A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/107950

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Some subalgebras of the Schur algebra

by
Ana Paula JacInto Santana

Thesis subarited for the degree of Doctor of Philosophy at the University of Warwick, Mathematics Institute

May 1990.

THE BRITISH LIBRARY DOCUMENT SUPPLY CENTRE

BRITISH THESES NOTICE

The quality of this reproduction is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.
Some pages may have indistinct print, especially if the original pages were poorly produced or if the university sent us an inferior copy.

Previously copyrighted materials (journal articles, published texts, etc.) are not filmed.

Reproduction of this thesls, other than as permitted under the United KIngdom Copyright Designs and Patents Act 1988, or under speciflc agreement with the copyright holder, is prohibited.

THIS THESIS HAS BEEN MICROFILMED EXACTLY AS RECEIVED

To Toi

SUMMARY

In this thesis we study some subalgebras of the Schur algebra for the general linear group GL $_{n}(\mathbf{k})$, particularly the Schur algebra $\mathbf{S}\left(\mathbf{B}^{+}\right)$for the Borel subgroup B^{+}of $G L_{n}(k)$.

In many ways it is easier to work in $S\left(B^{+}\right)$than in the more complicated algebra $\mathbf{S}\left(\mathrm{GL}_{\mathbf{n}}(\mathbf{k})\right.$). Using the properties of $\mathbf{S}\left(\mathrm{B}^{+}\right)$we give a new treatonent of the Weyl modules for $\mathbf{G L}_{\mathbf{n}}(\mathbf{k})$. We then construct 2-step minimal projective resolutions of the irreducible $\mathbf{S}\left(\mathbf{B}^{+}\right)$-modules and from these we obtain very easily 2-step projective resolutions of the Weyl modules for $G L_{n}(\mathbf{k})$.

We study the Cartan invariants of $S\left(B^{+}\right)$and show that under certain conditions they satisfy an interesting identity.

For particular cases of the field k and of the integer n we prove several results on minimal projective resolutions of the irreducible $\mathbf{S}\left(\mathrm{B}^{+}\right)$-modules.

The methods we use are combinatorial and do not involve algebraic group theory.

CONTENTS

INTRODUCTION 0-1
CHAPTER 1: SCHUR ALGEBRAS
81. Notation and basic definitions 1-1
82. The Schur algebras $S_{k}(n, r, H)$ 1-S
83. Bases for $S\left(G_{j}\right)$ and $S\left(L_{j}\right)$ 1-9
84. Weightspaces 1-13
85. Contravariant duals 1-18
CHAPTER 2: THE MODULES K K_{λ} J
86. The Schur algebra $\mathbf{S}\left(\mathrm{B}^{+}\right)$ 2-1
87. Weyl modules 2-5
88. $K_{\lambda J}$ and the Schur algebra $S\left(L_{\jmath}\right)$ 2-12
CHAPTER 3: 2-STEP PROJECTTVE RESOLUTIONS
69. The radical of \mathbf{V}_{λ} 3-1
810. A 2-step minimal projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$ and its applications to Weyl modules 3-13
CHAPTER 4 : S(B^{+}) REVISITED
811. The spaces Homs $\mathrm{SB}_{\left(\mathrm{B}^{+}\right)}^{\left(\mathrm{V}_{\alpha}, V_{\lambda}\right)}$ 4-1
812. Some more results on $c_{\lambda a}$ 4-16
CHAPTER 5 : ON MINLMAL PROJECTTVE RESOLUTIONS OF $\mathbf{k}_{\boldsymbol{\lambda}}$
813. The case $n \leq 3$ and char $k=0$ 5-1
614. The case $n=2$ and char $k=p$ 5-17
815. An application to $\mathrm{S}(\mathrm{G})$ 5-26

CHAPTER 6: THE SCHUR ALGEBRA S(U')

816. A basis and the radical of $S\left(U^{+}\right)$
817. The natural epimorphism $S\left(T^{+}\right) S\left(U^{+}\right) \rightarrow S\left(B^{+}\right) \quad 6-1$

INDEX OF NOTATION
N-1
REFERENCES \quad R-1

ACKNOWLEDGEMENTS

1 am extremely grateful to my supervisor Professor J.A. Green for his kindness, encouragement and help during my stay at the University of Warwick. I take this opportunity to thank him for teaching me so much and so enthusiastically.

I would like to thank Professors G. de Olivein, M. Sobral, J. Queird and E. Miranda, of the University of Coimbra, for teaching me algebra in such a beautiful way. To Professor M.T. Martins I express my gratitude for encouraging and helping me to come to England.

I wish to thank Dr. F. Kouwenhoven for the very useful discussions we have had.
I would also like to thank Ms. Terri Moss for her patience with my manuscript and her efficient typing.

I acknowledge the financial support of the Fundação Calouste Gulbenkian and thank the Deparment of Mathematics of the University of Coimbra for the permission to be on leave during my studies at the University of Warwick.

DECLARATION

The work in this thesis is original as far as I am aware, except when explicitly stated to the contrary.

O. INTRODUCTION

Let \mathbf{k} be an infinite field and let \boldsymbol{n} and \mathbf{r} be positive integers.
Suppose that E is an n-dimensional k-vector space where $G=G L_{n}(\mathbf{k})$ acts
 made into a left kG-module by the rule

$$
g\left(x_{1} \otimes \ldots \otimes x_{r}\right)=g x_{1} \otimes \ldots \odot g \pi_{r} \quad \text { all } g \in G, x_{1}, \ldots, x_{p} \in E
$$

Let

$$
T_{\mathbf{r}}: \mathbf{k G} \rightarrow \text { End }_{\mathbf{k}}\left(\mathbf{E}^{\Theta}\right)
$$

be the representation afforded by $\mathrm{E}^{\boldsymbol{2} \mathrm{r}}$ (regarded as $\mathbf{k G}$-module). The image of T_{p} i.e., $T_{\mathrm{F}}(\mathrm{KG})$ is a subalgebra of End $\left(\mathrm{E}^{\mathrm{Or}}\right)$.

Definitlon: For each subgroup H of G the subalgebre $T_{r}(k H)$ of $T_{r}(\mathrm{kG})$ will be called the Schur algebra for H, n, r and k and denoted $S_{k}(n, r, H)$, or simply $S(H)$ if no confusion regarding n, r and k arises.

In his dissertation [S], I. Schur introduced a \mathbf{k}-algebra, denoted $S_{\mathbf{k}}(\mathbf{n}, \mathbf{r})$ in [G1], and used it to study the polynomial representations of the complex general linear group $\mathrm{GL}_{n}(\mathbb{C})$

The Schur algebre $S(G)=S_{\mathbf{k}}(n, r ; G)$, defined above, may be identified with $\mathrm{S}_{\mathbf{k}}(\mathrm{n}, \mathbf{r})$. In fact, in $\mathbf{G} 2 ; \mathrm{p} .5$] it is proved that there is a \mathbf{k}-algebra isomorphism

0-2

$$
\begin{equation*}
\Xi: S_{\mathbf{k}}(n, r) \longrightarrow S(G) \tag{0.1}
\end{equation*}
$$

which takes the basia element $\xi_{i j}$ of $S_{k}(n, r)$ (defined in (G1; p. 21)) to the baris element $\xi_{1 / j}$ of $\mathbf{S}(\mathrm{G})$ (defined in $\mathbf{\xi} \mathbf{2}$).

Let \mathbf{H} be any subgroup of \mathbf{G}. The Schur algebra $\mathbf{S (H)}$ is a powerful tool in the study of polynomial representations of H. It in a classical fact (cf. (G1; (2.4d)) that there is an equivalence between the category mod $\mathbf{S}(\mathrm{G})$, of all $\mathbf{S}(\mathrm{G})$-modules which are finite dimensional over \mathbf{k}, and the category of polynomial representations of \mathbf{G} which are homogeneous of degree r . It is easy to see that this equivalence of categories still holds if we replace \mathbf{G} by H .

This thesis is mainly devoted to the study of the Schur algebra $\mathbf{S}\left(\mathrm{B}^{+}\right)$for the Borel subgroup B^{+}of \mathbf{G} (B^{+}consists of all upper triangular matrices in G) and its applications to $\mathbf{S}(\mathrm{G})$. Our methods are combinatorial and we shall not use algebraic group theory.

Our interest in $\mathbf{S}\left(\mathbf{B}^{+}\right)$arose from our attempts to construct projective resolutions of K_{λ}, the Weyl module for \mathbf{G} with highest weight $\boldsymbol{\lambda}$. In recent years it has been proved by several authors (cf. e.g. [D], [AB2], [P1) that $S(G)$ has finite global dimension. This led to the problem of constructing projective resolutions of $\mathbf{K}_{\boldsymbol{\lambda}}$. An answer to this problem was given in [AB1] in the case when $\mathbf{n} \mathbf{= 2}$, and in [A] and [Z] when the field \mathbf{k} has characteristic zero. We use the properties of $\mathrm{S}\left(\mathrm{B}^{+}\right)$to give a new treatment of the Weyl modules $\mathrm{K}_{\mathbf{\lambda}}$, and to obtain some results on projective resolutions of these modules.

The study of $\mathbf{S}\left(\mathbf{B}^{+}\right)$in itself proved to be interesting, and in particular the analysis of an identity involving its Cartan invariants (see (0.5)).

We begin in Chapter 1 by introducing some basic material which will be used in the following chapters. Sections 1 and 2 conuain notation and elementary resulta. In 53 we use the method of [G2; 53] to determine beses of the Schur algebras. $\mathbf{S}\left(\mathrm{O}_{\mathrm{f}}{ }^{\dagger}\right)$ and $S\left(L_{j}\right)$, for the standard parabolic subgroups G_{j}^{+}of G and its Levi factors L_{j}. In 84 and 85 we define weight spaces and contravariant duals, and prove some results which will be very useful in the next chapter. We think Theorem (5.6) may be known, but we cannot find any reference for it. We also remark that a result similar to (4.8) is known from the theory of algebraic groups (cf. e.g. (St; theor. 39).

In the first section of Chapter 2 we determine full sets of pairwise non-isomorphic irreducible, and projective indecomposable, $\mathbf{S}\left(\mathbf{B}^{+}\right)$-modules. These are indexed by the elements of $\Lambda(n, r)$ (see p.1.1 and (7.12) for the definitions of $\Lambda(n, r)$ and $\Lambda^{+}(n, r)$). From now on let \mathbf{k}_{λ} and $\mathbf{V}_{\lambda}=\mathbf{S}\left(\mathrm{B}^{+}\right) \boldsymbol{\xi}_{\lambda}$ denote, respectively, the irreducible and projective indecomposable $\mathbf{S}\left(\mathbf{B}^{+}\right)$-modules associated with $\boldsymbol{\lambda}=\left(\boldsymbol{\lambda}_{1}, \ldots, \lambda_{\mathrm{D}}\right) \in \boldsymbol{\Lambda}(\mathrm{n}, \mathrm{r})$.

In 87 we define, for each $\lambda \in \Lambda^{+}(n, r)$, the Weyl module K_{λ} associated with λ. by

$$
K_{\lambda}=S(G) \otimes_{\left.S\left(B^{+}\right)\right)^{k_{\lambda}}} .
$$

This definition is equivalent to the classical one given in [CL]. In fact, in [G1; pp. 64, 65] it is proved that the Weyl module for G associated with λ (as defined in [CLD) is the contravariant dual of the rational G-module $\operatorname{Ind} \mathrm{B}_{\mathrm{B}}^{\mathrm{O}} \mathbf{k}_{\lambda}^{-}$, where k_{λ}^{-}is the irreducible \mathbf{B}^{-}-module associated with $\boldsymbol{\lambda}$. It can be seen (cf. (G2; p.25) that $\operatorname{Ind}_{\mathbf{B}}^{\mathbf{G}}-\mathbf{k}_{\boldsymbol{\lambda}}^{-}$is equivalent, via $T_{f}: k G \rightarrow S(G)$, to the $S(G)$-module $\left.M_{\lambda}=\operatorname{Hom}_{S(B)}\right)\left(S(G), k_{\lambda}\right)$. In (7.14) we prove that $\mathrm{M}_{\boldsymbol{\lambda}}$ is the concravariant dual of $\mathrm{K}_{\boldsymbol{\lambda}}$. This proves the equivalence of the definitions.

We use the properties of $\mathbf{S}^{\left(B^{+}\right)}$to give an alternadve proof of some of the results in [CL] sbout Weyl modules. In particular, we prove that thene are cyclic modules containing a unique maximal submodule, and that the quotients by these submodules give a full set of pairwise non-isomorphic irreducible $S(G)$-modules.
 for integers $m_{0}, m_{1}, \ldots, m_{s}$ sacisfying $0=m_{0}<m_{1}<\ldots<m_{a}=n$. Write $n_{a}=m_{m}-m_{a}-1$, and for each $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda\left(n_{n}\right)$ satisfying

$$
\begin{equation*}
\lambda_{m_{m-1}+1} \geq \ldots \geq \lambda_{m_{0}} ; \text { for } a=1, \ldots,, 2, \tag{0.2}
\end{equation*}
$$

define $\lambda(\Delta)=\left(\lambda_{m_{0-1}+1}, \ldots, \lambda_{m_{2}}\right)$. Then we prove that $K_{\lambda J}$ is isomorphic as $S\left(L_{1}\right)-$ module to $K_{\lambda(1)}$ © \ldots © $K_{\lambda_{(z)}}$ (*) means Θ_{L}), where $K_{\lambda(a)}$ is the Weyl module for $S\left(\mathrm{GL}_{n_{\mathrm{i}}}(\mathbf{k})\right)$ associated with $\lambda(\mathrm{t})$. It is quite simple to show that $\mathrm{K}_{\lambda J}$ is zero if λ does not satisfy (0.2).

Chapter 3 is dedicated to the construction of a 2-step minimal projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$ in $\bmod \mathbf{S}\left(\mathrm{B}^{+}\right)$. In 59 we determine a minimal set of $\mathbf{S}\left(\mathrm{B}^{+}\right)$-generators of the radical of $\mathbf{V}_{\boldsymbol{\lambda}}=\mathbf{S}\left(\mathrm{B}^{+}\right)_{\boldsymbol{\xi}}^{\boldsymbol{j}} \boldsymbol{\lambda}$. This is not too hard, since $\mathbf{V}_{\boldsymbol{\lambda}}$ has a very well behaved \mathbf{k} basis. From this result it is easy to construct the 2-step minimal projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$

where $\lambda \in \Lambda(n, r)$ and char $k=p(\mathbb{0})$ (for notation see 89).
Now we only need to apply the right exact functor $S(G) \otimes_{S\left(B^{+}\right)} \cdot: \bmod S\left(B^{+}\right) \rightarrow S(G)$ to the sequence above, and we obtain the 2-srep projective resolution of the Weyl module $\mathbf{K}_{\boldsymbol{\lambda}}$
0-5

where $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}^{+}(\mathrm{n}, \mathrm{r})$ and char $\mathbf{r}=\mathrm{p}(\boldsymbol{Z} \mathbf{0})$.
In [ABW] there is given (as part of the construction of a standard basis of K_{2}) : 2-step projective resolution of $K_{\lambda}\left(\lambda \in \Lambda^{+}\left(n_{n}\right)\right)$. This is done using symmetric, extertor and divided power algebra theory. But since in the work cited it is not assumed that \mathbf{k} is a field (more general rings are allowed) the resolution obuained

$$
\prod_{1 \leq v \leq n-1} \prod_{i \leq m \leq \lambda_{v / t}}^{\|_{1}(G) \xi_{\lambda(v, m)} \rightarrow S(G) \xi_{\lambda} \rightarrow K_{\lambda} \rightarrow 0}
$$

is less economical (for the case that \mathbf{k} is a field of characteristic p) than (0.3).

Chapter 4 deals with the Cartan invariants

$$
c_{\lambda \alpha}=\operatorname{dim}_{k} \operatorname{Hom}_{S\left(B^{+}\right)}\left(V_{\alpha}, V_{\lambda}\right), \quad \text { all } \alpha, \lambda \in \Lambda(n, r)
$$

of $\mathrm{S}\left(\mathrm{B}^{+}\right)$. As is expected from the algebraic group theory of B^{+}, we show that $c_{\lambda \alpha} \neq 0$ iff $\lambda \boxtimes \alpha$, i.e., iff

$$
\begin{equation*}
\left.\alpha=A_{1}^{m 1} \ldots A_{n-1}^{m_{2}-1} \lambda=\lambda_{1}+m_{1}, \lambda_{2}+m_{2}-m_{1} \ldots, \lambda_{n}-m_{n-t}\right) . \tag{0.4}
\end{equation*}
$$

for non-negative integers m_{1}, \ldots, m_{n-1}.

If this condicion holds, we have two cases to consider. First suppose that the integers m_{v} in (0.4) satisfy $\mathrm{m}_{\mathrm{v}} \leq \lambda_{\nu+1}$, for $\mathrm{v}=1, \ldots, \mathrm{n}-\mathrm{i}$. Then $c_{\lambda_{\alpha}}$ may be expressed in terms of the integers $n\left(m_{1}, \ldots, m_{n-1}\right)$ (cf. (11.9)) which depend only on m_{1}, \ldots, m_{n-1} -

$$
0-6
$$

We then determine a generating function for $n\left(m_{1}, \ldots, m_{n-1}\right)$, which allows us to prove that the following idencity holds

$$
\begin{equation*}
\sum_{\omega} \sum_{(n)} \varepsilon(\omega) c_{\omega(\lambda) a}=\delta_{\lambda, a}, \tag{0.5}
\end{equation*}
$$

where $P(n)$ is the symmerric group on $\{1, \ldots, n\}, \mathbf{e}(\infty)$ is the sign of the permutation $\omega, \omega(\lambda)=\left(\lambda_{1}+\omega(1)-1, \ldots, \lambda_{n}+\omega(n)-n\right)$, and $\delta_{\lambda_{a}}$ is the Kronecker delt.

Now suppose that $m_{v}>\lambda_{v+1}$, for some $v \in(1, \ldots, n-1)$. Then the expression which describes $c_{\lambda \alpha}$ is much more complicated, and in this case we are not able to prove (0.5). Nevertheless, we show that the relation (0.5) holds for any α and λ in $\mathbf{A}\left(\mathrm{n}_{\mathrm{r}}\right)$, provided $\mathrm{n} \leq 3$.

In Chapter 5 we return to the construction of minimal projective resolutions of $\mathbf{k}_{\boldsymbol{\lambda}}$, for any $\lambda \in \Lambda(n, r)$. In [G2] it is proved that $S\left(B^{+}\right)$is a quasi-hereditary algebra. Therefore it has finite global dimension (cf. [CPS), and minimal projective resolutions of $\mathbf{k}_{\boldsymbol{\lambda}}$ are finite. In $\mathbf{8} 13$ we determine these resolutions in the case when the field \mathbf{k} has characteristic zero and $n \leq 3$. These are formally very similar to the resolutions obtained in $[\mathcal{A}]$ and $[Z]$ for the Weyl modules $K_{\lambda}\left(\lambda \in \Lambda^{+}(n, r)\right.$). Section 14 deals with the case when k has positive characteristic p and $n=2$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \Lambda(2, r)$ and suppose that $p^{d} \leq \lambda_{2}<p^{d+1}$ (some $d \geq 0$). Then we prove that

$$
\begin{align*}
& \stackrel{d}{\oplus=1}\left(V_{\lambda\left(1, p^{m}\right)} \oplus V_{\lambda\left(1,1+p^{m}\right)} \oplus V_{\lambda\left(1, p+p^{m}\right)} \oplus \ldots \oplus V_{\lambda\left(1, p^{m-1}+p^{m(m)}\right.}\right) \tag{0.6}\\
& \xrightarrow[m=0]{\varphi_{2}} \stackrel{d}{\oplus} v_{\lambda\left(1, m^{m}\right)} \xrightarrow{\varphi_{1}} V_{\lambda} \xrightarrow{\varphi_{0}} k_{\lambda} \rightarrow 0
\end{align*}
$$

are the first three terms of a minimal projective resolution of $\mathbf{k}_{\mathbf{2}}$. Note that if char $\mathbf{k}=\mathbf{0}$ we have shown (cf. (13.1)) that

0-7

$$
\begin{equation*}
0 \rightarrow v_{\lambda(1,1)} \xrightarrow{\varphi_{1}} v_{\lambda} \xrightarrow{\varphi_{0}} k_{\lambda} \rightarrow 0 \tag{0.7}
\end{equation*}
$$

is a minimal projective resolution of $\mathbf{k}_{\mathbf{\lambda}}$. This illustrates how the difficulty in the construction of these sequences increases when we go from a field of characteristic zero to a field of positive chanacteristic. We should remark that the major obsucle with which we were confronted in our antempts to give a complete solution of this problem is the complicated rule for the multiplication of two basis elements of $\mathbf{S}(\mathrm{G})$.

We conclude Chapter \mathbf{S} by applying the functor $\mathbf{S}(\mathbf{G}) \boldsymbol{\otimes}_{\mathbf{S}\left(\mathbb{B}^{+}\right)}$. to the sequences (0.6) and (0.7) and obtain similar exact sequences for the Weyl module $K_{\lambda} \quad \Omega \in \Lambda^{+}\left(n_{s}\right)$). This is justified by a recent theorem of D.J. Woodocock (cf. (15.1)).

Finally in Chapter 6 we study the Schur algebra S(U) for the unipotent subgroup \mathbf{U}^{+}of \mathbf{B}^{+}. We determine a \mathbf{k}-basis of $\mathbf{S}\left(\mathrm{U}^{+}\right)$which, unlike the basis of $\mathrm{S}\left(\mathrm{G}_{\mathrm{J}}^{+}\right)$ determined in 83 , is not a subset of the basis $\left\{\xi_{i j} \mid(i, j) \in \Omega\right]$ of $S(G)$ (cf. (2.2)). Then we prove that $\mathbf{S}\left(\mathrm{U}^{+}\right)$is a local ring. We end this chapter by studying the natural epimorphism

determined by the decomposition $\mathrm{B}^{+}=\mathrm{TU}^{+}$of B^{+}as the semidirect product of the group \mathbf{T} (of all diagonal matrices in \mathbf{G}) and U^{+}.

$$
1-1
$$

1. sChUR ALGEBRAS

81. Notation and basic definitions

t is an infinite field of any characteristic, n and r are positive integers which will be fixed throughout and $G=G L_{n}(k)$ denotes the general linear group of degree n over \mathbf{k}.

If s is any positive integer, we write s for the set $\{1, \ldots, s\}$.
$I=I\left(n_{r}\right)=\left\{i=\left(i_{1} \ldots, i_{q}\right) \mid i_{p} \in \underline{n}\right.$ for all $\left.\rho \in \underline{r}\right\}$, will also be regarded as the set of all functions $i: r \rightarrow n\left(i_{\rho}=i(\rho)\right.$, for all $\left.\rho \in r\right)$, and

$$
\Lambda=\Lambda(n, r)=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{2}\right) \mid \lambda_{n} \in Z, \lambda_{v} \geq 0(v \in n), \sum_{v \in \underline{n}} \lambda_{r}=r\right\}
$$

if the set of all unordered partitions of r into n parts (zero parts being allowed).
(1.1) Dellnition: $\lambda \in A$ is the weight of $i \in I$ (and we write $i \in \lambda$) if $\lambda_{\nu}=w\left\{p \in \underline{r} \mid i_{p}=\nu\right\}$, for all $v \in \underline{n}$.
$\mathbf{P}=\mathbf{P}(r)$ denotes the symmetric group on \mathbf{r}. It acts on the right of $\mathbf{I}(n, r)$ by

$$
\begin{equation*}
i \pi=\left(i_{n(1)}, \cdots, i_{n(r)}\right), \text { all } 1 \in I, \pi \in P \tag{1.2}
\end{equation*}
$$

P also acts on the right of I \times I by

$$
(i, j) \pi=(i x ; j \pi), \text { all } b, j \in I, \pi \in P
$$

We write $\mathrm{i} \sim \mathrm{j}$ if i and j are in the same P -orbit of 1 and similarly $(\mathrm{i}, \mathrm{j}) \sim\left(\mathrm{i}^{\prime}, \mathrm{j}^{\prime}\right)$ means that (i, j) and ($i^{\prime} j^{\prime}$) are in the same P-orbit of $I \times I$.
(1.3) Remark: Note that $i \sim j$ iff i and j have the same weight, so we may think of $\Lambda(n, r)$ as the set of all P-orbits in $I(n, r)$.

We will now introduce some pre-orderings on $I(n, r)$.
(1.4) If $m_{0}, m_{1}, \ldots, m_{1}$ are integers satisfying $0=m_{0}<m_{1}<\ldots<m_{1-1}<m_{1}=n_{1}$ define $J=n \backslash\left\{m_{1}, \ldots, m_{j}\right\}(\varepsilon \geq 1)$.

Clearly $n=\bigcup_{a \in g} N_{2}$, where $N_{n}=\left(m_{m-i}+1, \ldots, m_{n}\right)(\mathrm{a} \in \mathrm{s})$.
For $\mu, v \in \underline{n}$ say $\mu=v$ if μ and v are in the same set N_{n}, for some at
(1.5) Definition: For $\mu, v \in \pi, \mu \leq v$ means that $\mu \leq v$ or $\mu=v$.

We may extend these concepts to I(n,r) as follows
(1.6) Definition: Let $i, j \notin I(n, r)$. Then we say
(i) $\quad \mathbf{j} \mathbf{j} \mathbf{j}$ if $i_{\rho}=j_{j}$, all $\rho \in \underline{\underline{r}}$;
(ii) $\quad \underset{J}{ } \leq j$ if $i_{\rho} \leq_{j} j_{p}$, all $\rho \in \mathbb{I}$.
(1.7) Remarks: (i) The relation $\underset{J}{\leq}$ is reflexive and transitive on I. Also $i \underset{J}{\leq} j$ and
$\mathbf{j} \leq \mathbf{j}$ iff $\mathbf{i} \underset{\mathbf{j}}{ } \mathbf{j}$ (but not necessarily $\mathbf{i}=\mathbf{j}$). Hence $\underset{J}{ }$ is a pre-ordering on I.
(ii) For any $i, j \in I$ we have that $i \leq j$ implies $i \pi \leq i \pi$, for any $\pi \in P$. So if $i \leq j$ and
$(i, j) \sim(h, l)$ (some $h, l \in I$) then $h \leq L$

A similar result holds if we use a instesd of \leq,

We shall now pay special attention to the case when $J=\varnothing$, i.e., $m=n$ and $\mathbf{N}_{\mathbf{n}}=$ [a] for all $\mathrm{m} \underline{\mathrm{n}}$.

If $\mu, V \in \underline{n}, \mu \leq V$ means $\mu \leq v$ (in the usual sense). Thus, if $i d \in I$ we have $1 \leq j$ iff $i_{\rho} \leq j_{\rho}$ all $\rho \mathbb{I}$. We shall write \leq for \leq and $i<j$ will mean $i \leq j$ but 1申

As $\mathbf{i} \leq j$ and $j \leq i$ implies $d=j$, we have in this case a partial order on I (it coincides with the partial order defined in (G2; p. 1 i]).
(1.8) Lemma: Let $i \in I$ and $\pi \in P$. Then it $\leq i$ iff $i \pi=i$.

Proof: One "if" is obvious. Now suppose $i \pi \leq i$ but $i \pi \neq i, i_{1}, i_{\pi(p)} \leq i_{p}$ all $\rho \in \mathbf{r}$, and $i_{x(v)}<i_{\mathbf{r}}$, for some $\boldsymbol{\tau} \in \mathbf{r}$. Then

$$
\sum_{\rho \in I} i_{\rho}>\sum_{\rho \in I} i_{r(\rho)}=\sum_{\rho \neq 1} i_{p}
$$

a contradiction. So $\mathbf{i} \pi \leq i$ implies $i \pi=i$.

Now we will introduce a partial order \unlhd on $\Lambda(n, r)$, usually called the dominance order (cf. (JK; (1.4.6)).
(1.9) Definition: If $\alpha, \beta \in \Lambda(n d)$ we say that $\alpha \Phi \beta$ if $\sum_{v=1}^{\mu} \alpha_{v} \leq \sum_{v=1}^{\mu} \beta_{v}$, for all $\boldsymbol{\mu} \in \underline{\text { n }}$.
1-4
(1.10) Lemma: If $i, j\rfloor 1$ have weights α and β, respectively, then $i \leq j$ implies $\boldsymbol{\beta} \boldsymbol{\otimes} \boldsymbol{\alpha}$.

Proof: Suppose $i \leq j$. Then $i_{\rho} \leq j_{\rho}$ for all $\rho \in \underline{f}$, which implies that, for any $\mu \in \underline{n}$,

$$
\sum_{V=1}^{\mu} \beta==\left\{p \in \underline{r} \mid J_{\rho} \leq \mu\right) \leq=\left\{p \Subset \underline{r} \mid t_{p} \leq \mu\right\}=\sum_{v=1}^{\mu} \alpha_{v,} \text { i.e., } \beta \leq \alpha .
$$

We now define some notation involving λ-tableaux. Essentially this will be the same as in [G1].

Let λ be any clement of $\mathbf{N (n , r)}$.
The diagram of λ is the set

$$
[\lambda]=\left\{(\mu, v) \in Z \times Z \mid \mu \geq 1 \text { and } 1 \leq v \leq \lambda_{\mu}\right\}
$$

and any map from [λ] to a set is called a λ-fableau. We shall choose a bijective map $T^{\lambda}:[\lambda] \rightarrow \underline{r}$ and call it the basic λ-sableav. If $T^{\lambda}((\mu, v))=a_{\mu v}((\mu, v) \in[\lambda])$ we shall write

Ascociated with $\mathbf{T}^{\boldsymbol{\lambda}}$ we have the subgroup of \mathbf{P} consisting of all those $\boldsymbol{\pi} \boldsymbol{\in} \mathbf{P}$ which preserve the rows (resp. columns) of (1.11). This is called the row stablizer (resp. colwnis sabiliser) of T^{λ}.

Now let if $I(n, r)$. Since 1 may be regarded as a map from 1 to n we may conaider the λ-tableau IT ${ }^{\lambda}$. We shall denote it by $T_{i}{ }^{\boldsymbol{\lambda}}$ and write

A final remark on notation. If V, V^{\prime} are k-vector spaces we shall write $V \& V^{\prime}$ for $V \boldsymbol{Q}_{\mathbf{k}} \mathbf{V}^{\prime}$.

52. The Schur algebras $S_{k}(n, r ; H)$

Let E be an n-dimensional k-vector space with basis $\left\{e_{1}, \ldots, e_{n}\right\}$ where G acts naturally, i.e.,

$$
g e_{v}=\sum_{\mu \in \underline{n}} g_{u v} \epsilon_{11} \text {, all } g \in G, v \in \underline{n} \text {. }
$$

The r-fold tensor product $E^{\otimes r}=E \otimes \ldots \otimes E$ (r factors) has k-basis

$$
\left\{e_{i}=e_{i_{1}} \otimes \ldots \otimes e_{i_{1}} \mid i \in I\left(n_{1}\right)\right\}
$$

and it can be made into a left kO -module by the rule

$$
\begin{gathered}
1-6 \\
g e_{1}=g e_{1} \odot \ldots \odot g e_{1,}, \text { all } g \llbracket G, 1 \in 1 .
\end{gathered}
$$

Using (1.2) we may also define a right P-action on E®r, which commutes with that of G, by

$$
e_{f} \pi=c_{i x}, \quad \text { all } \pi \in P, i \in I
$$

Let

$$
T_{r}: k G \rightarrow E_{n d}\left(E^{\oplus}\right)
$$

be the representation afforded by E er regarded as $k G$-module. Then the image of $T_{r v}$ i.e., $T_{r}\left(k_{G}\right)$, is a subalgebra of End $\left(E^{\ominus}\right)$.

If we consider any subgroup H of G, then $T_{r}(k H)$ will be a subalgebra of $T_{r}(k G)$ and we make the
(2.1) Definition: Let H be any subgroup of G. Then the algebra $T_{\mathrm{r}}(\mathbf{k H})$ will be called the Schur algebra for H, n, r and k and will be denoted by $S_{k}(n, r, H$) (or simply $S(H)$ if no confusion relative to $n_{r} r$ and k arises).

It is well known (see e.g. $G G 1$; (2.6c)) that $S(G)$ is the algebra End ${ }_{k P}$ (E^{\oplus}),

In order to obtain a basis for $S(G)$ consider, for each ($\mathbf{i}_{\mathbf{j}}$) $€ I \times I$, the element $\boldsymbol{\xi}_{\mathrm{i} \mathrm{J}}$ of $\operatorname{End}_{k}\left(E^{\oplus}\right)$ whose matrix, $\left(A_{h, l}(i j)\right)_{h, l} \in I=1$, relative to the basis $\left\{e_{m} \mid m \in I\right\}$, has

$$
A_{h, l}(i, j)= \begin{cases}1 & \text { if }(h, l) \sim(i, j) \\ 0 & \text { if }(h, \ell) \not(i, j), \quad(h, l) \propto I=I\end{cases}
$$

1-7

Then $\xi_{1, j} \in \operatorname{End}_{k P}\left(E^{\oplus}\right)=\mathbf{S}(O)$ and it is clear that $\xi_{1, j}=\xi_{h, l}$ iff $(1, j) \sim(h, \eta)$. Hence to obtain distinct elementa ξ_{1}, we should take a transversal Ω of the set of all P-orbits of I x I. Once we have done this we get the result
(2.2) Theorem: (Schur) (cf. [G2; (2.2)D $\left\{\mathcal{E}_{1 / \mathrm{j}} \mid(\mathrm{i}, \mathrm{j}] \in \Omega\right]$ is a \mathbf{k}-basis for $\mathbf{S}(\mathrm{G})$.

The next proposition will tell how to express $T_{\Gamma}(\mathbb{g})$ as a linear combination of the elements of this basis.
(2.3) Proposition: [G2; (3.1)]. For any $\mathrm{g}=\left(\mathrm{g}_{\mu \mathrm{y}}\right)_{\mu, \mathrm{v}} \in \mathrm{n}$ in C there holds

$$
T_{r}(g)=\sum_{0 j \leqslant n} g_{i j} \xi_{i, j}
$$

A formula for the multiplication of two basis elements $\xi_{i j}$ and $\xi_{h, t}$ of $\mathbf{S}(\mathbf{G})$ is due to Schur (see (S; p. 20] or [G1; (2.3b)) and it says
where $z(i, j, h, \ell p, q)=\{\in \mathbb{I}(n, r) \mid(i, j) \sim(p, s)$ and $(h, \ell) \sim(s, q)\}$, for any $i, j, h, \mathcal{L} \in(n, r)\}$.

The following lemma is an easy consequence of this rule
(2.5) Lemma: [G1; (2.3c)]. For any $\mathbf{i} \mathbf{j}, \mathrm{h}, \mathrm{l} \in \mathrm{I}$ there holds
(i) $\xi_{1, j} \xi_{h, l}=0$, unless $j \sim h$
(ii) $\xi_{i, j} \xi_{1, \mathrm{~J}}=\xi_{i j} \xi_{j, j}=\xi_{1, \mathrm{~J}}$
(iii) $\xi_{1, j}^{2}=\xi_{L, ~}$ and $\xi_{i d} \xi_{j j}=0$ if $i \neq j$.

Let $i j \in I(n, r)$ and supose i has weight λ. Then $\xi_{i, j}=\xi_{j J}$ iff $(i, i) \sim(i j)$ iff $i \sim j$, i.e., iff j has weight λ. So from now on we shall write $\xi_{\lambda, ~}$ for $\xi_{i, j}$,

Using (2.3) in is easy to see that $T_{f}\left(\right.$ id) $-\sum_{\lambda} \int_{A} \xi_{\lambda}$. Also form (2.5)(iii) we know that $\xi_{\lambda}^{2}=\xi_{\lambda}$ and $\xi_{\lambda} \xi_{\alpha}=0$ if $\lambda \notin \alpha(\alpha, \lambda \in \Lambda)$. Thus, since $1_{S(G)}=T_{r}(\mathrm{id})$. we have that

$$
\begin{equation*}
1_{\mathrm{S}(\mathrm{G})}=\sum_{\lambda \in A} \xi_{\lambda} \tag{2.6}
\end{equation*}
$$

is an orhogonal idempotent decomposition of $\mathbf{1}_{\mathbf{S}(\mathrm{G})}$.

Calculations using rule (2.4) turn out to be very long and complicated, so we shall use a new version of this formula, given by J.A. Green in [G2], which is more convenient for our work. We state it now.

For $i_{j}, \mathcal{Z} \in \mathbb{1}$, let P_{i} denote the stabilizer of \mathbf{i} in P, i.e., $P_{i}=\{x \in P \mid i x=i\}$, and write $P_{i j}=P_{i} \cap P_{j}, P_{i, j}=P_{i} \cap P_{j} \cap P_{t}$. Then, if $\left[P_{i, \ell}: P_{i \ell j}\right]$ denores the index of $P_{1 \ell J}$ in $P_{i_{\ell}, \ell}$ we have the
(2.7) Theorem: [G2; (2.6)]. For any $\mathrm{ij}, \ell \in \mathrm{I}(\mathrm{n}, \mathrm{r})$ there holds

$$
1-9
$$

$$
\xi_{1 J} \xi_{j, 2}=\sum_{\delta}\left(\mathbb{P}_{18, \Omega}: P_{i B, L j} l_{k}\right) \xi_{i 8, \Omega} .
$$

where the sum is over a transversal \{8\} of the ate of all double cosets $\mathrm{P}_{\mathbf{i}, \mathrm{J}} \delta \mathrm{P}_{\mathrm{j}, \mathrm{l}}$ in P_{f}

Ramarka: (i) It is assumed that $\mathbf{\delta = 1} \mathbf{1}$ is a member of the transversal.
(i) The elements ξ_{i}, \boldsymbol{c} considered above may not be all distinct.
33. Basea for $\mathbf{S}\left(\mathbf{G}_{\mathrm{J}}\right)$ and $\mathbf{S}\left(\mathrm{L}_{\mathrm{J}}\right)$

In this paragraph we will apply the method used in [G2; pp. 11, 13] to determine \mathbf{k}-bases for $\mathbf{S}\left(G_{J}\right)$ and $\mathbf{S}\left(L_{j}\right)$, where $\boldsymbol{G}_{\mathrm{J}}$ is any standard perabolic subgroup of \mathbf{G} and L_{j} is its Levi factor. We start with some notation.
B^{+}(resp. B^{-}) denotes the Borel subgroup of G, consisting of all upper (resp. lower) triangular matrices in \mathbf{O}. \mathbf{T} is the group of all diagonal matrices in \mathbf{G} and U^{+} (resp. \mathbf{U}^{-}) is the group of all unipotent matrices in \mathbf{B}^{+}(resp. \mathbf{B}^{-}).

For each $\mu, v \in \underline{n}, \mu \neq \nu$, let $\varepsilon_{\mu \nu}$ be the element of \mathbf{Z}^{n} with 1 in position $\mu_{1}-1$ in position ν, and zeros elsewhere. These are called the roots (of G) and $\Delta=\left\{\boldsymbol{\varepsilon}_{\mu, \mu+1} \mid \mu \in \underline{n-1}\right\}$ is the set of simple roots.
$\mathrm{U}_{\mu \nu}=\mathrm{U}_{\mathcal{E}_{\mu \nu}}$ is the root subgroup associated with the root $\mathcal{E}_{\mu \nu}(\mu, V \in \underline{n}, \mu \notin \nu)$, i.e., $U_{\mu \nu}=\left\{u_{\mu v}(t) \mid i \in k\right\}$, where $u_{\mu v}(t)$ is the element of G with I's in the main diagonal, in position (μ, v) and zeros elsewhere. It is well known that $U^{+}=\left\langle\mu_{\mu+1}(t) \mid \mu \in n-1, t \in \boldsymbol{k}\right\rangle$.

$$
1-10
$$

For any subset I of $n-1$ we will consider the standard parabolic subgroups of \mathbf{G}.
$G_{j}^{+}=\left\langle B^{+}, x_{\mu} \mid \mu \in D\right\rangle$ and $G_{j}^{-}=\left\langle B^{-}, x_{\mu} \mid \mu \in J\right\rangle$, where, for any $\mu \in n=1$
(3.1)

$$
x_{\mu}=\left(\begin{array}{llllllll}
1 & & & & & & \\
& \ddots & & & & & 0 & \\
& & 1 & & & & \\
& & & 0 & 1 & & & \\
& & & 1 & 0 & & & \\
0 & & & & 1 & \ddots & \\
0 & & & & & & 1
\end{array}\right) \quad \begin{aligned}
& (\text { row } \mu) \\
& (\text { row } \mu+1)
\end{aligned}
$$

Finally we write $L_{J}=\left\langle T, U_{\mu v} \mid E_{\mu v} \in \Phi_{j}\right\rangle$ and

$$
U_{J}^{+}=\prod_{\substack{\mu v \\ \varepsilon_{\mu} \in \Phi_{J} \\ \mu<v}} U_{\mu v}, \quad U_{J}^{-}=\prod_{\substack{\varepsilon_{\mu v} \\ \mu>v}} U_{\mu v},
$$

Suppose $J=n \backslash\left\{m_{1}, \ldots, m_{1}\right\}$, for integers $0=m_{0}<m_{1}<\ldots<m_{s-1}<m_{1}=n$ (321). We are in the situation of (1.4) and as we did there we define
 $\mathrm{O}_{\mathbf{j}}^{+}$has the form

i.c. $E_{\mu v}=0$, unleas $\mu \leq v$ or μ and v are in the same set $N_{\mathbf{a}}$, for some $a \underline{s}$. Thuः (cf. (1.5))

$$
\begin{equation*}
G_{j}^{+}=\left\{g \in G \mid g_{\mu v}=0 \text { unless } \mu \leq v_{J} \text { for all } \mu, v \in \underline{n}\right\} \tag{3.2}
\end{equation*}
$$

and for any $i, j \in I(n, r)$ and for any $g \in G_{j}^{+}$there holds

So from (2.3) we have

$$
\begin{equation*}
T_{r}(g)=\sum_{(i, j) \in \Omega} g_{i, j} \xi_{i j}=\sum_{(i, j) \in \Omega_{i \leqslant j}} g_{i, j} \xi_{i j j} \tag{3.4}
\end{equation*}
$$

This means that $S\left(G_{j}^{+}\right)=T_{f}\left(\mathrm{KG}_{j}^{+}\right)$is contained in the $k-s p a n$ of $D=\left\{\xi_{i, j} \mid(i, j) \in \Omega\right.$, i $\leq j \mathbf{j}\}$. Being a subset of a basis of $S(G)$. D is linearly independent so, if we show that D is contained in $\mathrm{S}\left(\mathrm{G}_{\mathrm{j}}^{+}\right)$we have proved the
(3.5) Proposition: $S\left(G_{j}^{+}\right)$has \mathbf{x}-basis $\left\{\left\{_{H_{j}} \mid(i, j) \in \Omega, i \leq j\right\}\right.$.

Proof: In this proof we write $M=\{(\mu, v) \in \underline{n} \times \underline{n} \mid \mu \leq v\}$.

Suppose $S\left(G_{J}^{+}\right)$is a proper subset of the k-span of D. Then there are elements

$$
1-12
$$

$b_{1 / j} \in \mathbf{k}$, not all zero, such that

$$
\begin{equation*}
\sum_{0, j} \in K_{i \leq j} b_{i, j} g_{i j}=0, \text { for all } \leq G G_{j}^{+} \tag{3.6}
\end{equation*}
$$

Consider in the polynomial ring $\left\langle\left\langle x_{\mu \nu}\right|(\mu, v) \in M\right]$ on the indeterminates x_{μ}, V $((\mu, V) \in M)$, the polynormials

$$
\begin{equation*}
b(x)=\sum_{(i, j) \in \Omega, i \leq j} b_{i, j} x_{i, j} \quad \text { and } \quad c(x)=\prod_{a \in \underline{s}} \operatorname{det}\left(x_{\mu v}\right)_{\mu, v \in N_{a}} \tag{3.7}
\end{equation*}
$$

Then (3.6) says that $\left.1 \mathrm{~b}\left(\mathrm{~g}_{\mu v}\right)_{(\mu, v)} \in M\right)=0$, for all values $g_{\mu v} \in \mathbf{k}$ that satisfy $\left.c\left(\left(g_{\mu \nu}\right)\right)_{n-v} \in M\right) \notin 0$. At this point we may use the

Principle of imelevance of al gebraic inequalities (cf. e.g. [C. p. 140]).
Let $\left.f, g, h \in \mathscr{H} x_{1}, \ldots, x_{m}\right], h \neq 0$ (where k is an infinite field) and suppose that $f(\alpha)=g(\alpha)$ for all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ for which $h(\alpha) \neq 0$. Then $f=g$.

And we have that $b(x)=0$. But the monomials $x_{1 / j}=x_{i_{i}} \ldots x_{i_{i}, r_{1}}$ all $(i, j) \in \Omega, j_{j} j$, are all distinct and so linearly independent elements of $k\left[x_{\mu \nu} 1(\mu, \nu) \in M\right]$. Hence $b(x)=0$ implies $b_{i j}=0$, for all $(i, j) \in \Omega, i \leq j$. This contradicts our hypothesis and proves (3.5). \quad.

Applying the same process to

[^0]\[

$$
\begin{gathered}
i-13 \\
\sigma_{j}^{-}=\left\{\left.g \in O\right|_{I_{\mu \nu}}=0 \text { unless } \vee \leq_{j} \mu, \text { for } a l l \mu, v \in n\right\}
\end{gathered}
$$
\]

and
we obtain
(3.8) Proposition: $\mathbf{S}\left(\mathrm{G}_{\mathrm{j}}^{-}\right)$and $\mathbf{S}\left(\mathrm{L}_{\mathrm{j}}\right)$ have \mathbf{k}-bases

$$
\left\{\xi_{i, j} \mid(i, j) \in \Omega, j \leq i\right\} \quad \text { and } \quad\left\{\varepsilon_{1} \mid(i, j) \in \Omega, i j j\right\}
$$

respectively.

14 Welght spacea

Let H be a subgroup of G containing T and let $V \in \bmod S(H)$.
We know that, for all $\lambda \in \Lambda, \xi_{\lambda} \in S(H)$ (since $S(T) \subseteq S(H)$ and, taking $J=\varnothing$ in (3.8), we get that $\left\{\xi_{\lambda} \mid \lambda \in \Lambda\right\}$ is a k-basis of $S(T)$). Hence there is the orthogonal idempotent decomposition

$$
1=\sum_{\lambda=A} \xi_{\lambda}
$$

of 1 in $\mathbf{S (H)}$ (cf. (2.6), which yields the decomposition of V

$$
\begin{equation*}
V=\underset{\lambda \in \Lambda}{\oplus} \xi_{\lambda} V \tag{4.1}
\end{equation*}
$$

as a direct sum of subspaces.
(4.2) Dafinition: For each $\lambda \in \Lambda, V^{\lambda}=\xi_{\lambda} V$ is called the λ-weight space of V. We say that λ is a weight of V if $\operatorname{dim}_{k} V^{\lambda}>0$.

It is well known (cf. [G1; (3.2)) that this definition coincides with the usual definition of weight space when we regard V as a rational T-module and identify λ with the multiplicative character $T \rightarrow k$ given by $g \mapsto g_{11}^{\lambda_{1}} \ldots g_{n n}^{\lambda_{n}}(\operatorname{all} g \in T)$.

The next proposition is an easy consequence of the definition of weight space and of the fact that ξ_{λ} is idempotent
(4.3) Proposition: [G1; (3.3b)] Let $0 \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow 0$ be an exact sequence in $\bmod \mathbf{S}(\mathbf{H})$. Then the naturally induced sequence of \mathbf{k}-spaces $0 \rightarrow V_{1}{ }^{\lambda} \rightarrow V_{2}{ }^{\lambda} \rightarrow V_{3}{ }^{\lambda} \rightarrow 0$ is exact, for any $\lambda \in \Lambda$.

Before we proceed we need to define some notation. For any $\boldsymbol{\lambda} \in \Lambda(\mathrm{n}, \mathrm{r})$ we choose a basic λ-ubleau $\mathbf{T}^{\boldsymbol{\lambda}}$ and define $\ell(\lambda) \in I(n, r)$ by the λ-tableau

If $\mu, \nu \in \underline{n}$ and $\mu \neq \nu$ define, for each non-negative integer $m \leq \lambda_{\nu}$, the element

$$
1-15
$$

$t(\mu, v, m, \lambda)$ of $I(n, r)$ by the λ-tablesu
(4.5) $T_{i(\mu, v, m, \lambda)}^{\lambda}=$

i.e. $T_{t(p, v, m, 2)}^{\lambda}$ is obtained from $T_{t(a)}^{\lambda}$ by substituting the first $m v^{\prime} s$ in row v by μ 's and keeping all other entries unchanged.

In this section we write $\ell(m, \lambda)$ for $\ell(\mu, v, m, \lambda)$ if no confugion relative to μ and v arises.
(4.6) Proposition: [G2; (5.8)] Let $\mu, v \in \underline{n}$ and suppose that $\mu<v$ and $\lambda_{\mu}<\lambda_{\mu}$. Then

$$
\xi_{\lambda}=\sum_{m=\lambda_{\nu}-\lambda_{\mu}}^{\lambda_{m}} z_{z} \xi_{z(\lambda), \ell(m, \lambda)} \xi_{\ell(m, \lambda), \ell(\lambda)}
$$

where \mathbf{z}_{m} are integers independent of char \mathbf{k}.
(4.7) Lemma: Suppose $\mu, V \in \underline{m}, \mu \geqslant v$ and let $u_{\mu v}(t)$ be the element of G with 1's in the main diagonal, t in position (μ, ν), and zeros elsewhere ($\in k$). Then

$$
T_{\Gamma}\left(u_{\mu v}(t)\right)=\sum_{m=0}^{r} t^{m} \Gamma_{\mu \nu}^{(m)} .
$$

where

$$
\Gamma_{\mu \nu}^{(a)}=\sum_{\lambda} \xi_{t(m, \lambda), t(\Omega)} .
$$

sum over all weights $\lambda \in \boldsymbol{\Lambda}$ such that $m \leq \lambda$.

Proof: Write g for $u_{\mu v}(t)$. Then, from (2.3), we have that $T_{N}(g)=\sum_{(0,5)} \Omega_{\Omega} g_{i, j} \xi_{i, j}$. But $g_{1 j}=0$ unless $\left(i_{\rho}, \mathrm{j}_{\rho}\right) \in\{(1,1),(2,2), \ldots,(n, n),(\mu, v)\}, \operatorname{ll} \rho \in \underline{r}$. If this last condidion holds and if m is the number of $\rho \in I$ such that $\left(i_{\rho} . d_{\rho}\right)=(\mu, v)$, then $\varepsilon_{1 j}=t^{m}$ and $\left.(i, j) \sim(\mu m, \lambda),(\lambda)\right)$, for some λ with $m \leq \lambda_{\nu}$.

Now consider any $\lambda \in \Lambda$ with $m \leq \lambda_{\nu}$ Clearly $\mathrm{g} \ell(\mathrm{m}, \lambda), \mu(\lambda)=\mathrm{I}^{\mathrm{m}}$. So the proof will be complete when we show that $(\ell(m, \lambda), \ell(\lambda)) \neq\left(\ell\left(m^{\prime}, \alpha\right), \ell(\alpha)\right)$ if $m \neq m^{\prime}$ or $\lambda \neq \alpha\left(\alpha \in \Lambda, m^{\prime} \leqslant \alpha_{v}\right)$. But his is immediate, since $\boldsymbol{\ell}(\lambda)$ and $\ell(\alpha)$ (if $\lambda \neq \alpha$) or $\ell(m, \lambda)$ and $\ell\left(m^{\prime}, \alpha\right)$ (if $\left.\lambda=\alpha\right)$ have different weights, so they are not in the same P-orbit of $\mathbf{L} \quad \mathrm{a}$
(4.8) Proposition: Let J be any subset of $\mathrm{n}-1$ and let H be one of the groups $\mathbf{G}_{\mathbf{j}}^{+}, \mathbf{G}_{\mathbf{j}}^{-}$or $\mathbf{L}_{\mathbf{J}}$ defined in $\mathbf{8 3}$. Let $\mathbf{V} \in \bmod \mathbf{S}(\mathrm{H})$ and suppose there is $\mathbf{v} \in \mathbf{V}$ such that
(i) $\quad v \neq 0$ and $\xi_{\lambda} v=v$, for some $\lambda \in \Lambda$;
(ii) there are $\mu, v \in \underline{n}$ such that $\mu<\nu, \mu ; \nu$ and $T_{r}\left(u_{\mu v}(t)\right) v=v$, for all $t \in k$.

Then $\lambda_{\nu} \leq \lambda_{\mu}$.

$$
1-17
$$

Proof: Suppose v, λ, and μ, v satisfy (i) and (i) above, and let m be any nonnegative integer such that $m \leq \lambda_{\mathrm{v}}$. Then, at $\mu ; V_{,}(\mathrm{m}, \lambda)=\boldsymbol{Z}(\lambda)$ and the elements $\xi_{\ell(m, \lambda), \ell(\lambda)}$ and $\xi_{t(\lambda),} \ell(m, \lambda)$ are in $S(H)$. Also, as $\xi_{\lambda V}=v$, we have

$$
\Gamma_{\mu v}^{(m v}=\Gamma_{\mu v}^{(m)} \xi_{\lambda v}=\sum_{\alpha} \xi_{\langle(m, \alpha),\langle a)} \xi_{\lambda v}
$$

sum over all weights $\alpha \in \boldsymbol{\alpha}$ such that mson
But $\xi_{t(m, \alpha), \mu(\alpha)} \xi_{\lambda}=0$ or $\xi_{t(m, \lambda), \mu(\lambda)}$, according as $\alpha \phi \lambda$ or $\alpha=\lambda$, and so

$$
\Gamma_{\mu v}^{(m)} v= \begin{cases}\xi_{\mu(m, \lambda)}, t(\lambda)^{v ;} & \text { if } m \leq \lambda_{\nu} \\ 0 ; & \text { if } m>\lambda_{v}\end{cases}
$$

Note that $\ell(0, \lambda)=t(\lambda)$ and so $\xi_{\ell(0, \lambda), ~}^{(\lambda)}=\xi_{\lambda}$. Therefore $T_{r}\left(u_{\mu v}(t)\right) v=v$ iff

$$
\begin{equation*}
\sum_{m=1}^{2 y} t^{m} \xi_{k(m, \lambda), ~}^{2}(\lambda) v=0, \text { all } t \in k . \tag{4.9}
\end{equation*}
$$

 So (4.9) implies

$$
\begin{equation*}
\xi_{t(m, \lambda), ~}(\lambda)^{v}=0, \text { for all } m \in \lambda_{4} \tag{4.10}
\end{equation*}
$$

Suppose $\lambda_{\mu}<\lambda_{\boldsymbol{\mu}}$

1-18

From (4.6) we know that there are integers z_{m} such that

$v=\xi_{\lambda} v=\sum_{m=\lambda_{v}-\lambda_{\mu}}^{\lambda_{m}} \xi_{\ell(\lambda), \mu(m, \lambda)} \xi_{\langle(m, \lambda), \mu(\lambda)} v=0($ by $(4.10))$.
This contradicts the assumption of $v \nLeftarrow$. So $\lambda_{\nu} \leq \lambda_{\mu}$.

85. Contravarlant duals

We start this section with a result for a very general class of \mathbf{k}-algebras and then we apply it to Schur algebras.

Let S be a finite dimensional \mathbf{k}-algebra equipped with an involutory antiautomorphism ${ }^{\circ}: S \rightarrow S$. Let R be a subalgebra of S and write ${ }^{a} R$ for its image by ${ }^{\circ}$. i.e., ${ }^{\circ} R={ }^{\circ}(R)$ (similarly ${ }^{\circ} \xi$ denotes ${ }^{\circ}(\xi)$, for any $\xi \in S$).

If $V \in \bmod R$, its dual. $V^{*}=\operatorname{Hom}_{k}(V, 1)$, can be made into a left ${ }^{\circ} R$-module by

$$
\begin{equation*}
(\xi \theta) v=\theta\left({ }^{\circ} \xi v\right), \theta \in V^{\bullet}, \xi \in{ }^{\circ} R, v \in V \tag{5.1}
\end{equation*}
$$

(5.2) Definition: For each $V \in \bmod R$, the ${ }^{\circ} R$-module $V *$, defined above, will be called the controvariant dual of V (relative to ${ }^{\circ}$) and will be denoted V°.
(5.3) Remark: It is not difficult to see that the natural isomorphism $V \rightarrow\left(V^{*}\right)^{*}$, of finite dimensional k-spaces, is an R-isomorphism $V \rightarrow\left(V^{\bullet}\right)^{\bullet}$.

Let $V \in \bmod R$ and $W \in \bmod { }^{a} R$ begiven. $A k$-bilinear form (,) $: W \times V \rightarrow k$

Is called contravariant (in ${ }^{*} R$) if it satisfies $(\xi w, v)=\left(w, \xi^{\circ} v\right)$, for all $\xi \in{ }^{4} R$, $w \in W, v \in V$. It is well known that such $\frac{1}{4}$ non-singular form exists iff W and V^{*} are isomorphic $\mathbf{~} \mathbf{R}$-modules (the isomorphism $\boldsymbol{\gamma}: \mathbf{W} \rightarrow \mathbf{V}$ * being given by $\boldsymbol{\gamma}(\mathbf{w})(\mathbf{v})$ - (w,v)).

Now let \mathbf{Q} be another subalgebre of \mathbf{S} such that $\mathbf{R} \leq \mathbf{Q}$. Then ${ }^{\bullet} \mathbf{R} \leq{ }^{\circ} \mathbf{Q}$ and, \mathbf{Q} and ${ }^{\circ} Q$ may be regarded as (R, Q)- and (${ }^{\circ} Q,{ }^{\circ} R$)-bimodules, respectively.

Consider the right exact functor

$$
\begin{equation*}
F={ }^{\bullet} Q \theta_{\epsilon_{R}} ; \bmod { }^{\bullet} R \rightarrow \bmod { }^{\bullet} Q \tag{5.4}
\end{equation*}
$$

and the left exact functor ${ }^{2}$

$$
\begin{equation*}
\mathbf{F}^{\prime}=\operatorname{Hom}_{\mathbf{R}}\left(\mathbf{Q}_{1} \cdot\right): \bmod \mathbf{R} \rightarrow \bmod \mathbf{Q} \tag{5.5}
\end{equation*}
$$

(5.6) Theorem: With the notation above, there is a " Q -isomorphism

$$
F\left(V^{\bullet}\right) \approx\left(F^{\prime}(V)\right)^{\bullet}
$$

natural in $\mathbf{V} \in \bmod \mathbf{R}$.

Prool: It is enough to describe, for each $V \in \bmod R$, anon-singular bilinear form $\Phi_{\mathbf{V}}: F^{\left(V^{\bullet}\right)} \times \mathbf{F}^{\prime}(V) \rightarrow \mathbf{k}$, which is contravariant in ${ }^{\circ} Q$ and is natural in $\bmod R$.

Let (,$)_{V}: V^{\bullet} \times V \rightarrow \mathbf{V}$ be the k-bilinear contravariant non-singular form defined by

2 If $V \in \bmod R, Q$ acts on the left of $\operatorname{Hom}_{R}(Q, V)$ by $(\xi u)(\eta)=u(\eta \xi)$, u $\in F^{\prime}(V)$, $\xi, \eta \in Q$.

$$
(\theta, v)_{v}=\theta(v), \theta \in V^{\prime}, v \in V_{;}
$$

(the contravariant property comes form (5.1)). For each $u \in F^{\prime}(V)=\operatorname{Hom}_{R}(Q, V)$, we may define a k-bilinear map $h_{u}^{\prime}:{ }^{\bullet} Q \equiv V^{\bullet} \rightarrow k$ by $h_{u}^{\prime}(\eta, \theta)=\left(\theta, u\left({ }^{\bullet} \eta\right)\right) \mathbf{v}$ (all $\eta \in{ }^{\bullet} \mathbf{Q}, \boldsymbol{\theta} \in \mathbf{V}^{\bullet}$). Since (,$)_{V}$ is contravariant and u is an R-map, we have

$$
\begin{gathered}
h_{u}^{\prime}(\eta \xi, \theta)=\left(\theta, u\left({ }^{\circ} \xi \uparrow\right)\right)_{V}= \\
=\left(\theta,{ }^{\circ} \xi u\left({ }^{\circ} \eta\right)\right)_{v}=\left(\xi \theta, u\left({ }^{\circ} \eta\right)\right) v=h_{u}^{\prime}(\eta, \xi \theta)
\end{gathered}
$$

(for any $\boldsymbol{\eta} \in{ }^{\circ} \mathbf{Q}, \boldsymbol{\xi} \in{ }^{\circ} \mathbf{R}, \boldsymbol{\theta} \in \mathrm{V}^{\bullet}$) which proves that h^{\prime} is ${ }^{-} \mathrm{R}$-balanced. Hence we may define a k-linear map $h_{u}:{ }^{\bullet} Q \Theta_{\rho_{R}} V^{\bullet} \rightarrow k$ by $h_{U}(\eta \otimes \theta)=\left(\theta, u\left({ }^{\circ} \eta\right)\right)_{V}$, and the k-bilinear form $\Phi_{V}: F\left(V^{\bullet}\right) \times F^{\prime}(V) \rightarrow \mathbf{k}$ by
(5.7) $\Phi_{V}(\eta \otimes \theta, u)=h_{u}(\eta \otimes \theta)=\left(\theta, u\left({ }^{\circ} \eta\right)\right) v$, all $\theta \in V^{\bullet}, \eta \in{ }^{\circ} Q, u \in F^{\prime}(V)$.

To prove that Φ_{V} is contravariant, take θ, η, u as above and any $\xi \in{ }^{\circ} Q$. Then the left ${ }^{\bullet} Q$-action on $F\left(V^{\bullet}\right)$ gives $\xi(\eta \otimes \theta)=\xi \eta \otimes \theta$. So $\Phi_{V}(\xi(\eta \otimes \theta)$, u) = $\left(\theta, u\left({ }^{\circ}(\xi \eta)\right)\right)_{v}=\left(\theta, u\left({ }^{\circ} \eta^{\circ} \xi\right)\right) \mathbf{v}$. But the left action of Q on $F^{\prime}(V)$ gives $\left({ }^{\circ} \xi u\right)\left({ }^{\circ} \eta\right)=$ $u\left({ }^{\circ} \eta^{\circ} \xi\right)$. So $\Phi_{\mathrm{V}}(\xi(\eta \otimes \theta), u)=\left(\theta,\left({ }^{\circ} \xi \mathrm{u}\right)\left({ }^{\circ} \eta\right)\right) \mathbf{v}=\Phi_{\mathrm{V}}\left(\eta \otimes \theta,{ }^{\circ} \boldsymbol{\xi} \mathrm{u}\right)$.

The next step is to prove that $\Phi_{\mathbf{V}}$ is non-singular.
Consider the \mathbf{k}-spaces $\mathrm{X}={ }^{\circ} \mathrm{Q} \otimes \mathrm{V}^{\bullet}$ and $\mathrm{Y}=\mathrm{Hom}_{\mathbf{k}}(\mathrm{Q}, \mathrm{V})$. Clearly these have the same dimension (viz. $\operatorname{dim} \mathbf{Q} \operatorname{dim} \mathbf{V}$). Define a k-bilinear form $\hat{\Phi}_{\mathbf{V}}: X \times Y \rightarrow \mathbf{k}$, using the same formula as for $\Phi_{\text {v. i.e., }}$

$$
\tilde{\Phi}_{V}(\eta \otimes \theta, u)=\left(\theta, u\left({ }^{\bullet} \eta\right)\right) v, \text { all } u \in Y, \eta \in{ }^{\circ} Q, \theta \in V^{\bullet} .
$$

The right kernel of $\bar{\Phi}_{V}$ is the set of all $u \in Y$ such that $\dot{\Phi}_{V}(x, u)=0$, for all $\mathbf{x} \in \mathbf{X}$, or equivalently, $\tilde{\Phi}_{\mathrm{V}}(\eta \otimes \theta, u)=0$, for all $\eta \in{ }^{\bullet} \mathrm{Q}, \theta \in \mathrm{V}^{\bullet}$. As $\dot{\Phi}_{\mathrm{y}}(\eta \otimes \theta, u)=(\theta$. $\left.u\left({ }^{(} \boldsymbol{\eta}\right)\right) \mathbf{v}$ and $(,) \mathbf{v}$ is non-singular we have that $u \in$ right ker $\tilde{\Phi}_{V}$ iff $u\left({ }^{\bullet} \eta\right)=0$, for
all $\eta \Vdash^{\circ} Q$, i.e., iff $u=0$. Hence $\boldsymbol{\Phi}_{V}$ is non-singular since its right kernel is trivial and $\operatorname{dim} X=\operatorname{dim} Y$.

From the definition of tensor product, we know that $F\left(V^{*}\right)={ }^{\circ} Q \Theta_{Q_{R}} V^{\bullet}=X / M$,
 $\left.\theta \in V^{\bullet}\right\}$. Let $M^{\perp}=\left\{u \in Y \mid \Phi_{V}(x, u)=0\right.$, for all $\left.x \in M\right)$. It is clear that there is a non-singular k-bilinear form $\hat{\Phi}_{\mathbf{V}}: X / M=M^{\perp} \rightarrow k$, given by $\hat{\Phi}_{\mathbf{V}}(\mathbf{x}+\mathbf{M}, u)=$
 $\hat{\Phi}_{\mathbf{V}}$ is non-singular. So let $u \in Y$. Then $u \in M^{\perp}$ iff, for all $\eta \in{ }^{\bullet} Q$. $\mathcal{E} \in \boldsymbol{\bullet}^{\boldsymbol{R}}$, $\theta \in V^{\bullet}$, there holds

$$
\bar{\Phi}_{v}(\eta \xi \otimes \theta, u)=\tilde{\Phi}_{V}(\eta \otimes \xi \theta, u) \text {, i.e., }\left(\theta, u\left({ }^{\bullet} \xi \oplus \eta\right)\right)_{V}=\left(\xi \theta, u\left({ }^{\ominus} \eta\right)\right)_{v}
$$

which means

$$
\theta\left(u\left({ }^{\circ} \xi^{\ominus} \eta\right)\right)=(\xi \theta)\left(u\left({ }^{\ominus} \eta\right)\right) \text { i.e. } \theta\left(u\left({ }^{\bullet} \xi{ }^{\ominus} \eta\right)\right)=\theta\left({ }^{\bullet} \xi u\left({ }^{\ominus} \eta\right)\right) .
$$

But this is equivalent to $u\left({ }^{\circ} \xi^{\oplus} \eta\right)={ }^{\circ} \xi u\left({ }^{\circ} \eta\right)$. for all $\eta \in{ }^{\bullet} Q, \xi \in{ }^{\circ} R$, i.e., $u \in \operatorname{Hom}_{R}(\mathbf{Q}, V)$. Hence $M^{+}=F^{\prime}(V)$.

The proof of the theorem will be complete when we show that Φ_{V} is natural in V $\in \bmod R$. This amounts to the condition that for any $V, V^{\prime} \in \bmod R$, and for all $f \in \operatorname{Hom}_{R}\left(V, V^{\prime}\right)$

$$
\Phi_{v}(\eta \otimes \tau, u)=\Phi_{v}(\eta \otimes \tau, f u)
$$

i.e. $\left(\tau f, u\left(\eta^{\circ}\right)\right) y=\left(\tau, f u\left({ }^{\circ} \eta\right)\right) V^{\prime}$, for all $\eta \in{ }^{\circ} Q, \tau \in V^{\circ}{ }^{\circ}$ and $u \in F^{\prime}(V)$, which is trivially true. \quad a

Returning to the Schur algebra $S(G)$ we may define a k-linear automorphism $\bullet: S(G) \rightarrow S(G)$, by

1-22

(5.8)

$$
\xi_{i, j}-\xi_{j, j, j} \text { all }(i, j) \in \Omega
$$

This is in faci an involutary anti-automorphism of $\mathbf{S (G)}$ (cf. (G1; p. 32) and so we are in the conditions referred to above.

For any subset J of $n-1$ consider the Schur algebras $S\left(G_{j}^{+}\right)$and $S\left(G_{j}^{-}\right)$. It is clear from its defininion that this anti-automorphism carries the basis
$\left\{\xi_{i, j} \mid(i, j) \in \Omega, i \leq j\right]$ of $S\left(G_{j}^{*}\right)$, into the basis $\left\{\xi_{1, j} \mid(i j) \in \Omega, j \leq i\right\}$ of $S\left(G_{j}^{-}\right)$, and vice-versa, hence

$$
\begin{equation*}
\cdot S\left(G_{J}^{-}\right)-S\left(G_{J}^{+}\right) \tag{5.9}
\end{equation*}
$$

So if we consider any $V \in \bmod S\left(G_{j}^{-}\right)\left(\right.$resp. $\left.V^{\prime} \in \bmod S\left(G_{j}^{+}\right)\right)$its dual, V^{\bullet}, is in $\bmod S\left(G_{J}^{+}\right)\left(r e s p . V^{\prime} \bullet \in \bmod S\left(G_{j}^{-}\right)\right)$.

Also if J^{\prime} is another subset of $\mathrm{n}-1$. such that $\mathrm{J}^{\prime} \in \mathbf{J}$, we may use (5.6) with $R=S\left(G_{j}^{+}\right)$and $Q=S\left(G_{j}^{+}\right)$or $R=S\left(G_{j}^{-}\right)$and $Q=S\left(G_{j}^{-}\right)$.

$$
2-1
$$

2. THE MODULES K_{λ}, J

56 The Schur algebra $\mathbf{S (B +})$

We shall now give special attention to the Schur algebra $S\left(B^{+}\right)=S_{k}\left(n_{s}, B^{+}\right)$for the Borel subgroup B^{+}of \mathbf{G}.

Using the notation of $83, B^{+}=G_{\phi}^{+}$. So if $\left.\Omega^{\prime}=\{(i, j)) \in \Omega \mid i \leq j\right\}$ we get from (3.5) that
(6.1) $S\left(B^{+}\right)$has k-basis $\left\{\xi_{i, j} \mid(i, j) \in \Omega\right\}$.

This result is not new, it can be found in [G2] where it is also proved that
(6.2) rad $S\left(B^{+}\right)$has k-basis $\left\{\xi_{i, j} \mid(i, j) \in \Omega^{\prime}, \mathbf{j} \nmid \mathbf{j}\right\}$.

For each $\boldsymbol{\lambda} \in \mathbf{\Lambda (n , r)}$ consider the left ideal

$$
V_{\lambda}=S(B+) \xi_{\lambda}
$$

 (2.5) we know that $\xi_{i j} \xi_{\lambda}$ is $\xi_{i, j}$ or 0 , according as j has weight λ or not

Thus, $V_{\lambda}=\underset{(i j) \oplus \boldsymbol{R}^{\prime}, \mathrm{j} \equiv \lambda}{\oplus \xi_{i j}}$, i.e.,
(6.3) V_{λ} has k-basis $\left\{\xi_{i, j} \mid\left(i_{j}\right) \in \Omega^{\prime}, j \in \lambda\right\}^{3}$

3 In 89 we shall give another description of this basis involving row-semistandard tableaux and the element $\ell(\lambda)$ defined in (4.4).

2-2

Now consider the $\mathbf{k}-\boldsymbol{a}$ gebra $\xi_{\lambda} \mathbf{S}\left(\mathrm{B}^{+} \boldsymbol{\xi}_{\boldsymbol{j}}=\xi_{\lambda} \mathbf{V}_{\lambda}\right.$. It is spanned by $\xi_{\lambda} \xi_{\mathrm{ij}}$ for all $\left(i_{\sqrt{\prime}}\right) \in \Omega^{\prime}$ such that $\mathrm{j} \in \boldsymbol{\lambda}$. Once more, we have $\xi_{\lambda} \xi_{\mathrm{j}}=0$, unless i has weight λ and if so, there is $\pi \in P$ such that $i=j \pi$. But then we have $j \pi=i \leq j$, which implies $\mathrm{i}=\mathrm{j}\left(\mathrm{cf}(1.8)\right.$), and so $\xi_{1 \mathrm{j}}=\xi_{\mathrm{j} j}=\xi_{\mathrm{i}}$. Hence

$$
\xi_{\lambda} S\left(B^{+}\right) \xi_{\lambda}=k \xi_{\lambda}
$$

Is a local ring and $\boldsymbol{\xi}_{\boldsymbol{\lambda}}$ is a primitive idempotent of $\mathrm{S}\left(\mathrm{B}^{+}\right)$. Puting this togecher with (2.6) and using that ${ }^{1} \mathbf{S (B r)}=\mathbf{1}_{\mathbf{S}(\mathrm{O})}$, we have proved that

$$
\begin{equation*}
1_{S\left(a^{+}\right)}=\sum_{\lambda \in \lambda} \xi_{\lambda} \tag{6.4}
\end{equation*}
$$

is a primitive orthogonal idempotent decomposition of $\mathbf{1}_{\mathbf{S (B)}}$, and

$$
S\left(B^{+}\right)=\underset{\lambda \in \lambda}{\oplus} V_{\lambda}
$$

is a direct sum decomposition of $\mathbf{S}\left(\mathbf{B}^{+}\right)$into projective indecomposable $\mathbf{S}\left(\mathbf{B}^{+}\right)$-modules.

As an immediate consequence of this result we have that, for any $\lambda \in \Lambda, V_{\lambda}$ has a unique maximal submodule, viz rad $V_{\lambda}=\left(\operatorname{rad} S\left(B^{+}\right)\right)_{\lambda}^{\ell}$, and so $V_{\lambda} /$ rad V_{λ} is an irreducible $\mathbf{S}\left(\mathrm{B}^{+}\right)$-module.

Using the same argument as for (6.3) we have, as a consequence of (6.2), that

$$
\begin{equation*}
\text { rad } V_{\lambda} \text { has } k \text {-basis }\left\{\xi_{i, j} \mid(i, j) \in \Omega^{\prime}, i \neq j, j \in \lambda\right\} . \tag{6.5}
\end{equation*}
$$

Therefore $\mathbf{V}_{\lambda} /$ nad $\mathbf{V}_{\lambda}=\mathbf{k}\left(\xi_{\lambda}+r a d V_{\lambda}\right)$ is a one-dimensional vector space and it is clear that
$V_{\lambda} /$ rad $V_{\lambda} \underset{s\left(\beta^{+}\right)}{\infty} V_{\alpha} /$ rad V_{a} iff $a-\lambda(a \in \Lambda)$.

This together with (6.4) gives that

$$
\left\{V_{\lambda} / \operatorname{rad} V_{\lambda} \mid \lambda \in \Lambda(n, r)\right\} \text { and }\left\{V_{\lambda} \mid \lambda \in \Lambda(n, r)\right\}
$$

are full sets of pairwise non-isomorphic irreducible and projective indecomposable $\mathbf{S}\left(\mathrm{B}^{+}\right)$-modules, respectively.

In order to give a bener characterization of these modules we define, for each $\lambda \in \Lambda$, the k-linear maps $\boldsymbol{X}_{\lambda}: \mathbf{k B}^{+} \rightarrow k$ and $X_{\lambda}: S\left(B^{+}\right) \rightarrow k$ by

$$
\begin{align*}
& \chi_{\lambda}(b)=b_{11}^{\lambda_{1}} \cdots b_{n \mathrm{n}}^{\lambda_{\mathrm{n}}}, \text { all } \mathrm{b} \in \mathrm{~B}^{+}, \text {and } \tag{6.6}\\
& \aleph_{\lambda}\left(\xi_{\mathrm{i}, \mathrm{j}}\right)= \begin{cases}1, & \text { if } \mathrm{i}=\mathrm{j} \text { has weight } \lambda \\
0, & \text { otherwise }, \text { all }(1, j) \in \Omega^{\prime}\end{cases}
\end{align*}
$$

respectively.
It is casy to see that χ_{λ} is a k-algebra map and that $\chi_{\lambda}(b)=X_{\lambda}\left(T_{r}(b)\right)$, for all $b \in B^{+}$. Thus X_{λ} is also $a k$-algebre map and we make the
(6.7) Dafinition: For each $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}, \mathbf{k}_{\boldsymbol{\lambda}}$ is the field \mathbf{k} regarded either as a rational B^{+}-module affording the representation χ_{λ} or as an $\mathbf{S}\left(\mathrm{B}^{+}\right)$-module affording the representation K_{λ}.

It is clear from the definidions that if

$$
\begin{equation*}
x_{\lambda}^{\prime}: V_{\lambda} \rightarrow k_{\lambda} \text { is the restriction of } x_{\lambda} \text { to } V_{\lambda} \tag{6.8}
\end{equation*}
$$

then K_{λ}^{\prime} is an $S\left(B^{+}\right)$-epimorphism with ker $K_{\lambda}^{\prime}=$ rad V_{λ}. Thus $V_{\lambda} /$ rad $V_{\lambda}{ }_{S\left(B^{+}\right)} k_{\lambda}$.

As a summary of the main results of this section we have.
(6.9) Theorem: (i) $1=\sum_{\lambda \in \Lambda_{(n, r)}} \xi_{\lambda_{1}}$ is a primitive orthogonal idempotent decomposition of 1 in $\mathrm{S}\left(\mathrm{B}^{+}\right)$.
(ii) $\left\{\mathbf{k}_{\boldsymbol{\lambda}} \mid \lambda \in \Lambda(n, r)\right\}$ is a full set of pairwise non-isomorphic irreducible $\mathbf{S}\left(\mathbf{B}^{+}\right)$modules.
(iii) $\left\{V_{\lambda} \mid \lambda \in \Lambda(n, r)\right\}$ is a full set of pairwise non-isomorphic projective indecomposable $\mathbf{S}\left(\mathrm{B}^{+}\right)$-modules.
(6.10) Remark: A result parallel to (6.9) can be obtained if we consider the Schur algebra $\mathbf{S}\left(\mathbf{B}^{-}\right)$. In this case, for each $\lambda \in \Lambda, \mathbf{k}_{\boldsymbol{\lambda}}^{-}$will denote the onedimensional $\mathbf{S}^{\left(\mathrm{B}^{-}\right) \text {-module (or one-dimensional maional } \mathrm{B}^{-}-\text {module) affording the }}$ representation $\mathcal{K}_{\bar{\lambda}}^{-}: S\left(B^{-}\right) \rightarrow \mathbf{k}$ (resp. $\left.\chi_{\lambda}^{-}: B^{-} \rightarrow \mathbf{k}\right)$, defined by

$$
\mathcal{N}_{\lambda}^{-}\left(\xi_{i, j}\right)= \begin{cases}1, & \text { if } \mathrm{i}-\mathrm{j} \text { has weight } \lambda \\ 0, & \text { otherwise } \quad \text {; all }(1, j) \in \Omega \text { such that } j \leq i\end{cases}
$$

(resp. $X_{\lambda}^{-(b)}=b_{11}^{\lambda_{1}} \cdots b_{\text {nin }}^{\lambda_{n}}$, all $b \in B-$).

5. Weyl modulee

In [CLJ R. Canter and G. Lusztig define, for each dominant weight $\lambda, \operatorname{GL}_{\boldsymbol{n}}(\mathbf{k})$ module K_{λ} (there denoted \bar{V}_{λ}) and call it the Weyl module for $G L_{n}(k)$ associated with λ. Working with the universal enveloping algebra of the Lie algebra $g l(n)$, they prove that these are cyclic modules containing a unique maximal submodule and that the quotients by these give a full set of pairwise non-isomorphic polynomial irreducible $G L_{n}(\mathbf{k})$-modules. In particular if char $\mathbf{k}=0$ Weyl modules are themselves irreducible. A k-basis for K_{λ}, indexed by standard tableaux, is also produced in the worls cited.

The same results were later obtained in [G1] within the framework of Schur algebras. Using a result of G. James $\left[J\right.$, (26.4)] it is there proved that, in fact, K_{λ} may also be characterized as the contravariant dual of the induced module Ind $\mathrm{B}_{\mathrm{B}}^{-} \mathbf{k}_{\boldsymbol{\lambda}}^{-}$(for any dominant weight λ).

Here we give an alternative definition of Weyl modules and we show how some of the results referred to above can be easily obtained from the properties of $\mathrm{S}\left(\mathrm{B}^{+}\right)$.

Take $J=\underline{n-1}$ and $J^{\prime}=\varnothing$. Then $G_{j}^{+}=G, G_{j}^{+}=B^{+}, G_{j}^{-}=B^{-}$and we may apply the results of 85 to $S(G), S\left(B^{+}\right)$and $S\left(B^{-}\right)$.

We have from (5.9) that ${ }^{-} S\left(B^{-}\right)=S\left(B^{+}\right)$. Also ${ }^{-} \mathbf{S}(\mathrm{G})=\mathbf{S}(\mathrm{G})$. Thus taking $Q=S(G)$ and $R=S\left(B^{-}\right)$in (5.4) and (5.5) we get, $F\left(V^{*}\right)=S(G) \Theta_{S\left(B^{+}\right)} V^{*}$ and $\mathrm{F}^{\prime}(\mathrm{V})=\operatorname{Hom}_{\mathrm{S}\left(\mathrm{B}^{-}\right)}(\mathrm{S}(\mathrm{G}), \mathrm{V})$, and, by (5.6).
(7.1) there is an $S(G)$-isomorphism
$S(O) \Theta_{S\left(B^{+}\right)} V^{*} \triangleq\left(\operatorname{Hom}_{S\left(B^{-}\right)}\left(S(G), V^{*}\right)\right.$,
for any $V \in \bmod S\left(B^{-}\right)$.

For any $\boldsymbol{\lambda}=\left(\boldsymbol{\lambda}_{1} \ldots, \lambda_{\boldsymbol{n}}\right) \in \boldsymbol{A}\left(n_{r}, \mathbf{x}\right)$ consider the inreducible $\mathbf{S}\left(\mathbf{B}^{+}\right)$-module $\mathbf{k}_{\boldsymbol{\lambda}}$ and define

$$
\begin{equation*}
K_{\lambda}=S(G) \otimes_{S(B y} \mathbf{k}_{\lambda} . \tag{7.2}
\end{equation*}
$$

It is then clear that
(7.3) Lemma: $K_{\lambda}=S(G) \omega_{\lambda}$. where $\omega_{\lambda}=\mathbf{1}_{\mathbf{S}(0)} \otimes \mathbf{1}_{\mathbf{k}_{\mathbf{2}}}$. Hence $\mathrm{K}_{\boldsymbol{\lambda}}$ is a cyclic S(G)-module.

In [G2; p. 14] it is proved that $S(G)$ has the decomposition

$$
\begin{equation*}
\mathbf{S}(\mathrm{G})=\mathbf{S}\left(\mathrm{B}^{+}\right) \mathbf{S}\left(\mathrm{B}^{-}\right) . \tag{7.4}
\end{equation*}
$$

We now apply this result to $\mathbf{K}_{\boldsymbol{\lambda}}$.

From the action of $\mathbf{S}\left(\mathbf{B}^{+}\right)$on $\mathbf{k}_{\mathbf{\lambda}}$ ($\mathbf{c f .}$ (6.6) and (6.7)) there holds

Thus $S\left(B^{+}\right) \omega_{\lambda}=\sum_{(i, j) \in \alpha^{\prime}} k \xi_{1 j} \omega_{\lambda}=k \omega_{\lambda}$ and using (7.4) we get

$$
\begin{equation*}
K_{\lambda}=S(G) \omega_{\lambda}=S\left(B^{-}\right) S\left(B^{+}\right) \omega_{\lambda}=S\left(B^{-}\right) \omega_{\lambda} \tag{7.5}
\end{equation*}
$$

But $S\left(B^{-}\right)$has k-besis $\left\{\xi_{1 / j} \mid(\mathbf{j}, \mathbf{j}) \in \Omega 7\right.$. Hence by (7.5),
(7.6)
since $\omega_{\lambda}=\xi_{\lambda} \omega_{\lambda}$, and so $\xi_{i, j} \omega_{\lambda}=\xi_{i j} \xi_{\lambda} \omega_{\lambda}=0$, unless j has weight λ
(7.7) Lemma: (i) $K_{\lambda}{ }^{\lambda}=k \omega_{\lambda}$. Thus $\operatorname{dim}_{\boldsymbol{k}}\left(K_{\lambda^{\lambda}}\right) \leq 1$ and it is zero iff $K_{\lambda}=0$.
(i) If $\alpha \in \Lambda$ is a weight of K_{λ} then $\alpha \leq \lambda$.

Proof: (ii) From (7.6) we have that, for any $\alpha \in \Lambda$.

So $\xi_{\alpha} K_{\lambda} \neq 0$ implies that there are $i, j \in I$ such that $i \in \alpha, j \in \boldsymbol{\lambda}$ and $j \leq i$. But then, by (1.10), $\alpha \leq \lambda$.
 know that if $i_{j} \in \lambda$ and $j \leq i$ then $i=j$. Thus $\xi_{\lambda} K_{\lambda}=k \xi_{\lambda} \omega_{\lambda}=k \omega_{\lambda}$.

It is just natural to ask under which conditions is $K_{\lambda} \neq 0$? The next proposition answers this question.
(7.8) Proposition: Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda(n, r)$. Then $K_{\lambda} \neq 0$ iff $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{4}$.

Proof: Suppose first $K_{\lambda} \neq 0$. Then $\omega_{\lambda} \neq 0$ and $\xi_{\lambda} \omega_{\lambda}-\omega_{\lambda}$. If we prove that
$T_{r}\left(u_{\mu \mu+1}(t)\right)_{n}=\omega_{\lambda}$ (all $\left.\mu \in n=1 . t \in k\right)$, condidion (ii) of (4.8) Is sutisfied (with $v=\mu+1$ and any $\mu \boxminus n-1$. hence $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\text {m }}$.

Fix $\mu \in n-1$ and write $\ell(m, \alpha)=\ell(\mu, \mu+1, m, \alpha)$ (cf. (4.4) and (4.5)). Then, from (4.7) we have $T_{r}\left(u_{\mu \mu+1}(t)\right)=\sum_{m=0}^{r} t^{m} \Gamma_{\mu, \mu+1}^{(m)}$ where $\Gamma_{\mu, \mu+1}^{(m)}=\sum_{a} \xi_{\ell(m, \alpha), ~} \ell_{(\alpha)}$ (sum over all weights $\alpha \in \Lambda$ such that $m \leq \alpha_{\mu+1}$).

Note that if $m=0, \alpha_{\mu+1} \geq 0$ for all $\alpha \in \Lambda$, so $\Gamma_{\mu(1)}^{(0)}=I_{S(G)}$. On the other hand if $m>0, \ell(m, \alpha)<\ell(\alpha)($ since $\mu<\mu+1)$ and $\operatorname{so} \xi_{\ell(m, \alpha), ~}^{\ell(\alpha)} \omega_{\lambda}=0$, for all α. Thus, for any $t \in k$, we have
(7.9) $\quad T_{r}\left(u_{\mu, \mu+1}(t)\right) \omega_{\lambda}=\Gamma_{\mu, \mu+1}^{(0)} \omega_{\lambda}+\sum_{m=1}^{\Gamma} i_{m_{\mu, \mu+1}}^{(m)} \omega_{\lambda}=\Gamma_{\mu, \mu+1}^{0} \omega_{\lambda}=\omega_{\lambda}$

As this holds for any $\mu \in n-1$. we get the required retult.

Now suppose $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ and consider the contravariant dual $\left(r_{\lambda}\right)^{\bullet}$ of the irreducible $\mathbf{S}\left(\mathbf{B}^{-}\right)$-module $\mathbf{k}_{\mathbf{2}}^{-}$. Then $\left(\mathbf{k}_{\lambda}^{-}\right)^{\text {e }}$ is a one-dimensional $\mathbf{S}\left(\mathrm{B}^{+}\right)$-module and for any $\theta \approx\left(\mathbf{k}_{\mathbf{\lambda}}^{-}\right)^{\bullet}, c \in \mathbf{k}_{\boldsymbol{\lambda}}^{-}$and $(\mathbf{i}, \mathbf{j}) \in \Omega^{\prime}$ there holds

$$
\left(\xi_{1, j} \theta\right)(c)=\theta\left(\xi_{j, j} c\right)=\theta(c) \text { If } \xi_{1 j}=\xi_{\lambda,} \text { and zero otherwise. }
$$

Therefore $\left(\mathbf{k}_{\lambda}^{-}\right)^{*}$ affords the representation X_{λ} and $\left(\mathbf{k}_{\lambda}^{-}\right)_{S\left(B^{+}\right)}^{a} k_{\lambda}$. Thus, from (7.1), we have
(7.10) $K_{\lambda}=S(G) \otimes_{S\left(B^{+}\right)} k_{\lambda} \underset{S(G)}{\left(\operatorname{Hom}_{S\left(B^{-}\right)}\left(S(G), k_{\lambda}^{-}\right)\right)^{\bullet} .}$

It in a classical fact that if $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\text {a }}$ then Homs(B^{-}) $\left(\mathrm{S}(\mathrm{O}), \mathrm{k}_{\boldsymbol{\chi}}^{-}\right) \neq 0$ (ef. e.s. (G1. p. 64] or [G2, p. 251), so (7.8) follows. ם
(7.11) Romark: Nore that, since $U^{+}=\left\langle u_{\mu+1}(1) \mid \mu \in n-1,1 \in \mathbf{k}\right\rangle$, (7.9) implies that $T_{R}(u) \omega_{\lambda}=\alpha_{\lambda}$, for all $u \in U^{+}$.
(7.12) Definition: $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda\left(n_{r} r\right)$ is called dominant if $\lambda_{1} \geq \lambda_{2}$ $\geq \ldots \geq \lambda_{n}$.

We write $\Lambda^{+}=\Lambda^{+}(n, r)=[\lambda \in \Lambda(n, r) \mid \lambda$ is dominent $\}$.
(7.13) Definition: Let $\lambda \in \Lambda^{+}(n, r)$. Then K_{λ} will be called the Weyl module for $\mathbf{S}(\mathbf{G})$ associated with λ.

Similarly, $\mathrm{M}_{\boldsymbol{\lambda}}=\operatorname{Hom}_{\mathbf{S (B -})}\left(\mathbf{S}(\mathbf{G}), \mathbf{k}_{\boldsymbol{\lambda}}^{-}\right)$will be called the Schur module for $\mathbf{S}(\mathrm{G})$ associated with λ.
(7.14) Corollary: Let $\lambda \in \Lambda^{+}\left(n_{r}\right)$. Then $K_{\lambda}=M_{\lambda}{ }^{\text { }}$.

Proof: (cf. (7.10)).

We use now a familiar argument to prove the
(7.15) Lemma: If $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}^{+}$then K_{λ} has a unique maximal $S(G)$-submodule.

$$
2-10
$$

Proot: Let \mathbf{V} be aproper submodule of $\mathbf{K}_{\boldsymbol{\lambda}}$. It cannot contain ω_{λ}, since $\mathbf{S}(\mathbf{G}) \omega_{\lambda}=$ K_{λ}. so $V^{\lambda}=V \cap K_{\lambda^{\lambda}}=V \cap k \omega_{\lambda}=0$. Let $X=\sum_{V} V$ (sum over all proper $\mathbf{S}(\mathrm{G})$-subrnodules of $\mathrm{K}_{\boldsymbol{\lambda}}$). Then

$$
x^{\lambda}=\xi_{\lambda} \sum_{V} v=\sum_{V} \xi_{\lambda} v=\sum_{V} v^{\lambda}=0
$$

Hence \mathbf{X} is proper submodule of $\mathbf{K}_{\boldsymbol{\lambda}}$ and it is clearly its unique maximal submodule \square
(7.16) Lemma: For each $\lambda \in \Lambda^{+}(n, r)$ define $F_{\lambda}=K_{\lambda} /$ rad K_{λ}. Then $\left\{F_{\lambda} \mid \lambda \in \Lambda^{+}\right\}$is a full set of pairwise non-isomorphic irreducible $S(G)$-modules.

Proof: Let $\lambda \in \Lambda^{+}$. We know from (7.15) that K_{λ} has a unique maximal submodule, which must then be rad K_{λ}. Thus, $F_{\lambda}=K_{\lambda} / \mathbf{r a d} K_{\lambda}$ is irreducible and it is $\mathbf{S}(\mathrm{G})$-generated by $\omega_{\lambda}=\omega_{\lambda}+\operatorname{rad} K_{\lambda}\left(\$ 0\right.$ since $\omega_{\lambda} \&$ rad $\left.K_{\lambda}\right)$.

From the definition of F_{λ} and from (4.3) we know that there is a short exact sequence of k-spaces $0 \rightarrow\left(\mathrm{rad} K_{\lambda}\right)^{\alpha} \rightarrow K_{\lambda}{ }^{a} \rightarrow F_{\lambda}{ }^{\boldsymbol{a}} \rightarrow 0$, for any $\alpha \in \Lambda$. Thus by (7.7), we have
(7.17) (i) $F_{\lambda}{ }^{\lambda}=k \omega_{\lambda}$ and $\operatorname{dim} F_{\lambda}{ }^{\lambda}=1$;
(i) If $F_{\lambda} \alpha \notin 0$, for some $\alpha \in \Lambda$, then $\alpha \leq \lambda$.

As an immediate consequence of (7.17) we have

$$
F_{\alpha} F_{\sin } F_{\lambda} \text { if } \alpha+\lambda \quad\left(\alpha, \lambda \in \Lambda^{+}\right) .
$$

Now let V be any irreducible $S(G)$-module and suppose that

$$
\begin{equation*}
\operatorname{Hom}_{S(G)}\left(K_{\lambda}, V\right) \notin 0, \text { for some } \lambda \in \Lambda^{*} \tag{7.18}
\end{equation*}
$$

Then, if $0 \neq \theta \in \operatorname{Hom}_{S(G)}\left(K_{\lambda}, V\right)$ we have, $V \underset{S(G)}{\left(K_{\lambda} / k e r \theta\right.}$ and ker θ is a maximal submodule of K_{λ}, i.e., ker $\theta=$ rad K_{λ} and $\mathbf{V}_{\mathbf{S}(\mathrm{G})} K_{\boldsymbol{\lambda}} / \mathbf{r a d} K_{\boldsymbol{\lambda}}=F_{\boldsymbol{\lambda}}$. Thus in order to finish the proof of (7.16) we only need to prove that (7.18) holds. For this we shall use the

Adioint Isomorohism Theorem: (cf, e.g. [R, (2.11)). Given rings R and S, let A be a left R-module, B be an (S,R)-bimodule and C be a left S-modale. Then there is an isomorphism of groups

$$
r: \operatorname{Hom}_{S}\left(B \Theta_{R} A, C\right) \oplus \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{S}(B, C)\right)
$$

Regarded as an $S\left(B^{+}\right)$-module V has some irreducible submodule. This has to be isomorphic to $\boldsymbol{k}_{\boldsymbol{\lambda}}$, for some $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$, which implies $\operatorname{Hom}_{\left.S_{(B+}\right)}\left(\mathbf{k}_{\boldsymbol{\lambda}}, \mathbf{V}\right) \notin \mathbf{0}$. Now if in the Adjoint Isomorphism theorem we take $R=S\left(B^{+}\right), S=B=S(G), A=\mathbf{\Sigma}_{\lambda}$ and C = V, we get an isomorphism of groups

$$
r: \operatorname{Hom}_{S(G)}\left(S(G) \otimes_{S\left(B^{+}\right)} \mathbf{k}_{\lambda}, V\right) \propto \operatorname{Hom}_{S_{\left(B^{+}\right)}}\left(\mathbf{k}_{\lambda}, \operatorname{Hom}_{S(G)}(\mathrm{S}(G), V)\right)
$$

But $\operatorname{Hom}_{\mathrm{S}}^{(\mathrm{G})}(\mathrm{S}(\mathrm{G}), \mathrm{V}) \propto \mathrm{V}$ as an $\mathrm{S}\left(\mathrm{B}^{+}\right)$-module. Thus

$$
\begin{gathered}
2-12 \\
\operatorname{Hom}_{S(O)}\left(K_{\lambda}, V\right) \oplus \operatorname{Hom}_{S\left(B^{+}\right)}\left(\mathcal{K}_{\lambda}, V\right) .
\end{gathered}
$$

Since $\operatorname{Hom}_{S\left(B^{+}\right)}\left(k_{\lambda}, V\right) \notin 0$, we must have $\operatorname{Hom}_{S(O)}\left(K_{\lambda}, V\right) \notin 0$ and $\lambda \in \Lambda^{+}$ (since $\mathrm{K}_{\lambda} \notin \mathrm{O}$ iff $\boldsymbol{\lambda} \in \mathrm{A}^{+}$). Hence (7.18).

In the next theorem we summarise the main results of this section, but before we need adefinition.
(7.19) Definition: Let H be subgroup of O containing T. We say that an $S(H)$-module V has highest weight $\lambda(\lambda \in A)$ if λ is a weight of V and $\alpha \Delta \lambda$, for all other weights a of V.
(7.20) Theorem: (cf. $[G 1 ; 85]$ and $[C 1 ; 83)$. For $\lambda \in \Lambda^{+}(\pi, r)$ there holds
(i) The Weyl module $\mathbf{K}_{\boldsymbol{\lambda}}$ is a cyclic $\mathbf{S}(\mathbf{G})$-module generated by $\omega_{\lambda}=1_{S(G)} \otimes 1_{\mathrm{k}_{2}}$;
(ii) $\quad K_{\lambda}$ has highest weight $\lambda, K_{\lambda}{ }^{\lambda}=k \omega_{\lambda}$ and $T_{\lambda}(u) \omega_{\lambda}=\omega_{\lambda}$. for all $u \in U^{+}$;
(iii) $\quad K_{\lambda}$ is the contravariant dual of the Schur module \mathbf{M}_{λ};
(iv) $\quad K_{\lambda}$ has a unique maximal submodule, rad K_{λ}, and $\left\{F_{\alpha}=K_{\alpha} /\right.$ rad $\left.K_{\alpha} \mid \alpha \in \Lambda^{+}\left(n_{r}\right)\right]$ is a full set of pairwise non-isomorphic irreducible $S(G)$-modules;
(v) $\quad F_{\lambda}$ has highest weight λ and $\operatorname{dim}_{k} F_{\lambda} \boldsymbol{\lambda}^{\prime}=1$.
58. $K_{\lambda, J}$ and the Schur algebra $S\left(L_{j}\right)$

Consider any standard parabolic subgroup G_{j}^{+}of G. In $\$ 6$ and 87 we studied the $S\left(G_{j}^{+}\right)$-modules $S\left(G_{j}^{+}\right) \mathbf{S}_{S\left(B^{+}\right)} k_{\lambda_{1}}$ in the two extreme cases of $J=\varnothing$ and
$\mathrm{J}=\mathrm{n}-1$. respectively. We are now interested in the intermediate cases.

As in 83 , let $\rfloor=n \backslash\left(m_{1}, \ldots, m_{1}\right)$, where $m_{0}, m_{1}, \ldots, m_{1}$ are integers satisfying $0=m_{0}<m_{1}<\ldots<m_{m-1}<m_{g}=n$. Let $N_{n}=\left\{m_{a-1}+1, \ldots, m_{m}\right\}$ (a $\left.\in\right)_{\text {, and define, }}$ for each $\lambda \in A$, the $S\left(G_{j}^{+}\right)$-module

$$
K_{\lambda}=S\left(G_{J}^{+}\right) \otimes_{S\left(B^{+}\right)} \mathbf{k}_{\lambda}
$$

Note that, in particular, $K_{\boldsymbol{\lambda} \boldsymbol{d}} \underset{S_{\left(B^{+}\right)}}{ } \mathbf{k}_{\boldsymbol{\lambda}}$ and $K_{\boldsymbol{\lambda}_{\boldsymbol{n}-1}}=K_{\boldsymbol{\lambda}}$.

It is clear that $K_{\lambda_{J} J}=S\left(O_{J}^{+}\right) \omega_{\lambda,}$ where $\omega_{\lambda}=\mathbf{1}_{S(G)} \otimes 1_{\mathbf{K}_{\lambda}}$. Also, as in 87 (cf. (7.11)), we have
(8.1) $\xi_{\lambda} \omega_{\lambda}=\omega_{\lambda}$ and $T_{r}(u) \omega_{\lambda}=\omega_{\lambda}$, for all $u \in U^{+}$.

So applying (4.8) to $K_{\lambda J}$ we get the following.
(8.2) Lemma: Let $\lambda \in \Lambda(n, r)$. Then $K_{\lambda J}=0$, unless $\lambda_{m_{a-1}}+1 \geq \lambda_{m_{m-1}+2} \geq \ldots \geq$ $\lambda_{\mathrm{ma}_{\mathrm{e}}}$, for all a $\in \underline{\mathrm{g}}$.

Proof: Suppose $K_{\lambda \jmath} \not \not \neq 0$. Then $\omega_{\lambda} \notin 0$.
In (4.8) take $H=G_{j}^{+}, V=K_{\lambda, J}, v=\omega_{\lambda}$, and $(\mu, v)=(\mu, \mu+1)$, where $\mu-\mu+1$.
Then the hypotheses of (4.8) are satisfied. Thus, $\lambda_{\mu+1} \leq \lambda_{\mu}$, for all $\mu \Subset n-1$ such that $m_{a-1}+1 \leq \mu \leq m_{a}-1$ (some $a \in s$). \quad a

Notetion: $\Lambda_{j}^{+}=\Lambda_{j}^{+}\left(n_{r}\right)=\left\{\lambda \in \Lambda\left(n_{r}\right) \mid \lambda_{m_{e-1}}+1 \geq \lambda_{m_{k-1}}+2 \geq \ldots \geq \lambda_{m_{a}}\right.$ for all ates.

Consider the subgroups $\mathrm{U}_{\mathbf{j}}^{+}$and $\mathrm{L}_{\mathbf{j}}$ of $\mathrm{O}_{\mathbf{j}}^{+}$, defined in \mathbf{g}^{3}.Then $\mathrm{G}_{\mathbf{j}}^{+}$has the Levi decomposition $G_{j}^{+}=L_{J} U_{J}^{+}$, and so $S\left(G_{j}^{+}\right)=S\left(L_{J}\right) S\left(U_{j}^{+}\right)$.

As U_{J}^{+}is a subgroup of U^{+}, (8.1) implies $T_{r}(u) \omega_{\lambda}=\omega_{\lambda}$, all $u \in U_{j}^{+}$. Thus

$$
K_{\lambda-}=S\left(G_{j}^{+}\right) \omega_{\lambda}=S\left(L_{j}\right) S\left(U_{j}^{+}\right) \omega_{\lambda}=S\left(L_{j}\right) \omega_{\lambda}
$$

and, in order to understand $K_{\lambda, J}$, we need to study the Schur algebra $S\left(L_{j}\right)$.
L_{j} consists of all matrices of the form

$$
g=\left(\begin{array}{llll}
g^{(1)} & 0 & . . & 0 \\
0 & g^{(2)} & . . & 0 \\
. . & . . & . . & . . \\
0 & 0 & & g^{(s)}
\end{array}\right)
$$

where, for each a $\in \mathrm{g}$, the matrix $\mathrm{g}^{(a)}=\left(\mathrm{g}_{\mu \nu}\right)_{\mu, \nu} \in \mathrm{N}_{\mathrm{a}}$ is non-singulari in other words, L_{j} consists of all $g \in G$ such that $g_{\mu v}=0$ for all $(\mu, v) \in n \times n$ such that $\mu \mathbf{j}$.

For convenience of notation write $G_{a}=G L_{n_{k}}(k)$, where $n_{a}=m_{a}-m_{a-1}=N_{a}$.
L_{J} is isomorphic to $\mathbf{G}_{\mathbf{t}} \times \ldots \times \mathbf{G}_{\mathbf{9}}$ (external direct product) and so, we should be
 coalgebra theory. We start with some standard results which can be found in [G1; pp. 4-6, 18-201.

Let H be any group, and let k^{H} denote the k-algebra of all maps $f: H \rightarrow k$ (addition and multiplication in $\mathbf{k}^{\mathbf{H}}$ being defined pointwise).

We identify $\mathbf{k}^{\mathbf{H}} \otimes \mathbf{k}^{\mathbf{H}}$ with a \mathbf{k}-subspace of $\mathbf{k}^{\mathbf{H}} \mathbf{n}$. via the \mathbf{k}-monomorphism $\mathbf{k}^{H} \otimes \mathbf{k}^{H} \rightarrow \mathbf{k}^{\mathbf{H}} \mathbf{H}$, which takes $f \otimes f^{\prime}$ to the map $f^{\prime}: H \times H \rightarrow k$, defined by $\mathbf{f}^{\prime}\left(h, h^{\prime}\right)$ $=f(h) f^{\prime}\left(h^{\prime}\right)$, for all $f, f^{\prime} \in k^{H}, h, h^{\prime} \in H$.

Let $\Delta_{\mathbf{H}}: \mathbf{k}^{\mathbf{H}} \rightarrow \mathbf{k}^{\mathbf{H}} \mathbf{H}$, and $\boldsymbol{e}_{\mathbf{H}}: \mathbf{k}^{\mathbf{H}} \rightarrow \mathbf{k}$, be the \mathbf{k}-algebra maps defined by

$$
\Delta_{H}(f)\left(h, h^{\prime}\right)=f\left(h h^{\prime}\right), \text { and } \varepsilon_{H}(f)=f\left(1_{H}\right), \text { all } f \in k^{H}, h, h^{\prime} \in H .
$$

Then, the set $\mathscr{F}\left(\mathbf{k}^{H}\right)=\left\{f \in \mathbf{k}^{H} \mid \Delta_{\mathbf{H}^{\prime}}(f) \in \mathbf{k}^{H} \otimes \mathbf{k}^{H}\right\}$ is a k-bialgebra: it is a subalgebra of \mathbf{k}^{H} and the comultiplication and counit maps are the restrictions of Δ_{H} and $\mathbf{e}_{\mathbf{H}}$, respectively, to $\boldsymbol{F}\left(\mathbf{k}^{\mathrm{H}}\right)$.

Now make $\mathbf{H}=\mathbf{O}$.
For each $\mu, V \in \underline{n}$, define the coordinate $\operatorname{map} c_{\mu \nu} \in \mathbf{k}^{\mathbf{G}}$, by

$$
c_{\mu v}(g)=g_{\mu v} \text { all } g G G
$$

Let $\left.A(G)=K c_{\mu v} \mid \mu, V \in n\right]$ be the k-subalgebra of k generated by the $C_{\mu \nu}(\mu, V \in n)$. As the field k is infinite, the $c_{\mu v}$ are algebraically independent over k. Hence $A(G)$ may be regarded as the algebra of all polynomials over k in the indeterminates $\epsilon_{\mu \nu}(\mu, v \in n)$.

For each $q \geq 0$, let $\mathbf{A}_{\mathbf{q}}(\mathbf{G})$ denote the k-subspace of $\mathbf{A}(\mathbf{G})$ consisting of all those elements in $A(G)$ which, considered as polynomials in the $\mathcal{c}_{\mu v} v^{\prime}$, are homogenous of degree q. Then

$$
A(G)=\underset{q \geq 0}{\oplus} A_{q}(G) .
$$

It is clear that, for each $q \geq 1$,
(8.3) $A_{q}(G)$ has k-basis $\left\{c_{i, j}=c_{i_{1} j_{1}} \ldots c_{i_{\|}}\left\{(i, j) \in \Omega_{q}\right\}\right.$,
where Ω_{q} is a transversal of the set of all P_{q}-orbits of $I(n, q) \times I(n, q)$.

Also, by the definition of Δ_{G},

$$
\Delta_{G}\left(c_{\underline{\mu v}}\right)=\sum_{\tau \in \underline{\underline{n}}} c_{u \tau} \otimes c_{\tau v}, \quad \mu, v \in \underline{n} .
$$

As $\Delta_{\mathbf{O}}$ is a \mathbf{k}-algebra map this gives,

$$
\Delta_{G}\left(c_{i, j}\right)=\sum_{h \in I(n, q)} c_{i, h} \otimes c_{h, j}, \text { all } i, j \in I(n, q) ; q \geq 1
$$

Similarly $\varepsilon_{G}\left(c_{\mu v}\right)=\delta_{\mu v}$ and $\varepsilon_{G}\left(c_{i j}\right)=\delta_{i j}=\delta_{i_{\nu}, \ldots} \ldots \delta_{i_{j},}(\mu, v \in \underline{n}, i j \in I(n, q))$.
This shows that $A(G)$ is a sub-bialgebra of $\mathcal{F}\left(k^{G}\right)$, and that $A_{q}(G)$ is a subcoalgebra of $A(G)$. Thus $A_{q}(G)^{\bullet}=\operatorname{Hom}_{k}\left(A_{q}(G), k\right)$ is a $\mathbf{k}-\mathrm{algebra}$.

The algebra $S_{k}(n, q)$ introduced by I. Schur in [S] coincides with $A_{q}(G)$ (cf. [G1; pp. 18-21]). Thus, as we mentioned in the introduction
(8.4) $A_{q}(G)$ and $S_{k}(n, q ; G)$ will be identified, via the k-algebra isomorphism $\Xi: A_{q}(G)^{*} \rightarrow S_{k}(n, q ; G)$. defined in (0.1).

Note that if Ω_{q} is as in (8.3) then $\left\{\boldsymbol{\xi}_{i, j} \mid(i, j) \in \Omega_{q}\right\}$ is the basis of $A_{q}(G) *$ dual to the basis $\left\{c_{i, j} \mid(i, j) \in \Omega_{q}\right\}$ of $A_{q}(G)$.

Now consider the subgroup L_{j} of G.
For each $c \in A(G)$, denote the restriction of c to L_{J} by \mathbb{C}. Let $A\left(L_{j}\right)=\{c \mid c \in A(G)\}$. Then $A\left(L_{j}\right)$ is a subalgebra of $k^{L_{1}}$, and it is clearly generated by those $\bar{c}_{\mu \nu}$ which satisfy $\bar{c}_{\mu \nu} \neq 0(\mu, v \in g)$.

Note that, for any $g \in L_{j}$, we have $c_{\mu v}(g)=g_{\mu v}=0$, unless $\mu_{J}=v$. Hence $c_{\mu \nu}=0$ if $\mu+V$. Now, using an argument similar to that in the proof of (3.5), we can show that
(8.5) Lemma: The $\bar{c}_{\mu, v}(\mu, v \in n, \mu, v)$ are algebraically independent over \underline{k}.

Therefore, we can identify $A\left(L_{j}\right)$ with $k\left[c_{\mu v}\left|\mu, v \in \underline{n}_{1} \mu_{j} v\right|\right.$, the algebra of all polynomials over k in the indeterminates $\bar{c}_{\mu v}\left(\mu, v \in \underline{n}, \mu_{J} v\right)$.

Let $\mu, v \in \underline{n}, \mu_{J}=V$, and consider $\mathcal{E}_{\mu v}$. From the definition of the \underline{k}-algebra map $\Delta_{L_{\mathrm{I}}}$, we have

$$
\begin{aligned}
& A_{L_{j}}\left(\mathcal{C}_{\mu V}\right)\left(\mathbf{g}, g^{\prime}\right)=\mathcal{C}_{\mu v}\left(g_{g}\right)=\left(g g^{\prime}\right)_{\mu V}=
\end{aligned}
$$

Hence
(8.6) $\Delta_{L_{j}}\left(c_{\mu \nu}\right)=\sum_{\left.\Sigma_{j} \mu_{j}\right)} c_{\mu z} \otimes a_{\tau y} \in A\left(L_{j}\right) \otimes A\left(L_{j}\right)$.
and $A\left(L_{j}\right)$ is a sub-binigebra of $\mathcal{f}\left(\mathbf{x}^{L^{L}}\right)$.
Notice that as $\Delta_{\mathbf{L}_{\mathbf{j}}}$ is a \mathbf{k}-algebra map then, for each $\mathbf{q} \geq \mathbf{1}$,

$$
\Delta_{L_{j}}\left(c_{i, j}\right)=\sum_{h, i l(n, q)} c_{i, h} \otimes c_{h, j}, \text { all } i j \in I(n, q), i=j
$$

(here $h_{j} \mathbf{i}$ means $h_{\rho}{ }_{j} \mathbf{i}_{\boldsymbol{\rho}}$. all $\rho \in \underline{q}$).

Therefore, $A_{a}\left(L_{j}\right)=\sum_{i j}^{\substack{i \\ i \\ j-j}} \mid$

Now let us return to the groups $G_{a}=\mathrm{GI}_{\mathbf{n}_{\mathbf{n}}}(\mathbf{k})(\mathrm{a} \in \mathrm{s})$. Everything we have said about \mathbf{G} applies, in particular, to $G_{\text {a }}$. So we may consider the bialgebras $A\left(G_{2}\right)$. For each $\mu, v \in \underline{n}_{a}$, we also denote by $\mathcal{q}_{\mu v}$ the coordinate map in $\underline{1}^{G_{\mathbf{4}}}$ given by, $c_{\mu v}(\mathrm{~g})=\mathrm{g}_{\mu \mathrm{v}}\left(\mathrm{all} \mathrm{g} \in \mathrm{G}_{\mathrm{a}}, \mathrm{a} \in \mathrm{g}\right)$.

The tensor product $A\left(G_{1}\right) \otimes \ldots A\left(G_{8}\right)$ is a k-bialgebra, with counit and comultiplication maps defined by

$$
\varepsilon_{\circledast}=\varepsilon_{O_{1}} \otimes \ldots \otimes \varepsilon_{G_{1}} \text { and } \Delta_{\otimes}=\tau\left(\Delta_{G_{1}} \otimes \ldots \otimes \Delta_{G_{1}}\right),
$$

where $t: \otimes\left(A\left(G_{2}\right) \otimes A\left(G_{2}\right)\right) \rightarrow\left(\& A\left(G_{1}\right)\right) \otimes\left(\otimes A\left(G_{\mu}\right)\right)$ is the "twisting" map.

(0.7) Lemma: The k-bialgebras $A\left(L_{j}\right)$ and $A\left(G_{\Omega}\right)$ are isomorphic.

Proof: As $\underline{n}=\bigcup_{u} N_{\text {a }}$, we may define a map $\theta: \underline{n} \rightarrow \underline{n}$, by

$$
\theta(\mu)=\mu-m_{n-1} \text {, all } \mu \in N_{a}, a \in s .
$$

(8.8) Note that the restriction of θ to N_{2} gives a bijection between N_{1} and n_{a}.

Now let $\Psi: \mathbf{A}\left(\mathbf{l}_{\mathrm{j}}\right) \rightarrow \underset{\mathrm{a}}{\boldsymbol{A}} \mathbf{A}\left(\mathrm{O}_{\mathrm{e}}\right)$ be the \mathbf{k}-algebra map defined by
(8.9) $\psi\left(c_{\mu v}\right)=1 \otimes \ldots \otimes c_{\theta(\mu)} \theta(v) \otimes \ldots \otimes 1$, if $\mu, v \in N_{n}$.
(a)

We claim that $\boldsymbol{\Psi}$ is a bialgebra isomorphism. To prove this we need to show that
(i) $\quad \Delta_{8} \dot{\psi}=(\hat{\psi} \otimes \hat{\psi}) \Delta_{L_{1}}$, and $\varepsilon_{\otimes} \hat{\varphi}=\boldsymbol{\varepsilon}_{L_{j}}$;
(ii) Ψ is bijecrive.

 (8.6) and (8.8),

$$
\begin{aligned}
& (\psi \oplus \psi) A_{L_{-j}}\left(\mathcal{C}_{\mu v}\right)=\psi \oplus \psi\left(\sum_{\mu j_{j}(-v)} z_{\mu \tau} \otimes z_{\tau v}\right)= \\
& =\varphi \otimes \psi\left(\sum_{\tau \in N_{k}} \varepsilon_{\mu \tau} \otimes \delta_{\tau v}\right)=\sum_{\tau \in N_{s}}\left(1 \otimes \ldots \otimes c_{\theta(\mu)} \Theta(\tau) \otimes \ldots \otimes 1\right) \otimes
\end{aligned}
$$

(a)
$\otimes\left(1 \otimes \ldots c_{\Theta(\tau) \Theta(v)} \otimes \ldots 1\right)=$
(a)

$$
\begin{aligned}
& =\sum_{\sigma \hat{n}_{a}}\left(1 \otimes \ldots \otimes c_{\theta(\mu) \sigma} \otimes \ldots \otimes 1\right) \otimes\left(1 \otimes \ldots \otimes c_{\sigma \theta(v)} \otimes \ldots \otimes 1\right)= \\
& =\Delta_{\theta} \Psi\left(c_{\mu v}\right) .
\end{aligned}
$$

The proof of $\boldsymbol{e}_{\Theta} \hat{\mathbf{V}}=\boldsymbol{e}_{\mathrm{L}_{\boldsymbol{J}}}$ is similar. Hence (i).
Now to prove (ii) we consider, for each a $\in 3$, the k-algebra map $f_{m}: A\left(G_{\mu}\right) \rightarrow A\left(L_{j}\right)$, given by, $f_{a}\left(c_{\mu v}\right)=d_{m_{a-1}+\mu, m_{a-1}+v_{i}}$ for all $\mu, v \in n_{z}$

Also, let $f: A\left(G_{3}\right) \rightarrow A\left(L_{j}\right)$, be the k-algebra map defined by $f\left(c_{1} \otimes \ldots \otimes c_{2}\right)=f_{1}\left(c_{1}\right) \ldots f_{s}\left(c_{2}\right)$, for all $c_{a} \in A\left(G_{\mu}\right), a \in \underline{s}$. Clearly $f=\ddot{\psi}^{-1}$. Hence Ψ is bijective.

Let $R(J)=\left\{d=\left(d_{1}, \ldots d_{3}\right) \in \mathbb{Z} \mid d_{a} \geq 0(\in \in s) ; \sum_{a \in\{ } d_{a}=r\right\}$, and define

$$
A_{R(J)}=\underset{d \in R(J)}{\oplus} \otimes_{a \in s}^{\otimes} A_{d_{0}}\left(G_{2}\right)
$$

Consider any $d \in R(J)$, and let $D_{1}=\left\{d_{1}+\ldots+d_{1-1}+\mu \mid \mu \in d_{d}\right\}\left(a \in s, d_{0}=0\right)$. As

Suppose $i(\mathrm{a}), \mathrm{j}(\mathrm{a}) \in \mathrm{I}\left(\mathrm{n}_{\mathbf{2}}, \mathrm{d}_{\mathbf{n}}\right)(\mathbf{(} \in \mathbf{g})$. Then we have the following diagram

$$
\begin{gathered}
D_{a} \longrightarrow d_{a} \xrightarrow{i(a)} n_{n_{a}} \rightarrow N_{a} \\
d_{1}+\ldots+d_{a-1}+\mu \longmapsto \mu \longmapsto i()_{\mu} \rightarrow m_{a-1}+i(a)_{\mu}
\end{gathered}
$$

and similar for $\mathrm{j}(\mathrm{a})$. Thus, we may define $1 \mathrm{j} \in \mathrm{I}(\mathrm{n}, \mathrm{r})$ as follows
(8.10) $i_{\rho}=m_{a-1}+i(a)_{\mu} ; \quad j_{\rho}=m_{a-1}+j(a)_{\mu}, \quad$ if $\rho=d_{1}+\ldots+d_{a-1}+\mu \in D_{\mu}$.

It is then clear that

(ii) $\quad\left\{p \in \mathbb{I} T_{p} \in N_{\mathbf{a}}\right\}=D_{\mathbf{a}}$
(iii)
(8.12) Theorem: With the notation above there is a coalgebra isomorphism

$$
\dot{\psi}: A_{\mathbf{r}}\left(\mathrm{L}_{\mathbf{j}}\right) \rightarrow \mathrm{A}_{\mathbf{R}(\boldsymbol{n}}
$$

$i=j$, and define

$$
R_{\Omega}(i)=\left\{p \in r \mid j_{\rho} \in N_{\rho}\right\}=\left\{\rho \in r \mid j_{\rho} \in N_{\rho}\right\}, \text { all } a \in s .
$$

(8.13) $\left(r_{1}(\mathrm{i}) \ldots r_{8}(\mathrm{i})\right) \in R(\mathrm{~J})$.

Let ψ be as in (8.9). Then

$$
\varphi\left(c_{i, j}\right)=\prod_{\rho \in t} \varphi\left(c_{i_{p j}}\right)=\sum_{a \in i} \prod_{\rho \in R_{Q}(i)} c_{\left.\theta\left(a_{p}\right) \theta g_{p}\right)}
$$

Therefore, $\Psi\left(A_{r}\left(L_{j}\right)\right) \in A_{R}()$.
Now, consider any $d \in R(J)$, and let $i(a), j(a) \in I\left(n_{1}, d_{2}\right)(a \in g)$. Then, if $1, j$ are as in (8.10), $\bar{q}_{j} \in A_{\mathrm{r}}\left(\mathrm{L}_{\mathrm{J}}\right)$, and by (8.11)(ii) and (iii),

Since $A_{R(J)}$ is k-spanned by $\left\{\otimes c_{i(a)}(a) \mid(a), j(a) \in I\left(n_{a}, d_{\Omega}\right)(a \in \operatorname{s}), d \in R(J)\right\}$, (8.14) shows that $\bar{Y}\left(A_{r}\left(L_{j}\right)\right)=A_{R(J)}$. Thus, we define $\Psi: A_{r}\left(L_{j}\right) \rightarrow A_{R(J)}$ to be the

2-23

restriction of ψ to $A_{r}\left(L_{j}\right)$ and this ends the proof of the theorem. $\quad \square$

It is now easy to obtain a description of $\mathbf{S}\left(\mathrm{L}_{\mathrm{J}}\right)$ in terms of $\mathbf{S}\left(\mathrm{n}_{\mathrm{a}}, \mathrm{d}_{\mathrm{a}} ; \mathbf{G}_{\mathrm{a}}\right) \quad(\mathrm{a} \in \underline{\mathbf{s}}$, $d \in R(J)$).

Since the dual of a coalgebra map is an algebra map (cf. [Sw; [1.4.1), by (8.12), there is a k-algebra isomorphism

$$
\tilde{\psi}^{*}: A_{R(J)}^{*} \rightarrow A_{r}\left(L_{J}\right)^{\bullet} .4
$$

But (cf. (8.4)),

So, if we write

$$
S_{R(J)}=\prod_{d \in R(J)} \otimes_{a \in S} S\left(n_{a}, d_{a} ; G_{a}\right)
$$

we have just seen that the algebras $A_{r}\left(L_{J}\right)^{*}$ and $S_{R(J)}$ are isomorphic. Now we have the following
(8.15) Theorem: There is a k-algebra isomorphism $\psi: S_{R(J)} \rightarrow S_{\left(L_{J}\right)}$.

Proof: Let $\varphi: A_{r}(G) \rightarrow A_{r}\left(L_{J}\right)$ be "restriction to L_{J} ". Clearly φ is a coalgebra epimorphism. Thus, we have the short exact sequence

[^1]$$
0 \longrightarrow \operatorname{ker} \varphi \xrightarrow{\text { inc }} A_{r}(G) \xrightarrow{0} A_{r}\left(L_{j}\right) \rightarrow 0 .
$$

Taking duals (and since all k-spaces involved are finite dimensional) we obrain the short exact sequence

$$
\left.0 \rightarrow A_{r}\left(L_{J}\right)^{*} \xrightarrow{\varphi^{*}} A_{r}(G)^{*} \xrightarrow{\text { inc }^{*}} \text { (ker } \varphi\right)^{*} \rightarrow 0
$$

Therefore,

But ker Φ is k-spanned by $\mathcal{C}_{\mathrm{L}, \mathrm{j}}$, for all $\mathrm{i}_{\mathrm{j}} \in \mathrm{I}\left(\mathrm{n}_{\mathrm{r}} \mathrm{r}\right)$ such that $\underset{j}{\mathrm{f}} \mathrm{j}$ (cf- (8.3) and (8.5)). Thus,

$$
\begin{aligned}
& \text { ker inc* }=\left\{\xi \in A_{r}(G)^{*} \mid \xi\left(G_{i}\right)=0 \text {, for all } i, j \in I\left(n_{N}\right) \text { such that } i \neq j\right\}
\end{aligned}
$$

Hence $S_{R(J)}{ }_{k-a l g} S\left(L_{j}\right)$, and we define the isomorphism $\Psi: S_{R(J)} \rightarrow S\left(L_{j}\right)$ so that the diagram below commutes.

where η is the natural isomorphism
 be the narural injection and projection, respectively.
 $F_{h, \ell}$ is the basis element of $A_{r}(G)^{*}$ dual to the basis element $c_{h, l}$ of $A_{r}(G)$ (all $h, 2 \in I(n, r)$) and a similar relation exists between $\xi_{i(0) j(0)}$ and $c_{i(a) j(a)}$ (a $\left.\in s\right)$, we have

 $\left.I\left(n_{a}, d_{a}\right)(a \in s), d \in R(J)\right]$. Hence, for each $i_{j} \in I(n, r)$ satisfying $i=j$, there is some $\xi_{1 j}=\Psi i_{d}\left(\theta_{a \in i} \xi_{i(a)}(0)\right)$ such that $\xi_{i, j}=\xi_{i j}$.
(ii) Recall that, i and j are determined by $i(a), j(a) \in I\left(n_{j}, d_{a}\right)$ (a $\in s$) as follows

$$
i_{\rho}=m_{\mu-1}+i\left(a_{\mu} ; \quad J_{\rho}=m_{\mu-1}+j(a)_{\mu}\right.
$$

If $p=d_{1}+\ldots+d_{1-1}+\mu \quad\left(\mu \in d_{9} \cdot d_{0}=0\right)$.

(iii) Suppose \bar{j} has weight $\alpha \in \Lambda(n, r)$, and $j(a)$ has weight $\alpha(a) \in \Lambda\left(n_{\mu} \alpha_{j}\right)(a \in j)$. Then α and $\alpha(a)$ are related by

$$
\alpha(\alpha)_{v}=\alpha_{m_{n-1}}+v_{n} \text { all } v \in n_{0} .
$$

It is now time to return to the study of the module $\mathrm{K}_{\boldsymbol{\lambda}, \mathrm{J}}$.

Let $\lambda \in \Lambda_{j}^{+}$. As $S\left(L_{j}\right)$ is a subalgebra of $S\left(G_{j}^{+}\right)$, we may regard $K_{\lambda J}$ as an $S\left(L_{j}\right)$ module (by restriction).

For each $a \in s$, let $r_{a}(\lambda)=\lambda_{n_{4-1}+1}+\ldots+\lambda_{m_{a}}$, and define $\lambda(a) \in \Lambda\left(n_{2}, r_{a}(\lambda)\right)$ by

$$
\lambda(a)_{v}=\lambda_{m_{a-1}+}+v_{v} \text { all } v \in n_{-m}
$$

Note that $r(\lambda)=\left(r_{1}(\lambda), \ldots, r_{3}(\lambda)\right) \in R(J)$. Also, since $\lambda \in \Lambda_{\mathrm{J}}^{+}, \lambda(\mathrm{a})_{1}=\lambda_{m_{a-1}+1} \geq \lambda_{m_{s-1}+2}$ $=\lambda(a)_{2} \geq \ldots \geq \lambda_{m_{a}}-\lambda(a)_{m_{a}}$. Hence $\lambda(a) \in \Lambda^{+}\left(n_{m}, r_{a}(\lambda)\right)$, all $a \in s$.

Let $\mathrm{B}_{\mathrm{a}}^{+}$denote the subgroup of $\mathrm{G}_{\mathbf{a}}$ consisting of all upper triangular matrices in $\mathbf{G}_{\mathbf{a}}$. Consider the irreducible $\mathrm{S}\left(\mathrm{n}_{\mathrm{a}}, \mathrm{r}_{\mathbf{a}}(\boldsymbol{\lambda})\right.$; $\mathrm{B}_{\mathrm{a}}^{+}$-module $\mathrm{k}_{\boldsymbol{\lambda}}(\mathrm{a})$ affording the representation $X_{\lambda(a)}(c f$. (6.7) and (6.9)(ii)).

From (7.8), we know that the $S\left(n_{a}, r_{a}(\lambda) ; G_{a}\right)$-module

$$
K_{\lambda(a)}=S\left(n_{a}, r_{a}(\lambda) ; G_{a}\right) \Theta_{S\left(n_{1} r_{0}(\lambda) ; B_{j}^{j}\right.} K_{\lambda(a)}
$$

\mathbf{k}-vector space $\mathrm{K}_{\boldsymbol{\lambda} \boldsymbol{a})}$ we have
(8.18)

$$
\operatorname{a\in n}_{\mathrm{I}} \mathrm{~K}_{\lambda(\mathrm{n})} \phi 0, \text { for all } \lambda \in \Lambda_{\mathrm{j}}^{+}
$$

(3) $S\left(n_{a} r_{a}(\lambda) ; G_{a}\right)$-module by

But, since we have the \mathbf{k}-algebra epimorphism

$$
S\left(L_{J}\right) \xrightarrow{\psi^{-1}} S_{R(J)} \xrightarrow{\pi_{r(\lambda)}} \underset{\bullet \in \underbrace{}_{2}}{\otimes} S\left(n_{2}, r_{2}(\lambda) ; G_{3}\right)
$$

(where ψ is the isomorphism defined in (8.15) and $\pi_{\mathrm{r}}(\boldsymbol{\lambda})$ is the natural projection) we may alsoregard $\operatorname{Sef}_{\mathrm{a}} \mathrm{K}_{\lambda(\mathrm{a})}$ as an $\mathrm{S}\left(\mathrm{L}_{\mathrm{j}}\right)$-module via $\pi_{\mathrm{r}}(\lambda) \Psi^{-1}$.

It is our aim to prove that, under these conditions, we have the following result.
(8.19) Theorem: Let $\lambda \in \Lambda_{j}^{+}$. Then $K_{\lambda J}$ and $\Theta_{a \in \varepsilon_{i}} K_{\lambda(a)}$ are isomorphic S(LI)-modules.

As an easy consequence of (8.19) we have the corollary.

2-28

(0.20) Corollary: Let $\lambda \in \Lambda\left(n_{r}\right)$. Then $K_{\lambda, \jmath} \neq 0$ iff $\lambda \in \Lambda_{J}^{+}$.

Proot: By (8.2), (8.18) and (8.19), the corollary followi. a
(8.21) Femark: Let $\lambda \in A(n, r)$ and let J be any proper subset of $n-1$. Then we

Thus, from (8.20) we obrain

$$
\left.\operatorname{How}_{\left.S_{\left(B^{-}\right)}^{-}\right)}\left(S_{\left(G_{j}^{-}\right.}^{-}\right), k_{\lambda}^{-}\right)+0 \text { iff } \lambda \in \Lambda_{J}^{+} .
$$

Note that in the case when $\mathbf{J}=\boldsymbol{n}-1$. we have used the fact that
$\operatorname{Hom}_{S\left(B^{-}\right)}\left(\mathbf{S}(\mathbf{G}), k_{\lambda}^{-}\right) \notin$ to prove that $K_{\lambda} \neq 0$, for all $\lambda \in \Lambda^{+}$(cf. proof of (7.8)).

Proof of (8.19) Let $\lambda \in \Lambda_{j}^{+}$. Define $B_{j}^{+}=B^{+} \cap L_{j}$.
Then $S\left(B_{j}^{+}\right)$is a subalgebra both of $S\left(B^{+}\right)$and of $S\left(L_{j}\right)$, and we may consider the S(L) L $_{\text {J }}$-module.

$$
S\left(L_{j}\right) \Theta_{\mathbf{S}\left(B_{j}^{+}\right)} \mathbf{k}_{\lambda}
$$

(here $\mathbf{k}_{\boldsymbol{\lambda}}$ being reganded as the restriction of $\mathbf{k}_{\boldsymbol{\lambda}}$ to $\mathbf{S}\left(\mathrm{B}_{\mathrm{j}}^{\boldsymbol{j}}\right.$).
Now the proof of (8.19) follows from the next two lemmas. \square
(8.22) Lemma: Let $\lambda \in \Lambda_{j}^{+}$. Then $K_{\left.\chi_{a}\right)}$ and $S\left(L_{j}\right) \otimes_{S\left(B_{j}^{+}\right)} k_{\lambda}$ are isomorphic $S\left(L_{\mathrm{J}}\right)$-modules.
(8.23) Lemma: If $\lambda \in \Lambda_{j}^{+}$, the $S\left(L_{j}\right)$-modules $K_{\lambda j}$ and $S\left(L_{j}\right) \otimes_{S\left(B_{j}^{+}\right)} k_{\lambda}$ are isomorphic.

Proof of (8.22) Let $\boldsymbol{\lambda} € \Lambda^{+}(\mathbf{n}, r)$. In this proof we write

$$
S\left(Q_{2}^{+}\right)=S\left(n_{a}, r_{2}(\lambda) ; G_{1}\right) \text { and } S\left(B_{2}^{+}\right)=S\left(n_{2}, r_{a}(\lambda) ; B_{2}^{+}\right) \quad(a \in s)
$$

As $S\left(L_{j}\right)$ is k-spanned by $\left\{\xi_{i, j} \mid i, j \in I(n, r), i=j, S\left(L_{j}\right) \boldsymbol{\Theta}_{S\left(B_{j}^{+}\right.} \boldsymbol{q}_{\boldsymbol{\lambda}}\right.$ is k-spanned by

But, if $j \in \lambda$ then $\xi_{i, j} \otimes 1_{k}=\xi_{1, j} \otimes \xi_{\lambda} 1_{k}=\xi_{i, j} \xi_{\lambda} \otimes 1_{k}=0$. Hence
(8.24) $S\left(L_{j}\right) \Theta_{S\left(B j_{j}\right.} k_{\lambda}$ is k-spanned by $\left\{\mathcal{F}_{i, j} \otimes I_{k} \mid\left(i_{j}\right) \in I\left(n_{r}\right), i=j\right.$ and $\left.j \in \lambda\right\}$.

Now consider the Schur algebra $\mathbf{S}\left(\mathrm{B}_{\mathrm{j}}^{+}\right)$. By an argument similar to that used in the proof of (3.5), we can show that
(8.25) $S\left(B_{j}^{+}\right)$has k-basis $\left\{\xi_{i, j} \mid(i, j) \in \Omega, j_{j} j\right.$ and $\left.i \leq j\right\}$.

For each a \in g, write $\omega_{\lambda(a)}=1_{S\left(O_{0}\right)} \otimes_{1} \in K_{\lambda(a)}$ - Then we may define a k-linear map, $\theta_{1}: S\left(L_{J}\right) \theta_{S\left(B_{j}\right.} \mathbf{k}_{\lambda} \rightarrow K_{\lambda(a)}$, by

$$
\theta_{1}\left(\xi \otimes 1_{k}\right)=\pi_{1}(2) \psi^{-1}(\xi)\left(\omega_{\mu}\right), \text { all } \xi \in S\left(L_{j}\right)
$$

(recall that $\pi_{1}(2) \Psi^{-1}(\xi) \in S\left(G_{2}\right)$ and Ψ is as in (8.15)).

To prove that θ_{1} is well defined, consider any basis element $\xi_{1 j}$ of $S\left(B_{j}^{+}\right)$(i.e., (ij) $\in \Omega, i=j$ and $i \leq j)$, and any $\xi \in S\left(L_{j}\right)$.

If $\mathrm{j} \notin \lambda$, then $\xi_{\mathrm{ij}} \otimes 1_{\mathrm{k}}=\xi \otimes \xi_{\mathrm{ij}} 1_{\mathrm{k}}=0$. So suppose that $\mathrm{j} \in \lambda$.
By (8.17)(i), $\xi_{i j}=\xi_{i j}=\psi \psi_{d}(\underbrace{\xi_{i}(a) j(a)}_{a \in \sum_{i}})$, for sorme $d \in R(J)$ and $i(a), j(a) \in I\left(n_{a}, d_{a}\right)(a \in s)$. But, by (8.17)(ii) and (iii), $i(a) \leq j(a)$, and $j(a)$ has weight $\lambda(a) \in \Lambda\left(n_{a}, r_{a}(\lambda)\right)$, for all $a \in s$. Hence $d=r(\lambda)$, and $\xi_{i(a) j(a)} \in S\left(B_{0}^{+}\right)(a \in s)$. Also

Therefore

$$
\begin{aligned}
& \theta_{1}\left(\xi \xi_{i, j} 1_{i k}\right)=\pi_{T(2)} \psi^{-1}\left(\xi_{i}\right) \pi_{T(2)} \psi^{-1}\left(\xi_{i, j}\right)\left(, \omega_{\lambda(0)}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\pi_{T(\lambda)} \Psi^{-1}(\xi)(\underbrace{}_{a \in 1} \xi_{i(a) j(a)} \omega_{\lambda(a)})= \\
& =K_{\lambda(1)}\left(\xi_{i(1), i(1)}\right) \cdots K_{\lambda(g)}\left(\xi_{i(g), j(g)}\right) \theta_{1}\left(\xi \theta I_{k}\right)= \\
& = \begin{cases}\theta_{1}\left(\xi \otimes 1_{1}\right) ; & \text { if } i(a)=j(a), \text { for all } \geqq \leq \\
0 \quad ; & \text { otherwise. }\end{cases}
\end{aligned}
$$

But, by (8.17 (ii), $i(a)=j(a)$ (all a $6 \leq i f f i=j, i . e .$, iff $i=j$. Hence $\theta_{1}\left(\xi \xi_{i, j} \otimes 1_{k}\right)$ if $i=j \in \lambda$, and zero otherwise.

On the other hand, $\theta_{1}\left(\xi \otimes \xi_{i j} I_{k}\right)=$
2-31
$=X_{\lambda}\left(\xi_{1 j}\right) \theta_{1}\left(\xi \otimes 1_{k}\right)= \begin{cases}1 ; & \text { if } i=j \in \lambda \\ 0 ; & \text { otherwise. }\end{cases}$

Hence $\theta_{1}\left(\xi \xi_{i j} \otimes 1_{k}\right)=\theta_{1}\left(\xi \in \xi_{j} 1_{k}\right)$.
Thut θ_{1} is well defined. Also, since $\pi_{r}(a) \Psi^{-1}$ is a \underline{q}-agebra map, θ_{1} is an S(1.)-map.

Now, to prove that θ_{1} is bijective, we consider the \mathbf{k}-map

In a similar way to that used for θ_{1}, we can show that for any $i(a), j(a)$ $\in I\left(n_{a}, r_{a}(\lambda)\right)$ such that $i(a) \leq j(a)$, and for any $\xi_{a} \in S\left(G_{a}\right)(a \in s)$, there holds
(8.26) $\theta_{2}\left(\theta_{\mathrm{a} \in \mathrm{i}}\left(\xi_{\mathrm{a}} \xi_{\mathrm{i}(\mathrm{a}) \mathrm{j}(\mathrm{a})} \otimes \mathrm{I}_{\mathrm{k}}\right)\right)=\theta_{2}\left(\theta_{\mathrm{a} \in \mathrm{i}}\left(\xi_{\mathrm{L}} \otimes \xi_{\mathrm{i}(\mathrm{a}) \mathrm{j}(\mathrm{a})} 1_{\mathrm{k}}\right)\right)=$

$$
= \begin{cases}\left(\Psi r_{R}(\alpha)\left(\theta_{k} \xi_{a}\right)\right) \otimes 1_{k} ; & \text { if } i(a)-j(a) \in \lambda(a), \text { all } \boxminus \in s \\ 0 & ; \text { otherwise. }\end{cases}
$$

As $S\left(B_{a}^{+}\right)$is k-spanned by $\left\{\xi_{i(a) j(a)} \mid i(a), j(a) \in I\left(n_{a}, r_{a}(\lambda)\right), j(a) \leq j(a)\right\}$, by (8.26), θ_{2} is well defined.

Now using (8.24) and the fact that if $i_{j} \in I(n, r)$ satisfy $i \underset{j}{j} j$ and $j \in \lambda$ then
 that $\theta_{1}^{-1}=\theta_{2} \quad \square$

Proof of (8.23): In this proof we write $\mathbf{\Omega}_{\mathbf{j}}=\left\{\left(\mathrm{I}_{\mathrm{j}}\right) \in \boldsymbol{\Omega} \|_{\mathrm{J}} \mathbf{j} \mathbf{j}\right.$.

As G_{J}^{+}is the semidirect product $L_{j} U_{J}^{+}$, each $g \in G_{j}^{+}$may be written in a unique way $g=\mathbb{L}$, for some $t \in L_{J}, u \in U_{J}^{+}$. So we may define k-algebra map $d: k G_{j}^{+} \rightarrow k L_{j}$ by, $d(g)=\ell$ (the mulniplicative property of d comes from the fact that $\mathrm{U}_{\mathrm{J}}^{+}$is a normal subgroup of $\mathrm{G}_{\mathrm{J}}^{+}$). So we have the following diagram

$$
\begin{aligned}
& k G_{j}^{+} \xrightarrow{d} k L_{j} \\
& T_{r} \downarrow \quad \downarrow T_{r} \\
& S\left(O_{j}\right) \xrightarrow[8]{--} S\left(L_{j}\right)
\end{aligned}
$$

and we would like to define $\delta: S\left(G_{j}\right) \rightarrow S\left(L_{j}\right)$ so that the diagram commutes.

For this we only need to prove that, for any $\gamma \in \boldsymbol{K G}_{\mathrm{J}}^{+}, \mathrm{T}_{\mathrm{r}}(\gamma)=0$ implies $\mathrm{T}_{\mathrm{r}}(\mathrm{d}(\gamma))=0$.
 a E g) and we have

But $4_{\mu} \mu=0$ unless $\mu \in N_{\mu}$, in which case $u_{\mu j_{\theta}}=0$ or 1 , according as $\mu \notin j_{\rho}$ or
$\mu=j_{p}$. So $(\mathbb{L})_{i_{p} p_{p}}=\mathcal{E}_{\psi_{\nu}}$ for all $\rho \in \underline{\underline{r}}$, which implies
$(8.27)(\boldsymbol{H})_{L J}=4 \mathrm{~J}$, all $\left(\mathrm{i}_{\mathrm{J}}\right) \in \Omega_{\mathrm{J}}$.
Now, let γ be any element of $k G_{j}^{+}$. Then $\gamma-\sum_{i=1} a_{k u} \ell_{u}\left(a_{h_{1}} \in k\right)$ sum over a finite
number of elements $\boldsymbol{\ell} \in \mathbf{L}_{\mathbf{J}}$ and $u \in \mathbf{U}_{\mathbf{J}}^{+}$, and

$$
\begin{aligned}
& =\sum_{\substack{0, j \in \Omega \\
i \leq j}}\left(\sum_{i=1} a_{f u}\left(z_{u}\right)_{i, j}\right)_{i, j}
\end{aligned}
$$

As $\left\{\xi_{l, j} \mid\left(i_{j}\right) \in \Omega, i \leq j\right\}$ is a k-basis of $G_{j}^{+}, T_{r}(\gamma)=0$ implies $\sum_{\ell=1} a_{t u}(l u)_{i, j}=0$.
for all $(\mathbf{i}, \mathbf{j}) \in \Omega, i \leq j$. In particular we have

$$
\sum_{i=1} a_{f_{u}}\left(b_{i_{j}}=0, \text { for all }(i, j) \in \Omega_{j} .\right.
$$

But from (8.27), we know this is the same as
(8.28) $\sum_{i=1} a_{\text {bu }} h_{i, j}=0$, for all (i,j) $\in \Omega_{j}$.

Thus, $T_{r}(d(\gamma))=\sum_{V_{0}} E_{U U} T_{r}(t)=$

So $T_{R}(\gamma)=0$ implies $T_{r}(d(\gamma))=0$, for all $\gamma \in k G_{j}^{+}$.
Now define a \mathbf{k}-linear map

$$
\eta_{1}: K_{\lambda]} \rightarrow S\left(\AA_{\mathrm{J}}\right) \oplus_{\mathbf{S}(\mathbb{B})} \mathbf{k}_{\boldsymbol{\lambda}}
$$

by

$$
\eta_{1}\left(\xi \otimes 1_{\mathbf{k}}\right)=\delta(\xi) \otimes 1_{\mathbf{k}}, \text { all } \xi \in S\left(G_{\mathbf{j}}^{+}\right) .
$$

To prove this is well defined we need to show that for any $b \in B^{+}$, and any
$\boldsymbol{\xi} \in \mathbf{S}\left(\mathrm{G}_{\mathrm{j}}^{\mathbf{j}}\right)$, there holds

$$
\eta_{1}\left(\xi T_{\mathrm{C}}(b) \otimes 1_{k}\right)=\eta_{1}\left(\xi \otimes T_{\mathrm{r}}(b) 1_{k}\right) .
$$

For this note that

$$
\begin{equation*}
d(b) \in B_{J}^{+}, \text {so } T_{r}(d(b)) \in S\left(B_{J}^{+}\right) ; \tag{i}
\end{equation*}
$$

(ii) $\quad K_{\lambda}\left(T_{r}(d(b))=K_{\lambda}\left(T_{r}(b)\right)\right.$.

Hence

$$
\begin{aligned}
& \Pi_{1}\left(\xi T_{r}(b) \otimes 1_{k}\right)=\delta\left(\xi T_{r}(b)\right) \otimes 1_{k}=(\text { since } \delta \text { is a k-algebra map) } \\
& =\delta(\xi) \delta\left(T_{r}(b)\right) \otimes 1_{k}=\delta(\xi) T_{r}(d(b)) \otimes 1_{k}= \\
& \delta(\xi) \otimes T_{r}(d(b)) i_{k}=X_{\lambda}\left(T_{r}(b)\right) \delta(\xi) \otimes 1_{k}= \\
& =\eta_{1}\left(\xi \otimes T_{r}(b) 1_{k}\right) .
\end{aligned}
$$

On the other hand it is easy to sec that we may define an $S\left(L_{j}\right)$-map
$\eta_{2}: S\left(L_{\jmath}\right) \otimes_{S\left(\mathrm{H}_{\mathrm{J}}\right)} \mathrm{K}_{\boldsymbol{\lambda}} \rightarrow \mathrm{K}_{\lambda J}$
by
$\eta_{2}(\xi \in 1)=\xi \in 1$, all $\xi \in S\left(L_{j}\right)$.

Since U_{j}^{+}acts trivially on k_{λ} and the restriction of $\boldsymbol{\delta}$ to $S\left(L_{j}\right)$ is the identity map on $S\left(L_{1}\right)$ we have $\eta_{2}=\eta_{1}^{-1}$, hence the lemmal a

3-1

3. 2-8TEP PROJECTIVE RESOLUTIONS

59. The radical of $\mathbf{V}_{\boldsymbol{\lambda}}$

The notation introduced in this chapter will be in force hereafter.

Recall from $\mathbf{8} 4$ that for each $\alpha \in A(n, s)$ we choose a basic α-tableas T^{4} and define $\ell(\alpha) \in I(n, r)$ by

Clearly $\mathbb{U}(\alpha)$ has weight α and the stabilizer, $P_{U(\alpha)}$, of $\mathcal{U}(\alpha)$ in P coincices with the row stabilizer of TM,
(9.1) Dafinition: Let $i \in L$ We say that the α-tableau T_{i}^{a} is rowsemistandard if the entriea in each row of $T_{i}^{(G}$ are weakly increasing (S from left to right.

Let $I(\alpha)=\left\{i \notin I \mid i \leq \mathcal{L}(\alpha)\right.$ and T_{i}^{α} fr row-semistanderd\}.

We use $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ to denote an arbitrarily chosen element of \boldsymbol{A} with basic $\boldsymbol{\lambda}$-tableau
(9.2) $\quad T^{\lambda}=$

and we write $\boldsymbol{\ell}=\boldsymbol{\ell}(\lambda)$, if no confusion arises.
We are interested in describing the basis (6.3), of $\mathrm{V}_{\lambda}=\mathbf{S}\left(\mathrm{B}^{+}\right)_{\lambda,}$, in terms of λ tableaux. For that we need a small lemma
(9.3) Lemma: Suppose $\mathrm{i} \in \mathrm{I}, \mathrm{i} \leq \boldsymbol{\ell}$ and $\mathrm{T}_{\mathrm{i}}^{\boldsymbol{\lambda}}$ is not row-semistandard. Then there is $i^{\prime} \in I$ such that $i^{\prime} \leq L T_{\gamma}^{\lambda}$ is row-semistandard and ($\left.i, ~, ~\right) \sim\left(i i^{\prime}, t\right)$.

Proot: Suppose \mathbf{i} is in the conditions of the lemma. Then there is $\boldsymbol{\pi} \in \mathrm{P}_{\boldsymbol{l}}$ such that
$\mathrm{T}_{\text {in }}^{\mathrm{L}}$ is row-semistandard (since P_{l} equals the row-stabilizer of T^{2}). As $i \pi \leq \ell \pi=\ell$ and $(i x, \ell)=(i \pi, \ell \pi)-(i, \ell)$ we make $i^{\prime}=i \pi \quad a$
(9.4) Proposition: V_{λ} and rad V_{λ} have k-bases

$$
x_{1}=\left\{\xi_{i, Q} \mid i \in I(\lambda)\right\} \text { and } x_{2}=\left\{\xi_{i, 2} \mid i \in I(\lambda) \text { and } i \notin \Delta,\right.
$$

respectively.

Proof: As P_{z} coincides with the row stabilizer of T^{2}, the elements of $I(a)$ are all distinct and so linearly independent. Thus, the result follows from (6.3) and (6.5), once we have proved that if (i, j) $\in \boldsymbol{\Omega}^{\prime}$ and $j \in \boldsymbol{\lambda}$, then there is $i^{\prime} \in I$ such that $i^{\prime} \leq \boldsymbol{L}, T_{i}^{\lambda}$ is row-semissandard and $\left(i^{\prime}, \boldsymbol{t}\right) \sim(\mathrm{a})$. But this is clear from (1.3) and (9.3). a

3-3

For each $v \in \underline{n-1}$, and each non-negative integer m, define $A^{\text {min }}: \boldsymbol{Z}^{n} \rightarrow \mathbf{2 n}^{\mathbf{n}}$ by

$$
\left.A_{v}^{m}\left(z_{1}, \ldots, z_{n}\right)=\left(z_{1}, \ldots, z_{1}+m_{1} z_{w+1}-m_{m, \ldots} z_{n}\right)\right)^{5} \text { all }\left(z_{1} \ldots, z_{n}\right) \in 2^{n}
$$

If $m \leq \lambda_{\psi+1}$ then $A_{v}^{m} \lambda \in \Lambda(n, r)$, and we choose the basic $A_{v}^{m} \lambda_{\text {-tableau to }}$ be

Thus

5 This map, $\mathbf{A}_{\mathrm{y}}^{\mathrm{m}}$, is a ralsing operator, as defined in [M; p. 8].

To simplify notation we write $\lambda(\nu, m)=A_{V}^{m} \lambda$, and $\ell(V, m)=\boldsymbol{L}\left(A_{V}^{m} \lambda\right)$. Also if
 $V_{\lambda(v, m)}=0$.
(9.6) Romarks: Let $v \in n=1$ and $0 \leq m \leq \lambda_{v+1}$. Then
(i) $\quad\langle(v, m)$ is the element $\ell(v, v+1, m, \lambda)$, defined in (4.5), and $\ell(v, 0)=\ell$;
(ii) $L(v, m)$ has weight $\lambda(v, m)$;
(iii) $T_{k(v, m)}^{\lambda}$ is row-semistandard and if $m \geq 1$ then $\psi(v, m)<\mathcal{L}$ Hence $\xi_{\mathcal{L}, \mathrm{m}) \geq} \in \operatorname{rad} V_{\lambda}$, for all $m \geq 1$.
 generators of rad $\mathbf{V}_{\boldsymbol{\lambda}}$.

Proof: Let M be the $S\left(B^{+}\right)$-module generated by X. It is our aim to prove that $\mathbf{M}=\operatorname{rad} \mathbf{V}_{\boldsymbol{\lambda}}$.

By (9.6)(iii), it is clear that $M \subseteq$ rad V_{λ}. To prove the equality we will show that all the elements of the basis $\mathrm{X}_{\mathbf{2}}$ of rad $\mathrm{V}_{\mathbf{2}}$ (defined in (9.4)) are in M .

Suppose i \subseteq I satisfies (9.8) below
(9.8) $i<\ell$ and T_{i}^{λ} in row-semistandard.

Then there is $\rho \in \underline{q}$ such that $i_{\rho}<L_{\rho}$. Suppose this situation occurs for the first time in row $V+1$ of T^{λ}, where $V \in n-1$ (notice that this can never oceur in row 1 of T^{λ}. since $i_{\mu_{1 \mu}}-L_{a_{1 \mu}}-1$, for all $1 \leq \mu \leq \lambda_{1}$). Then

where $1 \leq \tau<\mu \leq v+1$ and $1 \leq m \leq \lambda_{v+1}$. As $\tau \leq V$ and $1 \leq h$ we have $1 \leq \mathscr{\ell}(V, m)$. Thus $\xi_{\mathrm{i}_{1} \ell(v, m)} \in S\left(B^{+}\right)$. But $\xi_{\ell(v, m), \ell} \in X$ and so $\xi_{1, \ell(V, m)} \xi_{\varepsilon(v, m),!} \in M$. We now analyse this produce.

$$
\xi_{1, k y m)} \xi_{t(V, m), t}=\sum_{\delta i D} \text { as } \xi_{4} \delta_{i, t}
$$

where δ runs over a transversal D of the set of all double cosets $P_{i, \ell(v, m)} \delta P_{(v, m), t}$ in $P_{4(1, m)}$, and $a_{g}=\left[P_{18, \ell}: P_{15, L, k(v, m)}\right]$ (and $\left.1 \in D\right)$.

Suppose first that $\delta \in D$ and $\xi_{i s i}=\xi_{i j}$. Then there is $\pi \in P_{t}$ such that $i \delta=i \pi$, and so $\delta=\sigma \pi$, for some $\sigma \in P_{i}$. As $\delta \in P_{\ell(v m)}$, we have $\ell(v, m) \sigma \pi=\ell(v, m)$. Hence $\ell(v, m) \sigma=4(v, m) \pi^{-1}$. But $\pi^{-1} \in P_{f}$. Thus

i.e. $7_{t(1, m) x^{\lambda}}^{-1}$ is obtained from $T_{t(v, m)}^{\lambda}$ by permuting the elements of row $v+1$ amongst themselves. On the other hand as $\sigma \& P_{i}$ and $t<\mu$, there are no $v+1$'s in the first m-entries of row $v+1$ of $T_{t(v, m) d}^{\lambda}$ Hence, $\ell(v, m) \pi-i=\ell(v, m) d$ implies $\ell(v, m) \pi^{-1}=\ell(v, m)=\ell(\nu, m) \sigma, \quad$ Le., $\quad \sigma \in P_{1, N}(\nu, m), \quad \pi \in P_{(v, m), \ell}$ and
 $a_{1}=\left[P_{i, \ell}: P_{i, \&}\left(v_{m}\right)\right]$ But since $\tau<\mu$, we have $P_{i, \ell}=P_{i, h} t\left(v_{m}\right)$. Thus $a_{1}=1$. There are two possibilities now:

(ii) Suppose now $\tau<V$.

For each $\mathrm{j} \in I(\mathrm{n}, \mathrm{r})$ define $\beta(\mathrm{j})=\left(\beta_{1}(\mathrm{j}), \ldots, \beta_{\mathrm{n}}(\mathrm{j})\right)$, where $\beta_{\mu}(\mathrm{j})$ is the sum of the entries in row μ of T_{j}^{λ}, and order these vectors lexicographically.

Let $\delta \in D \backslash\{1\}$. Then $T_{i j}^{\lambda}$ is obtained from T_{i}^{λ} by exchanging some of the τ^{\prime} s in row $v+1$ with V 's in row V, and keeping fixed all other entries. As $\tau<V$, we will then have $\beta(\mathrm{i} \delta)<\beta(\mathrm{i})$. If $\mathrm{T}_{\mathrm{i}}^{\boldsymbol{2}}$ is not row-semistandard there is $\boldsymbol{\pi} \in \mathrm{P}_{\mathbf{l}}$ such that
 have $\beta(\mathrm{i} \delta \pi)=\beta(\mathrm{i} \delta)<\beta(\mathrm{i})$, and $\mathrm{i} \delta \pi \leq \ell(\nu, m) \delta \pi=\ell(\nu, \mathrm{m}) \pi<\ell \pi=\mathcal{L}$

So we have proved that,
(9.9) If i $\in I$ satisfies (9.8). there exist a subset I of $I(n, r), \eta € M$ and integers af $(\mathrm{d} \in \mathrm{I})$ such that
(i) $\xi_{\mathrm{i}, t}=\eta+\sum_{j \in \mathrm{r}} \mathrm{a}_{\mathrm{j}} \xi_{\mathrm{j}, t}$;
(ii) \mathbf{j} satisfies (9.8), all $\mathbf{j} \in I^{\prime}$:

3-7

(iii) $\quad \beta(\mathrm{j})<\beta(\mathrm{i})$, all $\mathrm{J} \in \mathrm{I}^{\prime}$.

If r^{\prime} is the empty set $\xi_{i,!}$ © M, as required. Otherwise we apply (9.9) to each $\mathrm{j} \epsilon$ I^{\prime}. As the sel $\{\beta(\mathrm{j}) \mid \mathrm{j} \in I(\mathrm{n}, \mathrm{r})\}$ is finite, the process must stop.

Hence $\mathbf{X}_{\mathbf{2}}=\left\{\mathbf{Z}_{\mathbf{i}, \mathrm{I}}\right.$ li satisfies (9.8) $\subseteq \mathbf{M}$, and the lemma followi.

As we are interested in a minimal set of genemtors of nd $\mathbf{V}_{\boldsymbol{\lambda}}$, we need to make sorne more calculations.

Consider v $\quad \mathrm{n}-1$, and integers q, m satisfying $\mathrm{i} \leq \mathrm{q} \leq m \leq \lambda_{\gamma+1}$. We have tableaux

$\left[P_{t(v, m) I}: P_{t(v, m) L} t(v, A)\right]=\frac{m!}{q!(m-q)!}=\binom{m}{q}$. Thus, by (2.7),
(9.10)

Lets consider first the case when char $\mathrm{k}=0$. Then, taking $\mathrm{q}=1$ in (9.10),

This together with (9.7) give
(9.11) If char $k=0$, rad V_{λ} is $S\left(B^{+}\right)$-generated by $\left\{\xi_{\ell}(\mathcal{V}, 1),\{\geq \in \underline{n-1\}}\right.$.

Now suppose char $k=p \neq 0$. We will use the following lemma
(9.12) Lemma: U; (22.4)]. Assume that a, b are positive integers and

$$
\begin{array}{ll}
a=a_{0}+a_{1} p+\ldots+a_{1} p^{2} & \left(0 \leq a_{\mu}<p . a_{\mu} \in \mathbb{Z}\right) \\
b=b_{0}+b_{1} p+\ldots+b_{1} p^{\prime} & \left(0 \leq b_{\mu}<p, b_{\mu} \in \mathbb{Z}\right) .
\end{array}
$$

Then $\binom{a}{b}=\binom{a_{0}}{b_{0}}\left(\begin{array}{l}a_{1} \\ b_{1} \\ 1\end{array}\right) \ldots\binom{a_{1}}{b_{i}}(\bmod p)$. In particular, p divides $\binom{a}{b}$ iff $a_{\mu}<b_{\mu}$, for some μ.

Let $p^{d} \leq m<p^{d+1}$, i.e., $m=m_{0}+m_{1} p+\ldots+m_{d} p^{d}$, where $0 \leq m_{\mu}<p$, $m_{\mu} \in Z(\mu \in d)$ and $m_{d} \neq 0$.

Then, from (9.12), we know that $p+\binom{m}{p^{d}}$ and by (9.10),

$$
\xi_{t(v, m), t}=\frac{1}{\binom{\mathrm{~m}}{\mathrm{p}}} \xi_{(v, m), t(v, \infty)} \xi_{t(v, p), t}
$$

Thui, similarly to the previous case, we get

$$
\begin{equation*}
\text { If char } k=p \text {, rad } V_{\lambda} \text { is } S\left(B^{+}\right) \text {-generated by } \tag{9.13}
\end{equation*}
$$

$$
\left(\xi_{d \sim p^{4}}\right), \ell^{\prime}\left|\vee \in \frac{n-1}{}, 1 \leq p^{d} \leq \lambda_{w+1}\right| .
$$

It is our aim to prove that these sets are in fact minimal sets of generators of rad $\mathbf{V}_{\boldsymbol{\lambda}}$. For this we need to define a grading of $\mathrm{S}\left(\mathrm{B}^{+}\right)$.

Let $\mathrm{i}, \mathrm{j} \in \mathrm{I}$ have weights α and β, respectively, and suppose that $\mathrm{i} \leq \mathrm{j}$. By (1.10), $\beta \leqslant \alpha$. Thus, there are non-negative integers $m_{1 n} \ldots, m_{n-1}$ such that

$$
\alpha=\beta+\sum_{\mu \in \frac{1}{2}-1} m_{\mu} \varepsilon_{\mu \mu+1}=A_{1}^{m_{1}} A_{2}^{m_{2}} \cdots A_{n-1}^{m_{n-1}} \beta,
$$

where

$$
e_{u \mu+1}=(0, \ldots, 0, \underset{(\mu)(\mu+1)}{1,-1,} 0, \ldots, 0) \in 2^{n}(\mu \in \underline{n-1}) .
$$

Hence, $\alpha-\beta \in \Psi=\left\{\sum_{\mu} \sum_{n=1} z_{\mu} e_{\mu \mu+1} \mid z_{\mu} \in z_{1} z_{1} \geq 0(\mu \in n-1)\right)$ (i.c. $\alpha-\beta$ is a sum of positive roots). In these conditions we say that $\xi_{i j}$ has degree $d\left(\xi_{i}, j\right)$, where

$$
d\left(\xi_{1}, j\right)=\alpha-\beta .
$$

For each $\sigma \llbracket \Psi$. let $S\left(B^{+}\right)_{0}$ be the k-subspace of $S\left(B^{+}\right)$spanned by all $\xi_{i j}(i \leq j)$ of degree σ. Then

$$
\begin{equation*}
\mathrm{S}\left(\mathrm{~B}^{+}\right)=\underset{\sigma}{\oplus} \Psi \Psi \mathrm{S}\left(\mathrm{~B}^{+}\right)_{\sigma} \tag{0.14}
\end{equation*}
$$

is a grading of $\mathrm{S}\left(\mathrm{B}^{+}\right)$.
In fact, suppose that $i, j, h, f \in I$ have weights $\alpha, \beta, \beta^{\prime}, \gamma$, respectively, and that $i \leq j$, and $h \leq f$. Then $\xi_{i j} \xi_{h, f}=0$, unless $\boldsymbol{\beta}=\boldsymbol{\beta}^{\prime}$. If this last condition holds, there is $\boldsymbol{\pi} \in \boldsymbol{P}$ such that $\mathrm{jx}=\mathrm{h}$, and so

$$
\xi_{i j} \xi_{b, l}=\xi_{1, n} \xi_{h, I}=\sum_{\delta} n_{\delta} \xi_{i n \delta, S} .
$$

where the sum is over a subset $[8]$ of P_{k}, and as are non-negative integers.
Since ixd has weight α, we have

$$
d\left(\xi_{i} \kappa, j\right)=\alpha-\gamma=(\alpha-\beta)+(\beta-\gamma)=d\left(\xi_{1, j}\right)+d\left(\xi_{h, f}\right),
$$

for all 8. Hence
(9.15)

$$
\left.\xi_{i, j} \xi_{h, f} \in S\left(B^{+}\right)_{d\left(\xi_{, j}\right)}\right)+d\left(\xi_{6, f}\right) .
$$

It follows now easily that $S\left(B^{+}\right)_{\sigma} S\left(B^{+}\right)_{\sigma} \subseteq S\left(B^{+}\right)_{\sigma+\sigma}$, for all $\sigma, \sigma^{\prime} \in \Psi$. Hence (9.14) is a greding of $\mathrm{S}\left(\mathrm{B}^{+}\right)$.
(9.16) Proposition: Let char $k=p(\mathbb{O})$. Then

$$
\mathrm{Y}=\left\{\xi_{t(v-p)} q_{n} \mid v \in \mathrm{n}-1, \quad 1 \leq \mathrm{p}^{d} \leq \lambda_{w+1}\right\}
$$

is a minimal set of $\mathbf{S}\left(\mathrm{B}^{+}\right)$-genentors of nd $\mathrm{V}_{\boldsymbol{\lambda}}$.

Proof: By (9.11) and (9.13), we know that Y generates rad $\mathbf{V}_{\mathbf{2}}$. Thus, to prove the proposition, we only need to show that if $Y^{\prime} \subseteq Y$ and $S\left(B^{+}\right) Y^{\prime}=$ rad V_{λ} then $\mathbf{Y}^{\prime}=\mathbf{Y}$. Suppose this does not happen, i.e., there is \mathbf{Y}^{\prime} satisfying

$$
Y^{\prime} \subseteq Y \text { and } S\left(B^{+}\right) Y^{\prime}=\operatorname{rad} V_{\lambda}
$$

Then, there are some $V \in \underline{n-1}$, and some non-negative integer \mathbf{d} such that

$$
1 \leq p^{d} \leq \lambda_{w+1} \text { and } \xi_{t\left(v p^{d}\right), t} \in Y \backslash Y^{\prime} .
$$

 such that

$$
\xi_{t\left(v, p^{d}\right) t}=\sum_{s=1}^{q} \eta_{s} \xi_{t\left(v_{0}+p_{i}^{d}\right), t}
$$

Write $\quad \eta_{z}=\sum_{(i, j)} \alpha^{(a)} \xi_{i, j}^{(a)} \quad\left(\mathbf{a}_{i j}^{(i)} \in \mathbf{x}\right)$. Then

$$
\xi_{t\left(v, p^{d}\right) t}=\sum_{s=1}^{q} \sum_{(1, j)=\Omega^{\prime}} i_{i j}^{(s)} \xi_{1, \mathrm{~J}} \xi_{t\left(v_{1} p^{d}\right), l}
$$

But, since distinct $\xi_{f, h}$'s are linearly independent, this implies that there are $s \in \underline{q}$ and $\left.1 \leq \mu v_{1}, p_{n}\right)$ satisfying

where:

(3) $==\sum_{8} \frac{D^{\prime}}{}$ as satisfies a $10(\bmod p)$.

$$
p^{d} e_{N, v+1}=\sum_{\mu \in \mathbb{q}-1} m_{\mu} e_{\mu \mu+1}+p^{d_{i}} e_{v_{v}, w_{k}+1}
$$

and, since the vectors $\varepsilon_{\mu \mu+1}(\mu \in \underline{n-1})$ are linearly independent over R , this implies

$$
\begin{equation*}
v_{1}=v_{1} m_{\nu}+p_{1}=p_{d} \text {. and } m_{\mu}=0 \text { if } \mu \not p v . \tag{0.18}
\end{equation*}
$$

(i) Suppose first $\mathbf{p}=\mathbf{0}$.

Then, from (9.18), we have $p^{d}=p_{1}=1$ and $m_{y}=0$. Thus,

$$
\xi_{l\left(v, p^{d}\right), l}=\xi_{\ell(v, 1), l}=\xi_{k\left(Y_{d}, p^{d}\right), \ell} \in Y^{\prime} .
$$

which contradicts our hypothesis.
(ii) Suppose now that $\mathrm{p} \nsim 0$.

If $\mathrm{p}^{\mathrm{d}}=\mathrm{p}^{\mathbf{d}}$, we get the same contradiction as in (i).
Thus, let $p^{d}>p^{d}$, and consider any $\delta \in D^{\prime}$. As $y_{z}=\nu$, we have

Hence

(ie. ist $=\mathcal{L}\left(v, p^{d}\right)$, for some $\left.\tau \in P_{t(v, p)}\right) \ell$, and

$$
A_{\delta}=\left[P_{35, l}: P_{i s, L}\left(\hat{V}, p_{i, l}\right]=\binom{p^{d}}{p_{l}^{d}}=0(\bmod p) .\right.
$$

Therefore, $=-\sum_{\delta} \frac{D^{\prime}}{} \mathrm{as}_{\mathrm{f}}=0(\bmod \mathrm{p})$, which gives a contradiction.
Thus Y is a minimal set of generators of rad V_{λ}. o
510. A 2-step minimal projective resolution of k_{λ} and its applicatlons to Weyl modules

Now, that we have defined a minimal set of generators of rad $\mathbf{V}_{\boldsymbol{\lambda}}$, it is easy to determine a 2 -step minimal projective resolution of $\mathbf{\Sigma}_{\boldsymbol{\lambda}}$, i.e., an exact sequence in mod $\mathbf{S}\left(\mathbf{B}^{+}\right)$

We know from 66 that $\mathbf{V}_{\alpha}=\mathbf{S}\left(B^{+}\right)_{\alpha}(\alpha \in A)$ is a projective $S\left(B^{+}\right)$－module． Also，by（6．8），there is an $S\left(B^{+}\right)$－epimorphimm $\quad x_{\lambda}^{\prime}: V_{\lambda} \rightarrow \mathbf{k}_{\lambda}$（defined by $K_{\lambda}^{\prime}\left(\xi_{\ell}\right)=1$ or 0 ，according an $i=\ell$ ，or $i<\ell(i \leq \ell)$ with ker $X_{\lambda}^{\prime}=$ rad V_{λ} ．So， we make
（10．1）

$$
P_{0}=V_{\lambda} \text { and } \varphi_{0}=\boldsymbol{x}_{\lambda}^{\prime} .
$$

$$
\Phi_{1}\left(\sum_{v \in \in-1} \eta_{v}\right)=\sum_{v \in \in=1} \pi_{v} \xi_{e(v, 1), b} \text { all } \eta_{v} \in V_{\lambda(v, 1)}
$$

Then，φ_{1} is an $S\left(B^{+}\right)$－map and，since $\xi_{e(v, 1), t} \in$ rad V_{λ} ．
$\operatorname{lm} \varphi_{1}=\varphi_{1}\left(\underset{v \in ⿴ 囗 十 ⺝ 刂}{\oplus} V_{\lambda(v, 1)}\right) \subseteq$ nad V_{λ} ．Thus，if we prove that $\xi_{t(v, 1), t} \in \operatorname{Im} \varphi_{1}$ （ $v \in \underline{n-1)}$ ．by（9．16），we will have Im $\varphi_{1}=$ rad V_{λ} ．But this is easy，since $s_{\lambda(v, 1)} \in V_{\lambda(v, 1)}$ ．and

$$
\varphi_{1}\left(\xi_{2(N, 1)}\right)=\xi_{2(v, 1)} \xi_{2(N, 1), t}=\xi_{2(N, 1)!}
$$

Hence

$$
\underset{v \in \mathrm{~B}=1}{\oplus} V_{\lambda(v-1)} \xrightarrow{\varphi_{1}} v_{\lambda} \xrightarrow{\varphi_{0}} k_{\lambda} \longrightarrow 0
$$

is an exact sequence in mod $\mathbf{S}\left(\mathrm{B}^{+}\right)$．
Similarly，if char $k=p$ ，we obruin the exact sequence

$$
\underset{v \in \underline{n-1}}{\oplus}{\stackrel{\oplus}{1 \leq p^{4} \leq \lambda_{2+1}}}^{\left.v_{2(v, p,}\right)} \xrightarrow{\varphi_{1}} v_{2} \xrightarrow{\varphi_{0}} x_{x} \rightarrow 0
$$

where φ_{1} is defined by

all $\left.\eta_{\left(v_{p} p_{0}\right)} \in v_{2\left(\alpha_{p}\right)}\right)$.

Now, we know that fer $\varphi_{0}=$ nd V_{λ}. Thus, to prove that the 2 -step projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$, defined above, is minimal it is sufficient to show that

Suppose this is not true, Le., there are $\eta_{(v, A)} \in V_{\lambda(v, p, i)}$ such that
for some $\mu \in \underline{n-1}$. and some p^{d} such that $1 \leq p^{d} \leq \lambda_{\mu+1}$.

Write $C=\left(\left(v_{0} p^{d}\right) \mid v \in n-1,1 \leq p^{d} \leq \lambda_{\mu+1},\left(v, p^{d}\right)+\left(\mu, p^{d}\right)\right\}$.

But as $T_{(\mu, p)}$ if rad $V_{\text {(ump }}$), we have
where $a_{i} \in k$ and $a_{1} \neq 0$. Thus
(10.3)

But, since $1<\boldsymbol{\ell}\left(\mu, p^{d}\right)$ implies $i \delta<\boldsymbol{\mu}\left(\mu, p^{d}\right)$ (all $\left.\delta \in P_{\Delta\left(\mu, p^{d}\right)}\right)$, the coefficient of Eeupt) \mathcal{I} on the left side of (10.3) is $1_{1}(\$ 0)$. On the other hand, we know from (9.16) that, this coefficient on the right side of (10.3) is zero.

This yielde a contradiction, and so

Hence we proved the
(10.4) Theorem: Suppose char $k=p(Q)$. Then the sequence below is a 2 step minimal projective retolution of $\mathbf{k} \boldsymbol{\lambda}$

$$
\underset{v \in \frac{n-1}{\oplus}}{i_{1 \leq p}} V_{\lambda\left(v_{\infty}\right)} \xrightarrow{\varphi_{1}} V_{\lambda} \xrightarrow{\varphi_{0+1}} k_{\lambda} \rightarrow 0
$$

where φ_{0} and Ψ_{1} are the maps defined in (10.1) and (10.2), respectively.

It is now easy to use this result to obtain 2-step projective resolutions of $\mathbf{K}_{\boldsymbol{\lambda}}$. in $\bmod \mathbf{S}\left(\mathbf{G}_{\mathbf{j}}^{\mathbf{j}}\right)$. Unfortunatley these resolutions are not necessarily minimal.

Let \mathbf{J} be any subset of $\mathrm{n}-1$ and suppose that $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}_{\mathbf{j}}^{+}$.
By applying the right exact functor

$$
F_{J}=S\left(G_{J}^{+}\right) \otimes_{S\left(B^{+}\right)^{+}}: \bmod S\left(B^{+}\right) \rightarrow \bmod S\left(G_{j}^{+}\right)
$$

to the sequence in (10.4), we obtain the exact sequence

But $F_{j}\left(k_{\lambda}\right)=S\left(G_{j}^{+}\right) \otimes_{S\left(B^{+}\right)} k_{\lambda}$ is $K_{\lambda J}$.
Also, for each $\alpha \in \Lambda$, the map

$$
\begin{equation*}
f_{\alpha, \mathrm{J}}: S\left(G_{\mathrm{J}}^{+}\right) \otimes_{\mathbf{S (}\left(B^{+}\right)} V_{\alpha} \rightarrow \mathrm{S}\left(G_{\mathrm{J}}^{+}\right) \xi_{\alpha} \tag{10.5}
\end{equation*}
$$

defined by

$$
f_{\alpha}(\xi \otimes \eta)=\xi \eta, \text { all } \xi \in S\left(G_{j}^{+}\right), \eta \in V_{\alpha},
$$

is an $S\left(G_{j}^{+}\right)$-isomorphism. Thus, from (10.4), we get
(10.6) Corollary: Suppose char $\mathbf{k}=\mathrm{p}(\mathbb{0} \mathbf{0}$) and let \mathbf{d} be any subuet of $\mathrm{n}-1$.

Then, if $\lambda \in \Lambda_{j}^{\dagger}\left(n_{r}\right)$ the sequence below is a $2-$ ntep projective resolution of $K_{\lambda} J$

Considering the particular case of $\mathrm{J}=\mathrm{n}-1$. we have
(10.7) Corollary: Suppose char $k=p(\mathbb{O})$. Then, if $\lambda \in \Lambda^{+}\left(n_{r} r\right)$ the sequence below is a 2-step projective resolution of the Weyl module $\mathbf{K}_{\boldsymbol{\lambda}}$
where $\psi_{0}=F_{H-1}\left(\varphi_{0}\right) f_{\lambda,-1}^{-1}$ and

4. $\boldsymbol{8}\left(\mathbf{B}^{+}\right)$REVIBITED

In this chapter we will look in mare detail at the Schur algebra $S\left(\mathrm{~B}^{+}\right)$, in particular atits Cartan invarients.

811. The speces Homs(B+) $\left(\mathbf{V}_{\mathbf{a}}, \mathbf{V}_{\mathbf{a}}\right)$

We recall that $\boldsymbol{\lambda}$ is a fixed element of $\Lambda(n, r), T^{\boldsymbol{\lambda}}$ is the basic tableau (9.2) and $t=2(\lambda)$.

It was proved in (9.4) that V_{λ} hat k-basis $\left\{\xi_{i, 2} \mid i \in I(\lambda)\right\}$, which implies the following.
(11.1) Lemma: $\operatorname{dim}_{k} v_{\lambda}=\prod_{\mu \in n_{n}}\binom{\lambda_{\mu}+\mu-1}{\mu-1}$

Proof: As $\operatorname{dim}_{\mathbf{k}} \mathbf{V}_{\mathbf{\lambda}}=\boldsymbol{\mu}(\boldsymbol{\lambda})=$ number of λ-tablenux of the form

we have that $\operatorname{dim}_{m_{k}} \mathrm{~V}_{\lambda}=\mathrm{P}_{\lambda_{1}} \cdots \mathrm{P}_{\lambda_{2}}$, where, for each $\mu \llbracket \underline{n}, \mathrm{p}_{\lambda_{\mu}}=$ number of distinct sequences of integers

$$
\begin{aligned}
& 1 \ldots 12 \ldots 2 \ldots \mu, \quad \mu 20(v \in \mu), \sum_{v \in \mu} \mu_{v}=\lambda_{\mu} \\
& \text { i.e., } P_{\lambda_{\mu}}=\binom{\lambda_{\mu}+\mu-1}{\mu-1} \quad \square
\end{aligned}
$$

Now let α be any element of $\Lambda(n, r)$ and consider the k - -pace

$$
\left(V_{\alpha}, V_{\lambda}\right)_{s\left(B^{+}\right)}=\operatorname{Hom}_{S\left(B^{+}\right)}\left(V_{a}, V_{\lambda}\right) .
$$

(11.2)

$$
\left(V_{\alpha}, V_{\lambda}\right)_{S\left(B^{+}\right)}=\xi_{\alpha} S\left(B^{+}\right)_{\lambda \lambda}=\left(V_{\lambda}\right)^{\alpha}
$$

(11.3) Lemma: Let $\alpha \in \Lambda(n, r)$. Then the following stuements are equivalent.
(i) $\quad\left(V_{0}, V_{i}\right)_{\text {SB }} \neq 0$
(ii) $\lambda \leq \alpha$
(iii) $\quad \alpha=A_{1}^{m_{1}} \ldots A_{n-1}^{m_{n-1}} \lambda$, for non-negative integers $m_{1} \ldots, m_{n-1} \cdot 6$

Proof: (ii) and (iii) above are obviously equivalent Now let $\alpha \in \Lambda(n, r)$ and consider $\xi_{a} S\left(B^{+}\right)_{2}$.

A: $S\left(B^{+}\right)_{\mathcal{L}}=\underset{i \in 1(\lambda)}{\oplus} k \xi_{i, b}$ there holds

$$
\xi_{\alpha} S\left(B^{+}\right) \xi_{\lambda}={\underset{1 \in \alpha}{\oplus} \int_{\alpha}(\alpha)} k \xi_{1, L}
$$

6 Recall Inex $\left.A_{1}^{m_{1}} \ldots A_{m-1}^{m_{1-1}} \lambda=a_{1}+m_{1}, \lambda_{2}+m_{2}-m_{1} \ldots, \lambda_{n}-m_{n-1}\right)$.
 then $i \leq \ell$ and, by (1.10), $\lambda \leq \alpha$.

Conversely if $\lambda \subseteq \propto$ let i be the element of $I(n, r)$ whose λ-tublean T_{i}^{λ} has the firix α_{1} entries equal to 1 , the next α_{2} enries equal to 2 , ... Then i © α and since $\alpha_{1} \geq \lambda_{1}, \alpha_{1}+\alpha_{2} \geq \lambda_{1}+\lambda_{2} \ldots, i \in 1(\lambda)$. Hence $\lambda \leq \alpha$ implies $\xi_{a} S(B+)_{\lambda}+0$.

Now the result followi from (11.2). a

- It follows from the fact that $\operatorname{dim}_{k_{k}} k_{\alpha}=1$ (all $\alpha \mathbb{A}\left(n_{r}\right)$) that k is a aplituing
 defined by

$$
c_{\lambda a}=\operatorname{dim}_{k}\left(v_{a}, V_{\lambda}\right)_{s\left(B^{\prime}\right)}=\operatorname{dim}_{k}\left(v_{\lambda}\right)^{a} .
$$

(11.4) Theorem: The Cartan invariants $c_{2 a}$ of $\mathrm{S}^{\left(\mathrm{B}^{+}\right) \text {sarisfy }}$ (i$)$ and (ii) below.
(i) $c_{\lambda_{a}} \neq 0$ iff $\lambda \leq \alpha$.
(ii) $c_{\lambda \lambda}=1$.

If we arrange the elements of $\Lambda(n, r)$ in some boen order \leq such that $\lambda \leq \alpha$ implies $\lambda \leq \alpha$, and use this total order to arrange the rows and columns of the Cartan matrix \mathbf{C} of $\mathrm{S}\left(\mathrm{B}^{\dagger}\right)$ then, by (11.4), C takes the unioriangular form

$$
C=\left|\begin{array}{ccccc}
1 & & & & \\
& \ddots & & & \\
& 1 & \cdots & c_{\lambda a} & \cdots \\
0 & & \ddots & \\
& & & & \\
& \\
& \\
& & & & \\
& \text { columun } \alpha)
\end{array}\right| \text { (10w } \lambda \text {) }
$$

Now let $\alpha \in \Lambda(n, s)$ and suppose that $\lambda \leq \alpha$, i.e., $\alpha=A_{1}^{m_{1}} \ldots A_{n-1}^{\text {mim }_{n-1}}$ for nonnegadive integers $m_{1, \ldots, m_{n-1}}$.

$$
-\xi_{i, \ell}(\xi)=\xi \xi_{i, \ell} \text {, for all } \xi \in V_{\alpha} .
$$

Therefore $\left.\operatorname{dim}_{\left(V_{a}\right.} . V_{\lambda}\right)_{S\left(B^{+}\right)}=\boldsymbol{\#}(\mathrm{i} \in I(\lambda) \mid i \epsilon \alpha\}=$ number of tableaux of the type
(11.6)

where
$b_{\mu v} \geq 0(\mu \in n-1, v \in \mu+1) ; \sum_{\mu \in-1} b_{\mu 1}=a_{1}-\lambda_{1} ; \sum_{\mu=y-1}^{n-1} b_{\mu v}=a_{n} v=2 \ldots n-1$.

This cableau devermines a matrix $b=\left(b_{\mu \nu}\right)_{\mu \nu v_{1-1}}$ whose entries $b_{\mu \nu}$ aatisfy
(11.7) (i) $b_{\mu \nu} \in z_{;} b_{\mu \nu} \geq 0$; and if $v>\mu+1$ then $b_{\mu \nu}=0$ (all $\left.\mu, v \in n-1\right)$.
(i) $\sum_{\mu \in \pi=1} b_{\mu 1}=\alpha_{1}-\lambda_{1} ; \quad \sum_{\mu \in=1} b_{\mu v}=\alpha_{v i} v=2, \ldots, n-1$.

 ubleau T_{i}^{λ} of the type (11.6), by the rule: T_{i}^{λ} is row semistandard, all the entries in row 1 of T_{i}^{λ} ere equal to 1 , and $b_{\mu v}$ is the number of v s in row $\mu+1$ of T_{i}^{A}, for all $\boldsymbol{\mu}, v \in \mathrm{n}-1$.

Thus we have a bijecive correipondence, $\left.T_{1}^{\lambda} \mapsto\left(b_{\mu}\right)_{\mu}\right)_{\mu, w_{n-1}}$, berween the sets $\left\{T_{1}^{\lambda} \mid i \in I(\lambda)\right.$ and $\left.i \in a\right\}$ and $(a, \lambda)=\left\{b=\left(b_{u v}\right)_{\mu, v e g-1} \mid b_{\mu v}\right.$ satisfies (11.7) for all $\boldsymbol{\mu} . v \in \underline{n-1}$.

This proves the following.
(11-8) Lemma: With the notation above, we have

$$
c_{\lambda \alpha}=\operatorname{dim}_{2}\left(v_{a}, V_{\lambda}\right)_{s(B y)}=\mu(\alpha, \lambda) .
$$

4-6

The remainder of this section will be dedicated to the study of the Cartan
 m_{1}, \ldots, m_{n-1} sediafying

$$
m_{v} \leq \lambda_{v+1} \text {, all } v \in n-1 .
$$

The case $\mathrm{m}_{\mathrm{v}}>\lambda_{\lambda_{+1}}$, for some $\boldsymbol{v} \in \underline{n-1}$. will be studied in $\mathbf{\$ 1 2}$
(11.9) Definition: Given integers $m_{i}, \ldots, m_{1}(s \geq i)$ let $\mathcal{D}\left(m_{1}, \ldots, m_{i}\right)$ be the set of all matrices, $d=\left(d_{\mu} w_{\mu}\right.$ vap , whose entries zatisfy

$$
\left\{\begin{array}{l}
d_{\mu v} \in \sum ; d_{\mu v} \geq 0 ; d_{\mu v}=0 \| v>\mu+1,(\mu, v \in g) \tag{11.10}\\
\sum_{\mu \in 1} d_{i v v}=m_{v} \quad ; v \in I \\
d_{v, v+1}-\sum_{i=1}^{v}\left(d_{v+1, s}+\ldots+d_{x x}\right) ; v \in E=1 .
\end{array}\right.
$$

Define $n\left(m_{1}, \ldots, m_{7}\right)=\pi\left(m_{1} \ldots, m_{2}\right)$.

Note that if $m_{\mu}<0$, for some $\mu \in$ s, then $2\left(m_{1}, \ldots, m_{2}\right)=\varnothing$ and $n\left(m_{1}, \ldots, m_{2}\right)=0$.
(11.11) Proposition: Let $\alpha=A_{1}^{m} \ldots A_{n-1}^{m_{1-1}} \lambda_{A} \in \Lambda(n, r)$, where $m_{1} \ldots, m_{n-1}$ are non-negative integers satisfying $m_{\nu} \leq \lambda_{\mu_{+1}}$, for ill $v \in \underline{n-1}$. Then

$$
c_{\lambda a}=n\left(m_{1}, \ldots, m_{-1}\right) .
$$

Proot: Let α altufy the conditions above. Since we know from (11.8) that $c_{2, a}$ * - $I(\alpha, \lambda)$, to prove the propodion we only need to show that $\quad \mathcal{D}\left(\alpha_{.}, \lambda\right)=$ $\boldsymbol{m}\left(m_{1}, \ldots m_{a-1}\right)$. For simplicity we shall write $s=n-1$.

As $m_{v} \leq \lambda_{y+1}$ (vas), we may define non-negative integrs $q_{0}, q_{1}, \ldots, q_{1}$ as follow:

$$
q_{v}=\lambda_{v+1}-m_{v} \text { for all } v \in s \in 1 \text {, and } q_{0}=q_{s}=0 \text {. }
$$

Then $\alpha_{v+1}=\lambda_{v+1}+m_{\nu+1}-m_{v}=m_{v+1}+q_{y}(V \in s-1)$ and the set of equations (11.7)(II) and (iii) can be rewritten

$$
\begin{cases}\sum_{\mu \in \underline{g}} b_{\mu v}=m_{\nu}+q_{v-1} ; & v \in \underline{s} \\ \sum_{\nu \in \underline{g}} b_{\mu \nu}=m_{\mu}+q_{\mu} ; \quad \mu \in \underline{s}\end{cases}
$$

So (11.7) is equivalent to the set of equations

$$
\left\{\begin{array}{l}
b_{\mu \nu} \in \mathbb{Z} ; b_{\mu \nu} \geq 0 ; b_{\mu \nu}=0 \text { if } \nu>\mu+1 \text { (all } \mu, v \in s \text {) } \tag{11.12}\\
\sum_{\mu \in s} b_{\mu \nu}=m_{\nu}+q_{\nu-1} ; v \in \underline{s} \\
b_{\nu, v+1}=q_{\nu}+\sum_{\tau=1}^{v}\left(b_{\nu+1, \tau}+\ldots+b_{s t}\right) ; v \in \underline{s-1}
\end{array}\right.
$$

Hence we have the following new expression for $2(\alpha, \lambda)$
(11.13) $\sin _{(\alpha, \lambda)}=\left\{b=\left(b_{\mu v}\right)_{\mu, v_{1}} \mid b_{\mu v}\right.$ satisfies (11.12), all $\left.\mu, v \in s\right\}$.

Now for each $b \in \mathcal{X}(\alpha, \lambda)$, define $\theta(b) \in \mathcal{D}\left(m_{1}, \ldots, m_{1}\right)$, by

$$
\theta(b)_{\mu v}= \begin{cases}b_{\mu \nu}, & \text { if } v \alpha \mu+1 \\ b_{\mu \mu+3}-q_{\mu}, & \text { if } v=\mu+1 ; \text { all } \mu, v \in s\end{cases}
$$

Since $\left.q_{v} \geq 0(v=0, \ldots,)^{2}\right)$ it is clear that the map $\theta: \mathcal{S}(\alpha, \lambda) \rightarrow \mathcal{L}\left(m_{1}, \ldots, m_{2}\right)$, which
 - $\mathfrak{Z}\left(m_{1}, \ldots, m_{1}\right) . \quad \square$

This proposition showa that the integers $n\left(m_{1} \ldots, m_{n-1}\right)$ have an fimportant role in our work.

In some cases they are very easy to calculate. For example let $\mathrm{n}=3$, and let m_{1}, m_{2} be any non-negative integers. Then

$$
\mathcal{D}\left(m_{1}, m_{2}\right)=\#\left\{d=\left(\begin{array}{ll}
d_{11} & d_{21} \\
d_{21} & d_{22}
\end{array}\right) \left\lvert\, \begin{array}{c}
d_{\mu \nu} \in 2, d_{\mu \nu} \geq 0(\mu, \nu=1,2) ; \\
d_{11}+d_{21}=m_{1} ; d_{21}+d_{22}=m_{2}
\end{array}\right.\right\} .
$$

Now it is easy to see that $d \in \mathcal{D}\left(m_{1}, m_{2}\right)$ iff $d_{11}=m_{1}-d_{21} ; d_{22}=m_{2}-d_{21}$; $d_{21} \in \mathbb{Z}$ and $0 \leq d_{21} \leq \min \left(m_{1}, m_{2}\right)$. Therefore, $n\left(m_{1}, m_{2}\right)=a \mathcal{D}\left(m_{1}, m_{2}\right)=$ $\min \left(m_{1}, m_{2}\right)+1$, and we have the corollary.
(11.14) Corollary: Let $\alpha, \lambda \in A\left(3_{x}\right)$ and suppose that $\alpha=A_{1}^{m}: A_{2}^{m} 2 \lambda$, for non-negative integers m_{1}, m_{2} satisfying $m_{1} \leq \lambda_{2}$. Then

$$
c_{\lambda a}=\min \left(m_{1}, m_{2}\right)+1 .
$$

In eeneral, $n\left(m_{1}, \ldots, m_{1}\right)$ can not be expressed in such a nice way. What we will do now is to decermine a genernting function for these integers, which enable us to establish some relations amongst the $c_{\lambda a}$.

Let : be any positive integer. Take m indeterminates $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ and define the formal series

$$
Q\left(x_{1}, \ldots, x_{8}\right)=\sum_{m_{1} \ldots, m_{s} \geq 0} n\left(m_{1}, \ldots, m_{8}\right) x_{1}^{m_{1}} \ldots x_{s}^{m_{s}}
$$

(11.15) Proposition: With the noation above, we have

$$
Q\left(x_{1}, \ldots, x_{s}\right)=\frac{1}{P\left(x_{1}, \ldots, x_{s}\right)}
$$

where $P\left(x_{1} \ldots, x_{y}\right)=\prod_{1 \leq y<\mu \leq 1+1}\left(1-x_{y} x_{y+1} \ldots x_{\mu-1}\right)$.

Proof: Let $P\left(x_{1}, \ldots, x_{1}\right)=\frac{1}{P\left(x_{1} \ldots, x_{1}\right)}$. As,

$$
\begin{aligned}
& \left(1-x_{v} x_{\nu+1} \ldots x_{\mu-1}\right)^{-1}=\sum_{h_{\mu-i v}>0}\left(x_{v} x_{\nu+1} \ldots x_{\mu-1}\right)^{h_{\mu-1, v}, \text { we have }} \\
& P^{\prime}\left(x_{1}, \ldots, x_{s}\right)=\prod_{1 \leq v<\mu \leq s+1}\left[\sum_{h_{\mu-i v} \geq 0}\left(x_{v} x_{\nu+1} \ldots x_{\mu-1}\right)^{h \mu-1, v}\right] \\
& =\sum_{\substack{h_{\mu-i v} \geq 0 \\
1 \leq v<\mu \leq x+1}}^{\sum_{x_{1}}^{h_{11}+\ldots+h_{21}} \ldots x_{v} \sum_{i=1}^{v}\left(h_{v i}+\ldots+h_{v v}\right)} \ldots x_{s}^{h_{\nu 1}+\ldots+h_{m v}} .
\end{aligned}
$$

Thus, for any non-negative integers $m_{1} \ldots m_{p}$, the coefficient of $x_{1}{ }^{m} \ldots x_{3}^{m}$ in $P^{\prime}\left(x_{1}, \ldots, x_{1}\right)$ equals the number of matricea, $h=\left(h_{\mu}\right)_{1, v a p}$ whone entries eatily
(11.16)

$$
\left\{\begin{array}{l}
h_{\mu v} \in Z_{;} h_{\mu v} \geq 0 \text { and } h_{\mu v}=0 \text { if } v>\mu(\mu, v \in s) ; \\
\sum_{\tau=1}^{v}\left(h_{v}+\ldots+h_{s v}\right)=m_{v}, v \in s .
\end{array}\right.
$$

Let $\mathscr{H}\left(m_{1}, \ldots, m_{4}\right)$ be the set of all these matrices, i.e., $\mathscr{H}\left(m_{1, \ldots,} m_{\nu}\right)=\left\{h=\left(h_{\mu v}\right)_{\mu, v a n} \mid h_{\mu v}\right.$ entisfies (11.16), all $\left.\mu, v \in s\right\}$.

We can define a map, $\bar{\theta}: \mathscr{F}\left(m_{1}, \ldots, m_{2}\right) \rightarrow \mathcal{X}\left(m_{1}, \ldots, m_{1}\right)$, by

$$
\hat{\theta}(h)_{\mu v}= \begin{cases}h_{\mu v} & \text { if } v \neq \mu+1 \\ \sum_{\tau=1}^{\mu}\left(h_{\mu+1, \tau}+\ldots+h_{s t}\right) ; & \text { if } v=\mu+1, \quad \text { all } \mu, v \in b h \in \mathcal{H}\left(m_{1}, \ldots, m_{p}\right)\end{cases}
$$

In fact, if $h \in \mathscr{H}\left(m_{1}, \ldots, m_{4}\right)$ we have that

$$
\bar{\theta}(h)_{\mu, n+1}=\sum_{t=1}^{n}\left(h_{\mu+1, \tau}+\ldots+h_{s v}\right)=\sum_{t=1}^{\mu}\left(\hat{\theta}(h)_{\mu+1, i}+\ldots+\tilde{\theta}(h)_{n \tau}\right)
$$

for all $\mu \in \underline{s-1}$.
Also, $\quad \sum_{\mu \in \mathrm{S}} \hat{\theta}(\mathrm{h})_{\mu v}=\hat{\theta}(\mathrm{h})_{v-1, v}+\sum_{\mu=v}^{s} \hat{\theta}(h)_{\mu v}=$

$$
\begin{aligned}
& =\sum_{\tau=1}^{v-1}\left(h_{v \tau}+\ldots+h_{s \tau}\right)+\sum_{\mu=v}^{s} h_{\mu v}=\sum_{\tau=1}^{v}\left(h_{v \tau}+\ldots+h_{s t}\right)=m_{v} . \text { Hence, } \\
& \text { (h) } \equiv \mathcal{D}\left(m_{1}, \ldots, m_{\tau}\right) .
\end{aligned}
$$

It is easy to see that $\overline{\mathbf{\theta}}$ is a bijection. Thus, $\mathcal{N}\left(m_{1}, \ldots, m_{2}\right)=\mathbb{D}\left(m_{1}, \ldots, m_{4}\right)=$ $n\left(m_{1}, \ldots, m_{1}\right)$, i.e., the coefficient of $x_{1}^{m_{1}} \ldots x_{3}$ in $P^{\prime}\left(x_{1}, \ldots, x_{2}\right)$ is $n\left(m_{1}, \ldots, m_{4}\right)$. Hence $P^{\prime}\left(x_{1}, \ldots, x_{2}\right)=Q\left(\mathbf{x}_{1}, \ldots, x_{2}\right) . \quad \square$
(11.17) Definition: For each $\omega \in P(n)$, define $\omega(\lambda) \in \mathbf{2}^{n}$ by

$$
\omega(\lambda)=\left(\lambda_{1}+\omega(1)-1, \lambda_{2}+\omega(2)-2, \ldots, \lambda_{n}+\omega(n)-n\right) .
$$

(11.18) Remarka: For any $\omega \in P(n)$, we have:
(i) Let $\delta=(0-1, n-2, \ldots, 1,0) \in \mathbf{2}^{n}$. Then $\omega(\lambda)=\lambda+\delta-\left(\delta_{\omega(1)} \ldots, \delta_{\omega(n)}\right)$ ($=\lambda+\delta-\omega^{-1 \delta}$ in the notation of [M] (cf. $[\mathrm{M} ; \mathrm{p} . \mathrm{Bl})$).
(i) For each $\boldsymbol{v} \in \underline{\mathrm{n}-1}$. let $\mathrm{av}(\mathbb{(})$ be the non-negadive integer given by

Conventiona: Here we generalize the convention made in 89 as follows: if $m_{1} \ldots, m_{n-1}$ are non-negative integers and $A_{1}^{m_{1}} \ldots A_{n-1}^{m} \mu_{n-1} \Lambda(n, r)$, then
$V_{A_{1}^{m} \ldots} A_{n-1}^{m} m_{m-1}=0$ and $\xi_{1}\left\{\left(A_{1}^{m} \ldots A_{n-1}^{m} m_{n-1}=\xi_{\ell}\left(A_{1}^{m} \ldots A_{n-1}^{\left.m_{n-1} \alpha\right), i}=0\right.\right.\right.$, for all $\alpha \in \Lambda(n, r), i \in \mathbb{I}(n, r)$.

We will also write $c_{A_{1}^{m} \ldots}^{m_{1}} A_{n-1}^{m_{l-1}} \alpha \beta=\operatorname{dim}_{k}\left(V_{\beta}, V_{A_{1}}^{m_{1}} \ldots A_{n-1}^{m_{l-1}} \alpha S_{S(B)}=0\right.$
(Ill $\beta \in \Lambda\left(n_{r} \boldsymbol{r}\right)$).

We can now prove the main resolt of this section
4-12
(11.19) Theoram: Let $\alpha=A_{1}^{m} \ldots A_{n-1}^{m_{n-1}} \lambda \in \Lambda(n, r)$, for non-negative integers m_{1}, \ldots, m_{a-1} satisfying $m_{V} \leq \lambda_{n+1}(V \in n-1)$. Then the Cartan invarianta of $S\left(B^{+}\right)$ saisfy the identicy

$$
\sum_{\omega \in(n)} \varepsilon(\omega) c_{\omega(\lambda) a}=\delta_{\lambda, a}
$$

(where $\varepsilon(\infty)$ is the sign of the permutation ω, and $\delta_{\lambda, n}=1$ or 0 , according as $\lambda=\boldsymbol{\alpha} \boldsymbol{\alpha} \boldsymbol{\lambda} \neq \boldsymbol{\alpha})$.

Proof: If $\mathrm{n}=1$ the theorem is obvious. So suppose that $\mathbf{n} \geq 2$.
Let $\omega \in P(n)$ and write $a_{\gamma}(\omega)=\sum_{\mu=1}^{\nu}(\omega(\mu)-\mu)$, for all $\nu \in \underline{n}$. Then $\omega(\lambda)=A_{1}^{A_{1}(\omega)} \ldots A_{n-1}^{A_{n-1}^{(\omega)} \lambda}$

Suppose in the first place that $\omega(\lambda) \& A(n, r)$. Then, there is some $v \in n-1$ such that $\lambda_{w+1}+a_{v+1}(\infty)-a_{v}(\omega)<0$. But then, since $m_{v} \leq \lambda_{v+1}$, we have

$$
m_{v}-a_{v}(\omega) \leq \lambda_{\nu+1}-m_{v}(\omega)<-m_{\nu+1}(\infty) \leq 0 .
$$

Hence $c_{m(a) a}=n\left(m_{1}-m_{1}(m) \ldots, m_{n-1}-a_{n-1}(\infty)\right)=0$ (recall that $n\left(b_{1}, \ldots, b_{7}\right)=0$ if $\mathbf{b}_{\nu}<\mathbf{0}$, for some $\boldsymbol{v} \in \mathrm{s}$.)

Now suppose that $\omega(\lambda) \in \boldsymbol{\Lambda}\left(n_{r}\right)$. There are two possibilities:
(i) $m_{v}-m_{\nu}(\infty)<0$, for some $v \in \underline{n-1}$
(i) $\mathrm{m}_{\mathrm{v}}-\mathrm{a}(\infty) \geq 0$, for all $\boldsymbol{v} \in \mathrm{n}-1$.

In the first case we have $n\left(m_{1}-I_{1}(\infty) \ldots, m_{n-1}-n_{n-1}(\infty)\right)=0$. Also $\omega(\lambda) \notin \alpha$.

So, by (11.4)(i), $c_{\omega(\lambda) \alpha}=0$. Thus $c_{\omega(\lambda) a}=n\left(m_{1}-\|_{1}(\omega)_{\left.r-m_{m-1}-m_{m-1}(\omega)\right) .}\right.$
Now consider the case (ii).

$\lambda_{\boldsymbol{\gamma + 1}}-\mathrm{m}_{\boldsymbol{Y}}+\mathrm{a}_{\boldsymbol{\gamma}+1}(\infty)$. Since $\mathrm{a}_{\boldsymbol{\gamma}+1}(\infty) \geq 0$, this implies

$$
\omega(\lambda)_{+1}-\left(m_{y}-m_{N}(\infty)\right) \geq \lambda_{N+1}-m_{v} \geq 0 \text {, all } v \in n-1 \text {. }
$$

Therefore, α and $\omega(\lambda)$ satisfy the hypothesis of (11.11), and so $c_{m(\lambda) a}=n\left(m_{1}-I_{1}(\infty)_{n} . . m_{m-1}-a_{n-1}(\infty)\right)$.

Thus, in any of these cases $c_{\omega(\alpha) a}=n\left(m_{1-1}(\infty), \ldots, m_{n-1}-a_{n-1}(\infty)\right.$, for all $\omega \in P(n)$, and we have

$$
\sum_{\omega \in P_{(n)}} e(\omega) c_{\omega(\lambda) \alpha}=\sum_{\omega \in f(n)} e(\omega) n\left(m_{1}-a_{1}(\omega), \ldots, m_{n-1}-a_{n-1}(\omega)\right) .
$$

Now the theorem followi from the lemma (11.20) below. \quad a
(11.20) Lomma: Let be a positive integer. For each $\omega \in P(8+1)$ let $a_{y}(\omega)=\sum_{\mu=1}^{v}(\omega(\mu)-\mu), v \in 3$. Then, for any non-negative integers m_{1}, \ldots, m_{p}, there holds

Proof: Let $\mathrm{X}_{\mathrm{f}}, \ldots, \mathrm{X}_{\mathrm{e}+1}$ be $\mathrm{s}+\mathrm{I}$ independent variables and consider the ring of
 in thin ring there holds

$$
\text { (11.21) } \sum_{\omega \in P(p+1)} e(\omega) X_{1}^{\omega(1)-1} X_{2}^{\omega(2)-2} \ldots X_{s+1}^{\omega(p+1)-(p+1)}{ }_{i \leq v<\mu s s+1}\left(1-X_{\vee} X_{\mu}^{-1}\right)
$$

Now consider the polynomial ring $Z\left[x_{1}, \ldots, x_{1}\right]$ in the independent varibbles x_{1}, \ldots, x_{p} and let $\left.f: \mathbb{Z}\left[x_{1}, \ldots, x_{1}\right] \rightarrow 2 X X_{1}^{ \pm 1} \ldots, X_{s+1}^{ \pm 1}\right]$ be the ring homomorphism definod by,

$$
f\left(x_{1}^{b_{1}} \ldots x_{8}^{b_{2}}\right)=X_{1}^{b_{1}} X_{2}^{b_{2}} b_{1} \ldots X_{5}^{b_{1}-b_{1}-1} X_{0+1}^{-b_{5}} \text {, sll monornials } x_{1}^{b_{1}} \ldots x_{5}^{b_{1}} \in \mathbb{Z} x_{1}, \ldots, x_{8} 1
$$

Note that $f\left(x_{y} x_{y+1} \ldots x_{\mu}\right)=X_{\nu} X_{\mu+1}^{-1}$, all $1 \leq v<\mu \leq 8$.
Suppose that

$$
P\left(x_{1} \ldots . x_{1}\right)=\prod_{1 \leq v<\mu \leq 9+1}\left(1-x_{v} x_{v+1} \ldots x_{\mu-1}\right)=\sum_{b_{1} b_{p} \geq 0} P\left(b_{1} \ldots \ldots b_{y}\right) x_{1}^{b_{1}} \ldots x_{p}^{b} .
$$

Then $f\left(\prod_{1 \leq v<\mu \leq s+1}\left(1-x_{v} x_{v+1} \ldots x_{\mu-1}\right)\right)=\sum_{b_{p}, b_{s} \geq 0} p\left(b_{1}, \ldots, b_{y}\right) f\left(x_{1}^{b_{1}} \ldots x_{1}^{b_{s}}\right)$,
1.e.,

$$
1 \leq v<\prod_{\mu \leq+1}\left(1-X_{v} X_{\mu}^{-1}\right)=\sum_{b_{r}, b_{s} \geq 0} p\left(b_{1} \ldots, b_{y}\right) X_{1}^{b_{1}} X_{2}^{b_{2}^{-} b_{i} \ldots X_{e+i}^{-b_{i}} .}
$$

Hence, by (11.21),
4-15

This implies that

$$
p\left(b_{1}, \ldots, b_{2}\right)=\left\{\begin{array}{cl}
e(\infty) ; & \text { if }\left(b_{2}, \ldots, b_{2}\right)=\left(a_{1}(\infty)_{\ldots}, a_{2}(\omega)\right) \\
0 ; & \text { if }\left(b_{1}, \ldots, b_{8}\right) \notin\left(a_{1}(\omega)_{\ldots}, a_{2}(\infty)\right)
\end{array}\right.
$$

Therefore

$P\left(x_{1}, \ldots, x_{1}\right)=\prod_{1 \leqslant v<\mu \leq \mu+1}\left(1-x_{v} x_{v+1} \ldots x_{\mu-1}\right)=\sum_{\left.\omega \in \mathbb{R}_{1+1}\right)} \varepsilon(\omega) x_{1}^{2}(\omega) \ldots x_{i}^{(\omega)}$.

Now let $Q\left(x_{1} \ldots+x_{4}\right)=\sum_{q_{r}-q_{1} \geq 0} n\left(q_{1}, \ldots, q_{\mu}\right) x_{1}^{q_{1}} \ldots x_{1}^{q_{s}} . B y(11.15)$.
$P\left(x_{q}, \ldots, x_{\varphi}\right) Q\left(x_{1}, \ldots, x_{1}\right)=1$. Hence

$$
\sum_{\omega \in(0+1)} \sum_{q_{1}-q_{2} \geq 0} e(\omega) n\left(q_{1}, \ldots, q_{3}\right) x_{1}^{q_{1}+a_{1}(\omega)} \ldots x_{3}^{q_{2}+a_{2}(\omega)}=1 .
$$

The coefficient of $x_{1}^{m} 1 \ldots x_{1}^{m}$, on the left side of this equality is
$\sum_{\omega \in(\rho+1)} e(\infty) n\left(m_{1}-n_{1}(\omega), \ldots, m_{n}-a_{n}(\infty)\right)$.
On the other hand, this coefficient on the right side of the equality is 1 if $m_{1}=\ldots=m_{1}=0$, and it is zero otherwise. Hence

$$
\sum_{\omega \in(n+1)} e(\omega) n\left(m_{1}-a_{1}(\omega)_{m, n} m_{s}-a_{s}(\omega)\right)= \begin{cases}1 ; & \text { if } m_{1}=\ldots=m_{n}=0 \\ 0 ; & \text { if } m_{v} \& 0, \text { some } v \in \underline{s} .\end{cases}
$$

> 4-16
12. Some more reaulte on $c_{\lambda a}$

In this section we proceed with the study of the Cartan invariants cha of $\mathrm{S}\left(\mathrm{B}^{+}\right)$. We use the same notation as in 811 .

In (11.11) we proved that $c_{\lambda_{a}}=n\left(m_{1}, \ldots, m_{n-1}\right)$ if $\alpha=A_{1}^{m} \ldots, A_{n-1}^{m}, \lambda_{1}$ for non-negative integern m_{1}, \ldots, m_{n-1} satisfying $m_{V} \leq \lambda_{n_{+1}}(V \in n-1)$. In the genernl case we have a weaker result.
(12.1) Proposition: Let $\alpha=A_{1}^{m} \ldots A_{1-1}^{m}, \hat{A} \in A(n, r)$, where m_{1}, \ldots, n_{n-1} are non-negative integers. Then

$$
c_{\lambda_{\alpha}} \leq n\left(m_{1} \ldots, m_{a-1}\right) .
$$

Proof: Write $:=\underline{n-1}$ and define integers $90 \ldots, q_{1}$ as follows

$$
q_{v}=\lambda_{v+1}-m_{y,} \text { for all } v \in s-1: q_{0}=q_{s}=0 \text {. }
$$

Note that, since we are not assuming that $m_{v} \leq \boldsymbol{\lambda}_{\mu+1}, q_{v}$ may be a negarive integer.
It is easy to see that, as in the proof of (11.11). $2(\alpha, \lambda)$ has the expression

$$
\begin{equation*}
s(\alpha, \lambda)=\left(b=\left(b_{\mu v}\right)_{\mu, v a} \mid b_{\mu v} \text { sadisfy (12.3), all } \mu, v \in s\right) \tag{12.2}
\end{equation*}
$$

where
(12.3) (i) $b_{\mu v} \in Z_{i} b_{\mu v} \geq 0$, and $b_{\mu v}=0$ if $v>\mu+1$ (all $\mu, v \in$ s).
(ii) $\sum_{\mu \in I} b_{\mu v}=m_{v}+q_{V-1}, v \in I$:
(iii) $b_{v, v+1}=q_{v}+\sum_{i=1}^{v}\left(b_{v+1, s}+\ldots+b_{u t}\right) ; v \in s-1$.

Thus, we may define an injective map $\quad \theta: \mathcal{Z}(\alpha, \lambda) \rightarrow \mathcal{D}\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{2}\right)$, by

$$
\theta(b)_{\mu v}=\left\{\begin{array}{lc}
b_{\mu v}, & \text { if } v \neq \mu+1 \\
b_{\mu \nu+1}-q_{\mu}, & \text { if } v-\mu+1 ;
\end{array} \quad \text { all } \mu, v \in \mathrm{~g}, b \in \mathbb{R}(a, \lambda) .\right.
$$

But, since q_{V} may be negaive, θ may not be surjective. In fact we have

$$
\operatorname{Im} \theta=\left\{d=\left(d_{\mu v}\right) \in \mathscr{A}\left(m_{1}, \ldots, m_{y}\right) \mid d_{\mu, \mu+1} \geq-q_{\mu} \text {, all } \mu \in s-1\right\}
$$

Therefore, $\# \mathcal{D}\left(\alpha_{1} \lambda\right) \leq \# \mathcal{D}\left(m_{1}, \ldots, m_{2}\right)=n\left(m_{1}, \ldots, m_{2}\right)$, and by (11.8),

$$
c_{\lambda \alpha}=\pi B\left(\left(c_{2}, \lambda\right) \leq n\left(m_{1}, \ldots, m_{2}\right) . \quad \square\right.
$$

(12.4) Remark: Note that if a and λ are as above, from the proof of (12.1), we have
$c_{\lambda_{a}}=n\left(m_{1}, \ldots, m_{n-1}\right)-\#\left(d \in \mathcal{A}\left(m_{1}, \ldots, m_{n-1}\right) \mid d_{\mu \mu+1}<m_{\mu}-\lambda_{\mu+1}\right.$, some $\left.\mu \in \underline{n-1}\right)$.

We shall now describe $c_{\lambda \alpha}$ in the case when $n=3$. Recall from 811 that $c_{\lambda \alpha}=0$, unless $\lambda \leq \alpha$. Also $n\left(m_{1}, m_{2}\right)=\min \left(m_{1}, m_{2}\right)+1$ if $m_{1}, m_{2} \geq 0$, and it is zero otherwise.
(12.5) Theorem: Let $\lambda, a \in A(3 x)$ and suppose that $\lambda \Delta \alpha$, i.e., $\alpha=\mathbf{A}_{1}^{m_{1}} \mathbf{A}_{2}^{m} \lambda^{2}$, for non-negarive integers m_{1}, m_{2}. Then

$$
c_{\lambda_{a}}= \begin{cases}\min \left(m_{1}, m_{2}\right)+1 & \text { if } m_{1} \leq \lambda_{2} \\ \min \left(\lambda_{2}, \lambda_{2}+m_{2}-m_{1}\right)+1, & \text { if } m_{1} \geq \lambda_{2}\end{cases}
$$

Proof: By (11.14), $c_{2 \alpha}=\min \left(m_{1}, m_{2}\right)+1$ if $m_{1} \leq \lambda_{2}$.
Now suppose that $m_{1}>\lambda_{2}$ and write $q=\lambda_{2}-m_{1}(<0)$.
From (12.2), we know that

$$
B(\alpha, \lambda)=\left\{b=\left(\begin{array}{ll}
b_{11} & b_{21}+q \\
b_{21} & b_{22}
\end{array}\right) \left\lvert\, \begin{array}{l}
b_{\mu v} \in 2 . b_{\mu v} \geq 0(\mu, v-1,2), b_{21}+q \geq 0 \\
b_{11}+b_{21}=m_{1} ; b_{21}+b_{22}=m_{2}
\end{array}\right.\right\}
$$

So, we may define $\overline{\boldsymbol{\sigma}}:\left(\boldsymbol{D}(\alpha, \lambda) \rightarrow \mathcal{D}\left(m_{\mathrm{l}}+q, m_{2}+q\right)\right.$, by

$$
\exists_{(b)_{\mu v}}= \begin{cases}b_{u v}, & \text { if }(\mu, v) \neq(2,1) \\ b_{21}+q, & \text { if }(\mu, v)=(2,1) ; \quad \mu, v=1,2 ; b \in 2(\alpha, \lambda) .\end{cases}
$$

Cearly $\bar{\theta}$ is injective. Also, since $q \leq 0$, we may define, for each $d \in \mathscr{P}\left(m_{1}+q, m_{2}+q\right), b(d) \notin 2(c, \lambda), b y$

$$
b(d)_{\mu v}=\left\{\begin{array}{ll}
d_{u v}, & \text { if }(\mu, v) \neq(2,1) \\
d_{21}, q_{1}, & \text { if }(\mu, v)=(2,1) ;
\end{array} \mu, v=1,2 .\right.
$$

Then $\bar{\theta}(b(d))=d$. Hence $\bar{\theta}$ in nurjective. Therefore,,$\vec{x}(\alpha, \lambda)=a\left(m_{1}+q, m_{2}+q\right)=$ $n\left(m_{1}+q_{1}, m_{2}+q\right)=\min \left(m_{1}+q, m_{2}+q\right)+1$.

But, $m_{1}+q=\lambda_{2}$ and $m_{2}+q=\lambda_{2}+m_{2}-m_{1}$. Hence, $c_{\lambda_{1}}=\min \left(\lambda_{2}, \lambda_{2}+m_{2}-m_{1}\right)+1 . \square$ We now genertlize theorem (11.19) in the case $n=3$.
(12.6) Theorem: Let $\alpha, \lambda \Subset A(3 r)$. Then we have

$$
\sum_{\omega} \sum_{(s)}\left(\omega(\omega) c_{\omega(\lambda) a}=\delta_{\lambda, a}\right.
$$

Proof: If $\lambda \notin a$, then $\omega(\lambda) \otimes \alpha$ (since $\lambda \leq \omega(\lambda)$) and so $c_{\omega(\lambda) a}=0$, for all
$\omega \in P(3)$. Thus $\sum_{\omega \in(3)} e(\omega) c_{\omega(\lambda) a}=0$.
Now suppose that $\lambda \leq \alpha$. i.e., $\alpha=A_{1}^{m} \lambda_{2}^{m} 2 \lambda$, for non-negative integers m_{1}, m_{2}.

If $m_{1} \leq \lambda_{2}$ the theorem follows from (11.19).
Now consider the case $m_{1}>\lambda_{2}$, and write $q=\lambda_{2}-m_{1}(<0)$.
Let $\omega \in P(3)$. Once more we define $a_{V}(\omega)=\sum_{\mu=1}^{y}(\omega(\mu)-\mu)(\nu=1,2,3)$, so that $\omega(\lambda)=A_{1}^{a(\omega)} A_{2}^{\lambda_{2}^{(\omega)}} \lambda$. Calcularing $u_{4}(\omega)$, for all $\omega \in P(3) \quad(v=1,2)$, we obtain

Suppose that $\omega(\lambda) \subseteq \alpha$, for all $\omega \in P(3)$. Then $\omega(\lambda)_{2}=\lambda_{2}+a_{2}(\omega)-a_{1}(\omega)$. Also $m_{1}-a_{1}(\infty)>\lambda_{2}-a_{1}(\infty)$. Thus

$$
m_{1}-a_{1}(\infty) \geq \omega(\lambda)_{2} \text { if } m_{2}(\infty) \leq 1
$$

and, by (12.5), $\quad c_{\omega(\lambda) a}=\min \left(\omega(\lambda)_{2}, \omega(\lambda)_{2}+m_{2}-a_{2}(\omega)-m_{1}+\Lambda_{1}(\omega)\right)+1=$ $\min \left(m_{1}-a_{1}(\infty), m_{2}-m_{2}(\infty)\right)+m_{2}(\infty)+q+1$. Hence (since $m_{1}-m_{1}(\infty) \geq 0$ and $\left.m_{2}-a_{2}(\omega) \geq 0\right)$

$$
\begin{equation*}
c_{\omega(a) a}=n\left(m_{1}-a_{1}(\infty), m_{2}-a_{2}(\infty)+a_{2}(\infty)+q \text { if } s_{2}(\infty) \leq 1 .\right. \tag{12.8}
\end{equation*}
$$

Now suppose that $a_{2}(\infty)=2$, i.e., $\omega(\lambda)=A_{1} A_{2}^{2} \lambda$ or $\omega(\lambda)=A_{1}^{2} A_{2}^{2} \lambda$. We have two cases to consider
(i) $m_{1} \geq \lambda_{2}+2$. Then $m_{1}-l_{1}(\omega) \geq \omega(\lambda)_{2}$, and $\left.c_{\omega \Omega}\right)$ is given by (12.8), for all $\omega \in P(3)$. Therefore, by (11.20) and (12.7),
 (since $\left.\sum_{\omega \in(3)} e(\infty) A_{2}(\infty)=-1+1+2-2=0\right)$.
(ii) $m_{1}<\lambda_{2}+2$. Then $m_{1}-1<\left(A_{1} A_{2}^{2} \lambda\right)_{2}$ and $m_{1}-2<\left(A_{1}^{2} A_{2}^{2} \lambda_{2}\right.$. Hence
$c_{A_{1}} A_{2}^{2} \lambda_{n}=n\left(m_{1}-1, m_{2}-2\right)$, and $c_{A_{1}^{2}}^{2} A_{2}^{2} \mu=n\left(m_{1}-2, m_{2}-2\right)$.
Thus.
$\sum_{\omega \in f(3)} \varepsilon(\omega) c_{\omega(\alpha) \alpha=} \sum_{\omega \in f_{(3)}} \varepsilon(\omega) n\left(m_{1}-I_{1}(\omega), m_{2}-m_{2}(\omega)\right)+$
$\omega \in P_{5} \sum_{(\omega) \neq 2} \varepsilon(\omega)\left(a_{2}(\omega)+q\right)=0-(1+q)+(1+q)=0$.

This ends the proof of the theorem in the case when $\omega(\lambda) \leq \alpha$, for all $\omega \in P(3)$.
The proof in the other cases is similer. 0
(12.9) Remark: In (13.4) we construct a minimal projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$

when char $k=0$ and $\lambda \in \Lambda(3, r)$.
So for any $\alpha \in \Lambda(3, r)$, we obtuin a short exact sequence of k-spaces
$0 \rightarrow\left(V_{A_{1}^{2} A_{2}^{2}}\right)^{\alpha} \rightarrow\left(V_{A_{1}^{2} A_{2}}\right)^{\alpha} \oplus\left(V_{A_{1} A_{2}^{2}}\right)^{\alpha} \rightarrow\left(V_{A_{1}}\right)^{\alpha} \oplus\left(V_{A_{2}}\right)^{\alpha} \rightarrow\left(V_{\lambda}\right)^{\alpha} \rightarrow\left(\Sigma_{\lambda}\right)^{\alpha} \rightarrow 0$
(since $\mathrm{Va}^{\boldsymbol{a}}=\boldsymbol{\xi}_{\alpha} \mathbf{V}$ and $\boldsymbol{\xi}_{\alpha}$ is an idempotent).
This implies that

$$
\begin{aligned}
& \operatorname{dim}_{k}\left(k_{\lambda}\right)^{\alpha}=\operatorname{dim}_{k}\left(V_{\lambda}\right)^{\alpha}-\operatorname{dim}_{k}\left(V_{A_{1}}\right)^{\alpha}-\operatorname{dim}_{k}\left(V_{A_{2}}\right)^{\alpha}+\operatorname{dim}_{k_{1}}\left(V_{A_{1}}^{2} A_{2}\right)^{\alpha} \\
& +\operatorname{dim}_{k}\left(V_{A_{1} A_{2}^{2}}\right)^{\alpha}-\operatorname{dim}_{k}\left(V_{A_{1}^{2} A_{2}}\right)^{\alpha} .
\end{aligned}
$$

Or equivalenty

$$
\begin{equation*}
\delta_{\lambda, a}=\operatorname{dim}_{k}\left(k_{\lambda}\right)^{\alpha}=\sum_{\omega \in(\beta)} \varepsilon(\omega) c_{\omega(\lambda) \alpha} \text { if char } k=0 \tag{12.10}
\end{equation*}
$$

But, by (12.5). $c_{\omega(\lambda) a}$ depends only on $\omega(\lambda)$ and α, and not on the field k. In fact, the equality $\sum_{\omega \in(3)} e(\omega) c_{\omega(\alpha) \alpha}=\delta_{\lambda, a}$ may be rewritten in terms of the integers $n\left(m_{1}, m_{2}\right)$ which do not depend on k So, from (12.10), we obtain an alternative proof of the theorem (12.6) (for any field \mathbf{k}).
(12.11) Conjecture: For any $\alpha, \lambda \in \Lambda(n$,$) there holds$

$$
\sum_{\omega \in f(n)} e(\omega) c_{\omega(\lambda) a}=\delta_{\lambda, a^{*}}
$$

(12.12) Romarka: (i) Note that the conjecture is obvious if $\mathrm{n} \leq 2$. Also, by (11.4), it holds for any $\alpha \in \Lambda(n, r)$ auch thas $\lambda \otimes \alpha$.
(ii) To support (12.11) we have, in addition to theorems (11.19) and (12.6), many examples in the case when $n=4$.
(iii) Consider the ring $\left\langle x_{1}, \ldots, x_{d} \downarrow\right.$ of the polynomials in the independent variables $x_{1} \ldots . . . x_{\mathrm{g}}$ with coefficients in $\mathbf{2}$. We remarly here the analogy between (12.11) and the Jacobi-Trudi identity

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\infty} \sum_{f(n)} \varepsilon(\omega) h_{\omega(\lambda)}\left(x_{1}, \ldots, x_{n}\right), \quad \text { all } \lambda \in \Lambda^{+}(n, x)
$$

which expresses the Schur function $s_{\lambda}\left(x_{1} \ldots, x_{\mathrm{A}}\right)$, corresponding to λ_{n} in terms of the complete symmetric functions $h_{\left.\infty()_{\mu}\right)}\left(x_{1}, \ldots x_{\mathrm{a}}\right)$ (cf. [M; pg. 14, (3.1), (3.4')].

Let $m=\left(m_{1}, \ldots, m_{4}\right), q=\left(q_{1}, \ldots, q_{s}\right)$ where $m_{1} \ldots, m_{s}, q_{1}, \ldots, q_{s}$ are non-negative integers and $: \geq 1$. Define

$$
\hat{2}(m, q)=\left\{b=\left(b_{\mu v}\right)_{\mu, w a} \mid b_{\mu v} \text { sutisfy }(12,13), \text { all } \mu, v \in s\right\}
$$

and

$$
\hat{n}(\mathrm{~m}, \mathrm{q})=\tilde{2}(\mathrm{~m}, \mathrm{q}) .
$$

where
(12.13) (i) $b_{\mu \nu} \in Z_{i} b_{\mu \nu} \geq 0$ and $b_{\mu \nu}=0$ if $\nu>\mu+1$ ($\mu, v \in g$).

Then, by (11.8).

$$
c_{\lambda_{a}}=\frac{3}{(}\left(\left(\alpha_{1}-\lambda_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right),\left(\lambda_{2}, \lambda_{3} \ldots, \lambda_{n-1}, \lambda_{m}-\alpha_{n}\right)\right)
$$

for all $\alpha \in \boldsymbol{\Lambda}\left(n_{r}\right)$ such that $\boldsymbol{\lambda} \leq \boldsymbol{\alpha}$.

To end this section, we determine a generating funcrion for the integers $\overline{\mathrm{n}}(\mathrm{m}, \mathrm{q})$.
Take 2 s indeterminantes $\mathrm{x}_{1}, \ldots, x_{3}, y_{1}, \ldots, y_{g}(s \geq 1)$, and define the series

$$
\begin{aligned}
& \ddot{Q}(x, y)=\tilde{Q}\left(x_{1}, \ldots, x_{6}, y_{1}, \ldots, y_{2}\right)= \\
& =\sum_{m_{1}-m_{s} \geq 0} \hat{n(m, q) x_{1}^{m_{1}} \ldots x_{s}^{m}, y_{1}^{q_{1}} \ldots y_{s}^{q_{s}} .} \\
& q_{1}-\mathrm{Al}_{2} \geq 0
\end{aligned}
$$

(12.14) Lemma: With the notation above, we have

$$
\hat{Q}(x, y)=\frac{1}{P(x, y)}
$$

where $\hat{P}(x, y)=\prod_{1 \leqslant \gamma \leqslant \mu \leq p+1}\left(1-x_{y} y_{\mu-1}\right) \quad$ (here $\left.y_{0}=x_{3+1}=0\right)$.

Proof: As $\left(1-x_{v} y_{\mu-1}\right)^{-1}=\sum_{j_{\mu-1 \nu} \geq 0}\left(x_{y} y_{\mu-1}\right)^{b_{\mu}-1 . y, ~ w e ~ h a v e ~}$

4-24

Therefore, the coefficient of $x_{1}^{m_{2}} \ldots x_{5}^{m_{1}} y_{1}^{q_{1}} \ldots y_{8}^{q_{0}}$ in $\frac{1}{P(x, y)}$ is

$$
\boldsymbol{z}\left(\left(m_{1}, \ldots, m_{4}\right),\left(q_{1}, \ldots, q_{d}\right)\right), \text { i.e. } \frac{1}{\hat{P}(x, y)}=\dot{Q}(x, y)
$$

5-1

5. ON MINIMAL PROJECTIVE RESOLUTIONB OF k_{λ}

In Chapter 3 we produced 2-step minimal projective resolutions of \mathbf{k}_{λ}, for any λ. $\Lambda(n, r)$. This led us to consider the problem of constructing minimal projective resolutions of $\mathbf{k}_{\boldsymbol{\lambda}}$.

It in known that $\mathbf{S}\left(\mathrm{B}^{+}\right.$) has finite global dimension (Cf. (G2). Therefore minimal projective resolutions of $\mathbf{k}_{\boldsymbol{\lambda}}$ are finite and, by (10.4), they depend on the characteristic p of \mathbf{k}

We now look at this problem for some particular cases of n and p.
513. The case $n \leq 3$ and char $k=0$

In 13 we assume that \mathbf{k} has characteristic zero.
Suppose first that $n=1$. Then $A(1, r)$ has only one element, (r), and $k_{(r)}=V_{(r)}$ is a projective module.

Now suppose that $n=2$ and let $\lambda \in A(2 r)$. By (10.4), there is the 2 -step minimal projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}{ }^{\mathbf{}}$

$$
v_{A_{1} \lambda} \xrightarrow{\varphi_{1}} v_{\lambda} \xrightarrow{\varphi_{0}} \mathbf{k}_{\lambda} \rightarrow 0
$$

where $\operatorname{Im} \varphi_{1}=\operatorname{rad} V_{\lambda}$.
Bur, from (9.4) and (11.1), we know that

$$
\operatorname{dim} \operatorname{rad} V_{\lambda}=\operatorname{dim} V_{\lambda}-1=\lambda_{2}=\operatorname{dim} V_{A_{1} \lambda}
$$

Hence, $\operatorname{dim} \operatorname{ker} \varphi_{1}=\operatorname{dim} V_{A_{1} \lambda}-\operatorname{dim}$ rad $V_{\lambda}=0$, and we have the following

[^2]
5-2

(13.1) Thaoram: Let char $t=0$ and $\lambda \wedge \Lambda(2, r)$. Then

$$
0 \rightarrow V_{A_{1} \lambda} \xrightarrow{\varphi_{1}} v_{\lambda} \xrightarrow{\varphi_{0}} k_{\lambda} \rightarrow 0,
$$

where φ_{0} and φ_{1} are as in (10.4), is a minimal projective resolution of $\mathbf{k}_{\mathbf{2}}$.

It ia now convenient to introduce a matrix notation for $\mathbf{S}\left(\mathrm{B}^{\boldsymbol{+}}\right)$-maps.
 where $\eta_{a b} \in V_{\beta(m)}$, all $a \in s, b \in q$.
 $\varphi\left(\sum_{a=1} \eta_{a}\right)=\sum_{a, b} \sum_{\dot{L}}^{\eta_{a} \eta_{a b}, \text { all } \eta_{a} \in V_{a}(\omega), a \in s .}$

Suppose now that $n=3$ and that $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) \in \Lambda(3, r)$. Let

$$
T^{\lambda}=\begin{array}{|lll|}
\hline a_{11} & \ldots & a_{1 \lambda_{1}} \\
\hline a_{21} & \cdots & a_{2 \lambda_{2}} \\
\hline a_{31} & \cdots & a_{3 \lambda_{3}} \\
\hline
\end{array}
$$

be the chosen basic λ-rableau, and define $h, j \in \Lambda(3, r)$, by the λ-tableaux
(13.2) $\mathrm{T}_{\mathrm{b}}^{\mathrm{A}}=$

Let F_{1}, F_{2}, F_{3} be the matrices defined as followi

5-3

(13.3) $F_{1}=\left[\begin{array}{l}\xi_{z\left(A_{1} D, t\right.} \\ \xi_{t(A, p) t}\end{array}\right]$;
where $\left\{\begin{array}{lll}a=2, & b=-2, & c=1 ; \\ b=0, & \text { if } \lambda_{2} \neq-1, & c=2 ;\end{array} \quad\right.$ if $\lambda_{2}=1$.

Then we have the following result.
(13.4) Theorem: Suppose that char $k=0$ and that $\lambda \in \Lambda(3, r)$. Then the sequence below is a minimal projective resolution of $\mathbf{k} \boldsymbol{\lambda}$

where $\varphi_{0}=\mathcal{K}_{\lambda}^{\prime}$ (cf. (10.1)), and $\varphi_{1}, \Phi_{2}, \Phi_{3}$ are defined by the matrices F_{1}, F_{2}, F_{3} above.
(13.5) Remarks: (i) Nove that $h=t\left(A_{1}^{2} A_{2} \lambda\right)\left(A_{22} A_{31}\right)$ and
$j=\ell\left(A_{1} A_{2}^{2} \lambda\right)\left(a_{21} A_{32}\right) .8$

[^3]$$
5-4
$$
(ii) According to the convention made in Chapter 4, some of the entries $\left.\xi_{L\left(A_{1}^{m}\right.}^{m_{1}} A_{2}^{m_{2}} \lambda\right), v\left(A_{1}^{q_{1}} A_{2}^{\xi_{2}} \lambda\right), \xi_{h_{2}(\lambda, \lambda)}, \xi_{j,\left(A_{2} \lambda\right)}$ of the matrices F_{1}, F_{2}, F_{3} may be zero (when $\lambda_{2}=0$ or $\lambda_{3} \leq 1$).

A similar remark applies to the modules $V_{A_{1}}^{m_{1}}{ }_{\mathrm{A}_{2}}^{m_{2}}{ }_{\lambda}$.

Proof of (13.4) To simplify notation, in this proof we write $\left.\ell_{\left(A_{1}^{m} 1\right.} A_{2}^{m}\right)$ for $4\left(A_{1}^{m}, A_{2}^{m} 2 \lambda\right)$, and $P_{i^{\prime}} j^{\prime}, h^{\prime}$ for $P_{i^{\prime}, h^{\prime}}: P_{I^{\prime} j^{\prime} h^{\prime}}\left(i^{\prime}, j^{\prime}, h^{\prime} \in I(3, r)\right)$.

Suppose $\boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{\mathbf{3}} \geq 2$.
We have the λ-tableaux
(13.6) $T_{1}^{2}=$

1	1	1	\ldots	1	
2	2	2	\ldots		2
3	3	3	\ldots	3	

It is clear that the $S\left(B^{+}\right)-m a p P_{1}$, defined by the matrix F_{1}, is the map defined in (10.2). So, by (10.4).

$$
\mathbf{V}_{A, \lambda} \oplus V_{A_{\lambda} \lambda} \xrightarrow{\varphi_{1}} v_{\lambda} \xrightarrow{\varphi_{0}} \mathbf{k}_{\lambda} \rightarrow 0
$$

is a 2-step minimal projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$. We now explain how to obtain the matrix F_{2}.

By (11.5), the k-spaces $\left(V_{A_{1}^{2} A_{2} \lambda}, V_{A_{1} \lambda}\right)_{S\left(B^{+}\right)} \quad\left(V_{A_{1}^{2} A_{2} \lambda} V_{A_{2}}\right)_{S\left(B^{+}\right)}$,

$$
\begin{aligned}
& \left(V_{A_{1} A_{2}^{2} \lambda^{*}}, V_{A_{1} \lambda}\right)_{S\left(B^{+}\right)},\left(V_{A_{1} A_{2}^{2} \lambda}, V_{A_{2} \lambda}\right)_{S\left(B^{*}\right)} \text {, have } k \text {-bases } \\
& \left\{\cdot \xi_{U\left(A_{1}^{2} A_{2}\right), u\left(A_{1}\right)} \cdot \xi_{h, U\left(A_{1}\right)}\right\} ; \quad\left\{\cdot \xi_{u\left(A_{1}^{2} A_{2}\right), U\left(A_{2}\right)}\right\} ; \\
& \left\{-\xi_{\ell\left(A_{1} A_{2}^{2}\right), u\left(A_{1}\right)} ; \quad\left\{\cdot \xi_{\ell\left(A_{1} A_{2}^{2}\right), u\left(A_{2}\right)}, \xi_{j_{j} u\left(A_{2}\right)}\right\},\right.
\end{aligned}
$$

respectively.
Thus, $\Phi_{2} \in\left(V_{A_{1}^{2} A_{2} \lambda} \oplus V_{A_{1} A_{2}^{2}}, V_{A_{1} \lambda} \oplus V_{A_{2} \lambda}\right)_{\left.S_{\left(B^{+}\right.}\right)}$, iff it is defined by a matrix of the type

$$
\begin{aligned}
& F_{2}=\left[\begin{array}{lll}
a_{1} & \xi_{r\left(A_{1}^{2} A_{2}\right), u\left(A_{1}\right)}+a_{2} \xi_{h_{2}, t\left(A_{1}\right)} & a_{3} \xi_{u\left(A_{1}^{2} A_{2}\right), u\left(A_{2}\right)} \\
a_{4} & \xi_{\left.\ell\left(A_{1} A_{2}^{2}\right), u A_{1}\right)} & a_{5} \xi_{u\left(A_{1} A_{2}^{2}\right), u\left(A_{2}\right)}+a_{6} \xi_{j \mu\left(A_{2}\right)}
\end{array}\right], \\
& n_{\mu} \in k, \mu=1, \ldots, 6 .
\end{aligned}
$$

It it clear that $\boldsymbol{\varphi}_{1} \boldsymbol{\varphi}_{\mathbf{2}}=0$ iff $\mathrm{F}_{\mathbf{2}} \mathrm{F}_{\mathbf{1}}=0$. So our next step in to determine those $\boldsymbol{q}_{\boldsymbol{\mu}} \boldsymbol{\in k}$ $(\mu=1, \ldots, 6)$ for which $F_{2} P_{1}=0$.

From the strucure of the λ-rableaux (13.2) and (13.6), it is not hard to see that
$P_{\left(A_{1}\right)}=P_{\left(A_{1}^{2} A_{2}, K\left(A_{1}\right)\right.} P_{\left(A_{1}\right), I}=P_{h_{1}\left(4 A_{1}\right)} P_{\left(A_{1}\right), b} \quad$ and
$P_{2\left(A_{1}^{2} A_{2}\right)} \cdot\left(A_{1}\right)!=\frac{\lambda_{1} 1\left(\lambda_{2}-2\right)!2!\left(\lambda_{3}-1\right)!}{\lambda_{1} 1\left(\lambda_{2}-2\right)!\left(\lambda_{3}-1\right)!}=2 ;$
$P_{\mathrm{h}_{2}\left(A_{1}\right)!}=\frac{\lambda_{1} t\left(\lambda_{2}-1\right)!\left(\lambda_{3}-1\right)!}{\lambda_{1} l\left(\lambda_{2}-1\right)!\left(\lambda_{3}-1\right)!}=1$. Hence.

$$
\left.\xi_{\ell\left(A_{1}^{2} A_{2}, \ell \ell\left(A_{1}\right)\right.} \xi_{\ell\left(A_{1}\right) \ell}=2 \xi_{\&\left(A_{1}^{2} A_{2}, \ell,\right.} \text {, and } \xi_{h, \ell\left(A_{1}\right)}\right) \xi_{\ell\left(A_{1}\right), l}=\xi_{h_{, l}} \text {. }
$$

But $\ell\left(A_{1}^{2} A_{2}\right) \delta_{2}=h_{1}$ and $P_{t\left(A_{1}^{2} A_{2}\right), t\left(A_{2}\right), \&}=P_{h-\&\left(A_{2}\right), I}=1$. Thus

Therefore, the first row of $\mathrm{F}_{\mathbf{2}} \mathrm{F}_{1}$ is

$$
\begin{aligned}
& =\left(2 a_{1}+a_{3}\right) \xi_{2 A_{1}^{2} A_{1}, 2}+\left(a_{2}+a_{3}\right) \xi_{H_{1}, x}
\end{aligned}
$$

But, since $\xi_{e\left(1_{1}^{2} A_{2}, t\right.}$ and $\xi_{h, 2}$ are lineariy independent elements of $S\left(B^{+}\right)$, this is zero iff

$$
\begin{equation*}
a_{3}=-2 a_{1} \text { and } a_{2}=2 a_{1} \text {, any } a_{1} \in k . \tag{13.7}
\end{equation*}
$$

5-7

Now we repeat this procedure for the second row of $\mathbf{F}_{2} \mathbf{F}_{1}$.
We have $P_{U\left(A_{1}\right)}=P_{t\left(A_{1} A_{2}^{2}\right), t\left(A_{1}\right)} P_{\ell\left(A_{1}\right), \ell}, \quad P_{\left(A_{2}\right)}=P_{j,\left(A_{2}\right)} P_{\left(A_{2}\right), t}$, and
$P_{\ell\left(A_{2}\right)}=\bigcup_{H=1,2} P_{\left\langle A_{1} A_{2}^{2}\right),\left(A_{1}\right)} \tau_{\mu} P_{\&\left(A_{2}\right), C}$ where $\tau_{1}=1$, and $\tau_{2}=\left(a_{21} A_{31}\right)$. Also $P_{\ell\left(A_{1}, \Omega_{2}^{3}, \ell\left(A_{1}\right),!\right.}=P_{j_{1}, u\left(A_{2}\right), l}=1$, and $P_{U\left(A_{1} A_{2}^{2}\right), U\left(A_{2}\right), l}=2$
 Therefore,

So, the second row of $\mathrm{F}_{\mathbf{2}} \mathrm{F}_{1}$ is

$$
\begin{aligned}
& a_{4} \xi_{\ell\left(A_{1} A_{2}^{3}, \ell\left(A_{1}\right)\right.} \xi_{\ell\left(A_{1}\right) \ell}+\left(a_{5} \xi_{\left.\ell\left(A_{1} A_{2}^{2}\right), \ell A_{2}\right)}+a_{6} \xi_{j, l\left(A_{2}\right)}\right) \xi_{\ell\left(A_{2}\right), \ell}= \\
& =\left(a_{4}+2 a_{5}\right) \xi_{\ell\left(A_{1} A_{2}^{2}\right), \ell}+\left(a_{5}+a_{6}\right) \xi_{j, l} .
\end{aligned}
$$

As, $\xi_{\ell\left(\Lambda_{1} \Lambda_{2}^{2}\right),!}$ and $\xi_{1, L}$ are linearly independent vectors, this is zero iff

$$
\begin{equation*}
a_{4}=-2 a_{5}, \text { and } a_{6}=-a_{5} . \text { any } a_{5} \in \mathbf{k} \text {. } \tag{13.8}
\end{equation*}
$$

Then, F_{2} is as defined in (13.3) and, since conditions (13.7) and (13.8) are satisfied. there holds

$$
\begin{equation*}
F_{2} F_{1}=0 \text {, and } \operatorname{lm} \varphi_{2} \subseteq \text { ker } \varphi_{1} \text {. } \tag{13.9}
\end{equation*}
$$

5-8

Next we show that, in fact, we have dim $\operatorname{lm} \varphi_{2} \mathbf{2}$ dir ier φ_{1}. Thus $\operatorname{Im} \varphi_{2}=\mathbf{k e r} \varphi_{1}$. Let I_{1}, I_{2}, I_{3} be the rets of all iE I(3,) defined by the λ-tableaux (13.10), (13.11) and (13.12), respectively.
(13.10) $\mathrm{T}^{2}=$

(13.11) $T_{1}^{\lambda}=$

$1 \leq b_{21} \leq \lambda_{3} ;$
(13.12) $T_{1}^{\lambda}=$

(13.13) Remarks: (i) $\mathrm{I}_{\mathbf{1}}, \mathrm{I}_{\mathbf{2}}$ and $\mathrm{I}_{\mathbf{3}}$ are pairwise disjoint
(i) $I_{1} \cup I_{2}=I\left(A_{1}^{2} A_{2} \lambda\right)$, and $I_{3} \in I\left(A_{1} A_{2}^{2} \lambda\right)$. So, $\left.\left.\mathcal{Z}_{1}, A A_{1}^{2} A_{2}\right) f \in I_{1} \cup I_{2}\right\}$ is a
 (cf. (9.1) and (9.4)).

It is our aim to prove that
(13.14) The vectors $\varphi_{2}\left(\xi_{i H}\left(A_{1}^{2} A_{2}\right)\right.$, all $i \in I_{1} \cup I_{2}$, and $\varphi_{2}\left(\xi_{2}^{2},\left(A_{1} A_{2}^{2}\right)\right.$, all $1 \in I_{3}$. are linearly independent.

From the definition of Φ_{2}, we know that
(13.15) the components of $\varphi_{2}\left(\xi_{1, t\left(A_{1}^{2} A_{2}\right.}\right)$ and $\varphi_{2}\left(\xi_{1}, U\left(A_{1} A_{2}^{2}\right)\right.$ lying in $v_{A_{2} \lambda}$ are, respectively,

$$
\begin{aligned}
& -2 \xi_{1, U\left(A_{1}^{2} A_{2}\right)} \xi_{U\left(A_{1}^{2} A_{2}\right), \mu\left(A_{2}\right)} \text {, if } i \in I_{1} \cup I_{2}, \\
& \xi_{1, \&\left(A_{1} A_{2}^{2}\right)} \xi_{\mu\left(A_{1} A_{2}^{2}\right),\left(A_{2}\right)}-\xi_{1, \&\left(A_{1} A_{2}^{2}\right.} \xi_{1, \Omega\left(A_{2}\right)} \text {, if } I \in I_{3} .
\end{aligned}
$$

It is easy to see that

$$
-2 \xi_{\left.L \alpha A_{1}^{2} A_{2}\right)} \xi_{\left[\left(A_{1}^{2} A_{2}\right),\left\langle A_{2}\right)\right.}= \begin{cases}-b_{11}\left(b_{11}-1\right) \xi_{\left.1, \& A_{2}\right)} ; & \text { if } i \in I_{1} \\ -\lambda_{2}\left(a_{2}+1\right) \xi_{i, L\left(A_{2}\right)} ; & \text { if } i \in I_{2}\end{cases}
$$

Also, if $i \in I_{3}$ has λ-tableau (13.12) then

$$
\xi_{1,2\left(A_{1} A_{2}^{2}\right)} \xi_{\left.\& A_{1} A_{2}^{2}\right), v_{\left(A_{1}\right)}}=\left(b_{22}+1\right) \xi_{1, \mu\left(A_{2}\right)}
$$

 $\xi_{i\left(1, A_{2}^{2}\right)}=\xi_{i i^{\prime} j}$, where $i^{\prime}=1\left(i_{21} u_{32}\right)$, i.e.,

Similarly to the previous cases, we have

$$
\xi_{i,\left(A_{1} A_{2}^{2}\right)} \xi_{j}\left(A_{1}\right)=\xi_{r_{j}} \xi_{j}\left(A_{2}\right)=\left(b_{21}+1\right) \xi_{1}, K\left(A_{2}\right) .
$$

Hence, by (13.15), we have
(3.17) (i) Lea i © $1_{1} \cup I_{2}$, be defined by the λ-tableaux (13.10), or (13.11). Then. the component of $\varphi_{2}\left(\mathcal{E}_{1, A\left(A_{1}^{2} A_{2}\right.}\right)$ lying in $V_{A_{2} \lambda}$ is

$$
\begin{aligned}
& \left.-b_{11}\left(b_{11}-1\right) \xi_{i, \alpha\left(A_{2}\right)}\right) \text { if } i \in I_{1} ; \\
& -\lambda_{2}\left(\lambda_{2}+1\right) \xi_{\left.1, \alpha A_{2}\right)} \text {, if } i \in I_{2} .
\end{aligned}
$$

(ii) If $i \in I_{3}$ in defined by the λ-tableau (13.12) then the component of $\varphi_{2}\left(\xi_{1, t\left(A_{1} A_{2}^{2}\right)}\right)$ in $V_{A_{2} \lambda}$ is

$$
\left(b_{22}+1\right) \xi_{1}, H\left(A_{2}\right)-\left(b_{21}+1\right) \xi_{1,-1},\left(A_{2}\right)
$$

where I^{\prime} is defined by the λ-mbleau (13.16).

But $\left.I_{1} \cup I_{2}=1\left(A_{1}^{2} A_{2} \lambda\right) \subset I\left(A_{2} \lambda\right)\right)^{9}$ and so the vectors $\xi_{1},\left(A_{2}\right)$ ($\left.i \in I_{1} \cup I_{2}\right)$ are linearly independent (since they are part of a basis of $\mathbf{V}_{\mathrm{A}_{2}} \boldsymbol{\lambda}$).

Now, if we analyse $E_{i}\left(\mu_{2}\right)$ when T_{i}^{λ} is as in (13.12), we have

$$
\xi_{1,\left(A_{2}\right)}=\xi_{1,1\left(A_{2}\right)} .
$$

where $\mathbf{i} \subset \mathbf{\Lambda (3 r)}$ is defined by the λ-tableau

[^4]

Clearly $1 \in I\left(A_{2} \lambda\right)$, but $1 \Leftrightarrow I\left(A_{1}^{2} A_{2} \lambda\right)$ (since $I_{M_{2}} \neq 1$).
Hence, the vectors $\xi_{1},\left(A_{2}\right)$ ($\left.{ }^{\in} \in I_{1} \cup I_{2} \cup I_{3}\right)$ are linearly independent, and (13.14) follows from (13.17).

Now, as $I_{1} \dot{\cup} I_{2}=I\left(A_{1}^{2} A_{2} \lambda\right)$, we have $m I_{1}+m I_{2}=\operatorname{dim} V_{A_{1}^{2}}^{2} \Lambda_{1}=$
$-\frac{\left.\lambda_{2} \lambda_{2} \lambda_{3}+1\right)}{2} \quad$ (cf. (11.1)).
Also, \# I3 equals the number of distinct sequences of integers

where $b_{21} \geq 0(\mu=1,2,3)$ and $b_{21}+b_{22}+b_{23}=\lambda_{3}-2$.
Hence, $m I_{3}=\binom{\lambda_{3}}{2}$ and

$$
\left.\operatorname{dim} \operatorname{lm} \varphi_{2} \geq=I_{1}+=I_{2}+=I_{3}=\frac{1}{2} \lambda_{2} \lambda_{3}\left(\lambda_{3}+1\right)+\lambda_{3}\left(\lambda_{3}-1\right)\right] .
$$

But,
dim ker $\varphi_{1}=\operatorname{dim} V_{A_{1} \lambda}+\operatorname{dim} V_{A_{2} \lambda}-\operatorname{dim}$ rad $V_{\lambda}=$
$=\frac{1}{2}\left(\lambda_{2}\left(\lambda_{3}+1\right)\left(\lambda_{3}+2\right)+\left(\lambda_{2}+2\right)\left(\lambda_{3}+1\right) \lambda_{3}-\left(\lambda_{2}+1\right)\left(\lambda_{3}+1\right)\left(\lambda_{3}+2\right)\right.$
$\left.+2\left|=\frac{1}{4}\right| \lambda_{2} \lambda_{3}\left(\lambda_{3}+1\right)+\lambda_{3}\left(\lambda_{3}-1\right) \right\rvert\, \leq \mathrm{dim} \operatorname{Im} \varphi_{2}$.

Therefore, $\operatorname{lm} \boldsymbol{\varphi}_{2}=\operatorname{ker} \varphi_{1}$ and we have the following resulk

$$
\begin{equation*}
V_{A_{1}^{2} A_{2} \lambda} \oplus V_{A_{1} A_{2}^{2} \lambda} \xrightarrow{\Phi_{2}} V_{A_{1} \lambda} \oplus V_{A_{2} \lambda} \xrightarrow{\varphi_{1}} V_{\lambda} \xrightarrow{\varphi_{0}} k_{\lambda} \rightarrow 0 \tag{13.18}
\end{equation*}
$$

is an exact sequence.

We now repent this procedure to determine an $\mathbf{S}\left(\mathrm{B}^{+}\right)$-map
$\varphi_{3}: V_{A_{1}^{2} A_{2}^{2}}^{\lambda}+V_{A_{1}^{2} A_{\lambda}} \oplus V_{A_{1} A_{2}^{2}}$, such that φ_{3} is injective and $\operatorname{Im} \varphi_{3}=$ ker φ_{2}.

This time we have

$$
\operatorname{dim}\left(V_{A_{1}^{2} A_{2}^{2} \lambda} \cdot V_{A_{1}^{2} A_{2}}\right)_{S\left(B^{+}\right)}=\operatorname{dim}\left(V_{A_{1}^{2} A_{2}^{2} \lambda^{\prime}} V_{A_{1} A_{2}^{2} \lambda_{S\left(B^{+}\right)}=1 .}\right.
$$

Hence, Φ_{3} is determined by a matrix of the type,

$$
F=\left[b_{1} \xi_{\ell\left(A_{1}^{2} A_{2}^{2}\right), \varepsilon\left(A_{1}^{2} A_{2}\right) \quad b_{2} \xi_{\left.u\left(A_{1}^{2} A_{2}^{2}\right), u\left(A_{1} A_{2}^{2}\right)\right]} \quad b_{1}, b_{2} \in k}\right.
$$

Make $b_{1}=b_{2}=1$. Then $F=F_{3}$ (as defined in (13.3)) and our next step is to show that $\mathrm{F}_{\mathbf{3}} \mathrm{F}_{\mathbf{2}}=\mathbf{0}$.

The first column of $\mathrm{F}_{3} \mathrm{P}_{2}$ is

$$
\begin{aligned}
& \xi_{\Delta\left(A_{1}^{2} A_{2}^{2}\right), \&\left(A_{1}^{2} A_{2}\right)}\left(\xi_{4\left(A_{1}^{2} A_{2}\right) \&\left(A_{2}\right)}+2 \xi_{1, \mu\left(A_{1}\right)}\right)- \\
& { }^{-2 F} \varepsilon\left(A_{1}^{2} A_{2}^{2}, \& A_{1} A_{2}^{2}\right)^{\xi} u\left(A_{1} A_{2}^{2}\right), \varepsilon\left(A_{1}\right) \cdot
\end{aligned}
$$

Now, since $P_{t\left(A_{1}^{2} A_{2}\right)}=P_{t\left(A_{1}^{2} A_{2}^{2}\right) H\left(A_{1}^{2} A_{2}\right)} P_{\left.t\left(A_{1}^{2} A_{2}\right), L A_{1}\right)}$, and $P_{U\left(A_{1}^{2} A_{2}^{2}\right) L\left(A_{1}^{2} A_{2}\right),\left(A_{1}\right)}=2$,
we have

$$
\xi_{u\left(A_{1}^{2} A_{2}^{2}\right), u\left(A_{1}^{2} A_{2}\right)} \xi_{\mu\left(A_{1}^{2} A_{1}\right) \mu\left(A_{1}\right)}=2 \xi_{\mu\left(A_{1}^{2} A_{2}^{2}\right) \ell\left(A_{1}\right)}
$$

Also, $u\left(A_{1}^{2} A_{1}\left(a_{22} a_{31}\right)=h\right.$ and $u\left(A_{1}^{2} A_{2}^{2}\right)\left(a_{22} a_{31}\right)=c$. where

$$
T_{c}^{\lambda}=\begin{array}{|llll|l}
\hline 1 & 1 & \ldots & 1 & \\
\hline 1 & 2 & \ldots & & 2 \\
\hline 1 & 2 & 3 & \ldots & 3 \\
\hline 1 & & \\
\hline \begin{array}{lllll}
|l| l l l
\end{array} \\
\hline
\end{array}
$$

Hence

$$
\xi_{\ell\left(A_{1}^{2} A_{2}^{2}\right) \cdot u\left(A_{1}^{2} A_{2}\right)} \xi_{h, \ell\left(A_{1}\right)}=\xi_{c, h} \xi_{h, \ell\left(A_{1}\right)}=\xi_{c, l\left(A_{1}\right)}
$$

(since $P_{h}=P_{c, h} P_{h}, l\left(A_{1}\right)$, and $P_{c, h}\left(A_{1}\right)=1$). Finally, we have

$$
P_{U\left(A_{1} A_{2}^{2}\right)}=\hat{U}_{\mu=1,2} P_{U\left(A_{1}^{2} A_{2}^{2}\right) \ell\left(A_{1} A_{2}^{2}\right)} \delta_{\mu} P_{U\left(A_{1} A_{2}^{2}\right), \ell\left(A_{1}\right)} \quad \text { where } \quad \delta_{1}=1 \text { and }
$$

$\delta_{2}=\left(2_{22}{ }^{2}{ }_{31}\right)$. Thus,
(since $\left.P_{U A} A_{1}^{2} A_{2}^{2}\right) U\left(A_{1} A_{2}^{2}, u\left(A_{1}\right)=P_{c}, \varepsilon\left(A_{1} A_{2}^{2}\right), u A_{p}\right)=1$. Therefore, the first column of $F_{3} F_{2}$ is

Similar calculations show that

$$
5-14
$$

where d is defined by the λ-tableau

Hence the second column of $F_{3} F_{2}$ is

$$
-2 \xi_{\left.U\left(A_{1}^{2} A_{2}^{2}\right), U A_{2}\right)}+2 \xi_{\left.u\left(A_{1}^{2} A_{2}^{2}\right), u A_{2}\right)}+\xi_{d_{1},\left(A_{2}\right)}-\xi_{d, l\left(A_{2}\right)}=0 .
$$

Therefore $F_{3} F_{2}=0$.
Let φ_{3} be defined by the matrix F_{3}. Then, $\varphi_{2} \varphi_{3}=0$ and next we show that

$$
\begin{equation*}
\operatorname{dim} V_{A_{1}^{2}} A_{2}^{2} \lambda=\operatorname{dim} \operatorname{lm} \Phi_{3}=\operatorname{dim} \text { ker } \varphi_{2} . \tag{13.19}
\end{equation*}
$$

Thus, φ_{3} is the map we were looking for.

$$
V_{A_{1}^{2} A_{2}^{2} \lambda} \text { his } k \text {-basis }\left\{\xi_{1, \ell\left(A_{1}^{2} A_{2}^{2}\right)} i \in I\left(A_{1}^{2} A_{2}^{2} \lambda\right)\right\}
$$

 one of the λ-tableaux (13.20), (13.21), or (13.22), below.
(13.20) $\mathrm{T}_{\mathrm{i}}^{\mathrm{A}}=$

$$
\begin{aligned}
& 2 \leq b_{11} \leq \lambda_{2}, \text { and } \\
& b_{21}+b_{22}+b_{21}=\lambda_{3}-2_{i}
\end{aligned}
$$

(13.21) $\mathrm{T}_{\mathrm{i}}^{\mathrm{A}}=$

$b_{21}+b_{22}+b_{23}-\lambda_{3}-2$:
 $b_{21}+b_{22}+b_{23}=\lambda_{3}-2$.

II follows from the definition of φ_{3}, that the component of $\varphi_{3}\left(\xi_{i_{2}}, \mu A_{1}^{2} A_{2}^{2}\right)$ lying

Calculading this product we obtain

But, since $I\left(A_{1}^{2} A_{2}^{2} \lambda\right) \subseteq I\left(A_{1} A_{2}^{2} \lambda\right)$. $\left\{\mathcal{S}_{1}, \lambda\left(A_{1} A_{2}^{2}\right) \mid i \in I\left(A_{1}^{2} A_{2}^{2} \lambda\right)\right]$ is contained in a
 independent vectors and

S-16

(13.23) $\left\{\varphi_{3}\left(\xi_{1, ~}^{(}, A_{1}^{2} A_{2}^{2}\right) l i \in I\left(A_{1}^{2} A_{2}^{2} \lambda\right)\right\}$ in a basis of $\operatorname{lm} \varphi_{3}$.

Therefore, φ_{3} is injective and dim $\operatorname{lm} \varphi_{3}=\operatorname{dira} V_{\hat{A}_{1}^{2} \dot{\lambda}_{2}^{2}}=\frac{\left(\lambda_{2}+1\right)\left(\lambda_{3}-1\right) \lambda_{3}}{2}$.
Now, as $\operatorname{dim} \operatorname{Im} \varphi_{2}=\frac{1}{\sum}\left[\boldsymbol{\lambda}_{2} \lambda_{3}\left(\lambda_{3}+1\right)+\lambda_{3}\left(\lambda_{3}-1\right)\right]$ and
$\operatorname{dim} V_{A_{1}^{2} A_{2} \lambda^{\prime}}+\operatorname{dim} V_{A_{1} A_{2}^{2} \lambda}=\frac{1}{1} \lambda_{2} \lambda_{3}\left(\lambda_{3}+1\right)+\left(\lambda_{2}+2\right) \lambda_{3}\left(\lambda_{3}-1\right)$, we have
$\operatorname{dim} \operatorname{ker} \varphi_{2}=\frac{\left(\lambda_{2}+1\right)\left(\lambda_{3}-1\right) \lambda_{3}}{2}=\operatorname{dim} \operatorname{Im} \varphi_{3}$.
Hence (13.19). This completes the proof of the following result.
(13.24) If $\lambda_{2}, \lambda_{3} \geq 2$, the sequence below is a projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$
$0 \rightarrow V_{A_{1}^{2} A_{2}^{2} \lambda} \xrightarrow{\Phi_{3}} V_{A_{1}^{2} A_{2}^{\lambda}} \oplus V_{A_{1} A_{2}^{2} \lambda} \xrightarrow{\varphi_{2}} V_{A_{1} \lambda} \oplus V_{A_{2} \lambda} \xrightarrow{\varphi_{1}} V_{\lambda} \xrightarrow{\varphi_{0}} k_{\lambda} \rightarrow 0$.

Now we know, from (10.4), that ker $\varphi_{0}=\operatorname{rad} V_{\lambda}$, and ker $\varphi_{1} \in \operatorname{rad}\left(V_{A_{1} \lambda} \oplus V_{A_{2}} \lambda\right.$. So, to prove that the projective resolution in (13.24) is minimal it is enough to show that
(13.25)

$$
\text { ker } \varphi_{2} \Xi \operatorname{rad} V_{A_{1}^{2} A_{2}} \oplus \operatorname{rad} V_{A_{1} A_{2}^{2} \lambda} .
$$

By (13.23) and (13.24), ker φ_{2} has k-basis $\left\{\varphi_{3}\left(\xi_{i, \alpha\left(A_{1}^{2} A_{2}^{2}\right.}\right)\right.$ lig $\left.I\left(A_{1}^{2} A_{2}^{2} \lambda\right)\right\}$.
So, (13.25) it equivalent to
(13.26) $\varphi_{3}\left(\xi_{i}\right)\left(A_{1}^{2} A_{2}^{2}\right) \in \operatorname{rad} V_{A_{1}^{2} A_{2} \lambda} \oplus \operatorname{rad} V_{A_{1} A_{2}^{2} \lambda}$, all $I \in I\left(A_{1}^{2} A_{2}^{2} \lambda\right)$.

Let $i \in I\left(A_{1}^{2} A_{2}^{2} \lambda\right)$. Then, $i \leq \ell\left(A_{1}^{2} A_{2}^{2}\right)<\ell\left(A_{1}^{2} A_{2}\right), U\left(A_{1} A_{2}^{2}\right)$. Thus.
(13.27) $\mathrm{i} \delta \leq u\left(A_{1}^{2} A_{2}^{2}\right) \delta=u\left(A_{1}^{2} A_{2}^{2}\right)<\ell\left(A_{1}^{2} A_{2}\right), \ell\left(A_{1} A_{2}^{2}\right)$, all $\delta \in P_{z\left(A_{1}^{2} A_{2}^{2}\right)}$.

But,

$$
\begin{aligned}
& \varphi_{3}\left(\xi_{1, K\left(A_{1}^{2} A_{2}^{2}\right)}\right)=\xi_{i, \mu\left(A_{1}^{2} A_{2}^{2}\right)} \xi_{4\left(A_{1}^{2} A_{2}^{2}\right),\left\langle A_{1}^{2} A_{2}\right)}+ \\
& +\xi_{i, U\left(A_{1}^{2} \Lambda_{2}^{2}\right)} \xi_{4\left(A_{1}^{2} A_{2}^{2}\right), u\left(A_{1} A_{2}^{2}\right)}=\sum_{\delta} A_{\delta} \xi_{i B, \mu\left(A_{1}^{2} A_{2}\right)}+\sum_{\delta^{\prime}} a^{\prime} \sigma^{\prime} \xi_{i W^{\prime}, ~}\left(A_{1} A_{2}^{2}\right),
\end{aligned}
$$

where the sums are over subsets, $\{8\}$ and $\{8\}$, of $\left.P_{t\left(A_{1}^{2} \Lambda_{2}^{2}\right.}^{2}\right)^{\text {and }}$ as. $a^{\prime} \delta^{\prime} \in \mathbf{Z}$.
And so, (13.26) follows from (13.27). ${ }^{10}$

With (13.24) and (13.25) we conclude the proof of the theorem (13.4) in the case $\lambda_{2}, \lambda_{3} \geq 2$. The proof of the other cases is similar. \quad a
814. The case $n=2$ and char $k=p$

When \mathbf{k} is a field of positive characteristic, the construction of minimal projective resolutions of $\mathbf{k}_{\mathbf{2}}$ becomes much more difficult than when characteristic of \mathbf{k} is zero.

Now we shall give some results on this problem when $\mathbf{n}=\mathbf{2}$.

10 We recall that, if $\alpha \in \Lambda(n, r)$ then $\xi_{i, \ell(\alpha)} \in \operatorname{rad} V_{\alpha}$, for all $\mathrm{i}<\mathcal{L}(\alpha)$ (cf. (9.4)).

Let $\lambda=(r-a, a)$ be an arbitrarily chosen element of $\mathbf{A}(\mathbf{2}, r)$, and write

$$
\lambda(1, m)=A_{i}^{m} \lambda, \ell(m)=u\left(A_{i}^{m} \lambda\right)(0 \leq m \leq a)
$$

Suppose charle $=\mathbf{p}(\$ 0)$ and let

$$
1=a_{0}+a_{1} p+\ldots+a_{d} p_{1}, \text { where } a_{\mu} \in 2,0 \leq a_{\mu}<p(\mu=0, \ldots, d), a_{d} \neq 0
$$

Define an $\mathbf{S}\left(\mathbf{B}^{+}\right)$-map

$$
\varphi_{2}: \oplus_{m=1}^{\oint}\left(V_{\lambda(1, p)} \oplus V_{\lambda\left(1,1+p^{m}\right)} \oplus V_{\lambda\left(1, p+p^{m}\right)} \oplus \ldots \oplus V_{\lambda\left(1, p^{m-1}+p^{m}\right)} \rightarrow{\left.\underset{m=0}{d} V_{\lambda(1, \downarrow)}\right)}^{d}\right.
$$

by

$$
\varphi_{2}(\xi)= \begin{cases}\xi \xi_{\lambda\left(p^{m}\right), k\left(p^{m-1}\right)} & ; \text { if } \xi \in V_{\lambda\left(1, p^{m}\right)} \\ -\xi \xi_{\ell\left(p^{q}+p^{m}\right), \ell\left(p^{q}\right)^{q}}+\xi \xi_{\ell\left(p^{q}+p^{m}\right), \ell\left(p^{m}\right)} & ; \text { if } \xi \in V_{\lambda\left(1, p^{q}+p^{m}\right)} \quad(m \in \mathbb{d}, 0 \leq q<m) .\end{cases}
$$

Then, if Φ_{0} and Φ_{1} are the maps defined in (10.1) and (10.2), respectively, we have the following result.
(14.1) Theoram: With the notation above,

$$
\begin{aligned}
& \stackrel{\oplus_{m}}{\oplus_{1}}\left(V_{\lambda\left(1, p^{m}\right)} \oplus V_{\lambda\left(1,1+p^{m}\right)} \oplus V_{\lambda\left(1, p+p^{m}\right)} \oplus \ldots \oplus V_{\lambda\left(1, p^{m-1}+p^{m}\right)}\right) \rightarrow \\
& \xrightarrow{\varphi_{2}} \bigoplus_{m=0}^{\bigoplus_{\lambda}} V_{\lambda\left(1, p^{m}\right)} \xrightarrow{\varphi_{1}} V_{\lambda} \xrightarrow{\varphi_{0}} k_{\lambda} \rightarrow 0,
\end{aligned}
$$

are the first three terms of a minimal projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$.

In the proof of (14.1) we will make use of the following two lemmas, which are essy consequences of (2.7) and (9.12), respectively.
(14.2) Lemma: Suppose b, c, d are non-negative integers satiafying $d \leq c \leq b \leq a$, and consider the elements $\ell(b), \ell(c), \ell(d)$ of $I(2 r)$. Then, $\ell(b) \leq \ell(c) \leq \ell(d)$ and

$$
\xi(b), \Sigma(c) \xi(c), \Sigma(d)=\binom{b-d}{b-c} s_{e}(b), \mu(d)
$$

(14.3) Lamma: Suppose $b=b_{0}+b_{1} p+\ldots+b_{y} p^{d}$, where $b_{\mu} \in \mathbb{Z}$, $0 \leq b_{\mu}<p(\mu=0, \ldots, s) b_{1} \neq 0$, and q, m are non-negaive integers satisfying $q<m$ \leq s. Then
(i) $p+\binom{b-p^{\mathbf{a}}}{b-p^{m}}$ iff $b_{t}=0$, for all $q \leq t<m$;
(ii) for $b \geq p^{q}+p^{m}, \quad p+\binom{b-p^{m}}{b-p^{q}-p^{m}}$ iff $b_{q} \neq 0$.

Proof of (14.1): Assume the hypotheses of (14.1). Then, from (10.4), we know that

$$
\underset{m=0}{\oint} V_{\lambda(1, \infty)} \xrightarrow{\varphi_{1}} V_{\lambda} \xrightarrow{\varphi_{0}} \mathbf{k}_{\lambda} \rightarrow 0
$$

is exact and minimal. Thus, to prove the theorem we only need to show that
(14.4) (i) $\operatorname{Im} \varphi_{2}=\operatorname{ker} \varphi_{1}$;

We start by proving (14.4)(i).
From the definition of Φ_{2}, we can see that $\varphi_{1} \varphi_{2}=0$ iff
for all $m @ d, 0 \leq q \leq m-1$. But, by (14.2)

$$
\varphi_{1}\left(\xi_{t\left(p^{m}\right)} t_{\left(p^{m-1}\right)}\right)=\xi_{t(p m) \cdot L\left(p^{-1}-1\right.} \xi_{t\left(p^{m-1}\right) t}=\binom{p^{m}}{p^{m-1}} \xi_{t\left(p^{m}\right) t}=0
$$

$\operatorname{since}\binom{P^{m}}{p^{m-1}}=0(\bmod p)$, and similarly,
$\Phi_{1}\left(-\xi_{\left.l\left(p^{q}+p^{m}\right), L_{(p d)}\right)}+\xi_{t\left(p^{4}+p^{m}\right), t\left(p^{m}\right)}\right)=\left[-\binom{p^{q}+p^{m}}{p^{m}}+\left(\begin{array}{c}p^{q}+p^{m} \\ p^{4}\end{array}\right]\right] \xi_{t\left(p^{q}+p^{m}\right), l}=0$.

Hence we have $\varphi_{1} \Phi_{2}=0$ and so $\operatorname{Im} \varphi_{2} \leftrightharpoons$ her φ_{1}.
Now let $m \in d$ be fixed and consider any integer b such that $p^{m} \leq b \leq a$. Write
(14.5)

$$
b-b_{0}+b_{1} p+\ldots+b_{1} p^{1} \quad\left(b_{\mu} \in 2,0 \leq b_{\mu}<p(\mu \in s), b_{\mu} \notin 0\right)
$$

Suppose first that
(14.6)

$$
b_{0}=b_{1}=\ldots=b_{m-1}=0
$$

Then, as $\xi_{t(b), t\left(p^{m}\right)} \in V_{\lambda\left(1, p^{m}\right)}$, we have
(14.7)

$$
\begin{aligned}
& =\binom{b-p^{m-1}}{b-p^{m}} \varepsilon_{c(b),\left(p^{m-1}\right)} \quad \text { and } p+\binom{b-p^{m-1}}{b-p^{m}} \quad \text { (cf. (14.3)(i)). }
\end{aligned}
$$

Now suppose that
(14.8) $b_{1} \& 0$, for some $0 \leq t \leq m-1$, and q is the smallest such t.

Then $b \geq p^{9}+p^{m}$ and $\xi_{2(b),\left(p^{n}+p^{m}\right)} \Subset V_{2\left(1 p^{2}+p^{m}\right)}$. So from the definition of φ_{2} and (14.2), we have
 and $p \nmid\binom{b-p^{m}}{b-p^{q}-p^{m}} \quad$ (since $b_{q} \neq 0$ (cf. (14.3)(ii)).

Write $f(m, b)= \begin{cases}p^{m}, & \text { if } b \text { satisfies (14.6) } \\ p^{q}+p^{m}, & \text { if } b \text { satisfies (14.8) } .\end{cases}$

Then, our next step is to prove that the set $\left\{\varphi_{2}\left(\xi_{\mu(b), ~}\langle(f(m, b))| m \in d, p^{m} \leq b \leq a\right\}\right.$ is linearly independent and so
(14.10)

$$
\operatorname{dim} \operatorname{Im} \varphi_{2} \geq \sum_{m=1}^{d}\left(1-p^{m}+1\right)
$$

Suppose we have
(14.11)

$$
\sum_{m=1}^{d} \sum_{b=p}^{a} \gamma_{m, b} \Phi_{2}\left(\xi_{c(b), u(m, b))}\right)=0, \text { for some } \gamma_{m b} \in k
$$

5-22

We know from (14.7) and (14.9) that the component of (14.11) lying in $V_{2(1.9)}$ is

$$
\sum_{b} \gamma_{d, b}\binom{b-p^{d}}{b-p^{q}-p^{d}} \xi_{\left.L(b), p^{d}\right)}
$$

where the sum is over all $b \geq p^{d}$ satisfying (14.8) with $m=d$.
But, under these conditions, $p+\binom{b-p^{d}}{b-p^{q}-p^{d}}$. Also, an the vectors $\xi_{(b) L(p)}$ ($p^{d} \leq b \leq a$) forma basis of $\left.V_{\lambda(1, w}\right)$, they are linearly independent. So, we must have

$$
\begin{equation*}
\gamma_{d, b}=0, \text { for all } b \geq p^{d} \text { such that } b_{1}+0, \text { for some } 0 \leq t<d \text {. } \tag{14.12}
\end{equation*}
$$

Hence, (14.11) and (14.12) imply (14.13), below

Now, the component of (14.13) lying in $V_{\lambda\left(1, p^{-1}\right)}$ is

where the fint sum is mken over all $b \geq p d-1$ such that b satisfies (14.8) with $m=d-1$, and the second sum is over all $b \geq p^{d}$ satisfying $b_{0}=\ldots=b_{d-1}=0$.

It is then clear that all vectors ξ a(b), $H^{\left(\sigma^{-1}\right)}$, involved in (14.14), are linearly
independent and, since $p+\binom{b-p^{d-1}}{b-p^{d}-p^{d-1}}$ in the firt case, and $p i\binom{b-p^{d-1}}{b-p^{d}}$ in the second case, (14.13) and (14.14) imply
(14.15) $\gamma_{d, b}=0$, for $a l l l b^{d}$ such that $b_{0}=\ldots=b_{d-1}=0$. Also, $\gamma_{b, A-1}=0$, for all $b \geqslant p^{d-1}$ atisfying $b_{i}+0$, for some $0 \leq i<d-1$.

Proceeding like this, we can see that (14.11) implies $\gamma_{m, b}=0$, for all $m \in d$ and $\mathrm{p}^{\mathrm{m}} \leq \mathrm{b} \leq \mathrm{a}$, and so (14.10) holds. But

$$
\operatorname{dim} \operatorname{ker} \varphi_{1}=1-\operatorname{dim} V_{\lambda}+\sum_{m=0}^{d} \operatorname{dim} V_{\lambda\left(1, p^{m}\right)}=\sum_{m=1}^{d}\left(a-p^{m}+1\right) .
$$

Thus, we must have $\operatorname{lm} \varphi_{2}=\operatorname{ker} \varphi_{1}$.

Now we will turn our altention to (14.4)(ii).
Let
$\xi=\sum_{m=1}^{d} \sum_{b=p^{m}}^{a} \gamma_{m, b} \xi_{\ell(b), \ell\left(p^{m}\right)}+\sum_{m=1}^{d} \sum_{q=0}^{m-1} \sum_{b=b^{q}+p^{m}}^{a} \gamma_{q, m, b} \xi_{\ell(b), \ell\left(p^{q}+p^{m}\right)}$, where $\gamma_{m, b} \gamma_{q, m, b} \Subset k$

Suppose $\xi \vDash \underset{m=1}{\oint}\left(\operatorname{rad} V_{\lambda(1, m)} \oplus \operatorname{rad} V_{\lambda\left(1,1+p^{m}\right)} \oplus \ldots \oplus \operatorname{rad} V_{\lambda\left(1, p^{m-1}+p^{m}\right)}\right)$.
 some $0 \leq \mathrm{q}<\mathrm{m}$. Calculating $\boldsymbol{Q}_{2}(\xi)$ we obain

$$
\begin{equation*}
P_{2}(\xi)=\sum_{m=1}^{d} \sum_{b=p^{m}}^{a} \gamma_{m, b}\binom{b-p^{m-1}}{b-p^{m}} \xi_{L(b), L\left(p^{m-1}\right)+}+ \tag{14.16}
\end{equation*}
$$

and, for any $m \boldsymbol{m} d$, the coefficient of $\xi_{\ell\left(\mathrm{p}^{m}\right), t\left(\mathrm{p}^{m-1}\right)}$ in this expression is

$$
\gamma_{m, p^{m}}+\sum_{q=0}^{m-2} \gamma_{q, m-1, p^{m}}\binom{p^{m}-p^{m-1}}{p^{m}-p^{q}-p^{m-1}}
$$

But, for any $0 \leq q<m-1,\binom{p^{m}-p^{m-1}}{p^{m}-p^{q}-p^{m-1}}=0(\bmod p)($ cf. (14.3)(ii)).
Hence, the coefficient of $\xi_{\left.t\left(p^{m}\right) t^{\left(t p^{m-1}\right.}\right)}$ in (14.16) is $\gamma_{m, p^{m}}$. Thus if $\gamma_{m} p^{m}+0$, for some $m \in d$, we must have $\varphi_{2}(\xi) \neq 0$.
 $0 \leq q<m$ implies $\varphi_{2}(\xi) \neq 0$.

Hence (14.4)(ii) holds, and this ends the proof of the theorem.

Unfortunately we are not able to construct the whole minimal projective resolution of $\mathbf{k}_{\boldsymbol{\lambda}}$ when $\mathrm{n}=\mathbf{2}$ and char $\mathbf{k}=\mathrm{p}(\boldsymbol{\phi} \mathbf{0})$. In our attempts to solve this problem we worked out some examples, which we shall now describe. We don't explain the calculations involved in the construction of these examples, since they are routine.
(14.17) Examples: Let $\varphi_{0} \varphi_{1}$ and φ_{2} be as in (14.1). Then the sequences below are minimal projective resolutions of $\boldsymbol{k}_{\boldsymbol{\lambda}}$.
(i) $\lambda=(r-6,6)$ and char $k=3$:

5-25

$$
\begin{aligned}
& 0 \rightarrow V_{\lambda(1,0)} \xrightarrow{\varphi_{4}} V_{\lambda(1, A)} \oplus V_{\lambda(1,0)} \xrightarrow{\varphi_{3}} V_{\lambda(1,3)} \oplus V_{\lambda(1, A)} \\
& \xrightarrow{\varphi_{2}} V_{\lambda(1,1)} \oplus V_{\lambda(1,3)} \xrightarrow{\varphi_{1}} V_{\lambda} \xrightarrow{\varphi_{0}} k_{\lambda} \rightarrow 0 .
\end{aligned}
$$

where ϕ_{y} and ϕ_{4} are defined by the matrices

$$
F_{3}=\left[\begin{array}{cc}
\xi_{\Sigma(4),(3)} & 0 \\
\xi_{\&(6),(3)} & \xi_{\mu(0),(4)}
\end{array}\right]: \quad F_{4}=\left[\begin{array}{ll}
\varepsilon_{L(0) \ell(4)} & 0
\end{array}\right]
$$

(ii) $\lambda=(r-11,11)$ and char $k=3$:

$$
\begin{aligned}
& 0 \rightarrow V_{\lambda(1,10)} \xrightarrow{\varphi_{7}} V_{\lambda(1,9)} \oplus V_{\lambda(1,10)} \xrightarrow{\varphi_{6}} V_{\lambda(1,7)} \oplus V_{\lambda(1,9)} \xrightarrow{\varphi_{5}} \\
& V_{\lambda(1,6)} \oplus V_{\lambda(1,7)} \xrightarrow{\varphi_{4}} V_{\lambda(1,4)} \oplus V_{\lambda(1,0)} \oplus V_{\lambda(1,10)} \rightarrow \xrightarrow{\varphi_{3}} \\
& V_{\lambda(1,3)} \oplus V_{\lambda(1,4)} \oplus V_{\lambda(1,9)} \oplus V_{\lambda(1,10)} \xrightarrow{\varphi_{2}} V_{\lambda(1,1)} \oplus V_{\lambda(1,3)} \oplus V_{\lambda(1,9)} \xrightarrow{\varphi_{1}} \\
& V_{\lambda} \xrightarrow{\varphi_{0}} \mathrm{~K}_{\lambda} \rightarrow 0 .
\end{aligned}
$$

where φ_{μ} is defined by matrix F_{μ},

$$
F_{3}=\left[\begin{array}{llll}
\xi_{\&(4),(3)} & 0 & 0 & 0 \\
\xi_{L(0), \mu(3)} & \xi_{L(0, K(4)} & 0 & 0 \\
\xi_{4(10), 43)} & \xi_{\alpha(10), L(4)} & 2 \xi_{\&(10), \mu(9)} & 0
\end{array}\right] ;
$$

$$
P_{6}=\left[\begin{array}{cc}
\xi_{t(9), k(7)} & 0 \\
\left.\xi_{k(10), ~ k ~}^{2}\right) & 2 \xi_{\&(10,4(9)}
\end{array}\right]
$$

$$
F_{7}=\left[\begin{array}{ll}
\xi_{\varepsilon(10)}(9) & 0
\end{array}\right]
$$

(iii) $\lambda=(r-5,5)$ and char $k=2$:

$$
\begin{aligned}
& 0 \rightarrow V_{\lambda(1,5)} \xrightarrow{\varphi_{5}} V_{\lambda(1,4)} \oplus V_{\lambda(1,5)} \xrightarrow{\varphi_{4}} V_{\lambda(1,3)} \oplus V_{\lambda(1,4)} \oplus V_{\lambda(1,5)} \\
& \xrightarrow{\varphi_{3}} V_{\lambda(1,2)} \oplus V_{\lambda(1,3)} \oplus V_{\lambda(1, A)} \oplus V_{\lambda(1,5)} \xrightarrow{\Phi_{2}} V_{\lambda(1,1)} \oplus V_{\lambda(1,2)} \oplus V_{\lambda(1, A)} \\
& \xrightarrow{\varphi_{1}} V_{\lambda} \xrightarrow{\varphi_{0}} \mathbf{k}_{\lambda} \rightarrow 0 .
\end{aligned}
$$

where φ_{μ} is defined by the matrix F_{μ},

$$
\begin{aligned}
& F_{3}=\left[\begin{array}{cccc}
\xi_{\mathcal{L}(3),(2)} & 0 & 0 & 0 \\
\xi_{\mathcal{L}(4),(2)} & \xi_{g(4) L(3)} & 0 & 0 \\
\xi_{\ell(5) \&(2)} & \xi_{\ell(5),(3)} & \xi_{\ell(5),(4)} & 0
\end{array}\right] ;
\end{aligned}
$$

615 An application to S(G)

Consider the functor

$$
P=S(G) \Theta_{S\left(B^{+}\right)}: \bmod S\left(B^{+}\right) \rightarrow \bmod S(G)
$$

and

$$
F^{\prime}=\operatorname{Hom}_{S\left(B^{-}\right)}(S(G), \cdot): \bmod S\left(B^{-}\right) \rightarrow \bmod S(G)
$$

In [W] it in proved the following
(15.1) Theorem: (D. Woodcock) Let $a \in \Lambda^{+}(n, r)$. Then
$R^{\prime} F^{\prime}\left(k_{\alpha}^{-}\right)=E \times L_{\left(B_{(B)}^{\prime}\right)}^{\prime}\left(S(G), k_{\alpha}^{-}\right)=0$.

We now apply this result to the sequences in theorems (13.1) and (14.1).

For the rest of this section we will fix $n=2$ and use the notation of 14. However we will not demand $\mathbf{p}=$ char k to be different from zero.

Consider $\boldsymbol{\lambda}=\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right) \in \mathbf{A}^{+}\left(\boldsymbol{Z}_{\mathbf{r}}\right)$. If $\mathrm{p} \neq 0$ write

$$
\lambda_{2}=a_{0}+a_{1} p+\ldots+a_{d} p d, \text { where } a_{\mu} \in Z, 0 \leq a_{\mu}<p \quad\left(\mu=0_{1} \ldots, d\right), a_{d} \neq 0
$$

Let $\varphi_{0} \varphi_{1}$ and φ_{2} be the maps defined in $ह 14\left(\varphi_{2}=0\right.$ if $\left.p=0\right)$, and let

$$
f_{a, 1}: F\left(V_{\alpha}\right) \Rightarrow S(G) \xi_{\alpha} \quad \text { all } \alpha \in A(2, r)
$$

be the $S(G)$-isomorphisms defined in (10.5). Define $S(G)$-maps Ψ_{0}, Ψ_{1} and Ψ_{2} as follows

$$
\begin{aligned}
& Y_{0}=F\left(\varphi_{0}\right) \Gamma_{\lambda, 1}^{-1} ; \quad \Psi_{1}=f_{\lambda_{1}, 1} F\left(\varphi_{1}\right)\left(\prod_{m=0}^{d} f_{\lambda}^{-1}\left(1, \varphi_{2,1}\right) ;\right. \text { and } \\
& \Psi_{2}=\left(\prod_{m=0}^{d} f_{\lambda\left(1, p_{0}\right)}^{d}\right) F\left(\varphi_{2}\right)\left(\prod_{m=1}^{d}\left(f_{\lambda(1, p}^{-1}\right), 1 \Perp \ldots \Perp f_{\lambda\left(1 p^{m-1}+p\right), 1}^{-1}\right)
\end{aligned}
$$

(15.2) Theorem: Let $\lambda \in A^{+}(2, r)$. With the notation above, we have

$$
5-28
$$

(i) $\quad 0 \rightarrow S(G)_{3}^{*}(1,1) \xrightarrow{\Psi_{1}} s(G)_{2} \xrightarrow{\Psi_{0}} K_{\lambda} \rightarrow 0$
is a projective resolution of the Weyl module $\mathrm{K}_{\boldsymbol{\lambda}}$ if char $\mathbf{k}=\mathbf{0}$.
(ii)

are the firrt three terms of a projective resolution of $\mathrm{K}_{\boldsymbol{\lambda}}$ if char $\mathbf{k}=\mathbf{p}>\mathbf{0}$.

Proof: Let chark=p($\mathbf{Z} 0$ and write $Y_{0}=V_{\lambda}$.

$$
\begin{aligned}
& \left.Y_{1}=\stackrel{\oplus_{m=0}^{\oplus}}{\left.V_{\lambda(1, p}^{m}\right)} \text {, and } Y_{2}=\stackrel{d}{m=1} \underset{m\left(1, p^{m}\right)}{ } \oplus V_{\lambda\left(1,1+p^{m}\right)} \oplus \ldots \oplus V_{\lambda\left(1, p^{m-1}+p^{m}\right)}\right) \\
& \left(Y_{1}=V_{\lambda(1,1):} \text { and } Y_{2}=0 \text { if } p=0\right) .
\end{aligned}
$$

By (13.1) and (14.1),

$$
\begin{equation*}
\mathbf{Y}_{2} \xrightarrow{\varphi_{2}} \mathbf{Y}_{1} \xrightarrow{\varphi_{1}} \mathbf{Y}_{0} \xrightarrow{\varphi_{0}} \mathbf{k}_{\lambda} \rightarrow 0 \tag{15.3}
\end{equation*}
$$

are the first terms of a minimal projective resolution of $\mathbf{k} \boldsymbol{\lambda}$. Thus, iaking duals (and since all the modules involved are finite dimensional over k) we have that

$$
0 \rightarrow \mathbf{k}_{\lambda}^{\circ} \xrightarrow{\varphi_{0}^{*}} Y_{0}^{\circ} \xrightarrow{\varphi_{1}^{*}} Y_{1} \circ \xrightarrow{\varphi_{2}^{*}} Y_{2^{\circ}} 11
$$

[^5] by (15.1), the sequence below is exact up to and including $F\left(Y_{1}\right.$ \%

Taking duals, once more, we obxin the exact requence in mod $\mathbf{S}(G)$

$$
\left[F\left(Y_{2}\right) p \xrightarrow{F\left(\varphi_{2}^{*}\right)^{*}}\left[F^{\prime}\left(Y_{1}{ }^{\circ}\right)\right] \rho \xrightarrow{F^{\prime}\left(\varphi_{1}^{*}\right)^{*}}\left[F^{\prime}\left(Y_{0}{ }^{\circ}\right)\right]^{\rho} \xrightarrow{F^{\prime}\left(\varphi_{0}^{*}\right)^{*}}\left[F^{\prime}\left(k_{2}^{0}\right)^{0}\right) 0\right.
$$

On the other hand, if we apply the functor F to the sequence (15.3), we obtain the following complex

$$
F\left(Y_{2}\right) \xrightarrow{F\left(\Phi_{2}\right)} F\left(Y_{1}\right) \xrightarrow{F\left(\Phi_{1}\right)} F\left(Y_{0}\right) \xrightarrow{F\left(\varphi_{0}\right)} F\left(x_{\nu}\right) \rightarrow 0 .
$$

But, from (5.6), we know that there is an $\mathbf{S (G) \text { -isomorphism }}$

$$
\theta_{\mathbf{v}}: F\left(V^{0}\right) \rightarrow \bar{F}\left(V^{\prime}\right)
$$

natural in $V \in \bmod S\left(B^{-}\right)$, i.e., $\left\{\theta_{V} \mid V \in \bmod S\left(B^{-}\right)\right\}$is a class of $S(G)$ isomorphsims such that for any $V, V^{\prime} \in \bmod S\left(B^{-}\right)$and any $f \in H_{H_{S(B)}}(\mathrm{V}, \mathrm{V})$ the diagram below commutes

$$
\begin{array}{cc}
F\left(V^{\circ}\right) \xrightarrow{F(f)} & F\left(V_{0}\right) \\
\theta_{V} \downarrow & \downarrow \theta_{V} \\
(F(V))^{p} \xrightarrow[F^{\prime}\left(f^{2}\right)]{ } & {[F(V))^{0} .}
\end{array}
$$

 $W \in \bmod S\left(B^{+}\right)$. Therefore, there are $S(G)$-isomorphisms $\eta_{1}, \eta_{0}, \eta_{1}, \eta_{2}$ such that the diagram below commutes.

Hence, since the botrom row of (15.4) is exact, the top row is also exact
Now, as $F\left(k_{\lambda}\right)=S(G) \theta_{S\left(B^{+}\right)^{\prime} \boldsymbol{k}_{\lambda}}$ is the Weyl module K_{λ} (cf. (7.2)), the theorem follows. a
(15.5) Romark: The sequence in (15.2)(i) is equivalent to the projective resolution of $\mathbf{K}_{\boldsymbol{\lambda}}$ determined in [\mathbf{A}] and [Z].

6. THE SCHUR ALGEGRA $\mathbf{8 (U +)}$

In this chapter we consider the unipotent subgroup U^{+}of B^{+}. and give some results on ita Schur algebra $S\left(U^{+}\right)=S_{k}\left(n, r_{1} U^{+}\right)$.
316. A taale and the radical of $\mathrm{S}\left(\mathrm{U}^{+}\right)$

Let $\mu, v \in n_{,} \mu<v$. For each non-negative integer m, consider the elements $\Gamma_{\mu}^{(m)}$, of $S\left(B^{+}\right)$, defined by

sum over all weights $\alpha \in A$ such that $m \leq \alpha_{r}$
 $m>r$.

Let $u_{\mu v}(t)$ be the element of U^{+}with 1 's in the main diagonal, I in position ($\mu, V)$, and zeros elsewhere ($\mathrm{t} \AA \mathrm{k}$). In (4.7) we proved that

$$
\begin{equation*}
T_{r}\left(u_{\mu v}(t)\right)=\sum_{m=0}^{t} m r_{\mu v}^{(m)} \tag{18.1}
\end{equation*}
$$

As a consequence of this we have the following result.
(18.2) Lemme: (i) $\Gamma_{\mu v}^{(m)} \in S\left(U^{*}\right)$, all $\mu, v \in n_{i} \mu<v_{i} m=0, \ldots r$.
(ii) $\Gamma_{\mu \nu}^{(m)} \Gamma_{\mu \nu}^{(q)}=\binom{m+q}{q} \Gamma_{\mu \nu}^{(m+q)}$, all $\mu, \nu \in \mathbf{n}, \mu<\nu ; m, q=0, \ldots, r$.

Proof: Let μ, V be an above.
(i) As $u_{\mu \nu}(t) \in U^{+}, T_{r}\left(u_{\mu}(t)\right) \in S\left(U^{+}\right)$, for all $\boldsymbol{i} \in \mathfrak{k}$. Thus, since k is an infinite
field, (16.1) implies $r_{\mu}^{(t p)} \in S\left(U^{4}\right)$, all $m=0, \ldots, r$.
(ii) Let $h^{\prime} r^{\prime} \in k$. Then, $u_{\mu v}(t) u_{\mu v}(t)=u_{\mu v}(t+t)$. Hence

$$
\begin{aligned}
& T_{r}\left(\mu_{\mu v}(t)\right) T_{r}\left(u_{\mu \nu} v(t)\right)=T_{r}\left(\mu_{\mu \nu} v\left(t+t^{\prime}\right),\right. \text { i.c., } \\
& \sum_{m=0}^{T} \sum_{q=0}^{r} t^{m} t^{\prime} q \Gamma_{\mu \nu}^{(m)} \Gamma_{\mu \nu}^{(q)}=\sum_{a=0}^{r}\left(t+t^{2} \Gamma_{\mu \nu}^{(a)},\right.
\end{aligned}
$$

or equivalendy.

$$
\sum_{m=0}^{r} \sum_{q=0}^{r} t^{m} t^{\prime} q \Gamma_{\mu \nu}^{(m)} \Gamma_{\mu \nu}^{(q)}=\sum_{a=0}^{r} \sum_{b=0}^{a}\binom{a}{b} t^{a-b} t^{\prime} b \Gamma_{\mu \nu}^{(a)}
$$

As this holds for any $\mathrm{f}, \mathrm{r} \in \mathbf{k}$ (and k is infinite) we must have
$\Gamma_{\mu \nu}^{(m)} \Gamma_{\mu \nu}^{(q)}=\binom{m+q}{q} \Gamma_{\mu \nu}^{(m+q)}$, all $m, q=0, \ldots, r . \quad \square$
 (16.1) and (16.2),
(18.3) $S\left(U^{+}\right)$ia generated by $\left\langle\Gamma_{v, v+1}^{(m)}\right| v \in n-1, m=0 \ldots \ldots,$.

We can refine this result as follows.
(10.4) Propoaltion: Suppose char $k=p(\mathbb{O})$. Then $\mathbf{S}\left(\mathrm{U}^{+}\right)$is generated (as

Proof: Let M be the subalgebrit of $\mathbf{S}\left(\mathrm{U}^{+}\right)$generated by \mathbf{X}. Suppose we show that. for any $\boldsymbol{v} \in \underline{n-1}$.

$$
\begin{equation*}
I_{\chi_{v}, w, 1}^{(\mathrm{IM})} \in M, m=0 \ldots, r . \tag{16.5}
\end{equation*}
$$

Then the proposition follows from (16.3).
To prove (16.5) we use induction on m.
If $m=0 . r_{\gamma, \mu, 1}^{(m)}=1_{s(G)} \leqslant M$
Now let $1 \leq m \leq r$, and suppose (16.5) holds, for any $q<m$.
If $\mathrm{p}>0$ there exists $\mathrm{b} \in \mathbf{Z}, \mathrm{b} \geq 0$, such that $\mathrm{p}^{\mathrm{b}} \leq \mathrm{m}<\mathrm{p}^{\mathrm{b}+1}$, and so we may write $\mathrm{m}=\mathrm{apb}+\mathrm{s}$, where $\mathrm{a}, \mathrm{s} \in \mathbf{Z}, 1 \leq \mathrm{a}<\mathrm{p}, 0 \leq \mathrm{s}<\mathrm{p}^{\mathrm{b}} \quad$ (if $\mathrm{p}=0$, we make $\mathrm{b}=\mathrm{s}=0$, and $\mathrm{a}=\mathrm{m}$).

Suppose first that $\& \& 0$. Then by (16.2)(ii), $\Gamma_{v, v+1}^{\left.(m p)^{b}\right)} \Gamma_{v, w+1}^{(\varepsilon)}=\binom{m}{s} \Gamma_{v, v+1}^{(m)}$. But, $p+\binom{m}{s}$. Hence,

$$
\Gamma_{v, v+1}^{(\boldsymbol{m})}=\frac{1}{(\mathrm{~m})} \Gamma_{v, v+1}^{(a p)} \Gamma_{v, v+1}^{(s)} .
$$

By the induction hypothesis both $\Gamma_{v, p+1}^{\left(n p^{p}\right)}$ and $\Gamma_{v, p+1}^{(0)}$ are in M. Thus $\Gamma_{v, v+1}^{(m)} \in M$

$$
\Gamma_{v, w+1}^{(v)}=\frac{1}{\binom{a^{b}}{p^{b}}} \Gamma_{v, v+1}^{\left((a-1) p^{b}\right)} \Gamma_{v, v+1}^{(p,},
$$

where $p+\binom{a^{b}}{p^{b}}$ (since a < p). So the result follows by the induction hypothesis. a

Our next step is to determine a besis for $\mathbf{S}\left(\mathrm{U}^{+}\right)$.
Let $u \in U^{+}$. Then $u_{\mu \nu}=0$, uniesss $\mu \leq \nu(\mu, V \in \mathrm{~g})$.

(16.6) Definition: For any non-negaive integer 9 , let Ω, be a set of representatives of the $P(s)$-orbits of paira (h, h) in $I(n, s) \times I(n, s)$ such that $h_{1}<h_{3}^{\prime}, h_{2}<h_{2}^{\prime}, \ldots, h_{3}<h_{s}^{\prime}$.

Choose $\boldsymbol{\Omega}$ so that if (ij) $\boldsymbol{\varepsilon} \boldsymbol{\Omega}^{\boldsymbol{\prime}}$ then

$$
i_{1}<j_{1}, i_{2}<j_{2}-j_{3}<j_{8}, i_{8+1}=j_{8+1} \ldots, i_{r}=j_{7}(\text { some } s \geq 0) .
$$

Under these conditions, let c be the element of $\mathbf{\Omega}_{\mathbf{s}}$ satisfying $\mathbf{c} \sim\left(\mathbf{i}_{\mathrm{t}}, \ldots, \mathbf{i}_{\mathrm{i}}\right)$, $\left(\mathrm{g}_{1} \ldots . \mathrm{j}_{\mathrm{z}}\right)$). Then, we say that c is the core of (i, j) (or of any element in the P -orbit of (i_{j}) in $I(n, r) \times I(n, r)$). For any $\left(i^{\prime}, j\right) \in I(n, r) \times I(n, r), c\left(i^{\prime}, j\right)$ will denote the core of ($\mathrm{i}^{1}, \mathrm{j}$).
if Recall that $\alpha^{\prime}=\{(1, j) \oplus \Omega \mid i \leq j\}$.

Note that $c(i, j) \in \Omega_{0}$ iff $c(i, j)$ is "empty", i.e., iff $\mathbb{I}=\mathrm{j}$.
(18.7) Dotinition: If $c \not \Omega^{*}$ define the core sum $\mathcal{E}_{\mathbf{c}}$, by

$$
\xi_{c}=\sum_{\substack{0, j=\alpha^{\prime} \\ c(1, j)=c}} \xi_{1 \mathrm{j} \cdot}
$$

(18.8) Remarks: (i) Let $\mu, v \in n_{,} \mu<v_{1}$ and consider the element

In particular, $c_{0}=\Omega_{0}^{\circ}$ and $\xi_{c_{0}}=1_{s(G)}$.
(ii) Let $c=(h, h) \in \Omega^{*},\left(s=0_{\ldots \ldots x}\right)$. Then $c=c(i, j)$, for some $(i, j) \in \Omega^{\prime}$.

In fact, let $\mathrm{i}^{\prime}, \mathrm{j} \boldsymbol{(} \in \mathbf{I}(\mathrm{n}, \mathrm{r})$ be defined by

$$
i_{\rho}^{\prime}=\left\{\begin{array}{l}
h_{\rho}, \text { if } \rho \in \underline{s} \\
1, \text { if } \rho \in\{s+1, \ldots, r\}
\end{array} \quad ; j_{p}^{\prime}=\left\{\begin{array}{l}
h_{p}^{\prime}, \text { if } \rho \in! \\
1, \text { if } \rho \in\{s+1, \ldots r\} .
\end{array}\right.\right.
$$

Then $i^{\prime} \leq j^{\prime}$ and $c\left(i^{\prime}, j^{\prime}\right)=c$. So if $(i j) \in \Omega^{\prime}$ and $\left(i^{\prime}, j\right) \sim(i, j)$ we have $c=c\left(i^{\prime}, j^{\prime}\right)$ - $\mathbf{c}(\mathbf{i} \mathbf{j})$.
(iii) By (ii) above, $\xi_{c} \neq 0$, all $c \in \Omega^{\boldsymbol{*}}$.

It is clear that if $(i, j) .\left(i^{\prime}, j^{\prime}\right) \in \Omega^{\prime}$, and $c(i, j)=c\left(i^{\prime} j^{\prime}\right)$, then for any $u \in U^{+}$we have $u_{L_{j}}=u_{i} j^{\prime}$ (since $u_{\mu \mu}=1, \mu \in n$). Therefore
(16.9)

$$
T_{r}(u)=\sum_{\left(0, j \in \alpha^{\prime}\right.} u_{i, j} \xi_{1, j}=\sum_{c \in \Omega^{*}} u_{c} \xi_{c} \text { for all } u \in U^{+}
$$

(where $u_{c}=u_{i j}$ for any $(i, j) \in \Omega^{\prime}$ such that $c(i, j)=c$).
(16.10) Lemma: $\xi_{c} \in S\left(U^{+}\right)$, for all $c \in \mathbf{\Omega}^{*}$.

 $\mathrm{d}_{\boldsymbol{\mu}} \in \boldsymbol{1}(\mathrm{A} \in \underline{\mathrm{m}}$) matisfying
(i) $\quad \mu_{\mathrm{a}}<\nu_{a}$, and $\left(\mu_{a}, v_{a}\right) \&\left(\mu_{b}, \nu_{b}\right)$ if $a \neq b(a, b \in m)$;
(i) $\sum_{i \in m} d_{m}=8$;

For each $\mathrm{t}=\left(\mathrm{t}_{1} \cdots \mathrm{I}_{\mathrm{m}}\right) \in \mathbf{k}^{\mathrm{m}}$. define $\mathrm{u}(\mathrm{t}) \in \mathrm{U}^{+}$, by

$$
v\left(v_{\mu, v}= \begin{cases}l & , \text { if } \mu=v \\ t & , \text { if }(\mu, v)=\left(\mu_{a}, v_{z}\right), a \in \underline{m} \\ 0, & \text { otherwise } \quad ; \mu, v \in \underline{\underline{n}} .\end{cases}\right.
$$

Then, for any $(\mathbb{I} \mathrm{J}) \propto \Omega$, we have

$$
u\left(l _ { i j } = 0 , \text { unless } (l _ { p } , i _ { p }) \in \left\{(1,1), \ldots,(n, n),\left(\mu_{1}, v_{1}\right)_{n} \ldots,\left(\mu_{m}, v_{m}\right) h, \text { all } \rho \in \underline{g} .\right.\right.
$$

 $u\left(t_{1} J=t_{1}^{q_{1}} \ldots t_{m}^{q_{m}}\right.$.

Let $Q=\left\{q=\left(q_{1} \cdots q_{m}\right) \in Z^{m} \mid 0 \leq q_{2} \leq r(a \in m) ; \sum_{i f m} q_{2} \leq r\right\}$.

$$
6-7
$$

For each q © \mathbf{Q}. let $\mathbf{c}(\mathbf{q})$ be the element of Ω^{\bullet} defined by.

Then, we have just prowed that, for any $(i, j) \& \Omega^{\prime}$, there holds

$$
u\left(t_{1 j}=\left\{\begin{array}{cc}
q_{1} \ldots & q_{m} \\
t_{1} \ldots t_{m} & \text {, if } c(i, j)=c(q) \text {, for some } q \in Q \\
0 & \text {, otherwise. }
\end{array}\right.\right.
$$

Therefore,
(18.11) $T_{R}(u(t))=\sum_{(0 . j) \in \alpha} u\left(b_{i j} \xi_{i j}=\sum_{q \in Q} q_{1}^{q_{1}} \ldots t_{m}^{q_{m} \xi_{c(Q)} .}\right.$

Since $T_{r}(u(t)) \in S\left(U^{+}\right)$, and (16.11) holds for any $t \in k^{m}$ (and k is infinite) we must have

$$
E_{Q}(q) \in S\left(U^{+}\right), \text {for } a l l q \in Q
$$

But, in particular, $d=\left(d_{1}, \ldots, d_{m}\right) \in Q$. Also $c=c(d)$. Hence $\xi_{c}=\xi_{c(d)} \in S\left(U^{+}\right)$. o (18.12) Theorem: $S\left(U^{+}\right)$has k-basis $Y=\left\{\xi_{c} \mid c \in \Omega^{\bullet}\right\}$.

Proof: By (16.9) and the lemma (16.10). Y spans $S(U+$). Also from the definitions of Ω^{*} and of E_{c} it is clear that the elements of Y are linearly independent. \square

Let $\mathrm{i}, \mathrm{j} \boldsymbol{1}$ have weights α and β, respectively, and suppose that $\mathbf{1 \leq j}$. In 89

$$
6-8
$$

we defined the degree of $\xi_{i j}, d\left(\xi_{i, j}\right)$, by

$$
d(\xi, j)=\alpha-\beta .
$$

Also, if $\Psi=\left\{\sum_{\mu=n-1} z_{1} \varepsilon_{1-1+1} \mid z_{1} \in \mathbb{Z}, z_{1} \geq 0(u \in \underline{n-1\}}\right.$ (where

$$
\begin{aligned}
& \varepsilon_{\mu \mu+1}=\underset{(\mu)(\mu+1)}{\left(0_{\ldots, \ldots, 1,}, \ldots, 0\right)} \text { and } S\left(B^{+}\right)_{\zeta}=\underset{(j, 1)}{\oplus} a^{k \xi_{i, j}}(\zeta \in \Psi) \text { we proved that } \\
& d\left(R_{j}\right)=6
\end{aligned}
$$

$$
S\left(B^{+}\right)=\zeta_{\zeta}^{\oplus} \Psi\left(B^{+}\right)_{\zeta}
$$

is a grading of the algebra $S\left(\mathbf{B}^{+}\right)$(cf. (9.14)).

It is easy to see that if $(i, j),\left(i^{\prime}, j\right) \propto \Omega^{\prime}$, and $c(i, j)=c\left(i^{\prime}, j\right)$, then $d\left(\xi_{i, j}\right)=d\left(\xi_{i}^{\prime}, j\right)$. Thus, for any $\mathbf{c} \in \Omega^{\mathbf{2}}$, there hoids
 satisfies $c\left(i^{\prime}, j\right)=c$.
(ii) $d\left(\xi_{c}\right)=\left(0_{r}, \ldots, 0\right)$ iff $c \in \Omega^{\circ}{ }_{0}$ i.e., iff $\xi_{c}=1_{S(G)}$.

For each $\zeta \in \Psi$ let $S\left(U^{+}\right) \zeta$ be the k-subspace of $S\left(U^{+}\right)$spanned by all $\xi_{c}\left(c \in \Omega^{-}\right)$of degree ζ.

By the remarks above,

$$
\begin{gathered}
6-9 \\
S\left(U^{+}\right)=\zeta_{\zeta<\Psi}^{\oplus} S\left(U^{+}\right)_{\zeta}
\end{gathered}
$$

is a grading of S(U).
We now use this grading to denermine the radical of S(U+).
(16.14) Theoram: The radical of $S\left(U^{+}\right)$has k-batis $\left\{\mathcal{E}_{\mathrm{c}} / \mathrm{c} \in \mathbf{\Omega}^{+} \backslash \Omega^{+} \mathbf{0}^{\prime}\right.$. Thus, $S\left(U^{+}\right)=k 1_{S(G)} \oplus$ rad $S\left(U^{+}\right)$is a local ring.

(1) N is a maximal left ideal of $\mathrm{S}\left(\mathrm{U}^{+}\right)$;
(2) \mathbf{N} is a nil left ideal.

Then by (1), rad $\mathrm{S}\left(\mathrm{U}^{+}\right) \subseteq \mathrm{N}$ and by (2), $\mathrm{N} \subseteq \mathrm{rad} \mathrm{S}\left(\mathrm{U}^{+}\right)$. Hence $\mathrm{N}=\mathrm{rad} \mathrm{S}\left(\mathrm{U}^{+}\right)$, as desired.

Hence (1) follows.
To prove (2) define, for each $\boldsymbol{\gamma}=\left(\boldsymbol{\gamma}_{1}, \ldots, \boldsymbol{\gamma}_{n}\right) \in \boldsymbol{Z}^{\mathrm{n}}$,

$$
\sigma(V)=\sum_{V=1} V \gamma_{V}
$$

Clearly $\sigma\left(\gamma+\gamma=\sigma(\gamma)+\sigma(\gamma)\right.$, for all $\gamma, \gamma \in \mathbf{2}^{n}$. Thus, if $(i, j) \in \Omega^{\prime}$ and $i \in \alpha$, j © β (α, β ह A) we have
(i) $\quad \sigma\left(d\left(\mathcal{B}_{1, j}\right)=\sigma(\alpha-\beta)=\sigma(\alpha)-\sigma(\beta) \geq-\sigma(\beta) \geq-n r_{\text {, }}\right.$
(i) write $\alpha-\beta=\sum_{\mu \in E-1} m_{\mu} e_{\mu \mu+1}$, where m_{1}, \ldots, m_{n-1} ase non-negative integens.

Then, $\sigma\left(\mathrm{d}\left(\xi_{i, j}\right)\right)=\sigma(\alpha-\beta)=\sum_{\mu=1} \sigma\left(m_{\mu} \mu_{\mu \mu+1}\right)=-\sum_{\mu=1} m_{\mu} \leq 0$. Also, $\sigma\left(d\left(\xi_{\mu}, j\right)=0\right.$ iff $m_{\mu}=0(\mu \| n-1)$ iff $\alpha=\beta$. i.a., iff $i=j$ (since isj).

Hence, if $\mathrm{c} \in \mathbf{\Omega}^{+} \backslash \mathbf{\Omega}^{*}$, there holds

$$
\begin{equation*}
-r n \leq \sigma\left(d\left(\xi_{c}\right)\right) \leq-1 \tag{16.15}
\end{equation*}
$$

Now let η be any element of N, and let $m \in \mathbb{Z}$ satisfy $m>r n$.
Then, if η^{m} is not zero, there are $c_{1} \ldots . . c_{\text {me }} \in \Omega^{\circ} \backslash \Omega^{\circ}{ }_{0}$ such that $\xi_{c_{1}} \ldots \xi_{c_{m}} \neq 0$. But $\xi_{c_{1}} \ldots \xi_{c_{m}}$ in homogeneous of degree $d\left(\xi_{c_{1}}\right)+\ldots+d\left(\xi_{c_{m}}\right)$. Also $\sigma\left(d\left(\xi_{\varepsilon_{1}}\right)+\ldots+d\left(\xi_{c_{m}}\right)\right)=\sigma\left(d\left(\xi_{c_{1}}\right)\right)+\ldots+\sigma\left(d\left(\xi_{c_{c}}\right)\right) \leq-m<-r n$. This contradicis (16.15). Hence $\eta^{\mathrm{m}}=0$, and (2) followe. \quad a
617. The natural epimorphism $\mathbf{S}(\mathrm{T}) \otimes \mathbf{S}\left(\mathrm{U}^{+}\right) \rightarrow \mathbf{S}(\mathrm{B}+)$

Consider the subgroups T and U^{+}of $\mathrm{B}^{+} .13 \mathrm{As} \mathrm{B}^{+}=\mathrm{TU}^{+}$(semidirect product)

$$
\mathrm{f}: \mathrm{S}(\mathrm{~T}) \otimes \mathrm{S}\left(\mathrm{U}^{+}\right) \rightarrow \mathrm{S}\left(\mathrm{~B}^{+}\right)
$$

given by

$$
f(\xi \otimes \eta)=\xi \eta, \text { all } \xi \in S(T), \eta \in S\left(U^{+}\right) \text {. }
$$

We are interested in the kernel of f . From (3.8) and (16.12), we know that $\mathrm{S}(\mathrm{T})$

[^6]$$
6-11
$$
 calculate ker f we need to study the producta $\xi_{\alpha} \xi_{c}\left(\alpha \in A, c \in \Omega^{*}\right)$.

If $\alpha \in \Lambda(n, r)$ and $\beta \in \Lambda(n, s)(s=0, \ldots, r)$ we say that $\beta \in \alpha$ if $\beta_{\mu} \leq \alpha_{\mu}$, for all $\boldsymbol{\mu} \boldsymbol{\epsilon}$ п.
(17.1) Definition: Let $c=(h, h) \in \Omega^{*} ;(s=0, \ldots, s)$. We define $B(c) \in \Lambda(n, s)$ to be the weight of b .
(17.2) Theoram: ker f has k-basis

$$
\left.\bigotimes_{\alpha} \otimes \xi_{\kappa} \mid \text { all } \alpha \in \Lambda, c \in \Omega^{*} \text { such that } \beta(c) ₫ \alpha\right) \text {. }
$$

Thus, there in a thort exact sequence of \mathbf{k}-spaces
 $A(\alpha, c)=\left\{(i, j) \in \Omega^{\prime} \mid i \in \alpha\right.$ and $\left.c(i, j)=c\right\}$. Then

$$
\begin{equation*}
\xi_{a} \xi_{c}=\sum_{\substack{a, j \in \alpha \\ c(j, j)=c}} \xi_{a} \xi_{i, j}=\sum_{(0, j) \in \lambda_{(\alpha,)}} \xi_{i, j} \tag{17.3}
\end{equation*}
$$

 as $i \in \alpha$ and $\left(i_{1}, \ldots, i_{2}\right) \sim h$, we have

Therefore
(17.4) $\mathbf{A}(\alpha, c) \notin$ implies $\boldsymbol{\beta}(c) \subseteq \alpha$.

Now suppose that $A(\alpha, c) \neq \boldsymbol{F}_{\text {, and }}$ let $(i, j),\left(i^{\prime} j\right) \in A(\alpha, c)$. Since $c(i, j)=c\left(i^{\prime} j\right)=c$, there is $\mathbf{\tau} \mathbf{G} \mathbf{P}(\mathrm{s})$ such that

$$
\mathrm{I}_{\rho}=\mathrm{I}_{\pi(\rho)} \text { and } \mathrm{J}_{p}=\mathrm{h}_{\mathrm{r}(\rho)} \text {, all } \rho \in
$$

As a consequence of this, and since $i, V^{\prime} \in \alpha$, we must have $\left.X(i)=X(i), N \in n\right)$. Hence, there is a bijection, $\sigma: \underline{I} \backslash s \rightarrow \underline{g} \backslash \frac{g}{}$, such that

$$
i_{p}^{\prime}=i_{o(p)}, ~ a l l p G_{I} \backslash \underline{s}
$$

Define $\pi ⿷ P(r)$ by, $\pi(\rho)=\tau(p)$ if $\rho \in s$, while $\pi(\rho)=\sigma(p)$ if $\rho \in r \backslash \frac{c}{}$. Clearly in=i'. Also

$$
j_{p}= \begin{cases}j_{(\rho)}=j_{x(\rho)} & , \text { if } \rho \in s \\ i_{\rho}^{\prime}=i_{\sigma(\rho)}=j_{\sigma(p)}=j_{x(p)}, & \text { if } \rho \in I \backslash!\end{cases}
$$

Hence $(i, j)=\left(i^{\prime}, j\right)$. This proves that

$$
\begin{equation*}
\mathrm{A}(\mathrm{a}, \mathrm{c}) \text { has at most one element. } \tag{17.5}
\end{equation*}
$$

 ($V \in \underline{n}$), we may define $i d \in I(n, r)$ as follows

- It is clear that if $\alpha, i \leq j$, and $c(i, j)=(h, h)=c$. Thus, the element of $\boldsymbol{\Omega}$ which representa the \mathbf{P}-arbit of (i, j) in $\mathrm{I} \times \mathrm{I}$ belongs to $\mathbf{A}(\alpha, c)$. This together with (17.4) and (17.5) give the following

$$
=A(\alpha, c)= \begin{cases}1, & \text { if } \beta(c) \subseteq \alpha \\ 0, & \text { if } \beta(c) \Phi \alpha ; \text { all } \alpha \in A, c \in \Omega^{*} .\end{cases}
$$

If $\beta(c) \subseteq \alpha$ write $A(\alpha, c)=\{((1(\alpha, c), j(\beta, \varepsilon))\}$. Then, by (17.3),

 (17.2) follows from (17.6).

$$
\mathrm{N}-1
$$

INDEX OF NOTATION

Symbol	Meaning	Page of Definition
$A_{y}^{m} \boldsymbol{\lambda}=\lambda(\mathrm{y}, \mathrm{m})$	$\left(\lambda_{1}, \ldots, \lambda_{\nu}+m, \lambda_{\nu+1}-m_{2} \ldots, \lambda_{n}\right)$	3-3
B^{+}(resp. B^{-})	The group of all upper (resp. lower) triangular matrices in \mathbf{G}	1-9
$c_{\lambda / 1}$	The Cartan invariants of $\mathrm{S}\left(\mathrm{B}^{+}\right)$	4-3
$\operatorname{dim}=\operatorname{dim} \mathrm{m}_{\mathrm{z}}$	Dimension over K	-
$\mathbf{i d}_{1}$		-
$\mathbf{G}=\mathbf{G L} L_{\text {d }}(\mathbf{k})$	The general linear group of degree n over k	1-1
$\mathrm{O}_{\mathrm{j}}^{+}, \mathrm{G}_{\mathrm{j}}^{-}$	The standard parabolic subgroups of \mathbf{G} corresponding to the set J	1-10
$(\mathrm{V}, \mathrm{V})_{3}$	$\mathrm{Hom}_{1}(\mathrm{~V}, \mathrm{~V})$, group of S -homomorphisms from V to V^{\prime}	'
id	Elements of I(n, r)	-
inc	The inclusion map	-
$I=I(n r)$	[i $=\left(i_{1} \ldots \ldots i_{r}\right) \mid i_{p} \in \underline{n}$, for all $\left.\rho \in \underline{r}\right)$	1-1
I(2)	$\left\{\mathrm{i} \in I \mid \mathrm{i} \leq 2(\lambda)\right.$ and $\mathrm{T}_{\mathrm{i}}^{\boldsymbol{\lambda}}$ is row-semistandard\}	3-1
J	$n \backslash\left\{m_{1}, \ldots, m_{3}\right\}$, where m_{1}, \ldots, m_{1} are integers satisfying $0<m_{1}<\ldots<m_{s}=n$	1-2
k	Infinite field	1-1
$\mathbf{k}_{\lambda}\left(\right.$ resp. $\left.\mathbf{k}_{\boldsymbol{\lambda}}\right)$	The irreducible $\mathbf{S}\left(\mathrm{B}^{+}\right)$-module (resp. $\mathrm{S}\left(\mathrm{B}^{-}\right)$-module) associated with λ	2-3
$\mathbf{K}_{\boldsymbol{\lambda}}$	The Weyl module for $S(G)$ associated with λ	2-6, 2-9

	N-2	
Symbol	Mearing	Page of Definition
$\mathbf{K}_{\boldsymbol{\lambda} \boldsymbol{J}}$	$\mathbf{S}\left(\mathrm{C}_{\mathrm{j}}^{+}\right) \Theta_{S\left(\mathrm{~B}^{+}\right)} \mathbf{k}_{\boldsymbol{\lambda}}$	2-13
4(2)	The element of $\mathrm{I}(\mathrm{n}, \mathrm{r})$ defined by the λ-tableau (4.4)	1-14
$\boldsymbol{U}, ~(m)$	$\boldsymbol{\ell}\left(A_{V}^{\mathrm{m}} \lambda\right)$	3-3, 3-4
$\boldsymbol{e}(\mu, \nu, m, \lambda)$	The element of $\mathrm{I}(\mathrm{n}, \mathrm{r})$ defined by the $\boldsymbol{\lambda}$-tableau (4.5)	1-15
$\mathbf{L}_{\text {J }}$	The standard Levi subgroup of \mathbf{G} corresponding to the set J	1-10
$\bmod S$	The category of all S -modules which are finite dimensional over k	-
$\mathbf{N a}_{\mathbf{a}}$	$\left\{m_{0-1}+1, \ldots, m_{0}\right\}$	1-2
$\mathbf{P}(\mathbf{s})$	The symmerric group on $\{1, \ldots, s\}$	1-1
\mathbf{P}	$\mathbf{P}(\mathrm{r})$	1-1
$\mathrm{P}_{\mathbf{i}}$	The stabilizer of i in P	1-8
$\mathrm{P}_{\mathbf{i} \mathbf{j}}$	$P_{j} \cap P_{j}$	1-8
$\mathbf{S}(\mathbf{H})=\mathrm{S}_{\mathbf{k}}(\mathrm{n}, \mathrm{r}, \mathrm{H})$	The Schur algebra for H, n, r and k	1-6
T	The group of all diagonal matrices in G	1-9
T ${ }^{\text {d }}$	The basic λ-tableau	1-4
$T_{i}^{\text {i }}$	The $\boldsymbol{\lambda}$-tablesu iT ${ }^{\boldsymbol{\lambda}}$	1-5
$\mathrm{T}_{\mathbf{r}}$	The representation afforded by the kG -module $\mathrm{E}^{\text {© }}$	1-6
$\mathbf{H}_{\mu} \mathbf{v}(t)$	The element of G with $1^{\prime} s$ in the main diagonal, t in position ($11, \mathrm{~V}$) and zeros elsewhere	1-9
\mathbf{U}^{+}(resp. U^{-})	The group of all unipotent matrices in B^{+}(resp. B^{-})	1-9
$\mathbf{V}_{\boldsymbol{\lambda}}$	The projective indecomposable $\mathrm{S}\left(\mathrm{B}^{+}\right)$-module $\mathrm{S}\left(\mathrm{B}^{+}\right)_{2}$	2-1

	N-3	
Symbol	Meaning	Page of Definition
V^{λ}	The λ-weight space of V	1-14
yo	The contravariant dual of \mathbf{V}	1-18
V*	The dunl, $\operatorname{Hom}_{4}(\mathbf{V}, \mathbf{k})$, of \mathbf{V}	-
\mathbf{V} * \mathbf{V}^{\prime}	$\mathbf{V} \boldsymbol{B l}_{\mathbf{k}} \mathbf{V}^{\prime}$	1-5
$\Gamma_{\mu \nu}^{(m)}$	$\sum_{\lambda} \xi_{2(\mu, v, m, \lambda), 4}(\lambda)$ (sum over all $\lambda \in \Lambda$ such that	
	$m \leq \boldsymbol{\lambda}_{\boldsymbol{y}}$)	1-16
$\boldsymbol{e}(\infty)$	The sign of the permutation ω	-
λ		-
$\boldsymbol{\lambda}(\mathrm{y}, \mathrm{m})$	$\mathbf{A}_{\boldsymbol{\gamma}}^{\boldsymbol{m}} \boldsymbol{\lambda}$	3-4
$\boldsymbol{\Lambda}=\mathbf{N}(\mathrm{n}, \mathrm{r})$	$\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mid \lambda_{v v} \in Z, \lambda_{v} \geq 0(v \in \square), \sum_{v \in \frac{n}{}} \lambda_{v}=r\right\}$	1-1
$\Lambda^{+}=\Lambda^{+}(\mathrm{n}, \mathrm{z})$	$\left.\boldsymbol{\lambda} \in \mathrm{A}(\mathrm{n}, r) \mid \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}\right]$	2-9
$\Lambda_{\mathrm{J}}^{+}=\mathbf{\Lambda}_{\mathrm{j}}^{+}(\mathrm{n} \boldsymbol{r})$	$\left\{\lambda \in \Lambda(n, r) \mid \lambda_{\text {ma-1 }}+1 \geq \ldots \geq \lambda_{m_{2}}\right.$, all $\left.\mathrm{L} \in \mathrm{g}\right\}$	2-14
$\xi_{L j}$	A basis element of $\mathrm{S}(\mathrm{G})$	1-6
$\boldsymbol{\xi}_{\boldsymbol{\lambda}}$	$\xi_{i, j}$, where i $\in I(\mathrm{n}, \mathrm{r})$ has weighr λ	1-8
N_{λ}	The representation afforded by the $\mathbf{S}\left(\mathrm{B}^{+}\right)$-module $\mathbf{k}_{\boldsymbol{\lambda}}$	2-3
$\cos (\lambda)$	$\left(\lambda_{1}+\omega(1)-1, \ldots, \lambda_{2}+\omega(n)-n\right)$	4-11
ω_{λ}	$\mathbf{1}_{\mathbf{S (G)}} \mathbf{N}_{\mathbf{S (B r})} \mathbf{1}_{\mathbf{t}_{\mathbf{A}}}$	2-6
Ω	A transversal of the set of all P-orbits of I \times I	1-7
$\boldsymbol{\Omega}$	$\underline{(i, j}) \in \Omega \mid \boldsymbol{i} \leq \mathrm{j}\}$	2-1
1	\{1, ...ss\}	1-1
$\boldsymbol{H} \boldsymbol{V}$	$\boldsymbol{\mu}$ and V are in the same set N_{a}, for some a $\mathrm{E}_{\text {g }}$	1-2

Symbol	Meaning	Page of Defintion
$\mu \leq v$	$\mu \leq v$ or $\mu={ }_{j} \mathbf{v}$	1-2
$i=j$	$i_{\rho} z_{j} j_{\rho}$, all $\rho \in \mathrm{r}$	1-2
$i \leq j$	$t_{p} \leq j_{j}$ all $\rho \in \mathbb{T}$	1-2
i 5 j	$i_{p} \leq j_{p}, \quad$ all $p \in I$	1-3
$1 \sim \mathrm{j}$	I and J are in the same P-orbit of I	1-1
$(\mathbf{i} \mathbf{j}) \sim\left(\mathbf{i}^{\prime} \mathbf{j}\right)$	(i, j) and ($\mathrm{i}^{\prime}, \mathrm{j}$) are in the same P -orbit of 1×1	1-1
5	The dominance onder on $\Lambda(n, r)$	1-3
\oplus	Internal direct sum	-
11	External direct sum	-
-	The cardinal	-
U	Disjoint union	-

R-1

REFERENCES

[A] K. Akin, On complexes relating the Jacobi-Trudi ideniry with the Bemstein-Gelfand-Gelfand resolution, J. Algebra 117 (1988), 494-503.
[AB1] K. Akin and D.A. Buchsbaum, Characteristic-free representaion theory of the general linear group, Advan. in Math. 58 (1985), 149-200.
[AB2] K. Akin and D.A. Buchsbaym, Characteristic-free representaion theory of the general linear group II. Homological considerations, Advan. in Math. 72 (1988), 171-210.
[ABW] K. Akin, D.A. Buchsbaum and J. Weymen, Schur functors and Schur complexen, Advan. in Math. 44 (1982), 207-278.
IC] P.M. Cohn. "Algebr" Vol. 1, J. Wiley and Sons, 1974.
[CI] R.W. Carter and G. Luszig. On the modular representations of the general linear and symmetric groups, Math. Z 136 (1974), 193-242.
[CPS] E. Cline, B. Parshall and L. Scott, Finite-dimensional algebras and highest weight categories. J. reine angew. Math. 391 (1988), 85-99.
[CR] C.W. Curtis and I. Reiner, "Representation theory of finite groups and associanive algebris", Interscience Publishers, New York, 1962, 2nd ed. 1966.
(D) S. Donkin, On Schur algebras and related algebras, I, J. Algebra 104 (1986). 310-328.
[G1] J.A. Green, "Polynomial representations of GL $_{\mathbf{n}}{ }^{\text {", Lecture Notes in }}$ Mathematics No. 830, Springer-Verlag, Berlin, 1980.
[G2] J.A. Green, On certain subalgebras of the Schur algebra, preprint 1989.
[J] G.D. James. "The representation theory of the symmetric group", Lecture Notes in Machemarics No. 682. Springer-Veriag, Berlin, 1978.
R-2
[JI] G.D. James and A. Kerber, "The representation theory of the symmetric group", Encyclopedia of Math. Appl., Vol. 16, Addison-Wesley, Reading Massachusettr, 1981.

MI I.G. Macdonald, "Symmetric Functions and Hall Polynominls", Oxford Univ. Press (Clarendon), Oxford, 1979.
[P] B.J. Parshall, Finite dimensional algebras and algebraic groupa, Contemporary Math. 82 (1989), 97-114.
[R] J.J. Roman, "An introduction to homological algebra", Academic Press, London, 1979.
[S] I. Schur, Uber eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen (1901), in I. Schur, Gesammelte Abhandlungen I, 1-70, Springer-Veriag, Berlin, 1973.
[St] R. Steinberg. 'Lectures on Chevalley groups', Yale University, New Haven, 1968.
[Sw] M. Sweedler, "Hopf algebras", W.A. Benjamin, New York, 1969.
[W] D.J. Woodcock, Unpublished work, Universiry of Warwick 1990.
[Z A.V. Zelevinskii, Resolvents, dual pairs, and character formulas, Funct. Analysis and its Appl. 21 (1987), 152-154.

[^0]: ${ }^{1} B y b\left(\left(g_{\mu \nu}\right)\right)$ and $c\left(\left(g_{\mu \nu}\right)\right)$ we mean the element of k obtained by replacing the indeterminate $x_{\mu \nu}$ in (3.7) by $g_{\mu v}$ for all $(\mu, v) \in M$.

[^1]: 4 If V, V^{\prime} are k-vector spaces and $f \in \operatorname{Hom}_{k}\left(V, V^{\prime}\right), f^{*} \in \operatorname{Hom}_{k}\left(V^{*}, V^{*}\right)$ denotes the map defined by, $f^{*}\left(\theta^{\prime}\right)=\theta^{\prime}$, all $\boldsymbol{\theta}^{\prime} \in V^{\prime}$.

[^2]: 7 Recall that $\lambda(1,1)=A_{1} \lambda$ and $t=\ell(\lambda)$.

[^3]: ${ }^{8}$ Forany $a_{1} \mathbf{a}^{\prime} \in \underline{f},\left(a^{\prime}\right)$ denotes the transposition in \mathbf{P} which interchanges and \mathbf{m}^{\prime}.

[^4]: 9 This is a particular case of $I\left(A_{1}^{m} \alpha\right) \leq I(\alpha)$, for any $\alpha \llbracket A\left(n_{r} r\right), 0 \leq m \leq \alpha_{2}$.

[^5]: 11 If V, V^{\prime} are k-vector spaces and $f \in \operatorname{Hom}_{\mathbf{2}}(V, V)$, $f^{*} \in \operatorname{Hom}_{\mathbf{2}}\left(V^{*} * V^{*}\right)$ is the map defined by, $f^{*}(\theta)=\theta$, for all $\theta \in V^{+*}$.

[^6]: ${ }^{13}$ Recall the \mathbf{T} ta the group of all disponal mericea in \mathbf{O}.

