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Investigation of the heat transfer properties of granular activated carbon with R723 for 

adsorption refrigeration and heat pump 

M. Khaliji Oskouei and Z. Tamainot-Telto
(1)

 

School of Engineering, University of Warwick, Coventry CV4 7AL, UK 

Abstract: This paper investigates the heat transfer coefficient of the wall to packed carbon 

contact (h) and the thermal conductivity of the packed bed (λ) by using parameters estimation 

method. A numerical heat conduction method was used in conjunction with an iterative 

process of minimizing the Mean Square Error (MSE) between both experimentally measured 

and model predicted temperatures in order to estimate h and λ parameters simultaneously. 

Experimental work was carried out by measuring the wall and centre temperatures of the 

sample reactor when suddenly submerged in a temperature controlled water bath at around 

90
o
C. Four samples with packed bed density ranging from 600 kg m

-3
 to 750 kg m

-3
 were 

tested. The results for the GAC-R723 refrigerant pair show a quasi-linear increase in both 

thermal conductivity (λ) and wall contact heat transfer coefficient (h) with packed bed 

density. The thermal conductivity of GAC-R723 refrigerant varies between 0.77 W m
-1 

K
-1

 

and 1.36 W m
-1

 K
-1

 (about three times the values without R723 refrigerant) while the wall 

contact heat transfer coefficient varied between 390 W m
-2 

K
-1

 and 735 W m
-2

 K
-1

 (up to 30% 

better than values without R723). 

Keywords: Granular Activated Carbon; Adsorption, Ammonia (R717); Ammonia Blend 

(R723); Thermal Conductivity; Heat Transfer Coefficient. 

Highlights: 

- The thermal properties of packed granular activated carbon (GAC) and Ammonia 

Blend refrigerant (R723) are evaluated. 

- A numerical method combined with experimental data was used. 

- The thermal conductivity varies from 0.77 and 1.36 W m
-1

 K
-1

. 

- The thermal conductivity is about three times the values without R723 refrigerant. 

- The wall contact heat transfer coefficient varies between 390 and 735 W m
-2

 K
-1

 and 

is up to 30% better than values without R723 refrigerant. 
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NOMENCLATURE 

A  Slope of the saturated liquid line for R723 on a Clapeyron diagram (K
-1

);  

Heat transfer surface area (m
2
) 

C  Specific heat (J kg
-1

 K
-1

) 

CP  Overall specific heat (J kg
-1

 K
-1

) 

 P  Pressure change (Pa or bar) 

 r  Radius increment (m) 

 t  Time increment (s) 

 T  Temperature change (K) 

D  Diameter (m) 

h  Heat transfer coefficient (W m
-2

 K
-1

) 

H  Heat of Sorption (J K
-1

) 

K  Dubinin-Astakhov coefficient 

L  Length (m) 

m  Mass (kg) 

M  Mass (kg) 

n  Dubinin-Astakhov coefficient 

P  Pressure (Pa or bar) 

r  Radius (m) 

R  Gas constant (J kg
-1

 K
-1

) 

t  Time (s); Thickness (m) 

T  Temperature (K or 
o
C) 

U  Overall heat transfer coefficient (W m
-2

 K
-1

) 

UA  Overall heat transfer capacity (W K
-1

) 

x  Refrigerant concentration within the adsorbent (kg kg
-1

) 



  

 

Greek letters 

λ Thermal conductivity (W m
-1

 K
-1

) 

 Density (kg m
-3

) 

Subscripts 

a  Average 

C  Carbon 

i  Node reference number 

j  Reference number of data acquisitions 

M  Last node reference number 

MSE  Mean Square Error on temperature (K
2
) 

N  Number of temperature data acquisitions per experimental test 

o  Maximum; Under saturation; Outer 

p  Under constant pressure 

R723  Ammonia blend refrigerant 

sat  Under saturation conditions 

 

Abbreviations 

D-A  Dubinin-Astakhov 

DME  Dimethyl Ether 

GAC  Granular Activated Carbon 

ID  Inner Diameter 

OD  Outer Diameter  

R717  Ammonia refrigerant 

R723  Ammonia blend refrigerant (60% R717 / 40% DME) 

SEE  Standard Estimated Error 

V  Valve  



  

 

1. Background and Introduction 

Granular activated carbon (GAC) is widely used in gas storage, industrial chemical process, 

food and beverage, environmental air and water treatments, personal protection equipment 

(PPE), metal recovery and medical treatments. However there are niche applications that are 

still under development namely refrigeration, heat pumping and energy storage that are more 

stringent in respect of its required thermo-physical characteristics. The thermal properties 

parameters play an important role in optimization of the adsorption generator cycling time; 

therefore wall contact heat transfer coefficient (h) and effective thermal conductivity (λ) are 

essential for cost effective design of thermal compressors. The heat transfer phenomenon is 

complex, in both the thermal generator and packed bed. Much of the literature concerns the 

heat transfer mechanisms through the heterogeneous granular activated carbon packed bed, 

with three major physical definitions such as: conduction through the grain, conduction 

through the grain to grain contact area, conduction and convention through the gas and 

condensed liquid and radiation heat transfer through the grain surface and void. Figure 1 

illustrates some of the heat transfer mechanisms suggested by Argo and Smith [1], Yagi and 

Kunni [2], and also by Calderbank and Progorski [3] for packed beds. 

 

Figure 1: Heat transfer phenomena in the packed bed. 

Table 1 provides a summary of heat transfer mechanisms, which reflect the complexity of 

heat transfer in a packed bed as illustrated by Figure 1 

Radiation is the dominant heat transfer mechanism through the granular bed under high 

vacuum and at high temperatures [4]. The convection effect between particle and wall is 

increased by the desorption process, while it is possible to neglect the convective heat flow 

according to pore size [4]. The temperature gradient in the thermal generator, due to the 

desorption process, will cause the system pressure to increase. Therefore, by increasing 

system pressure, the overall heat transfer effect will increase. 



  

 

Table 1: Heat transfer mechanisms in the thermal generator and packed bed. 

Heat Transfer Mechanism Governing Modes 

1- Convection 

a. Particle – fluid 

b. Wall – fluid 

c. Fluid – fluid (fluid mixing) 

2- Conduction 

a. Through the particle 

b. Particle – particle 

c. Gas layer around the particle – particle 

d. Stagnant gas (gas – particle) 

e. Wall – particle 

3- Radiation 

a. Grain surface – grain surface 

b. Grain surface - Wall 

c. Neighbouring voids (void – void) 

The two conduction heat transfer mechanisms, particle-to-particle and particle surrounded 

gas layer-to-particle, act in parallel in the granular packed bed. The particle-to-particle and 

particle surrounded gas layer-to-particle mechanisms act in series with conduction through 

the particles. Therefore, both mechanisms can be observed in conduction through the particle 

mechanism [5]. The other two remaining conduction mechanisms, gas-to-particle and wall-

to-particle, have only a small effect on the heat transfer through the granular packed bed. 

Therefore it is possible to remove them from heat transfer modelling [6]. 

The objective of this study is to investigate the heat transfer properties of packed Granular 

Activated Carbon (GAC) with Ammonia blend refrigerant (R723) for adsorption 

refrigeration, heat pumping and energy storage applications. 

2. Research Methodology 

The complexity of heat transfer in porous media shows the necessity of finding an 

experimental and analytical procedure able to reflect packed bed heat transfer characteristics 

in a thermal generator, without including separately each individual mode outlined in Table 

1. Instead, we have considered a lumped heat transfer model characterised by both wall 

contact (combined adsorbent-refrigerant) heat transfer coefficient (h) and bed effective 

thermal conductivity (λ). In order to estimate those two key heat transfer characteristics, a 

combination of experimental and numerical methods could simulate the actual behaviour of a 

GAC packed bed in the presence of R723. Therefore, Smoluchowski’s adopted measurement 



  

 

methodology along with a one-dimensional transient numerical method was used. Regarding 

Smoluchowski’s measurement methodology, the granular material was placed within a 

cylindrical sample holder [7]. The sample holder length must be approximately ten times 

higher than the outside diameter in order to satisfy the one-dimensional heat transfer 

conditions. To measure the temperature jump and disturbance at the surface and centre of the 

cylindrical sample holder, two thermocouples were placed at both the external surface and 

centre of the sample holder as illustrated in Figure 2. 

  

Figure 2: Cross section of tubular sample holder with thermocouples [7] 

The estimation of the thermo-physical properties of the granular packed bed, namely the wall 

contact heat transfer coefficient (h) and effective thermal conductivity (λ) is based on two 

stages:  

Stage 1: The first stage was the direct explicit numerical method based on both energy and 

mass balance laws aimed to determine the transient temperature profile of the material by 

imposing the sudden change in temperature on the reactor’s (sample holder) wall. 

Stage 2: The second step consists of a computational algorithm which identifies the thermo-

physical properties (h and λ) of GAC in the course of comparing the predicted and the 

measured transient temperature profile in the centre T(rM,t) through the minimization of the 

Mean Square Error (MSE): 

     
 

 
                                

  
         (1) 

2.1 Explicit numerical equations 

Figure 3 shows the domain discretization and location of the imaginary nodes in the half of 

cylindrical sample holder. Heat is flowing into the packed bed from the top (outside the 

sample holder wall) into the bottom (centre of sample holder), which is represented by the 

                  

Inside and Outside Thermocouples  

Carbon Grains 

Sample Reactor External Wall 



  

 

symmetry line in the sample. Node 1 is allocated to the heating area, and node 2 is assumed 

to be attached to the outside wall of the cylindrical holder. The outside thermocouple displays 

the temperature at node 2. To simplify the modelling process, we assume that the 

temperatures at nodes 1 and 2 are identical. 

Equation 2 shows the one-dimensional domain discretization for the energy balance over the 

specific volume, which is illustrated in Figure 3, at the carbon packed bed. The temperature 

changes over a specific volume at a specified time step, which is connected to the 

temperature and thermal resistance of the nodes towards the inner (west) and outer (east) of 

the cylinder, for the same time step. 

                                       
  

  
  

      

  
     (2) 

UA is the overall heat transfer capacity. The overall heat transfer capacity for each energy 

balance line is divided across the two sections. The thermal resistance which the heat flow 

faces when traveling from the left (west) to the right (east) boundary and vice versa is called 

west (UAwest) and east (UAeast) overall heat transfer capacities, respectively (see Figure .3 

b). The values of UAwest and UAeast in Equation 3 are divided into three regions. The first 

region is a node on the carbon surface in the vicinity of the sample holder wall from the 

inside; the second region involves the inner nodes and the final is the centre node. Also, 

MCarbon is the mass of the carbon for each representing cell. Therefore, it could also be written 

as the following discretized energy balance equation: 

                  
    

               
    

       (3) 

Appendix A shows the energy balance, overall heat transfer coefficient and represented 

cell’s carbon masses in all three regions. 

The effective specific heat of the sample with adsorbed R723 was calculated from the 

following expression:  

                                     (4) 

Where Cp-Carbon and Cp-R723Liquid are the specific heat of the GAC and liquid R723, 

respectively. To simplify the modelling both specific heats are assumed to be constant: Cp-

Carbon = 1125 J kg
-1

 K
-1

 and Cp-R723Liquid = 4500 J kg
-1

 K
-1

 in the temperature range of the 

thermal conductivity test. 



  

 

Correspond to “heading radially 

towards the centre of the tube” 

 

 

(a) Top view 

 

 

(b) Side view 

Figure 3: Illustration (half cross-section) of the domain discretization for energy balance in 

the packed carbon in a one-dimensional cylindrical configuration. 

The value xCp-R723Liquid is the R723 adsorbed phase contribution with the concentration x, 

calculated from Dubinin-Astakhov (D-A) [8]: 

             
 

    
   

 

          (5) 



  

 

where T is the sample temperature (K), Tsat (K) is the saturation temperature corresponding to 

the gas pressure P, xo is the concentration of R723 under saturation conditions corresponding 

to the maximum concentration (0.354 kg kg
-1

), K is 3.7342 and n is 1.187 [9].  

The value ΔT is temperature change over the represented cell of carbon between the two 

nodes. 

 
      

  
 is a heat rate generation term in the represented cell in Equation 2. H is the heat of 

the sorption and is given by the following expression [10]: 

    
 

    
            (6) 

where R is the gas constant (364.2 J kg
-1

 K
-1

), T is the sample temperature (K), Tsat (K) is the 

saturation temperature corresponding to the gas pressure P and A corresponds to the slope of 

saturated liquid line on a plot of ln(P) vs. -1/Tsat or Clapeyron diagram (A = 2621.3 K
-1

). 

The term           in Equation 2 corresponds to the change of the adsorbed refrigerant 

mass in the carbon for the represented cells over time. The mass of the adsorbed refrigerant 

gas, the gas which is condensed in the activated carbon pores, per mass of carbon, is called 

concentration x (kg of adsorbate per kg of adsorbent or kg kg
-1

): 

  
     

       
                

      

  
 

  

  
            (7) 

Equation 7 shows the relationship between the mass of adsorbed refrigerant and the mass of 

adsorbent (GAC) and concentration. Then it is possible to rewrite Equation 6: 

      

  
        

  

  
         (8) 

Regarding the D-A Equation 5, the concentration depends on sample temperature and 

pressure. Therefore, in Equation 8 the differentiation of concentration change by time based 

on partial differential rules, is rewritten as while assuming a quasi-equilibrium of the 

discretized sample control volume: 

  

  
 

  

  

  

  
 

  

  

  

  
            (9) 

In the D-A equation, the pressure is represented by Tsat ( P α  Tsat). Therefore Equation 9 

becomes: 



  

 

  

  
 

  

  

  

  
 

  

     

     

  
          (10) 

Equation 10 shows the differentiation of Equation 5 (D-A Equation) with respect to the 

sample temperature and saturation temperature: 

  

  
  

   

    
 

 

    
   

     

     
    

 

    
  

 

    
   

   
     (11) 

Finally, substituting Equation 11 into Equation 10, it could be written as follows: 

  

  
   

   

    
 

 

    
   

   

 
  

  
     

 

    
  

 

    
   

   

 
     

  
    (12) 

This would be the result of substituting all those equations which have been mentioned above 

with Equation 2, and rearranging it for the discretized domain and time:  

    

       
      

  
 

    
       

   
 

    
   

  
 

    
    

   

      
        

  

        
  
 

    
    

    
 

    
  

  
 

    
    

   

 

   
    

       (13) 

Appendix B shows the detailed equations leading to Equation 13 by substituting all 

mentioned equations into Equation 2. 

2.2 Sample preparation 

Based on the main concept, the sample holder was made from stainless steel with an outside 

diameter of 1”, 0.71 mm wall thickness and 200 mm length, to satisfy the one-dimensional 

conditions. 208-C granular activated carbon from Chemviron Carbon Ltd with 13×30 US 

sieve mesh size (1.5 mm × 0.6 mm) is held in place by welding two caps on the top and 

bottom of the cylinder (Figure 4). A small stainless-steel tube, which is called thermocouple 

tube, with 1/8” OD and 0.56 mm wall thickness, was welded to the top cap. The 

thermocouple tube was located in the middle of the sample holder with 100 mm distance 

from the top cap surface. This tube was used to pass the thermocouple into the centre of the 

sample holder in order measure the packed bed centre temperature. The second thermocouple 

was attached to the cylinder wall from the outside at the same height as the internal 

thermocouple. The outside thermocouple measures the temperature at the boundary wall. 

Four identical sample holders with packed activated carbon with density of 625.9 kg m
-3

, 

661.8 kg m
-3

, 707.7 kg m
-3

 and 749.7 kg m
-3 

were prepared. Figure 5 shows the sample 

module, with the location of the two K-type thermocouples. One thermocouple was attached 



  

 

to the sample surface while another was passed into the centre of the sample through the 

thermocouple tube. Each sample module was isolated after vacuuming and charging with 

refrigerant using a Swagelok ¼” 316 stainless steel “M” series metering (needle) valve. 

 

 

 

 

 

 

 

 

Figure 4: Packed GAC sample holder  

 

 

Figure 5: Sample holder general view with part details. 1: ¼” filler to connect in to the 

vacuum and charging manifold hose, 2: Swagelok ¼” 316 stainless steel “M” series metering 

(needle) valve for module isolation, 3: Inside thermocouple, 4: 316 stainless steel 1/8” 

compression fitting to seal the thermocouple, 5: 1/8” connection to ¼”, 6: Swagelok 316 

stainless 1/8” female run tee, 7: Thermocouple tube with 1/8” OD, 8: Outside thermocouple 

and attaching position, 9: Sample holder. 

Bottom Cap 

Bottom Cap 

Bottom Cap 



  

 

2.3 Experimental set-up and test procedure 

The schematic of the experimental set-up is shown in Figure 6: it mainly consists of the 

sample holder linked to a receiver via connecting tubes and valves. The experimental 

procedure consists of suddenly plunging the sample that was initially at ambient temperature 

into the hot water bath. Prior to this test, the needle valve (V1) was fully open. The hot water 

bath has thermostatic control. The bath temperature was set to 90
o
C. Three thermocouples 

were located at different heights in the thermal bath to monitor the water temperature 

uniformity at different levels. The Strawberry Tree data shuttle, in association with 

Workbench software, was used to record the experimental data with an interval time of 0.15 

second. 

To remove moisture and air from the system, the sample holder was heated to 200
o
C while 

being kept under the vacuum for 24 hours in an oven. The sample module weight was 

measured before and after the drying process, to find out the actual amount of dried carbon in 

the sample. 

 

Figure 6: Schematic diagram of experimental set-up (allocated thermocouples: in baths (B1, 

B2, B3 and B4), sample centre thermocouple (1), sample outside thermocouple (2)). 

To charge the sample module with refrigerant, a receiver was used. The receiver was initially 

charged with about 61.3 g and 20% extra from the refrigerant’s main cylinder. The vessel is 

connected to the sample module using about 250 mm long stainless steel tube with ¼” OD 

and 0.71 mm thickness. The connection line and sample module were initially evacuated 



  

 

using a vacuum pump for 30 minutes at room temperature. The main Swagelok ¼” 316 

stainless steel “M” series metering (needle) valve V2 for module isolation was opened and 

closed slowly during the vacuum process (while V1 and V5 are open and V3 and V4 closed). 

The status of all valves during different operating conditions are summed up in Table 2. 

Table 2: Valves status vs. operating conditions 

Valve 

Operation 

V1 V2 V3 V4 V5 

Vacuum Open  Open Open  Closed Open 

R723 loading Open Closed Open Open Closed 

Test Open Closed Closed Closed Closed 

 

After about 12 hours, the sample reactor was stabilised in terms of both pressure and 

temperature, after which both sample module and receiver were suddenly and simultaneously 

submerged into the hot water bath and cold water bath respectively. The pressure and 

temperatures were recorded and stored in a data file every 0.15 second until the centre 

temperature reached the hot bath set temperature within ±0.5
o
C. 

The photograph of the top view of the experimental set-up is shown in Figure 7 highlighting 

all relevant components including thermocouples and the pressure transducer. 

By setting up the time step ( t = 1 second) and length step ( r = 0.882 mm corresponding to 

10 layers of activated carbon) for simulation tests, the temperature of each node was 

calculated using the given values of wall contact het transfer coefficient (h) and intrinsic 

thermal conductivity (λ). Finally, to identify appropriate values of h and λ for each density, 

the modelled temperature profile of the centre node was compared with the experimental data 

for the same node by minimizing the Mean Square Error (MSE) as defined in Equation 1. 

The full program for both simulation and estimation of heat transfer characteristics (h and λ) 

was written in MATLAB R2012b. 



  

 

 

Figure 7: Top view of experimental set-up. 1: Thermal bath K type thermocouple, 2: Hot 

water thermal bath with build in thermostat, 3: Sample module with inside & outside 

thermocouples, 4: Swagelok ¼” 316 stainless steel “M” series metering (needle) valve for 

module isolation, 4a: ¼” connection tube, 5: Druck four wire pressure transducer, 6: Water 

bath to keep condensing vessel at steady temperature situation, 7: Swagelok 1/8” 316 

stainless steel “M” series metering (needle) valve for vacuum line isolation, 8: 1/8” on & off 

Swagelok three ways valve and 1/8” filler to connect to the vacuum and vacuum line, 9: 

Condenser & charging vessel, 10: Precision adjustable power supply. 

3. Results and discussion 

Figure 8 and Figure 9 show the temperature and pressure profiles with minimum (625.9 kg 

m
-3

) and maximum (749.8 kg m
-3

) densities, respectively. The difference between the 

experimental data and model predictions of the temperature in the centre was well minimised. 

Figure 10 presents an illustrative example the variation of MSE values function of the 

number of simulation runs that were explored for the first sample (density 625.9 kg m
-3

) in a 

range of 0.01 W m
-1

 K
-1 

< λ < 1.5 W m
-1

 K
-1 

with an increment of 0.01 W m
-1

 K
-1 

and 50 W m
-2

 

K
-1

< h < 1000 W m
-2 

K
-1 

with an increment of 1 W m
-2

 K
-1

. For this particular density, the 

minimum MSE was obtained from the minimization process as 0.3557 corresponding to λ = 

0.77 W m
-1

 K
-1 

and h = 390 W m
-2

 K
-1

. During the test with all module samples, from an 

initial temperature of about 25
o
C and pressure of about 9.9 bar, the experiments reach the 

same centre temperature (about 90
o
C) and system pressure (about 10.7 bar via a maximum 



  

 

value of about 11.9 bar). As expected by increasing the packed bed density from 625.9 kg m
-3 

to 749.7 kg m
-3

, the time to reach the steady state decreases from about 850 seconds to 650 

seconds. 

All samples were tested and the final results of the thermal conductivity (λ) and wall contact 

heat transfer coefficient (h) were identified: all results are summed up in Table 3. Overall, a 

fairly good fit with a minimum MSE was obtained for each packed density of activated 

carbon. 

 

 

Figure 8: Temperature and pressure profiles for activated carbon-R723 pair with packed 

density of 625.9 kg.m
-3

 (λ = 0.77 W m
-1

 K
-1

 and h =390 W m
-2

 K
-1

) 

 

Figure 9: Temperature and pressure profiles for activated carbon-R723 pair with packed 

density of 749.7 kg.m
-3

 (λ = 1.36 W m
-1

 K
-1

 and h =735 W m
-2

 K
-1

) 

 



  

 

 

 

 

Figure 10: MSE values for activated carbon-R723 pair with packed density of 625.9 kg m
-3

 

function of the number simulation runs - Each simulation run corresponds to a given (λ, h) 

pair. 

 

Table 3: Summary of thermal properties of Granular activated carbon packed - R723 pairs. 

Carbon Density λ h 
MSE (K

2
) 

kg m
-3

 W m
-1

 K
-1

 W m
-2

 K
-1

 

625.9 0.77 390 0.3557 

661.8 1.19 451 0.8498 

707.7 1.26 536 0.7063 

749.8 1.36 735 0.6982 

 

Figure 11 shows the average concentration of R723 in granular activated carbon. For all 

densities, the average concentration is fairly constant, as expected, because the operating 

conditions (pressure and temperature) are nearly the same for all modules: the difference of 

average concentration between the minimum (625.9 kg m
-3

) and maximum (749.7 kg m
-3

) 

densities is around 2%. 



  

 

 

 

Figure 11: The average concentration of R723 in granular activated carbon packed bed 

(Bed temperature variation: 25
o
C to 90

o
C; Bed pressure variation: 8 bar to 12 bar). 

Figure 12 and Figure 13 show the thermal conductivity (λ) and wall contact heat transfer 

coefficient (h), respectively, as a function of the packed carbon density. As expected, both 

thermal conductivity (λ) and heat transfer coefficient (h) increase quasi-linearly with density. 

Those results are also compared with preliminary tests carried out (using the same samples 

and methodology) without the refrigerant R723 corresponding to tests in atmospheric 

pressure. However both maximum concentration xo and heat of the sorption H were assumed 

to be zero in all relevant equations leading to the identification of both thermal conductivity 

(λ) and wall contact heat transfer (h) [11]. 



  

 

 

Figure 12: Experimental thermal conductivity of packed bed with and out refrigerant R723 

 

 

Figure 13: Experimental wall contact heat transfer coefficient with and without refrigerant 

R723. 

For packed bed densities of 625.9 kg m
-3 

and 749.7 kg m
-3

, the effective thermal conductivity 

‘λ’ of GAC without refrigerant increases from 0.31 W m
-1

 K
-1 

to 0.44 W m
-1

 K
-1

, which is 

well within the range expected [12], while for the packed GAC with refrigerant R723 (with 



  

 

an average concentration of 27% in mass) it increases from 0.77 W m
-1

 K
-1 

to 1.36 W m
-1

 K
-1

. 

The presence of refrigerant increases the effective thermal conductivity by a factor of about 

3. In fact, due to the small pressure swing of the refrigerant during the tests (maximum 2 bar), 

the packed GAC bed will remain with high concentration of refrigerant. Since the adsorbed 

refrigerant is assumed to be in a liquid form that is well bonded on the wall of micro-pores by 

the means of Van der Vaals forces, this enhances the effective thermal conductivity of the 

packed bed more than the gas in the inter-grains space. However for the same density range, 

the wall contact heat transfer coefficients ‘h’ for GAC with refrigerant varies from 302 W m
-2

 

K
-1 

to 722 W m
-2

 K
-1

, while for the GAC with refrigerant R723 (with an average 

concentration of 27% in mass) it varies from 390 W m
-2

 K
-1 

to 735 W m
-2

 K
-1

 showing a 

small difference (which is within the Standard Estimated Error of about ±45 W m
-2

 K
-1

) 

between the two scenarios. In fact with a compacted bed, the carbon grains have more 

physical contacts with the wall (estimated to be up to 85% wall surface area) than the gas 

contact with the wall: the contribution of convective heat transfer to the wall contact heat 

transfer is not predominant. Therefore the presence of refrigerant or no refrigerant in the 

packed activated carbon bed has limited effect on the estimated wall contact heat transfer 

coefficient: this heat transfer with refrigerant is estimated to be about 15% on average (with a 

maximum value of 30%) better than with no refrigerant. 

The heat transfer properties of a packed granular activated carbon bed based on density ρ (kg 

m
-3

) and refrigerant average concentration xa (kg kg
-1

) is highly useful for modelling and 

designing with confidence tubular generators for Adsorption Refrigeration and Heat pump 

applications. By assuming a linear variation of parameters (slope, constant and SEE) of the 

best fitted line equations (see Figure 12 and Figure 13) with refrigerant concentration at 

constant packed bed density, both thermal conductivity of the packed bed (λ) and wall contact 

heat transfer coefficient (h) including the Standard Estimated Error (SEE) are given by 

expressions summed up in Table 4. 

Table 4: Heat transfer properties vs. packed bed density and R723 average concentration. 

(500 kg m
-3

 < ρ < 800 kg m
-3

 and  0 kg kg
-1

 ≤  xa < 0.354 kg kg
-1

)  

Properties  Estimated Equations 

λ (W m
-1

 K
-1

) λ    0.00  0.0 2 xa  ρ – (0.2679+5.73 xa)   SEE = ± (0.011+0.144 xa) 

h (W m
-2

 K
-1

) h = (3.4 – 2.6 xa  ρ – (1870 – 2033 xa)             SEE = ± 17 

 



  

 

4. Conclusions and perspectives 

The wall contact heat transfer coefficient (h) and packed activated carbon thermal 

conductivity (λ) have been estimated by using a combined numerical heat conduction method 

and iterative process based on minimizing the Mean Square Error (MSE) between 

experimentally measured and model predicted temperatures. The packed granular activated 

carbon (GAC) also contains R723 refrigerant with a maximum average concentration of 0.27 

kg kg
-1

. For the four test samples with packed bed density ranging from 500 kg m
-3

 to 800 kg 

m
-3

, the results show a quasi-linear increase of both thermal conductivity (λ) and wall contact 

heat transfer coefficient (h) with the packed bed density: the thermal conductivity of packed 

GAC-R723 refrigerant pair is 0.77 W m
-1

 K
-1

 < λ < 1.36 W m
-1

 K
-1

 (about three times the 

values without R723 refrigerant) while the wall contact heat transfer coefficient is 390 W m
-2

 

K
-1

 < h < 735 W m
-2

 K
-1

 (up to 30% better than values without R723 refrigerant). This has led 

to the establishment of a correlation between each heat transfer property (λ or h) and both 

packed granular activated carbon (GAC) density and maximum average concentration of 

R723 refrigerant: this is highly useful for future modelling and design of tubular generators 

for Adsorption Refrigeration and Heat pump applications. 
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Appendix-A: 

First region or outer boundary node:  

The node (i = 3) in Figure A.1 is located on the carbon surface, which is in contact with the 

steel body of the cylindrical holder from the inside. Therefore, heat transfer from the steel 

wall to that node is a combination of conduction through the steel wall and conduction 

through the voids between the steel wall and the first layer of packed carbon, which is called 

contact resistance. Equations A.1 and A.2 are the overall heat transfer coefficient which the 

heat flow faces while travelling through the energy balance lines to the cell boundaries in 

Figure A.1.  

  

Figure A.1. Domain discretization for energy balance at the carbon packed outer boundary. 

Heat transfer mechanism into the boundary node and energy balance line with delimiting of 

the control volume (A3, A2);  r is a radial increment. 
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Mass of carbon for repressing cell is: 

              
    

                   (A.5) 

Second regions or internal nodes: 

Equations A.6 and A.7 show that the only resistance which the heat flow is confronted with 

while travelling towards the energy base lines over the specific control volume is the carbon 

packed conduction resistance (Figure A.2). Therefore, the overall heat transfer from the west 

and east boundaries for the internal nodes is just heat conduction through the carbon packed 

bed.   

 

Figure A.2. Domain discretization for energy balance at the carbon packed bed for the inner 

nodes. Heat transfer mechanism to the boundary node and energy balance line with 

delimiting of the control volume (Ai);  r is a radial increment. 
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The mass of the carbon for the representing cells is: 

              
      

                   (A.9) 

Third region or centre node: 



  

 

The centre node is allocated in the middle of the sample reactor, where the internal 

thermocouple was located (Figure A.3). Because of the symmetry condition in the sample 

cylinder, Equation A.10 shows that the heat flow through the centre cell is from the west 

boundary, and that it is purely heat conduction through the carbon packed bed. Equation 

A.11 shows no heat transfer from the east boundary because of the assumption of an adiabatic 

condition. 

  

Figure A.3. Domain discretization for energy balance at the carbon packed bed for the centre 

node. Heat transfer mechanism to the centre node and energy balance line with delimiting of 

the control volume (AM);  r is radial increment. 
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Mass of carbon for representing cell is: 
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Appendix-B: 

In Equations 2 and 11,       and          change with temperature and saturation 

temperature (or pressure) for the represented cells over the time. Therefore, the discretized 

models are: 
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Highlights: 

- The thermal properties of packed granular activated carbon (GAC) and Ammonia 

Blend refrigerant (R723) are evaluated. 

- A numerical method combined with experimental data was used. 

- The thermal conductivity varies from 0.77 and 1.36 W m
-1

 K
-1

. 

- The thermal conductivity is about three times the values without R723 refrigerant. 

- The wall contact heat transfer coefficient varies between 390 and 735 W m
-2

 K
-1

 and 

is up to 30% better than values without R723 refrigerant. 

 

 


