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PREFACE

This thesis describes original work which has not been submitted 

for a degree at any other University.

The investigations were carried out in the Centre for Advanced 

Materials at the University of Warwick under the supervision of 

Professor M.H. Lewis and in the Technical Department at Lucas Cookson 

Syalon Limited, Solihull, under the supervision of Dr A. Szweda and Dr 

W.I. Wilson, during the period October 1985 to September 1989.

This thesis describes the production of ß ’-sialon ceramics 

pressureless-sintered with a neodymium oxide additive, and the 

production of new a'+ß' sialon materials, the mechanisms of formation 

and transformation, with the aim of developing improved engineering 

materials.
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ABSTRACT

S'«glass sialon materials are prepared with an Nd2<33 sintering 

additive. These materials exhibit similar property characteristics to 

equivalent ¥2°3-based compositions. With the absence of an Nd phase 

equivalent to YAG, phase relationships in the Nd-Si-Al-O-N system are 

examined to identify alternative grain boundary devitrification 

products. Materials in which the residual glass after sintering is 

recrystallised to give a mixture of Nd-N-a wollastonite and NdA103 are 

shown to exhibit high temperature property characteristics comparable 

to the conventional B'+YAG sialon materials. The glass forming region 

in the Nd-sialon system is more extensive than for yttrium and new 

phases have been identified within the expanded volume. These also 

offer potential as fully crystalline matrix devitrification products. 

The most significant of these has the composition Nd3Si3Al30i2N2• 

B '«Nd3Si3Al30i2N2 materials are prepared and found to exhibit 

excellent properties up to * 1300°C.

The preparation of pure a' and O ’+B' sialon materials by 

transient liquid phase sintering is particularly sensitive to starting 

composition. The fabrication of a'*B’«glass materials allows greater 

flexibility but high temperature properties are still sensitive to the 

chemistry and concentration of the liquid'sintering additives and to 

post sintering heat treatments. a'+B’«glass materials are developed 

with a very minor amount of residual glass of a composition which 

allows full devitrification to form mainly YAG. Upon annealing, the 

a' species is particularly receptive to the non-stoichiometric 

elements which results in removal of the intergranular residual glass 

and subsequently increased solid/solld contact. To alleviate the 

interfacial energy anisotropy the YAG crystals are diffusively 

rearranged to an isolated equiaxed morphology. The limitations on 

high temperature use are mitigated by the discontinuous nature of this 

YAG phase. Component field trials and the potential of this new range 

of generic sialon materials are discussed.
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GLOSSARY OF ABBREVIATIONS
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INTRODUCTION

I. Engineering Ceramics

Engineering Ceramics can be defined as inorganic materials 

consisting of metallic and non-metallic elements bonded together to 

give a product that exhibits excellent mechanical properties which are 

often retained at elevated temperatures. Most of these materials have 

a high degree of covalent bonding and it is the very nature of these 

strong directional bonds which gives them their great strength and 

durability. They include the carbides, nitrides and oxides of the 

metals silicon, aluminium, boron and beryllium, and certain transition 

metals such as titanium and zirconium. Table 1.1 shows typical 

properties of this range of materials with values for mild steel 

included for comparison.

Fabrication of ceramic components from these compounds involves 

forming the powdered starting materials into the required shape 

followed by some sort of high temperature firing cycle to get the 

particles to coalesce, either by solid state diffusion or by liquid 

formation at the particle interfaces, which then allows liquid phase 

sintering to occur. In practice, the mechanical behaviour of the 

product depends as much on the final microstructure of the material as 

on the intrinsic properties of its constituents.

The ideal engineering ceramic, for applications such as in gas 

turbine engines, must be able to perform in regimes well beyond those 

accessible by the conventional nickel-based super-alloys (>1100°C).

The requirements for such a material therefore, are that it 

must have a high melting or decomposition temperature, excellent 

oxidation and creep resistance combined with good thermal shock 

properties, and a high elastic modulus to specific gravity ratio.

- I -



Table 1.1 Typical properties of the potential high temperature 
engineering materials

Material Melting or 
decompos i t ion 
temperature

CC)

Specific
modulus

MPa

Thermal 
expansion 
coefficient 
x 10"6 °C_1 
(20 - 1000°C)

Thermal 
conductivity 
Win"1 K"1 
(at specified 
temp, °C)

*1.0. 2050 90 8.5 6.3 (1000)

AIN 2450 103 4.9 20 (800)

BeO 2530 124 9.0 20.3 (1000)

BN 2700 48 0.8“, 7.5“ 12.1*, 26.8b (1000)

C (Graphite) 3500 39 2.2 600 (1000)

SiC 2600 172 4.3 70 (400)

Si,». 1830 117 3.0 36 (1000)

TiN 2930 43 9.3 29.3 (20)

Zr02 2700 212 10.0 2 (700)

Mild Steel 1500 38 11.0 40 (20)

* Normal to c-axis 
b Parallel to c-axis

Source: ASM Engineered Materials Reference-Book



Also desirable is high chemical stability, low electrical 

conductivity, and a low coefficient of friction.

Selection of the most suitable material must take into account 

all of these factors. There is no benefit having a material which 

will withstand extreme temperatures if its thermal conductivity is so 

low that slight changes in temperature result in thermal gradients 

which in turn produce strains greater than the critical strain 

necessary for failure. Of the materials outlined above many are 

fallible in a number of areas: - AI2O 3 has poor thermal shock 

properties, graphite and TiN have very poor oxidation resistance, AIN 

is prone to hydrolysis, BeO is highly toxic, and BN is difficult to 

fabricate. This leaves the silicon-based ceramics as the most likely 

candidates.

2. Silicon Nitride Ceramics

Silicon nitride has been recognised as a potential high 

temperature material for over twenty-five years, but unlike the 

traditional silicate and alumino-si1icate ceramics (porcelain, 

pottery, china, etc.) the activation energy for self-diffusion is very 

high (because of the strong covalent Si-N*bonds) and fully dense, pure 

Si3N4 ceramics cannot be formed by a simple firing method. Instead 

some oxide agent has to be added to catalyse the sintering reaction 

and much of the development work has been in refining the starting 

compositions and optimising the sintering techniques. Today, these 

ceramics are commercially available, fabricated by a pressureless- 

sintering route with 5-10 wt.% sintering additive.

Unfortunately, these additives have to be chemically very pure 

to retain the desired properties, hence they require careful 

processing and are expensive. The most commonly used additive, V2O 3
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now costs 5-6 times as much as the raw silicon nitride powder itself 

and strategic location factors are becoming increasingly important as 

demand rises.

3. Broad Objectives

The broad objectives of the present research were to develop a 

range of silicon nitride based ceramics, comparable with the existing 

Y203~fluxed materials, pressureiess-sintered with Ndo03 as the 

additive. Nd2C>3 currently costs around £15 per kg compared witn £90 

per kg for ^2^3 and is more widely available. The initia- 

compositions were to be centred upon the Y2°3 based ceramics, sintered 

using the same temperature cycles, with the aim of generating a family 

of equivalent materials which could be fabricated without incurring 

any additional cost. The final materials were to be achieved by 

optimising the heat treatments as necessary, after assessment of the 

preliminary results. Little work nas been carried out on Nd2<>3 as a 

sintering additive for silicon nitride ceramics, but the market 

constantly demands cheaper raw materials which now makes this 

exploration worthwhile.

There is also a great demand for improved high temperature 

materials, hence the existing Y2O3 based variants were examined with a 

view to incorporating the initial additive into tne silicon nitride 

structure itself so that the final material exhibits mere of tne 

properties associated with the Si-N bonds rather than the constraints 

imposed by the microstructure. It was hoped that this wouid 

eventually lead to a material with better nigh temperature 

capabilities again prepared using standard processes i.e. without 

increasing the overall cost.



SILICON NITRIDE CERAMICS - STRUCTURE AND PROPERTIES

1. Silicon Nitride

Silicon nitride exists in two crystallographic forms, a  and B- 

Hardie and Jack ( 1 9 5 7 )  showed that both polymorphs are hexagonal of 

similar a unit cell dimension, but with the c parameter for a almost 

twice that of B (a^ = 7 . 7 4 8 A ,  c<* = 5 . 6 1 7 A ;  a g  = 7 . 6 0 3 A ,  e g  = 2 . 9 0 7 A ) .  

The crystal structures determined by Wild et al. ( 1 9 7 2 a )  are presented 

schematically in Figures II.1 and II.2. B-Si3N4 is built up of a 3-D 

array of planes of SiN4 tetrahedra joined at the corners in such a way 

that each nitrogen atom is common to 3 tetrahedral units. The a form 

has similar structural units but the layers are stacked ABCD... as 

opposed to the AB. . . stacking sequence found in the B- The B form 

contains long vacant channels parallel to the c-axis and the different 

stacking arrangement of the a form causes these to break up into large 

holes repeated at regular intervals throughout the lattice. The unit 

cell contents were found to be SigNg for the B form and Sii2N 16 for 

the a ,  with 2 of these holes per unit cell in the latter.

Hardy and Jack (1957 ) also found that the O structure was 

slightly distorted from the idealised form and suggested that it was 

in fact an oxynitride with a range of compositions

Sill.4 O0.3 Ni5 - Sin.5 O0.5 **15

electrical neutrality being maintained by some of the Si sites 

becoming vacant; in effect generating a defect structure. Kohatsu et 

al. (1974) and Kato et al. (1975) disputed these findings and showed 

that although a-sllicon nitride could accommodate oxygen atoms this 

was not essential for stabilization. Instead they formulated that a

- 4 -
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CKABCD ç a = 5.617Â

Figure II.2 The crystallographic 
structure and stacking sequence of

□ denotes possible sites for 
modifier cations for example as 
in Y a'-sialons.



was a pure nitride and that the oxygen was present as a thin surface 

film of silica on the Si3N 4 particles. Jack (1983) further proposed 

the possibility of having lower valency silicon ions, Si2+ or Si3+, in 

the interstices to reduce the overall positive charge and allow 

partial replacement of the nitrogen atoms with oxygen. Hampshire et 

al. (1978) support this hypothesis and conclude that o-silicon nitride 

has a range of composition:

2+ 4+ 3- 2+ 4+ 2- 3-
Si0 . 2  S i n . 9 n16 “ Si0 . 2  Sin.a O0 . 5  »>15.5

The presence of a surface oxide layer is now generally accepted and 

the ability to accommodate a small amount of oxygen into the structure 

recognised, although the actual method by which it is incorporated 

still remains conjecture.

2. Sialons

The discovery that a-silicon nitride could accommodate oxygen 

atoms concurrently led Oyama and Kamigaito ( 1 9 7 1 )  and Jack and Wilson 

( 1 9 7 2 )  to discover that the crystal chemistry could be modified 

further so that Al3+ ions could replace Si4+ if at the same time O 2" 

ions replaced N3-. This was possible because of the similarity of the 

Si-N and Al-O bond lengths, 1. 74 A  and 1 . 7 5 A  respectively. Jack ( 1 9 7 3 )  

gave this new type of materials the generic term 'sialon', an acronym 

derived from the chemical symbols of the constituent elements. The 

resultant materials, a 1-sialon and B'-sialon are thus solid solutions 

of aluminium and oxygen in silicon nitride, iso-structural with their 

a-Si 3N4 and B-Si3N4 counterparts, but with slighly expanded unit cell 

dimensions depending on the level of substitution. Lumby et al. 

(1 9 7 5 )  showed that the B ' -phase has a range of homogeneity extending
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between Si3N4 and AI3O 3N maintaining a constant metal:non-metal atom 

ratio of 3:4, according to the formula:

Si6_z Alz 0Z Ng_z (II.i)

where z is the compositional factor with a maximum value of 

approximately 4.2 at 1750°C. The variation in unit cell dimensions 

with increasing substitution levels has been widely studied since the 

original Jack and Wilson (1972) version; e.g. Hohnke and Tien (1983) 

and Slasor (1985). Figure XX.3 shows the most recent determination by 

Liddell (1986).

Jack and Wilson (1972) also discussed the feasibility of having 

metal cations in the interstices of the a' structure with an 

appropriate partial replacement of Si-N bonds with Al-N to compensate 

for the imbalance in valency. This was verified by Jama et al. (1975) 

who revealed the existence of an expanded a' when LiSi2N2 was reacted 

with AI2O3. In general a* sialons are represented by the formula

Mx (Si,Al)12(0,N)16 (II.ii)

where M is the modifier cation and x is the number incorporated into 

the unit cell. Theoretically, x has a range of value from 0 to 2; 0 

representing the unimplanted a'-sialon structure with 2 being the 

maximum number of vacancies available per unit cell. In practice M 

can be any positively charged ion provided its ionic radius is small 

enough to be accommodated within the interstitial hole and it forms a 

complex oxide.

- 6 -



772

Figure II.3 Variation in unit cell dimensions of 0' - sialon 
with A1 and 0 substitution 

(after Liddell, 1986)

Note that the curves reach a plateau at z - 4.
The lattice has become fully expanded. Additional 
Al and 0 atoms are accommodated in the few 

remaining interstitial holes.



3. The Sintering oE Silicon Nitride-based Ceramics

Funke and Samsonov (1958) found that pure silicon nitride could 

not be sintered by a simple heat treatment. For thermally activated 

diffusion processes to take place the material had to be heated to 

well above 1600°C and appreciable decomposition occurred. The first 

silicon nitride articles of near theoretical density were prepared by 

Deeley et al. (1961) by hot-pressing with 5 wt.% MgO as an additive, 

and Lumby and Coe (1970) showed that significant improvements in 

strength could be obtained with 1 wt.% MgO and a high proportion of 

the a-Si3N4 phase. Wild et al. (1972b) and Colquhoun et al. (1973) 

established that the MgO reacted with the surface silica on the 

silicon nitride to form a liquid, and suggested that this promoted 

densification by allowing liquid phase sintering to occur. Upon 

cooling, all of the initial a-Si3N4 had been transformed to the B form 

and the liquid phase remained in the final product as an intergranular 

glass.

Liquid phase sintering was first described by Price et al. 

(1938), who investigated the densification processes in W-Ni-Cu alloys 

and concluded that the den s i f i c a t i o n  mechanism involved a 

solution-reprecipitation process. Kingery* (1959) suggested that in 

the presence of a liquid phase the driving force for densif ication was 

connected to the capillary forces acting between the particles and 

proposed that three distinct stages were involved in the overall 

densification cycle (Figure II.4). These consist of an initial 

rearrangement stage which occurs when the liquid is first formed and 

is drawn to the contact points between individual particles by 

capillary action. This viscous flow process draws the particles 

closer together to form a more tightly packed structure. The second 

stage is a solution-reprecipitation process and involves atomic
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transport or diffusion through the liquid medium followed by 

reprecipitation at various sites. Here, the driving force is related 

to the increase in solubility brought about by the compressive 

stresses which result from the inter-particle capillary attraction.

The third and final stage of densification is identified as the 

elimination of closed porosity. This involves the growth of grains 

within the structure to an extent which prevents further material 

transport via the liquid phase from taking place and is normally 

associated with a reduction in the densification rate (Lenel, 1948).

The conditions for liquid phase sintering are that the solid 

phase must be soluble within the liquid and that the liquid must wet 

the matrix. Wild et al. (1972b) found that the glass in their 

hot-pressed materials could be devitrified to enstatite (MgSi.03) and 

silicon oxynitride (Si2N20) and so confirmed some partial solubility 

of nitrogen within the liquid, and Terwinger and Lange (1974) showed 

that MgSiOj (m.p. 1545°C) wets a silicon nitride substrate very 

effectively. They concluded that the liquid would allow transport of 

silicon and n itrogen but did not consider that the a -► B 

transformation was necessary for densification to occur. The simple 

3-stage Kingery view of sintering was thus substantiated, but the 

chemical intricacy of the Si-Al-O-N system required additional factors 

to be considered to take into account complex grain morphologies and 

phase transformations. Hampshire (1980) has shown that the Kingery 

model can be successfully applied to the densification of sialon 

compositions but it can not give an accurate value of the rate 

controlling coefficient. Brook et al. (1977) have now described the 

densif ication processes using a Coble model and have shown that both 

the densif ication and the a B transformation are controlled by grain

- 8 -



boundary diffusion proc< . although full densificatl can occur

without the transformation becoming complete.

4. Methods of Producing Silicon Nitride-based Components

The earliest successful attempts at fabricating solid components 

followed from a natural extension of the nitriding process involved in 

synthesis of the Si3N4 powder itself. In reaction bonding, the raw 

silicon powder is first formed into the required shape using 

conventional forming techniques (e.g. isostatic pressing, slip 

casting, or injection moulding), then the compact is nitrided between 

1150°C and 1400°C to give a bonded mixture of a and B-Si3N4 as the 

reaction product (i.e. Reaction bonded silicon nitride - RBSN). The 

main advantage of this method is that only slight shrinkage occurs 

which allows fairly complicated shapes to be fabricated, with 

reasonable tolerance, quite cheaply. Unfortunately, it is difficult 

to nitride thick sections and the product always contains 15-30% 

porosity which reduces its mechanical strength, although much of this 

strength is retained to temperatures in excess of 1400°C and the 

absence of any amorphous intergranular phase affords it excellent 

oxidation resistance.

As outlined earlier, hot-pressing with an oxide additive 

provides a means of forming solid components with Si3N4 as the 

starting powder. Compacts consisting mainly of 0-Si3N4 with 1-2 wt% 

metal oxide are heated typically for 3-5 hours at 1600-1800°C under 

pressures of 20-30 MPa to give a product which contains mostly B~Si3N 4 

with a very minor intergranular glass phase. This material has 

excellent room temperature properties, but at about 1000°C the glass 

starts to soften which drastically reduces its performance. Much 

development work has concentrated on modifying the composition of the

- 9 -



final glass and minimising its volume, but without impeding 

densification. Gazza (1975) found that with Y2O 3 additives the 

materials produced had improved high temperature strength and creep 

resistance, and ascribed these improvements to the formation of more 

refractory grain boundary phases. Huseby and Petsow (1974) and Buang 

(1979) have since showed that Ce02, Be02, 1,3203 and Zr02 can be useful 

in hot-pressing Si3N4 and Dodsworth (1980) obtained good results with 

SC2O3, but neither offered any particular advantage over yttria. The 

melting point or liquidus eutectic of the secondary phase still 

remains the limiting factor. In addition the process is restricted to 

simple shapes and requires expensive diamond machining. Today 

hot-pressed silicon nitride (HPSN) is only reserved for a few minor 

applications.

It was soon realised that by increasing the volume and fluidity 

of the liquid phase, silicon nitride ceramics could be sintered 

without the application of pressure, the reduction in surface area 

providing the driving-force for densification (sintered silicon 

nitride - SSN). This process allows much more intricate shapes to be 

fabricated, but the greater volume of liquid generated subsequently 

results in more residual glass, which is«undesirable. Tsuge et al. 

(1975) showed that further improvements could be achieved by 

recrystallising the glass to form yttrium silicon oxynitride phases, 

but the starting composition had to be controlled very precisely to 

ensure sufficient devitrification to be effective.

The evolution of sialon ceramic alloys opened up the possibility 

of reducing or eliminating the grain boundary phase by incorporating 

its elements within the Sl3N4 framework. This alloying process also 

demands less stringent control of the starting composition because of 

the large range of solid solubility of the products. The use of AI2O3
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and AIN as additives, in addition to a metal oxide, allows fully dense 

materials to be pressureless-sintered with a minimal amount of liquid 

phase. The liquid itself, and subsequently the derived residual 

glass, contains dissolved nitrogen which can be varied to achieve more 

desirable properties. (In general, the higher the N/0 ratio the more 

stable the glass due to the higher degree of covalent bonding 

associated with the nitrogen). Alternatively, the starting 

composition may be tailored to generate a residual glass which may oe 

completely devitrified to give an essentially two phase material with 

high temperature properties comparable to HPSN.

5. The Si-Al-O-N System

Phase diagrams are of particular, importance in understanding 

the behaviour of nitrogen ceramics since they are an interpretation of 

the reactions which may occur within a particular system and it is the 

reactions between the constituent phases which determine the 

equilibrium composition and ultimately the final material properties. 

The use of a reciprocal salt diagram to represent compositions within 

the 4-component Si-Al-O-N system has been comprehensively explained by 

Jack (1978). In short any sialon composition may be plotted as a 

point within a square whose corners correspond to the components 

SÍ3N4, SÍO2, AIN. and AI2O3 expressed in molecular equivalents i.e. 

Si3N4, SÍ3O6, AI4N4, and AI4O6. (The assumption that one mole of 

silicon nitride has the formula SÍ3N4 rather than say SigNg is 

arbitrary but once chosen automatically fixes the formula for one mole 

of the other components). Any point on the plane represents 12 

positive and 12 negative valencies although the actual number of atoms 

in each composition changes with position across the diagram. (It is 

convenient to consider the compounds in ionic terms even thougn tne 

interatomic bonding is predominantly cova.er.t).



Hot-pressing appropriate mixtures of Si3N, AIN, AI2O3, Si(>2 and 

Si2N2° allowed Gaultier et al. (1975) and Jack (1976) to establish the 

main phase assemblages which occur in the Si-Al-O-N system and 

formulate an initial Si-Al-O-N behaviour diagram (Fig. II.5). Further 

work by Layden (1976) and Roebuck (1978) and more recently by Halls 

and Slasor (1984), to accurately determine the phase solubility limits 

has characterized a number of necessary refinements to generate the 

present behaviour diagrams at 1700°C and 1800°C shown in Figure II.6.

As well as B'-sialon a number of other phases have been 

reported. O'-sialon (Jack 1 9 7 6 )  is a solid solution of silicon 

oxynitride with a limited range of composition extending from Si2N20 

towards AI2O3 along the 2M:3X line. Its structure is isomorphous with 

that of silicon oxynitride, based on an orthorhombic unit cell with 

dimensions a = 5 . 4 9 8 A ,  b = 8 . 8 7 7 A  and c = 4 . 8 5 3 A  and consisting of 

layers of Si-N atoms joined by Si-O-Si bonds to form a network of 

SiN30 tetrahedra.

X-phase was first reported by Oyama and Kamigaito (1971) and 

Jack and Wilson (1972) as a minor phase formed when reacting 0-Si3N4 

and A I 2O 3 at 1700°C. Drew and Lewis (1974) showed that two 

modifications, "high" and "low" X-phase, could be formed depending on 

whether cooling from a melt at 1800°C or by heating to a lower 

temperature - 1600°C. Korgul et al. (1983) found that "low" X-phase 

is in fact a more ordered form of "high" X-phase and that both have a 

triclinic structure with the composition being close to Si3AlgO]_2N2 • 

Towards the aluminium nitride corner of the behaviour diagram six 

phases were observed by Jack (1973) and Gauckler et al. (1975) each 

with a range of homogeneity along lines of constant metal: non-metal 

atomic ratios, Mm :Xm+i where 4 < m < 10. These have since been 

characterized by Thompson (1977) and Roebuck and Thompson (1977) as
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Early representation of the Si-Al-O-N behaviour diagram 
(after Jack, 1976)

Figure II.5



Figure II.6 The Si-Al-O-N behaviour diagrams at 1700°C and 1800°C 
(after Walls and Slasor, 1984)



"polytypoids" based on the Wurzite-like aluminium nitride structure 

but with stacking sequences related to their composition. They have 

either hexagonal (B) or rhombohedral (R) unit cells and are described 

by the Ramsdell (1947) notation as 8H, 15R, 12H, 21R, 27R, and 2H5 

with compositions 4M:5X, 5M:6X, 6M:7X, 7M:8X, 9M:10X and > 9M:10X

respectively.

Despite having 4 binary compounds the Si-Al-O-N system itself is 

ternary and no more than 3 phases may exist together at equilibrium. 

This is especially important when considering the phases present in a 

material after reaction.

6. M-Si-Al-O-N Systems

The addition of another metal in the form of an oxide to 

facilitate dens 1fication has necessitated the study of phase 

relationships in the five component M - S i - A l - O - N  systems. 

Representation of compositions in a 5-component system consisting of 3 

metal and 2 non-metal atoms (i.e. a "quaternary system of the third 

kind"; Zernicke (1955)) is best performed by use of the Janecke 

triangular prism representation, after Janecke (1907), where all the 

sides are of equal length and the vertices, represent the metal oxide 

and nitride equivalents. Any composition may then be expressed in 

terms of valency equivalents and represented as a point within the 

prism; Jack (1978). Figure II.7 shows the representation of the 

g e n e r a l  M - S i - A l - O - N  s y s t e m  b a s e d  o n  t h e  s t a n d a r d  

Si3N4-Al4N4-Si306-Al406 plane. The front and rear triangular faces 

represent the nitrides and oxides respectively and the three square 

faces are all reciprocal salt diagrams. Being quaternary up to 5 

phases may exist in a material at the same time at equilibrium.
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Figure II.7 JAnecke prism representation of the general 
M-Si-Al-O-N systems 
(after Jlnecke, 1907)
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6.1. The Y-Si-Al-O-N System

Yttria has been the most widely used, and studied, densification 

additive in the preparation of sialon ceramics. Consequently, phase 

relationships in the Y-Si-Al-O-N system are the best understood. In 

describing the overall behaviour diagram however, it is pertinent to 

first consider the Si3N4-Si306-Y406-Y4N4 plane then extend from this 

into the 3-D Janecke prism. The phase relationships in the Y-Si-O-N 

system determined by Rae (1976) are shown in Figure II.8. Ito and 

Johnson (1976) noted a number of yttrium silicates along the Y203~Si02 

join and these have recently been characterised by Liddell and 

Thompson (1986) as a whole series of temperature dependent polymorphs 

of yttrium disilicate (Y2Si207). There are 4 yttrium silicon 

oxynitride phases:

(i) N-melilite Y2C>3.Si3N4 ♦ Y2Si303N4

Tetragonal with unit cell dimensions a = 7.597 A, c * 4.908 A, 

(Rae et al., 1975).

(ii) N-a-wollastonite Y2<>3.Si2N20 ■* YSi(>2N

Monoclinic with unit cell dimensions*a = 7.012 A, b = 12.186 A, 

c = 18.202 A, B = 90.76°, (Lange et al., 1977).

(iii) N-apatite Yj.o (Si04)eN2

Hexagonal with unit cell dimensions a * 9.360 A, c * 6.770 A 

(Gaukler et al., 1980).

(iv) N-YAM 2Y203.Si2N2° * *4si207N2
Monoclinic with unit cell dimensions a * 7.558 A, b * 10.446 A, 

c - 10.818 A, B * 111.0° (Morgan, 1977).
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Figure II.8 Phase relationships in the Y-Si-O-N system 
(after Rae, 1976)

The limits of solid solubility of the Y-Si-O-N 
phases in the Y-Si-Al-O-N system 

(after Jack, 1981)
Figure II.9



and Jameel (1984) has characterised 3 yttrium silicon nitrides along 

the Si 3N4-YN join: Y6Si3N10, *2Si3N6 and *Si3N5 .

All of the yttrium silicon oxynitride phases in the Y-Si-Al-O-N 

system have some range of solubility extending along the appropriate 

line of constant M:X ratio towards the aluminium corner of the 

diagram. Figure II.9 shows the limits of penetration into the Janecke 

prism, after Jack (1981). It can be seen that N-o-wollastonite has 

only a very small range of homogeneity with YAP (YAIO3) occurring at 

the Al-rich end of its tie line. N-apatite allows slightly more 

aluminium substitution and N-melilite has an extensive solubility 

range, but only the N-YAM phase extends right across the diagram to 

its yttrium aluminate, YAM (Y4AI2O9), analogue. Rae (1976) also 

outlined a yttrium silicon aluminium oxynitride, termed B-phase, 

Y2SiA105N, on the YA103~wollastonite tie line. Subsequent work by 

Tanaka et al. (1979) and Spacie (1984) has shown that this too has a 

small range of homogeneity but it is only stable from approximately 

1050°C to 1200°C. Also along the Y2O 3-AI2O3 join is the 3:5 Y:A1 

yttrium aluminium garnet phase, YAG. Lewis and Barnard ( 1980 ) 

suggested that this too had some range of partial solubility of Si and 

N, and this is now generally taken to* be correct but the actual 

compositional limit is believed to be very restricted (see also Spacie 

(1984) and Sun et al. (1988)).

When considering the yttrium phases for a refractory grain 

boundary matrix YAG appears the most suitable. N-a-wollastonite 

becomes unstable above 1400°C and the other oxynitride phases, 

especially N-melilite, readily oxidise. The yttrium disilicates offer 

good oxidation resistance but their inability to accommodate the 

aluminium and nitrogen species gives little freedom with regard to 

compositional control.
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Lewis et al. (1980) first reported YAG in connection with 

8 '-sialon ceramics as a devitrification product obtained upon heat 

treating appropriate 8 '+glass materials. The devitrification process 

was explained with reference to the behaviour diagram by Lewis & Lumby 

(1983). To achieve a perfect two-phase B'+YAG ceramic it is necessary 

that the bonding phase composition moves out of the glass forming 

region to YAG and as it does so the excess components diffuse into the 

8 * or precipitate as more 8 ' of modified composition. This is 

indicated in Figure II. 10 by the arrows at the end of the tie lines 

passing through the average composition C. The flexibility in phase 

composition to achieve this equilibrium state is of particular 

importance.

With the exception of the above, the only other phase in the 

Y-Si-Al-O-N system is Y-O', a structural modification of a-Si3N4 

(section II.2) described by the formula Yx(Si,Al)i2(°'N )l6 that lies 

on the Si3N4-4/3(AI3O 3N)-YAI4N4 plane (Figure II.11). Jameel (1984) 

observed its range of homogeneity and showed that the minimum and 

maximum solubility limits for a' along the Si3N4~YAl3N join are 0.3 

and 1 . 1  atoms per unit formula respectively, and that the upper limit 

of Al solubility extends along a line ot constant Si:Al ratio of 

2.53:1, giving the a' region a small roughly triangular appearance. 

Slasor (1988) has recently determined the phase relationships for the 

whole plane and concludes that it is extremely difficult to form dense 

pure single phase a' without some melilite or glass or both present 

due to excess oxygen, or residual polytypoid due to too little. The a' 

region is limited to the width of the Si3N4~4/3(Al303N)-YAl4N4 plane 

and any small deviations in the starting mix result in a composition 

either above or below it. Walls (1986) has shown that this also 

applies to a'-t-B' materials. A composition which lies in the a'+8 ' 

region is highly sensitive to the estimation of surface oxides on the
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Figure II.10 Janecke prism representation of the Y-Si-Al-0-N 
system indicating possible changes in the 0' 

and matrix composition during recrystallisation 
(after Levis and Lumby, 1983)



Figure II. 11 Phase relationships in the S i ^  - YAljN - 4/3^1,0,11) plane 
shoving the extent of the a' region and position of the plane 

within the Jânecke prism



nitride powders, material pick-up during milling, and weight loss on 

firing.

In order to form dense products an excess of liquid is required 

and this can be used to generate either O'+glass or Ci'+B'+glass 

materials. Unfortunately, restrictions on the position of the a'-YAG 

plane with respect to the glass composition and the phase fields 

through which it passes make it difficult to form pure two phase 

a * + YAG materials but the preparation of fairly good Ot’+S'+YAG 

materials has been carried out; Walls (1986).

6.2 The Nd-Si-Al-O-N System

The phase relationships in the Nd-Si-Al-O-N system have been 

reported by Spacie et al. ( 1 9 8 5 ) .  Synonymous with the yttrium system, 

neodymium forms a corresponding series of silicate and oxynitride 

phases but there are a few major differences. Firstly, there is no 

neodymium variant of the yttrium aluminium garnet phase, although 

NdA103 forms much more readily and is stable over a wide range of 

temperatures. Neither is there a low temperature phase equivalent to 

the B-phase (Y 2s i A 1 0 5N) identified by Rae ( 1 9 7 6 ) .  There is however an 

additional phase Nd203:AlN, reported by Marchand ( 1 9 7 6 ) ,  (tetragonal 

with lattice parameters a = 3 . 7 0 2 A ,  c = 1 2 . 5 3 6 A :  melting point 

1 6 2 0 ° C ) ,  with no analogue in the Y-A1-0-N system, and whilst a 

complete range of solubility exists from N-YAM (Y4Si207N2) to YAM 

(Y4AI2O9) in the Y-Si-Al-O-N system, only the end points have been 

established for neodymium. All of the neodymium phases have expanded 

unit cell dimensions compared to their yttrium counterparts, 

undoubtedly due to accommodation of the increase in ionic radii: 0. 8 9 A  

for Y^+; 0 . 9 8 A  for Nd^+ . The lowest eutectic temperatures in the 

Nd203~Si02 and Nd203~Al203 binary systems are lower than in the
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equivalent Y203~Si02 and Y2O 3-AI2O 3 ones: 1600°C (Figure 11.12, 

Toropov, 1960a) and 1750°C (Figure 11.14, Toropov and Kiseleva, 1961) 

respectively as opposed to 1660°C (Figure 11.13) Toropov, 1960b) and 

1760°C (Figure 11.15, Toropov et al. 1964). In the ternary 

Y203-Si02~Al203 system (Figure 11.16, Bondar and Galakhov, 1963) the 

lowest eutectic occurs at -1360°C and for the corresponding 

Nd203“Si02_Al203 case this minimum is expected to be even lower. How 

this affects the Nd-phases and sintering characteristics of Nd-sialons 

is not as simple as might be expected. For example the Nd-N-O 

wollastonite phase is stable to 1700°C compared with only 1400°C for 

the yttrium variant. The extent of the neodymium glass forming region 

is known to be larger than for the yttrium case. Indeed, neodymium 

glasses with up to 30 equivalent % of nitrogen have been claimed by 

Fernie et al. (1990). Liddell (1987) also points out that instead of 

a B'-sialon and liquid phase field, as with yttrium, there is an 

extensive B ‘ +melilite+liquid region so large that it intersects the 

B'-NdA103 plane thus making it impossible to obtain a 2-phase 

S ' « n e o d y m i u m  a l u m i n a t e  m a t e r i a l  free from m e l i l i t e ,  by 

recrystallising. (cf. B'+YAG in the yttrium system, see section 

IV.2).

7. Mechanical Properties and Thermal Behaviour

Whilst an understanding of the phase relationships is essential 

in forming 'ceramic alloys', the final material properties depend as 

much on the generated microstructure as on the intrinsic properties of 

its constituents. There is now a good understanding of the 

deformation and fracture mechanisms, and hence of the principles for 

the 'ideal' ceramic microstructure, but these are rarely achieved in 

practise. Microstructural morphology is constrained by the
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Figure 11.12 Binary phase diagram of the Nd203 - Si02 system 
(after Toropov, 1960a)
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Figure 11.13 Binary phase diagram of the - Si02 system
(after Toropov, 1960b)
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Figure 11.14 Binary phase diagram of the N d ^  - A l ^  system 
(after Toropov and Kiseleva, 1961)

Figure 11.15 Binary phase diagram of the YJ0J - A1J0J system 
(after Toropov et al., 1964)



Ternary phase diagram of the - Si02 - A1J0J system
(after Bondar and Galakhov, 1963)

Figure 11.16



conflicting requirement for ease of fabrication and the restrictions 

imposed by the reactions and transformations which can occur during 

simple processing procedures.

At low temperatures Si3N4~based ceramics are inherently brittle 

and undergo sub-critical crack growth to failure. Their resistance to 

crack propagation is termed the fracture toughness (Klc) of the 

material, which also forms the basis for its mechanical strength. 

Figure 11.17 (after Lewis et al., 1988) illustrates the established 

toughening mechanisms which can offer resistance to this sub-critical 

crack growth behaviour within a stressed ceramic element.

'Micro-cracking' at grain or particle interfaces can shield the 

main crack from the influence of the applied stress (Faber and Evans, 

1983). The origin of this effect is believed to result from 

anisotropy in the thermal expansion of the grains in a monophase 

ceramic or differential expansion between the grains and surrounding 

matrix in a multiphase version. For this to occur there is 

necessarily a critical range of particle size, above which general 

cracking occurs and below which micro-cracking may not be initiated. 

Unfortunately, to produce such a structure demands careful control of 

the process heat treatments and the effect is most likely to be lost 

due to relaxation of the microscopic stresses at elevated 

temperatures.

'Crack-deflection' toughening is applicable over a wide range of 

temperature and stems from the reduced stress intensity at the 

crack-tip when the crack deviates from the plane normal to the axis of 

the applied stress, and from repeated bifurcation of the main crack 

fronts. Faber and Evans (1984) showed that a twist deflection is the 

most effective, and most prolific with more than 10 vol.% acicular 

grains, saturating at an aspect ratio (1/w) of - 10.
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microcracking

Figure 11.17 Illustration of the relationship between microstructural 
parameters and the mechanisms for increasing fracture 

toughness, creep and creep-rupture resistance 
(after Lewis et al., 1988)



•Crack-bridging' by elongated grains in the wake of a 

sub-critical crack also offers improvements in fracture resistance 

over a wide range of temperatures. Here the mechanism relies on the 

formation of crack-resistant grains which have relatively weak 

interfacial cohesion. The energy for 'pull-out' is associated with 

the interfacial shear stress (Ti) and sliding friction, and hence the 

interface area and volume fraction are important parameters.

At elevated temperatures time-dependent (creep) deformation, 

creep rupture and oxidation are the most important factors. It is now 

recognised that in the high temperature regime the performance of 

Si3N4~based ceramics is governed by the inertness of their secondary 

intergranular phases. The onset of oxidation and creep degradation 

coincides with 'glass softening' and even though this may offer an 

increase in Kjc via 'crack-blunting' by viscous deformation, any 

benefit is far outweighed by these considerations.

Kingery et al. (1960) have identified 3 distinct creep 

mechanisms:

(i) Primary or transient creep which stems from the viscoelastic 

response of the vitreous intergranular phase when the stress is 

applied.

(ii) Grain boundary diffusional or Coble creep (Coble, 1963; 1970) 

which is normally dominant over long periods of time, with the 

applied stress well below that necessary for brittle failure, 

and

(iii) Tertiary creep which is normally associated with very high 

stresses and/or temperatures resulting in cavitation in the 

glassy intergranular channels during grain boundary shear.
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In reality the creep process is the superposition of all 3 

components and may be described by the general creep equation

E ■ AOn exp(—Q/RT) (Il.iii)

where e * strain rate

o = stress

Q * the activation energy

A is a constant related to the boundary diffusion coefficient 

and the average grain size, and n is the rate controlling stress 

exponent which is determined by the underlying creep mechanisms taking 

place (n=l for pure steady state diffusional creep).

Oxidation begins with the formation of a superficial silicate 

film formed by oxygen reacting with the Si3N 4 species, which leads to 

the release of nitrogen, and proceeds with preferential attack of the 

intergranular vitreous phase which is more reactive. Oxygen permeates 

inwards towards the bulk and the nitrogen migrates towards the outer 

surface. A chemical potential gradient is created which induces 

outward diffusion of the metal cations, some of which then react with 

the oxide layer to form more complex oxides,(Babini et al., 1984) (See 

Figure 11.18). Generally below 1300°C the initial layer is protective 

and impedes further rapid oxidation, limiting it mainly to diffusion 

and ion transport processes. At higher temperatures the evolution of 

large nitrogen bubbles at the oxidation front causes parts of the 

protective skin to flake or spall off when they burst and the 

oxidation mechanism proceeds as before albeit more rapidly due to the 

lower viscosity associated with the higher temperature and consequent 

increase in cationic mobility. Obviously, any other factors which 

reduce the viscosity of the glass at elevated temperatures, for
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Schematic of atmospheric oxygen and matrix metallic ion 
diffusion processes in the oxidation of bi-phase 

0'-sialon materials 
(after Levis and Barnard, 1980)



example impurity elements lowering the liquidus eutectics, will have a 

dire effect upon the oxidation rate. In porous materials, like 

reaction-bonded silicon nitride, gaseous infusion of oxygen into the 

bulk through interconnecting channels is another important parameter.

Porosity also affects the mechanical strength of the material. 

Modulus of rupture (MOR) values are dictated by K IC via the 

relationship

MOR - 1  Kic c 1/1 (II.iv)
Y

where Y is a geometrical constant and c the critical flaw size. As 

porosity increases generally so does the effective flaw size.

The hardness of dense silicon nitride based ceramics is 

dependent upon the Burgers vectors associated with dislocation motion 

in the direction parallel to the applied stress. Again porosity 

destroys the properties, this time by affording less bulk resistance 

to plastic deformation.

8 . Overview

Identification of the mechanisms for toughening and for high 

temperature creep and creep-rupture resistance has led to the 

formulation of model ceramic microstructures. The ideal monolithic 

ceramic should be fully dense, entirely crystalline, with all phases 

stable to elevated temperatures, and nominally consist of small 

acicular grains randomly interspersed in a bulk of smaller more 

uniform grains, all of which are well bonded together. A good 

knowledge of the phase relationships in a particular system allows an 

understanding of the reactions and transformations which may occur in
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order to approach this idealised state, but in practise this is rarely 

achieved. Instead, the materials developed have to be a compromise of 

the best properties obtainable with fairly simple process routes. For 

S i 3N4~based materials in particular this includes promoting the 

formation of a liquid so that liquid phase sintering may occur and 

adapting the final microstructure to accommodate or modify the liquid 

residues as best as possible. Fortunately, with silicon nitride,

inter-solution of some of the added oxide species to form sialon 

permits a greater degree of flexibility to enable retention of more of 

the pure nitride properties and such materials have now reached a 

stage of commercial availability within their development.

The Lucas Syalon* ceramics exemplify the current range of sialon 

materials. Pressureless-sintered with a yttria additive, 3 versions 

are available:

Syalon 101 - a B'+glass material with excellent properties up to 

about 1000°C

Syalon 201 - a B'+YAG material formed by a heat treatment re­

crystallisation process, and

Syalon 501 - a spark machinable version of 101 with 50 wt.% TiN added.

The level of performance that the monolithic materials have now 

reached in relation to the structural ceramic development objectives, 

to fulfill applications such as in gas turbines, outlined in the 

1970's is illustrated in Figure 11.19. It is evident that in the high

Syalon is a registered trade-mark of Vesuvius Zyalons Midlands 

Ltd (formerly Lucas Cookson Syalon Ltd.).
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Figure 11.19 Comparison of the strength-temperature relationships for 
various monlithic ceramics and the development objectives 

outlined in the 1970's 
(after Lewis, 1987)



stress/high temperature regime sialon materials are still incapable of 

performing satisfactorily. The residual intergranular phases still 

remain the inhibiting factor. Even for Syalon 201, at 1300°C in an 

oxidizing environment the silica layer formed at the surface reacts 

with the YAG causing it to revert back to a liquid and then the normal 

catastrophic processes ensue. Any developments which can further 

reduce the liquid volume fraction and/or incorporate it into the Si3N4 

structure itself must be seen as productive in trying to improve the 

usefulness of these materials in this upper operating region.

9. Specific Objectives

The specific objectives of the present research were:

1. To produce a B'+glass material with properties comparable to 

Syalon 101 prepared with Nd203 as the sintering additive

2. To develop an Nd203~based material for use at temperatures above 

1000°C.

3. To improve the performance of the existing high temperature 

sialon materials by incorporating as much of the sintering 

liquid as possible into the silicon nitride structure to form 

O'*B' materials.

4. To examine the feasibility of producing such materials on a 

commercial basis.

5. To evaluate these materials in industrial applications alongside 

those currently used.
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MATERIALS, PREPARATION AND EXPERIMENTAL PROCEDURES

1. Powder Specifications

The compositions investigated contained mixtures of Si3N4, 21R 

polytypoid and AI2O 3 powders with either Y2O 3 or Nd2°3 as the 

densification additive. The powder suppliers, particle sizes, and 

impurity contents are listed in Table III.l. Where the particle sizes 

needed to be measured this was performed using a Microtrac Laser 

Particle Size Analyser.

The Nd2Û3 powder was calcined at 1000°C for 3 hours before use 

and stored in a desiccator containing silica gel. All of the other 

powders were kept in the plastic containers in which they arrived.

2. Preparation of Compositions

The starting compositions were calculated taking into account 

the amount of surface oxide on the silicon nitride and polytypoid 

powders claimed by the manufacturers. For the Nd2Û3 substituted 

Syalon-equivalent materials the increase in molecular weight was also 

taken into consideration. The powders were weighed to an accuracy of 

tO.Olg. Small batches of 100g were ball-milled for 72 hours in 0.5 

litre capacity rubber pots using 1.08kg of 5mm diameter Syalon 101 

grinding media with 310 ml of isopropanol as the mixing medium. For 

the trial components larger batches of 1.4kg were prepared in 5 litre 

polyethylene tubs with 6kg of media and 2.5 litres of isopropanol, 

again milling for 72 hours. In both cases the tubs were rotated at 60 

rpm. Measurements before and after tumbling showed that media 

•pick-up' was typically around 0.5% of the powder charge weight and 

that contamination from the vessels was negligible (<0.1%). After
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ind dried in amixing, the slurry was passed through a 4SUm siev< 

fan-assisted oven for 24 hours at 110°C. Finally, the powder, which 

had now become agglomerated, was forced through an 850 lim sieve before 

being isostatically pressed to 20,000 psi in sealed rubber bags.

3. Pressureless-sintering and Heat Treatments

The compacts were lightly sprayed with a 50/50 BN/Si02 mixture, 

to provide a protective coating and inhibit Si02 loss during firing, 

then placed in a Syalon-lined graphite pot and sintered in 1 

atmosphere of pure nitrogen in a Wentgate VF0808 microprocessor 

controlled carbon resistance sintering furnace.

Post-sintering heat treatments were carried out following a 

similar routine except that the billets were not sprayed before being 

loaded into the furnace. Also the cooling rate was controlled where 

necessary. Typical sintering and annealing temperature cycles are 

shown in Figure III.l.

Preforms for the components were pressed in large rubber bags in 

the same way as before and partially fired to give more 'green state' 

strength. This allowed them to be machined nearer to the final shape, 

using conventional techniques, before sintering in the normal way. 

This process, known as 'bisque-firing', is common practise in the 

porcelain ceramics industry and its use has been adapted for Syalon 

ceramics to minimise the amount of final diamond machining required.

4. Density Measurements

Densities were determined using the bouyancy method outlined in 

British Standards BS 1902-308 (1989). The samples were weighed in air 

(Wft), and suspended in water (W«) , and the density (P) calculated
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Fig. IU.1 Scheiatic flqiresen.tations of 
laical Sintering and Annealing Cycles

Sintering Cycle -  Unnealing Cycle



according to

«a
P = _____ Pw

wA-ww

where pw is the specific density of the water at the ambient 

temperature.

For more porous specimens with a continuous network of porosity, 

for example as with the as-pressed or partially fired billets, the dry 

weight was first noted (W^) then the specimens boiled for 1 hour in 

de-ionised water. After cooling, the suspended weight (W«) was 

measured followed by the saturated or damp weight (Wq ), with the 

excess water carefully wiped off the surface, and the bulk density 

(Pb ) obtained from

pB = _____ Pw (III.Ü)
WD-WW

Finally, the results were compared with an estimate of the maximum 

theoretical densities calculated using the method of mixtures.

5. Microstructural Characterisation

5.1 X-Ray Techniques

The crystalline phases in the materials were identified using 

X-ray powder diffraction techniques. Diffraction spectra were 

obtained with a Phillips PW 1700 X-ray Diffractometer using copper Ka 

radiation of wavelength 1.54184Â over a 20 range of 8° to 84° 

(Debye-Scherrer technique). The phases were identified by reference 

to the JCPDS (1975) powder diffraction index. For the Nd phases which 

were not listed the spectra were compared with those of the yttrium 

compounds. In general, the Nd phases have the same structure as the
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corresponding yttrium ones: the peaks have similar intensities but the 

larger Nd atoms result in slightly expanded unit cells and the peaks 

are shifted to larger d-spacings, accordingly, and hence 20 values.

The relative proportions of the a and 6 species were determined 

from the two most intense peaks using the relationship determined by 

Grand et al. (1979):

I {B} ♦ I (S)8 = 101 210 (Ill.iii)
° 'lOit“! * W “ ’

The amount of Y2O3, AI2O3 and 21R polytypoid remaining in the samples 

was estimated by comparing the relevant peak heights with those of 

traces of the 'as-mixed' compositions. The amount of other phases 

present was estimated from their respective peak heights in 

conjunction with their apparent abundance when viewed under the 

microscope (estimated accuracy ; < 10%).

Accurate unit cell dimensions (10.002À) were obtained with a 

Hàgg-Guinier focusing camera. Again monochromatic Cu Ka radiation was 

used to produce diffraction spectra from which the positions of the 

X-ray reflections were measured and the d-spacings determined.

In all cases the samples were crushed using a ballistic Tema 

Mill and the powders contained small traces of WC from the chamber 

lining.

5.2 Electron Microscopy, Diffraction and Microanalysis

Samples for SEM analysis were mounted in conducting bakelite 

resin and diamond polished to a Lum surface finish. A thin coating of 

carbon was evaporated onto the surface, using an Edwards vacuum 

coating machine, to prevent 'charging'.
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Microstructural analysis was carried out using a Cambridge 

Stereoscan 250 Scanning Electron Microscope, in both the secondary 

electron and back scattered imaging modes, in conjunction with a Link 

Systems 860 Energy Dispersive X-ray Analyser (EDAX).

Transmission specimens were prepared by cutting thin slices 

(0.2mm thick) from test bars (see section III.6) using a Capco annular 

diamond saw. These were then ground to “50)im thickness and finally 

diamond polished to a lym surface finish on both sides. After 

mounting on brass rings the sections were thinned in an argon-ion beam 

thinner, with the beam at an incident angle of 20°, to produce an 

electron transparent region. Again, a thin carbon coating was applied 

to prevent 'charging'.

Electron diffraction and microstructural analysis were conducted 

using a Jeol 2000 FX Transmission Electron Microscope, and a Jeol 100C 

instrument fitted with a scanning (STEM) attachment and an EDAX 9100 

Energy Dispersive X-ray Analyser for semi-quantitive composition 

analysis. (Accuracy of results typically + 2-3%.)

6. Mechanical Property Testing

All of the mechanical property measurements were carried out on 

test bars machined from the bulk of fully dense billets. 7mm x 4mm 

rectangular bars for the fracture toughness tests and 4mm x 4mm for 

modulus of rupture were cut from the length with a diamond saw, then a 

further 0.5mm was ground off each face to ensure squareness. Finally, 

the bars were polished to 10)im finish to remove any major surface 

flaws which the machining processes may have introduced.
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6.1 Fracture Toughness

Fracture toughness measurements were carried out at room 

temperature using the single-edge notched beam (SENB) technique 

described by Srinivasan and Seshadri (1981). The specimens were 

•notched' to a depth of 1.75mm (30% of the bar height) with the Capco 

saw (blade width 0.45mm) before being polished. The samples were 

fractured in a specially constructed 4-point jig (inner span 10mm, 

outer span 20mm) using an Instron 1122 unit with a crosshead speed of

0.5mm min-1. The Klc values were determined from the load at failure 

using the equation

KIc - 3PIL-X1 f 3.B6
2bd2 l

6.15 a ♦ 21.7 a 2 } * 
d d [

where

P = applied load 

b = specimen width 

d = specimen height

L = outer span 

1 = inner span 

a = notch depth

after Brown and Srawley (1966).

6.2 Modulus of Rupture

MOR tests were conducted using the 3-point bend technique 

(support span 20mm). Room temperature tests were carried out using 

the Instron 1122 unit (crosshead speed 0.5mm min-1) interfaced to a 

Hewlett-Packard HP85 computer for automatic fracture stress data 

tabulation. 16 results were obtained for each sample type and the 

associated Weibull modulus determined.

High temperature MOR tests were performed on an Instron 4301 

unit fitted with a SiC resistance furnace. The samples were allowed
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to 'soak' at temperature for 15 minutes before being broken as before. 

The fracture stress (0 ) was calculated from the load at failure (H) 

following the simple beam theory derivation.

O = 3 Wa (III.v)
2 bd2

where a is the support span, b is the specimen width and d the 

specimen height.

6.3 Hardness

Hardness tests were carried out on the broken pieces of room 

temperature MOR bars using a Rockwell Hardness Tester (A scale; 60kg 

load using a ball indenter). Whilst this method was quick and 

required no extra material or preparation, the hardness of sialons is 

right at the top of this scale and the technique really serves more to 

rank these materials rather than to provide quantitative values. For 

a more informative comparison the values were converted to equivalent 

Vickers micro-hardness (kg mm-2).

Some of the indentations were examined to determine how the 

materials had deformed under the applied load. Unfortunately this was 

not as successful as hoped. The indent produced with a 60kg load was 

generally in the form of a crater, 300-400 urn across (cf 2.3 urn 

average grain size), with a surrounding disrupted zone which showed 

little or no evidence of surface cracking.
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6.4 Creep Testing

Tensile creep tests were performed at temperatures of up to 

1327°C using the 4-point bending mode (inner span 25.4mm outer span 

50.8mm) with a constant stress of 77 MPa. Loading was achieved by a 

lever system which amplified the load at the specimen by 5 times. The 

deflection between the inner support points was measured via an 

alumina rod connected to a transducer and used to calculate the % 

strain induced. The furnace was taken up to temperature and the bar 

allowed to 'seat-in* for 24 hours under a preload of lOOg prior to 

testing.

6.5 Oxidation Resistance

Oxidation tests were carried out for a period of up to 1000 

hours at 1300°C. Broken pieces from MOR bars were placed on an 

iridium sheet inside an air oven and removed at time intervals. The 

specimens were then sliced and examined in the SEM after preparing in 

the normal way. Sections from the creep bars were also examined for 

comparison.
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THE Nd-S i-Al-O-N MATERIALS

The Nd-sialon compositions investigated are listed in Table IV. 1 

together with sintering temperatures, firing times, and reaction 

products.

1. Material Processing

Initial attempts at fabricating sialons with H.C. Starck LC 10 

grade silicon nitride powder resulted in materials of low density (< 

3.10 g cm-3). A 101-type sialon (composition 3 Table IV.1) was 

prepared with 7.7 equivalent wt.% Nd203 and sintered using the normal 

temperature cycle for yttrium-based Syalon 101. Weight loss on 

sintering was quite high at 2.3% and close examination of a fracture 

surface showed that the material contained areas of high porosity, 

consistent with some gas evolution during the warm-up process (Figure 

IV.1) XRD analysis showed that the raw Nd203 powder was approximately 

50% neodymium hydroxide, Nd(OH)3- Neodymia is hygroscopic and once 

open to the atmosphere hydrolyses completely over a period of about 1 

month. Thermogravimetric analysis showed that the hydroxide was 

converted to the monohydrate (NdOOH) above 340°C and returned to its 

pure oxide form above 550°C (figure IV.2). The pale mauve 

•as-received* powder turned bright turquoise-blue during this burn-out 

process. The weight losses measured in each step corresponded 

accurately with those calculated for the removal of water molecules 

according to the equations

2Nd(OH) 3 ■* 2NdOOH ♦ 2H2<3 t (IV.i)

and

2NdOOH ♦ Nd203 + H2O t (IV. ii)
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As a result all the Nd203 powder was calcined by heating at 1000°C Eor 

3 hours before use. (It was found that powder treated in this way 

could be stored in a desiccator for several months with no deleterious 

effects). This greatly improved the density (3.28 g cm-3) although 

some small areas of porosity still remained. Heat treating the Si3N4 

powder for a few hours at 1600°C further improved matters but only 

changing to Cookson or Kennametal silicon nitride completely 

alleviated the problem.

Starck silicon nitride always contains some fluorine, believed 

to originate from a cleaning process in which the silicon powder is 

leached with HF to remove excess oxygen prior to nitriding. It appears 

that this reacts with the water or hydrogen given off by the hydroxide 

to form a weak acid which volatilizes as the billet is heated up and 

‘out-gasses' leaving the holes. All further compositions were made up 

using either Cookson or Kennametal silicon nitride powder.

Other problems were observed upon early microstructural 

examination of the materials. Large neodymium-rich areas along with 

substantial glass deficient regions were discovered indicating poor 

dispersion during mixing. This was attributed to the rather large 

grain size of the Nd203 powder. Microtrac tests showed the particles 

to be of the order of 2-6 Um which formed agglomerates 2-3 times this 

size during the burn-out treatment. By milling the as-received powder 

the average particle size could be reduced to approximately 1 Uni which 

subsequently gave rise to a more homogeneous material reflected by an 

increase in mechanical properties (see later Section VI.2).

2. Microstructure of the As-sintered Materials

Upon microstructural examination, it was clear that the 

transmission specimens did not thin evenly during the preparation
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stage resulting in 'hillocks’ or regions of varied thickness in the 

images (Figure IV.3). This made the study of large areas difficult.

The general microstructural appearance of the as-sintered 

materials was very similar to that of equivalent yttrium based 

compositions except that neodymium atoms are more strongly electron 

absorbing and this gives rise to better contrast in the transmission 

electron microscope. The bulk microstructure consisted mainly of 

hexagonal 6~sialon grains set in a neodymium glass matrix (Figure 

IV.4). As in their yttrium B'-glass counterparts the grains 

themselves have an essentially bi-modal size distribution. Large 

prismatic crystals, typically 1 ym across the basal plane and up to 10 

ym in length, form a primary framework with smaller crystals, up to 2 

ym in size, filling the bulk of the intersticies. The larger crystals 

nucleate early on in the reaction and grow rapidly when the liquid 

becomes available, often trapping the pore or particle upon which they 

initiated. Much evidence of these 'pre-cursors' appears as clusters 

of encapsulated Nd-rich globules or droplets indicating that the 

B'-grains had grown around small crystals of an intermediate phase 

which had precipitated from the liquid during warm-up and re-melted 

with some of the soluble constituents diffusing into the grain later 

on (Figure IV.5). This elongated grain growth behaviour stops once 

the grains impinge upon one another. All grains then continue to 

precipitate and grow fairly steadily until full density is achieved.

Some grains 80-100 ym in length were also visible, especially in 

the early materials. These are often seen in the yttrium sialons but 

were in much greater abundance here. They are believed to stem from 

large liquid-rich regions which develop either because of poor mixing, 

agglomeration of the Nd2<33 powder when the slurry was dried, or uneven 

heating.
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Figure IV.3 Example of uneven ion-beam thinning, characteristic of the 
Nd-based materials





Figure IV.5 Example of 0' nucleation on intermediate phases formed during 
the warm-up cycle and subsequent entrapment with 

rapid grain growth

Figure IV.6 Small areas of crystalline Iron Silicide (FeSi^) in the matrix 
glass resulting from iron impurities in the raw Kennametal 

silicon nitride powder



There were also numerous small areas (1-2 Um) of matrix phase in 

the Kennametal silicon nitride based materials, of lighter contrast 

than the glass, which were found to be Iron Silicide (FeSi2) (Figure 

IV.6). These probably result from iron impurities introduced during 

the manufacturing process; - Kennametal are known to use steel balls 

to mill the raw silicon powder before nitriding.

EDAX analysis of the B'-crystals gave the aluminium substitution 

levels outlined in Table IV.1 (end column). The values obtained are 

in good agreement with those obtained for equivalent yttrium-based 

compositions. In general, increasing the amount of 21R polytypoid in 

the starting composition led to an increase in the z-value of the 

sialon. The glass composition was also found to depend on polytypoid 

level; materials with low additions tended to have glasses which were 

silicon rich, with roughly equal amounts of Nd and A1, whereas 

increasing the polytypoid content, solely at the expense of Si3N4, 

gave a glass which contained proportionately more aluminium and 

nitrogen, although the actual amount of glass present appeared to 

decrease. In current understanding of the Y-Si-Al-O-N system, the 

primary role of the polytypoid is in forming high z 8'-sialon. Once 

the Y2°3_A12°3“sio2 eutectic liquid has formed a number of typical 

reactions which may proceed are as follows:-

The 21R polytpoid may dissociate to form B' according to the 

equation:

6A1N.S102

2IR polytypoid

- 1450°C

-*■ 4A1N ♦ 0.5 (Si2Al404N4) (IV.iii)

in situ B' z = 4
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AIN may react with silica to form more high z S':

4 AIN ♦ 2Si02 Si2Al404N4 (IV.iv)

B' = 4

or the silicon nitride may dissolve and react to give S’ via the 
relationship

(see phase diagram representations Figure IV.7).

In reality the sintering process is a mixture o£ these and many other 

competing reactions, the mechanisms o£ which are still conjecture, but 

the overall view is that as the individual reactions proceed the high 

z 8’ is effectively diluted by solution and reprecipitation of the 

bulk Si3N4 until equilibrium is reached. It appears that similar 

reactions occur in the Nd-Si-Al-O-N system; increasing the polytypoid 

content leads to a higher overall z value with a reduced final glass 

volume.

The materials with low AI2O3 content always contained some 

Neodyraium-nitrogen-melil ite (Nd2<33.Si3N4 ) . Reducing the amount of 

AI2O3 further or increasing the amount of Nd203 resulted in more 

melilite being formed and left some unreacted a-Si3N4. It had already 

been seen that Nd2C>3 reacts readily with Si3N4 to form melilite 

(Composition 1 Table IV.1) but its formation during the firing of 

these compositions is contrary to that observed with yttria. As 

outlined in Section II.6.2, Liddell (1987) has shown that there is an 

extensive 8 ‘+melilite+liquid region in the Nd-Si-Al-O-N system and

Si3N4 ♦ AIN «■ AI2O3 •* Si3Al303N5 (IV.v)

B' z = 3
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6A1N.S10 4A1N + 2S10 Si Al O N

2IR polytypoid

4A1N + 0.5(Si2Al404N4)

Figure IV.7 Illustration of some of the possible reactions for generating 
high z 0' - sialon



these compositions must simply lie within this phase field (see Figure 

IV.8). The 201-type composition (8 wt% polytypoid, 6 equiv. wt% Nd2<33 

and 4 wt% AI2O3) formed only B'+glass and must lie close to the edge 

of this 3-phase region, since increasing the amount of Nd2<33 slightly 

pushes the composition over the boundary line to where the 

precipitation of melilite is favoured; in a similar way decreasing the 

amount of AI2O3 produces the same overall effect.

In the case of varying only the polytypoid level the description 

is a little more obscure. The melilite only occurred in materials 

with 8 wt% polytypoid or more and where the amount of Nd203 or AI2O3 

had been modified as above. It appears that the polytypoid provides a 

certain amount of nitrogen for the liquid, below which melilite 

precipitation cannot take place, the composition is shifted too far 

from this phase field in the quaternary diagram (see Figure IV.9) The 

inevitable formation of melilite, when trying to obtain higher z B* or 

prepare compositions on the B'-NdA103 plane, must simply reduce the 

amount of liquid available thus preventing the full <X-Si3N4 ■* 

B'-sialon transformation from taking place.

3. Annealed Materials

Post-sintering heat treatments were carried out isothermally for 

5 hours or using the standardised annealing cycle for Syalon 201; 

1250°C/7 hrs followed by 1400°/5 hrs (see Figure III.l). The samples 

were then allowed to cool naturally or with a controlled linear 

decrement over a timed period. X-ray diffraction techniques were used 

to identify any secondary crystalline phases present. The results 

from the range of varying polytypoid materials heat-treated with the 

standard cycle are presented in Table IV.2 and the data from fixed 

compositions with different annealing cycles in Table IV.3. Some
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At 1350#C a glass of composition such as at P in the 
3' - YAG plane devitrifies to give 0'*YAG (as indicated 
by the arrows). In the 0' - NdAlO plane Nd-N melilite 
interupts the simple 0'+liquid field such that upon 
heat treatment a glass of composition, such as at 
Q, gives Nd-N melilite and NdAlOj, and no 0'.
Hence, forming a pure 2-phase fl'+NdAlOj 
material is not possible.

*4 Nd4S,°8

12H -
15R - 
A -

12H polytypoid 
15R polytypoid 
apatite 
liquid 
melilite 
Nd YAM

(after MHdell. 1QH7\ 1750"C



Nd203

Figure IV.9 Illustration of how increased Nd203 content shifts the
average composition C into the 3'+Nd-N melilite phase field. 
With insufficient polytypoid, C', melilite precipitation is 

avoided.
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Table IV.3 Crystalline phases identified in the Nd-sialon materials after 
annealing (various cycles)

Comp Anneal Cycle Crystalline phases identified
(Ref Tab IV.1) °C/hrs

2 (85 wt.Z Si3N4 5 7.7 eq.Z N d ^ J  4 wt.Z A l ^  
Contained only 0' after sintering)
1000/5
1050/5
1100/5
1150/5
1200/5
1250/5
1300/5
1350/5
1400/5

0'
0'
0' ♦ Nd Si Al 0 N (tr-f)
0' + Nd3Si A1,0“ !T (tr++) + unknown (tr)
0' ♦ Nd3Si3A l V V  (vw) ♦ apatite (vw)
0' + Nd Si3A l V 2N2 (vw) + apatite (vw)
0' ♦ N d ' S i ' A l V V  (vw) ♦ apatite (vw)
0' + Nd-N-apatite (w)
0' + Nd-N-apatite (w)

(82 wt.Z Si3N4; 3 wt.Z 21R; 7.7 eq.Z N d ^ J  4 wt.Z A^O, 
Contained only 0' after sintering: Syalon 102 equivalent)
1000/5 0' + Nd Si
1000/10 0' + Nd3Si*
1050/5 0' + Nd3Si3
1100/5 0' + Nd3Si'
1150/5 0' + Nd3Si3
1200/5 0' + Nd3Si3
1250/5 0' + Nd3 Si3
1300/5 0' + Nd,Si,
1350/5 0' ♦ Nd-N-a
1400/5 0' + Nd-N-a

Ai 0 
A l V  
Al 0
A lV
Ai 0 
Al 0
Î Î ’S*

N-ipahUi»w)
(■) +■ apatite (tr) 

NdAlO (vw) 
NdAlO3 (vw)

10 (79 wt.Z Si3N4; 8 wt.Z 21R; 6 eq.Z N d ^ j  4 wt.Z A1203 
Contained 0' only after sintering: Syalon 201 equivalent)
1000/5 0' + wollastonite (■)
1050/5 0' + wollastonite (•J + Nd Si Al 0 N, (vw)
1100/5 0' + wollastonite (m) + Nd3 Si Al'O N, (V)
1150/5 0' + wollastonite (m) + Nd3 Si a i3o N
1200/5 0' + wollastonite (m) + Nd3 Si ai3o N2
1250/5 0' + wollastonite (m) + Nd3 Si ai3o N2
1300/5 0' + wollastonite (m) + Nd3 Si ai3o N2
1350/5 0' ♦ NdAlO (s)
1400/5 0' + NdAlO3 (s)

20 (82 wt.Z Si3N4; 8 wt.Z 21R; 10 wt.Z Nd203
Contained 0' + melilite ♦ NdAl03 ♦ a (tr) after sintering) 
1250/7 1400/5 0' + NdAlO (m) + wollastonite (w)
1400/10 0' + NdAlO3 (m) ♦ wollastonite (m)



phases existed in such small quantities that peaks on the 

diffractometer traces were only just detectable.

3.1 Microstructure of the Annealed Zero Polytypoid Materials

XRD analysis of bulk samples of the materials with no polytypoid 

added to the starting mix revealed small traces of a new phase of 

composition Nd3Si3Al3(0,N) (discussed later in Section IV.3.2.), after 

annealing for 5 hours at 1100°C. After 5 hours at 1150°C slightly 

more was detectable together with minor traces of an unidentified 

phase. At 1200°C a small amount of Nd-N-apatite (Nd^o(SiC>4)gN2) was 

recrystallised. This was found to be highly segregated, only occuring 

in rather large glassy areas adjacent to the 80-100 lim B'-grains, and 

usually as single crystals 2-6 um in size (Figure IV.10). nearest 

neighbours were typically 5-15 lim away with no evidence of similar 

long-range orientation. This isolated behaviour is believed to be the 

result of micro-inhomogeneity. Much of the liquid which develops 

during sintering is absorbed by the growth of the B' crystals, but on 

a microscopic scale the rate of removal of the stoichiometric elements 

from the surrounding matrix may vary from grain to grain. In 

particular, studies of the reaction sequences in the y-Si-Al-O-N 

system have shown that the Si3N4 ■* B'-sialon reaction starts to occur 

at a lower temperature than the 21R •* high z 8' reaction during 

warm-up (see section V.3). The B'-grains which form in the first 

•pockets' of liquid to appear must obtain their A1 and O directly from 

the eutectic liquid rather than from the dilution of high z 8 ’ • As 

these early crystals grow, the liquid at their interfaces must become 

aluminium deficient and eventually be unsuitable for more 8' 

precipitation. Even though there may be some inter-diffusion later 

on, many of these regions remain large enough and significantly
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Figure IV.10 Inhomogeneous precipitation of the Nd-N apatite phase.
A and B are single Nd-N apatite crystals.



different in composition for Nd-N-apatite to be favoured as a product 

of crystallisation from the resultant glass upon annealing.

This timing of competing reactions may also explain the 

evolution of more 80-100 ym grains in Nd-containing materials than in 

the corresponding yttrium sialons. The solution reprecipitation 

reaction may only require the presence of a liquid to proceed, say 

above 1300°C; whereas the 21R reactions may be constrained until 

enough thermal energy is supplied for activation, whether there is 

liquid present or not. If this were the case the lower eutectic

temperatures in the Nd-system would allow the first reactions more 

time to occur before the 21R reactions could start. Also, increasing 

the temperature during the interim stage may provide additional 

kinetic energy for grain growth.

The apatite peaks on the diffractometry traces were shifted 

s l i g h t l y  i n d i c a t i n g  l a r g e r  d - s p a c i n g s  t h a n  e x p e c t e d .  

Semi-quantitative EDAX analysis showed that the apatite phase 

contained approximately 3.5 At% aluminium although there seemed to be 

a fair degree of variation from grain to grain, again suggesting some 

non-uniformity. By contrast, in the yttrium system Y-N-apatite 

(Y 10(Si 0 4 )6 N 2 ) has a range of composition extending towards 

2Y2O3.3S i02 and is known to accommodate some A1 and O in place of Si 

and N with a corresponding change in lattice parameter.

The two phases were found to co-exist, always with some residual 

glass upon annealing between 1200°C and 1350°C. Increasing the 

temperature tended to result in more apatite but with the same amount 

of new phase. When annealed at 1400°C, regardless of hold time or 

cooling rate, only glass and an increased amount of apatite remained. 

It would appear that the thermodynamic potential for the formation of 

Nd-apatite is high. Whilst some apatite precipitates at the lower
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temperatures more thermal energy is required to speed up the rate of 

recrystallisation in order to obtain significant amounts within the 5 

hour annealing cycle. It is likely that when the annealing 

temperature is increased to above 1350°C the new phase melts or 

dissociates and re-dissolves to form more glass. This must change the 

composition of the existing glass such that the evolution of more 

apatite occurs, which in turn shifts the glass composition probably by 

making it Nd deficient so that the re-precipitation of the new phase 

becomes unfavoured upon cooling.

3.2 Microstructure of the Annealed 3 wtt Polytypoid Materials

In the materials with 3 wt% 21R polytypoid added to the starting 

mix all of the glass was recrystallised to give a new phase, of 

composition Nd3Si3Al3(0,N), when annealed between 1000°C and 1350°C 

(see Figure IV.11.). No variation in composition or volume per cent 

present was found, whatever the annealing temperature, although the 

sample heat-treated at 1000°C had to be reheated for a further 5 hours 

for the transformation to become complete. This new solid solution 

phase retained the morphology of its parent glass, but unlike YAG in 

the yttrium sialons did not maintain the same orientation over large 

areas. What initially appeared to be single crystals contained 

segments which diffracted at different tilts (Figure IV.12). Also, 

the glass was fully recrystallised in the triple points. There was no 

evidence of the small traces of residual glass containing all the 

unwanted metallics at the B '/B'/crystal convergence points, a 

characteristic always seen in Syalon 201. Dark field imaging using 

diffracted beams from the new phase further revealed that the thin 

layers of glass sandwiched between adjacent grains had also been 

devitrified. This happens to some extent in the B'/YAG materials.
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Figure IV.11 Microstructure of the annealed Nd Syalon 101-type material 
showing compositional analysis and X-ray spectra of the 

crystalline NdjSijAlj(0,N) matrix phase

(IOC)9



Figure IV.12 Examples of segmentation within the NdjSijAljiO^) phase 
indicative of high free energy for nucleation



where the angle between the grains is not too acute and the radius of 

curvature of the precipitating YAG crystal front is not restricted 

from further growth by the adjoining B'/B' boundaries. In this 

material, however, all of the triple points appeared to be 

crystalline. Like yttrium, the neodymium atoms cannot be accommodated 

in the B' structure itself and, since there was no trace of any 

residual glass it seemed reasonable to assume that the composition of 

the new phase must be close to that of the original glass and 

certainly be able to absorb all of its constituents. The as-sintered 

glass was found to be very similar in compo s i t i o n  to the 

recrystallised product but slightly more silicon rich, although this 

could have been due to the electron beam fluorescing surrounding 

B'-sialon grains (Figure IV.13). No shift in z-value of the 8' phase 

was detected upon recrystallisation, as observed in similar 

circumstances when excess Si and N diffuse back into the B‘-grains 

when the residual glass is devitrified to YAG in Syalon 201. Hence, 

any migration of Si and N out of the glass in this material must have 

been negligible. It follows that the final crystal composition must 

lie inside the glass forming region of the Nd-Si-Al-O-N system (see 

Figure IV.14). Multiple nucleation in the glassy triple points 

indicates that this recrystallisation at constant composition is easy 

to initiate and the process is well-advanced even after only a short 

anneal time. The energy threshold for nucleation must be low and the 

energy requirements for crystal growth must be relatively small 

involving only short range rearrangement or diffusion of the species 

rather than long range as in the YAG system.

From analysis of the XRD traces the Nd3Si 3AI3(O,N) phase 

appeared to have a body-centred cubic crystal lattice with lattice 

parameter a = 9.756 A. Liddell (1987) has recently prepared this
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Glass

Figure IV.13 EDAX spectra from the glass in the as-sintered Nd Syalon 
101-type material (A) and from the crystalline matrix in 
the heat-treated version (B) are similar which shows that 
recrystallisation occurs at constant composition.



Figure IV.14 The Nd-Si-Al-O-N system, illustrating how the Nd Si Al (0,N) 
composition must lie within the liquid forming region or be 
very close to the liquid boundary. (Liquid region outlined 
based on the Y-Si-Al-O-N liquid region, after Drew 1980, 
expanded towards the nitrogen end of the JSnecke diagram)



phase in isolation and suggests that its structure is related to that 

of *2°3 (cubic with a - 10A) with some atomic sites equivalent and 

others being shared by the Nd and A1 atoms; the level of sharing 

dependent upon the unit cell contents. When considering this 

formulation discrepancies arise because traces of the lines normally 

excluded by the crystallographic rules for body-centred cubic 

structures are visible on the HAgg-Guinier diffraction photographs, 

and the intensities of other lines are stronger than expected (Figure 

IV.IS). In particular, the N = 28 and N = 60 lines (where N = h2 * k2 

♦ l2 and hkl are the Miller indices of the xyz co-ordinates of the 

plane) can clearly be seen in the spectrum from the single substance. 

Unfortunately in the sialon material this intergranular phase only 

occupies around 10 vol% and the N=28 line, which is already faint, is 

not visible. In addition, the N=60 line, if it is present, is masked 

by the much stronger 8'(212) peak. The N=10, 30 and 42 lines though 

in both cases are stronger than expected. Fernie (1990) has now 

unequivocally shown this phase to be hexagonal with lattice parameters 

a = 7.987 A, c = 4.874 A by obtaining a series of electron diffraction 

p atterns at set angles, tilting about the pole axis, and 

reconstructing the 3-D reciprocal lattice. Diffraction patterns 

obtained from localised areas in the present materials are in 

agreement with this hypothesis (Figure IV.16) and it now appears that 

the original BCC structure forms a larger sub-lattice.

Spacie et al. (1985) further claim that the phase is an oxide, 

rich in aluminium, probably a low temperature form of perovskite 

NdA103. More recent work by Fernie et al. (1990) has shown that it 

contains a significant amount of nitrogen and establishes the 

composition as being Nd3Si3Al30j.2N2 (see Figure IV.17 for position in 

the JAnecke diagram). Accurate determination of the nitrogen content
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Figure IV. 17 Position of the NdjSijAljO^Nj , Nd3 ,Si4Al2 ,(0,N) and 
Nd5Si#Al6(0,N) phases within the Nd-Si-Al-O-N system, 

(after Fernie et al., 1990)



of this phase in the present work proved difficult because of having 

to locate areas large enough to probe without being influenced by 

nitrogen from the surrounding 6'-grains, but all measurements did 

indicate a substantial amount.

The stability of this phase, up to 1320 - 1330°C, is remarkably 

high. Spacie (1984) reported similar phases in the yttrium and cerium 

Sl-Al-O-N systems (designated Y and Ce U-phase respectively) upon 

annealing at 1050°C but these were only stable up to 1200°C. 

Unfortunately, these phases existed in such small quantities in 

Specie's materials that full chemical analysis was impracticable, but 

again both were indexed as having BCC unit cell structure with a 

dimension approximately equal to 10 Á. From compositional make-up it 

was concluded that both were rich in aluminium and oxygen. Whilst the 

diffraction data obtained by Fernie (1990) and in the present work are 

consistent with the phase structures reported by Spacie (1984) and 

Spacie et al. (1985) the discrepancy over composition still remains 

unresolved. It is important to add here though that in the 

contradicting reports the phases were formed in an oxide glass 

environment rather than in-situ in a Si3N4~based ceramic fired in a 

nitrogen atmosphere. The new Nd-phase identified here has repeatedly 

been analysed as being of composition Nd3Si3Al30i2N2 and hence clearly 

contains a significant amount of nitrogen.

Fernie et al. (1990) also report the existence of two other 

phases of approximate compositions, Nd3.5S i 4A 12.5<O ,N ) and 

Nd5SÍ9Al6(0,N), lying within the Nd-Si-Al-O-N glass forming region 

(see Figure IV.17). Initial investigations have shown these phases to 

be stable to temperatures of 1150-1250°C. With a higher silicon 

content than the Nd3Si 3Al30i2N2 phase they are more likely to be 

recrystallised in an environment richer in silicon than with the
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current Nd3SÍ3Al3<3i2N2 parent glass. The traces of unidentified phase 

recrystallised in the zero polytypoid material upon annealing at 

1150°C are probably associated with one of these compositions.

As with the zero polytypoid materials, heat-treatments above 

1350°C gave localised areas of Nd-N-apatite, but this time small 

amounts of neodymium alumínate (NdA103) were also present. If the 

sample was re-heated or allowed to cool slowly between 1350°C and 

1000°C some of the new phase reappeared. Fernie and Leng-Ward (1989) 

have examined the stability of this phase in isolation and shown that 

it melts at approximately 1320°C; if allowed to cool naturally the 

majority (- 90%) recrystallises; if rapidly quenched the 'melt' 

subsequently remains as a glass.

Samples from creep bars held at 1200°C under a tensile stress of 

77 MPa for 70 hours were examined to see if there was any change in 

the microstructure. Figure IV.18 shows evidence of 'rounding' at the 

triple points and de-faceting of the contacted B'/B'/Nd3SÍ3Al3(0,N) 

boundaries. Lewis and Lumby (1983) first reported this kind of 

phenomena in connection with B'-YAG sialon ceramics after creep 

testing at 1277°C. Near the surface of the bar the non-stoichiometric 

metal ions diffuse out to the oxide layer leaving pure solid/solid 

interface contacts. To alleviate the imbalance in interfacial 

energies acting along the B'/B' and B'/YAG interfaces the YAG crystals 

are transformed to rounded, roughly equiaxed grains by diffusive 

rearrangement. (The mechanism is described in detail in Section V.5.) 

The process is slow, normally reaching the fully equilibrated 120° 

state over a period of a few hundred hours depending upon the ambient 

temperature. It would appear that a similar mechanism is prevalent 

here, but at 1200°C the rearrangement process is particularly slow. 

Even with fewer unwanted metallics (the Nd phase has absorbed most of
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Figure IV.18 Morphological rearrangement of the triple points in the
NdJSiJAljOi2N2 phase after 70 hrs exposure at 1200°C. 'Rounding' 
results from the increased solid/solid contact due to complete 
crystallisation and subsequent equilibriation of the interfacial 

energies



them) and consequently more solid/solid contact at the peripheries the 

rearrangement process has not progressed very far.

3.3 Microstructure of the annealed higher (6-9 wt%) polytype 

materials

As outlined in section IV.2 the majority of the higher 

polytypoid materials contained large amounts of Nd-N-melilite after 

sintering. This was considered unsuitable as a grain boundary phase, 

especially for a high temperature material, since Y-N-melilite becomes 

unstable and readily oxidises with an accompanying large volume 

expansion above 1300°C, oxidation of the Nd version produces a smaller 

volume expansion but the onset occurs at a lower temperature. Upon 

annealing, with the standardised Syalon 201 cycle, much of this 

melilite disappeared, but unfortunately, even with prolonged heat 

treatments most materials still contained significant amounts. In all 

cases, the raono-aluminate, NdA103, was recrystallised instead, and in 

the absence of a YAG-type M3:A1s oxide phase this appeared to be the 

best refractory alternative. However, as discussed in Section II.6.2. 

Nd-N melilite dominates the B'-NdA103 plane (see Figure IV.8) such 

that forming a pure 2-phase B'-NdA103 ceramic free from melilite is 

impossible. In the present materials the original melilite must have 

decomposed or melted and re-formed a liquid once the anneal 

temperature was reached, from which the NdA103 and new melilite was 

precipitated. All the materials contained some residual glass after 

annealing, even the ones which appeared to have insufficient liquid 

during sintering. For the 201 equivalent material in particular, 

which had no 'as-sintered' melilite, the overall glass composition 

must have just shifted towards the B'+melllite+liquid phase boundary
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as the NCÍAIO3 precipitated out, but at the same time stayed within the 

B'+liquid phase region (Figure IV.19).

Upon annealing the 201-type samples at different temperatures, 

it was found that small amounts of Nd-N-a wollastonite were 

recrystallised after 5 hours at 1000°C. At 1100°C some of the 

Nd3Si3Al30i2N2 phase was also precipitated and the two phases 

co-existed in roughly equal proportions, still with some residual 

glass, up to around 1350°C. Annealing at 1400°C followed by rapid 

cooling gave B '+NdA103*glass only, whilst controlled cooling again 

allowed some of the new phase to re-form.

In trying to develop a high polytypoid material with a fully 

recrystallisable glass, a composition based on 10 wt% Nd2(>3, 8 wt% 21R 

and zero AI2O3 fired for 5 hrs at 1800°C gave the most promising 

results (Composition 20, Table IV.1). Although this material 

contained some melilite after sintering, all of it had disappeared 

after annealing for 10 hours at 1350°C, and the subsequent matrix was 

found to be an approximate 50/50 mix of Nd-N-a wollastonite and NdA103 

with very little residual glass (see Figure IV.20). Whilst the 

wollastonite would be the weak link, (its oxidation properties have 

still to be investigated), it should not undergo such catastrophic 

oxidation as the melilite phase. In the absence of a B'+NdA103 

material it was hoped that this 3-phase neodymium-based material could 

offer potential for use at elevated temperatures with properties 

comparable to yttrium Syalon 201.

4. Summary

With the exception of YAG, all of the yttrium phases in the 

Y-Si-Al-O-N system have an equivalent in the Nd-Si-Al-O-N system; with 

similar crystallographic structure but with expanded lattice
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12H - 12H polytypoid
15R - 15R polytypoid
A - apatite 
L - liquid 
M - melilite

Figure IV.19 Illustration of how liquid compositions on the 0' - NdAl03 
plane may be partially devitrified to give 0' +NdA103+glass 
materials. Upon annealing, the average liquid composition P 

shifts to P' as NdA103 precipitates out.



N d A 1 0 3

Figure IV.20 Microstructure of the annealed 10 vt.X Nd20jf 8 vt.X 21R
polytypoid, zero A l ^  composition. Matrix phase consists of an 
approximate 50/50 mixture of NdA10} and Nd N-a voilastonite



parameters. Whilst this may initially suggest that similar reactions 

occur in both systems, and hence that Nd2<33 can be directly 

substituted for Y2O3 in the preparation o£ pressureless sintered 

sialon ceramics, there are a number of significant differences:

1) The eutectic temperatures in the Nd-Si-Al-O-N system are 

generally 30-50°C below their yttrium counterparts.

2) Neodymium-glasses can accommodate a larger amount of dissolved 

nitrogen, consequently the Nd-glass forming region is more 

extensive that the Y-glass one.

3) Three new Nd phases, two with no analogy in the yttrium system, 

have been identified with compositions lying within this glass 

forming region. The most important of these has the composition 

Nd3Si 3AI3O12N2 and is stable to temperatures in excess of 

1300°C.

In the absence of a phase equivalent to YAG, NdA103 would appear 

to be the best alternative as a refractory matrix in Nd-sialon 

materials for use at elevated temperatures. Unfortunately 

Nd-N-melilite, which is unsuitable as a secondary phase, dominates 

this region of the phase diagram and the preparation of 2-phase 

B'+NdA103 sialon ceramics, free from melilite, is impossible. Fully 

crystallised 8'+Nd3Si3Al3O12N 2 and nearly fully crystallised 

8+NdA103 + Nd N-a wollastonite materials can be prepared and offer 

potential as improved grade neodymium ceramics for comparison with 

conventional yttrium based B'+YAG materials, such as Syalon 201.
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YTTRIUM d'+ß' SI ALON CERAMICS

1. Background to recent developments

Oyama and Kamigaito (1971) and Jack and Wilson (1972) first 

noted that 'alloying' of the AI2O3 and AIN sintering additives with 

the (X-SÍ3N4 powder in the hot-pressing of silicon nitride ceramics 

effectively reduced the final glass volume. The materials generated 

were essentially single phase B'-sialon materials with excellent high 

temperature properties.

It has been recognised for some time that in a similar way 

a'-sialon ceramics offer the potential of incorporating the sintering 

additives :nto the a-5iiN4 crystal structure upon densification in 

pressureless sintering. In this way essentially single phase a' 

materials can be envisaged with excellent mechanical and thermal 

properties, comparable to the hot-pressed materials, again due to the 

absence of any residual grain boundary glass. Unfortunately, detailed 

examination of the phase relationships in the Y-Si-Al-O-N system have 

shown that the region over which Ct' exists in equilibrium with a 

liquid is much smaller than that with S', and the preparation of dense 

single phase a' materials is further complicated by the higher 

viscosity of the liquid associated with a' precipitation. Jameel 

(1984) determined the extent of the a' region from the SÍ3N4-YAI3N4 

join into the Y-a' plane (see Figure II. 11) and concluded that the O' 

phase has very little solid solution out of the plane due to the 

discrepancy between the Al-N (1.87 A) and Si-0 (1.67 A) bond lengths 

which prevents atomic rearrangement without change in crystallographic 

structure. The preparation of pure a' materials is thus extremely 

sensitive to oxygen/nitrogen balance and in practice the processing 

required imposes such stringent conditions upon composition,

- 49



homogeneity, and firing schedules that manufacturing such materials on 

a commercial basis is not feasible.

The preparation of pure O'+6' sialon composites allows little 

more flexibility. Walls (1986) examined the extent of the a*+8' phase 

field (Figure V.l) and concluded that even though the a' +8' +liquid 

region is somewhat larger than the O'+liquid region, the preparation 

of pure two phase materials is still extremely sensitive to O/N 

balance. In addition, the liquid has the dual role of aiding 8' 

precipitation followed by absorption of the remainder to form a*. 

Unfortunately, both of these reactions occur simultaneously and 

compete for the available liquid, with the formation of O' beginning 

at a lower temperature than the formation of 8' ' the converse of what 

is desired. Generating a mixture in which the a ■* 8', Ot ■* O' and 

8'-» a ' reactions occur uniformly throughout the bulk and finish 

together having absorbed all of the liquid is impractical and hence 

the restrictions on forming a pure di-phasic a**8' material, free from 

localised pockets of residual glass and unreacted material, become 

virtually the same as for forming O' alone.

The best alternative is to form O'+B'+glass or o'+B'+YAG 

materials, absorbing most of the liquid as the reaction proceeds, 

without impeding the dens ification characteristics, and leaving as 

little residual glass as possible, which can then either be left 

untreated or again recrystallised to form YAG, but of a much reduced 

volume. To date no significant advantage has been foreseen in 

developing the latter since their upper operating temperature limit 

would not be expected to offer any improvement over that of 

conventional 8' ♦YAG materials but a'+8'♦glass ceramics have recently 

found use in the metal cutting industry where the increase in hardness 

and wear resistance afforded by inclusion of the O' species leads to
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higher productivity (’longer-lasting* Kennametal Kyon 3000* tool tips 

Cor example).

Forming an a ’+8*+glass or a'+B'+YAG material is relatively easy; 

Syalon 201 typically contains 6-8 vol.% a' after sintering. Lewis et 

al. (1980) demonstrated that to achieve a perfect B’+YAG material upon 

annealing necessitates having a residual matrix glass enriched with 

nitrogen so that its composition lies near the 8'-YAG tie-line (see 

Figure II.10). This allows it to partition and form the 

yttrium-aluminium-oxygen containing phase with the remainder having 

the correct proportion oC constituents to precipitate as more, or 

dilute the existing, B'. Glasses with insufficient nitrogen have 

compositions away from the B'-YAG tie-line and tend to form additional 

phases, such as yttrium disilicate, upon devitrification. In the case 

of Syalon 201, instead of starting with a perfectly balanced 

composition, the mixture prepared is slightly nitrogen rich (by adding 

additional 21R polytypoid) to ensure that no silicate phases, which 

would have a deleterious effect upon high temperature properties, will 

be recrystallised. When the polytypoid dissolves into the liquid in 

the early stages of the sintering process this excess causes it to 

become nitrogen saturated. Its composition shifts to the a'+B'+glass 

phase field and to alleviate this O' is evolved. The emergence of a' 

during sintering is thus taken as an indication of nitrogen 

saturation.

With the continued refinement of B'+YAG and a'+B'+glass 

materials over the past few years, the performance of pressureless

Kyon 3000 is a registered trademark of Kennametal Inc. Pennsylvania



sintered sialon ceramics has been pushed nearer to the limits dictated 

by the intrinsic properties of Si3N4 itself« but the retention of even 

a small amount of phase derived from the sintering liquid still 

remains the primary factor inhibiting prolonged use at extreme 

temperatures. Inevitably, the YAG phase will always form a eutectic 

with Si02 produced in an oxidising environment, but by minimising the 

amount of YAG present initially the processes of oxidation and creep 

degradation should be correspondingly diminished.

2. Composition Variations

Having observed the evolution of O' in the sintering of Syalon 

201, compositions were prepared with small perturbations from the base 

starting nix (82 wt.% Si3N4, 8 wt.% 21R polytypoid, 6 wt.% Y2O3, 4 

wt.% AI2O3). The overall objective was to increase the nitrogen 

content of the sintering liquid, to generate more a' precipitation and 

thereby reduce the final glass volume. Favourable compositions were 

pursued further to determine whether similar results could be achieved 

when starting with smaller proportions of the liquid forming 

additives.

The changes in composition were carried out empirically. 

Initially, the 21R polytypoid content was increased solely at the 

expense of silicon nitride. This was repeated with no AI2O3 added to 

the starting mix. Finally, the Y2O3 content was varied in selected 

compositions to ascertain what effect this had upon densification 

kinetics and recrystallisation products. The compositions prepared, 

densities after sintering, and crystalline reaction products after 

annealing are listed in Table V.l. Cookson silicon nitride (grade 

1002) was used for all compositions although some were reproduced 

using Kennametal powder. The difference in final density between
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equivalent compositions was negligible and the reaction products were 

virtually the same except Cor small traces of iron silicide normally 

encountered with Kennametal silicon nitride-based materials.

For all the compositions with added AI2O3 the sintering cycle 

used was the standard cycle Cor normal Syalon 201 (1600°C/2 hrs, 

1750°C/5 hrs) (see Figure III.l). For the materials with no added 

AI2O3 the second stage of the firing cycle was raised to 1800°C/5 hrs. 

It was found that this greatly improved the final density. In sialon 

materials in which the only AI2O3 present occurs as a surface impurity 

oxide film on the 21R polytypoid, the liquid which would normally be 

formed when the Si02-Al203-*203 sutectic temperature is reached is 

almost entirely absent. Instead the main bulk of the liquid does not 

appear until the polytypoid reactions start which are usually 

associated with the onset of 0-Si3N4 solution and B*-«ialon 

precipitation. The o ■* B' reaction proceeds fairly slowly at 1750#C; 

presumably with very little AI2O3 present the liquid is more viscous 

than for normal Syalon 201, but the reaction can be speeded up, to 

give completion in a reasonable time, by heating to 1800#C.

Increasing the polytypoid content generally gave rise to a 

higher density product. Most of the density measurements showed good 

correlation with the maximum theoretical values calculated using the 

method of mixtures. With the increased polytypoid zero AI2O3 series 

of materials the density reached a maximum of 3.29 g cm”  ̂with 18 wt.% 

polytypoid added to the starting mix. As the polytypoid content was 

increased further the density decreased sharply, and the material 

produced contained proportionately larger amounts of AIN. It would 

appear that with 18 wt.% the polytypoid addition has reached a 

critical level; below which an excess of liquid remains after
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sintering« and above which the liquid produced is absorbed before full 

reaction and densification can take place.

The composition based on 16 wt.% poly typo id« 6 wt.% Y2O3, zero 

AI2O3 (composition 12 Table V.l) gave the highest O' containing 

material« saturating at 57% a' relative to 8'» (using the X-ray 

diffractometry technique)« with only a minor amount of residual glass. 

When annealed the recrystallisation products were roughly equal 

proportions of YAG and N-a wollastonite rather than mostly YAG as 

evidenced with Syalon 201. This is believed to result partly from 

localised differences in the residual glass composition after 

sintering and from local inhomogeneities due to the preferential 

absorption of yttrium by the a' species. This behaviour is discussed 

in detail in Section V.4.

Increasing the Y2O3 content gave materials with higher densities 

which again showed good correlation with the theoretical values 

calculated from the method of mixtures. The final a ‘/8' ratios and 

the type of phases recrystallised were unchanged although increased 

amounts of glass remained after sintering. EDAX analysis showed that 

the a' phase was slightly more rich in yttrium in these higher 

y2°3“containln9 materials.

Decreasing the Y2O3 content with a constant 16 wt.% polytypoid, 

zero AI2O3 material resulted in incomplete densification and 

subsequently lower amounts of a' evolution.

3. Reaction Sequences in the Formation of Yttrium a*+6' Sialon

Ceramics

The sequence of reactions leading to the formation of yttrium 

a' * 8 ‘ sialon materials was investigated by firing compacted 

compositions at temperatures between 1000-1800*C« In 50aC intervals«
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with a duration of 5 hours at temperature. This firing period, 

although rather lengthy, allowed a more accurate determination of 

which reactions contribute most to the densification process than had 

previously been covered (Sun et al. 1985; Walls, 1986). For the Ot'+B' 

phase evolution study the composition based on 16 wt.% 21R polytypoid, 

6 wt.% Y2O3, and zero AI2O3 was investigated since this had produced 

the most a' in earlier tests. Samples of Syalon 101 and Syalon 201 

were included in the sintering runs for comparison to verify the role 

played by increased polytypoid additions and because the reaction 

chemistry of their formation is reasonably well understood. In an 

effort to investigate the B ■* a' and B ’ ■* o ’ transformations compacts 

with the same composition as for the a ’+B’ experiments, but made up 

with B-type silicon nitride as the starting powder (supplied by Denka; 

grade BS: > 90% 8, < 10% a, see Table III.l), were also included. The 

compositions prepared, densities, and relative proportions of 

crystalline phases identified after sintering are listed in Table V.2. 

Schematic representations of density versus temperature, in 

conjunction with phase evolution for the o-Si3N4 and B-Si3N4 based 

compositions respectively are shown in Figures V.2 and V.3, and 

representations of the Syalon 101 and 201 systems are presented in 

Figures V.4 and V.5.

In examining the reaction sequences in the formation of the 

a'+B' materials the sintering cycle can be split into 3 distinct 

regimes

(i) An initial stage upto around 1300aC where various phases 

are formed mainly by solid state diffusion reactions 

between the sintering additives.
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Table V.2 Reaction sequences in the formation of yttrium a'+@' sialon 
ceramics - Compositions investigated

Composition
Description

Mt.X constituents As pressed 
density 

(20,000 psi] 
g cm-1

Si,», Supplier/
Grade

ZÏR V. u >4,

ot-SijN̂  based 78.0 Kennametal 16.0 6.0 0 1.66

3 - S i b a s e d 78.0 Denka BS 16.0 6.0 0 1.76

Syalon 101 85.3 Starck LC 10 3.0 7.7 4.0 1.92

Syalon 201 82.0 Kennametal 8.0 6.0 4.0 1.68
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(ii) An intermediate stage Cron 1300°C to 1550°C involving 

liquid formation coinciding with dissolution of the 

additive phases and accompanied by the onset of the bulk 

Si3N4 solution/reprecipitation mechanisms.

(Ill) The latter stage of the sintering cycle 1550 to 1800°C 

where the competing reactions of a' and B'-sialon 

precipitation, together with an overall reduction in 

liquid volume, tend towards equilibrium.

3.1 Reaction Sequences up to 1300°C

From 1200°C to 1300#C, in the O'+B' composition, YAM (Y4AI2O9) 

was formed, and from 1250°C onwards a significant amount of YAG was 

also much in evidence. It is unlikely that there was any liquid in 

the system at this stage since the Y203~Al203~Si02 eutectic lies at - 

1350°C (Bondar and Galakhov, 1963) so it seems plausible that these 

phases result from solid state diffusion reaction between the Y2O3 and 

the AI2O3 on the surface of the polytypoid powder. It is Interesting 

that the intensity of the Y2O3 peaks on the diffractometer traces 

steadily decreased between 1000-1150°C and had completely disappeared 

before any YAM or YAG precipitated. There was no measurable increase 

in density, reinforcing the argument for no significant liquid 

formation, and the only other change which was discernable was a very 

minor decrease in the intensity of the polytypoid peaks. It is 

difficult to explain the underlying mechanisms of the decrease in Y2O3 

peak intensities but it seems reasonable to suggest that the Y2O3 does 

form some small volume of liquid with the impurities in the other 

powders. It is unlikely that the Y2O3 becomes amorphous, and, since 

yttrium has a high scatter factor it is doubtful that it could fora



some crystalline product by solid state mechanisms which could not be 

detected by X-ray diffractometry. It is strange however that no other 

researchers have reported similar observations, although little work 

has been carried out firing these materials at temperatures between 

1000-1300#C for long periods.

Similar phenomena were observed with both Syalon 201 and Syalon 

101. With 201, the emergence of YAM mirrored the behaviour of the 

o '+ 6' composition. From the intensity of the peaks on the 

diffractometer traces it appeared that the added AI2O3 played no part 

in the reaction. With the 101 composition hardly any YAM was produced 

even though the Y2O3 disappeared as before. This composition 

contained very little polytypoid and again the AI2O3 peaks appeared 

unaltered. It must be concluded that the AI2O3 for the YAM formation 

comes solely from the polytypoid. It must be more reactive than the 

added AI2O3, probably because it is present as an inhomogeneous 

surface film which is weakly bonded and very likely contains a higher 

proportion of impurities.

With the S~Si3N4 based composition no YAM was precipitated, and, 

unlike the other materials, small traces of Y2O3 still remained after 

firing for 5 hours at 1250°C even though there was a substantial 

amount of polytypoid, and hence surface AI2O3, present. This suggests 

that the a-type starting powder somehow influences the solid state 

reaction process between the Y2O3 and AI2O3. At this temperature it 

is unlikely that the Si3N4 itself plays an active role. The 

phenomenon is more probably related to the difference in surface oxide 

(ie. Si<>2) content of the a and B powders (manufacturers claim < 1.0% 

O for the B compared with 2-2.5% for the a) although the underlying 

mechanism by which this may occur is unclear.
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With the Syalon 101 and 201 compositions the YAM and YAG nevet 

existed together. The evolution of YAG was particularly abrupt and 

coincided with an equally abrupt reduction in the intensity of the 

peaks of the added AI2O3. With the 201 composition in particular the 

initial emergence of YAG also clearly coincided with the disappearance 

of the YAM just below 1300°C (see Figure V.5). The total volume of YAG 

evolved, - 8 vol.%, indicates that the constituents of the YAM 

contributed to its formation.

In summary, it appears that YAM generally forms at a lower 

temperature than YAG, but some YAG may be precipitated when there is 

sufficient AI2O3 present on the surface of the 21R polytypoid. The 

bulk of the YAG formation during warm-up occurs when sufficient energy 

is supplied for activation of the reaction between the Y2O3 and added 

AI2O3 powder. This also coincides with the dissociation of any YAM 

which may have formed earlier.

3.2. Reaction Sequences from 1300°C to 1550®C

After firing the O'+8' composition for 5 hours at 1300°C, all of 

the YAM had disappeared and small traces of N-a wollastonite (YS102N) 

had precipitated. These persisted upto 1400°C before dissociating and 

dissolving into the liquid. At temperatures up to 1350°C there was no 

detectable increase in density. With no AI2O3 added to the starting 

mix there would be very little liquid formed when the Y203-Si02~Al203 

eutectic temperature was reached.

The Syalon 201 composition behaved in a similar way. After 

firing at 13S0°C there were no signs of densification, even though the 

starting mix contained the same proportions of Y2O3 and AI2O3 

sintering additives as the Syalon 101 composition which showed a 12% 

increase in density over the same temperature cycle. The liquid
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formed in the 201 system is more rich in nitrogen and consequently has 

a higher viscosity. At 1350°C the viscosity must be so high that the 

mobility for particle rearrangement is negligible.

The onset of positive densification in both a'+B' and Syalon 201 

compositions occurred around 1450°C. This was highlighted by a 

reduction in the amount of a-Si3N4 present and the evolution of the 

first few B'-crystals. Clearly, the sintering liquid had become much 

more fluid and the process of solution-reprecipitation had commenced. 

In the Syalon 101 and B~Si3N4 based compositions this densification 

threshold also coincided with dissolution of the YAG which had formed 

earlier.

The emergence of B'-sialon corresponding with the initial major 

increase in densification is in direct contrast to Walls (1986) who 

recorded the precipitation of a'-sialon first as low as 1400°C. Walls 

also concluded that the a* thus generated had largely expanded unit 

cell dimensions, indicating high cation substitution, which probably 

resulted from formation in an AI2O3 rich liquid. (Walls used AIN in 

the preparation of his compositions rather than 21R polytype 

(6A1N.S102). To achieve the same O/N balance more AI2O3 had to be 

added). As the reaction process proceeded the solution of the Si3N4 

phase caused further diffusion to take place and at equilibrium the a' 

phase had reverted to a lower substituted state. In the present study 

a* precipitation did not begin until above 1500°C and was 

characterised by a significant reduction in the amount of polytypoid 

present. No large lattice expansion was evident. Presumably, enough 

polytypoid had dissolved into the liquid at this point to give 

nitrogen saturation which then triggered the a' formation. As

discussed in Section II.2 the precipitation of a ' rather than B' is 

favoured from a nitrogen saturated glass but there has to be a
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suitable concentration of modifier cations, in this case Y3+, for this 

to occur. In the present material a' precipitation occurred from a 

convenient nitrogen containing liquid, from which some A1 and 0 had 

been removed (by the precipitation of 8')# rather than from an A1 and 

O enriched nitrogen saturated liquid as in Walls' case. Hence the a* 

structure formed in the present material avoided the interim 

'high-lattice' substituted state.

3.3. Reaction Sequences Above 1550°C

Between 1550-1650°C the a/O' peaks appeared as doublets on the 

diffractometer traces, particularly at high 26 angles, increasing the 

temperature giving higher a' intensities and correspondingly lower a 

ones. With all compositions, after 5 hours at 1600°C virtually all of 

the original a-Si3N4 starting powder had disappeared and, with the 

exception of the 8-Si3N4 based material, densities of over 98% 

theoretical had been attained. Upon firing above 1650°C these 

materials became fully dense and no other products were precipitated.

With the 8~Si3N4 based composition the polytypoid level remained 

almost constant throughout; - 14 wt.% remained after firing for 5 

hours at 1800°C compared with 16 wt.% added initially. The bulk of 

densification occurred between 1450°C and 16S0°C, as with the other 

materials, but the maximum density achieved, 2.31 g cm*3, was still 

only 71% of theoretical. The 6 was converted to 8' above 14S0°C 

almost certainly by inter-diffusion of aluminium from the small amount 

of polytypoid and surface impurity AI2O3 which had gone into solution, 

and some oxygen from the Y2O3 dominated liquid. The small volume of 

a-Si3N4 present in the Denka powder was converted to more B'-sialon at 

1600°C and above. Apart from transformation of this small amount of 

0-S13N4 there was no other evidence that solution-reprecipitation had
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occurred within this composition. The intensity of the 8 and 8' peaks 

during the 8 ■* 6' transition remained constant and the low densities 

attained further emphasize that particle rearrangement was the 

principal densification method.

With conventional sialon materials a-SijN« has long been 

recognised the essential pre-requisite in obtaining good densities 

with pressureless sintering. Full densification has only been 

achieved with B-Si3N4 based materials by incorporating a step 

involving some hot-pressing. The driving force for rearrangement is 

derived from the inter-particle capilliary attraction when the liquid 

is formed. When this is the only densification process, and there is 

insufficient liquid to fill all the voids, the material does not fully 

densify. Hot-pressing provides the necessary additional driving force 

by compacting the particles into closer proximity.

In a normal Syalon sintering process the temperature is ramped 

up to 1600°C as quickly as possible taking care to avoid cracking the 

components by forming excessive thermal gradients. The temperature is 

then held for 2 hours to allow the mix to homogenise before ramping 

upto 1750°C and completing the firing cycle. In the current study 

rapid heating was expected to suppress the formation of some of the 

YAG and the other intermediate species and leave more liquid available 

for a' formation. At 1600°C the rate of a' evolution was greater than 

the rate of precipitation of 8' (see Figure V.2) so including this 

hold ought to have allowed more a'-sialon to form. This was found to 

be the case. The O' +6' material prepared by firing for 2 hrs at 

1600#C followed by 5 hrs at 1750*C had an O ’jB' peak ratio of 55i45 

compared with 30:70 when fired for 5 hrs at 1750°C alone.

In practice the evolution of the a' and 8' phases is not as 

simple as described above. At temperatures in excess of 1550°C the
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o ♦ O', a ■* 8, 8 ♦ O' and B ♦ 8' reactions all compete for the 

available liquid, but more importantly the reactions which dominate 

depend on the composition of the liquid, and this varies throughout 

the firing cycle. In the material in the present study the a •» B ’ 

reaction is dominant until sufficient nitrogen has dissolved into the 

liquid then the a ♦ a' reaction takes over. Even though no a' was 

precipitated in the B~Si3N4 based composition the B'~*a' transformation 

may take place (Walls, 1986). It is possible that once the evolution 

of a' has reached a certain level which leaves the liquid depleted of 

A1 or O some of the B' may redissolve to give more liquid which could 

then provide additional 'stock' for further a' precipitation, either 

by direct crystallisation or by dilution of the existing a'-sialon 

phase. The a' and B' reactions are thus synergetic dependent upon both 

liquid composition and temperature. Equilibrium is only achieved 

during sintering when all the solution-reprecipitation transformations 

have reached a balanced accord.

Extending the dwell times at 1750°C had very little influence on 

the a ' : B '  peak ratios. Re-firing or raising the final temperature to 

an 1800°C hold left the material unchanged except for a minor 

increment in density. It appears that the standard sintering cycle 

for Syalon 101 (i.e. 1600°C/2 hrs followed by 17S0°C/5 hrs) is 

sufficient to take the reactions in this material to completion.

4. Microstructure of the As-sintered Materials

In evaluating the microstructure of the current a'+B' sialon 

compositions it was considered advantageous to prepare samples of 

materials in accordance with the directions outlined in U.K. Patent 

Application No. GB 2U8927A (Kennametal Inc., 1983), the groundwork 

for the development of Kyon 3000 (O' *B'♦glass material) for
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comparison. 17 example compositions are described in this report but 

only the two nearest in composition to the material under 

consideration in the present study (78 wt. % Si3N4, 16 wt. % 21R 

polytypoid and 6 wt. % Y2O3) were prepared. Table V.3 lists the 

initial formulation, processing stages and percentage of phases 

identified after sintering. Results published in the Kennametal 

patent and from the a'+0' material currently being investigated are 

also included for comparison. Essentially, the main differences in 

processing are the firing temperature and hold times. Kennametal fire 

for short times (- 1 hr) at very high temperatures, close to the 

dissociation temperature of the silicon nitride itself. They also 

maintain that all of the products contain 0.1 - 10 wt.% residual glass 

after firing. In practise the densities obtained were below 98% of 

the values quoted and in both cases less than 30% a 1 had been 

precipitated compared with over 55% claimed.

The microstructures of both of the Kennametal materials were 

similar and resembled that of Syalon 101 in terms of grain sizes and 

apparent glass volume, although, instead of • 85 vol% acicular 

B'-sialon grains set in glass matrix, approximately 1/3 were 

a'-sialon, which generally tended to have a more plate-like rather 

than needle-like structure, and were less well defined in terms of 

geometrical shape (Figure V.6). A simple point count and analysis of 

back-scattered SEM images, utilising a black and white TV monitor 

fitted with an electronic filter capable of detecting the amount of 

signal contributing to the various 'grey levels', confirmed that both 

Kennametal samples contained 10-15 vol.% residual glass. By contrast, 

this is almost twice the figure that Kennametal report since they 

refer to weight % rather than volume % present and the glass:B' weight 

ratio is approximately 5:3. The discrepancy in results probably
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Figure V.6 TEH micrograph of the a'+0' sialon material prepared as
outlined in UK Patent Application No. GB2118927A (Kennamctal 

Inc., 1983) illustrating the glassy nature (dark areas) 
of the microstructure rather than full crystallinity as claimed.



partly steins from the di££erent sources o£ silicon nitride used in 

make up. The Kennametal patent speci£ies Elkem* silicon nitride, but 

because this was unavailable Kennametal's own Si3N4, modelled on the 

same nitriding process route and claimed to have similar levels o£ 

impurities and particle size as the Elkem powder, was used instead. 

This ought to have behaved in a similar way and in practise it seems 

unlikely that Kennametal would purchase a similar grade powder for 

their tool tips from another company when they manu£acture their own. 

Presumably, once development of their cutting tool ceramics was 

complete Kennametal began to generate their own raw materials to 

reduce production costs.

The 16 wt.% polytype a'+B' material in the present study 

exhibited an even less well faceted microstructure than the Kennametal 

compositions and the average grain size was slightly larger. (Figure 

V.7). The O' species appeared to occupy 70-80 vol.% which is in 

direct contrast to the 55-57 % value determined using the peak 

intensity calculation method. It is possible that with the X-ray 

technique there is some attenuation through internal scattering of the 

diffracted beam. Clearly the technique described by Grand et al. 

(1979) is not accurate with high O' content. Repeated tests using the 

same TV image analysis technique outlined above indicated 

approximately 3-4 vol.% residual glass. With a lower glass volume 

there was more sialon grain to grain contact and a much greater 

abundance of contact flattening. The adjoining interfaces had a high 

degree of stress related flaws, particularly in the form of 

dislocations, and tilting in the TEM showed a high concentration of 

stress patterns associated with such deformities.

Elkem Metals, Norway

- 64 -



Figure V.7 General microstructure of the 'as-sintered' a'+0' material

Dark elongated needles represent the P'-sialon grains, 
mid-grey areas are the a'-sialon phase and bright areas 

are the residual glass.



In the series of materials with increased polytypoid additions 

and 4 wt.% AI2O3 the glass volume decreased as expected: from - 14 

vol.% remaining with no polytypoid in the starting mix to ~ 7-8 vol.% 

with 18 wt.% polytypoid added. The a'-sialon platelet content 

increased from zero to - 35 vol.% with the X-ray technique over the 

same polytypoid addition scale.

With the increasing polytypoid, zero AI2O3 series of materials, 

the decrease in final glass volume was much more apparent. In the 

compositions with over 14 wt.% polytypoid added to the starting mix 

the volume of glass remaining after sintering was so reduced that 

measurement became complicated by uncertainty in the point at which 

the glass edge (very light grey phase on the TV monitor) merged with 

the a' boundary (mid-grey) (see Figure V.8). Clearly in trying to 

distinguish such low levels of minor phase the maximum resolution of 

the equipment had been reached. The 3-4 vol.% figure for the residual 

glass content in the a 1+8' material is the best estimate from a number 

of measurements.

The increase in the amount of a' present was more abrupt and 

visually even more dramatic than the corresponding reduction in 

residual glass volume. In going from 8 to 12 wt.% polytypoid added 

the a' content increased almost fourfold giving the materials a much 

less faceted, less well-ordered, appearance especially in the SEM 

images.

The compositions with over 18 wt.% polytypoid added still 

contained small pockets of residual glass even though the XRD traces 

showed some unreacted a. X-ray diffractometry using the Hagg-Guinier 

camera also showed small traces of unreacted AIN but these could not 

be identified with the electron microscopes.



TV monitor image

(Poor quality results 
from having to take 
Polaroid image from TV 
screen. Unfortunately 
this was the only 
system available)

Image with the signal 
contributing to the 
secondary phase removed 
indicating 3 vol.X present

Figure V.8 General microstructure of the 'as-sintered' a'+0' material
illustrating the technique for evaluating the residual phase 
volume and the difficulty in distinguishing between the 

various grey levels



The materials with low residual glass volumes often contained 

small traces of TAG after sintering. It is unlikely that these formed 

during the firing cycle but crystallised at favoured nucleation sites, 

for example points of high stress or discontinuities associated with 

increased grain contact, upon cooling.

5. Microstructure of the Annealed a'+B* Material

The bulk microstructure of the annealed a '+B ' material (starting 

composition 16 wt.% polytypoid, 6 wt.% Y2O3, zero AI2O3) was distinct 

from that of any other sintered sialon or silicon nitride. Whilst 

similar in appearance to the early hot-pressed silicon nitride 

materials, instead of mainly single-phase B~Si3N4 crystals bonded 

together with a minor glass residue, this material consisted primarily 

of plate-like a' sialon grains interspersed with secondary acicular 8' 

grains and small isolated equiaxed crystals of YAG, with curved rather 

than straight facets, at some of the triple points (Figure V.9). High 

resolution lattice imaging showed that there was no film of residual 

glass sandwiched between the sialon grain interfaces, as seen with the 

hot-pressed materials (Figure V.10), and dark field imaging, using 

diffracted beams from the YAG phase only, revealed that small numbers 

of YAG crystals in close proximity with each other diffracted at tilts 

which differed by no more than 1 or 2 degrees (Figure V.ll). This 

phenomenon is synonymous with the similar long range orientation seen 

in the annealed B'+YAG materials but here the linearity only extended 

3-4 urn rather than 200-300 pm.

As outlined in Section IV.3.2 Lewis and Lumby (1983) first 

described a similar granular microstructure near the surface of B'+YAG 

materials after hundreds of hours exposure in a highly oxidising 

environment. It was concluded here that the non-stolchiometric
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«'♦0' sialon 
vith isolated 
pockets of YAG

b

Single crystals 
of 0'-sialon 
with virtually 
no residual 
phase

Mainly 0'-sialon 
grains vith 
interconnected 
secondary YAG

Figure V.9 Comparison of sialon ceramic microstructures
a) The current annealed ot'+0' sialon material
b) Typical hot-pressed sialon
c) Typical 0'+YAG sialon



High resolution lattice images of adjacent grain boundary 
interfaces in the «' + 0' + isolated YAG (a) and Syalon 201 
(b) materials, illustrating the receptiveness to the 
non-stoichiometric metallic ions of the *' phase and the 
consequent removal of the residual elements at the grain 
boundaries. The residual layer in b) is no more than a 
few atoms thick.

Figure V.10



( 111)

Figure V.ll Micrograph of the annealed a'+P' material illustrating the 
small volume of recrystallised YAG present with adjacent 

crystals diffracting at similar tilts



metallic elements had migrated out to the surface oxide layer leaving 

a greater degree of solid/solid contact. To alleviate the imbalance 

in surface tension energies acting along the B'/YAG and B'/B' 

interfaces the YAG crystals had been transformed by diffusive 

rearrangement to a more rounded equiaxed grain configuration (Figure 

V.12).

In the present material the transformation had occurred 

throughout the bulk. The O' phase must have acted as an effective 

sink for the non-stoichiometric metallics to give the necessary grain 

to grain contact. (In the B'+YAG material the Y3 + ions cannot be 

accommodated within the B' structure, hence proper grain boundary 

contact could only occur when these ions were removed by some other 

process i.e. oxidation). Full transformation was rapid, occurring 

over a few hours, compared with hundreds of hours for the surface 

oxidation activated route, indicating how complete the absorption 

process must be. It is unlikely that the interfacial energy 

associated with a'/YAG and O'/B solid/solid contact is very different 

from that associated with B'/YAG, and B'/B', and since the energy 

difference between B'/B’ and B'/YAG solid contact is considered to be 

negligible, the overall driving force for the rearrangement process 

should be similar. The impetus for such a rapid transformation must 

be derived solely from the requirement to balance the surface energies 

acting along the grain interfaces. In a fully crystalline medium it 

is energetically favourable for the interface energies acting towards 

a point to adopt a more isotropic configuration. Figure V.13 shows a 

schematic representation of how the bulk transformation is believed to 

occur. After sintering, the liquid fills the grain junction channels 

and there is a high degree of energy anisotropy (the individual sialon 

grains having a highly faceted morphology). Upon annealing, the
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Figure V.12 Illustration of the change in microstructural morphology near
the surface of 0'+YAG materials following long term exposure in 
an oxidising environment. Excess Si and N diffuse into the 0', 
and Y and A1 migrate out to the surface oxide layer leaving 
increased solid/solid contact. The interfacial energy 
anisotropy is reduced vith the consequential rearrangement of 
the YAG to a more isolated granular form.

(after Levis et al. 1984)



Figure V.13 Illustration of the bulk mechanisms involved in change of YAG 
morphology in the a'+0' material. Upon crystallisation excess 
Si and N diffuse into the sialon grains but the a' phase is 
also receptive to the other non-stoichiometric metallic ions 
vhich results in increased solid/solld contact throughout the 
bulk. To equillbriate the imbalance in interfacial energies the 
YAG crystals are rearranged to a more isolated granular form



interfacial contact energies try to balance each other by effecting 

realignment. In trying to adopt a more isotropic morphology and 

achieve the balanced 120° equilibrium position the faceting is relaxed 

in favour of more curved boundary configurations.

The short range similar crystal orientation suggests that after 

sintering localised pockets of glass are interconnected via thin films 

sandwiched between the sialon grains (as in Syalon 201 after 

sintering). The YAG must nucleate at the contact points and grow 

rapidly during the early stages of the anneal cycle, partially 

encapsulating the sialon grains which each crystal spans. The 

unwanted metallics are probably simultaneously absorbed by the a' 

phase and then the YAG is transformed to the equiaxed shape with 

adjacent crystals, which once formed part of a larger single crystal, 

then having similar lattice orientations.

For good homogeneity and to achieve complete transformation the 

ideal material should contain at least 50% o' to ensure that the 

non-stoichiometric elements trapped at the interfaces are in contact 

with an O' grain and hence have somewhere to diffuse to.

The XRD traces indicated that N-a wollastonite typically 

c o n s t i t u t e d  up t o  15% of the p r o d u c t s  p r e c i p i t a t e d  upon 

devitrification. By contrast Syalon 201 typically contains upto 5 

vol.% N-O wollastonite. (In a 5 component system upto 5 phases may 

exist at equilibrium). Due to the small volume and microstructural 

nature of the minor phases it was difficult to distinguish between the 

wollastonite crystals and those of YAG by electron diffraction. EDAX 

analysis allowed some differentiation between the two phases but here 

the results were unreliable because repeated analysis indicated that 

some of the YAG crystals contained significant amounts of silicon 

(Figure V.14).
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Figure V.1A Microstructure of a'+e'+isolated YAG material. EDAX analysis 
of the YAG crystals indicating reduction in the aluminium 

content and significant silicon solution



Sun et al. (1988) recently presented evidence Cor a small range 

of silicon solid solubility in YAG. Some silicon is normally observed 

when analysing YAG in sialon materials due to the inevitable 

fluorescence of silicon from the surrounding B'-grains, but in the 

present material the levels detected were much higher than that 

normally expected and the relative intensities of the Al k peaks were 

reduced in proportion. Hardly any nitrogen was detected with the low 

atomic number element detector adding further support for some Si 

solid solution.

The precipitation of N-a wollastonite rather than just YAG is 

probably partly due to the small excess of oxygen in the starting 

composition and to local variations in the glass composition after 

sintering. Extensive analysis tended to indicate that the triple 

points in which wollastonite had crystallised were bounded mainly by 

a'-sialon grains» but the results were speculative because contact 

could only be established in two dimensions rather than three. It 

seems possible that once crystal growth has isolated small areas of 

liquid during the sintering process» prolonged heating could encourage 

some preferential removal of particular elements by diffusion into the 

surrounding grains. This would then leave small encapsulated areas of 

glass, of slightly different composition from the remainder, from 

which wollastonite precipitation could be formed upon annealing. The 

a' phase is more receptive to absorption of the metallic cations than 

the 0 ', and where the liquid is bounded solely by the crystallisation 

fronts of growing a'-grains, the preferential removal of these 

particular elements may cause the remaining liquid to achieve a 

composition which is Al deficient and from which further a' 

precipitation cannot take place. Upon annealing the composition of 

the resultant glass may favour N-a wollastonite crystallisation rather 

than YAG.
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EDAX analysis of the level of aluminium substitution in the 

B'-sialon phase gave a measured average z-value of 0.97. The value 

calculated from the d-spacinga observed with the Hagg-Guinier camera 

was z * 1.2. Both values are in good agreement with the range of 

z-values, obtained by Halls (1986), over which a' and B' may co-exist.

6. Summary

The formation of a* in the preparation of sialon materials 

offers the potential of incorporating the sintering additives into the 

Si3Nf structure upon densification. The fabrication of pure a* or 

a'+B' sialon materials is extremely composition sensitive and 

impractical on a commercial basis.

The prep a r a t i o n  of a * + B '♦glass materials allows more 

compositional freedom and greater flexibility. Such materials are

increasingly finding use in the metal cutting industry where the 

additional advantage of increased hardness afforded by inclusion of 

the a' species leads to greater surface cutting speeds and improved 

durability.

By careful control of the starting composition it is possible to 

generate a material with a minimal amount of residual glass which may 

be fully recrystallised with a post sintering heat treatment to give 

essentially an a'+B'+TAG ceramic. During the devitrification of such 

small volumes of glass the a' phase absorbs the non-stoichiometric 

elements and the TAG crystals produced undergo diffusive rearrangement 

to equilibrate the imbalance in energies acting along the solid/solid 

interfaces. The TAG crystals adopt to an isolated equiaxed granular 

morphology and with no residual phase between the sialon grains this 

material is expected to offer improved high temperature capabilities 

compared with conventional S'+TAG ceramics.

- 70 -



MATERIAL PROPERTIES

1. Physical Properties

1.1 Appearance

The physical appearance of the Nd203 - substituted materials was 

similar to that of their yttrium counterparts except that highly 

polished surfaces generally tended to show a darker charcoal grey 

colouration. Polished surfaces of the d'+B'+isolated YAG material 

were also darker grey in colour (Figure VI.1).

The variation in colour and opaqueness of sialon materials has 

been attributed mainly to the volume of secondary phases present. 

Silicon nitride has an associated light-energy absorption band-width 

and pure materials are generally black in appearance. Increasing the 

volume of secondary phases present increases the reflectivity which 

results from a shift in the overall absorption band-width to generate 

the lighter grey colour. To interpret the difference in colouration 

between similar materials, such as the equivalent Nd and Y B'+glass 

sialons, other factors must be taken into consideration. Mitomo et 

al. (1982a, 1982b) have attributed some minor variations in colour and 

reflectivity to the specific transition ions present in the sialon 

glass and to the inherent levels of porosity. Since the materials 

under examination in the present work are considered to be fully dense 

the former description most probably forms the basis for the 

variation.

1.2 Density

With full densification, compositions based on a Nd203, rather 

than Y2O3, sintering additive had a higher density. Nd2C>3 has a 

higher molecular weight than Y2O3 so from the method of mixtures.
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Figure VI.1 Illustration of the variation in colour of the sialon 
materials investigated

a) Syalon 101

b) Syalon 201

c) ot' + p'+isolated YAG

d) ^ ♦ M d |SiJAlJOialla



assuming that similar reactions take place, some increase was 

predicted. The molecular weight of Nd2<>3 equates to 7.24 g cm“3 

compared with 5.01 g cm“3 for Y2O3, and fully densified Nd203~fluxed 

materials had a typical density of 3.37 - 3.38 g cm“3 compared with 

3.25 - 3.26 g cm“3 for equivalent Y203~based versions.

For the O' +8‘ + isolated YAG material full density was increased 

from 3.25 - 3.26 g cm“3 to 3.27 g cm”3.

2. Mechanical Properties

2.1 Fracture Toughness

The results of the fracture toughness measurements on the 

materials generated are listed in Table VI.1. The values for Syalon 

101 and Syalon 201 are included for comparison.

The toughening mechanisms relating the empirical fracture 

toughness properties to the underlying ceramic microstructures are 

well understood (see Section II.7). At low temperatures, in materials 

consisting of an array of acicular B'-sialon grains set in a minor 

matrix phase, the mechanisms of crack tip deflection toughening, 

micro-cracking, and pull-out or crack bridging in the wake of an 

advancing crack-front are predominant. These processes are fairly 

insensitive to temperature upto the transition temperature (Tg) of any 

glass present, whereupon the effects of creep cavitation and viscous 

flow become the determining factors.

The Nd203 substituted materials achieved similar microstructures 

to the pressureless-sintered yttrium sialons and hence exhibited 

similar property characteristics. The measured fracture properties 

can be interpreted in the same way according to the toughening 

mechanisms outlined above. The actual KIC values were marginally 

higher which is probably due to the slight increase in number and size
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Table VI.1 Results of the fracture toughness measurements
Material Measured K^c value

MPa mVb

Syalon 101 7.7 ± 0.2
Nd-based Syalon 101 equivalent 7.8
Syalon 201 5.5
Nd-based Syalon 201 equivalent 5.6
P'+NdjSijAljO^Nj (anneal 1200°C/5hr ) 6.1
0'+50/50 NdAlOj/Nd N-a vollastonite 5.1

Table VI.2 Summary of the modulus of rupture measurements

Material Modulus of Rupture Value MPa
(Veibull modulus indicated in brackets)

Temp °C 20 1000 1100 1200 1300 1400

Syalon 101 945 (11) 760 210
Nd Syalon 101 equiv. 1053 (10) 570 197 - - -
Syalon 201 725 (8) 695 _ 600 _ 500
Nd Syalon 201 equiv. 792 (14) 821 - 614 499 267
0' +NdjSiJAlj0i2N2 909 (10) 850 773 574 355 123
0'+50/50 NdAlO / 
Nd-N-a vollastonite

717 (11) 742 - 654 676 598

a'+ 0'+isolated YAG 788 (8) - _ 669 596 622

All values have standard error typically ± 10X



of the elongated 8* grains. It appears that having Nd rather than Y 

ions in the sintering liquid enhances this anisotropic grain growth 

behaviour although the chemistry by which this occurs is not yet fully 

understood. The difference in liquid viscosity between equivalent Nd 

and Y containing glasses at the same temperature is probably partly 

responsible as is the inhomogeneous nature of early liquid formation 

resulting from agglomeration of the Nd203 powder particles during the 

preparation stage.

The a* +8 '+isolated YAG material exhibited fracture toughness 

properties which were approximately 20% higher than for conventional 

B ’tYAG ceramics. This was rather surprising since the microstructure 

consisted of a much more isotropic grain morphology and from the 

formulation above the mechanisms of crack deflection, pull-out, and 

crack bridging were expected to be less effective. This improvement 

in resistance to crack propagation is likely to derive from an 

inherently higher cohesive energy between adjacent sialon grains. The 

removal of the mono-layers of residual phase sandwiched in the grain 

junction channels results in an increase in solid/solid contact which 

may have a higher associated bond energy. Some improvement may be 

afforded by the increased grain size - the mechanism of internal 

micro-cracking is determined by average facet size. In addition, in 

conventional 8 ' +YAG materials there is a minor volume expansion as the 

glass is devitrified to YAG which generates internal stresses within 

the material. In the present a'+B' material devitrification is 

accompanied by the YAG rearrangement process which is seen to 

alleviate much of this internal stressing which may contribute to the 

propagation of a crack front.
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2.2 Modulus of Rupture

The results of the modulus of rupture tests are summarised in 

Table VI.2. For fully dense materials MOR is dictated primarily by 

Kic via the relationship

MOR e. KiC (VI.1)

(see equation II.iv). In correlation with the measured fracture 

toughness properties the Nd-based materials exhibited similar room 

temperature characteristics to their more conventional yttrium 

variants. Again the actual values for the Nd203~substituted materials 

were marginally higher due to the minor increments in resistance to 

crack propagation.

At elevated temperatures the mechanism of creep cavitation 

becomes strength determining. The results from the high temperature 

MOR tests are presented schematically in Figure VI.2. As with the 

yttrium Syalon 101 B'+glass material the mechanical strength of the Nd 

version diminished rapidly above 1000°C once the glass began to 

soften. When the glass transition temperature is reached the 

reduction in interfacial cohesive energy results in rapid grain 

boundary shear. Cavity formation in the triple points resulting from 

the hydrostatic tension generated there then becomes catastrophic.

The Nd Syalon 201 equivalent material contained less residual 

glass than the Syalon 101 version and hence exhibited a more gradual 

reduction in strength between 1000°C and 1400°C, although its 

performance was significantly poorer than that of conventional Syalon 

2 0 1.
The 0' +Nd3Si3Al30i.2N2 material exhibited good strength retention 

up to 1300°C. This material is fully crystalline and the problems of
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cavitation did not occur until the melting or dissociation of the 

secondary phase began.

The S'-sialon material with a matrix phase consisting of an 

approximate SO/SO mix of Nd N-d wollastonite and NdA103 showed 

improved properties up to 1400°C indicating the stability of the 

secondary phases up to this temperature and a lower volume of 

intrinsic residual glass compared to Syalon 201.

The results of the MOR measurements on the o' +B'♦ isolated YAG 

material are illustrated schematically in Figure VI.3. In accordance 

with the Kic dependence, and the improvements in fracture toughness 

over Syalon 201, the modulus of rupture values at room temperature 

were also superior. At elevated temperatures this material retained 

proportionately more strength as the temperature was raised further 

again reaffirming the importance of achieving full crystallinity to 

inhibit creep cavitation mechanisms.

2.3. Hardness

The results of the hardness measurements are listed in Table 

VI.3. The values on the Rockwell A scale are converted to approximate 

Vickers hardness (kg mm-2) for ease of assessment. Values for mild 

steel and tungsten carbide are included for comparison.

The values from materials prepared with Nd203 as the sintering 

additive were similar to those from materials prepared with Y2O 3.

With the Y2°3 sintered materials the hardness depended upon the 

polytypoid addition in the starting composition and was proportional 

to the amount of O'-sialon precipitated. Hardness is determined by 

the volume of plastic deformation beneath an indentor which la 

dictated by the resistance to dislocation motion parallel to the

-  75 -



m in
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Table VI.3 Results of the hardness measurements

Material Rockvell Hardness 
A scale

Equivalent Vickers 
Micro-hardness

Syalon 101 91.1 ± 0.1 1340 ± 5
Nd Syalon 101 equiv. 91.4 1400

Syalon 201 92.4 1595
Nd Syalon 201 equiv. 92.8 1675

0' +NdiSi,AliOi2N2 92.4 1596

0'+50/50 NdAlO / 
Nd-N-a vollastonite

92.7 1655

a'+0'+isolated YAG 94.5 2010

Mild steel - 180

Tungsten carbide 92.1 1540



applied stress. Clearly, the greater the resistance, the smaller the 

affected volume for a given indentation load and hence the higher the 

hardness. In conventional B'-sialon materials the hardness is 

governed by the B* species, which normally accounts for over 85 vol.% 

of the bulk. The hardness is determined by the Burgers vector 

associated with dislocations through lattice-friction stresses in the 

c axis direction. Since the c axis dimension, (cg>-2.9lA) is smaller 

than the a dimension (ag-7.60A) the corresponding Burgers vector is 

smaller and dislocations in this direction are favoured (see Figure 

II.1). The c axis dimension of the a' species (c<j >-5.62A) is not so 

dissimilar from that of the a dimension. The associated Burgers 

vector is correspondingly higher and hence the resistance to 

dislocation motion in the c axis direction is increased. In a mixed 

phase a*+8 ' sialon the overall effect is to increase the average 

Burgers vector and hence the hardness. The measurements on the 

a'+B'+isolated TAG material represent a 26% improvement in Vickers 

hardness over Syalon 201 and a 50% improvement over Syalon 101.

VI.3 Creep

The results from the creep tests on the Nd-based materials at 

1227°C are presented in Figure VI.4. At this temperature the creep 

resistance of the B'*50/50 N-a wollastonite/NdA103 material was 

comparable to that of Syalon 201. All of the curves demonstrated the 

characteristic geometry indicative of the underlying mechanisms of an 

Initial transient stage followed by more steady state deformation 

after long periods.

The results from the creep tests on the B '♦NdsSi3AI3O 12N2 

material at different temperatures are illustrated in Figure VI.5. Up 

to 1300°C the overall strain and steady state strain-rate increased
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with temperature. Above 1327°C the secondary phase reverted back to a 

liquid and the mechanisms of creep cavitation and viscous flow became 

catastrophic.

The results from the creep tests on the increased polytypoid 

series of materials, with 4 wt. % AI2O 3 added to the starting 

composition tested at 1277°C, and without AI2O3 tested at 1327°C, are 

presented in Figures VI.6 and VI.7 respectively. Increased polytypoid 

additions resulted in enhanced creep resistance which stemmed from the 

reduction in secondary phase volume. This was most evident with no 

added AI2O3. With both series of materials the creep properties were 

improved with upto 18 wt.% polytypoid content. Above this level the 

creep resistance became progressively poor - a reflection of the 

incomplete densification and presence of some unreacted species.

The a ’+B'+isolated YAG material contained no residual glass and 

after 100 hours at 1277°C, load 77 MPa, the measured creep strain was 

negligible. After 100 hours at 1327°C the creep deformation was less 

than 4% of that normally seen with Syalon 201 when tested at the same 

temperature. Clearly full crystallinity is essential to ensure good 

creep resistance, but the microstructural morphology forms the 

underlying rate determining factor. In the steady state, creep is 

controlled by the rate of material transport. In the conventional 

B '+YAG ceramics the monolayers of residual glass sandwiched between 

adjacent grains provide a route for relatively easy diffusional 

transport of material (see Figure VI.8). In the a ’+B'+isolated YAG 

material there is no residual glass and the bonding between adjacent 

grains is stronger. Material being transported has to negotiate a 

much more tortuous path. In addition the diffusion path lengths are 

longer because the YAG crystals have retreated into the triple points. 

The strain rate for grain boundary diffusional creep is proportional
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Figure VI.8 Illustration of the underlying mechanisms for the improvement 
in creep and oxidation resistance of the o' +3'♦isolated YAG 
Material. In conventional 0'+YAG ceramics (a) the residual 
glass provides a path for material transport. The 
«' ♦P' »isolated YAG slalon ceramic (b) contains no residual 
glass and material transport is further inhibited by stronger 
Interfacial bonding, larger grain sizes, and longer diffusion 

path lengths



to 1/d3 where d Is the grain size and the larger average grain size of 

the a'+B'+isolated YAG material further enhances its resistance to 

creep deformation.

4. Oxidation Resistance

The difference in oxidation characteristics between the 

Qt'+B'+isolated YAG and Syalon 201 (0'+YAG) materials is illustrated in 

Figure VI.9. After SO hours exposure in an oxidising environment at 

1300°C the 201 material had developed an oxide layer 30-40um thick 

compared with a layer less than 10um on the a+B'+YAG material.

The whole oxidation process is in accordance with the series of 

mechanisms outlined by Babini et al. (1984) (see Section II.7 and 

Figure 11.18). In the initial stages, layer formation starts with 

oxidation of the exposed sialon faces, with rapid metallic ion 

transport from adjacent YAG crystals also open to the atmosphere at 

the material surface. The a'+B' material contains less secondary 

phase for metallic ion feedstock and after only 5 hours the amount of 

oxide formed is visibly reduced. The initial layer is discontinuous 

in nature but the oxide areas grow and form a more complete surface 

film as the oxidation reactions proceed. At 1300°C the layer is not 

protective; bubbles consistent with nitrogen gas evolution are clearly 

visible in the micrographs. As the metallic ions diffuse from the 

bulk into the Si02 dominated layer its viscosity is reduced and the 

increase in concentration of metallics at the outer surfaces 

encourages the precipitation of more complex oxides. With reduced 

viscosity the mechanisms proceed more rapidly. The nitrogen bubbles 

evolve until they burst, disrupting the oxide layer and exposing fresh 

surfaces for renewed attack. The oxidation process thus progresses 

into the material with the rate of diffusion of the oxygen and
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Comparison of the formation of an oxide layer on the 
«' ♦ &' * isolated YAG (a) and Syalon 201 (b) materials 
at 1300*C. Disruption in the oxide layers after 50 hours 
exposure is consistent with nitrogen bubble evolution



metallic ions determining the rate of ingress. After 50 hours the 

difference in diffusion rate between the two materials is reflected by 

a metallic ion depleted layer approximately 60 um deep in the Syalon 

201 materials compared with only lOlim in the a'+B'. Clearly at this 

temperature the a' +B'♦isolated YAG material exhibits superior 

oxidation resistance to the conventional B'+YAG materials. Again, 

this can be attributed to the transient liquid phase sintering and 

consequential removal of the residual grain boundary glass upon 

annealing, and hence the large reservoir of metallic ions which 

decrease the oxide layer viscosity and enhance diffusion.

At temperatures much in excess of 1300°C it appears unlikely 

that the a'+B'+YAG material will demonstrate such significant 

improvements. At around 1350°C the YAG forms a eutectic with the Si02 

and the reversion back to a liquid is expected to be catastrophic as 

with the conventional B'+YAG materials. In addition when the a* 

species itself oxidises or dissolves into the reformed liquid the 

release of a significant proportion of metallic ions would further 

reduce the liquid viscosity and enhance the oxidation process.

5. Summary

The mechanical response of the materials generated within the 

present research can be interpreted by reference to their physical 

microstructure and to the underlying mechanisms for property 

enhancement. The neodymium sialon materials have similar 

microstructures to their yttrium counterparts and hence exhibit 

similar property characteristics. The development of Nd materials 

with a fully recrystallisable glass to give an alternative stable 

matrix phase has allowed the formulation of high temperature Nd-based
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materials with properties comparable to the conventional fl'+YAG 

ceramics.

The yttrium o'+B' ♦ isolated YAG material exhibits superior high 

temperature properties compared to the conventional B'+YAG ceramics. 

The removal of all of the residual grain boundary glass and absorption 

of the non-stoichiometric metallic ion by the a' species upon 

annealing is essential to minimise degradation through diffusion 

controlled mechanisms. In achieving an isolated YAG morphology this 

material behaves in a similar way to a hot-pressed silicon nitride 

whilst maintaining the enhanced strength characteristics of 

pressureless-sintered sialon materials. In addition inclusion of the 

a ’ species affords this material increased hardness properties.
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APPLICATIONS AND PERFORMANCE

1. Introduction to Field Trials

To evaluate the performance of the a'+B' material components 

were fabricated and tested in applications where Syalon 101 and 201 

nre fairly well established. These were mainly comparative tests of 

metal cutting capability and measurement of component life-times in 

hot metal extrusion. Components were also prepared and tested in 

applications where the increase in hardness and wear resistance of the 

a’+B' material was expected to be beneficial in the hope of opening up 
new markets and generating new business. These were primarily high 

wear applications involved in cold forming processes, such as metal 

drawing, and in the transport of abrasive material, for example with 

shot blast nozzles. A number of field trials were carried out, but 

many of the components fabricated were still in service after the 

time-frame of this research and the results could not be fully 

collated by the time of writing.

1.1 Tool Tips

10 squares of material 12.5 x 12.5 x 4.75 mm were cut from 

billets of Syalon 101, Syalon 201 and the a'+B'♦isolated YAG sialon 

material and forwarded to De Beers, Ascot for final shaping into tool 

tips (Figure VII.1). Cutting trials were carried out on cast iron.

The initial results indicated that the a'+B' material 

exhibited superior cutting properties to those of Syalon 201 which in 

turn was preferable to Syalon 101. Unfortunately, the data could not 

be quantified due to the scatter of the results and the time needed to 

examine and optimise the cutting conditions, i.e. maximum face cut 

speed and applied cutting force or rate of cut, but the tests did
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Figure VII 1 Design of the tool tips for the metal machining trials

Figure VII.2 Cross-section shoving design of the extrusion dies



indicate that if excessive pressure was applied the leading edge o£ 

the a' +8' tip was prone to chipping or spalling. This effect was 

worse with the Syalon 201 material and was believed to be derived from 

'snagging' of the metal and from thermal stresses generated by 

friction at the cutting face. The problem could be partially 

alleviated by increasing the flow of the cutting fluid which probably 

improved the cutting performance by reducing the contact friction and 

by providing additional cooling.

1.2 Extrusion Dies

Hot metal extrusion trials were conducted by Eaton Automotive 

Spa, Michigan. 3 extrusion dies were supplied in steel support 

sleeves (Figure VII.2). (It is normal practice to support the die 

during the metal extrusion operation to ensure that the material is 

under compression rather than tension which causes failure through 

'bursting'.) To maintain their competitive advantage the company 

would give no specific information regarding their extrusion process 

except that the dies were used for extruding a standard brass at 

temperatures typically between 600-900°C. In continuous service 

normal Syalon dies last 12 to 15 weeks with this process. The die 

life is defined as the time up until the diameter of the product 

becomes over tolerance i.e. for these particular dies when the bore 

size has increased from 8.75 mm dia to 8.90 mm. At the time of 

writing the dies were still in service having successfully operated 

for 10 weeks with 'little signs of wear'. Eaton Automotive also 

indicted that the extruded bar had a superior surface finish.
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1.3 Drawing Dies

The a'+B' material was evaluated in cold drawing applications 

with the Cull co-operation o£ Delta Rods Ltd, West Bromwich. Delta 

Rods are extensive users of Syalon materials for extrusion purposes, 

but were particularly interested in more durable drawing dies 

tominimise down-time during their replacement. Syalon 101 and 201 

dies had been tested on previous occasions but their performance was 

only comparable with the more traditional tungsten carbide dies and 

did not justify the additional cost.

A single die fabricated from the a '+ B ' material was initially 

supplied shrunk fit in a steel (H13) case (nominal interference fit

0.4%) (Figure VII.3). Dies fabricated from Syalon 101, 201 and 501 

were also supplied for comparative tests in conjunction with the 

standard tungsten carbide equivalents.

Coils of pre-extruded brass (DIN CuZn 36% Pb 1.5%, 150 kg 

each), for electrical accessories and lighting fittings, were pulled 

through the dies, without lubrication, in the configuration 

illustrated in Figure VII.4. During pulling the temperature of the 

die typically reached 270-350°C due to the friction generated. The 

pull rate was approximately 0.35 ms-1' and the feed stock size was 6.72 

mm dia. pulling down to a start draw size of 6.30 mm dia., i.e. a 

reduction ratio of 12%. The product became over tolerance and the die 

had to be replaced when the insert bore size reached 6.35 mm dia. The 

results for the different materials are illustrated in Figure VII.5.

Clearly the Syalon 501 material was inferior and was not 

well-suited to this particular application. With extrapolation it can 

be seen that the Syalon 101 and 201 material exhibited similar 

lifetimes to the conventional tungsten carbide dies allowing a maximum
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pull of typically 153 coils, 23 tonnes of feed stock material. The 

a * +8* material exhibited a different wear pattern to the other 

materials; more parabolic rather than linear. In the early stages 

material erosion was higher but this became relaxed and the die went 

on to allow a pull of 220 coils, 33 tonnes of stock before becoming 

over tolerance, representing an improvement of 43% over the 

conventional carbide dies. The surface finish was reported as very 

good from the beginning to the end of the run.

Delta Rods are currently carrying out further trials to 

substantiate the advantages of the material and to examine the 

possibility of faster pull rates.

1.4 Other Applications

Additional work is currently being undertaken to explore the 

use of the a'+6‘ material in other high wear applications. These 

include trials with shot blast nozzles for directing high pressure 

jets of AI2O3 grit for metal surface cleaning purposes. Initial tests 

have been described as encouraging although the improvements have yet 

to be quantified. Other areas of interest include tools for forming 

car engine valves and tappet shims via metal pressing, forging or 

stamping operations, and as material for replacement values and tappet 

discs themselves for use in high performance vehicle engines. 

Components are also being tested for increased wear and corrosion 

resistance in the preparation of Nickel-Cadmium household batteries.

2. Overall Performance

In all of the field trials the new a* «-S' -»isolated TAG 

material performed at least as well as the conventional Syalon 101 and 

201 materials. In many applications the performance demonstrated was



far superior. In environments involving exposure to highly erosive 

wear mechanisms the incorporation of this new material was 

particularly effective. The increase in hardness afforded by the 

inclusion of the a'-sialon species was primarily responsible for the 

improvements rather than an increase in mechanical strength. The 

reduction in residual phase volume was believed to have a minor effect 

on the material's strength and hardness properties but in operations 

at elevated temperatures this reduction was envisaged to be 

particularly beneficial. Unfortunately, it was not possible, within 

the scope of this research to fully examine this formulation by 

testing the material in more appropriate applications such as in gas 

turbine engines.
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OVERVIEW

A good understanding of the phase relationships which occur 

within a particular system and a knowledge of how the reaction 

chemistry may be controlled or manipulated to obtain a desired or 

idealised microstructure has allowed improved materials, with enhanced 

properties, to be developed for use in more demanding environments. 

Materials in the M-Si-Al-O-N systems are fairly well advanced but they 

are expensive and their use is limited at extreme temperatures because 

they retain residues from the processes involved in their formulation. 

This research work illustrates a method of producing cheaper sialon 

materials and demonstrates a mechanism for incorporating the majority 

of the densification additives into the bulk microstructure of the 

product and modifying the remainder to generate materials with 

improved high temperature characteristics.

The main conclusions of this work are that:

1. Nd2<>3, which is currently less than one fifth of the price of 

Y2O3, may be substituted for the latter in the preparation of 

B'+glass sialon materials provided that special care is taken 

to prevent hydrolysis of the raw Nd203 powder during 

preparation. These neodymium-based materials exhibit similar 

mechanical properties to their Yttrium counterparts.

2. The absence of a phase equivalent to YAG in the Nd-Si-Al-O-N 

system complicates the formation of materials in which the 

residual glass may be fully recrystallised to generate a 

ceramic for use at elevated temperatures. By careful control
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of the stacting composition it is possible to achieve a glass 

which can be devitrified to give a mixture of NdAlC>3+NdN-a 

wollastonite to generate a material with high temperature 

mechanical properties comparable to those of the conventional 

B+ÏAG sialons. The eutectic temperatures in the Nd-Si-Al-O-N 

system are typically 30-50°C lower than for the corresponding 

yttrium variants, hence the Nd versions of materials of 

equivalent composition generally exhibit slightly inferior 

creep and oxidation properties at elevated temperatures.

3. The glass forming region in the Nd-Si-Al-O-N system is far 

more extensive than in the yttrium system. Nd-sialon glasses 

can accommodate up to 30 equiv. % nitrogen compared with -20 

equiv. % for yttrium. A number of new Nd-phases, with no 

synonym in the yttrium system, have been identified within 

this expanded glass region and these offer potential as 

alternative devitrification products upon annealing. In 

particular a B ‘ sialon material has been prepared with a 

crystalline matrix of composition Nd3Si3Al30i2N2. The glass 

devitrifies at constant composition and undergoes full 

recrystallisation. This new sialon material is stable upto 

the melting or decomposition temperature of this new phase 

(-1325°C) and the phase reforms if the temperature is lowered 

sufficiently slowly. Up to approximately 1250°C this new 

material exhibits similar property characteristics to the 

conventional B'+YAG materials.

4. The preparation of pure a ' and a '+ B ' sialon materials is 

extremely composition sensitive. a'+B ' materials which
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contain a very minor amount oC residual glass can be prepared 

much more easily. By control of the starting composition 

this small volume of glass may be devitrified to form mainly 

YAG. Upon annealing, the a' species is particularly 

receptive to the non-stoichiometric elements which results in 

increased solid/solid contact following absorption. To 

alleviate the interfacial energy anisotropy the YAG crystals 

are transformed by diffusive rearrangment to an isolated 

equiaxed granular morphology.

5. The reduction in secondary phase volume and subsequent

removal of residual grain boundary glass and YAG crystal 

segregation gives this material substantially improved high 

temperature properties. The diffusion controlled mechanisms 

of oxidation and creep degradation are diminished due to a 

high diffusion coefficient resulting from the lack of an easy 

transport path.

6,. The increase in hardness afforded by inclusion of the a'

species allows demonstrable improvements in wear resistance.

The improvements which have been demonstrated with this new 

range of materials are illustrated in Figure VIII.1. Clearly the 

materials developed in this work have gained some ground in extending 

the existing range towards the ceramic development objective outlined 

in the 1970's (see section II.8 and Figure 11.19).

Over the past few months component field trials have been 

carried out which highlight the advantages of having a harder sialon
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Figure VIII. 1 The ceramic development objectives outlined in the 1970's 
illustrating how the o'+ 3'+isolated YAG material pushes 

the limitations nearer to the development goals



material with a much reduced and modified residual phase volume. This 

has led to higher productivity and expansion of sialon sales into 

areas otherwise untapped by ceramic materials. The o' +B'«-isolated TAG 

materials developed in the present work have exhibited such 

significant improvements in performance to warrant worldwide 

protection and this new generic range of sialon materials is currently 

subject to British Patent Application No. GB 88090S2.7 (1989). The 

particular grade of material developed within this research programme 

is now being marketed by Vesuvius Zyalons Midlands Ltd. (formerly 

Lucas Cookson Syalon Ltd.) as Syalon CM 200. Increased efforts are 

being undertaken to optimise the operating conditions for this new 

sialon material« to understand its behaviour and maximise its 

performance in specific applications, with the ultimate aim of fully 

realising its potential within the market place.
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