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Summary

Let G = GLn(k), the group of all invertible n x n matrices over an infinite
field k. In this thesis we explore the cohomological relationship between a Schur
algebra S(G) for G and the subalgebra S(B) corresponding to a Borel subgroup B of
G. Our main motivation is the question of whether there is an analogue of the Kempf
Vanishing Theorem in this setting.

We place our study in a more general framework, defining subalgebras S(Q,r)
of S(G) associated with certain intersections of parabolic subgroups of G, and
investigate the connection between S(£2,r) and the subalgebra S(Q,0). We define
modules for S(ii,r) which serve as analogues for the Weyl modules for S(G). We
produce bases for these Weyl modules and thereby show that S(Q,0 is a quasi-
hereditary algebra.

We find two-step projective presentations for the Weyl modules over
subalgebras S(G.r*) of S(ii,0. and in special cases find projective resolutions. We
use these to prove results which provide partial information on the existence of an
analogue for the Kempf Vanishing Theorem, and on related questions.

We derive a character formula for the Weyl modules which can be regarded as
an extension of the Jacobi-Trudi identity for Schur functions.

The methods used in this thesis are in the main elementary, with a heavy

reliance on direct combinatorial arguments.
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1: Introduction

Let G be a connected reductive algebraic group over an algebraically closed
field k. There is a striking relationship between the rational representation theory of G
and that of a Borel subgroup B. Let T be a maximal torus of G contained in B. B
determines a set of positive roots in the root system of G with respect to T, and hence
gives rise to a dominance ordering on the set of weights ~characters) of T. So that
we deal with dominant rather than anti-dominant weights we will use the dominance
order obtained from the opposite Borel subgroup B°. The simple rational B-modules
are in one to one correspondence with the weights of T, and if k(X) is the simple
module associated with the weight X, then the induced module Indgk(X) is non-zero
if and only if X is a dominant weight. Moreover, in the latter case Indgk(X) has a
simple socle, and these socles form a complete set of simple rational G-modules.

Each rational B-module V determines a sheaf £(V) of 0 G/B-modules (where

0G/B denotes the structure sheaf of the quotient variety G/B), whose sheaf
cohomology coincides with the values on V of the right derived functors of induction:

H*(G/B,C(V)) * R*Indjj (V) ViaO.
The Kempf Vanishing Theorem [K] asserts that if A is a dominant weight then
H(G/B, £ (k(X))) -0  Vi>0;
in other words k(X) is right Ind§-acyclic (cf. [CPSK]) 1. This theorem is
fundamental for the cohomology theory of rational G-modules. It can be used to

show that if V is a rational G-module then

Vv ifi-0
R>Indg V .
ndg va 0 otherwise

1 In[K and [CPSK] G is assumed to be semisimple, but the passage to reductive G is
straightforward.
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so that Indg takes any B-injective resolution of V to a G-injective resolution of V
(see the proof of [CPSK; (2.1)] ). It follows that ExtQfV'.V)* Extjj(V',V) for all
rational G-modules V,V*and all i * 0. The Kempf Vanishing Theorem is also used in
[CPSK] to prove that for any dominant weights Xand p,

H* (G, Indg k(X)® Indg kftl)). 0 Vi>O0.

This fact is invoked in the production of good filtrations (see [Dol]), and thereby in
the description of the category of rational G-modules as a highest weight category
(see [CPS1], [CPS2]). Kempfs original proof is rather long and technical, and shorter
proofs have been given (see for example [An] and [H]). None of these are completely
representation-theoretic: they rely on techniques from sheaf cohomology theory. See

however the appendix to [D02].

Taking the foregoing as motivation we now concentrate on the case G«GLn(k).
ForfeDJ let S = S(G) be the Schur algebra associated with n and f (cf. [G]), so that
modS is the category of homogeneous polynomial representations of degree f of G.
The cohomology theory of S has received attention in recent years. It was proved
independently by Akin and Buchsbaum in [AB2], and by Donkin in [Do3], that S has
finite global dimension. In [AB2] this is accomplished by giving an inductive
procedure for the construction of finite projective resolutions of Weyl modules. In
[Do3] it is proved for a more general class of algebras (analogues of the Schur
algebras for arbitrary reductive groups), using the machinery of good filtrations.
These generalized Schur algebras (more precisely algebras Morita equivalent to them)
have also featured in the work of Cline, Parshall and Scott, as examples of quasi-
hereditary algebras (see [CPS1]). We remark that although the Kempf Vanishing
Theorem is used in proving that these algebras are quasi-hereditary, this is not
necessary for S: a short direct proof is given in [P]. 2

To each closed subgroup H of G there corresponds a subalgebra S(H) of S(G).
This thesis started as an attempt to see how far the relationship between G and a Borel
2 Thereis also a heredity chain for S implicit in the *fundamental nitration' of [DEP; &L take the
part of their filtration of the polynomial coordinate ring which is homogeneous of degree f, then apply
contravariant duality.
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subgroup B was reflected in the relationship between S(G) and the subalgebra S(B).
For computational simplicity we take B = B", the Borel subgroup of all lower
triangular matrices in G, and denote by B+ the opposite Borel subgroup consisting of
all upper triangular matrices. It is known that there is a correspondence between
simple S(G)-modules and induced simple S(B)-modules which parallels the case for

the rational categories. We askfurther whether thefollowing statements are true

(A)  The simple S(B)-module k(X) is Indg|gj-acyclic for all dominant weights X.

(B) The restriction functor mod S(G) -» mod S(B) preserves Ext groups.

One of the aims in [AB1] and [AB2] is the construction of explicit (finite) S(G)-
projective resolutions of Weyl modules. If (A) holds we have an alternative approach
to this problem: for dominant X find S(B+)-projective resolutions of the simple
modules k(X), then apply the functor S(°)®S(B+) * T*I® problem of constructing
such resolutions is considered in [Sa].

The study of (A) and (B) led naturally to a study of the subalgebras of S
associated with the parabolic subgroups of G containing B. The construction of
analogues of the Weyl modules for these parabolic Schur algebras suggested the
consideration of a more general type of subalgebra of S, obtained in the following
way: take a parabolic subgroup P containing B, and a second parabolic subgroup Q
containing the opposite Borel subgroup B+. P and Q can be specified by giving a pair
(£2,D of subsets of the set A of simple roots (see 11.1.2). We form the subalgebra
S(Q,r) - S(PnQ) of S associated with their intersection. Initially we were interested
only in the cases (Aft), (0.Q), (ilLA) and (G,0). S(ft,D was introduced for
notational convenience and to simplify proofs that were originally split into separate
cases. It was noticed however that almost all the results and proofs could be adapted
with only minor changes for general (0,0- The only place where significant extra
work was required was in proving that S(i2,r) is a quasi-hereditary algebra. In view
of the current interest in quasi-hereditary algebras (and the conceptual simplification
obtained by working within a uniform framework) it seemed worthwhile to treat the
general case.

In chapter n we give a treatment of the algebra S(Q,D- We define Weyl
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modules for S(i2,D by inducing simple modules from the subalgebra S(Q,0), and
show that they share many of the properties of the classical Weyl modules. We use
these Weyl modules to classify the simple modules in modS(fi.r). and we prove that
S(i2,n is a quasi-hereditary algebra by exhibiting an explicit heredity chain, much as
in [Pi. This implies in particular that S(f},0 has finite global dimension (see [CPSII,
[DR]). Put  =i2r»r. Generalizing (A) and (B) we ask whether the following
statements are true

(A%) The simple S(i2,0)-module k(X) is Indg”™-acyclic for all 4*-dominant

weights X. (See 1.1.4 for the definition of A-dominance.)

(B) If the restriction functor mod S(Q,r) -»mod S(fi,0) preserves Ext
groups. (The condition i22f is necessary - seein.3.5.)

Using the quasi-hereditary nature of S(£2,r) we show that (A’) is equivalent to
the vanishing of E x t* Q ~ (V(Q.r,X), k(n)) forall ~-dominant weights X, |i and all
i>0, where V(Q,r,X) denotes the Weyl module with highest weight X This
observation leads us in chapter Il to the investigation of the Weyl modules for
S(Q,r) as modules for the subalgebra S(Q,0). We show that to establish (BO it is

enough to show that when & 2r, Torj*""\s(£2,r). V(Q,r,X)) is zero for all -
dominant weights X and all i >0. Thus (A") and (B') are true iffor all "-dominant
weights X thefollowing statement is true

| Ex4(Qjo)(v (it,r X),k(IX» - 0 Vi>0,V"-dominant weights \l.
©
( Torf<£i[i)(S(n.n. V(OXA)>- o Vi>0.

Let Xbe a~-dominant weight. Using a couple of combinatorial lemmas on the

multiplication in S(iT,r) we produce a two-step S(Q,0)-projective presentation of
V(i2,r,X), which enables us to prove a first case of (AO, namely that

RAind3 68 KO - 0.
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In producing the presentation mentioned above we introduce submodules
Ma - Ma (£2,r,X) of S(iXDX. We go on to construct a projective resolution of the
module Siii.rA / Ma, which we use to prove (C) when X has a certain restricted

form. The relevant condition is

*{ah* 'V /\b* \b+1* 1} S\,

(See 1.1.3 for the definition of aj,.) If 'M£ 1 all 'F-dominant weights satisfy this
condition, so (A’) and (B") hold in this case. In particular (A) and (B) hold when
n=2. An interesting feature of the techniques used in chapter Il is that they apply
uniformly to both S(Q.O and S(fl,0).

In chapter HI we only get to grips fully with Weyl modules V(£2,r,X) such that
the kernel of the projection S(i2,0)X-* V(Q,r,X) 'involves no more than a single
root'. In chapter IV we give some partial results concerning cases where this kernel
involves more than one root In §1 we show that (C) holds for 'F-hook weights, the
appropriate generalization to our setting of hook partitions. We do this by
constructing explicit projective resolutions. In §2 we restrict ourselves to
characteristic zero and Q-A, and show that the resolutions of §1 are special cases of a
complex which exists for all X, and which is related to the Bernstein-Gelfand-
Gelfand resolution of the simple jfn(k)-module of highest weight X When ni3w e
show that this complex is exact, and so establish (A) and (B) for characteristic zero
and n S3. In §3 we derive a character formula for V(Q,r,X) which generalizes the
Jacobi-Trudi identity for Schur functions. This formula relates the character of
V(i2,T,X) to the characters of the projective modules Sifl.r')*1 for subsets T's'F.
When i2 * A the formula shows that the Euler characteristic of the complex of §2 is
zero. In §4 we show that (AO holds when n - 3.

For the most part we will not involve ourselves with the general representation
theory of algebraic groups, and our methods will be mainly elementary. We use the
basic representation theory of finite-dimensional algebras, some homological algebra,
and various combinatorial arguments. From time to time we will point out
connections between our situation and that for algebraic groups. For this purpose we
fix the following notation: as above B" and B+ denote the Borel subgroups of
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G =GLn(k) consisting respectively of all lower and all upper triangular matrices, and
T = B-riB+ denotes the maximal torus of diagonal matrices. We work over an

arbitrary infinite field k.

81 Combinatorial Preliminaries

In this section we introduce the basic combinatorial ideas and notation which

will be used throughout the work.

LLI Weights
A(n) =Z©—© Z (ncopies) is the set of weights «* We define orders on A(n):

X£ H ifXafpa Vaen (Xisa subweight of n).
XA ifXj+ e+ Xafp-i +w+Ha V ain (the dominance order).
Xc |ex H if X p and the first non-zero difference Xa-p a is negative

(the lexicographic order).

Weput X< P if X3 P and X*p; Xc p. if XCp and X* p;and XE~ P if

X<lex Hor X*p. £ and ~ are partial orders, i iex a total order. We have
Xc*i*X 3*i*X Slexn.
The lexicographic order behaves well with respect to addition, in the sense that
XS [I.VE |I'* X+VS  HM,
with equality on the right iff we have equality in both cases on the left.

The number |X| « Xj +ees + Xn is the degree of the weight X We will call Xa
polynomial weight if X 2 0, and for few0 we define

3 An) identifies with the set of weights of T. (Xj, - ,X,,) corresponding to the map T -» Kwhich
sends the matrix with diagonal entries tj, t2. —In 10(tj)"I'-(tn)™n. (cf. 1GL; (32)1)

6
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A(nf) = (Xe A(n)/ X2 0 and IX- f},

the set of polynomial weights of degreef. X is dominantif Xj £X2” -~ X n (see
also 1.1.4).

112 Indices

Let X be a finite subset of Dl We will denote by I(n,X) the set of all maps
X-»n- The elements of I(n,X) will be referred to as indices, andif iel(n,X), xeX we
will write ix for i(x). If Y is a subset of X we will sometimes refer to the values iy for
yeY as the entries of i in Y. Indices will be used to parameterize bases for certain
modules.

Any iel(n,X) has an associated weight X = wt(i) e A(n, IXI), defined by

Xa=#{xeX/ix=a} (aen).
Ifijel(n,X) we will write
if£j  ifixEjx VxeX.

We denote by P(X) the group of all permutations of X. P(X) acts on the right of
1(n,X) by

(in)x - ijt(x) >G1(n.X), 7teP(X), xeX.

ijel(n,X) lie in the same P(X)-orbit iff wt(i) - wt(j), in which case we write i~ j.
For each XeA(njXl) we define the canonical index of weight X to be the unique
index iel(n,X) of weight X which is non-decreasing (xy€ X, x £y * ix £ iy).
The various canonical indices form a set of orbit representatives for the P(X)-action
on X.

P(X) also acts on the set I(n,X) x I(n,X) by (ij)x - (ixjx). and we write
(ij) ~ 0'j") if (ij) and (j'j') lie in the same P(X)-orbit. Notice that the partial order
£ is compatible with this P(X)-action.

Each partition (Xj, X2.....Xr} of X determines aYoung subgroup

7
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P(Xt)x xP(Xr) £ P(X).
We adopt the following notation from [G2; §2): for each collection of indices
i(1), i(2), —i(r) g I(n,X), and each collection aj, — a-of elements of n, we define a

subset of X by:

Rai,a2,./ r(i(1),i(2),—i(r)) - {xcX/ i(p)x « ap V per}.
We put

pih) i) N1 pRHL. “frw
ai,-,ar

the Y oung subgroup of P(X) corresponding to the partition
( *10-“ e«'»
1fX - fwe will write I(n,f) for I(n,f) and P (0 for P(E).
1.1.3 Roots and the Weyl Group 4
ForaGndefine ea GA(n) by (e~ - Sab (bGn). Then ej, «s«.£, gA(n)c IR

are the standard basis vectors of IRn. Consider IRn as a Euclidean space with the usual
inner product given by (ea, £5) = 875. Then

<D =(£a- Ej,/ aben,atb}
is a root system of type An_j in R<I> and

A ={aa=fa-ea+l/ acn”"l}

a setof simple roots. We denote by d>+ the set of positive roots, i.e. the subset of <D
4 Asuitable reference for this subsection is the appendix to ().

8
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consisting of those roots which are expressible as non-negative integer combinations
of elements from A5. Denote by W the Weyl group of <D i.e. the group generated
by the reflections:

IfaeA, sa will be called a simple reflection. The length I(w) of weW is the length
of aminimal expression for w as a product of simple reflections. We record for future
use the following fact: if weW and aeA, then I(saw) - I(w) +1 iff w ‘ae<D+.

The action of P(n) on IRn by place permutations:

*(*le xXn>- K" XI1>)> «I-  xn>6|B" x 6P<n>

identifies P(n) with W. The reflection stta corresponds to the transposition (a a+1).

We will also need the so-called dot-action of W on IRn given by

wox - W(x+8)-8 weW, xelRn,

whereS is the weight (n-1,n-2, -, 0). Notice that if aeC>, (S,a) is the height of a,
i.e. the sum of the coefficients when a is expressed as a linear combination of simple
roots. In particular (5,a) >0 ifaed>+,and (8,a) = LifaeA.

W acts on 1(n,X) on the left by (wi)x - w(ix) (xeX), and this action commutes
with that of P(X) on the right

1.1.4 Parabolic subgroups of W
If 'PcA, denote by WH*jr the parabolic subgroup of W generated by the
reflections sa for ae'P. This is the Young subgroup of P(n) corresponding to the

partition:

5  <isthe root system of G with respect to the torus T. The positive roots 4>+ corresponding to the
simple roots A are those associated with the Borel subgroup B+ of upper triangular matrices. The
dominance order on A(n) as defined in 111 is that defined by this set of simple roots.

9



I: Introduction.  §1: Combinatorial Preliminaries.

{1.2,-,a1}, (ai+l, »=a2) ,-, {at+1,-,n}

of n, where {aa”".—» = AVP. We will refer to the W4/-orbits of n as 'F-blocks,

and write a~s,b if aand b are in the same 'F-block.
Ifijel(n,X) we write
i~*J ifix jx Vx€X.
The relation ~H is compatible with the action of P(X) on I(n,X) x I(n,X).

Dominance

A weight Xe A(n>is *-dominantif (X,a)£E0 VaeT. This is equivalent to
the condition wX~X V weWvj/, andto Xa”Xb Va,ben with a~qj>banda” b.
Each weight X is Wip-conjugate to exactly one ~-dominant weight.

Noting that if X, ne A(n,f), then X~ n iff n - Xis a sum of simple roots, we

define a partial order on A(n,f) by

X li ifp-Xisa sumofelements taken from 4/.

115 Tableaux and Standardness
For XeA(n,f) let [X] denote the shape of X, i.e. the subset

{(a.b)eN2/ aen.be{1,2, —Xa}}

of N2. A X-tableau is a map IX]-*N. We define a particular X-tableau
=T :[X-*f, by requiring that T be order-preserving when W2 is ordered
lexicographically. Since T is bijective, any other tableau factors uniquely through T.
so T sets up a bijection between 1(n,f) and the set of X-tableaux with values in n. If
ie I(n,f) we write Tj for the composite i-T :[X)-»f-»n.
We will follow the usual convention when drawing [X of applying a 90°
clockwise rotation to the standard representation of N2, so that the first coordinate

10
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increases from top to bottom and the second from left to right. We will represent a
tableau graphically by writing its values into the appropriate places in the diagram of

pa

Example
1fn=4, f-17, >.=(6,4,5,2) then T is depicted by:

1 2 3 45 6 |
7 8 9To-]
112 13 14 15 |
6 17

and if 1is the canonical index of weight X, Tj is depicted by:

W N e
A w e
w
wnN
P

For'FcA, ae N andS a'F-block of n we define via ITcertain subsets of f:

Ra -T (tX]n({a}xW)) (the rows)
Ca- T(Mn (Wx(a))) (the columns)
C=>a=T([Xn (Ex{a})) (the *F-columns).

Each of the collections of subsets {Ra}, {Ca}, (C=a} is a partition of f. We will
denote the Young subgroup of P(f) corresponding to the partition {Cr a} by CiX,*?).
These definitions depend upon the choice of the weight X, and if we want to stress
this, we will talk of X-rows etc..

Ifiel(n,X) and Y ¢ X we will say that i is standard (resp. semi-standard) on
Y if i is strictly increasing (resp. non-decreasing) when restricted to Y. If n is a set of
subsets of X we will say that i is standard (resp. semi-standard ) on n if it is so on
every Yen. Similarly we define reverse standard (resp. reverse semi-standard) by

ik
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requiring that i be strictly decreasing (resp. non-increasing) on the relevant subsets of
X. If X=f we will call i row standard, column standard, V-icolumn standard etc.
if it is so on the partitions of f given by the rows, columns, ~-columns resp..

If t: DU-» n is a X-tableau we define notions of standardness for t in terms of
the index t-(T”) *e I(n,f). We choose to make our definitions in this somewhat
contrary manner because for the most part we will be dealing with indices rather than
tableaux, and we usually want rows, columns etc. to refer to subsets of f not subsets

of DU

116 Lemma

Suppose iel(n.f) is *F-column standard.

(i) Suppose Xis 'F-dominant, and letj be the index obtained from i by permuting

the entries in each row so that they become semi-standard. Then j is ~-column

standard.

(ii))  Suppose X is 'F-anti-dominant, (i.e. Xai Xj, whenever a£ b and a, b are in

the same 'P-block), and letj be the index obtained from i by permuting the entries in

each row so that they become reverse semi-standard. Thenj is 'F-column standard.
Proof

(i) Since the problem is local to each 'F-block we may assume that ¥=A, and then

the resultis [De; Lemme 1]

(i) This follows either by modifying the proof for (i) or can be deduced from (i) in

the following manner. We may again assume that'F-A. Let w be the longest element

of W, i.e. the permutation which reverses the order of the elements in n, and let to be

the composite

U -+ WX » f
f [X]TfWX

where the middle map is given by (a,b) K(wa,b). Consider the map which takes an
index m to wmeo’l This takes X-column standard indices to wX-column standard
indices and takes reverse row semi-standard indices to row semi-standard indices.
Thus the index wico'lis column standard for the dominant weight wX, so by (i) the

6 Topass fromour situation to that of [Del rows and columns should be interchanged.

12
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index obtained by reordering its rows so that they become row semi-standard is
column standard for wA. However this index is wjco'l, and so j is ~.-column

standard. O

§2 The Schur Algebra

The Schur algebra was first investigated by Schur in his dissertation [SI in
which he classified the polynomial representations of GLn(C). In this section we
recall the definition of the Schur algebra as given in [Gil.

Let M =Mn(k) be the affine algebraic monoid of all n x n matrices over k,
and G = GL,j(k) the group of all invertible matrices in M. Let cajb (a,be IN) be the
map which sends a matrix meM to its (a,b)-coordinate mab. The coordinate ring
k[M] of M is a polynomial ring in the cab . For ijel(n,f) put

(amonomial of total degree f).
ClJ " J?f c'pip

Ifalsoi‘j'el(n,f) then cjj » cj'j' iff (ij) ~ (i'j")- The set
(Cjj ! fe No,ijel(n.D)
is a basis for k[M).

The monoid structure of M endows k[M] with the structure of a k-coalgebra,

with comultiplication

V k[M] - K[M] & K[M)
V(u)- X  ci.j®cj.i ifilel(n,0.
jel(nf)
and counit

e :k[Ml-»k
e(cij) - j.

13



I: Introduction. ~ §2: The Schur Algebra.

The category of k[M]-comodules is isomorphic to the category of rational
representations of M, and to the category of polynomial representations of G. (See
[01; 5U)

For feWQ denote by A = Af the subcoalgebra of k[M] consisting of those

polynomials in the ca ~ which are homogeneous of degree f. Af has basis:

(a) icy fijel(n,f)}.
We have
kIM]- © Af,
feWo

and this decomposition essentially reduces the representation theory of k[M] to that of
the finite dimensional coalgebras Af, and hence to that of their dual algebras. Thus,
let S = Sf be the dual algebra of Af. This is the Schur Algebra ( [GI; (2.3)]). We let

(b) ( /ijel(n,0)
be the basis of S dual to (a). We see that dim S =dim A = (n2+f _") «1f iGl(n,f) has
weightn we will write ~ for  and ¢~ forc”.

Using the duality of the bases (a), (b) and the comultiplication formula given
above, we deduce the multiplication formula of [GI; (2.3)]:

(©) tytun- X Z(ijlmaj)
(aj)

where
Z(ij,l,m,q,r) = »{ sel(n,f) / (ij) - (q.s) and (L, m) ~ (sj)},

and the summation is over a set of representatives (q,r) of the P(f)-orbits of

1(n,f) x I(n,f). In particular j s «u ifwt(i) - |i, and zero otherwise.

14



I: Introduction.  §2: The Schur Algebra.

A Relative Order on Indices

Forij,lel(n,f), define

-3 ifjIR.()~] IRO) Vaen'

i<lj if i+ j , and if the first non-zero difference

We will write i£ j if i<jj ori- j.Wehavei~jj iff - $j,i- Note that ~ is ot
a partial order on I(n,f), although it induces a total order on the set of equivalence

classes of the relation and hence on the set of basis elements withr ~ 1

15



11: Weyl Modules

In this chapter we define for each pair of subsets ii,r of the set of simple roots
A a subalgebra S(Q,r) of the Schur algebra S. S(Q,r) is (in a sense to be made
precise below) the ‘image’in S of a certain subgroup of GL"k). We define modules
V(Q.r,X) and D(ii,r,X.) for S(Q,D which will be referred to as Weyl and Schur
modules respectively. These modules play the part in the representation theory of
S(Q.D that the usual Weyl and Schur modules play in that of the Schur algebra. We
show that S(Q,D is a quasi-hereditary algebra, and hence that its module category is
a highest weight category in the sense of [CPS2]. We show that V(Q,r,A.) and
D(i2,r,X) are the modules V(X) and A(X) of [CPS2] for this highest weight category.
When Q=r=A we recover the classical case.

We will be considering the algebra S(i2,0) and its relationship to S(i2,r). For
each result in this context there is a corresponding result about S(0,r) which we will
not write down but which we may use subsequently. The formulation of these
transposed results is a formal exercise which we leave to the reader.

We warn the reader that this chapter is not self-contained: at the start of §3 we
quote a result on the dimension of V(Q,r,X) whose proof we defer until the next
chapter. We do this because the required result will be obtained as part of a general
framework which is conceptually distinct from the ideas of this chapter.

81 The Algebra S(Q,D

Firstly we make some general comments about sub-monoids of M and
subalgebras of S. If X is a subset of M, denote by k[X] the quotient of k[M] by the
ideal of functions which vanish on X, i.e. k{X) = k[X] is the coordinate ring of the
Zariski closure X of X. Denote by A(X) the image of A = Af under the canonical
map Kk[M] -* kIX), and by S(X) its dual space. The canonical map S(X)-»S

identifies S(X) with k-e(X), where e is the evaluation map

16



1: Weyl Modules.  §1: The Algebra S(£J,r)-

eM-»S
¢(m)(c) =c(m) meM.ceA.

11.11 Lemma
If X,Y GM we have

S(X) - S(X)
and
S(XY) - S(X)S(Y).0

If X is a sub-monoid of M, then A(X) is a quotient coalgebra of A and S(X) a
subalgebra of S. In this case A(X) is an (S(X),S(X))-bimodule, and we will write the

associated actions as:
S(X)x A(X)-*A(X)
(5.c)» S°c - (id®lj)(Vc)

A(X)XS(X)-»A(X)
(c,£)h col; = (E®id)(Vc).

11.1.2 The Definition of S(Q,r)
Take subsets G,rS A, which will be fixed henceforth (unless stated

otherwise), and define the following subsetof nx n :

a~nb ifafh

[Gill- { (ab)e nx n/ a=rb if atb

17



11: Weyl Modules.  §1: The Algebra S(il,T).

[Qin can be represented as the non-shaded part of a diagram of the form:

Q- blocks

For Q ,r £ A define aclosed subgroup Pqj- of G by

Pii,r =tgeG / Sa.b“ 0 unless @®)e IQin }.

Schematically Pq p consists of all matrices in G which are zero in the shaded region
of the diagram above. The ~ are the parabolic subgroups of G containing the

Borel subgroup B+ =P~  whilstthe PAp A~ 16P313" * 0 subgroups containing

b-«pa,0 Wchavepnx - pg,an pAr-

Write A(QX) for A(Pflr)and S(QX) for S(Pfl r). The category mod S(Q,r) is
isomorphic to the category of finite-dimensional representations of the group P~ p
which are polynomial and homogeneous of degree f. (cf. [Gl; 81, (2.2)].)

18



1: Weyl Modules. §1: The Algebra S(il.O-

1. 13 Lemma S(QX) - S(Q.,0)S(0,r).
Proof
This will follow from 11.1.I once we know that Pci,0p0,Y is a Zariski dense subset

ofPqg r.InfactPn,0p0,r is the sct of matnees in pii,r whose leading minors are
all non-zero. O

Remarks

()  When £2=T=A the essential fact here is the density in GLn of the 'Big Cell', see
e.g. [St; Theorem 7] for a more general formulation of this result.

(ii)  This lemma can also be proved directly within S(Q,r) by a simple modification
of [G2; §4] which treats the case Cl #T = A

EL1.4 Bases for A(Q,r)and S(Q,D
S(Q.r) has basis:

(a) ($ij/ ij61(n.f), (pjp)e Win Ve f).

Hoping that no confusion will arise, we will denote the image of Cjj in A(Q.r) by
the same symbol. Then A(QX) has basis:

(b) icy / ijel(n,0, (ipjp) e [GID Vepe f},

and this set consists of precisely those cjj which are non-zero in A(Q,r). These facts
follow from the general remarks at the beginning of §1 since the ideal of functions
vanishing on Pq p is generated by the monomials ca j, with (a,b) £ [iilH. The bases
(a) and (b) are dual to one another, and the number of elements in each is
j#[«in+f-1]

11.1.5 Contravariant Duality
We will need a generalization of the notion of contravariant duality for the
Schur algebra as set out in [GI; (2.7)1. Inour case we will obtain a duality between the
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1: Weyl Modules.  §1: The Algebra S(il.r)-

categories mod S(£2,D and mod S(I\Q). LetJ be the algebra anti-automorphism of S
induced by transposition in M, i.e. J(£jj) m «M- I1f U is a subalgebra of S, the algebra
ami-isomorphism J:U -+ J(U) identifies U°P with J(U), and hence gives rise to an

isomorphism of module categories

J :mod'U -» mod J(U)
Vh VJ (Ve modU).

Composing this with the k-dual functor Homk( Jc): mod U -» mod'U, we get the

contravariant duality functor:

mod U -¢ mod J(U)
Vk V°® (V€ modU).

This is an anti-equivalence of categories, and the composite

mod U -* mod J(U)-» mod J*(U) = mod U

is isomorphic to the identity functor.
If Vemod U and V'emod J(U), a contravariantform is a bilinear map

< ,>:Vx V'-*k
satisfying
<uv,v*> - <vj(u)v'> VueU,veV,v'eV'

The natural isomorphism Homjo(V®V", k) * Homj.(V, Homy.(V', k)) takes the set of
contravariant forms onto Homu(V, (V')°), and under this map, non-singular forms

correspond to isomorphisms.

When U-S(QX), we have J(U) - S(r,Q), and there is a non-singular contravariant

form

20



1l: Weyl Modules. ~ §1: The Algebra S(fl.r).
<, >:S(ElL,r) XA(T,Q)-»k
<$.c>«J($)(c).
Thus S (an mA(T,0)°as S(Q,r)-modulcs.
11.1.6 Weight Spaces
$(0,0) is a basic semisimple k-algebra. For we have

$(00)- ® k
XeA(n.f)

and “5p. X" VM-e *CnAsoS(0,0)a kN with N- #A(nJ).

For Xe A(n(f) define X e Homk(S, k) to be evaluation on the element c® of A.
Denote by k(X) the simple S(0,0)-module corresponding to the weight X. Thus
k(X) is the vector space k, with S(0,0) acting by

VAe $(0,0).

{k(A))xeA(n,f)isafull  ofsimPle S(0,0)-modules.

1fV e mod S(0,0) and Xe A(n,f) we write *-Vfor which is the sum of all ,he
submodules of V which are isomorphic to k(X). We say that X is a weight of V if
is non-zero. ~-V is the X-weight space of V 7, and its elements are called X-

weight vectors. We have

V- ® *V.
XcA(n,f)
1f V € mod'S(0,0), is defined analogously, and similar remarks apply.

Any VGmodS(Q.r) is an S(0,0)-module via the inclusion S(0,0) -* S(fl,r).

7 AnyS(0,0)-module is a rational module forthe torus T, and ~ asdefined here is the X-weight
space in the usual sense for algebraic groups, (cf. IGL; (32)1)
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1: Weyl Modules.  §1: The AlgebraS(n.O-

so we can talk about its weights. Note that the weights of V and V ° coincide.

n.1.7 Lemma $itie S(£2,0)  wt(i) ~ wi(l).
Proof
~Nij e S(fl,0) iff i~ 1and i 1 Put \i - wt(i). X- wt(l). If H - {a, a+1,e=}is an

ft-block, and be E, then Rbc(i,l) * 0 impliesthata£ c £b. Thus foreach E

NatHa+l* - +/7b * Xa+Xa+1+ ~ +Xb Vb€ E-
and
E_I"b- Z xb-
beE beS

These conditions are easily checked to be equivalent to p X. 0

0.1.8 Proposition

(i) 1iS(i2,0)" is zero unless 1L~ g X.

(i)  dimxS(£2,0)X- L

(iiiy rad S(Q,0)* © HS(0.0)*.
H<X

(iv)  S(ii,0) / rad S(C2.0) * S(0,0) as algebras.
(v)  (kX)}€A(n f) isa full setof simple S(Q.0)-modules, where the action of
S(£2,0) on k(X) is again given by X.
(vi) S(Q,0)" is the S(Q,0)-projective cover of k(X).
Proof
(i)  follows from n.l1.7. (ii) is clear. By (i) )? HS(Q,0)* is a nilpotent ideal of
p<

S(Q.0), whose quotient is isomorphic to the semisimple algebra S(0,0) by (ii). This

implies (iii). (iv) and (v). The decomposition

S(Q.0)- 0 S(il.0)X
X

shows that S(Q,0)" is projective, and from (ii) and (iii) we infer that its head is k(X),
giving (vi). O
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1I: Weyl Modules.  fi2: The Modules V(Q.r.X) and D (ii.r,X).

1I. 1.9 Wxp as a subgroup of S('F,'F).

Take 'PeA. We obtain an image of Wvj/ in the algebra S(4VP) by sending
weWvj/ to e(M(w)), where M(w) is the permutation matrix given by
M(w)a b = Sa wb (a,ben), and e is the evaluation map defined at the start of §1. The
representation of W\j/ on SOP,*P) by right multiplication obtained in this way is easily
seen to be faithful 8, so in fact we have an embedding of Wvj/ in SOP,40, which we
will sometimes view as an identification.

Lemma
IfweW, ijel(n.f), then
(0 w-5ij = £wij-
(i>  $jj-w -
(i)

Proof

(wnij)(clm) “ S clj (™ (wArijrer,mh
rel(n,f)
=7ij(cwdl,nP “ Awijrcl,m”

This establishes (i). (ii) is similar, and (iii) follows from (i) and (ii). O

We see from the lemma that if VemodS(4VP), weWvj/, X.eA(n,f) then the
action of w on V maps *V onto W'V, so the set of weights of any SOP,40-module is
closed to the action of Wnj/ on A(n,f). (cf. [GI; (3.3a)).)

§2: The Modules V(i2,D and D(Q.T)

In this section we define modules V (fI,\X) and D(i2,I\X), which are analogues
for the algebra S(Q,n of the Weyl and Schur modules for the classical Schur algebra.
We work out some preliminary properties of V(Q,r,X) and D(ft,r,A.) which will

8 IfweWvp.aen.thenw " (a)j(a) - "i(Wa)4(a)-wherc for” n . i(b) denotes the index all of whose
entries are equal to b.
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1: Weyl Modules.  §2: The Modules V(£2J\X) and EXn.r.A).

enable us to classify the simple modules for S(if,r>-

n.2.1 Definition
For the rest of this chapter fix Xe A(n,f), and define modules for S(Q,D by

V(@Q.rX) - S(Q'”sé?n k(X),

D(Q.N\X) - HomS(n>ii)(S(Q,n . k(X)).

V(Q,rA) and D(Q,r,X) are respectively the Weyl module and the Schur module
associated with the weight X When Q=T=A and Xis dominant this definition agrees
with the usual one 9.

We will often use without further comment the natural isomorphism of k-
spaces A (fl,n * Hom|(S(Q,r). k) to identify D(Q,r.X) with a submodule of A(£2,D.

11.2.2 Lemma
Let K be the kernel of the map

s(an-»v(arA)

Then if ce A(I\i2) we have <K,c> - 0 iffceD(r,QA). Thus < , > induces a non-
singular contravariant form V(Q,r,X) x D(T,12,X)-*k, which we will denote by the
same symbol. In particular V(i2,r,X) * D(r,Q,X)°.

Proof
Put Ka = ( ceA(r.Q) / <K,c> - 0 }. By the definition of V(Q,rX) =

S(Q.n ¥ k(X)asacertain quotient of S(Q,n ® k(X), K is S(ii,r)-gcnerated by
S(,r k
the set

9 n.2.6and11.3.2 together show that D(AAX) is the module D*  of IGfi 64 1 D.2.2 shows that
V(A.AA) is the contravariam dual of D{AAA), hence it is isomorphic to the module VA k of 651
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11: Weyl Modules.  §2: The Modules V (QJ\X) and D(TX.X).

(C-X(C>1/Ce S(O,n}

Thereforece K1
iff <c(c-£E<cm).c>- 0 v c6S(Q.n,c«s(0,n
iff ¢(3(C)J(0) - ¢(C)c(I(O) VCeS(n,n.CeS(0,n
iff ¢(C'C0- MC')-¢(C') V C'eS(r.if), C'eS(T,0)
iff ce D(r,QA).O

Remark
The isomorphism V(£2,r,X) a D(r,Q,X)0 can also be obtained by noting that

there is an isomorphism of functors
Homs(r,0)<s(r fI> >m(S@ n s(®r) ?°)°

This can be seen by using the fact that the functors S(ii,T) ® and
s(0,n

Homs(p 0)(S(r,iJ), ) are respectively the left and right adjoints to the restriction
functors modS(Q,D -* modS(0,D and modS(T,ii) -» modS(r,0).

n.2.3 Bideterminants

Henceforth ‘T will denote the intersection Qo T 10. We let 1be the canonical
index of weight X, and use the notation of 1.1.5 for our fixed weight X In 11.2.6 we
introduce a submodule D'(T,Q,X) of A(T,Q) as a generalization of the module D j~
of [GI; &). D'(r,i2,X) is defined as the k-span of certain elements which we might
call 'F-bideterminants. Our aim in introducing D'(TA X)) is to provide a lower bound
on the dimensions of V(Q,I\X) and D(I\fl,X) when X is *F-dominant. This estimate
will later be refined to an equality, and it will follow that in fact D(T,Q,X) and
D'(T,Q,X) are identical for 'F-dominant X This is not the case for non-dominant X —

see the remark following n.2.7.

Bearing in mind our convention about Gjj e A (I\fl) (see 11.1.4), define

10 Pwy” isthe largest standard Levi subgroup contained in Pq j'.
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11: Weyl Modules.  §2: The Modules V(0J\X) and D(ilJ',X)

X s8n(*>cixj eA(rni).
neC(X,'F)

Itis perhaps worth emphasizing thatd|j dependson Q.T and

The following results are easily verified:
n.2.4 Lemma

(i) Vvdjj = X AMm®cmj = ci,m®"mj-

= X
mel(n,0 mel(n,f)

(i) If 7teC(X,'I") thendj”j =d j =sgn(jt)-djj.
(iii)  Ifeitheriorj hasrepeated entries in some 'F-column thendjj = 0.0

We will also need:
n.2.5 Lemma
Suppose i,mel(n,f) with 1 i.Then
(0] Ire—0 i V 7ceC(VF).
(i)  1fdi>m,cm i are both non-zero, then 1 m.
(iii)  Ifci>m,djn j are both non-zero, then 1~n m.
Proof
Take 7ieC(X,'F) and <pef. By definition of 1 we have lit<p Ip ~n i9, and so (i)
follows. Now suppose that the hypotheses of (ii) hold, and that KEC(X,\F) has been
chosen so that ~ m is non-zero. Consider cases:
If Iftg”niq, then 17 lify ~n m”, forcAm t Oimplies (In*, m"efTI1Q].
A m<p>g> tlen m(p*<p ~n
If then In,p~Q i¢ imphes 1 Ut<p ~n ny
The proof of (iii) is similar. O
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11: Weyl Modules.  §2: The Modules V(£2\X.) and D(£i,,X).

n.2.6 Definition
Define D’(r,12,X) to be the k-span of the set {djj / 1~ni}. We see from
11.2.4(i) and n.2.5(ii) that D'(r,Q,X) is an S(T,Q)-submodule of A(T,i2)".

n.2.7 Proposition
If Xis 4*-dominant then D'(r,«A) £ D(r,i2,X).
Proof
Letc6A(T,0). If C«S(T,0), CeS(r,fl) then c«£) - (C®G)(VC) - (coG)($). sO

ceD<r,iU) iff co; - X(0-c v ¢€ S(r,0>.
S(T,0) has basis {£rs / r2s and r ~r s}, so it suffices to check that if 1—0 i then

® dli"ix - dLi-
(i) dhLi*rrs “0 ifrA Sr~r s, and (r,s) + (U)-

Sinced|jj6 A (T ,0)\ (i) is clear. By n.2.4(i) we have
dlLi°Er,s = X Arshcl,mAdm,i’
™
which is zero unless r ~ 1 Thus suppose r-1 > s, and, for a contradiction, that there is
some mel(n.f) with both 5itS(ci>m) and dj* j non-zero. Then 1>m and 1~r m. By
n.2.5(iii) we also have I ~n m, and since the 4*-blocks are simply the various

intersections of the Q-blocks with the V-blocks, we have 1 m. Choose ae Wto be

minimal such that
m(<i(p=a f°r some geRa.

Let Cj, be the column containing 9, and put2 - W»j/-a. Then m”eZ sincel m.
The 4/- dominance of Ximplies that Rm” n Cc j, is non-empty, say -

{9%. Now9,9'eC?”, 9 ~ 9', and, by minimality of a, m™ - I,p' = mp. Thus m has
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1l: Weyl Modules.  §2: The Modules V(i2r,A) and D(Qr.X).

repeated entries in C=,b» so by H.2.4(iii), dm> = 0, contrary to assumption. O

Remark

This proposition is false for weights X which are not 'P-dominant. We will see
in 11.2.12 that D(r,11,X) is non-zero iff X is 'P-dominant. However D'(r,Q,X) is
always non-zero; in fact D'(r,i2,X) * D'(T,i2,p) whenever X and p lie in the same
Wvij/-orbit. To see this take weW \p and let toeP (f) be the composite

f X > [WXl > f,
jwX

where the middle map is given by (a,b) h+(wa.b). Then to maps the X-*P-columns to
the wX-'"P-columns, and hence C(wX .‘P) m coC(X,*P)to'L The map Cj j»»cwij j is an
S(r,Q)-isomorphism A(r,Q)*-> A(TQ)W In fact it maps D'(T,Q,X) onto
D'CT.Q.wX), for wicolis canonical of weight wX, 1~n iiffwlto'l~n ito'l and

sjt™) 3 A

Wtinno iteC(wX.'P)

which is the image of d"..

n.2.8 Standardness of

We will say that a basis element j is Y-standardif j =£jj for some j
which is 'P-column standard. Suppose that X is 'P-dominant and letj be the index
obtained from i by reordering the rows so that they become semi-standard. Then by
1.1.6, iis'P-standard iffj is *P-column standard.
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II: Weyl Modules. #2: The Modules V (ftXA) and DiOJ-.X).

n.2.9 Lemma
Suppose that £eS(i2,0)” is a linear combination of ~-standard Then

<$,D'(r,n,X)>- 0 ¢ $-0.

Proof
Firstly we show that if jel(n.f) is *F-column standard, then

() dlj = Clj + alinearcombination of termsc j» with m>"j.

Suppose 1~ 7teC(X,\P), and put m = j7t. Choose ae n to be minimal with 7t(Ra) £ Ra,
and letS =W ya. Let a=wt(j |R?), p=wt( m |R”"). We must show that a>jex P.

Suppose that peRar>Cb (ben) and 7tp*Ra. Since p < 7tpeCz;ib, and j is ~-column
standard, jp<jjtp = mp. Thus if we choose p so that Jtp*Ra, and jp is as small as

possible, we have

3¢ Vccjp.

Jp >%p'
as required.

Now suppose that 0 * £eS(i2,0)” is a linear combination of 'F-standard
and write
5- X a(*>ti(.),i (0 *a(a)ek),

with the i(a) 'F-column standard, and ordered so that a<b * i(a) >ji(b). Since
£eS(i2,0) we havei(a) ~n Lsodj~eD'CTEIX)- Consider

WM

x> - <4i(»),i. «*u<«> - AALE(E) <Li(l)it)-
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1: Weyl Modules. §2: The Modules V(£2',X) and D(fi,r.X).

Ifcjj appears with non-zero coefficientin dj”j) we have
IR (O G}

by (a). If a> 1 we have strict inequality, so x(a) = 0. If a=1, we again get strict
inequality unless j=i(l). By (a) appears with coefficient 1 in S0
x(l) = Land

<S.dij(i)>- Z a(@x(@)

The<¢.DarnX)>*0.0

11.2.10  Proposition
Suppose that X is *F-dominant. Then the images of the 'F-standard £yeS(i2,f0"
under the map

h:s(an-»v(Q,r,x)

are linearly independent. In particular, since £iti is'P-standard V(i2,r,X) 40.

Proof
If £eS(ii,0)" is a linear combination of 'P-standard with h(£) =0, we have
<$,D(T,QX)>- Oby U.2.2andn.2.7. Thus£- 0 by 0.2.9.a

We can now classify the simple S(i2,r)-modules.

11.2.11  Theorem

(i)  V(i2rX)t 0 iff Xis'P-dominant.

Suppose that Xis 'P-dominant Then

(ii)  S(i2,0)"is the S(i2,0)-projective cover of V(i2,r,X).

(iii)  V(i2,rA) has simple S(Q,r)-head, which we will denote L (i2,1\X).
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11: Weyl Modules.  §2: The Modules V(fl,r,X) and D(ii.r.X).

(iv) Ifnisaweightof V(Q,rX) or L(Q,T,X) then [i X, and
dim "V(Q,rA) - dim *L(Q,r,X) - 1

(v)  The L(Q,r,X) for Xranging over all *~-dominant weights form a complete set
of pairwise non-isomorphic simple S(ii,r)-modules. Each L(£irX) is
absolutely irreducible.

Proof

If X is ~-dominant, V(Q,r,X) ~ 0 by 11.2.10. Suppose that V (ii,r,X)*0. Since

S(«.D =5(i2,0)S(0,D by 11.1.3, V(Q,I\X) is S(Q,0)-generated by the X-weight

vector 1®1, and hence the composite map

S(Q.0*--»S (an -»V(Q,r,X)

is an epimorphism. S(Q,0)" is an indecomposable projective in mod S(Q,0) by
n.1.8, so (ii) holds. In particular V(Q,r,X) has simple S(0O,0)-head, so its S(Q,0-
head is certainly simple, giving (iii). Statement (iv) about weights follows from 11.1.8.
The group Wtp acts on the weights of any S(Q,0-module as in I1.1.9, so we see that

WXAX VweWyj/,

and hence X is '{"-dominant, completing the proof of (i). The L(i2,r,X) are certainly
pairwise non-isomorphic since by (iv) they have different weight structures. By (ii)
L(i2,r,X) is generated by the one-dimensional weight space ~L(i2,r,X). Any
endomorphism  of L(i}t\X) maps this weight space into itself so
Ends”~p) L(ii»n\X) ak, i.e. L(Q,r,X) is absolutely irreducible. Finally, suppose
that VemodS(il.r) is simple. Then

H°mS(0,D(k(X), V) 0 for some weight X

By adjointness
Hom<j(Q@)(V(i2,r,X),V) 0,
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so V a L(i2,1\X) by simplicity of \, proving (v). O

Remarks

(i)  The Weyl modules V(Q,AX) for the parabolic Schur algebra S(Q,A) are
considered in [Sal. There n.2.11(i) is proved for V/(fi,A,X) by analysing the restriction
of V(E2,AX) to the algebra S(i2,£2), and thereby reducing the problem to the
corresponding theorem for the classical situation. The above approach to the simple
modules appears in [Sal for the case S(G) m S(AA).

(ii)  The proof of the last part of the theorem shows that the S(0,D-socle of any
S(Q,0-module contains only *-dominant weights.

(iii) ~ Since contravariant duality preserves weights

UQXXP * Low),

because both are simple modules with highest weight X. We can thus strengthen part
(iv) of the theorem: if p is a weight of L(Q,I\X) then p X

By applying contravariant duality to 11.2.11 we can read off:

n.2.12 Theorem

(i) D(ri2X) o0 iff Xis'F-dominant.

Suppose that X is ‘F-dominant. Then

(i) A(0,C2)"is the S(0,Q)-injective hull of D(r,ft,X).

(iiiy  D(r,i2,X) has simple socle L(r,Q,X).

(iv) Ifpisaweightof D(r,Q,X) then p X,anddim AD(r,i2,X) m 1.0

U.2.13 Characterizations of Weyl Modules 11

Let X be a 'F-dominant weight. We close this section with a couple of
characterizations of the module V(Q,r,X). By (the transposed version of) 11.1.8 the
simple S(0,D-module k(X) has a projective presentation of the form

**  Similar characterizations apply to the Schur modules.

32



1: Weyl Modules.  §2: The Modules V(£2,r,\) and D(i2,r,X).

\]\]. S(0.r)ii<c) >scad* -»kft) o,
C

where the weights n(c) all satisfy A<n(c)12 Applying the right exact functor
S(Q,r) & we geta presentation of V(Q,r,A):
S(0.r>

@) 11 scQ.r*W -»scaryl-»vcar.w o
C

If weW\j/, multiplication on the right by w'l gives an isomorphism
S(Q,D™a S(Q,DwK so we may suppose that the weights |i(c) appearing in (a) are
all 'F-dominant. This does not change the fact that A < ii(c) for all c.

Using (a) and induction on the dominance order, we see that if L(£2,r,n)
appears in the head of S (ft, 0\ then L (ii,r,A) itself appears with multiplicity
one. Therefore by (a) V(i2,r,X) is the unique largest quotient of S(i2,r)* all of
whose weights are dominated by X.

If U £ U are k-algebras we will say that Vemod U extends to a U'-module if
there is a U'-module structure on V whose restriction to U is the given U-module

structure. Suppose T ‘cr. The obvious map

V(Q.NA)-S(0On ® k(A)-»S(iln ® K(A)- V(Q.rA)
s(0,n s(0.n

is an epi by 11.1.3. Using the characterization of V(Q,r,A) just given, we see that
V(ar,X) is the unique largest quotient of V(£2,r\X) which extends to an S (ii,r)-
module. In fact there is a unique extension of the S(f2,r')-module V(ii,\A) to an
S(ii,r)-module, since the restriction of V(Q,r,A) to S(Q,F) determines its weight

structure and the fact that it is generated by a A-weight vector. Taking T'=0 shows
that V(Q,r,A) is the largest quotient of S(Q,0)” which extends to an S(i2,r)-module.

12 Theweights p(c) are not necessarily distinct for distinct c.
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§3: S(ii,r) as a Quasi-Hereditary Algebra

In 11.2.10 we showed that if X is 'F-dominant the images of the 'F-standard
are linearly independent in V(£2,r,X). In the next chapter (see 111.3.1)

we will prove the following result:

n.3.1 Theorem
Suppose that X is 'F-dominant. Then the images of the 'F-standard i ]GS(i2,0)*

under the map

s(an-*v(Q,rA)

form a basis of V(£2,r,X). In particular the dimension of V(Q,r,X) is independent of
the ground field k.

We deduce immediately the following:
n.3.2 Corollary
Suppose X is 'F-dominant, and let 1 be the canonical index of weight X. Then
D’(T,i2,X) - D(r,CU), and this module has a basis consisting of the elements dj j for
row semi-standard, 'F-column standard indices i with i £ 1and i 1

Proof
Let X be the subspace of D'(r,Q,X) £ D(I\Q,X) spanned by the dy satisfying the
above conditions. HI.3.1 together with the proof of I1.2.9 shows that the map
V(Q,r,X) »Hom"X, k) induced by the contravariant form

<,>:V(Q,rX) x D(r.Q,X)-+k
is injective. Hence
dim V(Q,n\X) £ dim X Zdim D' (r.fU) £ dim D(r.fi,X).
Since V(Q,r,X) and D(r,Q,X) are contravariant duals by n.2.2 we have equality
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throughout in the above expression, and the result follows. O

We will now assume theorem 11.3.1 to be proved and explore some of the
consequences for the algebra S(Q,0. We reassure the reader that nothing proved in
this section will be used in the proofof 11.3.1! Our main aim is to show that S(fi,r) is
a quasi-hereditary algebra in the sense of [Sc].

n.3.3 Quasi-Hereditary Algebras
We recall some definitions (see [DR]). Let U be a finite-dimensional k-algebra.
An ideal J of U is called a heredity ideal if

(i)  Jisprojective as a U-module;
(i) J2-3;
(iii)  J-radu-J=0.

A heredity chain is a sequence
0-JcJiicizc-c 1fu
of ideals such that for each aet Ja/ Ja_i isa heredity ideal in U/ Ja_j. An algebra
U is called a quasi-hereditary algebra if it possesses a heredity chain.
We refer to [DR] for the following: any idempotent ideal J in a finite-
dimensional algebra U is idempotently generated, i.e. there is some idempotent eeU

with J - UeU; if (iii) above holds for such an ideal then (i) is equivalent to the

condition

(i) the multiplication map Ue 0 eU-»UeU - J is bijective.

We now adapt the proof in [P; §4] that the classical Schur algebra is quasi-
hereditary. Order the 4/-dominant weights in A(n,f) as X(I), X(2), s, X,(t), in such a
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way that X(a) * X(b) implies a £ b. Let ea be the idempotent "X (I)+ “*+ ~X.(a) of
$(0,0), and letJabe the ideal of S(il,r) generated by ea. We will show that:

n.3.4 Theorem
0-J0CJjCcli2C- CJ,«S(OH

is a heredity chain in S(i2,0, so S(Q,0 is a quasi hereditary algebra. Thus S(Q,D
has finite global dimension (see e.g. [DR]). For each aet the section Ja/ Ja_j is
isomorphic as an (S(i2,r),S(fl,r))-bimodule to V(ii,r,X(a)) ® V(F,Q.X())J ,

where J is the transposition functor of I1. 1.5.

n.3.5 Organization of the proofofn.3.4
The proof of n.3.4 will be accomplished in several stages, which we outline
here. In n.3.6 we follow [P] and show that there is an epimorphism

V(QXAW)®V(r.£U(a))d Ja/lJa_,.
thereby reducing the problem to a dimension formula:

(a) dimS(fl.r) - X dim V(Q,r,X)dim V(r,Q,X).
all 'F-dominant
weights X

By n.3.1 we may suppose that the characteristic of k is zero. In H.3.7 we show that in
characteristic zero the algebra S('F,'F) is semisimple, and use this fact in 11.3.8 to
establish (a) in the special case when O sr. In n.3.9-n.3.13 we use a combinatoric
argument to extend (a) to the general case.2

13 In fact V(TALX)J « k(x)S(£®1.0) S(ilT), so regarding k(X) as an (S(0JI,S(£1.0»-bimodule in
the obvious way we have

inl i ® ke, ® .
Tal 33 1" 5% g5t 0 sro ms("x)
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n.3.6 Reduction to the Dimension Formula

Put Sa =S(Q,D/ Ja- To prove n.3.4 we show that for each ae t, conditions
(i").(ii) and (iii) of H.3.3 hold for the ideal Ja/ Ja_j of Sa_j. (ii) is immediate from
the definition of Ja. Asin 11.2.13 V/(i2,r,X(a)) has a presentation

@ 11 SiQ.nWc)-»S(Q,r/W -, V(0,r.X(a)) -, 0.
c

where the weights p(c) are ~-dominant and strictly dominate X,(a).

A module VemodS(i2,H lies in mod Sa_j iff its weight spaces for the weights
X(I), X(2), — X(a-1) are all zero. Since all the weights of the simple module
L(£2,r,p) are dominated by p, V lies in mod Sa_j iff its composition factors are all of
the form L(i2,r,X(b)) for b £ a. In particular V (fi,rA(a)) e mod Sa_j. The functor
Sg_ll @8“ takes any S(i2,r)-module to its largest quotient lying in mod Sa_i .

We have

which is zero whenever p = X(b) with b<a, so applying Sa_i S(g ) to the
T

sequence (a) gives an isomorphism
(b) V(«.rA(a)) » Sa_réa,

where ea denotes theimage of ea in Sa_j 14.
Interchanging fJ and 1\ and applying the transposition functor J gives an

isomorphism
[ V(T.iU(a))d * ca-Sa_!.

We can now prove that condition (iii) of 11.3.3 holds. We must show that

14 Since V(ii,r,X(a)) is indecomposable, 5a is a primitive idempotent and V/(£i,r,X(a)) is the
projective cover of L(fi,r,X(a)) in the category mod S,,_j.
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ea-rad Sa_i-ea = 0, or equivalently that ea-Sa_i-eaa Ends”~”~a’Sa-l) is a semi-
simple k-algebra. This is certainly true since by 11.2.11 (using the same argument
which shows that L(G,r,X) is absolutely irreducible) it is isomorphic to k.

To complete the proof of 11.3.4 we must establish O'), i.e. that the epimorphism

(d) sa-lsa ® sasa-l * sa-l*asa-l

given by multiplication is an isomorphism. Using (b), (c) and (d) we have

(e) dimS(Q.0 £ X dim V(fl,r,X>dim V (I\fi,X),
all 'P-dominant
weights X

and (d) is an isomorphism for all ae t iff (e) is an equality. This reduces the problem
to proving the identity 11.3.5(a).

Nn.3.7 Theorem
Ifchar(k) = 0, or char(k) > f then SOF.'F) is a semisimple k-algebra.

Proof
The following proof is a simple adaptation of the proof for the classical case given in
[G3; Theorem VII]. Let E be an n-dimensional k-space with basis ej, @>, en. E
becomes a G-module in the usual way:

a-1

E®f is a homogeneous polynomial representation of G of degree f when G acts
‘diagonally’ and hence an S - Sf-module. E®f has a basis tej} iel(n.f)* wherc
ej - €j2® « ® ej”, and we will denote by Ey the element of Endk(E®f) whose
matrix with respect to this basis has a 1in the (ij) position and zeroes elsewhere. If to
isa P(f)-orbitof I(n,f) x I(n,f), put0~ = X  ~j-
(ij)€to

Let y:S -»Endjo(E®@") be the representation afforded by the S-module E®". It

is shown in [GI; (2.6¢c)l that \j/ is a faithful representation of S and that if
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to- (ij) P(f). the image of j under\j/ is 0”. The image U of S(4VF) under \jt has a
basis consisting of the 0 Wfor orbits to = (ij>P(f) with i  j. Define a bilinear form

onUby

(0,tp) = trace(0<p).

This form is non-degenerate: take a non-zero element 0 = X “(“”"to e u - Suppose
to

a(v) ~ 0, and let v' be the transposed orbit to v, i.e. ifv = (ij>P(f), then v' = (j,i)-P(0-
Note that 0V- is an element of U.

(eev0 - 2 “<) Z naceffiiEql) - X “(“> Z Si.rSj.q - “M-M.
to (ij)eco to (ij)eco
(anev’ (anev’

which is non-zero because IM is a divisor of the order of P(f), and under the given
hypotheses this is non-zero in k.

Suppose that OeradU. Then for all <peU O<pis nilpotent, so (0,<p)=trace(0g>)=0.
Hence by non-degeneracy 0=0 and so U, and therefore SOF.'P), is semisimple.15

D.3.8 Proposition
1fQcrorrsQ we have

@) dimS(Q.r) = £ dim V(Q,r,A)dim V(r,Q,X).
all 4*-dominant
weights \
Proof
Since dim S(Q,r) = dim S(r,Q) it suffices to treat the case iJcr. By n.3.1 we may
assume that char(k)=0. Let A be a \F-dominant weight. Then is an

indecomposable S(i2,0)-module by H.2.11, and hence an indecomposable S('P,4/)-

module (DcT implies S(n,0)cS(W,W)). Thus V(Q,NA.) is simple as an SOP,40-
module by 11.3.7, and therefore certainly simple as an S(Q,D-module. Let P(A) be
15 Another possible approach to this theorem is to use {Sa (8.13)1 which expresses S(F.'F) as a
direct sum of tensor products of classical Schur algebras for smaller nand f.
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the S(r,Q)-projective cover of the simple module L(r,i2,X) =V(i3,r,A.)°. The
multiplicity of P(X) as a summand of S(r,i2) is equal to the dimension of L(T,ClX) as
a module for its endomorphism algebra, i.e. to dim” V(ii,r,X). The module V(T,Q,X)
has head L(r,Q,X), hence is a quotient of P(X). Thus we have:

dim S(ii,r) = X dim V(ii,r,X.)dim P(X)
all ~-dominant
weights X

s dimV(Q,r,X) dim V(T,i2,X)
X

Combining this with the inequality 11.3.6(¢) gives (a). O

Remark
Suppose char(k) - 0 or char(k) >f, and let X be -dominant. The proof above
shows that if i2 st then V(Q,I\X) is simple, whilst if Q sr it s projective.

So far we have used the characteristic independence of the dimensions of
S(Q,r) and V(i2,n\X) and the semisimplicity of S('F,'F) in characteristic zero. To
extend the proof of the dimension formula to general ii.T we use some combinatorial
properties of the basis given in 13.3.1. Put

j(a,b)-11(a,b)/P(b)|. (a+" “) aeN,beNO.

n.3.9 Lemma
If a=aj+a2+ == +a,. with each apGKlthen

j(a,b) m z F1 jCapbp),

0>t.b2.-.br) per

where the summation is over all vectors (bj, b2,.... br)e(No)r with bj+ e=+br - b.

0
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Proof
Both sides are equal to the number of monomials of total degree b in commuting

indeterminates Xj, X 2. e+, Xa.O

If E={a, a+1, = p}is a'F-block, put

a(fi3) = #(yeWfla / (ra},
a(r\S) - #{Y€Wr alY "a},
a(E) = max{a(Q,E), a(T,E) >

Notice that a(ft,E), a(TE) £ El, and that at most one of these inequalities is strict

since otherwise P+1 e Wq -och Wp-a = E.

11.3.10 Lemma a(S)-El “ I[iilH |

X
all *-blocks E

Proof
For each Y-block E={a, a+1, = P>define a subset of [QID by

(a) A(E) - (ycWn a/y”a} xtyeWr a/i Za}.
A(S) lies in [QID since at least one of the sets appearing in the right hand side of (a) is
equal toE. |A(E)I - a(E,i2)-a(E,r) - a(E)-El, soitis enough to show that [iilD is the

disjoint union of the sets A(E). For example, if Sl and T are as in the diagram of 11.1.2
then the sets A(E) are the unshaded rectangles in the following picture:

a1



1l: Weyl Modules. 53: S(1kO asa Quasi-Hcredilary Algebra.

Suppose £, S'are distinct 4 '-blocks with (yY) e A(E)nA(S"). If a(I\E) - I£l,
a(rfS*)- 1Elthen Y e £n£’, a contradiction. If a(TS) - !£L a(ll-0") « IE'1 then
(y.Y) 6 [iim rbffln - IW 1, and therefore (y,y>s (S x E)n (£'x £m). which is
again a contradiction. The other two cases are analogous.

Now suppose (Y .neliiin If Tali' let £ - ta.0+1.-. P) he the «P-block
containing Y- Thenye WQ ct.y a a. so (YY)« A(E). The case YS'Y is similar. O

If£-{a. a+1, s p)isa T-block. and keA(n.f) put
WS) - <*c,A0+l. ".*&>« A(I5l)-
We will refer to the WS) as the  -components of k.

For aeN. beNO be"0“ by A+<,b) the set of dominant weights in A(a.b). For
ke A+(a.b), ce N. put

| the number of k-tableaux with entries in ¢ which are row
v(ch) semi-standard and column standard.
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1311 Lemma
Suppose Xis 'F-dominant, then

dimV(Q,N\X) - Fl v(a(n=U (2)).
aU 'F-blocks 2

Proof
dim V(i2,r,X) is (by 11.3.1) the number of indices iel(n,f) which are row semi-
standard, 'F-column standard, and such that the entries in the rows corresponding to
each 'F-block 2 come from 2 or from later 'F-blocks lying in the same Q-block.
The set of such indices is in one to one correspondence with the set of vectors

i(-))/ forcach 'P "2k * z - “(S) e 1(a(Q2), IX(2I) is
i{H(—); gf X(2)-row semi-g{andard,(agd K(Z)(-Qcol)umn(sza)ndard ¥
Foreach 2=(a, a+1,—,p},i(E) is obtained by restricting i to the rows corresponding
to the block 2, shifting the domain to r, where r«IX(E)Il, and subtracting a-1 from

each of the entries. Counting the elements in the above set gives the required

formula. O

11.3.12 Lemma
Ifa,ce INbe Ngwith a £ ¢ then

(@) jlacb) = X v(c,X)v(a,X).
Xe A+(a,b)

Proof
If a=c this follows from 11.3.8 and n.3.1 by taking n=a=c, f=b, il=r=A. If b=0 both
sides are 1. Now suppose a < ¢, b > 0 and argue by induction on b. By n.3.9

(b) j(ac+(c-a)2,b)- bi+52*bj(ac’bi)j((c_ a)2,b2>.
bi,b270

Take n=c, f-b, Q=A, r-A\{aa}, as in the diagram:
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1 a a+l c

Using n.3.11 to expand equation 11.3.8(a), we have

j(ac+(c-a)2,b) - £ v(a.X(1))-v(cA(l))-v(c-aA(2))2
bi+b2=b  X(l)eA-+a,bi)
bl.b220 X(2)e A*(c-a,b2>

«© - Z iz v@A®l)-veXD) (X
I[w

v(c-a,A(2))2V
bi,b2\ A(l) 1

)

Comparing the corresponding terms in (b) and (c) for a pair (b j~ ), we see by using
the case a=c and induction on b that these terms are equal, except possibly for the
case (b,0). Since (b) and (c) are equal the latter case gives (a). O

Remark

Thisresultis well-known to invariant theorists: Let kfXa>y / aea, yec ] be a
polynomial ring in ac indeterminates. Then each side of (a) is equal to the dimension
of the subspace of polynomials which are homogeneous of degree b. The left hand
side is obtained by counting the basis of monomials, the right hand side by counting
the basis of standard bideterminants given by the Straightening Formula. See [DKR]

forexample.
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We can now complete the proof of 11.3.4:
n.3.13 Proofof the Dimension Formula
The dimension of S(ii,r) isj#[QIr], f),which by n.3.9 and 11.3.10 is equal to

X NjameLiE).
(f(H)) E

the summation being over all vectors (f(E)) of non-negative integers f(E) with
A f(E) - f, where E ranges over all 'F-blocks. By 11.3.12 this is equal to

£ n X v(a(=U(E))-.(EVUa
f(E) S X(E)€A+dELf(S))

Noting that {a(E), IE[} = (a(E2,E), a(T3» and assembling the component weights

X(E) into 'F-dominant weights, we see that this is equal to

Il v<a(aS)A(E)).v(a(rE)A(E))
all'F-dominant E
weights X

- X dimv(Q,r*.)dimV (r,n".),
X

by n.3.11, as required. O

n.3.14 mod S(Q,T) as a Highest Weight Category
By H.3.4 S(D,0 has a bimodule filtration

(a) 0-1J0cJtCd2c - CJt- S(E2r).

where for each aet Ja/ Ja_j * V(ii,I\X(a)) ® V(r,Q,X(a))J. Fix a *-dominant
weight X, let e be a primitive idempotent in S(i2,0 corresponding to the simple
module L(Q,r,X), and consider the exact functor F: mod'S(Q,0 -» modk, V »*Ve
(Ve mod'S(D,r) ). Applying F to (a) gives a filtration
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(b) 0-POcP1lcP2c-cPu-w?*

of the projective cover P(X)=S(fLOe of L(Q,r,X), whose sections are Weyl
modules. Since L(n,r,X) appears in the head of S(i2,r) we may assume that
A =e+e' for some idempotente’, so that for each Ve mod'S(Q,r) Ve is a subspace
of v\ Thus by 11.2.11 F(V(T,fl,p)J) = 0 unless X ~r p, so the only Weyl modules
appearing as sections of (b) are those associated with weights p with X  p.
Consideration of heads shows that the top section Pu/ Pu_j is V(Q,r,X); moreover,
V (QX") appears with multiplicity one as a section of (b) since the X-weight space of
V(T\Q,X)J has dimension one. Exchanging the roles of Q and T and applying
contravariant duality we deduce using n.2.12 the following

Theorem
The injective envelope 1(X) of L(Q,r,X) has a filtration

0=IgE I S12C £ lv- I(X),

where 1j a D(E2,AX), and forv2i>1 1j/ 1j_j a D(ft,r,p) for some weight p with
X<qp. The socle of D (ilXX) is L(E2XJX), and if L (i2,rji) occurs as a composition
factor of D(Q,"\X) / L(Q,nX) then p <r X. Thus mod S(Q,H is a highest weight
category in the sense of [CPS2], where the ordering on the simples is that given by the

dominance order on their highest weights. O
Remark

In general this is not the only way to make modS(Q.r) into a highest weight
category. Let w be the longest element of W. There is a k-algebra isomorphism:

v: S(ii.r) wS(Q,n»J- S(f.0)
£ H-WAW1,

where f - -wrand - -wfl. (fIftl is obtained from [iilD by a 180° rotation.) Let
F: modS(f,Q)-* modS(ii,0 be the category isomorphism induced by y. We get
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another highest weight category structure on modS(Q.r) by applying F to the one
exhibited in the above theorem for modS(r,Q). One checks, using remark (iii)
following 11.2.11 and the fact that the weights of F(L(r,i2,X)) are obtained by
applying w to those of L(I\ii,X), that

F(L(F,i2,X)) * LiO.rwwX),

where w' is the longest element of Wvp. The partial order on the 'F-dominant weights
which defines this new highest weight category structure on modS(ii.O is thus

XE iff  wwX” w'wp.

For example, if fi = T = Awe get the usual dominance order; if SI= A, T = 0 we get
the reverse of the dominance order. In general the set of modules (F(V(T,Q,X))} is
different from the set (V(ii,r, X)}. For example if and char(k) = 0 the former are
simple, the latter projective. (See the remark following H.3.8.)

It is evident from the filtration (b) above that V(Q,r,X) can be characterized as
the largest quotient module of the projective cover P(X) of L(Q,r,X) all of whose
composition factors L(11,r,p) satisfy p.~ X. (This also follows from n.2.13.) Thus
D(i2,r,X) and V(fi,r,X) are the modules denoted A(X) and V(X) in [CPS2], when
modS(i2,r) is considered as a highest weight category as in the above theorem. By
the remark at the start of the proof of [CPS2; (3.11)) we have:

n.3.15 Theorem
If Xand » are 'P-dominant weights then

ExtB(Q,r)(v (fi.r X), D (ii.r,p))-ovi>o0.0O
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If U £V are k-algebras we will write Ind%/ for the left exact induction functor
Homy(V, ): mod U -» mod V. Note that Indy takes injective U-modules to injective

V-modules. We are interested in the right Ind5 -acyclicity or otherwise of the
simple S(£2,0)-modules k(p), for 'F-dominant weights p .We record the following

observation:

n.3.16 Proposition
Let p be a 'P-dominant weight. Then k(p) e modS(Q,0) is right Ind g~ j*-acyclic
iff

ExIS(n,0)(V (ar*X k(p>) =0 Vi> O, V »P-dominantweights X.

Proof
RilndS(Q 0)(k(P)) - Ex4(iJ,0)(S(Q.r), k(p))f so 'if follows from the filtration in

D.3.4 and the cohomology long exact sequence. Now suppose k(p) is Ind~Q ~-

acyclic, and take an injective resolution k(p) -» I in mod S(C1,0).
Ex'S(ft.ii)(V(Q X)-k0*» * H‘<HomS(n (@(V(Q.r.X). D),
and by the adjointness of restriction and induction this is isomorphic to
H*(Homj(Qj'j(V(Q,r"), Hom §7(0"(S(Q,D. D) )»

Acyclicity implies that Horn5 ”~ ,0)(S(E2,r), 1)) is an injective resolution of
D(i2,r,p) in mod SCil.O. so this is isomorphic to

Ex4(0,r><v < -r >>D(Q.r,n»

which iszeroifi> 0, by 11.3.15. Q
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Motivated by 11.3.16 we now begin an analysis of V(Q,r\X) as an S(D,0)-
module, and specifically as a quotient of S(Q,0)". In §1 we prove a technical result
on the product 5ij‘Ej,l of two basis elements of the Schur algebra, when j has a
certain restricted form. In §2 we define submodules Ma of S(ii,0)* which will
feature in the description of the kernel of the projection map h: S(Q,0)" -*V(Q,r,X),
and use the results of 81 to construct a basis of Ma . In §3 we show by dimension
comparison that ker h is the sum of the Ma for ae'P, and hence complete the proof
of H.3.1. We deduce some further consequences for V(Q,r,X), in particular we prove
a vanishing result which can be interpreted as a special case of (A"). In 84 we give an
explicit S(£2,0)-projective resolution of S(£2,0)* / Ma , which we use to prove (C)
for arestricted setof weights, and (AOand (B') when 2 £ 1.

In fact we will work in greater generality than we have indicated here,
considering V (ii,r,X) as a quotient not just of S(ii,0)" but also of S(D,r’)» for

subsetsPer.
81 Multiplication of Basis Elements
ni.1.1 Definition

The following notation and definitions will be in force throughout §1. Take
i,le I(n,f) and suppose that for each ae n we have a partition of Ra0):

Ra(l)«XaOYa.
Put Xn+j = Yq = 0. Suppose that Z is a fixed subset of n+1 with IZL £n and
Z 2 {ae ntl/ Xau Ya_j jk0 }, and that we have an injection i: Z-» n. Define
jel(n.f) by
j9-i(a) if96 XjuYij.j.
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i i §1: iplication of Basis Element:

Example
Take lis as in the example of 1.1.5. Then if Z- n. and t is the identity map, Tj might

look like

= wwk
ww
RS
- N
'—\

AWNE
Dodo

ni.1.2 Lemma
Suppose that

(a) Vatn <peXa,tpeYa ¢ ip* it

Then the coefficientof Cy in the expansion of the product  j #j.l « 1-
Proof
By the multiplication formula of 1.2 the coefficient in question is the number of

s£l(n,f) satisfying

(b) (i) —(i.s) and (j4)~(s.).

This number is certainly 2 1 (take s - j). Suppose there is some s t j satisfying (b).
Then sejPjnjP 1 Choose Jt6 Pj with s - jit. Choose a€ n minimal with s+ j<p for
some tpeRa(l); then since se jPj we can find pe Yawith s- i(a).

We claim that

3r£ 1 suchthat 7r(pe Xa.
This will lead to the required contradiction, for te Pj implies that ip=1i”" , which
is impossible by (a), since 9 e Ya and frpe Xa.

Proofof the claim: We have jnp- - t(a), so tup € Xau Ya_! by definition
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ofj. If Ape Xawe can taker - 1. Otherwise choose r £ 2 such that
jtr_l<peYa_i and Jrq>iYa_j.
Then
JNp = sAr-1p=jtritp=
by minimality of a, since 7r*~«pe Ra_j(l). Hence

nr<pe(XauY a. 1)\Y a_l— Xa.

asrequired. O

m.1.3 Lemma

Suppose that

@ Vain ie X ,,i"sis.i ¢+ i,,Sy,
resp.

(b) Vaen tpe X a,<p'e Ya.j + i<p*i«p".

If  Jappears with non-zero coefficient in the expansion of the product Cjj-Cjj then

$iVl-$i,1 or *<I* <rcsP- i'>1i>

Proof
We prove this in the case where (a) holds, the other case being analogous. Suppose
that | * j appears with non-zero coefficient. Then we may assume that i‘eiPj.
Forae n. let <x(@). cx(a,X), a(a,Y) (resp. fta), fta,X), (J(a,Y)) be the weights of
i(resp.i') restricted to the subsets Ra0). Xa, Ya.ThenVaen

a(a) - a(a,X) +a(aY)
P(@) 1 P(a,)X) + P(a)Y)

a(a,X) +a(a-1.Y) - P@aX) + (J(a-.Y)
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Choose aen minimal with a(a) t p(a). The minimality of a, together with (c) implies
that a<n and a(a,X) = P(a,X), so it suffices to show

(d) a(a,Y)<lex p@aY).

Choose 7tePj with i' = in. Then n maps the subset Ya o Xa+1 into itself, and we

have disjoint unions:

Ya-(YannYa)0(Ya\nYa),
*Ya- (Yan nYa)O (nYan Xa+1).

If <pe nYan X a+1, and tp'e Ya\nYa then i*”i”" by (a), sosince IYa\ nYal=

InYan Xa+jl, we have

"t ANNY, S« WIE Y r>Xi+ 1)
Therefore

a(a,Y) =wt(i ly?) Mjexwt(i Ayn) - wi(i' fy?) = P(a,Y).

We cannot have equality here by choice of a, so (d) holds as required. O

§2 The Module Ma>r
Fix a weight XeA(n,f). We do not for the moment assume any dominance
condition on X. Let 1be the canonical index of weight X, and use the notation of 1.1.5

for this choice of X.

m.2.1 Definitions
Fix a simple root a=abei2. For te {0, 1, e, Xb> let I(a,t) be the index
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1I: Resolutions. ~ §2: The Module Mg

obtained by replacing the t rightmost b's in the bth row of 1by b+I's, so that its

associated tableau looks like

M(a.t)-

The weightof I(a,t) is X-ta. Define ge INby

ifXbrb+1

- b, Xb+it-X-b+l - j b )b+l
q- maxab, Xb+i ib0 otherwise

Take anintegerr e {1, Xb-q}. We define the module Mq ,. = (Q,T.X) to be
the S(i2,D-submodule of S(Q,D” generated by the elements 5I(at),l  for
te {g+r, q+r+1, e Xb}. These elements lie in S(£2,D because ae£2. It is easy to see
that 7i(a,t),I spans ~_taS(D,0)\ If Xb < g+r put Ma>r = 0. Our main interest is in
the module Mg = Ma (i2,I\X) = Ma j. We introduce the Ma r because they will
appear later in the construction of a projective resolution of S(Q,r)" / M, and it is
convenient to treat all these modules together in a uniform manner.

We will say that a basis element is (a,r)-faulted if there exists cen such

that
(@) #{<peRb(l) / ip* c} + »{«pcRb+jO)/ £ c} 2 r+max(Xb, X ~}.
IfXb<q+r,no jis (a,r)-faulted. If is (a,r)-faulted it is also (0,0 -faulted for

any r' with ISr'~r.We can describe the notion of (aj)-faultedness in another way

as a generalization of the property of being {a}-non-standard:

m.2.2 Lemma
(i)  Suppose Xb £ Xjj+i, and take i to be row semi-standard. Then £ jj is (a,r)-
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1I: Resolutions. ~ §2: The Module Mg

faulted iff 3 d with 1£ d £ Xb+j-r+1 suc” I%at NiO>»d) » Tj(b+1,d+r-1).
(i)  Suppose Xb £ X ~, and take i to be reverse row semi-standard. Then is
(a,r)-faulted iff 3d with r ~ d £ Xb such that TTj(b,d) » Ti(b+I,d-r+l).
If r=1 we conclude (using 1.1.6) that  jis (a.l)-faulted iff itis (a)-non-standard.
Proof
We will prove (i), the proof of (ii) being analogous. If 111.2.1(a) holds, choose d
minimal with T¢(b.d) 2 c. Then d+r-1 SXb+i and T i(b,d) £ c £ Tj(b+l,d+r-1), for

otherwise
»{(peRbOi/irc] + ffitpeRb+jOJ/ijp~c} £ (Xb-d+1)+(d+r-2)< Xb+r,
by row standardness of i. (See the diagram below.)

< Xb - d+1 >

b <c ic
b+l Sc 1>c 1
d-1

Conversely if Tj(b,d) £ Ti(b+l,d+r-1) we get 111.2.1(a) by putting c=T¢(b.d). O

We will show in IN28that the dimension of MY is equal to the number of
(aj)-faulted basis elements e S(QX)V For the moment we prove that it is at
least this number by using the results of §1 to construct a suitable collection of

linearly independent elements in Ma r .

111.2.3  Construction of a Basis for Ma>r
Suppose that ie S(Q,0” is (a,r)-faulted, and choose ¢ satisfying 111.2.1(a).
We will find an index j with Hjj e Ma>r,£jj € S(Q,n and

(a) AQjAN.L“ Mid + alinear combination of terms j with i'<ji.
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The collection of all these elements 5ij5jl. one for each (a")-faulted
A ie S(Q,D*, will tum out to be a basis of Ma r (see 111.2.5 and 111.2.8). We split
the construction into two cases according to whether b<c or b £ c.

Casel: b<c

Define for each aen a partition Ra(l)=Xau a, as follows:

Xa- Ra(l), Ya- 0 ifa<bh;
X5 - R RbO)/ i9 <c). Yb-Rb()\ Xb ifa=h.

For a>b, define Xa and Y a inductively by

We claim that Yn=0. If not, then Ybh, Y —Yn”" 0. Let ya=minii®/ cpeYa}
for a=b,- ,n. Then c £ yb<y”+j <—<yn”"n, so b~c, a contradiction. As in

m.l.l.weput Yo=0 and define an indexj by
j<p-aif9 6 XauYa_t.
In the notation of I11.1.1, Z=n and i:Z-> n is the identity map. By construction the

hypotheses HI.1.2(a) and 111.1.3(a) hold so we have (a) above. Notice that by choice

of ¢ we have

(b) #Rb+1,b<iJ>+ “Rb+1,b+1(1J) 2 r + maxixb’ xb+I>-

We now show that j andijjj both lie in S(i2,1~)- Take ae n, <peRa(l). We must
show that (i"pj*p). (j9.I<p) e (iliri. given thatfl9Jf) e [OID. IfPe Xathen - 1M so
this is certainly the case. Otherwise pe Yawith a £ b, and

iryjac+a-bia+| - jp>a- 1

giving the required result.
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Casell: b
Define for each aen a partition Ra(l)=Xa0Ya by

Xa- 0. Ya- Ra(l) ifa>b+1;
Xb+1- 1<p€Rb+10)/ ipS C). Yb+1-Rb+I0) Nx b+l ifa- b+1-

Fora < b, define Xaand Ya inductively by

Ya.{<peRa(l1)/i9 ai,p' V»'sXatll, Xa-Ra(!)\Y a.
X ,.0.forifnotXj, X2.-,X b+i ~0.Lei xa« maxli®/ <peXa}fora-1.-, b+l
Then 1S xj < X2< =< Xjj+i £ ¢, soc>b, a contradiction. We put Xn+i=0 and
define an indexj by

J<p-a iftpe YauXa+1.

In the noution of ni.1.1, Z-{2,3..n+1) and t:Z-s n is given by subtracting 1.
Again the hypotheses 111.1.2(a) and 111.1.3(a) hold giving (a) above, and

© «Rb,bGJ>* "Rb.b+I()J)* r+ maxRb' Xbvl>.

To show that and he in S(ftT), take aen, <peRa(l). If e Ya then
itp * V Otherwise tpe Xa with a £ b+1. and

i9 SxaSc-b+a-1 Sa-1-j9<a- |,

In either case (jtpdtp) « W in, as requited.

To complete the construction we must prove the following:
111.2.4 Lemma
The element defined above lies in Ma>r .
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Proof
Casel: b<c
Rows b and b+1 of the index j can be rearranged to take the form

b+l b+1 | b+2

where, by 111.2.3(b)
t-u £ max{Xt,, A-b+J - ~b+1l +ru1 *+r-

(In fact there are no b+2's in the b * row ofjj, but we need this more general formatin
the proof.) We will show that if i « I(n,f) is such that « S(QX). and rows b and
b+l have the form (a) above (up to rearrangement), with t-u 2q+r, then
e Ma j .(Caution: the i and j appearing in this proof from here onwards are not
the same as those in 111.2.3. We are over-using these symbols to maintain notational
compatibility with §1.)
For each ae n define a partition of Ra(l) by

i Rafl) if»*b
X*" \RbO)\ Rb+Lb(U) ifa- b

0 ifa*x b

Rb+1(>J) ifa-b.
The indexj€l(n.f) defined by J9-a if9 6 XM Y Mt can be obtained from I(o,t) by
reordering the b1row, and 12 q+r by assumption, so j e Ma r.For any <pef, j9 is

either i“or ® .so” j € S(Q.H. Hypotheses 111.1.2(a) and 111.1.3(b) hold, giving

j- + alinear combination of terms £j'j with i'>j i«
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If  j appears with non-zero coefficient on the right then i' can be assumed to be
obtained from i by permuting the entries of i within the sets Ra(j). Rows b and b+1 of
i' can thus be rearranged into the form (a) with t, u replaced by t-v, u-v for some
v 6 {0}u u. By induction on the order >j we may thus assume that all such Cj'j lie

in ,50Cjj € Ma>r.
Case»: b2c
The assumption that is (aj)-faulted implies in particular that there is some

(peRb+iO) with ig, <c £ b <b+1 - I so i>~r lg, and cxeT. Thus sa 6 S(i),0, and
itis enough to show that sa i = £Saj,| lies>n Ma,r «Rows b 311(111+1 of the index

sa - can be reordered to take the form

b+l b+1

where by m.2.3(c)tt-u £q+r. As in case I, any basis element j which has this
form lies in Ma r , the proof being similar to case I, except that condition 111.1.3(a)
holds instead of 111.1.3(b) and so we use induction on the order instead of the

order>j.0

We can now prove:
m.2.5 Proposition
With notation and assumptions as above, Ma j has dimension at least the number of
(a,r)-faulted basis elements £jj in S(E2,r)"-
Proof

For each such basis elements »  we have constructed an element 5ij-5j,i of
Ma>r 16, which has \ as its leading term when the standard basis elements in
1® Thiselement is not uniquely determined since it depends upon the choice of ¢ in the construction.
For each basis element”jj we fix some particularc.
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S (an X are totally ordered by the relation <j. These elements of Ma r are thus

linearly independent. O

Remarks

(i) TakeasubsetOcil. If X is ©-dominant and j is ©-non-standard then it is

(a,l)-faulted for some ae© by 1.1.6 and 111.2.2. Fix some such choice of a and

apply the above construction to produce an element Then the set of all

such £ :o£; i is linearly independent in Ma. Itcan in fact be shown that this set
0 ae©

is a basis for Ma, but we will not pursue this here,

ae©
(i)  We can regard the construction as a ‘straightening' process: it defines an

algorithm which, given a 0-non-standard basis element”j, expresses it modulo the

submodule £ Ma as a linear combination of ©-standard basis elements.
ae©

The following result follows readily from the multiplication formula in 1.2:
Ul.2.6 Lemma
IfXj,Euf£vEw £0 then

*»l(a,u),l(a,v)El(a,v),l(a,w) “(v-w)£l(a,u),l(a,w)-D
The proof of the following lemma is an easy exercise.
m.2.7 Lemma

(i) Ifb£ b'andb ~n b'then (a,b) e [QITIimplies (a,b") e [QID.
(ii) Ifafa'£a"andb£b'£ b"then (a,b), (a",b") e [i2]T] implies (a',b") e [QIT]. O

111.2.8 Theorem (Basis of M0>r)
With notation and assumptions as above,

dim Ma>r - dimS(i2,r)X-(1+r)<x 17
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= the number of (a,r)-faulted basis elements in S(Q,D”.

Thus the elements  j-"jj of 10.2.3(a) form a basis of Ma r.

In characteristic zero Ma>r is generated by 51(a,q+r),I*and
Maj *s(anx (qH)a

Notice that if X is {a}-dominant X-(q+l)a=sa <X (This observation will be
important in the next chapter.)

Proof
Let X be the integer matrix whose rows give the coefficients of the various products
Sij‘sl«x,t),l (Eij€S(QX), te{q+r,q+r+1,Xb}) when expressed as linear
combinations of the basis of S(i2,r)- Since dim Ma>r is the rank of X (when the
entries of X are regarded as elements of k), the dimension of Ma r in positive
characteristic is no greater than its dimension in characteristic zero. By m.2.6 Marr is
generated in characteristic zero by £i(<x,q+r),l sot"m ~ a,r ~ d“TLS(£2,r)""(q+r)a. In
view of m.2.5 the theorem will follow once we establish that

dimS(Q,07-“(q+r)a = the number of (a,r)-faulted basis elements in S(i2,r)"-

1fXb < g+r, both of the numbers in question are zero, so suppose Xb £ q+r. Put
(X= X-(g+r)aand let m be the canonical index of weight p. We will define a bijection

V:{SimeS(Q.nH} {$j.eS(ar)X/ Ejlis (ot,r)-faulted }.
We do this in two cases depending upon the sign of Xb - Xb+j.

Case I: Xb ™ Xb+i
Take mwithip-row semi-standard. Write the b and b+1 p-rows of i asI

17 if Visan S(0,0)-module, and |i a non-polynomial weight we interpret the weight space PV as
being zero. This is consistent with the algebraic group definition of weight space.
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b xi x2 = xt]
b+1 yl y2 yu

where t = H5 = A-b+j-r and u = Hb+| ” ~"b+r-Put
d =max{ce{r+l,r+2, r+t+1}/ ifc>r+lthenyc£xc_r_j},

and lety(5j m) = j, wherej is the index whose a* A.-row is the a* *i-row of i if
af {b, b+1} and whose b and b+1 A.-rows are

b X1 . xdrilyd . yy
b+1 yl = yd-l [ xdr = 411 1

Notice thatj is A,-row semi-standard, j is (a,r)-faulted by in.2.2 since

(0 TAb.d-r) -yd2yd-1- Tj'(b+l.d-I),

and d-r is the rightmost column with this property, for

(d) Tb.cr) . ye<X,,.,.I - TAb+l.c-l) Vewith AbH+l”c>d,

by maximality of d. We can therefore recover d and hence i from ljjj, sothe map is
injective. Ifj is X-row semi-standard and  is (a,r)-faulted, we can write its b and
b+1 rows as in (b) so that (c) and (d) hold, so j e im\j/.

It remains to show that { m ¢ SCOX) iff 4i,m«S(QJ’). i is obtained from j, and
vice-versa, by exchanging a block of entries at the end of row b with a block of
entries at the end of row b+1. This is done in such a way that row semi-standardness
is preserved and some non-empty part of row b+1 remains unaltered. By m.2.7(i),
(y,b+l)e[fiin and cxeQ implies that (y,b)e[Qin. On the other hand, if (x,b)e[fiin
and x £ y for some y with (y,b+1)e[QID, then (x,b+I)e[ftIr) by 111.2.7(ii).

61
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Examples
Taker - 1.
33344 1
345 1 <d3);
223344 22458 1
23344 | d-2
2445 1 (d-2)

Case II: Xb< Xb+j
Take m withireverse p-row semi-standard, and write the b and b+1 p-rows of i

as in (a), but where now xj £ X2/ e 2txt,y\ £y 2~ e yu. tmHb="b “r and

o prtdle wpeterput

d» minice(r,r+1, — r+t} / ifc <r+t thenyc £ xc_r+j },

and let v(5i,m) = £jj, wherej is the index whose ath X-row is the ath p-row of i if
af (b, b+1} and whose b and b+1 A.-rows are

b yi . oyd  1xdr+l e *t 1
b+1 M e xd-r 1yd+i yu

j is reverse X-row semi-standard, and (a.r)-faulted since
TiXM) - yd a yd+] - lj-(b+1,d-r+1).
d is the leftmost column with this property, forifr £ c <d
TA(b,c) - yc<sc_r+l - Thib+l.c-r+l).
We conclude as before that y is an injection whose image consists of all (a,r)-faulted
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j.That jeS(i2,r)iff meS(i2,r) follows much asin case I.O

Example
Taker-2

4433 |

d-3).
|14433221 53221 (@-3)

83 The Kernel of the Map S(B,£f)" -» V(fl,r,A.)

m.3.1 Theorem
Suppose Xis a 4/-dominant weight, and r's'F . Then the kernel of the epimorphism

h: S$(Q.n*-*V(Q,nX)

is the sum over all ae'F of the submodules Ma = Ma (Q,r',X). The images of the
A-standard  \ under this map form a basis of V/(i2,r,X). Taking P =0 gives n.3.1.

Proof
Take a=abe P. Then Ma is generated by weight vectors for weights of the form
X-ta. wheretS~-Xb+j+1 (seein.2.1). Put p - sa(X-ta). Then

Pl+-+pb -x1+~+x5_1+xb+1+t
AXj+ e+ Xb+ 1,
sosa(X-ta) A X Since the weights of V(Q,r,X) are permuted by W4/ and every

weight of V (fltr,X) is dominated by X, X -ta is not a weight of V(Q,r,X). Hence Ma

lies in ker h.
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We now show thatif jeS~H ~ is'F-standard then  ieS(Q,0)". Suppose
je S(Q,r)k\ S(£2,0) ~ , and choose ben minimal such that there is some
tp6R5+i(D withy <b+1. Thenaberc4» so Xb £ Xjj+j by *V-dominance of X, and
yEb2>i<pforall <p'eRb(l) by minimality of b. Thus is 'F-non-standard. We
know by 11.2.10 that the image of h has dimension at least the number of 'F-standard
jeS(ft,0)\ and this is the same as the number of »F-standard £iji€S (Q ,r')\ The
dimension of ker h is thus at most the number of 'F-non-standard £j¢6 S(f2,r')*. By
remark (i) following ni.2.5, dim £ Ma is at least this number, so we have
ae'F
kerh= " Ma. Furthermore, the images of the 'F-standard je S(i2,r') are
ae'F
independent by 11.2.10and we have demonstrated that their number is the dimension
of V(i2,r,X), so they form a basis. O

Remarks

()  We could have arrived directly at the proof of n.3.1 with somewhat less work:

we only needed to consider Mar (Q.T.X) forr=1, X {a}-dominant, and T=0. The

latter restriction obviates the need for case 1l of m.2.3 and M.2.4. We have not yet

used the basis theorem 111.2.8 for Ma>r

(i) We will see in the proof of DI.3.5 that in general Z*F Ma (i2,r,X) is the
ae'

kernel of the obvious epimorphism S(£2,r)" -» S(£2,0 ® V(i2,r,X).
$(Q.0)

111.3.2 Corollary
Suppose Xis 'F-dominant. Then V(Q,r,X) » V(iVF,X) as S(E2,"-modules.
Proof
By m.3.1 V(Q,r,X) and Vifi.'F.X) are both isomorphic to the quotient of S(Q.'F)" by
the submodule £ Ma (Q,'F,X). O
ae'F
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111.33 Theorem
If Xand p are 'F-dominant weights then

Ext (V(E2,rA). Kftl)) - 0.

Proof
By 111.3.1 we have a short exact sequence of S(£i,0)-modules:

°» Z  Ma(Q.0A)-»S(fi,0)X-»V (arA)-*0.
ae¥

For ae'F, Ma = Ma(Q,0,X) is generated by weight vectors for weights p with
Sip (as in the proof of m.3.1). No such p is ~-dominant, for otherwise

Sall< p ~ A Thus V(i2,r,A) has a two-step projective presentation of the form
JJ. FQAAC*S(NiIOWV(Q.rA) 0.
c
where for each ¢ the weight p(c) is not 'F-dominant. The theorem follows. O

Remark

This theorem (together with the fact that the S(£2,0)-heads of the Weyl
modules are simple) implies that if V e modS(Q,0) has a filtration by W ey! modules,
then dim Homs(” 0)(V, k(p)) counts the number of times that V (i2,r,p) occurs in
any such filtration. (It follows from n.3.15 that dimHomg”j'AV, D(i2,r,p)) has
the same interpretation - cf. [CPS2; (3.11)].)

The following corollary is a first step towards a proof of (A*):
111.34 Corollary

R1Inds(Q 0)k(*) =0 v 'F-dominant weights p.
Proof

By n.3.4 S(£2,r) has a filtration as a left S(Q,r)-module with each section
isomorphic to some V(£2,r,X) for a 'F-dominant weight X. The corollary follows
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from the previous theorem by the cohomology long exact sequence. O

HI1.3.5 Fully Faithfulness of Restriction

It is a consequence of the fact that the quotient variety G/B~ is projective that
the restriction functor from rational G-modules to rational B"-modules is fully
faithful. Since mod S(G) and mod S(B-) are full subcategories of the respective
categories of rational modules, the restriction functor from mod S(G) to mod S(B “) is
also fully faithful. We use ni.3.1 to give an 'internal’ proof of this fact, which is the

dimension zero case of (B').

Proposition
The restriction functor from mod S(Q,r) to mod S(Q,0) is fully faithful iff Q ~r.

Proof
The restriction functor is fully faithful iff for all V in modS(Q,r) the natural epi

S(i2,n ® V-*V is an isomorphism (see e.g. [MI; IV (3.1)]). The natural
s(on
isomorphism S(Q.0 (f® V a V shows that to prove fully faithfulness it is enough
s(ft,n

to establish that S(ft,r) ® V -»V is an isomorphism for V= S(£2,r). and hence

using H.3.4 and an easy induction, that itis an isomorphism for the Weyl modules.
As in the proof of in.3.3, V(£2,r,X) has an S(£2,0)-projective presentation of

the form
JJ. sta”c) scaso*-*vcarA) <o
c
where the weights p(c) have the form X-ta fora e *Pand certain positive integers t ,

and the components of the left hand map are given by multiplication by the

appropriate element £i(a ,t),| scc DI.2.1). Applying S(fl,D 8ives 3I1 exact

sequence:

1 sfanne) s(n,n*-4s(n,n ® v(n,r".)-*o
c s@™)
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and hence a short exact sequence

o. Y M,(i,r-X)scan*-s<iJn ® MUQrA~o.
ar a Sift«

If then T ="'F so we can apply 111.3.1 to deduce that V(i2,\A.) itself has a
resolution of just this form, so V (Q,rX) * S(Q,r)qao)v(ﬂ,r,x).

Now suppose and take otjj 6 T\Q . PutX = (0, *, 0, f, 0, *s, 0) with the f
occurring in position b+1. It is easy to see that Mp(£2,0,A.) = Mp(£2,1\X) = 0 for all
Pe'P so we have isomorphisms

\IiOTX)* sen,«*-

SE2n ® V(QXAS(ELNX

and

However S(Q.|i)x * S(EL.r)X since j e SCOT)*-\ S(i2,<i)\ where for all <pef
=b and 1*. b+1. so the map SiO X )*"®" V(Q.rA)-»V(Q,r,W is not an

isomorphism. 0

84 A Projective Resolution of S(Q,r)" / M(xfr
111.41 A Resolution
Suppose we are given the following data:

(i) Nj, N2,— Nte modU, for some k-algebra U and some t £ 2.
(ii)  Foreach pair (T.0) with t£ x>a 2 1a U-map

h-ra- Nx"*No

satisfying conditions:
(iiiy 1ftAt>0>p A1 thenthe composite ha,phTO is a scalar multiple of hTp.
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(iv) IftEa >p£ 1then

dim £ imhXp = dimNO.
x£ a

Put Hxo - khxo £ Homu(Nx.Na). If I-fit >i,_i >- >ii>is a non-empty

subset of t put

"I -Ni,®%H-1®H4-iV 2 ®- » H2-f

This is a U-module isomorphic to N”. Suppose now that x£2, and take a with
x£a £2 Putl'=1\ {i0}. We define aU-map 9(1,1): Nj -*Nj* as follows: if a = x,
9(1,1) is the map induced by evaluation of functions

Ifo <x,9(1,1') is the map induced by composition of functions
~Na+ ki~ Hio+I>io-1*
We also attach a sign s(l, I*) € {£1} to the pair (1.10. by the definition
s(i,r)-(-i)“(iel/i>i°>

Itcan be readily seen thatifx23and O i, 02 are distinct elements of (2,3, *, t), and

ifl, - 1\0 OlU 2 - I\ «02*mr - IXflO,''a2} O“
aai,ida.ii)-9a2.iw .12)

and
s(IIt 10sG.li) + «02.10%0.12) - °-

For each pair (x.0) with t £ x> 0 £ 1 we now define a complex K = K(x,a):

68



n: i §4: A Projecti

of S(il,r)* / Maj.

Nj ift>ii 0
IS{t, t-1, o, T+, X 0}
Kj - 06 1
111- i+l
, 0 otherwise.
If i~ 1and Nj and Nj> are components of Kj and resp. then the component of

the boundary map 9j: Kj-» Kj_j between Nj and Nj* is s(1,103(1» 10if I 2 I'> and zero
otherwise. It follows from the properties of s(l, 1) and 9(1,10 that K is indeed a
complex. In fact we have:

Proposition
(v)  K-K(x.0) is exact except in dimension zero.
(vi) HO(K)» Na/ £

Proof
Statement (vi) about Hq s clear. For (v) we argue by induction on t-T. If t = x, K

reduces to

By (iv) the middle map is a monomorphism, giving (v).

Now suppose that t > x. Observe that K(x,0) is the mapping cone18 of the map
h:K(x+1,x)®HXt0-»K(x+l,a) of complexes, where hj is (-1)1+1 times the
appropriate component of the boundary 9j+j of K(x,0):

18  Explicitly, if h: X-¢Y is a map of complexes, the mapping cone of h is the complex whose ™1
componentis Yj 11 Xj_j ,andwhosei~ differential is the map

(y*x)* (diy + (-1)'-hi-1*.dj-jx) xeXi.j.yeYp
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-+ 1 N (p.p.a} 1 N (p.o} No

tEp>p £ x+l t>p £ x+l

-+ 1 N (p.p'x,0} -* 11 N {p.x.0} "* Nix,0}

tEp>p'Ex+l tE pE X+l

By induction and the long exact sequence of the mapping cone, Hj(K) is zero except
possibly whenie {0,1}, and there is an exact sequence:

0 -* Hj(K) -» Nx/ £ imhT«t -» Na / £ imhx',o “*
tE X £ x+l tEx £ x+1

* NI/ oz imhx',o "* °-
tirix

Taking the alternating sum of the dimensions we get dim Hj(K) =0 by (iv). O

Assume notation as in m.2.1. We will use the above proposition to write down
an S(Q,r)-projective resolution of S(Q,r)»/ Maj. If Xb <qg+rthen Mar is zero,
so assume Xb*q+r. Put (aj.a2. at) - (0,qg+r,g+r+1l, Xb). For xe i put
X(x) - X-a*a and Nx - S(iXO*-(T); for t* x>0 * 1 let hTO: Nx-» NO be the map
given by right multiplication by ~i(a,ax),l(a,a0) By m.2.6 the maps hx a satisfy (iii)

of m.4.1, so we can construct the complex K - K(2,1) above.

ni.4.2 Theorem (projective resolution of S(i2JT)"/MO0tl.)
SiCl.rfi/ Ma>rhas an S(i2,0-projective resolution

0 » Kj.j »Kj_2 mee mKj * Kq*S(flnX/ 10,

where
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K-» 11 (S(QI)XX) (t>i2:0).
t*x*1

The boundary maps (i£1) are as described in I11.4.1, while
t-2
9q: Kg -» S(QX)X/ Ma r is the canonical projection. Here (S(O.F)/\-Cx))(l-l) denotes
adirect sum of (£?) copies of S(ft,r)*(x), and we interpret (‘j1)and (jt)as being 1 if
i = -1, zero otherwise. Note that this resolution is valid when Xj, < g+r if we take t=1
and X.(l) - X
Proof

If X is (a)-dominant it is easy to check that X-(q+l)a = sa oX is the highest {a}-
non-dominant weight of the form X-ua, i.e. X-ua is {a}-dominant iff u£q 19.
Whether X is dominant or not, none of the weights X(2), X(3),-, X(t) is {a}-
dominant. From these remarks we see that if t£o>p£1 then

X(0) - X(p)-(a(p) + r(o,p) )a, and

X "mATp=r1j(<Ilp)h ™ AP))
a

where
0 ifp>1
aP w g ifp- 1
and
a-p ifp>1
r(a,
@) r+o-2 ifp- 1L

Using m.2.8 we deduce that (iv) of 111.4.1 holds, so proposition I1.4.1 gives the
exactness of K in all but dimension zero, and im dj = Ma>r so we have the required

resolution. O

We now use the resolution K to prove a couple of vanishing results for the

» h i. not true in general that if p is non-dominant and vA p then v is non-dominant, e.g.
(2.2.2) 3(2,4.0).
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module S(£2,0)*/ Ma r 20.Our motivation here is that under restricted conditions

this module is a Weyl module when r m 1.

ra.4.3 Corollary
(i)  Forany {a}-dominant weight p

Exis(n (,) (S(Q.0)x/ Ma r k(|l))»0 Vi>O0.

. . S<an>-/ Ma>r jfi.o 21

(n)  Torf®'™ (S(!i,D .S(Ei<HX/ Ma r) 0 ifi>o0.
Proof

Take T=0 and consider the S(£2,0)-projective resolution K of S(£2,0)"/ Ma r as
above. If S(£2,0)(T) appears as a component of Kj for i>0, then X>1, so as
observed in the proof of m.4.2, X(x) is not {a}-dominant, (i) now follows. Suppose
h: S(£2,if)* -» S(E2,0)v is given by right multiplication by some element
£e "S(£2,0)v. Application of the functor S(£2,r) S(g 0 produces a map

S(C2J1» -* S(QX)V which is also given by right multiplication by C. Bearing this in

mind it is not hard to check from the construction of K that S(£2,T)S(£(% 0 K is

isomorphic to the corresponding resolution with (£2,0) replaced by (£2,0, giving
(ii).G

We have seen that a possible approach to (AO is to study S(£2,0)-projective
resolutions of the Weyl modules V(£2,r,X). The next proposition shows that this is

also pertinent to (B):

ni.4.4 Proposition
Suppose that £2sr and that for all ‘F-dominant weights X

Torf<Q,i0(S(nx),vcarA»- 0 vi>o.
20 We make the obvious convention that the Ma j appearing in any expression like S(il,r*)» / Ma>r

isMarQ.rA).

The relevance of this result is indicated by 111.4.4.
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Then
(i) ForallVe modS(Q,0, Torf<0,0)(S(Q.n.V) *

(i) Forall V,V'e modS(ii.r), Ext*"Qjr*VtVQ » ExtS(ii,0/V'V~

Proof
(i)  Since the case i = 0 follows from the fully faithfulness of restriction (see
111.3.5), which shows that the natural map S(i2,r)s(0 0)V-+V is an isomorphism
n.

forall VemodS(ii.r)- By 11.3.4 and the homology long exact sequence

Torf<a0)(S(an,S(ii.D) =0 Vi>0.

The result for arbitrary V now follows by dimension shifting, using the fact that the

functorS (an 0 preserves the exactness of sequences of S(Q,r)-modules.
S(C2.0)

(ii) Using (i) we see that if VemodS(Qjr). the functor S(il,r>S(8 0 takes any

S(i2,0)-projective resolution of V' to an S(iJ,r)-projective resolution of V, and this

easily implies the result we want (cf. the proofof n.3.16). 0

Recall statement (C) from the introduction:

xtS(i2 0)(V(il.r,X), k(n)) - 0 Vi>0,V 'P-dominant weights |i.

Torf<a0)(S<ii.n, VWM > -0 Vi>0.

m.4.5 Corollary
If (C) holds for all 'P-dominant weights X then (AO and (BO are true.

Proof
For (AO this follows from 11.3.16, while for (BO it is an immediate consequence of

the preceding proposition. O

73



II: Resolutions.  §4: A Projective Resolution of S(Q,r)* / Ma>r.

111.4.6 Theorem
Let Abe a 'F-dominant weight and put

'FjL = ioce'F / sa A is polynomial} = {a”e” / £ AN E 1}

(i) If Alis such that I'FjJ £ 1 then (C) holds.

(ii)  (AOand (B') hold when [*F £ 1. In particular (A) and (B) hold whenn = 2.
Proof

(i) Take a =afce’F. Then (see in.2.1) Ma =Ma(ii,0,A) is non-zero iff

Ab+i ~ 1, i.e. iffae’F~. Thus by m.3.1, V(Q.r,A) is isomorphic to the quotient of

S(C2,0)" by the sum over all ae"F~ of the submodules Ma . If *FNisempty V(£2,r,A.)

is projective as an S(i2,0)"-module, and (C) clearly holds. If ‘F~ = {a}

v(a.rA) * S(n,O)X/ Ma,
so (C) follows from HI.4.3.

(ii)  1f I'F1 £ 1then certainly I'FjJ £ 1 so (C) holds for all *-dominant Aby (i). Thus
(AO and (BO holdby m.4.5. O
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In this final chapter we prove some more partial results relating to (A") and
(B'). We have seen (111.4.5) that to prove (A") and (B') it is enough to show that (C)
holds for all 'F-dominant X In §1 we show that (C) holds when X is a 'F-hook
weight (defined below), by producing explicit projective resolutions. In §2 we explain
a connection when char(k) - 0 between the resolutions of §1 and the Bemstein-
Gelfand-Gelfand resolution of the simple sth(k)~ module of highest weight X We
define a complex which if exact would prove (A) and (B) in characteristic zero. We
show that for n £ 3 this complex is indeed exact. In §3 we derive a character formula
for V(Q,r,X) which is related to the Jacobi-Trudi identity for the Schur function.
When CI = A this formula shows that the Euler characteristic of the complex of §2 is

zero. In §4 we prove (AO (in arbitrary characteristic) whenn = 3.

§1 Hook Weights

IV.1.1 Definitions
We will call a weight X a 'F-hook weight if its ~-components X(E) are hook

partitions, i.e. if for each 'F-block E
X(E)- (c,1,—1,0, 0) forsomecelIN

For the restof this section Xwill be a fixed 'F-hook weight. This implies that Xis *F-
dominant. If a, @A we will write a <pifa =aa and p=ab with a<b. For a

subset ©SA put

e - sa-

n
ae©
the product taken according to the order an_i, a ,~. *=,aj on A, i.e. according to
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the reverse of the order <.

IV. 12 Lemma

Recall that4 \ = {ae'F / sa <Xis polynomial} = {aae’'R/ Xaf Xa+j £ 1}.
(i) Take weW4/. Then woX is polynomial iff w = w© for some

(ii)  If £ isaunion of ©-blocks

[(WOoX)(S)! - &.(E)!.
(iii) If£ isa ©-block,
(W@oX)(£) = (0,0, —0,c) forsomec£O0,withcE 1iflEl£ 2.

Proof
Let£ = (a, at+l, »= b} be a ©-block. Itis easily checked that

| (Xa+1-1, Xb-l,Xa+b-a) ifa<b
(we . X XH)-| (Xa) ifa-b.

The condition ©S'Fx implies that Xd 2 1 whenevera<d £ b, so wo©»X is polynomial.
Statements (i) and (iii) follow from the above formula.

Now suppose that weW»j/ and woX is polynomial. We show by induction on
I(w) thatw -w e for some © C ~. If I(w) - O this is clear, so write w - saw"' with
a =aje”, weWvpandI(w) » I(w')+]. Putp = woX. Then (w')'(a)eO+n2\P, so

pd-pd+1 - (w*X,a) - (X.(w)-a) + (8,(w') ,0) - (8,a)*0
(see 1.1.3). This implies that p « w'oX is also polynomial, since
| pa ifa*(d,d+I}
(woX)a - j pd+1-1 ifa-d
\ pd+l ifa=d+1,
so by induction w' - w© for some ©S'P”. Let £ m (a, a+1, = b} be the ©-block
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containing d. By (iii) we have d = b, and the 'F-block containing d+1 consists of d+1
alone. Thusa d6'P~M\© ,ad+17 0 andw = w@u{a}. O

IV. 13 Lemma
For© Q ™ put X(0) = w@oX, and let j(0) be the canonical index of weight X(0).
Wrile 5e,0. for$i(0)j(0")-
(i) Ife'sec'i’)., then $0 0- spans W e>S(4, <i)X< >.
(U) If0"se'ses'l'x. then$0,0'$0',0" - $0,0"-

Proof
(i) Suppose We may assume that i « i(0), and that the
restriction ofj to each X(©)-row is canonical. We will show that j = i(©’)- LetS be a
©-block. We claim thati~e S iffjq,eE. By induction we may suppose that this is true
for all ©-blocks E* which are earlier than E in the natural ordering, i.e. for which
aeS, a'eS' implies that a>a'. Suppose i“eE. By the inductive assumption
jip ~ min E, so since jq, £ ig, we must have jq,eE. Since ©'£©, E is a union of ©'-
blocks, so by 1V.1.2(ii)

K<pef/ IQEE}| - IAQ) - Hopef/ jqeE},

and the claim is established. Put a = max S. By IV.1.2(iii), {<pef/ iq,eE} is the a1
X(®©)-row, and it follows thatj = i(©0- It is clear from this discussion that £©0Om is
indeed itself an element of *(®)SOF,i0"® »

(ii) By (i), £© ©'-"©' ©" is a scalar multiple of £© ©», the scalar in question being
the number of sel(n.f) satisfying

(i(0),i(0) - 0(0). s)
and

(i(0%)-1(0"))~(s,i(0"))-

The second condition implies that s can be obtained from i(©) by a permutation
within the X(0")-rows. The proof of (i) shows that i(0") is constant on these, so the

only such sis j(©O itself. O
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IV. 1.4 Lemma
For©'cec'Fx define an S(i2,r)-map

v<e,e):s<n.r/<e)-+S(f2,nx<e,)

5 s'-

0) ife'te'ses'i'x thenv(e',0")v(e.e). y<e,e").
(ii) 1f©\8'={a}, with a> P for all pe©', then \j/(0,©") is an injection whose
image is Ma (i2,r,A.(©")).

(iii)  Every \|/(©,©") is injective.

Proof
(i) This follows from 1V.1.3(ii).
(ii) Let a - 05. The hypothesis of (ii) implies firstly that w@ =saw@\ so
Xqg =sao0X(®©),and secondly that ~(©")b+| “ "b+1- Since X isa 'P-hook weight and
as”P” we have *b+1 = and thus (sa 0X(@"))b=0- follows from the definition of
Ma (Q,r,*.(©)) that it is generated by ~QtQ' (since in the notation of in.2.1
X(©"b = g+1), and so imy(©,©") is indeed Ma (Q,r,A.(©")). \[/[(©,©") is injective by
IH.2.8 which shows thatdim Ma (i2,r,A,(©")) = dim S(Q,nN"Ni®X
(iii) By (i) it is enough to show that each \y(©,0) is injective. By (i) again, any
\p(©,0) can be written as a composite of maps of the type considered in (ii), so is

injective. O

1V.1.5 Projective Resolutions associated with Hook Weights
In this subsection we will construct (for X a 'P-hook weight) a projective
resolution of S(Q.nN~-/ ~ Ma. The latter module is a Weyl module under

appropriate conditions (see remark (i) following the theorem below). To facilitate the
proof of exactness we will define more general complexes.
Suppose that0'c0 S * i\ satisfy

(a) a <Pforallae®©'andall pe©\0".

We define a complex K = K(8,0") of S(Q,r)-modules which bears a formal
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similarity to the complex of 111.4.1. Writing ~ for if put

Kj- 11 sz
©sis©
o'l - i

Ifi£ 1 and S2*and S2* are components of Kj and Kj_j resp., the component of the
boundary map 8,: Kj-* Kj_j between them is s(I,£")\|[/(£.D if zero otherwise.
Here

s(L,D - (-1)*{Pe2:/ 0 >al,where {a} - TXL"

Using 1V.1.4(i) it is easy to see that this defines a complex.

Theorem
S(Q,QX(e,
o Ho) - SQOXE)
M
ye©\©'
(i) K isexactinall non-zero dimensions.
Proof

(i)  This follows from 1V.1.4(ii).

(ii)  This is similar to the corresponding proof in 111.4.1: we argue by induction on
t=1@\©1 using a mapping cone construction. Let n(©,©") be the number of A.(©)-
tableaux ~ with values in n which are row semi-standard, (©\0Vcolumn standard
and which satisfy ®a.b).a)EtQIn V(a,b)6a(e’)la. We include among our

inductive hypotheses the statement
(b) dim HoK = n(0,©") 23

Fort- 0, K is the sequence 0 -»S(Q,r)"(0) -+0, so (ii) and (b) are certainly true.
Now suppose thatt£ 1. Leta be the least element of 0\© ' with respect to the order <
on A. A routine verification shows that K(©,©") is the mapping cone of the map of

22 ie. inthe notation of 1V.3.31, is adapted to \MIT
23 This is a special case of a general result- see remark (i) following ni.2.5.
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complexes
h: K (0.0'u{<x})-» K(0\{a}, O"),

where hj is (-1)‘+* times the appropriate component of the boundary 9j+i of

K(0,0):

U S* U ) S©® -0
O0'cL¢cO\{a} 0'c2c0\{a}
|2\01 =2 E\O1 =1
T he Thi Tho
> J1 - 11 s2uta> - S©'ufa} o
O'cLcO\{a} O0'clcO\(a}
EN\O'l - 2 E\O1- 1

Each of the pairs of sets (0,0'u{a}) and (0\{a}t O') satisfies condition (a), and the
respective set differences both have size t-1. By induction and the long exact
sequence of the mapping cone, K is exact except possibly in dimensions 0 and 1, and

there is an exact sequence
(©) 0 * HjK » HOK(0,0'u{o}) -* HoK(0\{a},0") -» HgK -f 0.
A.(©) is (0\0')-dominant, so by 1.1.6, n(0,©") is the number of (0\© ')- standard
basis elements £,1eS(Q,r)*®"- Thus by remark (i) following m.2.5,
dim HgK £ n(0, ©)« Taking the alternating sum of the dimensions in (c) and using
induction we have

n(©,0" £ dim HgK =n(0\{a}, ©') - n(0, 0'u{a}) + dimHjK.

Itis therefore enough to show that

(d) n(0,0") +n(0,0'u(o}) - n(0\{a}, 0.
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which we do using a combinatoric argument.

Let a = a”. Condition (a) implies that X (0")b” 1» and ~(©")b+l = lhe
shape [X(©'u(a})! is thus obtained from tX(0%)] by removing row b and adding it onto
row b+1. Define a map from X(0')-tableaux to X(0'u{a} )-tableaux by taking row b
of a >,(©)-tableau and putting it onto the end of row b+1 to obtain a X (0'u(a})-
tableau (cf. the map used in the proof of m.2.8):

This map induces a bijecdon from the set of X(©')-tableaux which are row semi-
standard, 0\(©\j{a})-column standard but not {a}-column standard to the set of
X(©'u{a})-tableaux which are row semi-standard and ©\(©\j{a})-column
standard 2*, which establishes (d). O

Remarks
(i) K(0,0") is adeleted S(aO-projective resolution of the module

S(EJ,nX<0")/

z
ae©\0'

Take a subset Fs4* and consider the resolution KOF*.0) with (Q.F) taking the place
of (an. Ma(«,r\X) is zero if ae'FN'Fx, so by ffl.3.1 ,0) is a deleted
S(Q,r')-projective resolution of

star)l/ Z Ma = v(EL.r.X).

Forthecase ®m T- F - A essentially the same resolution of V(A,AA) is given in
[Mai. The proof of exactness is similar in spirit to the one above, involving the2

24 Notethat if pe A(n,f), ECA and p is E-dominant, then a p-tablcau is E-column standard iff it is
{p}-column standard for all (k1.
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splicing together of simpler complexes using mapping cones, although the
‘component complexes' in [Mai are not in general the same ones that appear in the
proofabove.

(if)  Since each of the maps \j/(Z,L") is injective (IV.1.4(iii)), we could replace in
the definition of K(©,0') by its image in S(O,0*(®0 and each component of the
boundary by + an inclusion map.

(iii) When T =0, K = K(©,0") is in fact a minimal projective resolution. This can
be seen as follows: let hd: modS(Q,0) -*modS(Q,0) be the head functor
Vh*V/radV. Using K to compute (Lihd)(HOK) we find that

(LjihdXHoK) *  1_[  k(X(1)),
0'CLCO©
E\ei«i

(since X(L) = X(Z') iff X - S"), i.e. (Ljhd)(HoK) » hd(Kj). Thus K has no redundant

summand.

IV. 1.6 Corollary
(C) holds when Xis a'F-hook weight, i.e.
(i) ExtS(0,0) (V(Q.r,X), k(n))=0 V'F-dominant weights ji, Vi > 0.
(i) v(n,rjo)-o vi>o.

Proof
() TakeO0 =*F~and 0' =0, and consider the complex K = Ki©,©) with (11,0)
in place of (0,0- As in remark (i) above K is an S(O,0)-projective resolution of
V(0,rX). If 0 A~ LS 'F~ the weight X(L) is not 'F-dominant by 1V.1.2(iii) so for
i >0 the head of Kj contains no 'F-dominant weights. The result follows.
(i) Take K as in (i). It is clear that S(Q,OS(CQ;)O) K is isomorphic to the

corresponding complex with (11,0 in place of (0.0), so its homology is zero in all

non-zero dimensions. O
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82 Connection with the Bernstein-Gelfand-Gelfand Resolution

In this section we assume that char(k) = 0. We will show that when i2 = A the
resolution of V(A,AX) of IV.1.5 is a special case of a complex which exists for all
dominant weights X, not just for hook partitions. This complex is obtained from the
Bemstein-Gelfand-Gelfand resolution of the simple ~ (k)-module of highest weight
X Unfortunately we do not know whether this complex is exact in general. Although
for hook partitions the resolution of IV.15 is characteristic-free, there is certainly no
analogous resolution in prime characteristic for general dominant weights; this can be

seen by considering the case n = 2.

1V.2.1 Verma Modules

Letg = ifn(k) be the simple Lie algebra of n x n matrices over k of trace zero.
We recall some results on Verma modules (see e.g. [Di; Ch.7l). We will not state these
results in their greatest generality. Let hbe the subalgebra of diagonal matrices in”, a
splitting Cartan subalgebra. There is an obvious map A(n) -»/»* = Hom"/i, k), and we
will write the image of Xe A(n) by the same symbol:

X(h) - Xjhj + —+ Xjjhjj XeA(n), h = diag(hj, hn)ek

In this way © is identified with the root system ofg with respect to ft, and the image
of A(n) is the set of weights of this root system.
Letg - rf© ft© n+ be the triangulardecomposition ofg associated with A, i.e.

»* £ Sa- ¢ ta-

ae<|>- ae<D+

Put 6~ = n-© ft,and B+ = fi<B n+. ri~, 6~, n+ and 6+ are the subalgebras consisting of
all matrices in g which are respectively strictly lower triangular, lower triangular,
strictly upper triangular and upper triangular.

For Xeft* let k(X) denote the one-dimensional ~-module of weight X This

should not cause confusion with our previous use of the notation k(X). We view k(X)
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as a p+-module via the canonical surjection 6* -* fu k(X) can be similarly regarded as
a ¢'-module. Ifais a Lie algebra we will denote its universal enveloping algebra by

U(a). Put

M(X)- U0 9 k(X),
uE—>

the Verma module of highest weight X 25. The map

U(rT)-»M(X)
w UKU @.

is an isomorphism of U(n")-modules.

Suppose XeA(n) is dominant For each weW, Hom"(M(woX), M(X>) is one-
dimensional, and every non-zero element therein is an injection CDi; 7.6.6, 7.6.8], so
we can (and will) consider M(woX) to be a submodule of M(X).

For w,w'e W we will write w £ w' if each reduced expression for w contains as
a subsequence a reduced expression for w'. This is a partial order, the reverse of the
Bruhat partial orderon W. Ifw £ w' then M(woX) £ M(w'0X) as submodules of M(X)
[Di; 7.7.7].

We refer to [BGG; 10.3,10.4] for the following result:

V.22 Lemma

(i) Letwj, W2AW with I(wj) - L(w2>+2. Then the number of elements weW with
wj < w < W2is either zero or two.

(i) Itis possible to attach a sign s(w,w') =+1 to each pair w,w'eW with w £ w'

and Kwj-KwO+I in such a way that whenever
wj, w2eW, Iwj)=Iw2)+2, wj <w<W2,wj<w'<w2, andw * w'

we have
s(wj,w)s(w,w2) + s(wj,w’)s(w',w2) - 0.0

25 In[Dii this module is denoted M(X+6).
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rv.2.3 The Bernstein-Gelfand-Gelfand Resolution
Suppose that Xe A(n) is dominant. Define a complex C(X) by

C(X)i = \] M(woX).

weWw

Ifi£ 1and w, wéW with I(w) - i, I(w’) - i-1, the component of the boundary map 9j
between M(woX) and M(w'oX) is s(w,w’) times the inclusion map if w£ w', zero
otherwise. 1V.2.2 shows that this does indeed define a complex. In fact

where L(X) = M(X)/radM(X) is the simple ~-module of highest weight X Thus C(X)
is a deleted projective resolution of L(X). This is proved in [BGG] for the case k = C.
That it holds for general (characteristic zero) k can be seen by noting that the complex
C(X) and the module L(X) can be obtained by base change from the corresponding
complex and module over Q, so that the result for any one particular k implies the

result for all k.

rv.2.4 Definition of the Complex K(P,X)

We can identify 6~ inthe usual way with a Lie subalgebra of the dual algebra
k[B-]* of the coordinate ring of B_. Composing with the canonical epimorphism
kIB“I* -» S(B") and using the universal property of U(6~) we get a k-algebra map

0: U(5") -» S(B-),

which is in fact an epimorphism. The image of U(/i) under 0 is S(T), and if
VemodS(T) is considered asa U(~-module via 0, the weight spaces of V as defined
for S(T) coincide with those as defined for U(/i). 0 defines a restriction functor from
S(B*“)-modules to U(5")-modules whose left adjoint is the functor S(B~)U?;)
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Take a weight n€ A(n,f). The composite map
u(t) 2 k(M)-»U(n-)-»U(5-) ® Kk(p),
u*) UA)

given by u®! huh »u®1 ifueU(n") is an isomorphism of\J(6 )-modules,so
S(B~) ® M(*i)a S(B-)"
w~)

as S(B")-modules. Suppose Xe A(n,f) is dominant and P is any parabolic subgroup of

G containing B-. Form the complex of S(P)-modules

K(P.X) - s(P)W®_) C(X).

1V.2.5 Proposition
Write P = P~ p with Ts A Then
i) KPMNi* i1 sPwox.
weW
I(w)-i
(ii) Suppose weW, aeA and I(saw)- I(w)+1. Then the map
S(P)"socWo™  -» S(P)Wo> corresponding to the inclusion M (sa woA) £ M(woX)
is an injection whose image is Ma (A,r,woX). (cf. IV.1.4(ii).)
(iii)  Whenever w.w'eW with w £ w' the map S(P)wo" -» S(P)W*” corresponding to
the inclusion M(woX) £ M(w'0X) is an injection, (cf. 1V.1.4(iii).)
(iv)  HOK(P.X.)» V(ANA).
Proof
(i)  This follows once we observe that for p.e A(n,f)

SC), 8., MEIS(P) 8 SE) @, M) * SEIK

(ii)  Suppose |ieA(n,f), a =c”eA and that t - Qi+0,a) SO. Let X_a denote the
element of n~ which has a one in the (b+l,b)-position and zeroes elsewhere. The

endomorphism of U(rT) given by right multiplication by X1.a corresponds to an
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injection M(sa <p)->M(p) once identifications are made as in 1V.2.1(a) (see
[Di; 7.1.151). It follows that the corresponding map S(P)sa°~-> S(P)*1 is given by
right multiplication by the (sa op,p)-weight component of (Xxl_a), ie. the
component of weight (sa <p,p) when 0(X".a ) is written as a sum of two-sided weight
vectors. Let 1be the canonical index of weight p. It is a straightforward exercise26 to
show that the (sa op,p)-weight component of 0(x!_a ) is t!-8i(0>t)fi (notation as in
in.Zl).
The condition I(sa w) m [(w)+| implies that

(woX+8,a) - (X,wla) + (S,w'*a) " 1

(see 1.1.3). We can thus apply the foregoing discussion with p mwoXto conclude that
the map S(P)Wo" -» S(P)” is given by multiplication on the right by some non-zero
scalar multiple of 51(a,t),1*thc required result follows by m.2.8.

(iii) It is enough to prove this when w' m 1, where the result follows from (ii) by
considering a reduced expression for w.

(iv) HgK(P,X) is the quotient of S(P)* by the sum of the images of the maps
S(P)saoX_»S(P)*- as a ranges over A. By (ii) these images are the various
Ma (A,r,X), so the result follows from in.3.1. 0

Remarks

(i) The proposition shows that we can replace each component S(P)wo” of K(P,X)
by itsimage in S (P )\ and the components of the boundary maps by + inclusions. It is
tempting to try to define the complex K(P,X) without mention of Lie algebras: for
1 £ we W take a reduced expression

w“saisai-i"s«i  (°1*  aleA)*

26 Using the fact that 6~ acts by e-point derivations' onkIB L. i.e. if Xe
X - X@eC)yelE)X(c) Vex'«k©-|.

one shows that 8(X_a) is the sum of all &i(a,l),| » where 1ranges over all canonical indices in 1(n/)
which have at least one value equal tob. Now use 111.2.6.
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Put X(0) = X, and X(i) m sa .0X(i-1) for iel. Let lj(i) be the unique standard basis
element in and put Mw - S(P)4(1)»$(1), a submodule of S(P)*\ We

then define

K(PA)i - H Mw,
weW
I(w)-i

letting the components of the boundary maps be siw.w*) times the appropriate
inclusions. Although this prescription works in principle, we know of no way without

recourse to Lie algebras of showing the two crucial facts:

(@  Mw is independent of the choice of reduced expression.
(b)  Mw £ Mw< ifwE w'

(ii)  If we follow the procedure of (i) when X is a hook partition, where we can
handle (a) and (b) directly - see IV.1.20) and I1V.1.3, we get the complex K(A,0) of
IV.1.5. More precisely we get the alternative version of K(A,0) given in remark (ii)
of IV.1.5. We may have to adopt a new sign convention in 1V.1.5. Thus for hook
partitions at least, HiK(P,X) - 0 ifi>0.

The complex K(G,X) is essentially the same as the complex of [Z Example 11
A related complex is constructed in [AK]. In each of these papers the complex in
question is shown to be exact in positive dimensions. We outline a proof of this fact
for K(GA), partly to indicate why the proof does not readily generalize to arbitrary P.

1V.2.6 Theorem
HIKCG.X)- 0 Vi>0.

Proof (sketch)
If V and V' are finite-dimensional right and left ~-modules resp. then the groups
Hjin-,V) and TorVA” AV, V') carry natural left /t-module structures. If ais a Lie
algebra, denote by x the principal anti-automorphism of U(fl), induced by negation in
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a. x induces an isomorphism V h Vt between the categories of left and right U(a)-
modules. We can use the resolution C(X)Xof L(X)Xto deduce a strong version of
Bott's theorem (see [Bt; §15], [BGG; 9.11,10.1), [Ak; §2]):

H.(n ,L(X)T) * 1_[ k(woX) asleft/;-modules.
1 weW

I(w) - i

Let V be a finite-dimensional right*-module. Since V is semisimple, and since if X

isdominant and 1 jtwe W then woX is not dominant,
- 0Vi>0,Vdominant weights p.

The homology group HjK(G, X) is isomorphic to the zero weight space of

Tor~n \S(G),L(X)) and the latter is isomorphic as an /;-module to
H|(n-, S(G)®L(X)X. Since S(G)®L(X)Xis a finite-dimensional right*"-module, the
zero weight space of Hj(n", S(G)®L(X)X is zero forall i> 0.0

We speculate that the complex K(P,X) is exact in all positive degrees. As we
have seen, this is the case for hook partitions, and for arbitrary X when P m G. If this
were the case generally we could prove (A) and (B) in characteristic zero, by using a
similar argument to that of 1V.1.6 to show that (C) holds for all dominant weights X

1fn £ 3all is well:

1V.2.7 Theorem
If n £ 3, HijK(P,X) m 0 for all i >0, so K(P,X) is a deleted S(P)-projective resolution
of V(A,AX).

Proof
This is a rather piecemeal argument. For P - G the result is covered by 1V.2.6, so
suppose P G. For n - 1 the result is vacuous; for n- 2 it follows by IV.2.5(iii).
Suppose n - 3. The complex K - K(P,X) has the form:
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0 -+ S(P)(13)0" -+ S(P)(123)0” JiS (P)(132)0" -+
2 S(P)(12)0X11S (P)(23)#X -+ S(P)X -» 0

Firstly consider the case P = B". By IV.2.5(iii) H3K = 0. Suppose H2K t 0
and let p be a weight of H2K. Then by IV.2.5(ii)), n is a weight of
S(B*)(23)(12)oX / Ma*, and this module is isomorphic to V(A {ai},(23)(12)oX) by
in.3.1. Thus (12)p 3 (23)(12)oX (since the set of weights of V (A .{a1},(23X12)0X) is
closed under the permutation (12)), and in particular p22X2-1. Similarly p is a
weight of V(A.{a2}.(12X23)0X) so (23)p ~(12)(23)oX and p2*X2+l, a
contradiction. Thus H 2K = 0. The proof that HjK =0 is similar 27.

It remains to treat the case where P is a minimal parabolic subgroup of G

containing B-. Then

K(P.X) a S(P)S((S-) K(B"X),

so, since we have established already that K(B“ X) is a deleted S(B*)-projective
resolution of V(A,A,X), HjK(P,X) « Tor*(B" )(S(P),V(A,A X)) which is zero if i>0
bym.4.6 and 111.4.4. O

1V.2.8 Corollary
(A) and (B) hold when n £ 3 and char(k) - 0.

Proof
This just requires a simple modification of the proof of 1V.1.6 to show that (C) holds
for all dominant weights X. The above theorem shows that K(B*“X) is a deleted
S(B“)-projective resolution with the properties that the head of K(B-,X)j has no
dominant weights if i >0, and that S(G)*"® ~K(B",X) * K(G,X) is exact in positive

dimensions. O

27  Alternatively we could deduce that HjK - 0 from the fact (to be proved in 83) that the Euler
characteristic of Kis equal to the character of HoK
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83 A Character Formula

Let ZA(n,f) denote the free Z-module with basis A(n,f). If VemodS(0,0) we
define the (formal) character of V to be the element [V] of ZA(n,f) whose (i-
coefficient for |i.eA(n,f) is dim MV. V is determined up to isomorphism as an
S(0,0)-module by its character. If we identify |ie A(n,f) with the monomial

ZA(n,f) becomes a Z-submodule of the polynomial ring ZtXj, s, Xn). For each
dominant weight X, the character of the classical Weyl module V(A,A,X) is the Schur
function s”, a certain symmetric polynomial. One of the well-known identities
involving the Schur functions is the Jacobi-Trudi identity, which expresses s as an
integral combination of products of complete symmetric functions (see [Md; 1.3]).

This identity can be written in the following form:
(a) SX" S sgn(w).hwoV
weW

Hereh” = where for reINg, hr is the r*1complete symmetric function,

i.e. the sum of all monomials of total degree r. Itis easily seen that is the character

of the module S(A.A)!L
The above formula can be realized by equating to zero the Euler characteristic

of the resolution of V(A,A,X) given by the complex K(G,X) of I1V.2.4 (cf. [Ale], [Z]).
We will derive a formula analogous to (a) for the character o f the Weyl module

V(£i,rA): for each subset T's'F we have

w rv(ti.rA)] - £ Ign(w>[s(ar)w°Mm
weWxp

We remark that even in the classical case Q =T =A, formula (b) gives new
information. We can recover the Jacobi-Trudi identity from (b) by taking

q-r-r-a.
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We recall some of the basic properties of distinguished coset representatives
for parabolic subgroups of W (see e.g. [Bb; Ex3, p.37j).
IV.3.1 Lemma
Let01C02CA.
(i) For each weW 02 the coset W ~-w has a unique element of minimal length.
We will write {©i|02>for the set of these distinguished coset representatives.
(i) LetweWgqg2.Then

Wei© 1n} iff W'(01)0<>+.

(iii) 1f© 1CO2CO3SA

{©J103} - {01102} {02103}. O

IV.3.2 Lemma
Suppose that 0jc© 2£A, and that XeA(n,f) is 0 2-dominant. Then woX is © j-
dominant forall we {©jl©2}.
Proof
Take oce©j. We must show that (woX.a) » 0. We have

(woX.a) - (X.w’a) + (5,w4a) - (5,a).

By IV.3.1(ii) w'ke<I>+, so (S.w’00i 1, whilst (8,a) - 1. w“a is a non-negative
integer combination of roots in ©2, so the ©2-dominance of X implies that
(X,wa)*0.0

1V.3.3 Definitions
As usual fix i2,TeA. For ©cQ and XeA(n,f) a ©-dominant weight, define an
element v(0,X) = v(i2,T»0»X) of ZA(n,f) by setting its ~-coefficient equal to the

number of X-tableaux  [X-* n satisfying the following conditions:
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(i)  £isrow semi-standard.

(ii)  %is ©-column standard.

(iii) £ has weight p.,i.e. Vven pv=#{(a,b)€[X]/ ij(a,b)=v}.

(iv) £is adaptedto [QID in the sense that (E(a,b),a) e [iilD V(ab)e[X].28

If X is a ©-dominant non-polynomial weight put v(©,X) = 0.

1V.3.4 Theorem
1f©jC©2STi and X is ©2-dominant then

Vv(O2A) - S sgn(w)v(©i woA.).
wet®© 1N}

Before we come to the proof of 1V.3.4 we deduce the promised character formula:
I V. Corollary
Let X be a~-dominant weight. For each subset T'c'F we have

[V(Ei.r»i- £ sgn(w>[S(ii,r')w°H
weW f

Proof
Take©j - 0.©2- andT - T in1V.34, to get

v(ii,r,'FA) - £ sgn(w)v(Q,r0,woX).
weWip

Clearlyv(Q,r',0,p) = [S(Q.r)"I forany weightp. It is shown in the proof of 111.3.1
that if T'Q'V then v (n,r\4',\) - v(i2,0,4#X), which is the character of V(Q,r,X) by
IL3.1.a

28 7} condition says that if 1is the canonical index of weight x and £ - for iel(nf). then
i €5(ii.T). The p-coefficient of v(0,X) is the number of ©-standard basis elements PS(n.T)*-
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Proofof 1V.3.4
Let P(©1,02> be the statement that the theorem holds for 0 jC02c Q and all ©2~
dominant weights X Suppose that © i"© 2-® 3—  Using 1V.3.1(iii) and 1V.3.2 it is
easy to check that:

(@) IfP(01,0©2) holds then P (0j,©3) and P(©2,©3) are equivalent.

By (a) it suffices to prove P(0,0) for all ©eft.

We will say that disjoint subsets © j, ©2”A are linked if they are linked in the
Dynkin diagram of A, i.e. if 3aen-2 such that a a€@j, c*a+ie©2 or <*aGe»
aa+16@I: otherwise we will say that they are unlinked. We will say that a subset of
Alis connected if it is not possible to write it as the disjoint union of two non-empty
unlinked subsets. Any subsetof Acan be written in a unique way as a disjoint union
of non-empty connected subsets which are pairwise unlinked.

P(0,0) is certainly true, so using (a) and induction it is enough to prove
P(0ju©2» ©iufau_i}u©2), where © iu{au_j} and ©2 arc disjoint and unlinked,
©Il is either empty or has the form {0" a t+j, *=s,au_2) for some t$ u-2, and
©1w{all_i)u®©2 s £2 Put©'«©iu©2, and ©=©'u{au_1}. The proof of P(©',©) is
an elementary if somewhat pernickety piece of combinatorics. The idea is to
generalize the map used in the proof of 111.2.8. For notational simplicity we will
assume that© j-iaj, 012, e, a u-2* with u” 2 (if u=2 then ©j=0).

It is routine to check that the distinguished coset representatives of W@> in W@

are:

‘e *u-r*au-l*au-2°  *u-l "*al

Let Xe A(n,0 be ©-dominant. Put X(0)«X, and for be u-1 put

X<b)- "“u-1"au-2 "'au-b*X’ (“' b u>"Wb-1)-

Firstly we deal with the case where some X(b) fails to be polynomial. If ae n we have
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IV: Special Cases.  §3: A Character Formula.

\ ifae {1, s, u-b-13u(u+l, e n}
4 N ifae{u-b, —u-1}

~u_5+b ifa-u,

so if any \(b) is not polynomial, Xu « 0 and no X(b) is polynomial for b £ 1. In this
ease the required formula reduces to v(©,X) » v(©',X), which holds because the u,b
row of [X] is empty.

Now suppose that Xu £ 1, so that all X(b) are polynomial. For be{0,1, s, b-1}
let Xj, be the set of X(b)-tableaux which are row semi-standard, ©2-column

standard, and adapted to [iilD. Take and write it as follows:
Wi
wq 1
X1 xr 1
yi ys
b)) $

z1 UJ

Note that the above diagram illustrates the ‘generic case' where I<b<u-I. The

extreme cases are similar but the diagram has less rows of interest. Here

q- *0)u-b-1 - Xu_b-1

r- X(bu_b- ~u_b+l "1
s-t(b)uw - »u-b+2-1
t- X(b)u - +b.

Define integers d*(") and e”(") as follows:

I max{ce (b+1, b+2, — b+r+1} / ifc > b+1 thenzc 2 Xc-b-1) ifbi 1
b(* “i 1 ifb-0.

(The range for c is valid since when b£ 1, b+r+1 - b+Xu_|,+j :£b+Xu_j, - t, using
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IV: Special Cases.  §3: A Character Formula.

the ©-dominance of X))

e (p\ =Imaxice (b,b+1, t}/ ifc>bthenzqfwc_b} ifb<u-1
1 0 ifb mu-1.

(The range for c is valid since g = Xu_b_j £ Xu_b =t-k)
Put
X'b = {£eXb / £ is ©"-column standard};
XVAX'b/dbCaSebG».

do(")=I implies that X"q consists of exactly those X-tableaux which are adapted to
[Oin, row-semi-standard, ©'-column standard, but not O-column standard.

x"u-l**

Ifb £ 1 define a map yb: Xb-»Xb_j as follows: let £eX b be as depicted in
(b). Putd = db(£); then £ =y b(£) is the X(b-1)-tableau whose ath row is the ath row
of £ if af (u-b, b}, and whose u-b and u rows are as in the following diagram:

u-b-1 Wi
u-b M = xd-b-112d

u-b+1 Y1 ~Tr\

u 21 - 2d-1 1M-b - xr

The lengths of the u-b and u rows are respectively

(d-b-1) + (t-d+1) = t-b - X(b-l)u_b
and
(d-1) + (r-d+b+1) * r+b =X(b-l)u,

as they should be. £ is row semi-standard by definition of d. y b preserves 0 2-
column standardness since © ju{au_i} and ©2 being unlinked implies that neither of
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IV: Special Cases. ~ §3: A Character Formula.

the altered rows is involved in checking ©2-column standardness. That ~ preserves
the property of being adapted to [QUI follows from 111.2.7 (much as in the proof of
m.2.8), using the fact that u u-b since© juto”} iscontainedin Q.

We claim that:

(d) Vbeihl yb setsupa bijection X'b\ X"b-»X"b_j.

Assuming (d) we can complete the proof. Let v'b and v"b denote the elements
of ZA(n,f) whose p-coefficients are respectively the numbers of tableaux in X'b and
X"b with weight p. Since the map y b is weight-preserving, we see from (d) that for
all be u-1. v'b = v"b + v"b_j. Recalling that v'0 = v(©"X) - v(©,X) and v'u_! =0,
and noting that v'b = v(@',X(b)), we have

v(0,X) - v(0"X(O» - V(0'A(D) +... + (-1)u-".» (0'A<u-t)).

which is the required result.
It remains to establish (d). Suppose that 1Sb”u-1. Since A(b) is ©*-
dominant, a X(b)-tableau is ©'-column standard iff it is {a}-column standard for

each ae©".

Step 1: If £eX'b theny b(") is {a}-column standard V ae® "\{au_b_i}.

Here and below we will write £ as in (b). The only ae© \{otu_b_j} for which
y b(£) can fail to be (a}-column standard is au_b. If b =1, a u_b"0' so thcre %
nothing to do. Otherwise we must check that zc <yc_b V ce {d, d+1, — b+s}. The
definition of d=db(£) gives

Vee{d, d+1, e, b+r},
which is enough, since s£rand xc <ycV ces.
Step 2: If CeXbtheny b(C)is {au_b_i>-column standard iffe b(£) < db(Q).
If b=u-1 this is vacuous, whilst if b<u-1 Vb(E) is {ou_b-lI ~-column

standard iff zc > wc_b V ce {d, d+1, -, t}, and this holds iffeb(£) < db(C).
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IV: Spécial Cases.  §3: A Character Formula.

Step 3: - X "b-1-
Suppose e X'b\X "b. By steps 1 and 2, £= V\)(S) is ©'-column standard. To
show that C6X"b-1 we must verifVthat

'b-i<0*db-i<©®'

Write Cin the form

If d£c£b+r=t then z'c = xc_b>zc+i =w'c_(b_i), and so eb_i(C) <<+ On the
other hand, z'j.j=2zj.j"zj=w(d1)_(b_i), so eb_I(C)-d-1. If b-1
db_i(C) m 1. while dEb+1=2 and we are done. Otherwise, if dEcEb+s-
(b-D+r'+l. then z'c - xc_b<yc_b - *t-(b-I)-1' so db-I<Osd_1 " eb-I® . «
required.

Step 4: X"b_i S Vb(Xb).

Take £eX"b_It putd = eb_i(C)+I ~ 2, and write C as in (c) and (e). Let ” be
the X(b)-tableau in (b). We claim that £eXb and £ - Vb(£). As usual, £ being 02-
column standard and adapted to [QID implies the same properties for ~ The definition

ofeb_j(0 implies that

[0] *cmwc-b<lI'c-l mxc-b-1 Vce«{d+1, bfr+1}.

and so in particular,

(9) xd-b>zd+l A xd-b-1 ifb+rf d » b+2.
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IV: Special Cases.  §3: A Character Formula.

Moreover we cannot have eb_j(C) = b-1 since eb_j(C) £ db_j(C) £ b, so

(h) zd“ w'd-b * z'd-\ mzd-V
Also
(i) zd - Wd-b2"i-b-1 * xd-b-l ifd>b+1-

Conditions (g) and (h) show that £ is row semi-standard, and hence in X b. Conditions
(f) and (i) show that db(C) - d, giving G = Vb(C).

Step 5: Let Cbe as in step 4. Then CeX'b\X"b.
To check that CeX'b we must show that C is ©'-column standard. The only

ae®© ' for which {a}-column standardness of Ccan fail are au_b_i and au_b. For the

former, either b=u-1 (nothing to do), or b < u-1 and

*c- z'cth>wc+l - VI-b+l 2 *c+b> we V CEW-h- wom>

by definition of d =eb_j(C)+I. For the latter, either b=1 (nothing to do because

au_i*©"),°rb>1 and

Xc - z'c+b< x'c = yc forallce{d-b, -, s}

sincedb.tiO £e 2 i0O - d-1. We cannot have » X " b, for then C- Vb(C) would not
be (au_b_i}-column standard by step 2.

We can now finish the proof of (d): steps 3,4 and 5 together show that if be iM
then

Vb<x 'b\x "b>“ x "b-1*

The injectivity of yb follows from the proof of step 3, which shows that
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IV: Special Cases.  §4: (A)whenn - 3.

eb-1(Vb(**)) “ d-1, s° that we can recover db(£) and hence £ itself from \|/b(5). O

84 (A')whenn=3

Theorem (A') holds when n = 3.

Proof
If eitherof iJ or T is not equal to A, we have I'M£ 1, and the situation is covered by
in.4.6. Now suppose that i2 = T = A, and take '"*-dominant weights X, peA(3,f). Itis
enough to show that Ext\>(A~(V(A,AX).k(li)) =0 for all i>0. Let 1 be the
canonical index of weight X, and puta =aj, P=a 2- By ni.3.1 V(AAX) has a
resolution of the following form:

(a) 0-*MaoMp->Ma ilMp-»S(A.cf)>» V(AAX) 0.

We will show that (a) is a resolution of V(AAX) by Je(p))-acyclic
modules, so that applying HomS(A<0)( ,k(p.)) to the deleted form of (a) and taking
the Ith homology yields BX*S(A~NV(A,AX), k(n)) (see for example
[Gr; Remark 3, p.1481). Acyclicity is clear for S (A ,0)\ and for Ma and M p it follows
from m.4.3(i). It will follow for Ma nM p once we show that

if K«Bv and v is aweightof Ma nM p then k is non-dominant,
forthen ManM p has an S(A,0)-projective resolution whose terms are direct sums of
modules S(A,0)K with K non-dominant.
Letv be a weight of Ma nMp, and suppose that K~ v. By 11.31 and 11128V is

the left weight of some basis element £i,ieVS(A,0)*- which is neither {a}-standard
nor (P>-standard. We may assume that i is row semi-standard:

1-1 |2 2 2
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IV: Special Cases.  §4: (A*)whenn - 3.

Denote the sizes of each of the boxes in the above diagram by the letters a, b, c, d, e,

g, as in the diagram

The non-standardness conditions imply that d < g, and either a<d or atb <d+e. In

either case we have
k3£ v3 =c+etg>c+d+e>a-v1~K1,
S0 k is not dominant. We have shown that (a) is a resolution o f the required type.
Now Ma and Mp are (by definition) generated by weight vectors for non-

dominant weights, and we have just demonstrated that no weight of Ma r>Mp is

dominant, so applying the functor Hom §+,0)( , k(n)) to the resolution (a) shows that

EXtiS(A,0)(V(A'AX). k(u)) " 0 V *> o

as required, o
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Index of Notation

The following is a short list containing some frequently-used notation which is
not defined in the main text. (Undefined notation will be assumed to carry its standard
meaning.)

We write Wofor Wu {0}.

If X is a finite set we write IXl or ttX for the cardinal of X.
1f me Wwe write m for the set (1,2, ss, m}.

sgn(7t) denotes the sign of the permutation k.

Unless stated otherwise k denotes a fixed infinite field, dim means dimension over k,
and unadorned <8>denotes tensor product over k.

J_i denotes coproduct (of modules).
Unless stated otherwise n,feN are fixed natural numbers.
If U isak-algcbra, radU denotes the Jacobson radical of U; modU and mod'U denote

respectively the categories of (left) U-modules and right U-modules which are finite

dimensional overk.

The remainder of this section is a list of notation and terms used in this thesis.
Notation which is defined and used only within a single subsection is not usually

listed.

Notation Meaning Definition
A - Af the part of k[M] which is homogeneous of degree f 14
A(X) image of kIX) in Af 16
A(on A(Pn,r> 18
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Index of Notation.

Notation Meaning Definition
(A) the statement “the simple S(B)-module k(X) is
Indg”gj -acyclic for all dominant weights X” 3
(AO the statement “the simple S(i2,0)-module k(X) is
fnd~-acyclic forall 'F-dominant weights X” 4
a(Q.5),a(r=),a(s) 41
a b aand b belong to the same 'F-block 10
adapted to [Qir] 94
anti-dominant 12
B“,B+ groups of lower and upper triangular matrices 5
(B) the statement “the restriction functor mod S(G) -* mod S(B)
preserves Ext groups” 3
B) the statement “if the restriction functor
mod S(fi,r) *mod S(Q,0) preserves Ext groups” 4
6~, 6+ lower and upper triangular subalgebras of sth(k) 83
Ca aTcolumn 1
Ora (S,a)lh~-column 1
CiX.'P) A-column stabilizer of [X 1
C(X) Bemstein-Gelfand-Gelfand resolution 85
©) the statement “Tor "~ (S(Q,D. V(i2,r,X)) - 0 Vi>0 and
Ext*S(Q k(@j4)) - 0Vi>0,V 'F-dominant weightsn™ 4
cab coordinate function on Mn(k) 13
<D 13,19
. Ci )
cid tpef PP
o cj Jwhere X m wt(1) 14
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Notation

Cof

canonical index
character

column
contravariant duality
contravariant form

p@.r K

D'(T,Q.X) k-span (djj/ 1~n i}
S sgn(x)-CijK
hsCOIM
degree (of a weight)
dominant
e evaluation map M -¢ S
entry
f a fixed positive integer, the f in Af
faulted
G - GLn(k) general linear group
8 4,00
H diagonal subalgebra of ;¢"(k)
Indy the left exact induction functor modU -» modV
1(n,X), 1(n,f) sets of indices
i(0) canonical index of weight X(0)
i»Sj.VxeX
1<y
>~j j min for some JteP(X)
I~I*
i~yj »xMix VxeX
@ij) ~ (i) (i) m (IJ)K for some jteP(X)
index
J transposition anti-automorphism and functor
*a
i(ab) (“4b-*)

Index of Notation

Meaning

right action of S(Q,r) on A (f1,0

Schur module of highest weight X
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Definition

17

7
91
n
20
20
24
27
26

6
7
17
7

53
6
83
83
8
78
77
7
15
7
15
10
7

7
20
36
40



Index of Notation.

Notation Meaning
K(P,X) S(P) & C(X)
U (D

K (0,0)
K(t,0)
k fixed infinite ground field
ktX) coordinate ring of X
k(X) simple S(0,0)-module of weight X

and simple /t-module of weight X
un.r,X) simple S(£2,0-module of highest weight X
L(X) simple jfn(k)-module of highest weight X
1 usually the canonical index of weight X
1(0,t)
1MW) length of weW
M - Mn(k) monoid of all n x n matrices

Ma - Ma (8X,X)
Ma,r - Mar<n,rA)

M(X) Verma module of highest weight X

NO

n a fixed positive integer, the nin GLh

n~ r& strictly lower and upper triangular subalgebras of sC"k)
P(X). P(f) groups of permutations of X and f
pi(l),-,i(r)

pn,r

parabolic subgroup of W
polynomial weight

q max{Xjj, Xb+jJ-Xb+j
quasi-hereditary algebra
allrow
row
Ral»2-.«r(i(1)-i2* 1
S-Sf Schur algebra, the dual algebra of Af
S(X) dual algebra of A(X)
s(n.n s(Pn.r>
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86

78
68

16
21
83
30
85

52

9
13
53
53
84

83

7,8

18

53
35



Index of Notation.

Notation Meaning Definition
s(LI) 68
s(w.w') 84
sax') 79
ir(k) Lie algebraofn x n matrices over k 83
sa simple reflection corresponding toae A 9
Schur algebra 14
sgn sign of a permutation
shape 10
standard (index, tableau) n
standard (basis element) 28
T group of diagonal matrices 6
T= basic A-tableau 10
IMj the composite map i-T: [A]-»f-»n 10
tableau 10
U(fl) universal enveloping algebra of the Lie algebra a 84
image of V under the transposition functor 20
v\ right and left A-weight spaces of V 21
Ve contravariant dual of V 20
V* linear dual of V
™M characterof V 91
V(i2,r,A) Weyl module of highest weight A 24
v(c,A) 42
V(OX)- v(n,r.e,X) @
w Weyl group 9
W\p parabolic subgroup of W corresponding to 'Fe A 9
weight 6
weight of a module 21
weightof a tableau 93
weight space 21
we s}
WA usual action of we Won AelRn 9
WOA dot action of we W on AelRn 9
wt(i) weight of the index i 7
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Notation

ZA(nf)
«b

a< P

r

A

\Y

6

5a,b
300

ea

6
Gien
A(n)
A(nf)
A+(n,0

X(S>
xm
X sii.
Ash

Index of Notation.

Meaning

free Z-module with basis A(n,f)
the simple rootea-ea+i
the natural order on the set of simple roots
a subset of A
the set of simple roots
comultiplication on k[M]
the weight (n-1,n-2,  0)
Kronecker delta, equal to 1 if a=b, 0 otherwise

counit on k[M]
standard basis vector of IRn
canonical map U(6~) -* S(B~)
set of distinguished coset representatives
the set of weights
the set of polynomial weights of degree f
the set of dominant weights in A(n,f)
evaluation on ¢/

A-component of Xcorresponding to the 'F-block E

WO=X
subweight partial order
dominance partial order
p-X is a sum of elements taken from
lexicographic order
degree of X
shape of X
dual basis element to Cjj
dual basis element to c”
left action of S(fl,r) on A(Q,H
~i(Q).i<©")
the set of roots
the set of positive roots
(usually)
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91
8
75
17
8
13
9

68
13
8
85
92
6
7
42
21
42
7
6
6
10

6
6

10
14
14
17
7

8

8
25



Index of Notation.

Notation Meaning Definition
H'k {ae” / sao\ is polynomial} 74
'F-block W\j/-orbiton n 10
A-column 1n
A-component 42
¥-dominant 10
'F-hook weight 75
V(0,0 78
i2 asubsetof A 17
[OID 17
() inner product on IRn 8
<,> contravariant forms S(QJT) x A(T,Q) -»k 21
and V(f2,r,X) x D (r,iU) -*k 24

108



[AK]

[An]

[AB1]

[AB2]

[Bb]

[BGG]

[Bt]
[CPs1]

[CPS2]

[CPSK]

[De]

[DEP]

[Di]

References

K. Akin, On complexes relating the Jacobi-Trudi identity with the
Bernstein-Gelfand-Gelfand resolution, J. Alg. 117 (1988), 494-503.

H.H. Andersen, The Frobenius morphism on the cohomology of
homogeneous vector bundles on G/B, Ann. Math. 112 (1980), 113-121.
K.Akin and DA. Buchsbaum, Characteristic-Free Representation Theory
of the General Linear Group, Adv. in Math. 58 (1985), 149-200.

K. Akin and DA. Buchsbaum, Characteristic-Free Representation Theory
of the General Linear Group Il. Homological Considerations, Adv. in
Math. 72 (1988), 171-210.

N. Bourbaki, Groups et algébres de Lie, Eléments de Mathématique
XXXIV, Hermann, Paris, 1968.

7JV. Bernstein, IM. Gelfand, and SJ. Gelfand, Differential operators on
the base affine space and a study of ;7-modules. Part II: The resolution of
a finite-dimensional ~-module, in Lie Groups and Their Representations,
Ed. IM. Gelfand, J. Wiley and Sons, New York, 1975.

R. Bolt, Homogeneous Vector Bundles, Ann. Math. 66 (1957), 203-248.

E. Cline, B. Parshall and L.Scott, Algebraic Stratification in
Representation Categories, J. of Alg. 117 (1988), 504-521.

E. Cline, B. Parshall and L.Scott, Finite-dimensional algebras and
highest weight categories, J. reine angew. Math 391 (1988), 85-99.

E. Cline, B. Parshall, L.Scott and W. van der Kallen, Rational and
Generic Cohomology, Invent, math. 39 (1977), 143-163.

J. Désarménien, Appendix to G.C.Rota, Théorie Combinatoire Des
Invariants Classiques, Séries de Mathématiques Pures et Appliqués,
IRMA, Strasbourg, 1977.

C. DeConcini, D. Eisenbud and C. Procesi, Young Diagrams and
Determinantal Varieties, Invent. Math. 56 (1980) 129-165.

J. Dixmier, Enveloping Algebras, North-Holland Mathematical Library;
Vol. 14, North-Holland Publ. Co., Amsterdam-New Y ork-Oxford, 1977.

109



[DKR]

[Doll

[Do2]

[Do31

[DR]

[c1]

[62]

[G3L

(61

[Ma]

[Md]

M1

[Pl

References.

J. Désarménien, J.P.S. Kung, G.C. Rota Invariant Theory, Young
Bitableaux and Combinatorics, Adv. in Math. 27 (1978), 63-92.

S. Donkin, A filtration for rational modules, Math. Z. 177 (1981), 1-8.

S. Donkin, Rational representations of algebraic groups, tensor products
and filtrations, Lecture Notes in Mathematics 1140, Springer-Verlag,
Berlin, 198S.

S. Donkin, On Schur algebras and related algebras 1, J. of Alg. 104
(1986), 310-328.

V. Dlab and CM. Ringel, Quasi-hereditary algebras, Illinois J. Math 33
(1989) no.2, 280-291.

J.A. Green, Polynomial Representations of GLn, Lecture Notes in
Mathematics 830, Springer-Verlag, Berlin, 1980.

JA. Green, On certain subalgebras of the Schur algebra, J. of Alg. 131
(1990) ,265-280.

JA. Green, Schur algebras and general linear groups, in Groups St.
Andrews 1989, 155-210, Ed. CM. Campbell and E.F. Robertson,
London Mathematical Society Lecture Notes Series, Cambridge
University Press, Cambridge, 1989.

A. Grothendieck, Sur quelques points d'algébre homologique, Tohoku
Math. J. 9 (1957), 119-221.

W. Haboush, A short proof of the Kempf Vanishing Theorem, Invent.
Math. 56(1980), 109-112.

G. Kempf, Linear systems on homogeneous spaces, Ann. Math. 103
(1976), 557-591.

M. Maliakas, Resolutions, homological dimensions and extensions of
hook representations, preprint. Department of Mathematical Sciences,
University of Arkansas, 1990.

1.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford
Univ. Press (Clarendon), Oxford, 1979.

S. MacLane, Categories for the Working Mathematician, Graduate Texts
in Mathematics 5, Springer-Verlag, Berlin, 1971.

BJ. Parshall, Finite dimensional algebras and algebraic groups.
Contemporary Math. 82 (1989), 97-114.



sl

[sq]
[sc]

[sq

References.

1. Schur, Uber eine Klasse von Matrizen, den sich einer gegebenen Matrix
zuordnen lassen (1901), in 1. Schur, Gesammelte Abhandlungen I, 1-70,
Springer-Verlag, Berlin, 1973.

AJP. Santana, Ph.D. Thesis, University of Warwick, 1990.

L. Scott, Simulating algebraic geometry with algebra I: the algebraic
theory of derived categories, Proc. Sym. Pure Math 47 (1987).

R. Steinberg, Lectures on Chevalley groups, Yale University, New Haven
1967.

A.V. Zelavinskii, Resolvents, dual pairs, and character formulas, Funct.
Analysis and its Appl. 21 (1987), 152-154.






