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SUMMARY

The main aim of this thesis is to produce and then study two
generalizations of the unique factorisation domain of commutative
algebra.When this has been done before, [21 and [51 it has always been
assumed that the rings are Noetherian.lt is our aim to show that this is not
only unnatural but unnecessary.

Chapter 1 contains some well known results about rings and in
particular about rings satisfying a polynomial identity.

In chapter 2 we define the unique factorisation ring (U.F.R.) and the
unique factorisation domain (U.F.D.).show where these definitions come
from and show what results can be obtained using only the definitions.

In chapter 3 we show that all the previously known results for
Noetherian U.F.D.s can be proved for a U.F.D. which merely satisfies the
Goldie condition.In particular we prove that a Goldie U.F.D. is a
maximal order and that a bounded Goldie U.F.D. is either commutative
or a Noetherian principal ideal ring.

In chapter 4 we look at U.F.R.s that satisfy a polynomial identity and
show that these too are maximal orders.We also show that they are equal
to the intersection of two rings .one of which is a Noetherian principal
ideal ring and the other of which is a simple Artinian ring.

In chapter 5 we look at the reflexive ideals of a U.F.R. which satisfies
a polynomial identity and show that they are all principal.We also show
that if T is a reflexive ideal of R then R/T has a quotient ring which is an

Artinian principal ideal ring.



CONVENTIONS

All rings will be assumed to be associative with an identity element but
will not necessarily be commutative.
When we refer to a two-sided ideal | as being principal we will mean
that | = aR = Ra for some ae R.
The abbreviations A.C.C. and D.C.C. will stand for the ascending
chain condition and descending chain condition respectively.
O will denote the natural numbers {1,2,3,...}.
Z will denote the integers.
<Qwill denote the field of fractions of Z.
When we require a maximal ideal subject to certain properties these

will be assumed to exist by Zorn's Lemma.



INTRODUCTION

The main aim of this thesis is to produce and then study a generalization of the
unique factorisation domain (U.F.D.) of commutative algebra. In [2] and [5] Chatters
and Jordan produce two generalizations of U.F.D. which they call the Noetherian
U.F.D. and the Noetherian unique factorization ring (Noetherian U.F.R.). Since the
Noetherian condition does not appear in the commutative definition it is better if we
do not have to assume in the non-commutative definitions that the ring is
Noetherian.lt is our aim to show that we do not lose anything by omitting the

Noetherian condition. This leaves us with the following definitions.

(1) Aring R is called a unique factorisation ring (U.F.R.) if it is prime and every

non-zero prime ideal of R contains a non-zero principal prime ideal.

(2) Aring R is called a unique factorisation domain (U.F.D.) if it is a U.F.R. and
also a domain in which each factor ring R/P is a domain where P is a principal prime

ideal of R.

In Chapter 2 we shall show where these definitions come from and that they are
true generalizations of the commutative U.F.D. We will also show in this chapter that
a large amount of structure exists in a U.F.R. without assuming any further conditions
and that U.F.R.s are closed under polynomial extensions and skew-polynomial
extensions.

In Chapter 3 we show that all the previously known results for Noetherian U.F.D.s
which appear in [21 and [8L can be proved for a U.F.D. which merely satisfies the

Goldie condition. Therefore in the case of the U.F.D. incorporating Noetherian into



the definition is not only too restricting from the point of view of generalization but
also unnatural and all that is really needed to produce results is the Goldie condition.
We prove in this chapter that a Goldie U.F.D. is a maximal order which is a
generalization of the fact that a commutative U.F.D. is integrally closed. We also
prove the surprising result that a bounded Goldie U.F.D. is either commutative or a
Noetherian principal ideal ring. This was known for a Noetherian U.F.D. [8] but the
surprising thing is that the Noetherian nature of the result is not dependant on the
initial ring being Noetherian.

In Chapter 4 we take the previously known results for Noetherian U.F.R.s which
appear in [51 and prove most of them are true for a U.F.R. which satisfies a
polynomial identity. Therefore yet again it seems the results are not dependent on the
Noetherian condition but depend to a great extent merely on the inner structure of a
U.F.R. Thus it is again probably better to define a U.F.R. without assuming that it is
Noetherian.

Having hopefully shown in Chapters 3 and 4 that the Noetherian condition is best
left out of the definitions, we look deeper into the structure of U.F.R.s which satisfy a
polynomial identity. Therefore in Chapter 5 we look at the reflexive ideals of a
U.F.R. with a polynomial identity and show that they are all principal. We also show
that if T is a reflexive ideal of R then R/T has a quotient ring which is an Artinian
principal ideal ring. This result was previously only known for a prime Noetherian
maximal order.

From results in Chapters 3, 4 and 5 it appears that not only is the Noetherian
condition unnecessary in the definition of U.F.D.s and U.F.R.s but that many result
which were previously known only for Noetherian rings can be proved if not for the

whole class of U.F.R.s then at least for large families of them.



CHAPTER |

PRELIMINARIES

This chapter contains most of the known results which will be needed in later
chapters. Firstly, we will deal with general ring theory terminology and localization.
After this we will deal with the more specialized topic of rings which satisfy a
polynomial identity.

In general proofs will be omitted only if they are readily accessible in the

literature.

1.1 Terminoloev

Arring R is said to be simple if it contains no non-trivial two-sided ideals.

An ideal 1 of R is called prime if for all ideals A, B of R, AB ¢ | implies that
either AE£ 1 or Bs I This is equivalent to saying that an ideal 1 is prime if for all
elements a, b of R, aRb G I implies that eitherae lorbe I.

I is called semi-prime or semi-simple if for any ideal A of Randne N, AnS |
implies A sl.

R is called prime (respectively semi-prime) if 0 is a prime (respectively semi-

prime) ideal of R.

We will need the following useful theorem concerning prime ideals.

1.2 Theorem
Let S be a multiplicatively closed set in aring R and let | be an ideal in R
maximal with respect to non-intersection with S, (which exists by Zorn's Lemma).

Then Iis a prime ideal.



Given aRb e | we must show thataor b liesin I.

Suppose this is not true.

Then the ideal 1+RaR generated by I and a is strictly larger than 1.
Therefore (I+RaR) o St 0.

n
Hence Sj mij + 5”rj atj forsomeSje S,ij 6 I,rj,tje R.

Similarly we have

m
s2=h + kEI xk byk forsomeS e S,i2 e I, xk,yke R.

Therefore
Si s,;s2«i,i2+i1  xkbyk+ (,Zrjatj)i2
n m
+<i?irj ,tj\ fiX]chyk)

The first three terms on the right hand side are clearly in 1. Also the fourth termisin |
sinceaRbe I.

Therefore SjS2e Sn l.

This is a contradiction therefore I is prime.

1.3 Definitions

An element ¢ of R is said to be leftregularifrc - 0 with reR implies r - 0, right
regularif cr - 0 impliesr - 0, and regular if it is both left and right regular. R is
called a domain if every non-zero element of R is regular.

If lisan ideal of R then c e Ris (leftor right) regularmodulo / if ¢ + I is (left or



right) regular in the factor ring R/I.

The set of regular elements of a ring is denoted by Cr (0), and the set of regular
elements modulo | is denoted by Cr(1). The subscript R will often be omitted where
there is no ambiguity.

Anelement c of R is called a left unit of R if there exists r e R such that rc = 1
Right unit is defined analogously, and c is called a unit if it is both a left and right
unitof R.

Anelement ¢ of R is called central if cr = rc for all r 6 R, cis called normal if
cR =Rc.

The set of all central elements of R is called the centre of R and is denoted by
Z(R).

A left ideal 1 of R is said to be left principal if | = Ra for some element a of R.
Right principal is defined analogously, and a two-sided ideal of R is called principal
if it is both left and right principal. A ring is called a principal ideal ring if every
two-sided ideal is principal.

A ring R is said to be left Noetherian if it has the ascending chain condition
(A.C.C.) on left ideals. R is left Artinian if it has the descending chain condition
(D.C.C.) on left ideals. Right Noetherian and Right Artinian are defined analogously.
Arring is said to be Noetherian if it is both left and right Nocthcrian, and Artinian if
itis left and right Artinian.

A prime ideal P of R is said to be height-n if there exists a chain
P 3 Pnd Pn-i 3 = 15Pi of prime ideals of R and no longer such chain exists.

The Jacobson radical J(R) is defined to be the intersection of all the maximal
right ideals of R.

Aring R is said to be local if R/J(R) is a simple Artinian ring. R is said to be
semi-local if R/J(R) is semi-simple Artinian.

An R-module M is said to have finite Goldie dimension if there does not exist an



infinite direct sum of non-zero submodules of M. A submodule E of M is said to be
essential if E has non-zero intersection with each non-zero submodule of M.

If S£ R then the set L(S) = (x e R IxS = 0} is a left ideal of R called the left
annihilator of S. A left ideal is called a left annihilator ideal if it is the left
annihilator of some set ScR . Rightannihilator ideals are defined analogously.

Aring is called a Goldiering, if it has finite Goldie dimension on both sides and

has the ascending chain condition for both right and left annihilator ideals.

14 LOCALIZATION AND QUOTIENT RINGS

Let S be a subset of R. Then S is a right Ore set if and only if given ae R and
b6 Sthere existce R.deS suchthat ad = be. Left Ore set is defined analogously,
and S is called an Ore set if itis both a left and right Ore set.

Now let S be a multiplicatively closed subset of regular elements of R. Then a
leftlocalization ofRat$S isan overring S_1IR of R such that

(i) each elementof S isaunitin S_IR;

(ii) each element of S-1R can be written in the form s-,r for some s e S and

re R
It is a well-known result that a left localization of R at S exists if and only if S is a
left Ore subset of R. (see for example, [4)).

If S is the set of all regular elements of R and a left localization of R at S exists
then S_1R is called the left quotientring ofR.

The right quotientring ofR is defined analogously.

If both the left and right quotient rings of R exist then they are equal (page 21,(41)
and we call them the quotientring ofR.

A prime ideal P of R is said to be left localizable if there exists a left localization
of R at CR(P).Right localizable is defined analogously.An ideal is localizable if it is
both left and right localizable.The localization at a prime ideal P if it exists will be

denoted by Rc(p)-This is usually denoted by Rp but we will avoid this notation to



prevent it being confused with the principal ideal generated by p.

15 Lemma

Let R bearing and Q its quotient ring. If S is a subring of Q with R ¢ S ¢ Q and

every regular element of Ris a unit of S, then S = Q.

Proof
Letge Q
Since Q is the quotient ring of R we can write

q=ac-1forsomeae R,ce Cr(0).

Henceqc = a.
Butc 6 CR(0) and is therefore a unit in S.
Hence there exists be S such thatch = 1.
Thereforeq =qch =abe S.
Thus QcS.
Hence Q= S.

O

Using the previous lemma it can be seen that if every regular element of R is a

unit of R then R is its own quotient ring.

The next theorem is probably the most important result about quotient rings.

1.6 Theorem (Goldie)
Let R be any ring, then R has a right quotient ring which is (semi-)simple

Artinian if and only if R isa (semi-) prime right Goldie ring.



Proof
(Theorem 1.27 and Theorem 1.28, [4]).

O

Any ring which is its own quotient ring is called a quotientring.

Aring Ris called a (left) right order if it has a (left) right quotient ring.

R is called an order if it is both a left and a right order.

Let Q be a quotient ring. Two orders R and S in Q are equivalent if there exist
units of Q, a, b, ¢, d such that aRb Q S and ¢Sd c: R

An order R in Q is called a maximal order if whenever S is an order of Q with

R5 SandR equivalentto S,then R = S.

Before giving the most important theorem about maximal orders we need three

definitions.

1.7 Definitions

Let R be an order in a simple Artinian quotient ring Q. A subset | of Q is called
an R-ideal if

(i) lisanR-R bimodule

(ii) 1 contains a unit of Q.

(i) There'exist u, ve Q such thatul S Rand Ivc R.
For an R-ideal | define

Oi(l) - (qe Qlglc &

and 0{I)- (€ Qllgc I).

Note

Oj(1) and Or(l) are both subrings of Q which contain R.



1.8 Theorem

LetR be an order in an Artinian quoteint ring Q. Then the following properties
are equivalent.

() Risamaximal order.

(b) Forevery R-ideal I, Oi(l) = Oj<I) = R.

(c) Forevery ideal 10of R, Oi(l) = Or(l) = R.

Proof
For the full proof see (Proposition 3.1, [14]) but in order to give a feel of the proof

we will prove (c) =>(b) and (b) (a) here.

(©)+ (b)

Let | be an R-ideal.

By definition there exists Xe Q such that IX£ R. it is easy to see that IXR is a
two-sided ideal of R. Therefore Oj(IXR) = R by (c).

We have R£ OjCl) £ Oi(RR) = R.

Hence Oi(l) = R.

Similarly for Or (I)-

(0)(a)

First let M be a left R-module contained in Q and X a unit of Q which is in R.
Then if XM£ R we have MX£ R.

Since RXRMX = RXMX £ RX£ RXR and since RXR is an R-ideal then Or (RXR)
= Rby (b).

Therefore MX£ R.

Now let R' be an order of Q containing and equivalent to R.
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Therefore there exist X, e R with Xp. units of Q such that XR'p £ R.
By the previous statement we have
RJiX.£ R and (AR E R.
Therefore R" is an R-ideal.
Hence Oi(R) = R.
ButR'R'£ R.
Thus R'£ Oi(R) =R.
Therefore R"=R.

O

Let R be amaximal order in an Artinian quotient ring Q and | a two-sided ideal of

Define 1* = {qe Q Iql £ R}.
Wehaveqge I*<»ql £ R
«>Iql £ R
<=1q £ R by Theorem 1.8.
Therefore the definition of I* is left-right symmetric.

Alsonote | £ I** £ R.

Note

The concept of I*and I** will only be used in maximal orders.

1.9 Definition
I is a reflexive ideal if I** = I

| is an invertible ideal if 1*1- 11* - R.



Note

Clearly an invertible ideal is reflexive.

110 Theorem
Let R be aright Goldie ring and let Xj,...,Xs be prime ideals of R. Let K be a right
ideal of R and assume for each i that K contains an element of C(Xj), then there exists

ce Ksuchthatc e C(Xj) foralli.

Proof

(Theorem 13.4, [4]).

O

111 RINGS SATISFYING A POLYNOMIAL IDENTITY
1.12 Definition

Aring R is said to satisfy apolynomial identity if there exists a polynomial in

non-commuting variables Xj,...A of the form x<j(l) == xo(d)> where the

coefficients are + 1, such thatc” da a rO(I)—O(d) “ 0 for all choices of eR
(Sd denotes the d'th symmetric group). We say that R is of degree d if d is the least
degree of a pojynomial which R satisfies.

The following theorem is one of the most important structure theorems for rings

satisfying a polynomial identity.
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1.13 Theorem (Kaplansky).

Let R be a prime ring satisfying a polynomial identity of degree d. Then R is a

central simple algebra of dimension iy)2 over its centre.

Proof

(Theorem 6.3.1, [12]).

O

1.14 Corollary

Let R be a simple ring satisfying a polynomial identity. Then R is Artinian.

Proof
By Theorem 1.13 R is finitely generated over its centre. But the centre of R is a
simple commutative ring and is therefore a field.

Therefore R is finitely generated over a field and so is Artinian.

[

1.15 Theorem (Amitsur)
Let R be d ring satisfying a polynomial identity and ae R with r(a) = 0. Then aR

contains a non-zero ideal of R.

Proof
Among all akR, k 6 N pick anR such that the degree of anR is minimal.
Replacean by a. Now the degree of aR equals the degree of a2R.

Let g be a polynomial identity of minimal degree for aR.
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Write g = xig1(x2,....xd) + g2(x,,...,xd) where in g2, x never appears on the left in
any monomial and d is the degree of g.

Setxi = a’rj with arbitrary elementsrj e R.

Then 0 = g(arl...adrd) = arlgl(azr2....adrd) + g2(arl...,adrd). Because g is of

mi

nimal degree for aR we can choose r2,...,rd such that gj(a2r2,...,adrd) 4 0.

Also arj is noton the left of any monomial in g2.

Therefore g2(arl,...,adrd) 6 a2R.

Hence 0 = arjgi(a2r2,....adrd) + a2s for some s e R.

Thusrigita2® ....adrd) e aR since r(a) = 0.

Therefore Rg1(a2r2,...,adrd>£ aR since rt was arbitrary.

Hence Rgi(a2r2,...,adrd)R QaR.

Since r(a) = 0, we have

Rgl(a2r2,-,adrd) 3 agt(a2r2....adrd) 4 0.

IfRgi(a2r2,...,adr2R = 0 then Rgj(a2r2....adrd) is already a non-zero ideal in aR,

otherwise Rgi(a2r2....,adrd)R is a non-zero ideal in aR.

0

Definitions

If R is a ring then a central polynomial for R is a polynomial all of whose
evaluations on R are central, but which is not a polynomial identity on R.

A central polynomial is m-central if it is a central polynomial for m x m matrices

over 2.

1.16 Theorem (Formanek)

There exist m-central polynomials for each m.
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Proof

This is the entirity of [6).

(]

117  Theorem (Rowen, et al.)
Let R be a semi-prime ring which satisfies a polynomial identity. Then any non-

zero ideal in R intersects the centre of R non-trivially.

Proof
This will be done in three stages:
(1) Semi-prime rings satisfying a polynomial identity have non-trivial centres.
(2) Anyideal in a semi-prime ring is semi-prime as a ring.
(3) The centre of an ideal of a semi-prime ring is contained in the centre of the

ring.

Proof of (1)

Assume first that 0 = MD<R ml\;lx .
By Theorem 1.13 the R/M are finite dimensional central simple algebras of maximal
pi-degree m =degree R.

Let g be an m-central polynomial.

There exits an MO such that pi-degree (R/M0) = m. Therefore there existrj e R,
1£i £ mwith

0ig(rj rm)+Mge Z(R/MO).

Now if M is such that pi-degree (R/M) < m then

g(ri,...,rm)+ M 0 GR/M.
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If M is such that pi-degrcc (R/M) = m then g(rlt...jm) Me Z(R/M).

Hence O ” g(ri,...,rm) is an element of the centre of R.

Now if R is an arbitrary semi-prime ring which satisfies a polynomial identity

then R can be embedded in R(t] which has the property O = M<RI) m’\élx and if Z is

the centre of R then Zltl is the centre of R[t] and so (1) is proved.

Proof of (2)
Letl <R,0* N< | withN2- 0.
Then if NI = 0

Ns LG)n | = K say

and K2 = 0 by definition.
Therefore K = 0 since R is semi-prime.
Hence NI 4 0.
Put (NI)2C N2 « 0.

Thus NI = 0 as R is semi-prime, but this is a contradiction.

Proof of (3)
Leta e Z(I),re Randi€ I
Then a(ir) = (ir)a since a e Z(l).
Thereforeiar = ira.
Hencei(otr-ra) - 0.
But this is true for any ie I
Therefore (ar-ra) 6 I'n r-ann | = L say.
ButL2- 0 therefore L - 0 since R is semi-prime.
Hencear-ra - 0.

Thusar-ra anda e Z(R).

O
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From the previous theorem we obtain.

1.18 Corollary
Let R be a semi-prime ring with a polynomial identity and ¢ e R with

r(c) = 0. Then cR contains a non-zero central element of R.

Proof
By theorem 1.15 cR contains a non-zero ideal of R.

Therefore by theorem 1.17 cR contains a non-zero central element of R.

O

We can now prove Posner's theorem which gives us several useful facts

about prime rings satisfying a polynomial identity.

1.19 Theorem (Posner)
LetR be a prime ring which satisfies a polynomial identity. Then R has a
ring of quotients Q obtained by inverting all the central regular elements. Also

Q is simple Artinian and satisfies the same polynomial identity as R.

Proof

LetS - Z(R)\{0}.

Define Q = Rs= {ac**1lae R,ce S}

In order for Q to be a quotient ring of R it only needs to be shown that if ¢
is regular in R then ¢ is a unitin Q.

By Corollary 1.18 cR contains an element of S .

Therefore cr = z forsomere R,z € S.
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Hencecrz"1= 1landso c isarightunitin Q. The fact that c is a left unit is
proved similarly.

Q is simple by Theorem 1.17.

Q satisfies a polynomial identity since Q = R Z(»?R)Q(Z) where Q(Z) is the

quotient field of Z(R).
Therefore Q is simple Artinian by Corollary 1.14.

O

This produces several useful corollaries.

1.20 Corollary
If R satisfies a polynomial identity and P is a prime ideal of R then R/P is

Goldie.

Proof

By 1.19 and Goldie's theorem 1.6.

O

121 Corollary
Let R be a prime ring which satisfies a polynomial identity. Then R is

bounded.

Proof
By 1.20 R is Goldie.

Therefore every essential one-sided ideal of R contains a regular element by
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(Lemma 1.18 [4]).
Therefore by Theorem 1.15 every essential one-sided ideal contains a two

sided ideal.

O

We will need only one more result about rings satisfying a polynomial

identity.

1.22  Theorem (Cauchon)
Let R be aprime ring which satisfies a polynomial identity and has ACC on

two-sided ideals. Then R isright and left Noetherian.

Proof (Goldie)

(Theorem 5,19]).

O
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CHAPTER 2

NON-NOETHERIAN UNIQUE FACTORISATION RINGS

In this chapter, we will define a unique factorisation ring (UFR) and a unique
factorisation domain (UFD).We will also show where these definitions come from in
terms of them being generalizations of the Unique Factorization Domain of
commutative Algebra. We will then go on to show what preliminary results can be
obtained using only the definitions.

In the last part of this chapter we will give some examples of UFR's and UFD's.

2.1 Definition

Let R be a commutative integral domain. Anelementa 4 0 of R is said to be
irreducible if it is a non-unit of R and if it is not a product of two non-units of R.

R is called a commutative unique factorisation domain (UFD) if every non-zero
element is a product of a unit and of a finite number of irreducible elements and such

a representation is unique up to order and units.

It is this definition of a commutative U.F.D. which we would like to generalize to
the non-commutative case. The definition as it stands above is not in a very nice
form for generalization to a non-commutative ring, but fortunately we have the

following very useful theorem.
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2,2 Theorem (Theorem 5, [13])
A commutative integral domain R isa U.F.D. ifand only if every non-zero prime

ideal of R contains a non-zero principal prime ideal.

Proof

*)

Let R be acommutative U.F.D. and P a non-zero prime ideal in R. Ignoring the
trivial case when R is a field. P contains an element a which is not zero or a
unit.Since R isa U.F.D. a can be written as a product of irreducible elements. Since P
is prime and ae P, P must contain one of these irreducible elements.

But in a U.F.D. an irreducible element generates a prime ideal. Therefore P

contains a non-zero principal prime ideal.

@

Let R be a commutative integral domain and every non-zero prime ideal in R
contain a principal prime ideal.

Let S be the set of all products of prime elements and units of R.

It is enough to show that S contains every element of R which is not zero, as the
uniqueness of expression is easy to show.

Suppose there exists ¢ with ¢ £ SandcRo S* 0.

Therefore cb = pj ... pn for somebe R and prime elements pi

Choose ¢ and b such that n is minimal.

Sincepi isprime pjlc orptlb.

I1f pjl b then cbj - P2 ... pn for some bj e R which contradicts the minimality
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of n.

Therefore pjl c.

Letc = pjCiforsomecje R

Hencecjb =Pz ..pn+

Butci g Ssincecg S,andcjRn Sg 0 sincecRn Sg 0.

Therefore we again have a contradiction of the minimality of n.

Hence eg SimpliescRn S =0.

Now supposecg S.

ThereforecRn S=0.

Let | be the largest ideal containing cR with I n S=0.

By theorem 1.21is a prime ideal disjoint from S. But by assumption | contains a
principal prime ideal and hence a prime element which is a contradiction. Therefore
S contains every element in R that is not 0.

Since the elements of S are products of prime elements and units uniqueness of

factorization isclear.

0

Using this theorem as our definition it is much easier to produce a generalization

of the commutative U.F.D.

2.3  Definition
Adomain Ris called a unique factorisation domain or U.F.D. if every non-zero
prime ideal of R contains a non-zero principal prime ideal and every factor ring R/P

is a domain where P is a principal prime ideal of R.
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Clearly by Theorem 2.2 all commutative U.F.D.s are U.F.D.s under the
generalized definition.

The requirement that the factor rings are also domains is necessary to produce the
prime factorization of elements which we obtain in Corollary 2.10. Unfortunately
this property is not as nice as the commutative case. For example it is not stable
under the taking of polynomial extensions. However, the property that every prime
ideal contains a principal prime ideal is a very stable one and this leads us to a further

generalization.

2.4  Definition
Arring R is called a unique factorisation ringor U.F.R. if it is prime and every

non-zero prime ideal of R contains a non-zero principal prime ideal.

Clearly all U.F.D.s are U.F.R.s and so the U.F.R. is a true generalization of the
commutative U.F.D. by which we mean that every commutative U.F.R. which is a

domain is a commutative U.F.D. as defined in commutative algebra.

We will now look at what can be deduced about the structure of U.F.D.s and U.F.R.s

just from the definitions.

2.5. Definition

Aprime element of a UFR is one that generates a principal prime ideal.
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2.6 Lemma

In a UFR all the principal prime ideals are of height-1.

Proof
Let pR = Rp be a principal prime ideal.
Suppose pR is not height -1
Therefore pR's Q ~ 0 Q prime.
ButRisaUFR,
hence Q 3 gR q a prime element.
Therefore pR 3 gR.
Thus g = pr for somere R.
We now show p is regular modulo gR.
RprR QaR,
hence pRrR ¢ gR.
ThereforepR ¢ qR or rR QR since gR is prime.
ThusrRc gR = Rg.
Therefore r = xq for some xe R.
Hence q = pxq.
Thus px = 1 since q regular.
Therefore pR 3 R.
Hence pR = R.
Therefore pR is of height -1.

0
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From the above lemma it can be seen that we can replace the definition of a UFR
by saying thatevery prime ideal must contain a height -1 prime ideal and that every

height -1 prime ideal is principal.

2.1 Theorem

In a UFR any ideal contains a product of prime elements.

Proof
Let S be the semi-group generated by the prime elements.
Hence S is multiplicatively closed.
Let | be any ideal of R.
If In S = 0,maximise I with respect to not intersecting S.
By theorem 1.2 we obtain a prime ideal which does not intersect S.
But since we are in a UFR each prime ideal contains a prime element
ThereforePnS ~ 0.
This is a contradiction.

Hencelo S~ 0.

O

2.8 Corollary
In a UFR any non-zero element is contained in at most a Finite number of height

-1 primes.
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Proof
Let x be an element of R contained in an infinite number of height -1 primes.
RxR is an ideal of R.

Therefore RxRn S~ 0

m
Hencep j... pn = ~rfcXSfc for some pj prime elements of R.and 1, s* e R.

Since x is in an infinite number of height -1 primes
x e gR where gR is prime,and qR 4 pR Vi.

Hence x - gt forsomere R.

m
Therefore p, ... p,, -

Thuspj .. pne gR since g is normal.

Hence pjR p2R ...pnR £ qR-

Therefore p,R ¢ gR for some i since gR prime.
Hence pjR = gR since gR is height -1.

But this is a contradiction.

Therefore no element is contained in an infinite number of height-1 prime ideals.

O

29 Lemma

InaUFR ,r>Pn - 0 for any height -1 prime P.

Letl-nP"
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Take A, B £ I
Then A £ Pn+1 for some n.
Let n be the integer such that AcP", AJ Pn+l.
LetX = {re Rlpnre A} wherepR = P.
We have pn(r, +r2) =pnrj +pnrze Aifrltrze X.
Alsopn(sirl)=s”rj, Sje R sincepnnormal.
Thereforep~s™) e A if rte X
Hence X is an ideal of R.
Also X i Psince A£ Pn+l.
Therefore A =PnX for some X £ P.
Similarly B = YPk for some Y £ P.
Hence AB =PnXYPk
- pnXYpk
£ pnpRpk since pR is prime.
Therefore AB £ pn+k+iR.
Thus AB £ 1.
Hence | is prime.
Therefore | = 0 or contains some gR for some prime element g.
Assume qR Q 1.
Hence qR QpR.
Not possible unless R = pR.
Therefore pRc p2R.
Hence p = p2a.
Thus p(l-pa) =0.

But p is regular,
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Therefore | = 0.

O

2.10 Corollary

In a UFD any element can be expressed as a finite product of prime elements

multiplied by some elementin C = n C(P) where P ranges over the height -1 primes.

Proof

Let x be any non-zero element in R.

Ifx e pjR for some prime element pj.then by Lemma 2.9 we can choose aj e N
suchthat x » Pi*1 r for somere R/pjR.

Now ifr e p2R for some prime element p2 ,then by Lemma 2.9 we can choose
a2 e INsuch thatr » sforsomese R/P2R.

Therefore x - p~ 1 P2g2s, withse R/(p1R+pzR).

Now if s e P3R for some prime element P3 we continue as for r above.

By Corollary 2.8 x has only a finite number of different prime factors.

Therefore we must eventually obtain x = pj*1 P2*2 ... pn3n y where y is contained
in no height- 1 prime ideals.

Since R/pjR is a domain for all p»,

y € C(Pj) forall Pj- PR

Thereforey e n C(Pj) - C.

O
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211 Lemma
Let S be the partial quotient ring of R formed by inverting all the products of

prime elements.Then S is simple.

Proof
LetO ~ I be an ideal of S.
Thus (In R) < R and so contains a product of prime elements by Theorem 2.7.

Thus I contains a unit of S, and hence | » S.

O

212 Lemma

Let R be aUFR and p,q prime elements of R. Then pRqR = gRpR = qR n pR.

Proof
The result is clearly true if pR - gR.
Therefore we can assume that pR and gR are distinct height -1 prime ideals.
Since pR and gR are ideals we have pRqR G pR n gR.
Letae pRn gR.
Therefore a = pr for some r e R, hencepre gR.
Thus pRr S gR since p is normal.
Thereforer e gR since qR isprimeandp gR.
Hencer - qrj forsomerte R

Thusa- pqr, e pRgR.
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Therefore pRGR = pRn gR.
Similarly pR n gR = gRpR.
Hence pRgR = qRpR = qR 0 pR.

O

2.13  Corollary
LetR be a UFR and p,q prime elements of R. Then pg = ugp = gpw where u and

w are units of R.

Proof
We have pq e pRgR = gRpR by previous lemma.
Hence pq = uqgp forsome ue R.
Also uRgp = ugpR = pgqR = RpRq = RqRp = Rqp.
Therefore uR = R.
Hence u is a left unit of R.
Also Rugp = Rpq = RpRg = RqRp = Rgp.
ThusRu = R.
Hence u is a right unit and hence unit of R.

Similarly for pq = gpw.

O

2.14 Lemma
If R is a UFR then every normal element of R is of the form pj ... pnuwhereu isa

unit and the pj's are prime elements of R.
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Proof
Let x be a normal element of R.
Then xR is a two-sided ideal of R.
Hence xR contains a product of prime elements by Theorem 2.7.
Therefore xr = p j... pn for some prime elements pj.
Choose r such that n is minimal.
Ifr g pjR for some 1£i£ n,
then xr = xspj for some s g R.
Alsopj ...pn = wpj ... pj_j p,*] ... pnpj by corollary 2.13-
Therefore xs = wpj ... pj_j pj+j ... pn.
Thus w**xs = pj ...pj_i pj+i ... pn since w is a unit.
Therefore xys = p, ... pj_ipj+t ...pn forsomey g R since x is normal.
This contradicts the minimality of n.
Thereforer £ p,R forany 1£i £ n.
Sincexr=pj ..pnc pjR and x is normal we have
XRr£ pjR.
Therefore x G pjR since pjR is prime and r £ ptR.
Hence x - PjXj.
Thusp jXjr m pj ... pn.
Hence Xjr = p2.... pn.
Also p,XjR = xR = Rx = RpjX, = pjRXj.
Hence xtR = Rxj and so Xj is normal.

Proceeding as above with x jr - pz ... pn we eventually obtain xn-1r = pn.
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Therefore xn_j e pnR as above.
Hence xn_j = pnxn for some xn e R.
ThusPnxnr - Pn-

Therefore xn is a unit u say.

Hence x =p j...pnu.

O

The proof of the next theorem is based on the proof of the Noetherian case by

Chatters and Jordan (Theorem 3.1,[5]).

2.15 Theorem

If R is a UFR then RIx] is a UFR.

Proof

This proof relies on the use of S the simple partial quotient ring of R defined in
Lemma 2.11.

LetR* - R[x]andS* - Six).

Clearly since R is prime R* is prime.

S* is the partial quotient ring of R* formed by inverting all the elements of R

which are products of prime elements of R.

First we will show that every non-zero prime ideal of S* is generated by a central
element.

Let P be a non-zero prime ideal of S*.
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Let f be anon-zero element of P of least degree

deg(f) = n.

The subset of S consisting of zero together with the leading coefficients of
elements of P of degree n is a non-zero ideal of S, which therefore must equal S since
Sis simple by (Lemma 2.11).

Therefore we can suppose that f is monic.

Take geP

g = fq + r for some gq,re S* with deg(r) < deg(f).

Butr g P.

Therefore by minimality of n, r = 0.

Hence P - fS*.

Clearly xf = fx.

Also Vs g S, sf-fs g P and has degree less than deg(f).

Therefore by minimality of n, sf = fs.

Hence f is central in S*.

Hence P is centrally generated.

We will now show that every prime ideal of R* contains a principal prime ideal.
Let Q be anon-zero prime ideal of R*.

SupposeQn R4 0.

Then Q n Risanon-zero prime ideal of R and so contains a prime element p.
Therefore Q contains the non-zero principal prime ideal

pR* = R*pof R*.

So next suppose Q n R m 0 so that QS* 4 S* and is a non-zero prime ideal of S*.
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Then QS* = fS* for some central element f of S*.

Let D be the multiplicatively closed set of products of prime elements of R.

Since fS* - QS*-

f=gd_1 forsomegeQ .de D.

Rg- Rfd - fRd = fdR - gR.

Also gx = xg.

Thus gS* = QS* and R*g = gR*.

By corollary 2.8 g is contained in only a finite number of height-1 prime ideals.

Also by lemma 2.9 ,n Pn =0 for all height-1prime ideals.

Therefore g has only a finite number of prime factors.

Choose g with a minimum number of prime factors such that gS* = QS* and
R*g- gR* *

Suppose that gR* 4 Q.

Lethe Q/gR*.

Sincehe QS* .hd'e gR* for somed'e D.

Because d' is a product of prime elements of R we can assume without loss of
generality that hp e gR* for some prime elementpe R.

Thus hp = gb for some b e R*.

Therefore gR*b = R*gh = R*hp £R*p where R*p is prime in R*.

Sincehp = gband h £ gR*-

b* R*p.

Therefore ge R*p.

Hence g = g'p for some g' 6 R*.

Butg'R*p = gpR* =gR* G Q



andpt QsinceQnR =0.

Therefore g'eQ since Q is prime.

Also g'R*p = gR* = R*g - R*g’p.

hence g'R* = R*g'and

g'S* = gS* = QS* since p is invertible in S*.

But g' has one less prime factor than g. This contradicts the choice of g.
Therefore gR* =Q.

Thus in both cases Q contains a non-zero principal prime ideal.

O

2.16  Corollary

If Ris a UFR then RIxj*»—J*sa UFR.

Proof
Let Q be a non-zero prime ideal of R[xIt...].
Then Q contains a non-zero element in R+ = R[xj]je j for some finite set I.
Q r>R+ isanon-zero prime ideal in R+.
R+ is a UFR by repeated use of Theorem 2.15.
Therefore Q n R+ contains a prime element p of R+.
Hence Q contains the non-zero principal prime ideal

pRIXi,...) m R[X,,...] p of R[Xj,...J.

O



Having shown that a polynomial extension of a U.F.R. is a U.F.R. we will now look
at what happens if the polynomial extension is skewed by an automorphism.We will
show that if the automorphism is of finite order then a skew polynomial extension of

aUFR.isitselfa UF.R.

2.17  Definitions

If Ris aring and a an automorphism then the skew polynomial ring R[x,a]
consists of polynomials in x with coefficients from R written on the left and xr =
a(r)x for all r e R.Two polynomials are multiplied in the usual way .term by term,
using the above relation.

Ana- ideal of Ris an ideal 1 of R such thata(l) £ 1.

An a-prime ideal of R is an a-ideal P such that if X and Y are a-ideals of R

with XY £ pthen X £ PorY £ P.

Note
We will always have the automorphism a of finite order in which case an ideal |

is an a-ideal ifand only ifa(l) = I.

Proof
Let n be the order of a.
Then we have 1 =an(l) £ an_t(I) £ ........£ a(l) £ 1

Therefore we must have equality throughout.

0
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We aim to show that if R is a UFR and a an automorphism of R of finite order
then R[x;a] is a UFR.The method of proof is based on that of the polynomial

extension earlier in this chapter.

2.18 Theorem
Let R be a UFR and a an automorphism of R of finite order. Then every non-zero

a-prime ideal of R contains a non-zero principal a-prime ideal of R.

Proof
Let P be a non-zero a-prime ideal of R.
Since P is an ideal it contains a product of prime elements by Theorem 2.7.
Therefore P 2 pj ... pnR where the pj are prime elements of R.
LetpjR =Pjforall 1Ei£ n.
Also letthe orderof a be m.
Hence we have
P=P,..P,a(P,) ...a(Pn)az(P1)...a2(Pnh..am -1(P1)...am-1(Pn).
Since a maps ideals to ideals it must map height -1 prime ideals to height -1
prime ideals.
But if X and Y are height -1 prime ideals then
XY - Xn Y- YX bylemmaz2.12.
Hence P =P1a(P1)...am-'(P I).Pz2a(P2)...a'l>-,(P2)...Pna(P,,)...am- 1<P,).
Also Pja(P;) ..aH’-'iPj) - a(Pj)a2(Pj)..am-'(Pi)Pi.
Thus PjtiiPj) ...am"*(Pj) is an a-ideal forall 1£i £ n.
Since P is an a-prime ideal of R

P 2Pja(Pj)... am-,(Pi) forsome 1£i £ n.
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Let t be the smallest integer such that a I(Pj) m Pj.

Then P 2 Pja(Pj)... aI(Pj) since P is an a-prime ideal.
Clearly Pja(Pj)... al(Pj) is a principal a-ideal.

Also Pj, a(Pj) ,...,a*(Pj) are all distinct height -1 prime ideals.

Itjust remains to show that PjOc(Pj)... a I(Pj) is an a-prime ideal.

Let A, B be a-ideals of R with
AB £ Pja(Pj)... al(Pj).
Therefore AB £ Pj.
Hence A£ PjorB £ Pj since Pj is a prime ideal.
We may assume A £ Pj.
Also A=as(A)£ as(Pj)forall LEsEt.
Therefore A£ Pjr>a(Pj)n ...r>a*(Pj).
But since Pj, a(Pj),...,at(Pj) are distinct height -1 prime ideals
Pin a(Pj)r...n al(Pj) =Pj.a(Pj).. al(Pj).
Hence A £ Pj a(Pj) ... a I(Pj) and we have shown that Pja(Pj) ... al(P j) is a

principal a-prime ideal contained in P.

0

It should be noted that the property that every a-prime ideal contains a principal
a-prime ideal is analogous to the property used in the definition of a UFR that every
prime ideal contains a principal prime ideal but ideals have been replaced by a-

ideals. Several of the early results of this chapter can be proved for a-ideals instead
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of ideals by simply replacing ideals with a-ideals in the proofs.

2.19 Definition
An element b e R is called an a-prime element if bR = Rb is a non-zero a-

prime ideal of R.

2.20 Lemma
Let R be a UFR and a an automorphism of R of finite order. Then any a-ideal of

R contains a product of a-prime elements of R.

Proof
By theorem 2.18 every non-zero a-prime ideal of R contains a non-zero
principal a-prime ideal of R. Now use the proof of Theorem 2.7 with ideals replaced

by a-ideals.

0

221 Corollary
LetR be a UFR and a an automorphism of R of finite order. Then any element of

R is contained in at most a finite number of principal a-prime ideals.

Proof

By theorem 2.18 and the proof of Corollary 2.8 with ideals replaced by a-ideals.

O
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2.22 Lemma

LetR be a UFR and a an automorphism of R of finite order. Then if P is a

principal a-prime ideal of R ,n Pn = 0.

Proof
By theorem 2.18 and the proof of Lemma 2.9 with ideals replaced by a-ideals.

0

2.23 Lemma

Let R be a UFR and a an automorphism of R of finite order. Let S be the partial
quotient ring of R formed by inverting all the products of a-prime elements of R.
Then S is a-simple. That is S contains no non-trivial a-ideals, where a is extended

fromRtoS, bya(rp_1)=a(r).a(p)-1.

Proof
Let0O~ Ibean a-ideal of S.
Therefore I n R isana-ideal of R.
Hence In R contains a product of a-prime elements of R by Lemma 2.19.
Therefore In R contains a unit of S.

Hence | = S.

0
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2.24  Theorem
Let R be a UFR and a an automorphism of R of finite order. Then the skew-

polynomial ring R[x;cx) is a UFR.

Proof

By theorem 2.18 we have that every non-zero a-prime ideal of R contains a
non-zero principal a-prime ideal of R. We shall use the above fact to show that
R[x;a) is a UFR by modifying the proof of Theorem 2.15.

Let S be the partial quotientring of R formed by inverting all the products of a-
prime elements of R. a can easily be extended to an automorphism of S which we
shall also call a.

By Lemma 2.23 S is a-simple. Thatis 0 and S are the only a-ideals of S.

For ease of notation set R* = R[x;a] and S* = S[x;a].

Clearly R* is a prime ring.

Also xS* is a principal prime ideal of S*.

Let P be any non-zero prime ideal of S* such that x £ P. We will show that P is
principal.

Let f be anon-zero element of P of minimal degree. Let the degree of f be n.

Let L be the subset of S consisting of 0 together with the leading coefficients of
elements of P of degree n.

Clearly L is an ideal of S.

Alsoifae L ,axu+bnn_t+..+cx+de P.

Therefore ,x(axn+bxn_1 +...+cx+d)e P.
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Hence ,a(a)xn+t +a(b)xn+... +a(c)xz +a(d)x e P.
Thus , (a(a)xu+a(b)xn_1 +a(c)x +a(d))x e P.

But x is regular modulo P.

Therefore a(a)xn+a(b)xn_1 + ... +a(c)x + a(d) e P.
Hence a(a)e L

Therefore L isanon-zero a-ideal of S.

Hence L = Ssince Sis a-simple.

Thus we may suppose that f is monic.

Letge P.

Then g = fh +j for some h,j e S*, with degree of j < degree of f.
Butj = g-fh e P and degree ofj < degree of f.
Therefore by minimality of the degree of f we have j = 0.
Hence P = fS*,

Let s e Sthen sf-fan(s) e P and has degree less than the degree of f.
Hence sf = fan(s).

Therefore Sf = fS.

Also xf- fx =xhforsomehe S

But xh e P and x isregular modulo P.

Hence xf - fx = xh for some he P.

But h has degree less than the degree of f.

Thus h = 0.

Therefore xf = fx.

Hence P - fS* - S*f,
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We will now show that every prime ideal of R* contains a principal prime ideal
and hence R* isa UFR.

Let Q be a non-zero prime ideal of R*.

If x e Q then Q contains xR~ which is principal and is prime because ---—-- s R

which is prime.

Therefore suppose x i Q.

Suppose Qn R 4 0.

We have xQ = a(Q)x ¢ Q.

Therefore a(Q) Q Q since x is regular modulo Q.

Hencea(QnRJcQnR.

Thus Qn Risanon-zero a-prime ideal of R.

Therefore Q nR contains an a-prime element g by Theorem 2.18.

Since gR is an a-prime ideal

qR* = R*q isaprime ideal of R*.

This only leaves the case when Q nR = 0.

In this case QS* is a proper prime ideal of S*.

If xe QS*, then xs6 Q for some s a product of a-prime elements of R.

Therefore xR*s ¢ Q.

But since Q is prime and x £ Q we have that 0 ~ s 6 Q n R which is a
contradiction.

Hence x £ QS*.

Therefore as shown at the beginning of the proof QS* = fS* = S*f for some

fe S*with xf = fx and Rf - fR.
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Letf = gd- 1 for some g e Q and d a product of a-prime elements of R.

Since dR is an a-ideal of R, a(d) = du for some unitue R.

Hence Rg = Rfd = fRd = fdR = gR.

Also xg = xfd = fxd = fdux = gux = gxa_1(u).

Therefore R*g = gR*.

To complete the proof we need to show that Q = gR*.

The proof of this fact is as in the proof of Theorem 2.15 with prime elements
replaced by a-prime elements.

Hence R[x,a] is a UFR.

2.25 Examples

Since the definition of a UFR is a generalization of both the definition of a
commutative unique factorisation ring (2.1) and that of a Noetherian UFR [5] any
example of either of these is a UFR. These include the universal enveloping algebras
of finite dimensional solvable Lie algebras since they are Noetherian UFR's by
(Corollary 5.6, [5]).

From the definition of a UFR it is also clear that any principal ideal ring is also a
UFR.

Using Corollary 2.16 we have that Rtxj,...] isa UFR whenever R is a UFR. This
provides us with a method for producing non-Noetherian UFRs by simply taking a
Noetherian UFR and adding on an infinite number of commuting indeterminates.
Therefore H[x:,X,..I where H is the quaternions is a non-commutative non-

Noetherian UFR.



Also it is easy to see that if R is a UFR then so is Mn(R) the ring ofnxn matrices
over R. This along with the skew polynomial ring gives us two good methods for
producing non-commutative examples of UFRs from commutative unique
factorisation rings. Since there is a theorem of Gilmer's which states that there are
commutative non-Noetherian unique factorization rings of every Krull dimension
derived from group rings, we can take matrices of any size over one of these rings and
produce an infinite number of strictly non-commutative non-Noetherian UFRs.
These examples are important because since they are matrices over commutative rings
they satisfy a polynomial identity (see Chapter 4). As a concrete example
M2 (Z[xjXe,...]) is one of the easiest to see what is happening, and this will be used
throughout later chapters to illustrate various results.

Closer examination of the proof of Theorem 2.15 shows that S[xI is a UFR
whenever S is simple. This unfortunately will not produce examples of non-
Noetherian UFRs with a polynomial identity since by corollary 1.14 any simple ring
with a polynomial identity is automatically Artinian. However S[xj,...] is always a

non-Noetherian UFR for every simple ring S.
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CHAPTER 3

NON-NOETHERIAN UNIQUE FACTORISATION DOMAINS

In this chapter we will look at unique factorisation domains. In order to achieve
any results we will need the Ore condition and so will only look at Goldie unique
factorisation domains.

By looking at a particular partial quotient ring T of a Goldie UFD R (Theorem
3.2) we will show that R is a maximal order and that if R is bounded (i.e. every
essential one sided ideal contains a two sided ideal) then R is either commutative or a
Noetherian principal ideal ring. This theorem shows the difficulty in producing

strictly non-commutative non-Noetherian examples of UFDs.

31 Lemma
If R is a UFD with the Goldie condition then R satisfies the Ore condition with

respectto C = n C(P) where P ranges over all the height -1 primes of R.

Proof

Letae R,ce C.

By Goldie's theorem

ax =ch forsomex,be R.

But x m dpj .. pn for some d e C where each pj is a prime element of R by
Corollary 2.10.

Thus cb = adpt ...pns Rpn.

Sincec e C(Rpn),be Rpn.

Therefore b - bnpn for somebne R.
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Thus adpj ... pn - cbnpn.

Henceadpj ... pn_j =cbn.

Similarly since c eC(Rpn_j) we have bn = bn_,pn_j.
Henceadp j...pn_2 mchn_j.

Repeating this process a finite number of times gives

ad =cbi forsome bje R.

O

In the commutative case C consists of the units of R but even in the Noetherian
case there are UFD's where this is not the case.Although if R is a prime Noetherian
ring which satisfies a polynomial identity then the elements of C are units, [3L

The next theorem's proof is based on the proof for a Noetherian UFD (Theorem
2.7 [2)) but the order in which the various elements are proved has to be changed in

order to avoid using the Noetherian condition.

3.2 Theorem

If R is a Goldie U.F.D. and T the partial quotient ring of R with respect to
C=n C(P) then

(1) TisaUFD.

(2) The elements of C(T) are units of T where C(T) - n C(Q) when Q ranges

over the height -1 prime ideals of T.

(3) Every one sided ideal of T is two-sided.

(4) AB = BA forall ideals A and B of T.
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Proof
First we will show that if p is a prime element of R then pT = Tp.
Takete T.
Thenpt =prc-1 forsomere R,ce C
=Tjpc+1 for somer(eR since p is normal.
By the Ore condition pc-1 =d_1sforsomede C,se R.
Hence dp = sc.
Therefore sce pR = Rp.
Butce C therefore c e C(pR).
Hence se pR.
We have pt=rjd-,s.
Therefore pt =rjd-1~ forsomerze R
Thus pte Tp.
Hence pT £ Tp.
Similary Tp £ pT.
Therefore pT = Tp.

We will next prove part (3).
Let x be a non-zero element of T.
Thenx =upj ...pnc_1 where u,ce Cand the pj are prime elements of R.
Hence xT =upj ... pnc-1T
=upj..pnTc-1 sincec+1isaunitofT.
But as shown above pT = Tp for any prime element p of R.
Hence xT = uTpj ... pnc_1.
Therefore XT - Tupj ... pnc-1 sinceu e C and henceis a unit of T.

Thus xT = Tx.



Hence every one-sided ideal of T is a two-sided ideal.

In order to show that the multiplication of ideals of T is commutative we first
need to show that pTqT = qTpT.
ButpTqT = pgT = qpvT for some unit v of R by Corollary 2.13.
Therefore pTqT = gqpT = qTpT as required.
Now we will show that AB =BA for any two ideals A and B of T.
Letae Aandbe B.
By Corollary 2.10 a = upj...pnc-1 and b = wqj...qmd_1, where the pj and g, are
prime elements of R and u,c,w,d e C.
abT - upl...pnc™'wqt...qmd-IT.
Therefore abT = TpjTp2T...pnTqjT...qmT since u,c,w and d are units of T.
Hence abT - Tq:Tqz..qmTp:T...pnT
- WTouT...gmTd-'up:T...pnTc- 1
* veli-=aflmd* [uPl-wPns' IT
-baT.
Thereforeab 6 BA.
Hence AB £ BA.
Similarly BA ¢ AB and therefore AB =BA.

Thus we have proved part (4).

In order to prove (1) we need two results that are only known in general in the

Noetherian case.

Firstly we need that if P is a prime ideal of T then Pn Ris a prime ideal of R.

Let A and B be ideals of R with ABcPnR .
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Therefore TABT S P.

But TA and BT are two-sided ideals by (3).
Hence we may assume TA Q P since P is prime.
Therefore AS PnR.

Hence P n R isa prime ideal of R.

We also need that if Q is a height -1 prime ideal of R then QT is a prime ideal of

LetaTh Q QT =qT withabse T.
We also have a= Cj*rj, b - rzc2*withCj,& 6 C,r, r2e R.

Hence cj'rj Trzc2*- QT.
Therefore rjTrz2 Q QT since QT is an ideal of T by (3).
HencerjRr2€£ QTnR = Q.

Thereforer,eQ orr2 6 Q since Q is prime.

Thuscj'r, s QTorrzcj' s QT.
Thatisae QTorbe QT.

Hence QT is a prime ideal of T.

Now let A be a height-1 prime ideal of T.
Therefore AnR is aprime ideal of R as shown above.
Since Risa U.F.D. AnR 2 Bwhere Bis a height-1prime ideal of R.
Hence A 2 BT which is a prime ideal of T as shown above.
Thus A = BT since A is height-1
Therefore every height-1 prime ideal of T is the extension of a height-1 prime

ideal of R.
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Now let Q be a height-1prime ideal of R.

Therefore QT is a prime ideal of T.

Assume QT is not height-1

Then QT 2 P a prime ideal of T.

Hence QToR 2 PriR 2 Aaheight-1 prime ideal of R since P is prime.
ButQToR =Q since the elements inverted to form T are regular modulo Q.
Therefore Q = A since Q isaheight-1 prime ideal.

Hence P 2 (Pr*R)T 2 AT- QT.

This is a contradiction of QT/P.

Therefore the extensions of height-1 prime ideals of R are height-1 prime ideals

of T.

Combining these two results we obtain the result that the height -1 prime ideals of T
are precisely the extensions to T of the height -1 prime ideals of R. We have already
seen that pT = Tp for any prime element p of R. Therefore the prime elements of R
are the prime elements of T. Therefore every height -1 prime ideal of T is of the
form pT = Tp for some prime element p of R. In order to prove part (1) it only
remains to show that T/pT isadomain for any prime element p of R.

Assumeabe pT whereabe T.

Leta=cj'rj and b = rjcji forsomecv cze C,rxr2eR.

Therefore Cjiriraca: e pT.

Hence rjr2 e pT.

Thus  rjrze pTnR» pR.

But R/pR is a domain since R is a U.F.D.

Thereforerj e pRorrz2e pR.
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Hence ae pTorbe pT.

Thus T/pT is a domain and so we have proved that T isa U.F.D.

It only remains to prove part (2).

Lette C(T)thent=ac-: forsomeae R,c e C.

Thus a =tcwhere c isa unitof T.

So ae C(T)n R.

Therefore a e C(R) since the height -1 primes of T are extensions of height -1
primes of R.

Hence ais a unit of T and therefore so is t.

0

The ring T will play a very important part in the proofs of the major theorems of
this chapter. This is because as can be seen from the above theorem and also from the
corollary to the following proposition T is very well behaved as aring. This allows us
to prove some important facts about R by first proving them for T and then showing

that the properties of T intersect down to R.

3.3 Proposition
Let R be astrictly non-commutative Goldie U.F.D. Then every prime ideal of R

with height greater than one contains an element of C.

Proof
Let P be a prime ideal of R with height greater than one.

Since Risa U.F.D. P contains a height -1 principal prime ideal.
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First assume that P contains exactly one height -1 prime pR.
Choosea e P - pR.
Then a = cpt ... pn for some c e C and prime elements pj.
Alsopj £ Pforall LEi£n.
We havecpt ..pnRQP.
Hencecp, Pn-1"Pn - P-
Thereforecpj ...pn_j e P since P is prime and pn £ P by assumption.
Repeating this process n-1 times we obtain ce Pas required.
Now suppose that P contains two distinct height -1 prime ideals pR and gR.
Choose an elementre R
For each positive integer n define
th=p+<f+Q)e P-
Suppose the proposition is false.
Thentn £ C forall n.
Therefore each tn e Tn where Tn is a height -1 prime ideal.
By the argument used above we can assume that T ,,c P for every n.
Ifge Tnthenpe Tn.
Therefore R = Tn = pR since R, Tnand pR are all height -1 prime ideals.
Since qR ~ pR we haveq i Tn foralln.
Suppose Tm = Tn for some integers m and nwithm <n. Then tm - tne Tm.
Henceqm+: -qn+,e Tm.
Thereforeq”«-I(I-gn' m) « Tm.
Therefore (I-qn-m) e Tmsince Tmis prime and q is normal with g f T m.
Hence I-qn_m's P.
Butq g P hence 1e P which is a contradiction. Therefore the set of ideals Tnis

infinite. Since only finitely many height -1 primes lie over any non-zero element of
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R by corollary 2.8 we have n Tn = {0}.
We will now obtain the desired contradiction by producing a non-zero element of
nTn

This will be done in three cases.,

Case |
Suppose p and q are both central elements of R.
Chooser to be any non-central element of R.This exists since R is strictly non-
commutative.
Also choose s 6 R with sr” rs.
Thenstn - tns = sp+sq(r+qn) - ps - q(r+qn)s
=sqr - grs
=q(sr-rs).
Hence q(sr-rs) eT,,.
Therefore qR(sr-rs) C Tn.
Thus sr-rs e Tnsince Tnis prime and q £ Tn.

HenceO” sr-rse n Tn.

Case Il
Suppose pg = gp but g is not a central elementof R.
Chooser e Rwithqr” rqg.
Let s be such thatrq = gs.
Then tng- gtn - qrq-gq*
=q2(s-r).
Therefore g2(s-r) e Tnforall n.
Hence q2R(s-r) CTn foralln.

Thus (s-r) e Tn for all nsince Tn is primeandqt Tn.



Therefore0 ~ s-re o Tn.

Case M
Suppose pq * gp.
Taker - 0.
Thentnq - qtn- pg-qp.
Hence 0 ~ pg-gp e Tn for all n.

Thus0” pg-qpe n Th.

O

3.4 Corollary
Let R be a strictly non-commutative Goldie U.F.D. Let T be the partial quotient
ring of R with respect to C. Then every one-sided ideal of T is two sided and

principal and T is Noetherian.

Proof

Let | be aone-sided ideal of T.

By Theorem 3.2 part (3) I is a two-sided ideal of T. If I A T then I is contained in
some maximal ideal M.

We have M = (M n R)T and M n R is a proper prime ideal of R. Therefore by
Proposition 3.3 M n R has height-1.

Hence as in the proof of Theorem 3.2 M also has height- 1. Thus I is contained in
some height -1 prime ideal of T.

Let pj,...,pn be the prime elements of T with I's pjT for 1£i £ n.

There are only a finite number by corollary 2.8.
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Alsoleta,...ane INsuchthat | Q pAT but | <£Epj(ai+th ' forall 1<i<n.

This is possible since nPn=0 by lemma 2.9.

ISpaiTnp2a2Tn ...np T =p~ A * 2...Pn3"7-

SetJ=fxe TIpj3' .. pn3nxG I}

Clearly I - p,“1 ... pna,J

Then since the pj are normal in T it is easy to see that J<T.

But by the way we constructed J we have J not contained in any height -1 prime
ideal of T,otherwise we would have a contradiction of the choice of elements pj or a
contradiction of the maximality of one of the aj.

By the first part of the above proof this implies that J = T. Therefore | =
Pi*1 P8 T-

All that remains is to show that T is Noetherian.

But every one-sided ideal of T is two-sided and principal.

Therefore T is Noetherian.

O

3.5  Definition

Aring R is said to be bounded if every essential one-sided ideal of R contains a

non-zero two-sided ideal of R.

Note
In the following lemma the intersection ToS takes place inside the quotient ring of R

which exists since R is a prime Goldie ring.
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3.6 Lemma
Let R be a Goldie U.F.D., T the partial quotient ring of R with respect to C and S
the partial quotient ring of R with respect to the multiplicatively closed set D

generated by the prime elements of R. ThenR = TnS.

Proof
ClearlyReTnsS.
LetueTnS.
Sinceue S, pj ... pnu e R for some prime elements p, of R.
Sinceu£ T,p2 ..pnue T.
Therefore p2 ... pnuc e R forsomece C.
Hence pjpz2 ... pnuc e p,R.
Thereforepjp2 ... pnue pjR sincece C(pjR) andpj ..pnue R.
Thusp2..pnue R.

Repeating n-1 times gives u e R as required.

O

3.7 Theorem
Let R be a strictly non-commutative bounded Goldie U.F.D. Then R is a

Noetherian principal ideal domain.

Proof
LetS be as defined in Lemma 3.6.
ThenR =Sn T by Lemma 3.6.

1f we can now show that S is the full quotient ring of R, we will have T ¢ S and
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hence we will have R = T and R will have the desired properties by Corollary 3.4.
Suppose ¢ e R is aregular non-unit of R.
We aim to show thatc is a unit of S.

Wehave 0# cR <R.

Also cR is essential by (Lemma 1.11,(4]) since c is regular.
Hence since R is bounded we have 0 * | < R with

ICcR.
Let D be the set of products of prime elements of R.
Since In D" 0 by Theorem 2.73re R,de D withd =cr.
Since d is invertible in S, ¢ is invertible in S.

Hence S is the full quotient ring of R as required.

O

This result was previously only known in the case where R is a bounded

Noetherian U.F.D. and the above proof is based on the Noetherian proof [8]

3.8 Corollary
Let R be a U.F.D. which satisfies a polynomial identity. Then R is either

commutative or a Noetherian principal ideal domain.

Proof
This follows from the previous theorem and corollary 1.21 which shows that a

prime polynomial identity ring is bounded.

0



3.9 Corollary
Let R be a Goldie U.F.D. Then if the elements of C = n C(P) are all units R is

either commutative or a Noetherian principal ideal domain.

Proof

By Theorem 3.7 it is enough to show that R is bounded.

Let I be a non-zero right ideal of R.
Then thereexists0 4 ae I

a = pj ... pne for some prime elements pj and c e C by Corollary 2.10.
Hence O~ pj..pnce I

Therefore 0t pj..pne Isincec isa unit.

Thus I contains the non-zero two-sided ideal p j... pnR.

The same proof works for a left ideal but you need a = cpj ... pn.

0

We will now prove another result which was only known in the Noetherian case,
namely that if R is a Goldie U.F.D. then R is a maximal order. The proof is again
based on the proof of the Noetherian case (Theorem 2.10 ,[2]) which seems to suggest
that the condition of a U.F.D. being Noetherian is not really essential to produce
strong theorems concerning U.F.D’s. The Goldie condition however is essential as
without it you cannot construct the partial quotient ring T and it is this which allows
you to prove the various theorems.

In order to prove that a Goldie U.F.D. is a maximal order we first need the

following.
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3.10 Lemma

Let R be a Goldie U.F.D. and P a height -1 prime ideal of R. Then the classical

localization RC(p>of R at P exists.

Proof

We have P = pR for some prime elementp e R.
Also C(P) - R-P.
Letae R,ce C(P).
By Goldie's theorem ax = cy for some non-zerox, y e R.
Sinceo Pn = 0 by Lemma 2.9.

x = dpn for somed e C(P) and integer n £ 0.
We need to show thatce C(Pn).
Ifcse Rpn,thencse Rp.
Hence s = Sjp for some Sj e Rsincec e C(P).
Therefore csjp e Rpn.
Thuscsj e Rpn_1.
Therefore st = SP for some S e R since c e C(P).
Continuing this way we get s = s,,pn for some sns R
Hence we have c e C(Pn).

cy = ax = adpn.
Therefore y = bpnfor somebe R, since c e C(Pn).
Thus cbpn » adpn.
Hencecb - ad.

Therefore R satisfies the Ore condition with respect to C(P).

[
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3.11 Lemma
If Ris a Goldie U.F.D.and P a height -1 prime ideal of R then R"(p) is a maximal

order and a local domain.

Proof
By Lemma 3.10 Rc(p) exists.
Let 1< Rc(P)-
If1 €PRc(p) “en thereexistsae R-P and ce C(P) such thatac-1 e I.
Bute-1 is a unitin Re(p)-
Henceae I
Butae R-P = C(P) .and is therefore a unit of Rc(P)-
Therefore 1 = Re(P)
Therefore PRc(P) s the unique maximal ideal of Re(p>-

Hence PRc(p) s the Jacobson radical o f Rc(p)-

R L . Lo R . .
Also 65C(_p> is isomorphic to the full quotient ring of where the isomorphism
PiT(P)

is given by  (x+P)(c+P)-1 —#xc -1+ PRc(P) The fact that this is a well-defined
isomorphism can easily be seen using the fact that R is Goldie.

R ) - . - RCP) . .
Since -5 - is a prime Goldie ring then its quotient ring and hence 55—+ is a simple
v ~*r(P)

Artinian ring by Goldie's theorem (Theorem 1.6).

Therefore Rc(p)is a local domain.

Let0 I < Re(p>then we have shown that if | » Re(p> then | £ PRc(P) =P/C(P)

for some prime element p of R.

Assume | £ PnRc(P) foralln” 0.
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ThereforeIn R ¢ PnRC(P) ° Rf°raRn” 0

But PnRC(P) = PNRC(P)-

Letae pnRc(P) n R .thenbae P°R  somch s C(P).

Therefore ae pnR, since b e C(P).

Thus PnRC(P)n R “ PnR - Pn-

Therefore In R ¢ PnRC(P) » R- Pnforalln*0.

Hence InR ¢ nPn=0byLemma2.9.

Therefore I = (In R)Rc(P) * 0 which is a contradiction.

Hence we can choose n such that IC PnRC(P) but | » Pn+1Rc(p).

LetJ = {xe Rc"p) Ipnx e 1}.

Then itis easy to see that J < Re(p>

Alsol = pnJ.

Now J £ PRC(P) by the choice of n.

Therefore J = RC(P) as shown at the start of the proof.

Thus I »PnRC(P) “or some positive integer n.

Hence Rc(p> s a local domain in which every ideal is a power of the Jacobson
radical.

Let I be any ideal and q be in the quotient ring of Rc(P) with gl ¢ | then

gPnRC(P)s PnRC(P) “ Rc(P)Pn for some integcr n-
Thereforegpn e pnRc(p) = Re(P)Pn-
Henceqe R™N.

Thus Re(p) is a maximal order by Theorem 1.8.

O

In order to show that a Goldie U.F.D. is a maximal order we first need to prove the

following theorem.
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3.12 Theorem
Let R be a Goldie U.F.D. and T the partial quotient ring of R with respect to C.

Then T is a maximal order and T = n RC(P)where p ranges over the height -1 prime

ideals of R.

Proof

SetU —

ThenT cU because C Q C(P) for every height -1 prime ideal P of R.

As was shown in the proof of Theorem 3.2 the height -1 prime ideals of T are of
the form PT where P is a height -1 prime ideal of R.

AlsoRC(P) = TC(PTy

Therefore U = n Tc”px) where P ranges over the height -1 prime ideals of R.

Letu€ U.

Then xue T forsomexe T.

We have x = ¢pj ... pn for some prime elements pj of T and some ¢ e C(T) by
Theorem 3.2, part 1

Thereforecpj ...pnus T.

Butc is a unit of T by Theorem 3.2, part 2.

Hencepj..pnue T.

Alsop2 —Pnue U S TC(pTy

Therefore p2 ... pnud e T for some elementd s C(pjT).

Because pjp2 ..pnud e pjT andde C(pjT),

we have pjp2 ...pnue pjT.

Thereforepz ...pnue T.

Repeating this process for P2.P3.--.Pn in turn givesu e T.



Hence U =T as required.

Itjust remains to show that T is a maximal order.

Let | be a non-zero ideal of T and g an element of the quotient ring of T such that
qlCl.

Let P be any height -1 prime ideal of T.

ThenqlTc(p) —i f C(P)'

As in the proof of Theorem 3.2, ITC" is a two-sided ideal of TCgj.

AlsoTqp)is a maximal order by Lemma 3.12.

Therefore g 6 T~/pj for all height -1 prime ideals P of T, by Theorem 1.8.

Hencegen T ~ =T.

Therefore T is a maximal order, by theorem 1.8.

(|

3.13 Theorem
Let R be a Goldie U.F.D. Then R is a maximal order.

Proof
Let D be the multiplicatively closed set generated by the prime elements of R.

Let S be the partial quotient of R with respect to D. Let | be a non-zero ideal of

IS = S by Theorem 2.11.

Let g be an element of the quotient ring of R such that ql £ 1.
Therefore qIS £ 1IS.

HencegS £ S.

Thereforeqe S.



Let T be the partial quotient ring of R with respect to C then
qITCIT.

IT is a two-sided ideal of T by Theorem 3.2, part (3).

Therefore q e T since T is a maximal order by Theorem 3.12.

HenceqeTnsS.

Therefore g e Rby Lemma 3.7.

Therefore R is a maximal order by Theorem 1.8.

O
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CHAPTER 4

UNIQUE FACTORISATION RINGS WITH A POLYNOMIAL IDENTITY

In this chapter we will look at unique factorisation rings that have the additional
property of satisfying a polynomial identity as defined in Chapter 1

We will show that if a U.F.R. with a polynomial identity has only a finite number
of height-1 prime ideals then it is a semi-local Noetherian principal ideal ring.This
result is not only of interest in itself but is used to prove the major result in chapter 5.

Two other major results will be proved in the course of this chapter. The first is
that a UFR with a polynomial identity is a maximal order (Theorem 4.6). The second
result is a modification of a result for Noetherian UFR's by M.P. Gilchristin [7]. This
gives that a UFR with a polynomial identity is equal to the intersection of two rings,
one of which is a Noetherian ring in which every two-sided ideal is principal and the
other is a simple Artinian ring.

Note that in the case of a UFD with a polynomial identity it was shown in
Corollary 3.8 that this ring is either commutative or a Noetherian principal ideal
domain.

In order to prove any of the results in this chapter it will frequently be necessary
to localize ata height -1 prime ideal. Itis not clear whether this localization exists as
it is not clear what the elements regular modulo a height -1 prime are, let alone
whether they satisfy the Ore condition. Even then it is not obvious that we will obtain

a local ring by inverting these regular elements.
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4.1 Lemma
Let R be a UFR with a polynomial identity and S the partial quotient ring of R
formed by inverting all the products of prime elements in R. Then S is the full

quotientring of R.

Proof

S is contained in the quotient ring of R and hence satisfies a polynomial identity
by theorem 1.19.

Also S is simple by Lemma 2.11.

Therefore S is Artinian by a theorem of Kaplansky (Corollary 1.14). Hence S is

the full quotient ring of R.

O

4,2 Theorem
Let R be a UFR with a polynomial identity. If R has only a finite number of

height -1 prime ideals then R is a semi-local Noetherian principal ideal ring.

Proof

We will first prove that the height -1 prime ideals of R are precisely the maximal
ideals.

LetPj,...,Pn be the height -1 prime ideals of R. Let I be an ideal of R with I <€Pj
forall1 £i£n.

Therefore I r\C(Pj) 0 forall 1Ei£n.

Hence by the Chinese Remainder Theorem (1.10)
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in n can)**

LetO ¢ ce C(Pi)nl.

Since ce C(Pj) £ C(O) we have c e C(O) therefore by corollary 1.18 cR contains a
non-zero central element z.

Therefore z = cr forsomer e R.

Since z is central it is normal.

Therefore by Lemma 2.14 z = uqt ... qm where u is a unit and the ¢ are

generators of height -1 prime ideals.

Therefore cr = uqt ... gm.

Butc e C(qmR) hencer =r,qm for somert e R.

Hencecr,qm - ug, .. qm.

Thuscr, = uqj ...qm .j.

Now ¢ € C(qm_,R) hencerj = raqm_j for somerze R.

Proceeding in this way we eventually obtain

crm = ufor somerme R.

Thereforeu e | and sinceuisaunitl =R.

Hence the height -1 prime ideals are precisely the maximal ideals of R.

Now let A be a non-trivial ideal of R.

Sincen Pjs = 0 forall 1£i<nby Lemma 2.9 ,we can choose integers aj ,1£i <n
such that Ac Pg@>but AE P A+l whereP,° - R.

ThereforeAs Pr1n P~ ."p 1"- P *1Pax ..P,*"

- Pi*1Pz POYR’
LetK={re RIpj*1V22..Pn1" TEA).



Since the pj are normal it is easy to see that K is a two-sided ideal of R.

AlsOA - p,a' P2#2 ... pn“n K.

Therefore K £ Pj for any 1£ i £ n otherwise this would contradict the maximality
of one of the aj.

But the Pj are the maximal ideals of R and therefore we must have K = R.

Therefore A = pj3* P2g2 ... pn3n R

Hence R has A.C.C. on two-sided ideals, but R satisfies a polynomial identity
hence by a theorem of Cauchon (Theorem 1.22) R is Noetherian.

Therefore we have shown that R is Noetherian and every two-sided ideal of R is

principal.

We will now show that the Jacobson radical J(R) = PiP2...Pn.

Since J(R) is a two-sided ideal of R we have J(R) = QiQz2...Qm for some
height-1prime ideals Qj.

These prime ideals must all be different since J(R) is semi-prime and height-1

prime ideals commute by lemma 2 .12.

We need that the Qj are all the height-1 prime ideals.

Assume without loss of generality that Pj is not one of the Qj.

Let M be a maximal right ideal containing Pj.

We have M3 J(R) + P,.

But Pj is a maximal ideal.

Therefore since J(R) 4 P, we have J(R) + Pj = R.

Hence M 3 R which is not possible.

Thus the Qj consist of all the height-1prime ideals without duplication.

Therefore reordering if necessary using lemma 2.12 we have J(R) = PjP2...Pn.
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We will now show that R is semi-local, that is we will show that R/J(R) is
Artinian.

Since Pj is a maximal ideal for 15i £ n we have that R/Pj is simple for 1£ i £ n.

But R/Pj is a factor ring of a ring which satisfies a polynomial identity and

therefore satisfies the same polynomial identity.

Hence by corollary 1.14 R/Pj is Artinian for 1£ if n.

J(R) =PjP2...Pn therefore R/J(R) embeds inside the ring

R/Pj © R/P2 ©—© R/Pn wtch since it is a direct sum of a finite number of
Artinian rings is itself Artinian.

Therefore R/J(R) is Artinian as required.

Also since J(R) is invertible and R is Noetherian, all the one-sided ideals of R are

principal by (Proposition 1.3 ,[10]).

(]

4,3 Theorem
If R is @ UFR with a polynomial identity then R is localizable at any height -1

prime ideal.

Proof

Let P be a height -1 prime ideal of R.

To localize at P we invert all the prime elements which generate height -1 prime
ideals other than P. We will show that this inverts all elements regular modulo P and
that it produces a local ring.

LetR+ be the partial quotient ring of R formed by inverting all the prime elements

of R which generate height -1 prime ideals other than P.These prime elements form
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an Ore set since they are all normal.

We first show that every element of C(P) is a unit in R+.

Takece C(P).

Ifca=0forsome0i ae Rthen

ae Psincece C(P).

Since n Pn = 0 by Lemma 2.6, we have a = bpn for some integernand b e R
withbi pR.

Hence 0 = ca = cbpn.

But since p is regular we have cb = 0 and therefore cb e P with b i pR which
contradicts c e C(P).

Hence c e C(0).

Therefore by corollary 1.18 we have that cR contains a non-zero central element

Thus z = cr forsomere R.

Sincen Pn =0 by lemma 2.9 we have z = spn for some si pR.
Therefore s is normal since p is normal and z central.
We have cr = spn.

Hence cre pR.

Thereforer e pR since c e C(P).

Thusr =r'p forsomer'e R,

S0 cr'p = spn.

Therefore cr' = spn-1.

But we still have c e C(P), therefore r' e pR.
Continuing this way we obtain

cx = sforsomexe R.
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Since s is normal in R, sR is an ideal of R.

Hence sR contains a product of height -1 prime ideals by theorem 2.7.
Thus sR 2 qgj ... qn pkR for some integer k and prime elements qj £ p.
Let k be the minimal integer such that this is true.

Hence qj ...qnpk = stforsomete R.

Suppose that k £ 0.

Therefore ste P.

Hence sRtc p since s is normal.

Thus te P since P isprime and s? P.

Therefore t = t'p for somet'e R.

Hence qt ... gnpk = stp.

Thusqj..qnpk_1 =st'e sR.

This contradicts the minimality of k .

Therefore we have k = 0.

Hence sR 3 gj ... gn.

Butgj ...gnis a unit of R+.

Therefore sis a unit of R+.

Hence cis a unitof R+.

Thus the elements of C(P) are units of R+.

Itjust remains to show that R+ is a local ring.

Let | be an ideal of R+ with | £ PR+.

ThenIn Risanon-zeroideal of Rand In R£ P.

Therefore (10 R) + P)/P is anon-zero ideal of R/P.

But R/P is prime Goldie since R satisfies a polynomial identity by corollary 1.20.

Hence I n R contains an element of C(P) (Lemma 1.18 J4]).
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Thus | contains a unit of R+.

Therefore | = R+.

Hence PR+ is the unique maximal ideal of R+.

Also since R+ is contained in the full quotient ring of R by Posner's theorem
(Theorem 1.19) R+ satisfies a polynomial identity.

Hence R+/PR+ is a simple p.i. ring.

Therefore R+/PR+ is Artinian by Kaplansky's theorem (Corollary 1.14).

Thus R+ is a local ring with PR+ the unique maximal ideal.

Hence R+ is the localization of R at P.

O

4,4  Lemma
If R is a UFR with a polynomial identity then R+ the localization of R at a
height -1 prime ideal P is a Noetherian ring in which every two-sided ideal is a

power of the maximal ideal PR+.

Proof
We first need to show that pR+=R+p.
Letrc-,e R+ withce C(P).
Therefore by the Ore condition prc-1 = d_,x for somexeR.de C(P).
Hence dpr = xc.
Thus xce pR.
But ce C(P) .therefore xe pR.
Hence x - sp forsomese R.
Therefore prc-1 - d_isp.
Thus pR+ S R+p.
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Similarly R+p 2 pR+.

Now let | £ R+ be a non-zero two-sided ideal of R+, then | Q PR+ the unique
maximal ideal of R+.

Since r>Pn = 0 by Lemma 2.9 ,we can choose an integer a such that | Q paR+ but
li pa+,R+.

LetJ = (re R+ Ipare I}

Since PR+ = pR+ = R+pit is easily seen that J is a non-zero two-sided ideal of
R+ and | = pal.

1fJ A R+ thenJ ¢ PR+ the unique maximal ideal of R+.

Therefore I = palJ ¢ Pa+1R+, which contradicts the choice of a

Hence J-R +.

Thus I - paR+- PaR+.

Hence every ideal of R+ is a power of PR+ the maximal ideal.

Thus R+ has A.C.C. on two-sided ideals and satisfies a polynomial identity, also
R+ is prime.

Therefore R+ is Noetherian by a theorem of Cauchon (Theorem 1.22).

O

We will now use these localizations to show that a UFR with a polynomial
identity is a maximal order as defined in Chapter 1
Note that all the localizations at height -1 prime ideals lie inside the quotient ring

of R and this is where the intersection in the following theorem takes place.
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45 Theorem

If R is a UFR with a polynomial identity then R is equal to the intersection of the

localizations of R at its height -1 prime ideals.

Proof
Each localization exists by Theorem 4.3.
Let Q be the intersection of the localizations.
ClearlyRcQ .
Letge Q.

Since g isin S the quotient ring of R, g = r(pj .. pn) _1 for somer e R, pj,...

prime elements of R.
Choose r such that n is minimal.
Assumen 4 0.
Since q is in the localization of R at pjR for 12iSn
q- sjcj-1 forSe R,ge CiPj) for 1Si£n.
By the Ore condition thereexists te C(Pn) and s e R such thatcns = Pj ... pnt.
Sincecn e C(Pn)wehavese Pn.
Hence s = vpn forsomeve R.
Thereforert =mqp, ... pnt- gcns
- Q@nvPn
- s,vPne pn
Sincet e C(Pn)wehavere Pn.
Hencer = rjpn forsomerte R.
Therefore q - rfp,...pnr* - r(p, ...pn.,r"
But this contradicts the minimality of n.

Therefore n = 0.

:pn
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Thereforeqe R

Hence Q = R as required.

O

4,6 Theorem

If R is a UFR with a polynomial identity then R is a maximal order.

Proof

Let | be a non-zero ideal of R and S be the quotient ring of R.By Theorem 1.8 we
must show that if g 6 Ssuchthatql Q Ithenge R

Let P be a height -1 prime ideal of R.

Since R+ the localization of R at P is Noetherian by Lemma 4.4, then IR+ is a
two-sided ideal of R+ by (Theorem 1.31 ,[4]).

Hence IR+ = pnR+ for some positive integer n by Lemma4.4.

Since gl S I we have qIR+ £ IR+.

ThereforegpnR+ £ pnR+ - R+pn.

Hence g e R + since p is regularin S.

Therefore since P was chosen to be any height -1 prime ideal of R, q is an
element of every localization of R at a height -1 prime ideal.

Hence g e R by Theorem 4.5.

Therefore R is amaximal order.

O

Before going on to the next theorem we need to prove a result which is known in

general for a Noetherian ring but seems to need all the power of a polynomial identity
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to prove it for a non-Noetherian ring.

4.7 Lemma
If R is a U.F.R. with a polynomial identity then any regular element of R is

regular modulo all but finitely many height -1 prime ideals.

Proof

Let S be the quotient ring of R.

S is finitely generated over its centre by Posner's theorem (Theorem 1.19) and
Kaplansky's theorem (Theorem 1.13).

Also the centre of S is the quotient ring of the centre of R and is therefore a field.

Letc be aregular element of R.

Thence S

Since S is finitely generated over its centre ¢ satisfies a monic equation with
coefficients in the centre of S.

Hence c satisfies a non-monic equation with coefficients in the centre of R.

Thus c is algebraic over the centre of R.

If the constant terms of this equation is zero then we can cancel out a ¢ since c is
regularin R.

Therefore ¢ satisfies a non-monic equation with coefficients in the centre of R
with a non-zero constant term.

Since this constant term is central it is regular modulo all but a finite number of
height -1 prime ideals by lemma 2.14.

Therefore ¢ has the same property.

O
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The following theorem was proved for Noetherian UFR's by Gilchrist and the
proof will follow the same lines as his proof [71, but a great deal of extra care has to be
taken to either avoid the parts of the proof which use the Noetherian condition or to
prove that they still work in the case of a UFR with a polynomial identity.This
theorem and a version of this proof appears in a paper by Chatters.Gilchrist and
myself which is currently in preparation.

In this proof the two rings T and S are both contained in the quotient ring of R[X]

and it is here that we will be taking our intersection.

4,8 Theorem
If R is a UFR with a polynomial identity then R = T n'S where S is simple and

every two-sided ideal of T is principal.

Proof

First we shall construct the ring T which is a partial quotient ring of R[x].

Consider the set R[x] 2 G = n C(P[x]) where the intersection ranges over the
height -1 prime ideals P of R. T will be the partial quotient ring of R[x] formed by
inverting the elements of G. Therefore the first, and indeed most complicated thing
we need to prove is that G is an Ore set

Suppose b(x) e G, a(x) e R[K.

LetK - (f(x) la(x)f(x) e b(X)RIXD <RIxI.

We need b(x) 6 Cr[x](0).

Assume this is false.

Therefore b(x).r(x) - 0 for some r(x) e R[X).
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By Lemma 2.9 nPn[x) = 0.

Hence r(x) = rj(x)pn for some rj(x) € R[x), n £ 0 with rj(x) * P[X).
Therefore b(x).rj(x)pn = 0.

Hence b(x).rj(x) = 0 since p is regular.

Butrj(x) t Pfx] which contradicts the fact that b(x) e C(Ptxl).
Therefore b(x) e Cr[x](0)

Since b(x) 6 Cj*[x](0) and Cr"O) isan Ore set, Kr>c rjx](0) ~ 0.
Also since R[xl is a UFR by Theorem 2.15 and P[X] is a height -1 prime ideal of
R[X] by lemma 2.6, P[X] is localizable by Theorem 4.3.
Therefore C(P[X)) is an Ore set and since b(x) e C(P[x]) we have
Kn C(P[x]) » 0 for each height -1 prime P of R.
We will now show that we can pick an element c(x) e K such that ¢(x) = c,.xr + ... +
cn+rxn+r where cr is regularin R.
ConsiderKo - {kj e RIf(x) - kjJ +... + kj+mx)+m e K} <R.
Take 0" a e Rthen
a(x).ae RIx],b(x) e Cr"0).
Therefore by right Ore condition
a(x).a.d(x) = b(x).e(x) for some d(x) ¢ Cr[xj(0), e(x) e RIX].
Therefore a.d(x) e K.
Since d(x) is regular in RIX), a.d(x) £ 0.
Hence the lowest coefficient of a.d(x) isin Kq.
Thatisa.dj e Kqforsome d*e R
Therefore Kq is an essential right ideal of R.
Hence Kq contains a regular element of R by (Theorem 1.10 ,[4]).

By Lemma 4.6; cr e C(P) for all but possibly finitely many height -1 prime
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ideals, Pj,...Pnof R.

Hence c(x) is regular modulo P[x] for all P[x) except possibly P,[X)....,Pn[x.
Now above we had Kn C(Pj[xI) » Gfori- I...,n.

Therefore by the Chinese Remainder Theorem (Theorem 1.10) we have

K r’*(if)l C(Pi[x))*0

Hence choose 0 * d(x) e Kn (fi C(P;[x])).
i-1

Now let fj(x) = c(x) + d(x).xJ for all integers j t.r + 1. Clearly fj(x) e K forall
JEr+1.

Also fj(x) e C(P[xl) for all height -1 primes P A Pj...Pn since the leading
coefficient of fj is cr for allj.

Thus in order to show that K n G 2O which is what we need for the right Ore

condition on G, all we need to show is that for somej, fj(x) e fi C(Pj[xI).
i=1

n
Suppose no fJ;(x) e 'ﬁl C(Pj[xI) then for each j S r+1 thereisan 1£ i £ n such that
i=
fj(x) * CCPjW).
Hence there is at least one height -1 prime Pj such that J = {j Ifj(x) £ C(Pj[x])} is
an infinite subset of IN
Foreach ae J, 3 ra(x) such that fa(x).ra(x) e Pj[xl and ra(x) i. Pj[x].

Since J is an infinite subset of INwe can suppose {aj",...} - J.



Therefore since R has finite Goldie dimension, by virtue of R[x) satisfying a

polynomial identity, there exists neHJ such that JE“r&(x) Rbd is essential

R[X)

& r8; x>
. o R[X
Thus by (Lemma 1.1 ,[4]) there exists an essential right ideal of p="J* E such that

RX]
e POES g Oy

Since E is essential and p ~ is a prime Goldie ring, E contains a regular element

Y(x) of by (Lemma 1.18 ,[4]).

Thereforer,n+i(x) yoOO C n RK .

R[X]

g
Hence ran+1<>T<x>" j?ir*j(x) 1¥ x> ta p~J-

N1
Therefore jgl ran+|(x) Ej'(x) e Px] where (3;. AX) = - v(x) which is regular modulo

Pjtxl.

Hence we may suppose that ,” raXx)saXx) e Pj[x) where at least one of the sgj(>

is in C(Pj[x]) and k is the least integer for which this is true.

We shall now produce a contradiction of the minimality of k.
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Since 5" raXx)saXx) e Pj[x) we have c(x) » raXx)sa?(x) ¢ Pj[X) where c(x) is as
defined in the earlier pan of this proof.
But since c¢(x) = -d(x)xa) + faXx) forall aj ¢ Jand fa*(x)raXx) ¢ pifx] forall aj g J
S ,
we have 57d(x) x Jra.(x)sa.(X) g Pj[x).

By definition d(x) g C(Pj]).

Therefore & r aXx)saXx)xaj G Pj[x].

Suppose saf(x) o C(Pj[x]) then s”fx). (x& - xH) g C(Pj[x]) foranyj 4 t.
k
But . ra’(x)sa.(x) G Pjtx] implies that
a
é(ra.xsa.xx P;[x] for some p # t.
£ 0000 P p
Hence £ (ra.(x)sa.(x)(xa - x" PJx].
J-I(*J()J()(BJ )) o PIX]

That is 'LII (raj(x)saj(x)(xa] - x")) G P:[x] where £ denotes that the p I* term is
j-
missing.

Renumbering if necessary we get

) ) a. a
A raj(x)sa(x) o Pj[x]and sa(x) o C(Pjtxl) where sa (x) - saXx)(x J - xT9.
This is a contradiction of the minimality of k.

n
Hence there exists j g Wsuch that fJ;(x) G 'HI C(PjM) and hence fj(x) GG.
i=

Therefore G satisfies the right Ore condition.
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The proof of the left Ore condition is analogous to the one above.

Thus G is an Ore set.

Let T = R[xJg the partial quotient ring of R[xl formed by inverting the elements of

Also let S be the quotient ring of R formed by inverting all the products of prime
elements in R.

Cleartly RcSnT.

Now suppose

f(x).0(x)_t =(pj..pn)-Ire T n'S wheref(x) e R[xJ, g(x) e G

and pj,...,pn are prime elements of R.

Hencepj ... pnf(x) = r.g(x).

But g(x) e C(Pj[x)) for all height -1 prime ideals P, and Pj[x) = pjR[X] for all i.

Hencer = pj .. pnt forsomete R.

Therefore f(x) * Lg(x).

Thus f(x)g(x)-1 =te R.

HenceR «Tn S.

Itjust remains to show that every two-sided ideal of T is principal.

Suppose | < R[xjg = T.

Using Corollary 2.8 and Lemma 2.9 we can choose prime elements p],...,pn and
integers a1 (...,an such that if we define J ={re RWolPI*1—Pti*” 1* | }then
| = Piai...pnanJand J£ pR[x]q for all prime elements p of R.

Also since the p” are normal it is easy to see that J < Rixlg *



But then J n C(pR[xl) » 0 for all prime elements p of R since J is essential in
R[x)
pR[xI'

Then by the same argument we used on the ideal K at the very beginning of this
proofJrt G + 0.
Therefore J contains a unit of R[x]q .
Hencel =R[xjg =T.
Thus if 1 < T then | = pjal...pnanT =T Pi*—Pn3” for soote prime elements pj and

positive integers aj.

0

4.9 Corollary
If Ris a UFR with a polynomial identity then R = T n S where T is Noetherian

with every two-sided ideal principal and S is simple Artinian.

Proof
In the proof of Theorem 4.8 T has A.C.C. on ideals and satisfies a polynomial
identity and hence is Noetherian by theorem 1.22.

Sis the simple Artinian quotient ring of R by lemma4.1.

O

In order to see what is going on we will give two examples and calculate G,

T and S for these rings.



4.11 Examples

R=2Z

In order to produce T we first need to calculate G as in the proof.

Z[x] 3 G =n C(P[x]) where P is a height -1 prime ideal of Z.
Thus G mn C(pZ[x]) where p is a prime integer.

G- Z[xI\( U  pZIx]).
pprime
Now T = Z[x]q .
(aQrajX + ... + anxl)

---—--- Where
(bO+bjX + ... + brxm)

Therefore a general element of T is of the form

H.C.F.(bo....bm) » 1.
Clearly S = Q.

bG bjX +... + bmxm .

Thenao +ajx +... + anxn - A (bo + bjx +... + bmxm).

Therefore b divides abj for all i, but H.C.F. (bo,....bm) - 1, hence b divides a.

Thus e Z

Therefore Z=To S.

It can easily be seen that T and S have the required properties.

R - M2(Z)
M2(Z)[x]- M 2(Z[x).

Therefore G = o C (M2(pZ[x]>) where p is a prime integer. It can be shown
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that G = {qe M2(Z[x]) Icoefficients of det(q) have H.C.F. = 1}.

Hence a general element of T can be viewed as -g-where a e M2(Z[x]) and b is a
polynomial in Z[x] whose coefficients have H.C.F. = 1.

Also S can be regarded M 2(<D).

Clearly M2(Z) ¢ M2(<D)n T and itis not too difficult to see that
M2(Z)- M2(Q)n T.

Again S and T obviously have the required properties.
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CHAPTER 5

REFLEXIVE IDEALS

In this chapter we will look at the reflexive ideals of a U.F.R. with a polynomial
identity.We will show that they are all of the form pj ...pnR where the p, are prime
elements of R.

In [11] Hajamavis and Williams showed that if R is a prime Noetherian maximal
orderand T £ R areflexive ideal of R, then the ring R/T has a quotient ring which is
an Artinian principal ideal ring. In this chapter we will show that this is also true if R

is a UFR with a polynomial identity.

Using the notation of chapter 4 we have R = T n S.Therefore it is clear that

Ic ITn IS forany ideal I of R, but for which ideals do we have I = 1T o IS ?

51 Lemma
Let R be a UFR with a polynomial identity and T be defined as in Theorem 4.7.

Thenif I is atwo-sided ideal of R then IT is a two-sided ideal of T.

Proof

Since T = R[x]q as in Theorem 4.8 and R[x]l * IR[x] it is enough to show that if
gqe Gtheng-1ITE IT.

Sinceq e R[X], qIT £ RIX]IT - IR[X]T = IT. Therefore IT £ q-1IT.

Hence ITE q_1ITE q"2TE q"3ITE ...

But these are all right ideals of T and T is Noetherian by Corollary 4.9.
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Therefore there exists a positive integer n such that
q-nrr - g-(n+1>rr.

Hence IT=q-,IT.

O

52 Lemma
Let R be a UFR with a polynomial identity, | a two-sided ideal of R and T and S
be as in Theorem 4.8. Then if I = 1T n ISwehave | = pj ... pnR for some pj prime

elements of R.

Proof
Assume 1°0.
By Lemma 5.1 IT is a two-sided ideal of T.
Hence IT = p j... pnT for some prime elements p, of R by Theorem 4.8.
Since S is simple and 1S is a two-sided ideal of S by (Theorem 1.31 ,[4])
IS- S
Thereforel - ITn Smpj..pnTr>S
Thus 1 3 Pi ...pnR. Takeae I
Sincea€ I's IT we have
a=pj..pnr(x)q(x)-1 for somer(x) e R[X), q(x) e G
We have q(x) is regular modulo pjRIx] for all i by definition of G.
Therefore ae p¢R for all i.
Hence | £ pt ... pnR.
Thus1-pj..pnR.

O



We will now use this lemma to determine precisely the reflexive ideals of R as

defined in Chapter 1

53 Theorem
If R is a UFR with a polynomial identity and I a reflexive ideal of R then I is

principal and a product of height -1 prime ideals of R.

Proof

I*(Sn IT)c I*Sn I*IT=1*Sr>T.

1*S is a two-sided ideal of S by (Theorem 1.31 ,[4]) and is therefore equal to S by
the simplicity of S (Lemma 2.11).

Therefore I*(So IT)cSnT =R by Theorem 4.7.

Hence Sn ITC I** - I

Thus 1- Sr>IT.

Therefore by Lemma5.2,1= pj ... pnR for some prime elements pj of R.

O

The next theorem is based on a theorem by Hajamavis and Williams [11], which states
that if R is a Noetherian maximal order and | a reflexive ideal of R then R/l has an
Artinian quotient ring which is a principal ideal ring.Since we already know that a
U.F.R. with a polynomial identity is a maximal order (Theorem 4.6) and we have
shown in chapter 4 that most things that are true for a Noetherian U.F.R. are true in
the polynomial identity case,it is not completely surprising that the following theorem

is true.
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54 Theorem
Let R be a UFR with a polynomial identity and let | be a reflexive ideal of R.

Then R/I has an Artinian quotient ring which is a principal ideal ring.

Proof

By Theorem 5.21= pt ... pnR where the pj are prime element of R.

Let W be the ring obtained from R by inverting all the prime elements of R which
do not generate prime ideals containing I.

The height -1 prime ideals which contain I are {pjR li = I,...,n}.

First we show that pjw = Wpj forall 1£i £n.

Clearly p;R = Rpj.

So therefore we need to show that pjg-1 e Wpj where q generates a height -1
prime ideal of R not containing I.

We have Rq = gR.

Therefore q-1R = Rg-1.

Hence p*g-1 = q_1rfor somere R.

Thusqpj = rq.

Thereforerq e pjR.

Butge C(pjR) therefore r = spjfor somese R.

Hence Pjq-1 = q_,spi e Wpj.

Therefore p,W £ Wpj.

Similarly Wpjc piw.

Hence Wpj - pjw.
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We will now show that p,W is a prime ideal of W forall 1LEi £ n.
LetaWb £ pjw for somea, be W.

Leta=rg-1 and b = s-1tfor somer,te R and g,s inverted elements in W.
Thereforerg-, W s-1t£ pjWw.

Hence rWt £ pjw.

Therefore rRt£ pjR.

Thusre p*Rorte p"RsincepjRisprime.

Thereforeae pjW orb 6 pjW proving that pjW is prime in W.

Now let Q be a non-zero prime ideal of W.

Therefore Q n R is a non-zero ideal of R and so contains a product of prime
elements by Theorem 2.7.

Rearranging these prime elements if necessary using corollary 2.13 we get
qj .. qnsj..s{ e Q where the gj and Sj are prime elements of R and the sj are
invertible in W.

Therefore gj ...qn e Q.

Hence gt ... gqnW e Q which gives us that qjwq2w ... qmW £ Q since q jW =
W(j as shown previously.

Thus qjW £ Q for some 1£ i £ m since Q is prime.

But q,W is prime, therefore every prime ideal of W contains a principal prime
ideal.

Also W is a prime ring, thus W is a UFR.

The height -1 prime ideals of W are precisely the pjw where pj is a prime
element generating a prime ideal which contains 1.

Also W is contained in the quotient ring of R and so satisfies the same polynomial
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identity as R by theorem 1.19.

Therefore W is a UFR with a polynomial identity and only a finite number of
height -1 prime ideals.

Hence W is a semi-local principal ideal ring by Theorem 5.2.

The Jacobson radical of W is pt .. pnW as shown in theorem 5.2 therefore

W /pj...pnW is an Artinian principal ideal ring.

It just remains to show that W /pj ... pnW is isomorphic to the quotient ring of

RI/I.
We first need that pj ...pnWn R = 1.

LetPl —Pnr 'Il' -% ! - swilhr.se R.q,.....qm prime.
Assume s £ pt ... pnR.

Choose r such that m is minimal.

Thereforep, ...pnr - sqm ... q,.

But the pj are regular modulo Rqlt hencer = rjqj for somerj 6 R.
Thusp,...p,.r,qi - sqm..q2q,.

Hencep,...pnr, - sqm .q2.

But this contradicts the minimality of m.

Hence S6p(..pnR=1.

Thusp| ..pnWn R=1.

Now let 0 : R/l -»W /pt ... pnW be defined by
6(a+1)=a+pj ..pnW.

Sincepj ..pnWnR « 1, 0is well defined.

LetO(a 1)- 0.

Hencea+p,...pnW C p, ... pnW.
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Thereforeae p j...pnW.

Thusa6 pj ..pnWn R.

Henceae I

Therefore 9 is injective.

Hence R/1 a subring of W /p, ... pnW.

R/la{r+pj..pnW Ire R}

Let X be the ring obtained from R/I by inverting the prime elements of R which
generate height -1 primes of R not containing I.

Then 0 extends to an isomorphism between X and W /pj ... pnW.

Forexample ifrq-1+ 1e X and O(rq_1+1) = 0.

We have rq“le pj ..pnW.

Therefore

rg-1 = qjl..gqNspj .. pn for some se R and prime elements g;.
Thus gm ...qtr - sp, ... png.
Therefore since the qj are regular modulo the pj's we haver = pj ... pnrj for some
rjeR.
Thereforere I.

Hencerg-1+1=0inX.

Finally we will show that X is the quotient ring of R/I.

Clearly R/l ¢ X and since q-,R = Rg-1 any element of X can be written as rq-1
withre R/I and q regular in R/I.

It thus remains to be shown that if x is regular in R/I then x is a unit in X.

Letxe C(l).
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n
Then xe ,ch(p;R) otherwise if xs e pjR then xspj..p,_jPj+jPne | with
i=
*Pl-Pi-iPi+i  Pn* L
n

Thereforex e (17C(p,W) since C(pjR) s C(pjw).

We have x regular in W therefore by corollary 1.18 xW contains a non-zero
central element z.
Therefore z = xr for somer 6 W.
Since z is central it is normal, therefore by Lemma 2.14 z = ugj ... gm where u is
aunitand the qj are generators of height -1 prime ideals in W.
Therefore xr = uqj... qm.
But x e C(qjw) forall 1:Sj £ m.
Thereforere gjwn ..n gmW = gj ... qmW.
Hencer =r,qj...qm for somert e W.
Thus xr,q, ...qm=uq, ...qm.
Therefore xrj = u.
Hence x is a unitin W.
Therefore x + p ,... pnW is a unitin W /pj ... pnW.
Thus if x + 1is regular in R/1
O(x+ 1) = x+pj..pnWis aunitin W/pt ... pnW.
Hence 0_1(x+p j.. pnW) isaunitin X.
Therefore x + Lisa unitin X.
Hence we have shown that R/l has a quotient ring X which is isomorphic to

W /pj ...pnW and is therefore an Artinian principal ideal ring by Theorem 5.2.

O
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