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SU M M A R Y

In this thesis we study some subalgebras o f the Schur algebra for the general linear 

group GL„(k), particularly the Schur algebra S(B+) for the Borel subgroup B+ of

G W -

In many ways it is easier to work in S(B+) than in the more complicated algebra 

S(GL„(k)). Using the properties of S(B+) we give a new treatment o f the Weyl 

modules for G L ^k ). We then construct 2 -step minimal projective resolutions of the 

irreducible S(B+)-moduIes and from these we obtain very easily 2 -step  projective 

resolutions o f  the Weyl modules for GLn(k).

We study the Cartan invariants o f S(B+) and show that under certain conditions 

they satisfy an interesting identity.

For particular cases of the field k and of the integer n we prove several results on 

minimal projective resolutions o f  the irreducible S(B+)-moduIes.

The methods we use are combinatorial and do not involve algebraic group theory.
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O. INTRODUCTION

Let k  be an infinite field and let n and r  be positive integers.

Suppose that E is an n-dimensional k-vector space where G -  GL„(k) acts 

naturally. Then, the r-fo ld  tensor product E®r -  E ® ... ®  E (® denotes 0k) can be 

made into a  left kG-m oduleby the rule

g(xj ® ... ® Xr) -  gx, ® ... ® gXji all g e  G, X|,...,xr «  E.

Let

Tr :kG -*Endk(E®0

be the representation afforded by E®1- (regarded as kG-module). The image of Tp 

i.e., Tr (kG) is a subalgebra of Endk (E®0-

Definition: For each subgroup H o f G the subalgebra Tr(kH) of Tj(kG) will be 

called the Schur algebra for H, n, r  and k  and denoted Sk(n, r, H), or simply S(H) 

if  no confusion regarding n .ra n d  k arises.

In his dissertation [SJ, I. Schur introduced a k-algebra, denoted Sk(n,r) in [G1J, 

and used it to  study the polynomial representations of the complex general linear group 

G l^iC).

The Schur algebra S(G) ■ Sk(n,r, G), defined above, may be identified with 

Sk(n,r). In fact, in[G2;p.S] it is proved that there is a k-algebra isomorphism
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(0.1) S : S k(n j)  — *S(G)

which takes the basis element o f Sk(n,r) (defined in [Gl; p. 21]) to the basis 

element ^¡j of S(G) (defined in §2).

Let H be any subgroup of G. The Schur algebra S(H) is a powerful tool in the 

study o f polynomial representations o f  H. It is a classical fact (cf. [Gl; (2.4d)]) that 

there is an equivalence between the category mod S(G), o f all S(G)-modules which 

are finite dimensional over k, and the category of polynomial representations of G 

which are homogeneous o f degree r. It is easy to see that this equivalence o f categories 

still holds if  we replace G byH.

This thesis is mainly devoted to the study o f the Schur algebra S(B+) for the Borel 

subgroup B+ o f G  (B+ consists o f all upper triangular matrices in G) and its 

applications to S(G). Our methods are combinatorial and we shall not use algebraic 

group theory.

Our interest in S(B+) arose from our attempts to construct projective resolutions of

, the Weyl module for G with highest weight X. In recent years it has been 

proved by several authors (cf. e.g. [D], [AB2], [PI) that S(G) has finite global 

dimension. This led to the problem o f constructing projective resolutions o f K^. An 

answer to this problem was given in [AB1] in the case when n -  2, and in [A] and [Z] 

when the field k  has characteristic zero. W e use the properties of S(B+) to give a 

new treatment o f  the Weyl modules K^, and to obtain some results on projective 

resolutions o f these modules.

The study o f S(B+) in itself proved to be interesting, and in particular the analysis 

of an identity involving its Cartan invariants (see (0.5)).
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We begin in Chapter 1 by introducing some basic material which will be used in the 

following chapters. Sections 1 and 2 contain notation and elementary results. In 

§3 we use the method of [G2; §31 to determine bases o f the Schur algebras, S(Gj)

and S(Lj), for the standard parabolic subgroups Gj o f G and its Levi factors Lj. In 

§4 and §5 we define weight spaces and contravariant duals, and prove some results 

which will be very useful in the next chapter. W e think Theorem (5.6) m ay be known, 

but we cannot find any reference for it. We also remark that a result similar to (4.8) is 

known from  the theory of algebraic groups (cf. e.g. [St; theor. 391).

In the first section o f Chapter 2 we determine full sets o f pairwise non-isomorphic 

irreducible, and projective indecomposable, S(B+)-modules. These are indexed by the 

elements o f  A(n,r) (see p.1.1 and (7.12) for the definitions o f A(n,r) and A+(n,r)). 

From now on let kx and Vx -  S(B+)£X denote, respectively, the irreducible and 

projective indecomposable S(B+)-m odules associated with X =■ (Xj,...An) e  A(n,r).

In §7 we define, for each X e  A+(n,r), the Weyl module Kx associated with X, 

by

Kx - S ( G ) ® S(B*)kx.

This definition is equivalent to the classical one given in [CLl. In fact, in [G l; pp. 64, 

651 it is proved that the Weyl module for G associated with X (as defined in [CLJ) is the 

contravariant dual of the rational G -m odule Ind®- k^, where k^ is the irreducible 

B"-module associated with X. It can be seen (cf. [G2; p.25l) that Ind^- kx is 

equivalent, via Tr : kG -» S(G), to the S(G)-module Mx -  HomS(B-)(S(G), k£).

In (7.14) we prove that Mx is the contravariant dual o f Kx. This proves the 

equivalence o f the definitions.
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Wc use the properties o f  S(B+) to give an alternative proof o f  some of the results 

in [CL] about Weyl modules. In particular, we prove that these are cyclic modules 

containing a unique maximal submodule, and that the quotients by these submodules 

give a full set of pairwise non-isomorphic irreducible S(G)-modules.

In §8 we study the m odules K xj -  S(Gj) ®s(B+)kX.- Let J  -  {l,...,n}\{m1.....m,}.

for integers mo,m1,...,ms satisfying 0  -  mq < m i < ... <  m , -  n. Write na -  ma-m ,_ j, 

and for each X -  (Xi,...,X„) e  A(n,r) satisfying

(0-2) *  -  *  * n v  for a "  1.....*•

define X(a) = (Xm>_1+i , . . .^ m,). Then we prove that K x j is isomorphic as S(Lj)- 

module to Kx(i) ®  ... ®  K^(s) (® means ®x), where Kx(a) is the Weyl module for 

S(GLn (k)) associated with X(a). It is quite simple to show that K ^ j is zero if X 

does not satisfy (0.2).

Chapter 3 is dedicated to the construction o f a 2-step minimal projective resolution 

o f kx in mod S(B+). In §9 we determine a minimal set o f S(B+)-generators o f  the 

radical o f Vx -  S(B+)^x- This is not too hard, since V \  has a very well behaved k - 

basis. From this result it is easy to construct the 2-step minimal projective resolution 

of kx

\  VX(v.p-v) ■
lS V S n - t Vx

*0 k x - 0 .

where X e  A(n,r) and char k  = p (£ 0) (for notation see §9).

Now we only need to apply the right exact functor S(G) ®s(B+) • : mod S(B+) -♦ S(G) 

to the sequence above, and we obtain the 2-step projective resolution o f the Weyl 

module Kx
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(0 -3) . « v H l lpJ L  S(0> W . >  S<G^  KX - 0.

where X e  A+(n,r) and char k « p 0).

In [ABW] there is given (as part of the construction o f a standard basis of K^) 9 

2-step projective resolution o f (X e  A+(n j)). This is done using symmetric, 

exterior and divided power algebra theory. But since in the work cited it is not assumed 

that k  is a field (more general rings are allowed) the resolution obtained

S(0* ^ S(0)̂ K̂ 0

is less economical (for the case that k is a field of characteristic p) than (0.3).

Chapter 4 deals with the Cartan invariants

ex« -  dimk HomS(B+)(V0 ,Vx), all a ,  X e  A(n,r)

of S(B+). As is expected from the algebraic group theory o f B+, we show that 

cxo *  0  iff X <  a ,  i.e., iff

(0.4) a  -  A“ t ... A ^ 1 X -  (Xj + m ,, X2 + m2-m 1,...,XI1-m n. 1), 

for non-negative integers mj,...,mn_j.

If this condition holds, we have two cases to consider. First suppose that the integers 

in (0.4) satisfy mv $  X ^.j, for v  = l ,... ,n - l. Then c ^ ,  may be expressed in 

terms of the integers n(m|,...,m„_|) (cf. (11.9)) which depend only on m lt...,mn. | .
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W e then determine a  generating function for n(mi,...,mn_ |), which allows us to prove 

that the following identity holds

where P(n) is the symmetric group on {l,...,n}, e(to) is the sign of the permutation 

<o, w(X) -  (Xj + co(l)-l,...,Xn + <°(n)-n ), and 5 \a is the Kronecker delta.

Now suppose that m^ > X ^ i,  for some V e Then the expression

which describes c ^ a  >s much more complicated, and in this case we are not able to 

prove (0.5). Nevertheless, we show that the relation (0.5) holds for any a  and X in 

A(n,r), provided n £  3.

In Chapter 5 we return to the construction of minimal projective resolutions o f k^, 

for any X 6 A(n,r). In [G2J it is proved that S(B+) is a  quasi-hereditary algebra. 

Therefore it has finite global dimension (cf. [CPS1), and minimal projective resolutions 

o f kjL are finite. In §13 we determine these resolutions in the case when the field k 

has characteristic zero and n £  3. These are formally very similar to the resolutions 

obtained in [Al and IZI for the Weyl modules (X e  A+(n,r)). Section 14 

deals with the case when k  has positive characteristic p and n ■ 2. Let 

X -  (Xj .Xj ) e  A(2,r) and suppose that pd £  X2 < pd+1 (some d ^  0). Then we prove 

that

( ° - 6 ) <VX(1 .p") ® Vw i,l.p ") ®  v Ml,p*p") ® -  ®  V v i^ -U p -) )

(0.5)

d

®  V Vx t x - .o

are the first three terms of a minimal projective resolution o f  k^. Note that if char k  = 0 

we have shown (cf. (13.1)) that
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(0.7) 0 - V x o . ,) Vx kx - 0

is a minimal projective resolution of kx. This illustrates how the difficulty in the 

construction o f these sequences increases when we go from a field o f  characteristic zero 

to a field o f positive characteristic. W e should remark that the major obstacle with 

which we were confronted in our attempts to give a complete solution of this problem is 

the complicated rule for the multiplication o f two basis elements o f  S(G).

We conclude Chapter 5 by applying the functor S(G) ®s(B+) * to the sequences 

(0.6) and (0.7) and obtain similar exact sequences for the Weyl module 

Kx (X e A+(n,r)). This is justified by a recent theorem of D J. Woodcock (cf. (15.1)).

Finally in Chapter 6 we study the Schur algebra S(U+) for the unipotent subgroup 

U+ o f B+. W e determine a k -b asiso f S(U+) which, unlike the basis of S(Gj) 

determined in §3, is not a subset of the basis j  | (i j )  e  fi} o f  S(G) (cf. (2.2)).

Then we prove that S(U+) is a  local ring. W e end this chapter by studying the natural 

epimorphism

determined by the decomposition B+ = TU+ of B+ as the semidirect product o f the 

group T  (of all diagonal matrices in G) and U+.

S(T) ® S(U+) ------► S(G)

w i n
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1. SCHUR ALGEBRAS

§1. Notation and basic definitions

k is an infinite field of any characteristic, n and r  are positive integers which will 

be fixed throughout and G -  GL„(k) denotes the general linear group of degree n 

over k.

If s is any positive integer, we write s for the set {l,...,s}.

I -  I(n,r) = {i -  ( i, .....ij) I ip e  n for all p e  r}, will also be regarded as the set o f all

functions i : r  -» n (ip = i(p), for all p e r ) ,  and

A - A ( n j ) - a - f t , . . . . j L ) I X ~ e Z . ) L , : > 0 (V6 n), X  J u - r )
v VC n

is the set o f  all unordered partitions of r  into n parts (zero parts being allowed).

(1.1) Definition: X e  A is the weight of i e  I (and we write i e  X) if 

Xy -  #{p e  r  I ip = V}, for all V e  n.

P a  P(r) denotes the symmetric group on r. It acts on the right o f  I(n ,r) by

(1.2) iJi -  (¡„(j)..... i ^ p .  all i e  I, k e  P.

P also acts on the right o f I x I by

(ij)Ji = (itt, jn ), all i j  6  I, it e  P.

We write i ~ j  if  i and j are in the same P-orb itof I and similarly ( ij)  ~  ( i'.j ')  

means that (i j )  and ( i'j ')  are in the same P-orbit of I x I.
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(1.3) Remark: Note that i ~ j  i f f  i and j  have the same weight, so we may think 

of A(n,r) as the set of all P-orb its in I(n,r).

We will now introduce some pre-orderings on I(n,r).

(1 .4 ) If mg, are integers satisfying 0 = mg < m j < ... < ms_j < ms =* n,

define J -  n \  {m|,...,ms} (s £  1).

Clearly n -  U Na, where' N .  = {ma . + 1,..., ma} (a e  s). 
a s  s

For n . v s  n say p  = V if  p. and V are in the same set Na, for some a s s .  
J

(1.5) Definition: For p , V e n, means that p £ V  or p  = V.
J J

We may extend these concepts to  I(n,r) as follows

(1.6) Definition: Let i j  e  I(n,r). Then we say

(i) i -  j  if  ip -  j«. all p e  r  ;
J P J p

(ü) i £ j  if  L S L ,  all p e r .
J P J p

(1.7) Remarks: (i) The relation S is reflexive and transitive on I. Also i £  j  and 
J  J

j  £  i iff i = j (but not necessarily i = j). Hence £  is a  pre-ordering on I.
J  J  J

(ii) For any i j  e  I we have that i £  j  implies in  £  in, for any n  e  P. So if  i £  j  and 
J  J  J

(i j )  ~  (h,£) (some h, t  e  I) then h £  L 
J
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A similar result holds if we use -  instead of £  .
J  J

We shall now pay special attention to the case when J -  0 ,  i.e., s ■ n and 

Na -  (a) for all a e  n.

If p , v  e  n, il £  V means it £  V (in the usual sense). Thus, if  i j  e  I we have
0

i £ j  iff ip ^ jp . p e r .  We shall write £  for £  and i < j  will mean i £ j  but

m j .

As i £  j  and j  £  i implies i -  j ,  we have in this case a partial order on I (it 

coincides with the partial order defined in [G2; p. 111).

(1.8) Lemma: Let i e  I and n e P .  Then ire £  i i f f  in  = i.

Proof: One " if ' is obvious. Now suppose ire £  i but in   ̂ i, i.e., i * ^  £  ip, all 

p e r ,  and i„(t ) < i*. for some t e r .  Then

X  ip > X  ijr(p) ■ X  ip .
P« I P«£ P « I

a contradiction. So in  £  i implies in  = i. □

Now we will introduce a partial order < on A(n,r), usually called the dominance 

order (cf. [JK; (1.4.6)I).

(1 .9 ) Definition: If o , p e  A (n;) we say that a  -£p  if  a v £  jP v , for

all p e n .
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(1 .10) Lemma: If i j a  I have weights a  and P, respectively, then i £ j  implies 

p - i o .

Proof: Suppose i £  j. Then ip £  jp for all p e r ,  which implies that, for any p e n ,  

{pe r l j p ^ p } s  ( p e  r l i p ^ p } . Hence

J ^ P v  -  #  (p e  r  I j p £  £  #  (p e  r  I ip £  p} = a v, i.e., p  3  a .  □

W e now define some notation involving X-tableaux. Essentially this will be the 

same as in [Gl].

Let X be any element o f  A(n,r).

The diagram of X is the set

( X J -  Z * Z l n * l  and lS V S X ^}

and any map from [ X ] to a set is called a k-tableau. We shall choose a bijecdve map 

T* : IX I -f r  and call it the basic k-tableau. If T*<(p,V)) »  a^v (Qi.V) e  ( X l ) we 

shall write

*11 *1 2  •••*11,

(1 .1 1 ) T* m »21 *2 2  ■ ■ ■ »22,

anl an2 •••
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Associated with T* we have the subgroup of P consisting of all those n € P 

which preserve the rows (resp. columns) o f (1.11). This is called the row stabilizer 

(resp. column stabilizer) of T*.

Now let i 6 I(n,r). Since i may be regarded as a map from r  to n we may 

consider the X-tableau iTV We shall denote it by Tj* and write

l»ll ‘*11 • • • '*11,

'•ii ‘« a  • • ’ • a .

A final remark on notation. I f  V, V ' are k-vector spaces we shall write V ®  V' 

for V Ok V'.

§2. The Schur algebras S k(n,r; H)

Let E  be an n-dimensional k-vector space with basis ( e j ,..., e„ } where G 

acts naturally, i.e.,

g&v -  X  guv Cu . all g e  G, v  e  n .
p €  n

The r-fo ld  tensor product E®r = E O  ... O E  (r factors) has k-basis 

{ej»  ejf O ... O  e^ I i e  I(n,r)}

and it can be made into a left kG-module by the rule
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Sei “  gCjt ® ... ® gcif, all g e  G, i d .

Using (1.2) we may also define a right P-action on E®r, which commutes with that of 

O, by

Let

ejjt -  , all n e  P, i e  I .

Tr : kG -» Endk (E®*)

be the representation afforded by E®* regarded as kG-module. Then the image of 

Tn i.e., TrOcG). is a subalgebra o f Endk (E®0-

If  we consider any subgroup H o f G, then Tr(kH) will be a subalgebra o f Tr(kG) 

and we make the

(2.1) Definition: Let H be any subgroup o f G. Then the algebra Tr(kH) will 

be called the Schur algebra for H, n, r  and k and will be denoted by S ^n , r, H) (or 

simply S(H) if  no confusion relative to n,r and k arises).

It is well known (see e.g. [Gl; (2.6c)I) that S(G) is the algebra Endy» (E®0, 

consisting o f all kP-endomorphisms of E®r (regarded as right kP-module).

In order to obtain a  basis for S(G) consider, for each (i j )  e  I x I, the element ijjj 

of Endk (E®0 whose matrix, (Ah¿(i j))h,t € i » i . relative to the basis {em I m e  I}, 

has

( \  if  (h^) -  ( ij)

Ah^ , j ) ‘  | o  if (h.t) + (¡0) . (h.t) € I * I .
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Then j  e  EndkP (E®1) -  S(G) and it is clear that ^¡j -  iff (i j )  — (h,£). Hence 

to obtain distinct elements £ |j  we should take a transversal G  o f the set o f  all 

P-orbits of I  k I. Once we have done this we get the result

(2.2) Theorem: (Schur) (cf. [02; (2.2)1) (fcj I ( i j )  e  G} is a k-basis for S(G).

The next proposition will tell how to express T^g) as a linear combination o f the 

elements o f this basis.

(2.3) Proposition: [G2; (3.1)1. For any g -  (gpv)ii,v e n >n G there holds

where g ij means g y ,  g ; ^  ... g y t.

A formula for the multiplication o f two basis elements £ y  and ° f  S(G) is 

due to Schur (see [S; p. 201 or [Gl; (2.3b)l) and it says

( 2 .4 )  $ y  Q (z(ij,h,f,p.q>lk£p,q ,

where z(ij,h,Lp,q) =■ * (s e  I(n,r) I (i j )  -  (p,s) and (h,£) ~  (s.q)}, for any 

i  j,h,£ g  I(n,r)}.

The following lemma is an easy consequence o f this rule

(2.5) Lemma: [G l; (2.3c)]. For any i j ,h ,t  g  I there holds



<0 5 ij V «  ■ f t  “nle“  J -  •>

<“ > 5i j  i i j  -  i i j  i j j  -  5ij

(Hi) 5 ij2 - 5 u  *nd S u t j j - O  if  i f  j.

Let i j  e  I(n,r) and supose i has weight X. Then ■ £jj iff 04) ~  ( jj )  iff 

i ~  j ,  i.e., i f f  j  has weight X. So from now on we shall write for

Using (2.3) it is easy to see that T,(id) -  ^  5x- Also form (2.5)(iii) we know

that ^  and £ a  ■ 0  if  X ^  a  (a ,  X e  A). Thus, since ls(G) ■ Tr(id), we 

have that

( 2 -8 ) > W ) ■ X̂ A ^

is an orthogonal idempotent decomposition of ls(G)-

1-8

Calculations using rule (2.4) turn out to be very long and complicated, so we shall 

use a new version o f this formula, given by J.A. Green in [G2], which is more 

convenient fo r  our work. We state it now.

For i j ,£  e  I, let Pj denote the stabilizer of i in P, i.e., P j«  (rc e  PI ijt = i}, and 

write P jj = Pj n  Pj, P y  j  = Pj n  Pj n  P*. Then, if  B fy : P jjj] denotes the index of 

Pj£j in Pj^, we have the

(2.7) Theorem: [G2; (2.6)]. For any ij,£  e  I(n,r) there holds



1-9

4ij ij.i - ^  (tPaj : Pi«,ljl>k) tiSl .

where the sum is over a transversal {8} of the set of all double cosets P jj 8  P jj  in

pj-

Remarks: (i) It is assumed that 5 - 1  is a member of the transversal.

(ii) The elements £¡5 * considered above may not be all distinct.

§3. Bases for S(G j) and S(Lj)

In this paragraph we will apply the method used in [G2; pp. 11, 131 to determine 

k-bases for S(Gj) and S(Lj), where Gj is any standard parabolic subgroup of G 

and Lj is its Levi factor. We start with some notation.

B+ (resp. B -) denotes the Borel subgroup o f  G, consisting o f all upper (rcsp. 

lower) triangular matrices in G. T  is the group of all diagonal matrices in G and U+ 

(resp. U") is the group o f all unipotent matrices in B+ (rcsp. B~).

For each Ji, V  e  n, n  v, let e^v be the element o f Zn with 1 in position 

H, -1  in position V, and zeros elsewhere. These are called the roots (of G) and 

A -  (e^ ^+11 n  e  n-l>  is the set o f  simple roots.

Ujiv *  is the root subgroup associated with the root e^v (p,v e n , ( i # v ) ,  

i.e., U^v = (u^v(t) 11 e  k}, where u ^ t )  is the element o f G with l 's  in the main 

diagonal, t  in position Oi.V) and zeros elsewhere. It is well known that 

U+ -  <Un4*+i(t) 111 6 HzL t €  k>.
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For any subset J o f n-1 we will consider the standard parabolic subgroups o f G, 

G j -  <B+, Xjx I \i 6  J> and GJ -  <B_, Xu I n  € J>, where, for any ^  e  n ^ l

where <Dj = {e^v I u , v  e  n} n  ( © Z e ^ + i ) .
t ie  J

Suppose J « n \ {mi,...,ms}, for integers 0 = mQ < mj <... < 1x15.1 < n^s -  n 

( sS  1). We are in the situation o f (1.4) and as we did there we define 

Na = (nig.i +  1,..., m*), for each a e  s. Then a typical element, g = (g^v)jx,v e n» ° f

G j has the form

1
0

1
(3.1) 0  1 

1 0
(row p) 
(row n  +1)

1 ..
,0

Finally we write Lj =• <T, U^v I epv 6 <®>J> 311(1

p < v  (1>V

(row m j) 

(row m^)

O
(row mf_p
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i.e., g^v -  0, unless n  £  V or p  and V  are in the same set Na, for som e a e  s. 

Thus (cf. (1.5))

(3.2) G j -  (g e  G I g^v ■ 0 unless p  £  V, for all n ,V 6 n},

and for any i j  e  I(n,r) and for any g e  G j there holds

(3.3) gjj -  gil j | ... g y , -  0, unless i J j .

So from (2.3) w e have

(3-4) Tr<*) -  (iJ£  n  g‘j  5iJ '  (IJ) À  1 s  j g‘j

This means that S(Gj) -  Tr (kGj) is contained in the k-span o f D 

i£ j} . Being a subset of a basis of S(G), D is linearly independent so 

D is contained in S(G |) we have proved the

(3.5) Proposition: S(Gj) has k-basis {^¡j I (i j )  £ f l , i S  j}.

Proof: In this proof we write M  ■ {(p,v) e  n x n I p  £  V).

Suppose S(G j) is a proper subset of the k-span of D. Then there are elements

, if  we show that
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bj j  e  k, not all zero, such that

(3.6) h l j f t j - 0- f” *11 « ‘ °T

Consider in the polynomial ring k[x^v I (p,v) e  M] on the indeterminates x ^v 

« 11,V) e  M), the polynomials

Then (3.6) says that 1 b((guV) ^ V) e M) ■ 0. for all values g^v e  k  that satisfy 

c((gpv)p,v e m) * 0. At this point we may use the

Principle o f irrelevance of algebraic inequalities (cf. e.g. [C; p. 1401).

Let f, g, h e  kbci,...,xml, h 4 0  (where k is an infinite field) and suppose that 

f(a )  = g (a)  for all a  -  ( a 1,...,ain) for which h(a) * 0. Then f  = g.

And we have that b(x) -  0. But the monomials x y  ■ Xjjt ... xy^ all ( i j )  e  Q, i £ j ,

are all distinct and so linearly independent elements o f k[x^v I (p,V) e Ml. Hence 

b(x) = 0  implies bjj -  0, for all ( i j )  e  f i,  i £  j. This contradicts our hypothesis and

proves (3.5). □

Applying the same process to

1 By b((g^v)) a°d  c((g^v)) we mean the element o f k obtained by replacing the 
indeterminate x^v in (3.7) by g^v, for all (p,V) e  M.

(3.7)
J
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and

GJ > {g €  G I g^v -  0  unless V £  p , for all p , V € n} 

Lj -  { g e G I  g^v -  0  unless p  j  V, for all p , V 6 n).

we obtain

(3.8) Proposition: S(GJ) and S(Lj) have k-bases

( i i j  I (i j )  «  a  j  S i) and {Çij I ( i j )  ï  a  i j  j>.

respectively.

§ 4 Weight spaces

Let H  be a subgroup o f G containing T  and let V e  mod S(H).

W e know that, for all X e  A, £x e  S(H) (since S(T) S  S(H) and, taking J = 0  in

(3.8), w e get that I X e  A} is a k-basis o f S(T)). Hence there is the orthogonal 

idempotent decomposition

X « A

o f 1 in  S(H) (cf. (2.6)), which yields the decomposition o f V

(4.1)
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as a direct sum of subspaces.

(4.2) Definition: F or each X e A, V* ■ £xV >s called the X-weight space of 

V. We say that X is a weight of V if dim* V* > 0.

It is well known (cf. [G l; (3.2)]) that this definition coincides with the usual 

definition of weight space when we regard V as a rational T-m odule and identify X 

with the multiplicative character T-» k given by g H g ^ j ... g^JJ (all g e  T).

The next proposition is  an easy consequence of the definition o f weight space and 

of the fact that £x is idem potent

(4.3) Proposition: [G l; (3.3b)] Let 0  -♦ Vj -* V2 -» V3 -» 0 be an exact 

sequence in mod S(H). Then the naturally induced sequence of k-spaces 

0-» V j^-* V2^-» V3^-> 0  is  exact, for any X e  A.

Before we proceed w e need to define some notation. For any X 6 A(n,r) we 

choose a basic X-tableau T * and define £(X) e  I(n,r) by the X-tableau

(4.4) Ti «

(row 1) 

(row 2)

(rown)

If p , V € n and p ^  V define, for each non-negative integer m ^  Xv, the element
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f(p ,v , m,X) o f I(n,r) by the X-tableau

1 1 . . 1 (fowl)

(«■*) T ,V v .m .! l ) - 2 2 . . 2 (row 2)

H  ••• P  V  . . V (row v)

m

n n n (row n)

i.e. Vj mi x.) is obtained from by substituting the first m v 's in row v

by p 's and keeping all other entries unchanged.

In this section we write £(m, X) for t(p , v , m, X) if no confusion relative to p  

and v arises.

(4 .6 ) Proposition: [G2; (5.8)) Let p , v  e  n and suppose that p  < V and 

X^ < Xv. Then

where are integers independent of char k.

(4.7) Lemma: Suppose p, v  € n, p  t  v  and let u^v(t) be the element of G 

with l 's  in the main diagonal, t in position (p.V ), and zeros elsewhere (t e  k). Then
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r
TYtivvM) -  mI o t» r< "y) .

where

r f v  -  ^  i«n . .\).U%).

sum over all weights X e  A such that m £  Xv.

Proof: Write g for upV(t). Then, from (2.3), we have that T ,(g) “  n  g ij £ij-

But g jj =* 0  unless (ip, jp) e  {(1,1), (2 ,2 ) ,... ,  (n.n), (|x, V)}, all p e r .  If this last 

condition holds and if  m is the number o f p e r  such that (ip, jp) -  (p, v), then 

g jj = tm and ( i j )  ~  (£(m, X), £(X)), for some X with m £  Xv.

Now consider any X e  A with m £  Xv  Clearly g^m x), t(X) “  tm. So the proof 

will be complete when we show that (t(m, X), f(X)) + (£(m\ a), £(a)) if m ^ m ' or 

X ^  a  (a e  A, m ' <, a v). But this is immediate, since £(X) and 1(a) (if X ^ a) or 

£(m, X) and £(m \ a) (if X = a) have different weights, so they are not in the same 

P -o rb ito f  I. □

(4.8) Proposition: Let J be any subset o f n-1 and let H  be one o f the groups

G j, G j or L j defined in §3. Let V e  mod S(H) and suppose there is v e  V such 

that

(i) v  ^ 0  and £xv “  v» f°r  some X e  A;

(ii) there are p , V e  n such that p  < V, p  = V and Tr(upv(t))v -  v, for all t e  k.

Then XytSX^.
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Proof: Suppose v, X, and n , V satisfy (i) and (ii) above, and let m beany  non­

negative integer such that m £  Xy. Then, as H -  V, £(m, X) j  l(X) and the elements 

S«m. X), KX) and $#X). « m. X) « " in S(H). Also, as ^Xv -  v, we have

r iTvv “  *»XV "  ^  5t(m ,a).«a)$X v

sum over all weights a  e  A such that m  £  a v.

» “• 5«ra. a). Ha) $X -  0  or x). «X)- »voiding as a  ,1 X or a  -  X, and so

Hm) /V - .X X « X )v ;  if  m S X a
l*v \  0 ;  i f m > X v.

Hence, by lemma (4.7), we have T,(u^v(t))v = X  q tm ^ m ,  X), !(X)V'» f°r all t e  k. 

Note that Z(0 , X) -  £(X) and so ^ (o , X), t(X) ■ ^X- Therefore T,<u^v(t))v » v iff

K%y + J E  t tm 5<(m. XX KX)V -  v iff

(4.9) J l  1 tm 5«m. XX t(X)v  -  0. «H t c k.

Since k  is an infinite field we may choose t j.—. t^  e  k such that det(tab)a b G ^  ^  0. 

So (4.9) implies

( 4 .1 0 )  X). KX)V -  0 , for all m «  Xy.

Suppose Xji <Xv.
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From (4.6) we know that there are integers such that 

t x  -  m *111 $1(X). #m . X) ilOn. X). «X>- H ence

v  ■  txv  -  n, _^_x *171 $<(X), Hm, X) 4f<m. X). «X)v -  0 (by (4.10)).

This contradicts the assumption of v ^ 0. So Xv ^  \ i -  n

fi5. Contravarlant duals

We start this section with a result for a very general class of k-algebras and then 

we apply it to Schur algebras.

Let S be a finite dimensional k-algebra equipped with an involutory anti- 

automorphism w : S -* S. Let R be a subalgebra of S and write °R for its image by 

#, i.e., #R = °(R) (similarly denotes “(£), for any ^  e  S).

If V g mod R, its dual, V* -  Homk(V,k), can be made into a left ®R-module by

( 5 .1 )  (£ 0)v -  0(°$v), 0 G V*, £ € °R, v  €  V.

( 5 .2 )  Definition: For each V g mod R, the °R-module V*, defined above, 

will be called the contravariant dual o f V (relative to #) and will be denoted V°.

(5.3) Remark: It is not difficult to see that the natural isomorphism V -»(V*)*, of 

finite dimensional k-spaces, is an R-isomorphism V -» (V#)#.

Let V €  mod R and W  e  mod °R be given. A k-bilinear form ( , )  : W x V -» k
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is called contravariant (in °R) if it satisfies (£w, v) -  (w, °^v), for all % e  °R, 

w e  W, v € V. It is  well known that such a non-singular form exists iff W  and Vo 

are isomorphic °R-m odules (the isomorphism y : W  -* Vo being given by Y(wXv) 

-  (w,v)).

Now let Q  be another subalgebra of S such that R £  Q. Then °R £  °Q and, Q 

and °Q may be regarded as (R, Q )- and (°Q, °R)-bimodules, respectively.

Consider the right exact functor

( 5 .4 )  F -  °Q : mod °R -♦ mod #Q

and the left exact functor2

( 5 .5 )  F  -  HomR(Q, •) : mod R -* mod Q.

(5.6) Theorem: With the notation above, there is a °Q-isomorphism

F(V*) m (F(V ))*,

natural in V e  m od R.

Proof: It is enough to describe, for each V e  mod R, a non-singular bilinear form 

d>v : F(V#) x F'(V) -♦ k, which is contravariant in °Q and is natural in mod R.

Let ( ,  ) y : Vo x V -»k be the k-bilinear contravariant non-singular form defined 

by

2 If V e  mod R, Q  acts on the left o f HomR(Q,V) by (£u)(n) ■ uCn£), u e  F'(V), 
5 .1 6 Q -
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(6 , v)v -  6(v), 0 6 V», v « V;

(the contravari ant property comes form (5.1)). For each u €  F'(V) -  Hoiiir(Q,V), we 

may define a k-bilinear map h 'u : #Q  x V* -* k  by h'u(q , 0) -  (0, u(*t|))v  (all 

i\ 6 °Q, 0 e  Vo). Since ( ,  )v  *s contravari ant and u is an R-m ap, we have

h'u( n $ . e ) - ( 0 . u(°£ °Ti))v -  

-  (0, u(°ri))v -  (^9. u(°n))v -  h'uOl. $0)

(for any q  €  °Q , £ € °R, 0 e  Vo) which proves that h'u is °R-balanced. Hence we 

may define a  k-linear map hu : °Q ® ORV# -» k by hu(q ®  0) -  (0, u(°q))y, and the 

k-bilinear form ® y : F(V°) * F'(V) -* k by

( 5 .7 )  C>v(Tl ®  0, u) -  hu(n ® 0) -  (0. u(°Ti))v. all 0 e  Vo, ti e  °Q, u 6  F'(V).

To prove that <X>y is contravari ant, take 0, r\, u as above and any $ e  °Q. Then the 

left °Q-action on F(V°) gives £ (q  ® 0) -  £q ® 0. So <Dv(£(q ® 0). u) -  

(0, u(#(^T))))y -  (0, u(°q°£))y. But the left action of Q on F'(V) gives ( ° £ u)(°T|) = 

u(°q°$). So <X»y(̂ (Ti ® 0),u) -  (0,(°$u)(oq))v  -  <^v (Tl ®  0. °$u).

The next step is to prove that <X>y is non-singular.

Consider the k-spaces X -  °Q  ®  Vo and Y -  Homk(Q,V). Clearly these have 

the same dimension (viz. dim Q dim V). Define a k-bilinear form <¿>y :X x Y - » k ,  

using the same formula as for <X>y, i.e.,

<5y (ti ® 0, u) -  (0, u(°q))v  , all u e Y, q  e  °Q, 06 Vo.

The right kernel o f  d>v  is the set o f all u 6 Y such that <f>y(x, u) -  0, for all x 6  X, 

o r equivalently, <Dy(q ® 0, u) -  0, for all q  € °Q, 0 e  Vo. As <f>y(q ® 0, u) -  (0, 

u(°q))y and ( , )y  is non-singular we have that u €  right ker 4>v iff u(°q) -  0 , for
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all r) e  °Q, i.c., iff u -  0. Hence <£>y is non-singular since its right kernel is trivial 

and dim X = dim Y.

From the definition of tensor product, we know that F(V °) -  °Q ® „^ V* ■ X/M , 

where M is the subspace of X k-spanned by (q!;® 0  -  q  ® £ 0 1q e  °Q, $ e  °R, 

0  €  V°}. Let M 1 -  {u e  Y I <$y(x,u) -  0, for all x e  M}. It is clear that there is a 

non-singular k-bilinear form <5y : X /M  x M 1 -» k, given by <Dy(x +  M, u) ■ 

<Dy(x,u), all x e  X, u e  M x. So if  we prove that M x ■ F'(V), we have that <T>y ” 

<5y is non-singular. So let u e  Y. Then u e  M 1 iff, for all q  6 °Q, £ e  °R, 

0  e  V°, there holds

<&v(l5 ® 0. u) -  <6 v (n ® 50. u), i.e.. (0. u(“5*T)))v -  (50, u("ri))v 

which means

e(u(-$«q)) -  (S0)(u(Ti)) i.e. 0(u(*$*q)) -  0C$u(*q)).

But this is equivalent to u(0^°q) -  05u(0q), for all q e  °Q, % e  °R, i.e., 

u e  HomR(Q,V). Hence M x -  F(V ).

The proof o f the theorem will be complete when we show that <Dy is natural in V 

e  mod R. This amounts to the condition that for any V, V ' €  mod R, and for all 

f  e  HomR(V, V )

<by(q ®  t f ,  u) -  «Dy'Cq ® T, fu)

i.e. ( tf , u(t|°))y a  ( t,  fu(#q))y*, for all q  e  °Q, x e  V '° and u e  F'(V), which is 

trivially true. □

Returning to the Schur algebra S(G) we may define a  k-linear automorphism 

•  : S(G )-»S(G), by
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( 5 .8 )  »11

This is in fact an involutary anti-automorphism of S(G) (cf. [Gl; p. 321) and so we are 

in the conditions referred to above.

For any subset J o f n-1 consider the Schur algebras S (G j) and S(G j). It is 

clear from its definition that this anti-automorphism carries the basis

{$ij l ( i j ) e  f i, i £ j}  o f S(Gj), into the basis { ^ j l ( i j ) e  £ 2 ,j£ i}  o f S(GJ), and 

vice-versa, hence

( 5 -9 )  *S(GJ) ■ SCGj).

So i f  we consider any V e  mod S(Gj) (resp. V' e  mod S(Gj)) its dual, V°, is in 

mod S(Gj) (resp. V  €  mod S(Gj‘ )).

Also if  y  is another subset of n-1. such that J' €  J, we may use (5.6) with 

R -  S (G r) and Q  -  S(Gj) or R .  S(Gj‘0 and Q .  S(G,').
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2. THE MODULES K 

§6 The Schur algebra S(B+)

W c shall now give special attention to the Schur algebra S(B+) -  S ^ n /;  B+) for 

the Borel subgroup B+ o f G.

Using the notation o f §3, B+ = G J .  So if  Q ' -  {(ij)) € f t  I i £  j} we get from

(3.5) that

( 6 .1 )  S(B+) has k-basis j  I ( i j )  e  O ').

This result is not new, it can be found in [G2] where it is also proved that

(6.2) rad S(B+) has k-basis (fcj I ( i j )  e  O ', i + j}.

For each X e  A(n,r) consider the left ideal

Vx -S(B+*x.

As S(B+) = © k^jj, Vx is k-spanned by all 4i i 5x» 0  j )  e  O'. But from
(i j) € O'

(2.5) we know that £ i j£ X is or 0, according as j has weight X or not

Thus, Vx -  © k ^ . , i.e.,
( ij)€  Q '. j*  X

(6.3) Vx has k-basis { ^ j  I ( ij)  e  O ', j  e  X} 3

3 In §9 we shall give another description o f this basis involving row-semistandard 
tableaux and the element f(X) defined in (4.4).
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Now consider the k-algebra S(B+)£X -  $X Vx. It is spanned by 5X £ij. lor all 

(i j )  e  Cl' such that j  6  X. Once more, we have ^  ^  j  -  0, unless i has weight X 

and if  so, there is n e P  such that i ■ jx . But then we have jx  -  i £  j ,  which implies 

i -  j  (cf (1.8)), and so 5 ij -  Sjj -  Hence

$x S(B+)$x - k $ x

is a  local ring and £x is a primitive idempotent of S(B+). Putting this together with

(2.6) and using that 1$(b +) * ls(G)>we havc proved that

(®-4 ) 1s(B*)“ x2 a $x

is a primitive orthogonal idempotent decomposition of ls(B+)» and

S(B+) ■ X0 A VX

is a direct sum decomposition o f S(B+) into projective indecomposable 

S(B+)-modules.

As an immediate consequence o f this result we have that, for any X 6 A, Vx has a 

unique maximal submodule, viz. rad Vx = (rad S(B+))£X, and so Vx/rad  Vx is an 

irreducible S(B+)-module.

Using the same argument as for (6.3) we have, as a consequence of (6.2), that 

(6 .5 )  rad Vx has k-basis {£y I ( ij)  e  Q ' . i ^ j ,  j e  X}.

Therefore Vx/rad  Vx ■ k(£x + rad Vx) is a one-dimensional vector space and it is

clear that
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V x/rad Vx V0 /rad Va  iff  a  -  X (a  « A).

This together with (6.4) gives that

{Vx/rad Vx I ». « A(nj-)} and {vx IX c  A(nj-)}

are full sets o f pairwise non-isomorphic irreducible and projective indecomposable 

S(B+)-modules, respectively.

In order to give a better characterization of these modules we defíne, for each 

X e  A, the k -linear maps Xx : kB+ -► k and Xx : S(B+) -» k  by

respectively.

It is easy to see that X \ >s a k-algebra map and that xx(b) -  KX(Tr(b)), for all 

b  e  B+. Thus Kx is also a k-algebra map and we make the

(6.7) Definition: For each X e  A, kx is the field k regarded either as a rational 

B+-module affording the representation xx or as an S(B+)-module affording the 

representation Xx.

, all (i j )  e  Q',
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It is clear from the definitions that if

(6.8) K \  : Vx-* kx *s restriction o f to Vx

then K x  is an S(B+)-epimorphism with ker K \  -  rad Vx- Thus V x/rad Vx * + kx-

As a summary o f the main results o f this section we have,

(6 .9 )  Theorem: (i) 1 -  . S  ^X- is a primitive orthogonal idempotent
A, 6 A(n,r)

decomposition o f 1 inS(B +).

(ii) {kx I X e  A(n,r)} is a full set o f  pairwise non-isomorphic irreducible S(B+)- 

modules.

(iii) {Vx I X e  A(n,r)} is a full set of pairwise non-isomorphic projective 

indecomposable S(B+)-modules.

(6 .10) Remark: A result parallel to (6.9) can be obtained if  we consider the

Schur algebra S(B"). In this case, for each X e  A, kx will denote the one­

dimensional S(B")-module (or one-dimensional rational B_-module) affording the

representation Kx : S(B") -> k  (resp. X \ • B_ -* k), defined by

f l ,  i f  i = j  has weight X

0̂ , otherwise ; all (i j )  e  Q  such that j  £  i

(rcsp. X £ (b ). b j { - < & . all b « B - ) .
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|7. Weyl modules

In [CL] R. Carter and G. Lusztig defíne, for each dominant weight X, a GL„(10- 

module (there denoted VjJ and call it the Weyl m odule for GL„(k) associated 

with X. Working with the universal enveloping algebra o f the Lie algebra gl(n), they 

prove that these are cyclic modules containing a unique maximal submodule and that 

the quotients by these give a full set of pairwise non-isomorphic polynomial 

irreducible GLn(k)-modules. In particular if  char k  -  0  Weyl modules are 

themselves irreducible. A k-basis for K^, indexed by standard tableaux, is also 

produced in the work cited.

The same results were later obtained in [Gl] within the framework o f Schur 

algebras. Using a result o f G. James U, (26.4)] it is there proved that, in fact, may 

also be characterized as the contravari ant dual of the induced module Indg- k¿ (for any 

dominant weight X).

Here we give an alternative definition o f Weyl m odules and we show how some of 

the results referred to above can be easily obtained from the properties of S(B+).

Take J « n-1 and J ' »  0. Then G j  -  G, G j. ■ B+, G y  = B" and we may 

apply the results of §5 to S(G), S(B+) and S(B~).

W e have from (5.9) that °S(B") = S(B+). Also °S(G) -  S(G). Thus taking 

Q -  S(G) and R -  S(B-) in (5.4) and (5.5) we get, F(V*) -  S(G) ®S(B*)V° and 

F(V ) -  HomS(B-)(S(G), V), and, by (5.6),

(7 .1 )  there is an S(G)-isomoiphism

S(G) ®s(B*)V* •  (HomS(B-)(S(G), V))#, 

for any V e  mod S(B").
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For any X -  (Xj,..., X„) e A(n,r) consider the irreducible S(B+)-module kx and 

defíne

( 7 .2 )  Kx -  S(G) ®s(B+) kX- 

It is then clear that

(7.3) Lemma: Kx -  S(G)©x, where o>x ■ ls(G) ® lkx • Hence Kx is  a cyclic 

S(G)-module.

In [G 2;p . 14) it is proved that S(G) has the decomposition

( 7 .4 )  S(G) -  S(B+)S(B-).

We now apply this result to Kx-

From  the action of S(B+) on kx (cf. (6 .6) and (6.7)) there holds

$ ij °>X -  j  ®  lkx ■ *S(G) ® $ij *kx -  “ Xif  $ij -  $X. and “ io  otherwise (aU i £  j). 

Thus S(B+)©x «   ̂ X  k^jj ©x *  k©x and using (7.4) we get

(7.5) Kx -  S(G)©x -  S(B-) S(B+)ci>x -  S(B-)©x-

But S(B~) has k-basis {^jj  I (j,i) e  12*}. Hence by (7.5),
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< 7 # )  K* -  OJ£  a  *  (M).  S .  J .  x k' tJ ° *  '

since cox -  and so 5ij“ X ■ £ij 5x®x -  0, unless j  has weight X.

(7.7) Lomma: (i) Kx* -  kto*. Thus dimk(K ^ )  i l  and it is zero iff Kx -  0.

(ii) I f  a  e  A is a  weight o f Kx then a  < X.

Proof: (ii) From (7.6) we have that, for any a  e  A,

fU ,K l"  < u > . £ . j . x kÇ“ ^ '  OJ)•  n - f .  X .i.  a k5‘̂ -

So KX *  0  implies that there are i j  e  I such that i e  a ,  j  € X and j  i  i. But 

then, by (1. 10), a < X .

(i) Consider no »  a  -  X. Then tx  Kx -  ^  € .  jkÇyfflv But from (1.8) we

know that if  i j  €  X and j  i  i then i -  j. Thus ÇXKX -  k$xci>x -  kto*,. □

It is ju st natural to ask under which conditions is Kx 0? The next proposition 

answers this question.

(7.8) Proposition: Let X -  (X,..., X„) e A(nj-). Then Kj, * 0 iff 

X, i X j l - . i X , .

Proof: Suppose first Kx ^ 0. Then co^ ^ 0  and ^x ^X “  ®x- i f  * e  prove that
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Tr^nji+lW Hox ■ cox, (all ^  e  n-1 . t € k), condition (ii) of (4.8) is satisfied (with 

V -  n  +  1 and any €  n -1 ) . hence Xt 2  X2 2 ...  2  X„.

Fix n  6  u p la n d  write f(m ,a) -  £(p, n  + 1, m. a )  (cf. (4.4) and (4.5)). Then, 

r
from (4.7) we hive T / u ^ . , « ) )  -  J ^ t T  where r -  Z  item.»). «„) 

(lum overall weights a  £  A suchth it m s a ^ , ) .

Note that if m -  0 . 0^ . . ,  kO  for all a s  A, lo  r ® , . ,  -  l s(0). On the other 

hand if  m > 0, f(m, a )  <  « a )  (since (X < n  +  1) and so ^  ,n aytn\ -  0, for all a . 

Thus, for any t s  k, we have

( 7 .» )  T jiu j^ ic o ie o x  -  r * ® „ . ,  t » x + J E i t w  t m -  r  ¡¡. u*t

As this holds for any n  e  n -1 . we get the required result.

Now suppose Xj ^  X2 ^  ... ^  X„ and consider the contravariant dual (k^)° of the

irreducible S(B~)-module k^. Then (k^)° is a one-dimensional S(B+)-module and

for any 0  e  (k^)#, c e  k^ and ( ij )  € O ' there holds

(£ij0)(c) ■ 0  (4j4 c) “  0(c) if  4i j  ■ 4k» zer°  otherwise.

Therefore (k^)° affords the representation and (k^)° ai+ k^. Thus, from
S(B )

(7.1), we have

( 7 .1 0 )  Kx  -  S(G) * 5(8 .) k^ .  (H om sp-jtStO ). k£))* .
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It is a classical fact that if X| 2 X2 *  ••• *  *n then HomS(B-)(S(G), k^) + 0 (cf. 

e.g. [G1, p. 641 or [G2, p. 251), so (7.8) follows. □

(7.11) Remark: Note that, since U+ -  <uwl+1(t) l n  e  n - 1, t € k>, (7.9) implies 

that Tr(u)o>x -  cox, for all u e  U+.

(7 .12) Definition: X ■ (Xj^.^Xg) e  A(n,r) is called dominant if  Xj £  X2 

We write A+ -  A+(n j)  -  {X e  A(n,r) IX is dominant}.

(7.13) Definition: Let X e  A+(n,r). Then Kx  w ill be called the Weyl module 

for S(G) associated with X.

Similarly, Mx -  Homs(B-)(S(G), k^) will be called the Schur module for S(G) 

associated with X.

(7.14) Corollary: Let X e  A+(n,r). Then Kx -  Mx*.

Proof: (cf. (7.10)).

We use now a familiar argument to prove the

(7.15) Lemma: I f  X e  A+ then Kx has a unique maximal S(G)-submodule.
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Proof: Let V be a proper submodule o f K*,. It cannot contain co ,̂ since S(G)Ci>x -

Kx, so V ^ «  V n  -  V n  k  g>x -  0. Let X -  V (sum over all proper 

S(G)~ submodules o f Kx). Then

* - U $ v . $ f c v . $ v » . a

Hence X is a proper submodule o f Kx and it is clearly its unique maximal 

submodule □

(7 .1 6 )  Lemma: For each X g A+(n,r) define Fx -  K x/ rad Kx- Then 

CFx IX e  A+} is a full set of pairwise non-isomorphic irreducible S(G)-modules.

Proof: Let X g  A+. We know from (7.15) that Kx has a unique maximal 

submodule, which must then be rad Kx. Thus, Fx = K x/rad  Kx is irreducible and it 

is S(G)-generated by <3x -  ©x +  rad Kx (^  0  since ©x * rad Kx).

From the definition of Fx and from (4.3) we know that there is a short exact 

sequence of k-spaces 0  - » (rad Kx)° -* K x° -» Fxa  -♦ 0 , for any a  g A. Thus by

(7.7), we have

(7 .1 7 ) (i) Fx^ ■ kc3x and dim Fx*’ ■ 1;

(ii) If Fxa  4 0, for some a  g  A, then a  <  X.

As an immediate consequence o f (7.17) we have

F0  #  Fx if  a  »t X (a , X g A+).
S(0)
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Now let V be any irreducible S(G)-module and suppose that

(7.18) HomS(0 )(Kx. V) + 0. for some X 6 A+.

Then, if 0  ^  0  e  Homs(G)(Kx. V), we have, V *  K ^/ker 0  and ker 0  is a
S(G)

maximal submodule o f Kx, i.e., ker 0 -  rad Kx and V *  K x/rad Kx ■ Fx-

Thus in order to finish the proof o f (7.16) we only need to prove that (7.18) holds. For 

this we shall use the

Adjoint Isomorphism Theorem: (cf. e.g. [R, (2.11)1). Given rings R and  S, let A be 

a left R-module, B be an (S.R)-bimodule and C  be a left S-module. Then there is 

an isomorphism o f groups

X : Hom$(B ®r  A, C) »  HomR(A, Homs(B.Q).

Regarded as an S(B+)-m odule V has some irreducible submodule. This has to be 

isomorphic to kx, for some X e  A, which implies Homs(e+)(kx, V) ^ 0. Now if  in 

the Adjoint Isomorphism theorem we take R = S(B+), S = B = S(G), A » kx and 

C  »  V, we get an isomorphism o f  groups

x : HomS(G)(S(G) ®s(B+) kx. V) *  HomS(B+) (kx. HomS(C)(S(G), V)).

But Homs(G)(S(G), V) *  V as an S(B+)-module. Thus
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HomS(G)(Kx, V) a  HomS(B*) (kx, V).

Since Homs(B^) (kx. V) 4 0, we must have HomS(G)(Kx, V) jt 0 and X e  A+ 

(since Kx * 0  iff X €  A+). Hence (7.18). □

In the next theorem we summarise the main results of this section, but before we 

need a definition.

(7.19) Definition: Let H be a subgroup o f G containing T. We say that an 

S(H)-module V has highest weight X (X e  A) if  X is a weight o f V and a  <  X, 

for all other weights a  of V.

(7.20) Theorem: (cf. CGI; 55) and [CL; §3J). For X e  A+(n,r) there holds

(i) The Weyl module Kx is a cyclic S(G)-module generated by

o>x- ls(G)®

(ii) Kx has highest weight X, Kxx -  ko>x and T,(u)o>x -  0>x. for all u € U+;

(iii) Kx is the contravariant dual of the Schur module Mx;

(iv) Kx has a unique maximal submodule, rad Kx, and

{Fa ■ Ka /ra d  Ka  I a  e  A+(nj)} is a  full set of pairwise non-isomorphic 

irreducible S(G)-modules;

(v) Fx has highest weight X and dimk Fx^=  1.

§8. Kx,j and the Schur algebra S(Lj)

Consider any standard parabolic subgroup Gj of G. In §6 and §7 we studied 

the S(Gj)-m odules S(Gj) ®s(B+) ^X» *n the two extreme cases of J ■ 0  and
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J ■  n -  1. respectively. We are now interested in the intermediate cases.

As in §3, let J * n \{m 1,...,ms}, where mo,m|,...,mg are integers satisfying 

0  -  mo < m j < ... <  n v j  < ms « n. Let Na -  {ma_j +  1.....m ^  (a e  s), and define,

for each X e  A, the S(Gj)-module

KXJ ■ s ( ° j )  ®  S(B+) kX •

Note that, in particular, a  k*, and Kx„ « -  Kx-
’ *—

It is clear that K x j = S(G}) cox. where cox -  ls(G) ®  lkx - Also, as in §7 (cf. 

(7.11)), we have

(8.1) a>\ ■  “ x and Tr(u)o>x = a>\, for all u e  U+.

So applying (4.8) to we get the following.

(8.2) Lemma: Let X e  A(n,r). Then KXJ -  0, unless Xin>_| + 1 *  X,^ J+2 *... *  

Xm , for all a 6 s.

Proof: Suppose K ^ j 4 0. Then co  ̂^ 0.

In (4.8) take H » G j, V = K ^j, v  = co*., and (p,V) = (n, n  +  1), where p  -  p +  1.

Then the hypotheses of (4.8) are satisfied. Thus, X^+j £  X^, for all p. e  n -  1 such 

that ma_j +  1 £  p  £ ma-  1 (some a e  s). □
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N o ta tio n :  A | -  A j(n j)  -  f t «  A(nj-) I + 1 *  f + 2 2  ... 2  X,^, for all

a e  s).

Consider the subgroups U | and Lj of G j , defined in §3.Then Gj has the Levi 

decomposition Gj »  Lj U j, and so S(Gj) -  S(Lj) S(Uj).

As U j  is a subgroup o f U+, (8.1) implies T ^ u ) ^  = (0\ , all u e  Uj. Thus 

Kx j  -  S(Gpcox -  S(Lj) SCUptOx -  S(L,Xox,

and, in order to understand KXj ,  we need to study the Schur algebra S(Lj).

Lj consists of all matrices o f the form

where, for each a €  s, the matrix g<a) = (g^v)p,v e N, *s non-singular, in other

words, Lj consists o f  all g 6 G  such that g^v -  0  for all (p,V) e  n x n  such

that p  + V.
J

For convenience o f notation write Ga -  GL„ (k), where na = ma-m a_j = #  Na.

Lj is isomorphic to G t x ... x Gs (external direct product) and so, we should be
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able to obtain S(Lj) from the Schur algebras for Ga (a 6 s). To do this we shall use 

coalgebra theory. We start with some standard results which can be found in [Gl; pp. 

4 -6 , 18-20J.

Let H be any group, and let kH denote the k-algebra of all maps f  : H -» k 

(addition and multiplication in kH being defined pointwise).

W e identify kH ®  kH with a k-subspace o f kH*1*, via the k-monomorphism 

icH ® kH -♦ kH*Ht which takes f  ® f  to the map f  '  : H x H  -> k, defined by f '(h , h') 

-  f(h) f  (h'), for all f, f  e  k» , h, h' e  H.

Let AH : kH -» kH*Hf and eH : kH-» k, be the k-algebra maps defined by

AH(f)(h,h') -  f(hh'), and eH(0  -  f ( lH). *11 f  « h. h' 6 H.

Then, the set J ( k H) = {f e  kH I AH(f) e  kH ® k1*} is a k-bialgebra: it is a 

subalgebra o f  kH and the comultiplication and counit maps are the restrictions o f AH 

and eH, respectively, to kH).

Now make H = G.

For each p , V e  n, define the coordinate map c^v e  kG, by 

Cpv(8) ■ 811 8 € G-

Let A(G) = k lc ^  I |i ,  V €  n) be the k-subalgebra of kG generated by the 

cpv (l1» v e  n). As the field k  is infinite, the c^y are algebraically independent over 

k. Hence A(G) may be regarded as the algebra of all polynomials over k in the 

indeterminates c^v (p, V e  n).
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For each q £ 0, let Aq(G) denote the k-subspace o f A(G) consisting of all 

those elements in A(G) which, considered as polynomials in the c ^ 's ,  are 

homogenous of degree q. Then

A < ° ) .  ®  V G ).

It is clear that, for each q  £  1,

( 8 .3 )  Aq(G) has k -b asis  (cjj -  c ^  ... c ^  I ( ij)  e f tq} ,

where Qq is a transversal o f  the set of all Pq-orbits of I(n,q) x I(n,q).

Also, by the definition o f  Aq ,

Ag (Cuv) -  2  C u x ® ^ ,  Ji, V 6  n. 
t« Q

As Ag  is a k-algebra m ap this gives,

¿G <ci j)  -  h cUi ® chj. «U ■ J  6 I(nfl); q 2  1 ■

Similarly Coic^,) -  6 ,,^  and EoCqj) -  6;j -  ... 8 ^  (n. V e  n, i j  e  I(n,q)>.

This shows that A(G) is a sub-bialgebra o f 7  (kG), and that Aq(G) is a 

subcoalgebra o f A(G). T hus Aq(G)* -  Horn* (Aq(G),k) is a k-algebra.

The algebra S^Cn.q) introduced by I. Schur in [S] coincides with Aq(G)* (cf. 

[Gl; pp. 18-211). Thus, as we mentioned in the introduction

( 8 .4 )  Aq(G)* and Sj.(n,q; G) will be identified, via the k-algebra isomorphism 

2  : Aq(G)* -» Sjtfn.q; G), defined in (0.1).
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Note that if f iq is as in (8.3) then {£y I ( ij )  € Qq} is the basis o f Aq(G)* dual to 

the basis (citi I ( ij )  « i y  of Aq(G).

Now consider the subgroup Lj o f  G.

For each c e  A(G), denote the restriction of c to L j by C. Let 

A(Lj) -  {c I c e  A(G)}. Then A(Lj) is a subalgebra o f kLj, and it is clearly generated 

by those c^v which satisfy c^v jt 0 (p , V e  n).

Note that, for any g e  Lj, we have c ^ ( g )  = g^v = 0, unless p  = V. Hence

c^v =« 0  if  p  i* V. Now, using an argument similar to that in the proof of (3.5), we can 

show that

(8.5) Lemma: The c^v  (p, V e  n, p  = v) are algebraically independent over k.

Therefore, we can identify A(Lj) with k[c^v I p , V €  n, p  «  v], the algebra o f all 

polynomials over k in the indeterminates c^v (p, V € n, p  = v).

Let p , V e  n, p  = V, and consider 5^v. From the definition of the k-algebra map 

ALj, we have

al, ( ^ v) (g.g’) -  ^v(ggT  -  ( g g \ v  -

- Z g n t g 't v - (  Z 5w, ® 5 T»)(g,g’). *11 g .g ’s  L,-

Hence



2-1 8

( 8 .6 )  A ^ fy v )- X  5 ^ ® ^ «  A(L,)®A(Lj).
t - W - v )

and A(Lj) is a sub-bialgebra of 7 (kLj).

Notice that as A ^  is a k-algebra map then, for each q  ^  1,

-  h .  ® ' i-j - • “  y  e « " .d  • * 7  j

h j  *

(here h »  i means hp j  ip, all p e q).

Therefore, Aq(Lj) = X  k  C; j (q 2:1), is a subcoalgebra o f A(Lj). 
i j  e I(n,q)

Now let us return to the groups Ga ■ GLn>(k) (a e  s). Everything we have said 

about G applies, in particular, to Ga. So we may consider the bialgebras A(Ga). For 

each [X, V 6  na, we also denote by cpV the coordinate m ap in kG* given by, 

c^vCg) -  (»11 g e  Ga, a 6 s).

The tensor product A(Gi) ® ... ® A(Gs) is a k-bialgebra, with counit and 

comultiplication maps defined by

e® -  Eg , ® ••• ®  eof and A® » i(AGj ® ... ®  Aq )̂,
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where t  : ® (A(G*) ®  AiG^)) -» ( ® A(Ga)) ® ( ® A(Ga)) is the "twisting" m ap, 
a e  g a € 5 ac  g

i.e., Î  ( ®  (ca ® c'f)) -  ( ®  ca) ® ( ® c'a), for all ca, c a e  A(Ga) (cf. [Sw; p.49]). 
> «S  Î  a « 5

(8.7) Lemma: The k-bialgebras A(Lj) and ® A(Ga) are isomorphic.
• «1

P ro o f:  As n =  U Na, we may define a map 0 : n -» n, by 
a « !

0(p) =* p  -  m g .j, all p  g Na, a e  s.

( 8 . 8 )  Note that the restriction of 0 to Na gives a bijection between Na and n^.

Now let xjl : A(Lj) -» ®  A(Ga) be the k-algebra map defined by 
• « 1

(8.9) xj> (c^v) -  1 ® ... ®  c e ^ )e (V) ® ... ® 1, if  | i , v e  Na.

(a)

W e claim that xp is a  bialgebra isomorphism. To prove this we need to show that

(i) A s xp -  (xj> ® \?)ALj, and e® xp -  eL j;

(ii) xjl is bijective.

As A®, v  and ALj are  k-algebra maps, we have A® xp -  (xjl ® xj^Aj^ iff 

A® (cMV) =* (xjl ® xp)ALj (cuv) (p, V e  Na, a e  s). So consider p , V e  Na. By 

(8.6) and (8.8),
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( ¥ • ♦ > * * < * * ) - * • ♦ <  i  ,* h t® *tv> -1 H jT (-V )

5jix® etv) (1 ®  — ® co(n)e(T)®••• ® i )®

(»)

® (i ® ••• ® ce(t)©(v) ® ••• ®  i)  ■
(•)

-  ( l  ® ... ® ce(n )o®  ••• ®  l ) ®  ( l  ® ... ® c0 e(v)® ••• ®  l)  «

“  A® V  ( W -

The proof o f e<g \j> = eLj is similar. Hence (i).

Now to prove (ii) we consider, for each a e  s, the k-algebra map

f* : A(G,) -» A(Lj), given by, fa(c^v) -  5m, . t+ti. m,_,+v.for 411 H.v e

Also, let f : ® A(Ga) -♦ A(Lj), be the k-algebra map defined by 
a e 5

f(cj ® ... ® Cs) = f , ( c ,) ... fs(Cs), for all ca e  A(Ga), a €  s. Clearly f  = xjr1. Hence 

xjl isbijective. a

Let R(J) -  {d -  (d,,..„ds) s  Zs I d , 2 0  (a 6 s); X  d , .  r), and define

Consider any d  6 R(J), and let Da = {dj + ...  +  d a .j  + n  I \i e  d j  (a e  s, do = 0). As
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r  ■ ^  da, we have r  ■ U D,.
• « 1 « G j

Suppose i(a), j(a) g  I(na, da) (a G s). Then we have the following diagram

d , + . . .  +  d ._ | + \i t—► li i— » i (a ^  —* 111. . , +  i(a)p, 

and similar for j(a). Thus, we may define i  j  g I(n,r) as follows

( 8 .1 0 )  l p -  m ,.!  +  i(a)p; jp -  ma_! + j(a)p, if  p  -  d j + ... +  d ,_ i + p  g Da. 

It is then clear that

(8 .1 1 ) (i) l p -  jp, all p g  r. Hence 1

(ii) ( p e  lI lp G  N,} -  Da

(■“ )  p c ®0p) e«p) -  p P d C K ^ K, V  -  CK,)M  E A d>(G ^ .

(8.12) Theorem: With the notation above there is a coalgebra isomorphism 

$  : A,(Lj) -¥ AR(j)

satisfying ^ 3) -  ® ci(a)J(a). a11 »(*). j(a) g I(na, d*), d g  R(J).
•  «1
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Proof: By definition, Ar(Lj) ■ ^  2y. So, consider any i j  e  I(n j) such that

V
i  ■ j ,  and define

Ra(i) "  i p e  r l i p € Na) -  ( p e  r l j p e Na}, all a e  s.

Then, r  ■ Q  Ra(i) (since n -  (J Ng). Also, if  ra(i) -  #  Ra(i) we have 
a € S a € 5

( 8 .1 3 )  ( r , ( i ) . . .^ i ) )  6 R(J).

Let \j> be as in (8.9). Then

But, n  C0(i \ 0( j j  e  Ar  ©(Og). Hence, by (8.13), ^ (c y )  € 0  Ar (i)(Ga) Q AR(J). 
p € R #(i) r  r  a e  s

Therefore, V(Aj(Lj)) c  AR(J).

Now, consider any d  e  R(J), and let i(a), j(a) e  I(na, d ^  (a 6 s). Then, if  1, j  are 

as in (8.10), c y  €  Af(Lj), and by (8.1 l)(ii) and (iii).

( 8 .1 4 )  v<si3> -  ® n ^ coopjo6p)-  ® n ,  ® 'i ( . ) j (.)-
a e s p e RJfi ^  ^  a s i P 8 ^  ^  ^  a e j

Since AR(j) is k-spanned by { 0  Cj(a)j(a) I i(a), j(a) e  I(na, d j  (a e  s), d  e  R(J)}, 
•  « *

(8.14) shows that y (A,-(Lj )) ■ AR(jy Thus, we define ip : A,(Lj) •*  AR(j) to be the
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inc <d
0 — ♦ k e r9 ----- ► Ar(G) A ,(L j)-»  0.

Taking duals (and since all k-spaces involved are finite dimensional) we obtain the short 

exact sequence

<p* inc*
0  — ► A,(Lj)* * A W  -------► (ker 9 ) * - »  0.

Therefore,

SR(J) . Ini <p* -  ker inc*.
k-alg k-alg

But ker (p is k-spanned by cy , for all i j  €  I(n,r) such that i * j  (cf. (8.3) and (8.5)). 

Thus,

ker inc* = {£ e  Ar(G)* • Wcy) -  0, for all i j  e  I(n,r) such that i + j}

®  k i tJ -  S(Lj).

: % '

Hence Sr (j) S(Lj), and we define the isomorphism y : Sr ĵ) -♦ S(Lj) so that the 

diagram below commutes.
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where r\ is the natural isomorphism

( e
d «  R(J)

® AniO.))*
•  •  I

. 1 1  ®
d •  R(J) a c i

Ad . W  “  ^  ®  S (n .,d a; G A  □
^  d « R(J) a •  i

For each d  e  R(J), let id : ® S(na,da; Oa) -* SR(j), and 7td : SR/n  -♦ ® S(na,da; Ga)
a c  s  a e  s

be the natural injection and projection, respectively.

Let i(a), j(a) € I(na,d a) ( a e  s). By (8.12), V 9(013)- ® q(a)j(a). Thus, as

£h,t is  the basis element o f A^G)* dual to the basis element ch>|  o f  A,<G) (all 

h, l  e  I(n,r)) and a similar relation exists between 5i(a) j(a) and ci(a)j(a) (a e  s), we have

(8 .16 ) r

(8.17) Remarks: (i) As ® S(na, da; Ga) is k-spanned by all ® ^¡/ai s/a\,
■ * I  a e s

i(a), j(a) € I(na, dg) (a e  5), S(Lj) is k-spanned by ( ® ^ (a)j (a)) -  I i(a), j(a) € 

I(na, dg) (a e  s), d  e  R(J)}. Hence, for each i j  e  I(n,r) satisfying i -  j ,  there is some 

$13 -  V  M ^¡(a)j(a)) such that -  5,3.

(ii) Recall that, 1 and j  are determined by i(a), j(a) e  I(na, da) (a e  s) as follows 

V  -  " V l  + i(«V; Jp -  ma_, +  j(a)p.

if  p  — d j + ...  +  da_j + (i. ( p e d g ,  d o - 0 ) .
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Hence, ~i £  j  (resp. 1 -  j)  iff i(a) £ j(a ) (resp. i(a) -  j(a)), for all a e  s.

(ui) Suppose j  has weight o  c  A(nj), and j(a) has weight a (a) e  A(na^ )  (a 6 j). 

Then a  and a(a) are related by

° ( a)v ■ a n^_,+ V* all v c n , .

It is now time to return to the study of the module K xj.

Let X e  A j. As S(Lj) is a subalgebra of S(Gj), we may regard as an S(Lj)- 

module (by restriction).

For each a e  s, let ra(X) -  Xm  ̂ J+1 + ... + X ^ , and define X(a) e  A(na> ra(X)) by 

X(a)v -  X„,,_,+v. all v e  n,.

Note that r(X) -  (r,(X),... j,(X )) € R(J). Also, since X e  A j, X(a), -  X ^  J+1 *  ^  ,+2 

-  X(a)2 £ . . .  ^  -  Ma)ni. Hence X(a) €  A+(na, ra(X)), all a e  s.

Let Bg denote the subgroup o f Ga consisting of all upper triangular matrices in 

Ga. Consider the irreducible S(na, ra(X); BjJ)-module kx(a) affording the repre­

sentation (Cf. (6.7) and (6.9)(ii)).

From (7.8), we know that the S(na, ra(X); G J-m odule

KX(a) *  S<na» ra(^)l Ga) ®S(n,/,(X);B^ kX(a)

is non-zero, since X(a) e  A+(na, ra(X)), foraU a c  5. Therefore, if  we consider the
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k-vcctor space ® Kx/a\, we have 
a « i

( 8 .1 8 )  ® Kx(a) * 0. for all X e  Aj .

As each Kj^a) is an S(na, ra(X); Ga)-m odule, ® K u ,)  may be regarded as a
a e £

® S(na, ra(X); G J-m odule  by 
a e  j

( ®  ^ ) ( ®  < C .® lk)> - ® (^ .C .® lk ) .  all ^a.Ca e S (n a. r a(X);Ga) ( a e j ) .  
a « *  a c 2 a « 2

But, since we have the k-algebra epimorphism

S(L,) - !£ - ! .  SR(J) ® S(n,.r„<X.);G.)
» « 1

(where y  is the isomorphism defined in (8.15) and Tt^x) the natural projection) we 

may also regard ® K^(a) as an S(Lj)-module via

It is our aim to prove that, under these conditions, we have the following result.

(8 .1#) T h e o re m : U t X e  Aj\ Then Ku  « id  ® KX(i) are isomorphic 

S(Lj)-modules.

As an easy consequence o f (8.19) we have the corollary.
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(8.20) Corollary: Let X « A (n j). Then KXJ 0  iff X 6 Aj. 

Proof: By (8.2), (8.18) and (8.19), the corollary follows. □

(8.21) Remark: Let X e  A(n j )  and let J  be any proper subset o f  n-1. Then we

know from 57 that (k;)° ■ kx. Also, by (5.9), ® S (G ') -  S(GÎ) and <>S(B-) -  
S(B )

S(B+). Hence by (5.6), (Hom sg,-, (S(G;), k£))° ̂  S (0 ^  ®S(B. ,  kj. -  Ku .

Thus, from  (8.20) we obtain

HomsfB-, (SCO;), k^) 4 0  iff \  6 Aj.

Note that in the case when J ■ n -1 . we have used the fact that 

Homs(u-)(S(G), k^) ^  0 to prove that Kx ^  0, for all X e  A+ (cf. proof o f (7.8)).

Proof of (8.19) Let X e  A j. Define B j -  B +r»L j.

Then S(B j) is a subalgebra both o f S(B+) and o f S(Lj), and we may consider the 

S(Lj)-module.

S(Lj) ®s(Bj) kX

(here kx being regarded as the restriction of kx to S(Bj)).

Now the proof o f (8.19) follows from the next two lemmas. □
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(8 .22) Lemma: Let X e  A j. Then ® Kwa\ and S(Lj) ®s(B+) ^
a s  i  J

isomorphic S(Lj)-modules.

(8 .23) Lemma: If X e  A j, the S(Lj)-modules K x j and S(Lj) ®s(Bj) kX 

isomorphic.

Proof Of (8.22) Let X e  A+(n,r). In this proof we write

S(G*) -  S (n,,r,(X );G ,) and S (B ^  -  S(n,,r,(X );B j) (a<= s).

As S(Lj) is k-spanned by f t i j  I i j  e  I (n j), i » j}, S(Lj) ®s(Bj)kX is k-spanned by 

® lk  I >d 6 I(n,r), i -  j).

But, if  j  * X then ® lk ■» ^¡j ® lk  “  5ij ® lk  "  Hence

(8 .24) S(Lj) ®s(B J^X is k-spanned by {^¡j ® lk I (i j )  e  I(n,r), i = j  and j  e  X).

Now consider the Schur algebra S(B^). By an argument similar to that used in the 

proof o f  (3.5), we can show that

( 8 .2 5 )  S(Bj) hask-basis { ^ i j l ( i j ) e  C2, i = j and i£ j} .

For each a e  s, write (Oj^a) ”  ^S(GJ ®  Ik 6 Kx(a)- Then we may define a k-linear

map, 0 i :S (L ,)® S(B^ k x -» ® K ^ ,  by 
1 » « 1

®l($ ®  Ik ) -  *r<X) ®  t - W .  •“  l «  S (L j)
a s  s
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(recall that Jtr(X) V_1(§ )e  ® SiG*) and y  is as in (8.15)). 
a€  a

To prove that 9j is well defined, consider any basis element $jj of S (B |) (i.e., 

(i j )  e  £2, i -  j  and i £  j), and any 5 6 S(Lj).

I f  j  * X, then ® l k -  5 ® l k -  0. So suppose that j e  X.

By (8.17)(i), 5ij -  §13 -  V Vl( ® §i(a)j(a))- fo r  some d  6 R(J) and 

i(a), j(a) e  I(na,da) (a e  s). But, by (8.17)(ii) and (iii), i(a) £  j(a), and j(a) has weight 

X(a) €  A(na, ra(X)), for all a 6 5. Hence d  -  r(X), and §i(a) j<a) e  S(Bj) (a e  5). Also

§K*)j(a) "XGO “  ^K*)j(i) ®  !k -  lS(OJ ® §Ka)J(i) !k -  KX(a)<§i(a)j(a))tOX(a)- 
Therefore

®l(§ §ij ® Ik) -  **X) ¥**(§) *1(X) ¥ " '(§ y )  ( ®  ©X(a)> “
a e  5

-  *rfll) V 1®  *r(X) V 1 V*rfli) t K.)j(.)) < , f  f “ *<»>> "

-  *« l) V ' f f i  < ®  5k.)J(.) ®)K.)) -

■ kKD <5i(i)j(i)) ••• Ki(i)(i<i)j(i)) ®i<5 ® t o  -  

10,(5  ® l k) ; if  i(a) -  j(a), for all a e  s

\ 0  ; otherwise.

But. by (8.17XU), i(a) -  j(a) (all a € 5) iff  Ì  -  j ,  i.e., iff i -  j. Hence 

0j(5§i j  ® Ik) if i ■ j  «  X, and zero otherwise.

On the other hand, 0j(5 ®  5i j  “
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{1; i f i - j c X

0; otherwise.

Hence 0 , ( % j  ®  l k) -  0 ,(^  ® fcj Ik)-

Thus 0 j is well defined. Also, since y 1 is a k-algebra map, 0 t is an 

S(Lj)-map.

Now, to prove that 0 j is  bijective, we consider the k-map 

e 2 : S(Lj) given by

02( ®  ( 5 .® l k» - ( V W  ® W ® l k .  *H 5 .6  S (G ,) ,a e s .
a e  s  a e  s

In a similar way to that used for 0 j ,  we can show that for any i(a), j(a) 

6  I(na, ra(X)) such that i(a) ^ j(a ) ,  and for any ^  e  S(G„) (a e  s), there holds

( 8 .2 6 )  e 2 (^® (^ . ®  10) -  02 (m® ( « .» t iO O o w lk » -

l  (V l^X) ( •  5 ,)) ®  lk ; if  i(») -  j(*) «  X(>). Ill I E !

\  0  ; otherwise.

A , S(Bj) is k-spanned by I i(a), j(») e  I(n,, r,(X)). i(a) S j(a)>, by

(8.26), ©2 is well defined.

Now using (8.24) and the fact that if  i j  e  I(n,r) satisfy i = j  and j 6 X then
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$ij ■ V MX) (^® ^i(a)j(a)) for some i(a), j(a) e  I(na, ra(X)) (a e  s), it is easy to see 

that 0j* = 02 □

Proof Of (8.23): In this proof we write O j ■ {(i j )  e Q I i -  j).

As G j is the sc mi direct product Lj U j, each g e  Gj may be written in a unique 

way g -  £u, for some £ e  Lj, u e  U j. So we may define a k-algebra map 

d : k G j -» k  Lj by, d(g) » £ (the multiplicative property of d comes from the fact that 

U j is a normal subgroup o f G j). So we have the following diagram

k O j  - 2 - ,  k L ,

T , l  i T ,

S(0,) —-  -• S(Lj)

and we would like to define 8 :  S(Gj) -»S(Lj) so that the diagram commutes.

For this we only need to prove that, for any y  e  kGj, T^y) -  0  implies Tr(d(y)) =» 0.

Consider any £ e  Lj, u €  u j -, (i j )  e  f ij ,  p  e  r. Then (ip, jp) e  Na x Na (some 

a 6  s) and we have

But = 0  unless p  e  Na, in which case u^jp » 0 or 1, according as p  #  jp or
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p  -  jp. So (2u)yp -  for all p e r ,  which implies

( 8 .2 7 )  ( A O y - l i j  . all ( i j ) e n , .

Now, let y be any element o f kGj. Then y - Z a  ̂  Zu, (a^, e  k) sum over a finite

number o f elements l  e  Lj and u € Uj , and

^r(Y) m ^  atu Tr(fu) = S  aiu ( X  £jj)
* “  I n  ( i j )  e  n  J  J

'V

‘i j

As {^ij I ( i j )  g  Q , i £  j} is a k-basis o f G j, T^y) -  0  implies X  atu(*u)ij -  0, 

for all (i j )  e i l , i ^ j .  In particular we have

^  aiu (^u)i j  -  0, for all 0  j )  g f l , .

But from (8.27), we know this is the same as

( 8 .2 8 )  X a f c i i j - O . f o r i l l  ( i j ) s n , .

Thu,. T,(d(Y)) -  ^  fl(u T / f )  -

S  (ijM Q, '‘J ‘ (ij) 5  Q, i  *<" ‘ °- by (8 28)'
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So T ^ y) -  0  implies T,(d(Y)) -  0, for all y «  kG j.

Now define a k-linearm ap

1̂ : K U  — ►  S (L j )  ® s (b J  k X 

by

i l l f t  ® lk) -  T O  ® l k. aU $ « S (G ^.

To prove this is well defined we need to show that for any b e  B+, and any 

4 e  S(G j), there holds

Tlift T,(b) ®  lk) -  lli(4  ®  T|(b)lk).

For this note that

(i) d(b) e  B |, so Tf(d(b)) € S(B|);

(“ ) Kx(Tr(d(b)) -  KX(T^>)).

Henee

tll(4 T /b ) ® lk) » 8(4 Tj(b)) ® l k =» (since 8 is a k-algebra map)

-  8(4) SOVO») ® l k -  5(4) T /d ib ))  ® l k -  

8(4) ®  Tr(d(b))lk -  Kx (Tj(b)) 8(4) ® l k -  

- l l l < t « T l<b)lk).

On thè other hand it is easy to see that we may define an S(Lj)-map
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il2 :S (L j)® S(BJ>kx —  KXJ 

by

tl2<$® D - $ ®  1. *U S(L,).

Since U j acts trivially on kx and the restriction of S to S(L,) is the identity map on 

S(Lj) we have ti2 “  T|“*, hence the lemma. □
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3. 2-STEP PROJECTIVE RESOLUTIONS

§9. The radical of Vx

The notation introduced in this chapter will be in force hereafter.

Recall from §4 that for each a  e  A(n,r) we choose a basic a-tableau T“  and 

define £(a) e  I(n,r) by

1 1 1

2 2 . . 2

n n . . n

(row 1) 

(row 2)

(rown) .

Clearly 1(a) has weight a  and the stabilizer, P ^ ,  of t (a )  in P coincices with the 

row stabilizer o f  T°.

(9 .1 ) Definition: Let i e  L W e say that the a-tab leau  Tj* is ro w -

semistandard if  the entries in each row o f  Tj* are weakly increasing (£) from left to 

right.

Let 1(a) -  (i e  11 i £  1(a) and T? is row-semistandard}.

W e use X -  (Xj,...An) to denote an arbitrarily chosen element of A with basic 

X-tableau
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(9.2) T* -
•11*12 • ■ * u .

»21*22 a^ 2

•nl *n2

and we write l  -  £(X), if  no confusion arises.

W e are interested in describing the basis (6.3), of -  S(B+) ^ ,  in terms o f X- 

tableaux. For that we need a small lemma

(9.3) Lemma: Suppose i e  I, i £  t  and is not row-semistandard. Then there 

is i ' e l  such that i ' ££ , isrow-semistandard and (i, t) ~  (i't l).

Proof: Suppose i is in the conditions o f  the lemma. Then there is n  e  P£ such that

Tj^ is row-semistandard (since P£ equals the row-stabilizer of T*-). As 

in  £  In  -  l  and (in, £) -  (in, In) ~  (i, f). we make i ' -  in. □

(9.4) Proposition: V \  and rad have k-bases

X , -  {$i>£ I i 6  I(X)} and X2 -  {$i>£1 i 6 I(X) and i + 0 ,

respectively.

Proof: As P£ coincides with the row stabilizer of T \  the elements o f I(X) are all 

distinct and so linearly independent. Thus, the result follows from (6.3) and (6.5), once

we have proved that if  (i j )  e  f l '  and j  e  X, then there is i ' e l  such that i ' £  f, 

is row-semistandard and ( i\  f) ~  (i j ) .  But this is clear from (1.3) and (9.3). □

Our next step is to determine a set o f S(B+)-generators o f rad V\.
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For each V e n -1 . and each non-negative integer m, define A^J*: Zn -♦ 2 "  by 

A™ (*i.....*b) -  (* |....^v + m, zy+j -  all c  Z".

If m ^  Xy+i then A™ X e  A(n,r), and we choose the basic A™ X-tableau to be

Thus

(»■5> • * « < * )  -

5 This map, A™, is a raising operator, as defined in [M; p. 8J.
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To simplify notation we write X(V, m) ■ A™X, and £(V, m) »  f(A™X). Also if 

m > Xy+i  we make the convention that ^vjn),£  ■ 5l(v,m),i(vfm) ■ 0. 40(1 

VX(Vjn) -  0.

(9.6) Remarks: Let v  €  n ^ i  and 0  £  m £  Xy+j. Then

(i) £(V, m) is the element £(V, V+l, m, X), defined in (4.5), and £(v,0) -  £;

(ii) /(v , m) has weight X(v,m);

(iii) T^v> mj is row-semistandard and if  m ^  1 then £(V, m) < L Hence 

*U(v,m),t €  rad for all m i l .

(9 .7) Lemma: X -  { ^ Vt v e  n -1 . 1 £  m* £ Xy+j) is à set o f  S(B+)- 

gcnerators o f rad Vx.

Proof: Let M be the S(B+)-module generated by X. It is our aim to prove that 

M -  rad Vx.

By (9.6)(iii), it is clear that M s  rad Vx. To prove the equality we will show that 

all the elements of the basis X2 o f rad Vx (defined in (9.4)) are in M.

Suppose i e  I satisfies (9.8) below

(9.8) i <  £ and T^ is row-semistandard.

Then there is p  6 r  such that ip < ip. Suppose this situation occurs for the first time in 

row V +  1 o f  T \  where v  e  n-1 (notice that this can never occur in row 1 o f T \  

since iat|i =• £3^ -  1, for all 1 £  p  £  Xj). Then
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(row 1)

(row v) 

(row v+1)

where 1 ^ t < ( i S V  +  l  and 1 £  m :£ Xy+j. As x £  V and i £  i ,  we have 

i £  Uy, m). Thus ^i,e(v^n) 6  S(B+). But 5t(v,m),£ e  X and so $i,£(v,m) $£(v,m),t e  M- 

We now analyse this product

^i.Kvjn) * SJ D ^'5^ •

where 8  ru n s  over a transversal D of the set o f all double cosets P j^ .m ) 8 p£(vjn),£ 

in Pjcvjh). and >j •  [ P jj^  : P a j^v jn )!  <«nd 1 a  D).

Suppose first that 6 6 D and £¡5 * »  ^  t. Then there is jc e  Pt  such that i8 = iw, 

and so 5  = a n , for some o e P j .  As 8 e  P^Vm), we have £(v,m)07t =■ l(V,m). 

Hence f(V ,m)o =■ f(V,m)7i-1. But t r 1 e  Pt. Thus

T* -1 1 . . .  1

V . . .  V

V V + 1 V V + 1 ... V

(row 1)

(row v) 

(row v +  1)

(rown)
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i.e., 1 * ^ - 1  is obtained from  by permuting the elements of row V + 1

amongst themselves. On the o ther hand as o e P j  and T < p , there are no V +  l 's  in

the first m-entries of row V +  1 of Hence, liv^n)jr*  -  £(v,m)o implies

f(V4n)jr* -  Hyjn) -  f(v ,m )o , i.e., o  c Pifl(v,m), x e  PqyjnM 40(1 

p i.i(vjn)8 pf(vjn)^ -  p i^cv^n) p l(vjn)^- Therefore 8 - 1  and ^  has coefficient 

*1 -  tP u : p i,t, t(y,n)L But since x < jx, we have Pi>£ -  P y , ^ y  Thus a, -  1. 

There are two possibilities now:

(i) If x -  V we have D  -  {1}, and so ^  -  5i,t(v,in) 5t(v,m),i e  M ,as desired.

(ii) Suppose now x < v .

For each j  6 I(n,r) define P(j) -  (Pi(j).-.Pn(j))» where P^(j) is the sum o f the entries 

in row n  of T p  and order these vectors lexicographically.

Let 8 e  D\{1}. Then Tyj is  obtained from by exchanging some o f the x's in 

row V +  1 with v's in row V, and keeping fixed all other entries. As x < v, we will

then have P(i8) < |5(i). If T?g is not row-semistandard there is tc € P£ such that

TjgK is row-semistandard and 5i8n,i -  ^ 5 £. Also, as Jt e  P£ and i £  f(v,m) < t, we 

have PfiSrt) -  P(i8) < P(i), and iSre i  £(v,m)8n -  £(v,m)jc < fn  -  t  

So we have proved that,

(9 .9) If i e  I satisfies (9.8), there exist a  subset I ' o f  I(n,r), tj e  M and integers 

aj (j e  I1) such that

(■>

(ii) j  satisfies (9.8), all j  c  I ' ;
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(iii) f t j X f t i ) ,  all j c l ’.

If I' is the empty set 5i,i 6 M, as required. Otherwise we apply (9.9) to each j  e 

I'. As the set {[Xj) I j  8 I(n,r)} is finite, the process must stop.

Hence X j -  (&,£ I > satisfies (9.8)} £  M, and the lemma follows. □

As we are interested in a minimal set of generators o f rad V^, we need to make 

some more calculations.

Consider V e  n-1. and integers q,m satisfying 1 £  q  £  m £  Xv+j. We have 

tableaux

t X‘«v-n») V . . .  V

V. . . v v  + 1 . . . V+1

m

V . . .  V

V. .V V + 1  . . . V+1

q

(row v) 

(row v+1)

(row v) 

(row v+1)

It is not difficult to see that Pi(v,q) ■ p£(v,m), Kyjtd pt(v.q)4 and

m!
q! (m-q)! (.1. Thus, by (2.7),
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(®-10) 5t(v.m), *(v.q) tlCv*).! “  [ q  J £*(v,in),l-

Note that q £ m  implies f(v,m) £  t(V,q) and so ^ ^ n),|(vIq) 6  S(B+).

Lets consider first the case when char k ■ 0. Then, taking q -  1 in (9.10),

^ v .m )^  “  ¿ ^ ( v jn ) .  !(v,l) $«v.l),£. 411 K+1. v « jti*

This together with (9.7) give

(9.11) If char k -  0, rad V* is S(B+)-generated by {^«(v.i),«*v  6  n ~ ^ - 

Now suppose char k = p ^ 0. We will use the following lemma.

(9.12) Lemma: U; (22.4)). Assume that a,b are positive integers and

a -  a© +  a t p + ... +  at p* (0 £  a^ < p, a^ e  Z)

b  -  bo +  b\ p + ... +  b, p‘ (0 £  bp < p, b^ €  Z).

Then ( ! ) ■ ( » )  W - W  (modp). In particular, p divides i f f  < b^, 

for some p..

Let pi S m <  p**-1, i.e., m  ■ m© + m j p  +  ... +  m j pd, where 0  £  m^ < p, 

n y e  Z (p g d) and m^ + 0.
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Then, from (9.12), we know that p + ^pdj and by (9.10),

'  7 ~ X  Ifvjrt

w
Thus, similarly to the previous case, we get

(9 .1 3 )  If char k  «  p, rad Vx is S(B+)-generated by

{W * > . i  l v « n z L i s p i » sV * i> -

It is our aim to prove that these sets are in fact minimal sets of generators o f rad Vx- 

For this we need to define a  grading of S(B+).

Let i j  e  I have weights a  and p, respectively, and suppose that i £  j. By (1.10), 

P < a .  Thus, there are non-negative integers such that

" v w t - Ar ,A? i ~ Ar v |5>

where eim +i ■ (0.--.0, 1, -1 , 0 ,....  0) e  Zn (p  e  n-11.
000*+»

Hence, a - p e H ' a i  £  z^  e„ „+J I z ^ e Z ,  Zn^O (p € n - l ) > (i.e. a  -  P is a
p  « n-1

sum of positive roots). In these conditions we say that ^¡j has degree d(§jj), where

d ( i i j ) - o - P .
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For each o  e  *¥, let S(B+)0  be the k-subspace o f S(B+) spanned by all (i £  j) 

o f  degree o . Then

(9.14) S(B+) ■ ® S(B+)0
o «  'V

is a grading of S(B+).

In fact, suppose that i, j ,  h, f  e  I have weights a ,  p, P', y, respectively, and that 

i £  j, and h £  f. Then ^  -  0, unless P » P'. I f  this last condition holds, there is 

j t « P  such that jn  -  h, and so

i l j  t fc f -  5i«Ji W  ■ ^  *8 ■

where the sum is over a subset {5} of Pf,, and a§ are non-negative integers.

Since iitS has weight a ,  we have

■i(ilrfj) -  a  -  y  -  ( a  -  P) + (P -  y) -  d ( ii j)  +  d(^h^).

for all 5. Hence

(9 -1 5 ) 5ij S(B+)iKiij)-nl(5»/).

It follows now easily that S(B+)a  S(B+)(J- s  S(B+)a+a*, for all a, & e  4/ . Hence

(9.14) is a  grading of S(B+).

(9 .16) Proposition: Let char k -  p (* 0). Then

l S p ^ S X « , }

is a minimal set of S(B+)-generators of rad V^.
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Proof: By (9.11) and (9.13), we know that Y generates rad Vx. Thus, to prove the 

proposition, we only need to show that if  Y ' c Y  and S(B+)Y' -  rad Vx then 

Y ' -  Y. Suppose this does not happen, i.e., there is Y ' satisfying

Y ' j Y  and S(B+)Y' -  rad Vx.

Then, there are some V €  n -1 . and some non-negative integer d such that 

1 £ Pd £ ̂ vfi and € Y\Y'.

A >  s  rad VX, there are n , ....i)q «  S(B+), and ....«  Y '

such that

■  i^ 1 ’l l  5«V,jA),t-

Writt 'Umo £ a ’Wii* (*i?*k)- Then
-  1̂ 1 (iJ£  n . »ij 5 lj 5«v,.[A).t ■

But, since distinct £fj,'s are linearly independent, this implies that there are s  6  q  and 

iS f(V 8,pd») satisfying

( * ■ 1 ^ )  5i.tCv.jA) itev.jt’.W "  “S5iS.t -  * 5t(v,pa).t +  5 . ^ VD. ■ « 5 iS .l.

where:
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(1) D is  a transversal o f the set o f double cosets 8  pt<vl.p‘1.).i in p i(v,.pd.);

(2) D ' -  {6 « D I and ag -  [ P ^ : P*,*, t(v|tp*.)l, all 8 6  D;

(3) a -  a8 satisfies a #  0  (mod p).

Write d ( ^ AViipa.)) -  ^  5 1 ^  e ^ +1 (m ^ e  Z, n ^ ;»  0).

Then, (9.17) and (9.15) imply d (tg v  ¿«),| ) -  +  d(^CVl4A)^). >«-.

Pd Ev.V+l = 51 til« e ^ + j  + p ^  Ey .v +l
H « Qzl

and, s in ce  th e  v ectors e ^ + i  (|X 6  n - 1 )  are lin early  independent o v er IR, th is im plies 

( # .1 8 )  V, «  V, my + pd* =* pd, and m ^  ■ 0  i f  p. 4 V. ’

(i) Suppose first p * 0.

Then, from (9.18), we have pd -  pd« -  1 and my -  0. Thus,

Sic»**M -  Sltv.lW ■ Sliv.jAM €  Y’ •

which contradicts our hypothesis.

(ii) Suppose now that p 4 0.

I f  pd -  pd« we get the same contradiction as in (i).

Thus, let pd > pd# and consider any 8 e  D'. As vs -  v, we have

(a) i £  «(v.p1*.) implies i8 ^  f(v,pd.) (since 8 e  P^V p«i,));
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(b) -  ^/(v,pd),i implies i8 -  ¿(V.pdjjt, for some n e  Pf.

Hence

>1 »Ä

(row 1)

(row v) 

(row v+1)

(row n)

(Le. i8x -  f(V,pd), for some x e  P a n d

>6 "  1 P* . I : f'iSXKv.p'.)! -

Therefore, a = as ■ 0  (mod p), which gives a contradiction. 

Thus Y is a minimal set o f generators o f rad Vx- □

J ■ 0  (mod p).

§10. A 2-step minimal projective resolution of k \  and its 

applications to Weyl modules

Now, that we have defined a minimal set of generators o f rad Vx. it is easy to 

determine a 2-step minimal projective resolution of kx, i.e., an exact sequence in mod 

S(B+)

9 o
P0 ----- * k x - 0
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where P0 and P j are projective S(B+)-modules and ker t jy c ra d P ^ ,  p  -  0,1.

We know from 56 that Va  -  S iB * )^  ( a  6 A) is a projective S(B+)-module. 

Also, by (6.8), there is an S(B+)-epimorphism K \  : Vx -* kx (defined by 

K'x(Çi^) -  1 or 0, according as i -  t , or i <1 (i £  £)) with ker K \  -  rad Vx- So, 

we make

(1 0 .1 )  P0 - V x  and <Po-rX.

Now, suppose that char k  ■ 0, and define <Pj : © ^X(v,l) ■* Vx. by

<Pl v . ^ 1 n ,)  ■ V ^ - 1  1,v *11 l x  *  v Kv.l>-

Then, <pt is an S(B+)-m ap and, since e  rad Vx,

Im «pi -  tpi (^ ©rç  ̂ Vx(v,i>) C rad Vx- Thus, if we prove that €  Im <pi

(V€ n -1). by (9.16), we will have Im cpj -  rad Vx- But this is easy, since 

$X<v.i) «  v X(v.i). and

<Pl($X<v.i)) -  €%(v,l) £t(v.i).l "  ^i<v.l)^

Hence

9 j 90
v f n a  v * « >  — * —  0

is an exact sequence in mod S(B+).

Similarly, i f  char k »  p, we obtain the exact sequence
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©
v «  n-1

9 ! 9 0
® V*0>4*) ----- •  VX—  kX — 0

where <pj is defined by

(1 0 .S )  <p, <y  2 .  X  X  1 (v jA )S tc» * 4. ) *

i s p' s V i

>u ncv^i.).  v ^ o -

Now, we know that ker cpo = rad Vx. Thus, to prove that the 2-step projective 

resolution o f  kx, defined above, is minimal it is sufficient to show that

ker<p, c  ©  © n iV x ttp i.)  ( - rad( ©  ©
v « l t l  1 1 , % » ^ ,  v « l t i  I S p ^ iX ^ ,

Suppose this is  not true, i.eM there are rj(V>p4,) e  Vx(viP4,) such that

91 (v i - i  ?  'k v i '. ) )  -  o  and not*«) * ™d Vx<p,p*).

fo r some [L e  n-1. and some pd such that 1 £  pd £  X^+1.

Write C - { ( v . p 'S l v s i t l ,  1 S p4* S X v n , ( v .p 'S #  (p.pd)}.

Then 91 v ̂  t ?  -  o ¡ff nj,,*) nc Km*
’  ^ l i p ^ V i

But as n o ,,* )  * rad V j^ p t) , we have
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1V w -> -  *i ♦  £  . *i b ju u r t-
i<«kijO

where ^  e  k  and aj ^  0. Thus

(10.3) *1 V p J).(+ £  « l i i ^ y )  -  ^-llcÎK cW -
i < W \  c , C

But, since i < fip.P1’) implies iS < tftl.p i) («11 S e  P ^ y ) ) ,  the coefficient of 

îCn,pd),i on the left side o f (10.3) is ai 0). On the other hand, we know from 

(9.16) that, this coefficient on the right side o f (10.3) is zero.

This yields a contradiction, and so

•ter 9 ,  G r id  ( ©  »  V j^ y ,) ) .
V « ! t l  I S p ^ V t

Hence we proved the

(10.4) Theorem: Suppose c h a r k - p f è O ) .  Then the sequence below is a 2 - 

step minimal projective resolution o f  k*,

® ®  V ^ y . ,  A  Vx- \  kx —  0 .
v « l t x  i s p ' s ^ ,

where <Po and <p1 aiethemapsdefinedin(10.1)and(10.2),respectively.
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(10.6) Corollary: Suppose char k -  p  0) and let J be any subset o f n-1. 

Then, if X €  A j(n j)  the sequence below is a 2-step projective resolution of

U  J i  S i O ^ y , )  «O fo -Ü Ü  Ku - .0, 
v « « = l

who* Vo -  FjCPoXIj *™i V l -  f u  F ,(» ,) ( U  - II  f£{, ).
v « l t l

Considering the particular case o f  J ■ n-1. we have

(10.7) Corollary: Suppose char k  = p (£ 0). Then, i f  X e  A+(n j)  the sequence 

below is a 2 - step projective resolution o f the Weyl module K*.

H  -U  S ( G ) ^ - ^  Kx - .  0.
v « l t l  l * p ' ,* » w ,

who* Vo -  Fp-iCVoXiitJ. •"<«

V l -  ft .n - l  F n -l(T l) (  H
V . n-1

-U
' « P ^ V l

& | ! W -
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4. S(B+) REVISITED

In this chapter we will look in more detail at the Schur algebra S(B+), in particular 

at its Cartan invariants.

|11. The spaces Homs(B+) (Va,Vx)

W e recall that X is a  fixed element o f  A(n,r), T* is the basic tableau (9.2) and

l - K M

It was proved in (9.4) that V \  has k-basis I i 6  I(X)}, which implies the 

following.

Proof: As dim* V*. -  #  I(X) = number o f X-tableaux of the form

1 ... 1 (row 1)

1 ... 1 2  .... 2 (row 2)

1 . .1 2 . . 2  --------- p . . . p (row p)

1 .. 1 2 . .  2 ... n .. n (row n)

we have that dim* -  p ^  ... p ^ ,  where, for each n  e  n, p ^  

sequences o f  integers

number o f distinct
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1 ... 1 2  ... 2  | i  ... | l  , av 2 0  (V 6 u ), I  » v - L ,
____ _______ ________  v * u

»1 *2 «n

Now let a  be any element of A(n,r) and consider the k-space 

(V o . VX>S(B*) -  H om S(B+) (V0, Vx).

As V0  -  SCB+^q  and Vx -  S(B+)£x there is a k-isomorphism

( 1 1 .2 )  (V0 , Vx)s(B*) *  4 a  S ( B ^ x  -  (Vx)° .

(11 .3) Lemma: Let a  e  A(n,r). Then the following statements are  equivalent

(i) (V o ,V x )s(B -)^0

(ii) X < a

(iii) a  = A™1... for non-negative integers 6

Proof: (ii) and (iii) above are obviously equivalent Now let a  e  A(n,r) and 

consider ^  S(B+)£x-

As S(B+)^x ■ © k there holds

5 aS (B + )^x - 0  k f c , .
i «  I (X) *

6 Recall that A™1... A n J j’X ”  0 - ,  +  n ij, X j +  m2 -  n il,...A n  "  m n-l)*
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Therefore ^  S(B+)£x 4  0  iff  there is i 6 I(X) with weight a .  If such i exists, 

then i £ f  a n d ,b y (1.10), X ^ a .

Conversely if  X ^  a  let i be the element o f I(n j )  whose X-tableau has the

first (Xj entries equal to 1, the next a 2 entries equal to 2.......Then i e  a  and since

<*i 2  Xj, a |  +  a 2 £  Xj +  Xj,..., i  6  I(X). Hence X 3  a  implies 5a S(B+)5x, 4 0. 

Now the result follows from (11.2). □

• It follows from the fact that d in*  1 ^ - 1  (all a  €  A(n j ) )  that k is a splitting 

field for S(B+). So (cf. [CR; (54.16)1) the Cartan invariants c j^  o f  S(B+) m aybe 

defined by

cxa -  d in*  (Va , Vx)s<b*) -  d in*  (V*)«.

Recall that ( V j^  -  5x S(B+) ^  ■ k£x, (cf. §6). Also, by the previous lemma, 

d in*  (Va , Vx)s(B+) ^  0  iff X ^  a .  Thus we have the following

(11.4) Theorem: The Cartan invariants c^a of S(B+) satisfy (i) and (ii) below.

(i) cxo 4 0  iff X  3  a.

(ii) c u - 1 .

I f  we arrange the elements o f A (n j) in some total order < such that X ^  a  

implies X < a ,  and use this total order to arrange the rows and columns of the Cartan 

matrix C  o f S(B+) then, by (11.4), C  takes the unitriangular form



1

... c ^ - Oow X)

(column a )

Now let a  € A (nj) and suppose that X 3  a ,  i.e., a  -  A™1 ... A ^  *X, for non­

negative integers ni|,„.tnan- | .

As (Va . VOs<B») *  i a  S(B*)ix -  it is essy to see that
i c  a

(1 1 .5 )  (Va , Vx)s(B+) has k-basis {• ^  I i e  I(X), i e  a} , where, for each 

i e  I(X) satisfying i e  a ,  • ^  is the element o f (Va , V%)s(B+) defined by

W O - 4 ? U . f o r a U  $ €  Va .

Therefore dimj.(Va , Vx)s(B+) ■ #(i e  I(X) I i e  a} = number o f tableaux of the type

( 1 1 6 ) (row 1) 

(row 2)

(row|i)

1.1 bn-U bn-l.n-l a n
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where

V  n"*
b,,,, 2  0  Ol e  i t l ,  V «  i t t l ) ;  I  b n , . « , - » , ;  Z b„v ■ a *  V -  2 ....n - l.

n « nzl u -v -i

This tableau determines a matrix b  -  (b ^ v V v e jti  whose entries b^v satisfy

(11 .7) (i) b^v «  Z; b^v £  0; and if V > p  +  1 then b^v -  0  (all p , V e  n-1).

0 0  M ^  '  “ * ’  X ,: v - * ~ - t .

(Hi) v Z ^ b ^ , -  V , , .  u -  U ..J1 -2 ; v  Z ^ b . _ ,  v - l , - a .

Conversely, given a matrix, b = (bpv)p,v e j ^ ,  satisfying (11.7) it determines a 

tab le a u !^  o f the type (11.6), by the rule: is row semistandard, all the entries in

row 1 o f are equal to 1, and bpv is the number o f V's in row p+1 of T p  for all

n . v « a z L

Thus we have a bijective correspondence, i f  «-» ( ty v)u>V£!1_i , between the sets

f l f  I i «  I(X) and i 6  a )  and * a A )  -  (b  -  I bpv satisfies (11.7) for

all u . V € n-l>.

This proves the following.

(11.8) Lemma: W ith the notation above, we have

cX o  "  d im jtfVa, V x> s(B +) -  » « (a ,X ).
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The remainder o f this section will be dedicated to the study of the Cartan

invariants c^q. in the case when a  -  A™1 ... a JJ'^'X, for non-negative integers 

m 1,...,mn_ | satisfying

m^ $  , all v  e  n -1 .

The case mv >Xv+i > for some V e  n-1 . will be studied in 512.

(11 .9 ) D efin ition: Given integers mj.-.-.m, ( s £ l )  let ©(raj.—.m,) be the set 

o f all matrices, d -  (d^v)^  V€j. whose entries satisfy

(11 .10)

d^v €  *  : *Vv *  0  ; d(AV » 0  if  V > p  + 1 , (U. v  e  s)

I  ; V € *
P « I  K v
dv,vn - 2 t (< V i., + ...  +  i„ )  : V «  1=1.

Define n(m1,...^ns) -  #  ®(m1,..^ns).

Note that if  < 0, for some l i e s ,  then ^m i,...,!!)^  -  0  and n(m1,...,ms) -  0.

(1 1 .1 1 )  P ro p o s it io n :  Let a  -  A™1... A ™ ^ . e  A(n,r), where m 1,...,m„_| 

are non-negative integers satisfying ^  Xy*j, for all V e  n -1 . Then

cXo "  n(m1,...,mn_1).
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Proof: Let a  satisfy the conditions above. Since we know from (11.8) that cj^a  -  

#  ’Bia.X), to prove the proposition we only need to show that #®(a,X) -  

#®(m1,...,mn. i) .  For simplicity we shall write s -  n -1 .

As mv £  Xy+i (V €  s), we may define non-negative integrs qo, qj.-.-.q, as 

follows

Then cxy+i -  +  n v n  -  -  m ^ j  +  qv (V e  s-1 ) and the set o f equations

(11.7)(ii) and (iii) can be rewritten

Hence we have the following new expression for ®(a,X)

(1 1 .1 3 ) « (a ,X )-  i b -  I b^v satisfies (11.12), aU ) i ,V € s ) .

qv -  -  my, for all V € s-1 . and qo ■ q* ■ 0.

So (11.7) is equivalent to the set of equations

( 11 . 12 )

Now for each b e  ®(a,X), define 0(b) e  ®(m|,...,ms), by
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. i f v ^ n + l
e c b ^ v -

L* W r S »  • V - n  + l ;  all H ,V € 5.

Since qv ^ 0  (V -  0,...,s), it is clear that the m ap 0 :  ®(a,X) -» Dim!,...,!!!,), which

takes b  € s(a ,X ) to 0(b) e &(m1.....m ,), is a bijecdon. Hence #«(a,X ) -

#  ^Cmj.....m,). □

This proposition shows that the integers nCnij.....m„_i) have an important role in

our work.

In some cases they are veiy easy to calculate. For example let n = 3, and let 

m lt m2 be any non-negative integers. Then

Now it is easy to see that d  e  © (m ^m j) i f f  d j i  ■ mj -  d jt’, ¿22 “  m2 -  <*2ll 

d2j e Z and 0 £  d2j £ min (m|,m2>. Therefore, n(mi,m2> -  » © ( m j^ )  -  

min (mi,m2) + 1, and we have the corollary.

(11.14) Corollary: Let a ,U A (3 ; )  and suppose that a - A ^ t A ^ X ,  for 

non-negative integers mi,m2 satisfying mt £  \2. Then

exa -  min (mi, m2) +  1.
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In general, n(m j.....m ,) can not be expressed in such a nice way. W hat we will

do now is to determine a generating function for these integers, which enable us to 

establish some relations amongst the exa*

Let s be any positive integer. Take s indeterminates X j , . . .^  and define the 

formal series

(11.15) Proposition: With the notation above, we have

where P(xl ,..,x8) «  Ü
1 S V < |IS J+ 1

(1 -  xv Xy+1 ... X^_|).

P r o o « : U , P - ( * , ^ .  « y .  A,.

V

... X,h,»+~+h-

1 £V <p£s+ l
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Thus, fo r any non-negative integers the coefficient o f  x™!... x™« in

P'(xj,...,x#) equals the number of matrices, h -  (h^vV.vcf» whose entries satisfy

Let ^f(m i,..^ns) be the set of all these matrices, i.e.,

-  (h -  (h^vV.vejl huv satisfies (11.16), all p ,V  6 s). 

W e can define a map, 0 :  m |,...,m#) -♦ ®(m1,...,ms), by

all p ,v e s ,  h e  ^ ( m j .....m$) .

In fact, i f  h  e  # (m 1,...,ms)  we have that

0(h)|X4i+i ”  5*^ O v+ l.t+  ••• ^  (Â(h)n+i,x +  — + 0(h)jt),

0(h) €  ®(m1,...,ms).
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It is easy to  see that è  is a  bijection. Thus, #  (m1,...,ins) -  #  2)(nii,...^ns) -

n(m1,...,ms) ,i .e ., the coefficient o f  x ^ i ... x™* in P'(x1,...,xt ) is n(tni,...jns). Hence 

P*(X|t»~»Jig) -  Q(xi,...,xs). □

(11 .17) Definition: For each œ e  P(n), define co(X) g Zn by 

to(X) -  (Xj + <o(l) -  1. X j +  co(2) -  2,...An +  <*Kn) -  n).

(11 .18) Remarks: For any co e  P(n), we have:

(i) Let 5  -  (n-1, n-2,..., 1,0) €  Z". Then co(X) -  X + S -tf«* ,).....S,*«))

( -  X +  8  -  <0-18 in the notation o f [Ml (cf. [M; p. 81 )).

(ii) For each v  e  n -1 . let av(co) be the non-negative integer given by

av(co) -  <o(l) +  <o(2) + ... +  co(v) -  (1 + ...  +  v). Then, co(X) -  ...

Conventions: Here we generalize the convention made in §9 as follows: if 

m1,...,mn_i are  non-negative integers and A™1... A™1̂ 1 a  * A (n j) ,  then

VA ” l . . .A m- l a - °  “ d  5iAA
1 n -1

- 0 ,  forali

a  e  A(n,r), i e  I(n,r). 

W e will a lso  write c

(all ß  e  A(n j ) ) .

W e can now  prove the main result o f  this section
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(11 .19) Theorem: L et a  -  A™1... X e  A(n,r), for non-negative integers 

tn1,...,mn_1 satisfying my £  Xy+j (V g n -1). Then the Cartan invariants o f  S(B+) 

satisfy the identity

(where e(co) is the sign o f  the  permutation ®, and 5x,a  -  1 or 0, according as 

X -  a  or X + a).

Proof: If n ■ 1 the theorem  is obvious. So suppose that n S  2.

v
Let co g  P(n) and write av(co) = X  (co(p)-p), for all v e n .  Then 

H - 1

O X * )-A ?"» ... A\ f \ .

Suppose in the first place that co(X) £ A(n,r). Then, there is some V g rM  such 

that Xy .̂j +  ay+jCco) -  av(co) <  0. But then, since my ^  Xy+j, we have

my -  av(co) £  Xy+j -  av(co) < -ay+ii©) £  0.

Hence c ^ y a  -  n(mj -  a iio o ),...^ ,,., -  a,,.^® )) -  0  (recall that n(bj.....b,) -  0

if  by < 0, for some V g s.)

Now suppose that <o(X) e  A(n,r). There are two possibilities:

(i) my -  av(co) < 0, for som e V g n-1

(ii) my -  ay(co)£  0, for a ll VG n-1.

In the first case we have n(m , -  a,(®),...,mI1_i -  a ,,.^® )) -  0. Also ®(X) 0  a.
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So, by (11.4X0. -  0. Thu» c ^ y ,  -  n (m ,- t1(co),..,inB. 1-all. ,(<»)).

Now consider the case (ii).

W e h iv e  a  -  A " l ... a " " j <A -  A“ r * / " ) ... a ” ^ ' " * - '<“ W ) .

Also, (OCA),., -  (m,-iv(o>)) -  Av.I + iv»i(oi) -  lytto) -  (m , -  i,« i» )  -  

Xv+i -  mv + av+jito). Since ay+iico) 2  0, this implies

<o(X)vf| -  («»w -  *v(“ )) *  *v+l - n t v i O ,  all V« n j . .

Therefore, a  and co(X) satisfy the hypothesis o f (11.11), and so 

ca><X)a "  n(mi -  a,(a>)^..^nn_,-all.,(co)).

Thus, in any o f these cases -  n im i-aiicoX .-.m ,,.! -  a ,,.^ » )), for all

to e  P(n), and we have

«  £ < „ )  E(m)C«<A)« -  „  ^  n(mi ‘

Now the theorem follows from the lemma (11.20) below . □

(11 .20) Lemma: Let s  be a positive integer. F o r each co e P(s+1) let

av(co) -  (toQO-ii), V e  s. Then, for any non-negative integers m1,...,ms, there

s -  |0.
i f  i r ^  -  0, all v 6 s 

i f  triy  ^  0, some V  € s.
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Proof: Let X ft...,Xt4.j be s+1 independent variables and consider the ring of

Laurent polynomials ZtXj‘.....X jj, L In [M;p. 26 (proof o f (3.4"))1 it is  proved that 

in this ring there holds

(11 21 x?2)'2 -

Now consider the polynomial ring Z[xj.....x j  in the independent variables

xl--»xs. and let f : Zixi,...,Xj)-» 1 be the ring homomorphism defined

by.

f(xb l . . . x J . ) - X b l x j l bl _ x V V l X ^ { ,  all monomials xbi ... xb* €  * x , ..... x.1.

Note that f(xv  X v , j ... x ^ ) -  X ^ j , all 1 S V < ( t S i .

Suppose that

P(x,,...^) -  , s , n  s ̂  (1 - x, Xv*,... Xj,.,) -  ^  4 0  pfl>,.....bj) xbl ... xj,.

Then b , J > P(b>....- x i - ) .
i.e.,

n .  . a - x . x ^ ' ) .
1 £ V < p £ s+ l .....b*>x ? 'x ^ b‘ X „ V

Hence, by (11.21),
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This implies that

fc (a » ;  if  (b ......b j  -  (1,(0»....
p(bj.....

\  0  ; if  (b ,..... .*,(#») •

P(X|t—J**)" FI (1 -  *v *v .l — *n - |)  ■ X f  (œ) .I SV <JlSi+l ^  toePfs+l) 1 1

Now let “  X >n n(q ,.....q jx j* . . .x j* .  By (IM S ).
t,r ,q» * 0

l,...,Xs) -  1. Hence

«•»*»«...

The coefficient o f x™t... x™« on the left side o f  this equality is 

- & M )  e(<o) n(m1- a 1(co),...,ms-a s(co)).

On the other hand, this coefficient on the right side o f  the equality is 1 if  

m j ■ ... «  m , ■ 0, and it is zero otherwise. Hence

Y* f l ;  if  m . -  ... ■ mg = 0

co e P(s+l) 10 ; i f  ^  0, some V e  s.

This completes the proof o f  the lemma. □
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§12. Som# more results on ĉ a

In this section we proceed with the study o f the Cartan invariants Cxo o f S(B+). 

We use the same notation as in §11.

In (11.11) we proved that cxo -  n(m 1,...,mn_ |) if  a  -  A f t ... AjViX, for 

non-negative integers m1,...,mn_ | satisfying my £  Xy+j (V e  n -1 ). In the general 

case we have a weaker result

(12.1) Proposition: Let a  -  A f t ... AjViX e A(n,r), where m ,.....n ^ _ , tie

non-negative integers. Then

cXo *  n(m,.... .S V i) .

Proof: Write s = n-1  and define integers qQ.—.q, as follows

qv -  Xy+j -  my, for all V e  s-1; qo =» q« = 0.

Note that, since we are not assuming that my £  Xy+j, qv may be a negative integer.

It is easy to see that, as in the proof o f (11.11), •Bf.aX) has the expression

(12.2) 3«x,X) -  (b -  ( b ^ y , ,  I b^y satisfy (12.3), all jx.V e  j)  

where

(12.3) (i) b^v e  Z; b^v £  0, and b^v » 0  if  v  > p  +  1 (all p , V e  s).
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(ii) Z  b n v - ® v  +  Qv-l. v « » ;  
n « i

v
(iii) bv.v+l "  Qv +  ̂  (^v+-l,t+  •••+  Nr)» v €

Thus, we may define an injective map 0 :  ®(a,X) -» 23(m1>...,ms)t by

J*Vv * v ^ H  +  1
®0>)pv -  ^ b wl+,-q Jl, i f v - n  + 1;  aU n .v e s ,  b e  s(a,X).

But, since qv may be negative, 0 may not be suijective. In fact we have 

Im 0  -  (d -  (djiv) € £>(m1,...,ms) I d ^ ^ +1 2  all *1 e  s^ l).

Therefore, #®(a,X) £ #®(mi,... j n J  ■ n(m1,...^nJ), and by (11.8), 

cXa ■ *®(<*.X) 3 n(mj,...,ms). □

(12.4) R e m a rk : Note that if a  and X are as above, from the proof o f (12.1), 

we have

cxa ■ n(mlf...,mI1- i )  -  6 ®(tn1,...,mn_1) I d^^+j < -  X^+j, some p  e  n^l>.

We shall now describe cxa in the case when n  -  3. Recall from 511 that 

cXa ■ 0 , unless X 3  a .  Also n(m 1,102) -  min(mi,m2) +  1 if  m ^m j £  0, and it is

zero otherwise.
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(1 2 .5 )  Thoorom: Let X, a  e  A (3j) and suppose that X <  a ,  Le.t 

a - A j ’i A ^ X ,  for non-negative integers m i,m2. Then

cXo “

min (nij, +  1 ,

min (Xj, Xj +  m j-m jJ+ l,

if m j £  Xj 

if  n j| «2 Xj.

Proof: By (11.14), c^a -  min (mi,m2) +  1 if  mj £  X2.

Now suppose that mj > X2 and write q -  X2 -  (< 0).

From (12.2), we know that

bj iv C *• bnv i 0  q i O ,

b1l + b2 l‘ n’l ; b2l+b22*m2'

So, we nuiy define 5 : ■BiaAj -* iXm, + q, m j + q), by

S(bV'
K v  . if  (M.V) *

'  \ b 2 i + q • ‘f o * . ' ' ) -

(2 . 1)

(2,1): |l,v- U ;  be HaX).

Clearly 6  i t  injective. Also, since q  £  0, we may define, for each 

d  e  ©(mi +  q , m2 +  q), b(d) €  <8(a,X), by

K v . if  olv) * (2.D  

^  “  \d 2 ,- q ,  if (H.V) -  (2 .1 ); p . v -  IX

Then 0(b(d)) -  d. Hence 0 is suijective. Therefore, #$(a,X) -  #®(mi+q, m2+q) 

n(mj+q, m2+q) -  min(mi+q, m2+q) +  1.
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But, m j+q -  X2 ^  n^+ q -  X2+m2-m 1. Hence, cxo -  min (X2, X2+m2-m 1)+ l. °  

W e now generalize theorem (11.19) in the case n -  3.

(12.6) Theorem: Let a ,  X « A (3j). Then we have

Proof: I f  X 6 a. then o f t )  0  a  (since X 3  0>(X)) and so -  0, for all

o  e  P(3). Thus 5 ^ e ( o )  Cgftyn -  0.

Now suppose that X 3  a .  i.e., a  -  A” l Aj^X, for non-negative Integers

m j, m2.

If m j ^  X2 the theorem follows from (11.19).

Now consider the case m j > X* and write q  -  X2 -  m j (< 0).

v
Let co e  P(3). Once more we define av(to) = £  (co(n) -  n ) (v -  1,2,3), so

I»- t

that co(X) -  A ^ ^ X .  Calculating av(co), for all co 6  P(3) (V -  1,2), we

obtain

*1 2 -7 *„ ^ 3)e(m) coft)a -  cXa-CA,Xui-CAft/.-*«A JajXo + cA,a| Xo- ' a JaI xo-

Suppose that o f t )  3  tt. for all o  e  P(3). Then o (XJj -  X2 +  a2(o ) -  a i(o). 

Also n t | -  a ,(o )  > Xj -  a ,(o ). Thus

n t| -  a ,(o )  2  o f t ) ;  if a2(o) S 1
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and, by (12.5), c ^ ^  -  min (oCX^, to(X)2 + m2-a 2(io) -  mj+a^co)) + 1 -  

min (mi-ai(co), m2-a2(co)) + a2(to) + q  + 1. Hence (since m i-ai(co) i  0  and 

m2 -82(0) £  0)

(12 .8 ) -  n im ^a ji© ), m 2-a2(co) + a2(co) +  q  if  a2(co)S l.

Now suppose that a2(co) ■ 2, i.e., to(X) -  Aj a |X  or co(X) -  AjA^X. W e have 

two cases to consider

(i) m | ^  X2 +" 2. Then m j-a^co) ^  co(X)2, and c ^ ) «  is given by (12.8), for all 

(0 €  P(3). Therefore, by (11.20) and (12.7),

W S ^ e ic o )  c^dja 5 ^ 3)e(co) n(m,-a,(CD), m2-a2(<o)) J ^ e ( c i )  (a2(co)+q) -  0 

(since X ^ e (c o )  a2(to) -  -1  + 1  +  2  -  2 -  0).

(ii) m j < X2 + 2. Then m j -  1 < (Aj A|X)2 and m i-2  < (AjA^Xh- Hence

cA,a| x^x -  n (m ,-l ,  m2-2), and cA -  n(m ,-2 . m2-2).

Thus,

u  5 ^ 3)£(<o) n(m,-,,(a>). iH2-,2(m)) +

Z  eCcoHljCcoJ + q j - O - O + q j  + d + q J - O .
<o. Pj,^(o>)*2

This ends the proof o f the theorem in the case when co(X) <  a ,  for all 0) g P(3).

The proof in the other cases is similar. □
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(12.9) Remark: In (13.4) we construct a  minimal projective resolution of

VA l l ® V v - ! l ,  V X — -* kA -.o

when char k  ■ 0  and X e  A(3,r).

So for any a  € A(3,r), we obtain a short exact sequence o f  k-spaces

0  -  ( V -  ( VA2*2x ) °  ®  (V AlA |l)a  -  (V A,X)° ®  (V A2x)«  -  (V x)« - ( k j ^ - O

(since V °  -  and ^  is an idempotent).

This implies that

dimkOcx)« -  d in *  (Vx)° -  d in *  (VAlx)° -  d in*  ( V ^ a  + d in* (VA 2 ^ 0 °  

+  d in *  (Va ^ o  -  d in*  (VA

Or equivalently

( 1 2 .1 0 )  S j j ,  -  d in \(kx)a  -  B if char k -  0.

But, by (12.3), c ^ ^  depends only on co(X) and o , and not on the field k. In

fact, the equality 5 ^ ^  E^U3̂C(°0^a  “  ^X.a may be rewritten in terms o f the

integers n(m j, m ^ ,  which do not depend on k. So, from  (12.10), we obtain an 

alternative proof o f the theorem (12.6) (for any field k).

Theorems (11.19) and (12.6) lead us to conjecture the following
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(12 .11) Conjecture: For any a ,  X e  A(n,r) there holds

(12.12) Remarks: (i) Note that the conjecture is obvious if n £  2. Also, by

(11.4), it holds for any a  e  A(n j )  such that X 0  a .

(ii)  To support (12.11) we have, in addition to theorems (11.19) and (12.6), many 

examples in the case when n ■ 4.

(iii) Consider the ring Z[xi,...,xJ of the polynomials in the independent variables 

xi,...,xn with coefficients in Z. We remark here the analogy between (12.11) and 

the Jacobi-Trudi identity

H  B E(rn) hoXX) all X e A+(nj)

which expresses the Schur function sx(xt,..,xn), corresponding to X, in terms o f the 

complete symmetric functions h<0(X)i4(xi,...,xn) (cf. [M; pg. 14, (3.1), (3.4*)D-

Let m  = (mi,...,ms), q  ■ (qi,...,qs), where mj,...,ms, qi,...,q, are non-negative 

integers and s ^ l .  Define

®(m,q) *  {b =» (bnvV,v€5l lyv  Mtisfy O 2-13)» 811 1*. V e  s) 

and

n(m,q) -  #  ®(m,q),

where

(12.13) (i) b^v e  Z; ty v ^  0  and b^v -  0 if  V > n  + 1 (ji, v  e  s).
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(ii) Z  buV- m v ( v e s ) ,  and 2  buV -  qw (n e  $). 
H« 1 H ve i  ** **

Then, by (11.8),

cXa "  8 ((< *i-X i, O2,...,0̂_ i), (X2, X3,...Aa-l» *ir« n )).

for all a  e  A(n,r) such that X 3  a .

T o  end this section, we determine a generating function for the integers n(m,q). 

Take 2s indetenninantes yj,...,yg (s ^  1), and define the series

Q(x,y) -  OCxj,...,*,, y , .....y,) -

V A * 0

(12.14) Lemma: With the notation above, we have

Q(*.y) -  — .
Pfx.y)

whO T P ( x .y ) . i s < n ^ i ( l - x , y ll. 1) (here yo -  xw l -  0).

Proof: Ax (1 -  x ,  y „ _ ,) - ' .  X  (x , y„_,)Vi.» we hxve
V w * #
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,bi,

P(x.y)

t . v - i  b.
"v ~ V ■*b-  y fu t b '“ •••yu

i„T- 1

Therefore, the coefficient o f  x " i . . .  x™» y jt. ..  y^« in ---------
P(x.y)

is

9((n>l.....m ,), (q ,..... q ,)). i.e., i ----------- Q(x,y). O
P(x.y)
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5. ON MINIMAL PROJECTIVE RESOLUTIONS OF k*

In Chapter 3 we produced 2 - step minimal projective resolutions o f  k^, for any 

X € A(n,r). This led us to consider the problem of constructing minimal projective 

resolutions of k*.

It is known that S(B+) has finite global dimension (cf. [G2I). Therefore minimal 

projective resolutions o f k*. are finite and, by (10.4), they depend on the characteristic 

p o f  k.

We now look at this problem for some particular cases o f  n and p.

§13. The case n s  3 and char k = 0

In }13 we assume that k has characteristic zero.

Suppose first that n ■ 1. Then A (l,r) has only one element, (r), and k(r) »  V « l*  

a projective module.

Now suppose that n «  2 and let X e  A(2jr). By (10.4), there is the 2-step 

minimal projective resolution o f k^7

VA|X
1>t

Vx
% kx-»« .

where Im -  rad V^.

But, from (9.4) and (11.1), we know that

dim rad Vx »  dim  -  1 -  X2 -  dim  V xtx*

Hence, dim ker tpj -  dim V ^ x  -  d im  rad *  0, and we have the following

7 Recall that X (l,l) .  A t X and (  -  «X).
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(13.1) Theorem: Let c h a r k - 0  and X e  A(2,r). Then

k x - O ,

where q>o and 9 i are as in (10.4), is a minimal projective resolution of k^.

It is now convenient to introduce a matrix notation for S(B+)-maps.

Let aO),...,aW , |)0),...,pta) e  A (nj), and consider the matrix F  -  (Tla,b)a«s,b€g. 

where T)a b e  Vpo>), all a e s ,  b  e  q.

Then we identify F with the S(B+)-m ap q>: © Va («)-* © Vn(b), given by
a e  2 b «

a e &  a e  s . b e  ^

Suppose now that n -  3 and that X -  (Xj, X2, X3) e  A(3,r). Let

be the chosen basic X-tableau, and define h, j  e  A(3,r), by the X-tableaux

*11 -  *1X,

*21 -  *2Xj

*31 -  *3Xj

(13.2) tJ -  1 1 1 „  1 1 1 1 ... 1

1 2  2 ... 2 2  2 2 .. .  2

13 3 ~  3 2 1 3 . . .  3

Let F1.F2.F3 be the matrices defined as follows



V i * f ) ^ A ,X )  + * V kA,A)

' 2 ^KA^JACAjW

b t  2
K A jA /lA A f) 

^KAjAJiW A/.) '  W j M

1=3- . « a J a^ ) <(Aj AJA). l(A

where
a -  2, b  -  -2 , c  -  1; if  Xj *  1

a »  0, b -  -1 , c  -  2; if  Xj ■ 1.

Then we have the following resu lt

(13.4) Theorem : Suppose that char k = 0 and that X e  A(3,r). Then the 

sequence below is a minimal projective resolution of

o -» v A3 *3x - ! t  v a 2^ ® v A iAj x A .  v v e v ¥  A ,  V x - ! t  kx -.o,

where <Pq = R \  (cf. (10.1)), and q>|, q>2. <P3 are defined by the matrices F j ,F2, F3 

above.

(13.5) Remarks: (i) Note that h -  f(Aj AjX) (a22 831) and 

j  ■ f(A |A |X ) (a2i 832). 8

For any a, a ' e  r, (a a') denotes the transposition in P which interchanges a and a'.
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(ii) According to the convention m ade in Chapter 4, some of the entries

ik A A .D -î)J (A * 0  Of ,h e  iM trice« F j . F ^ F j  n u y b e i t r o

(when X j . O o r  X3 £ 1).

A similar remark applies to the modules V m, .
At Aj X

P ro o f  Of (13 .4) To simplify notation, in this proof we write £(A™i A™2) for 

K A ^ iA ^ X ),  and pfJ X  for (Pr<h. : Pr (i \  j \  h'  c  1(3j)).

Suppose ^2, X3 ^  2.

W e have the X-tableaux

(13 .6 ) l } .

^ aJm  -

1 1 1 ... 1

1 2 2 ... 2

3 3 3 ... 3

1 1 1  ... 1

2 2 2 ... 2

3 3 3 ... 3

1 1 1 ... 1 ^ . A ? )  * 1 1 1 . . 1

2 2 2 ... 2 ; 1 2 2  H 2

2 3 3 3 2 2 3 .. 3

1 1 1  ... 1

1 1 2 ... 2

2 2 3 ... 3

1 1 1  - . 1

1 1 2  _  2

2 3 3 ... 3
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It is clear that the S(B+)-m ap <p|, defined by the m atrix F j, is the map defined in 

(10.2). So, by (10.4),

v Alx ® v A2x VX-?S. kx-o

is a  2-step minimal projective resolution of k^. W e now explain how to obtain the 

matrix F2.

By (11.5), the k-spaces (VA2 ^ , VAiX)s(B4). VAll)s(B*).

h*v'  k- bases

{ • ^KAjAjl. KA,> • ^ A , ) }  ; { • ^KAjAp. «A,) } ;

{ ^ « A ^ j . K A j ) '  { i t ( A 1A j).I(A 2) ’ ' ^ . | (A!) } '

respectively.

Thus, 92 e  VAj3l © V fi j) s (p y  iff  it is defined by a matrix

o f the type

'*  5«AjAp.«Ap +  ** >! ^«AjAp. KAp
f 2 =* .

*4 ^ A ^ j . K A j )  *S^«A1aJ x I(A^ +  a<iW j >

a,, 6 k, n  .
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It is clear that <Pi 92 ■ 0  iff  F2 Fj -  0. So our next step is to determine those a ^ c  k  

Qi -  1,...,6) for which F2 F |  ■ 0.

From the structure o f  the X-tableaux (13.2) and (13.6), it is not hard to see that

P l( * l)  ■  P H A jA ^ ,K A p  P « A ,)J  -  Ph ,l(A ,) P i(A ,)^  "> d

A,1 (Aj -  2)1 21 (A3 -  1)1
PK*?a2I.KA1)2 -  . A,! (A* -  2)! <A3 -  1)1 '  2:

A,! (A, -  1)1 (Aj -  1)1
PM(A,).l *  A,! (A j-  1)1 (A3 -  1)! *  '■ Hen“ ’

^ A ^ A j).  « A ,) i l iA , «  ■  2 ^ K a JA j). I  • and  ill^ A , ) )  5k a ,)2 ■  5h2- 

A ! » .  P«(AJ) - ( i 0 i i  PKA5Ai ,KAJ)S|XPK A ^2 - '*,here 5 1 ■ 1 *2 -  <*22 *31>-

But « A 1 A2)*2 -  h. - d  ,  -  P h ^ A jj

^KA^Ap. KAj) ^ 1 > 4  -  ^ kaJAj A « +  W

Therefore, the first row o f F2 Fj is

<*1 ^ «A ^ A jl. K A ,) +  *2 5h2(A ,P  ^ A , w  +  *3 ^ K A jA p .^ A jl^ K A jM  “

-  (2 ., + .3) 5 ^ 1 ^  ,  + (,2 + *3) ^

But, since ^ a2A^ l  an<* £ 316 l*ncariy independent elements o f S(B+), this is 

zero iff

(13.7) 83 -  -2 a j and a2 ■ 2 a j , any a j e  lc.
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Now we repeat this procedure for the second row o f Fj F j .

W e have P«Al) -  P,<A[A^  P«A1).t • Pt(Aj) *  PjJ<Aj) p«Aj),« ' *nd

P«CA  ̂ - | I 9 U  V ^ ). 1(AjlV >KAi) i * ' h' r'  *1 *  >• “ » *2 -  <*21 *31>- Als°  

P« A ,a J . «(A,). « ■  PJ. K A jJ.l "  *• * nd  PK A ,A j).K A ^ .I -  2 -

Note that i(A , A^)t2 (a31 «32) - j .  Thus, 5 , ^ * 2 ^ , -  $ j,. since (s31 s32) u P(. 

Therefore,

^hA,A^, KA^KA.W  *  ^ K A ,4 ) . t ; ^j.t<Aj) ^hAj),! -  i j . t ;

V a ^ K A j i V aJ . ! "  ^« A jA ^ ).«  + ^j.l ■

So, the second row o f F2F1 is

“<5l(A1Aj,l(Ap5l(A1U  + ( *5 ^1(A1aJ).I(A2) + * « ^ A ^ ^ K A ^ ,<  *

- (* 4  +  2aJ) t ^ iA2) - l  +  (a5 +  ^ ) t w .

As, 5 ^  a^) i  aTK̂  5j,i are linearly independent vectors, this is zero iff

( 1 3 .8 )  84 -  -2a5, and =« -85, any 85 e  k.

W e make aj -  85 -  -a$ -  1, and -a2 -  83 -  84 -  -2.

Then, F2 is as defined in (13.3) and, since conditions (13.7) and (13.8) are satisfied, 

there holds

(13 .9 ) F2F1 “  0, and Im 92 C ker <p j .
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Next we show that, in fact, we have dim Im 92 * dim ker q>j. Thus Im 92 ■ ker 9,. 
Let I |, I2,13 be the sets of all i 6 1(3/) defined by the X-tableaux (13.10), (13.11) 

and (13.12), respectively.

(13.10) 1* -

(13.11) Tf- -

(13.12) Tf- -

2 £ b n  £  X2 and

l>2i + 1>22 +  b23 ■ X3-I ;

1 £ I>2| £ X3 ;

b2i+l>22+b23 ”  X3-2.

(13.13) Rem arks: (i) Ij, I2 and I3 are pairwise disjoint.

(ii) I , u l 2 -  I(Aj Aj X), and I3 C I(A,A^X). So, { ^ 2 ^  i « I , u  I2) is a 

basis of Va^AjX, and ^A a2j I i e I3} is contained in a basis of VA 

(cf. (9.1) and (9.4)).

It is our aim to prove that



5 - 9

(1 3 .1 4 ) The vector* 92 11,1 i € l l u , 2. 411(3 92 ^ A|aJ))* 411 i €  J3-

are linearly independent.

From the definition o f <p2. we know that

(1 3 .1 5 ) the component! of end lying ¡n VAjX «re.

respectively,

" J  ^ tiA jjk j^A i) •** ‘ ‘  >1 U  [2’

4I^A 1a’ > ^ K A ^ jA A j)  -  ^ A , ^ )  W j )  • 1 *  **

It is easy to see that

J - b ii<b t i  -  *> ! « * , )  ■
-  « w f A i V j A * « ^  -  I -X j CXj .  1) ; it i<  I j  .

Also, i f  i e  I3 has X-tableau (13.12) then

^iAA, a| )  V tA ,^ ) ,  t(Ap -  <b22+ »  SutAJ-

To calculate . we notice that t ( A , A | )  («21 «32) -  j- Thus,

W . aJ j ’ V ) 1 where i’ -  i (a2,  a32), i.e..

1 1 w. 1

2  2 ... 2

2  1 - 1  2 - 2 3 - 3
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Similarly to the previous cases, we have

W j  ‘  4W *i) ■ (b2i +  l)  V jW -

Hence, by (13.15), we have

(3.17) (i) Let i 6  I j  u  I2, be defined by the X-tableaux (13.10), or (13.11). Then, 

the component o f  lying in VX2x is

- b n (b n  -  1) fc.KAj). *-« *1:

-X-2 (*2 +  i )  ^i^A j). i €  h  •

(ii) I f  i e  I3 is defined by the X-tableau (13.12) then the component of

<*>22 +  •) -  0>21 +  1) • 

where i' is defined by the X-tableau (13.16).

But I i u  I2 -  I(Aj A2X) c  I(A2X),9 and so the vectors (i e  I j u  I2)

are linearly independent (since they are part o f  a basis o f Va jX)-

Now, i f  we analyse £iifiXa) whcn is as in (13.12), we have

Si.KAj) -  ^/(Aa).

where 1 €  A(3,r) is defined by the X-tableau

9 This is a particular case o f  I(Aj* a )  S  1(a), for any a  e  A(n,r), 0  £  m £  a 2.
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1 1 ... 1

1 2 2

2  1

b21 &22+1 **23

^21 + ^22 + *>23 ■ X3 -  1.

d e v ly  1 c  I(Aj».), but 1 1  I(aJa 2X) (s in ce l^  * 1).

Hence, the vectors ^¡^(Aj) (> € Ii u  I j u  I3) are linearly independent, and (13.14) 

follows from (13.17).

Now, as Ij G I2 -  I(Aj A2X), we have # Ij + # I2 = dim Va* a X̂ "

X j X ^ ^  +  l)
■ -----------  (cf. (11.1)).

Also, # I3 equals the number of distinct sequences of integers 

1 ... 1 2 ... 2 3 ... 3

b 21 b 22 b 23

where b?ji ^  0 ( |i  = 1,2,3) and b2i + b22 + 1>23 ■ X3 -  2.

Hence, # I3 -  ( and

dim Im <p2 *  Ij + # I2 + *  I3 ■  i  [X2 ^3(^3 + 1) + ^3(^3 ■  1)1*

But,

dim ker <pj -  dim VAj^ + dim -  dim rad V*, -  

-  i  [ ̂ 2(^3 + 1) (X3 + 2) + (X-2 + 2) (X3 + 1) X3 -  (X2 + 1) (X3 + 1) (X3 + 2) 

+ 2) ■ ^ IX2 X3(X3 + 1) + X3(X3 -  1) ] £ dim Im <p2-

Therefore, Im 92 -  ker <pj and we have the following result
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V A ^ ® V A , ^ l  ^  V A , A ®  V Aj>. V X - ^  k ^ O

is an exact sequence.

We now repeat this procedure to determine an S(B+)-map 

93 : VA j X  V AjA^l ® v a  a^X ’ such 1,131 ^3  is iniective and Im 93 -  ker 92.

This time we have

dim (V* X X  ■ V* ? V )S(B*) '  ‘Um (VA ? A ^  -  '■

Hence, 93 is determined by a matrix of the type,

F "  (b l V a Ja Jm CaJa ^ ^ ^ ( ( A ^ l.t iA ,^ ) 1- t>l.b2 E k.

Make bi =» b j -  1. Then F -  F3 (as defined in (13.3)) and our next step is to show 

that F3F2 *  0.

The first column o f F3F2 is

4« aJ aJ). ICa Ja )̂ ^ « A ^ A ^ A jI + 2 ^ A , p  -  

' ^ « aJa^), kA|A )̂ 5KA,aJ). KA,) •

No*, since F ^ a ^  . —  P ^ W J ^ p  -  2'

we have
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*4<a}aJ). kaJAj) *ka}a^,I(ap "  2 ^«aJa^ A j) • 

Also, 4(Aj Â > (a22 *31) ■ h and 4(Aj A^) f a i  a3i) ■ c, where

1 1 ... 1

1 2  ... 2

1 2  3 ... 3

Hence

^#aJaJ). «(A ̂ Ap $h.«A,r 4hJ(A,) ■ 5e,«A,)

(since Ph "  Pcji PM(A,)* and Pc,h^(A,)“  !)• Finally, we have

P « A , a 2 )  -  „ y w  P H A |A IW , A j )  *H t>K A ,/SJ ) .K A 1)- w h ' f e  S 1 -  1 * " d

§2 “  (»22 a3|) .  Thus,

5Ka; aJ)AA,aJ) V ,  aJ). «(A,) ■ ^ aJaJ). K A ^ W , )

(since P^aJaJ jAA, a | ) .  l(Ap *  ^ A ,  aJ), *Ap *  » •  Therefore, the firsl column of

F3 Fj  is

2 ^ aJ). «Ap + 2 U , l  -  2 t«A { A^). «Ap -  2 V «A ,)  -  0-

Similar calculations show that

5KaJa )̂. « aJAp 5«AjAp. i(Ap ■ 5Ka|aJ). KAp:

^ aJAj1). HA, a|) $«A, A^).«Ap ■ 2 ^KaJa|). «(Ap + ̂ « A p  ;

^1<a | a|) .  KA, A^) ^.«(AJ *  ^d.KAj) i
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where d is defined by the X-tableau

1 ... 1

2  1 2 ... 2

2 1 3  ... 3

Hence the second column of F3 F2 is

"2 l(A2|+2 ^KaJAj ). KAp + V kAj) -  ^dAAj) ■ °'

Therefore F3 F j -  0 .

U t  93 be defined by the matrix F3. Then, 9 2 93 -  0  end next we show that

( 1 3 .1 9 ) dim VAjA^X "  dim *m 93 ■ dim ker 92  .

Thus, 93 is the map we were looking for.

Va}aJ a h“  « I ^ A j ) 1“ ' ^ * , ’ ^ ) ) .

By the stmcture o f  . we can see that i s  I(AJ a |  X ) iff i is defined by

one of the ».-tableaux (13.20), (13.21), or (13.22), below.

(13.20) i f  - 1 1 ... 1

1 1 ... 1 2 ... 2 

_ i u ________

2 2  1 .. 1 2 .. 2  3 . .  3

b2t b jj bja

2 S b n SX2 , and 

1*21 + *)22 + &23 “  X3- 2;
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(13.21)

(13.22)

b j j + b j j  + b j3 -  X 3 -2 ;

&21 + *>22 + ̂ 23 * X3-2 .

It follows from the definition of 93, that the component of
*A i<A ?A *)) W "«

U,Va,ajH  “  «MCAfA») V ^ aJ lKa. aJ) 0 « I ( a J a^X)). 

Calculating this product we obtain

W . A J ,  = «  ^  »  03 .20) 

: i f l f i «  (13.21)

= if ^  if 0 3  “ )

But, since I(Aj X) s  I(A | a |  X), I i €  I(A j A^ X)) is contained in a

basis o f VA,AJV Hencc* 93($U<a J a^ *  for all i e  I(a J a ^X), are Unearly 

independent vectors and
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(1 3 .2 3 )  {q>3 ( £ ¡ ^ 2^ )  I *6 I(Aj X) )  is a basis of Im 93.

(X-+ 1) ( X ,-  1)JL
Therefore, 93 is injective and dim Im <p3 -  dim V .2 . 2 . -  — t ---------£---------

* 1*2 * 2

Now, as dim  Im 92 -  i  tX.2 X3 (X3 +  1) +  X3(X3 -  1) J and

dim Va2a ^  +  dim VA^A2 ̂  i  \ \2 X3 (X3 +  1) + (X2 +  2)^3 (X3 -  1) 1, we have

dim ker 92
(Xj + i x Xj -  DX3

2 -  dim Im 93.

Hence (13.19). This completes the proof o f  the following result

(13.24) If X2, X3 St 2, the sequence below is a  projective resolution o f k*.

0  -  VA ^ X  ^  VA i v ® VA ,A jx  — -*VA,X ®  VAjX - ^ - V X - ^ k x - . 0 .

Now we know, from (10.4), that ker 90 -  rad V*. and ker 9 j s  rad (VAjx © Vy^x). 

So, to prove that the projective resolution in (13.24) is minimal it is enough to show 

that

(13.25) t o f c C n u i V ^ e m d V ^ .

By (13.23) and (13.24). ker (fc has k-basis { 93(5^ 2* 2)) I ■ 6 I(A* X) ). 

So, (13.25) is equivalent to
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(1 3 .2 # )  .11 i s  I(Aj A j X ).

Let i s  I(a J  A^ X). Then, i S  « a J Aj  ) < « A  j  A j), i(A , A ^ ) . Thus.

(1 3 .2 7 )  IS S « A j  A^ )8 -  « a J  Aj  ) <  « a J  Aj ), « A , A^), .11 8 6 .

But,

‘■ ^ . « aJa^)1 ■ ^ a JaJ )  ^ aJ a^). « aJ a j) +

+  W J aJ)  SkaJaJ). «A, AjV S * W aJ Aj ) +  ?  *'5' V  « a , A^) •

where the sums are over subsets, {8} and {S'}, of and ag, a 5' e

And so, (13.26) follows from (13.27).10

With (13.24) and (13.25) we conclude the proof o f the theorem (13.4) in the case 

Xj, X3 ^  2. The proof o f the other cases is similar. □

$14. The case n = 2 and char k = p

When k  is a field o f positive characteristic, the construction of minimal projective 

resolutions o f kx becomes much more difficult than when characteristic o f k  is zero. 

Now we shall give some results on this problem when n  -  2.

10 W e recall that, if a  €  A(n,r) then ^ ¿ (a )  e  rad Va , for all i < 1(a) (cf. (9.4)).
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Let X ■ (r -  a, a) be an arbitrarily chosen element of A(2,r), and write

X(l,m) -  A™X Km) -  KA”  X) (O S m S a).

Suppose char k ■ p  0) and let

a - a 0 + a |p  + ... +  ad pd, where a ^ «  Z ,0 ^ a |1< p  (n -  0 .....d), a ^ O .

Defíne an S(B+)-map

O 'x o jp ) ® ® ® ••• ® v x<i ^ - !+p^)) “*m® 0 VX<1^ )

Then, i f  <j>o and (pj are the maps defined in (10.1) and (10.2), respectively, we 

have the following result.

(14.1) T h e o rem : With the notation above.

by

^ W ’ HG’"*'1)
1>2 <«

k ! l - 0 .

are the first three terms o f a minimal projective resolution o f  k^.
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In the proof o f  (14.1) we will make use o f  the following two lemmas, which are 

easy consequences o f  (2.7) and (9.12), respectively.

(14.2) Lemma: Suppose b, c, d are non-negative integers satisfying d  £  c  £  b  £  a, 

and consider the elements 1(b), 1(c), f(d) o f 1(2 j ) .  Then, 1(b) £  £(c) £  £(d) and

t«b).Kc) ^(c)Ad) “  ( b  -  c )  •

(14.3) Lemma: Suppose b -  bo + bj p + ... + bg p», where b^ e  Z, 

0  £  b^ < p  ( |i *  0 ,...,s) bg 4 0, and q, m are non-negative integers satisfying q  < m 

£  s. Then

(i) P * b ~ P M *
b - p

(ii) for b ^ p ‘* +  pm, p t

iff -  0, for all q  £  t  < m ;

b  -  p
k  ,  m | i « V 0 -
b  -  P -  P 1

Proof Of (14.1): Assume the hypotheses o f (14.1). Then, from (10.4), we know 

that

1AVv,**) kx - °
is exact and minimal. Thus, to prove the theorem we only need to show that 

(14.4) (i) Im 92 -  ker f i ;

(ii) ker 92 S  rad ©  (v X(l,pm) ® Vxo.l+p") © © v X<l,pra-,+pm))-
m « d
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W e start by proving (14.4)(i).

From  the definition o f <P2> we can see that <Pi 92 ■  0  iff

*Pidlx(p—)̂ <p—-')> -  o, in d  + S « p n r).i< jr))  -  o.

for all m e d ,  O S q S m  -  1. But, by (14.2)

■ W o .K p " -1) ■ [p in -l]  ■ 0i

0 (m odp), and similarly.

9 |  C -5«(p»^").V )+

(  q m q . m\
P + P P + P

-1  m + _

l  P P
W ^ P ” ).! ■ °-

Hence we have <Pi q>2 “  0 and so Im  <p2 £  ker tpj.

N ow  let m  e d be fixed and consider any integer b such that pm £  b £  a. Write

( 1 4 .5 ) b  -  bo +  bj p +... +  bs ps (b^ e Z, 0 £  b^ <  p ( l i e s ) ,  b , ^ 0). 

Suppose first that

( 1 4 .6 ) b0 - b 1 - . . . - b m. 1 - 0.

Then, as 6 Vx(i .pm), we have

( 1 4 .7 )  92(i< (b)W )) -  5«b).t(p") V p ’MW*'1»  ”

f b - p ” ' 1] ,  f b - p “ '
"  L  ■  i«b )A p -- ').  and p ♦  m

\b  -  p ]  \b  "  P
(cf. (14.3)(i)).
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Now suppose that

(14 .8 ) M  0, for some 0 £ t £ m - l ,  and q  is the smallest such t

Then b  £  p<* +  pm and S i^ l ip ^ p '" )e  v X(l,p,»+p")- So from  * *  definition of 92 

and (14.2), we have

(1 4 .9 ) q>2 ( î(b)^(p t̂-p™)) tm jK s v *
b -

5«b).W >'

and p +
b  -  

b  -
(since bq ^  0  (cf. (14.3)(U)).

Write f(m,b)
pm , if b  satisfies (14.6) 

pq +  pm , if b satisfies (14.8) .

Then, our next step is to prove that the set (92(5f(b), £(f(m,b))) I m e d ,  pm £  b :£ a } is 

linearly independent and so

d
( 1 4 .1 0 )  d im Im 9 22  ( a - p m +l ) .

Suppose we have

d a
0 4 . 1 1 )  rm ,b92(i«(b)A t(m J>)))-0,forsom e ymb6 Ic.
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W e know from (14.7) and (14.9) that the component of (14.11) lying in is

STo(bV-Pd)W)'
where the sum is over all b  2  pd satisfying (14.8) with m -  d.

( b -  pd \
But, under these conditions, p i  d . Also, as the vectors ^ ( b ) . ^

l b  -  p’  -  P )

(pd ^  b  ^  a) form a basis o f  V ^ j ^ ,  they are linearly independent So, we must have

( 1 4 .1 2 )  Yd.b ■ 0 , for all b ^  pd such that ^  ^ 0, for some 0  £  t < d.

Hence, (14.11) and (14.12) imply (14.13), below

d - 1 •  a

*1 4 ' 1 3 * m ? i  b - p "  Tr»J>*2<t<<l>Me«CmJ>») +  ^ 2 ,d YdJ> 92&(b),t(p')) -  °-

b0 -------bd - l - °

Now, the component o f  (14.13) lying in Vx(itP<«-i) is

< 1« .14 ) \  Td-1 *  [b _ _  pd-l J t« b W - >  + $  Td* p
h nd' ! \  L  4-1b - p  v  | b - p

ZtO>)W-t )'

where the first sum is taken over all b  £  pd-l such that b  satisfies (14.8) with 

m «  d -1 , and the second sum is over all b  £  pd satisfying bo = -  bd_ | = 0.

It is then clear that all vectors £t(b),i(p‘i- ,)> involved in (14.14), are linearly
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independent and, since p t l  q d_| 
\ b - p  - p

b - p
in the first case, and p  +

\b - P

in

the second case, (14.13) and (14.14) imply

(1 4 .1 5 )  Yd.b » 0 ,  for all b £  pd such that bo -  ... ■ bd_j ■ 0. Also, Yb4-1 -  0, 

fo r  all b £ p d - l  satisfying b | / 0, for some 0 € t < d - l .

Proceeding like this, we can see that (14.11) implies Ym,b -  0, for all m  e  d  and 

pm £  b  £  a, and so (14.10) holds. But

Suppose 5 *  (rad V x d j, .)® ta d  © ... ® rad  V j^ j^ -t+ p .)) .

Then, we know from (9.4), that Ym.p™ ^ 0  or Yq.m.i/t+p™ + 0. for some m e d  and 

som e 0  £  q  < m. Calculating 92(5) we obtain

d d

Thus, we must have Im 92  *  ker q>|.

Now we will turn our attention to (14.4)(ii). 

Let

where Ym> Yq.m.b € k.

d
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(14.16) <P2(4). m Î«b),«p--') +
,b - P

and, for any m  e  d, the coefficient o f  i(p™~1) in this expression is

m m-1
P -  PBut, for any 0 £ q < m - l , m q m-1

VP - P  - P
-  0  (mod p) (cf. (14.3X«)).

Hence, the coefficient o f  in (14.16) is Ym,p»"- Thus if  Ymp™ ^ 0» for

some m  e  d , we must have <P2(£) ^ 0.

In a sim ilar way it can be seen that Yq.m.p^+pm *  0. for some m e  d and some 

0  £  q  < m , implies <P2(£) ^  0 .

Hence (14.4Xii) holds, and this ends the proof o f the theorem. □

Unfortunately we are not able to construct the whole minimal projective resolution 

of kx w hen n -  2 and char k  -  p  (^  0). In our attempts to solve this problem we 

worked out some examples, which we shall now describe. We don't explain the 

calculations involved in the construction o f these examples, since they are routine.

(14.17) Examples: Let <Pq, (pt and q>2 be as in (14.1). Then the sequences 

below are minimal projective resolutions o f k^.

(i) X = ( r  -  6, 6) and char k ■ 3 :
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° - * v X<1j6)------ » v VW > ®  V1KI,® ------ * v JK U )® v VM >

v Vl.l> ®  V)KIJ>— VX.— ki - * 0 ,

where 93 and 94 are defined by the matrices

i K*)A3) 0

^((6)2(3) $ « & * * )
F4 -  [ï««)2(4) °l

(ii) X - ( r - l l ,  11) ind char k - 3:

0 - » V )K1.10) — ^4  V K I J ) ®  V JKI.10)— ^4 V X 1 .7 )® V JL0J)— ^4

»« _  »3
v K l i )  ® v K l.7)------* v m .4) ®  VJK1,6) ® VV U 0 )-4 ----- »

VK U ) ®  V K M >  ®  V JK1.9) ®  V JK1.10)------> V JKI,1) ® VK U ) ®  v X l i )  -

•Pn
V>, “ 4  < *-.< > .

where 9 ^  is defined by matrix F^,

^<(4).K3) 0 0  Ó

f 3 - Sk q jo ) ^t(6).l(4) 0  0 ;

tlOO)A3> Zqt0).i(4) ^KW)A9) 0

^k«)2<4) 0 0 $t(7)A6) 0

t|0M (4) 0  ; F5 -  £
*»t(9)Ä6) 2^K9).£(7)
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f 6 - . K̂tO). «7)

0

^tdO X «»] ' F7 *  [5«10)2<9) o].

(iii) X -  (r -  5,5) and char k -  2:

0-* v XdJ) — v l<t.4>® V>2I.5) —

VK U ) ®  VK U ) ®  v m .4) ® VK1.5)

V l(U ) ®  VV M ) ® VK IJ)

<P2
---- * v Mt.l> ® VX(U> ® VVM )

k2 - 0 .

where <pp. is defined by the matrix F^,

*«0)2(2> 0 0 0

F3 - **4)2(2) ^4)^(3) 0 0

**5)2(2) *«5)2(4) 0

V»>2<3)

**5)2(3)

0

**5)2(4)

0

0  ; F5 -  [^«5)2(4) »]■

$15 An application to S(G)

Consider the functors

and

F  -  S(G) ®S(B*) •: mod S(B+) -»mod S(G )

F  -  H om ^3-)(S(G), • ) : mod S(B-) -* m od S(G).
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In [W] it is proved the following

(15 .1) Theorem: (D. Woodcock) Let a  e  A+(n,r). Then 

R » F (k i)  -  E x tJ^ - j  (S(G), lei) -  0.

W e now apply this result to the sequences in theorems (13.1) and (14.1).

For the rest o f  this section we will fix n -  2 and use the notation o f  §14. 

However we will not demand p -  char k  to be different from zero.

Consider X -  (Xj, Xq) e  A+(2,r). If p  *  0  write

X2 *  ao +  a ,p  + . . .  +  adpd, where a ^ e Z ,  0 £ a ^ < p  (n  -  0,...,d), a<j + 0 .

Let 9o» 9 i and 92 be the maps defined in §14 (92 = 0  if  p -  0), and let

fo . l : F(Va) -»S iG )^ .  all a  e  A(2,r)

be the S(G)-isomorphisms defined in (10.5). Define S(G)-maps Vq, and y 2 

as follows

d
V o  -  FfVo) : V l -  fx.1 F ( f l)  ( 11 f£(l,p "),l); and

m -  0

d d
V 2  ■  ( J_Lo *xoa^).i> f«pj) ( i l  «ji(ip” ).i 11 -  11 fi(ij)m"il1>”Vi)

(15.2) Theorem: Let X eA +(2,r). With the notation above, we have



5 -2 8

(i) 0-*S(G *x<u ) S (G *X Kx -*0

is a projective resolution of the Weyl module K* if char k -  0.

d
w> J U  t (S C G )^ ,^ ) i l  S C O ÎK ,.,^ , U sig ^ , ^ )  u . .

... Ü  S(G)Çx(i4)"-.+p»")) —— * Ü  S I G * ^ , - ^  StG**-^ ® . Kx -.0
m -  0

are the first three terms of a projective resolution of if  char k -  p > 0.

Proof: Let char k -  p (£ 0) and write Y0 -  V^,

Yl "  m ?0VXil,pm)’ ^  Y l  "  m® 1̂ Vx<1-Pn’) ® V*fl,HpP) ® -  ® VX(l,pm-,+p>n)) 

(Yi -  Vx(|ti). and Y2 -  0  if  p -  0).

By (13.1) and (14.1),

are the first terms of a minimal projective resolution o f k^. Thus, taking duals (and 

since all the modules involved are finite dimensional over k) we have that

d d

0 - l c . Y0° Y2°  »

1* If V, V ' are k-vector spaces and f  e  H o n \(V , Y ), f* e  Hom^V'*, V*) is the 
map defined by, f*(0) -  0f, for all 0 e  V'*.
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are the first three terms o f an injective resolution o f k£. B u t , k j  *  k£. Therefore,
S(B‘ )

by (15.1), the sequence below is exact up to and including F '(Y j°)

Taking duals, once more, we obtain the exact sequence in m od S(G)

On the other hand, if we apply the functor F  to the sequence (15.3), we obtain the 

fo llo w ing  com plex

F(<P2) F(«p.) F(<pn )
F(Y 2 ) ------ » FC Y l) -----i *  F (Y q) -----2, F(k)J 0.

Bui, from (5.6), we know that there is an S(G)-isomoiphism 

By : F(V°) -» [F(V)]°

natural in V s  mod S(B-), le . ,  (By I V € mod S(B-)) is  a class of S(G)- 

isomorphsims such that for any V. V ' € mod S(B‘) and any f  c  Homs(B-)(V, V ) 

the diagram below commutes

[F(Y2°))»

F(f")
F(V°) ------- » F(V°)

By' 1 4- fly

tF ( V ) ] ° -------
F(0

(F(V)Ju .



5 -3 0

It is also easy to see that the usual isomorphism W *  (W°)° (w 6 W  is taken
S(IO

to ew . W ° -+ k, defined by, ew(5) ■ 8(w ), for all 5  g W°) is natural in 

W  g mod S(B+). Therefore, there are S(G)-isomorphisms t), tty, t)j , t|2 such that 

the diagram below commutes.

(15.4) FiY j)
F (*2)

F(Y j )
F(<Pj)

F(Yq)
F«P0)

F(kx)-*0

>i2 1  t ii  1  tio 4. i n

[ F ( Y , ° ) ] ° ^ i I  [F(Y0° ) ] ° ^ M  [F(kxo ) ]o ^ 0 .

Hence, since the bottom row o f  (15.4) is exact, the top row is also exact.

Now, as F(kjJ ■ S(G) ®s(B*)hji *s the Weyl module (cf. (7.2)), the theorem 

follows. □

(15.5) Remark: The sequence in (15.2)(i) is equivalent to the projective resolution 

o f Kx determined in [A] and [Zl.
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6. THE SCHUR ALQEQRA S(U+)

In this chapter we consider the unipotent subgroup U+ of B+, and give some 

results on its Schur algebra S(U+) ■ S^Cn.r. U+).

§16. A  basis and the radical of S(U+)

Let |i, V e  n, p  < v. For each non-negative integer m, consider the elements 

r<*>, of S(B*). defined by

sum over all weights a  e  A such that m £  cty.

Note that, since 0  S a ,  £  r  (all a  «  A), we have r ® ,  -  1S(G), and r J O  .  o  if 

m > r.

Let u(iv(t) be the element o f U+ with l 's  in the main diagonal, t in position 

0O 0, and zeros elsewhere (t e  k). In (4.7) we proved that

(18-1) T / t i ^ t ) )  .  I  C  H ">  .
m -  0 H

As a consequence o f  this we have the following result

(16.2) Lemma: (1) r<*>€S(U*), all n, V 6 n, n <v.m -0..v.
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Proof: Lei n ,v  be as above.

(i) As u ^ ( t )  6 u+, T((U|iV(t)) 6 S(U+), for all t e  k. Thus, since k  is an infinite

field, (16.1) implies r j " } «  S(U+), all m -0 ,.. .,r .

(ii) Let t, t ' fi k. Then, u ^ t )  u ^ O  -  u ^ t  + O. Hence

TI<u>lV(t))Tr(uuv(t')) -  T/u^vit + O), i.e..

It is well known that U+ is generated by {uv v+1(t) IV e  n - 1. t e  k}. Thus, by 

(16.1) and (16.2).

(16.3) S(U+) is generated by ,  I v  € n ^ i, m -  0„..,r}.

or equivalently.

As this holds for any t , t ' e k  (and k  is infinite) we must have

□

We can refine this result as follows.



6 -3

(16 .4 ) Proposition: Suppose char k -  p(£ 0). Then S(U+) is generated (as 

k-algebra) by X -  {ls«j). r ^ ,  I v  c  1 £  p* £  r).

Proof: Let M be the subalgebra o f S(U+) generated by X. Suppose we show that, 

for any V e  n-1.

(16.5) !*■*., E M, m  -

Then the proposition follows from (16.3).

To prove (16.5) we use induction on m.

I f m - 0 .  r £ > . , - t j ( W « M .

Now let 1 £  m £  r, and suppose (16.5) holds, for any q  < m.

If  p  > 0  there exists b e  Z, b  «£ 0, such that pb ^  m < ph^l, and so we may write 

m  = apb +  s, where a, s e  Z, 1 £  a <  p, 0 S ! s < p b (if p -  0, we make b -  s -  0, 

and a -  m).

Suppose first thst s it 0. Then by (16.2XU), 1 ^ ,  ■ But,

P * ( “ ) -  Hence,

r<m> .  p(s)
v,Vfl fm )  v,Vfl v*v+1 *

By the induction hypothesis both and r ^ f ^ j  are in M. Thus e  M.

Now suppose that s =» 0. Then and once more we have
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r (m)
v.v+l

where p  I b
\P

(since a < p). So the result follows by the induction hypothesis. □

Our next step is to determine a basis for S(U+).

Let u e  U+. Then u^v -  0, unlesss p  £  V (p, v e  n).

TTu,. T,(u) -  J  n  u,j i , j  -  (j I  a  eg  . «

(16 .6 ) Definition: For any non-negative integer s, let il*s be a set of 

representatives o f the P(s)-orbits o f pairs (h, h*) in I(n,s) x I(n,s) such that 

h| < h'j, Ii2 < h*2.—th#< h|.
Define Q* -  i l *0 u  u ... u  ii* r

Choose Q  so that if  ( ij )  e  C¥ then

*1 < J |.  ¡2 <j l — i »l  -  j f t l .....¡r -  Jr (« m e  « i  0).

Under these conditions, let c be the element of Cî% satisfying c ~  ((i|,...4$). 

(Jl>-..Js)). TT>cn, we say that c is the core o f (i j )  (or o f any element in the P-orbit 

of ( ij)  in I(n,r) x I(n,r>). For any ( i\  jO e  I(n,r) x I(n,r), c(i', jO will denote the core 

of (i'.O .

11 Recall that Q ' -  {(ij) •  Q I i *  j}.
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Note that c(i j )  e  f t *0 iff c(i j )  is "empty", i.e., iff i -  j.

(16 .7 ) Definition: If c e f t *  define the core sum by

c ( i j) -c

(16.8) Remarks: (i) Let [i, v £  n, n < v, and consider the element

cm -  ((M.-.10. (V.....V)) o f  a rm. (m -  Then ic_  -  r j* > .

In particular, cq€ ft*o and ^  -  ls(G)- 

(ii) Let c =» (h, hO e  ft*g (s -  Then c -  c(i j ) ,  for some (i j )  e  ft'.

In fact, let i', j '  e  I(n,r) be defined by

Then i 'S j '  and c(i', j ')  -  c. So if  (i j )  e  f t '  and O', j ')  ~  (i j )  we have c = c(i', j ')  

-  c(i j ) .

(iii) By (ii) above, ^  ^  0, all c e  ft*.

It is clear that if  (i j ) ,  ( i\  j ')  €  f t ',  and c (ij)  -  c(i'j'), then for any u e  U+ we 

have Uy -  Uj-j- (since u ^ ,  = 1, p  e  n). Therefore

(1 6 .9 ) n y i i j -  X for all u s U *

•(
h 'p , i f  P «  I

1 , if  p  e  is  +  1,... j ) .

(where Ug -  uy , for any (i j )  €  f t ' such that c(i j )  -  c).
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(1S.10) L am m «: { ,■  S(u*), for all c c  n* .

Proof: U l  c  -  (h, h i  c a \  If  c s O "0 then 5c -  X  Q, 5 u  -  ls(0 ) * S(U+). 

Now suppose that c € Q*f (s € j).

Let m be the number of distinct pairs (hp, h'p), p €  5. Then there are p „  V , e  n, 

d j g s (a € m) satisfying

(i) m < V a. and (p*.va)* (Hb* V  if » * b (a,b* m);

(U) £  d , - . ;
a« a

(iii) c -  0». »O ~  ((Pta.r.aPi.--4W -4W. ...vm...v,,,))

d t d*  d I dm

For each t  -  e  km, define u(t) 6 U+, by

(1 , i f p - V

t ,  , if (|l, V) -  (|lt , v j ,  a e  m 

0  , otherwise ; p , v  e  n.

Then, for any (i j )  e  CV, we have

“ (Oij -  0 , unless O p.jp)« {(l,l),...,(n,n), (p lf V ,)..... (Pm, V ^ } , aU p e r .

If this last condition holds, and if  qa -  #{p e  r  I Op.jp) -  (Ha» va»  (a €  m). then 

o ( t ) g -  t j * - . t j i .

Let Q -  { q -  (qr .qm) e  Zm l 0 £ q a £ r  ( a s m ) ;  J E  q# £r}.
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For each q  e  Q, let c(q) be the element o f  ft* defined by,

c (< l)~ ( ( |l |- .4* l - -4l» ....41« ) . CV| —-V |- -> W

di dm d l  dm

Then, we have just proved that, for any (i j )  e  O ', there holds

U(t)ij -  Z *«1 •" i "  • i f  fOT SO™ <1 « Q
^ 0  , otherwise.

Therefore,

(16.11) 1 X 0 )  -  f r w

Since T,(u(t)) e  S(U+), and (16.11) holds for any t e  km (and k is infinite) we 

must have

5c(q) €  S(U+), for all q e Q .

But, in particular, d  -  (di,...,dm) e  Q. Also c -  c(d). Hence 5c "  5c(d)€  S(U+). □

(16.12) Theorem: S(U+) has k-basis  Y -  { { g le e  ft*}.

Proof: By (16.9) and the lemma (16.10), Y spans S(U+). Also from the 

definitions of ft* and of 5c is  clear that the elements o f Y are linearly 

independent. □

Let i j  € I have weights a  and (3, respectively, and suppose that i £ j .  In §9
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we defined the degree of $ |j, d(^jj), by

d(£i j )  -  a  -  p.

A lso ,if Z  s.1 e^i,.*i 1 Z|, i i . i . i O l u s  n -11 (where
U 6 Dr-1

*1141*1 -  -1 ........0 »  and S(B*){ -  ® k ^ y  ( ? «  T )  we proved thal
Oi) (u+1) (*J) 6 0

W y )-C

S(BV). c® t  S(B*);

is a grading of the algebra S(B+) (cf.(9.14)).

It is easy to see that if  (ij), ( i'j ')  €  Cl', and c(ij) -  c ( i 'J ') ,  then d (^ j)  -  d(^-j-). 

Thus, for any c e  £1*. there holds

(6 .1 3 )  (i) 5c -  g £  a  is homogeneous of degree d(^-j-). where ( i 'j 'J e  Q '
c(i j )  -  c

satisfies c (i 'j ')  -  c.

(ii) d(5c) -  (0.....0) iff  c  € C l*Q, i.e., iff 1 w y

For each C e  4* let S(U+)t  be the k-subspace o f  S(U+) spanned by all 

5 c (ce  Cl*) of degree 

By the remarks above,
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s ( u - )  -  ^  S(U+)C

is a grading o f  S(U+).

Wc now use this grading to determine the radical of S(U+).

(16.14) Theorem: The radical o f S(U+) has k-basis I c e  Q* \  Q-q).

Thus, S(U+) ■ k  ls(G) © rad S(U+) is a local ring.

P ro o f: Let N  ■ © k^c, and suppose we prove that
c « n  \ n j

(1) N is a maximal left ideal o f  S(U+);

(2) N is a nil left ideal.

Then by (1), rad S(U+) C N and by (2), N C rad S(U+). Hence N -  rad S(U+), as 

desired.

Note that, by (16.!3Kii), S ( U ^ . . f0) -  k 1S(0) and 

Hence (1) follows.

To prove (2) define, for each y  -  (Yi,...,y„) e  Zn,

o C r)-  £  v is,. 
v « n

Clearly a (y  +  y )  .  ofif) +  <*y). for «11 Thus, if ( ij)  s  iT  and i 6  a .

j  e  p  (a ,  P e  A) we have

(0  <*(d($y)) -  o (o  -  p) -  o (o )  -  o(P) 2  -  o(p) 2  -  nr,

© S(U+)r -  N. 
C * (0....0)
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(ii) wnte a  -  p  -  ^  Z ^ m ^  where mj,...,mn_j are non-negative

integers.

Then. o(d(£ij)) -  o ( a  -  P) -  ^  Z ^  o ( e ^ , )  -  -  Z _ ^  S 0. Also.

0(d(£y)) -  0 iff nijj -  0 (ji g n-D  iff a  -  p. i.e., iff i -  j  (since i £ j).

Hence, i f  c «  there holds

(16.15) -m ia(d(^c)) £ -1.

Now let il be any element of N, and let m e  Z satisfy m > r  n.

Then, if  rj™ is not zero, there are Cj.....c,„ e  O *\i2*0 such that ... + 0.

But 5c, ••• 5cra «  homogeneous o f degree d ^ )  + ... +  d i ^ ) .  Also

°(d(5c|) +  ••• +  ■ Oidfllcj)) +  ... +  aCdC^c^)) i - m < - r n .  This contradicts

(16.15). Hence T)m = 0 , and (2) follows. □

$17. The natural eplmorphism S(T) 9 S (U + )-*S(B + )

Consider the subgroups T  and U+ o f B+.13 As B+ -  TU+ (semidirect product) 

we have S(B+) -  S(T) S(U+). Thus, there is a natural k-epimorphism

given by

f : S(T) ® S(U+) — ► S(B+), 

f ( (  ®  *1) -  ( l l .  all ( c  S (D , n  6 S(U+).

W e are interested in the kernel o f f. From (3.8) and (16.12), we know that S(T)

Recall that T  is the group of all diagonal matrices in O.
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and S(U+) have k-bases {$<, I a  6 A(n,r)} and Ic  €  £!•}, respectively. So to 

calculate ker f  we need to study the products ( a  €  A, c e  £!•).

I f  a  6  A(n,r) and P g A(n,s) (s -  0,...,r) we say that P e a  if  p^ £  a ^ ,  for all

l i« Q .

(17 .1 ) Definition: Let c  -  (h.h') c  Cl\ (* -  W e define P(c) e  A(n.s)

to be the weight o f  h.

(17 .2) Theorem: k e r f  has k-basis

fl»a ® I aU <* 6 A, c s  Q ‘  such that P(c) g  a ) .

Thus, there is a short exact sequence of k-spaces

0 — ,  e  . k(5o ,® ic) S ( T ) ® S ( U + ) S ( B +) 0.a  c A, c e Q 
P(c)Ca

Proof: Let a  e  A and c -  (hJO e  il*s (s -  0,...,r). Define 

A(ct,c) -  { ( i j ) e f l ' l i e a  and c(i j )  -  c). Then

( 1 7 J )

c ( l j ) .c

Suppose that (i j )  s  A (O i). and let -  «  {p 6 r \s  I ip -  v), for all V e n. Then, 

as I c  a  and 0 i,.„ds) ~  h, we have

o ,  -  # { p €  s l i p - v }  +  # { p e r \ s l i p - v j -  

. « { p s i l h p . v ) + T C t ) v - P ( c ) v  +  T0 )v. *11 v « n .
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Therefore

(17 .4) A (a.c) 4 0  implies (5(c) C a .

Now suppose that A (a,c) 4 0 ,  and let ( ij) . (¡'o') 6 A(a,c). Since c (ij)  -  c(i'J ') -  c. 

there is x  € P(s) such that

* p  -  *t(p) and j  p -  jt(p). all p  6 *

As a consequence o f this, and since i, i ' e  a ,  we must have yfiX, -  7(1%  (v e  n). 

Hence, there is a bijecdon, o : r \ s - » r \ § ,  such that 

i'p ■ W ) . all p  6 f  \  3-

Define jc e  P(r) by, Jt(p) -  x(p) if  p  e  s, while 7t(p) -  o(p) if  p e r \ j .  Clearly 

ire -  i'. Also

j ,  _  fi*(p) "  j«(p) * i f  P e  -

p * *o(p) ”  Jo(p) ”  jj^p) • if P £ E\S- 

Hence ( ij )  -  (i',j')- This proves that

(17 .5) A (a,c) has at most one element.

Suppose now that (5(c) c  a  and write yv -  a *  -  (5(c)v, all V e  n. As yv £  0 

(V g n), we may define i j  e  I(n,r) as follows

i -  ( h ,. . . .^ ,  1,...,1, 2....,2,..., n ,...,n); j  ■ (h'j,...Ji's, 1,...,1, 2,...,2,..., n,...,n).

7 | Yi Y„ Y| Ya Yn
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.  It i i  clear that i e  a ,  i S j, and c (ij)  -  (h, h") -  c. Ulus, the element o f O ' which 

represent! the P-orbit o f ( ij )  in I a I belongs to A(a.c). This together with (17.4) 

and (17.5) give the following

/ l.  i f f k d c a  
« A(o,c) -  <

\0 , if  |)(c) t t a ; a l l a c A , c c f l .

I f  0(c) C a  write A (a,c) -  {(¡(ctf), j(0.c))). Then, by (17.3),

(17.6) l U . t -  / W k« > ’ “
\  0  , if  (5(c) g  a ;  all a s A . c E  Cl*.

Note that if  a ,  o '  6  A and c. c 'e  ft* satisfy (o,c) 4 (o ', o') then 

“ d ^K aV )J(a '.0  *rc linearly independent elements o f S(B+). Hence, the theorem

(17.2) follows from (17.6). □
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INDEX OF NOTATION

Symbol Meaning Page of
Definition

A y X »  X(v,m) (X|,...,X^ + m, Xv+i-m,...,Xn) 3-3

B+ (rcsp. B- ) The group o f all upper (resp. lower) triangular
matrices in G 1-9

ex« The Cartan invariants of S(B+) 4-3

dim -  dunk . Dimension over k

f t j  » » l i - f t A

G -  GLn(k) The general linear group o f degree n over k  1-1

G j, G J The standard parabolic subgroups o f G corresponding

to the set J 1-10

(V, V')$ Horn, (V, V'), group o f S-homomorphisms from V to V '

i j  Elements o f I(n,r)

inc The inclusion map

I  -  I(n,r) {i -  ( ij......ir) I ip e  n, for all p e  i} 1-1

I(X) { i€  I |i£ £ (X )  and i f ’ is row-semistandard} 3-1

J n\{mi,...,ms}, where mi,...,ms are integers
satisfying 0  < mj < ... <  » n 1-2

k  Infinite field 1-1

k^, (resp. k£) The irreducible S(B+)-module (resp. S(B-)-module)

associated with X 2-3

K.\ The Weyl module for S(G) associated with X 2-6 , 2-9
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Symbol Meaning Page of 
Definition

«XJ S(G j) ® s(B+) kX 2-13

«X) The element of I(n,r) defined by the X-tableau (4.4) 1-14

«Vin) «A ?X ) 3-3 , 3-4

« p .v ,  m, X) The element of I(n,r) defined by the X-tableau (4.5) 1-15

Lj The standard Levi subgroup o f G corresponding to 
the set J 1-10

mod S The category of all S-modules which are finite 
dimensional over k -

N . {ma_j+l,...,ma} 1-2

P(s) The symmetric group on {1 1-1

P P(r) 1-1

Pi The stabilizer of i in P 1-8

PiJ Pi<->Pj 1-8

S(H) » Sjcin.r.H) The Schur algebra for H, n, r  and k 1-6

T The group o f all diagonal matrices in G 1-9

TX The basic X-tableau 1-4

The X-tableau iT^ 1-5

T , The representation afforded by the kG-module E®r 1-6

V /1 ) The element of G with l 's  in the main diagonal, 
t in position (p,V) and zeros elsewhere 1-9

U* (rcsp. U-) The group of all unipotent matrices in B+ (resp. B") 1-9

v x The projective indecomposable S(B+)-m odule S(B+)^x 2-1
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Symbol Meaning Page of 
Definition

V* The X-weight space o f V 1-14

Vo Thecontravariantdualof V 1-18

V* The dual, HomkiV, k), o f V -

V ® V ' V ® k  V' 1-5

p(m)
HV ^  t(X) (sum over all X €  A such that

m £ X v ) 1-16

e(co) The sign o f the permutation to -

X Element o f  A(nj) -

X(v,m) A™X 3-4

A -  A (nj) a -(X ,....,X11) IX v e * . X v 2 0 ( v s n ) .  vX  x , . r } 1-1

A+ .  A+(n,r) 0 . 6  A(n,r) 1X, 2 X2 2  ... 2 X„) 2-9

a;  -  a ;  (n j) <X E A (n j) 1 X ^_1+|  2 . . .  2  X,^, «11 « 6 5) 2-14

« u A basis element o f  S(G) 1-6

5x where i € I(n,r) has weight X 1-8

*x The representation afforded by the S(B+)-m odule k*. 2-3

«XX) (Xj +  to(l)-l,...X n +  co(n)-n) 4-11

*S(G) ®S(B+) Jkx 2-6

a A transversal of the set o f all P-orbits o f I  x I 1-7

a {(ij) €  Q l iS j} 2-1

i (1..... *> 1-1

“ 7 *
li and v  are in the same set Na, for some a e  s 1-2
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Symbol M eaning Page of
Definition

H J V  | i S V o r | i - v  1-2

* - j  1-2

* J j  i p j j p .  »11 P « I  1-2

i s J ‘p^lp . *U P « I  1-3

* ~ j  i and j  are in the same P -o rb ito f I l - l

( i j )  — (¡'o') ( i j )  and ( i\  jO are in the same P-orbit of I x I 1-1

^  The dominance order on A(n,r) 1-3

©  Internal direct sum

11 External direct sum

#  The cardinal

U Disjoint union
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