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Adaptive Network Segmentation and Channel

Allocation in Large-scale V2X Communication

Networks

Chong Han, Member, IEEE, Mehrdad Dianati, Senior Member, IEEE, Yue Cao,

Member, IEEE, Francis Mccullough, and Alexandros Mouzakitis

Abstract

Mobility, node density and the demand for large volumes of data exchange have aggravated com-

petition for limited resources in the wireless communications environment. This paper proposes a

novel MAC scheme called Segmentation MAC (SMAC) which can be used in large-scale Vehicle-

to-Everything (V2X) communication networks. SMAC functions to support the dynamical allocation

of radio channels. It is compatible with the asynchronous multi-channel MAC sub-layer extension

of the IEEE 802.11p standard. A key innovate feature of SMAC is that the segmentation of the

network and channel allocations are dynamically adjusted according to the density of vehicles. We also

propose a novel efficient forwarding mechanism to ensure inter-segment connectivity. To evaluate the
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performance of inter-segment connectivity, a rigorous analytical model is proposed to measure the multi-

hop dissemination latency. The proposal is evaluated in network simulator NS2 as well as the standard

IEEE 1609.4 and two asynchronous multi-channel MAC benchmarks. Both analytical and simulation

results demonstrate better effectiveness of the proposed scheme compared with existing similar schemes

in the literature.

Index Terms

Large-scale systems, Multiaccess communication, Adaptive systems, Communication channels, Re-

source management.

I. INTRODUCTION

Recent research [1] reports that Vehicle-to-Vehicle (V2V) technology based on Dedicated

Short Range Communication (DSRC) using the standard IEEE 802.11p [2] will be introduced in

new/autonomous vehicles, resulting a high penetration rate (61.8%) of V2X by 2027. Meanwhile,

in the vision for future automotive industry [3], use cases rely on high data rate of information

exchange (e.g., some vary from 10 to 40 Mbit/s per use case per vehicle). The challenges in terms

of node density, frequent/competitive channel access due to high mobility, and large volumes

of traffic flows are therefore intuitively foreseeable in V2X communications. Hence, there is an

urgent call for a more efficient MAC scheme enabling V2X communications in the future dense

large-scale vehicular networks. To this end, this paper proposes a novel multi-channel MAC

scheme to tackle this problem.

In the last decade, to mitigate the starvation multi-channel extension of the standard IEEE

802.11p [2] MAC sub-layer, i.e., IEEE 1609.4 multi-channel operation [21], was proposed.

IEEE 1609.4 improves the performance by allocating a dedicated channel for control signalling

and allowing simultaneous communications over multiple service channels. The IEEE 1609.4

extension adopts a synchronous switching between control channel and service channels. It is

shown that synchronous operation of the MAC sub-layer is an inherently poor utilisation of the
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bandwidth ([11], [23], [24]). To mitigate the poor bandwidth utilisation problem of synchronous

multi-channel MACs, asynchronous multi-channel MACs were proposed (surveyed in [17]). This

was further enhanced by introducing hopping sequence to schedule multiple parallel rendezvous

[18], applying Pulse/Tone exchanges prior to handshake for collision avoidance on the control

channel [19]. In our previous work [11], we proposed a novel distributed asynchronous multi-

channel MAC scheme in favour of high network load and multiple simultaneous transmissions

via Distributed-TDMA mechanism and enhanced channel utilisation. It outperforms well-known

existing asynchronous multi-channel MAC schemes such as [7], [8] and [21]. It was demonstrated

that this scheme improves system performance in terms of the overall system throughput, packet

delivery rate, collision rates on service channels, load balancing, and service differentiation.

However, none of these aforementioned ([7], [8], [11], [18] and [19]) asynchronous multi-

channel MAC schemes address the challenges arising from large-scale networks, i.e., achieving

comparable system performance as they do in single-hop scenarios ([4], [5], [6]). Simulation

results from both literature [4] and this work (as shown in Sec. V) reveal that existing multi-

channel MAC schemes suffer from severely poor bandwidth utilisation, packet delivery and

dissemination. This is mainly associated with the high level of contention and limited spatial

reuse [13], due to the over-protective Clear Channel Assessment (CCA) mechanism.

In this paper, we propose an efficient MAC scheme for large-scale dense networks, that can

work on top of asynchronous multi-channel MAC schemes, such as [7], [8] and [11]. The

proposed technique exploits cooperation of infrastructures such as Road Side Units (RSUs) and

centralised network controlling server. The centralised controller dynamically makes decisions

to segment the large-scale network into multiple serving areas, and efficiently allocates control

and service channels across the entire network. The concept of network segmentation has been

previously employed in [14], [15], [16]. It is worth noting that different from existing work, this

proposed segmentation approach adapts to the network status (e.g., node density) and integrates

with the asynchronous multi-channel extensions of the IEEE 802.11p MAC sub-layer. When a
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network is segmented and different sets of channels are used within different segments, inter-

segment communications cannot be naturally carried out. We therefore also propose an effective

technique for communications among the nodes in different segments of the network. In addition,

a rigorous analytical model is developed to analyse the performance of inter-segment dissemina-

tion of critical messages. Finally, extensive simulation results under realistic assumptions using

Network Simulator 2 (NS2) [22] environment are given to validate the accuracy of the proposed

analytical models and evaluate the performance of the proposed technique. Both the simulations

results and the analytical models demonstrate that the proposed scheme outperforms benchmark

multi-channel MAC schemes [21], [8] and [11] in large-scale dense vehicular networks, in

terms of (aggregate/normalised) throughput, multi-hop dissemination delay (i.e., end-to-end delay

between two nodes in non-adjacent segments), and the fast penetration capability1.

The rest of the paper is organized as follows. First, key entities in the system and the connec-

tions among them are briefly introduced in Section II. The proposed scheme is then elaborated

with details in Section III. Analytical models with regard to the inter-segment dissemination

mechanisms in multi-hop scenarios are proposed and validated in Section IV. Simulation based

performance evaluation is given in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

This section presents applicable scenarios for the proposal. As shown in Fig. 1, such V2X

communication systems shall consist of vehicles, RSUs and a Network Control Server (NCS).

Vehicles and RSUs are equipped with DSRC network interfaces for V2X communications, that

employ an asynchronous multi-channel MAC technology which is described later in this section.

V2X communication interfaces enable Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure

(V2I) communications. In addition, vehicles are considered to be equipped with Global Posi-

tioning System (GPS) enabling them to obtain their locations.

1This concept is introduced in Section V.
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Typical RSUs are V2X enabled road infrastructural units. For instance, traffic lights and base

stations, mounted with communication and computing devices, could be deemed permanent

RSUs [28]. There may be dedicated network interfaces for communications among RSUs and

to the network control server, denoted by Infrastructure-to-Infrastructure (I2I) interfaces in Fig.

1, which could be facilitated via cellular systems such as LTE or fiber optic links. Alternatively,

a dedicated wireless channel in DSRC could also enable I2I communications among RSUs.

DSRC

RSU

RSU

RSU

Network Control 

Server (NCS)

I2I

Fig. 1. System Model

NCS processes the information reported by RSUs and makes decision with regard to segmen-

tation management and channel allocation.

The MAC sub-layers of the DSRC network interfaces adopt the IEEE 802.11p standard

with a 7-channel asynchronous extended function, namely, Asynchronous Multi-Channel MAC

(AMCMAC) [7] scheme. In AMCMAC, nodes tune to the Control Channel (CCH) by default.

The CCH is used for channel negotiations and the broadcast of emergency messages. After

successful channel negotiation, the pair of nodes hop to the agreed Service Channel (SCH) to

finish the transmission of large data packets. Nodes switch back to CCH when the transmission

on the SCH is completed.

Vehicles may communicate with each other and RSUs, but not directly with the NCS. The NCS
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only communicates with RSUs. RSUs collect information from V2X messages sent by vehicles;

RSUs periodically report 2 to NCS after data analysis and processing; RSUs also assist the inter-

segment communications as well as the dissemination of the segmentation-related information.

As the centralised controlling server, NCS gathers information of network status via RSUs.

Based on the global knowledge of the network, it makes decisions regarding segmentation and

channel allocation. NCS informs each RSU to establish/revoke segmentation and corresponding

channels which are allocated to the segment. The establishment and revocation of segmentations

are explained with detail in Sec. III.

III. THE PROPOSED SCHEME

The proposed solution is introduced with details in this section. First, an overview of the

proposed scheme is given. Then, key innovations of the proposed scheme shown in Fig. 2 are

described in detail.

At a glance, the scheme relies on the centralised controller NCS. NCS dynamically decides

to partition the network or revoke the segmentation, via either the revocation (orange) route

or the segmentation (blue) route. When segmentation is decided to be desired for a congested

network by monitoring the network status in Segmentation Management, NCS then considers

the rules of segmentation. Here, segments are considered as geographical regions in the shape

of square, where the corresponding RSU of a particular segment locates at the centre of the

square. The size of the segment is determined by both non-overlapping rule and the contention

control mechanism. Once segmentation strategies are confirmed, rules in Channel Allocation

shall be followed, e.g., the compatiability with existing MAC schemes, interence avoidance, and

inter/intra-segment connectivities, in order to efficiently make use of the radio resources. NCS

2The frequency of reporting to NCS is not restricted in this paper. Usually, it is assumed that the number of vehicles in the

range of each RSU may not change much during a few seconds. Hence, the frequency of report sending is not necessarily higher

than 0.1 Hz.
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RSURSURSU

Network Status 
Monitoring

Segmentation Management Channel Allocation

Revocation

Segmentation 
not required

Segmentation 
required

Non-
overlapping 

rule

Contention 
control

Non-
overlapping 

rule

Contention 
control

Intra-
segment 

Connectivity

Inter-
segment 

Connectivity

Compatibility

Interference

Functions by NCS

Segmentation Rules

Fig. 2. Key Functions Implemented at NCS for SMAC Scheme

finally informs RSUs the network segmentation strategies as well as allocated channels, adapting

to the congestion level in the network. Key designs and features of SMAC are elaborated in the

following.

A. Segmentation Management

As shown in Fig. 2, the segmentation management consists of three function blocks, namely the

Network Status Monitoring, Segmentation Rules and Revocation. NCS maintains the supervision

of the network status in terms of node density around the RSUs. Whenever the necessity of

forming segmentations is found, NCS decides the segmentation strategies based on the network

status following the segmentation rules. Revocation is self-explanatory, that NCS simply informs

relevant RSUs to revoke the segmentation and go back to the defult multi-channel MAC scheme.

Thus, the following will focus on the introduction to network status monitoring and rules for

segmentation.
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Fig. 3. Network Status Maintenance

1) Network Status Monitoring: NCS monitors the network status in terms of node density

near RSUs based on the periodical reports sent by RSUs. Hence, the first step is for RSUs to

monitor the active nodes within their own communication ranges. As shown in the flow chart

in Fig. 3, if a vehicle enters the communication range of an RSU for the first time, the RSU

obtains the vehicle ID in the packet (e.g., CAM/DENM3, peer-to-peer messages) received from

the vehicle, and then creates a new entry for this vehicle. If the vehicle has been previously

recognised and recorded with an existing entry, RSUs update the entry with the up-to-date

location information of the vehicle. RSUs maintain their entry tables by adding/removing nodes

according to received messages in order to achieve a relatively accurate estimation of surrounding

nodes.

In the RSU’s report, the number of vehicles (i.e., Nx) in the vicinity of each RSU for different

ranges (i.e., within Dx m away from the RSU) are listed. An example of such list is given in

Table. I. For instance, for this RSU, there are 50 vehicles within 100m; 80 within 200m and

200 vehicles within 500m.

3CAM: Cooperative Awareness Message. DENM: Decentralized Environmental Notification Message.

DRAFT July 29, 2018



SUBMITTED PAPER 9

TABLE I

SAMPLE PERIODICAL REPORT FROM RSUS

Range Index Range (0-DXm) Number of neighboring vehicles (NX )

1 0 - 100 m 50

2 0 - 200 m 80

3 0 - 500 m 200

... ... ...

RSU A

RSU C

RSU B

RSU D

Fig. 4. An Example of Network Segmentation

Potential congestion is identified when the total number of nodes within the communication

range of an RSU is greater than a threshold Ndesired (which value is adjustable according to the

focus of the networks/operators),

Nx > Ndesired. (1)

When the NCS detects potential congestion in the RSU’s report, NCS starts to calculte suitable

segment sizes for related RSUs following the two segmentation rules.

2) Segmentation Rule 1 - Non-overlapping: The basic principle of this rule is to avoid

overlapping areas, where nodes inside these areas are allocated with different sets of channels.

Fig. 4 gives an example when multiple RSUs are available in a large-scale congested area.

Assuming each RSU is surrounded by large number of nodes, the NCS may divide the area
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into multiple segments around RSUs. Orange lines represent the minimum distance between

itself and nearby RSU peers. It can be easily proved that if the maximum size4 is limited to the

minimum distance divided by
√

2, overlapping areas will be avoided. Hence, the maximum size

Limax for each segment i is given by:

Limax
= min(

dist(I,B)√
2

,
dist(I, C)√

2
,
dist(I,D)√

2
, ...), (2)

where dist(x, y) is the distance between two adjacent RSUs (i.e., RSUx and RSUy). Here, an

extreme example is given by RSU A and C, where two adjacent RSUs line up exactly at 45

degree from the horizon. This example gives the reason to decide Limax as in Eq. (2), which

aims to allocate the maximum size of segmentation for each RSU and meanwhile to avoid

overlapping segments. The importance to avoid overlapping segments is raised by the channel

allocation mechanism and discussed in Section III-B in detail.

3) Segmentation Rule 2 - Contention Control: The NCS also needs to control the contention

level for nodes around each RSU utilising the same set of channels. In the reports from RSUs

(an example is given in Table. I), a list of numbers of nodes within different ranges is reported

to NCS. Here, NCS shall reduce the communication range to the ranges (i.e., Dx) when the

number of nodes within the range is no greater than the desired threshold Ndesired. Then, the

maximum range Dmax can be obtained by:

Dmax = max(Di|Ni ≤ Ndesired), (3)

where Ni is the number of nodes within the area (0 ∼ Di m away from the RSU). For instance,

as shown in the example in Table. I, 200 nodes appear around the RSU within 500 m; 80 nodes

within 200 m; and 50 nodes within 100 m away from the RSU. If the threshold Ndesired is

100, 200 m will be chosen as the Dmax to ensure the number of surrounding nodes is under

4The size of each segment is defined by the length of sides (i.e., L) for each segment.

DRAFT July 29, 2018



SUBMITTED PAPER 11

the threshold 100. Note, this rule shall work together with the non-overlapping rule. Hence, the

smaller value between
√

2Dmax and Limax can be chosen as the size for the segment, given by

Li = min(
√

2Dmax, Limax). (4)

B. Channel Allocation

As mentioned in the system model, 7 non-overlapping channels on frequency are assumed,

in order to increase the compatibility of the proposed scheme to existing MAC schemes. One

channel is set as the Public Control Channel (PCCH); two channels are named Local Control

Channels (LCCHs); and the rest 4 channels are used as Local Service Channels (LSCHs). In

the system, vehicles initially work on AMCMAC [7]. To align the channels in AMCMAC,

if no segmentation exists, PCCH is used as the control channel while the rest channels are

service channels. In the MAC scheme by default, PCCH is used for broadcast of transmission

requests/channel negotiations or emergency messages; one of the rest channels are used when a

pair of nodes successfully make a channel negotiation. Since the proposed algorithm targets

to provide a local sub-network whenever the node density is found large, the number of

nodes outside the segments is relatively small. Of course, there could be slight chances

that a few nodes outside the segmented networks still working on all 7 channels, but the

probability of collisions due to selecting the same channel at the timeslot as nodes in the

segment is slim. The interference of such nodes to the segment networks is out of the scope

of the paper.

Once NCS decides to form a segment it informs the RSU via the other network interface

(e.g., Ethernet, LTE-A). Then, segmentation information is broadcast periodically on the PCCH

by the RSU. When a vehicle enters the V2X network, it always first listens to the PCCH

before proceeding with any activity. When vehicles receive the segmentation information on the

PCCH, vehicles update their own Segment ID (SID) according to the information, and switch

to the corresponding LCCH immediately. Revocation information shall be disseminated both on

July 29, 2018 DRAFT
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PCCH to inform newly joined nodes, and on LCCH to notice the nodes working on SMAC the

cancellation of segmentation.

1) Intra-segment Connectivity: Nodes within the same segment are allocated with one LCCH

and two LSCHs. The LCCH is used as the local control channels, on which emergency messages,

channel negotiations and segmentation/revocation information are disseminated. LSCHs, on the

other hand, are used for data transmissions among peers. Since only two service channels can be

used for data transmissions in each segment, it is possible that both LSCHs are occupied and not

available for another transmission. Thus, we allow the LCCH to be used for data transmission

after a successful channel negotiation if both LSCHs are occupied at that moment. The channel

access mechanism inside each segment could refer to our previous work [7].

2) Inter-segment Connectivity: Timely dissemination of emergency messages is crucial to

all safety-related ITS applications. In this proposal, we aim to utilise RSUs to ensure fast

dissemination of important V2X messages in multi-hop scenarios. Unlike the simple forwarding

mechanism in most existing work [2], in SMAC, RSUs are made by default the forwarder for

emergency messages. This reduces the collisions resulted in by multiple volunteering forwarders.

It also speeds up forwarding process in large-scale networks. The detailed description and analysis

of the fast information dissemination mechanism is given in Sec. IV.

In principle, the mechanism consists of two phases: assessment and forwarding. When an

RSU receives an emergency message, it assesses the relevance of the message to the segment

it belongs to. Emergency messages are usually of interest by nodes within several hops before

expiration. For instance, if a hard break warning is broadcast in urban area, RSUs in nearby

subnetworks may find the warning unrelated to the vehicles within its subnetwork. Therefore,

the criterion for relevancy of an emergency message is use case specific. The V2X message will

be forwarded by RSUs, only if the information is still useful for nodes inside their segments or

adjacent segments. Emergency messages are immediately forwarded to other RSUs or dropped

after the assessment.
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3) Edge Effect: When the network is segmented as above, concerns arise from nodes moving

towards the edges of segments. In the literature [17], it is already given that channel switch time

takes about 150 ∼ 200µs. Suppose the vehicles move at the maximum speed but within the

speed limits for highway, which is 70 mi/h (i.e., 31 m/s). The maximum distance during the

channel switch is,

Distmax = Vmax ×∆t. (5)

Hence, it means in highway scenarios, nodes may be absent for 0.62 cm on the edge of segments

at most. For urban scenarios, since the speed limit is much lower than that of highway, vehicles

could switch to the adjacent segment within 0.266 cm. Thus, the relatively small disconnection

will not cause safety concern in terms of the edge effect.

IV. DELAY MODELLING FOR MULTI-HOP DISSEMINATION

In this section, delay models of inter-segment connectivity are given, in order to evaluate

the efficiency of multi-hop dissemination by SMAC. The analytical models demonstrate how

the proposed scheme meets the stringent requirement of end-to-end delay in kinetic controlling

use cases, and the substantial improvement of multi-hop dissemination latency comparing to the

benchmark [2]. The term of dissemination delay means the latency from the first broadcast of

an emergency message until the message is received by all vehicles within relevant hops.

The following assumption are made for the analytical modelling:

1) There are N identical active nodes in the reference area.

2) RSUs are deployed 500 m away from each other in a straight line.

3) 7 non-overlapping channels (10 MHz each) can be scheduled and allocated to different

segments.
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Fig. 5. Examples of Different Emergency Dissemination Procedures

A. Dissemination Procedures

The relevant reference area covers 1500 by 500 meters along the dissemination direction [25].

Since RSUs are assumed locating in a straight line, we simplify Eq. (2) to Limax = 500m to

reduce the analytical modelling complexity without losing generality. Random distribution is

assumed for vehicles all over the reference area. Hence, if we define the average number of

nodes in each segment as Nh, the total number we consider in the dissemination scenarios is

roughly 3Nh. Emergency messages are generated by vehicles which are equipped with kinemat-

ic/perception/environmental sensors. The traffic flows are demonstrated by the pink dash lines.

Fig. 5 gives examples of the procedures of different dissemination modes.

(a) Traditional infrastructure-free forwarding mode [2]:

In mode (a), no infrastructure exists, hence the messages are forwarded and disseminated by

volunteering forwarders. In the example, it can be seen that it is likely to trigger multiple

forwardings for the same V2X message. In this case, emergency messages may be unnec-

essarily rebroadcast many times and meanwhile reduce the system performance in terms of
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end-to-end latency, throughput and packet delivery rate.

(b) SMAC fast dissemination mode

Mode (b) shows the proposed forwarding technique with the assistance of RSUs. Emergency

messages are first delivered to the nearby RSU on LCCH. Then, the messages are forwarded

to other RSUs within relevant hops by the local RSU, via wireless communications access

technology (e.g., broadcast via DSRC, multi-cast via LTE). RSUs which receive the emer-

gency messages will disseminate the information for both local vehicles via LCCHs and

other RSUs via PCCH.

(c) SMAC fast dissemination (with wired connections) mode

In mode (c), wired connections among RSUs are assumed to be available. The messages

are conveyed to nearby RSUs within a large reference area. It is up to the RSU itself to

decide whether the emergency message is still valid for vehicles in its range after receiving

the message. The Ethernet connection among infrastructures is considered because it might

be one of the promising implementation of future ITS [20]. The forwarding procedure of

mode (c) is similar to that in mode (b). The difference is that RSU can inform all other

RSUs (of interest of such message) with wired connections, at once. Hence, related RSUs

could be noticed of the emergency message with bounded delay (e.g., 50 ∼ 125µs [29]).

B. Decomposition of End-to-end Delay

The delay models for the multi-hop dissemination process in mode (b)/(c) are formulated into

three parts: (D-i) the delay on LCCH (to inform the local RSU); (D-ii) the delay on PCCH

(dissemination among RSUs); and (D-iii) the delay on LCCH (for other RSUs to broadcast in

their local segments).

(D-i) The first part of the latency is generated when the vehicle detects an emergency event

and broadcasts the emergency message within its local segment on LCCH. The latency

is due to the contention and collisions among Nh nodes in the same segment, denoted
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as DLCCH , a.k.a. Intra-segment Dissemination Delay.

(D-ii) The second part of the delay comes from the contention among RSUs, plus new nodes

which just enter the relevant areas but have not switched to corresponding LCCH yet. The

number of RSUs and new nodes is relatively small and transmission attempts on PCCH

are not frequent, hence collisions may seldom occur on PCCH. In addition, since the

majority of messages transmitted on PCCH are broadcasted AC0 messages, no acknowl-

edgement is available. According to the enhanced distributed channel access (EDCA)

backoff procedure [2], the AC0 Contention Window (CW) size does not increase. Each

node randomly selects a backoff timer in the range of [0, CWmin[0]]. As a result, the

delay on PCCH can be simplified as follows, DPCCH = AIFS[0] + CWmin[0]/2× aSlotT ime,

AIFS[0] = AIFSN [0]× aSlotT ime+ aSIFSTime
(6)

where CWmin[0] denotes the minimum CW size for AC0, which is 3 as in the standard

IEEE 802.11p [2]; AIFS[0] denotes the arbitration interframe space (AIFS) for AC0;

AIFSN [0] is 2 set by the EDCA parameter table for AC0; aSlotT ime is the duration of

a slot time (13 µs); and aSIFSTime is the length of short interframe spacing (SIFS),

i.e., 32 µs. All the above parameters are standardised in [2].

(D-iii) Finally, RSUs try to disseminate the emergency message on their own LCCHs. The delay

caused on LCCH for each RSU is denoted as DLCCH , which is the similar to the first

part of the delay on LCCH, a.k.a. Intra-segment Dissemination Delay.

C. Modelling for Intra-segment Dissemination Delay

The intra-segment dissemination delay DLCCH will be derived in this section. First, a two-

dimension Markov chain for a single access category is proposed in order to calculate the

transmission probability for traffic of such access category. Then, the intra-segment dissemination
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delay is derived from the models for transmission/backoff in terms of a Z-transform domain linear

system.

Parameters and a summary of major notations are given in Table. II.

TABLE II

NOTATIONS USED IN THE ANALYSIS

Notation Definition

Nh Average number of nodes within one hop

τm Transmission probability of ACm

Rm Internal collision probability of access category m

Pbusym The probability that ACm queue is not empty

PAm The probability that the node has a packet arrived in each AC queue in one slottime

Pbfm The probability that the backoff timer reduces by 1 for ACm

M Maximum number of times the contention windows may be increased

M + f Frame retry limit

1) Calculation of Transmission Probability: Following our previous work [10] which propos-

es an analytical model for the channel access per access category in IEEE 802.11p, we extend the

model to make it adaptive to suit the scenarios with unsaturated traffic. Here, a two-dimensional

Markov Chain is proposed to model the backoff process for an individual access category (AC),

as shown in Fig. 6. Each state in this chain is represented by the tuple [s(t), b(t)], where s(t)

is the backoff stage of a Head-Of-Line (HOL) packet for each AC at time t that corresponds

to the number of collisions that the HOL packet has suffered up to time t, while b(t) is the

backoff counter at time t. To model the unsaturated traffic condition, a new state namely ‘IDLE’

is defined in the Markov Chain for each access category. In the scenarios, emergency messages

(AC0) and non-safety related packets (AC1) are generated in Poisson process, i.e., each node

generates traffic with an expected value of λm packets/sec for ACm. Hence, the probability that
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Fig. 6. Two-dimension Markov Chain for ACm

the node has a packet arrived in each AC queue (i.e., the probability that the node leaves the

“IDLE” state for one of the states on stage 0) can be calculated as, PA0 = 1− e−λ0σ,

PA1 = 1− e−λ1σ.
(7)

Denote Pbusym as the probability that there is at least one packet waiting in the queue of ACm;

σ is the slottime. Pbusym can be defined by the traffic generation rate λm and the corresponding

expected packet service rate µm. µm can be derived following the iteration process as in [26].

Pbusym =
λm
µm

. (8)

The internal transmission probability of ACm is denoted by τm. The internal collision probabil-

ities (Rm) of different access categories can be expressed as: R0 = 0,

R1 = τ0.
(9)
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The probability that the backoff timer reduces by 1 for different access categories can be

calculated by,  Pbf0 = (1− τ0)(Nh−1)(1− τ1)Nh ,

Pbf1 = (1− τ0)Nh(1− τ1)(Nh−1).
(10)

Let (i, j) represent the event of being in state [s(t) = i, b(t) = j] and P (i, j|k, l) be the the

probability of transition from state (k, l) in time t to state state (i, j) in time t+1. The transition

probabilities in the Markov chain in Fig. 6 are given in the following.

P (i, k|i, k + 1) = Pbfm, for 0 ≤ k ≤ Wi − 2, 0 ≤ i ≤M + f

P (0, k|i, 0) =
(1−Rm)Pbusym

W0

, for 0 ≤ i ≤M + f − 1, 0 ≤ k ≤ W0 − 1

P (0, k|M + f, 0) =
Pbusym
W0

, for 0 ≤ k ≤ W0 − 1

P (i, k|i− 1, 0) =
Rm

Wi

, for 0 ≤ k ≤ Wi − 1, 1 ≤ i ≤M + f,

P (0, k|IDLE) =
PAm
W0

, for 0 ≤ k ≤ W0 − 1,

(11)

We analyse the Markov chain in Fig. 6 to obtain the transmission probability for ACm queue

in any given time slot. Let bi,k be the stationary probability of state [s(t) = i, b(t) = k] in the

Markov chain, i.e.,

bi,k , lim
t→∞

P [s(t) = i, b(t) = k], for 0 ≤ i ≤M + f, 0 ≤ k ≤ Wi − 1. (12)

From the transition probabilities in Eq. (11), the process will transit from [i, k+ 1] to [i, k] with

probability of Pbfm. Hence,

b0,0 = b0,1Pbfm + bIDLE
PAm
W0

+
Pbusy
W0

(
(1−Rm)

M+f−1∑
i=0

bi,0 + bM+f,0

)
,

b0,1Pbfm = b0,2Pbfm + bIDLE
PAm
W0

+
Pbusy
W0

(
(1−Rm)

M+f−1∑
i=0

bi,0 + bM+f,0

)
,

...

b0,W0−1Pbfm = bIDLE
PAm
W0

+
Pbusy
W0

(
(1−Rm)

M+f−1∑
i=0

bi,0 + bM+f,0

)
.

(13)
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Thus, for any state at stage 0,

b0,k =
W0 − k
W0Pbfm

b0,0. (14)

B0,0(z)� BM+f,0(z)�B1,0(z)�

Φm(z)�

1� Rm� Rm� Rm�

1.Rm�
1.Rm� 1.Rm�

Γm(z)�

Rm�

1.Rm�

!� !� !�

Fig. 7. Z-transform Linear System for ACm

For any state on the other non-zero stages,

bi,0 = bi,1Pbfm + bi−1,0
Rm

Wi

,

bi,1Pbfm = bi,2Pbfm + bi−1,0
Rm

Wi

,

...

bi,Wi−1
Pbfm = bi−1,0

Rm

Wi

.

(15)

Thus,

bi−1,0 ·Rm = bi,0, for 1 ≤ i ≤M + f. (16)

Hence,

bi,0 = (Rm)i · b0,0, for 0 ≤ i ≤M + f. (17)

We could obtain the relationship between bi,k and bi,0 from Eq. (15) as follows. For any state at

other non-zero stages,

bi,kPbfm =
Wi − k
Wi

·Rm · bi−1,0, for 1 ≤ i ≤M + f, 0 ≤ k ≤ Wi − 1. (18)

From Eq. (16), we could rewrite Eq. (18) as,

bi,k =
Wi − k
WiPbfm

bi,0, for 1 ≤ i ≤M + f, 0 ≤ k ≤ Wi − 1. (19)

Combining with Eq. (14), for 0 ≤ k ≤ Wi − 1,

bi,k =
Wi − k
WiPbfm

· bi,0, for 0 ≤ i ≤M + f. (20)
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Fig. 8. Z-transform System Block Diagram for Backoff Instance for ACm

The probability of IDLE state can be calculated as,

bIDLE = bIDLE × (1− PAm) + (1− Pbusy)×
(

(1−Rm)

M+f−1∑
i=0

bi,0 + bM+f,0

)

=
1− Pbusy
PAm

(
(1−Rm)

M+f−1∑
i=0

bi,0 + bM+f,0

)
(21)

Since the sum of all states in the Markov chain equals to one,

1 =

M+f∑
i=0

Wi−1∑
k=0

bi,k + bIDLE =

M+f∑
i=0

bi,0
Pbfm

Wi−1∑
k=0

Wi − k
Wi

+
1− Pbusy
PAm

(
(1−Rm)

M+f−1∑
i=0

bi,0 + bM+f,0

)

=
b0,0

2Pbfm

(
1

1−Rm

+W0

M∑
i=0

2iRi
m +WM

M+f∑
i=M+1

Ri
m +

2Pbfm(1− Pbusy)
PAm

)
(22)

Hence,

b0,0 = 2Pbfm

(
1

1−Rm

+W0

M∑
i=0

2iRi
m +WM

M+f∑
i=M+1

Ri
m +

2Pbfm(1− Pbusy)
PAm

)−1
(23)

A transmission occurs whenever the backoff counter becomes zero. Hence, the transmission

probability for ACm can be expressed by

τm =

M+f∑
i=0

bi,0 = b0,0

M+f∑
i=0

(Rm)i =
b0,0

1−Rm

. (24)

Replacing the b0,0 in Eq. (24) by Eq. (23), the probability of transmission τm, can be obtained

as follows.

τm =
2Pbfm

1−Rm

(
1

1−Rm

+W0

M∑
i=0

2iRi
m +WM

M+f∑
i=M+1

Ri
m +

2Pbfm(1− Pbusy)
PAm

)−1
(25)
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2) Intra-segment Dissemination Delay: The next step is to derive intra-segment dissemination

delay DLCCH , namely the MAC serving time. The MAC service time denotes the duration from

the moment that a packet becomes the HOL packet, to the time when the packet is successfully

transmitted or dropped ([26], [27]). In the following derivation, γm is used to denote the MAC

serving time for traffic of access category m. Fig. 7 depicts the whole transmission/backoff

process in terms of a Z-transform domain linear system. The probability generating function

(PGF) of the MAC service time can be obtained by,

Γm(z) =
∞∑
x=0

ηm,xz
γm,x , (26)

where ηm,x is the probability for service time γm,x. Hence, the PGF can be evaluated via the

transfer-function approach. Under the assumption that the packet sizes are the same for each AC,

the transmission time of each packet is fixed as a constant. Thus, the PGF of the transmission

time Tφ for ACm is given by,

Φm(z) = zTφm . (27)

Thus, the PGF of the MAC service time is derived according to Fig. 7 as follows,

Γm(z) = RM+f+1
m

M+f∏
k=0

Bk,0(z) + Φm(z)(1−Rm)

M+f∑
k=0

Bk,0(z). (28)

The mean MAC service time can be expressed by,

γm,x =
dΓm(z)

dz
|z = 1. (29)

To obtain γm,x, we first need calculate Bk,0(z). In the backoff procedure, the backoff timer

decreases by 1 if the medium is sensed idle; the timer is frozen for a period (i.e., TNAV ) if

transmission is detected on the shared channel. The PGF of the average time that the backoff

timer of ACm decreases by one is

Θm(z) = Pbfmz
σ + (1− Pbfm)zTNAV +AIFS[m], (30)
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Fig. 9. Validation of Dissemination Delay Models

where TNAV could be different due to the detected traffic types (e.g., emergency messages or

non-safety related packets). From Fig. 8, the PGF Bi,0(z) can be derived as,

Bi,0(z) =
1

Wi

Wi−1∑
k=0

Θm(z)k. (31)

To summarise, the total multi-hop dissemination delay will be a sum of the above derived

delay (e.g., two intra-segment dissemination delay (i.e., 2 × DLCCH) plus the delay on PCCH

(i.e., DPCCH)) depending on the scenario, as decomposed in IV-B.

D. Validation of Analytical Modelling

The numerical models are validated against simulation results in this subsection. Denote, ‘local

dissemination’ as emergency messages are disseminated within one segment; and ‘neighbouring

dissemination’ as the emergency messages are delivered to vehicles in the neighbouring segment

(i.e., one hop away from the local segment). ‘Ana’ and ‘Sim’ represents analytical and simulation

results respectively in the context.

Fig. 9 validates the delay models for inter-segment dissemination mechanism (i.e., the multi-

hop dissemination) in SMAC. The end-to-end delay from simulations with 95% confidence and

July 29, 2018 DRAFT



24 IEEE TRANSACTIONS ON COMMUNICATIONS

0 5 10 15 20 25 30 35
Number of nodes within per unit reference area

0

0.5

1

1.5

2

2.5

3

E
n
d
-t

o
-e

n
d
 d

e
la

y 
(m

s)

Local Dissemination
Mode (b) Neighboring Dissemination
Mode (b) Distant Dissemination
Mode (c) Distant Dissemination

Fig. 10. Dissemination Delay of Mode (b) and (c) in Multi-hop Scenarios

analytical results are plotted against the number of nodes on average in each unit reference

area for inter-segment dissemination mode (b). Both local dissemination and neighbouring dis-

semination delay are measured. It can be seen that the results from numerical analysis and the

simulation results match each other.

Fig. 10 extends the delay measurement with ‘Distant Dissemination’ in order to demonstrate

the benefits brought by alternative interfaces such as Ethernet in mode (c). Distant Dissemination

refers to the case when emergency messages are disseminated in a large-scale area, e.g., several

hops where the information in the message is still valid. A typical Ethernet connection latency

is between 50 and 125 µs [29]. With this bounded latency, a fast dissemination of emergency

messages can be guaranteed in large-scale dense scenarios. The benefit shown in Fig. 10 demon-

strates about 50% latency reduction for dissemination within 3 hops. The benefit will be more

remarkable in multi-hop dissemination cases.

V. PERFORMANCE EVALUATION

The proposed multi-channel MAC scheme is implemented by the authors and evaluated in

the well-known simulation tool, NS-2 [22], from Lawrence Berkeley National Laboratory. The
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simulation scenario considers an urban area with dense traffic, where vehicles are randomly

distributed in the grids. The average speed for the nodes is 27 mi/h, which is about the common

speed limit for urban areas. The reference area covers 1500 m×500 m, with 3 RSUs located

on the central line. RSUs are assumed placed 500 m away from each other. Each RSU shall at

least support the DSRC communications, and favorable to have an extra networking interface

such as the Ethernet/cellular connections. Two scenarios are considered in this paper in order

to keep the generality. Scenario 1 segments the whole reference area into 3 subnetworks; while

scenario 2 only has two segmented networks on the sides and 1 open area in the middle. In

open area, vehicles shall use the default MAC i.e. AMCMAC. Whenever the vehicle enters the

segmented areas, it switches to SMAC. Each RSU equips two radios. One radio always stays

with the PCCH for segmentation information dissemination, emergency messages rebroadcast,

and multi-hop communication relay; while the other radio can be tuned between LCCH and

LSCHs. The rest parameter settings are the same as in Sec. III.

Benchmarks are selected from both synchronous and asynchronous multi-channel schemes,

namely, IEEE 1609.4 [21] (Synchronous), AMCP [23] (Asynchronous), and AMCMAC [11]

(Asynchronous), to compare with the proposed scheme SMAC. Key Performance Indicators

(KPIs) considered in this paper consist of throughput, packet delivery rate, packet collision rate,

and penetration rate. Detailed discussion on each KPI is given in the following sub-sections.

A. Throughput Performance Evaluation

Fig. 11 shows the aggregate throughput against the total number of nodes in the large-scale

reference area. The results illustrate that the SMAC (Scenario 1) outperforms other multi-channel

MAC schemes in almost all scenarios (e.g., 33% improvement comparing to the second best),

except in very sparse networks. It can be seen that each algorithm has throughput bound when

the network is saturated. This again depends on the specific traffic loads in each AC queue and

packet arrival rates. For SMAC and AMCMAC, due to the smart resource allocation, the saturated

July 29, 2018 DRAFT

macbook
Sticky Note
should be black

macbook
Highlight

macbook
Highlight

macbook
Highlight



26 IEEE TRANSACTIONS ON COMMUNICATIONS

 0

 5

 10

 15

 20

 25

 10  20  30  40  50  60  70  80  90
A

gg
re

ga
te

 O
ve

ra
ll 

S
ys

te
m

 T
hr

ou
gh

pu
t (

M
bp

s)

Total number of nodes in the reference area

IEEE 1609.4
AMCP
AMCMAC

SMAC Scenario 1
SMAC Scenario 2

Fig. 11. Aggregate Throughput in Large-scale VANETs

throughput is much higher than the other benchmarks and is achieved in more dense networks.

However, it is certain that not a single algorithm could fulfil unlimited transmission requests,

hence, both SMAC and AMCMAC will eventually have a dropped throughput performance

when the number of nodes in the network approaches infinity. SMAC Scenario 2 demonstrates

poor performance comparing to SMAC Scenario 1 due to the vehicles in the middle area all

stay on PCCH to compete for the channel access and negotiation. Other service channels are

underutilised in such case.

To reduce the impact of lacking wrap-around modelling in simulations, the throughput achieved

in the middle area of the reference network is measured. Fig. 12 shows the normalised throughput

in the middle area against the total number of nodes. The proposed SMAC (Scenario 1) achieves

much higher normalised throughput than the other three benchmarking multi-channel schemes

in all scenarios, i.e., 280% enhancement to asynchronous multi-channel MACs (AMCP and

AMCMAC) in the network consisting of 90 nodes. Again, SMAC Scenario 2 shows very quick

degradation in terms of normalised throughput which basically presents the difference between

using SMAC and AMCMAC for the vehicles in the middle area.
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Fig. 12. Normalised Throughput in Large-scale VANETs
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Fig. 13. The Packet Delivery Rates v.s. the Number of Nodes

B. Packet Delivery Rate and Collision Rate

Fig. 13 and 14 compare the packet delivery rates and collision rates on service channel-

s/LSCHs. The SMAC and AMCMAC outperform the other two multi-channel MAC schemes,

in terms of both packet delivery rates and collision rates. AMCMAC demonstrates higher packet

delivery rates than SMAC (shown in Fig. 13 but achieves much lower throughput (shown in Fig.

11 and 12), due to the less active utilisation of the shared resources. AMCMAC achieves a higher

packet delivery ratio than SMAC but a lower throughput, because in AMCMAC interference
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Fig. 14. The Packet Collision Rates on Service Channels v.s. the Number of Nodes

from exposed terminals makes the scheme difficult to successfully finish channel negotiation.

Hence, fewer transmission attempts exist in AMCMAC comparing to SMAC. Although the

packet delivery rate in AMCMAC is higher, the total number of packets to access the channel

is much lower than SMAC. As for the collision rates, SMAC achieves lower collision rates

comparing to AMCP and maintains a similar level of collisions as the standard IEEE 1609.4

does. The reason for AMCMAC achieving much lower collision rates than SMAC is the same

as discussed in the above, that the AMCAC is weak in spectrum reuse and very reluctant to

initiate a transmission attempt.

C. MAC Modes Switching

Penetration rate can be measured to evaluate the efficiency of dissemination of segmentation

information in SMAC. The penetration rate is defined as the percentage of nodes that successfully

receive the segmentation/channel allocation commands against potential receivers in the reference

area. First, the accumulative penetration rates of segmentation information is measured against

the times that the information is broadcast in Fig. 15. It is noted that usually after the first two

broadcasts, the information can penetrate above half of the nodes in most scenarios. Fig. 16
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Fig. 16. The Penetration of Segmentation Information in Different Scales of Networks

shows the penetration rates against time in different network scales. All nodes can be informed

about the segmentation of the reference network within 2 seconds (around 1 second for less

congested scenarios). As a wrap-up, segmentation information reaches the intended vehicles

within the tolerance. The mechanism of switching between SMAC and AMCMAC is suitable

for large-scale dense vehicular networks.
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VI. CONCLUSION

This paper addresses a significant challenge with respect to deployment of asynchronous

multi-channel Dedicated Short Range V2X Communications in large-scale dense networks. The

dynamic segmentation of large-scale networks and efficient allocation of channels across the

network generate tremendous performance improvement, in terms of throughput, packet delivery

rate, and collision rate. The proposed effective mechanism for inter-segment communications,

can also significantly improve key performance indicators of the networks, such as multi-hop

dissemination delay and packet delivery rate, as well as enhanced road safety. This work reveals

the potential benefits adopting duel connectivity via numerical analysis. Future research with

regard to Multi-RAT Heterogeneous Networks and Small Cells will add valuable contributions

to the extension of the work.
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