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SUMMARY

The main aim of this work was to identify the important cis-acting 
regulatory sequences, and the trans-acting factors with which they 
interact, which are required for the tissue-specific expression of the 
Xenopus borealis skeletal actin gene.

All sequences necessary and sufficient for the correct spatial and temporal 
expression of the Xenopus borealis skeletal actin gene are located in a 156 
bp fragment of the gene that spans from nucleotide residues -197 to -42 in 
its promoter. This region of the skeletal actin promoter contains three 
imperfect repeats of a CArG sequence motif that has been demonstrated to be 
important in the expression of other sarcomeric actin genes. Deletion 
analysis of the promoter of the Xenopus borealis skeletal actin gene, using 
Xenopus micro-injection techniques as a transient assay system for promoter 
activity, have identified that CArG box3 is essential for skeletal actin 
gene expression.

By using band shift assays I have demonstrated that, under my assay 
conditions, CArG box2 is unable to bind any proteins in vitro . Conversely, 
the CArG boxl sequence exhibits two binding activities on band shift 
analysis. One of these is antigenically related to the transcription factor 
SRF, whilst the second appears to be distinct from this protein. CArG box3 
also interacts with a protein in vitro. Although this sequence exhibits a 
similar shift to that of the CArG boxl/SRF complex on band shift analysis, 
my experiments suggest that this protein is distinct from SRF.

A combination of the CArG boxl and CArG box3 motifs is unable to confer 
muscle-specific gene expression on a heterologous promoter. Furthermore, I 
have identified an upstream regulatory element (URE) in the Xenopus 
borealis skeletal actin gene promoter that spans from nucleotides -197 to 
-167 that is required for the expression of the gene, at least when 
sequences between nucleotide -42 and +28 are absent.

The URE of the Xenopus borealis skeletal actin gene is capable of 
interacting with a trans-acting factor(s) in vitro. In addition to this a 
further region of the gene which spans from nucleotide residues -83 to -42 
is also capable of interacting with a factor(s) in vitro.

The mechanisms by which these multiple regulatory elements control the 
tissue-specific expression of the Xenopus borealis skeletal actin gene will 
be discussed.
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C H A P T E R  1

Introduction.

1.1 The early development of Xenopus.

The early stages of Xenopus erabryogenesis share many general 

characteristics with other vertebrates. The study of this 

organism has enjoyed particular attention because the embryos 

are large and easily manipulated, as we’ll as being readily 

available throughout the year. In addition to this, the embryos 

develop rapidly and independently, with the body plan being 

established and tissue-specific gene activation occurring 

within 24 hours of fertilisation. The following section briefly 

summarises the embryological changes most relevant to an 

understanding of the work described in this thesis.

The unfertilised Xenopus egg is a large asymmetric cell. Many 

yolk platelets are concentrated at its vegetal pole, whilst at 

the animal pole these platelets are much less dense and the 

region is darkly pigmented by melanin granules located near the 

cell surface. Whereas the animal-vegetal polarity is 

established during oogenesis, dorsal-ventral polarity is 

established by a series of events directly after fertilisation 

of the egg. The successful sperm always enters in the animal 

hemisphere of the egg. This triggers a rotation in the eggs 

cytoplasm, resulting in the appearance of a lightly pigmented 

band (the grey crescent) on the opposite side of the egg to 

sperm entry. The grey crescent marks the dorsal side of the

1



Introduction

embryo and is centred on the point where cells will later start 

invaginating to produce the internal structures of the embryo.

The first few hours of development (until stage 8) involve 

twelve very rapid, synchronous cell divisions (the cleavage 

stage), each of which (excluding the first cell division) takes 

about 35 minutes on average (Newport and Kirschner, 1982). Only 

a little new transcription is observed over this period. 

However at stage 8, the raid-bias tula transition (MBT), 

transcription of many genes is activated, or accelerates, and 

the cell divisions become asynchronous.

In terms of developmental specification, the early blastula 

embryo consists of two cell types, those at the animal pole and 

those at the vegetal pole. If animal pole cells are cultured in 

isolation they develop to form epidermis, whereas vegetal cells 

develop into predominantly endodermal tissues when cultured in 

isolation. Indeed, the equatorial region of a 64 cell stage 

embryo, which forms the mesodermal tissues in a normally 

developing embryo, develops into ectodermal tissue when 

cultured in isolation. However, if these cells are isolated 

later than the 64 cell stage they develop into substantial 

amounts of mesodermal tissue, with the addition of some 

ectoderm (Nakamura et a l . . 1970).

One interpretation of this is that mesoderm induction depends 

on an interaction between the animal and vegetal regions of the 

blastula. This theory was confirmed by the experiments of Ogi 

(1967, 1969) and Nieuwkoop (1969) showing that, as previously 

known, animal and vegetal poles of embryos cultured separately

2
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develop into epidermis a n d  endoderm respectively. However, by 

combining animal and vegetal fragments a variety of mesodermal 

tissues were formed. Nieuwkoop later demonstrated that the 

mesoderm was formed entirely from the ectodermal component of 

the embryo, as a result of induction by the prospective 

endoderm (Sudarwati and Nieuwkoop, 1971; Nieuwkoop and Ubbels, 

1972).

This relatively simple model of mesoderm induction was 

complicated by the findings that ventral vegetal blastomeres 

induced little or no muscle from animal pole cells, despite the 

fact that muscle of the embryo is formed from blastomeres of 

the ventral part of the embryo. This inconsistency of cell 

fates has lead to the 'three signal' model of mesoderm 

induction as proposed by Slack and co-workers (Smith and Slack, 

1983; Slack £t a l .. 1904; Smith e_t a l . , 1985; Dale and Slack, 

1987). The first two signals in this model originate from the 

vegetal hemisphere of the embryo. One on the dorsal side of the 

embryo induces predominantly notochord, whilst on the ventral 

side a second signal induces ventral mesoderm such as blood, 

mesenchyme and mesothelium. The third signal of this model 

originates from the newly formed dorsal mesoderm. This signal 

acts within the mesoderm germline to 'dorsalize' adjacent 

ventral mesoderm.

In recent years work has suggested that the factors 

responsible for cell fates during mesoderm induction (mesoderm 

inducing factors, or MIFs) are related to peptide growth 

factors (PGFs) (for review see Smith, 1989).

3
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Following the onset of mesodermal induction gastrulation 

occurs when cells invaginate through the blastopore, starting 

at a position in the equatorial region opposite the sperm entry 

point, known as the dorsal lip of the blastopore. Endodermal 

and mesodermal cells gradually move inside the embryo to 

locations where they will subsequently form the majority of the 

internal organs. It is at the end of this process (stage 12^) 

that some mesodermal cells, which later form myotomes, begin to 

express the cardiac and skeletal actin genes (Gurdon e_t a l . , 

1985, Wilson et a h ,  1986).

Over the following hours neurulation takes place, leading to 

the eventual creation of the neural tube and primitive nervous 

system. The first somite is recognised at stage 17, after the 

initial detection of the £?C-actin proteins (Sturgess e_t a l . , 

1980). Indeed, the activation of the0(-*ctin genes during early 

Xenopus development occurs about 8 hours before morphological 

differentiation of muscle tissue takes place. This makes the 

study of sarcomeric actin gene expression of particular 

interest in development for two reasons. Firstly it acts as a 

early marker for muscle commitment and second, it may be 

regulated by gene activators which operate at the very earliest 

stages of muscle differentiation.

Although progress is being made it is still unclear as to how 

the factors responsible for mesoderm induction dictate the fate 

of presumptive muscle cells and activate the myogenic 

programme. To this end much work has been performed on studying 

the mechanisms by which muscle-specific genes are activated,

4
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with the aim of working backwards to the point when animal 

cells first receive a signal from vegetal cells. The remainder 

of this chapter is concerned with reviewing this line of 

research in both amphibia a nd other vertebrates.

1.2 The actin gene family.

Actin is a structural protein found in all eukaryotic cells. 

It exists in a small number of closely related isoforms which 

have diverse functions in various different cell types. All 

these isoforms can be maintained as monomers (G-actin), or they 

can polymerise to form filaments (F-actin).

In sarcomeric muscle (skeletal and heart muscle) F-actin 

exists as thin filaments which interdigitate with myosin. 

Myosin is attached to the actin via a globular domain on the 

myosin molecule which is hinged to the rest of the complex. It 

is believed that a cyclic process of binding, rotation around 

the hinge and dissociation drives a sliding action of myosin 

filaments over actin filaments, thus facilitating muscle 

contraction. This process requires the hydrolysis of ATP, and 

is inhibited by decreasing intracellular calcium 

concentrations.

In addition to the role of actin in muscle contraction other 

actin isoforms form a vital component of the cytoskeleton in 

both muscle and non-muscle cells. They are involved in 

different aspects of cell motility, including cell movement, 

cytokinesis, cytoplasmic transport, secretion and phagocytosis 

(for review see Clarke and Spudich, 1977).
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The multiple isoforms of act in described in the preceding 

paragraphs were first identified by the variation in mobility 

of actin proteins on iso-electric focussing gels (Garrels and 

Gibson, 1976; Whalen e_t_ a l . . 1976). Using this technique at 

least three actin isoforins, the Q( , ^2, and $  actins, were 

identified. However it was not until Vandekerckhove and Weber 

(1978a, 1978b, 1978c and 1979) sequenced different isoforms 

from a number of different tissues that at least six different 

actin types were identified. Two of these, the and ft actin 

isoforms, are co-expressed in all mammalian non-muscle cells so 

far studied (Vandekerckhove and Weber 1979) and are the actin 

types that are the components of the cytoskeleton. The (X actin 

gene family classically consists of an Oi-skeletal actin which 

is observed solely in the skeletal muscle, and an 0^ -cardiac 

actin, which predominates in the heart muscle. Smooth muscle 

contains two actin isoforms, an © < -type which predominates in 

the aorta for example, and a |£-type that is at higher relative 

levels in the stomach.

The six classical actin isoforms are members of a highly 

conserved family of proteins. For example only 4 out of 375 

amino acids differ between the cardiac and skeletal 0(-actins. 

Indeed, in the most widely divergent example only 24 and 25 

amino acids differ between the cytoskeletal, and cardiac and 

skeletal actins respectively (Vandekerckhove and Weber, 1979). 

Interestingly, the N-terminus is the most divergent region of 

the actin molecule. Indeed, the first three or four amino acids 

are characteristic of each actin isoform. They are always

6



Introduct ion

acidic residues (either glutamate or aspartate), but their 

exact sequence differs between isoforms. Vandekerckhove and 

Weber (1981a) exploited this fact and developed a simple assay 

system to identify other actin isoforms in other organisms by a 

protein-chemical analysis of the N-terminal peptides of actin 

proteins.

However, the classical model, developed using mammals, of 

there being only six strictly conserved actin isoforms, with 

the skeletal, cardiac and smooth muscle actins being expressed 

tissue-specifically, represents a oversimplification of the 

situation in other vertebrates. For example, the study of 

cytoskeletal actins in amphibia by Vandekerckhove and Weber 

(1981b) led to the proposal that any order of acidic amino 

acids at the N-terminus of these proteins might be functional. 

Eight different arrangements are therefore possible (types 1- 
8), and at least six of these have been identified _in vivo 

(Vandekerckhove and Weber, 1981b; Bergsma £ £  a l ., 1985). 

Despite the advances previously described, the accurate study 

of the distribution of various different actin types was 

limited by the inability of the assay system used to 

distinguish between closely related isoforms, such as skeletal 

and cardiac (X-actins. It was not until the actins were studied 

at the nucleic acid level that a more detailed account of actin 

isotype expression in different cells was accomplished.
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1.3 Actin genes and the regulation of their expression.

1.3.1 Actin gene structure and expression.

The high amino acid conservation between actin isoforms means 

that the coding sequences of their genes are very similar. This 

has enabled workers to use one DNA probe to screen for many 

actin gene isoforms. Actin cDNAs from organisms as distantly 

related as Dictyostelium and Drosophila can act as suitable 

probes for the vertebrate genome (see Cross, 1984; Engel et 

a l ., 1981). Consequently, by hybridising a cDNA probe to a

genomic Southern blot and washing at low stringency an estimate 

of the actin gene number can be obtained by counting the number 

of hybridising bands. This, and other experimental approaches 

have been used to estimate the number of actin related 

sequences in both the human and mouse genomes (Engel e_t a l . , 

1981; Humphries e_t al. , 1981; Minty e_t a l . . 1983). In contrast

to initial suspicion that there were six actin related 

sequences in the genome (i.e. one for each actin isoform), 

there turn out to be approximately 20-30 actin related 

sequences in the human genome (Engel et a l . , 1981; Humphries et 

a l ., 1981) and a minimum of 20 in the mouse (Minty e_t al. , 

1983). In other organisms actin gene number varies from one in 

yeast (Ng and Abelson, 1980; Gallwitz and Seidel, 1980), to six 

in Drosophila (Tobin e_t al. . 1980; Fyrberg e_t a l . , 1981), seven 

to eleven in chickens (Cleveland £t a l . , 1980; Schwartz and 

Rothblum, 1980) and 11 to 20 in sea urchins (Durica e_t a l . . 

1980; Schellar et a l ., 1981). However the fact that the hamster
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has only 5 actin like sequences in its genome (Doderaont e_t a l . , 

1982) suggests that the large number of actin sequences in the 

human and mouse may not all be necessary. In man, at least, 

many copies appear to be dispersed, processed -actin 

pseudogenes (Ng et a l ., 1985).

Actin-like sequences present in the genome appear to be 

unclustered and _in situ hybridisation has revealed that many of 

these sequences are scattered on different chromosomes. Indeed, 

it has been shown that actin genes as closely related as the 

skeletal and cardiac O^-actins are located on different 

chromosomes (Czosnek e_t a l . , 1983). This would argue against 

various actin isoforms being derived from the same 

transcriptional unit by differential processing of the RNA, as 

has been demonstrated with other muscle specific genes such as 

the myosin light chains 1 and 3 gene locus (e.g. Nabeshima et 

al. . 1984).

Cloned actin gene sequences reveal that the coding regions of 

different actin isoforras show considerable similarities. This 

would be expected from the high degree of amino acid 

conservation between the different actin proteins. Generally no 

conservation within intron sequences has been observed in 

vertebrate actin genes, although Ng et a l . (1985) and Nakajima- 

Iijima et a l . (1985) have discovered sequence homologies in the 

introns of the human and rat cytoskeletal -actin genes. The 

positions of introns are entirely conserved between species in 

genes encoding a single vertebrate isoform (see Buckingham and 

Minty, 1983), but the pattern is altered between different
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isoforms. The presence of conserved enhancer sequences within 

the actin gene introns, such as those found in the myosin gene, 

and their role in the co-ordinated expression of these genes 

remains doubtful (see section 1.3.3 and 1.3.4).

Examination of the remainder of the transcriptional unit 

reveals sequence homologies in the 5' and 3' untranslated 

regions (5' and 3' UTR) of actin genes. Although the 5' UTR 

reveals some conserved sequences, its length is normally too 

short and variable to make any diagnostic comparisons. 

Conversely, the 3' UTR is considerably longer than the 5' UTR. 

Sequence comparisons of the 3' UTR have shown that the region 

is highly conserved between actin isotypes (Yaffe e_t a l . . 

1985). For example alignment of sequences of the rat and human 

O^-actin genes reveals long stretches with 90-100% identity. 

However, this high degree of sequence homology of the 3' UTR is 

not shared between different actin isoforms. This has been 

exploited to differentiate specific actin isoforms at the mRNA 

level and to study the spatial and temporal expression of 

specific actin genes.

The classical model of actin gene expression, as determined by

expressed in all cell types so far examined, whilst two smooth 

muscle actin isotypes are expressed in smooth muscle cell 

types. In addition to these there also exist the skeletal and 

cardiac 0^-actins which are expressed in the skeletal and 

cardiac muscle respectively.

However, this model of actin gene expression was complicated

protein sequencing, is that the p  and isoforms are
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by the findings of Minty e_t al. (1982), who characterised a 

mouse foetal skeletal muscle cDNA and showed it to be 

homologous to a cardiac actin mRNA expressed in both foetal and 

adult heart tissue. Furthermore, Gunning e_t a l . (1983) were 

able to isolate cardiac actin cDNAs from a human skeletal 

muscle cDNA library. These observations suggested that the 

cardiac actin gene is not limited exclusively to cardiac 

tissue. Indeed, in mouse foetal skeletal muscle cardiac actin 

transcripts are a major component of the RNA (30-40% of the 

total skeletal muscle actin message in 17-20 day old foetuses). 

Moreover, in chicken skeletal muscle, they account for more 

than 90% of actin mRNA during early development (Paterson and 

Eldridge, 1984).

It would appear that the paired expression of the cardiac and 

skeletal actin genes also occurs in cardiac muscle, judging by 

the fact that cDNAs complementary to skeletal actin message are 

present in cDNA libraries prepared from cardiac actin template 

(Mayer e_t_ a l . , 1984). In addition to this it has been reported 

that skeletal muscle actin mRNA sequences in the heart are 

about 10% of their abundance in the leg muscle of newborn rats. 

However after 80 days of development their amount in the heart 

decreases by a factor of 12. Furthermore, levels of skeletal 

actin mRNA in rat and mouse hearts has been shown to be 2% of 

that of the cardiac actin mRNA (Shani et a l . . 1981; Minty et 

a l.. 1982).

As a general rule it would appear that both the skeletal and 

cardiac actin isoforms are expressed in both skeletal and heart
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muscle tissues. However, as development progresses their 

expression becomes increasingly differentially localised, with 

the skeletal muscle actin being the major actin message in 

skeletal muscle, and the cardiac actin message predominating in 

the heart. This model is supported by observations that the 

skeletal muscle cell line C2C12 expresses mostly cardiac actin 

on fusion of myoblasts to form myotomes. However this level of 

cardiac actin transcripts later drops and gives way to 

predominantly skeletal actin transcripts (Bains e_t a l . , 1984).

In Xenopus much the same pattern of expression exists. Both 

cardiac and skeletal actin transcripts are first observed at 

stage 12^-13 of development and are restricted to the region of 

the embryo which will develop into muscle tissue (Mohun et a l .. 

1984; Wilson e_t a l . , 1986). At later stages of development it 

can be seen that both these actin transcripts are localised 

exclusively to the muscular tissue of the embryo somites. These 

two isoforms may co-exist in embryonic muscle until relatively 

late in development (stage 42). However in adult skeletal 

muscle it is predominantly the skeletal actin message that is 

detected, with the cardiac actin transcript being present at 

very low levels. Likewise cardiac actin message is the 

predominant $ “act*n message detectable in adult heart tissue 

(Mohun £t_ a l . , 1984).

This precise and intricate pattern of expression of the 

cardiac and skeletal actin genes raises challenging questions 

as to the molecular mechanisms of actin gene expression. 

Furthermore, the study of the tissue-specific expression of
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actin genes provides a useful model to attempt to gain some 

understanding of the general mechanisms of cell-type specific 

gene activation. To attempt to answer some of these question, 

and to attempt to gain some knowledge of the activation of the 

myogenic program as a whole, the molecular activation of both 

actin and other muscle-specific genes has been the subject of 

much research over recent years. The following sections outline 

some of the progress made in understanding this complex 

sequence of events.

1.3.2 DNA sequence elements involved in the expression of 

actin genes.
The emergence of 0( -actin transcripts during myoblast fusion 

in cell culture, or prior to the formation of muscle in Xenopus 

embryos, suggests that at least one mechanism of controlling 

actin gene expression is at the transcriptional level. 

Furthermore, heterokaryon studies demonstrated that fusion of 

muscle cells with non-muscle tissues ¿ri vitro induced the 

expression of muscle-specific genes in an environment in which 

they would otherwise be silent (Blau e£ a l ., 1985). This would 

suggest that the emergence of muscle-specific mRNA species on 

the fusion of myoblasts to form multi-nucleated myotubes is not 

caused by an alteration in the stability of the message in the 

cytoplasm, or indeed due to the packaging of the RNA in an 

untranslateable form. Equally as important however, these 

studies demonstrate that the activation of muscle-specific
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genes is mediated by diffusible trans-acting molecules which 

are transported to the nuclei through the cytoplasm. Direct 

evidence that the regulation of actin gene expression is at the 

level of transcription has come from probing the 

transcriptional status of these genes in various tissues by 

DNasel sensitivity techniques (Carmon e_t a l . , 1982). These 

studies demonstrated that the skeletal muscle t(-actin gene is 

DNasel sensitive, and therefore transcriptionally active, only 

in nuclei isolated from differentiated muscle cells. In nuclei 

isolated from mono-nucleated myoblasts and brain tissues, this 

sequence is relatively protected from DNase digestion, 

suggesting that the change in higher order chromatin structure 

which enables transcription to take place, only occurs 

immediately before or during cell fusion. Furthermore, it was 

also demonstrated that this sensitivity to DNasel does not 

extend beyond 0.7Kb 5' to the transcribed region of the C(- 

actin gene.
Significant advances in characterising the cis-acting 

regulatory sequences of the actin genes, and the identification 

of the trans-acting factors with which they interact, has been 

achieved in recent years. The demonstration that cloned actin 

genes introduced into myogenic cell lines are expressed in a 

similar manner to that of their endogenous counterparts has 

provided one assay system for the delineation of important cis- 

acting sequences involved in actin gene expression (for example 

Grichnick e_t a l . , 1986; Minty and Kedes, 1986). However, this 

assay system works with a varying degree of efficiency,
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depending on the cell lines used and the gene being studied 

(see Minty et al., 1986).

In Xenopus. Wilson et a l . (1986) followed the expression of a 

micro-injected Xenopus borealis cardiac actin gene and 

demonstrated that this gene was expressed in both a temporal 

and spatial manner along with the endogenous actin gene. Micro­

injection of cloned actin genes into developing Xenopus embryos 

thus provides an alternative assay system for the study of 

their expression to the introduction of genes into myogenic 

cell lines. Indeed, this assay system has been exploited to 

identify sequences involved in the expression of the Xenopus 

laevis cardiac actin gene (Mohun ^t al. . 1986; Mohun e_t a l . , 

1989a; Taylor et a h , 1989).

In addition to these two assay systems transgenic animals have 

also been exploited to study the expression of actin genes. The 

remainder of this section outlines the progress made by the use 

of these various techniques in identifying cis-acting sequences 

and trans-acting factors important in the expression of the 0*\- 

actin genes.

1.3.3. Cis-acting sequences and trans-acting factors involved 

in the control of cardiac actin gene expression.

Preliminary experiments by Minty and Kedes (1986) demonstrated 

that the 5' flanking region, the first exon and 28 nucleotides 

of the first intron of the human cardiac actin gene is 

sufficient to drive the tissue-specific expression of a 

chloramphenicol acetyl transferase (CAT) reporter gene when
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transfected into myogenic cell lines. Moreover, in amphibians 

micro-injection of cardiac actin genes, which have their 

equivalent 3' regions replaced by a reporter gene, also exhibit 

correct spatial and temporal expression throughout early 

Xenopus development (Wilson e_t al ■ , 1986; Mohun e_t al. , 1986). 

Indeed, the 3' region of the mouse cardiac actin gene could 

also be lost without affecting the expression of the gene in 

adult tissues, as demonstrated by engineering transgenic mice 

that contained the mouse cardiac actin gene (Shani, 1986). 

These experiments demonstrate that the 3' untranslated region 

of the cardiac actin genes, which are highly conserved between 

species, are not required for their correct expression. The 

fact that as little as 24 nucleotides downstream of the 

transcriptional start site of the Xenopus laevis cardiac actin 

gene is present in constructs used in the experiments of Mohun 

et a l . (1986), would also suggest that the introns and vast 

majority of the 5' untranslated region of this gene is also 

redundant in the control of its expression.

Analysis of sequences contained in the 5'-flanking region of 

the human cardiac actin gene revealed two separate regions of 

the promoter involved in the expression of the gene. Deletion 

of sequences through a distal region (-443 to -395), and 

subsequently a proximal region (-177 to -118) resulted in 

significant reductions in the activity of the gene, suggesting 

that these sequences interact with positive trans-acting 

factors contained in muscle cells (Minty and Kedes, 1986). 

Similarly, in studies involving the Xenopus laevis cardiac
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actin gene, deletion of the promoter revealed a region of the 

gene spanning from nucleotides -416 to -217 which is essential 

for its tissue-specific expression (Mohun e_t a l ., 1986). In 

neither case was an increase in promoter activity observed in 

non-muscular tissues, suggesting the lack of importance of 

negative regulatory elements in the expression of the cardiac 

actin genes.

Examination of the promoters of both cardiac and other actin 

genes reveals the presence of one or more copies of a conserved 

CC(A/Trich)^GG sequence motif, or CArG box (see figure 1.1). In 

the case of cardiac actin, four CArG motifs are situated in the 

promoters of these genes. The most proximal of these four 

motifs has been termed CArG boxl, with the subsequent motifs 

being numbered through to CArG box4.

Further studies of the sequence requirements of the human 

cardiac actin gene by linker scanning mutation and fine 

deletions of the promoter, revealed that CArG box2 was required 

for the full activity of the gene, whilst the elimination of 

CArG boxl totally extinguished any promoter activity (Miwa and 

Kedes, 1987). The Xenopus laevis cardiac actin gene appears to 

be regulated in much the same manner, with only the most 

proximal of the four CArG motifs being required for the 

expression of the gene (Mohun e£ a l ., 1989a). Furthermore, it 

was demonstrated that CArG box2, CArG box3 and CArG box4 could 

replace the CArG boxl motif without significantly reducing the 

expression of the cardiac actin gene (Miwa and Kedes, 1987; 

Mohun e_t̂  al ■ , 1989a). This finding led to the speculation that
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Cardiac actin

1) -89 
-112
-83

CGGCCAAATAAGAGAA 
GGACCAAATAAGGCAAGG 
T ACCAAATAAGGGC A

Chicken.
Human.

Xenopus laevis.

2) -121 
-152 
-132

TGGCCATTCATGGCC 
GCTCCATGAATGGCC 
CTCCATTAATGGCT

Chicken.
Human.

Xenopus laevis.

3) -153 
-203 
-174

C T GCCTTAGATGGC 
CTTCCTTACATGGT 
TTCCATACATGGGCT

Chicken.
Human.

Xenopus laevis.

4) -197 
-240 
-220

GCTCCCTATTTGGCCA 
GCTCCCTATTTGGCCA 
ATCCCTATTTGGCCA

Chicken.
Human.
Xenopus laevis.

Skeletal actin.

1) -96 
-96 
-95 
-86 

-101

TGTCCAAATATGGAGT 
TGTCCAAATATGGAGT 
CACCCAAATATGGC 
CACCCAAATATGGC 
CACCCAAATATGGCTC

Xenopus borealis. 
Xenopus laevis. 
Rat.
Chicken.
Human.

2) -127 
-168 
-128 
-162

GG ACCCTCAAAGGC CA 
CCTTCTTTGG 
CCTTCTTTGG 

GCTCCTTCTTTGGTCA

Xenopus borealis. 
Rat.
Chicken.
Human.

3) -162 
-221 
-177 
-229

CCACTATATTTGGTCA 
CTCCATATACGGAAA 
C TCCTTATACGGA AA 

ACTCCATATACGGCCC

Xenopus borealis, 
Rat.
Chicken.
Human.
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/3 -actin.

1) -65 TTGCCTTTTATGGC Hu m a n .
-6A TTGCCTTTTATGGC R a t .
-66 TTTCCTTTTATGGC Chicken

2) +758 TTGCCTTTTATGGTAAT Hum a n .
♦ 738 TTGCCTTTTATGGT AAT R at.
+683 TTGCCTTTTATGGTAAT Chicken.

Other muscle-specific genes.

-69 CCAAATTTAGGC Rat cardiac MHC.
-70 CCAAAAGTGG Chicken cardiac MLC2.

-122 CCAAGAAAGG Rat skeletal MLC2.
-120 CCAAAATAGC Chicken cardiac Troponin T
-1233 CCATGTAAGG Mouse MCK.
-178 CCATACAAGG Mouse MCK.

FIGURE 1.1. Evolutionary conserved CArG box sequences in 

muscle-specific genes.

CArG boxl [1)1, CArG box2 [2)], CArG box3 [3)] or CArG boxA 

[A)] motifs are illustrated from the cardiac, skeletal and /S - 

actin genes. CArG sequences from other muscle-specific genes 

including the rat cardiac myosin heavy chain, chicken cardiac 

myosin light chain 2, rat skeletal myosin light chain 2, 

chicken cardiac troponin T and mouse muscle creatine kinase 

genes are also illustrated. The second set of numbers 

illustrates the number of nucleotides upstream of the 

transcriptional start set where the motif is situated.
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each CArG motif interacts with the same, or functionally 

interchangeable trans-acting factors.

In vivo competition studies using fragments of the human 

cardiac actin gene support the suggestion that the CArG motif 

is the site of interaction for positive trans-acting factors 

(Miwa ejt a l . , 1987). In brief, it was shown that sequences 

containing either one or both of the CArG boxl and CArG box2 

motifs could compete for the binding of positive trans-acting 

factors in̂  vivo, thus lowering the transcriptional activity of 

a co-transfected human cardiac actin fusion gene that contained 

the CArG boxl motif. These experiments also lend support to the 

suggestion that the CArG boxl and CArG box2 motifs bind similar 

trans-acting factors.

Band shift and DNA footprinting analysis of human cardiac 

actin promoter fragments demonstrated the binding of a nuclear 

factor(s) to a region of the promoter which spans the CArG boxl 

motif (Gustafson e_t a l . . 1988). Furthermore, the authors went 

on to demonstrate that linker scanning mutations which 

eliminate the activity of the gene by disruption of the CArG 

boxl sequence, also eliminate the binding of the trans-acting 

factor(s) to this sequence in vitro. Similar binding activities 

were observed using oligonucleotides complementary to the 

Xenopus laevis cardiac actin CArG box motifs (Mohun e_t_ a l . , 

1989a). In addition to this Mohun e£ a l . (1989a) also 

demonstrated that the ability of each CArG box to compete for 

the binding of the factor that interacts with the CArG boxl 

motif was in the order of CArG boxl > CArG box3 > CArG boxA >>
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CArG box2.

However, a recent report demonstrated that CArG box binding 

factor (CBF) was not the only factor capable of binding the 

human cardiac actin promoter. Gustafson and Kedes (1989) 

demonstrated that at least seven distinct nuclear proteins were 

capable of interacting with putative regulatory elements 

contained within the promoter of the human cardiac actin gene. 

However it was only recently that the function of these sites 

was demonstrated ¿n vivo, and this will be discussed in later 

chapters.

1.3.4. Cis-acting sequences and trans-acting factors involved 

in the control of skeletal actin gene expression.

As in the case of the cardiac actin gene, so much progress has 

been made in identifying the regulatory elements which 

contribute to the expression of the skeletal actin gene, due to 

the demonstration that these genes are expressed correctly when 

transfected into myogenic cell lines (for example see Nudel et 

a l ., 1985). In the case of the rat skeletal actin gene it was 

demonstrated that 750 nucleotides of 5' flank, in addition to 

2/3 of the structural gene, was sufficient to drive the tissue- 

specific expression of a reporter gene in myogenic cell lines 

(Melloul e_t a l . , 1984). Indeed, in the case of both the human 

and chicken skeletal actin genes it was demonstrated that only 

the 5' flanking region of these genes was needed to induce the 

expression of a reporter gene on the fusion of myoblasts to 

form myotubes (Grichnick e_t a l . , 1986; Muscat and Kedes, 1987).
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Furthermore, a region of the chicken skeletal actin gene 

promoter spanning from nucleotides -2200 to +27 fused to a 

reporter gene is able to direct the correct tissue-specific 

expression of this gene in transgenic mice (Petropoulos et a l . . 

1989). Therefore, it would appear that, as with the cardiac 

actin genes, all the sequences necessary for the expression of 

the skeletal actin genes reside in the 5' flanking region.

Preliminary experiments using the chicken skeletal actin gene 

demonstrated that all sequences required for the expression of 

this gene are contained within a region of the promoter that 

spans from nucleotide residue -All to 12 nucleotides downstream 

of the proposed TATA box (Grichnick e_t̂  al. , 1986). Further 

experiments revealed that it was not until sequences downstream 

of nucleotide -200 in the promoter of this gene were deleted 

that a loss in transcriptional activity was observed (Bergsma 

et a l ., 1986). Furthermore, Muscat and Kedes (1987) described a 

proximal regulatory element which consisted of 153 nucleotides 

upstream of the transcriptional start site of the human 

skeletal actin gene that was sufficient to induce the tissue- 

specific expression of a reporter gene, although at slightly 

lower levels than that of a construct that contained 2Kb of 5' 

flank.

As expected, sequence comparison of the promoter regions of 

the skeletal actin genes reveals considerable evolutionary 

conservation between species. Furthermore, in parallel with the 

cardiac actin genes, imperfect repeats of the CArG box motif 

are also present in the promoters of the skeletal actin genes.
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However, in contrast to the cardiac actin genes, which contain 

four CArG boxes in their promoters, the equivalent region of 

the skeletal actin genes contain only three CArG box motifs.

For both the human (Muscat and Kedes, 1987) and chicken 

(Bergsraa £t a l . , 1986) skeletal actin genes, deletions which 

remove the most proximal CArG box motif (CArG boxl), reduce the 

activity of the promoter to basal levels. In addition to this, 

mutation of CArG boxl almost totally eliminates any promoter 

activity demonstrating that, as with the cardiac actin genes, 

this sequence element is essential for the full activity of the 

promoter (Walsh and Schimmel, 1988; Chow and Schwartz, 1990). 

Indeed, Chow and Schwartz (1990) also demonstrated that 

mutation of the more distal CArG box motifs also significantly 

reduced the activity of the promoter, demonstrating that these 

sequences are also important in the expression of the gene.

It is apparent from several lines of investigation that the 

CArG box motifs are not the only sequences required for the 

expression of the skeletal actin genes. For example, it has 

been proposed that the human skeletal actin gene has three 

regulatory regions consisting of distal, proximal and basal 

regulatory elements (Muscat and Kedes, 1987). Although both the 

distal and proximal regulatory regions can stimulate the 

expression of a heterologous basal promoter, it is not until 

both are allowed to act synergistically that high levels of 

stimulation are observed.

It is likely that the loss of important positive regulatory 

elements, such as CArG boxl, from the skeletal actin promoter
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masks the contribution of downstream regulatory sequences on 

the expression of the gene. Indeed, deletion insertion 

mutations of a region of the chicken skeletal actin gene 

promoter that spans between the CArG boxl motif and the TATA 

box significantly reduces the activity of the promoter, 

suggesting that sequences within this region of the gene are 

important in the control of its expression (Bergsma e_t a l ., 

1986). Extensive linker scanning mutation of the chicken 

skeletal actin gene promoter revealed four positive cis-acting 

regulatory elements (Chow and Schwartz, 1990). These elements 

include a ATAAA motif (TATA box), paired CCAAT-box associated 

repeats (CBAR's or CArG boxes) and an upstream T and A rich 

regulatory element (UTA regulatory element). Negative cis- 

acting regulatory elements that surround the most proximal CBAR 

were also proposed. Indeed, the authors went on to demonstrate 

that mutation of these putative regulatory elements led to the 

precocious induction of promoter activity in pre-fusion 

myoblasts, suggesting the importance of these sequences in 

subduing the expression of this gene in these cells.

In vitro binding studies using a fragment of the chicken 

skeletal actin promoter spanning from nucleotides -12 to -148 

identified predominantly two separable binding complexes, 

designated Muscle Actin Promoter Factor 1 (MAPFl) and Muscle 

Actin Promoter Factor 2 (MAPF2) (Walsh and Schimmel, 1987). 

Whilst MAPFl is the predominant binding activity present in 

nuclear extracts prepared from non-muscular cell lines, MAPF2 

is the major binding activity present in nuclear extracts
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prepared from myogenic cell lines. By band shift analysis and 

DNA footprinting techniques it was demonstrated that both MAPF1 

and MAPF2 bind the same region of DNA, namely the most proximal 

CArG motif. The elimination of factor binding to this sequence 

motif by mutation of the site results in a loss of promoter 

activity when introduced into myogenic cell lines, suggesting 
the importance of the M A P F  factors iji vivo (Walsh and Schimmel, 

1988).

However, conflicting data have arisen from the studies of the 

human skeletal actin gene. ¿n vivo competition studies 

demonstrated that cis-acting sequences present in the distal 

regulatory element of the human skeletal actin gene were 

distinct from control elements present in the human cardiac 

actin gene. However, both iji vivo and ¿n vitro competition 

studies investigating the proximal regulatory region of the 

human skeletal actin gene suggested that these sequences share 

common regulatory elements with the human cardiac actin gene 

(Muscat et a l., 1988). Band shift and DNA footprinting analysis 

of the proximal regulatory region of the human skeletal actin 

gene localised the binding of a factor(s) to the CArG boxl 

motif situated in these sequences. vitro binding studies 

also demonstrated that a single binding activity existed in 

extracts prepared from both myogenic and non-myogenic cell 

lines (Boxer e£ a l . , 1989a). The binding activity from both 

sources was identical in its footprint over the CArG motif, 

although it was situated more centrally over the CArG box than 

those observed in experiments performed with the chicken
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skeletal actin gene promoter. One explanation offered for this 

discrepancy in data was that the lower molecular weight shift 

observed in the experiments using the chicken skeletal actin 

gene promoter was a result of the degradation of the higher 

molecular weight MAPF1 protein on extract preparation.

In summary, it appears that within the 5' flanking region of 

the skeletal actin gene the CArG boxl motif plays an important 

role in the expression of this gene. However, there still 

remains some controversy as to the number and identity of the 

factors which interact with this sequence. What is clear is 

that the skeletal actin gene promoter is more complex than 

originally conceived. A number of other positive and negative 

regulatory elements which are important for the expression of 

the gene appear to exist. The mode of interaction of these 

regulatory domains w i t h  each other and the transcriptional 

complex itself remains unclear.

It is apparent that the CArG motif plays an essential role in 

the expression of both the skeletal and cardiac actin genes. 

Indeed, this motif is found in the upstream regions of other 

actin genes, such as the chicken, human and rat ft -actin genes. 

In addition to this, CArG motifs are found in the promoters of 

other muscle-specific genes such as the rat cardiac myosin 

heavy chain, chicken cardiac myosin light chain, rat skeletal 

myosin light chain, chicken cardiac troponin T and muscle 

creatine kinase genes (see Minty and Kedes, 1986; see also 

figure 1.1). The CArG motif is also present in the regulatory
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region of the proto-oncogene c-fos. Indeed, by drawing 

comparisons with proteins that interact with the CArG motif of 

the c-fos gene promoter, clues as to the identity of the CArG 

box binding protein that interacts with the actin gene 

promoters have been provided. The following section therefore 

briefly reviews the elements involved in the expression of the 

c-fos gene.

1.3.5. The role of the CArG box in the expression of the 

proto-oncogene c-fos.

The proto-oncogene c-fos is the cellular cognate of v-fos, the 

transforming gene of the FBJ-murine osteosarcoma virus (Curran 

et al.. 1983). The c-fos gene encodes a nuclear protein of 380 

amino acid residues which has been implicated in the process of 

cell proliferation and determination. More recently, however, 

the c-fos gene product has been identified as a transcription 

factor which, in association with the product of the proto­

oncogene c-jun, interacts with AP-1 protein binding-sites 

situated in the promoters of several genes (for review see 

Curran and Franza, 1988).

Studies of the expression of c-fos in various cell lines has 

demonstrated that transcriptional activation of the gene can be 

induced by addition of serum to quiescent cells (Greenberg and 

Ziff, 1984). This induction has also been shown to occur on the 

addition of a variety of growth factors, including platelet 

derived growth factor (PDGF) (Greenberg and Ziff, 1984; Curran, 

1984), fibroblast growth factor (FGF) (Greenberg and Ziff,
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1984; Curran, 1984), nerve growth factor (NGF) (Greenberg et 

a l ., 1985; Kruijer e_t a l . . 1985) and epidermal growth factor 

(EGF) (Curran, 1984). Furthermore, agents that increase the 

intra-cellular levels of cAMP have also been shown to activate 

the c-fos gene (Moore et a l ., 1986; Morgan and Curran, 1986).

Activation of c-fos occurs rapidly, with transcripts appearing 

as early as 5 minutes after addition of the inducing agent 

(Kruijer et al. , 1985) and reaching a maximum level within 20-30 

minutes (Greenberg and Ziff, 1984; Kruijer ejt al. , 1984); 

Mitchell e_t a l . , 1985). This increase in message is reflected 

in a rapid increase in the c-fos protein approximately 30 

minutes after the addition of inducing agents (Kruijer e_t a l . , 

1984; Curran, 1984). However, expression of the gene is 

transient, with levels of RNA returning to pre-induction levels 

120 minutes after the addition of serum (Greenberg e_t a l ., 

1985).

The study of the cis-acting elements within the c-fos gene 

which are responsible for this complex expression pattern has 

enjoyed much attention over recent years. DNasel hypersensitive 

studies revealed sites at -1700, -290, +10, +240 and +700 which 

are released from a higher order chromatin structure to allow 

digestion by DNasel (Renz e_t al ♦ , 1985; Deschamps e_t a l . , 

1985). Indeed, sequences centred at position -290 in the c-fos 

promoter are highly conserved between the mouse and human, and 

these sequences have been shown to possess an enhancer-like 

structure (Renz et a l ., 1985).

Deletions through the human c-fos promoter revealed that
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sequences between nucleotides -332 and -276 are essential for 

the activation of the gene by serum and growth factors 

(Treisman, 1985; Gilman et a l . , 1986). Furthermore, this region 

of the gene is capable of conferring serum inducibility on a 

heterologous promoter, ¿ n  vitro binding studies using this 

region of the promoter revealed that it was the binding site 

for a nuclear protein, termed the Serum Response Factor (SRF) 

(Treisman, 1986; Gilman et a l . , 1986; Prywes and Roeder, 1986). 

DNA footprinting techniques have located the binding site for 

this protein to be contained in a region of dyad symmetry, 

termed the Serum Response Element (SRE), which spans from 

nucleotide -320 to nucleotide -229 in the human c-fos gene 

promoter (Treisman, 1986). Indeed, this sequence appears to 

posses a CArG motif, which has been identified in the promoters 

of the actin genes.

A synthetic SRE has been shown to restore the serum 

inducibility of an otherwise silent c-fos gene, which contains 

only 261 nucleotides upstream of the transcriptional start site 

of the gene (Treisraan, 1986). Furthermore, mutations within the 

SRE that eliminate the formation of the DNA-protein complex in 

vitro, also eliminate the ability of the gene to be induced by 

serum iji vivo (Greenberg et a l . , 1987). However, the role of 

SRF in the expression of the c-fos gene is likely to be quite 

complex. Indeed, SRF binding to the SRE is recoverable from 

many cell lines and tissues in the apparent absence of growth 

factor stimulation (Treisman, 1986; Gilman et a l .. 1986).

SRF has been purified to apparent homogeneity (Treisman, 1987;
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Prywes and Roeder, 1987; Schroter et al., 1987). The apparent 

molecular weight of SRF is 67Kd and the purified protein 

exhibits the same footprint over the SRE as that achieved with 

crude extract. However, purified SRF exhibits a slightly faster 

mobility on band shift analysis with SRE sequences than when 

crude extracts are used (Treisman, 1987).

Characterisation of a cloned SRF demonstrated that the protein 

binds as a homodimer to the SRE (Norman et a l., 1988). The DNA 

binding/dimerisation region of the protein does not appear to 

be obviously related to previously identified DNA binding 

domains such as the 'helix-turn-helix' and 'zinc finger' motifs 

(Pabo and Saver, 1984; Klug and Rhodes, 1987). However it does 

bear a striking homology to the yeast proteins MCM1 and ARG80 

in the region of the protein known to be involved in 

dimerisation and DNA binding (Norman et al. , 1988).

More recent work has shown the protein complex over the SRE to 

be more complex than originally conceived, with the discovery 

that another protein, termed P^^ Ternary Complex Factor 

(p62TC F ^  binds the SRE-SRF complex. Furthermore, the resulting 

ternary complex is a requirement for efficient gene induction 

by serum (Shaw «it al. , 1989). More recently it has been shown 

that p62TCF aione cannot bind the SRE, but first requires the 

binding of SRF to the SRE in a dimeric form. Indeed, a region 

of the SRF protein of approximately 13Kd in size retains the 

ability to dimerise and bind DNA, in addition to forming a 

complex with p62TCF (schroter e £  al., 1990).

There exist at least two cellular pathways leading to the
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induction of the e-foe gene. One involves growth factors 

increasing the cellular degradation of phosphoinositols, 

resulting in the production of diacylglycérol (DAG) and the 

mobilisation of calcium, which then activates protein kinase C. 

This pathway is thought to act through the SRE in the c-fos 

gene promoter. Indeed, work demonstrating that SRF is 

phosphorylated, and that this phosphorylation is required for 

DNA binding, has prompted the suggestion that this may be a 

target of control by protein kinase C (Prywes e_t a l . . 1988; 

Manak e_t a l ., 1990). Furthermore, by the use of inhibitors of 

diacylglycérol formation, which acts as a secondary messenger 

in the induction of protein kinase C, evidence has arisen that 

activation of c-fos transcription depends on SRF 

phosphorylation (Schalasta and Doppler, 1990).

The c-fos gene is also inducible by agents that elevate the 

intra-cellular levels of cAMP, such as dibutyryl-cAMP, 

forskolin and cholera toxin (Greenberg e_t al. , 1985; Kruger et 

a l . , 1985; Bravo e_t a l . , 1987). Data from several laboratories 

has demonstrated that whilst deletion or mutation of the SRE 

blocks the induction of c-fos by growth factors, the ability of 

agents that elevate the intra-cellular levels of cAMP to induce 

the gene remains unchanged, suggesting two independent pathways 

of action (Gilman, 1988; Sassone-Corsi e_t_ a l . , 1988). Deletion 

of the c-fos gene promoter revealed that a region spanning 

between nucleotide residues -65 and -57 is essential for the 

induction of the gene by cAMP. Indeed, this region of the 

promoter contains a putative cAMP response element (CRE)
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(Shang ejt a l . , 1988; Sassone-Corsi, 1988). Furthermore, the c- 

fos CRE is able to confer cAMP responsiveness to a heterologous 

promoter, and both i_n vivo and ¿ii vitro binding studies suggest 

that the element binds a bona fide CRE nuclear binding protein 

(CREB) (Sassone-Corsi e_t a l . , 1988).

1.4. Elements involved in the expression of other muscle- 

specific genes.

With the aim of identifying the essential cis-acting 

regulatory sequences important in muscle-specific gene 

expression, much work has focussed on determining the sequences 

involved in the expression of a variety of muscle-specific 

genes other than actin.

One such example of another contractile protein which has been 

extensively characterised is the cardiac troponin T (cTNT) 

gene. Mar e_t_ a 1. (1988) demonstrated that the efficient 

induction of this gene in embryonic skeletal muscle cells when 

myoblasts differentiate into myotubes, requires only 129 

nucleotides upstream of the gene's transcriptional start site. 

By testing the ability of various fragments of the cTNT 

promoter to induce the tissue-specific expression of a 

heterologous promoter, sequences responsible for the restricted 

expression of the gene in skeletal muscle cells were localised 

to a region of the promoter spanning from nucleotides -50 to 

-129. This region of the gene contains various putative 

regulatory elements, including a CArG box, as identified in the 

actin gene promoters (see section 1.3.3), and a MyoD binding
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site (see section 1.5), in addition to a SP-1 binding site. 

However, two copies of a conserved motif (CATTCCT), termed the 

M-CAT motif, were also identified (Mar and Ordahl, 1988). 

Surprisingly deletion of either the MyoD site or CArG box had 

little effect on the expression of the gene (Mar and Ordahl, 

1990). Conversely, disruption of one or both of the M-CAT 

motifs significantly reduced the activity of the cTNT promoter, 

demonstrating their importance in the expression of the cTNT 

gene (Mar and Ordahl, 1988; Mar and Ordahl, 1990). Indeed, 

mutations of the M-CAT motif which facilitate a drop in the 

activity of the promoter, also eliminate the binding of a M- 

CAT binding factor (MCBF) to this sequence iji vitro (Mar and 

Ordahl, 1990). It appears, therefore, that the regulated 

expression of the cTNT gene is controlled not by the CArG box, 

or indeed the MyoD site present in the promoter of the gene, 

but by two copies of a previously unidentified M-CAT motif. 

However, the mechanisms by which the M-CAT motif and the MCBF 

contribute to the tissue-specific expression of the cTNT gene 

remains unclear, because MCBF appears to be present in tissues 

of both myogenic and non-rayogenic origin (Mar and Ordahl, 

1990).

A further member of the troponin isoform gene family is the 

troponin I gene (Tnl). Both the chicken and quail fast skeletal 

muscle Tnl genes have been cloned (Baldwin e_t a l , . 1985; 

Nikovits e_t a l , . 1986), and subsequent analysis of sequences 

involved in the expression of these genes has revealed that a 

different mechanism for their control has evolved from that of
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its TNT counterpart.

Two distinct regulatory regions of the quail fast skeletal Tnl 

gene exist. One element contained within the 5'-flanking region 

of this gene is required for its maximum expression, whilst a 

second larger regulatory element (1.5Kb) within the first 

intron is required for differentiation-specific transcription 

(Konieczny and Emerson, 1987). In the case of the chicken 

skeletal Tnl gene, a region of the gene spanning from position 

-160 to position +60 is sufficient to drive the tissue-specific 

expression of a reporter gene. As in the quail skeletal Tnl 

gene two distinct regulatory elements exist in the -160/+60 

region of the gene. One region between nucleotides -160 and -40 

is required for the full activity of the promoter, whilst a 

second region contained within the first exon of the gene is 

also required for optimal expression (Nikovits ej^ a l . , 1990). 

Furthermore, the authors also demonstrated that a-DNA sequence 

present in the first exon of the gene, which shares 

considerable identity to the binding site for the myogenic 

regulatory protein MyoD (see section 1.5), binds a trans-acting 

factor in vitro . More recently the internal regulatory element 

situated in the first intron of the quail skeletal Tnl gene has 

been demonstrated to be capable of binding the muscle 

regulatory factors MyoD, Myogenin and Myf-5. However, two other 

regions of the internal regulatory element of the gene, which 

appear to bind ubiquitous proteins, are also necessary for the 

correct expression of the gene (Lin et al,. 1991).

Myosin is another major constituent of the muscle contractile
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apparatus. Sequences which contribute to the activation of the 

various myosin isoform genes during myogenesis have also 

attracted much attention over recent years.

Work investigating the expression of the myosin heavy chain 

(MHC) gene has demonstrated that 1.4Kb of 5'-flanking sequence 

is sufficient to direct the tissue-specific expression of the 

gene (Bouvagnet £t a l . , 1987). Furthermore, Bouvagnet e_t al. 

(1987) demonstrated that nucleotide residues -173 to -142 in 

the promoter of the gene determine tissue-specificity by 

inhibiting its expression in non-muscle cells, whilst requiring 

elements further upstream for full activity. Similarly, 

negative regulatory elements have been implicated in the 

expression of the myosin light chain 2 (MLC2) gene. The 5'- 

flanking region of this gene is sufficient to drive the tissue- 

specific expression of a reporter gene in muscle cells (Arnold 

et a l ., 1988). Furthermore, as little as 64 nucleotides 

upstream of the transcriptional start site of this gene is 

sufficient for this function (Braun e_t a l . , 1989a). However, 

further deletion of this promoter results in the chimeric 

fusion gene being expressed in both non-muscle and muscle 

cells. Indeed, the promoter of this gene was shown to bind 

nuclear factors which are present in non-muscle cells, but are 

absent in muscle cells (Braun e_t a l . , 1989a).

A single locus exists for the closely related myosin light 

chain 1 and myosin light chain 3 isoforms (MLC 1/3), with the 

mature RNAs being produced by differential transcription from 

two promoters followed by alternate splicing (Nabeshima et^ a l ..
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1984; Periasamy £t a l . , 1984; Strehler e_t a l . , 1985). The 

control of the tissue-specific expression of the MLC 1/3 gene 

appears to be different from other myosin isoform genes. Whilst 

sequences proximal to the two MLC promoters do not appear to 

contain tissue-specific regulatory elements, a 0.9Kb segment 

located >24Kb downstream of the MLC1 promoter appears to 

exhibit a muscle-specific enhancer activity (Donoghue e_t̂  a l . , 

1988). Indeed, this region of the gene appears to bind MyoD in 

vitro (Buskin and Hauschka, 1989). However, in another report, 

sequences important in the expression of the MLC 1 gene have 

also been identified upstream of its transcriptional start site 

(Shirakata e_t_ a l , . 1988).

Initial characterisation of the gene encoding the S  -subunit 
of the acetylcholine receptor gene, which is expressed 

exclusively in skeletal muscle, demonstrated that nucleotides 

spanning from position -148 to position +24 in the gene are 

sufficient to drive its cell-type specific expression (Baldwin 

and Burden, 1988). Indeed sequences spanning from nucleotide 

residues -148 to -95 have been demonstrated to contain all 

sequences necessary for the correct expression of the gene 

(Baldwin and Burden, 1989). The authors also went on to 

demonstrate that this nucleotide region exhibited different 

band shift patterns when myotube and myoblast extracts were 

used in these assays, and described a TGCCTGG motif present in 

this region of the gene which is present in the regulatory 

regions of a number of other muscle-specific genes.

Similarly 850bp of the 5'-flanking region of the acetyl
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choline receptor 0<-subunit gene has been shown to confer cell- 

type and developmental-type expression on a CAT reporter gene 

(Klarsfeld et a l ., 1987). All the sequences necessary for this 

expression have been demonstrated to be contained within a 

fragment of the gene's promoter spanning from nucleotide 

residues -110 to -45 (Piette et a l , . 1989). Interestingly, this 

region of the gene contains a TGCCTGG element previously 

identified in the regulatory region of the acetyl choline 

receptor S  -subunit gene. Furthermore, other putative 

regulatory elements are present in this region of the gene 

including a SP-1 and a MyoD binding site.

The combination of research into the sequences which regulate 

the expression of various muscle-specific genes has been 

relatively unsuccesful in identifying a general myogenic 

regulatory element. However, possibly the most significant 

steps to characterising such a sequence came from the studies 

of the muscle creatine kinase (MCK) gene. All sequences 

required for the transcriptional activation of this gene during 

myogenesis are contained within 3,300 nucleotides upstream of 

the transcriptional start site of the gene (Jaynes £t a l . , 

1986). More detailed analysis of the mouse MCK gene revealed 

the presence of an essential cis-acting element contained 

within the promoter of the gene. Indeed, this region of the 

gene appears to exhibit enhancer-like properties and to confer 

muscle-specific expression on a heterologous promoter 

(Sternberg e ^  al . , 1988; Jaynes et a l . , 1988). A similar 

muscle-specific enhancer was identified in a 159 nucleotide
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region of the rat MCK gene which spans from 1031 to 1190 

nucleotides upstream of the transcriptional start site of the 

gene. Furthermore, this region of the gene was demonstrated to 

interact with 3 possible nuclear proteins î n vitro (Horlick and 

Benfield, 1989).

Buskin and Hauschka (1989), by the use of iii vitro binding 

assays, also demonstrated the binding of a factor to the MCK 

promoter. Furthermore, this factor was present exclusively in 

differentiated muscle cells, and was named MEF-1 (myocyte- 

specific enhancer-binding nuclear factor 1). The binding site 

for MEF-1 was determined by DNA footprinting techniques and 

disruption of the site, which eliminated MEF-1 binding, reduced 

the activity of the transcriptional enhancer.

In addition to this a further myocyte-specific factor has been 

shown to bind the MCK enhancer at a different site to MEF-1. 

This factor appears to be distinct from MEF-1 and has been 

named MEF-2. Another factor (MBF-1) was demonstrated to bind 

the MEF-2 site. This factor exhibits a reciprocal expression 

pattern to MEF-2, being present in myoblasts extracts, but 

being down regulated on the differentiation of myoblasts to 

form myotubes (Gossett et a l . , 1989).

The MEF-1 binding site, as described by Buskin and Hauschka 

(1989), has subsequently been identified in many other muscle- 

specific genes. More importantly, however, this factor has been 

demonstrated to be related to the myogenic regulatory protein 

MyoD.

- 36 -



Introduction

1.5. MyoD and related factors: A 'master-switch' for muscle 

determination?

Although the study of the promoters of muscle-specific genes 

has supplied useful information about the factors involved in 

their expression, the first evidence of a myogenic regulatory 

set of genes arose from the manipulation of myogenic cell 

lines.

Early evidence for the existence of myogenic regulatory genes 

came from experiments in which myoblasts were shown to activate 

muscle genes in a wide variety of non-myogenic cell lines when 

heterokaryons were performed between these two cell types (Blau 

et a l ., 1983; Wright, 1984). Further evidence for a gene which 

regulates the myogenic programme arose from studies of the 

mesodermal cell line C3H10T^ (lOT^s). These cells were shown to 

be converted to myoblasts by a brief exposure to the de- 

methylating agent 5-azacytidine (Taylor and Jones, 1979). It 

was hypothesised that 5-azacytidine caused the limited hypo- 

methylation of DNA in the genome, and thus activated certain 

loci which proceeded to determine the muscle phenotype. Indeed, 

the frequency of conversion of 10T^ cells to muscle (up to 50%) 

suggested that one locus, or a few closely linked loci, were 

activated following hypo-methylation and were responsible for 

establishing the myogenic lineage (Konieczny and Emerson, 

1984). This hypothesis was supported by genomic transfection 

experiments, in which DNA from myoblasts, but not from 10T^ 

cells, was shown to convert 1 0 T^ cells to myoblasts with a 

frequency consistent with the involvement of a single
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regulatory gene (Lasser et a l ., 1986).

The first muscle determination and differentiation gene to be 

identified was isolated by subtractive cDNA hybridisation, and 

was named myoblast determination gene number 1, or MyoD (Davis 

et a l . , 1987). MyoD is expressed in 10T^ myoblast cell lines 

after treatment with 5-azacytidine, in addition to other 

myoblast cell lines and skeletal muscle. It is not expressed in 

non-muscle tissue, nor in cardiac or smooth muscle. The Xenopus 

homologue of MyoD has subsequently been cloned. Analysis of 

Xenopus MyoD message demonstrates that the gene is regulated in 

both a spatial and temporal manner, appearing at stage 1 0  of 

development exclusively in tissues of the embryo that go on to 

form the somites (Hopwood et al., 1989; Scales et a l .. 1990).

MyoD, when transfected into several different fibroblast or 

adipoblast cell lines under the control of a viral promoter, 

converts these cells into stably proliferating myoblasts, which 

can subsequently differentiate under the appropriate conditions 

(Davis e_t a l . . 1987). Similarly, introduction of Xenopus MyoD 

RNA into developing embryos causes the activation of muscle- 

specific genes in a region of the embryo which does not 

normally express these genes (the isolated animal caps) 

(Hopwood and Gurdon, 1990).

By transfecting 10T^ cells with de-methylated DNA linked to a 

neomycin resistance gene, Pinney e_t a l . , (1988) obtained 

evidence for a further myogenic regulatory gene, Myd. Southern 

analysis reveals that Myd does not correspond to MyoD. 

Subsequent to this other myogenic regulatory genes distinct
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from MyoD have been isolated. Wright et a l . . (1989) identified 

a further MyoD-related gene by subtractive hybridisation 

techniques, and named this gene myogenin. Following this, cDNAs 

for mouse myogenin (Edmonson and Olson, 1989), and the related 

factors Myf-5 (Braun e_t_ a l . . 1989b) and MRF-4, also called 

Herculin and Myf - 6  (Rhodes and Konieczny, 1989; Braun e £  a l . , 

1990; Miner and Wold, 1990) were isolated independently. All 

these factors are expressed exclusively in skeletal muscle, and 

have the ability to activate myogenesis in transfected 10T% 

cells.

Although all the myogenic regulators identified thus far are 

expressed exclusively in skeletal muscle tissue, the different 

patterns of expression of these genes suggests they may be used 

at different stages of development. For example, myogenin 

transcripts are detected at high levels in the somite myotome 

of mice two days prior to the appearance of MyoD or other 

muscle-specific genes, suggesting that the determination of the 

muscle phenotype may be independent of MyoD (Sassoon e_t a l ., 

1989; Wright e_t al. , 1989). In addition to this, MRF-4 is the 

predominant myogenic regulatory gene in adult skeletal muscle 

and does not appear to be expressed until after birth (Rhodes 

and Konieczny, 1989; see also Braun e_t_ al. , 1990; Miner and 

Wold, 1990).

The predicted amino acid sequences of myogenin, Myf-5 and MRF- 

4 share 80% identity with MyoD in a 70 amino acid segment of 

the protein which contains a basic domain and a region of 

homology to the myc family of proteins (see figure 1 .2 ).
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FIGURE 1.2. Structural comparison of the MyoD family 

of myogenic regulatory factors.

A linear representation of each myogenic regulatory factor is 

shown. The region of homology that encompasses the basic (♦+♦) 

and helix-loop-helix (H-L-H) domains are shown. The 

corresponding region of MyoD that is sufficient for myogenesis 

is indicated at the bottom of the figure. The serine/threonine- 

rich region of homology (OH) is illustrated by stripes. The 

number of amino acids in each polypeptide is shown at the end 

of each box.

(Figure from Olson, 1990).
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Additional homology among these factors is found in a

cysteine/histidine-rich region immediately amino terminal to 

the basic domain, and a serine/threonine-rich region that 

resembles a site of phosphorylation near the carboxyl terminal.

The basic/myc region has been found in all the myogenic

regulatory factors including those from the mouse (Davis et 

al ■ , 1987; Edmonson and Olson 1989; Miner and Wold, 1990),

human (Braun e_t_ a l . . 1989b, 1990), rat (Rhodes and Konieczny, 

1989; Wright et a l .. 1989), Xenopus (Hopwood e£ a l . . 1989;

Scales ejt a l . . 1990; Hopwood e_t a l . . 1991), chicken (Lin et

al ■ , 1989), quail (de la Brousse and Emerson, 1990) and C.

elegans (Benezra eMt a l . . 1990). Indeed, the basic/myc region 

of mouse MyoD has been demonstrated to be necessary and 

sufficient to activate myogenesis in stably transfected 10T% 

cells (Tapscott et a l ., 1988).

The myc similarity domain of the myogenic regulatory factors 

has been postulated to adopt a helix-loop-helix conformation, 

in which two amphipathic (X-helices are separated by an 

intervening loop of variable length. Indeed this helix-loop- 

helix (HLH) motif has been identified in a variety of 

regulatory gene products, including the Drosophila genes 

achaete-scute (Villares and Cabrera, 1987), daughterless (Caudy 

et a l . . 1988; Cronmiller et a l . , 1988), hairy (Rushlow e_t al. , 

1989), extramacrochaetae (Garrell and Modolell, 1990; Ellis et 

al. . 1990), enhancer of split (Klambt ej: a l ., 1989) a nd twist

(Thisse £ £  a l .. 1988).
Initial clues as to the mechanisms by which the myogenic

- A0 -



Introduction

regulators control the expression of muscle-specific genes 

arose from the identification of the proteins E12 and E47, 

which also contain the HLH motif. The observation that these 

two proteins were capable of binding the E2 DNA sequence 

located in the immunoglobulin kappa chain enhancer, raised the 

possibility that the HLH myogenic proteins were also capable of 

binding DNA (Murre e_t a l ., 1989a). Subsequent studies revealed 

that MyoD was indeed a DNA binding protein, which is capable of 

interacting with the |C E2 site in the immunoglobulin kappa 

chain enhancer when in a heterodimeric complex with either E12 

or E47 (Murre e£ a l . , 1989b). Furthermore, the upstream 

enhancer required for the muscle-specific expression of the 

muscle creatine kinase gene (see section 1.4) contains two 

regions which bare a striking resemblance to the t E 2 site, and 

both MyoD and myogenin have been shown to bind these sequences 

in vitro when complexed with E12 (Murre ej^ a l ., 1989b; Brennan 

and Olson, 1990). Indeed, MyoD shares antigenicity a nd DNA 

binding specificity with MEF-1, a myocyte-specific nuclear 

protein which has been demonstrated to bind the MCK enhancer 

(Lasser £t_ a l . , 1989; see also section 1.5). Furthermore, 

Lasser et_ a l . (1989) proceeded to demonstrate that the 

basic/HLH motif, which is necessary and sufficient to convert 

10T^ fibroblasts into muscle cells (Tapscott e£ a l ., 1988), is 

also sufficient for specific DNA interaction.

It is apparent that the HLH motif allows the dimérisation of 

MyoD with E12. However this motif does not confer muscle- 

specific activation to the MyoD protein, as shown by the
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finding that the MyoD HLH motif can be substituted by the 

analogous sequence of the Drosophila achaete-scute protein 

with no effect on either DNA binding or muscle-specific gene 

activation (Davis et a l .. 1990). However, replacing the basic 

region of MyoD with the analogous sequence of other HLH 

proteins (the immunoglobulin enhancer binding protein E12, or 

the achaete-scute protein) allows DNA binding in vit r o , yet 

abolishes muscle-specific gene activation (Davis et a l . . 1990). 

These findings suggest that the recognition code that 

determines muscle-specific gene activation lies within the MyoD 

basic region.

Although MyoD and related myogenic factors are clearly 

important in the activation of muscle-specific genes, the 

question arises as to how muscle-specific genes remain 

unactivated in myoblasts, despite the expression of both MyoD 

and E12. The recent isolation of a further HLH protein, Id, has 

made some progress towards answering this question (Benezra et 

a l . , 1990). Id contains a HLH dimerisation domain, yet lacks a 

basic region. This protein was shown to complex with both E12 

and MyoD and to repress the ability of MyoD to activate the MCK 

promoter, presumably because Id forms heterodimers with MyoD 

and E12 that cannot bind DNA due to the lack of a basic domain. 

Furthermore, Id message is expressed in myoblasts and falls in 

concentration as they differentiate into myotubes. This fall in 

Id has been proposed to release MyoD and E12 from inactive 

heterodimers and allow them to complex and bind DNA, thus 

activating the MCK promoter.
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The identification of MEF-1 as MyoD, and the identification of 

the MEF-1 binding site (see section l.A) led to the finding of 

binding sites for MyoD in many other muscle-specific genes, 

including the myosin light chain 1/3 (Donoghue e_t a l . . 1988), 

acetyl choline receptor 0 ^ -subunit (Wang e_t a l . , 1990), 

troponin I (Yutzey e_t a l . , 1989; Nikovits e_t a l . , 1990; Lin et 

a l . , 1991) and Duchenne Muscular Dystrophy (Klamut e_t a l . , 

1990) genes. Indeed a MyoD/MEF-1 site has also been identified 

in the human cardiac actin gene (Sartorelli et a l . , 1990) in 

addition to the Xenopus laevis cardiac actin gene (T. Mohun, 

abstract; 3rd international Xenopus meeting, 1990).

The emerging hypothesis that MyoD and related factors are the 

'master switch' genes for the activation of muscle-specific 

gene expression is complicated by the finding that a subset of 

muscle-specific genes do not contain MyoD/MEF-1 binding sites. 

In this regard the cardiac troponin T gene contains a putative 

MyoD/MEF-1 binding site, however this motif does not appear to 

be required for the tissue-specific expression of the gene (see 

section l.A). It is therefore possible that other, as yet 

unidentified regulatory elements, are required for the 

expression of certain muscle-specific genes. This, along with 

the possible role of MyoD in the expression of the Xenopus 

borealis skeletal actin gene will be discussed in subsequent 

chapters.

- A3 -



Materials and Methods

C H A P T E R  2

MATERIALS.

2.1 General materials.

Restriction enzymes were from Amersham International (U.K.), 

Northumbria Biologicals Limited (NBL) and Bethesda Research 

Laboratories, Maryland U.S.A. (BRL). DNA polymerase I was 

obtained from Amersham International, sequencing grade 

polymerase from NBL and AMV reverse transcriptase from Life 

Sciences Inc. (U.S.A.).

All radioisotopes were supplied by Amersham International at 

the following specific activities: 0(_3 2 P“dGTP and (X_3 2 P-dCTP, 

3000 Ci/mmol; J “3 2 P-ATP, 5000 Ci/mmol ;D(-3 5 S-dATP, 1000 Ci/mmol; 

l^C-chloramphenicol, 57 mCi/mol.

Nitrocellulose sheets (Hybond-C) and nylon filters (Hybond-N) 

were obtained from Amersham. Type II agarose (medium EE0) was 

supplied by Sigma chemical company.

Materials for bacteriological media were from Difco 

laboratories (Michigan, U.S.A.) and Oxoid limited (England).

E.coli transfer RNA (type XX) and salmon testis DNA were 

supplied by Sigma

Acrylamide was supplied by Fisons, and bisacrylamide by Kodak.

X-ray film was from Fuji photo company limited (Japan).

Oligonucleotides were synthesised in the Biological Sciences 

department by Gill Scott, using an Applied Biosysteras automated 

synthesiser.
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All other chemicals and reagents were from BDH ('Analar' 

grade) or from Sigma chemical company unless otherwise stated.

2 .2 S to ck  s o l u t i o n s .

Deionised formamide- formamide was stirred with Amberlite 

monobed resin ME-3 or MB-4 (5g per 100ml of formamide) until 

the pH was 7, filtered through Whatman No. 1 filter paper and 

then stored at -20°C.

Stock acrylamide solutions were deionised as described for 

formamide, except for 30 minutes, and then stored in the dark 

at 4°C.

TE - lOmM Tris.HCl (pH8.0), ImM EDTA.

lOx TBE - 0.9M Tris.borate pH8 .3, 20mM EDTA.

20x SSC - 3M NaCl, 0 . 3M Na citrate, pH7.0.

50x Denhardt's medium - 1% (w/v) each of Ficoll,

polyvinylpyrolidone, bovine serum albumin.

lx Barth-X - 8 8 mM NaCl, ImM K C 1 , 2.5mM NaHC03 , 15mM Tris.HCl 

pH7.6 , 0.3mM Ca(N03 )2 , 0.41mM CaCl2 , 0.82mM MgSO^.

NAE - 0.3M Na acetate pH 6 .5, ImM EDTA.

2.3 Bacteriological media.

LB broth - 5g yeast extract, lOg bactotryptone, lOg NaCl per 

litre. For LB plates this was supplemented with 15g/litre of 

bacto agar.

2x TY - 8 g NaCl, 16g bactotryptone, lOg yeast extract per 

litre of water.

Terrific broth (TB) was used to grow bacteria for large scale
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plasmid isolation. It was prepared by dissolving 12g of 

bactotryptone and 24g of yeast extract in 800ml of distilled 

water. 3ml of glycerol were added before autoclaving. 

Immediately prior to inoculation of this with bacteria, 100ml 

of 0.17M KH 2 PO4 and 100ml of K2 HPO 4 (both previously sterilised 

by autoclaving) were added.

All media were sterilised by autoclaving before use.

Ampicillin was used in plates and media at a final 

concentration of lOOug/ml.

2.4 Bacteria and plasmids.

2.4.1 Genotypes of E.coli strains.

JM101 - supE, thi, (lac-proAB), [F ', traD36, pro AB,

LACiqZDMI5] 17-18 ditto, not tra D36.

MC1061 - F ~ , ara D139, (ara, leu)7696, lac Y74, gal U” , gal 

K“ , hsr“ , hsm+ , strA.

TG2 - supE, (lac-proAB)hsd, (src-recA) 306:Tnl0(tetr ) 

[F'traD36 proAB+ lacl^ lacZ Ml 5 r^- rm- Rec~] .

2.4.2 Plasmid vectors.

pBR322 - General purpose cloning vector (Bolivar, 1878). 

pAT153 - High copy variant of pBR322 (Twigg and Sherratt, 

1980).
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C H A P T E R  3

METHODS«

3.1 Oocytes eggs and embryos.

3.1.1 Oocytes

Oocytes were obtained by anaesthetising a female Xenopus 

laevis with MS222 and carrying out a partial ovariectomy. The 

oocytes were manually stripped from the ovary, washed and 

maintained in full strength Barth-X.

3.1.2 Eggs and embryos.

Females were stimulated to ovulate by injection of 100 i.u. of 

FSH (Folligon), followed by an injection of 500 i.u. of hCG 

(Chorulon) on the afternoon of the next day. Ice was added to 

the water to slow down the hormone effect and the frogs were 

left overnight. The females were allowed to lay eggs in full 

strength Barth-X.

A male Xenopus laevis was killed and the testis removed, 

placed in full strength Barth-X, and stored on ice. Typically 

50-100 eggs were transferred to a petri dish and the Barth-X 

solution removed. A teased testis was briefly agitated over the 

eggs and after 30 seconds four volumes of distilled water was 

added to activate the sperm. After a further 5 minutes the 

petri dish was filled with water. Fertilised eggs rotated
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within approximately 15 minutes. Eggs were then de-jellied in 

2% (w/v) cysteine (pH8.0) and washed in full strength Barth-X.

Prior to gastrulation embryos were transferred to one tenth 

Barth-X to avoid exo-gastrulation.

3.2 Micro-injection of fertilised eggs.

3.2.1 Preparation of DNA for micro-injection.

DNA was linearised at a unique restriction site contained 

within the vector sequence of the construct to be injected 

(normally Pst I). After digestion of the DNA the reaction was 

extracted with phenol/chloroform and then chloroform. DNA was 

precipitated by the addition of sodium acetate (pH 6.5) to 0.3M 

and two volumes of ethanol. After centrifugation the resulting 

pellet was resuspended in lOOul of TE and precipitated a 

further three times. DNA was then resuspended at a 

concentration of 30-A0 ug/ml.

3.2.2 Micro-injection of DNA.

DNA was injected into the animal pole of eggs fertilised in 

vitro whilst at the two cell stage of development. The embryos 

were first de-jellied before injection under Barth-X medium 

containing 5% ficoll. Typically 20 nl of a solution containing 

DNA at a concentration of 30 or AO ug/ml was injected into each 

fertilised egg.

The embryos were transferred to one tenth Barth-X at the 

blastula stage to permit gastrulation, and stored at 1A°C until
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dissections were performed (see section 3.3). Dead or abnormal 

embryos were removed at regular intervals.

Embryos were staged according to Nieuwkoop and Faber (1956).

3.3 Dissection of embryos.

Dissections were performed at either stage 9, stage 26 or 

stage 30 of development . For the dissection of embryos at 

stage 9 the vitelline membranes were removed under Barth-X 

containing 5% Ficoll. Dissections were performed using forceps 

and a narrow gauge needle containing a mounted nose hair.

3.4 Nucleic acid isolation from embryos.

Eight to fifteen whole embryos, or embryo fragments were 

transferred to a glass homogeniser and homogenised in 0.27 ml 

of Kressmans/SDS buffer (10 mM Tris.HCl pH7.5, 1.5mM MgClj, lOmM 

NaCl and 1% SDS) with 0.03 ml of a 10 mg/ml stock of Proteinase 

K (Boehringer). The homogenate was incubated at 37°C for 30 

minutes before extraction with phenol/chloroform and then 

chloroform. Nucleic acids were precipitated by the addition of

2.5 volumes of ethanol in the presence of 0.3M sodium acetate 

(pH6.5). After centrifugation for 15 minutes the pellet was 

washed in 70% ethanol, dried under a vacuum and brought up in 

2.5ul of DEPC treated water per embryo, or embryo fragment.
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3.5 Standard sub-cloning techniques.

3.5.1 Restriction enzyme digests.

Basically, these were carried out according to the 

manufacturer's instructions. Plasmid DNA's were generally 

digested for one hour using approximately 1 0  units of enzyme 

per ug of DNA. As a rule, no more than lui of enzyme was added 

per lOul of digestion mix to avoid star activity of certain 

enzymes.

3.5.2 Preparation of plasmid vectors for sub-cloning.

Vectors were cut with the appropriate restriction enzyme(s) as

described in section 3.5.1. On completion of the digestion the 

reaction was made to 0.1% w/v SDS in a total volume of 50ul of 

0.05M Tris.HCl (pH8.0), containing approximately 2.5 units of 

calf intestinal alkaline phosphatase (CIAP). The mixture was 

incubated at 37°C for AO minutes before being extracted once 

with phenol/chloroform and then chloroform. For enzymes that 

generated 5' overhangs the reaction was incubated at 60°C for a 

further 30 minutes before extraction with phenol/chloroform. 

DNA was precipitated with ethanol and sodium acetate (pH6.5) 

and redissolved in TE (pH8.0) at an appropriate concentration.

3.5.3 Ligations.

Ligations were carried out in a lOul reaction containing lx C 

buffer (6 6 mM Tris.HCl pH7.6, 6 .6mM MgCL^ lOmM DTT), ImM ATP, 

vector DNA and 1 unit of TA DNA ligase. Normally 20ng of vector
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was used with a range of target DNA concentrations ranging from 

a ratio of 3:1 to 20:1 (target:vector). A control reaction 

containing vector alone was always included. Reactions were 

incubated at 14°C overnight.

3.5.4 coli plasmid transformations.

A 10ml culture of 2x TY was inoculated with a colony of E.coli 

picked from a minimal agar plate and incubated overnight with 

vigorous shaking. An approoriate volume of fresh 2x TY 

(normally 1 0 ml) was inoculated with a 1 /^QQth volume of this 

overnight culture and incubated at 37°C with vigorous shaking 

until the A 5 5 Q reached 0.5. The culture was cooled on ice for 

ten minutes and the cells pelleted by centrifugation at 2 0 0 0  

rpm for 5 minutes at 4°C. The supernatant was removed and the 

cells resuspended gently in 10ml of cold 0.1M MgCl^. The 

suspension was incubated on ice for 1 0  minutes and the cells 

pelleted as previously described. The cells were then gently 

resuspended in 2ml of cold 0.1M CaCl2 . After incubation on ice 

for a further 30 minutes, 0.2ml aliquots of the cells were 

transfered to Eppendorf tubes on ice (cells could be stored at 

this point by adding glycerol to 15% (v/v), freezing in liquid 

nitrogen and storing at -70°C!>.

To each aliquot of cells, half the ligation mix (5ul) was 

added and after mixing the tubes were incubated on ice for 30 

minutes. The cells were then heat shocked at 42°C for 2 

minutes, quenched on ice for 5 minutes and spread onto L-agar
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plates containing the appropriate antibiotic for selection of 

transformants. The plates were incubated at 37°C overnight.

3.5.5 Polymerase chain reaction.

Polymerase chain reactions were performed in a lOOul reaction 

containing IX AB buffer (50mM K C 1 , lOmM Tris.HCl pH8 .3, 4mM 

MgCl 2 ), O.lmM dNTPs, 200ng of each oligonucleotide primer, 

approximately lOOpg of small scale preparation DNA (see section 

3.6), and 2.5 units of Taq DNA polymerase (Perkin Elmer Cetus). 

Reaction mixtures were overlayed with liquid paraffin and 

subjected to 30 cycles of 94°C for 1\ minutes, 50°C for 1 

minute and 72°C for \\ minutes. lOul of the reaction mix was 

taken and subjected to agarose gel electrophoresis as described 

in section 3.8.1.

3 . 6  Small scale preparation of plasmid DNA.

A suitable colony was picked from a plate and used to 

inoculate 1.7ml of 2x TY and incubated at 37°C for 5% hours or 

overnight with vigorous shaking. 0 .2 ml of the culture was 

removed, glycerol added to 15% (v/v) and frozen on dry ice. 

Stocks of cultures were stored at -70°C. The remaining culture 

was transfered to a 1.6ml Eppendorf tube and centrifuged for 3 

minutes. The resulting pellet was resuspended in 0.8ml of STET 

(8 % w/v sucrose, 5% v/v triton X-100, 50mM EDTA, 50mM Tris.HCl, 

pH8.0) and 25ul of freshly made lysosyme (20mg/ml stock) was 

added. The mixture was incubated at 96°C for 5 minutes and 

allowed to cool before the addition of lOul of a 10 mg/ml stock
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of RNase A. The mixture was centrifuged for 15 minutes and the 

pellet of cell debris removed with a micro-pipette tip. The 

supernatant was extracted with an equal volume of 

phenol/chloroform and then chloroform. Potassium acetate was 

added to 0.5M, and nucleic acid precipitated by the addition of 

\ volume of iso-propanol. After incubation at room temperature 

for 10 minutes the solution was centrifuged for 15 minutes and 

the resulting pellet washed with 70% ethanol. After drying, the 

pellet was redissolved in 50ul of TE (pH8.0) and re­

precipitated by the addition of 2 volumes of ethanol in the 

presence of 0.3M sodium acetate (pH6.5). After centrifugation 

for 15 minutes the pellet was washed with 70% ethanol, dried, 

and resuspended in 20ul of TE (pH8.0).

3.7 Large scale preparation of plasmii DNA and purification by 

caesium chloride/ethidium bromide centrifugation.

A single colony was inoculated into 10ml of sterile TB 

containing the appropriate antibiotic, grown at 37°C with 

shaking until the O. D 5 5 Q was 0 .2 , and then used to inoculate 

250ml of sterile TB containing the relevant antibiotic (0.5ml 

in 250ml). This culture was grown for 4-5 hours at 37°C with 

shaking ( 2 0 0  rpm) before being left overnight in the same 

conditions. The next day cells were incubated on ice for 20 

minutes before being pelleted by centrifugation at 5000 rpm for 

10 minutes at 4°C. The following quantities used are those for 

a single 250ml culture. The pellets were resuspended in a total 

of 15ml of cold STE (50mM N a C l , 5mM EDTA, 50mM Tris.HCl pH8.0),
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transferred to Oakridge tubes a nd pelleted as above. The 

pellets were resuspended in 10ml of 25% sucrose buffer (25% 

(w/v) sucrose, lOOmM Tris.HCl pH 8 .0 ) . Fresh lysozyme was added 

(lml of a 2 0 mg/ml stock) and the resulting solution mixed 

gently. After incubation on ice for 10 minutes, 4ml of T50E200 

(200mM EDTA, 50mM Tris.HCl pH8.0) was added. After a further 

incubation on ice for 4 minutes 15ml of cold lysis buffer (50mM 

Tris.HCl pH8 .0, 50mM EDTA, 2% (v/v) Triton X-100) was added, 

mixed thoroughly but gently, and incubated on ice for 2 0  

minutes with occasional mixing. Cell debris was then pelleted 

by centrifugation at 25,000 rpm for 30 minutes at 4°C. The 

supernatant was recovered and lg o f  caesium chloride added per 

ml of supernatant. After the caesium chloride had dissolved 

1.5ml of ethidiuin bromide (lOmg/ml stock) was added. Using a 

syringe, this solution was transferred to a Beckman Vti50 heat- 

sealable centrifuge tube. The tubes were topped up with liquid 

paraffin, balanced to within lOmg and heat sealed. They were 

then centrifuged at 45,000 rpm in a vertical rotor for 18 hours 

at 20°C.

The tubes were viewed under U.V. light and the lower band 

(which is supercoiled plasmid DNA) was removed from the 

gradient using a syringe and expelled into a Beckman Vti65 

heat-sealable tube. Tubes were balanced and sealed as described 

previously and centrifuged at 60,000 rpm for 6 hours. The tubes 

were viewed under U.V. light and the lower band removed as 

previously described. The solution was extracted at least three 

times with water saturated butan-l-ol to remove the ethidium
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bromide, and then dialysed against 2 litres of TE overnight at 

4°C. The DNA was precipitated in Corex tubes at -20°C by the 

addition of sodium acetate to a final concentration of 0.3M and 

2 volumes of ethanol. The DNA was recovered by centrifugation 

at 10,000 rpm for 30 minutes at 4 ° C , rinsed in 70% ethanol, 

dried under a vacuum and resuspended in 0.5ml of TE. The 

solution was then extracted with neutral phenol and re­

precipitated with ethanol. The DNA was recovered by 

centrifugation for 1 0  minutes at room temperature, washed and 

dried as above, and dissolved in 0.5ml of TE. The DNA 

concentration was determined by measuring the ^260'

3 . 8  Electrophoresis of nucleic acids.

3.8.1 Non-denaturing agarose gels.

DNA samples, to which 0.2 volumes of loading buffer (50% 

glycerol, 5x TBE, 0.1% bromophenol blue) had been added, were 

separated in 0.7 to 1.5% (w/v) agarose gels made in lx TBE 

buffer containing 0.2 ug/ml ethidium bromide. Gels were run in 

lx TBE buffer containing 0.5ug/ml ethidium bromide and examined 

on a ultraviolet light box.

3.8.2 Isolation of restriction fragments from agarose gels. 

Agarose gels were run as described in section 3.8.1 and bands

detected on an ultra-violet light transilluminater. A small 

slot of approximately 2mm in length was cut directly in front 

of the desired band and the gel replaced in the electrophoresis
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tank. The tank was filled with lx TBE until the level of the 

buffer was just below the top of the gel. The well in front of 

the relevant band was then filled with lx TBE and 

electrophoresed for 30 seconds at 100 volts. The buffer from 

the well was removed and placed in a 1.6ml Eppendorf tube. The 

position of the desired band was ascertained by viewing under 

ultra-violet light. The elution of the band was repeated until 

none of the DNA fragment remained in the gel (normally 

approximately five cycles of the above procedure). The solution 

containing the eluted band was extracted once with 

phenol/chloroform and the DNA precipitated with 2 volumes of 

ethanol in the presence of 0.3M sodium acetate (pH6.5). After 

centrifugation the DNA was washed in 70% ethanol, dried under 

vacuum and resuspended in TE. The concentration of DNA was 

estimated by ethidium bromide staining.

3.8.3 Non-denaturing polyacrylamide gels.

8 % polyacrylamide (19:1 bis) gels in lx TBE were poured 

between 2 0 x 2 0 cm gel plates with 1.3mm spacers. 0 . 2  volumes of 

gel loading buffer (50% glycerol, 5x TBE, 0.1% bromophenol 

blue) was added to samples before being run on gels at 2 0 0  

volts in lx TBE buffer. Gels were stained in lx TBE buffer 

containing ethidium bromide (0.5 ug/ml) before being viewed and 

photographed on a ultraviolet light box.

3.8 .A Denaturing polyacrylamide gels.

8 % or 10% polyacrylamide (19:1 bis) gels containing 42% (w/v)
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urea in lx TBE were poured between 20x 40cm gel plates with 

0.4mm spacers. Nucleic acid samples in denaturing gel loading 

buffer (90% deionised formamide, lOmM EDTA pH8.0, 0.01%

bromophenol blue, 0.01% xylene cyanol) were heated at 100°C for 

5 minutes, loaded onto the gel and electrophoresed at 38 watts 

in lx TBE.

For oligonucleotide gel isolation (see Section 3.9.1) 20x 20cm 

gel plates with 1.5mm spacers were used and run at 300 volts 

under the same conditions as described above.

Gels were fixed in 10% (v/v) ethanol, 10% (v/v) acetic acid 

for 15 minutes, transferred to a sheet of blotting paper and 

dried at 80°C on a vacuum drier. Gels containing 33S (e.g.

sequencing reactions) were exposed to X-ray film at room 

temperature. However, gels containing 3^P were generally 

exposed to X-ray film with an intensifying screen at -70°C.

3.9 Preparation of synthetic oligonucleotides.

3.9.1 Gel isolation of synthetic DNA oligonucleotides.

Lyophilised oligonucleotides (usually approximately lmg) were 

resuspended in 0.5ml of TE. 25ul of oligonucleotide was added 

to 25ul of denaturing gel loading buffer (90% deionised 

formamide, lOmM EDTA pH8.0, 0.01% bromophenol blue, 0.01% 

xylene cyanol) and the sample heated at 100°C for 5 minutes. 

Samples were put on ice and loaded onto a 20x 20cm denaturing 

acrylamide gel and electrophoresed as described in section 

3.8.4.
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Oligonucleotides were visualised by shadowing with ultraviolet 

light and the band excised from the gel using a razor blade. 

After cutting the gel slice into fine pieces the acrylamide was 

transfered to a 1.6ml Eppendorf tube, 0.3ml of elution buffer 

(0.5M Sodium acetate pH6.5, ImM EDTA, 0.2% SDS) added and the 

mixture incubated at 37°C overnight with gentle shaking. The 

following day the elution buffer was removed and filtered 

through glass wool. A further 0.2ml of elution buffer was 

incubated with the acrylamide at 65°C for 5 minutes before it 

was filtered through glass wool and combined with the previous 

sample. The resulting solution was extracted with neutral 

phenol and the DNA precipitated on dry ice/methanol by the 

addition of 2 volumes of ethanol. DNA was recovered by 

microfugation, washed with 70% ethanol, dried under a vacuum 

and resuspended in TE. The DNA concentration was determined by 

measuring the &260*

3.9.2 Annealing of complementary synthetic oligonucleotides.

Equi-molar amounts of complementary synthetic oligonucleotides 

were mixed in lx medium salt restriction digest buffer (lOmM 

Tris.HCl pH 7 .4, lOmM MgS04 , 50mM NaCl, ImM DTT), heated at 

100°C for 10 minutes, and then left to cool to room temperature 

in an Eppendorf tube floating in a 1 litre beaker of water at 

85°C. Annealed oligonucleotides were then precipitated at -20°C 

by the addition of sodium acetate to 0.3M and 2 volumes of 

ethanol. DNA was recovered by microfugation, washed in 70%
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ethanol, dried under a vacuum and resuspended in TE at the 

appropriate concentration.

3.10 Methods of radiolabelling DNA.

3.10.1 Nick translation.

Linearised vectors, or DNA fragments isolated from agarose 

gels were labelled by nick translation for the use as probes in 

Southern blotting. A 20ul reaction was assembled in lx NTB 

(50mM Tris.HCl pH7.2, lOmM MgSO^, O.lmM DTT, 50ug/ml BSA) 

containing lOOng of DNA, ImM dNTPs (dATP, dCTP, dTTP) , 40uCi of 

Q(-32p-dGTP, ing of deoxyribonuclease (Sigma) and 10 units of DNA 

polymerase I (Amersham). The reaction was allowed to proceed at 

14°C for 3 to 4 hours after which the mixture was run through a 

Sephadex G-50 gel filtration column in TE buffer to separate 

labelled DNA from unincorporated nucleotides. Labelled DNA 

(first peak of radioactivity) was collected from the column, 

heated at 100°C for 5 minutes, cooled on ice, and then added to 

Southern blot hybridisation buffer.

3.10.2 End-labelling DNA with ^ - ^ 2 P-ATP and T4 polynucleotide 

kinase.

Single-stranded oligonucleotides (for use in primer extension 

assays), duplex oligonucleotides (for use in band shift assays) 

and DNA fragments (for use in band shift assays and DNA 

footprinting) were labelled using this method. Synthetic 

oligonucleotides are supplied unphosphorylated at the 5' end,
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and can therefore be labelled by kinasing with $ - ^ 2 P-ATP 

directly. However DNA fragments had first to be 

dephosphorylated using calf intestinal alkaline phosphatase 

(see section 3.5.2) before being added to end labelling 

reactions.

A 20ul reaction was assembled in lx kinase buffer (50mM 

Tris.HCl pH7.6 , lOmM MgCl2 , 5mM DTI, 0.1 mM spermidine) 

containing 4 to lOng of oligonucleotide or restriction 

fragment, 60uCi of ^ - ^ 2 P-ATP and 20 units of T4 polynucleotide 

kinase. The reaction was incubated at 37°C for 1 hour after 

which the mixture was extracted with neutral phenol. Labelled 

DNA was separated from unincorporated nucleotides by passing 

the mixture down a Sephadex G-50 column. Fractions containing 

labelled DNA were collected and DNA precipitated by the 

addition of sodium acetate to a final concentration of 0.3M and 

two volumes of ethanol. DNA was recovered by microfugation for 

10 minutes and resuspended in TE buffer.

3.10.3 Labelling DNA fragments by in-filling.

Up to lug of restriction enzyme digested DNA was labelled by 

filling in the 5' overhang with a nucleotide mix containing one 

radio-labelled nucleotide. A reaction was assembled in lx TM 

buffer (lOmM Tris.HCl p H7.5, 5mM MgCl2 ) containing DNA, 

nucleotide mix and ten units of the Klenow fragment of DNA 

polymerase. The nucleotide mix contained 40uCi of an 

appropriate Q(-32 p-dNTP, and the other 3 dNTPs (unlabelled) to 

give a final concentration of ImM. The reaction was incubated
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at room temperature for 30 minutes. Labelled DNA was separated 

from unincorporated nucleotides by Sephadex G-50 gel 

filtration, and recovered by ethanol precipitation.

This method was routinely used to prepare radiolabelled DNA 

markers from lambda DNA digested with Eco RI and Hind III, and 

from pBR322 DNA digested with Hpa II.

3.11 Sequencing of plasmid DNA.

A set of deoxynucleotide and dideoxynucleotide mixes were 

assembled as shown below:

1 A° C° G° T°

0.5mM dCTP 2 0ul lui 2 0 ul 2 0 ul

0.5mM dGTP 2 0 ul 2 0 ul lui 2 0 ul

0.5mM dTTP 2 0 ul 2 0 ul 2 0 ul lui

TE buffer 2 0 ul 2 0 ul 2 0 ul 2 0 ul

(B) Dideoxy NTP working solutions: 0.03mM ddATP, O.lmM ddCTP, 

0.075mM ddGTP, 0.5mM ddTTP. These concentrations were altered 

as necessary and reduced (generally by half) to allow reading 

of sequence at greater distance from the primer.

(C) Chase mix: 0.5mM of all 4 dNTPs.

Plasmids from either a small scale isolation of DNA (section 

3.6 ), or a large scale isolation of DNA (section 3.7), were 

used as template.
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DNA was denatured by assembling a denaturation mix with a 

final volume of 20ul which contained approximately 2ug of DNA 

in 0.2M sodium hydroxide; 0.2mM EDTA. The solution was left at 

room temperature for 5 minutes, and the DNA precipitated by 

adding 2ul of ammonium acetate (pH4.5) and lOOul of ethanol and 

leaving at -20°C overnight. DNA was recovered by microfugation 

for 15 minutes, the pellet washed in 70% ethanol and dried 

under a vacuum. DNA was re-suspended in lOul of a solution made 

by mixing 1.5ul of reaction buffer (9ul lOx core buffer [lOOmM 

Tris.HCl pH8.0, 50mM M g C ^ l  and lul of 700mM B-mercaptoethanol) 

with 6.5ul of water and 2 ul of the relevant sequencing primer 

(2ng/ul). Primer was annealed to template by incubation at 37°C 

for 15 minutes. For each template, four 0.5ml Eppendorf tubes 

were labelled A, C, G, and T. lul of the A° nucleotide mix and 

lul of the ddATP nucleotide solution was placed in the "A" 

tube. This was repeated for the "C", "G", and "T” tubes using 

the appropriate nucleotide mixes. The annealed template/primer 

mix was centrifuged briefly to bring down any condensation, and 

then lul of (X- 3 5 S-dATP and lul of DNA polymerase Klenow 

fragment (5 units/ul) added. 2.5ul of this mix was added to 

each of the tubes containing the nucleotide mixes. The reaction 

was allowed to proceed at 30°C for 20 minutes after which lul 

of chase mix was added and the tubes incubated for a further 1 0  

minutes at 30°C. The reaction was terminated by the addition of 

5ul of denaturing gel loading buffer.

One third of each reaction was analysed on a 6 % denaturing 

polyacrylamide gel (see section 3.8.4). The gel was generally
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run until the bromophenol blue was at the bottom of the gel and 

then a second 1/3 of the reaction loaded. Electrophoresis was 

continued until the bromophenol blue from this loading was at 

the bottom of the gel. Gels were fixed, dried and 

autoradiographed as described in section 3.8.4.

3.12 Southern blotting.

DNA samples were separated in non-denaturing agarose gels as 

described in section 3.8.1 and transferred to nitrocellulose 

using the method of Southern (1979). To increase the efficiency 

of transfer of high molecular weight DNA the gel was first 

treated with 0.25M HC1 for 15 minutes at room temperature. This 

partially hydrolyses the DNA, generating smaller fragments 

which transfer more efficiently. After rinsing in distilled 

water the gel was incubated in a large volume of denaturing 

solution (0.8M NaCl, 0.4M NaOH) with gentle shaking for 30 

minutes. This was repeated with fresh denaturing solution. The 

gel was rinsed with distilled water and then neutralised by 

incubating with gentle shaking in two changes (for 30 minutes 

each) of a large volume of neutralising solution (1.5M NaCl, 

0.5M Tris.HCl pH7.4). Two pieces of filter paper (Whatman 3MM) 

moistened with 20x SSC were placed on top of a platform in a 

tray of 20x SSC so that the ends of the filter paper were 

submerged in the 20x SSC. The gel was placed on top of the 

filter paper and the exposed filter paper covered with cling 

film. A piece of nitrocellulose was cut to the same size as the 

gel, moistened with 2x SSC and lowered onto it's surface, being
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careful to ensure that no air bubbles formed. Two pieces of 

filter paper cut to the same size as the gel were soaked in 2x 

SSC and lowered onto the surface of the nitrocellulose, again 

making sure that no air bubbles formed. Tissue paper was 

stacked on top of this and weighed down with a brick. The gel 

was left to blot overnight. DNA was fixed to the nitrocellulose 

filters by baking at 80°C under a vacuum for 3 hours.

Prehybridisation and hybridisation was carried out in heat 

sealed bags weighed down in a water bath set to the appropriate 

temperature. Alternatively, when hybridisations were performed 

at 37°C the heat sealed bags were placed between two glass 

plates and placed in a 37°C incubator. Filters were 

prehybridised in 20 to 50ml (depending on the size of the 

filter) of 5x Denhardt's, 6x SSC, 0.1% SDS, lOOug/ml coli 

tRNA, 50% deionised formamide at either 42 or 37°C for 3 hours 

to overnight. The prehybridisation solution was discarded and 

replaced with 10 to 20ml of the same buffer containing the 

nucleic acid probe. The bag was re-sealed and hybridised at 

either 42 or 37°C overnight.

Filters were first washed twice (5 minutes each) in 2x SSC, 

0.1% SDS at room temperature, and then washed again under the 

desired conditions (which depend upon the hybridisation 

stringency required). Finally, the filters were blotted on 

filter paper and put into heat sealable bags while still damp. 

Filters were exposed to X-ray film with an intensifying screen 

at -70°C.
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3.13 Primer extension.

Single-stranded synthetic oligonucleotide probe, which is 

antisense to the mRNA to be detected, was end labelled by the 

polynucleotide kinase method outlined in section 3.10.2. 

Hybridisation mixes with a total volume of lOul were assembled 

containing lOOpg of radiolabelled probe and 5ul of nucleic acid 

extract (two embryos, or embryo equivalents) in lx 

hybridisation buffer (0.4M NaCl, 50mM PIPES pH6.0). The 

hybridisation mixes were drawn and sealed into heat sterilised 

tubes. Tubes were then incubated at 80 to 85°C for 10 minutes 

before being transferred to the relevant hybridisation 

temperature for 3 hours, or overnight. A series of 

hybridisation temperatures were tested and it was found, for 

the oligonucleotides used in the majority of cases, that 65°C 

seemed to give the best results.

The hybridisation mixes were transferred to Eppendorf tubes 

and 80ul of primer extension mix (0.5mM dATP, dTTP, dGTP and 

dCTP, lOOmM Tris.HCl pH8.0, lOmM DTT, 12mM MgCl2 , 25ug/ml 

Actinomycin D) containing 10 units of AMV reverse transcriptase 

was added. The reactions were allowed to proceed for 1 hour at 

A2°C before being terminated by extraction with 

phenol/chloroform. DNA was precipitated on dry ice/methanol by 

the addition of sodium acetate (pH6.5) to a final concentration 

of 0.3M and 2 volumes of ethanol. DNA was recovered by 

microfugation for 15 minutes, washed in 70% ethanol and dried 

under a vacuum. The resulting pellets were resuspended in 4ul 

of denaturing gel loading dye (90% deionised formamide, lOmM
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EDTA pH8.0, 0.01% bromophenol blue, 0.01% xylene cyanol),

heated at 100°C for 5 minutes and loaded onto a 8% denaturing 

polyacrylamide gel (see section 3.8.4). The gel was run at 38 

watts until the bromophenol blue was approximately 1 inch from 

the bottom of the plate. The plates were separated, the gel 

lifted onto blotting paper and fixed and dried as described in 

section 3.8.4.

3.14 Chloramphenicol acetyltransferase assays.

3.14.1 Preparation of chloramphenicol acetyltransferase 

extracts from micro-injected embryos.

Groups of 5 to 15 embryos, or dissected embryo fragments, were 

transferred to sterile homogenisers and the remaining media 

carefully removed. They were then homogenised in 50ul of 0.25M 

Tris.HCl (pH7.5). The homogenate was kept on ice when possible 

and spun in a raicrofuge at 4°C for 10 minutes. This produced a 

pellet of cell debris, and a clear supernatant with a white 

layer of lipid floating on the surface. The clear supernatant 

was removed taking care to avoid removing any of the lipid 

layer. Extracts were frozen at -70°C and stored at this 

temperature until required.

3.14.2 Chloramphenicol acetyltransferase assays using extracts 

from micro-injected embryos.

Chloramphenicol acetyltransferase (CAT) activity in extracts 

prepared as described in section 3.14.1 was determined
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essentially as described by Gorman e_t a_l (1982). Reactions 

contained (in a final volume of lOOul) 0.125M Tris.HCl (pH7.5), 

50ul of embryo extract, and 5ul of [*^C] chloramphenicol. 

Controls contained no extract, or lul of chloramphenicol 

acetyltransferase (10 u/ul, Pharmacia). A lmg aliquot of solid 

acetyl coenzyme A (Sigma), which had been stored at -20°C for 

not more than 2 months, was dissolved in 1.5ml of sterile water 

to give a 0.66rag/ml solution (this stock solution could be 

frozen and stored at -70°C for up to a week). The acetyl CoA 

solution and reaction mixes were then incubated separately at 

37°C for 5 minutes, after which the reactions were started by 

the addition of 5ul of acetyl CoA to each reaction mix. The 

reaction was allowed to proceed at 37°C for 1 hour and then 

terminated by the addition of 90ul of 0.25M Tris.HCl (pH7.5) 

and 1ml of cold ethyl acetate. The solutions were mixed 

extensively by vortexing (this extracts the chloramphenicol 

into the ethyl acetate). The tubes were microfuged for 5 

minutes and the upper phase (ethyl acetate) transferred to a 

fresh tube. These were dried in a vacuum desicator until all 

the solvent had evaporated. The chloramphenicol was then 

dissolved in 20ul of cold ethyl acetate. The samples were then 

spotted onto a thin layer chromatography plate (aluminium 

backed silica gel 60, 0.2mm thick, E. Merck, FRG) using drawn 

out glass capillaries. Approximately 1 to 2ul were applied at a 

time allowing spots to dry between applications. The TLC plate 

was then placed in a chromatography tank containing 200ml of 

95% chloroform, 5% methanol. The TLC plate was left in place
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until the solvent front was approximately 2 inches from the top 

of the plate, removed, and allowed to air dry. The plate was 

then exposed to X-ray film at room temperature.

3.15 Preparation of protein extracts for band shift assays and 

DNA footprinting.

3.15.1 Xenopus laevis oocytes, eggs and embryos.

Protein extracts from Xenopus oocytes, eggs and embryos were 

prepared essentially as described by Mohun et a l .. (1989).

Between 30 and 50 embryos, embryo fragments, eggs or oocytes 

were washed briefly in approximately 0.5ml of wash buffer (50mM 

Tris.HCl, 50mM KC1, O.lmM EDTA, 2mM DTT, 2ug/ml Leupeptin and 

2ug/ml Apoprotinin) before being transferred to a sterile pre­

cooled glass homogeniser. All subsequent steps were carried out 

either on ice or at 4°C. Samples were homogenised in 5ul of 

extract buffer (wash buffer containing 25% (v/v) glycerol) per 

embryo, or embryo equivalent. However, when protein extracts 

were prepared from the somite, gut or ectoderm of stage 16 

embryos, samples were homogenised in 5ul of extract buffer for 

every two embryo fractions.

Homogenates were spun in a microfuge at 4°C for 10 minutes. 

This results in a pellet of cell debris, and a clear 

supernatant with a lipid layer floating on the top. The clear 

supernatant was removed (avoiding taking the lipid layer) and 

re-centrifuged as before. The supernatant was removed (again
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avoiding the removal of any lipid), divided into 25ul aliquots, 

and snap frozen in liquid nitrogen.

3.15.2 Adult Xenopus laevis tissues.

The protocol for this is essentially the same as for oocytes, 

eggs and embryos (section 3.15.1) except that minced tissues 

were homogenised in 2 to 3 volumes of extract buffer.

3.16 Band shift assays.

Band shift assays using protein extracts (as prepared in 

sections 3.15.1 and 3.15.2) were performed essentially as 

described by Taylor et a l .. (1989). 25ul binding reactions were 

carried out on ice for 30 minutes in lx binding buffer (45mM 

KC1, 15mM HEPES pH7.9, 5mM spermidine, ImM MgCl2 , ImM D T T ,

0.5mM PMSF, O.lmM EDTA, 7% glycerol) containing 1.5ug of salmon 

sperm DNA, 10 to 20ng of non-specific duplex oligonucleotide 

(5 ' -ACAGACCGAAGCTTAGCT-3'), 0.5ng end labelled duplex

oligonucleotide probe, and 5ul of protein extract. Band shift 

reactions containing DNA restriction fragments as a probe 

contained no non-specific oligonucleotide sequences. In 

addition to this only lug of salmon sperm DNA was added to 

reactions, with the additional non-specific DNA sequences being 

made up by the addition of 500ng of pBR322.

For competition analysis, the non-specific duplex 

oligonucleotide and the pBR322 sequences were replaced with 10 

to 20ng of specific duplex oligonucleotide, or 500ng of 

promoter deletion plasmids respectively.
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The reactions were electrophoresed on a 5% polyacrylamide gel 

(29:1 bis) in 0.25x TBE buffer at 200 volts for 1^ to 2 hours 

at 4°C. The gel was fixed in 10% (v/v) acetic acid, dried onto 

3MM Whatman paper and autoradiographed with an intensifying 

screen at -70°C.

In some instances (i.e. band shift reactions described in 

chapter 9) a different set of conditions were employed in band 

shift assays which were essentially as described by Buskin and 

Hauschka (1989). On these occasions reaction conditions were 

identical to those previously described, with the exception 

that the binding buffer was adjusted so that the final 

concentration in reactions was: 25mM HEPES, pH7.9; 0.5mM EDTA; 

0.5mM DTT; 0.5mM PMSF; 50mM KC1; 10% glycerol. In addition to 

this reactions were incubated on ice for 20 minutes and then at 

22°C for a further 5 minutes prior to being subjected to 

electrophoresis as previously described.

3.17 Antibody band shift assays.

Band shift assays using antibody were essentially as described 

in section 3.16, except that ImM EDTA replaced the ImM MgCl2 in 

the binding buffer, and the incubation was for 15 minutes on 

ice (lul of antibody was added to the reaction after 5 

minutes).
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3.18 Methylation interference and methylation protection 

footprinting of DNA.

DNA was labelled on one strand of the appropriate restriction 

fragment by polynucleotide kinase (section 3.10.2). For 

methylation protection assays a normal band shift reaction, 

which had been scaled up by a factor of five, was assembled 

using the labelled fragment (total volume of 125ul). After 

incubation on ice for 30 minutes the reaction mix was incubated 

at room temperature for 5 minutes before lul of dimethyl 

sulphate [DMS] (Fluka) was added. The mixture was incubated at 

room temperature for a further 1 minute before being loaded 

onto a 5% polyacrylamide gel (19:1 bis) and electrophoresed as 

described in section 3.16.

For methylation interference assays end labelled DNA was first 

partially methylated by DMS (2 minutes at room temperature) as 

described by Maxam and Gilbert (1980). This DNA was then used 

in standard band shift reactions (again scaled up by a factor 

of five) and electrophoresed as described in section 3.16.

Gels for both protection and interference assays were exposed 

to X-ray film at A°C overnight and the retarded and free DNA 

bands excised from the gel. After cutting into fine pieces the 

gel slices were incubated in 300ul of elution buffer (0.5M 

sodium acetate pH6.5, ImM EDTA, 0.2% SDS) at 37°C with gentle 

shaking overnight. The following day the elution buffer was 

removed and filtered through glass wool. Gel slices were then 

rinsed with a further 0.2ml of elution buffer at 65°C for 5 

minutes, this was then filtered through glass wool and combined
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with the previous sample. DNA was precipitated at -20°C by the 

addition of 1ml of ethanol. DNA was recovered by centrifugation 

for 15 minutes, washed in 70% ethanol and dried.

Samples were resuspended in lOOul of 1M piperidine (Fluka) and 

incubated at 90°C for 30 minutes (this cleaves the DNA 

selectively at methylated G residues). 1.2ml of butan-l-ol was 

added and the mixture vortexed until only one phase remained. 

The mixture was then centrifuged for 5 minutes and the 

supernatant discarded. DNA was dissolved in 150ul of 1% SDS and 

re-extracted with butan-l-ol as previously described. DNA was 

washed in 70% ethanol and dried under vacuum before being 

dissolved in 150ul of NaE (0.3M sodium acetate pH6.5, O.lmM 

EDTA). Samples were then extracted with neutral phenol and the 

DNA precipitated at -20°C by the addition of 300ul of ethanol. 

DNA was recovered by centrifugation for 15 minutes, washed in 

70% ethanol and dried. Samples were dissolved in Aul of 

denaturing loading dye (90% deionised formamide, lOmM EDTA 

pH8.0, 0.01% bromophenol blue, 0.01% xylene cyanol).

Samples were counted by their Cerenkov emission and normalised 

so the same number of counts in each sample was loaded onto a 

8% denaturing polyacrylamide gel. Electrophoresis was performed 

as described in section 3.8.A. The gels were fixed and dried 

prior to being autoradiographed at -70°C with an intensifying 

screen.
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C H A P T E R  4

The preliminary localisation of cis-acting regulatory sequences 

in the promoter of the Xenopus borealis skeletal actin gene.

Introduct ion.

The introduction of cloned genes into embryos or cell lines is 

a powerful tool for the study of mechanisms that regulate gene 

expression. This avenue of research has a great advantage over 

the study of gene regulation ¿ n  vitro in that the gene being 

studied is present in a relatively normal cell environment, and 

thus is subject to mechanisms of control that more truly 

reflect those that act on the endogenous gene. Micro-injection 

of cloned genes into developing Xenopus embryos provides a 

particularly attractive assay system to study gene expression 

for several reasons. Firstly, Xenopus embryos can be obtained 

in large numbers relatively easily and the large size of the 

egg (approximately 50 times larger than a mouse egg) enables 

the relatively easy injection of DNA immediately after 

fertilisation. Furthermore, the early development of Xenopus is 

particularly rapid with the main body tissues being laid down 

within a day of fertilisation. This, in addition to the fact 

that embryos can be readily dissected at early stages of 

development, allows for the rapid screening of injected clones 

for both their temporal and spatial expression.

In previous studies Busby and Reeder (1983) have successfully 

shown the correct temporal activation of injected Xenopus rRNA
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genes. Indeed, micro-injection into Xenopus embryos has also 

been exploited to study the expression of polymerase II genes. 

Kreig and Melton (1985) found that the Xenopus gene GS17 showed 

correct temporal regulation when injected into Xenopus laevis 

embryos. Furthermore, Wilson e_t a l . (1986) demonstrated the 

correct spatial and temporal expression of a Xenopus borealis 

cardiac actin gene in Xenopus laevis embryos.

Micro-injection of the Xenopus laevis cardiac actin gene into 

Xenopus embryos has been used extensively to map sequences 

which are important for the correct expression of the gene 

(Mohun e_t a l . , 1986; Mohun e_t a l . , 1989a; Taylor e_t al., 1989). 

Indeed, the use of Xenopus as a transient assay system for the 

study of tissue-specific gene expression has been proposed to 

expose the exogenous gene to a more accurate reconstruction of 

regulatory events i_n vivo than other assay systems, such as the 

transfection of cloned genes into specific cell lines. DNA is 

injected into cells at the two cell stage of development. Thus, 

the micro-injected gene present in these two cells is passed 

onto daughter cells which are subjected to many diverse 

patterns of regulation and differentiation.

With the aim of exploiting Xenopus embryos as a transient 

assay system to study the expression of a skeletal actin gene, 

a genomic clone of a Xenopus borealis skeletal actin gene was 

isolated from a partial Sau 3AI library in XA7.1 (Boardman et 

a l . , in preparation). The complete structure of this gene, 

including 1405 nucleotides of 5' flanking region, is 

illustrated in figure 4.0. This skeletal actin gene shares
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FIGURE 4.0. Structure of the complete Xenopus borealis 

skeletal actin Rene.

Diagrammatic representation of the Xenopus borealis skeletal 

actin gene. Exons are illustrated by filled black boxes, whilst 

introns and sequences of the 5' flanking region of the gene are 

illustrated by the intervening lines. The promoter region of 

the gene is expanded showing the TATA box and putative 

regulatory elements (CArG boxes) which are discussed later in 

this chapter.

Restriction sites: Eco RI (E), Pst I (P).
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features that are common to other actin genes. For example, the 

presence of an intron within the region encoding the 5' 

untranslated portion of the mRNA is a feature which has been 

observed in other sarcomeric actin genes (Fornwald e^ al. , 

1982; Hamada jet a l . , 1982; Chang a l . , 1985). In addition to 

this the gene is comprised of seven exons and six introns, a 

feature that is also shared by other skeletal actin genes 

(Buckingham and Minty, 1983).

The study of the expression of this skeletal actin gene 

reveals that like other Xenopus actin genes (see Mohun ^t a l . , 

1984; Wilson e_t a l . , 1986) it is activated at stage 12% of 

development. Furthermore, the transcripts from this gene are 

localised exclusively in tissues of the embryo that proceed to 

form the somites of the embryo (Boardman e_t a l . . in 

preparation).
To begin to localise sequences within this skeletal actin gene 

which are important for its spatial and temporal expression, a 

region of the gene containing 1405 nucleotides of 5' flanking 

region, in addition to 28 nucleotides of its 5' leader, was 

fused to a Xenopus laevis adult p-globin reporter gene. On 

injection of this fusion gene into developing Xenopus laevis 

embryos the correct spatial and temporal distribution of 

accurately initiated transcripts was observed (Boardman et al., 

in preparation). Sequences located between nucleotides -1405 

and +28 are therefore sufficient to drive the correct 

expression of a reporter gene in micro-injected embryos, 

suggesting sequences downstream of nucleotide +28 are
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irrelevant or redundant in the transcriptional expression of 

the Xenopus borealis skeletal actin gene. This is in agreement 

with all other sarcomeric actin genes studied thus far (see 

chapter 1.3 and references therein).

Data outlined in this chapter describe preliminary experiments 

performed by Dr. M. Boardman which investigate the cis-acting 

regulatory elements required for the expression of the Xenopus 

borealis skeletal actin gene.

4.1 Preliminary characterisation of the Xenopus borealis 

skeletal actin gene promoter.

To further characterise the cis-acting DNA elements within the 

Xenopus borealis skeletal actin gene which are important for 

its correct expression, a series of 5' deletions through its 

promoter were created using exonuclease III. These deletion 

fragments, which extend to nucleotide +28 at their 3' border, 

were subsequently cloned onto the Xenopus laevis adult p-globin 

gene at the same position as the previously described construct 

containing 1405 nucleotides upstream of the actin mRNA 

transcriptional start site. The subsequent chimeric fusion 

genes were therefore identical to the construct containing 1405 

nucleotides of upstream sequence, with the exception that they 

lacked progressively more of their 5' sequence. A diagrammatic 

representation of the amount of promoter contained within each 

of these constructs is illustrated in figure 4.1A.

Plasmids were linearised with Pst I prior to injection into 

the animal poles of Xenopus laevis embryos at the two cell
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stage of development (see chapter 3.2). At stage 9 embryos were 

dissected into animal, vegetal and equatorial explants. When 

cultured in isolation the animal, equatorial and vegetal 

explants of the embryo develop into ectoderm, mesoderm and 

endoderra respectively. Thus, it is only in the equatorial 

explants of the embryo that the endogenous skeletal actin gene 

is expressed.

Embryo explants were allowed to develop in isolation until 

control embryos reached stage 26 of development. Total nucleic 

acid was then extracted from embryo explants (see chapter 3.A) 

and transcripts of the micro-injected gene detected by primer 

extension analysis, using a primer complementary to sequences 

in the first exon of the Xenopus globin gene.

Figure A.IB shows typical results achieved on the injection of 

various deletion constructs into Xenopus laevis embryos 

(Boardman e_t al. , in preparation). As stated previously, 1A05 

of upstream region of the Xenopus borealis skeletal actin gene 

(construct p X b g b A l )  gives rise to a predicted 68 nucleotide 

extended product, demonstrating the correct initiation of 

transcripts from the Xenopus borealis skeletal actin gene 

promoter. Furthermore, deletion of sequences to nucleotide -167 

(construct pXbgb 2\6) has no significant effect on the 

expression of the injected fusion gene. This would suggest that 

all sequences necessary for the correct expression of the gene 

are situated within a fragment of the gene spanning from 

nucleotides -167 to +28. However, on deletion of a further 28 

nucleotides (construct pXbgb^7), an almost total loss of
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FIGURE 4.1. Analysis of transcripts from embryos injected with 
Xenopus borealis skeletal actin promoter deletion 
plasmids.

A. Diagrammatic representation of the amount of 5' flanking sequences of 
the Xenopus borealis skeletal actin gene remaining in the constructs 
pXbgbAl (Al) to pXbgbAll (All). CArG box and TATA box sequence motifs 
are represented by grey boxes, whilst the first exon of the skeletal actin 
gene is represented by a filled black box. All promoter fragments were 
fused to a Xenopus laevis adult ^S-globin reporter gene at nucleotide +28 in 
the skeletal actin gene.

B. Detection of transcripts originating from the promoter deletion 
constructs pXbgbAl, pXbgbA5, pXbgbA6, pXbgbA7 and pXbgbA8 when 
injected into Xenopus embryos.
Constructs were injected at the two cell stage of development and allowed 

to develop to stage 9 prior to dissection into animal (An.), vegetal (Veg.) 
and equatorial (Eq.) regions. These embryo explants were then allowed to 
develop in isolation until control embryos reached stage 26 of development. 
Total nucleic acid was extracted and the transcripts of the micro-injected 
gene detected by primer extension using a primer complementary to sequences 
situated in the 2nd exon of the globin reporter gene. Control primer 
extension reactions containing either globin RNA (globin), or poly(A)“ RNA 
extracted from Xenopus ovaries (p(A)-) were also performed. DNA pBR322/Hpa 
II markers are present in the pBR track.
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promoter activity is observed when this plasmid is injected 

into Xenopus laevis embryos. Examination of sequences contained 

within this 28 nucleotide fragment reveals the presence of the 

most distal of three imperfectly repeated CArG sequence motifs 

(CArG box3), which have been identified to be present in other 

actin gene promoters (see chapter 1.3.2, 1.3.3 and Minty and 

Kedes, 1986). The limited activity of the pXbgbi^7 plasmid is 

subsequently lost on deletion of sequences to directly 5' of 

the most proximal of these three CArG box motifs (CArG boxi) 

(see construct pXbgb^8).

These data demonstrate that CArG box3, or sequences in its 

immediate vicinity, are essential for the full activity of the 

Xenopus borealis skeletal actin gene promoter. This is in 

agreement with the sequence requirements of other sarcomeric 

actin gene promoters such as the human cardiac actin (Miwa and 

Kedes, 1987) and chicken skeletal actin genes ( Bergsma e_t at . . 

1986). Our data also illustrate that sequences downstream, and 

including CArG boxi, are insufficient to drive the expression 

of a reporter gene, as detectable by the assay system employed 

in this study. This is in contrast to the sequence requirements 

of either the Xenopus laevis or human cardiac actin genes, 

which remain active on deletion of sequences to directly 5' of 

their CArG boxi motifs. However, this activity is much lower 

than that achieved with the intact promoter (Miwa and Kedes, 

1987; Mohun e_t a l . . 1989a).
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4.2 CArG box3 is essential for the full activity of the 

Xenopus borealis skeletal actin Rene.

To further investigate the importance of the CArG box3 motif 

in the expression of the Xenopus borealis skeletal actin gene, 

it was decided to fuse a synthetic CArG box3 motif to the 5' 

end of each of the previously described promoter deletions and 

examine the activity of the resulting promoters in Xenopus 

laevis embryos. Thus, seven plasmids were constructed which 

contained a synthetic CArG box3 motif fused to the 5' end of 

the skeletal actin promoters present in the plasmids p X b g b A ô  

to p X b g b A l l .  The CArG motif was positioned at the 5' end of 

the promoters in both normal and reverse orientations. When a 

CArG box3 oligonucleotide was inserted into plasmids in the 

normal orientation the resulting plasmids were named p X b g b ^ 6 +  

to pXbgbAll+. However, when the CArG box3 oligonucleotide was 

inserted into plasmids in the reverse orientation the resulting 

plasmids were named pXbg b A ô -  to pXbgbAll-.

Figure 4.2 shows typical results of the activity of these 

promoters after their injection into developing Xenopus laevis 

embryos. It is clear that whilst the addition of CArG box3 to a 

promoter that already contains all three CArG boxes (for 

example see figure 4.2, norm or rev) does not significantly 

enhance the activity of the promoter, addition of the 

oligonucleotide to promoters that lack CArG box3 restores the 

activity of the promoter to levels achieved with the intact 

gene (see figure 4.2, ^ 7 ,  norm and rev). More interestingly,
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FIGURE 4.2. Analysis of transcripts from embryos micro- 

injected with deletion plasmids containing

an additional CArG box3 motif.

Primer extension analysis of total nucleic acid extracted from 

embryos injected with plasmids pXbgbZi6+ ( ^ 6 ,  norm), p X b g b ^ 6 -  

( A t ' , rev ), p X b g b A 7  + ( A 7 , norm), pXb gb A 7-  ( A 7  , rev), 

p X b g b ^ 8 +  (/S.8, norm) and p X b g b ^ 8 -  (^8, rev). Plasmids that 

contain no additional CArG box3 motif (pXbgb^i5, p X b g b ^ h ,  

p X b g b ^ 7  and p X b g b ^ 8 )  were also assayed (- track).

Plasmids were injected into embryos at the 2 cell stage of 

development and allowed to develop to stage 26 before being 

dissected into axis (axis) and head plus gut (Gt + Hd) regions. 

Total nucleic acid was subsequently isolated from these embryo 

fractions and the transcripts of the micro-injected gene 

detected by primer extension using a primer complementary to 

sequences situated in the second exon of the globin reporter 

gene. Control primer extension reactions containing either 

globin RNA (globin), or poly(A)“ RNA extracted from Xenopus 

ovaries (p(A)-) were also performed. DNA pBR322/Hpa II markers 

are present in the pBR track.
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however, the addition of a synthetic CArG box3 in a position 

directly 5' of CArG boxl (see figure 4.2, ^ 8 ,  norm and rev) 

restores the activity of an otherwise silent promoter. Thus, 

CArG box3 in conjunction with sequences between -99 and +28 of 

the skeletal actin gene, is capable of adjusting the level of 

expression of a reporter gene to the same level as seen in a 

plasmid which contains sequences from -165 to +28 of the actin 

gene. It would therefore appear that sequences in and adjacent 

to the centre CArG box (CArG box2) are redundant for the 

expression of the gene, at least in stage 26 embryos.

4.3 Discussion.

Deletion analysis of the Xenopus borea1 is skeletal actin gene 

promoter has identified the 5' border for essential cis-acting 

regulatory sequences as 167 nucleotides upstream of the 

transcriptional start site of the gene. Thus, sequences present 

between nucleotide -167 and the point of fusion to the reporter 

gene (nucleotide +28) contain all sequences necessary for the 

correct expression of the gene. Other muscle-specific genes 

such as the muscle creatine kinase gene (Jaynes <it_ a l . , 1988; 

Horlick and Benfield, 1989) and myosin 1/3 light chain genes 

(Donoghue e_t_ al ■. 1988), possess essential cis-acting

regulatory sequences which are positioned at large distances 

upstream or downstream of the transcriptional start site of the 

gene. However, data presented in this chapter would argue 

against such sequences being important in the expression of the
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Xenopus borealis skeletal actin gene.

The relatively small amount of 5' flanking region capable of 

directing the correct expression of the Xenopus borealis 

skeletal actin gene is in keeping with data obtained from the 

study of other skeletal actin genes. For example, 200 

nucleotides upstream of the transcriptional start site of the 

chicken skeletal actin gene have been demonstrated to drive the 

expression of a CAT fusion gene as effectively as promoters 

containing 2.0Kb of upstream sequence (Bergsma e_t_ al. . 1986). 

The same would also appear to be true for the human cardiac 

actin gene, although more 5' flank (485 nucleotides) has to be 

present for the full activity of the promoter (Minty and Kedes, 

1986).

Sequence comparison of the promoter of the Xenopus borealis 

skeletal actin gene with other sarcomeric actin gene promoters 

reveals the presence of three conserved imperfect repeats (see 

figure 4.3). The sequences of these repeats is in general 

CC(A/T rich)^GG, and thus would appear to be the CArG motifs 

which were first identified in the promoter of the human 

cardiac actin gene (Minty and Kedes, 1986). Indeed these CArG 

motifs have been observed in the promoters of all sarcomeric 

actin genes studied thus far (Minty and Kedes, 1986; Mohun et 

al.. 1986; Walsh and Schimmel, 1987; Chow and Schwartz, 1990), 

in addition to the promoter of the Xenopus cytoskeletal actin 

gene (Mohun and Garrett, 1987).

Deletion of sequences in, and adjacent to the CArG box3 motif 

of the Xenopus borealis skeletal actin gene promoter results in
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A. Cardiac actin

CArG boxi.

-89 CGGCCAAATAAGAGAA Chicken.

-112 GGACCAAATAAGGCAAGG Human.

-83 TACCAAATAAGGGCA Xenopus laevis.

CArG box2.

-121 TGGCCATTCATGGCC Chicken.

-152 GCTCCATGAATGGCC Hu m a n .

-132 CTCCATTAATGGCT Xenopus laevis.

CArG box3.

-153 CTGCCTTAGATGGC Chicken.

-203 CTTCCTTACATGGT H u m a n .

-174 TTCCATACATGGGCT Xenopus laevis.

CArG box4.

-197 GCTCCCTATTTGGCCA Chicken.

-240 GCTCCCTATTTGGCCA Human.

ATCCCTATTTGGCCA Xenopus laevis.-220
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B. Skeletal actin.

CArG boxl.

-96 TGTCCAAATATGGAGT Xenopus borealis.

-96 TGTCCAAATATGGAGT Xenopus laevis.

-95 CACCCAAATATGGC Rat.

-86 CACCCAAATATGGC Chicken.

-101 CACCCAAATATGGCTC Human.

CArG box2.

-137 GGACCCTCAAAGGCCA Xenopus borealis.

-168 CCTTCTTTGG Rat.

-128 CCTTCTTTGG Chicken.

-162 GCTCCTTCTTTGGTCA Human.

CArG box3.

-165 CCACTATATTTGGTCA Xenopus borealis.

-221 CTCCATATACGGAAA Rat.

-177 C T CCTTATACGGAAA Chicken.

-229 ACTCCATATACGGCCC Human.

FIGURE 4.3.

A. Sequence comparison of CArG box motifs of the chicken (Eldridge et 
al., 1985), Human (Minty and Kedes, 1986) and Xenopus laevis (Mohun et al^, 
1989a) cardiac actin genes.

B. Sequence comparison of Xenopus borealis skeletal actin CArG box motifs 
with the equivalent motifs from the rat (Ordahl and Cooper, 1983), chicken 
(Nudel et al^, 1985) human (Boxer et aL, 1989a) and Xenopus laevis (Stutz 
and Sphor, 1986) skeletal actin genes.
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an almost total loss in its transcriptional activity. 

Furthermore, the addition of a synthetic CArG box3 

oligonucleotide to the 5' end of a promoter lacking sequences 

upstream of the CArG boxl motif restores activity of an 

otherwise silent fusion gene. Thus, it is the loss of CArG 

box3, and not sequences that are also deleted from the skeletal 

actin promoter on the preparation of the plasmid pXbgb^7, 

which is responsible for the observed loss of activity of the 

promoter. Furthermore, this experiment also demonstrates that 

the decrease in fusion gene activity on the deletion of 

promoter sequences is due to the loss of important regulatory 

elements, and not to the positioning of inhibitory sequence 

elements present in the vector closer to the skeletal actin 

gene promoter. More interestingly however, this experiment 

would also suggest the redundancy of CArG box2 and adjacent 

sequences in the expression of the Xenopus borealis skeletal 

actin gene.

Work investigating the sequence requirements for the effective 

expression of cardiac actin genes suggests that CArG boxl is of 

primary importance for their expression (Miwa and Kedes, 1987; 

Mohun et^ a l .. 1989a). However, studies of the chicken skeletal 

actin gene demonstrate that deletion of a putative CArG box3 

from the promoter region of the gene results in a substantial 

loss in transcriptional activity, despite the presence of the 

two more proximal CArG motifs (Bergsma e_t al. , 1986). In 

addition to this, deletion of the promoter to directly 5' of 

CArG boxl results in an almost total loss of expression of the
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gene. It would therefore appear that although CArG boxl may be 

the essential CArG sequence involved in the expression of the 

cardiac actin genes, it may be that other upstream sequences 

are important in the expression of the skeletal actin genes.

It is apparent from experiments described in this chapter that 

the CArG box3 motif is essential for the expression of the 

Xenopus borealis skeletal actin gene. Experiments also 

demonstrate that sequences in and adjacent to the CArG box2 

motif are not required for the effective expression of the 

skeletal actin gene in stage 26 Xenopus embryos. Although 

experiments have not been performed which directly address the 

importance of the CArG boxl motif in the expression of the 

Xenopus borealis skeletal actin gene, work investigating the 

expression of other actin genes would support the suggestion 

that this sequence is important in the expression of the gene.
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C H A P T E R  5

The promoter of the Xenopus borealis skeletal actin gene binds 

trans-acting factors in vitro.

Introduction.

Experiments described in chapter 4 demonstrate that as little 

as 167 nucleotides of upstream sequence of the Xenopus borealis 

skeletal actin gene promoter is sufficient for the competent 

expression of the gene when injected into Xenopus laevis 

embryos. Furthermore, deletion of the CArG box3 motif from the 

promoter of the gene results in an almost total loss of 

promoter activity _in vivo. It is therefore possible to 

speculate that the CArG box3 motif, and possibly other sequence 

elements present in the promoter of the skeletal actin gene, 

are capable of interacting with positive trans-acting factors. 

No increase in promoter activity was observed when any of the 

deletion plasmids were injected into Xenopus embryos, 

suggesting that no negative regulatory elements are present 

within the promoter of the Xenopus borealis skeletal actin 

gene.

Experiments outlined in this chapter investigate the binding 

of potential trans-acting factors to the promoter of the 

Xenopus borealis skeletal actin gene. Furthermore, experiments 

are also described which identify the specific sequences in the 

promoter of the gene with which these factors interact.
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5.1 Identification of a sequence-specific trans-acting 

factor(s) that interacts with the Xenopus borealis skeletal 

actin gene promoter in vitro.

In order to characterise factors which interact with the 

promoter of the Xenopus borealis skeletal actin gene, a 

fragment of the 5' flanking region of the gene was subjected to 

band shift analysis using protein extracts prepared from the 

axis region of stage 30 Xenopus laevis embryos. In preliminary 

experiments an Eco RI/Bal I restriction fragment from the 

deletion construct p X b g b ^ 6  was used as a probe in band shift 

assays. This restriction fragment contains sequences of the 

Xenopus borea1 is skeletal actin promoter downstream of 

nucleotide -167, to a Bal I site positioned immediately 5' to 

the putative TATA box of the gene (nucleotide -A2) (see figure 

5.1A). CArG box3, which has been demonstrated to be essential 

for the expression of the gene (see chapter A), is therefore 

present within this fragment. Furthermore, CArG boxl and CArG 

box2 are also contained within these sequences; the former of 

these having been implicated in the expression of other 

sarcomeric actin genes (Miwa and Kedes, 1987; Mohun e_t al. . 

1989a; Walsh and Schimmel, 1988).

Restriction fragments of the Xenopus borealis skeletal actin 

gene promoter were end-labelled with J ^ P - A T P  after treatment 

with calf intestinal alkaline phosphatase (see chapter 3.5.2). 

Fragments were then incubated in binding reactions containing 

increasing amounts of non-specific competitor DNA in the form 

of sheared salmon sperm DNA (ssDNA) or poly dl.dC. Absence of a
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non-specific DNA competitor in band shift reactions results in 

a smear of the probe when subjected to gel electrophoresis, due 

to the binding of a variety of non-specific proteins to the DNA 

probe. However, the addition of either ssDNA or poly dl.dC to 

binding reactions results in the emergence of two predominant 

shifted bands (Figure 5.IB). The faster migrating of these two 

shifted bands was not consistently observed in subsequent 

experiments using other extract preparations, questioning the 

authenticity of this binding activity. Conversely, the second 

shifted band was constantly observed in band shift analysis 

using this promoter fragment. Indeed, this band can be seen to 

persist even at high concentrations of non-specific DNA 

competitors (for example 5ug of ssDNA and Aug of poly dl.dC). 

In the light of this experiment it was decided to use lug of 

ssDNA, in addition to 0.5ug of plasmid DNA, in all subsequent 

binding reactions as this produced the cleanest result, without 

significantly decreasing the intensity of these shifted bands.

To investigate whether the interaction of factors with the 

skeletal actin promoter is sequence-specific, competition of 

this binding activity was performed using promoter sequences 

contained within the construct pXbgbA6. To achieve this pBR322 

DNA present in normal binding reactions was replaced with an 

equivalent amount of p Xbgb^6 in competition binding reactions.

As illustrated in figure 5.1C, the previously described 

binding activity is apparent in normal binding reactions 

containing no competitor (track N, figure 5.1C). However, 

competition with a 12.5 molar excess of skeletal actin promoter
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FIGURE 5.1. Band shift analysis of the Xenopus borealis

skeletal actin gene promoter.

A. Diagrammatic representation of the Eco RI/Bal I restriction 

fragment of the Xenopus borealis skeletal actin gene promoter 

used in band shift analysis. The complete promoter of the gene 

is illustrated above the restriction fragment, showing the 

three conserved CArG motifs and the TATA box.

B. Band shift reactions using the Eco RI/Bal I restriction 

fragment of the Xenopus borealis skeletal actin gene as a 

probe, in conjunction with protein extracts prepared from the 

axis region of stage 30 embryos. Increasing amounts of either 

salmon sperm DNA (ssDNA) or poly dl.dC non-specific competitor 

was added to binding reactions. The amount of non-specific DNA 

added to reactions is signified above the relevant tracks.

C. Analysis of the capability of the p X b g b ^ 6  promoter to 

compete for the binding of factors to the Eco RI/Bal I fragment 

of the Xenopus borealis skeletal actin gene. Track N represents 

no competition and contains 500ng of pBR322, whilst track C 

represents competition with 500ng of the plasmid p X b g b A 6  

replacing the pBR322 (12.5 molar excess of promoter).
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sequences results in a significant decrease in the intensity of 

the shifted band (track C, figure 5.1C). This decrease in the 

binding activity is unlikely to be caused by the addition of 

plasmid sequences to binding reactions, as deletion constructs 

which are added to competition reactions replace pBR322 DNA 

that is present in normal binding reactions.

A fragment of the Xenopus borealis skeletal actin gene 

promoter which spans from nucleotides -167 to -42 is therefore 

capable of interacting with a sequence-specific trans-acting 

factor(s) in vitro.

5.2 Preliminary localisation of the binding sites for factors 

in the promoter of the Xenopus borealis skeletal actin gene.

The existence of factors which are capable of binding to the 

promoter of the Xenopus borealis skeletal actin gene raises 

several interesting questions. Firstly, is the promoter capable 

of interacting with one or several trans-acting factors, and 

secondly, to which sequences in the promoter do these factors 

bind?

In order to localise the region(s) of the Xenopus borealis 

skeletal actin gene promoter which are capable of binding 

factors a series of 5' promoter deletion fragments were used in 

band shift assays. Restriction fragments which contain 

sequences of the skeletal actin gene spanning from the Bal I 

site (nucleotide -42) to the Eco RI site at the 5' end of the 

promoter were isolated from the deletion constructs pXbgb^6, 

pXbgb^7, p X b g b ^ 8  and pXbgb^ 9 .  The 5' end of each of these
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restriction fragments corresponds to nucleotide positions -167, 

-140, -99 and -61 respectively in the promoter of the gene (see 

figure 5.2A). Each fragment was end labelled with ¿f^P-ATP and 

used in band shift assays in conjunction with protein extracts 

prepared from the axis region of stage 30 Xenopus laevis 

embryos.

Results illustrated in figure 5.2B show the previously 

described shifted band in binding reactions using the -167/-42 

restriction fragment of the Xenopus borealis skeletal actin 

gene as a probe. The deletion of 27 nucleotides of 5' sequence 

from this fragment (pXbgb^7, track 2) appears to result in an 

increase in the mobility of the retarded band, when compared 

with the retarded band present in pXbgbZ^6 binding reactions. 

It is an attractive idea that this increase in mobility may be 

due to the elimination of a factor(s) which binds the promoter 

fragment, thus resulting in a smaller protein-DNA complex which 

can migrate more rapidly through the gel. Although this may be 

the case, the effect is more likely to result from the reduced 

size of the DNA fragment contributing to this relatively rapid 

mobility, rather than the number of proteins complexed with it.

It is apparent that the loss of 27 nucleotides from the 5' end 

of the -167/-42 skeletal actin promoter fragment results in 

only a slight decrease in the intensity of the shifted band. 

Whilst this slight decrease in the binding activity may 

represent the elimination of sequences capable of binding a 

trans-acting factor(s), the fact that CArG box3 is essential 

for the full expression of the gene makes it surprising that no



FIGURE 5.2 Band shift analysis of Xenopus borealis skeletal 

actin gene promoter fragments containing 

progressively less 5' flanking sequences.

A. Diagrammatic representation of the regions of the Xenopus 

borealis skeletal actin promoter contained within the 

Eco RI/Bal I restriction fragments isolated from plasmids 

pXbgb A ô , pXbgb A 7  , p X b g b A 8  and p X b g b A 9 .

B. Band s h i f t  a n a l y s i s  o f  p rom oter  d e l e t i o n  fr agm en ts  u s in g  

p r o t e i n  e x t r a c t s  p r ep a red  from the  a x i s  r e g i o n  o f  s t a g e  30 

Xenopus l a e v i s  embryos .  B in d in g  r e a c t i o n s  c o n t a in e d  p rom o te r  

f r a gm e n ts  i s o l a t e d  from th e  p lasm ids  p X b g b A ô  ( t r a c k  1 ) ,  

p X b gb A 7  ( t r a c k  2 ) ,  p X bgbA 8  ( t r a c k  3)  o r  p X b g b A 9  ( t r a c k  4 ) .  

T rack  C r e p r e s e n t s  th e  c o m p e t i t i o n  f o r  b i n d in g  o f  f a c t o r s  t o  

the -167/ -42  fr agm en t  o f  the  s k e l e t a l  a c t i n  p rom o te r  by a 12 .5  

molar e x c e s s  o f  th e  X b g b A ô  promoter  (500ng  o f  p la s m id  

p X b g b A ô )  .
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significant binding to these sequences is apparent. One 

explanation for this is that proteins which bind to CArG box3 

also have the ability to bind the related CArG boxl motif. 

Thus, on deletion of CArG box3 from the promoter of the gene, 

proteins that usually bind the CArG box3 motif bind to CArG 

boxl. Alternatively, the CArG box3 motif present in the 

-167/-42 restriction fragment may not be capable of binding a 

trans-acting factor when used in these band shift assays, due 

to the motif being situated directly adjacent to the 5' end of 

the promoter. The protein may not be able to properly 'grip' 

the DNA strand resulting in a decreased binding efficiency. The 

fact that DNA footprinting data (see chapter 5.3) does not 

detect any protection over CArG box3, despite the fact that a 

synthetic CArG box3 oligonucleotide can bind a protein(s) in 

vitro (see chapter 6) lends support to this hypothesis.

Deletion of the promoter to nucleotide -99 (construct 

p X b g b ^ 8 ,  track 3) results in a further increase in the 

mobility of the shifted band. More interestingly however is the 

marked decrease in the intensity of this band, indicating a 

marked decrease in the ability of the promoter to bind factors. 

This observation is slightly confusing, when taken in 

conjunction with micro-injection data which demonstrate that a 

promoter deleted to nucleotide -99 (plasmid pX b g b ^ 8 ) ,  

containing an additional CArG box3 motif, is transcriptionally 

active in Xenopus embryos (see chapter 4.2). One explanation 

for this inconsistency in data is that the removal of sequences 

which span between nucleotides -140 and -99 may indeed result
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in the loss of factors which are capable of binding this region 

of the promoter iji vitro. However these factors may be 

redundant in the control of skeletal actin gene expression in 

vivo.
Deletion of sequences to nucleotide -61 results in an almost 

total loss of factor binding to the resulting DNA fragment 

(figure 5.2B, track A). This final deletion removes the most 

proximal CArG box motif which has been implicated in the 

expression of other sarcomeric actin genes (Miwa and Kedes, 

1987; Mohun e£ a l . . 1989a; Walsh and Schimmel, 1988). It is 

interesting to speculate that CArG boxl is the DNA binding site 

for factors which interact with the p X b g b A 8  promoter fragment. 

However, more accurate methods of identifying the specific 

sequences of the promoter which interact with these factors are 

needed to corroborate this hypothesis.

5.3. DNA footprinting of the -167/-A2 region of the Xenopus 

borealis skeletal actin gene promoter.

In an attempt to more accurately define sequences within the 

Xenopus borealis skeletal actin gene promoter which interact 

with regulatory factors, it was decided to localise factor 

binding sites in the -167/-A2 region of the skeletal actin gene 

by DNA footprinting techniques.

The Eco RI/Bal I restriction fragment of the Xenopus borealis 

skeletal actin gene (nucleotides -167 to -A2) was isolated from 

the plasmid p X b g b A 6 .  This restriction fragment was then end- 

labelled on either the sense or anti-sense strand of DNA and
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subjected to either dimethyl-sulphate (DMS) protection, or DMS 

interference footprinting assays using protein extracts 

prepared from the axis region of stage 30 Xenopus laevis 

embryos (see chapter 3.18).

Results of a DMS protection footprint are illustrated in 

figure 5.3A. It is apparent that the methylation of guanine 

residues by DMS is protected at nucleotide residues -84 and -85 

on the sense strand of the promoter, and at nucleotide residues 

-92 and -93 on the anti-sense strand. Both these pairs of 

nucleotides correspond to the 5' and 3' borders of the CArG 

boxl motif. However, no significant protection of nucleotides 

is observed immediately upstream or downstream of this 

sequence. Similar results were obtained using DMS interference 

footprinting assays studying the anti-sense strand of the 

-167/-42 promoter fragment (figure 5.3B). These data 

demonstrate that the observed abolition of any detectable 

binding activity to the skeletal actin gene promoter on 

deletion of nucleotides -99 to -61 was indeed due to the loss 

of the CArG boxl sequence motif.

Interestingly, no protection of sequences was observed over 

the CArG box2 motif. Indeed, this lack of protection extended 

over the whole region of the promoter spanning from nucleotides 

-140 to -99. Although these data are in agreement with micro­

injection studies that demonstrate the lack of importance of 

the CArG box2 sequence in the expression of the gene, they are 

somewhat surprising in light of band shift assays which 

demonstrated a significant loss in binding activity on the
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DMS protection footprinting of the Xenopus borealis skeletal 

actin gene promoter spanning from nucleotides -167 to -42.

The Eco RI/Bal I restriction fragment of the plasmid p X b g b A 6  

was end labelled on either the sense or anti-sense strand. 

These promoter fragments were then subjected to DMS protection 

footprinting using protein extracts prepared from the axis 

region of stage 30 Xenopus laevis embryos (see chapter 3.18).

Footprinting of both the sense and anti-sense strand of DNA is 

illustrated and the positions of each CArG box motif on the 

ladder of DNA fragments is shown. In addition to bound (track 

B) and free (track F) DNA being analysed, a sample consisting 

of a partial chemical cleavage of the probe at G residues was 

also loaded onto the gel (track G).

FIGURE 5.3A. DMS protection footprinting of the Xenopus

borealis skeletal actin gene promoter.





FIGURE 5.3B. DMS interference footprinting of the Xenopus

borealis skeletal actin gene promoter.

DMS interference footprinting of the anti-sense strand of the 

Xenopus borealis skeletal actin gene promoter spanning from 

nucleotide -167 to nucleotide -42.

The Eco RI/Bal I restriction fragment of the plasmid pXbgbZ^6 

was end labelled on the anti-sense strand. This promoter 

fragment was then subjected to DMS interference footprinting 

using protein extracts prepared from the axis region of stage 

30 Xenopus laevis embryos (see chapter 3.18).

Free (track F) and bound (track B) fractions of the binding 

reaction are illustrated in addition to a partial chemical 

cleavage of the probe at G residues (track G). Sequences of 

each of the CArG box motifs at their relevant positions on the 

DNA strand are illustrated.
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deletion of these sequences. One possible explanation for this 

apparent loss in binding activity is that deletion of sequences 

spanning from nucleotides -140 to -99 affects the binding of 

proteins to the CArG boxl motif. This could be facilitated by 

the positioning of CArG boxl at the end of the D NA fragment, 

thus resulting in a decreased efficiency of factors binding 

this sequence.

Protection of sequences at the 5' end of the anti-sense strand 

of the promoter are more difficult to identify, because this 

region of DNA is too far up the gel to read accurately. 

However, on the sense strand only a little, if any protection 

can be observed over the CArG box3 sequence. These data are in 

agreement with those obtained from using deletion fragments in 

band shift assays, which showed only a slight decrease in the 

activity of the shifted band on the deletion of the CArG box3 

motif. However, micro-injection data that showed the critical 

importance of the CArG box3 motif in the expression of the 

Xenopus borealis skeletal actin gene would suggest that a 

positive trans-acting factor does interact with this sequence 

in vivo. The possible reasons for this apparent lack of binding 

to CArG box3 have been discussed previously. What is evident 

from these experiments however is that a trans-acting factor 

can bind to the CArG boxl sequence motif, suggesting that this 

element, in addition to CArG box3, may also be involved in the 

expression of the Xenopus borealis skeletal actin gene.
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5.4 CArG box3 and CArG boxl can compete for the binding of 

factors to the Xenopus borealis skeletal actin gene.

To investigate further whether CArG boxes are indeed the sites 

of interaction for positive trans-acting factors, the ability 

of these sequences to compete for the binding of factors to the 

Xenopus borealis skeletal actin gene was studied.

To achieve this three double-stranded oligonucleotides were 

synthesised which contain sequences complementary to the CArG 

box3, CArG box2 and CArG boxl sequence motifs. Restriction 

sites were designed to surround the core CArG motifs in the 

event of the oligonucleotides being sub-cloned at a later date. 

The sequences of these oligonucleotides are illustrated In 

figure 5.4A.

Band shift reactions containing the -167/-42 fragment of the 

Xenopus borealis skeletal actin gene promoter were constructed. 

The ability of each CArG box motif to compete for the binding 

of trans-acting factors to this promoter fragment was analysed 

by the addition of a 40-fold molar excess of unlabelled CArG 

box oligonucleotide to binding reactions.

Results illustrated in figure 5.4B demonstrate the previously 

described shifted band present in binding reactions containing 

no competitor. Furthermore, in this particular experiment an 

additional shifted band with a slower mobility than that of the 

predominant complex is also apparent. However, this additional 

band was not present in subsequent experiments and thus, 

although suggesting the possibility of additional factors 

binding the promoter fragment, its authenticity is
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FIGURE 5.4. Competition of binding to the Xenopus borealis 

skeletal actin gene promoter by synthetic CArG 

box oligonucleotides.

A. Diagrammatic representation of sequences present in the 

synthetic oligonucleotides complementary to CArG boxl, CArG 

box2 and CArG box3.

Restriction sites: E= Eco RI; S= Sac I; K= Kpn I.

B. Band shift assays challenging the formation of protein-DNA 

complexes by the addition of a 40-fold molar excess of CArG box 

oligonucleotides to binding reaction using the -167/-42 

fragment of the Xenopus borealis skeletal actin gene promoter 

as a probe. Binding reactions contained protein extracts 

prepared from the axis region of stage 30 Xenopus laevis 

embryos.

Track 1; no competitor. Track 2; 12.5 molar excess of construct 

p X b g b A ô  (500 ng). Track 3; 40-fold molar excess of CArG box3. 

Track 4; 40-fold molar excess of CArG box2. Track 5; 40-fold 

molar excess of CArG boxl.
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questionable.

On competition with a 12.5 molar excess of the p X b g b ^ 6  

promoter an expected decrease in the binding activity is 

observed. More interesting, however, is the finding that a 40- 

fold molar excess of both CArG boxl and CArG box3 can 

effectively compete for the binding of factors to the Xenopus 

borealis skeletal actin gene promoter (figure 5.4B, tracks 3 

and 5). This is in agreement with footprinting data that 

previously identified the binding of a factor(s) to CArG boxl. 

Moreover these data would suggest that the CArG box3 motif is 

also capable of binding a protein(s) iji vitro. More important, 

however, is the fact that both CArG boxl, and to a lesser 

extent CArG box3, can almost totally eliminate any detectable 

binding to the skeletal actin gene promoter. This would suggest 

that if CArG boxl is the major site for a protein-DNA complex, 

then CArG box3 also has the ability to compete for this factor, 

although at a lower efficiency than CArG boxl.

In agreement with footprinting data that demonstrate the 

absence of any protein-DNA complexes forming over the CArG box2 

sequence, so a CArG box2 oligonucleotide appears to have little 

ability to compete for the binding of factors to the skeletal 

actin gene promoter, under our assay conditions (figure 5.4B, 

track 4). This finding is not totally unexpected as i_n vivo 

analysis of sequences which are important for the expression of 

the gene suggest the redundancy of CArG box2 and adjacent 

sequences in the expression of the gene.
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5.5 Discussion.

Experiments outlined in this chapter demonstrate that 

sequence-specific trans-acting factors are capable of binding 

the Xenopus borealis skeletal actin gene promoter. Indeed 

analysis of binding to 5' deletion fragments of the promoter, 

in addition to DMS footprinting experiments, have demonstrated 

that the major site for this factor binding is the CArG boxl 

sequence motif. This lends support to the suggestion that CArG 

boxl is important in the expression of the Xenopus borealis 

skeletal actin gene, in addition to CArG box3.

The pattern of factor binding to the Xenopus borealis skeletal 

actin gene promoter conflicts with data obtained from similar 

experiments that investigate the binding of trans-acting 

factors to the chicken skeletal actin gene promoter. In these 

experiments two sequence-specific binding activities named 

MAPF1 and MAPF2 were observed on band shift analysis of the 

promoter (see chapter 1.3.4 and references therein). In 

addition to this both the MAPF1 (the predominant binding 

activity in non-myogenic nuclear extracts) and MAPF2 (the 

predominant binding activity in myogenic nuclear extracts) 

factors bind the 3' half of CArG boxl, overlapping onto 

sequences directly 3' to this motif (Walsh and Schimmel, 1987; 

also see fig 5.5). One explanation for this apparent 

discordance in data is that the sequences directly 3' to either 

the CArG boxl or CArG box3 sequence motifs of the Xenopus 

borealis skeletal actin gene show no great similarity to those 

present in the chicken skeletal actin gene promoter. Therefore,
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-98 TCTGTCCAAATATGGAGTTC
AGACAGGTTTATACCTCAAG

Xenopus borealis 
skeletal actin.

GACACCCAAATATGGCGACG -77 
CTGTGGGTTTATACCGCTGC

Chicken skeletal 
actin.

-102 ACACCCAAATATGGCTCGAGA -84 
TGTGGGTTTATACCGAGCTCT

A A A  A

Human skeletal 
actin.

GGGACC AAAT AAGGC AAGG -95 
CCCTGGTTTATTCCGTTCC

Human cardiac 
actin.

-95 AGCTACCAAATAAGGGCAGG -76 
TCGATGGTTTATTCCCGTCC

Xenopus laevis 
cardiac actin.

FIGURE 5.5. Comparison of the Xenopus borealis skeletal actin 

gene CArG boxl DMS footprint with the footprints of equivalent 

motifs from the chicken skeletal actin (Walsh and Schimmel, 

1987), human skeletal actin (Boxer £ £  a l . , 1989a), human 

cardiac actin (Boxer e_t a h ,  1989a) and Xenopus laevis cardiac 

actin (Taylor e_t a l ., 1989) genes.

Strong footprinting of the residues are indicated by the 

symbol A  , whereas weak interaction with the residues are 

illustrated by the symbol A .
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if the MAPF proteins are indeed sequence-specific DNA binding 

proteins which contact the 3' half of the CArG sequence motif, 

then they would be incapable of contacting the Xenopus borealis 

skeletal actin gene promoter.

Studies using the human skeletal actin gene produce similar 

data to ours, with predominantly one binding activity being 

present when the promoter of this gene is subjected to band 

shift analysis (Boxer et a l ., 1989a). Indeed, the DNA footprint 

over the CArG boxl motif of this gene is similar to the DNA 

footprint generated over the Xenopus borealis skeletal actin 

gene CArG boxl motif (see fig 5.5). In addition to this the DNA 

footprint of the Xenopus borealis skeletal actin gene CArG boxl 

sequence is also similar to those of the cardiac actin gene 

CArG boxl motifs. It is interesting to speculate therefore, 

that these motifs bind the same, or similar proteins, and this 

will be discussed further in chapter 6.

Band shift analysis and DNA footprinting experiments would 

suggest little or no binding of factors to the CArG box3 motif. 

However, as discussed previously the lack of detectable binding 

to this sequence element in our assays may be due to the 

positioning of the CArG motif directly adjacent to the 5' end 

of the DNA fragment. Indeed, competition analysis using 

oligonucleotides would argue that CArG box3 is capable of 

interacting with factors that bind to the Xenopus borealis 

skeletal actin gene promoter. The finding that CArG box3 almost 

eliminates any binding to the skeletal actin gene promoter 

would suggest that CArG box3 is also capable of interacting

- 96 -



Results and Discussion

with factors that bind the CArG boxl motif. The observation 

that CArG boxl is a more efficient competitor than CArG box3 

would suggest that CArG boxl has a greater affinity for these 

factors than CArG box3. Indeed this has also been proposed to 

be the situation with the Xenopus cardiac actin gene (Mohun et 

al. . 1989a).

CArG box2 appears to exhibit no significant binding of 

proteins ¿n vitro. Indeed, a CArG box2 oligonucleotide lacks 

the ability to compete effectively for the binding of factors 

to the promoter region of the Xenopus borealis skeletal actin 

gene. This finding is in accordance with micro-injection data 

that demonstrates the lack of importance of CArG box2 and 

adjacent sequences in the expression of the gene.

In summary it would appear that CArG box3 is essential for the 

expression of the Xenopus borealis skeletal actin gene. 

Furthermore, under the assay conditions employed in this study, 

both CArG boxl and CArG box3 have the ability to bind sequence 

specific trans-acting factors iji vitro, whilst CArG box2 does 

not. Preliminary competition analysis would also suggest that 

CArG boxl and CArG box3 have the ability to compete for each 

others binding activities, and this will be investigated 

further in chapter 6.

- 97 -



Results and Discussion

C H A P T E R  6

CArG box3 and CArG boxl bind similar, yet distinct proteins in 

vitro.

I n t r o d u c t i o n .

Band shift and DNA footprinting analysis of the Xenoptis 

borealis skeletal actin gene promoter, using relatively large 

DNA fragments, demonstrates that both CArG boxl and CArG box3

are capable of binding proteins in vitro (see chapter 5).

Furthermore, competition for the binding of factors to the

Xenopus borealis skeletal actin gene promoter with CArG box

oligonucleotides would suggest that CArG boxl and CArG box3 are 

capable of interacting with each other's proteins. This finding 

raises the question as to whether CArG box3 and CArG boxl do 

indeed bind the same protein(s), or whether these factors are 

similar, yet distinct.

Experiments investigating the expression of other actin genes 

have also identified a trans-acting factor(s) which binds the 

CArG boxl motif present in the promoters of these genes (Mohun 

et a l ,, 1989a; Miwa and Kedes, 1987; Walsh and Schimmel, 1987; 

Boxer et a l , , 1989a). Furthermore Mohun et a l . (1989a) went on 

to propose that the factor which binds the CArG boxl motif of 

the Xenopus laevis cardiac actin gene is also capable of binding 

the other three CArG motifs present in the promoter of this 

gene. However, the affinity of the protein for each CArG motif 

differs so that its affinity for CArG boxl > CArG box3 > CArG

- 98 -



Results and Discussion

boxA >> CArG box2.
A preliminary requirement in understanding how the CArG box 

contributes to the expression of the Xenopus borealis skeletal 

actin gene is to identify the transcription factors with which 

this sequence motif interacts. It was therefore decided that 

experiments should be designed to identify the protein(s) which 

are capable of binding the CArG motifs present in the promoter 

of the Xenopus borealis skeletal actin gene. Data presented in 

this chapter illustrate that only CArG boxl and CArG box3 

oligonucleotides demonstrate binding of trans-acting factors in 

vitro, at least under our assay conditions. Furthermore, the 

affinities of CArG box sequences for the binding of these 

factors is investigated in greater depth, and the protein which 

binds the CArG boxl motif identified.

6.1 CArG boxl and CArG box3 synthetic oligonucleotides hind 

sequence specific factors in vitro.

In order to more extensively characterise the factors which 

bind to CArG boxl and CArG box3 it was decided to study the 

capability of CArG box oligonucleotides to bind proteins in 

vitro.

To achieve this double-stranded oligonucleotides containing 

each of the CArG motifs (see figure 5.AA) were end labelled 

with & 32P-ATP and subjected to band shift analysis using 

protein extracts prepared from the axis regions of stage 30 

Xenopus laevis embryos (see chapter 3.16).

Results from this experiment are illustrated in figure 6.1. No
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FIGURE 6.1. CArG box oligonucleotides bind sequence-specific 

trans-acting factors in vitro.

Oligonucleotides containing the CArG boxl, CArG box2 and CArG 

box3 motifs were used as probes in binding reactions containing 

protein extracts prepared from stage 30 Xenopus laevis embryos. 

Both normal binding reactions (track N) and competition 

reactions containing a 60-fold molar excess of the homologous 

unlabelled CArG box oligonucleotide (track C) are represented. 

The 60-fold molar excess of CArG box oligonucleotide competitor 

replaced an equivilant amount of non-specific oligonucleotide 

present in normal binding reactions.



CArG
bOX3 
N Ç
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apparent binding of factors is observed in band shift reactions 

containing CArG box2 oligonucleotides, as judged by the altered 

migration of the probe through polyacrylamide gels. This is in 

agreement with data presented in chapter 5, which demonstrates 

that no proteins appear to bind the CArG box2 motif situated in 

the promoter of the Xenopus borealis skeletal actin gene. In 

contrast however, the CArG box3 oligonucleotide exhibits a 

single retarded band when subjected to band shift analysis. 

Furthermore, this binding activity appears to be facilitated by 

a sequence-specific interaction of factors with oligonucleotide 

sequences, by the criterion that the binding activity is 

extinguished on competition with a 60-fold molar excess of 

unlabelled CArG box3 oligonucleotide. It would appear, 

therefore, that CArG box3 is capable of interacting with a 

sequence-specific trans-acting factor(s) iri vitro.

CArG boxl oligonucleotides exhibit an apparently identical 

shifted band to that present in CArG box3 binding reactions, as 

judged by its mobility through a polyacrylamide gel. From this 

point onwards this binding activity present in both CArG boxl 

and CArG box3 binding reactions will be referred to as CArG 

Binding Activity 1 (CBA1). The intensity of the CArG boxl CBA1 

can be seen to be greater than that of its CArG box3 

counterpart. On the assumption that CArG boxl and CArG box3 do 

indeed bind the same protein to form this CBA1 DNA-protein 

complex, it is possible to speculate that CArG boxl has a 

greater affinity for this protein than CArG box3. Indeed, 

experiments which investigate the ability of CArG boxl and CArG
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box3 to compete for the binding of factors to the Xenopus 

borealis skeletal actin gene promoter would support this 

hypothesis (see chapter 5.4).

In addition to the CBA1 shifted band a faster migrating binding 

activity is also present exclusively in CArG boxl binding 

reactions (CBA2). This binding activity is also extinguished on 

competition with a 60-fold molar excess of CArG boxl, and thus 

would appear to be caused by the binding of a second sequence- 

specific factor. The CBA2 shifted band was consistently observed 

on band shift analysis of CArG boxl sequences, despite the 

presence of protease inhibitors. This, in addition to the 

finding that an increase in the CBA2 shifted band is accompanied 

by a corresponding increase, and not a decrease in the CBA1 

shifted band, would argue against the possibility of the CBA2 

shifted band being produced by the degradation of the protein 

that forms the CBA1 complex. Furthermore, data outlined in 

chapter 5.4 suggest that CArG box3 is capable of interacting 

with proteins that bind the CArG boxl motif. Thus, if the CBA2 

binding activity is a product of partial degradation of the CBA1 

protein, then the CBA2 shifted band would be expected to be 

present in CArG box3 binding reactions. The fact that this has 

never been observed, even on prolonged exposure of gels, would 

also argue against the CBA2 activity being the result of a 

partial proteolysis of the CBA1 protein.

In addition to the CBA1 and CBA2 shifted bands in CArG boxl 

binding reactions, various other retarded bands are also 

apparent. However, these binding activities are not extinguished
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on competition with a molar excess of CArG boxl sequences. Thus, 

these 'non-specific' bands are likely to be facilitated by the 

binding of general DNA binding proteins to the CArG boxl probe, 

rather than the binding of a sequence-specific trans-acting 

factor(s).

6.2 CArG box3 and CArG boxl exhibit distinct competition 

patterns.

With the aim of further investigating the ability of CArG boxl 

and CArG box3 binding proteins to interact with each others 

sequences it was decided to study the ability of each CArG motif 

to compete for the binding of factors to the other CArG boxes. 

To achieve this, binding reactions containing either CArG box3, 

CArG box2 or CArG boxl were constructed using protein extracts 

prepared from the axis region of stage 30 Xenopus laevis 

embryos. The ability of each CArG box to compete for the binding 

activities present in these reactions was tested by the addition 

of a 40-fold molar excess of either unlabelled CArG boxl, CArG 

box2 or CArG box3.

Results illustrated in figure 6.2.1 demonstrate the expected 

absence of any competable shifted bands in CArG box2 binding 

reactions.

In contrast however, CArG boxl binding reactions reveal the 

characteristic CBA1 and CBA2 shifted bands which are lost on 

competition with a 40-fold molar excess of unlabelled CArG boxl. 

As might be expected, the CBA2 shifted band is only abolished on 

competition with CArG boxl, further demonstrating that this
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FIGURE 6.2.1. CArG box oligonucleotides exhibit distinct 

competition patterns.

Band shift assay reactions were constructed using either CArG 

boxl, CArG box2 or CArG box3 as probes, in conjunction with 

protein extracts prepared from the axis region of stage 30 

Xenopus laevis embryos.

Competition was performed by the addition of a 40-fold molar 

excess of either CArG boxl, CArG box2 or CArG box3 

oligonucleotides to binding reactions. The CArG box competitor 

added to binding reactions substituted an equivilant amount of 

non-specific oligonucleotide present in normal binding 

reactions.

The specific oligonucleotide used as a probe in each binding 

reaction is illustrated above the relevant tracks. The presence 

(+), or absence (-) of oligonucleotide competition in binding 

reactions is also illustrated.
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protein-DNA complex is capable of forming exclusively over the 

CArG boxi motif. In agreement with experiments described in 

chapter 5.A, which study the ability of CArG boxes to compete 

for the binding of factors to the promoter of the Xenopus 

borealis skeletal actin gene, is the finding that the CBA1 

shifted band is reduced on competition with both the CArG boxi 

and CArG box3 sequences. It is therefore possible to speculate 

that CArG boxi and CArG box3 share the ability to bind at least 

one common factor iji v i t r o . However, as previously suggested it 

would appear that CArG boxi has a greater affinity for this 

factor than CArG box3, as judged by the increased ability of 

CArG boxi over CArG box3 to compete for the binding of factors 

to the CArG boxi sequence.

However, the results of experiments studying the ability of 

CArG motifs to compete for the binding activity present in CArG 

box3 band shift reactions shed a different light on this 

assumption. As described previously, CArG box3 binding reactions 

exhibit predominantly one retarded band when subjected to band 

shift analysis. However, unlike the seemingly identical shift in 

CArG boxi binding reactions, this binding activity is most 

effectively competed for by the addition of a AO-fold molar 

excess of CArG box3, whereas CArG boxi is a less effective 

competitor. Thus, CArG boxi CBA1 is most effectively competed 

for by CArG boxi, whereas CArG box3 CBA1 is most effectively 

competed for by CArG box3.

This observation is more convincing in experiments which study 

the capability of various concentrations of CArG boxi and CArG
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box3 to compete for each others binding activity. In these 

experiments it can be seen that CArG boxl extinguishes the CBA1 

binding activity present in CArG boxl binding reactions more 

efficiently than CArG box3 (see figure 6.2.2). However, the 

opposite appears to be the case in CArG box3 binding reactions. 

These data suggest that the CBA1 shifted band present in CArG 

boxl binding reactions, and the CBA1 shifted band present in 

CArG box3 binding reactions, are caused by two distinct factors. 

The first factor would appear to bind preferentially to CArG 

boxl, whereas the second would appear to bind preferentially to 

CArG box3. However, the finding that CArG boxl and CArG box3 

have the ability to compete for each others binding activities 

would suggest that each factor is capable of binding the other's 

sequence, although at a lower affinity than that of the 

homologous binding reactions.

Whether these apparently different factors are completely 

dissimilar, or whether they are closely related is as yet 

unknown. In an attempt to answer this question, it is of primary 

importance to identify at least one of the factors which 

interacts with these CArG motifs.

6.3 CArG boxl binds a protein that is antigenically related to 

the serum response factor.

The transcriptional activation of the proto-oncogene c-fos can 

be stimulated by a number of extracellular stimuli, including 

serum, growth factors and agents that elevate the intracellular 

levels of cAMP (see chapter 1.3.5 and references therein).
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FIGURE 6.2.2. Competition analysis of CArG box binding 

proteins using increasing amounts of CArG

box competitors.

Binding reactions were constructed which contained either CArG 

boxl or CArG box3 oligonucleotides as probes. Either no 

competitor or a 2, 10, 20 or 40-fold molar excess of CArG boxl 

or CArG box3 was added to these reactions prior to the addition 

of protein extract prepared from stage 30 Xenopus laevis 

embryos. Band shift reactions were run on polyacrylamide gels 

as described in chapter 3.16 and autoradiographed at -70°C with 

an intensifying screen to enable the localisation of retarded 

bands. Each CBA1 shifted band was then excised from the gel and 

counted by their Cerenkov emission.

The % binding activity represents the activity of the CBA1 

shifted bands in competition binding reactions expressed as a 

percentage of the activity of the CBA1 band in reactions 

containing no competitor.

A. The effect of a 2, 10, 20 or 40-fold molar excess of 

unlabelled CArG boxl or CArG box3 on the formation of the CBA1 

complex in reactions containing CArG box3 as a probe.

B. The effect of a 2, 10, 20 or 40-fold molar excess of 

unlabelled CArG boxl or CArG box3 on the formation of the CBA1 

complex in reactions containing CArG boxl as a probe.
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Whilst the activation of this gene by increased levels of cAMP 

is thought to be mediated via a cAMP response element present in 

the promoter of the gene, a cis-acting sequence responsible for 

the activation of the gene by serum and growth factors is 

contained within a element of dyad symmetry (DSE) present in the 

5' flanking region of the gene (Treisman, 1985). Situated at the 

centre of the DSE is the serum response element (SRE), which 

has been shown to be the binding site of the serum response 

factor (SRF) (Treisman, 1986; Gilman al. , 1986; Prywes and 

Roeder, 1986). Inspection of the SRE DNA sequence reveals the 

presence of a CArG box motif. This CArG sequence resembles the 

CArG boxl motif present in a number of actin gene promoters, 

including that of the Xenopus borealis skeletal actin gene (see 

figure 6.3.1A). Furthermore, the methylation footprint created 

by the binding of SRF to the CArG motif of the SRE exhibits a 

striking resemblance to the footprint created by the binding of 

a factor to the CArG boxl motif of the Xenopus borealis skeletal 

actin gene (see figure 6.3.IB).

The similarity between these two regulatory elements raises the 

question as to whether they interact with the same, or related 

transcription factors. To address this question we obtained a 

poly— clonal antibody raised against the C-terminal half of 

Xenopus SRF (a generous gift from Dr. T. Mohun). This antibody 

was exploited in antibody band shift assays to determine whether 

it could recognise one or more of the proteins which complex 

with the Xenopus borealis skeletal actin CArG boxl motif, and 

thus identify them as being antigenically similar to SRF.
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-95 C A C CCAAATATGGC Ra t .

-86 CACCCAAATATGGC Chicken.

-101 CACCCAAATATGGCTC Human.

-96 TGTCCAAATATGGAGT Xenopus laevis.

-95 TGTCCAAATATGGAGT Xenopus borealis.

CCTTATAAGG Xenopus c-fos SRE.

CCATATTAGG Human c-fos SRE.

B.

▼ ▼
TGTCCAAATATGGAGT Xenopus borealis skeletal actin
AC AGGTTTATACCTCA A A CArG boxl.

▼▼
TGTCCATATTAGGACA Human c-fos SRE
ACAGGTATAATCCTGAA A

FIGURE 6.3.1. Comparison of CArG box and SRE sequences.

A. Sequence comparison of skeletal actin CArG boxl motifs with 
the CArG elements present in the SRE of the human (Treisman, 
1986) and Xenopus (Mohun et a l .. 1989b) c-fos genes.

B. Comparison of the méthylation footprints created over the 
Xenopus borealis skeletal actin CArG boxl motif and the CArG 
motif present in the human c-fos SRE (Treisman, 1986).
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CArG boxl was end labelled with 0 ^ P ~ A T P  and used in antibody 

band shift assays with protein extracts prepared from stage 30 

Xenopus laevis embryos. Either a 1/10 dilution or concentrated 

form of anti-SRF antibody was used in these assays.

Results shown in figure 6.3.2 illustrate the effect of adding 

anti-SRF to CArG boxl binding reactions. With no antibody 

present the previously described CBA1 and CBA2 shifted bands are 

observed. Furthermore, control reactions containing anti-serum 

raised against the transcription factor Oct-1 (a gift of Dr. D. 

Smith) exhibit identical binding patterns to reactions 

containing no anti-serum. However, on addition of a 1/10 

dilution of anti-SRF antibody to binding reactions an additional 

shifted band with a slightly slower mobility than the CBA1 

complex is observed. This is caused by the binding of anti-SRF 

to either the CBA1 or CBA2 DNA-protein complexes, slowing the 

migration of the resulting ternary complex through a 

polyacrylamide gel. Indeed, this additional shift appears to be 

caused by an interaction of the anti-serum to a sequence- 

specific factor that binds the CArG boxl motif, as demonstrated 

by the band being extinguished on competition with a AO-fold 

molar excess of unlabelled CArG boxl.

Addition of excess anti-SRF antibody to binding reactions 

results in a total loss of the CBA1 shifted band, due to the 

binding of sufficient antibody to the complex to arrest its 

migration into the gel. The finding that anti-SRF antibody 

recognises the protein responsible for the CBA1 protein-DNA 

complex demonstrates that a protein which is antigenically
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FIGURE 6.3.2. A protein which is antigenically similar to SRF 

binds the Xenopus borealis skeletal actin CArG

boxi motif.

Antibody band shift assays using CArG boxl as a probe, and 

containing protein extracts prepared from the axis region of 

stage 30 Xenopus laevis embryos, were performed as described in 

chapter 3.17. The presence in binding reactions of either a 

1/10 dilution ( + ) or concentrated form ( + +) of anti-SRF or 

anti-Octl anti-serum (Smith and Old, 1991) is indicated above 

the relevant tracks. The presence (+) or absence (-) of a 40- 

fold molar excess of unlabelled CArG boxl competitor, or of 

protein extracts is also illustrated.



Anti—SHF Anti-Oct 1

Antibody -  + + ► +  +  + + ►
Competition -
Extract + +  +  +  - +  +
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related to SRF is capable of binding the CArG boxl motif. Of 

equal interest however is the observation that the CBA2 shifted 

band appears to be unaffected by the addition of anti-SRF to 

binding reactions, even at high concentrations. This supports 

the suggestion that the protein that is responsible for CBA2 is 

distinct from the SRF-like protein which causes the CBA1 

complex. The possibility does still remain, however, that the 

CBA2 shifted band results from the cleavage of the SRF protein, 

removing the epitopes recognised by the anti-SRF antibody but 

leaving its ability to bind DNA intact. However, the portion of 

SRF to which the poly clonal anti-serum was raised does contain 

some of the DNA binding domain (T. Mohun, personal 

communication). Therefore, at high concentrations of anti-SRF it 

would be expected that some antibodies are present which are 

capable of recognising epitopes within the DMA binding domain, 

and thus inducing an additional shift of the CBA2 complex. The 

absence of this effect, even at high concentrations of anti-SRF 

antibody, would argue against the CBA2 shifted band being the 

result of proteolysis of the SRF-like protein.

It is apparent therefore from experiments that exploit the 

specificity of an anti-SRF antibody, that CArG boxl does indeed 

bind SRF, or at least a protein which is antigenically related 

to this protein. In addition to this it would also appear that 

CArG boxl has the ability to bind a second protein which is 

distinct from the SRF.
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6.A CArG box3 binds a protein which is antigenically distinct 

from SRF.
Competition analysis of the proteins which bind the CArG motifs 

of the Xenopus borealis skeletal actin gene suggest that CArG 

boxl and CArG box3 bind similar, yet distinguishable proteins. 

This, in addition to the discovery that the CBA1 complex 

observed in CArG boxl binding reactions is created by the 

binding of an SRF-like protein, raises the question as to 

whether CArG box3 also binds an SRF-like protein. Indeed, 

comparison of the nucleotide sequences of CArG boxl and CArG 

box3 reveals a match of 7 out of 10 of the nucleotides of the 

CArG motif. Furthermore, CArG box3 appears to be an almost 

perfect inverted repeat of the CArG boxl motif, showing a match 

of 9 out of the 10 nucleotides when compared in the opposite 

orientation to CArG boxl (see figure 6.4A). It is therefore a 

possibility that although the CArG boxl and CArG box3 motifs 

appear to bind dissimilar proteins, they may both bind 

SRF-related proteins. To investigate this possibility it was 

decided to repeat CArG boxl antibody band shift experiments in 

parallel with antibody band shift experiments using CArG box3 as 

a probe.
Results illustrated in figure 6.AB show the characteristic 

binding patterns achieved with both CArG boxl and CArG box3 when 

no anti-serum is added. Control binding reactions containing 

antibody raised against the Xenopus laevis thyroid hormone 

receptor (anti-THR) (a gift from Dr. R. W. Old) show no 

significant alteration in the binding activities present in
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FIGURE 6.4. A protein which is antigenically distinguishable

from SRF binds the Xenopus borealis skeletal actin 

CArG box3 motif.

A. Sequence comparison of the Xenopus borealis skeletal actin 

gene CArG box3 and CArG boxl motifs. The CArG boxl motif is 

shown in either the correct ( + ) or reverse (-) orientations. 

Conserved sequences are indicated by the sign * above the 

relevant nucleotides.

B. Antibody band shift assays using either CArG boxl or CArG 

box3 as probes were performed in combination with protein 

extracts prepared from the axis region of stage 30 Xenopus 

laevis embryos.

The presence in binding reactions of either a 1/10 dilution 

( + ) or concentrated form (++) of anti-SRF or anti-THR anti­

serum is indicated above the relevant tracks. The presence (♦) 

or absence (-) of a 40-fold molar excess of unlabelled CArG 

boxl competitor is also illustrated
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either CArG boxl or CArG box3 binding reactions. However, small 

amounts of an additional shifted band are induced by the 

addition of anti-THR antibody, although further investigation of 

this binding activity revealed it to be non-specific. Indeed 

this band could even be observed on the addition of anti-THR to 

binding reactions containing no protein extracts (data not 

shown; D. Smith, personal communication).

In agreement with data produced in the preceding section, the 

addition of a 1/10 dilution of anti-SRF antibody to CArG boxl 

binding reactions induces an additional shifted band, with the 

CBA1 shifted band being totally extinguished on the addition of 

a more concentrated form of the antibody. Furthermore, an 

additional shifted band, which has not previously been observed, 

is also present on the addition of excess anti-SRF antibody. 

However, this band appears to migrate at a slightly slower rate 

than the additional band produced on the addition of a 1/10 

dilution of the anti-SRF antibody to binding reactions. Indeed, 

it appears to migrate at approximately the same rate as the non­

specific band observed in binding reactions containing anti-THR 

antibody. Thus, although this band may be caused by the 

additional binding of anti-SRF to the CArG boxl Protein-DNA 

complex, it is more likely to be caused by a non-specific 

interaction of the anti-serum with the CArG box probe.

Addition of the anti-SRF antibody to CArG box3 binding 

reactions yields strikingly different results from those 

obtained on addition of the antibody to CArG boxl binding 

reactions. Anti-SRF, when added at a 1/10 dilution to CArG box3
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binding reactions induces only a small additional shift of the 

CBA1 complex, when compared to the equivalent track of CArG boxl 

binding reactions. More important, however, is the finding that 

addition of excess anti-SRF antibody to CArG box3 binding 

reactions has only a slight effect on the CBA1 shifted band, 

with the majority of it remaining. At these high concentrations 

of anti-SRF an additional shift is observed. This additional 

binding activity may represent the binding of some SRF-like 

proteins to the CArG box3 motif, and may contain some of the 

protein-DNA complex lost from the CBA1 shifted band in these 

reactions. However, the combination of the additional shifted 

band and the remaining CBA1 shift appears to have a greater 

intensity than that of the CBA1 band present in control 

reactions. This would suggest that some of the additional shift 

is due to a non-specific interaction of the anti-SRF antibody 

with the CArG box3 probe. Furthermore, the mobility of this 

shifted band appears to be slower than that of the band present 

in CArG boxl reactions containing a 1/10 dilution of the anti- 

SRF antibody. Indeed, it exhibits a similar mobility to that of 

the non-specific band observed in control anti-serum reactions, 

supporting the suggestion that this band is non-specific.

What is clear is that the majority of the CBAl shifted band in 

CArG box3 binding reactions remains intact on addition of 

quantities of anti-SRF which are capable of extinguishing the 

CBAl shifted band in CArG boxl binding reactions. This 

demonstrates that the majority of proteins complexed with CArG
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box3 are antigenically distinct from those which bind to CArG 

boxl.

6.5 Discussion.

Data presented in this chapter demonstrates the binding of 

sequence-specific trans-acting factors to the CArG boxl and CArG 

box3 sequences situated in the promoter of the Xenopus borealis 

skeletal actin gene. CArG boxl exhibits two distinct DNA-protein 

complexes when assayed by band shift analysis. One of these 

complexes has been shown to be formed by the binding of a 

protein which is antigenically related to the transcription 

factor SRF which binds the promoter of the c-fos gene. The 

second complex formed with the CArG boxl sequence appears to be 

facilitated by the binding of a factor which is antigenically 

distinct from the SRF.

CArG box3 forms a complex with identical mobility to that of 

the CArG boxl-SRF complex, when subjected to band shift 

analysis. However both competition and antibody band shift 

assays demonstrate that although some of this complex may be 

attributed to the binding of an SRF-like protein to CArG box3, 

the majority is formed by the binding of a protein(s) that is 

antigenically distinguishable from the SRF protein that 

interacts with CArG boxl.

The finding that CArG boxl does indeed bind an SRF-like protein 

is not unexpected, as judged by the similarity of the CArG boxl 

sequence to that of the c-fos SRE. Indeed, SRF has been shown to 

contact the G residues situated at either end of the CArG motif
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present in the c-fos SRE (Treisman, 1986; Prywes and Roeder, 

1986; Schroter et a l ., 1987; see figure 5.4B). These nucleotides 

appear to be essential for the binding of SRF to DNA (Leung and 

Miyamoto, 1989), and are conserved between the c-fos SRE and the 

Xenopus borealis skeletal actin gene CArG boxl motif. However, 

the A/T core of the CArG box appears to differ between the c-fos 

SRE and the Xenopus borealis skeletal actin CArG boxl motifs 

without affecting the binding of SRF. Studies using the human 

SRE have shown that alteration of this core sequence does not 

significantly effect the binding of SRF to the CArG motif, 

providing this core remains predominantly A/T rich (Leung and 

Miyamoto, 1990). Furthermore, by using PCR techniques to isolate 

a variety of SRF binding sites, Pollock and Treisman (1990) 

identified a CArG motif identical to that of the Xenopus 

borealis skeletal actin gene CArG boxl motif which was capable 

of binding human SRF. It is possible to speculate, therefore, 

that the CArG boxl sequence is indeed capable of binding a bona 

fide SRF protein.

The CArG boxl motifs present in other actin gene promoters have 

also been shown to bind SRF. Preliminary experiments studying 

the human skeletal and human cardiac actin genes identified 

their respective CArG boxl motifs to bind a protein of the same 

molecular weight as SRF (Boxer e^ a l . , 1989a). Further 

investigation of this CArG box binding factor (CBF) demonstrated 

it to be indistinguishable from SRF by chromatographic profiles, 

glycerol gradient sedimentation, temperature stability and DNA 

binding properties, in addition to being recognised by an anti-
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SRF antibody (Boxer £t a l . , 1989b). In addition to this, the 

Xenopus laevis cardiac actin CArG boxl motif also appears to 

bind SRF. Furthermore, SRF is also capable of binding this motif 

in vivo. by virtue of the fact that the Xenopus laevis cardiac 

actin CArG boxl and the Xenopus c-fos SRE are functionally 

interchangeable (Taylor et a l ., 1989).

With the exception of the chicken skeletal actin gene, all 

studies mentioned thus far suggest that SRF is the only protein 

which is capable of binding the CArG motif present in actin gene 

promoters. No other binding activities such as the CBA2 shifted 

band described in this report have been identified. However, by 

altering the conditions of band shift assays, four other binding 

activities have been identified which are capable of interacting 

with the CArG boxl motif of the Xenopus laevis cardiac actin 

gene (Taylor and Gurdon: Poster; Third International Xenopus 

Meeting, 1990).

The identity of the protein(s) which facilitate the CBA2 shift 

are as yet unknown, but it is interesting to speculate that this 

binding activity may be due to the binding of a second protein, 

P62TCF> which has been demonstrated to bind the c-fos SRE in 

addition to SRF (see chapter 1.3.5 and references therein). 

However, a requirement for p62TCF 5 in(jin g is the formation of 

the SRE-SRF complex (Shaw et^ a l . . 1989). Therefore, if the CBA2 

complex is indeed caused by the binding of p62TCF to CArG boxl, 

then this ternary complex would be expected to exhibit a slower 

mobility than the CArG boxl-SRF complex on band shift analysis. 

The finding that CBA2 migrates more rapidly through a
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polyacrylamide gel than the SRF-CArG boxl complex, and the 

discovery that anti-SRF does not recognise the CBA2 binding 

activity, would argue against the binding of p62TCF to this 

motif. In addition to this, p62TCF contacts the c-fos SRE 

immediately 5' to the CArG box motif present in the c-fos SRE 

(Shaw e_t al ■ , 1989). The absence of any flanking sequences in 

the CArG boxl oligonucleotide would also argue against the 

binding of P62TCF to CArG boxl.

As stated previously, band shift analysis of the chicken 

skeletal actin CArG boxl motif revealed the presence of two 

shifted bands (Walsh and Schimmel, 1987). It is therefore 

possible that the CBA2 shifted band observed on analysis of the 

Xenopus borealis skeletal actin gene CArG boxl motif is caused 

by the binding of proteins similar to those which facilitate the 

MAPF2 binding activity present in chicken skeletal actin gene 

studies. However, unlike the MAPF2 protein, the protein which 

forms the CBA2 complex appears to be distributed throughout the 

embryo (see chapter 7), arguing against this being caused by the 

binding of MAPF2.

Competition of SRF-CArG boxl complexes of the Xenopus laevis 

cardiac actin gene suggest that the other 3 CArG motifs present 

in the promoter of this gene also have the ability to bind SRF. 

Indeed, the affinities of SRF for each of these CArG motifs has 

been proposed to be in the order of CArG boxl > CArG box3 > CArG 

boxA >> CArG box2 (Mohun e_t a l . , 1989a). This reflects data 

outlined in this report which use the Xenopus borealis skeletal 

actin gene CArG motifs in band shift assays. These data show the
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relative affinity for each CArG box to compete for SRF binding 

to CArG boxl to be in the order of CArG boxl > CArG box3 >>> 

CArG box2. However, in the studies of Mohun e_t a l . , (1989a) 

reciprocal competition experiments were not performed. Our more 

extensive competition experiments suggest that two similar 

factors exist which are capable of binding the CArG motifs. The 

first of these factors has a high affinity for the CArG boxl 

motif, whilst the second has a high affinity for the CArG box3 

motif. Indeed, antibody band shift experiments appear to 

corroborate this suggestion, demonstrating that the factor which 

binds CArG box3 is antigenically distinct from the SRF protein 

which binds CArG boxl.

As previously stated, the core CArG box3 sequence is a perfect 

inverted repeat of the core CArG boxl sequence, with the 

exception of one nucleotide. This nucleotide mismatch, which 

occurs at position -161 in the promoter, is one of the four G 

residues which have been identified to be the contact points of 

the SRF protein with the CArG motif. Taking this into account it 

is not unexpected that this single nucleotide change can 

facilitate the binding of a different protein to the CArG motif.

Subtle changes in the binding sites of other transcription 

factors has been shown to dramatically alter the proteins with 

which these sequences interact. Indeed, in some studies the same 

DNA sequence has been shown to bind a multitude of different, 

although normally related transcription factors. For example the 

octamer sequence, ATGCAAATNA, has been shown to bind two 

different transcription factors with diverse roles in gene
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expression (for review see Schaffner, 1989). One of these 

factors, termed Oct-1, is ubiquitous and directs the expression 

of the histone H2B gene by binding an octamer motif situated in 

the promoter of this gene. Conversely the same octamer motif is 

present in the promoter of the immunoglobulin genes and has been 

shown to direct their tissue-specific expression by interacting 

with the lymphoid-specific transcription factors 0ct-2A and Oct- 

2B. Several Drosophila homeodomain proteins have also been shown 

to bind the same DNA sequence. For example, the DNA sequence 

TCAATTAAAT is the binding site for the proteins encoded by the 

homeobox genes engrailed, even skipped, fushi tarazo, faired and 

?erknult (see Biggin and Tjian, 1989). Furthermore, the helix- 

loop-helix family of transcription factors bind a common 

consensus sequence termed the E box, which was first identified 

in the immunoglobulin enhancers (Church et a l ., 1985).

It is therefore not inconceivable that a change of one 

nucleotide in a transcription factor binding site, as in the 

case of the CArG boxl and CArG box3 sequence motifs, can change 

the protein with which the sequence interacts. Indeed, this has 

been demonstrated to occur with other DNA binding domains. For 

example, the insertion of a C residue into the binding site for 

the transcription factor AP-1, converts it into a putative cAMP 

response element which is capable of binding the transcription 

factor CREB (see Ziff, 1990). Studies of the DNA binding sites 

of the POU-domain family of transcription factors have 

demonstrated that the transcription factor Pit-1, which 

contributes towards the tissue-specific expression of the
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prolactin and growth hormone genes, and the aforementioned Oct-2 

transcription factor, recognise regulatory DNA elements which 

differ by only two nucleotides. Furthermore, a double point 

mutation of the Pit-1 binding site present in the prolactin gene 

promoter allows this DNA sequence to bind Oct-2 instead of Pit- 

1, and facilitates the expression of the gene exclusively in B- 

cells (Elsholtz e_t a l . , 1990).

Experiments discussed in this chapter would suggest that the 

interactions of the Xenopus borealis skeletal actin gene 

promoter with regulatory proteins is likely to be complex. 

Indeed, the question arises as to whether other as yet 

undetected transcription factors might bind to the Xenopus 

borealis skeletal actin gene promoter. The identification of a 

protein which binds the CArG boxl sequence, and the discovery of 

a distinct protein which binds the CArG box3 sequence, prompts 

the question as to how the SRF and CArG box3 binding protein 

direct the tissue-specific expression of the Xenopus borealis 

skeletal actin gene, and this will be discussed in chapter 7.
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CH A P T E R  7

The spatial and temporal distribution of CArG box binding 

factors in Xenopus.

Introduction.

Previous experiments have demonstrated the importance of CArG 

box3 in the spatial expression of the Xenopus borealis skeletal 

actin gene. This motif, in addition to a more proximal CArG 

boxl motif, is capable of interacting with trans-acting factors 

in vitro. Two proteins appear to interact with the CArG boxl 

motif, one of which is antigenically related to the 

transcription factor SRF. In addition to this a third protein, 

which is antigenically distinguishable from SRF, appears to 

interact with the CArG box3 sequence J_n vitro.

The CArG box motif has been identified in the regulatory 

regions of other, but not all muscle-specific genes studied to 

date (see figure 1.1, chapter 1). Furthermore, this sequence 

motif is also present in the regulatory regions of the ^ - a c t i n  

genes (see figure 1.1, chapter 1), in addition to the c-fos 

(see chapter 1.3.5) and interleukin-2 receptor (Phan-Dinh-Tuy 

et a l ♦, 1988) genes.

In order to understand how the CArG box motifs contribute to 

the spatial and temporal expression of the Xenopus borealis 

skeletal actin gene, it was decided to examine the temporal and 

spatial distribution of the previously described CArG box 

binding proteins. Experiments described in this chapter

-118-



Results and Discussion

investigate the ability of the CArG motif to interact with

factors present in protein extracts prepared from either a

region of the embryo in which the skeletal actin gene is

expressed, or a region of the embryo where the actin gene is

inactive. In addition to this experiments are also described 

which investigate the ability of factors present in extracts 

prepared from embryos at different stages of development to 

interact with the CArG box3 motif.

7.1 CArG box binding activities are present throughout the 

embryo.

All band shift experiments described thus far have used 

protein extracts prepared from a region of the embryo which 

contains tissue that is actively expressing the skeletal actin 

gene (i.e the axis region). In order to determine whether the 

CArG box binding activities are present exclusively in a region 

of the embryo that expresses the skeletal actin gene, protein 

extracts were prepared from a region of the embryo which 

expresses little, if any skeletal actin (head plus gut), in 

addition to a region of the embryo that expresses the actin 

gene (axis).

Oligonucleotides containing either CArG boxl, CArG box2 

or CArG box3 were end labelled with $ 32P-ATP. These sequences 

were then used in band shift assays containing extracts 

prepared from either the axis or head plus gut regions of stage 

30 Xenopus laevis embryos.

Results shown in figure 7.1.1 illustrate the CBA1 shift
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FIGURE 7.1.1. Distribution of CArG box binding factors 

throughout the embryo.

Protein extracts were prepared from the axis (A) or head plus 

gut (G) regions of stage 30 embryos. These extracts were then 

used in band shift assays containing either CArG b o x l , CArG 

box2 or CArG box3 as a probe. The CArG box used as a probe is 

illustrated above the relevant tracks on the figure. Track C 

represents competition with a 40-fold molar excess of 

unlabelled CArG box in binding reactions containing axis 

protein extracts. CArG box oligonucleotide used as competitor 

replaced an equivilant amount of non-specific oligonucleotide 

in normal binding reactions.
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present in CArG box3 binding reactions, in addition to the SRF- 

like and CBA2 shifts present in CArG boxl binding reactions, 

when extracts prepared from the axis region of stage 30 embryos 

are used in band shift assays. More importantly however, when 

extracts prepared from the head plus gut regions of embryos are 

used in band shift assays the same pattern of retarded bands is 

achieved (Compare track A with track G). Indeed, no great 

variation in the intensity of these bands is observed between 

extracts. In agreement with previous data no binding of factors 

to CArG box2 sequences is apparent in extracts prepared from 

either of the embryo fractions.

It would appear therefore that the previously described CArG 

box binding activities are present throughout the embryo. To 

investigate the tissue distribution of the CArG box3 binding 

activity in further detail, protein extracts were prepared from 

adult skeletal muscle and adult liver tissues. In addition to 

this protein extracts were also prepared from the Xenonus cell 

line XTC, which is derived from mesodermal tissues that do not 

express skeletal actin (Pudney e_t a l . . 1973). These tissues 

offer a purer source of protein extract and thus reduce the 

possibility of contaminating tissues which may occur with the 

relatively crude dissection of embryos into axis and head plus 

gut regions.

Muscle, liver and XTC extracts were used in band shift assays 

in conjunction with oligonucleotides containing the CArG 

box3 motif. Results of this experiment illustrated in figure 

7.1.2 demonstrate that the CBA1 binding activity is present in
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FIGURE 7.1.2. Tissue distribution of CArG box3 binding 

proteln(s).

Protein extracts were prepared from either liver or muscle 

tissues obtained from a adult Xenopus laevis frog. Protein 

extracts were also prepared from the cell line XTC. These 

extracts were then used in band shift assays containing CArG 

box3 as a probe. Track N represents normal binding reactions 

containing no competitor. Track C represents competition 

reactions containing a AO-fold molar excess of unlabelled CArG 

box3. CArG box3 oligonucleotide used as a competitor replaced 

an equivalent amount of non-specific oligonucleotide in normal 

binding reactions.

Binding reactions containing protein extracts prepared from 

either the axis (A) or head plus gut (G) regions of stage 30 

Xenopus laevis embryos are also illustrated.
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protein extracts prepared from tissues of both muscular and 

non-muscular origin. The CBA1 binding activity is therefore 

present in tissues that do not express the skeletal actin gene 

in addition to those that do. Furthermore, this experiment also 

demonstrates that the CArG box3 CBA1 binding activity apparent 

in extracts prepared from the head plus gut regions of embryos 

is not due to contamination of these embryo fragments with 

muscular tissue.

7.2 CArG box3 binds a factor(s) that is present throughout 

early Xenopus development.

In addition to being expressed in a spatially restricted 

manner, the Xenopus borealis skeletal actin gene is also 

expressed in a stage-specific manner, being activated at stage 

12% of development (see chapter 1.3.1 and references therein). 

Results illustrated in the preceding section demonstrate that 

the CArG box binding activities identified in this study are 

present in tissues of the embryo where the skeletal actin gene 

is inactive, in addition to those where it is expressed.

To address the question as to whether the factor(s) that 

interact with the CArG box3 sequence are expressed at a 

particular stage of Xenopus development, protein extracts were 

prepared from embryos at different stages of development. These 

extracts were then analysed for the presence of factors which 

are capable of binding the CArG box3 motif by band shift 

analysis.

Results illustrated in figure 7.2 reveal that the CBA1 binding
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FIGURE 7.2. Distribution of CArG box3 binding proteins 

throughout Xenopus development.

Protein extracts were prepared from either the eggs of a 

Xenopus laevis frog, or from embryos at stage 6 (st 6), 10 (st 

10), and 15 (st 15) of development. Extracts were also prepared 

from either the axis (A) or head plus gut (G) regions of stage 

30/31 (st 30/31) Xenopus laevis embryos. Extracts were used in 

band shift assay reactions containing CArG box3 as a probe. 

Binding reactions containing no competitor (tracks N) are 

illustrated along with reactions that contain a 40-fold molar 

excess of unlabelled CArG box3 as a competitor (tracks C). CArG 

box3 oligonucleotide sequences contained in competition 

reactions replaced an equivalent amount of non-specific 

oligonucleotide present in normal binding reactions.

Due to the long period of time that the gel was allowed to run 

no free DNA is apparent in this figure.
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activity is present not only in extracts prepared from both the 

axis and head plus gut regions of stage 30/31 embryos, but is 

also present in all other extracts examined. Thus, the proteins 

which interact with CArG box3 are not only expressed, but are 

capable of binding this sequence at stages of embryo 

development when the skeletal actin gene is inactive.

Interestingly, a second retarded band with a faster mobility 

than CBA1 is apparent in extracts prepared from embryos at 

early stages of development. This binding activity is 

transient, being present in extracts prepared from eggs, in 

addition to embryos at stage 6 of development, but decreasing 

at stage 10 until very little remains at stage 15. This profile 

of binding to CArG box3 is interesting in that the factor(s) 

responsible for this protein-DNA complex appears to be capable 

of binding CArG box3 at stages of embryo development when the 

skeletal actin gene is inactive. However, immediately prior to 

and during the stages of development when the skeletal actin 

gene is expressed, this binding activity is no longer apparent. 

It is interesting to speculate, therefore, that this binding 

activity corresponds to a negative trans-acting factor that is 

capable of binding CArG box3. However this binding activity was 

not consistently observed in subsequent experiments using other 

protein extracts. This, in addition to the absence of the 

binding activity in the head plus gut region of stage 30/31 

embryos, would argue against the authenticity of this 

observation.

What is obvious from this experiment is that the protein(s)
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responsible for the CArG box3 CBA1 are present, and capable of 

binding the CArG box3 sequence throughout early Xenopus 

development.

7.3 Discussion.

Experiments described in this chapter demonstrate no 

detectable difference in the proteins that interact with CArG 

box3 and CArG boxl between tissues. Indeed, the motifs exhibit 

identical binding activities in both regions of the embryo that 

express the skeletal actin gene and regions that do not. It is 

apparent, therefore, that the CBA1 and CBA2 binding activities 

present in CArG boxl binding reactions do not correspond to the 

tissue-specific MAPF1 and MAPF2 factors identified to interact 

with the CArG boxl motif of the chicken skeletal actin gene 

(Walsh and Schimmel, 1987; see also chapter 1.3.A). Conversely, 

our data are in agreement with those obtained from the study of 

the human skeletal, human cardiac and Xenopus cardiac actin 

genes, which demonstrate the binding of apparently ubiquitous 

factors to the CArG boxl sequence (Boxer et a l .. 1989a; Taylor 

et. a K ,  1989).

The CBA1 binding activity present in CArG boxl binding 

reactions has previously been identified to be antigenically 

related to SRF (see chapter 6). SRF binds the SRE present in 

the promoter of the c-fos gene, and this binding activity has 

been demonstrated to be recoverable from many cell lines and 

tissues (Treisman, 1986; Gilman et al., 1986). It is therefore 

not unexpected that the SRF-like protein which binds the CArG
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boxl motif is present throughout the embryo. However, these 

experiments also reveal that the other CArG box binding 

activities identified are also present in both the axis and 

head plus gut regions of the embryo. Indeed, the binding 

activity observed in CArG box3 binding reactions was also 

recoverable from an adult tissue (i.e the liver), in addition 

to a cell line (XTC), that does not express the skeletal actin 

gene.

From experiments described in chapter A it is apparent that 

the CArG box3 motif, and probably the CArG boxl motif, is 

essential for the tissue-specific expression of the Xenopus 

borealis skeletal actin gene. Positive cis-acting regulatory 

elements that contribute towards the expression of other 

tissue-specific genes have been shown to interact with positive 

trans-acting factors exclusively in the tissues where these 

genes are expressed. For example, tissue-specific factors have 

been demonstrated to bind regulatory elements present in the 

muscle creatine kinase (Buskin and Hauschka, 1989; Gossett et 

a l . , 1989), growth hormone (for review see Karin e_t a l . , 1990) 

and immunoglobulin (for review see Schaffner, 1989) genes. It 

is apparent, therefore, that if the CArG box is indeed the 

element which confers tissue-specific expression onto the 

Xenopus borealis skeletal actin gene, then the expression of 

this gene is subjected to more subtle mechanisms of control 

than originally conceived.

How then is it possible for these apparently ubiquitous CArG 

box binding factors to govern the tissue-specific expression of
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the Xenopus borealis skeletal actin gene? Assuming that no 

other sequences exist which are responsible for the tissue- 

specific expression of the gene, then several mechanisms are 

possible. One of these is the post-translational modification 

of one or more of the CArG box binding proteins exclusively in 

skeletal muscle. This modification of the protein(s) would then 

cause the transcriptional activation of the skeletal actin gene 

exclusively in developing muscle, despite its occupying the 

sequence in a number of other tissues. In this regard 

phosphorylation has previously been implicated in the control 

of transcription factor function. For example, the heat shock 

element (HSE) in the promoter of these genes is recognised by a 

DNA binding protein called HSF, or HSTF. Increased 

transcription of yeast heat shock genes correlates with 

increased phosphorylation of HSTF that is already bound to the 

heat shock gene promoter (see Mitchell and Tjian, 1989). More 

recently it has been demonstrated that phosphorylation of the 

transcription factor CREB increases the activation of this 

protein on a reporter gene containing a CREB binding site (see 

Berk and Schmidt, 1990). Indeed, SRF is a phospho-protein which 

is phosphorylated on serine residues ^  vivo (Prywes e_t a l . , 

1988).

A possible level of regulation of the Xenopus borealis 

skeletal actin gene therefore exists by the phosphorylation of 

the SRF-like protein which binds the CArG boxl motif. However 

phosphorylation of SRF/CBF is a requirement of DNA binding 

(Prywes e ^  a l .. 1988; Boxer e£ a l .. 1989b). Therefore, if
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phosphorylation of SRF is a mechanism of control of the 

skeletal actin gene, then a tissue-specific binding of the SRF- 

like protein to the CArG boxl motif would be expected. The 

absence of this tissue-specific binding would argue against the 

phosphorylation of SRF as a mechanism of controlling skeletal 

actin gene expression.

The possibility still remains that like the HSTF protein 

binding the HSE in yeast, the CBA2 and/or CArG box3 CBAl 

proteins may be activated by phosphorylation, despite their 

occupying the CArG motif in both a phosphorylated and de- 

phosphorylated state. However, the phosphorylation of a protein 

which binds a short sequence of DNA would be expected to 

increase the mobility of the resulting DNA-protein complex 

through a gel, due to its increased negative charge. Therefore, 

although this mechanism of control is a possibility with the 

CArG box binding factors, the lack of difference in the 

mobility of the CArG box binding activities between tissues 

would argue against it.

Another explanation as to how the apparently ubiquitous CArG 

box binding activities direct the tissue-specific expression of 

the Xenopus borealis skeletal actin gene is that further 

proteins may interact with these proteins after they have bound 

the CArG motif. This second set of proteins could be expressed 

exclusively in developing skeletal muscle and although they do 

not bind the CArG box motif directly, they could activate the 

expression of the gene by binding the ubiquitous factors that 

interact with the CArG motif. Experiments to test this
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hypothesis have been unsuccessful. However, this mechanism of 

control appears to be unlikely as the additional binding of 

proteins to the CArG motif exclusively in muscle tissue would 

induce a further tissue-specific shift of the apparently 

ubiquitous binding activities. The lack of this observation 

would argue against this as a mechanism of control.

The mechanism by which the ubiquitously expressed dorsal gene 

product achieves the ventral activation of the Drosophila genes 

twist and snail, and the related NF- £B protein the tissue- 

specific expression of the immunoglobulin ^  chain gene, is 

thought to occur by tissue-specific translocation of these 

proteins to the nucleus (see Hunt, 1989). This control 

mechanism of cell type-specific gene expression cannot be 

discounted as being important in the expression of the Xenopus 

borealis skeletal actin gene, since our experiments used whole 

cell extracts rather than nuclear extracts of embryos. Thus, 

any restricted nuclear localisation of the ubiquitous CArG box 

binding factors would not be detected in our experiments. 

However, experiments from other laboratories which study the 

tissue distribution of CArG box binding factors (namely SRF) 

have used nuclear extracts and observed similar results to ours 

(e.g. Boxer e^ a l .. 1989a). If we assume that similar 

mechanisms of regulation exist between the human and Xenopus 

skeletal actin genes, then it is unlikely that this mechanism 

of gene regulation is important in the case of the Xenopus 

borealis skeletal actin gene.

It is clear that the control of the tissue-specific expression
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of the Xenopus borealis skeletal actin gene is complex. If the 

CArG box motif is indeed the element that confers tissue- 

specific expression to the skeletal actin gene, then a variety 

of mechanisms exist which would enable the apparently 

ubiquitous CArG box binding factors to direct this expression. 

However, it is also possible that other, as yet unidentified 

sequences present in the regulatory region of the gene are 

important for its expression. Indeed, one or more of a 

combination of these elements could be responsible for the 

strict spatial and temporal expression of the gene. This 

possibility is investigated in more detail in further chapters.
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C H A P T E R  8

Sequences in addition to the CArG box motifs are required for 

the expression of the Xenopus borealis skeletal actin gene.

Introduction.

Data presented in previous chapters has demonstrated the 

importance of the CArG box3 sequence motif in the expression of 

the Xenopus borealis skeletal actin gene. Furthermore, trans­

acting factors are able capable of interacting with both the 

CArG boxl and CArG box3 sequences Jji vitro (see chapter 6). 

However, it is also apparent that the proteins which interact 

with these sequences are distributed throughout the embryo and 

exhibit no striking tissue-specific distribution (see chapter 

7).

It is possible that the CArG box motifs alone are instrumental 

in determining the tissue-specific expression of the Xenopus 

borealis skeletal actin gene, and the possible mechanisms by 

which this may occur have been discussed previously (see 

chapter 7). However, although the CArG motif is obviously 

important in the expression of the Xenopus borealis skeletal 

actin gene, no evidence exists to demonstrate that these 

sequences, in conjunction with basal promoter elements such as 

the TATA box, are sufficient for the tissue-specific expression 

of the gene. In this regard it is becoming increasingly clear 

that the cell-type-specific expression of other muscle genes, 

such as the human cardiac actin (Sartorelli e_t_ a l . . 1990),
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Xenopus cardiac actin (T. Mohun, Abstract; 3rd International 

Xenopus meeting, 1990) and quail fast skeletal troponin I (Lin 

et al. , 1991) genes, is governed by a combination of both 

tissue-specific and ubiquitous transcription factors.

It was therefore decided to investigate whether the CArG box 

motif alone is sufficient for the tissue-specific expression of 

the Xenopus borealis skeletal actin gene. To achieve this a 

series of experiments were designed to test whether CArG boxi, 

CArG box3, or a combination of both are sufficient to drive the 

tissue-specific expression of a heterologous promoter 

exclusively in the region of the embryo that expresses the 

endogenous skeletal actin gene. In addition to these 

experiments data is also presented in this chapter which 

demonstrate that a further region of the Xenopus borealis 

skeletal actin gene promoter, in addition to the CArG motifs, 

is required for the correct expression of the gene.

8.1 A 156 nucleotide region of the Xenopus borealis skeletal 

actin gene promoter can direct the tissue-specific expression 

of a heterologous promoter.

In order to establish a region of the Xenopus borealis 

skeletal actin gene which is sufficient for the tissue-specific 

expression of the gene a plasmid was obtained from Dr. M. 

Boardman which contained a region of the skeletal actin 

promoter (nucleotides -197 to -42) fused to a heterologous TATA 

box (plasmid p2^gbZ!i5( + ) ) .

In order to make this construct the plasmid p A g b  was
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exploited. This construct is derived from the plasmid pXlgb, 

which contains the complete Xenopus laevis ^-globin gene, in 

addition to 477 nucleotides of 5' flank, inserted into the 

vector pAT153 (See Appendix 2). To make p A g b  an internal 

deletion was made in the 5' promoter of the Xenopus laevis 

globin gene which spans from nucleotides -455 to -66. Thus, the 

plasmid p A g b  contains the TATA box of the Xenopus laevis f-> - 

globin gene (nucleotides -29 to -25), yet retains only 90 

nucleotides of the 5' flanking region of the gene (see appendix 

2 ) .

In order to construct pAgbZ\5( + ) the plasmid p X b g b ^ 5  (see 

chapter 4) was digested with Xho II, and the end blunted by in­

filling prior to digestion with Bal I. This excises a 156 bp 

fragment from the plasmid which extends from 11 nucleotides 

upstream of the TATA box of the Xenopus borealis skeletal actin 

gene (nucleotide -42) to 35 nucleotides upstream of the CArG 

box3 motif (nucleotide -197). This fragment was subsequently 

purified after separation from vector sequences by agarose gel 

electrophoresis.

The plasmid p A g b  was digested at a unique Eco RI site 

situated at the 5' end of the deleted Xenopus 1 aevis -globin 

promoter. This site was then blunted by in-filling and the 

Xenopus borealis skeletal actin gene promoter fragment inserted 

into this blunt Eco RI site. Recombinants were screened for 

promoter inserts in the correct orientation by restriction 

enzyme analysis.

The resulting plasmid ( p A g b A 5  (♦) ) contains a region of the
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Xenopus borealis skeletal actin gene promoter spanning from 

nucleotides -197 to -42 fused precisely 59 nucleotides upstream 

of the Xenopus laevis -globin gene TATA box (see figure 

8 .1 .1 ).
To test whether this 156 bp region of the Xenopus borealis 

skeletal actin gene promoter is sufficient to drive the 

expression of an otherwise silent p A g b  construct exclusively 

in the axis region of embryos, the pZig b A 5 (  + ) plasmid was 

linearised with Pst I and injected into Xenopus laevis embryos 

at the two cell stage of development. In addition to this, 

embryos were also injected with either pZ^gb or p X b g b ^ 6 ,  the 

latter of which contains the actin promoter, plus 28 

nucleotides of the first exon of the gene, fused to a globin 

reporter gene in its first exon (see chapter 4.1).

Micro-injected embryos were allowed to proceed to stage 26 of 

development before being dissected into axis and head plus gut 

regions. Total nucleic acid was extracted as described in 

chapter 3.4 and the transcripts of the micro-injected genes 

detected by primer extension. The oligonucleotide used in 

primer extension assays in these experiments is anti-sense to a 

sequence located in the first exon of the Xenopus laevis 

^-gl o b i n  gene. Therefore, correctly initiated transcripts 

originating from the plasmid pAgb Z l 5 (  + ) result in an extended 

product of 85 nucleotides. However, due to the different nature 

of the plasmid pXbgb ̂ 6 ,  correctly initiated transcripts 

arising from this plasmid result in a primer extension product 

of 68 nucleotides.
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FIGURE 8.1.1. Diagrammatic representation of the plasmid

p A g b A s t . - ) .

The -197/-42 fragment of the Xenopus borealis skeletal actin 

gene promoter is represented in the upper part of the figure. 

The CArG box motifs are represented by red boxes, with their 

orientation in the resulting fusion construct being represented 

by arrows above the box.

The -197/-42 fragment of the Xenopus borealis skeletal actin 

gene promoter was inserted into the construct p A g b  at an Eco 

RI site situated at the 5' end of the Xenopus laevis ^  -globin 

gene promoter in the sense orientation. Xenopus laevis ^Vglobin 

sequences present in the p gb plasmid are represented in

black, whilst pATl53 sequences are shown in blue.
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Figure 8.1.2 illustrates the results of a primer extension 

assay performed on total nucleic acid extracts prepared from 

the axis or head plus gut regions of embryos injected with 

either p A g b ,  p X b g b ^ 6 ,  or p A g b ^ 5 (  + ). As expected, no 

transcripts originating from the micro-injected gene are 

apparent in either the axis or head plus gut regions of embryos 

injected with p A g b .  On the contrary, injection of p X b g b ^ 6  

results in correctly initiated transcripts arising from the 

micro-injected gene appearing exclusively in the axis region of 

embryos. Some larger extension products are observed in the 

gut region of embryos injected with pXbgb^6. However, these 

products were not consistently observed in subsequent 

experiments.

More importantly however, the injection of p A g b A 5 (  + ) into 

embryos results in a primer-extended product of approximately 

85 nucleotides exclusively in the axis region of embryos. Thus, 

the fragment of the Xenopus borealis skeletal actin gene 

promoter which spans from nucleotides -197 to -42 is capable of 

directing correctly initiated transcription from a heterologous 

promoter. Furthermore, this transcription appears to be tissue- 

specific.

A second primer extension product also exists exclusively in 

the axis region of embryos injected with the plasmid 

p A g b A 5 (  + ). The predicted size of this second extension 

product is approximately 130 nucleotides. Assuming that the 

size of this fragment is 130 nucleotides, then the site of 

initiation of this transcript is at position -45 in the
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FIGURE 8.1.2. P r im e r  e x t e n s i o n  a n a l y s i s  o f  embryos  i n j e c t e d  

w i th  p X b g b A 6 ,  p A g b ,  o r  p A g b A 5 (  + ) .

Embryos w ere  i n j e c t e d  w i t h  e i t h e r  p X b g b A 6  ( t r a c k s  1A and 1G), 

p A g b A 5 (  + )  ( t r a c k s  2A and 2G), o r  p A g b  ( t r a c k s  3A and 3G) a t  

the two c e l l  s t a g e  o f  d e v e lo p m e n t .  When embryos r ea ched  s t a g e  

26 o f  d e v e lo p m e n t  t h e y  were  d i s s e c t e d  i n t o  a x i s  (A) and head 

p lu s  gu t  (G) r e g i o n s .  T o t a l  n u c l e i c  a c i d  was e x t r a c t e d  and the 

t r a n s c r i p t s  o f  th e  m i c r o - i n j e c t e d  gen e  d e t e c t e d  by  p r im e r  

e x t e n s i o n .

The size of DNA markers (track M) are illustrated on the left 

hand side of the figure, whilst the size of the extension 

products are represented on the right hand side.
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Results and Discussion

promoter of the deleted Xenopus laevis (J-globin gene. One 

explanation as to the initiation of transcription from this 

site is that a putative TATA motif is present in the deleted 

^-globin promoter 28 nucleotides upstream of this second 

transcription initiation site (see figure 8.1.3). It would 

appear, therefore, that the Xenopus borealis skeletal actin 

gene promoter fragment is capable of driving the tissue- 

specific expression of the heterologous promoter from two TATA 

motifs.

All sequences necessary and sufficient for the tissue-specific 

expression of the Xenopus borealis skeletal actin gene are 

therefore contained within a 156 bp fragment of the promoter 

spanning from nucleotides -197 to -42. This region of the 

promoter contains all three CArG box motifs, of which CArG boxl 

and CArG box3 have previously been implicated in the expression 

of the gene (see chapter 4). However, other sequences are 

present in this promoter fragment and it is possible that these 

may also contribute towards the expression of the gene.

8.2 CArG box3, CArG boxl. or a combination of both are not 

sufficient to drive the tissue-specific expression of a 

heterologous promoter.

It is apparent from data presented in chapter 4 that CArG box3 

is essential for the expression of the Xenopus borealis 

skeletal actin gene. However, both CArG box3 and CArG boxl 

interact with factors distributed throughout the embryo (see 

chapter 7). To determine whether one or more of the CArG motifs
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FIGURE 8.1.3. Sequence of Che deleted Xenopus laevia ^-globln 

promoter illustrating the two transcription 

start sites used by the Xenopua borealis 

skeletal actin gene promoter fragment.

The deleted Xenopus laevis ^-globin gene promoter present in 

the construct p A g b  is shown. Two TATA boxes are utilised by 

the -197/-42 nucleotide fragment of the Xenopus borealis 

skeletal actin gene promoter and these are positioned at 

nucleotides -465/-461 (red underline) or -29/-25 (black 

underline) in the promoter of the /^-globin gene. These two 

TATA boxes initiate transcription at positions -45 (red arrow) 

or +1 (black arrow) in the ^ - g l o b i n  gene respectively. The 

first exon of the Xenopus laevis p-globin gene is illustrated 

by blue coloured nucleotides.
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is sufficient to drive the expression of the Xenopus borealis 

skeletal actin gene, or whether additional sequence elements 

are required, it was decided to test the ability of either CArG 

boxl, CArG b o x 3 , or a combination of both to direct the tissue- 

specific expression of the deleted ^-globin promoter.

To address this question a series of double-stranded 

oligonucleotides were synthesised which contain sequences 

complementary to CArG boxl, CArG box3, or both CArG boxl and 

CArG box3 (oligonucleotide CArG B3/B1) (see figure 8.2.1). The 

core sequences of the CArG B3/B1 oligonucleotide were designed 

such that the sequences between the two CArG boxes, in addition 

to the CArG motifs themselves, are identical to the sequences 

of the closely arranged CArG boxl and CArG box3 motifs situated 

in the promoter of the plasmid p X b g b ^ 8 +  (see chapter A.2). 

This oligonucleotide was therefore virtually identical to a 

short region of a promoter which has previously been shown to 

be capable of directing the tissue-specific expression of a 

reporter gene in Xenopus laevis embryos (see chapter 4.2).

The plasmid p ^ g b  was digested with Eco RI and each double- 

stranded oligonucleotide, which possess Eco RI sticky ends, 

inserted into this site. Oligonucleotides lacked terminal 

phosphates to avoid multiple inserts of these sequences. 

Transformed bacteria were screened for inserts by restriction 

enzyme analysis. Positives were screened further for the 

insertion of oligonucleotides in the desired orientation by 

double-stranded DNA sequencing.

Plasmids were constructed which consisted of a single copy of
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CArG box3.

AATTCGAGCTCTATATTTGGTACCG 
____GCACGAGATATAAACCATGGCTTAA

E S  K E

CArG boxi.

AATTGGAGCTCTCCAAATATGGAGGTACC 
____CCTCGAGAGGTTTATACCTCCATGGTTAA

E S  K ~

CArG B3/B1.

AATTCGAGCTCTATATTTGGTACCCAATTCGGTTCTGTCCAAATATGGAGTC 
____GCTCGAGATATAAACCATGGGTTAAGCCAAGACAGGTTTATACCTCAGTTAA

E S K E

FIGURE 8.2.1. Sequences of oligonucleotides used in the 

construction of plasmids pA g b B 3 ,  p A g b B l , 

pAgbB3/Bl(*) and p A g b B 3 / B l  ( - ) ■

CArG box3, CArG boxl or CArG B3/B1 oligonucleotide sequences 

are shown. CArG box motifs are represented by bold type. 

Restriction enzyme sites are marked below the sequence (E= Eco 

RI; S- Sac I; K- K£n I).
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the CArG B3/B1 o l i g o n u c l e o t i d e  i n s e r t e d  i n t o  the  Eco RI s i t e  o f  

p A g b  in  e i t h e r  th e  sense ( p A g b B 3 / B l  ( + ) )  o r  a n t i - s e n s e  

( p A g b B 3 / B l ( - ) )  o r i e n t a t i o n s .  A d d i t i o n a l  p la sm ids  were a l s o  

c o n s t ru c t e d  which  c o n s i s t e d  o f  a s i n g l e  copy o f  e i t h e r  the CArG 

b ox l  ( p A g b B l )  o r  CArG box3 ( p A g b B 3 )  o l i g o n u c l e o t i d e s  i n s e r t e d  

i n t o  the  Eco RI s i t e  in  the  s ense  o r i e n t a t i o n  ( s e e  f i g u r e  

8 .2 .2 ).

The c o n s t r u c t s  p X b g b A 6  , p A g b  , p A g b A 5  ( + ) , pAgbB 3/B l  ( + ) , 

pAgbB 3/B l  ( - ) ,  p A g b B l  o r  p A g b B 3  w ere  l i n e a r i s e d  w i th  Pst  I 

and i n j e c t e d  i n t o  Xenopus l a e v i s  embryos  a t  th e  two c e l l  s t a g e  

o f  d e v e lo p m e n t .  Embryos were a l l o w e d  t o  d e v e l o p  u n t i l  s t a g e  26 

o f  deve lopm en t  b e f o r e  b e ing  d i s s e c t e d  i n t o  a x i s  and head p lu s  

gut r e g i o n s .  T o t a l  n u c l e i c  a c i d  was p re p a r e d  from embryo 

d i s s e c t i o n s ,  and th e  t r a n s c r i p t s  o f  the  m i c r o - i n j e c t e d  gene 

d e t e c t e d  by  p r im e r  e x t e n s i o n  as d e s c r i b e d  in  c h a p t e r  8 .1 .

F igu re  8 . 2 . 3  i l l u s t r a t e s  the  p r e v i o u s l y  d e s c r i b e d  e x t e n s i o n  

p roducts  p r e s e n t  e x c l u s i v e l y  i n  th e  a x i s  r e g i o n  o f  embryos 

i n j e c t e d  w i th  the  p la sm id  p A g b A 5 (  + ) ( t r a c k  3 A ) ,  w h i l s t  no 

t r a n s c r i p t s  appear  t o  be p r e s e n t  i n  e i t h e r  th e  a x i s  o r  head 

p lus  gut r e g i o n s  o f  embryos i n j e c t e d  w i th  p A g b  ( t r a c k s  1A and 

1G) . However ,  i t  i s  a l s o  a p p a ren t  th a t  no t r a n s c r i p t s  

o r i g i n a t i n g  from th e  m i c r o - i n j e c t e d  f u s i o n  gene  are  p r e s en t  in  

embryos c o n t a i n i n g  the c o n s t r u c t s  p A g b B l ,  p A g b B 3 ,  

p A g b B 3 / B l ( - )  o r  p A g b B 3 / B l (  + ) ( t r a c k s  4A to  7G ).

Southern  b l o t  a n a l y s i s  o f  n u c l e i c  a c i d  e x t r a c t s ,  us ing  v e c t o r  

DNA as a p r o b e ,  r e v e a l s  tha t  a p p r o x im a t e l y  e q u i v a l e n t  amounts 

o f  DNA a r e  p r e s e n t  in  embryos i n j e c t e d  w i t h  each o f  the
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FIGURE 8.2.2. Diagrammatic representation of the constructs 

p AgbB3, p A g b B l  , p A g bB3/Bl ( + ) and 

pAgbB3/Bl(-).

Oligonucleotides cloned into the Eco RI site of the construct 

p A g b  to create the plasmids p ^ g b B 3 ,  p A g b B l ,  p A g b B 3 / B l (  + ) 

and p A g b B 3 / B l ( - )  are illustrated at the top of the figure. 

CArG box motifs are illustrated by red boxes.

The construct p A g b  is shown in the lower half of the figure, 

with the deleted promoter of the Xenopus laevis l^-globin gene 

being expanded to illustrate the site of insertion of 

oligonucleotides. Xenopus laevis sequences are illustrated in

black, whilst pAT153 sequences are shown in blue.
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i s o l a t e d  from embryos i n j e c t e d  w i th  p lasm ids 

p A g b ,  p X b g b A 6 ,  p A g b A 5 (  + ) .  p A g b B 3 ,  p A g b B l . 

p A g b B 3 / B l (  + ) and p A g b B 3 / B l  ( - )  ■

Embryos were  i n j e c t e d  a t  the  two c e l l  s t a g e  o f  deve lopment

w i th  e i t h e r  p A g b  ( t r a c k s  1A and 1 G ) , p X b g b A 6  ( t r a c k s  2A and

2G ),  p A g b A  5(  + ) ( t r a c k s  3A and 3 G ) , p A g b B 3  ( t r a c k s  4A and

4 G ) ,  p A g b B l  ( t r a c k s  5A and 5 G ) , p A g b B 3 / B l  (  ♦ )  ( t r a c k s  6A and

6G) o r  p A g b B 3 / B l ( - )  ( t r a c k s  7A and 7 G ) . Embryos were a l l o w e d  

to  p r o c e e d  to  s t a g e  26 o f  d ev e lop m en t  b e f o r e  b e in g  d i s s e c t e d  

i n t o  a x i s  ( A )  and head  p lus  gu t  (G )  r e g i o n s .  T o t a l  n u c l e i c  a c i d  

was e x t r a c t e d  and the  t r a n s c r i p t s  f rom  the  m i c r o - i n j e c t e d  gene 

d e t e c t e d  by  p r im er  e x t e n s i o n .

The size of DNA markers (track M) is indicated on the right 

hand side of the figure.

FIGURE 8.2.3. Primer extension analysis of nucleic acid
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plasmids (see figure 8.2.A.). Indeed, it transpires that embryo 

fractions which are actively expressing the micro-injected gene 

(i.e. p A g b ^ 5 (  + )) contain slightly less DNA than those that 

are not. In addition to this, RNA present in total nucleic acid 

extracts appears to be relatively undegraded, as judged by the

intact nature of rRNA when subjected to agarose gel

electrophoresis (data not shown). It would therefore appear

that the lack of transcripts originating from the micro-

injected constructs p A g b B l , pA g b B 3 ,  pAgbB3/Bl(-) and 

pAgbB3/Bl( + ) is due to a lack of transcriptional activity of 

these fusion genes, and not to a lack of exogenous DNA in 

certain embryos, or the degradation of mRNA on nucleic acid 

preparation.

These data demonstrate that CArG boxl, CArG box3, or a 

combination of both are insufficient to drive the tissue- 

specific expression of a heterologous promoter. Thus, although 

the CArG box motif is essential for the expression of the 

Xenopus borealis skeletal actin gene, it would appear that it 

has to operate in conjunction with other as yet unidentified 

sequences elements. The finding that the -197/-A2 promoter 

fragment is capable of directing the expression of a 

heterologous promoter makes it possible to speculate that these 

additional sequences are contained within this fragment of the 

gene.
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FIGURE 8.2.4. Southern blot analysis of embryos injected with 

plasmids p A g b ,  p X b g b A 6 , p A g b A 5 (  + ), pAgbB3, 

pA g b B l ,  pAgbB3/Bl ( + ) and pA g b B 3 / B l  (-) .

Nucleic acid extract equivalent to one axis or head plus gut 

region of the embryo was digested with Hind III and 

electrophoresed through a 0.7% agarose gel. DNA was transferred 

to nitrocellulose as described in chapter 3.12 and micro- 

injected DNA detected by probing filters with the vector 

pATl53. After hybridisation of the probe filters were washed 

twice in 3X SSC for 10 minutes at 50°C prior to a final wash in 

3X SSC for 10 minutes at room temperature. Filters were blotted 

dry and autoradiographed at -70°C.

Nucleic acid extract prepared from the axis (A) and head plus 

gut (G) fractions of embryos injected with the constructs p A g b  

(tracks 1), p X b g b A 6  (tracks 2), p A g b A 5 (  + ) (tracks 3), 

pAgbB3 (tracks 4), p A g b B l  (tracks 5), pAgbB3/Bl( + ) (tracks 

6) and pAgbB3/Bl(-) were analysed. Track C represents 600pg of 

the plasmid p A g b  digested with Hind III loaded onto the gel as

a positive control.
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8.3 A region of the Xenopus borealis skeletal actin gene 

promoter upstream of the CArG box3 motif is required for the 

expression of the gene when sequences downstream of nucleotide 

-42 are absent from the gene.

The discovery that CArG boxl, CArG box3, or a combination of 

both CArG boxl and CArG box3 is unable to drive the expression 

of a heterologous promoter suggests that other sequences in 

addition to the CArG motifs are required for the tissue- 

specific expression of the Xenopus borealis skeletal actin 

gene. Furthermore, the finding that a fragment of the promoter 

spanning from nucleotides -197 to -42 contains all sequences 

that are necessary for the expression of the gene, makes it 

possible to speculate that these additional regulatory sequence 

elements are contained within this 156 nucleotide fragment of 

the promoter.

In order to locate additional sequences which are important in 

the expression of the Xenopus borealis skeletal actin gene a 

further two constructs were made. These plasmids contained 

progressively less of the -197/-42 skeletal actin promoter 

fragment fused to the heterologous promoter contained within 

the construct p A g b  (see figure 8.3.1). The first of these 

plasmids contains a 126 bp fragment of the skeletal actin 

promoter that spans from nucleotides -42 to -167. However, the 

second of these plasmids contains a region of the skeletal 

actin promoter that spans from nucleotides -42 to -99, in 

addition to a synthetic CArG box3 oligonucleotide fused to 

nucleotide -99.
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In order to make these plasmids either pXbgbA8+, or pXbgb/\6 

were digested with Pst I and Bal I. This results in the 

excision from these plasmids of a fragment which extends from 

nucleotide -42 in the respective promoters of the Xenopus 

borealis skeletal actin gene, to a Pst I site contained in the 

ampicillin resistance gene of the vector. These restriction 

fragments were subsequently isolated after separation from 

vector sequences by agarose gel electrophoresis.

The plasmid p A g b  was digested with Eco RI and the ends of the 

D N A  blunted by in-filling with the Klenow fragment of DNA 

polymerase, prior to being digested with Pst I. The terminal 

phosphates of the resulting fragments were removed by calf 

intestinal alkaline phosphatase, to avoid the reconstitution of 

p2\gb in ligation reactions.

The Pst I/Bal I fragment isolated from the plasmids pXbgbZ^6 

and pX bg b ^ 8 +  was inserted into the Pst I/blunt fragment of the 

vector. Because p A g b ,  p X b g b ^ 6  and p X b g b ^ 8 +  are all pAT153 

based plasmids, the insertion of these fragments into p ^ g b  

reconstitutes the vector sequences, which includes the 

ampicillin resistance gene.

Transformed E.coli colonies were isolated and screened for 

inserts by restriction enzyme analysis. Finally, positives were 

screened for the correct insertion of DNA by double-stranded 

D NA sequencing.

The resulting plasmids were named pZlgb2^6 and p ^ g b ^ 8 + ,  

depending on the origin of the inserted promoter fragment. The 

p ^ g b ^ 6  plasmid contains a fragment of the Xenopus borealis
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skeletal actin gene promoter, which extends 11 nucleotides 

upstream of the TATA box (nucleotide -42) to 5 nucleotides 

upstream of the CArG box3 motif (nucleotide -167), fused onto 

the end of the deleted ^-gl o b i n  promoter contained in the 

plasmid p/\gb. However, the plasmid p A g b A 8  + contains a 

fragment of the skeletal actin gene promoter that extends from 

nucleotide -42 to a CArG box3 motif placed directly adjacent to 

nucleotide -99, fused to the heterologous promoter (see figure 

8.3.1).

The plasmids pXbgb A 6 , p A g b ,  p A g b A . 5 (  + ), p A g b A 6 ,  

p A g b A 8 + ,  p A g b B 3 ,  p A g b B l , pAgbB3/Bl( + ) and p A g b B 3 / B l  (-) 

were linearised with Pst I and injected into embryos at the two 

cell stage of development. Micro-injected embryos were allowed 

to proceed to stage 26 of development, before being dissected 

into axis and head plus gut regions. Total nucleic acid was 

extracted and the transcripts of the micro-injected gene 

detected by primer extension as previously described (see 

section 8.1).

Data  i l l u s t r a t e d  in  f i g u r e  8 . 3 . 2  r e v e a l s  the  p r e v i o u s l y  

d e s c r i b e d  e x t e n s i o n  p r o d u c t s  p r e s e n t  i n  r e a c t i o n s  c o n t a i n i n g  

n u c l e i c  a c i d  i s o l a t e d  f rom  th e  a x i s  r e g i o n  o f  embryos i n j e c t e d  

w i t h  p A g b A 5 (  + ) .  In  a d d i t i o n  t o  t h i s  embryos  i n j e c t e d  w i th  

e i t h e r  p A g b ,  p A g b B 3 ,  p A g b B l ,  p A g b B 3 / B l (  + ) o r  p A g b B 3 / B l ( - )  

show  no e x t en d ed  p r o d u c t s  i n  e i t h e r  the  a x i s  o r  head p lu s  gut 

r e g i o n s  o f  th e  embryo. Fu r the rm ore ,  no e x t e n s i o n  p r o d u c t s  are  

o b s e r v e d  i n  e i t h e r  r e g i o n  o f  embryos i n j e c t e d  w i th  p A g b A 6  or

p A g b A 8 + .
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FIGURE 8.3.1 Diagrammatic representation of the constructs 

p A g b / \ 6  and pZigbA8+.

Xenopua borealis skeletal actin gene promoter fragments 

contained within the constructs p A g b A  6 and p A . g b A  8+ are 

represented at the top of the figure. CArG box motifs are 

illustrated in red.

The construct p A g b  is shown in the lower half of the figure, 

with the deleted promoter of the Xenopus laevis ^-globin gene 

being expanded to illustrate the site of insertion of the 

Xenopus borealis skeletal actin gene promoter fragments. 

Xenopus laevis sequences are illustrated in black, whilst

pAT153 sequences are shown in blue.
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FIGURE 8 . 3 . 2 . Pr im er  e x t e n s i o n  a n a l y s i s  o f  n u c l e i c  a c id  

i s o l a t e d  f rom  embryos  i n j e c t e d  w i th  p lasm ids

pAgb, pXbgbA6, pAgbA5( + ), p A g b A 6 ,
pAgbA8+. pAgbB3. pAgbBl. pAgbB3/Bl(.) and 
p A g b B 3 / B l  ( - ) .

Embryos w e re  i n j e c t e d  a t  the  two c e l l  s t a g e  o f  deve lopm en t  

w i th  e i t h e r  p A g b  ( t r a c k s  1A and 1G ),  p X b g b A 6  ( t r a c k s  2A and 

2G ) ,  p A g b A  5(  + ) ( t r a c k s  3A and 3 G ) ,  p A g b  A  6 ( t r a c k s  4A and 

4 B ) ,  p A g b A 8 +  ( t r a c k s  5A and 5 G ) , p A g b B 3  ( t r a c k s  6A and 6G ) ,  

p A g b B l  ( t r a c k s  7A and 7 G ) ,  p A g b B 3 / B l (  + ) ( t r a c k s  8A and 8G) o r  

p A g b B 3 / B l ( - )  ( t r a c k s  9A and 9 G ) .  Embryos were  a l l o w e d  t o  

p ro c e ed  t o  s t a g e  26 o f  d ev e lop m en t  b e f o r e  b e in g  d i s s e c t e d  i n t o  

a x i s  ( A )  and head p lu s  g u t  (G )  r e g i o n s .  T o t a l  n u c l e i c  a c i d  was 

e x t r a c t e d  and the t r a n s c r i p t s  f rom  the  m i c r o - i n j e c t e d  gene 

d e t e c t e d  b y  p r im er  e x t e n s i o n .

The s i z e  o f  DNA markers  ( t r a c k  M) i s  i n d i c a t e d  on the  r i g h t  

hand s i d e  o f  the  f i g u r e .
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The apparent lack of transcripts originating from certain 

fusion genes may occur by less micro-injected DNA persisting in 

these samples. T o  establish whether this was the case, the 

relative amounts of exogenous DNA present in each sample were 

compared by southern analysis using vector sequences to detect 

the micro-injected gene. Figure 8.3.3 demonstrates that none of 

the embryo fractions contain substantially less DNA than is 

apparent in the axis region of embryos injected with the 

plasmid p A g b ^ 5 (  + ). In addition to this, the analysis of rRNA 

by agarose gel electrophoresis reveals RNA contained in nucleic 

acid samples to be intact (data not shown). Thus, the lack of 

mRNA in embryos injected with certain fusion genes would appear 

to be due to a lack of transcriptional activity of these genes, 

and not due to the absence of micro-injected DNA, or the 

degradation of m R N A  on nucleic acid extract preparation.

From these data it is possible to conclude that an upstream 

regulatory element (URE) present in a region of the Xenopus 

borealis skeletal actin gene that extends from nucleotides -197 

to -168 is essential for the expression of the gene in the 

context of these plasmids. The lack of activity of the pZiigb^6 

construct is somewhat surprising in light of experiments which 

demonstrate that the URE region of the skeletal actin promoter 

is not essential when sequences between nucleotide -41 and +28 

of the gene are present (see construct pXbgb^6, chapter 4). 

However, the loss of sequences downstream of nucleotide -42 

make the URE an absolute requirement for the expression of the 

Xenopus borealis skeletal actin gene. It is therefore possible
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FIGURE 8.3.3. Southern blot analysis of embryos injected with 

plasmids p A g b , p X b g b A 6 , p A g b A 5 (  + ), p A g b A 6 ,  

pAflhAft+| p ^ g b B 3 t p A g b B l , pAgbB3/Bl (+) and 

pAgbB3/Bl(-).

Nucleic acid extract equivalent to one axis or head plus gut 

region of the embryo was digested with Hind III and 

electrophoresed through a 0.7% agarose gel. DNA was transferred 

to nitrocellulose as described in chapter 3.12 and micro- 

injected DNA detected by probing filters with the vector 

pAT153. After hybridisation of the probe, filters were washed 

twice in 3X SSC for 10 minutes at 50°C prior to a final wash in 

3X SSC for 10 minutes at room temperature. Filters were blotted 

dry and autoradiographed at -70°C.

Nucleic acid extract prepared from the axis (A) and head plus 

gut (G) fractions of embryos injected with the constructs p A g b  

(tracks 1), p X b g b ^ 6  (tracks 2), p A g b A 5 (  + ) (tracks 3), 

p A g b ^ 6  (tracks A), p A g b ^ 8 +  (tracks 5), p ^ g b B 3  (tracks 6), 

p^gbBl (tracks 7), pAgbB3/Bl( + ) (tracks 8) and pAgbB3/Bl(-) 

(tracks 9) were analysed.
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to speculate that there are two alternative redundant positive 

control elements in the wild-type gene, although the URE is 

essential for the expression of the gene in the absence of 

sequences downstream of nucleotide -42.

8.4 Discussion.

Data presented in this chapter demonstrate that a 156 

nucleotide fragment of the Xenopus borealis skeletal actin gene 

promoter is sufficient to drive the tissue-specific expression 

of a heterologous promoter exclusively in the axis region of 

embryos. Thus, a region o f  the promoter which spans from 

nucleotides -197 to -42 contains all sequences necessary for 

the expression of the gene. Indeed, the CArG box3 and CArG boxl 

motifs are contained within this fragment of the promoter and 

these sequence elements have been previously implicated in the 

expression of both the Xenopus borealis skeletal actin and 

other sarcomeric actin genes (see chapters 1.4.2, 4.1 and 

references therein).

Experiments presented in this chapter demonstrate that CArG 

boxl, CArG box3, or a combination of both are insufficient to 

drive the tissue-specific expression of a heterologous 

promoter. Furthermore, constructs containing the CArG box 

motifs alone demonstrate n o  expression in the head plus gut 

regions of embryos. It would appear unlikely, therefore, that 

the CArG box is a promoter element that drives the 

transcription of the Xenopus borealis skeletal actin gene 

ubiquitously, with expression of this gene being restricted to
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muscle tissue by the repression of the gene in non-muscle cells 

by negative regulatory elements.

One possible explanation f or the lack of transcriptional 

activity of chimeric fusion promoters containing the CArG box 

motifs alone is that this element is situated too near the TATA 

box to function effectively. However, the distances between the 

most proximal CArG motif and the heterologous TATA box in the 

constructs pAgbB3/Bl (+) , p^^gbB3/Bl (-) , p A g b B 3  and p A g b B l  

are 63, 65, 64 and 66 nucleotides respectively. The distance 

between the CArG boxl motif a nd the TATA box in the wild-type 

Xenopus borealis skeletal actin gene promoter is 52 

nucleotides. Thus, the most proximal CArG motif present in the 

promoters of the chimeric fusion constructs is approximately 

the same distance from the heterologous TATA box as the CArG 

boxl motif is from the TATA b o x  in the wild-type gene. It would 

appear unlikely, therefore, that the distance between the CArG 

motif and the heterologous TATA element in the constructs 

pAgbB3/Bl( + ) , pAgbB3/Bl (-) , p A g b B 3  and p ^ g b B l  is

responsible for their lack o f  transcriptional activity when 

injected into Xenopus embryos. Equally, the positioning of the 

CArG motifs on the DNA helix relative to each other and the 

TATA box does not appear to be essential for the expression of 

the human cardiac actin gene (Miwa and Kedes, 1987). Although 

the positioning of the CArG motifs relative to the TATA box has 

not been directly addressed in this study, the findings of Miwa 

and Kedes (1987) would argue against this being responsible for 

the lack of transcriptional activity of certain chimeric fusion
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promoter constructs. In this regard, the construct p A g b ^ 5 (  + ) 

contains a fragment of the Xenopus borealis skeletal actin gene 

promoter which is capable of driving the expression of a 

Xenopus laevis £ -globin gene by utilising two TATA boxes. 

Indeed, these two TATA boxes are on virtually opposite sides of 

the DNA helix to each other with respect to the CArG boxl motif 

present in this plasmid.

It is apparent from this study that the CArG boxes alone are 

insufficient to drive the tissue-specific expression of a 

heterologous promoter. Therefore, other sequences are required 

in addition to the CArG box to direct the tissue-specific 

expression of the Xenopus borealis skeletal actin gene. This 

discovery is not totally unexpected since the CArG motif has 

been identified in the regulatory regions of a number of genes 

with diverse patterns of expression such as the c-fos (see 

chapter 1.4.3. and references therein), ^  -actin (see figure 

1.1, chapter 1) and the interleukin-2-receptor (Phan-Dinh-Tuy 

et a l . , 1988) genes. Thus, it is possible to speculate that 

although the CArG box motif is essential for the expression of 

a variety of genes, the tissue-specificity of the Xenopus 

borealis skeletal actin gene is determined by other, as yet 

unidentified regulatory sequences.

It is becoming increasingly clear that the cell-type-specific 

expression of a variety of genes is complex and requires 

multiple regulatory sequence elements. For example, only 218 

nucleotides of 5' flanking region of the rat insulin II gene is 

required to drive the expression of a reporter gene (Crowe and
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Tsai, 1989). However, linker scanning mutation and deletion 

studies of this promoter fragment revealed the presence of 

multiple DNA regulatory elements required for the full 

expression of the gene. Similarly, the growth hormone gene also 

contains multiple regulatory elements, including a cAMP 

response element and a binding site for the pituitary-specific 

transcription factor Pit-1 (see Karin e_t a l . , 1990). 

Furthermore, it has been proposed that ubiquitous stimulatory 

factors drive the expression of the immunoglobulin heavy chain 

gene, but that tissue-specificity is conferred to this gene by 

negative regulatory elements repressing this gene in non­

lymphoid cells (Imler et a l ., 1987).

The observation that the CArG b o x  is unable to confer muscle- 

specificity to a heterologous promoter has also been observed 

in studies involving the Xenopus laevis cardiac actin gene (T. 

Mohun; personal communication). Indeed, this gene has been 

shown to require the CArG boxl motif, a MyoD binding site and a 

further, as yet unidentified regulatory element for its correct 

expression (T. Mohun, abstract; 3rd international Xenopus 

meeting, 1990). Likewise, the hum a n  cardiac actin gene requires 

a combination of a CArG boxl motif, a MyoD site and a SP-1 

binding site for its correct expression (Sartorelli e_t a l ., 

1990). However, a region of the chicken skeletal actin gene 

promoter (nucleotides -73 to -100), which contains the CArG 

boxl motif of this gene, has been demonstrated to drive the 

muscle specific expression of a c-fos gene promoter truncated 

to nucleotide -56 (Walsh, 1989).
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The construct p A g b A 5 (  + ) and p ^ g b ^ 6  are identical, with the 

exception that p / ^ g b A 6  lacks a region of the Xenopus borealis 

skeletal actin gene promoter (nucleotides -197 to -168) which 

is present in the p A g b A 5 (  + ) construct. The construct 

p A g b A 5 (  + ) is transcriptionally active in the axis regions of 

embryos injected with this plasmid, however the p A g b A 6  

construct is not. This demonstrates the importance of the 

-197/-168 region (URE) of the Xenopus borealis skeletal actin 

promoter in the expression of the gene. Paradoxically, the 

construct p X b g b ^ 6 , which lacks the URE, is expressed in a 

correct tissue-specific manner when injected into developing 

Xenopus laevis embryos. However this construct contains 

sequences of the Xenopus borealis skeletal actin gene promoter 

(-41 to +28) which are absent from both the p A g b A 5 (  + ) and 

p A g b A 6  constructs. One possible explanation for this 

discrepancy in data is that the -41/+28 region of the gene 

contains sequences which are capable of substituting for 

regulatory sequences contained in the URE. If this is the case, 

then it is not known whether regulatory elements contained 

within the -41/ + 28 region of the gene are identical to those 

contained in the URE. However, it is interesting to note that a 

region of the chicken skeletal actin gene promoter spanning 

from nucleotides -202 to -12 has been observed to contain 

partial dyad symmetry and is capable of directing the 

transcription of a reporter gene in a bi-directional manner 

(Grichnik e_t_ a l . . 1988). Indeed, sequences present in the URE 

of the Xenopus borealis skeletal actin gene are present in a
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inverted orientation in the -A1/+28 region of the gene (see 

figure 8.A).

It is apparent from data presented in this chapter that 

sequences in addition to the CArG box motifs are required for 

the expression of the Xenopus borealis skeletal actin gene. By 

fusing promoter deletions to a heterologous promoter it was 

demonstrated that an upstream regulatory element (URE) exists 

in a region of the skeletal actin promoter that spans from 

nucleotides -197 to -168. Whether the URE contains a tissue- 

specific promoter element, or whether it contains a ubiquitous 

transcription factor binding site, like the SP-1 site in the 

human cardiac actin gene promoter, is unknown.

-1A7-



Results and Discussion

-17A AGGGAGAG -167 URE.

♦ 28 AGGGAGAG +21 -A1/+28 region (lower strand).

-197 GATCTG -192 
*** **

URE.

-3 GATGTG -8 -A1/+28 region (lower strand).

-18A GTTGAAGGGGA -17A 
**** ** **

URE.

-8 GTTGCGGGTGA -18 -A1/+28 region (lower strand)

FIGURE 8.A. Comparison of URE sequences with sequences in 

the -A1/+28 region of the Xenopus borealis 

skeletal actin gene.

Sequences were compared between the URE and the -A1/+28 region 

of the Xenopus borealis skeletal actin gene. All sequences of 

the -A1/ + 28 region of the gene illustrated are of the lower 

strand of DNA. The position of each sequence is illustrated by 

the nucleotide position in the gene.
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C H A P T E R  9

The upstream regulatory element of the Xenopus borealis 

skeletal actin gene binds a trans-acting factor(s) in vitro.

Introduction.

It is apparent from data presented in the preceding chapter 

that CArG box3, and probably CArG boxl, are essential for the 

expression of the Xenopus borealis skeletal actin gene. 

However, these sequence motifs alone are unable to confer 

muscle-specific expression on a heterologous promoter. Unlike 

the chicken skeletal actin gene, whose CArG boxl motif appears 

to be sufficient for its expression (Walsh, 1989), data 

presented in this report argue that other sequences in 

conjunction with the CArG motif are responsible for the tissue- 

specific expression of the Xenopus borealis skeletal actin 

gene. Indeed, in the case of the human cardiac actin gene the 

CArG boxl motif, along with an SP-1 binding site, have been 

demonstrated to be essential for the expression of the gene. 

However, tissue-specificity is conferred upon this gene by a 

MyoD site situated downstream of the CArG boxl motif present in 

the promoter of this gene (Sartorelli et a l ., 1990).

By exploiting the capability of a 156 nucleotide fragment of 

the Xenopus borealis skeletal actin gene to drive the tissue- 

specific expression of a heterologous promoter, a further 

upstream regulatory element (URE) in the promoter of the 

skeletal actin gene (nucleotides -197 to -168) has been
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identified (see chapter 8). Experiments outlined in this 

chapter demonstrate the ability of the Xenopus borealis 

skeletal actin gene URE to interact with a trans-acting 

factor(s) iji vitro. Furthermore, the distribution of this 

binding activity throughout the embryo is examined. In addition 

to this, experiments are also described which investigate the 

capability of the URE, in conjunction with the CArG boxl and 

CArG box3 sequence motifs, to drive the expression of a 

heterologous promoter in Xenopus laevis embryos.

9.1 The Xenopus borealis URE binds a proteins(s) in vitro.

In order to investigate whether the Xenopus borealis skeletal 

actin gene URE is capable of interacting with trans-acting 

factors _̂n vitro, a double-stranded oligonucleotide was 

synthesised which contained sequences present in this

region of the skeletal actin gene promoter (nucleotides -197 to 

-168) (see figure 9.1a). This oligonucleotide was end labelled 

with 5 32P”ATP (see chapter 3.10.2) and used in band shift 

assays in conjunction with protein extracts prepared from stage 

16 Xenopus laevis embryos. To test the distribution throughout 

the embryo of any trans-acting factors with which the URE 

interacts, embryos were dissected into somite, presumptive gut 

and ectoderm regions. Protein extracts prepared from these 

embryo fractions were then used in band shift assays using the 

URE sequence as a probe.

Results illustrated in figure 9.1b demonstrate the presence of 

two binding activities in band shift reactions containing
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FIGURE 9.1. The Xenopus borealis skeletal actin gene URE 

binds a trans-acting factor(s) in vitro.

A. Sequence of the oligonucleotide URE. Restriction sites are 

represented under the sequence of the oligonucleotide. Xenopus 

sequences contained in the URE oligonucleotide are indicated by 

a dashed line above the sequence.

B. Protein extracts were isolated from either the somite 

(SOMITE), gut (GUT) or ectoderm (ECT.) fractions of stage IS 

Xenopus laevis embryos. These extracts were then employed in 

band shift assays using the URE oligonucleotide as a probe. 

Conditions for band shift assays in this experiment are 

different from those normally used and are essentially as 

described by Buskin and Hauschka (1989) (see chapter 3.16).

Binding reactions contained either no competitor (N tracks), 

or competitor in the form of a 40-fold molar excess of 

unlabelled URE oligonucleotide. URE oligonucleotides used in 

competition reactions replaced an equivalent amount of non­

specific competitor in normal binding reactions.
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protein extracts prepared from the somites of stage 16 Xenopus 

laevis embryos. However, on competition with a AO-fold molar 

excess of URE only the lower of these two bands is abolished 

(figure 9.1b, compare track N with track C). It would therefore 

appear that only the lower of these two retarded bands is 

representative of a sequence-specific trans-acting factor(s) 

that binds the URE sequence. This binding activity has been 

termed the Upstream Regulatory Factor, or URF (see figure 

9.1b).

The URF appears to be present in all fractions of the embryo 

examined (figure 9.1b, compare N tracks in somite, gut and ect. 

lanes). Indeed, the pattern of shifted bands appears to be 

identical in all protein extracts examined. Thus, the URF is 

present and capable of binding the URE in both fractions of the 

embryo that express the skeletal actin gene (i.e. somites), in 

addition to fractions of the embryo that express little, if any 

skeletal actin (i.e. gut and ectoderm). It is also apparent 

that no negative trans-acting factors, which are present 

exclusively in fractions of the embryo which do not express the 

skeletal actin gene, are capable of interacting with the URE, 

as detectable by the assay system employed in this study.

9.2 The URE. in conjunction with CArG boxl and CArG box3, is 

insufficient to direct the tissue-specific expression of a 

heterologous promoter.

The discovery of a further regulatory element in the promoter 

of the Xenopus borealis skeletal actin gene, and the
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demonstration that this sequence is capable of interacting with 

a trans-acting factor(s) iji vitro, raises the question as to 

whether this sequence, in conjunction with CArG box3 and CArG 

boxl, is sufficient for the correct expression of the skeletal 

actin gene. To address this question it was decided to test 

whether the URE, in conjunction with the CArG motifs, is 

sufficient to drive the tissue-specific expression of a 

heterologous promoter. To achieve this the plasmid pAgbCB-URE 

was constructed. This plasmid contains the URE oligonucleotide 

inserted directly upstream of the two CArG box motifs present 

in the plasmid pAgbB3/Bl( + ) (for pAgb B 3 / B l (  + ) plasmid 

description see chapter 8.2).

The construction of p A g b C B - U R E  was achieved by digesting 

pAgbB3/Bl( + ) at a unique Sac I site positioned immediately 

upstream of the CArG box3 motif contained within this plasmid. 

The URE oligonucleotide, which possesses Sac I sticky ends, was 

inserted into the Sac I site of p A g b B 3 / B l (  + ) in the sense 

orientation. Oligonucleotides added to ligation reactions 

lacked terminal phosphate groups to avoid multiple copies of 

these sequences being inserted into the vector. Recombinants 

were screened for the correct insertion of oligonucleotides by 

the polymerase chain reaction (see chapter 3.5.5), and 

positives checked further by double strand DNA sequencing (see 

chapter 3.11) after large scale preparation of plasmid DNA.

Thus, a construct was created which contains CArG box3 and 

CArG boxl, with sequences complementary to the URE inserted 

directly upstream of the CArG box3 motif (see figure 9.2.1).
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FIGURE 9.2.1. Diagrammatic representation of the plasmid 

pAgbCB-URE.

The oligonucleotide cloned into the Sac I site of the plasmid 

p A g b B 3 / B l (  + ) to create the construct p A  gbCB-URE is 

illustrated at the top of the figure.

The construct pAgbB3/Bl( + ) is shown in the lower half of the 

figure, with the deleted promoter of the Xenopus borealis - 

globin gene containing the CArG box3 and CArG boxl motifs (red 

boxes) expanded to illustrate the site of insertion of the 

oligonucleotide. Xenopus laevis and Xenopus borealis sequences 

are shown in black and red respectively, whilst pAT153 

sequences are shown in blue.
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Indeed, the sequences fused to the 5' end of the heterologous 

promoter are identical to those present in the plasmid p Xbgb^5 

which span from the 5' end of the Xenopus borealis skeletal 

actin gene promoter (position -197) to the nucleotide directly 

3' to the CArG box3 motif (position -152). However, a 5 

nucleotide sequence which spans from between nucleotide -167 to 

the CArG box3 motif in the wild-type gene (position -163) is 

not reconstituted in this fusion promoter.

The plasmids p A g b A 5 (  + ), pAgbZ^6, p A g b ^ 8 + ,  p X b g b A 6 , 

p^gbB3/Bl( + ) and pAgb C B - U R E  were linearised with Pst I and 

injected into embryos at the two cell stage of development. 

Micro-injected embryos were allowed to proceed to stage 26 of 

development before being dissected into axis and head plus gut 

regions. Total nucleic acid was extracted from these embryo 

fractions and transcripts of the micro-injected gene detected 

by primer extension as previously described (see chapter 8.1).

Results illustrated in figure 9.2.2 demonstrate the previously 

described extension products present in primer extension 

reactions which contain nucleic acid extracts isolated from the 

axis region of embryos injected with the construct pAgb^i5( + ). 

As previously observed, no transcription is apparent from 

p A g b ^ 6  or p/^gbB3/Bl (♦) in either the axis or head plus gut 

regions of embryos injected with these plasmids. However, it is 

also apparent from these data that the plasmid p ^ g b C B - U R E  is 

also transcriptionally inactive when micro-injected into 

Xenopus embryos, as judged by the absence of any detectable 

extension products in primer extension reactions.
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FIGURE 9.2.2. Primer extension analysis of embryos injected

w i th  the p lasm ids  p A g b A 5 ( ^ ) ,  p A g b A 6 ,  

nA.liAlt. o X b g b A 6 ,  p A g b B 3 / B l (  + )  and 

pAgbCB-URE.

Embryos were injected at the two cell stage of development 

with either p A g b A 5 (  + ) (tracks 1A and 1G), p A g b A 6  (tracks 2A 

and 2G), p A g b A 8 +  (tracks 3A and 3G), p X b g b A 6  (tracks 4A and 

4G), pAgbB3/Bl( + ) (tracks 5A and 5G) or p A g b C B - U R E  (tracks 6A 

and 6G). Embryos were allowed to proceed to stage 26 of 

development before being dissected into axis (A), or head plus 

gut (G) regions. Total nucleic acid was extracted and the 

transcripts of the micro-injected gene detected by primer 

extension as described in chapter 8.1.

The size of DNA markers (M tracks) is indicated on the left 

hand side of the figure.
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Results and Discussion

It would appear, therefore, that the addition of the URE to 

directly 5' of the CArG box motifs present in the plasmid 

pAgbB3/Bl(+) failed to induce the tissue-specific expression 

of an otherwise silent fusion gene in Xenopus laevis embryos. 

This inability of the URE, in conjunction with the CArG boxl 

and CArG box3 motifs, to drive the expression of a heterologous 

promoter suggests that further sequences are required for the 

expression of the Xenopus borealis skeletal actin gene.

9.3 Discussion.

Experiments outlined in chapter 8 demonstrate that a region of 

the Xenopus borealis skeletal actin gene which spans from 

nucleotides -197 to -168 (URE) is essential for the expression 

of the gene. Furthermore, data presented in this chapter 

demonstrate that this region of the gene is capable of binding 

a trans-acting factor(s) in vitro. This binding activity 

appears to be ubiquitous, being reproducible in band shift 

assays using protein extracts prepared from both regions of the 

embryo which express the skeletal actin gene (somites), in 

addition to regions that express little, if any skeletal actin 

(gut and ectoderm). However, no direct evidence exists to 

demonstrate that the URF shifted band present in binding 

reactions containing somite protein extracts is caused by an 

identical protein(s) which facilitates the URF shift in 

reactions containing gut or ectoderm protein extracts. Indeed, 

the oligonucleotide used in band shift reactions described in 

this chapter is relatively large (35 nucleotides). Thus, the
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possibility exists that two different binding sites are present 

in this region of the promoter. It is possible to speculate 

that a positive trans-acting factor present in the somite 

fraction of embryos is capable of interacting with one site of 

the URE. However, a distinct negative trans-acting factor, 

present in the gut and ectoderm fractions of the embryo, may 

interact with a different or overlapping site of the URE to the 

positive trans-acting factor in somite extracts. Until 

convincing DNA footprints of the URF binding activity are 

achieved using protein extracts prepared from both muscular and 

non-muscular origin, this hypothesis cannot be discounted. 

However, the identical nature of the URF shifted band when 

different extracts are compared would argue that the binding 

activity present in extracts of different origins is 

facilitated by the same protein(s).
When the URE is placed directly upstream of the CArG box3 and 

CArG boxl motifs present in the plasmid p A  gbB3/Bl ( +), the 

combination of these sequences fails to drive the tissue- 

specific expression of a heterologous promoter (see section 

9.2). A combination of the CArG box3, CArG boxl and URE 

sequence elements are therefore insufficient for the expression 

of the Xenopus borealis skeletal actin gene. Although fusion of 

the URE oligonucleotide into the Sac I site of the plasmid 

p A g h B 3 / B l (») places this regulatory element in exactly the 

same position with respect to the CArG box3 motif as it is in 

the wild type promoter, five nucleotides which span between the 

URE and the CArG box3 motif are not reconstituted in this
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plasmid. Thus, if a cis-acting element is centred around 

position -168 in the promoter of the Xenopus borealis skeletal 

actin gene, it is not reconstituted in the plasmid pAgbCB-URE. 

However, assuming that a cis-acting element is not centred 

around position -168 in the promoter of the Xenopus borealis 

skeletal actin gene, then it is apparent that other sequences 

in addition to CArG box3, CArG boxl and the URE are essential 

for the expression of the gene. This possibility will be 

discussed in further detail in chapter 10.

By drawing comparisons with other extensively characterised 

muscle-specific genes it is possible to speculate about the 

role of the URE in the expression of the skeletal actin gene. 

For example, the quail fast skeletal troponin I gene contains 

an internal regulatory element (IRE) in the first intron of 

this gene (Konieczny and Emerson, 1987; see also chapter 1.5). 

This IRE has been demonstrated to contain a MyoD binding site 

which is essential for the expression of the gene. However, in 

addition to this a further two sequence elements in the IRE, 

which interact with ubiquitous factors, are also essential for 

the expression of the troponin I gene (Lin e_t al. , 1991). 

Similarly, the human cardiac actin gene requires a combination 

of three sequence elements for its effective expression. Two of 

these elements, namely a CArG box and SP-1 motif, bind the 

ubiquitous transcription factors SRF and SP-1 respectively. 

However a third cis-acting element, which binds the myogenic- 

specific transcription factor MyoD, is also required for the 

expression of the gene (Sartorelli e_t a l . , 1990). It would
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appear therefore, that certain muscle-specific genes require a 

combination of both muscle-specific and ubiquitous 

transcription factors for their correct expression. In this 

regard, the ubiquitous nature of the URF, in addition to the 

CArG box binding factors (see chapter 7), makes it possible to 

speculate that the URE and CArG box, like the SP-1 and CArG box 

motifs in the human cardiac actin gene promoter, are sites for 

the interaction of ubiquitous transcription factors. If this is 

the case, then the other regulatory elements proposed to exist 

in the promoter of the Xenopus borealis skeletal actin gene may 

bind tissue-specific factors and confer muscle-specific 

expression to the skeletal actin gene.

-156-



Results and Discussion

C H A P T E R  1 0

Sequences located between the CArG boxl motif and the TATA box 

of the Xenopus borealis skeletal actin gene interact with a 

trans-acting factor(s) in vitro.

Introduction.

The observation that the construct pAgbCB-URE is 

transcriptionally inactive when injected into Xenopus laevis 

embryos demonstrates that sequences in addition to the URE, 

CArG boxl and CArG box3 motifs are required for the expression 

of the Xenopus borealis skeletal actin gene (see chapter 9). 

Furthermore, the demonstration that a fragment of the skeletal 

actin promoter which spans from nucleotides -197 to -42 is 

capable of driving the tissue-specific expression of a 

heterologous promoter, indicates that all sequences necessary 

for the expression of the gene are contained within this 156 

nucleotide fragment (see chapter 8). Two possible regions of 

the promoter are capable of housing these additional regulatory 

elements. The first spans from between the CArG box3 and CArG 

boxl motifs situated in the promoter of the gene. However, a 

chimeric fusion gene, which lacks sequences between the CArG 

box3 and CArG boxl motifs, is transcriptionally active when 

injected into Xenopus laevis embryos (see construct pXbgbZ^8+, 

chapter 4.2). This discovery would argue against this region of 

the skeletal actin gene containing regulatory elements 

important for its expression. However, a second potential
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regulatory region of the gene exists which spans from directly 

3' of the CArG boxl motif (nucleotide -83) to 11 nucleotides 

upstream of the TATA box (nucleotide -42). Indeed, a region 

that spans between the CArG boxl motif and the TATA box of the 

chicken skeletal actin gene has been shown to be essential for 

the expression of this gene in myogenic cell lines (Bergsma et 

a l . , 1986). Furthermore, the equivalent region of the human 

cardiac actin gene has been shown to contain functionally 

important binding sites for the transcription factors SP-1 and 

MyoD (Sartorelli et a h ,  1990).

As a preliminary investigation into the possibility of 

additional regulatory elements being present in the -83/-42 

region of the Xenopus borealis skeletal actin gene it was 

decided to investigate whether a trans-acting factor(s) was 

capable of interacting with these sequences _tn vitro. 

Experiments described in this chapter demonstrate the binding 

of a trans-acting factor(s) to the -83/-42 region of the 

Xenopus borealis skeletal actin gene ^ n  vitro. This finding, in 

addition to the possibility of other regulatory elements being 

present in this region of the gene will be discussed.

10.1 A trans-acting factor(s) binds the -83/-42 region of the 

Xenopus borealis skeletal actin gene in vitro.

To investigate whether a region of the Xenopus borealis 

skeletal actin gene which spans from nucleotides -83 to -42 is 

capable of interacting with trans-acting factors i£ vitro the 

oligonucleotide Bl/Bal was synthesised. This 50 nucleotide

-158-



Results and Discussion

stretch of DNA contains sequences complementary to the -83/-A2 

region of the Xenopus borealis skeletal actin gene surrounded 

by Eco RI sticky ends (see figure 10.1.1).

Bl/Bal was end labelled with ^ 32P-ATP and used in band shift 

assays containing protein extracts prepared from the axis 

region of stage 30 Xenopus laevis embryos.

Results illustrated in figure 10.1.2 demonstrate the presence 

of four binding activities when the oligonucleotide Bl/Bal is 

analysed for DNA binding by band shift analysis using protein 

extracts prepared from the axis regions of stage 30 Xenopus 

laevis embryos. Competition for factor binding by a 20 or AO­

fold molar excess of unlabelled Bl/Bal extinguishes only one of 

these shifted bands. This competable binding activity has been 

designated as Skeletal Actin Promoter Factor 1 (SAPF1). 

Competition with a 20 and AO-fold molar excess of either CArG 

boxl or CArG box3 oligonucleotides (for sequences see chapter 

6) does not significantly reduce the intensity of any of the 

retarded bands present in binding reactions. Thus, out of the 

four shifted bands present in these band shift assays only one, 

namely SAPFl, is generated by a sequence-specific DNA-binding 

protein(s). Indeed, the inability of either CArG boxl or CArG 

box3 oligonucleotides to compete for SAPFl binding demonstrates 

that the loss of this band on competition with Bl/Bal is due to 

sequence-specific competition, as opposed to a general effect 

of adding a AO-fold molar excess of oligonucleotide to binding 

reactions.

To investigate the distribution of the SAPFl binding activity
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FIGURE 10.1.1. Diagrammatic representation of the 

oligonucleotide Bl/Bal.

The Xenopus borealis skeletal actin gene promoter is 

illustrated showing the CArG box motifs (red boxes), TATA box 

(blue box) and first exon (black box). The -83/-42 region of 

the gene is expanded and represented as sequences contained 

within the oligonucleotide Bl/Bal. Xenopus borealis sequences 

contained in Bl/Bal are illustrated by a line above the 

oligonucleotide sequence.





FIGURE 10.1.2. The -83/-42 region of the Xenopus borealis 

skeletal actin gene binds a trans-acting 

factor(s) in vitro.

The oligonucleotide Bl/Bal was used in band shift assays in 

conjunction with protein extracts prepared from the axis region 

of stage 30 Xenopus laevis embryos. Track C represents a 

binding reaction which contains no competitor. Competition for 

DNA binding by a 20 (X20) and 40-fold (X40) molar excess of 

either Bl/Bal, CArG boxl or CArG box3 are illustrated in 

competition tracks.
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throughout the embryo, band shift assays using the Bl/Bal 

oligonucleotide were repeated using extracts prepared from 

either the axis or head plus gut regions of stage 30 Xenopus 

laevis embryos.
Results from this experiment (see figure 10.1.3.) demonstrate 

the pattern of shifted bands to be identical in binding 

reactions containing protein extracts prepared from either 

fraction of the embryo. It would appear, therefore, that the 

protein(s) responsible for the SAPFl binding activity is 

present and capable of binding the Bl/Bal sequence in extracts 

prepared from both regions o f  the embryo that express the 

skeletal actin gene (i.e. axis), in addition to those that do 

not (i.e. head plus gut).

10.2 Discussion.

Data presented in this chapter demonstrate the binding of a 

trans-acting factor(s) to a region of the Xenopus borealis 

skeletal actin gene which spans from between the CArG boxl 

motif and the TATA box of the gene (nucleotides -83 to -42). 

Experiments have not been performed which specifically 

investigate the role of these sequences in the expression of 

the Xenopus borealis skeletal actin gene. However, previously 

described micro-injection experiments make it possible to 

speculate that the -83/-42 region of the skeletal actin gene is 

required for its correct expression in Xenopus embryos (see 

introduction to this chapter). In this regard an equivalent 

region of the human cardiac actin gene has been demonstrated to
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FIGURE 10.1.3. The SAPF1 binding activity is present in both 

axis and head plus gut protein extracts.

Labelled Bl/Bal was used in band shift assays in conjunction 

with protein extracts prepared from either the axis or head 

plus gut regions of stage 30 Xenopus laevis embryos. Binding 

reactions containing no competitor are illustrated (tracks C). 

Competition for DNA binding by a 20 (X20) and 40-fold (X40) 

molar excess of either Bl/Bal or CArG box3 (B3) is illustrated 

in competition tracks.
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possess two essential cis-acting regulatory elements. One of 

these elements binds the ubiquitous transcription factor SP-1, 

whilst the second interacts with the muscle-specific 

transcription factor MyoD (Sartorelli e_t al. . 1990). More 

interestingly however, the chicken skeletal actin gene has also 

been demonstrated to possess regulatory sequences which are 

present between the CArG boxl and TATA box motifs of this gene 

(Bergsraa et al ■ . 1986). Inspection of this regulatory region of 

the chicken skeletal actin gene reveals the presence of a 

putative SP-1 binding site (5'-GGGCGG-3' ) . However, Bergsraa et 

a l . (1986) did not perform any experiments which investigated 

the role of this specific D NA sequence in the expression of the 

gene.

No SP-1 binding site is apparent in the -83/-A2 region of the 

Xenopus borealis skeletal actin gene. Indeed, no significant 

sequence identities appear .to exist when this region of the 

Xenopus borealis skeletal actin gene is compared with the 

equivalent region of the chicken skeletal actin gene.

Although the identity o f  the SAPF1 binding activity is 

unknown, the factor(s) which facilitates this DNA shift appears 

to be present in extracts prepared from a region of the embryo 

that does not express the skeletal actin gene, in addition to a 

region that does (see figure 10.1.3.). If the apparently 

ubiquitous SAPFl binding activity is responsible for conferring 

tissue-specific expression onto the skeletal actin gene, then 

the mechanisms by which the expression of this gene is 

controlled are likely to be more subtle than originally
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thought. The possible mechanisms by which a ubiquitous 

transcription factor is capable of governing the tissue- 

specific expression of a gene have been outlined previously 

(see chapter 7).

However, the possibility exists that other regulatory 

sequences are present in the -83/-A2 region of the Xenopus 

borealis skeletal actin gene which have not been detected in 

the experiments outlined in this chapter. In this regard, a 6 

nucleotide sequence (5'-CAAATG-3') in the -83/-A2 region of the 

skeletal actin promoter (nucleotide positions -A3 to -A8), 

bears a striking identity to the proposed consensus sequence 

for the transcription factor MyoD (CANNTG) (see Murre e_t_ a l . . 

1989a). If this six nucleotide sequence is indeed an authentic 

MyoD binding site then it is possible to speculate that this 

factor may act in conjunction with the ubiquitous URF, SAPF1 

and CArG box binding factors to drive the tissue-specific 

expression of the skeletal actin gene. Indeed, a combination of 

MyoD and ubiquitous transcription factors has been proposed to 

control the expression of other muscle-specific genes, such as 

the human cardiac (Sartorelli £t_ a l . , 1990), Xenopus cardiac 

(T. Mohun; abstract, 3rd international Xenopus meeting, 1990) 

and skeletal troponin I (Nikovits e_t a l . . 1990; Lin e_t̂ al. , 

1991) genes.
To investigate the possible role of the -A3/-A8 putative MyoD 

site in the expression of the Xenopus borealis skeletal actin 

gene, band shift assays were performed using an oligonucleotide 

containing sequences complementary to the putative skeletal

-162-



Results a nd Discussion

actin MyoD site. These experiments were performed using protein 

extracts prepared from either muscular or non-muscular regions 

of the embryo. No convincing tissue-specific binding activities 

were apparent in these experiments (data not shown). However, 

the validity of this observation is questionable due to the 

finding that a bona fide MyoD site, which is present in the MCK 

enhancer (see Buskin and Hauschka, 1989), also failed to 

exhibit any tissue-specific shift in these experiments. Thus, 

although it is possible to speculate as to the importance of 

this putative MyoD site in the expression of the Xenopus 

borealis skeletal actin gene, it is not yet clear whether this 

DNA sequence is capable of binding MyoD or related factors.
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C H A P T E R  11

General discussion.

Experiments outlined in this report investigate the cis-acting 

sequences, and the trans-acting factors with which they 

interact, that are required for the tissue-specific expression 

of the Xenopus borealis skeletal actin gene. Experiments 

performed in this laboratory have demonstrated that like all 

other sarcomeric actin genes studied to date, so the 3' 

untranslated region and intragenic sequences of the Xenopus 

borealis skeletal actin gene ar e  not required for its correct 

expression (Boardman et_ a l . , in preparation). Indeed, by 

exploiting the capability of a fragment of the Xenopus borealis 

skeletal actin gene promoter to drive the tissue-specific 

expression of a heterologous promoter, all sequences which are 

required for the correct expression of the gene have been 

demonstrated to be contained within a fragment of the skeletal 

actin gene promoter that spans from nucleotides -197 to -A2 

(see chapter 8).

Sequence comparison of the Xenopus borealis skeletal actin 

gene promoter with the regulatory regions of other actin genes 

reveals the presence of three conserved CArG sequence motifs in 

the -197/-A2 region of the promoter. Indeed, deletion analysis 

of the actin gene promoter reveals that the most distal of 

these CArG motifs (CArG box3) is essential for the expression 

of the gene in stage 26 Xenopus laevis embryos. Furthermore, a 

region of the promoter which contains the CArG box2 sequence
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motif (nucleotides -139 to -99) appears to be redundant or 

irrelevant in the expression of the gene in stage 26 Xenopus 

laevis embryos. In this regard a promoter which lacks sequences 

between nucleotide positions -139 and -99, but retains the CArG 

box3 motif and sequences that span between nucleotides -99 and 

+28 of the gene, is active when injected into developing 

Xenopus laevis embryos (see chapter 4.2).

No experiments have been performed that directly address the 

importance of the CArG boxl motif in the expression of the 

Xenopus borealis skeletal actin gene. However, the equivalent 

motif present in the promoters of other skeletal actin and 

cardiac actin genes has been demonstrated to be essential for 

their expression (Minty and Kedes, 1986; Miwa and Kedes, 1987; 

Mohun e_t a l . . 1989a; Walsh and Schiramel, 1988; Chow and 

Schwartz, 1990). Thus, if a similar mechanism of control of the 

sarcomeric actin genes exists between species, then it is 

possible to suggest that the CArG boxl motif of the Xenopus 

borealis skeletal actin gene is important in the expression of 

this gene.

The importance of the CArG box3 motif, and possibly the CArG 

boxl motif, in the expression of the Xenopus borealis skeletal 

actin gene is reflected in the ability of these sequences to 

interact with sequence-specific trans-acting factors ^n vitro 

(see chapters 5, 6 and 7). However, the CArG box2 sequence 

motif does not appear to bind a ny trans-acting factors, as 

detected by the assay system employed in this study.

CArG boxl is capable of forming two DNA-protein complexes in
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vitro. Furthermore, by exploiting the antibody band shift 

technique, one of these DNA-protein complexes has been 

demonstrated to be facilitated by a protein that is 

antigenically related to the transcription factor SRF (see 

chapter 6). This is in agreement with work performed on the 

Xenopus cardiac (Taylor e£ al., 1989), human cardiac (Boxer et 

a l . , 1989b) and human skeletal (Boxer ejt a l ■ , 1989b) actin 

genes, which also demonstrate the binding of SRF to their 

respective CArG boxl motifs. Indeed, the Xenopus laevis cardiac 

actin CArG boxl motif has been demonstrated to be functionally 

interchangeable with the CArG motif present in the serum 

response element of the c-fos gene promoter (Taylor e_t al., 

1989).

The identity of the second CArG boxl D NA binding protein(s) is 

as yet unknown, although this protein(s) appears to be 

antigenically distinguishable from SRF.

CArG box3 exhibits a similar shift to the SRF/CArG boxl 

binding activity when subjected to band shift analysis. 

However, competition analysis and antibody band shift analysis 

of this binding activity demonstrates that the protein(s) that 

facilitates this shift is distinct from SRF. However, whether 

the CArG box3 binding protein (CBA1) is completely different 

from SRF, or whether they are related proteins remains unclear. 

Indeed, it is feasible that the CBA1 and SRF proteins are 

differentially spliced products that arise from the same gene, 

although the apparent lack of any detectable epitopes between 

these two proteins would argue against this.
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Experiments described in chapter 8 demonstrate that a 

combination of the CArG boxl and CArG box3 sequence motifs are 

unable to drive the tissue-specific expression of a 

heterologous promoter. Thus, other sequences in addition to the 

CArG boxes are required for the expression of the Xenopus 

borealis skeletal actin gene. In this regard it is becoming 

increasingly clear that a number of muscle-specific genes 

require multiple cis-acting regulatory elements for their 

effective expression (for examples see Sartorelli et a l .. 1990; 

Chow and Schwartz, 1990; Lin e_t a l . . 1991; Horlick and 

Benfield, 1989; Bouvagnet e_t a l .. 1987). Indeed, by 

investigating the capability of various fragments of the 

Xenopus borealis skeletal actin promoter to drive the 

expression of a heterologous promoter, an upstream regulatory 

element (URE) in the skeletal actin promoter (nucleotides -197 

to -168) has been identified (see chapter 8). However, the URE 

only appears to be essential for the expression of the gene 

when sequences that span between nucleotides -41 and +28 are 

absent from chimeric fusion gene plasmids.

The URE is capable of interacting with a trans-acting 

factor (s) in vitro and this has been named the upstream 

regulatory factor (URF). However, a combination of CArG boxl, 

CArG box3 and URE sequences is unable to confer muscle-specific 

expression onto a heterologous promoter (see chapter 9). It was 

therefore reasoned that other regulatory elements that are 

required for the expression of the skeletal actin gene exist in 

a region of the promoter that spans from nucleotides -83 to
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-42. Indeed, when an oligonucleotide that corresponds to these 

sequences is subjected to band shift analysis the sequence- 

specific binding of a protein(s) is apparent (see chapter 10). 

However, the specific sequences in the -83/-A2 region of the 

promoter with which this protein(s) interacts are unknown.

It is apparent that, as in the case of a number of other 

muscle-specific genes, so the Xenopus borealis skeletal actin 

gene is controlled by a number of positive cis-acting 

regulatory elements. Three regulatory regions of the Xenopus 

borealis skeletal actin gene have been identified, namely the 

CArG boxl, CArG box3 and URE sequences. In addition to this a 

possible fourth regulatory element exists in the -83/-42 region 

of the promoter. A diagrammatic representation of these 

regulatory elements, and the proteins with which they interact, 

is illustrated in figure 11.1.

All the binding activities described in this report (i.e. 

CBA1, CBA2, SRF, URF and SAPFl) appear to be distributed 

throughout the embryo. The question arises then as to how these 

apparently ubiquitous binding activities are capable of 

directing the expression of the Xenopus borealis skeletal actin 

gene exclusively in the muscle tissue of developing embryos? If 

no other tissue-specific trans acting-factors bind the skeletal 

actin promoter then a number of mechanisms exist by which one 

or more apparently ubiquitous transcription factors can direct 

the tissue-specific expression of a gene, and these have been 

described in chapter 7. However, by drawing comparisons with 

the proposed mechanisms of control of other muscle-specific
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FIGURE 11.1. Diagrammatic representation of the cis-acting 

regulatory sequences, and the trans-acting 

factors with which they interact, that are 

important for the expression of the Xenopus 

borealis skeletal actln gene.

197 nucleotides upstream of the transcriptional start site of 

the Xenopus borealis skeletal actin gene are illustrated. The 

URE (blue), CArG box (red) and -83/-42 (green) regulatory 

regions of the promoter are shown. The TATA box is also 

indicated, as is the first exon of the gene which is 

illustrated as a black box.

The sites of interaction of SRF, CBA2, CBA1, URF, and SAPFl 

with the skeletal actin promoter are shown. In addition to 

this, the possible site of interaction of MyoD with the 

promoter is illustrated.
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genes, it is possible to suggest a further mechanism of control 

of the Xenopus borealis skeletal actin gene.

The extensive characterisation of other muscle-specific genes 

has uncovered a number of cis-acting regulatory elements that 

are important for their tissue-specific expression (see chapter 

1.4). However, it was not until recently that a common sequence 

motif, which interacts with the MyoD family of regulatory 

proteins, was identified to be important in the expression of a 

number of muscle-specific genes (see chapter 1.5). However, it 

was also apparent from these studies that for effective 

expression of the gene, a number of ubiquitous transcription 

factors had to act in parallel with MyoD on the gene promoter, 

(for examples see Sartorelli et a l ., 1990; Lin et a l .. 1991).

It is interesting that a putative MyoD binding si^>e is 

situated in the -83/-42 region of the Xenopus borealis skeletal 

actin gene promoter. It is tempting to speculate, therefore, 

that the previously described ubiquitous proteins that bind the 

skeletal actin promoter are required to drive the expression of 

this gene and that tissue-specificity is conferred upon this 

gene by the putative MyoD site.

Preliminary investigation of the putative MyoD site has been 

unable to detect any sequence-specific binding of proteins to 

this sequence. However, under our assay conditions, no 

sequence-specific binding to a bona fide MyoD site which is 

present in the MCK enhancer was observed. Thus, the importance 

of MyoD in the expression of the Xenopus borealis skeletal 

actin gene remains unclear and further experiments must be
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performed to ascertain the importance of this putative MyoD 

binding site in the expression of the gene.
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A P P E N D I X  1

The expression of a human cardiac actin gene in developing 

Xenopus laevis embryos.

Introduction.
Data presented in this report and data from other laboratories 

demonstrate the potential of the micro-injection of genes into 

Xenopus embryos as an efficient assay system for their 

expression. Indeed, it has been argued that the introduction of 

genes into developing Xenopus embryos exposes them to a more 

accurate reconstruction of developmental regulatory events than 

other assay systems, such as the transfection of genes into 

specific cell lines (see chapter 4, introduction).

Data presented in this section investigate the potential of 

exploiting Xenopus micro-injection techniques to examine the 

regulation of the human cardiac actin gene. To achieve this, a 

human cardiac actin gene promoter, fused to a CAT reporter 

gene, was micro-injected into developing Xenopus laevis embryos 

and the spatial and temporal expression of this gene examined. 

In addition to this, data are presented which examine the 

important cis-acting regulatory sequences involved in the 

expression of the human cardiac actin gene in developing 

Xenopus laevis embryos.
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A.1.1. The spatial expression of a human cardiac actin sene in 

stage 30 Xenopus laevis embryos.

To examine the spatial regulation of a human cardiac actin 

gene in developing Xenopus laevis embryos the plasmid pHCA485 

was obtained from Dr. L. Kedes (see Minty and Kedes, 1986). 

This plasmid contains 485 nucleotides of human cardiac actin

upstream sequence, in addition to the first exon and 24

nucleotides of the first intron of the gene, fused to the

bacterial chloramphenicol acetyltransferase (CAT) reporter gene 

(see figure A.1.1.1.).

The plasmid pHCA485 was linearised with Pst I and injected 

into Xenopus laevis embryos at the two cell stage of 

development. Embryos were allowed to proceed until stage 30 

before being dissected into axis, head and gut regions. CAT 

extracts were prepared from both dissected and whole embryos as 

described in chapter 3.14.1 and the CAT activity of these 

extracts determined as described in chapter 3.14.2.

It is apparent from data illustrated in figure A.1.1.2 that a 

region of the human cardiac actin promoter that spans from 

nucleotides -485 to +68 in the gene is capable of driving the 

expression of a CAT gene in whole Xenopus 1aevis embryos (see 

track W). Furthermore, dissection of embryos reveals that this 

CAT activity is restricted almost exclusively to the axis 

region of embryos (compare track A with tracks H and G). Thus 

it appears that 485 nucleotides of human cardiac actin gene 

upstream sequence, in addition to 68 nucleotides downstream of 

the transcriptional start site of the gene, is capable of
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FIGURE A.1.1.1. Diagrammatic representation of the plasmid 

PHCA485.

In the lower half of the figure the plasmid pHCA485 is shown 

illustrating the human cardiac actin (red box), CAT (blue box) 

and SV40 splice and polyadenylat ion signal (black box) 

sequences.

In the top part of the figure the human cardiac actin promoter 

region is expanded to illustrate the point at which the gene is 

fused to the CAT reporter gene (nucleotide +68). The first exon 

of the gene is illustrated by a blue box, whilst the four CArG 

boxes in the promoter of the gene are illustrated by red boxes.
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FIGURE A.1.1.2. The human cardiac actin gene promoter is

capable of driving the tissue-specific 

expression of a CAT reporter gene in the axis 

region of Xenopus laevis embryos.

Embryos were injected with the plasmid pHCA485 and allowed to 

proceed to stage 30 of development prior to being dissected 

into axis, head and gut regions. CAT extracts were prepared 

from the axis (A), gut (G) and head (H) fractions of dissected 

embryos, in addition to whole embryos (W). CAT assays were 

performed as described in chapter 3.14.2.
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directing the correct spatial expression of a CAT reporter gene 

in stage 30 Xenopus laevis embryos.

To establish whether the transcripts originating from the 

human cardiac actin fusion gene are correctly initiated a 

plasmid which contained the human cardiac actin gene promoter 

(nucleotides -485 to +68) fused to a mouse globin reporter gene 

was constructed. The construction of this plasmid was necessary 

because CAT mRNA transcripts were not detectable in our assay 

system. To make this construct the plasmid pAW103 (a generous 

gift from Dr. R. W. Old) was exploited. This plasmid contains a 

fragment of the histone 1 and 3 genes fused to the 2nd intron 

and 3rd exon of the mouse -globin gene contained in the 

vector pAT153.
The plasmid pAW103 was digested at a Bam HI site situated at 

the histone/vector fusion point of the plasmid and the site in­

filled using the klenow -.fragment of DNA polymerase. The 

resulting DNA fragment was then cut at a Hind III site situated 

in the 2nd intron of the mouse -globin gene. The terminal 

phosphates of the resulting fragments were removed by calf 

intestinal alkaline phosphatase to prevent the reconstitution 

of pAW103 in ligation reactions. Thus, a blunt/Hind III 

fragment of pAW103, which contains vector sequences in addition 

to the 3rd exon and part of the 2nd intron of the mouse

/»-globin gene, was created.

The plasmid pHCA485 was digested with Eco RI and the site in­

filled prior to the resulting restriction fragment being 

digested by Hind III. This results in the excision of a
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blunt/Hind III fragment from pHCA485 which contains 485 

nucleotides of human cardiac actin gene upstream sequence in 

addition to 68 nucleotides downstream of the transcriptional 

start site of the gene (see figure A.1.1.3). This fragment was 

isolated after separation from vector sequences by agarose gel 

electrophoresis and inserted into the blunt/Hind III sites of 

pAW103.

Thus, the construct pRE485 was created. This plasmid contains 
sequences extending from nucleotide -485 to +68 of the human 

cardiac actin gene fused to the second intron of the mouse fi- 

globin gene (see figure A.1.1.3).

The construct pRE485 was linearised with Pst I and injected 

into Xenopus laevis embryos at the two cell stage of 

development. Embryos were allowed to develop until stage 30 

before being dissected into axis, head and gut regions. Total 

nucleic acid was extracted from both dissected and whole 

embryos and the transcripts of the micro-injected gene detected 

by primer extension (see chapter 3.13). The oligonucleotide 

employed in primer extension reactions described in this 

chapter (MG-1) is complementary to sequences in the 3rd exon of 

the mouse globin gene. Thus, correctly initiated transcripts 

originating from the micro-injected gene result in a 67 

nucleotide extension product in primer extension assays 

employing the MG-1 oligonucleotide.

Data presented in figure A.1.1.4. illustrate that a 67 

nucleotide extended product is apparent in primer extension 

reactions containing nucleic acid extracted from whole embryos
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FIGURE A.1.1.3. Diagrammatic representation of the plasmid 

p R E 4  8 5.

In the lower part of the figure the plasmid pRE485 is shown
ilillustrating the human cardiac actin (red) and mouse p  -globin 

(black) sequences. Sequences of the vector (pAT153) are 

illustrated in green.

In the upper part of the figure the human cardiac actin 

promoter region is expanded to illustrate the point at which 

the gene is fused to the 2nd intron of the mouse ^-globin gene 

(nucleotide +68). The first exon of the gene is illustrated by 

a blue box, whilst the four C.ArG boxes in the promoter of the 

gene are illustrated by red boxes.

The cloning strategy employed in constructing this plasmid 

results in the loss of the Eco RI site at the 5' end of the 

human cardiac actin promoter.
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FIGURE A.1.1.4. A 485bp fragment of the human cardiac actin 

gene promoter produces correctly initiated 

transcripts in the axis region of Xenopus 

laevis embryos.

Embryos were injected with pRE435 at the two cell stage of 

development. Embryos were allowed to proceed until stage 30 

before being dissected into axis, head and gut regions. Nucleic 

acid was extracted from whole embryos (W), in addition to the 

axis (A), head (H) and gut (G) regions of dissected embryos. 

Transcripts of the micro-injected gene were detected by primer 

extension using the oligonucleotide MG-1.

The size of DNA markers (track M) is indicated on the right 

hand side of the figure. The 67 nucleotide extension product 

which is produced on the correct initiation of transcripts 

originating from the human cardiac actin gene is illustrated by 

an arrow on the left hand side of the figure.
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injected with the plasmid pHCA485 (see track W ) . Indeed, 

analysis of nucleic acid extracted from the axis, head and gut 

regions of embryos injected with this construct demonstrate the 

extended product to be present exclusively in the region of the 

embryo where the Xenopus laevis cardiac actin gene is expressed 

(i.e. the axis). Furthermore, no other bands in addition to the 

67 nucleotide extension product are apparent in these 

reactions, demonstrating the correct initiation of transcripts.

It is possible to conclude from these experiments that a 

region of the human cardiac actin gene which extends from 

nucleotides -485 to +68 is capable of directing the correct 

spatial expression of a reporter gene in stage 30 Xenopus 

laevis embryos.

A.1.2. The temporal expression of the human cardiac actin gene 

in developing Xenopus laevis embryos.
It is apparent from experiments described in section A.1.1 

that 485 nucleotides of human cardiac actin gene upstream 

sequence, in addition to 68 nucleotides downstream of the 

transcriptional start site of the gene, is sufficient for the 

correct spatial expression of the gene in stage 30 Xenopus 

laevis embryos. To investigate whether the human cardiac actin 

gene is also capable of being expressed in a correct temporal 

manner when injected into developing Xenopus laevis embryos, it 

was decided to study the expression of the pHCA485 plasmid 

throughout the development of Xenopus.

To achieve this pHCA485 was linearised with Pst I and injected
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into embryos at the two cell stage of development. In addition 

to this embryos were also injected with the plasmid pSV2-CAT, 

which contains the CAT gene under the control of a SV40 

promoter.

Embryos were allowed to proceed to stage 9 of development 

before being dissected into animal, vegetal and equatorial 

regions. When these embryo explants are allowed to develop in 

isolation the animal, vegetal and equatorial regions develop 

into ectoderm, endoderm and mesoderm respectively. Thus, it is 

only the equatorial explant of the embryo that expresses the 

endogenous cardiac actin gene.

Animal, equatorial and vegetal explants of embryos were 

allowed to develop in isolation. CAT extracts were prepared 

from a number of embryo explants when control embryos reached 

stages 10, 13%, 18, 26 and 32 of development. The CAT activity 

of these extracts was determined as described in chapter 

3.14.1. The ratio of vegetal, animal and equatorial extracts 

used in CAT assays was 3:2:1 respectively. This was necessary 

to account for the difference in cell density of the different 

embryo explants.

Data presented in figure A.1.2.I illustrates that CAT activity 

is present in both the animal and equatorial explants of stage 

10 embryos injected with the plasmid pSV2-CAT. However, no CAT 

activity is apparent in the vegetal explants of these embryos. 

This can be attributed to the lack of exogenous DNA in these 

explants, as Southern blot analysis of extracts failed to 

detect any exogenous DNA. However, exogenous DNA was detected
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FIGURE A.1.2.1. The temporal expression of a human cardiac 

actin gene in Xenopus laevis embryos.

The plasmids pHCA485 or pSV2-CAT were injected into embryos at 

the two cell stage of development and embryos allowed to 

develop to stage 9 before being dissected into animal, vegetal 

and equatorial regions. CAT extracts were prepared from animal 

(A), vegetal (V) and equatorial (E) explants when control 

embryos had reached stages 10, 13^, 13, 26 and 32 of 

development.

CAT assays using extracts prepared from embryos at different 

stages of development were performed as described in chapter 

3.14.2.
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at all stages of development examined in the animal and 

equatorial explants of embryos injected with either the pHCA485 

or pSV2-CAT (data not shown).

In contrast to embryos injected with pSV2-CAT no CAT activity 

is apparent in either the animal, equatorial or vegetal 

explants of stage 10 embryos injected with pHCA485. Thus, it 

would appear that the human cardiac actin gene is

transcriptionally inactive at stage 10 of Xenopus development. 

This is not unexpected as the Xenopus cardiac actin gene is not 

activated until stage 12*5 of Xenopus development (Mohun e_t al. , 

1984; Wilson et al ■ , 1986). Indeed, it is apparent from figure 

A.1.2.1 that the human cardiac actin gene is activated at 

approximately the same stage of Xenopus laevis development as 

the endogenous cardiac actin gene, as judged by CAT activity 

being present in embryos at stage 13*5 of development when 

injected with pHCA485. However, this activation of the human 

cardiac actin gene does not appear to be tissue-specific, as 

CAT activities are predominant in the animal explants of 

embryos injected with pHCA485. It is not clear whether the 

pHCA485 plasmid is expressed in the vegetal explants of stage 

13*5 embryos, as Southern blot analysis revealed the lack of 

exogenous DNA in these embryo fractions (data not shown).

The lack of spatial regulation of the human cardiac actin gene 

in stage 13*5 embryo explants is also apparent in explants which 

are allowed to develop until control embryos have reached stage 

18 of development. However, as development proceeds the human 

cardiac actin gene appears to be expressed in an increasingly
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tissue-specific manner (compare the animal and equatorial 

regions of stage 18 embryos with the equivalent explants of 

stage 26 and 32 embryos). Indeed, CAT activity appears to be 

restricted to predominantly equatorial explants by the time 

control embryos have reached stage 32 of development. The 

observed localisation of CAT activity to the equatorial 

explants of stage 32 embryos does not appear to be caused by 

the differential replication of DNA in these samples, as 

Southern blot analysis revealed that approximately equivalent 

amounts of exogenous DNA are present in the equatorial and 

animal explants of embryos (data not shown).

It would appear that 485 nucleotides of human cardiac actin 

gene upstream sequence, in addition to 68 nucleotides 

downstream of the transcriptional start site of the gene, is 

capable of activating the expression of the human cardiac actin 

gene at approximately the same stage of Xenopus development as 

the endogenous cardiac actin gene. However, it is also apparent 

from this experiment that it is not until the latter stages of 

Xenopus development that the human cardiac actin gene is 

expressed in a strict spatial manner.

A.1.3. The analysis of sequence elements important in the 

expression of the human cardiac actin gene in Xenopus laevis 

embryos.
In order to characterise sequences important for the 

expression of the human cardiac actin gene in Xenopus laevis 

embryos a series of plasmids containing 5' deletions o f  the
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human cardiac actin gene promoter were obtained from Dr. L. 

Kedes (see Minty and Kedes, 1986; Miwa and Kedes, 1987). These 

constructs are identical to the plasmid pHCA485, with the 

exception that they lack progressively more of the promoter 

region of the human cardiac actin gene (see figure A.1.3.1).

The plasmids pHCA485, pHCA177, pHCA153, pHCA131, pHCA96, 

pHCA64 and pSV2-CAT were linearised with Pst I and injected 

into embryos at the two cell stage of development. Embryos were 

allowed to proceed to stage 30 of development before being 

dissected into axis, head and gut regions. CAT extracts were 

prepared from whole and dissected embryos and the CAT activity 

of these extracts determined as described in chapter 3.14.2.

Data illustrated in figure A.1.3.2A displays typical results 

on the injection of pHCA485 and pHCA177 into Xenopus laevis 

embryos. As previously observed, the injection of the plasmid 

pHCA485 into Xenopus laevis embryos results in CAT activity 

being localised to the axis region of embryos. However, 

deletion of the human cardiac actin gene promoter to nucleotide 

-177 (plasmid pHCA177) results in a substantial reduction in 

the promoter activity of the fusion gene when it is injected 

into Xenopus laevis embryos. This is in accordance with data 

described by Minty and Kedes (1986), which identified a distal 

regulatory element in the -485/-178 region of the human cardiac 

actin gene promoter that is essential for the full activity of 

the gene in myogenic cell lines.

Deletion of the human cardiac actin gene promoter to 

nucleotide -153 (plasmid pHCA153) results in a further loss of
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FIGURE A.1.3.1. Diagrammatic representation of the human 

cardiac actin promoter deletion plasmids 

PHCA485, pHCAl71, pHCA153. pHCA131, pHCA96 

and pHCA64.

In the lower half of the figure the plasmid pHCA485 is shown 

illustrating the human cardiac actin (red box), CAT (blue box) 

and SV40 splice and polyadenylation signal (black box) 

sequences. Sequences of the vector (pAT153) are illustrated in 

green.

In the upper half of the figure the human cardiac actin 

promoter region is expanded to illustrate the point at which 

the gene is fused to the CAT reporter gene (nucleotide +68). 

The first exon of the gene is illustrated by a blue box, whilst 

the four CArG boxes in the promoter of the gene are illustrated 

by red boxes.

The positions to which the promoter is deleted in the plasmids 

pHCAl71, pHCAl5 3, pHCA131, pHCA96 and pHCA64 are illustrated 

along the expanded human cardiac actin promoter. The plasmids 

pHCA153, pHCA131, pHCA96 and pHCA64 have a Bgl II site situated 

at the 5' end of the human cardiac actin gene instead of an Eco 

RI site which is present in the same position of the plasmids 

pHCA485 and pHCAl77.
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FIGURE A.1.3.2. The promoter activities of the plasmids

pHCA485, pHCA177 and pHCA153 when injected 

into Xenopus laevis embryos.

A. The plasmids pHCA485 and pHCA177 were injected into embryos 

at the two cell stage of development. Embryos were allowed to 

proceed to stage 30 of development prior to being dissected 

into axis, head and gut regions. CAT extracts were prepared 

from whole embryos (W), in addition to the axis (A), head (H) 

and gut (G) regions of dissected embryos. CAT assays were 

performed as described in chapter 3.14.2.

B. The plasmids pHCA485, pHCA153 and pSV2-CAT were injected 

into embryos at the two cell stage of development. Embryos were 

allowed to proceed to stage 30 of development prior to being 

dissected into axis, head and gut regions. CAT extracts were 

prepared from the axis (A), head (H) and gut (G) regions of 

dissected embryos. CAT assays were performed as described in 

chapter 3.14.2.
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activity of the fusion gene when injected into Xenopus laevis 

embryos (see figure A.1.3.2B). Furthermore, subsequent deletion 

of the promoter to nucleotide -131 results in the complete loss 

of any detectable activity of the resulting fusion gene in 

Xenopus laevis embryos (data not shown). Thus, the removal of 

sequences spanning from between nucleotide -153 and -131 in the 

promoter of the human cardiac actin gene results in the loss of 

any detectable activity of the human cardiac actin fusion gene 

in stage 30 Xenopus laevis embryos. Indeed, this region of the 

human cardiac actin promoter contains the CArG box2 motif, 

which has previously been implicated in the expression of the 

gene (Miwa and Kedes, 1987).

To investigate whether transcripts originating from the 

plasmids pHCA485, pHCA177, pHCA153, pHCA131, pHCA96 and pHCA64 

are correctly initiated in Xenopus laevis embryos the human 

cardiac actin gene promoter fragments of these plasmids were 

fused to the 2nd intron and 3rd exon of the mouse p  -globin 

gene contained in the plasmid pAWl03 (see section A . 1.1.).

To achieve this pHCA!77 was digested with Eco RI and the site 

blunted by in-filling, prior to digestion with Hind III. The 

resulting blunt/Hind III fragment of the human cardiac actin 

gene promoter (nucleotides -177 to +68) was isolated after 

separation from vector sequences by agarose gel 

electrophoresis.

The plasmid pAW103 was digested with Bam HI and the site in­

filled prior to the fragment being digested with Hind III. The 

terminal phosphates of the resulting fragments were removed by
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calf intestinal alkaline phosphatase to avoid the 

reconstitution of vector sequences in ligation reactions. The 

blunt/Hind III fragment of the human cardiac actin gene 

promoter was then inserted into the blunt/Hind III fragment of 

pAW103 to create the plasmid pREl77 (see figure A.1.3.3).

The Eco RI restriction site at the 5' end of the human cardiac 

actin gene promoter present in the plasmids pHCA485 and pHCA177 

is replaced by a Bgl II restriction site in the plasmids 

pHCAl53, pHCA131, pHCA96 and pHCA64 (see Miwa and Kedes, 1987). 

Thus, a slightly different cloning strategy was employed to 

create plasmids containing these respective promoter fragments 

fused to the mouse -globin sequences contained within the 

plasmid pAW103.

The plasmids pHCA153, pHCA131, pHCA96 and pHCA64 were digested 

with Bg 1 II and Hind III, resulting in the excision of the 

human cardiac promoter sequences from these plasmids. These 

promoter fragments were then isolated after separation from 

vector sequences by agarose gel electrophoresis. The plasmid 

pAW103 was digested with Bam HI and Hind III and the terminal 

phosphates removed from the resulting fragments by calf 

intestinal alkaline phosphatase.

The respective human cardiac actin gene promoter fragments 

isolated from the plasmids pHCAl53, pHCA131, pHCA96 and pHCA64 

were then inserted into the Bam HI /Hind III site of pAW103 to 

create the plasmids pRE153, pRE131, pRE96 and pRE64.

Thus the plasmids pRE485, pRE177, pREl53, pREl31, pRE96 and 

pRE64 were created. These constructs contain progressively less
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FIGURE A.1.3.3. Diagrammatic representation of the human 

cardiac actin promoter deletion plasmids 

PRE485, pREl71, pRE153, pRE131. pRE96 and 

pRE64.

In the lower part of the figure the plasmid pRE485 is shown 

illustrating the human cardiac actin (red) and mouse ^ - g l o b i n  

(black) sequences. Sequences of the vector (pAT153) are 

illustrated in green.

In the upper part of the figure the human cardiac actin 

promoter region is expanded to illustrate the point at which 

the gene is fused to the mouse jb -globin reporter gene

(nucleotide +68). The first exon of the gene is illustrated by 

a blue box, whilst the four CArG boxes in the promoter of the 

gene are illustrated by red boxes.

The positions to which the promoter is deleted in the plasmids 

pRE171, pRE153, pRE131, pRE96 and pRE64 are illustrated along 

the expanded human cardiac actin promoter. The Bgl II site in 

the plasmids pRE153, pRE131, pRE96 and pHCA64 was lost during 

the construction of these plasmids due to the ligating of a B g 1 

II site to a Bam HI site. In addition to this, the Eco RI site 

in the plasmids pRE485 and pRE177 was also lost on the creation 

of these plasmids due to the in-filling of the site prior to 

being ligated to a blunt Bam HI site.
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of the human cardiac actin gene promoter fused to the 2nd 

intron of the mouse globin reporter gene at nucleotide +68 in 

the cardiac actin gene (see figure A.1.3.3.). The number in the 

plasmid nomenclature is representative of the number of 

nucleotides upstream of the transcriptional start site of the 

human cardiac actin gene present in these plasmids.

The plasmids pRE485, pRE177, pRE!53, pREl31, pRE96 and pRE64 

were linearised with Pst I and injected into developing Xenopus 

laevis embryos at the two cell stage of development. Embryos 

were allowed to proceed to stage 30 before being dissected into 

axis, head and gut regions. Nucleic acid was extracted from 

whole and dissected embryos and transcripts originating from 

the micro-injected gene detected by primer extension as 

described in section A.1.1.

Figure A.1.3.4 illustrates the previously described 67 

nucleotide extension product present in the axis region of 

embryos injected with pRE485. Indeed, a 67 nucleotide extension 

product is also present exclusively in the axis region of 

embryos injected with pRE177. Although the intensity of this 

band appears to be the same as the equivalent band in pRE485 

reactions, only half as much nucleic acid extract was added to 

pRE485 reactions in comparison to other samples. Taking this 

into account, then it is apparent that deletion of the human 

cardiac actin promoter to nucleotide -177 results in a decrease 

in the transcriptional activity of the resulting fusion gene.

Further deletion of the human cardiac actin gene promoter to 

nucleotide -153 results in a total loss of detectable
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FIGURE A.1.3.4. The promoter activities of the plasmids

PRE485, pREl77, pRE153, pRE131. pRE96.and 

pRE64 in Xenopus laevis embryos.

The plasmids pRE485, pREl77, pRE153, pRE131, pRE96 and pRE64 

were injected into embryos at the two cell stage of 

development. Embryos were allowed to proceed to stage 30 of 

development prior to being dissected into axis, head and gut 

regions. Total nucleic acid was prepared from whole embryos 

(W), in addition to the axis (A), head (H) and gut (G) regions 

of dissected embryos. Transcripts originating from the micro- 

injected gene were detected by primer extension analysis using 

the oligonucleotide MG-1.

The size of DNA markers (track M) is indicated on the right 

hand side of the figure. The 67 nucleotide extension product, 

which is produced on the correct initiation of transcripts 

originating from the human cardiac actin gene, is illustrated 

by an arrow on the right hand side of the figure.
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transcription of the fusion gene in Xenopus laevis embryos. 

Indeed, all subsequent promoter deletions are transcriptionally 

inactive as detected by the assay system employed in these 

experiments. This is in contrast to experiments investigating 

the ability of deleted promoter fragments to drive the 

expression of a CAT reporter gene. These data demonstrate that 

153 nucleotides of human cardiac actin upstream sequence 

(plasmid pHCA153) is capable of directing the tissue-specific 

expression of a CAT reporter gene, although at lower levels 

than the pHCA485 plasmid. This discrepancy in data may be due 

to CAT assays being a more sensitive assay for promoter 

activity than primer extension assays.

The investigation into the effect of promoter deletions on the 

transcriptional activity of the human cardiac actin gene 

promoter yields similar results to experiments investigating 

the capability of promoter deletions to drive the expression of 

a CAT gene. However, multiple extension products are apparent 

in some of the primer extension reactions. Thus, although a 

percentage of the transcripts originating from the human 

cardiac actin gene in Xenopus embryos are correctly initiated, 

there also appears to be certain amounts of incorrectly 

initiated transcripts originating from the micro-injected gene.

A.1.4. Discussion.

Data presented in this section demonstrate that 485 

nucleotides of human cardiac actin gene upstream sequence, in 

addition to 68 nucleotides downstream of the transcriptional

-183-



Appendix

start site of the gene, is sufficient to drive the tissue- 

specific expression of a reporter gene in Xenopus laevis 

embryos. Furthermore, transcripts originating from this fusion 

gene appear to be correctly initiated, as determined by primer 

extension analysis.

The sequence requirements for the effective expression of the 

human cardiac actin gene have been extensively characterised 

(Minty and Kedes, 1986; Miwa and Kedes, 1987; Sartorelli et 

a l ., 1990). These studies demonstrated that as little as 113 

nucleotides of human cardiac actin upstream sequence is 

sufficient to direct the tissue-specific expression of the gene 

in myogenic cell lines (Miwa and Kedes, 1987). Indeed, although 

distal regulatory elements exist which are required for the 

full activity of the human cardiac actin gene, all sequences 

necessary for the tissue-specific expression of the gene are 

contained downstream and inclusive of the CArG boxl motif (see 

Sartorelli et a l., 1990).

In contrast to these data no transcription from the construct 

pHCA131 is apparent in Xenopus laevis embryos, despite it 

containing all human cardiac actin sequences which have been 

identified to be sufficient for the expression of the gene in 

myogenic cell lines. One possible explanation for this 

discrepancy in data is that the human cardiac actin gene is 

expressed less efficiently in Xenopus laevis embryos than it is 

in myogenic cell lines. Therefore, deletions of the human 

cardiac actin gene promoter that significantly reduce the 

activity of the gene in myogenic cell lines, may totally
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abolish the activity of the gene in Xenopus laevis embryos. In 

this regard pHCA131 lacks the distal regulatory region and the 

CArG box2 motif of the human cardiac actin gene. Deletion of 

these sequences from the human cardiac actin gene promoter 

significantly reduces the activity of the gene in myogenic cell 

lines (Minty and Kedes, 1986; Miwa and Kedes, 1987). Thus, the 
deletion of these sequences from the human cardiac actin gene 

promoter may totally abolish the activity of the gene in the 

less sensitive Xenopus assay system.

In addition to 485 nucleotides of human cardiac actin gene 

upstream sequence being able to direct the correct tissue- 

specific expression of a reporter gene in stage 30 Xenopus 

laevis embryos, it also appears ’to activate the reporter gene 

at approximately the correct stage of Xenopus development (see 

section A.1.2.). However, at early stages of Xenopus 

development expression of the fusion gene does not appear to be 

tissue-specific. Indeed, it is not until the latter stages of 

development that the gene is expressed predominantly in the 

region of the embryo that expresses the endogenous cardiac 

actin gene. The reason for this apparent infidelity in the 

expression of the human cardiac actin gene in the early stages 

of Xenopus development is unknown. Similar problems have not 

been experienced when a Xenopus skeletal actin fusion gene is 

injected into developing embryos (data not shown). Indeed, this 

type of assay system has been used extensively in the study of 

sequence requirements for the expression of the Xenopus laevis 

cardiac actin gene (see Gurdon e_t̂ al., 1985; Mohun e_t a l . ,
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Due to the inconsistency of expression patterns of the human 

cardiac actin gene in the early stages of Xenopus development, 

and the apparent insensitivity of Xenopus micro-injection 

techniques in identifying the sequences important in the 

expression of the human cardiac actin gene, it was decided that 

future work would concentrate on the study of the expression of 

the Xenopus borealis skeletal actin gene.

1986).
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Diagrammatic representation of the plasmids p A g b and pXlgb.

A. Diagrammatic representation of the plasmid p A g b .  The lower 

part of the figure illustrates the complete plasmid, showing 

the Xenopus laevis p-globin sequences in black. Sequences of 

the vector (pATl53) are shown in blue.

The upper part of the figure shows the promoter of the Xenopus 

laevis p-globin gene illustrating the site of a 389 nucleotide 

internal deletion.

B. Diagrammatic representation of the plasmid pXlgb. The lower 

part of the figure shows the complete plasmid, illustrating 

sequences of the Xenopus laevis p-globin gene in black. 

Sequences of the vector are illustrated in blue.
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