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SUMMARY

In this thesis we study some subalgebras of the Schur algebra for the general linear
group GL,(Kk), particularly the Schur algebra S(B+) for the Borel subgroup B+ of
GW -

In many ways it is easier to work in S(B+) than in the more complicated algebra
S(GL,,(k)). Using the properties of S(B+) we give a new treatment of the Weyl
modules for GL"k). We then construct 2-step minimal projective resolutions of the
irreducible S(B+)-modules and from these we obtain very easily 2-step projective
resolutions of the Weyl modules for GLn(k).

We study the Cartan invariants of S(B+) and show that under certain conditions
they satisfy an interesting identity.

For particular cases of the field k and of the integer n we prove several results on
minimal projective resolutions of the irreducible S(B+)-modules.

The methods we use are combinatorial and do not involve algebraic group theory.
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O. INTRODUCTION

Let k be aninfinite field and let n and r be positive integers.
Suppose that E is an n-dimensional k-vector space where G - GL,,(k) acts
naturally. Then, the r-fold tensorproduct E®r- E® ...® E (® denotes 0k) can be

made into a left kG-moduleby the rule

g(Xj ®..®xr) - gx,® ..®gXji all ge G, X|,...xr« E.

Let

Tr:kG-*Endk(E®0

be the representation afforded by E®t (regarded as kG-module). The image of Tp
i.e., Tr (kG) is a subalgebra of Endk (E®0-

Definition: Foreach subgroup H of G the subalgebra Tr(kH) of Tj(kG) will be
called the Schur algebra for H,n,r and k and denoted Sk(n, r, H), or simply S(H)

if no confusion regarding n.rand k arises.

In his dissertation [SJ, I. Schur introduced a k-algebra, denoted Sk(n,r) in [GL],
and used it to study the polynomial representations of the complex general linear group
GIniC).

The Schur algebra S(G) m Sk(n,r, G), defined above, may be identified with

Sk(n,r). Infact, in[G2;p.S] itis proved that thereisa k-algebra isomorphism
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(0.1) S:Sk(nj) — *S(G)

which takes the basis element of Sk(n,r) (defined in [GI; p. 21]) to the basis
element ~ij of S(G) (definedin §2).

Let H be any subgroup of G. The Schuralgebra S(H) isa powerful tool in the
study of polynomial representations of H. Itis a classical fact (cf. [GI; (2.4d)]) that
there is an equivalence between the category mod S(G), ofall S(G)-modules which
are finite dimensional over k, and the category of polynomial representations of G
which are homogeneous of degree r. Itis easy to see that this equivalence of categories

still holds if we replace G byH.

This thesis is mainly devoted to the study of the Schur algebra S(B+) for the Borel
subgroup B+ of G (B+ consists of all upper triangular matrices in G) and its
applications to S(G). Our methods are combinatorial and we shall not use algebraic
group theory.

Our interestin S(B+) arose from our attempts to construct projective resolutions of

, the Weyl module for G with highest weight X. In recent years it has been
proved by several authors (cf. e.g. [D], [AB2], [Pl) that S(G) has finite global
dimension. This led to the problem of constructing projective resolutions of K~. An
answer to this problem was given in [AB1] in the case when n- 2,andin [A] and [Z]
when the field k has characteristic zero. We use the properties of S(B+) to givea
new treatment of the Weyl modules K*, and to obtain some results on projective
resolutions of these modules.

The study of S(B+) initself proved to be interesting, and in particular the analysis

ofan identity involving its Cartan invariants (see (0.5)).
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We begin in Chapter 1 by introducing some basic material which will be used in the
following chapters. Sections 1 and 2 contain notation and elementary results. In

§3 we use the method of [G2; §31 to determine bases of the Schur algebras, S(Gj)
and S(Lj), forthe standard parabolic subgroups Gj of G and its Levi factors Lj. In
§4 and §5 we define weight spaces and contravariant duals, and prove some results
which will be very useful in the next chapter. We think Theorem (5.6) may be known,

but we cannot find any reference forit. We also remark that a result similar to (4.8) is

known from the theory of algebraic groups (cf. e.g. [St; theor. 391).

In the first section of Chapter 2 we determine full sets of pairwise non-isomorphic
irreducible, and projective indecomposable, S(B+)-modules. These are indexed by the
elements of A(n,r) (see p.1.1 and (7.12) for the definitions of A(n,r) and A+(n,r)).
From now on let kx and Vx - S(B+)EX denote, respectively, the irreducible and
projective indecomposable S(B+)-modules associated with X =m(Xj,...An) e A(n,r).

In 87 we define, foreach Xe A+(nr), the Weyl module Kx associated with X,

by

Kx -S (G )® S(B¥)kx.

This definition is equivalent to the classical one given in [CLI. In fact, in [GI; pp. 64,
651 it isproved that the Weyl module for G associated with X (as defined in [CLJ) is the

contravariant dual of the rational G-module Ind®- k”, where k” isthe irreducible
B"-module associated with X. It canbe seen (cf. [G2;p.25l) that Ind”- kx is
equivalent, via Tr:kG -»S(G), to the S(G)-module Mx - HomS(B-)(S(G), kE).

In (7.14) we prove that Mx is the contravariant dual of Kx. This proves the

equivalence ofthe definitions.
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Woc use the properties of S(B+) to give an alternative proof of some of the results
in [CL] about Weyl modules. In particular, we prove that these are cyclic modules
containing a unique maximal submodule, and that the quotients by these submodules

give a full set of pairwise non-isomorphic irreducible S(G)-modules.

In §8 we study the modules Kxj - S(Gj) ®s(BHkX- Let J - {l,..n}\{ml...m}.
for integers mo,m1,...,ms satisfying 0 - mg<mi <...<m,- n. Write na- ma-m,_j,

and foreach X- (Xi,...,X,,) e A(n,r) satisfying

(0-2) *- **py for a” l..*e

define X(a) = (Xm>_Hi,...Am,). Then we prove that Kxj is isomorphic as S(Lj)-
module to Kx(i) ® ... ® KA(s) (® means ®x), where Kx(a) is the Weyl module for
S(GLn (k)) associated with X(a). It is quite simple to show that K7j is zero if X

does not satisfy (0.2).

Chapter 3 is dedicated to the construction ofa 2-step minimal projective resolution
of kx inmod S(B+). In §9 we determine a minimal setof S(B+)-generators of the
radical of Vx - S(B+)"x- This is nottoo hard, since V\ has a very well behaved k-
basis. From this result it is easy to construct the 2-step minimal projective resolution

of kx

*0
kx-0.
ISVSn-t \ VX(V.pv) m Vx

where Xe A(n,r) and chark = p (£ 0) (for notation see §9).
Now we only need to apply the right exact functor S(G) ®s(B+) « : mod S(B+) -¢ S(G)

to the sequence above, and we obtain the 2-step projective resolution of the Weyl

module Kx



(03) .« v H lHpJL S(O>W.> SGh KX -0.

where Xe A+(n,r) andchark « p  0).

In [ABW] there is given (as part of the construction of a standard basis of K~) 9
2-step projective resolution of (Xe A+(nj)). This is done using symmetric,
exterior and divided power algebra theory. But since in the work cited it is not assumed

that k isafield (more general rings are allowed) the resolution obtained
- ~ O RO
is lesseconomical (for the case that k is a field of characteristic p) than (0.3).
Chapter 4 deals with the Cartan invariants
ex« - dimkHomSB+(V0,vx), all a, Xe A(n,r)

of S(B+). As is expected from the algebraic group theory of B+, we show that
cxo* 0 iff X< a, ie., iff

(0.4) a - A“t..A MNIX- (Xj+m,, X2+ m2-m1..Xlmn. D,

for non-negative integers mj,...,mn_j.

If this condition holds, we have two cases to consider. First suppose that the integers
in (0.4) satisfy mv$ X~.j, for v = |,...,n-l. Then c”, may be expressed in

terms of the integers n(m|,....m,,_|) (cf. (11.9)) which depend only on mlt...mn.|.



0-6

We then determine a generating function for n(mi,...,mn_|), which allows us to prove

that the following identity holds

0.5)

where P(n) isthe symmetric group on {l....,n}, e(to) is the sign of the permutation
<0, W(X) - (Xj + co(l)-1,....Xn + <°(n)-n), and 5\a is the Kronecker delta.

Now suppose that m~> X7i, for some Ve Then the expression
which describes c”a > much more complicated, and in this case we are not able to
prove (0.5). Nevertheless, we show that the relation (0.5) holds forany a and X in

A(n,r), provided n £ 3.

In Chapter 5 we return to the construction of minimal projective resolutions of k*,
forany X6 A(n,r). In [G2) itis proved that S(B+) is a quasi-hereditary algebra.
Therefore it has finite global dimension (cf. [CPS1), and minimal projective resolutions
of KL are finite. In §13 we determine these resolutions in the case when the field k
has characteristic zero and n £ 3. These are formally very similar to the resolutions
obtained in [Al and 1Zl for the Weyl modules (X e A+(nr)). Section 14
deals with the case when k has positive characteristic p and n m 2. Let
X- (Xj.Xj) e A(2,r) and suppose that pd £ X2 < pd+l (some d ~ 0). Then we prove
that

(°-6) A/X1.p")® Vwi,l.p") ® v Ml,p*p")® - ® Vvir-Up-))

® V

are the first three terms of aminimal projective resolution ofk”. Note that if chark =0

we have shown (cf. (13.1)) that
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(0.7) 0-Vxo.,) VX kx -0

is a minimal projective resolution of kx. This illustrates how the difficulty in the
construction of these sequences increases when we go from a field o f characteristic zero
to a field of positive characteristic. We should remark that the major obstacle with
which we were confronted in our attempts to give a complete solution of this problem is
the complicated rule for the multiplication of two basis elementsof S(G).

We conclude Chapter 5 by applying the functor S(G) ®s(B+) * to the sequences
(0.6) and (0.7) and obtain similar exact sequences for the Weyl module

Kx (Xe A+(n,r)). Thisisjustified by arecent theorem of DJ. Woodcock (cf. (15.1)).

Finally in Chapter 6 we study the Schur algebra S(U+) for the unipotent subgroup
U+ of B+ We determine a k-basisof S(U+) which, unlike the basis of S(Gj)
determined in §3, is not a subset of the basis  j[(ij) e fi} of S(G) (cf. (2.2)).
Then we prove that S(U+) is a local ring. We end this chapter by studying the natural

epimorphism

S(T) ® S(U+) - »S(G)

w in

determined by the decomposition B+ = TU+ of B+ asthe semidirect product of the

group T (ofall diagonal matricesin G) and U+.



1. SCHUR ALGEBRAS
§1. Notation and basic definitions

k is an infinite field of any characteristic, n and r are positive integers which will
be fixed throughout and G - GL,,(k) denotes the general linear group of degree n
over k.

If s is any positive integer, we write s for the set {l,...,s}.

1- 1(n,r) = {i- (i,....ij) lipe n forall pe r}, will also be regarded as the set of all

functions i :r-»n (ip = i(p), forallper), and

A-A(nj)-a-ft,....jL)IX ~eZ.)L,:>0(V6 n),

X Ju-r)
\ vCn

is the setof all unordered partitions of r into n parts (zero parts being allowed).

(1.1) Definition: Xe A isthe weight of ie | (and we write ie X) if
Xy - #{pe rlip =V}, forall Ve n.

P a P(r) denotes the symmetric group on r. Itacts ontherightof I(n,r) by
(1.2) - (in()... irp. alliel, ke P.
P also actson the rightof Ix1 by

(ij)Ji = (itt,jn), all ij 6 1, ite P.

We write i~j if i and j areinthe same P-orbitof | and similarly (ij) ~ (i".j")

means that (ij) and (i'j’) are in the same P-orbitof I x1.
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(1.3) Remark: Notethat i~j iff i and j have the same weight, so we may think
of A(n,r) asthesetofall P-orbitsin I(nr).

We will now introduce some pre-orderings on 1(n,r).

(1.4) If mg, are integers satisfying 0 = mg<mj <... <ms_j < ms =*n,

defineJ - n\ {m|,...ms} (s£ 1).
Clearly n- U Na, where'N.={ma .+ 1,..ma} (ae s).
as s

For n.vs n say p =V if p. and V areinthe same set Na, for some ass.
J

(1.5) Definition: For p, Ve n, meansthat pEV or p =V.
J J

We may extend these concepts to I(n,r) as follows

(1.6) Definition: Let ij e I(n,r). Then we say
(i) i-jifip-j« all per;
37 PIp

() i£j ifLSL, all per.
J PJ p

(1.7) Remarks: (i) Therelation S isreflexive and transitive on I. Alsoi£j and
J J
jEi iff i=j (butnotnecessarily i =j). Hence £ isapre-orderingon I.
J J J
(ii) Forany ij e | wehavethat i £ implies in£ in, forany ne P. Soifi£j and
J J J

(ij) ~ (h£) (some h,te 1) then h£L
J
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A similar result holds if we use - instead of £ .
J

We shall now pay special attention to the case when J - 0, i.e.,, s ®mn and
Na- (a) forall ae n.

If pven, iI%V means it£V (in the usual sense). Thus, if ij e | we have

i£] iff ip~jp. per. We shall write £ for £ and i<j will mean i£j but
m j.

As i£j and j£i implies i- j, we have in this case a partial order on | (it
coincides with the partial order defined in [G2; p. 111).

(1.8) Lemma: Letie | and neP. Then ire£ i iff in=i.

Proof: One "if' isobvious. Now suppose ire £ i but in ~i, ie., i*” £ip, all
per, and i,(t) <i* forsome ter. Then

X ip> X ijr(p)m X ip.

P« P P«£ ire) P P

«l

a contradiction. So in £i implies in=1i. O

Now we will introduce a partial order < on A(n,r), usually called the dominance

order (cf. [JK; (1.4.6)1).

(1.9) Definition: If o,pe A(n;) wesaythat a -£p if avE jPv, for

all pen.
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(1.10) Lemma: If ija | haveweights a and P,respectively, then i£j implies

p-io.

Proof: Suppose i£j. Then ip£jp forall per, whichimplies that, forany pen,
{pe rljp~p}s (pe rlip~p}. Hence

JAPV - # (perljpE E#(perlipEp}= av, i.e, p3a. m]

We now define some notation involving X-tableaux. Essentially this will be the

same as in [GI].

Let X beanyelementof A(n,r).

The diagramof X is the set

(X 13- Z*ZIn*1 and ISVSX~"}

and any map from [X] to a setiscalleda k-tableau. We shall choose a bijecdve map
T*:IXI-fr and call it the basic k-tableau. If T*<(p,V)) » a*v (Qi.V) e (XI) we

shall write

*11 *12 eee¥y

*
(1.11) T m »21 *22 EEE 22,

anl an2  eee
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Associated with T* we have the subgroup of P consisting of all those n € P
which preserve the rows (resp. columns) of (1.11). This is called the row stabilizer
(resp. column stabilizer) of T*.

Now let i 6 I(n,r). Since i may be regarded as a map from r to n we may

consider the X-tableau iTV We shall denote it by Tj* and write

bIl 11 eee 11,

A final remark on notation. If V, V' are k-vector spaces we shall write V® V'

for V Ok V"
§2. The Schur algebras Sk(n,r; H)

Let E bean n-dimensional k-vector space with basis (ej,.., e, } where G

actsnaturally,i.e.,

g&v - pénguv(:u. all ge G, ve n.

The r-fold tensor product E®r=E O ... OE (rfactors) has k-basis

{ej» ejfO .. O enrlie I(nN}

and it can be made into a left kG-module by the rule
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Sei“ gCjt® ... ® gcif, all ge G, id .

Using (1.2) we may also define a right P-action on E®r, which commutes with that of

O, by
ejjt - ,allneP,iel.
Let

Tr : kG -» Endk (E®*)

be the representation afforded by E®* regarded as kG-module. Then the image of
Tni.e., TrOcG). is a subalgebra of Endk (E®0-
If we consider any subgroup H of G, then Tr(kH) will be a subalgebraof Tr(kG)

and we make the

(2.1) Definition: Let H be any subgroup of G. Then the algebra Tr(kH) will
be called the Schur algebra forH, n,r and k and will be denoted by S”n, r, H) (or

simply S(H) if no confusion relative to n,r and k arises).

It is well known (see e.g. [GI; (2.6c)l) that S(G) is the algebra Endy» (E®0,
consisting of all kP-endomorphisms of E®r (regarded as right kP-module).

In order to obtain a basis for S(G) consider, foreach (ij) e I x I, the element ijjj
of Endk (E®@0 whose matrix, (Ah¢(ij))h,t € i»i . relative to the basis {emIme 1},

has

(\if () - (i)
ARYLJ) o if () +(0). (e .
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Then je EndkP(E®) - S(G) and itis clear that "jj - iff (ij) —(h,£). Hence
to obtain distinct elements £]j we should take a transversal G of the set of all
P-orbits of I k1. Once we have done this we get the result

(2.2) Theorem: (Schur) (cf. [02; (22)1) (fcjI(ij) e G} is a k-basis for S(G).

The next proposition will tell how to express T~g) as a linear combination of the

elements of this basis.

(2.3) Proposition: [G2; (3.1)1. Forany g - (gpv)iive n >n G there holds

where gij means gy, g;" .. gyt.

A formula for the multiplication of two basis elements £y and °f S(G) is

due to Schur (see [S; p. 201 or [GI; (2.3b)l) and it says

(2.4) $y Q (z(ij,h.f,p.q>IkEp,q,

where z(ij,h,Lp,q) = * (s e I(nr) I (ij) - (ps) and (hE) ~ (s.q)}, for any
ijh£g 1NN}

The following lemma is an easy consequence of this rule

(2.5) Lemma: [GI; (2.3c)]. Foranyij,h,tg I there holds



<0 5ijV« mft “nle* J- o
<> 5ijiij - iij ijj - 5ij
(Hi) 5ij2-5u *nd Sutjj-O ifif j.

Let ij e I(n,r) and supose i has weight X. Then m £jj iff 04) ~ (jj) iff

i~j, ie., iff j hasweight X. So from now on we shall write for

Using (2.3) itiseasy to see that T,(id) - A 5x- Also form (2.5)(iii) we know
that » and £am0 if X" a (a, Xe A). Thus, since Is(G) m Tr(id), we
have that
(2-8) SW)mx AN

isan orthogonal idempotent decomposition of 1Is(G)-

Calculations using rule (2.4) turn out to be very long and complicated, so we shall
use a new version of this formula, given by J.A. Green in [G2], which is more
convenient for our work. We state it now.

For ij,£ e I, let Pj denote the stabilizerof i in P,ie., Pj« (rce Plijt=i}, and
write Pjj =Pjn Pj, Pyj=Pjn Pjn P~ Then,if Bfy:Pjjj] denotes the index of
PjEj in Pj~, we have the

(2.7) Theorem: [G2; (2.6)]. Forany ij,£e I(n,r) there holds
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4ijij.i— " (tPaj : PigljI>k) tiSt .

where the sum is over a transversal {8} of the set of all double cosets Pjj 8 Pjj in

pi-

Remarks: (i) Itisassumedthat 5-1 isamemberof the transversal.

(ii) Theelements £i5* considered above may not be all distinct.

§3. Bases for S(Gj) and S(Lj)

In this paragraph we will apply the method used in [G2; pp. 11, 131 to determine
k-bases for S(Gj) and S(Lj), where Gj is any standard parabolic subgroup of G

and Lj isits Levifactor. We start with some notation.

B+ (resp. B-) denotes the Borel subgroup of G, consisting of all upper (rcsp.
lower) triangular matrices in G. T is the group of all diagonal matrices in G and U+
(resp. U") is the group of all unipotent matrices in B+ (rcsp. B~).

Foreach Ji,ven, n v, let erv be the elementof Zn with 1 in position
H, -1 in position v, and zeros elsewhere. These are called the roots (of G) and
A- (e" M+11n e n-1> isthe set of simple roots.

Ujiv * is the rootsubgroup associated with the root e*v (p,ven,(i#v),
i.e., UMV = (unv(t) 11e k}, where u~t) istheelementof G with I's in the main
diagonal, t in position 0i.V) and zeros elsewhere. It is well known that

U+ - <Un4*+i(t) 1116 HzL t € k>.
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For any subset J of n-1 we will consider the standard parabolic subgroups of G,

Gj - <B+, XxI\i6 J> and GJ - <B_, Xuln € J>, where, forany ~ e n”l

1

0
1
3.1 0 1 (row p)
10 (rown +1)

1.

0

Finally we write Lj =><T, U”v lepv 6 &3> 311
p<v 1>V

where <= {e*viu,ve n}n ( © Ze”+i).
tie J

Suppose J « n\ {mi,..,ms}, forintegers 0 = mQ<mj<.. <I5l<ns-n
(sS 1). We are in the situation of (1.4) and as we did there we define

Na = (nig.i + 1,..,m*), foreach ae s. Thenatypical element, g = (g"v)jxve m» °f

Gj hasthe form

(rowmj)

(rowm?™)

(rowmf_p
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i, g°v- 0, unless n£v or p and v arein the same set Na, for some ae s.

Thus (cf. (1.5))

(3.2) Gj - (ge GlghvmO unless p £V, forall n,V6 n},

and for any ij e I(n,r) andforany ge Gj there holds

(3.3) gjj - gilj|...gy,- O, unless i Jj.

So from (2.3) we have

(34) Tre®) - (€ ngj5idt WA 1sj g

This means that S(Gj) - Tr (kGj) is contained in the k-span of D

i£j}. Being a subsetofabasisof S(G), D is linearly independent so, if we show that

D iscontained in S(G|) we have proved the

(3.5) Proposition: S(Gj) has k-basis {%j1(ij) £ f1,iS j}.

Proof: In this proof we write M m {(p,v) e nxnlp £ V).

Suppose S(Gj) isaproper subsetofthe k-span of D. Then there are elements
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bjj e k, notall zero, such that

(3-6) h1jftj-0- £ *W«* °T

Consider in the polynomial ring k[xv I (p,v) e M] on the indeterminates x"v

«11LV) e M), the polynomials

3.7

Then (3.6) says that 1 b((guv)~\) e M) m 0. for all values g*v e k that satisfy

c((gpv)p,ve m) * 0. At this point we may use the

Principle of irrelevance ofalgebraic inequalities  (cf. e.g. [C; p. 1401).
Let f, g, h e kbci,...xml, h 4 0 (where k is an infinite field) and suppose that
f(a) = g(a) forall a - (al...,ain) forwhich h(a) * 0. Then f=g.

And we have that b(x) - 0. But the monomials xy m Xjjt ...xy” all (ij) e Q, i£j,

are all distinct and so linearly independent elements of k[x"v 1(p,V) e MI. Hence

b(x) = 0 implies bjj - 0, forall (ij)e fi,i£j. This contradicts our hypothesis and

proves (3.5). O

Applying the same process to

1 Byb((g™v)) a°d c((g”v)) we mean the elementof k obtained by replacing the
indeterminate x*v in (3.7) by g*v, forall (p,V)e M.
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GJ > {g€ Glgrv- 0 unless VEp, forall p, V€ n}

and

Lj - {geGl g*v- 0 unless p j V, forall p, V6 n).

weobtain

(3.8) Proposition: S(GJ) and S(Lj) have k-bases

(iij1Gij) «a jSi) and {CijI(ij)ia ijj>

respectively.

§ 4 Weight spaces

Let H beasubgroup of G containing T andlet Ve mod S(H).

We know that, forall Xe A, £xe S(H) (since S(T) S S(H) and, takingJ = 0 in

(3.8), we get that 1Xe A} isa k-basis of S(T)). Hence there is the orthogonal

idempotentdecomposition

X« A

of 1 in S(H) (cf. (2.6)), which yields the decomposition of V

(4.1)



as adirect sum of subspaces.

(4.2) Definition: Foreach Xe A, V* m £xV >scalled the X-weight space of
V. We say that X isa weight of Vifdim* V*>0.

It is well known (cf. [GI; (3.2)]) that this definition coincides with the usual

definition of weight space when we regard V asarational T-module and identify X

with the multiplicative character T-» k given by gHg”j...g™\J (all ge T).

The next proposition is an easy consequence of the definition of weight space and

of the fact that £x isidempotent

(4.3) Proposition: [GI; (3.3b)] Let 0 -¢Vj-*V2-»V3-»0 be an exact
sequence in  mod S(H). Then the naturally induced sequence of k-spaces

0-» VjA-* V22-» V3M-> 0 is exact, forany Xe A.

Before we proceed we need to define some notation. For any X 6 A(n,r) we

choose a basic X-tableau T* and define £(X) e I(n,r) by the X-tableau

(row 1)

(4.4) (row2)

Ti«

(rown)

If p, VEn and p” V define, foreach non-negative integer m ” Xv, the element
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f(p,v, m,X) of I(n,r) by the X-tableau

11 .. 1 (fowl)
(«m*) T, Vv.m.ll)- 22 .. 2 (row2)
HepP Vv . . v (row v)
m
nn n (rown)
ie. \fmi x) isobtained from by substituting the first m v's inrow v

by p's and keeping all other entries unchanged.
In this section we write £(m, X) for t(p, v, m, X) if no confusion relative to p

and v arises.

(4.6) Proposition: [G2; (5.8)) Let p, v e n and suppose that p <V and
XN < Xv. Then

where are integers independent of char k.

4.7 emma: Suppose p,v€n, ptv andlet urv(t) be the element of G
L dl be the el f

with I's in the main diagonal, t in position (p.V), and zeros elsewhere (te k). Then



TYtivyM) - mi 0 trr<™y .

where

rfv -~ i«n.\).U%).

sum over all weights Xe A suchthat m £ Xv.

Proof: Write g for upV(t). Then, from (2.3), we have that T,(g) “ n gij £ij-

But gjj =0 unless (ip,jp) e {(1.1), (2,2),..., (n.n), (Ix, V)}, all per. Ifthislast
condition holds and if m isthe numberof p er such that (ip,jp) - (p, v), then
gjj = tm and (ij) ~ (E(m, X), £(X)), for some X with m £ Xv.

Now considerany Xe A with m £ Xv Clearly g”m x), t(X) “ tm. So the proof
will be complete when we show that (t(m, X), f(X)) + (E(m\ @), £(a)) if m~m" or
X" a (ae A, m'<sav). Butthisisimmediate, since £(X) and 1(a) (if X~ a) or
£(m, X) and £(m\a) (if X=a) have different weights, so they are not in the same

P-orbitof I. O

(4.8) Proposition: Let J be any subsetof n-1 and let H be one of the groups

Gj, Gj or Lj definedin §3. Let Ve mod S(H) and suppose there is ve V such

that
(i) v A0 and £xv* v»fersome Xe A;
(i) there are p, Ve n suchthat p <V, p =V and Tr(upv(t))v - v, forallte k.

Then XytSX~.



Proof: Suppose v, X, and n, V satisfy (i) and (ii) above, and let m beany non-

negative integer such that m £ Xy. Then, as H- V, £m, X)j I(X) and the elements

S«m. X),KX) and $#X). «m.X) « "in S(H). Also,as "Xv - v, we have

riTw “ V" A 5t(m,a).«a)$Xv

sum over all weights a e A suchthat m £ av.

» “e B«ra.a). Ha) $X- 0 or X). «X)- »voidingas a 1X or a - X, and so

Hm) IV-XX«X)v; if mSXa
I*v \ 0; ifm>Xv.

Hence, by lemma (4.7), we have T,(uMv(t))v = X gtm”m, X), 1YW forall te k.

Note that Z0, X) - £(X) and so ~(o, X), t(X) m "X- Therefore T,<uv(t))v » v iff

Ky+JE ttm5<(m XXKXV - v iff

4.9) J o Imb5«m. XXt(X)v - 0. «Htc k.

Since k isan infinite field we may choose tj.—t” e k such that det(tabjabG~ ~ 0.
So (4.9) implies

(4.10) X).KX)V- 0, forall m« Xy.

Suppose Xji <Xv.
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From (4.6) we know that there are integers such that

tx - m M $1(X). #m. X)ilOn. X). «X>- Hence

VItxv - n N x LS9, H X) 4f<m X). «X)v - 0 (by (4.10)).

This contradicts the assumption of v A 0. So Xv/ \i- n

fi5. Contravarlant duals

We start this section with a result for a very general class of k-algebras and then

we apply itto Schur algebras.

Let S be a finite dimensional k-algebra equipped with an involutory anti-
automorphism w: S-*S. Let R bea subalgebraof S and write °R for its image by
#,i.e., #R = °(R) (similarly denotes “(£), forany ~ e S).

If V g modR, itsdual, V*- Homk(V k), can be made into a left ®R-module by

(5.1) (E0)V - 0(°$V), 0 G V*, £€ °R, VE V.

(5.2) Definition: Foreach V g mod R, the °R-module V*, defined above,

will be called the contravariantdualof Vv (relativeto #) and will be denoted V°.

(5.3) Remark: Itis notdifficult to see that the natural isomorphism V -»(V*)*, of

finite dimensional k-spaces, isan R-isomorphism V -» (V#)#.

Let V€ modR and W e mod °R be given. A k-bilinear form (,) :W xV -»k



is called contravariant (in °R) if it satisfies (Ew, v) - (w, °*v), forall %e °R,
we W, v€V. Itiswell known thatsuch a non-singular form exists iff W and Vo
are isomorphic °R-modules (the isomorphism y : W -*Vo being given by Y(wXv)

- W)
Now let Q be another subalgebraof S suchthat R£ Q. Then °R £ °Q and, Q
and °Q may be regarded as (R, Q)- and (°Q, °R)-bimodules, respectively.
Consider the right exact functor
(5.4) F-°Q :mod °R -¢mod #Q
and the leftexact functor2
(5.5) F - HomR(Q, *) : mod R * mod Q.
(5.6) Theorem: With the notation above, there isa °Q-isomorphism
Fevs) MAF(v))=,
natural in Ve mod R.
Proof: Itisenough to describe, for each V e mod R, a non-singular bilinear form
v F(V#) x F'(V) -¢ k, which is contravariant in °Q and is natural in mod R.
Let (,)y:Vox V-»k bethe k-bilinear contravariant non-singular form defined

by

2 If Ve mod R, Q acts on the leftof HomR(Q,V) by (Eu)(n) m uCn£), u e F'(V),
5.16Q -
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(6,Vv)v - 6(v), 06 V»,v«V;

(the contravariant property comes form (5.1)). Foreach u € F'(V) - Hoiiir(Q,V), we
may define a k-bilinear map h'u: #Q x V*-*k by h'u(q, 0) - (0, u(*t)))v (all

i\ 6 °Q, 0e Vo). Since(, )v *scontravariantand u isan R-map, we have

hu(n$.e)-(0.u°E °Ti))v -

- (0, u(°ri))v - ("9.u(°n))v - h'uOl. $0)

(forany q € °Q, £€ °R, 0e Vo) which provesthat h'u is °R-balanced. Hence we
may definea k-linear map hu:°Q ® ORV#-»k by hu(q ® 0) - (0, u(°q))y, and the
k-bilinear form ®y :F(V°) *F'(V) -*k by

(5.7) OVT®O0,u)- huin ®0) - (0.u(°Ti))v. all 0e Vo, tie °Q, ub F(V).

To prove that <%y is contravariant, take 0, r\, u as above and any $e °Q. Then the
left °Q-action on F(V°) gives £(q ® 0) - £g ® 0. So <Dv(E(q ® 0). u) -
(0, U T)))y - (0, u(°g°£))y. Butthe leftactionof Q on F'(V) gives (°£u)(’T|) =
u(°g°$). So oYM ® 0),u) - (0,(°$u)(oq))v - <*v (M® 0. °$u).

The next step is to prove that <% is non-singular.

Consider the k-spaces X - °Q ® Vo and Y - Homk(Q,V). Clearly these have
the same dimension (viz. dim Q dim V). Define a k-bilinear form < :XxY -»k,
using the same formula as for <y i.e.,

<5y (i®0,u)- (0,u(°q))v,all ue Y,qe °Q,06Vo.
The rightkernel of d>v is thesetofall u6 Y suchthat <f>y(x,u) - 0, forall x6 X,
or equivalently, <Dy(q® 0,u) - 0, forall q € °Q,0e Vo. As <>y(@® 0, u) - (0,
u(°q))y and (,)y isnon-singular we have that u€ right ker 4> iff u(°q) - 0, for
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all r)e °Q, i.c,iffu- 0. Hence <&y is non-singular since its right kernel is trivial
and dim X = dimY.

From the definition of tensor product, we know that F(V°) - °Q ® , V* m X/M,
where M is the subspace of X k-spannedby (q';®0 - q ®£01ge °Q, $e °R,
0 €V} Let M1- {ue YI<S$y(xu)- 0, forall xe M}. Itisclearthat thereisa
non-singular k-bilinear form <5y : X/M x M1-»k, given by <Dy(x + M, u) m
<Dy(x,u), all xe X, ue Mx. Soifwe prove that Mx m F'(V), we have that <Py”
<5y is non-singular. Solet ue Y. Then ue M1 iff, forall q 6 °Q, £e °R,
0 e V°, there holds

<&V(I5®0.u) - 6v(n ®50.u),i.e. (0.u(“5*T)))v - (50, u("ri))v
which means
e(u(-$«q)) - (S0)(u(Ti) i.e. O(u(*$*q)) - 0CS$u(*q)).

But this is equivalent to u(0*°q) - 05u(0q), for all ge °Q, %e °R, i.e.,
ue HomR(Q,V). Hence Mx- F(V).

The proofof the theorem will be complete when we show that <Dy is natural in V
e mod R. This amounts to the condition that for any V, V'€ mod R, and for all

fe HomR(V, V)
<by(q ® tf, u) - «DyCq® T, fu)
i.e. (tf, u(t°))y a (t, fu(#q))y*, forall q e °Q, xe V'™ and ue F'(V), which is

trivially true. O

Returning to the Schur algebra S(G) we may define a k-linear automorphism

« :S(G)-»S(G), by



(5.8) »11
This is in fact an involutary anti-automorphism of S(G) (cf. [GI; p. 321) and so we are
in the conditions referred to above.

For any subset J of n-1 consider the Schur algebras S(Gj) and S(Gj). Itis

clear from itsdefinition that this anti-automorphism carries the basis
{$ij I(ij)e fi, i£j} of S(Gj), into the basis {"j I(ij)e £2,jEi} of S(GJ), and

vice-versa, hence

(5-9) *S(GJ) W SCGj).

So if we consider any V e mod S(Gj) (resp. V' e mod S(Gj)) its dual, V°, is in

mod S(Gj) (resp. V. € mod S(Gj*)).

Also if y is another subset of n-1. such that J' € J, we may use (5.6) with

R- S(Gr) andQ - S(Gj) or R. S(Gj‘0 and Q. S(G,).



2. THE MODULES K
§6 The Schur algebra S(B+)
W shall now give special attention to the Schur algebra S(B+) - S”n/; B+) for
the Borel subgroup B+ of G.
Using the notation of §3, B+=GJ. Soif Q'- {(ij)) € ft Ii £j} we get from
(3.5) that
(6.1) S(B+) has k-basis  j I(ij) e O).
This result is not new, itcan be found in [G2] where itis also proved that
(6.2) rad S(B+) has k-basis (fcj1(ij) e O',i +j}
Foreach Xe A(n,r) consider the left ideal

VX-S(B+*X.
As S(B+)= © k7jj, Vx is k-spanned by all 4ii5x» 0j) e O'. But from
(i) €0
(2.5) we know that E£ijEXis or 0, according as j hasweight X ornot

Thus, Vx - © k~. , e,
(i) Q".j* X

(6.3) Vx has k-basis {*jI(ij)e O, je X} 3

3 In §9 we shall give another description of this basis involving row-semistandard
tableaux and the element f(X) definedin (4.4).
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Now consider the k-algebra S(B+)EX- $XVx. Itis spanned by 5XEij. lorall
(ij) e CI' such that j 6 X. Once more, we have ~ ~j - 0, unless i has weight X
and if so, thereis n e P such that i mjx. Butthen we have jx - i £]j, which implies

i-j (cf(1.8)),andso 5ij - Sjj- Hence

$x S(B+)$x -k $ x

isa local ringand £x is a primitive idempotent of S(B+). Putting this together with
(2.6) and using that 1$(b+) * Is(G)>we havc proved that
(®-4) 1s(B*)“ x2 a $x

is a primitive orthogonal idempotentdecomposition of Is(B+»and

S(B+) m X0 AVX

isa direct sum decomposition of S(B+) into projective indecomposable

S(B+)-modules.

As an immediate consequence of this result we have that, forany X6 A, Vx hasa
unique maximal submodule, viz. rad Vx = (rad S(B+))£X and so Vx/rad Vx is an
irreducible S(B+)-module.

Using the same argument as for (6.3) we have, as a consequence of (6.2), that

(6.5) rad Vx has k-basis {Ey I(ij) e Q ".i*j, je X}

Therefore Vx/rad Vx m k(Ex + rad Vx) is a one-dimensional vector space and it is

clearthat



Vx/rad Vx VO/rad Va iff a - X (a « A).

This together with (6.4) gives that

{Vx/rad Vx I» « A(nj-)} and {vxIXc A(nj-)}

are full sets of pairwise non-isomorphic irreducible and projective indecomposable

S(B+)-modules, respectively.

In order to give a better characterization of these modules we define, for each

Xe A, the k-linear maps Xx : kB+-»k and Xx :S(B+) -»k by

call (ij) e Q'

respectively.
It is easy to see that X\ >sa k-algebra map and that xx(b) - KXTr(b)), for all

b e B+. Thus Kx is also a k-algebramap and we make the

(6.7) Definition: Foreach Xe A, kx is the field k regarded either as a rational
B+-module affording the representation xx orasan S(B+)-module affording the

representation Xx.
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Itis clear from the definitions that if

(6.8) K\ :Vx-*kx % restriction of to Vx

then Kx isan S(B+)-epimorphism with ker K\ - rad Vx- Thus Vx/rad Vx *+ kx-

As asummary of the main results of this section we have,

(6.9) Theorem: (i) 1- X- is a primitive orthogonal idempotent

'AeSA(n,r)
decomposition of 1 inS(B+).

(ii) {kx1Xe A(nr)} isa full set of pairwise non-isomorphic irreducible S(B+)-
modules.

(i) {vx 1 X e A(nr} is a full set of pairwise non-isomorphic projective

indecomposable S(B+)-modules.

(6.10) Remark: A result parallel to (6.9) can be obtained if we consider the

Schur algebra S(B"). In this case, foreach Xe A, kx will denote the one-

dimensional S(B")-module (orone-dimensional rational B_-module) affording the
representation Kx:S(B")->k (resp. X\ *B_-*k), defined by

fl, if i=j hasweight X
70, otherwise ;all (ij) e Q suchthat j£i

(resp. XE(b). bj{- <&. all b«B-).



17. Weyl modules

In [CL] R. Carterand G. Lusztig define, for each dominant weight X, a GL,,(10-
module (there denoted VjJ and call it the Weyl module for GL,,(k) associated
with X. Working with the universal enveloping algebra of the Lie algebra gl(n), they
prove that these are cyclic modules containing a unique maximal submodule and that
the quotients by these give a full set of pairwise non-isomorphic polynomial
irreducible  GLn(k)-modules. In particular if char k - 0 Weyl modules are
themselves irreducible. A k-basis for K7, indexed by standard tableaux, is also
produced in the work cited.

The same results were later obtained in [GI] within the framework of Schur

algebras. UsingaresultofG. James U, (26.4)] it is there proved that,in fact, may

also be characterized as the contravariant dual ofthe induced module Indg- k¢ (forany

dominantweight X).
Here we give an alternative definition of Weyl modules and we show how some of

the results referred to above can be easily obtained from the properties of S(B+).

Take J«n-1 and J'» 0. Then Gj - G, Gj. m B+, Gy = B" and we may
apply the results of §5to S(G), S(B+) and S(B~).

We have from (5.9) that °S(B") = S(B+). Also °S(G) - S(G). Thus taking
Q- S(G) and R - S(B-) in (5.4) and (5.5) we get, F(V*) - S(G) ®S(B*)V° and
F(V) - HomS(B-)(S(G), V), and, by (5.6),

(7.1)  thereisan S(G)-isomoiphism
S(G) ®s(B*)V*+ (HomS(B-)(S(G), V))#,
forany Ve mod S(B").
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Forany X- (Xj,..., X,) e A(nr) consider the irreducible S(B+)-module kx and

define

(7.2) Kx - S(G) ®s(BH) kX

Itis then clearthat

(7.3) Lemma: Kx - S(G)©x, where o>xm Is(G) ® Ikx+ Hence Kx is a cyclic
S(G)-module.

In[G2;p. 14) itis proved that S(G) has the decomposition

(7.4) S(G) - S(B+)S(B-).

We now apply this result to Kx-

From the action of S(B+) on kx (cf. (6.6) and (6.7)) there holds

$ij>X-  j ® lkx m *S(G) ® $ij *kx - “ Xif $ij - $X.and “ io otherwise (aUi £ j).

Thus S(BHOx « N X k7jj ©x * k©x and using (7.4) we get

(7.5) KX - S(G)Ox - S(B-) S(B+)i> - S(B-)OX-

But S(B~) has k-basis {%jj I(j,i) e 12} Hence by (7.5),



<7#) K* - 0¥ a *(M). S.J. xktjex"
since cox - and so 5ij“ Xm £ij 5x®x - 0, unless j has weight X

(7.7) Lomma: (i) Kx* - kto*. Thusdimk(K”) il anditis zeroiff Kx - 0.

(i) If a e A isaweightof Kx then a <X
Proof: (ii) From (7.6) we have that, forany a e A,

FUKI" <u>.£.j.xkG*A ' OJen-f. X.i. aks™ -

So KX* 0 implies that there are ij e | suchthat ie a,j€ X and ji i. But

then, by (1.10), a<X.

(i) Considerno» a - X. Then tx Kx- ~ € . jkCyfflv But from (1.8) we

know that if ij € X and j i i then i- j. Thus QXKX- k$xdx - kto*. O

It is just natural to ask under which conditions is Kx 0? The next proposition

answers this question.

(7.8)  Proposition: Let X - (X... X) e Anj-). Then Kj, 0 iff
X, iXjl-.0iX,.

Proof: Suppose first Kx A~ 0. Then co*” 0 and "x "X “ ®x- if *e prove that



2-8

Tr nji+IWHox m cox, (all ~ e n-1.t € k), condition (ii) of (4.8) is satisfied (with
V- n+1land any € n-1). hence Xt2 X22...2 X,

Fix n 6 upland write f(m,a) - £(p, n + 1, m. a) (cf. (4.4) and (4.5)). Then,

r
from (4.7) we hive T/u”.,«)) -3~ tT where r - Z itemw). «,,

(lum overall weightsa £ A suchthit m sa”,).

Note that if m- 0. 0*.., kO for all as A, lo r® ,., - 15(0). On the other
hand if m >0, f(m,a) <«a) (since X<n + 1)andso” ,naytn\ - 0, forall a.

Thus, forany ts k, we have

(7.») Tjiujricoieox - r*®,,., t»x+JEitw tm - rojj.u*t

As this holds forany n e n-1. we get the required result.
Now suppose Xj~ X2~ ...~ X, and consider the contravariant dual (k*)° of the
irreducible S(B~)-module k”. Then (k*)° is a one-dimensional S(B+)-module and

forany 0Oe (kM# ce k™ and (ij) € O' there holds
(£ijO)(c) m 0 (4j4c) “ O(c) if 4ij m 4k» zer® otherwise.
Therefore (k*)° affords the representation and (k")° ai+ k*. Thus, from
SB )

(7.1), we have

(7.10) Kx- S(G)*58.) kA . (Homsp-jtStO). kE))* .



Itis aclassical fact that if X|2X2* e=* *n then HomS(B-)(S(G), k™) +o (cf.
e.g. [G1, p. 641 or [G2, p. 251), so (7.8) follows. O

(7.11) Remark: Note that, since U+- <uwl+1(t) In e n-1,t € k>, (7.9) implies

that Tr(u)o>x - cox, forall ue U+.
(7.12) Definition: X m (Xj*/Xg) e A(nr) is called dominant if Xj £ X2
We write A+- A+(nj) - {Xe A(n,r)IX isdominant}.

(7.13) Definition: Let Xe A+(nr). Then Kx will be called the Weyl module
for S(G) associated with X

Similarly, Mx - Homs(B-)(S(G), k*) will be called the Schur module for S(G)

associated with X.

(7.14) Corollary: Let Xe A+(nr). Then Kx - Mx*
Proof: (cf. (7.10)).
We use now a familiar argument to prove the

(7.15) Lemma: If Xe A+ then Kx has a unique maximal S(G)-submodule.



Proof: Let V be aproper submodule of K*,. Itcannot contain co® since S(G)Ci>x -

Kx,s0 V~« V n -Vn kgx- 0. Let X - V  (sum over all proper

S(G)~submodules of Kx). Then

*-U $v.$fcv.$v>».a

Hence X is a proper submodule of Kx and it is clearly its unique maximal

submodule D

(7.16) Lemma: For each X g A+(nr) define Fx - Kx/ rad Kx- Then

CFx1X e A+} is a full set of pairwise non-isomorphic irreducible S(G)-modules.

Proof: Let Xg A+. We know from (7.15) that Kx has a unique maximal
submodule, which must then be rad Kx. Thus, Fx = Kx/rad Kx is irreducible and it
is S(G)-generated by <3x- ©x+ rad Kx (* 0 since ©x* rad Kx).

From the definition of Fx and from (4.3) we know that there is a short exact
sequence of k-spaces 0 -»(rad Kx)° -* Kx°-»Fxa -¢0, forany a g A. Thus by

(7.7), we have

(7.17) (i) Fx"mke3x and dim Fx*'m 1;

(ii) If Fxa 4 0, forsome a g A, then a < X

As an immediate consequence of (7.17) we have

FO # Fxifa»X (a, XgA+).
$(0)
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Now let VV be any irreducible S(G)-module and suppose that

(7.18) HomS(0)(Kx. V) +0. for some X6 A+.

Then, if 07~ 0 e Homs(G)(Kx. V), we have, V * K~/ker 0 and ker 0 isa
S(G)

maximal submodule of Kx,i.e.,ker0 - rad Kx and V * Kx/rad Kx m Fx-

Thus in order to finish the proof of (7.16) we only need to prove that (7.18) holds. For

this we shall use the

Adjoint Isomorphism Theorem: (cf. e.g. [R, (2.11)1). Givenrings Rand S, let A be
a left R-module, B be an (S.R)-bimodule and C be a left S-module. Then there is
an isomorphism of groups

X:Hom$(B ®r A, C) » HomR(A, Homs(B.Q).

Regarded as an S(B+)-module V has some irreducible submodule. This has to be
isomorphic to kx, for some X e A, which implies Homs(e+)(kx, V) ~ 0. Now if in
the Adjoint Isomorphism theorem we take R = S(B+), S = B = S(G), A » kx and

C » V, we get an isomorphism of groups
X : HomS(G)(S(G) ®s(B+) kx. V) * HomS(B+) (kx. HomS(C)(S(G), V)).

But Homs(G)(S(G), V) * V asan S(B+)-module. Thus
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HomS(G)(Kx, V) a HomS(B*) (kx, V).

Since Homs(B”) (kx. V) 4 0, we must have HomS(G)(Kx, V) jt 0 and Xe A+
(since Kx * 0 iff X€ A+). Hence (7.18). O

In the next theorem we summarise the main results of this section, but before we

needadefinition.

(7.19) Definition: Let H be a subgroup of G containing T. We say that an

S(H)-module V has highest weight X (Xe A) if X isaweightof V and a < X,

forall other weights a of V.

(7.20) Theorem: (cf. CGI; 55) and [CL; §3J). For Xe A+(nr) there holds

(i) The Weyl module Kx is acyclic S(G)-module generated by
0>x- Is(G)®
(ii) Kx has highest weight X, Kxx - ko>x and T,(u)o>x - 0>x forall u€ U+
(iii) Kx is the contravariant dual of the Schur module Mx;
(iv) Kx has a unique maximal submodule, rad Kx, and

{Fam Ka/rad Ka la e A+(nj)} is a full setof pairwise non-isomorphic
irreducible S(G)-modules;

(v) Fx has highest weight X and dimk Fx"= 1

88. Kx,j and the Schur algebra S(Lj)

Consider any standard parabolic subgroup Gj of G. In §6and §7 we studied

the S(Gj)-modules S(Gj) ®s(B+ "% *n the two extreme cases of Jm 0 and
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JI n - Lrespectively. We are now interested in the intermediate cases.

Asin 83, let J* n\{m1l,..ms}, where mo,m|...mg are integers satisfying

0-mo<mj<..<nvj<ms«n. Let Na- {ma_j+ 1..m”" (ae s), and define,

foreach Xe A, the S(Gj)-module

KXJms(°j) ® S(BH) kXe
Note that, in particular, oa k*, and th,, «- Kx-
Itis clearthat Kxj = S(G}) cox. where cox- Is(G) ® lkx- Also, as in §7 (cf.
(7.11)), we have
(8.1) a>\1 “x and Tr(uo>x=a>\ forall u e U+.
So applying (4.8) to we get the following.

(8.2) Lemma: Let Xe A(r). Then KXJ- 0, unless Xirs |+ 1% X,» J2*... *
Xm, foralla6 s.

Proof: Suppose K7j 4 0. Then co*” 0.

In (4.8) take H » Gj, V = K*j, v=c0*,and (p,V) = (n,n + 1), where p - p+ 1

Then the hypotheses of (4.8) are satisfied. Thus, X"+j £ X", forall p.e n- 1 such

that ma_j+ 1£p £ma- 1 (some aes). O



Notation: A|- Aj(nj) - ft« A(nj-) | +1* f+22..2X, forall

ae s).

Consider the subgroups U | and Lj of Gj, definedin §3.Then Gj has the Levi
decomposition Gj » LjUj, and so S(Gj) - S(Lj) S(Uj).
As Uj isasubgroup of U+, (8.1)implies TAu)” = O\, all ue Uj. Thus

Kxj - S(Gpcox - S(Lj) SCUptOx - S(L,Xox,

and, in order to understand KXj, we need to study the Schur algebra S(Lj).

Lj consists of all matrices of the form

where, for each a € s, the matrix g<a) = (g"v)p,v e N, * non-singular, in other
words, Lj consists of all g 6 G such that g*v- 0 for all (p,V) e nxn such
that p +V.

J

Forconvenience of notation write Ga - GL,, (k), where na = ma-ma_j = # Na.

Lj isisomorphicto Gt x ... x Gs (external direct product) and so, we should be
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able to obtain S(Lj) from the Schur algebras for Ga (a 6 s). To do this we shall use
coalgebra theory. We start with some standard results which can be found in [GI; pp.

4-6, 18-20J.

Let H be any group, and let kH denote the k-algebra of all maps f:H -»k
(addition and multiplication in kH being defined pointwise).

We identify kH® kH with a k-subspace of kH*I*, via the k-monomorphism
icH ® kH -¢ kH*Ht which takes f® f tothe map f':H xH >k, defined by f'(h, h)
- f(h) f(h"), forall f,f e k»,h,h'e H.

Let AH:kH-»kH*Hf and eH:kH-»k, be the k-algebra maps defined by

AH(H(h,I) - f(hh), and eH(0 - f(IH). "L f«  h.h'6 H.

Then, the set J(kH) = {fe kHIAH(f) e kH ® k?} is a k-bialgebra: it is a
subalgebra of kHand the comultiplication and counit maps are the restrictions of AH

and eH,respectively,to  kH).

Now make H =G.

Foreach p, Ve n, define the coordinate map c’ve kG, by

Cpv(8) m 811 8€ G-

Let A(G) = klc”™ 1]i, V€ n) be the k-subalgebra of kG generated by the
cpv (I»v e n). Asthe field k is infinite, the c”y are algebraically independent over
k. Hence A(G) may be regarded as the algebra of all polynomials over k in the

indeterminates c”v (p, Ve n).
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For each q £0, let Aq(G) denote the k-subspace of A(G) consisting of all
those elements in  A(G) which, considered as polynomials in the c”'s, are

homogenous of degree q. Then

A<°). ® VG)

Itis clear that, foreach q £ 1,

(8.3) Aq(G) has k-basis (cjj- ¢” ..c”™ I(ij) e fta},

where Qq is a transversal of the setofall Pg-orbits of 1(n,q) x 1(n,q).

Also, by the definition of Aq,

Ag(Gv)- 2 Cux®A, Ji,V6 n.
t«Q

As Ag isa k-algebra map this gives,

(G <ij) - h cUi®chj. «U W 6 I(nfl);q2 1m

Similarly Coic®)) - 6,, and EoCqj) - 6;j - .87 (n.Ve n, ij e I(ng)>.
This shows that A(G) is a sub-bialgebra of 7 (kG), and that Aq(G) is a
subcoalgebra of A(G). Thus Aq(G)* - Horn* (Aq(G).k) is a k-algebra.
The algebra S"Cn.q) introduced by I. Schurin [§] coincides with Aq(G)* (cf.

[GI; pp. 18-211). Thus, as we mentioned in the introduction

(8.4) Aq(G)* and Sj.(n,q; G) will be identified, via the k-algebra isomorphism
2 :Ag(G)*-» Sjtfn.q; G), defined in (0.1).
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Note thatif fiq isasin (8.3) then {£y I(ij) € Qq} is the basis of Aq(G)* dual to
the basis (citiI(ij) « iy of Aq(G).

Now consider the subgroup Lj of G.

For each ce A(G), denote the restriction of ¢ to Lj by C. Let
A(Lj) - {clc e A(G)}. Then A(L]j) is a subalgebraof kLj, and it is clearly generated
by those c”v which satisfy c*vjt0 (p, Ve n).

Note that, forany ge Lj, wehave c”(g) = g*v =0, unless p =V. Hence
cMv %0 if p i*V. Now, using an argument similar to that in the proofof (3.5), we can

show that

(8.5) Lemma: The c”v (p, Ve n, p =v) arealgebraically independentover k.

Therefore, we can identify A(Lj) with k[c*vIp, V€ n, p « V], the algebraofall
polynomials overk inthe indeterminates c”v (p, V€ n,p = v).
Let p,Ve n, p =V, and consider 5*v. From the definition of the k-algebra map

ALj, we have

al,("v) (9.9) - "v(ggT - (gg\v -
= Z gntg'tv-( Z 5w,® 5T»)(g,9). *11 g.g’s L,-

Hence



(8.6) A’\fyv)-l_v\)’(_v)SA@’\« A(L)®A(Lj).

and A(Lj) isasub-bialgebraof 7 (KkLj).

Notice thatas A” isa k-algebramap then, foreach g ” 1,

- h. ® H-*"y e«".d * *T]
hj *

(here h» i means hpj ip, all pe q).

Therefore, Aq(Lj) = X kCj (gq2:1), isa subcoalgebraof A(Lj).
ij e I(ng)

Now let us return to the groups Gam GLrnxk) (ae s). Everything we have said
about G applies, in particular, to Ga. So we may consider the bialgebras A(Ga). For
each [X V6 na, we also denote by cpV the coordinate map in kG* given by,
cMvCg) - 1 ge Ga, a6 s).

The tensor product A(Gi) ® ... ® A(Gs) is a k-bialgebra, with counit and

comultiplication mapsdefined by

e® - By, ® «® eof and A®» i(AG]® ... ® Ag™),



where t : ® (A(G*) ® AiG")) »( ® A(Ga)) ® ( ® A(Ga)) is the "twisting” map,
ae g a€hb acg

ie, T(® (ca®cf)- (® ca®(® c'a),forall ca,cae A(Ga) (cf. [Sw; p.49]).
>«S 1 a«5h

(8.7) Lemma: The k-bialgebras A(Lj) and ® A(Ga) are isomorphic.

o «l
Proof: As n= UI Na, we may defineamap 0:n-»n, by
ac«!
0(p) =p - mg.j, all pgNa, ae s.

(8.8)  Note that the restriction of 0 to Na gives a bijection between Na and n".
Now let xl: A(Lj)-» ® A(Ga) be the k-algebra map defined by
e«l

(8.9) X(chv)- 1® .. ®ceM)e(VY®..® 1, if |i,ve Na.

@

We claim that xp is a bialgebra isomorphism. To prove this we need to show that
(i) Asxp- (¢>®\?)ALj, and e®xp- eLj;
(i) Xl is bijective.

As A®,v and ALj are k-algebra maps, we have A® xp - (Xl ® xj"Aj* iff
A® (cMY) = (Xl ® xp)ALj (cuv) (p, Ve Na ae s). Soconsider p, Ve Na. By
(8.6) and (8.8),



(¥-0>**1<**)-*-0< *ht®*tv>-

Hit vy

5jix®etv) (1® —®co(n)e(T)P=® i)®
)
® (i ® =®ce(t)lO(V)® =® i) m
Q]
- (1 ®..®ce(n)o® «®1)® (I ®..®c0e(V)® =® I) «
“ABV (W -
The proofof e<g\j>= eLj is similar. Hence (i).
Now to prove (ii) we consider, for each a e s, the k-algebra map

f*:A(G,) » A(Lj), given by, fa(chv) - 5m,.t+ti.m,_,+v.fordll H.ve
Also, let f: ® A(Ga) -¢ A(Lj), be the k-algebra map defined by
aeb

f(cj® ... ®Cs) = f,(c,)... fs(Cs), forall cae A(Ga),a€ s. Clearly f = xjrl Hence

¥l isbijective. a

Let RU) - {d- (d,,...ds)s Zsld,20 (a6 s); X d,. r),anddefine

Considerany d 6 R(J),and let Da={dj+...+da.j+nl\iedj (ae s do=0). As



rm ~ da,wehave rm U D,.
el «Gj

Suppose i(a),j(a) g 1(na, da) (a G s). Then we have the following diagram

d, +...+d._| +\it—»li i—»i(a® —m ., + i(a)p,

and similar for j(a). Thus, we may define ij g I(n,r) as follows

(8.10) Ip- m,.!+i(a)p; jp- ma_!+j@)p, if p- dj+...+d,_i+pgDa

Itisthenclear that

(8.11) (i) Ip - jp, all pgr. Hence 1

(i) (pe IIpG N} - Da

™) p c®p)e«p) - pPd CKAKV - GK)M E Ad(G".

(8.12) Theorem: With the notation above there is a coalgebra isomorphism

$ :A,(Lj) ¥ AR()

satisfying ~  3) - ® ci(@J(). all »(*).j(a) g I(na, d*),d g RQ).
e «l



Proof: By definition, Ar(Lj) =" 2y. So, considerany ij e I(nj) such that
imj, and define
Ra(i) " ipe rlip€ Na) - (pe rljpe Na}, all ae s.

Then, rm Q Ra(i) (since n- (J Ng). Also,ifra(i) - # Ra(i) we have
a€s a€hb

(8.13)  (r,(i)...~0)) 6 RQ).

Let \j> be asin (8.9). Then

But, n @@ \0(jj e Ar©(Og). Hence, by (8.13),~(cy) € 0 Ar (i)(Ga) Q ARQ).
aes

t'pel:u«i) ror
Therefore, V(Aj(Lj)) ¢ ARQ).

Now, considerany d e R(J), and let i(a),j(a) e I(na,d” (a6 s). Then,if1,j are
asin (8.10), cy € Af(Lj), and by (8.11)(ii) and (iii).

®. i()i0)-

8.14 <si3>- ® A jo6p)- ®
( ) vssi a nR\IIfIC00910 R asiPns’\ AN ae]

espe

Since AR() is k-spannedby {0 Cj@j(a) li(a),j(a) e I(na,dj (ae s),d e R},

.«

(8.14)  showsthat y (A-(Lj)) m AR(jy Thus, we define ip:A,(Lj) -~ AR(j) to be the
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inc <
0— #ker9 — »Ar(G) A, (Lj)-» 0.

Taking duals (and since all k-spaces involved are finite dimensional) we obtain the short

exact sequence

. Lol inc*
0— »A,(Lj)* *AW - (ker9)*-» 0.

Therefore,

SRQ) . Ini g - kerinc*.
) -alg kealg ni g - kerinc
But ker (p is k-spanned by cy, forall ij € I(n,r) such that i *j (cf. (8.3) and (8.5)).
Thus,

kerinc* = {£e Ar(G)* *Wcy) - 0,forallij e I(n,r) suchthat i +j}

®  kitd- S(Lj).

%'

Hence Sr(j) S(Lj), and we define the isomorphism y : Sr*)-# S(Lj) so that the

diagram below commutes.



where 1\ is the natural isomorphism

(e ® Anio))* .11 ® Ad.W A ® S(n.daGA O
d« RQ) eI de RQ)aci A d« RQ) asi

Foreach de RQJ),let id: ® S(nada; Oa)-*SR(j), and 7d : SR/n-¢ ® S(na,da; Ga)
ac s aes

be the natural injection and projection, respectively.

Let i(a),j(a) € I(na,da) (ae s). By (8.12), V 9(013)- ® q(a)j(a). Thus, as

£ht is the basis element of A”G)* dual to the basis element ch of A<G) (all

h, I e I(n,r)) and asimilar relation exists between 5i(a)j(a) and ci()j(a) (ae s), we have

(8.16) r

(8.17) Remarks: (i) As ® S(na,da; Ga) is k-spanned by all ® Aj/ai g4\,
x| aes

i(a),j(a) € I(na, dg) (ae 5), S(Lj)isk-spanned by (® "@j@) - li(a),j(a) €

I(na, dg) (ae s), d e RQJ)}. Hence, foreach ij e I(n,r) satisfying i- j, there is some

$13- VM ~j(a)j(a)) such that - 53.

(ii) Recall that, 1 and j are determined by i(a),j(a) e I(na,da) (ae s) asfollows
V - "VI+i«V; Jp- ma_, +j@)p.

if p—dj +...+daj+( (pedg, do-0).
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Hence, ~£]j (resp. 1 - j) iff i(a) £j(a) (resp.i(a)- j(a)), forallae s.
(ui) Suppose j has weight o ¢ A(nj), and j(a) has weight a(a) e A(na®) (a6 j).

Then a and a(a) are related by

°(avman®_+Wwall vcn,.

It is now time to return to the study of the module Kxj.

Let Xe Aj. As S(Lj) is a subalgebraof S(Gj), we may regard as an S(Lj)-
module (byrestriction).

Foreach ae s, let ra(X) - Xm* 31 +...+ X~, and define X(a)e A(nara(X)) by

X@V - X,,,_+v. all ven,.

Note that r(X) - (r,(X),...j,(X)) € R(J). Also, since Xe Aj, X(@), - X" F*" 42

- X@2¢£...n - Ma)ni. Hence X(a) € A+(na, ra(X)), all ae s.

Let Bg denote the subgroup of Ga consisting of all upper triangular matrices in
Ga. Consider the irreducible S(na, ra(X); BjJ)-module kx(a) affording the repre-
sentation (Cf. (6.7) and (6.9)(ii)).

From (7.8), we know that the S(na, ra(X); GJ-module

KX(@)* Sqara(™)l Ga) ®S(n,/,(X);B"kX(@)

isnon-zero, since X(a) e A+(na,ra(X)), foraU ac 5. Therefore, if we consider the
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k-vcctor space ® ~ Kx/a\, we have
a«i

(8.18) ® Kx(a)* 0. forall Xe Aj.

Aseach Kjra) isan S(na, ra(X); Ga)-module, ®£Ku,) may be regarded asa
ae
®  S(na, ra(X); GJ-module by
ae j

(® ")(® _<C.®lk)>- ®_(M.C.®Ilk). all "aCaeS(nara(X);Ga) (aej).
ac2 a«2

a«*

But, since we have the k-algebra epimorphism

S(L,)-1£-1. SR() ® S(n.r,<Xx.);G)

»«l

(where y is the isomorphism defined in (8.15) and Tt"x) the natural projection) we

may alsoregard ® K7(a) asan S(Lj)-module via

Itis ouraim to prove that, under these conditions, we have the following result.

(8.1#) Theorem: U tX e Aj\ Then Ku «id ® KX(i) are isomorphic

S(Lj)-modules.

Asan easy consequence of (8.19) we have the corollary.



(8.20) Corollary: Let X« A(nj). Then KXJ 0 iff X6 Aj.
Proof: By (8.2), (8.18) and (8.19), the corollary follows. O

(8.21) Remark: Let Xe A(nj) andlet J be any proper subset of n-1. Then we

know from 57 that (k;)° m kx. Also, by (5.9), ®S(G') - S(GI) and <>S(B-) -
S@ )

S(B+). Hence by (5.6), (Homsg,-, (S(G;), kE))° " S(0" ®S(B., kj. - Ku .
Thus, from (8.20) we obtain

HomsfB-, (SCO;), k") 4 0 iff \ 6 Aj.

Note that in the case when J mn-1. we have used the fact that

Homs(u-)(S(G), k™) ~ 0 toprove that Kx” 0, forall Xe A+ (cf. proofof (7.8)).

Proof of (8.19) Let Xe Aj. Define B j- B+r»Lj.

Then S(Bj) is a subalgebraboth of S(B+) and of S(Lj), and we may consider the

S(Lj)-module.
S(Lj) ®s(Bj) kX

(here kx being regarded as the restriction of kx to S(Bj)).

Now the proofof (8.19) follows from the next two lemmas. O



(8.22) Lemma: Let Xe Aj. Then ®  Kwa and S(Lj) ®s(BJ+) A
as 1

isomorphic S(Lj)-modules.

(8.23) Lemma: If Xe Aj, the S(Lj)-modules Kxj and S(Lj) ®s(Bj) kX

isomorphic.

Proof of (8.22) Let Xe A+(n,r). In this proof we write
S(G*) - S(n.1(X);G.) and S(B™ - S(n,r,(X);Bj) (a<=9).

As S(Lj) is k-spanned by ftij lij e 1(nj),i»j}, S(Lj) ®s(Bj)kX is k-spanned by
® Ik 1>d6 I(nr),i- j).

But, if j * Xthen ® Ik mrijj ® Ik “ 5ifj ®Ik" Hence

(8.24) S(Lj) ®s(BI*X is k-spanned by {*j® IkI(ij) e I(n,r),i=j and je X).
Now consider the Schur algebra S(B”). By anargument similar to that used in the

proofof (3.5), we can show that

(8.25) S(Bj) hask-basis {*ijl(ij)e Ci=j and i£j}.

Foreach ae s, write (Oj"a)” "S(GJ ® |k 6 Kx(a)- Then we may define a k-linear

map, 0i :S(L,)®S(B*kx-» ® K ~, by
1

»«l

®I$ ® Ik) - *r<X) ® t-W . 1« S(Lj)



(recall that Jr(X)V_1(8)e a?aSiG*) and y isasin (8.15)).

To prove that 9j is well defined, consider any basis element $jj of S(B]) (i.e.,
(ij) e £2,i- j and i£j), and any 56 S(Lj).

If j * X, then ®lk- 5® Ik - 0. Sosuppose that je X
By (8.17)(i), 5ij - 8§3 - V VI( ® S8i(a)j(a)- for some d 6 R(J) and
i(a),j(a) e I(na,da) (ae s). But, by (8.17)(ii) and (iii), i(a) £ j(a), andj(a) has weight

X(a) € A(na,ra(X)), forall a6 5. Hence d - r(X),and 8i(a)j<a)e S(Bj) (ae 5). Also

§K*)j(a) "XGO“ ~"K*)j(i) ® 'k - I1S(OJ® §Ka)J(i) 'k - KX(a)<8i(a)j(a))tOX(a)-
Therefore

®IE 8ij ® k) - **X) ¥**(8) "1 ¥"'(8y) (, ® . eX@>"
SV I OV IVEFE)  tK)j()) <, FFE ket

S *)V T <®  5Kk)I() ®)K)) -
mkKD <5i(i)j(i)) = Ki(i)(i<i)j(i)) ®i<5® to -

10,(5®1k); ifi(a)- j(a), forall ae s

\0 ; otherwise.

But. by (8.17XU), i(a) - j(a) (all a € 5) iff 1 - j, ie., iffi- j. Hence
0j(58ij ® 1k) if i mj « X, and zero otherwise.
On the other hand, 0j(5 ® 5ij
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1; ifi-jcX
{ i

0; otherwise.

Hence 0,(% j ® Ik) - 0,(® ® fcj Ik)-
Thus 0j is well defined. Also, since y 1 isa k-algebramap, Ot isan
S(Lj)-map.

Now, to prove that 0j is bijective, we consider the k-map

e2: S(Lj) given by

02® (5.@1k» -(VW ® W®Ik. *H5.6 S(G,) aes.
aes ae s

In a similar way to that used for 0j, we can show that for any i(a), j(a)

6 I(na, ra(X)) such thati(a) ~j(a), and forany ~ e S(G,) (ae s), there holds

(8.26) e2("® (M. ®10) - 02(M® («.»ti0 Oow Ik»-
L(VIRX) (0 5)® Ik if i(»)- j(*)« X(). 1 1E!
\'0 ; otherwise.
A, S(Bj) is k-spanned by li(a), j(») e I(n,, r(X)).i(@) S j(@)>, by

(8.26), €2 is well defined.

Now using (8.24) and the factthatif ij e I(n,r) satisfy i =j and j 6 X then



$ij m V MX) ("® "i(a)j(a)) forsome i(a),j(a) e I(na, ra(X)) (a e s), itiseasy to see

that 0j* =02 O

Proof of (8.23): In this proof we write Oj m {(ij) e QI i - j).

As Gj isthe scmidirect product Lj Uj, each ge Gj may be written in a unique

way ¢ - £u, for some £e Lj,ue Uj. So we may define a k-algebra map

d:kGj-»kLj by, d(g)» £ (the multiplicative property of d comes from the fact that

Uj isanormal subgroup of Gj). Sowe have the following diagram

$(0,) —- -+ S(L)

and we would like to define 8: S(Gj)-»S(Lj) so that the diagram commutes.
For this we only need to prove that, forany y e kGj, T?y) - 0 implies Tr(d(y)) 0.

Considerany £e Lj, u€ uj- (ij) e fij, per. Then (ip,jp) e Nax Na (some

a6 s) and we have

But =0 unless p e Na, in which case u”jp» 0 or 1, accordingas p # jp or
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p - jp. So (2u)yp- forall per, which implies

(8.27) (AOy-lij . all (ij)en,.

Now, let y be any elementof kGj. Then y -Z a ” Zu, (a®, e k) sum over a finite

numberofelements | e Lj and u € Uj ,and

NY)mA auTr(fu)=S aiu( X £ij)
. In (ij)en 37
'V
lij

As {Mij1(ij) g Q,i£]} isa k-basisof Gj, T"y) - 0 implies X atu(*u)ij - 0,

forall (ij) eil,i”j. Inparticular we have

A aiu (Mu)ij - 0, forall 0j) g fl,.
But from (8.27), we know this is the same as

(8.28) Xafciij-O .forill (ij)sn,.

Thu,. T,d(Y))- ~ fiQT/f) -

s (Mg “fisai K Ty eB



So T™y) - 0 implies T,(d(Y)) - 0, forall y« kGj.

Now define a k-linearmap

Moku —» S(Lj) ®s(bJ kX

by
ilft® k) - TO ® Ik aU $« S(GA.

To prove this is well defined we need to show that for any b e B+, and any

4 e S(Gj), there holds

TIift T,(b) ® Ik) - 1i(4 ® T|(b)Ik).

For this note that
(i) d(b) e B|, so Tf(d(b)) € S(BJ);

*) KX(Tr(d(b)) - KX(T">)).

Henee

tl(4 T/b) ® Ik) » 8(4 Tj(b)) ® Ik »(since 8 is a k-algebra map)
- 8(4) SOVO») ® Ik - 5(4)T/dib)) ® Ik -
8(4) ® Tr(d(b))Ik - Kx (Tj(b)) 8(4)® Ik -

1< te T I<b)IK).

On the other hand it is easy to see that we may define an S(Lj)-map
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il2:S(Lj)®S(BI>kx — KXJ
by
t2<$® D -$® L1 *U  S(L).

Since Uj acts trivially on kx and the restriction of S to S(L,) is the identity map on

S(Lj) we have €2 “ T“* hence the lemma. O



3. 2-STEP PROJECTIVE RESOLUTIONS

§9. The radical of Vx

The notation introduced in this chapter will be in force hereafter.

Recall from §4 that foreach a e A(n,r) we choose a basic a-tableau T* and

define £(a) e I(n,r) by

11 1 (row 1)
22 L2 (row2)
nn ...n (rown)

Clearly 1(a) hasweight a and the stabilizer, P ~, of t(a) in P coincices with the

row stabilizerof T°.

(9.1) Definition: Let ie L We say that the a-tableau Tj* is row-

semistandard if the entries in each row of Tj* are weakly increasing (£) from leftto
right.

Let 1(a) - (ie 11i£1(a) and T? is row-semistandard}.

We use X- (Xj,...An) to denote an arbitrarily chosen element of A with basic

X-tableau
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A1%12 o gy

(9.2) T -
»21*22 arny

enl *n2

and we write | - £(X), if no confusion arises.
We are interested in describing the basis (6.3), of - S(B+)", intermsof X-

tableaux. Forthatwe need a smalllemma
(9.3) Lemma: Suppose ie |,i£t and is not row-semistandard. Then there

is i'el suchthat i'E£, isrow-semistandard and (i,t) ~ (i'tl).

Proof: Suppose i is in the conditions of the lemma. Then there is n e P£ such that
Tj~ is row-semistandard (since P£ equals the row-stabilizer of T*). As
in£ln- I and (in,£)- (in,In)~ (i,f). wemake i'- in. O
(9.4) Proposition: V\ and rad have k-bases

X, - {$pE1i 6 I(X)} and X2 - {$i>£li 6 I(X) and i+0,
respectively.
Proof: As P£ coincides with the row stabilizer of T \ the elements of 1(X) are all
distinct and so linearly independent. Thus, the result follows from (6.3) and (6.5), once
we have proved that if (ij) e fI' and j e X, then thereis i'e | suchthat i' £ f,

is row-semistandard and (i\ f) ~ (ij). Butthisis clearfrom (1.3) and (9.3). O

Our next step is to determine a setof S(B+)-generators ofrad V\.



Foreach Ve n-1.and each non-negative integer m, define AN*: Zn-¢ 2" by

A™ (*i...*D) - (*|...AV+m, zy+j - all c 2z

If m~ Xy+i then A™ Xe A(n,r), and we choose the basic A™X-tableau to be

Thus

(»m5>  eF«<*) -

5 This map, A™, is a raising operator, as defined in [M; p. 8.



To simplify notation we write X(V, m) m A™X, and £(V, m) » f(A™X). Also if
m > Xy+i  we make the convention that “vjn),£ m 5l(v,m),i(vin) m 0. 40(1
VX(Vin) - 0.

(9.6) Remarks: Let v € n"i and 0 £ m £ Xy+j. Then

(i) £(V, m) istheelement £V, V+l,m, X), defined in (4.5), and £(v,0) - £
(ii) I(v, m) hasweight X(v,m);

(iii)  T~v>mj is row-semistandard and if m”~ 1 then £(V,m)<L Hence

*U(vm)t€ rad forall mil.

(9.7) Lemma: X - {"\u ve n-1. 1£ m* £ Xy+j) is a setof S(B+)-

generators of rad Vx.

Proof: Let M be the S(B+)-module generated by X. It is our aim to prove that
M - rad Vx.

By (9.6)(iii), it is clear that M s rad Vx. To prove the equality we will show that
all the elements of the basis X2 ofrad Vx (defined in (9.4)) are in M.

Suppose ie | satisfies (9.8) below
(9.8) i<£fand TN is row-semistandard.
Thenthereis p 6 r such that ip<ip. Suppose this situation occurs for the first time in

row V+ 1of T\ where ve n-1 (notice that this can neveroccurinrow 1of T\

since iatli=£37 - 1, forall 1£p £ Xj). Then



(row 1)

(rowv)

(row v+1)

where 17t< (iSV + 1 and 1£m £Xy+j. As x£V and i£ i, we have
i£ Uy, m). Thus "ie(v™n)6 S(B+). But 5t(vm),Ee X and so $i,£(v,m) $E(v,m)te M-

We now analyse thisproduct
Ai.Kvjn) D nsnre

where 8 runs overatransversal D of the set of all double cosets Pj*.m) 8 p£(vjn).£
in Pjcvjh). and >je [Pjj* :Paj”vjn)! <«nd la D).

Suppose first that 6 6 D and £ij5*» ~ t. Then there is jce Pt such that i8 = iw,
andso 5 = an, forsome oePj. As 8e PAVm), we have £(v,m)07t =mI(V,m).
Hence f(V,m)o =mf(V,m)7i-1. But trle Pt. Thus

™ -1 1 ... 1 (row 1)
AV \% (row v)
VV+1 VV+1l..V (rowv+ 1)

(rown)



ie,1*7-1 isobtained from by permuting the elements of row V + 1

amongst themselves. On the other handas oePj and T<p, thereareno V+ I's in

the first m-entries of row V+ 1 of Hence, livAn)jr* - £(v,m)o implies
f(van)jr< - Hyjn) - f(v,m)o, ie, o c Pifiivm), Xe PqyjnM 401
pi.i(vjn)8 pf(vjn)* - pitcvn) pl(vjn)*- Therefore 8 -1 and A  has coefficient
*1- tPu:pit t(y,nL Butsince x < jx wehave PPE- Py, y Thus a, - 1
There are two possibilities now:

(i) If x- V wehave D - {1}, andso”™ - 5it(v,in) 5t(v,m),i e M as desired.
(i) Suppose now x<v.

Foreach j 6 I(n,r) define P(j) - (Pi(j).-.Pn(j))» where P~(j) is the sum of the entries

inrow n of Tp andorderthese vectors lexicographically.

Let 8 e D\{1}. Then Tyj is obtained from by exchanging some ofthe x's in

row V+ 1 with v'sinrow V, and keeping fixed all other entries. As x <v, we will

then have P(i8) <|5(i). If T?g is not row-semistandard there is € P£ such that

TjgK is row-semistandard and 5i8n,i - "5 £ Also, as Jte P£ andi £ f(v,m) < t, we
have PfiSrt) - P(i8) < P(i), and iSrei £(v,m)8n- £(v,m)jc<fn - t

So we have proved that,

(9.9) If ie | satisfies (9.8), there exista subset I'of I(n,r), g e M and integers
aj (je 13 such that

(=

(ii)  j satisfies (9.8),alljc I";



(i) FtjX fti), all jc 1

If 1" is the empty set 5i,i 6 M, asrequired. Otherwise we apply (9.9) toeach j e
I Asthe set {[Xj)1j 8 I(n,r)} is finite, the process must stop.
Hence Xj- (&E1>satisfies (9.8)} £ M, and the lemma follows. O

As we are interested in a minimal set of generators of rad V”, we need to make
somemore calculations.

Consider Ve n-1. and integers g,m satisfying 1£ q £ m £ Xv+. We have

tableaux
té/—n») A \% (rowv)
V..vv +1 ..V (rowv+1)
m
Voo \Y (row v)
V..VV+1 ... VH (rowv+1)
q

Itis not difficult to see that Pi(v,q) m p£(v,m), Kyjtd pt(v.q)4  and

" (':]!_q)! (_1 Thus, by (2.7),



(®-10) 5t(v.m), *(v.q) tICv*).1 “ [q J £X(v,in),l-

Note that g£m implies f(v,m) £ t(V,q) and so ~ * n),|(vig) 6 S(B+).

Lets consider first the case when char k m 0. Then, taking q - 1 in (9.10),

Av.m)N o gA(vin). I(vl) S«vld) £ A K+1v«jti*

This together with (9.7) give

(9.11) If chark - 0,rad V* is S(B+)-generated by {*«(v.i)«*v 6 n~"-

Now suppose chark = p ~ 0. We will use the following lemma.

(9.12) Lemma: U; (22.4)). Assume that a,b are positive integers and

a- aO+atp+.. +atp* (0£ar<p, ate Z)
b- bo+b\p+..

+b,p* (0Ebp<p, bAE Z).

Then (1)m (») W - W

(modp). In particular, p divides
forsome p.

iff <b

Let pi Sm< p*1ie, m mmO+ mjp+ ..+ mjpd, where 0 £ m~<p,
nye Z (p g d) and m*+0.



Then, from (9.12), we know that p +*pdj and by (9.10),

v 7~X Ifvjrt

W

Thus, similarly to the previous case, we get

(9.13) If chark « p,rad Vx is S(B+)-generated by

W *>.ilvaenzLispi»sV*i>-

Itis our aim to prove that these sets are in fact minimal sets of generators of rad Vx-

For this we need to define a grading of S(B+).

Let ij e | have weights a and p, respectively, and suppose that i £j. By (1.10),

P <a. Thus, there are non-negative integers such that

"vw t- A A?I~AV B

where eim+i m (0.--.0, 1,-1, 0,....0)e Zn (pe n-11.
000*+»
Hence, a-peH 'ai £ . z"e, ,+)1z"eZ,Zn"O (p€ n-1)> (ie. a-Pisa
p«n-

sum of positive roots). In these conditions we say that ~jj has degree d(8jj), where

d(iij)-0-P.
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Foreach o e *¥ let S(B+)0 bethe k-subspace of S(B+) spanned by all (i£j)

ofdegree 0. Then

(9.14) S(B+)m ® S(B+)0
o« 'V

is agrading of S(B+).
In fact, suppose that i,j, h, f e | have weights a, p, P', y, respectively, and that
if£j,and h£f Then A -0, unless P » P If this last condition holds, there is

jt«P such that jn - h,and so

ilj tfcf - 5icJiw m ~ *8 L]

where the sum is over a subset {5} of Pf, and a§ are non-negative integers.
Since iitS hasweight a, we have

mi(ilrfj) - a -y- (a - P)+(P-y)- d(iij) + d(*h).
forall 5. Hence

(9-15) 5ij SBHiKiij)-nl(5/).

It follows now easily that S(B+a S(B+)(s S(B+)a+a* forall a, & e 4/. Hence
(9.14) isagrading of S(B+).

(9.16) Proposition: Letchark - p (*0). Then

ISpAS X «.}

isaminimal setof S(B+)-generators ofrad VA
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Proof: By (9.11) and (9.13), we know that Y generates rad Vx. Thus, to prove the
proposition, we only need to show that if Y 'cY and S(B+)Y'- rad Vx then
Y' - Y. Suppose this does not happen, i.e., there is Y" satisfying
Y 'jY and S(B+)Y'- rad Vx.
Then, there are some V€ n-1.and some non-negative integer d such that

1£ Pd£"vfi and €Y\Y"

A> s rad VX there are n,....i)g « S(B+), and e Y
suchthat

1N 171 BV jA)

VM ‘uro£awii (TR TéN
S 18 LGIE N .»if 51 5ev,.[A).th

But, since distinct £fj,'s are linearly independent, this implies that there are s 6 g and

iSf(V 8,pd» satisfying

(*117) BitCV.jA) itev.jt".w “$5iS.t - * 5t(v,pa).t+ 5.7 VD.1«5iS.1.

where:



(1) D isatransversal of the set of double cosets 8 ptvlpl).i in pi(v,.pd);
(2) D'- {6« DI and ag - [P " :P** t(vitp*.)l, all 86 D;
@) a- a8 satisfies a # 0 (mod p).

Write d (AViipa)) - A 517 e+l (m”e Z,n";»0).

Then, (9.17) and (9.15) imply d(tgvi«),|) - + d("CVI4A)N). >«-.
PdBvVH = 51 tilke™+j+p"Ey.v+
H« Qzl
and, since the vectors e~ +i (]X6 n-1) arelinearly independentover IR, this implies
(#.18) V,«V, my+pd*=*pd, and m~m0 if p.4 V.’

(i) Suppose first p * 0.
Then, from (9.18), we have pd - pd«- 1 and my - 0. Thus,

Sic»**M - Sltv.IW m Sliv.jAM € Y’
which contradicts our hypothesis.
(ii) Suppose now that p 4 0.
If pd - pd«we getthe same contradiction as in (i).

Thus, let pd > pd# and considerany 8 e D'. As vs- v, we have

(a) i £ «(v.p¥) implies 8" f(v,pd.) (since 8 e P Vpdi));
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(b) - M(v,pd),i implies i8 - ¢(V.pdjjt, for some ne Pf.
Hence
(row 1)
LA~
(row v)
(row v+1)
(row n)

(Le. i8x - f(V,pd), forsome xe P a n d
>6 " 1P* . I: FiSXKv.p.)! - Jm0 (modp).

Therefore, a= as m 0 (modp), which gives acontradiction.

Thus Y isaminimal set of generatorsofrad Vx- O

§10. A 2-step minimal projective resolution of k\ and its

applications to Weyl modules

Now, that we have defined a minimal set of generators of rad Vx. it is easy to
determine a 2-step minimal projective resolution of kx, i.e., an exact sequence in mod

S(B+)

90
PO—* kx- O
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where PO and Pj areprojective S(B+)-modules and ker tjycradP”~, p - 0,1.
We know from 56 that Va - SiB*)” (a 6 A) isa projective S(B+)-module.

Also, by (6.8), there is an S(B+)-epimorphism K\ :Vx-*kx (defined by

K'x(Ci?) - 1 or 0,accordingas i- t,or i <l (if£ £)) with ker K\ - rad Vx- So,

we make

(10.1) PO -V x and <Po-rX.

Now, suppose thatchark m 0, and define <fj: ©  ~X(v,|)#Vx. by

Flv."1n,)mVvr-1 1v U Ix * v Kvl>-
Then, gt isan S(B+)-map and, since e rad Vx,
Im «i - tpi ("©r¢ N Vx(v,i>) C rad Vx- Thus, if we prove that € Im i

(V€ n-1). by (9.16), we will have Im cpj - rad Vx- But this is easy, since

$X<vii) « v X(v.i). and

<PIEX<V)) - E%(v,) Et(v.i). * Ai<v. )

Hence

9j 90

vina v*¥«> — * — 0

isan exact sequence in mod S(B+).

Similarly, if chark » p, we obtain the exact sequence



9! 90
© ® V*0>4%) ——o VX%—  kX— O
ven-1
where < is defined by
(10.8) <p, < 2. X X 1(VjA)Ster*4)*

isp' sV i

>u nevhil). vho -

Now, we know that ker go = rad Vx. Thus, to prove that the 2-step projective

resolution of kx, defined above, is minimal it is sufficientto show that

ker<p,c  © © nivxttpi.) (-rad( © ©
veltl 11,% »7, Velti 1SpriX A,

Suppose this is nottrue, i.eMthere are rj(\#pt,) e Vx(viP4,) such that
91 (vi-i ? 'kvi'.)) - o and not*«) * ™d Vix<p,p*).
for some [Le n-1. and some pd suchthat 1 £ pd £ X +1.
Write C-{(v.p'Slvsitl, 1Sp4*SXvn, (v.p'S# (p.pd)}.
Then 91 v~ t ? -0 ff nj,,* ncKTTVc

CoAdip AV

But as no,,*) * rad Vj~pt), we have



Nw->- *i ¢ £ . *ibjuurt-
i<«kijo

where ~ e k and aj * 0. Thus

(10.3) *1VpI(+ £ «liiny) - A-lleTKeW -
i<W\ c,C

But, since i < fip.PI) implies iS < tftl.pi) (@1 Se P"y)), the coefficient of
ANCnpd),i on the left side of (10.3) is ai 0). On the other hand, we know from
(9.16) that, this coefficienton the right side of (10.3) is zero.

Thisyields a contradiction, and so

oter9, Grid ( © » Vijry,).
Vltl ISpAV t

Hence we proved the

(10.4) Theorem: Suppose chark-pféO ). Then the sequence below is a 2-

step minimal projective resolution of k*,

® ® Vay, A Vx-\ kx— o.
veltx isp's”,

where <P and <pl aiethemapsdefinedin(10.1)and(10.2),respectively.
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(10.6) Corollary: Suppose char k- p 0) and let J be any subset of n-1.

Then, if X€ Aj(nj) the sequence below isa 2-step projective resolution of

U Ji Siory,) «0fo-UU ku -.Q

ve«=1

who* Vo - FjCPoXIj *™i VI - fu F,(»,)( U -1l fE{, ).
v«ltl

Considering the particular case of Jmn-1. we have

(10.7) Corollary: Suppose chark = p (E0). Then,if Xe A+(nj) the sequence

below is a 2-step projective resolution of the Weyl module K*.

H -U S(G)~-" Kx -. 0.
velth 1*p'*»w,

who* Vo - Fp-iCVoXiit). "<«

VI - ftn-l Fn-I(TI) (_H -U
o ERI (A & 1w -
'« P AV



4. S(B+) REVISITED

In this chapter we will look in more detail at the Schur algebra S(B+), in particular

atits Cartan invariants.
|11. The spaces Homs(B+) (Va,Vx)

We recall that X is a fixed elementof A(n,r), T* is the basic tableau (9.2) and
I-KM

It was proved in (9.4) that V\ has k-basis 1i 6 1(X)}, which implies the

following.

Proof: As dim* V*. - # I(X) = numberof X-tableaux of the form

1 .1 (row 1)
1..12..2 (row 2)
1..12..2 - p...p (rowp)
1..12..2 .. n.n (row n)
we have that dim* - p™ ..p™, where,foreach ne n,p® number of distinct

sequencesof integers



1.12..2 i, av20 (V6u), I »v-L,
v*u

»1 *2 «

Now let a beany elementof A(n,r) and consider the k-space
(Vo. VX>8(B*) - HomS(B+) (VO, Vx).
As V0 - SCB+*q and Vx- S(B+)Ex there is a k-isomorphism

(11.2) (VO, VX)s(B*)* 4a S (B x - (VX)°.

(11.3) Lemma: Let a e A(nr). Then the following statements are equivalent
(i) (Vo,Vx)s(B-)"0

(i) X<a

(i) a =AM™L.. for non-negative integers 6

Proof: (ii) and (iii) above are obviously equivalent Now let a e A(n,r) and
consider A S(B+)Ex-

As S(B+H)xm © k there holds

Ay
5aS(B+)"x i?l(x) kfeok

6 Recall that A™1... AnJj’X” 0-, + nij, Xj+ m2 - nil,...An " mn-1)*



Therefore ~ S(B+)Ex 4 0 iff thereis i 6 I(X) with weight a. Ifsuch i exists,
then i£f and,by(1.10), X "a.

Conversely if X~ a let i betheelementof I(nj) whose X-tableau has the

first (Xj entriesequal to 1, the next a2 entries equalto 2.....Then ie a andsince

<2 Xj, a| +a2£ Xj+ Xj,...,i 6 1(X). Hence X3 a implies 5a S(B+)5x, 4 0.

Now the result follows from (11.2). O

« It follows from the fact that din* 1~ -1 (all a € A(nj)) that k isa splitting
field for S(B+). So (cf. [CR; (54.16)1) the Cartan invariants cj” of S(B+) maybe
defined by

cxa- din* (Va, Vx)sb*) - din* (V*)«.

Recall that (Vj~ - 5x S(B+)~ m kix, (cf. 86). Also, by the previous lemma,

din* (Va, Vx)s(B+) ~ 0 iff X~ a. Thuswe have the following

(11.4) Theorem: The Cartan invariants c”*a of S(B+) satisfy (i) and (ii) below.

(i) cxo4 0 iff X3 a.

(ii) cu-1.

If we arrange the elements of A(nj) in some total order < such that X~ a
implies X< a, and use this total order to arrange the rows and columns of the Cartan

matrix C of S(B+) then, by (11.4), C takes the unitriangular form



. ¢ - OowX)

(columna)

Now let a € A(nj) and supposethat X3 a,i.e, a - A™L... A ~ *X for non-
negative integers nil,,,.tan-|.

As (Va.VOs<B») * ia S(B*)ix - itis essy to see that

(11.5) (Va, VX)s(BH) has k-basis {+”~ lie I(X),ie a}, where, for each
ie I(X) satisfying ie a, «~ istheelementof (Va, Wo)s(B+) defined by

W O-4?2U .foraU $€ Va.

Therefore dimj.(Va, Vx)s(B+) m #(i e I(X)lie a} = number of tableaux of the type

(116) (row 1)

(row 2)

(rowli)

11 bn-U bn-Ln-l an



where

b,,200le itl, V«ittl); Y bn,.«,-»,; ’Z b,vema* V- 2...n-l
n«nzl u-v-i

This tableau determines a matrix b - (bAvVvejti whose entries b*v  satisfy

(11.7) (i) bAv« Z; bAVE£0; and if V>p + 1 then bAv- 0 (all p, Ve n-1).

00 M A X V-r~——t.

H)yvZzrb™r,-V,,.u-U.l-2; vZ~Ab._,v-1,-a.

Conversely, given a matrix, b = (bpv)p,ve j~, satisfying (11.7) it determines a

tableau!”~ ofthe type (11.6), by therule: is row semistandard, all the entries in
row lof are equal to 1,and bpv isthe numberof V's inrow p+1 of Tp forall
n.v«azlL

Thus we have a bijective correspondence, i f «-» (tyv)u\VEIL i, between the sets

flIf li«I(X) and i6 a) and *aA) - (b - Ibpv satisfies (11.7) for
all u. Ve n-I>.

This proves the following.

(11.8) Lemma: With the notation above, we have

cXo " dimjtfVa, Vx>s(B+) - »«(a,X).



The remainder of this section will be dedicated to the study of the Cartan

invariants c"q. in the case when a - A™1 .. aJJ*X, for non-negative integers

m1l,...mn_| satisfying

m”$ ,all ve n-1.

The case mv>Xv+i>forsome Ve n-1. will be studied in 512.

(11.9) Definition: Given integers mj.-.-.m, (s£1) let ©(raj.—m,) be the set

of all matrices, d - (d"v)"\£€j. whose entries satisfy

drVvE * D W0 ; dA/» 0 if V>p+1, (U.ves)

. *
(11.10) Fer K PVeE
dv,vn - 2 t(<Vi,+..+1i,): Ve« 1=1
Define n(mL...Ans) - # ®(mL..Mns).
Note thatif <0, forsome lies, then "mi,..,!'")"- 0 and n(m1l..,ms) - 0.

(11.11) Proposition: Let a - A™1L.. A™A e A(nr), where ml,..m,_|

are non-negative integers satisfying A Xy*j, forall Ve n-1. Then

cXo" n(mi..,mn_1).
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Proof: Let a satisfy the conditions above. Since we know from (11.8) that cj*a -
# Bia.X), to prove the proposition we only need to show that #®(a,X) -
#®(m1,...,mn.i). Forsimplicity we shall write s- n-1.

As mvE Xy+i (V€ s), we may define non-negative integrs qo, gj.-.-.q, as
follows

qv - - my, forall V€ s-1. and qo mg*m 0.

Then cxy+i - +nvn - -m~j+qv (Ve s-1) and the setof equations

(11.7)(ii) and (iii) can be rewritten

So (11.7) is equivalent to the set of equations

(11.12)

Hence we have the following new expression for ®(a,X)

(11.13) «(a,X)- ib- Ib7v satisfies (11.12), aU )i,V €s).

Now foreach be ®(a,X), define 0(b) e ®(m|,...,.ms), by



ifvoan+l
ech”v-
FEW rS» o V-n+1; all HVES.
Since qv~0 (V- 0,..,s), itisclearthatthe map 0: ®(a,X)-» Dim!,...,!!1,), which

takes b € s(a,X) to 0(b) e &(ml...m,), is abijecdon. Hence #«(a,X) -

# ACmj....m,). O

This proposition shows that the integers nCnij....m,,_i) have an importantrole in
our work.
In some cases they are veiy easy to calculate. For example let n = 3, and let

mlt m2 be any non-negative integers. Then

Now itis easy to see that d e ©(m~mj) iff dji m mj - djt; ;22 “ m2- <2l
d2j e Z and O£ d2j £ min (m,m2>. Therefore, n(mim2>- »© (mj") -

min (mi,m2) + 1, and we have the corollary.

(11.14) Corollary: Let a,UA(3;) and suppose that a-A~tA"X, for

non-negative integers mi,mZSatiSfying mt£ \2 Then

exa- min (mi, m2)+ 1.
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In general, n(mj....m,) can not be expressed in such a nice way. What we will
do now is to determine a generating function for these integers, which enable us to

establish some relations amongst the exa*

Let s beany positive integer. Take s indeterminates Xj,...A and define the

formal series

(11.15) Proposition: With the notation above, we have

where P(xl,..,x8) « (1 - xvXy+l ... XA ).

« V]
1SV<|ISI+1

Proo«:U,P-(*,". «y . A,

oo Xhpt~+h-

1EV<pEs+]



Thus, for any non-negative integers the coefficientof x™1.. x™« in

P'(xj,....x#) equals the number of matrices, h - (h"vV.vcf» whose entries satisfy

Let ~f(mi,.."ns) be the setof all these matrices, i.e.,
- (h- (h"vV.vejl huv satisfies (11.16),all p,v 6 s).

We can definea map, 0: m|,...,m# -¢ ®(mL1,...,ms), by

all p,ves, he *(mj...m$.

Infact, if h e #(m 1...,ms) we have that

O(h)|[X4i+i ™ 5*N Ov+|.t+ e A (A(h)n+ix+ —+ 0(h)jt),

0(h) € ®(m1,...,ms).
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Itis easy to see that & isa bijection. Thus, # (mLl...ins) - # 2)(nii,...""ns) -
n(mi,...,ms),i.e., the coefficientof x"i... x™* in P'(x1...,xt) is n(tni,...jns). Hence
PA(Xjtr»Jig) - Q(xi,...,xs). O
(11.17) Definition: Foreach e e P(n), define co(X) g Zn by

to(X) - (Xj +<o(l) - 1. Xj+ co(2) - 2,...An + <*KN) - n).

(11.18) Remarks: Forany coe P(n), we have:
(i) Let 5 - (n-1, n-2,..., 1,0) € Z". Then co(X) - X + S-tf«*))....5,*«))
(- X+ 8- <0-18 in the notation of [MI (cf. [M; p. 81)).

(ii) Foreach v e n-1.let av(co) be the non-negative integer given by

av(co) - <o(l) + <0(2) +... + co(v) - (1 +... + V). Then, co(X) -

Conventions: Here we generalize the convention made in 89 as follows: if
ml..mn_i arenon-negative integersand A™1... A™MI1a * A (nj), then
-0, forali

VAlI...Amlla- d 5iAA

ae A(nr),ie I(nr).

Wewill also write ¢

(all Be A(nj)).

We can now prove the main resultof this section



(11.19) Theorem: Let a - A™L.. Xe A(n,r), for non-negative integers

tnl...mn_1 satisfying my £ Xy+j (Vg n-1). Then the Cartan invariants of S(B+)
satisfy the identity

(where e(co) is the sign of the permutation ®, and 5x,a - 1 or 0, according as

X-a or X+a).

Proof: If n m 1 the theorem is obvious. So suppose that n'S 2.

v
Let cog P(n) and write av(co)= X (co(p)-p), forall ven. Then
H-1

OX*)-A2». A f\.

Suppose in the first place that co(X) £ A(n,r). Then, there is some Vg rM such
that Xy\j + ay+Cco) - av(co) < 0. Butthen, since my ~ Xy+j, we have

my - av(co) £ Xy+j - av(co) < -ay+ii©) £ 0.

Hence c*ya - n(mj - aiioo),...»,,., - a,,."®)) - 0 (recall that n(bj....b,) - 0
if by <0, forsome Vg s.)

Now suppose that <o(X) e A(n,r). There are two possibilities:
(i) my - av(co) <0, for some Vg n-1

(ii) my - ay(co)t 0, forall VG n-1.

In the first case we have n(m, - a,(®),...mlLi - a,,."®)) - 0. Also ®(X)0 a.
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S0, by (11.4X0.

- 0. Thu» ¢y, - n(m,-t1(co),..,inB 1-all. ,(<»)).
Now consider the case (ii).

Wehive a - A"l a" j<A- A" r*/") . a”A™*_t&W ),

Also, (OCA),., - (m,-iv(0>)) - Av.l + iv»i(0i) - lytto) - (m, - i,«i») -

Xv+i - mv + av+jito). Since ay+iico) 2 0, this implies

<O(X)V| - (ow- *v(*))* *v+l -ntviO, all Venj..

Therefore, a and co(X) satisfy the hypothesis of (11.11), and so

ca=Xa" n(mi - a,(@>)"..”nn_,-all.,(co)).

Thus, in any of these cases - nimi-aiicoX.-.m,,.! - a,,.*»)), for all

toe P(n), and we have

« £<,,) EM)C«<A) -, Aon(mi*

Now the theorem follows from the lemma (11.20) below. O

(11.20) Lemma: Let s be a positive integer. For each coe P(s+1) let
av(co) - (toQO-ii), Ve s. Then, forany non-negative integers m1,...,ms, there
ifirr-0,all ve s
s

- IO if triy # 0, some v € s.



Proof: Let Xft..Xt4j be s+l independent variables and consider the ring of

Laurent polynomials ZtXj*....Xjj, L In [M;p. 26 (proofof (3.4"))1 itis proved that

inthis ring there holds

w2 X292

Now consider the polynomial ring Z[xj....xj in the independent variables

xl--»xs. and let f: Zixi,..., Xj)-» 1 be the ring homomorphism defined
by.

f(xbl...xJ3.)-X bl x jlbl _xV VIX~{, all monomials xbi ... xb*€ * x ,..x.1.

Note that f(xv X v,j... x") - X ~Aj,all 1SV < (tSi.

Suppose that

P(X,,..") - ,s,n sN (1-X,Xv*..Xj.)- " 40 pfl>,....bj) Xbl ... Xj,.

Then b ,J> Pb>..-xi-).

- A ' .
1evipEssr 27X X DX XA B X,V

Hence, by (11.21),



Thisimpliesthat

fe(an; if (bobj - (1,(05...

p(bj..... )
\ 0 o if (b, K(#») .

PO | g Flygip@ - v v —p-) m toe%gsﬂ)f(m) 11

Now let “ X >nn(g,...qjxj*..xj*. By (IMS).
tr p*0
1,...,Xs) - 1. Hence

«o»nFn«...

The coefficientof x™t... x™« on the left side of this equality is

-& M ) e(<0) n(ml-al(co),...ms-as(co)).
On the other hand, this coefficient on the right side of the equality is 1 if

mj m..«m,m0, and itis zero otherwise. Hence
Y* fl; ifm.- . .mmg=0

e P(s+l) 10; if A0, some Ve s.

Thiscompletes the proofofthe lemma. O
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§12. Som# more results on C'A

In this section we proceed with the study of the Cartan invariants Cxo of S(B+).

We use the same notation as in §11.

In (11.11) we proved that cxo - n(m1..mn_|) if a - A ft.. AjViX, for

non-negative integers ml..,mn_| satisfying my £ Xy+j (Ve n-1). In the general

case we have a weaker result

(12.1) Proposition: Let a - Aft.. AjViX e A(n,r), where m,..n"_, tie

non-negative integers. Then
cXo* n(m,.....SVi).

Proof: Write s =n-1 and define integers qQ.—q, as follows
qv - Xy+j - my, forall Ve s-1; qo »q«=0.

Note that, since we are notassuming that my £ Xy+j, qv may be a negative integer.

Itis easy to see that, as in the proofof (11.11), *Bf.aX) has the expression
(12.2) 3«x,X) - (b- (b~y,, IbMy satisfy (12.3), all jxVe j)
where

(12.3) (i) brve Z; bAVEO, and bAv » 0 if v>p+1 (all p,Ve s).



(i) Z . bnv-®v+Qv-l. vkx»;
ne«i

v
(iii)  bv.v+l " Qu+~ ("V-Lt+ eee+ NP)» v €

Thus, we may define an injective map 0: ®(a,X)-» 23(m1>..,ms)t by

J*Vv * VAH +1
®0>)pv- ~bwi+,-qdl, ifv-n +1; aun.ves, be s(aX).

But, since qv may be negative, 0 may notbe suijective. In fact we have
Imo0 - (d- (djiv) € £5(md...,ms) Id " +12 all *Le s”l).
Therefore, #®(a,X) £ #®(mi,...jn J m n(m1,..nJ), and by (11.8),
cXam *®<*X) 3 n(mj,...ms). O

(12.4) Remark: Note thatif a and X are as above, from the proof of (12.1),

we have

cxam n(mlf..mlki) - 6 ®(tnl,...mn_1) 1d " +j < - X"+j, some p e >,

We shall now describe cxa in the case when n - 3. Recall from 511 that
cXam0, unless X3 a. Also n(m1,102) - min(mi,m2)+ 1 if m*mj£0,anditis

zero otherwise.



(12.5) Thoorom: Let X, a e A(3j) and suppose that X < a, Let
a-A j'iA~X, fornon-negative integers mi,m2. Then

min (nij, +1 , ifmjEXj

X0 min (Xj, Xj+ mj-mji+l, if nj| @Xi.

Proof: By (11.14), c”a- min (mi,m2) + 1 if mj £ X2.
Now suppose that mj > X2 and write q - X2 - (<0).

From (12.2), we know that

bjivC * bnviO0 qio,
bll+b21* 'l ; b2l+b22*m2’

So, we nuiy define 5 : mBiaAj-*iXm, +q, mj +q), by

Kv . if (MV)* 2.1
SOV \pgirge fox.)- 21):  ILv-U; be HBX).

Clearly 6 it injective. Also, since q £ 0, we may define, for each

de ©(mi+q, m2+q), b(d) € <8@aX), by

K v . if olv) * (2.D
A ed2eg, if HV)- 1) pov- IX

Then 0(b(d)) - d. Hence 0 issuijective. Therefore, #$(a,X) - #®(mi+q, m2+q)

n(mj+q, m2+q) - min(mi+q, m2+q) + 1.
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But, mj+q - X2 A~ n”+q- X2+m2-m 1 Hence, cxo- min (X2, X2+m2-m D+1. °
We now generalize theorem (11.19) in the case n - 3.

(12.6) Theorem: Let a, X« A(3j). Then we have

Proof: If X6a. then oft) 0a (since X3 0>X) and so - 0, forall
oeP(3). Thus 57e(o) Cgftyn - 0.

Now suppose that X 3 a. i.e., a - A"l Aj*X, for non-negative Integers
mj, m2.

If mj ~ X2 the theorem follows from (11.19).

Now consider the case mj > X* and write q - X2- mj (<0).

v
Let coe P(3). Once more we define av(to) = £ (co(n) - n) (v- 1,2,3), so
I»- t

that co(X) - ANNX. Calculating av(co), forall co6 P(3) (V- 12), we

obtain

*12-7*,7~ 3e(m) coft)a - cXa-CA,Xui-CAft/.-*«A JjXo + cA,a | Xo- 'a Jal xo-

Suppose that oft) 3 tt. forall o e P(3). Then o(XJj- X2+ a2(0) - ai(0).

Also nt| - a,(0) > Xj - a,(0). Thus

nt| - a,(0) 20ft); if a20)S1



and, by (125), ¢ " - min (0CX", to(X)2 + m2-a2(io) - mj+a”co)) + 1 -
min (mi-ai(co), m2-a2(co)) + a2(to) + q + 1. Hence (since mi-ai(co)i 0 and
m2-82(0) £ 0)

(12.8) - nim”aji®©), m2-a2(co)+ a2(co)+ q if a2(co)Sl.

Now suppose that a2(co) m 2, i.e., to(X) - Aj a|X or co(X)- AjA"X. We have
two cases to consider
(i) m|”~ X2+'2. Then mj-a”co) » co(X)2,and ¢ )« is given by (12.8), forall
(0€ P(3). Therefore, by (11.20) and (12.7),

WS~eico) chdja 5 7 3e(co) n(m,-a,(CD), m2-a2(<0)) J"e(ci) (a2(co)+q) - O
(since  X"e(co) a2(to)- -1+1+2-2-0).

(i) mj <X2+2. Then mj - 1< (Aj A|X)2 and mi-2 < (AjA*Xh- Hence

cAjal x*x- n(m,-1, m2-2), and cA - n(m,-2. m2-2).

Thus,

u 5/ 3)f<o) n(m,-,,(a>). iH2-,2(m)) +

Z eCcoHljCcol+ qj-O-0O+qj +d+qJ-0O.
<0. Pj,A(0>)*2 ol al a q

This ends the proofof the theorem in the case when co(X) < a, forall 0) g P(3).

The proof in the othercases is similar. O
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(12.9) Remark: In (13.4) we construct a minimal projective resolution of

VAII®Vv -!l, VX— *KkA-.0

when chark m0 and Xe A(3,r).

Soforany a € A(3,r), we obtain a shortexact sequence of k-spaces

0- (V- (VA2*2)° ® (VAIA[l)a - (VAX)°® (VA2x)« - (VX)«-(kjA-0

(since V° - and A isan idempotent).

Thisimpliesthat

dimkOcx)« - din* (Vx)° - din* (VAIX)° - din* (V ~a +din* (VA270°

+din* (Var o - din* (VA

Or equivalently

(12.10) Sjj, - din\(kx)a - B if char k- 0.

But, by (12.3), ¢ ~ » depends only on co(X) and o, and noton the field k. In

fact, the equality 57~ ENBQ°0"a “ ~X.a may be rewritten in terms of the

integers n(mj, m”, which do not depend on k. So, from (12.10), we obtain an

alternative proof of the theorem (12.6) (for any field k).

Theorems (11.19) and (12.6) lead us to conjecture the following
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(12.11) Conjecture: Forany a, Xe A(n,r) there holds

(12.12) Remarks: (i) Note that the conjecture is obvious if n £ 2. Also, by
(11.4), itholds for any a e A(nj) suchthat X0a.

(ii) To support (12.11) we have, in addition to theorems (11.19) and (12.6), many
examples in the case when n m 4.

(iii) Consider the ring Z[xi,...,.xJ of the polynomials in the independent variables
Xi,...,.xn with coefficients in Z. We remark here the analogy between (12.11) and

the Jacobi-Trudi identity

H B E(rn) hoXX) all Xe A+(nj)

which expresses the Schur function sx(xt,..,xn), correspondingto X, in terms of the

complete symmetric functions h i(xi,...,xn) (cf. [M; pg. 14, (3.1), (34*)D-
p Y| pg

Let m = (mi,...ms), q ®m (gi,...,qs), where mj,....ms, gi,...,q, are non-negative

integersand s~ 1. Define

®(m,q) * {b>(bnvV,v€51lyv Mtisfy 02-13)» 811 1* Ve s)
and

n(m.q) - # ®m.g),

where

(12.13) (i) brve Z; tyv~ 0 and brv- 0 if V>n + 1 (ji,ve s).
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(ii) HZ« 1bhv-m v (ves), and Vze i buV- qw (ne$).

Then, by (11.8),
cXa " 8((<*i-Xi, 02...,070, (X2X3,...Aa—l»‘ir«n)).

forall a e A(n,r) suchthat X3 a.

Toend this section, we determine a generating function for the integers n(m,q).

Take 2s indetenninantes Yj,....yg (s” 1), and define the series

Q(Xy) - OCXj,...*,, ¥, .y,) -

vV A *0

(12.14) Lemma: With the notation above, we have

Qty) - —
Pfx.y)
wWhO TP(x.y).is<n ~ i(l-x,ylI.J (here yo- xwl - 0).
Proof: Ax 1-x,y,_,)-". X (X, Yss_,)Vi.» we hxve

Vw*#
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b, tov-i b.
W - v Wb yfutbi wyu
P(x.y)
Therefore, the coefficientof x"i... X™ yjt... Y« in ------n- is
P(x.y)
9((n>1...m.), (G, G,)). B84y B mmmmmemmees Q(xy). ©

A
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5. ON MINIMAL PROJECTIVE RESOLUTIONS OF k*

In Chapter 3 we produced 2 -step minimal projective resolutions of k*, for any
X€ A(n,r). This led us to consider the problem of constructing minimal projective
resolutions of k*.

Itis known that S(B+) has finite global dimension (cf. [G2I). Therefore minimal
projective resolutions of k*. are finite and, by (10.4), they depend on the characteristic
pofk.

We now look at this problem for some particular casesof n and p.
§13. The case ns 3 and char k =0

In }13 we assume that k has characteristic zero.
Suppose firstthat nm 1. Then A(l,r) has only one element, (r), and k(r) » V «I*

aprojective module.

Now suppose that n « 2 and let X e A(2jr). By (10.4), there is the 2-step

minimal projective resolution of k"7

0
VAX s VX % kx-»«.

where Im - rad VA,

But, from (9.4) and (11.1), we know that

dim rad Vx » dim - 1- X2- dim Vxtx*

Hence, dim ker tpj - dim V ~x - dim rad * 0, and we have the following

7 Recall that X (I,1) . AtX and (- «X).
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(13.1) Theorem: Let chark-0 and Xe A(2,r). Then
kx-0,

where ¢po and 9i areasin (10.4), isaminimal projective resolution of k.

Itis now convenientto introduce a matrix notation for S(B+)-maps.
Let a0),...,aW, |)0)....,pta) e A(nj), and consider the matrix F - (Tla,b)a«s,b€g.
where Tlabe Vpo>), all aes, beq.
Then we identify F with the S(B+)-map o> ©2Va(«)-* b© Vn(b), given by
ae «

ae& ae s.be

Suppose now that n - 3and that X- (Xj, X2, X3)e A(3,r). Let

*11 - *1X,
21 - *2Xj
Bl - *3Xj

be the chosen basic X-tableau, and define h,j e A(3,r), by the X-tableaux

(13.2) tJ - 111, 1 111 .1
122 .. 2 222 .. 2
133 ~ 3 213... 3

Let F1.F2.F3 be the matrices defined as follows



) bt 2
VIi*f)AA X)) + *V KAA) KAJANAAT)

' 2 AKAMACAJW AKAJAIWAL) ' W jM

1=3- .«alah) <(AjAJA). I(A

a-2, b--2, c-1 if Xj*1
where . .
a»0, b--1, c-2; if Xjm1l

Thenwe have the following result

(13.4) Theorem: Suppose that char k = 0 and that X e A(3,r). Then the

sequence below is aminimal projective resolution of

0-»VA3*3x-!1t va2® ® vAiAjx A . vv ev¥ A , Vx-!t kx-.o,

where €y = R\ (cf. (10.1)), and g>|, p2 <3 are defined by the matrices Fj,F2, F3

above.

(13.5) Remarks: (i) Note that h - f(Aj AjX) (a22831) and

j mf(AJA|X) (a2i 832).8

Forany a,a'er, (aa') denotes the transpositionin P which interchanges a and a'.



(ii) According to the convention made in Chapter 4, some of the entries
ikAA.D-T)J(A*0 Of ,he iMtrice« Fj.FAFj nuybeitro
(when X j.Oor X3£ 1).

A similarremark applies to the modules V. m, .
At'Aj X

Proof Of (13.4) To simplify notation, in this proof we write £(A™i A™2) for

KANMNANX), and pfIX for (Pr<h.: Pr (iVj\ h'c 1(3))).

Suppose "2, X3/ 2.

We have the X-tableaux

(13.6) 1}. 111 .1 111 .01
222 .. 2 122 .. 2

333 .3 333 .3

111 .1 AAf)yx 111..1

222 .. 2 122 H 2

233 3 223 .3

A adm - 111 -1 111 .. 1
112 _ 2 112 .. 2

233 .. 3 223 .. 3
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Itis clear that the S(B+)-map <p|, defined by the matrix Fj, is the map defined in
(10.2). So, by (10.4),

VAIX® v AX \b(-'?S kX-O

isa 2-step minimal projective resolution of k*. We now explain how to obtain the

matrix F2.
By (11.5), the k-spaces (VA2 * , VAiIX)s(B4). VAIl)s(B*).
h*v'  k-bases
{*"KAJAjLKA> «~A )} {*"KAjAp.«A)};
{"«ANj.KAJ)  {it(A1A)).I(A2) '~ |(AY}
respectively.
Thus, 92e VABI© Vfij)s(py iffitisdefined by a matrix
ofthetype
* 5«AjJAp.«Ap + ** >1 A «AjAp. KAp
2=
M AANJKAJ) *SA«Alalx I(AN + a<iW j>

a, 6kn.



Itisclearthat <92 m 0 iff F2Fj - 0. Soour next step is to determine those a”c k
Qi- 1,..6) forwhich F2F| m 0.

From the structure of the X-tableaux (13.2) and (13.6), it is not hard to see that

PI(*I) 1 PHAJANKAp P«A,)J - Ph,I(A,) Pi(A,)" ">d

Al (Aj- 2121 (A3- 11
PK*2a2lKAD2 - . Al (A*- 21 <A3- 11 ' 2

Al (A, - D1(Aj - DL
PM(A)l * Al (Aj- D1(A3- 1)! * 'm  Hen"’

AARAT). <A IlIA < 1 2AKadA)1 - and ilIRAL)) Xa ,)2- 52
Al». Pq(A)) - (i0ii PKABAi KAJ)SXPKAA2- "here 51m 1 *2 . <2 *31>-
But « ALA2)*2 - h. -d , - PhrAjj

AKAMAD. KA) A 1> 4 - AkadAj Act W

Therefore, the firstrow of F2Fj is
él/\«A"AjI.KA,) + %ZA,P AALW o+ ’S‘KAjAp./\AjIAKAjM

-(2.,+3)5M1N [+ (243 N
But, since * a2A” | an<* £ 316 Pncariy independent elements of S(B+), this is

zero iff

(13.7) 83- -2aj and a2m2aj, any aje lc



Now we repeat this procedure for the second row of FjFj.

We have P«Al) - P<AAN P«AD.ts  PHA])* PiI<Aj) p«Aj),« *nd
PCAM - [19 U VA ) LAJIV KA *'hr 1% > 5 %2 - <21 531> Als®
P«A,al. «(A,). «1 PLKAjI.I" * *nd PKA,Aj).KA~.I- 2-

Note that i(A, AMt2(a3l«32)-j. Thus, 5 ,~* 2" ,- $j,. since (s31s32) u P(.
Therefore,
ANALAN KANKAW * AK A LAYt At<A)) AhAj)! - ij.t;

VarK AjiVal.l" AAJAN) .« +4lm

So, the second row of F2F1 is
“<5I(ALA]I(APSI(AL  + (*5/1(Alal).I(A2)+ *«AANK AN < *

-(*4 +2a)) t~ iA2)-1+ @5+ ) tw.

As, 57 an) i dIK 5j,i are linearly independent vectors, this is zero iff

(13.8) 84- -2a5, and  =-85, any 85e k.
We make aj - 85- -a$ - 1,and -a2 - 83- 84- -2.
Then, F2 isasdefined in (13.3) and, since conditions (13.7) and (13.8) are satisfied,

there holds

(13.9) F2F1 “ 0, and Im 92 C ker j .
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Next we show that, in fact, we have dim Im 92 * dim ker ¢pj. Thus Im 92 m ker 9,.
Let 1|, 12,13 be the setsofall i 6 1(3/) defined by the X-tableaux (13.10), (13.11)
and (13.12), respectively.

(13.10) 1* -

2£bn £ X2 and

152 + 2+ b23 m X3-1 ;
(13.11) T- -

1E£ X £X3;
(13.12) Tf- -

b2i+1>22+0h23 ” X3-2.

(13.13) Remarks: (i) 1j, 12 and I3 are pairwise disjoint.

(i) 1,ul2- I(AjAjX), and 13 CI(AAMX). So, { » 2 ~ i« I, u l2) isa
basisof Va™AjX, and AA a2jlie 13} is contained in a basisof VA

(cf. (9.1) and (9.4)).

Itisour aim to prove that
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(13.14) The vector* 92 N1i€llu,2 41392~ Ald)* 4l i€ B

are linearly independent.

From the definition of <2 we know that

(13.15) the component! of end lying in VAX «re.

respectively,

"J AMIAJTKIAAT) et SU [27

ANARAKANAA]) - AA AW ) e 1x
Itis easy to see that

J - bii<bti - > l«*,) m
S «W AV A *«h - 1-Xj 0§ . 1) Coiti< 1.

Also, if ie I3 has X-tableau (13.12) then

NAA, al) VA A) t(Ap - 22+ » SutAl-
Tocalculate . we notice that t(A,A|) («21«32)- j- Thus,

W .alj’ V)lwhere i'- i (a2, a32), i.e..

11 W. 1
22 2
21-12-23-3



Similarly to the previous cases, we have

W oj o AWi)m(b2i + ) VW -

Hence, by (13.15), we have

(3.17) (i) Let i6 Ij u 12, be defined by the X-tableaux (13.10), or (13.11). Then,
the componentof lying in VX2x is

-bn (bn - 1) fc.KAj). * *1:
X2(*2+ Q) NirAf). i€h e

(i) If ie 13 is defined by the X-tableau (13.12) then the component of

<SP+ .) - 021+ 1) .

where i' isdefined by the X-tableau (13.16).

But liu 12- I(Aj A2X)c I(A2X),9 and so the vectors (ielju 12)

are linearly independent (since they are part of a basisof VajX)-

Now, if we analyse £iifiXa) whcn isasin (13.12), we have

SiKAj) - M(Aa).

where 1€ A(3,r) isdefined by the X-tableau

9 Thisis aparticularcase of I(Aj*a) S 1(a), forany ae A(nr),0EmEa2.



11 .. 1

12 2

21 21 + 722+ *>3m X3- 1.
b2l &2+1 X

devly 1c I(Aj»), but1l I(aJa2X) (sincelr *1).
Hence, the vectors "N™Aj) € liu Iju 13) are linearly independent, and (13.14)
follows from (13.17).

Now, as 1j G12 - I(Aj A2X), we have # Ij + # 12 = dim Va*a"X"

X jX AN +1)
. ———l (cf. (11.1)).

Also, # I3 equals the numberof distinct sequences of integers
1..1 2.2 3..3

b2l b22 b23
where b?ji 20 (|i = 1,2,3) and b2i +b22+ 1>3m X3- 2.

Hence, # 13- ( and
dimIim<qR * Ij +#I12+* 131 i PRA(N3+ 1) + A3("31 1)F
But,
dim ker g9 - dim VAj* + dim - dimrad V*, -
-0 [M2(M3 4 1) (B+2)+ (X2+2) (X3+1) X3- X2+ 1) (X3+ 1) (X3+2)
+2) mAIX2 X303 + 1)+ X3(X3 - 1)] £ dim Im q2-

Therefore, Im 92 - ker <j and we have the following result



VA ~ ® VA, " VA,A® VAj>. VX- k~oO

isan exact sequence.

We now repeat this procedure todetermine an S(B+)-map

93:VAj X VAjANI®va a™X' such 113l "3 isiniective and Im93 - ker 92.

Thistimewe have

dim (V* X X mV*2V)SEBH ' ‘Um(VA2AN ..

Hence, 93 is determined by a matrix of the type,

F* (blV aladm GJa®  AA((AALLIAME ol Ek

Make bi bj - 1. Then F- F3 (asdefined in (13.3)) and our next step is to show
that F3F2* 0.

The first column of F3F2 is

4«alal). GaJa) " «AAAMAGI+ 27 A p -

A« ada), KAJAY) 5KA,ad). KA,) =

No*, since F A~ an —PA~W J~NAp -2

we have
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*a}al). kaJAj) *ka}atl(ap " 2 M«aJat A j)e

Also, 4(Ajﬁ(‘>(a2*a mh and 4(AjAN)fa i a3) mc, where

Hence
~tadad). (AMAPSh.«A,r  4hJ(A) m 5e,<A,)

(since Ph " Pcji PM(A)* and Pc,h"(A,)“ !)» Finally, we have

P«A,a2) - ,yw PHAJAW ,A j) *H t>KA/SI).KAD)- wh'fe S1 - 1 *"d
&“ é@a% Thus,

5Ka;al)AA,ad)V , ad).«A)E” aJad).K A AW )
(since PralaljAA,al). I(Ap* ~ A |, al),*Ap * »e« Therefore, the firsl column of
F3Fj is

27N ald).«Ap+2U | - 2t<A{AN.<Ap-2V<«A,) - O

Similarcalculations show that
5KaJa”). «aJAp 5«AjJAp. i(Ap B 5KaJad). KAp:
A aJAfl). HA a]) $«<A,AN).«Ap B 2 Kadal). «(Ap+ A <Ap ;

Alalal). KA AY) A«(A * AdKAj) i



where d isdefined by the X-tableau

212 .. 2
213 .. 3

Hence the second column of F3F2 is
"2 IAQ+27KaJAj ). KAp+ V kA - AAA]) m

Therefore F3Fj- 0.
Ut 93 bedefined by the matrix F3. Then, 9293 - 0 end next we show that

(13.19) dim VAJAAX " dim *m 93 m dim ker 92 .

Thus, 93 is the map we were looking for.

Va}ala h“ CINA YIS AR Ay,
By the stmcture of . wecansee that is I(AJa| X) iff i isdefined by

one of the ».-tableaux (13.20), (13.21), or (13.22), below.

(13.20) if - 11 .. 1
11.. 12 .. 2 2Shn SX2,and
_iu__ TA+92+ &3 “ X3-2;
221.12..23..3
b2t bjj bja
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(13.21)

bjj +bjj+bj3- X3-2;

(13.22)

& "2z x32
Itfollows from the definition of 93, that the component of .
*AI<A?A*)) W "«

U/Va,aH “ «MCAfA»)V "al IKa.aJ) O0«l(ada”X)).

Calculating this product we obtain
W .AJ, = «”™ » 03.20)
iflfi« (13.21)

= if~ if03 ")

But, since 1(Aj X)s I(A| a| X), 1i € I(Aj A7 X)) iscontained ina

basis of VA,AJV Hencc* 93($U<ala™* for all i e I(aJa”X), are Unearly

independent vectors and



(13.23) {pB(£ir2" ) 1*6 I(Aj X)) isabasisof Im93.

L . . (X-+ 1)(X,- 1)L
Therefore, 93 isinjective and dim Im 98 - dim V*'Zl*%* R 5 frmemmeen

Now, as dim Im 92 - i tX2X3 (X3+ 1)+ X3(X3- 1)J and
dimVa2a” +dim VAM2~ i \\2X3 (X3+ 1)+ (X2+ 2)"3 (X3- 1) 1 we have

X +ix Xj - DX3
2

dimker 92 - dim Im 93.

Hence (13.19). Thiscompletes the proofof the following result

(13.24) If X2, X332, the sequence below is a projective resolution of k*.

0- VA~AX 7 VA iv® VA Ajx — *VAX® VAX -"-V X-" k x-.0.

Now we know, from (10.4), that ker 90 - rad V*. and ker 9j s rad (VAjx © Vy"x).
So, to prove that the projective resolution in (13.24) is minimal it is enough to show

that

(13.25) tofcCnuivVAemdVvV~".

By (13.23) and (13.24). ker (fc has k-basis {93(5" 2*2))Im6 I(A*  X)).

So, (13.25) is equivalent to



(13.2#) AL is I(Aj Aj X).

Letis I(aJ AMX). Then, iS«al Aj)<«Aj Aj),i(A, AM). Thus.

(13.27) ISS«AjAN)B- «al Aj)<«al Aj),«A, AA), 1186

But,

w A «alat)lmA alal) A alah). «alaj)+

+W Jal)Skalal).«A,AV S * W alAj)+? *5V «a,AY.
where the sums are over subsets, {8} and {S},of and ag,a5'e

And so, (13.26) follows from (13.27).10

With (13.24) and (13.25) we conclude the proofof the theorem (13.4) in the case

Xj, X37 2. The proof of the other cases is similar. O

$14. The case n =2 and char k=p

When k isafield of positive characteristic, the construction of minimal projective

resolutions of kx becomes much more difficultthan when characteristic of k is zero.

Now we shall give some results on this problem when n - 2.

10 We recall that, if a € A(n,r) then ~;(a) e rad Va, forall i< 1(a) (cf. (9.4)).



Let X m (r - a, a) be an arbitrarily chosen element of A(2,r), and write
X(I,m) - A™X Km)- KA” X) (OSmSa).

Suppose chark mp  0) and let

a-aO+alp+..+adpd, where a*« Z,07a|l<p (n- 0...d), a”O.

Define an S(B+)-map

0'x0jp) ® ® ® w® vx<i? - Hph)) “m® 0 VXA )

by

AW THG™)
12<«

Then, if $oand (pj are the maps defined in (10.1) and (10.2), respectively, we

have the following result.

(14.1) Theorem: With the notation above.

k!l-0.

are the first three terms of aminimal projective resolution o f k*.



In the proof of (14.1) we will make use of the following two lemmas, which are

easy consequences of (2.7) and (9.12), respectively.

(14.2) Lemma: Suppose b, c, d are non-negative integers satisfyingd £ c £b £ a,
and consider the elements 1(b), 1(c), f(d) of 1(2j). Then, 1(b) £ £(c) £ £(d) and

t«b).Kc) A(c)Ad) “ (b - c) .

(14.3) Lemma: Suppose b - bo+ bjp + ..+ bgp», where b*e Z

0£b*<p (Ji*0,.,5)bg4 0, and g, m are non-negative integers satisfying q<m

£s. Then
(i) p* b ~PM i -0, forall g€ t<m;
b -p
b-p
(i) for bAp*+pm pt y m i<V 0-
b-P -P 1

Proof of (14.1): Assume the hypotheses of (14.1). Then, from (10.4), we know

AN e ©

is exactand minimal. Thus, to prove the theorem we only need to show that

that

(14.4) () Im P+ ker i ;

(i) ker92 S rad ©d (v X(Lpm ® Vx0.1+p") ©  © v X pra-,+pm))-
m «



We startby proving (14.4)(i).
From the definition of $2>we can see that <Pi 921 0 iff

*Pidix(p—<p—)> - o, ind + S«pnr).i<jr)) - o.
forall med, OSqSm - 1. But, by (14.2)

mWo.Kp"-) m [pin-1] m0

0 (modp), and similarly.

9| C-5«(p»"").V)+ -1 m + _ W AP”)lme-

Hence we have <Pig2“ 0 andso Im q2£ ker tpj.

Now let m e d be fixed and consider any integer b such that pm£ b £ a. Write

(14.5) b - bo+ bjp+...+ bsps (bre Z,0£br<p (lies), b,”0).

Suppose first that

(14.6) bO-b1-...-bm.1- 0.
Then, as 6 Vx(i.pm), we have
(14.7) 92(i<(b)W)) - 5«b).t(p") V p’ MW*'b »
" {b i pl" o i«b)Ap--). and p ~fb P m (cf. (14.3)(@))-
\b-p 1 \b " P



Now suppose that
(14.8) M O,forsome OE£tEm-1, and q isthe smallest such t

Then b £ p<+ pm and Sitlip~p™)e v X(,p»+p")- So from ** definition of 92
and (14.2), we have

b -
(14.9) 2 (NO"Ptp™) tmjKsv* 5«b).W>*

and p + (since bg” 0 (cf. (14.3)(V)).
b

. pm , if b satisfies (14.6)
Write f(m,b)

pg+ pm, if b satisfies (14.8) .

Then, our next step is to prove that the set (92(5f(b), £(f(mb))) Imed, pmE£b:£a} is

linearly independentand so

(14.10) dimim922 (a-pm+l).

Suppose we have

04.11) rm,b92(i«(b)At(mJ>)))-0,forsome ymb6 lc
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We know from (14.7) and (14.9) that the component of (14.11) lying in is

STabv-BW)’

where the sum isover all b 2 pd satisfying (14.8) with m - d.

. (b-pd \
But, under these conditions, p i d . Also, as the vectors ~(b)."

Ib-p -P)

(pd~ b~ a) formabasisof V ~j*, they are linearly independent So, we must have
(14.12) Ydb m 0, forall b” pd such that ~ ~ 0, forsome 0 £t<d.
Hence, (14.11) and (14.12) imply (14.13), below

d-1 . a

*14'13*m ?i b-p" Twl*2<t<<I>Me«Cmi>»)+ 7 2.,d Yd>92&(b).t(pY) - °-

Now, the component of (14.13) lying in Vx(itP<«i) is

popdt v opal
<1c14) \ Td* [D_ _ pdlitcbW-> +$ Td* P ZIO>)W-y

where the first sum is taken over all b £ pd-1 such that b satisfies (14.8) with

m « d-1, and the second sum isoverall b £ pd satisfying bo= - bd_| = 0.

It is then clear that all vectors £t(b),i(pi-,)> involved in (14.14), are linearly
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b -p .
independentand, since p tl q d_| inthefirstcase,and p + in

\b-p -p \b -P
the second case, (14.13) and (14.14) imply

(14.15) Ydb»0, forall b£ pd suchthat bo- .. mbd_j m0. Also, Yb4-1 - 0,
forall bE£pd-1 satisfying b |/0, forsome 0€t<d-I.

Proceeding like this, we can see that (14.11) implies Ymb- 0, forall me d and

pm£ b £ a, and so (14.10) holds. But

Thus, we must have Im 92 * ker ¢|.

Now we will turn our attention to (14.4)(ii).

Let

where Ym> Yqgmb€ k.

d
Suppose 5* (rad V xdj,.)®tad © ..®rad Vjrjr-t+pl)).

Then, we know from (9.4), that Ymp™~ 0 or Ygmifttp™+0. forsome m ed and

some 0 £q <m. Calculating 92(5) we obtain



(14.16) <P2(4). m  T«b),«p--) +
b -P
and, forany m e d, the coefficient of i(P™-~1) in this expression is
Pm Pm-l
But, forany 0£q<m-1, . g ml - 0 (mod p) (cf. (14.3X«)).
W -P -P
Hence, the coefficient of in (14.16) is Ympy™ Thusif Ymp™~ O» for

some me d, wemusthave <2(£) " 0.
In a similar way itcan be seen that Ygmp™pm* 0. for some me d and some
0£q<m,implies <2(£) ~ 0.

Hence (14.4Xii) holds, and this ends the proof of the theorem. O

Unfortunately we are not able to construct the whole minimal projective resolution
of kx when n- 2 and chark - p (* 0). Inour attempts to solve this problem we
worked out some examples, which we shall now describe. We don't explain the

calculations involved in the construction o f these examples, since they are routine.

(14.17) Examples: Let <y (ot and ¢2 be as in (14.1). Then the sequences
below are minimal projective resolutionsof k*.

(i) X=(r-6,6) and char k m 3:



°-*y X<1j6)-—-—-» v VW> ® VIKI® ------ * vJKU)®v VM>

VVLI>® V)KIJ>—  VX— ki-*0,

where 93 and 94 are defined by the matrices

i K%)A3) 0
NEZD  sen o Fa- [icq)2(4)  °I

() X -(r-11, 11) ind char k - 3:

0-»V)KL10) — 4 VKIJ)® VJIKI.10)— "4 VX1.7)®VJIL0OJ)— "4
B »3
*ym.4) ® VIKLE® VV U 0)-4——»

»«

vKIi) ® vKIL7)------

VKU) ® VKM> ® VKLY ® V IK1.10)——> VIK,1) ® VKU) ® v X li) -

Lol
V>, M4 <R,

where 97 is defined by matrix F~,

(2 K3) 0 0 o

f3- Skajo)  (6).1(4) ;
tI00)A3>  Zqt0).i(4) "KW)A9) 0

0 0 $1(7)A6) 0

Mk)2<4)
0 FS- é»1(9)/35) 2°K9).£(7)

tloM(4)



0

0" AGO.L«) MAOXw] " F7* [5c10)2<9) o],
(i)  X- (r-5,5) and char k- 2:

0-*vXd)) — VI<t4>®V>25)—  VI(U) ® VVM)® VKIJ)
)
VKU) ® VKU) ® vm.4) ® VKL5) —-* y ML.I> ® VX(U>®VVM)

k2- 0.

where qq is defined by the matrix F*,

*Q)2(2> 0 0 0
F3- *4)2(2) rayn@E) 0 0
#5)2(2) *&5)2(4) 0
V»>2<3) 0 0
0 F5- ["«5)2(4) »m

**5)2(3)  **5)2(4)

$15 An application to S(G)
Consider the functors

F - S(G) ®S(B*+: mod S(B+) -»mod S(G)

and

F - Hom"3-)(S(G), *) : mod S(B-)-* mod S(G).
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In [W] itisproved the following

(15.1) Theorem: (D. Woodcock) Let a e A+(n,r). Then

R»F (ki) - ExtI*-j (S(G), lei) - 0.
We now apply this result to the sequences in theorems (13.1) and (14.1).
For the rest of this section we will fix n - 2 and use the notation of §14.
However we will notdemand p - chark to be different from zero.
Consider X- (Xj, Xq)e A+(2,r). If p * 0 write
X2* ao+ a,p +... + adpd, where a”eZ, 0£a”<p (n- 0,.,d), ag+0.
Let 90»9i and 92 be the maps defined in §14 (92 =0 if p - 0),and let

fo.l: F(Va)-»SiG)~. all a e AQ2r)

be the S(G)-isomorphisms defined in (10.5). Define S(G)-maps Vg, and y2

as follows

d
Vo - FfVo) :VI- fxlF(fI) ( 110 fE(1,p"),1); and
m-

d d
Va1 ( JLlo*xoan).i> f«pj) (il «ji(ip™).i 11 - 11 fi(ij)mil=>Vi)

(15.2) Theorem: Let XeA+(2,r). With the notation above, we have



(i)  0-*S(G*x<u) S(G*X Kx -*0
is aprojective resolution of the Weyl module K* if chark - 0.
d
w>  JU t(SCG)",") il SCOIK,. A, Usig"h ,» ) u ..

U S@)GX()-+p»)) —* U SI1G *~ -~ StG*-A®. Kx-.0
m-0

are the first three terms of a projective resolution of if chark - p>0.

Proof: Let chark- p (£0) and write YO - VA,

d d
YIU m20VXilpm) A Y 1" m® YVx<LAT ® VAL HPP) ® - ® VX(I,pm,431))

(Yi- Vx(|ti). and Y2- 0 if p- 0).

By (13.1) and (14.1),

are the first terms of a minimal projective resolution of k”. Thus, taking duals (and

since all the modules involved are finite dimensional over k) we have that

0-lec. Yo© YZ »

1* If V, V' are k-vector spacesand fe Hon\(V,Y), f*e Hom V"™, V*) is the
map defined by, f*(0) - 0f, forall 0e V™.



are the first three termsofan injective resolutionof kE. But,kj * k£. Therefore,

by (15.1), the sequence below is exact up to and including F'(Yj°)

Taking duals, once more, we obtain the exact sequence in mod S(G)

[F(Y2°)»

On the other hand, if we apply the functor F to the sequence (15.3), we obtain the

following complex

H<F2) F(«p.) F<pn)
F(Y2) v » FCYI) —i* F(Yq) -2, F(k)J 0.

Bui, from (5.6), we know that there is an S(G)-isomoiphism
By : F(V°) -»[F(V)]°

natural in V' s mod S(B-), le., (By!l V € mod S(B-)) is a class of S(G)-
isomorphsims such that forany V. V'€ mod S(B‘) and any fc Homs(B-)(V, V)
the diagram below commutes

F(V°) --F-g--)» F(V°)
By'1 4fly

tF (V)] e (F(V)u .
F(0



Itis also easy to see that the usual isomorphism W SZIO (W°)° (w6 W is taken

to ew.W?° -+ k, defined by, ew(5) m 8w), forall 5 g W°) is natural in
W g mod S(B+). Therefore, there are  S(G)-isomorphisms 1), tty, ©)j, 42 such that

thediagram below commutes.

(15.4) fivi) 02 R R Fva) TP B0

>i21 tii 1 tio 4. in
[F(Y.,°)1°~il [F(Y0°)]°~M [F(kxo)]o”0.
Hence, since the bottom row of (15.4) is exact, the top row is also exact.

Now, as F(kjJ m S(G) ®s(B*)hji *s the Weyl module (cf. (7.2)), the theorem

follows. O

(15.5) Remark: The sequence in (15.2)(i) is equivalent to the projective resolution
of Kx determined in [A] and [ZI.
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@ THE SCHUR ALQEQRA S(U+)

In this chapter we consider the unipotent subgroup U+ of B+, and give some

resultson its Schur algebra S(U+) m SCn.r. U+).
§16. A basis and the radical of S(U+)

Let |i, Ve n, p <v. Foreach non-negative integer m, consider the elements

r<*>, of S(B*).defined by

sum over all weights a e A such that m £ cty.

Note that, since 0 Sa, £r (all a « A), wehave r® , - 15(G), and rJO . o if

m>r.

Let u(iv(t) be the elementof U+ with I's in the main diagonal, t in position

000, and zeros elsewhere (te k). In (4.7) we proved that

18-1 T/tint)) . | C H"> .
(18-1) N CH

As a consequence o f this we have the following result

(16.2) Lemma: (l r<*>€S(U%), all n,v6n, n<v.m-0..v.
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Proof: Lei n,v be asabove.

(i) As un(t) 6 u+, T((UiMt)) 6 S(U+), forall te k. Thus, since k is an infinite

field, (16.1) implies rj"} « S(U+), all m-0,...,r.
(ii) Let t,t'fi k. Then, ur"t) u~O - u”t+0O. Hence

TksM) Tr(uuv(t)) - T/u/vit+ 0), ie.

or equivalently.

As this holds forany t,t'ek (and k is infinite) we must have

O

Itis well known that U+ is generated by {uvv+1(t)IVe n-1 te k}. Thus, by
(16.1) and (16.2).

(16.3)  S(U+) is generated by ,IvE€nti, m-0,.r}

We can refine this resultas follows.
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(16.4) Proposition: Suppose chark - p(£ 0). Then S(U+) is generated (as
k-algebra) by X - {Is«j).r ~ , Ivc 1Ep*£r).
Proof: Let M be the subalgebraof S(U+) generated by X. Suppose we show that,
forany Ve n-1.
(16.5) 1*m* EM, m -

Then the proposition follows from (16.3).

To prove (16.5) we use induction on m.
1fm-0. rE>. -tj(W «M .

Now let 1£m £, and suppose (16.5) holds, forany g <m.
If p> 0 thereexists be Z, b «£0, such that pb” m < ph”l, and so we may write
m =apb+s, where a,se Z,1£a<p, 0S!s<pb (if p- 0,wemakeb- s- 0,

and a- m).

Suppose first thst s it 0. Then by (16.2XU), 17, m But,

P *(*)- Hence,

<m> . p(s)
vVvil  fm) vVl v+l >

By the induction hypothesis both and r~fAj arein M. Thus e M.

Now suppose that s 0. Then and once more we have



r (m)
V.V

where p | p (since a<p). So theresult follows by the induction hypothesis. O
\P

Our next step is to determine a basis for S(U+).

Letue U+ Then u?v- 0, unlesss p £V (p,ve n).

TTu,. T,(w)-J  nuji,j- (! Aeg .«

(16.6) Definition: For any non-negative integer s, let il*s be a set of
representatives of the P(s)-orbits of pairs (h, h*) in I(n,s) x I(n,s) such that
hl <hj, li2<t2—t<h|.

Define Q* - il*0u u ..u ii*r
Choose Q sothatif (ij) e C¥ then

<] 2<jl— i»l - jftl..jr- Jr («me «i 0).

Under these conditions, let ¢ be the element of Ci% satisfying ¢ ~ ((i,...4$).
(JI>-.Js)). TT>cn, we say that ¢ isthe core of (ij) (orof any elementinthe P-orbit
of (ij) in I(n,r) x I(n,r>). Forany (i\jOe I(n,r) x I(n,r), c(i',jO will denote the core
of (i".O.

11 Recall that Q' - {(ij)» Q Ii*j}.
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Note that c(ij) e ft*0 iff c(ij) is "empty”, i.e., iff i- j.

(16.7) Definition: If ceft* define the core sum by

c(ij)-c

(16.8) Remarks: (i) Let [i,vE£ n n < v, and consider the element

cm- ((M.-10. (V....V)) of arm. (m - Then ic_ - rj*>.
In particular, cq€ ft*o and » - Is(G)-
(ii) Let ¢ »(h,hOe ft*g (s- Then c - c(ij), forsome (ij) e ft"

In fact, let i',j' e 1(n,r) bedefined by

h'p, if Pl
Of1  ifpeis+1..j).

Then i'Sj" and c(i',j) - c. So if (ij) e ft' and O'j) ~ (ij) we have c =c(i",j")
- c(i).

(iii) By (ii)above, ~ ~ 0,allce ft*.

Itis clearthatif (ij), (i\j") € ft', and c(ij) - c(i'j"), then for any ue U+ we
have Uy- Ujj- (since u”, = 1, p e n). Therefore

(16.9) nyiij- X forall usU *

(where Ug- uy, forany (ij) € ft' such that c(ij) - c).
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(1S.10) Lamm«: {,m S(u*), forall cc n*.

Proof: Ul ¢ - (h,hica\ If cs 0" then 5c- X Q,5u - Is(0)* S(U+).

Now suppose that ¢ € Q*f (s € j).
Let m be the number of distinct pairs (hp, h'p), p € 5. Then thereare p,, V,e n,
djgs (a€ m) satisfying

(i) m<Va. and (p*.va)* (H*V if »* b (a,b* m);

O £ d,-
a«<a
(iii)  c- O».»0~ ((Pta.r.aPi.--4W -4W. L VMLLLY,LL)
dt d* dl dm
Foreach t- e km, define u(t) 6 U+, by

(1 , ifp-Vv
t, , if(LV)- (It,vi. aem
0

, otherwise yp.ven.
Then, forany (ij) e CV,we have

“(0ij - 0, unless Op.jp)« {(L1),...,(n,n), (pIfV,)....(Pm, V~}, aU per.

If this last condition holds, and if ga- #{pe r 10p.jp) - (Ha»va» (a € m). then

o(t)g- tj*-.tji.

Let Q- {q- (qr .gm)e ZmlOE£qgafr (asm); JE q#Er}.
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Foreach qe Q,let c(q) betheelementof ft* defined by,

(<)~ ((I]-.4*1--4l»....4k). J—V [-->W
di dm di dm

Then, we havejust proved that, for any (ij) e O, there holds

U)ij - Z=ae"i™ o if foTSO™ <« Q
A0 , otherwise.
Therefore,
(16.11) 1XO0) - frw

Since T,(u(t)) e S(U+), and (16.11) holds forany te km (and k is infinite) we

must have

5c(q) € S(U+), forall qeQ.

But, in particular, d - (di,....dm)e Q. Also ¢ - c(d). Hence 5¢" 5c(d)€ S(U+). O

(16.12) Theorem: S(U+) has k-basis Y - {{glee ft*}.

Proof: By (16.9) and the lemma (16.10), Y spans S(U+). Also from the

definitions of ft* and of 5c is clear that the elements of Y are linearly

independent. O

Let ij € 1 have weights a and (3, respectively, and suppose that i £j. In §9
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we defined the degree of $[j, d("jj), by

d(Eij) - a - p.
Also,if z sleMi,*i1Z,ii.i.iO0 lus n-11 (where
U6 D1
*1141*1 - -1......0» and S(B*){- ® k~y (?« T) we proved thal
Qi) (u+1) B (*3) 60 v ) P
Wy)-C

S(BV). c®1t S(B*);

is a grading of the algebra S(B+) (cf.(9.14)).

It is easy to see that if (ij), (i'j') € CI',and c(ij) - c(i'J"), then d(%j) - d(*-j-).
Thus, forany ce £1* there holds

(6.13) (i) 5¢c- g£ a is homogeneous of degree d(”-j-). where (i'j'Je Q'
c(ij) - ¢
satisfies c(i'j’) - c.

(i) d(5¢) - (0...0) iff c€ crQie., iff 1wy

For each Ce 4* let S(U+)t be the k-subspace of S(U+) spanned by all
5c(ce CI*) of degree

By the remarks above,
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s(u-) - A S(U+)C

isagrading of S(U+).

Wc now use this grading to determine the radical of S(U+).

(16.14) Theorem: The radical of S(U+) has k-basis lce Q*\ Q-q).
Thus, S(U+) mk Is(G) © rad S(U+) is a local ring.

Proof: Let N m © k~c, and suppose we prove that
c«n \nj

(1) N isamaximal leftideal of S(U+);
(2) N isanil leftideal.

Then by (1), rad S(U+) C N and by (2), N C rad S(U+). Hence N - rad S(U+), as

desired.

Note that, by (16.!3Kii), S (U ~..f0)- k 1S(0) and © S(U+)r- N.

C* (0..0)
Hence (1) follows.
Toprove (2) define, foreach y - (Yi,...,y,) e Zn,
oCr)- £ vis,.
ven
Clearly a(y +y) . ofif) + <*y). for a1 Thus, if (ij) s iTand i6 a.

jep (a,Pe A) wehave
(0 <*(d(®y)) - o(0 - p)- 0(0) - o(P)2 - 0o(p) 2 - nr,



(i) wnte a - p- "~"Z "m" where mj,..,mn_j are non-negative
integers.
Then. o(d(Eij)) - o(a-P)-~"Z "o (e”,) -- Z_" S 0. Also.

Quicey)) - Oif nijj - Ogign-D iff a - p.ie.iff i-j (since i£j).

Hence, if ¢ « there holds
(16.15) -mia(d(~c)) £ -1.

Now let il beanyelementof N,andlet me Z satisfy m>rn.

Then, if ™ is not zero, there are Cj.....c,,, e O*\i2*0 such that +0.
But 5c, == 5cra « homogeneousofdegree d ~ ) +...+di”). Also
°(d(5c]) + e+ m Oidfllcj)) + ... + aCdCc?)i-m < -rn . This contradicts
(16.15). Hence Tm =0, and (2) follows. O

$17. The natural eplmorphism S(T) 9 S(U+)-*S(B+)

Consider the subgroups T and U+ of B+.13 As B+ - TU+ (semidirect product)
we have S(B+)- S(T) S(U+). Thus, there is a natural k-epimorphism

:S(T) ® S(U+) — »S(B+),
given by
f((®*)- (1. all (¢ S(D, n6 S(U+).

We are interested in the kernel of f. From (3.8) and (16.12), we know that S(T)

Recall that T is the group of all diagonal matrices in O.
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and S(U+) have k-bases {$< la 6 A(nr)} and Ic € £!1+}, respectively. So to

calculate ker f we need to study the products (a € A ce £l

If a 6 A(n,r) and Pg A(n,s) (s- 0,...,r) wesaythat P ea if pr£an, forall
licQ.

(17.1) Definition: Let ¢ - (h.h)c CI\ *- We define P(c) e A(n.s)
to be the weightof h.

(17.2) Theorem: kerf has k-basis
flba® laU <6 A, cs Q° suchthat P(c)g a).
Thus, there is a short exact sequence of k-spaces

0—, evceQ.k(50,®ic) S(T)®S(U+)S(B+) 0.
P(c)Ca

Proof: Let a e A and c- (hJOe il*s(s- 0,..r). Define
A(cte) - {(ij)efl'liea and c(ij) - c). Then

(173)
c(lj).c

Suppose that (ij) s A(Oi). and let - «{p6r\slip- v), forall Ve n. Then,
as Ic a andO0i,.ds) ~ h, we have
o, - #{p€ slip-v} +#{per\slip-vj-

.«{psilhp.v)+TCt)v-P(c)v +TO)v. L v«n.



Therefore

(17.4) A(a.c) 4 0 implies (5()C a.

Now suppose that A(a,c) 4 0, and let (ij). (j'0") 6 A(a,c). Since c(ij) - c(iJ') - c.
there is x € P(s) such that

*p- *t(p) and jp - jt(p). all p6 *

As a consequence of this, and since i, i'e a, we must have yfiX,- 7(1% (v e n).
Hence, there is a bijecdon, o :r\s-»r\§, suchthat

i'pmW). all p6f\ 3
Define jce P(r) by, Jt(p) - x(p) if pe s, while &(p) - o(p) if per\j. Clearly

ire- i'. Also

i ()" j«(p) * ifPe -
p* *o(p) " Jo(p) " jj*p) + if PE£E\S-

Hence (ij) - (i'j)- This proves that

(17.5) A(a,c) hasatmostone element.

Suppose now that (5(c)c a and write yv- a* - (5()v, all Ve n. As yv£0

(Vg n), wemaydefine ij e I(n,r) as follows

i- (hon 1] 2020, ) jom (s, 1.1 20,200, nn).

71 i Y, Y| Ya Yh
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Itiiclearthat ie a, iSj, and c(ij) - (h,h")- c. Ulus, theelementof O' which
represent! the P-orbitof (ij) in Ial belongsto A(a.c). Thistogether with (17.4)
and (17.5) give the following

/1. iffkdca
«A(o,C) - <
\0, if)(c)tta;allacA ,ccfl.

If 0(c) Ca write A(a,c) - {(j(ctf),j(0.c))). Then, by (17.3),

(176) IU.t- / W k>’ “
\ 0 , if (5(c)g a; all asA .cE CI*

Note thatif a,0'6 A and c.c'e ft* satisfy (o,c) 4 (o', 0") then

“d ~KaV)J(a.0 *rc linearly independent elements of S(B+). Hence, the theorem

(17.2) follows from (17.6).00
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