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Abstract

We prove CLTs for biased randomly trapped random walks in one dimension. By considering a sequence
of regeneration times, we will establish an annealed invariance principle under a second moment condition
on the trapping times. In the quenched setting, an environment dependent centring is necessary to achieve
a central limit theorem. We determine a suitable expression for this centring. As our main motivation, we
apply these results to biased walks on subcritical Galton–Watson trees conditioned to survive for a range of
bias values.
c⃝ 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this paper, we investigate biased randomly trapped random walks (RTRWs) on Z and apply
the results to subcritical Galton–Watson trees conditioned to survive. Randomly trapped random
walks were first introduced in [3] where it is shown that the possible scaling limits belong to
a certain class of time changed Brownian motions. The purpose of the RTRW is to generalise
models such as the Bouchaud trap model (see [7,17] and [33]) and provide a framework for
studying random walks on other random graphs in which trapping naturally occurs such as
biased random walks on percolation clusters (see [15,18] and [30]) and random walk in random
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environment (see [22] and [31]). Higher dimensional (d ≥ 2) unbiased randomly trapped random
walks have been studied further in [11] where a complete classification of the possible scaling
limits is given. In recent years there has been much progress in models involving trapping
phenomena; a review of recent developments in a range of models of directionally transient and
reversible random walks on underlying graphs such as supercritical GW-trees and supercritical
percolation clusters is given in [4].

A subcritical GW-tree conditioned to survive consists of a semi-infinite path (called the
backbone) with GW-trees as leaves. Typically, the leaves are quite short therefore the walk
on the tree does not deviate far from the backbone. For this reason we have that the walk on
the tree behaves like a randomly trapped random walk on Z with holding times distributed as
excursion times in GW-trees. Biased walks on subcritical GW-trees are, therefore, a natural
example of the randomly trapped random walk. Furthermore, they exhibit interesting behaviour
as the relationship between the bias and offspring law influences the trapping. In this paper we
are only concerned with ballistic walks. We note that the sub-ballistic regimes for the biased
walk on the subcritical tree have been studied in [10] where it is shown that either a strong bias
or heavy tails of the offspring law can slow the walk into a sub-ballistic phase.

Critical and supercritical GW-trees have also received much attention. In [13], it is shown that
the walk on the critical GW-tree conditioned to survive is always sub-ballistic; this is studied
further and it is shown that the walk belongs to the universality class of one-dimensional trapping
models with slowly-varying tails. For the biased walk on the supercritical GW-tree, it is shown
in [24] that when the bias is small the walk is recurrent, when the bias is large enough the walk
is sub-ballistic and there is some intermediate range for the bias such that the walk is ballistic.
The ballistic phase for this walk is studied further in [1] where an expression of the speed is
given and in [5] where appropriate scaling sequences for the sub-ballistic phase are shown. The
traps formed in the supercritical tree resemble those in the subcritical tree and it has been shown
in [10] that the walks observe similar scaling regimes.

We next introduce the models of interest and state the main results. We consider the randomly
trapped random walk model in which the embedded walk (Yk)k≥0 is a simple, biased random
walk on Z. That is, we write Yk :=

∑k
j=1χ j for a sequence of i.i.d. random variables (χ j ) j≥1

satisfying P(χ j = −1) = (β + 1)−1
= 1− P(χ j = 1) where β ≥ 1. For x ∈ Z write

L(x, n) :=
n∑

k=0

1{Yk=x}

for the local time of Y at site x by time n. The random environment ω is a sequence of (0,∞)-
valued probability measures (ωx )x∈Z with environment law P := π⊗Z for some fixed law π . For
a fixed environment ω, let (ηx,i )x∈Z,i≥0 be independent with ηx,i ∼ ωx . Writing

Sn :=
∑
x∈Z

L(x,n−1)∑
i=1

ηx,i =

n−1∑
k=0

ηYk ,L(Yk ,k) and S−1
t := sup{k ≥ 0 : Sk ≤ t},

we then define the randomly trapped random walk by X t := YS−1
t

.
This process is then a continuous time random walk on Z with k th holding time ηk :=

ηYk ,L(Yk ,k) and we write η := (ηk)k≥0 to be the sequence of holding times. For convenience
we will define St = S⌊t⌋ where ⌊t⌋ := max{k ∈ Z : k ≤ t} for non-integer t ∈ R. Let Pω denote
the law over X for fixed environment ω and P(·) =

∫
Pω(·)P(dω) the annealed law. Furthermore,

we denote by D([0,∞),R) the space of càdlàg functions mapping [0,∞) to R which we always
equip with the Skorohod J1 topology.
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We begin, in Section 2, by proving Theorem 1 which determines the ballistic range for the
walk.

Theorem 1. Suppose β > 1 and that E[η0] <∞, then Xnt/n converges P-a.s. on D([0,∞),R)
to the process νβ t where

νβ :=
(β − 1)

E[η0](β + 1)
.

Following this, we use a renewal argument, similar to [29], to prove Theorem 2 which is an
annealed, functional central limit theorem for the walk.

Theorem 2. Suppose that β > 1 and E[η2
0] <∞ then there exists ς2

∈ (0,∞) such that

Bn
t :=

Xnt − ntνβ

ς
√

n

converges in P-distribution on D([0,∞),R) to a standard Brownian motion.

In Section 3 we adapt the technique used in [19] (to prove a quenched CLT for a random
walk in random environment) to derive a quenched central limit theorem with an environment
dependent centring for the randomly trapped random walk. This is Theorem 3.

Theorem 3. Suppose β > 1, E[η2
0] <∞ and for some ε > 0 we have that E[Eω[η0]2+ε] <∞,

then there exists ϑ2
∈ (0,∞) such that for P-a.e. ω we have that

Pω

(
X t − Gω(t)

ϑ
√

t
≤ u

)
→ Φ(u) :=

∫ u

−∞

e−
v2
2

√
2π

dv

uniformly in u as t →∞ where

Gω(t) := νβ t − νβ

⌊νβ t−1⌋∑
y=0

β + 1
β − 1

(Eω[ηy,0]− E[ηy,0]).

The function Gω(t) is the annealed, deterministic centring with an environment dependent
correction. This correction is a sum of centred i.i.d. random variables with (typically) non-zero
variance under the environment law. This shows that the correction obeys a central limit theorem
under P, thus has

√
t fluctuations and is, therefore, necessary.

In Section 4 we apply these results to the biased random walk on a subcritical GW-tree
conditioned to survive. Let f (s) =

∑
∞

k=0 pksk denote the generating function of a GW-process
with mean µ ∈ (0, 1) and variance σ 2 < ∞. Denote by Zn the nth generation size of a
GW-process with this law. Such a process gives rise to a random rooted tree T f where individuals
in the process are represented by vertices (with the unique progenitor as the root ρ) and
undirected edges connect individuals with their offspring. To avoid the trivial case in which
no traps form we also assume that p0 + p1 < 1. We denote by ξ a random variable with the
offspring law. It has been shown in [21] that there is a well defined probability measure P over
f -GW trees conditioned to survive T which we describe in greater detail in Section 4.

For a fixed tree T rooted at ρ, we write←−x to denote the parent of x ∈ T and c(x) the set
of children of x . For β ≥ 1, we then define the β biased random walk X as the Markov chain
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started from a fixed vertex z with transition probabilities

PT
z (Xn+1 = y|Xn = x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1+ β|c(x)|

, if y =←−x ,

β

1+ β|c(x)|
, if y ∈ c(x), x ̸= ρ,

1
|c(ρ)|

, if y ∈ c(x), x = ρ,

0, otherwise.

(1.1)

As in the randomly trapped random walk case, we use P(·) =
∫

PT
ρ (·)P(dT ) for the annealed

law. This is the model of the biased random walk on a subcritical GW-tree conditioned to survive
which is the focus of Theorems 4–6. Let |Xn| denote the graph distance between the walk at time
n and the root of the tree. In Theorem 4 we determine an explicit expression for the speed of the
walk.

Theorem 4. Suppose βµ < 1, σ 2 <∞ and β > 1, then |Xn|/n converges P-a.s. to

νβ :=
µ(β − 1)(1− βµ)

µ(β + 1)(1− βµ)+ 2β(σ 2 − µ(1− µ))
.

A short calculation shows that this speed νβ is unimodal in the bias; an example of which
is illustrated in Fig. 1. Proving this remains an open problem in the related models of random
walks on supercritical GW-trees and supercritical percolation clusters (see [4]) where explicit
expressions for the speed are, in general, not known.

Following this, we use Theorem 2 to prove Theorem 5 which is an annealed functional CLT
for the walk on the tree.

Theorem 5. If β2µ < 1, β > 1 and E[ξ 3] <∞ then there exists ς2 <∞ such that

Bn
t :=
|Xnt | − ntνβ

ς
√

n

converges in P-distribution on D([0,∞),R) to a standard Brownian motion.

Finally, we use Theorem 3 to prove Theorem 6 which is a quenched CLT with an environment
dependent centring GT (defined in (4.10)) for the walk on the tree.

Fig. 1. An example of the speed νβ relative to the bias for a fixed mean µ = 1/2 and variance σ 2
= 1/2.
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Theorem 6. If β2µ < 1, β > 1 and E[ξ 3+δ] <∞ for some δ > 0 then there exists ϑ > 0 such
that for P-a.e. T we have that

PT
(

X t − GT (t)
ϑ
√

t
≤ x

)
→ Φ(x)

uniformly in x as n→∞.

Further to these results, we also prove Einstein relations for both the randomly trapped random
walk and the random walk on the subcritical GW-tree conditioned to survive. That is, we relate
the diffusion of the unbiased walk with the derivative of the speed (with respect to the bias) as
the bias tends to 1 (i.e. neutral bias).

A technique is developed in [6] that can be used to extend an annealed invariance principle to
a quenched result. This is applied in [27] to prove a quenched functional central limit theorem
for the walk on the supercritical tree when the offspring distribution has exponential moments
and no deaths. The condition of exponential moments is purely technical. However, because
the offspring law has no deaths, the supercritical tree does not have traps which represents a
significant simplification of the problem. Due to the similarity of the traps in the supercritical
and subcritical GW-trees with leaves, a key motivation of this paper is to be able to extend the
result of [27] to allow for deaths in the offspring law.

The correction GT is the annealed centring with an additional sum of centred i.i.d. random
variables with non-zero variance under the environment law. This term has fluctuations on the
order of

√
t which suggests that the annealed convergence in Theorem 5 cannot be extended to

convergence under the quenched law as one may expect by comparison with the supercritical
tree where it is possible to adapt the argument of [6]. This argument relies on multiple copies of
the walk eventually having separate escape paths; this results in the randomness of the embedded
walk mixing the environment encountered sufficiently to remove the dependency on the specific
environment. In the subcritical GW-tree model, the walk is forced to escape along a single route
and therefore visits every branch in the tree. This results in the walk accumulating environment
dependent fluctuations.

We show in Lemma 4.5 that the duration of an excursion in a branch of a subcritical GW-tree
has infinite variance when β2µ ≥ 1. For this reason a central limit theorem should only hold
when β < µ−1/2. This supports [4, Conjecture 3.1] which states that a quenched central limit
will hold on the supercritical tree only when β <

√
βc where βc is the critical upper bound on

the bias for the walk to be ballistic. This will be shown in [8].

2. A law of large numbers and functional central limit theorem

The main aim of this section is to derive an annealed functional central limit theorem for the
RTRW model with positive bias. That is, we prove Theorem 2 by considering a regeneration
argument similar to that used in [29].

We begin, in Proposition 2.1, by using ergodicity of the sequence of holding times to show
convergence of the scaled clock process. We then use this to deduce the speed result Theorem 1.
Following this, by using a sequence of regeneration times, we approximate Xnt − ntνβ by a
sum of i.i.d. centred random variables. The result then follows straightforwardly from Donsker’s
theorem and continuity of the composition at continuous limits.

We now prove convergence of the clock process. Notice that we consider the unbiased case
(β = 1) as well as the positive bias case. This will be used to prove an Einstein relation for the
walk.
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Proposition 2.1. Suppose β ≥ 1 and that E[η0] <∞ then Snt/n and S−1
nt /n converge P-a.s. on

D([0,∞),R) to the deterministic processes St = E[η0]t and S−1
t = E[η0]−1t respectively.

Proof. By [11, Lemma 2.1], the left shift on sequences (θ (η0, η1, . . .) = (η1, η2, . . .)) acts
ergodically on η under P for any non-degenerate random walk on a fixed environment with
i.i.d. traps. This includes our embedded walk for any β ≥ 1.

We have that f (η) := η0 is integrable because E[η0] <∞. Therefore, since θ acts ergodically
on η under P, by the ergodic theorem

lim
n→∞

Snt

n
= lim

n→∞

1
n

⌊nt⌋−1∑
k=0

ηk = lim
n→∞

t
1
nt

⌊nt⌋−1∑
k=0

f (θ kη) = tE[ f (η)]

almost surely. The sequence of functions Snt/n are increasing in t and the limit St = E[η0]t is
continuous therefore the convergence holds uniformly over t ∈ [0, T ] for T <∞.

Since St is strictly increasing we have the desired convergence of S−1
nt /n by continuity of the

inverse at strictly increasing functions ([32, Corollary 13.6.4]). □

Using Proposition 2.1, we are now able to complete the speed result for the walk.

Proof of Theorem 1. Notice that

Xnt

n
=

YS−1
⌊nt⌋

n
=

YS−1
⌊nt⌋

S−1
⌊nt⌋

·
S−1
⌊nt⌋

n
.

By the law of large numbers n−1Yn converges a.s. to (β−1)/(β+1) therefore, by Proposition 2.1
and using that S−1

t is continuous, we indeed have the desired result. □

An additional result that can be deduced from Proposition 2.1 and Theorem 1 is that the
following Einstein relation holds.

Corollary 2.2. Suppose E[η0] < ∞. The unbiased (β = 1) walk X⌊nt⌋n−1/2 converges in
P-distribution on D([0,∞),R) to a scaled Brownian motion with variance Υ = E[η0]−1.
Moreover,

lim
β→1+

νβ

β − 1
=

Υ

2

where νβ is the speed calculated in Theorem 1 for the β-biased walk.

Proof. For β = 1 we have that Ynt is the sum of i.i.d. copies of the random variable χ satisfying
P(χ = 1) = 1/2 = P(χ = −1) thus by Donsker’s invariance principle Ynt n−1/2 converges in
P-distribution on D([0,∞),R) to a standard Brownian motion.

By Proposition 2.1 we have that S−1
⌊nt⌋/n converges P-a.s. to the deterministic process t/E[η0]

uniformly over t ≤ T . By continuity of the limiting Brownian motion and continuity of
composition at continuous limits ([32, Theorem 13.2.1]), we have that

Xnt
√

n
=

YS−1
⌊nt⌋
√

n
and

Ynt/E[η0]
√

n

converge to the same limiting process. This is a scaled Brownian motion with variance Υ =
E[η0]−1.
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By Theorem 1 we have that, for β > 1,

νβ =
(β − 1)

E[η0](β + 1)
,

and therefore we indeed have that

lim
β→1+

νβ

β − 1
=

Υ

2
. □

We now move on to proving Theorem 2. We want to approximate Xnt − ntνβ by the sum of
i.i.d. centred random variables with finite second moments. Let κ0 = 0 and, for j = 1, 2, . . .,
define κ j := inf{m > κ j−1 : {Yl}

m−1
l=0 ∩ {Yl}

∞

l=m = ∅} to be the regeneration times of the walk Y .
We then have that Sκ j for j ≥ 1 are regeneration times for X and we write ϱ j := Yκ j = X Sκ j

to
be the regeneration points. We then write

Z j :=

(
X Sκ j
− X Sκ j−1

−

(
Sκ j − Sκ j−1

)
νβ

)
=

(
ϱ j − ϱ j−1 −

(
Sκ j − Sκ j−1

)
νβ

)
.

By [14, Lemma 5.1] the time and distance between regenerations of Y have exponential
moments when β > 1. That is, for any j ≥ 1 and some constants C, c (depending on β),

P(ϱ j+1 − ϱ j > n), P(κ j+1 − κ j > n) ≤ Ce−cn. (2.1)

Lemma 2.3. Suppose that β > 1 and E[η0] <∞ then {Z j } j≥2 are centred and i.i.d. under P.

Proof. By [14] we have that the sections of the walk (Yi+κ j − Yκ j )
κ j+1−κ j
i=1 , for j ≥ 1, are

i.i.d. therefore, since the traps (ωx )x∈Z are i.i.d. and independent of the walk Y , we have that the
collections (ηk)

κ j+1−1
k=κ j

are i.i.d. It follows that {Z j } j≥2 are i.i.d. under P.
It remains to show that Z j are centred. Since the distribution of a given holding time is

independent of the regeneration times of Y and E[η0] <∞ we have that

νβE[Sκ2 − Sκ1 ] =
β − 1

(β + 1)E[η0]
E

⎡⎣κ2−1∑
k=κ1

E[ηk |κ2, κ1]

⎤⎦ = β − 1
β + 1

E[κ2 − κ1]. (2.2)

We want to show this is equal to E[ϱ j − ϱ j−1] = E[Yκ2 − Yκ1 ]. By (2.1) the time between
regenerations and distance between regeneration points have exponential moments hence, by the
law of large numbers, ∑m

j=2 Yκ j − Yκ j−1

m
→ E[Yκ2 − Yκ1 ],∑m

j=2 κ j − κ j−1

m
→ E[κ2 − κ1]

and therefore ∑m
j=2 Yκ j − Yκ j−1∑m
j=2 κ j − κ j−1

→
E[Yκ2 − Yκ1 ]
E[κ2 − κ1]

(2.3)

P-a.s. as m →∞. However,∑m
j=2 Yκ j − Yκ j−1∑m
j=2 κ j − κ j−1

=
Yκm

κm

(
1+

κ1

κm − κ1

)
−

Yκ1

κm − κ1
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where Yκ1/(κm − κ1) and κ1/(κm − κ1) converge P-a.s. to 0. Furthermore, by the law of large
numbers, Yκm /κm converges P-a.s. to (β − 1)/(β + 1) therefore∑m

j=2 Yκ j − Yκ j−1∑m
j=2 κ j − κ j−1

→
β − 1
β + 1

. (2.4)

By (2.2), (2.3) and (2.4) we then have that Z j are centred since

E[ϱ2 − ϱ1] = E[Yκ2 − Yκ1 ] =
β − 1
β + 1

E[κ2 − κ1] = νβE[Sκ2 − Sκ1 ]. □

In Theorem 2 we show that Bn
t can be approximated by a sum of Z j which, by Lemma 2.3,

are i.i.d. centred random variables. With the aim of proving the central limit theorem, we now
show that they also have finite second moments.

Lemma 2.4. Suppose that β > 1 and E[η2
0] <∞ then E[Z2

j ] <∞ for j ≥ 2.

Proof. Since {Z j } j≥2 are i.i.d. under P we have that E[Z2
j ] = E[Z2

2] for all j ≥ 2. By properties
of regenerations times ϱ2 ≥ ϱ1 and Sκ2 ≥ Sκ1 almost surely therefore we have that

E[Z2
2] ≤ E

[
(ϱ2 − ϱ1)

2]
+ ν2

βE
[(

Sκ2 − Sκ1

)2
]
. (2.5)

For the second term we have

E
[(

Sκ2 − Sκ1

)2
]
= E

⎡⎣(ϱ2−1∑
x=ϱ1

L(x,∞)∑
i=1

ηx,i

)2⎤⎦
= E

⎡⎣ϱ2−1∑
x=ϱ1

(L(x,∞)∑
i=1

ηx,i

)2⎤⎦
+ E

⎡⎣ϱ2−1∑
x=ϱ1

ϱ2−1∑
y=ϱ1

1{x ̸=y}

(L(x,∞)∑
i=1

ηx,i

)⎛⎝L(y,∞)∑
j=1

ηy, j

⎞⎠⎤⎦ . (2.6)

By conditioning on Y we have that the holding times at separate vertices are independent
therefore the second term in this expression can be written as

E

⎡⎣ϱ2−1∑
x=ϱ1

ϱ2−1∑
y=ϱ1

1{x ̸=y}E

[L(x,∞)∑
i=1

ηx,i

⏐⏐⏐Y]E
⎡⎣L(y,∞)∑

j=1

ηy, j

⏐⏐⏐Y
⎤⎦⎤⎦

= E

⎡⎣ϱ2−1∑
x=ϱ1

ϱ2−1∑
y=ϱ1

1{x ̸=y}

(L(x,∞)∑
i=1

E[ηx,i ]

)⎛⎝L(y,∞)∑
j=1

E[ηy, j ]

⎞⎠⎤⎦
= E

[
ϱ2−1∑
x=ϱ1

ϱ2−1∑
y=ϱ1

1{x ̸=y}E[η0]2L(x,∞)L(y,∞)

]

≤ E[η0]2E

⎡⎣(ϱ2−1∑
x=ϱ1

L(x,∞)

)2⎤⎦
= E[η0]2E[(κ2 − κ1)2].
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By (2.1), the time and distance between regenerations have exponential moments therefore

E
[
(ϱ2 − ϱ1)

2]
≤ E

[
(κ2 − κ1)

2] <∞. (2.7)

Combining (2.7) with (2.5) and (2.6), in order to show that E[Z2
2] <∞ it remains to show that

E

⎡⎣ϱ2−1∑
x=ϱ1

(L(x,∞)∑
i=1

ηx,i

)2⎤⎦ <∞.

Conditioning on Y this expectation is equal to

E

⎡⎣ϱ2−1∑
x=ϱ1

L(x,∞)∑
i, j=1

E
[
ηx,iηx, j

⏐⏐⏐Y]
⎤⎦ ≤ E

[
ϱ2−1∑
x=ϱ1

L(x,∞)2E
[
η2

x,1

]]
≤ E[η2

0]E
[
(κ2 − κ1)2]

which is finite by assumption and (2.7). □

We now conclude the proof of the annealed functional central limit theorem by showing that
Bn

t can be suitably approximated by a sum of Z j .

Proof of Theorem 2. By Lemmas 2.3 and 2.4

Σm :=

m∑
j=2

Z j =
(
X Sκm − Sκm νβ

)
−

(
X Sκ1
− Sκ1νβ

)
=
(
ϱm − Sκm νβ

)
−
(
ϱ1 − Sκ1νβ

)
for m ≥ 2 is a sum of i.i.d. centred random variables with finite second moment.

Write m t := sup{ j ≥ 0 : Sκ j ≤ t} to be the number of regenerations by time t > 0 then

sup
t∈[0,T ]

⏐⏐⏐⏐Bn
t −

Σmtn

ς
√

n

⏐⏐⏐⏐ ≤ ϱ1 + Sκ1νβ + |mink Yk |

ς
√

n

+ sup
j=1,...,mT n

ϱ j+1 − ϱ j +

(
Sκ j+1 − Sκ j

)
νβ

ς
√

n
.

The random variables ϱ1, Sκ1 and |minkYk | are all almost surely finite therefore the first fraction
converges to 0 P-a.s. For ε > 0, by a union bound and Markov’s inequality

P

(
sup

j=1,...,mT n

Sκ j+1 − Sκ j
√

n
> ε

)
≤ P

(
mT n > 2T nE[η0]−1)

+ CT nP
(
Sκ2 − Sκ1 > ε

√
n
)

≤ P
(
mT n > 2T nE[η0]−1)

+ CT,εE
[
(Sκ2 − Sκ1 )21{Sκ2−Sκ1≥ε

√
n}

]
.

By Proposition 2.1, since S−1
t ≥ m t , we have that P

(
mT n > 2T nE[η0]−1

)
→ 0 as n →∞. By

Lemma 2.4 we have that E
[
(Sκ2 − Sκ1 )2

]
<∞ therefore by dominated convergence

E
[
(Sκ2 − Sκ1 )21{Sκ2−Sκ1≥ε

√
n}

]
→ 0

as n→∞. Similarly, by (2.7), E
[
(ϱ2 − ϱ1)2

]
<∞ hence we have that

P

(
sup

j=1,...,mT n

ϱ j+1 − ϱ j
√

n
> ε

)
→ 0
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as n →∞, and the supremum distance between (Bn
t )t∈[0,T ] and (Σmtn /ς

√
n)t∈[0,T ] converges to

0 in P-probability. It therefore suffices to prove an invariance principle for Σmtn .
For s ∈ R+ let Σs denote the linear interpolation of Σm then by Donsker’s invariance principle

we have that (Σtn/
√

n)t∈[0,T ] converges in distribution to a scaled Brownian motion.
By the law of large numbers we have that κn/n converges P-a.s. to E[κ2 − κ1] as n → ∞.

Therefore, by continuity of the inverse at strictly increasing functions ([32, Corollary 13.6.4]),
we have that m tn/n converges P-a.s. on D([0,∞),R) to the deterministic process Rt :=

(E[η0]E[κ2 − κ1])−1t .
By continuity of composition at continuous limits ([32, Theorem 13.2.1]) it follows that the

sequence (Σmtn /
√

n)t∈[0,T ] converges to the same limit as (ΣRt n/
√

n)t∈[0,T ] which is a scaled
Brownian motion. In particular, choosing

ς2
=

E[Z2
2]

E[η0]E[κ2 − κ1]
(2.8)

we have that Bn
t converges to a standard Brownian motion. □

3. Quenched central limit theorem

In this section we prove Theorem 3 which is a quenched CLT for the RTRW. We do this by first
proving a quenched CLT for the first hitting time of x . This involves an environment dependent
centring Hω which we then approximate by a more suitable sum H̃ω of random variables which
are i.i.d. under P. We complete the result by controlling the variation of mean holding times at
different vertices and using that the walk does not deviate too far from the furthest point reached.

Write τx := inf{t ≥ 0 : X t = x} and, for ω fixed, Hω(x) := Eω[τx ]. Let ζy := τy+1−τy be the
time taken between hitting y and y+1 for the first time. The elements of (ζy)k≥1 are independent
under Pω and

τx =

x−1∑
y=0

ζy .

Lemma 3.1. Suppose that β > 1 and E[η2
0] <∞. For P-a.e. ω we have that

Pω

(
τx −Hω(x)

σ
√

x
< t

)
→ Φ(t)

uniformly in t as x →∞, where σ 2
= E[Varω(τ1)].

Proof. By definition of τx ,Hω(x) and ζy

τx −Hω(x)
σ
√

x
=

∑x−1
y=0(ζy − Eω[ζy])

σ
√

x
.

It therefore suffices to show that Lindeberg’s conditions (see [16, Theorem 3.4.5]) hold:

1. for P-a.e. ω, as x →∞
x−1∑
y=0

Eω

[(
ζy − Eω[ζy]

σ
√

x

)2
]
→ 1;
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2. for P-a.e. ω, ∀ε > 0 as x →∞
x−1∑
y=0

Eω

[(
ζy − Eω[ζy]

σ
√

x

)2

1{|ζy−Eω[ζy ]|>ε
√

x}

]
→ 0.

Let θ̃ denote the shift map on the environment ((θ̃ω)k = ωk+1) which is ergodic because the
environment is i.i.d. For the first condition we have that ζy − Eω[ζy] = θ̃ y(ζ0 − Eω[ζ0]). These
random variables are identically distributed under P and, similarly to Lemma 2.4, we have that
E
[
Eω[(ζ0 − Eω[ζ0])2]

]
≤ E[τ 2

1 ] <∞ therefore
x−1∑
y=0

Varω
(
ζy
)

σ 2x
=

x−1∑
y=0

Varθ̃ yω (ζ0)

σ 2x

which converges to E [Varω(ζ0)] σ−2
= 1 for P-a.e. ω by Birkhoff’s ergodic theorem.

For the second condition write Uω
K (·) := Eω[(· − Eω[·])21{|·−Eω[·]|>K }] then for all ε > 0 there

exists ∃Nε,K ∈ N such that ε
√

x > K for all x ≥ Nε,K . Therefore, for x large
x−1∑
y=0

Eω

[(
ζy − Eω[ζy]

σ
√

x

)2

1{|ζy−Eω[ζy ]|>ε
√

x}

]
≤

x−1∑
y=0

Uω
K (ζy)
σ 2x

=

x−1∑
y=0

U θ̃ yω
K (ζ0)
σ 2x

.

By Birkhoff’s ergodic theorem, for P-a.e. ω, this converges to

E
[
Uω

K (ζ0)
]

σ 2 =
E
[
Eω
[
(ζ0 − Eω[ζ0])21{|ζ0−Eω[ζ0]|>K }

]]
σ 2

which converges to 0 as K →∞ by dominated convergence. □

Write τ Y
x := inf{m ≥ 0 : Ym = x} to be the first hitting time of x by the embedded walk.

The following lemma describes the probability that the embedded walk moves back to y before
moving forward to x . The result is the classical Gambler’s ruin therefore we omit the proof.

Lemma 3.2. For integers y < 0 < x

P0(τ Y
y < τ Y

x ) =
βx
− 1

βx−y − 1
.

By Lemma 3.1 we have a central limit theorem for the first hitting time of vertex x . The
environment dependent centring Hω(x) can be written as the sum of x identically distributed
random variables Eω[ζy]. These are not independent however; they are only locally dependent.
Recall that ηy,i is the i th holding time at vertex y hence E[ζ0] = E[η0,0](β + 1)/(β − 1) then
write

H̃ω(x) :=
x−1∑
y=0

β + 1
β − 1

Eω[ηy,0].

We now show that Hω and H̃ω do not differ too much and therefore Lemma 3.1 also holds with
Hω replaced by H̃ω. Notice that this is the first point at which we introduce the extra 2 + ε

moment condition however we do require the condition later in Lemma 3.4 as well.

Lemma 3.3. Suppose β > 1 and E
[
Eω[η0]2+ε

]
<∞ for some ε > 0. For P-a.e. ω, as x →∞,⏐⏐⏐⏐⏐H̃ω(x)−Hω(x)

√
x

⏐⏐⏐⏐⏐→ 0.
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Proof. Recall that L(y, m) denotes the local time of Y at vertex y by time m and that the trapping
times ηy, j do not depend on the embedded walk, then

Hω(x) = Eω

⎡⎣ x−1∑
y=−∞

L(y,τY
x )∑

j=1

ηy, j

⎤⎦ = x−1∑
y=−∞

E0[L(y, τ Y
x )]Eω[ηy,0].

We need to determine the expected local times at sites up to reaching x . By the strong Markov
property E0[L(y, τ Y

x )] = P0(τ Y
y < τ Y

x )Ey[L(y, τ Y
x )].

Let (τ Y
x )+ := inf{m > 0 : Ym = x} be the first return time to x by the embedded walk. By

Lemma 3.2, L(y, τ Y
x ) for a walk started at y is geometrically distributed with escape probability

Py(τ Y
x < (τ Y

y )+) =
β

1+ β

(
1− P0(τ Y

−1 < τ Y
x−y−1)

)
=

βx−y(β − 1)
(βx−y − 1)(β + 1)

.

Therefore,

Ey
[
L(y, τ Y

x )
]
=

(βx−y
− 1)(β + 1)

βx−y(β − 1)
and

E0
[
L(y, τ Y

x )
]
=

⎧⎪⎪⎨⎪⎪⎩
(βx
− 1)(β + 1)

βx−y(β − 1)
if y < 0,

(βx−y
− 1)(β + 1)

βx−y(β − 1)
if y ≥ 0.

For fixed y < 0, E0[L(y, τ Y
x )] is increasing in x and converges to β y(β + 1)/(β − 1). In

particular,

0 ≤
−1∑

y=−∞

E0[L(y, τ Y
x )]Eω[ηy,0] ≤ C

∞∑
y=1

β−yEω[η−y,0]

which is finite for P-a.e. ω therefore x−1/2∑−1
y=−∞E0[L(y, τ Y

x )]Eω[ηy,0] converges to 0 for
P-a.e. ω.

For y ≥ 0 fixed, E0[L(y, τ Y
x )] is increasing in x and converges to (β+1)/(β−1). In particular,

0 ≤
∞∑

y=0

(
β + 1
β − 1

− E0[L(y, τ Y
x )]
)

Eω[ηy,0]

=
β + 1
β − 1

x−1∑
y=0

β−(x−y)Eω[ηy,0]

=
β + 1
β − 1

⎛⎜⎜⎝
x−
⌊

2 log(x)
log(β)

⌋∑
y=0

β−(x−y)Eω[ηy,0]+
x−1∑

y=x−
⌊

2 log(x)
log(β)

⌋
+1

β−(x−y)Eω[ηy,0]

⎞⎟⎟⎠

≤ C

⎛⎜⎜⎝x−1∑
y=0

β
−2 log(x)

log(β) Eω[ηy,0]+
x−1∑

y=x−
⌊

2 log(x)
log(β)

⌋
+1

Eω[ηy,0]

⎞⎟⎟⎠
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= C

⎛⎜⎜⎝x−1∑
y=0

Eω[ηy,0]
x2 +

x−1∑
y=x−

⌊
2 log(x)

log(β)

⌋
+1

Eω[ηy,0]

⎞⎟⎟⎠ .

The first term converges to 0 for P-a.e. ω by the strong law of large numbers. For the second term
we have that, for δ, ϵ > 0, by Markov’s inequality

P

⎛⎜⎜⎝ x−1∑
y=x−

⌊
2 log(x)

log(β)

⌋
+1

Eω[ηy,0] > ϵ
√

x

⎞⎟⎟⎠ ≤ 2
log(x)
log(β)

P
(

Eω[η0] >
ϵ
√

x log(β)
2 log(x)

)

= 2
log(x)
log(β)

P
(

Eω[η0]2+δ >
Cϵx1+δ/2

log(x)2+δ

)
≤

C log(x)3+δ

x1+δ/2

since we can choose δ > 0 sufficiently small such that E
[
Eω[η0]2+δ

]
< ∞. By Borel–Cantelli

we then have that
x−1∑

y=x−
⌊

2 log(x)
log(β)

⌋
+1

Eω[ηy,0]
√

x

converges to 0 for P-a.e. ω. □

We now prove a technical lemma that allows us to control the difference between H̃ω and its
expected value under P which is important in proving the quenched CLT for the walk.

Lemma 3.4. Let

J (x) :=
x−1∑
y=0

(
Eω[ηy,0]− E[ηy,0]

)
and

J ∗(x) := max
y≤x

J (y).

1. Suppose E
[
Eω[η0]2

]
<∞, then for any c > 0, J (x)n−

1+c
2 → 0 for P-a.e. ω;

2. Suppose E
[
Eω[η0]2+ε

]
< ∞ for some ε > 0, then for δ > 0 sufficiently small and some

constant C

E
[
|J ∗(x)|2+2δ

] 1
2+2δ
≤ Cx1/2.

Proof. By [28, Theorem IX.3.17], if Zx are i.i.d. centred random variables, ax is an increasing,
diverging sequence and

1.
∑
∞

x=1P(|Z1| ≥ ax ) <∞;
2.
∑
∞

y=x a−2
y = O

(
x

a2
x

)
;

3. ay/ax ≤ Cy/x for all y ≥ x

then
∑x

y=1
Z y
ax

converges to 0, P-a.s.
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Write Zx := Eω[ηx,0]−E[ηx,0] then Zx are i.i.d. and centred under P; moreover, the sequence
ax = x

1+c
2 is increasing and diverges. By Chebyshev’s inequality we have that
∞∑

x=1

P(|Z1| ≥ ax ) ≤
∞∑

x=1

VarP(Eω[η0])x−(1+c) <∞

which gives condition 1. Since x/a2
x = x−c, an integral test gives condition 2. For y ≥ x we

have that ay/ax = (y/x)
1+c

2 ≤ y/x so long as c ≤ 1 which gives 3. We therefore have that for
any c > 0, J (x)x−

1+c
2 → 0 for P-a.e. ω hence the first statement holds.

The process J (x) is a martingale therefore by the L p-maximal inequality we have that

E
[

max
y≤x
|J (y)|2+2δ

]
≤

(
2+ 2δ

1+ 2δ

)2+2δ

E
[
|J (x)|2+2δ

]
.

It therefore suffices to show that

E

⎡⎢⎣
⎛⎝x−1∑

y=0

Eω[ηy,0]− E[ηy,0]
√

x

⎞⎠2+2δ
⎤⎥⎦

is bounded above. By the Marcinkiewicz–Zygmund inequality [26, Theorem 5] we have that

E

⎡⎢⎣
⎛⎝x−1∑

y=0

Eω[ηy,0]− E[ηy,0]
√

x

⎞⎠2+2δ
⎤⎥⎦ ≤ CE

⎡⎢⎣
⎛⎝x−1∑

y=0

(
Eω[ηy,0]− E[ηy,0]

√
x

)2
⎞⎠1+δ

⎤⎥⎦
which is bounded above by

CE

⎡⎣x−1∑
y=0

(
Eω[ηy,0]− E[ηy,0]

)2+2δ

n

⎤⎦ = CE
[
(Eω[η0]− E[η0])2+2δ

]
using Jensen’s inequality. Using that E

[
Eω[η0]2+ε

]
<∞ for some ε > 0, it then follows that for

δ > 0 sufficiently small and some constant C

E
[
|J ∗(x)|2+2δ

] 1
2+2δ
≤ Cx1/2. □

We now prove the main result of the section which is a quenched central limit theorem for the
randomly trapped random walk. Recall that we use the centring

Gω(t) := νβ t − νβ

⌊νβ t−1⌋∑
y=0

β + 1
β − 1

(Eω[ηy,0]− E[ηy,0]) where νβ =
β − 1

(β + 1)E[η0]

is the P-a.s. limit of Xn/n. Write ϑ := σν
3/2
β where we recall that σ 2

= E[Varω(τ1)].

Proof of Theorem 3. Let X t := sup{|Xs | : s ≤ t} be the furthest point reached by X up to time
t ; then τX t

≤ t < τX t+1 and X t ≤ XτXt
= X t . We then have that |X t − X t | = |X t − XτXt

| ≤

sups≥τXt
XτXt
− Xs . Write

Ax :=

x⋂
y=1

{
inf{Ym : m ≥ τ Y

y } ≥ y − C log(x)
}
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to be the event that the walk never backtracks distance C log(x) up to reaching vertex x . By
Lemma 3.2 we then have that

P(Ac
x ) ≤ CxP(τ−⌊C log(x)⌋ <∞) ≤ Cxβ−C log(x)

= Cx1−C log(β).

Therefore, choosing C such that C log(β) > 2, by Borel–Cantelli we have that there exists
only finitely many x such that the walk backtracks distance C log(x) up to reaching level x .
By Theorem 1 we then have that for t sufficiently large |X t − X t |t−1/2

≤ C log(t)t−1/2 which
converges deterministically to 0. It therefore suffices to show that for P-a.e. ω

lim
t→∞

Pω

(
X t − Gω(t)

ϑ
√

t
≤ u

)
= Φ(u).

By monotonicity we have that {X t ≤ y} = {τy+1 > t}. Writing Iω(t) := ⌊uϑ
√

t +Gω(t)+1⌋
it then follows that

Pω

(
X t − Gω(t)

ϑ
√

t
< u

)
= Pω

(
τIω(t) > t

)
= Pω

(
τIω(t) −Hω(Iω(t))

σ
√
Iω(t)

>
t −Hω(Iω(t))

σ
√

t
·

√
t

Iω(t)

)
.

The sequence Iω(t) is increasing in t and diverges; in particular, by the law of large numbers
t/Iω(t) converges to ν−1

β for P-a.e. ω. The result then follows from Lemma 3.1 if Hω(Iω(t)) =
t + σν

1/2
β u
√

t + ot , where ot/
√

t converges to 0 for P-a.e. ω.
Since Iω(t) diverges, by Lemma 3.3 it suffices to show that H̃ω(Iω(t)) = t + σν

1/2
β x
√

t + ot .
By definition of H̃ω and Iω(t) we have that there exists some O1 := O1(ω, t, u) such that
|O1| ≤ ν−1

β and

H̃ω(Iω(t)) = ν−1
β Iω(t)+

Iω(t)−1∑
y=0

β + 1
β − 1

(Eω[ηy,0]− E[ηy,0])

= t + σν
1/2
β u
√

t −
⌊νβ t⌋−1∑

y=0

β + 1
β − 1

(Eω[ηy,0]− E[ηy,0])

+

Iω(t)−1∑
y=0

β + 1
β − 1

(Eω[ηy,0]− E[ηy,0])+ O1.

Moreover, for some O2 := O2(ω, t, u) satisfying |O2| ≤ 3, we have that

Iω(t)− ⌊νβ t⌋ = ϑu
√

t + E[η0]−1
⌊νβ t−1⌋∑

y=0

(
Eω[ηy,0]− E[ηy,0]

)
+ O2.

By part 1 of Lemma 3.4 we have that (Iω(t) − ⌊νβ t⌋)t−
1+c

2 converges to 0 for P-a.e. ω and
any c > 0. In order to show that H̃ω(Iω(t)) = t + σν

1/2
β u
√

t + ot it now suffices to show that for
all c > 0 suitably small

Rω(x, c) := x−1/2 max
z≤x

1+c
2

⏐⏐⏐⏐⏐
x+z∑
y=x

(
Eω[ηy,0]− E[ηy,0]

)⏐⏐⏐⏐⏐
converges to 0 as x →∞ for P-a.e. ω.
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Suppose that Rω(x2, 2c) converges to 0 for all c > 0 suitably small and P-a.e. ω then for
v = 1, . . . , 2x (that is, x2 < x2

+ v < (x + 1)2) we have that

Rω(x2
+ v, c) = (x2

+ v)−1/2 max
m≤(x2+v)

1+c
2

⏐⏐⏐⏐⏐⏐
x2
+v+z∑

k=x2+v

(
Eω[ηy,0]− E[ηy,0]

)⏐⏐⏐⏐⏐⏐
≤ (x2

+ v)−1/2 max
z≤(x2+v)

1+c
2

⎛⎝⏐⏐⏐⏐⏐⏐
x2
+v+z∑

y=x2

(
Eω[ηy,0]− E[ηy,0]

)⏐⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐⏐
x2
+v−1∑

y=x2

(
Eω[ηy,0]− E[ηy,0]

)⏐⏐⏐⏐⏐⏐
⎞⎠ .

Since v + z < x1+2c for x suitably large we then have that Rω(x2
+ v, c) ≤ 2Rω(x2, 2c) for all

v = 1, . . . , 2x thus it suffices to show that Rω(x2, 2c) converges to 0 for all c > 0 suitably small
and P-a.e. ω. For ϵ > 0, by Markov’s inequality

P
(
Rω(x2, 2c) > ϵ

)
≤ E

[
Rω(x2, 2c)2+2δ

]
ϵ−(2+2δ)

= CϵE

⎡⎢⎣
⎛⎝x−1 max

z≤x1+2c

⏐⏐⏐⏐⏐⏐
x2
+z∑

y=x2

(
Eω[ηy,0]− E[ηy,0]

)⏐⏐⏐⏐⏐⏐
⎞⎠2+2δ

⎤⎥⎦
≤ Cϵx (1+2c)(1+δ)−2(1+δ)

by part 2 of Lemma 3.4. Choosing c < δ/(2+ 2δ) gives us that
∞∑

x=1

P
(
Rω(x2, 2c) > ϵ

)
<∞

therefore by Borel–Cantelli we have the desired result. □

4. Subcritical Galton–Watson trees

A subcritical Galton–Watson tree conditioned to survive consists of a semi-infinite path with
GW-trees as leaves. The walk on the tree does not deviate too far from this path and therefore
behaves like a randomly trapped random walk on Z with holding times distributed as excursion
times in GW-trees. In this section we prove Theorems 4–6. Our strategy is to couple the walk on
the tree with a randomly trapped random walk in such a way that these results can be deduced
from Theorems 1–3 along with the appropriate moment bounds on the excursion times in random
trees.

Recall that f denotes the generating function of a GW-process with mean µ ∈ (0, 1) and
variance σ 2 < ∞, Zn is the nth generation size of a GW-process with this law and T f the
associated tree. Furthermore, recall that we denote by ξ a random variable with the offspring law
and then define ξ ∗ to be a random variable with the size-biased law given by the probabilities
P(ξ ∗ = k) = kpkµ

−1.
It has been shown in [21] that there is a well defined probability measure P over f -GW

trees conditioned to survive which arises as the limit as n → ∞ of probability measures over
GW-trees conditioned to survive up to generation n. It can be seen (e.g. [20]) that the tree can be
constructed by attaching i.i.d. finite trees to a single semi-infinite path Y := (ρ0 = ρ, ρ1, . . .).
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More specifically, starting with a single special vertex ρ0, at each generation let every normal
vertex give birth to normal vertices according to independent copies of the original offspring
distribution and every special vertex give birth to vertices according to independent copies of the
size-biased distribution, one of which is chosen uniformly at random to be special (and denoted
ρk in the k th generation). We will use T to denote an f -GW-tree conditioned to survive and T ∗−x
the branch rooted at x ∈ Y; that is, the descendants of x which are not in the descendant tree of
the unique child of x on Y (see Fig. 2).

Recall that a β-biased random walk on a fixed, rooted tree T is a random walk X on T
which is β-times more likely to make a transition to a given child of the current vertex than the
parent (i.e. X is the Markov chain given by the transition probabilities (1.1)) and that we use
P(·) =

∫
PT

ρ (·)P(dT ) for the annealed law obtained by averaging the quenched law PT
ρ over the

law P on f -GW-trees conditioned to survive (with a fixed root ρ). Unless stated otherwise we
will assume that β > 1 so that the walk is P-a.s. transient.

We now construct an almost equivalent model which allows us to consider the walk on the
GW-tree in our randomly trapped random walk framework. We begin by constructing the holding
times of the randomly trapped random walk via a sequence of i.i.d. trees. Start with an initial
vertex ρ and a unique ancestor ρ. Attach ξ ∗ − 1 offspring to ρ where ξ ∗ is size-biased as above
then attach independent f -GW trees to the offspring of ρ. This creates a tree T which has the
distribution of a branch with an additional vertex connected to the root (see Fig. 3).

Consider a walk (Wn)n≥0 on T with transition probabilities

PT (Wn+1 = y|Wn = x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if x = y = ρ,

β + 1
1+ β(|c(x)| + 1)

, if x = ρ, y = ρ,

β

1+ β(|c(x)| + 1)
, if x = ρ, y ∈ c(x),

β

1+ β|c(x)|
, if x ̸∈ {ρ, ρ}, y ∈ c(x),

1
1+ β|c(x)|

, if x ̸∈ {ρ, ρ}, y =←−x ,

0, otherwise.

An excursion in T started from ρ until absorption in ρ has the same distribution as the time
taken to move between backbone vertices of T (except at the root of T ). Let ω = (T x )x∈Z denote
a sequence of independent trees with this law. For ω fixed let (ηx,i )x∈Z,i≥0 be independent with

Pω
(
ηx,i = k

)
= PT x

ρ (min{n > 0 : Wn = ρ} = k)

where ρ, ρ are the vertices in T x corresponding with the construction. For convenience we often
write T for T 0. We then consider the randomly trapped random walk with these holding times.

A two-sided tree can be constructed as the extension of a subcritical GW-tree by using the
infinite backbone Y = (..., ρ−1, ρ0, ρ1, . . .) and i.i.d. branches. The backbone is homoeomorphic
to Z therefore the randomly trapped random walk we consider is equal in distribution to the
projection of a random walk Xn on a two-sided tree onto the unique value x ∈ Z satisfying
d(Xn, ρx ) = miny∈Yd(Xn, y). By transience of the embedded walk on the backbone, the walk on
the two sided tree almost surely spends a finite amount of time outside the sub-tree rooted at ρ0.
Moreover, for C large, up to level n there will be no branches of height greater than C log(n) with
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Fig. 2. A sample subcritical GW-tree conditioned to survive T with the backbone Y represented by solid lines and the
buds and traps connected by dashed lines.

Fig. 3. A tree T with fixed vertices ρ, ρ and ξ∗ − 1 independent f -GW-trees attached to ρ.

high probability. It follows that the walk on the one-sided subcritical GW-tree can be coupled to
a randomly trapped random walk so that the two walks deviate by at most C log(n) up to time n
for n large (see [9] for more detail). Since we consider polynomial scaling, it suffices to consider
this randomly trapped random walk. Without loss of generality, we continue to denote by X the
randomly trapped random walk.

Before discussing the walk in detail we give several useful asymptotic properties of the
generation sizes of GW-trees. To begin, by [23, Theorem B] the sequence P(Zn > 0)µ−n is
decreasing and converges since µ ∈ (0, 1) and σ 2 <∞. In particular, we write

cµ := lim
n→∞

P(Zn > 0)
µn

. (4.1)



Please cite this article in press as: A. Bowditch, Central limit theorems for biased randomly trapped random walks on Z, Stochastic Processes and
their Applications (2018), https://doi.org/10.1016/j.spa.2018.03.017.

A. Bowditch / Stochastic Processes and their Applications ( ) – 19

For a fixed ρ-rooted tree T associated to Zn with Z1 > 0 it follows from hitting time identities
in electrical network theory (e.g. [25, Proposition 2.20]) that

ET
ρ [τ+ρ ] = 2

∑
n≥1

Znβ
n−1

Z1
(4.2)

where τ+x := inf{k > 0 : Xk = x} is the first return time to a vertex x by a β biased random walk
X . Lemma 4.1 shows bounds on the expected moments of the generation sizes. Parts 1 and 2
follow from [2] and part 3 is a simple extension (full details of which are given in [9]) therefore
we omit the proof.

Lemma 4.1. Let Zn denote an f -GW-process with offspring distribution ξ and mean µ ∈ (0, 1).
Then,

1. E[Zn] = µn;
2. If E[ξ 2] <∞ and m ≥ n then E[Zn Zm] ≤ Cµm for some constant C;
3. If E[ξ 3] <∞ and l ≥ m ≥ n then E[Zn Zm Zl] ≤ Cµl for some constant C.

4.1. The speed of the walk

We now prove Theorem 4 by proving a bound on the expected holding time for the randomly
trapped random walk and applying Theorem 1.

Proof of Theorem 4. The quantity η0 is distributed as the first hitting time of ρ in the random
tree T by the walk W started from ρ. Let

N =
τρ∑

k=1

1{Wk=ρ} (4.3)

be the number of return times to the root ρ before reaching its unique ancestor ρ. That is, N
is the number of excursions to the trees attached to ρ before the walk reaches ρ. Let τ (0)

x := 0
then for k = 1, . . . , N write τ (k)

x := min{n > τ (k−1)
x : Wn = x} to be the hitting times of x and

ζk := τ (k)
ρ − τ (k−1)

ρ the duration of the kth excursion. We want to determine the expected value of

η0 = 1+
N∑

k=1

ζk . (4.4)

Letting Zn denote the generation sizes of an f -GW-tree T f we have that

E[η0] = 1+ E

[
N∑

k=1

E[ζk |N ]

]
= 1+ E[N ]E

[
ET f

ρ [τ+ρ ]|Z1 = 1
]
.

The number of excursions N is geometrically distributed with termination probability 1 − pex
where

pex := PT (W1 ̸= ρ) =
β(ξ ∗ − 1)
βξ ∗ + 1

.

It therefore follows that

E[N ] = E
[
β(ξ ∗ − 1)

β + 1

]
=

β

β + 1

(
∞∑

k=1

k2 pk

µ
− 1

)
=

β(σ 2
− µ(1− µ))

(β + 1)µ
.
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Using the formula (4.2) for the expected time spent in a fixed tree and statement 1 of
Lemma 4.1 for the expected size of the k th generation we have that

E
[
ET f

ρ [τ+ρ ]|Z1 = 1
]
= E

[
2
∑
k≥1

Zkβ
k−1

Z1
|Z1 = 1

]
= 2

∑
k≥1

E[Zk |Z1 = 1]βk−1
= 2

∑
k≥1

(βµ)k−1.

Since β < µ−1 then this is equal to 2/(1−βµ); otherwise, the sum does not converge. It follows
that

E[η0] =
µ(β + 1)(1− βµ)+ 2β(σ 2

− µ(1− µ))
µ(β + 1)(1− βµ)

<∞. (4.5)

The result then follows from Theorem 1. □

The following corollary extends the Einstein relation for the randomly trapped random walk
to the walk on the GW-tree. This is a non-trivial extension because, in the tree model, the
bias influences the trapping times and the unbiased walk is significantly influenced by the
restriction to the half line. For this reason we observe convergence to a reflected Brownian
motion and cannot simply apply Corollary 2.2. Despite this, we omit the proof which follows
by a straightforward adaptation of standard techniques (similar to [12]) using [3, Theorem 2.9]
and (4.5). Furthermore, the full details are given in [9].

Corollary 4.2. Suppose µ < 1 and σ 2 <∞. The unbiased (β = 1) walk X⌊nt⌋n−1/2 converges
in P-distribution on D([0,∞),R) to |Bt | where Bt is a scaled Brownian motion with variance
Υ = E[η0]−1. Moreover,

lim
β→1+

νβ

β − 1
=

Υ

2
.

4.2. An annealed functional central limit theorem

We now prove Theorem 5 by using the annealed invariance principle Theorem 2. That is, we
show conditions on the tree and the bias which ensure that E[η2

0] <∞.
In order to show this we will use a decomposition which counts the number of visits to each

vertex. For z ∈ T and A, B ⊂ T write

qz(A, B) := PT
z (τ+A < τ+B )

to be the probability that the walk started from z hits A before B.
Let Tx,y denote a tree with root ρ in which every vertex has a single offspring except the

vertices w, x, y where w has two offspring and x, y have none. Denote these offspring wx , wy
then let x, y be descendants of wx , wy respectively (possibly wx , wy) (see Fig. 4).

Lemma 4.3 gives the probability that the walk started at w reaches ρ before x or y.
Alternatively, this can be shown by comparing with an electrical network with conductances
βk between vertices in generations k, k + 1 and then using network reduction (see, for example,
[25, Chapter 2]).

Lemma 4.3. For any Tx,y ,

qw(ρ, {x, y}) =
(β |y|−|w| − 1)(β |x |−|w| − 1)

2β |y|+|x |−|w| − β |y|+|x |−2|w| − β |x | − β |y| + 1
.
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Fig. 4. The tree Tx,y with single branching point w and extremal points ρ, x, y.

Proof. Write wρ as the parent of w then

qw(ρ, {x, y}) =
1

2β + 1
qwρ (ρ, {x, y})+

β

2β + 1
qwx (ρ, {x, y})+

β

2β + 1
qwy (ρ, {x, y})

qwρ (ρ, {x, y}) = qw(ρ, {x, y})qwρ (w, ρ)+ qwρ (ρ, w)

qwx (ρ, {x, y}) = qw(ρ, {x, y})qwx (w, x)

qwy (ρ, {x, y}) = qw(ρ, {x, y})qwy (w, y).

Combining these gives us that

qw(ρ, {x, y}) =
qw(ρ, {x, y})

2β + 1

(
qwρ (w, ρ)+ βqwx (w, x)+ βqwy (w, y)

)
+

qwρ (ρ, w)
2β + 1

=
qwρ (ρ, w)

2β + qwρ (ρ, w)− qwx (w, x)− qwy (w, y)

=

β−1
β|w|−1

2β +
β−1

β|w|−1 −
β|x |−|w|−β

β|x |−|w|−1 −
β|y|−|w|−β

β|y|−|w|−1

by Lemma 3.2. Rearranging gives the result. □

Let T be a fixed tree and (Xn)n≥1 a β-biased walk on T . For x ∈ T let

vx :=

τ+ρ∑
k=1

1{Xk=x}

denote the number of visits to x before returning to the root. Then τ+ρ =
∑

x∈T vx and

ET
ρ

[
(τ+ρ )2]

=

∑
x,y∈T

ET
ρ [vxvy]. (4.6)

For any x, y ∈ T there exists a unique vertex wx,y which is the closest ancestor of both x and y.
We will often write w instead of wx,y when it is clear to which vertices we are referring. Moreover

ET
ρ [vxvy] = PT

ρ (τ+wx,y
< τ+ρ )ET

wx,y
[vxvy]
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where, by comparison with a simple biased random walk on Z, we have that PT (τ+wx,y
< τ+ρ ) ∈

[1−β−1, 1]. We now prove a bound on ET
w [vxvy] following a similar method to that used in [21]

for the unbiased case. Recall that c(x) is the set of children of x in T .

Lemma 4.4. For β > 1, there exists a constant Cβ such that for any finite tree T ,

ET
ρ [vxvy] ≤ ET

w [vxvy] ≤ Cβ(|c(x)|β + 1)(|c(y)|β + 1)β |x |+|y|.

Proof. When w = ρ at least one of x and y is never reached therefore vxvy = 0 and we may
assume |w| ≥ 1. There are now three cases to consider; these are:

1. x = y = wx,y ;
2. x = wx,y ̸= y;
3. x ̸= wx,y ̸= y.

In case 1 we have that vx is geometrically distributed with termination probability qx (ρ, x)
therefore

ET
wx,y

[vxvy] = ET
x [v2

x ] =
qx (x, ρ)+ 1

qx (ρ, x)2 .

For x ̸∈ c(ρ) we have that β/(1+ β) ≤ qx (x, ρ) ≤ 1 and by Lemma 3.2

qx (ρ, x) =
1− β−1

(|c(x)|β + 1)(β |x |−1 − β−1)
.

We therefore have that

ET
x [v2

x ] ≤ Cβ(|c(x)|β + 1)2β2|x |.

In case 2, the number of visits to x from x is geometrically distributed as in case 1. For each
visit to x (except the last) the walk reaches y before returning to x with probability qx (y, x)/
qx (x, ρ) since, due to the tree structure, the walk cannot move from ρ to y without hitting x . From
y, the walk returns to y a geometric number of times before returning to x . More specifically,

ET
wx,y

[vxvy] = ET
x [vxvy] =

∞∑
j=1

jqx (ρ, x)qx (x, ρ) j−1ET
x [vy |vx = j]

where, conditional on the event {vx = j}, we have that vy is equal in distribution to the sum
of B j

x,y ∼ Bin( j − 1, qx (y, x)/qx (x, ρ)) independent geometric random variables G i
x,y ∼

Geo(qy(x, y)). Under PT the number of excursions are independent therefore

ET
x [vy |vx = j] = ( j − 1)

qx (y, x)
qx (x, ρ)

·
1

qy(x, y)
.

We therefore have that

ET
wx,y

[vxvy] =
qx (y, x)qx (ρ, x)
qx (x, ρ)qy(x, y)

∞∑
j=1

j( j − 1)qx (x, ρ) j−1

=
qx (y, x)qx (ρ, x)
qx (x, ρ)qy(x, y)

·
2qx (x, ρ)
qx (ρ, x)3

=
2qx (y, x)

qy(x, y)qx (ρ, x)2 . (4.7)
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Using Lemma 3.2 we then have that

qx (y, x) =
β

|c(x)|β + 1
·

1− β−1

1− β |x |−|y|
,

qy(x, y) =
1

|c(y)|β + 1
·

β − 1
β |y|−|x | − 1

,

qx (ρ, x) =
1

|c(x)|β + 1
·

β − 1
β |x | − 1

.

Combining these with (4.7) we have that

ET
wx,y

[vxvy] ≤ Cβ(|c(x)|β + 1)(|c(y)|β + 1)β |x |+|y|.

In case 3, started from wx,y , the walk reaches either x or y before returning to ρ with probabil-
ity qwx,y ({x, y}, ρ). From x the walk has a geometric number of returns to x before returning to
wx,y . Moreover, from x , the walk must return to wx,y before reaching either ρ or y by definition
of wx,y . The same also holds switching x and y. Letting

qw(x, y) = PT
w

(
τ+x < τ+y |τ

+

{x,y} < τ+ρ

)
and

qw(y, x) = PT
w

(
τ+y < τ+x |τ

+

{x,y} < τ+ρ

)
we then have that

ET
w [vxvy] =

∞∑
j=0

qw({x, y}, ρ) j qw(ρ, {x, y})

×

j∑
k=0

qw(x, y)kqw(y, x) j−k
(

j
k

)
k( j − k)

qx (w, x)qy(w, y)
(4.8)

since qx (w, x)−1 is the expected number of visits to x (started from x) before returning to w (and
similarly for y) which are independent. Rearranging gives

j∑
k=0

qw(x, y)kqw(y, x) j−k
(

j
k

)
k( j − k)

qx (w, x)qy(w, y)

=
1

qx (w, x)qy(w, y)

j−1∑
k=1

qw(x, y)kqw(y, x) j−k j !
(k − 1)!( j − k − 1)!

= j( j − 1)
qw(x, y)qw(y, x)
qx (w, x)qy(w, y)

j−2∑
l=0

qw(x, y)lqw(y, x) j−2−l ( j − 2)!
l!( j − 2− l)!

= j( j − 1)
qw(x, y)qw(y, x)
qx (w, x)qy(w, y)

.

Substituting back into (4.8) it follows that

ET
w [vxvy] =

qw(x, y)qw(y, x)qw(ρ, {x, y})
qx (w, x)qy(w, y)

∞∑
j=0

j( j − 1)qw({x, y}, ρ) j

=
qw(x, y)qw(y, x)qw(ρ, {x, y})

qx (w, x)qy(w, y)
·

2qw({x, y}, ρ)2

qw(ρ, {x, y})3

=
2qw({x, y}, ρ)2qw(x, y)qw(y, x)
qw(ρ, {x, y})2qx (w, x)qy(w, y)

.
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The terms in the numerator can all be bounded below by half of the escape probability 1 − β−1

therefore we gain nothing using their exact expressions and bound them above by 1. Using
Lemmas 3.2 and 4.3 for the other terms we have that

qw(ρ, {x, y}) =
(β |y|−|w| − 1)(β |x |−|w| − 1)

2β |y|+|x |−|w| − β |y|+|x |−2|w| − β |x | − β |y| + 1
,

qx (w, x) =
1

|c(x)|β + 1
·

β − 1
β |x |−|w| − 1

,

qy(w, y) =
1

|c(y)|β + 1
·

β − 1
β |y|−|w| − 1

.

Since |y| ≥ 1 we have that β |y| ≥ 1 therefore

qw(ρ, {x, y}) ≥
(β |y|−|w| − 1)(β |x |−|w| − 1)

2β |y|+|x |−|w|

and

ET
w [vxvy] ≤

2
qw(ρ, {x, y})2qx (w, x)qy(w, y)

≤ Cβ(|c(x)|β + 1)(|c(y)|β + 1)β |x |+|y|. □

Proof of Theorem 5. By Theorem 2 it suffices to show that E
[
Eω
[
η2

0

]]
<∞.

Recall from (4.3) that N is the number of return times to the root ρ before reaching its unique
ancestor ρ. This is geometrically distributed with termination probability 1− pex ; that is,

PT (N = k) = pk
ex (1− pex ) where pex =

β(ξ ∗ − 1)
βξ ∗ + 1

(4.9)

and ξ ∗ + 1 is the number of neighbours attached to ρ in T . By (4.4) and convexity we have that

Eω
[
η2

0

]
= ET

⎡⎣(1+
N∑

k=1

ζk

)2
⎤⎦ ≤ ET

[
(N + 1)

(
1+

N∑
k=1

ζ 2
k

)]

where ζk is the duration of the k th excursion.
Noting that N ≥ 1 with positive probability and

E
[
ET [N + 1]

]
= 1+

β(E[ξ ∗]− 1)
β + 1

<∞

since E[ξ 3] <∞, it suffices to show that

E

[
ET

[
N

N∑
k=1

ζ 2
k

]]
<∞.

Recall that T ◦ denotes the tree T without the ancestor of the root ρ. Since the separate
excursions are independent under PT and N is geometrically distributed we have that

E

[
ET

[
N

N∑
k=1

ζ 2
k

]]
≤ CβE

[(
ξ ∗
)2ET ◦

ρ

[
ζ 2

1

]]
.

Labelling ρ1, . . . , ρξ∗−1 as the neighbours of ρ in T ◦, and T ◦ρk
as the tree consisting of ρ, ρk and

the descendants of ρk we have that
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ET ◦
ρ

[
ζ 2

1

]
=

ξ∗−1∑
k=1

E
T ◦ρk
ρ

[
(τ+ρ )2

]
ξ ∗ − 1

when ξ ∗ ̸= 1 and 0 otherwise. Moreover, it then follows that

E

[
ET

[
N

N∑
k=1

ζ 2
k

]]
≤ CβE

⎡⎣ξ ∗
ξ∗−1∑
k=1

ET ◦ρk
[
(τ+ρ )2]⎤⎦ ≤ CβE[(ξ ∗)2]E

[
ET ◦ρ1

[
(τ+ρ )2]]

since the subtraps are independent. We have that E[(ξ ∗)2] ≤ CE[ξ 3] < ∞ thus it suffices to
show that

E
[
ET̃

ρ

[
(τ+ρ )2]] <∞

where T̃ is a tree (equal in distribution to T ◦ρ1
) with root ρ, single first generation vertex −→ρ and,

under P, the subtree rooted at−→ρ is a subcritical GW-tree with the original offspring distribution.
By (4.6) and Lemma 4.4 we have that

E
[
ET̃

ρ

[
(τ+ρ )2]]

= E

⎡⎣ ∑
x,y∈T̃

ET̃
ρ [vxvy]

⎤⎦
≤ CβE

⎡⎣⎛⎝∑
x∈T̃

(|c(x)|β + 1) β |x |

⎞⎠⎛⎝∑
y∈T̃

(|c(y)|β + 1) β |y|

⎞⎠⎤⎦ .

By collecting terms in the k th generation we have that∑
x∈T̃

(|c(x)|β + 1) β |x | = 1+
∑
k≥1

Z T̃
k (βk

+ βk−1) ≤ (1− β−1)
∑
k≥0

Z T̃
k βk

where Z T̃
k is the size of the k th generation of T̃ . For k ≥ 0 the tree T̃ satisfies Z T̃

k+1 = Zk for
a GW-process Zk with Z0 = 1. Therefore, using that β2µ < 1 and Lemma 4.1, we have that
E
[

Z T̃
k Z T̃

j

]
≤ Cµ j , for j ≥ k. In particular,

E
[
ET̃

ρ

[
(τ+ρ )2]]

≤ Cβ

∑
k≥0

βk
∑
j≥k

β j E
[

Z T̃
k Z T̃

j

]
≤ Cβ

∑
k≥0

βk
∑
j≥k

(µβ) j

≤ Cβ,µ

∑
k≥0

(µβ2)k <∞. □

Recall that the expression (2.8) for ς2 was given in Theorem 2 in terms of the moments of the
distance and time between regenerations. We can therefore use this to write the corresponding
form in the GW-tree model as

ς2
=

E
[(

Yκ2 − Yκ1 − νβ

∑κ2−1
j=κ1

η j

)2
]

E[η0]E[κ2 − κ1]

where κ j are the regeneration times of the walk Y .
We now show that both of the conditions β2µ < 1 and E[ξ 3] < ∞ are necessary in order

to apply Theorem 2. This suggests that these conditions are required to obtain an annealed
functional central limit theorem for the walk on the subcritical GW-tree conditioned to survive.
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Lemma 4.5. If β2µ ≥ 1 or E[ξ 3] = ∞ then

E[η2
0] ≥ E

[
ET [η0]2

]
= ∞.

Proof. Recall that η0 is the first hitting time of ρ by Wn started from the root ρ in T . With
positive probability ρ has neighbours other than ρ and the walk moves to one on the first step.
Until returning to ρ the walk is equal in distribution to a β-biased random walk on an f -GW-tree
conditioned to have a single first generation vertex. In particular, it suffices to show that for a
β-biased walk

E
[
ET f

ρ

[
τ+ρ
]2
|Z1 = 1

]
= ∞

where T f is an f -GW-tree rooted at ρ. Using the formula for the expected time spent in a tree
(4.2) we have that

E
[
ET f

ρ

[
τ+ρ
]2
|Z1 = 1

]
=

4
β2 E

⎡⎣(∑
k≥1

βk Zk

)2

|Z1 = 1

⎤⎦ ≥ 4
β2

∑
k≥1

β2kE[Z2
k |Z1 = 1].

Since Zk takes nonnegative values in Z we have that

E
[
Z2

k |Z1 = 1
]
≥ E [Zk |Z1 = 1] = µk−1

by statement 1 of Lemma 4.1. We therefore have that

E
[
ET f

ρ [τ+ρ ]2
|Z1 = 1

]
≥ c

∑
k≥1

(β2µ)k

which is infinite if β2µ ≥ 1.
The first hitting time of ρ is at least the number of visits to the offspring of ρ. From ρ, the

walk takes a geometric number of visits (with termination probability 1− pex , see (4.9)) to these
vertices before reaching ρ. Using properties of geometric random variables we then have that

E
[
ET

ρ [η0]2
]
≥ E

[(
(ξ ∗ − 1)β

β + 1

)2
]
≥ c

(
E[(ξ ∗)2]− 1

)
= c

(
µ−1E[ξ 3]− 1

)
. □

4.3. A quenched central limit theorem

We now prove a quenched central limit theorem for the biased walk on the subcritical GW-tree
conditioned to survive. As in the annealed case, it will suffice to show the result holds for the
corresponding randomly trapped random walk and we obtain the result by using Theorem 3.
Define

GT (t) = νβ t − νβ

⌊νβ t⌋∑
k=1

β + 1
β − 1

(
ET [ηρk ,0]− E[η0]

)
. (4.10)

Notice that, under the assumptions of Theorem 6, νβ t − GT (t) is a sum of i.i.d. centred random
variables with positive, finite variance. It therefore follows that this expression (scaled by

√
t)

converges in distribution with respect to P to a Gaussian random variable. In particular, this
means that the environment dependent centring is necessary.
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Proof of Theorem 6. By Theorem 5 we have that E[η2
0] <∞ therefore by Theorem 3 it suffices

to show that for some ε ∈ (0, 1)

E
[
ET [η0]2+ε

]
<∞.

Recall that

N =

τ+←−ρ∑
n=1

1{Wn=ρ}

is the number of hitting times of the root ρ before reaching←−ρ (for the walk started at ρ) and T ◦

is the tree T with←−ρ removed. Then

ET
ρ [η0] = 1+ ET [N ]ET ◦

ρ

[
τ+ρ
]
= 1+ 2ET [N ]

∑
n≥1

Zn

Z1
βn−1

≤ 2(ET [N ]+ 1)
∑
n≥1

Zn

Z1
βn−1

by (4.2) where Zn is the nth generation size of T ◦ since the walk on T ◦ is β-biased.
For a fixed tree, N is geometrically distributed with excursion probability pex (see (4.9))

therefore ET [N ] ≤ Z1. By conditioning on Z1 we therefore have that

E
[
ET [η0]2+ε

]
≤ CE

⎡⎣Z2+ε
1 E

⎡⎣(∑
n≥1

Zn

Z1
βn−1

)2+ε⏐⏐⏐Z1

⎤⎦⎤⎦
= CE

⎡⎣(∑
n≥1

Znβ
n−1

)2+ε
⎤⎦ .

We can write

Zn =

Z1∑
j=1

Z ( j)
n−1

where Z ( j) are independent GW-processes. Therefore, by convexity,

E

⎡⎣(∑
n≥1

Znβ
n−1

)2+ε
⎤⎦ = E

⎡⎢⎣Z2+ε
1

⎛⎝ Z1∑
j=1

∑
n≥1

Z ( j)
n−1

Z1
βn−1

⎞⎠2+ε
⎤⎥⎦

≤ E

⎡⎣Z1+ε
1

Z1∑
j=1

(∑
n≥1

Z ( j)
n−1β

n−1

)2+ε
⎤⎦

= E[(ξ ∗ − 1)2+ε]E

⎡⎣(∑
n≥1

Z (1)
n−1β

n−1

)2+ε
⎤⎦ .

By the assumptions of the theorem we have that E[(ξ ∗ − 1)2+ε] ≤ µ−1E[ξ 3+ε] < ∞ whenever
ε < δ hence it suffices to show that
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E

⎡⎣(∑
n≥0

Znβ
n

)2+ε
⎤⎦ <∞

where Zn now denotes the nth generation size of an f -GW-process.
For ε < δ, by conditioning on the height H := max{n ≥ 0 : Zn > 0} of the tree we have that

E

⎡⎣(∑
n≥0

Znβ
n

)2+ε
⎤⎦ ≤ E

⎡⎣β (2+ε)HE

⎡⎣(∑
n≥0

Zn

)2+ε⏐⏐⏐H
⎤⎦⎤⎦

≤ E
[
β (2+ε)H(H+ 1)2+εE

[
max
n≤H

Z2+ε
n

⏐⏐⏐H]]
≤ E

[
β (2+ε)H(H+ 1)2+ε

H∑
n=0

E
[

Z2+ε
n

⏐⏐⏐H]]

=

∞∑
n=0

E
[
β (2+ε)H(H+ 1)2+ε Z2+ε

n

]
=

∞∑
n=0

∞∑
j=1

j2+εP(Zn = j)E
[
β (2+ε)H(H+ 1)2+ε

|Zn = j
]
. (4.11)

From (4.1) we have that P(H ≥ n) ∼ cµn therefore P(H ≥ n) ≤ Cµn for some constant C
hence

E
[
β (2+ε)H(H+ 1)2+ε

|Zn = j
]
= E

[
β (2+ε)(H+n+1)(H+ n)2+ε

|Z0 = j
]

=

∞∑
i=1

β (2+ε)(i+n)(i + n + 1)2+εP(H = i |Z0 = j)

≤

∞∑
i=1

β (2+ε)(i+n)(i + n + 1)2+εP(H ≥ i |Z0 = j)

≤ C
∞∑

i=1

β (2+ε)(i+n)(i + n + 1)2+ε jµi

≤ C jβ (2+ε)n(n + 2)2+ε

∞∑
i=1

i2+ε(β2+εµ)i .

Since β2µ < 1 we can choose ε > 0 sufficiently small so that β2+εµ < 1 therefore
∞∑

i=1

i2+ε(β2+εµ)i <∞.

Substituting back into (4.11) we have that

E

⎡⎣(∑
n≥0

Znβ
n

)2+ε
⎤⎦ ≤ C

∞∑
n=0

βn(2+ε)(n + 2)2+ε

∞∑
j=1

j3+εP(Zn = j)

= C
∞∑

n=0

βn(2+ε)(n + 2)2+εE[Z3+ε
n ]. (4.12)
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Using a telescoping sum we can write

Zn = µn
+

n−1∑
k=0

(Zn−k − µZn−(k+1))µk .

Using convexity we then have that

E[Z3+ε
n ] = (n + 1)3+εE

⎡⎣( µn

n + 1
+

n−1∑
k=0

(Zn−k − µZn−(k+1))µk

n + 1

)3+ε
⎤⎦

≤ (n + 1)3+εE

[
µn(3+ε)

n + 1
+

n−1∑
k=0

(
(Zn−k − µZn−(k+1))µk

)3+ε

n + 1

]

= (n + 1)2+εµn(3+ε)
+ (n + 1)2+ε

n−1∑
k=0

µk(3+ε)E
[(

Zn−k − µZn−(k+1)
)3+ε

]
.

(4.13)

Let ξ j be independent copies of ξ then using the Marcinkiewicz–Zygmund inequality and
convexity we have that

E
[(

Zn−k − µZn−(k+1)
)3+ε

]
= E

⎡⎢⎣E

⎡⎢⎣
⎛⎝Zn−(k+1)∑

j=1

(ξ j − µ)

⎞⎠3+ε⏐⏐⏐Zn−(k+1)

⎤⎥⎦
⎤⎥⎦

≤ CE

⎡⎢⎣E

⎡⎢⎣
⎛⎝Zn−(k+1)∑

j=1

(ξ j − µ)2

⎞⎠ 3+ε
2 ⏐⏐⏐Zn−(k+1)

⎤⎥⎦
⎤⎥⎦

= CE

⎡⎢⎣E

⎡⎢⎣
⎛⎝Zn−(k+1)∑

j=1

(ξ j − µ)2

Zn−(k+1)

⎞⎠ 3+ε
2 ⏐⏐⏐Zn−(k+1)

⎤⎥⎦ Z
3+ε

2
n−(k+1)

⎤⎥⎦
≤ CE

⎡⎣E

⎡⎣Zn−(k+1)∑
j=1

|ξ j − µ|3+ε

Zn−(k+1)

⏐⏐⏐Zn−(k+1)

⎤⎦ Z
3+ε

2
n−(k+1)

⎤⎦
= CE

[
|ξ − µ|3+ε

]
E
[

Z
3+ε

2
n−(k+1)

]
≤ CE

[
|ξ − µ|3+ε

]
E
[
Z2

n−(k+1)

]
.

By Lemma 4.1 we have that E
[

Z2
n−(k+1)

]
≤ Cµn−(k+1) where C is independent of n, k

therefore substituting into (4.13) we have that

E[Z3+ε
n ] ≤ (n + 1)2+εµn(3+ε)

+ C(n + 1)2+εµn
n−1∑
k=0

µk(2+ε)
≤ C(n + 1)2+εµn.

Combining with (4.12) we then have that

E

⎡⎣(∑
n≥0

Znβ
n

)2+ε
⎤⎦ ≤ C

∞∑
n=1

(n + 2)4+2ε(β2+εµ)n

which is finite since we have chosen ε > 0 sufficiently small so that β2+εµ < 1. □
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