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Summary

Let G = G Ln(k), the group of all invertible n x  n matrices over an infinite 
field k. In this thesis we explore the cohomological relationship between a Schur 

algebra S(G) for G and the subalgebra S(B) corresponding to a Borel subgroup B of 
G. Our main motivation is the question of whether there is an analogue of the Kempf 

Vanishing Theorem in this setting.
We place our study in a more general framework, defining subalgebras S(Q ,r) 

of S(G) associated with certain intersections of parabolic subgroups of G, and 
investigate the connection between S(£2,r) and the subalgebra S(Q,0). We define 
modules for S (ii,r)  which serve as analogues for the Weyl modules for S(G). We 
produce bases for these Weyl modules and thereby show that S (Q ,0  is a quasi- 

hereditary algebra.
We find two-step projective presentations for the Weyl modules over 

subalgebras S(G.r') of S ( ii ,0 .  and in special cases find projective resolutions. We 
use these to prove results which provide partial information on the existence o f an 
analogue for the Kempf Vanishing Theorem, and on related questions.

We derive a character formula for the Weyl modules which can be regarded as 

an extension of the Jacobi-Trudi identity for Schur functions.
The methods used in this thesis are in the main elementary, with a heavy 

reliance on direct combinatorial arguments.
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I: Introduction

Let G be a connected reductive algebraic group over an algebraically closed 
field k. There is a striking relationship between the rational representation theory of G 
and that of a Borel subgroup B. Let T be a maximal torus of G contained in B. B 

determines a set o f positive roots in the root system of G with respect to T, and hence 
gives rise to a dominance ordering on the set of weights ^characters) o f T. So that 
we deal with dominant rather than anti-dominant weights we will use the dominance 

order obtained from the opposite Borel subgroup B°. The simple rational B-modules 
are in one to one correspondence with the weights of T, and if k(X) is the simple 

module associated with the weight X, then the induced module Indgk(X) is non-zero 

if and only if X is a dominant weight. Moreover, in the latter case Indgk(X) has a 

simple socle, and these socles form a complete set of simple rational G-modules.
Each rational B-module V determines a sheaf £(V ) of 0  G/B-modules (where 

0 G /B  denotes the structure sheaf of the quotient variety G/B), whose sheaf 
cohomology coincides with the values on V of the right derived functors o f induction:

H* (G/B, C (V)) *  R* Indjj (V) V iaO .

The Kempf Vanishing Theorem [K] asserts that if A. is a dominant weight then 

H‘ (G /B, £  (k(X))) -  0  Vi > 0;

in other words k(X) is right Ind§-acyclic (cf. [CPSK]) 1. This theorem is 
fundamental for the cohomology theory of rational G-modules. It can be used to 

show that if V is a rational G-module then

R> Indg V a V i f i - 0  
0 otherwise ’

1 In [K] and [CPSK] G is assumed to be semisimple, but the passage to reductive G is 
straightforward.
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I: Introduction.

so that Indg takes any B-injective resolution of V to a G-injective resolution of V 

(see the proof of [CPSK; (2.1)] ). It follows that ExtQfV'.V) *  Ext jj(V',V) for all 

rational G-modules V,V' and all i ^  0. The Kempf Vanishing Theorem is also used in 

[CPSK] to prove that for any dominant weights X and p,

H‘ (G, Indg k(X) ® Indg k ftl)) .  0  V i > 0.

This fact is invoked in the production of good filtrations (see [Dol]), and thereby in 

the description of the category of rational G-modules as a highest weight category 

(see [CPS1], [CPS2]). Kempfs original proof is rather long and technical, and shorter 
proofs have been given (see for example [An] and [H] ). None of these are completely 
representation-theoretic: they rely on techniques from sheaf cohomology theory. See 

however the appendix to [Do2].

Taking the foregoing as motivation we now concentrate on the case G«GLn(k). 

For feDJ let S = S(G) be the Schur algebra associated with n and f  (cf. [Gl]), so that 
modS is the category of homogeneous polynomial representations of degree f  of G. 
The cohomology theory of S has received attention in recent years. It was proved 
independently by Akin and Buchsbaum in [AB2], and by Donkin in [Do3], that S has 

finite global dimension. In [AB2] this is accomplished by giving an inductive 
procedure for the construction of finite projective resolutions of Weyl modules. In 
[Do3] it is proved for a more general class of algebras (analogues o f the Schur 
algebras for arbitrary reductive groups), using the machinery of good filtrations. 

These generalized Schur algebras (more precisely algebras Morita equivalent to them) 
have also featured in the work of Cline, Parshall and Scott, as examples of quasi- 
hereditary algebras (see [CPS1]). We remark that although the Kempf Vanishing 
Theorem is used in proving that these algebras are quasi-hereditary, this is not 

necessary for S: a short direct proof is given in [P]. 2
To each closed subgroup H of G there corresponds a subalgebra S(H) of S(G). 

This thesis started as an attempt to see how far the relationship between G and a Borel

2 There is also a heredity chain for S implicit in the ’fundamental nitration' of [DEP; 831: take the 
part of their filtration of the polynomial coordinate ring which is homogeneous of degree f, then apply 
contravariant duality.
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I: Introduction.

subgroup B was reflected in the relationship between S(G) and the subalgebra S(B). 
For computational simplicity we take B = B ", the Borel subgroup of all lower 

triangular matrices in G, and denote by B + the opposite Borel subgroup consisting of 
all upper triangular matrices. It is known that there is a correspondence between 

simple S(G)-modules and induced simple S(B)-modules which parallels the case for 

the rational categories. We ask further whether the following statements are true

(A) The simple S(B)-module k(X) is Indg|gj-acyclic for all dominant weights X.

(B) The restriction functor mod S(G) -» mod S(B) preserves Ext groups.

One of the aims in [AB1] and [AB2] is the construction o f explicit (finite) S(G)- 

projective resolutions of Weyl modules. If (A) holds we have an alternative approach 
to this problem: for dominant X find S(B+)-projective resolutions of the simple 

modules k(X), then apply the functor S(°)® S(B+) • T*1® problem o f constructing 

such resolutions is considered in [Sa].
The study of (A) and (B) led naturally to a study of the subalgebras of S 

associated with the parabolic subgroups of G containing B. The construction of 

analogues of the Weyl modules for these parabolic Schur algebras suggested the 
consideration of a more general type of subalgebra of S, obtained in the following 

way: take a parabolic subgroup P containing B, and a second parabolic subgroup Q 
containing the opposite Borel subgroup B+. P and Q can be specified by giving a pair 
(£2,D of subsets of the set A of simple roots (see II.1.2). We form the subalgebra 
S (Q ,r)  -  S(PnQ) of S associated with their intersection. Initially we were interested 

only in the cases (A,ft), (0.Q), (il,A) and (G,0). S (ft,D  was introduced for 
notational convenience and to simplify proofs that were originally split into separate 
cases. It was noticed however that almost all the results and proofs could be adapted 

with only minor changes for general (0 ,0 -  The only place where significant extra 
work was required was in proving that S(i2,r) is a quasi-hereditary algebra. In view 
of the current interest in quasi-hereditary algebras (and the conceptual simplification 

obtained by working within a uniform framework) it seemed worthwhile to treat the 

general case.
In chapter n  we give a treatment of the algebra S(Q,D- We define Weyl

3



I: Introduction.

modules for S(i2,D  by inducing simple modules from the subalgebra S(Q,0), and 

show that they share many o f the properties of the classical Weyl modules. We use 

these Weyl modules to classify the simple modules in m odS(fi.r). and we prove that 
S(i2 ,n  is a quasi-hereditary algebra by exhibiting an explicit heredity chain, much as 
in [Pi. This implies in particular that S (f} ,0 has finite global dimension (see [CPSll, 
[DR]). Put = i2r»r. Generalizing (A) and (B) we ask whether the following 

statements are true

(A*) The simple S(i2,0)-module k(X) is I n d g ^ ’̂ -acy c lic  for all 4*-dominant 

weights X. (See 1.1.4 for the definition o f ^'-dominance.)

(B') If the restriction functor mod S(Q,r) -»mod S(fi,0) preserves Ext

groups. (The condition i2 2 f  is necessary -  see in.3.5.)

Using the quasi-hereditary nature of S(£2,r) we show that (A’) is equivalent to 

the vanishing of E x t ^ Q ^  (V(Q,r,X), k(n)) for all ^-dom inant weights X, |i and all 

i> 0 ,  where V(Q,r,X) denotes the Weyl module with highest weight X. This 
observation leads us in chapter III to the investigation of the Weyl modules for 

S(Q ,r) as modules for the subalgebra S(Q,0). We show that to establish (BO it is 

enough to show that when & 2 r ,  T o rj* ^ ’̂ \s (£ 2 ,r ) . V(Q,r,X)) is zero for all VF- 
dominant weights X and all i > 0. Thus (A') and (B') are true i f  fo r  all ^-dominant 
weights X the following statement is true

(C)
|  E x 4 (Q j0)(v (iï,r ,X), k(|X» -  0 V i > 0, V ^-dom inant weights \l. 

( Torf<£i,|i)(S (n .n . V(OXA)> -  o V i > 0 .

Let X be a ^-dom inant weight. Using a couple of combinatorial lemmas on the 
multiplication in S(iî,r) we produce a two-step S(Q,0)-projective presentation of 

V(i2,r,X), which enables us to prove a first case of (AO, namely that

R^Inds ( a n
S(Q,0)k(X) -  0.

4



I: Introduction.

In producing the presentation mentioned above we introduce submodules 
Ma  -  Ma (£2,r,X) o f S(iX D X. We go on to construct a projective resolution of the 

module S i ii .rA  /  Ma , which we use to prove (C) when X has a certain restricted 

form. The relevant condition is

* {a h* ' V / \ b * \ b+1 * l } S \ .

(See 1.1.3 for the definition o f a j,.)  If I'M £  1 all 'F-dominant weights satisfy this 
condition, so (A') and (B') hold in this case. In particular (A) and (B) hold when 

n = 2. An interesting feature of the techniques used in chapter III is that they apply 

uniformly to both S(Q.O and S(fl,0).
In chapter HI we only get to grips fully with Weyl modules V(£2,r,X) such that 

the kernel of the projection S(i2,0)X -* V(Q,r,X) 'involves no more than a single 
root'. In chapter IV we give some partial results concerning cases where this kernel 
involves more than one root In §1 we show that (C) holds for 'F-hook weights, the 

appropriate generalization to our setting of hook partitions. We do this by 
constructing explicit projective resolutions. In §2 we restrict ourselves to 
characteristic zero and Q -A , and show that the resolutions of §1 are special cases o f a 

complex which exists for all X, and which is related to the Bernstein-Gelfand- 
Gelfand resolution of the simple jfn(k)-module of highest weight X. When n i 3 w e  
show that this complex is exact, and so establish (A) and (B) for characteristic zero 
and n S 3 . In §3 we derive a character formula for V(Q,r,X) which generalizes the 

Jacobi-Trudi identity for Schur functions. This formula relates the character of 
V(i2,T,X) to the characters o f the projective modules Sifl.r')*1 for subsets T 's 'F . 

When i2 * A the formula shows that the Euler characteristic of the complex of §2 is 
zero. In §4 we show that (AO holds when n -  3.

For the most part we will not involve ourselves with the general representation 
theory of algebraic groups, and our methods will be mainly elementary. We use the 
basic representation theory o f finite-dimensional algebras, some homological algebra, 

and various combinatorial arguments. From time to time we will point out 
connections between our situation and that for algebraic groups. For this purpose we 

fix the following notation: as above B" and B+ denote the Borel subgroups of

5



I: Introduction. §1: Combinatorial Preliminaries.

G = GLn(k) consisting respectively of all lower and all upper triangular matrices, and 
T  = B- riB+ denotes the maximal torus o f  diagonal matrices. We work over an 

arbitrary infinite field k.

§1 Combinatorial Preliminaries

In this section we introduce the basic combinatorial ideas and notation which 

will be used throughout the work.

L L I Weights
A(n) = Z © — © Z (n copies) is the set o f weights •*. We define orders on A(n):

X £  H if Xa £  p a V a e  n (X isa  subweight of n).

X ̂  if Xj + ••• +  Xa £  p-i +  ••• +Ha V a i n  (the dominance order).
X c  |ex H if X p. and the first non-zero difference Xa- p a is negative

(the lexicographic order).

We put X< p if X 3  P and X * p ; X c  p. if X C p  and X * p; and X £ ^  p if 

X < lex I-1 or X * p. £  and ^  are partial orders, i  iex a total order. We have

X c * i * X 3 * i * X S lex n.

The lexicographic order behaves well with respect to addition, in the sense that

X S | I . V  £  | l '  *  X+V S H+M',

with equality on the right iff we have equality in both cases on the left.

The number |X| « Xj +••• + Xn is the degree of the weight X. We will call X a 

polynomial weight if X 2  0, and for feW0 we define

3 A(n) identifies with the set of weights of T. (Xj, -  ,X„) corresponding to the map T -» k which 
sends the matrix with diagonal entries tj, t2. —. ln 10 (tj)^l'-(tn)^n. (cf. IG1; (3.2)1.)

6



I: Introduction. §1: Combinatorial Preliminaries.

A(n,f) = (X e A(n) /  X 2  0 and IXI -  f},

the set of polynomial weights o f  degree f .  X is dom inant if Xj £X 2 ^ - ^ X n (see 

also 1.1.4).

1.1.2 Indices
Let X be a finite subset of DJ. We will denote by I(n,X ) the set of all maps 

X-»n- The elements of I(n,X) will be referred to as indices, and if ieI(n,X), xeX  we 
will write ix for i(x). If Y is a subset of X we will sometimes refer to the values i y for 
yeY as the entries of i in Y. Indices will be used to parameterize bases for certain 

modules.
Any ieI(n,X) has an associated weight X = wt(i) e A(n, IXI), defined by 

Xa = # { x e X / i x = a} (aen).

If i jeI(n,X ) we will write

i £ j  i f i x £ j x V xeX .

We denote by P(X) the group of all permutations of X. P(X) acts on the right of 

I(n,X) by

(in)x -  ijt(x) >GI(n.X), 7teP(X), xeX.

ijeI(n,X ) lie in the same P(X)-orbit iff wt(i) -  wt(j), in which case we write i ~  j .  
For each XeA(njXl) we define the canonical index  o f weight X to be the unique 

index ieI(n,X) of weight X which is non-decreasing (x,y € X, x £  y *  ix £  i y). 
The various canonical indices form a set of orbit representatives for the P(X)-action 

on X.
P(X) also acts on the set I(n,X) x I(n,X) by ( ij )x  -  (ix jx). and we write 

( ij)  ~  O 'j ')  if (i j )  and (¡'j') lie in the same P(X)-orbit. Notice that the partial order 

£  is compatible with this P(X)-action.
Each partition (X j, X2.......Xr} o f X determines a Y o u n g  subgroup

7



I: Introduction. §1: Combinatorial Preliminaries.

P(Xt ) x  x  P(Xr) £  P(X).

We adopt the following notation from [G2; §2): for each collection of indices 

i(l), i(2), —»i(r) g I(n,X), and each collection a j ,  —, a,- o f elements of n, we define a 

subset of X by:

Ra i ,a2,...^ r ( i ( 1), ¡(2),—, i(r ) ) -  {xcX /  i(p)x « ap V per}.

We put

p i ( l ) , ..., i(r) "  n P(R*l t .... ‘frW*
a i , - , a r

the Young subgroup of P(X) corresponding to the partition

( *ro- “ • « '»

If X -  f  we will write I(n,f) for I(n,f) and P (0  for P(£).

1.1.3 Roots and the Weyl G roup 4
For aGn define ea G A(n) by ( e ^  -  Sa b  (bGn). Then e j ,  •••.£ „ g A(n) c  IRn 

are the standard basis vectors of lRn. Consider IRn as a Euclidean space with the usual 

inner product given by (ea, £5) = 8^5. Then

<D = (  £a -  Ej, /  a.ben , a£b }

is a root system of type An_ j in R<I>, and

A = {a a = £a-e a+1 /  acn ^ l }

a set of simple roots. We denote by d>+ the set of positive roots, i.e. the subset of <D

4 A suitable reference for this subsection is the appendix to (St).

8



I: Introduction. §1: Combinatorial Preliminaries.

consisting of those roots which are expressible as non-negative integer combinations 
of elements from A 5. Denote by W the Weyl group of <D, i.e. the group generated 

by the reflections:

If aeA , sa  will be called a simple reflection. The length l(w) of w eW  is the length 
of a minimal expression for w as a product of simple reflections. We record for future 

use the following fact: if weW  and aeA , then l(sa w) -  l(w) +1 iff w ‘ae<D+ .

The action of P(n) on IRn by place permutations:

*(*!• xn> -  K " ’ XJI> )>  <x l- xn> 6|B" x  6P<n>'

identifies P(n) with W. The reflection stta  corresponds to the transposition (a a+1). 

We will also need the so-called dot-action of W on lRn given by

wox -  w(x+8)-8 weW , xelRn,

whereS is the weight (n-1, n-2, - ,  0). Notice that if aeC>, (S,a) is the height of a , 
i.e. the sum of the coefficients when a  is expressed as a linear combination o f simple 

roots. In particular (5,a )  > 0  if aed>+, and (8,a )  = 1 if aeA .
W acts on I(n,X) on the left by (wi)x -  w(ix) (xeX), and this action commutes 

with that of P(X) on the right

1.1.4 Parabolic subgroups of W
If 'P c  A , denote by W*jr the parabolic subgroup of W generated by the 

reflections sa  for a e 'P .  This is the Young subgroup of P(n) corresponding to the 

partition:

5 <t> is the root system of G with respect to the torus T. The positive roots 4>+ corresponding to the
simple roots A are those associated with the Borel subgroup B+ of upper triangular matrices. The 
dominance order on A(n) as defined in 1.1.1 is that defined by this set of simple roots.

9



I: Introduction. §1: Combinatorial Preliminaries.

{ l,2 , - , a 1} , ( a i+ l ,  •••, a2) , - ,  {at+ l , - ,n }

of n, where {aa^. —» = A VP. We wil1 refer to the W 4/-orbits of n as 'F-blocks,

and write a ~ s, b if a and b are in the same 'F-block.

If ijeI(n,X) we write

i ~ * J  if ix  jx Vx€X.

The relation ~ H, is compatible with the action of P(X) on I(n,X) x I(n,X).

Dominance
A weight Xe A(n>is *¥-dominant if (X, a ) £ 0  V a e T .  This is equivalent to 

the condition w X ^X  V weWvj/, and to Xa ^X b V a,ben with a ~«j> b and a ^  b. 

Each weight X is Wip-conjugate to exactly one ^-dom inant weight.
Noting that if X, n e  A(n,f), then X ^  n  iff n  -  X is a sum of simple roots, we 

define a partial order on A(n,f) by

X li i f p - X i s a  sum of elements taken from 4/ .

1.1.5 Tableaux and Standardness
For XeA(n,f) let [X] denote the shape of X, i.e. the subset

{(a.b)eN2 /  a e n .b e { 1 ,2 ,  —, Xa }}

of N2. A X-tab leau  is a map IX]-*N. We define a particular X-tableau 
= T : [X) -* f, by requiring that T be order-preserving when W2 is ordered 

lexicographically. Since T is bijective, any other tableau factors uniquely through T. 

so T sets up a bijection between I(n,f) and the set of X-tableaux with values in n. If 

ie I(n,f) we write Tj for the composite i-T : [X) -» f  -» n.
We will follow the usual convention when drawing [X) of applying a 90° 

clockwise rotation to the standard representation of N2, so that the first coordinate

10



I: Introduction. §1: Combinatorial Preliminaries.

increases from top to bottom and the second from left to right. We will represent a 
tableau graphically by writing its values into the appropriate places in the diagram of

p a

Example
If n=4, f-17, >.=(6,4,5,2) then T is depicted by:

1 2 3 4 5 6 |
7 8 9 T o - ]

11 12 13 14 15 |
16 17 J

and if  1 is the canonical index of weight X , Tj is depicted by:

1 1 1 i  i i  i
2 2 2 2 1
3 3 3 3 3 |
4 4 r

For 'FcA, ae N and S  a 'F-block of n we define via IT certain subsets o f  f:

Ra -T ( tX ]n ({ a } x W )) (the rows)

Ca -  T( 1X1 n  ( W x (a) ) ) (the columns)

C = >a = T( [XI n  ( E x {a} ) ) (the *F-columns).

Each of the collections of subsets {Ra} , {Ca} , (C = a} is a partition of f. We will 
denote the Young subgroup of P(f) corresponding to the partition {Cr a} by CiX,*?). 
These definitions depend upon the choice of the weight X, and if we want to stress 

this, we will talk of X-rows etc..
If ieI(n,X) and Y c  X we will say that i is standard (resp. semi-standard) on 

Y if i is strictly increasing (resp. non-decreasing) when restricted to Y. If n  is a  set of 

subsets of X we will say that i is standard (resp. semi-standard ) on n  if it is so on 
every Y en . Similarly we define reverse standard (resp. reverse semi-standard) by

11



I: Introduction. §1: Combinatorial Preliminaries.

requiring that i be strictly decreasing (resp. non-increasing) on the relevant subsets of 
X. If X=f we will call i row standard, column standard, V-icolumn standard etc. 

if it is so on the partitions of f  given by the rows, columns, ^-colum ns resp..
If t: DU -» n is a X-tableau we define notions of standardness for t in terms of

contrary manner because for the most part we will be dealing with indices rather than 
tableaux, and we usually want rows, columns etc. to refer to subsets of f  not subsets 

of DU.

1.1.6 Lemma
Suppose iel(n.f) is *F-column standard.
(i) Suppose X is 'F-dominant, and let j  be the index obtained from i by permuting 

the entries in each row so that they become semi-standard. Then j  is ^-colum n 

standard.
(ii) Suppose X is 'F-anti-dominant, (i.e. Xa i  Xj, whenever a £ b and a, b are in 

the same 'P-block), and let j be the index obtained from i by permuting the entries in 
each row so that they become reverse semi-standard. Then j is 'F-column standard.

(i) Since the problem is local to each 'F-block we may assume that VF=A, and then 

the result is [De; Lemme 1]
(ii) This follows either by modifying the proof for (i) or can be deduced from (i) in 
the following manner. We may again assume that 'F -A . Let w be the longest element 
of W, i.e. the permutation which reverses the order of the elements in n, and let to be 

the composite

where the middle map is given by (a,b) K* (wa,b). Consider the map which takes an 
index m to wmeo’1. This takes X-column standard indices to wX-column standard 

indices and takes reverse row semi-standard indices to row semi-standard indices. 
Thus the index wico'1 is column standard for the dominant weight wX, so by (i) the

6 To pass from our situation to that of [Del rows and columns should be interchanged.

the index t-(T^) * e  I(n,f). We choose to make our definitions in this somewhat

Proof

f DU -♦ [wX] -» f,
TfwX

12



I: Introduction. §2: The Schur Algebra.

index obtained by reordering its rows so that they become row semi-standard is 
column standard for wA.. However this index is wjco'1, and so j is ^.-column 

standard. □

§2 The Schur Algebra

The Schur algebra was first investigated by Schur in his dissertation [SI in 

which he classified the polynomial representations of GLn(C). In this section we 

recall the definition of the Schur algebra as given in [Gil.

Let M = Mn(k) be the affine algebraic monoid o f all n x  n matrices over k, 

and G = GL,j(k) the group of all invertible matrices in M. Let cajb (a,be IN) be the 
map which sends a matrix m eM  to its (a,b)-coordinate ma b. The coordinate ring 
k[M] o f M is a polynomial ring in the ca b . For ije l(n ,f) put

C|J "  J? f c‘<p'i,p
(a monomial of total degree f  ).

If also i 'j 'e l(n ,f)  then c jj »  c j 'j '  iff (i j )  ~  (i'j')- The set 

(Cjj /  f  e No , ijeI(n.D)

is a basis for k[M).
The monoid structure of M endows k[M] with the structure of a k-coalgebra, 

with comultiplication

V :k[M] -» k[M] «> k[M)

V(cu ) -  X  ci.j® cj.i if i,le l(n,0. 
jel(n.f)

and counit

e : k[Ml -» k

e(c i j )  -  j .

13



I: Introduction. §2: The Schur Algebra.

The category of k[M]-comodules is isomorphic to the category of rational 
representations of M, and to the category of polynomial representations o f G. (See

[01; 5U)
For feWQ denote by A = Af the subcoalgebra o f k[M] consisting of those 

polynomials in the c a ^ which are homogeneous of degree f. Af has basis:

(a) ic y  /ije l(n ,f )} .

We have

k lM ]- ©  A f,
feWo

and this decomposition essentially reduces the representation theory of k[M] to that of 

the finite dimensional coalgebras Af, and hence to that o f  their dual algebras. Thus, 
let S = S f be the dual algebra of Af. This is the Schur Algebra ( [Gl; (2.3)]). We let

(b) ( /  i j e I(n ,0)

be the basis of S dual to (a). We see that dim S = dim A = (n2+f _^) • If iGl(n,f) has 
weight n  we will write ^  for and c^  fo rc ^ .

Using the duality of the bases (a), (b) and the comultiplication formula given 

above, we deduce the multiplication formula of [Gl; (2.3)]:

(c) t y t u n -  X  Z (ijJ ,m ,q j) ,
(q j)

where

Z(ij,I,m,q,r) = »{ sel(n,f) /  ( ij)  -  (q.s) and (l,m) ~  (sj)},

and the summation is over a set of representatives (q,r) of the P(f)-orbits of 

I(n,f) x  I(n,f). In particular j  >s « u  if wt(i) -  |i , and zero otherwise.

14



I: Introduction. §2: The Schur Algebra.

A Relative O rder on Indices

For i j, le l(n ,f) ,  define

'~ |J  if j lR.(l ) ~ j  IR.O) Vaen'
i <! j  if i + j j  , and if the first non-zero difference

We will write i £  j  if i <j j  or i -  j. We have i ~ j j iff -  $j,i- Note that ^  is or»lt̂  

a partial order on I(n,f), although it induces a total order on the set of equivalence 

classes of the relation and hence on the set of basis elements with r  ~  1.

15



II: Weyl Modules

In this chapter we define for each pair of subsets i i , r  of the set of simple roots 
A  a subalgebra S(Q,r) of the Schur algebra S. S(Q,r) is (in a sense to be made 
precise below) the 'image' in S of a certain subgroup o f G L^k). We define modules 

V(Q,r,X) and D(ii,r,X.) for S(Q,D which will be referred to as Weyl and Schur 
modules respectively. These modules play the part in the representation theory of 

S(Q.D that the usual Weyl and Schur modules play in that o f the Schur algebra. We 
show that S (Q ,D  is a quasi-hereditary algebra, and hence that its module category is 
a highest weight category in the sense of [CPS2]. We show that V(Q,r,A.) and 

D(i2,r,X) are the modules V(X) and A(X) of [CPS2] for this highest weight category. 

When Q = r= A  we recover the classical case.
We will be considering the algebra S(i2,0) and its relationship to S(i2,r). For 

each result in this context there is a corresponding result about S (0 ,r)  which we will 
not write down but which we may use subsequently. The formulation o f these 
transposed results is a formal exercise which we leave to the reader.

We warn the reader that this chapter is not self-contained: at the start of §3 we 
quote a result on the dimension o f V(Q,r,X) whose proof we defer until the next 

chapter. W e do this because the required result will be obtained as part of a  general 
framework which is conceptually distinct from the ideas o f this chapter.

§1 The Algebra S(Q,D

Firstly we make some general comments about sub-monoids of M and 

subalgebras of S. If X is a subset of M, denote by k[X] the quotient of k[M] by the 
ideal of functions which vanish on X, i.e. k{X) = k[X] is the coordinate ring of the 
Zariski closure X of X. Denote by A(X) the image of A = Af under the canonical 
map k[M] -* klX), and by S(X ) its dual space. The canonical map S(X) -»S 

identifies S(X) with k-e(X), where e  is the evaluation map

16



II: Wcyl Modules. §1: The Algebra S(£J,r)-

e: M -» S
c(m)(c) = c(m) m eM .ceA .

II.1.1 Lemma
If X,Y G M we have

and

S(X) -  S(X) 

S(XY) -  S(X)S(Y). 0

If X is a sub-monoid of M, then A(X) is a quotient coalgebra of A and S(X) a 

subalgebra o f S. In this case A(X) is an (S(X),S(X))-bimodule, and we will write the 

associated actions as:

S(X)x A(X)-*A(X)

(5 .c)»  S°c -  (id®lj)(Vc)

A(X)xS(X)-»A(X) 

(c,£)h  col; = (£®id)(Vc).

II.1.2 The Definition of S (Q ,r)
Take subsets G ,r S A, which will be fixed henceforth (unless stated 

otherwise), and define the following subset of n x n :

[G ill-  { (a,b) e  n x n /
a ~ n b if a £  b 

a ~ r b if a £ b

17



II: Weyl Modules. §1: The Algebra S(il,T).

[Qin can be represented as the non-shaded part of a diagram of the form:

Q - blocks

F o r Q , r  £  A  d e f in e  a  c lo sed  su b g ro u p  P q  j -  o f  G  b y

Pi i , r  = t  geG  /  Sa.b “  0 unless <a*b) e  IQ i n }.

Schematically Pq  p  consists of all matrices in G which are zero in the shaded region 

of the diagram above. The ^  are the parabolic subgroups o f G containing the 

Borel subgroup B+ = P ^  whilst the P ^ p  ^  1116 P313̂ * 0 subgroups containing

b -« p a ,0  W c have p n x  -  p q ,a  n  pA,r-

Write A (Q X ) for A(Pfl r ) and S(QX) for S(Pf l  r ). The category mod S(Q ,r) is 

isomorphic to the category of finite-dimensional representations o f the group P ^ p  

which are polynomial and homogeneous o f degree f. (cf. [Gl; §1, (2.2)].)

18



II: Weyl Modules. §1: The Algebra S(il.O -

II. 1.3 Lem ma S(QX) -  S(Q,0)S(0,r).
Proof

This will follow from II.l.l once we know that Pci,0p0 ,Y  is a Zariski dense subset 

of P q  r . In fact P n ,0 p0 ,r  is the sct of matnees in p i i , r  whose leading minors are 
all non-zero. □

Remarks
(i) When £2=T=A the essential fact here is the density in GLn of the 'Big Cell', see 
e.g. [St; Theorem 7] for a more general formulation of this result.
(ii) This lemma can also be proved directly within S(Q ,r) by a simple modification 

of [G2; §4] which treats the case Cl ■* T = A.

EL1.4 Bases for A(Q,r) and S (Q ,D

S(Q,r) has basis:

(a) ($ ij /  i j6 I(n ,f ) , (i<p. j<p) e  W in  Vq>€ f}.

Hoping that no confusion will arise, we will denote the image of Cj j  in A(Q,r) by 

the same symbol. Then A(QX) has basis:

(b) ic y  /  i j e l ( n ,0 , (i<p, j<p) e  [GJD Vcpe f},

and this set consists of precisely those c j j  which are non-zero in A (Q ,r). These facts 
follow from the general remarks at the beginning of §1 since the ideal of functions 

vanishing on Pq  p  is generated by the monomials ca j, with (a,b) £ [iilH. The bases 
(a) and (b) are dual to one another, and the number of elements in each is
j# [« in + f- l|

II.1.5 C ontravariant Duality
We will need a generalization of the notion of contravariant duality for the 

Schur algebra as set out in [Gl; (2.7)1. In our case we will obtain a duality between the

19



II: Weyl Modules. §1: The Algebra S (il.r)-

categories mod S(£2,D and mod S(I\Q). Let J  be the algebra anti-automorphism of S 

induced by transposition in M, i.e. J (£jj) ■ «M- If U is a subalgebra of S, the algebra 
ami-isomorphism J:U -• J(U) identifies U°P with J(U), and hence gives rise to an 

isomorphism of module categories

J  : mod'U -» mod J(U)

V h VJ (Ve mod'U).

Composing this with the k-dual functor Homk( Jc): mod U -» mod'U, we get the 

contravariant duality functor:

mod U -♦ mod J(U)
V k  V° (V€ modU).

This is an anti-equivalence o f categories, and the composite

mod U -* mod J(U)-» mod J^(U) = mod U

is isomorphic to the identity functor.
If Ve mod U and V'e mod J(U ), a contravariant fo rm  is a bilinear map

<  , > :V x  V'-*k

satisfying
<uv,v*> -  < vj(u)v '>  V ueU, veV, v 'eV '.

The natural isomorphism Homjc(V®V', k) *  Homj.(V, Homy.(V', k)) takes the set of 

contravariant forms onto Hom u(V, (V')°), and under this map, non-singular forms 

correspond to isomorphisms.

When U -S(Q X ), we have J(U) -  S(r,Q), and there is a non-singular contravariant 

form
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II: Weyl Modules. §1: The Algebra S(fl.r).

<  , > :S (£ l,r )  X A(T,Q)-»k 

<$.c>«J($)(c).

Thus S ( a n  ■ A (T ,0 )° as S(Q,r)-modulcs.

I I .1.6 Weight Spaces
S (0 ,0 )  is a basic semisimple k-algebra. For we have 

S(0,0) -  ®  k
XeA(n.f)

and “  5p.X ^  V M - e  *C nA  so S(0 ,0 )  a  kN with N -  #A(nJ).

F or X e  A(n,f) define X e  Homk(S, k) to be evaluation on the element c^ of A. 
Denote by k(X) the simple S(0,0)-module corresponding to the weight X. Thus 

k(X) is the vector space k, with S(0 ,0)  acting by

V ^ e  S(0,0).

{k(A.))xe A(n,f) is a ful1 of simPle S(0,0)-modules.

I f  V  e mod S(0 ,0 )  and X e  A(n,f) we write *-V for which is the sum of a11 ,he 
submodules of V which are isomorphic to k(X). We say that X is a weight of V if 
is non-zero. ^-V is the X-weight space of V 7, and its elements are called X- 

weight vectors. We have

V  -  ®  *V .
XcA(n,f)

I f  V € mod'S(0,0), is defined analogously, and similar remarks apply.
Any VGmodS(Q.r) is an S(0,0)-module via the inclusion S (0 ,0 ) -* S(fl,r).

7 Any S(0,0)-module is a rational module for the torus T, and as defined here is the X-weight
space in the usual sense for algebraic groups, (cf. IG1; (3.2)1.)
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II: Weyl Modules. §1: The Algebra S (n .O -

so we can talk about its weights. Note that the weights of V and V ° coincide. 

n.1 .7  Lemma $iti e  S(£2,0) wt(i) ^  wt(l).

Proof
^ ¡ j  e S(fl,0) iff i ^  1 and i 1. Put \i -  wt(i). X -  wt(l). If H -  {a, a+1, ••• } is an 
ft-b lock , and b e  E, then Rb c (i,l) * 0  implies that a £  c £ b. Thus for each E

^a+H a+l* -  +^b *  Xa+Xa+1+ ~  +Xb Vb € E -
and

E  l^b - Z  xb-
beE  b eS

These conditions are easily checked to be equivalent to p  X. o

0 .1 .8  Proposition
(i) li S(i2,0)^ is zero unless JJ. ^ q X.

(ii) dim x S(£2,0)X - 1.
(iii) rad S(Q,0) * ©  HS(O.0)* .

H<X
(iv) S (ii,0) /  rad S(C2.0) *  S (0,0) as algebras.
(v) (k(X)}^€ A(n f) is a full set of simple S(Q.0)-modules, where the action of 

S(£2,0) on k(X) is again given by X.
(vi) S(Q,0)^ is the S(Q,0)-projective cover of k(X).

Proof
(i) follows from n . l .7. (ii) is clear. By (i) 0  HS(Q,0)* is a nilpotent ideal of 

p<X
S(Q,0), whose quotient is isomorphic to the semisimple algebra S (0 ,0) by (ii). This 

implies (iii). (iv) and (v). The decomposition

S(Q,0) -  0  S (il.0)X 
X

shows that S(Q ,0)^ is projective, and from (ii) and (iii) we infer that its head is k(X), 

giving (vi). □
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II: Weyl Modules. fi2: The Modules V(Q.r.X) and D (ii.r,X).

II. 1.9 Wxp as a  subgroup of S('F,'F).
Take 'P eA . We obtain an image of Wvj/ in the algebra S(4VP) by sending 

we Wvj/ to e(M(w)), where M(w) is the permutation matrix given by 

M(w)a b = Sa wb (a,ben), and e is the evaluation map defined at the start of §1. The 
representation o f W\j/ on S0P,*P) by right multiplication obtained in this way is easily 

seen to be faithful 8, so in fact we have an embedding of Wvj/ in SOP,40, which we 

will sometimes view as an identification.

Lemma
If weW , i je l(n .f) , then 

(0 w-5i j  = £wi j-
(ii> $ j j-W  -

(iii)
Proof

(w ^ij)(cl,m) “  S  cl j ( ^ ( w^^ij^cr,m^ 
rel(n,f)

= ^ i j ( cw4l,nP “  ^wij^cl,m^

This establishes (i). (ii) is similar, and (iii) follows from (i) and (ii). □

We see from the lemma that if VemodS(4VP), weWvj/, X.eA(n,f) then the 
action o f w on V maps ^  V onto Ŵ V, so the set of weights of any SOP,40-module is 

closed to the action of Wvj/ on A(n,f). (cf. [Gl; (3.3a)).)

§2: The Modules V(i2,D and D(Q.T)

In this section we define modules V(fl,I\X) and D(i2,I\X), which are analogues 
for the algebra S (Q ,n  of the Weyl and Schur modules for the classical Schur algebra. 

We work out some preliminary properties of V(Q,r,X) and D(ft,r,A.) which will

8 If we W vp.ae n. then w ^ ( a) j ( a) -  ^¡(Wa)4(a)-wherc for ̂ n .  i(b) denotes the index all o f whose

entries are equal to b.
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II: W cyl Modules. §2: The Modules V(£2J\X) and EXn.r.A).

enable us to classify the simple modules for S(iî,r>-

n.2.1 Definition
For the rest of this chapter fix Xe A(n,f), and define modules for S(Q,D by 

V(Q ,r.X ) -  S(Q ,n <8> k(X),s<*.n

D(Q.I\X) -  HomS(n>ii)(S (Q ,n  . k(X)).

V(Q,rA) and D(Q,r,X) are respectively the Weyl module and the Schur module 
associated with the weight X. When Q=T=A and X is dominant this definition agrees 

with the usual one 9.
We will often use without further comment the natural isomorphism o f k- 

spaces A ( f l,n  *  Hom|c(S(Q,r). k) to identify D(Q,r.X) with a submodule of A(£2,D.

II.2.2 Lemma
Let K be the kernel o f the map

s ( a n - » v ( a r A )

Then if ce A(I\i2) we have <K,c> -  0 iff ceD (r,Q A ). Thus <  , >  induces a non­

singular contravariant form V(Q,r,X) x D(T,Î2,X) -* k, which we will denote by the 

same symbol. In particular V(i2,r,X) *  D(r,Q,X)°.
Proof

Put K a = ( ceA (r.Q ) /  < K ,c>  -  0 }. By the definition of V(Q,r,X) = 
S (Q ,n  <8> k(X) as a certain quotient of S (Q ,n  ® k(X), K is S (ii,r)-gcnerated by

S(0,r) k
the set

9 n.2.6 and II.3.2 together show that D(A.A.X.) is the module D* of IGfi 64 1. D.2.2 shows that
V(A.AA) is the contravariam dual of D(A,A.A), hence it is isomorphic to the module V^k  of 651.
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(C-X(C>1 / C e  S (0 ,n  }.

Therefore ce K 1

iff < c(c-£<c m ). c> -  o v  c 6 S (Q .n , c « s (0 ,n  

iff c(J(C)J(0) -  ¿(C) c(J(O) V C eS (n ,n  . C eS(0,n  
iff c(C'C0 -  MC')-c(C') V C 'eS(r.iî), C'eS(T,0) 

iff c e  D(r,QA). □

Rem ark
The isomorphism V(£2,r,X) a  D(r,Q,X)0 can also be obtained by noting that 

there is an isomorphism of functors

Homs(r,0 )< s (r *f l>' > ■ ( S(a n s ( ®r )  ? °  )°

This can be seen by using the fact that the functors S(ii,T) ® and
s ( 0 ,n

H om s(p  0 )(S(r,iJ), ) are respectively the left and right adjoints to the restriction 

functors modS(Q,D -* modS(0,D and modS(T,ii) -» m odS(r,0).

n.2.3 Bideterminants
Henceforth 'T will denote the intersection Q o T  10. We let 1 be the canonical 

index o f weight X, and use the notation of 1.1.5 for our fixed weight X. In II.2.6 we 
introduce a submodule D'(T,Q,X) of A(T,Q) as a generalization of the module D j ^  

of [G l; §4). D'(r,i2,X) is defined as the k-span of certain elements which we might 
call 'F-bideterminants. Our aim in introducing D'(T A X ) is to provide a lower bound 
on the dimensions o f V(Q,I\X) and D(I\fl,X) when X is *F-dominant. This estimate 
will later be refined to an equality, and it will follow that in fact D(T,Q,X) and 

D'(T,Q,X) are identical for 'F-dominant X. This is not the case for non-dominant X — 

see the remark following n.2.7.

Bearing in mind our convention about Cj j  e  A (I\fl) (see II. 1.4 ), define

10 Pvy ^  is the largest standard Levi subgroup contained in Pq j '.
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II: Weyl Modules. §2: The Modules V (O J\X ) and D(ilJ',X).

-  X  s8n(*>c ix j  e A ( r ^ i ) .  
neC(X,'F)

It is perhaps worth emphasizing that d | j  depends on Q.T and

The following results are easily verified: 

n .2 .4  Lem ma

(i) V d jj = X  ^ i,m ® c m j = X  ci,m ® ^m j-
me l(n,0 me I(n,f)

(ii) If 7teC(X,'i') then d j^ j = d j = sgn(jt)-dj j .
(iii) If either i or j  has repeated entries in some 'F-column then dj j = 0. □

We will also need: 

n .2 .5  Lem ma
Suppose i,mel(n,f) with 1 i .Then
(i) Ire —0  i V 7ceC(VF).
(ii) If d i>m , cm i are both non-zero, then 1 m.

(iii) If ci>m , djn j are both non-zero, then 1 ~ n  m.

Proof
Take 7ieC(X,'F) and <pe f. By definition o f 1 we have lJt<p l<p ~ n  i<p , and so (i) 
follows. Now suppose that the hypotheses of (ii) hold, and that K€C(X,vF) has been 

chosen so that m is non-zero. Consider cases:
If lftq^n iq , then 1^ ljfy ~ n  m ^, f o rc ^ m  t  Oimplies (ln^, m^efTlQ]. 

^  m <p̂ >q> tI'cn m( p * < p  ~ n
If then ln ,p~ Q i«p imphes 1^ lJt<p ~ n  n y

The proof of (iii) is similar. □
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n.2.6 Definition
Define D’(r,Î2,X ) to be the k-span of the set {djj /  1 ~ n  i}. We see from 

II.2.4(i) and n.2.5(ii) that D'(r,Q,X) is an S(T,Q)-submodule o f A(T,i2)^.

n.2.7 Proposition

If X is 4*-dominant then D '(r,«A ) £ D(r,i2,X).
Proof

Let c6A(T,0). If Ç«S(T,0), ÇeS(r,fl) then c« £ ) -  (Ç®Ç)(Vc) -  (coÇ)($). so

ceD<r,iU) iff co; -  X(0-c v  ç € S(r,0>.

S(T,0) has basis { £ r s  /  r  2: s and r  ~ r  s }, so it suffices to check that if 1 —0 i then

®  dl.i”i x  -  d l.i-
(ii) dl,i°^r,s “  0  if r  ̂  S, r  ~ r  s, and (r,s) + (U)-

Since d |jj6 A ( T ,0 ) \  (i) is clear. By n.2.4(i) we have

dl,i°£r,s = X  ^r,s^cl,m^dm,i’ m

which is zero unless r  ~  1. Thus suppose r-1 > s, and, for a contradiction, that there is 
some mel(n.f) with both 5itS(ci>m) and dj^ j non-zero. Then 1 > m and 1 ~ r  m. By 

n.2.5(iii) we also have I ~n  m, and since the 4*-blocks are simply the various 
intersections of the Q-blocks with the V-blocks, we have 1 m. Choose ae W to be 

minimal such that

m(p < i(p = a f°r some <pe Ra.

Let Cj, be the column containing 9 , and put 2  -  W»j/-a. Then m ^eZ since 1 m.

The 4/-  dominance of X implies that Rm^  n  C c  j, is non-empty, say -

{9'}. Now 9 ,9 'e C ? ^ ,  9  ^ 9', and, by minimality of a, m^» -  l,p' = m<p. Thus m has
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II: W eyl Modules. §2: The Modules V(i2,r,A.) and D(Q.r.X).

repeated entries in C=,b» so by H.2.4(iii), d m>j = 0, contrary to assumption. □

This proposition is false for weights X which are not 'P-dominant. We will see 

in II.2.12 that D (r,ÎÎ,X) is non-zero iff X is 'P-dominant. However D’(r,Q,X) is 
always non-zero; in fact D'(r,i2,X) *  D'(T,i2,p) whenever X and p  lie in the same 
Wvj/-orbit. To see this take w eW \p and let toeP(f) be the composite

where the middle map is given by (a,b) h+ (wa.b). Then to maps the X-*P-columns to 
the wX-'P-columns, and hence C(wX .‘P) ■ coC(X,*P)to'1. The map Cj j»-» cwj j is an 
S(r,Q)-isomorphism A (r,Q )^->  A(T,Q)W\  In fact it maps D'(T,Q,X) onto 

D'CT.Q.wX), for wlco1 is canonical of weight wX, 1 ~n  i iff wlto'1 ~ n  ito'1, and

n .2 .8  Standardness o f
We will say that a basis element j  is Y-standard if j = £ j j  for some j 

which is 'P-column standard. Suppose that X is 'P-dominant and let j  be the index 

obtained from i by reordering the rows so that they become semi-standard. Then by 
1.1.6, i is 'P-standard i ff  j is *P-column standard.

Remark

f [XI -» [wXl -» f, 
jw X

s j t " )  3 ^
dWA“wlto'Mto'1 iteC(wX.'P)

which is the image o f d^"..
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n.2.9 Lemma
Suppose that £eS(i2,0)^  is a linear combination of ̂ -standard Then

<$, D'(r,n,X)> -  o ♦  $-o.

Proof
Firstly we show that if  jel(n .f) is *F-column standard, then

(a) dl j = C1 j  +  a linear combination of terms c j ^  with m >  ̂j.

Suppose 1 ^ 7teC(X,vP), and put m = j7t. Choose ae n to be minimal with 7t(Ra) £ R a, 
and let S  = W y a .  Let a= w t( j  | R^), p=wt( m | R ^). We must show that a > j ex P. 

Suppose that p eR ar>Cb (ben) and 7tp*Ra. Since p < 7tpeCz;ib, and j is ^-colum n 

standard, jp < jj tp  = mp. Thus if we choose p so that Jtp*Ra, and j p  is as small as 

possible, we have

3c V c c jp .

>Pi .Jp KJp

as required.
Now suppose that 0  * £eS(i2,0)^ is a linear combination o f 'F-standard 

and write

5  -  X  a (*>ti(.),i ( 0  * a(a) e k ) ,

with the i(a) 'F-colum n standard, and ordered so that a < b *  i(a) >j i(b). Since 

£eS(i2,0) we have i(a) ~ n  1, so d j ^^eD 'CT£IX)- Consider

W M

*(■> -  <4i(»),i. «*u<«> -  ^  ̂ l . i ( t )  <cl.i(l)it)-
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If c j j  appears with non-zero coefficient in d j ^ j )  we have 

j ^  i(l)  i(a)

by (a). If a>  1 we have strict inequality, so x(a) = 0. If a = l, we again get strict 
inequality unless j= i( l) . By (a) appears with coefficient 1 in so

x (l)  = l.and

<S.dij(i)> - Z  a(a)x(a)

Thus <ç. D<r,n,X)> * o. □

II.2.10 Proposition
Suppose that X is *F-dominant. Then the images of the 'F-standard £ y eS (i2 ,f0 ^  

under the map

h: s ( a n - » v ( Q ,r ,x )

are linearly independent. In particular, since £iti is 'P-standard V(i2,r,X) 4= 0.

Proof
If £ eS (ii,0 )^  is a linear combination of 'P-standard with h(£) = 0, we have 

<$, D'(T,Q,X)> -  0 by U.2.2 and n.2.7. Thus £ -  0  by 0.2.9. a

W e can now classify the simple S(i2,r)-modules.
II.2.11 Theorem
(i) V(i2,r,X) t  0 iff X is 'P-dominant.

Suppose that X is 'P-dom inant Then
(ii) S(i2,0)^ is the S(i2,0)-projective cover of V(i2,r,X).
(iii) V(i2,rA) has simple S(Q,r)-head, which we will denote L(i2,I\X).
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(iv) If n  is a weight o f V(Q ,rX) or L(Q,T,X) then |i X, and

dim ^V (Q ,rA ) -  dim *L(Q,r,X) -  1.

(v) The L(Q,r,X) for X ranging over all ^-dom inant weights form a complete set 
of pairwise non-isomorphic simple S(ii,r)-m odules. Each L(£i,r,X) is 

absolutely irreducible.

Proof
If X is ^-dom inant, V(Q,r,X) ^ 0 by II.2.10. Suppose that V (ii,r ,X )* 0 . Since 

S (« .D  = S(i2,0)S(0,D  by II. 1.3, V(Q,I\X) is S(Q,0)-generated by the X-weight 
vector 1®1, and hence the composite map

S(Q.0)*- -» S ( a n  -» V(Q,r,X)

is an epimorphism. S(Q ,0)^ is an indecomposable projective in mod S(Q,0) by 

n.1.8, so (ii) holds. In particular V(Q,r,X) has simple S(O,0)-head, so its S (Q ,0 -  
head is certainly simple, giving (iii). Statement (iv) about weights follows from II. 1.8. 
The group Wtp acts on the weights of any S (Q ,0-m odule as in II. 1.9, so we see that

w X ^X V we Wvj/,

and hence X is '{'-dominant, completing the proof of (i). The L(i2,r,X) are certainly 
pairwise non-isomorphic since by (iv) they have different weight structures. By (ii) 
L(i2,r,X) is generated by the one-dimensional weight space ^L(i2,r,X). Any 

endomorphism of L(i}tI\X) maps this weight space into itself so 
E n d s ^ p )  L(ii»r\X) a  k, i.e. L(Q,r,X) is absolutely irreducible. Finally, suppose 

that V em odS(il.r) is simple. Then

H°m S(0,D(k(X), V) 0 for some weight X.

By adjointness
Hom<j(Q(p)(V(i2,r,X), V) 0,
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so V a  L(i2,I\X) by simplicity of V, proving (v). □

Remarks
(i) The Weyl modules V(Q,A,X) for the parabolic Schur algebra S(Q,A) are 
considered in [Sal. There n.2.11(i) is proved for V(fi,A,X) by analysing the restriction 

of V(£2,A,X) to the algebra S(i2,£2), and thereby reducing the problem to the 
corresponding theorem for the classical situation. The above approach to the simple 

modules appears in [Sal for the case S(G) ■ S(A,A).
(ii) The proof o f  the last part of the theorem shows that the S(0,D -socle of any 

S(Q ,0-m odule contains only ^-dom inant weights.

(iii) Since contravariant duality preserves weights

UQXXP *  L O W ),

because both are simple modules with highest weight X. We can thus strengthen part

(iv) of the theorem: if p  is a weight of L(Q,I\X) then p  X.

By applying contravariant duality to II.2.11 we can read off: 

n.2.12 Theorem
(i) D(r,i2,X) 0  iff X is 'F-dominant.
Suppose that X is 'F-dominant. Then
(ii) A(0,C2)^ is the S(0,Q)-injective hull of D(r,ft,X).
(iii) D(r,i2,X) has simple socle L(r,Q,X).
(iv) If p  is a weight of D(r,Q,X) then p  X, and dim ^D(r,i2,X) ■ 1. □

U.2.13 Characterizations of Weyl Modules 11
Let X be a 'F-dominant weight. We close this section with a couple of 

characterizations of the module V (Q ,r,X). By (the transposed version of) II.1.8 the 
simple S(0,D -m odule k(X) has a projective presentation of the form

* * Similar characterizations apply to the Schur modules.
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JJ. S(0 .r)ii<c) -> s c a d *  -» k ft)  o,
C

where the weights n(c) all satisfy A < n (c )12 Applying the right exact functor

S(Q ,r) <8> we get a presentation of V(Q,r,A):
S(0.r>

(a) 1 1  scQ .r^W  -» s c a ry 1 -» v c a r .w  o.
C

If w eW \j/, multiplication on the right by w'1 gives an isomorphism 

S(Q ,D ^ a  S(Q,DwK  so we may suppose that the weights |i(c) appearing in (a) are 
all 'F-dominant. This does not change the fact that A, < ii(c) for all c.

Using (a) and induction on the dominance order, we see that if L(£2,r,n) 

appears in the head of S ( f t , o \  then L(ii,r,A) itself appears with multiplicity
one. Therefore by (a) V(i2,r,X) is the unique largest quotient o f  S (i2 ,r )*  all o f  

whose weights are dominated by X.
If U £  U' are k-algebras we will say that Vem od U extends to a U'-module if 

there is a U'-module structure on V whose restriction to U is the given U-module 

structure. Suppose T 'c r .  The obvious map

V ( Q .r \A ) - S ( O n  ® k(A )-»S (iJ,n  ® k(A) -  V(Q.r,A)
s ( 0 , n  s ( 0 .n

is an epi by II. 1.3. Using the characterization of V(Q,r,A) just given, we see that 
V (a r ,X )  is the unique largest quotient o f  V( £2,r \X) which extends to an S ( i i ,r ) -  

module. In fact there is a unique extension of the S(f2,r')-module V(ii,I\A) to an 
S(ii,r)-m odule, since the restriction of V(Q,r,A) to S(Q ,F) determines its weight 
structure and the fact that it is generated by a A-weight vector. Taking T '= 0  shows 
that V(Q,r,A) is the largest quotient of S(Q,0)^ which extends to an S(i2,r)-module.

12 The weights p(c) are not necessarily distinct for distinct c.
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§3: S(ii,r) as a Quasi-Hereditary Algebra

In II.2.10 we showed that if X is 'F-dominant the images of the 'F-standard 
are linearly independent in V(£2,r,X). In the next chapter (see III.3.1) 

we will prove the following result:

n.3.1 Theorem
Suppose that X is 'F-dominant. Then the images of the 'F-standard ^¡ ]GS(i2,0)^ 

under the map

s ( a n - * v ( Q ,r A )

form a basis o f V(£2,r,X). In particular the dimension of V(Q,r,X) is independent o f 

the ground field k.

We deduce immediately the following: 

n.3.2 Corollary
Suppose X is 'F-dominant, and let 1 be the canonical index of weight X. Then 

D’(T,i2,X) -  D (r,C U ), and this module has a basis consisting o f the elements dj j for 
row semi-standard, 'F-column standard indices i with i £  1 and i 1.

Proof
Let X be the subspace of D'(r,Q,X) £ D(I\Q,X) spanned by the d y  satisfying the 
above conditions. HI.3.1 together with the proof of II.2.9 shows that the map 

V(Q,r,X) -» H om ^X , k) induced by the contravariant form

< ,  >: V(Q,r,X) x  D(r.Q,X) -♦ k

is injective. Hence

dim V(Q,r\X) £  dim X Z dim D '(r .fU ) £ dim D(r,fi,X).

Since V(Q,r,X) and D(r,Q,X) are contravariant duals by n.2.2 we have equality
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throughout in the above expression, and the result follows. □

We will now assume theorem I1.3.1 to be proved and explore some of the 
consequences for the algebra S (Q ,0 . We reassure the reader that nothing proved in 
this section will be used in the proof of II.3.1! Our main aim is to show that S (fi,r) is 

a quasi-hereditary algebra in the sense of [Sc].

n .3 .3  Quasi-Hereditary Algebras
We recall some definitions (see [DR]). Let U be a finite-dimensional k-algebra. 

An ideal J of U is called a heredity ideal if

(i) J is projective as a U-module;

(ii) J2 - J ;
(iii) J-radU-J = 0.

A heredity chain is a sequence

0 -  J0 C J 1 C J 2 C - C  I f U

of ideals such that for each ae t Ja /  Ja_ i is a heredity ideal in U /  J a_ j. An algebra 

U is called a quasi-hereditary algebra if it possesses a heredity chain.
We refer to [DR] for the following: any idempotent ideal J in a finite­

dimensional algebra U is idempotently generated, i.e. there is some idempotent eeU  

with J -  UeU; if (iii) above holds for such an ideal then (i) is equivalent to the 

condition

(i') the multiplication map Ue 0  eU -» UeU -  J is bijective.

We now adapt the proof in [P; §4] that the classical Schur algebra is quasi- 

hereditary. Order the 4/ -dominant weights in A(n,f) as X(l), X(2), •••, X,(t), in such a
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way that X(a) ^  X(b) implies a £  b. Let ea be the idempotent ^ X (l)+  “* + ^X.(a) of 
S (0 ,0 ), and let Ja be the ideal of S (il,r) generated by ea. We will show that:

n .3 .4  Theorem

0 -  J0  C J j C J2 C -  C J , « S (O H

is a heredity chain in S ( i2 ,0 , so S (Q ,0  is a quasi hereditary algebra. Thus S(Q,D 
has finite global dimension (see e.g. [DR]). For each a e t the section Ja /  Ja_ j is 

isomorphic as an (S(i2,r),S(fl,r))-bimodule to V(ii,r,X(a)) ®  V(F,Q,X(a))J ,

where J is the transposition functor of II. 1.5.

n .3 .5  Organization of the proof of n.3.4
The proof of n.3.4 will be accomplished in several stages, which we outline 

here. In n.3.6 we follow [P] and show that there is an epimorphism

V (Q X A W ) ® V (r,£U (a))J Ja /  Ja_ ,.

thereby reducing the problem to a dimension formula:

(a) d im S(fl.r) -  X  dim V(Q,r,X)dim V(r,Q,X).
all 'F-dominant 

weights X

By n.3.1 we may suppose that the characteristic o f k is zero. In H.3.7 we show that in 

characteristic zero the algebra S('F,'F) is semisimple, and use this fact in II.3.8 to 
establish (a) in the special case when O s r .  In n.3.9-n.3.13 we use a combinatoric 

argument to extend (a) to the general case. 13

13 In fact V(T^1X)J “  k(X) ® S(ilT), so regarding k(X) as an (S(0Jl,S(£1.0»-bimodule in 
S(£1.0)

the obvious way we have

j .  /  j.  . ■ s c a n  ® k(x> ® s (n x ).a a 1 stoi r \  sro on
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n .3 .6  Reduction to the Dimension Formula
Put S a = S(Q,D /  Ja- To prove n.3.4 we show that for each ae t, conditions 

(i').(ii) and (iii) of H.3.3 hold for the ideal Ja /  Ja_j of Sa_ j. (ii) is immediate from 

the definition of Ja. As in II.2.13 V(i2,r,X(a)) has a presentation

where the weights p(c) are ^ -dom inan t and strictly dominate X,(a).
A module VemodS(i2,H lies in mod S a_ j iff its weight spaces for the weights

X(l), X(2), —, X(a-l) are all zero. Since all the weights of the simple module
L(£2,r,p) are dominated by p , V  lies in mod Sa_ j iff its composition factors are all of

the form L(i2,r,X(b)) for b £  a. In particular V(fi,rA (a)) e  mod Sa_ j . The functor
Sa 1 ® takes any S(i2,r)-module to its largest quotient lying in mod Sa_i .

3 - 1  art r \

where e a  denotes the image of ea in Sa_ j 14.
Interchanging fJ and I \  and applying the transposition functor J gives an 

isomorphism

W e can now prove that condition (iii) of II.3.3 holds. We must show that

14 Since V(ii,r,X(a)) is indecomposable, 5a is a primitive idempotcnt and V(£i,r,X(a)) is the 
projective cover of L(fî,r,X(a)) in the category mod S„_ j.

(a) 1 1  S iQ .nW c) -» S ( Q ,r /W  -, V(0,r.X(a)) -, 0.
c

s(o.n
We have

which is zero whenever p  = X(b) with b < a ,  so applying Sa_i ® to the
S(Q ,r)

sequence (a) gives an isomorphism

(b) V (« .rA (a)) »  Sa_r ëa,

(0 V (T .iU (a))J *  ca-Sa_!.
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ea-rad Sa_i-ea = 0, or equivalently that ea-Sa_i-ea a  E n d s ^ ^ a ’S a -l)  is a semi­

simple k-algebra. This is certainly true since by II.2.11 (using the same argument 
which shows that L(G,r,X) is absolutely irreducible) it is isomorphic to k.

To complete the proof of II.3.4 we must establish O'), i.e. that the epimorphism

and (d) is an isomorphism for all ae  t iff (e) is an equality. This reduces the problem 

to proving the identity 11.3.5(a).

n.3.7 Theorem
If char(k) = 0, or char(k) > f  then SOF.'F) is a semisimple k-algebra.

Proof
The following proof is a simple adaptation o f the proof for the classical case given in 

[G3; Theorem VII]. Let E be an n-dimensional k-space with basis e j, C2> •••, en. E 

becomes a G-module in the usual way:

E®f is a homogeneous polynomial representation of G of degree f  when G acts 

'diagonally' and hence an S -  Sf -module. E® f  has a basis tej} iel(n.f)* wherc

matrix with respect to this basis has a 1 in the (i j )  position and zeroes elsewhere. If to

Let y :S  -» Endjc(E®^) be the representation afforded by the S-module E®^. It 
is shown in [Gl; (2.6c)l that \j/ is a faithful representation of S and that if

(d) s a - l  s a ® s a s a - l  *♦ s a - l * a s a - l

given by multiplication is an isomorphism. Using (b), (c) and (d) we have

(e) dim  S (Q ,0  £  X  dim V(fl,r,X>dim V(I\fi,X),
all 'P-dominant 

weights X,

a-1

ej -  ej2® ••• ® ej^, and we will denote by E y  the element of Endk(E®f) whose

is a P(f)-orbit of I(n,f) x I(n,f), put 0 ^  = X  ^ j -  
(ij)€to
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to -  ( ij)  P(f). the image of j  under \j/ is 0 ^ . The image U of S(4VF) under \jt has a 
basis consisting o f the 0 W for orbits to = (ij>P(f) with i j. Define a bilinear form 

onU by

(0,tp) = trace(0<p).

This form is non-degenerate: take a non-zero element 0 = X  “ (“ ^ to  e  u - Suppose
to

a(v) ^ 0, and let v ' be the transposed orbit to v, i.e. if v  = (ij>P(f), then v ' = (j,i)-P(0- 

Note that 0V- is an element of U.

(e,ev0 -  2  “ <“ ) Z  naceffi i EqJ.) -  X  “ (“ > Z  Si.r  Sj.q -  “ M-M. 
to (ij)eco to (ij)eco

(qj)ev' (qj)€v'

which is non-zero because Ivl is a divisor o f the order of P(f), and under the given 

hypotheses this is non-zero in k.
Suppose that 0eradU. Then for all <peU 0<p is nilpotent, so (0,<p)=trace(0q>)=O. 

Hence by non-degeneracy 0=0 and so U, and therefore SOF.'P), is semisimple.15 □

D.3.8 Proposition
If Q c r  or r s Q  we have

(a) dim S (Q ,r) = £  dim V(Q,r,A)dim V(r,Q,X).
all 4*-dominant 

weights \

Proof
Since dim S (Q ,r)  = dim S(r,Q) it suffices to treat the case iJ cr . By n.3.1 we may 
assume that char(k)=0. Let A. be a vF-dominant weight. Then is an
indecomposable S(i2,0)-module by H.2.11, and hence an indecomposable S('P,4/)- 

module (D c T  implies S(n ,0)cS(vF,vP)). Thus V(Q,I\A.) is simple as an SOP,4 0 -  
module by II.3.7, and therefore certainly simple as an S(Q,D-module. Let P(A) be

15 Another possible approach to this theorem is to use {Sa; (8.13)1 which expresses S('F.'F) as a 
direct sum of tensor products of classical Schur algebras for smaller n and f.
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the S(r,Q)-projective cover of the simple module L(r,i2,X) = V(i3,r,A.)°. The 

multiplicity of P(X) as a summand of S(r,i2) is equal to the dimension o f L(T,Cl,X) as 
a module for its endomorphism algebra, i.e. to dim ^ V(ii,r,X). The module V(T,Q,X) 

has head L(r,Q,X), hence is a quotient of P(X). Thus we have:

dim S (ii ,r )  = X  dim V(ii,r,X.)dim P(X)
all ^-dom inant 

weights X

S dim V(Q,r,X) dim V(T,i2,X)
X

Combining this with the inequality 11.3.6(e) gives (a). □

Remark
Suppose char(k) -  0  or char(k) > f, and let X be -dominant. The proof above 

shows that if i 2 s r  then V(Q,I\X) is simple, whilst if  Q s r  it is projective.

So far we have used the characteristic independence of the dimensions of 
S(Q ,r) and V(i2,r\X) and the semisimplicity o f S('F,'F) in characteristic zero. To 
extend the proof of the dimension formula to general ii.T  we use some combinatorial 

properties of the basis given in 13.3.1. Put

j ( a , b ) - I I ( a , b ) /P ( b ) | .  (a+^ ‘ ) aeN,beN0.

n.3.9 Lemma
If a=aj+a2+ ••• +a,. with each apGlKI then

j(a,b) ■ Z  F I  jCap.bp),
0>t.b2.-.br) per

where the summation is over all vectors (bj, b 2,.... br)e(No)r with bj+ ••• +br -  b.
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Proof
Both sides are equal to the number of monomials of total degree b in commuting 

indeterminates X j, X 2. •••, X a. □

If E={a, a+1, ••• ,p} is a 'F-block, put

a (f l3) = #( yeW f l a / 7^ a } ,  
a (r \S )  -  #{Y€W r a / Y ^ a } ,  
a(E) = max{ a(Q,E), a(T,E) >.

Notice that a(ft,E), a (T E ) £  El, and that at most one of these inequalities is strict 

since otherwise P+1 e  W q -oc n  W p-a = E.

II.3.10 Lemma X  a(S)-EI “  I [iilH I
all ^-b locks E

Proof
For each Ÿ-block E={a, a+ 1 , ••• ,P> define a subset o f  [QID by

(a) A(E) -  (ycWn  a  /  y ^  a} x t y e  Wr a  /  i  Z a}.

A(S) lies in [QID since at least one of the sets appearing in the right hand side of (a) is 
equal to E. |A(E)I -  a(E,i2)-a(E,r) -  a(E)-EI, so it is enough to show that [iilD is the 

disjoint union of the sets A(E). For example, if SI and T are as in the diagram of II. 1.2 
then the sets A(E) are the unshaded rectangles in the following picture:
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Suppose £ , S 'a re  distinct 4 ' -blocks with (yY ) e  A(£)nA(S'). If a (I\£ ) -  I£I, 
a ( r fS*) -  1E1 then Y  e  £ n £ ',  a  contradiction. If a(TS )  -  !£!. a(Il-ô') « l£'l then 

(y.Y) 6 [ i im  rb f f l n  -  IW 1 , and therefore (y,y> s  (S  x  E) n  ( £ 'x  £■). which is 

again a  contradiction. The other two cases are analogous.
Now suppose ( Y .n e l i i in  If T a li ' let £  -  t a . 0 + 1 .- .  P) he the «P-block 

containing Y- Then ye  WQ ct. y  a  a .  so (YY)« A(E). The case Y S Y  is similar. □

If £ - { a .  a+1, •••, p) is a  T -b lo ck . and keA(n.f) put

WS) -  <*c,A0+l. ".*&>« A(I5I)-

We will refer to the WS) as the -components of k.

For aeN . beN0 be"0“  by A+<a ,b) the set of dominant weights in A(a.b). For 

ke A+ (a.b), ce N. put

.  I the number o f k-tableaux with entries in ç which are row
v(c^) semi-standard and column standard.
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II.3.11 Lemma
Suppose X is 'F-dominant, then

dim V (Q ,I\X ) -  F I v ( a ( n = U ( 2 ) ) .  
aU 'F-blocks 2

Proof
dim V(i2,r,X) is (by II.3.1) the number of indices iel(n ,f) which are row semi- 
standard, 'F-column standard, and such that the entries in the rows corresponding to 

each 'F-block 2  come from 2  or from later 'F-blocks lying in the same Q-block. 

The set o f such indices is in one to one correspondence with the set of vectors

, ( i(- )  ) /  for cach 'P "1»1« *  z - ‘(S) e I(a(Q 2), IX(Z)I) is }
11H—; ) f  X(2)-row semi-standard, and X(2)-column standard

For each 2 = (a , a+1,— ,p} , i(E) is obtained by restricting i to the rows corresponding 

to the block 2 , shifting the domain to r , where r«IX(E)l, and subtracting a -1  from 

each of the entries. Counting the elements in the above set gives the required 

formula. □

II.3.12 Lemma
If a,ce IN, be Nq with a £  c then

(a) j(ac,b) = X  v(c,X)v(a,X).
Xe A+(a,b)

Proof
If a=c this follows from II.3.8 and n .3.1 by taking n=a=c, f=b, il= r= A . If b=0 both 

sides are 1. Now suppose a  < c, b > 0  and argue by induction on b. By n.3.9

(b) j(ac+(c-a)2,b ) -  E  j(ac,bi)j((c- a)2,b2>.
bi+D2*b
bi,b2^0

Take n=c, f -b , Q=A, r -A \{ a a}, as in the diagram:
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l l
\

1 a a+1 c

Using n.3.11 to expand equation 11.3.8(a), we have 

j(ac+(c-a)2,b) -  £  v(a.X(l))-v(cA(l))-v(c-aA(2))2
bi+b2=b X(l)eA+(a,bi) 
bl.b220 X(2)e A*(c-a,b2>

(«) -  Z  i  Z  v(a,A(l))-v(c.X(l)) ]( X  v(c-a,A(2))2V
bi,b2 \  A(l) l [ W )  I

Comparing the corresponding terms in (b) and (c) for a  pair ( b j ^ ) , we see by using 

the case a=c and induction on b that these terms are equal, except possibly for the 

case (b,0). Since (b) and (c) are equal the latter case gives (a). □

Remark
This result is well-known to  invariant theorists: Let kfX a>y /  a e a , yec ] be a 

polynomial ring in ac indeterminates. Then each side of (a) is equal to the dimension 

of the subspace of polynomials which are homogeneous o f degree b. The left hand 
side is obtained by counting the basis of monomials, the right hand side by counting 
the basis of standard bideterminants given by the Straightening Formula. See [DKR] 

for example.
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We can now complete the proof of II.3.4: 

n .3 .13 Proof of the Dimension Formula

The dimension of S (ii,r ) is j(#[Qlr], f),which by n.3.9 and II.3.10 is equal to

X n j(a(H)El.f(E)).
(f(H)) E

the summation being over all vectors (f(E)) of non-negative integers f(E) with 
^  f(E) -  f , where E  ranges over all 'F-blocks. By II.3.12 this is equal to

£  n  X  v ( a ( = U ( E ) ) - . ( E U a
f(E) S  X(E)€ A+dEI,f(S))

Noting that {a(E), IE|} = (a(£2,E), a(T3 »  and assembling the component weights 

X(E) into 'F-dominant weights, we see that this is equal to

£  I I  v<a(aS)A (E)).v(a(rE)A (E))
all'F -dom inant E 

weights X

-  X  dim V (Q ,r^.) d im V (r ,n ^ .) ,
X

by n.3.11, as required. □

n.3.14 mod S(Q,T) as a Highest W eight Category 

By H.3.4 S (D ,0  has a bimodule filtration

(a) 0 -  J0  c  Jt  C J2 c  -  C J t -  S(£2,r).

where for each a e t  J a /  Ja_ j  *  V(ii,I\X(a)) ® V(r,Q,X(a))J. Fix a ^-dom inant 
weight X, let e be a primitive idempotent in S ( i2 ,0  corresponding to the simple 
module L(Q,r,X), and consider the exact functor F: m od 'S (Q ,0  -» mod k, V »-* Ve 

(V e  mod'S(D,r) ). Applying F  to (a) gives a filtration

45



II: W eyl Modules. 53: S (£ l,r) a s a  Quasi-Hereditary Algebra.

(b) 0 - P 0 c P 1 c P 2 c - c P u - w *

of the projective cover P(X) = S(fLOe o f  L(Q,r,X), whose sections are Weyl 

modules. Since L(n,r,X) appears in the head of S (i2 ,r)^  we may assume that 
^  = e+e' for some idempotent e', so that for each V e mod'S(Q,r) Ve is a subspace 

of v \  Thus by II.2.11 F(V(T,fl,p)J ) = 0  unless X ^ r  p , so the only Weyl modules 

appearing as sections of (b) are those associated with weights p  with X p. 
Consideration of heads shows that the top section Pu /  Pu_ j is V(Q,r,X); moreover, 

V (Q X ^) appears with multiplicity one as a section of (b) since the X-weight space of 

V(T\Q,X)J has dimension one. Exchanging the roles of Q and T and applying 

contravariant duality we deduce using n.2.12 the following

Theorem
The injective envelope I(X) of L(Q,r,X) has a filtration

0 = Iq £  I I  S  I2 C ••• £  Iv -  I(X),

where I j a  D(£2,r\X), and for v 2  i > 1 Ij /  Ij_ j a  D (ft,r,p ) for some weight p  with 

X < q  p. The socle o f D (ilX X )  is L(£2XJX), and if L (i2 ,rji)  occurs as a composition 
factor of D(Q,r\X) /  L(Q,r\X) then p  <r  X. Thus mod S(Q ,H  is a highest weight 
category in the sense o f [CPS2], where the ordering on the simples is that given by the 

dominance order on their highest weights. □

Remark
In general this is not the only way to make modS(Q.r) into a highest weight 

category. Let w be the longest element of W. There is a k-algebra isomorphism:

v : S (ii.r) w S (Q ,n » J -  S (f.O )
£ H* W^W'1,

where f  -  - w r  and -  -wfl. ( f l f t l  is obtained from [iilD by a 180° rotation.) Let 

F: m odS(f,Q)-* m o d S (ii,0  be the category isomorphism induced by y . We get
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another highest weight category structure on modS(Q.r) by applying F to the one 

exhibited in the above theorem for m odS(r,Q). One checks, using remark (iii) 

following II.2.11 and the fact that the weights of F(L(r,i2,X)) are obtained by 

applying w to those o f L(I\ii,X), that

F(L(f ,i2,X)) *  LiO.r.ww'X),

where w' is the longest element of Wvp. The partial order on the 'F-dominant weights 
which defines this new highest weight category structure on m odS(ii.O  is thus

X £  iff w'wX ^  w'wp.

For example, if  f i  = T = A we get the usual dominance order; if SI = A, T = 0  we get 

the reverse of the dominance order. In general the set of modules (F(V(T,Q,X))} is 

different from the set (V(ii,r,X)}. For example if and char(k) = 0 the former are 
simple, the latter projective. (See the rem ark following H.3.8.)

It is evident from the filtration (b) above that V(Q,r,X) can be characterized as 

the largest quotient module of the projective cover P(X) o f L(Q,r,X) all of whose 
composition factors L(ÎÎ,r,p ) satisfy p. ^  X. (This also follows from n.2.13.) Thus 
D(i2,r,X) and V(fî,r,X) are the modules denoted A(X) and V(X) in [CPS2], when 

modS(i2,r) is considered as a highest weight category as in the above theorem. By 
the remark at the start o f the proof o f  [CPS2; (3.11)) we have:

n.3.15 Theorem
If X and ^  are 'P-dominant weights then

ExtIS(Q,r)(v (fi.r ,X), D (ii.r ,p )  ) -  o v  i > o. □
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y
If U £  V are k-algebras we will write In d y  for the left exact induction functor 

Homy(V, ): mod U -» mod V. Note that Indy  takes injective U-modules to injective 

V-modules. We are interested in the right Ind5 -acyclicity or otherwise of the 

simple S(£2,0)-modules k(p), for 'F-dominant weights p  .We record the following 

observation:

n.3.16 Proposition

Let p  be a 'P-dominant weight. Then k(p) e  modS(Q,0) is right In d g ^ ’j^-acyclic 

iff

ExtlS (n ,0 ) (V (a r^ X  k(p>) = 0  V i >  O, V »P-dominant weights X.

Proof

RiIndS(Q 0)(k(P)) -  Ex4(iJ,0)(S(Q ,r), k (p))f so 'i f  follows from the filtration in 

D.3.4 and the cohomology long exact sequence. Now suppose k(p) is I n d ^ Q ^ -  

acyclic, and take an injective resolution k(p) -» I in mod S(C1,0).

Ex',S (ft.ii)(V(Q’r *X)- k0*» *  H ‘< HomS (n (z0(V(Q.r.X). D ),

and by the adjointness of restriction and induction this is isomorphic to

H*( H o m j(Q j'j(V (Q ,r^), H o m § ^ (0^(S(Q,D. D) )•

Acyclicity implies that Horn5 ^ ,0)(S(£2,r), I)) is an injective resolution of 

D (i2,r,p) in mod SCiJ.O. so this is isomorphic to

Ex4(o,r><v <n -r >->- D(Q.r,n»

which is zero if i >  0 , by II.3.15. Q
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Motivated by II.3.16 we now begin an analysis of V(Q,r\X) as an S(D,0)- 

module, and specifically as a quotient of S (Q ,0)^. In §1 we prove a technical result 

on the product 5 i j ‘£j,l o f two basis elements o f the Schur algebra, when j  has a 
certain restricted form. In §2 we define submodules Ma  of S (ii,0 )^  which will 

feature in the description o f the kernel of the projection map h: S(Q,0)^ -* V(Q,r,X), 
and use the results of §1 to construct a basis of M a . In §3 we show by dimension 

comparison that ker h is the sum of the Ma  for a e 'P ,  and hence complete the proof 
of H.3.1. We deduce some further consequences for V(Q,r,X), in particular we prove 

a vanishing result which can be interpreted as a special case of (A'). In §4 we give an 

explicit S(£2,0)-projective resolution of S(£2,0)^ /  Ma  , which we use to prove (C) 

for a restricted set of weights, and (AO and (B') when I*?! £  1.
In fact we will work in greater generality than we have indicated here, 

considering V(ii,r,X) as a quotient not just of S (ii ,0 )^  but also of S (D ,r')^  for 

subsets P e r .

§1 Multiplication of Basis Elements 

ni.1.1 Definition
The following notation and definitions will be in force throughout §1. Take 

i,le I(n,f) and suppose that for each ae n we have a partition o f Ra0):

Ra(l)« X a O Y a.

Put Xn+j = Yq = 0 . Suppose that Z is a fixed subset o f n+1 with IZ1 £  n and 
Z  2  { a e  n+1 /  Xau  Ya_ j  jfe 0  }, and that we have an injection i: Z-» n. Define 

jel(n .f) by

j 9 -i(a ) i f 9  6 Xj U Y j . j .
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Example
Take 1 is as in the example of 1.1.5. Then if Z -  n. and t  is the identity map, Tj might 

look like

1 1 1 1 |2 2 1
2 2 3 3 1 ,3 3 3 314 14 4 1

n i.1 .2  Lemma
Suppose that

(a) V a t n  <peXa, tp'e Ya ♦  i<p *  i<p*.

Then the coefficient of Çy in the expansion of the product j  ^j.l «  1- 

Proof
By the multiplication formula o f 1.2 the coefficient in question is the number of 

s£l(n,f) satisfying

(b) (iJ) — (i.s) and (j4 )~ (s ,l).

This number is certainly 2  1 (take s -  j). Suppose there is some s t  j satisfying (b). 
Then sejP j n jP 1. Choose Jt 6 Pj with s -  jit. Choose a €  n minimal with s<p + j<p for 

some tpeRa(l); then since s e  jPj we can find <p e Ya with s<p -  i(a).

We claim that

3 r  £  1 such that 7tr(p e X a .

This will lead to the required contradiction, for Jt e  P j implies that i<p = i ^ ,  which 

is impossible by (a), since 9  e Ya and 7tr<p e  Xa.
Proof of the claim: We have j n<p -  -  t(a), so tup € Xa u  Ya_! by definition
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of j. If 7t<p e  Xa we can take r  -  1. Otherwise choose r £  2 such that 

jtr_1<peYa_ i  and Jtrq > iY a_ j.

Then

J^tp = s7ir-1<p = j  7tr—1 tp =

by minimality of a, since 7tr"^«p e  Ra_j(l). Hence

nr< p e ( X a u Y a. 1) \ Y a_1 -  X a.

as required. □

m .1.3 Lemma 
Suppose that

(a) V a i n  ï e X , , ï ' s ï s . i  ♦  i , , S y ,

resp.
(b) V a e n  tpe X a ,<p'e Y a. j  +  i<p*i«p'.

If J appears with non-zero coefficient in the expansion o f the product Çjj-Çjj then

$ i \ l - $ i , l  or *'<1* <rcsP- i' >1i >-

Proof
We prove this in the case where (a) holds, the other case being analogous. Suppose 
that |  * j appears with non-zero coefficient. Then we may assume that i'eiPj. 
Fora e  n. let <x(a). cx(a,X), a(a,Y) (resp. fta), fta,X), (J(a,Y)) be the weights of 

i ( resp. i ' ) restricted to the subsets Ra0). Xa, Ya. Then V a e n

1a(a) -  a(a,X ) + a(a,Y)

P(a) ■  P(a,X) +  P(a,Y)

a(a,X) + a (a - l.Y )  -  P(a.X) +  (J(a-l.Y)
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Choose aen minimal with a(a) t  p(a). The minimality of a, together with (c) implies 

that a < n and a(a,X) = P(a,X), so it suffices to show

(d) a(a,Y )< lex p(a,Y).

Choose 7tePj with i' = in. Then n maps the subset Ya o  X a+1 into itself, and we 

have disjoint unions:

Ya - ( Y a n n Y a ) 0 ( Y a \ n Y a ),

* Y a -  ( Y a n  n Y a ) O  ( n Y a n  X a + 1 ).

If <pe nYa n X a+1, and tp 'e  Ya \ n Y a then i ^ ^ i ^ '  by (a), so since lYa \  nYal = 

lnYa n  Xa+jl, we have

" t<‘ ^ .N n Y ,’ S ‘«  WI°  l* Y ,r> X i + 1 )'

Therefore

a(a,Y) = wt(i ly^) ^jcx wt(i ^ y ^ )  -  wt(i' fy^) = P(a,Y). 

We cannot have equality here by choice o f  a, so (d) holds as required. □

§2 The Module Ma>r

Fix a weight XeA(n,f). We do not for the moment assume any dominance 

condition on X. Let 1 be the canonical index o f weight X, and use the notation of 1.1.5 

for this choice o f X.

m .2.1 Definitions
Fix a simple root a = a bei2. For t e  {0, 1, •••, Xb> let l(a,t) be the index
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obtained by replacing the t rightmost b's in the bth row of 1 by b + l's , so that its 

associated tableau looks like

M(a,t)-

The weight of l(a,t) is X-ta. Define q e  IN by

q -  m a x a b, Xb+it-X-b+l -  j b ()b+1
ifX b ^ b + 1
otherwise

Take an integer r  e {1, •••, Xb-q}. We define the module Mq  ,. = (Q,T,X) to be

the S(i2,D-submodule o f S(Q ,D ^ generated by the elements 5l(a,t),l for 
t e  {q+r, q+r+1, •••, Xb}. These elements lie in S(£2,D because ae£2. It is easy to see 

that ^i(a,t),l spans ^ _taS (D ,0 )\ If Xb < q+r put M a>r = 0. Our main interest is in 
the module Mq  = Ma (i2,I\X) = Ma  j .  We introduce the Ma  r  because they will 

appear later in the construction of a projective resolution of S (Q ,r)^  /  M «, and it is 

convenient to treat all these modules together in a uniform manner.
We will say that a basis element is ( a ,r )-faulted if there exists cen such

that

(a) #{<peRb(l) /  i<p *  c} + »{«pcRb+jO) /  iq> £ c} 2  r+max(Xb, X ^ } .

If Xb < q+r, no j is (a,r)-faulted. If is (a,r)-faulted it is also ( 0 ,0 -faulted for 
any r' with l S r ' ^ r . W e  can describe the notion o f  (aj)-faultedness in another way 

as a generalization of the property of being {a}-non-standard:

m .2 .2  Lemma
(i) Suppose Xb £ Xjj+i, and take i to be row semi-standard. Then £ ¡ j is (a,r)-

53



Ill: Resolutions. §2: The Module M (a . r

faulted iff 3 d with 1 £  d £  Xb+j-r+1 suc^ l*,at ^iO>»d) ̂  Tj(b+l,d+r-l).
(ii) Suppose Xb £  X ^ ,  and take i to be reverse row semi-standard. Then is 

(a,r)-faulted iff 3 d with r  ^  d  £ Xb such that TTj(b,d) ^  T¡(b+l,d-r+l).

If r= l we conclude (using 1.1.6) that j is (a.l)-fau lted  i ff  it is (a)-non-standard. 

Proof
We will prove (i), the proof o f (ii) being analogous. If 111.2.1(a) holds, choose d 
minimal with T ¿(b.d) 2  c. Then d+r-1 S Xb+i  and T ¡(b,d) £  c £  T j(b+ l,d+ r-l), for 

otherwise

» { (p eR b O i/i^^ cJ  + ffitpeR b+jO J/ijp^c} £  (Xb-d+ l)+ (d+ r-2 )< Xb+r,

by row standardness of i. (See the diagram below.)

◄  X b -  d+1  ►

b < c i c
b+1 Sc 1 >c 1

d-1

Conversely if T j(b,d) £ Ti(b+ l,d+ r-l) we get 111.2.1(a) by putting c=T¿(b.d). □

We will show in in.2.8 that the dimension of Ma>r is equal to the number of 

(a j)-fau lted  basis elements e  S(QX)V For the moment we prove that it is at 
least this number by using the results of §1 to construct a suitable collection of 

linearly independent elements in M a r .

III.2.3 Construction of a Basis for Ma>r
Suppose that i e S (Q ,0 ^  is (a,r)-faulted, and choose c satisfying 111.2.1(a). 

We will find an index j with Hjj e  Ma>r, £ j j  € S (Q ,n  and

(a) ^ i j ‘̂ j.1 “  ^i.l + a linear combination of terms j with i' <j i .
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The collection of all these elements 5 i j -5j,l. one for each (a^)-faulted 
^  i e  S(Q,D*’, will tum out to be a basis of Ma  r (see III.2.5 and III.2.8). We split 
the construction into two cases according to whether b < c or b £  c.

Case I: b < c
Define for each aen a partition Ra(l)=XauY a, as follows:

We claim that Yn=0. If not, then Yb, Y —, Yn ^  0. Let y a  = m inii^ /  cpeYa} 

for a= b ,- , n. Then c £ yb < y^+j  < — < y n ^ n , so b ^ c ,  a contradiction. As in 

m .l .l .w e p u t Yo= 0  and define an index j by

In the notation of III. 1.1, Z=n and i:Z-> n is the identity map. By construction the 
hypotheses HI. 1.2(a) and 111.1.3(a) hold so we have (a) above. Notice that by choice 

o f c we have

We now show that j  and ijj j  both lie in S(i2,I~)- Take ae  n, <pe Ra(l). We must 
show that (i^pj^p). (j9 .l<p) e  (iliri. given that fl9 Jf ) e  [OID. If <P e  Xa then -  1 .̂ so 

this is certainly the case. Otherwise <p e  Ya with a £  b, and

Xa -  Ra(l), Ya -  0

X5 -  {<Pe Rb0) /  i9  < c). Yb- R b(l) \  Xb

if a < b; 
if a = b.

For a > b, define Xa and Y a inductively by

j<p-a if  9  6 Xau Y a_t .

(b) #Rb+l,b<iJ>+ “ Rb+l,b+l(lJ ) 2  r +  m axixb’ x b+l>-

i ^ y j a c + a - b i a + l  -  j<p > a -  1̂ ,.

giving the required result.
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Case II: b
Define for each aen a partition R a(l)=XaÛYa by

Xa -  0 . Ya -  Ra(l) if  a  >  b+1;

Xb+1 -  !<p€Rb+10) /  i<p S C). Yb+1-Rb+lO) N x b+l if  a -  b+1-

For a < b, define Xa and Ya inductively by

Ya .{<peRa( l ) / i 9 a i,p ' V » ' s X a t l l ,  Xa-R a( ! ) \Y a .

X , . 0 . for if  notX j, X2. - , X b+i   ̂0 . Lei xa « maxli^ / <peXa} for a - 1. - ,  b+1. 

Then 1 S  x j < X2 < ••• < xjj+i £  c, so c > b, a contradiction. We put X n+ i  =0 and 

define an index j by

]<p-a if tp e  Yau X a+1.

In the noution o f ni.1.1, Z -{ 2 ,3. •••. n+1) and t:Z -s n is given by subtracting 1. 
Again the hypotheses 111.1.2(a) and 111.1.3(a) hold giving (a) above, and

(c) «Rb,bGJ> *  ” Rb.b+l()J)*  r + maxRb' Xbvl>.

To show that and he in S (ftT), take aen , <peRa(l). I f  <P e  Ya then 

itp * V  Otherwise tpe Xa with a £  b+1. and

i9  S xa S c-b+ a-1  S a -1  -  j 9  < a  -  I,,,.

In either case (jtpJtp) « W in , as requited.

To complete the construction we must prove the following:

III.2.4 Lemma
The element defined above lies in Ma>r .
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Proof
Case I: b < c
Rows b and b+1 of the index j  can be rearranged to take the form

b b b+l l b+2 1
b+1 b+1 I b+2

u.

where, by 111.2.3(b)

t-u £ max{Xt,, A-b+iJ -  ^b+1 + r ■  *l+r-

(In fact there are no b+2's in the b *  row of j, but we need this more general format in 

the proof.) We will show that if i « I(n,f) is such that « S(QX). and rows b and 
b+1 have the form (a) above (up to rearrangement), with t -u  2 q + r , then 

e  Ma j  . (Caution: the i and j appearing in this proof from here onwards are not 

the same as those in III.2.3. We are over-using these symbols to maintain notational 

compatibility with §1.)
For each ae n define a partition o f Ra(l) by

j  Rafl) i f » * b

X* "  \RbO) \  Rb+l.b(U) if a -  b

0  i f a *  b

R b + lfb(>J) i f a - b .

The index j€l(n.f) defined by J9 - a  if  9  6 XMv Y M_t  can be obtained from  l(o,t) by 
reordering the b1*1 row, and 12: q+r by assumption, so j  e  Ma  r . For any <pef, j9  is 

either i^ o r  19 . so ^ j  € S(Q.H. Hypotheses 111.1.2(a) and 111.1.3(b) hold, giving

j -  + a linear combination of terms £ j 'j  with i' >j i •
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If j appears with non-zero coefficient on the right then i' can be assumed to be 

obtained from i by permuting the entries of i within the sets Ra(j). Rows b and b+1 o f  
i' can thus be rearranged into the form (a) with t, u replaced by t-v , u-v for som e 

v 6 {0}u u. By induction on the order >j we may thus assume that all such Çj'j lie 

in , so Ç jj € Ma>r .

C a se » : b 2 c
The assumption that is (a j)-fau lted  implies in particular that there is som e 
(peRb+iO) with iq, <. c £  b < b+1 -  lq>, so iq> ~ r  lq, and cxeT. Thus sa  6 S ( i) ,0 ,  and 

it is enough to show that sa  i = £Saj,l lies >n Ma ,r  • Rows b 311(111+1 of the index 

sa -j can be reordered to take the form

b b-1 1
b+1 b+1 i “

u.

where by m.2.3(c)t t-u  £ q+r. As in case I, any basis element j which has this 
form lies in Ma  r , the proof being similar to case I, except that condition 111.1.3(a) 

holds instead of 111.1.3(b) and so we use induction on the order instead o f the  

order >j. □

We can now prove: 
m.2.5 Proposition
With notation and assumptions as above, Ma j  has dimension at least the number o f  

(a,r)-faulted basis elements £ j j  in S(£2,r)^- 

Proof
For each such basis elements ^  we have constructed an element 5 i j -5j,i o f  
Ma>r 16, which has \ as its leading term when the standard basis elements in

1® This element is not uniquely determined since it depends upon the choice of c in the construction. 
For each basis element ̂ ¡j we fix some particular c.
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S ( a n X are totally ordered by the relation < j . These elements of Ma  r  are thus 

linearly independent. □

Remarks

(i) Take a subset 0 c i l .  If X is ©-dominant and j is ©-non-standard then it is
(a,l)-fau lted  for some a e ©  by 1.1.6 and III.2.2. Fix some such choice of a  and 

apply the above construction to produce an element Then the set of all

such £ j :•£; i is linearly independent in Ma . It can in fact be shown that this set
0 ae©

is a basis for Ma , but we will not pursue this here, 
a e ©

(ii) We can regard the construction as a 'straightening' process: it defines an 
algorithm which, given a 0-non-standard basis element ^ ¡ j ,  expresses it modulo the 

submodule £  Ma  as a  linear combination o f ©-standard basis elements.
a e ©

The following result follows readily from the multiplication formula in 1.2:

UI.2.6 Lemma

If Xj, £ u £ v £ w £ 0  then

*»l(a,u),l(a,v)‘£l(a,v),l(a,w) “ (v -w ) £l(a,u),l(a,w )-D

The proof of the following lemma is an easy exercise. 

m .2.7 Lemma

(i) If b £  b' and b ~ n  b' then (a,b) e  [QlTl implies (a,b') e [QID.
(ii) If a £  a' £  a" and b £  b' £  b" then (a,b), (a",b") e  [i2|T] implies (a',b') e  [QlT]. □

III.2.8 Theorem (Basis of M0>r)

With notation and assumptions as above,

dim Ma>r -  d im S (i2 ,r)X-(‘l+r)<x 17
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= the number of (a,r)-faulted basis elements in S(Q,D^.

Thus the elements j - ^ j j  of 10.2.3(a) form a basis of Ma  r .

In characteristic zero Ma>r is generated by 5l(a,q+r),l*and

Maj * s(anx' (q+r)a-

Notice that if X. is {a}-dominant X -(q+ l)a  = sa <>X. (This observation will be 

important in the next chapter.)

Proof
Let X be the integer matrix whose rows give the coefficients of the various products 

S ij‘$l«x,t),l (£ ij€ S(QX), te{q+r, q + r + 1 , X b } )  when expressed as linear 
combinations of the basis of S(i2,r)- Since dim Ma>r is the rank of X (when the
entries of X are regarded as elements of k), the dimension of Ma  r  in positive 
characteristic is no greater than its dimension in characteristic zero. By m .2.6 M a r  is 

generated in characteristic zero by £i(<x,q+r),l so t^m ^ a , r  ^  d“T1 S(£2,r)^"(q+r)a . In 
view of m.2.5 the theorem will follow once we establish that

dimS(Q,0^-“ (q+r)a  = the number of (a,r)-faulted basis elements in S(i2,r)^-

If Xb < q+r, both of the numbers in question are zero, so suppose Xb £ q+r. Put 
(X = X-(q+r)a and let m be the canonical index of weight p. We will define a bijection

V: { Si meS(Q.r)H } { $ j , e S ( a r ) X /  E.j.1 is (ot,r)-faulted }.

We do this in two cases depending upon the sign of Xb -  X.b+j.

C ase  I: Xb ^  Xb+ i
Take m with i p -row  semi-standard. Write the b and b+1 p-rows of i as 17

17 if V is an S(0,0)-module, and |i a non-polynomial weight we interpret the weight space P V as 
being zero. This is consistent with the algebraic group definition of weight space.
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b x i x 2 •• x t 1
b+1 y 1 y 2 y u

where t = H5 = A-b+j-r and u = Hb+l ”  ^b+r- Put

d = max{ ce {r+1, r+2, r+t+1} /  if c >  r+1 then yc £  xc_r_ j  },

and let y(5 j m) = j, where j  is the index whose a *  A.-row is the a *  ^i-row o f i if 

a£ {b, b+1} and whose b and b+1 A.-rows are

b X1 ... x d_r_ i | y d -  y u
b+1 y 1 •• y d - l  | x d -r  •• 111 1

Notice that j  is A,-row semi-standard, j is (a,r)-faulted by in.2.2 since 

( 0  T ^ b .d -r) - y d 2 y d- l -  T j'(b + l,d -l),

and d -r  is the rightmost column with this property, for

(d) T (̂b.c-r) .  yc < x,,.,.! -  T^b+l.c-l) Vc with A-b+i+1 ^ c > d,

by maximality of d. We can therefore recover d and hence i from Ijj j ,  so the map is 

injective. If j is X-row semi-standard and is (a,r)-faulted, we can write its b and

b+1 rows as in (b) so that (c) and (d) hold, so j  e  im\j/.
It remains to show that { m c SCOX) iff 4i,m«S (Q J'). i is obtained from j ,  and 

vice-versa, by exchanging a block of entries at the end o f row b with a block of 

entries at the end of row b+1. This is done in such a way that row semi-standardness 
is preserved and some non-empty part of row b+1 remains unaltered. By m .2.7(i), 

(y ,b+ l)e[fiin  and cxeQ implies that (y,b)e[Qin. On the other hand, if (x ,b )e[fiin  

and x £  y for some y with (y,b+l)e[QlD, then (x,b+l)e[ftlr) by III.2.7(ii).
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Examples 

Taker -  1.

3 4 5 I 
2 2 3 3 4 4

3 3 3 4 4 I 
2 2 4 S I

<d-3);

2 3 3 4 4  I 
2 4 4 5 I

(d -2).

Case I I :  X b < X b+j
Take m with i reverse p-row  semi-standard, and write the b and b+1 p -ro w s of i 

as in (a), but where now x j  £  X2 ^  ••• 2t xt, y \  £  y  2 ^  ••• ^  yu. t ■ Hb = ^b  “ r  and 

“ "  Hb+1 "  *b+l+r- Put

d » mini ce  (r, r+1, —, r+t} /  if c < r+t then yc £  xc_r+  j  },

and let v(5i,m) = £ j j ,  where j  is the index whose ath X-row is the a th p -ro w  o f i if 
a£ (b, b+1} and whose b and b+1 A.-rows are

b y i ... y d 1 x d-r+1 • * t 1
b+1 M •• x d -r  1 y d + i yu

j  is reverse X-row semi-standard, and (a.r)-faulted since

TjXM ) -  yd  a  yd+] -  lj-(b + l,d -r+ l) . 

d  is the leftmost column with this property, for if  r  £  c < d

T^(b,c) -  yc < s c_r+l  -  T ^ ib+ l.c-r+ l).

We conclude as before that y  is an injection whose image consists o f all (a,r)-faulted
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j. That jeS (i2 ,r) iff meS (i2 ,r) follows much as in case I. □

Example
Taker-2

cm
| 4 4 34 4 3 3 2 2 1

4 4 3 3 |
5 3 2 2 1 |

(d-3).

§3 The Kernel of the Map S(ß,£f)^ -» V(fl,r,A.)

m.3.1 Theorem
Suppose X is a 4/-dominant weight, and r 's 'F .  Then the kernel of the epimorphism 

h: S (Q ,n* '-*V (Q ,r\X )

is the sum over all a e 'F  of the submodules Ma  = Ma (Q,r',X). The images o f the 
^-standard \ under this map form a basis of V(i2,r,X). Taking P = 0  gives n.3.1. 

Proof
Take a = a be ‘P. Then M a  is generated by weight vectors for weights of the form 

X -ta . where t S ^ -X b + j+ l  (see in.2.1). Put p  -  sa (X-ta). Then

P l + -  + p b - x 1 + ~ + x 5_1 + x b+ 1+ t

^  Xj +  ••• + Xb + 1,

so sa (X-ta) A  X. Since the weights of V(Q,r,X) are permuted by W 4/ and every 
weight of V (fltr,X) is dominated by X, X -ta  is not a  weight of V(Q,r,X). Hence Ma  

lies in ker h.
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We now show that if j e S ^ H ^  is 'F-standard then ieS (Q ,0 )^ . Suppose 

j e S(Q ,r')k  \  S(£2,0) ^  , and choose ben minimal such that there is some 
tp6R5+ i(D with y  < b+1. Then a be r c 4 »  so Xb £  Xjj+j by *V-dominance o f X, and 
y £ b 2 > i< p fo ra ll <p'eRb(l) by minimality of b. Thus is 'F-non-standard. We 

know by II.2.10 that the image of h has dimension at least the number of 'F-standard 
je S ( f t ,0 ) \  and this is the same as the number o f »F-standard £iji€ S (Q ,r ') \  The 

dimension of ker h is thus at most the number of 'F-non-standard £¡¿6 S(f2,r')^. By 
remark (i) following ni.2.5, dim £  Ma  is at least this number, so we have 

a e 'F
k erh =  ^  Ma . Furthermore, the images of the 'F-standard j e  S(i2,r') are 

a e 'F
independent by II.2.10and we have demonstrated that their number is the dimension 

of V(i2,r,X), so they form a basis. □

Remarks
(i) We could have arrived directly at the proof of n.3.1 with somewhat less work: 

we only needed to consider Ma r  (Q.T.X) for r= l,  X {a}-dominant, and T=0. The 
latter restriction obviates the need for case II of m .2.3 and M .2.4. We have not yet 

used the basis theorem III.2.8 for Ma>r
(ii) We will see in the proof of DI.3.5 that in general 2*  Ma (i2,r,X) is the

a e 'F
kernel o f the obvious epimorphism S(£2,r)^ -» S(£2,0 ® V(i2,r,X).

S(Q,0)

III.3.2 Corollary
Suppose X is 'F-dominant. Then V(Q,r,X) » V(iVF,X) as S(£2,^-m odules.

Proof
By m.3.1 V(Q,r,X) and Vifi.'F.X) are both isomorphic to the quotient of S(Q.'F)^ by

the submodule £  Ma (Q,'F,X). □ 
a e 'F
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111.3.3 Theorem
If X and p  are 'F-dominant weights then

Ext (V(£2,rA). kftl)) -  0.

Proof
By III.3.1 we have a short exact sequence o f S(£i,0)-modules:

°-»  Z  M a (Q .0A )-»S(fi,0)X-» V (a rA )-* O . 
a e ¥

For a e 'F ,  Ma  = Ma (Q,0,X) is generated by weight vectors for weights p  with 

S(xp  (as in the proof of m.3.1). No such p  is ^-dom inant, fo r  otherwise 

Sal1 <  p  ^  A,. Thus V(i2,r,A) has a two-step projective presentation of the form

JJ. s<Q.«o>1<c)-*s(n.iOx^v(Q.rA) ô.
C

where for each c the weight p(c) is not 'F-dominant. The theorem follows. □

Remark
This theorem (together with the fact that the S (£2,0)-heads o f  the Weyl 

modules are simple) implies that if  V e  modS(Q,0) has a filtration by W eyl modules, 
then dim H om s(^ 0)(V , k(p)) counts the number o f times that V (i2 ,r,p ) occurs in 
any such filtration. (It follows from n.3.15 that dim H o m g ^ j '^ V , D (i2 ,r,p )) has 

the same interpretation -  cf. [CPS2; (3.11)].)

The following corollary is a first step towards a proof of (A*):
111.3.4 Corollary

R1 Inds(Q  0)k(^) = 0 v  'F-dominant weights p.

Proof

By n.3.4 S(£2,r) has a filtration as a left S(Q,r)-module with each section 
isomorphic to some V(£2,r,X) for a 'F-dominant weight X. The corollary follows
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from the previous theorem by the cohomology long exact sequence. □

HI.3.5 Fully Faithfulness o f Restriction
It is a consequence of the fact that the quotient variety G /B~ is projective that 

the restriction functor from rational G-modules to rational B"-modules is fully 
faithful. Since mod S(G) and mod S(B- ) are full subcategories of the respective 

categories of rational modules, the restriction functor from mod S(G) to mod S(B “ ) is 
also fully faithful. We use ni.3.1 to give an 'internal' proof of this fact, which is the 

dimension zero case of (B').

Proposition
The restriction functor from mod S(Q,r) to mod S(Q,0) is fully faithful iff Q ^ r .  

Proof
The restriction functor is fully faithful iff for all V in modS(Q,r) the natural epi 
S (i2 ,n  ® V -* V is an isomorphism (see e.g. [Ml; IV (3.1)]). The natural

s ( o n
isomorphism S(Q.O ® V a  V shows that to prove fully faithfulness it is enough

s ( f t ,n
to establish that S (ft,r) ® V -» V is an isomorphism for V= S(£2,r). and hence

S(Q,0)
using H.3.4 and an easy induction, that it is an isomorphism for the Weyl modules.

As in the proof o f in.3.3, V(£2,r,X) has an S(£2,0)-projective presentation of 

the form

JJ. s t a ^ c )  scaso*- -* vcarA) < o.
C

where the weights p(c) have the form X -ta for a  e  *P and certain positive integers t , 
and the components of the left hand map are given by multiplication by the 

appropriate element £i(a ,t),l <scc DI.2.1). Applying S(fl,D  8ives 311 exact

sequence:

11 sfanne) s(n,n^ -♦ s(n,n ® v(n,r^.) -* o,
c s (a ’*)
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and hence a short exact sequence

o-. Y  M„(ii,r.X)scan*-s<!J,n ® v(Q.rA)-«o.
Ot r  a  S i f t «

If then T  = 'F so we can apply III.3.1 to deduce that V(i2,I\A.) itself has a

resolution o f just this form, so V (Q ,rX) *  S (Q ,r) ® V(£2,r,X).S(Q,0)
Now suppose and take otjj 6 T \ Q .  Put X = (0, •••, 0, f, 0, •••, 0) with the f 

occurring in position b+1. It is easy to see that Mp(£2,0,A.) = Mp(£2,I\X) = 0 for all 

Pe'P so we have isomorphisms

ViOTX) *  sen ,«*-

and
S(£2,n ® V(QXA)»S(£l.r)X.

However S(Q ,|i)x  *  S(£l.r)X since j  e  SCOT)*-\ S(i2,<i)\ where for all <pef 
= b and 1^ .  b+1. so the map S i O X ) ^ ® ^  V (Q .rA )-»V (Q ,r,W  is not an

isomorphism. 0

§4 A Projective Resolution of S(Q ,r)^ /  M(xfr

III.4.1 A Resolution
Suppose we are given the following data:
(i) N j, N2, —, Nt e  modU, for some k-algebra U and some t £  2.

(ii) For each pair (T.o) with t £  x > a  2  1 a U-map

h-r.a- Nx "* No

satisfying conditions:
(iii) I f t ^ t > o > p ^ l  then the composite ha  ,p h TO is a scalar multiple of hT p.
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(iv) If t £  a  > p £  1 then

dim £  im hX'p  = dim N 0 .
x£ a

Put Hx o  -  k  hx o  £  Hom u (Nx . Na ). If I - f i  t  > i ,_ i  > -  > ii> is a non-empty 

subset of t put

" I  -  N i, ® % H - 1  ® H4 - i V 2  ®  -  •  H'2 - 'f

This is a U-module isomorphic to N ^ . Suppose now that x £ 2 ,  and take a  with 

x £  a  £  2. Put I' = I \  {i0}. We define a U-map 9(1,1'): Nj -* Nj* as follows: i f  a  = x, 

9(1,1') is the map induced by evaluation of functions

If o  < x, 9(1,1') is the map induced by composition o f functions

^ ‘a + l ’k i  ^  Hio+l>io - l ‘

We also attach a sign s(I, I*) € {±1} to the pair (1.10. by the definition 

s(i, r ) - ( - i ) “ ( i e I / i > i °>

It can be readily seen that i fx 2 3 a n d O i ,  o 2 are distinct elements of (2 ,3 , •••, t ) ,  and 

i f l ,  -  I \ 0 O lU 2  -  I \  «02*■ r - IX flO ,' 'a 2}' O'“

a a i , i ’» a . i i ) - 9 a 2 . i w . I2)
and

s(Ilt IOsG.Ii) + «02.10*0.12) -  °-

For each pair (x.o) with t £  x > o  £  1 we now define a complex K = K(x,a):
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| | Nj if t > i i  0
IS{t, t-1 , •••, T+l, X, o}

Kj -  O 6 I
111 -  i+1

, 0 otherwise.

If i ^  1 and Nj and Nj> are components of Kj and resp. then the component of 
the boundary map 9j: Kj-» Kj_j between N j and Nj* is s(1,103(1» 10 if I 2  I'» and zero 
otherwise. It follows from the properties of s(I, I') and 9(1,10 that K is indeed a 

complex. In fact we have:

Proposition
(v) K-K(x.o) is exact except in dimension zero.

(vi) H0(K) »  Na  /  £

Proof
Statement (vi) about Hq is clear. For (v) we argue by induction on t-T. If t = x, K 

reduces to

By (iv) the middle map is a monomorphism, giving (v).
Now suppose that t > x. Observe that K(x,o) is the mapping cone18 of the map 

h:K (x+l,x)® H Xt0-»K(x+l,a) of complexes, where hj is (-1)1+1 times the 

appropriate component of the boundary 9j+ j  o f K(x,o):

18 Explicitly, if h: X -♦ Y is a map of complexes, the mapping cone of h is the complex whose i**1 
component is Yj 11 Xj_ j , and whose i ̂  differential is the map

(y*x)* (djy + (-l)'-hi-l*.dj-jx) xeXi.j.yeYp
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- +  11 N ( p ,p ' ,a } 11 N ( p , o }  N o
t £  p  >  p ' £  x+ 1 t ;> p  £  x+1

t  h2 t  h i  t  ho

-+  11 N (p ,p ',x ,o } - *  11 N {p ,x ,o }  ”*  N i x ,o }
t £  p  >  p ' £  x+1 t £  p  £  x+1

By induction and the long exact sequence of the mapping cone, Hj(K) is zero except 

possibly when i e  {0,1}, and there is an exact sequence:

0  -* Hj(K) -► Nx /  £  im hT« t  -► Na  /  £  im h x',o “*
t £  x' £  x+1 t £  x' £  x+1

-* N<J /  z  im h x',o "* °- 
t i r i x

Taking the alternating sum of the dimensions we get dim Hj(K) = 0  by (iv). □

Assume notation as in m .2.1. We will use the above proposition to write down 
an S(Q,r)-projective resolution of S (Q ,r)^  /  Ma j . If Xb < q+r then M a r  is zero, 

so assume Xb * q+r. Put ( a j.  a2. at ) -  (0 , q+r, q+r+1, X b ). For xe i  put 

X(x) -  X-a^a and N x -  S(iXO*-(T); for t *  x > o  *  1 let hT O: Nx -» N0  be the map 

given by right multiplication by ̂ i(a,ax),l(a,a0 ) • By m .2.6 the maps hx a  satisfy (iii) 

o f  m .4.1, so we can construct the complex K  -  K(2,1) above.

n i.4 .2  Theorem (projective resolution of S(i2JT)^/M 0tl.)

S iC l.r fi  /  Ma>r has an S(i2,0-projective resolution

0 -» Kj. j  -» Kj_2 ■+ ••• ■+ Kj -* Kq -* S ( f l ,n X /  r  -* 0,

where
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K- »  1 1  (S(Q J')X(X))
t * x * l

(t > i 2:0).

The boundary maps ( i £ l )  are as described in III.4.1, while
(t-2)

9q: Kq  -» S(QX)X /  Ma  r  is the canonical projection. Here (S(O.F)^-Cx)) 1-1 denotes 

a d irect sum of (£?) copies of S(ft,r)^(x), and we interpret ("j1) and ( j t ) as being 1 if 
i = - 1 ,  zero otherwise. Note that this resolution is valid when Xj, < q+r if we take t= l 

and X.(l) -  X.

Proof
If X. is  (a)-dominant it is easy to check that X -(q+ l)a = sa oX is the highest {a}- 

non-dominant weight of the form X -ua, i.e. X-ua is {a}-dominant iff u £ q  19. 
W hether X is dominant or not, none of the weights X(2), X(3),- ,  X(t) is {a}- 

dominant. From these remarks we see that if t £  o  > p £  1 then 

X(o) -  X(p)-( q(p) +  r(o,p) )a , and

where

a n d

X  *m ̂ T.p = ^ I j ( < J lp ) ^ ’̂ ,^ P )) ’ 
a

q(p) ■(
0

q

if p > 1 

if p -  1

r(a,p)
a  -  p  if p > 1 

r+ o -2  if p -  1.

U sing m.2.8 we deduce that (iv) of III.4.1 holds, so proposition III.4.1 gives the 
exactness of K in all but dimension zero, and im d j  = Ma>r so we have the required 

resolution. □

We now use the resolution K to prove a couple of vanishing results for the

»  h i .  no t true in general tha t i f  p  is n o n -dom inan t and  v  ^  p  then v  is  n on -dom inan t, e.g. 

(2 .2 .2 )  3 (2,4,0).
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module S(£2,0)^ /  Ma  r 20. Our motivation here is that under restricted conditions 

this module is a Weyl module when r  ■ 1.

ra.4 .3  Corollary
(i) For any {a}-dominant weight p

Exis (n  (,) ( S(Q.0)x  /  Ma  r , k(|l) ) » 0 V i > 0.

(n) T o r f ® '^  ( S(!i,D  . S(£i,<f)X /  Ma  r )
S < a n > - /  Ma>r ¡ f i . o  21 

0  if  i > 0.

Proof
Take T = 0  and consider the S (£2,0)-projective resolution K of S(£2,0)^ /  Ma  r  as 
above. I f  S(£2,0)^(T) appears as a component of Kj for i> 0 ,  then X>1, so as 

observed in the proof of m .4.2, X(x) is not {a}-dominant, (i) now follows. Suppose 

h: S(£2,if)^ -» S(£2,0)v is given by right multiplication by some element
£ e ^S(£2,0)v. Application of the functor S(£2,r) ® produces a map

S(£2,0)
S(C2J1» -* S(QX)V which is also given by right multiplication by Ç. Bearing this in
mind it is not hard to check from the construction of K that S(£2,T) ® K is

S(£2,0)
isomorphic to the corresponding resolution with (£2,0) replaced by (£2,0, giving

(ii).G

W e have seen that a possible approach to (AO is to study S(£2,0)-projective 
resolutions o f the Weyl modules V(£2,r,X). The next proposition shows that this is 

also pertinent to (B'):

n i.4 .4  Proposition
Suppose that £ 2 sr  and that for all ‘F-dominant weights X

Torf<Q,i0( S ( n x ) , v c a r A » - o  v i > o .

20 W e  m a k e  the  obvious convention  th a t the Ma  j  appearing in any  expression  like  S ( i l ,r* )^  /  M a>r 

isM a^Q.rA ).
T h e  re le v an c e  o f  this resu lt is ind icated  by III.4.4.
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Then

(i) For all V e  m odS(Q,0, Torf <O,0)(S(Q .n . V) *

(ii) For all V ,V 'e  m odS(ii.r), E x t^ Q j^ V t  VQ »  ExtS ( i i ,0 /V’ V ^

Proof
(i) Since the case i = 0 follows from the fully faithfulness of restriction (see

III.3.5), which shows that the natural map S(i2,r) 0  V -+ V is an isomorphism
S (n .0 )

for all V em odS(ii.r)- By II.3.4 and the homology long exact sequence

Torf< a 0 ) ( S (a n ,S ( i i .D )  = 0 V i> 0 .

The result for arbitrary V now follows by dimension shifting, using the fact that the
functor S ( a n  0  preserves the exactness of sequences o f S(Q,r)-modules.

S (C2.0)
(ii) Using (i) we see that if  VemodS(Qjr). the functor S(il,r> 0  takes any

S(Q,0)
S(i2,0)-projective resolution of V  to an S(iJ,r)-projective resolution of V, and this 

easily implies the result we want (cf. the proof of n.3.16). □

Recall statement (C) from the introduction:

fExtS(i2 0)(V(i!.r,X), k(n)) -  0 V i > 0, V 'P-dominant weights |i.

Torf< a 0 ) (S<ii.n , V W M >  -  0  V i> 0 .

m.4.5 Corollary
If (C) holds for all 'P-dominant weights X then (AO and (BO are true.

Proof
For (AO this follows from II.3.16, while for (BO it is an immediate consequence of 

the preceding proposition. □
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II 1.4.6 Theorem
Let A. be a 'F-dominant weight and put

'FjL = ioce'F /  sa oA. is polynomial} = { a ^ e ^  /  £  A^+i £  1}.

(i) I f  A. is such that I'F jJ £  1 then (C) holds.
(ii) (AO and (B') hold when |*F| £  1. In particular (A) and (B) hold when n = 2. 

P roof
(i) Take a  = afce'F. Then (see in.2.1) M a  = Ma (ii,0,A) is non-zero iff 

Ab+i  ^  1, i.e. iff a e 'F ^ .  Thus by m.3.1, V(Q.r,A) is isomorphic to the quotient of 
S(C2,0)^ by the sum over all ae^F ^  of the submodules Ma . If *F^ is empty V(£2,r,A.) 

is projective as an S(i2,0)^-module, and (C) clearly holds. If ‘F ^  = {a}

v (a .r A )  *  s(n,0)x / Ma ,

so (C) follows from HI.4.3.
(ii) I f  I'FI £  1 then certainly I'FjJ £ 1 so (C) holds for all ^-dom inant A by (i). Thus

(AO and (BO hold by m .4.5. □
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In this final chapter we prove some more partial results relating to (A') and 

(B'). W e have seen (III.4.5) that to prove (A') and (B') it is enough to show that (C) 
holds for all 'F-dominant X. In §1 we show that (C) holds when X is a 'F-hook 

weight (defined below), by producing explicit projective resolutions. In §2 we explain 
a connection when char(k) -  0  between the resolutions of §1 and the Bemstein- 

Gelfand-Gelfand resolution o f the simple sCn(k)~ module of highest weight X. We 
define a  complex which if exact would prove (A) and (B) in characteristic zero. We 
show that for n £  3 this complex is indeed exact. In §3 we derive a character formula 

for V(Q,r,X) which is related to the Jacobi-Trudi identity for the Schur function. 
When Cl = A this formula shows that the Euler characteristic of the complex of §2 is 

zero. In  §4 we prove (AO (in arbitrary characteristic) when n = 3.

§1 H o o k  W eights

IV.1.1 Definitions
We will call a weight X a 'F-hook weight if its ^-com ponents X(E) are hook 

partitions, i.e. if for each 'F-block E

X(E) -  (c, 1, —, 1,0, 0) for some ce IN.

For the rest of this section X will be a fixed 'F-hook weight. This implies that X is *F- 

dominant. If a , (5g A we will write a  < p  i f  a  = a a and p = a b with a < b. For a 

subset ©SA put

" e -  n  sa- 
a e ©

the product taken according to the order a n_ i, a , ^ .  •••, a j  on A, i.e. according to
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the reverse of the order <.

IV. 1.2 Lemma
Recall that 4 \  = {ae'F  /  sa <>X is polynomial} = {aae'R /  Xa £  Xa+j  £  1}.
(i) Take we W4/. Then woX is polynomial iff w = w© for some

(ii) I f  £  is a union of ©-blocks

|(w©oX)(S)l -  &.(£)!.

(iii) I f  £  is a ©-block,

(w@oX)(£) = (0,0, —, 0, c) for some c £ 0, with c £  1 if l£l £  2.

Proof
Let £  = (a, a+1, •••, b} be a  ©-block. It is easily checked that

l (Xa+1 -1 , Xb - l,X a +b-a) if  a < b
(we .X X H )- | (Xa) i f a - b .

The condition ©S'Fx implies that Xd 2 1 whenever a < d  £  b, so w©»X is polynomial. 

Statements (ii) and (iii) follow from the above formula.
Now suppose that weW»j/ and woX is polynomial. We show by induction on 

l(w) that w - w e  for some © C ^ .  If l(w) -  0  this is clear, so write w -  sa w ' with 
a  = a j e ^ ,  w'eWvp and l(w) » l(w')+l. Put p  = w'oX. Then (w')'1(a)eO +n 2 vP, so

pd-p d+1 -  (w'°X,a) -  (X.(w')-,a )  + (8,(w') ,o ) -  (8 ,a) *  0

(see 1.1.3). This implies that p  « w'oX is also polynomial, since

|  p a ifa* (d ,d + l}

(woX)a -  j pd+1- l  i f a - d  
\ pd+ l if a = d+1,

so by induction w' -  w© for some © S 'P ^. Let £  ■ (a, a+1, •••, b} be the ©-block
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containing d. By (iii) we have d = b, and the 'F-block containing d+1 consists of d+1 
alone. Thus a d6 'P ^ \© ,a d+1^ 0  and w = w@u{a}. □

IV. 1.3 Lemma
F or © Q ^  put X (0) = w@oX, and let ¡(0) be the canonical index o f weight X(0). 

W rile 5 e ,0 .  for $ i(0 )j(0 ')-
(i) If e 's e c ' i ' ) . ,  then $ 0  0- spans W e >S(4, ,<i)X<e '>.

(U) If 0 " s e 's e s ' l 'x .  then $ 0 ,0 '$ 0 ',0 "  -  $0,0"-
Proof

(i) Suppose We may assume that i « i(0 ), and that the

restriction of j to each X(©)-row is canonical. We will show that j  = i(©')- Let S  be a 
©-block. We claim that i^ e S  iff jq,eE. By induction we may suppose that this is true 

fo r all ©-blocks E ' which are earlier than E in the natural ordering, i.e. for which 
a e S , a 'eS ' implies that a > a '. Suppose i^eE . By the inductive assumption 

jjp ^  min E, so since jq, £  iq, we must have jq,eE. Since ©'£©, E  is a union of © '- 

blocks, so by IV.1.2(ii)

K<pef /  iq)€E}| -  IA.(S)I -  l{q>ef /  jq)eE}l,

and the claim is established. Put a = max S . By IV.1.2(iii), {<pef /  iq,eE} is the a1*1 
X(©)-row, and it follows that j  = i(©0- It is clear from this discussion that £©©■ is 

indeed itself an element of ^ (® )S 0F ,i0^®  ̂
(ii) By (i), £© © '-^©' ©'' is a scalar multiple of £© ©», the scalar in question being 

the number of sel(n.f) satisfying

(i(0), i(0 ')) -  0 (0 ). s)

and
(¡(0*). i(0 " ))~ (s ,i(0 " )).

The second condition implies that s can be obtained from i(©') by a permutation 

within the X(0")-rows. The proof of (i) shows that i(0 ')  is constant on these, so the 

only such s is ¡(©O itself. □
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IV. 1.4 Lemma

F or © 'c e c 'F x  define an S(i2,r)-map

v < e ,e ‘): s < n .r /< e ) -♦ S (f2 ,nx<e,)

5 s '-

0 )  if  e ' t e ' s e s ' i ' x  then v ( e ' , 0 " ) v ( e .e ’) .  y< e ,e").
(ii) If © \8 ' = {a}, with a >  P for all pe© ', then \j/(0,©') is an injection whose 

image is Ma (i2,r,A.(©')).
(iii) Every \|/(©,©') is injective.

Proof
(i) This follows from IV.1.3(ii).
(ii) Let a  -  05. The hypothesis of (ii) implies firstly that w@ = sa w@\ so 

Xq  = sa oX(©'), and secondly that ^(©')b+l “  ^b+1- Since X is a 'P-hook weight and 

a s ^ P ^  we have ^b+1 = and thus (sa oX(@'))b= 0- follows from the definition of 
M a (Q ,r,*.(©')) that it is generated by ^Q tQ' (since in the notation of in.2.1 

X(©')b = q+1), and so imy(©,©') is indeed Ma (Q,r,A.(©')). \|/(©,©') is injective by 
IH.2.8 which shows that dim Ma (i2,r,A,(©')) = dim S(Q,r)^i®X
(iii) By (i) it is enough to show that each \y(©,0) is injective. By (i) again, any 
\p(© ,0) can be written as a composite of maps of the type considered in (ii), so is 

injective. □

IV.1.5 Projective Resolutions associated with Hook Weights
In this subsection we will construct (for X a 'P-hook weight) a projective 

resolution of S(Q.r)^- /  ^  Ma . The latter module is a Weyl module under

appropriate conditions (see remark (i) following the theorem below). To facilitate the 

p roof of exactness we will define more general complexes.

Suppose that 0 'c 0 S * i \  satisfy

(a) a  < P for all a e  ©' and all pe © \0 '.

W e define a complex K = K (8 ,0 ')  of S(Q,r)-modules which bears a formal
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similarity to the complex of III.4.1. Writing for if put

K j -  1 1  SZ.
© s i s ©
II\© 'I -  i

If i £  l  and S2* and S2* are components of Kj and K j_j resp., the component of the 
boundary map 8,: Kj -* Kj_j  between them is s(I,£ ')\ |/(£ .D  if zero otherwise. 

Here

s(L ,D  -  ( - l ) * {Pe2:/  0 > a J , where {a} -  TXL'.

Using IV.1.4(i) it is easy to see that this defines a complex.

Theorem

(i)
S(Q,QX(e,)

M y
H 0(K) -

ye© \© '
(ii) K  is  exact in all non-zero dimensions.

Proof
(i) This follows from IV. 1.4(ii).
(ii) This is similar to the corresponding proof in III.4.1: we argue by induction on 

t = l@\©1 using a mapping cone construction. Let n(©,©') be the number of A.(©')- 
tableaux ^  with values in n which are row semi-standard, (© \0V colum n standard 

and which satisfy ® a.b).a)E tQ ln V (a ,b )6 a (e ') la . We include among our 

inductive hypotheses the statement

(b) dim HqK = n(0,© ') 22 23

For t -  0 , K is the sequence 0 -» S (Q ,r)^ ( 0 )  -+ 0, so (ii) and (b) are certainly true. 
Now suppose that t £  1. Let a  be the least element of 0 \© ' with respect to the order < 
on A. A routine verification shows that K(©,©') is the mapping cone o f the map of

22 i.e. in the notation of IV.3.31, is adapted to [WIT
23 This is a special case of a general result -  see remark (i) following ni.2.5.
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complexes

h: K ( 0 .0'u{<x}) -» K (0\{a}, O'),

where hj is (-1)‘+* times the appropriate component of the boundary 9 j+ i  of

K (0 ,0 '):

U  S* U  . S©' -» 0
0 'c L ç 0 \ {a } 0 'c 2 c 0 \ {a }

|Z\01 = 2 E\01 = 1

T  h2 T h i Tho

_» J_1 -» 1 1  s2uta> -» S©'u{a} o
0 'c L c 0 \ {a } 0 'c lc 0 \ (a }

E \ 0 'l -  2 E\01 -  1

Each o f the pairs of sets ( 0 , 0 'u { a } )  and (0 \{ a } t O') satisfies condition (a), and the 

respective set differences both have size t-1 . By induction and the long exact 
sequence o f  the mapping cone, K is exact except possibly in dimensions 0 and 1, and 

there is an exact sequence

(c) 0 -* H jK  -» HoK(0, 0 'u {o }) -* HoK(0\{a}, 0 ') -» HqK  -f 0.

A.(©') is (0 \0 ')-dom inan t, so by 1.1.6, n(0,© ') is the number of (0 \© ')-  standard 

basis elements £¡,1 eS (Q ,r)^® ^- Thus by remark (i) following m.2.5, 
dim HqK £ n (0 , ©')• Taking the alternating sum of the dimensions in (c) and using 

induction we have

n(©,©') £ dim HqK = n (0 \{a}, ©') -  n(0, 0 'u { a} ) + dim H jK .

It is therefore enough to show that

(d) n(0,0') + n (0 ,0 'u (o }) -  n(0\{a}, O').
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which we do using a combinatoric argument.

Let a  = a ^ .  Condition (a) implies that X (0 ')b^  1» and ^(©’)b+l = lh e  
shape [X(©'u(a})l is thus obtained from tX(0')] by removing row b and adding it onto 
row b+1. Define a map from X(0')-tableaux to X(0'u{a} )-tableaux by taking row b 

of a >.(©')-tableau and putting it onto the end of row b+1 to obtain a X (0 'u(a})- 

tableau (cf. the m ap used in the proof of m.2.8):

This map induces a bijecdon from the set of X(©')-tableaux which are row semi­

standard, 0 \(© \j{a})-co lum n standard but not {a}-column standard to the set of 
X(©'u{a})-tableaux which are row semi-standard and ©\(©\j{a})-column 

standard 2*, which establishes (d). □

Remarks
(i) K (0 ,0 ')  is a deleted S(aO -projective resolution o f the module

Take a subset F s 4 *  and consider the resolution KOF^.0) with (Q .F) taking the place 

of ( a n .  Ma («,r\X) is zero if ae 'F N 'Fx, so by ffl.3.1 ,0) is a deleted
S(Q,r')-projective resolution of

For the case ■ T -  F  -  A, essentially the same resolution of V(A,A,A.) is given in 

[Mai. The proof o f  exactness is similar in spirit to the one above, involving the 24

24 Note that if pe A(n,f), EC A, and p is E-dominant, then a p-tablcau is E-column standard iff it is 
{p}-column standard for all (k l.

S(£J,nX<0') /  Z  M „.
a e © \0 '

s t a r ) 1 /  Z  Ma  =• v(£!.r.X).
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splicing together of simpler complexes using mapping cones, although the 

'component complexes' in  [Mai are not in general the same ones that appear in the 

proof above.
(ii) Since each of the maps \j/(Z,L') is injective (IV.1.4(iii)), we could replace in 
the definition of K (© ,0') by its image in S(O,O^(®0 and each component of the 

boundary by ±  an inclusion map.
(iii) When T = 0 , K = K (© ,0 ') is in fact a minimal projective resolution. This can 

be seen as follows: let hd: modS(Q,0) -* modS(Q,0) be the head functor 
V h* V/radV. Using K to compute (Lihd)(H0K) we find that

(LjhdXHoK) * ]_[ k(X(I)),
0'CLC©
E \ e i « i

(since X(L) = X(Z') iff X -  S'), i.e. (Ljhd)(HoK) »  hd(Kj). Thus K has no redundant 

summand.

IV. 1.6 Corollary

(C) holds when X is a 'F -h o o k  weight, i.e.

(i) ExtS(O,0) ( V(Q ,r,X ), k(n) ) = 0 V 'F-dominant weights ji, V i > 0.

(ii) v ( n , r j o ) - o v i > o .

Proof
(i) Take 0  = *F^ and 0 '  = 0 , and consider the complex K = Ki©,©1) with (11,0) 

in place of ( 0 ,0 -  As in remark (i) above K is an S(O,0)-projective resolution of 
V(0,r,X). If 0  ^ L S 'F ^  the weight X(L) is not 'F-dominant by IV.1.2(iii) so for 
i > 0 the head of Kj contains no 'F-dominant weights. The result follows.

(ii) Take K as in (i). It is clear that S (Q ,0  ® K is isomorphic to the
S(O,0)

corresponding complex w ith (11,0 in place o f (0 .0 ), so its homology is zero in all 

non-zero dimensions. □
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§2 Connection with the Bernstein-Gelfand-Gelfand Resolution

In this section we assume that char(k) = 0. We will show that when i2 = A the 

resolution of V(A,A,X) o f  IV. 1.5 is a special case o f a complex which exists for all 
dominant weights X, not just for hook partitions. This complex is obtained from the 
Bemstein-Gelfand-Gelfand resolution of the simple ^ (k )-m o d u le  o f highest weight 
X. Unfortunately we do not know whether this complex is exact in general. Although 

for hook partitions the resolution of IV. 1.5 is characteristic-free, there is certainly no 
analogous resolution in prime characteristic for general dominant weights; this can be 

seen by considering the case n = 2.

IV.2.1 Verma Modules

Let g  = ifn(k) be the sim ple Lie algebra of n x  n matrices over k of trace zero. 
We recall some results on V erma modules (see e.g. [Di; Ch.7l). We will not state these 

results in their greatest generality. Let h be the subalgebra of diagonal matrices in ^ ,  a 
splitting Cartan subalgebra. There is an obvious map A(n) -»/»* = Hom ^/i, k), and we 

will write the image of Xe A(n) by the same symbol:

X(h) -  X jh j +  — +  Xjjhjj XeA(n), h = diag(hj, hn)e k

In this way © is identified w ith the root system o f g  with respect to ft, and the image 

of A(n) is the set of weights o f  this root system.
Let g -  r f  © ft © n+ be the triangular decomposition of g  associated with A, i.e.

» '*  £  sa- £  t a-
ae<I>-  ae<D+

Put 6~ = n- © ft, and B+ = fi<B n+. ri~, 6~, n+ and 6+ are the subalgebras consisting of 
all matrices in g  which are respectively strictly lower triangular, lower triangular, 

strictly upper triangular and upper triangular.
For Xe ft* let k(X) denote the one-dimensional ^-module o f weight X. This 

should not cause confusion with our previous use o f the notation k(X). We view k(X)
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as a ¿»+ -module via the canonical surjection 6* -* fu k(X) can be similarly regarded as 
a ¿»“ -module. If a is a Lie algebra we will denote its universal enveloping algebra by 

U( a). Put

M(X) -  U (0  9  k(X),
U (6*->

the Verma module of highest weight X 25. The map 

U(rT)-»M(X)
w  U K U®1
is an isomorphism of U( n")-modules.

Suppose XeA(n) is dom inant For each weW , Hom^(M(woX), M(X>) is one­

dimensional, and every non-zero element therein is an injection CDi; 7.6.6, 7.6.8], so 
we can (and will) consider M(woX) to be a submodule o f M(X).

For w,w'e W we will write w £  w' if each reduced expression for w contains as 

a subsequence a reduced expression for w'. This is a partial order, the reverse of the 

Bruhat partial order on W. If w £  w ' then M(woX) £  M(w'oX) as submodules of M(X) 
[Di; 7.7.7].

We refer to [BGG; 10.3,10.4] for the following result:
IV.2.2 Lemma

(i) Let w j ,  W2^ W with l(w j) -  1(w2>+2. Then the number of elements w eW  with 

w j < w < W2 is either zero or two.
(ii) It is possible to attach a sign s(w,w') = ±1 to each pair w,w'e W with w £  w' 

and Kwj-KwO+l in such a way that whenever

w j, w2eW , 1(w j)=1(w2)+2, w j < w < W2, w j < w ' < w2, and w * w'

we have
s(w j,w)s(w ,w 2) +  s(w j,w ')s(w ',w2) -  0. □

25 In [Dii this module is denoted M(X+6).
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rv .2 .3  The Bernstein-Gelfand-Gelfand Resolution

Suppose that Xe A(n) is dominant. Define a complex C(X) by

C(X)¡ = Ji M(woX).
w eW

If i £  1 and w, wé W with l(w) -  i, l(w') -  i-1 , the component o f the boundary map 9j 

between M(woX) and M(w'oX) is s(w,w') times the inclusion map if w £  w', zero 

otherwise. IV.2.2 shows that this does indeed define a complex. In fact

where L(X) = M(X)/radM(X) is the simple ^-m odule of highest weight X. Thus C(X) 
is a deleted projective resolution of L(X). This is proved in [BGG] for the case k = C. 

That it holds for general (characteristic zero) k can be seen by noting that the complex 
C(X) and the module L(X) can be obtained by base change from the corresponding 
complex and module over Q, so that the result for any one particular k implies the 

result for all k.

rv .2 .4  Definition o f the Complex K(P,X)
We can identify 6~ in the usual way with a Lie subalgebra o f the dual algebra 

k[B- ]* of the coordinate ring of B_. Composing with the canonical epimorphism 

klB“l* -» S(B") and using the universal property of U(6~) we get a k-algebra map

which is in fact an epimorphism. The image of U(/i) under 0 is S(T), and if 
VemodS(T) is considered as a U( ̂ -m o d u le  via 0, the weight spaces of V as defined 

for S(T) coincide with those as defined fo r U(/i). 0 defines a restriction functor from 
S(B“ )-modules to U(5")-modules whose left adjoint is the functor S(B~) <8>

0: U(5") -» S(B-),

U ( f )
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Take a weight n€  A(n,f). The composite map

U(tf) <Z> k(M )-»U(n-)-»U(5-) ® k(p), 
U ( ^ )  U (Ä)

given by u®l h u h » u®1 if ueU (n") is an isomorphism of \J(6  )-modules,so

S(B~) ® M(*i) a  S(B-)^ 
W ~ )

as S(B")-modules. Suppose Xe A(n,f) is dominant and P is any parabolic subgroup of 

G containing B- . Form the complex of S(P)-modules

K(P,X) -  S(P) ®  C(X). 
W ~ )

IV.2.5 Proposition

Write P = P ^  p  with T s  A. Then

(i) K (P ^)i *  i i  S(P)woX.
w e W 
l(w )-i

(ii) Suppose weW , a e A  and l(sa w) -  l(w) + 1 . Then the map 

S(P)^socWo^ -» S(P)Wo>- corresponding to the inclusion M (sa woA,) £  M(woX) 

is an injection whose image is Ma (A,r,woX). (cf. IV.1.4(ii).)
(iii) Whenever w.w 'eW  with w £  w' the m ap S(P)wo^ -» S(P)W’°^  corresponding to 

the inclusion M(woX) £  M(w'oX) is an injection, (cf. IV.1.4(iii).)

(iv) H()K(P,X.) »  V (A ^A ).
Proof

(i) This follows once we observe that for p.e A(n,f)

S(P) ® M (p)*S (P ) ® S(B “) ® M(p) *  S(P)K
U (£") S (B -) U(5")

(ii) Suppose |ieA (n,f), a  = c^ e A  and that t -  Oi+0,a) SO. Let X_a  denote the 

element o f n~ which has a one in the (b+l,b)-position and zeroes elsewhere. The 

endomorphism o f U( rT) given by right multiplication by XÎ.a  corresponds to an

86



IV: Special Cases. 52: Connection with the Bcmstcin-Gclfand-Gclfand Resolution.

injection M(sa <>p) -> M(p) once identifications are made as in IV.2.1(a) (see 

[Di; 7.1.151). It follows that the corresponding map S(P)sa°^-> S(P)*1 is given by 

right multiplication by the (sa  op,p)-weight component of 0(xLa), i.e. the 

component of weight (sa <>p,p) when 0(X^.a ) is written as a sum of two-sided weight 
vectors. Let 1 be the canonical index of weight p. It is a straightforward exercise26 to 

show that the (sa op,p)-weight component of 0(x!_a  ) is t!-§i(0>t)fi (notation as in
in.2.1).

The condition l(sa w) ■ l(w)+l implies that

(woX+8,a) -  (X,wla )  + (S,w'*a) ^  1

(see 1.1.3). We can thus apply the foregoing discussion with p  ■ woX to conclude that 

the map S(P)Wô  -» S(P)^ is given by multiplication on the right by some non-zero 

scalar multiple of 5l(a,t),l*thc required result follows by  m.2.8.
(iii) It is enough to prove this when w ' ■ 1, where the result follows from (ii) by 
considering a reduced expression for w.

(iv) HqK(P,X) is the quotient of S(P)^ by the sum o f the images o f  the maps 

S(P)sa oX _»S(P)^- as a  ranges over A. By (ii) these images are the various 

Ma (A,r,X), so the result follows from in.3.1. 0

Remarks

(i) The proposition shows that we can replace each component S(P)wo^  of K(P,X) 
by its image in S ( P ) \  and the components of the boundary maps by ± inclusions. It is 
tempting to try to define the complex K(P,X) without mention of Lie algebras: for 

1 £ we W take a reduced expression

w “  sa i  sa i - i '" s« i  (°1* a leA)*

26 Using the fact that 6~ acts by ’e-point derivations' on klB_l. i.e. if Xe 

X(c-c*) -  X(c)e(c')+e(c)X(c‘) Vex'« k©-|.

one shows that 8(X _a ) is the sum of all &i(a,l),| • where 1 ranges over all canonical indices in I(n/) 
which have at least one value equal to b. Now use III.2.6.
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Put X(0) = X, and X(i) ■ sa .oX(i-l) for iel. Let lj(i) be the unique standard basis 

element in and put Mw -  S(P)4(1)»$(1), a submodule of S(P)*\ We
then define

K(PA)i -  H  Mw, 
we W 
l(w )-i

letting the components of the boundary maps be siw.w*) times the appropriate 

inclusions. Although this prescription works in principle, we know of no way without 
recourse to Lie algebras o f showing the two crucial facts:

(a) Mw is independent of the choice of reduced expression.
(b) Mw £ Mw< if w £  w'.

(ii) If we follow the procedure of (i) when X is a hook partition, where we can 
handle (a) and (b) directly -  see IV. 1.20) and IV.1.3, we get the complex K(A,0) of 
IV. 1.5. More precisely we get the alternative version of K (A ,0) given in remark (ii) 
of IV.1.5. We may have to adopt a new sign convention in IV.1.5. Thus for hook 
partitions at least, H¡K(P,X) -  0  if i > 0.

The complex K(G,X) is essentially the same as the com plex of [Z; Example 11. 
A related complex is constructed in [Ak]. In each of these papers the complex in 
question is shown to be exact in positive dimensions. We outline a proof of this fact 

for K(GA), partly to indicate why the proof does not readily generalize to arbitrary P.

IV.2.6 Theorem

HjKCG.X) -  0 V i > 0.
Proof (sketch)

If V and V' are finite-dimensional right and left ^-m odules resp. then the groups 

Hjin- ,V) and TorV^”  ^(V, V') carry natural left /t-module structures. If a is a Lie 

algebra, denote by x the principal anti-automorphism of U(fl), induced by negation in
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a. x  induces an isomorphism V h Vt between the categories o f  left and right U(a)- 

modules. We can use the resolution C(X)X of L(X)X to deduce a strong version of 
Bott's theorem (see [Bt; §15], [BGG; 9.11,10.1), [Ak; §2]):

H.(n , L(X)T) *  ]_ [ k(woX) as left /¿-modules.
1 weW

l(w) -  i

Let V be a  finite-dimensional right^-m odule. Since V is semisimple, and since if X 
is dominant and 1 jfc we W then woX is not dominant,

-  0  V i > 0  , V dominant weights p.

The homology group HjK(G, X) is isomorphic to the zero weight space of

T o r ^ n  \S (G ), L(X)) and the latter is isomorphic as an /¿-module to 
H |(n- , S(G)®L(X)X). Since S(G)®L(X)X is a finite-dimensional right ̂ -m odule, the 
zero weight space of Hj(n", S(G)®L(X)X) is zero for all i > 0. □

We speculate that the complex K(P,X) is exact in all positive degrees. As we 
have seen, this is the case for hook partitions, and for arbitrary X when P ■ G. If this 
were the case generally we could prove (A) and (B) in characteristic zero, by using a 

similar argument to that of IV. 1.6 to show that (C) holds for all dominant weights X. 
If n £  3 all is well:

IV.2.7 Theorem

If n £  3, HjK(P,X) ■ 0 for all i >  0, so K(P,X) is a deleted S(P)-projective resolution 
of V(A,A,X).

Proof

This is a rather piecemeal argument. For P -  G the result is covered by IV.2.6, so 
suppose P G. For n -  1 the result is vacuous; for n -  2 it follows by IV.2.5(iii). 
Suppose n -  3. The complex K -  K(P,X) has the form:
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0 -♦ S(P)(13)o^  -♦ S(P)(123)o^  J iS (P )(132)o^  -♦

-* S(P)(12)oXllS (P )(23)#X -♦ S(P)X -» 0

Firstly consider the case P = B". By IV.2.5(iii) H3K = 0. Suppose H2K t  0 

and let p  be a weight of H 2 K . Then by IV.2.5(ii), n  is a weight of 
S(B“)(23)(12)oX /  Ma ^, and this module is isomorphic to V(A,{ai},(23)(12)oX) by 

in.3.1. Thus (12)p 3  (23)(12)oX (since the set o f weights o f V (A .{a1},(23X12)oX) is 
closed under the permutation (12)), and in particular p 2 ^ X 2 - l .  Similarly p  is a 

weight of V(A.{a2}.(12X23)oX) so (23)p ^(12)(23)oX and p2 *X2+ l, a 
contradiction. Thus H 2K = 0. The proof that H jK  = 0 is similar 27.

It remains to treat the case where P is a minimal parabolic subgroup o f G 

containing B- . Then

K(P,X) a  S(P) ® K(B",X),
S(B -)

so, since we have established already that K(B“ ,X) is a deleted S(B“)-projective 

resolution of V(A,A,X), HjK(P,X) «  Tor^(B"  )(S(P),V(A,A,X)) which is zero if i > 0 

by m .4.6 and III.4.4. □

IV.2.8 Corollary

(A) and (B) hold when n £  3 and char(k) -  0.

Proof
This just requires a simple modification of the proof of IV.1.6 to  show that (C) holds 
for all dominant weights X. The above theorem shows that K (B “,X) is a deleted 
S(B“)-projective resolution with the properties that the head o f  K(B- ,X)j has no 

dominant weights if i > 0, and that S(G)^®   ̂K(B",X) *  K(G,X) is exact in positive

dimensions. □

27 Alternatively we could deduce that HjK -  0 from the fact (to be proved in 83) that the Euler 
characteristic of K is equal to the character of HqK.
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§3 A Character Formula

Let ZA(n,f) denote the free Z-module with basis A(n,f). I f  Vem odS(0,0) we 
define the (formal) character of V to be the element [V] of ZA(n,f) whose (i- 

coefficient for |i.eA(n,f) is dim M-V. V is determined up to isomorphism as an 
S(0,0)-module by its character. If we identify |ie  A(n,f) with the monomial

ZA(n,f) becomes a Z-submodule of the polynomial ring Z tX j, •••, Xn). For each 

dominant weight X, the character of the classical Weyl module V(A,A,X) is the Schur 
function s^ , a certain symmetric polynomial. One of the well-known identities 
involving the Schur functions is the Jacobi-Trudi identity, which expresses s^ as an 

integral combination of products of complete symmetric functions (see [Md; 1.3]). 

This identity can be written in the following form:

(a) SX "  S  sgn(w).hwoV
we W

Here h^ = where for reINg, hr  is the r^1 complete symmetric function,

i.e. the sum of all monomials o f total degree r. It is easily seen that is the character 

of the module S(A.A)!1.
The above formula can be realized by equating to zero the Euler characteristic 

of the resolution of V(A,A,X) given by the complex K(G,X) of IV.2.4 (cf. [Ale], [Z]).
We will derive a formula analogous to (a) for the character o f  the Weyl module 

V(£i,rA): for each subset T 's 'F  we have

(W rv (ti.rA )] -  £  !g n (w > [s(a r ')w°M
weWxp

We remark that even in the classical case Q = T = A, form ula (b) gives new 

information. We can recover the Jacobi-Trudi identity from  (b) by taking

q  -  r  -  r  -  a .
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We recall some of the basic properties of distinguished coset representatives 

for parabolic subgroups of W (see e.g. [Bb; Ex3, p.37j).

IV. 3.1 Lemma 
L e t0 1C 0 2CA.
(i) For each w eW 02 the coset W ^ -w  has a unique element of minimal length. 

We will write { © i|0 2> for the set of these distinguished coset representatives.

(ii) Let we Wq 2. Then

w e i © ! ^ }  iff W '(0 1)C<1>+.

(iii) I f© 1C©2C©3SA

{©JI03} -  {0 1I02} {0 2I03}. □

IV.3.2 Lemma

Suppose that 0 j c ©  2£A, and that XeA(n,f) is 0 2-dominant. Then woX is © j -  
dominant for all we {© jl©2}.

Proof
Take oce©j. We must show that (woX.a) ^  0. We have

(woX.a) -  (X.w’a )  +  (5,w4a )  -  (5,a).

By IV.3.1(ii) w‘1ae<I>+ , so (S.w’o O i 1, whilst (8,a )  -  1. w‘‘a  is a non-negative 
integer combination of roots in ©2, so the ©2-dominance o f X. implies that 

(X,w‘ a )  *  0. □

IV.3.3 Definitions
As usual fix i2,TeA. For © cQ  and Xe A(n,f) a ©-dominant weight, define an 

element v(0,X) = v(i2,T»0»X) o f ZA(n,f) by setting its ^-coefficient equal to the 

number o f X-tableaux [X) -* n satisfying the following conditions:
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(i) £ is row semi-standard.

(ii) % is ©-column standard.
(iii) £ has weight p., i.e. V ven p v=#{(a,b)€[X] /  ij(a,b)=v}.

(iv) £ is adapted to [QID in the sense that (£(a,b),a) e  [iilD  V(a,b)e[X].28

If X is a ©-dominant non-polynomial weight put v(©,X) = 0.

IV.3.4 Theorem

If © jÇ © 2SÎi and X is © 2-dominant then

v(©2A) -  S  sgn(w)v( © i ,woA.).
w e t© ! ^ }

Before we come to the proof of IV.3.4 we deduce the promised character formula: 

I V Corollary
Let X be a ^-dom inant weight. For each subset T 'c 'F  we have

[ v (£ i .r » i  -  £  sgn(w>[S(ii,r' )w°H
w e W f

Proof
Take © j -  0 . ©2 -  and T -  T  in IV.3.4, to get

v (ii,r ','F A ) -  £  sgn(w)v(Q ,r\0,woX).
weW ip

Clearly v (Q ,r',0 ,p) = [S(Q ,r')^l for any weight p. It is shown in the proof of III.3.1 

that if T'Q'V then v ( n ,r \4 ', \ )  -  v(i2,0,4#,X), which is the character o f V(Q,r,X) by 

IL3.1. a

28 7},  ̂condition says that if 1 is the canonical index of weight X and £ -  for ie I(n,f). then
^i ,€ S(ii.T). The p-coefficient of v(0,X) is the number of ©-standard basis elements PS(n.T)*-
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Proof of 1V.3.4
Let P(©1,02> be the statement that the theorem holds for 0 j C0 2 c Q  and all ©2~ 

dominant weights X. Suppose that © i^ © 2 -® 3 — Using IV.3.1(iii) and IV.3.2 it is 

easy to check that:

(a) If P (0 1 ,©2) holds then P (0 j  ,©3) and P(©2,©3) are equivalent.

By (a) it suffices to prove P (0 ,0 ) for all © eft.
We will say that disjoint subsets © j,  © 2^A are linked  if they are linked in the 

Dynkin diagram of A, i.e. if 3 a e n -2  such that a  a€@ j, c*a+ie ©2 or <*aG©2» 

a a + l6@l: otherwise we will say that they are unlinked. We will say that a subset of 
A is connected if it is not possible to write it as the disjoint union of two non-empty 

unlinked subsets. Any subset of A can be written in a unique way as a disjoint union 

of non-empty connected subsets which are pairwise unlinked.
P(0,0) is certainly true, so using (a) and induction it is enough to prove 

P(0jU©2» © iu { a u_i}u©2), where © iu { a u_j} and © 2 arc disjoint and unlinked, 
©I is either empty or has the form {0^, a  t+j ,  •••, a u _2) for some t $  u-2, and 

©1u { a ll_ i)u © 2  S £2. Put © '«© iU© 2, and © = © 'u {au _1}. The proof o f P(©',©) is 
an elementary if somewhat pernickety piece o f combinatorics. The idea is to 

generalize the map used in the proof of III.2.8. For notational simplicity we will 

assume that © j - i a j ,  012, •••, a u-2* with u ^  2 (if u=2 then © j=0).
It is routine to check that the distinguished coset representatives o f W@> in W@ 

are:

'•  *“ u - r  *a u - l* a u -2 ’ *“ u - l  " *a l

Let Xe A(n,0 be ©-dominant. Put X(0)«X, and for be u -1  put

X<b) -  ’“ u- l ’a u -2  " ’a u-b*X ’  (“ ' b u>"Wb- 1)- 

Firstly we deal with the case where some X(b) fails to be polynomial. If ae n we have
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1\  if ae {1, •••, u -b - l} u (u + l ,  •••, n}

^ a+ l “ l  if  ae{u-b, —, u-1}

^u_5+b i f a - u ,

so if any \(b )  is not polynomial, Xu « 0  and no X(b) is polynomial for b £  1. In this 

ease the required formula reduces to v(©,X) »  v(©',X), which holds because the u ,b 
row of [X] is empty.

Now suppose that Xu £  1, so that all X(b) are polynomial. For be{0,1, •••, b-1} 

let Xj, be the set of X(b)-tableaux which are row semi-standard, ©2-column 
standard, and adapted to [iilD. Take and write it as follows:

(b) $:

W1 wq 1
XI x r 1
y i y s |

Z 1 __ UJ

Note that the above diagram illustrates the 'generic case' where l < b < u - l .  The 

extreme cases are similar but the diagram has less rows o f interest. Here

q -  *-0>)u- b - l  -  Xu_b- l
r  -  X(b)u_b -  ^u_b+l "  1 

s -  t(b )u. w  -  »-u-b+2 -  1 
t -  X(b)u -  + b.

Define integers d^(^) and e^(^) as follows:

I max{ce (b+1, b+2, —, b+r+1} /  if c > b+1 then zc 2: Xc-b-1 ) if b i  1 
b(^ “ i 1 i f b - O .

(The range for c is valid since when b £  1, b+r+1 -  b+Xu_|,+ j  :£ b+Xu_j, -  t, using
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the ©-dominance o f X.)

e (p\ = I maxice (b, b+1, t} /  if c > b then zq £ wc _b } if  b < u-1 
1 0  if  b ■ u-1.

(The range for c is valid since q = Xu_b_ j £  Xu_b = t - k )
Put

X'b = {£eXb /  £ is © '-column standard};
X V ^ X 'b / d b C a S e b G » .

do(^)=l implies that X"q consists of exactly those X-tableaux which are adapted to 
[Oin, row-semi-standard, ©'-column standard, but not 0-colum n standard. 

x " u - l  “  *
If b £  1 define a map y b: X b -» Xb_j as follows: let £ e X  b be as depicted in 

(b). Put d = d b(£); then £ = y b(£) is the X(b-l)-tableau whose a th row is the a th row 
of £ if a£ (u-b, b}, and whose u-b and u rows are as in the following diagram:

u-b-1 W1
u-b M •• x d - b - l  1 2 d 1

u-b+1 y 1 ~ T r\

u 21 “  2 d - l  1 M -b ... x r

The lengths of the u -b  and u rows are respectively

(d-b-1) +  (t-d+1) = t-b  -  X(b-l)u_b

and
(d-1) + (r-d+b+1) * r+b ■= X(b-l)u,

as they should be. £ is row semi-standard by definition o f d. y b preserves 0 2- 

column standardness since © ju { a u_i} and ©2 being unlinked implies that neither of
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the altered rows is involved in checking ©2-column standardness. That preserves 
the property of being adapted to [QUI follows from III.2.7 (much as in the proof of 
m.2.8), using the fact that u u-b  since © j u t o ^ }  is contained in Q.

We claim that:

(d) V b e ih l y b sets up a bijection X'b \  X"b -► X"b_ j .

Assuming (d) we can complete the proof. Let v 'b and v"b denote the elements 
of ZA(n,f) whose p-coefficients are respectively the numbers o f tableaux in X'b and 

X"b with weight p. Since the map y b is weight-preserving, we see from (d) that for 
all be u-1. v 'b = v"b + v"b_ j. Recalling that v"0 = v(©',X) -  v(©,X) and v"u_! = 0, 

and noting that v'b = v(@',X(b)), we have

v(0,X) -  v (0 ’,X(O» -  V (0 'A (D ) + ... + ( - l ) u- '.» (0 'A < u - t) ) .

which is the required result.
It remains to establish (d). Suppose that 1 S b ^ u - 1 .  Since A.(b) is ©'- 

dominant, a X(b)-tableau is ©'-column standard iff it is {a}-colum n standard for 

each ae© '.

Step 1: If £eX 'b then y b(^) is {a}-column standard V a e © '\ { a u _b_i}.
Here and below we will write £ as in (b). The only a e © '\{ o tu_b_j} for which 

y b(£) can fail to be (a}-column standard is a u_b. If b = 1, a  u _ b ^ 0 ' so thcre *s 
nothing to do. Otherwise we must check that zc < yc_b V ce {d, d+1, —, b+s}. The 

definition of d=db(£) gives

Vce{d, d+1, •••, b+r},

which is enough, since s £ r  and xc < yc V ce s.

Step 2: If ÇeXb then y b(Ç) is {au_b_i>-column standard iff e b(£) < db(Ç).

If b = u-l this is vacuous, whilst if  b < u - l  Vb(£) is {o u_ b-l ^-column 
standard iff zc > wc _b V ce {d, d+1, - ,  t}, and this holds iff e b(£) <  db(Ç).
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Step 3: -  x ”b - l-
Suppose ^ eX 'b\X "b. By steps 1 and 2, £= V\)(S) is ©'-column standard. To 

show that C6X" b - l  we must verifVthat

'b - i < 0 * db-i<© '

Write Ç in the form

w  1 * 7 1

Z Ü J

~ r i 2 ,1  1

If d £  c £  b+r = t' then z'c = xc_b > zc+i  = w'c _(b_ i), and so eb_i(C) < <*• On the 
other hand, z'j . j  = z j . j  ^  z j  = w'(<J. 1)_(b_i), so eb _!(C) -  d-1. If b -  1, 

db_i(C) ■ 1. while d £ b + l = 2  and we are done. Otherwise, if d £ c £ b + s -  

(b-D +r'+ l. then z'c  -  x c_b < yc_b -  *’c - ( b - l ) - l '  so d b - l< O sd _ 1  "  eb - l® .  «  
required.

Step 4: X"b_i S  Vb(Xb).
Take £eX"b_lt  put d  = eb_i(C)+l ^  2, and write C as in (c) and (e). Let ^ be 

the X(b)-tableau in (b). We claim that £eXb and £ -  V b(£). As usual, £ being 0 2 -  
column standard and adapted to [QID implies the same properties for The definition 

of eb_ j ( 0  implies that

(I) *c ■ w c - b < I 'c - l  ■ xc - b - l  Vc«{d+1, bfr+1}.

and so in particular,

(g) xd - b > zd+l ^ xd -b - l  if  b+r £  d  ^  b+2.
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Moreover we cannot have eb_j(Ç) = b-1 since eb_j(Ç) £  db_j(Ç) £  b, so

(h) Zd “ w'd-b  *  z'd - \  mZd - V  

Also

(i) zd -  Wd-b2 " i - b - l  * xd -b - l ifd>b+1-

Conditions (g) and (h) show that £ is row semi-standard, and hence in X b. Conditions 

(f) and (i) show that db(Ç) -  d, giving Ç = Vb(Ç).

Step 5: Let Ç be as in step 4. Then ÇeX'b\X "b.
To check that ÇeX'b we must show that Ç is ©'-column standard. The only 

a e © ' for which {a}-column standardness o f Ç can fail are a u_b_i and a u_b. For the 

former, either b= u-l (nothing to do), or b < u-1 and

*c -  z'c+h > w'c+1 -  V l-b+l 2  *c+b > wc  v  c€ W-h- •••■r> 

by definition of d = e b_j(Ç)+l. For the latter, either b= l (nothing to do because

a u _ i* © ') ,° r b > l  and

Xc -  z'c+b < x'c = yc fo r all c e {d -b , - ,  s}

since d b .t iO  £  e ^ i O  -  d-1. We cannot have ^ X " b, for then Ç -  Vb(Ç) would not 

be ( a u_b_i}-column standard by step 2.

We can now finish the proof of (d): steps 3,4 and 5 together show that if be iM

then

Vb<x 'b \x "b> “  x "b-l*

The injectivity of y b follows from the proof o f  step 3, which shows that
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IV: Special Cases. §4: (A1) w hen n -  3.

eb-l(Vb(**)) “  d -1, s°  that we can recover db(£) and hence £ itself from \|/b(5). □

§4 (A') when n = 3

Theorem  (A') holds when n = 3.

Proof
If either of iJ  or T  is not equal to A, we have I'M £  1, and the situation is covered by 
in.4.6. Now suppose that i2 = T = A, and take '^-dom inant weights X, peA(3,f). It is 

enough to show that Ext\>(A ^(V(A,A,X). k(|i)) = 0  for all i > 0. Let 1 be the 

canonical index of weight X, and put a  = a j ,  P = a  2- By ni.3.1 V(A,A,X) has a 

resolution of the following form:

(a) 0 -* Ma o M p  ->Ma ilM p -» S (A .cf)>--» V(A.A,X) 0 .

We will show that (a) is a resolution of V(A,A,X) by  Jc(p))-acyclic
modules, so that applying HomS(A<0)( ,k(p.)) to the deleted form of (a) and taking 
the Ith homology yields Ext*S(A ^(V(A,A,X), k(n)) (see for example 

[Gr; Remark 3, p.1481). Acyclicity is clear for S ( A ,0 ) \  and for Ma  and M p it follows 

from m.4.3(i). It will follow for Ma nM p  once we show that

i f  K «3 v and v is a weight o f M a n M p then k  is non-dominant,

for then Ma nM p has an S(A,0)-projective resolution whose terms are direct sums of 

modules S(A,0)K with K non-dominant.
Let v be a weight of Ma nM p, and suppose that K ^  v. By 11.3.1 and 111.2.8 v is 

the left weight of some basis element £i,ieVS(A,0)*- which is neither {a}-standard 

nor (P>-standard. We may assume that i is row semi-standard:

1 - 1  | 2 N> W

2 2 | 3 •• * 1
3
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IV: Special Cases. §4: (A*) when n -  3.

Denote the sizes of each of the boxes in the above diagram by the letters a, b, c, d, e, 

g, as in the diagram

* I b ~ T
I

s

The non-standardness conditions imply that d < g, and either a < d or a+b < d+e. In 

either case we have

k3 £  v3 = c+e+g > c+d+e > a - v 1 ^ K 1,

so k  is not dominant. We have shown that (a) is a resolution o f  the required type.
Now M a  and M p are (by definition) generated by weight vectors for non­

dominant weights, and we have just demonstrated that no weight of Ma r>Mp is 

dominant, so applying the functor H o m § ^ ,0 )( , k(n)) to the resolution (a) shows that

ExtiS(A,0)(V(A’A’X). k(u)) "  0  V * > °*

as required, o
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Index of Notation

The following is a short list containing some frequently-used notation which is 

not defined in the main text. (Undefined notation will be assumed to carry its standard 

meaning.)

We write Wo for W u  {0}.
If X  is a finite set we write IXI or ttX  for the cardinal o f X.
If m e W we write m for the set (1 ,2 , •••, m}. 

sgn(7t) denotes the sign of the permutation k.

Unless stated otherwise k denotes a fixed infinite field, dim  means dimension over k, 

and unadorned <8> denotes tensor product over k.

J_i denotes coproduct (of modules).

Unless stated otherwise n,feN are fixed natural numbers.

If U is a k-algcbra, radU denotes the Jacobson radical o f U; modU and mod'U denote 

respectively the categories o f (left) U-modules and right U-modules which are finite 

dimensional over k.

The remainder of this section is a list of notation and terms used in this thesis. 
Notation which is defined and used only within a single subsection is not usually 

listed.

Notation Meaning Definition

A -  Af the part of k[M] which is homogeneous o f degree f 14

A(X) image of klX) in Af 16

A ( o n A(Pn,r> 18
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Index of Notation.

Notation Meaning Definition

(A) the statement “the simple S(B)-module k(X) is

Indg^gj -acyclic for all dominant weights X” 3

(AO the statement “the simple S(i2,0)-module k(X) is

f n d ^ - a c y c l i c  for all 'F-dominant weights X” 4

a(Q,5), a ( r= ) ,a (S )  41
a b a and b belong to the same 'F-block 10

adapted to [Qir] 94

anti-dominant 12
B“,B + groups of lower and upper triangular matrices 5

(B) the statement “the restriction functor mod S(G) -* mod S(B)

preserves Ext groups” 3

(B') the statement “if the restriction functor
mod S(fi,r) -* mod S(Q,0) preserves Ext groups” 4

6~, 6+ lower and upper triangular subalgebras o f  sCn(k) 83

Ca a1*1 column 11

O r a (S,a)lh ^-colum n 11
CiX.'P) ^-colum n stabilizer of [X] 11
C(X) Bemstein-Gelfand-Gelfand resolution 85

(C) the statement “ T o r ^ ^ ’̂ (S (Q ,D . V(i2,r,X)) -  0  V i > 0 and

Ext*S(Q k(j4)) -  0 V i > 0, V 'F-dominant weights n ” 4

ca,b

ci J

CX

coordinate function on Mn(k) 

ci<pj<p
tpef

cj ] where X ■ wt(l)

13 

13,19

14
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Index of Notation.

Notation Meaning Definition

Co£ right action of S(Q,r) on A (f l,0 17
canonical index 7
character 91
column 11
contravariant duality 20
contravariant form 20
D(Q,r JK) Schur module of highest weight X, 24

D'(T,Q,X) k-span (dj j /  1 ~ n  i} 27

S  sgn(x)-CijK
h s COlM

26

degree (of a weight) 6

dominant 7
e evaluation map M -♦ S 17
entry 7
f a fixed positive integer, the f  in Af

faulted 53

G -  GLn(k) general linear group 6

8 4 ,oo 83

H diagonal subalgebra of ¿¿^(k) 83

Indy the left exact induction functor modU -» modV 48
I(n,X), I(n,f) sets of indices 7,8
i(0) canonical index of weight X(0) 77

¡ „ S j .V x e X 7

!< |J 15

> ~ j j ■ in for some JteP(X) 7

l ~ l* 15

i ~ y j » x ^ i x  VxeX 10

(i j )  ~  (i'J ') (i'J ') ■ (iJ)K for some jteP(X) 7
index 7
J transposition anti-automorphism and functor 20

*a 36

j(a,b) (“+bb- ‘ ) 40
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Index of Notation.

Notation Meaning Definition

K(P,X) S(P) <8> C(X) 
U ( D

86

K (0,0 ') 78

K(t,o) 68

k fixed infinite ground field

ktX) coordinate ring of X 16

k(X) simple S(0,0)-module of weight X 21
and simple /t-module of weight X 83

u n .r ,X ) simple S(£2,0-module of highest weight X 30

L(X) simple jfn(k)-module of highest weight X 85

1 usually the canonical index of weight X

l(o,t) 52

1(W) length of weW 9

M -  Mn(k) monoid of all n x  n matrices 13

Ma  -  M a (ßX,X) 53

Ma ,r  -  Ma r <n,rA ) 53

M(X) Verma module of highest weight X 84

N0
n a fixed positive integer, the n in GLh

n~, r& strictly lower and upper triangular subalgebras o f sC^k) 83

P (X). P(f) groups o f permutations of X and f 7 ,8

pi ( l ) , - , i ( r ) 8

pn , r 18

parabolic subgroup of W 9

polynomial weight 6

q max{Xjj, Xb+jJ-Xb+j 53

quasi-hereditary algebra 35

a1*1 row 11

row 11

Ra1.»2.- .« r(i(1)- i(2)* •.i(r)) 8

S - S f Schur algebra, the dual algebra of A f 14

S(X) dual algebra o f A(X) 16

s(n.n S(Pn,r> 18
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Index of Notation.

s(I.I') 68
s(w.w') 84

s a x ' )  79
i^ (k ) Lie algebra of n x n matrices over k 83
sa  simple reflection corresponding to a e  A 9

Schur algebra 14
sgn sign of a permutation

shape 10
standard (index, tableau) 11

standard (basis element) 28
T group of diagonal matrices 6
T = basic A-tableau 10
IT j the composite map i- T: [A] -► f  -» n 10

tableau 10

U(fl) universal enveloping algebra of the Lie algebra a  84
image of V under the transposition functor 20

v \  right and left A-weight spaces of V 21
V° contravariant dual of V 20

V* linear dual of V
[V] character of V 91
V(i2,r,A) Weyl module of highest weight A 24

v(c,A) 42
v(0,X) -  v (n ,r .e ,X ) 92
W Weyl group 9
W\p parabolic subgroup of W corresponding to 'F eA  9

weight 6
weight of a module 21

weight of a tableau 93

weight space 21

we  75
wA, usual action of we W on AelRn 9

woA dot action of we W on AeIRn 9
wt(i) weight of the index i 7

Notation Meaning Definition
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Index o f Notation.

Notation Meaning Definition

ZA(n,f) free Z-module with basis A(n,f)

«b the simple root ea- e a+i

a <  P the natural order on the set of simple roots

r a subset of A

A the set of simple roots

V comultiplication on k[M]

6 the weight (n-1, n -2, 0)

5a,b
3 0 0

Kronecker delta, equal to 1 if a=b, 0 otherwise

e counit on k[M]

ea standard basis vector of IRn

6 canonical map U(6~) -* S(B~)

{0i i e 2} set of distinguished coset representatives

A(n) the set of weights

A(n,f) the set o f polynomial weights of degree f

A+(n,0 the set of dominant weights in A(n,f)

i evaluation on c^

X(S> '^-component of X corresponding to the 'F-block E

x m W0=X

X s i i . subweight partial order

A s h dominance partial order

p-X is a sum of elements taken from

X < n lex
lexicographic order

1X1 degree of X

tX) shape of X

$ ij dual basis element to Cj j

$X dual basis element to c^

^oc left action of S (fl,r) on A(Q,H

^ 0 .0 ' ^i(Q).i<©')
<D the set of roots
<D+ the set of positive roots

4* (usually)

91 
8

75
17
8

13
9

68

13 
8

85

92 
6
7 

42 
21 

42 

77
6
6

10

6
6

10
14 
14 

17 
77

8 

8
25
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Index o f Notation.

H'k { a e ^  /  sa o \  is polynomial} 74

'F-block W \j/-orbit on n 10

^ -co lum n 11

^-com ponent 42
VF-dominant 10
'F-hook weight 75

V (0 ,0 ')  78
i2 a subset of A 17

[OID 17

( , ) inner product on lRn 8

< , > contravariant forms S(QJT) x A(T,Q) -» k 21

and V(f2,r,X) x  D ( r ,iU )  -*k  24

Notation Meaning Definition
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