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SUMMARY

The main aim of this thesis is to produce and then study two 

generalizations of the unique factorisation domain of commutative 

algebra.When this has been done before, [21 and [51, it has always been 

assumed that the rings are Noetherian.lt is our aim to show that this is not 

only unnatural but unnecessary.

Chapter 1 contains some well known results about rings and in 

particular about rings satisfying a polynomial identity.

In chapter 2 we define the unique factorisation ring (U.F.R.) and the 

unique factorisation domain (U.F.D.).show where these definitions come 

from and show what results can be obtained using only the definitions.

In chapter 3 we show that all the previously known results for 

Noetherian U.F.D.s can be proved for a U.F.D. which merely satisfies the 

Goldie condition.In particular we prove that a Goldie U.F.D. is a 

maximal order and that a bounded Goldie U.F.D. is either commutative 

or a Noetherian principal ideal ring.

In chapter 4 we look at U.F.R.s that satisfy a polynomial identity and 

show that these too are maximal orders.We also show that they are equal 

to the intersection of two rings .one of which is a Noetherian principal 

ideal ring and the other of which is a simple Artinian ring.

In chapter 5 we look at the reflexive ideals of a U.F.R. which satisfies 

a polynomial identity and show that they are all principal.We also show 

that if T is a reflexive ideal of R then R /T  has a quotient ring which is an 

Artinian principal ideal ring.



CONVENTIONS

All rings will be assumed to be associative with an identity element but 

will not necessarily be commutative.

When we refer to a two-sided ideal I as being principal we will mean 

that I = aR = Ra for some ae R.

The abbreviations A.C.C. and D.C.C. will stand for the ascending 

chain condition and descending chain condition respectively.

Dsl will denote the natural numbers {1,2,3,...}.

Z will denote the integers.

<Q will denote the field of fractions of Z.

When we require a maximal ideal subject to certain properties these 

will be assumed to exist by Zorn's Lemma.



1

INTRODUCTION

The main aim of this thesis is to produce and then study a generalization of the 

unique factorisation domain (U.F.D.) of commutative algebra. In [2] and [5] Chatters 

and Jordan produce two generalizations of U.F.D. which they call the Noetherian 

U.F.D. and the Noetherian unique factorization ring (Noetherian U.F.R.). Since the 

Noetherian condition does not appear in the commutative definition it is better if we 

do not have to assume in the non-commutative definitions that the ring is 

Noetherian.lt is our aim to show that we do not lose anything by omitting the 

Noetherian condition. This leaves us with the following definitions.

(1) A ring R is called a unique factorisation ring (U.F.R.) if it is prime and every 

non-zero prime ideal of R contains a non-zero principal prime ideal.

(2) A ring R is called a unique factorisation domain (U.F.D.) if it is a U.F.R. and 

also a domain in which each factor ring R /P  is a domain where P is a principal prime 

ideal of R.

In Chapter 2 we shall show where these definitions come from and that they are 

true generalizations of the commutative U.F.D. We will also show in this chapter that 

a large amount of structure exists in a U.F.R. without assuming any further conditions 

and that U.F.R.s are closed under polynomial extensions and skew-polynomial 

extensions.

In Chapter 3 we show that all the previously known results for Noetherian U.F.D.s 

which appear in [21 and [81 can be proved for a U.F.D. which merely satisfies the 

Goldie condition. Therefore in the case of the U.F.D. incorporating Noetherian into
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the definition is not only too restricting from the point of view of generalization but 

also unnatural and all that is really needed to produce results is the Goldie condition. 

We prove in this chapter that a Goldie U.F.D. is a maximal order which is a 

generalization of the fact that a commutative U.F.D. is integrally closed. We also 

prove the surprising result that a bounded Goldie U.F.D. is either commutative or a 

Noetherian principal ideal ring. This was known for a Noetherian U.F.D. [8] but the 

surprising thing is that the Noetherian nature of the result is not dependant on the 

initial ring being Noetherian.

In Chapter 4 we take the previously known results for Noetherian U.F.R.s which 

appear in [51 and prove most of them are true for a U.F.R. which satisfies a 

polynomial identity. Therefore yet again it seems the results are not dependent on the 

Noetherian condition but depend to a great extent merely on the inner structure of a 

U.F.R. Thus it is again probably better to define a U.F.R. without assuming that it is 

Noetherian.

Having hopefully shown in Chapters 3 and 4 that the Noetherian condition is best 

left out o f the definitions, we look deeper into the structure of U.F.R.s which satisfy a 

polynomial identity. Therefore in Chapter 5 we look at the reflexive ideals of a 

U.F.R. with a polynomial identity and show that they are all principal. We also show 

that if T  is a reflexive ideal o f R then R /T  has a quotient ring which is an Artinian 

principal ideal ring. This result was previously only known for a prime Noetherian 

maximal order.

From results in Chapters 3, 4 and 5 it appears that not only is the Noetherian 

condition unnecessary in the definition of U.F.D.s and U.F.R.s but that many result 

which were previously known only for Noetherian rings can be proved if not for the 

whole class of U.F.R.s then at least for large families of them.
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C H APTER I 

PRELIMINARIES

This chapter contains most of the known results which will be needed in later 

chapters. Firstly, we will deal with general ring theory terminology and localization. 

After this we will deal with the more specialized topic o f rings which satisfy a 

polynomial identity.

In general proofs will be omitted only if they are readily accessible in the 

literature.

1.1 Terminoloev

A ring R is said to be simple if it contains no non-trivial two-sided ideals.

An ideal I of R is called prime if for all ideals A, B o f  R, AB c  I implies that 

either A £  I or B s  I. This is equivalent to saying that an ideal I is prime if for all 

elements a, b of R, aRb G I implies that either a e I or b e  I.

I is called semi-prime or semi-simple if for any ideal A of R and n e N, An S  I 

implies A s l .

R is called prime (respectively semi-prime) if 0 is a prime (respectively semi­

prime) ideal of R.

We will need the following useful theorem concerning prime ideals.

1.2 Theorem

Let S be a multiplicatively closed set in a ring R and let I be an ideal in R 

maximal with respect to non-intersection with S, (which exists by Zorn's Lemma). 

Then I is a prime ideal.
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Given aRb e I we must show that a or b lies in I.

Suppose this is not true.

Then the ideal I+RaR generated by I and a is strictly larger than I. 

Therefore (I+RaR) o  S t  0.

The first three terms on the right hand side are clearly in I. Also the fourth term is in I 

since aRb e I.

Therefore SjS2  e S n l .

This is a contradiction therefore I is prime.

1.3 Definitions

An element c of R is said to be left regular if rc -  0 with reR  implies r -  0, right 

regular if cr -  0 implies r  -  0, and regular if it is both left and right regular. R is 

called a domain if every non-zero element of R is regular.

If I is an ideal o f R then c e  R is (left or right) regular modulo /  if  c +  I is (left or

n
Hence Sj ■ ij +  5^rj a tj for some Sj e  S, i j  6 I, rj, tj e R. 

Similarly we have

m
s2 = h  + £  xk b y k for some S2  e  S, ¡ 2  e I, xk, yk  e R. 

k-l

Therefore

S ï  s ,s2 •  i ,i2 + i 1 xk b yk + ( ,Z r j  a tj)i2

n m

+<i?irj ,t j \ f i X|cbyk)
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right) regular in the factor ring R/I.

The set of regular elements of a ring is denoted by Cr (0), and the set of regular 

elements modulo I is denoted by Cr (I). The subscript R will often be omitted where 

there is no ambiguity.

An element c of R is called a left unit of R if there exists r e R such that rc = 1. 

Right unit is defined analogously, and c is called a unit if it is both a left and right 

unit of R.

An element c of R is called central if cr = rc for all r 6 R, c is called normal if 

cR = Rc.

The set of all central elements of R is called the centre of R and is denoted by 

Z(R).

A left ideal I of R is said to be left principal if I = Ra for some element a of R. 

Right principal is defined analogously, and a two-sided ideal of R is called principal 

if it is both left and right principal. A ring is called a principal ideal ring if every 

two-sided ideal is principal.

A ring R is said to be left Noetherian if it has the ascending chain condition 

(A.C.C.) on left ideals. R is left Artinian if it has the descending chain condition 

(D.C.C.) on left ideals. Right Noetherian and Right Artinian are defined analogously. 

A ring is said to be Noetherian if it is both left and right Nocthcrian, and Artinian if 

it is left and right Artinian.

A prime ideal P of R is said to be height-n if there exists a chain 

P 3  P n d  Pn-i 3  ••• 15 Pi of prime ideals of R and no longer such chain exists.

The Jacobson radical J(R) is defined to be the intersection of all the maximal 

right ideals of R.

A ring R is said to be local if R/J(R) is a simple Artinian ring. R is said to be 

semi-local if R/J(R) is semi-simple Artinian.

An R-module M is said to have finite Goldie dimension if there does not exist an
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infinite direct sum of non-zero submodules of M. A submodule E of M is said to be 

essential if E has non-zero intersection with each non-zero submodule of M.

If S £  R then the set L(S) = (x e R I xS = 0} is a left ideal of R called the left 

annihilator o f  S. A left ideal is called a left annihilator ideal if it is the left 

annihilator of some set S c R .  Right annihilator ideals are defined analogously.

A ring is called a Goldie ring, if it has finite Goldie dimension on both sides and 

has the ascending chain condition for both right and left annihilator ideals.

1.4 LOCALIZATION AND QUOTIENT RINGS

Let S be a subset o f  R. Then S is a right Ore set if and only if given a e R and 

b 6 S there exist c e R . d e S  such that ad = be. Left Ore set is defined analogously, 

and S is called an Ore set if it is both a left and right Ore set.

Now let S be a multiplicatively closed subset of regular elements of R. Then a 

left localization o f R a t S  is an overring S _1R of R such that

(i) each element o f S is a unit in S _1R;

(ii) each element o f  S -1R can be written in the form s- , r for some s e S and

r e  R.

It is a well-known result that a left localization of R at S exists if and only if S is a 

left Ore subset of R. (see for example, [4)).

If S is the set of all regular elements of R and a left localization of R at S exists 

then S_1R is called the le ft quotient ring o f  R.

The right quotient ring o f  R is defined analogously.

If both the left and right quotient rings of R exist then they are equal (page 21,(41) 

and we call them the quotient ring o f R.

A prime ideal P o f R  is said to be left localizable if there exists a left localization 

of R at CR(P).Right localizable is defined analogously.An ideal is localizable if it is 

both left and right localizable.The localization at a prime ideal P if it exists will be 

denoted by Rc(p)-This is usually denoted by Rp but we will avoid this notation to
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prevent it being confused with the principal ideal generated by p.

1.5 Lemma

Let R be a ring and Q its quotient ring. If S is a subring of Q with R c S c Q  and 

every regular element of R is a unit of S, then S = Q.

Proof

Let q e Q.

Since Q is the quotient ring of R we can write 

q = ac-1 for some a e R, c e Cr(0).

Hence qc = a.

But c 6 CR(0) and is therefore a unit in S.

Hence there exists b e  S such that cb = 1.

Therefore q = qcb = ab e S.

Thus Q c S .

Hence Q = S.

□

Using the previous lemma it can be seen that i f  every regular element of R is a 

unit of R then R is its own quotient ring.

The next theorem is probably the most important result about quotient rings.

1.6 Theorem (Goldie)

Let R be any ring, then R has a right quotient ring which is (semi-)simple 

Artinian if and only if R is a (semi-) prime right Goldie ring.
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Proof

□
(Theorem 1.27 and Theorem 1.28, [4]).

Any ring which is its own quotient ring is called a quotient ring.

A ring R is called a (left) right order if it has a (left) right quotient ring.

R is called an order if it is both a left and a right order.

Let Q be a quotient ring. Two orders R and S in Q are equivalent if  there exist 

units of Q, a, b, c, d such that aRb Q S and cSd c: R.

An order R in Q is called a maximal order if whenever S is an order of Q with 

R 5  S and R equivalent to S, then R = S.

Before giving the most important theorem about maximal orders we need three 

definitions.

1.7 Definitions

Let R be an order in a simple Artinian quotient ring Q. A subset I o f Q is called 

an R-ideal if

(i) I is an R -R  bimodule

(ii) I contains a unit of Q.

(iii) There'exist u, v e Q such that ul S  R and Iv c  R.

For an R-ideal I define

Oi(I) -  (q e QI ql c  1} 

and 0|{I) -  (q € QI Iq c  I).

Note

Oj(I) and Or(I) are both subrings of Q which contain R.



1.8 Theorem

Let R be an order in an Artinian quoteint ring Q. Then the following properties 

are equivalent.

(a) R is a maximal order.

(b) For every R-ideal I, Oi(I) = Oj<I) = R.

(c) For every ideal I of R, Oi(I) = Or(I) = R.

Proof

For the full proof see (Proposition 3.1, [14]) but in order to give a feel of the proof 

we will prove (c) => (b) and (b) (a) here.

(c) + (b)

Let I be an R-ideal.

By definition there exists X e Q such that IX £  R. it is easy to see that IXR is a 

two-sided ideal of R. Therefore Oj(IXR) = R by (c).

We have R £  OjCI) £  Oi(RR) = R.

Hence Oi(I) = R.

Similarly for Or (I)-

(b)-»(a)

First let M be a left R-module contained in Q and X a unit of Q which is in R. 

Then if XM £  R we have MX £  R.

Since RXRMX = RXMX £  RX £  RXR and since RXR is an R-ideal then Or (RXR) 

= R by (b).

Therefore MX £  R.

Now let R' be an order of Q containing and equivalent to R.
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Therefore there exist X, e R with X.p. units of Q such that XR'p £  R. 

By the previous statement we have

R'|iX. £  R and (iA.R' £  R.

Therefore R' is an R-ideal.

Hence Oi(R') = R.

But R'R' £  R'.

Thus R' £  Oi(R') = R.

Therefore R' = R.

□

Let R be a maximal order in an Artinian quotient ring Q and I a two-sided ideal of 

R.

Define 1 * = {q e Q I ql £  R}.

We have q e I* <=» ql £  R 

«=> Iql £  R

<=> Iq £  R by Theorem 1.8.

Therefore the definition o f I* is left-right symmetric.

Also note I £  I** £  R.

Note

The concept of I* and I** will only be used in maximal orders.

1.9 Definition

I is a reflexive ideal if I ** = I.

I is an invertible ideal if  1*1 -  11* -  R.
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Note

Clearly an invertible ideal is reflexive.

1.10 Theorem

Let R be a right Goldie ring and let X j,...,Xs be prime ideals of R. Let K be a right 

ideal of R and assume for each i that K contains an element o f C(Xj), then there exists 

c e K such that c e C(Xj) for all i.

Proof

(Theorem 13.4, [4]).

□

1.11 RINGS SATISFYING A POLYNOMIAL IDENTITY

1.12 Definition

A ring R is said to satisfy a polynomial identity if  there exists a polynomial in 

non-commuting variables X j , . . .^  o f the form x<j(l) ••• xo(d)> where the

coefficients are ± 1, such that c ^ da a  rO(l)—rO(d) “ 0 for all choices of e  R.

(Sd denotes the d'th symmetric group). We say that R is of degree d if d is the least 

degree of a pojynomial which R satisfies.

The following theorem is one of the most important structure theorems for rings

satisfying a polynomial identity.
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Let R be a prime ring satisfying a polynomial identity of degree d. Then R is a 

central simple algebra of dimension iy)2 over its centre.

1.13 Theorem (Kaplansky).

Proof

(Theorem 6.3.1, [12]).

□

1.14 Corollary

Let R be a simple ring satisfying a polynomial identity. Then R  is Artinian.

Proof

By Theorem 1.13 R is finitely generated over its centre. But the centre of R is a 

simple commutative ring and is therefore a field.

Therefore R is finitely generated over a field and so is Artinian.

□
1.15 Theorem (Amitsur)

Let R be d ring satisfying a polynomial identity and a e  R with r(a) = 0. Then aR 

contains a non-zero ideal of R.

Proof

Among all akR, k 6 N pick anR such that the degree of anR is minimal.

Replace a n by a. Now the degree of aR equals the degree of a2R.

Let g be a polynomial identity of minimal degree for aR.
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Write g = x ig1(x2,...,xd) + g2(x,,...,xd) where in g2, x never appears on the left in 

any monomial and d is the degree of g.

Set xi = a’rj with arbitrary elements rj e R.

Then 0 = g(ar1,...,adrd) = ar1g1(a2r 2.....adrd) + g 2(ar1,...,adrd). Because g is of

minimal degree for aR we can choose r2,...,rd such that g j(a2r2,...,adrd) 4 0.

Also ar j is not on the left of any monomial in g2.

Therefore g2(ar1,...,adrd) 6 a2R.

Hence 0  = ar jgi(a2r2,...,adrd) + a2s for some s e R.

T husrig ita2^ .... adrd) e aR since r(a) = 0.

Therefore Rg1(a2r2,...,adrd> £  aR since r t was arbitrary.

Hence R gi(a2r2,...,adrd)R Q aR.

Since r(a) = 0, we have

Rgl(a2r2,- ,a drd) 3 agt(a2r2.... adrd) 4 0.

If Rgi(a2r2,...,adr2)R = 0 then Rgj(a2r2.... adrd) is already a non-zero ideal in aR,

otherwise Rgi(a2r2,...,adrd)R is a non-zero ideal in aR.

□

Definitions

If R is a ring then a central polynomial for R is a polynomial all of whose 

evaluations on R are central, but which is not a polynomial identity on R.

A central polynomial is m-central if it is a central polynomial for m x m matrices 

over 2.

1.16 Theorem (Formanek)

There exist m-central polynomials for each m.
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Proof

This is the entirity o f [6).

□

1.17 Theorem (Rowen, et al.)

Let R be a semi-prime ring which satisfies a polynomial identity. Then any non­

zero ideal in R intersects the centre of R non-trivially.

Proof

This will be done in three stages:

(1) Semi-prime rings satisfying a polynomial identity have non-trivial centres.

(2) Any ideal in a semi-prime ring is semi-prime as a ring.

(3) The centre of an ideal of a semi-prime ring is contained in the centre of the 

ring.

Proof of (1)

Assume first that 0 = D M .
M<R max

By Theorem 1.13 the R/M  are finite dimensional central simple algebras of maximal 

pi-degree m = degree R.

Let g be an m-central polynomial.

There exits an M0 such that pi-degree (R/M 0) = m. Therefore there exist r¡ e  R, 

1 £ i £ m with

0 i g (rj r m) + Mq e Z (R /M 0).

Now if M is such that pi -degree (R/M) < m then 

g(ri,...,rm) + M =» 0 G R/M.
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If M is such that pi-degrcc (R/M ) = m then g(rlt. . . jm) M e  Z(R/M).

Hence O ^ g(ri,...,rm) is an element of the centre of R.

Now if R is an arbitrary semi-prime ring which satisfies a polynomial identity 

then R can be embedded in R(t] which has the property O = .  . ,  M and if Z is
M<R[t) max

the centre of R then Zltl is the centre of R[t] and so (1) is proved.

Proof of (2)

Let I < R, 0 * N <  I with N2 -  0.

Then if NI = 0

N s  LG) n  I = K say 

and K2 = 0 by definition.

Therefore K = 0 since R is semi-prime.

Hence NI 4 0.

Put (NI)2 C N2 « 0.

Thus NI = 0 as R is semi-prime, but this is a contradiction.

Proof of (3)

Let a  e  Z(I), r  e  R and i €  I.

Then a (ir)  = ( ir )a  since a  e  Z(I).

Therefore i a r  = ira .

Hence i(o tr-ra) -  0.

But this is true for any i e  I.

Therefore ( a r - r a )  6  I n  r-ann  I = L say.

B u tL 2 -  0 therefore L  -  0  since R is sem i-prime.

Hence a r - r a  -  0.

Thus a r - r a  and a  e  Z(R).

□
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From the previous theorem we obtain.

1.18 Corollary

Let R be a semi-prime ring with a polynom ial identity and c e  R with 

r(c) = 0. Then cR contains a  non-zero central element o f R.

Proof

By theorem 1.15 cR contains a n o n -zero  ideal of R.

Therefore by theorem 1.17 cR contains a  non-zero central element of R.

□
W e can now prove Posner's theorem  which gives us several useful facts 

about prime rings satisfying a polynomial identity.

1.19 Theorem (Posner)

Let R be a prime ring which satisfies a polynomial identity. Then R has a 

ring of quotients Q obtained by inverting all the central regular elements. Also 

Q is simple Artinian and satisfies the sam e polynomial identity as R.

Proof

Let S -  Z(R)\{0}.

Define Q  = R s = {ac**11 a e  R, c e  S}.

In order for Q  to be a quotient ring o f  R  it only needs to be shown that i f  c 

is regular in R then c is a unit in Q.

By Corollary 1.18 cR contains an e lem ent of S .

Therefore cr = z for some r e  R, z €  S.
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Hence c rz " 1 = 1 and so c is a right unit in Q. The fact that c is a left unit is 

proved similarly.

Q is simple by Theorem 1.17.

Q satisfies a polynomial identity since Q = R ® Q(Z) where Q(Z) is the
Z(R)

quotient field of Z(R).

Therefore Q is simple Artinian by Corollary 1.14.

□

This produces several useful corollaries.

1.20 Corollary

If R satisfies a polynomial identity and P is a prime ideal of R then R /P  is 

Goldie.

Proof

By 1.19 and Goldie's theorem 1.6.

□

1.21 Corollary

Let R be a prim e ring which satisfies a polynomial identity. Then R is 

bounded.

Proof

By 1.20 R is Goldie.

Therefore every essential one-sided ideal of R contains a regular element by
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(Lem m a 1.18 [4]).

Therefore by Theorem 1.15 every essential one-sided ideal contains a two 

sided ideal.

□

W e will need only one more result about rings satisfying a polynomial 

identity.

1.22 Theorem (Cauchon)

L e t R be a prime ring which satisfies a polynomial identity and has ACC on 

tw o-sided  ideals. Then R is right and left Noetherian.

P roof (Goldie)

(Theorem  5,19]).

□
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C H APTER 2

NON-NOETHERIAN U N IQ UE FACTORISATION RINGS

In this chapter, we will define a unique factorisation ring (UFR) and a unique 

factorisation domain (UFD).We will also show where these definitions come from in 

terms of them being generalizations of the Unique Factorization Domain of 

commutative Algebra. We will then go on to show what preliminary results can be 

obtained using only the definitions.

In the last part of this chapter we will give some examples of UFR's and UFD's.

2.1 Definition

Let R be a commutative integral domain. An element a 4 0 of R is said to be 

irreducible if it is a non-unit of R and if  it is not a product o f two non-units o f R.

R is called a commutative unique factorisation domain (UFD) if every non-zero 

element is a product of a unit and of a  finite number of irreducible elements and such 

a representation is unique up to order and units.

It is this definition of a commutative U.F.D. which we would like to generalize to 

the non-commutative case. The definition as it stands above is not in a very nice 

form for generalization to a non-commutative ring, but fortunately we have the 

following very useful theorem.
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2,2 Theorem (Theorem 5, [13])

A commutative integral domain R is a U.F.D. if and only if every non-zero prime 

ideal of R contains a non-zero principal prime ideal.

Proof

*)

Let R be a commutative U.F.D. and P a non-zero prime ideal in R. Ignoring the 

trivial case when R is a field. P contains an element a which is not zero or a 

unit.Since R is a U.F.D. a can be written as a product of irreducible elements. Since P 

is prime and a e P, P must contain one of these irreducible elements.

But in a U.F.D. an irreducible element generates a prime ideal. Therefore P 

contains a non-zero principal prime ideal.

«■)

Let R be a commutative integral domain and every non-zero prime ideal in R 

contain a principal prime ideal.

Let S be the set of all products of prime elements and units of R.

It is enough to show that S contains every element of R which is not zero, as the 

uniqueness of expression is easy to show.

Suppose there exists c with c £ S and cR o  S ^ 0.

Therefore cb = p j ... pn for some b e  R and prime elements pi

Choose c and b such that n is minimal.

Since p i is prime p jl c or p t l b.

If pjl b then cbj -  P2  ... pn for some bj e R which contradicts the minimality
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of n.

Therefore pjl c.

Let c = pjCi for some c j e R.

Hence c jb = P2  ... pn •

But c i g S since c g S, and c jR n  S g 0  since cR n  S g 0 .

Therefore we again have a contradiction of the minimality o f  n.

Hence eg S implies cR n  S = 0.

Now suppose c g S.

Therefore cR n  S = 0.

Let I be the largest ideal containing cR with I n  S = 0.

By theorem 1.21 is a prime ideal disjoint from S. But by assumption I contains a 

principal prime ideal and hence a prime element which is a contradiction. Therefore 

S contains every element in R that is not 0.

Since the elements of S are products of prime elements and units uniqueness of 

factorization is clear.

□
Using this theorem as our definition it is much easier to produce a generalization 

of the commutative U.F.D.

2.3 Definition

A domain R is called a unique factorisation domain or U.F.D. if every non-zero 

prime ideal of R contains a non-zero principal prime ideal and every factor ring R /P 

is a domain where P is a principal prime ideal of R.
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Clearly by Theorem 2.2 all commutative U.F.D.s are U.F.D.s under the 

generalized definition.

The requirement that the factor rings are also domains is necessary to produce the 

prime factorization of elements which we obtain in Corollary 2.10. Unfortunately 

this property is not as nice as the commutative case. For example it is not stable 

under the taking of polynomial extensions. However, the property that every prime 

ideal contains a principal prime ideal is a very stable one and this leads us to a further 

generalization.

2.4 Definition

A ring R is called a unique factorisation ring or U.F.R. if  it is prime and every 

non-zero prime ideal of R contains a non-zero principal prime ideal.

Clearly all U.F.D.s are U.F.R.s and so the U.F.R. is a true generalization of the 

commutative U.F.D. by which we mean that every commutative U.F.R. which is a 

domain is a commutative U.F.D. as defined in commutative algebra.

We will now look at what can be deduced about the structure of U.F.D.s and U.F.R.s 

just from the definitions.

2.5. Definition

A prime element of a UFR is one that generates a principal prime ideal.
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2.6 Lemma

In a UFR all the principal prime ideals are o f height-1.

Proof

Let pR = Rp be a principal prime ideal.

Suppose pR is not height -1 

Therefore pR 5  Q ^ 0 Q prime.

But R is a UFR,

hence Q 3  qR q a prime element.

Therefore pR 3  qR.

Thus q = pr for some r  e R.

We now show p is regular modulo qR.

RprR Q qR, 

hence pRrR c  qR.

Therefore pR c  qR or rR Q qR since qR is prime. 

Thus rR c  qR =  Rq.

Therefore r  = xq for some x e R.

Hence q = pxq.

Thus px = 1 since q regular.

Therefore pR 3  R.

Hence pR = R.

Therefore pR is of height -1.

□
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From the above lemma it can be seen that we can replace the definition of a UFR 

by saying that every prime ideal must contain a height - 1  prime ideal and that every 

height - 1  prime ideal is principal.

2.1 Theorem

In a UFR any ideal contains a product of prime elements.

Proof

Let S be the semi-group generated by the prime elements.

Hence S is multiplicatively closed.

Let I be any ideal of R.

If I n  S = 0,maximise I with respect to not intersecting S.

By theorem 1.2 we obtain a prime ideal which does not intersect S.

But since we are in a UFR each prime ideal contains a prime element 

Therefore P n S  ^  0 .

This is a contradiction.

Hence I o S ^  0.

□
2.8 Corollary

In a UFR any non-zero element is contained in at most a Finite number of height

- 1  primes.
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Proof

Let x be an element of R contained in an infinite number of height -1 primes.

RxR is an ideal of R.

Therefore RxR n  S ^ 0  

m
Hence p j ... pn = ^rfcXSfc for some pj prime elements o f R.and r^, s^ e  R.

Since x is in an infinite number of height -1 primes 

x e  qR where qR is prime,and qR 4 p,R Vi.

Hence x -  qt for some r e R.

m
Therefore p, ... p„ -

Thus p j ... pn e  qR since q is normal.

Hence pjR  p2R ... p nR £  qR-

Therefore p,R c  qR for some i since qR prime.

Hence pjR = qR since qR is height -1.

But this is a contradiction.

Therefore no element is contained in an infinite number of height-1 prime ideals.

□
2.9 Lemma

In a UFR , r> Pn -  0 for any height -1 prime P.

Let I -  n P "
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Take A, B £  I.

Then A £  P n + 1  for some n.

Let n be the integer such that A c P " ,  A J  Pn+1.

Let X = {r e RI pnr e A} where pR = P.

We have pn(r, + r 2) = pnrj + pnr2  e  A if r lt r 2  e X. 

A lsopn(s 1 r1) = s ^ r j ,  Sj 6  R since pn normal.

Therefore p ^ s ^ )  e A if r t e  X.

Hence X is an ideal of R.

Also X i  P since A £  Pn+1.

Therefore A = PnX for some X £  P.

Similarly B = YPk for some Y £  P.

Hence AB = PnXYPk 

-  pnXYpk

£  pn pRpk since pR is prime.

Therefore AB £  pn+k+1 R.

Thus AB £  I.

Hence I is prime.

Therefore I = 0 or contains some qR for some prime element q. 

Assume qR Q I.

Hence qR Q pR.

Not possible unless qR = pR.

Therefore pR c  p2 R.

Hence p  = p2 a.

Thus p ( l-p a ) = 0.

But p is regular,
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Therefore I = 0.

□

2.10 Corollary

In a UFD any element can be expressed as a finite product of prime elements 

multiplied by some element in C = n  C(P) where P ranges over the height -1 primes.

Proof

Let x be any non-zero element in R.

If x e pjR for some prime element p j.then  by Lemma 2.9 we can choose aj e N 

such that x » Pi* 1 r for some r e R /p jR .

Now if r e p2R for some prime element p2 ,then by Lemma 2.9 we can choose 

a2  e IN such that r » s f°r some s e  R /P 2 R.

Therefore x -  p ^ 1 P2 &2 s, with s e R / ( p 1 R+p2R).

Now if s e P3R for some prime element P3  we continue as for r above.

By Corollary 2.8 x has only a finite num ber of different prime factors.

Therefore we must eventually obtain x = p j* 1 P2*2  ... pn3n y where y is contained 

in no height- 1  prime ideals.

Since R/pjR is a domain for all p^ , 

y € C(Pj) for all Pj -  PjR.

Therefore y e n  C(Pj) -  C.

□
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2.11 Lemma

Let S be the partial quotient ring of R formed by inverting all the products of 

prime elements.Then S is simple.

Proof

Let 0 ^ I be an ideal of S.

Thus (I n  R) <  R and so contains a product of prime elements by Theorem 2.7. 

Thus I contains a unit of S, and hence I » S.

□

2.12 Lemma

Let R be a UFR and p,q prime elements of R. Then pRqR = qRpR = qR  n  pR. 

Proof

The result is clearly true if  pR -  qR.

Therefore we can assume that pR and qR are distinct height -1 prime ideals. 

Since pR and qR are ideals we have pRqR G p R n  qR.

Let a e  pR n  qR.

Therefore a = pr for some r  e  R, hence pr e qR.

Thus pRr S  qR since p is normal.

Therefore r e qR since qR is prime and p qR.

Hence r -  qrj for some r t e  R.

Thus a -  pqr, e pRqR.



Therefore pRqR = p R n  qR. 

Similarly pR n  qR = qRpR. 

Hence pRqR = qRpR = qR o  pR.
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□

2.13 Corollary

Let R be a UFR and p,q prime elements of R. Then pq = uqp = qpw where u and 

w are units of R.

Proof

We have pq e  pRqR = qRpR by previous lemma.

Hence pq = uqp for some u e R.

Also uRqp = uqpR = pqR = RpRq = RqRp = Rqp.

Therefore uR = R.

Hence u is a left unit of R.

Also Ruqp = Rpq = RpRq = RqRp = Rqp.

Thus Ru = R.

Hence u is a right unit and hence unit of R.

Similarly for pq = qpw.

□
2.14 Lemma

If R is a UFR then every normal element of R is of the form pj ... pnu where u is a 

unit and the pj's are prime elements of R.
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Proof

Let x be a normal element of R.

Then xR is a two-sided ideal of R.

Hence xR contains a product of prime elements by Theorem 2.7. 

Therefore xr = p j ... pn for some prime elements pj.

Choose r such that n is minimal.

If r g pjR for some 1 £  i £  n, 

then xr = xspj for some s g R.

A lsopj ... pn = wpj ... pj_j p,+ j ... pnpj by corollary 2.13- 

Therefore xs = wpj ... pj_ j pj+j ... pn.

Thus w “ *xs = p j ... pj_ i pj+ i ... pn since w is a unit.

Therefore xys = p, ... pj_ i pj+ 1  ... pn for some y g R since x is normal. 

This contradicts the minimality of n.

Therefore r £ p,R for any 1 £  i £ n.

Since xr = p j ... pn c  p jR and x is normal we have 

xRr £  pjR.

Therefore x G pjR since p jR  is prime and r £ p tR.

Hence x -  P jXj.

Thusp jXjr ■ pj ... pn.

Hence Xjr = p2 ... pn.

Also p,XjR = xR = Rx = RpjX, = pjRxj.

Hence x tR = Rx j and so Xj is normal.

Proceeding as above with x jr -  p2  ... pn we eventually obtain xn-1r = pn.
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Therefore xn_j e pnR as above. 

Hence xn_j = pnxn for some xn e R.

ThusPnxnr -  Pn-

Therefore xn is a unit u say.

Hence x = p j ... pnu.

□

The proof of the next theorem is based on the proof of the Noetherian case by 

Chatters and Jordan (Theorem 3.1,[5]).

2.15 Theorem

If R is a UFR then Rlx] is a UFR.

Proof

This proof relies on the use of S the simple partial quotient ring of R defined in 

Lemma 2.11.

LetR* -  R[x] andS* -  Six).

Clearly since R is prime R* is prime.

S* is the partial quotient ring of R* formed by inverting all the elements of R 

which are products of prime elements of R.

First we will show that every non-zero prime ideal of S* is generated by a central 

element.

Let P be a non-zero prime ideal of S*.
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Let f  be a non-zero element of P of least degree 

deg(f) = n.

The subset of S consisting of zero together with the leading coefficients of 

elements o f P of degree n is a non-zero ideal of S, which therefore must equal S since 

S is simple by (Lemma 2.11).

Therefore we can suppose that f  is monic.

Take g e P

g = fq + r  for some q,r e  S * with deg(r) < deg(f).

But r  g  P.

Therefore by minimality of n, r = 0.

Hence P -  fS*.

Clearly xf = fx.

Also Vs g S, sf-fs g P and has degree less than deg(f).

Therefore by minimality of n, sf = fs.

Hence f  is central in S*.

Hence P is centrally generated.

We will now show that every prime ideal of R* contains a principal prime ideal. 

Let Q  be a non-zero prime ideal of R*.

Suppose Q n  R 4 0.

Then Q n  R is a non-zero prime ideal o f R and so contains a prime element p. 

Therefore Q contains the non-zero principal prime ideal 

pR* = R*p of R*.

So next suppose Q n  R  ■ 0  so that QS* 4  S* and is a non-zero prime ideal of S *.
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Then QS * = fS* for some central element f of S*.

Let D be the multiplicatively closed set of products o f prime elements o f R.

Since fS* -  QS*- 

f = gd_ 1  for some g e Q . d e  D.

Rg -  Rfd -  fRd = fdR -  gR.

Also gx = xg.

Thus gS* = QS* and R*g = gR*.

By corollary 2.8 g is contained in only a finite number of height-1 prime ideals. 

Also by lemma 2.9 , n  Pn = 0  for all height-1 prime ideals.

Therefore g has only a finite number of prime factors.

Choose g with a minimum number of prime factors such that gS* = QS* and

R * g -  gR* •

Suppose that gR* 4 Q.

L e th e  Q/gR*.

Since h e  QS* . hd' e gR* for some d' e D.

Because d' is a product of prime elements of R we can assume without loss of 

generality that hp e gR* for some prime element p e  R.

Thus hp = gb for some b e  R*.

Therefore gR*b = R*gb = R*hp £ R * p  where R*p is prime in R*.

Since hp = gb and h £ gR*- 

b *  R*p.

Therefore g e R *p.

Hence g = g'p for some g' 6  R*.

But g'R*p = g'pR* = gR* G Q
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andp t  Q since Q n R  = 0.

Therefore g 'e Q  since Q is prime.

Also g'R*p = gR* = R*g -  R*g'p .

hence g'R* = R*g' and

g'S* = gS* = QS* since p is invertible in S*.

But g' has one less prime factor than g. This contradicts the choice of g. 

Therefore gR* =Q.

Thus in both cases Q contains a non-zero principal prime ideal.

□

2.16 Corollary

If R is a UFR then R lx j^» —J *s a UFR.

Proof

Let Q be a non-zero prime ideal of R[xlt...].

Then Q contains a non-zero element in R+ = R[xj]je  j for some finite set I. 

Q r> R+ is a non-zero prime ideal in R+.

R+ is a UFR by repeated use of Theorem 2.15.

Therefore Q n  R+ contains a prime element p of R+ .

Hence Q contains the non-zero principal prime ideal 

pRlxi,...) ■ R[x,,...] p of R[Xj,...J.

□
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Having shown that a polynomial extension of a U.F.R. is a U.F.R. we will now look 

at what happens if the polynomial extension is skewed by an automorphism.We will 

show that if the automorphism is of finite order then a skew polynomial extension of 

a U.F.R. is itself a U.F.R.

2.17 Definitions

If R is a ring and a  an automorphism then the skew polynomial ring R[x,a] 

consists of polynomials in x with coefficients from R written on the left and xr = 

a(r)x for all r  e R.Two polynomials are multiplied in the usual way .term by term, 

using the above relation.

An a -  ideal of R is an ideal I of R such that a(I) £  I.

An a -prime ideal of R is an a-ideal P such that if X and Y are a-ideals of R 

with XY £  p then X £  P or Y £  P.

Note

We will always have the automorphism a  of finite order in which case an ideal I 

is an a-ideal if and only if a (I )  = I.

Proof

Let n be the order of a .

Then we have I = a n(I) £  a n_1 (I) £ ............£  a(I) £  I

Therefore we must have equality throughout.

□
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We aim to show that if R is a UFR and a  an automorphism of R of finite order 

then R[x;a] is a UFR.The method of proof is based on that of the polynomial 

extension earlier in this chapter.

2.18 Theorem

Let R be a UFR and a  an automorphism of R of finite order. Then every non-zero 

a-prime ideal of R contains a non-zero principal a -p rim e ideal of R.

Proof

Let P be a non-zero a -prim e ideal of R.

Since P is an ideal it contains a product of prime elements by Theorem 2.7. 

Therefore P 2  p j ... pnR where the pj are prime elements of R.

Let p jR = Pj for all 1 £  i £  n.

Also let the order of a  be m.

Hence we have

P = P , ... P„a(P ,) ...a(Pn)a 2 (P1 )...a2 (Pnh ..a m - 1 (P 1 )...am - 1(Pn).

Since a  maps ideals to ideals it must map height -1  prime ideals to height -1 

prime ideals.

But if X and Y are height -1 prime ideals then 

XY -  X n  Y -  YX by lemma 2.12.

Hence P = P 1 a(P 1 )...am- '( P l).P2a(P2 )...a'I>-,(P2 )...Pna(P„)...am- 1 <P„).

Also Pja(P;) ...aH’- 'iP j)  -  a(Pj)a2(Pj)... a m -'(P i)P i.

Thus PjtiiPj) ...am"*(Pj) is an a-ideal for all 1 £  i £  n.

Since P is an a-prime ideal o f R

P 2 Pja(Pj)... a m -,(Pi) for some 1 £ i £ n.
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Let t be the smallest integer such that a l(Pj) ■ Pj.

Then P 2  Pja(Pj)... a l(Pj) since P is an a-prim e ideal.

Clearly Pja(Pj)... a l(Pj) is a principal a-ideal.

Also Pj, a(Pj) ,...,a*(Pj) are all distinct height -1 prime ideals.

It just remains to show that PjOc(Pj)... a l(Pj) is an a-prime ideal.

Let A, B be a-ideals of R with 

AB £  Pja(Pj)... a l(Pj).

Therefore AB £ Pj.

Hence A £  Pj or B £  Pj since Pj is a prime ideal.

We may assume A £  Pj.

Also A = a s(A) £  a s(Pj) for all 1 £ s £  t.

Therefore A £  Pj r> a(Pj) n ... r> a*(Pj).

But since Pj, a(Pj),...,at(Pj) are distinct height -1 prime ideals 

Pj n  a(Pj) r . ... n  a l(Pj) = Pj.a(Pj)... a l(Pj).

Hence A £  Pj a(Pj) ... a l(Pj) and we have shown that Pja(Pj) ... al(P j) is a 

principal a-prim e ideal contained in P.

□
It should be noted that the property that every a-prim e ideal contains a principal 

a-prim e ideal is analogous to the property used in the definition of a UFR that every 

prime ideal contains a principal prime ideal but ideals have been replaced by a -  

ideals. Several of the early results of this chapter can be proved for a-ideals instead
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of ideals by simply replacing ideals with a-ideals in the proofs.

2.19 Definition

An element b e R is called an a -prime element if bR = Rb is a non-zero a -  

prime ideal of R.

2.20 Lemma

Let R be a UFR and a  an automorphism of R of finite order. Then any a-ideal of 

R contains a product of a-prime elements of R.

Proof

By theorem 2.18 every non-zero a-prim e ideal of R contains a non-zero 

principal a-prim e ideal of R. Now use the proof of Theorem 2.7 with ideals replaced 

by a-ideals.

□
2.21 Corollary

Let R be a UFR and a  an automorphism of R of finite order. Then any element of 

R is contained in at most a finite number of principal a-prim e ideals.

Proof

By theorem 2.18 and the proof of Corollary 2.8 with ideals replaced by a-ideals.

□



39

2.22 Lemma

Let R be a UFR and a  an automorphism of R of finite order. Then if P is a 

principal a-prime ideal of R , n  Pn = 0.

Proof

By theorem 2.18 and the proof of Lemma 2.9 with ideals replaced by a-ideals.

□

2.23 Lemma

Let R be a UFR and a  an automorphism of R of finite order. Let S be the partial 

quotient ring of R formed by inverting all the products of a-prim e elements of R. 

Then S is a-simple. That is S contains no non-trivial a-ideals, where a  is extended 

from R to S, by a (rp _1) = a (r).a(p)-1.

Proof

Let 0 ^  I be an a-ideal of S.

Therefore I n  R is an a-ideal of R.

Hence I n R  contains a product of a-prim e elements of R by Lemma 2.19. 

Therefore I n R  contains a unit of S.

Hence I = S.

□
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2.24 Theorem

Let R be a UFR and a  an automorphism of R of finite order. Then the skew- 

polynomial ring R[x;cx) is a UFR.

Proof

By theorem 2.18 we have that every non-zero a-prim e ideal of R contains a 

non-zero principal a-prim e ideal of R. W e shall use the above fact to show that 

R[x;a) is a UFR by modifying the proof of Theorem 2.15.

Let S be the partial quotient ring of R formed by inverting all the products of a -  

prime elements of R. a  can easily be extended to an automorphism of S which we 

shall also call a .

By Lemma 2.23 S is a-simple. That is 0  and S are the only a-ideals o f S.

For ease of notation set R* = R[x;a] and S * = S[x;a].

Clearly R* is a prime ring.

Also xS* is a principal prime ideal of S*.

Let P be any non-zero prime ideal of S* such that x £ P. We will show that P is 

principal.

Let f  be a non-zero element of P of minimal degree. Let the degree o f f  be n.

Let L be the subset of S consisting of 0 together with the leading coefficients of 

elements of P of degree n.

Clearly L is an ideal o f S.

Also if a e L , ax11 + bnn _ 1  + ... + cx + d e P.

Therefore , x(axn + bxn _ 1  + .... + cx + d) e  P.
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Hence , a (a)xn + 1  + a(b)xn + ... + a(c)x2  + a(d)x e P.

Thus , (a(a)x11 + a(b)xn _ 1  + a(c)x + a(d))x e P.

But x is regular modulo P.

Therefore a(a)xn + a(b)xn _ 1  + ... + a(c)x + a(d) e  P.

Hence a(a) e  L.

Therefore L is a non-zero a-ideal of S.

Hence L = S since S is a-simple.

Thus we may suppose that f  is monic.

Let g  e  P.

Then g  = fh + j for some h, j  e  S*, with degree of j < degree of f. 

But j  = g-fh e P and degree of j < degree of f.

Therefore by minimality o f the degree of f  we have j = 0.

Hence P = fS*.

Let s e  S then sf-fan(s) e P and has degree less than the degree of f. 

Hence sf = f a n(s).

Therefore Sf = fS.

Also x f -  fx = xh for some h e S.

But xh e  P and x is regular modulo P.

Hence xf -  fx = xh for some h e P.

But h has degree less than the degree of f.

Thus h = 0.

Therefore xf = fx.

Hence P -  fS* -  S*f.
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We will now show that every prime ideal of R* contains a principal prime ideal 

and hence R* is a UFR.

Let Q be a non-zero prime ideal o f R*.

„ R
If x e Q then Q contains xR which is principal and is prime because ----- ss R

xR*

which is prime.

Therefore suppose x i  Q.

Suppose Q n  R 4 0.

We have xQ = a(Q)x c  Q.

Therefore a(Q) Q Q since x is regular modulo Q.

Hence a(Q n R J c Q n R .

Thus Q n  R is a non-zero a-prim e ideal of R.

Therefore Q n R  contains an a -p rim e element q by Theorem 2.18.

Since qR is an a-prime ideal

qR* = R*q is a prime ideal o f R*.

This only leaves the case when Q n R  = 0.

In this case QS* is a proper prime ideal of S*.

If x e QS*, then xs 6  Q for some s a product of a-prime elements of R.

Therefore xR*s c  Q.

But since Q is prime and x £ Q we have that 0 ^ s 6  Q n  R which is a 

contradiction.

Hence x £ QS*.

Therefore as shown at the beginning of the proof QS* = fS* = S*f for some

f  e S* with xf = fx and Rf -  fR.
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Let f  = g d - 1 for some g e Q and d a product of a-prim e elements of R.

Since dR is an a-ideal of R, a(d) = du for some unit u e  R.

Hence Rg = Rfd = fRd = fdR = gR.

Also xg = xfd = fxd = fdux = gux = gxa_1 (u).

Therefore R*g = gR*.

To complete the proof we need to show that Q = gR*.

The proof of this fact is as in the proof of Theorem 2.15 with prime elements 

replaced by a-p rim e elements.

Hence R[x,a] is a UFR.

2.25 Examples

Since the definition of a UFR is a generalization of both the definition of a 

commutative unique factorisation ring (2.1) and that of a Noetherian UFR [5] any 

example o f either of these is a UFR. These include the universal enveloping algebras 

of finite dimensional solvable Lie algebras since they are Noetherian UFR's by 

(Corollary 5.6, [5]).

From the definition of a UFR it is also clear that any principal ideal ring is also a 

UFR.

Using Corollary 2.16 we have that Rtxj,...] is a UFR whenever R is a UFR. This 

provides us with a method for producing non-Noetherian UFRs by simply taking a 

Noetherian UFR and adding on an infinite number of commuting indeterminates. 

Therefore H[x1 ,X2 ,...l where H is the quaternions is a non-commutative non- 

Noetherian UFR.
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Also it is easy to see that if R is a UFR then so is Mn(R) the ring o fn x n  matrices 

over R. This along with the skew polynomial ring gives us two good methods for 

producing non-commutative examples of UFRs from commutative unique 

factorisation rings. Since there is a theorem of Gilmer's which states that there are 

commutative non-Noetherian unique factorization rings of every Krull dimension 

derived from group rings, we can take matrices of any size over one of these rings and 

produce an infinite number of strictly non-commutative non-Noetherian UFRs. 

These examples are important because since they are matrices over commutative rings 

they satisfy a polynomial identity (see Chapter 4). As a concrete example 

M2 (Z[xj,X2 ,...]) is one of the easiest to see what is happening, and this will be used 

throughout later chapters to illustrate various results.

Closer examination of the proof o f  Theorem 2.15 shows that S[xl is a UFR 

whenever S is simple. This unfortunately will not produce examples of non- 

Noetherian UFRs with a polynomial identity since by corollary 1.14 any simple ring 

with a polynomial identity is automatically Artinian. However S[xj,...] is always a 

non-Noetherian UFR for every simple ring S.
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CHAPTER 3

NON-NOETHERIAN UNIQUE FACTORISATION D O M AIN S

In this chapter we will look at unique factorisation domains. In order to achieve 

any results we will need the Ore condition and so will only look at Goldie unique 

factorisation domains.

By looking at a particular partial quotient ring T of a Goldie UFD R (Theorem 

3.2) we will show that R is a maximal order and that if R is bounded (i.e. every 

essential one sided ideal contains a two sided ideal) then R is either commutative or a 

Noetherian principal ideal ring. This theorem shows the difficulty in producing 

strictly non-commutative non-Noetherian examples of UFDs.

3.1 Lemma

If R is a UFD with the Goldie condition then R satisfies the Ore condition with 

respect to C = n  C(P) where P ranges over all the height -1 primes of R.

Proof

Let a e R, c e C.

By Goldie's theorem 

ax = cb for some x, b e R.

But x ■ dpj ... pn for some d e C where each p j is a prim e element of R by 

Corollary 2.10.

Thus cb = adpt ... pn 6  Rpn.

Since c e  C(Rpn) , b e  Rpn.

Therefore b -  bnpn for some bn e R.
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Thus adpj ... pn -  cbnpn.

Henceadp j ... pn_j = cbn.

Similarly since c eC(Rpn_j) we have bn = bn_,pn_ j . 

Hence adp j...pn _ 2  ■ cbn_j.

Repeating this process a finite number of times gives 

ad = cb i for some bj e R.

□

In the commutative case C consists of the units of R but even in the Noetherian 

case there are UFD's where this is not the case.Although if R is a prime Noetherian 

ring which satisfies a polynomial identity then the elements of C are units, [31.

The next theorem's proof is based on the proof for a Noetherian UFD (Theorem 

2.7 [2)) but the order in which the various elements are proved has to be changed in 

order to avoid using the Noetherian condition.

3.2 Theorem

If R is a Goldie U.F.D. and T the partial quotient ring o f R with respect to 

C = n  C(P) then

(1) T  is a UFD.

(2) The elements of C(T) are units of T where C(T) -  n  C(Q) when Q ranges 

over the height -1 prime ideals of T.

(3) Every one sided ideal of T is two-sided.

(4) AB = BA for all ideals A and B of T.
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Proof

First we will show that if p is a prime element of R then pT = Tp.

Take t e  T.

Then pt = prc - 1  for some r e R, c e C

= Tjpc“ 1 for some r( e R  since p is normal.

By the Ore condition pc- 1  = d_1s for some d e  C, s e  R.

Hence dp = sc.

Therefore sc e  pR = Rp.

But c e C therefore c e C(pR).

Hence s e  pR.

We have pt = r jd - , s.

Therefore pt = r  jd -1^  for some r2  e R 

Thus pt e Tp.

Hence pT £  Tp.

Similary Tp £  pT.

Therefore pT = Tp.

We will next prove part (3).

Let x be a  non-zero element of T.

Then x = up j ... pnc_ 1  where u, c e  C and the pj are prime elements of R. 

Hence xT = up j ... pnc -1T

= u p j ... pn Tc - 1  since c “ 1 is a unit of T.

But as shown above pT = Tp for any prime element p of R.

Hence xT = uTpj ... pnc_1.

Therefore xT -  Tupj ... pnc - 1  since u e C and hence is a unit of T.

Thus xT = Tx.



Hence every one-sided ideal of T is a two-sided ideal.

In order to show that the multiplication of ideals of T is commutative we first 

need to show that pTqT = qTpT.

But pTqT = pqT = qpvT for some unit v of R by Corollary 2.13.

Therefore pTqT = qpT = qTpT as required.

Now we will show that AB = BA for any two ideals A and B of T.

Let a e A and b e B.

By Corollary 2.10 a = upj...pnc - 1  and b = wqj...qmd_1, where the p j and q, are 

prime elements of R and u,c,w,d e  C. 

abT -  upl ...pnc" 'w q 1 ...qmd-lT .

Therefore abT = TpjTp2T...pnTqjT...qmT since u,c,w and d are units of T.

Hence abT -  Tq 1Tq2 ...qmTp1T...pnT

-  wTq1T...qmT d - 'u p 1T...pnTc- 1 

* w<li-•■‘Imd“luPl-■Pn<;' lT  

-baT.

Therefore ab 6  BA.

Hence AB £  BA.

Similarly BA c  AB and therefore AB =BA.

Thus we have proved part (4).

In order to prove (1) we need two results that are only known in general in the 

Noetherian case.

Firstly we need that if P is a prime ideal of T  then P n  R is a prime ideal of R.

Let A and B be ideals of R with AB c P n R .
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Therefore TABT S  P.

But TA and BT are two-sided ideals by (3).

Hence we may assume TA Q P since P is prime.

Therefore A S  P n R .

Hence P n  R is a prime ideal of R.

We also need that if Q is a height -1 prime ideal of R then QT is a prime ideal of 

T.

Let aTb Q QT = qT with a,b 6  T.

We also have a = Cj*rj, b -  r2c2* with Cj, C2  6  C , r ,  r2  e R.

Hence c j'r j Tr2c2* -  QT.

Therefore rjTr2  Q QT since QT is an ideal of T by (3).

H encerjRr2 £  Q T n R  = Q.

Therefore r , e Q o r r 2 6 Q since Q is prime.

Thus c j 'r ,  s  QT or r 2c j' 6  QT.

That is a e  QT or b e  QT.

Hence QT is a prime ideal of T.

Now let A be a height-1 prime ideal of T.

Therefore AnR is a prime ideal of R as shown above.

Since R is a U.F.D. AnR 2  B where B is a height-1 prime ideal of R.

Hence A 2  BT which is a prime ideal of T  as shown above.

Thus A = BT since A is height-1.

Therefore every height-1 prime ideal of T is the extension of a height-1 prime

ideal of R.
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Now let Q be a height-1 prime ideal o f R.

Therefore QT is a prime ideal of T.

Assume QT is not height-1.

Then QT 2  P a prime ideal of T.

Hence Q ToR 2  PriR 2  A a height-1 prime ideal of R since P is prime.

But QT o R  = Q  since the elements inverted to form T are regular modulo Q.

Therefore Q = A since Q is a height-1 prime ideal.

Hence P 2  (Pr*R)T 2  AT -  QT .

This is a contradiction of QT^P.

Therefore the extensions of height-1 prime ideals of R are height-1 prime ideals 

ofT.

Combining these tw o results we obtain the result that the height -1 prime ideals of T 

are precisely the extensions to T of the height -1 prime ideals o f R. We have already 

seen that pT = Tp fo r any prime element p of R. Therefore the prime elements of R 

are the prime elements of T. Therefore every height -1 prime ideal of T is of the 

form pT =* Tp for some prime element p of R. In order to prove part (1) it only 

remains to show that T /pT  is a domain for any prime element p of R.

Assume ab e  p T  where a,b e T.

Let a = c j 'r j  and b = rjcj1 for some c v  c2  e C , r x r2e  R.

Therefore Cj1 r 1 r2 c21  e pT.

Hence r jr 2  e  pT.

Thus r j r 2  e  p T n R »  pR.

But R /pR  is a domain since R is a U.F.D.

Therefore r j  e  pR or r 2  e pR.
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Hence a e  p T o rb e  pT.

Thus T/pT is a domain and so we have proved that T is a U.F.D.

It only remains to prove part (2).

Let t e C(T) then t = ac- 1  for some a e  R, c  e  C.

Thus a = tc where c is a unit of T.

So a e C(T) n  R.

Therefore a e C(R) since the height -1  primes of T are extensions of height -1 

primes of R.

Hence a is a unit of T and therefore so is t.

□
The ring T will play a very important part in the proofs of the major theorems of 

this chapter. This is because as can be seen from  the above theorem and also from the 

corollary to the following proposition T is very well behaved as a ring. This allows us 

to prove some important facts about R by first proving them for T and then showing 

that the properties of T intersect down to R.

3.3 Proposition

Let R be a strictly non-commutative G oldie U.F.D. Then every prime ideal of R 

with height greater than one contains an elem ent of C.

Proof

Let P be a prime ideal of R with height greater than one.

Since R is a U.F.D. P contains a height -1  principal prime ideal.
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First assume that P contains exactly one height -1 prime pR.

Choose a e P -  pR.

Then a = cpt ... pn for some c e  C and prime elements pj.

Also pj £ P for all 1 £ i £  n.

We have cp t ... pnR Q P.

Hencecp, Pn-l^Pn -  P-

Therefore cpj ... pn_j e P since P is prime and pn £ P by assumption.

Repeating this process n-1 times we obtain c e  Pas required.

Now suppose that P contains two distinct height -1 prime ideals pR and qR.

Choose an element r e  R.

For each positive integer n define

tn = p + <i(r + Qn) e  P-

Suppose the proposition is false.

Thentn £ C for all n.

Therefore each tn e Tn where T n is a height -1 prime ideal.

By the argument used above we can assume that T „ c P  for every n.

If q e Tn then p e Tn.

Therefore qR = T n = pR since qR, Tn and pR are all height -1 prime ideals.

Since qR ^ pR we have q i  Tn for all n.

Suppose T m = Tn for some integers m and n with m < n. Then tm -  tn e  T m. 

H enceqm+1 - q n + ,e T m.

Thereforeq”« - l( l-q n' m) « Tm.

Therefore ( l-q n-m ) e Tm since T m is prime and q is normal with q f T m .

Hence l -q n_m s  P.

But q  g P hence 1 e  P which is a contradiction. Therefore the set of ideals Tn is 

infinite. Since only finitely many height -1 primes lie over any non-zero element of
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R by corollary 2.8 we have n  Tn = {0}.

We will now obtain the desired contradiction by producing a non-zero element of

n T n .

This will be done in three cases.,

Case I

Suppose p and q are both central elements of R.

Chooser to be any non-central element of R.This exists since R is strictly non- 

commutative.

Also choose s 6 R with sr ^ rs.

Then stn -  tns = sp+sq(r+qn) -  ps -  q(r+qn)s 

= sqr -  qrs 

= q(sr-rs).

Hence q(sr-rs) e T „ .

Therefore qR(sr-rs) Ç T n.

Thus sr-rs e T n since T n is prime and q £ Tn.

Hence 0 ^ sr-rs e  n  T n.

Case II

Suppose pq = qp but q is not a central element of R.

Choose r e R with qr ^ rq.

Let s be such that rq = qs.

Then tnq -  q tn -  q rq -q^

= q2(s-r).

Therefore q2(s-r) e Tn for all n.

Hence q2R(s-r) C T n for all n.

Thus (s-r) e  Tn for all n since Tn is prime and q t  Tn.
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Therefore 0 ^  s -r  e o  T n.

Case M

Suppose pq ± qp.

Take r -  0.

Thentnq -  q tn -  pq-qp.

Hence 0 ^ pq-qp e Tn for all n. 

Thus 0 ^ pq-qp e n  T n.

□

3.4 Corollary

Let R be a strictly non-commutative Goldie U.F.D. Let T be the partial quotient 

ring of R with respect to C. Then every one-sided ideal of T is two sided and 

principal and T is Noetherian.

Proof

Let I be a one-sided ideal of T.

By Theorem 3.2 part (3) I is a two-sided ideal of T. If I ^  T then I is contained in 

some maximal ideal M.

We have M = (M n  R)T and M n  R is a proper prime ideal of R. Therefore by 

Proposition 3.3 M n  R has height-1.

Hence as in the proof of Theorem 3.2 M also has height- 1. Thus I is contained in 

some height -1 prime ideal of T.

Let p j,...,pn be the prime elements of T with I s  pjT for 1 £ i £  n.

There are only a finite number by corollary 2.8.
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Also let a , .... an e  IN such that I Q p ^ T  but I <£ pj(ai+1 h ' for all 1 <. i <. n.

This is possible since n P n= 0 by lemma 2.9.

IS p 1aiT n p 2a2T  n ........ n p ^ T  = p^ ^ * 2..... Pn3"7 -

Set J = fx e  T lp j3'  ... pn3nxG I}.

Clearly I -  p , “ 1 ... pna,,J

Then since the p j are normal in T it is easy to see that J < T.

But by the way we constructed J we have J not contained in any height -1 prime 

ideal of T,otherwise we would have a contradiction of the choice of elements pj or a 

contradiction of the maximality of one of the aj.

By the first part of the above proof this implies that J = T. Therefore I = 

Pi*1 Pn3" T-
All that remains is to show that T is Noetherian.

But every one-sided ideal of T is two-sided and principal.

Therefore T is Noetherian.

□

3.5 Definition

A ring R is said to be bounded if every essential one-sided ideal of R contains a 

non-zero two-sided ideal of R.

Note

In the following lemma the intersection T o S  takes place inside the quotient ring of R 

which exists since R is a prime Goldie ring.
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Let R be a Goldie U.F.D., T the partial quotient ring of R with respect to C and S 

the partial quotient ring of R with respect to the multiplicatively closed set D 

generated by the prime elements of R. Then R = T n S .

3.6 Lemma

Proof

Clearly R e T n S .

L e tu e T n S .

Since u e  S, pj ... pnu e R for some prime elements p , of R. 

Since u £ T, p 2  ... pnu e T.

Therefore p2  ... pnuc e R for some c e C.

Hence p jp 2  ... pnuc e  p,R.

Thereforepjp2  ... pnu e  pjR  since c e  C(pjR) andpj ... pnu e R. 

Thusp2 ... pnu e R.

Repeating n-1 times gives u e R as required.

□
3.7 Theorem

Let R be a strictly non-commutative bounded Goldie U.F.D. Then R is a 

Noetherian principal ideal domain.

Proof

Let S be as defined in Lemma 3.6.

Then R = S n  T  by Lemma 3.6.

If we can now show that S is the full quotient ring of R, we will have T  c  S and
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hence we will have R = T and R will have the desired properties by Corollary 3.4. 

Suppose c e R is a regular non-unit of R.

We aim to show that c is a unit of S.

We have 0 # cR <  R.

Also cR is essential by (Lemma 1.11,(4]) since c is regular.

Hence since R is bounded we have 0 ^ I <  R with 

ICcR.

Let D be the set of products of prime elements of R.

Since I n  D ^ 0  by Theorem 2.7 3 r e  R, d e  D with d = cr.

Since d is invertible in S, c is invertible in S.

Hence S is the full quotient ring of R as required.

□

This result was previously only known in the case where R is a bounded 

Noetherian U.F.D. and the above proof is based on the Noetherian proof [8].

3.8 Corollary

Let R be a U.F.D. which satisfies a polynomial identity. Then R is either 

commutative or a Noetherian principal ideal domain.

Proof

This follows from the previous theorem and corollary 1.21 which shows that a

prime polynomial identity ring is bounded.

□
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Let R be a Goldie U.F.D. Then if the elements of C = n  C(P) are all units R is 

either commutative or a Noetherian principal ideal domain.

Proof

By Theorem 3.7 it is enough to show that R is bounded.

Let I be a non-zero right ideal o f R.

Then there exists 0 4 a e I.

a = p j ... pne for some prime elements pj and c e  C by Corollary 2.10.

Hence 0 ^ p j ... pnc e I.

Therefore 0 t  p j ... pn e I since c is a unit.

Thus I contains the non-zero two-sided ideal p j ... pnR.

The same proof works for a left ideal but you need a = cpj ... pn.

□

3.9 Corollary

W e will now prove another result which was only known in the Noetherian case, 

namely that if R is a Goldie U.F.D. then R is a maximal order. The proof is again 

based on the proof of the Noetherian case (Theorem 2.10 ,[2]) which seems to suggest 

that the condition of a U.F.D. being Noetherian is not really essential to produce 

strong theorems concerning U.F.D’s. The Goldie condition however is essential as 

without it you cannot construct the partial quotient ring T and it is this which allows 

you to prove the various theorems.

In order to prove that a Goldie U.F.D. is a maximal order we first need the

following.
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Let R be a Goldie U.F.D. and P a height -1  prime ideal of R. Then the classical 

localization RC(p> of R at P exists.

Proof

We have P = pR for some prime element p e R.

Also C(P) -  R-P.

Let a e R, c e  C(P).

By Goldie's theorem ax = cy for some non-zero x, y e R.

Since o  Pn = 0 by Lemma 2.9.

x = dpn for some d e C(P) and integer n £  0.

We need to show that ce C(Pn).

If cs e  Rpn,then cs e  Rp.

Hence s = Sjp for some Sj e  R since c e  C(P).

Therefore csjp  e Rpn.

Thuscsj e  Rpn_1.

Therefore s t = S2P for some S2  e R since c e C(P).

Continuing this way we get s = s„pn for some sn 6  R.

Hence we have c e  C(Pn). 

cy = ax = adpn.

Therefore y = bpn for some b e  R, since c  e  C(Pn).

Thus cbpn » adpn.

Hence cb -  ad.

Therefore R satisfies the Ore condition with respect to C(P).

□

3.10 Lemma
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If R is a Goldie U.F.D.and P a height -1 prime ideal of R then R^(p) is a maximal 

order and a local domain.

3.11 Lemma

Proof

By Lemma 3.10 Rc(p) exists.

Let I < Rc(P)-

If I <£ PRc(p) ^ en  there exists a e R -P  and c e  C(P) such that ac - 1  e I.

Bute - 1  is a unit in Rc(p)- 

Hence a e  I.

But a e R -P  = C(P) .and is therefore a unit of Rc(P)- 

Therefore I = Rc(P)

Therefore PRc(P) >s the unique maximal ideal of Rc(p>- 

Hence PRc(p) *s the Jacobson radical o f Rc(p)-

RC(p> R
Also -5 5 —  is isomorphic to the full quotient ring of where the isomorphism 

PiT(P) P

is given by (x+P)(c+P) - 1  —♦ xc -1+ PRc(P) The fact that this is a well-defined

isomorphism can easily be seen using the fact that R is Goldie.

R RC(P)
Since - 5 - is a prime Goldie ring then its quotient ring and hence -5 5 —• is a simple 

v  ^*r(P)

Artinian ring by Goldie's theorem (Theorem 1.6).

Therefore Rc(p)is a Iocal domain.

Let 0 I <  Rc(p> then we have shown that if I ^  Rc(p> then I £  PRc(P) =* P^C(P) 

for some prime element p of R.

Assume I £  PnRc(P) for all n ^ 0.
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Therefore I n R c  PnRC(P) °  R f°r aR n ^  0- 

But P nRC(P) = PnRC(P)-

Let a e  pnRc(P) n  R .then ba e P°R somc b 6  C(P).

Therefore a e  pnR, since b e C(P).

Thus P nRC(P) n  R “ PnR -  Pn-

Therefore I n R c  PnRC(P) ^  R -  Pn for all n *  0.

Hence I n R c  n P n = 0 by Lemma 2.9.

Therefore I = (I n  R)R c(P) * 0 which is a contradiction.

Hence we can choose n such that IC  P nRC(P) but I ^  Pn+1Rc(p).

Let J = {x e Rc^p) I pnx e  I}.

Then it is easy to see that J <  Rc(p>- 

Alsol = pnJ.

Now J £  PRC(P) by the choice of n.

Therefore J = RC(P) as shown at the start of the proof.

Thus I =» PnRC(P) ôr some positive integer n.

Hence Rc(p> >s a local domain in which every ideal is a power o f  the Jacobson 

radical.

Let I be any ideal and q be in the quotient ring of Rc(P) with ql c  I then 

qPnRC(P)s  PnRC(P) “  Rc(P)Pn for some integcr n- 

Therefore qpn e  pnRc(p) = Rc(P)Pn- 

Hence q e R ^ ^ .

Thus Rc(p) is a maximal order by Theorem 1.8.

□

In order to show that a Goldie U.F.D. is a maximal order we first need to prove the 

following theorem.
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Let R be a Goldie U.F.D. and T the partial quotient ring of R with respect to C. 

Then T is a maximal order and T = n RC(P)where p  ranges over the height -1 prime

ideals of R.

Proof

Set U —

Then T c U  because C Q C(P) for every height -1 prime ideal P of R.

As was shown in the proof of Theorem 3.2 the height -1 prime ideals of T are of 

the form PT where P is a height -1 prime ideal of R.

Also RC(P) = TC(PTy

Therefore U = n  Tc^px) where P ranges over the height -1 prime ideals of R.

Let u € U .

Then xu e T for some x e T.

We have x = cp j ... pn for some prime elements pj of T and some c e C(T) by 

Theorem 3.2, part 1.

Therefore cp j ... pnu 6  T.

But c is a unit of T by Theorem 3.2, part 2.

Hence p j ... pnu e T.

Alsop2  — Pnu e  U S TC(pTy

Therefore p2  ... pnud e  T for some element d 6  C(pjT).

Because p jp 2  ... pnud e pjT  and d e  C(pjT), 

we have p jp2  ... pnu e pjT.

Therefore p2  ... pnu e T.

Repeating this process for P2 .P3 .--.Pn in turn gives u e T.

3.12 Theorem
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Hence U = T as required.

It just remains to show that T is a maximal order.

Let I be a non-zero ideal of T and q an element of the quotient ring of T such that 

q lC l.

Let P be any height -1 prime ideal of T.

Then qlT c(p) — i f  C(P)'

As in the proof of Theorem 3.2, ITC^  is a two-sided ideal of TCg>j.

AIsoT q p ) is a maximal order by Lemma 3.12.

Therefore q 6  T^/pj for all height -1 prime ideals P of T, by Theorem 1.8.

Hence q e n T ^  = T.

Therefore T is a maximal order, by theorem 1.8.

□

3.13 Theorem

Let R be a Goldie U.F.D. Then R is a maximal order.

Proof

Let D be the multiplicatively closed set generated by the prime elements of R.

Let S be the partial quotient of R with respect to D. Let I be a non-zero ideal of 

R.

IS = S by Theorem 2.11.

Let q be an element of the quotient ring o f R such that ql £  I.

Therefore qlS £  IS.

Hence qS £  S.

Therefore q e S.
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Let T be the partial quotient ring o f R with respect to C then 

qlT C IT.

IT is a two-sided ideal o f T by Theorem 3.2, part (3). 

Therefore q e T since T is a maximal order by Theorem 3.12. 

Hence q e T n S .

Therefore q e R by Lemma 3.7.

Therefore R is a maximal order by Theorem 1.8.

□
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CHAPTER 4

UNIQUE FACTORISATION RINGS WITH A  POLYNOM IAL IDENTITY

In this chapter we will look at unique factorisation rings that have the additional 

property of satisfying a polynomial identity as defined in Chapter 1.

We will show that if a U.F.R. with a polynomial identity has only a finite number 

of height-1 prime ideals then it is a semi-local Noetherian principal ideal ring.This 

result is not only of interest in itself but is used to prove the major result in chapter 5.

Two other major results will be proved in the course of this chapter. The first is 

that a UFR with a polynomial identity is a maximal order (Theorem 4.6). The second 

result is a modification of a result for Noetherian UFR's by M.P. Gilchrist in [7]. This 

gives that a UFR with a polynomial identity is equal to the intersection of two rings, 

one of which is a Noetherian ring in which every two-sided ideal is principal and the 

other is a simple Artinian ring.

Note that in the case of a UFD with a polynomial identity it was shown in 

Corollary 3.8 that this ring is either commutative or a Noetherian principal ideal 

domain.

In order to prove any of the results in this chapter it will frequently be necessary 

to localize at a height -1 prime ideal. It is not clear whether this localization exists as 

it is not clear what the elements regular modulo a height - 1  prime are, let alone 

whether they satisfy the Ore condition. Even then it is not obvious that we will obtain 

a local ring by inverting these regular elements.
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Let R be a UFR with a polynomial identity and S the partial quotient ring of R 

formed by inverting all the products of prime elements in R. Then S is the full 

quotient ring of R.

4.1 Lemma

Proof

S is contained in the quotient ring of R and hence satisfies a polynomial identity 

by theorem 1.19.

Also S is simple by Lemma 2.11.

Therefore S is Artinian by a theorem of Kaplansky (Corollary 1.14). Hence S is 

the full quotient ring of R.

□

4,2 Theorem

Let R be a UFR with a polynomial identity. If R has only a finite number of 

height -1 prime ideals then R is a semi-local Noetherian principal ideal ring.

Proof

We will first prove that the height -1 prime ideals of R are precisely the maximal 

ideals.

Let P j,...,Pn be the height -1 prime ideals of R. Let I be an ideal of R with I <£ Pj 

for all 1  £  i £  n.

Therefore I r \ C(Pj) 0  for all 1 £  i £  n.

Hence by the Chinese Remainder Theorem (1.10)
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in n c a n ) **

n
LetO ¿ c e C (P i)n I .

Since ce C(Pj) £  C(O) we have c e C(O) therefore by corollary 1.18 cR contains a 

non-zero central element z.

Therefore z = cr for some r e  R.

Since z is central it is normal.

Therefore by Lemma 2.14 z = uqt ... qm where u is a unit and the q¿ are 

generators of height - 1  prime ideals.

Therefore cr = uqt ... qm.

But c e C(qmR) hence r = r ,q m for some r t e  R.

Hence cr,qm -  uq, ... qm.

Thuscr, = uqj ...q m .j.

Now c € C(qm_ ,R) hence r j  = r2qm_ j for some r2  e  R.

Proceeding in this way we eventually obtain 

crm = u for some rm e R.

Therefore u e I and since u is a unit I = R.

Hence the height -1 prime ideals are precisely the maximal ideals o f R.

Now let A be a non-trivial ideal of R.

Since n  Pjs = 0 for all 1 £ i <. n by Lemma 2.9 ,we can choose integers a¡ ,1£ i <, n

such that A c  P¿a> but A £  P ^ +l where P ,° -  R.

Therefore A s  P^ 1 n  P ^ - " P . 1" -  P ,* 1 Pa*2  ... P„*"

-  P i“ 1 P2 “2  Pn*,'R '

Let K = {re  R lp j * 1 V2 2 ... Pn1" T E A ).
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Since the pj are normal it is easy to see that K is a two-sided ideal o f R.

Also A -  p ,a'  P2 “2  ... pn“n K.

Therefore K £  Pj for any 1 £ i £  n otherwise this would contradict the maximality 

of one of the aj.

But the Pj are the maximal ideals of R and therefore we must have K = R. 

Therefore A = p j3* P2 & 2 ... pn3n R-

Hence R has A.C.C. on two-sided ideals, but R satisfies a polynomial identity 

hence by a theorem of Cauchon (Theorem 1.22) R is Noetherian.

Therefore we have shown that R is Noetherian and every two-sided ideal of R is 

principal.

We will now show that the Jacobson radical J(R) = P iP 2 ...Pn.

Since J(R) is a two-sided ideal of R we have J(R) = Q iQ 2 ...Qm for some 

height-1 prime ideals Qj.

These prime ideals must all be different since J(R) is semi-prime and height-1 

prime ideals commute by lemma 2 .1 2 .

We need that the Qj are all the height-1 prime ideals.

Assume without loss o f generality that P j is not one of the Qj.

Let M be a maximal right ideal containing Pj.

We have M 3  J(R) + P ,.

But P j is a maximal ideal.

Therefore since J(R) 4  P ,  we have J(R) +  Pj = R.

Hence M 3  R which is not possible.

Thus the Qj consist o f all the height-1 prime ideals without duplication.

Therefore reordering if necessary using lemma 2.12 we have J(R) = P jP 2 ...Pn.
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We will now show that R is semi-local, that is we will show that R/J(R) is 

Artinian.

Since Pj is a maximal ideal for 15 i £ n we have that R /P j is simple for 1 £  i £  n.

But R /Pj is a factor ring of a ring which satisfies a polynomial identity and 

therefore satisfies the same polynomial identity.

Hence by corollary 1.14 R /Pj is Artinian for 1 £  i£ n.

J(R) = P jP 2 ...Pn therefore R/J(R) embeds inside the ring

R /P j © R /P 2  ©—•© R /Pn w^tch since it is a direct sum of a finite number of 

Artinian rings is itself Artinian.

Therefore R/J(R) is Artinian as required.

Also since J(R) is invertible and R is Noetherian, all the one-sided ideals of R are 

principal by (Proposition 1.3 ,[10]).

□

4,3 Theorem

If R is a UFR with a polynomial identity then R is localizable at any height -1 

prime ideal.

Proof

Let P be a height -1 prime ideal of R.

To localize at P we invert all the prime elements which generate height -1 prime 

ideals other than P. We will show that this inverts all elements regular modulo P and 

that it produces a local ring.

LetR+ be the partial quotient ring of R formed by inverting all the prime elements 

of R which generate height -1 prime ideals other than P.These prime elements form
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an Ore set since they are all normal.

We first show that every element of C(P) is a unit in R+.

Take c e  C(P).

If ca = 0 for some 0 i  a e R then 

a e  P since c e C(P).

Since n  Pn = 0 by Lemma 2.6, we have a = bpn for some integer n and b e  R 

with b i  pR.

Hence 0 = ca = cbpn.

But since p is regular we have cb = 0 and therefore cb e P with b i  pR which 

contradicts c e  C(P).

Hence c e  C(0).

Therefore by corollary 1.18 we have that cR contains a non-zero central element 

z.

Thus z = cr for some r e R.

Since n  Pn = 0 by lemma 2.9 we have z = spn for some s i  pR.

Therefore s is normal since p is normal and z central.

We have cr = spn.

Hence cr e pR.

Therefore r e  pR since c e C(P).

Thus r = r'p for some r' e  R, 

so cr'p = spn.

Therefore cr' = spn-1.

But we still have c e  C(P), therefore r' e pR.

Continuing this way we obtain 

cx = s for some x e R.
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Since s is normal in R, sR is an ideal of R.

Hence sR contains a product of height -1 prime ideals by theorem 2.7.

Thus sR 2  qj ... qn pkR for some integer k and prime elements qj £ p.

Let k be the minimal integer such that this is true.

Hence q j ... qnpk = st for some t e  R.

Suppose that k £ 0.

Therefore st e P.

Hence sRt c  p  since s is normal.

Thus t e P since P  is prime and s ?  P.

Therefore t = t'p for some t' e R.

Hence q t ... qnpk = st'p.

T h u sq j... qnpk _ 1  = st' e sR.

This contradicts the minimality of k .

Therefore we have k = 0.

Hence sR 3 qj ... qn.

But qj ... qn is a unit of R+.

Therefore s is a unit of R+.

Hence c is a unit o f R+ .

Thus the elements of C(P) are units of R+ .

It just remains to show that R+ is a local ring.

Let I be an ideal of R+ with I £  PR+ .

Then I n  R is a non-zero ideal of R and I n  R £  P.

Therefore ((I o  R) + P)/P is a non-zero ideal of R /P.

But R /P  is prime Goldie since R satisfies a polynomial identity by corollary 1.20. 

Hence I n  R contains an element of C(P) (Lemma 1.18 J4]).
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Thus I contains a unit of R+.

Therefore I = R+ .

Hence PR+ is the unique maximal ideal of R+.

Also since R+ is contained in the full quotient ring of R by Posner's theorem 

(Theorem 1.19) R+ satisfies a polynomial identity.

Hence R+/PR+ is a simple p.i. ring.

Therefore R+ /PR+ is Artinian by Kaplansky's theorem (Corollary 1.14).

Thus R+ is a local ring with PR+ the unique maximal ideal.

Hence R+ is the localization of R at P.

□

4,4 Lemma

If R is a UFR with a polynomial identity then R+ the localization of R at a 

height -1 prime ideal P is a Noetherian ring in which every two-sided ideal is a 

power of the maximal ideal PR+.

Proof

We first need to show that pR+ =R+p.

Let rc- , e R+ with ce C(P).

Therefore by the Ore condition prc - 1  = d_ ,x for some x e R .d e  C(P).

Hence dpr = xc.

Thus xce pR.

But ce C(P) .therefore xe pR.

Hence x -  sp for some s e R.

Therefore prc - 1  -  d_1sp.

Thus pR+ S  R+p.
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Similarly R+p 2  pR+ .

Now let I £ R+ be a non-zero two-sided ideal of R +, then I Q PR+ the unique 

maximal ideal of R+ .

Since r> Pn = 0 by Lemma 2.9 ,we can choose an integer a such that I Q paR+ but 

I i  p a+ ,R+.

Let J = (r e R+ lp ar e I}.

Since PR+ = pR+ = R+p it is easily seen that J is a non-zero two-sided ideal of 

R+ and I = paJ.

If J ^ R+ then J c  PR+ the unique maximal ideal of R+ .

Therefore I = paJ c  Pa+1 R+, which contradicts the choice of a.

Hence J - R + .

Thus I -  paR+ -  P aR+.

Hence every ideal of R+ is a power of PR+ the maximal ideal.

Thus R + has A.C.C. on two-sided ideals and satisfies a polynomial identity, also 

R+ is prime.

Therefore R+ is Noetherian by a theorem of Cauchon (Theorem 1.22).

□

We will now use these localizations to show that a UFR with a polynomial 

identity is a maximal order as defined in Chapter 1.

Note that all the localizations at height -1 prime ideals lie inside the quotient ring 

of R and this is where the intersection in the following theorem takes place.
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4,5 Theorem

If R is a UFR with a polynomial identity then R is equal to the intersection of the 

localizations o f R  at its height -1 prime ideals.

Proof

Each localization exists by Theorem 4.3.

Let Q be the intersection of the localizations.

Clearly R c Q .

Let q e Q.

Since q is in S the quotient ring of R, q = r(pj ... pn ) _ 1  for some r e  R, pj,...,pn 

prime elements o f R.

Choose r such that n is minimal.

Assume n 4  0.

Since q is in the localization of R at pjR for 1 ^ iS n  

q -  sjc j - 1  for Sj e R, Cj e CiPj) for 1 S i £  n.

By the Ore condition there exists t e  C(Pn) and s e  R such that cns = Pj ... pnt.

Since cn e  C(Pn) we have s e P n.

Hence s = vpn for some v e R.

Thereforert =■ qp, ... pnt -  qcns

-  QcnvPn

-  s„vPn e  p n

Since t e C(Pn) we have r e Pn .

Hence r = r  jpn for some r t e  R.

Therefore q  -  r fp , ... pnr '  -  r ,(p , ... pn. , r ' .

But this contradicts the minimality of n.

Therefore n = 0.
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Therefore q e  R.

Hence Q  = R as required.

□

4,6 Theorem

If R is a UFR with a polynomial identity then R is a maximal order.

Proof

Let I be a non-zero ideal of R and S be the quotient ring of R.By Theorem 1.8 we 

must show that if q 6  S such that ql Q I then q e R.

Let P be a height -1 prime ideal of R.

Since R+ the localization of R at P is Noetherian by Lemma 4.4, then IR+ is a 

two-sided ideal of R+ by (Theorem 1.31 ,[4]).

Hence IR+ = pnR+ for some positive integer n by Lemma 4.4.

Since ql S  I we have qIR+ £  IR+ .

Therefore qpnR+ £  pnR+ -  R+pn.

Hence q e R + since p is regular in S.

Therefore since P was chosen to be any height -1 prime ideal of R, q is an 

element of every localization of R at a height -1 prime ideal.

Hence q e  R by Theorem 4.5.

Therefore R is a maximal order.

□

Before going on to the next theorem we need to prove a result which is known in 

general for a Noetherian ring but seems to need all the power of a polynomial identity
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to prove it for a non-Noetherian ring.

4.7 Lemma

If R is a U.F.R. with a polynomial identity then any regular element of R is 

regular modulo all but finitely many height - 1  prime ideals.

Proof

Let S be the quotient ring of R.

S is finitely generated over its centre by Posner's theorem (Theorem 1.19) and 

Kaplansky's theorem (Theorem 1.13).

Also the centre o f S is the quotient ring of the centre of R and is therefore a field. 

Let c be a regular element of R.

Then c e  S.

Since S is finitely generated over its centre c satisfies a monic equation with 

coefficients in the centre of S.

Hence c satisfies a non-monic equation with coefficients in the centre o f R.

Thus c is algebraic over the centre of R.

If the constant terms of this equation is zero then we can cancel out a c since c is 

regular in R.

Therefore c satisfies a non-monic equation with coefficients in the centre of R 

with a non-zero constant term.

Since this constant term is central it is regular modulo all but a finite number of 

height -1 prime ideals by lemma 2.14.

Therefore c has the same property.

□
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The following theorem was proved for Noetherian UFR's by Gilchrist and the 

proof will follow the same lines as his proof [71, but a great deal of extra care has to be 

taken to either avoid the parts of the proof which use the Noetherian condition or to 

prove that they still work in the case of a UFR with a polynomial identity.This 

theorem and a version of this proof appears in a paper by Chatters.Gilchrist and 

myself which is currently in preparation.

In this proof the two rings T and S are both contained in the quotient ring of R[x] 

and it is here that we will be taking our intersection.

4,8 Theorem

If R is a UFR with a polynomial identity then R = T n S  where S is simple and 

every two-sided ideal of T is principal.

Proof

First we shall construct the ring T which is a partial quotient ring o f R[x].

Consider the set R[x] 2  G = n  C(P[x]) where the intersection ranges over the 

height -1 prime ideals P of R. T will be the partial quotient ring of R[x] formed by 

inverting the elements of G. Therefore the first, and indeed most complicated thing 

we need to prove is that G is an Ore set 

Suppose b(x) e  G, a(x) e  R[x].

Let K -  (f(x) I a(x)f(x) e  b(x)RlxD < Rlxl.

We need b(x) 6  Cr [x](0).

Assume this is false.

Therefore b(x).r(x) -  0 for some r(x) e R[x).
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By Lemma 2.9 n P n[x) = 0.

Hence r(x) = r j(x)pn for some rj(x) € R[x), n £  0 with rj(x) * P[x).

Therefore b(x).rj(x)pn = 0.

Hence b(x).r j(x) = 0 since p is regular.

But rj(x) t  Pfx] which contradicts the fact that b(x) e C(Ptxl).

Therefore b(x) e Cr [x](0)

Since b(x) 6  Cj^[x](0) and Cr^ O )  is an Ore se t, K r> C r j x ] (0 )  ^ 0.

Also since R[xl is a UFR by Theorem 2.15 and P[x] is a height -1 prime ideal of 

R[x] by lemma 2.6, P[x] is localizable by Theorem 4.3.

Therefore C(P[x)) is an Ore set and since b(x) e C(P[x]) we have 

K n  C(P[x]) ^ 0  for each height -1 prime P of R.

We will now show that we can pick an element c(x) e  K such that c(x) = c,.xr + ... + 

cn+rxn+r where cr is regular in R.

Consider K 0  -  {kj e R I f(x) -  k j J  + ... + kj+mx)+m e  K} < R.

Take 0 ^ a  e R then

a(x).a e  Rlx], b(x) e  C r ^ O ).

Therefore by right Ore condition

a(x).a.d(x) = b(x).e(x) for some d(x) c  Cr [xj(0), e(x) e Rlx].

Therefore a.d(x) e  K.

Since d(x) is regular in Rlx), a.d(x) £ 0.

Hence the lowest coefficient of a.d(x) is in Kq .

That is a .d j e Kq for some d̂  e  R.

Therefore Kq is an essential right ideal of R.

Hence Kq  contains a regular element of R by (Theorem 1.10 ,[4]).

By Lemma 4.6; cr e C(P) for all but possibly finitely many height -1 prime
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ideals, P j,...,Pn of R.

Hence c(x) is regular modulo P[x] for all P[x) except possibly P,[x),...,Pn[xl. 

Now above we had K n  C(Pj[xI) ^ (6 for i -  l,...,n.

Therefore by the Chinese Remainder Theorem (Theorem 1.10) we have

K r*( f) C(P;[x)))*0 
i - 1

Hence choose 0 ^ d(x) e K n  ( fi C(P;[x])).
i - 1

Now let fj(x) = c(x) +  d(x).xJ for all integers j t. r  +  1. Clearly fj(x) e  K for all 

j£ r + l .

Also fj(x) e C(P[xl) for all height -1 primes P ^ P j ....Pn since the leading

coefficient of fj is cr  for all j.

Thus in order to show that K n G ^ O  which is what we need for the right Ore

condition on G, all we need to show is that for some j, f:(x) e fi C(P j[xl).
J i= 1

n
Suppose no f ;(x) e  fi C(P j[xl) then for each j S r+1 there is an 1 £  i £  n such that 

J i= l

fj(x) * CCPjW).

Hence there is at least one height -1 prime Pj such that J = {j I fj(x) £ C(Pj[x])} is 

an infinite subset of IN.

For each a e J, 3 r a(x) such that fa(x).ra(x) e Pj[xl and ra(x) i. Pj[xl.

Since J is an infinite subset of IN we can suppose {aj^ ,...}  -  J.



R[xlTherefore since ^  ^  has finite Goldie dimension, by virtue of R[x) satisfying a

n R[x]polynomial identity, there exists neHJ such that JL^r&Xx) — ̂ is essential

&  r8;<x>
R[x)

R[x]
Thus by (Lemma 1.1 ,[4]) there exists an essential right ideal of p-^j* E such that

(x )E S  , I  rg (x) R[x]
ln+ r '  j - l aj Pjlx] •

R[X)
Since E is essential and p ^  is a prime Goldie ring, E contains a regular element

Y(x) of by (Lemma 1.18 ,[4]).

n R[x]
Therefore r ,n+i(x) yOO C •

11 R[x]
Hence ran+1<x> T<x> "  j ? i r*j(x) l ¥ x> ta p ^ J-

n+ 1

Therefore £  r a (x) B;(x) e  P:[x] where (3;. ,(x) = -  v(x) which is regular modulo j - l  “n+l J * J *

Pjtxl.

Hence we may suppose that , ^ r a Xx)saXx) e  Pj[x) where at least one of the saj(>

is in C(Pj[x]) and k is the least integer for which this is true.

We shall now produce a contradiction of the minimality of k.
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Since 5^ raXx)saXx) e Pj[x) we have c(x) ^  r aXx)sa^(x) g  Pj[x) where c(x) is as 

defined in the earlier pan of this proof.

But since c(x) = -d(x)xaJ + faXx) for all aj g  J and fâ (x)raXx) g  P j[x ] for all aj g  J 

k a-we have 5^d(x) x J ra.(x)sa.(x) g Pj[x).

By definition d(x) g C(Pj[x]).

k a-Therefore ̂ r aXx)saXx)x J G Pj[x].

Suppose sa{(x) g  C(Pj[x]) then s^fx). (x&t -  xHJ) g  C(Pj[x]) for any j 4 t. 

k
But . ^ r a^(x)sa.(x) G Pjtx] implies that 

k a£  r a.(x)sa.(x)x p g  P;[x] for some p # t.
J - l  “j *}

Hence £  (ra.(x)sa.(x)(xaj -  x ^ ))  g  PJx].
J - l  *J J

That is L ' (ra.(x)sa.(x)(xaJ -  x ^ ))  G P:[x] where £ ' denotes that the p 1̂  term is 
j - l  J J

missing.

Renumbering if necessary we get

k-l , , a. a
^  r aj(x)sa (x) g  Pj[x] and sa (x) g  C(Pjtxl) where sa (x) -  saXx)(x J -  xT5).

This is a contradiction of the minimality of k.

n
Hence there exists j g  W such that f;(x) G H C(PjM) and hence f¡(x) G G.

J i= l  J

Therefore G satisfies the right Ore condition.
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The proof of the left Ore condition is analogous to the one above.

Thus G is an Ore set.

Let T = R[x]q  the partial quotient ring of R[xl formed by inverting the elements of 

G.

Also let S be the quotient ring of R formed by inverting all the products of prime 

elements in R.

Clearly R c S n T .

Now suppose

f(x).g(x) _ 1  = ( p j ... pn)-1r  e T n S  where f(x) e R[xJ, g(x) e G 

and pj,...,pn are prime elements of R.

Hence p j ... pnf(x) = r.g(x).

But g(x) e  C(Pj[x)) for all height -1 prime ideals P, and Pj[x) = pjR[x] for all i.

Hence r = p j ... pnt for some t e  R.

Therefore f(x) * Lg(x).

Thus f(x)g(x) - 1  = t e R.

Hence R «= T n  S .

It just remains to show that every two-sided ideal of T is principal.

Suppose I <  R[x]q  = T.

Using Corollary 2.8 and Lemma 2.9 we can choose prime elements p],...,pn and 

integers a 1 (...,an such that if we define J = { r e  RW olPl* 1 —Pti*” 1'*  I } then 

I = Pia i ...pnan J and J £  pR[x]q  for all prime elements p of R.

Also since the p  ̂are normal it is easy to see that J <  RIxIq  •
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But then J n  C(pR[xl) ^  0  for all prime elements p of R since J is essential in

R[x) 
pR[xl'

Then by the same argument we used on the ideal K at the very beginning of this 

proof J r t  G ± 0.

Therefore J contains a unit of R[x]q .

Hence J = R[x]q  = T.

Thus if I < T then I = pjal...pnanT = T P i^ —Pn3”  for 50016 prime elements pj and 

positive integers a j .

□
4.9 Corollary

If R is a UFR with a polynomial identity then R = T n  S where T is Noetherian 

with every two-sided ideal principal and S is simple Artinian.

Proof

In the proof of Theorem 4.8 T has A.C.C. on  ideals and satisfies a polynomial 

identity and hence is Noetherian by theorem 1.22.

S is the simple Artinian quotient ring of R by lemma 4.1.

□

In order to see what is going on we will g iv e  two examples and calculate G,

T  and S for these rings.
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4.11 Examples 

R = Z

In order to produce T  we first need to calculate G as in the proof.

Z[x] 3 G = n  C(P[x]) where P  is a height -1  prime ideal of Z.

Thus G ■ n  C(pZ[x]) where p is a prime integer.

G -  Z[x]\( U pZlx]). 
p prime

Now T  = Z[x]q .

(aQ+ajX + ... + anx11)
Therefore a general element of T  is o f the f o rm ---------------------------  w here

(b0+bjX + ... + bmxm)

H.C.F. (b0 .....bm) »  1.

Clearly S = Q.

a + a , x  + ...+  a_xn a
If - 2 — !----------- 1 —  .  i  6  ®.

bQ+ bjX + ... + bmxm

Then a 0  + a jx  + ...  +  a nxn -  ^  (b0  + b jx  + . . .  + b mxm).

Therefore b divides abj for all i, but H.C.F. (b0 ,...,bm) -  1, hence b divides a.

Thus r - e  Z. b

Therefore Z = T  o  S.

It can easily be seen that T  and S have the required properties.

R -  M2 (Z)

M 2 (Z)[x] -  M 2 (Z[x]).

Therefore G = o  C  (M 2 (pZ[x]>) where p  is a prime integer. It can be show n
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that G = {q e  M 2 (Z[x]) I coefficients of det(q) have H.C.F. = 1}.

Hence a general element o f T  can be viewed as -g-where a e  M 2 (Z[x]) and b is a

polynomial in Z[x] whose coefficients have H.C.F. = 1.

Also S can be regarded M 2 (<D).

C learly M 2 (Z) ç  M 2 (<D) n  T  and it is not too difficult to see that 

M 2(Z ) -  M 2 (Q) n  T.

Again S and T  obviously have the required properties.
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C H APTER 5 

REFLEXIVE IDEALS

In this chapter we will look at the reflexive ideals of a U.F.R. with a polynomial 

identity .We will show that they are all of the form pj ...pnR where the p , are prime 

elements of R.

In [11] Hajamavis and Williams showed that if R is a prime Noetherian maximal 

order and T £ R a reflexive ideal of R, then the ring R /T  has a quotient ring which is 

an Artinian principal ideal ring. In this chapter we will show that this is also true if R 

is a UFR with a polynomial identity.

Using the notation of chapter 4 we have R = T n  S.Therefore it is clear that 

I c  IT n  IS for any ideal I of R, but for which ideals do we have I = IT o  IS ?

5.1 Lemma

Let R be a UFR with a polynomial identity and T be defined as in Theorem 4.7. 

Then if I is a two-sided ideal of R then IT is a two-sided ideal of T.

Proof

Since T = R[x]q  as in Theorem 4.8 and R[x]I ** IR[x] it is enough to show that if 

q e G then q-1IT £  IT.

Since q e R[x], qlT £  R[x]IT -  IR[x]T = IT. Therefore IT £  q -1IT.

Hence IT £  q_1IT £  q "2IT £  q " 3IT £  ....

But these are all right ideals of T  and T is Noetherian by Corollary 4.9.
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Therefore there exists a  positive integer n such that 

q -nr r  -  q -(n+1>rr.

Hence IT = q - , IT.

□
5.2 Lemma

Let R be a UFR with a polynomial identity, I a two-sided ideal o f  R and T and S 

be as in Theorem 4.8. Then if I = IT n  IS we have I = p j ... pnR for some pj prime 

elements of R.

Proof

Assume 1 ^ 0 .

By Lemma 5.1 IT is a two-sided ideal of T.

Hence IT = p j ... pnT for some prime elements p, of R by Theorem 4.8.

Since S is simple and IS is a two-sided ideal of S by (Theorem 1.31 ,[4])

IS -  S.

Therefore I -  IT n  S ■ p j ... pnT r> S 

Thus I 3  Pi ... pnR. Take a e  I.

Since a € I s  IT we have

a = p j ... pnr(x)q(x)-1 for some r(x) e R[x), q(x) e G

We have q(x) is regular modulo p jRlx] for all i by definition o f G.

Therefore a e p¿R for all i.

Hence I £  pt ... pnR.

Thus I -  p j ... pnR.

□



We will now use this lemma to determine precisely the reflexive ideals of R as

defined in Chapter 1.

5.3 Theorem

If R is a UFR with a polynomial identity and I a reflexive ideal of R then I is 

principal and a product of height -1 prime ideals of R.

Proof

I*(S n  IT) c  I*S n  I*IT = I*S r> T.

I*S is a two-sided ideal of S by (Theorem 1.31 ,[4]) and is therefore equal to S by 

the simplicity of S (Lemma 2.11).

Therefore I*(S o  IT) c S n T = R b y  Theorem 4.7.

Hence S n  IT C I** -  I.

Thus I -  S r> IT.

Therefore by Lemma 5 .2 ,1 = p j ... pnR for some prime elements pj of R.

□

The next theorem is based on a theorem by Hajamavis and Williams [11], which states 

that if R is a Noetherian maximal order and I a reflexive ideal of R then R /I has an 

Artinian quotient ring which is a principal ideal ring.Since we already know that a 

U.F.R. with a polynomial identity is a maximal order (Theorem 4.6) and we have 

shown in chapter 4 that most things that are true for a Noetherian U.F.R. are true in 

the polynomial identity case,it is not completely surprising that the following theorem

is true.
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5.4 Theorem

Let R be a UFR with a polynomial identity and let I be a reflexive ideal of R. 

Then R /I has an Artinian quotient ring which is a principal ideal ring.

Proof

By Theorem 5 .2 1 = pt ... pnR where the p j are prime element of R.

Let W be the ring obtained from R by inverting all the prime elements of R which 

do not generate prime ideals containing I.

The height -1 prime ideals which contain I are {pjR I i = l,...,n}.

First we show that pjW  = Wp j  for all 1 £ i £  n.

Clearly p;R = Rpj.

So therefore we need to show that pjq-1 e Wpj where q generates a height -1 

prime ideal o f R not containing I.

We have Rq = qR.

Therefore q -1R = Rq-1.

Hence p^q-1 = q_1rfor some r e  R.

Thusqpj = rq.

Therefore rq e  pjR.

But q e  C(pjR) therefore r  = spj for some s e R.

Hence Pjq-1 = q_ ,spi e Wpj.

Therefore p,W £  Wpj.

Similarly Wp j c  p ¡W.

Hence W pj -  pjW.
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We will now show that p,W is a prime ideal of W for all 1 £ i £  n.

Let aWb £  pjW for some a, b e W.

Let a = rq-1 and b = s-1t for some r,t e  R and q,s inverted elements in W. 

Therefore rq- , W s-1 t £  pjW.

Hence rWt £  pjW.

Therefore rRt £  pjR.

Thus r e  p^R or t e  p^R since p ¡R is prime.

Therefore a e  p jW or b 6 pjW proving that pjW is prime in W.

Now let Q be a non-zero prime ideal of W.

Therefore Q n  R  is a non-zero ideal of R and so contains a product of prime 

elements by Theorem 2.7.

Rearranging these prime elements if necessary using corollary 2.13 we get 

qj ... qns j...S{ e  Q where the qj and Sj are prime elements of R and the sj are 

invertible in W.

Therefore qj ... qn  e Q.

Hence q t ... qnW  e  Q which gives us that qjWq2W ... qmW £  Q since q ¡W = 

Wqj as shown previously.

Thus qjW £  Q fo r some 1 £ i £  m since Q is prime.

But q,W is prime, therefore every prime ideal of W contains a principal prime 

ideal.

Also W is a prime ring, thus W is a UFR.

The height -1 prime ideals of W are precisely the pjW where pj is a prime 

element generating a prime ideal which contains I.

Also W is contained in the quotient ring of R and so satisfies the same polynomial



91

identity as R by theorem 1.19.

Therefore W is a UFR with a polynomial identity and only a finite number of 

height -1 prime ideals.

Hence W is a semi-local principal ideal ring by Theorem 5.2.

The Jacobson radical of W is p t ... pnW as shown in theorem 5.2 therefore 

W /pj...pnW is an Artinian principal ideal ring.

It just remains to show that W /p j ... pnW is isomorphic to the quotient ring of

R/I.

We first need that p j ... pnW n  R = I.

LetPl — Pnr 'l l '  - % !  -  sw ilh r.se  R .q ,...... qm prime.

Assume s £ p t ... pnR.

Choose r  such that m is minimal.

Thereforep, ...pnr -  sqm ... q,.

But the pj are regular modulo Rqlt hence r  = r jq j  for some rj 6 R. 

Thusp,...p„r,qi -  sqm..q 2q,.

Hencep,...pnr, -  sqm .q2.

But this contradicts the minimality of m.

Hence S 6 p ( ... pnR = I.

Thus p |  ... pn W n  R = I.

Now let 0 : R /I -» W /pt ... pnW be defined by 

6(a + I) = a + pj ... pnW.

Since p j ... pnW n R « I ,  0 is well defined.

Let 0(a 1) -  0.

Hence a + p,...pnW C p , ... pnW.



92

Therefore a e p j ... pnW.

Thus a 6 p j ... pnW n  R.

Hence a e I.

Therefore 9 is injective.

Hence R /I a  subring of W /p , ... pnW.

R /I a  {r + p j ... pnW I r e  R}.

Let X be the ring obtained from R /I by inverting the prime elements of R which 

generate height -1 primes of R not containing I.

Then 0 extends to an isomorphism between X and W /pj ... pnW.

For example if rq-1 + 1 e  X and 0(rq_1 + I) = 0.

We have rq“ 1 e pj ... pnW.

Therefore

rq-1 = q j1 ... q^J s p j ... pn for some s e  R and prime elements q¡.

Thus q m ...q tr -  sp, ... pnq.

Therefore since the qj are regular modulo the pj's we have r = p j ... pnr j for some 

rj  e  R.

Therefore r  e  I.

Hence rq -1 + 1 = 0 in X.

Finally we will show that X is the quotient ring of R/I.

Clearly R /I  c  X and since q - , R = Rq-1 any element of X can be written as rq -1 

with r e  R /I  and q regular in R /I.

It thus remains to be shown that if x is regular in R /I  then x is a unit in X.

Let x e  C(I).
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n
Then x e  D C(p;R) otherwise if xs e p¡R then xs p j ... p,_ jPj+jPn e I with 

i= 1

* P l -  Pi-iPi+i Pn * L 

n
Therefore x e  ("I ̂  C(p,W) since C(pjR) s  C(pjW).

We have x regular in W therefore by corollary 1.18 xW contains a non-zero 

central element z.

Therefore z = xr for some r 6 W.

Since z is central it is normal, therefore by Lemma 2.14 z = uqj ... qm where u is 

a unit and the qj are generators of height -1 prime ideals in W.

Therefore xr = u q j... qm.

But x e  C(qjW) for all 1 :S j £ m.

Therefore r e  qjW n  ... n  q mW = qj ... qmW.

Hence r = r , q j ... qm for some r t e W.

Thus x r,q , ...qm = uq, ... qm.

Therefore xrj = u.

Hence x is a unit in W.

Therefore x + p , ... pnW is a unit in W /p j ... pnW.

Thus if x + 1 is regular in R /I

0(x + 1) = x + p j ... pnW is a unit in W /p t ... pnW.

Hence 0 _1(x + p j ... pnW) is a unit in X.

Therefore x + 1 is a unit in X.

Hence we have shown that R /I has a quotient ring X which is isomorphic to 

W /pj ...pnW and is therefore an Artinian principal ideal ring by Theorem 5.2.

□
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