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A B S T R A C T

A  plasmid vector was constructed which allowed for the in-frame insertion of peptide-encoding 

sequences at the 3’ terminal of the Escherichia coli (E . coli) heat-labile enterotoxin B-subunit 

(L T -B ) structural gene. Several synthetic oligoncleotides, encoding various B and T  cell 

epitopes from other proteins, were ligated into this vector. Th e  sequence across the junctions 

of these novel plasmid constructs was determined and found to be as predicted. The chimeric 

fusion proteins expressed by these constructs were characterised in vitro by S D S-PAG E, 

Western blotting and G M1-linked ELISA. All the fusion proteins were shown to behave like native 

L T -B  in that they were transported to the periplasmic space when expressed in E. coli. In 

addition they formed pentamers which dissociated into their constituent monomers upon boiling. 

Furthermore, the pentameric forms were found to retain G,.,,-binding properties as determined 

by G,,,-linked ELISA.

Some of these plasmids, expressing L T -B  fusion proteins containing T  cell epitopes, were 

transferred into an aromatic-dependent attenuated strain of Salmonella typhlmurium SL1344, 

and these strains were used to inoculate mice. A weak serum antibody response to one of 

these epitopes was demonstrated. However, a consistent in vitro T  cell response to these 

epitopes could not be detected.

Another of the fusion proteins, termed LT-B69, was partially purified by ion-exchange 

chromatography and used to inoculate mice intranasally. Mice immunised in this way developed 

serum antibodies against L T -B  and P.69 (an important Bordetella pertussis antigen). 

Additionally, LT-B-specific and P.69-specific antibody secreting cells could be detected in their 

lungs. There was some evidence to suggest that these mice were slightly protected against 

colonisation by B. pertussis after an aerosol challenge with live organisms, compared to the 

levels of colonisation in a control group.
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C H A P T E R  1

Intrpductkpn

1.1 Some Introductory comments on the mucosal Immune system

The immune system can mount both systemic and local responses. There are many significant 

differences in the type of stimulus required to provoke the two types of immune response and 

in the nature of the immunity generated. In simple terms, the systemic response gives rise to 

serum antibody and effector T  cells which mediate a wide range of processes: for example, 

opsonisation of bacteria, clearance of viral infections and transplant rejection. Such responses 

can be efficiently stimulated in experimental animals by the administration of pg amounts of 

antigen parenterally (e.g. intraperitoneally, intramuscularly) if strong adjuvants are used (such 

as complete Freund's adjuvant), leading to long-lasting immunological memory. Vaccination of 

humans usually requires multiple inoculations because powerful adjuvants like C F A  cannot be 

used as they cause unacceptable side effects (e.g. granuloma formation).

In contrast, mucosal responses are difficult to induce and are often of short duration. 

Mucosal immunity is mediated in large part by secretory IgA (slgA), mainly produced locally by 

plasma cells adjacent to the mucosal epithelium, although in rats significant amounts of the 

slgA present at mucosal surfaces are derived from serum directly or indirectly via bile (Ortans 

el al., 1978, Halsey et al., 1980). In man, the derivation of slgA from bile is thought to be less 

important because human hepatocytes do not express secretory component, an essential 

element in the secretion of IgA (described in detail later). Delacroix (1985) estimated that 

human bile contributes about 1mg/kg/day to gut IgA, whereas locally secreted IgA exceeds 

30mg/kg/day. It has been calculated that IgA synthesis is responsible for 2/3 of total human 

immunoglobulin production (Mestecky & M cGhee, 1987).

There are numerous sites of IgA secretion -  the gut, lungs, mammary, salivary and lacrymal
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glands. It is worthy of note that in the human small intestine there are about 10<o 

immunoglobulin producing cells per metre, which is comparable to the 2.5 x 1010 estimated to 

be present in bone marrow, spleen and lymph nodes collectively (Brandtzaeg etal., 1987). It 

has been demonstrated that there is considerable circulation of immunocompetent cells 

between the various mucosal sites. For example, Mestecky eta!., (1978) showed that after oral 

immunisation of mice with killed Streptococcus mutans, specific slgA in salivary and lacrymal 

secretions could be detected without an elevation in serum antibody titres. Similarly, McDermott 

and Bienenstock (1979) found evidence that murine B plasma cell precursors migrated into 

intestinal, respiratory and genital tissues after stimulation by antigen. These and other findings 

led to the postulation of the existence of a "common mucosal immune system” (Bienenstock 

4  Befus, 1980). Further evidence supporting this concept was provided by DeSousa (1981), 

who demonstrated that mouse lymphocytes derived from mucosal tissues, when transferred to 

a syngeneic animal, have a tendency to return to the tissue of origin. If the common mucosal 

immune system is a reality then it raises the exciting possibility of oral immunisation being able 

to protect against infection at distal mucosal sufaces. Such vaccines would possess a number 

of intrinsic advantages over more conventional vaccines which are outlined below.

1.2 Advantages of vaccines designed to stimulate mucosal Immunity

Th e  majority of pathogens of man (and other animals) be they bacterial, viral or protozoal, 

cause disease by initially colonising or entering via mucosal surfaces. Thus an extremely 

important advantage of any vaccine which can elicit a protective mucosal immune response 

is that it may prevent infection perse. This is very significant for a number of reasons. In some 

acute viral infections, such as the common cold, there is a rapid onset of symptoms which are 

experienced before any secondary systemic response can be mounted. In addition, such local 

mucosal immunity would prevent the establishment of a carrier population. This would eliminate 

reservoirs of infection. Also, a mucosal immunisation strategy, by reducing or eliminating the
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carrier population, would increase the likelihood of achieving "herd immunity", inhibiting the 

development of an outbreak of disease into an epidemic.

Equally important is the observation that, for many diseases, mucosal immunity is simply 

more relevant for protection than systemic immunity. A  good illustration of this phenomenon 

is cholera. There are estimated to be nearly 8 million cases of cholera world wide each year, 

resulting in 124,000 deaths (Black, 1986). The  disease is caused by infection with Vibrio 

choierae, an organism which in man is essentially non-invasive. Parenteral inoculation with 

whole-cell cholera vaccines generates high titres of anti-bacterial serum antibodies in man 

(Svennerholm & Holmgren, 1986a). However, protective levels in the gut are maintained for 

only a short time. The parenteral vaccine is not very effective at protecting people travelling to 

areas where cholera is endemic (Behrens, 1991). In contrast, certain killed V. choierae whole 

cell/subunit combination vaccines given orally provide solid protection for a comparatively long 

period (Svennerholm & Holmgren, 1986a). Yet another important advantage is that as stated 

earlier, if the concept of common mucosal immune system is correct, one oral inoculation might 

be able to provide protective immunity at all mucosal surfaces.

There are also a number of very practical advantages which accompany the stimulation of 

mucosal immunity. Principal among these is that the oral or intranasal routes of inoculation, 

which best elicit mucosal responses, obviate the need for injections performed by medically- 

trained personnel. Such an approach also avoids the risk of transmission of blood-borne 

agents, such as hepatitis B  virus or HIV. The  take-up rate for this sort of vaccine would be 

higher than for a corresponding vaccine given parenterally, as many people dislike injections. 

In addition, although there is little experience of oral or intranasal immunisation, it seems 

probable that these routes of inoculation would be safer than conventional routes 

(lipopolysaccharide, for instance, is comparatively harmless when given orally but can be fatal 

if given intravenously).

Finally, there is some evidence that the ability to mount secretory immune responses arises 

in human infants in advance of the capacity to mount systemic responses (McGhee & 

Mestecky, 1990). Thus it may be possible to protect very young children against diarrhoeal
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diseases (which are a major cause of infant mortality in less-developed countries) by the use 

of a vaccine which induces secretory responses. In the light of these advantages it is important 

to understand as fully as possible the immune mechanisms operating at mucosal surfaces. 

These are outlined below.

1.3 The structure and function of the mucosal immune system

1.3.1 Historical background

The importance of the mucosal immune system was first demonstrated as long ago as 1891, 

when Paul Ehrlich showed that oral immunisation with ricin could protect rabbits against the 

necrotic effects caused when ricin was introduced into the conjunctival sac (Mestecky & 

McGhee, 1989). Research in 1922 by Vaillant, which compared the efficacy of oral versus 

subcutaneous inoculation with a killed Salmonella typhi vaccine, showed that superior 

protection resulted from the oral route of immunisation (Gay, 1924), underlining the significance 

of local immunity. Subsequently, strenuous efforts have been made to obtain an oral vaccine 

against a number of pathogens, most notably V. cholerae, S. typhi, Shigella dysenteriae. 

Streptococcus mutans and polio virus.

With regard to the intranasal route of vaccination, experiments by Bull and McKee (1929) 

proved that intranasal immunisation of rabbits with killed Streptococcus pneumoniae was 

protective against lethal pneumococcal infection. These workers could not detect serum 

antibody in protected animals. However, Walsh & Cannon, (1938) showed that intranasal 

immunisation resulted primarily in the local production of antibody. Later work by Tomasi and 

others (reviewed by Brandtzaeg, 1984) identified this locally-produced antibody as IgA and that 

most of it was present as secretory IgA (slgA) (Rossen et a!., 1966 a.b).
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1.3.2 TIM structure of slgA

The structure of s lg A  is well-known and well-documented (W aldman & Ganguly, 1974, Tomasi, 

1989). It consists of the familiar arrangement of two light and two heavy chains of the a  isotype 

joined by disulphide bridges. In man it is usually present as a dimer (but can exist as higher 

order polymers, especially in mice), the two IgA molecules held together by a J  ("joining") 

chain. This is a i5 k D a  polypeptide which is also present in pentameric IgM. Dimeric IgA is 

found both in secretions and in serum. However slgA possesses an additional element, an 

80kDa glycoprotein called secretory component (SC).

1.3.3. Processes In the secretion of IgA

The necessary steps in the secretion of IgA at mucosal surfaces represent one of the better- 

understood processes operating in mucosal immunity (reviewed by Brandtzaeg, 1985). 

Secretory component is synthesised by mucosal epithelial cells on the rough endoplasmic 

reticulum as a 95kDa polypeptide. It is core-glycosylated to a M, of l05kDa and is transported 

to the Golgi cistemae. There, complex sugars are added and terminal glycosyiation occurs. The 

glycoprotein is transported to the basolateral cell membrane where phosphorylation of a serine 

residue takes place to give the final 120kDa receptor molecule. J  chain/lgA dimers produced 

by neighbouring plasma cells bind non-covalently to S C  (which serves as an epithelial cell 

membrane receptor for the antibody molecule) and enter the epithelial cell in endocytic 

vesicles. These vesicles transcytose to the luminal membrane, with which they fuse. The 

transmembrane domain of SC is cleaved, releasing mature slgA. At some stage, between the 

initial interaction between SC and IgA and the final secretion from the epithelial cell, two 

disulphide bridges form covalent links between SC and the C m2 domain of one of the a  heavy 

chains.
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1.3.4 Properties of sIg A

The association of polymeric IgA with secretory component endows slgA with certain properties 

which enhance its efficiency. For instance. S C  is thought to reinforce the natural resistance of 

IgA to proteolysis. Clearly this is relevant for antibodies operating in the respiratory and gastro­

intestinal tracts, which are milieux rich in proteolytic enzymes (M cGhee & Mestecky, 1990).

Perhaps a more significant structural feature is the dimerism of slgA, which is reflected in 

several of the biological properties of the molecule. For example, slgA has been shown to be 

highly effective at neutralising viruses (e .g. Taylor & Dimmock, 1985) and its multiple antigen- 

binding sites allow it to agglutinate and inhibit the adsorption of bacteria very effectively. 

Magnusson & StjemstrOm (1982) demonstrated that in this respect slgA is considerably more 

efficient than IgG.

There is much evidence to show that, at least in the gut, slgA inhibits the absorption of 

soluble antigens in an antigen-specific manner (André et al., 1974). This phenomenon is 

termed "immune exclusion". The binding of slgA to antigen does not result in the activation of 

complement. Indeed, it has been shown that IgA can inhibit complement-dependent reactions 

mediated by antibodies of different classes (Russell-Jones et al., 1980, 1981). Thus, by 

combining with antigen and inhibiting its absorption, slgA prevents the antigen being bound by, 

for example, serum IgG, which might result in potentially harmful Immune complexes, such as 

found in IgA-deficient patients (Cunningham-Rundles et a i,  1978). Alternatively, antigen might 

be bound by IgG at the mucosal surface with concomitant activation of complement, leading 

to local inflammation and loss of integrity of the mucosal epithelium, resulting in increased 

absorption of "bystander antigens with the possibility of inappropriate immune responses. Thus 

an important role of slgA is thought to be the down-regulation of other, potentially pathological, 

immune-effector responses to environmental antigens.
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1.3.5 Th e  Initiation of a secretory IgA response

The  main events which are necessary for the initiation of a secretory IgA response at mucosal 

surfaces are reasonably well-understood and have been reviewed recently (M cGhee & 

Mestecky, 1990), but the details, especially those concerning cellular interactions and the 

regulation of the response, remain poorly defined.

Immunocompetent cells can be found in various locations throughout the gastro-intestinal 

and respiratory tracts (G IT  and R T  respectively). In particular, th ey are concentrated in gut- 

associated lymphoid tissue (G A L T) and bronchus-associated lymphoid tissue (B A LT). These 

are defined structures found throughout the length of the G IT  and RT.

Initially, antigen crosses the mucosal epithelium. In the gut this is thought to be mainly via 

the thin dome-shaped layer of epithelial tissue (the follicle-associated epithelium, "FAE") which 

overlies specialised lymph nodes termed Beyer's patches (nam ed after the Swiss scientist 

Johan C onrad Peyer, who first described them in 1677). Although enterocytes are also capable 

of m acro molecular absorption, the mucus layer is thinner above the FA E , thus the microfold 

cells ("M " cells) which constitute the FA E are more accessible to antigen via pinocytosis. 

Furthermore beneath the FA E, within the Payer's patch, is lymphoid tissue rich in B  and T  

lymphocytes, arranged in discrete zones. However, the M cells d o  not express M HC class II 

antigens. Therefore, although they may or may not process antigen, they are presumably 

incapable of presenting antigen to T  helper cells. This function is probably performed by the 

''professional- antigen-presenting cells (A PC), such as macrophages and dendritic cells, which 

are well-represented in Payer's patches. Thus, it is hypothesised that antigen becomes 

associated with MHC class IT** A PC  and is processed and presented to T  helper cells. These 

antigen-stimulated T  cells provide various regulatory signals to B  cells, resulting in B  cell 

differentiation (which commits the B lymphoblasts to being IgA***). Antigen- and cytokine- 

stimulated plasma cell precursors migrate from the lymphoid tissue via the lymphatic system 

and enter the circulation through the thoracic duct. They then target to a variety of secretory 

mucosal tissues where they undergo terminal differentiation into slgA-secreting plasma cells.
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This re-distribution of immunocompetent cells is discussed in greater detail in the next section.

Th e  processes operating in the respiratory tract are not so well-documented. Nevertheless, 

primary stimulation of B cells is also thought to occur in specialised structures, such a s  the 

tonsils and the bronchus-associated lymphoid tissue (BALT). Th e  B A L T exists as aggregates 

of immunocompetent cells and accessory cells. These structures (for which some authors have 

proposed the term ’Bronchus-associated lymphoid units" or BALU; Sminia et al., 1989) are 

analogous to the Payer's patches in the gut. They are randomly distributed along the length 

of the bronchial tree but are often found around bifurcations in the bronchi. Their number 

appears to differ from species to species. In adult rats, for example, between 30 and 5 0  have 

been found to exist (Plesch, 1982). As with Payer's patches, BALU comprise both B and T  cell 

areas. Histochemical studies conducted on rat B A L T  follicles have found this lymphoid cell 

component to consist of -6 0 %  B cells and 40%  T  cells. Of the latter, there are roughly twice 

as many T  cells with the helper phenotype as with the cytotoxic/suppressor phenotype (v a n  der 

Brugge-Gamelkoom & Sminia, 1985). Also present are many non-lymphoid cells: fbroblasts, 

macrophages, interdigitating cells and follicular dendritic cells.

Despite these similarities between BALU and Payer's patches, various important distinctions 

can be drawn between B A L T  and G A LT . For instance, as stated above, T  cells constitute 40%  

of the lymphocytes present in rat B A L T follicles. This contrasts with the situation in rat PeyeFs 

patches, where only 15%  of lymphocytes are T  cells (Jeurissen et al., 1984). Moreover, other 

studies, again conducted on rats, have demonstrated that most of the intraepithelial T  cells in 

the respiratory tract possess the T  helper phenotype (van der Brugge-Gamekoom, 1986). 

Similarly, T  cells in the epithelium lining the human nose are found to be mainly T  helper cells 

(Winther et al.. 1987), whilst in the gut 8 0 %  of intraepithelial T  cells bear the 

cytotoxic/su pressor phenotypic markers (Mow at, 1990). This might be a reflection of the 

generally immunosuppressive processes occuring along the length of the gut, which 

presumably are necessary to maintain oral tolerance. It may well be that, in the light of this 

finding and the presence of the acid barrier in the stomach (together with the digestive 

enzymes in the gut), the respiratory tract represents a more attractive route of inoculation than
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does oral delivery.

Another difference between B A L T and G A L T  concerns the uptake of antigen: whereas 

antigen crosses the intestinal epithelium and enters Foyer's patches via M cells, there are no 

M cells as such in the epithelium lining the respiratory tract. Nevertheless, there are non-ciliated 

epithelial cells which are active in antigen-sampling. In contrast to M cells, which tend to form 

a layer above adjacent lymphocytes, the B A L T epithelial antigen-sampling cells usually extend 

from the bronchial lumen right down to the basement membrane. There is some debate as to 

their relevance. It has been demonstrated that exogenous material can be ingested by the 

entire respiratory tract (Richardson et a/., 1976). In addition, the great majority of antigen In the 

lung is taken up by alveolar macrophages (Hocking & Golde, 1979). However, the local uptake 

of even small amounts of antigen by non-ciliated antigen-sampling cells in B A L T aggregates 

is probably significant because of the intimate association between these cells and infiltrating 

lymphocytes and accessory cells. As with M cells, it is unclear if these specialised epithelial 

cells simply take up and transport antigen or whether they also process and present antigen. 

Certainly they can be induced to express la molecules upon antigen challenge, at least in rats 

(Gregson et at., 1979, Simecka et at., 1986). Interestingly, it has been proven that rat intestinal 

epithelial cells (other than M cells) can also express M H C  class II antigens and present antigen 

to T  cells in vitro, resulting in T  cell proliferation (Bland & Warren, 1986). However, it has not 

yet been shown whether such epithelial cells can present antigen in vivo. Also, it should be 

remembered that la antigen has been found to have a role in intracellular transport systems 

and is not necessarily an indicator of immunological processes (Unanue & Allen, 1986).

1.3.6 Lymphocyte traffic

According to Bjerke and Brandtzaeg (1986), once stimulated by antigen and cytokines most 

B cells immediately migrate from the mucosa-associated lymphoid tissue, via the lymphatic and 

vascular systems, to various secretory tissues such as the gut, respiratory tract, mammary and
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salivary glands. It is thought that various endothelial surface receptors are at least partly 

responsible for the specificity of the homing of these lymphocytes (Streeter et al., 1988). 

Apparently different recognition mechanisms operate in the G A L T  and B A L T  (Brandtzaeg, 

1988), thus it would seem reasonable to assume that different subsets of B  cells, with different 

surface markers, would target with different specificities. That such migration of B cells occurs 

is beyond question. There are numerous examples of local immunisation resulting in secretion 

of antigen-specific IgA at distal mucosal sites (reviewed by Mestecky, 1987). T h e  evidence for 

T  cell migration is less abundant. However, there have been reports indicating that, in mice and 

rats, T  cells traffic in a similar manner to B cells (Guy-Grand et al., 1978, Mattingly & 

Waksman, 1978, respectively).

The  exact molecular basis for the specific targeting of IgA-precursor cells to mucosal 

tissues has not been fully determined although it is clear that there are a number of vascular 

endothelial receptors involved (Streeter et al., 1988). Considerable interest w as generated 

when it was reported that virtually all CD3*'"/CD8*'" intraepithelial lymphocytes (IE L) found in 

the mouse intestine were of the y8 type T  cell receptor (TcR ), (Bonneville et al., 1988, 

Goodman & Lefrangois. 1988), whereas CD3*"/CD8*'* lymphocytes present in non-mucosai 

lymphoid organs and blood far more commonly possess a TcR  of the classical a0 type. 

Naturally it was speculated that this difference in T  cell receptor structure could be the 

molecular basis for specific targeting of IEL to the intestinal epithelium. However, subsequent 

experiments demonstrated the existence of two populations of intestinal IEL in mice (reviewed 

by Viney et al., 1990). One was ys*’* and was thymus-independent in its ontogeny (they could 

be found in athymic mice). The other was a/p*~ and thymus-dependent. Th e  two populations 

were present in roughly equal numbers in normal mice. This discrepancy with earlier results 

is explained at least in part by the finding that in gnotobiotic or very young animals there are 

very few I E L  and those that are present are mostly y 6*~, whilst in older mice there are far 

more IEL of which many more are a/p*1". Thus the ratio of a/p to y 8 cells among the intestinal 

I E L  population depends on the degree of antigen stimulation of the gut and the age of the 

mouse. It would seem therefore, that if the y 5  Tc R  is part of a molecular homing signal it can
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only be operable at an earty stage of development. A  similar degree of uncertainty exists 

concerning the situation in the mouse lung, where estimates of the y5*** T  cell population vary 

from 2 -20 %  (Abraham et al., 1990, and Augustin et al., 1989 respectively).

As stated earlier, the majority of antigens given orally (such as food and inert environmental 

antigens) will result in the suppression of subsequent systemic responses to the same antigen 

given parenterally. This phenomenon is known as "oral tolerance*. It can occur in adults and 

is independent of the mechanisms responsible for the generation of self-tolerance in neonates. 

However, this mechanism does not operate for all antigens to which mucosal surfaces are 

exposed. For instance, replicating antigens such as viruses and bacteria can induce secretory 

and serum antibody responses. Among inert (i.e. non-replicating) antigens, cholera toxin (C T ) 

and its non-toxic, binding B-subunit (C T -B ) have been known for some time to act as potent 

immunogens when fed to rats (Pierce & Gowans, 1975). Subsequently, several studies have 

shown that C T , C T -B  and their analogous E. collcounterparts heat-labile toxin (L T ) and its non­

toxic, binding B-subunit (LT-B ), can generate strong secretory and serum antibody responses 

(Elson & Ealding, 1984a, Chen & Strober, 1990, Clements, 1990, Masked et al., 1987). To  

understand why C T , L T  and their B-subunits act in this way it is necessary to describe their 

structure and properties.

1.4 The properties of C T  and LT

C T  is elaborated by wild-type V. cholerae and is largely, but not exclusively, responsible for the 

symptoms of diarrhoea that can follow infection of humans by V. cholerae (Levine etal., 1984). 

There are many strains of E. coll which can also cause diarrhoea, in both man and animals. 

Among the virulence factors of some of these strains are one or more enterotoxins. The best 

characterised of these are the heat-stable and heat-labile toxins (S T  and L T  respectively). Two 

types of S T  have been identified, S Ta  and S T b  (Burgess etal., 1978). These are both relatively 

small peptides whose relative molecular mass has been determined at between 2kDa and
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5kDa. Their small size partly explains their heat-stability and also their very poor 

immunogenicity, which has hindered attempts to develop a vaccine. In contrast, L T  is highly 

immunogenic. L T  is very similar, but not identical, to C T  in terms of structure and biological 

activities. L T  consists of one A-subunit of 28kOa, non-covalently linked to five identical B- 

subunit monomers. Each monomer has a M, of -  H .5kD a, thus the L T -B  pentamer is 56kOa 

whilst the L T  holotoxin is 84kDa in size. This is an arrangement very close to that found in C T  

(Gill et a/., 1981). It should be stated that the L T -B  structural genes in LT-producing strains of 

E. coli isolated from different sources exhibit small but consistent sequence differences (Leong 

et a!., 1985). This is reflected in different amino acid compositions. Thus heat-labile toxin B- 

subunit produced by strains isolated from pigs, referred to as pLT-B , differs by 6 amino adds 

from the equivalent protein synthesised by strains isolated from humans (h LT-B ). Two of these 

different amino acid residues are in the leader sequence and so are not represented in the 

mature protein. The other different residues are at positions 4 ,1 3 ,4 6  and 102, as represented 

in the mature protein after cleavage of the signal sequence (Leong et al., 1985). These subtle 

differences between p LT-B  and hLT-B  can be distinguished serologically (Honda et al., 1981 

and Svennerholm & Holmgren, 1986b). Quite why these apparently rigorous strain differences 

exist is puzzling, as the enterotoxin structural genes are plasmid-borne in both pordne and 

human isolates. In addition, these plasmids have been shown to be transmissible (Smith & 

Halls, 1968). It may be that such exchange does occur, but only infrequently, and that simply 

insufficient isolates have been studied.

1.5 The basis of toxicity in C T and LT

As with the structure of the two toxins, their mode of action is very similar. Initially, one of the 

five B-subunit monomers binds to a monosialoganglioside molecule (termed G «,) on the target 

cell membrane (e.g. a mucosal epithelial cell). This primary interaction is sufficient to stabilise 

the toxin molecule on the cell surface and the other monomers rapidly bind other G*,
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molecules with a stoichiometry of 1:1. Once the B-subunit pentamer is fully bound, the toxic A- 

subunit can enter the cell. The exact mechanism by which this is achieved is unclear. The 

secondary structure of the A-subunit is far less ordered than the that of the B-subunit (Surewicz 

et a/., 1990) and so might conceivably pass across the cell membrane in a partially unfolded 

state, with the B-subunit playing no further role. Such a model was proposed by Gill (as 

described by Stephen & Pietrowski, 1986). However, the results of some in vitro experiments 

on tissue culture cells suggest that both A - and B-subunits enter the cell in endocytic vesicles. 

Of course, these findings might be irrelevant to the situation in vivo. Whatever the debate over 

the method of entry into the cytoplasm, it is widely agreed that the target for the A-subunit, 

which causes the toxicity, is a regulatory "G" (guanidine-binding) protein, part of the stimulatory 

complex associated with membrane-bound adenylate cyclase. This stimulatory complex is part 

of the cell's physiological apparatus for increasing intracellular cyclic adenosine monophosphate 

(cAM P) levels in response to various signals (e.g. hormones). The A-subunit is cleaved, 

yielding A, (23kDa) and A j (5kDa) fragments. Binding of the A, fragment to the activated form 

of this G  protein, (termed G„S), prevents hydrolysis to the inactivated state. As a result, the 

stimulatory complex cannot be inhibited and adenylate cyclase is irreversibly activated, leading 

to high levels of cAMP. The next steps are not well-defined but it is clear that these high 

intracellular cAM P levels have a multitude of effects. One of these is thought to be the 

phosphorylation by cAMP-dependent kinases of membrane proteins which act as ion channels, 

resulting in de-regulation of ion-exchange and secretion in enterocytes, the clinical effect of 

which is severe diarrhoea.

1.6 The immunogenicity of C T  and L T

In many ways C T  is an extremely well-characterised molecule. However, there is one area 

which remains poorly-defined: the molecular basis of the mucosal immunogenicity of C T  and 

LT.
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Historically, C T  was a good choice ot antigen to study, being available in a  highly purified form 

in relatively large amounts. Furthermore, a model already existed for testing the protective 

effects of anti toxin antibody (the ligated rabbit ileal loop model). The  probable requirement for 

C T  antigens in any effective human oral cholera vaccine underlined the significance of such 

research.

Earty studies demonstrated that cholera toxoid was capable of provoking a response after 

intraperitoneal priming and oral boosting (Pierce & Gowans, 1975) and that native C T  had 

interesting immunomodulatory properties in vivo (Kateley et at., 1975). These latter workers 

showed that i.v. inoculation of small doses of C T  (down to 0.1 pg) could, depending on the time 

of administration relative to immunisation, enhance or suppress the mouse serum antibody 

response to sheep red blood cells (SRBC). The authors suggested that these effects were due 

to increased cAM P levels in lymphocytes resulting from adenylate cyclase activation or that the 

cytotoxic nature of C T  released mitogenic macromolecules from dead cells. This work 

supplemented an earlier brief report (Northrup & Fauci, 1972) that C T  could have an adjuvant 

effect on the mouse response to S R B C  and that this adjuvanticity was destroyed by heating 

C T  prior to inoculation. Pierce (1978), in experiments with C T , C T -B  and cholera toxoid 

established that efficient oral priming of rats could only occur if the antigen was in a form which 

could bind to G m,. Thus either holotoxin or C T -B  could stimulate vigorous local responses after 

feeding but cholera toxoid had no such effect, despite retaining its immunogenicity when given 

parenterally. Furthermore, this work demonstrated that the holotoxin was about ten times more 

immunogenic (by molar ratio) than the B-subunit alone. Presumably this was a reflection of the 

adenylate cyclase activation brought about by the toxic A-subunit. Th e  third important finding 

of this research was that local immunologic memory could persist for 8 months after oral 

priming.

This line of research was continued by Elson and Ealding (1984a,b). They compared the 

local and systemic responses of mice fed C T  o r Keyhole Limpet haemocyanin (KLH), a protein 

which is highly immunogenic when given intravenously. They showed that feeding 5mg of KLH 

did not induce any antigen-specific intestinal antibody and caused only a small increase in
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similar serum  antibody litres. In contrast, 10pg of C T  was sufficient to induce CT-spedfic slgA 

and high anti-C T serum levels of both IgA and IgG isotypes. This correlated with the detection 

of helper T  cell activity in mucosal (Peyer’s patches, mesenteric lymph nodes) and systemic 

(spleen) lymphoid tissue. More significantly they found that if C T  was co-fed with KLH, a KLH- 

specific s lgA  response could be induced, together with greatly enhanced serum anti-KLH titres. 

That is, co-administration of C T  could overcome oral tolerance to an unrelated antigen. This 

phenomenon has become known as "mucosal adjuvantictty".

Th u s  the evidence that C T  has a strong adjuvant effect on the mucosal reponses to 

unrelated and physically unconnected antigens is very strong. Equally, there is good evidence 

that C T  a nd the other antigen must be given by the same route and approximately at the same 

time (Lycke & Holmgren, 1986). It is less clear if C T -B  also has this property. There are some 

unequivocal reports (Tamura et a!., 1989), which established that anti-viral serum titres were 

higher in mice which received an influenza virus haemagglutinin (H A) vaccine intranasally in 

conjunction with C T -B  than in mice which received vaccine alone. They also demonstrated far 

higher nasal slgA concentrations in these mice, but did not prove its spedficty. The  question 

of whether C T -B  can act as a mucosal adjuvant is of some importance. The answer has 

obvious implications for the design of subunit vaccines aimed at stimulating mucosal responses 

and m ay reveal an insight into the molecular mechanism of the mucosal adjuvanticity of C T. 

For example, is adenylate cyclase-activating activity essential? This was thought to be the case 

initially. However, it became obvious that C T -B  did behave in a manner qualitatively similar to 

C T  in vivo, in that it can stimulate both secretory and serum responses after oral inoculation 

and does not induce oral tolerance (Pierce, 1978, Elson & Ealding, 1984a,b). Further in vitro 

studies showed that C T -B  shared other properties with the holotoxin. Woogen and his co­

workers (Woogen et al., 1987) were able to prove that C T -B , whilst not as efficient as C T, 

behaved similarly in that either molecule could inhibit mitogen- or antigen-induced T  cell 

proliferation or anti-IgM-mediated B  cell proliferation. This suppressive effect could be abolished 

if the toxin or B-subunit was pre-incubated with G U1. One distinction which the authors did note 

was that only C T  could inhibit LPS-driven B cell proliferation. They concluded that the binding
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of C T  or C T -B  to the lymphocyte cell surface could inhibit the activation mechanism leading to 

proliferation and, in addition, a further mechanism involving adenylate cydase activation could 

also have a suppressive effect.

The  report by De Aizpurua and Russell-Jones (1988), in their review of mucosal 

immunogens, established that several substances could elicit systemic responses after oral 

inoculation. These included E . co liadhesins (the pili K99 and 987P from animal E T E C  strains), 

influenza vaccine (containing haemagglutinating activity) and numerous lectins, such as 

Pokeweed mitogen (PWM) and concanavalin A  (con A). Furthermore, these authors showed 

that if the K99 pili or L T -B  were fed to mice in conjunction with various sugars, known to be 

responsible for the receptor-binding activity of the immunogens, then the serum responses to 

these molecules could be effectively abolished (mirroring the results in  vitro, using C T -B  mixed 

with G M1-containing liposomes, obtained by Woogen et at, 1987).

When all these findings are viewed in conjunction, it would seem that at least part of the 

mechanism of mucosal immunogenicity of C T  rests on its ability to bind G y „  and so this 

property is shared by C T -B  and L T -B . One explanation put forward which combines the known 

data into a coherent model, is that binding to receptor molecules on the surface of enterocytes 

by-passes the normal antigen-sampling procedure occurring in Peyer's patches, which is that 

process responsible for maintaining oral tolerance. Blocking of the binding sites on the mucosal 

immunogens (by sugars or whole gangltoside molecules) forces the molecules to be processed 

via Peyer's patches and so results in unresponsiveness (De Aizpurua & Russell-Jones, 1988).

It is difficult to determine the significance of studies in vitro on the effects of C T  and C T -B  

on T  and B cells (Woogen et a/., 1987, Elson & Solomon, 1990, Anastassiou et ai„ 1990, 

Dugas etal., 1991) to the immunogenic mechanism in vivo. O n  the basis of his own published 

findings Elson appears to suggest that native C T  or C T -B  can bind to the surface of T  cells, 

which inhibits T  cell proliferation and that in some way T  suppressor cells (presumably involved 

in the maintenance of oral tolerance) are inhibited preferentially over T  helper cells, the end 

result being an anti-CT or a n ti-C T-B  response. A  number of factors make it difficult to ascertain 

what might occur in vivo-, the far greater surface area of ileal enterocytes would suggest that
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they could adsorb considerably more antigen (via receptor-mediated endocytosis) than the M 

cells of the FAE. However, there is a much higher concentration of immunocompetent cells in 

G A L T , in a microenvironment which is probably very  different to that experienced by IE L  or 

lymphocytes in the lamina propria. Secondly, as stated earlier, there is evidence for the 

presentation of antigen by enterocytes in vitro, but no evidence if this occurs or not in vivo. 

Finally, Elson found in vitro that only native C T  or C T -B  exerted inhibitory effects on T  cells. 

However, it is conceivable that enterocytes or other cell-types might process such antigens 

before they are encountered by lymphocytes.

The  mechanism of mucosal immunogenicity outlined by De Aizpurua and Russell-Jones 

(1988) is not necessarily inconsistent with the published research (Guyon-Gruaz et a i,  1986) 

claiming to obtain serum anti-CT antibody after oral immunisation of mice with synthetic 

peptides corresponding to either amino acids 30-50 o r 50-75 of the C T -B  sequence. The  30-50 

peptide contains the Arg-35 residue reputed to be involved in receptor-binding, thus this peptide 

may have retained some affinity for G y,. The authors do not present any data on this point. 

Oral immunisation with the other peptide required four inoculations to elicit a serum response, 

despite the authors having selected the peptide for its putative immunogenicity.

1.7 Chemical conjugation and genetic fusion of antigens with C T -B  and LT-B

1.7.1 CT-B/antlgen conjugates and fusion proteins

In the light of the considerable body of evidence suggesting that C T -B  (and probably therefore 

L T -B ) possess at least some of the intrinsic mucosal immunogenicity of the holotoxin, it is not 

surprising that several attempts have been made to utilise this property so as to enhance the 

mucosal response to unrelated antigens.

The feasibility of this technique was demonstrated by the coupling of horseradish 

peroxidase (H RP) to C T -B , using glutaraldehyde (McKenzie & Halsey, 1984). The  resulting
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conjugate was shown to retain some Gy,-binding capability. 50pg of C T -B  coupled to 30-90pg 

of H R P was used to inoculate mice intraduodenally. The serum and secretory anti-HRP 

responses of these mice were compared to those of mice immunised with a  non-conjugated 

mixture of C T -B  and HRP, or H R P alone. The authors found that chemical linkage of HRP to 

C T -B  was necessary to obtain optimal slgA and serum IgG anti-HRP titres.

A  similar approach was employed (Bessen & Fischetti, 1988,1990) in an attempt to protect 

mice against colonisation by group A  streptococci. Synthetic peptides, corresponding to 

conserved sequences of streptococcal M protein, were covalently linked to C T -B  and used to 

inoculate mice intranasally. It was shown that, despite immunised animals mounting only a poor 

salivary IgA response, such a procedure could protect mice against pharyngeal colonisation 

after intranasal challenge by live streptococci.

Again, covalent coupling of C T -B  to an antigen, namely S. mutans surface protein antigen 

l/ll (Ag l/ll), was used to elicit mucosal and systemic responses in orally inoculated mice, as 

judged by the presence of Ag l/ll-specific antibody-secreting cells in salivary glands, mesenteric 

lymph nodes and spleen and by the presence of specific serum antibody (Czerkinsky et al., 

1989).

The  findings of McKenzie and Halsey (1984), concerning the need for C T -B  to be covalently 

coupled to the antigen of interest, are in direct contrast with the results obtained by Tamura 

and his co-workers (Tamura et al., 1988,1989), who experimented with the enhancement, by 

C T -B , of the antibody response to an intranasaliy inoculated influenza virus vaccine. In common 

with many other reports on the subject, they found that C T -B  was less efficient than the 

holotoxin at enhancing responses. However, they also discovered that, in their model, C T -B  

could act as a mucosal adjuvant simply by being mixed with the vaccine. T h e  C T -B  used in this 

study was supplied by Sigma Chemical Company and was not contaminated with A-subunit as 

determined by S D S -P A G E. It may well be that the respiratory and intestinal immune systems 

react differently to C T -B , otherwise it is difficult to reconcile the data of the two research 

groups. Alternatively, it may be significant that different antigens were studied.

A  more sophisticated technique than chemical conjugation is to create genetic fusions,
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consisting of C T -B  or L T -B  structural genes linked to the sequence encoding the antigen of 

interest. This has been achieved independently by several researchers (Guzman-Verduzco & 

Kupersztoch, 1987, SchOdel & Will, 1989, Dertzbaugh & Macrina, 1989 and Clements. 1990). 

Such an approach has several advantages over chemical coupling. Genetic fusions are much 

more versatile; antigens or short peptide fragments defining epitopes of any desired sequence 

can, in theory, be fused to the carboxy or amino termini of the carrier molecule. The products 

of such fusions would also have a precisely defined composition, which would be consistent 

from batch to batch. In addition, chimeric proteins could, if desired, be delivered by live oral 

vaccines (SchOdel etal., 1990a,b).

Dertzbaugh et al., (1990) have reporied the construction of a vector which expresses 

residues 345-359 of the glucosyltransferase B (gtf B) from S. mutans as a fusion with the 

amino terminal of C T-B . Both moieties of this fusion protein retained their antigenicity (as 

determined by immunoblotting) and, more importantly, their immunogenicity, eliciting gut IgA 

and serum IgG responses when fed to mice.

1.7.2 LT-B/arrtlgen fusion proteins

One of the earliest fusion plasmids reported was constructed by Guzman-Verduzco & 

Kupersztoch (1987). They successfully fused a sequence encoding E. coU S T  to the 5' end of 

the L T -B  structural gene. The  L T -B  moiety retained antigenicity in vitro in ELISA and Western 

blot analyses. Unfortunately, the S T  moiety retained toxicity, causing fluid accumulation in the 

suckling mouse model (Gianella, 1976). The immunogenicity and possible pentamerisation of 

the chimaera were not investigated. S T  was an attractive choice of antigen to couple to LT-B. 

being poorly immunogenic by itself. Any molecular combination which could elicit S T - and L T - 

neutralising antibodies in the gut raised the possibilty of producing a single vaccine to protect 

against enterotoxigenic E. co/Amediated diarrhoeal disease.

Another ST/LT-B gene fusion was made by Clements (1990), in which a synthetic
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oligonucleotide corresponding to part of the S T  gene, was joined to the 3' terminal of the LT-B  

structural gene. This approach avoided the need to eliminate the leader peptidase recognition 

site at the amino terminal of LT-B, which is necessary in fusions to the 5' terminal of the LT-B  

coding sequence, to prevent cleavage of fused epitopes along with the L T -B  leader peptide. 

Clements investigated the hybrid protein and found that the S T  toxicity was effectively 

abolished, whilst mice immunised intraperitoneally with crude or purified peparations of the 

molecule could generate S T - or LT-B-specHic serum antibody. However, whether such a fusion 

protein could elicit a response when given orally is doubtful; the author presented data implying 

no multimer-formation or Gy,-binding occurred.

Another plasmid vector had been described previously (SchOdel & Will, 1989). This 

contained a  polylinker region at the 3' end of the L T -B  gene. A  number of sequences encoding 

surface (sAg) or core (cAg) antigens from human (H BV) or Woodchuck (W H V ) hepatitis B 

viruses were inserted into this vector, creating several chimaeric proteins. The  authors 

established that the antigenicity of both moieties in the fusion protein was retained. However, 

no data were presented on multimer-formation or Gy,-binding, so it is unclear if these important 

attributes were also retained by the hybrid molecules. When mice were fed iive attenuated 

strains of Salmonella dublln expressing these fusion proteins, they developed LT-B-specific 

serum antibody after priming, the titres of which could be boosted by a second oral inoculation. 

However, no virus-specific serum antibody was detected in these animals.

Subsequently the same group constructed a plasmid (pFS20) in which two over-lapping T  

cell epitopes of HBVcAg (amino acid residues 120-140) and a B cell epitope from HBVsAg 

(amino acid residues 133-140) were expressed in a single fusion protein with L T -B  (SchOdel 

et al., 1990a). W hen mice were fed live attenuated S. dublln producing this polypeptide they 

developed serum anti-LT-B. In addition, mice of the H-2b haplotype (C57BI/10) generated 

splenic T  cells which proliferated In vitro in the presence of a  synthetic peptide corresponding 

to residues 121-145 of HBVcAg. However, neither these mice, nor Balb/c mice (H-2*), 

developed serum antibody against the B cell epitope. Interestingly, essentially the same peptide 

(133-143), when fused to the carboxy terminal of HBVcAg, was able to generate serum
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antibody when presented to mice by attenuated bacteria, using the same strain, dose and route 

of inoculation (Schôdel et al., 1990b).

It is clear from the published data that attempts at immunisation using L T -B  fusion proteins 

are very promising, although initial experiments have had mixed success. However, the ability 

of these fusion proteins to form pentamers (which appears to be essential for binding to G*,) 

is, where reported, often shown to be diminished or totally abolished. If current theories on 

mucosal immunogenicity are correct, this could substantially reduce their efficacy.

The  aim of this project was to investigate methods of improving the immunogenicity of peptide 

antigens inoculated via mucosal surfaces. T o  this end, a plasmid vector was constructed which 

would allow the in-frame insertion of peptides at the 3' terminal of the L T -B  structural gene, in 

such a way that the resulting fusion proteins retained the ability to pentamerise and bind to G,,,.

Additionally, having constructed such a fusion vector, it was intended to insert appropriate 

peptides and to confirm the identity of the fusion plasmids by DNA sequence determination. 

The  resultant chimaeric polypeptides were to be characterised in vitro using S D S- 

polyacrylamide gel (S D S -P A G E ), immunoblotting and G M1-linked ELISA analyses.

Finally, the immunogenicity of these fusion proteins in mice was to be investigated, both 

as partially-purified protein and by expression in a suitable live attenuated bacterial host.
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C H A P T E R  2

Materials and Methods

2.1 Bacterial strains

A number of strains were employed in this project. These are detailed in Table 2.1.

Table 2.1 The bacterial strains employed In this study

Organism Strain Relevant phenotype Reference

E. coli HB101 K12/B hybrid Bolivar & Backman, 1979

E. coli TG1 F Carter et al., 1985

S. typhimurium LB5010 r‘m+ Masked et al., 1987

S. typhimurium SL1344 aroA '  aroD ' Dougan et al., 1988

B. pertussis CN2992 Smr Roberts et al., 1990

2.2 Media for bacterial growth

Luria broth (L-broth), Luria agar (L-agar), top agar and Cohen & Wheeler agar (C W  agar) were 

all prepared by the media production unit at Wellcome Research Laboratories using standard

formulae.



L-broth

1.0% w/v tryptone 

0.5%  w/v NaCI 

0 .5%  w/v yeast extract

L-agar was as above, solidified with 1.5% Bacto agar. Minimal medium was made in the 

laboratory according to the formula below:

1.5% w/v agar 

0 .6%  w/v Na*HP04 

0 .3%  w/v K H jP O ,

0.1%  w/v NH4CI

in distilled water, adjusted to pH7.4 and autoclaved. 1M MgSO«, 20%  (w/v) glucose, 0 .1%  (w/v) 

thiamine and 1M CaCL, were prepared and sterilised separately. 200pJ, 1ml, 1ml and I0pl 

respectively of these solutions were added to 100ml of the molten agar prior to pouring the 

plates.

2.2.1 Media supplements

Where appropriate, media were supplemented with antibiotics according to Table 2.2.1. Stock 

solutions of antibiotics were prepared in distilled water, sterilised by passage through a 0.22pm 

filter (Millipore, UK) and stored in aliquots at -20°C. C W  blood agar plates contained 10% 

defibrinated horse blood (Tissue Culture Services Limited, UK).
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Table 2.2.1 Antibiotics used to supplement culture media

Antibiotic Stock solution Working concentration

ampictllin 200mg/ml 100pg/ml

streptomycin 20mg/ml 100ug/ml

2.3 Culture conditions

E. coli and S. typhimurium were routinely cultured at 37°C on L-agar plates or in L-broth. E. coll 

TG 1  was maintained on minimal medium plus thiamine. B. pertussis was grown on C W  blood 

agar plates at 35°C. Stock cultures of all strains were stored in aliquots in liquid nitrogen.

2.4 Plasmids

Plasmid pBRD026, the starting-point for the constructions described in this thesis, was made 

by Maskell et al., (1987), by sub-doning a 600 base-pair £coR1 fragment (carrying the porcine 

L T -B  subunit cistron) from pEW D299 (Dallas et al., 1979) into the EooR1 site of pBR322. The 

resulting plasmid (pBRD026) expresses L T -B  constitutively from the P1 ("anti-tet") promoter.

Th e  fusion vector, pFV 1 , was made by the insertion of specially-designed linker 

oligonucleotides at the 3' terminus of the L T -B  structural gene. L T -B  fusion constructs were 

created by the further addition of oligonucleotides at unique sites within the linker sequence, 

as described in section 3.4.
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2.5 DNA manipulations

2.5.1 Agarose gel electrophoresis of DNA

D N A in gel loading buffer w as subjected to preparative and analytical electrophoresis in 

horizontal gels consisting of 0 .8 %  (w/v) agarose in Tris/borate/EDTA (TB E ) buffer containing 

0.5pg/ml ethidium bromide.

5» oel loading butler 

30%  v/v glycerol 

0.25% w/v bromophenol blue 

50mM Tris in distilled water

TB E  buffer 

1.08% w/v Tris 

0.55% w/v boric acid 

0.1%  w/v E D T A  in distillled water

2.5.2 Phenol extraction and ethanol precipitation of DNA

D N A in aqueous solution was treated with an equal volume of Tris-buffered phenol/chloroform, 

to remove proteinaceous impurities, then with an equal volume of chloroform, to remove 

residual phenol. DNA was precipitated from aqueous solution by the addition of sodium acetate 

(pH4.5) to a concentration of 0.3M and the addition of 2.5 volumes of pre-cooled absolute 

ethanol. The mixture was held at -20°C for 10 minutes and the precipitated DNA pelleted by 

centrifugation in a bench centrifuge for 5-10 minutes. Salt was removed by washing the pellet 

in cold 70% ethanol. The  pellet was spun again for 2-3 minutes and the supernatant poured 

off. The DNA was dried under vacuum in an Unisdence "univap” concentrator. Once dry, the
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pellet was dissolved in an appropriate volume of sterile distilled water and stored at -20°C.

Tris-buffered phenoVchloroform 

100ml phenol 

96ml chloroform 

4ml isoamyl alcohol

(phenol supplied by BRL Gibco, Gaitesburg, Maryland, U S A , rest supplied by BDH, UK), 

equilibrated with 10mM Tris -H C I pH8.0

2.5.3 Gel purification of DNA

DNA was subjected to electrophoresis as described in 2.5.1. Fragments of interest were 

excised from the gel and purified according to the "freeze-squeeze" technique of Tautz & Renz 

(1983). The gel slice was immersed in 1mlof buffer (0.3M sodium acetate, im M  E D T A  pH7.0) 

for 30 minutes in the dark at room temperature. The  gel piece was dried on Whatman 3mm 

paper, transferred to a fresh eppendorf tube and frozen in a dry ice/ethanol bath for 20 

minutes. The  gel slice was then transferred to a Spin-X column (Costar, Massachusetts, USA) 

and spun for 10 minutes in a  bench centrifuge. The gel matrix was retained by the filter in the 

column (a low-binding 0.22pm  cellulose acetate membrane). The D N A passed through in 

solution and was purified according to the method detailed above (2.5.2).

2.5.4 Synthesis of oligonucleotides

Generally, synthetic oligonucleotides were prepared by Hugh Spence and Martin Carrier at 

Wellcome Research Laboratories using a Milligen 7500 D N A synthesizer (Millipore, UK ). The

26



resulting oligonucleotides were purified by high pressure liquid chromatography (H P LC ) and 

lyophilised. About 1 O . D ^ , ^  unit of the oligonucleotides was dissolved in 200pi of sterile 

distilled water. 100pl of this was diluted with a  further 400pl of distilled water and the 

absorbance at 260nm, relative to a blank of water alone, was determined using quartz cuvettes 

and an LKB Ultrospec II spectrophotometer. (O ne O .D . j* ^  unit of an oligonucleotide w as taken 

to coontain approximately 40pg). The O . D ^ ^  w a s  also determined to detect contamination, 

which was found to be neglible.

About 10picomoles of each oligonucleotide were treated with 0.5-1.0 units of T4  

polynucleotide kinase (Boehringer Mannheim), u sed  according to the suppliers instructions, in 

1x kinase buffer. Complementary oligonucleotides were then mixed in an eppendorf tube, 

boiled for 5 minutes and the tube left in the water bath which slowly cooled to room 

temperature, allowing the oligonucleotides to anneal.

1Qx kina§9  tgytfgr 

0.5M Tr is -H C I pH7.6 

0.1 M M gCI,

50mM dithiothreitol 

im M  E D TA

2.5.5 Ligations

2.5.5.1 Preparation of vector DNA

Plasmid D N A for use in ligations with oligonucleotides was incubated with the appropriate 

restriction endonuclease(s) together with calf intestine alkaline phosphatase (Boehringer) at a 

concentration of 1 unit/pg DNA/hour. The reaction products were separated by agarose gel 

electrophoresis as outlined earlier. The desired band  was purified as described in 2.5.3. and
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resuspended in 20pl of sterile distilled water. A small sample (~2pl) was run on an agarose 

gel to quantify the DNA concentration in the preparation.

2.5.5.2 Ligation reactions

20-50ng of prepared vector was used per ligation with a series of dilutions of oligonucleotides 

(ranging from neat to 1/10,000). "Sticky-end" ligations were carried out at 15°C overnight in a 

total volume of 20pJ, including 2pl of T4  DNA ligase (Gibco, BRL) and 4pl of 5x ligase buffer 

(from the same supplier) together with 1pJ of 10mM A TP , (the rest of the reaction volume 

consisting of vector preparation and sterile distilled water). A control reaction (with prepared 

vector but no oligonucleotides) was also performed. Ligation reaction products were used to 

transform bacteria as described below.

2.5.6 Transformation of bacteria

2.5.6.1 Preparation of competent E.coll

E. coh was transformed according to the method of Cohen et al., (1972) as described by 

Sambrook et al., (1989). Competent cells were prepared by diluting an overnight culture 1/100 

in fresh L-broth and growing at 37°C in an orbital shaker until an O .D ^ n m  of 0.4 was attained. 

The cells were harvested by centrifugaton (~3,000g for 5 minutes), washed once in ice-cold 

50mM C aClj and resuspended in half the original culture volume in cold C a C I, and left on ice 

for 1 hour. The cells were then harvested as before and resuspended in 1/25 of the original 

culture volume.

2.5.6.2 Transformation conditions

20-50ng of DNA in a volume of 10pl was added to 200pl aliquots of competent cells in
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eppendorf tubes. These were left on Ice for 1 hour. Control experiments were performed in 

which aliquots of competent cells were treated with a known amount (-2 5 ng) of plasmid DNA 

(e.g. pBR322, p U C l8 ) or received no DNA at all. The suspensions were heat-shocked in a 

42°C water-bath for 2 minutes and then put back on ice momentarily. 1 ml of L-broth was added 

to each tube and the cells were allowed to grow for 90 minutes at 37°C. 100pl of each sample 

was spread over L-agar plates containing appropriate selective antibiotics and incubated at 

37°C overnight.

2.5.6.3 Transformation of S. typhlmurlum LB5010

Competent cells of LB5010 were prepared using essentially the same technique as that for 

HB101. However, after harvesting the culture, the cells were initially resuspended in 1/2 the 

original culture volume in ice-cold 0.1M MgCI2 and left for 30 minutes on ice. Next, the cells 

were harvested in 1/2 the original culture volume in cold 0.1 M C aClj and left for a further 30 

minutes in ice. After this step the cells were suspended in 1/25 the original culture volume in 

cold 0.1 M CaCL, and the procedure was the same as that for the transformation of E. coU.

2.5.7 Transduction of Salmonella strains

2.5.7.1 Preparation of high-tit re lysates

Smooth vaccine strains of Salmonella are difficult to transform by conventional methods; 

however they can readily acquire foreign D NA by transduction with the generalised transducing 

phage P22. LB5010 was transformed with plasmids of interest as detailed in 2.5.6.3. Cultures 

with the transformed phenotype were grown overnight at 37°C. Duplicate 200pl aliquots of 

these cultures were infected with different dilutions (10‘2. 10*. 10*, and 10*) of a stock
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suspension of P22. These were incubated statically at 37°C for 1 hour and then mixed with 3ml 

of molten top agar and spread onto L-am p plates. Once set these plates were incubated at 

37°C for approximately 7hrs, by which time confluent plaques were apparent on some plates. 

3ml of T2  bufffer were then added to those plates exhibiting near confluent lysis. The plates 

were left to soak overnight at 4*0. Th e  top agar was then scraped off and vortexed vigorously 

with the T2  buffer. The agar was removed by centrifugation for 15 minutes at 27,000g and a 

few drops of chloroform added to kill the remaining cells in the lysate. Any surviving cells were 

removed by passage through a 0 .22p m  filter.

T2  buffer 

70mM NaCI 

30mM K*S04 

15mM N ajH P04 

10mM KHjPO«

0.5mM M gS 04 

0.05mM Caclj 

0 .1 %  w/v gelatin

2.5.7.2 Transduction of S. typhlm urlum  SL1344

200pl aliquots of a stationary phase overnight culture of SL1344 aroA '  aroD  '  were infected 

with different volumes (0-40pl) of the previously prepared P22 lysate. The aliquots were left at 

37°C for 1 hour for the phage to adsorb to the bacteria. After this incubation lOOpI of each 

aliquot was spread onto L-amp plates supplemented with 5mM E G TA  (which purges the phage 

from the culture by preventing viral readsorption) and incubated overnight at 37°C to give rise 

to colonies with the expected transduced phenotype.
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2.5.8 Small scale preparation of plasmid DNA from E. coll

Small scale preparations ("minipreps") of plasmid DNA were obtained using a modification of 

the Bimboim & Doty (1979) alkaline lysis method as described by Sambrook et ai, (1989). 

Colonies with the desired phenotype were picked into 3ml of L-broth containing selective 

antibiotics and grown overnight at 37°C in an orbital shaker. 1.5ml of this culture was 

transferred to an eppendorf tube and the cells pelleted by centrifugation for 2 minutes in a 

bench centrifuge. The supernatant was removed and the remainder of the culture was added 

to the tube. These cells were pelleted as before and the supernatant removed. The  pellet was 

dried and resuspended, with vigorous vortexing, in 100pJ of solution 1 and left at room 

temperature for 5 minutes. 200pl of solution 2 was added and the mixture incubated on ice for 

5  minutes. 150pl of solution 3 was added and, following a further 5 minute incubation on ice, 

the suspension was spun for 5 minutes in a bench centrifuge. 400pl of the cleared supernatant 

was transferred to a fresh eppendorf tube containing 1 ml of cold absolute ethanol. The mixture 

was held at -20°C for 10-20 minutes and the precipitated DNA was collected by spinning for 

5 minutes in a bench centrifuge. Th e  DNA pellet was dried, resuspended in 400pl of solution 

4 and purified as outlined earlier. RNA in the samples was removed by digestion with 20pg/ml 

RNase A for 30 minutes at 37°C.

Solution 1 

0.1 M ED TA  

30mM Tris-HCI

Solution 2 

1 %  w/v SDS 

0.2M NaOH

Solution 3 

3m NaOAc pH4.8
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Solution 4 

0.1M NaOAc 

50mM Tris-HCI pH8.0

2.5.9 Large scale preparation of plasmid DNA from E. coll

Large scale preparations of plasmid DNA were performed using essentially the same method 

as above, scaled up 100 fold, except that prior to phenol/chloroform extraction samples were 

treated with 1mg/ml proteinase K (Boehringer) for 1 hour at 56°C.

2.5.10 Transformation of E. coll with M13 DNA

DNA sequences of interest were sub-cloned into the replicative form of M13 vector mp19 

(Messing & Vieira, 1982), obtained from Pharmacia (Sweden). Competent TG1 cells were 

prepared as described previously. These were transformed with 10pl of M13 ligation mixtures 

and then added to 3ml aliquots of molten top agar containing 200pJ of late log phase TG1 

seeding culture, 50pl of 20mg/ml X-gal solution and 10pl of 0.1 M IPTG . This mixture was 

poured over an L-agar plate and incubated at 37°C overnight. Recombinant M13 plaques were 

colourless whilst wild-type plaques were blue.

X-oal solution

20mg/ml 5-bromo-4-chloro-3-indolyl p-D-galactoside 

in dimethyl formamide, stored at -20°C

IP TQ  y?'UlK>n

0.1 M isopropyl p-D-thiogalactopyranoside 

in distilled water, stored at -20°C
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2.5.11 Preparation of single stranded DNA from M13 plaques

Recombinant M13 plaques were picked into 2ml of 1/100 dilutions of E. coU TG1 overnight 

cultures. These were grown for 6 hours at 37°C in an orbital shaker. Bacterial cells were then 

pelleted in a bench centrifuge. 1 ml of the supernatant was transferred to a fresh eppendorf tube 

and the phage precipitated by the addition of 200pl of 20%  polyethylene glycol (P E G  6000) in 

2.5M NaCI. Purified single stranded DNA was obtained from the pelleted phage by 

phenol/chloroform extraction etc. as detailed in 2.5.2.

2.5.12. DNA sequence determination

DNA sequence determination from single stranded DNA templates was achieved using a 

modification of the dideoxy chain termination method (Sanger et a/., 1979); that of Tabor and 

Richardson (1988) employing altered T7  polymerase. Chain elongation was initiated with 

custom-made oligonucleotide primers, complementary to a region 50bp upstream (S') of the 

L T -B  stop codon. Sequencing reactions were executed with reagents from the "Sequenase" 

version 2.0 kit (United States Biochemical Corporation, Cleveland, Ohio, USA) and with 

o -^ S -d A TP  from Amersham International (Amersham, Bucks, UK).

The  reaction products were heated to 95°C for 5 minutes just prior to loading onto 

pre-heated 6 %  (w/v) acrylamide/7M urea wedge gels. These were run at 60 watts constant 

power for -2  hours, fixed in 10% methanol/10 %  acetic acid in water for 45-60 minutes, dried 

under vacuum and put up for autoradiography with Kodak X-Omat S  100 film. Autoradiographs 

were developed with a Fuji RGII automatic x-ray film processor.
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2.6 Analysis of E . c o ll  periplasmlc fractions

2.6.1 Preparation of periplasm lc fractions of £ . coll

Periplasmic fractions were obtained from E. coU cultures as described by Hirst et at., (1984a). 

Briefly, cultures were grown in L-broth to late log phase ( O .D . ^ ^  -1 .0 ). Cells were collected 

by centrifugation and washed once in ice-cold PBS. The cell pellet was then resuspended in 

1/25 of the original culture volume in 0.3M sucrose buffered with 0.1 M phosphate to pH7.6. 

Ethylene diamine tetra-acetic acid (E D TA ) and lysozyme were added to a final concentration 

of 5mM and 20pg/ml respectively. The suspensions were left on ice for 20-25 minutes with 

occasional agitation and then centrifuged at 20,000g for 15 minutes to pellet the sphaeroplasts. 

Th e  supernatant containing the periplasmic proteins was stored at -20°C.

2.6.2 6-Galactosldase and 6-Lactamase assays

These assays were performed upon the periplasmic and cellular fractions obtained by the 

above procedure. T o  assay B-gaiactosidase. lOOpi of a soluble periplasmic fraction or a cell 

sonicate (obtained by sonicating cell pellets in 1 ml of sphaeroplasting buffer on ice for 1 

minute, in 10 second pulses, using a standard M S E sonicator and probe) were added to 900pl 

of reaction buffer and mixed by vigorous vortexing with 20pJ of toluene. The  samples were 

incubated at 37°C for 40 minutes with occasional vortexing. Th e  reaction was started by the 

addition of 200pl of O P N G  solution and was allowed to proceed for varying times (30 seconds 

to 2 minutes) before quenching with 500pl of 1M Na2C O a. Th e  absorbance at 420nm of the 

samples was read using an LKBII ultrospec spectrophotometer. A  graph of absorbance against 

time was drawn and the gradient determined to give the initial reaction rates for the periplasmic 

and cellular fractions. Th e  results for each fraction were expressed as a percentage of the total 

enzyme activity.
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B-oalactosidase reaction buffer 

60 mM Na*HP04 

50mM 2-mercaptoethanol 

40 mM N aH jPO «

10mM KCI 

1mM M gSO«

Q P N G  solution

4mg/ml ortho-Nitrophenyl p-D-galactoside 

in distilled water

T o  assay B-lactamase activity, 100pl of periplasmic or cellular fractions were mixed with 900pl 

of B-lactamase assay buffer in a cuvette. The  absorbance at 482nm was monitored, using a 

spectrophotometer and chart recorder, as the reaction proceeded and the initial reaction rate 

determined from the gradient of the plot. Again, the results for each fraction were expressed 

as the percentage of the total enzyme activity.

B-lactamase assay buffer 

600pl distilled water 

200pl 0.2M phosphate pH7.0 

lOOpJ Nitrocefin (Difco) at 0.1mg/ml in 

0.1 M phosphate pH7.0

2.7 SDS-PAGE

Periplasmic proteins were separated on S D S  polyacrylamide gels under reducing conditions 

(Laemmli, 1970). Preparations were mixed with an equal volume of 2 x final sample buffer and 

loaded, with or without prior boiling, onto 12.5%  acrylamide gels, with molecular weight
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standards run in parallel (Rainbow protein markers from Amersham International). These were 

run overnight at ~8mA constant current. Gels were stained with 0 .1%  (w/v) C oo mass ie Brilliant 

Blue R250 dissolved in 10% (v/v) acetic acid/40% (v/v) methanol/50% (v/v) distilled water and 

destained in the same solution in the absence of Coomassie Brilliant Blue.

2 x final W m pl? byffgr 

10%  v/v glycerol 

5 %  v/v 2-mercaptoethanol 

3 %  w/v S D S

0.01% w/v bromophenol blue

1 »  S D S -P A G E  ginning bulter 

1.4% w/v glycine 

0 .3%  w/v Tris 

0 .1%  w/v S D S

2.8 Immunoblottlng

Some resolved periplasmic protein samples were electroblotted onto nitrocellulose. Transfer 

was accomplished overnight using 1 x Western Blot buffer (see below) in a  Bio-Rad Trans-Blot 

cell at a constant current of 120mA. After blocking sites of non-specific protein binding (with 

3 %  BSA in PBS), the nitrocellulose filters were washed 3 times in PBS and probed with a 

variety of antisera (e.g. rabbit polyclonal LT-B-spedfic antiserum, BB05 mouse monoclonal) at 

appropriate dilutions (see below) in 0.1%  B S A  in PBS for 1-2 hours at room temperature. After 

3 more washes in PBS, anti-rabbit or anti-mouse immunoglobulins conjugated to Horseradish 

peroxidase (Dakopatts, Glostrup, Denmark) were used as the second antibody. Blots were 

incubated with these conjugates (diluted 1/1000 in 0 .1%  BSA in PBS) for 1-2 hours at room
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temperature. The blots were further washed (5 times) in PBS and then developed with 30mg 

4-chloro-1 - naphthoi (Sigma, Poole. U.K.) dissolved in 10mls methanol/50mls PBS/30pJ H 202 

for 10-20 minutes. Similar protocols were followed for colony blots when screening colonies for 

the expression of desired antigens: colonies were transferred onto circular nitrocellulose filters 

and lysed by inverting them over chloroform for 30minutes. Filters were moistened with PBS 

and blotted against Whatman 3mM paper and excess cellular debris removed by washing in 

PBS. The procedure was then exactly the same as for Western blots.

1 x Western blot buffer 

190mM glycine 

25 mM Tris 

20%  v/v methanol

Antifrxli?? ang antisera

All antisera and antibody preparations were diluted before use, by the stated amount, in PBS 

containing 0 .1%  BSA.

anti-LT-B -  a polyclonal rabbit anti-LT-B  antiserum, raised by Maskell el at., (1987). Used at 

1/500.

antl-HRV -  a polyclonal mouse anti-peptide antiserum, raised by M. Francis (Wellcome 

Research Laboratories). Used at 1/150 after absorption with E. coli lysate (Biorad,

Watford, UK).

anti-114 -  a polyclonal rabbit anti-peptide antiserum, raised against amino add  residues 

364-383 of influenza vims A/Okuda/57 nucleoprotein coupled to Keyhole limpet haemocyanin 

(KLH), a gift from X.M. Gao (Institute of Molecular Medicine, John Radcliffe Hospital, Oxford).

37



BB05 - a mouse monoclonal, raised from mice immunised with Bordetella bronchiseptica, 

reactive with P.69 from B. pertussis (Novotny et a!., 1985). Tissue culture supernatant used at

1/20.

VP2-specific monoclonal antibodies - these were raised by P. Barnett and N. Parry (Wellcome 

Research Laboratories) against a peptide containing amino acid residues 24-33 (a T-cell 

epitope) and 156-170 (a  B-cell epitope) from VP2 together with an added cysteine residue. 

Three such monodonals were employed:- 2.7.4.2, 8.5.5.1 and 9.2.5.3. (Barnett and Parry, 

unpublished observations). Concentrated tissue culture supernatants were used at 1/100.

2.9 G^-IInked ELISA*

To  investigate the receptor-binding activity of LT-B-fusion proteins, periplasmic fractions were 

assayed using a G u,-linked ELISA, essentially as described by Svennerholm & Holmgren 

(1978). In these assays, 96 well microtitre plates were coated with 1pg/ml GMI (Sigma) in PBS 

by incubation overnight at 4°C. Unbound material was removed prior to use by washing 3 times 

in PBS. Serial dilutions (varying from 2 fold to 5 fold) of the periplasmic fractions were added 

to the wells and incubated at room temperature for 1 hour. Again, unbound material was 

removed by 3 washes with PBS. Plates were then probed with anti-LT-B for 2 hours at 37°C, 

washed 3 times in PBS and further probed with an appropriate second antibody (as described 

for immunoblotting). Purified L T -B  (a gift from T .  Hirst) was used as a positive control at 2pg/ml 

in PBS. The absoibance of the wells at 450 or 492nm was read on a Titertek multiscan reader

(Flow laboratories).



2.10 Immunological assays

Mice were inoculated with partially purified LT-B  fusion protein or with an attenuated strain of 

S. typhimurium expressing L T -B  fusion proteins. The  immune responses of mice inoculated in 

such a manner were evaluated in a number of ways.

2.10.1 Serum ELISAs

96 well flat-bottomed microtitre plates (Costar, Massachusetts) were coated with 50pJ/well of 

the appropriate antigen preparation (generally 1pg antigen/ml PBS) at 4°C overnight. Plates 

were washed twice in PBS, blocked with 3 %  BSA (incubating at 37°C for 1 hour, 200|il/well) 

and washed again in PBS (three washes). Serial dilutions (usually 3 fold or 5 fold) of control 

and test serum samples were made in 0 .1%  BSA in PBS. 50pl of these dilutions were added 

per well. Plates were then incubated at 37°C, typically for 2-3 hours. Th e  plates were washed 

three times in PBS/0.05% Tween 20 (PBS.T), before the addition of the appropriate 

horseradish peroxidase-conjugated second antibody (50pl/well). After further washing with 

P B S .T  (five washes), the plates were developed with 0.4mg/ml ortho-phenylenediamine 

dihydrochloride (O PD ) dissolved in ELISA substrate buffer (see below), 50pl being added to 

each well. Reactions were stopped by the addition of 12% HjS 0 4 (lOOpl/well). Absorbance at 

450nm or 492nm was read using a Titertek Multiscan reader (Flow laboratories) o r an Anthos 

htll programmeable plate reader.

ELISA substrate butter 

50ml contains:- 

12.2ml 0.1 M citric acid 

12.8ml 0.25M Na*HP04 

25ml distilled water 

20pl 30% H ,0 2 

20mg O PD
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2.10.2 EUSPO T assay

Th e  enzyme-linked immunosorbent spot (ELISPO T) assay, devised by Czerkinsky etal. (1983), 

was used to study the local immune response in the respiratory tract of animals immunised 

intranasally. Lungs were removed from mice asepticaliy and chopped Into a fine paste with a 

scalpel. This was suspended in 'digestion buffer, comprising 0.5 units/ml Coilagenase 

(Boehringer) and 0.25mgs/ml D N Ase I (Boehringer) in PBS/10mM MgCI,, (l-2m l per pair of 

lungs). This mixture was incubated for 1 hour at 37°C with gentle agitation (on an orbital shaker 

set at 80rpm). Following digestion the suspension was passed through a 40 gauge mesh 

(Sigma) to remove the larger pieces of debris. The cell suspension was washed extensively 

in PBS and enriched for lymphocytes on a 'Lymphoprep' (Nycomed Pharma AS, Oslo, Nonway) 

gradient: 5ml of cell suspension were carefully layered onto 10mls of Lymphoprep and spun 

at 3,000rpm for 12 minutes at room temperature in a Sorvall RT6000B centrifuge. The cells 

were recovered from the interface, washed again in PBS and resuspended in Click's medium 

(supplemented with 10%  foetal calf serum, penidllin/streptomycin and L-glutamine at the 

appropriate concentrations). Th e  number of viable lymphocytes in the preparation was 

determined with a Neubauer chamber and 0.5mls were added to the wells of a 24 well tissue 

culture plate (Costar). The plates were incubated at 37°C in an atmosphere of 5 %  C O , for a 

minimum period of 3hrs. After thorough washing in P B S.T, the plates were treated for 2 hours 

at 37°C with isotype-specific goat anti-mouse immunoglobulins. This was followed by 3 washes 

in P B S .T  and incubation for 2 hours at 37°C with afcaline phosphatase conjugated to rabbit 

anti-goat immunoglobulins. The  plates were extensively washed with P B S .T  and finally 

developed with 1mg/ml 5 -brom o-4-chloro-3-indolyl phosphate dissolved in 

2-amino-2-methyl-1-propanol buffer (all purchased from Sigma). Discrete spots could then be 

counted (using a binocular dissecting microscope), which corresponded to the number of 

antigen-specifc antibody secreting cells in each well.
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2.10.3 ft. pertussis  colonisation assay

To  determine the protective effect (If any) of inoculation with LT-B69, mice were challenged 

with an aerosol of B. pertussis (as described in Chapter 6). Protection was assayed by 

comparing the viable count of ft pertussis isolated from the lungs of infected mice in the 

vaccinated and control groups. To  perform these counts lungs were removed aseptically from 

2-3 mice per group and homogenised in 5ml of PBS. Serial tenfold dilutions of the homogenate 

were made in PBS. 20ul drops of these were transferred to CW/btood agar plates, allowed to 

dry and incubated at 35°C for 4-6 days to allow colonies to form. In addition to the above 

assays, mice inoculated with S. typhimurium S L1344 aroA '  aroD ', harbouring plasmids 

directing the expression of various L T -B  fusion proteins, were examined for the development 

of splenic cytotoxic T  cells specific for the heterologous epitopes fused to LT -B . The protocol 

used to investigate cytotoxic T  cell responses are described separately in chapter 4.
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C h a p t e r  3

Construction and ghan»çtgrf«tlgn 9* L f-g ty?lpn prqtelns

3.1 Introduction

The starting-point for the plasmid constructions described in this thesis was pBR D 026 (Maskell 

et al., 1987), a map of which is shown in Figure 3.1.1. This plasmid expresses porcine LT-B 

constitutively under the control of the P1 “anti-tet” promoter of pBR322. Th e  S pe I site located 

at the termination codon at the 3‘ end of the LT-B  gene was used to clone in an oligonucleotide 

encoding a specific sequence of amino acids defining a “hinge" which would permit the in­

frame coupling of foreign peptides to the L T -B  polypeptide. This hinge sequence 

oligonucleotide was designed to incorporate restriction sites for BglII and Spel (Figure 3.1.2). 

In addition, the oligonucleotides contained a one base pair mismatch which prevented the 

reformation of one of the Spel sites and, when inserted in the correct orientation, abolished the 

stop codon at the end of the L T -B  gene. Thus translation proceeds through the 3’ end of the 

L T -B  gene and the oligonucleotide linker to the stop codon at the reformed Spel site. 

Oligonucleotides encoding epitopes can be cloned into the unique BglII and Spel sites, allowing 

expression of the epitopes as fusions to the carboxy terminus of LT-B .

However, there is considerable evidence to show that fusion of foreign peptides to LT-B  can 

profoundly alter the behaviour of the protein. Sandkvist and her collleagues demonstrated that 

even slight alterations, such as the addition of 6 or 1 7 amino acids, to the carboxy terminus of 

L T -B  could radically change the properties of the molecule such that it no longer formed 

pentamers and could not bind to G*,, (Sandkvist et al., 1987). Subsequently, lida and his co­

workers (lida et al., 1989) presented data to suggest that a single mutation, at position 64 in 

the L T -B  amino acid sequence, could interfere with pentamerisation, subunit A -B  interactions 

and G*,,-binding.
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C l a l

Figure 3.1.1 A map of pBRD026. showing the origin of replication and the L T -B  coding region, 

together with the unique Spel site at the 3’ end of the L T -B  gene.
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Thus it was clear that fusion of peptides to L T -B  might after the characteristics of the carrier 

molecule. Most importantly, the ability of L T -B  to bind G y, and hence (according to current 

models) its mucosal immunogenicity, might be diminished or even totally abolished. Careful 

attention to the design of the hinge region was therefore necessary to reduce these difficulties. 

Thus a number of important features were incorporated into these sequences.

Firstly, where possible, amino acids with large charged or aromatic side chains were 

avoided. Secondly, the hinge amino acid sequence was made glycine/proline-rich. Such 

glycine/proline motifs have been identified in several other proteins (Matsushima etal., 1990) 

where they are thought to have an important structural role in defining functional domains. 

Furthermore, the hinge regions of both IgG, (Edelman et al., 1969) and lgG3 (Michaelsen et 

at., 1977) are known to be rich in proline. It is probable that the small molecular radius of 

glycine and proline minimizes structural constraints on the polypeptide. More significant 

perhaps, was the choice of codons specifying these residues, which are only rarely utilised in 

E. coli (Sharp & Li, 1986). Such rare codons are thought to create pauses during translation 

which allow for the correct folding of the nascent polypeptide into functional domains (Purvis 

et al., 1987). The  cis-trans isomerism of proline may also play a role in the creation of these 

translational pauses. Thus it is hypothesised that there is a brief temporal separation of the 

translation of the L T -B  mRNA from the translation of the fused peptide. This allows the LT-B  

moiety to assume its native conformation without structural constraints being imposed by the 

peptide.
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( A )
ApR pBRD026

5' CTTGGGGCCGGGGCCCGAGATCTTTGA 3'
3 ' CCCGGCCCCGGGCTCTAGAAACTGATC 5 '

Cue pBRD026 with Spel and ligate in 
oligonucleotides encoding "hinge" region

( B )
B g l l l  Spel

( C )
5'
3'

B a l l I  S pe  1
. AAAAACTTGGGGCCGGGGCCCGAGATCTTTGACTAGTTT. . . 3 ' 
. TTTTTGATCCCCGGCCCCGGGCTCTAGAAACTGATCAAA. . .5 ' 
K N L G P G P E I F D  Stop
LT-B Hinge

Figure 3.1.2 The strategy used to construct the LT-B fusion vector. pFV1, from pBRD026. (A) 

Plasmid pBRD026 was deaved with Spel and synthetic oligonucleotides, with the sequence 

shown, were inserted to form pFV1 (B). The DNA and corresponding amino acid sequences 

are shown (C). The inclusion of unique BgllI and Spel sites allows the insertion of 

oligonudeotides. (with complementary 5' and 3' ends), encoding heterologous epitopes at the 

3’ end of the LT-B  gene.
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3.2 Construction of the LT-B  fusion vector, pFVI

pBRD026 was linearised with Spel. treated with calf intestine akaline phosphatase and gel- 

purified. Synthetic oligonucleotides with the desired sequence were prepared by Jo hn Keyte 

(School of Biological Sciences. University of Nottingham). These were incubated with T4 

polynucleotide kinase in the presence of A T P , annealed and ligated into Sipel-cieaved 

pBRD026, as described in Chapter 2. The ligation products were used to transform E . coll 

HB101. Miniprep plasmid DNA was obtained from -3 6  ampicillin-resistant transformant 

colonies. This was digested sequentially with BgIH and SaiI and the products separated on an 

agarose gel. Recombinant plasmids containing the oligonucleotide insert (with the unique BglII 

site) gave rise to 2 bands, -1 .0  and 4.0kb, whereas plasmids without the insert generated a 

single band only (~5.0kb) corresponding to linearised plasmid. Plasmids which gave the desired 

restriction pattern with BghMSah digests were checked for the retention of an SpeI site by 

digestion with that enzyme.

Plasmids with the expected digestion pattern were investigated further by subcloning a 

2.0kb PstVSat fragment into M13 m pl9 RF D N A. Single stranded DNA was prepared and 

sequenced as detailed in 2.4. In this way the sequence of the synthetic oligonucleotide was 

confirmed and the sequence across the junctions of the construct could be determined, 

revealing the orientation of the insert. One such transformant containing correctly inserted 

oligonucleotides was isolated and termed pFV1. the sequence of which is illustrated in Figure 

3.2.

3.3 Selection of foreign epitopes to fuse to LT-B

Having successfully created a vector suitable for the expression of foreign epitopes as carboxy 

terminus fusions to L T -B  the logical next step was deciding which epitopes to insert into the 

vector. The  following criteria were used in the selection:-
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LT-B coding 
ragion

start of oligonucleotide
BglII Spel 

5' . . .AAAAACTTGGGGCCGGGGCCCGAGATCTTTGACTAGTTT. 
3' . . .TTTTTGATCCCCGGCCCCGGGCTCTAGAAACTGATCAAA.

G P G P E I F D  stop. . .N  lV g

one base pair mismatch

.3'

.5'

The determined DNA sequence across the 
junctions of the construct.

A C G T

“ "Stop" TAG

Start o f--------------
oligonucleotide

hinge-coding
region

Figure 3.2 Th e  predicted and determined DNA sequence across the junctions of pFV1.

47



1 ) the epitopes should be at least moderately well-characterised in other models, preferably 

by researchers at Wellcome as this would allow access to valuable reagents (such as antisera, 

monoclonal antibodies, synthetic peptides) and information,

2) the epitopes should be derived from antigens from pathogens of mucosal surfaces, 

because of the nature of the mucosal immunogenicity of LT-B  discussed in the introduction,

3) the antigens from which the epitopes were derived should be the targets for protective 

immune responses,

4) the epitopes used should encompass a number of different types, ideally both B-cell and 

T-cell, from bacterial and viral antigens, to investigate as many aspects as possible of the 

immunogenicity of the resulting fusion proteins.

5) the amino acid and/or nucleotide sequence of the epitope must be available, otherwise 

the correct oligonucleotides could not be synthesised,

6) the epitope should be mapped to a detailed level (e g. less than 30 amino acid residues) 

to allow the entire epitope to be encoded by an easily synthesised oligonucleotide.

Using these criteria, the following epitopes were selected:-

B-cell epitopes

a) The  monoclonal antibody BB05 binding-site from P.69, a B. pertussis surface-associated 

protein. Antibodies to this antigen have been shown to protect piglets against B. bronchiseptica- 

mediated disease (Novotny et al., 1985).

b) An epitope present in the major capsid protein (VP2) of human rhinovirus type 2 (H R V  2), 

(Clarke et al., 1991). A  large panel of monoclonal antibodies were raised against a synthetic 

peptide derived from the V P 2  sequence and used to define the epitope (Barnett & Parry, 

unpublished observations).
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T  cell epitopes

a) peptide 110 -  a peptide from influenza A  virus A/Okuda/57 nucleoprotein (N P), which acts 

as a target for cytotoxic T  lymphocytes (C T L ) in BALB/c mice with the H-2* haplotype (Taylor 

etal., 1987).

b) peptide 167 -  a peptide from the same protein which is recognised by T  helper (Th ) cells in 

B.10 S  mice (H-2* haplotype). (Gao et al., 1989).

c) peptide 114 -  again, a peptide from nucleoprotein, which is a target for C T L  in B6 (H -Z6) 

mice (Gao, unpublished observations).

3.4 Construction of the LT-B/epItope fusion plasmids

Th e  procedure followed was essentially the same for the construction of all the recombinant 

fusion plasmids. Large scale preparations were made of pFV1. These were digested 

sequentially with BglII and Spel (in the appropriate buffers) and gel-purified. Oligonucleotides 

(synthesised by Hugh Spence and Martin Carrier at Wellcome Research Laboratories) were 

incubated with T4  polynucleotide kinase in the presence of A T P , annealed and ligated into the 

vector preparations as described in 2.5.5. The sequences of these oligonuceotides are shown 

in Figures 3.4.1-3. These oligonucleotide sequences were designed to incorporate restriction 

sites. Where possible these were unique. This would allow restriction digest patterns to be used 

to screen for recombinant plasmids with the desired insert. Recombinant plasmids containing 

oligonucleotide inserts were obtained and were analysed by sub-cloning into M13 mp19 prior 

to dideoxy sequencing as before. A s  two restriction sites were used to clone in the 

oligonucleotides, only one orientation of insertion was possible. DNA sequencing was 

considered essential to preclude the possibility of an error in the synthesis of the
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"hinge"
LT-B coding 5' . . .AAAAACTTGGGGCCGGGGCCCGAGATCGCTCCGCAGCCG 

region 3' . . .TTTTTGAACCCCGGCCCCGGGCTCTAGCGAGGCGTCGGC
N L G P G P E  I A P Q P

War I
GGTCCGCAGCCGCCGCAGCCGCCGCAGCCGCAGCCGGAGGCGCCGGCT
CCAGGCGTCGGCGGCGTCGGCGGCGTCGGCGTCGGCCTCCGCGGCCGA
G P Q P P Q P P Q P Q P E A P A

CCGCAGCCGGACTAGTTT---3'
GGCGTCGGCCTGATCAAA. . .5' 
P Q P D Stop

The determined DNA sequence across 
the junctions of the construct.

A C G T

—r — —  "Stop" TAG

G/C-rich
BB05
epitope­
coding
region

Hinge­
coding
region

Figure 3.4.1 The predicted amino acid sequence and the predicted and determined DNA 

sequences across the junctions of the pFV1::69 construct.
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"hinge"
LT-B coding 5' . . .AAAAACTTGGGGCCGGGGCCCGAGATCGTTGCT 

region 3 ' . . .TTTTTGATCCCCGGCCCCGGGCTCTAGCAACGA
N L G P G P E I V A

Nae I
CACAAATCTTGCCTGCCGGCTTGCGTTTACGGTCCGGACTAGTTT . . . 3 ' 
GTGTTTAGAACGGACGGCCGAACGGCAAATGCCAGGCCTGATCAAA. . 5 ' 
H K S C L P A C V Y G P D  Stop

The determined DNA sequence across the 
junctions of the construct

A C G T

■♦—"Stop" TAG

Epitope­
coding
region

Hinge-
coding
region

Figure 3.4.2 The predicted amino acid sequence and the predicted and determined DNA 

sequences across the junctions of the pFV1::167 construct.
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"hinge"
LT-B coding 5 ' . . . AAAAACTTGGGGCCGGGGCCCGAGATC 

region 3 '  .. . TTTTTGATCCCCGGCCCCGGGCTCTAG
N L G P G P E I

Mill I
ACGCGTCTGAACCCGGACTAG. . .3' 
TGCGCAGACTTGGGCCTGATC. . . 5 ' 
T R L N P D Stop

"hinge"
LT-B coding 5 '__ AAAAACTTGGGGCCGGGGCCCGAGATCCAGATCGCTTCT

region 3' .. . TTTTTGATCCCCGGCCCCGGGCTCTAGGTCTAGCGAAGA
N L G P G P E I Q I A S

Sac I
AACGAAAACATGGACGCTATGGAGAGCTCTACTCTGGAACTGCGTGACTAG-- 3 '
TTGCTTTTGTACCTGCGATACCTCTCGAGATGAGACCTTGACGCACTGATC. . .5' 
N E N M D A M E S S T L E L R D  Stop

C

LT-B coding 5 ' 
region 3'

"hinge"
. AAAAACTTGGGGCCGGGGCCCGAGATCACCTACCAGCGT 
>TTTTTGATCCCCGGCCCCGGGCTCTAGTGGATGGTCGCA 

N L G P G P E I T Y Q R

Mlu I
ACGCGTGCTCTGGTTCGCACTGGTATGGACCCGGACTAG.. .3' 
TGCGCACGAGACCAAGCGTGACCATACCTGGGCCTGATC• . .5' 
T R A L V R  T G M D P D  Stop

Figure 3.4.3 The DNA and amino acid sequences across the junctions of the pFV1 ::VP2 (A), 

pFV1::114 (B) and the pFV1::110 (C ) constructs.
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oligonucleotides and to confirm the in-frame insertion of the epitope-encoding sequences. The 

resulting recombinant plasmids are detailed in Table 3.4.

Table 3.4 The chimeric proteins encoded by the various LT-B fusion plasmids

Recombinant Recombinant Heterologous

plasmid polypeptide Epitope

pFV1 LT-BH None ("hinge")

pFV1::110 LT-B110 p110, T  cell

pFV1::114 LT-B114 p114, T  cell

pFV1::167 LT-B167 p167, T  cell

pFV1 ::69 LT-B69 BB05, B ce ll

pFV1 ::VP2 LT-BV P2 VP2, B  cell

3.5. In vitro characterisation of the fusion proteins In periplasmic fractions of E. coll

The  initial step in the in vitro characterisation of the different L T -B  chimerae w as to ascertain 

whether these proteins retained the properties of native LT-B : transport to the periplasmic 

space and assembly into pentamers. To  answer this question, periplasmic fractions were 

prepared from E. coli cultures harbouring the various plasmids detailed in Table 3.4, as 

described in Chapter 2. Periplasmic fractions from HB101 (p F V l) and HB101 (pFV1 ::69) were 

obtained. Th e  samples were loaded directly onto an SDS-polyacrylamide gel, or boiled for 10 

minutes first, and separated by running the gel overnight. The results are shown in Figure 3.5. 

It was found that the products of pFV1 (L T-B H ) and pFV1::69 (L T-B 6 9), are soluble and 

transported into the periplasm of E. coli, where they are reasonably stable.
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1 2 3 4 5 6 7 8

97.4

69.0

30.0 ______  ______

Figure 3.5 S D S-P A G E analysis of periplasmic fractions from E. coli. Lane 1. HB101 (unboiled); 

lane2, HB101 (boiled); lane3. HB101 (pMMB68) (unboiled); lane 4. HB101 (pMMB68) (boiled); 

lane 5. HB101 (pFV1) (unboiled); lane 6, HB101 (pFV1) (boiled); lane 7, HB101 (pFV1::69) 

(unboiled); lane 8, HB101 (pFV1:;69) (boiled). The LT -B - and LT-B69-specific bands are 

arrowed. Numbers on the left indicate the positions of molecular weight standards with the size 

(in kiloDaltons) shown.
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Furthermore they assemble into pentamers which dissociate into the constituent monomers on 

boiling. Pentameric L T -B H  migrates as a polypeptide of 46 kDa (Hirst etal., 1988) and appears 

to have a rather higher Mr than that of native human L T -B  (h LT-B ), as expressed by the 

construct pMMB68 (FOrste etal., 1983 and Sandkvist etal., 1987). The monomeric polypeptide 

migrates as a protein of -1 3  kDa and also appears to have a higher M, than that of monomeric 

hLT-B . The calculated M, of hLT-B  is just under 12.0 kDa, corresponding to a 55 kDa 

pentamer. That of L T -B H  is 13 kDa, equivalent to a pentamer of about 60 kDa. These 

differences are just 1.0 kDa and 5.0 kDa, thus the fact that these can be detected shows the 

considerable resolution which can be achieved with S D S -P A G E , even on a non-gradient gel.

The fusion protein, LT-B69, runs as a pentamer of -9 0  kDa and as a monomer of -1 8  kDa. 

This is a reflection of the coupling of the BB05 epitope, which has a calculated M, of 3 kDa. 

However the simple addition of 3 kDa to the molecular weight of the protein is insufficient to 

explain its low mobility. As noted by See & Jackowski (1989), a number of proteins with high 

proline content have abnormally high molecular weights as determined by S D S -P A G E  (Starr 

& Offer, 1983). The  same is true of the P.69 protein from B. pertussis, from which the BB05 

epitope was taken. Although the protein has a calculated molecular weight of 60 kDa (Makoff 

et a!., 1990), it has an apparent mobility of 69 kDa. This discrepancy is thought to be due to 

the high proline content, which is particularly notable in the region of the BB05 epitope. Thus 

it would seem that the high proline content of the BB05 epitope affects the migration of LT-B69 

as a whole.

The level of expression of the chimeric proteins was low (just a few %  of total protein in 

periplasmic fractions) but no lower than might be expected in comparison to other proteins 

expressed from the P1 (*anti-tet*) promoter (e.g. Maskell et al., 1987).

One other feature of interest is apparent in Figure 3.5. In tracks 5-8 a prominent low M, 

(<14.3 kDa) polypeptide is apparent which is not present in tracks 1-4. Whilst all the samples 

were prepared from E. coli HB101 cultures, the samples in tracks 1-4 were prepared from an 

HB101 strain used at Leicester University, whilst the samples in tracks 5-8 were prepared from 

the HB101 strain in use at the Wellcome Research Laboratories. Thus there is at least one
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distinction between the two strains: the presence or absence of this polypeptide in the 

penpiasmic space. There may well be other differences.

That these proteins were truly of periplasmic origin was confirmed by performing f)- 

galactosidase assays upon the periplasmic and cellular fractions (obtained in the course of the 

experiments) as described in Chapter 2. p-lactamase assays were also performed on these 

fractions to estimate the proportion of periplasmic proteins released. Typical results are shown 

below in Table 3.5.

Table  3.5 Relative enzyme activities In the cellular and periplasmic fractions of E. c o ll

%  p-galactosldase %  p-lactamase

activity activity

pFV1 cells 100 52

p F V l periplasm 0 48

pFV1 ::69 cells 100 61

pFV1 ::69 periplasm 0 39

p-galactosidase is an enzyme whose distribution is restricted solely to the cytoplasmic 

compartment, and therefore it was only detected in the cellular sonicate. Its complete absence 

from the periplasmic fractions is evidence that the integrity of the inner membrane is not 

impaired by the lysozyme/EDTA treatment. Therefore any proteins present in these fractions 

must be periplasmic or membrane-associated in nature. It has been shown previously that 

h L T-B  is truly periplasmic in nature and not membrane-associated (Hirst et at., 1984a).

In contrast, ^-lactamase is efficiently transported to the periplasmic space. Clearly, this is 

essential if the enzyme is to be protective against p-lactam antibiotics, which act on penicillin­

binding proteins present in the periplasm. The  results of the p-lactamase assays demonstrate 

that, in general, rather less than half of the total cellular pool of p-lactamase is released by the 

lysozyme/EDTA treatment. Thus, if one assumes all p-lactamase to have a periplasmic location,
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the sphaeroplasting protocol employed yields less than fifty percent of total periplasmic protein. 

However, it does ensure that there is no contamination by cytoplasmic protein in the samples.

3.6 Immunoblottlng

Periplasmic fractions were prepared from E. coli HB101 cultures harbouring the novel 

constructs detailed in Table 3.4. These were subjected to S D S -P A G E  and transferred to 

nitrocellulose. The filter was probed with anti-LT-B polyclonal antiserum. The results are shown 

in Figure 3.6.1. As experienced previously with LT-B69, all the fusion proteins formed 

pentameric complexes, ranging in apparent molecular weight from about 60 kDa to 97 kDa (i.e. 

higher than would be expected from L T -B  or LT-BH  alone). Upon boiling these bands disappear 

simultaneously with the formation of new bands which migrate with apparent molecular weights 

ranging from ~13 kDa to 18 kDa, which correspond to the constituent monomers of the fusion 

proteins (again, higher than would be expected from monomers of L T -B  or L T -B H ). It would 

seem that the pentameric form of the fusion proteins is subject to degradation -  the bands are 

diffuse and poorly defined. In contrast the monomeric polypeptides form quite well defined 

bands. This is slightly surprising because many of the epitopes of C T -B  and L T -B  are known 

to be heat-labile and are destroyed by boiling (Kazemi and Finkelstein, 1990). Possibly the 

boiling results in just a few nearly identical stable forms of the respective polypeptides (i.e 

greater homogeneity), leading to greater localisation of the material on the gel and 

corresponding blot. An alternative explanation for the faint staining of the bands (if not their 

diffuse nature) is that the addition of the heterologous epitopes to the C  terminai affects the 

antigenicity of the L T -B  moiety, perhaps masking some of the L T -B  epitopes when present in 

a pentameric complex. Upon boiling of the protein, yielding the constituent monomers, these 

epitopes are unmasked and made available for binding anti-LT-B antibody.

57



Figure 3.6.1 Immunoblot analysis of periplasmic fractions of E. coli. Fractions were prepared 

as described in 2.7.1. These were subjected to S D S -P A G E  and electroblotted onto a 

nitrocellulose filter. This was probed with a polyclonal LT-B-specific antiserum as detailed in 

2.9. Lanes 1 and 6. HB101 (pFV1::VP2); lanes 2 and 7, HB101 (pFV1 ::110); lanes 3 and 8. 

HB101 (p FV I ::167); lanes 4 and 9, HB101 (pFV1::114); lanes 5 and 10. HB101 (pFV1::69), 

Lanes 1 -5 loaded with unboiled samples, lanes 6-10 loaded with boiled samples. The numbers 

on the right refer to pre-stained molecular weight standards with the size shown in kiloDaltons.
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The identity of the LT-B69  and LT-BVP2 fusion proteins was confirmed in subsequent 

immunoblotting experiments using sera specific for the respective fused epitopes. Figure 3.6.2 

shows peripiasmic fractions from HB101 (pFV1) and HB101 (pFV1::69) probed with the BB05 

mAb. This monoclonal antibody is seen to react solely with the sample prepared from HB101 

(pFV1::69). The high avidity of this reagent enables detection of a wide range of breakdown 

products in the unboiled sample. Th e  majority of the material however is present as pentameric 

LT-B69, with an apparent molecular weight of -9 0  kDa, as detected by the LT-B-specific 

antiserum. Upon boiling only a single band is detected. This equates to the 18 kDa band 

similarly detected with LT-B-specific antiserum and represents monomeric LT-B69. Thu s the 

presence of the L T -B  carrier molecule does not appear to inhibit the antigenicity of the BB05 

epitope, at least in a denatured form in a Western blot.

Similarly, peripiasmic fractions were prepared from HB101 (pFV1) (boiled sample only) and 

HB101 (pFV1::VP2) (both boiled and unheated samples). These were resolved by S D S -P A G E  

and transferred to a nitrocellulose filter. This filter was probed with a  VP2 peptide-specific 

polyclonal antiserum (a gift from  M . Francis, Wellcome Research Laboratories). The results are 

shown in Figure 3.6.3. It can be seen from this figure that the serum does not react with the 

HB101 (pFV1) extract nor, surprisingly, with the unboiled HB101 (pFV ::V P2) extract. In contrast, 

the boiled extract gives a band at the expected position, which is readily bound by the 

antiserum. Why this should be so is unclear. It may be that, unlike the LT-B 6 9  fusion, there is 

some sort of steric hindrance in the pentameric complex (even in the denatured form), which 

prevents the VP2 epitope from  being exposed. In this respect it might be significant that the 

sequence of the added epitope is very short (just 6 extra amino acid residues), whereas the 

fused epitopes of the other L T -B  chimerae are quite long (20-30 extra amino acid residues) in 

comparison.

Similar experiments, using polyclonal antisera specific for the 110 or 167 epitopes, failed 

to detect the respective fusions on Western blots, despite the increased molecular weight 

apparent in blots probed with anti-LT-B  antiserum. Possible explanations for this observation 

are discussed in the following section.
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Figure 3.6.2 Immunoblot analysis of periplasmic fractions of E. coli HB101 pFV1 and HB101 

pFV1::69. Periplasmic fractions were obtained as described in 2.7.1, subjected to S D S -P A G E  

and electroblotted onto a nitrocellulose filter (as detailed in 2.8 and 2.9). This filter was probed 

with the mouse monoclonal antibody BB05. Lane 1. HB101 (pFV1) (unboiled); lane 2, HB101 

(pFV1::69) (unboiled); lane 3. HB101 (pFV1) (boiled); lane 4. HB101 (pFV1::69) (boiled). The 

positions of pre-stained molecular weight standards are shown on the right.
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Figure 3.6.3 Immunoblot analysis of perlplasmic fractions from E. coli HB101 (pFV1) and 

HB101 (pFV1 ::VP2). Samples of periplasmic proteins were prepared, separated by SD S-PAG E 

and electroblotted onto nitrocellulose as described previously. The filter w a s  probed with a 

polyclonal VP2 peptide-specific antiserum. Lane 1. HB101 (pFV1 ::VP2) (boiled); lane 2, HB101 

(pFV1::VP2) (unboiled); lane 3. HB101 (pFV1) (boiled). Numbers on the right refer to the 

position of standards with the molecular weight shown in kiloDaltons.
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3.7 Gw-linked ELISAs

The observation that the various L T -B  chimeric proteins formed pentamers was encouraging 

because it is believed that only L T -B  in the pentameric form has a high affinity for Gy, (which 

in turn is believed to be central to the immunogenicity of LT-B ). Svennerholm & Holmgren 

(1978) devised a Gy,-linked E L IS A  method to investigate Gy,-binding by C T  and LT. This 

method was adapted (as described by Maskell et a!., 1987) to study the affinity for Gy, of the 

various L T -B  fusion proteins. In one such experiment, periplasmic extracts were prepared from 

E. coli HB101, HB101 (pFV1) and HB101 (pFV1::69). These were adjusted to an equal 

concentration of total protein, and added to Gy,-coated or blank, uncoated 96 well flat-bottomed 

microtitre plates. The samples were serially diluted 1:3 down the plate using PBS as the diluent 

and then probed with rabbit anti-LT-B  antiserum (the assay method is described in detail in 

Chapter 2). The absorbance was read and plotted against dilution. The results are shown in 

Figure 3.7.1. This shows that on plates not coated with Gy„ very little L T -B  could be detected 

whether the antigen in question was LT -B H  or LT-B69. Equally, there was no antibody bound 

if a periplasmic fraction from HB101 alone was applied to a GM,-coated plate. If, however, 

fractions from HB101 (pFV1) or HB101 (pFV1::69) were applied to a Gy,-coated plate LT-B  

was readily detected, indicating that LT -B H  and LT-B69 both retain the ability to bind Gy,. 

Purified L T -B  (a generous gift from T .  Hirst, University of Leicester) was included at 1pg/ml as 

a positive control. Thus, as was experienced with the immunoblotting experiments, the 

presence of the BB05 epitope at the C-terminal of L T -B  does not interfere with the antigenicity 

of the L T -B  moiety nor, more importantly, does it greatly inhibit binding of Gy,.
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Figu re  3.7.1 The  ganglioside-binding activities of L T -B H  and LT-B69 were investigated by an 

EL IS A  technique. Periplasmic fractions from E. coli were obtained by the method previously 

described, adjusted to an equal concentration of total protein and applied to G*,,-coated 

microtitre plates (open symbols) or uncoated blank plates (filled-in symbols). These were then 

probed with polyclonal anti-LT-B antiserum and processed following standard ELISA protocols. 

HB101 (A, A); HB101 (pFV1) ( O , « ) ;  HB101 (pFV1::69) ( □ , ■ )  and purified L T -B  alone Q .
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In a similar assay (the results of which are shown in Figure 3.7.2), the antibody probe used 

was the monoclonal antibody BB05. As expected, no reactivity was observed from HB101 

(pFV1) extracts on either blank or Gy,-coated plates. In contrast, LT-B69  could be detected 

easily, but only on a Gy,-coated plate, once again demonstrating the specificity of the assay. 

Furthermore, this proves that the L T -B  carrier molecule does not significantly interfere with the 

antigenicity of the BB05 epitope in a nearly native state (the fusion protein is presumably in a 

slightly different conformation if bound to Gy, than if in free solution) whilst the earlier 

immunoblotting experiment with the same mAb probe had shown that this was true if the 

protein was highly denatured.

Similarly, periplasmic fractions from HB101 (pFV 1) and HB101 (pFV 1::V P2) were 

compared. These were added to G MI-coated plates and probed with one of three mouse 

monoclonal antibodies (termed 2.7.4.2,8.5.5.1 and 9.2.5.3 respectively). These were prepared 

by P. Barnett (Wellcome Research Laboratories; Barnett & Parry, personal communication), 

having been raised against a peptide consisting of amino add residues 24-33 (a T  cell epitope) 

and 156-170 (a B cell epitope) of VP2, together with an added C  terminal cysteine residue to 

facilitate coupling of the peptide to keyhole limpet haemocyanin (KLH). Tw o  of these 

monoclonals (2.7.4.2 and 8.5.5.1) could detect the LT-B V P 2  fusion protein on ganglioside 

coated plates (Figure 3.7.3, graphs A  and B) whilst the other (9.2.5.3) could not (data not 

shown). This difference may be due to the first two antibodies recognising a particular peptide 

conformational epitope which is conserved in the fusion protein whilst the latter antibody 

recognises a conformational epitope, unique to the peptide-KLH conjugate against which it was 

raised, which is not represented in the LT-BV P2 fusion (when bound to Gy,). In a similar 

experiment, a polyvalent VP2 peptide-specific antiserum (described in 3.6), was used as a 

probe. Th e  results are shown in Figure 3.7.3, graph C . It is clear from these results (Figure

3.7.3, graphs A, B and C ) that the short VP2 peptide sequence is present in the LT-BV P 2 

fusion and is accessible to antibody when the molecule is in a near native state. In addition, 

an assay was performed on the same periplasmic fractions using the rabbit polyclonal anti-LT-B 

antiserum as the probe. The results are shown in Figure 3.7.3, graph D.
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Figure 3.7.2 The  identity and ganglioside-binding activity of the LT-B69  fusion protein was 

confirmed by means of an EL IS A  (described in 2.10). Periplasmic fractions were prepared from 

E. coli, adjusted to an equal concentration of total protein and allowed to react with microtitre 

plates coated with G MI (open symbols) or microtitre plates left uncoated as blanks (filled-in 

symbols). The plates were then probed with the monoclonal antibody. BB05. HB101 (pFV1) 

((> .• ); HB101 (pFV1 ::69) (□ . ■ ) .
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Figure 3.7.3 Th e  identity and G*,,-binding activity of LT-BV P 2 was confirmed in a number of 

ELISAs. Periplasmic fractions were prepared from E. coli HB101 (pFV1::VP2) and control 

samples were prepared from HB101 (pFV1). These were adjusted to an equal concentration 

of total protein, applied to G*,,-coated microtitre plates and probed with a variety of antibodies. 

HB101 (pFV1::VP2) (• ) and HB101 (pFV1) (O ) were probed wth:-

A) VP2 peptide-specific monoclonal antibody 1.2.5.3

B) VP2 peptide-specific monoclonal antibody 8.5.5.1

C ) VP2 peptide-specific polyclonal antiserum

D) LT-B-specific polyclonal antiserum
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There is noticeabiy less binding of the anti-LT-B antibodies by LT-BV P2 than by LT -BH . This 

may be due to diminshed affinity for G y, as a result of the presence of the heterologous fused 

epitope. An alternative explanation is that there is an equal amount of bound antigen but less 

binding of the LT-B-specific antibodies. This seems unlikely because such an effect is not 

marked with the other L T -B  fusion proteins in which the fused epitopes are much larger than 

that in LT-BVP2. Other G M1-linked ELISAs were performed on periplasmic fractions prepared 

from E . coli HB101 pFV1::114 and control samples from HB101 (pFV1). These samples were 

probed with a peptide 114-specific polyclonal rabbit antiserum (a kind gift from X.M. Gao, 

Institute of Molecular Medicine) (Figure 3.7.4, graph A) or polyclonal anti-LT-B antiserum 

(Figure 3.7.4, graph B). Th e  peptide 114-specific antiserum detected L T -B 1 14 on a Gy,-coated 

plate, but not LT-BH , thus confirming the identity of the fusion protein. Anti-LT-B  antiserum 

reacted equally well with L T -B H  and LT-B114, indicating that the LT-B114  fusion protein and 

L T -B H  had comparable G M1-binding activities, assuming they were bound to by anti-LT-B 

antibody with equal affinity.

A s  previously experienced in immunoblotting experiments, polyclonal antisera specific for 

p110 o r p i 67 failed to detect the respective fusion proteins in ELISAs (data not shown). The 

D N A  sequence of pFV1::110 and pFV1::167 was confirmed previously so one would expect 

correct expression of the fusion proteins. Therefore, it would seem that the likely explanation 

for this failure to detect expression is that the LT-B110 and LT-B167  fusions are more 

susceptible to degradation than the other fusion proteins, such that short fragments containing 

the relevant epitopes run off the bottom of gels during S D S-P A G E (and so are not present on 

the resulting blots) and are unable to bind to Gy, (and so are not detected in G ui-linked 

E L IS A s ). Alternatively, the major epitope-specific antibodies in the antisera may not have 

recognised the heterologous epitopes within the context of the L T -B  fusion protein (whilst they 

did bind to the synthetic peptides, corresponding to the epitopes, when adsorbed onto microtitre 

plates).
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Figure 3.7 .4  The identity and G M1-binding activity of LT -B 1 1 4  was confirmed by means of a 

G M1-linked ELISA. Periplasmic fractions were prepared (as described previously) from E. coll 

HB101 (p F V 1 ) and HB101 (pFV1 ::114). These were applied to G M1-coated microtitre plates and 

probed with heterologous epitope-specific (graph A ) or LT-B-specific (graph B ) antisera.
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3.8 Summary

The results obtained from the various immunoblotting experiments and ELISAs performed in 

order to determine the behaviour of the L T -B  chimeric proteins in vitro are summarised in Table

3.8 below.

Table 3.8 Confirmation of the Identities and G^-blndlng properties of the various LT-B 

fusion proteins

Recombinant

Protein

Detection by:-

Immunoblot G*, ELISA 

L T -B  Epitope LT-B Epitope

LT-BH + N.D. + N.D.

LT-B110 + + -

LT-B114 + N.D. + +

LT-B167 + + *

LT-B69 + + + *

LT-BVP2 + + + +

N.D. -  Not done. +  -  detected. -  -  not detected
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Th e  results obtained from the in vitro characterisation of the fusion proteins show that certain 

additions to the C  terminal of L T -B  do not necessarily lead to the loss of properties associated 

with the native molecule, namely accumulation in the periplasmic space of E. coli, formation 

of pentamers and the ability of the pentameric complex to bind to its ganglioside receptor. It 

is impossible to say to what extent the preservation of these properties is dependent upon the 

inclusion of the hinge region between the carrier molecule and th e  fused epitope. One way to 

determine the significance of the hinge might be to design oligonucleotides corresponding to 

the sequences of the fused epitopes, such that they could be ligated in directly at the SpeI site 

of pBRD026. One could then compare the resulting fusion proteins with those expressed by 

pFV1 and its derivatives.

Another observation which can be made is that the chimeric L T -B  monomers are capable 

of pentamerisation in the absence of the A-subunit. This phenomenon has been noted 

previously for native L T -B  (Sandkvist et al., 1987). Indeed, it w ou ld  be interesting to discover 

whether the chimeric L T -B  molecules were still capable of interacting with the A-subunit. The 

same authors (Sandkvist et al., 1987) found that the addition of seven amino adds to the C  

terminal of L T -B  prevented the molecule from immunoprecipitating in the presence of A-subunit- 

specific antiserum (when co-expressed with A-subunit by E. coli), whilst the altered molecule 

was readily precipitated by anti-A/B-subunit antiserum, implying that the A-subunit would no 

longer associate with the altered B-subunit. It might be argued that, should L T -B  fusion proteins 

ever be used in the production of human or animal vaccines, an  inability of the B-subunit to 

associate with A-subunit is to be preferred so as to prevent the possibility of toxicity (even 

though it is difficult to envisage conditions where there might b e  contamination by exogenous 

toxin A-subunit).

A  further point to be considered is the location of the C  terminal of L T -B  in terms of whether 

it is surface-exposed or buried within the molecule. Considering the significance of the C  

terminal in subunit-A/B interactions it would seem probable that the C  terminal is surface- 

exposed. Certainly the G ^-linked ELISA results obtained using heterologous epitope-specific 

antibody probes would seem to indicate that, in general, fusion to L T -B  has little effect on the
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accessibility or antigenicity of the epitopes. Indeed, the surface-exposed nature of the C  

terminal of L T -B  has recently been confirmed in the structure of the molecule reported by 

Sixma eta!., (1991).
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C H A P T E R  4

inoculation of mice with attenuate« S. tvphlm urtum  gp. harbouring LT-B  fyylon prptgln 

expression plasmids

4.1 Introduction

A  number of approaches have been employed in an attempt to stimulate mucosal immune 

responses against bacteria. The simplest involve the use of the oral route to administer 

antigens which elicit good systemic responses when given parenterally. such as killed whole 

cell bacterial vaccines. Numerous studies have been performed using potential vaccines 

against such bacterial pathogens as Streptococcus mutans (Bonta et at., 1979) and Vibrio 

cholerae (whole cell vaccine given in conjunction with purified antigen; Svennerholm & 

Holmgren, 1986).

Alternatively, mucosal immunity can be generated by the administration of live, 

spontaneously-arising, attenuated mutant strains, such as the avirulent T M Istrati strain of 

Shigella flexneri (Istrati et at, 1967) or the attenuated streptomycin-dependent (Sm D) strain of 

the same organism (Mel et al., 1971). Considerable effort has been devoted to the 

development of an attenuated Salmonella typhi strain suitable for use as a live oral vaccine 

against typhoid fever in humans. Several attenuated strains of other species of Salmonella 

have also been evaluated, with varying degrees of success. For instance, temperature-sensitive 

strains, unable to grow at the tempertaure of the host, have been reported for S. enteritidis 

(Fahey & Cooper. 1970a,b) and for S. typhimurium C5 (Hormaeche et al., 1981). As with 

Shigella, SmD strains have also been described, notably attenuated strains of S. typhi 

(Reitman, 1967; Mel et al., 1974). Th e  Reitman strain was found to be safe and efficacious in 

humans, but practical problems prevented its adoption as a vaccine (Levine et al., 1976). 

Germanier and Furer (1975) subjected S. typhi strain Ty2 to chemical and ultraviolet 

mutagenesis and isolated a galE  mutant. Th e  galE  gene encodes the enzyme uridine
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diphoshate (U D P ) galactose-4-epimerase, which catalyses the conversion of UDP-glucose to 

UDP-galactose. UDP-galactose is an essential component of smooth lipopolysaccharide (LPS), 

thus ga/E mutants can only make rough LPS, a characteristic associated with attenuation. (If 

exogenous galactose is present, the galE  mutants can convert it into UDP-galactose via 

galactose-1-phosphate, so allowing the synthesis of smooth LP S . However, exogenous 

galactose is toxic because galactose-1-phosphate accumulates intracellularly, resulting in cell 

lysis). The galE  mutant obtained by Germanier, S. typhi Ty21a, was found to be safe and 

protective in human volunteers, affording protection in two large field trials (in Egypt and Chile) 

ranging from 96-67% , (Wahdan et al., 1982 and Levine et al., 1987 respectively). However, 

subsequent work (Hone et al., 1988) proved that the galE  mutation was not the major 

attenuating lesion in S. typhi Ty21a. Partly as a result of the uncertainty surrounding the 

genetic basis of attenuation in the strain and partly because of a number of practical 

considerations (vaccine instability, variable efficacy and the requirement for multiple doses), it 

was not widely adopted for routine vaccination.

This experience highlights the advantage of a rather different approach (which has already 

been used with considerable success by a number of research groups), that of utilising 

recombinant D N A technology to introduce defined mutations into the genome of pathogenic 

organisms, so as to bring about attenuation in a rational manner. Th is  method is more 

advantageous than evaluating spontaneous or chemically-induced mutants because the 

introduction of defined deletion mutations at different, widely-separated loci on the bacterial 

chromosome makes reversion an extremely unlikely possibility. In addition, it allows for a wide 

spectrum of attenuation, from full virulence to complete avirulence, depending on the deletions 

made. Thus an optimal level of attenuation can be achieved, at which the organism does not 

cause any symptoms but persists for long enough in sufficient numbers to elicit strong immune 

responses. Amongst the genes which have been made the targets for deletion or inactivation 

in Salmonella spp. are cya and crp (Curtiss & Kelly, 1987), phoP/phoO  (Miller et al., 1989), htrA 

(Johnson et al., 1990), om pR  (Dorman et al., 1989) and several of the aro genes (Hosieth & 

Stocker, 1981, Dougan et al., 1988). These latter genes encode the essential enzymes
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controlling the biosynthesis of aromatic amino acids, and the compounds dihydroxybenzoate 

(D HB) and p-aminobenzoic acid (PA BA) -  essential intermediates in the synthesis of 

nucleotides.

As well as the obvious benefits of an oral typhoid vaccine, such attenuated strains of 

Salmonella have been demonstrated to be ideal carriers of heterologous antigens to both the 

systemic and the secretory immune systems of experimental animals (reviewed by Dougan & 

Tite, 1990). This is a  reflection of the course of infection which results from oral inoculation of 

certain strains of mice with S. typhimurium. The  organism penetrates to deep tissues (such as 

the spleen) after specific invasion of the G A L T  (Carter & Collins, 1974). Thus 

immunocompetent cells from both the systemic and the local immune systems directly 

encounter antigen. As a result, such bacterial vectors are capable of stimulating serum and 

secretory antibody responses and cell mediated immunity. There are reports of avirulent 

Salmonella strains having been used to elicit secretory and humoral responses in mice to E. 

collL T -B  and K88 fimbriae (Maskell etal., 1987 and Stevenson & Manning, 1985 respectively), 

Shigella sonnei O-antigen (Black et al., 1987) virulence determinants from Streptococcus 

mutans (Curtiss et al., 1986) and cell mediated immune responses to influenza virus 

nucleoprotein (Tite et al., 1990). The  use of live attenuated Salmonella as carriers of foreign 

antigens has several attractive features. The organism is well-characterised and amenable to 

genetic manipulation. Potentially protective antigens from many pathogenic viruses and bacteria 

have been identified. These can be cloned and introduced into Salmonella, allowing the 

organism to express the protective antigens from several pathogens simultaneously. The  

resulting recombinant multivalent vaccine strain could be given orally, stimulating mucosal, 

humoral and cell-mediated responses. Thus one oral inoculation could, in theory, provide 

immunity to several different diseases.

75



4.2 Materials and Methods

4.2.1 Gw-llnked ELISA on S. typhlmurtum lysates

G m, - linked ELISAs were performed on whole cell lysates of S. typhimurium SL1344 aroA ' 

aroD '  harbouring various constructs essentially as described previously (this thesis and 

Masked etal., 1987). Five O . D . , ^  units of an overnight culture were pelleted by centrifugation 

in an eppendorf tube. Th e  supernatant was removed and the tube carefully dried with 

absorbent paper. The tube was then knocked vigorously to loosen the pellet. Bacterial cell 

envelopes were disrupted by resuspending the pellet in 500pJ of 10%  (w/v) sarkosyl (sodium 

salt of N-lauroylsarcosine, obtained from Sigma, U .K.) and left at room temperature for 30-45 

minutes with occasional gentle agitation. 1 ml of L-broth was added to dilute the viscous solution 

and replicate 50pl aliquots were applied to a Gm,-coated 96 well microtitre plate. Th e  assay 

procedure was then as that followed for E. coli periplasmic fractions, described in Chapter 2.

4.2.2 Inoculation of mice

4.2.2.1 Preparation of bacterial Inocula for intravenous infection of mice

Single colonies of SL1344 a ro A '  aroD '  harbouring various constructs were inoculated into L- 

broth and grown statically overnight at 37°C. 1ml aliquots of these were then stored in liquid 

nitrogen. The next day, the viable count of this stock culture was determined by thawing an 

aliquot and diluting it in PBS to 10* and 10'7. 1 ml of the 10* and 2ml of the 10'7 dilutions were 

incorporated into triplicate samples of molten L-agar and used to pour plates. These were dried 

and incubated overnight at 37°C and the number of colony-forming units (cfu) determined.

W hen required to inoculate mice, an aliquot was thawed and diluted in PBS to 

approximately 1x107 cfu/ml and 1x10* cfu/ml. Mice were inoculated with 0.1-0.2ml of one of
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these suspensions into the tail vein. The  exact inoculum dose was determined by incorporating 

an aliquot of surplus inoculum into molten L-agar and counting as before.

4.2.2.2 Oral Inoculation of mice with S. typhlmurlum

T o  prepare inocula for oral infection of mice, frozen aliquots of stock cultures were used to 

inoculate 2 x 250ml bottles of L-broth which were incubated statically overnight at 37°C. Cells 

were harvested by centrifugation (~11,000g for 20 minutes) and the pellet resuspended in 4mls 

PBS. This procedure typically yielded a suspension with a count of ~5x1010 cfu/ml.

Oral inoculation was performed with a gavage tube: a blunt 2 inch, 18 gauge needle with 

a smoothed 2mm wide metal sheath over the end. Mice were lightly ether-anaesthetised and 

held by the skin between the eyes. They were allowed to swallow the needle which passed into 

the stomach. 200pJ of inoculum was administered from a 1ml syringe attached to the needle. 

Th e  exact dose delivered was determined as before by incorporating some of the inoculum into 

molten L-agar and performing a viable count.

4.2.3 Determination of growth curves In Infected mice

After inoculation with S. typhimurium, mice (generally four per group) were sacrificed at various 

time-points. Their spleens and livers were removed aseptically into separate sterile stomacher 

bags (Seward Medical Ltd.). 10mls of sterile distilled water were added to each bag and the 

organs homogenised for 3  minutes in a Colworth Stomacher. Serial tenfold dilutions of the 

homogenates were made in P B S. 1ml of these dilutions were incorporated into aliquots of 

molten L-agar, with and without ampidllin and used to pour plates. The  agar was allowed to 

set and the plates were then incubated overnight at 37°C. Alternatively, serial tenfold dilutions 

of the homogenates were made directly in 0.9ml aliquots of molten agar. Replicate 1OOpI drops
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of these dilutions were dispensed with a micropipette onto a Petri dish and allowed to set. The 

dishes were sealed with parafilm to prevent the drops from drying excessively. The next day 

colonies were counted with the aid of a colony counter. In this way, the total number of live S. 

typhimurium in these organs could be determined together with the proportion of those bacteria 

which retained the ampicillin resistant phenotype associated with carriage of the LT-B  fusion 

vector plasmids.

4.2.4 T  cell assays

The  generation of cytotoxic T  cells specific for the 110 and 114 epitopes in the corresponding 

L T -B  fusion proteins was investigated in mice which had been inoculated intravenously with 

SL1344 aroA '  aroD  " harbouring the appropriate constructs. At various times (generally 3-4 

weeks) after priming or boosting, 2 mice per group w ere sacrificed by cervical dislocation and 

their spleens removed aseptically into 10mls of sterile PBS. Single cell suspensions were 

prepared by gentle grinding between frosted glass slides. The  cells were washed twice in PBS 

and cultured (1-2 x107) in 10mls of Click's medium (supplemented with penicillin/streptomycin, 

L-glutamine and 0 .5%  normal mouse serum) together with normal spleen cells (5 x10*) or 

normal spleen cells which had been infected {in  vitro with allantoic fluid containing infectious 

influenza A/Puerto Rico/8/34 [PR8] virus) as stimulator cells. After incubation for five days (at 

37°C in an atmosphere of 5 %  C 0 2) the cultured cells were washed and serially diluted three 

fold. These dilutions were added to the wells of a 96 well U-bottomed microtitre plate (Costar). 

Appropriate target cells (either P815 or EL4 tumour cell lines) were radiolabelled by incubation 

at 37°C for 1 hour with 300pCi of 5,Cr-containing sodium chromate (Amersham, U.K.). The 

targets were then extensively washed and incubated for a further hour with 200 

haemagglutinating units (H A U ) of PR8 virus or 100pg of the relevant peptide (110 or 114). 

Control target cells were not exposed to antigen of any kind. A  constant number of target cells 

were added to the effector cells in the microtitre plate such that the maximum effectorrtarget
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ratio was about 20:1. The  plate was subjected to centrifugation (1,500 rpm for 5 minutes in a 

Sorvall RT6000B centrifuge) and incubated for 6 hours, after which time the culture supernatant 

w as harvested. The cytolytic activity of the cultured effector cells was measured by the amount 

of radiolabel released. Spontaneous release of radiolabel was determined by incubating 

labelled targets in isolation. Maximum release was achieved by lysing target cells with PBS 

containing 1% triton.

4 .3  Results

4.3.1 Expression of L T -B  fusion proteins In S . typhlmurium

N ovel plasmid constructs were introduced into the smooth strain of S. typhimurium, SL1344 

aroA  '  aroD  *, by means of the two-step transformation/transduction method described in 

sections 2.5.6.-7. Whole cell lysates were prepared (as described in 4.2.1) and analysed by 

G M1-linked ELISA, using LT-B-specific antiserum. Th e  results are shown in Figure 4.3.1.1. It 

w as found that L T -B  and the various L T -B  fusion proteins were expressed in S . typhimurium 

S L1 3 44  aroA '  aroD '  in a form capable of binding to G M1 and reacting with anti-LT-B 

antiserum. Similarly, when the monoclonal antibody BB05 was used as a probe in such assays, 

L T -B 6 9  expression could be detected in the strain carrying the appropriate plasmid (Figure 

4.3.1 .2). These findings are consistent with those described previously in Chapter 3. Moreover, 

an auxotrophic attenuated strain of S. typhimurium, SL3261, was shown previously to express 

L T -B  under the influence of the same P1 "anti-tet" promoter (Maskell at at, 1987). 

Nevertheless, these experiments were necessary to ascertain that expression of these 

molecules in a different host organism did occur and did not prevent the L T -B  fusion proteins 

from  binding to G «,.
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l o g 2 O F  R E C IP R O C A L  O F  D I L U T I O N

Figure 4.3.1.1 The G M1-binding activity of L T -B  and various L T -B  fusion proteins in whole cell 

lysates of S. typhimurium. Whole cell lysates were prepared from S. typhimurium SL1344 (the 

parental strain) and from strains harbouring plasmids directing the expression of L T -B  or LT-B  

fusion proteins. These w e re  probed in a GM,-linked ELISA with a polyclonal anti-LT-B antiserum. 

The results are shown in graphs A  and B above.
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1.40

Figure 4.3.1.2 Detection of LT-B69 in a GM1-linked ELISA . Whole cell lysates were prepared from 

S. typhimurium SL1344 pFV1 and SL1344 pFV1 ::69. These were assayed in an E LISA  using the 

monoclonal antibody BB05 as a probe.
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One aim of this project was to express the L T -B  fusion proteins in attenuated strains of 

Salmonella, as Maskell e tai, (1987) had previously demonstrated that native L T -B  expressed from 

pBRD026 (i.e. expression driven by the same promoter at low-level) in S. typhlmurium SL3261 

could elicit systemic and secretory anti-LT-B antibody responses when given to mice orally.

An important characteristic of Salmonella spp. which allows them to act as efficient carriers of 

heterologous antigens (reviewed by Dougan & Tite, 1990) is the ability of the organism to persist 

in moderate numbers in the reticulo-endothelial system (R ES ) after infection of a suitable host 

(O'Callaghan et a/.. 1987). Unfortunately, under the strong selective pressures operating in vivo, 

plasmid stability in such strains is often poor (e.g. Tite et a i, 1990) once the bacteria are removed 

from the selective antibiotic present in in vitro cultures. Thus, before inoculating mice with S. 

typhlmurium S L 1 344 aroA '  a ro D '  harbouring the various fusion constructs, the stability of the 

plasmid in the bacterium in vitro, in the absence of ampicillin, was determined.

Single colonies from L-amp plates were inoculated into 3ml of L-broth without ampicillin. These 

were incubated at 37°C in an orbital shaker overnight. The next day, 30pJ of this culture were used 

to inoculate 3ml of fresh L-broth which was incubated overnight (again, at 37°C in a shaker). The 

remainder of the culture was diluted to 1/107 and 1/10* in PBS. Duplicate 2ml aliquots of each 

dilution were incorporated into samples of molten L-agar, with and without ampicillin. The colonies 

were counted the next day and the percentage of colonies retaining ampicillin-resistance was 

determined. Th is  process was repeated for the 2nd and 3rd passages. The results are shown 

below in Table 4.3.2. From these data it is apparent that after 3 passages, (representing a 

considerable num ber of bacterial generations, estimated to be about 20-30), all the plasmids are 

well maintained.

4.3.2 In vitro assay of stability of constructs In S. typhlmurlum SL1344 aroA' aroD'

82



Table 4.3.2 The relative stability of LT-B fusion plasmids In vitro

Construct %  Stability after passage number

1 2 3

pBRD026 85 92 85

pFV1 54 54 46

pFV1::110 . 100 87 97

pFV1::167 32 23 20

pFV1::69 100 100 100

pFV1::114 81 73 79

The table shows the percentage of bacterial cells in the culture with an ampicillin-resistant 

phenotype after serial passage in vitro, an index of the percentage of cells retaining the L T -B  

fusion expression plasmids.
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4.3.3 In v iv o  evaluation of plasmid stability

In one such typical experiment, 30 C57BU6 mice were inoculated intravenously with about 10s cfu 

of SL1344 (pFV 1) or SL1344 (pFV1 ::114). Four mice per group were sacrificed at regular intervals 

and their livers and spleens removed aseptically into stomacher bags. The total number of 

Salmonellae in those organs, together with the number which remained ampicillin resistant, was 

determined (as described in 4.2.3). The results are shown in Figure 4.3.3.1. (graphs A  and B). 

Furthermore, the persistence in spleens and livers of S L1344 aroA '  aroD '  carrying these 

constructs appeared essentially unaltered from the behaviour of the parental strain (Dougan etal., 

1988), illustrated in Figure 4.3.3.2. Immediately after inoculation, there is a decline in the numbers 

of recoverable bacteria, presumably due to non-specific host-defence mechanisms. After a lag 

phase of about 24 hours, the inoculum enters a replicative phase. There is a net increase in 

bacterial count, peaking around days 10-14. By this point, specific immune mechanisms have 

become effective and the viable count slowly declines, the bacteria being finally cleared by about 

6-7 weeks post-infection. The graphs in Figure 4.3.3.1 show that both pFV1 and pFV1::114 are 

stable in vivo in the absence of antibiotic selective pressure, despite the lower stability of pFV1 

in in vitro assays.

However, in a similar experiment BALB/c mice were fed S . typhimurium SL1344 harbouring 

the plasmid pFV1 ::69. In contrast to the results obtained with SL1344 (pFV1 ::114), no ampicillin- 

resistant Salmonellae could be isolated from the livers or spleens of the mice by 3 weeks post­

infection (data not shown), despite pFV1::69 being maintained to a high degree in bacterial 

cultures in vitro (see Table 4.3.2). It would appear therefore that behaviour of the plasmid in 

bacterial cultures in vitro is not necessarily a good indicator of whether the plasmid is likely to 

segregate in a bacterial population in an animal host, at least in this model.
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Figure 4.3.3.1 The stability in vivo of plasmids pFVl and pFV1::114. Mice were inoculated 

intravenously with S. typhimurium harbouring the above plasmids. Mice were sacrificed at regular 

intervals and the number of viable Salmonellae In the liver and spleen was determined, together 

with the number of bacteria which retained ampicillin resistance. Points represent the mean group 

value (n-4), +/-1 SD.
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Figure 4.3.3.2 The colonisation of the livers of Balb/c mice following i.v. infection with S. 

tyhpimurium aroA '  (• ) ,  S. tyhpimurium aroC '  (▲) and S. typhimurium aroA '  aroC'  (■). Each point 

represents the geometric mean ♦/- two standard errors (n-4). Reproduced from Dougan et a!., 

1988.
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4.3.4 Immunological evaluation following Inoculation with S . typhlmurlum harbouring L T -B  

fusion protein expression plasm ids

4.3.4.1 Serum antibody responses

The  immune responses of mice in the above experiment were investigated. Individual serum 

samples were taken from 4-5 mice per group and tested, by antigen-specific ELISA, for antibody 

to L T -B  and to the 114 epitope, corresponding to amino acid residues 364-382 of influenza A  virus 

nucleoprotein. As expected from the results of previous work (Maskell et at, 1987), mice in both 

groups mounted a detectable serum antibody response against L T -B  after priming. This was 

observed to increase slightly after the mice were given a second inoculation (see Figure 4.3.4, 

graph A). Mice in a control group inoculated with SL1344 alone did not develop serum anti-LT-B 

antibody. In addition, mice which were inoculated with SL1344 (pFV1::114) were found to mount 

a weak serum antibody response to the 114 peptide epitope (Figure 4.3.4, graph B). This was 

partially obscured by an increase in the background response. This was presumably due to a 

serological cross-reaction between the 114 peptide epitope and one or more Salmonella antigens 

as both the group inoculated with the parental strain and the group inoculated with SL1344 (pFV1) 

showed a similar increase in response after boosting. Mice inoculated with SL1344 am  A '  a ro D ' 

(pFVl::110) however, did not develop serum antibodies against peptide 110 (corresponding to 

amino acid residues 147-161 of influenza A  virus nucleoprotein), despite the persistence for 

several weeks of ampicillin-resistant bacteria in the infected mice (data not shown).

4.3.4.2 Cytotoxic T  lymphocyte responses

Unfortunately, a cytotoxic T  lymphocyte (C T L ) response to the C T L  epitope present in the 

sequence of peptide 114 could not be detected in C57BI/6 mice infected with S. typhimurium 

SL1344 aroA '  aroD  '  (pFV1::114), using either influenza A  virus (PR8) o r the corresponding
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synthetic peptide as the recall antigen. In contrast, in the same assays, spleen cells from mice 

which had been infected intravenously with PR8 virus contained a  population of cytotoxic T  cells 

which were reactive against either PR8-infected or peptide-pulsed target cells. In a  similar 

experiment, BALB/c mice inoculated with SL1344 aroA 'aroD '  (pFV1::110) failed to mount a 

detectable C T L  response to the peptide 110 epitope. Whilst there is uncertainty over the 

expression of LT-B110 (which could not be detected using 110-specific antisera in immunoblots 

or G M1-linked ELISA), no such doubt exists concerning the expression of LT-B114. Some 

speculations on the possible causes of this lack of T  cell reactivity to the 114 peptide epitope are 

discussed in the following section.
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Figure 4.3.4. The primary (day 28) and secondary (day 49) serum antibody responses to L T -B  

(top graphs) and peptide 114 (lower graphs) of mice immunised intravenously with (A ), S. 

typhimurium SL1344 (pFV1 ::114); (B), SL1344 (pFV 1) or (C ) SL1344 alone. The  mean values are 

represented by a horizontal bar (n -4  or 5).



4.4 Summary

A  number of reasons could be envisaged to explain the failure to detect heterologous epitope- 

specific T  cell responses In mice immunised with attenuated Salmonella. Firstly, the peptide 

sequence might well behave differently when fused to L T -B  than when present as an intrinsic part 

of influenza virus nucleoprotein. Thus nucleoprotein might be degraded by antigen-processing cells 

so as to yield the antigenic peptide fragment, peptide 114. However, the same amino acid 

sequence, when present in L T -B , might not generate the epitopic fragment. Similarly, it is possible 

that expression by Salmonella typhimurium may prevent the epitope being processed in the normal 

way. For instance, despite being essentially an intracellular parasite, (influenza virus similarly being 

an obligate intracellular parasite), the presence of bacterial antigens might lead to the preferential 

formation and/or recognition of other peptide fragments. Alternatively, a fragment might be formed 

which contains the epitope sequence but, because of its composition (i.e. incorporating LT-B  

sequences), is in a form unable to associate with the M HC  molecules of the H-26 haplotype.

A  second explanation could be that there are T  cell epitopes in L T -B  which are excessively 

immunodominant. Thus, even if the 114 epitopic fragment is formed and presented, the response 

of cytotoxic T  cells which recognise it might be masked or swamped by the response to other 

immunodominant epitopes. This could be easily tested by repeating the experiment and performing 

an assay for C T L  directed against LT-B .

This failure to detect C T L  responses to T  cell epitopes fused to L T -B  contrasts with the 

experience of SchOdel et at., (1990a,b). These workers constructed a plasmid vector directing the 

expression of one B cell epitope from hepatitis B  virus (H BV) pre-S(2) surface antigen (amino acid 

residues 133-140) and two overlapping T  cell epitopes from HBV core antigen (amino acid 

residues 120-140) fused to the C  terminal of L T -B . The  resulting fusion protein was expressed in 

an attenuated aroA '  strain of S. dublln SL1438, which was used to inoculate mice. After 3 oral 

doses splenic T  cells specific for the fused hepatitis B virus core antigen (H BVcAg) T  cell epitopes 

could be detected. Thus there are a number of differences between this previous work and the 

current study reported here, including route and number of inoculations, bacterial host strain and
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T  cell epitopes in the fusion protein. Furthermore, the above authors present no data concerning 

the G m,-binding activity of the fusion protein. This might be significant if, as outlined above, binding 

to Gy, alters the processing pathway followed by the antigen.

As described previously, the plasmid pFV1 ::69 was found to segregate in populations of S. 

typhimurium SL1344 aroA '  a r o D One possible solution to the problem of instability of plasmids 

expressing heterologous antigens in bacterial vectors is to integrate the relevant DNA, encoding 

the heterologous antigen, into the chromosome of the bacterial host. Chromosomal insertion 

vectors have been described w hich contain genes encoding heterologous potypetides flanked by 

sequences which are homologous to those of the host bacterium's chromosome. A  low frequency 

double crossover event allows homologous recombination to occur such that the heterologous 

antigen is then expressed from the chromosome. This approach has been used successfully to 

introduce sequences encoding tetanus toxin C  fragment into the chromosome of S. typhimurium 

(Strugnell at al„ 1990). The technique has the advantage of eliminating problems of plasmid 

instability. However, as there is only one chromosome per bacterial cell, levels of expression of 

the heterologous antigen are generally lower than those which can be achieved with high copy 

number expression plasmids.
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C H A P T E R  5

The partial purification of LT-B69

5.1 Introduction

An alternative to the use ot attenuated Salmonella spp. to achieve immunisation of mucosal 

surfaces is to directly inoculate mice orally or intranasally with purified proteins. Such an 

approach is feasible with L T -B  fusion proteins because of the properties of L T -B  discussed in 

Chapter 1. This chapter describes the purification of the LT-B69 fusion protein.

A number of methods have been described for purifying LT-B  and/or C T -B . One of the 

most efficient appears to be affinity chromatography, which utilises the G*,,-binding activity of 

the toxin B-subunits to retain them on a G u1-coated inert matrix (Tayot et a/., 1981). This 

technique has also been successfully employed to purify a C T-B  fusion protein (Dertzbaugh 

et a i, 1990).

In preliminary experiments, attempts to purify L T -B 6 9  from periplasmic fractions of E. coll 

HB101 (pFV1 ::69) by this method were unsuccessful. In view of the data showing that LT-B69 

retains G M1-binding activity, the most likely explanation for this is that the chemical derivatisation 

of the G m, (which involves reflux boiling for several hours with 10M Potassium hydroxide) did 

not occur correctly or that the lysoGM1 was not properly coupled to the inert matrix (Spherosil, 

Pharmacia).

L T  accumulates in the periplasm of E. coll w hereas V. cholerae will secrete both C T  and 

L T  into the extracellular milieu (Hirst et ai, 1988, Witholt et al., 1988). Thus if LT-B  fusion 

proteins can be expressed in an atoxigenic strain of V. cholerae (so as to avoid contamination 

by C T ),  they might be secreted into the medium, in the same way as the native toxin. This 

potentially simplifies purification into a process of concentration, as very little of other bacterial 

products are transported extracellularly from V. cholerae. (Indeed, one interesting question is
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what selective advantage is provided by cholera toxin secretion, in view ot the effort expended 

by the bacterium to export the toxin to the external medium? It may be that the symptoms of 

severe diarrhoea, which C T  induces, facilitate the spread of the organism). T h u s  one approach, 

described below, was the expression of pFV1 ::69 in an atoxigenic strain of V. cholerae, strain 

TRH 7000 (kindly provided by T. Hirst; Hirst et al., 1984b), the results of w hich are detailed in

5.3.

Ultimately, the method of choice used to purify LT-B69 was to separate the proteins from 

periplasmic extracts of HB101(pFV1::69) by means of ion-exchange chromatography. Whilst 

this did not achieve the high purity associated with affinity chromatographic techniques, it was 

simple to perform and did not require the use of low pH conditions (which might denature 

certain L T -B  fusion proteins) to dissociate LT-B69 from the column, which is necessary when 

using G,,,-affinity protocols.

5.2 Materials and Methods

5.2.1 Bacterial strains and plasmids

V. cholerae TRH7000 is an attenuated strain, being atoxigenic and auxotrophic for thymine, but 

is moderately resistant to polymixin B (PB). Typically, the strain was grown at 30°C on L-agar 

supplemented with thymine at 100 pg/ml and PB at 100 units/mi.

p F V l and p F V l ::69 have been described previously (this thesis). pR K2013 encodes all the 

tra gene functions from the broad-host-range plasmid RP4 and has been described previously 

(Figurski and Helinski, 1979). Thus in a tripartite mating involving E . coH HB101 

(pFV1)/(pFV1 ::69), HB101 (pRK2013) and V. cholerae TRH7000, pRK2013 can supply fra gene 

functions in trans, mobilising the pBR322-derived pFVl plasmids into the V. cholerae strain.
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5.2.2 Tripartite Bacterial Mating

E. coli cells containing the donor plasmids were scraped from a fresh L-amp plate to form a 

thick suspension in 0.5mls of L-broth. Similarly, a thick suspension was made of E. collHB101 

(pRK20l 3) cells. A  slightly less thick suspension was made of V. choleras TRH7000. Equal 

volumes (~100pl) of each suspension were mixed together and 50pl drops were put onto L- 

agar/thymine plates. These were incubated at 30°C for 2-6 hours to allow conjugation to 

proceed. The cells were then scraped from the plates into 0.5mls of L-broth. Serial tenfold 

dilutions of this suspension were made in L-broth and streaked out for single colonies on L- 

agar plates supplemented with thymine, PB and ampicillin (at 100pg/ml), (L -TP A  plates) to 

select for V. cholerae cells which had taken up the donor plasmids (encoding ampicillin- 

resistance). Plates were incubated for 24 hours at 30°C. The  resulting colonies were picked 

onto fresh L -T P A  plates and also onto L -TP A  plates supplemented with kanamycin at 50pg/ml. 

V. cholerae colonies which acquired the donor plasmids but which had lost the pRK2013 

"helper" plasmid (pRK2013 is unstable in V. cholerae) had the phenotype PBR, Amp” and Kms. 

Thus they will grow on L -T P A  plates but not on L -T P A  plates containing kanamycin. These 

colonies were screened for the expression of L T -B  and/or BB05 by the use of colony 

immunoblots. Positive-reacting colonies were streaked out on selective media and held at 4°C.

5.3 Results

5.3.1. Secretion of LT-BH and LT-B69 from V. cholerae TRH7000

The secretion of LT -B H  and LT-B69 from V. cholerae TRH 7000 was investigated by analysing 

cellular and extracellular fractions from cultures of V. cholerae (p F V l) and V. cholerae 

(pFV1 ::69) using a G ^-linked ELISA , as described in Chapter 2. The results are represented 

graphically in Figures 5.3.1.1-3.

Figure 5.3.1.1 shows that small amounts of L T -B H  can be detected in the culture
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supernatant after just 6 hours of culture. This is despite the fact that levels of expression in V. 

cholerae from the P1 "anti-tet" promoter are presumably no higher than in E. coli. This 

extracellular L T -B H  is unlikely to have been released from lysed or damaged cells as the 

amount of L T -B H  remaining cell-associated at this time-point is very small. Thus one can be 

reasonably confident that the protein reached the medium by active export rather than by a 

passive "leakage”. After 24 hours of culture there is much more cell-associated L T -B H  and very 

much more free LT -B H  in the medium: if one considers the relative values for the absorbance 

at the first dilution, the figure for the medium fraction is about 3 fold higher than that for the 

cellular fraction. This increase over time could be due to the stability of the protein resulting in 

a time-dependent accumulation and/or the greater cell density after a more prolonged period 

of culture.
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2.40

l o g 3 o f  r e c i p r o c a l  o f  d i l u t i o n

Figure 5.3.1.1 The secretion of L T -B H  from V. choterae was investigated by means of G*,,- 

linked ELISA . V. cholerae TRH 7000 p F V l was grown at 37°C in L-broth. At two time points (6 

hours and 24 hours after initaition of culture), 200pl of culture was sampled. The  cells were 

pelleted by centrifugation and disrupted by sonication in an equal volume of PBS. Aliquots of 

the cellular fractions prepared in this way, together with samples of the culture supernatant, 

were applied to a GM1-coated microtitre plate and probed with LT-B-specific antiserum in an 

ELISA.
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The situation appears slightly different with respect to the secretion of LT-B69, as illustrated 

by Figure 5.3.1.2. After 6 hours of culture, virtually all LT -B69  is still intracellular. After 24 hours 

however, the data are essentially as those obtained for L T -B H  in that there is far more LT-B69 

in the medium than remains cell-associated (again, with respect to the absorbance of the first 

dilution in the ELISA, the figure is about 3 times greater for the extracellular fraction than for 

the cellular fraction). The total amounts of Gy,-bound L T -B  epitopes, as judged by the sum of 

the absorbances for cellular and medium fractions, is essentially the same for L T -B H  and LT- 

B69 at both time-points. Thus it would seem that the presence of the BB05 epitope at the C - 

terminal of L T -B  does have some effect on the secretion of the protein from V. cholerae 

TRH7000 but does not affect the Gy,-binding properties of the molecule, relative to LT-BH. 

When the same assay was performed on cellular and medium fractions from cultures of V. 

cholerae TRH 7000 (pFV1 ::69), using the mAb BB05 as a probe, the results shown in Figure

5.3.1.3 were obtained. Surprisingly, at both 6 and 24 hours there was considerably more Gy,- 

binding BB05-specific epitope within the cellular fraction than in the medium, which appears 

contradictory to the presence of large amounts of L T -B  epitope in the medium after 24 hours, 

as shown by Figure 5.3.1.2. The probable explanation for this is that the BB05 epitope is being 

cleaved from the L T -B  moiety by a protease activity and so cannot be detected in a G M1-linked 

ELISA, (it is therefore not surprising that LT-B69 secreted from V. cholerae binds to G y, with 

an affinity comparable to that of L T -B H ). The fact that any intact extracellular LT-B69  can be 

detected implies that this proteolysis occurs very soon after, rather than before or during, export 

from the bacterial cell. This phenomenon has been experienced with other L T -B  fusion proteins 

secreted from V. cholerae (Schddel etal., 1991). In the light of these findings it was considered 

too difficult to attempt to purify LT-B 6 9  from cultures of V. cholerae (pFV1::69).
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l o g 3 o f  r e c i p r o c a l  o f  d i l u t i o n

Figure 5.3.1.2 Th e  secretion of LT-B69  from V. cholerae was investigated by means of G*,,- 

linked ELISA. Cellular and medium fractions were prepared (as described previously) from 

cultures of V. cholerae TRH7000 pFV1 ::69 at 6 and 24 hours after the initiation of culture. 

These samples were analysed in a G M1-linked ELISA, using LT-B-specific antiserum as a 

probe.
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l o g 3 o f  r e c i p r o c a l  o f  d i l u t i o n

Figure 5.3.1.3 The secretion of LT-B69 from V. choleras was investigated by means of a G M1- 

linked ELISA. Cellular and medium fractions were prepared (as described previously) from 

cultures of V. cholerae TRH7000 pFV1 ::69. These samples were analysed in a G M1-linked 

ELISA, using the monoclonal antibody BB05 as a probe.
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For the partial purification of LT-B69 fusion protein, large scale periplasmic fractions were 

made, as detailed in Chapter 2. from 2 litre batches of E. coli HB101 (pFV1::69) overnight 

cultures. These preparations were concentrated 20-25 fold using an Amicon Diaflo equipped 

with an XM50 membrane (Amicon Corporation. Maryland. USA ). Th e  reténtate was dialysed 

overnight against 50mM NaCI buffered to pH8.6 with 25mM Tris-HCl. The  dialysate was then 

loaded onto a DEAE Trisacryl column (Pharmacia, Sweden) equilibrated with the same buffer. 

After extensive washing (for about 1 hour) the bound protein was eluted with a 50-250mM NaCI 

gradient, buffered to pH8.6 as before. The A280nm of the eluate was continuously monitored with 

a UV-1 Single Path Monitor (Pharmacia) and a Servoscribe 210 recorder (Camlab, Cambridge, 

U K ). A  typical absorbance profile is shown in Figure 5.3.2. Fractions were collected and 

analysed by dot-blotting onto nitrocellulose and probing with the BB05 monoclonal antibody, 

followed by a mouse lg-specific rabbit antibody conjugated to horseradish peroxidase and 

developed with a suitable substrate. Positive-staining fractions were further analysed by S D S - 

P A G E . Those with the highest purity of LT-B69 were pooled. These pooled fractions were 

further concentrated 10-20 fold using Centricon 30 ultrafiltration tubes (Amicon), by 

centrifugation at ~6,000g for 30 minutes. The total protein content was determined using the 

Pierce B C A  microtitre assay. The material was then stored in 0.5ml aliquots and maintained 

at -20°C until required.

5.3.2 Partial purification of LT-B69 from periplasmlc fractions of E. coll
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Figure 5.3.2 A typical absorbance profile obtained during the partial purification of LT-B69 from 

concentrated periplasmic fractions of E. coli HB101 pFV1 ::69. About 5 0 %  of the protein in the 

extract did not bind to the Trisacryl column and passed straight through. After washing for ~1hr 

in 50mM NaCI/25mM Tris -H C I pH8.6, a 50-250mM NaCI gradient (at the same pH) was 

applied. The  LT-B69-containing fractions (arrowed) were eluted towards the end of the run.
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5.3.3 Characterisation of partially purified LT-B69

The purification was monitored by analysing samples before and after purification by means 

of S D S -P A G E , as shown in Figure 5.3.3.1. Clearly, the pooled fractions are by no means pure. 

There are several contaminating proteins, the main contaminant running with an apparent M, 

of ~29kDa. However, there is considerable enrichment for LT-B69, of which none appears to 

be lost by passing straight through the ion-exchange column (as judged by S D S -P A G E ). It is 

apparent that some degradation takes place during the purification. In the unboiled sample 

there are 2 well-represented bands with apparent M, values of ~68kDa and 90kDa and a fainter 

band which migrates with an apparent M, of 97kDa, which presumably represent variously 

degraded forms of the fusion protein. All three bands have indistinct margins, implying 

breakdown products with a  range of molecular weights rather than a few discrete forms of L T - 

B69. Upon boiling, all of these multimeric forms of LT-B69 disappear and a single, sharply- 

defined, new band, corresponding to monomeric LT-B69, is formed at a position equating to 

an M, of 18kDa. Thus, with respect to pentamer formation and dissociation into monomers upon 

boiling, the partially purified fusion protein behaves identically to LT-B69 in crude E. coli 

periplasmic fractions.

It was clearly important to ensure that as well as forming pentameric complexes the partially 

purified protein could stilll bind to G M1. Thus the affinity for G M1 of the partially purified material 

was compared with crude E . coli periplasmic fractions containing LT-B69 by means of a G*,,- 

linked ELISA.
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Figure 5.3.3.1 S D S-P AG E analysis of periplasmic fractions from E. coli HB101 pFV1::69, 

before and after purification of LT-B69. Lane 1, total periplasmic protein from HB101 pFV1 ::69, 

as loaded onto DEAE Trisacryl column; lane 2. unbound proteins which flowed straight through 

the column, lane 3, pooled LT-B69-containing fractions eluted from the column (unboiled); lane 

4, pooled LT-B69-containing fractions eluted from the column (boiled). Bands containing L T - 

B69 are arrowed. Relative molecular mass markers (in kiloDaltons) are shown on the left.
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Purified preparations of LT-B69 were diluted in PBS so as to give 1/10 and 1/20 of the total 

protein content of an E. coti (pFV1::69) periplasmic fraction, and applied to a G*,-coated 

microtitre plate. The results are shown in Figure 5.3.3.2. From this one can conclude that the 

purification process does not abolish the G^-binding properties of L T -B 6 9 . Furthermore, the 

graph suggests that the purification achieves an enrichment of LT-B6 9  of between 10 and 20 

fold, the actual figure lying towards the upper limit of that margin.

It is generally believed that monomeric L T -B  has only a very low affinity for G*,, (IkJa et al., 

1989, Sixma et al., 1991). Whilst this is a reasonable assumption, it is difficult to find much 

evidence for it in the literature. For this reason, the Gut-binding properties of LT-B69 were 

further investigated by G M1-linked ELISA, using either unheated partially purified LT-B69 or an 

equal amount of the same preparation which had been subjected to boiling for 10 minutes. The 

samples were then probed with the BB05 mAb. This was the probe of choice because some 

of the epitopes of C T-B  are thought to be conformational and heat-labile (D avid Lewis, personal 

communication). By contrast, the BB05 mAb recognises a linear sequence and will bind to 

denatured LT-B69 very efficently in an immunoblot. The results are shown below in Figure

5.3.3.3. It was found that boiling LT-B69 does prevent the fusion protein from binding to G*,,. 

Unfortunately, this does not provide direct evidence that the monomeric nature of boiled LT-B69 

is responsible: an equally valid explanation is that boiling causes unfolding of the LT-B  

polypeptides and that this denaturation destroys the conformation necessary for Gy,-binding 

activity. This problem is a difficult one to overcome because it requires obtaining monomeric 

L T -B  in a  native form, yet monomers of L T -B  associate very readily into pentamers.

104



l o g 3 o f  r e c i p r o c a l  o f  d i l u t i o n

Figu re  S.3.3.2 The G M,-binding activity of LT-B69 is preserved during the purification process. 

Samples of partially purified LT-B69 were adjusted to a concentration of total protein of 4ng/ml 

or 8pg/ml. A crude periplasmic extract was prepared from E. coliHB101 pFVl ::69 and adjusted 

to a concentration of total protein of 80pg/ml. The GM1-binding activity of these samples was 

then compared in a G M1-linked ELISA, using the monoclonal antibody BB05 as a probe.
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l o g 3 o f  r e c i p r o c a l  o f  d i l u t i o n

Figure S.3.3.3 The  G M1-binding activity of boiled and unboiled partially purified LT-B69. Equal 

concentrations of partially purified LT-B69 were applied, either boiled or unheated, to a G ^ -  

coated microtitre plate and probed with the monoclonal antibody BB05.
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5.4 S um m ary

The  transport of L T  and L T -B  in E. coli and V. cholerae has been studied quite extensively. 

Witholt at al., (1988) established that when expressed in E . coli, L T -B  is released into the 

periplasm as early as 13-14 seconds after the initiation of synthesis. Within that period, the 

nascent polypeptide is transported to and across the cytoplasmic membrane, during which 

process the 21 residue N-terminal signal sequence is proteolytically cleaved. Once released 

into the periplasmic space, the polypeptide is oxidised, allowing a disulphide bridge to form 

between residues 9 and 86 (Sixma at al., 1991). The  final processing step is the formation of 

B-subunit pentamers and, in the presence of L T -A , holotoxin.

Processing of L T  in V. cholerae is broadly similar, with cleavage of the signal sequence 

peptide during transit across the cytoplasmic membrane. The  B-subunit monomers then 

transiently enter the periplasm prior to oligomer and holotoxin formation (Hirst & Holmgren, 

1987a). T h e  major difference is that once assembled in the periplasm of V. cholerae, L T  or 

pentameric L T -B  are then further transported across the outer membrane into the extracellular 

medium. Th u s  V. cholerae must possess at least one extra pathway, which is absent in E. coli, 

which is necessary to facilitate secretion. Secretion of L T -B  can occur in the absence of LT-A. 

The reverse however is not true (Hirst etal., 1984b). This suggests there must be information 

inherent in L T -B  (and C T -B ) which is preserved in the two recombinant proteins LT-BH  and LT- 

B69. This final step in the pathway is extremely interesting as it appears that toxin secretion 

involves translocation of the molecule in a folded, stable quaternary structure. Transport of a 

large protein across the outer membrane would seem to represent a considerable problem to 

the bacterium. Quite how this is brought about in V. cholerae is unclear. Perhaps a B-subunit- 

specific protein in the outer membrane recognises the protein and facilitates the process.

Experiments were performed which suggested that possible degradation of LT-B69 

occurred when the protein was expressed in V. cholerae. These  findings are in agreement with 

the experience of Schbdel et al., (1991) who found that, whilst one fusion between L T -B  and 

sequences from hepatitis B virus (HBV) middle surface antigen was secreted into the
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supernatant of V. cholerae cultures, two similar L T -B  fusion proteins were retained 

intracellularly or rapidly degraded once they became extracellular. For this reason other 

methods of purification were selected. However, in the longer term there are a number of 

possible ways of overcoming this problem. For instance, it might be possible to construct a 

strain of V. cholerae lacking the protease(s) involved, if the gene(s) responsible were identified. 

Alternatively, the kinetics of expression of the protease(s) and LT-B69 might be different (only 

2 time-points were investigated). Thus at some point during the culture it might be possible to 

isolate undegraded LT-B69 from the culture supernatant.

With regard to the actual protocol used to purify LT-B69 from E. coli periplasmic fractions, 

the technique was clearly not ideal as LT-B69 represented only about 38%  of the total protein 

in the final sample. However, the concentration of LT-B69 in the starting material was low (~2% 

of total protein), thus the process achieved approximately a 17 fold enrichment (which agrees 

with the data obtained from GM,-linked ELISAs performed on crude and partially purified 

material). If the basic fusion vector (pFV1) was re-designed (e g. so as to utilise a  stronger 

promoter) such that higher levels of expression resulted, the purification of the associated 

fusion proteins would be greatly facilitated.

The  incorporation of further purification steps could probably increase the purity of LT-B69. 

However, this might well cause greater degradation than was observed with the relatively 

simple purification protocol employed. The degree of degradation is of importance because any 

diminution of Gg,-binding by the L T -B  moiety, or separation of the fused epitope from LT-B, 

could reduce the immunogenicity of the heterologous epitope, whereas for the requirements 

of intranasal immunisation experiments (described in the following chapter), the absolute purity 

of the preparation was of less significance.

108



C H A P T E R  6

Immunisation with partially purified LT-B69

6.1 Introduction

Having obtained partially purified LT-B69 in a pentameric form able to bind G y „ as described 

in the preceding chapter, it was obviously desirable to investigate the immunogenicity of the 

fusion protein. Rather than attempting to inoculate mice by the more conventional routes (i.e. 

sub-cutaneously or intramuscularly), it was decided to inoculate mice intranasally. The rationale 

for this approach was as follows; firstly, the rationale of the project was the considerable 

immunogenicity of L T -B  when applied to mucosal surfaces (far greater than that of 

"conventional" immunogens, such as KLH). As discussed in Chapter 1, the greater T  helper 

cell:T suppressor/cytotoxic cell ratio of bronchus-associated lymphoid tissue (compared to gut 

associated lymphoid tissue), amongst other reasons, might make the conditions for obtaining 

an antibody response more favourable in the respiratory tract than in the gut. Secondly, B. 

pertussis is a pathogen of the respiratory tract, thus any local response to the BB05 epitope 

in the respiratory tract might be of considerable significance: there is some evidence to suggest 

that the current parenterally inoculated vaccine protects against the disease, that is. the 

symptoms of pertussis (for example by generating an anti-toxin serum antibody response), but 

does not protect against infection. Thus the current vaccine does little to prevent transmission 

of the causative organism. A third consideration is that very little research has been published 

regarding the immune response to C T -B  or LT-B  following intranasal inoculation, the work of 

Bessen & Fischetti (1988, 1990), Tamura and his co-workers (Tam ura et al., 1988, 1989) and 

Takahashi et al., (1991) being the main exceptions.
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6.2 Materials and Methods

Aerosol Infection of mice with B. pertussis

Stock cultures of B. pertussis, stored in liquid nitrogen, were thawed and spread onto C W  blood 

agar plates containing streptomycin. These were incubated for 3-4 days. The  bacteria were 

then transferred into PBS using sterile dacron swabs (Baxter Healthcare Corporation, Illinois, 

U S A ). Th e  O .D -uo ^ of the resulting suspension was adjusted to -0 .55. This corresponds to a 

count of ~4 x 10® cells/ml. An aerosol was created from this suspension, using a CR60 high 

flow nebuliser (Medic-Aid, Pagham, Sussex, UK). The  nebuliser was equipped with a System 

22 "turret turbo" (Medic-Aid) which, according to the manufacturer's specifications, generated 

an aerosol in which 85%  of the particles were less than 5.27pm in diameter (with an absolute 

minimum size of 2.3pm diameter). Mice which had been previously inoculated with LT-B69  

fusion protein or control preparations were exposed to this aerosol for 30 minutes, exactly as 

described by Roberts eta/., 1990. Immediately afterwards some animals were sacrificed and 

viable counts performed on homogenates of their lungs to determine the size of the inoculum 

which had seeded in the lower respiratory tract. Aerosol infection of mice using this technique 

has been shown to produce a fairly uniform degree of initial colonisation (Sato et al., 1980) and 

has been adopted by a number of researchers (Novotny etai., 1985, Shahin e ta i,  1990b, and 

Kimura et al., 1990).

6.3 Results

6.3.1 Preliminary experiment Involving Intranasal Immunisation with partially 

purified LT-B69

G roups of 5 BALB/c mice were lightly ether-anaesthetised and primed intranasally with 20pg 

of L T -B  or LT-B69 in a volume of 40pl of PBS. The inoculum was dispensed in 2-3 drops from
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a micropipette into the nostrils. The mice were boosted 4 weeks later with the same dose of 

antigen and by the same route. Serum  samples were taken at various time points and either 

pooled or analysed individually, the titres of LT-B-specific and P.69-specific antibody being 

determined by means of an antigen-specific ELISA, as described in 2.10.1. Titres were defined 

as the reciprocal of the dilution of serum giving half the maximal absorbance at 450nm. The 

results are shown in Figures 6.3.1.1 and 6.3.1.2.

Figure 6.3.1.1 shows that high titres of anti-LT-B serum antibody developed in mice 

inoculated with either LT-B  or LT-B69. The primary response appeared to be slower in mice 

which received the LT-B69 fusion protein. However, after boosting the anti-LT-B titres were 

essentially the same in both groups. From this it is clear that the BB05 epitope had little, if any, 

effect on the immunogenicity of the L T -B  moiety. Figure 6.3.1.2 shows that P.69-specific serum 

antibody could be detected in mice immunised intranasally with LT-B69 but not in the control 

group. The kinetics of this anti-P.69 response were those of a typical low level primary 

response followed after boosting by a more rapid secondary response attaining a higher titre.
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Figure 6.3.1.1 Serum antibody response ot mice immunised with L T -B  or LT-B69. BALB/c mice 

were immunised intranasally with 20pg ot LT-B  (O ) or LT-B69 (□ ) and boosted 4 weeks later 

by the same route. Pooled or individual serum samples were obtained on the days shown. Anti- 

L T -B  litres were determined by antigen-specific ELISA and represent the reciprocal of the 

serum dilution giving halt maximal absorbance. Where sera were assayed individually, the 

points represent the mean values (n-5), +/- 1 S.D.
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2.2

Figure 6.3.1.2 Serum antibody response of mice immunised intranasally with LT-B (O ) or LT- 

B69 (□ ). Anti-P.69 litres were determined, as described previously, for serum samples obtained 

on the days shown. Where sera were assayed individually, the points represent the mean 

values (n-5). +/- 1 S.D.
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Three weeks after boosting the mice were sacrificed and EL IS P O T assays w ere performed on 

homogenates of their lungs as described in 2.10.2. LT-B-specific A S C  were detected in both 

groups of mice, as shown in Figure 6.3.1.3. These were either of the IgG o r IgA isotypes. No 

LT-B-specific IgM-secreting cells were detected. This was not surprising as the assay was 

measuring a secondary response, thus one would expect a certain degree of maturation of the 

response and concomitant antibody class-switching. A  low number of P.69-specific A S C  were 

detected in mice immunised with LT-B69 (Figure 6.3.1.4), but not in the control group. These 

P.69-specific A S C  were mostly of the IgG isotype but some IgM-secreting cells were also 

found. This might reflect a true difference in the immunogenicity of the BB05 epitope compared 

to LT-B  but it is more probably a distortion due to the low number of A S C  detected. 

Subsequent experiments showed that the lung immune response to P.69 was essentially of the 

IgG and IgA isotypes, like the response to LT -B .

These results were extremely encouraging. Although the serum antibody titres specific for 

P.69 were quite low compared to the anti-LT-B  titres. the detection of a  serum antibody 

response to P.69, following intranasal immunisation with LT-B69, was very significant. Mice 

inoculated intranasally with two doses (each of 10pg) of purified P.69 developed P.69-specific 

A S C  in their lungs but failed to mount an anti-P.69 serum antibody response (M. Roberts, 

unpublished observation). Thus coupling of the BB05 epitope to L T -B  was shown to enhance 

the immunogenicity of the heterologous epitope, at least with regard to serum antibody 

responses.
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Figure 6.3.1.3 A nti-L T-B  antibody-secreting cells (ASC) in the lungs of intranasally immunised 

mice. BALB/c m ice were inoculated with L T -B  or LT-B69 as described previously. Three weeks 

after boosting, lymphocytes were isolated from the lungs and antigen-specific, isotype-specific 

ELI S P O T  assays were performed to enumerate the LT-B-specific A SC . The antigen-specificity 

of the assay w as demonstrated by the lack of reactivity in the control wells containing medium 

without antigen.
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Figure 6.3.1.4 P.69-specific antibody-secreting cells (ASC) in the lungs of mice immunised 

intranasally with L T -B  or LT-B69. E L IS P O T  assays were performed as described previously.
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6.3.2 Immunisation schedules for aerosol challenge experiment

Eight groups of mice (10 BALB/c males per group) were primed on day 0 (and boosted 3 

weeks later) with the antigen(s) and by the routes shown in Table 6.3.2.1 below, prior to 

challenge with an aerosol of B. pertussis, as described in 6.2.

Most groups were inoculated intranasally so as to study further the immunogenicity of LT- 

B69 when applied to mucosal surfaces. As a comparison, two groups were inoculated 

intramuscularly. The contrasting routes of inoculation might also have yielded information 

regarding the mechanism of protection (if any) against colonisation by B. pertussis, following 

an aerosol challenge. Another group included for comparison w as inoculated with a  synthetic 

peptide (peptide 683, see Figure 6.3.2.1 and Charles et al., 1991, synthesised by D. Cambell, 

Wellcome Research Laboratories), corresponding to the B B 05 epitope sequence, linked 

covalently to the carrier molecule K LH  (which is not a mucosal adjuvant). Two methods of 

potentially enhancing the immune response to LT-B69 were also investigated. One method 

involved the incorporation of a small amount of C T  (0.1 pg) into the inoculum, which has been 

demonstrated to be an effective mucosal adjuvant when given to mice orally (Elson & Ealding, 

1984a) or intranasally (Tamura et al., 1989). The other method selected involved treating mice 

intranasally. 2-3 hours prior to immunisation, with 1 mg of G*,, (Sigma) in drops with a total 

volume of 40pl. Such a protocol has been used successfully to increase the immune response 

of mice immunised intranasally with particulate antigens containing C T-B  (Martin Ford, 

Wellcome Research Laboratories, personal communication). It is assumed that enhancement 

of the immune response occurs because exogenous G WI is taken up by the epithelial cells 

lining the respiratory tract, thereby increasing the concentration of ganglioside on the epithelial 

surface. This in turn facilitates the subsequent binding of molecules with an affinity for G*,, 

(such as LT-B ).
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Table 6.3.2.1. Immunisation protocols used for mice In a B. pertussis aerosol challenge

experiment

Group Immunisation schedule

1 20pg LT-B 6 9 1, intramuscularly (i.m.)

2 20pg LT-B69 plus 0.1pg C T , i.m.

3 20pg LT-B69, intranasally (i.n.) |

4 1 mg G m, i.n. pre-treatment, then 20pg LT-B69  i.n.

5 20pg LT-B69 plus O .lpg C T , i.n.

6 im g G m, i.n., then 20pg LT-B69 plus 0.1pg C T  i.n.

7 20pg peptide 683/KLH conjugate2, i.n.

8 20pg irrelevant protein3 plus 0.1 pg C T , i.n.

\  this figure represents the amount of LT-B69 in the inoculum; as the fusion protein constituted 

about 1/3 of the total protein, the amount of total protein in the inoculum was ~60ng.

2, an amount sufficient to contain 20pg of peptide, (rather than 20pg of conjugate), w as used.

3, this irrelevant protein consisted of E. coli periplasmic proteins collected during the partial 

purification of LT-B69. This material did not bind to the Trisacryl column used in the purification 

and so passed straight through. The protein content was assayed by the Pierce method, 

adjusted to 0.5 mg/ml and stored in aliquots at -20°C.
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Figu re  6.3.2.1 The  amino acid sequence of P.69 in the region of the BB05-binding epitope, 

showing the precise sequence of peptide 683, which was conjugated to KLH and used as a 

control immunogen in the intranasal immunisation experiments. Th e  numbers refer to the amino 

acid residues of the mature (i.e. signal peptide-processed) form of P.69. The L T -B  fusion differs 

from the B. pertussis sequence at position 567 (pro-»asp) and peptide 683 differs at position 

574, having a carboxy terminal cysteine to facilitate coupling to carrier molecules.
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Figure 6.3.2.2 shows a sample of the material used as the LT-B69  inoculum (compare Figure 

5.3.3.1). This gel was subjected to further analysis by means of a densitometer. The  plots of 

the unheated and the boiled samples are shown in Figures 6.3.2.3 and 6.3.2.4. The  peaks 

representing pentameric and monomeric LT-B69 are arrowed. Figure 6.3.2.3 shows three 

peaks (constituting 34 .8%  of the total absorbance of the track) in the unheated sample, which 

are absent from the boiled sample. These represent pentameric LT-B69 and two slightly 

degraded breakdown products. Figure 6.3.2.4 illustrates the presence of a new peak in the 

boiled sample, corresponding to monomeric LT-B69, constituting 38.4%  of the total absorbance 

of the track (i.e. about the same as the sum  of the three bands in the unheated sample). Using 

these data, in conjunction with the results of a an assay of the total protein concentration of the 

sample, it was possible to determine the dose (in pg) given to the mice.
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1 2 3

Figure 6.3.2.2 S D S -P A G E  analysis of LT-B69 partially purified from periplasmic fractions of E. 

coll HB101 pFV1::69. This material was used to inoculate mice intranasally prior to aerosol 

challenge with B. pertussis. Lane 1, relative molecular mass standards (with mass shown in 

kiloDaltons on the left); lane 2, partially purified LT-B69 inoculum (unboiled); lane 3, partially 

purified LT-B69 inoculum (boiled). Bands containing LT-B69 are arrowed.
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Figures 6.3.2.3-4 Densitometry analysis of lanes 2 (top) and 3 (above) of the gel shown in 

Figure 6.3.2.2. Peaks 1-3 represent pentameric LT-B 6 9  and its associated breakdown products. 

Peak 4 represents monomeric LT-B69.
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6.3.3 Aerosol challenge ELISP O T data

Table 6.3.3 (below) shows the number of LT-B-specific antibody secreting cells (A S C ) in lungs 

of mice 7 days after boosting intramuscularly or intranasally with LT-B69.

These tables contain a great deal of data which require careful analysis. Firstly, a number 

of points should be raised concerning their interpretation. The assays were not standardised. 

The IgG-specific conjugate might have had a rather higher affinity than the IgA-specific 

conjugate, or vice versa. Thus direct comparisons of cell numbers secreting antibody of 

different isotype are not strictly valid, so where such differences are small, speculation is 

dangerous.

Secondly, some of the groups received antigen adjuvanted with cholera holotoxin. Even 

though the mass of C T  given (0.lpg) was very small compared to the antigen dose (20pg), 

representing less than 1 %  of the total protein in the inoculum, because of the serological cross­

reactivity between C T  and LT-B, there is the probability that not all of the LT-B-specific ASC  

detected in these assays were truly directed against LT -B . It is evident from the results 

obtained from group 8 (which received irrelevant antigen together with C T ) that this effect is 

not major but does contribute to the total number of A S C  detected.
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Table 6.3.3 The number of LT-B-specIfc A S C  In the lungs of mice Inoculated Intranasally

or Intramuscularly with LT-B69

Group ASC /10* lymphocytes

IgG IgA IgM

1 N.D. N.D. N.D.

2 N.D. N.D. N.D.

3 2.4 x 103 2.1 X 10" N.D.

4 3 .8  x 103 7 .4  x 103 0 .3  X 10*

5 9.4 x 103 1 .4  x  104 0 .3  X 10s

6 2 .2  x  104 8 .6  X 10’ 0 .9  X 10*

7 0 .9  x 101 N.D. N.D.

8 0 .3  x  103 1.6 x 103 N.D.

(N.D. -  not detected)

No P.69-specific AS C  were detected except in groups 5 and 6. shown below 

(number/108 lymphocytes):

Group IgG IgA

5 2 5

6 1 3
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Another observation which can be made concerning the number of LT-B-specific A S C  in the 

lungs of mice in group 8 is that the inclusion of C T  in the inoculum appears to 

disproportionately enhance the IgA response. Thus there are about 8 fold more LT-B-specific 

IgG-secreting cells in the lungs of mice from group 3 (which received no C T ) compared to 

those of group 8 (which did receive C T ), whereas for A S C  of the IgA isotype the difference is 

only 1.3 fold. A  similar comparison can be made between groups 3 and 5, where mice in group 

5 were immunised by the same route with exactly the same inoculum (save the incorporation 

of C T )  as mice in group 3. Th e  increase in number of IgG-secreting cells was 3.9 fold whilst 

the magnitude of the IgA response was increased ~6.5 times. This observation is in agreement 

with the results of Chen & Strober (1990) who found that oral administration of C T  could 

disproportionately augment the IgA response to co-administered influenza virus.

Bearing in mind the previously stated caveat concerning comparisons involving absolute 

numbers of A S C  of different isotypes it is none the less apparent that, in all groups, A S C  of the 

IgM isotype were either not found or were present only in very small numbers. This is not 

surprising. The assay was investigating a secondary response, thus one would expect a certain 

degree of maturation of the response, concomitant with class-switching. Equally, the 

preponderance of IgA- and IgG-producing cells, and their approximate equivalence in number, 

is in agreement with the findings of Brandtzaeg (1988), concerning the distribution of IgA-, IgG- 

and IgM-secreting cells in the normal lower respiratory tract of humans.

Another observation which can readily be made is the complete lack of antigen-specific 

A S C  in the lungs of those mice inoculated intramuscularly. These mice did mount a systemic 

response, as evidenced by their serum antibody titres (see Figures 6.3.4.1. and 6.3.4.2). This 

is evidence that the lung E L IS P O T assay is a true index of a local response and that there was 

no significant contamination of the samples by, for example, peripheral blood lymphocytes (the 

mice having been exsanguinated prior to removal of the lungs).

Clearly, the number of LT-B-specific A S C  in the lungs of immunised mice is far higher than 

that of P.69-specific A S C . This is probably due to the greater number of B cell epitopes in L T -B  

and the cross-reactivity of L T -B  with C T . Even so, it is somewhat surprising, considering the
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results obtained from the preliminary experiment, in which small numbers of P.69-specific A S C  

were elicited without the need for C T  adjuvant (Figure 6.3.1.4). This is possibly due to a greater 

degree of degradation in the fusion protein inoculum, observed by S D S-PAG E, leading to a 

loss of G*,,-binding activity by the L T -B  pentamer and to cleavage and/or degradation of the 

BB05 epitope. This low number of anti-P.69 A S C  is reflected in the non-appearance of anti- 

P.69 slgA in the lung washes of intranasally immunised animals (data not shown). 

Nevertheless, it is significant that intranasal inoculation of peptide 683, corresponding to amino 

acid residues 544-574 of the mature P.69 sequence, failed to elicit either P.69-specific A S C  

or P.69-specific serum antibody (see Figure 6.3.4.2, below).

6.3.4 Antigen-specific serum antibody levels

6.3.4.1 A n tl-LT -B  serum antibody levels

An increase in the levels of anti-LT-B serum antibody could be detected in all groups which 

received the LT-B69 fusion protein, whether the route of administration was intramuscular or 

intranasal (see Figure 6.3.4.1). This increase was only slight after priming but after boosting 

significant increases were observed with the peak response generally occurring 1 -2 weeks after 

boosting. Neither group 7 (immunised with a peptide from P.69) nor group 8 (immunised with 

an irrelevant E. coli protein preparation) displayed substantially increased LT-B-specific serum 

antibody levels, although some mice in group 8 showed a small response to the C T  adjuvant. 

The presence of C T  in the inoculum caused a marked enhancement of the anti-LT-B antibody 

response, irrespective of the route of inoculation, bringing about a 2 fold increase in the mean 

absorbance in ELISAs. By contrast, pre-treatment of mice with intranasally applied Gy, had 

little, if any effect on L T -B  specific antibody levels. These results are broadly in line with the 

lung ELISP O T data in that groups 5 and 6 both had the highest number of LT-B-specific A S C  

in the lung and both had the greatest amount of circulating antibody.
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Figure 6.3.4.1 The  LT-B-specific serum antibody response following immunisation with LT-B69, 

with or without various adjuvants (see Table 6.3.2.1). Individual serum samples were obtained 

on the days shown, diluted 1/1000 and analysed by ELISA. Mean values for each time point 

are represented by a horizontal bar.



6.3.4.2 Antl-P.69 serum antibody levels

A  number of general points can be made concerning the levels of P.69-specific serum antibody 

in the mice (shown in Figure 6.3.4.2). Firstly, the background levels of absorbance in the ELISA 

assays was inexplicably high for all groups, despite the use of specific pathogen-free mice 

(uninfected by B. bronchiseptica). Secondly, the overall amount of P.69-specific antibody was 

considerably lower than that for L T -B . This may be explained by recent epitope-mapping 

experiments (Charles etal., 1991) with P.69, which suggest that the sequence of P.69 inserted 

as a fusion with L T -B  contains a single epitope -  that recognised by the monoclonal antibody 

BB05. Thirdly, there was no enhancement of anti-P.69 serum antibody levels following 

challenge with B. pertussis, despite the exposure to large amounts of P.69 that such a 

challenge would involve. This is not surprising. The region of P.69 present in LT-B69 does not 

contain any T  helper cell epitopes (J . Tite and M. Roberts, personal communication). Thus 

immunisation with LT-B69 would not generate any memory T  helper cells specific for P.69. 

Therefore, even in challenged mice which had been inoculated with LT-B69, P.69-specific A S C  

received T  cell help as a primary response.

Mice in group 8, which received irrelevant protein, failed to mount an anti-P.69 response. 

Mice in group 7, which received the P.69 peptide intranasally, appeared to mount a very slight 

response, as did groups 1 and 3, which were immunised with unadjuvanted LT-B69 fusion 

protein intramuscularly and intranasally respectively.

As with the anti-LT-B response, inclusion of small amounts of C T  in the inoculum 

significantly enhanced the amount of anti-P.69 serum antibody, whether given intramuscularty 

(group 2) or intranasally (group 5). This is confirmation of the adjuvanticity of C T ;  interpretation 

of the results is facilitated by the lack of serological cross-reactivity between C T  and P.69, 

unlike C T  and LT-B.
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Figure 6.3.4.2 The  P.69-specific serum antibody response following immunisation with LT-B69, 

with or without various adjuvants. Individual serum samples were obtained on the days shown, 

diluted 1/540 and analysed by means of an ELISA. Mean values for each time point are 

represented by a horizontal bar.



Pre-treatment of mice with Gy, appears to have a more significant effect on anti-P.69 titres than 

anti-LT-B  titres, although the situation where both G y, pre-treatment and C T  adjuvant were 

used (group 6) appears to dampen the response relative to C T  adjuvant alone (illustrated to 

a lesser extent by the anti-LT-B serum antibody levels). It may well be that insufficient time was 

allowed between the administration of Gy, and the inoculum, allowing exogenous unbound 

ganglioside to adsorb part of the inoculum.

Th e  detection of P.69-specific A S C  in the lung and P.69-specific serum antibody illustrates 

the successful use of an L T -B  chimeric protein to stimulate both local and systemic immune 

responses to a genetically fused epitope delivered intranasally. This finding is significant 

because intranasal immunisation of mice with recombinant P.69 purified from E. coli or native 

P.69 purified from B. pertussis fails to stimulate serum anti-P.69 antibody (M. Roberts, personal 

communication).

6.3.5 Viable B. pertussis counts In lungs of infected mice

Seven days after boosting, all the mice were challenged with an aerosol of B. pertussis, as 

described in Chapter 2. Immediately after exposure to the aerosol, 4 unimmunised indicator 

mice were sacrificed and viable counts performed on homogenates of their lungs, to determine 

the size of inoculum which had seeded in the lungs of the exposed mice. The results are 

shown below in Table 6.3.5.1.
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Table 6.3.5.1 Initial colonisation In the lungs of mice Inoculated with an aerosol of

B. pertussis

On days 7 and 11 after challenge, three mice per group were sacrificed and viable counts of 

B. pertussis in the lungs of the mice were determined, as described in 6.2. The  results are 

shown in Table 6.3.S.2. Previous work (Roberts etal., 1990) had shown that, with the size of 

inoculum used, assaying at these time points should establish if any protection had occurred, 

being around the peak of bacterial growth in the lungs of unimmunised mice. Unfortunately, 

there was considerable intra-group variation in the counts. This, coupled with the small size of 

the groups, makes it difficult to interpret the data.

It would appear that no protection was afforded by inoculating mice intranasally with peptide 

683/KLH conjugate (group 7) relative to those mice inoculated with a  mixture of irrelevant 

proteins (group 8). Similarly, no protective effect was apparent in those mice given partially 

purified LT-B69 intranasally, with or without G M1 pre-treatment (groups 3 and 4 respectively), 

although in the latter case 3/6 mice were not detectably colonised at the time-points studied.
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Table e.3.5.2 Colonisation of the lungs of mice 7 and 11 days after challenge with

an aerosol of B. pertussis

Group

Mean cfu/anlmal (1 S.D.)

Day 7 Day 11

1 4 .6  (3 .7 ) X If f1 2.3 (0.7) x 10*

2 < 1 .1 1 (1 .0 ) x  10* 2.5 (2.7) x 10*

3 4 .6  (3 .1 ) X 10* 5.4 (7.0) x 10*

4 < 1 .5 a (2 .5 ) x 10“ < 5 .3 ' (8 .4 ) x  10*

5 < 5 .0 2 (9 .0 ) X 10s < 2 .0 ' (2 .0 ) x  10s

6 < 3 .0 2 (4 .0 ) x 10* 2 .0  (1 .8 ) x 10*

7 1.9 (0.6) x 10* 3 .3  (3 .3 ) X 10*

8 1 .6  (1 .3 ) x  10* 3.1 (1 .6 ) X 10*

\  1/3 mice without detectable numbers of bacteria 

2, 2/3 mice without detectable numbers of bacteria

Counts were performed as described in Section 2.10.3. Serial tenfold dilutions in PBS were 

made of the lung homogenates. Five replicate 50pl drops were added to the surface of a C W  

blood agar plate (containing streptomycin) and colonies counted after 3-5 days incubation. The 

mean cfu/animal for each group was then determined. A "less than" symbol is included where 

no colonies were detected in any of the replicate drops from one or two mice in that group.
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It might be argued that protection is apparent in group 6 (G y, pre-treatment, LT-B69 plus C T  

I.N.) at the earlier time-point, with only 1 mouse colonised and by comparatively low numbers 

( - 5  fold fewer than the mean value for group 8). However, no significant protection against 

colonisation is obvious at day 11. It would seem that only group 5 is consistently protected (L T - 

B69 plus C T  I.N., no Gy, pre-treatment), with only a total of 3/6 mice colonised on the two time- 

points. A t day 7, the mean count is more than 3 fold less than the control group and at day 11 

there is over 1 k>g10 difference between the counts. It may be significant that the highest levels 

of P.69-specific serum antibody were observed in group 5 (Figure 6.3.4.2)

W hilst there is good evidence for protection in only 1 group (i.e. group 5), it seems 

suggestive, when viewing the results as a whole, that the lowest degree of colonisation 

occurred among those groups which received the fusion protein I.N. with C T  (groups 5 and 6) 

or intramuscularly with C T  (group 2), that is, in those groups with the greatest P.69-specific 

lung A S C  and/or serum antibody responses. This would suggest that the BB05 epitope can 

stimulate a protective immune response if immunisation involves a suitable adjuvant. Previously 

it has been shown that immunisation with P.69 can protect mice against intracerebral 

challenge, and that passive immunity can be mediated by the transfer of BB05 mAb (Novotny 

et at.. 1985). Thus the results presented here would imply that responses to the BB05 epitope 

can also protect mice against an aerosol challenge. Ideally, to confirm these findings, such an 

experiment should be repeated with larger groups to reduce the significance of intra-group 

variation. However, these results are consistent with the recently published work of Charles and 

his colleagues (Charles et at., 1991). In their study, a fusion was made between the gene 

specifying the hepatitis B virus core antigen (HBcAg) and synthetic oligonucleotides encoding 

amino acid residues 537-566 of P.69. The  resulting fusion protein was expressed in yeast, 

purified and used to immunise mice intramuscularly. Mice treated in this way had viable counts 

of B. pertussis 10 fold lower than mice immunised with HBcAg alone. This protective effect was 

enhanced by the inclusion of incomplete Freund's adjuvant in the inoculum.

133



6.4 Summary

6.4.1 The mechanism of protection

As the degree of protection achieved was very limited it is difficult to say with confidence what 

the mechanism of protection might be. However, numerous other reports have shown a strong 

correlation between immunity to P.69 and protection from disease in mice infected with B. 

pertussis (Novotny et at., 1985, Shahin et at , 1990b, Charles et a/., 1991 and Fairweather et 

al., 1990). There are two questions which are of interest; is protection a result of local or 

systemic immunity (or a combination of the two)? and what is the effector mechanism of the 

response?

6.4.2 Local or systemic immunity?

As the strongest evidence of protection is seen in group 5 (inoculated with LT-B69 fusion 

protein together with C T )  and to a lesser extent in group 6 (pre-treated with Gy, and then 

inoculated with LT-B69/CT), one might conclude that, when using LT-B69  as an immunogen, 

intranasal immunisation is necessary to protect mice against aerosol challenge, suggesting that 

local responses are most pertinent. This would agree with the observation that P.69-specific 

A S C  could only be detected in these groups. However, at day 11, there is little difference 

between groups 1,2 and 6, with regard to colonisation by B. pertussis, the former groups 

having been inoculated intramuscularly. It should be remembered that the two arms of the 

immune system do not operate in a  mutually exclusive manner. Thu s a case could be made 

for the involvement of systemic responses, a position which is supported by the serum antibody 

levels of the respective groups. Significantly, it has been found that in mice immunised sub­

cutaneously with recombinant P.69 purified from E. coli, circulatory antibody specific for P.69 

can protect against lung colonisation following challenge with an aerosol of B. pertussis (M.
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Roberts, personal communication).

6.4.3 Possible effector mechanisms

As stated above, it has already been demonstrated that antibody directed against the BB05 

epitope can be protective against B. pertussis aerosol challenge in a mouse model. It is 

possible therefore that specific antibody, whether slgA or serum IgG , is the effective mediator 

of immunity in the experiment reported here.

In the aerosol challenge model, growth of bacteria is restricted to the respiratory tract. 

Systemic antibody, if it is to exert an effect on the course of the infection, must therefore leave 

the circulation and transudate into the tissues of the respiratory tract. There is evidence that 

i.v. administration of anti-P.69 monoclonal antibodies can lead to their detection in the lungs 

within 1-6 hours (Shahin et al., 1990b) and can protect infant mice against aerosol challenge.

There are at least two mechanisms of protection one could envisage. P.69 is known to be 

surface-exposed (Charles et at., 1989) and has been shown to play a  role in the binding of B. 

pertussis to human epithelial cells (HEp2 cells) in vitro (Roberts etal., 1991). P.69 contains an 

arginine-glycine-aspartate (R GD) tripeptide sequence which has been implicated in the binding 

of mammalian cells to P.69 (Leininger-Zapata et at., 1989). Such RG D  motifs have been 

demonstrated to play a role in the binding of several other proteins to their receptor molecules 

(e.g. Ruoslahti, 1988; Fox et al., 1989). Thus it is possible that antibody binding to P.69 may 

cause a structural rearrangement or result in steric hindrance, leading to inhibition of binding 

to the host epithelium. However, recent evidence suggests that P.69 appears to be irrelevant 

to infection of the murine respiratory tract by B. pertussis (Roberts et al., 1991): insertion 

mutants of B. pertussis, defective for P.69 expression, were able to colonise mice as efficiently 

as the parental strain following aerosol inoculation. It seems unlikely therefore that P.69-specific 

antibodies protect by preventing adherence to host respiratory tract epithelium cells, at least 

in mice. An alternative explanation is that binding of antibody may result In opsonisation, with
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improved phagocytosis of the bacteria by those phagocytic cells with F . receptors (such as 

alveolar macrophages), or may lead to complement-mediated lysis of B. pertussis cells.

6.4.4 Improving the protective efficacy of LT-B69

As mentioned in section 6.3.4.2, LT-B69 contains no T  helper cell epitopes from  P.69. Clearly, 

this represents one way in which the protective efficacy of LT-B69 could b e  enhanced. Such 

an approach has already been employed successfully to increase the antibody response to a 

peptide epitope from foot and mouth disease virus (FM DV), (Francis et a!., 1987a,b). 

Furthermore, there is no reason why the T  helper cell epitope should have to be derived from 

P.69; any B. pertussis T  helper cell epitope might suffice as long as the B  cell and T  cell 

epitopes are present on the same immunogenic structure (i.e. in this instance, on the same 

bacterial cell). This phenomenon ("inter-molecular -  intra-structural help") h as been described 

previously for influenza virus (Russell and Uew, 1979) and hepatitis B virus (Milich eta!., 1987) 

and such a mechanism might well be operable where the structure is a bacterium rather than 

a virion. Candidate H LA  class ll-restricted human T  cell epitopes have been  described in the 

S1 subunit of pertussis toxin (De Magistris et al., 1989). The one major constraint on this 

approach is that the resulting fusion protein must still be capable of binding G ^ .
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C H A P T E R  7

General Discussion

7.1 Summary

It has been established by a number of workers that the immunogenicity of certain peptides, 

when administered to mucosal surfaces, could be enhanced by the addition or chemical 

coupling of C T -B  or L T -B  to the peptide sequence (see 1.7.1). Furthermore, a number of 

plasmid expression vectors have been constructed which allow genetic fusions to be made to 

C T -B  or L T-B . However, the fusion proteins which are expressed from such plasmids are often 

sub-optimal because they do not retain the properties of native LT-B , being unable to 

pentamerise or bind to G M1, the toxin receptor - characteristics which are probably a 

prerequisite for maximum immunogenicity.

This thesis describes the construction of an L T -B  fusion protein expression plasmid, which 

incorporates several features (e.g. the use of codons comparatively rarely utilised by E. coll) 

designed to allow insertion of oligonucleotides encoding peptide sequences at the 3' end of the 

L T -B  gene such that the resulting fusion protein is more likely to retain the properties of native 

LT -B . A  number of such fusion proteins were produced and all, including the largest fusion 

protein (comprising a 31 amino acid residue C  terminal extension), were found to form 

pentameric structures, be transported to the periplasmic space of E. coli and to retain affinity 

for G,,,.

Additionally, data presented here show that the fusion of L T -B  to a peptide sequence can 

exert a mucosal adjuvant effect after intranasal inoculation of mice, resulting in both increased 

serum antibody levels and a greater local antibody-secreting cell response compared to 

immunisation with the peptide conjugated to an inert carrier protein (KLH).
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Recently, Sixma et a/., (1991) published a putative three-dimensional structure for porcine LT, 

based on X-ray crystallographic studies. This is shown below in Figures 7.2.1-2.

Th e  L T -B  monomers were found to consist of one short amino-terminal a  helix (residues 

5-9), a large central a  helix (residues 59-78) and two three-stranded p sheets. These 

monomers are arranged in a circle around a central pore, much as earlier models predicted 

(Sigler et al.. 1977). Th e y  are so positioned that the p sheets of one monomer lie adjacent to 

the p sheets of its neighbours. The central pore is bounded by many charged amino acid 

residues (e.g. arginine, lysine) and numerous salt bridges are believed to be formed between 

these and the charged amino acid residues present in the A2 domain of the A-subunit, which 

inserts into the pore.

This model is particularly attractive because it explains several experimental observations. 

For instance, although degraded by boiling and low pH, the pentameric L T -B  is reasonably 

stable in a range of environmental conditions. In the model of Sixma etal., (1991) over 1/3 of 

the surface area of each monomer is buried by pentamer formation. This figure is higher than 

most comparable multimeric proteins and probably contributes to the observed stability. Despite 

this strong association between monomers, only a small number of interactions is believed to 

occur. According to the current model, one such interaction is between alanine at position 64 

in one monomer polypeptide and a methionine residue at position 31 in an adjacent monomer. 

This would explain the finding of lida et al., (1989) that a single mutation (ala 64 - » val 64) at 

this position can inhibit pentamerisation.

Furthermore, the Gy,-binding site in the present model is thought to reside in a pocket, 

which is formed by amino acid residues derived from adjacent monomers. This agrees with 

previous suggestions (e.g., lida et al., 1989) that L T -B  must be in multimeric form to bind to 

G *,. This is supported by the results obtained in this study concerning the affinity for G*, of 

boiled and unheated samples of partially purified LT-B69.

7.2 The structure of L T  -  a rational basis for empirical observations
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B( 2 )

Figure 7.2.1 A  schematic diagram of the secondary structure of the L T -B  subunit and its 

pentameric arrangement, a,residues 5-9, P,:15-22, p2:26-30, p,:37-41, p«:47-50, 0^:59-78,

P5 82-88, pe:94-102. Numbering of the B-subunits is anti-clockwise when viewed towards the 

A-subunit (reproduced from Sixma el a!., 1991).
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Figure 7.2.2 The three-dimensional structure of L T  holotoxin. CA1 represents the last residue 

of the A1 subunit, NA2 the first residue of the A2 subunit. N and C  show  the positions of the 

amino and carboxyl termini respectively of the five B-subunit monomers. 88 represents the 

location of residue trp88, believed to comprise part of the G M1-binding pocket (reproduced from 

Sixma et al.. 1991).
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7.3 The structure of L T  • implications for the improved design of LT -B  fusion proteins

If the model of the L T -B  pentamer proposed by Sixma eta!., (1991) is substantially correct, the 

amino-termini of the L T -B  monomers are buried within the pentamer, whilst the carboxy-termini 

are at the ’bottom” of the molecule and point away from the structure. Thus the addition of 

extra amino acids to the N-terminal might well abolish G^-binding ability by preventing 

pentamer formation whereas, because of the location of the C-termini, extensions can be made 

at these points without interfering with B-subunit -  B-subunit interactions. This would support 

the observations made in this thesis concerning the G*, ,-binding properties of various L T -B  C - 

terminal fusion proteins. Thus, in the example of LT-B69, up to 31 amino add residues could 

be accommodated without a significant deleterious effect on G u,-binding.

Such extensions to the carboxy-termini probably would prevent association with the A- 

subunit (as experienced by Sandkvist et at., 1987) due to steric hindrance interfering with the 

normal interactions between the A-subunit and the B-subunit pentamer (see Figure 7.3.2). 

However, in the context of potential use as mucosal adjuvants free from toxicity, this does not 

constitute a disadvantage. It is clear that C-terminal additions, within certain limits, should also 

permit LT-B/ganglioside interactions to take place unimpeded; the proposed G M,-binding pocket 

is a considerable distance (in molecular terms) from the caiboxy-terminal of the monomer.

Thus the C-terminal offers several advantages as a location for the addition of heterologous 

epitopes, which can be readily effected by the insertion of relevant D N A sequences at the 

unique Spei site at the 3' end of the L T -B  gene. One other favourable location for the 

accommodation of heterologous epitopes might be the surface-exposed loop, represented by 

residues 50-64, which has already been found to be immunogenic (Jacob et al., 1985).

141



7.4 Future developments

One possible development to exploit immunogenic L T -B  fusion proteins is to express them in 

suitable bacterial hosts, such as attenuated strains of Salmonella spp., which have proven 

efficacy as experimental oral vaccines. Such an approach has been described both in this 

thesis and by other researchers (SchOdel et al., 1990a,b) but the results have been rather 

disappointing thus far. It might be that synthesis within a bacterial vector alters the nature of 

the initial interactions between the L T -B  fusion protein and the immune system. Thus, rather 

than the LT-B  fusion protein being absorbed across a mucosal epithelium into, for example, 

Payer's patches or bronchus-associated lymphoid units after oral or intranasal inoculation, the 

first interactions between the immune system and L T -B  present in the periplasmic space of 

Salmonellae might occur with macrophages in the R E S  which phagocytose the bacteria. This 

might influence the ensuing immune response. Thus whilst expression in vaccine strains of 

Salmonella spp. may be suitable for stimulating good cell mediated responses to a  particular 

immunogen, it is not necessarily ideal for all LT -B  fusion proteins if they possess intrinsic 

mucosal immunogenicity.

An alternative approach might be to involve the holotoxin in some way; nearly all the 

comparative studies which have been described show that C T  is more immunogenic than C T -B  

(Pierce, 1978, Lange etal., 1978, Lycke and Holmgren, 1986, Chen and Strober, 1990 and van 

der Heijden et a i, 1991). Presumably the same is true for L T  and LT-B . It would seem highly 

desirable therefore if one could produce an altered form of toxin A-subunit which retained 

immunological activity without toxicity, comparable to the Cross Reacting Material (CRM) 

mutant forms of diphtheria toxin (Pappenheimer et al., 1972, UchkJa et al., 1973) and pertussis 

toxin (Pizza et al., 1989). This would have considerable potential as an adjuvant for vaccines 

delivered orally or intranasally. However, as explained previously, toxin B-subunits extended 

at the C  terminal are unlikely to associate with A-subunit due to steric hindrance. Thus a 

modified non-toxic A-subunit would have to be added as exogenous holotoxin (with native B- 

subunits) rather than as an integral part of a holotoxin with chimeric B-subunits. (Alternatively,
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it might prove possible to engineer the modified non-toxic A-subunit such that it can associate 

with chimeric B-subunits).

One of the first examples of such an approach was described by Rnkelstein eta!., (1971) 

who produced "procholeragenokT -  a stable, high molecular mass aggregate of A- and B- 

subunits, formed by heat-treatment of C T. Procholeragenoid had only 5 %  of the toxicity 

associated with C T  but was still highly immunogenic when given to mice orally (Fujita and 

Finkelstein, 1972). However, this level of toxicity is unacceptable for use in human vaccines.

Similarly, Liang et at, (1989) demonstrated that glutaraldehyde treatment of C T  could 

diminish toxicity about 1,000 fold whilst the toxoid generated in this way retained some 

immunogenicity. However, this was still far from ideal because toxicity was not totally abolished 

and the adjuvant activity was substantially curtailed. Recently, Tsujl e ta i,  (1990) reported their 

findings concerning a hydroxylamine-induced mutant form of L T . D N A sequence analysis 

revealed a single base change, resulting in one amino acid substitution in the A-subunit at 

position 112 (glu112-»lys112). This mutant had greatly reduced toxicity but the mucosal 

immunogenicity or adjuvanticity of the molecule was not described. It may well be that an 

effective compromise between toxicity and adjuvanticity proves exceptionally difficult to obtain 

as it seems that adenylate cyclase activation is an intrinsic part of both the toxin and adjuvant 

mechanisms. However, the recent determination of the structure of L T  (Sixma et a!., 1991) 

should allow for a more rational approach (e.g. the logical application of site-directed 

mutagenesis) which should facilitate the task.
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