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Abstract
Gas explosions in homogeneous reactive mixtures have been widely studied both exper-
imentally and numerically. However, in practice and industrial applications, combustible
mixtures are usually inhomogeneous and subject to vertical concentration gradients. Lim-
ited studies have been conducted in such context which resulted in limited understanding
of the explosion characteristics in such situations. The present numerical investigation aims
to study the dynamics of Deflagration to Detonation Transition (DDT) in inhomogeneous
hydrogen/air mixtures and examine the effects of obstacle blockage ratio in DDT. VCE-
Foam, a reactive density-based solver recently assembled by the authors within the frame
of OpenFOAM CFD toolbox has been used. VCEFoam uses the Harten–Lax–van Leer–
Contact (HLLC) scheme fr the convective fluxes contribution and shock capturing. The
solver has been verified by comparing its predictions with the analytical solutions of two
classical test cases. For validation, the experimental data of Boeck et al. (2015) is used.
The experiments were conducted in a rectangular channel the three different blockage ratios
and hydrogen concentrations. Comparison is presented between the predicted and mea-
sured flame tip velocities. The shaded contours of the predicted temperature and numerical
Schlieren (magnitude of density gradient) will be analysed to examine the effects of the
blockage ratio on flame acceleration and DDT.
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1 Introduction

Fire and explosion in combustible mixtures have been widely studied both experimentally
and numerically. Most of the gas explosions studies inside tubes have been carried out
for industrial safety applications with the aim to describe general mechanisms of flame
acceleration (FA) and transition from deflagration to detonation (DDT) [2].

One of the primary hazards in hydrogen energy applications is the formation of
flammable vapour clouds which can propagate kilometres away from the source with the
possibility of ignition, resulting in fire and explosions [2]. Explosion studies in uniform
reactive mixtures have been widely carried out both experimentally and numerically. How-
ever, in practice and industrial applications, combustible mixtures are usually non-uniform
(inhomogeneous), and subject to both vertical and horizontal concentration gradients.

Thomas [3] has given a comprehensive discussion on various forms of DDT and differ-
entiates the terminology between the macroscopic and microscopic DDT. The large-scale
macroscopic DDT includes the process from accelerating deflagration followed by detona-
tion propagation. The small-scale microscopic DDT governs the actual onset of detonation
at the point where the combustion process changes from diffusion controlled to shock heat-
ing controlled [3]. In this work, the term DDT is used in the broader definition and includes
both acceleration and onset of detonation. Thomas [3] also studied weak DDT, which was
not onset by a strong reflected shock wave. He identified the importance of non-isotropic
and non-equilibrium turbulence to accelerate a deflagration and some hot spots which gen-
erate transverse waves, which merged to strong pressure waves capable of forming the
required shock interaction complex known as the detonation.

The combustible mixtures pose a risk especially when an ignition source is available or
when the pressure and temperature exceed the self-ignition limits [2]. In the past, only a few
studies considered the effect of mixture inhomogeneity on the DDT behaviour. Recently,
Boeck et al. [1] studied FA and DDT in a channel with vertical hydrogen concentration
gradients. They found that the hydrogen flame accelerated faster in the presence of concen-
tration gradients as comparing with a homogenous mixture in the same configuration within
the studied cases. DDT was observed to result from the interaction between the reflected
shock waves and the deflagration front. The present study aims to provide an appropriate
numerical method to provide the dynamics of Deflagration to Detonation Transition (DDT)
in inhomogeneous hydrogen-air mixtures and examine the effects of obstacle blockage ratio
in DDT phenomena.

1.1 Methodology

A density-based solver within OpenFOAM CFD toolbox [4] is developed to model FA
and DDT from rhoCentralFoam for density-based Navier-Stokes equation for combustion
modelling. A detailed reaction mechanism [5] and the Monotone Integrated Large Eddy
Simulation (MILES) [6] technique for turbulent modelling is adopted. In the MILES meth-
ods, the viscous dissipation scale will be replaced by a grid scale and the dissipation energy
can be dissipated by a numerically imposed viscosity [7].

Convective terms are evaluated through an adaptation of the second order central-upwind
numerical scheme of Kurganov et al., [8, 9]. The Harten–Lax–van Leer–Contact (HLLC)
[10] scheme is used to evaluate the convective fluxes contribution and for accurate shock
capturing. The solver and numerical schemes are initially verified by solving the Sod’s
shock tube problem [11] and Supersonic Wedge problem [12].
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2 Governing Equations

The standard governing equations for solving the reactive inhomogeneous mixture in a
Eulerian framework can be listed as below:

Mass conservation equation:

∂ρ

∂
+ ∇.(ρU) = 0 (1)

Conservation of momentum (neglecting body forces)

∂(ρu)

∂t
+ ∇ · [u(ρU)] + ∇p + ∇ · τ = 0 (2)

Conservation of total energy:

∂(ρE)

∂t
+ ∇ · [u(ρE)] + ∇ · [up] + ∇ · (τ · u) + ∇ · j = 0 (3)

Where in Eq. 1, ρ is the density, U the velocity, p the pressure and in the Eq. 2, τ is the
viscous stress tensor which can be defined using Eq. 4 [13].

τ = −2μdev(D) (4)

Where in Eq. 4, μ is the dynamic viscosity, D is the deformation gradient tensor which is
defined as Eq. 5.

D = 1

2
[∇u + (∇u)τ ] (5)

In Eq. 3, j is the diffusive flux of heat, and E is the total energy density which can be defined
as:

E = e + |u|2/2 (6)

Where e, is the specific internal energy. Also, the ideal gas equation has applied.

p = ρRT (7)

Where p is the pressure, ρ is the density, and T is the temperature of the mixture.
The specific gas constant R can be determined by the mean molar mass M of the mixture

and the universal gas constant �:

R = �
M

(8)

2.1 Solution algorithms

Simulating discontinuities, such as shocks and contact surfaces in high-speed compressible
flows requires numerical schemes that can capture these features while avoiding spurious
oscillations. In some methods that are effective in producing accurate non-oscillatory solu-
tions for capturing shock and discontinuities, the generation of numerical fluxes typically
involves the Riemann solvers, characteristic decomposition and Jacobian evaluation, mak-
ing them complicated and difficult to implement in a mesh of polyhedral cells that have
an arbitrary number of faces [13]. However, an alternative approach exists which does not
involve Riemann solvers and can also provide accurate non-oscillatory solutions using the
so-called central schemes. The central schemes which are developed by Kurganov and Tad-
mor [8]; Kurganov et al. [9] and Greenshields et al. [13] are available in OpenFOAM as
“rhoCentralFoam” [4, 8]. Khodadadi and Malekbala, [14] carried out shock capturing study
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using different OpenFOAM solvers to solve the sod’s problem [11] and concluded that rho-
CentralFoam can provide reasonably accurate shock capturing. They also mentioned that
the proposed density-based solution could generate some oscillations in the contact surface
of shock. These oscillations may be linked to the numerical schemes.

On the basis of the “rhoCentralFoam” solver, a new solver called “VCEFoam” (VCE-
Foam is standing for; vapour cloud explosion in OpenFOAM) has been assembled [16].
It solves the compressible Navier–Stokes equations with either simple or detailed reaction
mechanisms using the Monotone Integrated Large Eddy Simulation (MILES) approach.
It uses a Godunov-type scheme implemented by Borm et al. [15], which uses the HLLC
(Harten-Lax-van Leer-Contact) [10] scheme. For the time discrete schemes, which includes
the dual time scheme and the physical time step, it uses the Runge–Kutta scheme [15].
In order to capture more small-scale features (such as Kelvin Helmholtz and Richtmyer
Meshkov instabilities), the adaptive mesh refinement (AMR) has been facilitated. VCE-
Foam can simulate high Mach number reactive flows, with solving chemical reactions and
HLLC schemes. To include the chemical reaction and species transport terms from the
OpenFOAM’s combustion library, the energy equation needs to be changed from using the
total energy to using the sensible enthalpy as in Eq. 7:

∂(ρhs)

∂t
+ ∇ · (ρuhs) − DP

Dt
= ∇ ·

[
α∇hs +

n∑
i=1

hiJi

]
+ ∇ · (τ · u) = Sh (9)

Where, u, P, hs, T, Sh, are the density, velocity, pressure, sensible enthalpy, temperature, and
enthalpy source respectively. α is k/cp, k is the thermal conductivity and cp is the specific
heat at constant pressure. The viscous stress tensor is defined in Eq. 4.

Species transport and diffusion coefficient are added, so the species conservation
equation is:

∂(ρYi)

∂t
+ ∇ · (ρuYi) = ∇ · Ji + Ri (10)

Where Ji is the diffusion flux of species i and is defined as Eq. 9;

Ji = −ρDi,m∇Yi (11)

Where the binary diffusion coefficient, Di,m, for species i in the mixture can be derived by
Wilke’s equation [17].

2.2 Verification of numerical model

For verification of the developed numerical model, the Sod’s shock tube problem and super-
sonic wedge for oblique shock, have been simulated to verify the shock capturing capability
and accuracy of the solver. the problem has been modelled.

2.2.1 Sod shock tube problem

The Sod problem [11] was firstly chosen to validate the code regarding the ability of
the code to capture discontinuities such as shock waves. The test case consists of a one-
dimensional Riemann problem. As shown in Fig. 1, the predicted pressure, temperature,
density, and velocity distributions are in excellent agreement with the analytical solutions.
The predictions accurately capture the above mentioned important characteristics of the
flow, i.e. the rarefaction wave, the contact discontinuity, and the shock discontinuity. No
oscillations were found at the discontinuities. At the contact region, the predictions show
steep gradients due to molecular diffusion which was captured by the code. The results in
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Fig. 1 Density distribution in the shock tube with using 1000 cell; a pressure, b Temperature, c Density and
d Velocity distributions

Fig. 1 shows a shock wave moving to the right and a rarefaction wave (expansion fan) mov-
ing to the left, the contact surface discontinuity separating the shock and rarefaction waves
is moving to the right [11]. These results demonstrate that the newly assembled VCEFoam
can provide accurate shock capturing.

2.2.2 The supersonic wedge problem

The supersonic Wedge problem involving two-dimensional Oblique shock waves are often
prevalent in the study of super- and hypersonic flows. It is hence crucial that a compressible
flow solver can handle them well. Although one-dimensional Euler equations can repre-
sent the sod’s shock tube problem, the supersonic wedge problem requires two-dimensional
equations. The computational domain is shown in Fig. 2. A horizontal stream with Ma=2
meets a wedge whose axis of symmetry is parallel to the flow direction. The supersonic
flow is then “turned into itself”, resulting in an oblique shock wave, after which the flow is
again parallel and uniform. The wedge angle is chosen 15 degrees. The analytical solution
of this problem is well known, and a MATLAB subroutine based on the theory in [12] has
been coded to facilitate the comparison.

The initial conditions of the two-dimensional wedge problem, as well as the computa-
tional domain, is shown in Fig. 2. 50000 hexahedral cells have been considered for this
simulation. In order to avoid reflection from the incoming waves, a wave transmissive
boundary condition has been used for the outlet boundary condition. The upper boundary
and the horizontal part of the lower boundary have been considered as being symmetric. For
the rest of the regions a zeroGradient type, have been imposed.
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Fig. 2 Computational domain of the supersonic wedge problem

Figure 3 shows the predicted pressure and temperature ratios across the oblique shock.
The predictions are in excellent agreement with the analytical solutions (Fig. 4).

3 Results of the Validation Studies

For validation the test cases of Boeck et al. [1] were simulated. The experiments were con-
ducted in a horizontal obstructed channel unobstructed channel (BR00) as well as 30%
and 60% blockage ratios (BR30 and BR60). It was initially filled with an inhomogeneous
hydrogen-air mixture, which was on average 40% hydrogen by volume.

3.1 Numerical setup

The computational grid was set up to mimic the experimental configuration as shown in
Fig. 1.

Three different sets of simulations have been carried out including an inhomogeneous
hydrogen-air mixture with 40% concentration by volume (All the concentrations mentioned
hereafter are by volume) in average with three different blockage ratio (BR) configura-
tion, i.e. BR00, BR30 and BR60. In this study, the simulations have been carried out with

Fig. 3 The predicted Temperature ratio distribution in the Wedge problem (right) and pressure ratio
distribution in the Wedge problem (left)
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Fig. 4 Schematic of the computational domain (Reproduced from Boeck et al. [1])

adaptive mesh refinement, providing a minimum cell size of 10 μm, equivalent to approx-
imately 30 grid points per half-reaction length. The simulations were conducted using a
hydrogen/air reaction mechanism which contains 9 species and 21 detailed reactions [5].

3.1.1 Unobstructed channel with BR00

In this case, an unobstructed channel with an inhomogeneous hydrogen/air mixture with
40% averagre concentration, has been considered.

As shown in Fig. 5, the predicted flame tip velocities are in reasonably good agreement
with the measurements. The flame tip velocity rises continuously in the channel.

Based on Figs. 5 to 7, it can be found that in accordance with the experiments [1], the
transition to detonation is initiated almost at the end of channel (x=4.79m). It was triggered
by shock reflection at the upstream faces from the channel wall, leading to local explosions
in the leading shock wave. Figure 6 shows numerical schlieren images (magnitude of the
density gradient) while Fig. 7 illustrates the temperature fields during DDT. It can be seen
that the accelerated hydrogen flame is propagating with a leading shock ahead. Suddenly at
20.045ms, a weak local explosion occurs near the bottom wall where the mixture is lean.
Then, at 20.095ms, this local explosion interacts with the flame front and DDT happens. The
predicted pressure jumped over 20 bar in the results file (not shown here), which satisfies
the CJ detonation pressure ratio condition. Moreover, Fig. 5 also shows that around this

Fig. 5 Comparison of the measured and predicted flame tip velocity for the inhomogeneous hydrogen/air
mixture with 40 % averagre concentration for BR00
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Fig. 6 Numerical Schlieren for the inhomogeneous hydrogen/air mixture with 40% averagre concentration
and BR00

location (x=4.8m), the flame tip velocity is at its maximum. At 20.120ms, the flow became
supersonic, and the deflagration completely transited to detonation.

3.1.2 Obstructed channel with BR30

Figure 8 shows that the predicted flame tip velocities are in reasonably good agreement
with the measurements of the 40% hydrogen concentration in a channel with 30% blockage
ratio. In comparison with the unobstructed channel in Fig. 5, it can be seen that the flame
has transited to detonation much earlier (in BR00, DDT occurred at x=4.79m, however
in BR30, the DDT took place at around x=2.15m). Therefore, it can be concluded that
obstruction has a significant impact on f FA and DDT. It is also see in Fig. 9 that the flame
has transited to detonation.

3.1.3 Obstructed channel with BR60

As shown in Fig. 10, the predicted flame tip velocities are in reasonably good agreement
with the measurements. By comparing the results in Fig. 10 with that in Figs. 5 and 9, it
can be seen that the maximum flame tip velocity occurred much earlier in the 60% BR case
than the 30% BR and unobstructed cases. Also, the maximum flame speed in the BR30
case occurred sooner than the unobstructed case, indicating that within the tested range of
between 0% to 60% BR, increasing the blockage ratio would lead to faster FA.
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Fig. 7 Temperature contour for the BR00 case

Fig. 8 Comparison of the measured and predicted flame tip velocity for the inhomogeneous hydrogen/air
mixture with 40 % averagre concentration and BR30
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Fig. 9 Numerical schlieren for the inhomogeneous hydrogen/air mixture with 40% averagre concentration
and BR30

Fig. 10 Comparison of the measured and predicted flame tip velocity for for the inhomogeneous hydro-
gen/air mixture with 40% averagre concentration and BR60
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Figure 11 shows the numerical schlieren. It can be seen that the onset of detonation
occurred around obstacle 3, 4 and 5. At 4.2ms, a leading shock is moving downstream of the
flame front. Then due to an interaction of the reflected shock from the third obstacle with
the flame front, the first local explosion happened near the upper wall at 4.31ms. However,
that explosion was not strong enough to trigger DDT and the flame was still decoupled
with the shock wave. At 4.58ms, the second strong explosion happens due to the interaction
of the reflected shock from obstacle 4 and the burned gas. At 4.61ms this explosion wave
generated a third strong explosion in the middle of the channel. Subsequently, the DDT
occurred at 4.62ms. At 4.645ms, two reflected shock waves generated in the downstream of
obstacle 5 interacted in the middle of the channel, resulting in stronger leading shock waves.
The process eventually reached steady state, and the shock wave propagated at nearly the
C-J velocity.

Fig. 11 Numerical schlieren (magnitude of density gradient) contours for the inhomogeneous hydrogen/air
mixture with 40% averagre concentration and BR60
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Figure 11 also illustrated that in the BR60 channel, the transition of hydrogen flame to
detonation happens earlier than the other cases with less blockage ratio. Therefore, it can be
concluded that with the blockage ratio increasing from 0% to 60%, the speed of FA increase
and the DDT occurs in less distance to the ignition point.

4 Conclusions

The dynamics of FA and DDT in inhomogeneous mixtures have been studied using VCE-
Foam, a newly developed density-based solver within the frame of OpenFOAM CFD
toolbox. To evaluate the convective fluxes contribution, Harten–Lax–van Leer–Contact
(HLLC) scheme is used for accurate shock capturing. The solver has been firstly verified
with the analytical solutions of the classical one-dimensional SOD’s shock tube problem
and two-dimensional supersonic wedge case. For validation, the experimental data of Boeck
et al. [1] is used. The experiments were conducted in a rectangular channel with three dif-
ferent blockage ratios. The predicted flame tip velocities were found to be in reasonably
good agreement with the experimental measurements [1]; and the predicted FA and DDT
behaviour are also in line with the experimental observations. The increase in the blockage
ratio was found to increase the FA and reduce the running up distance to DDT. The results
of the present work can be used in the context of safety to assess the potential risks of explo-
sions in the energy industry. Also, in the future work, the effect of concentration gradients
on DDT phenomena in a channel with and without obstructions, will be examined.
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