

plementary table S1, Supplementary Material online). To

analyze the correlation between DNA methylation and ex-

pression level, the mean methylation level for each gene

was calculated for exon 1, exons 2–4, and 1 kb upstream

from the first exon. The CpG sites with zero methylation

were excluded as they dominated most of the arthropod spe-

cies. The genes with similar methylation levels were grouped

together into methylation quantiles and the average methyl-

ation level of the group was regressed against the average

expression (FPKM) level of those genes.

Conservation of Methylation and Gene Expression Levels

To investigate if genes with high levels of DNA methylation

and gene expression were more likely to be evolutionarily

conversed compared to the genes with low methylation

and low expression levels, we compared the methylation

and expression densities between the different categories

assigned as species specific, Daphnia/hymenoptera specific,

arthropod/mammal specific or common by the OrthoFinder

program. A joint clustering of DNA methylation and gene

expression was carried out for the genes that were common

across all species, as identified in the OrthoFinder analysis.

Mean expression and mean methylation values were calcu-

lated for each gene and then averaged for the whole

orthogroup. For the arthropod species, methylation levels

were based on exons 2–4 and for vertebrates based on

exon 1, as these were most strongly correlated with gene

expression levels. The methylation and expression levels

were then scaled from 0 to 1. For vertebrates the scale was

reversed as the methylation level of exon 1, was negatively

correlated with gene expression.

Results

DNA Methylation is Conserved and Follows a Bimodal
Distribution Across Vast Taxonomic Distances

Eukaryotic DNMTs are key enzymes that methylate DNA and

are remarkably conserved in structure and function across

different species. While DNMT1 is responsible for mainte-

nance of DNA methylation during DNA replication, DNMT3

family of enzymes are responsible for de novo establishment

of DNA methylation (Zhong 2016). Therefore, to conduct

phylogenetic analysis of DNMTs, all available protein sequen-

ces including DNMTs were retrieved from NCBI for H. sapiens

(human, GCA_000001405.15), M. musculus (mouse,

GCA_000001635.7), D. magna (GCA_001632505.1),

D. pulex (GCA_900092285.1) and from hymenopterageno-

me.org for A. mellifera (honey bee, Amel_4.5) and N. vitri-

pennis (wasp, Nvit_1.2). The human DNMTs were used to find

and confirm the orthologous sequences in the other species,

including D. magna (Xinb3) and D. pulex (PA42), using

OrthoFinder. A maximum likelihood phylogeny (supplemen-

tary fig. S2, Supplementary Material online) was constructed

for all of the protein sequences identified (supplementary file

S1, Supplementary Material online). In all of the species stud-

ied all three DNMT genes (DNMT1, TRDMT2, and DNMT3)

could be identified. All of the protein sequences clustered

together in the correct DNMT gene families. Within the

gene families the proteins clustered by species except for

one protein in both Daphnia species. In D. magna, one

DNMT1 protein (Dapma7bEVm024669t1) clustered together

with mouse DNMT1 proteins. This protein however is only

identified by de novo transcriptome sequencing and has no

matching sequence in the genome assembly. In D. pulex, one

DNMT1 protein (gene10115) clustered apart from all other

DNMT1 proteins. This gene however had no read support in

the re-sequenced reference samples (n¼ 4 with average 11�
median coverage).

A reduced phylogeny with a single (highest blastp score to

human DNMT genes) representative for each DNMT gene is

shown in figure 1A. The amino acid conservation for the en-

tire gene length was fairly low (average 37.57%), while for

the conserved domains (Gblocks) the conservation was much

higher (average 58.48%). In all arthropods the DNMT1 gene

contained five superfamily domains (DNMT1-RFD, zf-CXXC,

BAH, Dcm, AdoMet_Mtases), TRDMT1 contained two

domains (AdoMet_MTases, Dcm), and DNMT3 gene con-

tained three domains in all species (FYVE_like_SF, Dcm,

AdoMet_Mtases). In DNMT3 the PWWP-domain was missing

in both Daphnia species, but present in A. mellifera and

N. vitripennis, and the PHD_SF-domain was missing only in

D. magna (supplementary table S3, Supplementary Material

online).

To profile the Daphnia species methylome and to achieve a

better understanding of the level of variation in the methyl-

ome of Daphnia species, we performed whole genome bisul-

fite sequencing (WGBSeq) of adult D. magna Bham2 strain

and D. pulex Eloise Butler strain (genotypes EB31 and EB45).

In addition, we used a WGBSeq data set for the inbred

D. magna Xinb3 strain downloaded from GEO (GSE60475;

Asselman et al. 2016). In order to compare the DNA methyl-

ation pattern of Daphnia against other invertebrate and ver-

tebrate species, we used WGBSeq data from H. sapiens,

M. musculus (ENCODE Project Consortium 2012), A. mellifera
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(Lyko et al. 2010), and N. vitripennis (Wang et al. 2013)

downloaded from GEO and the ENCODE project (supple-

mentary table S1, Supplementary Material online). As

demonstrated in supplementary table S4, Supplementary

Material online, the CpGs are more heavily clustered in

the vertebrate species (�14% of CpGs are in CpG clus-

ters, with an average distance of 112 bp), compared to

the arthropod genomes (�2% CpGs in clusters, average

distance of 25 bp). Although overall the distribution of

CpG clusters in Daphnia species are more similar to wasps

than the over two mammal species, there are some differ-

ences between Daphnia species and wasps. In D. magna

and D. pulex there are 2,937 and 6,393 CpG clusters with

an average length of 94 bp and 88 bp and 16 and 15 CpGs

per cluster, respectively. These clusters contain only

1.07% and 1.7% of all CpGs in the genomes of D. magna

and D. pulex respectively. However, A. mellifera and N.

vitripennis have 2.7–6.3 times more CpG clusters com-

pared to the Daphnia species, although the percentage

of CpGs within the clusters is approximately the same

(1.9–2.9%). More interestingly, the CpG clusters in

Daphnia species are enriched in exonic regions

(Daphnia: 35.6% vs. wasp: 6.6%) while in wasps the

CpG clusters are mainly enriched in intronic regions

(Daphnia: 13.1% vs. wasp: 46.6%).

In all species, the methylation levels of CpG sites can be

divided to two clear categories of high methylation levels

(HM: methylation level above 50%) and low methylation lev-

els (LM: methylation level below 50%). For H. sapiens and M.

musculus, majority of the CpG sites are highly methylated

(84.90% and 79.29%, respectively) while for A. mellifera,

N. vitripennis, D. magna, and D. pulex majority of the CpG

sites show low levels of methylation (0.60%, 0.67%, 0.74%,

and 0.19%, respectively). This results in extremely low levels

of global DNA methylation in invertebrates (0.4–1.5%) com-

pared to vertebrates (72–76%). However, in all species high

methylated CpGs are under-represented in CpG clusters (sup-

plementary table S5, Supplementary Material online) and the

frequency of methylation across all species follows a bimodal

distribution (fig. 1B), including Daphnia (Dip-test

D¼ 0.0053182, P value < 2.2e�16). As shown in supple-

mentary table S6, Supplementary Material online, HM sites

are mainly located at intron regions (�87.15%) in the two

mammalian species while in the arthropods they are mainly

located at exon regions (�76.95%), specifically in exons 2–4

(fig. 1C). For example, in D. magna 73.5% of the HM are

located within exons (chi-squared ¼ 4,350.2, P value <

2.2e�16) while 50-UTR regions, 30-UTR regions, and introns

only contain on average 6.6%, 13.3%, and 6.6% of the HM,

respectively. This pattern is similar in D. pulex, A. mellifera, and

N. vitripennis. In addition, overall methylation pattern is differ-

ent between vertebrates and invertebrates (fig. 1C). In verte-

brates, the methylation level gradually increases until exon 2

and then remains high throughout the remaining introns and

exons while in the investigated invertebrate species methyla-

tion levels decreases after the first four exons towards the 30

region (fig. 1C).

DNA Methylation Level and Species Conservation and
Divergence

To investigate if there is a link between DNA methylation

levels and evolutionarily conservation of genes, we separated

the genes in our six species into distinct categories (species

specific, Daphnia/hymenoptera specific, arthropod/mammal

specific or common), by identifying orthologous gene groups

with OrthoFinder. The genes with high levels of DNA meth-

ylation were significantly enriched for the common category

(evolutionarily conserved), while species specific genes had

much lower methylation level (fig. 2A). As shown in

figure 2A, there is a decrease in the density of common >

arthropod > Daphnia specific and > species specific genes

moving from high to low methylation level (x axis). We se-

lected the top 1,000 genes with highest methylation levels per

species (based on the average methylation levels in exons 2–4)

and conducted a pathway enrichment analysis using

Reactome. This analysis showed that high methylated genes

are mostly enriched for the same pathways across species

(fig. 2B). Many of the pathways that were shared were

enriched for RNA-processing pathways, cell cycle regulation

and processes that respond to viral infections (such as HIV)

(fig. 2B, supplementary table S7, Supplementary Material

online).

Although the methylation pattern across genomic features

is the same between genetically diverse Daphnia species,

strains and genotypes (fig. 1C), there are gene specific meth-

ylation differences between the species, strains and geno-

types, indicating a possible link between gene specific DNA

methylation difference and genetic diversity within a genus

(figs. 3 and 4A). Furthermore, global methylation levels varied

between the two D. magna strains from 1.51% to 1.03% (in

Bham2 and Xinb3, respectively), and between the two

D. pulex genotypes from 0.44% to 0.41% in D. pulex EB31

and EB45, respectively (fig. 4B). Therefore to further investi-

gate the link between genetic diversity and DNA methylation

within a genus, we conducted a more detailed analysis of

DNA methylation differences between different species (D.

pulex and D. magna), different strains (D. magna Xinb3 and

Bham2) and genotypes (D. pulex genotypes EB31 and EB45)

of Daphnia. The different strains and genotypes of Daphnia

are genetically quite diverse as evident by the amount of SNP

variation observed among them. The D. magna Bham 2 strain

has 239,174 fixed (homozygous) SNPs compared to the

Xinb3 strain (reference genome) and the D. pulex EB strain

has a similar number of fixed SNPs (286,828) compared to the

PA42 strain (reference genome). On the other hand, the two

genotypes of the D. pulex EB strain (EB31 and EB45) are a lot

more similar to each other, containing only 60,984 fixed SNPs
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A

C

B

FIG. 1.—Genomic overview of DNA methylation levels in four arthropods and two vertebrates. (A) Maximum likelihood phylogeny of methyltransferase

proteins in the study species. The phylogeny was estimated for all methyltransferase proteins identified in OrthoFinder analysis, using A. thaliana MET1 as an

outgroup. One representative protein for each methyltransferase gene was selected for each species for visualization. The numbers above the branches are

aLRT (approximate likelihood ratio test) support values in the phylogeny. The scale bar shows the expected number of amino acid substitutions. (B) A density

plot of global methylation levels among the species. CpG sites with zero methylation were excluded from the analysis. (C) Methylation landscape across

genomic features. The average methylation level was calculated for CpGs with similar relative distance (0–100) from the start of each genomic

feature (exons, introns, 1kb upstream and downstream of the first and last exon). A loess fit was calculated across each feature. The bar plots represent

the relative abundance of high methylated CpGs (methylation level>50%, HM¼ red) and LM CpGs (methylation level<50%, LM¼blue) across the

genomic features.
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(21.26% of all fixed SNPs) between them. Approximately

10% of the fixed SNPs overlap with CpGs in the genomes

in both species (9.24% in D. magna Bham2 vs. Xinb3,

10.10% in D. pulex EB vs. PA42, and 12.90% D. pulex

EB31 vs. EB45), which is a significant enrichment considering

the overall occurrence of CpGs within the genome (8.24% on

average). The enrichment is higher in D. pulex, which has

more CpGs compared to D. magna (D. pulex EB vs. PA42:

A

B

FIG. 2.—Conservation of high methylated genes. (A) Density plot of methylation averages of genes separated into different evolutionary conservation

categories identified by OrthoFinder from least conserved to most conserved (species specific, Daphnia/hymenoptera, arthropod/mammal, and common).

The bar plots show the scaled proportion of each category of genes at selected methylation ranges. (B) Enrichment analysis of genes with the highest

methylation levels, independently selected in each species. Genes were ranked by their methylation level and the top 1,000 highest methylated genes were

selected. The annotations are based on H. sapiens orthologs identified with blastp (best match, with e-value < 1e�20).
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chi-squared¼ 1,086.8, P value< 2.2e�16, D. pulex EB31 vs.

EB45: chi-squared ¼ 1,413.4, P value < 2.2e�16 and D.

magna Bham vs. Xinb3: chi-squared ¼ 210.19, P value <

2.2e�16).

We identified 10,101 homologous genes between the two

Daphnia species. From this list, approximately half of the

genes were excluded from the analysis as they either over-

lapped with other genes or did not have sufficient read cov-

erage in all samples. This resulted in confidant clustering of

5,302 homologous genes in the two Daphnia species by

ranked methylation levels. As shown in the heatmap

(fig. 3A), the two species are quite distinct in regards to meth-

ylation levels of homologous genes, having multiple clusters

where the methylation level is high (>50%) in only one spe-

cies and low (<50%) in the other (Clusters C and E in fig. 3A).

In contrast, there are much fewer differences between the

strains and genotypes of each species. In fact, the clustering

fails to resolve the two genotypes of D. pulex from each other.

The genes in cluster B (with 8.4% of the genes) that demon-

strate higher methylation level in D. pulex compared to D.

magna are enriched for O-glycosylation of proteins, extracel-

lular matrix organization, and multiple signaling pathways

(GPCR, neurexin, and neuroligins). The other cluster (E, with

9.4% of genes) that contained genes with very high

methylation (>50%) in D. pulex and low methylation

(<50%) in D. magna is not significantly enriched for any

pathways, but still contains many genes in the same signaling

pathways as identified in cluster B. While the genes that have

high methylation (>50%) in D. magna and low methylation

(<50%) in D. pulex (cluster C, with 10.3% of genes) are

enriched for DNA repair and RNA metabolism. Genes that

have high methylation in both species (cluster A, with 29%

of genes) are enriched for the same pathways as identified

before (Cell cycle, infections and gene expression). Genes

with low methylation in both species (cluster D, with 42.8%

of genes) are enriched for extracellular matrix organization,

signaling (GPCR) and collagen processing (fig. 3B and supple-

mentary table S8, Supplementary Material online).

Methylation Divergence Between Subspecies (Strains and
Genotypes of Daphnia)

We analyzed both species separately for differential methyla-

tion in individual CpGs by comparing the age matched control

samples of the two strains of D. magna against each other,

and the two genotypes of D. pulex against each other. There

are 20,656 differentially methylated CpGs (DMC, FDR< 0.05)

A B

FIG. 3.—Differences and similarities in methylation in homologous genes of D. pulex and D. magna. (A) Heatmap of ranked methylation levels (red ¼
high, blue¼ low) of homologous genes in control samples, identified with reciprocal blastp (with e-value < 1e�20). Genes were ranked by the maximum

methylation levels of CpGs located within unique exons, and the sub-cluster (A–E) were identified with cutree. The side panel shows the average methylation

level in two categories (green >50%, purple <50%) for both species. The top panel shows the species, strain, and genotypes in different colors that

correspond with the sample names at the bottom. (B) Enrichment analysis of genes within sub-clusters, using Reactome, shows the top five significantly

enriched categories for each cluster (see supplementary table S8, Supplementary Material online for a comprehensive list).
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A

C

E

D

B

FIG. 4.—Differential methylation between strains of D. magna (Bham2 vs. Xinb3) and genotypes of D. pulex (EB31 vs. EB45). (A) Principal component

analysis (PCA) of methylation levels in D. magna strains Xinb3 and Bham2, and in D. pulex genotypes EB31 and EB34, using a filtered data set; CpGs with low

coverage (<3 reads in each sample) or extremely low methylation levels (<2 methylated reads in at least half of the samples) were excluded. Only age

matched control samples were used in each comparison (n¼6). (B) Boxplot of global methylation level in D. magna (Bham2 and Xinb3 strains) and D. pulex

(EB31 and EB45 genotypes). (C) Density plot of methylation levels of the DMCs (red), contrasted to both unfiltered CpGs (dashed line) as well as filtered CpGs

(solid black). The violin plots within the density plots show the magnitude of difference relative to the methylation level in the DMC sites. (E) Enrichment

analysis of DMCs among D. magna strains (Bham2 vs. Xinb3) and D. pulex genotypes (EB31 vs. EB45). The analysis was performed separately for the genes

containing high methylated CpGs (HM) and genes containing exclusively LM CpGs in the two different species.
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between D. magna strains, Bham2, and Xinb3 (fig. 4C, sup-

plementary table S9, Supplementary Material online).

Even though at a global level there is only a 0.5% differ-

ence in methylation level between D. magna Bham2 and D.

magna Xinb3, almost all of the CpGs (>90%) have zero

methylation in both strains. To compare the magnitude of

the methylation level of the CpG sites that are methylated

(methylation level above zero) between the two D. magna

strains, we filtered out the CpGs that are consistently unme-

thylated or not covered in all samples (filtered methylated

CpGs). This showed that the difference in methylation levels

of the filtered methylated CpGs is 10� fold (5.01%) higher

compared to the global average (0.5%) between the two

strains. The higher global DNA methylation level observed

for D. magna Bham2 is also retained at the level of DMCs.

Majority of the DMCs (75%) have higher methylation in

Bham2 (8.02% higher on average), which is still a significant

enrichment compared to the filtered methylated CpGs (chi-

squared ¼ 243.78, P value ¼ 5.90e�55). Overall, more than

73% of the DMCs belong to the category of LM (�1/3 of

DMCs have methylation levels below 10%; fig. 4C).

Furthermore, LM demonstrated a greater magnitude of

change in methylation level compared to HM between the

two strains (fig. 4C, violin plot). Even though most DMCs are

low methylated (LM) in both strains, there are a few DMCs

(4.30%) where the methylation switches from near zero to

near 100% (methylation difference > 90%). These DMCs

belong to a wide range of genes such as DNA damage repair

proteins (like RAD51B) and heat shock proteins (hsc70 inter-

acting protein), transcription (Sp3) and splicing factors (U2AF

65K), proteases (Proteasome subunit alpha type-1), signaling

molecules (Neurexin IV), and structural components (Tubulin).

A complete list of DMCs between the two strains and their

methylation levels are presented in supplementary table S9,

Supplementary Material online).

As shown in supplementary figure S3A, Supplementary

Material online the genes categorized as common (evolution-

arily conserved) are slightly under-represented in the differen-

tially methylated genes between the two strains of D. magna.

In contrast to D. magna, the two D. pulex genotypes have very

few methylation differences (differentially methylated CpGs:

1,442, FDR< 0.05). However, similar to D. magna more than

80% of the differentially methylated CpGs belong to the cat-

egory of LM and are also located within gene bodies (78%)

and mostly within exons (63.25%; fig. 4D). As shown in sup-

plementary figure S3B, Supplementary Material online, there

is a significant enrichment for the genes categorized as com-

mon (evolutionarily conserved) in the differentially methylated

genes between the two genotypes of D. pulex. Similar to D.

magna the slight difference in global methylation levels be-

tween the two genotypes, EB31 and EB45, is also observed in

the DMCs, with EB31 having higher methylation in 58.18%

of the DMCs (chi-squared ¼ 18.903, P value ¼ 1.375e�05).

There are only 11 DMCs with methylation difference above

90% between the two genotypes and these DMCs are

detected in the following genes: dual specificity protein phos-

phatase, 60S ribosomal protein L18a, NRDE2, Acetyl-CoA car-

boxylase, Propionyl-CoA carboxylase beta chain, actin-related

protein 2/3 complex subunit, UPF0565 protein C2orf69,

charged multivesicular body protein, alpha-(1,6)-fucosyltrans-

ferase, and C-type lectin domain family 2 member D3. A

complete list of DMCs between the two D. pulex genotypes

and their methylation levels are presented in supplementary

table S9, Supplementary Material online. In D. magna, the

differentially methylated HM containing genes are primarily

enriched for cell cycle regulation, mRNA processing, and path-

ways altered by viral infections (fig. 4E, supplementary table

S10, Supplementary Material online). While the genes con-

taining only LM are marginally enriched for “Nitric oxide stim-

ulates guanylate cyclase.” In D. pulex the differentially

methylated HM containing genes are enriched for transform-

ing growth factor (TGF) beta signaling and pathways related

to translation initiation. The genes containing only LM are

enriched for chaperone activity and transcription initiation

(fig. 4E, supplementary table S10, Supplementary Material

online).

Gene expression and DNA methylation comparison
between D. magna Strains

We compared gene expression between two D. magna

strains Bham2 and Xinb3 using age match control samples

(n¼ 8). More than half of the genes (13,527/21,293) appear

differentially expressed (adjusted P value < 0.05, supplemen-

tary table S11, Supplementary Material online). This undoubt-

edly contains a lot of changes that are due to technical

differences rather than biological origin, such as differences

in sample preparation, library construction, sequencing, map-

ping and downstream processing. To alleviate some of the

technical bias we excluded overlapping genes (7,033) from

the analysis. In the reduced set about half of the differentially

expressed genes (8,077/14,260; adjusted P value < 0.05)

have higher expression in Bham2 (4,209/8,077 genes), com-

pared to Xinb3 (3,868/8,077 genes). These genes are

enriched for RNA processing (NMD), amino acid synthesis,

translation, development and neuronal signaling (SLIT/

ROBO) in 14 Reactome pathways. When we analyzed the

enrichment separately for genes that have higher expression

in one strain, we observed that most of these pathways are

coming from genes that have higher expression in Bham2.

Additionally we find 85 enriched pathway that are not found

in the combined analysis, including many of the same path-

ways (Defective CFTR causes cystic fibrosis, ABC transporter

disorders, Interleukin-1 family signaling, mRNA Splicing,

Cyclin A and E associated events) identified in the methylation

comparison between the two strains (supplementary table

S10, Supplementary Material online). Conversely we only

find 3 significantly enriched pathways for the genes that
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have higher expression in Xinb3, all of which are related to

gene expression regulation (supplementary table S11,

Supplementary Material online).

Encouraged by the shared pathways found in both DNA

methylation and expression analysis, we compared the gene

expression and DNA methylation at individual gene level. We

selected DMCs that were located within exons 2–4 with

methylation changes greater than 50% (907 DMCs in 473

genes). When we compared the direction of methylation

changes in the DMCs to the direction of expression changes

in the same gene in Bham2 vs. Xinb3, we observed that the

direction is the same more often than expected by chance

(chi-squared ¼ 7.8617, P value ¼ 5.049e�3). Genes where

the expression is higher in Bham2 compared to Xinb3 also

have higher methylation in the DMCs in Bham2 and vice

versa. When we further limited the data to only include genes

with statistically significant (adjusted P value < 0.05) and a

large expression change (log2 fold change > 2; 163 DMCs in

71 genes), the enrichment becomes even stronger (chi-

squared ¼ 84.622, P value ¼ 3.613e�20), with more than

69% of the genes having the same direction of expression

and methylation changes (supplementary table S12,

Supplementary Material online).

Intrinsic and Extrinsic Factors Alter the Methylome of
Daphnia

DNA methylation acts as an interface between the genome

and the environment. Therefore, in order to investigate if DNA

methylation in Daphnia is sensitive to intrinsic and extrinsic

factors, changes in the methylome of D. magna Bham2 strain

were investigated as a function of age (comparing 5 and

14 day olds) and experimental conditions: arsenic (14 days

of exposure at 100 mg L�1), hypoxia (continuous low oxygen

concentration of 2 mg L�1 for 14 days), hyperoxia (continuous

oxygen concentration of 8 mg L�1 for 14 days) and 5-azacy-

tidine (5 days of exposure at 3.7 mg L�1). Interestingly, there is

little overlap between the lists of differentially methylated

CpGs (DMCs) in the different conditions. The highest overlap

was observed between hypoxia and hyperoxia where 36% of

the differentially methylated CpGs were shared (fig. 5, sup-

plementary table S13, Supplementary Material online). As

shown in figure 5 and supplementary table S13,

Supplementary Material online, 5-azacytidine treatment in-

duced the highest number of DMCs. All conditions resulted

in an even number of hypo- and hyper-methylated DMCs, as

shown in figure 6A for age comparison and supplementary

table S13, Supplementary Material online, with an exception

of 5-azacytidine where 95% of the DMCs are hypomethy-

lated as expected (fig. 6B and supplementary table S13,

Supplementary Material online). Furthermore, while the

DMCs for 5-azacytidine treatment are significantly enriched

(Kruskal–Wallis rank sum test chi-squared ¼ 5,350, P value<

2.2e�16) for the category of HM (fig. 6C), all other exposures

are significantly under-represented in HM (supplementary fig.

S4, Supplementary Material online). The DMCs in ageing on

the other hand represent both HM and LM evenly (fig. 6D). As

shown in supplementary figure S5, Supplementary Material

online, there is a significant enrichment for the genes

categorized as common (evolutionarily conserved) in the dif-

ferentially methylated genes in 5-azacytidine group while

other conditions resulted in either marginal or no significant

enrichment of a distinct gene category (species specific,

Daphnia/hymenoptera specific, arthropod/mammal specific

or common). The DMCs for the treatment comparisons are

enriched for a few shared pathways (fig. 6E). For example, 5-

azacytidine resulted in a substantial number of pathways be-

ing enriched, including mRNA processing, DNA repair, TCA

cycle, with majority belonging to the category of hypomethy-

lated CpGs (supplementary table S14, Supplementary

Material online).

Conserved and Emerged Correlation Between DNA
Methylation and Gene Expression across Taxa

The correlation between methylation status and gene expres-

sion level was investigated across species using matching

RNA-seq data sets generated for D. pulex EB45

(GSE103939) and supplemented with publicly available data

sets from GEO, the ENCODE project, and the D. magna

FIG. 5.—Venn diagram of differentially methylated CpGs (DMCs) in D.

magna Bham2. The Daphnia were exposed to different stress conditions

(arsenic, hypoxia, hyperoxia, 50-azacitidine) and normal ageing process (5

vs. 14 day old Daphnia), showing a relatively small amount of overlap in

the DMCs among the conditions.
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FIG. 6.—Extrinsic and intrinsic induced differentially methylated CpGs (DMCs) in D. magna Bham2. (A) Volcano plot of DMCs in age comparison.

Methylation difference is the percentage change in methylation level in 5- to 14-day-old D. magna Bham2 (blue ¼ hypomethylated and red ¼ hyper-

methylated in 5-day-old compared to 14-day-old samples). (B) Volcano plot of DMCs in 5aza-treatment. (C) Density plot of the DMCs in 5aza-treatment.

Majority of the affected CpGs have high methylation level in control samples (red) compared to the unaffected CpGs (black). (D) Density plot of the DMCs in

ageing (red). The methylation level of affected CpGs is the same as the background set of filtered CpGs (black). Both sets are enriched for higher methylation

compared to the unfiltered CpGs (dashed line). (E) Enrichment analysis of DMCs across the conditions. The analysis is carried out separately for genes

containing hyper- and hypo-methylated CpGs.
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transcriptome study (Orsini et al. 2016) (supplementary table

S1, Supplementary Material online). Genes were categorized

by their methylation level [methylation level above (HM) and

below (LM) 50%] for genomic features exon 1, exons 2–4,

and 1 kb upstream from the first exon. Interestingly, as shown

in figure 7A in both vertebrates and invertebrates the genes

containing HM in exons 2–4 were enriched for high expres-

sion. Genes containing HM in 1 kb upstream and exon 1 were

also enriched for high expression in invertebrates, whereas in

vertebrates the LM were enriched for these features (see

fig. 7A and supplementary fig. S6, Supplementary Material

online for statistical analysis).

Genes were grouped by their methylation level into ranked

quantiles for genomic features 1 kb upstream, exon 1, exons

2–4, and the expression level was averaged for those genes.

As shown in figure 7A and supplementary figure S6,

Supplementary Material online, for all species there is a sta-

tistically significant positive correlation between methylation

level for exons 2–4 and gene expression level, although as

expected the linear correlation was much more pronounced

for invertebrates than vertebrates (P values ranging from

4.18e�26 to 4.27e�05). However, the difference between

invertebrates and vertebrates emerges when the methylation

level for exon 1 and 1 kb upstream regions were regressed

against gene expression level. While in invertebrates there is a

significant positive correlation (see supplementary fig. S6,

Supplementary Material online), in vertebrates there is a sta-

tistically significant negative correlation between average

methylation levels in exon 1 (e.g. adjusted R2 and P value

for H. sapiens are: 0.86 and 1.07e�44) and 1 kb upstream

(less pronounced) and gene expression level (e.g. adjusted R2

and P value for H. sapiens are: 0.39 and 1.62e�12; fig. 7A).

Furthermore, we combined the DNA methylation and

gene expression data for all species. This was achieved by first

identifying conserved orthologous gene groups in each spe-

cies, where we had sufficient data on both expression and

methylation levels (414 orthogroups, supplementary table

S15) and then calculated the mean expression and methyla-

tion levels for these orthogroups. For the arthropod species,

methylation levels were based on exons 2–4 and for verte-

brates based on exon 1, as these categories strongly corre-

lated with gene expression. As the methylation level was

negatively correlated in the vertebrates the scale was reversed

for these species. Hierarchical clustering was used to organize

the orthogroups based on the mean methylation and expres-

sion levels (fig. 7B). The orthogroups clustered into two dis-

tinct groups: one with “low” methylation (high methylation

in vertebrates) and low gene expression levels and another

with “high” methylation (low in vertebrates) and high gene

expression levels. The genes within these orthogroups are

enriched for a variety of pathways deemed essential for sur-

vival including stress response, immune system and intracel-

lular signaling (fig. 7C, supplementary table S16,

Supplementary Material online).

In addition, to investigate if the genes with high methyla-

tion level and high gene expression level tend to be enriched

for evolutionarily conserved genes, we calculated the sum of

ranked order for methylation and gene expression levels. The

genes in our list were separated into six distinct categories

(species specific, Daphnia/hymenoptera specific, arthropod/

mammal specific and common), based on orthologous gene

IDs (fig. 8). As shown in figure 8, the genes with high levels of

DNA methylation for exons 2–4 and high expression levels

were significantly enriched for the common category (evolu-

tionarily conserved), while species specific genes had much

lower ranked value for DNA methylation level and gene ex-

pression (fig. 8). As shown in figure 8, there is a decrease in

the density of common > arthropod > Daphnia specific and

> species specific genes moving from high to low ranked sum

of DNA methylation level and gene expression level (x axis).

This analysis showed that the distribution of species specific,

Daphnia/hymenoptera specific, arthropod/mammal specific

or common genes are statistically significantly different based

on the sum of ranked values for DNA methylation and aver-

age expression level.

Discussion

In this study, we were interested in understanding the role of

DNA methylation in Daphnia species and compared it to se-

lected vertebrate and invertebrate species. We aimed to un-

derstand how DNA methylation levels across genomic

features correlates with gene expression and to achieve a

better understanding of the potential function of DNA meth-

ylation in Daphnia. We showed that strain specific differences

in DNA methylation co-vary with gene expression differences.

Finally, we identified a set of methylated evolutionary con-

served genes in Daphnia which are potentially regulated in

the same manner.

To understand the role of DNA methylation variations in

Daphnia species, we performed whole genome bisulfite se-

quencing (WGBSeq) on two Daphnia species (D. magna,

Bham2 and D. pulex EB31 and EB45) in the context of mild

stress treatments and the natural process of ageing. As

expected, the treatments resulted in moderate changes in

CpG methylation. The altered CpGs were mainly unique for

each treatment condition. The differentially methylated genes

were enriched for pathways primarily related to cell to cell

signaling; G-protein coupled receptor (GPCR) signaling, IP3

and IP4 synthesis, and ion and small molecule transport

(fig. 4A). Stress-induced changes in DNA methylation have

been shown to cause long-term physiological effects in model

organisms that are mediated by alterations in gene expression

(Murgatroyd et al. 2009; Dowen et al. 2012; Wu et al. 2014).

Furthermore, we exposed the Daphnia to 5-azacytidine-treat-

ment (5aza), a potent methylation inhibitor (Christman et al.

2002). This treatment severely reduced the methylation levels

of CpG sites, especially at the high methylated CpGs (HM,
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FIG. 7.—Correlation analysis of gene expression and DNA methylation data. (A) Top panel per species: regression of gene expression and methylation

levels across genomic features (1 kb upstream of first exon, exon 1, and exons 2–4). Linear regression and 95% confidence interval marked in red. A loess fit

is shown in blue. The legend shows R2 and P value for the linear regression as well as the number of genes used in the analysis and the average number of

genes in each quantile. The methylation levels of genes were ranked and the gene expressions were averaged for all genes within the same methylation

quantile. Bottom panel per species: density plots of genes relative to their expression level (FPKM). The high methylated genes (red) are over-abundant in the

high expression range, in all the features show, compared to LM (blue) and non-methylated (black) genes in arthropods (D. magna). Whereas the vertebrates

(H. sapiens) show over-abundance of high methylated genes only in exons 2–4. In exon 1 and 1kb upstream from the first exons vertebrates have the

opposite pattern; over-abundance of LM genes in the high expression range. Differences in the expression densities among methylation states are analyzed

with Kruskal–Wallis sum rank test. (B) Heatmap of rank ordered mean methylation and mean expression level of genes belonging to the same cluster of

orthologous genes (414 orthogroup). The methylation level was calculated from exons 2–4 in arthropods and exon 1 in vertebrates. In vertebrates, the rank

order was reversed as methylation correlates negatively with gene expression (in exon 1). (C) Enrichment analysis of the two main clusters in the heatmap.

The “High” cluster has high expression in most species and high methylation in arthropods (exons 2–4) and low methylation in vertebrates (exon 1). The

“Low” cluster has low expression across species and low methylation in arthropods (exons 2–4) and high methylation in vertebrates (exon 1).
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fig. 6B). All the other treatments except for 5aza (and ageing)

were significantly under-represented in the HM changes. This

result indicates that the HM are actively and continuously

maintained at high methylation levels via DNMT. It is known

that 5aza is capable of inhibiting a wide range of critical cel-

lular functions, such as RNA, DNA, and protein synthesis as

demonstrated by us and others (fig. 4E) (Christman et al.

1983; Creusot et al. 1982). This suggests that the HM in

Daphnia could also be crucial for cellular integrity and func-

tions. Not surprisingly the genes altered by 5aza were mainly

enriched for evolutionary conserved genes. This was not sur-

prising as we have shown that HM mainly occur in conserved

genes while LM mainly occur in species specific genes

(fig. 2A).

Interestingly the methylation profile at the gene level is very

similar between the two Daphnia species. Daphnia magna

and D. pulex are among the most distantly related species

within the genus Daphnia with previous estimates on the

basis of a mitochondrial molecular clock suggested a diver-

gence time of 200 MY (Haag et al. 2009). Yet more than 70%

of the genes analyzed have similar methylation levels (29%

high and 43% low methylation) in both species. The genes

that have substantially different methylation levels between

the species are enriched for entirely different pathways. The

genes with high methylation in D. magna and low methyla-

tion D. pulex are enriched for DNA damage recognition and

repair, while genes with higher methylation in D. pulex are

enriched for extracellular matrix organization and cell to cell

signaling.

The overall methylation pattern across the genomic fea-

tures is the same between the different genotypes and strains

of Daphnia. However, there are differences in global and

gene specific methylation levels between the investigated

Daphnia strains and genotypes, particularly between the

two D. magna strains. It has been reported that genetic differ-

ences between Daphnia populations can be quite strong

(Haag et al. 2009). This is evident as we look at the amount

of SNP variation between the two distantly related D. magna

strains and the two closely related D. pulex genotypes. The

level of genetic diversity between the two D. magna strains in

terms of fixed SNPs is about five times greater compared to

the number of fixed SNPs between D. pulex genotypes. This

corresponds with a higher level of difference observed in both

global and gene specific DNA methylation between the two

D. magna strains compared to D. pulex genotypes. The differ-

ences in global methylation levels are 16 times greater be-

tween D. magna strains (1.51% vs. 1.03%) compared to D.

pulex genotypes (0.44% vs. 0.41%). And the number of

FIG. 8.—Evolutionary conservation of methylation and gene expression. Density plot for the sum of ranked order of DNA methylation and gene

expression for genes at different levels of evolutionary conservation. The average methylation level of genes at exons 2–4 were ranked and combined with

the rank order based on gene expression level. Genes were separated into six distinct categories based on the evolutionary conservation level identified with

OrthoFinder (species specific, Daphnia/hymenoptera specific, arthropod/mammal specific, and common). x axis from right to left: highest methylation/

expression to lowest methylation/expression.
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DMCs is 14 times greater between D. magna strains com-

pared to D. pulex genotypes (20,656 vs. 1,442 DMCs).

The differentially methylated genes were divided into two

categories of exclusively containing LM CpGs and exclusively

containing high methylated CpGs (HM). Enrichment analysis

showed that the HM containing differentially methylated

genes were enriched for non-overlapping pathways in D.

magna and D. pulex. For example, D. magna strains differed

in methylation of pathways related to cell cycle regulator, RNA

processing and viral infection while methylation differences

between D. pulex genotypes related to genes associated

with pathways, such as TGF-signaling and RNA translation

(fig. 4E). Most interestingly, the majority of the differentially

methylated genes between the different strains and geno-

types were detected at the LM CpG sites and these genes

were not overly enriched for specific pathways (fig. 4C–E).

We observed a correspondingly large number of gene ex-

pression differences in non-overlapping genes (8,077/14,260

genes, with adjusted P value < 0.05) between the two D.

magna strains Bham2 and Xinb3. The gene expression anal-

ysis between the two strains identified similar enriched path-

ways as the methylation analysis (in particular mRNA splicing

and cell cycle regulators). Also the DMCs with a large meth-

ylation change significantly co-varied with gene expression,

when the DMCs were located in exons 2–4. This covariation

was strengthened when we limited the data to include only

genes with large expression changes.

Similar patterns in methylation variation have been ob-

served by others when comparing different species of

Daphnia (Asselman et al. 2016). As reported by Asselman

et al. (2016) genes with variable methylation levels between

species tend to be also responsive in gene expression changes

when subjected to experimental manipulations. However, the

majority of the genes that show plastic and adaptive variations

tend to have exceptionally low levels of methylation (<5%)

while the high methylated genes in Daphnia show almost no

variation between species, and appear to be more conserved

(Asselman et al. 2016).

In order to extend our findings beyond Daphnia and to put

them in a larger evolutionary context, we compared the DNA

methylation profile of Daphnia to other vertebrate and arthro-

pod species. Although the methylation profiling for our cho-

sen species were not conducted on matching tissue types (see

supplementary table S1, Supplementary Material online for

sample source descriptions), this limitation did not impact

the higher order analysis and interpretation of methylation

pattern across our species. In invertebrate species, DNA meth-

ylation is sparse and occurs mostly in gene bodies (Wang et al.

2013; Keller et al. 2016; Glastad et al. 2017). In Daphnia, the

methylation landscape exhibits a flat, near zero, methylation

across introns and intergenic regions. The methylation level

sharply increases starting from the first exon and reaches max-

imum levels at exons 2 and 3, and declines starting from exon

4, reaching global background levels near the last exons. The

flanking regions (defined as 1 kb up- and down-stream) ex-

hibit higher methylation compared to the global background

and have their minimum methylation levels at the start and

end of the gene. This pattern was observed in all four arthro-

pod species, with Daphnia species demonstrating the lowest

level of DNA methylation compared to N. vitripennis and A.

mellifera (fig. 1B and C, supplementary table S4,

Supplementary Material online). Furthermore, Daphnia spe-

cies, similar to all other species investigated in this study, dis-

play a full repertoire of DNMTs (fig. 1A, supplementary fig. S2,

Supplementary Material online). In contrast to arthropods,

DNA methylation in vertebrates is ubiquitous and occurs at

relatively high levels and is often near saturation level within

gene bodies. In vertebrates, the upstream region and first

exon appear to be suppressed for methylation, particularly

at the very start of the gene, and the level of methylation

sharply increases after the first exon to global background

levels. Although the levels of DNA methylation and the distri-

bution of methylated CpG sites across the genome differ be-

tween vertebrates and invertebrates, there are significant

similarities. For example, the methylation percentage across

the genome, promoter region and gene body, follows a char-

acteristic bimodal distribution for both vertebrates and inver-

tebrates, indicating that this may be an evolutionarily

conserved pattern (Keller et al. 2016). Most interestingly,

our data, similar to previous findings (Asselman et al. 2016),

supports the idea that the high methylated genes are more

evolutionarily conserved and enriched for basal cellular func-

tions, while LM genes are mainly enriched for species specific

genes (fig. 2A).

DNA methylation in vertebrates has been typically associ-

ated with transcriptional repression and suppression of trans-

posable elements (Jones and Takai 2001; Gibbs et al. 2010;

Bell et al. 2011). However, it is becoming increasingly appar-

ent that the function of DNA methylation is context and lo-

cation dependent. In vertebrates, methylation at the

promoter regions and first exons has been shown to correlate

negatively with gene expression (Brenet et al. 2011), while

methylation within the rest of the gene body has a significant

positive correlation with gene expression (Lev Maor et al.

2015; Li et al. 2017). In arthropods, this negative relationship

between gene expression and DNA methylation (fig. 7A, sup-

plementary fig. S6, Supplementary Material online) at the first

exon and the promoter region (1 kb upstream of the first

exon) does not hold. Instead, methylation in arthropods has

either a positive or weak correlation with gene expression at

the gene body and 1 kb upstream region, respectively

(fig. 7A). Similar to vertebrates (Li et al. 2017), the positive

correlation between gene expression and DNA methylation in

the internal exons, specifically exons 2–4, is particularly strong

in invertebrates (fig. 7A, supplementary fig. S6,

Supplementary Material online). In addition, our data demon-

strate that pathways associated with genes with high meth-

ylation levels in invertebrates (low methylation level at first
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exon in vertebrates) and high expression levels in both verte-

brates and invertebrates are evolutionarily highly conserved

and enriched for the same pathways across the invertebrate–

vertebrates boundary (figs. 7C and 8). While the less con-

served and faster evolved genes tend to have low methylation

levels and are potentially contributing towards adaptation and

strains specific differences.

In vertebrates majority of the internal exons are heavily

methylated (Li et al. 2017). Therefore, it is possible that the

negative impact of DNA methylation at promoter regions,

and first exons has been evolved as a secondary mechanism

to prevent high levels of expression from heavily methylated

genes (Tirado-Magallanes et al. 2017). Interestingly, in verte-

brates not only are all internal exons heavily methylated, but

also introns have a higher level of methylation compared to

invertebrates. One possible explanation for this difference

could be linked to an increase in both intron length, average

number of spliced isoforms per gene, and differences in splic-

ing regulation that has emerged in vertebrates (Gelfman et al.

2012). In vertebrates, the size of many introns has grown to

thousands of nucleotides while the tight selection on exon

length has been evolutionarily maintained (Lev Maor et al.

2015). Along with this increase in intron length the methyla-

tion levels in introns has dramatically increased. Thus, it is

possible that the changes observed in the gene body methyl-

ation level of vertebrates could be linked to regulation of

splicing and exon skipping (Kim et al. 2007).

In conclusion, we hypothesize that the negative effect of

DNA methylation on gene expression is a novel mechanism

that evolved in the vertebrate lineage, to counterbalance in-

creased global methylation levels. Emergence of this novel

regulatory role for DNA methylation can be observed in the

early chordate, Ciona intestinalis (Keller et al. 2016). Subset of

promoters in C. intestinalis demonstrate low levels of methyl-

ation and are correlated with high levels of gene expression.

However, C. intestinalis still retains its ancestral high methyl-

ated promoters that correlate positively with gene expression

(Keller et al. 2016). Irrespective of the potential new function

of DNA methylation in the vertebrate lineage, we show that

the positive correlation between gene expression level and

DNA methylation level is evolutionary conserved.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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